CHAPTER 3

FUNCTIONAL DESCRIPTION

3-1. OVERALL FUNCTIONAL DESCRIPTION.

3-2. INTRODUCTION. This chapter includes a detailed analysis of the operational principles of the Input/Output Console OA-7984(V)/UYK (I/O Console) and its functions. The development of equipment inputs and outputs in each mode of operation are described. An overall description of the logic sections, units, and assemblies comprising the I/O Console are provided as follows:
a. An introduction to and description of the external and internal logic signal characteristics:

1. Signal levels used and their relative voltage levels
2. Interpretation of the word format's bit "structure
b. Signals identified by their functional name (operational accomplishment)
c. Overall and functional block diagrams and descriptions
d. Logic principles described begin with an introduction to the basic logic symbology used in this manual. Each logic function described is supported by Boolean equations, truth tables, and simplified logic diagrams.

3-3. This chapter refers to and supports chapter. 5 equipment diagrams and schematics. References to chapter 5 include either the functional circuit name and diagram sheet [e.g., Mode Selection I (5-5)] or the term, diagram number, and approximate zone where the circuit/term is shown [e.g., OXDO3 (5-5, 6C)]. Where terms have been assigned a.
common functional name, the functional name will be used in the place of the term [e.g., OFF-LINE F/F OXDO3 (5-5, 6C)].

3-4. MODES OF OPERATION.

3-5. The I/O Console normally operates in the on-line mode as an input/output device of the computer. In this operational mode, the I/O Console is controlled by the computer. The I/O Console may also be operated in the offline mode (controlled at the I/O Console pane1) for maintenance and tape preparation. A functional block diagram of the I/O Console is illustrated in figure 3-1. The main function of the I/O Console is data transfer processing. To perform this function, the I/O Console is used for both on-line and off-line operations.

3-6. ON-LINE MODE. The I/O Console control logic assembly controls the transfer of all data words and control words exchanged between the computer and the input/output devices contained in the I/O Console. When in the on-line mode of operation, the I/O Console is capable of performing any one input function specified in table 3-1 and any one output function specified in table 3-1 with one addition: The printer and paper tape punch can operate concurrently.

3-7. The I/O Console can perform online operations with the teletypewriter interface when the printer, keyboard, paper tape punch, and paper tape reader are in the off-line mode. The following major functional areas are used in online operations:

Figure 3-1. I/O Console Functional Block Diagram.

Table 3-1. I/0 Console Input/Output Functions

Input Functions	Output Functions
Keyboard	Printer
Paper Tape Reader	Paper Tape Punch
	TTY Output

a. Timing circuits to generate the basic and phase timing pulses that are used to synchronize internal sequencing and generate internal subcommands.
b. Function translators to generate the necessary internal subcommands in order to process the external function words received from the computer.
C. Input/output control circuits to generate subcommands to control the operation of the input/output device currently in operation.
d. Interface circuits to receive and temporarily store data words or control signals until they are sent to their specified destination; i.e., paper tape punch, computer or other input/output device.
e. Interrupt circuits to receive, process, and transfer interrupt control signals between the I/O Console and the computer.

3-8. Keyboard/Printer. The keyboard transfers data from the keyboard to the control logic interface circuits for transfer to the computer and printer for on-line operations, or from the keyboard via the control logic interface circuits to the printer and paper tape punch during the off-1ine mode of operation (figure 3-2).
a. The printer receives data via the control logic interface circuits from the computer and keyboard during the online operations or via the control logic interface circuits from the keyboard or the paper tape reader during the offline mode of operation (figure 3-3).

3-9. Paper Tape Reader. The paper tape reader is designed to read data from a perforated paper tape and transfer the data to the computer via the control logic for on-line operations. The paper tape reader can also transfer data to the paper tape punch and/or printer via the control logic during the off-line mode of operation (figure 3-4).

3-10. Paper Tape Punch. The paper tape punch is designed to receive data from the computer via the control logic interface circuits, and to transfer the data on to perforated paper tape. In the off-line mode, the paper tape punch will punch data received via the control logic from either the paper tape reader or the keyboard (figure 3-5).

3-11. OFF-LINE MODE. When in the offline mode of operation, the I/O Console performs general maintenance operations of the input/output units and the following data processing operations:
a. Keyboard-to-printer
b. Keyboard-to-printer and paper tape punch
C. Paper tape reader-to-paper tape punch
d. Paper tape reader-to-printer
e. Paper tape reader-to-printer and paper tape punch.

3-12. Keyboard-to-Printer. The offline keyboard-to-printer operation transfers data from the keyboard to the printer. The operation is initiated by pressing a keyboard key. As each key is

Figure 3-2. Keyboard Operation.
pressed, the corresponding seven-bit ASCII character code is transferred from the keyboard to the printer via the I/O Console control logic, and the printer prints the corresponding character as it receives each code.

3-13. Keyboard-to-Printer and Paper Tape Punch. The off-line keyboard-toprinter and paper tape punch operation transfers data from the keyboard to the printer and the paper tape punch. The operation is initiated by pressing a keyboard key. As each key is pressed, the corresponding seven-bit ASCII code is transferred to the I/O Console control logic. The I/O Console control logic then transfers the code to the
printer and the paper tape punch. The printer prints the corresponding character and the paper tape punch punches each code on paper tape as it is received.

3-14. Paper Tape Reader-to-Paper Tape Punch. The off-line paper tape reader-to-paper tape punch operation transfers data from the paper tape reader to the paper tape punch for duplicating paper tape with a 5 -, 6-, 7 -, or 8 -level format. The operation is initiated when the reader is enabled and proceeds in accordance with the following sequence:
a. The paper tape reader reads one frame of data from the paper tape.

Figure 3-3. Printer Operation.
b. The I/O Console control logic transfers the data to the paper tape punch.
c. The paper tape punch punches one frame of data on paper tape.
d. The paper tape reader advances the paper tape to the next frame of data.
e. The sequence repeats.
f. The operation automatically terminates when the data from the last frame on the tape in the reader is punched on the tape in the punch, and no more feed holes are detected by the reader.

3-15. Paper Tape Reader-to-Printer. The off-line paper tape reader-toprinter operation transfers data from the paper tape reader to the printer. The operation is used to make printouts of ASCII-coded paper tape. The operation is initiated when the paper tape reader is enabled and proceeds in accordance with the following sequence:
a. The paper tape reader reads one frame of data from the paper tape.
b. The I/O Console control logic transfers the data to the printer.
C. The printer prints the corresponding character.

Figure 3-4. Paper Tape Reader Operation.
d. The paper tape reader advances the paper tape to the next frame.
e. The sequence repeats.
f. The operation automatically terminates when the character corresponding to the last frame of data on the paper tape has been printed, and no more feed holes are detected by the paper tape reader.

3-16. Paper Tape Reader-to-Paper Tape Punch and Printer. The off-line paper tape reader-to-paper tape punch and printer operation transfers data from the paper tape reader to the paper tape punch and printer. This operation is used to duplicate and print ASCII-coded paper tape. The operation is initiated when the reader is enabled and proceeds in accordance with the following sequence:
a. The paper tape reader reads one frame of data from the paper tape.
b. The I/O Console control logic transfers the data to the paper tape punch.
c. The paper tape punch punches one frame of data on the paper tape.
d. The I/O Console control logic transfers the data to the printer.
e. The printer prints the corresponding character.
f. The paper tape reader advances the paper tape to the next frame of data.
g. The sequence repeats.
h. The operation automatically terminates when the character corresponding to the last frame of data on the paper

Figure 3-5. Paper Tape Punch Operation.
tape in the paper tape reader has been printed, and no more feed holes are detected by the paper tape reader.

3-17. KEYBOARD/PRINTER OPERATION.
3-18. MODËL 35 KEYBOARD/PRINTER. The Mode 135 Keyboard Printer (keyboard/ printer) is an electromechanical device that provides a convenient means for transmitting information to, and receiving responses from, the computer. Basically the keyboard/printer consists of a keyboard base, printing unit, motor unit, electrical service unit, and enclosure.

3-19. Keyboard/printer operation can be initiated either manually (via keyboard entry) or electrically (via an external source). As indicated in figure 3-6, the keyboard base converts mechanical actions into electrical signals; the converse is true for the printing unit. Each keyboard entry begins a chain reaction of mechanical movements that position code bars and transfer levers preparatory to a motor-driven cam operating
a set of electrical contacts within the contact box. These make/break actions of the contacts produce a unique string of electrical pulses for each graphic or function selected. This string of electrical pulses is transmitted to the printing unit, where the selection mechanism converts the pulses into mechanical actions to position a complement of code bars. The resulting mechanical actions either cause a character to be printed, or operate a function bar in the stunt box to generate the desired function, such as line feed or carriage return. Critical timing of the mechanical actions is controlled by various levers and bails that engage and disengage several clutches at appropriate times.

3-20. Keyboard. The keyboard mounts on the cradle assembly of the cabinet pan and provides support for the motor unit, printing unit, and intermediate gear assembly. The keys are positioned in a four-row arrangement, with most punctuation marks and control symbols indicated as upper keytop characters.

Figure 3-6. Block Diagram of Keyboard/Printer Operation.

3-21. The keyboard incorporates codeselecting and signal-generating mechanisms, and signal line and power line circuits. Motive power for activating the keyboard is derived from the motor unit and intermediate gear assembly through a gear arrangement to the printing unit main shaft.

3-22. Printing Unit. The printing unit incorporates the necessary electrical and mechanical elements to translate the signal code combinations into mechanical actions which print the messages and perform incidental functions. The printing unit is mounted centrally on the keyboard in front of the motor unit and intermediate gear assembly.

3-23. Code signals are applied to a two-coil magnet associated with a selecting mechanism which interprets the signals and controls the mechanical action involved in printing a character or performing a required function. Means are provided for orienting the selector to the received signal. The AC motor is geared to the main shaft of the printing unit by way of the intermediate gear assembly. Printing and various functional sections of the printing units are activated by individual clutches. Printing is produced by print pallets which are arranged in a small print box. In operation, the print box moves up, down, and across the paper and presents the proper print pallets to the printing hammer while the platen remains stationary. The pallets are driven forward against the inked ribbon and paper to print characters.

3-24. Paper is provided from a 5 -inch diameter roll mounted between the side frames of the printing unit. The paper is friction-fed around the platen which is a cylinder free to rotate on its axis.

3-25. Motor Unit (LMU-3). The Motor Unit (LMU-3) is a complete assembly consisting of a $1 / 20$ horsepower synchronous motor and a suitable mounting arrangement. It provides motive power for the keyboard/printer.

3-26. Electrical Service Unit. The electrical service unit is mounted on the cabinet pan directly behind the printing unit. The electrical service unit serves as the area of concentration for the wiring within the keyboard/ printer, and provides mounting facilities for various electrical assemblies and components.

3-27. Enclosure. The protective enclosure surrounding the keyboard/printer consists of a base pan assembly, upper and lower covers, and shock mounts. Both covers are hinged to provide ready access for maintenance and repair. The enclosure is also equipped with a copyholder. line guide, and illuminating lamps.

3-28. TAPE READER OPERATION. The tape reader is a solid state, photoelectric, punched-tape reader that converts information on 5-, 6-, 7-, or 8-level tape into DC signal levels. The tape reader is unidirectional and reads 5- to 8-level tapes interchangeably at a slew speed of 400 characters per second. The tape reader is divided functionally into a tape read system, tape drive system, and power supply. A block diagram of the tape reader is shown in figure 3-7.

3-29. Tape Read System. A hole condition in a given channel of tape permits the passage of light from the exciter lamp to the photodiode head. The photodiodes are biased so that during a nohole condition the data photodiode outputs will be at a positive level and the sprocket photodiode output will be at a negative level. During a hole condition, the data photodiode outputs will be at a negative level and the sprocket photodiode output at a positive level. These outputs are applied to the data and sprocket channel circuits.

3-30. There are eight identical data channel circuits each consisting of an emitter follower and a two-stage amplifier. The data channel circuits provide outputs of +5 VDC at 5 mA with an 10k Ω external load for a hole condition, and 0.0 ± 0.5 VDC for a no-hole condition (figure 3-8).

Figure 3-7. Paper Tape Reader Block Diagram.

Figure 3-8. Paper Tape Reader Logic Diagram.

3-31. The sprocket channel circuit consists of an emitter follower, inverter amplifier, Schmitt trigger circuit, and a second inverter amplifier. The Schmitt trigger circuit reshapes the sprocket waveform permitting use of the sprocket to gate the data outputs. The sprocket channel output is +5 VDC at 15 mA with an $1 \mathrm{k} \Omega$ external load during a hole condition and 0.0 ± 0.5 VDC during a no-hole condition.

3-32. Tape Drive System. The RUN and STOP control signals to the tape reader are applied to a single input line. The input connector is wired to permit external-signal run/stop control. Tape RUN/STOP control signals are applied as inputs to the pinch roller and brake circuits, controlling the starting and stopping of tape. The tape runs (slews) for the duration of a RUN signal, and stops on receipt of a STOP signa1.

3-33. Pinch Roller Circuit. The pinch roller circuit is essentially a noninverting amplifier; the output is used to energize or deenergize the pinch roller solenoid. The pinch roller is controlled by inputs from the control circuit.

3-34. Brake Circuit. The brake circuit is essentially a noninverting amplifier. The output is used to energize or deenergize the brake solenoid, and is controlled by inputs from the control circuit.

3-35. Drive Motor. The drive motor runs continuously when power is applied to the reader. It imparts motion to the tape when the brake is deenergized and the pinch roller is energized.

3-36. Tape Stepping. Tape stepping is controlled by a closed-loop operation (figure 3-9). An initial run pulse is applied by the I/O Console control circuitry. Using the sprocket output (PSP) for synchronization, the I/O control circuits also apply stop signals to the
reader. In this manner, the I/O Console controls both the starting and stopping of tape. The reader is capable of stepping tape at any rate up to slew speed. Due to the synchronization between the paper tape reader and the I/O Console, this capability is possible. The stepping rate can be increased to a point where the pinch roller and brake are never fully deenergized and energized respectively. At this point the tape will begin slewing. For instance, if there is no delay involved for the external equipment to process the data received from the reader, the I/O Console can generate another run pulse at the same time that data is received.

3-37. TAPE PUNCH OPERATION. The tape punch set is an electromechanical apparatus that punches information on paper tape. Information is received from external control circuits as combinations of electrical code pulses. Code pulses which enter the tape punch as electrical impulses are translated into mechanical motions that punch corresponding combinations of code holes in the tape. The code pulses are accompanied by a feed pulse which causes the equipment to advance the tape.

3-38. Information is received by the punch in the form of a binary permutation code. The units of the information (characters, numerals, etc.) are represented by combinations of binary intelligence (bits), each of which may be in one of two states, such as on or off, yes or no, 1 or 0 .

3-39. Figure 3-10 illustrates a 6-level code. The code is expressed in either electrical or tape form. In electrical form, each level of the code combinations consists of either a current condition (referred to as a marking pulse) or no-current condition (spacing pulse). Figure $3-10 B$ is a graphic representation of a 6-level code combination with alternate marking. and spacing levels. In tape form, the characters are represented by combinations of code holes.

NOTE:
STEPPING SPEED OF READER VARIES DIRECTLY WITH DELAY TBME.

Figure 3-9. Paper Tape Stepping Control.

Each intelligence level consists of either a hole (corresponding to a marking pulse) or the absence of a hole (corresponding to a spacing pulse). The electrical combination of figure 3-10B is shown in tape form in figure 3-10C. Code and feed hole configurations for the different levels of tape are illustrated in figure 3-10D.

3-40. Since the punch cycles continuously, the feed and code pulses must be introduced at a specific time to be properly processed by the punch. The punch produces synchronizing (or clock) pulses which cause the external control circuits to apply a feed pulse and release any code combination they have in storage.

3-41. DETAILED FUNCTIONAL DESCRIPTION.
3-42. SYMBOLOGY. The following paragraphs discuss logic levels, circuitry, symbology and component notations used in the I/O Console. A figure accompanies each topic to aid in the explanation and understanding of that area of the symbology.

3-43. Internal Logic Levels. The internal logic levels are referred to as highs (0 volts) and lows (-4.5 VDC). If a low level is needed to satisfy a particular logic function, a circle is
drawn on the input line. If a high level is needed, there is no circle. In the same manner, the presence of a circle on the output lead implies that a low level exists if the function is satisfied. The absence of a circle indicates a high level. See figure 3-11 for an illustration of circle level notation.

3-44. AND Logic Function. The AND logic function is performed by a circuit referred to as an AND gate. This gate is identified by a special symbol. To satisfy an AND gate, all of the inputs must be present at the indicated levels (circle notation). When the gate is satisfied, the indicated output level is present. See figure 3-12 for the four basic AND configurations with truth tables. These examples use only two inputs, but there can be many more. Regardless of number, the inputs must all be at the indicated level to satisfy the AND gate.

3-45. Detailed Analysis. See figure 3-13 for a schematic description of the AND gate. Current flows from the -15 VDC supply through the $2.4 k \Omega, 470 \Omega$, and $6.8 \mathrm{k} \Omega$ resistors to the 15 -VDC supply. A voltage is developed across the 470Ω resistor of the polarity shown. If both inputs A and B are at low levels, the voltage applied to the transistor base

Figure 3-10. Binary Permutation Code.

Figure 3-11. Illustration of Circle Level Notation.
with respect to emitter (ground) is negative which forward-biases the transistor. As a result, current flows from the -4.5 VDC supply through the collector to the emitter, and the to ground. In this condition, the output is at ground potential because of the low internal resistance of the collector-to-emitter path. If either A or B inputs (or both) is at a high level (ground), current flows from the -15 VDC supply through the $2.4 k \Omega$ resistor and input diode. The low internal resistance of the input diode gives an effective ground level on the left side of the 470Ω resistor. The voltage drop across this resistor of the polarity shown becomes the transistor bias which cuts off the transistor. Depending upon the load, approximately -4.5 VDC is present at the output.

3-46. OR Logic Function. The OR logic function is performed by a circuit referred to as an OR gate. The gate is identified by a special symbol. To satisfy an OR gate, at least one of the inputs must be present at the indicated level. When the gate is satisfied, the indicated output level is present. An OR gate can be drawn as an equivalent AND gate. See figure 3-14 for the four basic configurations with truth tables and equivalent AND gates. These examples use only two inputs. There can be many more inputs. Regardless of the number. at least one input must be at the indicated level to satisfy the OR gate.

3-47. Detailed Analysis. See figure 3-15 for schematic description of the OR gate. Current flows from the -15 VDC

NO CIRCLE HOUTPUTIF SATISFIED
NO CIRCLES ALLHINPUTS REQUIRED TO SATISFY

A. HIGH INPUTS, HIGH OUTPUT

CIRCLE LOUTPUTIF SATISFIED NO CIRCLES ALLHMRPUTSS REQUIRED TO SATBSFY

B. HIGH INPUTS, LON OUTPUT

NO CIRCLE
HOUTPUTIF
SATISFIED

CIRCLES ALL
LINPUTS
REQUIRED TO
SATISFY

C. LOW IMPUTS, HIGH OUTPUT

D. LOW INPUTS, LOW OUTPUT

Figure 3-12. Basic AND Gates.

Figure 3-13. Low Input, High Output AND Gate.
supply through the 470Ω resistor to the 15-VDC supply. A voltage is developed across the 470Ω resistor of the polarity shown. If both inputs A and B are at high levels (ground), current flows from the -15 VDC supply through the $2.2 \mathrm{k} \Omega$ resistors and the input diodes. This ground level is applied to the left side of the 470Ω resistor which causes its voltage drop to be cut off and the -4.5 VDC supply is felt as the output. If either input is at a low leve1, that low level is applied to the left side of the 470Ω resistor. If a ground is applied to the other input, its coupling to the 470Ω resistor is reverse-biased and cut off. The resulting negative voltage applied to the transistor forward-biases it to cause collector-to-emitter current flow from the -4.5 VDC supply. The output is at ground level because of the relatively low internal resistance of the transistor.

3-48. AND/OR Combination Logic Function. AND and OR circuits can be combined into one gate. See figure 3-16
for an example of an AND/OR gate. Both logic symbols represent the same circuits. Circuit A performs an OR function of the AND gate inputs. That is, only one input AND gate needs to be satisfied (both inputs at low levels) to satisfy the OR function and produce a high level output. Circuit B performs the same logical operation as circuit A; except if B is satisfied (low level output), A is not satisfied (low level input). In circuit B, input gates are represented as OR functions. All input OR gates must be satisfied (either input at high level for each gate) to satisfy the output AND function. The input AND/OR gates are comprised of diode circuitry.

3-49. Flip-Flop. The flip-flop (F/F) is a bistable device. It has two stable states referred to as set and clear. Flip-flops can be used as temporary storage elements since they can retain either of these states. The set/clear condition represents the information stored. Several flip-flops (registers)

INPUTS		OUTPUT
A	B	C
L	L	L
L	H	M
H	L	H
H	M	H

A. HIGH INPUTS, HIGH OUTPUT

B. HIGH INPUTS, LOW OUTPUT

C. LOW INPUTS, HIGH OUTPUT

D. LOW INPUTS, LOW OUTPUT

EQUIVALENT gate

EQUIVALENT GATE
 EQUIVALENT gate

EQUIVALENT GATE

Figure 3-14. Basic OR Gates.

Figure 3-15. Low Input, High Output OR Gate.
can be used to hold a complete binary word. See figure 3-17 for an example of the flip-flop function. The unique circuit number for a flip-flop is slightly different as shown in figure 3-18. The flip-flops have X in their unique terms. In this example, the 1 and 0 sides are referred to by the terms 01100 and 00100, respectively. This particular flip-flop is stage 2° of the input register.

3-50. There are several variations concerning the set and clear inputs. If the clear input was circled, a low level would be required to clear. The clear input may also have an AND gate such that the coincidence of several conditions may be necessary to perform the clearing. If the flip-flop is to hold a binary bit, it is usually cleared first (cleared state represents O_{2}) and then set (set state represents 1_{2}). The output conditions for the two states hold true for any flip-flop, regardless
of the set and clear input configuration. The 1 side output lead is always circled to indicate a low level when set.

3-51. Component Notation. Each circuit has a unique reference number which no other circuit has. Also, the printed circuit card type number and card location within the machine is noted. See figure 3-19 for an example of logic gate notations.

3-52. PRINTED CIRCUIT MODULES. The I/O Console uses 25 or 26 different types of circuit cards, depending on the interface operation. Two unique cards are used for slow interface (-15 VDC), and three unique cards are used for fast interface (-3 VDC). Adjustment procedures for time delay (TD) cards are included in maintenance requirement cards. Descriptions and logic symbols for each card are illustrated in figures 3-20 through 3-48.

Figure 3-16. AND/OR Combination Gate.

