

0" �H�~� KO=O'S �L�~�B�R�W�~�0�5� �L�~�B�R�W�~�0�4� L:::;';> NO �B�R�W�~�0�3� �L�~� �B�R�W�~� 02 L=> �B�R�W�~� 01
J:::..

I
J:::..

L ==> NO BRW-----705 L=> NO BRW �~�0�4� L =;!> BRW -----? 03 L=> NO BRW �~� 02

L =;!> K04 _0 = O'S

00K05
I

L=> K005 = O2

06K03

�L�~� BRW -7 03 �H�~� BRW-702

00K04

00K03

00K02

OOKOI

.00K03

�L�~� K003 =02

ALL L �~� K0
4

_
1
= O·S

/looKoo
4 =;> KO =02 (BRW �~�O�l�)� 00

.01K02

H => K002=02

NOTES: " BRW �~� OX" MEANS A BORROW REQUEST IS BEING APPLIED TO BIT POSITION OX.
GATE 08KOO IS NOT ACTUALLY PART OF THE REQUEST LOGIC.

Figure 6.4-3. KO-l Adder Borrow Request Generation Logic

((i

OOKOO

L=>KOoo= O2

.OOKOI

L:::;';> KO
OI

=0
2

L"=> NO �B�R�W�~� 0 I

OIKOO

-I �L�~� KOOO- 2

c

C/)

GJ

..........
N
f--'

....0

e
0"

J:::..

------ ---------~- ---- ----------------

,f"".-

S.G.1219 (M)6.3

1) Initial Shift Count = O. If the shift count specified in
the six least significant bi ts of the instruction word equals 0, no shifts are to
be performed. The shift sequence is initiated but is terminated before it can ef­
fect any shifting.

Refer to table 6.3-1 for a sequential list of essential I and shift sequence con­
trol events. Develop these commands by referring to the proper enable pages in the
logic diagrams. The commands shown are in addition to the normal I-sequence com­
mands.

As shown, no shifting is performed. Two main timing cycles of the I-sequence are
used before the Hold flip-flops are cleared. With the initial shift count equal
to 0, the instruction execution time is 4 microseconds.

2) Initial Shift Count ~ O. If the shift count specified in
the six least significant bits of the instruction word does not equal 0, one or
more shifts are performed. The shift sequence is initiated and remains active un­
til the shifting is completed at which time it is terminated.

The shift commands involving AU and AL are generated by the combination of the shift
sequence flip-flops (OXLOO and OXLOl) being set and the occurrence of clock phases.
OXLOO and OXLOI are set for the entire shifting operation. The clock phases alone
provide the timing for the operation. For each cycle of the master clock, a shift
of one place is executed.

KO, Kl, and KO-l adder are used to control the number of shifts by determining the
number of clock cycles during which the shift sequence flip-flops will remain set.
The shift count which is held in KO and KI is decremented by 1 during each master
clock cycle. When KO reaches the count of 0, the Shift Sequence flip-flops are
cleared and the AU and AL shift commands are disabled. The KO-l adder is analyzed
in a later sheet.

Refer to figure 6.3-1 for a simplified logic diagram of the shift sequence. Devel­
op the events chart from the logic shown.

Refer to table 6.3-2 for a sequential list of essential I and shift sequence control
events. Develop these commands by referring to the proper enable pages in the logic
diagrams. The commands shown are in addition to the normal sequence commands.

As shown, shifting is performed until Kl = 0 which causes the clearing of the
OXLOO and OXLOI flip-flops after the last shift. Flip-flop OXL02 is set and cleared
at the termination but is not used. The Hold 1 flip-flop is not cleared until T4.2
time of the main timing cycle during which the last shift occurred. The next main
timing cycle is also under I-sequence control but is able to read-up the next in­
struct~on in the program. The last Hold flip-flop (2) is cleared at Tl.3 time of
the next instruction's I-sequence.

With the shift sequence active, each master clock cycle performs a one-place shift.
Therefore, a maximum of four shifts can be performed during one main timing cycle
which has a duration of two microseconds. Including the two microsecond I-sequence
which reads-up the shift instruction, a shift instruction with a shift count from
I through 4 has an execution time of four microseconds. Refer to table 6.3-3 for a
complete list of shift count values with the corresponding instruction execution
times.

6.3-3

S. G. 1219 (M) 6.3

*x/w~ A
[----02

L

*SHIFT A ~ X/W {

08KOO

H ~ KO = 0

01

IlL03
CONSTANT L
FOR SHIFTS IILOI

L~ INITIATE SHIFT SEQUENCE

SEQUENCE OF EVENTS (KOj =f; 0)

01 SET OXLOI FF (INITIATE SHIFT SEQUENCE)

02 CLEAR K I
03 SET OXLOO FF, KO -I ---7 K I, *CLEAR X B W

04 CLEAR KO, * SHIFT A -7 x/w
01 K I -------? KO, * CLEAR A

02 CLEAR KI, *X/W ~ A

: (CONTINUE UNTIL KI = 0)

03 KO-I ~ KI (KI =O),*CLEAR X B W

¢4 CLEAR KO, *SHI FT A ~ X/W

¢ I KI ~ KO (KO = O),*CLEAR A

~2 CLEAR KI (NOT USED), *X/W~ A (Af)

¢3 CLEAR OXLOO FF, KO-I ~ KI (NOT USED),

*CLEAR X a W (NOT USED)

¢ 4 * S H I FT A ~ X / W (N OT USE D)

(}'I CLEAR OXLOI FF

L =:> CLEAR K I

L ~ KO -1----"7KI

L ==> CLEAR KO

L~ KI ~ KO

NOTE: *THESE EVENTS PERTAIN TO THE ACTUAL SHIFTING OF AU AND AL AND ARE
DISCUSSED LATER IN THIS SHEET,

Figure 6.3-1. Shift Sequence Simplified Logic

6.3-4

6.4-6.

n

n

Sl. G. 1219 eM) 6 .4

NAME:
STUDY QUESTIONS

a. Given: instruc~ion - 504605
06K03 gtounded output (logic diagrarns~ figure 9-37)

Cons ideri n g the~ above rna lfunct i on I des cribe the effect ulPon the
execution of th~ given instr~ction. Fully explain your Teasoning.

