
CMS-2Y(7J USER MANUAL M-5049

CMS-2Y' PROGRAMMER'S
REFERENCE'MANUAL
FOR THE AN/UYK-7' AND
AN/UYK-43 COMPUTERS'

FLEET COMBAT DIRECTIQN
SYSTEMS SUPPORT ACTIVITY
San Diego, California 92147

THIS PUBLICATION REPLACES M-5049, DATED
15 FEBRUARY 1984 AND ALL CHANGES THERETO.
THE SUPERSEDED PUBLICATION SHOULD BE
REMOVED FROM FI LES -AND DESTROYED.

, 1 OCTOBER 1986
,{ ,f.'" Q... 'f PI) r()j t.)

This document is required for Clal use Of

administrative or operati9pal purposes.Distri-
• butioD is. limitedt~;, .. tJS"" Agen9ies oruy. Other'

requests for t!Us"document· must be referred
to; FCDSSA, San Diego, CA 92147~S081

~' . .".. ' ..

This dOcument· reflects

CMS-2Y Revision "16. '

/ (U) 'CM2Y-MAN-PGR-M5049-R04CO ,

Documeht No. /MAN5049
Con fig. I D N-o ~7.,..,(~U~) ";'CM~2~Y-.-~M~A~N ~-P~G::-::R:---"":":M:":"5":"'0 4~9::---=R~0""':"4":-C 0:::-
Date Of Original Issue1 December 1978
Revision/Change No. 4/0
Date Of Revision/Ch-an~a~e~1-0~c~t-o~b-e-r-1~9~8~6~---
THIS DOCUMENT'UNDER-C6NFIGURATION CONTROL

CMS-2Y PROGRAMMER'S REFERENCE MANUAL

FOR THE AN/UYK-7 AND AN/UYK-43 COMPUTERS

Prepared By:

FLEET COMBAT DIRECTION SYSTEMS SUPPORT ACTIVITY
CODE 8

SAN DIEGO, CA 92147-5081

~OVAL:. (Signat.ur,e),

lfa&dLa~~ fO!
Originator

~L-~2 .
ReVieWidpgAu hority

Ii
,/?, ? /"{ . ,

/V' ~~~"~

flU) CM2Y-MAN-PGR-M5049-R04CO

LIST OF EFFECTIVE PAGES

Insert latest changed pages: dispose of superseded pages in
accordance w-i th app 1 i cab 1e standards ..

NOTE: On a changed page, the portion of the text affected by the
latest change is indicated by a vertical line in the outer margin
of the page.

Total number of pages in this manual is 648 consisting of the.
f 0 1 1 ow. i n g :

Page
No.

Change
No.

Title 0
A •••••••••••••••••.•••••• 0
1 •••••••••••••••••••••••• 0
i ; Blank....... 0
1 1 1 •••••••••••••••••••••• 0
i v 81 ank 0
v - x i v " ,0
1-1 - 1-7 ... ~•... 0
1-8 Blank 0
2-1 - 2-12 0
3-1 - 3-19 ' 0
3-20 BlanK............... 0
4-1 - 4-133 0
4-134 B lanK 0
5- 1 - 5 - 82•........ 0
6-1 - 6-119 0

~Page
No.

Change
No.

6 - 120 Blank 0
7-1 - 7-9 0
7 - 1 0 Blank 0
8-1 - 8- 11 0
8 - 12 Blank 0
9-1 - 9-52 0
10-1 - 10-5 0
10-6 Blank '.. 0
A-1 - A-28 0
8-1 - B-42 0
C-1 - C-8 0
0-1 - 0-46 0
E-1 - E-7 0
E -8 Blank 0
X-1 - X-43 0
X - 44 Blank 0

#Zero in this column indicates an original page.

A

CHANGE
NUMBER

Original
Revision 1
Revision 2

.. - Rev is ion 3
Revision 4

/(U) CM2Y-MAN-PGR-M5049-R04CO

RECORD OF CHANGES

DATE

1 December 1978
15 April 1981
30 September 1981
15 February 1984'
1 Oc tober 1986

ABSTRACT OF CHANGE

,
I
I
I
I , ,
I
I
I
I
I
I
I
I ,
I ,
I
I
I ,
I

. I
I ,
I
I
I
I
I
I
I ,
I
I
I
I
I
I
I

.I

-------------------- ----------------- ------------------------

i / (i i blank)

flU) CM2Y-MAN-PGR-M5049-R04CO

ABSTRACT

This document contains the information required to use the Com

piler Monitor System-2 (CMS-2Y) which operates on the AN/UYK-7

computer and generates code for the AN/UYK-7 and AN/UYK-43 com

puters. This capability is referred to as CMS-2Y(7) throughout

th i s manua 1 .

CM2Y-MAN-PGR-M5049-R04CO contains a comprehensive description of

the CMS-2Y(7) language statements and their usage. A basic

knowledge of both programming and AN/UYK-7 and AN/UYK-43 computer

characteristics has been assumed.

The "CMS-2Y Programmer's Reference Manual for the AN/UYK-7 and

AN/UYK-43 Computers"'iS an unclassified document produced by ttie

Systems Programming and

Fleet Combat Direction

(FCDSSA San Diego).

Production Services Department at the

Systems Support Activity, San Diego

; i i / i v blanK)

Sect ion

1 . 1
1 .2
1 .3
1 .3. 1
1 .3.2
1 .4

2

2. 1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.7

3

3. 1
3. 1 . 1
3.1 .2
3.1 .3
3.2
3.3
3.4
3.4.1
3.4. 1 • 1
3.4.1.2
3.4.2
3.4.3
3.4.4
3.5

4

4. 1
4.2
4.3
4.3. 1
4.3.2

/(U) CM2Y-MAN-PGR-M5049-R04CO

TABLE OF CONTENTS

INTRODUCT ION 1-1

Purpose and Scope 1-1
App 1 i cab 1 e Documen t s 1 - 2
Convent ions ' 1-3

Semantic Conventions ~ 1-3
Symbolic Conventions 1-5

Sec t i on Summary 1-6

FUNDAMENTAL CONCEPTS 0 •••• 0 •••••••••••••••••• 2-1

Program Forma t 0 ••••••••••••••••••••• 2- 1
Commen t s. . . . 0 0 • 0 • 2 - 2
Spaces and Notes ' 2-4
Modes and Types 2-5

Modes and Simple Types 2-5
" Un i ver sal Type............................... 0 2 - 7

Structured Types. 0 ••••••••••••••••••••••••••• 2-8
Scopes and Scope Rules 2-9
Input/Output andF i les 2-10
Debugg i ng Aids...................... 2 - 1 2.

BASIC CONSTRUCTS 3'-1

Characters ... i •••• 0 ••••••••••••••••• 000 •••••••• 3-2
Let ters 0 ••••••••••••••••••••••• ',' .3- 3
Digits o •• 0 ••• 0 •• 0 0 •••••••••••••••••••••• 3-4
De 1 i mit er s ; 3 - 5

S t rings. '.' 0 0 • 0 • 3 - 6
Names ... 0 ••••••• 0 •••••••••••••••••••••••••••••• 3-7
Constants ' ~ 3-9 '

Numer ic Cons tants 3-10
Decimal Constants 3-11
Octal Constants 3-14

Boo lean Cons tants 3-16
Character Constants 3-17
Status Constants 3-18

Direct Code Block 0 ••••••••••••••••••• 3-19

DECLARATIONS ~ ' 4-1

Declaration Modifiers 4-2
Constant Mode Declaration 4-5
Simp le Type Spec if ica t ion 4-7

Numer ic Types · 4-8
Boo lean Type 4-12

v

/

/(U) CM2Y-MAN-PGR-MS049-R04CO

Sect ion

4.3.3
4.3.4
4.4
4.5
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.9
4.10
4. 11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.21.1
4.21.2
4.21 .3
4.22
4.22.1
4.22.2
4.22.3
4.23
4.24
4.24.1
4.24.1.1
4.24.1.2
4.24.1.3
4.24.1.4
4.24.1.5
4.25
4.25.1
4.25. 1 . 1
4.25.1.2
4.25.1.3
4.25.1.4
4.25.1.5

TABLE Of CONTENTS

Page

Character Type " 4-13
S tat us Type.................................. 4 - 1 4

Type Dec 1 ara t i on$ 4- 15
Default Type Specifications 4-20
Va r i ab 1 e Dec 1 a rat i on. 4 - 24
Parameter Variable Declaration 4-29
Tab 1 e Dec 1 a rat i on. 4 - 32

Fie 1 d Dec 1 a rat i on. 4 - 39
Field Overlay Declaration 4-44
Like-Table Declaration 4-47
Subtable Declaration 4-49
Item-Area Declaration 4-54

Array Declaration 4-56
Preset Value Declaration 4-60
Overlay Oeclaration 4-63
Text Substitution Declaration 4-66
Comp i l~'':"-T ime Cons t.~lJJ Dec lar a t ion 4 - 68
Load- T ,(~ 'V~r i ab le Dec 1 arat ion 4-72
Address ··Oeclarat ion 4-75
System Index Declaration 0 •••••••• 0000 ••• 4-77
Local Index Declaration 0 ••••••••• 0 ••••••••• 4-78
Procedure Declaration 4-79
Executive Procedure Declaration 4-82
Function Declaration 4-84
Labe 1 Sw itch Dec 1 ara t ion 4- 86

Indexed Label Switch Declaration 4-87
Double Label Switch Declaration 4-89
Item Label Switch Declaration 4-91

Procedure Switch Declarations 4-93
Indexed Procedure SWitch Declaration 4-94
Double Protedure Switch Declaration 4-96
Item Procedure Switch Declaration 4-98

F i 1 e Dec 1 a rat i on. "~'. . . 4 - 1 0 1
Format Declaration :' 4-108

Interpretation of Format Items 4-110
Format Descr iptors 4-110
Numeric Conversion (I, 0, F, and E Types) .. 4-111
Character Conversion (A and L Types) 4-112
Character Constant Format Item 4-113
Format Posi t ioners 4-113

Stringform Declaration 4-116
Interpretation of Stringform Items 4-117

Stringform DescrJptors 4-118
D-Type Conversion, Internal to Character ... 4-118
D-Type Conversion, Character to Internal ... 4-119
I-Type Conversion, Internal to Character ... 4-119
I-Type ConverSion, Charac:er to Internal ... 4-119

Vi

Sect ion

4.25.1.6

4.25.1.7

4.25.1.8
4.25.1.9

, 4.25. 1 . 10
4.25 . 1 . 11
4.25. 1 . 12
4.25.1.13
4.25.1.14
4.25.1.15
4.26
4.27
4.28
4.29

5

5. 1
5. 1 . 1
5. 1 . 1 I 1
5. 1 . 1 .2
5.1 .2
5.1 .3
5. 1 .3. 1
5.1 13.2
5.1 .3.3
5 I 1 14
5. 1 .41 1
5.1 .4.2

,5.2
5 I 2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.3
5.2.3.1

5.2.3.2
5.2.3.3
5.2.3.3.1
5.2.3.3.2
5.2.3.3.3
5.2.3.3.4
5.2.3.4
5.2.3.5

/(U) CM2Y-MAN-PGR-M5049-R04CO

TABLE OF CONTENTS

B-Type, O-Type, and X-Type Conversions,
Internal to Character 4-120

B-Type, O-Type, and X-Type Conversions,
Character to Internal ~ .. 4-120

C-Type Conversion, Internal to Character ... 4-121
C-Type Conversion, Character to Internal ... 4-121
£-Type Conversion, Internal to Character ... 4-122
E-Type Conversion, Character to Internal ... 4-122
Stringform Positioners I ••••• 4-122
Z - Type Pos i t ion i ng. I •••••••••••••• I •••••• I .4- 122
T - Type Pos i t ion i ng 4- 123
Character Constant Conversion I ••••••••• 4-123

I npu t 1 i s t Dec 1 a rat i on. I • 4 - 1 25
Outputlist Declaration 4-127
Debug Enabling Declaration 4-129
Range Dec 1 ara t ion 4- 131

DATA REFERENCES 5-1

Data Uni t 5-2
Single-Valued Data Unit 5-3

Restrictions on Forms 5-4
Attributes of a Single-Valued Data Unit 5-4

Mu 1 t iva 1 ued Da t a Un it 5 -6
Word Data Unit., 5-7

Restr ict ions on Forms ~ ... 5-7
Word Specification 5-8
Resolution of Ambiguity 5-8

Mod i f i ed D a t a Un it. 5 ... 9
Bit Mod i f i ed Da t a Un it I •••• 5 - 10
Character Modified Data Unit 5-12

Funct ion, Reference I •••• 5-14
User Function Reference I •••• 5-15
Intrinsic Function Reference 5-17

Absolute Value Function Reference 5-18
Core Address Function Reference 5-19

Predefined Function Reference 5-21
Floating-Point Arithmetic Function

Reference 5 - 22
Fixed-Point Arithmetic Function Reference .. 5-25
Status Operation Function Reference 5-28

Successor Function Reference 5-29
Predecessor Function Reference 5-30
Initial Value Function Reference 5-31
Final Value Function Reference. I •••• I •••• 5-32

Bit String Function References .. I 1.1 ... 1.1.5-33
Scaling Specification Function Reference ... 5-36

/(U) CM2Y~MAN-PGR-M5049-R04CO

Sect ion

5.2.3.6
5.2.3.7
5.2.3.8
5.2.3.9
5.2.3.10
5~2.3.11
5.2.3. ~2
5.3
5.3.1
5.3. 1 . 1
5.3.1 .2
5.3.1 .3
5.3.1.3.1
5.3.1.3.2
5.3.1.3.3
5.3.1.3.4
5.3.1 .4
5.3.1.5
"5.3.1 .6
5.3.1.6.1
5.3.1.6.2
5.3.1 .7
5.3.1.8
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4
5.3.2.5
5.3.2.6
5.3.2.7
5.3.2.8
5.3.3
5.3.4
5.3.5
5.3.5.1
5.3.5.2
5.3.6

6

6. 1
6. 1 . 1
6 . 1 . 1 . 1

6.1.1.1.1
6.1.1.1.2

TABLE OF CONTENTS

- ,

Conversion Function Reference 5-38
Temporary Definition Function Reference 5-40
Remaindering Function Reference t ••••• 5-42
Bit Count Function Reference 5-44
Subfile Number Function Reference 5-45
Subfile Position Function Reference 5-46
Record Length Function Reference 5-47

Express ions 5 - 48
Numeric Expression 5-49

Express i on Eva 1 ua t ion 5 - 50
Numer ic Convers ions 5-50
Fixed-Point Sca 1 ing Algor i thm 5--51

Symbols Used in Scaling Algorithm 5-52
The Value of the Scaling Controller 5-53
Results of Binary Operations 5-53
Float ing-Point Ar i thmet ic 5-54

Sign of Fixed-Point Operations 5-55
Constant Arithmetic 5-55
MSCALE Sca 1 i ng Algor i thm 5 - 58

Integer Arithmetic Scaling Algorithm 5-58
Fixed-Point Arithmetic Scaling Algorithm.5-58

Numeric Constant Expression 5-62
Numeric Constant Value 5-63

Boo 1 ean Express ion 5-64
Express i on Eva 1 ua t ion 5-65
Mean i ng Of Opera tors 5-65
Numeric Relational Expression 5-67
Boolean Relational Expression 5-69
Character Relational Expression 5-71
Status Relational Expression 5-73
Condi tiona 1 Express ion -... 5-74
Conditional I/O Expression 5-76

Character Expression 5-77
Status Expression 5-78
Bit String Expression 5-79

Express i on Eva 1 ua t ion 5-79
Meaning of Operators 5-80

Structured Express ion 5-82

STATEMENTS 6-1

Simp 1 e Ph rase s. 6 - 3
Imperative Phrases ~ 6-4

Assignment Phrase (Classes and
Compa t i b i 1 i t y) . 6 - 5
Simple Assignment 6-7
Un typed Ass i gnmen t . 6 - 1 4

vii i

Sect; on

6.1.1.1.3
6.1.1.1.4
6.1.1.1.5
6. 1 . , .2
6. 1 . 1 .3
6. 1 . 1 .4
6. 1 . 1 .5
6. 1 • 1 .6
6.1.1.6.1

6.1.1.6.2
6. 1 . 1 .7
6. 1 . 1 .8
6. 1 . 1 .9
6.1.1.10
6.1.1.11
6.1.1.12
6.1.1.13
6.1.1.14
6.1.1.15
6.1.1.16
6.1.1.17
6.1.1.18
6.1.1.19
6.1.1.20
6.1.1.21
6. 1 . 1 .22
6 . 1 . 1 .22. 1
6. 1 . 1 .22.2
6. 1 .1 .22. 3
6.1 . 1 .22.4

6.1.1.23
6.1.1.24
6. 1 . 1 .25
6. 1 . 1 .26
6. 1 • 1 • 26. 1
6.1.1.27
6. 1 . 1 .28
6. 1 • 1 .29
6. 1 . 1 . 30
6.1.1.31
6.1.1.32
6. 1 .2
6. 1 .2. 1
6.1 .2.2
6.1 .2.3

/(U) CM2Y-MAN-PGR-M5049-R04~0

TABLE OF CONTENTS

Page

Word Ass ignment .. : 6-15
Value Flush Assignment 6-16
Mu 1 t iva 1 ued Ass i gnmen t 6- 16

Swap Phrase 6 -18
Branch Phrase 6-20
Indexed Branch Phrase 6-22

·Item Branch Phrase 6-25
Procedure Call Phrase 6-28

User Procedure Call Phrase (Parameter
Passage Sty 1e 6-29

Supplied Procedure Call Phrase 6-34
Indexed Procedure Call Phrase 6-38
Item Procedure Call Phrase 6-41
Stop Phrase 6-43
Return Phrase 6-45
Ex;t Phrase 6-48
Resume Phrase 6-50
~xecutive Call Phrase 6-52
Sh;ft Phrase 6-53
Open Phr ase 6 - 56
Close Phrase 6-58
Endfi le Phrase 6-59
Define Label Phrase 6-66
Check Labe 1 Phrase 6-61
File Positioning Phrase 6-62
Record Positioning Phrase ~ ... S-64
Output Phrase 6-66

Extended Subscript Data Unit 6-67
The Forma t Scan 6-69
Outp~t to the Printer 6-71
Record Size with Unformatted Input

and Outpu t 6-72
Input Phr·ase 6-74
Encode Phrase 6-76
Decode Phrase 6-78
Convertin Phrase ~ 6-79

Run-Time Stringforms 6-80
Convertout Phrase 6~82
D i sp 1 ay Phrase 6-84
Snap Phrase 6-87
Trace Phrase 6-89
End-Trace Phrase 6-91
Null Phrase 6-92

Statement Blocks 6-93
Beg i n Block................................ 6 - 94
Loop Block 6-96
Case Block 6-105

/(U) CM2Y-MAN-PGR-M5049~R04CO

Sec t ion

6.1 .2.4
6.2
6.2.1
6.2.2

7

7 . 1
7 . 1 . 1
7 .1 .2
7 . 1 .3
7.2
7 .2.1

8

8. 1
8.2
8.3
8.4
8.5

9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.3
9.3.1
9.3. 1 . 1
9.3.1.2
9.3.1.3
9.3.1.4
9.3.1 .5
9.3.2
9.3.3
9.3.4
9.3.5
9.4

TABLE OF CONTENTS

Page

End Ph rase. ~ . 6 - 1 1 0
Conditional Statements 6-112

I f S tat emen t . 6 - 1 1,3
F 1 nd S tat emen t . 6 - 1 1 6

SUBPROGRAMS I ••••••••••••••••••••••••••• I ••••••••• 7-1

Subprogram Block 7-2
Procedure Block ; 7 - 3
Executive Procedure Block 7-4
Function Block :~ , 7-5

Subprogram Body 7-7
Subprogram Data Block 7-8

SYSTEM ELEMENTS 8- 1 '.

S Y stem D a t a E 1 emen t . 8 - 2
System Procedure Element 8-4
Lbca 1 Data Block 8-6
Automatic Data Declaration 8-8
Minor Header ' 8-10

COMP I LAT ION MODULES 9-1

Major Header 9- 3
Opt ions Declarat ions 9-6

Source Specification 9-10
Object Specification 9-12
Listing Specification 9-16
Message Level Specification 9-18
Monitor Specification ~ ~ 9-19
Nonreal-Time Specification 9-20
Structured Specification 9-21
Mode Variable Specification 9-22
Sca 1 i rig Spec i fica t i on. 9 - 23

Compi ler Di rect ives 9-24
Parameter Passage Directive 9-25

Rout i ne Linkage 9-26
Function Value Return 9-26
D i r ec t Pas sage. 9 - 26
Register Passage Algorithm 9-26
Register Passage, Calling Only 9-27

Single Preci~ion Directive 9-28
Executive Directive 9-29
Sp ill D i r ec t i ve. I • • • • • • • • • • • • • 9 - 30
Poe 1 i ng D i rec t i ve 9- 31

Address Counter Separation Declaration 9-35

x

/(U) CM2Y-MAN-PGR-M5049-R04CO

TABLE OF CONTENTS

Sect ion Page

9.5 Compiler Input and Output Files 9-37
9.5.1 I SCM F i 1 eEl emen t s. 9 - 38
9.5.2 Compiler Input ISCM Files 9-38
9.5.2.1 Library Declaration 9-39
9.5.2.2 Source Retrieval Declaration 9-40
9.5.2.3 Compool Retrieval Declaration 9-44

. 9.5.3 Compi ler Output ISCM Files 9-46
9.5.3.1 ISCM File Specification With The Options

Dec 1 ar a t ion 9 - 46
9.5.3.2 Key Specification 9-48
9.5.3.3 Dependent Element Declaration 9-51

10 CONDITIONAL COMPILATION 10-1

10. 1 Conditional Compilation Brackets 10-2
10.2
10.3

Compil~tioh Selection Directives 10-4
Cswi t¢nDelete Declarat ion 10-5

APPENDIX A ERROR AND WARNING MESSAGES A-1

A.1 Source Error and Source Warning Messages A-1
A.2 Library Retrieval Diagnostic Messages A-19.
A.3 Object Error and Object Warning Messages A-21
A.4 Reference Listings Error Messages A-26
A.5 o the r Err 0 r s. A - 28
A. 5.1 Compiler Phase Errors ~ ... A-28
A.5.2 All oc a t i on Err 0 r s. ~ A - 28

APPENDIX B DIRECT CODE '.' " B-1

B.1 Bas ic Constructs B-2
B. 1 . 1 Direct Code Characters B-2
B.1 .2 De l·im i t e r s. B-3
B.1.3 Names .. 8-4
B. 1 .3. 1 Text SubstitutiOn Declaration Names B-4
B. 1 .3.2 Compile-Time Constant Declaration Names B-4
B.1 .3.3 Load-Time Variable ·Declaration~ B-4
B.1 .3.4 System and Local Index Names B-4
B.1 .4 Operation Codes ~ 8-5
B.1.5 Direct Code Cons tants ~ 8-15
B.1 .5. 1 Direct Code Numeric Constants B-16
B.1 .5.2 Direct Code Character Constants B-21
B.1 .5.3 Direct Code Literal B-22
B.2 Direct Code Expressions B-23
B.2.1 Direct Code Numeric Constant Expressions 8-24
B.2.2 Direct Code Address Expressions B-25
B.3 o i rec t Code S tat emen t s B - 27

xi

/(U) CM2Y-MAN-PGR-M5049-R04CO

Sect ion

8.3.1
8.3.2
8.3.2.1
8.3.3
8.3.4
8.3.4.1
8.3.4.2
8.3.4.3
8.3.4.4
8.3.4.5
8.3.4.6
8.3.5

APPENDIX C

C.1

C. 1 . 1
C.2

APPENDIX 0

O. 1
D . 1 . 1
D. 1 .2
D.2
D. 2.1
D.2.2
D. 2.2.1
D.2.2.2
D.2.2.3
D.2.2.4
0.2.2.5
D.2.2.6
D.2.2.7
D.2.2.8
D.2.2.9
D.2.2.10
D.2.3
D.2.4

D.2.5

D.2.6
D.2.7
D.2.8
D.3

TABLE OF CONTENTS

Page

Direct Code Name B-28
Addressable Direct Code Statement B-30

o i rec t Code Ins t ruc t ion B - 31
o i rec t Code Preset 8- 32
Direct Code Directives 8-35

Ab s 0 i r ec t i ve. 8 - 36
Byte Directive B-37
Ch a r 0 i r ec t i ve. 8 - 38
Do 0 i rec t i ve ' .. 8- 39
Form 0 i rect i ve 8-40
Res Directive 8-41

Form Preset 8-42

TARGET MACHINE INTERFACES C-1

Compiled Forms of Inputlist and Outputlist
Dec 1 ar at ions 0 . 0 C - 1
Contro 1 Words C-3

Compiled Form of Stringforms C-7

LISTING FORMATS D-1

Sou r ce Lis t i ngs. 0 - 2
Compiler Source Listing D-3
Source Lis t i ng 0- 5

Db jec t Lis t i ng 0- 8
Comp i 1 er 0 i agnos tic Lis t i ng 0 - 9
Symbol Analysis Listing (SAl 0-11

F i 1 es 0- 16
Formats 0-17
Types. '~ ' .. ~• . . 0 - 1 8
Tab 1 es 0 0 - 19
Sw itches ,; 0- 21
Va r i ab 1 es 0- 22
Inputlists/Outputlists D-23
Str i ngforms 0 0-24
Procedures and Functions 0-25
Loca 1 1 ndexes 0 0- 26

Sou r ce Mnemon i c Lis t i ng. 0 0 0 ... 27
Local Address Cross Reference Listing

(CR, CRL) 0-30
Local Source Cross Reference Listing

(SCR, SCRL) 0 •••••••••••••••••••••••••• 0-33
Global Address Cross Reference (CR, CRG) 0-36
Global Source Cross Reference (SCR, SCRG) 0-38
Compile Summary t ••••••••• ~ •••• 0 0.0-41

S Y stem Lis t i ng s . ~ . 0 . D - 4 3

xii

/(U) CM2Y-MAN-PGR-M5049-R04CO

TABLE OF CONTENTS

Sec t ; on Page

D. 3.1 SHARE/7 Sys tem Summary 0-43
D.3.2 Batch System Summary 0-45

APPENDIX E FORMAT OF THE SYMBOL ANALYSIS DUMP E-1

.. INDEX OF SYNTAX· SYMBOLS X-1

xii i

/(U) CM2Y-MAN-PGR-M5049-R04CO

Figure

1 - 01
4-01
4-02

4-03
4-04
4-05
4-06
4-07
4-08
4-09
5-01
5-02
6-01
6-02

6-03
9-01
'0-01
D-02
D-03
D-04
D-05
D-06

D-07

D-08

D-09

D-10
D- 11
D-12

LIST OF FIGURES

Page

N a r rat i ve S ymbo 1 s. 1 - 4
CMODE Declaration Examples 4-6
Allocation of Fields with Compiler-Specified

Pack i ng. 4 - 1 9
Allocation of Typed Variables 4-26
Table Storage Addressing Sequence 4-35
Vertical Table Layout (Table TEST) 4-43
Internal Structure of Subtable HORIZST 4-52
Internal Structure of Subtable VERTST 4-53
Parent Table Relat ionships 4-55
A 3-Dimensional Array 4-59
Floating-Point Arithmetic Conversions -.... 5-51
Boolean Operators 5-66
Simple Assignment Operation Types 6-17
Example of Bit Assignments for the Display

Phrase ... 6-86
Vary Block Control Flow I ••••••••••••••••• 6-102
Some Options Parameter Combinations and Results .. 9-9
An Example of a Compiler Source Listing. I •••••••• D-4
An Example of a Source List ing 0-6
An Example of a Compiler Diagnostic Listing D-10
An Example of a Symbol AnalySis Listing 0-12
An Example of a Source Mnemonic Listing 0-28
An Example of a Local Address Cross Reference

Lis t i ng. 0 - 3 1
An Example of a Local Source Cross Reference

Lis t i ng .. 0- 34
An Example of a Global Address Cross Reference

Lis t i ng. D - 37
An Example of a Global Source Cross Reference

Lis t i ng. I • I • I .•• • 0 - :3 9
An Example of a Compile Summ~ry I •••• p-42
An Example of a SHARE/7 System SUmmary 0-44
An Example of a Batch System Summary. I ••••••••••• 0-46

xiv

•

/(U) CM2Y-MAN-PGR-MS049-R04CO

SECTION'. INTRODUCTION

1.1 Purpose and Scope

This programmer's reference manuaf describes the'syntax and se
mantics of the CMS-2Y(7) language. The description is stated in
terms of the syntactic forms permissible in a correctly written
program and the effect of executirig such a program. The meanings
of incorrect programs cannot be inferred from this description.

This manual assumes that the reader has some prior knowledge of
both programming and AN/UYK-7 and AN/UYK-43 computer characteris
tics. It should be viewed as a language reference manual, not as
a CMS-2Y primer nor as a tutorial text .

1 - 1

/ (~,) CM'2Y-MANi-P'GR-M504~R04CO

1 . 2 App 1 i cab 1 e Documen t s

The fol lowing documents complement this manual to provide a com
plete description of CMS-2Y(7) interfaces:

a. CM2Y-MAN-CPC-M5040-ROOCO "CP-642A/B Computer Character
istics," FCDSSA, San Diego, 1 May 1979.

b. CM2Y-MAN-PGR-M5044-R01CO "CMS-2Y Programmer's Reference
Manual for the Transferable Subset," FCDSSA, San Diego,
1 October 1986.

c. CM2Y-MAN-PGR-M5045-R04CO IICMS-2Y Programmer's Reference
Manual for the AN/UYK-20 and AN/AYK-14 Computers,"
FCOSSA, San Diego, 1 October 1986.

d. CM2Y-MAN-CPC-M5046-ROOC3 "AN/UYK-20 Computer Character
istics," FCDSSA, San Diego, 1 October 1986.

e. CM2Y-MAN-PGR-M5047-R01CO "CMS-2Y Programmer's Reference
Manual for the CP-642 Computer, II FCOSSA, San Diego,
1 October 1986.

f. CM2Y-MAN-CPC-M5048-ROOCt "AN/UYK-7 Computer Character is
t ; cs ,II FCOSSA ,San 0 i ego, 1'5 April 19B 1.

g. CM2Y-MAN-PGR-M5050-R01C3 "CMS-2Y Supporting Subsystems,"
FCDSSA, San Diego, 1 October 1986.

h. CM2Y-MAN-PGR-M5131-R02CO IIAssemblers and 'Macro
Assemblers," FCDSSA, San Diego, 1 October 1986.

i. CM2Y-NTS-PGR-N1144-R01CO "Guide to Efficient CMS-2Y Pro
gramming," FCDSSA, San Diego, 15 April 1981.

1- 2,

/(U) CM2Y-MAN-PGR-M5049-R04CO

1.3 Conventions

1.3.1 Semantic Conventions

Th~ word must, as used in this manual, describes a condition re
quired of a correct program.

The word undefined, as used in this manual, describes a condition
to which no meaning is attached. For a program actually compiled
by the CMS-2Y(7) compiler, an undefined condition will usually
have some meaning. A user may discover the- meaning and·
subsequently wrtte a program that relies on that meaning, but the
program usually cannot be transported to a different target
machine or even another compiler for the same target machine.
Furthermore, the CMS-2Y(7) compiler's handling of such a condi
tion might reasonably change from one revision to the next.

The phrase no limit, as used in this manual, describes a quantity
that is not limited by the definition of the CMS-2Y(7) language.
In reality the quantity is not truly unlimited. The limit
typically depends' on some resource of the compiler, often the
amount of memoryav~ilable for its symbol table, and is usually
quite large. H(1)Wever, in extreme cases (when the pertinent
resource has been depleted during a compilation) the limit may be
small. In such cases the usual effect is an aborted compilation
-- aborted because of the insufficient resource -- rather than an
indication that the quantity has exceeded a limit.

The phrase effect of is used in this manual when describing se
mantics in a manner that might appear to be suggesting the method
of implementation. No such suggestion is intended.

Symbols used in the narrative of this manual to assist in the
functional description of a process are not necessarily used the
same as CMS-2 language symbols nor as the symbols used in
syntactical productions. Narrative symbols appearing in descrip
tive text are interpreted as follows:

1-.3

/(U) CM2Y-MAN·PGR~M5049-R04CO

SYMBOL

+

*
/
** >
<
(or
) or

add i t ion
sub t r ac t ion

FUNCTION

mu 1 tip 1 i ca t ion
division
exponentiation
greater-than relation
less-than relation
initial expression enclosure
terminal expression enclosure

Figure 1-01. Narrative Symbols

1-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

1.3.2 Symbolic Conventions

A modified
productions.

< >

.. -.. -

[]

&

Backus Naur form (BNF) is used to present all syntax
The symbols used in this specification are:

- Angle brackets isolate syntactic symbols.
Each symbol contained within the brackets is
subject to further definition through substi
tution of the symbol either by other syntactic
symbols or, ultimately, by symbols for which
there can be no further definition. Those
symbols for which substitutions may be made
are called nonterminal symbols. Those for
which there can be no further definition are
known as terminal symbols; these are not en
closed in angle brackets (examples include IF,
SE T, +, and $).

- Ideogram that separates a nonterminal symbol
from its definition. Alternative definitions
for the nonterminal are presented on subse
quent lines, with the::= repeated. If a def-
i nit· ion canno t be con t a i ned on a $ i ng 1 eli ne ,
any continuation lines are indented and are
not preceded by the ::= ideogram.

- Square brackets indicate an optional entity.

- "At" sign indicates that the preceding nonter-
minal may be repeated an arbitrary number of
times, separated by commas.

- Ampersand indicates that the preceding nonter
minal may be repeated an arbitrary number of
times. No commas are used.

This manual has been organized with the reader of the text in
mind. Because of this organization, the BNF is in a "nonstan
dard" presentation sequence, making heavy use of forward refer
ences. The 'page on which the definition of each nonterminal ap
pears is marked in the index of syntax symbols. Use of this in
dex should aid the reader of the BNF.

1-5

1 .4 sect i on· Summary

This manual' is presented in several subdiVisions, each of which
discusses a functional area of the CMS-2Y(7) language.

Sect ion 1 . Introduction

This section sets forth the purpose of this manual, describes the
background behind CMS-2Y~ lists documents related to this one,
presents the conventions used herein, and summarizes the signifi
cant functions of each of the mahual's sections.

Sec t i on'2 . F undamen!-8 1 Cohctizrt s

This section discusses the grammatical forrnat of CMS-2Y(7) pro
grams, internal programdocUinentation, data classes, and name
scopes.

Sec t ion 3.· Basic ,·Gon$t;r~uc t5

Th i s ,sc:)cti'~n ,cJ~fli~.s,' thee..,S;"2'Y (7) character, set, character
s t r i hgs, ana .h~~~r;,;\)~'lji,tS~ t'!5 f'Qrth lhe'c;iji:l:~t r a i n t s which cie
fine nU'iner'~b 'BtJtD_;;'l ~Wef'··eha";ilet\er '¢on!ffa'rits.

, ";J;'}>."" ,

Sec t i on 4. Dec la;n,a:lt:~~i~~n$

This section describes the various declarations governing the or
ganization and attributes of data within the user's program.

Section 5. Da ta R;e~tererice's

This section discusses how data is referenced, either by re~fiev
ing values or by comp,arihgtwo v~lues.Refer~nces can be to ba
sic data units, cO'ristahts, aha functions, or to combinations of
these (expressions).

Sect ion 6. Stateme.hls

This section describes the vlr'ieUsact ions whiCh may be parfo.rmed
to man ipu 1 a t9 da teind to s'pee 1 fy logic.

Sect ion 7. Subprogr.ams

This sect ion discusse~ the .. three ways that statements may be
grouped together in a CMS-2Y(7) program.

Section 8. System E16ments

This section describes, how d~tadeclarationsare grouped together
and how data declarations and statements may be blocked to form
elements of a CMS~2Y(7) program.

1-6

/(U) CM2Y-MAN-PGR-M5049-R04CO

Section 9. Compilation Modules

This section defines all the declarations required by the compil
er which affect its code generation and the kinds of output it
creates.

Section 1C. Conditional Compilation

This section describes how to bracket blocks of source statements
and how to direct their inclusion or exclusion by the campi ler.

1-7/(1-8 Blank)

/(U) CM~Y-MAN-PGR-M5049-R04CO

SECTION 2. FUNDAMENTAL CONCEPTS

2.1 Program Format

Compilation modules are presented t6 the CMS-2Y(7) compiler as a
sequence of 80-character units, called lines. The character po
sitions within each·line are called columns and are numbered from
left to right, beginning with 1.

Columns 1-10 of each line have no m~aning in a CMS-2Y(7)' program
and may be used for any purpose by the programmer. However, the
suggested use is for a card identification field, as follows:

Columns

1-4
5-8
9-10

Entry

Program identification
Card sequence number
Insert number

Columns 11-80 of the lines of a compilation modu.le are considered
to be a continuous stream of characters~ column 80 of each line
is followed immediately by column 11 of the next. Thus, if it is
necessary t~ break a token (paragraphs 3.1.3, 3.3, and 3.4) be
tween two lines, the first part of the token must end in column
80 of the first line and the remainder must begin in column 11 of
the next. If, however, a line break occurs between two tokens,
the first can end in any column from 11 through 80, and the sec
ond can begin in any column (because spaces generally have no ef
fect in a CMS-2Y(7) program).

CMS-2Y (7) programs are wr i t ten in free forma t: co 1 umns ·11-80 have
no significance on the effect of a program. Certain comment
forms (paragraph 2.2) do have some positional significance, but
comments do not affect the meaning of a program.

2-1

2 . 2 CommenJts

Syntax

<comment statement>
::= COMMENT [<comment>] $

<comment>
.. - <comment character>&

<comment
· .-· .-· .-
· .-· . -
· .-· .-

Semant ics

character>
< let ter>
<digit>
<de 1 i mit er >
<space>
<special character>
$$

A comfne-nt sfaterfit!nt provides program documentation information or
cont~ol~ tH~ fO~M Of the program listing.

COMMENT - A language keywb,rd indicatlng a cc:5mirient s~ta'te
ment.

<comment> - Optional. The string tif characters (not includ
ing a single $) that provides the documentation
information.

A comment statemerit has no effect on the exe~ution of a CMS-2Y(7)
program.

In genera 1, a comment statement may be wri tten following any ,$ in
a CMS-2Y(7) program (possibly with intervening blanks)'. There
are some except ions to th i s ru 1e: ' ...

a. A comment statement may not appear in a direct code
block (p-aragraph3.S). In particula'r,a' com,m~ntstate
ment may riot fo 110w' the di rect c'ode' head' (01 REeT $).

b. A comment statement may not follow the end-system decla
ration (Section 9). The end-system declaration defines
the end of the' program; any following comment would not
be in the program.

Comment statements do not form part of the CMS-2Y(7) language
proper. Because of this, they are not mentioned elsewhere in
this manual. In particular, they do not appear in any other syn
tax produc t ions Of this manua l .

2-2

/(U) CM2Y-MAN-PGR-M5049-R04CO

There is virtually no limit to the number of characters permitted
in a comment statement; a comment may exceed the character limit
for a line and continue for as many lines as the user deems ap
propriate.

Three special forms of the comment statement are used to control
the program listing. Each requires the keyword COMMENT in col
umns 11-17 of a line, a space in column 18, two left parentheses
in columns 19 and 20, and a 5-character string in columns 21-25.
The terminating $ may appear in any column thereafter. The mean
ings of the special forms are:

COMMENT ((EJECT - The program listing is ejected to the top
of a new page.

COMMENT ((SKIPn - n lines will be skipped on the program
listing, where n is an integer from 1 to 9.

COMMENT ((LINE* - A line of asterisks is printed across the
p r og ram 1 i s t i ng .

In all three cases, the comment line itself is not printed.

If any other-comment statement has the keyword COMMENT in columns
11 through 17, a blank line will appear on the output listing
followed by the printing of the comment statement, with COMMENT
replaced by an asterisk followed by six blanks.

2-3

I'

2.3 Spaces and Notes

Syntax

<note>
I I < commen t > I I

Semantics

Generally, space characters may be used freely to improve the
readabil ity of a program listing. Any number of spaces may be
insert~d between any two tokens (paragraphs 3.1.3, 3.3, and 3.4)'
of the language. Free spaces may not be inserted into tokens.
(Spaces may appear within a token only in character constants and
status constants. In both of these cases, the spaces are signif
icant -- that is, they have value in the program.)

Notes, which consist of two. consecutive apostrophes, a string of
characters other than an isolated $, and two more consecutive
apostrophes, may be used to improve program documentation. A
note has the effect of a single space character.

2-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

2.4 Modes and Types

2.4.1 Modes and Simple Types

CMS-2Y(7l contains four predefined modes of data: numeric, Bool
ean, character, and status.

Each mode, except for Boolean mode, has a number of variable at
tributes. Each datum of a CMS-2Y(7) program is of one of the
modes with the variable attributes fixed. Fixing the variable
attributes of a mode defines a simple type.

Because of the essential similarity, there is a natural conver
sion between simple types of the same mode. The different types
can be considered to be representing the same kinds of informa
tion, although in possibly different internal forms. Thus im
plicit conversion between two types of the same mode is allowed.

By contrast, there is no natural conversion between simple types
of different modes, and implicit conversions are not permitted.

The numeric mode contains three submodes: integer, fixed-point,
and floating-point. In specifying a numeric type, the submode
must first b~ specified, and then the variable attributes of that
submode must be fixed.

The following paragraphs describe the characteristics and attri
butes of the modes.

Numeric: Integer

The integer submode represents integer numeric data. The repre
sentation is exact. The variable attributes are the total number
of bits necessary to express a datum of the type and whether the
type ~s to be able to rep~esent signed (positive, negative, or
zero) or unsigned (non-negative only) values.

Numeric: Fixed-Point

The fixed-point submode represents those rational numeric data
that can be represented as terminating binary fractions. The re
presentation is exact. The variable attributes are the total
number of bits necessary to express a datum of the type, the po
sition of the implied binary pOint, and whether the type is to be
able to represent signed or unsigned values.

Numeric: Floating-Point

There are two floating-point types if the target computer is an
AN/UYK-7, four if it is an AN/UYK-43. For the AN/UYK-7 there is
only one variable attribute: The rounding property -- whether or

2-5

/(U) CM2Y-MAN-PGR-M5049-R04CO

not calculations using a datum of the type are to be rounded.
For the AN/UYK-43 there is, i~ addition, either single precision
or double precision AN/UYK~43 floating-point format internal re
presentation.

Boolean

The Boolean mode represents the Boolean values of true and false.
They are represented ina single target machine bit, which is on
(1) to represent true and off (0) to repres9_nt false. There is
only one Boolean type; it has no variable attributes.

Character

The character mode represents character strings of fixed length.
The only attribute of a character type is the number of charac
ters in the string.

Status

The status mode represents data that can assume only a finite
number of values, with the values having no mathematical signifi
cance. The attributes of a status type are the values that a da
tum of the type can assume, and the order of those values.

Note

An integer type and a fixed-point type having the same length,
the same signed-unsigned attribute, and a fractional bits value
of zero can represent exactly the same mathematical values. How
ever, when the MSCALE scaling specifier has been requested, the
two types are not identical. Their most striKing dissimilarity
arises in the context of division. The quotient of two fixed
point quantities, both having zero fractional bits, usually has a
nonzero fractional bits value. The quotient of two integer
quantities, by contrast, is always'an integer quantity. When the
MSCALE scaling rules are not in effect, the integer type is mere
ly a notational convenience for the programmer.

2-6

/(U) CM2Y-MAN-PGR-M5049-R04CO

2.4.2 Universal Type

There is one additional type used in CMS-2Y(7) -- the universal
type. Unlike the other types, it cannot be declared. It arises
in contexts of interpreting any. one of the simple types as a
string of bits. If a datum of universal type is used in an
arithmetic context, it is treated as an unsigned integer type.
Its application is in performing specific operations which re
quire universal typing before the operation can be performed.

2-7

/ (U) CM2Y -MAN-"PGR-M5049-R04CO

2.4.3 Structured Types

A structured datum is one whose values are made up of one or more
parts, called fields. Fields can be defined with the attributes
of any of t~e four modes of CMS-2Y(7~ data.

The attributes of a structured type are its item allocation (par
agraph 4.8), the names and types of its fields, and the alloca
tion of the fields within the type. For a compiler-packed type
(paragraph 4.8) the allocation of the fields is equivalent to the
order in which the fields are declared and the allocation imposed.
by fie~d overlay declarations.

2-8

/(U) CM2Y-MAN-PGR-MS049-R04CO

2.5 Scopes and Scope Rules

CMS-2Y(7) supports four name scopes: universal, global, local,
and subprogram. There is one universal scope, one global scope
for ~ach compilation module, and any number of local and subpro
gram scopes.

The universal scope is a scope that contains every CMS-2Y(7) pro
gram. It contains names that are predefined to the compiler.

The globa1 scope of a CMS-2Y(7} program consists of all names
whose attributes are known throughout a compilation module. A
name has global scope if it is declared in a major header or a
system data block, or if its declaration is preceded by a scope
modifier (paragraph 4.1). (Note that not all declarations may be
preceded by these modifiers.)

The local scopes of a CMS-2Y(7) program consist of names whose
attributes are known throughout a single system data block or
system procedure block. A name has local scope if it is declared
in a minor header, it is declared in a local data block or auto
mat ic data b1ocK"and its deelarat ion is not preceded by a scope
mod if; e r, 0 r "i ti~s': ,';8> s't a t em&n t n'ame.

The subprogram scopes of a CMS-2Y(7) program consist of names
whose attributes are Known throughout a single subprogram. Local
index names and names declared in subprogram data blocks have
subprogram scope.

Scopes may overlap only if they are nested. If a name denotes
different entities in two scopes, one contained in the other,
then up to the point of the first declaration of that name in the
inner scope the name refers to the entity in the outer scope.
From the point of that declaration to the end of the inner scope
the name refers to the entity in the inner scope.'

2-9

/ (U) CM2Y-MAN,-P:GR-M5-049-R04CO

2.6 Input/Output and Files

CMS-2Y(7) contains a number of input/output statements whose pri
mary function is transferring data between the program's data
areas and external media (magnetic tape, punched cards, etc.).
The statements also have a secondary-function: conversion of the
data between character string form (the form appropriate for com
municating the data to humans) and the internal form used by the
computer. Each of these functions can be performed separately;
it is also possible to write single CMS-2Y(7) statements, that
perform both. The conversion process is called formatting.

All input/output statements require the use of certain subrou
tines that are on the CMS-2Y system library. These subroutines
call on the CMS-2Y monitor for the actual communication with the
various peripheral devices. As a result, the MONITOR option must
be specified in any program that uses any of these statements.

Data external to a program is organized by the programmer into
logical structures called files. For some peripheral devices a
file is simply all of the data that is input or output by means
of that device during execution of the program; e.g., card read
ers and printers. Magnetic tape files, however, consist of the
data contained on a single tape reel. Although it is possible to
have more than one file associated with a single magnetic tape
unit during the execution of a program, only one file can be as
sociated with the unit at any given moment. Magnetic disKs can
contain several files simultaneously, but the CMS-2Y monitor
treats each file as a single magnetic tape file. In any
discussion of input/output statements, any statement about magne
tic tape files will apply equally to disK files. (The manner in
which disK pacKs are subdivided into file areas is determined at
the time each CMS-2Y system is generated. I

Magnetic tape files can be divided into subfiles, each having
most of the properties of a file. The subfiles are separated
from each other by end-of-file marKs that are placed into the
file at the time it is created. The end-of-file marKs can be de
tected as the file is read. Dividing a file into subfiles is a
purely logical operation whose meaning is determined by the'pro
grammer. In any discussion of input/output statements, any
statement about files will apply equally to subfiles unless oth
erwise noted.

F i 1 es are subd i v i ded into two types of records tha ti n turn con- -~"
sist of data items. Data items are values that are transferred
between the peripheral device and "ariables and fields in the
pr-ogr,am. Usua lly the da ta Hi tems ,,·t rans fer red dur i ng the execu t ion
of . a single input/output statement make up a record Known as a
logical record. It is possible, however, to transfer more than
one logical record with a single statement in some circumstances.

2-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

A logical record, then, is a logical subdivision of a file. A
file can aiso be physically subdivided into physical records.
For some peripheral devices the size of a physical record is
fixed. One line on the printer and one card on the card reader
are physical records for those devices. For the magnetic tape,
however, the size of physical records varies and can be con
trolled by the programmer. For those devices that have fixed
physical record size, the concepts of physical record and logical
record are identical. For the other devices they can be either
identical or independent, as determined by the programmer.

When data is transferred between the program and a peripheral de
vice, an intermediate storage area in the computer memory, called
a buffer, is usually used. On input, physical records are read
into the buffer when needed and the data is moved from the buffer
into the user data areas. On output, data is moved from the user
data areas into the buffer, which is then written to the external
medium at some appropriate time. It is this use of buffers that
permits, among other things, the distinction between logical and
physical records. Buffers are not program data areas; they are
automatically defined by the compiler based on information about
the file supplied by the programmer.

A count of the subfiles of a file and the physical records in a
subfile (or the file, if it is not divided into subfiles) is
maintained during the execution of a program, beginning with zero
for a file or a subfile. For example, the first record of the
second subfile of a file is record 0 of subfi1e 1. This pair of
counts can be used to position magnetic tape files at any physi
cal record during the execution of a program. When such
positioning is desired, it is usually necessary ,to hav~ logical
records be the same as physical records for the file.

A magnetic tape file can have a header record, which is the first
record of the file (the first record of subfile 0). This record,
in a special format, is 30 words long, and is intended to contain
information that identifies the file. The record is created at
the time the file is created, and can be checked any time the
file is read. All of this can be done without resort to a spe-

"cial record, but the header record has two additional properties
that make it particularly useful:

a. Special statements for creating and checking the header
record are supplied; if the check fails, the message
WRONG TAPE MOUNTED is displayed to the operator, follow-
ed by a request that another tape be mounted. .

b. The header record is not counted; record 0 of subfile 0
is the second record of the file.

2-11

/ (U,) CM2Y -MAti~9G1l-M5Q49-R04CO

2.7 Debugging Aids

CMS-2Y(7) contains several statements and declarations that can
be used to assist in debugging a program. These aids can be used
to trace program execution (either at the statement level or the
subprogram invocation level), and to-display data under various
conditions.

The debugging aids are controlled at three different levels. At
the lowest level are the debug data declarations and statements,
which are inserted into the body of the program at paints appro
priate to the debugging task. These statements and declarations
are divided into four classes. Each of these classes must be
enabled by a declaration that appears in the major header of the
compilation module. If a particular class is not enabled, the
statements and declarations of that class are ignored by the cam
pi 1er; the effect is as if they did not appear at all. Finally,
the portions of the CMS-2Y monitor that support the functioning
of the classes must be enabled at load time by including the ap-
propr i a te parameters on the $LOAD ca 11 . I f the por t ion of the··
monitor that supports a class is not enabled, no output will be
generated during program execution by statements of that clas~.

Thus a programmer can insert debugging aids into his source pro
gram and leave them there after the program becomes operational.,
and not incur any penalty at execution time by not enabling the
aids in the major header during the final compilation. Similar
ly, if a program has been compiled with enabled debugging state-
ments and is found (when tested) to be debugged, it can be used
immediately without recompilation by not enabling the supporting
software in the monitor. In this case there is an execution
penalty because, although no debugging output is being produced,
the code generated by the debugging aids is being executed.

All debugging statements and declarations require the use of the
CMS-2Y monitor. As a result, the MONITOR option must be speci
fied in any program that uses any of these aids.

2-12

/(U) CM2Y-MAN-PGR-M5049-R04CO

SECTION 3. BASIC CONSTRUCTS

The basic constructs used in CMS-2Y(7) programs are defined in
this section.

Some of these constructs are tokens (paragraphs 3.1.3, 3.3, and
3.4). A token is a construct with no subunits whose meanings (if
any) are related to the meaning of the token. For example, the
sequence of characters PAX12 is a name and X1 is also a name, but
the interpretation of X1 is not inherently related to the inter~

. pretation of PAX12. In contrast, XY-12 is not a token, because
XV, ,and 12 all have meanings, and those meanings are
inherently related to the meaning of XY-12.

3-1

3.1 Char,acters

Syntax

<character>
- <letter>
- <digi t>

: : = <de 1 i miter>
- <space>

.. - <terminator>

. ,- <special character>

<space)
blank

<terminator>
- $

<special character>
::= implementation dependent character

Semant ics

The nontermina-l <space> represents the blank, or space, charac
ter.

A special character is any character other than a lette~, digit,
delimiter, blank, or terminator that can be input and output
through the I/O devices of a particular installation.

Not every system can accept every special character.

3-2

/(U) CM2Y-MAN-PGR-M5049-R04CO

3 . 1 0 1 Le t ter s

S~ntax

(letter)
· - A
· - B · -· - C .-
· - D .-· .- E .-
· - F .-

0 · - G .-
· - H · -· - I · -
· - J
· - K · -· - L · .-

· · - M
· - N · -· - 0 0 · -· - P

I · · -0_ Q · · -o_ R · · -· · - S · -· - T · -
· · - U
· - V · -· - W · -
· - X

· · - y

· - Z

Semantics

A letter may be any letter of the English alphabet.

3-3

.I' ,

3.1.2 DigJ.ts

S~ntax

<digit>
. - a
.- 1
.- 2 . - 3
,- 4
,- S
, - 6
, - 7
.- 8
,- 9

Seman tics

A digit may be anyone of the decimal digits 0-9.

3-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

3.1.3 Delimiters

Syntax

< de 1 i mit e r >
= +

=
= /

: : = * · .-· .-· .-· .-· .-· .-· .-· .-· .-· .-
Semant ics

Delimiters are tokens that have predefined meanings. They can be
used to separate (delimit) other tokens.

The uses of the delimiters are:

+ - Add operator and unary plus operator.
- - Subtract operator, unary minus operator, and hyphen.
/ Divide operator.
* - Multiply operator. Two consecutive asterisks form the

exponentiation operator.
Radix point and label delimiter. Two consecutive perl
ods form the in-line scaling specifier. Three consecu
tive periods form the extended index indicator.

- Initial enclosure for expressions, lists, or other syn-
tactic units. .

- Terminal enclosure for expressions, lists, or other syn
tactic units.

- List separator (comma).
- Status constant delimiter (apostrophe). Two consecutive

apostrophes form the programmer notes delimiter.

3-5

3.2 Strings

Syntax

<character string>
::= <character>&

<simple string>
::= <simple character>&

<simple character>
- <letter>
- <digit>

::= <delimiter>
::= <space>

Semant ics

A character strin~ is a stt"ln-g of any of th'e characters va 1 id in
a CMS-2Y(7) program.
A simp les t'r; ng lS'i'Il.: 'ohera~te1" string that oont8 i ns no term i na t
or s ($) -or s"pe¢ II If";i;,ol!;alf\:lettflt's;~ .

3-6

,
;'

3.3 Names

Syntax

<name>

/(U) CM2Y-MAN-PGR-M5049-R04CO

.. -.. - <letter>[<alphanumeric character>&]

<alphanumeric character>
::= <letter>
: : = <d i 9 it>

Semantics

Names are tokens made up of strings of alphanumeric characters
(letters and digits). The first character is a letter. Names
may be no more than eight characters long.

Names are used to identify various entities in a CMS-2Y(7) pro
gram.

A name cannot be the same as any of the following reserved words:

ABS
ALG
AND
BASE
BEGIN
BIT
BY
CAT
CHAR
CHECKID
CIRC
CLOSE
CMODE
COMMENT
COMP
CORAD
CORRECT
CSWITCH
DATA
DATAPOOL
DEBUG

DECODE
DEFID
DENSE
DEP
DIRECT
DISPLAY
ELSE
ELSIF
ENCODE
END
ENDFILE
EQ
EQUALS
EVENP
EXCHANGE
EXEC
EXIT
FIELD
FILE
FIND
FOR

FORMAT
FROM
FUNCTION
GOTO
GT
GTEQ
HEAD
IF
INDIRECT
INPUT
INTO
INVALID
LIBS
LOG
LT
LTEQ
MEANS
MEDIUM
MODE
NITEMS
NONE

3-7

NOT
OCM
OODP
OPEN
OPTIONS
OR
OUTPUT
OVERFLOW
OVERLAY
PRINT
PTRACE
PUNCH
RANGE
READ
REGS
RESUME
RETURN
SAVING
SET
SHIFT
SNAP

SPILL
STOP
SWAP
SWITCH
SYSTEM
TABLE
THEN
THRU
TO
TRACE
TYPE
UNTIL
USING
VALID
VARY
VARYING
VRBL
WHI LE _
WITH
WITHIN
XOR

/(U) CM2Y-MAM-PGR-M5049-R04CO

Note:
The following names have universal scope (are predefined). They
may be redefined.

ACDS2 BAMS FIRST DRF SCALF
ACDS CNT ICDS -POS SIN
ALDG COMPF IEXP PRED SUCC
ANDF CONF ISIN RAD TDEF
ASIN2 COS LAST ROTATEHP VECTORHP
ASIN EXP LENGTH REM VECTORP
ATAN2 FIL LN ROTATEP XORF
ATAN

3-8

3.4 Constants

Syntax

<constant>
- <numeric constant>

.. - <boolean constant>
::= <character constant>
::= <status constant>

Semant ics

/(U) CM2Y-MAN-PGR-M5049-R04CO

Constants are tokens that specify values that cannot change dur
ing execution of a CMS-2Y(7) program.

The nonterminal <constant> in this manual is reserved for literal
constants -- constants whose values are described by the manner
in which they are written. CMS-2Y(7) also supports symbolic
(named) constants (paragraph 4.13) and constants whose value is
specified when the program is loaded for execution (paragraph
4.14) .

3-9

3.4.1 Numer ic Constants

Syntax

<numeric const~nt>
- <decimal constant>

.. - <octal constant>

Semantics

A numeric constant specifies a numeric value.

<decimal constant>

<octal constant>

A numeric constant expressed in base 10
notation.

- A numeric constant expressed in base 8
nota t ion.

Many numeric constants can be written in more than one manner.
The value of the constant is independent of the manner in which
it is written. The value is always expressed with maximum accu
racy in 63 bits.

A numeric constant is of fixed-point mode. Its scaling (number
of fractional bits) is determined by the manner in which it is
written (paragraphs 3.4.1.1 and 3.4.1.2) and must be in the range
[-127,127]. When the context of a numeric constant requires more
fractional bits than its scaling implies, the extra bits are ob
tained from its stored value, up to the maximum 63 bits.

3-10

3.4.1.1 Decimal Constants

Syntax

<decimal constant>
::= <decimal number>
.. - D«decimal number»
.. - <decimal number>D

<decimal number>

/(U) CM2Y-MAN-PGR-M5049-R04CO

"- <decimal mantissa>[E<decimal exponent>]

<decimal mantissa>
::= <decimal integer>
.. - <decimal integer>. [<decimal integer>]
::= . <decimal integer>

<decimal exponent>
.. - [<unary numeric operator>]<decimal integer>

<decimal integer>
· .- <decimal digit>& · .-

<decimal digrt>
· .- <digit> · . -

<unary numeric operator>
: : = +
· . - -· .-

Semant ics

A decimal constant specifies a numeric value in base 10 notation.
The value may be written in conventional decimal notation or in a
form of scientific or engineering notation -- a decimal value
multiplied by-a power of 10.

-0

<decimal mantissa>

Optional. A language keyword in
dicating a decimal constant.

- A numeric constant in base 10 no
tation in the form of a string of
decimal digits and an optional
decimal pOint, which may be
before, after, or embedded in the
string of digits.

3-11

E - Optional. A language keyword in
dicating that an exponent foJ
lows.

<decimal exponent> - Optional. A decimal integer, op
tionally preceded by a unary plus
or minus sign, representing the
power of ten by which the value
of the mantissa is to be multi
plied to obtain the value of the
constant.

<decimal integer> - A numeric constant in base 10 no
tation in the form of a string of
decimal digits.

<unary numeric operator> - Optional. The unary plus or
unary minus operator.

The character string that represents a decimal constant may not
contain embedded'blanks.

Numer i c constan tS>,~are decimal by defaul t in CMS- 2Y (1). Either
form D (<dec i ma"l number» or <dec i rna 1 number >D is required on 1 y i f
the imp 1 i ed constant type has' -been spec i f i ed t obe octal (par a-:,
graph 4.2).

The number of fractional bits in a fixed-point decimal constant
is determined in the following steps:

a. The number of fractional bits is initially calculated
according to the formula [Log2(10)*F] + 1, where
Log2(10) is the logarithm of 10 to the base 2
(approximately equal to 3.3219280949), F is the number
of fractional digits of the.number as written, and []
represents the "trunca,tion to integer" function.

b. The value obtained' in step (a) is reduced by the number
of trai ling zero" bits in the bit string consist,ing of
the constant, converted to base 2, and including the
number of fract ional bi ts dete'rmi ned instep a.

c. If the number of bits required to contain the integer
part of the va lue and the number oJ fract iena 1 bi ts ob-
tained in step (b) is greater than 63, then excess bits ,~
are truncated on the right of the bit string to reduce
its length to the maximum number of bits, and the number
of fractional bits is reduced by the number of bits
truncated.

3-12

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

990
D(990}
990D
.99E3

The above examples all represent the decimal number 990.

Notes

. a. Trailing zeros are often significant in decimal fractions in
CMS-2Y. This is because decimal fractions can seldom be
converted exactly to binary and step (a) says that the accu
racy of approximation is dependent on the number of frac
tional digits. To illustrate this, consider the decimal
number 0.1, which in octal has the non-terminating represen
tation 0.06310631... Then the inherent accuracy of three
equivalent decimal representations of this number is:

Source Number of Internal Internal
Program Fract iona 1 Octal Decimal

Form Bits Value Value

O. 1 4 0.04 0.0625
0.10 7 0.06 0.09375
0.100 10 0.063 0.099609

b. In both step (b) and step (c) above, the number of fraction-
al bits can become negative.

3-13

/ (U) Ctl2Y -MAM'-"-lSs04g:-R04C.Q

3.4.1.2 Octal Constants

Syntax

<octal constant>
::= O«octal number»
::= <octal number>

<octal number>
::= <octal mantissa>[E<octal exponent>]

<octal mantissa>
- <octal integer>

::= <octal integer>. [<octal integer>]
: : = . < oc tal i n t ege r >

<octal exponent>
::= [<unary numeric operator>]<octal integer>

<octal integer>
::= <octal digit>&

<octal digit>
: : = 0
: ::: 1
: ::: 2
: : = 3

- 4
: ::; 5
: : = 6
: : = 7

Semant ics

An octal constant specifies a numeric value in base 8 notation.
The value may be written in conventional octal notation or ina
form of scientific or engineering notation -- an octal value mul-'
tiplied by a power of 8.

a Op tiona 1 . A 1 anguage keyword i nd i ca t ; ng
an octal constant.

<octal mantissa> - A numeric constant in base B notation in
the form of a string of octal digits and
an optional octal pO,int, which maybe
before, after, or embedded in the string
of digi ts.

E - Opt i ona 1 . A 1 anguage keyword' i nd i ca t i ng
that an exponent follows.

3-14

/(U) CM2Y-MAN-PGR-M5049-R04CO

<octal exponent> - Optional. An octal integer, ?ption~lly
preceded by a unary plus or mlnus slgn,
representing the power of 8 by which the
value of the mantissa l'S to be multiplied
to obtain the value of the constant.

<octal integer) - A numeric constant in base 8 notation in
the form of a string of octal digits.

The character string that represents an octal constant may not
contain embedded blanks.

Numeric constants are decimal by default in CMS-2Y(7) and the op
tional Q form is necessary to specify an octal constant. An oc
tal constant can be written without the Q only if the implied
constant type has been changed to octal (paragraph 4.2).

The number of fractional bits of a fixed-point octal constant is
obtained by the same three-step process as is used for decimal
constants, except that the number of fractional bits is initially
given by the formula 3*F, where F is the number of fractional di
gits in the number as written (step a of paragraph 3.4.1.1).

Examples

o (144)

This character sequence generates a binary value equal to 100
dec ima 1 .

-Q(100)

This character sequence generates a binary value equal to nega
t i ve 64 dec i ma 1 .

3-15

/ (U) CM2 Y -MA. _·PGi -115,0149 -·RQ4al.

3.4.2 Boolean Consta~t5

Syntax

<boolean constant)
.. - 0
: : = 1

Semant ics

The Boolean constant 1 represents the value true and the Boolean
consta~t 0 represents the value false.

3-16

/(U) CM2Y-MAN-PGR-M5049-R04CO

3.4.3 Character Constants

Syntax

<character constant)
::= H«character string»

Semant ics

A character constant denotes a character string.

H - A language keyword indicating a charac
ter constant.

<character string> - A string that represents the value of
the cons tan t .

No spaces may appear between the keyword H and the following left
parenthesis of a character constant.

Each charact~r-o~{~"JnE:! char~9ter string represents a character of
the va lue. of ttl~,:~::'~~tl~tant, except tha tar i ght paren thes is is re
presented by two:\«~n'secut ive right parentheses.

The character string that represents the value of the constant
begins with the character that immediately follows the first left
parentheSiS and ends with the character that immediately precedes
the closing right parenthesis.

The maximum length of the value of a character constant is 132.

Examples

Notes

H(ABC))OE) produces the constant "ABC)OE"
H(ABC) produces the constant "ABC"
H((ABC))) produces the constant "(ABC) "

A right parenthesis cannot immediately follow a character con
stant, because the two consecutive right parentheses would be in
terpreted as part of the constant. At least one blank character
must be inserted between the terminating right parenthesis and
the following right parenthesiS in such a case.

3-17

3.4.4 Status Constants

Syntax

<status constant>
::= '(character string)'

Semant ics

A status constant represents a nonmathematical value.

The value of a status constant is the string of characters be
tween the enclosing apostrophes. The value begins with the char
acter immediately following the left apostrophe and ends with the
character immediately preceding the right apostrophe. Leading
and trailing blanks in the value are significant.

The value of a status constant may not contain the apost~ophe
character.

The value of a status constant may be no longer than eight char
acters.

Examples

'SYSTEM'
'ALERT'
'READY'

These examples all illustrate status constants.

3-18

/(U) CM2Y-MAN-PGR-M5049-R04CO

3.5 Direct Code Block

Syntax

<direct code block>
::= <direct code phrase> $

<direct code phrase>
::= <direct code head> <direct code> <cms-2 phrase>

<direct code head>
::= DIRECT.$

<direct code>
::= <direct code statement> .&

<cms-2 phrase>
::= CMS-2

Semantics

A direct code block specifies a sequence of machine code mnemonic
statements.

DIRECT - A language keyword indicating that one or
more machine code mnemonic statements fol
lows.

<direct code> - Machine code mnemonic statements.

CMS-2 - A language keyword indicating that the se
quence of machine code mnemonic ~tatements
is ended.

The direct code of a direct code block may be any sequence of
valid direct code statements (Appendix B). Although mixing CMS-
2Y(7) data declarations and statements is impossible, there is no
such restriction on mixing the corresponding direct code state
ments. If the use of a direct code block causes data declara
tions to appear among executable code, it is the programmer's re
sponsibility to control the program flow around the data areas.

3-19/(3-20 Blank)

I(U) CM2Y-MAN-PGR-M5049-R04CO

SECTION 4. DECLARATIONS

Declarations are the CMS-2Y(7) constructs used to define the at
tributes of the names in a CMS-2Y(7) program. The attributes of
all names other than statement labels (Section 6), procedures,
and functions must be defined before they are referenced. (The
attributes of procedure names can be defined implicitly in proce
dure switch declarations.)

For many entities, CMS-2Y(7) allows two types of declarations:.
attribute declarations and allocation declarations. An attribute
declaration defines the attributes of the entity. An allocation
declaration defines the attributes of the entity and specifies
that the target machine memory necessary to contain the entity is
to be al iocated as part of the system element in which the decla
ration appears.

If an entity is one of those for which both attribute and alloca
tion declarations are allowed, it may be declared any number of
times in a CMS-2Y(7) program, but only one of the declarations
may be an allocation declaration. The attributes of the entity
must be the same on all of its declarations, except for the
fields of a user-pacKed table (paragraph 4.8).

Names must be unique in the scope in which they are declared,
except for field names (see below). (Note that at the pOint of
declaration, the name might already denote an entity in a larger
scope. See paragraph 2.5.) In addition, within a single element
a name cannot be declared to denote two different entities, one
with local scope and the other with global scope.

Field names must be unique within the structured type in which
they are defined. They do not have to be distinct from any other
names in any scope. The same name may be used as a field name in
any number of structured types in a scope and may also be de
clared as the name of some other ent i t .. y in that scope.

Note

While the interaction of the scope rules, implicit declaration of
procedures in procedure switches, and forward-referencing is
well-specified in this manual, the results can occasionally be
surprising. These surprises can be avoided by explicitly declar
ing ali entities before referencing them.

4-1

/(U) CM2~-MAN-PGR-M5049-R04CO

4.1 Declaration Modifiers

Syntax

<declaration modifier>
::= <scope modifier>
::= <allocation modifier>

<scope modifier>
- (EXTDEF)

::= (,EXTREF)
: : = (TRANSREF)

<allocation modifier>
- (EXTREF)

::= (LOCREF)
::= (TRANSREF)

Seman tics

A declaration modifier is used to indicate that the name whose
attributes are' being declared has global scope (when the position
of the declaration might imply that it has local scope) or that
the declaration is an attribute declaration.

(EXTDEF)

(EXTREF)

(LOCREF)

- A scope modifier. Signifies that the name be
ing declared has global scope.

- A scope modifier and allocation modifier. Sig
nifies that the name being declared has global
scope and that the entity is not to be allocat
ed because of this declaration.

- An allocation modifier. Signifies that the en-
tity being declared is not to be allocated be
cause of this declaration. The entity will be
allocated in the system procedure (paragraph
8.2) containing this declaration and the name
of the entity will have local scope.

(TRANSREF) - A scope modifier and allocation modifier. Sig
nifies that the name being declared has global
scope and that the entity is located in another
system element that cannot be assigned a perma
nent base register.

Any declaration of a variable, table, pro~edure, executive proce
dure, function, procedure switch, file, c~ format that is not
preceded by an allocation modifier is an allocation declaration.

4-2

/(U) CM2Y-MAN-PGR-M5049-R04CO

The (EXTDEF) scope modifier may be used with a declaration that
appears in a system data blocl~ (paragraph 8.1). The name of an
entity declared in a system data block has global scope by de
fault, but the redundancy is permitted.

A name whose attributes are declared using the (EXTREF) alloca
tion modifier need not be allocated in the same system bloCK
(Section 9) containing the attribute declaration. Its allocation
declaration may appear in another system block.

The (LOCREF) allocation modifier may only be used with subprogram.
attribute declarations in a local data block or an automatic data
block. The named subprogram must be defined in the same system
procedure block.

The (TRANSREF) scope modifier is used to establish an attribute
definition for an entity allocated in another system element that
cannot be assigned a target machine base register with a perma
nent fixed value. ~ach reference made to this entity's name wi 11
cause a tr~nsient::b,a,s.e >t'~gJster to be loadeq wi th a va lue appro
pr i a te to theref:~t',~o¢ed'sys tem,e 1 emen t . S; nce referencing names
using atr~ns,ien~:;!~\ll,~~ register is less efficient than using a
base reQ:i$:ter"',~fk!~~\>,~·f ixed value, the (TRANSREF) scope modifier
shou ld "be used or{l~i,when a program I s comb i ned ins t ruct i on and
data size exceed 65,536 locations, or when the program has other
wise exhausted the available number of base registers.

Declaration modifiers may not appear in subprogram data blocks.·

Examples

TDAT SYS-DD $
VRBL uORG B $
END-SYS-DD TDAT $

· TPROC SYS-PROC $
LOC-DD $

(EXTREF) VRBL"uORG B $
END-LOC-DD $

· SET uORG TO 0 $

· END-SYS-PROC TPROC $

4-3

I(U) CM2Y-MAN-PGR-M5049-R04CO

In this example, system element TPROC may be compiled with or
without system element TDAT. Because of the (EXTREF) scope modi
fier, there is no duplicate declaration.

LOC-DD $
VRBL ALGAE A 8 S 0 $

(LOCREF) PROCEDURE HICHK INPUT ALGAE $
END-LOC-DD $

HICHK INPUT 7 $

PROCEDURE HICHK INPUT ALGAE $

In this example the (LOCREF) allocation modifier is used because
procedure HICHK is called before it is declared and also because
it includes a formal input parameter.

GARDOG SYS-PROC $

(TRANSREF) VRBL FLOATER F $

References made to variable FLOATER in system procedure GARDOG
cause the generation of code to use a transient base register.

4-4

4.2 Constant Mode Declaration

Syntax

<constant mode declaration>
::= CMODE [<constant mode> 1 $

<constant mode>
; ; = 0
: : = 0

Seman tics

/(U) CM2Y-MAN-PGR-M5049-R04CO

A constant mode declaration specifies the mode of numeric con
stants whose modes are not explicitly indicated.

CMODE - A language Keyword indicating a constant
mode declaration.

<constant mode> - The language Keywords 0 and D, indicating
octal and decimal mode, respectively.

If the constant mode a is specified or the optional constant mode
is omitted. ~ll numeric constants other than those immediately
followed by the letter D, or those enclosed in parentheses and
preceded by the letter D, are interpreted as octal constants.

If the constant mode D is specified, all numeric constants other
than those enclosed in parentheses and preceded by the letter 0
are interpreted as decimal constants.

A constant mode declaration has no effect on constants appearing
in direct code blocKs.

4-5

/ (U) CM2Y -M,AN'" FfGR~M8049-ROACO

Examples

F i gu r e 4 -0 1 ill U st r cites the e f f ec t s 0 f the cmode dec 1 a rat i on on
var ious forms of constant·representat ion.

-
"

Constant , Under CMODE D Under CMODE 0
,.,

12 '12 decimal 1~2 octal
I,

o (12) 12 octal 12 octal

D t 12) 12 decimal 12 decimal

12D 12 decimal 12 decimal
I

329 329 decimal I 11 ega 1

Figur.' 4~01. CMODE Declaration Examples

4-6

4.3 Simole Type Specification

Syntax

<simple type specification>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= <numeric type specification>
- <boolean type specification>

::= <character type specification>
::= <status type ·specification>

Semantics

Simple type specifications are used in type declarations, varia
ble declarations, parameter variable declarations, table declara
tions; field declarations, array declarations, ltag declarations,
function declarations, conversion function refepences, temporary
definition function references, and case blocKs to specify the
attributes of the data.

4-7

/ (U) CM2Y-M~N-1',G'R-M'S049-R04CO

4.3.1 Numer ic Type's

Syntax

<numeric type specification>
- <integer type specification>
- <fixed-point type specification>,
- <floating-point type specification>

<integer type specification>
- I <bit length> <sign specification>

<fixed~point type specification>
::= A <bit length> <sign specification> <fractional bits>

<floating-point type specification>
::= F[«floating-point attribute»]

<floating-point attribute>
.. - T

- R
- S
- 0

<b i t 1 ength>
::= <numeric constant expression>

<fractional bits>
::= <numeric constant expression>

<sign specification>
: : = S
: : = U

Semantics

A numeric type specification specifies an instance of the three
numeric modes of CMS-2Y(7). A value of one numeric type can
always be converted to another numeric type, provided that the
attributes of the type being converted to permit representation
of the most significant part of the value being converted.

I

A

F

A language keyword (not reserved) in
dicating integer type.

A language keyword (not reserved) in
dicating fixed-point type.

A language keyword (not reserved) in
dicating floating-point type.

4-8

T

R

s

o

<bit length>

<fractional bits>

/(U) CM2Y-MAN-PGR-M5049-R04CO

- Optional. A language Keyword (not
reserved) indicating that the AN/UYK-
7 internal format is to be used and
the values of arithmetic operations
involving two data uni ts of, the type
are to be approximated by truncation.

- Optional. A language Keyword (not
reserved) indicating that the AN/UYK-
7 internal format is to be used and
the value of arithmetic operations
involving two data units of the type
are to be approximated by rounding.

- Optional. A language Keyword (not
reserved) indicating that the indus
try standard single-precision inter
nal format is to be used.

- Optional. A language keyword (not
reserved) indicating that the indus
try standard double-precision inter
nal format is to be used.

- A numeric constant expression that
specifies 'the total number of bits
required to represent a datum of in
teger or fixed-point type.

- A numeric constant expression that
specifies the number of bits to the
right of the implied binary'point of
a datum of fixed-point type.

<Sign specification> - An S or U indicating that the integer
or fixed-point datum is signed (may
assume-negative values) or unsigned
(may only assume non-negative values)
respectively.

The values of the numeric constant expressions that specify the
bit length and the number of fractional bits must b~ an integer.
The value of the bit length expression must be in the range
[1,641. The value of the fractional bits expression must be in
the range [-127,1271.

If a ddta type is signed, one bit is required for the sign it
self. The bit length must be one more than the number of bits
required to represent the magnitude of a value of the type.

4-9

/ (U) CM2Y -MAN- P'GR -M5049-RO~4CO

The floating-point types F(S) and F(O) are valid only if the tar
get computer is an AN/UYK-43. The values of arithmetic opera
tions involving two data units of one of these types are always
approximated by rounding. All other floating point types are
valid when the target computer is either AN/UYK-7 or AN/UYK-43.

If the optional floating-point attribute is omitted, the attri
bute T is implied.

Examples

I 4 U

A datum of this type is an unsigned integer, four bits in length.
Its range of possible integer values is ° through 15 .

• 1 4 S

A datum of this type is a signed integer of three data bits and
one sign bit (leftmost). Its range of values is -7 through +7.

A 3 U 1

A datum of thts type is unsigned fixed-point of two integer bits
and· one fractional bit. Its possible values are 0, ~.5, !1)
!1.5, !2, !2.5, !3, and !3.5.

A 3 U -4

A datum of this type is fixed-point with negative scaling. This
example has three magnitude bits, seven integer bits, and no
fractional bits. The rightmost four integer bits cannot be ac
cessed, and are functionally zero. The values that a datum of
this type may have are 0, 16, 32, 48, 64, 80, 96, and 112.

A 3 U 5

This type illustrates that the number of fractional bits (in this
case five) may be grea ter than the bit 1 ength of a da tum. ~. The
values that this datum may have are 0, 1/32, 1/16,3/32, 1/8,
5/32, 3/16, and 7/32.

A 7 U 35

A datum of this type is fixed-point, with seven magnitude bits,
no integer bits, and 35 fractional bits. The radix pOint is
functionally 35 bits to the left of the rightmost magnitude bit.
This example. j,.1lustrates that th·e number of fract lona 1 bi ts may
be greater than the number of magnitude bits. The nonzero values
that a datum of this type may have are in the range [2**-29,

4-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

2**-28 - 2**-35]. Graphically, the maximum value in binary for
mat would appear as a string of·28 zeros followed by seven ones.

A ~l. S 8

A datum of this type is signed fixed-point of five integer bits,
eight fractional bits, and one sign bit (leftmost).

Assume that a datum of signed integer type with a range of -63
through +57 decimal is desired. To determine the proper defini
tion, the programmer should convert the number with the largest.
absolute magnitude to octal, count the bits, and add 1 for the
sign. Thus -63 becomes 1-631, which becomes 63. It then equals
77 octal. which requires six bits plus a sign bit. Therefore,
I 7 S is the type declaration under the given criteria~ It is
important to go through this procedure if maximum accuracy with-
out errors is desired in the arithmetic operations that will
involve this datum.

Implementation Note

A variab e defined as I 32 U requires two words; a variable de
. fined as 64. U i s ill ega 1 .

4-11

4.3.2 Boolean Type

Syntax

<boolean type specification>
: : = B

Semantics

A Boolean type specification specifies that a datum is of Boolean
type. Boolean type has no attributes other than the type itself ..

B '- A language keyword (not reserved) indicating Boolean
type.

4-12

4.3.3 Character Type

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<character type specification)
::= H <character length)

<character length)
::= <numeric constant expression)

Semantics

A character type specification specifies that a datum is of char
acter type.

H - A language Keyword indicating character
type.

<character length) - A numeric constant expression that
specifies the number of characters re
quired to represent a datum of the
type.

The value of the character length expression must be an integer
in the range [1,132].

Examples

H 1

A datum of this type has a length of one character.

H 45

A datum of this type has a length of 45 characters.

4-13

flU) CM2Y-MAN-PGR-M504~-R04CO

4.3.4 Status Type

Syntax

<status type specification>
::= S <status constant>@

Semant ics

A status type specification specifies that a datum is of a status
type. The specification contains the list of values that the da
tum may assume.

S· - A language keyword (not reserved) indi
cating status type.

<status constant> - One of the values that may be assumed by
a datum of the type being specified.

A status constant may not appear more than once in a single
status type specification. The same constant may appear in dif
ferent status type specifications.

Examples

S 'RED', 'AN/UYK-7', '$', '**', 'TOO BIG'

A datum of this type can assume five values and is three bits
long. The value '**' is represented internally by 3.

Implementation Note

The values of a status type are represented internally by the in
teger values 0, 1, 2, ... , n-1, where n is the number of values,
where 0 is the internal representation of the first value in the
list, 1 is the - representation of the second value, etc. The
length of the type is the number of bits required to express n-1.

Note

There is no fixed limit on the number of values of a status type.
That number is limited only by the amount of symbol table availa
ble to the compiler.

4-14

4.4 Type Declarations

Syntax

<type declaration>
::= <simple type declaration>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= <structured type declaration>

<simple type declaration>
::= [(EXTDEF)1 TYPE <simple type name> <simple type

specification> $

<simple type name>
::= <name>

<structured type declaration>
::= <untyped structure declaration>
::= <typed structure declaration>

<untyped structure declaration>
::= [(EXTDEF)] <untyped structure head> [<structure

information>&1 <structured type end>

<,un typed s t ru'cture head>
::= TYPE <untyped structure name> <structure allocation> $

<untyped structure name>
::= <name>

<structure allocation>
::= NONE
::= MEDIUM
.. - DENSE
::= <number of words>
.. - «untyped structure name»

<number of words>
::= <numeric constant expression>

<structure information>
.. - <field declaration>
::= <field overlay declaration>
::= <range declaration>

<structured type end>
::= END-TYPE <name> $

<typed structure declaration>
.. - [(EXTDEF)] <typed structure head> [<structure

information>&1 <structured type end>

4-15

/ (U) CM2Y -MAN-PG-R-M5049-R04CO

<typed structure head>
::= TYPE <typed structure name> ~<typed structure>} $

<typed s:ructure name>
::= <name>

<typed structure>
::= <simple type>
::= <typed structure name>

<simple type>
::= <simple type specification>
::= <simple type name>

Seman tics

A type declaration specifies a type and declares a name to be
used in referring to the type. No memory is allocated as a re
sult of a type declaration.

(EXTDEF)

TYPE

<simple type name>

- Optional. Signifies
name being declared
scope (paragraph 4.1).

that the
has global

- A language keyword indicating a
type declaration.

- The name by which a simple type
can be referenced.

<untyped structure name> - The name by which an untyped
structure can be referenced.

<typed structure name> - The name by which a typed struc
ture can be referenced.

<structure allocation) - An indication of the manner in
which an entity of the structured

". type is to be a lloca ted.

<st~ucture information) - Optional. Field declarations,
field overlay declarations, and
range declarations, used when de
claring a structured type.

END-TYPE - A language keyword indicating the
end of a structured type dec lara
t ion.

An untyped structure head and a typed structure head can contain
two type names. The name being declared is the name immediately

4-16

/(U) CM2Y-MAN-PGR-M5049-R04CO

following the keyword TYPE. The other type name is being refer
enced in these contexts. The name being referenced may not be
the same as the name being declared.

The name that appears in a structured type end must be the name
being declared in the structured type declaration.

A type name cannot be A, B, 0, F, H, I, 0, P, or S.

A simple type name is an alias for the underlying simple type
specification. Any appearance of a simple type name outside of
its declaration·has the same effect as if the underlying simple
type specification appeared instead.

An untyped structure head and a typed structure head can refer
ence a type name (in parentheses). If that name is an untyped
structure name, the declaration is an untyped structure declara
tion. If that name is a typed structure name, the declaration is
a typed structur~~declaration.

Structured type,'~::.ilJa,ye t~econcept of size, which affects the
amount of mem,Q·r.y:"aPlocated :'10\ enti ties of these types .

..... J ~ . ~."t "/' < {"J '" . ! ': j (,

If the structure'allocati,on of an untyped structure d~clarat ion
is NONE, MEDIUM, or 'DENSE\- the structured type 1S called
compiler-packed. The siz~ 01 a compiler-packed structured type
is an integral number of target machine words, which depends on
the properties of the fields and the packing algorithm. The
packing algorithms affect only those fields that do not appear as
field overlay siblings. NONE causes those fields to be allocated
in such a manner that noparf of any two of them share a target
machine word. MEDIUM permits those fields to share a'word, but
in such a manner that they can be accessed using the target
machine k-designator; that is, there is no access time penalty
paid when accessing a field of an entity allocated according to
the MEDIUM packing algorithm. DENSE permits those fields to
share target machine words in such a manner that the type·'s size
is minimized; in this case there can be an access time penalty
caused by uSing,the target machine's indirect addressing capabil
ity and/or shifting iristructions. Figure 4-02 shows details of
the three packing algorithms.

If the structure allocation of an untyped structure declaration
is a numeric constant expression, the structured type is called
user-packed. The value of the expression must be a positive in
teger. This value specifies the size of the type in target
machine wores.

The size of a typed structure is the smallest integral number of
target machine words that can contain a value of the underlying
simple type.

4-17

I(U) CM2Y-MAN-PGR-M5049-R04CO

All field declarations appearing in a user-packed type declara
tion or a typed structure declaration must be user-packed; no
field declarations are required in such type declarations. All
field declarations appearing in a compiler-packed type declara
tion must be compi ler-packed; at least one field declaration is
requ ired in such a type dec 1 ara t ion.·" .

If the structure allocation of an untyped structure declaration
is the name of an untyped structure enclosed in parentheses, the
structure information of the untyped structure declaration is
merged with that of the referenced type and the untyped structure,
being declared inherits the structure allocation of the refer
enced type. If the typed structure of a typed structure declara
tion is the name of a typed structure, the structure information
of the typed structure declaration is merged with that of the
referenced type. Such types are called grown types. The struc
ture information of the referenced type is said to be inherited
by the grown type.

Field overlay declarations and range declarations appearing in a
grown type declaration may not reference inherited fields.
Except for this, for grown types the effect of the merging of
structure information is as if the structure allocation or typed
structure of the grown type declaration were replaced by the cor
responding entry in the referenced type declaration and the
structure information of the referenced type were inserted into
the current type declaration in the same order as it appeared in
the referenced type declaration between the type head and the
structure information of the current declaration.

The scope of the referenced type name in a grown type cannot be
smaller than the scope of the type being declared.

A field declaration in a structured type declaration may not be
preset.

Note

One result of the way structure information is merged for grown
types is that an inherited compiler-packed field is allocated in
the same position in both types.

4-18

.~ ~.

I(U) CM2Y-MAN-PGR-M5049-R04CO

Comoi1er PacKin::J Descriptor
NONE MEDIUM DENSE

<16 1 word 16 bits # Number of
Signed 5; ts bit s spec i f i ed
integer
or >16
fixed- bits 1 word 1 word Number of
point <32 bits specified
type 5i ts
if.; th
length: >32 2 words 2 words 2 words

bi ts
<8 , word 8 bit s ## Number of
5; ts bit s spec i f i ed

Unsigned >8
integer bi ts 1 word 16 bits # Number of
or <15 bit s spec i f i ed
fixed- 5; ts

Field point
type >15

Type with bi ts 1 word 1 word Number 'of
length: <31 bits specified

and 6i ts
"- >31 2 words 2 words 2 words

A 110- bits

cation Floating-point 2 words 2 words 2 words
type T,R,&D
Floating-point 1 word 1 word 1 word
tvoe 5
Boolean type 1 word 8 bi ts ## 1 bit
Status type 1 word 8 bi ts ## X bits
N values N<255 2**X2N>2**(X-1)

16bits
N>255

Charac- = 1 1 word ** 8 bi ts ## 8 bit S*
ter
type =2 1 word ** 16 bits # 16 b i ts*
with
number =3 1 word ** 1 word ** 24 bi ts*
of -
charac- >3 Number of words = [(number of
ters: characters-1)/4] + 1 ; left-justified;

truncated to an integer

Not necessarily aligned on byte boundaries, i.e., assigned to
the first available 8, 16, or 24 bits as required.

* Left-justified III # (half-word) III ## (quarter word)

Figure 4-02. Allocation of Fields with Compiler-Specified
PacKing

4-19

4.5 Default Type Specifications

Syntax

<default type specification>
- MODE VRBL [<simple type>} [P <preset value>] $
- MODE FIELD [<simple type>} $

<preset value>
- <numeric constant expression> [<preset magnitude>1

.. - <boolean constant>
- <character constant>
- <status constant>
- CORAD«addressable name»
- <ltag name>

<preset magnitude>
::= V «magnitude value>, <magnitude bit»

<magnitude value>
::= <numeric constant expression>

<magn i tude bit)
::= <numeric constant expression>

<addressable name>
- <variable name>

.. - <table name>
::= <switch name>
.. - <procedure switch name>

- <procedure name>
- <function name>
- <stringform name>
- <inputlist name>

.. - <outputlist name>
- <statement name>

<sw itch name>
::= <label switch name>
::= <item label switch name>

<procedure switch name>
::= <indexed procedure switch name>
::= <item procedure switch name>

Semant ics

A default type specification specifies the type to be assumed in
any variable, field, or function declaration in which the type
has been omitted.

4-20

MODE VRBL

MODE FIELD

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A language Keyword indicating a default
type specification for variables and func
t ions.

- A language keyword indicating a default
type specification for fields.

<simple type> - Optional. The type to be used as a default
type.

p - Optional. A language keyword (not re-
served) indicating that a preset value is
being specified.

<preset value> - Optional. A preset value to be used with
variables whose type is not specified.

Default type specifications occur in two forms. The form MODE
VRBL specifies a default mode for variables and functions and a
default preset value for variables. The form MODE FIELD speci
fies a default type for fields.

In the absence of a default type specification for either of the
forms. the default type for variables, fields, and functions is
A 16 S O. There is no default preset value for variables.

Any number of default type specifications of either form can ap-.
pear in a system block. The effect of multiple default type
specifications of the same form depends on the sequence of source
statements that maKe up the system blocK, not the execution se
quence of the program. A default type specification will affect
only the variable, field, or function declarations that follow
it, subject to the limitations stated below, and will override
any preceding default type specifications of the same form.

The last default type specification of each of the forms in the
major header becomes the default type of that form for the re~
mainder of the system block. A default type specification in a
minor header or a system element can override the established de~
fault type, but at the end of the system element the established
default type again becomes the default type.

If the simple type of the specification is a type name, it must
be the name of a simple type.

If the optional type is omitted in a default type specification,
the current default type remains the default type. If the op
tional P and preset value are omitted from a default type decla
ration. the default of no presetting is established.

4-21

/ (U) C.M2Y -MAN-P'GR -MSQ49-R04CO

If a default preset value is specified, it must be assignment
compatible (paragraph 6.1.1.1) with the default type being sP~9i
fied, or with the default type in effect if none is being speci
fied.

If a preset value is specified and the optional preset magnitude
is present, the value is to be converted into a modified binary
system in which the specified magnitude value is converted as the
specified magnitude bit. The bit to the right of the specified
magnitude bit then corresponds to a value that is one-half of the
specified magnitude value, the bit to the left corresponds to
twice the magnitude value, etc.

Magnitude bits are numbered from right to left; the rightmost bit
is bit O. This numbering refers only to the bits of the variable
and does not include additional bits allocated by the compiler.

Examples

MODE VRBL A 24 U 13 $

If this specific~tion is included in a system element, all
succeeding variables that are defined within the system element
wit hou t an exp 1 i cit type spec i fica t ion wi 1 1 r ece i ve a type 0 f
A 24 U 13 until another default type specification for variables
is encountered.

If the specification appears in a major header, it will affect
all subsequent system elements that do not contain a default type
specification for variables.

MODE FIELD A 32 S 16 $
TABLE LOCALTRK H 11 100 $

FIELD TRKNO I 32 S 0 31 $
FIELD 1D S 'FRIEND', 'FOE',
FIELD X1
FIELD Y1
FIELD T1

END-TABLE LOCALTRK $

, UNKNOWN I 1 31 $
2 31 $
3 31 $
4 31 $

In this example, type is not explicitly specified for fields X1,
Y1 and T1; the field mode declaration attributes of A 32 S 16 are
assigned for each. It is still necessary to specify the location
for these three fields because compiler pacKing is not specified.

4-22

I'

/(U) CM2Y-MAN-PGR-M5049-R04CO

MODE VRBL A 64 S 12 P .999755859375 V(1,6) $
VRBL ABC $

The decimal fraction preset here converts to .7777 octal, which
is 12 bits of precision. However, because of preset magnitude,
in which the sixth bit from the right represents 1, only six bits
(.77 octal) are stored in the least significant bit positions of
the first word of variable ABC.