3-53. These circuit cards, prefixed by 700, are color-coded with four bands. The code is read the same as that for resistors. The color code is applicable to the last four digits of the type number. A card with brown (1), yellow (4), gray (8), and green (5) bands would be a type 7001485 card. The dash number following the least significant digit in the card type number gives the revision of the basic card; that is, if card type 7001480 has been revised five times, it would then be listed as card type 7001480-05. Any newly revised card type can replace an old card; however, an older revision card should not be substituted for a new card. The card type numbers and the functional schematics that follow need not be updated if a newly revised card is released, since the new revision replaces the old card.

3-54. Printed Circuit Card Location. A chassis map is provided in figure 5-20 to show the layout of the printed circuit card chassis. The map illustrates location and type number of each printed circuit card used in the I/O Console. In addition, the chassis map includes the number of circuits available on each card, logic notations for those circuits that are used, spare circuits on each
card, and spare connectors on the chassis. The following pertains to the printed circuit card shown in location A9 on figure 5-20:
a. Contains a type 2830 TD.
b. The card contains two circuits, labeled 18001(5) and 52001(6) on the functional schematics.
c. The number 5 indicates that the circuit identified is found on figure 5-5.

3-55. Functional Description of Printed Circuit Cards. Figures $3-20$ through 3-48 illustrate and describe each printed circuit card used in the I/O Console. The descriptions are functional since they describe each circuit in terms of its inputs and outputs rather than its internal electronic operation. Whenever possible, inputs and outputs are defined as lows or highs. In the I/O Console, a low always implies a potential of -4.5 VDC , and a high always implies ground potential or 0.O-VDC. On the transmission lines, a high implies ground potential ($0.0-$ VDC) and a low implies a negative potential (-3 or -15 VDC).

Figure 3-17. Flip-Flop.

3-56. Each printed circuit card description contains the following information:
a. Card name and type number
b. Symbol used to represent the card on the functional schematics
c. A logic description and a design description
d. Input and output pin numbers for each circuit on the card
e. Power requirements.

3-57. LOGIC DESCRIPTION (ON-LINE MODE).
3-58. WORD FORMATS. Requests, interrupts and data are exchanged between the computer, the I/O Console and the input/output devices via bit-position encoded words. The following paragraphs
describe the interface words and reference figures showing their format.

3-59. Input and Output Data Words. To initiate an input/output operation with the I/O Console, the computer places an appropriate external function data word on the output data lines and sets the external function acknowledge line. The I/O Console circuitry samples the data word and enables the selected device. If an output device is selected, the I/O Console sets the output register line. The computer then sets the appropriate output data lines and the output acknowledge line which enables gating of data into the output register. From the output register, the data is gated either to the printer or tape perforator, or both. After each print/punch cycle, the output register is cleared and the output request line is set. This operation is repeated until all desired data is transferred to the I/O Console, at which time the computer terminates the operation.

Figure 3-18. Flip-Flop Notation.

3-60. The input data is placed in the input register via the keyboard or reader, and the input request line is set. The computer detects the input request, samples the data, and sets the input acknowledge line which clears the input register. After one keyboard/ reader operation, the cycle is repeated until all desired data is transferred to the computer, at which time the computer terminates the operation.

3-61. External Function Words. In the on-1ine mode, the I/O Console is controlled by external function words. These external function words are instruction words sent, under program control, from the computer to the I/O Console to select an output device (paper tape punch, printer) or input device (paper tape reader, keyboard) for data handling. The external function word is a seven-bit, position-encoded word composed of logic highs and lows. The position and number of highs and lows in the external function code word determine which device is to be selected. (Refer to table 3-2 for the external function code format.) For any output operation, the output control enable bit $\left(2^{0}\right)$ must be set in addition to the device selection bit (bit 2^{2} for the printer or bit 2^{2} for the tape perforator). To disable the operation of an output device, the output control enable bit must be set, and the device selection bit cleared. Similarly, for any
input operation, the input control enable bit (bit 2^{3}) must be set in addition to the device selection bit (bit 2^{4} for the keyboard, or bits 2^{5} and 2^{6} for the paper tape reader). To disable the operation of an input device, the input control enable bit must be set, and the device selection bit cleared.

3-62. CONTROL LOGIC, GENERAL. Upon receipt of an external function word, control logic within the I/O Console enables the selected device or devices. The sequence of events that takes place at this time (figure 3-49) is as follows:
a. The I/O Console continuously holds the external function request line set, except when not in a condition to accept an external function message.
b. The computer detects the external function request.
C. The computer, under program control, initiates an external function buffer.
d. The computer places the external function word on the output data lines.
e. The computer sends the external function acknowledge, indicating that an external function word is ready for sampling.

Figure 3-19. Logic Gate Notation.
f. The I/O Console detects the external function acknowledge and clears the external function request.
g. The I/O Console samples the external function word and enables or disables the requested input or output device.
h. The computer clears the external function acknowledge and the output lines.

3-63. CONTROL LOGIC, DETAILED. See the referenced logic diagrams for the following detailed analysis of the general on-line control circuitry. Amplifier driver card 40000 (5-5, 3C) normally outputs 0 volts, representing an external function request (EF REQ) to the computer. The computer responds to the EF REQ and, under program control, initiates the external function buffer, places an external function word on the output data lines, and sends an external function acknowledge (EF ACK) to the I/O Console.

3-64. I/O Console Control Enables. Input amplifier 17001 (5-5, 4B) converts the EF ACK from the computer to an I/O logic low (-4.5 VDC) and, because of delay circuit 18001 (5-5, 4B), enables 19001 (5-5, 4C) for $2 \mu \mathrm{sec}$. The $2 \mu \mathrm{sec}$ high pulse from 19D01 partially enables both the set and clear sides of PUNCH F/F OXD02 (5-5, 5D) through inverter 20002 (5-5, 5C) and gate 20001 (5-5, 5C) respectively. The low when EF ACK from 20002 also partially enables both the set and clear sides of PRINT F/F OXDO1 (5-6, 7C). The high when ON-LINE AND EF ACK from 19001 is inverted by 21000 (5-6, 6B), KEYBOARD $28 D 00(5-6,4 B)$ and gate 27D00 (5-C, 3C).

3-65. Clear OFF-LINE and Disable External Function Request. On figure 5-5 the low from 20001 (5-5, 5B) clears OFF-LINE F/F 00003 (5-5, 5D). This $2 \mu \mathrm{sec}$ pulse is stretched to 70 msec by 22000 (5-5, $3 C$) and inverted by $36000(5-5,3 C)$ to disable $40000(5-5,3 C)$ and prevent an EF REQ during this time. At the end of 70 msec , the output of 22 DOO goes high,

Figure 3-20. Inverter, Pulse Delay Card Type 250770.

Figure 3-21. Flip-Flop, Card Type 7002000.

Figure 3-22. Amplifier Driver, Card Type 7002013.

Figure 3-23. Flip-Flop, Card Type 7002020.

Figure 3-24. Inverter, Card Type 7002030.

Figure 3-25. Inverter, Card Type 7002050.

LOGIC SYMBOL

LOGIC DESCRIPTION

WHEN ALL INPUTS ARE LOW, THE OUTPUT IS A HIGH. WHEN AT LEAST ONE INPUT IS A HIGH, THE OUTPUT IS A LOW.

ELECTRICAL DESCRIPTION

THIS CIRCUIT OPERATES WITH INPUT PULSES THAT HAVE POSITIVE EXCURSIONS BETWEEN 0.0-VDC AND -0.5 VDC, AND NEGATIVE EXCURSIONS BETWEEN -3.6 VDC AND -5.4 VDC. THE EXCURSIONS OF THE OUTPUT VOLTAGE PULSES ARE THE SAME AS THOSE GIVEN FOR THE INPUT PULSES.

THE MAXIMUM INPUT CURRENT REQUIRED IS 5.8mA. THE CIRCUIT CAN DRIVE FIVE AND/OR GATES OR SIX AND GATES.

THIS CIRCUIT'S MAXIMUM SPEED IS SUCH THAT THE SECOND OF TWO SERIESCONNECTED CIRCUITS PRODUCES A USABLE OUTPUT BEFORE THE CLOCK-PHASE INPUT TO THE FIRST HAS EXPIRED. A NORMAL CLOCK-PHASE IS 166 NANOSECONDS LONG.

LOGIC				POWER				
INPUT		OUTPUT		PIN	1	2	3	
HIGH	LOW	HIGH	LOW	VOLT	G	15	-15	
0 V	-4.5 V	0 V	-4.5 V	mW	-4.5			

Figure 3-26. Inverter, Card Type 7002060.

Figure 3-27. Inverter, Card Type 7002070.

		$-\mathbb{P}$ LOGIC	 YMBOL				
LOGIC DES WHEN THE INPUT AND THE INPUT TO P OUTPUT IS A HIGH. PIN 12 IS 0 V AND IS A LOW, THE OUTP THE INPUT TO PIN 5 PUT IS A LOW, REGA INPUT. PIN 13 IS OF THE TWISTED PAI		-15 V , THE TO PIN 5 WHEN HE OUTOTHER RETURN	ELECTRICAL DESCRIPTION THIS CIRCUIT OPERATES WITH INPUT PULSES THAT HAVE POSITIVE EXCURSIONS BETWEEN 0.0 -VDC AND -0.5 VDC , AND NEGATIVE EXCURSIONS BETWEEN -13.5 VDC AND - 16.5 VDC. THE GATING INPUTPULSES HAVE POSITIVE EXCURSIONS BETWEEN 0.0-VDC and -0.5 VDC, AND NEGATIVE EXCURSIONS BETWEEN -3.6 VDC AND -5.4 VDC. THE EXCURSIONS OF THE OUTPUT VOLTAGE PULSES ARE THE SAME AS THOSE GIVEN FOR THE GATING INPUT-PULSES. THE MAXIMUM INPUT CURRENT REQUIRED IS 3.7mA. THE CIRCUIT CAN DRIVE TWO AND/OR GATES OR TWO AND GATES. THIS CIRCUIT IS PRIMARILY USED FOR INTERFACE BETWEEN EQUIPMENT. THE CIRCUIT DELAY IS 1 TO 2.2 MICROSECONDS.				
LOGIC			POWER				
INPUT	OUTPUT		PIN VOLT mW	1	2	3	4
HIGH LOW	HIGH	LOW		G	15	-15	-4.5
0 V -15V	0 V	-4.5 V		-	24	96	126

Figure 3-28. Inverter-Input, Card Type 7002090.

Figure 3-29. Amplifier-Control Driver, Card Type 7002130.

LOGIC SYMBOL

LOGIC DESCRIPTION

WHEN THE INPUT IS A LOW, THE OUTPUT AT PIN 13 IS 0 V. WHEN THE INPUT IS A HIGH, THE OUTPUT AT PIN 13 IS - 13.5 V . PIN 14 IS THE GROUNDED RETURN OF THE TWISTED PAIR.

ELECTRICAL DESCRIPTION
THIS CIRCUIT OPERATES WITH INPUT PULSES THAT HAVE POSITIVE EXCURSIONS BETWEEN 0.0 -VDC AND -1.5 VDC, AND NEGATIVE EXCURSIONS BETWEEN -3.6 VDC AND -5.4 VDC. THE OUTPUT PULSES HAVE POSITIVE EXCURSIONS BETWEEN O.0-VDC and -0.5 VDC, AND NEGATIVE EXCURSIONS BETWEEN -10.0-VDC AND -17.0 VDC.

THE MAXIMUM INPUT CURRENT REQUIRED IS 2.25 mA 。

THE RISE AND FALL TIMES ARE CONTROLLED TO BE LESS THAN 5 VOLTS PER MICROSECOND. THE CIRCUIT CAN DRIVE FOUR TWISTED-PAIR CABLES UP TO 300 FEET IN LENGTH.

Figure 3-30. Amplifier Driver, Card Type 7002141.

Figure 3-31. Inverter, Card Type 7002220.

LOGIC DESCRIPTION WHEN BOTH INPUTS TO PIN 12 AND PIN 5 ARE LOW, THE OUTPUT IS A HIGH. WHEN THE INPUT TO PIN 12 IS A HIGH AND THE INPUT TO PIN 5 IS A LOW, THE OUTPUT IS A LOW. WHEN THE INPUT TO PIN 5 IS A HIGH (DISABLE), THE OUTPUT IS A LOW, REGARDLESS OF THE OTHER INPUT. PIN 13 IS THE RETURN OF THE TWISTED PAIR.				ELECTRICAL DESCRIPTION THIS CIRCUIT OPERATES WITH INPUT SIGNALS THAT HAVE POSITIVE EXCURSIONS BETWEEN 0.0 -VDC TO -0.5 VDC, AND NEGATIVE EXCURSIONS BETWEEN -3.0 VDC AND -4.5 VDC. THE OUTPUT SIGNAL HAS A POSITIVE EXCURSION BETWEEN 0.0 -VDC AND - 0.4 VDC AND NEGATIVE EXCURSION BETWEEN -3.8 VDC AND -5.2 VDC. THE REQUIRED gate signal is the same as the output SIGNAL. A GATE SIGNAL BETWEEN O.O-VDC AND -0.4 VDC HOLDS THE OUTPUT NEGATIVE. THE CIRCUIT MAY BE USED WITH THE GATE OPEN IF DESIRED. THE MAXIMUM CIRCUIT DELAY AND STORAGE IS 200 NANOSECONDS. THE MAXIMUM INPUT CURRENT REQUIRED IS 1.1mA. THE CIRCUIT HAS HIGH COMMON-MODE NOISE-REJECTION WHEN USED WITH A TWISTED PAIR CABLE. THE INPUT IMPEDANCE IS BALANCED SO NOISE COUPLED IN ONE CONDUCTOR WILL ALSO BE COUPLED INTO THE OTHER CONDUCTOR. THE THRESHOLD LEVEL, VOLTAGE DIFFERENCE BETWEEN INPUT CONDUCTORS, IS BETWEEN -1.1 VDC and -1.9 VDC.				
LOGIC				POWER				
INPUT		OUTPUT		PIN VOLT mW	1	215180	3	4
HIGH	LOW	HIGH	LOW		G		-15	-4.5
0 V	-3V	0 V	-4.5 V		-		225	40

Figure 3-32. Amplifier, Differential, Card Type 7002321.

Figure 3-33. Amplifier, Control Line, Card Type 7002332.

Figure 3-34. Amplifier, Data Line, Card Type 7002342.

Figure 3-35. Amplifier Driver, Card Type 7002810.

Figure 3-36. Time Delay, Card Type 7002821.

Figure 3-37. Inverter Delay, Card Type 7002830.

Figure 3-38. Network Bias, Card Type 7002840.

Figure 3-39. Flip-Flop, Card Type 7002900.

Figure 3-40. Inverter, Card Type 7002920.

Figure 3-41. Flip-Flop, Card Type 7002930.

Figure 3-42. Amplifier Driver, Card Type 7002940.

Figure 3-43. Inverter, Card Type 7002990.

Figure 3-44. Capacitor Assembly, Card Type 7003180.

Figure 3-45. Amplifier Driver, Card Type 7003290.

Figure 3-46. Time Delay, 1.2 to 16.5 msec, Card Type 7003480.

Figure 3-47. Time Delay, 1.5 to 15 msec , Card Type 7003580.

LOGIC SYMBOL

Figure 3-48. Time Delay, Card Type 7105470.

Table 3－2．External Function Word Format

	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{~}} \\ & \stackrel{\rightharpoonup}{\alpha} \end{aligned}$			$\begin{aligned} & \text { 工 } \\ & \text { 艺 } \end{aligned}$	皆		－
2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	MEANING
						0 1	Ignore bits 1 and 2；status of output devices remains unchanged． Enable output：perform function specified by bits 1 and 2.
				0 0 1 1	0 1 0 1		Disable printer and disable tape perforator． Enable printer and disable tape perforator． Enable tape，perforator and disable printer． Enable tape perforator and enable printer．
			0 1				Ignore bits 4， 5 ，and 6；status of input devices remains unchanged． Enable input；perform function specified by bits 4，5，and 6．
0	0	0					Disable keyboard and disable paper tape reader．
0	0	1					Enable keyboard and disable paper tape reader．
0	1	0					Enable paper tape reader and disable keyboard．
0	1	1					Not used．
1	0	0					Not used．
1	0	1					Not used．
1	1	0					Enable paper tape reader，start read operation，and disable keyboard．
1	1	1					Not used．＊＊

is inverted by 36000 , and enables 40000 to produce another EF REQ. The 70 msec high from 36000 is routed to figure 5-6 on the low when EF REQ EN line, disabling the gate used for clearing START READ F/F OXDOO (5-6, 6C) when the tape head is up.

3-66. PRINTER OPERATION, GENERAL. For on-1ine printer operations, the computer sends an external function word of 003 (013_{8} clears input functions) to the $I \%$ Console (refer to figure 3-50 and referenced logic diagrams). When the I/O Console receives the EF word, the PRINT F/F is set, PRINT indicator lit, and power applied to the printer motor. After a half-second delay, the PRINTER READY F/F is set, the output register cleared, and an output data request (ODR) is sent to the computer. The sequence of events is described in the following steps.
a. The computer detects the ODR, places data from an assigned memory location on its output data lines (2^{0} through 2^{7}) and transmits an output data acknowledge to the I/O Console.
b. Upon detecting the output data acknowledge from the computer, I/0 Console control circuits gate the on-line ASCII coded data to the output register, drop the output data request (ODR), and initiate the serializer logic circuits. The serializer first sends a start pulse (space); serially gates the contents of the output register (bit by bit); and finally sends a stop pulse (mark) to the printer.
C. The printer then prints the character represented by the 7-bit ASCII code received from the I/O Console.
d. Control circuits in the I/O Console clear the output register and send another ODR to the computer. The action continues until the computer output buffer is empty or until the printer is deactivated by the computer program.
e. After data transmission is complete the program should deactivate the printer by sending an EF word of 001_{8} (011_{a} to master clear) to the I/O Console.
f. The printer operation can be stopped by depressing the PRINT CLEAR pushbutton, by depressing the MASTER CLEAR pushbutton or by the computer program.

3-67. PRINTER OPERATION, DETAILED. Refer to operational sequence flow diagram figure 3-50 and the referenced logic diagrams for the following discussion of printer operations. Steps 1 through 8 and 19 through 30 of the operational sequence flow diagram are applicable to printer operation.

3-68. External Function Acknowledge Enable. The EF acknowledge from the computer produces a $2 \mu \mathrm{sec}$ high from 19001 ($5-5,4 B$). This high is inverted by 20002 (5-5, 5C) to partially enable the set and clear sides of the PRINT F/F OXDO1 (5-6, 7C).

3-69. External Function Word Conversion and Translation. For printer operation. an external function word of 003 , (or 013_{8}) is received from the computer by the 20GXX gates (5-11 and 5-12). Active bits 2^{0} and 2^{1} are converted to I/O Console logic low levels (-4.5 VDC) by gates 20G00 (5-11, 3B) and 20G01 (5$11,4 B$) and routed to figure 5-6 as the low when OUTPUT DEVICE and low when SET PRINT F/F signals respectively.

3-70. SET PRINT F/F and Start Printer Motor. On figure 5-6, the low when OUTPUT DEVICE signal further enables the set and clear sides of PRINT F/F OXDO1 (5-6, 7C). The low when SET PRINT F/F fully enables the set side of PRINT F/F while disabling the clear side through inverter 30001 (5-6, 7B). With PRINT F/F OXDO1 set, the high from the clear side lights the PRINT indicator switch (DS24). This high is inverted to a low

SE640-AZ-MMM-010

Figure 3-49. On-Line Control Circuits
Operational Flow Sequence Diagram.

SE 640 -AZ-MMM-010

by 50001 ($5-6,8 B$) to initiate the START PRINTER signal from 53D01 (5-6, 8C), which goes to energize PRINTER relay K2 ($5-13,4 \mathrm{C}$). When K2 is energized, it completes a $115-$ VAC $60-\mathrm{Hz}$ path to the keyboard/printer input A7P1-Z and starts the printer motor.

3-71. Set PRINTER READY F/F After 0.5 Second Delay. The low from the set side of PRINT F/F OXDO1 (5-6, 7C) is inverted to a high by 55DO1 (5-6, 7D), removing the low when CLR PRINT RDY signal line from the clear side of PRINTER READY F/F 0 XE03 (5-2, 6B). The low when EN SET PRINTER RDY from the set side of PRINT F/F OXD01 (5-6, 7C) partially enables PRINTER READY F/F OXEO3 (5-2, 6B). The low from 50001 ($5-6,8 B$), which occurs when PRINT F/F OXDO1 (5-6, 7C) is set, enables time delay $52001(5-6,8 C)$ which produces a high output after a $0.5 \mathrm{sec}-$ ond delay. The 52D01 output is inverted by $54001(5-6,8 \mathrm{C})$ to produce a low when EN SET PRNTR RDY signal delayed $0.5 \mathrm{sec}-$ ond from the initiation of the printer operation. This delayed signal is used as the final enable for setting PRINTER READY F/F OXEO3 (5-2, 6B).

3-72. Clear Output Register. Since TAPE FEED F/F OXEOO (5-2, 4C) is clear at this time, the low from its clear side partially enables gate 53 EOO (5-2, 6 D) . Time delay $51 \mathrm{EOO}(5-2,3 \mathrm{C}$) is normally outputting a low which further enables 53E00. Gate 53E00 is fully enabled by the low from inverter 52E02, which is present at all times except when ENABLE PRINT F/F OXEO2 is set during printer operations. Enabling 53E00 produces a high output which is inverted by $57 E 00(5-2,8 C)$ and routed as the low when CLEAR OUTPUT REG signal to inverter 29G00 ($5-11,8 B$). The high from 29G00 is amplified by $30 G 00(5-11,8 B)$ and used to clear output register flip-flops (5-11 and 5-12).

3-73. Generate Output Data Request. The high from 53E00 (5-2, 6D) partially enables gate 54E00 (5-2, 6C). With PUNCH F/F OXDO2 (5-5, 5D) clear, the low
when CLR PUNCH READY signal from its clear side partially enables 50 EO ($5-2$, $6 B$). A second enable for $50 E 02$ is the low when ENABLE signal from 37D00 (5-6, 4D) which is present at all times except during keyboard operations. Gate 50E02 is fully enabled by the low from the set side of PRINTER READY F/F OXEO3 (5-2, 6B). The high from 50E02 provides the final enable for 54EOO whose low output is used to partially enable OUTPUT REQ generator 56E00 (5-2, 7C). A low when EN REQ signal from 71 H 21 ($5-8,3 \mathrm{C}$) is present at all times when the serializer is inactive. This signal is inverted by $71 H 22$ (5-2, 7B), reinverted by OR gate $54 E 01$ (5-2, 7C), and applied as a partial enable for $56 \mathrm{E} 00(5-2,7 C)$. The final enable for 56000 is the low when EN REQ from the clear side of OFF-LINE F/F OXD03 (5-5, 6D), which is present during all on-line operations. When 56 E 00 is enabled, it generates an OUTPUT REQ signal for transmittal to the computer. The output data request (ODR) is detected by the computer. The computer places ASCII-coded data from an assigned memory location on its output lines (2^{0} through 2^{7}) and transmits an output data acknowledge (OD ACK) to the I/O Console.