6.4-5

.,
"

i-
t ..

. ~. -.--

S. G. 1219 (M) 6 . 5

SECTION 6 - ARITHMETIC SECTION

6.5. INSTRUCTION EXECUTION OF SF

6.5-1. OBJECTIVES

To present the detillled theory of operation involved in the execution of the
instruction with f = 50:44.

6.5-2. INTRODUCTION

This instruction normalizes the combined contents of AU and AL~

6.5-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4~(4) and 4-7,
tables 4-11 and 4-14.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.5-4. INFORMATION

a . Ge n era 1 Des c rip t ion

1. Instruction Interpretation. This instr~ction, SRI circularly left
shifts the combined content of AU and AL. AU is the more significant portion.
Left shifts are performed until AU35 t AU34 or until the maximum shift count
specified in the six least significant bits of the instruction word has expired.
This shift count dictates the maximum number of places that AU and AL can be
shifted during the normalize operation. When shifting stops, the difference between
the specified maximum shift count and the actual shift count is stored in control
memory at the address 00017 8, The original content of this memory address is
destroyed.

2. Execu t i on Sequen ce s.

a) I-Sequence. During the I-sequence which obtains the instruction
from memory, the maximum shift count is placed in KO.

b) Scale Sequence. The scale sequence uses a special timing chain
which runs in parallel to main timing and controls the actual normalize operation.

6.5-1

S.G.1219 (M)6.5

c) W-Sequence. The W-sequence is active throughout the normalize
operation but is only effective at the completion of the operation in storing the
difference between the maximum shift count specified and the actual shift count.

b. Detailed Analysis.

1. I-Sequence. The I-sequence operations are as previously described.
If necessary, refer to study guide sheet number 5.4 for a detailed description.
At the end of the I-sequence, KO contains the six least significant bits of the
instruction word which specifies the maximum shift count allowed.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are
set during the scale operation to prevent the normal W-sequence operations which
store KO in control memory. These flip-flops prevent the setting of the final
W-sequence flip-flop (lower bank). When the Hold flip-flops are cleared, the W­
sequence is allowed to store KO.

3. Wand Scale Sequences.

a) Data Flow Block Diagram.

1) Prior to Scale Ter~ination. Refer to figure 6~5-1 for a
block diagram description of one step of the scale operation.

During each master clock cycle with the scale sequence .active, AU and AL are
circularly left shifted one place as a 36 bit register. The count in KO is
decremented by 1. When the scale sequence detects AU35 # AU34 or KO = 0, the
shift operation is terminated.

2) Scale Termination (KO Storage). Refer to figure 6.5-2
for a block diagram description of the KO storage operations.

When the scale sequence is terminated, the W-sequence stores KO in control memory
at the address 00017 8, KO still contains its value which existed at the scale
termination. This value is the difference between the maximum shift count allowed
(KO i) and the actual number of shifts executed by the scale sequence.

b) Essential Commands.

1) Aborted Scale Sequence. If the maximum shift count
specified by the instruction equals 0 or if the initial value in AU is such that
AU35 # AU34, no shifting of AU and AL is to be performed. The scale sequence is
disabled.

Refer to tables 6.5-1 and 6.5-2 for sequential lists of essential I, W, and scale
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

2) Normal Scale Sequence Prior to Termination. Refer to
table 6.5-3 for a sequential list of essential I, W, and scale sequence events.
Develop these commands by referring to the proper enable pages in the logic diagrams.

6.5-2

I~

S.G.1219 (M)6.5

The scale sequence commands which left shift AU and AL and decrement KO occur
continuously until the scale sequence flip-flops OXLOO and OXLOl are cleared.

3) Scale Sequence Termination. Termination operations are
initiated when either AU34 # AU33 or Kl = O. Refer to tables 6.5-4 and 6.5-5 for
sequential lists of Wand scale sequence events. Develop these commands by
referring to the proper enable pages in the logic diagrams.

4) W-Sequence Storage of KO. At the termination or abortion
of the scale sequence, the Hold 1 and Hold 2 flip-flops are cleared which allows
the W-sequence to perform the storage of KO in control memory at the address
000178. Refer to table 6.5-6 for a sequential list of essential W-sequence events.
Develop these commands by referring to the proper enable pages in the logic
diagrams.

6.5-5. SUMMARY

The SF instruction is format 2 and uses the value k. The k value is available in
KO after T2.4 time of the I-sequence. The scale and W-sequences are required to
complete the execution of this instruction.

6.5-3

S.G.12l9 (M)6.5

KO

AU AL

35 III 17 /LI
KI

¢4 ! 00 ¢4 00

X w
\..J

01

KO

¢2 ¢2 ,~

AU AL

Figure 6.5-1. Scale Sequence, One Place Shift

6.5-4

S.G.1219 (M)6.S

W SEQUENCE OF SCALE TERMIN ATION

W SEQUENCE TO STORE KO

KO = (MAX. SHIFT COUNT) MINUS
(ACTUAL SHIFT COUNT)

TI.I-T2.1

READ
CONTROL

ZI ZO
MEMORY-

WRITE

T4.3

. SPEC INT

TRAN REG

03-01

TI.l

SI

T2.1

SO

SO = 00017

NOTES: *ARITH SEL ~ STORE SEL OCCURS DURING THE ENTIRE W SEQUENCE.