4-23

I (U) CM2Y -MAN-P;GR -M5-(l49-R04CO

4.6 Variable Declaration

Syntax

<variable declaration>
: : = [< scope mod i fie r >] V R B L < va r-i ab 1 eli s t > [< type>]

[P <preset value>] $

<variable list>
::= <variable name>
::= «variable name>@)

<variable name>
.. - <name>

<type>
- <simple type>
- <structured type>

<structured type>
::= <untyped structure name>
::= <typed structure name>

Semantics

A variable declaration specifies that the names of the variable
list refer to variables of the specified type. A preset (initial
value) may be specified for the variables.

<scope modifier> - Optional. Refer to scope modifier defi-

VRBL

nition (paragraph 4.1).

- A language keyword indicating a variable
declaration.

<variable list> - The names of the variables being de
clared.

<type>

p

<preset value>

- Optional. The type of the variables be
ing declared.

- Optional. A language keyword (not re-
served) indicating that a preset value is
being specified.

Optional. The value to which the varia
b 1 es are preset.

A maximum of 25 names may appear in the variable list of a single
variable declaration.

4-24

flU) CM2Y-MAN~PGR-M5049-R04CO

If the optional type is omitted, the type of the variables being
declared is the default type for variables in effect at the time
of the variable declaration (paragraph 4.5). If the optional
type is omitted and no preset value is specified, the default
preset value in effect at the time of the variable declaration.
if any, becomes the preset value of- the variables being declared.
If the optional type is omitted and a preset value is specified,
the specified value overrides any default preset value in effect
at the time of the variable declaration.

If a preset is specified or implied, all variables of the varia:
ble list are preset to that value. A preset may be specified on-
ly if the type is simple or a typed structure. The preset value
must be assignment-compatible with the underlying simple type of
the variables being declared (paragraph 6.1.1.1). The effect of
the preset is the same as if the preset value were assigned to
the variables at the beginning of program execution.

If the preset value has character type and contains more charac
ters than the variable can hold, the rightmost excess characters
will be truncated. If the preset value has fewer characters than
the variable can hold, it will be left-justified in the variable
and excess character positions will be filled with spaces.

If the preset is a numeric value of greate~ magnitude than the
variable can hold, the excess most significant bits will be trun
cated. If the preset is a value of greater precision than is
provided for in the variable, the excess least significant bi'ts
will be truncated.

If a preset value is of the form CORAD«addressable name», the
corresponding variable must be of integer type, and must have at
least 16 magnitude bits.

A variable declaratibn that is preceded by an EXTREF scope·modi
fier may not include a preset.

A variable whose type is ~imple is allocated according to its
type, as illustrated in Figure 4-03. A variable whose type is
structured is allocated the number of target computer words that
is the size of its type.

Examples

VRBL 135 I 3 S $

This is an example of an integer type variable, which is a signed
string of bits three bits long, and which can assume integer val
ues in the range -3 through +3 inclusively.

VRBL 121SP I 21 S P TAG $

4-25

Size

.
.5. 16 bi ts 16 bits (half word)

Signed
fixed-point >16 bi ts 1 word
type wi th .5.32 bits
length

>32 'b its 2 words

< 8 bi ts 8 bits (quarter word)

Unsigned > 8 bits 16 bi ts (half word)
f i Ked~:po in t .5. 15 bi ts

Variable type;Wl:th
/ len>g~~: >15 b·its 1 word

Type·. ~31 .b i ts
" . "' ..

and .. >31 b-i ts .2 words

A 110- Floating-point 2 words
tvoe T.R.&'O

ca t ; on F 1 oa t i ng --po i n t 1 word
type S

Boolean type 8 bits (quar te-r word)

Status type 8 bi ts (qua-rter wo·rd)
(N values: N.5.2S'5)
16 bi ts (half word)
('N values: N>2SS)

=1 8 bi ts (quarter 'wo~d)

,Cha·r.act'er =2 16 bits (half wOf'd)
type wi th
number of >2 Number of words = [(number
characters: of characters-1)/4]+1;

left-justi f ied; truncated
to an <integer

Figure 4-03. Allocation of Tyoed Variables

4-26

/(U) CM2Y-MAN-PGR-M5049-R04CO

This is an integer type variable of 21 bits, of which 20 are mag
nitude bits and the leftmost is a sign bit. At compilation time
the variable is preset to the value associated with the name TAG.
TAG may be specified as either an ntag (paragraph 4.13) or an
ltag (paragraph 4.14).

VRBL 116U I 16 U P CORAO(I35) $

This integer type variable is preset at compilation time to the
address of an addressable unit, 135. The bit length, 16, is the
minimum valid length for a variable that is to be preset to ~
core address.

VRBL A4UO A 4 U 0 $

This is an example of a fixed-point type variable which is four
bits long with no fractional bits. It can assume positive values
in the range 0 through 15 inclusively.

VRBL A450 A 4 5 0 P 5 $

This is a fixed-point type variable which has three magnitude
bits and one sign bit .. It has no fractional bits and can assume
values in the range -7 through +7 inclusively. It is preset at
compilation time to the value 5.

VRBL A451 A 4 5 1 $

This is a fixed-point type variable which has a sign bit and
three magnitude bits, one of which is a fractional bit. It can
assume the values 0, !O.5, !1, !1.5, !2, !2.5, !3, and !3.5
exactly.

VRBL A45M1 A 4 5 -1 $

This fixed-point type variable is four bits long, including the
sign bit, and has one bit of negative scaling. The -1 effective
ly establishes a range of five bits, except that the ones-
position bit is excluded. It can assume the values 0, !2, !4,
!6, !8, !10, !12, and !14 exactly.

VRBL HOLRITH H 1 P H(5) $

This is an example of a character type variable declaration spec
ifying one character. It is preset at compilation time to the
character code which represents the character 5. This variable
does not have the value 5 for numeric computation, and may not be
used for numeric computation.

4-27

/(U) CM2Y-MAN-PGR-M5049-R04CO

VRBL BOOl B $

This is a Boolean type variable declaration.

VRBL FLT F $

This is an example of a floating-point type variable declaration.

VRBL STATX S 'lOW', 'MEDIUM', 'HIGH' $

This is an example of a status type variable declaration.

TYPE VSTRUC (H 40) $
FIELD FH3 H 3 0 31 $
FIELD FH20 H 20 1 31 $

END-TYPE VSTRUC $

VRBL VX VSTRUC P H(THIS IS TYPED H 40) $

This is an example of a structured variable. It has the
underlying simple type of H 40. The variable contains'the fields
FH3 and FH20, which are accessed as VX(FH3) and VX(FH20).

4-28

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.7 Parameter Variable Declaration

Syntax

<parameter variable declaration>
::= [<scope modifier>] PARAMETER <variable list> [<type>]

[P <preset value>], <register number> $

<register number>
::= <numeric constant expression>

Semantics

A parameter variable declaration specifies the attributes of one
or more variables and a target machine A register or register
pair to be used when the variable is used as a formal parameter
of a procedure.

<scope modifier>

PARAMETER

<variable list>

<type>

p

<preset value>

- Optional. Refer to scope modifier defi
nition (paragraph 4.1).

- A language keyword indicating a parame
ter variable declaration.

- The names of the variables being de
clared.

- Optional. The type of the variables be
ing declared.

- Optional. A language keyword' (not re
served) indicating that a preset value
is being specified.

- Optional. The value with which the var
iables are preset.

<register number> - Specification of the target machine A
register or the first of an A register
pair to be used in parameter passage if
one of the variables being declared is
used as a formal parameter of a proce
dure.

The meanings and restrictions on the variable list and preset
value are the same as in a variable declaration. The type cannot
be an untyped structure. If the underlying type is character,
its maximum length is eight.

The value of the register number expression must be in the range
[0 , 7] .

4-29

A parameter variable declaration is a special form of a variable
declaration. Throughout this man~al, any reference to variables
includes variables declared by means of a parameter variable dec
laration.

Examples

Using Using
Parameter Variable Declarations Variable Declarations

Formal PARAMETER XX I 24 S , 0 $ VRBL XX I 24 S $
Parame'ter
Definition PARAMETER YY I 24 S , 6 $ VRBL YY I 24 S $

PROCEDURE P INPUT XX OUTPUT YY $ PROCEDURE P INPUT
XX OUTPUT YY $

Procedure
Def in i t ion

SA AO,XX,K3

--LA A6, YY , K3
END-PROC P $

P INPUT Q OUTPUT R $

Procedure LA AO,Q,K3
Call LBJ B6,P

SA A6,R,K3

END - P·R OC P -$

P INPUT Q OUTPUT
R $
LA A3,Q,K3
SA A3,XX,K3
LBJ B6,P
LA A4,YY,K3
SA A4,R,K3

This example illustrates the use of parameter variables to pass
procedure parameters in a procedure call. The difference betwee~
the two sequences is the location of the store instruction in in
put parameter passage, and the location of the load instruction
in output parameter passage.

(EXTREF) PARAMETER BUFADDR I 16 U, 6 $
(EXTREF) PARAMETER NWORDS I 9 U, 7 $
(EXTREF) PARAMETER DSKSECTR I 16 U, ° $
(EXTREF) PARAMETER ERROR B, 0 $
(EXTRfF) PROCEDURE DISKREAD INPUT BUFADDR,

DSKSECTR,NWORDS OUTPUT ERROR $

4-30

TABLE DATAREC V 512 1 $
END-TABLE DATAREC $
VRBL NXTSECTR I 14 U $
VRBL RDERROR B $

I(U) CM2Y-MAN-PGR-M5049-R04CO

DISKREAD INPUT CORAO(DATAREC), NXTSECTR, 512
OUTPUT RDERROR $

LA A6, DATAREC, KO
LA AD, NXTSECTR, K2
LA A7, 512
LBJ B6, DISKREAD
SA AD, RDERROR, K5

The parameter variable declarations and program attribute decla
ration would be useful for facilitating procedure calls from a
CMS-2 program to an assembly language disk read routine that
expects input parameters in fixed A registers and produces an
output in a specific A register. The declaration and procedure
call illustrate the generated code that could be produced from a
call to the assembly language routine.

Note

A parameter variable cannot be used as a formal parameter of a
function.

Implementation Notes

The target machine A registers are used during expression evalua
tion. If the actual argument list of a procedure invocation
(paragraph 6.1.1.6) contains expressions that must be evaluated
using the A registers, and the formal parameters of the procedure
contain one or more parameter variables, conflicts in the use of
the A registers can occur.

Conflicts can also occur if the formal parameters of a procedure
contain two or more parameter variables that use the same regis
ter. If either of these cases occur, the compiler will issue a
warning message.

4-31

4 . 8 Tab 1 e Dec 1 a rat i,-on

Syntax

<table b1ocK>
::= <table declaration> [<table information>&] <end-table

declaration>

<table aeclaration>
- [<scope modifier>] TABLE <table name> <table type> <item

allocation> [lNDIRECT] <table subscript declaration>
[<major index>] $

<table name>
::= <name>

<table type>
: : = H
: : = V

<item allocation>
: : = 'NQNf
: :;:, '<MepJIJM
: : = DENSe'
: : = <t'lumbe,f' of words>
::= «type»

<table subscript declaration>
- <number of items>

::= <status type>
: : = < 1 tag n arne>

<number of items>
::= <numeric constant expression>

<status type>
::= <status type specification>
::= <status type name>

< s ta t us type naffle)
::= <simple type 'name>

<major index>
::= <name>

<table information>
- <structure information>

.. - <liKe-table declaration>

4-32

::= <subtable declaration>
::= <item-area declaration>

<end-table declaration>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= END-TABLE <table name> $

Semant ics

A table is an ordered set of homogeneous data called items. The
items may be simple, structured, or both. The table blocK speci
fies the name of the table, the manner of allocating the table to,
memory, and the number of items in the table.

<scope modifier>

TABLE

<table name>

<tabie type>

<item allocation>

INDIR~CT

- Optional. Refer to the
scope modifier definition
(paragraph 4.1).

- A language Keyword indicat
ing a table declaration.

- The name of the table being
declared.

- An H or V, specifying that
the table is to be allocated
to "memory horizontally or
vertically, respectively.

- An indication of the manner
in which an item of the ta
ble is to be allocated.

- Optional. A language Key
word indicating that the ta
ble is not to be allocated
and its name is to be used
asa surrogate for other ad'
dressable data.

<tab1e subscript declaration> - A declaration of the values
that can be used to access
items of the table~

<major index>

<table information>

- Optional. Declaration of a
variable that will be used
to indicate the number of
active entries in the table.

- Opt iona 1. Structure infor
mation defining the struc
ture of the table items,

4-33

/(U) CM2Y-MAN-PGR-M5049-R04CO

END-TABLE

item-area declarations de
claring related variables,
and like-table declarations
and subtable declarations
.declaring related tables.

- A language keyword indicat
ing the end of a table
block.

The table name that appears on the end-table declaration must be
the same as the table name that appears on the table declaration.

A table name cannot be 0, H, or O.

Only the table declaration and the structure information of a ta
ble blocK specify attributes of items of the table. Item-area
declarations, liKe-table declarations, and subtable declarations
declare entities whose attributes are related to those of the ta
ble being declared.

A table block has the effect of declaring a unique anonymous
structured type whose name is different from all other names in
'the compi 1ation module in the form

TYPE name <item allocation) $
<structure information) &

END-TYPE name $

where the item allocation and structure information are exact
copies of the corresponding text from the table block, then de
claring the table without structure information and with its item
allocation being the name of the anonymous type in parentheses.
The anonymous type declaration must be valid.

Each item of the table has the attributes specified by the asso
ciated anonymous type. In particular, each item is allocated the
number of target machine words that is the size of the anonymous
type.

If the anonymous type is compiler-packed, then the table is
compi 1er-packed. If the anonymous type is user-packed, then the
table is user-packed. If the anonymous type is a typed struc
ture, then the table is called item-typed.

A vertical table, indicated by a table type of V, is allocated to
memory in sequential memory addresses. All words of the first
item are allocated to sequential memory addresses, followed by
all words of the second item, etc.

4-34

/(U) CM2Y-MAN-PGR-M5049-R04CO

A horizontal table, indicated by a table type of H, is allocated
to memory in sequential memory addresses. The first word of the
first item is followed by the first word of the second item,
which is followed by the first word of the third item, etc. The
first word of the last item is followed by the second word of the
first item, which is followed by t~e second word of the second
item. In general, word h of item n is followed by word h of item
n+1, unless item n is the last item. Word k of the last item is
followed by word h+1 of the first item, unless word h is the last
word.

No field of a horizontal table may cross a word boundary.

Figure 4-04 illustrates the dtfference in address allocation be
tween horizontal and vertical storage for a table consisting of
three words per item.

It .. 0

It .. 1

VOI'e! 0 VoI'&I 1 VOl'd 2 Word 0 WOI'c1 1 Wore! 2

+ .. I I It_ 0

, I t
Horizontal Stol'ase Vertical Storase

Figure 4-04. Table Storage Addressing Sequence

If the table subscript declaration is a numeric constant expres
sion, its value specifies the number of items of the table. The
value must be a nonnegative integer. If the number of items is
n, the items are numbered from 0 through n-1 inclusive. The
items may be accessed by integer subscript values in the range
[0,n- 1].

If the table subscript declaration is a status type, there is one
item of the table for each value of the type. The first item

4-35

/(U) CM2Y-MAN-PGR-M5049-R04CO

corresponds to the first value of the type, the second item cor
responds to the second value, etc. The items may be accessed on
ly by status expressions of the same status type.

If an ltag name appears as a table subscript declaration, the
number of items of the table is deter~ined by the value of the
name at load time -- that is, the value specified at load time,
or, if no such value is specified, the compile time value. The
value of the name at load time must be nonnegative.

If an ltag name appears as a table subscript declaration, the al
location of the table cannot be specified by an address declara
tion and fields of the table cannot be preset.

The scope of the ltag must be greater than or equal to the scope
of the table.

The optional major index may not appear if the table subscript
declaration is a status type. The major index implicitly
declares a variable whose value is the number of active items in
the table. The active items are the first items of the table.
The major index is of type 116 S. The name of the major index
has the same scope as the name of the table. The name of the ma
jor \ndex_may not appear in a variable declaration or item-area
declaration in the same scope as the table declaratiOn. "A m~jor
index name may be used with only one table in a scope. It is the
programmer's responsibility to maintain the value of the major
index. The major index is not preset.

A table is called indirect if the keyword INDIRECT appears in its
declarat ion. No . memory is allocated for an indirect table i t
self, but one target machine word which corresponds to the tab1e
name is allocated. An indirect table must not be refere"nced
before the address of another addressable datum has been assigned
to its name. The assignment of an address to an indirect table
name is achieved through CORAD assignment, either directly or
through parameter passage (paragraph 6.1.1.1, and paragraphs 5.2
and 6.1.1.6). When an indirect table is referenced, the actual
reference is to the addressable name whose address was last as
signed to the indirect table name. All references are based on
the structure of the indirect table, without regard for the
structure of the actual addressable name being referenced.

Examples

TABLE TVA V 4 200 $
END-TABLE TVA $

Table TVA is a vertical table containing 200 items of four words
each.

4-36

I'

/(U) CM2Y-MAN-PGR-M5049-R04CO

LOAD-VRBL LV19U 1 9 U P 6 $
TABLE TH7LV6 V (H 7) LV19U $ "INIT=6"
END-TABLE TH7LV6 $

Unless directed otherwise by control statements to the loader
program, table TH7LV6 will be allocated six items as specified by
the mandatory preset value of 6 in the declaration of ltag LVI9U.
By default, then, the table is compiled as 12 words long.

TABLE TV2 V (1 5 U) 6 $
END-TABLE TV2 $

Table TV2 specifies items typed integer, five bits, unsigned.
This means that any reference to an item of this table will be
treated as though it were an I 5 U variable. The table has six
items.

TABLE TH3 H (A 15 5 8) TAG $
END- T ABLE TH3~:,:$

, t:, :, ~ ~

Table TH3"specift~~/,:Jlems typed fixed-point wi th six integer
bits, eight fractf1\(j'oa'1 bits, and a sign bit. The number of items
is designated by the value associated with the name TAG, where
TAG is an ntag, ltag, status type, or string name.

TABLE TCP V DENSE 5 $
FIELD ---
FIELD ---

END-TABLE TCP $

This table illustrates the compiler pacKing designator that will
pacK in the most compact way allowed by the compiler, with what
ever fields are defined. The minimum number of words required to
contain this data will determine the number of words per item for
the five items defined. It is the most memory-efficient method
to construct a data design when only the data is being consider"
ed. However, dynamic references to packed data may be less effi
cient than NONE or MEDIUM pacKed tables, depending on the bit
lengths required by the specified field definit,ions.

TYPE STCS 'OFF' ,'INACTIVE' ,'ACTIVE' ,'DOWN' $

TABLE TST H MEDIUM STC $
FIELD FLD1 I 8 U $
FIELD FLD2 I 8 U $

END-TABLE TST $

Table TST is a horizontal, medium-packed table with status STC
for its subscript declaration. There are four table items corre
sponding to the four possible STC status values. Items of this

4-37

I
I
I
I
I
I
I
I

I(U) CM2Y-MAN-PGR-M5049-R04CO

table can only be accessed using subscripts which are status ex
pressions of type STC.

TYPE STRUC NONE $
FIELD SF1 H 20 $
FIELD SF2 I 3 U $
FIELD SF 3 B $

END-TYPE STRUC $

TABLE TVe V (STRUC) INDIRECT 3 $
FIELD TF A 13 S 4 $

END-TABLE TVe $

Table TVC is an indirect, vertical table with three items. Each
item is compiler-packed (NONE) and contains the fields SF1, SF2,
SF3 and TF.

4-38

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.8. 1 Fie 1 d Dec 1 ar at lon

Syntax

< fie 1 d dec 1 a rat ion> .
::= FIELD <field name> [<simple type>] [<starting word>

<starting bit>] [P <preset item>@] $

<field name>
::= <name>

<s tar t i ng word> "
::= <numeric constant expression>

<starting bit>
::= <numeric constant exp~ession>

<preset i tern>
::= <preset value>
::= <repeat value> «preset value»

<repeat value>
::= <numeric constant expression>

Seman tics

A field declaration specifies the name of a field of a structured
type and the properties of that field.

FIELD

<field name>

<simple type>

- A language keyword indicating" a field dec
laration.

- The name of the field b~ing declared.

- Optional. The type of the field being de-
clared.

<starting word> - Optional. The number of the word in which
the leftmost bit of the field is to be al
located.

<starting bit> - Optional. The bit position of the left
most bit of the field.

p - Optional. A language keyword (not re-
served) indicating that preset values are
being specified.

4-39

I
I
I
I "

<preset item> - ~ value, optionally enclosed in parenthe
ses and preceded by a repea t va 1 ue, W'l th
which the fields of one or more items are
to be preset.

The following discussion is stated in terms of the type in which
the field declaration appears. This is either an explicit type
declaration or the implicit anonymous type declaration associated
with a table or array declaration.

Field names must be unique within the type in which they are de-.
clared. They do not have to be distinct from any other names in
any scope; the same name may be used as a field name in any num
ber of types in a scope, and may also be declared as the name of
some other entity in that scope.

If the starting word and starting bit of a field are specified,
the field is user-packed. If the starting word and starting bit
of a field are not specified, the field is compiler-packed.

Words of a type are numbered sequentially first to last, begin
ning with O. Bits of a word are numbered from right to left,
from 0 through 31.

The values of the numeric constant expressions that specify the)
starting word and starting bit must be non-negative integers.
The starting word and starting bit must be such that the entire
field lies within the type. The starting word must be less than
256.

User-packed fields of a type can be specified in such a manner
that they overlap. It is not necessary that all bits of a type
be allocated through user-packing.

Any user-packed field whose length is no greater than 32 bits
(one target machine word) must be positioned so that it does not
cross a, word boundary. For any· longer user-packed field, the
starting bit must be bit 31.

A user-packed integer or fixed-paint fie~d whose length is great
er than 32 bits (which therefore requires two words of storage
and a starting bit of 31) is allocated to two consecutive words
of memory in the "folded" representation of the AN/UYK-7. Thus
the specified starting word actually contains the least signifi
cant 32 bits of the value. (For details of th·is representation,
see M-5048.) Furthermore, the value of the field is manipulated
using the AN/UYK-7 double word instructions. In particular, the
value is accessed using the double load instruction, which acces
ses all 64 bits of the two words, and a new value is assigned
using the double store instruction, which modifies all 64 bits of

4-40

/(U) CM2Y-MAN-PGR-M5049-R04CO

the two ~ords. Thus the apparently unused bits of the two words
can be used for other fields only with the greatest caution on
the part of the programmer.

No fieic of a horizontal table may cross a word b0undary. In
particula~. fields of a type that require more than one target
machine wc~d may not appear in horizontal tables.

If the oc:ional type is omitted, the type of the field being de
clared ;s :he default type for fields in effect at the time of
the field oeclaration (paragraph 4.5).

The preset items specify values that are to be used to preset the
field in successive items of a table. The first field preset
value is used to preset the field in the first item, the second
field p~eset value is used to preset the field in the second
item, etc. A preset item may not be used in a field declaration
in an exp1icit type declaration.

The value of the repeat value must be a positive integer. The
effect of a preset item that contains a repeat value is the same
as if the preset value had been written n times consecutively,
where n is t~e value of the repeat value.

The number of preset values specified, taking into account the I
effect of repeat values, must not be more than the number of I
items of tne table and must be in the range [1,256]. Specifying I
fewer preset values than the number of items of the table is per-l
mitted; only the first items of the table will be preset. I

The preset values must be assignment-compatible with the type of
the field being declared (paragraph 6.1.1.1). The effect of the
presets 's the same as if the preset values were assigned to the
fields of :he corresponding items at the beginning of execution
of the program. . .

The constraints for CORAD presets of fields are the same as CORAD
presets 0' variables.

Examples

TABLE E1 V NONE 400 $
F ElD ALPHA I 10 S P 5 $
F ElD SETT A 10 U 4 P 1, 3(4.5), 2, 7.3 $

END-7 BlE E1 $

4-41

E1 is a compiler-packed table. Field ALPHA is a signed integer
type field, 10 bits long. It is preset to 5 in iter.' O. Field
SETT is an unsigned fixed-point type field, 10 bits long, includ
ing four fractional bits. Field SETT in items 0 through 5 will
be preset to 1, 4.5, 4.5, 4.5, 2, and 7.3 respectively.

TABLE E2 V (I 12 U) 20 $
FIELD BETA A 10 U 4 0 13 P 3 $

END-TABLE E2 $

E2 is a user-packed table. The table has 20 i terns of unsigned.
integer type, each 12 bits long. Field BETA has unsigned fixed
po i n t type and a 1 eng tho f 10 bit s , inc 1 ud i ng fou r f r ac tiona 1
bits. This field is defined as being in the first word of each
item of the table, starting in bit 13. Field BETA of item 0 is
preset to 3.

TABLE TEST V 2 5 $
FIELD VALUE1 I 3 U 0 4 $
FIELD VALUE2 I 3 U 0 3 $
FIELD VALUE3 I 2 U 1 2 $

END-TABLE reST $

These declara"tions could be viewed in storage as shown in Figure
4-05.

TABLE NOTYP V 5 4 $
FIELD FL1 I 14 S 0 13 $
FIELD FL2 I 11 U 1 10 $

END-TABLE NOTYP $

TYPE AAA I 14 S $
TYPE BBB I 11 U $

TABLE TYP V 5 4 $
FIELD FL1 AAA 0 13 $
FIELD FL2 BBB 1 10 $

END-TABLE TYP $

User-packed tables NOTYP and TYP have the same field structure.
The typing of the fields in table TYP is specified by the types
AAA and BBB. Field FLl is a signed integer type field, 14 bits
long. Field Fl2 is an unsigned integer t;pe field, 11 bits long.

Implementation Note

Only the upper or lower half of a Larget machine word, and not
both, may be preset to a CORAD value.

4-42

31

Notes

/(U) CM2Y-MAN-pQR-M5049-R04CO

30 • • • • 5 4 ,- 3 2 1 0

Word O}
Word 1 It .. 0

Ilftd O}
Word 1 It ... 1

Ilftd O}
Word 1 It.. 2

Word O}
Item 3

Word 1

Word O} _ Item 4
Word 1

Figure 4-05. Vertical Table Layout (Table TEST)

a.

o.

c.

Table TEST is ivertic~l table (all words of an item are
together)of.5"Ltem$f;Qf 2, words·' each .

. .' ... :,~ .;'" " 'ii: ' ~ . '",./ ' . '. .-' .

Fields VALUEl ~ and VALUE2-(~IJIl'!''''0'''''~'''''''''' are iden-t-i
f ied W",i,t, h, ~,Qrd, 0, ,;Of" ,e" v, e,ry i ,tern",' 8i~ ,the table. Not ice
the overlapp'ing,16~ ~;l;le."f,;e,lds, ~"

I.:..~ . '~ ., '. , . ".' " , • ~

Fie 1 d VALUE3,('ftl~~·:i~«·~,~{Z~:':".!:"'I)f (i'~ i den t i f i ed with word 1 of every
i tern wi thin the It'able~"

4-43

/ (U) CM2Y -M,A'N-PGR,...,5.; 049-R04CO. . ,

4.8.2 Field Overlay Declaration

Syntax

<field overlay declaration>
::= <field overlay parent> OVERLAY <field overlay

sib 1 i ng>@ $

<field overlay parent>
: : = < fie 1 d name>

<field,overlay sibling>
: : = < fie 1 d name>
::= <numeric constant expression>

Semantics

A field overlay declaration indicates that certain fields of a
compiler-packed table are to be allocated in such a manner that
they share memory.

<field overlay parent> - The name of a field in which the
bits are to be allocated to the
field over laysibl ings.

OVERLAY - A language keyword indicating an
overlay declaration.

<field overlay sibling> - A numeric constant expression or
the name of af i e 1 d t ha tis to be
alloe.a ted i n such a manner tha tit
occupies some or ,all of the ,bits
of the field over 1 ayparent .

A fie 1 d over lay d.ec 1 arati on may on 1 Y appear in the type dec 1 ara
t ion ofa comp i ler -paoked type.

I In a 110ca t i ng thef i"eld;pverlay,stbl lngs, the fie ld over lay par -
lent is cons i de red to ~:Qe .,B;$ t:ri'og 'ofb'its ,without regard for its
I s'tructure. Tine fi'rstfieldpy~'lays+b"lJng is:a 11qcatiedso that
I its1 ef J'mo:s tbi ti s thel:ef~t:1ftOst ·bi t .p,f the··f i.eld over 1 ayparen t ,
I J:'me:sec.onCd fi~e'ldoV$.rl~:y~si:bJi;Qg,bs,:al1oc~,t:ed·so thati{$Jeft
I most ,b"; t 'i·s:~tJ,e 'if,irst ib;·i t.tp :ttle:right 'J~f t"he !'rJ,ghtmO$t 'bi,t of
I t,ne "f4,r.$ t ·,()ve:p::lfl,Y$,lpJJ,f:\O:-" {~~c,e-, l~n :;;9lQer,;;p.:l,.:eachfJ:e;ld ov.er lay
j s to 1 tog .other than tt::u.a f:i,r'st l~ a,Llocated so ' that kt.s, lefl1Uost ,',;'E

I bi t ;·i~s immadia'tely to tlt:le ;,r'~igh.t eJ "tbe rightmost b,; t of the pre-
I -v'ietJs J.,j.,t9Jd ':.oy,er:l,a;y $Jbl in~ •. ' {:tio ;i~Jbl;i=r,gof gl1,aracter JYPfa can be
~ 'pesJt;:i oned .;;$uCh tb.a,~~ :.,ail,y.cr."..ct~r .. :'p,.rQs$esa ,word J)ou'nd'a'~>y .

'-hfafiji:~'ldQ\ter.lta.~;s~.ibJJ£l9 '.~~ ,:~a;7R\J.mer~i"c consJan t express i on ..its
v.a 1 ue must oe ·anpfl-n~at:i.ve i n,t~ger,. Such a sibling is

4-44

/(U) CM2Y-MAN-PGR-M5049-R04CO

interpreted as an unnamed field whose length is given by the nu
meric constant value. Thus the 9ffect is as if the allocation
process skips the number of bits specified by the value.

The field overlay parent must be .long enough to contain all of
the bits of all field overlay siblings after allocation.

A field name may appear as a field overlay sibling only once in a
structured type declaration. There is no limit on the number of
times a field name may appear as a field overlay parent.

If a field name appears as both a field overlay parent and a
field overlay sibling, its appearance as a sibling must precede
all of its appearances as a parent.

A field overlay sibling whose length is no greater than 32 bits
may not cross a target machine word boundary. A field overlay
sibling that is a multiword data unit must be allocated on a tar
get machine word boundary.

If a name appearing as a field overlay sibling is the name of
both a field in the table block and an ntag, the sibling is in-

. terpreted to ~e the field.

Examples

TABLE SAMPLE V MEDIUM 14 $
FIELD FLAGS I 8 U $

FIELD FLAG7 B $
FIELD FLAG6 B $
FIELD FLAG5 B $
FIELD FLAG4 B $
FIELD FLAG3 B $
FIELD FLAG2 B $
FIELD FLAG1 B $
FIELD FLAGO B $
FLAGS· OVERLAY FLAG7, FLAG6, FLAG5, FLAG4,FLAG3,

FLAG2, FLAG1, FLAGO $
FIELD DBL I 64 S $

END-TABLE SAMPLE $

Each item of table SAMPLE will have the following structure:

4-45

Word 0

Word

Word 2

~---------------I Fie ld DBl

FLAGS· . Unused bi ts

Fields FlAG7 through FlAGO

Because MEDIUM compiler packing is declared, field FLAGS is allo-'
cated ,a full quarter-word. The eight overlay sibling Boolean
type fields are densely packed, with each one occupying only a
single bit.

Note

A field overlay declaration is syntactically identical to an
ov~rlay declaration.

4-46

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.8.3 LiKe-Table Declaration

Syntax

<liKe-table declaration>
::= [<scope modifier>] LIKE-TABLE <table name> [<table

subscript declaration>] [<major index>] $

Seman tics

A liKe-table declaration specifies the name of a table whose
items have the same attributes as its parent table.

<scope modifier>

LIKE-TABLE

<table name>

- Opt iona 1. Refer to the
scope modifier definition
(paragraph 4.1).

- A language Keyword indicat
ing a like-table declara
t ion.

- The name of the table being
declared.

<table subscript declaration> - Optional. A declaration of
the values that can be used
to access items of the ta
ble.

<major index> - Optional. A declaration of
a variable that will be used
to indicate the number of
active entries in the table.

A like-table declaration may only appear in a table block. The
table being declared by the table block is called the parent ta
ble of the table being declared by the like-table declaration.

A table declared by a like-table declaration has the same table
type and item allocation as its parent table.

There is no relation betweeri the type of the parent table's sub
script declaration and the type of the like-table's subscript
declaration. If the table subscript declaration is omitted, the
table subscript declaration of the parent table is used by de
fault.

The meanings of and constraints on the number of items and the
major index in a like-table declaration are the same as in a ta
ble declaration.

4-47

/ (U) CM2 y - MAN,-~,GR -ffl5049-'R04C 0

If an ltag name appear's as a subscript declaration, the scope of
the ltag must be greater than or equal to the scope of the l1'ke
table.

A like-table declaration may not app~ar in the table block of an
i nd i r ec t tab 1 e .

The scope of a table declared by a like-table declaration must be
no larger than the scope of its parent table. Either may be de
clared with an attribute declaration (i .e., EXTREF) while the
other is declared wi th an a llocat ion declarat ion (i .e., EXTDEF) ..

The like-table declaration is a means of defining a table.
Throughout this manual, any reference to a table includes tables
declared by means of a like-table declaration.

Example

TABLE FLAGS V (B) 10 $
LIKE-TABLE TFLAGS 5 $

END-TABLE FLAGS $

FLAGS and TFLAGS each contain a series of Boolean items. FLAGS
contains 10 items and TFLAGS contains five items.

TABLE PARENT H MEDIUM 14 $
FIELD ---
FIELD ---
FIELD ---
LIKE-TABLE LT1 $
LIKE-TABLE LT2 204 $

END-TABLE PARENT $

All of the fields named will be allocated for both the parent ta
ble PARENT and the two like-tables~ Like-table LT2 has 204
items, while LT1· has 14 items (same as the parent table).

4-48

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.8.4 Subtable Declaration

Syntax

<subtable declaration>
::= [<scope modifier>] SUB-TABLE <table name> <starting

item> <table subscript declaration> [<major index>] $

<starting item>
::= <numeric constant expression>
::= <status constant>

Semantics

A subtable declaration specifies the name of a table which is
part of a larger table. Items of the two tables have the same
attributes.

<scope modifier>

SUB-TABLE

<table name>

<starting item>

- Optional. Refer to. the
scope modifier definition
(paragraph 4.1).

- A language Keyword indicat
ing a subtable declaration.

- The name of the subtable be
ing declared.

- A specification of the item
of the larger table that
corresponds to t~e first
item of the subtable being
declared.

<table subscript declaration> - A declaration of the values
that can be used to access

<major index>

items of the subtable. .

Optional. A declaration of
a variable that will be used
to indicate the number of
active entries in the table.

A subtable declaration may only appear in a table blocK. The ta
ble being declared by the table blocK is called the parent table
of the table being declared by the subtable declaration.

A table declared by a subtable declaration has the same table
type and item allocation as its parent table.

4-49

There is no relation between the type of the parent table's sub
sc~ipt declaration and the type of the subtable's subscript- dec
laration.

If the parent table's subscript decl~~ation is a number of items
or an ltag name, then the subtable's starting item must be a nu
meric constant expression whose value is one of the subscript
values of the parent table. If the parent table's subscript dec
laration is a status type, then the subtable's starting item m~st
be a value of that status type.

The first item of the subtable is allocated to the same memory
address as the item of the parent table specified by the starting
item. As a result, the item of the parent table after the start
i ng i tern and the s'econd i tern of the subtab le are a lloca ted a t the
same memory address, the second item of the parent table after
the starting item and the third item of the subtable are allocat
ed at the same memory address, etc.

The starting item and the number of items of the subtable decla
ration must be such that the entire subtable is allocated within
the memory that is allocated to the parent table. In addition,
the subta'ble, after any adjustments caused by specifying the val
ues of ltag names at load time (affecting either the subtable,
its parent table, or both) must lie entirer~ within its parent
table. The loader will not verify this restriction.

The name of the subtable has the same scope as the name of the
parent table. If the parent table declaration is an attribute
declaration, then the subtable declaration is also an attribute
declaration.

The meanings of and constraints on the number of items and the
major index in a subtable declaration are the same as in a table
declaration.

If an ltag appears as the subscript declaration, the ltag must
have a scope greater than or equal to the subtable.

A subtable declaration may not appear in the tabl€ bloCk of- an
i nd i rec t tab 1 e .

The subtable declaration is a means of defining a tab,le with spe
c ial all oca t ion pro~r ties. Throughou t th is manua 1. any refer
ence to tables is also a reference to subtables.

4-50

I(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

TABLE HORIZ H 3 10 HMI $
SUB-TABLE HORIZST 5 4 HMIST $
FIELD ---
FIELD ---

END-TABLE HORIZ $

Subtable HORIZST starts in the sixth item of parent table HORIZ
and overlays the rest of the table except for the last item.
(HMIST is the major index for subtable HORIZST.) Figure 4-06 i 17
lustrates the literal sequence of subtable HORIZST in memory.

TABLE VERT V 4 5 $
SUB-TABLE VERTST 0 3 $
FIELD ---
FIELD ---

END-TABLE VERT $

Subtable VERTST overlays the first three items of parent table
VERT. Figure 4-07 illustrates the literal sequence of subtable
VERTST in memory.

TABLE TSTAT V 4 S 'ZERO' ,'ONE' ,'TWO', 'THREE' $
SUBTABLE STSTAT 'ONE' 2 $

END-TABLE TSTAT $

Subtable STSTAT will start in the second item of table TSTAT and
overlay a total- of two items. Subtable STSTAT must be referenced
with numeric subscripts.

TABLE TSTAT1 V 4 S 'ZERO', 'ONE', 'TWO' ,'THREE' $
SUBTABLE STSTAT1 'ONE' 5 'BLACK', 'WHITE' $

END-TABLE TSTAT1 $

Subtable STSTAT will start in the second item of table TSTAT and
overl~y a total of two items. Subtable STSTAT must be referenced
with the status subscripts 'BLACK' and 'WHITE'.

4-51

/ (U) CM2Y -MAN- PGR -,M5049-R04CO

I'

Word
Number

Table
HORIZ

Item
Number

o
o
o
a
a
a
o
a
a
a
1
1
1
1
1
1
1
~
1
1
2
2
2
2
2
2
2
2
2
2

__________________________________ 1 a
__________________________________ 1 1
__________________________________ 1 2
______________ ----________________ 1 3

, 4
51

6 I
7 1
8 1 --' : 9

----------------------------------: 0
: 1

----------------------------------: 2
I 3

----~~~~~----~-------------, 4
TI

6 I
7 I
8 1 __ I

9
o
1
2
3

1 4 ---, 5 ,
6 I
7 I
8 1 --' __________ ~ ________ ~~ __ ~ ______ I 9

-\
\

\
\

\
\

-- \
\
\

___ Sub t ab 1 e

/
I

I
_I

HORIZST
/

/
/

/
/

-Figure 4-06. Internal Structure of Subtable HORIZST

4-52

/(U) CM2Y-MAN-PGR-M5049-R04CO

Word
Number

Table
VERT

Item
Number

o :
1 :
2 I
3 I
o :
1 I
2 :
3 :
o :
1 I
2 2 I
3 2 I __ I o I__, __ ~ _______________________________ I 3

1 t· : 3
2 : : 3
3 : I 3
o I I 4
1 I I 4
2 I I 4
3 I I 4

Subtable
VERTST

Figure 4-07. Internal Structure of Subtable VERTST

4-53

4.8.5 1 :em- Area OeeJ arat,i on

Syntax

(item-area declaration)
::= [<scope modifier)] ITEM-AREA <variable name)@ $

Semant ics

An item-area declaration specifies one or more names to be the
names of variables having the same attributes as the items of a
table.

<scope modifier) - Optional. Refer to the scope modifier
definition (paragraph 4.1).

ITEM-AREA - A language Keyword indicating an item-
area declaration (see Figure 4-08).

<variable name) - The name of a va~iable being declared.

An item-area declaration may only appear in a table blocK or an
I array biock. The table or array being declared by the block is
I· called the parent table of the ,variables being declared by the
I ; tem- area. dec 1 ar a t ion (see. F,i gu re 4 -:-08),.

The effect of an item-area declaration is the same as declaring
variables in a variable declaration using the type (explicit or
anonymous implicit) of the parent table's declaration.

The scope of the variables declared by an item-area declaration
must not be larger than the scope of their parent table. Either
may be declared with an attribute declaration (i .e., EXTREF)
while the other is declared with an allocation declaration (i.e.,
EXTDEF) .

An item-area declaration is a means of declaring a variable.
Throughout this manual, any reference to a variable includes var
iables declared by means of an item-area declaration.

Examples

TAB~E TABA H 32 256 $
ITEM-AREA ITM $

END-TABLE TABA $

Table T!BA is a horizontal table composed of ~56 items, each of
which is 32 words long. Item-area ITM is a separate blocK of 32
words.

4-54

Parent

Tab1e

Wi th

Nine Items

Specified

Like-

Table

Wi th

Four Items

Specified

Item-Area

I tern 0

2

3

4

5

6

7

8

I tern 0

2

3

/(U) CM2Y-MAN-PGR-M5049-R04CO

Fields

Word 0 Word 1

I I I I
Figure 4-08. Parent Table Relationships

4-55

4.9 Array D'ec1 arat'idri'

Syntax

<array block>
::= <array declaration> [<arraV information>&] <end-table

declaration>

<array declaration>
::= [<scope modifier>} TABLE <table name> A <item

allocation> [INDIRECT} <subscript declaration>@ $

<subscript declaration>
::= <numeric constant expression>
::= <status type>

<array information>
::= <structure information>
: : = < i tern-area dec 1 ara t ion>

Semant ics

,An array. is a·multidimensioned table. An array block specifies
the. I'),~me of the array, the subscr ipts to be used in accessing i t5
items, and the manner of allocating it to memory.

<scope modifier>

TABLE

<table name>

A

<item allocation>

INDIRECT

- Optional. Refer to the scope mod
ifier definition (paragraph 4.1).

- A language keyword indicating a
table declaration.

- The name of the array being de
clared.

- A language keyword (not reserved)
indicating an array declaration.

- An indication of the manner in
wh'i ch" an item of the tab 1e is to
be all oc a ted.

OfDt i anal. A 1 anguage keyword in
dicati ng that the array is not to
be allocated) and its name is to
be used as a surrogate for other
addressable units.

<subscript declaration> - A declaration of the values that
can be used in a subscript pOSi
tion to access items of the array.

1.

<array information>

/(U) CM2Y-MAN-PGR-M5049-R04CO

- Optional. Declarations defining
the structure and attributes of
items of the array or related var
iables.

The table name that appears on the-end-table declaration must be
the same as the table name that appears on the array declaration.

A table name cannot be 0, H, or O.

An array declaration must contain at least one, and no more thaQ
seven, subscript declarations. The minimum value of a numeric
subscript declaration is 0 and the maximum value is 65,535. The
number of the subscript declaration(s) is the dimension of the
array. An array of dimension one is identical to a vertical ta
ble.

The product of the number of words per item and the values of
subscript declarations is the total number of words allocated for
any given array. The maximum number of words permitted in an
array is 65,5a5.:~

itf{~~:;' .: .. ' .
The me~'l1i;ngj"of:\;::,~:i~t:{~,;t<:~wwqf)~ I NijJL~~,CT is the same as its mean; ng i n
a table decl,aratlon. \ '>.;' ,

• ,'~' ',' 1 ••• ' \.', •

The first item of an array is the item corresponding to all nu
meric subscripts equal to zero and all status subscripts equal to
their first values. The items of an array are allocated to memo
ry in sequential memory locations, with the first subscript
varying most rapidly, the second subscript varying next most
rapidly, etc. Figure 4-09 illustrates this process and the
correspondence between the wayan item is referenced and its ad
dress. If the value of a numeric subscript declaration is D, a
subscript in that position must be in the range [0,n-1]. For a
status subscript declaration, a subscipt in that position must be
a status value that is assignment-compatible with the type of the
declaration. ,.

An array always has vertical table type. Figure 4-09 illustrates
one way to conceptualize a 3-dimensional array.

Like-tables cannot be declared in an array block.

An array ;s a special form of table. Throughout this manual, any
reference to tables is also a reference to arrays.

Examples

TABLE ARY A (I 13 S) INDIRECT 3, 4, 5 $
END-TABLE ARY $

4-57

1
'I

/ (u) CM-2 Y --MAN ;,PGR.;MsO'4 9-R04CO

Table ARY is an indi~ect array of three dimensions.
are typed I 13 S.

TABLE ARA A MEDIUM 4,4 $
FIELD A12S8 A 12 5 8 $
FIELD 13U I 3 U $

END-iABLE ARA $

The items

ARA is a direct 4-by-4 (16 items) array with medium compiler
packing of fields.

TABLE MATRIX A (F) 8,8 $
. ITEM-AREA ITM $

END-TABLE MATRIX $

Table MATRIX is an 8-by-8 array of two-word items. Each item,
along with the item-area, represents a single floating-point op
erand.

TABLE XX A 3 4,3,3 $
END-TABLE XX $

A reference to an item of this array, XX(P,Q,R), indicates which
three-word ptece of this array is chosen. Figure 4-09 illus
trates the correspondence between the reference and the actual
words seiected in memory.

Assume that the first word in the array is at location 100.

4-58

p

..t::o
I

(J1

<0

o

1

2

3

* 01S-2

** Addre

o

XX(O,O,O)·

100,)0) ,102"
"-

XX Cl,O,O)·

10J,104,105"

XXeZ,O,O)·

106,101,10.··

)0((3,0,0)-

109,UO,lU··

o

1

XX«O,l,O)"

112,11),114"

XXCl, ',0.·

US, 116, 111"

XX(2,1,0)·

118,119,120"

D(3,l,O) •
121,122,123"

P

Array Reference

2 R-O

XX«O,Z,O)·

U4,1l5,126--

XX (I, Z,O)"

121 ,U8,129··

XXeZ,2,0)·

llO, 131, 13Z" Q
DU,2,0)·

1]],114,1J5" 0 1

0
DeO,O,U· DeO,l,U·
ll6, 111 , 118" 148,149,150··

1
DU,O,U· DU,l,U·
1)9,140,141·· 151, 15Z, 15]"

De2,0,1) • xxeZ,I,I)·
2 14Z,I43,14.·· 15.,155,156"

3
DU,O,U· XXU,l,U·
145,146,141·· 151,158,159"

P

sses of ~rds Associated With '1h18 Array Reference

:

2 R-l

DeO,Z,l)·

160,161, 16Z··

XXU,2,1) •
163,164,16'"

XXe2,Z,I)·

166, .61,168" Q
lOCe],Z,I)·

169,110,111·· 0 1

0
xxeo,o,z.· xxeO,l,Z)-

112,11],11." 11.,185,1."

1
XXU,0,2)· Del,l,Z) •
115,116,111·· 111,11', Ie,··

XXI2,O,Z)- xxe2,I,Z)·
2 11',11',110·· 190,191,19Z"

3
)(XU,0,2) • DU,I,Z)·

111,112,111·· 191,194,195··

Figure 4-09. A l-Dimensiooal Array

"'-.

2 R-2 c:

()
XXIO,Z,Z)· 3:

f\..)

196,1'1,191" -<
I

XXU,2,2) • 3:
l>

.",200,201·· Z
I

xxe2,2,Z.·
"'0
G)

202,20J,204" :::0
I

XXU,Z,Z)·
3:
(J1

205,206,201"
0
.a::a
<.D

I

:::0
a
.a::a
(")

0

4.10 Preset Value Declaration

Syntax

<preset value declaratio~>
::= [<pre-settable name>] DATA -<preset entry> $

<pre-set table name>
::= <variable name>
::= <table name>

<preset entry>
:~= <preset semi~entry> [<preset semi-entry>]
::= <character constant>

<preset semi-entry>
::= <numeric constant value> [,<fractional bits>]
::= CORAD «addressable name»

Semant ics

A preset valu~ c;1~claration specifies a preset value.

<pre-settable name> - Optional. The name of a variable or

DATA

<preset entry>

table whose value is to be preset with
the first preset entry.

- A language keyword indicating a preset
value declaration.

- Specification of the value of one or
more target machine words.

<preset semi-entry> - Specification of the value of a target
machine half-word.

Each p~eset value declaration specifies a preset value for an
integral number of target machine words. Only a preset value
declaration whose preset entry is a character constant can speci-
fy a preset value for more than one wor,a. .

If the optional pre-$e~t table namei s presen t, the preset .va Jue
dec 1 ar at; on specifies a ,pre,set value Jor t hef i rs t targe tfl),ach i ne
word($)all,oca ted to tha t,name . If the pre- set table name is
omj tted and the preset \J~luedeclarat ion immedi'atety follo.ws an- j
other preset value declaration, a preset './alue ·isbeing specified
for one or more target mach i rle words that immediately follow the
word(s) p~eset by the previ~us preset va1ue declaration. If the
pre-settable name is omitted and the preset value declaration
does not immediately follow another prese~ value declaration, the
effect is undefined.

4-60

/(U) CM2Y-MAN-PGR-M5049-R04CO

If a preset entry consists of a single numeric constant value,
the value is right-justified in the word. It may be scaled
and/or a fraction.

If a preset entry consists of two numeric constant values, the
value of the first numeric constant value is right-justified in
the upper half-word and the second is right-justified in the lo
wer half-word. Both numeric constant values must be no longer
than 16 bits, and each must be an integer.

If a preset entry consists of a character constant, the value of
the constant is left-justified and blank-filled on the right in
the minimum number of target machine words necessary to contain
the value.

If a preset entry is of the form CORAD«addressable name», the
indicated pre-settable name must be integer type or fixed-point
type with zero fractional bits and at least 16 magnitude bits;
the value is right-justified in the word.

If a preset entry consists of a numeric constant value and a
CORAD value, the values of each are right-justified in their
respective half-words. The numeric preset value must be no
longer than 16 bits.

Examples

VRBl TAC I 32 S $
TAC DATA 77 $

The whole word located at the address allocated to TAC has an in
itial preset value of 77.

TABLE DICT V 3 1 $
END-TABLE DICT $
DICT DATA -64 $

DATA 7 0 $
DATA 11 , 5 $

The first word of the table DICT has an initial value of -64.
The second word has an initial value of 7 in the upper half and 0
in the lower half. This third word of the table has an initial
preset value of 11 scaled 5.

VRBl HOlVB H 6 $
HOlVB DATA H(TWOWDS) $

This statement will preset two words beginning at the location
allocated to HOlVB with the characters TWOWDS (left-justified
with two trailing blanKs).

4-61

VRBL XX I 16 5 $
VRBL ZZ A 32 5 6 $
TABLE TABA V 2 1 $
END-TABLE TASA $
I W EQIJALS 0 (100000) $
TABA DATA IW CORAD(ZZ) $

DATA CORAD(XX) $

The first word of data unit TASA will have the octal value 100000
in the upper half-word and the 16-bit address of ZZ in the lower
half-word. The second word of TABA will have a in the upper.
half-wQrd and the 16-bit address of XX in the lower half-word.

Implementation Note

Only the upper or lower half of a target machine word, and not
both, may be preset to a CORAD value.

4-62

I'

4.11 Overlay Declaration

Syntax

<overlay declaration>

I(U) CM2Y-MAN-PGR-M5049-R04CO

- <overlay parent> OVERLAY <overlay sibling>@ $

<overlay parent>
- <variable name>

::= <table name>

<overlay sibling)
.. - <variable name>

- <table name>
- <numeric constant expression>

Semantics

An overlay declaJ:;~t',ion~, indi~a~es ,that certain variables and ta
b les are to b~~']!J~fa:~ed in such a manner that they share memory.

< .. ;;,.······.'1·';' .,', ',":'~lt:t;\'~~~\·· ;;, -".', .. "., , r .. ,'.' .. ·h·:'.' .. ·e·., .. ,',';,.,i> in' "" .. 1.""'" ,m.\'",·o.·.·".,.',. ",' 0, fa".,. v,.ar " ab,l e .or t ab ... 1 .. e whose O¥'rD '. elY,. ,'p~;~,:):®~\~,<r .', ' ,! w, ,~r~1iJio.
, :'0 ,';:(}";~:,::, b,~(~':s.~{:;,~'r:~:'~' t<j).be ovet',' aid with the overlay

OVERLAY

sib 1 i ngs.

- A l~ng~age Keyword indicating an overlay
declaration.

<overlay sibling> - A numeric constant expression or the
name.of a variable or table that is to
be, allocated in such a manner that it
occupies some or all of the bits of the
over lay paren t .

In allocating the overJay siblings, the overlay parent is consid
ered to be a string of,bits, without regard for its structure.
The first overlay sibling is allocated so that its leftmost bit
is the leftmost bit of the overlay parent, the second overlay
sibling is allocated so that its leftmost bit is the first bit to
the right of the rightmost bit 'of the first overlay sibling, etc.
In general, each overlay sibling other than the first is allocat
ed so that its leftmost bit is immediately to the right of the
rightmost bit of the previous overlay sibling. No sibling of
character type can be positioned such that any character crosses
a word boundary.

If an overlay sibling is a numeric constant expression, its value
must be a nonnegative integer. Such a sibling is interpreted as
an unnamed variable whose length is given by the value. Thus the
effect is as if the allocation process sKips the number of bits
specified by the value.

4-63

/(U) CM2Y-MAN-PGR-M5049-RD4CO

Any overlay sibling that is a table must be allocated on a target
me~hine word boundary.

An overlay sibling whose length is no greater than 32 bits may
not cross a target machine word bounOary.

An overlay sibling that is a mu1tiword data unit must be allocat
ed on a target machine word boundary.

A table declared by means of a subtable declaration may not ap
pear as an overlay sibling.

The overlay parent must be long enough to contain all of the bits
of all of the overlay siblings after allocation.

The allocation declarations for the overlay parent and all the
overlay siblings must appear in the same data block before the
OVERLAY declaration. The overlay parent's scope must contain or
be the same as the scope of all the overlay siblings.

A variable name or a table name may appear as an overlay sibling
only once in a data block. There is no limit on the number of
times a name m.ay appear as an over 1 ay paren t .

If a variable name or table name appears as both an overlay par
ent and an overlay sibling, its appearance as a sibling must pre
cede all of its appearances as a parent.

A variable or table whose name appears as an overlay sibling may
not be allocated by means of an address declaration. An indirect
table cannot be either an overlay parent or an overlay sibling.

Examples

VRBL 17S I 7 S $
VRBL A12U3 A 12 U 3 $
VRBL 12U I 2 U $
VRBL OVLY I 28 S $
OVLY OVERLAY I7S,A12U3,7,12U $

The 28-bit variable OVLY will be overlaid from left to right as
fo 11 ows :

I I
I I

OVLY 17S A12U3 I I 2U:
I I --- ________ -=--~ __ I_I

7 b ~ : s

4-64

VRBL H3 H 3 $
VRBL BOL B $
OVLY OVERLAY H3,2,BOL $

/(U) CM2Y-MAN-PGR-M5049-R04CO

The same 28-bit variable OVLY will again be overlaid as follows:

I I B I I
OVLY H3 I 10: I

I I L I I ________________________ ~I--I_I_I

2 bi ts

Note that the sum of the bits needed for the overlay siblings may
be less than the total number of bits allocated to the parent.

VRBL A30518 A 30 5 18 $
VRBL I 125 1 12 5 $
VRBL A18U18 A 18 U 18 $
A30S18 OVERLAY 1125, A18U18 $

This overlay declaration will allow the A30518 data unit to be
referenced b~ its integer and fractional parts through the over
lay siblings 1125 and A18U18.

A30518 I 125 A18U18

VRBL CARD H 80 $
VRBL COL1T08 H 8 "CARD COLUMN5 1 THRU 8" $
VRBL COL13 H 1 "CARD COLUMN 13" $
CARD OVERLAY COL1T08, 32, COL13 $

The use of 32 is necessary to achieve the desired overlay struc
ture in this example.

Note

An overlay declaration is syntactically identical to a field
overlay declaration.

4-65

/(U) CM2Y-MAN-PGR-M5049-R04CO

4 . 1 2 T ex t Sub s tit uti oh Qgc 1 a: rat i on

Syntax

<substitution declaration>
::= <string name> <s~bstitution ~ype> <simple string> $

<substitution type>
::= MEANS
::= EXCHANGE

<string name>
: :'= <name>

Semantics

A text substitution declaration assigns a name to a string of
characters. Subsequent appearances of the name are replaced by
the character strf~g~

<s t ring name'}

MEANS

EXCHANGE

..; The name' that is to be replaced by the
, ("onar'a,~t&rs t ring.

" OtUy}:t:it,{)~lj I',' ...' "
{AqJ a""~I~x:;t<eYWo,rd'ind i ca·t 'ing ,'anef.fact i ve
tax t sUi:;)s tit uti on dec 1 ar a t ion.

- A language keyword indicating an actual
text substitution declaration.

<simple string> - The character string that is to replace
the string name.

The substitution type EXCHANGE specifies that the simple string
is to be substituted for all occurrences of the string name, and
the result of the substitution is to appear on anyprogra~ 11st
i ngs and source output f i las p'r6dtil:eetj',dur i n,g the camp i 1 a t ion.

The subst i tut ion type ME'AN$ $Jbe'o'(fuas that the simple string is
to be effectively substituted for all occurrences of the string
name, bu t the resu It,:,Ql\·;th9:';stllbslii tut io'" is not to appear on any
program 1 is t i ngs or source output files produced dur i'ng , the com
pi 1 at ion.

The string name will not be replaced by the simple string in oc
currences that appear before the text substitution de6laration,
in COMMENT statements, or in notes.

The simple string may not cohtiin a strihg name.

The simple string may consist of any characters other than the
dollar sign. If the substitution type keyword is terminated by a

4-66

I(U) CM2Y-MAN-PGR-M5049-R04CO

blanK character, the simple string begins with the character fol
lowing that blank. Otherwise, the Keyword must be terminated by
a delimiter, and the simple string begins with that delimiter.
The simple string includes all characters up to (but not includ
ing) the statement terminator ($), a.nd may be empty.

The string name may be a reserved word.

Examples

ATTR MEANS A 27 S 10 $

The simple string begins with the first character following the
space after MEANS, and ends with the' last character before the $.

COEFF MEANS (XX/2) + YY$

The character string begins with the left parenthesis and ends
with YY.

The fo 11 ow i ng statements illustrate the use of the above exam-
ples:

S ta temen"t : VRBL NAME ATTR $
Effect: VRBL NAME A 27 S 10 $

Statement: SET FIXPT TO ZZ + COEFF $
E f fec t : SET FIXPT TO ZZ + (XX/2) + YY $

The comp i 1 er listings and source 1 is t i ngs will not show the
change.

CNT EXCHANGE CNTR $

All references to the name CNT wi 11 be compiled as references to
the name CNTR. Any source output and listings will reflect this
name change. CNT is a reserved word denoting an intrinsic func
tion. Any references to that function within the scope of this

'"su~stitution declaration will also be affected by the change.

Note

The string name may not be redec1ared in a nested scope. When
the string name appears 1n a nested scope, it is ,replaced by the
associated simple string.

4-67

4.13 COmbi lS-TimQ CO'nstant Declaration

Syntax

<compile-time constant dec1aration>
::= <ntag declaration>
::= <rtag declaration>

<ntag declaration>
::= <ntag name> EQUALS <ntag expression> $

(ntag I}ame>
::= <name>

<ntag expression>
- <ntag expression> <numeric operator> <ntag primary>
- «unary numeric operator>] <ntag primary>

<numeric operator>
.. - <additive operator>
· . = '"
· . - I · .-

: : = + · . - -· .-
(ntag primary>

::= <numeric constant>
::= <ntag name>

<rtag declaration>
::= <rtag name> EQUALS <rtag expression> $

<rtag name>
: : = <n;ame>

<rtagexpr~ssion>
.. - <rtag expression> <numeric operator> <ntag primary>

- <iitagexpression> <numeric operator> <rtag name>
- <rtag expression> <numeric operator> <rtag name>

.. - <atag expression> - <addressable name>

.. - [<unary numeric operator>] <rtag name>

<atag expression>
- <ntag expression> + <addressable name>
- <rtag expression> + <addressable name>
- <atag expression> <additive operator> <ntag primary>
- <atag expression> <additive operator> <rtag name>
- <addressable name>

4-68

/(U) CM2Y-MAN-PGR-M5049-R04CO

Semantics

A compi le-time constant declaration assigns a name to a numeric
constant. There are two kinds of compile-time constants: ntags
(numeric tags), which are pure -numeric constants, and rtags
(relative tags), which are numeric constants that depend on the
relative addresses of one or more pairs of addressable names.

<ntag name> - A name being declared as an ntag.

<rtag name> - A name being declared as an rtag.

EQUALS - A language keyword indicating a
compile-time constant declaration,
load-time constant declaration, or an
address declaration.

<ntag expression> An expression that defines an ntag.

<rtag expression> An expression that defines an rtag.

<atag expression> An expression whose value is an offset
to the address of an addressable name.

<numeric operator> - An operator indicating one of the nu
meric operations of addition, subtrac
tion, multiplication, division, or ex
ponentiation (paragraph 5.3.1).

<additive operator> - An operator indicating one of the nu
meric operations of addition- or sub
traction (paragraph 5.3.1).

Expressions that appear in a compile-time constant declaration
must be parenthesis-free, and are interpreted from left to right
(all operators have equal precedence). The expressions are eval
uated using the rules for constant arithmetic (paragraph 5.3.1).

An atag expression must have a nonnegative integer val~e.

The value of an addressable name, when used in an rtag expression
or an atag expression, is the target machinesy-address assigned
to the name.

An ntag name may be used as a primary in any numeric expression.
An rtag Game may be used as a primary in any numeric expression
other than a numeric constant expression.

4-69

/(U) CM2Y-MAN-POR-M5049~R04CO

The allocation declarations of all addressable names in the
compile-time constant declaration must appear in the same system
element as the compile-time constant declaration.

When an rtag is formed by subtracting an addressable name from an
atag expression, the name and the expression must have the same
allocation attributes. The allocation attributes of an addressa
ble name and an atag expression are determined by recursively ap
plying the following definitions:

a. The allocation attributes of an addressable name are the
system element in which its allocation declaration ap
pears and the type of the data blOCK in which the name
is a 11 oca ted.

b. The allocation attributes of an atag expression formed
by adding an addressable name to an ntag expression or
an rtag expression are the allocation attributes of the
addressable name.

c. The allocation attributes of an atag expression formed
by combining an atag expression and an ntag primary or
an r'fag name using an addi t ive operator are the a lloca
tion--attributes of the atag expression.

Examples

VRBL ALO I 8 S $
VRBL AL1 I 7 U $
TABLE TMED V MEDIUM 5 $

FIELD ---
FIELD --- $

END-TABLE TMED $
VRBL. AL2 A 15 S 3 $

NT1 EQUALS 4 $

NT1 is an ntag of value 4.

NT2 EQUALS NT1 + 3 $

The value of the ntag NT2(7) is derived from the value of NT1.

NT3 EQUALS -NT2 $

Th i s dec lara t ion m'akes use of the unary numer i c opera tor to com
plement the value of NT2, giving -7 for the value of the n~ag
NT3.

4-70

/(U) CM2Y-MAN-PGR-M5049-R04CO

NT4 EQUALS NT1 + NT2 * NT3 $

This is an example of the left-to-right evaluation of an ntag ex
pression. The value of the ntag NT4 is -77 = (4 + 7) x (-7).

RT2 EQUALS TMED - ALO $

RT2 is an rtag made up of an atag expression (TMED) minus an al
locatable name (ALO). The value is the difference between the
two addresses for the allocatable names.

RT3 EQUALS ·RT2 + NT2 $

This illustrates an rtag expression plus an ntag expression.

RT4 EQUALS NT3 * RT2 $
RT5 EQUALS RT3 - RT4 $
RT6 EQUALS -RT5 $
RT7 EQUALS NT1 + 2 + AL2 - AL1 $
RT8 EQUALS RT3 + RT2 + AL2 - AL1 $
RT9 EQUALS RT3 + RT2 + AL2 + RT8 - AL1 $

The six examples listed above illustrate several of the combina
tions of ntag, rtag, and atag expressions that may be used in de
fining an rtag.

Implementation Note

The two types of compile-time constant declarations are syntacti
cally identical to each other and to the address declaration.

4-71

4. 14 Load- Time: V"ar j,:'a:b 1e Dec 1 ar a t ion

Syntax

(ltag declaration>
::= <loadvrbl form>
::= <nitems form>

(1 oadvrb 1 form>
::= LOAD-VRBL (ltag list> (integer type) P <numeric constant

expression) $

(1 tag 1 is t)
: : = < 1 tag name>
::= (<ltag name>@)

(ltag name>
.. - (name)

(integer type>,. '. '.
: : = < i ~ t~~r,/~~~ •. ~. ~Qiec i f:: kqa t. i on>
: : =<6"1 mpJs" l,:",:t1ame>

< nit em'$;:f6~\~>\,:";' fW;~~:;~~:i,~/i!;~t;;~ ; U I 1 ;

::= NITEMS «:lt~g nii~Ei»~'~;'~aGAfs ('ntag expression> .$

Semantics

A load-time variable declaration specifies one or more integer
variables whose values can be changed only at load time.

LOAD-VRBL

(1 tag 1 is t >

<integer type>

P

- A' language keyword indicat
i ng a load- t ime var tab le
declaration.

- The names of the 10ao- time
variables being declared.

- A specification of the type
of .the load- time var i ab las.

-A language keyword indicat
ing that a preset value is
being specified.

(numeric constant expression> - The compile-time value of
the variables being de
clared.

NITEMS

(ltag name>

EQUALS

<ntag expression>

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A language Keyword indicat
ing a load-time variable
declaration.

-. The name of the load-time
variable being declared.

- A language Keyword indicat
ing a compile-time constant
declaration, an address dec-
laration, or a load-time·
variable declaration.

- An expression whose value is
the compile-time value of
the variable being declared.

If an ltag name appears in a numeric expression, its behavior
with respect to the scaling rules is the same as any other varia
ble of the same type; that is, although the value of the ltag is
constant during program execution, the constant scaling rules do
not apply.

If the integer type of a load-time variable form is a simple type
name, it must be the name of a simple integer type.

If no value is specified for an ltag name at load-time, the value
of the ltag name is the value of the numeric constant expression
that appears in its declaration.

The value of the numeric constant expression that appears in an
ltag declaration must be an integer capable of being represented
by the specified type.

The type of a load-time Variable declared using the nitems form
is I 15 U.

Examples

LOAD-VRBL LVI3U I 3 U P 7 $
LOAD-VRBL LVI16S I 16 S P -642 $
LOAD-VRBL (LVI 1, LVI2, LVI3.) I 5 S P 12 $

I~ these examples, LVI3U represents the value 7 and LVI16S the
value -642. The string of ltags LVI1, LVI2, and LVI3 have a
va'ue of 12. They may be changed at load time.

! \,.
L..

NITEMS (LVI) EQUALS 8 $

represents the value 8, unless it is changed at load time.

4-73

I (U l CM'2 Y -MAN ~ P'uR'-M5'04e - R04CO

Implementation Note

An ltag name satisfies the usual CMS-2 scope rules at compilation
time. That is, its scope is global if its declaration appears in
the major header or a system data blocK, its scope is local if
its declaration appears in a minor h~ader or a local data blocK
and its scope is subprogram if it appears in a subprogram data
blocK. However, at load time all ltag names are treated as
having global scope and must therefore be distinct from each
other (they are automatically distinct from all other names
having global scope).

4-74

/(U) CM2Y-MAN-PGR-M5049-R04CO

4,15 Address Declaration

Syntax

<address declarati0n>
"- <allocatable name> EQUALS <atag expression> $

<allocatable name>
,,- <variable name>
,,- <table name>
::= <switch name>
::= <procedure switch name>
: : = < f ; 1 e name>
::= <format name>
,,- <inputlist name>
::= <outputlist name>
::= <stringform name>

Seman tics

An address declaration specifies a target machine address for a
variable, table, switch, procedure switch, file, format, input
list, outpu!list, or stringform. The address specified is an
offset to the"address of some othSr addressable name.

<allocatable name> - The name of the variable, table,
switch, procedure switch, file, format,
inputlist, outputlist, or stringform
whose address ;s being specified.

EQUALS - A language keyword indicating a
compile-time constant de~laration,
load-time constant declaration, or an
address declaration.

<atag expression> An expression whose value is the ad-
dress assigned to the allocatable name~

An address declaration must appear in the same system ~lement as
the allocation declaration of the allocatable name whose address
is being specified.

The address specified for an allocatable name cannot depend on
the address of the allocatable name in any fashion.

An allocatable name whose address is specified by means of an ad
dress declaration cannot appear as an overlay sibling (paragraph
4, 11) .

The address of a table specified by means of a subtable declara
tion may not be specified by means of an address declaration.

4-75

Examples

TABSIZ EQUALS 100 $
TABLE TAB V 4 TABSIZ $

ITEM-AREA FIRST, LAST $
END-TABLE TAB $
FIRST EQUALS TAB $
LAST EQUALS TABSIZ-1*4+TAB $

Item-areas FIRST and LAST are allocated over the first and last
items of table TAB. The number of items in table TAB is defined
by the ntag name TABSIZ. Note the left-to-right evaluation of
the second allocation declaration. A more obvious statement

LAST EQUALS TAB + TABSIZ*4-4 $

erroneously attempts to produce the same result. This tag ex-
pression is equivalent to the parenthesized formula

((TAB+TABSIZ)*4)-4.

This formula not only yields an undesired result, it would also
be flagged as erroneou$ by the compiler because of the attempted
multiplication-involvihg an atag expression.

Note

Address declarations and compile-time constant declarations are
syntactically identical.

Implementation Note

No memory is reserved by the compiler for an allocatable name
whose address is specified in an address declaration.

4-76

\

4.16 System Index Declaration

Syntax

<syst~m index declaration>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= SYS-INDEX <system index specification>~ $

<system index specification>
::= <register number> <system index name>

<system index name>
::= <name>

Semantics

A system index declaration specifies the names of integer varia
bles whose values are to~be held in target machine 8 registers
during execution of the program.

SYS-INDEX - A language keyword indicating
a system index declaration.

, .'. . i.:' ;,K!U:t:,~':, "
< sY$:'t;erri, i ng~l~y\$peCi fica ti on> "'~ The naqle of a sY$ t emi ndex ,
, .. ' ",' ., preceded by a reg is ter num-

(register number>

<system index name>

A system index is of type I 16 U.

'bar.

A numeric constant expression
specifying a target machine· 8
register that is to hold the
value of the corresponding
system index.

- The name of a system index
being declared.

The value of the register number expression must be an. integer in
the range [', 5] .

A given index register number may appear in only one system index
spec i fica t ; on .'

Example

SYS-INDEX 1 XX, 2 YY, 3 ZZ $

The names XX, YY, and ZZ specify target machine hardware regis
ters 81, 82, and 83, respectively.

4-77

4. 1 7 L oca 1. 1 nde>.< Oec 1 a rat i on

Syntax

<local index declaration>
::= LOC-INDEX <local index name>' $

<local index name>
::= <name>

Semantics

A local index declaration specifies the names of integer varia
bles whose values are to be held in target machine B registers
during execution of a subprogram.

LOC-INDEX - A language keyword indicating a local
index declaration.

<local index name> - The name of a local index being de
clared.

A local index is of type I 16 U.

Any number of local indexes may be declared in a subprogram. If .
the number of target machine B registers available to hold local \
index values is less than the number of local index names, the
extra local indexes will be assigned to memory locations.

Examples

PROCEDURE EXAMPLE $
LOC-INDEX J,IND $

J and IND will be the names of local indexes for the duration of
procedure EXAMPLE.

4-78

4.18 Procedure Declaration

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<procedu~e declaration> .
::= ~<declaration modifier>] PROCEDURE <procedure name>

[<formal procedure parameters>] $

<procedure name>
::= <;)ame>

<formal p~ocedure parameters>
::= <formal i/o parameters> [EXIT <formal exit parameter>@]

<formal i/o parameters>
: : = ~ INPUT < forma 1 i npu t parameter >@] [OUTPUT -< forma 1 ou tpu t

parameter>@1

<formal input parameter>
.. - <variable name>
.. - <table name>
::= <system index name>
::= <co~e address receptacle>

<formal output parameter>
::= <variable name>
::= <table name>
::= <system index name>

<formal exit parameter>
::= <name>

Semantics

A procecu~e declaration specifies the name of a user' procedure
and its formal parameters.

<declaration modifier>

PROC~DURE

<procedure name>

INPl...-

- Optional. Refer to declaration
modifier definition.

- A language keyword indicating a
· procedure declaration.

- The name of the .procedure being
declared.

- Optional. A language keyword
indicating that one or more for
mal input parameters is being
specified.

4-79

<formal input parameter>

OUTPUT

- Specification of a variable, ta-
ble, system index, or table sur
rogate whose value is to be
replaced by the value of the
corresponding actual input pa
rameter at procedure invocation
(paragraph 6.1.1.6).

- Optional. A language keyword
indicating that one or more for
mal output parameters is being.
specified.

<formal output parameter> - Specification of a variable, ta
ble, or system index whose value
is to be transmitted to the cal
ling procedure at the end of
procedure execution (paragraph
6.1.1.6).

EXIT

<formal exit parameter>

- Optional. A language keyword
indicating that one or more for
mal exit parameters is being
specified.

- Specification of a name that can
be used in a procedure return
phrase.

If the optional declaration modifier is omitted or ;s (EXTDEF),
the procedure declaration may only appear at the beginning of a
procedure block.

If the (EXTREF) or (TRANSREF) allocation modifier appears 1 the
declaration may appear in either a system data block or a local
data block. If the (LOCREF) allocation ·modifier appears, - the
declaration may only appear in a local data block.

A name used as a formal input parameter or a formal output param
eter must be known in a scope that contains the scope of the pro
cedure name. That is, if a procedure name has global scope, the
formal input parameters and formal output parameters must have
global scope.

Formal exit parameters have subprogram scope.

A procedure declaration may contain a maximum of 25 formal input
param~ter$, 25 fo~mal output.parameters, and 10 formal exit pa
rameters.

4-80

/(U) CM2Y-MAN-PGR-MS049-R04CO

Examples

(EXTDEF) PROCEDURE ERROR $

. ERROR is defined as a global procedure. It has no formal parame
ters.

PROCEDURE TEST INPUT V1,V2 OUTPUT V3 $

TEST is defined as a local procedure. It has two formal input
parameters, V1 and V2, which will contain input values when th~
first statement of the procedure is executed. The contents of
the formal output parameter V3 will be transferred to the actual
output parameter on return from the procedure.

PROCEDURE ALPHA EXIT KHI, PSI, OMEGA $

Procedure ALPHA has four exit pOints, only one of which returns
control to the statement following the call to ALPHA. The other
three exit points--KHI, PSI, and OMEGA--return control to state
ment labels identified in the procedure call statement within the
calling subprogram (paragraph 6.1.1.6).

4-81

/ (U) CM2'Y -M;AN- PGR"'M5049- R04CO

4.19 Executive Procedure Declaration

Syntax

<executive procedure declaration) .
::= [<declaration modifier)] EXEC-PROC <procedure name)

[INPUT <formal input parameter)@] $

Semantics

An executive procedure declaration specifies the name and formal·
input . parameters of an executive procedure, which is a procedure
that executes in the target machine task state but is called from
the executive state.

<declaration modifier)

EXEC-PROC

<procedure name)

INPUT

- Optional. Refer to the declara
tion modifier definition.

- A language keyword indicating an
executive procedure declaration.

- The name of the executive proce
dure being declared.

- Optional. Language keyword indi
cating that one or more formal
input parameters is being speci
fied.

<formal input parameter) - Specification of a variable, ta-
ble, table surrogate, or system
index whose value is to be
replaced by the value of the c6r
responding actual input parameter
prior to the executive state pro
gram calling the procedure.

A name used as a formal input parameter or a formal output param
eter must be known in a scope that contains the scope of the pro
cedure name. That is, if a procedure name has global scope, the
formal input parameters must have global scope.

Executive procedure linkage is the responsibi lity of the program
mer, since no return linkage is generated at either the entry
point or the exit p~int.

A procedure declaration may contain a maximum of 25 formal input
parameters, 25 formal output parameters, and 10 formal exit pa
rameters.

4-82

I'

/(U) CM2Y-MAN-PGR-MS049-R04CO

Examples

EXEC-PROC EXPROC1 $
EXEC-DROC EXP2 INPUT VI10S,A12S3,ITEMA1 $

These statements declare the beginning of executive procedure
bloCKS named EXPROC1 and EXP2. EXP2 has three formal inputs.

Note

An executive program is defined as a program that performs execu-.
tive func:ions; It probably executes in the executive state.
However, an executive procedure is a user procedure, which there
fore executes in the task state.

,!, .

4-83

/(U) CM2':'-MAN-PGR-MS049-R04CO

4.20 Function Declaration

Syntax

<function declaration>
::= [<declaration modifier>] FUNCTION <function name>

([<formal input parameter>@]) [<function type>] $

<funct ion name>
::= <name>

<funct ion type>
: ': = < type>

Semantics

A funct i on dec 1 ara t i on spec if i es the name of a funct ion, its for
mal input parameters, and, optionally, the type of the value it
returns.

<declaration modifier>

FUNCTION·

<funct ion name>

- Optional. Refer to the declara-
tion modifier definition.

- A language keyword indicating a
function declaration.

- The name of the function being
declared.

<formal input parameter> - Optional. Specification of a

< func t i on type>

variable, table,' table surrogate,
or system index whose value is to
be replaced by the value of the
corresponding actual input param
eter when the function is evalu
ated (paragraph 5.2).

- Optional. The type of the value
returned by tHe function.

If the optional declaration modifier is o~itted or is (EXTDEF),
the function declaration may only appear at the beginning of a
function block.

The function type cannot be an untyped structure. If the func
tion type is a typed structura, the function value has the attri
butes of the associated simple type.

4'-84

/(U) CM2Y-MAN-PGR-M5049-R04CO

If the IEXTREF) or (TRANSREF) allocation modifier appears, the
declaration may appear in either a system data b10ck or a local
data block. If the (LOCREF) allocation modifier appears, the
declaration may only appear in a local data block.

A name used as formal input parameter must be known in a scope
that contains the scope of the function name.

A function declaration may contain a maximum of 25 formal input
parameters .

.. I f the opt iona 1 .funct ion type is omi t ted, the type of the func
tion being declared is the default type for variables in effect
at the time of the function declaration (paragraph 4.5). The de
fault preset value for variables in effect at the time of the
function declaration, if any, has no effect on the declaration.

Examples

FUNCTION FUN (A1) A 12 S 5 $

In this example FUN is defined as a function with one formal in
put paramete~, A1, and an output value type of A 12 S 5.

TYPE FTYPE F $

FUNCTION LESSER (VB1,VB2) FTYPE $

In this example LESSER has two inputs and its floating point type
is $pecified using a type declaration.

TYPE 112U I 12 U $

FUNCTION RANDOM () I12U $

rn this example RANDOM has no inputs and its type is specified
using a type declaration.

4-85

/

/ (U) CM2 Y - MA-N ~ PG« ~.O#t ... ·R04CO

Semantics

A label switch block specifies one or two label switches and the
names of the statements to which control is transferred when a
switch branch phrase of the appropriate type is executed.

4-86

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.21.1 Indexed Label Switch Declaration

Syntax

<indexed label switch block>
::= <label switch declaration>· <label switch point>&

<end-switch declaration>

<label switch declaration>
::= SWITCH <label switch name> $

<label switch name>
::= <name>

<label switch point>
::= [SJ <statement name> $

<end-switch declaration>
::= END-SWITCH <label switch name> $

Semant ics

An indexed label switch block specifies the name of an indexed
label switch~and the names of the statements to which control is
transferred when a corresponding indexed branch phrase is execu
ted.

SWITCH - A language keyword indicating a label
switch declaration.

<label switch name> - The name of the indexed label switch
being declared.

<switch point>

END-SWITCH

- The name of a statement (Section 6),
optionally preceded by S, to which
control is to be transferred by-use of
an indexed branch phrase. .

- A language keyword indicating the end
6f a label switch block or-a procedure
switch block.

The label switch name that appears on the end-switch declaration
must be the same as the label switch name that appears on the
label switch declaration.

An indexed label switch block can appear in a local data block or
a subprogram d~ta block.· The statement names declared in the
block must be the names of statements in the system procedure
containing the block.

4-87

/(U) CM2Y-M~N-PGR-MS049-R04CO

There is no limit on the number of switch points in an indexed
label switch blocK.

Examples

The following example illustrates an- indexed switch block named
CHOICE. The indexed switch defined by this block has three
switch points (names defined by labels in the subsequent proce
dure) .

LaC-DO $
SWITCH CHOICE $
. ALPHA $

BETA $
GAMMA $

END-SWITCH CHOICE $
END-LOC-DD $
PROCEDURE SAMPLE $

GAMMA.

ALPHA.

BETA.

4-88

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.21.2 Double Label SWitch Declaration

Syntax

<double label switch blocK>
::= <double label switch declaration> <double switch point>&

<end double switch declaration>

<double label switch declaration>
::= SWITCH <label switch name>, <label switch name> $

<double switch point>
::= [5] <statement name> [, <statement name>] $

<end double switch declaration>
::= END-SWITCH <label switch name>, <label switch name> $

Semantics

A double label switch declaration specifies two indexed label
switches simultaneously.

SWITCH

<label switch name>

- A language keyword indicating
label switch declaration.

a

- The name of one of the indexed label
switches being specified.

<double switch point) - An optional 5, followed by one or
two statement names, which specify
switch pOints of the indexed label
switch blocks being specified.

END-SWITCH - A language Keyword indicating the
end of a label switch blocK or a
procedure switch blocK.

The label switch names in the double label switch declaration are
the names of the indexed label switches being declared.

The first statement name in each double switch point is a label
switch point of the first indexed label switch named in the
double label switch declaration. The second statement name in
each double switch pOint, if present, is a label switch paint of
the second indexed label switch named in the double label switch
declaration.

If one of the indexed label switches being declared has more
switch pOints than the other, it must be the first named switch.
The double switch pOints that contain two statement names must be
the first double switch points of the double label switch block.

4-89

I(U) CM2Y-MAN-PGR-M5049-R04CO

The indexed label switch names that appear on the end double
switch declaration mest be the same switch names that appear on
the double label switch declaration, and must appear in the same
order.

A double label switch block 'can appear in a local data block or a
subprog~am data block. The statement names declared in the block
must be the names of statements in the system procedure ,contain
ing the block.

There is no limit on the number of switch points in a double
label switch block.

Examples

SWITCH DOLOOP, SEARCH $
LOOP5, SHORT $
AGAIN, LONG $
DONE $

END-SWITCH DOLOOP, SEARCH $

SWitch DOLOOP has three switch points; switch SEARCH has two
switch points;

4-90

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.21.3 Item Label Switch Declaration

Syntax

<item label switch block>
::= <item label switch declaration> <item label switch

point>& <end-switch declaration>

<item label switch declaration>
::= SWITCH <item label switch name> «switch selector» $

<item label switch name>
::= <name>

<switch selector>
::= <variable name>

<item label switch point>
::= <switch value>. <statement name> $

<switch value>
::= <numeric constant expression>
::= <con$tant>

Semantics

An item label switch block specifies the name of an item label
switch, the name of a variable whose value gov~rns the setting of
the switch, and the names of statements to which control is
transferred when a corresponding item branch phrase is executed.

SWITCH -.A language keyword indicating a
label switch declaration.

<item label switch name> - The name of the item label switch
being declared.

<switch selector>

<switch value>

- The name of a variable whose
value at the time of execution of
a corresponding item branch
phrase specifies the statement to
be executed.

- A value to be cpmpared to the
value of the switch selector at
the time of execution of a corre
sponding item branch phrase.

4-91

<s ta tement n.arne>

END-SWITCH

- The name of a statement
6) to which control
transferred by use of
branch phrase.

(Sect ion
is to be
an item

- A language keyword indicating the
end of a label switch block or a
procedure switch block.

The item switch name that appears on the end-switch declaration
mus t be the same as the sw itch name tha t appears on the item.
sw itch. dec 1 arat ion.

A switch selector must be of a simple type. The switch values
must be of the same mode as the switch selector .

. An item sw i tchb lock can appear ina loca 1 da ta b lock or ina
subprogram data block. The statement names declared in the block
must be the names of statements in the system procedure contain-
ing the block.

There is no 11·m 1 t ,on the ntJmber of sw itch po in t sin an item
s wit ch block.

Examples

VRBL FINISH -H 4 $
SWITCH SWOFF (FINISH) $

H(END), ELEMENT $
H(STOP), UNCOND $
H (TE RM), DONE $

END-SWITCH SWOfF $

This declaration defines item switch SWOFF with switch pOints EL
EMENT, UNCOND and DONE. A reference to switch SWOFF will trans
fer con t ro 1 to one of these sw itch po i n t S,' depend i ng upon the
value of the variable FINISH. If, for example, the value of FIN
ISH ;s H(TERM), control w;ll transfer to the statement named
DONE.

4-92

4.22 Procedure Switch Declarations

Syntax

<procedure switch block>

/(U) CM2Y-MAN-PGR-M5049-R04CO

.. - <indexed procedure switch blocK>
::= <double procedure switch block>
::= <item procedure switch blocK>

Semantics

A procedure switch block specifies one or two procedure switches,
which are groups of user procedure names, and common formal
input-output parameters for them. One of the procedures is in
voked by the execution of a procedure switch call of the appro
priate type.

The appearance of a name in a procedure switch point within a
procedure switch block constitutes an attribute declaration of a
procedure having the common formal input-output parameters as its
formal procedure parameters. If the name has not been declared
previously in the system block, the scope of the procedure name
depends on the scope of the switch name: If the switch name is
global the procedure name is global; otherwise the procedure name
is local to the system procedure in which the procedure switch is
declared. If the procedure name has been declared previously,
its scope must contain the scope of the procedure switch name.
Thus a procedure name having global scope may be a procedure
switch point in a procedure switch having local scope, but not
vice versa.

4-93

/ (U) CM2 Y - MAN· P'GR --MSU49- RO 4CO

4.22.1 Indexed Procedure Switch Declaration

Syntax

<indexed procedure switch block>
.. - <indexed procedure switch declaration> <indexed

procedure switch p01nt>& <end-procedure-switch
declaration>

<indexed procedure switch declaration>
.. - [<scope modifier>] P-SWITCH <indexed procedure switch

name> [<formal i/o parameters>] $

<indexed procedure switch name>
.. - <name>

<indexed procedure switch point>
.. - [P] <procedure name> $

<end-procedure-switch declaration>
::= END-SWITCH <indexed procedure switch name> $
::= END-P-SW <indexed procedure switch name> $

Semant i cs

An indexed procedure switch block specifies the name of an
indexed procedure switch, the names of user procedures that are
invoked when a corresponding indexed procedure call phrase is ex
ecuted, and the formal input and output parameters of those pro
cedures.

<scope modifier>

P-SWITCH

<indexed procedDre switch name>

<formal i/o parameters>

4-94

- Optional. Refer to the
scope modifier defini
tion (paragraph 4.1).

- A language keyword indi-
cating a procedure
switch declaration.

- The name of the indexed
procedure switch being
declared.

- Optional. A declaration
of the formal input and
output parameters for
the procedures named in
the procedure switch
points.

/(U) CM2Y-MAN-PGR-M5049-R04CO

<lndex~d procedure switch point> - The name of a procedure,
optionally preceded by
P, that is to be invoked
by use of an indexed
procedure call phrase.

END-SWITCH - A language keyword indi-
cating the end of a
label switch bloCK or a
procedure switch block.

END-P-SW - A language keyword indi-
cating the end of a pro
cedure switch block.

The indexed procedure switch name that appears on the end
procedure-switch declaration must be the same as the indexed pro
cedure switch name that appears on the indexed procedure switch
declaration.

There is no limit on the number of procedure switch pOints in a
single procedure switch block.

All the proc~dures declared as procedure switch pOints in a pro
cedure switch block must have the same formal I/O parameters,
which are those specified in the procedure switch declaration.

Examples

P-SWITCH TRIG INPUT ANG,SIDE OUTPUT SOL $
SIN $
COS $
TAN $

END-SWITCH TRIG $

This declaration defines procedure switch TRIG, whose formal in
put parameters are ANG and SIDE, and the formal output paramete~
is SO~. A reference to procedure switch TRIG transfers control
to one of the procedures SIN, COS, or TAN, depending upon an in·
dex value of 0, 1, or 2, respectively, in the proced~re s~itch
ca11. If the definition of TRIG appears in a system data bloCK,
SIN, COS, and-TAN will be defined as global procedures. If TRIG
appears in a local data block, SIN, COS, and TAN will be defined
as local procedures unless the definition of TRIG is preceded by
a global definition of SIN, COS, or TAN. - -

4-95

I (U) CM2Y -MAN PG'R ... M5{}4·9·~R04CO

4.22.2 Doub 1-e Procedur:e S,w itch Dec 1 ara t ion

Syntax

<double procedure switch blocK>
- <double procedure switch declaration> <double procedure

switch point> <end double procedure switch
declaration>

<double procedure switch declaration>
::= [<scope modifier>] P-SWITCH <indexed procedure switch

name>, <indexed procedure switch name> $

<double procedure switch pOint>
::= [P1 <procedure name> [, <procedure name>] $

<end double procedure switch declaration>
::= END-SWITCH <indexed procedure switch name>, <indexed

procedure switch name> $
::= END-P-SW <indexed procedure switch name>, <indexed

procedure switch name> $

Semant ics

A double procedure switch declaration specifies two indexed pro
cedure switches simultaneously.

<scope modifier>

P-SWITCH

- Opt i ona 1 . Refer to the
scope modifier definition
(paragraph 4.1).

- A language Keyword indi
cating a procedure switch
declaration.

<indexed procedure switch name> - The name of one of the in
dexed procedure switches
being specified.

<double procedure switch point> - An optional P, followed by
one or two procedure
names, which specifies
switch pOints of the in
dexed procedure switch
blocks being specified.

END-SWITCH

4-96

- A language keyword indi
cating the end of a label
switch block· or a proce
dure switch block.

END-P-SW

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A language keyword indi
cating the end of a proce
dure switch block.

The procedure switch names in the double procedure switch decla
ration are the names of the double procedure switches being de
clared.

The first procedure name in each double switch point is a proce
dure switch point of the first indexed procedure switch named in
the double procedure switch declaration. The second procedure
name in each double switch point, if present, is a procedure
switch point of the second procedure switch named in the double
procedure switch declaration.

If one of the indexed procedure switches being declared has more
switch paints than the other, it must be the first named switch.
The double switch points that contain two procedure names must be
the first double switch paints of the double procedure switch
block.

The i ndexed proc!!,~:u.r.~ s,wi tch names tha t appear on the end daub 1e
procedure sw itch 'oeerara. t ion' mU$ t be the same sw itch names tha t
appear on the" double procedure switch declaration and must appear
in the same order.

There is no limit on the number of switch points in a double pro
cedure switch block.

Examples

P-SWITCH PLANE, TRAIN $
PROP, PULLMAN $
TURBO, FREIGHT $
JET, DIESEL $
LAG, STEAM $
FOG $

END-SWITCH PLANE, TRAIN $

SWitch PLANE-references five procedures; switch TRAIN references
four.

Note

The procedures declared in a double procedure switch block can
not have formal parameters of any kind.

4-97

4.22.3 Item Procedure Switch Declaration

Syntax

<item procedure switch block>
::= <item procedure switch declaration> <item procedure

switch pOint> <end-procedure-switch declaration>

<item procedure switch declaration>
::= [<scope modifier>] P-SWITCH <item procedure switch name>

«switch selector» [<formal i/o parameters>} $

<item procedure switch name>
::= <name>

<item procedure switch point>
::= <switch value>, <procedure name> $

Seman tics

An item procedure switch block specifies the name of an item pro
cedure switch, the name of a variable whose values govern the
setting of the switch, the names of user procedures that are in
voked when ~ corresponding item procedure call phrase is execu
ted, and the common formal input and output parameters of the
procedures.

<scope modifier>

P-SWITCH

- Optional. Refer to the scope
modifier definition (paragraph
4. 1) .

- A language keyword indicating
a procedure switch declara
t ion.

<item procedure switch name>- The name of the item procedure
switch being declared.

<switch selector>

<formal i/o parameters>

- The name of a variable whose
value at the ttmeof execution
of a corresponding item proce
dure switch call phrase specl
fies the procedure to be in
voked.

- Optional. A declaration of
the formal input and output
parameters for the procedures
named in the procedure switch
points.

4-98

<switch value>

<procedure name>

END-SWITCH

END-P-SW -

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A value to be compared to the
value of the switch selector
at the time of execution of a
corresponding item procedure
~all phrase.

- The name of a procedure to be
invoKed by use of an item pro
cedure call phrase.

- A language Keyword indicating
the end of a label switch
blocK or a procedure switch
block.

- A language Keyword indicating
the end of a procedure switch
block.

The item switch name that appears on the end-procedure-switch
declaration must be the same as the item switch name that appears
on the item procedure switch declaration.