3-74. Set ENABLE PRINT F/F, Remove ODR, and Gate Data to Output Register. The OD ACK from the computer is converted to a low console logic level (-4.5 VDC) by 47E04 (5-3, 3B) to enable gate 48E04 ($5-3,3 C$) since the low when COPY enabling signal is present during all online operations. The high from 48E04 is inverted to a low by $51 E 04(5-3,3 C)$ to partially enable 53E04 (5-3, 3D). The low from 51E04 is also routed through $52 E 04$ (5-3, 3C), which allows 53E04 to be fully enabled for $2 \mu \mathrm{sec}$. The 53E04 output is a $2 \mu \mathrm{sec}$ low when GATE OUTPUT DATA signal which is used to partially enable setting ENABLE PRINT F/F OXEO2 (5-2, 5C). The set side of ENABLE PRINT F/F OXE02 is fully enabled by the low from the set side of PRINTER READY F/F OXEO3 (5-2, 6B). With OXEO2 set, the low from its set side partially enables

50E06 (5-2, 5C). Gate 50E06 is fully enabled by the low on the high when KB signal line from $37000(5-6,4 C)$ which is present at all times except during keyboard operations. The high from 50E06, along with the high from the clear side of ENABLE PRINT F/F OXE02, removes a 11 low inputs to $51 E 02$ causing it to produce a low output. The low is inverted by 52 E 02 (5-2, 6C) whose high output disables 53E00 (5-2, 60). The low from 53E00 is inverted by $57 E 00$ (5-2, 8C), removing the low when CLR OUTPUT REG signal from its output line. The low from 53E00 also disables 54E00 ($5-2,6 \mathrm{C}$), preventing generation of an OUTPUT REQ signa1. The $2 \mu \mathrm{sec}$ low when GATE OUTPUT DATA signal from 53E04 (5-3, 3D) is also used to fully enable 19G00 ($5-11,7 B$) since the low when COPY enabling signal is present during all online operations. The low from 19G00 gates the on-line data into the output register flip-flops OXG00 through OXG07 (5-11 and 5-12).

3-75. Enable Serializer. The high from 50E06 (5-2, 5C) is routed as the high when INIT SERIALIZER signal to figure 5-7 where it is inverted by three separate circuits: $71 \mathrm{HOO}(5-7,8 \mathrm{C})$, 72 HOO (5-7, 5B) and 74H00 (5-7,5B). The low from 71 H 00 partially enables $71 \mathrm{HO1}$ (5-7, 8 C). The low from 72 HOO partially enables individual AND gates for bits 0 , 1. and 2, each of which provide inputs to OR gate $72 \mathrm{HOl}(5-7,4 B)$. This low also partially enables bit 3 AND gate $73 \mathrm{HOO}(5-7,3 \mathrm{~B})$. The low from 74 HOO is routed to figure 5-8, on the low when INIT SERIALIZER signal line where it partially enables individual AND gates for bits 5 and 6 and the parity bit, each of which provide inputs to OR gate $75 \mathrm{HOO}(5-8,5 \mathrm{C})$. The low when INIT SERIALIZER signal also partially enables bit 4 AND gate $74 \mathrm{HO1}(5-8,7 \mathrm{C})$. The clear side output from output register flip-flops OXGOO through OXGO6 (figures 5-11 and 5-12) are routed to figures 5-7 and $5-8$ to enable or disable their respective AND gates, depending upon the bit configuration of the stored ASCII code.

3-76. Initiate Serializer, CTear SERIALIZER READY F/F and Disable EFR. Gate $71 \mathrm{HO1}$ (5-7, 7C) is fully enabled by the low when SERIAL CONVERTER READY line. A low is present on this line at all times except when SERIALIZER READY F/F OXHOO (5-8, 3C) is cleared. When $71 \mathrm{HO1}$ is enabled, its low output is delayed $2 \mu \mathrm{sec}$ by circuits 74 H 61 (5-7, 7C) and 74 H 62 (5-7, 7D) and routed to figure 5-8 to clear SERIALIZER READY F/F OXHOO (5-8, 3C). With SERIALIZER READY F/F OXHOO cleared, the high on the low when SERIAL CONVERTER READY output disables $71 \mathrm{HO1}$ (5-7, 7C). Gate 71H01 therefore produces a low output whenever it is enabled. This $2 \mu \mathrm{sec}$ negative pulse from 71H01 initiates the serializer action necessary for keyboard/printer operations. The high on the low when SERIALIZER CONVERTER READY line from the set side of SERIALIZER READY F/F OXHOO (5-8, 3C) also goes to disable 40000 (5-5, 3 C), preventing generation of external function requests (EF REQ signals) while the serializer is in operation.

3-77. Basic Serializer Operations. Refer to figure 3-51 during the following discussion of serializer delay line operations. When 71 HOL (5-7, 7C) is enabled, its $2 \mu \mathrm{sec}$ low output is stretched to 9.09 msec by $71 \mathrm{HO2}$ (5-7, 7D) and inverted by 71 H 03 (5-7, 7A). When the positive pulse from $71 H 03$ terminates (goes negative), $71 \mathrm{HO4}(5-7,7 \mathrm{~B}) \mathrm{will}$ produce a 9.09 msec output pulse which is delayed by 9.09 msec from the initiation of the serializer. In this manner, the 9.09 msec negative pulse travels down the delay line consisting of circuits 71 H 03 through 71 H 20 . Each stage of the inverter-delay circuit delays the pulse an additional 9.09 msec .

NOTE

Each delay stage consists of an input inverter (2070 card) and a time delay (2821 card). The inverters have odd number designations and the time delays are designated by even numbers.

Figure 3-51. Serializer Timing Gates and Pulses.

3-78. Generation of Data to Printer Signals. In the normal state, gate $72 \mathrm{HO2}(5-7,6 \mathrm{C}$) is fully enabled since all inputs are low. Its high output is inverted to a low by $72 \mathrm{HO} 3(5-7,6 \mathrm{C}$) causing a constant data to printer mark signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C})$.

3-79. Start. When the serializer is initiated, the positive pulse from 71 HO 3 (5-7, 7A) occurs during the first 9.09 msec , which is the time frame of the start pulse. Refer to figure 3-51 for an example of the pulse train configuration. This 9.09 msec high disables $72 \mathrm{HO2}$ (5-7, 6C) whose low output is inverted by $72 \mathrm{HO} 3(5-7,6 \mathrm{C})$ to generate a DATA to PRINTER space signal from 72H04 (5-7, 6D) during the start pulse time frame.

3-80. Bit 0 . The output of $71 \mathrm{HO4}$ (5-7, 7B) is a negative 9.09 msec pulse delayed 9.09 msec from the initiation of the serializer. This negative pulse enables bit 0 of the AND gate, which is fully enabled or disabled at this time, depending upon the state of output register F / F OXGOO (5-11, 3C).
a. If F / F OXGOO $(5-11,3 C)$ is cleared (contains a space), the low on its clear side fully enables bit 0 AND gate of $72 \mathrm{HO1}(5-7,4 \mathrm{~B})$ causing a high output from OR gate $72 \mathrm{HO1}(5-7,4 B)$. This high disables 72 HO ($5-7,6 \mathrm{C}$), causing a DATA to PRINTER space signal from $72 \mathrm{HO} 4(5-7,6 C)$ during $D 0$ time frame (figure 3-51).
b. If F/F OXGOO (5-11, 3C) is set (contains a mark), the high on its clear side will not enable bit 0 of the AND gate part of $72 \mathrm{HO1}(5-7,4 \mathrm{~B})$, causing a low from the OR gate part of 72 HOL . This low keeps $72 \mathrm{HO2}(5-7,6 \mathrm{C}$) enabled, causing a DATA to PRINTER mark signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C})$ during DO time frame.

3-81. Bit 1. The output from 71 H06 $(5-7,6 B)$ is a negative 9.09 msec pulse
delayed 18.18 msec from the initiation of the serializer. This negative pulse bit 1 AND gate is fully enabled or disabled during this time frame, depending upon the state of output register F / F OXGO1 (5-11, 4C). The remaining operations in the generation of a DATA to PRINTER space or mark for bit 1 are similar to those described in paragraph $3-80$, steps $a_{\text {. and }}$ b., with the following exceptions.
a. Output register F/F OXGO1 (5-11, 4C) and bit 1 of the AND gate part of 72H01 (5-7, 4B) are referenced.
b. The DATA to PRINTER signal from $72 \mathrm{HO4}$ ($5-7,6 \mathrm{C}$) occurs during D 1 time frame (figure 3-51).

3-82. Bit 2. The output from 71 H 08 (5-7, 5B) is a negative 9.09 msec pulse delayed 27.27 msec from the initiation of the serializer. This negative pulse enables bit 2 AND gate, which is fully enabled or disabled during this time frame, depending upon the state of output register F/F OXGO2 (5-11, 6C). The remaining operations in generating a DATA to PRINTER space or mark for bit 2 are similar to those described in paragraph 3-80, steps a. and b., with the following exceptions.
a. Output register F/F OXGO2 (5-11, $6 C$) and bit 2 of the AND gate part of $72 \mathrm{HO1}(5-7,4 \mathrm{~B})$ are referenced.
b. The DATA to PRINTER signal from $72 \mathrm{HO4}$ ($5-7,6 \mathrm{C}$) occurs during D 2 time frame (figure 3-51).

3-83. Bit 3. The output from 71 H 10 (5-7, 3B) is a negative 9.09 msec pulse delayed 36.36 msec from the initiation of the serializer. This negative pulse enables bit 3 AND gate $73 H 00(5-7,3 B)$, which is fully enabled or disabled during this time frame, depending upon the state of bit 3 output register F/F OXG03 (5-11, 7C).
a. If F/F OXG03 is cleared (contains a space), the low on its clear side fully enables bit 3 AND gate 73 HOO (5-7, 3B) whose high output disables 72 HO 2 (5-7, 6C), causing a DATA to PRINTER space signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C}$) during D3 time frame.
b. If F/F OXGO3 (5-11; 7C) is set (contains a mark), the high on its clear side disables bit 3 AND gate 73 HOO (5-7, 3B) whose low outputs keep $72 \mathrm{HO2}$ enabled causing a DATA to PRINTER mark signal from 72HO4 (5-7, 6C) during D3 time frame (figure 3-51).

3-84. Bit 4. The output from 72 H 12 (5-8, 8B) is a negative 9.09 msec pulse delayed 45.45 msec from initiation of the serializer. This negative pulse enables bit 4 AND gate $74 \mathrm{HOL}(5-8,7 \mathrm{C})$, which is fully enabled or disabled during this time frame, depending upon the state of bit 4 output register F/F OXGO4 (5-12, 3C). The remaining operations in generating a DATA to PRINTER space or mark for bit 4 are similar to those described in paragraph 3-83, steps a. and b., with the following exceptions:
a. Output register F/F OXGO4 (5-12, $3 C$) and bit 4 AND gate $74 \mathrm{HO1}(5-8,7 \mathrm{C})$ are referenced.
b. The DATA to PRINTER signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C}$) occurs during D4 time frame (figure 3-51).

3-85. Bit 5. The output from 71H14 (5-8, 6B) is a 9.09 msec negative pulse delayed 54.54 msec from the initiation of the serializer. This negative pulse enables bit 5 AND gate, which is fully enabled or disabled during this time frame, depending upon the state of bit 5 output register F/F OXG05 (5-12, 4C).
2. If F/F OXGO5 (5-12, 4C) is cleared (contains a space), the low on its clear side fully enables bit 5 of the AND gate part of $75 \mathrm{HOO}(5-8,5 \mathrm{C})$. This high disables $72 \mathrm{HO2}(5-7,6 \mathrm{C})$, causing a DATA to PRINTER space signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C}$) during D 5 time frame (figure 3-51).
b. If F/F OXG05 (5-12, 4C) is set (contains a mark), the high on its clear side disables bit 5 AND gate (5-8, 6C) causing a low from OR gate 75 HOO (5-8, 5C). This low keeps 72 HO (5-7, 6C) enabled, causing a DATA to PRINTER mark signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C})$ during D5 time frame.

3-86. Bit 6. The output from 71 H 16 (5-8, 5B) is a negative 9.09 msec pulse delayed 63.63 msec from the initiation of the serializer. This negative pulse enables bit 6 AND gate which is fully enabled or disabled during this time frame, depending upon the state of output register F/F OXG06 (5-12, 6C). The remaining operations in generating a DATA to PRINTER space or mark for bit 6 are similar to those described in paragraph 3-85, steps a. and b., with the following exceptions.
a. Output register F/F OXG06 (5-12, 6 C) and bit 6 of the AND gate part of 75H00 (5-8, 5C) are referenced.
b. The DATA to PRINTER signal from $72 \mathrm{HO4}$ ($5-7,6 \mathrm{C}$) occurs during D6 time frame (figure 3-51).

3-87. Parity Pulse. The output from 71 H 18 (5-8, 3B) is a negative 9.09 msec pulse delayed 72.72 msec from the initiation of the serializer. This negative pulse fully enables 75 HOO (5-8, 5C) whose high output disables $72 \mathrm{HO2}$ (5-7, 6C), causing DATA to PRINTER space signal from $72 \mathrm{HO4}(5-7,6 \mathrm{C})$ during parity time frame (figure 3-51).

3-88. Stop Mark. The parity pulse is not used, however, when it terminates (81.81 msec after initiation of the serializer) gate $75 \mathrm{HOO}(5-8,5 \mathrm{C}$) is disabled. The low from 75 HOO enables 72 HO 2 (5-7, 6C) causing a DATA to PRINTER mark signal from $72 \mathrm{HO4}$ (5-7, 6C). This mark represents the stop signal for the character being received from the computer, and will remain on the DATA to PRINTER signal line until the next printer or keyboard operation is performed.

3-89. Set SERIALIZER RDY F/F and Clear ENABLE PRINT F/F. The output of 71 H 20 (5-8, 3C) is a negative 18.18 msec pulse delayed 81.81 msec from the initiation of the serializer (figure 3-51). This low sets SERIALIZER RDY F/F OXHOO (5-8, 3C) and clears ENABLE PRINT F/F OXEO2 (5-2,5C). The 18.18 msec low from $71 \mathrm{H} 2 \mathrm{O}(5-8,3 \mathrm{~B})$ is also inverted to a high by 71 H 21 (5-8, 3C) and routed on the low when EN REQ line to figure 5-2, where it is inverted by 71 H 22 (5-2, 7B) and reinverted by 54E01 (5-2, 7C) to disable 56E00 (5-2, 8C), preventing generation of an OUTPUT REQ signal during the 18.18 msec stop pulse time frames. With OXHOO (5-8, 3C), the low when SERIAL CONVERTER READY signal on its set side output partially enables 40000 (5-5, 3C) permitting further EF REQ signals to be generated. The low when SERIAL CONVERTER READY signal from the set side of OXHOO also partially enables 71H01 (5-7, 8C) in preparation for receiving the next character transmission from the computer.

3-90. Clear Output Register. With ENABLE PRINT F/F OXEO2 (5-2, 5C) cleared, the high from its set side disables $50 E 06$ ($5-2,5 \mathrm{C}$), since high when KB enable for this gate contains a low at all times except during keyboard operations. The low from 50 E 06 is inverted by $51 E 02$ (5-2, 6B) and reinverted by 52E02 (5-2, 6B) to partially enable gate $53 E 00(5-2,6 D)$. Since TAPE FEED F/F OXEOO (5-2, 4C) is clear, the low from its clear side further enables 53E00. Gate 53E00 is fully enabled by the low from time delay $51 E 00(5-2,3 C)$, which is present at all times except during certain punch operations. The high from 53E00 is inverted by 57E00 (5-2, 8C) and routed as the low when CLEAR OUTPUT REG signal to inverter 29G00 (5-11, 8B). The high from 29G00 is amplified by $30 \mathrm{GOO}(5-11,8 \mathrm{~B})$ and used to clear the output register flipflops (5-11 and 5-12).

3-91. Generate ODR. The high from 53E00 (5-2, 6C) partially enables 54E00 (5-2, 6C). Gate 54E00 is fully enabled at this time by the high from 50 EO (5-2, 6B), which is present at a11 times during printer operations when PRINTER READY F/F OXEO3 (5-2, 6B) is set. The low from 54E00 partially enables OUTPUT REQ generator 56E00 (5-2, 7C). At the end of the 18.18 msec stop pulse from time delay $71 \mathrm{H} 20(5-8,3 B)$, the low when EN REQ signal from inverter 71 H 21 returns to a low. This low when EN REQ signal is inverted by 71 H 22 (5-2, 7B) and reinverted by $54 \mathrm{E} 01(5-2,7 B)$ to further enable 56EOO. OUTPUT REQ generator 56E00 is fully enabled at this time by the low when EN REQ which is present during all ON-LINE operations. With 56E00 enabled, an OUTPUT REQ is transmitted to the computer. The output data request is detected by the computer. The computer then places ASCII coded data from an assigned memory location on its output lines (2^{0} through 2^{7}) and transmits an output data acknowledge to the I/O Console.

NOTE

The remaining printer operations are listed in the following paragraph.

3-92. Automatic Termination of ON-LINE Printer Operation. For automatic termination of printer operations after all data has been transmitted, the computer initiates an external function acknowledge and transmits an external function word of 001_{8} to the I/O Console. When this EF ACK and EF word are received by the I/O Console, the following sequences occur:
a. The EF ACK generates a $2 \mu \mathrm{sec}$ positive pulse from 19001 (5-5, 4B) which is inverted to a low by $20001(5-5,5 B)$ and stretched to a 70 msec negative pulse by $22000(5-5,3 B)$. The low from $22 D 00$ is inverted by $36000(5-5,3 C)$.
disabling 40000 (5-5, 3C) and preventing generation of another EF REQ signal for 70 msec after receiving an EF ACK.
b. The $2 \mu \mathrm{sec}$ high from 19001 (5-5, 4B) is inverted by 20002 (5-5, 5C) to partially enable the set side of PRINT F/F OXDO1 (5-6, 7C). Bit 2^{0} is converted to $\mathrm{I} / 0$ low logic level (-4.5 VDC) by gate 20G00 (5-11, 3B) and routed to figure 5-6 as the low when OUTPUT DEVICE signal to further enable the clear and set sides of PRINT F/F OXDO1. The absence of EF word bit 2^{1} provides a high from 20G01 ($5-11,4 B$), which is routed on the low when SET PRINT F/F line to figure 5-6 where it disables the set side of PRINT F/F OXDO1 and is inverted through 30001 to fully enable the clear side.
c. With PRINT F/F OXDO1 (5-6, 7C) cleared, the low from its clear side extinguishes PRINT indicator (DS 24) and is inverted to a high by 50001 (5-6, 8B), which stops the printer motor by preventing the START PRINTER signal from $53 D 01$ (5-6, 8C).
d. The high from the set side of PRINT F/F OXDO1 (5-6, 7C) removes the low when EN SET PRNTR RDY enabling signal to PRINTER READY F/F OXEO3 (5-2, $6 B$). The high from the set side of 0XDO1 is also inverted by 55D01 (5-6, 7C) to clear OXEO3 (5-2, 6B).
e. With PRINTER READY F/F OXEO3 (5-2, 6B) cleared, the high output from its set side disables OR gate 50E02 (5-2, 6B) and disables the set side of ENABLE PRINT F/F OXEO2 (5-2, 5C). The low from 50E02 disables 54E00 (5-2, 6C) whose high output disables 56E00 (5-2, 7C), preventing further generation of OUTPUT REQ signals.
f. ENABLE PRINT F/F OXEO2 (5-2, 5C) was cleared by the negative 18.18 msec low when CLR INIT SERIAL from 71 H 20 (5-8, 3C) when the last data word from the computer was printed. Since the
high from PRINTER READY F/F OXEO3 is now holding its set side disabled, OXEO2 (5-2,5C) will remain cleared until another printer operation is initiated.
g. With ENABLE PRINT F/F OXEO2 (5-2, 5C) cleared, the low from its clear side is inverted by $51 E 02$ (5-2, 6B), and reinverted by 52E02 (5-2, 6C) to partially enable 53E00 (5-2, 6C). Gate 51E00 (5-2, 3C) is normally outputting a low (except during punch operations) which further enables $53 E 00$ (5-2, 6C). Gate $53 E 00$ ($5-2,6 C$) is fully enabled by the low from the clear side of TAPE FEED F/F OXEOO (5-2, 4C) (which is present at all times except during punch operations). With gate $53 \mathrm{EOO}(5-2,6 \mathrm{C}$) fully enabled, its high output is inverted by 57E00 (5-2, 8C), providing the low when CLEAR OUTPUT REG signal used to clear the output register (figures 5-11 and 5-12).
h. The high from the set side of ENABLE PRINTER F/F OXEO2 (5-2, 5C) disables 50E06, removing its high when SERIALIZER signal output to figure 5-7. A low on the high when INIT SERIALIZER signal line is inverted by 71 HOO ($5-7$, 8C) to disable $71 \mathrm{HO1}(5-7,8 \mathrm{C})$, preventing further initiation of the serializer. This low is also inverted by $72 \mathrm{HOO}(5-7,5 \mathrm{~B})$ and $74 \mathrm{HOO}(5-7,5 \mathrm{~B})$. The high from $72 \mathrm{HOO}(5-7,5 B)$ disables gates $72 \mathrm{HO1}(5-7,8 \mathrm{C}$) and 73H00 (5-7, 3B), causing them to produce low outputs. The high from $74 \mathrm{HOO}(5-7,3 B)$ is routed to figure 5-8 on the low when SERIALIZER signal line to disable $74 \mathrm{HO1}$ (5-8, 7B) and $75 \mathrm{HOO}(5-8,5 B)$, causing them to produce low outputs. The low from 74 HOL ($5-8,7 B$) combines with the lows from $72 \mathrm{HO1}(5-7,4 \mathrm{C})$ and $73 \mathrm{HOO}(5-7,3 \mathrm{C})$ to partially enable $72 \mathrm{HO} 2(5-7,6 \mathrm{C})$. The low from $75400(5-8,5 C)$ further enables $72 \mathrm{HO2}(5-7,6 C)$. A third enable for $72 \mathrm{HO2}(5-7,6 C)$ is provided by the low from $71 \mathrm{HO3}(5-7,7 A)$, which is present at all times when the serializer is inactive. The final enable for 72 HO 2 ($5-7,6 C$) is the low from the set side of KEYBOARD DATA (F/F 0XH01 (5-7, 8B), which is set at all times exept during
certain keyboard operations. With 72H02 ($5-7,6 C$) fully enabled, its high output is inverted by $72 \mathrm{HO3}$ (5-7, 6C) to disable $72 \mathrm{HO4}(5-7,6 \mathrm{D})$, producing a continual DATA-PRINTER mark signal until the next printer or keyboard operation is performed.