**ZI ~ ZO IS TIMED BY CONTROL MEMORY TIMING.

Figure 6.5-2. Final Scale Wand Last W Sequence Data Flow

I ~SIOO

0.5-::1

S . G. 12 1 9 (M) 6 . 5

TABLE 6.5-1. I, W, AND SCALE SEQUENCE ESSENTIAL COMMANDS
WITH MAXIMUM· SHIFT COUNT ALLOWED = 0*

- '-

TIME NOTATION COMMANDS

6.5-6

I SEQUENCE

Tl.4 Clear KO

T2.3 Clear OXLOO ff

T2.4 Z Se15_0 ---;'KO (KO = 0)

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO)

T4.1 Set OXLOI ff

T4.3 Set OXL02 ff, set Hold 2 ff

W SEQUENCE

Tl.l Set Clear Hold ff, clear OXLOI ff

Tl.3 Clear OXL02 ff

T4.1 **Clear Spec Int Trans Reg.

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

T4.3 **Set Spec Int Trans Reg. = 178

W SEQUENCE'TO STORE KO

Tl.3 Clear Hold 2 ff

* The W-sequence events which store KO are not shown.

** These commands pertain to the events which store KO and are
discussed later in this sheet.

TIME

S . G: 12 1 9 (M).6. 5

TABLE 6.5-2. ·I~ ~I AND SCALE SEQUENCE ESSENTIAL COMMANDS WITH. AU35i j AU
34i

NOTATION .. " COMMANDS

I SEQUENCE ...

T1.3 Clear F

T1.4 Clear KO

T2.3 Clear OXLOO ff ,

T2.4 Z Sel11-6 --;. F, set OXF06 ff,· Z Se15_0 ~~O
. :,",

T3.1 Set Clear Hold ff t

. , "': .

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO)
. , ,

T4.1 ~:<~:<Cl ear Spec Int Trans Reg
" .

,- I

T4.2 Clear Hold 1 ff, clear Clear-Hold ff
"

T4.3 ~:n:<Set Spec Int Trans Reg = 178
!

W SEQUENCE TO STORE KO
. ,

T1.3 Clear Hold 2 ff
. , :

!

*The W-sequence events which store KOare not shown~ i

~:<~:<These commands pertain to the events~ which store; KO and are discus:sed
later in this sheet.

0.5-7

S, G, 1219 (M) 6, 5

TABLE 6,5-3. I, W, AND SCALE SEQUENCE ESSENTIAL COMMANDS WITH MAXIMUM
SHIFT COUNT ALLOWED # 0 AND AU35i = AU34i

TIME NOTATION COMMANDS

6.5-8

I SEQUENCE

Tl.4 Clear KO

T2.3 Clear OXLOO ff

T2.4 Z Se15_0 ~ KO

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO)

T4.1 Set OXLOl ff

T4.2 Clear Kl

T4.3 Set OXLOO ff, set H~ld 2 ff, KO-l --:. Kl, clear X, clear W

T4.4

FIRST W SEQUENCE

T1.1 Kl ~ KO, clear AU, clear AL

Tl.2 Clear Kl, X ~ AU, ~:~~:~W ~ AL

Tl.3 KO-l ~ Kl, clear XI clear' W

Tl.4

T2.1 Kl ~ KO, clear AU, clear AL

T2.2 Clear KI, X ~ AU, ~:~~:~W ~ AL

(continue until Kl = 0 or AU34 ~ AU33)

*These commands are enabled by gate 3IWOO and 31XOO in the logic diagrams,
figure 9-33, and are timed by the AULl ~ X and ALLl ~ W commands.

~:~~:~The transmission of bi t 00 for the W ~AL commands is through gate 83AOO
in the logic diagrams, figure 9-33.

,~

S . G. 12 1 9 e M) 6 . 5

TABLE 6.5-4. TERMINATION OF SCALE SEQUENCE BY Kl = oew SEQUENCE)*

TIME NOTATION .COM\1ANDS

next

W SEQUENCE

TX.3 KO-l~Kl (Kl = 0), Clear X, Clear W

TX.4

TX.l

Clear KO, AULI ~X, ALLI ~ W, ;:~;:~AU35 ~ WOO, ~:~~:~AL17 ~ XOO

Kl ~ KO (KO = 0), set Clear Hold ff, clear AU, clear AL

TX.2

TX.3 KO-l ~ Kl, clear OXLOO ff, set OXL02 ff, clear X, cl ear W

TX.4 AULl ~ X ALLl ~ W ~:~~:~AU ~ W ~:~~:~AL ~XOO (not used) , '35 00' 17

TX.l Clear OXLOI ff

TX.3 Clear OXL02 ff

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

W SEQUENCE TO STORE KO

Tl.3 Clear Hold 2 ff

*The W-sequence events which store KO are not shown.

**These commands are enabled by gates 31WOO and 31XOO in the logic
diagrams, figure 9-33, and are timed by the AULI ~X, and ALLl ~ W
commands.

~:~~:~~:~The transmission of bi t 00 for the W ~AL command is through gate
83AOO in the logic diagrams, figure 9-33.

6.5-q

S . G. 12 1 9 (M) 6 . 5

TABLE 6.5-5. TERMINATION OF SCALE SEQUENCE BY AU34 # AU33 (W SEQUENCE)*

TIME NOTATION COMMANDS

next

TX.3

TX.4

TX.l

TX.2

TX.3

TX.4

TX.l

TX.2

TX.3

TX.4

TX.l

TX.3

T4.2

Tl.3

W SEQUENCE

KO-l ~Kl

Kl ~KO, clear AU, clear AL

Clear Kl, X -::. AU (AU34 # AU33), ~:~~:n~w ~ AL

KO-l ~ Kl

Set Scale Factor ff (lXLOO)

Kl ~KO

Clear Kl, X~ AU (AU35 -:f AU34), ~:~~:~~:~W ~AL

KO-l ~ Kl, clear OXLOO ff, set OXL02 ff

AULI ~X, ALLI ~W, AU35 ~WOO' ~:~~:~AL17 ~XOO (not used)

Clear OXLOI ff, set Clear Hold ff

Clear OXL02 ff

Clear Hold 1 ff, clear Clear-Hold ff

W SEQUENCE TO STORE KO

Clear Hold 2 ff

*The W-sequence events which store KO are not shown.

