

GENERAL DESCRIPTION

UNIVAC 1219 COMPUTER

UNIVAC 1219 COMPUTER BLOCK DIAGRAM

TECHNICAL CHARACTERISTICS

MEMORY

Control Memory			
Cycle Time:	500 nanoseconds	Purpose:	I/O interrupt registers, program
Capacity:	128 or 256 18-bit words	-	and data storage.
Type:	Word organized, magnetic core	Nondestructive Rea	dout Memory
Purpose:	Index registers, clock cells, I/O	Cycle Time:	2 microseconds
	buffer control registers; operates	Capacity:	32 18-bit words
	in the "shadow" of the Main	Type:	Word organized, transformer
	Memory at a 4:1 ratio.		core, unalterable
Main Memory		Purpose:	Bootstrap (initial load) pro-
Cycle Time:	2 microseconds		gram storage. Programs avail-
Capacity:	8192, 16,384, 32,768 or 65,536		able for paper tape and mag-
	18-bit words (standard options)		netic tape load; others on re-
Type:	Coincident current, magnetic		quest.
	core		
	INPUT/	OUTPUT	
Channels		Normal Dual Ch	nnal
Tupor	Simpley 19 bit parallel		umer.
Type: Number:	32 maximum: 16 input plus 16	be "paired" to	form a single 36-bit parallel chan-
INUITIDEI.	output	nel	form a single 50-oit paraner chan-
Transfer	Sulpur	Externally Specif	ied Index (Dual Channel)
Rate	One channel—166.000 18-bit	18-bit parallel	data transfers with storage address
Rate.	words per second (maximum)	indirectly spec	ified by external device: useful for
	Multi-channel-500 000 18-bit	multiplexing/d	ecommutating data to/from com-
	words per second (maximum)	puter.	
Operation	Each channel fully buffered and	Externally Specif	ied Address (Dual Channel):
operation.	once activated operates without	18-bit parallel	data transfers with storage address
	program attention asynchron-	directly specifi	ed by external device.
	ously, at the rate of the periph-	Continuous Data	Mode:
	eral unit.	Program contr	colled automatic reinitiation of pre-
Information Transfers	5	viously establ	ished buffers. Program controlled
Input		termination o	f CDM. 18-bit parallel or 36-bit
Channels:	Input data, interrupt data	parallel input/	output word transfers.
Output	. , .	Intercomputer Si	ngle Channel:
Channels:	Output data, external command	Direct 18-bit	parallel data transfers with other
	data	UNIVAC con	nputers. No interface adapters re-
Processing		quired for int	ercomputer communication.
Time		Intercomputer	Dual Channel:
Required:	2 microseconds/word trans-	Direct 36-bit	parallel data transfer with other
•	ferred	UNIVAC cor	nputers. No interface adapters re-
	0 microsecond during extended	quired for int	ercomputer communication.
	sequence instructions	Interrupts	
Delay due to		Input Channels:	
Program:	2 microseconds (maximum)	16 external in	terrupts plus 16 internal interrupts
Operating Modes (St	andard)	(programmer	option)
Normal Single Cha	annel:	Output Channels	:
18-bit parallel t	ransfers	16 internal in	nterrupts (programmer option)

4

UNIVAC 1219 COMPUTER

GENERAL

The UNIVAC® 1219 Computer is a medium scale, general-purpose computer. It is a faster version of the widely-used UNIVAC 1218 Computer and is functionally compatible with it. It is an advanced military computer designed to comply with the environmental specifications of MIL-E-16400.

The UNIVAC 1219 Computer is an 18-bit digital computer capable of transferring 500,000 words per second. The computer is capable of processing large quantities of data in a real-time application. Arithmetic and input/output operations can be performed on the basis of a single length 18-bit word or a double length 36-bit word, if required for greater precision or for compatibility with other computers. It is equipped with a 2-microsecond Main Memory and features a 500-nanosecond Control Memory. It can be supplied with 16 full-duplex I/O channels where each channel is associated with a complete set of program interrupts. It is equipped with an external synchronizer function in addition to an automatic addressable clock cell. The UNIVAC 1219 Computer has been designed to provide a complete, straightforward interface enabling easy adaption to the requirements of a system rather than requiring modification of the system to accommodate the computer.