3-93. Manual Termination of ON-LINE Printer Operation. Various methods for manually stopping printer operations are available. These are discussed in the following paragraphs.

3-94. Depressing the PRINT CLEAR Pushbutton. On figure 5-6, when the PRINT CLEAR pushbutton ($\$ 10$) is depressed, PRINT F/F OXDO1 is cleared. The sequence of events occur as described in paragraph 3-92, steps c. through h..

3-95. Depressing the MASTER CLEAR Pushbutton. When the MASTER CLEAR pushbutton (S1, figure 5-3) is depressed, it produces a high when MASTER CLEAR which is routed to figures 5-2 and 5-5. The high from S1 (figure 5-3) is also inverted by 70E00 (5-3, 8B) and routed as low when MASTER CLEAR signals to figures 5-2, 5-6, and 5-8.
a. On figure 5-5, the high when MASTER CLEAR is inverted to a low by $20001(5-5,5 B)$. The low from 20D01 produces a 70 msec negative pulse from 22000 ($5-5,3 \mathrm{C}$) which is inverted by 36000 ($5-5,3 C$). This 70 msec positive pulse from $36000(5-5,3 C)$ prevents an EF REQ from being generated by disabling 40000 (5-5, 3C). However, at the end of $70 \mathrm{msec}, 40000$ is again enabled and EF REQ signals may be generated.
b. On figure 5-6, the low when MASTER CLEAR clears PRINT F/F 0XD01. The sequence of events occur as described in paragraph 3-92, steps c. through h..
C. On figure 5-2, the low when MASTER CLEAR ensures ENABLE PRINT F/F OXEO2 (5-2, 5C) is cleared (in case MASTER CLEAR is initiated while the serializer is in operation).

3-96. KEYBOARD OPERATION, GENERAL. For on-line keyboard operation, the computer sends an external function word 030_{8} (031_{8} clears output functions) to the I/O Console. Then, at the operator's option, data or control information may be sent to the computer in one of two modes as described in the following paragraphs.

3-97. Mode 1, Keyboard Entry Via Interrupt. The operator selects the interrupt mode by depressing the INTERRUPT indicator-switch on the I/O Console control pane1. Upon depressing a key, the code corresponding to that key is serially sent to the input register and to the printer. At this time, I/O Console control logic circuits generate an INTERRUPT signal to the computer. The computer detects the INTERRUPT and, consistent with its interrupt routine, stores the data on the input lines in an assigned memory location. After processing this data, the computer sends an input data acknowledge (ID ACK) to the I/O Console. Upon detecting the ID ACK, the I/O Console control circuits clear the INTERRUPT signal and the input register. To continue inputting to the computer via interrupts, the operator must manually depress the INTERRUPT indicator-switch prior to depressing a key for each character to be transmitted.

3-98. Mode 2, Keyboard Entry Via the Computer. When the keyboard operator depresses a key, the code corresponding to the selected character is sent serially to the input register and to the printer. At this time, control logic in the I/O Console generates an input data request (INPUT REQ) signal to the computer. Upon detecting the INPUT REQ, the computer stores the data on the input data lines in an assigned memory location. After processing this data, the computer sends an ID ACK to the I/0 Console. When the I/O Console detects the ID ACK, control circuits clear the INPUT REQ signal and the input register. Each time an operator depresses a key, this action takes place and continues
until the program deactivates the keyboard mode by sending an external function word of 010_{8} (or 011_{8} master clears the I/O Console) to the I/O Console. The keyboard operation can be stopped by the computer, as described, or by the following methods:
a. Depressing the KEYBOARD CLEAR pushbutton.
b. Depressing the MASTER CLEAR pushbutton.

3-99. KEYBOARD OPERATION, DETAILED. Refer to operational flow diagram (figure 3-50) and referenced logic diagrams for the following discussion of keyboard operations. Steps 1, 2, 9, and 43 through 60 of the operational sequence flow diagram are applicable to keyboard operation.

3-100. External Function Acknowledge Enable. The EF ACK from the computer produces a $2 \mu \mathrm{sec}$ high from 19001 (5-5, 4B). This high is inverted by 21000 (5-6, 6B) to partially enable KEYBOARD gate 28D00 (5-6, 4B).

3-101. Externa 1 Function Word Conversion and Translation. For keyboard operation, an external function word of 030. (or 0318) is received from the computer by the 20GXX gates (figures 5-11 and 5-12). Active bits 2^{3} and 2^{4} are converted to I/O Console logic low levels (-4.5 VDC) by gates 20G03 (5-11, 7B) and 20G04 (5-12, 3B), respectively. The 20G04 output is routed directly to figure 5-6 as the low when EN KB signa1, while the 20G03 (5-11, 7B) output is amplified by 21603 (5-11, 6C) and routed to figure 5-6 as the low when INPUT DEVICE signa.

3-102. Light KEYBOARD and Start Printer Motor. On figure 5-6, the low when INPUT DEVICE and the low when EN KB signals fully enable KEYBOARD gate 28000 (5-6, 4B) and light KEYBOARD indicatorswitch (DS 23). KEYBOARD gate 28000
(5-6, 4B) is held enabled and READ gate $29000(5-6,5 B)$ is held disabled by the interlocking action between the two gates. The high from $28000(5-6,5 B)$ is held disabled by the interlocking action between the two gates. The high from 28000 (5-6, 4B) is inverted to a low by $33 D 00(5-6,4 B)$. This low is inverted to a high by 34000 ($5-6,4 \mathrm{C}$), which is reinverted by $50001(5-6,8 B)$. The low from 50001 ($5-6,8 B$) initiates the START PRINTER signal from 53001 (5-6, 8C), which goes to energize PRINTER relay K2 (figure 5-13). When K2 is energized, it completes a $115-V A C \quad 60-\mathrm{Hz}$ path to keyboard/printer input A7P1-Z and starts the keyboard/printer motor.

3-103. Clear Output Register. The low from 33D00 (5-6, 4B) is inverted to a high by $37000(5-6,4 C)$ and routed to figure 5-2 as the high when KB signal to disable $50 \mathrm{EO6}$ (5-2, 5C) whose low output is inverted by $51 \mathrm{EO2}$ (5-6, 6B) and reinverted by 52E02 (5-6, 6C) to partially enable 53E00 (5-6, 6D). Gate 53E00 (5-6, 6D) is fully enabled by lows from $51 E 00(5-2,3 C)$ and the clear side of TAPE FEED F/F OXEOO (5-6, 4C), which are present at all times except during certain portions of punch operations. When $53 E 00$ (5-6, 6D) is enabled, its high output is inverted by 57E00 (5-6, 8C) and routed as the low when CLEAR OUTPUT REG signal to inverter $29 \mathrm{GOO}(5-11,8 B)$. The high from 29G00 (5-11, 8B) is amplified by $30 G 00(5-11,8 B)$ and used to clear the output register (figures 5-11 and 5-12).

3-104. Disable Output Data Request. Gate 50E01 (5-2, 7B) is disabled due to highs on the set side of PUNCH READY F/F OXEO1 (5-2, 4B) and low when OFF LINE signal line. Gate $50 \mathrm{E} 02(5-2,6 B)$ is disabled due to the high from the set side of PRINTER READY F/F OXEO3 (5-2, $6 B$). With 50E01 (5-2, 7B) and 50E02 (5-2, 6B) both disabled, their combined low outputs disable 54500 (5-2, 6C), producing a high output to disable OUTPUT REQ generator 56E00 (5-2, 7C).

3-105. Keyboard Coding. When a key is depressed, a train of 11 pulses arrive serially from the keyboard. The train of pulses are referred to as spaces or marks. To further understand the composition of these pulse trains, refer to figure 3-52. The first pulse, or start pulse, is a space, which is followed by seven consecutive data pulses. These seven data pulses are a combination of spaces and marks, depending upon the ASCII code combination for the key depressed. Following these seven data pulses is a parity and two stop pulses. The parity pulse and stop pulses are always marking. Since each pulse is 9.09 msec in length, each complete character received from the keyboard has a coded length of 99.99 msec .

3-106. Clear KEYBOARD DATA F/F. The low when KB signal from 33D00 (5-6, 4B) partially enables gate 30 HOl (5-7, 8B). When a key is depressed at the keyboard, the first pulse, or start pulse, is received by the I/O Console control circuits as a low when DATA, SPACE signal which fully enables $30 \mathrm{HOl}(5-7,8 \mathrm{~B})$ to clear KEYBOARD DATA F/F OXHO1 (5-7, 8B).

3-107. Enable Serializer. The high from KEYBOARD DATA F/F OXHO1 (5-7, 8B) is inverted by $71 \mathrm{HOO}(5-7,8 \mathrm{C})$ to partially enable $71 \mathrm{HOL}(5-7,8 \mathrm{C})$.

3-108. Initiate Serializer and Clear SERIALIZER READY F/F. Gate $71 \mathrm{HO1}$ (5-7, 8 C) is fully enabled by the low when SERIAL CONVERTER READY line. A low is present on this line at all times except when SERIALIZER READY F/F OXHOO (5-8, $3 C$), is cleared. When $71 \mathrm{HOL}(5-7,8 \mathrm{C})$ is enabled, its low output is delayed $2 \mu \mathrm{sec}$ by circuits 74 H 61 ($5-7,7 \mathrm{C}$) and 74 H 62 (5-7, 7C) and routed to figure 5-8 to clear SERIALIZER RDY F/F OXHOO (5-8, 3C). With SERIALIZER RDY F/F OXHOO (5-8, 3C) cleared, the high on the low when SERIAL CONVERTER READY output disables $71 \mathrm{HO1}(5-7,8 \mathrm{C})$. Gate 71 HOL (5-7, 8 C) therefore produces a $2 \mu \mathrm{sec}$ low output whenever it is enabled. This $2 \mu \mathrm{sec}$
negative pulse from $71 \mathrm{HOl}(5-7,8 \mathrm{C}$) initiates the serializer action necessary for keyboard/printer operation.

3-109. Disable External Function Requests. The high on the low when SERIAL CONVERTER READY line from the set side of SERIALIZER RDY F/F OXHOO $(5-8,3 C)$ also goes to disable $40000(5-5,3 C)$, preventing the generation of external function requests (EF REQ signals) while the serializer is in operation.

3-110. Set KEYBOARD INPUT READY F/F。 Gate 20F04 (5-4, 8C) is partially enabled by the low when EN GATE INPUT DATA signal from READ gate 29000 (5-6, 5B). The high from KEYBOARD gate 28000 (5-6, 4B) is inverted to a low by 18F04 (5-4, 8B). SERIALIZER RDY F/F OXHOO (5-8, 3C) is cleared $2 \mu \mathrm{sec}$ after a key is depressed. The low when KB strobe from its clear side output is inverted by 20F03 (5-4, 7B) and reinverted to a low by $19 \mathrm{FO} 0(5-4,7 B)$. When 18 F 04 (5-4, 8 B) and 19FO4 (5-4, 7B) are both producing lows, their combined outputs further enable 20F04 (5-4, 8C). Gate $20 F 04$ (5-4, 8C) is fully enabled by the low from the clear side of KEYBOARD REQ ENABLE F/F 0XFO3 (5-4, 7C) (which is cleared at this time). The low output from 20 FO 4 ($5-4,8 \mathrm{C}$) sets KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) and is also routed to figure $5-8$ and the low when GATE INPUT DATA signal where it is used to partially enable gate 70 HOO (5-8, 4C). The high from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) disables 50F04, removing the low when CLR INPUT REG signal output, thereby making it possible to set information into the input register flip-flops (figures 5-9 and 5-10).

3-111. Basic Serializer Operations. Refer to figure 3-51 during the following discussion of serializer delay line operations. When $71 \mathrm{HOL}(5-7,7 \mathrm{C})$ is enabled, its $2 \mu \mathrm{sec}$ low output is stretched to 9.09 msec by 71 H 02 (5-7, 8D) and inverted by 71 HO (5-7, 7A).

CONFIGURATION VARIES DEPENDING ON CHARACTER BEING KEYED.

Figure 3-52. Example of Pulse Train Received from Keyboard when Key is Depressed.

When the positive pulse from 71 HO 3 (5-7, 7A) terminates (goes negative), 71 H 04 (5-7, 7B) will produce a negative 9.09 msec output pulse which is delayed 9.09 msec from the initiation of the serializer. This pulse is inverted by 71H05 (5-7, 6B). When the positive pulse from 71 H 05 (5-7, 6B) terminates (goes negative), $71 H 06$ ($5-7,6 B$) will produce a negative 9.09 msec output pulse delayed 18.18 msec from the initiation of the serializer. The 9.09 msec negative pulse travels down the delay line consisting of circuits 71 HO ($5-7,7 \mathrm{~A}$) through 71H20 (5-8, 3B). Each inverterdelay circuit stage delays the pulse an additional 9.09 msec .

NOTE

Each delay stage consists of an input inverter (2070 card) and a time delay (2821 card). The inverters have odd numbered designations and the time delays are designated by even numbers.

3-112. Generation of Keyboard Gating. As the 9.09 msec negative pulse travels down the delay line (figures 5-7 and 5-8), outputs from $71 \mathrm{HO4}(5-7,7 B)$, $71 \mathrm{HO6}(5-7,6 \mathrm{~B}), 71 \mathrm{HO8}(5-7,5 \mathrm{~B}), 71 \mathrm{H} 10$ $(5-7,3 B), 71 \mathrm{H} 12(5-8,8 B) 71 \mathrm{H} 14$ (5-8, 7B), and 71 H 16 (5-8, 5B) are applied alternately to $76 \mathrm{HOO}(5-8,4 \mathrm{C})$ and $76 \mathrm{HO1}$ (5-8, 4C) whose high outputs produce 200 nanosecond negative pulse outputs from $76 \mathrm{HO6}$ ($5-8,4 \mathrm{C}$) and $76 \mathrm{HO5}$ (5-8, 4C). [Alternating input to OR circuits
$76 \mathrm{HOO}(5-8,4 \mathrm{C})$ and $76 \mathrm{HO1}(5-8,4 \mathrm{C})$ are necessary to prevent possible overlapping of adjacent pulses.] The negative pulses from $76 \mathrm{HO6}$ (5-8, 4C) and $76 \mathrm{HO5}$ (5-8, 4C) are inverted by OR circuits $76 \mathrm{HO7}$ (5-8, 4C). The output of $76 \mathrm{HO7}$ (5-8, 4C) is a series of seven positive pulses, approximately 200 nanoseconds in duration, whose leading edges are coincident with the leading edges of the 9.09 msec pulses from timing circuits 71H04 (5-7, 7B) through 71H16 (5-8, 5B). Timing circuit $76 \mathrm{HO2}$ (5-8, 4C) stretches each of the pulses to 4 msec positive pulses which are inverted by $76 \mathrm{HO4}$ (5-7, 7B) so that their trailing edges (positive-going) trigger 76 HO 3 (5-8, $4 \mathrm{C})$. The output of $76 \mathrm{HO}(5-8,4 \mathrm{C})$ is a series of seven 200 nanosecond negative pulses, occurring in the approximate center of the 9.09 msec pulses from timing circuits $71 \mathrm{HO4}$ (5-7, 7B) through 71 H 16 (5-8, 5B). Pulses from $76 \mathrm{HO3}$ (5-8, 4C) are applied to AND circuit 70 HOO (5-8, 4C) along with the low when GATE INPUT DATA signal from 20F04 (5-4, 8C). Therefore, gate 70 HOO (5-8, 4C) is partially enabled for 200 nanoseconds during the approximate center of each ASCII-coded space or mark received from the keyboard. From figures 5-7 and $5-8$, the delay line outputs from $71 \mathrm{HO4}$ (5-7, 7B) through $71 H 16$ (5-8, 5B) (see figure 3-51) are also routed as partial enables to the set sides of input register flip-flops (5-9, 3C) OXIOO through $0 X I 06$ (5-10, 7C), respectively (figures 5-9 and 5-10).

3-113. Serial Transfer of ASCII Code to Input Register. A seven-unit ASCII code for the selected key follows the start pulse. Each unit is 9.09 msec wide and is either a space or a mark, depending upon the code for the character being transmitted (refer to table 3-3). Spaces from the keyboard are received on low when KB DATA, SPACE input to $30 \mathrm{HO1}$ (5-7, 8B) and gated to clear KEYBOARD DATA F/F OXHO1 (5-7, 8B). Marks are received on the low when KB DATA, MARK line and used to set output of KEYBOARD DATA F/F OXHO1 (5-7, 8B). The set output of KEYBOARD DATA F/F OXHO1 (5-7, 8B) is routed to figure $5-8$ on the low when KB DATA MARK signal line as the final enabling signal for gate 70 HOO (5-8, 4C). When a space is received, a high on the low when KB DATA, MARK line disables 70 HOO during the 9.09 msec duration of the space signal, removing the low when KB to INPUT REG output, thereby preventing the input register flip-flop, currently receiving the 9.09 msec negative enabling pulse from the delay line, from being set. Thus a binary 0 is stored in the input register flip-flop associated with this particular time frame. When a mark is received, the low when KB DATA, MARK signal fully enables $70 \mathrm{HOO}(5-8,4 \mathrm{C})$ during the 9.09 msec duration of the mark signal, producing a low when KB to INPUT REG signal to fully enable setting the input register flipflop currently receiving the 9.09 msec negative enabling pulse from the delay line. Thus the input register flip-flop associated with this particular time frame is set, and a binary 1 is stored. In this manner, the ASCII code representing the key depressed is stored in the input register.

3-114. Set KEYBOARD DATA F/F. After the 7-bit ASCII code, a parity mark and two stop marks will be received from the keyboard (figure 3-52). Although the parity and stop marks are not gated to the input register, they assure that the KEYBOARD DATA F/F OXHO1 (5-7, 8B) is in the set condition before receiving the next start pulse.

3-115. Set SERIALIZER READY F/F。 The negative 9.09 msec pulse from 71 H 18 (5-8, 3B) is delayed 72.72 msec from the time the serializer was initiated (refer to figure 3-51). This represents the time frame when the parity mark is received from the keyboard. The pulse from 71 H 18 ($5-8,3 \mathrm{~B}$) is inverted by 71H19 (5-8, 3B). Its trailing edge causes delay $71 \mathrm{H} 20(5-8,3 B)$ to generate an 18.18 msec negative pulse, delayed 81.81 msec from the initiation of the serializer. This 18.18 msec pulse occurs while the two 9.09 msec stop marks are received from the keyboard. The 18.18 msec low from $71 \mathrm{H} 20(5-8,3 B)$ set SERIALIZER RDY F/F OXHOO (5-8, 3C) whose set output sends low when SERIAL CONVERTER READY signal to enable $71 \mathrm{HO1}$ (5-7, 7C) in preparation for receiving a start pulse from the keyboard when the next key is depressed.

3-116. Enable EF Request Generator. The low when SERIAL CONVERTER READY from the set side output of SERIALIZER RDY F/F OXHOO (5-8, 3C) is also used to remove the disable from EF REQ generator 40D00 (5-5, 3C).

3-117. Set KEYBOARD REQ ENABLE F/F。 The high from the clear side of SERIALIZER RDY F/F OXHOO (5-8, 3C) is transmitted on the low when KB STROBE signal line to figure 5-4, where it is inverted by 20 FO 0 ($5-4,7 \mathrm{~B}$) to enable setting KEYBOARD REQ ENABLE F/F OXFO3 (5-4, 7C) [the other enable is provided by the low from the set side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C)]. With the OXFO3 (5-4, 7C) set, its clear side output produces a high which disables 20F04 ($5-4,8 C$), preventing the low when GATE INPUT DATA signal to $70 \mathrm{HOO}(5-8,4 \mathrm{C})$. This disables 70 HOO (5-8, 4C) and prevents further generation of low when KB to INPUT REG signals at this time.

3-118. Generate Input Data Request or Interrupt. The high from the clear side of KEYBOARD REQ ENABLE F/F OXFO3 (5-4, 7C) also disables 50F03 (5-4, 7D). The low from 50 FO 3 is delayed $4.4 \mu \mathrm{sec}$ by

Table 3-3. Keyboard Characters, Actions, and Data Codes

Key	Character or Action			Code				
		6	5	4	3	2	1	0

NOTE
Operating the CTRL key in conjunction with some other key generally does not cause a character to print, nor does any keyboard action take place, but a data word is transmitted (exceptions: CTRL and ALT MODE prints an = ; CTRL and RUB OUT prints a ?). The significance of the data words available through use of the CTRL key is determined by the computer program.