The scope of ~he switch selector must be the same as the scope of
the item procedure switch.

A switch selector must be of a simple type. The switch values
must be of the same mode as the switch selector.

There is no limit on the number of switch pOints in an item pro
cedure switch blocK.

Examples

VRBL ERTYPE S 'N' I 'W I, 'E', l F' $
P-SWITCH ERROR (ERTYPE) OUTPUT MESSAGE $

, E I , ERRORMES $
'W' , WARNMES $
'F' , FATALMES $

END-SWITCH ERROR $

This data structure is an item procedure switch declaration named
ERROR. Three procedures are declared within the block: ERRORMES,
WARNMES, FATALMES. Each produces the formal output MESSAGE.
When the procedure switch is invoked, the current value of the
status type variable ERTYPE is compared to the status constants
'E', 'W', and 'F'; one of the three procedures will be called if
a match is found.

4-99

P-SWITCH LINK (MTYPE) $
o (12) , MT PA $
0(22) , MTPS $
o (32) , MTPC $

END-SWITCH LINK $

Procedure MTPA, MTPS, or MTPC will be invoked when procedure
switch LINK is called, if variable MTYPE matches one of the
sw itch va 1 ues.

4-100

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.23 File Declaration

Syntax

<file declaration>
::= <standard file declaration)
::= <nonstandard file declaration)

<standard fi le declaration>
::= [<scope modifier>] FILE <file name> <fi le specification>

<standard hardware name> [<file status>] $

<nonstandard file declaration>
.. - [<scope modifier>] FILE <file name> <fi le specification>

<nonstandard hardware name> [<fi le status>]
[WITHLBL] $

< file name>
::= <name>

<file specification>
: : = < file type> < r eco r d 1 i mit> < f i 1 est r uc t u r e > < r eco r d

size>

< f i 1 e type>
: : = H
: : = B

<record 1 imi t>
::= <numeric constant expression>

<file structure>
: : = R
: : = V
: : = S

<record size>
::= <numeric constant expression>

<standard hardware name>
.. - PRINT
.. - PUNCH
::= READ
::= OeM

<nonstandard hardware name>
- M:1

::= Mi2
.. - MT3
::= MT4
::= MT5

4-101

/ (U) CM2 Y -Ml'N -l'a~ -'Wl504~ ";'lr04CO

: : = 'MTS
: : = MT7
.. - MT8

- MT9
- MT10
- MT 11
- MT12
- MT13

· . - MT 14
· . - MT 15

- MT 16
· . - PPTR

- PPTP
.. - <installation hardware name>

<installation hardware name>
::= <name>

< f i 1 est a t us >
~:= <status constant>@

Semantics

A file declaration specifies the name by whith the file is refer
enced in the program, the form of the data in the file, the maxi
mum number of records in any subfile, the relation between physi
cal records and logical records, the size of the buffer for the
file, the absence or presence of a header record, and a means for
recognizing various conditions that can occur during input/output
operations.

<scope modifier>

FILE

< f i 1 e name>

< f i 1 e type>

- Optional. Refer to the scope
modifier definition (paragraph
4. 1) .

- A language keyword indicating
a file declaration.

- The na~e by which the fi 1e is
referenced in the program. -,-

- An H or B, ihdicating that the
data of the file consists
entirely of character data or
t hat i tis i n the tar ge t
machine internal encoded form,
respectively.

4-102

< r eco r d 1 i mit>

<file structure>

<record size>

/(U) CM2Y-MAN-PGR-M5049-R04CO

A numeric constant expression
that specifies the maximum
number of records permitted in
any subfi1e of the file.

- An R, V, or 5, indicating that
the file consists of records
having rigid length or varia
ble length, or that the file
has a stream organization, re
spectively.

- A numeric constant expression
that specifies the length of
the buffer associated with the
file.

<nonstandard hardware name> - A specification of the target
machine peripheral device as
sociated with a nonstandard
f i 1 e.

<s tandard hardware (name>'

<fi 1e status>

WITHLBL

PRINT

PUNCH

READ

OCM

- A specification of the target
machine peripheral device as
sociated with a standard file.

- A list of status constants to
be used in testing conditions
that can arise' during an
input/output operation.

- Optional. A language Keyword
indicating that the nonstan
dard file being declared con
tains a header record.

- A language Keyword specifying
the standard hardcopy device.

- A language keyword specifying
the standard output device.

- A language Keyword specifying
the standard i.nput device.

- A language keyword specifying
the operator's terminal (oper
ator communication medium).

4-103

/ (U) CM2 Y - MAN-;- PGR -MS.O.49'- R04CO

A file declaration may appear in a program only if the compiler
option MONITOR has been specified.

Files are classified as standard or nonstandard. The standard
files are the printer, card reader, card punch, and operator com
munication medium. Their names are PRINT, READ, PUNCH, and OeM,
respectively; their names are identical to their standard hard
ware names as used in a standard file declaration. The proper
ties of standard files are predefined and no file declaration is
required for them. The values of the predefinitions are given at
the end of this section.

The p~operties Specified in a standard file declaration will
override the predefined properties for that file.

No properties of nonstandard files are predefined. A fi 1e decla
ration is required for each nonstandard file referenced in a pro
gram.

The file name is the name by which the file is referenced in the
program. The language keywords PRINT, READ, PUNCH, and OeM are
reserved to the predefined standard files. Even when one of the
standard files is redefined by means of a standard file declara
tion, its file name cannot be one of these four keywords.

The file type specifies the basic form of the data in the file.
H signifies that all of the data are in the form of character
strings, which usually means that the data must be converted as
they are transferred between the fi 1e and the program's data
areas. B signifies that the data is in the target machine inter
na 1 form.

The value of the record limit expression must be a nonnegative
integer. It specifies the maximum number of records permitted in
any subfile of the fi 1e. A value of 0 is a convention indicating
that any number is permitted.

The file structure specifies the form of physical records and the
relation between physical and logical records. A fi 1e structure
of R specifies that all· physical records have the same size
(rigid length), specified by the record size. A fi 1e structure
of V specifies that the size of physical records varies (variable
length), depending on the amount of data transferred as the re
cord is created, with the maximum size specified by record size.
A file structure of S specifies that the entire file is to be
treated as a single stream of data (stream organization), with
the length of physical records specified by record size.

For file structures of rigid length and variable length records,
logical records and physical records are identical. For a file
with stream organization, there is no relation between physical

4-104

/(U) CM2Y-MAN-PGR-M5049-R04CO

and logical.records--each logical record begins where the previ
ous one ended in the stream. The value of the record size ex
pression specifies the size of the buffer associated with the
file and is related to the size of the physical records, as de
scribed above. If the file type is.binary, the value of the re
cord size expression is the number of target machine words in the
buffer. If the file type is character, the value of the record
size expression is the number of characters in the buffer.

A record size of 0 is valid only for files with rigid length or
variable length records, provided no formatted input or output is
done with the file. In this case no buffer is used; data are
transferred directly between the file and the program's data
areas.

A nonstandard or standard hardware name is a name by which the
user specifies the hardware device containing the file. The
names MT1 through MT16 (magnetic tape units), PPTR (paper tape
reader), and PPTP (paper tape punch) are common to all CMS-2Y
installations.

An installation hardware name is a name by which a hardware de
vice is referenced at a particular installation. The name must

'be no longer than three characters, and must be defined to the
CMS-2Y monitor prior to execution of a program that~ uses the
name. If the name has not 'been defined to the monitor at the
time the file is opened, the message 'HARDWARE NAME NOT
RECOGNIZED' will be output to the operator and the execution wi~l
be aborted.

A specific hardware name can be present 'in more than one file
declaration, but two files with the same hardware name cannot be
open at the same time.

The optional file status provides a means for testing the various
states which can occur as a result of an input'or output opera
tion. The actual testing is performed using conditional I/O
statements. The status constants of the file status are associ
ated with the values of a control word returned by the CMS-2Y
monitor after any input or output operation. The fir~t constant
is associated with the value 0, the second with the value 1, etc.
The meanings of the values are given in the following table:

4-105

I (U) CM2Y -MAN-P'GR··M5049.-:R04CO

Status Value Meaning

0 Indicates that liD is in progress.

- Indicates that LID has completed normally.

2 - Indicates that a'sentinel (instead of data) , e.g. ,
an end of file (EOF) , has been encountered.

3 - Indicates an unrecoverable hardware error.

4 - Indicates an invalid liD request packet or sequence
of such packets~ (These packets are built and main
tained by the CMS-2Y monitor for standard peripheral
device assignments.)

5 - Indicates :either that there is no more data to be
i npu t ff\om.the,pertphera 1 dev i ce, or that the dev i ce
has i I)'$uf,>fj c ien:tl"Qomforthe requested output.

6 - I"ncli'¢.I~:'e,s t ha tal ega 1 log i ca 1 un i t number has no t
t> •• h.;:'\~:~\iWnftld ;toa ,~'spec i fie 110 dev i oe .

.:. :':, ';;ti:~t~Bi>;):r{f:d;\; \ 1,5 \ ;,,:,

I tis no t necei$sa>r\~/:~,;t,~ ass i grn "$ t a tus cons ta n t s to all 0 f the
s t a tes. If, 'a pap:t~lou:;l a~", .$ t:a t'e is" of no in teres tit can be)
bypassed by not specify';-ng a status constant at its position,
resul t ing in two successive commas in the 1 i·st. A string of
trailing commas can itself be omitted, with the result that the
specified constants are assigned to the lowest values of the
status word and the conditions corresponding to the highest val-
ues are not testable.

The option WITHLBL specifies that the file has been, or is to be,
created with a header record (label). It is not necessary to
specify WITHLBL for existing fjles that have header records, but
it is the programmer's responsibility to bypass the header~ecord
in such a case, and to rea,Jize that the first data record is re
cord 1, not record O.

The fo 1 low i ng table pnesents,>.theef fect of the predef i ned f i 1 e
properties for the standard files:

Standard F i 1 e

CARD READER
CARD PUNCH
PRINTER
OCM

Effective Declaration

FILE READ H 0 R 80 READ $
FILE PUNCH H 0 R 80 PUNCH $
FILE PRINT H 0 R 132 PRINT $
FILE OeM H 0 R 80 OCM $

4-106

I(U) CM2Y-MAN-PGR-M5049-R04CO

Notes

Since all 110 operations are completed in some fashion before the
monitor returns control to the program, the busy condition should
not be detectable.

The optional file status has been omitted in all of the standard
file predefinitions. To test any states for one of these files,
the programmer must include a standard file declaration in the
program with the file status specified.

4-107

I (U) CM2 Y -'MAN---PGR "'M5049 - R04C 0

4.24 Format Declaratl-on

Syntax

<format declaration>
::= [<scope modifier>] FORMAT <format name> <format list> $

<format name>
::= <name>

<format i ist>
::= <format item>@

< forma t item>
- [<item replicator>]<format descriptor>

"- <format positioner>
::= [<item replicator>]<character constant>

- <item replicator>«format list»
. . - [< f o'r-rna tit em >] / [< for mat item>]

<item replicator>
::= <numeric constant value>

<format descrtptor>
.. - I <format specification>

- a <format specification>
- F <format specificati-on>

.. - E <format specification>

.. - A <f ield width>
- L <field width>

<format positioner>
::= <field width> X
::= T <position>

<format specification>
::= <field width> [.<fraction size>]

<field width>
::= <numeric constant value>

<fraction size>
::= <numeric constant value>

<position>
- <numeric constant value>

4-108

/(U) CM2Y-MAN-PGR-M5049-R04CO

Semantics

A format declaration specifies the types of conversions to be
performed when converting data between its internal form and a
character string form.

<scope modifier>

FORMAT

<format name>

<item replicator>

- Optional. Refer to the scope modifi
er definition (paragraph 4.1).

- A language keyword indicating a for
mat declaration.

- The name of the format being de
clared.

- A numeric constant value that speci
fies the number of times that the
following item is to be repeated.

<format descriptor> - A specification of the type of con
version to be performed.

<format positioner> - A specification of the position of
the character string to be considered
next in the conversion process.

<character constant> - A value that is to be transmitted un
changed during the conversion pro
cess.

<field width>

<fraction size>

<position>

- A numeric constant that specifies the
length of the character string to be
used during the conversion process.

- A numeric constant that specifies the
fractional part of a number beirrg
converted.

- A numeric constant that specifies the
next position during a format scan
(pa~agraph 6.1.1.22).

All the numeric constants that can appear in a format
declaration~-the repeat value, field width, f~action· size, and
position--must be integers.

A format 1 ist has the effect of a list of format descriptors,
format positioners, and character constants, separated by commas
and the virgule (I) character. The use of the item replicator
permits a shortened form of such a list to be written in certain

4-109

/ (U) CM2Y""MA'N-P'eR"'M5049-R04CO

cases. A format descriptor preceded by an item replicator has
the same effect as consecutive repetitions of the format descrip
tor, repeated the number of times specified by the item
replicator. A simi lar interpretation is made for a character
constant preceded by an item replicator. A format item consis
ting of a format list enclosed in parentheses and preceded by an
item replicator has the same effect as consecutive repetitions of
the format list (without the parentheses) separated by commas.

An item replicator must be positive.

I f a fie 1 d wid t h , item rep 1 i ca tor, 0 r po sit i on i s w r itt en a s a
string'of digits, it and any preceding letter that maKes up part
of the format item may be written without intervening spaces,
even though a string that has the form of a name might be writ
ten. This juxtaposition of the letter and the number is not pos
sible if the number appears as a compile-time constant, a string
name, or as the letter D or 0 followed by a string of digits en
closed in parentheses.

4.24.1 Interpr,tation of Format Items

When data i sconve·r ted in CMS- 2Y (7) us i rig a format, the conver
sion is either from the target machine internal form into a char
acter string or from a character string into the internal form.
A single datum being converted is converted to or from a sub
string of that string; the substrings are called fields.

The positions of the fields within the character string are con
trolled by a pOinter, called the conversion cursor. The conver
sion cursor always pOints to the leftmost character of the field.
The positions of the master character string are numbered from
left to right, beginning with zero. At the beginning of a con
version process, the conversion cursor is positioned at the first
character of the master character string.

The conversion cursor.must always point to a character 'position
within the master character string.

4.24.1.1 Format Descriptors

Each format descriptor contains a field width expression. The
value of this expression is the number of characters in the field
that participates in the conversion controlled by the descriptor.
The value must be positive. After the conversion is performed,
the conversion cursor is updated to point one position to the
right of the rightmost character of the field.

4-110

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.24.1.2 Numeric Conversion (I, 0, F, and E Types)

Conversion of numeric data is controlled by the 1, 0, F, and E
format descriptors. Their effects are summarized in the follow
ing table. where w represents the fi.eld width and d represents
the fraction size part of the format specification:

Format
Descriptor

Iw[.dl
Ow [. d]
Fw [. d]
Ew [. d]

Internal Form

Fixed-point binary
Fixed-point binary
Floating-point binary
Floating-point binary

Character String Form

Fixed-point decimal
Fixed-point octal
Fixed-point decimal
Floating-point decimal

The three character string forms are similar to the corresponding
source program constants. They are defined by:

<fixed-point deCimal string>
::= [<unary numeric operator>] <decimal mantissa>

<fixed-point octal string>
::= J<unary numeric operator>1 <octal mantissa>

<floating-point decimal string>
::= <fixed-point decimal string> E [<unary numeric

operator> <decimal digit> [<decimal digit>]]

The character string forms differ from the source program con
stants in that the strings may begin with a plus or minus sign.
The minus sign is necessary to indicat~ a negative value, but a
plus sign is optional. Except for the optional sign, "a fixed
pOint decimal string is the same as a decimal number without a
deCimal exponent, and a fixed-point octal string is the same as
an octal number without the octal exponent. A floating-point
decimal string is the same as a decimal number with a decimal ex
ponent except for the following:

a. The string can be preceded by a sign.

b. The string's exponent can be indicated by the letter E
alone.

c. If the exponent is indicated by a decimal integer, it
must be one or two digits preceded by a plus· or minus
sign (i .e., the sign in the exponent is not optional).

4-111

The fraction size part of the format specification specifies the
number of digits to the right of the radix point in the fixed
point decimal string or the fixed-point octal string. For E type
conversion, the characters of the exponent have no effect on the
fraction size. If the fraction size is omitted, the effect is
the same as if d=O.

On input, the character string form of the number can have
leading and trailing blanks, which have no effect on the value,
for I type, 0 type, and F type conversions. For E type conver
sion on input, leading blanks are permitted, having no. effect on
the value, but the character string terminates either after w.
characters or after the last nonblank character, whichever occurs
firs t . The one except ion to thi s. ru 1e is the convers i on of the
character string form which ends with E (the exponent is omit
ted); such forms must be-right-justified in a field of w charac
ters.

For any numeric conversion on input, the radix point can be omit
ted, i n wh i ch c~'se it s i fllR 1, i eeL pas i t ion i s spec i f ied by d. I f
the radix po i n ta~~~,:~:rs in tHe' 5t r i-ng its pos i t ion over r ides the
specified value A'~ :d; an explicit radix point can appear at any
va 1 i d pas i t ion,WAi,~~"y.JJ~$ga.f}Q for Q"o . , " ';,~;.>:'.;\~',:,;~~<~ ' .. ~.;'..' J ~ ", :~ . < •• , •• ' :.:'f'

On output, the character string,.forms are right-justified in the
field of w characters. If the'/valt;Je of d specifies less accuracy
in the character string form than in the internal form, the value
is rounded during the conversion process. Negative internal val
ues cause a leading minus sign to be generated, but leading plus
signs are never generated.

For I type, 0 type, and F type conversions a 0 is generated to
the left of the radix point if the value lies between -1 and 1.
For these conversions a radix point is not generated if d=O.

For E type conversion~ii st~~~ard form is generated: the abso
lute value of the fixed'"'pointdecimal string lies in the interval
(0 . 1 , 1), a 0 is genera ted to the' lef t of the dec i rna 1 po in t, and
the decimal integer that specifies the exponent is two digits.

4.24.1.3 Character Cqn,:,ersig" (A and L Tvpes)

Conversion of character data is controlled by the A and L format
descriptors. In the following text, to avoid confusion, external
form will be used in opposition to internal form when referring
to character data ..

The field vJidth,part oJ thEL, forma,! specification, denoted w,
specifies the number of characters in the external form of the
datum. In the following discussion, n denotes the number of
characters in the internal form of the datum.

4-112

/(U) CM2Y-MAN-PGR-M5049-R04CO

For A type conversion on input, if w < n or w = n, the w charac~
ters of tre external form replace the first w characters o· the
internal f~rm: any remaining internal characters are ignored. If
w > n, :he first n characters of the external form replace the
internal ~8~m: the remaining w-n cha.racters of the external form
are ignorec.

For A type conversion on output, if w < n or w = n, the first w
characters of the interna 1 form become the externa 1 form. If w >
n, the external form consists of the n characters of the internal
form paddec with w-n trai ling blanks.

L type con'.:ers ions are s i mil ar to A type, except tha t 1 as t re
places first in describing the effect on the internal form.

4.24.1.4 C~aracter Constant Format Item

The character constant format item stands alone during the scan
of a forma:: it does not specify the conversion of any internal
datum.

Assume that the character constant specifies a string of n char
acters. O~ output, when a character constant format item is en
countered au~ing the scan of a format, the n characters specified
by the constant are generated in a field of width n (as specified
by the con".'ersion cursor) and the conversion cursor is updated to
point to :he first position to the right of the generated field.
On input, the conversion cursor is updated to point n positions
to the right of its position at the time the format item is en
countered. :hus skipping n characters of the input record.

4.24.1.5 =~rmat Positioners

As data is being converted under the control of a format, the
characters of the record are being processed in a 1eft-to-right
manner (paragraph 6.1.1.22.2). The format positioners prQvide a
means of modifying this processing.

A wX format item, where w represents the field width, specifies
.. " tha t the next w characters of the record are to be sk ipped. On

input, the characters in these positions are ignored. On output,
the ef fec tis" as if w blanks wer,e genera ted.

A Tp forma: item, where p represents the position, specifies that
the conversion cursor is to be positioned at position p. On out
put, if position p is to the right of the current position of the
conversion cursor, the effect is as if the intervening character
positions here filled with blanks. However, on output, if posi
tion p is to the left of the current position of the conversion
cursor, the intervening characters are not blanKed out.

4-113

/ (U) CM2Y -MA:N- PGR "M5:04·Q--ROACO

Examples

Given the string of characters 350274-0162E+050703 with format

FORMAT CORE 12.0, F4.1, E9.2, 04.0 $

the quantities stored on input are:

35,27.4, -1.62x10**5 , 0(703)

Given the internal quantities 417, -320, 0.536x10**3 and octal
627 with format

FORMAT DRAB H (1), 13.0, F6. 2, E 1 0.3, 05.0 $

the string of characters resulting from an output is:

1417******+O.536E+03 627

where the asterisKs indicate that the value -320 cannot be con
verted as directed by an FS.2 format descriptor.

Given the internal quantities 27, H(XYZ), 74.51
the format

H(JKLM) with

FORMAT HAN F6.2, H(RAG), L2, F6.2, H(MODY), A2 $

the string of characters resulting from an output is:

27.00RAGYZ 74.51MODYJK

Note that this character string is preceded by a blanK (i.e., a
space character).

Given the internal quantities 12, 3, H(ABCO), 4, 56,H(EF) with
the format

FORMAT FMTI 2(F6.2,I2,A2) $

the string of characters resulting from an output is:

12.00 3AB 4.0056EF

Note that this character string is preceaed by two blanKs.

Examples of format- 1 ists wi th item repl icator and the equiva lent
forms without item replicator are as fol :~ws:

4-114

Repeated Form

317.2
2(F6.0,/A3)
3(HlABC))

/(U) CM2Y-MAN-PGR-M5049-R04CO

Equivalent Form

17.2, 17.2, 17.2
F6.0,/A3,F6.0,/A3
H(ABr.), H(ABC), H(ABC)

4-115

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.25 Stringform Declaration

Syntax

<stringrorm declaration>
::= [<scope modifier>] STRINGFORM <stringform name>

<stringform list> $

<stringform name>
::= <name>

<stringform list>
::= <stringform item>@

<stringform item>
::= [<item replicator>]<stringform descriptor>
.. - <stringform positioner>
::= [<item replicator>}<character constant>
::= [<item replicator>]«stringform list»

<stringform descriptor>
.. - D<field width>.<fraction size>[. <exponent size>}
::= I<field~width>
.. - B<fie~d ~tdth>
.. - O<field width>
.0_ X<field width>

- C<field width>
- E<field width>

<stringform positioner>
::= Z<field width>
::= T[<direction>]<position>

<exponent size>
::= <numeric constant value>

< d i r ec t ion>
: : = + .. - -.. -

Seman tics

A stringform declaration specifies the-types of conversions to be
performed when converting data between its internal (target
machine) form and c~aracter string form.

<scops modifier> - Optional. Refer to scope modifier de-

STRINGFORM

scr i pt ion.

- A language keyword ,indicating a string
form declaration.

4-116

/(U) CM2Y-MAN-PGR-M5049-R04CO

<str~ngform name> - The name of the stringform being de
clared.

<str~ngform item> - A stringform conversion specifier.

All of the numeric constants that ca"n appear in a stringform dec
laration -- the item replicator, field width, fraction size, ex
ponent size! and position -- must be integers.

A stringform list has the effect of a list of stringform descrip
tors, str~ngform positioners, and character constants. The use
of the item repl.icator pe~~its a shortened form of such a list to
be written in certain cases. A st~ingform descriptor preceded by
an item replicator has the same effect as consecutive repetitions
of the stringform descriptor, the number of times specified by
the item replicator. A similar interpretation is made for a
character constant preceded by an item replicator. A stringform
item consisting of'a string,form list enclosed in parentheses and

, preceded by an i.teJJ1 repl icator has the 'same effect as consecut ive
repetitions of t.h.,~:.~tringform list (without the parentheses).

Stringforms are used in conjunction with convertout phrases and
convertin phrases. Convertout phrases cause the values of data
to be converted from their internal forms to character strings
and the converted value to be inserted into another data unit.
Convertin phrases cause character strings that represent values
to be selected from a 'data unit, converted to an internal format,
and assigned to another data unit. A stringform statement con
trols both the position of the character strings in the data unit
and the type of conversion'performed.

The posi t ion of the eharCiC ters t r·i ngs is controlled by a PC) inter,
called the conver$ioh··~u~ior. The conversion cursor "always
pOints to the l~ftmost character of the string. The positions of
the data unit 'of whi~h 't~e~~trings are part are numbered from
'left to ~ ight, . beginning wi th zero. At the beginning of execu
t i on of a conver tout' or c6nver tin phrase, "the convers i on cursor
is positioned at position 0, which is the first character of the
data unit. .

The conversion cursor must always point to a character position
within the data unit.

4-117

4.25.1.1 Stringform Descriptors

Each stringform descriptor contains a field width expression.
The value of this expression is the number of characters in the
character string that participates in the conversion; the value
must be positive. After the conversion is performed, the conver
sion cursor is updated to point one position to the right of the
rightmost character of the character string.

Each str~ngform descriptor begins with a single letter; that
letter 1S used to name the stringform descriptor. For example,
I-type conversion means conversion controlled by a stringform de
scriptor of the form I<field width>.

Each stringform descriptor functions in conjunction with an in
ternal value or a data unit. If the internal value or data unit
is given by a word specification, its type is context-dependent.
If a numeric type is required, the word type is I 32 S. If a
character type is required, the word type is H 4.

4.25.1.2 D-Type Conversion, Internal to Character

The value being converted must be a numeric type. The value of
the fraction _ size expression must be nonnegative. The value of
the exponent size expression, if present, must be positive.

If the exponent size expression is not present, the internal
value is converted into a character string in the form of a deci
mal mantissa with a decimal point, preceded by a minus sign if
the value is negative. The number of fractional digits is speci
fied by the value of the fraction size expression.

If the exponent size expression is present, the internal value is
converted into a character string in the form of a decimal man
tissa with a decimal point, followed by a decimal exponent, and
preceded by a minus sign if the value is negative. The number of
fractional digits in the mantissa is specified by the value of
the fraction size expression. The number of digits in the expo
nent is specified by the value of the exponent size expression.

If the exponent-size expression is present and the value to be
converted is not zero, one nonzero digit appears to the left of
the decimal point. If the value is zero, one zero digit appears
to the left of the decimal point, the number of zero digits spec
ified by the fraction size expression appear to the right of the
decimal point, and the exponent value is zero.

4- 118

/(U) CM2Y-MAN-PGR-M5049-R04CO

If the field width is greater than the number of characters in
the character string, the character string is right-justified in
the field. and the extra positions on the left are filled with
blanKs.

4.25.1.3 D-Type Conversion, Character to Internal

The data unit that receives the converted value must be of a nu
meric type. The value of the fraction size expression must be
nonnegative. The value of the exponent size expression, if pre
sent, must be positive.

The field may consist of a string of nonblank characters, option
ally preceded and/or followed by strings of blanks. The string
to be converted is the string of nonblanK characters. It may be
any of the valid forms for decimal constants, optionally preceded
by a unary plus or minus sign.

The fraction size expression has an effect only if the string to
be converted has no explicit decimal pOint. In this case, the
value of the fraction size expression specifies the number of
rightmost digits of the mantissa that form the fractional part of
the mantissa~_

The exponent size expression has no effect in this conversion.

4.25.1.4 I-Type Conversion, Internal to Character

The value being converted must be of a numeric type.

The integer part of the internal value is converted into a char
acter string in the form of a decimal integer, preceded by a mi
nus sign if the value is negative.

If the field width is greater than the number of characters in
the characte~ string, the character string is right-justifi~d in
the field and the extra positions on the left are filled wifh
blanks.

-4.25.1.5 I-Type Conversion, Character to Internal

The data unit that receives the converted value must be of a nu
meric type.

The field may consist of a string of nonblanK characters, option
ally preceded and/or followed by strings of blanKs. The string
to be converted is the string of nonblank characters. It must be
in the form of a decimal integer constant, optionally preceded by
a unary plus or minUs sign.

4- 119

/(U) CM2Y-MAN-PGR-MS049-R04CO

4.25.1.6 B-Type, O-Type. and X-Type Conversions, Internal to
Character

The value being converted may be of any simple type.

The pattern of bits that represents the internal value is con
verted to a character string in binary (B-type), octal (O-type),
or hexadecimal (X-type) notation. All bits of the bit pattern
are represented in the string; leading and trailing zeros are not
suppressed. A negative numeric value is represented in the com
plement notation of the value.

In hexadecimal notation, the letters A through F represent the
bit pat t ern s 1 0 1 0, 1 0 1 1, 1 1 00, 1 1 0 1, 1 1 1 0, and 1 1 1 1 r e spec t i ve 1 y .

If the value being converted is of fixed-point type, a radix
point appears in the string in the proper positio~ .. The number
of digits to the left of the radix point is the mlnlmum number
needed in the specified notation system to express the integer
bits of the internal value. The number of digits to the right of
the radix point is the minimum number needed in the specified no
tation system to express the fractional bits of the internal
value. Integ"er bits and fractional bits include, in this case,

. any i mp 1 i ed bit s .

If the value being converted is not of fixed-point type, the num
ber of digits of the character string is the minimum number
needed in the specified notation system to denote the bits of the
internal value. For O-type and X-type conversions, the internal
value is considered to be padded on the left with the mlnlmum
number of zero bits necessary to make the length of the internal
value of a multiple of 3 or 4 respectively.

If the field width is greater than the number of characters in
the character string, the character string is right-justified in
the field, and the extra positions on the left are filled with
blanks.

4.25.1.7 B-Type, O-Type, and X-Type Conversions. Character to
Internal

The data unit that receives the converted value may be of any
simple type.

The field may consi~t of a string of nonblank characters, option
ally preceded and/or followed bY strings of blanks. The string
to be con'.'erted is the string of nonblank characters. It may
consist of Os and 1s (B-type), octal digits (O-type), or hexadec-
imal digits (X-type), and (at most) one radix paint.

4-120

/(U) CM2Y-MAN-PGR-M5049-R04CO

The string to be converted represents the bit pattern of the in
ternal value. If no radix point is present and the character
string specifies fewer bits than are required to represent a
value, the character string specifies the rightmost bits of the
value, and extra bits on the left are set to Os. If no radix
point is present and the characfer string specifies more bits
than are required to represent a value, the value is assumed to
be specified in the rightmost bits, and the extraneous bits on
the left must be Os.

If the radix point is present, the data unit that receives the.
value must be. of fixed-point type. The character string then
represents a value of the data unit in base 2 (B-type), 8 (0-
type), or 16 (X-type). If the value is negative, it must be ex
pressed in ones complement notation consistent with the type def
inition of the data unit.

4.25.1.8 C-Type Conversion, Internal to Character

The value being converted must be of a character type.

The characters of the internal value are placed into the field,
beginning· with the first character of the internal value and the
first position of the field.

If the number of characters in the internal value is less than
the width of the field, the extra positions on the right of the
field are filled with blanKs. If the number of characters in the
internal value is greater than the width of the field, only the
initial characters of the internal value are placed in the field
which is filled.

4.25.1.9 C-Type Conversion, Character to Internal

The data unit that receives the converted value must be of a
character type.

The entire field represents the string to be converted.

The characters of the field are placed into the data Uhit, begin
ning with the first position of the field and the first character
of the data unit.

If the width of the field is less than the number of characters
in the data unit, the extra characters at th~ end of· the data
unit are set to blanKs.

4-121

/ (U) CM'2Y -(tAM' PG-R'-M5049: .. R'04CO

4.25.' .10 E-Type Conversion, Internal to Character

The value being converted must be of a status type.

The internal value is converted to the corresponding character
string representation, as specified tn the type declaration of
the value, but without the enclosing apostrophes. If leading
and/or trailing blanks are specified in the type declaration as
part of the value, they are significant in the character string.

The character string is left-justified in the field. If the
width of the field is greater than the length of the string, the
extra positions on the right are filled with blanks.

4.25.1.11 E-Type Conversion, Character to Internal

The data unit that receives the converted value must be of status
type.

The field may be in one of two forms:

a. A string Q,,f. cha.racters, enclosed in apostrophes, opt ;on
a 11 y preceded and/ or fo 11 owed by st rings of blanks.

b. A string of charaete'rs not enclosed in apostrophes, op-
tionally followed by blanks.

The string to be converted in the first case is the enclosed
string, not including the apostrophes. The string to be convert
ed in the second case is the initial string, not including the
optional trailing blanks.

The string to be converted must be one of the values of the data
unit that is to receive the converted value, as specified in the
type declaration of that data unit. If the specified value con
tains s~gnificant blanks, they must appear in the string.

4.25. 1 . 12 St r i ngfo.rm Posi t ioners

The stringform positionerscause the position of the conversion
cursor to change, thereby affecting the position of the next
field, but they do not of themselves cause any conversions to
take place.

4.25.1.13 Z-Type Positioning

The value of the field width expression specifies a character
string, begtnning at the curr·ent posi tion of the conversion cur
sor. When converting from internal forms to characte·r string:s,
the specified string- is fi lled with blanKs and the conversion

4-122

/

/(U) CM2Y-MAN-PGR-M5049-R04CO

cursor is updated to point to the right of the rightmost charac
ter of the string. When converting from character strings to in
ternal forms, the conversion cursor is simply updated to point to
the right of the rightmost character of the string; thus the
characters of the specified string are sKipped.

4.25.1.14 T-Type Positioning

If the optional direction is not present, the value of the posi
tion expression specifies a character position in the character
data unit, and the conversion cursor is updated to point to that
position. .

I f the opt iona 1 di ree! ion ,i,s present, the va lue of the pos it ion
expression is the number·of character positions that the conver
sion cursor is to move. If the direction is "+", the conversion
cursor is to move Jhat number of positions to the right; if the
direction is "_", tt is to move that number of positions to the
left.

4.25.1 . 15 Char:~~J~~r,:<~ons tan't'.Convers ion
, ,', ':. ,_.<.{ ;.<.~~~.~;;i};~/~<. '. :,' ' ..

. A. cha~',~s~e,r,',; ,.99n:~~f:~;~;fi t s t r i ngform. item' spec i f i es a fie 1 d whose
wldth 1S' the"n~mtp~,r),9f,:;chaf!,~p;t,tr,s In· the value of the constant.

When converting from internai'forms to character strings, the
specified string is filled with the value of the constant and the
conversion cursor is updated to point to the right of the right
most character of' the string. When converting from character
strings to internal forms, the conversion cursor is simply updat
ed to point to the right of the rightmost character of the
string; thus, the characters of the specified string are skipped.

Examples

STRINGFORM A1 3X4 $

The stringform item 3X4 indicates twelve hexadecimal characters,
treated as three groups of four characters each.

STRINGFORM A2 05,2 $
.

Stringform A2 implies different formats between input (character
to internal) and output (internal to character). On input, a
5-digit string is converted, with the two rightmost digits com
prising a fraction if no decimal point appears in the string. On
output, a character string comprised of two integral digits, a
decimal point, and two fractional digits is created.

4-123

STRINGFORM A3 11, T+3, 11 $

A3 identifies the conversion specifying two single integer digits
sepa~ated by three spaces.

Implementation Notes

The results of conversions are undefined in the following cases:

a. When converting from internal forms to character
strings, and the field is not wide enough to contain the
string (except in the case of a C-type conversion).

b. When converting from character strings to internal
forms, and the form of the character string is invalid.

c. When converting from character strings to internal
forms, and the attributes of the data unit that is to
receive the value are inadequate for storing the con
verted value. This includes a C~type conversion in
which the character string is longer than the data unit
that receives the value.

d. When .there is a mismatch between a stringform descriptor
and the type of the corresponding value or data unit.

4-124

4.26 Inputlist Declaration

Syntax

<inputlist declaration>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= [<scope modifier>] INPUTLIST <inputl ist name>
<inputlist> $

<inputlist name>
::= <name>

< i npu t 1 i s t >
: : = < i npu t 1 is t i tem>@

< i npu t 1 i s tit em >
- <input receptacle>

::= <inputlist name>
::= *<single-valued data unit>

<input receptacle>
::= <data unit>
::= <core address receptacle>

Semantics

An inputlist declaration specifies a list of receptacles to be
used in a convertin phrase and a name by which the list can be
referenced.

<scope modifier> - Optional. Refer to scope modifier de
scr i pt ion.

INPUTLIST - A language keyword indicating an input
list declaration.

<inputlist name> - The name of the inputlist being declared.

<inputlist item> - The name of a data unit, or another in
putlist specifying a data unit, as a re
ceptacle for a converted character
string .

.
The list of receptacles specified in an inputlist declaration is
the 1 i s t of i npu t 1 i s tit ems, i f t ha t 1 i s t does no t con t a i n the
name of an inputlist or a Single-valued data unit preceded by an
asterisk. If it contains an inputlist name, the effect is as if
the list specified by the named inputlist were inserted in place
of the inputlist name. If it contains a Single-valued data unit
preceded by an asterisk, that data unit must be of an integer
type and must contain the address of an inputlist name at the
time a convertin phrase referencing the inputlist is executed;

4-125

/

the effect is as if the addressed inputlist were inserted in
place of the single-valued data unit and asterisK.

The scope of any name, other than an ntag name, appearing in the
inputlist of an inputlist declaration must be at least as great
as the scope of the inputlist name being declared.

Inputlists may not be used recursively, either at compile time or
at execution time.

If a typed table name appears as an inputlist item, the effect is
as if each item of the table appeared in the list in sequence,
beginnfng with the first item. If an untyped table name or an
untyped item-area name appears as an inputlist item, the effect
is as if each word of the table or item-area appeared in the list
in sequence, beginning with the first word.

CDRAD«inputlist name» is valid as a CORAD function reference.

Examples

TABLE TAe·
FI·EL:{)')···.

ENO",lA'BU£ .. "

". OIUM 2 $

','f
IN PUT l 15T lNb2 r ABVM2 (1 ,-FBaO'L)· $

The name INl2 specifies Boolean field FBDDl in the second item of
table TABVM2 as the receptacle for a convert in phrase.

TABLE TABI12U V (1 12 U) IN01RSCf 3 $
END-TABLE TABI12u $
VRBL 116U I 16 U P CORAD(INL2) $

INPUTLIST INL3 CDRAD(TABI12U), *I16U $

INl3 spec; f ies a 1 ist Of re'ceJi)tacles·,· which is the core address
of the tab 1e TA'B I t2U" a:nd tl1$ ree'l19t'ltS 1 as 1 is ted in an i npu t 1 is t
whose address is contained intRe variable 116U.

4-126

4.27 Outputlist Declaration

Syntax

<outputlist declaration>

flU) CM2Y-MAN-PGR-M5049-R04CO

::= : <scope modifier>] OUTPUTLIST <outputlist name>
<outputlist> $

<outputlist name>
::= <name>

<outputlist>
::= <outputlist item>@

<output 1 is t item>
.. - <expression>
::= <table name>
.. - <single-valued data unit>
::= <output1ist name>
::= *<sing1e-valued data unit>

Semant ics

An outputlist declaration specifies a list of values to be used
in a convertout phrase and a name by which the list can be refer
enced.

<scope modifier> - Optional. Refer to scope modifier de-

OUTPUTLIST

scription.

- Language keyword indicating an output
list declaration.

<output1ist name> - The name of the outputlist being de
clared.

<outputlist item> - A value or group of values to be con-
verted into'a character string.

The list of values specified in an outputlist declaration is the
list of outputlist items, if that list does not contain the name
of an out~utlist or a single-valued data unit preceded by an as
terisk. If it contains an output1ist name, the effect is as if
the list specified by the named output1ist were inserted in place
of the outout1ist name. If it contains a single-Valued data unit
preceded oy an asterisK, that data unit must be of an integer
type and must cortain the address of an outputlist name at the
time a cOr').jertout phrase referencing the outputlist is executed;
the effect is as if the addressed output1ist were inserted in
place of t~e single-valued data unit and asterisk.

4-127

I (U) CM2Y -MAN'- PGR-M·504·9-R04CO

The scope of any name, other than an ntag name, appearing in the
outputlist of an outputlist declaration must be at least as great
as the scope of the outputlist name being declared.

Outputlists may not be used recursively, either at compile time
or at execution time.

If a typed table name appears as an outputlist item, the effect
is as if each item of the table appeared in the list in sequence,
beginning with the first item. If an untyped table name or an
untyped item-area name appears as an inputlist item, the effect
is as if each word of the table or item-area appeared in the list
in sequence, beginning with the first word.

CORAD«outputlist name» is valid as a CORAD function reference.

Examples

The following data declarations are referenced in the subsequent
examples.

NTAG EQUALS 1023 $
VRBL A·3;QSS' A 30 S 5 $
VRBL .BOOL B $
VRBL H4 H 4 $
VRBL I 16U I 16 U $

OUTPUTLIST OUTL1 H(NAME IS) $

This outputlist declaration specifies that the character constant
NAME IS is identified by the name OUTL1 for use in a convertout
phrase.

OUTPUTLIST OUTL2 5, 6/2, 8/3, NTAG S

This outputlist declaration identifies OUTL2 as the name which
specifies a list of the four constants, 5. 3, 8/3, and 1023.

OUTPUTLIST OUTL3 3*A30S5~ I16U/NTAG, i30S5/I16~ $'

This outputlist declaration identifies OUTL3 as the name which
specifies the list of three values resul:ing from the three de
clared numeric expressions.

OUTPUTLIST OUTL4 COMP(BOOL),
A30S5 GTEQ I"16U, H4 NOT H(XX) $

This outp.utlis.t,. declaration s'f)ecifies a list of three Boolean
values identified by the name OUTL4.

4-128

4.28 Debug Enabling Declaration

Svntax

<debug enaoling declaration)

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= DEBUG <debug parameter)@ $"

<debug parameter)
- SNAP
- DISPLAY
- TRACE
- RANGE
- PTRACE"
- DELETE

Semantics

A debug enabling declaration specifies either the classes of de
bug phrases or declarations that are to be enabled, or that those
debug phrases or decla~ations that have not been enabled are to
be deleted from the source programs.

DEBUG - A language keyword indicating a debug enabling
declaration.

SNAP - A language keyword indicating that snap phrases
are to be enabled.

DISPLAY - A language keyword indicating that display phrases
are to be" enabled.

TRACE - A language keyword indicating that trace"and end
trace phrases are to be enabled.

RANGE - A language Keyword indicating that range declara-
tions are to be enabled.

PTRACE - A language keyword indicating that subprogram tra
cing should be enabled.

DELETE - A language Keyword indicating that all debug
phrases or declarations that have not been enabled
are to be deleted from the sou~ce and listing out
puts.

If a class of debug phrase or declaration is not enabled, all
occurences of debug phrases or declarations of that class are ig
nored by the compiler. If, in addition, the debug parameter DE
LETE has been specified, all phrases or declarations of that
class are deleted from any listings and source file output during
the compi lation. (The source input file is never changed.)

4-129

/(U) CM2Y-MAN-PGR-M5049-R04CO

There is no debug phrase corresponding to the parameter PTRACE.
If that parameter is specified, every procedure call or user
function reference will result in a display of the form

PROCEDURE xxxxxxxx CALLING PROCEDURE yyyyyyyy

on the system hardcopy device, where xxxxxxxx is the name of the
calling procedure or function and yyyyyyyy is the name of the
called procedure or function.

Note

The debug enabling declaration may only appear in a major header.

Examoles

DEBUG RANGE. TRACE $

In this example, only range declarations and trace phrases are
enabled and no calls will be generated by the compi ler for other
debug phrases.

DEBUG DELETE $

In this example, if there are no other debug enablingdeclara
tions in the major header, all debug phrases and declarationi
will be deleted from the listing and source outputs.

4-130

/(U) CM2Y-MAN-PGR-M5049-R04CO

4.29 Ranoe Declaration

Syntax

<range dec1aration>
::= <ranged name> RANGE <maximum value> [... <minimum

value>] $

<ranged name>
- <variable name>
- <field name>

<maximum value>
- <numeric constant expression>

<minimum value>
- <numeric constant expression>

Semantics

A range declaration specifies a range of values for a variable or
a field, and that all assignments to that variable or field are
to be checked during execution to ensure that the assigned value
lies in th~t range.

RANGE

<ranged name>

- A language keyword indicating a range dec
laration.

- The name of a variable or field for which
a range is being specified.

<maximum value> - The upper limit of the range of acceptable
values.

<minimum value> - Optional. The . lower limit of the range of
acceptable values.

The specified variable or field must be of a numeric type. Its
variable or field declaration must precede the range declaration.

If the ranged name is a field, the range declaration must appear
within the same type declaratipn, table block or array block as
the field declaration. All assignments to the specified field
will be checked, including assignments to like-tables, subtables,
and item areas.

If no minimum value is specified, a minimum value of zero is as
sumed.

4-131

Each time the rangea name is assigned a value, the value is com
pared to the specified range. If it lies outside the specified
range, an appropriate message is printed on the system hardcopy
device identifying the statement in which the range violation
occur s . The s t a temen tis 'iden t i f i ed in the same manner as in the
execution of a trace phrase.

Examples

1. VRBL COUNT I 5 U $
COUNT RANGE 25 $

LOC-INDEX INDEX $
PASS1. VARY INDEX THRU 26 $

SET COUNT TO INDEX + 1 $

Execut ion of ,the (I' ;;l,~t~ y$.,r:y block loop ind~x rangE:! would re
su 1 t ipt,h,e'fo r.f': \~~'pr i nt>o'u~t ," assum i ng the RANGE debug facility
i s enab 1 at) tft .. t)~\ ,',Y:<ff1ft>'i 1 at ion time and load tiMe:

** RANGE: COUNT'
EXCEEDS RANGE AT PASS1 +

2. TABLE TRIG V M~OIUM 10 $
FIELD ANGLE F $
FIELD SINE F$

SINE RANGE 1 ... - 1 $
END-TABLE TRIG $

EVAL. VARY T I X WI THI-NJ''iTR'I(3S
SET TRIG(TI~,StNE) 10 SINF(TAIG(TIX,ANGLE)) $

END EVAL $.

4-132

\

/(U) CM2Y-MAN-PGR-M5049-R04CO

If any Of the results of the multiple calls to function SINF pro
duce a value outside the range of -1 through +1, an appropriate
message wi 11 be produced. In particular, if the function SINF
were malfunctioning and always returning the value 3.14159, the
following line would be printed 10 times in succession:

TRIG(TIX,SINE) EXCEEDS RANGE AT EVAL+1

Notes

Assignment operations that are checKed by the compiler as a re
sult of a range ,declaration are:

a. Explicit assignment as a result of executing a set
phrase, swap phrase, pacK phrase, or shift phrase.

b. Implicit assignment as a result of executing a procedure
call or function reference in which the ranged name is a
formal input parameter or actual output parameter, or a
vary block or find statement in which the ranged name is
the loop index.

4-133/(4-134 BlanK)

/(U) CM2Y-MAN-PGR-M5049-R04CO

SECTION 5. DATA REFERENCES

Data references are/ the basis on which a CMS-2Y(7) program is
bllil!. Data is referenced when a value is calculated. Values
are calculated (the calculation might be as simple as retrieving
the value of a single entity) when two values are compared in or
der to make a decision or when an entity is assigned a new value.
These two processes of making decisions and assigning values are
the fundamental processes of programming.

The basic data references are references to constants, data units
(variables! fields, etc.), and functions. Expressions are built
up of these basic data references.

Data references are either single-valued (e.g., variables) or
multivalued (e.g., tables). Single-valued data references are
either simple or structured. A simple data reference is a refer
ence to an entity that is declared to be of a simple type or has
universal type.

5-1

/(U) CM2Y-MAN-PGR-M5049-R04CO

5 . 1 Da t a Un i t

Syntax

<data unit>
.. - <single-valued data unit>
.. - <multivalued data unit>
::= <word data unit>
::= <modified data unit>

Seman tics

Data units are the stored data of a CMS-2Y(7) program. They are
capable of being changed, although a particular program may treat
a particular data unit as a constant.

A single-valued data unit is a data unit that has one value asso
ciated with it; the data unit may be structured. If the data
unit is simple, it can appear as an operand of an expression.

A multivalued data unit is a data unit that has one or more val
ues associated with it. The individual values can only be refer
enced by the use of subscripts. The data units can be struc
tured; if they are simple, the individual values can appear as
operands of expressions, but a multivalued data unit cannot it
self appear as an operand of an expression in CMS-2Y(7).

A word data unit is a target machine word. It has a single
value, which can appear as'an operand of an expression. The type
of the value is context-dependent.

A modified data unit is a part of another data unit.

5-2

5.1.1 Single-Valued Data Unit

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<single-valued data unit>
- <'w'ariable name> [«field name»]
- <subscripted data unit>

::= <system index name>
::= <iocal index name>

<subscripted data unit>
::= <:able name>«subscript expression)@[,<field name>])

<subscript expression>
::= <~umeric expression>
::= <status expression>

Semantics

A single-valued data. unit specifies a variable or part of a vari
able, a table item,;\or part of a table item, a system index, or a
local index. '

<field name} ,.,.,;,~Op~· i OI1~ 1 • A spec if i ca t ion of a
~~rtof a data unit.

<subscripted data unit> - Specification of an item of a ta
ble, or a field of an item of'a
table.

<subscript expression> - A numeric expression used to spec-
ifya table item.

The number of subscript expressions used to select an item of a
table must be the same· as the; number of subscript declarations in
the table declaration. The first subscript expression corre
sponds to the first subscrip1 ~~cl~ration, the second subscript
expression corresponds to the second subscript declaration, etc.

A numeric subscript expression is evaluated according to the
rules for ~umeric expression evaluation~ If the type of the
value is not' integer, the value is converted to integer (para
graph 5.3. ~ !, giving the subscript value; if the type of the
value is integer, the value is the subscript value,. The sub
scr'ipt val~e must be in the range specified in th~ corresponding
subscript oeclaration, which must be numeric.

The value of a status subscript expression must be assignment
compatible nith the type of the corresponding subscript declara
tion, whic~ must be of a status type.

5-3

A subscripted data unit of the form

<table name>«subscript expression>@)

specifies an item of the named table. The data unit is simple if
items of the table have a typed structure.

5.1.1.1 Restrictions on Forms

The form

<variable name>«field name»

is valid only if the named variable is structured and the named
field is a field of the named variable.

The form

<table name>«subscript expression>@,<field name»

is valid only if the named table has structured items and the
named field is one of its fields.

5.1.1.2 Attributes of a Single-Valued Data Unit

A data unit consisting of a variable name alone has the attri
butes specified in the declaration of that variable.

A data unit consisting of a system index name or a local index
name has the implied attributes I 16 U.

Data units of the forms

<variable name>«field name»
<table name>«subscript expression>@,(field name»

have the attributes of the named fields.

Examples

TABLE TWOWAY A 1 4,4 $
END-TABLE TWOWAY $

SET TWOWAY(3,2) TO 0(1776) $

The one word of the·item in row 3 of column 2 of the array TWOWAY
is set to the octal value 1776.

5-4

TABLE TABTYP V MEDIUM 10 $
FIELD A14SS A 14 5 S $
ITEM-AREA TEMPTYPE $

END-TABLE TABTYP $

SET TEMPTYP(A14S6) TO 3 $

/(U) CM2Y-MAN-PGR-M5049-R04CO

The integer type constant is converted to fixed-point type and
assigned to field A14SS in item-area TEMPTYPE.

SET TABTYP(5,A14SS) TO 3 $

The integer type constant is converted to fixed-point type and
assigned to field A14SS in the sixth item of table TABTYP.

. .
5-5

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.1.2 Multivalued Data Unit

Syntax

<multivalued data unit>
::= <table name>

Semantics

A multivalued data unit specifies a table.

Examples

TABLE TABB H 1 100 $
LIKE-TABLE TABe $

END-TABLE TABS $

SEi TABS TO TASe $

Each word of table TABB is set to the corresponding word of TABe
without conversion. A shorter table is transferred to the larger
table to the extent of the shorter table's length. A larger ta
ble is transferred to the shorter table's length; cells beyond
the end of the-shorter table are left unchanged.

5-6

\

5.1.3 Word Data Unit

Syntax

<word data unit>

/(U) CM2Y-MAN-PGR-M5049-R04CO

.. - <variable name>«word spec·ification»
::= <table name>«subscript expression>@,<word

spec i fica t i on>)

<word specification>
::= <numeric expression>

Semantics

A word data unit specifies a target machine word.

<word specification> - A numeric expression whose value
specifies a target machine word as
part of a variable or table item.

A word data unit specifies a target machine word as part of a
var i able •... or item (see be low); i t does not spec i fy an abso 1 u te
mach ine addre·ss.

A word specification specifies a numbered target machine word
within a variable or item. If the variable or item requires n
target machine words, they are numbered from 0 through n-1 from
first to last.

The word specification expression is evaluated according to the
rules for numeric expression evaluation. If the type of the
value is not integer, the value is converted to integer (para
graph 5.3.1), giving the word number; if the type of the value is
integer, the value is the word number. The word number must be
in the range [O,n-1].

The requirements on the number and value of subscript expressions
are the same as for single-valued data units.

5.1.3.1 Restrictions on Forms

The form

<variable name>«word specification»

is valid only if the named variable is structured.

5-7

The form

<table name)«subscript expression)@,<word specification»)

is always valid.

5.1.3.2 Word Specification

The forms

<variable name)«word specification»)
<,tab 1 e name) (<subscr i pt express ion)@), <word spec i fica t ion))

specify the numbered word of the variable or table item, respec
tively.

5.1.3.3 Resolution of Ambiguity

If a field name and a variable name in a scope are identical,
certain forms of single-valued data units (using the name as a
field name) are identical to certain word data units (using the
name as a variable name in a word specification expression con
sisting of the variable only). In such cases, the name is always
interpreted as a field name, yielding a single-valued data unit.

Examples

TABLE WORDS V 1 400 $
END-TABLE WORDS $

SET WORDS(4,0) TO 0(1.4) $

This SET statement causes the value 1 to be assigned to the fifth
item word of table WORDS.

The fractional bits of the octal constant are truncated because
the word data unit assumes the type I 32 S.

5-8

5.1.4 Modified Data Unit

Syntax

<modified data unit>
::= <bit modified data unit>

I(U) CM2Y-MAN-PGR-M5049-R04CO

::= <character modified data unit>

Semant ics

A modified data unit represents part of the bit string that makes
up the value ·of another data unit. It can be used to select a
substring of bits or a substring of characters of the value of
that other data unit. '

Some instances of modified data units require the use of a
compiler-generated procedure call. In these cases, one of the
options MONITOR or NONRT must be specified. For details, see the
implementation npt.es in the sections that describe each of the
modified dataunils.

5-9

flU) CM2Y-~AN-PGR-M5049-R04CO

5 . 1 . 4 . 1 Bit Mod i f i ed D a taU nit

Syntax

<bit moc;fied data unit>
::= BIT«bit string start>[,<bit string length>]) «parent

unit»

<bit string start>
::= <numeric expression>

<bit string length>
:~= <numerie expression>

<parent ~nit>
::= <single-valued data unit>
::= <word data unit>

Semant ics

A bit mo~ified data unit specifies a substring of bits of another
data unit.

BIT

<b i : string start>

- A language keyword indicating a bit
modified data unit.

A numeric expression whose value spec
ifies the leftmost bit of the bit
string to be selected.

<bi~ string length> - Optional. A numeric expression whose
value specifies the length of the bit
string to be selected.

<pa"ent unit> - The data unit from which the bit
string is to be selected.

The stri~g of bits that make up the -parent unit are numbered,from
left to right, beginning with zero. This numberingr-eferences
only the string of bits that make up the data unit; it does not
include any extra bits allocated by the compiler to contain the
value of :he data unit.

If the value of the bit string start expres&ion is not integer,
it is c8~verted to integer (paragraph 6.1.1.1) and the converted
value is the starting bit number of the string to be selected; if
the expression value is integer. it is the starting bit number.
If the b;t string length is p~esent and its value is not integer,
it is co~verted to integer and the converted value is the length,
in number of bits, of the string to be selected; if theexpres
sion va1Je is integer, it is the string length.

5-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

If the optional bit string length expression is omitted, the bit
string length is 1.

The starting bit number must be nonnegative. The bit string
length must be in the range [1.64]. Together the starting bit
number and the bit string length must specify a bit string that
lies entirely within the parent data unit.

The string of bits representing a bit modified data unit is in
terpreted as an unsigned fixed-point value with zero fractional
bits and a length equal to the bit string length, if that length,
is constant. .If the bit string length is not constant, the
length of the bit modified data unit is 64.

If the bit string length expression is omitted or has the con-
- stant value 1, the bit modified data unit may be used in a con

text that requires a Boolean data unit. If the specified bit is
on (1), the bit modified data unit has the value true; if the
specified bit is off (0), the bit modified data un-it---has the
value false.

Examples

VRBL A3250 A 32 5 0 $
VRBL 1645 I 64 5 $
VRBL MESSAGE1 H 23 $

BIT(63)(164S)
BIT(183)(MESSAGE1)
BIT(Q,A32S0)(164S)

In the first BIT reference, the rightmost (or least significant)
bit in 1645 is indicated. In the second BIT reference, the
rightmost bit of the twenty-third character·in MESSAGE1 is indi
cated. In the third BIT reference, any number of bits from 1645
may be indicated in the range [0,64], depending on the value in
A32S0. In all cases (except zero) the bit string starts with the

- most significant bit of 164S. The compiler generates a call to a
CMS-2Y(7) monitor procedure to select the bit string.

Implementation Note

If the bit string start expression is a numeric constant value,
or if the bit string length expression is a numeric constant
value or is omitted and the specified bit string does not cross a
target machine word boundary, the compiler will generate in-line
code to select the specified bit string. In all other cases a
compiler-generated procedure call is used.

5-11

5.1.4.2 Character Modified Data Unit

Syntax

<character modified data unit>
::= CHAR«character string start>[,<character string

length>]) «parent unit»

<character string start>
::= <numeric expression>

<character string length>
:~= <numeric expression>

Seman tics

A character modified data unit specifies a substring of charac
ters of another data unit.

CHAR - A language keyword indicating a
character modified data unit.

- A numeric expression whose value
spec if les the lef trrios t cHarac ter
of the cha~acter string to be
selected.

<character string length> - Optional. A numeric expression

<parent unit>

whose value specifies the number
of characters of the character
string to be selected.

- The data unit from which. the
character string is to be se
lected.

The bit s t ring mak i'ng\up t.he pctt~'ent un i tis interpreted as a se
quence of 8-b i t cnarac't,ers, rttilmbertJo' from lef t to right, beg i n
n i ng with O. Theblt , at" i rt~)"¢On$,iQered does not inc 1 ude' any
ex t r a bit sal located\;b~ (i:~ t he\; ;'~;i~~le'r . to,i,oortra i n t he parent un it.

If the value of the character string start expression is not in
teger, it is conver ted to i ntager (paragraph 6.1.1.1) !:nd the
conver ted va 1 ue is the star t i ng cha'racter number of the s t ring to
be selected; if the expression value i's integer, it is', the start
ing character number. If tne character string length expression
i s present and i t5 va lue is not integer ,i t is converted to in te,
ger ... ~,..and the COt:lv.p.ted,"",VG,la&-lrS·""tne- +eFlgtn", ; n""n1Jmber""~of'~'char'ac
ters, of the str ing> to be sel;ected; if the expression value is
integer, i tis the str i ng leAg,th.

5-12

/(U) CM2Y-MAN-PGR-M5049-R04CO

If the optional character string length expression is omitted,
the character string ~ength is 1.

The starting character number must be nonnegative. The character
string length must be positive. Together, the starting character
number and the character string length must specify a character
string that lies entirely within the parent data unit.

The string of bits representing a character modified data unit is
interpreted as a character value with a length, in characters,
equal to the character string length.

Examples

VRBL MESSAGE1 H 23 P H(ABCDEF-%WHEAT!*XYZ) $

... CHAR (10,4) (MESSAGE 1) .. .

.. . CHAR(17,2)(MESSAGE1) .. .

The first line of these examples references the character string
EAT! while the second line references the letter Z followed by a
blank.

Implementation Note

If the character string start expression is a numeric constant
value, the character string length expression is a numeric con
stant value or is omitted, and the specified character string ei
ther begins on a target machine word boundary or does not cross a
word boundary, the compiler will generate in-line code to select
the specified character string. In all other cases a compiler
generated procedure call is used.

5-13

/ (U) CM·2Y -M4N-PG~-M5049-R04CO

5.2 Function Reference

Syntax

<function ~eference>
- <user function reference>

::= <predefined function reference>
::= <intrinsic function reference>

Seman tics

A function reference is written as an operand of an expression.
During' evaluation of the expression, the function reference is
replaced by a value. The manner in which the value is determined
is specified in the definition of the function.

CMS-2Y(7) supports three classes of functions: (1) user func
tions, which are declared with function declarations and defined
in function blocks, (2) predefined functions, which are known to
the compiler and may be referenced without being declared, and
(3) intrinsic functions, which use the function notation but are
an integral part of the syntax of the language.

5-14

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.1 User Function Reference

Svntax

<user function reference>
::= <function name> ([<actual input parameter>@])

<actual input parameter>
::= [<expression>]

Semantics

A user function reference specifies an invocation of a function
declared in a function declaration and defined in a function
blocK.

<function name> - The name of the function being
referenced.

<actual input parameter> - Optional. An expression whose
value will be the value of a for
mal input parameter at the begin
ning of execution of the function
body.

The evaluation of a user function reference comprises three
steps:

a. The value of each actual input parameter is assigned to
the corresponding formal input parameter.

b. The body of the function is executed. The execution of
the function body is terminated by the execution of a
function return phrase.

c. The value of the expression specified on the function
return phrase becomes the value of the function refer
ence.

The first actual input parameter corresponds to the first formal
input parameter, the second actual input parameter corresponds to
the second formal input parameter, etc. Each actual input param
eter must be assignment-compatible (paragraph 6.1.1.1) with its
corresponding formal parameter.

If an actual input parameter is omitted in a function reference,
and the corresponding formal input parameter was not declared
using a parameter declaration, the value of the formal input pa
rameter is unchanged prior to execution of the function body. If
the formal input parameter is declared using a parameter declara
tion, its value is undefined at the beginning of execution of the

5-15

/ (U) CM2Y -MAN-PGR -M5049--R04CO

function body; in this case, omitting an actual input parameter
implies that the value of the corresponding formal input parame
ter is irrelevant for that function reference.

The names of all formal parameters must be known in the scope
containing the function reference.

Examples

N EQUALS 5 $
TABLE T1 V (I 10 S) N $
END-TABLE T1 $
VRBL (J,K) I 6 U $

FUNCTION IXOK (J,K) B $
IF J GT N-1 OR K GT N-1 THEN

RETURN (0) IIINDEX INVALID" $
ELSE

RETURN (1) .. INDEX OK II $
END-FUNCTION IXOK $

Referencing the above function, the statement

IF COMP I~OK (L,M) THEN
SET L,M TO 0 $

causes Land M to be set to zero if L or M are out of range as
input to function IXOK.

5-16

5.2.2 Intrinsic Function Reference

Syntax

<intrinsic function reference>
::= <abs function reference>
::= <corad function reference>

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

An intrinsic function is an integral part of the CMS-2Y(7) lan~
guage; the name.of each intrinsic function is a reserved keyword.

The intrinsic functions cannot be declared in function declara
tions.

The formal input parameters of intrinsic functions have subpro
gram scope.

An intrinsic function reference does not affect the value of any
data unit in a CMS-2Y(7) program.

5-17

/

5.2.2. 1 Abso 1 ute V"a'l ue F unc t i on Reference

Syntax

<abs function reference)
::= ABS«numerlc expression»)

Semant lCS

The value of an absolute value function reference is the absolute
value of its actual input parameter.

- A language keyword indicating an ab
solute v~lue function reference.

<numeric expression) - The expression whose absolute value
is the value of the function refer
ence.

I f the type of the actua r tnput parameter of an abso 1 ute va 1 ue
function reference'is integer orfi';j(ed-po'int, the function refer
ence is uns igned. ,In a 11 other aspects, th'e type of the funct ion
va 1 ue, fs the type\'~<f tts actua,l input pa'r'ameter.

Examples

VRBL ATYPE A 13 S 9 $

The value of the function reference

ABS(ATYPE)

is the absolute value of the variable ATYPE.
value is A 12 U 9.

5-18

The type of the

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.2.2 Core Address Function Reference

Syntax

<corad function reference>
::= CORAO«addressable unit»

<addressable unit>
,,- <variable name>[«field name»]
::= <subscripted data unit>
. ,- <multivalued data unit>
::= <word data unit>
::= <stringform name>
::= <inputlist name>
::= <outputlist name>
::= <switch name>
::= <procedure switch name>
::= <procedure name>
::= <function name>
::= <statement name>

Semantics

A core address function reference returns an A 16 U 0 value that
is the target machine sy-address of its actual input parameter.

CORAD - A language keyword indicating a core
address function reference.

<addressable unit> - Any entity that is assigned to memory
and can be referenced during execution
of a CMS-2Y program.

If the addressable unit is allocated to part of a target machine
word, the value of the core address function reference is the
same as if it were allocated that entire word.

If the addressable unit is the name of an indirect· table, the
value of a core address function reference is the value most
recently assigned to the indirect table by a core address assign
ment (paragraphs 5.2, 6.1.1.1, and 6.1.1.6).

5-19

/(U) CM2Y-MAN-PG-R-M5049-R04CO

Examples

VRBL A16S2 A 16 S 2 $
VRBL ex I 6 U $
TABLE DAT1 V MEDIUM 10 $

FIELD FLDO A 16 S 0 $
FIELD FLD1 I 32 S $

END-TABLE DAT1 $

eORAO(A16S2)

This CORAD function reference returns the A 16 U 0 value that is
the ta~get machi~e address of A1SS2.

CORAD(DAT1(CX,FLDO))

This example returns the address of the word in item CX of table
DAT1 that contains field FLDO.

5-20

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3 Predefined Function Reference

Syntax

<predefined function reference> .
,,- <floating-point arithmetic function reference>
::= <fixed-point arithmetic function reference>
.. - <status operation function reference>
::= <bit string function reference>

- <scalf function reference>
- <conf function reference>

::= <tdef function reference>
.. - <rem function reference>
::= <cnt function reference>
::= <fil function reference>
::= <pos function reference>
.. - <length function reference>

Semantics

A predefined function is known to the compiler at the beginning
of each compilation. Its name has universal scope.

The name of a-predefined function in many cases is generic, rep
resenting a class of functions. The attributes of the formal in
put parameters of the function can vary for such generic func
tions, usually depending on attributes of the actual input param
eters. (For example, the LN function does not have a fixed type
for its formal input parameter. Therefore, LN can be considered
to represent a class of functions, one for each possible formal
input type.) In some cases, what appears to be an actual input
parameter is a specification of a member of a class of functions.

The predefined functions cannot be declared in function declara
tions. Because their names have universal scope, a declaration
of a function with one of their names would be considered a dec-
laration of a user-defined function in a smaller scope.

The formal input parameters of predefined functions h~ve subpro
gram scope.

A predefined function reference does not affect the value of any
data unit in a CMS-2Y(7) program.

5-21

I
I
I
I

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.1 Floating-Point Arithmetic Function Reference

Syntax

<floating-point arithmetic function reference>
- SIN«angle»

.. - COS«angle»
- ASIN«numeric expression»
- ACOS«numeric expression»
- ATAN«numeric expression»
- ASIN2«ordinate>,<magnitude»
- ACOS2«abscissa>,<magnitude»
- ATAN2«abscissa>,<ordinate»
- EXP«numeric expression»
- ALOG«numeric expression»

<angle>
.. - <numeric expression>

<ordinate>
::= <numeric expression>

<abscissa>
: : = <nume-r i c express ion>

<magnitude>
::= <numeric expression>

Semant ics

A floating-point arithmetic function reference specifies the cal
culation of one of several common arithmetic values in floating
po in t .

SIN

COS

ASIN

ACOS

ATAN

ASIN2

- A predefined identifier indicating that the
sine function is to be evaluated.

- A predefined identifier indicating that the
cosine function is to be evaluated.

- A predefined identifier indicating that the
inverse sine function is to be evaluated.

- A predefined identifier indicating that the
inverse cosine function is to be evaluated.

- A predef i ned i dent; f i er ; nd lea t i ng that the
inverse tangent funct ion is to be eva,luated.

- A predefined identifier indicating that the
inverse sine funct ion is- to be eva 1 uated.

5-22

/(U) CM2Y-MAN-PGR-M5049-R04CO

ACOS2 - A predefined identifier indicating that the
inverse cosine function is to be evaluated.

ATAN2 - A predefined identifier indicating that the
inverse tangent function is to be evaluated.

EXP - A predefined identifier indicating that. the
exponential function (to the base e) is to be
evaluated.

ALOG - A predefined identifier indicating that the
natural 10.gar.ithm function is to be evaluated.

<angle> - A numeric expression whose value represents an
angle measured in radians.

<abscissa> A numeric expression whose value represents
the abscissa (x-value) of a point in the coor
dinate plane.

<ordinate> ~.A:!/~rtLrii~~;fcO!';~>S:Q~ie~$iOn whose value represents
·;,?;;·{~:t\\~ord i~~:teU'(y-va 1 ue) of a po i n tin the coor-

';)i.?,!,:'lJ)at e.pJ an~. , " !
<magnitude> A·n4m~J" .. i.:C·: .)e~J;lre,s.s i on whose value represents

th~ di~tanc. f~o.~ point (x,y) in the coordi-
nate plane to the origin (0,0).

The anonymous formal parameters and the values of the floating
pOint ar i thmet ic funct ions a,re of float ing-point type. I f the
target computer is theAN/.UY.K.-4,3·, that type is the industry
standard single-precision type. If the target computer is the
AN/UYK-7, that type is the AN/UYK-7 floating-point type without
rounding.

If an actual para~eit.~r,;q·ta:fil()ating-:point ar i thmet ic funct ion
reference is not of the speCifiedfloatlng-point type, it will be
converted to that type according to the rules for assignment.

If the target computer is the AN/UYK-7, the values of the func
tions are calculated by means of library routines and the NONRT
option must be in effect.

The absolute value of the numeric function that is the actual pa
rameter of the ASIN and ACOS functions must not exceed 1.

For the ASIN2, ACOS2, and ATAN2 ftinctions, let x denote the value
of the abscissa expression, y.. denote the value -of the ordinate
expression, and f denote the value of the magnitude expression.
Then the value of ASIN2«ordinate>,<magnitude» is ASIN(~/f) and
the value of ACOS2«abscissa>;<magnitude» is ACOS(~/f). The

5-23

/ (U) CM2Y-MAN-f>'GR-M5049-R04CO

value of ATAN2«abscissa>,<ordinate» is ATAN(~/y) if Y is non
zero; if y = 0, then ~ must be non-zero and the value is ~ /2,
where the sign agrees with the sign of~. The constraints I~I <
~, lyl ~~, and L > 0 must be satisfied.

The value of the numeric expression" that is the actual parameter
of the EXP function must not exceed 177.447 if the target com
puter is the AN/UYK-43 or 22713.05 if the target computer is the
AN/UYK-7. (Both figures are approximate.)

The value of the numeric expression that is the actual parameter.
of the, ALOG function must be positive.

Examples

VRB.L (FLT1,FLT2,FLT3) F $

SET FLT1 TO SIN(FLT2) $

The floating point sine of the floating point variable FLT2 is
stored in the floating point variable FLT1.

SET FLT1 TO ACOS(FLT2) $

The floating pOint inverse cosine of the floating point variable
FLT2 is stored in the floating point variable FLT1.

SET FLT1 TO ATAN2(FLT2,FLT3) $

The floating point inverse tangent of the floating point value
FLT2/FLT3 is stored in the floating point variable FLT1.

SET FLT1 TO ALOG(FLT2) $

The floating point natural logarithm of the floating point value
FLT2 is stored in the floating point variable FLT1.

5-24

\

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.2 Fixed-Point Arithmetic Function Reference

Syntax

<fixed-point arithmetic function ref~rence>
.. - LN«numeric expression»
::= IEXP«numeric expression»)
.. - ISIN«numeric expression»
.. - ICaS«numeric expression»)
.. - BAMS«numeric expression»)
.. - RAD«numeric expression»)

Semantics

A fixed-point arithmetic function reference specifies the calcu
lation of one of several common arithmetic values in fixed-point.

LN - A predefined identifier indicating that the natural
logarithm function is to be evaluated.

IEXP - A predefined identifier indicating that the exponen
tial function (to the base e) is to be evaluated.

ISIN - A-predefined ·fdentifier indicating that the sine
function is to be evaluated.

lcas - A predefined identifier indicating that the cosine
function is to be evaluated.

BAMS - A predefined identifier indicating that a radians-to
BAMS conversion is to be evaluated.

RAD - A predefined identifier indicating that a BAMS-to
radians conversion is to be evaluated.

If the target computer is the AN/UYK-7, the values of the fixed
point arithmetic functions are calculated by means of libra~y
routin~~ and the NONRT option must be in effect.

For many of the fixed-point arithmetic functions, the type of the
anonymous formal parameter depends on the type of the actual pa
rameter expression. For purposes of the following descriptions,
an integer type is considered to be equivalent to a fixed-point
type having the same bit length and sign specification and zero
fractional bits. .

The type Of the anonymous formal parameter of the logarithm func
tion depends on· the type of the actual argument expression. If
the actual argument expression is of a floating-point type,· the
type of the formal parameter is A 32 S 28. Otherwise the type of
the formal parameter is A 30 U ~, where ~ is in the range [0,30].

5-25

I (U) CM2Y -MAN-()GR-'M5049-'R04CO

If the CMS-2Y scaling rules are in effect (paragraph 5.3.1.3),
then ~ is the number of fractional bits of the actual parameter.
If the MSCALE scaling rules are in effect (paragraph 5.3.1.6),
the value of ~ is determined by the actual parameter of the func
tion reference. Let m denote the number of magnitude bits of the
actual parameter value and let f denote its number of fractional
bit s . I f m < 30, then x = f. - I f m > 30, then x = f - (m - 30)
and m = 30; that is, the value of the actual parameter is shifted
right until it has 30 magnitude bits and the number of fractional
bits is adjusted appropriately. In either case, if ~ is nega
tive, tne result of the function reference is undefined. The
value 9f the function reference is of type A 32 5 30.

The type of the anonymous formal parameter of the exponential
function is A 32 5 31; that is, the value of the actual parameter
expression (y) must lie in the range -1 < y < 1. The type of the
value of the function reference is A 31 U 29.

The type of the anonymous formal parameters of the sine and co
sine function is A 32 U 32; that is, the value of the actual pa
rameter expression must lie in the range (0,1). This value rep
resents an angle measured in the BAMS system, in which the value
0.25 represents a right angle. The type of the value of the

.function re.fer'ence is A 32 5 30.

The type of the anonymous formal parameter of the radians-to-BAMS
function depends on the type of the actual argument expression.
If the actual argument expression is of a floating-point type,
the type of the formal parameter is A 32 S 28. Otherwise the
type of the formal parameter is A 32 U ~, where ~ is determined
by the actual parameter of the function reference. If the CMS-2Y
scaling rules are in effect (paragraph 5.3.1.3), then ~ is the
number of fractional bits of the actual parameter. If the MSCALE
scaling rules are in effect (paragraph 5.3.1.6), the value of ~
is determined as follows: let m denote the number of magnitude
bits of the actual parameter vaTue and let 1 denote its number of
fractional bits. If m < 32, then x = f. If m > 32, then x = f -
(m 32) and m = 32~ that is, the vaTue of the actua.l parameter
is ~hifted right unti 1 if has 32 magnitude bits'and the number' of
fractional bits is adjusted appropriately. The value of the ac
tual parameter expression must lie in the range (0,2). This
value represents an angle measured in the radians system. The
type of the value of the function reference is A 32 U32.

5-26

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

The type of the anonymous formal parameter of the BAMS-to-radians
function is A 32 U 32. The value of the actual parameter expres
sion must lie in the range (0,1). This value represents an angle
measured in the BAMS system. The type of the value of the func
tion reference is A 31 U 28.

Examples

VRBL A32S10 A 32 S 10 $
VRBL A32S15 A 32 S 15 $

SET A32S15.TO LN(A32S10) $

This example computes the natural logarithm of the value in
A32S10 and stores the result in the variable A32S15.

SET A32S15 TO IEXP(A32S10) $

This example computes the exponential function of the value in
A32S10 and stores the result in the variable A32S15.

SET A32S15 TO ISIN(A32S10) $

This example ~omputes the sine of the value in A32S10 and stores
\ the result in the variable A32S15.

SET A32S15 TO BAMS(A32S10) $

This examole assumes that the value in A32S10 is in radians,
converts it to BAMS, and stores the result in the variable
A32S15.

SET A32S15 TO RAO(A32S10) $

This -example assumes
converts it to radians.

. A32S15.

that the value in A32S10 is in BAMS and
The result is stored in the variable

In all of the above ~xamples, the result is aligned to. 15 bits of
scaling before being stored in the variable A32S15.

5-27

5.2.3.3 Status Operation Function Reference

Syntax

<status operation function reference>
.. - <successor funct ion referehoce>

- <predecessor function reference>
::= <initial value function reference>
::= <final value function reference>

Status operation function references provide operations on status.
type values and status types.

Examples

The examples of the following paragraphs will make use of the
following declarations:

TYPE DAY S 'SUN', 'MON', 'TUE', 'WED', 'THU',
, F R I " 'SA T ' $

VRBL TODAY DAY $

5-28

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.3.1 Successor Function Reference

Svntax

<succ~ssor function reference>
::= SUCC«status expression»

Semantics

The value of a successor function reference is the value that
follows the value of its argument, in the order in which the val-
ues are listed in the declaration of the type of the argument. .

SUCC - ~ preQefined identifier indicating a
suooessor function reference.

<status expression) - The expression whose successor value
is the value of the function refer
ence.

The value ofa~99o.~~s..o·r :f,:,~ncti on reference is undefined if the
" va luet ofthea~:~."J.~~~.:~.,:,.:expre$~iqn is the· last value ofi ts type.

\

Example

If TODAY has thevalu9:;.'MON'
SUCC (TODA Y I has the' va iue ., TUE' .
then SUCC(TODAY) is undefined.

5-29

(pa~agraph 5.2.3.3), then
If TODAY has the value 'SAT',

5.2.3.3.2 Predecessor Function Reference

Syntax

<predecessor function reference>
::= PRED«status expression»

Semant ics

The value of a predecessor function reference is the value that
precedes the value of its argument, in the order in which the
values are listed in the declaration of the type of the argument.'

PREO - A predefined identifier indicating a
predecessor function reference.

<status expression> - The expression whose predecessor value
is the value of the function refer
ence.

The value of a predecessor function reference is undefined if the
value of the argument expression is the first value of its type.

Example

If TODAY has the value 'MON,I
PRED(TODAY) has the value 'SUN'.
then PREO(TODAY) is undefined.

5-30

(paragraph 5.2.3.3),then
If TODAY has the value 'SUN',

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.3.3 Initial Value Function Reference

Svntax

<initial value function reference>
- FIRST«status type»

Semantics

The value of an initial value function reference is the first
value of its argument type.

FIRST - A predefined identifier indicating initial
value function reference.

<status type> - The status type whose first value is the
value of the function reference.

Example

The value of FIRST(DAY) (paragraph 5.2.3.3) is 'SUN'.

5-31

/

5.2.3.3.4 Final Value ~U~ction Reference

Syntax

<final value function reference>
::= LAST«status type»

Semant ics

The value of a final value function reference is the last value
of its argument type.

LAST - A p're~:f ineai ck:1:ri t i f ia:r indicating a final
val u'e f unc t i ot) (\'e f 9''1'' ence .

<status type> - The status type whose last value is the
value of th~ function reference.

Example

The value of LA$I((;1~~::Y) (paragr'aph5.2. 3.3) is I SAT I •

5-32

)

\

flU) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.4 Bit String Function References

Syntax

<bit string function reference>
.. - <bit string sum function reference>

- <bit string product function reference>
::= <bit string difference function reference>
::= <bit string complement function reference>

<bit string sum function reference>
::= ORF«bi·t string operand 1>,<bit string operand 2»

<bit string product function reference>
::= ANDF«bit string operand 1>,<bit string operand 2»

<bit string difference function reference>
::= XORF«bit string operand 1>,<bit string operand 2»

<bit string complement function reference>
::= COMPF«bit string operand 1»' -

<bit string operand 1>
::= <simple expression>

<bit string operand 2>
::= <simple expression>

Semantics

A bit string function reference specifies a manipulation of the
bits that represent one or two CMS-2Y values. -

ORF

ANDF

XORF

COMPF

- A predefined identifier specifying the I
bit -by -bit 1 og i ca 1 sum 0 f two bit s ~_ rings ..1

- A predefined identifier specifying the
bit-by-bit logical product' of two bit
strings.

- A predefined identifier specifying the
bit-by-bi~ logical symmetric difference of
two bit strings.

- A predefined identifier specifying the
bit-by-bit logical complement of a bit
string.

<bit operand 1> - Expressions whose values are the bit
<bit operand 2> strings to be manipulated.

5-33

/ (U) CM2Y-MAN-PGR-M5049-R04CO

The anonymous formal parameters of the bit string functions are
of universal type; the bit strings that represent the values of
the actual parameters are not converted as part of a bit string
function reference.

The type of a bit string function reference is universal. Each
function reference has a length, in bits, which depends on the
function and the lengths of its actual arguments.

If the actual arguments of a bit string sum
bit string product function reference, or a
function reference have different lengths,
tive1y'padded on the left with O-bits to
longer.

function reference, a
bit string difference
the shorter is effec-

the length of the

The value of a bit string sum function reference is 0 at those
bit positions where both actual arguments have O-bits; the value
has 1-bits at all other bit positions. The length of the func
tion reference is the length of the longer of its actual argu
ments.

I The value of a bit string product function reference is 1 at
I those bit positions where both actual arguments have 1-bits; the
I value has O-bi~s at all other positions. The length of the func
I tion reference is the length of the shorter of its actual argu
I. ments.

The value of a bit string difference function reference is at
those bit positions where one of the actual arguments has a 1-bit
and the other has a O-bit; the value has O-bits at all other po
sitions (where the bits of the actual arguments are the same).
The length of the function reference is the length of the longer
of its actual arguments.

The value of a bit string complement function reference is at
those bit- positions where its actual argument has a O-bit and 0
at those bit positions where its actual argument has a 1-bit,
The length of the function is the length of its actual argument ...

Examples

VRBL V1 I 12 U P 0(0770) $
VRBL V2 I 12 U P 0(77) $

SET VB1 TO ORF(V1,V2) $

Results in VB1 being set to 0(0777).

SET VB1 TO XORF(V1,V2) $

Results in VB1 being set to 0(0707).

5-34

/(U) CM2Y-MAN-PGR-M5049-R04CO

SET VB1 TO ANDF(V1,V2) $

Results in VB1 being set to 0(0070).

SET VB1 TO COMPF(V1) $

Results in VB1 being set to 0(7007).

5-35

/(U) Cft12Y-MAN-PGR-M5049-R04tO

5.2.3.5 Scaling Sgecification Function Reference

Syntax

<scalf ~~nction reference>
::= SCALF«scale factor),<controlled expression»

<scale factor>
::= <numeric constant expression>

<controlled expression>
::= <numeric expression>

Semantics

A scaling specification function reference specifies a fixed
pOint numeric expression and a scale factor to be used in evalu
ating the expression and aligning its value.

SCALF

<scale fa.ctor>

- A predefined identifier indicating
a scaling specification function
reference.

A numeric constant expression
specifying the scaling to be used
during evaluation of the con
trolled expression and the final
alignment of its value.

<controlled expression> - A numeric expression whose evalua
tion is controlled by the scale
factor.

The controlled expression must be a numeric expression whose op
erands are fixed-point values or constants. Exponentiations are
permitted only if the exponent is a constant expression whose
value is integer; the expression must have at least two operands.
At least one operand must be nonconstant.

All operations in the evaluation of the controlled ~xpression
that involve at least one nonconstant operand will be performed
in fixed-point arithmetic, subject to the scaling rules specified
below. Operations involving only constant operands will be per
formed according to the constant arithmetic rules (paragraph
5.3.1) .

Only operations on the primaries of the controlled expression are
affected by the SCALF function reference. The evaluations of
subscript expressions and actual argument expressions are unaf
fected.

5-36

I(U) CM2Y-MAN-PGR-M5049-R04CO

The value of the scale factor expression must be integer in the
range [-127,127]. It must be possible to execute the operations
using the fixed-point (integer) instruction set of the target
machine.

For addition and subtraction, both operands will be aligned to
the scale factor before the operation.

For multiplication (including multiplication executed during the
evaluation of an exponentiation), no prealignment will be per:
formed. The product will be aligned to the scale factor.

For division, the numerator will be aligned to a scaling of Sf+Sd
prior to the division operation, where Sf is the value of the
scale factor and Sd is the scaling of the divisor. As a result
of this prealignment, the scaling of the quotient wi 11 be Sf.

Examples

VRBL A11S4 A 11 S 4 $
VRBL A552 A 5 5 2 $
VRBL A1153 A 11 5 3 $

SCALF(3,A11S4 + A552)

The contents of variable A11S4 are loaded into a register and
right-shifted one bit (scaled 3). The contents of variable A5S2
are loaded into a register and left-shifted one bit (scaled 3).
The two values are then added.

SCALF(2,A11S3/A11S4)

The contents of variable A11S3 are loaded into a register and
left-shifted three bits (scaled 6) and then divided by the con
tents of variable A1154. The result is scaled 2.

5-37

"

5.2.3.6 Convers ion~Lihc~t1onRe-ference

Syntax

<conf function reference>
::= CONF«target conversion type>,<conversion source»

<target conversion type>
.. - <numeric type specification>
: : = <s iinp-le type>
: : = < typeds~tructur'e 'name>

<conversion source>
: :-= <nume'r ic expr,e$:s:l<:>h>

Semant lCs

A conversion funct-ionrefe'renoe sp:ecifies the conversion of a nu
mer i c value to;an(;)'tthis~r numeric type.

CON'F - 'Ap-redef i ned i dent i f ier i nd i ca t
; nga -conv&r:s'~iohfunc·t 01'00 r'e fer -
'ende.'

<target co6\l~F;~)1'on tYl'er> -A 's'pecffH:at"ion of tne numer ic
tYP,e to whiCh the value is to be
:cohver ted.

<conversion source> - A numeric expression whose value
is NJ Jbe converted to the target
type.

The value of a conversion function reference is the value oT the
source expre'ss io'n ,cdn\Yer'ted to the target type (parag~raph
5.3.1) .

If the target con\iersi on typei s in the form of a name,i ttnust -
be the n arne o'f a s 'i mp 1e 'numE!r;i"~c type or' "8 typed s true t ur'e "-whose
underlying simple tYl'ei snumer lc. ,In the 1a tt-er case, the type
to which the va 1 uei-s'banve'r ted is t he under 1 y i ng s i-mp 1e type.

The va 1 ue of a conversionfunct ;c)n reference is undef; ned i f the
convers i on of the s,()u:rce'~xpres:s;on val ue to the targ'et type is
i nva 1 i d.

Examples

VRBL A1153 A 11 53$
VRBL A855 A 8 S 5 $

CONF \ I 8 5, A1153)

/(U) CM2Y-MAN-PGR-M5049-R04CO

This function reference has the effect of discarding the frac
tional bits of A1153.

CONF!A 10 S 2, A1153)

This function reference effectively discards one fractional bit
of A11S3.

CONFIA 9 S 7, A8SS)

This function reference has the effect of adding two fractional
bits to A855 and discarding the most significant bit of A855.
This function reference can be undefined for some values of A855.

Implementation Note

Use of a conversion function reference is an implicit declaration
that the target type is capable of expressing the value of the
source expression, subject to the rules of numeric conversion
(paragraph 5.3.1). Therefore, for example, if the target type
requires fewer significant bits than the type of the source ex
pression, the compiler does not generate code to mask out the
unneeded significant bits; nor to verify that the new sign bit,
if the target type is signed, correctly represents the sign of
the source value.

5-39

5.2.3.7 Temporary O,ef t nit ion Funct i on Reference

Syntax

<tdef function reference>
::= TDEF«target redefinition type>,<redefinition source»

<target redefinition type>
- <numeric type specification>

::= <simple type>
::= <typed structure name>

<redef1nition source>
::= <simple expression>

Seman tics

A temporary definition function reference causes a bit string
representing a value of one type to be treated as though it were
representing a value of another type.

TDEF - A predefined identifier indi
cat ing a temporary definition
function reference.

<target redefinition type> - A specification of the type to
which the bit string is to be
converted. Type must be either
integer type, fixed-point type,
or floating-paint type.

<redefinition source> - A simple expression whose value
is the bit string to be con
verted.

The effect of a temporary definition function reference is as if
the value of the source expression were converted to. universal
type, and the resulting bit string were then treated as a value
of the target type.

If the target redefinition type is in the form of a name, it must
be the name of a simple numeric type or a typed structure whose
underlying simple type is numeric. In tne latter case, the type
to which the bit string is converted is the underlying simple
type.

The number of bits required by the targe: type must not be great
er ,than .the numb.er of bits··of the source expression.

5-40

)

Examples

VRBL 1145 I 14 5 $

TDEFtA 12 5 3, 11 4 5)

flU) CM2Y-MAN-PGR-M5049-R04CO

The bit pattern that is the value of 1145 is used as though it
were a value of type A 12 5 3.

5-41

/ (U) CM2Y -MAN-PGR-IIS04·9-t04CO

5.2.3.8 Remaindering Function Reference

Syntax

(rem function rpference)
::= REM(remaindering expression»)

(remaindering expression)
::= (numeric expression)

Semantics

A remaindering function reference returns the remainder of a
fixed-point division operation.

REM - A predefined identifier indicat
ing a remaindering function ref
erence.

(remaindering expression) - A numeric expression containing
the fixed-pOint division opera
tion whose remainder is the
value of the function reference.

The remaindering expression must contain only fixed-point oper
ands, and exactly one fixed-pOint division operation. The divi
sion operation must be indicated by the division operator (/).

The operands of the division operation of the remaindering ex
pression cannot both be constant expressions.

The value of a remaindering function reference is the remainder
of the explicit division operation in the remaindering expres
sion.

All constant arithmetic in the remaindering expression is per
formed according to the constant arithmetiC rules (paragraph
5.3.1) .

The sign of the remainder is the sign of the numerator. The num
ber of magnitude bits in the remainder is the number of magnitude
bits in the denominator, after it has been aligned prior to the
division operation (paragraph 5.3.1). The number of fractional
bits in the remainder is the number of fractional bits in the nu
merator, after it has been aligned prior to the division opera
t ion (paragraph 5.3".1).

5-42

Examples

VRBL A12S4 A 12 5 4 $
VRBL A4S2 A 4 S 2 $

I(U) CM2Y-MAN-PGR-M5049-R04CO

The value of the function reference

REM(A12S4/A4S2)

is the remainder obtained by dividing the variable A12S4 by vari
able A4S2. The attributes of this value depend on the fixed
point scaling ru·les ,beinq""use,d (paragraph 5.3.1.3). If the
MSCALE rules are being used, the value has 14 magnitude bits and
seven fractional bits', '

Note

A division operation9n two_fixed-point operands may be performed
in f loa t i ng-po.i nl:i_d~'e" to ':S'C'ali ng ru 1 es (par agr aph 5 . 3 . 1) . In
th i s case the r,em~{nde'r rng": 'func t i on reference will cause an er ror
message, s fnce, ,(~~;;f.unc t ion app 1 i es to fixed-po i n t d i vis i on on 1 y .

·_r·l.··.·.·:.'·,:·,··.

5-43

I(U) CM2Y-MAN-PGR-MS049-R()4CO

5.2.3.9 Bit Count Function Reference

Syntax

<ent function reference>
::= CNT«simple expression»

Seman t 1 CS

The value of a bit count function reference is the number of II on II
bits (1 bits) in its actual input parameter.

CNT - A predefined identifier indicating a
bit count function reference.

<simple expression> - An expression whose II on II bits are to
be counted.

The simple expression must not be longer than 32 bits. The type
of the value of a bit count function reference is I 32 S.

Examples

VRBL V1V-I 23 U P 0(16) $

IF CNT(V1V) EQ 3 THEN RETURN $

This bit count function reference results in conversion of the
variable V1V to a 32-bit universal type operand before the bits
are counted. If V1V contains three II on II bits, the return state
ment will be executed.

5-44

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.10 Subfile Number Function Reference

Syntax

<fi 1 function reference>
::= FIL«file name»

Semantics

The value of a subfile number function reference is the number of
the current subfile in the named file.

FIL - A predefined identifier indicating a subfile
number function reference.

<file name> - The name of the file whose subfile number is
the value of the function reference.

The named file must be open at the time of the subfile number
function reference.

The type of the value of a subfile number function reference is
A 32 S O.

5-45

/(U) CM2Y-MAN;...PGR-M5049-R04CO

5.2.3.11 Subfile Position Function Reference

Syntax

<pos function reference>
::= POS«file name»

Seman tics

The value of a subfile position function reference is the number
of the current record in the current subfile of the named file.

POS - A predefined identifier indicating a subfi le
position function reference.

<file name> - The name of the file whose record number is
the value of the function reference.

The named file must be open at the time of the subfile position
function reference.

The type of the value of a subfile position function reference is
A 32 S O.