**These commands are enabled by gates 31WOO and 31XOO in the logic
diagrams, figure 9-33, and are timed by the AULI ~X, and ALLI ~W
commands.

~:~~:~~:~The transmission of bit 00 for the W --;:.AL command is through gate
83AOO in the logic diagrams, figure 9-33.

6.5-10

S.G.1219 (M)6.5

TABLE 6.5-6. FINAL SCALE W AND LAST W SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

T4.1

T4.2

T4.3

T4.4

W SEQUENCE OF SCALE rERMINATION

Clear special interrupt translator Reg

Clear Hold 1 ff

Set Spec Int Trans Reg = 178

Clear Sl

W SEQUENCE TO STORE KO

Tl.l

T1. 3

T1. 4

T2.1

T2.4

Spec Int Trans Reg03_01--;:.Sl03_011 1 ~SlOO' KO ~Ari th Sel~:~

Clear Hold 2 ff, clear Zl

Di sable CM ~ ZO, Store Sel ~ Zl~:~~:~

Sl--? SO, drop KO ~ Ari th Sel

Drop di sable eM ~ 20

~:~Arith Sel ~ Store Sel occurs during the entire W-sequence.

~:~~:~Zl ~ ZO is timed by control memory timi ng.

0.5-11

,'/

1

1
u

!

S.G.1219 (M)6.6

SECTION 6 - ARITHMETIC SECTION

6.6. INSTRUCTION EXECUTION OF MULAL, MULALB

6.6-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 24, 25.

6.6-2. INTRODUCTION

These instructions multiply the content of AL by the content of memory.

6.6-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4~(1)(~) and 4-7,
tables 4-11 and 4-12.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6 0 6-4. INFORMATION

a. General Description.

1. Instruction Interpretation.

a) MULAL, f = 24. This instruction multiplies the content of AL
by the operand Y. Y is obtained from memory at the address Up if SR is inactive or
USR if~SR is active. The final product is double length and appears in AU and AL.
AU contains the more significant bits.

b) MULALB, f = 25. Except for the address of Y, this instruction
is the same as f = 24. The address of Y is either Up + B or USR + B, depending up­
on the activeness of SR. The B register is specified by ICR.

2. Execution sequences.

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the address of the operand is formulated from U, P, SRI and Bo

b) RI-Seguence. The Rl-sequence uses a memory reference to obtain
the operand Y.

c) Multiply Sequence. The multiply sequence uses a special timing
/~. chain INhich runS in parallel to main timing and controls the actual multiplication.

6.6-1

S.G.1219 CM)6.6

3 . Mu 1 tip 1 i cat ion Pr 0 c e d u r e .

a) Pencil and Paper Method. Multiplication with the binary number
system is quite simple since during each multiplication step the multiplicand is
multiplied by either 12 or 02' The multiplication by 12 is performed by adding the
multiplicand to the partial product. Multiplying by 02 simply adds 0 to the partial
product. Refer to figure 6.6-1 for a 4-bit example of the normal '''pencil and paperll
method.

0101 MULTIPLICAND
x 00 II MULTIPLIER

0101 } 0101 PARTIAL PRODUCTS
0000

0000
0001111 PRODUCT

Figure 6.6-1. Example of Binary Multiplication, Pencil and Paper Method

b) 1219 Computer Method. In the 1219" the procedure is basically
the same as described above. However, the result of each multiplication step is
added to the previous partial product immediately instead of adding all of the par­
tial products together at the end.

Also, as each new partial product is formulated, it is shifted right one place.
Refer to figure 6.6-2 for the same numerical example using the 1219 Computer method.

In each step, either the multiplicand Y or +0 is added to the partial product in AU
depending upon the value of AGoO. If ALOO = 12, it specifies 1 x Y which is ac­
complished by adding Y to the previous partial product.

As the process continues, the multiplier is shifted out of AL and the lower half of
the product is shifted into AL. The final product is the content of AU and AL to­
gether.

b. Detailed Analysis.

1. I-Sequence. Most of the I-sequence operations are as previously
described. If necessary, refer to study guide sheet number 5.4 for a detailed de­
scription. At the end of the I-sequence, the X-D' adder is outputting the address of
the operand.

In addition to the normal operations, the Y Neg and A Neg flip-flops are cleared at
T4.2 time. These flip-flops are shown in the logic diagrams, figure 9-33.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are set
during the multiply operation to prevent the reading of the next instruction and the
clearing of the multiply function code from F. The effect of these flip-flops is
the same as described for the shift instructions in information sheet number 6.3.
Since the Hold flip-flops are set during the Rl-sequence, the Rl-sequence remains
active during the multiplication.

6.6-2

,~

('

~\

AU

MULTI PLICAND = Y = 0000
+0 I a I

0101

\
_ 00 10

Y-+ OIOI

00 II
+0000

001 I

\
0001

+ 0000
0001

\
0000

AU B AL = PRODUCT

S.G.1219 (M)6.6

AL

0011 = MULTIPLIER

L...I x Y

AU B AL RIGHT SHIFT ONE PLACE

1001

L-.I x Y

AU B AL RIGHT SHIFT ONE PLACE

x Y

AU B AL RIGHT SHIFT ONE PLACE

x Y

AU B AL RIGHT SHIFT ONE PLACE

I I r I

Figure 6.6-2. Example of Binary Multiplication, 1219 Computer Method

3. Rl and Multiply Sequences.

a) Data Flow Block Diagram.

1) Prior to Multiply Termination. Refer to figure 6.6-3 for a
block diagram description of the execution of f = 24, 25, prior to the multiplica­
tion termination.