CTRL and @		0	0	0	0	0	0	0
CTRL and A		0	0	0	0	0	0	1
CTRL and B		0	0	0	0	0	1	0
CTRL and C		0	0	0	0	0	1	1
CTRL and EOT		0	0	0	0	1	0	0
CTRL and WRU		0	0	0	0	1	0	1
CTRL and RU		0	0	0	0	1	1	0
CTRL and BELL		0	0	0	0	1	1	1
CTRL and H		0	0	0	1	0	0	0
CTRL and I		0	0	0	1	0	0	1
LINE FEED	Line feed	0	0	0	1	0	1	0
CTRL and K		0	0	0	1	0	1	1
CTRL and L		0	0	0	1	1	0	0
RETURN	Carriage return	0	0	0	1	1	0	1
CTRL and N		0	0	0	1	1	1	0
CTRL and 0		0	0	0	1	1	1	1
CTRL and P		0	0	1	0	0	0	0
CTRL and Q		0	0	1	0	0	0	1

Table 3-3. Keyboard Characters, Actions, and Data Codes (Contd)

Key	Character or Action	Code						
		6	5	4	3	2	1	0
CTRL and TAPE		0	0	1	0	0	1	0
CTRL and XOFF		0	0	1	0	0	1	1
CTRL and TAPE		0	0	1	0	1	0	0
CTRL and U		0	0	1	0	1	0	1
CTRL and V		0	0	1	0	1	1	0
CTRL and W		0	0	1	0	1	1	1
CTRL and X		0	0	1	1	0	0	0
CTRL and Y		0	0	1	1	0	0	1
CTRL and Z		0	0	1	1	0	1	0
CTRL, SHIFT, and K		0	0	1	1	0	1	1
CTRL, SHIFT, and L		0	0	1	1	1	0	0
CTRL, SHIFT, and M		0	0	1	1	1	0	1
CTRL, SHIFT, and \uparrow		0	0	1	1	1	1	0
CTRL, SHIFT, and \leftarrow		0	0	1	1	1	1	1
Space Bar	Space	0	1	0	0	0	0	0
SHIFT and !	$!$	0	1	0	0	0	0	1
SHIFT and "	"	0	1	0	0	0	1	0
SHIFT and \#	$\frac{\#}{7}$	0	1	0	0	0	1	1
SHIFT and \$	\$	0	1	0	0	1	0	0
SHIFT and \%	\%	0	1	0	0	1	0	1
SHIFT and \&	\&	0	1	0	0	1	1	0
SHIFT and '	1	0	1	0	0	1	1	1
SHIFT and ($($	0	1	0	1	0	0	0

Table 3-3. Keyboard Characters, Actions, and Data Codes (Contd)

Key	Character or Action	Code						
		6	5	4	3	2	1	0
SHIFT and))	0	1	0	1	0	0	1
SHIFT and *	*	0	1	0	1	0	1	0
SHIFT and +	+	0	1	0	1	0	1	1
LOC LF	Continuous line feed, no code transmitted.							
LOC CR	Carriage return, no code transmitted.							
REPT	Used in conjunction with another coded key, selected character repeats continuously until REPT key is released.							
1	1	0	1	0	1	1	0	0
-	-	0	1	0	1	1	0	1
-	-	0	1	0	1	1	1	0
1	/	0	1	0	1	1	1	1
0	0	0	1	1	0	0	0	0
1	1	0	1	1	0	0	0	1
2	2	0	1	1	0	0	1	0
3	3	0	1	1	0	0	1	1
4	4	0	1	1	0	1	0	0
5	5	0	1	1	0	1	0	1
6	6	0	1	1	0	1	1	0
7	7	0	1	1	0	1	1	1
8	8	0	1	1	1	0	0	0
9	9	0	1	1	1	0	0	1

Table 3-3. Keyboard Characters, Actions, and Data Codes (Contd)

Key	Character or Action	Code						
		6	5	4	3	2	1	0
:	:	0	1	1	1	0	1	0
;	;	0	1	1	1	0	1	1
SHIFT and <	<	0	1	1	1	1	0	0
SHIFT and =	$=$	0	1	1	1	1	0	1
SHIFT and >	>	0	1	1	1	1	1	0
SHIFT and ?	?	0	1	1	1	1	1	1
SHIFT and ©	@	1	0	0	0	0	0	0
A	A	1	0	0	0	0	0	1
B	B	1	0	0	0	0	1	0
C	C	1	0	0	0	0	1	1
D	D	1	0	0	0	1	0	0
E	E	1	0	0	0	1	0	1
F	F	1	0	0	0	1	1	0
G	G	1	0	0	0	1	1	1
H	H	1	0	0	1	0	0	0
I	I	1	0	0	1	0	0	1
J	J	1	0	0	1	0	1	0
K	K	1	0	0	1	0	1	1
L	L	1	0	0	1	1	0	0
M	M	1	0	0	1	1	0	1
N	N	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	1
P	P	1	0	1	0	0	0	0

Table 3-3. Keyboard Characters, Actions, and Data Codes (Contd)

Key	Character or Action	Code						
		6	5	4	3	2	1	0
Q	Q	1	0	1	0	0	0	1
R	R	1	0	1	0	0	1	0
S	S	1	0	1	0	0	1	1
T	T	1	0	1	0	1	0	0
U	U	1	0	1	0	1	0	1
v	v	1	0	1	0	1	1	0
W	W	1	0	1	0	1	1	1
x	x	1	0	1	1	0	0	0
Y	Y	1	0	1	1	0	0	1
Z	z	1	0	1	1	0	1	0
SHIFT and K	[1	0	1	1	0	1	1
SHIFT and L		1	0	1	1	1	0	0
SHIFT and M]	1	0	1	1	1	0	1
SHIFT and \uparrow	\uparrow	1	0	1	1	1	1	0
SHIFT and \leftarrow	\leftarrow	1	0	1	1	1	1	1
ALT MODE		1	1	1	1	1	0	1
CTRL and ALT MODE	=	1	1	1	1	1	1	0
RUB OUT		1	1	1	1	1	1	1
CTRL and RUB OUT	?	1	1	1	1	1	1	1

51F03 (5-4, 6D) and delay gate 52F03 (5-4, 6D), which partially enables 51F02 ($5-4,6 \mathrm{C}$) and $50 \mathrm{~F} 02(5-4,5 \mathrm{C})$. Since READ gate 29000 (5-6, 5B) is outputting a low during keyboard operations, its output is inverted by 31000 and sent as the high when EN REQ signal to disable $44 \mathrm{FO} 2(5-4,6 \mathrm{~B})$. The 10 W from 44 F 02 fully enables 45 FO 2 ($5-4,6 \mathrm{~B}$), whose high output disables $46 \mathrm{FO} 2(5-4,6 \mathrm{C})$. The low from 46F02 further enables 51 F02 (5-4, 6C) and 50F02 (5-4, 5C).

3-119. In the computer mode of operation, the high from the set side of INTERRUPT F/F OXFO2 (5-4, 6C) disables $51 F 02(5-4,6 C)$. The low from the clear side fully enables driver 50F02 (5-4, 5C) to generate an INPUT REQ signal for transmittal to the computer. If the operator has selected the interrupt mode of operation (by depressing the INTERRUPT indicator switch on the I/O Console), INTERRUPT F/F OXF02 (5-4, 6C) will be set, and the high from the set side will disable $50 \mathrm{FO} 0(5-4,5 \mathrm{C}$) and prevent the INPUT REQ signal, while the low from the set side will fully enable $51 F 02$ (5-4, 6C) to generate an INTERRUPT signal for transmittal to the computer. When the computer receives either the input data request or interrupt, it stores the data on its input lines in a specific memory location. After processing the data, the computer transmits an input data acknowledge to the $1 / 0$ Console. The generated IDR or interrupt is delayed $4.4 \mu \mathrm{sec}$ after setting of 0XF03 ($5-4,7 \mathrm{C}$) and will remain until receipt of an INPUT ACK.

3-120. Clear KEYBOARD INPUT READY F/F, KEYBOARD REQ ENABLE F / F, and INTERRUPT F/F. The INPUT ACK from the computer is converted to a low I/O logic level (-4.5 VDC) by $24 F 01$ (5-4, 6B), which enables gate 25 FO ($5-4,5 \mathrm{C}$). The high from 25FO1 (5-4, 5C) is inverted by $26 F 01$ (5-4, 5A) and used as a partial enable for 28F01 (5-4, 5B). The low from $26 \mathrm{FO}(5-4,5 \mathrm{~A})$ is routed through

27FO1 (5-4, 5B), which allows 28 F01 (5-4, 5B) to be fully enabled for $2 \mu \mathrm{sec}$. The $28 \mathrm{FO} 01(5-4,5 \mathrm{~B})$ output is a $2 \mu \mathrm{sec}$ positive pulse whose leading edge is coincident with the INPUT ACK. This positive pulse is inverted by $29 F 01$ (5-4, 5C) and used to clear KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C), KEYBOARD REQ ENABLE F/F OXFO3 (5-7, 7C), and INTERRUPT F/F OXF02 (5-4, 6C).

3-121. Drop Input Data Request or Interrupt. When not in a read operation, gate 50 F 00 (5-4, 3D) outputs a low which partially enables 50F03 (5-4, 7D). With KEYBOARD REQ ENABLE F/F OXFO3 (5-4, 7C) cleared, the low from its clear side fully enables 50F03 (5-4, 7D), which produces a high to disable 51F03 (5-4, 6 D) and prevent one of the enabling signa1s for both $50 \mathrm{~F} 02(5-4,5 \mathrm{C})$ and 51 FO 2 (5-4, 6C). Observe, however, that a $4.4 \mu \mathrm{sec}$ delay 50 F 03 (5-4, 7D) is not effective with low inputs. With 50F02 (5-4, 5C) and 51F02 (5-4, 6C) disabled, either the INPUT REQ signal or the INTERRUPT signal is removed, depending on the mode of operation being utilized by the keyboard operator.

NOTE

The keyboard normally operates in the computer mode, communicating with the computer via INPUT REQ signals from 50 F 02 (5-4, 5C). To operate in the interrupt mode, the operator must depress the INTERRUPT indicator switch prior to depressing a key for each character of the transmitted message.

3-122. Clear Input Register. The low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) partially enables 50 FO4 (5-4, 7D). The low from 50FOO (5-4, 3D), which is present at all times except during reader operations, further enables 50F04 (5-4, 7D). The $2 \mu \mathrm{sec}$ positive pulse from 28F01 (5-4, $5 B$) is applied to the 50F04 (5-4, 7D)
input. At the end of the pulse, this signal becomes negative and provides the final enable for 50 FO ($5-4,7 \mathrm{D}$), which now provides a low when CLR INPUT REG signal to clear the input register (figures 5-9 and 5-10).

NOTE

The remaining keyboard operations are described in paragraph 3-128.

3-123. Clear Output Register. The low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) partially enables 50F04 (5-5, 7D). The low from 50F00 (5-4, 3D), which is present at all times except during reader operations, further enables 50F04 (5-4, 7D). The $2 \mu \mathrm{sec}$ positive pulse from $28 \mathrm{FO1}$ (5-4, $5 B$) is applied to the 50F04 (5-4, 7D) input. At the end of the pulse, this signal becomes negative and provides the final enable for 50 FO ($5-4,7 \mathrm{D}$), which now provides a low when CLR INPUT REG signal to clear the output register (figures 5-9 and 5-10).

3-124. Serial Data Transmission to Printer During Keyboard Operation. The high when KB signal from 37000 (5-6, 4C) disables 50 E06 (5-2, 5C) during keyboard operations. The low from 50E06 (5-2, 5C) is routed to figure 5-7 on high when INIT SERIALIZER signal line, where it is inverted to highs by $72 \mathrm{HOO}(5-7,5 \mathrm{~B})$ and 74 HOO (5-7, 5B). The high from 72 HOO disables gates $72 \mathrm{HO1}(5-7,3 \mathrm{~B}$) and 53 H 00 (5-7, 3B), causing them to produce low ouputs. The high from $74 \mathrm{HOO}(5-7,5 B)$ is routed to figure 5-8 on the low when INIT SERIALIZER signal line, where it disables gates $74 \mathrm{HO1}(5-8,7 \mathrm{C})$ and 75 HOO ($5-8,5 \mathrm{C}$). The low from 74 HOL (5-8, 7C) goes back to figure 5-7, where it is combined with the lows from $72 \mathrm{HO1}$ (5-7, 4B) and $73 \mathrm{HOO}(5-7,3 B)$ provides one of the enables for 72 HO ($5-7,6 B$). The low from $75 \mathrm{HOO}(5-8,5 \mathrm{~B})$ is used as a second enable for $72 \mathrm{HO} 2(5-7,6 \mathrm{C})$. The positive gate from $71 H 03$ (see figure 3-51) occurs during the 9.09 msec time
frame when the start pulse (space) is being received from the keyboard. At 211 other times, the $71 \mathrm{HO} 3(5-7,7 \mathrm{~A})$ output is low, providing a third enable for $72 \mathrm{HO} 2(5-7,6 \mathrm{C})$.

3-125. The final enable for 72 HO 2 (5-7, 6 C) comes directly from the set side of KEYBOARD DATA F/F OXHO1 (5-7, 8B), which is cleared when a space is received from the keyboard and set when a mark is received. Therefore a space is represented by a high on the set side of 0XH01, and a mark is represented by a low. In this manner, the output of OXHO1 (5-7, 8B) reflects the pulse train of spaces and marks received from the keyboard when a key is depressed. A high from the set side of OXHO1 (5-7, $8 B$) (space) disables gate $72 \mathrm{HO2}$ (5-7, 6 B), whose low output is inverted by 72 HO 3 ($5-7,6 \mathrm{C}$) to generate a DATA to PRINTER space signal from $72 \mathrm{HO4}$ (5-7, 6C). A low from the set side of 0XHO1 (5-7, 8B) (mark) fully enables gate $72 \mathrm{HO2}$ (5-7, 6C), whose high output is inverted by 72 HO 3 ($5-7,6 \mathrm{C}$) to generate a DATA-PRINTER mark signal from $72 \mathrm{HO4}$ (5-7, 6C) 。

NOTE

The positive pulse from 71 H 03 (5-7, 7A) described above, generates a space pulse while preventing generation of a mark pulse during the first 9.09 msec (start pulse) duration of each character transmitted.

3-126. Data to Printer Signal Generation. Circuit 72HO4 (5-7, 6C) is a bias network which produces a DATA to PRINTER output signal that is slightly positive when its input is positive and slightly negative when its input is negative. A positive output causes the printer to generate a space, while a negative output causes a mark to be generated. The DATA to PRINTER signal is routed to power supply input A6P1-X (5-13, 3B) as bias for PNP power transistor Q10. When
a positive signal is present, Q 10 is cut off, and an open circuit is present at A6P2-W. When a negative signal is present, Q10 is allowed to conduct, and a ground circuit is present. The A6P2-W output is routed to A7P1-X on the keyboard/printer, through the selector magnet coils and back through A7P1-W to the -28 VDC line at power supply terminal A6P2-X. When current is allowed to flow through the selector magnet circuits in the keyboard/printer, a mark is generated. When no current flows, a space is generated.

3-127. Automatic Termination of On-Line Keyboard Operation. For automatic termination of the keyboard mode after data transmission is complete, the computer places an external function word of OlO_{8} on its output lines and transmits an external function acknowledge to the I/0 Console. When the EF ACK and EF word are received by the I/O Console, the following sequences occur:
a. The EF ACK generates a $2 \mu \mathrm{sec}$ positive pulse from 19001 (5-5, 4B) which is inverted to a low by 20001 (5-5, 5B) and stretched to a 70 msec negative gate by 22D00 (5-5, 3B). The low from 22000 ($5-5,3 B$) is inverted by 36000 (5-5, 3C), disabling 40000 (5-5, 3C) and preventing generation of another EF REQ signal for 70 msec after receiving an EF ACK。
b. The $2 \mu \mathrm{sec}$ positive pulse from 19001 (5-5, 4B) is inverted by 21000 (5-6, 6B) to partially enable 27000 (5-6, 3D).
C. Bit 2^{3} of the EF word provides a low from 20G03 ($5-11,7 B$) which is amplified by 21603 (5-11, 6C) and routed as the low when INPUT DEVICE signal to figure 5-6, where it is used to partially enable AND gate 25000 (5-6, 3C).
d. The absence of EF word bit 2^{4} provides a high from 20G04 (5-12, 3B), which is routed to figure 5-6 on the low when EN KB signal line to disable gate $28 D 00(5-6,4 B)$ and enable $24000(5-6$, 3B).
e. With 24D00 (5-6, 3B) enabled, its low output fully enables 25000 (5-6, 3C), producing a high which is inverted by $26000(5-6,3 C)$ to enable 27D00 (5-6, 3D). The high from 27000 (5-6, 3D) prevents interlocking sides of KEYBOARD gate 28000 (5-6, 4B) and READ gate 29D00 (5-6,5B) from being enabled.
f. The low from $28000(5-6,4 B)$ extinguishes KEYBOARD indicator (DS 23); removes the KEYBOARD disable from READ gate 29000 (5-6, 5B); and is inverted to a high by 33D00 (5-6, 4B), whose output is reinverted to a low by 34000 (5-6, 4 C). The low from $34000(5-6,4 \mathrm{C})$ is inverted to a high by $50 \mathrm{DO1}(5-6,8 \mathrm{~B})$, which stops the printer motor by preventing the START PRINTER signal from $53 D 01$ (5-6, 8C).
g. The low when CLR from 28000 (5-6, $4 B$) is routed to figure $5-4$, where it is inverted by 29 FO 4 ($5-4,8 \mathrm{~B}$) and 18F04 (5-4, 7B). The high from 18 FO ($5-4$, 7B) disables 20FO4 (5-4, 7C), whose high output removes the set signal from KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C), and disables gate 70 HOO (5-8, 4C). Disabling gate 70 HOO (5-8, 4C) prevents data from being transferred from the keyboard to the input register by preventing the low when KB to INPUT REG signal to the input register (figures 5-9 and 5-10).
h. The high from $29 F 04(5-4,8 B)$ is inverted by $30 \mathrm{FO} 04(5-4,8 \mathrm{C}$) and used to clear KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) and INTERRUPT F/F OXFO2 (5-4, 6C). With $0 \times F 04$ (5-4, 8C) cleared, the high from its set side disables the set side of KEYBOARD REQ ENABLE F/F OXFO3 (5-4, 7C), preventing it from being set and allowing it to be cleared by the low from 30 FO ($5-4,8 \mathrm{C}$).
i. A low from $50 F 00$ (5-4, 3D) (present at a11 times except during reader operations) partially enables 50F03 (5-4, 7D) and 50F04 (5-4, 7D). The absence of ID ACK from the computer produces a low from $28 \mathrm{FO1}$ (5-4, 5B) which further enables 50 F04 ($5-4,7 D$). The
low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) fully enables $50 \mathrm{FO4}(5-4,70)$, producing a low when CLR INPUT REG signal to clear the input register flip-flops, OXIOO through 0XI07, (figures 5-9 and 5-10). The low from the clear side of KEYBOARD REQ ENABLE F/F $0 \times 7 \mathrm{FO} 3$ (5-4, 7C) fully enables 50 F03 (5-4, 7D), thus disabling 51F03 (5-4, 6D) and preventing further INPUT REQ signals from 50 F 02 (5-4, 5C) or INTERRUPT signals from 51 FO2 (5-4, 6C).
j. The high from $33 D 00(5-6,4 B)$ is routed to figure 5-7 on the low when signal line, where it is used to disable AND gate $30 \mathrm{HO1}(5-7,8 B)$, preventing the clearing of KEYBOARD DATA F/F OXHO1 (5-7, 8B). The 0XHO1 (5-7, 8B) was placed in a set condition by stop pulses in the last character received from the keyboard. The low from its set side output will hold gate $72 \mathrm{HO2}(5-7,6 \mathrm{C})$ enabled, since all other inputs to 72 HO 2 (5-7, 6C) are low at this time. The high output from $72 \mathrm{HO2}(5-7,6 \mathrm{C}$) is inverted by 72 HO 3 (5-7, 6C) to disable $72 \mathrm{HO4}(5-7,6 \mathrm{C})$, producing a continual DATA-PRINTER mark signal to the printer until the next printer or keyboard operation is performed.

3-128. Manual Termination of On-Line Keyboard Operation. Various methods for manually stopping the keyboard are discussed in the following paragraphs.

3-129. Depressing the KEYBOARD CLEAR Pushbutton. When the KEYBOARD CLEAR pushbutton switch (S9, 5-6, 3D) is depressed, the interlocking sides of KEYBOARD gate 28D00 (5-6, 4B) and READ gate 29000 (5-6, 5B) are disabled and the following sequences occur.
a. Refer to paragraph 3-127, steps f. through j..

3-130. Depressing the MASTER CLEAR Pushbutton. When the MASTER CLEAR pushbutton switch (S1, figure 5-3) is depressed, it produces a high when MASTER CLEAR which is routed to figure 5-5.

The high from S 1 is also inverted by $70 E 00(5-3,8 B)$ and 70E01 (5-3, 8B) and routed as a low when MASTER CLEAR signai to figures 5-4, 5-6, and 5-8. The following sequences then occur:
a. On figure 5-5, the high when MASTER CLEAR is inverted to a low by 20001 (5-5, 5B). The low from 20D01 (5-5, 5B) produces a 70 msec negative pulse from 22D00 (5-5, 3C) which is inverted by $36000(5-5,3 C)$. This 70 msec positive pulse from $36000(5-5,3 C$) prevents an EF REQ from being generated by disabling 40000 (5-5, 3C). However, at the end of $70 \mathrm{msec}, 40000(5-5,3 \mathrm{C})$ is again enabled and EF REQ signals may be generated.
b. On figure 5-4, the low when MASTER CLEAR is inverted by OR gate $29 \mathrm{FO4}(5-4,8 B)$, and the series of events described in paragraph 3-127, steps f. and $g_{0 .}$ are performed.
c. On figure 5-6, the low when MASTER CLEAR is inverted to a high by 71001 (5-6, 2D). This produces the same effect as depressing the KEYBOARD CLEAR pushbutton (S9).
d. On figure 5-8, the low when MASTER CLEAR is inverted by 77 HOO (5-8, 3C), placing a high on the clear side output of SERIALIZER READY F/F OXHOO (5-8, 3C). This high sets OXHOO (5-8, 3C), whose set output is routed as a low when SERIAL CONVERTER READY signals to figures 5-5 and 5-7.
e. On figure 5-5, the low when SERIAL CONVERTER READY signal partially enables 40000 ($5-5,3 C$), permitting further EF REQ signals to be generated.
f. On figure 5-7, the low when SERIAL CONVERTER READY signal partially enables $71 \mathrm{HO1}(5-7,7 \mathrm{C})$, permitting the serializer to be initiated when the next keyboard or printer operation occurs.

3-131. TAPE READER OPERATION, GENERAL. For on-line reader operation, the computer sends an external function word of

1508 (or 151_{8}) to the I/O Console. With the tape correctly positioned in the reader and the tape head switch lowered I/O Console control circuits set the READ and START READ indicators and apply power to the reader motor. After a half second, the READ READY F / F is set and tape movement is initiated until the photo sensors detect a sprocket hole and associated data holes for that frame. A sprocket pulse is generated, and used to stop the tape with the current frame over the photodiode head and to gate this data frame to the input register. Then the input data request (IDR) signal is set. The computer detects the IDR, and if it has priority, stores the data on the input lines in a specified memory location. After processing this data, the computer sends an input data acknowledge (ID ACK) to the I/0 Console. Upon detecting the ID ACK from the computer, the I/O Console control circuits clear the IDR signal, send an advance signal to the reader, causing the tape to move toward the next sprocket hole and, after a $2 \mu \mathrm{sec}$ delay, clear the input register. A sprocket pulse is generated and detected as previously described. This action continues until the computer input buffer is full or the reader is deactivated by the program. The program may transfer one word into the computer, process this word and reestablish a second buffer without considering timing, since the I/O Console holds each frame read until the ID ACK is detected. After data transmission is complete, the program should deactivate the reader by sending an external function word of 010_{8} (or 011_{8}) to the $1 / 0$ Console. The tape read operation can be stopped by the computer, as described under Automatic Termination of ON-LINE reader operation or by the following methods.
a. Raising the tape head.
b. Depressing the START READ CLR pushbutton.
c. Depressing the READ CLR pushbutton.
d. Depressing the MASTER CLEAR pushbutton.

3-132. TAPE READER OPERATION, DETAILED. Refer to operational flow diagram (figure 3-50) and referenced logic diagrams for the following discussion of reader operations. Steps 1, 2, 9, 43, and 61 through 86 of the operational flow diagram are applicable to reader operation.

3-133. External Function Acknowledge Enable. As previously described, the EF ACK from the computer produces a $2 \mu \mathrm{sec}$ high from gate $19001(5-5,4 B)$. This high is inverted by driver-inverter 21000 (5-6, 6B) to partially enable gate 19000 (5-6, 6B).