5-46

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.2.3.12 Record Length Function Reference

Syntax

<length function reference>
::= LENGTH«file name»

Seman tics

The value of a record length function reference is the length of
the current record in the named file.

LENGTH - A predefined identifier indicating a record
length function reference~

<fi le name> - The name of the file whose current record
length is the value of the function reference.

The named file must be open at the time of the record length
function reference.

If the type of the named file is Sf the value of the function
reference is the length of the current record in target machine
words. I f -the type of the named file isH, the va lue of the
function reference is the length of the current record in charac
ters.

The type of the value of a record length function reference 'is
A 32 S o.
Examples

LENGTH(INSTRUCT)

LENGTH specifies the length of the current record for the-file
·named INSTRUCT.

5-47

5.3 Expressions

Syntax

<expression>
::= <simple expression>
::= <structured expression>

<simple expression>
- <numeric exp~ession>

.. - <boolean expression>
::= <character expression>
::= <status expression>
::= <bit string expression>

Semantics

An expression is the means by which values are generated in a
CMS-2Y(7) program. Expressions include constants, data units,
and function references as special cases.

The type of the value of a simple expression is simple. The type
of the value of a structured expression is structured.

5-48

I'

\

5.3.1 Numeric Expression

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<numeric expression>
::= <numeric expression> + <numeric term>
.. - <numeric expression> - <numeric term>
::= <numeric term>

<numeric term>
- <numeric term> * <numeric factor>

.. - <numeric term> / <numeric factor>

.. - <numeric factor>

<numeric factor>
.. - <numeric primary> ** <numeric factor>

- [<unary numeric operator>] <numeric primary>

<numeric primary>
:: = «numer,ip.E)xpress ion» [<sca 1 1ng spec if ier>]
· . - <sing.l~t!¥aJuedda ta un it> [<sca 1 i ng spec if i er >]
: ': = <Wc>t'd':, '·\'~.A.t:::tJn:(l't»::(\:<1;sc;a 11 ng spec:,; fi 'ar >.}
::"= ,,:(.'fUh¢t~, .rnt~~er.mte{>':~ [\~:sd'a~i'ngspec f~f i er > }
.,,". -"., <b'·,· t',r· ·m· .. '··.. , '.tt{~iH'\ }'Ml!!a t"a"'.'·~ "~'!4't:> • • .. ·l .~ :~:~:(/{,\r :~1~ :.~u··· \~~G ,', ,'. 'U4" .. ·~1···' -.

· . - <ntag 'n'1111e;), "
· . - <r tag l1'ame>
· . - < 1 tag name>
::= <numeric constant>

<scaling specifier>
.. - .. <numeric constant value>

Semantics

A numeric expression specifies the calculation of a numeric value
using the numeric ope r"s:<t i on~Of unarypl us , unary minus (nega
t ion), add i t ion, , .. subtract\'i'oti, mu 1 tip 1 i ca ti on, d i vis ion, and expo
nen t ; at ; on . A I1Urner ic express ion can a 1 so cons i s t'o·f a' sing 1 e
numer ; c va 1 ue, with no operat:i'on per formed.

The type of any single-valued data unit or 'the value of any func
tion reference used as a primary in a numeric expression must be
numeric.

A word data unit used as a primary in a numeric expression is as
sumed to be of type I 32 S.

5-49

/ (U) CM'2-Y -PlAINt- P-GR-1I5049-R04CID

5.3.1.1 Expression Evaluation

The semantics of a numeric expression are implied by the produc
tions that specify its syntax. There is a hierarchy of opera
tors, which is given in the following table:

Operator Operation Hierarchy

+ Unary Plus 1
Unary Minus (Negation) 1

** Exponentiation 1
* Mu 1 tip 1 i ca t i on 2
/ Division 2
+ Addition 3

Subtraction 3

The operators "+" and "-~ are unary operators whenever they are
not immediately preceded by an operand. In all other cases they
represent the binary operations of addition and subtraction re
spectively.

Numer i c express ions are eva lua ted accord i ng to th'e opera tor hi er
archy. The operation indicated by an operator may be performed
provided- that "theimmediate-ly preceding operator., i f present, and
the immediately succeeding operator, if present, have a higher
hierarchy number. When an operation is performed, the operator
and its operand or operands are replaced in the expression by the
value of the operation, and the resulting expression is then
evaluated.

A parenthesized expression appearing as an operand of a numeric
operator must be evaluated before the operation indicated by the
operator can be performed.

If two consecutive numeric operators both have hierarchy number 2'
or both have hierarchy number 3, the operation indicated by the
left operator is performed first. If two consecutive numeric op
erators both have hierarchy number 1, the operation indicated by
the right operator is performed first.

5.3.1.2 Numeric Conversions

If one operand of an addition, subtraction, multiplication, divi
sion, or comparison is of a fixed-point type and the other is of
a floating-point type, the value of the fixed-point operand will
be converted to the- floating-point type before the operation is
performed. If the operands of one of these operations are of
d i f fe-ren tf 1 oati ng-po in t types;" the va-l ue of one of the operands
will be converted to the other type before the operation is per
formed, as specified in Figure 5-01. If neither operand is
floating-paint and the scaling rules require that they be

5-50

/(U) CM2Y-MAN-PGR-M5049-R04CO

converted to floating-point, they are converted to the form
having floating-point attribute T. If the operands of an addi
tion or subtraction are of different fixed-point types, the val
ues of one or both will be converted (by shifting) to a different
fixed-point type before the operation is performed.

Operand
Attributes

T & R
T & 5
T & D
R & 5
R&D
5 & D

Floating-Point
Conversion

T to R
5 to T
D to T
5 to R
D to R
5 to D

See page 4-8 for a discussion of T, R, D AND 5 attributes.

Figure 5-01. Floating-point Arithmetic Conversions

The non-floating-point base operand of an exponentiation is con
verted to floating-point unless both operands are integers or the
exponent is a positive integer less than or equal to 4. The ex
ponent operand is converted to floating-point unless i1 is an in
teger. The conversion will be from fixed-point to AN/UYK-7
floating-point unless the other operand has the floating-point
attribute 5 or D, in which case the conversion is to that type.

In a conversion from one numeric type to another, the conversion
algorithm is such that each value of the source type is converted
to its most accurate approximation in the target type. The
method of approximation is by truncation on the right. If the
attributes of the target type do not permit representation of the
most- significant bit of the source value, the effect of the con
version is undefined.

5.3.1.3 Fixed-Point Scaling Algorithm

The CMS-2Y fixed-point scaling algorithm is context~sensitive;
that is, identical expressions appearing in different contexts
might be evaluated in different manners. The number of fraction
al bits in the result of a nume~ic operation with fixed-point op
erands is determined by the operator, by the attributes of the
operands, and by the value of a scaling controller, as defined in
the scaling rules below. The alignment used to arrive 'at the re
sultant scaling is also defined.

5-51

I'

/ (U) CM2Y -MAN-PGR-M5'o-49"~04CO

5.3. 1 .3. 1 Symbo 1 s 'Used in Sca 1 i ng Algor i thm

If X and Yare two numeric values, the evaluation of R = X op y
(where op means arithmetic operation) is performed in accordance
wi th the· seal ing ,pul.es·, below""tJs'ing the following symbolS!

A1 =
I 1 =

A2 =
12 =
Ar =
Ir =

N1 ::

N2 ~

Nr' ~'; ..,

z

number of fract ion bits in X

number of integer bits in X

number of fraction bits in Y

number of integer bits in Y

number of fraction bits in R

number of integer bits in R (not including the sign
bit)

number,()f bits in X (sign included)
'c'" ">

numtJ •. ~~;;:'~lf,,;;{'b;.'i '"1;;$.,i t\ : ,y, ' (,s ign inc 1 uded).

l'\or~;'~li{b~:t~\(~irf:~t>(('$ i~ltl'Cl tJdetll
"Y!~/'.:~-:~,~, -< ~" "; ~'~: •• c:.;

M1 = 11 + A1

M2 = 12 + A2

C = If Y is a constaht, the number of significant bits of
Y minus 1 (i .9. ,'not including leading zeros) ; other
wise, O.

If either operand is a single-valued data unit followed by a
sea 1 i ng spec i f i er: a word d~,5t'a(,:~'i t;fo 110wed by a sea 1 j ngspec i -
f i er, or a ,funet ion reference fo 110wed by a sea 1 i ng spec if ier,
the operand's number o:f'f,...a~:,ttOr'ia'l bits is the value of the scal
i ng specifier, wh iChl1\uS t·{:t)e't:i~ntt~l§ger\ :ltieevtil ue of the da,taun i t
or function reference is not,'cenverted to th'e scaling specified;
the bit s t ring repr'esenttf\'l(J 'tHe' va 1 ue is interpreted as repre
sent ing a va lue of the-}'spec:ffi t$d"nCirt1ber-'of'bi ts.

5-52

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.1.3.2 The Value of the Scaling Controller

If a numeric expression contains only fixed-point operands, is
enclosed in parentheses, and is followed by the optional scaling
specifier, the numeric constant value in the scaling specifier is
the value of Z. If a numeric expression contains only fixed
point operands, is not enclosed in parentheses and is not follow
ed by a scaling specifier, and is the source in an assignment
statement whose receptacle is of a fixed-point type, the number
of fractional bits of the receptacle is the value of Z. For all
other cases of numeric expressions containing only fixed-point,
operands not enclosed in parentheses and followed by a scaling
specifier (in a numeric relational expression, a case selector
(paragraph 6.1.2.3), or an assignment phrase with a floating
point receptacle), the value of Z is determined as follows:

If A1 and A2 are both nonzero, then Z = min(A1,A2).

If A1 and A2 are both zero, then Z = O.

Otherwise, Z is the nonzero one of A1 and A2.

5.3.1.3.3 Results of Binary Operations

a. Addition and Subtraction

1 . I f A 1 = A2, t hen A r = A 1 = A2.

I f A 1 and A2 are not equa 1 and min (A 1 ,A2) > Z, then
Ar = min(Al,A2). Otherwise, Ar = Z.

2. X and Yare prealigned to Ar fractional bits.

b . Mu 1 tip 1 i ca t ion
.....

1. If N1 > 32 or N2 > 32, both operands are converted
to float ing-point and the operat ion is performed i-n
floating-point.

2. No prealignment of operands occurs in fixed-point
expressions that form part of a relational expres
sion.

3. If Al > Z and X is the result of a previous multi
plication, X is prealigned to Z fra~tional bits and
Al' = Z. Otherwise, X is not prealigned and Al' =
A 1 •

5-53

/ (U) CM2Y.-rtA","'~PGR ""M5049,,-R{).4CO

4. If A2 > Z and Y is the result of a previous multi
plication, Y is preal~gned to Z fractional bits and
A2' = Z. Otherwise, Y is not prea11gned and A2' =
A2.

5 . Ar = A l' + A2'.

c. 0 i vis ion

1. If N2 > 32, the operands are converted to floating
point and the operation is performed in floating
pOint.

2. If A2 > Z, Y is prealigned to Z and A2' = Z. Other
wise, Y is not prealigned and A2' = A2.

3. X is prealigned to A2' + Z and A1' = A2' + Z.

4. Ar = Z.

d. Exponentiation

1 . Ar = Al.

Imp 'ternen ta t i on No t e

If the exponent is a positive integer less than or equal to 4,
the coding will be in-line; otherwise, a run-time routine is
called.

5.3.1.3.4 Floating-Point Arithmetic

A binary numeric operation is executed in floating-point whenever
either of its operands is of floating-point type. Certain multi
plications and divisions involving only fixed-point operands are
executed in floating-point (see above). If an operand of .-~
floating-point operation is of fix~d-point type, it is converted
to floating-point before the operation.

If either oper~nd of a floating-point operation has the rounding
attribute, the operation is executed using the target machine
floating-point rounding instructions, as specified in Figure
5-01. A fixed-point operand converted to floating-point does not
have the rounding attribute.

The result of a' floating-point operation is of floating-point
type. If either operand has the rounding attribute, the result
has the rounding attribute.

5-54

flU) CM2Y-MAN-PGR-MS049-R04CO

5.3.1.4 Sign of Fixed-Point Operations

The value of a fixed-point addition, multiplication, or division
operation is unsigned if both operands are unsigned. The value
of a fixed-point unary plus operatjon is unsigned if its operand
is unsigned. Any other fixed-point value that arises from a nu
meric operation is signed.

5.3.1.5 Constant Arithmetic

If both operands of an addition, subtraction, multiplication, or
division are constants, or are the values of an expression con
sisting of these operators and constant operands, the operation
is performed during compilation to an accuracy of 63 bits. The
scaling (number of fractional bits) of one of these operations
depends on the scaling of its operands. For an addition, sub
traction, or division, the scaling of the result is the larger of
the scalings of the two operands. For a multiplication, the
scaling of the result is the sum of the scalings of the two oper
ands.

The compiler does not rearrange any numeric expressions in an
effort to di~cover opportunities for constant arithmetic.

Examples

The
ples

fo 11 ow i ng variables are referenced in the scaling rule exam-
below:

VRBL
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL

a.

A5S2 A 5 S 2 $
A-6S2 A 6 S 2 $
A6S3 A 653 $
A8U? A 8 U ? $
A4UO A 4 U 0 $
A9U5 A 9 U 5 $
A4U1 A 4 U 1 $
A48U16 A 48 U 16 $
(FLTA,FLTB) F $
FLTC F (R) $
A5U4 A 5 U 4 $

S~"'" 1...1 A4U1 TO A6S2 - A8U? $

The fractional bits of the first and second operand (2
and 7) are unequal, min(Al,A2) = min(2,7) = 2, and Z = 1
(the number of fractional bits of the receptacle, A4U1).
Since min(Al,A2) > Z, then Ar = min(A1,A2) = 2. There
fore, A6S2 and ABU7 are prealigned to two fractional
bits before the subtraction is performed.

5-55

b. SET A9U5 TO A6S2 - ABU7 $

This is similar to the above example except that Z = 5,
and thus min(A1,A2) < Z. Therefore Ar = Z = 5, and A6S2
and ABU7 are prealigned to five fractional bits before
the subtraction is performed.

c. SET ABU7 TO A4BU16 * A4UO $

Here N1 = 48, N2 = 4, A1 = 16, and A2 = O. Because Nl)
32, both operands are converted to floating-point, and
the multiplication is performed in floating-point.

d. IF A6S2 * ABU7 GT 127 THEN ... $

This fixed-point multiplication is a part of a relation
al expression. As a result, there is no prealignment of
operands.

e. SET A5U4 TO A5S2 * A6S3 * ABU7 $

Because multiplications are done from left to right, the
above statement is equivalent to

SET A5U4 TO (A5S2 * A6S3) * A8U7 $

For the parenthesized multiplication, A1 = 2, A2 = 3,
and Z = 4. Since A1 < Z, X is not prealignedand Al' =
A1 = 2. Since A2 < Z,-Y is not prealigned and A2' =
A2 = 3. Ar = Al' + A2' = 5.

For the second multiplication, A1 = 5,
Z = 4. Since A1 > Z and X is the result of
multiplication, X (the value of the first
t ion) is prea 1 igned to four fract iona 1
A1~ = 4. Althotigh A2 > Z, ABU7 is not the
previous multiplication. Therefore A8U7 is
ligned, A2' = A2 = 7, and Ar = 11.

f. SET ABU7 TO A6S2 * A6S3 $

A2 = 7, and
a previous
mu 1 tip 1 i ca
bits, and
result of a
not praa-

A1 = 2, A2 = 3, and Z = 7. Since A1 < Z, the value of
A6S2 is not prea 1 i gned, and A l' = A 1 = 2. Since,' A2 < Z,
the value of A6S3 is not prea 1 i gned, and A2' : ',A2 = 3.
Therefore, Ar = 5.

g. SET A6S3 TO A48U16 / A9U5 $

Here N1 = 48, N2 = 9, A1 = 16, and A2 = 5. Because N1)
32, both operands are converted to floating-pdint, and
the division is performed in floating-point.

S-56

/(U) CM2Y-MAN-PGR-M5049-R04CO

h. SET A6S2 TO A6S2 / A5S2 $

A1 = 2, A2 = 2, and Z = 2. Since A2 ~ Z, the Y operand
(A5S2) is not prealigned and A2' = A2 = 2. The X oper
and (ASS2) is prea 1 igned to four fract iona 1 bi ts
(A2' + Z = 4) and A l' = 4.· A r = Z = 2.

i. SET A5S2 TO A6S3 / A8U7 $

Here A1 = 3, A2 = 7, and Z = 2. Since A2 > Z, the Yop
erand (ABU7) is prealigned to two fractional bits, and
A2' = z· = 2. The X operand (ASS3) is prealigned to fiv~
fractional bits (A2' + Z = 5) and A1' = 5. Ar = Z = 2.

j. SET A9U5 TO A5S2 ** 2 $

The scaling of the result of this exponentiation is Ar =
A 1 = 2.

k~ SET A6S3 TO FLTA * A5S2 $

Because one of its operands is floating-point, the other
operand (A5S2) is converted to floating-point and the
multiplication is executed in floating-point. The value
is converted to fixed-point with three fractional bits
prior to being assigned to A6S3.

1. SET FLTA TO FLTB / FLTC $

Since operand FLTC has the rounding attribute, the divi
sion is executed using the target machine hardware
floating-point rounding instructions.

m. SET A9U5 TO A5S2 .. 0 + ASS3 .. 0 $

Because of the two scaling specifiers, A1 = 0 and
A2 = O. Since A1 = A2, Ar = A1 = A2 = O. Thus neither
operand is prea1igned prior to the addition, which means
that the ones bit of A6S3 is aligned with the twos bit
of A5S2. After the addition is performed in this
manner, the value obtained is shifted left five places
before being assigned to A9U5.

n. SET A9U5 TO A5S2 .. 6 + ASS3 .. 7 $

Because of the two scaling specifiers, A1 = 6, A2 = 7,
and Z = 5. Since min(A1,A2) = min(S,7) = 6 > Z, then
Ar = min(A1,A2) = 6. Thus both operands are prealigned
to six fractional bits prior to the addition. However,
in evaluating this expression, A5S2 is treated as having
six fractional bits and ASS3 is treated as having seven

5-57

/(U) CM2Y-MAN-PGR-M5049-R04CO

fractional bits, because of the scaling specifiers.
Trerefore, the value of A6S3 is shifted right one bit
and the value of A5S2 is not shifted. After the addi
tion, the resulting value is shifted right one bit prior
to being assigned to A9U5.

5.3.1.6 MSCAlE Scaling Algorithm

The MSCALE scaling rules apply when the scaling specification ap
pears in an options declaration. These rules are context-free.
That is, the number of magnitude bits (integer bits and fraction
al bits) in the result of a numeric operation is determined only'
by the operator and the attributes of the operands, as defined in
the scaling rules below. The alignment used to arrive at the re
sultant scaling is also defined below. The symbols used in the
MSCALE scaling algorithm are the same as those listed in para
graph 5.3.1.3.1.

5.3.1.6.1 Integer Arithmetic Scaling Algorithm

The integer arith~.tic rules apply only if X and Yare both of
I' integer type ~

,?"::

a . Add 1 iti tl";;\itf~:~ ';:"SUb t (,Ie t,l6n

Nr = max(N1,N2)

b. Multiplication

1. Nr = min(N1,32)+min(N2,32)

2 . I f N 1 > 32, the ri gh t mos t 32 bit S 0 f X are used to
perform the operation.

3. If N2 > 32, the rightmost 32 bits of Yare used to
perform-the operation.

c . D i v i .s i on

1. Nr irnih(N1-C,3t)

2 . I f N 2 > 32, the r i gh t mos t 32 bit s 0 f Y are used to
per form the opera t ion.'

5.3.1.6.2 Fixed-PC?int Arithmetic Scaling Algorithm

The fixed-point arithmetic rules apply if X or Y is of fixed
point type and neither isof floating-point type.

The fixed-point scaling rules are defined to retain the most sig
nificant bits of the large·s! value th-at can result from an

5-58

/(U) CM2Y-MAN-PGR-M5049-R04CO

operation ,except that one bit may be lost on the left if an ad
d;~ion or subtraction overflows beyond the left bit of the number
with the largest number of integer bits). In aligning to retain
the most significant bits, bits may be lost from the right of an
operand or from the result of an operation. In some cases
when alignment is done to retain the most significant bits, the
entire nonzero value of an operand or operation may be lost, and
the result wi 11 be zero.

a. Addition and Subtraction

1 . I r max(I1,I2)

2 . A r = min (63- I r , max (A 1 , A2))

3. X and Yare aligned to Ar and then used to perform
the operation.

b. Mu 1 t ; p 1 i ca t ; on

1. If M1 or M2 is greater than 31, both operands are
converted to floating-point and the multiplication
is performed in floating-point, giving a floating

.. po in t resu 1 t .

2. Otherwise, the resultant values for Ir and Ar are as
fo 11 ows:

c. D i vis ion

Ir = 11 + 12
Ar = A 1 + A2

1. If M1+M2 > 31+C, both operands are converted to
floating-point and the division is performed in
floating-point, giving a floating-point result.

2. a the r wise, 1 eft s h i f t X
(r i gh t sh i f t i f Sis
A 1 + S.

by S = min(M2,31+C-M1)
negative) and adjust A1 to

3. The divide operation is performed using X and Y as
modified in step 2.

~. The resultant values for Ir andAr depend on the
magnitude of the original operands and the alignment

5-59

/ (U) CM2Y-M.AN-PGR-M504-9-R04CO

performed as noted under step 2. The values are
given below in terms of the revised values of
A 1 , A2 , 1 1 , 12 .

I r = 1 1 + A2 - C
Ar = A 1 - A2

d, Exponentiation

Examples

If the exponent is a constant 2, 3, or 4, the exponenti
ation is executed as the necessary number of multiplica
tions according to the MSCALE seal ing rules for multi-'
plication. Otherwise, a run-time routine is called.

The foliowing expressions will illustrate the MSCALE scaling al
gor i thm,

a. A 20 55! A 18 U 5

11 = 14,A1 = 5, M1 = 19
12 = 13, A2 = 5, M2 = 18
1 r = .. M·AX (I 1, 12) = 14 Ar = MAX (A 1, A2) = 5
Resultant type = A 20 5 5

b, A 13 55! A 10 U 8

I 1 = 7, A 1 = 5, M1 = 12
12 = 2, A2 = 8, M2 = 10
Ir = 7, Ar = 8 (operand 1 is aligned to operand 2)
Resultant type = A 16 5 8

c. A 22 S 8 ! A 18 U -4

I 1 = 1 3, A 1 =8, M 1 = 2 1
12 = 22, A2 = -4., M2 = 18
Ir = 22, Ar = 8 ~operand 2 is aligned to operand 1)
Resultant type = A 31 5 8

d. A 14 U 8 ! A 20 U -4

11 = 6, A1 = 8, M1 = 14
12 = 24, A2 = -4, M2 = 20
Ir = 24, Ar = 8
Resultant type = A 32 U 8

e. A 46 U 6 * A 42 UO

11 = 40, A1 = 6, M1 = 46
12 = 42, A2 = 0, M2 = 42

5-60

)

Note

/(U) CM2Y-MAN-PGR-M5049-R04CO

Since M1 > 31, convert both operands to floating-point
to do the multiply. The resultant type is floating
po i n t .

f. A 18 U 6 * A 10 U 0

g.

I 1 = 12, A1 = 6, M1 = 18
12 = 10, A2 = 0, M2 = 10
1r = 22, Ar = 6
Resultant type is A 28 U

A 14 S .3 * A 12 U - 1

11 = 10, A1 = 3, M1 = 13
12 = 1 3, A2 = - 1, M2 = 12
Ir = 23, Ar = 2

6

Resultant type is .A 26 S 2

h. A 18 S 4 / A 12 S 2

l' = 13, A1 = 4, M1 = 17
12 = 9, A2 = 2, M2 = 11
Shi f t X 1 ef t 11 bit s, resu 1 t i ng inA 1 = 15
1 r =.. 1 5, A r = 1 3
Resultant type is A 29 S 13

i. A 39 5 4 / A 32 S 6

I 1 = 34, A'1 = 4, M 1 = 38
12 = 25, A2 = 6, M2 = 31
Since M1 + M2 > 31+C, convert both operands to floating
point and do the divide. The resultant type is floating
po i n t .

1~6 numeric operators may not appear without an intervening oper~
~nd unless the right operator is a unary plus or unary minus.

5-61

/ (U) eM:2 Y - MAN;.. P:GR .. M 6 0 4 g ... R 04C(J

5.3.1.7 Numeric Constant Expression

Syntax

<numeric constant expression>
- <numeric constant expression> + <numeric constant term>
- <numeric constant expression> - <numeric constant term>
- <numeric constant term>

<numeric constant term>
.. - <numeric constant term> * <numeric constant factor>

- <numeric constant term> / <numeric constant factor>
- <numeric constant factor>

<numeric constant factor>
- <numeric constant primary> ** <numeric constant factor>
- [<unary numeric operator>] <numeric constant primary>

<numeric constant primary>
.. - «numeric constant expression»

- <ntag name>
::= <numeric cOnstant>

Semant i cs

A numeric constant expression specifies the calculation of a nu
meric value that can be determined at compile time. A numeric
constant expression is calculated using the numeric operations of
unary plus, unary minus, addition, subtraction, multiplication,
division and exponentiation. A numeric constant expression may
also consist of a single numeric value with no operation per
formed. A numeric constant factor used as an exponent must be an
integer value. Expression evaluation is in the same order as for
a numeric expression, but the calculations are carried out ac
cording to the constant arithmetic rules.

5-62

5.3.1.8 Numeric Constant Value

Syntax

<numeric constant value>
.. - [-]<numeric constant>
.. - (ntag name>

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

A numeric constant value is a limited form of numeric constant.
expression. It .is required in only a few contexts (e.g., DATA,
STRINGFORM, FORMAT) where use of a general numeric constant ex
pression would create an ambiguity.

, " ,

5-63

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.2 Boolean Expression

Syntax

<boolean expression>
.. - <boolean expression> OR <boolean term>

- <boolean term>

<boolean term>
.. - <boolean term> AND <boolean factor>
.. - <boolean factor>

<boolean factor>
.. - COMP <boolean primary>
.. - <boolean primary>

<boolean

· .-· .-· .-
· .-
· .-· .-· ." · .-
· . -
· .-

primary>
«boolean expression»
<relational expression>
<conditional expression>
<conditional i/o expression>
<single-valued data unit>
<word data unit>
<function reference)
<ntag name>
<boolean constant>

<relational expression>
.. - <numeric relational expression>
.. - <boolean relational expression>
::= <character relational expression>
::= <status relational expression>

Seman tics

A Boolean expression specifies the calculation of a Boolean value
using the operations of logical sum, logical product, and logical
complement. A Boolean expression can also consist of a single
Boolean value, with no operation performed, or a relational ex~
pression, which is an expression having a Boolean value resulting
from a comparison of two operands.

The type of any single-valued data unit or the value of any func
tion reference used as a primary in a Boolean expression must be
Boolean.

A word data unit used as a primary in a Boolean expression is
considered to be of universal type. The Boolean value of the
word data unit is represented by its rightmost bit.

5-64

/(U) CM2Y-MAN-PGR-M5049-R04CO

An ntag name used as a primary in a Boolean expression must have
the value 0 (false) or 1 (true).

5.3.2.1 Expression Evaluation

The semantics of Boolean expressions are implied by the produc
tions that specify their syntax. There is a hierarchy of opera
tors, which is given in the following table:

Operator

COMP,
AND
OR

Operation

Logical Complement
Logical Product
Logical Sum

Hierarchy

1
2
3

Boolean expressions are evaluated according to the operator hier
archy. The operation indicated by an operator may be performed
provided that the immediately preceding operator, if present, and
the immediately succeeding operator, if present, have a higher
hierarchy number. When an operation is performed, the operator
and its operand or operands are replaced in the expression by the
value of the operation, and the resulting expression is then
evaluated.

A parenthesized expression appearing as an operand of a Boolean
operator must be evaluated before the operation indicated by the
operator can be performed.

A relational expression appearing as an operand of a Boolean op
erator must be evaluated before the operation indicated by the
operator can be performed.

If two consecutive Boolean operators both have hierarchy number 2
or both have hierarchy number 3, the operation indicated by the
left operator is performed first.

5.3.2.2 Meaning Of Operators

The operators AND, OR, and COMP result in combined conditions
whose values follow the rules of Boolean algebra in wh'ich OR is
inclusive. Figure 5-02 is a truth table wherein the Boolean type
value results from the combination of the operators with the P9s -
sible Boolean type condition values (1 = true, 0 = false).

5-65

/(U) CM2Y-MAM-PGR-M5049-R04C0

A B COMP A A AND B A OR B

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

Figure 5-02. Boolean Operators

Note

Two Boolean operators may not appear without an intervening oper""
"and unless the right operator is COMPo

5-66

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.2.3 Numeric Relational Expression

Syntax

<numeric relational expression>
- <numeric comparand> <relational operator) (numeric

comparand>

<numeric comparand>
- <numeric expression>

<relational operator>
- EO
- NOT
- LT

.. - GT
- LTEQ

.. - GTEQ

Seman!. ics

A numeric relational expression specifies the calculation of a
Boolean value of 1 (true) or 0 (false) as the result of comparing
two numeric values. The comparands may be of different numeric
types.

There are six relational operators. When used with numeric or
Boolean comparands, their meanings are:

Operator Meaning

EQ Is Equal To
NOT Is Not Equal To
LT Is Less Than
GT Is Greater Than
LTEQ Is Less Than or Equa 1 To·
GTEQ Is Greater Than or Equal To'

The value of the relational expression is 1 (true) if the values
of the comparands satisfy the stated relation, and is 0 (false)
if they do not satisfy the relation.

Each numeric relational expression contains exactly one relation
al operator. There is no hierarchy among the relational opera
tors.

If one or both of the numeric comparands is a word reference, it
is interpreted as a primary of a numeric expression, and is
therefore considered to be of type I 32 S.

5-67

/(U) CM2Y-MAN-PGR-M5049-R04CO

If one of the comparand values is of floating-point type and the
other is of some fixed-point type, the latter is converted to
floating-point before performing the comparison (paragraph
5.3.1.21. If the comparand values are of different floating
point types, one is converted to the type of the other before
performing the comparison (paragraph 5.3.1.2).

If the comparands are of fixed-point types they are aligned prior
to the comparison, according to the rules for fixed-point addi
tion (paragraph 5.3.1.2) . This alignment can cause nonzero bits
to be lost from the right of one of the comparands and can thus
affect, the meanings of the relational operators.

Two constants cannot be compared in a numeric relational expres
sion.

Examples

... SPEED GT 55 ...

This expression is evaluated as false if the value of data unit
SPEED is equal to 55 or less.

Implementation Note

The AN/UYK-7 and AN/UYK-43 use a ones complement representation
for negative numbers, which means (among other things) that they
have two representations for the value zero, commonly called 0
and -0; the AN/UYK-7 and AN/UYK-43 arithmetic hardware do not
recognize these as representing the same mathematical value.
Therefore, the relational operators EQ, NOT, LTEQ, and GTEQ must
be used with great care in those cases when one of the comparands
might be zero, as mathematical equality might not be recognized.

5-68

/(U) CM2Y-MAN-PGR~M5049-R04CO

5.3.2.4 Boolean Relational Expression

Syntax

(boolean relational expression>
.. - <boolean comparand> <relational operator> <boolean

comparand>

<boolean

Seman tics

comparand>
<single-valued data unit>
<word data unit>
<function reference>
<ntag name>
<boolean constant>

A Boolean relational expression specifies the calculation of a
Boolean value of 1 (true) or 0 (false) as the result of comparing
two Boolean values.

I' The Boolean comp,~r!!ands consist of a subset of the Boolean prima
r i es . Theymus t.;S';t is fy the same requ i remen t s when used as Boo 1 -
ean comparands as"they do when used as Boolean primaries (para
graph 5.3.2).

The comparison specified in a Boolean relational expression is a
comparison of the numeric values of 1 and 0 that represent the
Boolean values of true and false respectively. With this inter
pretation, the meanings of the relational operators in a Boolean
re 1 at i ona 1 express i on are the same as the i r mean i ngs .1 n numer i c
relational expressions.

Each Boolean relational expression contains exactly one relation
al operator. There is no hierarchy among the relational opera
tors.

Two Boolean constants cannot be compared in a Boolean relational
expression.

Examples

VRBL BTYPE B $
VRBL ITYPE I 10 U $

The relational expression

BTYPE LT BIT(9)(ITYPE)

is true if BTYPE is false and ITYPE is odd.

5-69

/(U) CM2Y-MAN-PGR-M5049-R04CO

Note

If both comparands of a relational expression are word refer
ences, the expression is considered to be a numeric relational
expression.

5-70

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.2.5 Character Relational Expression

Syntax

<character relational expression>
::= <character comparand> <relational operator> <character

comparand>

<character comparand>
::= <character expression>
::= <word data unit>

Semantics

A character relational expression specifies the calculation of a
Boolean value of 1 (true) or 0 (false) as the result of comparing
two character values. The lengths of the comparands can be dif
ferent.

When used with character comparands, the meanings of the rela
tional operators are:

Operator

EQ
NOT
LT
GT
LTEQ
GTEQ

Meaning

Is The Same As
Is Different From
Collates Before
Collates After
Collates Before or Is The Same As
Collates After or Is The Same As

The value of the relational expression is 1 (true) if the values
of the comparands satisfy the stated relation in the collating
sequence of the target machine and is 0 (false) if they do not
satisfy the relation.

Each character relational expression contains exactly one rela~
tional operator. There is no hierarchy among the relational op
erators.

If a character comparand is a word data unit, it is treated as a
character data unit of type H 4 ..

The shorter of the two comparands determines the number of char
acters to be compared, unless the shorter comparand is a con
stant. When the shorter comparand is a constant, it is effec
tively extended on the right with blanks to the length of the
longer com~arand.

5-71

/

The comparisons are performed on a character-by-character basis,
beginning w~th the leftmost characters. The first inequality
found by this process determines the result of the comparison.
If no inequality is found, the comparands are determined to be
the same.

At least one character comparand must be nonconstant.

Examples

VRBL CTYPE H 6 $

The relational expression in the phrase

CTYPE NOT H()

is true if CTYPE is not all spaces.

Note

If both compar$.flQ$, of a relational expression are word refer
ences, the,expn,;@:~l$!'l~m is cons idered to be a numer i c re 1 a tiona 1
expre$s i Oh. .,' .,"\>~:'

5-72

)

I(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.2.6 Status Relational Expression

Syntax

<status relational expression>
::= <status comparand> <relational operator> <status

comparand>

<status comparand>
::= <status expression>

. Semant ics

A status relational expression specifies the calculation of a
Boolean value of 1 (true) or 0 (false) as the result of comparing
two status values. The comparands may be of different status
types.

When used with status comparands, the meanings of the relational
operators are:

Operator Meaning

EQ Is Equal To
NOT Is Not Equa 1 To
LT Is Less Than
GT Is Greater Than
LTEQ Is Less Than Or Equal To
GTEQ Is Greater Than or Equal To

The value of the relational expression is 1 (true) if the values
of the comparands satisfy the stated relation and is 0 ("false) if
they do not satisfy the relation.

The meanings of equal, less than, and greater than ar-e relat'ive
to the encoded values of the stat-us comparands, not to their con
ceptual values.

At least one comparand of a status relational expression must be
noncons tan t .

Examples

VRBL STATUSQ S 'LOW', 'MED', 'HIE' $

STATUSQ NOT 'MED'

This expression is evaluated as true if the value of variable
STATUSQ is 'LOW' or 'HIE'.

5-73

I(U) CM2Y"'MAN-PGR-MS049-R04CO

5.3.2.7 Conditional Expression

Syntax

<conditional expression>
: : = <checkab 1e reference> <va 1 i'd i ty tes t >
::= <single-valued data unit> <parity test>

<checkable reference>
::= <subscripted data unit>
::= <word data unit>

<va 1 idi ty test>
::= VALID
::= INVALID

<parity test>
::= ODDP
::= EVENP

Semant ics

A conditional expr~sSion specifies the calculation of a Boolean
value. The qvalue may be the result of testing the validity of
subscr ipt va lues or a word speci f ieat ion va lue or the resu·1 t .. -Of
testing the parity of a single-valued data unit.

A validity test may only be performed on a table item reference
or a word reference. For any table item reference or word refer
ence that contains a subscript expression, the validity test
tests the values of all subscript expressions in the reference.
For a word reference, the value of the word specification is also
tested. The value of a conditional expression containing the
keyword VALID is 1 (true) if each subscript value (if any) is in
its valid range for the named table, and the value of the word
specification (if any) specifies a word of the table item or var
iable: otherwise, it is 0 (false). The value of a conditional
expression containing the keyword INVALID is 1 (true) if any sub
script value lies outside its valid range for the named 'table, or
if the word specification (if present) does not specify a word of
the table item or variable; otherwise, it is 0 (false). The val
id range of a subscript is determined by the size of the table at
load time (if the number of items of the table is specified by a
load time constant) and by the value of the major index of the
table, if any, at the time the conditional expression is evaluat
ed.

The value of a conditional expression consisting of a single
valued data unit followed by the keyword OOOP is 1 (true) if the
number of II on II bits (1 bits) in the value of the data unit is

5-74

/(U) CM2Y-MAN-PGR-M5049-R04CO

odd; otherwise, it is 0 (false). The value of a conditional ex
pression consisting of a single-valued data unit followed by the
keyword EVENP is 1 (true) if the number of II on II bi ts (1 bi ts) in
the value of the data unit is even; otherwise, it is 0 (false).
The subject of these predicates is the value of the data unit on
ly; Only single words or subfields . thereof may be tested for
parity: checking double-words is not allowed.

Examples

TABLE CATA H 5 2 $
SUB-TABLE· CATB 0 1 $

END-TABLE CATA $

CATA(I) VALID

CATB(JI INVALID

The first conditional expression is true if I has a value of 0 or
1. The second conditional expression is true if J is not O.

VRBL STAT I 32 S $

STAT EVENP

The number of bi ts set to 1 in the var iable STAT are counted. If
their sum is an even number, the condition is true.

5-75

I(U) CM2Y-MAN-PGR-MS049-RD4CO

5.3.2.8 Conditional liD Expression

Syntax

<conditional ilo expression>
::= <file name> <file status operator> <status constant>

<file status operator>
::= EQ
: : = NOT

Semantics

A conditional liD expression specifies the calculation of a Bool
ean value based on the status of a file operation.

The value of a conditional liD expression is 1 (true) if the cur
rent file status of the named fi 1e (as set by the monitor as a
result of the most recent 1/0 operation) and the status constant
specified in the expression satisfy the specified relation; oth
erwise, it is a (false). The status constant must be one of
those in the file status list of the named file's declaration.

A conditional liD expression is valid only if the compile·r option
MONITOR has been specffled.

Examples

FILE INPUTC H 500 R 120 MT5 'BUSY', 'FINISHED', 'SENTINEL',
'HARDWARE', 'BAD PKG', 'EMPTY', 'NODEVICE' $

IF INPUTC EQ 'SENTINEL' THEN RETURN $

INPUTC can assume six values, BUSY,FINISHED,SENTINEL, ... ,
NODEVICE 1 which are represented internally by the integer values
0,1,2, ... ,6. If the integer value for file status is equal to 2,
the return statement is executed. Otherwise, control is passed
to the next sequential statement.

Note

The meanings of file status values are not arbitrary; they are
determined by the CMS-2Y monitor program (see paragraph 4.23).

5-76

5.3.3 Character Expression

Syntax

<character expression>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= <character expression> CAT-<character primary>
::= <character primary>

<character primary>
- <single-valued data unit>
- <function reference>
- <character modified data unit>

.. - <character constant>
- «character expression»

Semantics

A character expression specifies the calculation of a character
value.

Any single-valued data unit or the value of any function refer
ence used as a character primary must be of character type.

The operator ~AT specifies the string operation of concatenation.

Examples

VRBL MESSAGE H 13 $
VRBL FATAL H 6 P H(FATAL) $
VRBL ERNUM H 1 P H(2) $

SET MESSAGE TO FATAL CAT H(ERROR) CAT ERNUM $

The result of this set phrase is to assign to variable MESSAGE
the character expression value FATAL ERROR 2.

Implementation Note

If the referenced character strings all lie within the boundaries
of a word, the compiler will ge~erate in-line code to achieve the
concatenation. If the referenced characters cross word bounda
ries, the compiler will generate a procedure call to a monitor
routine to do the concatenation. In this case, the compiler op
tion MONITOR must be specified.

5-77

/ (U) CM2Y-MAN-PGR-M504~9'-'·R{)4CO

5.3.4 Status Expression

Syntax

<status expression>
- <single-valued data unit>

::= <function reference>
::= <status constant>

Semantics

A status expression specifies the calculation of a status value ..
There ~re no status operators; operations on status data can only
be performed through function references.

Any single-valued data unit or the value of any function refer
ence used as a status expression must be of status type.

Examples

VRBL OPSTAT S 'READY', 'NOGO ' , 'LOAD' $

.
IF OPSTAT NOT 'READY' THEN RETURN $

This conditional statement contains status expressions as the two
terms in the relational expression. The first is a status type
data unit; the second is a status constant defined as one of the
states of the typed data unit.

5-78

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.5 Bit String Expression

Syntax

<bit string expression>
.. - <bit string expression> OR <bit string term>
::= <bit string expression> XOR <bit string term>
::= <bit string term>

<bit string term>
::= <bit string term> AND <bit string factor>
::= <bit string factor>

<bit string factor>
::= COMP <bit string primary>
::= <bit string primary>

<bit string primary>
.. - «bit string expression»

- <numeric· expression>
::= <boolean expression>
.. - <character expression>
.. - <status expression>

Semantics

A bit string expression specifies the calculation of a bit strfng
using the logical (bit-by-bit) operations of logical sum, logical
exclusive sum, logical product, and logical complement. The pri
maries of a bit string expression are interpreted as strings of
bits, without regard to any declared or generated attributes.

No operand of a bit string expression can exceed 64 bits in
length.

5.3.5.1 Expression Evaluation

The semantics of bit string expressions are implied by the pro
ductions that specify their syntax. There is a hierarchy of op
erators, which is given by the following table:

Operator Operation Hierarchy

Bit string
hierarchy.

COMP Logical Complement 1
AND Logical Product 2
OR Logical Sum 3
XOR Logical Disjoint Sum 3

expressions are evaluated according to the operator
The operation indicated by an operator may be

5-79

/(U) CM2Y-MAN-PGR-M5049-R04CO

performed provided that the immediately preceding operator, if
present. and the immediately· succeeding operator, ~f present,
have a higher hierarchy number. When an operation is performed,
the operator and its operand or operands are replaced in the ex
pression by the value of the operation, and the resulting expres
sion is then evaluated.

A parenthesized expression appearing as an operand of a bit
string operator must be evaluated before the operation indicated
by the operator can be performed.

If two consecutive bit string operators both have hierarchy num
ber 2 6r hierarchy number 3, the operation indicated by the left
operator is performed first.

5.3.5.2 Meaning Of Operators

The bit string operators and bit string functions are alterna
tives. The values of the operators AND, OR, and XOR for any two
operands are identical to the values of the functions ANDF, ORF,
and XORF, respectively, with those operands as actual arguments;
the value of the operator COMP for any operand is identical to
the value of the function COMPF with that operand as an actual
argument.

Examples

VRBL BITS I 8 U $

... COMP BI TS

The eight bits of variable BITS are complemented.

VRBL MASK I 7 U $

... MASK AND 0(170) ...

The rightmost three bits of variable MASK are cleared by this op
eration. The value of the other four bits remains unchanged.

VRBL BETA F $

... BETA LT 0 OR 0(7070) ...

5-80

)

I(U) CM2Y-MAN-PGR-M5049-R04CO

If BETA contains a negative value, the value of the expression
wi 11 be 7071 octal. Otherwise, the value of th9 expression is
7070 oc tal.

VRBL EPSILON A 15 S 6 P 0(224.57) $
VRBL YY A 11 S 3 P 0(123.4) $
VRBL ZZ A 13 S 3 P 0(402.5) $

... E PSI LON XOR (Y Y OR ZZ) ...

The bit values of the OR expression will be 1 for any bit setting
of 1 in either YY or ZZ, but the resulting intermediate octal
value is 5235 (not 523.5) because it is interpreted as a univer
sa 1 type: i . e., a s t ring of bit s . L i kew i se, the s t ring of bit s
in EPSILON is interpreted octally as 22457 (instead of 224.57).
The result of XOR expression (5235 XOR 22457) is 27662 octal be
cause liKe bits in the two operands produce a 0 bit, and unliKe
bits produce a 1 bit.

Notes

Many bit string expressions and Boolean expressions are syntacti
cally identical, and certain Boolean expressions can often be
thought of as special cases of bit string expressions. The pri
mary differences between the two types of expressions are the
types of the values of the expression (universal and Boolean, re
spectively), the operator XOR is permitted in a bit string ex
pression but not in a Boolean expression, and a bit string ex
pression must contain at least one bit string operator.

Two bit string operators may not appear without an intervening
operand unless the right operator is COMPo

5-81

/(U) CM2Y-MAN-PGR-M5049-R04CO

5.3.6 Structured Expression

Syntax

<structured expression>
::= <single-valued data unit>

Semantics

A structured expression specifies a structured value. There are
no operators that operate on structured values.

Any single-valued data unit used as a structured expression must
be of a structured type.

Examples

TABLE TBLA H 1 5 $
FIELD XX I 3 S 0 31 $
FIELD YY H20 16 $

ITEM-AREA ITA $
END-TABLE TBLA $

SET TBLA(4) TO ITA $
SET ITA TO TBLA(3) $

In the two assignment phrases, both of the source data units (ITA
and TBLA(3)) are structured expressions.

5-82

"

SECTION 6. STATEMENTS

Syntax

<statement>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= [<statement labe1>&1 <simple statement>
::= [<statement 1abe1>&1 <conditional statement>

<simple statement>
::= <simple phrase> [THEN [<statement label>] <simple

phrase>]& $

<statement label>
::= <statement name>.

<statement name>
::= <name>

Semantics

A statement. SP$¢tJ!)t{~I~',an act ion to be performed dur ing the execu-
t i on of a CM$- 2.y;:t1~lt~program. .

, '.:~ .,"' :'. \'il,~':·,· ' -. .,,~'./. >

<statement name>

<simple statement>

THEN

- A name by which the statement can
be referenced.

- A statement that can stand alone
or be a part of a more complex
sta tement.

- Optional. A language ke~word used
to connect a sequence of simple
phrases, optionally preceded by
statement labels, to form a single
statement.

<conditional statement> -·A statement whose execution de
pends on the value of a Boolean
expression. A conditional state
ment cannot be a part of a more
complex statement.

A statement label consists of a statement name followed immedi
'ately by a period. Spaces between the name and the period are
not permitted.

Statement names do not have to be declared. The appearance of a
name as part of a statement label implicitly declares the name to
be a statement name. The scope of the implicit declaration is
the system procedure block in which the statement appears.

6-1

/(U) CM2Y-MAN-PGR-M5049-R04CO

When a statement label appears before a statement, it names the
statement. If the statement is a block, the name of the state
ment is the name of the block.

Use of the keyword THEN to form a simple statement from a se
quence of simple phrases permits the sequence of phrases to be
treated syntactically as a single statement. The execution of
such a statement is as if the sequence of phrases had been writ
ten using the terminator ($) instead of THEN.

6-2

6.1 Simpie Phrases

Syntax

<simple pnrase>
::= (imperative phrase>
::= <statement block>

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

A simple phrase occurs in one of two forms: an imperative
phrase, which .specifies the basic computational actions of the
CMS-2Y(7) language, and a statement block, which is a group of
statements that collectively specify a derived computational
action.

6-3

/(U) CM2Y-MAN-PGR-M5049-R04CO

6,1,1 Imperative Phrases

Syntax

<imperative phrase>
::= <assignment phrase>

- <swap phrase>
- <branch phrase>
- <indexed branch phrase>
- <item branch phrase>
- <procedure call phrase>

,,- <indexed procedure call phrase>
::~ <item prbcedure call phrase>
::= <stop phrase>

- <return phrase>
,,- <exit phrase>
,,- <resume phrase>
"- <executive call phrase>
::= <shift phrase>
,,- <open phrase>
::= <close phrase>
::= <endfile phrase>
::= <def;ne label phrase>
::= <check label phrase>

- <file positioning phrase>
. ,- <record positioning phrase>
,,- <output phrase>

- <input phrase>
- <encode phrase>
- <decode phrase>

::= <convert in phrase>
- <convertout phrase>
- <display phrase>
- <snap phrase>

,,- <trace phrase>
,,- <end-trace phrase>

- <null phrase>
,,- <direct code phrase>

Semant i cs

An imperative phrase specifies an elemental action of a CMS-2Y(7)
program--an action that cannot be refined into subactions within
the language,

6-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.1 ~ssignment Phrase (Classes and Compatibility)

Syntax

<assignment phrase>
::= SET <receptacle>@ TO <sourCe> [<remainder phrase>]

[<overflow phrase> 1

<receptacie>
- <single-valued data unit> [<scaling specifier>]
- <word data unit> [<scaling specifier>]
- <multivalued data unit>
- <bit string receptacle>

.. - <character string receptacle>

.. - <core address receptacle>

<bit string receptacle>
::= BIT«bit string start>[,<bit string length>]) «parent

receptacle»

<character string receptacle>
::= CHAR«character string start>[,<character string

length>]) «parent receptacle»

<parent receptacle>
::= <variable name>[«field name»]
::= <subscripted data unit>

<core address receptacle>
- CORAD«table name»

<source>
.. - <expression>

<multivalued data unit>

<remainder phrase>
::= SAVING <remainder receptacle>

<remainder receptacle>
::= <single-valued data unit>

<overflow phrase>
::= OVERFLOW <statement name>

Semantics

An assignment phrase specifies the aSSigning of a value to one or
more data units or parts of data units.

SET - A language keyword indicating an
assignment phrase.

6-5

<receptacle>

TO

<source>

SAVING

- Specification of a data unit or
part of a data unit that is to re
ceive a value.

- A langoage keyword separating the
list of receptacles from the
source.

- The value or values to be assigned
to the receptacles.

- Optional. A language keyword indi
cating that the remainder of a
fixed-point division operation is
to be saved.

<remainder receptacle> - Optional. A single-valued data

OVERFLOW

<statement name>

unit that is to receive the remain
der of a fixed-point division oper
at ion.

- Opt i onal . A 1 anguage keyword i ndi -
ca t i,ng' th'at program contro 1 ts -to
be transferred if a target machine
overflow condition occurs.

- Optional. The name of the state
ment to be executed next if a tar
get machine overflow condition
occurs.

The semantics of the bit string receptacle are the same as those
of a bit modified data unit, except that the string of bits being
specified is to receive a value as a result of the assign~e~t
phrase. The st.r ing of bi ts is temporar i ly def ined to have un;-
\10 1"\ ~::II 1 t \lno . ,
v , oJ,,",' \.:J,..,

The semantics of the character string receptacle are the same as.
those of a character modified data unit, except that the string
of bits being specified is to receive a value as the result of
the assignment phrase. The string of bits is temporari ly defined
to have character type.

The parent receptacle of a bit string receptacle or a character
string receptacle must not be an untyped structure. Thus, for
example, a table item may not be used as a parent receptacle un
less it is an item of a typed table.

The core address receptacle is limited to specifying a memory ad
dress of an indirect table. The table name' in a core address

6-6

/(U) CM2Y-MAN-PGR-M5049-R04CO

receptacle must be the name of an indirect table. Core address
receptacles have A 16 U 0 type.

If the optional scaling specifier appears as part of a recepta
cle, it must follow a single-valued data unit of fixed-point type
or a word data unit. The value of the scaling specifier speci
fies the number of fractional bits to be used for the data unit
during execution Qf the assignment phrase, thus temporarily
overriding the declared number of fractional bits. It does not
change the value of the scaling controller (paragraph 5.3.1) used
in the calculation of the value of the source expression, howev
er. The value of the scaling controller depends only on the de~
clared number of fractionaJ bits of the data unit.

When more than one receptacle is listed in an assignment phrase,
the source is evaluated pnce and its value is assigned ~o each of
the receptacles. Each receptacle must be assignment compatible
with the source, as defined below. If the source is a numeric
express ion, . the ,las t (r igbtmos t) receptac 1 e determ i nes the va 1 ue
of the sca 1 i ng cqr;l"troll~rused in eva 1 ua t i ng the express ion.

" .

I f th ... ,~,.:' .. ' ' ... 0.,'. R ... ~,.,i.p ·,'.Tl .. :.,.I.",'.'.f1, .. ;,.l~.~.(: .. {;.;,.;.,~, .. :,., .•. r.,;.,.e.,".,'~.', fi'li.r:'R~t:, ph,r:',~se, appea .. rs" ~h ~ sou~ce mu~ t . b~ a nume~ i9, exp~ry~~:~J1~~t;n:::A:9nta 1 n 1 ng a t leas t <?ne ,f ,1 ~ed.-p<? H} t. d 1 V 1 S 10n
opera t'l'bh. '~:r'h~:;'X~\~rri~'lnder of the 1 as t f 1 xed-po 1 n t d 1 V 1 S 10n opera-
t ion execu ted dur:i hg the';~v,~Ju,a t:1 on'cf the express ion is ass i gned
to the remainder receptacle,'f, iwhichmay be any single-valued data
unit as long as it is of' numeric type.

If the optional overflow phrase appears, the target machine over
flow indicators are tested after evaluation of the expression.
If an indicatorison itis turned off, the value of the expres
sion is assigned to the receptacle(s), and the named statement is
executed next. Once tu~ned on, the indicators tested by the
overflow phrase remain on, until they are tested. Thus taking the
branch specified by the overflow phrase does not imply that an
overflow occurreddur:ing~v~;lqation of the source expression .

. ~ "'. ~. "

If the compiler opttpn>MONITORha's be,enspecified, both the 'hard
ware fixed-point ov~,rflow:inojcator and the floating-point error
indicator maintained by the CMS-2mon,i-tor are tested to detect an
overflow condition. If MON)TOR has not been specified, only the
fixed-point overflow indicator i,s tested.

There are five classes of assignment:
value flush, and multivalued.

6 . 1 . 1 .1 . 1 Simp 1 e Ass i gnmen t

simple, untyped, word,

An assignment is simple if the receptacle is simple. This in
cludes receptacles whose type is universal. The semantics of,

6-7

and restrictions on, simple assignments depend on the type of the
receptacle.

a. The receptacle type is numeric. The source must be an
expression of numeric or universal type.

If the source type is numeric, the value of the source
is converted to the type of the receptacle before the
ass i gnmen t .

If the source type is universal, the bit string of the
source is assigned to the bits of the receptacle. If'
the so~rce is longer than the receptacle, excess high
order bits are truncated. If the source is shorter than
the receptacle, the source bit string is extended on the
left with zero bits to the length of the receptacle and
the extended string is assigned to the receptacle.

b. The receptacle type is Boolean. The source must be an
expression of Boolean or universal type.

If the source type is Boolean, its value is assigned to
the receptacle.

If the source type is universal, its value at the time
of the assignment must have 0 bits at all positions
except the least significant bit. The value of the
least significant bit is the Boolean value of the uni-
versal type source but, for reasons of efficiency, bits
of the source other than the least significant bit may
be assigned to the bits allocated to the receptacle.

c. The receptacle type is character. The source must be an
expression of character type or a word reference.

If the source is a character constant longer than the
receotacle, " the riahtmost characters of the constant are
trun6ated to the 1ingth of the receptacle and the re
sultant value replaces the value of the receptacle. If
the source is a character constant of the same length as
the receptacle, the value of the constant replaces the
value of the receptacle. If the source is a character
constant shorter than the receptacle, the value of the
constant is padded on the right with blank characters to
generate a constant of the length of the receptacle and
the generated constant replaces the value of the recep
tacle.

If the source is a nonconstant character expression, the
lesser of the length of the source and the length of the
receptacle is· the number of characters to be assigned.

6-8

I(U) CM2Y-MAN-PGR-M5049-R04CO

The assignment is effectively performed from left to
right, beginning with the leftmost characters of the
source and receptacle.

If the source is a word data unit, the word is inter
preted as a string of four- characters.

d. The receptacle type is status: The source must be an
expression of status type.

The internal numeric value that is the encoding of the
source. value is assigned to the receptacle. If the
source and the receptacle are of different status types,
assignment can result in a change of the conceptual
value.

e. The receptacle type is universal. The source must be an
expression of numeric, Boolean, character, status, or
universal type.

If the source type is numeric, the receptacle is treated
as an integer type whose length is the length of the re
ceptacle. The value of the source expression is con
verted to integer and the converted value is assigned to
the bits of the receptacle.

If the source type is Boolean, the value of the source
is assigned to the least significant bit of the recepta
cle, and the other bits of the receptacle are set to
zeros. For reasons of efficiency, the compiler may as
sume that the value of the source expression is repre
sented by a string of bits that are all 0, except for
possibly the least significant bit.

If the source type is character, the value of the source
is assigned to the receptacle and is right-justified.
If the length of the source is greater than the length
of the receptacle, the leftmost bits of the source are
truncated. If the length of the source is less than the
length of the receptacle, the leftmost bits of the re
ceptacle are set to zeros. For reasons of efficiency,
the compiler may assume, in the latter case, that the
value of the source is represented by a string of bits
that begins with leading zeros. The bit length of the
receptacle, nevertheless, must be a multiple of 8.

If the source type is status, the internal numeric value
that is the encoding of the source value is assigned to
the rightmost bits of the receptacle, and the other bits
of the receptacle are set to zeros.

6-9

If the source type is universal, the value of the source
is assigned to the value of the receptacle and is right
justified. If the length of the source is greater than
the length of the receptacle, the leftmost bits of the
source are truncated. If the length of the source is
less than the length of the receptacle, the leftmost
bits of the receptacle are set to zeros.

Examples

The

a. Numeric,

VRBL A954 A 9 S 4 P ~9315 $
VRBL A14S6 A 14 S 6 P .984375 $
VRBL CTYPE H 13 P H (G'OOD HEAVENS!) $
VRBL FTYP F P 314159265E-8 $
VRBL FTYPE F P 1£57: $
VRBL 129U~1 29~U PS3S870911 $
VRBL 110U I 10 U P 1023 $

1. Nutn.t'~)e,:: i 'n t 9'Qle'r· .

. '$£f,i~~~t~;;>~I~·;
sou r'ce~ dOifs t:etrl~d!;t1$, ,<'a:s;':i:~8td':; 'tt)' ·~pt~'a(>le-· va r'i ab 1 e' 'It''OU .

SET 110U TO 'A 148:6 $

The value of fixed-point type source variable A14S6 is converted
to integer type and assigned to receptacle variable I10U. The
six frac tiona 1 bi -t's ·6f:At4S6 ,a·re not transferred to I 1 au '.

SET I 10U TO FTY'PE'$,"

The value of floating-polnt type source variable FTYPE is con
ver ted to integer. type, "Clnd:;,as:$,ighed to receptacle vari ab leI 1 OU.

SET 129U TO 14~U t

The va 1 ue of integer tiypesour,ce var ;·ab 1e I 1 au is ass i gned to re
ceptacle variable 129~~

SET 110UTO BITt6,3)(A954) $

Source var iab1e A9S4 iscOAverted to universa;l type and the three
rightmost bi ts of its contents are assigned To "'receptacle va'r ia
ble 110U.

6-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

5ET 110U TO CNT(A954) $

The expression argument A954 is converted to universal type, and
the bits set in the converted operand are then counted and the
count is assigned to receptacle variable Il0U.

SET I10U TO COMP A9S4 $

The expression argument A954 is converted to universal type, and
the contents of the converted operand are then complemented and
assigned to receptacle variable I10U.

5ET Il0U TO A1456 AND A954 $

Each expression argument is converted to universal type, and if
corresponding bits in each operand of the argument are set, the
corresponding bit of receptacle variable Il0U is set (logical
product). No prealignment of the values of A1456 and A954
occurs, in spite of their being defined with different numbers of
fractional bits. Thus, for example, the 1s bit of A1456 and the
4s bit of A954 are anded.

2. Numeric: Fixed-point

5ET A1456 TO 27.2 $

The fixed-point (arithmetic) type source constant is assigned to
receptacle variable A14S6. Note that .2 is equal to an infinite
series of alternating pairs of Os and 15 in binary. The compi ler'
computes that four fractional bits are required; however, the
context of this assignment requires that the value be realized
with six fractional bits.

5ET A1456 TO A954 $

Fixed-point type source-variable A954 is shifted by the compi ler
so that its radix aligns with the radix of receptacle variabl~
A1456. Thus, when its value is transferred to A1456 1 the two
rightmost bits of the fractional part in A1456 are set to zero.

SET A1456 TO FTYPE $

The contents of floating-point type source variable FTYPE are
converted to fixed-point type and assigned to re~eptacle variable
A1456.

6-11

SET A14S6 TO I10U $

The contents of source variable I10U are converted to fixed-point
type and assigned to receptacle variable A14S6. If the value in
I10U is larger than seven bits, the assign is undefined.

SET A9S4 TO A9S4 OVERFLOW NEXT $
NEXT. SET A9S4 TO I10U/A14S6 SAVING FTYPE OVERFLOW FOLD $

FOLD. OVERFLO $

The fi~st statem~nt clears the fixed-point overflow designator if
it is set; whether it is set or not, control will always transfer
to the statement labeled NEXT. The portion of the statement, SET
A9S4 TO A9S4, generates no code; it exists to justify the OVER
FLOW NEXT portion of the statement which guarantees that the
overflow designator will be clear when statement NEXT starts exe
cution. The quotient from the operation of dividing variable
I10U by variable A14S6 is assigned to variable A9S4. The remain
der is assigned to variable FTYPE. If during execution of this
statement the division operation results in an overflow condition
(i.e., the quotient is too big for variable A9S4), program con
trol transfers to label FOLD wherein procedure OVERFLO is called.

Examples of assigning universal type source operands to fixed
pOint type receptacle operands are parallel to those shown above
in assigning universal types (BIT, CNT, COMP, and logical func-
tions) to integer types. The difference is that allowances are
made for properly aligning the radix point in the fixed-point
type receptacle.

3. Numeric: Floating-point

SET FTYPE TO 2.54E-22 $

The fl~~t;nn-n~;nt
• • '''''' "' "- I"~ t-''-' I t I ~ type source to receptacle
variable FTYPE.

SET FTYPE TO A14S6 $

The fixed-point type source variable A14S6 is converted to
floating-point type and its contents 'assigned to receptacle vari
able FTYPE.

SET FTYPE TO FTYP $

The contents of floating-point type variable FTYP are assigned to
receptacle variable FTYPE.

6-12

/(U) CM2Y-MAN-PGR-M5049-R04CO

SET FTYPE TO 110U $

The integer type source variable 110U is converted to floating
point type and its contents assigned to receptacle variable
FTYPE.

Examples of assigning universal type sources to the fl~ating
point type receptacle are parallel to those shown above ln as
signing universal type sources (BIT, CNT, COMP, and logical func
tions) tc the integer type receptacle. The difference is that
object code will be generated to convert to floating-point for~

. mat.

b. Boolean.

VRBL A5UO A 5 U 0 P 31 $
VRBL ATYPE A 16 U 8 P 255 $
VRBL BTYPE B P 1 $

SET BTYPE TO 0 $

The Boolean type receptacle variable BTYPE is assigned the value
fa 1 se (0).

SET BTYPE TO BIT(4,1)(A5UO) $

Source variable A5UO is converted to universal type and its
rightmost bit is assigned to receptacle variable BTYPE.

SET BTYPE TO ATYPE GT 0 $

The numeric relational expression ATYPE GT 0 is evaluated, and
the result (0 or 1) is assigned to receptacle variable BTYPE.

SET BTYPE TO (ATYPE OR A5UO) AND 1 $

Each expression argument is converted to universal type, and if
corresponding bits in either or both operands of the argument are
set, the corresponding bit of the universal operand is set (logi
cal sum). This operand is then logically multiplied with a true
condition and the resulting bit value is assigned to receptacle
variable BTYPE.

c. Character.

VRBL CTYPE H 5 $
VRBL CHARACS H 6 P H(PLANTS) $

SET CTYPE TO H() $

6-13

I(U) CM2Y·MAN-PGR-MS049-R04CO

The character constant space is assigned to all five character
positions in receptacle variable CTYPE.

SET CTYPE TO CHARACS $

The characters PLANT are assigned sequentially to each of the
five character positions in receptacle variable CTYPE.

d. Status.

VR8L STYPE S 'A', '8', 'C', 'D', 'E' $

SET STYPE TO '0' $

Variable ~TYPE is assigned the value 3 because the letter D is
the fourth status constant in the variable declaration.

e. Un i ver sa 1 .

VRBL A26S4 A 26 S 4 $
TABLE VALUES V (I 10 U) 20 $
EN'O- TABLE VALUES $

SETBIT(22,4)(A26S4) TO 0(10) $

The fractional portion of variable A26S4 is assigned the constant
0.5.

SET BIT(O)(VALUES(19)) TO 0 $

The most significant bit (the tenth bit from the right) in the
last item of table VALUES is cleared.

6.1.1.1.2 Untyped Assignment
'"

An assignment is untyped when both the source and the receptacle"
are untyped structures.

The words of the source are assigned to the words of the recepta
cle. The lesser of the number of words of the source and the
number of words of the receptacle is the number of words to be
assigned. The assignment is effectively performed on a word-by
word basis, beginning with the first word of the source and the
first word of the receptacle. Thus, if the source and the recep
tacle have the same"structure, the value of the source is assign
ed to the receptacle (even if the source and receptacle are items
of tables of different table types).

6-14

)

Examples

TABLE TABS V 6 8 $
FIE~D H7F H 7 0 31 $
FIE~D 18U I 8 U 5 7 $

/(U) CM2Y-MAN-PGR-M5049-R04CO

FIELD NOUDONT A 12 S 3 4 14 $
ITEM-AREA GROSSVAl $

END-TABLE TABS $

SET TABS(2) TO GROSSVAl $

The item-area GROSSVAl is assigned to the six words comprising
the third item of table TABS.

6.1.1.1.3 Word Assignment

An assignment is a word assignment if the receptacle is a word
data unit. The source must be a numeric, Boolean, or character
expression. (A source consisting of a word data unit is consid
ered a numeric expression.)

If the source is a numeric expression, the receptacle is consid
ered to be of type I 32 S. The effect of the assignment is that
of a simple assignment to a receptacle of fixed-point type.

If the source is a Boolean expression, the receptacle is consid
ered to be of a universal type of length 32. The value of the
Boolean expression is extended to the length of the receptacle by
appending 0 bits on the left and the generated value is assigned
to the receptacle.

If the source is a character expression, the bits of the recepta
cle are interpreted as a string of four characters. The leftmost
characters of the value of the source are assigned to the recep
tacle.

Examples

TRUE EQUALS 1 $
TABLE TAB2 V 5 9 $
END-TABLE TAB2 $
VRBl BOOl B P 1 $
LOC-INDEX XX $

SET TAB2(O,O) TO 28 $

The first word of the first item in table TAB2 is assigned the
numeric constant 28. The receptacle is an integer type.

6-15

SET TAB2(S,XX) TO TRUE EQ Baal $

The XXth word of the last item in table TAB2 is assigned the
Boolean value 1 (true) since Baal has the value 1. The recepta
cle is a Boolean type.

SET TAB2(XX,4) TO H($$$$) $

The last word (four characters) of the XXth item in tab1eTAB2 is
set to four dollar signs. The receptacle is a character type.

6.1.1.1.4 Va1ue.Flush Assignment

An assignment is a value flush assignment if the receptacle is
not simple and the source is a numeric, Boolean, or character ex
pression.

The value of the source expression is assigned to each word of
the receptacle, whi'ch is treated as being of universal type.

Examples

rA.6~e rA.e·3J,~.~~II:;}2'56 $
ENP:'4.."·ABtE·T;A,a>~~/$::· "
VRBL ISS I S $9 15 $

SET TAB3(18) TO ISS $

All 32 words of the nineteenth item in table TAB3 are assigned
the value 15.

SET TAB3 TO ISS $

All 8,192 words of table TA83 are ~ssigned the value 15.

6.1.1.1.5 Multivalued Assignment

An assignment is a multivalued assignment if the source and re
ceptacle are both tables.

The words of the source are assigned to the words of the recepta
cle. The lesser of the number of words of the source and the
number of words of the receptacle is the number of words to be
assigned. The assignment is effectively performed on a word-by-

)

word basis, beginning with the first word of the source and the ~
first word of the receptacle. Table type is ignored in a
mu1tivalued assignment.

6-16

Examples

TABLE TAB4 V 2 8 $
END-TABLE TAB4 $

TABLE iABS H 5 6 $
END-TABLE TAB5 $

SET TAB4 TO TAB5 $

/(U) CM2Y-MAN-PGR-M5049-R04CO

The first 16 consecutive words of TABS are stored in the same se~
quence in TAB4.

SET TAB5 TO TAB4 $

All 16 words of TAB4 are stored in the same sequence into the
first 16 words of TAB5, irrespective of their differing table
types. The last 14 words of TABS are unchanged.

Note

Assignment operations in CMS-2Y(7) can be made explicitly by
means of the assignment phrase or implicitly through parameter
passage in the procedure call phrase, the indexed procedure call
phrase, and the function reference. Source operands are convert
ed to the type of the receptacle immediately prior to assignment
(see Figure 6-01).

Source Operand Type

A F B C S U

A A A A

Receptacle F F F F

Operand B B B

Type C C C

S S S

U U U U U U U

Figure 6-01. Simple Assignment Operation Types

6-17

6.1.1.2 Swap Phrase

Syntax

<swap phrase>
::= SWAP (receptacle 1>, (receptacle 2>

(receptacle 1>
::= (receptacle>

<receptacle 2>
: ~= (receptacle>

Seman tics

A swap phrase specifies that two stored values are to be inter
changed.

SWAP - A language keyword indicating a swap
phrase.

<receptacle 1> - Two receptacles that contain the values to
<receptacle 2> be interchanged.

The t W'O· recep t-a:c 1 es mus t be· a 5S i gnmen t -compa t l b 1 e wit h . each 0 t her
and must not share memory.

The effect of the execution of a swap phrase is.as follows:

a. The value of the first receptacle is assigned to a third
receptacle. This third receptacle and the first have
identical attributes; thus, no data is lost or changed
in any way as a result of this assignment.

b. The value of the second receptacle is assigned to the
first, according to the semantics of an assignment
phrase.

c.

Example

The value of the
second, according to
phrase.

VRBL ATYPE A 24 S 16 $
VRBL FTYPE F $"
SWAP FTYPE, ATYPE $

third receptacle is assigned to the
the semantics of an assignment

6-18

/(U) CM2Y-MAN-PGR-M5049-R04CO

The current value of ATYPE is converted to floating-point type
and assigned to FTYPE, while the current value of FTYPE is con
verted to fixed-point type and assigned to ATYPE.

TABLE LOTS V (H 40) 10 $
ITEM-AREA SPECLOTS $

END-TABLE LOTS $

SWAP LOTS (4), SPECLOTS $

The 40 characters of item-area SPECLOTS are exchanged with the 40
characters of th.e f i f th i tern in tab 1e LOTS.

6-19

6.1.1.3 Branch Phrase

Syntax

<branch phrase>
::= GOTO <statement name> [<special condition>1

<special
· . -
· .-· .-
· ~ -
· . -
· .-

Semantics

condition>
KEY1
KEY2
KEY3
STOP
STOP5
STOP6
STOP?

A branch phrase specifies the next statement to be executed.

GOTO

<s t-a tement name.>

- A language Keyword indicating a branch
phrase, an indexed branch phrase, or
an item branch phrase.

- The name- oJ tt'le sta tement. to be exe,cu
ted next.

<special condition> - Optional. A specification that execu
tion of the branch phrase depends on a
special hardware or software condi
t ion.

If the optional special condition is present, the execution of
the branch phrase depends on operator action.

If the special condition KEY1, KEY2, or KEY3 is present, the cor
responding console Key is tested and the named statement is exe
cuted next if that Key is on; if it is off, the statement follow
ing the branch phrase is executed next. If the compiler option
MONITOR has been specified, the simulated console Keys provided
as a monitor feature (refer to manua~ M-5050) are tested. If
MONITOR has not been specified, the actual target machine central
processing unit (CPU) console Keys are tested. (Refer to manual
M-5048 for a detailed discussion of the CPU console Keys and stop
indicator lights.)

The special conditions STOP, STOP5, STOP6, and STOP? are valid
only when the compiler option MONITOR has not been specified and
the phrase appears in a system procedure element specified to ex
ecute in the executive state. The STOP special condition causes
an unconditional CPU 4-stop prior to execution of the named

6-20

/(U) CM2Y-MAN-PGR-M5049-R04CO

statement. The STOP5, STOP6, and STOP7 special conditions cause
a CPU 5-stop, 6-stop, or 7-stop, respectively, prior to execution
of the named statement if the corresponding key is on. In all
cases of a CPU stop, the named statement is executed next upon
normal CPU restart.

Examples

GOTO LABEL $

LABEL. RETURN $

Control is transferred to the statement named LABEL.

6-21

6.1.1.4 Indexed Branch Phrase

Syntax

<indexed branch phrase>
- GOTO <label switch name> <sWitch index> [<invalid

specification>] [<special condition>]

<switch index>
- <numeric expression>

<invalid specification>
::= INVALID <abnormal branch>

<abnormal branch>
::= <statement name>

Semant ics

An indexed branch phrase specifies the next statement to be exe
cuted, depending on the value of an index expression.

GOTO - A language keyword indicating a branch
phrase, an indexed branch phrase, or
an item branch phrase.

<label switch name> - The name of an indexed label switch
that specifies the possible statements
to which control wi 11 be transferred.

<switch index>

INVALID

<abnormal branch>

- A numeric expression with a value, in
conjunction with the indexed switch
declaration, that specifies the state
ment that will be executed next.

- Opt i ona 1 .
ing that
specified.

A language keyword indicat
an abnormal branch-is being

- Optional. The name of the statement
to be executed next if the value of
the index is out of range.

<special condition> - Optional. A specification that execu
tion of the indexed branch phrase de
pends on a special hardware or soft
ware condition.

If the switch index expression is of integer type, its value is
the index value. If it is not of integer type, its value is con
verted to integer and the converted value lS the index value.

6-22

\

flU) CM2Y-MAN-PGR-M5049-R04CO

In the following text, let k denote the index value and n denote
the number of switch points in the declaration of the label
switch.

If K is in the interval [O,n-1], the statment named in the hth
swit~h point is executed next.- -

If k ;s not in the interval [O,n-1] and the invalid specification
is ~resent,' the abnormal branch-statement is executed next.

If k is not in the interval [O,n-11 and the invalid specification
is ~ot present, ,the effect of e~ecuting the indexed branch phrase
is undefined.

If the optional special condition is present, the execution of
the indexed branch phrase depends on operator action.

If the special condition KEY1, KEY2, or KEY3 is present, the cor
responding console Key is tested and the selected statement is
executed next if that Key is on; if it is off, the statement fol
lowing the indexed branch phrase is executed next. If the com-
piler option MONITOR has been specified, the simulated console
Keys provided as a monitor feature (refer to manual M-5050) are
tested. If" MONITOR has not been speci f ied, the actua 1 target
machine CPU console Keys are tested. (Refer to manual M-5048 for
a detailed discussion of the CPU console Keys and stop indicator
1 i gh t s.)

The special conditions STOP, STOP5, STOP6, and STOP7 are valid
only when the compiler option MONITOR has not been specified and
the phrase appears in a system procedure element specified to ex
ecute in the executive state. The STOP special condition causes
an unconditional CPU 4-stop prior to execution of the selected
statement. The STOP5, STOP6, and STOP7 special conditions cause
a CPU 5-stop, 6-stop, or 7-stop respectively, prior to execution
of the selected statement if the corresponding Key is on. In all
cases of a CPU stop, the selected statement is executed next upon
normal CPU restart. "

If both an invalid specification and a special conditiOn are pre~
sent, the testing for the invalid condition is performed before
the action required by the spectal c6ndition. Therefore, in this
case, if the index value is out of range, the abnormal branch
statement will be executed next without pause under any
circumstances.

6-23

Examples

LOC-DO $
VRBL A4UO A 4 U 0 $
SWITCH SWA $

SB 1 $
SB2 $
SB3 $
SB4 $

END-SWITCH SWA $
END-LOC-OO $

GOTD SWA A4UO $

Program control is transferred to the statement name with a
switch point position equaling the value contained in variable
A4UO within the range 0 to 3. If the value exceeds 3, the result
of executing this GOTO command is undefined.

SBO. GOTO SWA A4UO INVALID SB5 $

.
SB5. SET A4UO TO 3 $

GOTO sao $

The results of this example are the same as in the preceding ex-
ample when the range of values in variable A4UO is 0 to 3; howev
er, if the value exceeds 3, control is transferred to the state
ment named SB5.

Note

The relationship between an invalid specification and a special
condition in an indexed branch phrase is not the same as in an
~tem branch phrase.

6-24

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.5 Item Branch Phrase

Syntax

<item branch phrase>
::= GOTO <item label switch name> [<invalid specification>]

[<special condition>]

Seman tics

An item branch phrase specifies the next statement to be execu~
ted, depending on the value of a switch selector.

GOTO - A language keyword indicating a
branch phrase, an indexed branch
phrase, or an item branch phrase.

<item label switch name> - The name of an item label switch
that specifies the possible
statements to which control will
be transferred, and the switch
selector whose value controls the
transfer.

<invalid specification> - Optional, Specification of the
statement to be· executed next if
the value of ·the switch selector
is not one of the S\1tJ itch va 1 ues·,

<special condition> - Optional. A specification that
execution of the bra~ch phrase
depends on a special hardware or
software condition,

The value of the switch selector corresponding to the named item
label switch determines the next statement to be executed. If
the value of the switch selector at the time the item branch
phrase is executed is equal to one of the switch values, the
statement named in the item label switch pO.int containing that
switch value is executed next,

If the vaiue of the switch seleotor at the time the item branch
phrase is executed is not equal to any of the switch values and
the invalid specification is present, the abnormal branch state
ment is executed next.

I f the ';a lue of the swi tch selector at the time the item branch
phrase is executed is not equal to any of the switch values and
the inval id specification is not present, the statement following
the item branch phrase is executed next.

6-25

If the optional special condition is present, the execution of
the item branch phrase depends on operator action.

If the special condition KEY1, KEY2, or KEY3 is present, the cor
responding console key is tested anq the selected statement is
executed next if that key is on; if it is off, the statement fol
lowing the item branch phrase is executed next. If the compiler
option MONITOR has been specified, the simulated console keys
provided as a monitor feature (refer to manual M-5050) are
tested. I f MONITOR has not been speci f ied, the actua 1 target
machine CPU console keys are tested. (Refer to manual M-5048 for
a det?i led discussion of the CPU console keys and stop indicator
1 i gh ts.)

The special conditions STOP, STOP5, STOP6, and STOP7 are valid
only when the compiler option MONITOR has not been specified and
the phrase appears in a system procedure element specified to ex
ecute in the executive state. The STOP special condition causes
an unconditional CPU 4-stop prior to execution of the selected
statement. The STOP5, STOP6, and STOP7 special conditions cause
a CPU 5-stop, 6-stop, or 7-stop, respectively, prior to execution
of the s~le¢t1:ld statement if the corresponding key is on. In all
ca sesof aC p·U $to~, the selected statement is executed next upon
normal CPU restart.

If both an invalid 'specification and a special condition are pre
sent, the action required by the special condition is performed
before the testing for the invalid condition. Therefore, in this
case, if the value of the switch selector is not one of the
switch values, it is possible that the abnormal branch statement
w ill no t be execu ted nex t . (I f KEY 1, KEY 2, 0 r KEY 3 i s spec i f i ed
and the corresponding console key is on, the statement following
the item branch phrase will be executed next.)

Examples

VRBl FINISH H 4 $
SWITCH SWOFF(FINISH) $

H(ENO),ElEMENT $
H (STOP) , UNCQND $
H (TERM) , DONE $

END-SWITCH SWOFF $

GOTO SWOFF $
SET FINISH TO H(BOMB) $
RETURN $.

DONE. SET FINISH TO H() $
RETURN $

UNCOND. SET FINISH TO H(****) $
RETURN $

ELEMENT. SET FINISH TO H(1234) $

6-26

I'

\
I

/(U) CM2Y-MAN-PGR-MS049-R04CO

Program control is transferred to the statement label (in switch
SWOFF) which corresponds to the value of variable FINISH. That
is, for example, control is transferred to the statement labeled
UNCOND if the value of variable FINISH is STOP. If the contents
do not equal END, STOP, or TERM, control passes to the next
sequential statement: SET FINISH TO H(BOMB) $.

Note

The relationship between an invalid specification and a special
condition in an .item branch phrase is not the same as in an in
dexed branch phrase.

6-27

6.1.1.6 Procedure Call Phrase

Syntax

<procedure call phrase>
::= <user procedure call phrase>
::= <supplied procedure call phrase>

Seman tics

A procedure call phrase specifies the execution of a procedure.

CMS-2Y(7) supports two classes of procedures: user procedures,
which are declared with procedure declarations and defined in
procedure blocks, and supplied procedures, which are specified as
part of a compi ler as a convenience to users.

6-28

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.6.1 User Procedure Call Phrase (Parameter Passage Style)

Syntax

<user procedure call phrase>
::= <procedure name> [<actual procedure parameters>]

<actual procedure parameters>
::= <actual i/o parameters> [EXIT <actual exit parameter>@]

<actual i/o parameters>
::= [INPUT ·<actua1 input parameter>@]

[OUTPUT <actual output parameter>@]

<actual output parameter>
::= [<receptacle>]

<actual exit parameter>
::= <statement name>

Semantics

A user procedure call phrase specifies the execution of a user-
. defined procedure. It also optionally specifies the values to be

supplied as inputs to the procedure, receptacles to receive the
outputs of the procedure, and the names of statements that could
be executed immediately after execution of the procedure.

<procedure name> - The name of the procedure to be
executed.

INPUT - Optional. A language keyword
indicating that one or more for
mal input parameters were de
clared.

<actual input parameter> - Optional. An expression whose
value will be the value of a
formal input parameter at the
beginning of execution of the
subprogram body.

OUTPUT - Optional. A language keyword
indicating that one or more for
mal output parameters· were de
clared.

6-29

<actual output par'ameter) - Opt iona 1. A receptacle that

EX~T

<p.c t ua 1 ex i t parameter')

wi 11 receive the value of a f:or
mal output parameter at the end
of execution of the procedure
body.

- Optional. A language keyword
indicating that one or more for
mal exit, parameters were de~
clared.

- The name, of a s t a temen t to be
exeouted a\fter execut ion of the
procedure.

The execution of a user procedure call phrase comprises the fol
lowing steps:

a. The valtJ~ of each actual input parameter is assigned to
the corr,~:pond'ing formal input parameter.

b.
,0", '.

.' roeedu,re is executed. The execut ion of
, , ';tJ,§j5)_rriH~A'a:'<~e(j 6y tt'ieiej(.6urt~ ion:, of a

S:~I~ii!,',)!j',r l~~;ilii.::,O~\:'. {,he . eX~6ut~i\Grl of';an end-
"''',I'S li '':''''l!'!l':' ,M·,;loII;; 1."1:t1OOt 'wf{ fQW~" i,e;!',;;f.", " ,

c. If executfdn of tHe p~06edure was terminated by execut-
ing an end-procedure declaration or a procedure return
phrase without a formal exit parameter, each actual out
put parameter a'ssumes the value of the corresponding
formal output param~ter.

{

The correspondence between fti~mal and actual input param~te~s and
the semantics of omittiMg an,actual input parameter are the same
as in a user function referente.

, ..
The first actual output pa~ame:t:er" cOr"r'esponds to the first formal
output parameter, tne secohCj!; actua 1 output parameter corresponds
to the second forma·l output.·p)'arameter, etc.

, . c', ': ": ~.' _.

The effect of a'n actual output parameter assuming the va lue of
the corresponding forma1 output parameter is the same as if the
forma 1 parameter were as\si!~hed to the actua 1. Each forma 1 output
parameter must be aSSignment-compatible with its corresponding
actual output para~~ter.

If an ac:ual output parameter is omitted in a procedure call
phrase, the value of the correspondind formal output parameter is

6-30

)

I(U) CM2Y-MAN-PGR-M5049-R04CO

not assumed by any receptacle at the end of execution of the pro
cedure body. Omitting an actual output parameter implies that
the value of the corresponding formal output parameter is irrele
vant for that procedure call.

The first actual exit parameter corresponds to the first formal
exit parameter, the second actual exit parameter corresponds to
the second formal exit parameter, etc. Actual exit parameters
may not be omitted.

The names of all formal input and output parameters must be KnowQ
in the scope containing the procedure call phrase.

If execution of a procedure is terminated by executing a proce
dure return phrase specifying a formal exit parameter, the values
of the actual output parameters are undefined, and the next
statement to be executed is the statement whose name is the actu
al exit parameter corresponding to the specified formal exit pa
rameter.

If the procedure being called is declared to have formal input
parameters, the Keyword INPUT and the appropriate number of
commas must appear, even if all of the actual input parameters
are omitted~' If the procedure being called is declared to have
formal output parameters, the Keyword OUTPUT and the appropriate
number of commas must appear, even if all of the actual output
parameters are omitted.

Examples

VRBL XDOT A 16 S 0 $
VRBL YDOT A 14 S 0 $
VRBL SPEED A 30 S 10 $
VRBL COURSE I 9 U $
VRBL SPD1 A 32 S 10 $
VRBL CS1 I 9 U $

PROCEDURE MOTION INPUT XDOT, YOOT OUTPUT SPEED, COURSE $

END-PROC MOTION $

MOTION INPUT 0,2.83E3 OUTPUT SPD1,CS1 $

The constant 0 is assigned to variable XOOT; the constant 2.83E3
is assigned to variable YDOT. Procedure MOTION is then called
and upon return, the values in variables SPEED and COURSE are as
signed respectively to variables SPD1 and CS1.

6-31

/ (U) CM2 Y -'MAN--PGR -M5D49-R04C-O

MOTION INPUT 5,7 OUTPUT SPEED, COURSE $
MOTION INPUT 5,7 OUTPUT, $

These two calls to procedure MOTION produce identical results: 5
and 7 are assigned respectively to variables XDOT and YDOT, and
the values in variables SPEED and COURSE do not change status be
tween the end of procedure MOTION and the statement following the
call to procedure MOTION.

MOTION INPUT, OUTPUT SPD1, CS1 $
MOTION INPUT XDOT, YOOT OUTPUT SPD1, CS1 $

In th~ first call the values of the formal input parameters XDOT
and YDOT are unchanged when procedure MOTION receives control.
It operates identically to the second call.

RHO.

TAU.

PROCEDURE ALPHA EXIT KHI, PSI, OMEGA $
IF XDOT GT 0
THEN

BEGIN $
IFYDOT LT 0
THEN

<RETURN OMEGA $
ELSE

RETURN PSI $
END $

ELSE
RETURN KHI $

RETURN $
END-PROC ALPHA $
PROCEDURE BETA $

ALPHA EXIT RHO,
SET SPEED TO 0
RETURN $

$

SET SPEED TO 5 $
RETURN $
SET SPEED TO 10
RETURN $

SIGMA,

$

TAU $

SIGMA. SET SPEED TO -3 $
END-PROC BETA $

In this example variable SPEED will be set to zero if the return
from procedure ALPHA is normal. Otherwise the exit logic will
cause control to transfer respectively from RETURN KHI, RETURN

6-32

/(U) CM2Y-MAN-PGR-M5D49-R04CO

PSI, or RETURN OMEGA to RHO, SIGMA, or TAU, depending on the path
taken as a result of the conditional statements.

Implementation Note

When a procedure is defined with a parameter output of AD and an
abnormal exit is defined, the output parameter is destroyed when
the normal exit is taken. This is because a Replace Add instruc
tion is done on A7 to implement the exiting path, and this modi
fies the contents of AD which had been previously set.

6-33

6.1.1.6.2 SUPQlied Procedure Call Phrase

Syntax

<supplied procedure call phrase>
- VECTORP INPUT <abscissa>, <ordinate> OUTPUT

[<new magnitude>], [<new angle>]
- VECTORHP INPUT <abscissa>, <ordinate> OUTPUT

[<new magnitude>], [<new angle>]
- ROTATEP INPUT <abscissa>, <ordinate>, <rotation> OUTPUt

[<new abscissa>], [<new ordinate>]
- ROTATEHP INPUT <abscissa>l <ordinate>, <rotation> OUTPUT'

[<new abscissa>}, [<new ordinate>]

<new magnitude>
::= <receptacle>

<new angle>
::= <receptacle>

<rotation>
::= <numeric expression>

<new abscissa>
::= <receptacle>

<new ordinate>
::= <receptacle>

Semantics

The suppl ied procedure call phrases are used to convert between
various plane coordinate systems.

VECTORP

VECTORHP

ROTATEP

ROTATEHP

- A predefihed identifier indicating that a
conversion from the cartesian c6ordi~ate
system to the vector (polar) system is to
be performed.

- A predefined identifier indicating that a
conversion from the cartesian coordinate
system to the hyperbolic coordinate system
is to be performed.

- A predefined identifier indicating that a
conversion from one cartesian coordinate
system to another by rotation through a
specified angle is to be performed.

- A predefined identifier indicating that a
conversion from one 'cartesian coordinate

6-34

\

<abscissa>

<ordinate>

/(U) CM2Y-MAN-PGR-M5049-R04CO

system to another by a hyperbolic rotation
through a specified angle is to be per
formed.

- A numeric expression whose value is the
x-coordinate' of a point in the cartesian
plane.

- A numeric expression whose value is the
y-coordinate of a point in the cartesian
plane.

<new magnitude> - Optional. A receptacle to receive the
distance between the point (x,y) and the
or i gin (0, 0) .

<new angle>

<rotation>

- Optional. A receptacle to receive the
polar angle of the point (x,y).

- A numeric expression
angle through which the
rotated.

whose value is the
plane is to be

<new abscissa> - Optional. A receptacle to receive the
x-coordinate of a point after rotation.

<new ordinate> - Optional. A receptacle to receive the
y-coordinate of a point after rotation ..

The execution of a supplied procedure call phrase comprises the
following steps:

a. The value of each actual input parameter is assigned to
the corresponding formal input parameter.

b. The body of the procedure is executed.

c. The value of each formal output parameter is assigned to
the corresponding actual output parameter, if. that actu
al output parameter has been specified.

For VECTORP and VECTORHP, <new angle> represents an angle mea
surea from the positive y-axis to the vector in a c.lockwise di
rect ion.

For the rotation procedures (ROTATEP and ROTATEHP), a positive
value of <rotation> denotes a clocKwise rotation.

6-35

In the cartesian cases (VECTORP and ROTATEP), <new angle> and
<rotation> represent angles measured in the BAMS system. In the
hyperbolic cases (VECTORHP and ROTATEHP), they represent hyper
bolic angles measured on ·the unit hyperbola.

Every actual input parameter «abscissa>, <ordinate>, <rotation»
must be present in a supplied procedure call phrase. The
omission of an actual output parameter «new angle>, <new magni
tude>, <new abscissa>, <new ordinate» means that the value is
unwanted for that call; the corresponding output value will be
lost.

The type of the an onymou,s·, forma 1 pa:rameters of these procedures
cor respond i ng to (absc·; ssa,),:· an(l1 <ord'i nate> depends on the types
of the actual parameter exprsssion. If either actual parameter
is of a floating-point type, theri the type of the formal parame-
ters is A 32 S 15 .. Jf path actual parameters are of fixed-paint
types, then the fO.rma~ll;· pararnete,rs are of type A 29 S~, where ~
depends on tua,l parameters. First, the two actual parame
ters area:li,:fi~rt~afl".q€fi t-;1on or subtract 10n operat ion. If
t he eMS - 2·Y ;1$'8,,· ,a·n.$ ri~Xl :e:f'feot (pa r agr aph 5. 3 . 1 . 3) , then
~ is t;h.e.<·· . t i ona.l b i ts.of. the ali gned actua 1 parame-
ters .. ' ,.l;! , .1 fPCf<;,r~},es , .~re in .,eff,ect (pa:ragra'l?h
5 . 3 . 1 /.(5.».~; '.' . . ' 'l~S d.;,t~m'Jned·:: a,s fo l·loW's: a,t~ter t h 1 S
a 1 ignm~'nt, 1 .. ' .' .'{~4'lri~n~'~nuJri1l$r of fract iona 1 bi ts and
let ill denote t r of"'fhe:'ir magriitudebits values. If ill S.
29, then x = f. If m;')' 29., then x = f - (m - 29) and m = 29;
that is,- the values of the actual parameters are shifted right
until the larger has 29 magnitude bits and their number of frac
tiona 1 bit s 1 s adjus ted app,rQ~ri·ate 1 y.

The type of the anonymous formal parameters corresponding to <new
magn i tude>, <new' a.bsc i·'$:.s:a), . Jlnd <new ord i na te> is A 32 5 ~ if the
CMS-2Y sca 1 i ng r~les· ':,' ar$:,j:n ef,f,:ect, or A m+2 5 ~. if the MSCALE
scaling rules are in effect, where the values of m and x are as
descr i bed above. - -

The type of theanornym(),usT;QrftnA,l;.paramete:rs corresponding to <new
angle> is A 3·2 U,32,,: ,fQr"iVeCTORP and ROTATEP and A 32 5 31 for
VECTORHP and ROTAT:iH·P.,; ,.T:he··t:MJi)e:of· tAe~:.:anOl1::ymous formal parame
ters cor respond i n'g~ to <rotal·io'n> is A' 32 S 3·1.