The Rl-sequence uses a memory reference to obtain the operand Y. This is the mul­
tiplicand. D receives either Y or its complement at T2.4 time. If Y is negative
it appears complemented in D in its positive form. This is part of the initial
sign connection operation which makes both the multiplicand and the multiplier
positive numbers before the multiplication operation. At the completion of the
multiply, the result is, if necessary, made negative according to the signs of the
original multiplicand and multiplier.

The multipler in AL is also made positive by complementing at T2.2 time if its
initial value is negative.

6.6-3

S. G. 12 19 (!VI) 6 . 6

The actual multiplication of D x AL is effected by the multiplication sequence
which runs in parallel with the HI-sequence. The 36-bit value in AU and AL is
right shifted one place into X and W, respectively, at T2.4 time. The Multiplier
Store flip-flop is used to record to value of ALOO which is the trlultiplier bit to
be examined. If ALOO = 12, . the multiplicand in D is added to the partial pro­
duct in X (O's initially) and placed in AU at T3.2 time. If ALOO = 02, nothing is
added to the partial product in X and the unchanged value is placed in AU.

During each multiplication step, AU and AL are right shifted one place and either
the multiplicand or nothing is added to the partial product depending upon the cur­
rent multiplier bit (ALOO). The number of steps is controlled by K0 1 Kl, and the
KO-l adder. KO is initially set to 1910 and is decremented during each multipli­
cation step. When it contains 0, the operation is terminated. The resulting 1910
right shifts of AU and AL will have shifted the multiplier out of AL and properly
positioned the final product in AU and AL.

As discussed in a later sheet 1 the operand could be obtained from bootstrap or con­
trol memory.

2) Multiply Termination (Final Sign Correction). When KO = 0,
the multiplication operation is terminated and AU and AL contain the final product.
If the original signs of Y (multiplicand) and AL (multiplier) were unlike, the pro­
duct must be made negative. Since both Y and AL were made positive prior to the
multiplication, the product should be also positive. The product is left positive
if both Yi and ALi had like signs. If the original signs are unlike, AU and AL are
complemented to yield a negative product. Hefer to figure 6.6-4 for a block dia­
gram description of the final sign correction operation which occurs at the comple­
tion of the multiplication operation.

b) Essential Commands. The commands which effect the multiplica­
tion operations are enabled by the OXLOO and OXLOI Multiply Sequence flip-flops and
are timed by the m aster clock phases.

Hefer to table 6.6-1 for a sequential list of essential HI, next I, and multiply
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

6.6-5. SUMMARY

The MULAL and MULALB instructions use the Up or USH which is formulated in D during
the I-sequence. The HI and multiply sequences and the first portion of the next I~

sequence are required to complete the executions of these instructions.

6.6-4

ZI

T2.!-T3.1

Z SEL

T2.!-T3.!

ARITH SEL

WRITE

READ

Z SEL = Y

MAIN
MEMORY f+--

X CLEARED TO
O'SATTI.3

X-D'
ADDER

r------It'--T_I.-"I S ! :

S . G. 12 1 9 (M) 6 . 6

SI
f = 24, Up OR USR
f = 25, Up + BICR OR USR + BICR

AL

1 TI.I-T2.1

ARITH SEL

TI.41 ARITH SEL'

D

X-D'
ADDER

x TI.3 SET A NEG FF
IF AL NEG

ARITH SEL IF Y POS}
ARITH SE~ IF Y NEG SENSED FROM Z SEL

D

T2.4 SET Y NEG FF IF Y
NEG (SENSED FROM Z SEL)

AU CLEARED
AT T2_1

T2.4

X-D'
ADDER

AU

RI

X

D= MULTI PLICAND
ADDER = X +
MULTIPLICAND

r-------l
IIF A NEG FF SET T2.2

I AL= MULTIPLIER
I T2.1 CLEAR AL I
I AL
~ ______ J T2.4 SET MULT.

18 RI 00 STORE FF IF ALOO= I

17

T2.4
T2.4

W

IF MULT. STORE
FF CLEAR

ONE MU LTI PLlCA­
>- TION STEP

/
/~

IF MUL T. STORE FF SET ! T3.2
"'-'---.......J..,

T3.2

AU = PARTIAL PRODUCT AU AL

----~OO

(CONTINUES UNTIL KO =0)

Figure 6.6-3. Rl and Multiply Sequence Data Flow

T2,4 SET MULTI PLI ER
STORE FF IF ALOO= I

6.6-5

S.G.1219 (M'6.6

AU B AL = PRODUCT

AU

T2.I-T3.1

ARITH SEL

ARITH SELl

.--- SET X = liS! ARITH SEL~ X

ex ARITH SELl ~X IF

X-DI
ADDER

.------11------. T2.4

AU ex AL =f:. OIS

X CLEARED TO O'S AT T2.3

r - - - - -IF~1 -; AL,,~-I
I T3.2 I UNLIKE SIGNS I
I AU T3.1 CLEAR AU I
L __________ --1

SET X = liS: - __ ---.... ..
ARITH SEL ~ X B
ARITH SELl ~ X
IFAUBAL=f:.O'S

-{

T3.4

AL

T3. 1- T4.1

ARITH SEL

ARITH SELl
T3.4

D

X-DI
ADDER

-- X

~F--:XL06~~E~ - - - - -T4.2 l ,
I (Yj 8 Aj UNLIKE SIGNS) I
I AL I
L T4.1 CLEAR AL
------- J

Figure 6.6-4. Multiply Final Sign Correction Data Flow

6.6-6

/""'\ ..

\.J

. ~\

S. G. 12 19 (M) 6 . 6

TABLE 6.6-1. R1, MULTIPLY AND NEXT I-SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION

T4.4

T1.1

T1.3

T1.4

T2.1

T2.2

T2.3

T2.4

T3.1

T3.2

T3.3

T1.1

T1.2

T1.3

T1.4

T2.1

T2.3

T2.4

T3.1

T3.2

T3.3

T3.4

T4.1

T4.2

T4.3

T1.3

.'

*Sign of Y is sensed from Z select .