3-134. External Function Word Conversion and Translation. External function words are received from the computer by the 20GXX gates (figures 5-11 and 5-12). For a read operation, an external function word of 150_{8} (or 151_{8}) is received. Active bits $2^{3}, 2^{5}$, and 2^{6} are converted to I/0 Console low logic levels (-4.5 VDC) by gates 20GO3 (5-11, 7B), 20G05 ($5-12,4 B$) and 20G06 (5-12, 68), respectively. The 20G03 (5-11, 7B) output is amplified by 21G03 (5-11, 6C) and routed for figure 5-6 as the low when INPUT DEVICE signal. The 20G05 (5-12, 4B) and 20G06 (5-12, 6B) outputs are routed directly to figure 5-6 as the low when EN READ 29D00 (5-6, 5B) and low when EN SET START READ 19000 (5-6, 6B) signals, respectively.

3-135. Light READ Indicator and Set START READ F/F. On figure 5-6, the low when INPUT DEVICE partially enables $19000(5-6,6 B)$ and $29000(5-6,6 B)$. The low when EN READ signal fully enables 29D00 (5-6, 5B) and lights READ indicator-switch (DS 17). The low when EN SET START READ signal fully enables 19000, (5-6, 6B) whose high output is
inverted by 20000 (5-6, 6C) and used to set START READ F/F OXDOO (5-6, 6C). With OXDOO set, START READ indicator (DS 21) lights.

3-136. Disable Keyboard Mode and Clear INTERRUPT F/F, KEYBOARD REQ ENABLE F/F, and KEYBOARD INPUT READY F/F. The high from 29000 (5-6, 5B) prevents enabling gate $28000(5-6,4 B)$, thus disabling keyboard mode during a read operation. The low when CLR from $28000(5-6,4 B)$ is routed to figure $5-4$, where it is inverted by $29 \mathrm{~F} 04(5-4,8 B)$ and then by 30F04 (5-4, 8C), and used to clear INTERRUPT F/F OXFO2 (5-4, 6C), KEYBOARD REQ ENABLE F/F OXFO3 (5-4, 7C) and KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C).

3-137. Start Reader Motor. The high from 29000 (5-6, 5B) causes a low output from inverter 31000 (5-6, 4C) to initiate a START READER signal from 32000 (5-6, 5C). The START READER signal goes to energize READER relay K 3 ($5-13,4 \mathrm{C}$). When K3 is energized, it completes a $115-\mathrm{VAC}, 60-\mathrm{Hz}$ path to reader input A3A1J1-C.

3-138. Set READ READY F/F. The high from 29000 (5-6, 5B) removes the low when CLR READ RDY from READ READY F/F OXFOO (5-4, 3C). Low when SET READ RDY from 31D00 (5-6, 4C) is delayed $0.5 \mathrm{sec}-$ ond by $19 \mathrm{~F} 00(5-4,3 B)$ and applied through 20F00 (5-4, 3B) to set READ READY F/F OXFOO (5-4, 3C).

3-139. Clear Input Register and Advance Tape Until Sprocket Pulse is Detected. With the tape head lowered, a high when READER EN from 30D00 (5-6, 6B) is inverted to a low by $19 \mathrm{FO1}$ (5-4, 4B) to partially enable gates 42 FOl (5-4, 4D) and $43 \mathrm{FO1}(5-4,3 \mathrm{C})$. In the absence of a sprocket pulse, a low output is produced from 20F01 (5-4, 4B) which partially enables setting READER INPUT REQUEST ENABLE F/F OXFO1 (5-4, 4C), partially enables gate 41F01 (5-4, 4C), and prevents the low when EN data to input register signal from $40 \mathrm{FO1}(5-4,4 \mathrm{C})$.

With READ READY F/F OXFOO (5-4, 4C) set, it outputs a low which partially enables gates 43FO1 (5-4, 3C) and 50F00 (5-4, 3D) and sets READER INPUT REQUEST ENABLE F/F OXFO1 (5-4, 4C). The low from OXFO1 (5-4, 4C) further enables 42F01 (5-4, 4D); however, all enabling conditions for 42 FO1 ($5-4,40$) are not met at this time, and its output will be low. Since 41F01 (5-4, 4C) is partially enabled by the low from $20 F 01$ (5-4, 4B), the 42F01 (5-4, 40) output will remain low until conditions change (reader sprocket pulse detected). This low from $42 F 01$ (5-4, 4D) fully enables $43 F 01$ (5-4, 3C), producing a high at its output which is fed through 44F01 (5-4, 3C) as an ADVANCE TAPE signal to A3A1J2-Y of the tape reader. The high from $43 F 01$ (5-4, 3C) also disables $50 \mathrm{FOO}(5-4,3 \mathrm{D})$ so that it produces a low to partially enable 50F04 (5-4, 7D). The low from the clear side of KEYBOARD INPUT READY F/F OXFO4 further enables 50F04 (5-4, 7D), which is fully enabled by the low from 28 F 01 (5-4, 5B) (due to the lack of an INPUT ACK). With gate 50F04 (5-4, 7D) fully enabled, a low when CLR INPUT REGISTER signal is sent to inverter 29100 (5-9, 8B), amplified by 30100 (5-9, 8B), and used to clear the input register flipflops (figures 5-9 and 5-10).

3-140. Stop Tape and Gate Data to Input Register. When a spocket pulse is detected, 20F01 (5-4, 4B) produces a high output which is used to disable gate 41F01 (5-4, 4C). With 41F01 (5-4, 4C) disabled, its low output fully enables 42F01 (5-4, 4D), producing a high to disable 43 F01 ($5-4,3 C$). When 43F01 (5-4, 3C) is disabled, its low output is applied to $44 \mathrm{FOl}(5-4,3 \mathrm{C})$ to remove the ADVANCE TAPE signal to the tape reader. The low from 43 FOl (5-4, 3C) also fully enables gate $50 F 00(5-4,3 D)$ to produce a high output which is used to disable 50F04 (5-4, 7D) and remove the low when CLR INPUT REG signal to the input registers. The high from 20 FOl (5-4, 4B) is also inverted by $40 \mathrm{FO1}$ (5-4, 4C) to become a low when EN DATA INPUT REG
signal. This signal, along with the low when DATA TO INPUT signal from 31000 (5-6, 4C), enables 17100 (5-9, 7B). The low when READER to INPUT REG from $1 / 100$ gates data from the reader into the input register flip-flops (figures 2-9 and 2-10).

3-141. Generate Input Request. The high from $50 \mathrm{FOO}(5-4,30)$ disables 50 F 03 (5-4, 7D), producing a low which is delayed $4.4 \mu \mathrm{sec}$ by $52 \mathrm{FO} 3(5-4,7 \mathrm{D})$ and applied as a partial enable for $50 F 02$ (5-4, 5C). The high when EN REQ signal from START READ F/F OXDOO $(5-6,6 C)$ is inverted through gate $44 F 02(5-4,6 B)$ to enable $45 \mathrm{~F} 02(5-4,6 B)$, whose output disables 46F02 (5-4, 6C). A low from 46F02 (5-4, 6C) further enables 50F02 (5-6, 5C). The negative output from INTERRUPT F/F OXFO2 $(5-6,6 C$) fully enables driver 50F02 (5-5, 6C) to generate a high when INPUT REQ signal for transmittal to the computer. The input data request is detected by the computer. The computer then stores the data on its input lines in a specific memory location. After processing the data, the computer transmits an input data acknowledge to the I/O Console.

3-142. Input Acknowledge and Clear READER INPUT REQUEST ENABLE. The ID ACK from the computer is converted to a low I/0 logic level (-4.5 VDC) by 24 FOl (5-4, 6B), which enables gate 25 F01 (5-4, 6B). The high output from 25FOl (5-4, 6B) is inverted through 26F01 (5-4, 5A) and used as a partial enable for $28 \mathrm{FOl}(5-4,5 \mathrm{~B})$. The low from 26F01 ($5-4,5 A$) is also routed through 27F01 (5-4, 5B), which allows 28 F01 (5-4, 5B) to be fully enabled for $2 \mu \mathrm{sec}$. The 28F01 (5-4, 5B) output is a $2 \mu \mathrm{sec}$ positive pulse whose starting edge is coincident with the ID ACK. This $2 \mu \mathrm{sec}$ positive pulse is stretched to 2 msec by $30 \mathrm{FO1}$ (5-4, 4A) and inverted by $31 \mathrm{FO1}$ ($5-4,4 B$). The leading edge (5-4, 4B) of the negative 2 msec pulse from 31 F01 (5-4, 4B) clears READER INPUT REQUEST ENABLE F/F OXFO1.

3-143. Clear Input Register and Drop INPUT REQ. The high output from READER REQUEST ENABLE F/F OXFOl (5-4, 4C) disables $42 F 01$ (5-4, 4D), producing a low output which fully enables $43 F 01$ (5-4, $3 C$), and a high output is produced. This high is inverted to a low when ADVANCE TAPE signal which is transmitted to the tape reader. At the same time, the high from 43 FOl ($5-4,3 C$) disables 50F00, (5-4, 3D), which produces a low output to partially enable 50F04 (5-4, 7D). The $2 \mu \mathrm{sec}$ positive pulse from 28F01 (5-4, 5B) is applied to the 50F04 (5-4, 7D) input. At the end of the pulse, this signal goes negative and further enables 50 F04 (5-4, 7D). The low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) provides the final enabling signal for 50 F04 (5-4, 7D), which now provides a low when CLR INPUT REG signal to clear the input register as previously described. Also, the low from 50 F 00 ($5-4,3 \mathrm{D}$), along with the low from the clear side of KEYBOARD REQ ENABLE F/F OXF03 (5-4, 7C), enables 50F03 (5-4, 7D), which produces a high to disable 51F03 (5-4, 6D) and prevent one of the enabling signals for 50 F 02 $(5-4,5 \mathrm{C})$. With $50 \mathrm{FO2}(5-4,5 \mathrm{C})$ disabled, the INPUT REQ signal is removed.

NOTE

A $4.4 \mu \mathrm{sec}$ delay $52 \mathrm{FO} 0(5-4,6 \mathrm{D})$ is not effective with a low input. The low input forces the output with no delay.

3-144. Set READER INPUT REQUEST ENABLE. At the end of 2 msec , the negative pulse from 31FO1 (5-4, 4B) goes positive, releasing the clear side of READER INPUT REQUEST ENABLE F/F OXFO1 (5-4, 4C). $20 \mathrm{FO1}(5-4,4 \mathrm{~B})$ produces a low output until a sprocket pulse is received. This negative output, along with the low from READ READY F/F OXFOO, sets OXFO1 (5-4, 4C), providing a low output to partially enable 42 FO1 ($5-4,40$). However, all enabling conditions for 42 FOl (5-4, 4D) are not met at this time, and
its output will remain low until conditions change (reader sprocket pulse detected). Since the output of 42FO1 (5-4, 4D) does not change from its previous state, the ADVANCE TAPE signal from 44FOl (5-4, 3C) will continue until a sprocket pulse is detected.

NOTE

The remaining reader procedures are repetitions from paragraph 3-137.

3-145. Automatic Termination of ON-LINE Reader Operation. After all data transmission has been completed, the computer places an external function word of OHO_{8} on its output lines and transmits an external function acknowledge to the $1 / 0$ Console. When the EF ACK and EF word are received by the I/O Console, the following sequences occur:
a. The EF ACK generates a $2 \mu \mathrm{sec}$ positive pulse from 19001 (5-5, 4B) which is inverted to a low by $20001(5-5,5 B)$ and stretched to a 70 msec negative pulse by 22D00 (5-5, 3C). The low from 22000 (5-5, 3C) is inverted by 36D00 (5-5, 3C), disabling $40000(5-5,3 C)$ and preventing generation of another EF REQ signal for 70 msec after receiving an EF ACK.
b. The $2 \mu s e c$ positive pulse from 19001 (5-5, 4B) is inverted by 21000 (5-6, 6B) to partially enable 27000 (5-6, 3D).
C. Bit 2^{3} of the EF word provides a low from 20 GO 3 ($5-11,6 \mathrm{~B}$), which is amplified by 21G03 (5-11, 6C) and routed as the low when INPUT DEVICE signal to figure 5-6, where it is used to partially enable AND gate 25DOO (5-6, 3C).
d. The absence of EF word bits 2^{5} and 2^{6} provides highs from 20G05 (5-12, 4B) and 20G06 (5-12, 6B), which are routed to figure 5-6 to disable gates $19000(5-6,6 \mathrm{~B}$) and $29000(5-6,5 \mathrm{~B})$, and enable $24000(5-6,3 B)$. The low from $19000(5-6,6 B)$ is inverted by 20000 (5-6, 6C), disabling the set signal from START READ F/F OXDOO (5-6, 6C).
e. With $24000(5-6,3 B)$ enabled, ils low output fully enables 25000 (5-6, 3C), producing a high which is inverted by 26000 ($5-6,3 C$) to enable 27000 (5-6, 30). The high from $27000(5-6,30)$ prevents interlocking sides of KEYBOARD gate $28000(5-6,4 C)$ and READ gate 29000 (5-6, 5C) from being enabled.
f. The low from $29000(5-6,5 C)$ extinguishes READ indicator (DS 17); clears START READ F/F OXDOO (5-6, 6C), extinguishing START READ indicator (DS 21); removes the READ disable from KEYBOARD gate 28000 (5-6, 4C); and provides a low when CLR READ RDY signal. The low from 29D00 (5-6, 5B) is also inverted by 31000 (5-6, 4C), which produces a high output removing the low when SET READ RDY signal from the READ READY F/F OXFOO (5-4, 3C), allowing it to be cleared by the low when READ RDY signal from 29000 (5-6, 5B). The high from 31000 (5-6, 4C) prevents the transfer of data to the input register by removing the low when DATA TO INPUT, and stops the reader motor by releasing the START READER signal through 32D00 (5-6, 5C).
g. With READ READY F/F OXFOO (5-4, 3C) cleared, its high output disables 43 FO1 (5-4, 3C) and 50F00 (5-4, 3D).
h. Disabling $43 F 01$ (5-4, 3C) and 50F00 (5-4, 3D) stops tape movement by removing the ADVANCE TAPE signal to the reader from 44FO1 (5-4, 3D).
i. The low from 50 FOO (5-4, 3D) keeps 50F03 (5-4, 7D) enabled, thus disabling 51F03 (5-4, 6D) and preventing further INPUT REQ signals from 50F02 (5-4, 5C). The low from $50 \mathrm{FOO}(5-4,3 \mathrm{D})$ is also used to partially enable 50F04 (5-4, 7D), which is further enabled by the low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C). The absence of ID ACK from the computer produces a low from 28F01, (5-4, 5B), which fully enables 50 F04 (5-4, 7D), producing a low when CLR INPUT REG signal to clear the input register flip-flops (figures 5-9 and 5-10).

3-146. Manual Termination of ON-LINE Reader Operation. Various methods for manually stopping the reader are discussed in the following paragraphs.

3-147. Raising the Tape Head. When the reader tape head is raised, the high when TAPE HEAD UP signal from the reader is inverted by $30000(5-6,6 B)$ and the following occurs:
a. The low output from 30000 (5-6, 6B) holds START READ F/F OXDOO (5-5, 6D) clear and extinguishes START READ indicator DS 21 (provided 70 msec have elapsed since the last EF ACK was received from the computer).
b. The low from $30000(5-6,6 B)$ is inverted by $19 F 01$ ($5-4,4 B$) to disable $20 F 01$ (5-4, 4B) and 43 FO1 (5-4, 3C).
c. Disabling $20 F 01$ (5-4, 4B) prevents the transfer of data to the input register by removing the low when EN DATA TO INPUT REG signal from 40FO1 (5-4, 4C).
d. Disabling $43 F 01(5-4,3 C)$ and 50F00 (5-4, 30) stops tape movement by removing the ADVANCE TAPE signal to the reader from 44F01 (5-4, 3D).
e. The low from the clear side of START READ F/F OXDOO (5-6, 6C) partially enables 44F02 (5-4, 6B). If an automatic reader operation is attempted, 29000 (5-6, 5B) is enabled and outputting a high, which is inverted to a low by 31000 (5-6, 4C). This low on the high when EN REG signal line fully enables 44F02 (5-4, 6B). The high from 44F02 (5-4, 6B) disables $45 \mathrm{FO2}(5-4,6 B)$, whose low output is inverted by 46 F 02 (5-4, 6C) to disable 50 FO ($54,5 \mathrm{C}$) and prevent generation of an INPUT REG.

3-148. Depressing the START READ CLEAR Pushbutton. When the START READ CLEAR pushbutton (S 5 , figure $5-6$) is depressed, the START READ F/F OXDOO (5-6,

6 C) is cleared. The low from the clear side of START READ F/F OXDOO (5-6, 6C) partially enables $44 F 02(5-4,6 B)$. If an automatic reader operation is attempted, $29000(5-6,5 B)$ is enabled and outputting a high, which is inverted to a low by $31000(5-6,4 C)$. This low on the high when EN REG signal line fully enables 44FO2 (5-4, 6B). The high from 44F02 (5-4, 6B) disables 45 F02 (5-4, $6 B$), whose low output is inverted by 46FO2 (5-4, 6C) to disable 50 FO 2 (5-4, 5 C) and prevent generation of an INPUT REQ.

3-149. Depressing the READ CLEAR Pushbutton. On figure 5-6, when the READ CLEAR (S6) pushbutton is depressed, the interlocking sides of READ GATE 29000 (5-6, 5B) and KEYBOARD gate 28D00 (5-6, $4 B$) are disabled, and the sequences listed below will occur.
a. The low from $29000(5-6,5 C)$ extinguishes READ indicator (DS 17); clears START READ F/F OXD00 (5-6, 6C) extinguishing START READ indicator (DS 21); removes the read disable from KEYBOARD gate 28000 (5-6, 4C); and provides a low when CLR READ RDY signal. The low from $29000(5-6,5 B)$ is also inverted by 31000 (5-6, 4C), which produces a high output removing the low when SET READ RDY signal from the READ READY F/F OXFOO (5-4, 3C), allowing it to be cleared by the low when CLR READ RDY signal from $29000(5-6,5 B)$. The high from 31000 (5-6, 4C) prevents the transfer of data to the input register by removing the low when DATA TO INPUT, and stops the reader motor by releasing the START READER signal through $32000(5-6,5 C)$.
b. With READ READY F/F OXFOO (5-4, 3C) cleared, its high output disables 43 F01 (5-4, 3C) and 50F00 (5-4, 3D).
c. Disabling $43 F 01$ (5-4, 3C) and 50F00 (5-4, 3D) stops tape movement by removing the ADVANCE TAPE signal to the reader from 44F01 (5-4, 3D).
d. The low from 50 FOO (5-4, 7D) keeps 50 F03 ($5-4,7 D$) enabled, thus disabling 51F03 (5-4, 6D) and preventing further INPUT REQ signals from 50F02 (5-4, 5C). The low from 50 F00 (5-4, 3D) is also used to partially enable 50404 (5-4, 7D), which is further enabled by the low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C). The absence of ID ACK from the computer produces a low from $28 \mathrm{FO1}$ (5-4, 5B), which fully enables 50 FO4 ($5-4,7 D$), producing a low when CLR INPUT REG signal to clear the input register flip-flops (figures 5-9 and 5-10).

3-150. Depressing the MASTER CLEAR Pushbutton. When the MASTER CLEAR pushbutton ($\$ 1$, figure 5-3) is depressed, it produces a high when MASTER CLEAR which is routed to figures 5-5 and 5-6. The high from S1 (figure 5-3) is also inverted by 70E00 (5-3, 8B) and 70E01 ($5-3,8 B$) and routed, as low when MASTER CLEAR signals, to figures 5-4 and 5-5, respectively. The following sequences then occur:
a. On figure 5-5, the high when MASTER CLEAR is inverted to a low by 20001 (5-5, 5-B). The low from 20D01 (5-5, 5B) produces a 70 msec negative pulse from $22000(5-5,3 C)$ which is inverted by $36000(5-5,3 C)$. This 70 msec positive pulse from 36D00 (5-5, 3C) prevents an EF REQ from being generated by disabling 40000 (5-5, 3C). However, at the end of $70 \mathrm{msec}, 40000(5-5,3 \mathrm{C})$ is again enabled and EF REQ signals may be generated.
b. When the 70 msec positive pulse from 36D00 (5-5, 3C) terminates, its low when EF REQ EN output signal partially enables the clear side of START READ F/F OXDOO (5-6, 6C).
C. On figure 5-6, the high when MASTER CLEAR is inverted by 20D00 (5-6, 6 C), whose low output full enables the clearing of START READ F/F OXDOO (5-6, $6 C$). The low from the clear side of

START READ F/F OXDOO (5-6, 6C) partialiy enables 44 FO 2 ($5-4,6 B$). If an automatic reader operation is attempted, 29000 (5-6, 5B) is enabled and outputting a high, which is inverted to a low by $31000(5-6,4 C)$. This low on the high when EN REG signal line fully enables 44F02 (5-4, 6B). The high from 44F02 (5-4, 6B) disables $45 \mathrm{FO2}$ ($5-4,6 \mathrm{~B}$), whose low output is inverted by 46 FO 02 (5-4, 6C) to disable $50502(5-4,5 C)$ and prevent generation of an INPUT REQ.
d. On figure 5-4, the low when MASTER CLEAR sets READER REQUEST ENABLE F/F OXF01 (5-4, 4C).
e. On figure 5-6, the low when MASTER CLEAR signal is inverted to a high by 71001 (5-6, 2D). This produces the same effect as depressing the READ CLEAR pushbutton.

3-151. TAPE PUNCH OPERATION, GENERAL. To operate the tape punch in the on-line mode, the computer sends an external function word of 005_{8} (or 0158) to the I/O Console. When the I/O Console receives the EF word, the PUNCH F/F is set, PUNCH indicator lights, and power is applied to the punch motor. The sequence of events is as follows:
a. At the punch, each rotation of the main motor shaft produces a flywheel (sync) pulse which is applied to the I/O Console control circuits.
b. When the first sync pulse is received from the punch, a 10 msec delay is initiated, which allows PUNCH READY F/F to be set on the next sync pulse (provided it occurs during the 10 msec delay period). When the PUNCH READY F/F is set, an output data request (ODR) is sent to the computer.
C. The computer detects the ODR, places data from an assigned memory location on its output lines (2^{0} through 2^{x}), and transmits an output data acknowledge (OD ACK) to the I/O Console.
d. Upon detecting the OD ACK from the computer, the I/O Console control circuits gate the on-line data to the output register, drop the ODR, set the TAPE FEED F / F, and light the TAPE FEED indicator.
e. When the next sync pulse is received from the punch, the TAPE FEED F/F is cleared, TAPE FEED indicator extinguished, and a 4 msec gate generated to gate punch-data, and to gate a feed-hole signal from the output register to the punch. This gate also prevents generation of an ODR during this time. The data configuration is then punched into the tape and the tape advanced to the next frame.