SPECIAL FEATURES

Real-Time Processing

The ability of the UNIVAC 1219 Computer to process various applications concurrently is implemented by a program intervention system called "Interrupts". These Interrupts may originate at some remote external device (External Interrupts) or they may originate within the computer (Internal Interrupts). Since more than one may occur at the same time, the computer possesses a priority scheme with decision-making qualities so that it can select the branch of operation for solving the problem requiring the most urgent attention. Under program control, the other interrupts may be honored in turn according to the next highest priority or they may be ignored. With this "interrupt" feature, real-time problem solution and maximum processing potential of the system is realized since less important routines can occupy the computer's surplus time.

Continuous Data Mode (CDM)

The Continuous Data Mode, requested when initiating a buffer on a channel, is a feature which provides an automatic reinitiation of the buffer upon completion. A new pair of buffer control words are transferred to the control memory buffer control addresses from the control memory CDM addresses for that channel. The Monitor Interrupt can be incorporated with the CDM and if so, the interrupt will occur each time the buffer is terminated and reinitiated. The CDM is especially useful when a continuous, high rate, stream of data must be transferred in or out of the computer.

Intercomputer Time Out Interrupt

The Intercomputer Time Out Interrupt is available during intercomputer operation. Any single bit of the RTC incrementing register may be wired to monitor the Resume circuitry. When the RTC count reaches the specified bit, a designator is set. If no Resume is received by the computer before the next time the count reaches that bit, the intercomputer time out interrupt is activated and the next program instruction is taken for the IC Interrupt Entrance Register.

Externally Specified Index (ESI)

This outstanding feature provides peripheral devices with a means of specifying core storage areas in the computer's memory for any input or output transfers they may request. The Externally Specified Index (ESI) mode of operation is useful as a multiplexing device for a number of slow transfer peripheral units occupying one dual channel. The buffer control words governing the transfers are located at the INDEX address. If input is desired, an Input Request is presented with the Index on one channel of the pair and the data on the other channel. If Output is desired, an Output Request is presented with the Index address.

Externally Specified Addressing (ESA)

The ESA feature provides peripheral devices with a means of specifying an absolute core memory location for storage or retrieval of data. An active dualchannel mode of operation is required for computer response to this function. The address is presented on one channel and the data transmission path on the other. If input is desired, the external device presents an Input Request with the address and data. If output is desired, an Output Request is presented with the address.

Main Memory and Control Memory Concurrent Operation

The Master clock in the UNIVAC 1219 Computer

controls and synchronizes all operations performed by the various sections through the electronic timing chains allotted to them. The read/restore cycle time of main memory is 2-microseconds. All control and timing sequences for the various functions the computer performs are based on this 2-microsecond cycle. Four 500-nanosecond control memory read-write cycles occur during one main memory read-write cycle. An instruction from main memory storage can be transferred to the control section for execution in approximately 0.9 microseconds. Any modification to this instruction and complete translation is completed before the end of that main memory cycle since the modifiers are extracted from control memory in less than 250 nanoseconds. The Input/Output section has independent access to control memory for its control words, clocks, etc., during instruction sequences.

SYSTEM INTERFACE

The UNIVAC 1219 Computer can be used with a large variety of local or remote peripheral devices as an independent complete general-purpose system, or it can operate as a satellite pre-processor with larger systems to supply off-line, or associated on-line operations. Twenty-one program instructions are devoted to the control of Input/Output, providing positive control and a high degree of sophistication in programming. Among the peripheral devices available for use with the 1219 are the following:

- Input/Output Console—provides a paper tape reader (300 cps), paper tape punch (110 cps), and alpha/numeric keyboard and page printer
- Magnetic Tape Systems—compatible with 200, 556, and 800 bpi systems at up to 120K characters/second
- High Speed Line Printer—provides alpha numeric printing 120 character lines
- Communications Units —provide data handling capabilities for telegraph or telephone line bit rates
- Magnetic Drum Storage—use with FH330, FH880, and FASTRAND drum; drums can be multiplexed

Other Input/Output devices are available to meet standard or special requirements.

COMPUTER MAINTAINABILITY

Maintainability is enhanced by the mechanical design which provides front access to repair or replace printed circuit modules. Other equally important features include the front panel display of all registers, manual alteration of all registers, and switches for operation stepping, sequence stepping, or phase stepping, at a manually controlled variable clock speed. Test points from important circuit areas are available at test blocks on the front panels. Because the computer uses low-voltage, solid-state components of proven life and reliability, it is compact and dependable. Only minimum site preparation and maintenance are required.