COMMANDS

R1SEQUENCE

Clear S1

AL--+ Arith Sel, Adder ~S1, Init Memory

Set A Neg ff if AL neg, clear D, clear X, clear Z1

Arith Sell-+D, clear KO, clear Scale Factor ff (1XLOO)

Clear AU, clear AL if A Neg if set, set KO = 1910 , set OXL01 ff, Z1-+ Z

Sel, Z Sel --+ Arith Sel, drop AL--+ Arith Sel

Adder~AL if A Neg ff set, Clear K1

Clear D, set OXLOO ff, clear X, clear W, clear Mult. Store ff, KO-1-+K1

Set Y Neg ff if ~ neg *, Arith Sel--+D if Y pas*, Arith Sel'~D if Y neg*,
clear KO, A UR1--+ X, ALR1--+ W
***AU18~W17' set Mult. Store ff if ALOO = 1

K1--+~0 (KO = 18), clear AL, clear AU

Set Hold 1 ff, **W~AL, Adder-+AU·if Mult. Store ff set
X-+ AU if Mult. Store ff clear, clear K1

Set Hold 2 ff, KO-1 ~K1, clear X, clear W

(continues until KO = 0)

Clear AL, clear AU, K1-+KO (KO = 0)

W-+AL, Adder-+AU if Mult. Store ff set
X-+AU if Mult. Store ff clear, clear K1

Set OXL02 ff, clear OXLOO ff, KO-1-+K1
clear X, clear W, clear Mult. Store ff

AUR1~X, ALR1--+W, ***AU18-+W17 , set Mult. Store ff if.ALOO = 1

Clear OXL01 ff, set OXL03 ff, AU -+ Arith Sel, set Clear-Hold ff

Set OXL04 ff, clear OXL02 ff, clear D, clear X

Arith Sell~D, Arith Sel-+X & Arith Sell--+X if AU & AL f OIS
(Set X = lis)

Set OXL05 ff, if Yi & ALi unlike signs, clear OXL03 ff, ****AL-+Arith
Sel, drop A~~Arith Sel, clear AU if Yi & ALi unlike signs

Adder ~A U if Y i & ALi unlike signs

****set OXL06 ff, clear OXL04 ff, **** clear D

****Arith Sel'-+D, Arith Sel-+X & Arith Sel l -+ X if AU & AL f OIS
(SetX=l l s)

Clear OXL05 ff, clear AL if OXL06 ff set, drop AL--+Arith Sel

Adder-+ AL if OXL06 ff set, clear Hold 1 ff, clear Clear-Hold ff

Clear OXL06 ff

I-SEQUENCE OF NEXT INSTRUCTION

Clear Hold 2 ff

**The transmission of bit 00 for the W ~ AL command is through gate 83AOO in the logic diagrams,
figure 9-33.

***AUHf"+W17 data flow is through gate 31W17 in the logic diagrams, figure 9-33, and is enabled
by the ALR1-+W command.

****These events occur only if the OXL05 ff is set to perform final sign correction. 6.6-7

., ~

r

o

l .,.
i ." .

1

S.G.1219 (M)6.7

SECTION 6 - ARITHMETIC SECTION

6.7. INSTRUCTION EXECUTION OF DIVA, DIVAB

6.7-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 26, 27.

6.7-2. INTRODUCTION

These instructions divide the combined content of AU and AL by,the content of
memory.

6.7-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4~(1)(i) and 4-7,
tables 4-11 and 4-12.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6 0 7-4. INFORMATION

a. General Description.

1. Instruction Interpretation.

a) DIVA, f = 26. This instruction divides the 36-bit value in AU
and AL by the operand Y. AU contains the more significant bits. The origin of Y
is memory at the address Up if SR is inactive or USR if SR is active. The quotient
appears in AL and the remainder is held in AU. The sign of the remainder is the
same as the dividend (AU and AL).

b) DIVAB, f = 27. Except for the address of Y, this instruction
is the same as f = 26. The address of Y is either Up + B or USR + B depending upon
the activeness of SR. The B register is specified by ICR.·

2. Execution Sequences.

a) I-Sequence. During the I-sequence which obtains the instruction
from memory, the address of the operand is formulated from U, P, SRI and B.

b) RI-Sequence. The Rl-sequence uses a memory reference to obtain
the operand Y.

c) Divide Sequence. The divide sequence uses a special timing
chain which runs in parallel to main timing and controls the actual division.

6.7-1

S.G.1219 (M)6.7

3. Division Procedure.

a) Pencil and Paper Method. Division with the binary number sys­
tem is quite simple since each division step produces a quotient bit of either 12
or 02' During the division step, the divisor is compared with the partial dividendo
If it is less than or equal to the partial dividend, a 12 is set in the correspond­
ing quotient bit position and the divisor is subtracted from the partial dividendo
If the division cannot be performed (partial dividend less than the divisor), a 02
is set in the quotient bit and O's are subtracted from the partial dividend which
does not al ter its value. Refer to figure 6.7-1 for an example of the normal "pen­
cil and paper" method.

00110 = QUOTIENT

DIVISOR = 010 I /00 1000 10 DIV I D END
-0000

00 100 .. PARTIAL DIVIDENDS
-0000

o I 0 a 0 ... _f--------t

-0 I 0 I
00 I I I 4_----4

-0 101
00 I 00 4_1---~
-0000

a I 00 = REMAINDER

Figure 6.7-1. Example of Binary Division, Pencil and Paper Method

b) 1219 Computer Method. In the 1219, 'the procedure is basically the
same as described above. However, instead of right shifting the divisor when sub­
tracting from the partial dividend, the partial dividend is shifted left. Also an
initial left shift of the dividend is performed. The most significant bit of the
dividend which is shifted out is 02 because the dividend in AU and AL is made posi­
tive prior to the division operation. As the dividend is left shifted out of AL
and into AU, the quotient is shifted into AL. Refer to figure 6 0 7-2 for the same
numerical example using the 1219 Computer method.

b. Detailed Analysis.