6-36

,
!

/(U) CM2Y-MAN-PGR-M5049-R04CO

ExamQles

VRBL A32S10 A 32 5 1O $
VRBL A32S 11 A 32 S 1 1 $
VRBL A32S12 A 32 S 12 $
VRBL A32S14 A 32 S 13 $
VRBL A32S15 A 32 S 15 $

VECTORP INPUT A32S10,A32S11
OUTPUT A32S14,A32S15 $

In this example values are computed to describe the point with
abscissa of A32S10 and ordinate of A32S11 in polar coordinates,
with the resulting magnitude stored in A32S14 and the angle
stored in A32S15.

VECTORHP INPUT A32S10,A32S11
OUTPUT A32S14, $

In this example values are computed to describe the point with
abscissa of A32S10 and ordinate of A32S11 in hyperboli~ coordi
nates, with the resulting magnitude stored in A32S14 and the hy
perbolic angle not stored.

ROTATEP INPUT A32S10,A32S11,A32S12
OUTPUT ,A32S15 $

In this example values are computed to describe the result of. a
rotation of the point with abscissa A32S10 and ordinate of A32S11
through an angle of A32S12 BAMS. The new abscissa is not saved
and the new ordinate is stored in A32S15.

ROTATEHP INPUT A32S10,A32S11,A32S12
OUTPUT A32S14,A32S15 $

In this example values are computed to describe the result of a
hyperbol ic rotation of the point w.ith abscissa A32S10 and ordi.
nate of A32S11 through the hyperbolic angle of A32S12. The new
abscissa is stored in A32S14 and the new ordinate is stored in
A32S15~

6-37

6.1.1.7 Indexed Procedure Call Phrase

Syntax

(indexed procedure call phrase>
- <indexed procedure switch name> USING <switch index>

[<invalid specification>] [<actual i/o parameters>]

Semantics

An indexed procedure call phrase specifies the execution of one
of a s~t of procedures, depending· on the value of an index ex
pression.

<indexed procedure switch name> - The name of an indexed
procedure switch that
specifies the possible
procedures to be executed.

USING

<switch index>

<invalid specification>

<actual i/o parameters>

- A language keyword indi
cating that the switch in
dex exp~ession follows ..

- A numeric expression whose
value in conjunction with
the indexed procedure
switch declaration speci
fies the procedure to be
executed.

- Op tiona 1 . Spec i fica t i on
of a statement to be exe
cuted next if the value of
the index is out of range.

- Optional. Specificati~n
of the actual input param
eters and the actual out
put parameters to be used
in the procedure call.

The switch index expression yields an integer index value in the
same manner as in an -indexed br anch phr ase .

In the following, let k denote the index value and let n denote
the number of procedure switch points in the declaration -of the
indexed procedure switch.

If k is in the interval [0,n-11, the procedure named in the hth
procedure switch point is called.

6-38

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

If h is not in the interval [0,n-1] and the invalid specification
is present, the abnormal branch-statement is executed next.

If k is not in the interval [0,n-1] and the invalid specification
is not present, the effect of executing the indexed procedure
call phrase is undefined. -

The sequence of events in the execution of an indexed procedure
call phrase is the following:

a. The switch index expression is evaluated and the index
value -is obtained.

b. If the invalid specification is present, the index value
is tested and the abnormal branch is taKen if the value
is out of range.

c. The procedure corresponding to the index value is
called.

Thus, if the abnormal branch is taKen, the formal input parame
ters wi 11 not have assumed the values of the actual input parame
ters. (The assumption of values by the formal input parameters
is part of the procedure call.)

The names of all formal parameters must be Known in the scope
containing the indexed procedure call phrase.

If the declaration of the indexed procedure switch specifies for
mal input parameters, the Keyword INPUT and the appropriate num
ber of commas must appear, even if all the actual input parame
ters are omitted. If the declaration of the indexed - procedure
switch specifies formal output parameters, the Keyword OUTPUT and
the appropriate number of commas must appear, even if all the ac
tual output parameters are omitted.

Examples

SYS-INDEX 5 L $
VRBL CARD H 7 $
VRBL ARNG I 13 U $
VRBL IMAGE H 7 $
VRBL ORDER I 13 U $
P-SWITCH JCCARD INPUT CARD OUTPUT ARNG $

PROC1 $
PROC2 $
PROC3 $

END-SWITCH JCCARD $

6-39

/ (U) CM2 Y -·M~'N-·PGR -!t!50zt9-R0'4CO

JCCARD USING L INVALID STEPOUT
INPUT IMAGE OUTPUT ORDER $

STEPOUT. RETURN $

Program control is transferred to the procedure which has a posi
tion within the P-SWITCH declaration that equals the value con
tained in system index L, within the range 0 to 2. If the value
exceeds 2, control is transferred to the statement named STEPOUT ..
Each 9f the procedures identified in the switch has variables
CARD and ARNG as its respective formal input and output parame
ters.

JCCARD USING L INPUT OU~UT $

Program control is transferred in the same manner as above except
that no actual input and output parameters are used, and that if
the value of L exceeds 2, the result of executing this statement
is undefined.

6-40

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.8 Item Procedure Call Phrase

Syntax

<item procedure call phrase>
::= <item procedure switch name> ,[<invalid specification>]

[<actual i/o parameters>]

Semant ics

An item procedure call phrase specifies the execution of one of a
set of procedures, depending on the value of a switch selector ..

<item proceduresw;tchinam~> - The name of an item procedure
switch that specifies the
possible procedures to be ex
ecuted.

<invalid specification>

<actua 1 i/o(;~par:ameters>

- Optional. Specification of a
sta,tement to be executed next
if the v.alue of the switch
se?lector is, not one of the
sw'Ltch!va 1 ues.

- Optional. Specification of
the actual input parameters
and actual output parameters
to be used in the procedure
ca 11 .

The value of the switch selector corresponding to the named item
procedure switch d~terminep the procedure to be called. If the
value of the switch selector at the time the item procedure call
phrase is executed is equal to one of the switch values, the pro
cedure named in the item procedure switch point containing that
sw itch va 1 ue is ca 11e.~. ; I'if\:Jth~"} va,l ue, of the swi tch se lector at
the time the item pr'ocedure ca 1 h: phr;'ase is ,:executed is not equa 1
to any of the switch values, no procedure is called and the val
ues of the ac:tual., inp~,Jpar:~m~J~~n.s are not ass i gned to the forma 1
i npu t parameter·s'. i In, 'thj:S"; ,ca,'sa:;, :if' no i nva" id spec i fica t ion is
present the statement jollowingthe item procedure call phrase is
executed next. If an 'invalid specification is present, the ab
normal branch statement is executed next.

The names of all formal parameters must be known in the scope
containing the item procedure call phrase.

If the declaration of the item procedure switch specifies formal
input parameters, the keyword INPUT and the appropriate number of
commas must appear, even if all the actual ,input parameters ar'e
om i t ted. I f the dec 1 ara t i on of the i tern procedure sw itch

6-41

specifies formal output parameters, the keyword OUTPUT and the
appropriate number of commas must appear, even i~ all the actual
output parameters are omitted.

Examples

VRBL DISTANCE A 64 S 8 P 0 $
VRBL XDOT A 16 S 0 $
VRBL YDOT A 14 S 0 $
VRBL(XX,YY,ZZ) A 10 S 3 $
VRBL QUADRANT S'N I, I E I, I W', I S I, I F I $

(LOCREF) PROCEDURE NORTH INPUT XDOT, YDOT OUTPUT DISTANCE $'
tLOCREF) PROCEDURE EAST INPUT XDOT, YDOT OUTPUT DISTANCE $
(LOCREF) PROCEDURE WEST INPUT XDOT, YDOT OUTPUT DISTANCE $
(LOCREF) PROCEDURE SOUTH INPUT XDOT, YDOT OUTPUT DISTANCE $
(LOCREF) PROCEDURE FOLD INPUT XDOT, YDOT OUTPUT DISTANCE $

GOOF.

P-SWITCH COMPASS (QUADRANT) INPUT XDOT,
YDOT OUTPUT DISTANCE $

'N', NORTH $
'E', EAST $
'W I, WEST $
'5', SOUTH $
'F', FOLD $
END-SWITCH COMPASS $

PROCEDURE FULANO $

COMPASS INVALID GOOF INPUT XX, YY OUTPUT ZZ $

FOLD INPUT XX, YY OUTPUT ZZ $
END-PROC FULANO$

In this example, one of five procedures will be called de~ending
on the value of status variable QUADRANT. If the value 1n the
variable is not N,E, W, S, or F, cohtrol is transferred to the
statement labeled GOOF.

6-42

\

6.1.1.9 Stop Phrase

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<stop phrase>
::= STOP [<stop condition>]

<stop condition>
.. - KE Y 1
.. - KEY2
::= KEY3
.. - STOPS
::= SiOP6
::= STOP7

Seman tics

A stop phrase specifies suspension of execution of the CMS-2Y
program. The suspension of execution may be made conditional on
the setting of console switches.

STOP - A language keyword indicating a stop
phrase.

<stop condition> - Optional. A specification that execution
of the stop phrase depends on the setting
of a console switch.

A stop phrase is valid only when the compiler option MONITOR has
not been specified and the phrase appears in a system procedure
element specified to execute in the executive state (paragraph
9.3.3) .

Execution of a stop phrase consisting of only the keyword STOP
results in a target machine CPU 4-stop. (Refer to manual M-5048
for a detailed discussion of the CPU console keys and stop indi-
cator lights.) .

If i stop phrase contains one of the stop conditions KEY1, KEY2,
or KEY3, the corresponding target machine CPU console key is
t est ed . I fit i son, a CPU 4 -stop res u 1 t s ; i fit i s 0 f f, nos t op
occurs and the statement following the stop phrase is executed.

If a stop phrase contains one of the stop conditions STOPS,
STOP6, or STOP7, the corresponding console key is tested. If it
is on, a CPU 5-stop, 6-stop, or 7-stop, respectively, results.
If it is off, no stop occurs and the statement following the stop
phrase is executed.

In all cases of a CPU stop, the statement following the stop
phrase is executed next upon normal CPU restart.

6-43

Examples

STOP $

This statement results in an unconditional program stop. The
program will continue if it is restarted from the CPU console.

STOP KEY1 $

This statement results in a program stop if console Key number 1
is on. Program execution wi 11 proceed with the next statement if
it is restarted from the CPU console.

6-44

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.10 Return Phrase

Syntax

<return phrase>
::= <procedure return phrase>
::= <function return phrase>

<procedure return phrase>
::= RETURN [<formal exit parameter>] [<special condition>]

<function return phrase>
::= RETURN «function value»

<function value>
::= <expression>

Semantics

A return phrase specifies the end of execution of a subprogram
body. When used in a function subprogram, it also specifies the
value of the function reference.

RETU~N - A language keyword indicating a
return phrase.

<formal exit parameter> - Optional. Specification of a

<special condition>

<function value>

statement in the calling subpro
gram that is to be executed next.

- Optional. A specification that
execution of the return phrase de
pends on a special hardware or
software condition.

- An expression whose value is the
value of a function reference.

A procedure return phrase may only appear in a procedure body. A
function return phrase may only appear in a function body.

Execution of a return phrase terminates execution ofa subprogram
body. After execution of a function return phrase, the function
value is made available for the evaluation of the expression in
which the function reference that initiated execut"ion of the
function body appears. After execution of a procedure return
phrase that does not specify a formal exit parameter, the values
of the formal output parameters, if any, are assumed by the cor
responding actual output parameters and the next statement to be
executed is the statement following the procedure call phrase,
indexed procedure call phrase, or item procedure call phrase that

6-45

I "
I

/ (U) CM2 Y -MA-N - PGR -MS;Q.~ "'~-O'4CO

initiated execution of the procedure body. After execution of a
procedure return phrase that specifies a formal exit parameter,
the next statement to be executed is the statement whose name is
the corresponding actual exit parameter; the values of the actual
output parameters, if any, are undefined in this case.

If the optional special condition is present, the execution of
the return phrase depends on operator action.

If the special condition KEY1, KEY2, or KEY3 is present, the re
turn phrase is a conditional return phrase, dependent on the set
ting of the corresponding console key. The console key is tested'
and the return phrase is executed as described above if that key
is on; if it is off, the statement following the return phrase is
executed next. If the compiler option MONITOR has been speci-
fied, the simulated console keys provided as a monitor feature
(refer to manual M-5050) are tested. If MONITOR has not been
specified, the actual target machine CPU console keys are tested.
(Refer to manual M-5048 for a detailed discussion of the CPU
console keys and stop indicator lights.)

The special conditions STOP, STOPS, STOP6, and STOP7 are valid
only when the compiler option MONITOR has not been specified and
the phrase-appears in a system procedure element spec i fled to ex
ecute in the executive state (paragraph 9.3.3). The STOP special
condition causes an unconditional CPU 4-stop prior to execution
of the return phrase. The STOPS, STOP6, and STOP7 special condi
tions cause a CPU 5-stop, 6-stop, or 7-stop, respectively, prior
to execution of the return phrase if the corresponding key is on.
In all cases of a CPU stop, the return phrase is executed as de
scribed above upon normal CPU restart.

It is not necessary for a procedure body to contain any procedure
return phrases. The end-procedure declaration can serve as a
surrogate for a procedure return phrase.

A function body must contain at least one function return phrase.
The end-function declaration cannot serve as a surrogate for a
function return phrase.

The type of the function value expression must be assignment
compatible (paragraph 6.1.1.1) with the type of the function.
The value of a function reference is the value of the function
value expression that appears on the return phrase that termi
nates execution of the function body, converted to the type of
the function accordtng to the rules for conversion during assign
ment.

If a function is declared to have character type, then each func
tion value expression in the function body must either be a con
stant or have the same length as the declared function type.

6-46

\

/(U) CM2Y-MAN-PGR-M5049-R04CO

A return phrase is not permitted in an executive procedure block.

Examples

VRBL (XX,YY,ZZ) A 10 53$
VRBL PARAM B $

FUNCTION F1(XX,YY,ZZ) A 5 U 0 $

RETURN (XX~YY+ZZ) $

In this RETURN phrase, the expression XX+YY+ZZ will be evaluated
and returned to the calling 'expression.

FUNCTION F2 (PARAM) H4 $

RETURN (H(ER2) ') <$"

Depending on which RETURN phrase is executed, the value "ER1A" or
"ER2" will be returned to the calling expression. Since function
F2 allows four characters, the value that is returned is IIER2 II,
the same as if it were coded as H(ER2)). Note that the space
between the double right parentheses in both return statements is
required so that the character string is terminated.

6-47

6.1.1.11 Exit Phrase

Syntax

<exit phrase>
::= EXIT [<block name>]

Semant ics

An exit phrase specifies the end of execution of a loop block.

EXIT - A language keyword indicating an exit phrase ..

<blocK name> - Optional. The name of the loop block whose
execution is to cease.

An exit phrase must appear in a loop blocK body. If the optional
block name is present, it must be the name of a loop block and
the exit phrase must appear in the body of that loop.

If the optional block name is not present, execution of the in
nermost loop blocK in which the exit phrase appears ceases. If
the optional blocK name is present, execution of the named loop
ceases. The next statement to be executed is the statement fol
lowing the loop blocK whose execution ceased.

Examples

VARY VB1 FROM 0 THRU 10 $
SET V82 TO VB2**2 $
IF VB2 GT 100
THEN

BEGIN $
SET VRB1 TO VB2 $
EXIT $ "EXIT THE VARY VB1 LOOP"

END $
END $

In this example the loop will execute from 1 to 11 iterations.
Should the value of VB2 become greater than 100 then the EXIT
phrase wi 11 be executed and the loop processing will terminate.

6-48

VARY VB1 FROM 0 THRU 10 $
VARY VB2 FROM 0 THRU 10 $

SET VB3 TO VB3**2 $
IF VB3 GT 100
THEN

/(U) CM2Y-MAN-PGR-M5049-R04CO

EXIT I 'EXIT THE VARY VB2 LOOP" $
END $
IF VB4 GT 1000
THEN

EXIT I 'EXIT THE VARY VB1 LOOP" $
END $

In this example the inner loop will execute from 1 to 11 itera
tions for each iteration of the outer loop. The outer loop wi 11
execute from 1 to 11 iterations. If VB3 becomes greater than 100
then the inner loop will terminate its execution and the outer
loop will continue its iterations. If VB4 becomes greater than
1000 then the second EXIT phrase will be executed and the outer
loop will cease its iterations.

LOOP 1 . VARY VB 1 FROM 0 THRU 10 $
LOOP2. VARY VB2 FROM 0 THRU 10 $

SET VB3 TO VB3**2 $
IF VB3 GT 100
THEN

EXIT LOOP1 "EXIT LOOP1 - VARY VB1" $
END LOOP2 $
IF VB4 GT 1000
THEN

EXIT I 'EXIT LOOP1 - VARY VB1" $
END LOOP1 $

This example has the same structure as the previous example with
the addition of labels on the VARY statements and labels on the
EXIT phrases. Should either EXIT phrase be executed the outer
loop will cease its iterations since the outer loop name is the
name on the EXIT phrase of the inner loop.

6-49

I
I
I
I
I
I
I
I
I
I

, I
I
I
I
I , ,
I
I
I
I ,

6.1.1.12 Resume Phrase

Syntax

<resume phrase>
::= RESUME [<block name>]

Semant i cs

A resume phrase specifies that the next iteration of a loop block
or a find statement is to be performed .

RESUME . - A language keyword indicating a
phrase.

resume

<block name> - Optional. The name of the loop block or find
statement whose next i terat ion is to be per
formed.

Execution of a re$ume phrase causes the end-of-loop processing
(paragraphs 6.1",,2.2 and 6.2.2) of the specified loop or find
statement to bee><~cuted.

The optional qlo6k'rl,ame must be the block name of a loop block or
a find's tat emeh t . .

If the block name is omitted, the resume phrase must be in at
least one loop body. In this case end-of-loop processing for the
innermost loop body in which the phrase appears is being speci
f ied.

If the block name is present and is the name of a loop block, the
resume phrase must follow the loop block head of that loop. If
the block name. is present and is the name of a find statement,
the resume phrase must fbllow the find clause of that find state
ment.

Examples

VRBL SEND I 5 U $
VRBL PLAN I 7 U $
TABLETAB1 V MEDIUM 20 $

FIELD KIND I 10 U $
END-TABLE TAB1 $

6-50

/(U) CM2Y-MAN-PGR-M5049-R04CO

LOOP1. VARY SEND FROM 0 THRU 19 $
IF TAB1(SEND,KIND) EQ 30

THEN RESUME LOOP1 $
SET PLAN TO TAB1(SEND,KIND) $

END LOOP1 $

The statements beginning with SET PLAN... are skipped whenever
the value of TAB1(SEND,KIND) is 30.

6-51

6.1.1.13 Executive Call Phrase

Syntax

<executive call phrase>
::= EXEC <executive function> [1 <executive input

parameter>]

<executive function>
::= <numeric constant expression>

<executive input parameter>
:~= <simple expression>

Semantics

An executive call phrase specifies that execution of the CMS-2Y
program is to be suspended and control is to be transferred to
the target machine's executive program.

EXEC

<executive function>

- A language Keyword indicating
an executive call phrase.

- A numeric constant expression
that is a parameter of the ex
ecu t i ve ca 1 1 .

<executive input parameter> - Optional. A second parameter
of the executive call.

The value of the executive function expression must be integer in
the range [0,65535]; i.e., 16 bits or less.

I'f the optional executive input parameter is present, the value
of the expression is placed in register AD. The value of the pa
rameter must be expressed in 32 bits or less.

Examples

EXEC 15 $

This executive call phrase produces an enter executive state in
struction which includes the value 15 in the lower half-word
(i .e., generates an XS 017 instruction).

EXEC 15, CORAD(VRBLX) $

This example provides the address of VRBLX to the executive pro
gram in tasK register AD.

6-52

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.14 Shift Phrase

Syntax

<shift phrase>
::= SHIFT <shift source> <shift type> [-] <shift amount>

[<shift assign clause>]

<shift source>
::= <single-valued data unit>

<sh i f t type>
::= CIRC
::= ALG
: : = LOG

<shift amount>
::= <numeric expression>

<shift assign clause>
::= INTO <receptacle>

Semantics

A shift phrase specifies a machine-dependent shift operation on
the bits that make up the value of a simple single-valued data
unit.

SHIFT - A language keyword denoting a shift phrase.

<shift source> - A single-valued data unit whose bit pattern
;s to be shifted.

<shift type> - One of the language keywords CIRC, ALG, or
LOG, denoting the type of target machine
shift to be performed.

<shift amount> - A numeric expression whose value specifies
the number of bit positions to be shifted.

INTO

<receptacle>

- Optional. A language keyword indicating
that a receptacle to receive the shifted
va 1 ue _ fo 11 ows .

Optional. A receptacle - to receive the
shifted value.

If the optional shift assign clause is not present, the shifted
bit pattern is assigned to the single-valued data unit that is
the shift source._

6-53

The shift type eIRe specifies a circular shift, in which vacated
bit positions on one end are filled with the bit stha t t:ere
shifted off the other end. The shift type ALG specifies an
algebraic shift, in which vacated bit positions are filled with
the sign bit. The sh i f t type LOG spec i f i es a log i ca 1 ~h i f t , in
which vacated bit positions are filled with zeros.

If the shift amount expression is of integer type, its value is
the number of bit positions to be shifted. If it is not of inte
ger type. its value is converted to integer, and the converted
value is the number of bit positions to be shifted. The number
of bit positions to be shifted cannot be negative.

If the shift amount expression is preceded by a minus sign, the
shift is to the left; otherwise, it is to the right.

The shifted bit pattern has universal type. If the optional
shift assign clause is present, the specified receptacle may be
of any type and the shifted bit pattern is assigned to the bits
of the receptacle without regard to its type.

The shift phrase is highly machine-dependent. That dependency is
reflected in the following specifications:

a. The length of the shift source cannot exceed 64 bits.

b. If the shift type is eIRe, the length of the shift
source must be either 32 or 64 bits.

c. All left shifts are performed using the target machine
circular shift instructions. Left algebraic shift oper
ations can result in filling on the right with magnitude
bits that differ from the sign bit. Left logical shift
operations can result in filling on the right with
nonzero magnitude bits.

d. If the number of bit positions to be shifted is greater
than 64, the result of execution of a shift phrase is
undef i ned.

Examples

SHIFT INT LOG -2 $

The contents of INT are shifted left logically by two bit posi
tions. The two leftmost bits of INT will be truncated and two
zero bits will be added on the right.

6-54

/(U) CM2Y-MAN-PGR-M5049-R04CO

SHIFT INT ALG 2 $

The contents of INT are shifted right algebraically by two bit
positions. Two bits on the right will be truncated and two bit
positions on the left will be sign-filled.

VRBL MYDATA H 4 P H(ABCD) $

SHIFT MYDATA CIRC 8 $

Given the character type variable MYDATA preset as indicated,
MYDATA will contain the character string DABC after execution of
the shift phrase.

VRBL MYDATA H 4 P H(ABCD) $
VRBL NEWS POT H 1 $

SHIFT MYDATA CIRC -8 INTO NEWS POT $

After execution of the shift phrase, MY DATA will still retain the
character order ABCD, and NEWSPOT will contain the character B.

6-55

I'

6.1.1.15 Open Phrase

Syntax

<open phrase>
::= OPEN <file name> <i/o capabjlity>

< i/o capab i 1 i t Y >
- INPUT

::= OUTPUT
::= SCRATCH

Semant·ics

An open phrase specifies that a file is to be opened for input or
output. This prepares it for subsequent I/O operations; an open
phrase must be the first operation performed on a user-defined
f i 1 e.

OPEN - A language keyword identifying an open phrase.

<file name> - The name of a user-defined file.

INPUT

OUTPUT

SCRATCH

- A language keyword specifying a file that can
be read but not written upon.

- A language keyword specifying a file that can
be written upon but not read.

- A language keyword specifying a file that can
be both read from and written upon.

Opening a magnetic tape file causes the tape to be rewound.

It is an error to attempt to open a file which is already open.
To change the I/O capability of an open file, the file must first
be closed and then opened with the new capability specified.

Standard files are always open and have an I/O capability appro
priate to the particular device: READ has the INPUT capability,
PUNCH and PRINT have the OUTPUT capability, and OCM has the
SCRATCH capability.

All user-defined files are closed at the beginning of execution
of a program.

6-56

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

OPEN LBR INPUT $

This statement causes the file with the name LBR to be opened,
and spec if; es its use as ; npu t on 1 y",

6-57

6.1.1.16 Close Phrase

Syntax

<close phrase>
::= CLOSE <file name>

Semant ics

A close phrase is used to close user-defined fi lese No I/O oper
ations can be performed on closed files except to open them.

CLOSE - A language keyword identifying a close phrase.

<fi 1e name> - The name of a user-defined file.

Closing a magnetic tape file causes the tape to be rewound.

Examples

CLOSE OUT $

This example causes the file named OUT to be closed.

Note

Standard files can not be closed.

Implementation Note

All· user-defined files should be closed before program execution
is terminated. This is particularly true of output fi les that,
at any moment, usually have data that have been moved from the
program data areas to the buffer but have not yet been written to
the file itself. Part of the closing operation is the writing of
such data, which would be lost if the program execution were ter
minated with the file open.

6-58

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.17 Endf i 1e Phrase

Syntax

<endfi1e p!1rase>
- ENDFILE <file name>

Semantics

The endfi le phrase specifies that an end-of-file marK is to be
written on a magnetic tape file.

ENDFILE - A language Keyword identifying an endfi 1e
phrase.

<file name> - The name of a user-defined fi let

After an end-of-fi le marK is written, the subfi le count of the
file is incremented by 1 and its record count is set to O. The
file must have been opened with either the output or scratch ca
pab i 1 i ty.

The number of end-of-file marks in a file is limited only by the
length of the tape.

Example

ENDFILE BAR $

An end-of-file mark will be written on the magnetic tape which
has a file name of BAR.

6-59

6.1.1.18 Define Label Phrase

Syntax

<define label ph~ase>
::= DEFID <file name> <label definition>

<label definition>
::= STANDARD
::= «character>&)

Seman tics

A define label phrase creates a header record on a file.

DEFID - A language keyword identifying a define label
phrase.

<fi 1e name> - The name of a user-defined file.

STANDARD - A language keyword specifying a standard tape
1 abe 1 .

If the STANDARD label ;s used, the name of the file, padded with
trailing blanks, forms the record. Otherwise the specified char
acter string, padded with trailing blanks if necessary, forms the
record. All of the characters between the parentheses, including
leading and trailing blanks, are part of the record. The maximum
length of the character string is 120 characters. As with char
acter constants, a right parenthesis is denoted by two consecu
tive right parentheses.

Examples

DEFID LPR STANDARD $

The header II LPR" (the name of the file) will be wr it ten on the
device referenced in the file declaration LPR.

DEFID LPR (INVENTORY SDIEGO 1 JULY 81) $

The header "INVENTORY SDIEGO 1 JULY 81" will be written on the
device referenced in the file declaration LPR.

6-60

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.19 Check Label Phrase

Syntax

<check label phrase>
: : = CHECK I D < f i 1 e n arne> < 1 abe 1" de fin i t i on>

Semantics

A check label phrase verifies the header record on a fi lee

CHECKID

< f i 1 e name>

- A language keyword identifying
check label phrase.

- The name of a user-defined fi lee

the

<label definition> - Specification of the label to be com-
pared against the label on the file.

The check label phrase causes the verification of the header re
cord on a file. If the label definition is STANDARD, then the
f i 1e name padd~d"w!i<ftfblan'Ks~is, expected to be the header record;
otherwise, t he$p~~:ff i ecf' 'cMa'raot,er s t ring, padded wi t h t r ail i ng
blanks as necessar'y, is expected to be the header record. I f the
header record do~s ridt~M~Ve:the expected content, the message
WRONG TAPE MOUNTED followed by a MOUNT TAPE message is displayed
to the operator. If the operator chooses to mount another tape
and continue execution, the header record on the new tape will be
checked.

If a check label phrase is executed, it must be the first opera
tion on the file after it is opened. The file must 'be opened
with the input capability.

Examples

OPEN TAB INPUT $
CHECKID TAB STANDARD $

The content of the header record will be compared to the expected
1 abe 1 .. TAB" .

6-61

6.1.1.20 File Positioning Phrase

Syntax

<file positioning phrase>
::= SET FIL «file name» TO <numeric expression>

Seman tics

A file positioning phrase specifies that a file be positioned at
the beginning of a specific subfile.

SET F I L

<file name>

TO

- A language Keyword identifying the
file positioning phrase.

- The name of a user-defined file.

- A language Keyword separating the
file name from the subfile specifica
t ion.

<numeric expression> - An expression whose value specifies
file positioning.

The value of the numeric expression specifies the subfile. The
value must be an integer or the result of the execution is
unpredictable. The record count is always set to zero as a re
sult of executing a file positioning phrase.

If the value of the numeric expression is negative or zero, the
file is positioned at record 0 of file O. The effect is equiva
lent to a rewind, except that if the fi le is declared with the
WITHLBL option, the header record is skipped. However, the spe-
c i a 1 form

SET FIL «name» TO -0

has a conventional meaning: the file is closed.

If the value of the numeric expression is greater than the number
of any subfi 1e in the file, the message OUTSIDE TAPE PHYSICAL
FILE is output and execution is terminated.

The file positioning phrase can be used with files opened for in
put, output, or scratch.

6-62

Examples

FILE MTF3 B 300 R 120 MT13 $
VRBL FILPOS I 15 U $

OPEN MTF3 INPUT $

/(U) CM2Y-MAN-PGR-M5049-R04CO

ALPHA. SET FIL(MTF3) TO FILPOS $

BETA. SET FIL(MTF3) TO 0 $

GAMMA. SET FIL(MTF3) TO -0 $

Execution of statement ALPHA causes the hardware device MT13 to
be positioned to the subfile which corresponds to the value of
FILPOS. Execution of statement BETA causes the hardware device
MT13 to be set to the beginning, file position 0, record position
O. Execution of statement GAMMA closes the file.

6-63

6.1.1.21 Record Positioning Phrase

Syntax

<record positioning phrase>
::= SET POS «file name» TO <numeric expression>

Semantics

A record positioning phrase specifies that a file be positioned
at the beginning of a specific physical record in the subfi 1e
within which it is currently positioned.

SET POS

< f i 1 e name>

TO

- A language keyword identifying the
record positioning phrase.

- The name of a user-defined file.

- A language keyword separating the
file name from the record specifica
t ion.

<numeric expression> - An expression whose value specifies
file positioning.

The value of the numeric expression must be an integer or the re
sult of the execution is undefined. The file count is not
changed as a result of executi~g a record positioning phrase.

If the value of the numeric expression is greater than any record
number in the subfile, the message OUTSIDE FILE BOUNDARY is out
put and execution is terminated.

The record position phrase can be used with files opened for in
put, output, or scratch.

Examples

SET POS(MAGFILE1) TO 3 $

The file MAGFILE1 is positioned at the beginning of the fourth
record (record number 3) of the current subfi 1e.

SET POS(FNAME) TO CURRPOS-1 $

The fi 1e FNAME is positioned at the beginning of the record with
a number t ha tis 1 1 ess than the va 1 ue of CURR POS . I f CURR POS
contains the number of the record prior to execution, the effect
is that of a backspace.

6-64

\ - --

/(U) CM2Y-MAN-PGR-M5049-R04CO

Note

The record positioning phrase should not be used with stream
fi les, because of the lack of any simple relationship between the
physical records affected by the phrase and the logical records
used in the program. -

6-65

/ (U) eM2 y -M~AN" PGI-MS049 ~ R04CO

6.1.1.22 Output Phrase

Syntax

<output phrase>
::= OUTPUT <output file name> [<output list>] [<format

name>]

<output file name>
- < f i 1 e n arne>
- PRINT

::= PUNCH
: : = OCM

<output 1 ist>
::= <output item>
::= «output item>@)

<ou tpu t ; tern>
.. - <i/o data unit>
.. - <extended subscript data unit>
::= <numeric constant expression>
::= <character constant>

<i/o data unit>
.. - <single-valued data unit>
::= <multivalued data unit>
::= <word data unit>

<extended subscript data unit>
::= <extended structured variable data unit>
::= <extended table data unit>

<extended structured variabie data unit>
::= <variable name> «extended field>@)

<extended field>
::= <field name>
::= <word specification>

<extended table data unit>
::= <table name> «extended subscript> [,<extended field>@])

<extended subscript>
::= <subscript expression>@
::= «subscript expression>@)

Semantics

«subscript expression>@)

An output phrase specifies the transfer of data to a fi 1e that is
open for output or scratch.

6-66

OUTPUT

<output file name>

<ou tpu t 1 is t >

<format name>

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A language keyword indicat
ing an output phrase.

- The name of a file to re
ceive the transferred data.

- Optional. A list of data
units or constants to be
output to the file.

- Optional. A format decl~-
ration that controls con
version during execution of
the output phrase.

<extended subscript data unit> - A specification of selec
tive portions of multiword
data units.

The file name may be either user-defined or a standard output
f i 1 e.

The data transfer ·16 tn tQ~ order indicated by the output list,
readfng from left torign-t.The output list can be omitted if a
format is specified, in which case the data are transmitted from
the format itself, usually by character constant format descrip
tors.

If the optional format name is omitted, the output is
unformatted; if it is present, the output is formatted.

1 f a da t a un i tin an ou tpu t 1 is t spec i f i es a simp 1 e s i n"g 1 e~va 1 ued
d~ta unit (e.g., a variable, a major index, or a field of a table
item), the value of ·that datum is output. If a table or untyped
structured data ~~it is specified in an unformatted output
phrase, the totality of val~es making up the data unit is output.

6.1.1.22.1 Extended Subscript Data Unit

An extended subscript data unit is a shorthand notatfon that can
be used in input lists and output lists to specify multiple
fields or words of a structured variable, multiple consecutive
items of a table, or multiple fields or words of multiple consec
utive items of a table. This is purely a notational convenience;
the effect of writing an extended subscript data unit is . identi
cal to the effect of writing a list of the individual data units.

Multiple fields or words of a structured variable are indicated
by the name of the variable followed by the names of the fields
or word indexes, separated by commas and enclosed in parenthe
ses.

6-67

flU) CM2Y-MAN-PGR-M5049-R04CO

thus, if ITAR is a structured variable at least three words long
and FLD1 and FLD2 are the names of two of its fields, writing

1TAR(FLD1, 2, FLD2)

is the same as writing

ITAR(FLD1), ITAR(2), 1TAR(FLD2)

A similar notation can be used for fields of an item of a table.
The name of the table is followed in parentheses by the item in
dex and a list of field names or word indexes, all separated by
commas~ Thus if TAB is a table having an item structure similar
to ITAR, above, writing

TAB(I-1, FLD1,2, FLD2)

is the same as writing

TAB(1-1, FLD1), TAB(1-1, 2), TAB(1-1, FLD2)

Multiple consecutive items of a table are indicated by the name
of the table followed in parentheses by the beginning item index
in parentheses, three consecutive periods, and the ending sub
script expression in parentheses. Thus

TAB((1+1) ... (1+3))

is the same as writing

TAB(I+1), TAB(I+2), TAB(I+3)

The value of the beginning subscript expression must be less than
the value of the ending subscript expression.

For arrays' the effect is as if the subscripts were varying from
the beginning subscript expression to the ending subscript ex
preSSion, with the first subscript varying most rapidly, the sec
ond subscript varying next most rapidly', etc. Each subscript
increases until it reaches its upper limit, after which it begins
again at its initial value and the next subscript is incremented.
Thus, if ARY is an array with dimensions 3 and 4, writing

ARY ((1,1) ... (2,2i)

is the same as writing

ARY(1,1), ARY(2, 1) f ARY(Q,2), ARY! 1,2), ARY(2,2)

6-68

/(U) CM2Y-MAN-PGR-M5049-R04CO

Multiple fields or words of multiple consecutive items of a table
are indicated by a combination of the above notations. The table
name is followed by a list enclosed in parentheses, with the en
tries of the list separated by commas. The first entry in the
list is the extended subscript in parentheses. The remaining en
tries in the list are the field names or word indexes. The ef
fect is as if the fields and words were listed together for each
of the indicated items. Thus

TAB((I+1) ... (1+3), FLD1,2)

is the same as writing

TAB(I+1,FLD1), TAB(I+1,2), TAB(I+2,FLD1), TAB(I+2,2),
TAB(I+3,FLD1), TAB(I+3,2)

6.1.1.22.2 The Format Scan

In describing the effect of the format statement in input and
output,', it is convenient to classify format descriptors as con
stant descriptors or variable descriptors. The X and T format
descriptors, the character constant format descriptor, and the
slash are constant descriptors -- their effects are always the

. same, independent of any data values. The I, 0, F, E, A, and L
format descriptors, on the other hand, are variable descriptors
-- their general effects can be described but their precise ef
fects vary with the value of the data being converted.

For the remainder of this discussion, the list of format items in
a format declaration should be considered as a list of non
repeated format declarations; that is, any list which has repeats
should be considered as expanded into the equivalent fo~m without
repeats. Similarly, an output list should be considered as a
simple list of values and an input list as a simple list of data
units, expanded into the equivalent form without any extended
subscript data units if necessary.

At the beginning of execution of a formatted input phrase or a
formatted output phrase, a left-to-right scan of the format de
scriptors begins. Any initial constant descriptors are processed
in order until the first variable descriptor is encountered.
This descriptor is used to convert the first entry in the input
list or output list. Following this conversion, any succeeding
constant descriptors are processed in order until the second var
iable descriptor is encountered, which then cont~ols theconver
sion of the second entry in the input list and output list. This
procedure -- scanning and processing constant descriptors unti 1 a
variable descriptor is encountered to control the conversion of
the next entry in the list -- continues until either a variable
descriptor is encountered and all entries in the input list or

6-69

output list have been processed, or until the end of the format
list is reached. In the former case execution of the inlJ)ut
phrase or output phrase terminates; the remaining format descrip
tors in the list are not used. Execution also terminates when
the end of the format list is reached, provided all entries in
the i npu t 1 is t or output 1 i st·· have been processed. If
unprocessed en tr ies remai n, howeve'r', the scan of the forma t 1 is t
starts again at the left. Thi's rescanning process is used as
many times as necessa:l"y, un til one 0 f the term ina t ion cond'i t ions
described above occurs.

Wh i 1 e the forma t scan is in pr'ogress, r'ecords of the file a,re'
a 1 so be'; ng proces·sed. rrri s pro>cesstng can be de-scr i bed by means
of a pointer which always poi-n'ts, to the left of the' next charac
ter s t ring to be created- on ou tput or conve'rted on input. A t the
beginning of execution of an input phrase or output phrase this
po inter po i n t s to the first pas i t ion (pos i t ion 0) in th'e record.
An X-type format descriptor causes the pOinter to be moved to the
right the spec i f ied:: numbe·r o:f' pas i t ions, and. a T - type format de
scriptor causes bh\e-· 'JZ)O:intJer ·to be moved to the specified pOSi-
t ion. A character"~lJn8tant f'o:rmat descr iptor on output causes

I' th~ constanttq's:i,5~_\'i~~;,pfl~ed, in t·~.he record a~the position of the
po 1 n t e'r' . and'; . ~~l1e!·~»)~)rtf:r.· .. to;; tte-mp\tfid:' to the, r 1 gh t 0 f the- Qon S¥ tan t
in t~he r-~co"d:;: :,CJ,1).·;;·':'j~~fAtH;~\i th~::}rnQ~_errt ,0 f the .po i n tar is' the same
bu t the cons tan t i 1s>nt)'t, i nptJ;~t:: fr,om' the record. A slash causes
the phys i cal record to'i:~be' out:,put or- a new record to be i npu t, and
the pOinter to be, positioned at the first position of the next
record. The variable format descriptors all specify a width,
which is the number of characters in the string to be created or
converted. At the endiof each of these conversions, the pOinter
is pos i t i oned to the' r igJr\ t of thectharacter s t ring.

Dur i ng the process ing c'f a record:, the po inter can never be posi
tioned beyond the end of the record. On output files with va:ria
ble length records.· the' last position of the pointe·r de~termines
the size of the record.

When a da t a un i t o'r- v8fl,ye' i s(martched wi ttl a var i ab 1 e forma t de
scr ; ptor dur i ng a format scan, tl1-9 -pr'oper t tes of the data,-· un·i t or
value are' not veri ftea: to·' toe vaJid' for the conversion spec; f ied
by the format descr ipte>:r. The c011version is- carr ied out mechan i
ca 1 1 Y ; i tis the r aspons; b i1 ; ty o-f the progr ammer to. in su r e' t ha t
the matchup is va·l id~ If the~ daita un i tis a tab 1e: or untYfDed
structured data uni t, an indets'rminate number of bi ts at the be
ginn i ng of the da ta uni t are· used:, not the ent ire da ta un; t .

6-70

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.22.3 Output to the Printer

Printer output differs from all other formatted output because of
header and control character capabilities.

Headers, or header lines, are lines which, if present, are auto
matically printed at the top of each page. The CMS-2 system
supports three header lines, a major header and two minor head
ers, which are printed in the following order: the major header
line, a blank line, and the two minor header lines. No headers
are present at the beginning of execution of a program. Headers
can be established and cancelled as many times as desired during
execution of the program.

Control characters are certain characters that may appear in the
first position of a record. The first character of a record is
never printed, but has the effect of a blank if it is not a con
trol character. The control characters are summarized in the
following list:

Control Character

Blank
-

O(zero)

H

A

B

C

z

Effect

Single space and print the line.

Double space and print the line.

Triple space and print the line.

Eject to the top of a new page, print any
headers, and print the new line.

Cancel all headers, eject to the top of a
new page, and print the line.

Cancel all headers, eject to the top of a
new page, print the line, and save the line
as the major header.

Cancel the minor headers, double space,
print the line, and save the lihe as the
first minor header.

Cancel the second minor header, single
space, print the line, and save the line as
the second minor header.

Cancel all headers, space one line, and
print.

6-71

I (U) CM2Y-MAN-PG'R-M5049-RO'4CO

6.1.1.22.4 Record Size with Unformatted Input and Output

If a file specified with nonzero record size is used with an
unformatted input phrase, there must be sufficient data in the
record to be input to the data un; ts of the input 1 ist. Any
excess data in the record is lost.- The only exception is when
the last data unit in the input list is a multiword data unit and
there is sufficient data to partly fill it but not enough to
completely fill it. In this case the remainder of the data unit
is filled with binary zeros if the file type is binary or blanks
if the fi le type is character.

If a 'file with zero record size is used, each item in an output
list creates a new record and each item in an input list uses a
new record. On input, the actual record size has the effect de
scribed in the previous paragraph.

Examples

TABLE TAB H NONE 100 MITAB $
FIELD FlD1 A 12 S 2 $
FIELD FlD2 I 6 U $
ITEM-AREA ITAR $

END-TABLE TAB $
VRBl VBl A 9 S 1 $
FORMAT FMT 11, 16.1, 17.3, 12 $

ALPHA. OUTPUT FNAME (MITAB, TAB, VBl) $

BETA. OUTPUT PRINT (O,VBl, ITAR(FlD1), TAB(0,FlD2))
FMT $

The execution of statement ALPHA will cause the value of the ma
jor index MITAB of the table TAB, all the values of the table
TAB, and the value of the variable VBl to be output to the file
FNAME. The execution of statement BETA will cause a zero, the
value of the variable VBl, the value of field FlD1 of the item
area ITAR, and the value of field FlD2 of the first item of the
table TAB to be printed, with the conversion specified by the
format FMT.

Notes

A table or untyped structured data unit should not be specified
in a formatted output phrase.

6-72

/(U) CM2Y-MAN-PGR-M5049-R04CO

A print line is limited to a maximum of 120 ASCII characters, in
cluding control characters.

6-73

/ (U) CM2Y -M~-PG.R -M5049·~-·R;04CO>

6.1.1.23 Input Phrase

Syntax

<input phrase>
::= INPUT <input file name> <input list> [<format name>]

<input file name>
- < f i 1 e name>

::= READ
:: = OeM

< i npu t· 1 i s t >
: : = < i npu tit em>
::= «input item>@)

< i npu tit em>
::= <i/o data unit>
::= <extended subscript data unit>

Seman tics

An input phrase specifies the transfer of data from a file that
has been opened for input or scratch.

INPUT - A language keyword identifying the input
phrase.

<input fi le name> - The name of a file containing the data
to be transferred.

< i npu t 1 i s t >

<format name>

- A list of data units to which the input
data wi 11 be transferred.

- Optional. A format declaration that
controls conversion durihg execution of
the input phrase.

The file name may be eithe~ user-defined or be a standard input
f i 1 e.

The data transfer is in the order indicated by the input list,
reading from left to right. One effect of this order of transfer
is that a value input to a datum can affect a data unit which ap
pears later in the list. (See the example below.)

If the optional format name is omitted, the input is unformatted;
if it is present, the input is formatted.

If a data unit in an input list specifies a single-valued data
unit (e.g. I a variable, a major index, a field of a table item) a

6-74

/(U) CM2Y-MAN-PGR-M5049-R04CO

single value is transmitted to that data unit. If a table or un
typed structured data unit is specified in an unformatted input
phrase, values are transmitted to the entire structure. A table
or structured data unit that is not simple should not be speci
fied in a formatted input phrase.

In unformatted input, the properties of a data unit receiving a
value must be identical to the properties of the data unit whose
value was originally output in order for the result of the input
operation to be predictable. For example, the result is
unpredictable if the value of a variable or field declared as
A 6 S 1 is output and later inp~t into a variable or field de
clared as A 9 S 3. Simi larly, the result is unpredictable if the
values of a table are output and later input into a table of
identical logical structure if the tables have different compi ler
pacKing.

Examples

TABLE TAB H NONE 100 MITAB $
FIELD FlD1 1 6 U $
FIELD FLD2 I 6 U $
ITEM-AREA ITAR $

END-TABLE TAB $
VRBL VBl I 7 U $
FORMAT FMTI2, 1X, 17.3, 1X, 12 $

ALPHA. INPUT FNAME (MITAB, TAB, VBl) $

BETA. INPUT READ (VBl, ITAR(FlD1), TAB(VBl,FlD2))
FMT $

.Execution of statement ALPHA causes the value of the major index'
- MITAB of the table TAB, all the values of the table TAB, and the

value of the variable VBl to be input from the file FNAME. The
number of values input to TAB will depend on the value input to
MITAS. Execution of statement BETA causes the value of the vari
able VS~, the value of the field FlD1 of the item-area ITAR, and
the value of field FlD2 of item VBl of table TAB to be input from
the card reader, with -the conversion specified by the format FMT.
The part cular item of TAB whose FlD2 receives a value is deter
mined by ne value input to VBl.

6-75

6.1.1.24 Encode Phrase

Syntax

<encode phrase)
::= ENCODE <pseudo buffer) <output list) <format name)

<pseudo buffer)
::= <data unit)

Semantics

An encode phrase specifies t.h,e conversion of data internally from
the target machine internal form to character string form.

ENCODE - A language keyword indicating an encode
phrase.

<pseudo buffer) - A data unit that will contain the charac
ter string form of the data after conver
sion.

<output list)·:> - A list of data units whose values are to
be converted.

<format name) - The name of a format declaration that con-
trols the conversion process.

The executlon of an encode phrase is identical to that of an out
put phrase, except that the converted character strings are sim
ply placed in the pseudo buffer, rather than being placed in an
actual buffer and transmitted to an output device.

During execution of an encode phrase the pseudo buffer acts as a
single logical record; therefore the virgule (I) format descrip
tor cannot be used in the format specified in an encode phrase.

Examples

VRBL OBTAIN 1 9 S P -2 $
VRBL STEP H 5 P H(CAT) $
VRBL CAN F P 2.8 $
FORMAT RMC 13,L2,F6.2 $
VRBL TAN H 14 P H() $

ENCODE TAN(OBTAIN,STEP,CAN) RMC $

6-76

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

Execution of this encode phrase converts the values of OBTAIN,
STEP, and CAN to character form and places the characters into
variable TAN.

6-77

6.1.1.25 Decode Phrase

Syntax

<decode phrase>
::= DECODE <pseudo buffer> <input list> <format name>

Seman tics

A decode phrase specifies the conversion of data internally from
character string form to the target machine internal form.

DECODE - A language Keyword indicating a decode
phrase.

<pseudo buffer> - A data unit that contains the character
strings to be converted.

< i npu t 1 i S t> - A list of data units that will contain the
converted values.

<format name> - The name of a format declaration that con
trols the conversion process.

"

The execution of a decode phrase is identical to that of an input
phrase, except that the character strings to be converted are)
taken from the pseudo buffer, rather that from an actual buffer
after being transmitted from an input device.

During execution of a decode phrase the pseudo buffer acts asa
single logical record; therefore the virgule (I) format descrip
tor cannot be used in the format specified in a decode phrase.

Examples

VRBL PASTE I 7 U $
VRBL SOOT I 5 U $
VRBL KNOT H 20 $
VRBL JADE I 6 U $
FORMAT HFC A12,I7.3,I2 $

DECODE KNOT(SOOT,PASTE,JADE)HFC $

Execution of the decode phrase converts the characters in varia
ble KNOT to their internal form and places them in SOOT, PASTE,
and JADE.

6-78

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.26 Convertin Phrase

Syntax

(convertin phrase>
::= CONVERTIN (input buffer> <inputlist> (stringform

specification>

(input buffer>
::= <single-valued data unit>
::= (table name>

(stringform specification>
::= (stringform name>
::= [*] <single-valued data unit>

Semantics

A convert in phrase specifies the conversion of character strings
into internal values.

CONVERTIN

(input buffer>

<inputlist>

- A language keyword indicating a
convertin phrase.

- The name of the data unit con
taining the character string.

- The specification of a list of
receptacles into which the re
sults of the character string
conversion will be placed.

(stringform specification> - The specification of a string
form governing the conversion
into internal values.

If the input buffer is a single-valued data unit, it must be of a
character type.

If the stringform specification consists of a stringform name,
the named stringform is the specified stringform. If the string
form specification consists of a single-valued data unit, that
data unit must be of a character type. The value of the data
unit at the time the oonvertin phrase is executed must be a char
acter string that is a valid stringform list, subject to the con
straints specified below; the value of the data unit is then the
stringform that controls the conversion process. If the string
form specification consists of a single-valued data unit preceded
by an asterisk, the data unit must be of an integer type. The

6-79

/ (U) CM2 Y - MAN - PGR - MS04-9:- R 04CO

value of the data unit at the time the convert in phrase is execu
ted must be the address of a stringform name; that stringform
then controls the conversion process.

There must be at least as many conversion specifiers in the spec
ified stringform list as there are specified receptacles.

Execution of a convert in phrase comprises three steps:

a. The conversion cursor is set to the first character po
sition (position 0) of the input buffer. If the input
buffer is a table name, this is the first character po-'
sit i on 0 f the fir s t wo r d 0 f the tab 1e . The fir s t r acep -
tacle of the specified receptacles list is made the next
receptacle to be processed, and the first stringform
item of the specified stringform is made the next
stringform item to be processed.

b. Stringform items are processed from left to right until
a conversion specifier or the end of the stringform list
is encountered. If the end of the stringform list is
encountered, execution of the convert in phrase has been
completed.

c. If tti'ere is not another receptac 1e in the spec if; ad re-)
ceptac1es list, execution of the convert in phrase has
been completed. If there is another receptacle, the
current character string is converted as specified by
the conversion specifier, the converted value is assign-
ed to the receptacle, and step b is performed next.

Execution of a convert in phrase is undefined if any receptacle
specified by the inputlist shares memory with the input buffer,
the stringform specification, or the specified stringform.

6.1.1.26.1 Run-T ime Str ingforms

When the s t r i ngform of a conver tin phrase or a conve'r tou t phrase
is the value of a single-valued data unit, that value must be in
the form of a valid stringform list, except for the following
constraints:

a. All repeat value, field width, fraction size, exponent
size, and position expressions must be decimal integer
constants.

b. Blanks are treated as null characters. (Embedded blanks
in constants are permitted.)

6-80

I(U) CM2Y-MAN-PGR-M5049-R04CO

c. The end of the stringform list is denoted by the charac
ter "$".

Implementation Notes

The convert in phrase is not yet ·impl~mented.

6-81

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.27 Convertout Phrase

Syntax

<convertout phrase>
::= CONVERTOUT <output buffer> <outputlist> <stringform

specification>

<output buffer>
::= [*] <single-valued data unit>
::= <table name>

Seman t ; cs

A convertout phrase specifies the conversion of internal values
into character strings. The converted character strings are
placed in the output buffer.

CONVERTOUT

<output buffer>

<outputlist>

- A language keyword indicating a
convertout phrase.

- The name of the data unit in
which the character string is
to be built.

- The specification of a list of
. values to be converted into a
character string.

<stringform specification> - The specification of a string
form governing the conversion
fr6m internal values.

If the output buffer is a single-valued data unit, it must be of
a character type.

If the stringform specification consists of a stringform name,
the named stringform is the specified stringform. If the string
form specification consists of a single-valued data unit, the
data unit must be of a character type. The value of the data
unit at the time the convertout phrase ;s executed must b.e a
character string that is a valid stringform list, subject to the
constraints specified in the semantics section of the convetin
phrase; the value of the data unit is the~ the stringform that
controls the conversion process. If the stringform specification
consists of a single-valued data unit oreceded by an asterisk,
the data unit must be of an integer type. The value of the data
unit at the time the convertout phrase is executed must be the
address of a stringform name; that string;orm then controls the
conversion process.

6-82

/(U) CM2Y-MAN-PGR-M5049-R04CO

There must be at least as many conversion specifiers in the spec
ified stringform list as there are specified values to be con
verted.

Execution of a convertout phrase comprises three steps:

a. The conversion cursor is set to the first character po
sition (position 0) of the output buffer. If the output
buffer is a table name this is the first character posi
tion of the first word of the table. The first value of
the values list is made the next value to be processed,
and the first str;ngform item of the specified string:
form is made the next stringform item to be processed.

b. Stringform items are processed from left to right unt; 1
a conversion specifier or the end of the stringform list
is encountered. If the end of the stringform list is
encountered, execution of the convertout phrase has been
completed.

c. If there is not another value to be converted, execution
of the convertout phrase has been completed. If there
is another value to be converted, it is converted as di
rected by the conversion specifier, and step b is per
formed next.

Execution of a convertout phrase is undefined if the output buf
fer shares memory with any data unit referenced in any expression
that specifies a value to be converted, the stringform specifica
tion, or the specified stringform.

Implementation Notes

The convertout phrase is not yet implemented.

6-83

/(U) CM2Y-MAN~PGi-M5049~R04CO

6.1.1.28 Display Phrase

Syntax

<display phrase>
::= DISPLAY <display item>@

<display item>
::= <data unit> [<preset magnitude>]
.. - REGS

Semantics

A display phrase specifies that the contents of certain data
units are to be printed on the system output device.

DISPLAY

<data unit>

- A language Keyword indicating a display
phrase.

- The name of a data unit to be printed.

<preset magnitude> - Optional. Specification of nonstandard
magnitudes to be assigned to the bits
of the data unit for the display print
out.

REGS - A language Keyword specifying a display
of both the A and B registers.

The display for each data unit consists of the description of the
data unit (a duplication of the data item in the display phrase)
and the value(s) of the data unit. If only one value is display
ed for a data unit, it is displayed to the right of the data unit
description. If more than one value is displayed, the first is
displayed to the right of the data unit description and the rest
are displayed on the following lines, one to a line. If the dis
play phrase is preceded by a statement name, the statement name
is displayed on the line preceding the display of the data unit.

If the data unit is simple, the display of its value is consis
tent with its type. If it is not simple (which includes
multivalued data units), each word of the data unit is displayed
as an 11-digit octal number, in the order in which the words of
the data unit are allocated in the target machine memory. Each A
and B register is also displayed as an 11-digit octal number.

A statement name on a display phrase is used only in the display;
it is not valid as the destination of a branch phrase.

6-84

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

DISPLAY M,X,Y $

Assuming M is a 4-word table, X is a character type variable, and
Y is a floating-point type variable; the printout might appear as
fo 11 ows :

M 046732115043
362341023456
265123245675
145676343210

X DOG GONE
Y O.34244632E+07

BETA. DISPLAY TABL(ALPHA,FELD) $

Assuming FELD is a fixed-point type field, the printout might ap
pear as follows:

BETA
TABL(ALPHA,FELD) 432.06

TABLE NAV V 2 1 $
FIELD SPEED I 10 U 0 13 $

END-TABLE NAV $

KNOTS. DISPLAY NAV(O,SPEED) V(40,S) $

Assume that field SPEED had bit assignments as indicated in
Figure 6-02. Execution of the display phrase (with the conver
sion specification that the eighth bit (from the right)"of field
SPEED represents 40) would result in an output of:

. KNOTS
NAV(O,SPEED) 6.25

where 6.25 is the sum of the bit values for bits 3 and 5.

6-85

31

/(U) CM2Y-MAN-PGR-M5049-R04CO

field SPEED

~ 10' 0 10 1 0 1 1 1 0 III 0 f 0 lot _5!
l 3 0 14

"'

I
Field
Bit
sition Po

Magnitude
Represented
0.15625
0.3125
0.625
1.25
2.5
5
10
20
40
80

Figure 6-02. Example of Bit Assignments for the Display Phrase

6-86

"

6.1.1.29 Snap Phrase

Syntax

<snap phrase>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= SNAP <data unit> [<preset magnitude>]

Semantics

A snap phrase specifies that the contents of a data unit are to
be printed on the system output device each time the snap phrase
is executed and the value of the data unit is different from its
value at the previous execution of the phrase. .

SNAP

<data unit>

- A language Keyword identifying the snap
phrase.

- The name of the data unit to
printed.

be

<preset magnitude> - Optional. Specification of nonstandard
magnitudes to be assigned to the bits
of the d,a ta un i t for the d i sp 1 ay pr in t
out.

A display of the contents of the ~pecified data unit is always
produced on the first execution of a snap phrase. A display wi 11
be produced on subsequent executions only if the contents duri'ng
that execution differ from the contents at the previous execu
t ion.

The form of the displ~y g,nerated by eX$cution of a snap phrase
is identical to the display generated by execution of a display
phrase.

A statement name on a snap phrase is used only in the display; it
is not valid as the destination of a branch phrase.

Examples

CHECK. SNAP LNGTH $

On the first execution and each subsequent execution in which the
floating-point type variable LNGTH has changed, a display of the
following form would be produced:

6-87

flU) CM2Y-MAN-PGR-M5049-R04CO

CHECK
LNGTH 0.17496325E-02

VAIF INDEXES(IX) EO a
THEN

END $

A sample snap output from executing this vary blocK follows:

First snap execution:

INDEXES 00000000005
00000000007
00000000001
00000000000
00000000004
00000000002

Fourth snap execution:

INDEXES

Implementation Note

00000000005
00000000007
00000000001
00000000003
00000000004
00000000002

Compilation of a snap phrase causes an area of the target machine
memory to be reserved that is the same size as the specified data
un it. I f the da ta un it is an adjus tab le tab le, the number of
items that will be snapped is the compile-time value of the
table's ltag, not the load-time value.

6-88

6.1.1.30 Trace Phrase

Syntax

<trace phrase>
::= TRACE

Seman tics

/(U) CM2Y-MAN-PGR-M5049-R04CO

A trace phrase marks the beginning of a sequence of source state
ments to be traced during execution of the program.

TRACE - A language keyword identifying the trace phrase.

The effect of a trace phrase is on the presentation sequence of
the source program, not the execution sequence of the object pro
gram. When a trace phrase is encountered during compilation and
the trace class has been enabled by a debug enabling declaration,
subsequent statements are compiled with additional code to imple
ment tracing to the next end-trace phrase, or to the end of the
compilation module in the absence of an end-trace phrase.

When a traced statement is executed, a line is printed on the
system output- device identifying the statement. The identifica
tion is in the form of the name of the most recent statement name
(the name of the subprogram if no previous statement name has
appeared in the subprogram), followed by a '+1, followed by the
number of the statement relative to the statement name. The
statement corresponding to the statement name has a relative num
ber of zero. The relative number is increased by the compiler
each time it encounters a $ or the Keyword THEN in a simple
statement.

Examples

SET XX TO 3 $
TRACE $

AA1. SET XX TO XX -2 $
IF XX LT 0 THEN

SET YY TO YY+1 THEN
GOTO BB3 $

SET YY TO YY+XX $
GOTO AA1 $

B83. PRNTPROC INPUT YY $
END-TRACE $

Execution of the above sequence of statements would cause the
following trace printout to be produced:

6-89

I (U) CM2Y -MAN-PGR -MS04-Q-1RO:4CO

AA1+0
AA1"'-1
AA1+4
AA1+5
AA1+0
AA1+1
AA1+2
AA1+3·
8S3+0

6-90

6.1.1.31 End-Trace Phrase

Syntax

<@nd-trace phrase>
::= END-TRACE

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

An end-trace phrase marKs the end of a sequence of source state
ments to be traced during execution of the program.

END-TRACE - A language keyword identifying the end-trace
phrase.

The effect of an end-trace phrase is on the presentation sequence
of the source program, not the execution sequence of the object
program. When an end-trace phrase is encountered during compila
tion, subsequent statements will be compiled without the addi
tional code needed to implement tracing, down to the next trace
phrase or the end of the compilation module in the absence of a
trace phrase.

6-91

I(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.1.32 Null Phrase

Syntax

<null phrase>

Semantics

A null phrase specifies that no action is to be performed.

A null phrase contains no characters.

Examples

LOC-INDEX Q $
IF Q EO 5 THEN $
ELSE SET Q TO 0 $

In this example, if Q equals 5, no action is taKen.

Note

A null phras~ is a programmer convenience. It enables certain
kinds of stubbing, such as omitting the alternative statement of
an else clause, the value block body of a case block, or the
statement following a statement label.

Implementation Note

The compi ler wi 11 output a warning message in many cases when it
discovers a null phrase. In particular, such a message will be
issued for a null phrase that appears asa part of an if state
ment, because a misplaced $ could radically change the meaning of
a program, causing severe debugging problems.

6-92

6.1.2 Statement BlocKs

Syntax

<statement blocK>
::= <begin block>
::= (loop blocK>
::= <case blocK>

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

A statement block consists of a group of statements that together'
specify a sequence action of a CMS-2Y(7) program.

A statement block may contain another statement block as one of
its component statements, which may itself contain another state-
ment blocK, etc. The amount of nesting possible depends on the
type of blocKs being nested. Each blocK requires a certain num
ber of nesting units. A begin blocK requires three nesting
units, a loop block requires five nesting units, and a case block
requires four nesting units. Within any nest, a maximum of 150
nesting units can be used; no more than nine loop blocKs may be
nested within a loop blocK.

6-93

flU) CM2Y-MAN-PGR-M5049~RQ4CO

6 . 1 . 2 . 1 Beg i n Block

Syntax

<begin block>
::= <begin block head> [<begin block body>} <end phrase>

<begin block head>
::= BEGIN $

<begin block body>
: : = < s t a temen t > &

Semantics

A begin block specifies a grouping of statements.

BEGIN - A language keyword indicating the be
ginning of a block.

<begin block body> - Optional. The statements grouped by
the begin block.

<end phr~se> - A language construct indicating the end
of a block.

Execution of a begin blocK results in the execution of the state
ments of the begin blocK body, according to the usual rules gov
erning execution of any group of statements.

Examples

VRBl Baal B $

IF Baal
THEN

BEGIN $
SET XX TO YY $
PROC 1 $

END $
ELSE

BEGIN $
SET XX TO ZZ $
PROC2 $

END $

Each begin blocK in this example combines two simple statements
into two statement alternatives of the conditional statement.
The first BEGIN blocK will be executed if Baal is true; the sec
ond BEGIN block will be executed if Baal is false.

6-94

/(U) CM2Y-MAN-PGR-M5049-R04CO

Note

The begin block-does not define a scope in CMS-2Y(7), as does the
similar construct in many other programming languages. It is
merely a syntactic device to permit groups of statements to ap
pear in const.ructs that call.' for a single statement.

6-95

I

6.1.2.2 Loop Block

Syntax

<loop blocK>
::= <loop block head> [<loop blocK body>] <end phrase>

<loop blocK head>
::= VARY [<index clause>@1 [<top test clause>] [<bottom test

clause>] $

<index clause>
:~= <loop index> [<control clause>]

<loop index>
.. - <single-valued data unit>

<control clause> · .-· .- [<initiation clause>] [<termination clause>]
[<increroentation clause>] · .-· .- [<initiatipn clause>1 [<incrementation clause>]
[< terml,fj,a ti on clause> 1

[< termi n'~~i~.1:on clause>] [< in i t i a t ion clause> 1
[< jrtcr(~mehtat ion clause>]

· .-· .-
· .-· .- [<termin~tion clause» [<incrementation clause>1

[<initiation clause>]
· .- [<incrementation clause>] [<initiation clause>]

[<termination clause>] · . -· . - [<incrementation clause>1 [<termination clause>]
[<initiation clause>1

<initiation clause>
- FROM <initial value>

<initial value>
.,~ <numeric expression>
· ,- <status expression>

<termination clause> .
::= THRU <final value>
::= WITHIN <table name>

<final value>
::= <numeric expression>
::= <status expression>

<incrementation clause>
::= BY [-] <change value>

<change value>
::= <numeric expression>

6-96

)

/(U) CM2Y-MAN-PGR-MS049-R04CO

'<top test clause>
::= WHILE <top test>

<top test>
::= <conditional expression>

<bottom test clause>
::= UNTIL <bottom test>

<bottom test>
::= <conditional expression>

<loop block body>
::= <statement>&

Semant ics

A loop block specifies a group of statements that are to be
repeatedly executed and, optionally, conditions to terminate the
repeated execution.

VARY

<loop index>

FROM

<initial value>

THRU

<final value>

WITHIN

<table name>

- A language keyword indicating the begin
ning of a loop block.

- Optional. A single-valued data unit
used as-an index during execution of the
loop body.

- Optional. A language keyword indicating
that an initial value for the loop index
follows.

- Optional. An expression that specifies
the initial value of the loop index.

- Optional. A language keyword indicating
that a final value for the loop index
follows.

- Optional. An expression that specifies
the final value of the loop index.

- Optional. A language keyword indicating
that a table name limiting the value of
the loop index follows. '

- Optional. The name of a table for which
the value of the loop index must be a
val id subscript.

6-97

t
t
t
t
t
t

~ I
I

/(U) CM2Y-MAN-PGR-MS049-R04CO

BY

<change value>

WHILE

<top test>

UNTIL

<bottom test>

- Optional. A language keyword indicating
that an increment value for the loop in
dex follows.

- Optional. A numeric expression that
specifies the amount by which the loop
index changes on each iteration.

- Optional. A language keyword indicating
that a top-of-loop test follows.

- Optional. A conditional expression to'
be evaluated prior to each execution of
the loop body.

- Optional. A language keyword indicating
that a bottom-of-loop test follows.

- Optional. A conditional expression to
be evaluated after each execution of the
loop body.

<loop blocK body> - Optional. The group of statements that
are to be repeatedly executed.

<end phrase> - A language construct indicating the end
of a block.

The loop index must be of a numeric or status type.

The execution of a loop block comprises six steps:

a. If the loop block head contains one or more jndex
clauses, each loop index is set to its initial value.
The determination of that initial value depends on the
following conditions:

(1) An initiation clause is present. The value of the ini
tial value expression is assigned to the index, accord
ing to the rules for assignment of the type of the in
dex.

(2) No initiation clause is present and no termination
clause using the keyword WITHIN is present. For an in
dex of a numeric type, the initial value is O. For an
index of "a status type, the initial value is the first
value of the type's status constant list (the value of
FIRST for the type).

(3) No initiation clause is present, a termination clause
using the keyword WITHIN is present, and the type of the

6-98

/(U) CM2Y-MAN-PGR-M5049-R04CO

loop index is numeric. If an incrementation clause is
present and the keyword BY is followed by a minus sign,
the initial value is one less than the number of items
in the table specified in the termination clause (in
other words, it is the index of the last item in that
table). Otherwise the initial value is O.

(4) No initiation clause is present, a termination clause
using the keyword WITHIN is present, and the type of the
loop index is status. The initial value is the first
value of the status constant list for the type of th~
subscript of the table specified in the termination
clause.

(5) All other cases. For a loop index of a numeric type,
the initial value is O. For a loop index of a status
type, the initial value is the first value of the type's
status constant list (the value of FIRST for the type).

b. If the loop block head contains a top test clause, the
top test expression is evaluated. If its value is false
(0), the loop block execution terminates, and the next
statement to be executed is the statement following the
loop vb lock.

c. The statements of the loop body are executed. Execution
of the statements of the loop body may terminate execu
tion of the loop block by causing another statement in
the subprogram body to be executed; by the execution of
a return phrase; or in some machine-dependent manner
(using a direct code. block).

d. If execution of the loop body results in execution of
the end phrase and the loop head contains neither a
bottom test clause nor an index clause, step (b) of this
sequence is performed next.

e. If the loop block head contains one or more index
clauses, each loop index is modified. For each numeric
loop index, if an incrementation clause is p~esent the
change value expression is added to or subtracted from
the loop index according to the rules for numeric addi
tion or subtraction (paragraph 5.3.1). The value is
subtracted if the keyword BY is followed by a minus
sign; otherwise, it is added. If an incrementation
clause is not present for a numeric loop index, the
value of the index is incremented by 1. For a status
type loop index, the current value is replaced by its
successor in the type's list of status constants (the
value of SUCC for the current value). If the current
value is the last value in the type's list of status

6-99

/(U) CM2Y-MAN-PGR-M5049-R04CO

constants, the value of the loop index becomes unde
fined.

For each loop index for which a termination clause has
been specified, the value Of the index after updating is
tested to determine if the_ termination condition has
been satisfied (see below). If any loop index satisfies
its termination condition, the loop block execution ter
minates and the next statement to be executed is the
statement following the loop block. If no loop index
satisfies its termination condition (a loop index for
which no termination clause has been specified has no·
termination condition to satisfy), and the loop block
head contains a bottom test clause, step (f) of this se
quence is performed next. Otherwise, step (b) is per
formed nex t .

f. If the loop block head contains a bottom test clause,
the bottom test expression is evaluated. If its value
is true (1), the loop block execut ion-- terminates and the
next statement to be executed is the statement following
the loop block. If its value is false (0), step (b) of
this sequence is performed next.

Steps (d), (e r, and (f) of th i s sequence make up end-of - loop Q.C.Q
cessing.

An incrementation clause is permitted only if the associated loop
index is of a numeric type.

The value of the change expression is assumed to always be posi
tive. The effect of execution of a loop block is undefined if
the v~lue of the change expression is negative.

If a termination clause contains the keyword THRU and the associ
ated loop index is of a numeric type, the termination condition
for the corresponding loop index depends on a comparison of the
value of the loop index (after updating) and the value of the fi
nal value expression, according to the rules for numeric compari
son (paragraph 5.3.2.3). If the incrementation clause specifies
an increment or is not present, the termination condition is
satisfied if the loop index, after incrementation, is greater
than the value of the final value expression. If the incrementa
tion clause specifies a decrement, the termination condition is
satisfied if the loop index, after decrementation, is less than
the value of the final value expression.

6-100

flU) CM2Y-MAN-PGR-M5049-R04CO

If a termination clause contains the keyword THRU and the associ
ated loop index is of a status type. the termination condition is
satisfied if the value of the loop index before it was updated
was the value of the final value expression. The final value ex
pression is evaluated each time end-of-loop processing occurs.

If a termination clause contains the keyword WITHIN and the asso
ciated loop index is of a numeric type, the termination condition
for the corresponding loop index is that its value (after updat
ing) is not a valid index for the table named in the termination
clause. If the incrementation clause specifies an increment,
termination occurs when the loop index value becomes greater than
or equal to the number of items in the table; if a decrement is
specified, it occurs when the loop index value becomes negative.

If a termination clause contains the keyword'WITHIN and the asso
ciated loop index is of a status type, the termination condition
is satisfied if the value of the loop index before it was updated
was the last valu~ of the status constant list for the type of
the subscript of t.,he table specified in the termination clause.

The loop QpcjY,.:,'\~n. contain a" branch phrase or indexed branch
phrase Whose"~~~~~'~~JoP causes the end phrase of the·loop block to
be executed next\"····Execution of the, .. end phrase results in end-of-

\ loop processing.

Figure 6-03 illustrates the control logic options available with
the VARY block.

6-101

/(U) CM2Y-MAN-PGR-MS049-R04CO

Yes

Figure 6-03.

[nlti.alla
loop lndex

Evaluate
WHILE

condition

Execute
suu •• nts

in vary block

Inereaeftt .loop
index .lnd

evaluate UNTIL
condi.tion

Vary Block Control FlOw

6-102

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

TABLE PAR H 5 31 $
FIELD FCX1 A 7 S 4 3 14 $
FIELD FCX2 A 8 S 4 3 7 $

END-TABLE PAR $
VRBL COUNT I 5 U $
VRBL (XX,YY,ZZ) A 10 S 3 $

VARY COUNT FROM 1 THRU 10 $
SET PAR(COUNT,FCX2) TO 0 $
END $

The data unit COUNT is incremented from the value 1 through the
value 10 by an implied increment of 1. Field FCX2 of table PAR
is cleared for items through 10; items 0 and 11 through 30
remain unchanged.

ONE. VARY XX FROM 31 THRU 0 BY -1
WHILE COUNT GT 0 $

SET YY TO COUNT * 4 $
SET COUNT TO COUNT - 1 $

TWO. VARY ZZ THRU YY UNTIL ZZ EQ 2 $
SET PAR(XX,ZZ) TO YY/PAR(XX,FCX1) $
SET YY TO PAR(XX,FCX2)/2 $

END TWO $
END ONE $

This example shows VARY block nesting. Block TWO is executed
completely after the initialization, and after each subsequent
decrement and test of block ONE until variable XX reaches a value
less than 0, or until variable COUNT reaches a value of O. The
value of ZZ in block TWO implicitly starts from 0 and is incre
mented by 1. The block TWO statement will continue to be execu
ted as long as the value of variable ZZ is not 2 or until its
value exceeds that of variable YY.

Note

Since the keyword VARY is the only required semantic entry in the
loop block head statement, an infinite loop may be created by the
simple statement:

VARY $

The burden of exiting from such a loop lies in the logic of the
loop block body.

6-103

I (U) CM2Y -'MAN"':PGR -MS049-R04CO

When a termination clause contains the keyword WITHIN, the number
of items in the specified table is determined by the size of the
table at load time (if the number of items of the table is speci
fied by a load time constant) and the value of the major index of
the table, if any, at the time the termination condition is eval
uated.

/(U) CM2Y-MAN-PGR-M5049-R04CO

6.1.2.3 Case Block

Syntax

<case block>
::= <case blOck head> <value b1ock>& <end phrase>

<case block head>
::= FOR <case selector> [, «case type»] [<else clause>] $

<case selector>
::= <simple expression>

<case type>
::= <simple type>
::= <typed structure name>

<else clause>
::= ELSE <alternative statement>

<a lterna t i ve>
::= <simple statement>

<value block)
::= <value block head> [<value block body>] <end phrase>

<value block head>
::= [<statement label>&) BEGIN <case value>@ $

<case value>
::= <constant>
::= <numeric constant expression>

<value block body>
::= <statement>&

Semantics

A case block specifies a number of blocks of statements of which
one is to be executed, depending on the value of an expression.

FOR

<case selector>

<case type>

- A language keyword indicating the be
ginning of a case block.

- An expression whose value specifies the
block of statements to be executed.

- Optional. Specification of the type of
the case selector.

6-105

/ (U) CM2Y -MAN-PGR -M50:4'9-R04CO

ELSE

<a 1 terna t i ve>
statement>

BEGIN

<case value>

- Optional. A language Keyword indicat
ing that an alternative statement fol
lows.

- Optional. A statement to be executed
if no block of statements is selected.

- A language Keyword indicating the be
ginning of a begin blocK.

- A constant value to be compared to the
value of the case selector in determin- .
ing the block of statements to be exe
cuted.

<value blocK body> - Optional. A blocK of statements to be
executed if the value of the case
selector is one of the case values of
the associated value blocK head.

(end phrase> - A language construct indicating the end
of a blocK.

When a case block is executed, its case selector expression is
evaluated. If the value of the expression is one of the case
values of the block, the associated value blocK body is executed.
If the value of the expression is not one of the case values of
the block and the optional else clause is present, the alterna
tive statement is executed. If the value of the expression is
not one of the case values of the block and the optional else
clause is not present, the statement following the case block is
execu ted nex t .

The optional case type in the case block head can be omitted only
if the case selector is a single-valued data unit of a simple
type. When the case type is present, the value of the case
selector is converted to the case type before it is compared to
the case values. The case selector and the specifi~d case type
must- be ass ignment-compat ible (paragraph 6.1.1.1) ..

The types of the case values must be such that .they could be com
pared to the case selector expression, after conversion, in a re
lational expression.

No value may appear as a case value of a single case block more
than once.

If execution of the selected value block or the alternative
statement does not cause some statement in the subprogram body

6-106

/(U) CM2Y-MAN-PGR-M5049-R04CO

not in the case block to be executed and does not cause a return
phrase to be executed, the statement following the case block is
execu ted next.

If the statement name of a branch_phrase is the name of a value
block, execution of the branch phrase has the same effect as se
lecting the value block during execution of the case block of
which it is part.

Examples

CASE. FOR.I12S ELSE ERRPROC INPUT 112S $
BEGIN 2 $

PROCA $
END $
BEGIN 3,5 $

PROCB $
END $
BEGl:N:4,6 $

';;:PROCC $
,.ENO')··:~$,':.

E'N'D".'. ~,.ifi.it.k,~':E· $, ··'·"v'Itl~~·

. ;" , .. :.. ;;",};»:t\,:}{·f~~V};i~." ~; (. :: ':: : 'c' i / :':;; , "
Th 1 S examp 1e1 'l.lUstr,at .. 9s ,h~w, a ;'{¥iClS~,b]'ock can be used in place of
a procedure swi tot,. 'P'r'oc~q;~~e. p::,~OCA wi 11 be ca lled when the data
unit I12S has the value 2;'~ROCB 'will be called when the value is
3 or 5; PROCC w ill be ca 11 ed for va 1 ues 4 or 6; and ERRPROC will
be called in all other cases.

FOR XI $
BEGIN 0,7 $

END $
BEGIN 4 $

.
END $,
BEGIN 1,2,3 $

END $
END $

6-107

I(U) CM2Y-MAN-PGR-M5049-R04CO

The appropriate value block wi 11 be executed if XI has the value
0,1,2,3,4, or 7. If XI is less than zero, equal to 5 or 6, or
greater than 7, no value block will be executed, and the state
ment following the case block will be executed next.

FOR VD(J,H2) $
BEGIN H(ZA), H(XY) $

END $
BEGIN H(AZ), H(YX) $

END $
BEGIN H(M), H(M) $

END $
END $

The 2-character field H2 in the Jth item of table VD will be com
pared with each of the 2-character constants specified in the
value blocks. One of the value blocks wi 11 be executed only if
the appropriate match is found.

FOR STATE3 $
BEGIN 77 $

FOR STATE5 ELSE
FOR SUBSTATE ELSE RETURN $

BEGIN 2 $

END $
BEGIN 7,6,5,4 $

END $
END "SUBSTATE" $
BEGIN -1 $

END $

6-108

BEGIN 0 $

END $
BEGIN 1 $

END $
END "STATE5" $

/(U) CM2Y-MAN-PGR-M5049-R04CO

VARY WHILE ERCODE NOT 3 $

END $
END " 77 " $
BEGIN 128 $

.
END "128" $

END "STATE3" $

This example illustrates case blocks nested three levels deep in
which the second level also includes a vary block. The vary
blocK will be executed whenever STATE3 is 77, ERCODE is not 3,
and the RETURN statement is not executed.

6-109

6.1.2.4 End Phrase

Syntax

<end phrase>
::= END [<block name>]

<block name>
::= <statement name>

Semantics

An ena phrase denotes the end of a begin blocK, a loop blocK, a
case blocK, or a value block.

The

END - A language keyword indicating the end of a
block.

<block name> - Optional. The name of the block being termi
nated.

/ ',~' ," .'

not appear .. tf
than one stat·

must appear if the block is named; it may
. is not harned. IflHe block head has more

,.\ ... ", .. :.>._ _. '1, any oJ the labels may appear on the end
phrase. 'i',~ ~'> ;~~': . '.

The meaning of execution of an end phrase depends on the type of
blocK it terminates:

Begin BlocK - The statement following the begin block is ex
ecuted next.

Loop BlocK - The end-of-loop processing is performed.

Case BlocK - The statement following the case block is exe
cuted next.

Value Block- The statement following
which the value block
next.

Examples

FOR XI $
VA. BEGIN 0,7 $

END VA $

6-110

the case block ·of
is part is executed

VB. BEGIN 5 $

END VB $
BEGIN 6 $

END $
END $

/(U) CM2Y-MAN-PGR-MS049-R04CO

•

This example illustrates required END block names on blocKs VA
and VB.

TYPE FORTYPE A 13 U 3 $
VRBL TYPEFOR A 16 U 6 $

FOR TYPEFOR, (FORTYPE)
ELSE SET TYPE FOR TO 0 $
BEGIN 0(1.2) $

SET TYPEFOR TO 12 $
END $
BEGIN"o(37.S) $

SET TYPE FOR TO 0 $
END $

END $ I 'FOR"

This example illustrates the use of the optional case type, using
a type delcared in a TYPE declaratioh. The value contained in
the variable TYPEFOR will be converted to A 13 U 3 type before
the comparisons are made to the values 0(1.2) and 0(37.5). If
the converted value is not one of these values, the variable
TYPEFOR will be set to zero. If a match is made, the variable
TYPEFOR will be set to the appropriate value.

6-111

/ (U) CM2Y-MAN-PGR-M5,049-R04CO

6.2 Conditional Statements

Syntax

<conditional statement>
::= <if statement>
: : = < find s tat emen t >

Semantics

•

A conditional statement is a statement whose execution depends on
the value of a conditional expression.

6- 112

/(U) CM2Y-MAN-PGR-M5049-R04CO

6 . 2 . 1 I f S tat emen t

Syntax

<if statement>
- Ir <primary condition> THEN <primary statement> [<elsif

clause>]& [<else clause>]

<primary condition>
.. - <boolean expression>

<primary s:atement>
- <simple statement>

<elsif clause>
::= ELSIF <secondary condition> THEN <secondary statement>

<secondary condition>
::= <boolean expression>

<secondary statement>
::= <simple statement>

Semant ics

An if statement specifies sequences of Boolean conditions and
statements, of which one is executed when its associated condi
t i on i s true.

IF

<primary condition>

THEN

<primary statement>

<ELSIF>

- A language Keyword indicating an if
statement.

A Boolean expression
controls execution of
statement.

whose value
the primary

- A 1 anguage Keyword i nd i ca t i ng tha t 'a
primary or secondary statement fol
lows.

- A simple statement that is executed
if the primary condition is true.

- Optional. A language Keyword indi-
cating an elsif cla~se.

<secondary c0ndition> - Optional. A Boolean expression
whose value controls execution of
the associated secondary statement.

6-113

I
I I .
I
I
I
I
I

/ (U) CM2Y -MAN·-PG;R -M504-~·-RO.4CO

<secondary statement> - Optional. A simple statement whose
execution is co~trolled by the asso
ciated secondary condition.

<else clause> - Optional. A clause containing an
alternative statement to be executed
if no primary or secondary condition
is true.

When an if statement is executed the sequence of Boolean expres
sions consisting of the primary condition and any optional
secondary conditions is evaluated in order until one is found to·
be true, at which time the associated primary or secondary state
ment is executed. If all of the conditions evaluate to false and
the optional else clause is present, then the alternative state
ment of the else clause is executed. If all of the conditions
evaluate to false and the optional else clause is not present,
then no subsidiary statement of the if statement is executed.

At most one subsidiary statement of the if statement is executed.
After a selected statement is executed, no following secondary
conditions are evaluated.

Examples

VRBL B1 B $
VRBL HOLRTH H 1 $
VRBL (XX,YY,ZZ) I 16 U $

IF B1 THEN RETURN $

In this example control is returned to the calling procedure if
the value of B1 equals 1 (true).

IF HOLRTH NOT H(*) OR XX+YY LT ZZ
THEN SET B1 TO 0 $

ELSE SET ZZ TO 8~ $

In this example, variable B1 will be set to zero only if variable
HOLRTH does not contain an asterisk or if the sum of XX and YY is
less than ZZ. Otherwise, the ELSE statement wi 11 be executed.

VRBL STAT S 'GOOD', 'BAD DATA', 'BAD HARD', 'BAD PROC' $
FILE FILE1 H 100 R 50 MT3 'BUSY', 'FINISHED',

'SENTINEL', 'HARDWARE', 'BAD PKG', 'EMPTY', 'NODEVICE' $

IF FILE1 NOT 'HARDWARE' THEN RETURN S
ELSE SET STAT TO 'BAD HARD' $

6-114

/(U) CM2Y-MAN-PGR-M5049-R04CO

This is a sample of a conditional i/o expression used in an if
statement. If the value of the expression is not 3, the return
is executed. Otherwise, STAT is assigned the value 2.

IF xx EO 0
THEN SET YY TO 0 $

ELSIF XX EO 500
THEN SET YY TO 10 $

ELSIF XX GT 99
THEN SET YY TO 99 $

ELSE SET YY TO -1 $

This is an example of an if statement with elseif clauses. YY
wi 11 be set to 0 only if XX equals O. YY will be set to 10 only
if XX is not 0 and XX is equal to 500. YY will be set to 99 only
if XX is not 0 and XX is not 500 and XX is greater than 99. Oth
erwise YY will be set to -1.

6-115

I'

6.2.2 Find Statement

Syntax

<find statement>
::= <find clause> <action clause> [<else clause>]

<find clause>
::= FIND <find condition> [<varying clause>] $

<find condition>
::= <find relational expression> [<boolean binary operator>
. <boo le'an express ioti))

<find relational expression>
- <subscripted data u~it> <relational operator> <simple

expression>

<boolean binary QP~rator>
.. - AND
. ,- OR

<action clause>
::= IF DATA FOUND THEN <simple statement>
::= IF DATA NOTFOUND THEN <simple statement>

Semant ics

A find statement specifies a search of' a table for an item satis
fying a specified condition and one or two statements to be exe
cuted, depending on the result of the search.

FIND

<find condition>

VARYING

<index clause>

- A language keyword indicating a find
statement,

A Boolean expression specifying a
condition on an item of the table
that must be met for the search to
be sa tis f i ed .

- Optional. A language keyword indi
cating that an' index clause for the
table index follows.

- Opt iona 1. Spec if lca t i on of con-
s t r a i n t s on the- i n'dex 0 f the tab 1 e
as the search is performed.

IF DATA FOUND THEN

I(U) CM2Y-MAN-PGR-M5049-R04CO

- Language Keywords indicating that
the following statement is to be ex
ecuted if a table item satisfying
the find condition is found.

IF DATA NOTFOUND THEN - Language Keywords indicating that
the following statement is to be ex
ecuted if no table item satisfying
the find condition is found.

<Simple statement>

<else clause>

- A statement to be executed condi~
tionally, depending on the result of
the table search.

- Optional. Specification of an al-
ternative statement to be executed
if the result of the table search is
such that the simple statement of
the action clause is not executed.

A find condition is a speCial form of a Boolean expression. It
must begin with a relational expression, the left comparand of
that relational expression must be a subscripted reference, and
the first subscript expression of that subscripted reference must
consist of a variable name of a numeric or status type. That
variable becomes the index of a loop implied by the find clause.

If the optional varying clause is present, it must specify the
implied loop index.

The form of the loop implied by a find statement depends on the
form of the find clause. In the following, let loop index denote
the implied index of the loop, as defined above, and let table
denote the table of the subscripted data unit that begins the
find relational expression.

1. Find clauses of the form FIND (find condition>, ·FIND
<find condition> VARYING loop index, and FIND <find con
dition> VARYING loop index WITHIN table imply loops of
the form VARY loop index WITHIN table.

2. All other forms of find clauses (which must include a
varying clause) imply loops of the form VARY loop index
<index clause>.

The form of the loop implied by a find statement must be a valid
loop blocK head.

The semantics of a find condition are the same as those of any
Boolean expression.

6-117

flU) CM2Y-MAN-PGR-M5049-R04CO

Execution of a find statement comprises three steps:

a. The loop index is initialized. The initial value can be
explicitly specified in the optional index clause, or it
can be implied, as described above.

b. The find condition is evaluated. If the value of the
find condition is 0 (false), step c of this sequence is
performed next. If the value of the find condition is 1
(true), the table search is completed and the following
action depends on the form of the action clause and the
optional else clause.

(1) If the action clause contains the keyword FOUND,
the simple statement of the action clause is execu
ted, which completes execution of the find state
ment.

(2) If the action clause contains the keyword NOTFOUND
and the optional else clause is not present, execu
tion of the find statement is completed without
further action.

(3)- If the action clause contains the keyword NOTFOUND
and the optional else clause is present, the alter
native statement is execu~ed, which completes exe
cution of the find statement.

c. End-of-loop processing. The loop index is incremented
and the loop termination condition is tested. The type
of incrementation and the termination condition can be·
explicitly specified in the optional index clause, or
either one can be implied, as described above. If the
termination condition is not satisfied, step b of this
sequence is performed next. If the termination condi
tion is satisfied, the following actions depends on the
form of the action clause and the optional else. clause.

(1) If the action clause conta~ns the keyword FOUND and
the optional else clause is not present, execution
of the find statement is c8mpleted without further
act ion.

(2) If the action clause contai~s the keyword FOUND and
the optional else clause is present, the alterna
t i ve . s tat emen tis execu ted nex t, wh i ch camp 1 e t es
execution of the find statement.

6-118

Examples

/(U) CM2Y-MAN-PGR-MS049-R04CO

(3) If the action clause contains the keyword NOTFOUND,
the simple statement of the action clause is execu
ted, which completes execution of the find state
ment.

CASE. FINDDEX(PC,STATE)EQ BRASS
VARYING PC THRU 5 $

IF DATA NOTFOUND THEN GOTO NEXT $
SET REP TO REP + 1 $
RESUME CASE $

NEXT. VARY SEND FROM 1 THRU 3 $
END NEXT $

Table DEX is searched for values equal to BRASS. If no matching
values are found, control is transferred to the statement labeled
NEXT.

6-119/(6-120 Blank)

flU) CM2Y-MAN-PGR-M5049-R04CO

SECTION 7. SUBPROGRAMS

Subprograms are the computational units of a CMS-2Y(7) program.
In the body of a subprogram is a sequence of statements that is
executed each time fhe subprogram i~ invoked. A subprogram may
contain data that can be referenced only by the subprogram it
self.

There are three types of subprograms: procedures, executive pro
cedures, and functions. Each can receive input values througb
input parameters and can reference data in any scope that con
tains its scope of definition. Procedures and functions can re
turn values to the subprogram that invoKed them. A procedure can
return values through its output parameters. A function always
returns only a single value, Known as the value of the function.
An executive procedure cannot return values to the invoking sub
program: it can communicate with the invoking subprogram only by
changing the v~Jues of data known in the scope of definition of
the execu t i ve,pro¢~dure I a capab i 1 i ty tha tis a 1 so ava i 1 ab le to
procedures and, ,fun,'9t ions.

7-1

/(U) CM2Y-MAN-PG~-M5049-R04CO

7.1 Subprogram Block

Syntax

<subprogram block)
.. - <procedure block>
::= <executive procedure block>
::= <function block>

Seman tics

A subprogram block defines a subprogram.

7-2

/(U) CM2Y-MAN-PGR-M5049-R04CO

7.1.1 Procedure BlocK

Syntax

<procedure blocK>
::= <procedure declaration> <procedure body> <end-procedure

declaration>

<procedure body>
::= <subprogram body>

<end-procedure declaration>
::= END-PROC <procedure name> $

Seman tics

A procedure block defines a procedure.

<procedure declaration> - A declaration of the attributes of
the procedure being defined.

<procedure body>

END-PROC

<procedure name>

- The statements that are to be exe
cuted when the procedure is
called, and declarations of data
whose scope is the procedure body.

- A language keyword indicating the
end of a procedure block.

- The name of the procedure being
defined.

The procedure name that appears on the end-procedure declaration
must be the same as the procedure name that appears on the proce
dure declaration.

Examples

VRBL (V1,V2,V3) 116 U $
PROCEDURE CHECKIT INPUT V1,V2

OUTPUT V3 $

END-PROC CHECKIT $

The PROCEDURE and END-PROC statements mark the bounds of the sub
program body named CHECKIT. Variables V1 and V2 are the formal
input parameters; variable V3 is the formal output parameter.

7-3

/ (U) CM2 Y - MAN - Ji):GR - MS04.9- R04CO

7.1.2 Executive Procedure Block

Syntax

<executive procedure block>
::= <executive procedure declaration) <procedure body>

<end-procedure declaration>

Seman tics

An executive procedure block defines an executive procedure.