SUPPORTING SERVICES

UNIVAC support of 1219 Computer systems includes assistance in the following areas:

- System Analysis—Total capability of a highly competent staff is available to users for problem analysis, equipment specification, mathematical modeling, or operational support for any application.
- Programming—In addition to the software package supplied with the computer (i.e., a mnemonic assembler, polycode assembler, floating point package, function evaluation sub-routines, and program debugging aids, etc.) experienced, skilled programmers are available to assist customers to obtain maximum performance from the UNIVAC 1219 Computer.
- Maintenance—The UNIVAC Field Engineering Department, a complete support organiization made up of fully-trained field engineers, provides spare parts and service throughout the world. This support begins with site planning and preparation and continues throughout installation, checkout, and normal operation, as required.
- Training—A staff of well-trained instructors is available for conducting training courses for customer personnel. Classes covering programming, operation, and maintenance of all equipment can be provided at UNIVAC or at the customer's facility.

ASSIGNED MEMORY ADDRESS

CONTROL MEMORY (Standard)

Address	Assignment
00000	Fault Interrupt Entrance Register
00001-00010	8 Index Registers
00011	Inter-Computer Time-Out Interrupt Register
00012	Real-Time Clock Interrupt Register
00013	Clock Overflow Interrupt Register
00014	Real-Time Clock Monitor Word Register
00015	Real-Time Clock Incrementing Register
00016	Synchronizing Interrupt Register
00017	Scale Factor Shift Count
00020-00037	Continuous Data Mode (Channels 0-7)
00040-00057	Output Buffer Control Registers (Channels 0-7)
00060-00077	Input Buffer Control Registers (Channels 0-7)
Optional with U	NIVAC 1219 Computers equipped with 16 I/O Channels:
00200-00217	UNASSIGNED
00220-00237	Continuous Data Mode (Channels 8-15)
00240-00257	Output Buffer Control Registers (Channels 8-15)
00260-00277	Input Buffer Control Registers (Channels 8-15)
	MAIN MEMORY
00100-00117	External Interrupt Registers (Channels 0-7)
00120-00137	UNASSIGNED
00140-00157	Output Monitor Registers (Channels 0-7)
00160-00177	Input Monitor Registers (Channels 9-7)
00300-00317	External Interrupt Registers (Channels 8-15)
00320-00337	UNASSIGNED
00340-00357	Output Monitor Registers (Channels 8-15)
00360-00377	Input Monitor Registers (Channels 8-15)
00400-00477*	UNASSIGNED
00600-00677*	UNASSIGNED
00540-177777	UNASSIGNED

NONDESTRUCTIVE READOUT MEMORY

00500-00537

.

\$

,

.

Bootstrap Program (initial input routine)

*These addresses are in control memory when 256 words of control memory are used.