10 I-Sequence. Most of the I-sequence operations are as previously
described. If necessary, refer to study guide sheet number 5.4 for a'detailed de­
scription. At the end of the I-sequence, the X-D' adder is outputting the address
of the operand.

In addition to the normal I-sequence operations, the Y Neg and A Neg flip-flops are
cleared at T4.2 time. These flip-flops are shown in the logic diagrams, figure 9-'33.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are set
during the divide operation to prevent the reading of the next instruction and the
clearing of the divide function code from F. The effect of these flip-flops is the
same as described in the shift instructions in information sheet number 6.3. Since
the Hold flip-flops are set during the Rl-sequence, the Rl-sequence remains active
during the division.

6.7-2

---_._----- --------

S. G. 12 19 (M) 6 . 7

y AU AL

0101 = DIVISOR 0010 ~0010 = DIVIDEND
J ~ 'AU B AL LEFT SHIFT ONE PLACE

0100 OIOOVPARTIAL DIVIDEND < Y

-~~~~ j AU B AL LEFT SHIFT ONE PLACE

DIVI DEND ~ Y

00,1 j AU B AL LEFT SHIFT ONE PLACE

y=-8:b: /OOjIIVPARTIAL DIVIDEND~Y
0010/ AU B AL LEFT SHIFT ONE PLACE

Olia 0110 = QUOTIENT
-0000 '--PARTIAL DIVIDEND < Y

0100 = REMAINDER

Figure 6.7-2. Example of Binary Division, 1219 Computer Method

3. Rl and Divide Sequences.

a) Data Flow Block Diagram.

1) Prior to Divide Termination. Refer to figure 6.7-3 for a
block diagram description of the execution of f = 26, 27 prior to the divIsion
termination.

The Rl-sequence uses a memory reference to obtain the operand Y. This is the di­
visor. D receives either Y or its complement at T2.4 time. The X-D' adder is used
to subtract X- divisor. The divisor is made positive as it appears presented to
the adder. Therefore, if Y is positive, D receives Y' which means D' = Y; and the
adder outputs X-Dt. If Y is negative, D receives Y; and the adder output is X -
Y'. In this case, the adder uses the operand in its complemented form which would
cause it to become a positive value.

The dividend is also made positive prior to the division operation. The more sig­
nificant half in AU is complemented at T2.2 time if AUi is negative o The Im,ver half
of the dividend is not actually made positive in AL, but it is complemented if nec­
essary as it is shifted into AU via X one bit at a time.

The actual division of AUAL -7- D' is effected by the divide sequence which runs in
parallel with the Rl-sequence. The 36-bit value in AU and AL is left shifted one
place into X and W, respctively, at T2.4 time. The value in X (partial dividend)
is compared with D' (divisorL If X is greater than or equal to D', the division
of this step can occur and is indicated by the absence of an end-around borro,~ (EAB).
The divisor is then subtracted from the partial dividend and their difference is
placed in AU. ALOO is set to 12 in this case which is the quotient bit value for
this division step.

If X is less than D' as indicated by an end-around borrow, the division cannot occur.
a's are subtracted from the partial dividend and it is transferred unaltered from X
to AU. In this case, nothing is set in ALOO ' and it remains a O2 ,

6.7-3

S.G.1219 (M)6.7

During each division step, the operations described above occur. The number of
steps is controlled by KO, Kl, and the KO-l adder. KO is initially set to 1810
and is decremented by a -1 during each division step. When it contains 0, the
operation is terminated. T.he resul ting 1810 left shifts of AU and AL will have
shifted the dividend out and properly positioned the quotient in AL. The remain­
der is the result of the operation with the last partial dividend and appears in
AU.

As discussed in a later sheet, the operand could be obtained from bootstrap or con­
trol memory.

2) Divide Termination (Final Sign Correction). When KO = 0,
the division operation is terminated. AL contains the quotient. AU contains the
remainder. If the original signs of Y (divisor) and AUAL (dividend) were unlike,
the quotient must be made negative. Since both Y and AUAL were made posi tive prior
to the division, the quotient should be also positive. The quotient is left posi­
tive if both Yi and AUALi had like signs. If the original signs were unlike, AL is
complemented to yield a negative quotient. The sign of the remainder in AU is ad­
justed by complementing if necessary to make it the same as AUALi. Refer to figure
6.7-4 for a block diagram description of the final sign correction operation which
occurs at the completion of the division operation.

b) Essential Commands. The commands which effect the division op­
erations are enabled by' the OXLOO and OXLOI Divide Sequence flip-flops and are
timed by the master clock phases.

Refer to table 6.7-1 for a sequential list of essential HI, next I, and divide
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

When the divisor and the first partial dividend are compared at T3.2 time, ALOO is
set to 12 if the division can be done (EAS). This bit position is the most signi­
ficant bIt p osition of the quotient; and, if set, causes the quotient to be a nega­
tive value prior to final sign correction. Since both the divisor and dividend are
made positive prior to the division, the quotient should be also positive. There­
fore, if the first division can be done, there is an error due to the size of the
original numbers. This error condition is recorded by the Overflow flip-flop, which
is set during the first divisor and dividend comparison if there is no end around
borrow. The condition of this flip-flop can be later sensed by ~n f = 50:52, 50:53
instruction.

6.7-5. SUMMARY

The DIVA and DIVAS instructions use the value Up or USH which is formulated in D
during the I-sequence. The RI and divide sequences and the first portion of the
next I-sequence are required to complete th~ executions of these instructions.