<executive procedure declaration> - A declaration of the at
tributes of the execu
tive procedure being de
fined.

An executive procedure may execute in either the executive state
or the task state. The programmer must supply the entrance and
exit logic. An executive procedure commonly executes in the task
state of the AN/UYK-7 or AN/UYK-43 computer, but is called from
the executive state with an interrupt return instruction (refer
to manual M-5048).

The compiler aoes not generate code to save any registers upon
entry to an executive procedure. The programmer must supply the)
return linkage from an executive procedure; return phrases are
not permitted in the body of an executive procedure.

The procedure name that appears on the end-procedure declaration
must be the same as the procedure name that appears on the execu
tive procedure declaration.

Examples

EXEC-PROC EXPROC1 $

END-PROC EXPROC1 $

The limits of an executive procedure named EXPROC1 are defined.

7-4

7.1.3 Function Block

Syntax

<function block>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= <function declaration> <function body> <end-function
declaration>

<function body>
::= <subprogram body>

.. <end-function declaration>
::= END-FUNCTION <function name> $

Semant ics

A function block defines a function.

<function declaration> - A declaration of the attributes of
the function being defined.

<function body>

END-FUNCTION

<function name>

- The statements that are to be exe
cuted when the function is refer
enced, and declarations of data
whose scope is the function body.

- A language keyword indicating the
end of a function block.

- The name of the function being de-
fined.

The function name that appears on the end-function declaration
must be the same as the function name that appears on the func
tion declaration.

Examples

VRBL ALPHA A 30 S 13 $
VRBL AZM A 14 S 0 $

FUNCTION TPOS(AZM) A 12 S 5 .$
SET ALPHA TO 3+AZM/4 $
IF ALPHA GT 0 THEN RETURN (ALPHA) $

ELSE RETURN (0) $
END-FUNCTION TPOS $

7-5

/(U) CM2Y-MAN-PGR-M5049-R04CO

I

In this example TPOS is declared as a function with one formal
input parameter, AZM, and an output value type of signed fixed
point with six integer bits and five fractional bits. The con
tent of variable ALPHA is converted to A 12 S 5 upon return to
the expression that called TPOS. If the value of ALPHA is nega
tive, that value is incremented upon-return.

FUNCTION BOOl(AlPHA) B $
IF ALPHA GT 256*AZM THEN RETURN(1) $
ELSE RETURN(O) $

END-FUNCTION BOOl $

This 1s an example of a Boolean function wherein only the true
(1) or false (0) value is returned to the expression which refer
enced BOOl.

7-6

7.2 Subprogram Body

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<subprogram body>
::= [<local index declaration>&] [<subprogram data block>]

[<statement>&1

Seman tics

A subprogram body specifies the statements to be executed when
the subprogram is invoked and, optionally, local indexes and sub~
program aata blocks to be accessed during execution of the sub
program.

<loca' index declaration> - Optional. Declarations of local
indexes to be accessed during
execution of the subprogram.

<subprogramV~fl.,.~a block> - Opt iona 1.
whose scope
body.

Declarations of data
is the subprogram

- Optional. A statement to be ex
ecuted when the subprogram is
invoked.

When a suborogram is executed, the first statement to be executed
is the first statement of the subprogram body.

A procedure body may contain no statements. The effect of exe
cuting SUCh a subprogram is the same as executing a return phrase
with no fo~ma1 exit parameter specified.

An executive procedure body may not contain a return phrase.

A function body must contain a return phrase.

Examples

Section 6 contains examples of the various statement options
available.

7-7

/ (U) CM2 Y ... MAN ... PGR "'M5049 ... ·R04CO

7 .2. 1 SJ~~bp~og(tam q,a.ta Block

Syntax

<subprogram data block>
::= <subprogram data declaration> <subprogram data

sentence>& <end-subprogram-data declaration>

<subprogram data declaration>
::= [<data block name>} SUB-DD $

<subprogram data sentence>
::= <type declaration>
..... <variable declaration>

- <parameter variable declaration>
::= <tiole block>

- <array block>
:::; <ov~r lay dec 1 ara t ion>
•• "!" <C~mpi]e ... t i·.me constant declarat ion>
: :;: < 1 ta~ ~c l.~ra t ipn>
: : = <oadp·e·i·iaec lar ~ t i an >
· . - <QPQcedvp·e, .sw itch block>
· . - < labe l$:W'j tch block>
: :.;: < f i 1$.c·l~r~ tiOA >
::= <f~rmat <!eelaration>
· . - <range dec 1 ara t Lon>
::= <preset value declaration>
.. ~ <inputlist declaration>

- < ou t P1.1 t 1 i S td~c 1 a rat ion>
· . - <s t r i ngform de,c 1 ar.a t ion>
.. ~ <direct code blocK>
.. - < loea 1 index dec lara t ion>

<end-subprogram-data declaration>
::= END-SUB..,DD [<data block nq.me>} $

Semant ics

A subprogram·data block contains declarations of' data that are to
be referenced during execution of the subprogram body that con
tains the block.

<data block name>

SUB-DO

- Optional. The name of the data
block being specified.

- A language keyword indicating
the beginning of a subprogram
data block.

7-8

/(U) CM2Y-MAN-PGR-M5049-R04CO

<subprogram data sentence> - A declaration of a datum to be
referenced during the execution
of the subprogram.

END-SUB-DD - A language keyword indicating
the end of a subprogram data
block.

If the optional data block name appears on either the subprogram
data declaration or the end-subprogram-data declaration, then the
same name must appear on the other.

The scope of entities declared in a subprogram data block is the
subprogram body of the 'subprogram block in which the data block
appears. Declarations in a subprogram data block may not contain
declaration modifiers.

The scope of the name of a subprogram data block is the subpro
gram body of the subprogram block in which the data block ap
pears. The name has no function in the execution of a CMS-2Y(7)
program.

7-9/(7-10 Blank)

/(U) CM2Y-MAN-PGR-M5049-R04CO

SECTION 8. SYSTEM ELEMENTS

Syntax

<system element>
::= <system data element>
::= <system procedure element>

Semantics

System elements are the basic blocks of a CMS-2Y(7) compi lation
module. There are two types of system elements: system data el
ements and system procedure elements.

A system data element contains definitions of data whose scope is
global.

A system procedure element contains definitions of procedures,
functions. and declarations of data whose scope is the system
procedure element, unless modified by the (EXTDEF) or (EXTREF)
scope modifiers.

8-1

/ (U) CM2 Y -M·AN -.p-GR -M5049- RO-4CO

8.1 System Data Element

Syntax

<system data element>
::= [<minor header>] <system data block>

<system data block>
::= <system data declaration> [<data sentence>&]

<end--system-data dec lara t ion>

<system data declaration>
::= <data block name> SYS-DD [<key specification>@] $

<data block name>
::= <name>

<data sentence>
.. - <type declaration>
.. - <variable declaration>
::= <parameter variable declaration>
::= <table block>
::= <array block>
.. - <overlay declaration>
::= <compile-time constant declaration>

- <ltag declaration>
.. - <address declaration>
::= <procedure declaration>

- <executive procedure declaration>
.. - <function declaration>

- <procedure switch block>
- <file declaration>
- <format declaration>
- <range declaration>
- <default type specification>

.. - <preset value declaration>
- <inputlist declaration>
- <outputlist declaration>
- <stringform declaration>
- <direct code block>

<end-system-data declaration>
::= END-SYS-DD <data block name> $

Semant ics

A system data element consists of a system data block containing
declarations of data whose scope is global, optionally preceded
by a minor header containing declarations whose scope is the sys
tem data block.

8-2

<minor header>

<data block name>

SYS-OD

/(U) CM2Y-MAN-PGR-M5049-R04CO

- Optional. Declarations that affect
the following system data block.

- The name of the data block being de
clared.

- A language Keyword indicating the be
ginning of a system data block.

<key soecification> - Optional. A specification of a key

<data sentence>

ENO-SYS-DD

and element form to identify elements
in ISCM files.

- Optional. A declaration of a datum
that can be referenced during the exe
cution of the CMS-2Y(7) program.

- A language Keyword indicating the end
of a system data block.

The system data block name that appears on the end-system-data
declaration must be the same as the system data block name that
appears on the system data declaration.

A procedure declaration, executive, procedure declaration, or
function declaration within a system data block must include the
(EXTREF) scope modifier.

The scope of entities declared in a system data block is the sys
tem block of which the system data block is an element.

The name of a system data block has global scope. It has no
function in the execution of a CMS-2Y(7) program, but it may be
referenced by the loader or librarian.

Examples

TESTDD SYS-DD $
VRBL BOOl B $
TABLE SMALL H 1 1 $

FIELD I3U06 I 3 U 0 6 $
END-TABLE SMALL $
(EXTREF) PROCEDURE CHECKOUT INPUT BOOl $

END-SYS-DD TESTDD $

In this example system data block TESTDD contains only three of
the possib~e data sentences allowed, i.e., a variable declara
:ion, a taoie blOCK, and a procedure declaration.

8-3

/(U) CM2Y-MAN-PGR-M5049-R04CO

8.2 System Procedure Element

Syntax

<system procedure element>
::= [<minor header>] <system procedure block>

<system procedure blocK>
::= <system procedure declaration> [<system procedure

sentence>&l <end-system-procedure declaration>

<system procedure declaration>
::= <procedure blocK name> <system procedure type> [<key

specification>@] $

<procedure block name>
::= <name>

<system procedure type>
::= SYS-PROC
::= SYS-PROC-REN

<system procedure sentence>
::= <subprogram blocK>
::= <local data blocK>
::= <automatic data block>

<end-system-procedure declaration>
::= END-SYS-PROC <procedure block name> $

Semantics

A system procedure element consists of a system procedure blocK
containing definitions of subprograms and declarations of data to
be accessed during the execution of those subprograms, optionally
preceded by a minor header containing declarations whose scope is
the system procedure blocK.

<minor header>

<procedure blocK name>

SYS-PROC

- Optional. Declarations that
affect the following system
procedure block.

- The name of the procedure
blocK being declared ..

- A language Keyword indicating
the beginning of a system pro
cedure blocK.

8-4

SYS-PROC-REN

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A language keyword indicating
the beginning of are-entrant
system procedure block.

<system procedure sentence> - Optional. The definition of a
subprogram or a block of data
declarations.

END-SYS-PROC - A language keyword indicating
the end of a system procedure
block or a re-entrant system.
procedure block.

The proceaure block name that appears on the end-system-procedure
declaration must be the same as the procedure block name that ap
pears on the system procedure declaration.

A re-entrant system procedure block is compi led in such a manner
that multiple invocations of the subprograms of the block may ex
ecute simultaneously. Otherwise, the semantics of a system pro
cedure block and a re-entrant system procedure block are the
same.

·The name of- a system procedure block has no function in a
CMS-2Y(7) program, but it can be referenced by the loader or
librarian.

Examples

TESTSP SYS-PROC $
PROCEDURE SETUP $

END-PROC SETUP $
PROCEDURE CLOSEOUT $

END-PROC CLOSEOUT $
~ND-SYS-PROC TESTSP $

In this example, system procedure TESTSP contains subprogram
blocks SE~UP and CLOSEOUT.

8-5

I(U) CM2Y-MAN-PGR-M5049-R04CO

8.3 Local Data Block

Syntax

<local data block>
::= <local data declaration> [<local data sentence>&]

<end-local-data declaration>

<local data declaration>
::= [<data block name>] LOC-DD $

<local data sentence>
::= <data sentence>
: : =.. < 1 abe 1 s wit ch blocK>

<end-local-data declaration>
::= END-LOC-DD [<data block name>] $

Seman tics

A local data block contains declarations of data that are to be
referenced during~xecution of subprograms defined in the system
procedure block th'ift con t a ins the 1 oca 1 da tab lock.

<data block nam'e>

LOC-DD

- Optional. The name of the data
block being declared.

- A language keyword indicating the
begi'nning of a local data block.

<local data sentence> - Optional. A declaration of a datum
to be referenced during the execu
tion of a subprogram of the system
procedure element.

END-LOC-DD - A language keyword indicating the
end of a local data block.

The local data block name that appears on the end-local~data dec
laration must be the same as the local data block name that ap
pears on the local data declaration.

The scope of entities declared in a local data block is the sys
tem procedure block in which the data block appears unless the
declaration is preceded by the (EXTDEF) or (EXTREFI scope modifi
er.

A procedure declaration, executive procedure declaration, or
function declaration within a local data block must include the
(EXTREF) or (LOCREF) allocation modifier.

8-6

/(U) CM2Y-MAN-PGR-M5049-R04CO

The scope of the name of a local data block is the system proce
dure element in which the data block appears. The name has no
function in the execution of a CMS-2Y(7) program, but it may be
referencec by the loader.

Examples

LOC-DO $
VRE~ BCD H 7 $
SW!~CH CHOICE $

~NDA 1 $
~NDA2 $
ANDA3 $

END-SWITCH CHOICE $
END-LOC-DD $

In this example, variable and switch declarations are the only
data sentences in the local data block.

8-7

I
I
I
I
I
I
I
I.

/(U) CM2Y-MAN-PGR-M5049-R04CO

8.4 Automatic Data Declaration

Syntax

<automatic data block>
::= <automatic data declaration) [<automatic data

sentence>&] <end-automatic-data declaration>

<automatic data declaration>
::= <data block name> AUTO-DO $

<automatic data sentence>
- <type declaration>
- <variable declaration>
- <parameter variable declaration>
- <table block>
- <array block>
- <overlay declaration>
- <compile-time constant declaration>
- <ltag declaration>
- <address declaration>
- <procedure declaration>

.. - <executive procedure declaration>
- <function declaration>
- <range declaration>
- <default type specification>

<end-automatic-data declaration>
::= END-AUTO-DD <data block name> $

Semantics

An automatic data block contains declarations of data that are to
be referenced during execution of subprograms defined in the re
entrant system procedure block that contains the automatic data
block.

<data block name>

AUTO-DO

- The name of the data block being
declared.

- A language keyword indicating
the beginning of an automatic
data blocK.

<automatic data sentence> - Optional. A declaration of a
datum to be referenced during
the execution of a subprogram of
the re-entrant system procedure
element.

8-8

END-AUTD-DD

/(U) CM2Y-MAN-PGR-M5049-R04CO

- A language Keyword indicating
the end of an automatic data
blocK.

The declarations of all local data that are to change during exe
cution of a subprogram of a re-entrant system procedure must ap
pear in an automatic data blocK.

Data in an automatic data blocK cannot be preset in any fashion.

The scope of entities declared in an automatic data blocK is the
re-entrant system procedure block in which the data block appears
unless the declaration is preceded by an (EXTDEF) or (EXTREFl
scope modifier.

A procedure declaration, executive procedure declaration, or
function declaration within a local data block must include the
(EXTREF) or (LOCREF) allocation modifier.

The scope of the name of an automatic data block is the re
entrant system procedure element in which the data block appears.
The name has no function in the execution of a CMS-2Y(7) program,
but it may be referenced by the loader.

The data blocK name that appears on the end-automatic-data decla
ration must be the same as the data blocK name that appears on
the automatic data declaration.

Examples

SHOW AUTO-DO $
TABLE COMPT V MEDIUM 20 $

FIELD SAVE I 6 U $
FIELD GATE I 5 U $

END-TABLE COMPT $
VRBL GAME A 30 S 2 $
END-AUTD-DD SHOW $

In this example, SHOW ;s an automatic data blocK containing one
variable and one table.

8-9

/(U) CM2Y-MAN-~GR-M5049-R04CO

8.5 Minor Header

Syntax

<minor header>
::= <minor header blocK>&

<minor header block>
::= [<header declaration>] [<minor header sentence>&]

[<end-header declaration>]

<minor header sentence>
::= <header sentence>
::= <dependent element declaration>

<header sentence>
- <substitution declaration>

.. - <compile-time constant declaration>
- <ltag declaration>

.. - <constant mode declaration>

.. - <default type specification>
- <library declaration>

.. - <source retrieval declaration>

.. - <compjler directive>

Semantics

A minor header contains declarations and directives that affect
the following system data block or system procedure block.

<header name>

HEAD

- Optional. The name of the h~ader block
being declared.

- Optional. A language keyword indicating
the beginning of a header block.

<header sentence> - Optional. A declaration that will af
fect the following system data blocK or
system procedure block.

END-HEAD - A language keyword indicating the end of
a header block.

The header name that appears on the end-header declaration must
be the same as the header name that appears on the header. decla
ration.

8-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

The scope of the name of a minor header bloCK is the first system
data bloCK or system procedure bloCK that follows the header
bloCK. The name has no function in the execution of a CMS-2Y(7)
program, but it may be r~ferenced by the librarian.

Examples

HDR1 HEAD $
PI MEANS 3.14159 $
YTYPE EQUALS 7 $
YCATEG EQUALS YTYPE*4 $
YCLASS EQUALS YCATEG/2 + 5 $
LIBS PROJECT (XYZ123) $
SEL-SYS (MSTR) $

END-HEAD HDR1 $

Minor header HDR1 illustrates possible header sentences allowed
in a minor header.

8-11/(8-12 Blank)

/(U) CM2Y-MAN-PGR-M5049-R04CO

SECTION 9. COMPILATION MODULES

Syntax

<system biocK>
::= <system declaration> <major header> [<system element>&]

<end-system declaration>

<system declaration>
::= <system name> SYSTEM [<Key specification>@] $

<system name>
::= <~ame>

<end-syste~ declaration>
::= END-SYSTEM <system name> $

Semantics

A compilation module -- the smallest unit acceptable to a com
piler -- is called a system blocK in CMS-2Y(7).

<system name>

SYSTEM

<major header>

- The name of the system block being com
piled.

A language Keyword indicating the begin
ning of a system blocK.

- Declarations that affect the system ele
ments of the system block.

<system element> - Optional. A system data element or sys-

END-SYSTEM

tem procedure element that is to be com
piled.

- A language Keyword indicating the end of
a system block.

The system name that appears on the end-system declaration must
be the same as the system name that appears on the system decla
ration. T~e system name has global scope. It has no function in
the execut:on of a CMS-2Y(7) program, but it may be referenced by
the librar:an.

9-1

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

GREAT SYSTEM $

END-SYSTEM GREAT $

The system block is named GREAT.

9-2

9.1 Major Header

Syntax

<major heaaer>

I(U) CM2Y-MAN-PGR-M5049-R04CO

- <options declaration>& [<major header sentence>&]
<end-header declaration>

::= <options declaration>& [<major header sentence>&] <major
header block>

<major header sentence>
- <system index declaration>
- <debug enabling declaration>
- <address counter separation declaration>
- <compool retrieval declaration>
- <header sentence>

<major header block>
::= <header declaration) [<major header sentence>&]

<end-header declaration>

<header declaration>
::= [<header name>] HEAD [<key specification>@] $

<header name>
::= <name>

<end-header declaration>
::= END-HEAD [<header name>] $

Semantics

A major header contains declarations that are applicable through
out an entire system block.

<options declaration>

<header name>

HEAD

- A specification of one or more
compiler feature options.

- Optional. The name of the header
block being declared.

- A language keyword indicating the
beginning of a header declaration.

<major header sentence> - Optional. A declaration that wi 1 1
affect the system block.

~ND-HEAD - A language keyword indicating the
end of a header block.

9-3

/(U) GM2Y-MAN-PGR-M5049-R04CO

The header name that appears on the end-header declaration must
be the same as the hender name that appears on the header decla
ration. CMS-2Y(7) major headers are used to:

a. Parameterize the system block being compiled.

b. Specify the legality or illegality of certain source
statements.

c. Provide processing directives that govern the compiler's
interpretation of many CMS-2Y(7) operations.

d. Specify the number and kind of compiler outputs desired.

e. Activate specialized hardware and software processing
features.

A system block must begin with and contain only one major header.
The major header is bracketed by the system declaration and by
the first end-header declaration. (All header sentences encoun
tered after the first end-header declaration are part of a minor
header.)

Any name declared in a major header has global scope.

The name of a major header block also has global scope. It has
no function in the execution of a CMS-2Y(7) program, but it may
be referenced by the librarian.

Examples

GREAT SYSTEM $
OPTIONS UYK7 $
OPTIONS OBJECT (SM,CR) $
SYS-INDEX 3 XX $

END-HEAD $

In this example, the programmer has specified the AN/UYK-7 as the
target machine, and requested a source and mnemohic listing and
an address cross-reference listing. In addition, register 3 has
been specified as a system index named XX.

GREAT SYSTEM $
OPTIONS UYK7 $
OPTIONS OBJECT (SM,CR) $

HDRA HEAD $
SYS-INDEX 3 XX $

END-HEAD HDRA $

9-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

This example is functionally identical to the former, except tnat
the syste~ index statement is bracketed in a major header block
named HDRA. It is a major header block because its END-HEAD dec
laration ~s the first one encountered in the system.

9-5

/(U) CM2Y-MAN~PGR-M5049~R04CO

9.2 Options Declarations

Syntax

<options declaration>
- OPTIONS <target machine> [,<option specification>@] $
- OPTIONS <option specification>@ $

<target machine>
::= UYK7
::= UYK43

<option specification>
- <source specification>
- <object specification>
- <listing specification>
- <message level specification>
- <monitor specification>
- <non-real-time specification>
- <structured specification>
- <mode variable specification>

Semantics

An options declaration specifies one or more compi ler options.

OPTIONS

<target machine>

<option specification>

<source specification>

<object specification>

9-6

- A language keyword indicat
ing an options declaration.

- Specification of the comput
er for which the object pro
gram is to be generated
(AN/UYK-7 or AN/UYK-43).

- Optional. Specification of
the hardware and software
options for the compile.

- Optional. Specification
the disposition of
compiler's source file
put.

of
the

out-

- Optional. Specification of
the disposition of the
compiler's object file out
put.

/(U) CM2Y-MAN-PGR-M5049-R04CO

<lis:ing specification> - Optional. Specification of
the disposition of the
compiler's listing file out
put.

<message level specification> Optional. Specification of
the type of error message to
be produced by the compi ler.

<mon;tor specification> - Optional. Specification
that enables the compilati08
of statements that directly
or indirectly require access
to the CMS-2Y monitor.

<non-real-time specification> - Optional. Specification

<structured specification>

that indicates that the pro
gram is to be executed in a
nonreal-time environment.

- Optional. Specification
that the compiler should is
sue warnings if nonstruc
tured programming constructs
have been used in the source
program.

<moae variable specification> - Optional. Specification

<scaling specification>

that instructs the compi ler
to create local variable
definitions for undefined
names appearing in state
ments where the syntax of
the statement permits refer
ences to variable names.

- Optional. Specification
that indicates the eMS-2M
scaling rules are to be used
in the evaluation of numeric
expressions.

The o8:io~s declaration permits the programmer to select from a
list of a\ai lable features the required software and hardware op
tions. Re~er to Figure 9-01 for examples of available options
and :ne ~esults of combining those options. Refer to Appendix D
for sa~c~es and descriptions of the listing formats resulting
from .a~~OGS options requests.

/(U) CM2Y-MAN-PGR-M5049-R04CO

All options declarations must immediately follow the system dec
laration (i .e., they must be the first declarations of a major
header) .

Multiple options specifications may appear in a single options
dec 1 ara t ion, or one opt ions dec 1 ara t-i on may be used for each op
tions specification. Option specification phrases may be used in
any order, with the following restriction: the target machine
must be specified on the first options declaration.

Examples

OPTIONS UYK7 $
OPTIONS SOURCE(LIST) $
OPTIONS OBJECT(CR) $
OPTIONS UYK7, SOURCE(LIST), OBJECT(CR) $

Figure 9-01 shows several OPTIONS permutations.

9-8

)

Reaulta

Declaration.

x X
X X
X X
X X X X X X
X X

(0
X X X X I

(0 X X
X X X X X X
X X X X
X X X X X X X
X X X X X X X X
X X X X X X
X X X X X X X
X X X X X X X
X X X X X
X X X X X X

• •

r
STRUCTURED.OBJECT(SCRG) $ I X X X X X X

OPTIONS uVK~OBjECT(~
k

Figur(:. 9-01. Some Options Parameter Combinations and Results

X

X
X

I

X
X

X X
X

c

o
s:
f'0
-<

I

s:
):>

Z
I

-0
G>
:::0

I

s:
U1
o
~
<.D

I
;0

a
~
o
o

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.2.1 Source Specification

Syntax

<source specification>
::= SOURCE [«source parameter>@)]

<source parameter>
- LIST
- CCOMN

: : = CSRCE
::= CARDS

Seman tics

A source specification requests list, punched-card, and fi1e out
put of the source code that has been input to the compi ler. Any
or all of these outputs may be requested in any order by the pro
grammer.

SOURCE - A language keyword indicating a source
spec i fica t ion.

<source parameter> - Optional. Specification of the file on
which the source statement listing is
to be output.

The keyword SOURCE with no source specification parameters speci
fies the production of the source statement listing on the
hardcopy device.

LIST results in the listing of the source output on the hardcopy
device. LIST is the source speci fica t ion defau 1 t parameter; it
is necessary only if a hardcopy listing is desired in addition to
outputs on CCOMN or CSRCE.

CCOMN results in the productio~ of source code output" on the
CCOMN file for each system element and named header block. The
CCOMN fi le may also contain other element types in addition to
source elements.

CSRCE results in production of source code output on the CSRCE
fi le for each system element and named header block.

CARDS results in production of source card images for each system
element and named header block in punched card form.

If CCOMN or CSRCE is specified, these fi 1e outputs, along with
any listings that are produced by the compiler, wi 11 contain a
4-digit card sequence number in card columns 5 through 8. The
compiler performs source statement sequencing according to the

9-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

CMS-2Y lia~ary card-sequencing convention. A sequence-numbered
source l~sting from a system blocK compilation can be used to
build fi ie correction decks for compilations using library re
trieval c; the corresponding source output.

Source-statement sequence numbers begin with 1 at the start of
each lib~a~y element and continue until the end of the system
procedure olocK, system data blocK, or named header element.

Examples

OPTIONS SOURCE(CARDS) $
OPTIONS SOURCE(CCOMN) $
OPTIONS SOURCE(CSRCE) $
OPTIONS SOURCE(LIST) $

These options could also be specified as follows:

f OPTIONS SDURCE(CARDS,CCOMN,CSRCE,LIST) $

Implementa:ion Note

If the keyword OBJECT is present and if a source-and-mnemonic
(SM) 1 is t i ng is not reques ted, each source s ta temen tin the
source listing on the hardcopy device will be preceded by the re
locatable address of the first instruction generated for that
s ta temen t .

9 - 11

/ (U) CM 2 Y - MAN - P·GR - M 5049 - R 0 4CO

9.2.2 Object Specification

Syntax

<object specification>
::= OBJECT [«object parameter>@)]

<object parameter>
::= CMP [«compool name»]

- CR
- CRG
- CRL
- SA
- SADUMP

.. - SM
- CCOMN
- COBJT
- CARDS
- CNV
- SCR

.. - SCRG
- SCRL

<compoo 1 name>-
.. - <name>

Semantics

An object specification requests the campi ler to proceed through
the object-generation phase.

OBJECT - A language keyword indicating an object
specification.

<object parameter> - Optional. Spec~fication of the types
of listings, compool, and object code
to be generated.

The object specification may be requested with no object parame
ters. This wi 11 generate a compiler diagnostic listing.

The CMP parameter requests generation of a compool. It may be
used only in systems whose system block consists solely of system
data elements or headers. If the optional compool name is used,
it will become the name of the compool element ISCM fi le; other
wise, the name of the last system data biock wi 11 be used for the
compool name.

The CR object parameter specifies that bo:h global address and
local address cross-reference listings a~e to be generated. CRG
requests a global address cross-reference listing, and CRL

9-12

/(U) CM2Y-MAN-PGR-M5049-R04CO

requests a local address cross-reference listing. Address cross
reference listings consist of addressable-names, in alphabe~ical
order, that have been defined within a system bloCK.

A local address cross-reference is ou.tput following every system
element. ~ach addressable name def-ined or referenced in the sys
tem elemer.t is listed, along with the address at which the name
is al located and all the addresses where the name is referenced.
References to unallocated names wi 11 be listed as eight asterisKs
(********i. If a local address cross-reference is not specified,
the compi ler will output at the end of the system block a list of
unallocated names detected in each system element.

The global address cross-reference is produced at the end of the
system blOCK. For each addressable global name, the global ad
dress cross-reference contains the system element in which the
name is defined and each system element in which the name is
referenced.

SM specifies that a source and mnemonic listing is to be generat
ed. It contains all of the source statements, with each state
ment fol lowed by the address and the numeric and mnemonic repre
sentations of each instruction generated for the statement.

SA specifies that a symbol analysis listing is to be produced.
It provides a summary of identifiers declared in each element,
grouped according to declarative category. Within each grouping

. the ident~fiers are alphabetized and their attributes are listed
in short descriptive summaries.

SADUMP specifies that the symbol analysis information is to be
output in machine-readable form to a tape file. The information
wi 11 be in a subfile of the object tape file (COBJT or CCOMN).
The format of the file is described in Appendix E.

The SCR object parameter specifies that both global and local
source cross-reference listings are to be produced. SCRG
requests a global source cross-reference listing, and SCRL
requests a local source cross-reference listing. The source
cross-references are alphabetical listings of names defined or
used. In aadition to all addressable names the source cross
reference includes the following names: types, fields, cswitch
flags, local index names, system index names, substitution string
names, ntag, ltag and rtag names, header names, system element
names, local data blOCK names, subprogram data blOCK names, sys
tem names, pooling names, and form labels.

When a local source cross-reference is requested, a line number
is appended at the end of each text line. These compi ler gener
ated numbers are assigned in numerical order, beginning with 1,
for the major header -and each system element. The listing

9-13

/(U) CM2Y-MAN-PGR-M5049-R04CO

consists of all names defined or referenced in the element in al
phabe t i ca 1 order, with 1 i ne number s for all re fererces to each
name. If a reference to a name causes the named entry to be mod
ified, the line number is followed by an asterisk (*). A local
source cross-reference listing is produced for the major header
and for each system element.

When a global source cross-reference is requested, an alphabeti
cal list of each global name defined in the system block is
printed. Associated with each name is a list of all system ele
ments in which the name is referenced. If the value of a named
data unit is modified within the system element, an asterisk fol
lows the system element name. The global source cross-reference
is output at the end of the system block.

CCOMN specifies that the relocatable binary object code, the out
put compool, if specified, and the symbol analysis information
(SADUMP!, if specified, are to be output on the CCOMN file.

COBJT specifies that the re10catable binary object code, the out
pu t compoo 1 , i f :speci f i ed, and the symbo 1 ana 1 ys i sin forma t ion
(SADUMP), i f specil:~;\iea1, are to be output on the COBJT file.

"::1 ,,'._ ,. >., -' .

CARDS specifies tHat the reloca.table binary object code ;s to be
output in the form efa binary pUnChed card deck.)

CNV specifies that conversions between fixed-point and floating-
point data formats are to be performed .. by 1 ibrary rout ines. If
CNV is specified, it must be remembered that the use of run-time
conversion routines is less efficient in terms of execution time
but may require less memory than in-line generation if numerous
conversions are performed. Us·e of CNV' also requires that MONITOR
or NONRT be specified in the options declaration. If the target
computer is the AN/UYK-43, there are cases in which the inline
conversion code is shorter than the code required to call the
run-t ime rout ine. The' in-l ine code wi 11 a lways be used in these
cases.

Examples

OPTIONS OBJECT(CCOMN) $
OPTIONS OBJECT(CMP) $
OPTIONS OBJECT(CMP(CPOl)) $
OPTIONS OBJECT(COBJT) $
OPTIONS OBJECT(CR) $
OPTIONS OBJECT(CRG) $
OPTIONS OBJECT(CRL) $
OPTIONS OBJECT(SM) $

9-14

/(U) CM2Y-MAN-PGR-M5049-R04CO

Object pa~ameters may also be concatenated within the same state
ment, SUCh as:

OPTIJNS OBJECT(CCOMN,COBJT,CR,SMl $

lmplementa:ion Note

If a globa~ source cross-reference (SCRG or SCR) is requested and
a global aodress cross-reference (CRG or CR) is requested, only
the globa" source cross-reference wi 11 be output.

9-15

I(U) CM2Y-MAN-PGR-M5049-R04CO

9.2.3 Listing Specification

Syntax

<listing specification>
- LISTING [«listing parameter>@)]

<listing parameter>
- PRINT
- CCOMN
- CLIST

Semantics

A listing specification designates disposition of the output
listings that are produced by the compiler.

LISTING - A language Keyword indicating a list
ing specification.

<listing parameter> - Optional. Specification of the dispo
sition of generated listings .

. The compiler _ output listings may be written on the ISCM fi les
CLIST and CCOMN, or on the standard hardcopy device, ~r on any
combination. The parameters control the source listings, SM
listings, SA listings, and cross-reference listings that result
from object specifications.

PRINT indicates that compiler outputs are to be printed on the
standard hardcopy device. It is the default parameter and is
necessary only if printer output is desired in addition to output
on CCOMN or CLIST. If only hardcopy output from the standard
output device is required, listing specifications are not neces
sary.

CCOMN indicates that compiler outputs are to -be written on the
CCOMN fi leo CCOMN may not be used as a 1 isting parameter if it
is also used as an object parameter.

CLIST indicates that compi ler outputs are to be written on the
CLIST file.

Examples

OPTIONS LISTING(CCOMN) $
OPTIONS LISTING(CLISTl $
OPTIONS LISTING(PRINT) $

These option statements show different listing possibilities that
may be requested.

9-16

/(U) CM2Y-MAN-PGR-M5049-R04CO

Implementation Note

LISTING(CLIST) and LISTING(CCOMN) will have no effect if OBJECT
is not specified.

9-17

/ (U) CM2 Y -M'AN - P'GR -M5049- R 04CO

9.2.4 Message Level Specification

Syntax

<message level specification>
- LEVEL (0)
- LEVEL (1)

Semantics

A message level specification indicates the kind of diagnostic
messages that are to be output by the compi ler:

LEVEL - A language keyword indicating a message level speci
fication.

The parameter 0 specifies that all error and warning messages are
to be listed. This is the default value.

The parameter 1 specifies that only error messages are to be
listed (warning messages are not to be output).

Examples

OPTIONS LEVEL(O) $
OPTIONS LEVEL(1) $

These examples show the format of the message level specifica
t ion.

9-18

9.2.5 Mon'tor Specification

Syntax

<monitor soecification>
- MONITOR

Seman tics

/(U) CM2Y-MAN-PGR-M5049-R04CO

The monitor specification enables compilation of statements that
directly cr indirectly require access to the CMS-2Y monitor.
(e.g., CMS-2Y(7) input/output statements, debug' statements, and
certain b": and character modified data unit references).

MON::OR - A language keyword indicating the CMS-2Y(7)
monitor specification.

This speci~ication also results in all testing of the special
console conditions (e.g., KEY1) to be simulated by the monitor.
I n add it ion, the .rhOn i tor spec ifi ca t ion imp 1 i es access to nonrea 1-
time facilitiescqf:\trb11ed by the NONRT option. This specifica
t ion shou ldb~(;t;/Ul$'e.d only 'when the object code produced by the
comp i1 eri s 'JO,;D,~,IJ"\:~xecu ted., unde'r monitor control (See manual
M-5050, Sectfbri\)}2'\ for set t i ng of s imu 1 a ted spec i a 1 conso le con
d i t ions.)

Examples

OPTIONS MONITOR $

This examcie shows the format of the monitor specification.

9-19

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.2.6 Nonreal-Time Specification

Syntax

<non-real-time specification>
"::= NONRT

Seman tics

The nonreal-time specification indicates that the program is to
be executed in a nonreal-time environment.

NONRT - A language keyword indicating the nonreal-time spec
ification.

This specification enables generation of calls to implicit run
time functions that support exponentiation, BIT/CHAR, CAT, and
conversions between fixed-point and floating-point data formats.
The monitor specification automatically implies the nonreal-time
specification. In the absence of NONRT (or MONITOR) all implicit
references to these run-time functions wi 11 cause source warning
messages and/or object error diagnostics.

Examles

OPTIONS NONRT $

This example shows the format of the nonreal-time specification.

9-20

9.2.7 Structured Specification

Syntax

<structured specification>
::= STRUCTURED

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

The structured specification indicates that the source input is
to follow CMS-2Y(7) structured programming conventions.

STRUCTURED - A language Keyword indicating the structured
specification.

The compiler will issue a warning message for each statement that
violates these conventions. Nonstructured statements are:

a. Label switch declarations.

b. Branch phrases.

c. Procedure switch call phrases containing an invalid
specification.

d. Procedures with exit parameters.

Examples

OPTIONS STRUCTURED $

This example shows the format of the structured specification.

9-21

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.2.8 Mode Variable Specification

Syntax

<mode variable specification>
::= MODEVRBL

Semantics

The mode variable specification instructs the compiler to create
local variable definitions for undefined names appearing in.
statements where the syntax of the statements permits references
to var'able names.

MODEVRBL - A language keyword indicating the mode variable
specification.

The implicitly defined variables are given the default type for
variables that is in effect at the time the undefined name is en
countered.

Examples

OPTIONS MODEVRBL $

This example shows the format of the mode variable specification.

9-22

9.2.9 Scaling Specification

Syntax

<scaling specification>
- MSCALE

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

The scaling specification in an options declaration specifies
that the CMS-2M scaling rules, as modified for an AN/UYK-7 o~
AN/UYK-43 computer (paragraph 5.3.1.6), are to be used in the
evaluation of numeric expressions.

MSCALE - A language Keyword indicating the scaling specifi
cation.

If no scaling specification appears, numeric expressions will be
evaluated according to the CMS-2Y scaling rules (paragraph

. 5.3.1) .

Examples

OPTIONS-MSCALE $

This example shows the format of the scaling specification.

9-23

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.3 Como i ler Direct i ves

Syntax

<compi 1er directive>
.. - <parameter passage directive>

- <single precision directive>
- <executive directive>
- <spill directive>
- <pooling directive>

Seman tics

A compiler directive specifies a detail of the compilation pro
cess, but it does not affect either the syntax or semantics of
the language. It is simi lar to a compi 1er option, but a compiler
option affects the 'entire compi lation module, while a compi ler
directive can affect only a single element.

If a compi ler directive appears in a minor header, it affects the
system element of which that header is a part. If it appears in
the major header, it affects the entire compilation module.

9-24

/

9.3.1 Parameter Passage Directive

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<parameter passage directive>
::= PASSAGE-SPEC <passage type> [<subprogram name>@]$

<passage type>
- DIRECT
- REGISTER[, CALLING ONLY]

<subprogram name>
::= <procedure name>
::= <function name>

Semantics

A parameter passage directive specifies the type of code sequence
to be used in passing values between formal parameters and actual
parameters during the invocation of a subprogram.

PASSAGE-SPEC.~.>'" Language keyword indicat ing a parameter
'i;':;)~->~:::(:' passage d i rec t i ve.

<passage type> - The type of the directive.

The parameter passage type DIRECT specifies that all code affect
ing the passing of values is to be generated in the calling sub
program. The passage type REGISTER specifies that the values are
to be passed through registers; the calling subprogram contains
code to handle the values of the actual parameters of the call,
and the called subprogram contains code to handle the values of
its formal parameters. The passage type REGISTER, CALLING ONLY
is similar to the passage type REGISTER, except that the compiler
generates code only on the calling side; no putaway code is gen-
erated in the bodies of the named subprograms. Details of these
passage types are given below:

Parameter passage di~ectivesmayonly appear in headers. A pa
rameter passage directive that appears in the major header can
only list the names of subprograms whose scope is global in the
system block being compiled. A parameter passage directive that
appears in a minor header can only list the names of subprograms
that are declared in the associated element, but the subprogram
names can have either global or local scope. '

If a function name appears in the list of a parameter passage di
rective, the passage type refers only to its input parameters.

9-25

/(U) CM2Y-MAN-PGR-M5049-R04CO

If the optional list of subprogram names is omitted from a param
eter passage directive, a default passage type is 'being speci
fied. If the directive appears in the major header, the passage
type becomes the default type for all subprograms, global or lo
cal, in the system block. If the directive appears in a minor
header, the passage type becomes the- default type for all subpro
grams declared in the associated element.

Redundant parameter passage directives are permitted.

9.3.1.1 Routine Linkage

The LBJ 86 is used to transfer control from a calling subprogram
to a called subprogram.

9.3.1.2 Function Value Return

Function values are returned from a function to the calling sub
program as follows:

a. Values requiring a single word are returned in register
AO.

b. Values requlrlng a double word are returned in register
pa i r AO - A 1 .

c. For character-typed functions whose value is longer than
eight characters, an indirect word pointing to a memory
location containing the value is returned in register
AO.

9.3.1.3 Direct Passage

Direct passage is the default parameter passage mechanism. When
a subprogram using the direct passage mechanism is invoked, all
of the parameter passage code is generated in the calling subpro
gram. Before control is transferred to the called subprogram,
the values of the actual input parameters are stored into the
corresponding formal input parameters. After control is returned
from the called subprogram the values of the formal output param
eters are stored into the corresponding actual output parameters.

9.3.1.4 Register Passage Algorithm

When register passage is specified for a subprogram, some parame
ter values might be passed directly. Only if a formal parameter
is the name of a variable typed numeric, Boolean, or status, or a
CORAD receptacle, is its value eligible for register passage; if
the formal parameter is a table name, a system index name, the
name of a variable typed character, or the name of an untyped
variable, the value is passed directly. Of "the e1 igible values,

9-26

/(U) CM2Y-MAN-PGR-M5049-R04CD

only those for which registers are available according to the
following algorithm are passed through registers.

The eight accumulators are treated as a sequence: AD, A1, A2,
A3, A4, A5, A6, and A7. The formal parameter list is processed
from beginning to end and each eli~ible formal parameter is as
signed to the next available register or register pair (depending
on whether the value of the formal parameter requires one word or
two) in the sequence. If during this assignment process seven
registers (AD-A6) have been assigned, register A7 wi 11 be assign
ed to the next formal parameter that requires only one word, eve8
if intervening formal parameters requiring two words have been
passed. Parameters that cannot be assigned to a register by this
process are passed directly.

9.3.1.5 Register Passage, Calling Only

When register passage on the calling side only is specified, no
code is generated in the subprogram body to move the values of
the formal input parameters from the registers to memory, to load
the values of formal output parameters into registers from memory
prior to execution of a return phrase, nor to save the return
linkage address.

The code generated for any CMS-2Y(7) statement in the called sub
program assumes that the registers assigned for parameter passage
are available. If the statement references a formal input param-
eter, the value used is the value stored in its assigned memory
location, not its assigned register.

9-27

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.3.2 Single Precision Directive

Syntax

<single preclslon directive>
::= SINGLE $

Semantics

A single preclslon direct1ve specifies that the compiler is to
assume that all fixed-point arithmetic can be performed using the
target machine single preci~ion arithmetic instructions. In par- .
ticula~, the product of two fixed-point values (which might be
longer than 32 bits and thus require the double precision in
structions in some cases) will be assumed to be no longer than 32
bits in all cases.

9-28

9.3.3 Executive Directive

Syntax

<executive directive>
::= eXECUTIVE $

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

An executive directive specifies that the compiler is to generate
code that will execute in the target machine executive state ..
This directive. will affect the instructions that contain target
machine control memory references.

9-29

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.3.4 SRi 11 Directive

Syntax

<spi 11 airective>
::= SPILL $

Seman tics

The spi 1 1 directive instructs the compi ler to provide to the
loader, at object output time, every local and subprogram scope
identifier within the scope of the directive as an external defi-.
nit ion:

SPILL - A language keyword indicating the spi 1 1 directive.

The directive does not alter the normal scope of identifiers dur
ing the compi lation process.

If a spi 11 directive appears in a major header, all addressable
names in the system block and their associated addresses wi 11 be
provided to the loader by the compiler. If a spi 11 directive ap
pears in a minor header, all addressable names in the associated
system elemen! will be provided to the loader.

Note

The spi 1 1 directive primarily facilitates patching of resulting
relocatable object code by permitting the use of symbolic
addresses such as statement names, procedure names, or data
unit names - to specify the locations to be patched.

Implementation Note

Load-time DUPLICATE IDENTIFIER error messages can result from
indiscriminate use of the spi 11 directive because all names ap
pear to be global to the loader, regardless of their compile-time
scope.

9-30

9.3.5 Pooling Directive

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<pooling directive>
.. - [<compound section name>] <pooling type> [<allocation

information>] $

<compound section name>
- <name>

<poo 1 i ng type>
.. - LOCDDPOOL

- TABLEPOOL
- DATAPOOL
- BASE

<allocation information>
::= [<base register specification>] [<address

spec i fica t ; on>]

<base register specification>
: : = ([T), (< reg is ter number> 1)

<address specification)
::= <numeric constant expression>

Seman tics

A pooling directive specifies that certain parts of the compiled
program are to be gathered together in such a manner that they
can be processed as a unit by the loader. Optionally, 'direction
can be given to the loader concerning the allocation of those
parts.

<compound section name> - Optional. The name of the com
pound section generated as a re~
sult of the pooling directive.

LOCDDPOOL

TABLEPOOL

DATA POOL

- A language keyword indicating that
local data blocks are to be
pooled.

- A language keyword indicating that
global tables are to be pooled.

- A language keyword indicating that
the data of a system data block is
to be pooled.

9-31

flU) CM2Y-MAN-PGR-M5049-R04CO

BASE

T

<register number>

A language keyword indicating that
the code of a system procedure
blocK is to be pooled.

- Opt i ona 1 .
d i ca t-i ng
t ion is
siently.

A language Keyword in
that the pooled informa

to be referenced tran-

- Optional. Specification of a tar
get machine base register to be
used in addressing the pooled in-·
formation.

<address specification> - Optional. Specification of an ab
solute target machine address at
which the pooled information is to
be loaded.

As a result of a compi lation, the compiler produces, as a part of
its binary object code fi 1e, various loader directives which are
used by the CMS-2Y(7) loader during the binding of the final pro
gram. Pooling directives enable the specification of parameters,
at the source program level, of two of the directives: The com
pound address section directive (*CS directive) and the address
section definition directive (*AC directive). (See manual M-5050
for details on the use of these loader directives.)

The pooling types TABLEPOOL and DATAPOOL are applicable to system
data blocKs only. TABLEPOOL specifies that all of the tables
allocated within the system data block are to be grouped into an
address section. DATAPOOL specifies that all of the data alloca
ted within the data block are to be grouped into an address sec
tion, unless TABLEPOOL has also been specified, in which case
DATAPOOL will only refer to those data that are not tables.

The pooling types LOCDDPOOL and BASE are applicable to system
procedure blocks only. LOCDDPOOL specifies that all of the local
and subprogram data allocated within the system procedure block
are to be grouped into an address section. BASE specifies that
the entire system procedure block is to be allocated into an ad
dress section, unless LOCDDPOOL has also been specified, in which
case BASE will only refer to the code of the subprograms within
the system procedure block.

If a directive for a pooling type appears in the major header, it
affects the allocation of all of the system elements of the com
pilation module, except those for which a pooling directive of
that type is specified in a minor header.

9-32

I(U) CM2Y-MAN-PGR-MS049-R04CO

A pooling directive for any of the four pooling types may appear
in any m~nor header. If the pooling type is inappropriate for
the follo~;ng system element, it is ignored by the compiler.

If the optional compound section name is specified on a pooling
directive. that name is placed on the loader compound address
section di"ective (*CS directive) generated by the compiler. If
no name is specified, a default name will be used, depending on
the pooling type:

Pooling Type

BASE
DATAPOOL
LOCDDPOOL
TABLEPOOL

Default Name

SYSP
SYSDD
LOCDD
TABLE

The defaul: names SYSP and SYSDD are used for an entire system
procedure element or system data element, respectively, when no
pooling directives have been specified.

A compound section name has global scope during the compi lation,
therefore, all other global identifiers in the compilation module

. must be different from it. The same name can be used on more
than one pooling directive, however.

If the optional T appears in the allocation information, the
pooled information is to be referenced transiently, which means
that no fixed target machine base register is assigned to the in
formation. Each time the information is referenced, a base reg
ister mus: be loaded appropriately. The compiler generates the
code to de this loading. If the T does not appear, the" informa-
tion is re~erenced normally.

If the op:ional base register specification appears in the allo
cation information, the specified register is used Tn addressing
the pooled information. If the pooled information is addressed
normally, the specified register is the first of as many consecu
tive registers as are needed to address the information. If the
information is addressed transiently, it must be no more than can
be addressed using only a single base register, which is the
specified ~egister.

If no base ~egister is specified, a register is supplied by the
loader.

The value of a base register specification must be an integer in
the range :0,7].

If the optional address specification appears in the allocation
informatio~. it specifies a fixed target machine address at which

9-33

/

/ (U) CM2~' -MAN- ~GR-M504S- R04CO

the pooied information is to be loaded. The value of the address
specification must be an integer in the range [0,262143] if the
target computer is the AN/UYK-7, [0,42"94967295] if the target
computer is the AN/UYK-43.

If no address is specified, the address at which the pooled in
formatior is loaded is determined by the loader.

9-34

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.4 Address Counter Separation Declaration

Syntax

<address counter separation declaration>
- ACSEPARATION $

Semantics

An address counter separation declaration specifies that certain
parts of the campi led program are to be gathered together in such
a manner that they can be processed as a unit by the loader. Op
tionally, direction can be given to the loader concerning the al
location of those parts.

ACSEPARATION - A language keyword indicating the address
counter separation declaration.

An address counter separation declaration causes the compi led
program to be divided into the following parts: subprograms (in
structions), data allocated within system data blocKs (excluding
tables, input1ists, and outputl ists), data allocated within local
and subprogram data blocKs (excluding inputlists and output
lists), data allocated within automatic data blocKs, compiler
generated constant data (including compiler-generated indirect
words), compi ler-generated temporary data, inputlists and output
lists, and variable length tables.

As a result of a compilation the compiler produces, as a part of
its binary object code file, various loader directives which are
used by tne CMS-2Y(7) loader during the binding of the final pro
gram. The address counter separation declaration causes names to
be supplied to the loader for the compound address section direc
tive (*CS directive) and the address section definition directive
(*AC directive) . See manual M-5050 for details on the use of
these loader directives.

If the optional compound section name is specified on a pooling
directive. that name is placed on the loaded compound address
section directive (*CS directive) generated by the compiler. If
no name is specified, and for parts of the compiled program which
do not have an associated pooling directive, a default name will
be used:

9-35

I(U) CM2~-MAN-PGR-M5049-R04CO

Default Name

SYSP

SYSDD

LOCDD

AUTODD

CONST

iEMP

IOLIST

Name of the
variable
length table

Pooling ~ Program Part

BASE Subprograms (instructions)

DATAPOOL Data allocated within system
data blocks, excluding input
lists and outputlists

LOCDDPOOL Data allocated within local and
subprogram data blocks, exclud
ing inputlists and outputlists

Data allocated within automatic
data blocks

Compi ler-generated constants

Compi ler-generated storage 10-
ca t ions

Inputlists and outputlists

Variable length tables

The name placed on the address section definition directive (*AC
directive) for variable length tables wi 11 be the table name.
For all other program parts, the name placed on the address sec
tion definition directive will be composed of a two-character
prefix and a six-character suffix. The prefix will be an A fol-
lowed by the address section number. The suffix will be the
first six characters of the system element name (blank-filled on
the right if less than six characters).

Note

Because the system element name is truncated-to six characters on
the *AC directive, element names must be unlque within their
first six characters whenever ACSEPARATION is specified.

9-36

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.5 Compiler Input and Output Files

The CMS-2Y(7) compiler uses the standard input/output files
supported by the monitor for punched-card input and output, and
for hardcopy printer listings. The compiler also communicates
with other system programs by means of intrasystem communication
medium (ISCM) files. In general, within the CMS-2Y(7) compiling
system, all permanent files produced by one component for subse
quent input to another component are in ISCM form. Since the
compiler accepts input fi les produced by other CMS-2Y(7) compo
nents (e.g., the librarian) and produces output fi les for other
components (e.g., the librarian and loader), the compiler uses
both input and output ISCM fi les .. The compiler may also use as
input an ISCM file that the compiler itself produced previously.

A specialized ISCM file is produced as output from the CMS-2
librarian. This output file, known as a library, is identical to
a standard ISCM fi le, except that it is preceded by a directory
(listing the elements contained on the file) and a history block.

9-37

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.5.1 ISCM File Elements

ISCM fi les contain outputs from the compiler in five forms: gen
erated object code, compool elements, source elements, listing
elements and symbol analysis elements. The generated object code
is suitable for loading by the CMS-2Y loader. A compool element
is the compiler's internal representation of the symbol table
created for a set of system data elements. A source element con
tains 80-column source card images. A listing element contains
120-character print line images suitable for printing. A symbol
analysis element contains a machine readable form of symbol
analysis information. ISCM files may also be used as inputs to
the compiler to supply source and/or compool elements.

Each ,element on an ISCM fi le generally corresponds to a CMS-2Y(7)
major header, minor header, system data block or system procedure
block. An ISCM fi le may contain a number of separate elements,
and some ISCM fi les may include elements of differing forms
(e.g., both source and object elements).

Each element on an ISCM file has
attributes: name, form, and key, except for
element, which has no key.

three identifiable
a symbol analysis

The element name, which identifies the file element, is provided
when the element is added to the ISCM fi 1e. The name of an
object code, source code, listing or symbol analysis element pro
duced by the campi ler is the same as the name of the correspon
ding system data block, system procedure block, major header, or
named minor header. The name of a compool element is the name
specified on the CMP object parameter, if any; otherwise, the
name of the last system data block in the compool compi le is
used.

The element key is used to differentiate multiple elements of the
same name and form.

9.5.2 Compiler Input ISCM Files

Elements may be retrieved from previously created ISCM files
,(compi ler output fi les or CMS-2Y libraries) as part of the input
to the compiler. Retrieval is effected by first specifying an
ISCM fi 1e and then specifying either a set of source elements,
using source retrieval declarations, or compool elements, using
compool retrieval declarations. The source elements contain
source statements. A compool element contains the attributes of
the declarations in a system block, which can consist of a major
header and system data elements.

9-38

9.5.2.1 Library Declaration

Syntax

/(U) CM2Y-MAN-PGR-M5049-R04CO

<library declaration> -
::= LIBS <internal-id> [«external-id»] $

<internal-id>
::= <name>

<external-id>
::= <alphanumeric name>

<alphanumeric name>
::= <alphanumeric character>&

Semantics

A 1 ibrary
file and
source and

LIBS

declaratton specifies the name of a library or an ISCM
its Lrrtierna 1 and ex terna 1 i den t i fica t ions, from wh i ch
compoq;~;~}~lements may be retrieved.

. ~\ ~:' .>. ~: :". ~ . .

·.'~~~;;,\:,f~ A 1 anguage keyword tha t i nd ; ca tes ali brary
ge,c 1 ~r.,a t ion.

<internal-id> - A name used for internal file system identi
fica t ion.

<external-id> - Optional. A name used for external file
i.d~n t"i ,f i ca t ion.

If an external-id is not speCi'fied, the internal-id is 'used for
external file identification.

Theexternal-id alphanumeric name must have at least one but no
more than eight alphanumeric characters. It may start with a di
g it.

Examples

LIBS CMS2TAPE $
LIBS xx (987) $
LIBS COBJT (SVR4) $
LIBS CCOMN $

These examples show the format of the library declaration.

9-39

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.5.2.2 Source Retrieval Declaration

Syntax

<source retrieval declaration>
SEL-ELEM <source element name> [«key»] [, <dep

specification>] $ [<correction block header>]
SEL-SYS [«key»] $ [<correction block header>]
SEL-HEAD <source element name> [«key»] [, <dep

specification>] $ [<correction block header>]

<source element name>
: :'= <name>

<dep specification>
- ALL

::= ONLY
::= <numeric constant>

<correction block header>
::= CORRECT [NOLIST] $

Semantics

A source retrieval declaration specifies the retrieval of source
elements from a file for compilation and possible corrections or
other modifications.

SEL-ELEM - A language keyword indicating that a
specified element, and possibly all
of its declared dependent elements,
is to be retrieved.

<source element name> - The name of the element to be re
trieved.

<key>

<dep specification>

SEL-SYS

SEL-HEAD

- Optional. The key of the elements
to be retrieved.

- Optional. The level of dependent
element retrieval.

- A language keyword indicating that
all elements with a specified key in
the system are to be retrieved.

- A language keyword indicating that a
specified element, and possibly all
of its declared dependent elements,
are to be retrieved.

9-40

CORRECT

NOllST

/(U) CM2Y-MAN-PGR-M5049-R04CO

- Optional. A language keyword indi
cating that a correction block f~l
lows.

- Optional. A language keywo~d indi
cating that the source retrieval
function should not produce a list
ing.

SEL-ELEM and SEL-HEAD statements are functionally identical.

The key is required on a SEL-ELEM or a SEL-HEAD statement only if
the named element has a key on the ISCM file. If not required,
the key is considered blank. If no key is specified on a SEL-SYS
declaration, all source elements, regardless of key, are re
trieved.

If the dep specification is~

a. ALL. All dependent elements are to be retrieved.

b. ONLY. No dependent elements are to be retrieved.

c. <nu~ericconstant>. Dependent elements to the specified
depth are retrieved. The value must be an integer in
the range [0,255]. If the dep specification is 0, then
all dependent elements are to be retrieved (this is
equ i va 1 en t to ALL). 1ft he dep spec i fica t ion i s 1, then
no dependent elements are to be retrieved (this is
equivalent to ONLY). If the numeric constant value has
a value of n, where 2 ~ n ~ 255, that specific element,
plus n-1 levels of dependencies, are to be retrieved.

If no dep specification ~s given, ALL is assumed. This parameter
is used only in conjunction with CMS-2Y libraries. It is ignored
when retrieving from simple ISCM files (e.g., from compiler out
pu t f i 1 es) .

Manual M-5050 contains further discussion of the levels of
dependency and the order of element retrieval.

SEL-SYS statements can be used in conjunction with SEL-ELEM and
SEL-HEAD statements. The order of retrieval is dependent upon
the order of the elements on the library. Retrieval of elements
specified in one or more consecutive source retrieval declara
tions commences when one of the following conditions occurs:

a. The compiler encounters a correction block header.

b. The compiler encounters a CMS-2Y(7) statement other than
a source retrieval declaration or comment phrase.

9-41

/(U) CM2Y-MAN-PGR-MS049-R04CO

c. The number of consecutive source retrieval declarations
exceeds 60.

When retrieval is completed for a given set of requests and cor
rections, the compi ler continues by processing the next line of
the source program (which could be an additional library declara
tion or source retrieval declaration).

Source elements can be corrected during the retrieval process.
The corrections do not modify the input source file itself, but
only the elements as they are passed to the compiler. The name
of the element and the card image sequence numbers, as given in·
the compi lation or librarian listing, provide the reference
pOints for maKing corrections in the form of deletions,
insertions, or replacement of card images. Correction blocks
must be introduced by a correcti~n block header, which takes the
place of the librarian's /CORRECT command. It indicates that one
or more of the elements to be retrieved, as directed by preceding
source retrieval declarations, are to be corrected. Unlike the
librarian's /CORRECT command, a correction blocK header cannot
start in card columns 1 through 10. The correction block header
is followed by the correction blocK which has the same format as
librarian control cards, and which is therefore terminated by the
librarian's /~NDCOR command. Within a block of corrections, the

. order of the corrected elements must be that of the elements on
the file or library. If the NOLIST parameter is included, none
of the corrections is listed as part of the stream of input
statements. Manual M-SOSO contains more details on the correc
tion capability.

Examples

SEL-ELEM PROCA $

Element PROCA with no key is to be retrieved from the specified
libraries and ISCM files.

SEL-ELEM PROCB (SUB) $

Element PROCB, keyed SUB, is to be retrieved from the specified
libraries and ISCM fi lese Other elements with the same name
(PROCB) and different keys (or no key) wi 1 1 not be retrieved.

SEL-HEAD HDR1, ONLY $

Header HDR1 with no key is to be retrieved from the specified li
braries and ISCM fi lese (This retrieval statement cannot apply
to an ISCM file, since dep specifications are applicable only to
library fi les.) Any dependent elements are not to be retrieved.

SEL-SYS (MuR) $

9-42

)
(

/(U) CM2Y-MAN-PGR-M5049-R04CO

Every element keyed MJR is to be retrieved from specified librar
ies or ISCM files.

9-43

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.5.2.3 Compool Retrieval Declaration

Syntax

<compoo1 retrieval declaration>
- <library declaration>& <compool retrieval

specification>&

<compool retrieval specification>
- SEL-POOL <compoo1 name> [«key»] $

Semantics

A compool retrieval declaration specifies the retrieval of a com
pool element from an ISCM file.

SEL-POOL - A language keyword indicating a compoo1 re
trieval.

<compool name> - The name of the compool element to be re
trieved.

A compool retrieval declaration specifies the names of one or
more compools-and the ISCM files on which they can be found. Any
number of compool retrieval declarations can appear in a system
block, but they must appear in the major header block prior to
the declaration of any name (i .e., they must immediately follow
the options declarations).

The libraries specified in a compool retrieval declaration are
searched in order of appearance. The compools named in the com
pool retrieval specifications are retrieved as they are encoun
tered during the search of the libraries, which is not necessari
ly their order of appearance in the compool retrieval declara
tion. If more than one compool element of the same name is en
countered during the library search, only the first element en
countered is retrieved.

Compool elements cannot be corrected during the retri~val pro
cess.

The effect of compool retrieval is as if a symbol table contain
ing all of the symbols of all of the compools were present from
the beginning of the compilation. In particular, declarations of
the same name in two different compools is an error, unless at
least one of the declarations is an attribute (EXTREF) declara
tion (as it would be if the two declarations appeared in differ
ent SYS-DDs of the same compilation). The only exception to this
is those declarations that appear in the major header (MEANS,
ntags, 1tags, etc.). This allows one major header, containing
system parameters, to be used in compiling all of the compools.

9-44

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

SEL-POOL POOL(U7) $

Compool POOL Keyed U7 is to be retr-ieved from the 1 ibrary or ISCM
file.

9-45

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.5.3 Compiler Output ISCM Fi les

Output files are requested and their contents specified by three
different CMS-2Y(7) constructs:

a. The options declaration is -used to specify output ISCM
files and to select elements for these fi 1es.

b. The Key specification specifies a Key for an element or
elements in a fi le, distinguishing that element from all
other elements with the same name and form.

c. The dependent element declaration specifies which ele-
ments are dependent elements of a given element.

9 . 5 . 3 . 1 I SCM F i 1 e Spec i fica t ion Wit h the 00 t ion s Dec 1 a rat i on

Options specifications are used to select the desired output ISCM
fi les, and to specify the output data forms for the files. Four
output files, named CCOMN, CLIST, COBJT and CSRCE, are avai lable.
The file names are used as both the internal- and external-ids.
Each fi le and the output elements it may contain are listed
below.

F i 1 e Id Element Form

CCOMN Source, Objec t , Listing,
Compoo 1, Symbol Analysis

CLIST Listing

COBJT Objec t , Compoo 1, Symbol
Analysis

CSRCE Source

One CCOMN fi 1e can include output elements for more than one sys
tem block in a compile. 'If CCOMN is designated as an output file
in any source, object and/or listing options specification within
any system block, all of the output data wi 11 be written on one
CCOMN fi le in the order in which it is produced by the compiler.

Elements on CCOMN files for each CMS-2Y(7) system block are or
dered as follows:

a. All source elements.

b. The compool element.

c. All symbol analysis elements and object elements or all
listing elements (but not both'.

9-46

/(U) CM2Y-MAN-PGR-M5049-R04CO

The range of the CSRCE, COBJT, and CLIST files is confined to a
single system block. If one of these files is specified in an
options declaration, all of the appropriate elements between the
system declaration and end-system declaration will be produced.
If CSRCE, COBJT or CLIST files are specified for more than one
system block, the output for each system block is written on a
separate file. The CSRCE, COBJT, and CLIST files are closed at
the end of each system block.

Both CSRCE and CCOMN source parameters result in the output of a
source element for all source lines contained within each of the
fo 11 ow i ng :

a. System data blocK.

b. System procedure block.

c. Named major header block.

d. Named minor header block.

Whenever CLIST or CCOMN are designated by the listing specifica
tion, the following listing elements result:

a. The first element, identified by the system name,
contains printline images that include all the in
formation between the system declaration and the
end-header declaration of the major header.

b. The second ISCM element through the last ISCM ele
ment are the listing elements corresponding to each
system data element or system procedure element.
These listing elements include printline images
from any minor headers through the local cross
referenCe. The name of each element is the name of
the system element.

When the CMP parameter is speCified, the single compoor element
will precede all object elements on either the CCOMN file or the
COBJT file. The ISCM object files and binary object decks pro
duced will contain a CMS-2Y(7) object element for each system
data element in the compool compile. However, neither object nor
listing elements will be produced for these system data elements
in subsequent CMS-2Y(7) compilations that specify retrieval of
t his compoo 1 .

Examples

Refer to paragraph 9.2.1, paragraph 9.2.2, and paragraph 9.2.3
for examples.

9-47

/(U) CM2Y-MAN-PGR-M5049.;.R04C~

9.5.3.2 Key Specification

Syntax

<key specification>
- «key» [<element form)]

<key>
- <alphanumeric name>

<element form>
- *S
- *0
- *C
- *L

Seman tics

A key specification assigns a key to an element of an ISCM file,
allowing differentiation of multiple elements having the same
name and form.

<key>

<element forril'> .:. Optional. An *S, *0, *C, or *L indicating)
whether an element is a source, object,
compao 1, or 1 is t i ng e 1 emen t, respec t i ve 1 y .

A key can have no more than four alphanumeric characters.

Element keys may be specified in an ISCM fi le at the time of ini
tial file creation, or by an edit function in the librarian. Al
though the use of key is optional, its use means that the element
must be identified and referenced by both name and key.

More than one key may be specified on any of the applicable de
clarative statements. The key specifications included in the
system declarat ion apply to all -elements of the designated form
output for the system block. Key specifications included in the
header declarat iOh', system da:ta'declarat ion, and system procedure
declaration apply only to outputs associated with that e1ement.
If system-declared key specifications and an element-declared key
specification designate the same form of output, the element
declared key is used.

If no element form is attached to the key specification, all
forms produced are keyed. If no key specification is active for
an element form, elements of that form are given a blank key.

9-48

\

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examoles

KEYS SYSTEM (SK)*S, (LK)*L $
OPTIONS UYK7,SOURCE(CSRCE),

OBJECT(COBJT) ,LISTING(CCOMN) $
END-HEAD $

ELEM1 SYS-DD $

END-SYS-DD ELEM1 $
HELEM2A HEAD (012)*S $

END-HEAD HELEM2A $
HELEM2B HEAD $

END-HEAD HELEM2B $
ELEM2 SYS-PROC (OK)*O $

END-SYS-PROC ELEM2 $
END-SYSTEM KEYS $

The following items describe, for each source block, the various
ISCM elements produced from the above example, including the ele
ment form, name, key, and output ISCM file.

a. Major header. A listing element named KEYS, with a key
of LK, on file CCOMN.

b. System data block ELEM1. A source element named ELEM1,
with a key of SK, on file CSRCE; an object element
named ELEM1, with a blank key, on file COBJT; a
listing element named ELEM1, with a key of LK, on file
CCOMN.

c. Minor header block HELEM2A. A source element named
HELEM2A, with a key of 012, on fi le CSRCE.

d. Minor header block HELEM2B. A source element named
HELEM2B, with a key of SK, on file CSRCE.

9-49

/(U) CM2Y-MAN-PGR-M5049-R04CO

e. System procedure block ELEM2. A source element named
ELEM2, with a key of SK, on file CSRCE; an object ele
ment named ELEM2, with a key of OK, on file COBJT; a
listing element named ELEM2, including minor headers
HELEM2A and HELEM2B, with a key of LK, on fi 1e CCOMN.

9-50

/(U) CM2Y-MAN-PGR-M5049-R04CO

9.5.3.3 Dependent Element Declaration

Syntax

<dependent element declaration>
::= DEP <dep element>@ $

<dep element>
- <element name> [«key»]

<element name>
::= <name>

Semantics

A dependent element declaration specifies the name of the ele
ments that are dependent on the following system element.

DEP - A language· keyword indicating a dependent
element declaration.

<dep element> - The name and Key of the dependent element.

<element- name> - The name of the dependent element.

Any system data blocK or system procedure blocK of a system blocK
may have other elements dependent on or subordinate to it. When
the system element is retrieved from a library, all of its de
pendent elements can also be retrieved.

The source element for a named minor header is automatically made
a dependent element of its associated system data blocK or system
procedure blocK. (This procedure ensures that retrieval from a
CMS-2Y library of source for a system data blocK or system proce
dure blocK wi 11 normally result in automatic retrieval of associ
ated named minor headers.) It is not possible to declare ele
ments as dependent elements of a header element using a dependent
element declaration. This function must be performed by the
librarian.

The dependent element declaration has no direct effect on compi
lation of the current CMS-2Y(7) system; the information is used
only in the preparation of the output source and object file ele
ments. During library retrieval, whether of source or object el
ements, dependent elements are retrieved automatically with the
selected element, unless otherwise specified by the user.

9-51

flU) CM2Y-MAN-PGR-M5049-R04CO

Examples

HD HEAD $
DEP SPROCB, SPROCC(QRS) $
END-HEAD HD $

SPROCA SYS-PROC $

END-SYS-PROC SPROCA $

In the'lSCM source and object elements produced for the system
block shown above, source elements SPROCB, SPROCC (with a key of
QRS), and HD wi 11 be dependent elements of source element SPROCA:
object eiements SPROCB and SPROCC wi 11 be dependent elements of
object element SPROCA.

9-52

/(U) CM2Y-MAN-PGR-M5049-R04CO

SECTION 10. CONDITIONAL COMPILATION

Syntax

<conditional compilation directive>
::= <cswitch header statement>

- <cswitch terminal statement>
::= <cswitch selection declaration>
::= <cswitch delete declaration>

Semantics

Conditional compi lation directives define blocks of code that are
to be compiled if certain conditions are satisfied, select the
blocks that are to be compi led, and direct the form of the com
piler listing and other outputs with regard to those blocks.

The conditional compilation directives are extra-language state
ments and they do not appear in any other syntax productions
within this manual.

Conditional compilation directives are never executed. Theyaf
. fect the execution of a CMS-2Y(7) program only by determining

which statements are to be compiled.

10- 1

1 0 . 1 Cond i t1 ona 1 Compi 1 at ion Br acket s
'$t.

Syntax

<cswitcn header statement>
- CSWI TCH <csw itch flag> $

<csw itCh flag>
- <name>

<cswitch terminal statement>
- END-CSWITCH <cswitch flag> $
- END-CSWITCHS $

Semant ics

A cswitch header statement and cswitch terminal statement bracket
a sequence of source statements, called a conditional compi lation
block, t ha tis e 1 igib1 e,' for condi tiona 1 comp i 1 at ion.

CSWITCH - A language keyword indicating the beginning
of a conditional compi lation block.

"j -,

<csvJ itch .. f ri~~':':~,A ('<~'''ftag';c whci'ss'va lue dur i ng comp i 1 a ti on de
termi nes ' :~ff the cond i tiona 1 comp i 1 a ti on
block i s to be comp i 1 ed .

END-CSWITCH

END-CSWITCHS

- A language keyword indicating the end of a
conditional compilation block.

- A language keyword indicating the end of
a 11 unended condi tiona 1 comp i 1 at ion blocks.

Each cswitch header statement must be followed in the CMS-2Y(7)
system block by a matching cswitch terminal statement. A .cswitch
termina 1 statement containing "the keyword END-CSWITCH wi 11 match
a cswitch header statement only if they contain the same ,cswitch
flag. A csw itch term ina 1 s tatemen t cons i s t i ng of the keyword
END-CSWITCHS will match all prec~ding cswitch header statements.

Cswitch header statements and cswitch terminal statements may ap
pear anywhere in a system block except before the options decla
rations, in a direct code block, or between a find statement and
its action clause.

Any number of statements may appear in a conditional compilation
block.

A condi tiona 1 compi lat ion block must fully contain, or be fully
containea in, a system data block, a system procedure block, a

10-2

)

flU) CM2Y-MAN-PGR-M5049-R04CO

local data blocK, an automatic data blocK, or a subprogram data
block. A conditional compilation blocK may be contained in a ma
jor header.

Conditional compi lation blocks may be nested, to a maximum of 10
levels. They may not overlap. -

The effect of a conditional compilation block depends on the se
quence of source statements that make up the system block, not
the execution sequence of the program. If a cswitch header
statement is encountered and its cswitch flag is on, the state-,
ments of the .conditional compi lation block wi 11 be compiled in
the usual manner. If the cswitch flag is off, the statements
will not be compiled, and the effect on program execution will be
the same as if the statements of the block did not appear at all.

In a conditional compilation block that is not compiled because
its associated cswitch flag is off, the only checking performed
by the compiler is for proper bracketing of any nested condition-
al compi1ation blocks. No syntax checking is performed on any
other statements.

If a conditional compilation block is being compiled because the
associated f1ag is on, any nested conditional compilation block
whose associated flag is off will not be compiled. If the block
being comoiled contains a cswitch declaration that turns the
block's associated flag off, the flag will be set off, but the
remainder of the block will be compiled as though the flag were
on.

If a conditional compilation block is to be ignored because its
associated cswitch flag is off, any cswitch declaration that ap
pears in :he blocK will be ignored and any nested conditional
compi lation block will be ignored, even if its associated cswitch
flag is on.

Examples

CSWITCH UYK7 $

END-CSWITCH UYK7 $

Statements appearing between these header and terminal statements
will be compiled only when the cswitch labeled UYK7 has been
turned on with a cswitch selection declaration.

10-3

flU) CM2Y-MAN-PGR-M5049-R04CO

10.2 Compilation Selection Directives

Syntax

<cswitch selection declaration)
- CSWITCH-ON <cswitch flag>@ $

.. - CSWITCH-OFF <cswitch flag>@ $

Semantics

A cswitch selection declaration specifies one or more cswitch
flags ~o be turned on or off.

CSWITCH-ON

CSWITCH-OFF

- A language keyword indicating that
flags in the following list are to
turned on.

- A language keyword indicating that
flags in the following list are to
turned off.

the
be

the
be

<cswitch flag> - The name of a flag whose state is being
specified by the cswitch selection declara
tion.

A cswitch selection declaration may appear anywhere in a system
block except before the options declarations or in a direct code
block.

It is not necessary for all cswitch flags to appear in a cswitch
selection declaration. The default setting of a cswitch flag is
off: that is, if a cswitch flag appears in a cswitch header
statement before it appears in a cswitch selection declaration,
the value of the flag is off.

The values of cswitch flags at the end of the major h~ader become
default values for the remainder of the system block. The values
of the flags can be changed by conditional campi lation directives
in any system element, but the flags revert to the default values
at the end of each system element.

Examples

CSWITCH-ON TESTX $

The cswitch flagged TESTX is turned on such that all statements
between any following header/terminal pairs with the name TESTX
will be compiled.

10-4

)

10.3 Cswitch Delete Declaration

Syntax

<cswitch delete declaration)
.. - CSWITCH-DEL $

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

A cswitch delete declaration specifies that any conditional com
pilation block whose associated flag is off is to be omitted from
the compiler listings and from any source file output, along with
the corresponding cswitch header and terminal statements.

A cswitch delete declaration may only appear in a header. If it
appears in a minor header, its effect is from its point of
appearance in the compi lation sequence through the following sys
tem element. If it appears in a major header, its effect is from
its point of appearance through the end of the system blocK.

10-5/(10-6 Blank)

/(U) CM2Y-MAN-PGR-M5049-R04CO

APPENDIX A

ERROR AND WARNING MESSAGES

A.1 Source Error and Source Warning Messages

The following error and warning messages are issued as a result
of errors detected during the source analysis phase of a compi la
tion. Error messages are preceded by SE (for source error).
Warning messages are preceded by SW (for source warning). Error
messages are produced~ when the compiler is unable to take
cor rec t i ve ac t i on for a us'er er ror .

All CMS-2Y Compiler messages are included here for c6mpleteness.

SW

SE

SE

SE

SE

SE

SW

SE

SE

a NO!ND-CSWITCH,XXXXXXXX
A OSWITCH bracket does not have a corresponding
EN.D~C5'WITCH bracket before the end of the header,
eljmeli't, or 'data block.

,",,~ ","; ',';
\ .'

l' 'A~i~tikt~1~R.~90d~09f~G .' than
~"",,1R1J\~~t·:t1!mpt: to",e, 1 nea' name greater eight
dHaracters, ",long. ,

,', t./.,:·:i / <

2 CHARAC1Eff 'CONSTANT TOO LONG

3

4

5

6

7

8

A character constant is greater than 132 charac
ters.

RESERVED WORD USED AS 10
Illegal use of a reserved word as a name.

CHARACTER NOT RECOGNIZED
Illegal ASCII input character.

USER MUST 'P'ACK·F IELDS
Th~ ~serdeffried a field declaration without de
fin i nd~:'the'>st(iirt i ng:;pos i t ion of the fie ld.

NOTE TERMINATED BY $
Notes were not completed before end of sta temen t .

INCORRECT OCTAL CONSTANT
The decimal digits 8 or 9 appear in an octal con-
stant.

MISPLACED SEL-POOL
A definition of a name other than the system name
appears prior to SEL-POOL statement, or the SEL
POOL is not in the major header block.

A-1

I(U) CM2Y-MAN-PGR-M5049-R04CO

SE 9

SE 10

SE 1 1

SE 12

SE 13

SE 14

SE 15

SE 16

SW 17

SW 18

SE 19

SE 20

ILLEGAL INTEGER VALUE
A numeric constant value must be an integer, an
integer exceeds its maximum, or a negative value
was used where a non-negative is required.

NO STATEMENT TERMINATOR
A missing $ statement terminator.

IDENTIFIER MISSING
A missing name in a data unit declaration.

DUPLICATE IDENTIFIER
An attempt to declare a name previously declared
in the same scope.

OUTSIDE TABLE BOUNDS
A subtable is not contained within a table; a
field is not contained within an item; a
multiword field is in a horizontal table; or
presets are not contained within a table.

NO DESCRIPTIVE OPERATOR
A missing descriptive or separator term.

ILLEGAL IN MINOR HEADER
A statement is not allowed in a minor header
(must be placed in a major header).

TOO MANY DIMENSIONS
More than seven dimensions are in an array decla
ra t ion.

COMMA MISSING
A comma is missing in a statement.

OVERLAY PARENT MISMATCH
The total size of· the overlay siblings in an
overlay declaration exceeds the size of the over
lay parent.

DUPLICATE OVERLAY
A data unit appears as an overlay sibling in more
than one overlay declaration.

OVERLAY SEQUENCE ERROR
An overlay sibling in an overlay declaration
appeared as an overlay parent in a previous or
the current overlay declaration.

A-2

SE 21

SE 22

SE 23

SE 24

SW 25

SE 26

SE 27

SE 28

SE 29

SE 30

SE 3 1

SE 32

/(U) CM2Y-MAN-PGR-M5049-R04CO

UNDECLARED IDENTIFIER
A referenced name has not been previously de
clared.

SCOPE CONFLICT
A local name has been used in a global context or
the same name has been declared both local and
global in the same element.

STATEMENT NOT RECOGNIZED
A statement is unrecognizable. Possible causes

.are a mispelled keyword, a valid statement in the
wrong contexts or garbled syntax.

ILLEGAL OPTIONS
An illegal term has been specified in an options
declaration. If CCOMN has been designated as the
output unit for both the LISTING and OBJECT op
tions, only the OBJECT option is honored; the
LISTING option on CCOMN is ignored.

PARENTHESIS MISSING
Parenthesis missing within a statement.

ILLEGAL IN ARRAY
A subtable or like-table is declared in an array.

ILLEGAL OVERLAY DATA UNIT
An illegal data unit appears in an overlay.

ILLEGAL OVERLAY PARENT
A specified data unit may not be used as an over
lay parent.

DUPLICATE RANGE
More than one range statement for the same varia~
ble or field.

PRESET NOT ALLOWED
A data unit preset is not allowed in an automatic
data block, in an attribute definition, or for a
field in a type declaration or an indirect table
declaration.

ILLEGAL HARDWARE NAME
An illegal hardware device is specified in file
declaration.

ILLEGAL FORMAT DESCRIPTOR
An illegal conversion descriptor is specified in
format statement.

A-3

/(U) CM2Y-MAN-PGR-M5049-R04CO

SE

SE

SE

SW

SW

SW

SE

33

34

35

36

37

38

39

MORE THAN 1 LEVEL NESTED
Format descriptors are nested (parenthesized) to
more than one level.

UNUSED

ILLEGAL SIZE DESCRIPTOR
Illegal data unit size attribute (e.g., character
type over 132 characters; too many bits for nu
meric types) or the starting bit of a field is
not 31 and the field crosses a word boundary.

UNUSED

MON{TOR OPTION REQUIRED
The monitor option must be declared for proces
sing of this statement.

NONRT OPTION REQUIRED
Processing of the statement requires the NONRT
(or MONITOR) option.

SYSTEM LIMIT nn EXCEEDED
One of the following compiler limits denoted by
nn has been exceeded. The code nn has the fol
lowing values:

nn = 1

nn = 2

nn = 3

nn = 4

The constant conversion limit was ex
ceeded; the value of the constant lies
outside the limits defined below:

a. Target machine: AN/UYK-7 or AN/UYK-
43. Lower 1 i mit: 1 E - 38 . Upper
limit: 1E 75.

b. Target machine: AN/UYK-20. Lower
1 i mit: 1 E - 78 . Uppe r 1 i m-;- t : -1 E 75.

c. Target machine: CP-642. Lower lim-
it: -536,870,911. Upper limit:
536,870,911.

The number of nested subexpressions
with i n the condition of an IF statement
may not exceed 10.

The number of libraries requested for
retrieval may not exceed 10.

The number of operands in a DISPLAY
statement has exceeded the comp i ler

A-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

limit. The card column indicator in the
error output listing pOints to the oper
and which first exceeds the limit. This
and following operands should be written
as a separate DISPLAY statement. The
limit may be calculated as follows:

a. Allow 3 + n words for each operand,
where n is-the number of words re
quired- to contain the operand as a
character string.

b. The sum of step a may not exceed
94.

nn = 5 The maximum number of exit parameters
per procedure declaration is 10.

nn = 6 The number of format descriptors exceeds
94 or the number of operands of an
input/output list for INPUT, OUTPUT, EN
CODE or DECODE statements exceeds 94.
(For each operand that is a character
constant, add the number of words re
quired to contain the constant value.)

nn = 7 A maximum of seven levels of subscript
ing and function calls per operand is
allowed.

nn = 8 An item beyond item 255 was specified in
a field preset.

nn = 9 The length of a statement is too long
for the compiler to process properlY.
This may be due .to the complex~ty of an
expression or an abundance of embedded
notes.

nn = 10 The maximum number of elements declared
dependent of another is 58.

nn = 11 A VRBL declaration may define no more
than 25 names.

nn = 12 The offset of a sibling overlaid data
unit relative to its parent data unit
must not exceed 65535 words.

nn = 13 More than 250 elements.

A-5

/(U) CM2Y-MAN-PGR-M5049-R04CO

nn = 14 Symbol table overflow -- number of glo
bal and local names. The compile will
be aborted at this point in the source
program.

nn = 15 Compiler-packed table has more than 256
words per item.

nn = 16 More than 100 nested block units.

nn = 17 More than 10 nested VARY loop indexes.

nn = 18 COMMENT statement or notes between FIND
and IF DATA is (are) too long.

nn = 19 COMMENT statement or notes between last
THEN clause and ELSE clause is (are) too
long.

nn = 20 through nn = 29 Not used.

nn = 30 A dependent retrieval level greater than
255 was requested. 255 is assumed.

nn = 31 A magnitude value greater than 32767 was
specified in a magnitude specification.
32767 is assumed.

nn = 32 Table is greater than 65535 words.

nn = 33 EQUALS term absolute value is greater
than 65535.

nn = 34 CCOMN specified for both library and
output; output ignored.

nn = 35 The maximum number of input parameters
per procedure or function declaration is
25.

nn = 36 The maximum number of output parameters
per procedure declaration is 25.

nn = 37 More than 10 nested TDEF or CONF opera
tors.

nn = 38 The maximum length of a single digit
string (excluding any radix point) is
132 characters.

A-6

SW

SE

SW

SE

SW

SW

SE

SE.

SE

SE

SW

40

41

42

43

44

45

46

47

48

49

50

I(U) CM2Y-MAN-PGR-M5049-R04CO

nn = 39 The maximum length of a SNAP or DISPLAY
item (the item identification as
printed, with blanks removed) is 132
characters.

nn = 40 The maximum number of input compools is
127.

CSWITCH NEST EXCEEDED
Nesting of CSWITCH brackets exceeded .

. ILLEGAL EXTERNAL MODIFIER
Illegal or misplaced EXTREF, EXTDEF, or LOCREF
declaration; or illegal use of * on a direct code
1 abe 1 .

END DECLARATION MISSING
A st~tement that indicates the end of this pro
gram element or segment is not present.

HEAOER NOT RECOGNIZED
A.~if~i,·/liInrecogn i zab 1 e or i 11 ega 1 s t a temen t appear i ng

.. iil1j~;.i;ra·;~';;header, .
. ';i·~:;'([;:~::~'·'· . ••.

EN[)~HEADM:l 55 IN(t·
Noend~headerdeclaration at the end of the major
or minor header element.

FUNCTION RETURN MISSING
A return phrase is missing from the function.

ILLEGAL EXIT PARAMETER
An illegal name is specified as a formal exit pa
rameter .

..

COMPOOL REQUEST IGNORED
The requested COMPOOL was not produced due to de
tection of· SYS-PROC statement.

UNUSED

INCOMPATIBLE DATA UNIT
Expression operands do· not fit the context re
quired by the operator.

NO DEF CHECK PERFORMED
No validation has been performed between the cur
rent declaration and a previous declaration of
the same ent i ty.

A-7

/(U) CM2Y-MAN-PGR-MS049-R04CO

SE

SW

SE

SW

SE

SE

SE

SE

SW

SE

SE

SE

51

52

53

54

55

56

57

58

59.,

60

61

62

FILE TYPE MISSING
A type descriptor is missing in a fi le declara
t ion.

CMS-2 BRACKET MISSING
The CMS-2 statement is missing as a terminator
for a direct code blocK.

VALUE SIGNIFICANCE LOST
The most significant bits have been lost during
alignment of a numeric constant used as a varla
ble or field preset or a value block value.

DUPLICATE STATUS CONSTANT
A status constant appears more than once in a
status type specification. The name maintains
its position in the list both times but the sec
ond occurrence is inaccessible.

DUPLICATE ALLOCATION
A name appears on the left of more than one tag
declaration.

ILLEGAL ALLOCATION
An attempt has been made to establish EQUALS al
location through a constant (absolute allocation)
or illegal EQUALS expression; or a name appeared
in a previous tag declaration; or an illegally
allocatable name has been declared.

NO LIBRARIES SPECIFIED
A source retrieval or compool retrieval statement
is appearing prior to a LIBS statement.

xxxxxxxx NOT RETRIEVED
The requested element, named xxxxxxxx, was not
found in any of the declared libraries.

FIELD LIST MISSING
No fields were specified for a compiler-pacKed
table or type.

WRONG PARAMETER COUNT
The number of procedure or function actual param
eters ;s not the same as the declared number of
formal parameters.

UNUSED

UNUSED

A-8

'\
I

SE 63

SW 64

SE 65

SE 66

SW 67

SW 68

SW 69

\. SW 70

SW 71

SW 72

SE 73

SE 74

SE 75

/(U) CM2Y-MAN-PGR-M5049-R04CO

MUST BE FORMAT NAME
Syntax requires a name to be a format statement
reference.

WRONG END NAME
An incorrect name on an END- statement.

SYNTAX ERROR
An erroneous statement syntax or punctuation.

COMPILER PROBLEM, SYNTAX
.Syntax of a s.tatement cannot be analyzed by th~
compi ler.

INCORRECT END KEYWORD
The wrong KEYWORD appeared on the END- statement.

NO SYSTEM DECLARATION
A missing system declaration as the first state
ment of a source input.

NO END-SYSTEM
A missing END-SYSTEM statement.

SYNTAX WARNING
Syntax of a statement is not correct, but the
compiler has assumed an interpretation.

OPTIONS STATEMENT MISSING
An options declaration is missing from a major
header. Only output will be syntax diagnostics.

PARAMETER PROCESSED AS VRBL
Parameter variables are not allowed in function
definitions.

MISPLACED STATEMENT
A misplaced or extraneous END statement has been
encountered at a point in the program where al·l·
block declarations and their END delimiters have
been paired; or a statement has been detected
outside its valid limits.

ILLEGAL KEY TYPE
The key type is not legal for this element.

DUPLICATE KEY
The key was previously declared.

A-9

/ (U) CM2Y -M'AN- P:GR -M5049-R()4CO

SE 76

SW 77

SW 78

SE 79

SW 80

SE 81

SW 82

SW 83

SW . 84

SE 85

SW 86

SW 87

ELEMENT KEY GREATER 4 CHARS
A library element key is greater than four char
acters.

MISPLACED STATEMENT
An options dec1aratJon has been detected follow
ing other header declarations, or a local index
declaration has been misplaced.

VALUE PRECISION LOST
The least significant bits have been lost during
alignment of a numeric constant used as a varia-'
ble or field preset or as a value blocK value.

ILLEGAL DECREMENT WITHIN
An i 1 1 ega 1 VARY contains expl ici t FROM and WITHIN
parameters with a negative BY parameter.

32 BIT. UNSIGNED DATA UNIT
A . var i ab 1 e is 32 bit suns i gned (requ i ri ng two
wo,r·ds) .

l,)~~~~tL, :hQR}W~Rt>. RE,F ',"
!~~~Wa,nd reference PROCEDURE and FUNCT ION ca 11 s
ma'y, ,'not have status· constants as input or output
parameters. >.

NOT IMPLEMENTED
This feature is not implemented within the opera
ting system (e.g., word typing on a table decla
ra ti on) .

TRUNCATED TO INTEGER
A scale.d value has been truncated to an integer
value where an integer is syntactically required .

SADUMP REQUIRES 08~ECT TAPE
SADUMP has·beenspecified, but no object tape
(COBJT or CCOMN) has been specified.

NESTED MEANS OR EXCHANGE
A referenced MEANS or EXCHANGE name contains an
other MEANS or EXCHANGE name in its substitution
string.

NON-STRUCTURED STATEMENT
The current statement violates CMS-2Y structured
programming conventions.

CONSTANT PRECISION LOST
Precision bits of a convertec constant in the

A-10

)

SE 88

SW 89

SW 90

SE 91

SE 92

SW 93

SW 94

SE 95

SE 96

SE 97

SE 98

/(U) CM2Y-MAN-PGR-M5049-R04CO

decimal range of 1E-24 to 1E-38 or the octal
range of 1E-32 to 1E-52 have been lost.

ILLEGAL EQUALS
Illegal operator or operands in an EQUALS expres
sion. A global dat~ unit cannot be allocated to
a local data unit.

NO CSWITCH FOR THIS END
An END-CSWITCH or END-CSWITCHS was detected which
had no corresponding CSWITCH bracket.

DUPLICATE REGISTER
Microparameter registers were duplicated.

VARY INDEX IS THRU VALUE
A VARY loop index is the same data unit as the
THRU clause data unit; hence, an illogical VARY
statement.

DEFINITION MISMATCH
Two declarations of the same entity do not have
the same attributes.

DUPLICATE SYS-INDEX
A register that has already been declared as a
system index is defined as a system index.

IDENTIFIER EXTERNALIZED
A local identifier definition has been made glo
bal because of a previous external reference.

STATUS CONSTANT TOO LONG
More than eight characters were specified in a
status constant.

UNEXPECTED END OF SOURCE
The end of the source file was detected before an
end system declaration was detected.

TYPE NOT SPECIFIED
A FOR-type was not specified for a FOR-expression
which requires an explicit type specification.

ERROR LIMIT EXCEEDED
More than 250 syntax errors if options OBJECT was
requested, or more than 1000 syntax errors if op
tions SOURCE was requested. The compile is abor
ted.

A-11

flU) CM2Y-MAN-PGR-M5049-R04CO

SE 99

SE 100

SE 101

SE 102

SE 103

SE 104

SW 105

SW 106

SE 107

DUPLICATE CASE VALUE
The same value was specified for more than one
case in the same case block.

VALUE MISSING
A value is not present in the BEGIN statement of
a value block.

VALUE BLOCK MISSING
A BEGIN with associated value is not present fol
lowing either a FOR statement or a value block
that is not the last value block of a FOR blocK ..

INCOMPATIBLE TYPE
The type of an operand is not compatible with its
associated operator or operand.

MISPLACED VALUE BLOCK
A BEGIN with an associated value is present in a
context other than immediately following a FOR
statement or another value blocK.

CONDITIONAL NOT BLOCKED
A conditional. statement not enclosed within
BEGIN-END bracKets is present in a primary,
secondary, or alternative statement of another
cond i t i on a 1 s tat emen t .'

UNCOMPLETED CONDITIONAL
The compound statement of a conditional statement
was not completed at the end of the containing
blocK, procedure, or function.

CONSTANT TRUNCATED
The rightmost characters have been truncated dur
ing alignment of a character constant used as a
variable or field preset or as a value blocK
value.