UNIVAC 1219 COMPUTER REPERTOIRE OF INSTRUCTIONS

CODI	E SYMBOL	DESCRIPTION	TIME μS	CODE	SYMBOL	DESCRIPTION	TIME μS
02	CMAL	Compare Y	4	66	JPAUNG	Jump AU Negative, Y	2
03	CMALB	Compare $Y + B$	4	67	JPALNG	Jump AL Negative, Y	2
04	SLSU	Selective Substitute	4	70	ENTALK	Enter AL. Y	2
05	SLSUB	Selective Substitute Y+B	4	71	ADDALK	Add U. 12 bits	2
06	CMSK	Masked Compare Y	4	72	STRICR	Store ICR. Y	4
07	CMSKB	Masked Compare $Y + B$	4	73	BJP	Decrement B. Jump, Y	2
10	ENTAU	Enter AU, Y	4	74	STRADR	Store Address, Y	4
11	ENTAUB	Enter AU, $Y + B$	4	75	STRSR	Store SR, Deactivate SR, Y	4
12	ENTAL	Enter AL, Y	4	76	RJP	Return Jump, Y	4
13	ENTALB	Enter AL, $Y + B$	4	5001	SIN	Set Input Active	2
14	ADDAL	Add Y, 18 bit	4	5002	SOUT	Set Output Active	2
15	ADDALB	Add $Y + B$, 18 bit	4	5003	SEXF	Set External Function Active	2
16	SUBAL	Subtract Y, 18 bit	4	5011	IN	Initiate Input Buff, k	6
17	SUBALB	Subtract $Y + B$, 18 bit	4	5012	OUT	Initiate Output Buff. k	6
20	ADDA	Add Y, 36 bit	6	5013	EXF	External Function	6
21	ADDAB	Add $Y + B$, 36 bit	6	5014	RTC	Enable Real-Time Clock	2
22	SUBA	Subtract Y, 36 bit	6	5015	INSTP	Terminate Input, k	$\overline{2}$
23	SUBAB	Subtract $Y + B$. 36 bit	6	5016	OUTSTP	Terminate Output, k	$\overline{2}$
24	MULAL	Multiply Y	14	5017	EXESTP	Terminate External Function k	$\overline{2}$
25	MULALB	Multiply $Y + B$	14	5020	SRSM	Set Resume ff (Intercomp)	$\frac{1}{2}$
26	DIVA	Divide. Y	14	5021	SKPIIN	Skip Input Inact k	2
27	DIVAB	Divide $Y + B$	14	5022	SKPOIN	Skip Output Inact k	2
30	IRIP	Indirect RIP Y	6	5023	SKPEIN	Skin on Ext Enct Inact	2
31	IRIPB	Indirect RIP Y+B	6	5024	WTFI	Wait for Interrunt	2
32	FNTB	Fnter B Y	4	5026		Force Output One Word k	2
33	ENTBB	Enter B Y+B	4	5027	FXFOV	Force Ext Function One Word	k 2
34	IP	Jump Y	2	5030	RII	Remove Interrunt Lockout	2
35	JPB	Jump, $Y + B$	2	5032	FXI	Remove Ext Interrunt Lockout	2
36	FNTBK	Enter B U	2	5034	SII	Set Interrupt Lockout	2
37	ENTBKB	Modify B. U	2	5036	SXI	Set Ext Interrunt Lockout	2
40	CI	Store Zero Y	· 4	5041	RSHAU	Right Shift All k	4-10
41	CL B	Store Zero, $Y + B$	4	5042	RSHAL	Right Shift Al k	4 10 A_10
42	STRB	Store B Y	4	5042	RSHA	Right Shift A k	1_20
43	STRBB	Store B $Y + B$	4	5044	SE	Scale A Left k SF	1-20
44	STRAI	Store AL Y	4	5045		Left Shift All k	4-20 A-10
45	STRALB	Store Al $Y + B$	4	5046		Left Shift Al	4-10
46	STRAU	Store All Y	4	5047		Left Shift A k	1_20
47	STRAUB	Store All $Y + B$	4	5050	SKP	Skin Console Key k	20
51	SUSET	Selective Set (IOR) Y	4	5051	SKPNBO	Skip No Borrow	2
52	SLCL	Selective Clear (AND) Y	4	5052	SKPOV	Skip Overflow	2
53	SLCP	Selective Complement (XOR)	Y 4	5052	SKPNOV	Skip No Overflow	2
54	LIPFI	Indirect lumn (RIL) Y	. Δ	5053	SKPODD	Skip I (All AL) Odd Parity	2
55	LIP	Indirect lump Y	4	5055	SKPEVN	Skip L(AL) AL) Even Parity	2
56	BSK	Increment B. Skin Y	4	5055	STOP	Ston Console Key k	2
57	ISK	Decrement Index Skin Y	6	5050	SKPNR	Skin No Resume ff (Intercomp)	2
60	JPAII7	Jumn All Zero Y	2	5057	RND	Round All	2
61	IPAL 7	lump Al Zero, Y	2	5000	CPAI	Complement Al	2
62	IPAIIN7	Jump All Not Zero V	2	5001	CPAII	Complement All	2
63	IPAI N7	lump Al Not Zero, Y	2	5002	CPA	Complement A	2
64	IPAIIP	lump All Positive V	2	5003	ENTICE	Enter ICR k	2
65	JPAI P	Jump AL Positive Y	2	5073	ENTSR	Enter SR k	2
00	217161	Samp rie i Ostavo, i	L		LITION	Lintor, ON, N	4

•

CONTROL

Instr	ucti	ons

	Single Address	
Address		Interrupt:
Modification:	8 Control-Memory contained index registers	Synchronizer
Repertoire:	102 instructions	Interrupt:
Clock		1
Туре:	Automatic, additive, under pro- gram control	
Location:	Control Memory Purpose	
Duration:	Established under program con- trol	-
Granularity:	Least significant bit represents	

ARITHMETIC

Organization:	18-bit parallel, one's comple-	Multiply/Divide 14 usec
	ment, integer	Add, Subtract
Execution		(double length) 6 usec
Times:	Typical execution times, includ-	Compare/Masked Compare
	ing instruction and data fetch	and Branch 6 usec
	plus indexing.	Register shifts: right, left,
	Add, Subtract	single, double
	(single length) 4 usec	2+.5n usec (n=shift count)

PHYSICAL

The computer is housed in a single cabinet that contains the power supply, logic circuits, core memory, maintenance and control panel, and a cooling system. Logic modules are encapsulated printed circuit cards which plug into the wired chassis of easily accessible pull-out drawers. The front of each drawer is the associated portion of the computer control panel. The logic and memory drawers are mounted in a vertical position. The power supply drawer is mounted horizontally at the bottom of the cabinet.