6.7-4

-------- ._------ -... _._--_._ .. _. ~- .-.~--~---------

WRITE

I
zt -

READ

MAIN ~
MEMORY

X-Ol

ADDER

TI.I
.----'L...----, S I :

S I f = 26, Up OR USR

S.G.1219 CM)6.7

f = 27, Up + 81 C R 0 R Us R + 8 1 C R

AU

TI.I-T2.1

ARITH SEl

ARITH SELl

TI.4

T2.I-T3.1 D
1~

Z SEL Z SEL = Y

T2.I-T3.1

X-D
1

ADDER

t

TI.3 SET A NEG FF IF AU NEG

T2.4 SET Y NEG FF IF Y NEG
(SENSED FROM Z SEL)

ARITH SEL x

X CLEARED TO OIS AT TI.3
ARITH SELl IF Y
POS, ARITH SEL IF
Y NEG (SENSED
FROM Z SEL)

0
1

= DIVISOR,

D

T2.4

H

1--- --------,
IF A T2.2 ~ T2. I CLEAR AU I

I NEG FF
I SET AU I
L ____ . ____ ---1

T2.4

X-D
I

~ ADDER

ADDER = X
- DIVISOR

LI

X

A L 17 I FAN E G FF C LEA R

AL 171 IF A NEG FF SET

JI'
00

X= PARTIAL
DIVI DENO

IF EAB ex < DI)

~ /
IF EAB (X ~ 0

1
)

T3.2

17

T3.2

AL

LI

T2.4

W

12 IF EAB
(x ~ 0

1
)

• 00
T3.2 SET OVERFLOW FF

IF EAB ex ~ 0
1

)

,..--_ _...,
AU AL

(CONTINUES UNTIL KO =0)

Figure 6.7-3. Rl and Divide Sequence Data Flow

ONE
DIVISION
STEP

6.7-5

S. G. 12 19 (M) 6 . 7

6.7-6

AU AU = REMAINDER AL = QUOTIENT I A L

TI,I-T2.,

ARITH SEL

ARITH SELl

X-DI

ADDER

x

X CLEARED TO OIS

AT TI, 3

I~F ~ NEG ~f S~
I (AU. NEG)
I I AU

I
I

T2.2

T2. I CLEAR AU

NOTE; SIGN OF AUf = SIGN OF AUj

I~ OXL06 f~E~
I (y. 8 AU· UNLIKE

I SiGNS) I

I

T2.1 -T3.1

ARITH SEL

ARITH SE L
T2 . .4 ,

D

t
X-DI

ADDER

t
X

X = OIS

•• T3. 2

AL T3.1 C LEA R A L

I
I
I

_I __ J
NOTE: SIGN OF ALf = NEGATIVE IF SIGNS OF

ALj AND Y ARE UNLIKE

Figure 6.7-4. Divide Final Sign Correction Data Flow'

S. G. 1219 (M)6.7

TABLE 6.7-1. Rl, DIVIDE, AND NEXT I SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

R1SEQUENCE

T4.4 Clear Sl

T1.1 AU-+Arith Sel, Adder-+S1, Init Memory

T1.3 Set A Neg ff if AU neg, clear D, clear X, clear Zl

T1.4 Arith Self~D, clear KO, clear Scale Factor ff (lXLOO)

T2.1 Clear AU if A Neg ff set, set KO = 1810, set OXL01 ff, Zl~ Z Sel,
Z Sel~Arith Sel, drop AU-+Arith Sel

T2.2 Adder-+AUif A Neg ff set, clear K1

T2.3 Set OXLOO ff, KO-1~K1, clear D, clear X, clear W

T2.4 Arith Sel ' -+D if Y pas*, Arith Sel-+D if Y neg*, clear KO,
set Y Neg ff if Y neg*, AUL1 ~X, ALL1~W,
**AL17-+XoO if A Neg ff clear, **AL17-+XoO if A Neg ff set

T3.1 Kl-+ KO, clear AU, clear AL, drop Zl-+ Z Sel, drop Z Sel-+ Arith Sel

T3.2 Set Hold 1 ff, W17-01~AL17-01, ***12~ALOO if EAB,
--

X~AU if EAB, Adder-+AU if EAB, clear K1, set Overflow ff if EAB

T3.3 Set Hold 2 ff, KO-1~K1, clear X, clear W
(

I
(continues until KO = 0) I

I

T4.1 Clear AU, clear AL, K1-+KO (KO = 0)

T4.2 W17_01~AL17-01' ***12~ALOO if EAB, X-+AU if EAB,

Adder-+ A U if EAB, clear K1

T4.3 Set OXL02 ff, clear OXLOO ff, KO-1-+K1, clear X, clear W

T4.4 AULl-+X, ALL1-+W, **ALf17~XoO if A Neg ff clear,
**AL17~XOO if A Neg ff set

T1.1 Clear OXL01 ff, set OXL03 ff, AU~Arith Sel, set Clear Hold ff

T1.3 Set OXL04 ff, clear OXL02 ff, clear D, clear X

T1.4 Arith Sel~D

T2.1 Set OXL05 ff if y. & AUi unlike signs, clear OXL03 ff,
****AL~Arith Sel, drop AU~Arith Sel, Clear AU if A Neg ff set

T2.2 Adder-+AU if A Neg ff set

T2.3 ****set OXL06 ff, clear OXL04 ff, ****clear D

T2.4 ****Arith Sel'~D

T3.1 Clear OXL05 ff, clear AL if OXL06 ff set, drop AL-+Arith Sel

T3.2 Adder ~L if OXL06 ff set

T3.3 Clear OXL06 ff

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

I-SEQUENCE OF NEXT INSTRUCTION

T1.3 Clear Hold 2 ff

*Sign of Y is sensed from Z-Select.

**AL17 -+XoO and ALf17~XoO data flow is through gate 31XOO in the logic diagrams, figure 9-33,
and is enabled by the A ULI ~ X command.

***12~ALOO data flow is through gate 83AOO in the logic diagrams, figure 9-33, and is enabled by
the W -+AL command.

****These events occur only if the OXL05 ff is set to perform final sign correction. 6.7-7

·1
1

,
'I

... 'T

t
$
t' f

'

t ':
;"" ",'
t
r
i

u~-·

. ;

~, '.