ILLEGAL REGISTER
For CMS-2Y(7), a register other than 0 through 7
was specified as a PARAMETER register or pooling
declaration register, or a register other than 1
through 5 was specified as a system index regis
ter. For CMS-2Y(20), a register other than 0
through 15 was specified as a microparameter, or
a register other than 6 through 11 was specified
as a system index register. For CMS-2Y(642) , a
register other than 1 through 5 was specified as
a system index register or SDS register.

A-12

SW 108

SE 109

SE 1 1 0

SW 1 1 1

SE 112

SE 113

SE 114

SE 115

SW 1 16

SE , 17

/(U) CM2Y-MAN-PGR-M5049-R04CO

SYSTEM LIMITATION
The host operating system does not support the
requested feature.

MISPLACED IDENTIFIER
An illegal defini"tion of a name for an EVEN, ODD,
ORIG, REORIG, or CMS-2 directive.

VIOLATES LANGUAGE SUBSET
The referenced language feature is not included
in the language subset being compiled.

RESERVED IN HIGHER LEVEL
The defined name is a reserved primitive in a
higher language level of CMS-2.

LIST LIMIT EXCEEDED
The maximum number of items in one of the lists
below has been exceeded.

Maximum

List of micro input parameters 16
List of micro output parameters 16
List of file states 7

MISPLACED ALLOCATION
The allocation phrase for a name precedes the
definition of the name.

FLOAT NOT ENABLED
A reference to floating-paint type or a floating
point constant has been made and the FLOAT option
was not enabled.

MISPLACED MACHINE SPEC.
The machine specificationts not the first op
tions specification in the CMS-2 system; or a du
plicate machine specification was detected.

USER RESERVED REGISTER
A register in the range 6 through 11 has been
specified as a microparameter register.

EVEN REGISTER REQUIRED
An odd register was specified for a microparame
ter type wh;ch requires an even register.

A-13

/(Ul :M2Y-MAN-PGR-M5049-R04CO

SW

SE

SE

SW

SW

SE

SE

SE

SW

SE

.. SE

SE

SW

118

119

120

121

122

. 123

124

125

126

127

128

129

130

xxxxxxxx IS UNDEFINED
The LOCREF defined 'procedure or function xxxxxxxx
did not have an allocation declaration in the
current system procedure block.

LANGUAGE STRUCTURE VIOLATION
END-CSWITCH was found in a different language
structure than the CSWITCH bracket.

END-CSWITCH MISPLACED
An END-CSWITCH phrase was not encountered within
the block containing the conditional compilation
block.

VIOLATES LANGUAGE SUBSET
The referenced language feature is not included
in the language subset being compi led. However,
the feature wi 11 be correctly processed.

NULL STATEMENT
A THEN or ELSE is followed directly by a $.

COMPILER ERROR XXX + YYYY
An internal compiler error; notify CMS-2Y mainte
nance personne 1 .

ILLEGAL IN EXEC-PROC
Output parameters and exit parameters are illegal
in an EXEC-PROC.

COR AD PRESET ERROR
An Illegal term in CORAD preset.

UNUSED

READ-ONLY DATA MODIFICATION
An attempt to assign a value to a data unit in a
read-only data block .

UNDEFINED LABEL
The referenced label has not been defined.

ILLEGAL LABEL
A character which is not alphabetic or a space
appears in column 11 of a direct code statement.

LABELED ELSE OR ELSIF
A label on an ELSE or ELSIF statement ;s illegal.

A-14

SE

SE

SE

SW

SE

SE

SE

SW

SE

SE

SE

SE

131

132

133

134

135

136

137

138

139

140

141

142

/(U) CM2Y-MAN-PGR-M5049-R04CO

OVERLAY SCOPE CONFLICT
An overlay parent and siblings are defined in
different system elements.

UNDEFINED PROCEDURE
A reference to a-procedure that has not been de
clared.

SCALE FACTOR OUT OF RANGE
The value of the scale factor expression in a
SCALF predefined function must be in [-127,127].

SUBSCRIPT OUT OF RANGE
The constant subscript expression has exceeded
the declared bounds of the tabular data unit.

ILLEGAL IN INDIRECT TABLE
LIKE-TABLE and SUB-TABLE declarations are illegal
in an indirect table.

UNUSED

INVALID SDS REGISTER
A register other than 1 through 5 was specified
for an SDS register (CMS-2Y(642)).

xxxxxxxx DECLARATION MISSING
A system data block has an SOS register assigned,
but it did not appear in any SDS declaration
(CMS-2Y(642)) .

SDS REG/SYS-INDEX DUPLICATE
A register cannot be used for both a system index
and an SDS register (CMS-2Y(642)).

IDENTIFIER NOT A SYS-DD
The name on an 50S declaration is not a SYS-DD
name (CMS-2Y(642)).

SYS-DD/SDS REGISTER MISMATCH
The SYS-DD declaration from a compool specifies a
different register than on the SDS declaration
(CMS-2Y(642)) .

OPTION NOT PROCESSED
An option is illegal under the current operating
system (because operating systems vary with in
stallation requirements); or a CARDS option was
requested for CMS-2Y(642).

A-15

/(U) CM2Y-MAN-PGR-M5049-R04CO

SE 143

SW 144

SE 145

SW 146

SE 147

SE. _ .. 148 .

SE 149

SW 150

SE 151

SE 152

SW 153

CONSTANT EXPRESSION ILLEGAL
The numeric exp~ession has been resolved to a
single constant value in a context that requires
a non-constant expression.

END NAME MISSING -
No name appears on an END-statement when one is
requ ired.

LOC-DD TYPE ERROR
Different LOC-DD access types were specified for
terms of an EQUALS declaration.

READ-ONLY DATA REF WARNING
A formal input parameter was defined in a data
element with read-only access.

MISALIGNED OVERLAY SIBLING
The indicated overlay sibling has not been pro
perly positioned in a target machine wor~ as re
quired for a data unit of its type.

UNRESOLVED" lAG'~XXXX{<x,~ . . '
:.rl1~~,i;<D~~,eC;li 't'~a~f~':'na-$,dti~:;~:more terms tha t are '~ot
t1~rt'ri-ear"1{rf4'it'hl:f"sante~'e re'fWent as the t ag .~:

I LLEGAt USE OF PREDtF I NED 10
A ~. predefined identifi~r has not been user
,"decla.~~e-·fnthis scope, >-~t the current use is

incompatible with its pr~defined attributes.

ILLEGAL WITH USER-PACKING
An overlay declaration may not appear in a use'r
pacKed table or type.

NEGATIVE SUBSCRIPT ILLEGAL
Negative values within a subscript are·i-llegal.

MISSING/ILLEGAL TGT MACHINE
A target machine option specification was omit
ted, or the target machine specified is illegal
for CMS-2Y(Subset 0).

TERMINATE MISSING
A terminate statement is missing after an end
system declaration.

A-16

SW 154

SE 155

SE 156

SE 157

SE 158

SW 159

SW 160

/(U) CM2Y-MAN-PGR-M5049-R04CO

LOAD-VRBL INCOMPATIBILITY
The ltag used as the number of items of this ta
ble declaration was declared either signed or
with more than 15 magnitude bits. If it was de
clared signed it has been changed to unsigned; if
it was declared with more than 15 magnitude bits
it has been changed to I 15 U. If the magnitude
of the preset value requires more than 15 oits or
if the preset value is negative, the preset value
is changed to zero.

TM/COMPOOL MISMATCH xxxxxxxx
The input compool whose name has replaced
xxxxxxxx was comp"iled for a different target
machine than the one specified for the current
compilation. The compool is bypassed.

COMPOOLS CONFLICT wwwwwwww and xxxxxxxx:
yyyyyyyy (zzzzzzzz)

Inconsistent definitions of the data unit
yyyyyyyy have been found in compools wwwwwwww and
xxxxxxxx. zzzzzzzz will appear only if yyyyyyyy
is the name of a user-packed type a"nd zzzzzzzz is
a field whose definitions ~re inconsistent. In
general, the definition in the first compaal is
the one used.

DECLARATION OF IMPLIED LABEL
The data unit being declared has been referenced
previously in a context that caused the campi ler
to assume it was a label. The declaration must
precede the reference.

OPTIONS MATHPAC REQUIRED
The indicated feature is available only if the
AN/UYK-20 MATHPAC option has been specified.

DUPLICATE LOCAL LOAD-VRBL
The same name has been used for two local ltags.
This is acceptable during compilation, but. could
cause problems at load time.

REGISTER PASSAGE ILLEGAL
A subprogram specified to use the register
passage algorithm has a formal parameter declared
as a parameter variable. The subprogram wi 11 use
the direct passage algorithm.

A-17

/(UI CM2Y-MAN-PGR-M5049-R04CO

SE

SE

SE

SE

SW

SE

SE

: SE
I
I
I

. I
I
I

SE

SE

161

162

163

164

165

166 ..

167

168

169

170

COMPOOL FORMAT ERROR: xxxxxxxx
Tre specified compool has a format that is
incompatible with the current compiler. This
usually occurs when attempting to input a compoo1
compiled with an earlier version of the compi ler.
The compool must be recompiled.

CONFLICTING PASSAGE TYPES
The procedures of a procedure switch do not all
have the same passage type.

INVALID SCALF EXPRESSION
The controlled expression of a SCALF function
reference does not contain an operation.

ILLEGAL NAME IN THIS CONTEXT
A table cannot be named H, 0, or D. A type can
not be named A, S, F, I, P, or S.

TOO MANY FILE STATES
More than seven fi 1e states have been specified
in a file declaration.

INVALID STATUS EXPRESSION
A constant status expression (involving a combi
nation of SUCC, PRED, FIRST and LAST) has gener
ated an undefined value.

ILLEGAL STRUCTURED TYPE
The name of a structured type has been used in a
context requiring a simple type, or the name of a
structured type having a mu1tiword field is used
in declaring a horizontal table.

ILLEGAL INHERITED FIELD REF
A name in a field overlay declaration or a range
declaratioh is the name of a field inherited from
the parent structured type.

ILLEGAL ARITHMETIC OPERATION
An illegal operation has been attempted in a nu
meric constant expression (e.g., division by ze
ro) .

ILLEGAL FILE OPERATION
A file operation is incompatible with the file's
attributes (e.g., INPUT for PRINT).

A-18

/(U) CM2Y-MAN-PGR-M5049-R04CO

A.2 Library Retrieval Diagnostic Messages

The fol lowing messages are issued for errors encountered during
library retrieval.

**** CARD TOO LONG
One of the correction cards has too many parameters. Processing
of it will continue.

**** END SENTINEL READ
An attempt was made to read an end sentinel card from standard
input. Library retrieval continues.

**** ILLEGAL CONSTANT
A nonnumeric character is part of a numeric constant. Processing
continues as if the character were a O.

**** UNUSABLE CORRECTIONS
Some of the corrections to an element are unusable because of in
correct item numbers. These are ignored and processing contin
ues.

**** WRONG TAPE MOUNTED
The wrong tape was mounted. The correct tape is again requested,
and processing continues.

**** NOT ENOUGH CORE
There is not enough memory to load an input library's directory.
The library is retrieved as an ISCM file.

**** NOT ENOUGH TAPE UNITS
Too many tapes have been specified. Library retrieval is not
possible. No retrieval is performed.

**** I/O ERROR Txx
An I/O error was encountered on unit Txx during the retrieval.
Processing will continue.

**** MONITOR CONTROL READ
An attempt was made to read a monitor command from standard in
put .. An ENDCOR command is assumed and processing continues.

**** ILLEGAL RETRIEVAL FUNCTION
An illegal retrieval function was attempted. Notify CMS-2Y main
tenance personnel.

**** WARNING - ILLEGAL LEVEL REQUEST
A request for multi level dependent retrieval SEL-SYS was made.
No dependent elements will be retrieved, but retrieval wi ~ 1 con
tinue.

A-19

/(U) CM2Y-MAN-PGR-M5049-R04CO

**** ELEMENT NAME TABLE OVERFLOW
There is no room to add a dependent element to the list of
requested elements. Retrieval will continue, but some dependent
el~ments may not be retrieved.

**** ILLEGAL TYPE
An element with an unrecognized type has been requested.
CMS-2Y maintenance personnel.

A-20

Notify

/(U) CM2Y-MAN-PGR-M5049-R04CO

A.3 Obiect Error and Object Warning Messages

The fcllowing error and warning messages appear as a result of
errors detected during the object generation phase of a compi 1a
tion. :rror messages are preceded by OE (Object Error). Warning
messages are preceded by OW (Object Warning). Error messages are
produced when the compiler is unable to take corrective action
for a user error. Warning messages are produced when the compil
er is aole to attempt corrective action for a user error.

All messages within this list are produced by the CMS-2Y compil
er.

OE 200

OE 201

Ow 202

DE 203

OE 204

INCOMPATIBLE DATA TYPES
An attempted assignment or comparison of an
incompatible data unit type.

ILLEGAL OPERAND REF
An operand reference is illegal in the context
used in the statement.

ASS OF UNSIGNED DATA
,Air,) absolute va lue of uns igned da ta un it was
requested~

DIRECT CODE SYNTAX ERROR
An illegal or undefined operand, operator, or
separator in a direct code s~atement.

SYSTEM LIMIT nnEXCEEDED
One of the following compiler limits denoted by
nn has been exceeded. The code nn has the fol
lowing values:

20. The allocation table for generated labels
has overflowed. A maximum of 1000 generated
labels per system procedure is allowed.
This error may also occur for cases of more
than 96 generated labels for a given proce-
dure. '

21. Compiler use and allocation of temporary
words have exceeded certain limits which,
depending upon the distribution of temporary
word usage and the number of procedures,
range from 2460 to 3840 temporary words per
system prc~edure.

22. A maximum of 1536 binary constants can be
generated per system procedure.

A-21

/(U) CM2Y~MAN-PGR-M5049-R04CO

DE 205

DE 206

DE 207

DE 208

DE 209

DE 210

DE 211

DE 212

DE 213

DE 214

23. A maximum of 4800 words of Hollerith con
stants can be generated per system proce
dure.

24. A maximum of -4000 indirect words can be gen
erated per system procedure.

25. A maximum of 65536 words can be generated on
any address counter.

REMAINDER NOT AVAILABLE
SAVING remainder was specified in a statement
without fixed-point division.

STMT REQUIRES NONRT OPT
A Run-time call wi 11 be generated. This requires
the NONRT (nonreal-time) option to be present.
It is present by default if the MONITOR option is
used.

EXTERNAL DEF MISMATCH
An external reference does not match a subsequent
external definition.

UNDEFINED IDENTIFIER
A forward reference to an identifier which is not
subsequently defined.

SYSTEM ERROR
Notify CMS-2Y system maintenance personnel.

COMPILER ERROR
A compi ler or undetected hardware error.

TRANSREF IN P-SWITCH
An illegal transient reference to procedure in a
P-SWITCH.

TOO MANY DIGITS
Too many digits were specified in a direct code
constant.

NON-NUMERIC CONSTANT
An illegal constant or improper punctuation in a
direct code statement.

TOO MANY CHARACTERS
An illegal MEANS or EXCHANGE character substitu
tion in a direct code statement.

A-22

DE 215

DE 216

DE 217

DE 218

ow 219

DE 220

-
DE 221

DE 222

OW 223

OW 224

/(U) CM2Y-MAN-PGR-M5049-R04CO

ILLEGAL CHARACTER
An illegal ASCII character is appearing in a di
rect code statement.

UNRESOLVED EQUALS STMT
A reference to an EQUALS tag which is not
resolvable at the time of reference.

ILLEGAL FORM STATEMENT
An illegal parameter in a direct code FORM state
ment or illegal implied FORM format.

FORM LABEL MISSING
A label is missing from a direct code FORM state
ment.

RIGHT TERM TRUNCATED
Truncation of an operand has occurred.

ILLEGAL SPECIAL COND
An illegal STOP special condition was specified
on GOTD or RETURN statement.

COMPILER PROBLEM, SYNTAX
The syntax of the statement cannot be analyzed by
the compiler.

PARAMETER TRANSFER ERROR
A statement results in alteration of contents
currently held in the PARAMETER register.

K FIELD IGNORED BY UYK7
Issued by direct code on format III instruction
words when the k field was coded with a value
that was probably meant for the b field. The
ult~a formats require a k field to be indicated
if subsequent fields are coded, even though the
field is meaningless in format III instructions.
The k field can be indicated by consecutive
commas or by using 0 or kO.

ILLEGAL CORAD PRESET
A variable being preset with CORAD has less than
16-bits of magnitude, or the variable appears on
the right of an overlay statement and is alloca
ted less than a full word. The preset is pro
cessed by the compiler.

A-23

/(U) CM2Y-MAN-PGR-M5049-R04CO

DE 225

OW 226

ow . 227

OW 228

OW 229

DE 230

DE 231

DE 232

ILLEGAL CORAD PRESET
A variable being preset with CORAD must be
allocated to the lower half-word of computer mem
ory; it is greater than 16 bi ts, the allocation
must include the entire lower half-word of com
puter memory. The preset is not processed by the
comp i ler.

NBITS OR NCHARS IS ZERO
The number of bits or characters requested by BIT
or CHAR is O.

ALLOCATION OVERLAY
The preceding data unit has been preset with more
words than it contains. The extra presets will
be done but will be overlaid by the data unit(s)
that follows.

ILLEGAL EXTREFED SIBLING
A previously defined variable has been encoun
tered in an overlay statement. The code generat
ed for earlier references may not work if the
overlay causes it to be accessed using an indi
rect word.

TOO MANY VRBL LNGTH TBLS
Too many variable length tables have been speci
fied for the AC counters available. The
variable-length table which receives the warning
has been changed to a fixed-length table, with a
length equal to the preset length of the LTAG.

B-REG NOT AVAILABLE
B-register is needed and is not available.

INVALID aaa FIELD
The operand field denoted by aaa is invalid. The
code aaa may be any of the following:

A, B, AF4, AK, C, E, I, lA, IJ, IR, J, K, KJ, L,
M, N, OR, OW, P, R, S, SY, U, UIJ, W, XAM, Y, 1/2

OPTIONS UYK-43 REQUIRED
An AN/UYK-43 instruction is specified for an
AN/UYK-7 target computer. No instruction is gen
erated.

A-24

DE 233

DE 234

/(U) CM2Y-MAN-PGR-M5049-R04CO

IMPLICIT FORWARD REF. xxxxxxxx
A forward reference to a procedure/function for
mal parameter specified by xxxxxxxx has been de
tected. At the time of the reference xxxxxxxx
has not been defined and cannot be referenced
properly.

CONST SIGNIFICANCE LOST
The constant did not fit the scaling specified.

A-25

A.4 Flef.areOCe L 1:S t tngs Error Messages

The following are the error messages generated by the CMS-2Y com.;.
piler for the various listing outputs.

*****COMPILE ERROR SUMMARY INCOMPLETE -- TOO MANY ELEMENTS****

Appears at the end of requested object output when number of
elements is greater than 143. The major header and all sys
tem data designs and system procedures are counted as ele
ments ; minor headers are not inc lud~d in the element count,
since they are considered as part of the succeeding system
element. "Object output is not affected by this message.

******COM"P I LER ERROR*******

This message may appear at the end of the requested cross
reference or symbol ana 1 ys i s outpu t . It i nd i'ca tas tha t an
invalid condition was detected during d'ata collection, and
was caused by a camp i 1 et' er ror .

*****CROSS REFERENCE INCOM,PLETE

Th i s.~~·ssa9'e may appear at the ~rid of an address cross
referS'i'ite 1 istirig. It indicates that the tables for col
lecting reference data overflowed, and no more rQ'ferences
for that element were collected.

*****GLOBAL CROSS REFERENCE UNAVAILABLE

This message is output whenever the BITTABLE overflow has
been exceeded. As a result, the global SCR cannot be pro
duced.

This message is also output whenever the number of elements
per campi le is greater than 143. As a resu 1 t, nei the"", glo
bal address nor global source cross-reference can oe pro
duced.

The local cross-reference for each element will still be
available and printed. The major header and all system data
designs and system procedures are counted as elements; minor
headers are not included in the element count, Slnce they
are cons ldered as par t of the succee'di ng sys tern e lemen t .

*****SORT TABLE OVERFLOW ***

This message informs the user that there will be no cross
referehce or symbol analYSis output because there are too
many identifiers for the compiler-alphabetized identifier
table.

A-26

/(U) CM2Y-MAN-PGR-M5049-R04CO

INSUFFICIENT SYMBOL TABLE FOR COMPLETE CROSS, REFERENCE

T~;s message appears with all header lines of the local
source cross-reference when the table for collecting refer
en~e data overflowed. It indicates the local source cross
reference is not complete.

REMAINING FIELD PRESETS NOT PRINTED

Tris message appears in the source mnemonic when the number
o~ presets exceeds the bounds of the preset pacKing tab1e.
The source lines for the remaining presets will be printed
after the message.

A-27

A.S Other ~rrors

A.5.1 Compi ler Phase Errors

The CMS-2Y compiler is a mu1tiphase program. If a condition
arises which a phase cannot reso1~e, the user wi 11 be notified by
source error 123 or by an object error.

A.S.2 Allocation Errors

The following codes may appear on the output listing to flag al
location errors:

A Allocation error. Reference to an undefined label name
or incorrect program allocation.

E Programmer error.

e Compiler error. Incorrect instruction generation or
undetected hardware error.

Allocation warning. A user-allocated operand address
is outside of the addressing segment.

A-28

/(U) CM2Y-MAN-PGR-M5049-R04CO

APPENDIX B

DIRECT CODE

The dinect code language used for the AN/UYK-7 and AN/UYK-43 com
puters ;s a der.ivative of the CMS-2Y(7) assembler language. This
direct code is used in incorporating AN/UYK-7 and AN/UYK-43
machine instructions into CMS-2Y(7) programs.

Many of the operational fundamentals of direct code are identical
to those of CMS-2Y(7).lhis section does not examine th'ose

, i den t i : : es, on 1 y the dis t inc t ions.

The al:ocation of core addresses by the CMS-2Y(7) compiler ;s ac
compl isned using a primary and a secondary counter. Each state
ment requiring a memory location causes the appropriate counter
to be updated. In the normal state (no preset in effect)! the
primary counter is updated. When a preset is in effect, the
secondary counter is updated.

When a preset is processed, the compiler changes the addressing
to the secondary counter, starting address counting from the de
fined add~ess specified in the preset. All memory will then be
allocated to the secondary counter until the first non-preset, at
which time the address count will be returned to the primary
counter. Because of this it is possible to give more direct code
presets for a high level data unit than the size of the data unit
wi 11 al lOW. The compiler is able to detect some of these errors,
bu t no tall.

Examples

TABLE TH1 H 1 3 $
XX,x,XX TH1 SAVE 3

END-TABLE TH1 $
-DIRECT $

X'/ ,\XX TH1 LA 3 , TH 1 , 1<:0
XXlXX+1 SA 3, TH1+1 ,K1
XXXXX+2 + 115
XXXXX+3 -0

CMS-2 $
VRBL VBL1 I 30 S $

Xl,,':, XX+3 VBL1 SAVE 1

The preset value -0 is an error.

B-1

B.l Basic Constructs

B.1. ~ Di~ect Code Characters

The c:rect code characters are identical with the CMS-2Y(7) char
acte~s. The use of the character.$, however, when used in direct
code. refers to the current value of the address counter and
therefore represents an address. In CMS-2Y(7) the character $ is
a statement terminator.

B-2

I(U) CM2Y-MAN-PGR-M5049-R04CO

B . 1 . 2 De 1 i mit er s

Direct ~ode delimiters are special characters that are identical
to these used in CMS-2Y(7). A delimiter in direct code is used
to sepa~ate two tokens, indicate the beginning of a direct code
commen~, specify an operation involving the tokens on either side
of the delimiter, or define a direct code literal or direct code
character constant.

Tokens in direct code are separated by one or more spaces or by
one of the other delimiters. If two tokens are separated by a
delimiter other than a space, one or more spaces can be placed'on
either side of the delimiter. There are, however, some syntax
productions where one or more spaces are required. In these pro
ductions the space will be explicitly specified.

B-3

/ (U) CMQY --M'AN- PGR-M·5{)49 - R04CO

B.1.3 Names

Names used in direct code are CMS-2Y(7) names with the same re
quirements and limitations (scope, uniqueness, etc.). Exceptions
are text substitution declaration names, compile-time constant
declaration names, and system and .local index names.

B.1 .3. 1 Text Substitution Declaration Names

Text substitution declaration names (MEANS or EXCHANGE names) may
be used within direct code statements, subject to the following
restrictions and interpretations:

a. MEANS and EXCHANGE substitution types produce identical
results within direct code statements. EXCHANGE
substitutions do not result in replacement by the simple
string, and are interpreted as MEANS substitutions.

b. It is not legal to include more than one direct code
statement within one simple string.

B.1.3.2 Compile-Time Constant Declaration Names

Compile-time constant declaration names can be used within direct
code statements, subject to the following restrictions:

a. Ntag names. The numeric equivalent for an ntag name
will be substituted wherever the ntag name is encoun
tered except where the ntag name occupies the operation
code field of a direct code instruction.

b. Rtag names. The numeric equivalent for an rtag name
wi 11 be substituted only if the rtag name is used as the
y constant operand or as the length operand of a buffer
control word.

B.1.3.3 Load-Time Variable Declaration

The numeric equivalent fo~ an ltag name will be substituted only
if the ltag name is used as the y constant operand.

B.1.3.4 System and Local Index Names

Syste~ and local index names are recognized and the register name
is substituted wherever the system or local index name is encoun
tered. except where the local index has been assigned to a memory
word. A local index is assigned to a memory word only if all
allotted registers for system indexes and/or local indexes have
been previously assigned. In that case, the local index name is
recognized as a direct code addressable name.

B-4

B.1.4 Operation Codes

Syntax

<opera:ion code>
- <AN/UYK-7 operation code>
- <AN/UYK-43 operation code)

::= <1832 operation code>
::= <pseudo operation code>

<AN/UYK-7 operation
- AA
- AB
- AEI
- AFC
- AlC

· . - ALP
- ANA
- ANB

: : = AOC
: : = AXe
: : = BC
: : = BCW
::= BCWE
: : = BS
· . - BZ
: : = C
· . - CG
::= CL

- CM
· . - CNT

- CXl
· . - D
· . - DA
· . - DAN
::= DC
::= DJNZ
.. - OJZ
: : = OL
: : = OS

- FA
· . - FAN
::= FANR
: : = FAR
· . - FB
· . - FO
· . - FOR
· . - FM

- FMlR
- FMR
- HA

code>

8-5

/(U) CM2Y-MAN-PGR-M5049-R04CO

/ (U) CM2Y-MAN-PGR-M5049-R04CO

· . - HAl
- HALT

· . - HAN
- HAND
- HC
- HCS
- HCL
- HCM
- HCP

· HO
- HOCP
- HOLC
- HORS
- HORZ
- HOSF
- HK
- HLS

· . - HLC
· . - HLCI
· .'" HLCT
· .'" HM
· '- HNO · HOR · .-
· HPI
· .- HRS · .'" - HRT

- HRZ
- HSCl

· . - HSCT
- HSF
- HSIM
... HSTC
- HWFI
- HXOR
- IS
- ISS
- lBZ
- ILTC · lMlR · . - 10
- IPI
- IR

· . - ITSF
· ,. - IW · . -

- IWS
· . - IWC

- IWCI
· . - IWS

- J
... JBNZ
... JC

S-6

I(U) CM2Y-MAN-PGR-M5049-R04CO

, - JE
- JEP
- JG

,- JGE
, - JIO
, - JL
, - JLE
- JLT

,- IN
,- JNE
, - JNF
, - JNW
,- JNZ
,- JOF
,- JOP
, - JP
,- JS
,- JSC
,- JW
, - JZ
, - LA ,-
, - LB ,-

,- LBJ . - LBMP , -
, - LCI ,-
, - LCT
- LDIF

,- LICM
,- LIM
,- LLP
, - LLPN
,- LM
,- LNA
,- LSUM
, - LXB
- M

,- MP
. - MS ,-
, - NLP , -
- NOOP
- OB

.- OMIR
,- OR
- PEl

, - RA
,- RALP
,- RAN
- RD
- RI
- RJ
- RJC

B-7

,- Ruse
, - RLP ,-

,- RMS
- RNLP

,- ROR
,- RP
, - Rse ,-
,- RXOR
- SA

,- S8
- se

,- SCI
- SCT

,- SDIF
, - SICM
- SLP

,- SM
,- SNA
,- SSUM
,- SXB
, - sz ,-

, - TSS
, - lSI , ~

, , -' ... TP·S
, .. T IB-,-

,- TaB
- TSF

,- TX8
,- X8
, - XMIR
,- XOR
, - XR
,- XRL
,- XS
,- ZA
, - ZS

<AN/UYK-43 operation code>
,,- <AN/UYK-7 operation code>
, . - AFCE
, ,- A I CE
, ,- AOeE
, ,- ATSF
~ ... : = AXCE
, ,- CB
, ,- eBN

- eBR
, ,- eCT
: : = CE
,,- CHCL
: : = C 1CB

8-8

/(U) CM2Y-MAN-PGR-M5049-R04CO

· . - CMPS
· . - CRB
· . - DSP
· . - EECM · . -
· . - ESCM
· . - ETCM
· . - FAC
· . - FAS

- FAT
· . - FBE

- FEX
- FLN
- FLTF

· . - FLTL
- FMIE
- FPA

· . - FPD
· . - FPM
· . - FPS · . -

- FSA
· .- FSC · .- FSD · .-· .- FSM · . -· .- FSS · .-
· . - HAEI
· . - HeRC
· .- HLCA · .-· .- HLTC · .-
· . - HPEI
· .- HR
· . - HSCA
· . - HSIM
· . - HST1
· . - HST2
· . - HST3 · . - HST4 · . -· . - HSTC · .-
· . - HV
· . - lADB
· ... - IADBC

- IADD
· . - lADDC · . -

- lAND
- lANDC

· . - lBE
- lBSC
- ICA
- ICAC
- ICB
- ICBC
- ICID

B-9

/(U) CM2Y-MAN-PGR-M5049-R04CO

· .- leI I · .-· '- ICPA · .-
· .- ICPN
· '- ICPU · . -
· . - ICT
· . - IILM

- IJC
- IJD
- IJE
- IJGE
- IJLT
- IJN

· .- IJNE
- IJNZ

· .- IJP · .-
- IJU
- IJUI
- IJZ
- IlA

· .- IlAC
· .- IlB
· .- IlBO
· .- IlB1
· .- IlB2
· .- IlB3 · .- ILBC · .-
· .- IlBJ

- ILoa
- ILOBC
- ILRC
- IlRCC
- ILS
- ILSC
- ILST
- ILSTC
- IMIE · .- IOCl · .-· .- IOCR · .

· .- IOCS
· .- lOR · .- lORC · . -· '- IPM · .-· .- IRA · .-.r. _ lRPD · .-· .- IRS · .-· .- ISA · .-· .- ISAC · . -· .- ISB · .-· .- ISBC · .-· .- ISJC · .-· .- ISJCC · .-

8-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

- ISL
- ISLA
- IS0B
- ISOBC
- ISP
- ISR
- 15RA
- ISS
- 15SC

· . - 15ST
- I5STC
- ISTC
- ISTCC
- I5TSB
- 1XOR
- IXORC
- JBAE
- JBAN

· . - LCM1
· . - LCM2

- LCM3
· .- LCM4
· . - LCMA
· .- l,.CMP
· . - LCMT
· .- LCPA
· . - LCRA
· . - LECM

- LIBP
- LIMP
- LIOAM
- LRRA
- L5CM
- LTCM
- MOVE

· . - aBE
· . - OMIE · . -
· . - PACK
· . - PFCD
· . - PFCE

- PFR
· . - PMM

- PMR
- PIE
- POP
- PUSH
- RCCR
- RMMS
- RMSR
- RPD
- SBN

8-11

/(U) CM2Y-MAN-PGR-M5049-R04CO

· '- SBPC · .-
· .- SCM1
· '- SCM2 · .-

- SCM3
· . - SCM4
· . - SCM A

- SCMP
- SCMT
- SCPA
- SCRA
- SCSR
- SOMC
- SIBP

· . - SICB
- SICP
- SIMC
- SIMP
- SIOAM
- SIRC
- SITC

· . - SMCC
- SMSR · '- SRRA · .-· .- STAF · · '- $1-SB · .-

· . - TBN l - TFBE
- TIBE
- TOBE
- TR

· .- T5BN
- T5M
- TV
- TXBE
- UNPK
- WFBP
- WFM

· . - XBE
- XMIE

(1832 opera t ion code>
- HEIB
- HSIB

"',= KBCW
- KCB
- KECM
- KEOB

· .- KEFB · . - KEIB · .-· . - KESM · .-· '- KFBF · .-

B-12

/(U) CM2Y-MAN-PGR-M5049-R04CO

· . - KI · . -
· . - KIB
· . - KIBF

- KJ
- KOB
- KOBF · . - KRB
- KRCH
- KRTC

· . - KSB
- KSBS
- KSBX
- KSCM-
- KSSM

· . - KTB · .-
- KTOB

· .- KTEI
· .- KTSB

<pseudo operation code>
· . - ABS · .- BAM · .-· .- BYTE · .-· .- CHAR · .-· '- DO
· . - FORM
· . - ISFP · .-· .- ISFPS

- RAD
- RES

Seman t ; cs

Operation codes specify target machine instructions and direc
tives in direct code.

<pseudo operation code> - Nonreserved words that have been
assigned a specific meaning in di
rect code.

Because pseudo operation codes are not reserved words, they can
also be used as names if they meet the requirements for names.
This means that a name can duplicate an operation code subject to
the following rest~ictions and interpretations:

a. A text substitution declaration name (MEANS or EXCHANGE
name) which duplicates an operation code is always in
terpreted as a text substitution declaration name,
regardless of its location in a direct code statement.

B-13

/(U) CM2Y-MAN-PGR-M5049-R04CO

O. If a valid name (other than a text substitution declara
tion name) duplicates an operation code, it is inter
preted as a name except when it occupies the operation
code field. In that case, the name is interpreted as an
operation code.

c. A form name may not duplicate an operation code.

8-14

/(U) CM2Y-MAN-PGR-M5049-R04CO

B. 1.5 Direct Code Constants

Syntax

<direct code constant>
::= <direct code numeric constant>
::= <direct code character constant>

Semantics

A1thougn constants in direct code statements serve the same func
tion as constants in CMS-2Y(7) statements, the syntax is differ
ent.

Direct code constants can be direct code presets or instruction
operands. Subject to c~tain restrictions, they may be used as
terms in direct code expressions.

Direct code numeric constants are fixed-point type or floating
point type. Direct code character constants are character type.

8-15

/(U) CM2Y-MAN-PGR-M5049-R04CO

B. 1.5. 1 Direct Code Numeric Constants

Syntax

<direct code numeric constant>
<direct short numeric constant>
<direct long numeric constant>
<uyk-43 floating constant>
<angular measurement>

<direct short numeric constant>
.. - <direct code decimal constant>

. ::= <direct code octal constant>
::= <ntag name>

<direct code decimal constant>
::= <unscaled direct code decimal constant>
::= <scaled direct code decimal constant>

<unscaled direct code decimal constant>
::= <decimal integer>'

<scaled direct code decimal constant>
::= <decimal integer> <scale operator> <direct code scale

·factor>
::= <uyk-7 floating constant> <scale operator> <direct code)

scale factor>

<scale operator>
.. = */ ..

<direct code scale factor>
::= [<unary numeric operator>] <decimal integer>
::= [<unary numeric operator>] <octal integer>

<uyk-7 floating constant>
::= <decimal integer>. <decimal integer> [<power of ten

factor>]

<uyk-43 floating constant>
::= ISFP <simple floating constant>
::= ISFPS <simple floating constant>

<simple floating constant>
::= <decimal integer>[. <decimal integer>]

<power of ten factor>
.. - * [<unary numeric operator>] <decimal integer>

8-16

/(U) CM2Y-MAN-PGR-M5049-R04CO

<direct code octal constant>
::= <unsealed direct code octal constant>
: :=. <scaled direct code octal constant>

<unscaled direct code octal constant>
::= O<octal integer>

<scaled direct code octal constant>
::= O<octal integer> <scale operator> <direct code scale

factor>

<direct long numeric constant>
- <unsealed direct code decimal constant> 0

.. - <unsealed direct code octal constant> 0

<angular measurement>
.. - BAM <basic angle> [, <angle scaling>]
.. - RAD <basic angle> [, <angle scaling>]

<basic angle>
::= O<octal integer> [.
::= <decimal integer> [.

<angle scaling>
::= O<octal integer>
::= <decimal integer>

Semantics

<octal integer>]
<decimal integer>]

Direct code numeric constants may be expressed either as direct
code decimal constants or direct code octal constants.

Direct code numeric constants, represented as ones complement
binary numbers, can be direct code single-word (short), double
word (~ong), or floating-point (floating) numeric constants.

<direct short numeric constant- Constant that will fit in a
single computer word (32
bits).

<c~rect code decimal constant>- A numeric constant in base
10 notation in the form of a
string of decimal digits.

<c'rect code octal constant> - A numeric constant in base 8
notation in the form of a
string of octal digits, be
ginning with a O.

8-17

/(U) CM2Y-MAN-PGR-M5049-R04CO

<direct long numeric constant>- A constant that will fit in
two consecutive computer
words (64 bits).

<Jyk-7 floating constant>

D

<uyk-43 floating constant>

<angular measurement>

- A decimal mixed number con
sisting of an integer por
tion, a fractional portion,
and a decimal point.

- A language keyword indicat
ing a double-word numeric
constant.

- Constant in Industry Stan
dard Floating Point.

- An angle represented in BAMS
or Radians.

A direct short numeric constant can be an ntag name defined in a
compi le-time constant declaration (EQUALS) or an octal or decimal
constant.

Decimal constants cannot have 0 as the first digit. The unary
nume~it operators (+ and -) must precede the const-ant in a direct
code preset, but are optional when the direct code numeric con
stant is used in other contexts.

A direct long numeric constant is designated by appending the
character 0 to the unscaled octal or decimal constant. Otherwise
the constant is single-word.

Scaled direct code octal constants and scaled direct code decimal
constants share one form in common, which can be expressed as
N1*/N2 where:

N1 - An Unsealed direct code octal or decimal single-word
numeric constant.

*/ - Specifies that_a scale factor fol-lows.

N2 An unsealed direct code octal or decimal numeric con
stant used in aligning N1, in the range of [-127,127].

r

A scaied direct code decimal constant may have N1 optionally
written as a direct floating constant (the floating-point con
stant cannot be coded with the power of ten factor). The
floating-point constant ;s internally converted to a single
precision fixed-point value and aligned to N2.

8-18

I'

I(U) CM2Y-MAN-PGR-M5049-R04CO

The op:;onal power of 10 factor for direct code floating-point
constar:s results in a floating-point constant representing the
value 0; the decimal mixed number, multiplied by 10 to the indi
cated power; that is:

75.0*+6 = 10**6 times 75.0
75.0*-6 = (1/10)**6 times 75.0

Scale values are not tested for overflow. Positive scale values
cause tne contents of a word to be shifted circularly to the left
the numoer of bits equal to the scale value. Negative scale val
ues cause a right shift sign fill equal to the scale value.

For RAD the default scaling is 29. For BAM the default scaling
;s 32. Both RAD and BAM produce positive results and only accept
positive inputs. If the input basic angle is greater than 360
degrees then the result is the input basic angle module 360
degrees.

The 2-word floating-point constants with normalized mantissa can
be illustrated as follOws:

31 30

I s ~ANrISSA

S is the sign of the mantissa.

Examoles

o

loc n

o

loc n+1

Examples of direct short numeric constants are as follows:

+512 - Unsealed decimal constant
+0512 - Unsealed octal constant
-16 - Unsealed decimal constant
-016 - Unsealed octal constant
+TAG1 - Ntag name

8-19

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples of scaled direct code decimal and octal constants are as
fa 1 lows:

+8*/010 - 8 scaled to 10 octal
-077*/9 - Octal 77 scaled 9
-8*/9 - -8 scaled 9
+45.5*/3 - Floating-point 45.-5 converted to fixed-point and

scaled 3

Examples of direct long numeric constants are as follows:

+10 . doubleword

+0765432101230

00000000001
00000000000
36543210123
00000000001

Examples of uyk-7 floating constants are as follows:

Note

+75.0*+10

- 1 .5

+45.0

000000
053617
000000
117777
000000
055000

000050
136746
000001
777777
000006
000000

The maximum number of digits allowed in a short numeric constant,
positive or negative, is 9. Therefore, the maximum value which
can be specified is 999,999,999, even though a 32-bit word is ca
pable of holding a maximum value of 2,147,483,647 (2 to the 31st
power, minus 1). Hence a scaling of -30 or -31 guara~tees that
all significance will be lost, and the word will be flushed with
the value of the sign bit.

8-20

/(U) CM2Y-MAN-PGR-M5049-R04CO

B.1.5.2 Direct Code Character Constants

Syntax

<direct code character constant>
::= +'(character>&'

Semantics

A direct code character constant is a string of any valid ASCII
characters (except a single prime), bracKeted by single primes,
and preceded, by a +.

Each ASCII character in a direct code character constant is re
presented by eight bits. A direct code character constant con
tains from one to 66 ASCII characters. One to four characters
are stored into one computer word; five to eight characters are
stored into two computer words, etc. Characters are pacKed
right-justified within the generated words with leading binary
zeros, as required, to fill the first word.

Examples

+'ACRE' - 10120651105

+'ACREAGE' - 00020241522
- 10520243505

8-21

/

flU) CM2Y-MAN-PGR-M5049-R04CO

B.1.5.3 Direct Code literal

Svntax

<direct code literal>
.. - ([<unary numeric operator>] <direct code numeric

constant»
::= «direct code character constant»

Semant ics

A direct code literal is a direct code numeric constant or a di
rect. code character constant that is assigned to a compi ler con
stant table.

Direct code literals are coded by enclosing a direct code numeric
constant or a direct code character constant in parentheses. The
constant is assigned by the compiler to the appropriate table and
the address of the constant is then available for use as an ad
dress reference. A maximum of eight characters is allowed when a
direct code cha~acter constant is used in this context.

The use of d i r.ecfcode 1 i tera 1 s a 11 OWS referenc i ng of cons tan t s
that woul de~Gjj-~, ,~the 16 -b tkt,> > l.ntltho f the 5 Y ; os true t i on field.

1.:,.';'"

Examples

LA AO, (56), K3
L A A 1, (' CA T I), K 3
LA A2, (0123), K3
L A A 3 , (n tag), K 3
DL AD, (05176320)

Note

When referencing literals, the programmer must assume responsi
bility for using a proper K designator.

B-22

B.2 Direct Code Expressions

Syntax

<direct code expression)

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= <direct code numeric constant expression)
::= <direct code address expression)

Semantics

A direct code expression can be either a direct code numeric con
stant expression or a direct code address expression.

Direct code expressions can occur as direct code preset words, or
as part of a preset word as in a field of an implied or actual
form preset. Direct code expressions can also occur as the Y
field of direct code instructions.

8-23

/(U) CM2Y-MAN-PGR-MS049-R04CO

B.2. ~ Direct Code Numeric Constant Expressions

Synta~

<direct code numeric constant expression>
::= <direct short numeric constant> [<numeric operator>

<direct short numeric constant>&]

Seman tics

A direct code numeric constant expression is a series (1 or 2) of
single-word numeric constants separated by a numeric operator.

A direct code numeric constant expression evaluates to a single
word numeric constant. Mixed mode constants are not permitted in
direct code numeric constant expressions.

Examoles

+35*NTAG1

+NTAG2-10

+027/+010

1234 +"5

In these examples, NTAG1 and NTAG2 are both ntag names.

8-24

/(U) CM2Y-MAN-PGR-M5049-R04CO

8.2.2 Direct Code Address Expressions

Syntax

<direct code address expression>
<direct code addressable name> [<address offset>]
[<direct short numeric constant>] + <direct code

addressable name>
· . - <direct code literal>

$ [<address offset>]

<direct code addressable name>
- <di~ect code statement name>

.. - <statement name>
- <function name)
- <table name>
- <procedure name>
- <variable name)
- <switch name>

· . - $ · .-
<direct code statement name>

::= <name)

<address O'f fset)
::= <additive operator) <direct short numeric constant>

Semant ics

A direct code address expression is an address reference with an
optional address offset.

<address offset> - Optional. A single numeric constant that
provides the capability of referencing
any location in a program.

An address reference can be the character $, which is the addr"ess'
~f the current instruction; a direct code literal, which is the
address of a constant assigned to its appropriate constant table;
or the address assigned to a direct code addressable name.

The S field of a direct code instruction cannot be specified when
there is an addressable name in the Y field.

8-25

/(U) CM2Y-MAN-PGR-M5049-R04CO

Examples

TABLE1 + 5

LABEL1 + 7

$ -3

(I ABeD I)

1 + VRBL2

TABLE1 is a table name

LABEL1 is a statement name

- VRBL2 is a variable name

B-26

/(U) CM2Y-MAN-PGR-M5049-R04CO

B.3 Direct Code Statements

Syntax

<direct

.. -

code statement>
<direct code comment>
<addressable direct code- statement>

comment>]
<direct code name>
<direct code preset>
<direct code directive>

[<direct code

<direct code comment>
- <space> [<character>&]

Semantics

All direct code statements begin in column 11 and must be
entirely contained in one line image (through column 80).

<direct code comment> - A period followed by a space termi
nates a direct code statement prior
to column 80. Any characters after
the space are treated as a comment
and are ignored by the compiler.

<direct code name> - A direct code name must start in
column 11, consist of one to eight
alphanumeric characters, and must
not be followed by a period. A
space in column 11 indicates the
absence of a statement name.

B-27

/ (U) CM2Y -MAN-~G~ .;ftt5049'~R'04CO

8.3.1 0 trect -_Code _Name

Syntax

<direct code name>
.. - <form name>
::= <direct code program statement name>
::= <direct code data statement name>

<form name>
::= <name>

<dir:'ect code program statement name>
::= <name>

<direct code data statement name>
::= <name>[<direct code scope modifier>]

<direct code scope Modifier>
: : = *

Semant ies

A d i reef cOde"nl~.\'Gar'f;:b.};,?adi rect code program s ta teMent name, a
d i reel c6(j~. da't~I~;;<isit'!'a:'tlt4m:Ejfft:' ri~M~, or a fOf"m name.

<direct code I5rograrnstatemerit name> - A name that can be
used as a statement
name in direct code
address expressions
or CMS-2Y(7) state
ments; its scope is
the scope of the
name.

<direct code data statement name>

8-28

- A name which provides
a means of ~~f~renc
i ng addressal:) 1 e d i -
raet code statements
as data in - CMS-2Y(7)
statements. The name
cannot be used as a
direct code program
statement name
(object of a GOTO
phrase) .

)

/(U) CM2Y-MAN-PGR-MS049-R04CO

<direct code scope modifier> - Optional. An aster-
isk with no interven
ing space, which
gives the name global
scope.

The addressable statement associated with the name and subsequent
addressable statements can be referenced as item data units. A
direct code data statement name can have global scope either by
being in a system data element or by the presence of a direct
code ·scope modifier. Otherwise, the name has local scope or sub
program scope.

The direct code scope modifier may not be used with a name de
clared in a subprogram data bloCK.

8-29

flU) CM2Y-MAN-PGR-M5049-R04CO

B.3.2 Addressable Direct Code Statement

Syntax

<addressable direct code statement>
- <direct code instruction>

::= <direct code preset>
::= <form preset>

Seman tics

An addressable direct code statement can be a direct code in
struction, a direct code preset, or a form preset.

8-30

)

/(U) CM2Y-MAN-PGR-M5049-R04CO

B.3.2.; Direct Code Instruction

Syntax

<direct code instruction>
::= <operation code> [<operand>@l

<operand>
::= <direct code expression>
::= <direct code instruction designators>

Semantics

A direct code instruction is a symbolic target machine code in
struction that consists of an operation code and its associated

-operands.

<operation code> - A mnemonic symbol that corresponds to the
numeric operation code and the numeric
instruction format of the machine code
instruction.

<operand> - An expression defining a field of the di
rect code instruction.

The operands that follow the operation code must be separated by
commas, and can further be separated by spaces. Each operation
code has a particular format for the operands it requires. This
format determines the number of operands, the type of operand,
and the order in which the operands follow the operation code.
See the instruction repertoire in M-5048 for the format associat
ed with each operation code and the restrictions on each operand.
A description of each direct code instruction designator is also
contained in M-5048.

For format I instructions, the K-designator can be specified with
the special form KX. When this form is used, the compiler will
cause the appropriate K-designator value to be used or issue a
diagnostic message if there is no appropriate value. If KX is
used in a direct code statement, the datum addressed by the
statement cannot be forward-referenced.

8-31

/ (U) CM2Y-MAN-PGR-M504:9-R04;CO

B.3.3 Direct Code Preset

Syntax

<direct code preset>
- <direct code numeric preset>
- <direct code address preset>

::= <direct code character preset>
::= <implied form>

<direct code numeric preset>
::= <single-word numeric preset>

. ::= <double-word numeric preset>

<single-word numeric preset>
::= <additive operator> <direct code numeric constant

expression>

<double-word numeric preset>
::= <unary numeric operator><direct long numeric constant>

<direct code address preset>
::= + <direct code address expression>

<direct code character preset)
- + <direct code character constant>

<i mp 1 i ed form>
- +<direct code numeric preset>@[<direct code address

expression»

Seman tics

A direct code preset is an addressable direct code statement used
to assign a numeric value, an address, or a character constant to
specific memory locations.

<single-word numeric'pr~set>

'double-word numeric preset)

B-32

- A numeric value that is as
signed to the memory loca
tion indicated by the cur
rent value of the address
counter.

A double-word numeric value
that is assigned to the two
sequential memory locations
beginning at the current
value of the address
counter.

/(U) CM2Y-MAN-PGR-M5049-R04CO

<direct code address preset> - An address associated with
the address expression that
is assigned to the memory
location indicated by the
current value of the ad-
dress counter.

<direct code character preset> - A character constant that
is pacKed into sequential
memory locations, beginning
at the current value of the
address counter.

< i mp 1 i ed for m > - A form preset which allows
for the preset of more than
one subfield in one direct
code statement.

An address pr~set' or a character preset must be preceded by a
plus sign; i,t't~a·s,no purpose other than to indicate a preset. A
numeric pr.~,~~f~9;"~must be~· preceded ei ther by a plus sign or a minus

/ sign InaQ:~t· "':QP to indicating a preset, the plus or minus sign
i s(al~Q,~:JT~I:" 'l~~ as an algebra i c sign assoc i a ted with the nu
mer:,fc .. '(t'Pret?~e'tlk'h!,d:: ,ole, however, t ha t i f the numer i c prese tis a d i -
rect code nume'rlc constant expression, the algebraic sign is as
sociated wi th 'only' the:" fi~rst term of the expression and not wi th
the entire expre~Sion.

In the implied form preset, subfields are separated by commas.
The number of subfields must be a divisor of 32 and cannot exceed
16. If a direct code address expression is included as a preset,'
it must be declared as the last preset because it occupies the
lower half word of contiguous bits. Hence, if the statement con
tains o~ subfield, the signed subfield value is right-justified
in the generated word (32 bits). If the statement contains two
subfields, two equal-length signed subfields, 16 bits apiece, are
generated with the values right-justified within a generated
word. A 4-subfield preset will divide the word into four 8-bit
fields. An 8-subfield preset will divide the word into eight
4-bit fields. The first subfield must be signed. Successive
subfields may optionally be signed. The absence of a sign
implies a positive value. If the variants of this implicit equal
subdivision of data words are required, the capabilities of the
form directive can ,be used to derive the desired format.

8-33

/(U) CM2Y-MAN~PGR-M5049-R04CO

Examples

VRBL CATA A 10 S 0 $

DIRECT $

-5,2,6,0,7, -4, 1,3

+ 127, 64 ; -a, - 127

+ 16, CATA

The first line of presets divides the target machine's word into
eight signed 4-bit subfields. The second line of presets divides
the word into four signed a-bit subfields. The third line of
presets divides the word into one signed 16-bit subfield in the
upper half-word and one unsigned 16-bit address subfield--for
CATA--in the lower half-word.

Note

If the user specifies a numeric value which overflows the number
of bits allocated for the preset, significance will be truncated
and no error diagnostics will be issued. Hence, for example, in
the case of 16 2-bit fields, a 0 and -3 are 00 binary, a 1 and -2
are 01 binary, and a 2 and -1 are 10 binary. Overflow considera
tions for direct code numeric presets are the responsibility of
the user.

8-34

B.3.4 Direct Code Directives

Syntax

<direct

· . -· . -
· .-
· .-· . -· .-

code di rect ive>
< abs d i r ec t i ve>
<byte directive>
<char direct i ve>
<do directive>
<form directive>
<res di rect ive>

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

Direct code directives are statements utilizing the psuedo opera
tion codes of the direct code language.

B-35

/(U) CM2Y-MAN-PGR-M5049-R04CO

8.3.4.1 Abs Directive

Syntax

<abs directive>
::= [<direct code name>] A8S <direct code name>

Semantics

An abs directive is used to request a translation of a compile
time address counter value into a run-time absolute address .

. ASS - A language keyword indicating an abs directive.

Examples

ASS CAT

The above statement causes the SY value of CAT to be translated
into its corresponding 18-bit run-time address. The upper 14
bits of the generated word contain zeros. One practical use for
such a directive is to create a value used to load a base regiS
ter.

8-36

)

B.3.4.2 Byte Directive

Syntax

<byte directive>
- BYTE <b1>[,<b2>1

<b1>
<decimal integer>

<b2>
<decimal integer>

Semantics

/(U) CM2Y-MAN-PGR-M5049-R04CO

The byte directive redefines the embedded character si~e and the
number of characters placed in an object word for direct code
character strings occurring subsequently within the same CMS-
2Y(7) element.

BYTE - A language keyword indicating a byte directive.

<b1> - The number of characters to be packed into an object
word.

<b2> - Optional. The number of bits in each byte.

B2 cannot exceed 16 bits. If b2 i~ omitted from the byte direc
tive statement, the size of the byte field is eight bits.

The product b1 * b2 must be less than or equal to 32.

Examples

BYTE 6,4
BYTE 3,10

! '
The first directive allows four bits per byte, even though anoth-
er bit per byte ;s possible. The second directive allows jO bits
per byte.

,"

B-37

/(UI CM2Y-MAN-PGR-M5049-R04CO

B.3.4.3 Char Directive

Syntax

<char directive>
::= CHAR <parameter constant> @

<parameter constant)
- <C1), <V1>

<Cl>

<V1)

<direct code numeric constant>
<direct code character constant)

<direct code numeric constant>
<direct code character constant)

Semant ics

The char directive
used for generation
(character strings).

redefines the 8-bit imbedded character set
of characters coded between apostrophes

CHAR -~A language keyword indicating a char directive.

<C1) - Defines an octal code (000 thru 137) which is to be
redefined.

<V1> - Designates the value to which C1 is redefined.

In the absence of a preceding byte directive an 8-bit character
set is assumed. For all character string generation following a
char directive, the redefined character code is used until anoth
er char directive is encountered, or until a CMS-2 bracket is en
countered.

Examples

CHAR 0101, 1, '8', 2, 'C', 3, 0104, 064

.... 'ABCD'

The constant +'ABCD' produces the octal word 000402 001464.

8-38

/(U) CM2Y-MAN-PGR-M5049-R04CO

B.3.4.4 Do Directive

Syntax

<do d i rec t i ve>
::= [<direct code name>] DO <direct code numeric constant>,

<direct code constant>

Semantics

The do directive causes a direct code constant to be generated a
stipulated number of times.

DO - A language keyword indicat
ing a do directive.

<direct code numeric constant> - Stipulates the number of
times that the direct code
constant is to be repeated.

<d i rec t cOc;J,e 'qons tan t > - The constant
repeated.

to be

I fad i r ec tG~:-~f"H~m~~t is·, $~~b 'if fed, i t app 1 i est 0 the fir s t wo r d
of generated dAta.

Examples

DO 6, 29127

This directive causes six consecutive words to be assigned the
value 29127· (70707 octal).

8-39

I(U) CM2Y-MAN·PGR-M5049-R04CO

8.3.4.5 Form Directive

Syntax

<form directive>
::= <form label> FORM <direct code numeric constant> @

<form label>
::= <name>

Seman t 1 cs

The form directive describes a special word format with fields
defi~ed within the word.

FORM

<form label>

- A language Keyword specify
ing a form directive.

- A name used in place of a
direct code operation to
describe the format of a
computer word.

<direct code numeric constant> - Specifies the width of a
field in bits.

The total number of bits specified must be less than or equal to
64 and the number of fields is limited to 16. Each field must be
less than or equal to 32 bits in length.

Examples

STRINGX FORM 6,3,3,9,6
STRINGX 44,3,4,129, -8

Each value of STRINGX occupies the number of bits indicated in
the respective position within the form directive. For example,
the value 44 occupies bits 31 through 26. All of the numerlC
constants shown produce a word of the value 26161007340 octal.

Note

If fewer fields are coded than the number listed in the form di
rectiv~, they are left-justified. Coded fields in excess of the
specified number result in an object error diagnostic message.

8-40

8.3.4.6 Res Directive

Syntax

< res d; rec t i ve>

/(U) CM2Y-MAN-PGR-M5049-R04CO

::= RES <direct code numeri~ constant>

Semantics

The res directive is used to reserve a specified number of
sequential memory locations, beginning at the current value of
the address counter.

RES - A language Keyword specify
ing a res directive.

<direct code numeric constant> - A positive number specify
ing the number of words to
be reserved in the range
[0,65536] .

Examples

VX EOUAL~;>:64'$:

.
RES 4096
RES VX
RES 0

In the first reservation 10,000 octal cells are allocated. In
the second reservation 100 octal cells are allocated. In the
third reservation no cells are allocated.

8-41

/(U) CM2Y-MAN-PGR-M5049-R04CO

B.3.5 Form Preset

Syntax

<form preset>
::= <form label> <direct code numeric constant>@ [<direct

code name>]

Semantics

The form preset is an addressable direct code statement, used to
assign a value to specified memory locations using the fields de
fined in a form directive.

<form label> - The name of a form direc
tive describing the fields
within a word to be preset.

<direct code numeric constant> - A value to be preset in the
corresponding field.

<direct code name> - Optional. Specifies an ad
dress to be preset in the
last field of the word.

Only constants are accepted in form preset reference sub-fields,
with the exception of a name appearing in the last sub-field
where that sub-field size is defined as 16 bits or greater. When
a value appearing in a form preset reference sub-field requires
more bits than were defined in the form preset declaration, the
leftmost bits of the value will be truncated when packing the
resulting constant.

Examples

UF1 FORM 6,3,3,3,1,3,13

LOArr UF1 10,5,3,6,1,2,643

The form statement defines the fields of a target machine format
1 instruction. The statement at LOAD is equivalent to

/

LOAD LA,A5,*643,K3,B6,S2

B-42

flU) CM2Y-MAN-PGR-M5049-R04CO

APPENDIX C

TARGET MACHINE INTERFACES

C.1 Compiled Forms of Inputlist and Outputlist Declarations

Each inputlist item and outputlist item is compiled into one or
two control words followed by a sequence of code. In general,
execution of the sequence of code will cause a value to be loaded
into register AO or register pair AO-A1 (outputlist), or to be
stored from that register or register pair (inputlist). Details
of the code sequence vary, depending on the first control word,
and are explained below.

The phrase access the value is used to mean either load the value
into the registerTST or store it from the register(s). The code
sequence used to access the value is called the accessing se
quence.

The code sequence can use register B7 as a live register. It is
the responsibility of the conversion routines to save and restore
that register.

The code sequence consists of three subsequences. If the input
list item or outputlist item is multivalued (a table or an un
typed item-area), the sequence begins with an initializing subse
quence. This subsequence prepares for multiple executions of the
remainder of the sequence, in order to access the multiple val
ues; it must be executed once. Next (or first, if there is no
initializing subsequence) is the prologue subsequence. This sub
sequence must be executed before the conversion routine accesses
each value. The epilogue subsequence is last. It must be execu
ted after the conversion routine accesses each value. Thus, for
example. if an outputlist item is a numeric typed table, the ini
tializing subsequence might contain the code to prepare for
picking up the first item of the table, the prologue subsequence
might contain the code to place the value of an item of the table
into register AO, and the epilogue code might contain the code to
prepare to pick up the next item of the table.

In most cases, the code sequence will not contain compare or
branch instructions; the conversion routines must execute the
subsequences in these cases by using the target machine XR com
mand or some equivalent technique. In certain low-usage cases
the prologue or epilogue subsequence (but never the initializing
subsequence) might require compare or branch instructions. In
these cases the subsequences will be in the form of a procedure
which can be executed by use of an LBJ 86 instruction. The two

C-1

flU) CM2Y-MAN-PGR-M5049-Rn4CO

types of subsequence will be indicated by flag settings in the
control words. The two ~ypes of code generation are used in or
der to generate more compact code in the most common cases.

For multivalued itpms, it is the responsibility of the conversion
routine to Keep tracK of the number of items processed and the
beginning of the prologue subsequence.

C-2

/(U) CM2Y-MAN-PGR-M5049-R04CO

C.1.1 Control Words

The first control word has two formats. The most common format
is:

31 27 26 22 21 15 14 8 7 o

* TYPE *FLAGS * NPROLINS * NEPILINS * AUXVAL *

When the value of TYPE is zero, the format is:

31 27 "26 22 21 16 15 o

*TYPE=O*FLAGS * o * ADR *

The second control word, when presen t , is of the fo 11 ow i ng for-
mat:

31 23 22 16 15 0

* 0 * NINITINS * NVALS *
****.~***

The field FLAGS consists of five 1-bit flags (Boolean variables).
They are:

Bit 26 LITEMFL

Bit 25 MULTVFL

Bit "24 ~ PTHUNKFL

Bit 23 ETHUNKFL

Bit 22 Unused

1 for the 1 as tit em 0 f the 1 i s t ; 0
for all others.

1 for multivalued items (tables,
untyped item-areas); 0 for all
others. (The second control word
appears only if MULTVFL = 1.)

1 if the prologue subsequence must
be executed as a subprogram (using
an LBJ B6 instruction); 0 if it
must be otherwise executed.

1 if the epilogue subsequence must
be executed as a subprogram (using
an LBJ B6 instruction); 0 if it
must be otherwlse executed.

C-3

/(U) CM2Y-MAN-PGR-M5049-R04CO

The attributes and meaning of the field AUXVAL depend on the
value of TYPE. The attributes and meanings of the other fields
of the control words are:

ADR I 16 U

NINliINS I 7 U

NEPILINS I 7 U

NPROLINS I 7 U

NVALS I 16 U

TYPE I 5 U

The sy-address of an inputlist or outputlist
(appears only if TYPE = 0).

The number of target machine words occupied by
the following initializing subsequence (pre-
sent only if MULTVFL = 1).

The number of target machine words occupied. by
the following epi logue subsequence.

The number of target machine words occupied by
the following prologue subsequence.

The number of values in a multivalued item
(present only if MULTVFL = 1). The value will
be 0 for tables whose table subscript declara
tion is an ltag name, or which have a major
index. In these cases, the number of values
will be in register AO as an unsigned integer
value after execution of the initializing sub
sequence.

An indicator of the general attributes of the
inputlist or outputlist item.

The values of TYPE, its interpretation, and the corresponding at
tributes of AUXVAL are:

TYPE

o
1
2
3
4
5
6
7

Meaning

Inputlist/outputlist
Indirect inputlist/outputlist
Single precision fixed-pOint, unsigned
Single precision fixed-pOint, signed
Double precision fixed-point, unsigned
Double precision fixed-point, Signed
UYK-7 Floating-point
Character

C-4

Auxiliary Value

No t app 1 i cab 1 e
Zero (unused)
I 85- scaling
I 8 S - scaling
I 85- scaling
I 85- scaling
Zero (unused)
I 8 U - number of
characters (for
the meaning of 0,
see below)

8
9
10
1 1

12
13

/(U) CM2Y-MAN-PGR-M5049-R04CO

Boolean
Single precision untyped
Double precision untyped
Status

UYK-43 single-precision floating-point
UYK-43 double-precision floating-point

Zero (unused)
Zero (unused)
Zero (unused)
I 8 U - number of
values mod 256

The meaning of the accessing sequence depends only on the value
of TYPE. The various meanings are:

TYPE = 0 - (Spec i a 1) No sequence follows.

TYPE = 1 - The address of the inputlist or output-
1 i s t is loaded into register AO.

TYPE = 2,3,8,9,12 - The va 1 ue will be loaded into register
AO (outputlist) or stored from register
AO (i npu t 1 i s t) .

TYPE = 4,5,6,10,13 - The value will be loaded into register
pair AO-A1 (outputlist) or stored from
reg i s t e r pa irA 0 - A 1 (i npu t 1 i s t) .

TYPE - 7 - For an outputlist, an IWCI that points
to the first character of the value
will be loaded into register AO when
the prologue subsequence is executed.
For an inputlist, an IWCI that pOints
to the first character of the recepta
cle will be loaded into register AO
when the prologue subsequence is execu
ted. The epilogue subsequence will be
present only for multivalued items, and
will then consist only of code to in
crement the loop index.

If the number of characters cannot be
determined at compilation time, AUXVAL
will be set to 0, and the number of
characters will be in register A1 as an
unsigned integer value after execution
of the prologue subsequence.

C-5

1
1.
1
1
1
1

/(U) CM2Y-MAN-PGR-MS049-R04CO

TYPE = 11 - The value will be loaded into register
AO (outputlist) or stored from register
AO (inputlist), the address of a table
of character equivalents of the values
wi 11 be loaded into register A1, and
the number of values will be loaded in
to register A2. The table consists of
one 8-character entry for each value,
and is in ascending order by value.
(The value in AUXVAL is present only
for compatibility with previous forms
of inputlist and outputlist.)

C-6

/(U) CM2Y-MAN-PGR-M5049-R04CO

C.2 Compiled Form of Stringforms

Stringforms are compiled into sequences of bytes (quarterwords).
These sequences are made up of subsequences, each of which con
sists of a 1-byte control value followed by a sequence of bytes
whose length and meaning depend on the control value. These sub
sequences are defined by:

Control
Value

(Dec i rna 1)

o
1
2
3
4

5

6
7
8
9

10
11
12
13

14
15
16
17
18-34
35
36

37

38
39
40
41
42
43
44
45

46

Meaning

Start of stringform
Left parenthesis
Right parenthesis
Repeat value
Decimal without exponent (D)

Decimal with exponent (D)

Decimal integer (I)
Binary (B)
-Octal (D)
Hexadecimal (X)
Character (C)
Status (E)
unused
Character constant

Blanker (Z)
Absolute tab (T)
Tab r i gh t (T +)
Tab 1 eft (T -)
unused
Repeat value
Decimal without exponent (D)

Decimal with exponent (D)

Decimal integer (I)
Binary (B)
Dc tal (D)
Hexadecimal
Character (C)
Status (E)
unused
Character constant

Blanker (Z)

C-7

Following Sequence

None
None
None
1-byte repeat value
1-byte field width,
1-byte fraction size
1-byte field width,
1-byte fraction size,
1-byte exponent size
1-byte field width
1-byte field width
1-byte field width
1-byte field width
1-byte field width
1-byte field width

1~byte constant length,
the value of the constant
1-byte blank count
1-byte column number
1-byte tab count
1-byte tab count

2-byte repeat value
2-byte'field width,
1-byte fraction size
2-byte 'field width.
1-byte fraction size,
1-byte exponent size
2-byte field width
2-byte field width
2-byte field width
2-byte field width
2-byte field width
2-byte field width

2-byte constant length,
the value of the constant
2-byte blank count

flU) CM2Y-MAN~PGR-M5049-R04CO

47
48
49
50-254
255

Absolute tab (T)
Tab r i gh t (T +)
Tab 1 eft (T -)
unused
End of stringform

C-8

2-byte column number
2-byte tab count
2-byte tab count

None

/(U) CM2Y-MAN-PGR-M5049-R04CO

APPENDIX D

LISTING FORMATS

Appendix 0 consists of samples and descriptions of the following
listing formats generated by the CMS-2Y(7) compiler as a result
of various source and object requests:

Compiler Source Listing

Source Listing

Compiler Diagnostic Listing

Symbol Analysis Listing

Source Mnemonic Listing

Local Address Cross Reference

Local Source Cross Reference

Global Address Cross Reference

Global Source Cross Reference

Compile Summary

SHARE/7 System Summary

Batch System Summary

0-1

flU) CM2Y-MAN-PGR-M5049-R04CO

0.1 Source Listings

This section describes the various source listings which may be
requested in CMS-2Y(7) compi lations. Unless otherwise specified,
all numerics in this section hold decimal values. Sample figures
indicate possible outcomes and placement of data on the page.

All source specifications result in the compi ler proceeding
through the source analysis phase. Thus, source diagnostics are
generated, which are described in Appendix A. Refer to paragraph
9.2.1 for a more detailed description of source specification
declarations.

0-2

/

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.1.1 Compi ler Source Listing

See Figure 0-01 for an example of a compiler source listing.

The compi ler source listing is output from the syntax analyzer
phase of the compi ler and provides a record of input to the com
pi 1 er .

The major page header contains the system specification: CMS-
2Y (7) . I tal so conta i ns the revi s ion number, the da te, the page
number, and the title: Compiler Source Listing.

The first minor page header is set off by asterisks on either
side. It contains the element type (System, SYS-DD, SYS-PROC),
the element name, and the element number.

The second minor page header is defined below. The values in pa
rentheses following each definition indicate the columns on the
listing where the information appears.

CARD 10 - Corresponds to card columns 1-10, which
identify the card name and statement
n umbe r . (4 - 1 3)

SOURCE STATEMENT - Corresponds to card columns 11-80, which
contain the source statements. (14-83)

ERROR CONDITION - Description of an error condition,
immeditely following the statement con
taining the condition, and including the
abbreviation SE (source error) and/or SW
(source warning) " error number and error
statement. (85-119)'

A - Caret indicates the compiler's best at-
tempt to specify the location of the er
ror. (14-83)

0-3

o
I

.t:a

I
I 2 3 4 5 6 7 890 I I

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890'234567890'23456789

CMS2-Y(7) COMPILER SOURCE LISTING. REVISION dd mm/dd/yy PAGE ddddd

•• SYSclll1 (Elem Name) ELEMENT ddd ••
CARD ID SOURCE STATEMENT ERROR CONDITION
ccccddddcc(LABEL)(CMS-2 Statement
ccccddddcc (CMS~2 Statement Wtth Error

11 ddc1 (frror Oesr.r'tpt Ion '~)tt

--~--------,~------~

1 234 567 8 9 0 1 1
1234567890'2345678901234567890123456789012345678901234567890'2345678901234567890'23456789012345678901234567890123456789

: : : : : : : : : : : : : : : : : : : ~ :
LEGEND

: .. :
LABEL = HIGH-LEVEL (CMS-2) LA8EL.
Label = LOW-LEVEL (DIRECT COOE) LABEL;

HIGH-LEVEL (CMS-2) LABEL PLACED BY
COMPILER IN RELATION rODIRECT CODE
OR SOURCE MNEMONIC STATEMENTS.

: ... ':
d DECIMAL DIGIT h = HOUR
o DeTAL DIGIT m MINUTE

: c = ALPHANUM.:RIC CHARA~, 0.:" : S = SECOND
: I = ALPHA CHARACTER

m MONTH
d DAY
Y = YEAR

:: : F'gure 0-01. An Example Of a Compiler Source listing,

c

/(U) CM2Y-MAN-PGR-M5049-R04CO

D.1.2 Source Listing

See Figure 0-02 for an example of a source listing.

Output by the generator phase of the compiler, the source listing
provides a record of input to the compi ler.

The major page header contains the element number, the system or
element name, and the element type (System, SYS-DO or SYS-PROC).
It also contains the revision number, the date, the page number,
and the title: Source Listing.

The minor page header is defined below. The values in parenthe
ses following each definition indicate the columns on the listing
where the information appears.

ERROR - Number indicating errors found in the adjacent
source statement. See Appendix A for a list of
the errors and meanings associated with these
numbers. (1- 5)

AC - Address counter (in octal) for current location
of instruction or data unit. (10-11)

S - Indication (in octal) of the number of 20,000
(octal) word multiples (incremented under the
Key word LOCATION) occurring before the current
line. Loosely referred to as the base register.
(12)

LOCATION - Current location (in octal) of instruction or
data unit, relative to (i .e., offset from) the
start of the address counter. (14-21)

LABEL - Eight-character identifier for the adjacent
source statement, or the first eight characters
of the input statement ~ (36-43)

STATEMENT - The remainder of the CMS-2 input statement.
(44-105)

CID - Card identification. Corresponds to card
columns 1-4, which are filled by the programmer,
u~ually to identify program subdivisions.
(109-112)

SID - Statement identification. Corresponds to card
columns 5-8, which are filled by the programmer
with statement sequence numbers. (114-117)

0-5

CJ
I

m

1
1 2 3 4 5 6 1 8 9 0 1 1

12345678901234561890123456789012345678901234567890123456789012345618901234567890123456789012345678901234567890123450789

ELEMENT ddd (Elem Name)

ERROR AC S LOCATION

00 o 00000

ddd 00 o 00000

SYScllll SOURCE LJ ST ING

LABEL STATEMENT

(LABEL)(CMS-2 Statement
(CMS-2 Statement. wtth Error

REVISION dd mm/dd/yy PAGE ddddd

CID SID CR
[OR)

SCR tlB
ecce ddddcc
cccc ddddcc

1 234 5 6 7 8 9 0 1 1
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

...
LEGEND

LABEL HIGH-LEVEL (CMS-2) .LABEL.
Label = LOW-LEVEL (DIRECT CODE) LABEL;

HIGH-LEVEL (CMS-2) LABEL PLACED BY
COMPILER IN RELATI~N TO DIRECT CODE
OR SOURCE MNEMONIC STATEMENTS.

d DECIMAL DIGIT h HOUR
o OCTAL DIGIT m MINUTE

: c = ALPHANUMERIC CHARACTER : s = SECOND
: 1 = ALPHA CHARACTER

m = MONTH
d DAY
y = YEAR

~ : F1gure 0-02. An Example of a Source Ltsting.

c

()

3:
rv
-<

I

:s:
l>
Z

I

-0
G>
;0

I

3:
Ul
o
,J:::a
<D

I
;0

o
,J:::a
()
o

CR

/(U) CM2Y-MAN-PGR-M5049-R04CO

Correction identification. The remalnlng two
numbers or charecters of the card and statement
10. (118-119)

When the SCR option is requested, the key words CIO, SID and CR
are replaced by the key word~ SCR and LIB. The following de
scription is also applicable to the source mnemonic listing with
the SCR option requested.

SCR - The compiler-generated source cross reference
number used to identify each source statement
and referenced in the local source cross refer
ence. (107-112)

LIB - Identical to the SID and CR characters on the
SQurce listing option. (114-119)

0-7

/(U) CM2Y-MAN-PGR-M5049-R04CO

D.2 Object Listing

This section describes the various object listings which may be
requested in CMS-2Y(7) compilations. Unless otherwise specified,
all numerics in this section hold decimal values. Sample figures
indicate possible outcomes and placement of data on the page.
The symbol [OR] is used to indicate the choices within each col
umn.

All object specifications result in the compiler proceeding
through the object-generation phase. Thus, requested listings
will include object diagnostics. These diagnostics are descri~ed
in Appendix A. Refer to paragraph 9.2.2 for a more detai led de-
scription of object specification declarations.

Object specifications result in the requested output being gener
ated for the major header and each system element in the order in
which they are compiled. Global cross-reference listings are
generated for the entire system block and appear after the end
system statement in the output listing. Refer to Figure 9-01 for
output results with various combinations of options parameters.

D-8

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.1 Compiler Diagnostic Listing

See Figure 0-03 for an example of a compiler diagnostic listing.

The major page header information contains the system specifica
tion: CMS-2Y(7). It also contains the revision number. the
date. the page number, and the t~tle: Compiler Diagnostic List
ing.

There may be more than one minor header to a page. The minor
header is set off by asterisKs on either side. It contains the
element type (System, SYS-DD, or SYS-PROC), the element name ~nd
the element number.

The second page header ;s defined below. The values in parenthe
ses following each definition indicate the columns on the 1 isting
where the information appears.

CARD IMAGE - The image on the card. Columns 1-10
identify both the card name and state
ment number; the remalnlng columns
contain the actual statement. (3-98)

A - Caret indicates the compiler's best
a t tempt to spec i fy the Toca t i on of the
error. (29-98)

(Error Type) = - SOURCE ERROR or SOURCE WARNING refers
to errors found during the source
analysis phase of a compilation (see
page A-1); OBJECT ERROR or OBJECT
WARNING refers to errors found during
the object phase of a compilation (see
page A-20). (3-17)

(Error Number) - Number corresponding to description of
error (see pages A-2 through"A-17 and
pages A-20 through A-23). (20-22)

(Error Description - Error message describing the error in
Text) a text form. (27-52)

COL. NO. - The column number pointed to by the
CARET. May be N/ A for 1\ not
app 1 i cab 1 e" . (5 7 -7 0)

0-9

o

C>

--_.- - ----.-------------------------
1

1 2 3 4 5 6 7 8 9 0 1 1
12345678901234561890123456189012345618901234567890123456189012345618901234561890123456789012345678901234567890123456789

CMS-2Y(7) COMPILER DIAGNOSTIC LISTING, REVISION dd PAGE ddddd

• • • SYS-DD (Elem Name) ELEMENT NO. dddd •••

CARD IMAGE ccccddddcc(CMS-2 Statement, wi ttl Er'ror

(Error Type) ddd (Error Description Text COL. NO. ddd

1
1 234 561 890 1 1

12145678901234561890123456189012345618901234561890123456789012345618901234561890123456189012345618901234561890123456789

..
• • ... • " 0 ... •

LEGEND

LABfL HIGH-LEVEl (CMS-2) LABEL.
Label: LOW-LEVEL (DIRECT CODE) LABEL;

HIGH-LEVEL (CMS-2) LABEL PLACED BY
COMPILER IN RELATION TO DIRECT coot
OR SOURCE MNEMONIC STATEMENTS.

: .. :
d DECIMAL DIGIT
o = OCTAL DIGIT
c ALPHANUMERIC CHARACTER
I ALPHA CHARACTER

h :: HOUR
m MINUTE
s SECOND

m
d
y

MONTH
DAY
YEAR

::: .. :::::::::::::::: : Figure 0-03. An Example of a Compiler Diagnostic l.isting.

c:

(")

3:
~
-<

I

3:
l>
Z

t
-U
C>
:::0

I

:s:::
U1
C>
~
(0

I

:::0
o
~
(")
C>

I'

/(U) CM2Y-MAN-PGR-M5049-R04CO

0;2.2 Symbol Analysis Listing (SA)

See Figure 0-04 for an example of a symbol analysis listing.

The major page header information contains the element number,
the element name, and the element type (SYS-OD or SYS-PROC). It
also contains the date, the page number, and the title: Symbol
Analysis.

Symbols for each system element are grouped along with group
specific information in the following categories and are divtded
by a line of "asterisks. The name of each category begins in col
umn 20 of the listing. Each group lists the data alphabetically
by symbol name.

The values in parentheses following each definition indicate the
columns on the listing where the information appears. Some col
umns contain optional data and will remain blank if not used.

0-11

o

1
1 234 5 6 789 0 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

ELEMENT ddd lccccccc SYS-llll SYMBOL ANALYSIS mm/dd/yy PAGE ddddd

•••

FILES
•••
NAME TYPE MODE HRDWR

lccccccc llcc

MX.RCD
SIZE

dddd

MX.NO.
RCDS

ddddd

NO. PROCEDURE
STATES

dd lccccccc

•••
FORMATS

•••
NAME EXT PROCEDURE

lccccccc lccccccc

••
TYPES

•••
NAME PACK

lccccccc 1111

WDS/
ITEM

ddddd

EXT FIELD
NAMt

lccccccc

TP SN START
BIT

dd

WORD
LOC
ddd

FR
BT

ddd
[OR}

-ddd

NO. BITS
OR CHARS

ddd

PROCEDURE

lccccccc

1
1 234 5 6 789 0 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

+---+
I LEGEND I

,----------------------------+--------------,
: d = DECIMAL DIGIT I m = MONTH I

o = OCTAL DIGIT d DAY , l c = ALPHANUMERIC CHARACTER I y = YEAR ,
I 1 = ALPHA CHARACTER I I

• ---+ Figure 0-04 . An Example of a Symbol Analysis Lfsting. (Page 1 of 4)

c

()
3!:
tv
-<

I

3:
l>
Z

I

""0
G>
:tJ

I

K
U1
C>
.J;::..
<.D

I
;;0

o
.J;::..
()
C>

o

w

--. 1
1 2 3 456 7 8 9 0 1 1

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567R901214567SQ011345f>78q01~145n7Aq

El EMfNf ddd lccccccc SYS-llll SYMBOL ANALYSIS mm/dd/yy PAGE ddddd

•••

fABLES
•••
NAME ASSOC TP PACK WDS/ NO_ITEMS ADD VLT INDEX EXT START FIELD TP SN STRT WRD rR NO.BIlS PROCEDURE

NAME NOIM ITEM DIM.SIZE MOO AC NAME ITEM NAME ·BIT LOC BT OR CHARS

1ccccccc lccccccc 1T 11 ddddd lCcccccc 111 dd lccccccc ddddd lccccccc 1 dd ddd ddd ddd lccccccc
[OR] (OR]
ddddd -ddd lccccr.cc

•••
SWITCHES

•••
NAME TP

lccccccc 111

NO.
PTS

dd

COMPARED. EXT
VARIABLE

1ccccccc'

INPUT PARAMETERS

lccccccc lccccccc

OUTPUT PARAMETERS PROCEDURE

lccccccc lccccccc lccccccc lccccccc lcc:cccc:c

1
1 234 567 890 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

+---t
'- - .. -. _.. - - - - - - - _ .. ~~~~~~ - - - t - - - - I
I d DECIMAL DIGIT 'm MONTH I
I 0 OCTAL DIGIT I d DAY I
I c ALPHANUMERIC CHARACTER I y YEAR I ! 1 ALPHA CHARACTER! !
t---t Figure 0-04. An Example of a Symbol Analysis Listing. (Page 2 of 4)

c

(")
3:

'" -<
I

3:
l:>
Z

I
-,:,
G>
:::0

I

3:
Ul
o
~
<D

I

:::0
o
~
(")
o

o

1
1 2 3 4 5 6 1 8 9 0 1 1

12345618901234567890123456789012345678901234567890123456189012345678901234567890123456789012345678901234567890123456789

ELEMENT ddd lccccccc SYS-l1l1 SYMBOL ANALYSIS mm/dd/yy PAGE dddd(

... t ••••••

VARIABLES ...
NAME TP SN START NO.CHRS,BTS FR EXT TYPE OR PROCEOURE

BIT OR ST.CONST BT TABLE

lccccccc dd ddd ddd lccccccc lccccccc
(OR)
-ddd

...
INPUTLISTS/OUTPUTLISTS ..

NAME TP EXT PROCEDURE

1ccccccc 111 l.ccccccc

..
STRING,FORMS

•••••••••••••••••••••••• **.* •••••••••••••••••••••••••• ••••••••••••••••••••••••• i

EXT PROCEOURE

lccccccc lccccccc

1
1 234 5 6 1 8 9 0 1 1

12345618901234561890123456189012345618901234561890123456189012345618901234561890123456189012345618901234561890123456189

+ - .. - - - - - - - -. - - - - - - - - +
I LEGEND . I

,-------------------------.,--+--------------,

"

d = DECIMAL DIGIT I m = MONTH :
o = OCTAL DIGIT d DAY

: c = ALPHANUMERIC CHARACTER I y = YEAR I
I 1 = ALPHA CHARACTER I I

+ --+ Figure 0-04. An Example of a Symbol Analysis Listing. (Page 3 of 4)

c:

---------_.----------------
1

1 2 3 456 7 8 9 0 1 1
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678Q012345678901234567890123456"789

ELEMENT ddd Iccccccc SYS-l111 SYMBOL ANALYSIS mm/dd/yy PAGE ddddd

•••
PROCfOURFS-FUNCTIONS

•• t ••••••••••••••• t ••••••••••

NAME TP PASS REN INPUT PARAMETERS OUTPUT PARAMETERS EX ITS

lccccccc 1111 III Iccccccc lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc

.. ~•............•..............................•............•..
LOCAL INOEXES

•••
NAME REGISTER PROCEOURE

lccccccc dd lccccccc

CJ

(J1

1
1 234 567 890 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

+---+
I LEGEND I
I d DECIMAL DIGIT m MONTH I

o OCTAL DIGIT d DAY I c ALPHANUMERIC CHARACTER y YEAR I
I 1 ALPHA CHARACTER I I

t---+ Figure 0-04. An Example of a Symbol Analysis Listing_ (Pag~ 4 of 4)

--c

(")

3:
I')

-<
I

3:
1:>
z

I

~
G)
:::0

I

3:
U1
o
~
(D

I
;0

o
~
(")
o

/(U) CM2Y-MAN-PGR-M5049-R04CO

o . 2 . 2. 1 F i 1 es

For a description of the file declaration, see paragraph 4.23.
Symbci analysis column headings are defined as follows:

NAME F i 1 e name. (1 - 8)

TYPE Fi le type. (12-15)
H = Character
B = Internal format

MODE File structure. (18-21)

HRDWR

MX. RCD'
SIZE

MX.NO.
RCDS

R = Rigid record length
V = Variable record length
S = Stream organization

Specifies the hardware device containing the
fi leo (24-28)

READ = Card reader
PNCH = Card punch
PRN'T = Printer
MT## = User defined device
OCM = Operator's Communication Medium

The length of the buffer associated with the
file. (31-36)

The maximum number of records permitted in any
subfile of the file. (39-44)

NO. The number of status constants used in testing
STATES I/O conditions. (48-53)

PROCEDURE- The name of the parent procedure or function in
whose subprogram data blocK (SUB-DO) the file is
def i ned. (55-63)

0-16

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.2 Formats

For a description of the format declaration, see paragraph 4.24.
Symbo1 analysis column headings are defined as follows:

NAME Forma t name. (1- 8)

EXT External Specification. (12-14)
D = EXTDEF (defined in this element)
R = EXTREF (referenced in this element)

The name has global scope in both cases.

PROCEDURE - The name of the parent procedure or function in
whose subprogram data blocK (SUB-DD) the format
i s de f i n'ed . (2 3 - 3 1)

0-17

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.3 Types

For a description of the type declaration, see paragraph 4.4.
Symbol analysis column headings are defined as follows:

NAME - Type name. (1-8)

PACK - Indicates NONE, MEDIUM or DENSE. (12-15)

WDS/ The number of words per item as indicated in the
I T EM type dec 1 a rat i on . (20- 24)

EXT - External specification. (27-29)

FIELD
NAME

TP

D = EXTDEF
R = EXTREF

- Alphabet ica 1 1 ist of fields associated wi th the
type. (3 1 - 38)

- Type 0 fit em - typed type, 0 r fie 1 d . (4 1 - 42)
A = Fixed point H = Hollerith
F = Floating pOint I = Integer
B = Boolean

SN - Sign of item-typed type, or field. (46-47)

START
BIT

U = Unsigned
S = Signed

- The bit position of the leftmost bit of the,
field. (52-56)

WORD The number of the word in which the leftmost bit
LOC of the field is allocated. (61-64)

FR - The number of fractional bits of a fixed point
BT type or field. (The radix is implied and there

fore is not assigned a bit.) (66-69)

NO. BITS - The number of bits
OR CHARS field; the number of

typed type or field.

for numeric typed type or
characters for Hollerith
(75-82)

PROCEDURE The name of the parent procedure or function in
whose subprogram data block (SUB-DO) the type or
field is defined. (88-96)

0-18

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.4 Tables

For a description of the table declaration, see paragraphs 4.8
and 4.9. Symbol analysis column headings are defined as follows:

NAME - Table, liKe-table, subtable or item-area name.

ASSOC
NAME

(1 - 8)

- Parent table name for liKe-table,
or item-area. (10-17)

subtable

TP - The parent table or associated table type.
(25-26)

V = Vertical
H = Horizontal
A = Array

L·= LiKe-table
S = Subtable
I = Item-area

PACK - Indicates NONE, MEOM, or DENS if the table is
NOIM compiler-packed; shows number of dimensions for

an array. (28-31)

WOS/ - The number of words per item as declared in the
ITEM parent table. (33-37)

NO. ITEMS Number of items for tables (can be a constant or
DIM.SIZE an ntag, or 1tag name). For arrays, indicates

the dimension size (number of subscript declara
tions). (39-46)

ADD - Addressing mode. (49-51)
MOD OIR = Direct

INO = Indirect

VLT - The value (in octal) of the variable length
AC table address counter. (53-55)

INDEX
NAME

- Name of parent table's major index. (57-64)

EXT - External.specification. (65-67)

START
ITEM

FIELD
NAME

o = EXTOEF
R = EXTREF

- Ftrst item of the associated subtab1e. (69-73)

- Alphabetical list of fields associated with the
tab le. (75-82)

0-19

"

/(U) CM2Y-MAN-PGR-M5049-R04CO

TP - Field type. (83-84)
A = Fixed point
F = Floating point
B = Boolean

S = Status
H = Hollerith
I = Integer

SN - Sign of numer i c tab 1 e or fie 1 d. (86 - 87)

START
BIT

U = Unsigned
S = Signed

- The bit position of the leftmost bit of the
field. (89-92)

WORD - The number of the word in which the leftmost bit
L DC 0 f the fie 1 dis all oca ted. (94- 96)

FR "- The numbe~of fractional bits of a fixed point
8T field. (The radix is implied and therefore is

not assigned a bit.) (98-101)

NO. BITS - The number of bits for numeric type field, num
OR CHARS ber of characters for Hollerith type field, or

number of states for status type field.
(1()~ - 110)

PROCEDURE rhe,name of the parent procedure or function in
w~6se sub~r6gram d~ta block (SUB-DD) the table
is defined. (111-118)

0-20

I(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.: Switches

For a aescription of the switch declaration, see paragraphs 4.21
and 4.22. Symbol analysis column headings are defined as fol
lows:

NAME

TP

NO.
PTS

COMPARED
VARIABLE

EXT

- Sw itch name. (1 - 8)

- Type of sw itch. (11-13)
S = Single or double index sw itch
ITS = Item sw itch
P = Single or double index proce-

dure sw itch
ITP = Item procedure switch

- Number of switch pOints. (17-19)

- Name of variable compared with item
sw itch cons tan t va 1 ue. (24- 31)

- Ext ern a 1 s pee i fie a t ion . (34 - 36)
o = EXTOEF
R = EXTREF

INPUT PARAMETERS - List of names of formal input parameters
associated with the procedures in the
procedure sw itch 1 is t . (40-71)

OUTPUT PARAMETERS - List of names of formal output para
meters associated with the procedures in
the procedure sw itch 1 is t . (76- 109)

PROCEDURE - The name of the parent procedure or
function in whose subprogram data block
(SUB-DO) the sw itch is def i ned.
(1 1 1 - 1 19)

0-21

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.6 Variables

For a description of the variable declaration, see paragraph 4.6.
Symbol analysis column headings are defined as follows:

NAME

TP

. SN

START
BIT

- Variable name. (1-8)

- Variable type. (10-11)
I = Integer
A = Fixed point
F = Floating point

- Sign of numeric variable .
U = Unsigned
S = Signed

B = Boolean
S = Status
H = Ho 1 1 er i th

(15-16)

- Leftmost (starting bit) of the variable.
(Note: When the variable is signed, this
would be the sign bit.) (21-25)

NO.CHRS,BITS - Number of characters if Hollerith; number of
OR ST.CONST bits if numeric or Boolean; number of states

i f s tat us type va r i ab 1 e . (30 - 40)

FR
BT

EXT

TYPE OR
TABLE

PROCEDURE

- Number of fractional bits for scaled vari
able. (42-45)

External specification. (49-51)
D = EXTDEF
R = EXTREF
M = MODEVRBL

- The name of the parent type or table assoc
iated with this variable. (55-12)

- The name of the parent procedure or function
in whose subprogram data bloCK (SUB-DO) the
variable is defined. (24-32)

0-22

/(U) CM2Y-MAN-PGR-M5049-R04CO

D.2.2.7 Inputlists/Outputlists

For a description of the inputlist and outputlist declarations,
see paragraphs 4.26 and 4.27. Symbol analysis column headings
are defined as follows:

NAME - Inputlist or outputlist name. (1-8)

TP - Type of declaration. (11-13)
IN = Inputlist
OUT = Outputlist

EXT - External specification. (17-19)
D = EXTDEF
R = EXTREF

PROCEDURE - The name of the parent procedure or function in
whose subprogram data block (SUB-DO) the input
list or outputlist is defined. (24-32)

0-23

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.8 Stringforms

For a description of the stringform declaration, see paragraph
4.25. Symbol analysis column headings are defined as follows:

NAME - Stringform name .. (1-8)

EXT - External specification. (13-15)
o = EXTDEF
R = EXTREF

PROCEDURE - The name of the parent procedure or funct ion .in
whose subprogram data design (SUB-DO) the
stringform is defined. (24-32)

0-24

/

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.9 Procedures and Functions

For a description of the procedure and function declarations, see#,
paragraphs 4.18, 4.19, and 4.20. Also, for information on the
parameter passage directive, see paragraphs 5.2 and 6.1.1.6.
Symbol analysis column headings ~re defined as follows:

NAME

TP

PASS

REN

- Procedure or function name. (1-8)

- Type of declaration. (11-12)
E = EXEC-PROC
P = Procedure
F = Funct ion

- The parameter passage specification.
(15-18)

CALL = Register - calling only
REG = Register only
OIR = Direct passage

- Indicates that this block of code was
defined in a SYS-PROC-REN. (20-22)

INPUT PARAfJlETERS - List of names of formal input parameters
associated with the procedure, EXEC
PROC, or funct ion. (24-55)

OUTPUT PARAMETERS - List of names of formal output parame
ters associated with the procedure.
(60-91)

EXITS - List of names of formal exit parameters
assoc i a ted with the procedure. (96-115)

0-25

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.2.10 Local Indexes

For a description of the local index declaration, see paragraph
4.17. Symbol analysis column headings are defined as follows:

NAME - Subprogram local index name. (1-8)

REGISTER - The number of the AN/UYK-7 or AN/UYK-43 hardware
index register corresponding to the local index.
(12- 19)

PROCEDURE - The name of the procedure or function in whQse
subprogram data block (SUB-DO) the local index
is defined. (24-32)

0-26

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.3 Source Mnemonic Listing

See Figure 0-05 for an example of a source mnemonic listing.