NOTE

Each revolution of the punch drive mechanism produces a flywheel
(sync) pulse. This pulse is used to gate data and a feed-hole signal from the output register to the punch. Although the punchdata and feed-hole signals are transmitted simultaneously, the mechanical timing within the punch is such that tape punching occurs before the tape is advanced to the next frame.
f. When the 4 msec gate terminates, the output register is cleared and another ODR generated. The computer detects the ODR and the cycle is repeated until the computer output buffer is empty or the punch is deactivated by the program.
g. After data transmission is complete, the program should deactivate the punch by sending an external function word of 001_{8} (or 011_{8}) to the I/O Console.
h. The tape punch operation can be stopped by the computer, or by:
(1) Depressing PUNCH CLEAR pushbutton:
(2) Depressing MASTER CLEAR pushbutton.

3-152. TAPE PUNCH OPERATION, DETAILED. Refer to operational flow diagram (figure 3-50) and referenced logic diagrams for the following discussion of punch operations. Steps 1, 2, 3, 10, 12 through 18, and 31 through 42 of the operational flow diagram are applicable to punch operation.

3-153. External Function Acknowledge Enable. As previously described, the EF ACK from the computer produces a $2 \mu \mathrm{sec}$ high from gate 19001 ($5-5,4 \mathrm{~B}$) which is inverted to a low by inverter 20002 (5-5, 5C) to partially enable the set side of PUNCH F/F OXDO2 (5-5, 5D).

3-154. External Function Word Conversion and Translation. For a punch operation, an external function word of 005: (or 015_{8}) is received from the computer. Active bits 2^{0} and 2^{2} are converted to I/O Console low logic levels (-4.5 VDC) by gates 20G00 (5-11, 3B) and 20G02 (5-11, 5B) and routed to figure 5-5 as the low when OUTPUT DEVICE and low when SET PUNCH signals, respectively.

3-155. Set PUNCH F/F and Start Punch Motor. On figure 5-5, the low when SET PUNCH and low when OUTPUT DEVICE fully enable the set side of PUNCH F/F OXDO2 (5-5, 5D). With OXDO2 set, the high from the clear side lights PUNCH indicator switch (DS 18) and is inverted to a low by $50 \mathrm{DO2}(5-5,8 \mathrm{~B})$ to initiate a START PUNCH signal from 53002 ($5-5,8 C$). The START PUNCH signal goes to energize PUNCH relay K1 (5-13, 4C). When K1 is energized, it completes a $115-$ VAC, $60-\mathrm{Hz}$ path to punch input A3A2J2-2.

3-156. Set PUNCH READY F/F. The high from the clear side of PUNCH F/F (55, 5D) removes the low when CLR PUNCH RDY signal from the clear side input of PUNCH RDY F/F OXEO1 (5-2, 4C) and the low when EN SET PUNCH RDY signal from the set side of OXDO2 (5-5, 5D) is used as a partial enable for setting OXEO1 $(5-2,4 B)$. The high from the clear side
of PUNCH F/F OXDO2 (5-5, 5D) also enables $50002(5-5,8 B)$ which outputs a low to 53002 (5-5, 8C) to start the punch motor and to $51000(5-5,7 B)$ time delay to allow the punch motor to get up to speed before setting the PUNCH READY F/F OXEO1 (5-2, 4B). At the punch, each rotation of the punch motor shaft produces a flywheel (sync) pulse. The negative portion of this pulse is converted to I/O Console logic levels and inverted by 29E00 (5-2, 3B).

3-157. Clear Output Register. Since TAPE FEED F/F OXEOO (5-2, 4C) is clear at this time, the low from its clear side partially enables gate 53 E 00 (5-2, 6 C). Time delay 51E00 (5-2, 3C) is normally outputting a low which further enables 53E00 (5-2, 6C). Gate 53 EOO is fully enabled by the low from inverter $52 \mathrm{EO2}$ (5-2, 6C), which is presented at all times except when ENABLE PRINT F/F OXEO2 (5-2, 5C) is set. Enabling 53E00 (5-2, 6C) produces a high output which is inverted by $57 E 00$ (5-2, 8C) and routed as the low when CLEAR OUTPUT REG signal to inverter $29 \mathrm{GOO}(5-11,8 \mathrm{~B})$. The high from 29G00 (5-11, 8B) is amplified by 30G00 and used to clear the output register flip-flops (figure 5-11 and 5-12).

3-158. Generate Output Data Request. The high from 53E00 (5-2, 6C) partially enables gate $54 \mathrm{EOO}(5-2,6 \mathrm{C})$. With PUNCH READY F/F OXEO1 (5-2, 4B) set, its low output partially enables the set side of TAPE FEED F/F OXEOO (5-2, 4C) and gate 50EO1 (5-2, 7B). Gate 50E01 (5-2, 7B) is fully enabled by the low when CLR PRINT RDY F/F signal which is present at all times except during printer operations. The high from 50E01 (5-2, 7B) provides the final enable for gate 54E00 (5-2, 6C) whose low output is used to partially enable OUTPUT REQ generator 56E00 (5-2, 7C). A low when EN REQ signal from $71 \mathrm{H} 21(5-8,3 C)$ is present at all times when the serializer is inactive. This signal is inverted by $71 H 22$ (5-2, 7B), reinverted by OR gate
$54 E 01$ (5-2, 7B), and applied as a partial enable for 56E00 (5-2, 7C). The final enable for $56 \mathrm{EOO}(5-2,7 \mathrm{C})$ is the low when EN REQ, which comes from the clear side of OFF-LINE F/F OXDO3 (5-5, 6 D), is present during all on-line operations. When 56E00 (5-2, 7C) is enabled, it generates an OUTPUT REQ signal for transmittal to the computer. The output data request is detected by the computer. The computer then places data from an assigned memory location on its output line (2^{0} through 2^{7}) and transmits an output data acknowledge (OD ACK) to the I/O Console.

3-159. Set TAPE FEED F/F, Remove ODR and Gate Data to Output Register. The OD ACK from the computer is converted to a low console logic level (-4.5 VDC) by 47E04 (5-3, 3B) to enable gate 48E04 (5-3, 3C) since the low when COPY enabling signal is present during all online operations. The high from 48E04 (5-3, 3C) is inverted to a low by 51E04 (5-3, 3C) to partially enable gate 53E04 (5-3, 3C). The low from $51 \mathrm{EO4}$ (5-3, 3C) is also routed through 52E04 (5-3, 3C), which allows $53 \mathrm{EO4}$ (5-3, 3C) to be fully enabled for $2 \mu \mathrm{sec}$. The $53 \mathrm{EO4}$ output is a $2 \mu \mathrm{sec}$ low when GATE OUTPUT DATA signal which is used to fully enable setting TAPE FEED F/F OXEOO (5-2, 4C). The high output from OXEOO (5-2, 4C) lights TAPE FEED indicator-switch (DS 20) and disables gate 53E02 (5-2, 6C). The low from 53E02 (5-2, 6C) is inverted by 57E00 (5-2, 6C), removing the low when CLR OUTPUT REG signal from its output line. The low from 52E02 (5-2, 6C), whose high output disables 53E00 (5-2, 6C), preventing generation of an OUTPUT REQ signal. The $2 \mu \mathrm{sec}$ low when GATE OUTPUT DATA signal from 53E04 (5-3, 3C) is also used to fully enable 19G00 ($5-11,3 C$) since the low when COPY enabling signal is present during all online operations. The low from 19G00 (5-11, 7B) gates the on-line data into the output register flip-flops OXG00 (5-11, 3C) through 0XGO7 (5-12, 7C) (figures 5-11 and 5-12).

3-160. Gate Data to Punch. With TAPE FEED F/F OXEOO (5-2, 4C) set, its high output partially enables 50E00 (5-2, 38). When the next flywheel pulse from the punch is sensed by $29 E 00$ ($5-2,3 B$), its high output fully enables 50E00 (5-2, 3B), whose negative output is inverted by 49E00 (5-2, 3C) and stretched into a 4 msec positive pulse by time delay circuit 51E00 (5-2, 3C). This gate is applied as a further disabling signal for gate $53 E 00(5-2,6 D)$, which was initially disabled when TAPE FEED F/F OXEOO (5-2, 4C) was set. The signal from $51 E 00$ ($5-11,3 C$) is also inverted by $52 E 00$ ($5-2,3 \mathrm{D}$) and amplified by 49G00 ($5-11,3 C$) to become the low when DATA to PUNCH signal, which is used to partially enable gates 50600 through 50G07 (figures 5-11 and 5-12). These gates will be fully enabled or disabled in accordance with the bit configuration stored in output register flip-flops OXGOO (5-11, 7C) through OXGO7 (5-12, 7C), respectively. When a particular flip-flop is set (contains a binary 1), its associated gate will be enabled. Conversely, when a particular flip-flop is clear (contains a binary 0), its respective gate will be disabled. The 50G00 (5-11, 3C) through 50G07 (5-12, 7C) outputs are converted to punch logic levels by 51G00 (5-11, 3C) through 51G07 (5-12, 7C), respectively, and transmitted to the punch as PUNCH DATA signals.

3-161. FEED HOLE Signal to Punch. The low when DATA to PUNCH signal from 49G00 (5-11, 3B) is amplified through 40G06 ($5-12,8 C$) to enable $41 G 06$ ($5-12,8 C$), whose output is transmitted to the punch as the FEED HOLE signal.

3-162. Clear TAPE FEED F/F. The low from 49G00 (5-11, 3C) is also routed to figure 5-2 as the low when EN CLR TAPE FEED F/F signal and used to partially enable gate $30 E 00(5-2,4 B)$. At the end of the flywhee pulse, the 29E00 (5-2, 3B) output goes low and 30E00 (5-2, 4B) is fully enabled. The low from 30E00
(5-2, 4B) clears TAPE FEED F/F OXEOO ($5-2,4 \mathrm{C}$), extinguishing the TAPE FEED indicator (DS 20), disabling 50E00 (5-2, 3B), and partially enabling gate 53E00 (5-2, 6D).

3-163. Clear Output Register. Gate $53 E 00$ ($5-2,6 \mathrm{D}$) is fully enabled when the 4 msec positive pulse from time delay circuit $51 E 00$ ($5-2,3 C$) terminates (goes low) since the low enabling signal from 52E02 (5-2, 6C) is present at all times except during printer operations. The high from 53E00 (5-2, 6D) is inverted by 57E00 (5-2, 8C) to produce the low when CLEAR OUTPUT REG signal, which is routed to inverter 29G00 (5-11, 8B). The high from 29G00 (5-11, 8B) is amplified by 30G00 5-11, 8B) and used to clear the output register.

NOTE

The remaining punch operations are listed in paragraph 3-161.

3-164. Automatic Termination of ON-LINE Punch Operation. After all data transmission has been completed, the computer initiates an external function acknowledge (EF ACK) and transmits an external function word 001_{8} to the I/O Console. When this EF ACK and EF word are received by the I/O Console, the following sequences occur:
a. The EF ACK generates a $2 \mu \mathrm{sec}$ positive pulse from 19001 (5-5, 4B) which is inverted to a low by 20D01 (5-5, 5B) and stretched to a 70 msec negative pulse by 22D00 (5-5, 3C). The low from $22000(5-5,3 C)$ is inverted by 36D00 (5-5, 3C), disabling $40000(5-5,3 C)$ and preventing generation of another EF REQ signal for 70 msec after receiving an EF ACK.
b. The $2 \mu \mathrm{sec}$ high from 19001 (5-5, 4B) is inverted to a low by 20001 (5-5, 5B) to partially enable the clear side of PUNCH F/F OXDO2 (5-5, 5D). Bit 2^{0} is converted to an I/0 low logic
level (-4.5 VDC) by gate 20 GOO (5-11, 3B) and routed to figure 5-5 as the low when OUTPUT DEVICE signal to further enable the clear side of OXDO2 (5-5, 5D). The absence of EF word bit 2^{2} provides a high from $20 G 02$ ($5-11,5 B$) which is routed on the low when SET PUNCH signal line to figure $5-5$ where it is inverted by $30002(5-5,5 C)$ to provide the final enabling signal for clearing 0xD02 (5-5, 5D).
c. With PUNCH F/F OXDO2 (5-5, 5D) cleared, the low from its clear side extinguishes PUNCH indicator (DS 18) and is inverted to a high by 50002 (5-5, 8B) to remove the START PUNCH signal from 53002 (5-5, 8C). Removing the START PUNCH signal deenergizes K1 (5-13, 4C) by breaking the $115-V A C, 60-\mathrm{Hz}$ path in order to drop the punch input A3A2J2-2 and stop the punch motor.
d. The low when CLR PUNCH RDY signa 1 from the clear side of PUNCH F/F OXDO2 (5-5, 5D) clears PUNCH READY F/F OXEO1 (5-2, 4B).
e. When PUNCH READY F/F OXEO1 (5-2, $4 B$) is cleared, its set output produces a high which disables the set side of TAPE FEED F/F OXEOO (5-2, 4C) and also disables 50E01 (5-2,7B). The low from 50 O 01 (5-2, 7B) disables gate 54E00, whose high output disables 56 E00 (5-2, 7 C), preventing further generation of an OUTPUT REG signal (ODR).
f. With the punch motor stopped, no further flywheel (sync) pulses will be detected by 29 EOO ($5-2,3 \mathrm{~B}$), and time delay circuit $51500(5-2,3 C)$ will be outputting a low which will prevent transfer of data from the output register to the punch by disabling the low when DATA to PUNCH output from 52E00 (5-2, 3D). The low from $51 \mathrm{E00}(5-2,3 C)$ also partially enables $53 E 00$ ($5-26 \mathrm{C}$), which is further enabled by the low from the clear side of TAPE FEED F/F OXEOO (5-2, 4C), and fully enabled by the low from 52E02 (5-2, 6C) (which is present at all times except during printer operations).
g. With gate $53 \mathrm{EOO}(5-2,6 \mathrm{C})$ enabled, its high output is inverted by 57E00 (5-2, 8C), providing the low when CLEAR OUTPUT REG signal used to clear the output register (figures 5-11 and 5-12).

3-165. Manual Termination of ON-LINE Punch Operation. Various methods for manually stopping the punch are described in the following paragraphs.

3-166. Depressing the PUNCH CLEAR Pushbutton. On figure 5-5, when the PUNCH CLEAR pushbutton (S7) is depressed, the PUNCH F/F OXDO2 (5-5, 5D) is cleared, and the sequence of events occurs as described in paragraph 3-164, steps c. through g..

3-167. Depressing the MASTER CLEAR Pushbutton. When the MASTER CLEAR pushbutton (S1, figure 5-3) is depressed, it produces a high when MASTER CLEAR which is routed to figures 5-2 and 5-5. The high from S1 (5-3, 7B) is also inverted by $70 E 00(5-3,8 B)$ and routed, as the low when MASTER CLEAR signal to figure $5-2$ and 5-5. The following sequences then occur:
a. On figure 5-5, the high when MASTER CLEAR is inverted to a low by 20001 (5-5, 5B). The low from 20D01 (5-5, 5B) produces a 70 msec negative pulse from 22000 (5-5, 3C) which is inverted by 36000 (5-5, 3C). This 70 msec positive pulse from 36000 (5-5, 3C) prevents an EF REQ from being generated by disabling 40000 (5-5, 3C). However, at the end of $70 \mathrm{msec}, 40000(5-5,3 C)$ is again enabled and EF REQ signals may be generated.
b. On figure 5-5, the low when MASTER CLEAR clears PUNCH F/F OXD02 ($5-5,5 \mathrm{D}$), and the sequence of events occurs as described in paragraph 3-164. steps c. through e..
C. On figure 5-2, the low when MASTER CLEAR signal is used to ensure that TAPE READ F/F OXEOO (5-2, 4C) is cleared.
d. Refer to paragraph 3-164, steps f. and g..
e. On figure 5-2, the high when MASTER CLEAR signal is used to ensure 57E00 (5-2, 8C) outputs the low when CLEAR OUTPUT REG signal necessary to clear the output register.

3-168. LOGIC DESCRIPTION, OFF-LINE MODE.

3-169. OFF-LINE MODE. The following paragraphs contain a detailed functional description of the logic circuitry in the I/O Console OFF-LINE mode of operation. Refer to operational sequence flow diagram (figure 3-53), during the following discussion of off-line control circuitry.

3-170. CONTROL CIRCUITS, GENERAL. A11 I/O Console operations are manually selected in the off-line mode of operation. One input device (keyboard or reader) and either one or both output devices (punch or printer) can be selected. The off-line operations explained in this manual cover selection of both the printer and the punch with each input device. Although these operations are similar to those explained for on-line operations, the I/O Console must operate independently of the computer; therefore, provision must be made for disabling all input data and requests to the computer, and all output data and acknowledgements from the computer. The input and output acknowledges normally received from the computer must be simulated within the $1 / 0$ Console.

3-171. CONTROL CIRCUITS, DETAILED. See referenced logic diagrams for the following detailed analysis of the general off-line control circuitry.

3-172. Prevent Data Transfer to Output Register. When the ON-LINE/OFF-LINE switch (S4, figure 5-3) is placed in the OFF-LINE position, the high from S4-1 disables one side of $48 E 04(5-3,3 C)$.

Gate 48E04 (5-3, 3C) is fully disabled at this time since an OD ACK is not being received from the computer. The low from 48E04 (5-3, 3C) is inverted by $51 E 04$ (5-3, 3C) to disable 53E04 (5-3, 3D), placing a high on the GATE OUTPUT DATA signal lines to figure $5-11$ to disable 18G00 (5-11, 7B) and 19G00 (5-11, 7B), preventing transfer of data into the output register flip-flops (figures 5-11 and 5-12).

3-173. Disable Inputs, Interrupts, Requests, and Acknowledges. The high from S4-1 (5-3, 4C) is routed on the low when ON-LINE signal line to figures $5-4$ and 5-5. On figure 5-4, the high on the low when ON-LINE signal line disables 45 FO 2 (5-4, 6B) and one side of 25F01 (5-4, 6C). Disabling the appropriate side of 25F01 (5-4, 6C) blocks ID ACK signals from the computer. Disabling 45F02 (5-4, 6B) produces a low output, which is inverted by 46F02 whose high output prevents generation of INTERRUPT or INPUT REQ signals to the computer by disabling 51F02 (5-4, 6C) and 50F02 (5-4, 5C) respectively. On figure 5-5, the high on the low when ON-LINE signal line disables 19001 (5-5, 4B) and 40000 (5-5, 3C). Disabling 19001 (5-5, 4B) blocks EF ACK signals from the computer. Disabling 40D00 (5-5,3C) prevents generation of EF REQ signals to the computer.

3-174. Off-Line Enables and Set OFFLINE F/F. With 19001 (5-5, 4B) disabled, its low output is inverted by 20001 (5-5, 5B), removing the low input signal from the clear side of OFF-LINE F/F $0 \times D 03$ (5-5, 6D), allowing it to be set as described below. The low (-4.5 VDC) from $54-2$ (5-3, 4C) partially enables gate 50004 (5-3, 4C) and is routed as low when OFF-LINE signals to figures $5-4$ and 5-5. On figure 5-4 the low when OFF-LINE signal partially enabies the side of $25 \mathrm{FO1}(5-4,6 \mathrm{C}$) associated with simulated input acknowledge signals. On figure 5-5, the low when OFF-LINE signal sets $0 F F-L I N E ~ F / F ~ 0 X D 03 ~(5-5, ~ 6 D)$, lighting the COPY lamp (DS 19).

Figure 3-53. OFF-LINE Control Circuits, Operational Sequence Flow Diagram.

3-175. OFF-LINE F/F Outputs. With OFFLINE F/F OXD03 (5-5, 6D) set, its clear side outputs are high and its set side outputs are low. Highs from the clear side are routed to figure $5-11$ on the high when GATE INPUT REG and low when COPY signal lines to figure $5-3$ on the low when COPY line, and to figure 5-2 on
the low when EN REQ line. Lows from the set side are routed on low when COPY lines to figures 5-3 and 5-4. On figure 5-11, the high when GATE INPUT REG signal is inverted by $17 \mathrm{GOO}(5-11,8 \mathrm{~B})$ to partially enable 18G00 (5-11, 7B). The high on the low when COPY disables 19G00 (5-11, 7B). On figure 5-3, the high on
low when $\overline{C O P Y}$ line disables the appropriate side of $48 E 04$ (5-3, 3C) to block OUTPUT ACK signals from the computer while the low when COPY signal partially enables the other side of $48 \mathrm{EO4}$ associated with circuits providing simulated output acknowledges. On figure 5-2, the high on the low when EN REQ signal line prevents generation of output request to the computer by disabling OUTPUT REQ generator 56E00 (5-6, 7C).

3-176. TAPE READER OPERATION, GENERAL. For off-line operations, the tape reader is initiated by depressing the READ, START READ, PRINT and/or PUNCH indicator switches on the I/O Console control panel. The following discussion involves off-line operations of the tape reader input with both printer and punch outputs.

3-177. When the tape head is lowered and the READ, START READ, PRINT, and PUNCH indicator switches are manually depressed, power is applied to the respective motors. When a sprocket pulse is detected, a frame is gated to the input register, the tape is stopped, OFF-LINE READ F/F sets. (If READ ONE switch is depressed, the OFF-LINE READ F/F never sets, causing only one frame to gate each time READ ONE switch is depressed.) With OFF-LINE READ ONE F/F set, a simulated output acknowledge occurs, gating the input register to the output register.

3-178. The serializer logics are enabled and TAPE FEED F/F is set. When the sync or flywheel pulse arrives from the punch, the frame in the output register is punched on tape and the TAPE FEED F/F cleared. Meanwhile the data in the input register is gated serially to the printer. After 81.81 msec , a simulated input acknowledge occurs which clears the OFF-LINE READ ONE F/F. After 18.18 msec , the OFF-LINE READ ONE F/F is set if OFF-LINE READ F/F is set. (If READ ONE switch is depressed, OFF-LINE READ F / F is cleared and the READ ONE
switch must then be depressed in order to set the OFF-LINE READ ONE F/F.) This action takes place until all tape is read or until the I/O Console is manually master cleared.

3-179. TAPE READER OPERATION, DETAILED. Refer to operational flow diagram (figure 3-54) and referenced functional schematic diagrams for the following discussion of tape reader operations.

3-180. Light READ Indicator. Depressing READ indicator switch (DS 17, figure 5-6) disables one side of gate 27D00 (5-6, 3D). The other side is disabled by the high from 21000 (5-6, 6B), which is present during all off-line operations. With 27000 (5-6, 3D) completely disabled, its low output is applied to partially enable the interlocking side of READ gate 29000 (5-6, 5B). Gate 29D00 (5-6, 5B) is fully enabled by the low from KB gate 28D00 (5-6, 4B), which is present at all times except during keyboard operations. Gate 29D00 (5-6, $5 B$) remains enabled and holds $K B$ gate $280005-6,4 B$), which is present at all times except during keyboard operations. Gate 29D00 (5-6, 5B) disabled by interlocking action between the two gates. The high from 29D00 (5-6, 5B) lights READ indicator switch (DS 17).