Size and Weight

Height:	71.75 inches	Depth:	30.5 inches
Width:	26.25 inches	Weight:	1000 + pounds

Environment

Operating temperatures 0° C to 50° C Non-operating temperatures -62° C to $+75^{\circ}$ C Humidity—Relative humidity to 95 per cent Cooling—Blower forced ambient air; water cooling—optional.

1/1024 second; others on re-

Interrupt occurs when program preset value is reached.

Interrupt occurs whenever the non-I/O synchronizing control line is set to logical one by an

To allow a variable-granularity clock function or to provide a high priority alarm recognition

quest.

external device.

capability.

Power Requirements

115-volt, \pm 5 percent, 3-phase, 400-cps, 2000 watts maximum, air cooled (for 16 I/O channels and 32K memory).

SOFTWARE

Existing UNIVAC 1218 Operational systems Mnemonic Assembler TRIM I Polycode Assemblers TRIM II, TRIM III Fortran IV CS-1 Compiler Floating Point Package

Function Evaluation Routines Utility Routines Debugging Routines Simulators Diagnostic Routines

CONTROL SIGNALS

	SIGNAL NAME	ORIGIN	MEANING
Input Channel	Input Request (IR)	Peripheral Equipment	"I have a data word on the input lines ready for you to accept."
	Input Acknowledge (IA)	Computer	"I have sampled the word on the input lines."
	External Interrupt (EI)	Peripheral Equipment	"I have an Interrupt Code word on the input lines ready for you to accept."
			8.
Output Channel	Output Request (OR)	Peripheral Equipment	"I am in a condition to ac- cept a word of data from you."
	Output Acknowledge (OA)	Computer	"I have put a data word for you on the output lines; sample them now."
	External Function (EF)	Computer	"I have put an External Function message for you on the output lines; sample them now."
	External Function Request (EFR)	Peripheral Equipment	"I am in a condition to ac- cept an external function message from you."
	and the second se		

REGISTERS

ID	SIZE BITS	FUNCTION
AL	18	Accumulator, Lower
AU	18	Accumulator, Upper
SR	5	Special Register
ICR	3	Index Control Register
Р	16	Program Address
Sm	16	Storage Address, Main
		Memory
ZM	18	Storage Transfer, Main
		Memory
Sc	8	Storage Address, Control
		Memory
Zc	18	Storage Transfer, Control
		Memory
D	18	Data Transient
x	18	Exchange Transient
W	18	Auxiliary Arithmetic
со	18	Output Buffer, Channels
		1, 3, 5, 7
CE	18	Output Buffer, Channels
		0, 2, 4, 6
co'	18	Output Buffer, Channels
		9, 11, 13, 15, (OPT)
CE'	18	Output Buffer, Channels
		8, 10, 12, 14 (OPT)
В	18	Data Transient
	Contract Section 2	

ONE 1219 INPUT CHANNEL

ONE 1219 OUTPUT CHANNEL

PERIPHERAL DEVICES

A

DIVISION OF SPERRY RAND CORPORATION DEFENSE MARKETING UNIVAC PARK, ST. PAUL, MINN. 55118 AREA. CODE 612, 698-2451

UNIVAC Regional Offices

WASHINGTON, D. C., 20007, 2121 Wisconsin Avenue, 338-8510 WALTHAM, MASS., 02154, 69 Hickory Drive, 899-4110 COCOA BEACH, FLORIDA, 32931, Suite 176, Holiday Office Center, 1325 No. Atlantic Avenue, 783-8461 * HOUSTON, TEXAS, 77058, Suite 122, Alpha Building, 16811 El Camino Real, HU 8-2240 * LOS ANGELES, CALIFORNIA, 90045, Suite 220, 5316 West Imperial Highway, 678-2531 SAN BERNARDINO, CALIFORNIA, 92410, Suite 219, 808 East Mill Street, 889-1096 * SAN DIEGO, CALIFORNIA, 92110, 3045 Rosecrans, 224-3333

PX 3678