The source mnemonic listing provides a record of input to the
compiler. In most cases, each source line is followed by its
mnemonic representation.

The major page header contains the element number, the system or
element name, and the element type (System, SYS-OO, SYS-PROC).
It also contains the revision number, the date, the page number,
and the title: Source Mnemonic Listing.

The minor page header is defined below. The values in parenthe
ses following each definition indicate the columns on the listing
where the information appears.

ERR - The number indicating errors found in the adja-
cent source statement. See Appendix A for a
list of the errors and meanings associated with
these numbers. (1- 3)

AC - Address counter (in octal) for current location
of instruction or data unit. (5-6)

S - Indication (in octal) of the number of 20,000
(octal) word multiples (incremented under the
key word LOC) occurring before the current line.
Loosely referred to as the base register. (8)

LOC - Current location (in octal) of instruction or
data unit, relative to (i .e., offset from) the
start of the address counter. (10-14)

FUNC - The first half of the data or instruction con-
t a i n i n g t he ope rat ion . (1 6 - 2 1)

S - Indication (in octal) of the number of 20,000
(octal) word multiples (incremented under the
key word LOC) occurring before the operand loca
tion. Loosely referred to as the base register.
(23)

LOC - Relative memory location (in octal) of the
o~erand of the instruction. Also appearing un
der this key word is the K-designator, indicat
ing to what portion of a word the variable is
assigned. (24-29)

AC - Address counter (in octal) of the operand or the
instruction. (31-32)

0-27

o ,
rv
00

1
1 234 5 6 7 890 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456189

ELEMENT ddd (Elem Name) SVScllll SOURCE MNEMONIC LISTING REVISION dd

ERR AC S LOC FUNC S LOC AC X LABEL STATEMENT

00 0 00000 (Ko)

ddd
00 0 00000 000000 000000
00 0 00000 000000 0 00000 00 1

00 0 00000 000000 0 00000 00 1

00 0 00000 000000 0 00000 00 1

(CMS-2 Variable Dec1aratton
(Generated 'SAVE' Statement

(LABELA)(CMS-2 Statement .. Wtth Error
(Labe1A) (Generated Source Mnemonic Statement

(Generated Source Mnemonic Statement

(LABELB)
(CMS-2 'DIRECT' Statement

(LabelB)

(LABELC)

(Direct Code Statement
(CMS-2 'CMS-2' Statement

(CMS-2 'DIRECT' Statement
(LabelC) (Generated 'EQUALS' Statement

(LabelD)(Direct Code Statement
(CMS-2 'CMS-2' Statement

..... -. - --_._---------------

mm/dd/yy PAGE ddddd

CID SID CR
[OR)

SCR l I R

cccc ddddcc

cccc ddddcc

cccc ddddcc
cccc ddddcc

cccc ddddcc
cccc ddddec

cccc ddddcc
cccc ddddcc

cccc ddddcc
ecce ddddcc

1
1 2 3 4 5 6 7 8 9 0 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

.::::::::::::::::::::::::: :.::::::::::::::::;:::::::::::::::
LEGEND

LABEL HIGH-LEVEL (CMS~2) LABEL.
Label = LOW-LEVEL (DIRECT CODE) LABEL;

HIGH-LEVEL (CMS-2) LABEL PLACED BV
COMPILER IN RELATION TO DIRECT CODE
OR SOURCE MNEMONIC STATEMENTS.

: ... :
d
o
c
1

DECIMAL DIGIT
OCTAL DIGIT
ALPHANUMERIC CHARACTE'R
ALPHA CHARACTER

h HOUR
m = MINUTE
s = SECOND

m
d

Y

MONTH
DAV
YEAR

:: : Figure 0-05. An Example pf a Source Mnemonic Listing.

c

()

3:,
-< ,
3t
1>
Z

I

-0
G)
;t:J

I

3:
(J1

o
..r:::.
<.D ,
;;:0

o
~
()
o

x

LABEL

/(U) CM2Y-MAN-PGR-M5049-R04CO

- Declaration (scope) modifier (see pages 4-2
through 4-4). (34)

R = Operand is global, defined in another
e 1 emen t ,. and referenced in th is e 1 emen t
(EXTREF) .

o = Operand is global, and defined in this
element (EXTOEF).

T = Operand is defined in another element
that cannot be assigned a permanent base
register (TRANSREF).

- Eight-character identifier for the adjacent
source statement, or the first eight characters
of the input statement. It can be user-coded
(CMS-2) or compiler-generated (source mnemonic).
The latter is indented one space. (36-43)

STATEMENT - The remainder of the CMS-2 input or generated
source mnemonic statement. The latter is
indented several spaces. (44-105)

cro - Card identification. Corresponds to card col-
umns 1-4, which are filled by the programmer,
usually to identify program sub-divisions.
(109-112)

SID - Statement identification. Corresponds to card
columns 5-8, which are filled by the programmer
with statement sequence numbers. (114-117)

CR Correction identification. The remalnlng two
numbers or characters of the card and statement
10. (118-119)

When the SCR option is requested, the key words CIO, SID and CR
are replaced by the key words SCR and LIB. The following de
scription is also applicable to the source listing with the SCR
option requested.

SCR - T~e compiler-generated source cross reference
number used to identify each source statement
and referenced in the local source cross refer
ence . (1 07 - 1 1 2)

LIB - Identical to the SID and CR characters on the
source mnemonic 1 ist ing option. (114-.119 j

0-29

flU) CM2Y-MAN-PGR-M5049-R04CO

0.2.4 Local Address Cross Reference Listing (CR,CRL)

See Figure 0-06 for an example of a local address cross refer
ence.

The major page header information contains the system element
number, the element name, and the element type (SYS-OO or SYS
PROC). It also contains the date, the page number, and the
title: Local Cross Reference.

Names defined or used within the specified system element are
listed alphabetically, along with the address where allocated and
addresses of all local references.

The. column headings for local cross reference are defined in the
following paragraphs. The values in parentheses following each
definition indicate the columns on the listing where the informa
tion appears.

AC - The address counter value (in octal) associated with
the allocation of the data unit listed in the LABEL
column. (1-2)

S - The base register value (in octal) associated with the
~llocation of the data unit listed in the LABEL col
umn. (4)

LOC - The location (in octal) allocated to the data unit
listed in the LABEL column. A location of all sevens
denotes an allocation error. (6-10)

Note: The AC S LOC combination comprises the referenceable ad
dress referred to here as the allocated or defining address in
the source or source mnemonic listing outputs. For a further de
scription, see paragraphs 0.1.2 and 0.2.3.

If the name listed under the LABEL column is not allocated
locally, the defining address will be zeros and an R or Twill
appear in the EXT column.

LABEL - This column contains an alphabetical list of
programmer-assigned names which have been de
fined or used in the current system element
designated in the page header. Compiler
generated instruction words are listed at the
end. Asterisks in this column indicate an al-
location error in referencing an identifier.
(12-19)

0-30

o
I

W

1 1
1 2 3 4 5 6 7 8 9 0 1 1

123456789012345678901234567890123456789012345678901234567890123456789012345678901234~6789012345678901234567890123456789

.- ._-------------
fl.EMfNT ddd leececcc SYS-Illl lOCAL CROSS REFERENCE mm/drt/yy PM.F ctd(tdrt

AC sloe lABEL E Xl
no 0 OOOO() lecceeee

REFERENCES
00 0 00000 00 0 00000 00 0 00000 00 0 00000 00 0 OOOO() 00 0 OOOOf)

[OR] [OR]

•••••••• NONE

[OR]

GIWooooo+o

1
1 234 567 8 9 0 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

+--- - ------------ ---------------- ... - ----------+
I LEGEND I

1 ______ ----------------------+-------- ______ 1
: d = DECIMAL DIGIT I m = MONTH I

o OCTAL DIGIT d DAY
: c ALPHANUMERIC CHARACTER I Y YEAR I
I 1 ALPHA CHARACTER I I

+---+ Figure 0-06. An Example of a Local Addr-ess Cross Refer'ence Listing.

c

(")

:s:

'" -<
I

:s:
1>
Z

I
-0
G>
;0 ,
:s:
U1
o
~
<D

I
;0

o
~
(")
o

/(U) CM2Y-MAN-PGR-M5049-R04CO

EXT - External specification
D = EXTDEF (defined in this element)
R = EXTREF (referenced in this element)
T = TRANSREF (defined in another system ele

ment which cannot be assigned a perma
nent base register)

A 0, R, or T indicates the name has global
scope. (2 1 -23)

REFERENCES - A list of octal addresses within the current
system element designated in the page header,
that shows the location of each reference to
the name in the label column. The word NONE
appears if there were no references to the
name. The references are given in order of oc
currence in the same format (AC S LOC) as the
defining address of the label. When the number
of references exceeds six, the remainder are
printed on succeeding 1 ines. (28-117)

There are some instances which will cause the local address cross
reference listihg to be incomplete, in which case the appropriate
error me,ssa.ge wi 11 appear .and cross referenc i ng for the current
element will terminate. For further description of the cross
reference error messages, see paragraph A.4.

0-32

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.2.5 Local Source Cross Reference Listing (SCR, SCRL)

See Figure 0-07 for an example of a local source cross reference.

The major page header information contains the system element
number, the element name, and the element type (SYS-OD or SYS~
PROC). It also contains the date, the page number, and the
title: Local Source Cross Reference.

Names defined or used within the specified system element are
listed alphabetically with a source statement location of the
definition and all local references included for each.

The column headings for local source cross reference are defined
in the following paragraphs. The values in parentheses following
each definition indicate the columns Qn the listing where the in-
formation appears.

SYMBOL

TYPE

DEFINED

- Any programmer-assigned name which has been de
fined or used in the current system element
designated in the page header. AsteriSKS in
this column indicate an invalid pOinter was en
countered during cross reference compi lation.
Fields and local index names are indented two
spaces under the table, subtable, liKe-table,
item-area, or procedure in which they are de
fined 0 r used. (1 -8)

The type assigned to the name in the symbol
column. In addition to all addressable local
names, this list may contain the following
names: fields, cswitch flags, local index
names, system index names, means and exchange
string names, ntag, ltag and rtag names, header
names, system element names, local data block
names, system names, pooling names, and form
labels. If the compiler encounters an invalid
class or an undefined identifier, a line of
eight asterisKs will appear in the type column.
If option MODEVRBL is requested, the type
MODEVRBL will appear for implicitly defined
names and undefined identifiers. (12-23)

- Numeric values appearing in this column refer
to the compiler-generated statement number as
signed to the source text line on which the
symbol is defined. If the name is not defined
locally (i .e., within the current system ele-
ment), one of the following will appear:
(25-35)

0-33

o
I

W
.t:::.

- .- --- .--.- -- -
1 1

1 234 5 6 7 8 9 0 1 1
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

ELEMENT ddd Iccccccc

SYMBOL
lccccccc

(OR)

• • • + ••••

TYPE DEFINED
1 , , , I I I 1 11 1 ddddd

(OR) (OR)

•••••••• HEADER

[OR)

EXTRNL

(OR)

SYS-IIII

REFERENCES
ddddd ddddd

(OR) (ORI

ddddd+ ddddd·

(OR)

NONE

Iccccccc(C)

(OR.]

DUPDEF

LOCAL SOURCE CROSS REFERENCE mm/dd/yy PAGE ddddd

ddddd ddddd ddddd ddddd ddc;tdd ddddd ddddd ddddd

(OR) IORI lOR) lOR) fORI (oRI fORI fORI

ddddd+ ddddd. ddddd. ddddd· ddddd+ ddddd+ ddddd+ ddddd.

1
23456 7 8 9 0 1 1

12345618901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

f --+
I LEGEND '
' ______ ----------------------+-------- ______ ' I d DECIMAL DIGIT m MONTH I

o OCTAL DIGIT d DAY
: c ALPHANUMERIC CHARACTER y = YEAR I
, I = ALPHA CHARACTER I ,

+ - -!J;I- + Ftgure 0-07. An Example of a l.ocal Sou,"ce C"oss Refe"ence lIsting.

c:

HEADER

EXTRNL

I(U) CM2Y-MAN-PGR-M5049-R04CO

Defined in the system's major
header.

Defined in another system ele
ment within this compile.
(Note: A global source cross
reference listing can provide
the name of the defining ele
ment.)

(Poolname) (C) - The name of the compool in
which this symbol was defined.
The (C) indicates this symbol
was defined in a compool.

DUPDEF Symbol name is a duplicate
identifier.

Note: Compiler-generated statement numbers are assigned in con
secutive numeric order, beginning with one, for the major header
and each system element and appear in the SCR column of source
and source mnemonic output listings, along with the associated
program text line. These statement numbers are also used in the
local source cross reference for listing references to the sym-
bol.

REFERENCES - A list of the compiler-generated source cross
reference line numbers (see note from preceding
paragraph) corresponding to the source state
ments in which the symbol name has been refer
enced. If there ;s more than one reference per
source line, each reference will be indicated.
A reference followed by an asterisk indicates
the value of the referenced symbol has been
modified. If there are more than ten refer
ences to a symbol, the remaining references are
printed on succeeding lines. If there are no
references to the symbol name in the current
system element, the word NONE will appear.
(35-115)

There are some instances (for example, an undersized symbol ta
ble) which will cause the local source cross reference listing to
be incomplete, in which case the appropriate error message will
appear and source cross referencing for the current element will
terminate. For further description of the cross reference error
messages, see paragraph A.4.

0-35

I(U) CM2Y-MAN-PGR-MS049-R04CO

D.2.6 Global Address Cross Reference (CR, CRG)

See Figure D-08 for an example of a global address cross refer
ence.

The page header information contains the system name, the date,
the page number, and the title: Global Cross Reference.

For each addressable global name, the defining system element and
each system element which contains a reference to the name is
1 is ted.

The· column headings for global cross reference are defiNed
in the following paragraphs. The values in parentheses following
each definition indicate the columns on the listing where the in-
formation appears.

EXT

LABEL

DEFINED IN

- This column will remain blank if the item in
the LABEL column is defined within the
compile-time system. It will contain an R
if the symbol definition is external to the
compile-time system. (7-9)

- An alphabetical listing of addressable glo
ba 1 names. (12 - 1 9)

- The name of the system element (Header, SYS-
PROC name, or SYS-OD name) in which the
1 abe 1 i sal 1 oca ted. I f all oca t ion i s wit h i n
a compoo1 element, the compoo1 name is given
wit h (C) tot he r i gh t . (23 - 33)

REFERENCED BY - An alphabetical list of the elements which
reference' the 1 abe 1 name. I f there are more
than seven elements listed, the remaining
are printed on succeeding lines. If there
are no references to the label name, the
word NONE appears. (36-115)

The global address cross reference will not .be generated when a
global source cross reference is concurrently requested. In ad
dition, certain error conditions could cause an incomplete cross
reference and generation of an error message. For further de
scription of the cross reference error messages, see paragraph
A.4.

D-36

o
I

W
-.J

1 1"
1 2. 3 4 5 6 7 8 9 0 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

SYSTEM lccccccc GLOBAL-CROSS REFERENCE mm/dd/yy PAGE ddddd

EXT LABEL DEFINED IN REFERENCED BY
lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc

IORI (OR) (OR]

R HEADER NONE

(OR1

lccccccc(C)

1 1
1 234 567 890 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

+ -:.. - - - - - - - - - - - - - - - - - --+
I LEGEND I

. - - - - .. - - - - - - - - - - - - - - - - - -. -. - - - - - - . _. . - - -I d DECIMAL DIGIT II m = MONTH I
o OCTAL DIGIT d DAY I c ALPHANUMERIC CHARACTER I Y YEAR I

,1 ALPHA CHARACTER, I

+---+ Figure 0-08. An Example of 8 Global Address Cross Reference listing.

c:

(")

3:

'" -<
I

3:
l>
Z

I
"U
G>
;0

I

3:
U1
o
~
<D

I
;0

o
~
(")
o

/ (U) CM2y~'MAN"PGR "M5049-R04CO

0.2.7 Global Source Cross Reference (SCR, SCRG)

See Figure 0-09 for an example of a global source cross refer
ence.

The major page header information contains the system name, the
date, the page number, and the title: Global Source Cross Refer
ence.

Global names defined or used in the system bloCK are listed al
phabetically, indicating also the name of the defining system el
ement. In addition to all addressable global names, this list
may. contain the following names: fields, cswitch flags, system
index names, means and exchange string names, ntag, ltag and rtag
names, header names, system element names, local data bloCK
names, system names, and pooling names. Associated with each
name is a list of system elements which reference the name. The
system elements which modify the name are indicated by a trailing
asterisk.

The column headings for global source cross reference are defined
in the following paragraphs. The values in parentheses following
each definitiontjndicate the columns on the listing where the in
forma t-i on appeil·r.,:~.

EXT

LABEL

DEFINED IN

This column will remai·n blank if the item in
the LABEL column is defined within the
compile-time system. It will contain an R
if the symbol is defined in another compile
time system. (7-9)

- An alphabetical list of qualifying global
names defined or used within the system
block. Fields are indented and listed
alpabetically under the associated tables,
subtables, like-tables, or item-areas in
which they are defined or used. (12-19)

- The system element name (or compool name
followed by a (C)) which contains the defi
nitionof the item in the label column. If
the definition occurred in the header then
HEADER appears. EXTRNL is printed when the
name is EXTREFed. If there is an allocation
error, the label will not be included in the
cross reference. ~ Note: allocation errors
are inc 1 uded in the s(!)urce, sourc'e mhemon i c,
and compile summary outputs. (23-33)

D-38

CJ
I

W
<.D

1
1 2 3 4 5 6 7 8 9 0 , ,

12345678901234567890123456789012345678901234567890123456789012345618901234567890123456789012345678901234567890'23456789

SYSTEM lccccccc GLOBAL SOURCE CROSS REFERENCE mm/dd/yy PAGE ddddd

EXT LABEL
lccccccc

DEFINED IN
lccccccc

REfERENCED BY
lccccccc lccccccc lccccccc lccccccc lccccccc lccccccc

[OR] [OR) [OR) [OR) , (OR] (OR) [OR) (OR)

R lccccccc(C) lccccccc. lccccccc· lccccccc· lccccccc· lccccccc· lccccccc·

[OR] [OR]

HEADER NONE

[OR] [OR]

EXTRNL END-SYSTEM

1
1 234 5 6 7 890 1 1

12345678901234567890123456789012345678901234567890123456189012345618901234561890123456189012345618901234561890123456789

+---+
i _ .. . _ . ______ .. ___ l ~ ~~~~ ___ • ___ .. __________ ,

: d DECIMAL DIGIT ; m = MONTH I
I 0 = OCTAL DIGIT d DAY
I c ALPHANUMERIC CHARACTER I Y YEAR I
I 1 ALPHA CHARACTER I I

~---+ Figure 0-09. An Example of a Global Source Cross Reference listing.

c

(')

3:
I\.l
-<

I

:s:
»
z

I
-0
G>
::0

I

3:
Ul
o
.t::a
(.!)

I

::0
o
.t::a
(')
C>

/(U) CM2Y-MAN-PGR-M5049-R04CO

~EFERENCED BY - A list of the system element names in which
the name has been referenced. A reference
followed by an asterisk indicates the value
associated with the name has been modified.
If there are more than six references to a
name, the .remaining references are printed
on succeeding lines. Referencing element
names appear in order of occurrence within
the system block. The system name which
will appear in the LABEL column will show a
reference at END-SYSTEM. If there are no
references to the name, the word NONE will
appear.· (36-104)

If an error is encountered during processing, it may result in
either incomplete or no global source cross reference output.
For further description of the cross reference error messages,
see paragraph A.4.

0-40

flU) CM2Y-MAN-PGR-M5049-R04CO

0.2.8 Compile Summary

See Figure 0-10 for an example of a compi 1e summary.

The major page header contains the element type (System), the
system name, the date, the page number, and the title: Compile
Summary.

The minor page headers are defined below. The values in paren
theses following each definition indicate the columns on the
l~sting where the information appears.

ELEMENT NUMBER

ELEMENT NAME

SYNTAX/OBJECT
ERRORS

- Element number to which the summary
app 1 1 es . (2 - 15)

- Name of the element to which the summary
app 1 i e s . (22 - 3 3)

- The number of
errors flagged
(40-59)

syntax and/or object
in a specified element.

ALLOCATION ERRORS - The number of allocation errors flagged
in a specified element. (66-82)

TOTAL ERRORS - The amount of syntax/object plus alloca
tion errors iri a specified element.
(92-103)

0-41

------- -- --- -----_._--- -.---
1 1

1 2 3 4 5 6 7 8 9 0 1 1
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

SYSTEM (System Name) COMPIlE SUMMARY

............

mm/dd/yy PAGE ddddd c:

ELEMENT NUMBER
ddd

ELEMENT NAME
lccccccc

SYNTAX/OBJECT ERRORS
dddd

ALLOCATION ERRORS
dddd

TOTAL ERRORS
dddd

1
1 2 34. 5 6 7 890 1 1

1234567890 t 234567890 t 234567890 1234567890 f.2345iS7-890 1234"567890 t 231t567890 1'234567·'8g()-1 23'4\561890'tc23~:S67890 1234'5678'90 123456789

: ~ :
lEGENO

LABEL = HIGH.,.lEV£l (CMS-2) LA8El.
Label = lOW-lEVEL (Ol~£CT CODE) lABEL:

HIGH-lEVEL (CMS-2J lAt!tEl PlA.c£D BY
COMPI·lER IN RELATION TO DIRECT CODE
OR SOURCE MNEMONIC STA1,fMENTS.

: ... :
d = DECIMAL DIGIT h • HOUR

: 0 = OCTAL DIGIT m • MIHUT,E
: c z ALPHANUMERIC CHARACTER : s • SECOND
: I = ALPHA CHARACTER

m • MONTH
d • DAY
Y = YEAR

:: :.:::::::: Figure D-tO. An Example of a Comp.le Summary.

()
3:
I')

-<
I

3:
l>
Z

I
'"'0
G)
;0

t

3:
U1
o
J:::a
<.0

I
::::0
o
~
()
o

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.3 System Listings

0.3.1 SHARE/7 System Summary

See F'igure 0-11 for an example of a SHARE/7 system summary.

The major page header contains the date and page number.

The minor page headers are defined below. The values in paren
theses ~ollowing each definition indicate the columns on the
listings where the information appears.

SYMBOL TABLE USAGE - Description of symbol table usage, 'set
off by asterisKs, listing the number of
words available, the number of words
used and the percent of available words
used. (1 - 119)

COMPILER REVISION - The compiler used for this particular
F I L E comp i 1 e . (1 - 50)

MONIT/CODIR FILE .- '''~ -". '.'-. ,

JOB END TIME

- Name of file containing the compiler
director and monitor interface. (54-98)

- Time the job run started:
(1-50)

hhmm:ss.

- Time the job run ended: hhmm:ss (54-98)

ELAPSED REAL TIME - Amount of real time required for the
job: hhmm:ss (1-50)

ELAPSED COMPUTE
TIME

SYSTEM 10

- Amount of computer time required for
the job: hhmm:ss (54-98)

- Revision number, comp i ler, date:
mm/dd/yy. (1-50)

0-43

1
1 234 561 890 1 I

12345618901234561890123456189012345618901234567890123456189012345618901234561890123456189012345618901234567890123456789

mm/dd/yy PAGE ddddd c:

•• •••••••••••••••••••••••• 1 ••••••••••••••••••••••••••••• ••• tt.t ••••

SYMBOL TABLE USAGE - ddddd WORDS AVAILABLE ddddd WORDS USED ddd PERCENT USED

•••

COMPILER REVISION FILE: lccccccccccc(lccccccccccc) MONIT/CODIR FILE: lccccccccccc(lccccccccccc)

JOB START TIME: hhmm:ss JOB END TIME: hhmm:ss

ELAPSED REAL TIME: hh HRS. mm MINS. 55 SECS ELAPSED COMPUTE TIME: hh HRS. mm MINS. 5S SECS

SYSTEM 10: REV dd - cccll mm/dd/yy

1
1 234 5 6 1 890 I 1

12345618901234567890123456189012345678901234561890123456789012345678901234561890123456189012345678901234561890123456189

:: :
LEGEND

: ~ .. :
LABEL HIGH-LEVEL (CMS-2) LABEL.
Label = LOW-LEVEL (DIRECT CODE) LABEL;

HIGH-lEVEL (CMS-2) LABEL PLACED BY
COMPILER IN RELATION TO DIRECT CODE
OR SOURCE MNEMONIC STATEMENTS .

.. ..

d
o
c
1

DEC I MAL 01 GIT
OCTAL DIGIT
ALPHANUMERIC CHARACTER
ALPHA CHARACTER

h
m
5

HOUR
MINUTE
SECOND

m
d

Y

MONTH
DAY
YEAR

:::::::::::::::::::::::;:::::::::::::::::::::::::::::::::: : Figure 0-11. An Example of a SHARE/1 System Summary.

\)

3:
I\.)

-< -,
3:
:t>
Z ,
'"'0
G>
:::0 ,
3:
U1
C>
~
<D ,
:::0
C>
~
\)
o

/

/(U) CM2Y-MAN-PGR-M5049-R04CO

0.3.2 Batch System Summary

See Figure D-12 for an example of a batch system summary.

The major page header contains the date and page number.

The key word output is defined below:

SYMBOL TABLE USAGE - Description of symbol table usage, set
off by asterisks, listing the number of
words available, the number of words
used, and the percent of ava; lable
words used. (1-119) .

0-45

CJ
I

~
en

---1---------------------
1 2 3 456 7 8 9 0 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

mm/dd/yy PAGE ddddd c:

•••
SYMBOL TABLE USAGE - ddddd WORDS AVAILABLE ddddd WORDS USED ddd PERCENT USED

•••

1
1 2 3 4 5 6 7 890 1 1

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

..

LEGEND
. :

LABEL
Label =

HIGH-LEVEL (CMS~2) LABEL.
LOW-LEVEL (DIRECT CODE) LABEL;
HIGH-LEVEL (CMS-2) LABEL PLACED BY
COMPILER IN RELATION TO DIRECT CODE
OR SOURCE MNEMONIC STATEMENTS.

. . ..
d DECIMAL DIGIT
o OCTAL DIGIT
c = ALPHANUMERIC CHARACTER
1 ALPHA CHARACTER

h
m
s

HOUR
MINUTE
SECOND

m
d

Y

MONTH
DAY
YEAR

: ~ : : : : : : : : : : : : Figure 0-12. An Example of a Batch System Summary.

/(U) CM2Y-MAN-PGR-M5049-R04CO

APPENDIX E

FORMAT OF THE SYMBOL ANALYSIS DUMP

When C=TIONS OBJECT(SADUMP) is specified in the batch environ
ment, symbol analysis information is output to the object file
for the major header and each element of the compilation. The
symbor analysis information for each of these is a separate
subfile of the object file. These subfi les are distinguished by
their header records. The order of subfiles within the object
file is not specified. There is no separate subfi1e for minor
headers: minor header i nforma t ion is conta i ned in the subf i 1e 'for
the associated element.

In the Share/7 environment, this information is obtained by the
CMS-2Y program's command SADUMP«filename». The symbol analysis
subfiles are created in the specified file. This file contains
only symbol analysis information.

The header record is 30 AN/UYK-7 words long. Only the first four
words are used at present. They contain

Word 0
Words-- 1-2
Word 3

*Abb
Element Name
Target Computer Designation:

1 => UYK-7
2 => UYK-43
3 => reserved
4 => reserved
5 => reserved
6 => reserved
7 => not used
8 => not used
9 => reserved

10 => reserved

The remainder of the subfile is in ISCM format, containing 30-
word ISCM items. Each ISCM item contains one or more SA records.··
An ISCM item might be only partly filled with SA records, in
which case end-of-item is marKed. There is no explicit end-of
item marK if the item is filled with SA records. SA records have
various lengths; the lengths are implicit in the contents of the
records.

In the descriptions of SA records given below, certain order re
lations are specified. In a subfile corresponding to the major
header c~ a system data blocK, these are the only order relations
that are meaningful. In a subfile corresponding to a system pro
cedure :~ere is one more order relation: All SA records for data
local t~ the system procedure (declared in local data blocks or

E-1

/(U) CM2Y-MAN-PGR-M5049-R04CO

automatic data blocks) are output before the first subprogram
(procedure or function) SA record; SA records immediately follow
ing a subprogram record are for data local to that subprogram
(declared in a subprogram data blocK).

The first three words of all SA records are identical. The name
of the entity is in words 1 and 2. - Word 0 is a control word that
contains a number of fields:

Field .lYQ§ Position Meaning

SACLAS I 5 U 31-27 See below

GLOBFL B 26 => Name has global scope

ALLOCFL B 25 => En t i ty i sal 1 oc a ted to memory

AC I 5 U 20-16 AC number for entity

OFFSET I 16 U 15-0 Offset from beginning of AC for enti-
ty.

ELTTYP 1 2 U 26-25 Element type: 0 => System data block
1 => System procedure
2 => Major header

LPOOLFL B 24 => Local da ta poo 1i ng in effect

REN B 21 => Reentrant system procedure

MAJXFL B 24 => Major index is specified

VLTFL B 23 => Variable-length table

PSGTYP I 2 U 24-23 Passage type: 0 => Direct passage
1 => Register passage
2 => Register, ca 11 i ng

only

PACKING I 3 U 24-22 Type packing: 0 => NONE
1 => MEDIUM
2 => DENSE
5 => Words per ; tern

specified
7 => Item-typed

PARFL B 26 1 => Parameter variable

REGNO I 4 U 3-0 Register number

DATFL B 24 => Data 1 abe 1 , o => Code label

E-2

DCFL

RADIX

STWORD

B

I 8 S

1 8 U

23

7-0

7-0

/(U) CM2Y-MAN-PGR-M5049-R04CO

1 => Direct code label

Radix

Starting word number

(A data label (see DATFL) is a name defined in direct code within
a da tab lock.)

Only field SACLAS is present in all records. SACLAS = 0 denotes
end-of-item for ISCM items that are partly filled. The other
values of SACLAS and the associated fields for each are:

1. Element type: ELTTYP, LPOOLFL, REN

2. Type: GLOBFL, ALLOCFL (= 0), PACKING

3. Field: STWORD

4. Table or Array: AC, OFFSET, GLOBFL, ALLOCFL, MAJXFL,
VLTFL

5. I tem-ar,~a: AC, OF F SET, GLOBF L, ALLOCF L
,>'",",'

6. LiKe-table: AC f , OFFSET, GLOBFL, ALLOCFL, MAJXFL, VLTFL

7. Subtable: AC, OFFSET, GLOBFL, ALLOCFL, MAJXFL, VLTFL

8. Variable: AC, OFFSET, GLOBFL, ALLOCFL

9. Function: AC, OFFSET, GLOBFL, ALLOCFL, PSGTYP

10. Procedure: AC, OFFSET, GLOBFL, ALLOCFL, PSGTYP

11. Executive Procedure: AC, OFFSET, GLOBFL, ALLOCFL,
PSGTYP

12. Formal Input Parameter: PARFL, REGNO

13. Formal Output Parameter: PARFL, REGNO

14. Formal Exit Parameter: None

15. Index: G~OBFL, REGNO

16. Switch: G~OBFL, ALLOCFL, AC, OFFSET

17. Label: GLOBFL, ALLOCFL, AC, OFFSET, DATFL, DCFL

1 8 . Nt ag : R AD I X

E-3

I
I

/(U) CM2Y-MAN-PGR-M5049-R04CO

19. Load-Time Constant: None

20-31. Unused

Several of the classes make use of a common type control word.
Its f;elds are:

Field ~ Position Meaning

TYPE I 4 U 31-28 Data type (see below)

NBITS I 7 U 27-21 Number of bits

NCHARS I 8 U 27-20 Number of characters

NVALS I 15 U 27-13 Number of status values

NFRCBITS I 8 S 20-13 Number of fractional bi ts

STBIT I 5 U 12-8 Starting bit number

ASIZE I 8 U 7-0 .~ lloca ted size, in characters for
character data, in bits for all other
types.

Only fields TYPE and ASIZE are present in all cases. The meaning
of the values of TYPE and the other associated fields for those
values are:

! - I-type, unsigned: NBITS, STBIT

2 - I-type, signed: NBITS, STBIT

3 - A-type, unsigned: NBITS, STBIT, NFRCBITS

4 - A-type, signed: NBITS, STBIT, NFRCBITS

5 - Boolean: NBI TS, STBIT
,... - Character: NCHARS, STBIT "" v

2 - U Y K - 7 flo a tin g -po i n t : N BIT S (= 64), S T BIT (= 3 1)

9 - UYK-43 single-precision floating point: NBITS (= 32),
STBIT (= 31)

10 - UYK-43 double-precision floating point: NBITS (= 64),
STBIT (= 31)

15 - Status: NVALS, STBIT

E-4

/(U) CM2Y-MAN-PGR-M5049-R04CO

The amount of additional information depends on the type of enti
ty:

Element Type (SACLAS = 1) - Records are three or five words long.
Words 3-4 are present only if LPOOLFL is on, in which case they
contair. the pooling name. If no name is on the pooling direc
tive. the default name is given.

Type (SACLAS = 2) - Records are three words long unless the value
of PACKING is 7, in which case records are four words long and
word 3 contains a type control word.

Type records ·are immediately followed by the type's field re
cords, if any, then by all tables and structured variables that
are of the type. Structured variables are output as item-areas.

Type records appear in the SADUMP file solely to assist in speci
fying the attributes of the program's other data. As a result,
they have several unusual properties: Not all declared types are
output; a purely simple type that is not used to declare a table
will not be output. A type might appear in the SADUMP fi le more
than once (e.g., if it is used to declare tables in two different
scopes.! Finally, some types that appear in the SADUMP file have
not been declared by the user; they have been generated by the
compiler to simplify the structure of the SADUMP file. These
types (called anonymous types) have names that begin with the
charac ter '@ I •

Fields (SACLAS = 3) - Records are four words long. Word 3 con~
tains a type control word. STWORD is meaningful.

Tables and Arrays (SACLAS = 4) - Records are a variable number of
words long. Words 3 and 4 are always present:

Field ~ Word Position Meaning

HFLG B 3 31 => Horizontal table

INDFLG B 3 30 => Indirect table

NDIMS I 3 U 3 2-0 Number of dimensions

WDSITM I 16 U 4 31-16 Number of words per item

NITEMS I 16 U 4 15-0 Number of items

Following word 4 is variable information in the following order:
dimensions (arrays only), and major index (if MAJXFL = 1). If
any of :his variable information is not applicable it does not
aDpear and the following information, if any, is moved up in the
record.

E-5

/(U) CM2Y-MAN-PGR-M5049-R04CO

For an array of rank greater than 1, the dimension information
consists of one wo~d for each dimension, with the size of that
dimension in bits 15-0, typed I 16 U. For a table with VLTFL =
1, the dimension information consists of two words containing the
name of the 1tao.

The name of the major index occupies two words if MAJXFL = 1.

Note that no distinction is made between a vertical table and an
array of rank 1.

Table records are immediately followed by
table, subtable, and item-area records.
for these associated records.

all associated like
No order is guaranteed

Item-areas (SACLAS = 5) - Records are three words long.

Item-area records are used for both classical item-areas and
structured variables, which have the same functionality. If it
is desired to distinguish between them, the record for classical
item-areas will follow the record of its parent table without any
intervening tYRerecord while the record for a structured varia-

I' b 1 e wi 11 follow tf;;ler~90rd of i ts type wi thou t any intervening
tab 1 e r eoor d . :;';

Like-tables (SACtAS =6) and' subtables (SACLAS = 7) - Records
are a variable number of words long. Words 0-2 are followed ei
ther by one word containing the dimension (if VLTFL = 0) or by
two words containing the name of the ltag (if VLTFL = 1). This
information is optionally followed by two words containing the
major index name (if MAJXFL = 1). Notice that OFFSET, WDSITM,
and HFLG can be used to calculate the starting item number of a
subtable.

Variables (SACLAS = 8) - Records are four words long.
contains a type control word.

Word 3

If a variable is declared using the name of a simple, non
structure(j, type, it wi 11 appear in the SADUMP file as a var ia
ble, rather than as an item-area following its type record.

Function (SACLAS = 9) - Records are four words long. Word 3 con
tains a type control word for the type of the function. ST8IT
and STWORD are not used.

Function records are immediately followed by all associated for
mal input parameter records in their declaration order. These
are then followed by records for all data local to the function
(local-indexes and data declared in a subprogram data block).

E-6

/(U) CM2Y-MAN-PGR-M5049-R04CO

Proceaures (SACLAS = 10) and Executive Procedures (SACLAS = 11) -
Records are three words long.

Procedure records are immediately followed by all associated for
mal input parameter, formal output parameter, and exit parameter
records in that order. Within each class the records appear in
their declaration order. These "are then followed by records for
all data local to the procedure (local-indexes and data declared
in a subprogram data block).

Formal Input Parameters (SACLAS = 12), Formal Output Parameters
(SACLAS = 13), and Exits (SACLAS = 14) - Records are three words
long.

Indexes (SACLAS = 15) - Records are three words long. GLOBFL is
o~ for a system index, off for a local index. For a local index,
REGNO = 0 implies that no register was available and the index
has been allocated to memory.

Switches (SACLAS = 16) - Records are four words long for indexed
switches, six words long for item sw"itches. Word 3 contains the
fo llow; ng:

Field

NSWPTS

ITMFLG

PSWFLG

~

I 8 U

B

B

Position Meaning

7-0 Number of switch points

31 => Item switch

30 => Procedure switch

For item switches (ITMFLG = 1), words 4 and 5 contain the name of
the switch variable.

The records for procedure switches are immediately followed by
all associated formal input and output parameter records, in dec
laration order.

Labels (SACLAS = 17) - Records are three words long.

Ntags (SACLAS = 18) - Records are five words long. Words 0-2 are
followed by the signed value of the ntag, which is 64 bits. The
value of RADIX is the position of the implied radix point. Note
that this position can lie outside the bits of the value.

Load-Time Constants (SACLAS = 19) - Records are six words long.
Word 3 contains a type control word. Word 3 is followed by the
signed compile-time value of the ltag, which is 64 bits.

E-7/(E-8 Blank)

/(U) CM2Y-MAN-PGR-M5049-R04CO

INDEX OF SYNTAX SYM80LS

Symbol

<decimal integer>

<C1>

<V1>

<1832 operation code>

<AN/UYK-43 operation code>

<AN/UYK-7 operation code>

<8AM>

<ISFP>

<RAD>
"-

<abnormal branch>

<abs d i rec t i ve>

<abs function reference>

<abscissa>

<action clause>

<actual exit parameter>

<actual input parameter>

<actual i/o parameters>

<actual output parameter>

<actual procedure parameters>

<additive operator>

Page No.

B-17

8-38, 8-38*

8-38, 8-38*

8-5, 8-12*

8-5, 8-8*

8-5, 8-5*, 8-8

B-17

8-16

B-17

6-22, 6-22*

8-35, 8-36*

5-17, 5-18*

5-22, 5-22, 5-22*, 6-34,
6-34, 6-34

6-116,6-116*

6-29, 6-29*

5-15, 5-15*, 6-29

6-29, 6-29*, 6-38, 6-~1

6-29, 6-29*

6-29, 6-29*

4-68, 4-68*, 4-6?, 4-68,
B-25, B-32

<address counter separation declaration>
9-3, 9-35*

* Non-terminal symbol defined on this page.

X-1

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<add~ess declaration>

<address offset>

<address specification>

<addressable direct code statement>

<addressable name>

<addressable unit>

<allocatable name>

<allocation information>

<allocation modifier>

<alphanumeric character>

<alphanumeri~ name>

<a 1 terna t i ve>

<alternative statement>

<angle>

<angle scaling>

<angular measurement>

<array block>

<array declaration>

<array information>

<assignment phrase>

<atag expression>

<automatic data block>

<automatic data declaration>

Page No.

4-75*, 7-8, 8-2, 8-8

8-25, 8-25, 8-25*

9 - 31 , 9-31*

8-27, 8-30*

4-20, 4-20*, 4-60, 4-68,
4-68, 4-68, 4-68

5-19, 5-19*

4-75, 4-75*

9- 31 , 9-31*

4-2, 4-2*

3-7, 3-7*, 9-39

9-39, 9-39*,

6-105*

6-105

5-22, 5-22,

8-17, 8-17,

8-16, 8-17*

4-56*, 7-8,

4-56, 4-56*
'.

4-56, 4-56*

6-4, 6-5*

4-68, 4-68*,
4-75

8-4, 8-8*

8-8, 8-8*

9-48

5-22*

8-17*

8-2, 8-8

4-68, 4-68,

* Non-terminal symbol defined on this page.

X-2

/ (U) CM2Y-MAN-PGR-M5049-R04CO

S:imbo 1 Page No.

<automatic data sentence> 8-8, 8-8*

<b 1 > B-37, B-37*

<b2> B-37, B-37*

<base register specification> 9 - 31 , 9-31*

<basic angle> B-17, 8-17, 8-17*

<begin block> 6-93, 6-94*

<begin block body> 6-94, 6-94*

<begin block head> 6-94, 6-94*

<b i t length> 4-8, 4-8, 4-8*

<b i t modified data unit> 5-9, 5-10*, 5-49

<b i t string complement funct ion reference>
5-33, 5-33*

<b i t string difference function reference>
5-'33, 5-33*

<bi t string expression> 5-48, 5-79*, 5-79, 5-79,
5-79

<b i t string factor> 5-79, 5-79, 5-79*

<b i t string func t ; on reference> 5- 21 , 5-33*

<b it string length> 5-10, 5-10*, 6-5

<b i t string operand 1 > 5-33, 5-33, 5-33, 5-33,
5-33*

<b i t string operand 2> 5-33, 5-33, 5-33, 5-33*

<b i t string primary> 5-79, 5-79, 5-79*

<b it string product funct ion reference>
5-33, 5-33*

<b i t string receptacle> 6-5, 6-5*

<b i t string start> 5-10, 5-10*, 6-5

* Non-terminal symbol defined on this page.

X-3

/(Ul CM2Y-MAN-PGR-M5049-R04CO

Symbq 1 P age No.

<bit string sum function reference> 5-33, 5-33.

<bit string term> 5-79, 5-79, 5-79, 5-79*,
5-79

<block name> 6-48, 6-50, 6-110, 6-110*

<boolean binary operator> 6-116, 6-116*

<boolean comparand> 5-69, 5-69, 5-69*

<boolean constant) 3-9, 3-16*, 4-20, 5-64, 5-69

<boolean expression> 5-48, 5-64*, 5-64, 5-64,
5-79,6-113,6-113,6-116

<boolean factor> 5-64, 5-64, 5-64*

<boo lean pr ima~¥~, 5-64, 5-64, 5-64*

<boolean relational expression> 5-64, 5-69*

<boolean term> 5-64, 5-64, 5-64*, 5-64

<boolean type specification> 4-7, 4-12*

<bottom test> 6-97, 6-97*

<bottom test clause> 6-96, 6-97*

<branch phrase>

<byte direct i ve)

<case block>

6-4, 6-20*

<case block head>

<case selector)

<case type>

<case value>

<change value>

<char direct i ve>

8-35,

6-93,

6-105,

6-105,

6-105,

6-105,

6-96,

8-35,

* Non-terminal symbol defined on this page.

X-4

8-37*

6-105*

6-105*

6-105*

6-105*

6-105*

6-96*

8-38*

Symbol

<character>

<character comparand>

<character constant>

<character expression>

<character length>

<character modified data unit>

<character primary>

<character relational expression>

<character string>

<character string length>

<character string receptacle>

<character string start>

<character type specification>

<checK label phrase>

<checkable reference>

<close phrase>

<cms-2 phrase>

<cnt function reference>

<comment>

<commen: character>

<commen: statement>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

3-2*, 3-6, 6-60, B-21 , B-27

5-71, 5 -71 , 5.;.71*

3-9, 3-17*, 4-20, 4-60,
4-108, 4-116, 5-77, 6-66

5-48, 5-71 ,
5-77, 5-79

4-13, 4-13*

5-9, 5-12*,

5-77, 5-77,

5-64, 5-71*

3-6*, 3-17,

5-12, 5-12*,

6-5, 6-5*

5-12, 5-12*,

4-7, 4-13*

6-4, 6-61*

5-74, 5-74*

6-4, 6-58*

3-19, 3-19*

5- 21 , 5-44*

5-77*,

5-77

5-77*

3-18

6-5

6-5

2-2, 2-2*, 2-4

2-2, 2-2*

2-2*

5-77,

<compi 1e-time constant declaration> 4-68*, 7-8, 8-2, 8-8. 8-10

<campi ler directive> 8-10, 9-24*

* Non-terminal symbol defined on this page.

X-5

j(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol Page No.

<compool name> 9-12, 9-12*, 9-44

<compool retrieval declaration> 9-3, 9-44*

<compool retrieval specification> 9-44, 9-44*

<compound section name> 9-31, 9-31*

<conditional compilation directive> 10-1*

<conditional expression> 5-64, 5-74*, 6-97, 6-97

<conditional i/o expression> 5-64, 5-76*

<conditional statement> 6-1, 6-112*

<conf function reference> 5-21, 5-38*

<constant> 3-9*, 4-91, 6-105

<constant mode> 4-5, 4-5*

<constant mode declaration> 4-5*, 8-10

<control clause> 6-96, 6-96*

<controlled expression> 5-36, 5-36*

<conversion source> 5-38, 5-38*

<convertin phrase> 6-4, 6-79*

<convertout phrase> 6-4, 6-82*

<corad function reference> 5-17, 5-19*

<core address receptacle> 4-79, 4-125, 6-5, 6-5*

<correction block header> 9-40, 9-40, 9-40, 9-40*

<cswitch delete declaration>

<cswitch flag>

<cswitch header statement>

10-1, 10-5*

10-2, 10-2*. 10-2, 10-4,
10-4

10-1, 10-2*

* Non-terminal symbol defined on this page.

X-6

Symbol

<cswitch selection declaration)

<cswitch terminal statement>

<data block name>

<data sentence>

<data unit>

<debug enabling declaration>

<debug parameter>

<decimal constant>

<decimal digit>

<decimal exponent>

<decimal integer>

<decimal mantissa>

<decimal number>

<declaration modifier>

<decode phrase>

<default type specification>

<define label phrase>

< de 1 i mit e r >

<dep element>

<dep specification>

<dependent element declaration>

I(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

10-1, 10-4*

10- 1 , 10-2*

7-8, 7-8, 8-2, 8-2*, 8-2,
8-6, 8-6, 8-8, 8-8

8-2, 8-2*, 8-6

4-125, 5-2*, 6-76,
6-87

4-129*, 9-3

4-129, 4-129*

3-10, 3- 11 *

3-11, 3- 11 *

3-11, 3-11 *

3 - 11 , 3 - 11 , 3 - 11 ,
3 - 11 , 3-11*, 8-16,
8-16, 8-16, 8-16,
8-16, B-16, 8-17,
8-37, 8-37

3 - 11 , 3 - 11 *

3 - 11 , 3 - 11 , 3 - 11 ,

4-2*, 4-79, 4-82,

6-4, 6-78*

6-84,

3- 1 1 ,
8-16,

8-16,
B- 17 ,

3-11 *

4-84

4-20*, 8-2, 8-8, 8-10

6-4, 6-60*

2-2, 3-2, 3-5*, 3-6

9- 51 , 9-51*

9-40, 9-40, 9-40*

8-10, 9-51*

* Non-terminal symbol defined on this page.

X-7

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<digit>

<direct code>

<direct code address expression>

<direct code address preset>

<direct code addressable name>

< d i r ec t code block> .

<direct code character constant>

<direct code character preset>

<direct code comment>

<direct code_constant>

<direct code data statement name>

<direct code decimal constant>

<direct code directive>

<direct code expression>

<direct code head>

<direct code instruction>

Page No.

2-2,3-2,3-4*,3-6,3-7,
3 - 11

3-19,3-19*

8-23, 8-25*, 8-32, 8-32

8-32, 8-32*

8-25, 8-25, 8-25*

3-19*, 7-8, 8-2

8-15, 8-21*, 8-22, 8-32,
8-38, 8-38

8-32, 8-32*

8-27, 8-27, 8-27*

8-15*, 8-39

8-28, 8-28*

8-16, 8-16*

8-27, 8-35*

8-23*. 8-31

3-19, 3-19*

8-30, 8-31*

<direct code instruction designators>
8-31

<direct code literal>

<direct code name>

<direct code numeric constant>

8-22*, 8-25

8-27, 8-28*, 8-36, 8-36,
8-39, 8-42

8-15, 8-16*, 8-22, 8-38,
8-38, 8-39, 8-40, 8-41, 8-42

<direct code numeric constant expression>
8-23, 8-24*, 8-32

* Non-terminal symbol defined on this page.

X-8

/ (U) CM2Y-MAN-PGR-M5049-R04CO

S~mbol Page No.

<direc: code numer ic preset> 8~32, 8-32*, 8-32

<direc: code octal constant> 8-16, 8-17*

<d i rec t code phrase> 3-19, 3-19*, 6-4

<direct code preset> 8-27, 8-30, 8-32*

<d i rec: code· program statement name>
8-28, 8-28*

<direct code scale factor> 8-16, 8-16, 8-16*, 6 - 17

<d i rec t code scope modifier> 8-28, 8-28*

<direct code statement> 3-19, 8-27*

<direct code statement name> 8-25, 8-25*

<direct long nUffier 'i c' cons tan t > , ' .. !:i ;, ~ ,,'. , ," . ·8-16, 8-17*, 8-32

<d i rec t short nUmeric constant> 8-16, 8-16*, 8-24, 8-24,
8-25, 8-25

<d i r ec t ion> 4-116, 4 - 116*

<display item> 6-84, 6-84*

(display phrase> 6-4, 6-84*

<do di rect ive> 8-35, 8-39*

<double label sw itch block> 4-86, 4-89* .

<double label sw itch declaration> 4-89, 4-89*

<double procedure, sw itch block> 4-93, 4-96*

<double procedure sw itch declaration>
4-96, 4-96*

<double procedure sw itch point> 4-96, 4-96*

<double s wit ~h po i n t > 4-89, 4-89*

<double-word numeric preset> 8-32, 8-32*

<e lemer,: form> 9-48, 9-48*

* Non-terminal symbol defined on this page.

X-g

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<element name>

<else clause>

<elsif clause>

<encode phrase>

Page No.

9-51,9-51*

6-105,6-105*,6-113,6-116

6-113,6-113*

6-4, 6-76*

<end double procedure switch declaration>

<end double switch declaration>

<end phrase>

<end-automatic-data declaration>"

<end-function declaration>

<end-header-declaration>

<end-local-data declaration>

<end-procedure declaration>

<end-procedure-switch declaration>

<end-subprogram-data declaration>

<end-switch declaration>

<end-system declaration>

<end-system-data declaration>

<end-system-procedure declaration>

<end-table declaration>

<end-trace phrase>

<endfi 1e phrase>

<executive call phrase>

<executive directive>

4-96, 4-96*

4-89, 4-89*

6-94, 6-96, 6-105, 6-105,
6 - 110*

8-8, 8-8*

7-5, 7-5*

8-10, 9-3, 9-3, 9-3*

8-6, 8-6*

7-3, 7-3*, 7-4

4-94, 4-94*, 4-98

7-8, 7-8*

4-87, 4-87*, 4-91

9-1,9-1*

8-2, 8-2*

8-4, 8-4*

4-32, 4-33*, 4-56

6-4, 6-91*

6-4, 6-59*

6-4, 6-52*

9-24, 9-29*

* Non-terminal symbol defined on this page.

X-10

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<execu:ive function>

<execu:ive input parameter>

<exec~:~ve procedure block>

<execu:~ve procedure declaration>

<exit onrase)

<exponent size>

<expression>

<extended field>

Page No.

6-52, 6-52*

6-52, 6-52*

7-2, 7-4*

4-82*, 7-4, 8-2, 8-8

6-4, 6-48*

4-116,4-116*

4-127,5-15,5-48*,6-5,
6-45

6-66, 6-66*, 6-66

<extended structured variable data unit>

<extenaed subscript>

<extenaed subscript data unit>

<extenaed table data unit)

<exterral-id>

<field jeclaration>

<fielc name>

<fiela ~verlay declaration>

<fiela overlay parent)

<field ~verlay sibling>

<field .· .. idth>

<fil ;_~ction reference>

6-66, 6-66*

6-66, 6-66*

6-66, 6-66*,

6-66, 6-66*

9-39, 9-39*

4-15, 4-39*

4-39, 4-39*,
4-131, 5-3,
6-66

4-15, 4-44*

4-44, 4-44*

4-44, 4-44*

6-74

4-44, 4-44,
5-3, 5-19, 6"';5,

4-108, 4-108, 4-108, 4-108,
4-108*, 4-116, 4-116, 4-116,
4-116,4-116,4-116,4-116,
4- 116 .

5-21, 5-45*

* Non-:erminal symbol defined on this page.

x - 11

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<fi 1e declaration>

< f i 1 e name>

< file positioning phrase>

< f i 1 e spec i fica t ion>

< f i 1 e statu-b>

< f i 1 e status operator>

< f i 1 e structure>

< f i 1 e type>

<final value>
--<final value func t ion reference>

<find clause>

<find condition>

<find relational expression>

<find statement>

Page No.

4-101*, 7-8, 8-2

4-75,4-101,4-101,4-101*,
5-45, 5-46, 5-47, 5-76,
6-56, 6-58, 6-59, 6-60,
6-61, 6-62, 6-64, 6-66, 6-74

6-4, 6-62*

4-101, 4-101, 4-101*

4-101, 4- 101 , 4-102*

5-76, 5-76*

4-101, 4-101*

4-101, 4-101*

6-96, 6-96*

5-28, 5=32*

6-116, 6 - 116*

6-116, 6 - 116*

6-116, 6 - 116*

6-112, 6 - 116*

<fixed-point ar i thmet i c func t ion reference>
5- 21 , 5-25*

<fixed-point type specification> 4-8, 4-8*

<floating-point ar i thme tic func! ion reference>
5- 21 , 5-22*

<floating-point attribute> 4-8, 4-8*

<floating-point type specification> 4-8, 4-8*

<form di rect i ve> 8-35, B-40*

<form label> 8-40, B-40*, B-42

<form name> B-28, B-28*

* Non-terminal symbol defined on this page.

X-12

Symbol

<form preset>

<formal exit parameter>

<formal input parameter>

<formal i/o parameters>

<formal output parameter>

<formal procedure parameters>

<format declaration>

<format descriptor>

<format item>

<format 1 is t >
"-

<format name>

<format positioner>

<format specification>

<fraction size>

<fractional bits>

<function block>

<function body> .

<function declaration>

<function name>

<function reference>

<function return phrase>

<function type>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

B-30, 8-42*

4-79, 4-79*, 6-45

4-79, 4-79*, 4-82, 4-84

4-79, 4-79*, 4-94, 4-98

4-79, 4-79*

4-79, 4-79*

4-108*, 7-8, 8-2

4-108, 4-108*

4-108, 4-108*, 4-108,

4-108, 4-108*, 4-108

4-75, 4-108, 4-108*,
6-74, 6-76, 6-78

4-108, 4-108*

4-108, 4-108, 4-108,
4-108*

4-108, 4-108*, 4-116

4-8, 4-8*, 4-60

7-2, 7-5*

7-5, 7-5*

4-108

6-66,

4-108,

4-84*, 7-5, 8-2, 8-8

4-20, 4-84, 4-84*, 5-15,
5-19, 7-5, 9-25, 8-25

5-14*, 5-49, 5-64, 5-69,
5-77, 5-78

6-45, 6-45*

4-84, 4-84*

* Non-terminal symbol defined on this page.

X-13

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<function value>

<header declaration>

<header name>

<header sentence>

< i/o capab i 1 i ty>

<i/o data unit>

<if statement>

<imperative phrase>

< i mp 1 i ed for m >

<incrementation clause>

<index clause>

<indexed branch phrase>

<indexed label switch block>

<indexed procedure call phrase>

<indexed procedure switch block>

Page No.

6-45, 6-45*

8-10, 9-3, 9-3*

9-3, 9-3*, 9-3

8-10, 8-10*,

6-56, 6-56*

6-66, 6-66*,

6-112,6-113*

6-3, 6-4*

8-32, 8-32*

9-3

6-74

6-96, 6-96, 6-96, 6-96,
6-96, 6-96, 6-96*

6-96, 6-96*, 6-116

6-4, 6-22*

4-86, 4-87*

6-4, 6-38*

4-93, 4-94*

<indexed procedure switch declaration>
4-94, 4-94*

<indexed procedure switch name>

<indexed procedure switch pOint>

<initial value>

<initial value function reference>

<initiation clause>

4-20,
4-94,

-4-96,

4-94,

6-96,

5-28,

6-96,
6-96,

* Non-terminal symbol defined on this page.

X-14

4-94,
4-96,
4-96,

4-94*

6-96*

5-31*

6-96,
6-96,

4-94*, 4-94,
4-96, 4-96,
4-96, 6-38

6-96, 6-96,
6-96*

Symbol

<input buffer>

<input file name>

< i npu t item>

< i npu t ~ i s t >

<input phrase>

<input receptacle>

< i npu t 1 i s t >

(inputlist declaration>

(inputlist item>

< i npu t 1 1 s t name>' ,

(insta11ation hardware name>

<intege~ type>

(integer type specification>

(internal-id>

(intrinsic function reference>

<invalid specification)

< item all oc a t i on >

(item b"'anch phrase>

(item ~abe1 sw itch block>

(i tern label sw itch declaration>

(i tern "abel sw itch name>

< item "abel sw itch point>

< ; tern ::""ocedure call phrase>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

6-79, 6-79*

6-74, 6-74*

6-74, 6-74, 6-74*

6-74, 6-74*, 6-78

6-4, 6-74*

4-125, 4-125*

4-125, 4-125*, 6-79

4-125*, 7-8, 8-2

4-125, 4-125*

4-20, 4-75, 4-125, 4-125*,
4-125, 5-19

4-102, 4-102*

4-72, 4-72*

4-8, 4-8*, 4-72

9-39, 9-39*

5-14, 5-17*

6-22, 6-22*, 6-25, 6-38,
6-41

4-32, 4-32*, 4-56"'"

6-4, 6-25*

4-86, 4-91*

4-91 , 4-91*

4-20, 4-91 , 4-91*, 6-25

4-91 , 4-91*

6-4, 6-41*

* Non-terminal symbol defined on this page.

X-15

I(U} CM2Y-MAN-PGR-M5049-R04CO

Symbol

< item procedure sw itch

< item procedure swi tch

< item procedure sw itch

< item procedure sw itch

< item rep 1 i cat 0 r >

<item-area declaration>

<key>

<key specification>

<label definition>

<label switch block>

block>

dec 1 a rat ion >.

name>

point>

<label switch declaration>

<label switch name>

<label switch paint>

<length function reference>

<letter>

<library declaration>

<like-table declaration>

<listing parameter>

<listing specification>

< 1 oadvrb 1 form>

<local data block>

<local data declaration>

Page No.

4-93, 4-98*

4-98, 4-98*

4-20, 4-98, 4-98*, 6-41

4-98, 4-98*

4 - 108, 4 - 108, 4 - 108, 4 - 108*.,
4-116,4-116,4-116

4-33, 4-54*, 4-56

9-40, 9-40, 9-40, 9-44,
9-48, 9-48*, 9-51

8 - 2, 8 - 4, 9 - 1, 9 - 3, 9 - 48*

6-60, 6-60*, 6-61

4-86*, 7-8, 8-6

4-87, 4-87*

4-20, 4-87, 4-87*, 4-87,
4-89, 4-89, 4-89, 4-89, 6-22

4-87, 4-87*

5-21, 5-47*

2-2, 3-2, 3-3*, 3-6, 3-7,
3-7

8-10, 9-39*, 9-44

4-32, 4-47*

9-16, 9-16*

9-6, 9-16*

4-72, 4-72*

8-4, 8-6*

8-6, 8-6*

* Non-terminal symbol defined on this page.

X-16

Symbol

<local data sentence>

<local index declaration>

<local index name>

<loop block>

<loop blocK body>

<loop block head>

<loop index>

<ltag declaration>

<ltag 1 is t >

<ltag name>

<magnitude>

<magnitude bit>

<magnitude value>

<major header>

<major header blocK>

<major header sentence>

<major index>

<maximum value>

<message level specification>

<minimum value>

<minor header>

<minor header block>

<minor header sentence>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

8-6, 8-6*

4-78*, 7-7, 7-8

4-78, 4-78*, 5-3

6-93, 6-96*

6-96, 6-97*

6-96, 6-96*

6-96, 6-96*

4-72*, 7-8, 8-2, 8-8, 8-8,
8-10

4-72, 4-72*

4-20, 4-32, 4-72, 4-72,
4-72*, 4-72, 5-49

5-22, 5-22, 5-22*

4-20, 4-20*

4-20, 4-20*

9-1,9-3*

9-3, 9-3*

9-3, 9-3, 9-3*, g-3

4-32, 4-32*, 4-47, 4-49

4-131,4-131*

9-6, 9-18*

4-131, 4-131*

8-2, 8-4, 8-10*

8-10, "8-10*

8-10, ·8-10*

* Non-terminal symbol defined on this page.

X-17

/ (U) SM2Y -MAN - PGR -M-5049 - R04CO

Svmb~l

<mode !ariable specification>

<modi~ied data unit>

<monitor specification>

<multivalued data unit>

<name>

<new abscissa>

<new angle)

<new magnitude>

<new ordinate)

<n i terns form>

<non-real-time spec i fica t ion)

<nonstandard file declaration>
,--

<nonstandard hardware name>

<note>

<ntag declaration)

<ntag expression)

<ntag name>

<ntag primary>

Page No.

9-6, 9-2-2*

5-2, 5-9*

9-6, 9-19*

5-2, 5-6*, 5-19, 6-5, 6-5,
6-66

3-7*, 4-15, 4-15, 4-15,
4-16, 4-24, 4-32, 4-32,
4-39, 4-66, 4-68, 4-68,
4-72, 4-77, 4-78, 4-79,
4-79, 4-84, 4-87, 4-91,
4-94, 4-98, 4-101, 4-102,
4-108, 4-116, 4-125, 4-127,
6-1, 8-2, 8~4, 9-1, 9-3,
9-12, 9-31, 9-39, 9-40,
9 - 51, 10 - 2, B - 25, B - 28 ,
S-28, 8-28, B-4D

6-34, 6-34, 6-34, 6-34*

6-34, 6-34, 6-34*

6-34, 6-34, 6-34*

6-34, 6-34, 6-34, 6-34*

4-72, 4-72*

9-6, 9-20*

4-101, 4-101*

4- 101 , 4-101*

2-4*

4-68, 4-68*

4-68, 4-68*, 4-68, 4-68,
4-68, 4-72

4-68, 4-68*, 4-68, 5-49,
5-62, 5-63, 5-64, 5-69,

4-68, 4-68, 4-68*, 4-68,

B-16

* Non-terminal symbol defined on this page.

X-18

Symbol

<null O:'lrase>

<numbe~ of items>

<numbe~ of words>

<numeric comparand>

<numeric constant>

<numeric constant expression>

<numeric constant factor>

<numeric constant primary>

<numeric constant term>

<numeric constant value>

<numeric expression>

<numer~s factor>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

4-68

6-4, 6-92*

4-32, 4-32*

4-15, 4-15*, 4-32

5-67, 5-67, 5-67*

3-9, 3-10*, 4-68, 4-108,
4-108, 4-108, 5-49, 5-62,
5-63, 9-40

4-8, 4-8, 4-13, 4-15, 4-20,
4-20, 4-20, 4-29, 4-32,
4-39, 4-39, 4-39, 4-44,
4-49, 4-56, 4-63, 4-72,
4-91, 4-101, 4-101, 4-131,
4-131, 5-36, 5-62*, 5-62,
5-62, 5-62, 5-62, 6-52,
6-66, 6-105, 9-31

5-62, 5-62, 5-62, 5-62*,
5-62

5-62, 5-62, 5-62*

5-62, 5-62, 5-62*, 5-62,
5-62

4-60, 4-108, 4-116, 5-49,
5-63*

5-3, 5-7, 5-10, 5-10, 5-12,
5-12, 5-18, 5-22, 5-22,
5-22, 5-22, 5-22, 5-22.
5-22, 5-22, 5-22, 5-25,
5-25, 5-25, 5-25, 5-25,
5-25, 5-36, 5-38, 5-42,
5-48, 5-49*, 5-49, 5-49,
5-49, 5-67, 5-79, 6-22,
6-34, 6-53, 6-62, 6-64,
6-96, 6-96, 6-96

5-49, 5-49, 5-49, 5-49*,
5-49

* Non-terminal symbol defined on this page.

X-19

/(U) CM2Y-MAN-PGR-M5049-R04CO

S~mbol

<numeric operator>

<numeric primary>

<numeric relational expression>

<numeric term>

<numeric type specification>

<object parameter>

<object specification>

<octal constant>

<octal digit>

<octal exponent>

< oc tal i n t ege r >

<octal mantissa>

<octal number>

<open phrase>

<operand>

<operation code>

<option specification>

<options declaration>

<ordinate>

<output buffer>

<output file name>

<output item>

4-68,
4-68,

5-49,

5-64,

5-49,
5-49,

4-7,

9-12,

9-6,

3-10,

3-14,

3-14,

3-14,
3-14,
B-17,

3-14,

3-14,

6-4,

B - 31 ,

8-5*,

9-6,

9-3,

5-22,
6-34,

6-82,

6-66,

6-66,

Page No.

4-68*, 4-68, 4-68,
8-24

5-49, 5-49*

5-67*

5-49, 5-49, 5-49*,
5-49

4-8*, 5-38, 5-40

9-12*

9-12*

3-14*

3-14*

3-14*

3-14, 3-14, 3-14,
3-14*, 8-16, B-17,
B-17, 8-17

3-14*

3-14, 3-14*

6-56*

B-31*

B-31

9-6, 9-6*

9-3, 9-6*

5-22, 5-22*, 6-34,
6-34

6-82*

6-66*

6-66, 6-66*

* Non-terminal symbol defined on this page.

X-20

Symbol

<output 1 ist>

<output phrase>

<outputlist>

<outputlist declaration>

<output1ist item>

<outputiist name>

<overflow phrase>

<overlay declaration>

<overlay parent>

<overlay sibling>

<parameter constant>

<parameter passage directive>

<parameter variable declaration>

<parent receptacle>

<parent unit>

<parity test>

<passage type>

<pooling directive>

<pooling type>

<pos function reference>

<position>

<power of ten factor>

<pre-se:table name>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

6-66, 6-66*, 6-76

6-4, 6-66*

4-127, 4-127*, 6-82

4-127*, 7-8, 8-2

4-127,4-127*

4-20, 4-75, 4-127, 4-127*,
4-127, 5-19

6-5, 6-5*

4-63*, 7-8, 8-2, 8-8

4-63, 4-63*

4-63, 4-63*

8-38, 8-38*

9-24, 9-25*

4-29*, 7-8, 8-2, 8-8

6-5, 6-5, 6-5*

5-10, 5-10*, 5-12

5-74,,5-74*

9-25, 9-25*

9-24, 9-31*

9-31, 9-31*

5-21, 5-46*

4-108, 4-108*, 4-116

8-16, 8-16*

4-60, 4-60*

* Non-terminal symbol defined on this page.

X-21

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<predecessor function reference>

<predefined function reference>

<preset entry>

<prese t item>

<preset magnitude>

<preset semi-entry>

<preset value>

<preset value declaration>

<primary condition>

<primary statement>

<procedure block)

<procedure block name>

<procedure body>

<procedure call phrase>

<procedure declaration>

<procedure name>

<procedure return phrase>

<procedure switch block>

<procedure switch name>

<pseudo buffer>

<pseudo operation code>

<range declaration>

<ranged name>

Page No.

5-28, 5-30*

5-14, 5-21*

4-60, 4-60*

4-39, 4-39*

4-20, 4-20*, 6-84,

4-60, 4-60, 4-60*

4-20, 4-20*, 4-24,
4-39, 4-39

4-60*, 7-8, 8-2

6-113, 6-113*

6-113, 6-113*

7-2, 7-3*

8-4, 8-4*, 8-4

7-3, 7-3*, 7-4

6-4, 6-28*

6-87

4-29,

4-79*, 7-3, 8-2, 8-8

4-20, 4-79, 4-79*, 4-82,
4-94, 4-96, 4-96, 4-98,
5-19, 6-29, 7-3, 9-25, 8-25

6-45, 6-45*

4-93*, 7-8, 8-2

4-20, 4-20*, 4-75, 5-19

6-76, 6-76*, 6-78

8-5, B-13*

4-15,4-131*,7-8,.8-2,8-8

4-131,4-131*

* Non-terminal symbol defined on this page.

X-22

Symbol

<receptacle>

<receptacle 1>

<receptacle 2>

<record 1 1mi t>

<record positioning phrase>

<record size>

<redefinition source>

<register number>

<relational expression>

<relational-operator>

<rem function reference>

<remainder phrase>

<remainder receptacle>

<remaindering expression>

<repeat value>

<res di rect ive>

<resume phrase>

<return phrase>

<rotation>

<rtag declaration>

<rtag expression>

<rtag name>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

6-5, 6-5*, 6-18, 6-18, 6-29,
6-34, 6-34, 6-34, 6-34, 6-53

6-18, 6-18*

6-18, 6-18*

4- 101 , 4-101*

6-4, 6-64*

4-101, 4-101*

5-40, 5-40*

4~:29 , 4-29*, 4-77, 9-31

5-64, 5-64*

5-67, 5-67*, 5-69, 5-71,
5-73, 6-116

5-21 , 5-42*

6-5, 6-5*

6-5, 6-5*

5-42, 5-42*

4-39, 4-39*

8-35, 8-41*

6~·4, 6-50*

6-4, 6-45*

6-34, 6-34*

4-68, 4-68*

4-68, 4-68*, 4-68, 4-68,
4-68

4-68, 4-68*, 4-68, 4-68,
4-68, 4-68, 5-49

* Non-terminal symbol defined on this page.

X-23

/(U) CM2Y-MAN-PG-R"'M5049-R04CO

Symbgl Page No.

<scale factor> 5-36, 5-36*

<scale operator> 8 - 16, B - 16, 8 - 16*, 8 - 17

<scaled direct code decimal constant>
8-16, 8-16*

<scaled direct code octal constant> 8-17, 8-17*

<scalf function reference> 5-21, 5-36*

<scaling specification> 9-6, 9-23*

<scaling specifier> 5-49, 5-49, 5-49, 5-49,
5-49*, 6-5, 6-5

<scope modifie~> 4-2, 4-2*, 4-24, 4-29, 4-32,
4-47, 4-49, 4-54, 4-56,
4-94, 4-96, 4~98, 4-101,
4-101, 4~108, 4-116, 4-125,
4-127

<secondary condition> 6-113, 6-113*

<secondary statement> 6-113, 6-113*

<shift amount> 6-53, 6-53*

<shift assign clause> 6-53, 6-53*

<shift phrase> 6-4, 6-53*

<shift source> 6-53, 6-53*

<shift type> 6-53, 6-53*

<sign specification> 4-8, 4-8, 4-8*

<simple character> 3-6, 3-6*

<simple expression> 5-33, 5-33, 5-40, 5-44,
5-48, 5-48*, 6-52, 6-105,
6- 116

<simple floating constant> 8-16, 8-16, 8-16*

<simple phrase> 6-1, 6-1, 6-3*

* Non-terminal symbol defined on this page.

X-24

Symbol

<simple statement>

<simple string>

<simple type>

<simple type declaration>

<simple type name>

<simple type specification>

<single precision directive>

<single-valued data un it>

<single-word numeric preset>

<snap phrase>

<source>

<source element name>

<source parameter)

<source retrieval declaration>

<source specification)

<space)

<special character)

<special condition)

<spi 11 directive>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

6-1,6-1*,6-105,6-113,
6-113, 6-116, 6-116

3-6*, 4-66

4-16, 4-16*, 4-20, 4-20,
4-24, 4-39, 5-38, 5-40,
6-105

4-15, 4-15*

4-15, 4-15*, 4-16, 4-32,
4-72

4-7*, 4-15, 4-16

9-24, 9-28*

4-125, 4-127, 4-127, 5-2,
5-3*, 5-10, 5-49, 5-64,
5-69, 5-74, 5-77, 5-78,
5-82, 6-5, 6-5, 6-53, 6-66,
6-79, 6-79, 6-82, 6-96

8-32, 8-32*

6-4, 6-87*

6-5, 6-5*

9-40, 9-40, 9-40*

9-10, 9-10*

8-10, 9-40*

9-6, 9-10*

2-2, 3-2, 3-2*, 3-6, 8-27

2-2, 3-2, 3-2*

6-20, 6-20*, 6-22, 6-25,
6-45

9-24, 9-30*

* Non-terminal symbol defined on this page.

X-25

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<standard file declaration>

<standard hardware name>

<starting bit>

<starting item>

<starting word>

<statement>

<statement block>

<statement label>

<statement name>

<status com~~rand>

<status constant>

<status expression>

<status operation function reference>

<status relational expression>

<status type>

<status type name>

<status type specification>

<stop condition>

<stop phrase>

<string name>

<stringformdeclaration>

Page No.

4-101, 4-101*

4-101, 4-101*

4-39, 4-39*

4-49, 4-49*

4-39, 4-39*

6-1*, 6-94, 6-97, 6-105, 7-7

6-3, 6-93*

6-1,6-1,6-1,6-1*,6-105

4-20, 4-87, 4-89, 4-89,
4-91, 5-19, 6-1, 6-1*, 6-5,
6-20, 6-22, 6-29, 6-110,
8-25

5-73, 5-73, 5-73*

3-9, 3-18*, 4-14, 4-20,
4-49, 4-102, 5-76, 5-78

5-3, 5-29, 5-30, 5-48, 5-73,
5-78*, 5-79, 6-96, 6-96

5-21, 5-28*

"5-64, 5-73*

4-32, 4-32*, 4-56, 5:"3 f,
5-32

4-32, 4-32*

4-7, 4-14*, 4-32

6-43, 6-43*

6-4, 6-43*

4-66, 4-66*

4-116*, 7-8, 8-2

* Non-terminal symbol defined on this page.

X-26

Symbol

<stringform descriptor>

<stringform item>

<string~orm 1 is t >

<stringform name>

<stringform positioner>

<stringform specification>

<structure all oc a t ion>

<structure information>

<structured expression>

<structured specification>

<structured type>

<structured type declaration>

<structured type end>

<subprogram block>

<subprogram body>

<subprogram data block>

<subprogram data declaration>

<subprogram data sentence>

<subprogram name>

<subscript declaration>

<subscript expression>

<subscripted data unit>

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

4-116, 4-116*

4-116, 4-116*

4-116, 4-116*, 4-116

4-20,4-75,4-116,4-116*,
5-19, 6-79

4-116,4-116*

6-79, 6-79*, 6-82

4-15, 4-15*

4-15,4-15*,4-15,4-32,
4-56

5-48, 5-82*

9-6, 9-21*

4-24, 4-24*

4-15, 4-15*

4-15, 4-15*, 4-15

7-2*, 8-4

7-3, 7-5, 7-7*

7-7, 7-8*

7-8, 7-8*

7-8, 7-8*

9-25, 9-25*

4-56, 4-56*

5-3, 5-3*, 5-7, 6-66,
6-66

6-66,

5-3, 5-3*, 5-19, 5-74. 6-5,
6-116

* Non-terminal symbol defined on this page.

X-27

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<substitution declaration>

<substitution type>

<subtable declaration>

<successor function reference>

<supplied procedure call phrase>

<swap phrase>

<sw itch index>

<sw itch name>

<switch selector>

<sw itch va 1 ue>

<system blocK>

<system data blocK>

<system data declaration>

<system data element>

<system declaration>

<system element)

<system index declaration>

<system index name>

<system index specification>

<system name>

<system procedure blocK>

<system procedure declaration>

<system procedure element>

Page No.

4-66*, 8-10

4-66, 4-66*

4-33, 4-49*

5-28, 5-29*

6-28, 6-34*

6-4, 6-18*

6-22, 6-22*, 6-38

4-20, 4-20*, 4-75, 5-19,
8-25

4-91, 4-91*, 4-98

4-91, 4-91*, 4-98

9-1*

8-2, 8-2*

8-2, 8-2*

8-1,8-2*

9-1,9-1*

8-1*, 9-1

4-77*, 9-3

4-77, 4-77*, 4-79, 4~79, 5-3

4-77, 4-77*

9-1,9-1*,9-1

8-4, 8-4*

8-4, 8-4*

8-1, 8-4*

* Non-terminal symbol defined on this page.

X-28

Symbol

<system ~rocedure sentence>

<syste~ ~rocedure type>

<table block>

<table aeclaration>

<table information>

< tab 1 e r",ame>

<table subscriptdeclarat ion>
: ,'< ~'

<table typ~>

<target conversion type>

<target machine>

<target redefinition type>

<tdef function reference>

<termination clause>

<terminator>

<top test>

<top test- clause>

<trace onrase>

< type>"

<type oeclaration>

<typed structure>

<typed structure declaration>

/(U) CM2Y-MAN-PGR-M5049-R04CO

8-4, 8-4*

8-4, 8-4*

Page No.

4-32*, 7-8, 8-2, 8-8

4-32, 4-32*

4-32, 4-32*

4-20, 4-32, 4-32*, 4-33,
4-47, 4-49, 4-56, 4-60.
4-63, 4-63, 4-75, 4-79.
4-79,4-127,5-3,5-6. 5-7,
6-5, 6-66, 6-79, 6-82. 6-96,
8-25

4-32, 4-32*, 4-47, 4-t9

4-32, 4-32*

5-38, 5-38*

9-6, 9-6*

5-40, 5-40*

5-21 , 5-40*

6-96, 6-96, 6-96, 6-96.
6-96, 6-96, 6-96*

3-2, 3-2*

6-97, 6-97*

6-96, 6-97*

6-4, 6-89*

4-24, 4-24*, 4-29, 4-32,
4-84

4-15*, 7-8, 8-2, 8-8

4-16, 4-16*

4-15, 4-15*

* Non-te~minal symbol defined on this page.

X-29

I(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

<typed structure head>

<typed structure name>

<unary numeric operator>

4-15,

4-16,
5-38,

3 - 1 1 ,
4-68,
8-16,

<unscaled direct code decimal constant>

Page No.

4-16*

4-16*, 4-16,
5-40, 6-105

3-11*, 3-14,
5-49, 5-62,
8-16, 8-22,

8-16, 8-16*, 8-17

<unsealed direct code octal constant>
8-17,8-17*,8-17

<untyped structure declaration>

<untyped structure head>

<untyped structure name>

<user function reference>

<user procedure call phrase>

<uyk-43 floating constant>

<uyk-7 floating constant>

<validity test>

<value block>

<value block body>

<value block head>

4-15,

4-15,

4-15,

5-14,

6-28,

8-16,

8-16,

5-74,

6-105,

6-105,

6-105,

4-15*

4-15*

4-15*, 4-15,

5-15*

6-29*

8-16*

8-16, 8-16*

5-74*

6-105*

6-105*

6-105*

4-24,

4-68,
8-16,
8-32

4-24

<variable declaration> 4-24*, 7-8, 8-2, 8-8

<variable list> 4-24, 4-24*, 4-29

<variable name> 4-20, 4-24, 4-24, 4-24*,
4-54, 4-60, 4-63, 4-63,
4-75, 4-79, 4-79, 4-91 ,
4-131, 5-3, 5-7, 5-19, 6-5,
6-66, 8-25

* Non-terminal symbol defined on this page.

X-30

Symbol

<vary~ng clause>

<word aata unit>

<word soecification>

o < oc t a: i n t ege r >

<ISFPS>

A

ASS

ACOS

ACOS2

ACSEPAR~TION

ALG

ALL

ALOG

AND

ANDF

ASIN

ASIN2

ATAN

ATAN2

AUTO-DC

S

SAMS

BASE

/(U) CM2Y-MAN-PGR-M5049-R04CO

Page No.

6-116,6-116*

5-2, 5-7*, 5-10, 5-19, 5-49,
5-64, 5-69, 5-71, 5-74, 6-5,
6-66

5-7, 5-7, 5-7*, 6-66

B-17

8-16

4-8, 4-56, 4-108

5-18, 8-36

5-22

5-22

9-35

6-53

9-40

5-22

5-64, 5-79, 6-116

5-33

5-22

5-22

5-22

5-22

8-8

4-12, 4-101, 4- 116

5-25

9-31

* Non-terminal symbol defined on this page.

X-31

/(U; ~M2Y-MAN-PGR-M5049-R04CO

Symbol Page No.

BEGIN 6-94, 6-105

BIT 5 - 1O, 6-5

BY 6-96

BYTE 8-37

C 4-116, 9-48

CALLING ONLY 9-25

CARDS 9-10, 9-12

CAT 5-77

CCOMN 9-10, 9-12, 9-16

CHAR 5 - 12, 6-5, B-38

CHECKID 6-61

eIRC 6-53

CLIST 9-16

CLOSE 6-58

CMODE 4-5

CMP 9 - 12

CMS-2 3 - 19

CNT 5-44

CNV 9 - 12

COBJT 9-12

COMMENT 2-2

COMP 5-64, 5-79

COMPF 5-33

CONF 5-38

* Non-terminal symbol defined on this page.

X-32

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol Page No.

CONVERTIN 6-79

CONVERTOUT 6-82

CORAD 4-20, 4-'60, 5-19, 6-5

CORRECT 9-40

COS 5-22

CR 9-12

CRG 9-12

CRL 9-12

CSRCE 9-10

CSWITCH 10-2

CSWITCH-DEL 10-5

CSWITCH-OFF 10-4

CSWITCH-ON 10-4

D 3 - 11 , 3 - 11 , 4-5, 4-8, 4- 116 ,
B-17, B-17

DATA 4-60, 6-116, 6 -116

DATAPOOL 9-31

DEBUG 4-129

DECODE 6-78

DEFID 6-60

DELETE 4-129

DENSE 4-15, 4-32

DEP 9-51

DIRECT 3-19, 9-25

DISPLAY 4-129, 6-84

* Non-terminal symbol defined on this page.

X-33

/(Ul CM2Y-MAN-PGR-M5049-R04CO

DO

E

ELSE

ELSI~

ENCODE

END

END-AUTO-DD

END-CSWITCH

ENO-CSWITCHS

END-FUNCTION

END-H~AD

END-LOC-DO

END-P-SW

END-PROC

END-SUB-DD

END-SWITCH

END-SYS-DO

END-SYS-PROC

END-SYSTEM

END-TABLE

END-TRACE

END-TYPE

ENDFILt:

EO

Symbol

8-39

3 - 1 1 ,

6-105

6-113

6-76

6 - 110

8-8

10-2

10-2

7-5

9-3

8-6

4-94,

7-3

7-8

4-87,

8-2

8-4

9-1

4-33

6-91

4-15

6-59

5-67,

* Non-terminal symbol defined on this page.

X-34

Page No.

3-14, 4-108, 4- 116

4-96

4-89, 4-94, 4-96

5-76

I(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol Page No.

EQUALS 4-68, 4-68, 4-72, 4-75

EVENP 5-74

EXCHANG:: 4-66

EXEC 6-52

EXEC-PRJC 4-82

EXECUT~VE 9-29

EXIT 4-79, 6-29, 6-48

EXP 5-22

EXTDEF 4-2, 4-15, 4-15, 4-15

EXTREF 4-2, 4-2

F 4-8, 4-108

FIELD 4-39

FIL 5-45, 6-62

FILE 4-101, 4-101

FIND 6- 116

FIRST 5-31

FOR 6-105

FORM 8-40

FORMA T· 4-108

FOUND 6-116

FROM 6-96

FUNCTIS\ 4-84

GOTO 6-20, 6-22, 6-25

GT 5-67

* Non-terminal symbol defined on this page.

X-35

/(U) :M2Y-MAN-PGR-M5049-R04CO

GTEQ

H

HEAD

1

leos
IEXP

IF

INDIR~CT

INPUi

INPUiLIST

INTO

INVAL:D

ISIN

ITEM-~REA

KEY1

KEY2

KEY3

L

LAST

LENGT~

LEVEl-

LIBS

LIKE-7ABLE

LIST

Symbol Page No.

5-67

3-17,4-13,4-32,4-101

9-3

4-8,4-108,4-116

5-25

5-25

6-113,6-116,6-116

4-32, 4-56

4-79, 4-82, 6-29, 6-56, 6-74

4-125

6-53

5-74, 6-22

5-25

4-54

6-20, 6-43

6-20, 6-43

6-20, 6-43

4-108, 9~48

5-32

5-47

9-i8, 9-18

4-47

9 - · 0 , ...

* Non-terminal symbol defined on this page.

X-36

LISTING

LN

LOAD-VRBL

LOC-DD

LOC-INDEX

LOCDDPOOL

LOCREF

LOG

LT

LTEQ

MEANS

MEDIUM

MODE FIELD

MODE VRBL

MODEVRBL

MONITOR

MSCALE

MT1

MT10

MT 11

MT12

MT13

MT14

MT15

Symbol

/(U) CM2Y-MAN-PGR-M5049-R04CO

9-16

5-25

4-72

8-6

4-78

9-31

4-2

6-53

5-67

5-67

4-66

Page No.

4-15, 4-32

4-20

4-20

9-22

9-19

9-23

4-101

4-102

4-102

4-102

4-102

4-102

4-102

* Non-terminal symbol defined on this page.

X-37

/(U) CM2Y-MAN-PGR-M5049-R04CO

MT16

MT2

MT3

MT4

MT5

MT6

MT7

MT8

MT9

NITEMS

NOLIST

NONE

NONRT

NOT

NOT FOUND

o

OBJECT

OeM

ODDP

ONLY

OPEN

OPTIONS

OR

Symbol

4-102

4-101

4-101

4-101

4-102

4-102

4-102

4-102

4-102

4-72

9-40

Page No.

4-15, 4-32

9-20

5-67, 5-76

6 - 1 16

3-14, 4-5, 4-108, 4-116,
9-48

9-;2

4-~01, 6-66, 6-74

5-74

9-40

6-56

9-5, 9-6

5-E4, 5-79, 6-116

* Non-terminal symbol defined on this cage.

X-38

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol Page No.

ORF 5-33

OUTPUT 4-79, 6-29, 6-34, 6-~L
6-34, 6-34, 6-56, 6-66

OUTPUTLIST 4-127

OVERFLOW 6-5

OVERLAY 4-44, 4-63

P. 4-20, 4-24, 4-29, 4-~C

4-72, 4-94, 4-96

P-SWITCH 4-94, 4-96, 4-98

PARAMETER 4-29

PASSAGE-SPEC 9-25

POS 5-46, 6-64

PPTP 4-102

PPTR 4-102

PRED 5-30

PRINT 4-101, 6-66, 9-16

PROCEDURE 4-79

PTRACE 4-129

PUNCH 4- 101 , 6-66

R 4,-8, 4-101

RAD 5-25

RANGE 4-129, 4-131

READ 4-101, 6-74

REGISTER 9-25

REGS 6-84

* Non-terminal symbol defined on this page.

X-39

/(U! CM2Y-MAN-PGR-M5049-R04CO

REM

RES

RESUME

RETURN

Symbol

ROTA"iEHP INPUT

ROTA7EP INPUT

S

SA

SADUfy' P

SAVING

SCAL~

SCR

SCRATCH

SCRG

SCRL

SEL-ELEM

SEL-HEAD

SEL-PJOL

SET

SHIFT

SIN

SINGLE

SM

5-42

8-41

6-50

Page No.

6-45, 6-45

6-34

6-34

4-8, 4-8, 4-14, 4-87, 4-89,
4-101,9-48

9-12

9-12

6-5

5-36

9-12

6-56

9-12

9-12

9-40

9-40

9-44

9-40

6-5, 6-62, 6-64

6-53

5-22

9-28

9 - 12

* Non-terminal symbol defined on this page.

X-40

SNAP

SOURCE

SPILL

STANDAR:

STOP

STOP5

STOP6

STOP7

STRINGFJRM

STRUCTU~~D __

SUB-DC

SUB-TAB_=:

SUCC

SWAP

SWITCh

SYS-DC

SYS-INS::X

SYS-PRC:

SYS-PR::-REN

SYSTEM

T

TABLE

TABLEP::_

TDEF

Symbol

/(U) CM2Y-MAN-PGR-M5049-R04CO

4-129,

9-10

9-30

6-60

6-20,

6-20,

6-20,

6-20,

4- 116

9-21

7-8

4-49

5-29

6-18

4-87,

8-2

4-77

8-4

8-4

9-1

Page No.

6-87

6-43

6-43

6-43

6-43

4-89, 4-91

4 - 8, 4 - 1 08, 4 - 116, 9 - 3 1

4-32, 4-56

9-31

5-40

* Non-:e~minal symbol defined on this page.

X-41

/(U) CM2Y-MAN-PGR-M5049-R04CO

Symbol

THEN

THRU

TO

TRACE

TRANSREF

TYPE

U

UNTIL

USING

UYK43

UYK7

V

VALID

VARY

VARYING

VECTORHP INPUT

VECTORP INPUT

VRBL

WHILE

WITHIN

WITHLBL

X

XOR

Page No.

6-1,6-113,6-113,6-116,
6 - 1 16

6-96

6-5, 6-62, 6-64

4-129, 6-89

4-2, 4-2

4-15, 4-15, 4-16

4-8

6-97

6-38

9-6

9-6

4-20, 4-32, 4-101

5-74

6-96

6 - i ~ 6

6-34

6-34

4-2t.

6- C7

6-96

4-~08, 4-116

5-79

* Non-terminal symbol defined on this page.

X-42

XORF

Z

Symbol

I(U) CM2Y-MAN-PGR-M5049-R04CO

5-33

4- 116

Page No.

* Non-te~minal symbol defined on this page.

X-43/(X-44 Blank)

	00001
	00002
	00003
	0001
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	04-104
	04-105
	04-106
	04-107
	04-108
	04-109
	04-110
	04-111
	04-112
	04-113
	04-114
	04-115
	04-116
	04-117
	04-118
	04-119
	04-120
	04-121
	04-122
	04-123
	04-124
	04-125
	04-126
	04-127
	04-128
	04-129
	04-130
	04-131
	04-132
	04-133
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	06-001
	06-002
	06-003
	06-004
	06-005
	06-006
	06-007
	06-008
	06-009
	06-010
	06-011
	06-012
	06-013
	06-014
	06-015
	06-016
	06-017
	06-018
	06-019
	06-020
	06-021
	06-022
	06-023
	06-024
	06-025
	06-026
	06-027
	06-028
	06-029
	06-030
	06-031
	06-032
	06-033
	06-034
	06-035
	06-036
	06-037
	06-038
	06-039
	06-040
	06-041
	06-042
	06-043
	06-044
	06-045
	06-046
	06-047
	06-048
	06-049
	06-050
	06-051
	06-052
	06-053
	06-054
	06-055
	06-056
	06-057
	06-058
	06-059
	06-060
	06-061
	06-062
	06-063
	06-064
	06-065
	06-066
	06-067
	06-068
	06-069
	06-070
	06-071
	06-072
	06-073
	06-074
	06-075
	06-076
	06-077
	06-078
	06-079
	06-080
	06-081
	06-082
	06-083
	06-084
	06-085
	06-086
	06-087
	06-088
	06-089
	06-090
	06-091
	06-092
	06-093
	06-094
	06-095
	06-096
	06-097
	06-098
	06-099
	06-100
	06-101
	06-102
	06-103
	06-104
	06-105
	06-106
	06-107
	06-108
	06-109
	06-110
	06-111
	06-112
	06-113
	06-114
	06-115
	06-116
	06-117
	06-118
	06-119
	06-120
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	X-22
	X-23
	X-24
	X-25
	X-26
	X-27
	X-28
	X-29
	X-30
	X-31
	X-32
	X-33
	X-34
	X-35
	X-36
	X-37
	X-38
	X-39
	X-40
	X-41
	X-42
	X-43
	X-44