3-181. Disable Keyboard Mode and Clear INTERRUPT F/F, KEYBOARD REQ ENABLE F/F, and KEYBOARD INPUT READY F/F. The high from 29D00 (5-6, 5B) prevents enabling gate 28000 (5-6, 4B), thus disabling keyboard mode during a read operation. The low when CLR from $28000(5-6,4 B)$ is routed to figure 5-4, where it is inverted by $29 F 04(5-4,8 B)$ and then by 30F04 (5-4, 8C) and used to clear INTERRUPT F/F OXFO2 (5-4, 6C), KEYBOARD REQ ENABLE F/F OXFO3 (5-4, 7C) and KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C).

3-182. Set START READ F/F. When START READ indicator switch (DS 21, 5-6, 6D) is depressed, START READ F/F OXDOO (5-6, 6 C) is set and DS 21 is illuminated.

SE640-AZ-MMM-010

igure 3-54. Off-Line Reader-Punch-
Printer 0 operat ional Flow Sequence
Diagram (Sheet 2 of 2).

The high from the clear side of OXDOO (5-6, 6C) remains the low when CLR OFFLINE READ F/F signal from the clear side input of OFF-LINE READ F/F OXEO5 (5-3, $4 B$, while the low from the set side of OXDOO (5-6, 6C) partially enables the set side of OFF-LINE READ ONE F/F OXEO4 (5-3, 6B).

3-183. Start Reader Motor. The high from 29D00 (5-6,5B) causes a low output from inverter $31000(5-6,5 B)$ causes a low output from inverter 31000 (5-6, 4C) to initiate a START READER signal from 32000 (5-6, 5C). The START READER signal goes to energize READER relay (K3, $5-13,3 C$). When K3 is energized, it completes a $115-\mathrm{VAC}, 50-\mathrm{Hz}$ path to reader input A3A1J1-C.

3-184. Set READ READY F/F. The high from $29000(5-6,5 B)$ removes the low when CLR READ RDY from READ RDY F/F OXFOO (5-4, 3C). Low when SET READ RDY from 31000 (5-6, 4C) is delayed $0.5 \mathrm{sec}-$ onds by $19 \mathrm{FOO}(5-6,3 B)$ and applied through 20 FOO to set OXFOO.

3-185. Clear Input Register and Advance Tape. With the tape head lowered, a high when READER EN from 30000 (5-6, 6B) is inverted to a low by $19 F 01$ (5-4, 4B) to partially enable gates $42 F 01$ (5-4, 4D) and 43F01 (5-4, 3C). In the absence of a sprocket pulse, a low output is produced from $20 \mathrm{FO1}$ (5-4, 4C) which partially enables setting READER INPUT REQUEST ENABLE F/F OXFO1 (5-4, 4C), partially enables gate 41F01 (5-4, 4C), and prevents the low when EN DATA TO INPUT REGISTER signal from $40 \mathrm{FO1}(5-4,4 \mathrm{C})$.

3-186. With READ RDY F/F OXFOO (5-4, 3C) set, a low is outputted which partially enables gates $43 F 01$ ($5-4,3 C$) and sets READER INPUT REQUEST ENABLE F/F $0 \times F 01$ (5-4, 4C). The low from OXF01 (5-4, 4C) further enables 42F01 (5-4, 4D); however, all enabling conditions for 42F01 (5-4, 4D) are not met at this time, and its output will be low. Since 41F01 (5-4, 4C) is partially enabled by
the low from $20 \mathrm{FO1}$ (5-4, 4B), the 42F01 (5-4, 4D) output will remain low until conditions change (reader sprocket pulse detected). This low from 42FO1 (5-4, 4D) fully enables 43 F01 ($5-4,3 C$), producing a high as its output which is fed through 44F01 (5-4, 3C) as an ADVANCE TAPE signal to A3A1J2-Y of the tape reader. The high from $43 F 01$ (5-4, 3C) also disables 50 F00 (5-4, 3D) so that it produces a low to partially enable 50F04 (5-4, 7D). The low from the clear side of KEYBOARD INPUT READY F/F OXFO4 (5-4, 8C) further enables 50F04 (5-4, 7D), which is fully enabled by the low from 28 F01 [(5-4, 5B) due to lack of an ID ACK]. With gate 50FO4 (5-4, 7D) fully enabled, a low when CLR INPUT REGISTER signal is sent to inverter 29100 (5-9, 8B), amplified by 30100 (5-9, 8B), and used to clear the input register flipflops (figures 5-9 and 5-10).

3-187. Set PUNCH F/F and Start Punch Motor. Depressing the PUNCH indicator switch (DS 18, 5-5) sets PUNCH F/F OXDO2 (5-5, 5D). With OXD02 (5-5, 5D) set, the high from the clear side lights DS 18 and is inverted to a low by 50002 (5-5, 8B) to initiate a START PUNCH signal from 53D02 (5-5, 8C). The START PUNCH signal energizes PUNCH relay (K1, $5-13,4 C$). When K1 is energized, it completes a $115-\mathrm{VAC}, 60-\mathrm{Hz}$ path to punch input A3A2J2-2.

3-188. SET PUNCH READY F/F. The high from the clear side of PUNCH F/F OXDO2 (5-5, 5C) removes the low when CLR PUNCH RDY signal from the clear side input of PUNCH READY F/F OXEO1 (5-2, 4B) and the low when EN SET PUNCH RDY signal from the set side of $0 \times D 02$ ($5-5,5 \mathrm{C}$) is used as a partial enable for setting OXEO1 (5-2, 4B).

3-189. PUNCH F/F OXDO2 (5-5, 5C) set produces a high from the clear side to input pin 6 of 50002 (5-5, 8B), causing a low at output pin 13. The low from $50002(5-5,8 B)$ is applied to pin 15 of time delay 51000 (5-5, 7B). Time delay
signal from 53001 (5-6, 8C). The START PRINTER signal energizes PRINTER relay

51000 (5-5, 7B) outputs a high for 2 seconds, at which time the delay expires and the output goes low. The high from time delay $51000(5-5,7 B)$ is inverted to a low by 51001 (5-5, 7C) to start time delay 52D02 (5-5, 7C). For 0.5 seconds, (5-5, 7C) will continue to output a low allowing the punch to get up to speed. When the delay expires, the output will go high and remain high until time delay $51000(5-5,7 B)$ expires. The high from time delay 52002 (5-5, 7C) is inverted to a low by 54002 (5-5, 7D). This produces the low when EN SET RDY signal, which is applied to the PUNCH F/F OXEO1 (5-2, 4B) as the final enable to the set side. Two seconds after a low is applied to the input of 51000 (5-5, 7B) the delay expires and the output of time delay $52002(5-5,7 C)$ goes low. The low from 52002 (5-5, 7C) is inverted to a high by $54002(5-5,7 C)$, which drops the low when EN SET RDY signal to the PUNCH READY F/F OXEO1 (5-5, 4B).

3-190. Clear Output Register. Since TAPE FEED F/F OXEOO (5-2, 4C) is clear at this time, the low from its clear side partially enables gate 53 EOO (5-2, 6 D). Time delay 51 EOO (5-2, 3C) is normally outputting a low which further enables 53 EOO ($5-2,3 \mathrm{C}$). Gate 53E00 (5-2, 3C), which is present at all times except when ENABLE PRINT F/F OXEO2 (5-2, 5C) is set. Enabling 53E00 (5-2, 3C) produces a high output which is inverted by $57 \mathrm{E} 00(5-2,8 \mathrm{C})$ and routed as the low when CLEAR OUTPUT REG signal to inverter 29G00 ($5-11,8 B$). The high from 29G00 (5-11, 8B) is amplified by 30 GOO (5-11, 88) and used to clear the output register flip-flops (figures 5-11 and 5-12).

3-191. Set PRINT F/F and Start Printer Motor. Depressing PRINT indicator switch (DS 24, 5-6, 7C) sets PRINT F/F OXDO1 (5-6, 7C). With OXDO1 (5-6, 7C) set, the high from its clear side lights DS 24 and is inverted to a low by 50001 (5-6, 88) to initiate a START PRINTER
(K2, 5-13, 4C). When K2 is energized, it completes a $115-\mathrm{VAC}, 60-\mathrm{Hz}$ path to keyboard/printer input A7P1-Z and starts the printer motor.

3-192. Set PRINTER READY F/F. The low from the set side of PRINT F/F OXDO1 (5-6, 7C) is inverted to a high by 55D01, removing the low when CLR PRINT RDY signal line from the clear side of PRINTER READY F/F OXEO3 (5-2, 6B). The low when PRINTER RDY from the set side of OXDO1 (5-6, 7C) partially enables OXEO3 (5-2, 8B). The low from 50001 $(5-6,8 B)$ occurs when $0 \times D 01(5-6,7 C)$ is set and enables time delay 52001 (5-6, 7C) which produces a high output after a 0.5 second delay. The $52 D 01$ (5-6, 7C) output is inverted by 54001 to produce a low when EN SET PRINTER READY signal delayed 0.5 seconds from initiation of printer operation. This delayed signal is used as the final enable for setting OXEO3 (5-2, 6B).

3-193. Stop Tape and Gate Data to Input Register. When a sprocket pulse is detected, 20F01 (5-6, 4B) produces a high output which is used to disable gate 41F01 (5-4, 4C). With 41FO1 (5-4, 4C) disabled, its low output fully enables 42FO1 (5-4, 4D) producing a high to disable 43F01 $(5-4,3 C)$. When 43 FO1 is disabled, its low output is applied to 44F01 (5-4, 3C) to remove the ADVANCE TAPE signal to the tape reader. The low from 43F01 (5-4, 3C) also fully enables gate 50 FOO ($5-4,3 \mathrm{D}$) to produce a high output which is used to disable 50F04 (5-4, 7D) and remove the low when CLEAR INPUT REG signal to the input registers. The high from $20 \mathrm{FOl}(5-4,4 \mathrm{~B}$) is also inverted to become a low when EN DATA INPUT REG signal. This signal, along with the low when DATA TO INPUT signal from $31000(5-6,4 C)$, enables 17100 (5-9, 7B). The low when READER INPUT REG from $17100(5-9,7 B)$ gates data from the reader into the input register flipflops (figures 5-9 and 5-10).

3-194. Set OFF-LINE READ F/F and/or OFF-LINE READ ONE F/F. Placing the READ ONE-READ switch (S3, 5-3,5B) in the READ position sets OFF-LINE READ F/F OXEO5 (5-3, 4B). The low from the set side output of OXEO5 (5-3, 4B) partially enables the set side of OFF-LINE READ ONE F/F OXEO4 (5-3, 6B). The set side is fully enabled by the low when EN SET OFF-LINE READ ONE F/F signal from the 71 H 21 (5-8, 3C), which is present at all times when the serializer is inactive.

3-195. Simulate Output Acknowledge. The low from the set side of OFF-LINE READ ONE F/F OXEO4 (5-3, 6B) partially enables gate $50 \mathrm{EO4}(5-3,5 \mathrm{C})$. With READ ONE-READ switch (S3) in the READ position, the high from S3-3 is inverted to a low by 49E04 (5-3, 5C) to further enable 50 E 04 (5-3, 5C). Gate 50 E 04 (5-3, 5 C) is fully enabled by the low from S4-2 (5-3, 4C), which is present during all off-line operations. With 50E04 (5-3, 5C) enabled, its high output simulates an output acknowledge signal.

3-196. Set TAPE FEED F/F and Remove Clear from Output Register. The high from 50E04 (5-3, 5C) is inverted by $51 E 04$ (5-3, 3C) to partially enable $53 E 04$ (5-3, 3D). The low from $51 E 04$ (5-3, 3C), which allows 53E04 (5-3, 3D) to be fully enabled for $2 \mu \mathrm{sec}$ GATE OUTPUT DATA signal which is used to partially enable setting TAPE FEED F/F OXEOO (5-2, 4C). TAPE FEED F/F O1E00 (5-2, 4C) is fully enabled at this time due to the low from PUNCH READY F/F OXEO1 (5-2, 4B), which was previously set. The high output from OXEOO (5-2, 4C) lights TAPE FEED indicator switch (DS 20) and disables 53 EOO ($5-2,6 \mathrm{C}$). The low from 53E00 (5-2, 6C) is inverted by 57 E 00 ($5-2,8 \mathrm{C}$), removing the low when CLR OUTPUT REG signal from its output line.

3-197. Gate Input Register to Output Register. The $2 \mu \mathrm{sec}$ low when GATE OUTPUT DATA signal from $53 E 04$ (5-3, 3D) is also used to fully enable 18600 (5-11,

7B) since $17 \mathrm{GOO}(5-11,8 B)$ is outputting a low enabling signal during all offline operations. The low from 18 GOO (5-11, 7B) gates all data from the input register flip-flops (figures 5-9 and 5-10) into their respective output register flip-flops (figures 5-11 and 5-12).

3-198. Set ENABLE PRINT F/F, Initiate Serializer and CLEAR SERIALIZER RDY F/F。 With PRINTER READY F/F OXEO3 (5-2, 6B) set, its low output partialiy enables the set side of ENABLE PRINT F/F OXEO2 $(5-2,5 C)$. When the $2 \mu \mathrm{sec}$ low when GATE OUTPUT DATA signal from $53 E 04$ (5-3, 3D) occurs as the result of a simulated output acknowledge, the set side of OXEO2 (5-2, 5C) is fully enabled and the flipflop is set. The high from its clear side is inverted by $51 E 02$ (5-2, 6B) and reinverted by $52 \mathrm{EO}(5-2,6 \mathrm{C})$ to disable 53E00 (5-2, 6D) preventing the low when CLEAR OUTPUT REG from 57E00 (5-2, 8C) during printer operations. The low from the set side output of OXEO2 (5-2, 5C) fully enables 50 E06 (5-2, 5C) since its other enable is low at all times except during keyboard operations. With 50E06 (5-2, 5C) enabled, its high output is routed to figure 5-7 on the high when INIT SERIALIZER line. The high when INIT SERIALIZER signal is inverted by $71 \mathrm{HOO}(5-7,8 \mathrm{C})$ to partially enable $71 \mathrm{HO1}(5-7,8 \mathrm{C})$ and the sequence of events described in paragraph 3-76 occurs.

3-199. Gate Data to Punch and Clear TAPE FEED F/F. With TAPE FEED F/F OXEOO (5-2, 4C) set, its high output partially enables $50 \mathrm{EOO}(5-2,60)$. When the next flywheel pulse from the punch is sensed by 29E00 (5-2, 3B), its high output fully enables 50E00 (5-2, 3B), whose negative output is inverted by 49E00 (5-2, 3C) and stretched into a 4 msec positive gate by the time delay circuit $51 E 00(5-2,3 C)$. This gate is applied as a further disabling signal for gate 53 EOO (5-2, 6D), which was initially disabled when OXEOO (5-2, 4C) was set.

The gate from $51500(5-2,3 C)$ is also inverted by 52E00 (5-2, 3D) and amplified by 49G00 (5-11, 3C) to become the low when DATA PUNCH signal, which is used to partially enable gates 50G00 through 50G07 (figures 5-11 and 5-12). These gates will be fully enabled or disabled in accordance with the bit configuration stored in output register flip-flops OXG00 (5-11) through OXG07 (5-12), respectively. When a particular flip-flop is set (contains a binary 1), its associated gate will be enabled. Conversely, when a particular flip-flop is clear (contains a binary 0), its respective gate will be disabled. The 50G00 (5-11, 3C) through 50G07 (5-12, 7C) outputs are converted to punch logic levels by 51G00 (5-11, 3C) through 50G07 (5-12, 7C), respectively, and transmitted to the punch as PUNCH DATA signals.

3-200. Feed Hole Signal to Punch. The low when DATA to PUNCH signal from 49G00 (5-11, 3C) is amplified through 40G06 (5-12, 8C) to enable 41G06 (5-12, 8C), whose output is transmitted to the punch as the FEED HOLE signal.

3-201. Clear TAPE FEED F/F. The low from 49GOO (5-11, 3C) is also routed to figure 5-2 as the low when EN CLR TAPE FEED F/F signal and used to partially enable gate 30 E 00 (5-2, 3B). At the end of the flywheel pulse, the 29E00 (5-2, 3B) output goes low and 30 EOO ($5-2,3 \mathrm{~B}$) is fully enabled. The low from 30E00 (5-2, 3B) is fully enabled. The low from 30E00 (5-2, 3B) clears TAPE FEED F/F OXEOO (5-2, 4C), extinguishing the TAPE FEED indicator switch (DS 20), disabling 50E00 (5-2, 3B), and partially enabling gate 53E00 (5-2, 6D).

3-202. Basic Serializer Operations.

 Refer to serializer timing gates and pulses as illustrated in figure 3-51 during the following discussion of serializer delay line operations. When $71 \mathrm{HO1}$ ($5-7,7 \mathrm{C}$) is enabled, its $2 \mu \mathrm{sec}$ low output is stretched to 9.09 msec by 71H02 (5-7, 7D) and inverted by 71H03(5-7, 7A). When the positive pulse from 71H03 (5-7, 7A) terminates (goes negative), $71 \mathrm{HO4}$ (5-7, 7B) will produce a negative 9.09 msec output pulse which is delayed 9.09 msec from initiation of the serializer. This pulse is inverted by $71 \mathrm{HO5}(5-7,6 \mathrm{~B})$. When the positive pulse from 71H05 (5-7, 6B) terminates, 71H06 (5-7, 6B) will produce a negative 9.09 msec output pulse delayed 18.18 msec from initiation of the serializer. In this manner, the 9.09 msec negative pulse travels down the delay line consisting of circuits 71 HO ($5-7,7 \mathrm{~A}$) through 71 H 20 (5-8, 3C). Each inverterdelay circuit stage delays the pulse an additional 9.09 msec .

NOTE

Each delay stage consists of an input inverter (2070 card) and a time delay (2821 card). The inverters have odd numbered designations and the time delays are designated by even numbers.

3-203. Generation of DATA to PRINTER Signals for Start, Bits 0 Through 6, Parity, and Stop. Refer to paragraph 3-78.

3-204. Set SERIALIZER RDY F/F and Clear ENABLE PRINT F/F. The output of time delay 71 H 20 (5-8, 3B) is a negative 18.18 msec pulse delayed 81.81 msec from initiation of the serializer (see figure 3-51). This low sets SERIALIZER RDY F/F OXHOO (5-8, 3C) and clears ENABLE PRINT F/F OXEO2. The SERIAL CONVERTER READY signal from the set side of OXHOO (5-8, 5C) partially enables $71 \mathrm{HO1}$ (5-7, 7C) in preparation for the next initiation of the serializer.

3-205. CTear Output Register. With ENABLE PRINT F/F OXEO2 (5-2, 5C) cleared, the high from its set side fully disables 50E06, (5-2, 5C), since the high when KB enable for this gate contains a low at all times except during keyboard operations. The low from 50E06 (5-2, 5 C) is inverted by 51 EO ($5-2,5 \mathrm{~B}$) and
reinverted by $52 \mathrm{EO2}$ (5-2, 6B) to partially enable gate $53 E 00(5-2,6 C)$. Since TAPE FEED F/F OXEOO (5-2, 4C) is clear, the low from its clear side further enables 53E00 (5-2, 6C). Gate $53500(5-2,6 C)$ is fully enabled by the low from time delay 51500 ($5-2,3 C$), which is present at all times except during certain punch operations. The high from $53 E 00$ (5-2, 6D) is inverted by 57 E00 (5-2, 8C) and routed as the low when CLEAR OUTPUT REG signal to inverter 29G00 (5-11, 8B). The high from 29G00 (5-11, 8B) is amplified by 30G00 and used to clear the output register flipflops (figures 5-11 and 5-12).

3-206. Simulate Input Acknowledge. With 53E00 (5-2, 6C) enabled, its high output partially enables 54E00 (5-2, 6C). Since PUNCH READY F/F OXEO1 (5-2, 4B) and PRINTER READY F/F OXEO3 (5-2, 6B) are both set, the lows from their set sides enable $50 E 01$ ($5-2,7 B$) whose high output provides the final enable for 54E00 (5-2, 6C). The low when SIM INPUT ACK from 54EOO enables one side of $25 \mathrm{FO1}$ (5-4, 6C) since the low when OFFLINE enable is present during all offline operations. The high from 25 FO ($5-4,6 \mathrm{C}$) is inverted by $26 \mathrm{FO1}$ (5-4, 5A) and used as a partial enable for $28 \mathrm{FO1}$ (5-4, 5B). The low from 26 FO ($5-4,5 \mathrm{~A}$) is routed through 27F01 (5-4, 5B), which allows $28 \mathrm{FO1}(5-4,5 B)$ to be fully enabled for $2 \mu \mathrm{sec}$. The $28 \mathrm{FO1}(5-4,5 \mathrm{~B})$ output is a $2 \mu \mathrm{sec}$ positive pulse whose leading edge is coincident with the simulated input acknowledge, which occurs 81.81 msec after initiation of the serializer.

3-207. Clear OFF-LINE READ ONE F/F. The output from 71 H 21 (5-8, 3C) is an 18.18 msec high gate delayed 81.81 msec from initiation of the serializer. This gate is routed to figure 5-3 on the low When EN SET OFF-LINE READ ONE F/F signal line as one of the enables for OFF-LINE READ ONE F/F OXEO4 (5-3, 6B). The other enable is the low from the set side output of OFF-LINE READ F/F OXEO5 (5-3,

5B). The $2 \mu \mathrm{sec}$ high when CLR OFF-LINE READ ONE F/F from 28F01 (5-4, 5B) is inverted to a low by $30 \mathrm{EO4}$ (5-3, 6B). Since this pulse occurs while the positive 18.18 msec gate is disabling the set side of OXEO4 (5-3, 6B), the flipflop will be cleared during this time. However, at the end of the 18.18 msec positive gate (99.99 msec after initiation of the serializer), the set side of OXEO4 (5-3, 6B) will again be enabled and the flip-flop will set. When OXEO4 (5-3, 6B) sets, the cycle repeats from paragraph 3-193 until the reader operation is terminated.

3-208. Termination of Reader Operations. Reader operations may be terminated by the following methods:
a. Automatic termination when the tape is completely read.
b. Depressing the START READ CLEAR and PRINT CLEAR switches (S5 and S10, figure 5-6) and the PUNCH CLEAR switch (S7, 5-5, 5D).
c. Momentarily setting the READ/READ ONE switch ($53,5-3,5 B$) to the READ ONE position.
d. Depressing MASTER CLEAR switch (S1 5-3, 7B).

NOTE

If the READ ONE switch (5-3, 5B) is depressed, OFF-LINE READ F/F OXE05 (5-3, 4B) does not set and its high output disables the gate used for automatically setting OFF-LINE READ ONE F/F OXEO4 (5-3, 6B). However, depressing S3 sets 0XEO4 (5-3, 6B) during any read operation, causing a simulated output acknowledge, which gates the input register to the output register. Therefore, only one frame is gated every time the READ ONE switch is depressed.

