TECHNICAL MEMO NO. 15
REVISION NO. 2
DECEMBER 1959

LARC Computing-Unit

Instructions

REMINGTON RAND UNIVAC
DIVISION OF SPERRY RAND CORP.
PHILADELPHIA, PENNSYLVANIA

Publications Engineering Department

Appendix B
LARC COMPUTING-UNIT INSTRUCTIONS

Section Page
B—l INTRODUCTION S €0 G 000 D0 00 PGB OO0 EPIOEROODPOEREGEOEPOE OSSO 1

B-2 WORD FORMAT esseccccceccscccscococesoscoosssscescscese L
2.1 Instruction Words cececeseccececcvosscccsccccece 2

2.2 0perands secececcscscscescccssscsscscesssscocscs b

2.2.1 Sign-Digit Specification seeececccecscscee 3

2.2.2 Specification of Floating-Point Zero ... 12
8"3 CONVENTIONS C.O.l.......0‘0“.Q......QD...OO......O..0.15
B‘A INSTRUCTION"EmeTION TIME oooooo.ooooon-o;oooobo'ooooo 18

B-5 COMPUTING-UNIT INSTRUCTIONS .ccecoccoscccccsvooscecacee 19
5.1 Arithmetic Instructions ceecesscccsccccscccesces 19
5.2 Data-Transfer Instructions coeceececscsccscccsceae 24
5.3 Conditional-Transfer-of-Control Instructions ... 28
5.4 Unconditional-Transfer-of-Control Instructions . 30
5.5 Shift Instructions eeececessccecessssccscsecsses 31
5.6 Extract Instructions ceeceecceccsccecsccscececes 33
5.7 Conversion Ingtructions ..;....,................ 34
5.8 Index-Register-Modification Instructions ceececes 37
5.9 Visual-Display-Register Instructions ceescececes 39
5.10 Miscellaneous Instructions cececececscosccccccss 40

5011 Numerical List of Instructions ceececccecsscscses 42

B-6 ADDRESSABLE FLIP-FLOPS IN THE COMPUTING UNIT eeesescos 45

-] -

Appendix B

LARC COMPUTING-UNIT INSTRUCTIONS

3-1 INTRODUCTION

This appendix is designed to acquaint the programmer with the LARC
computing-unit instruction repertoire. For the programmer's convenience, the

instructiocns, as presented in section B-5, are classified according to function.

B-2 #CRD FCRMAT

FPach computing-unit instruction word consists of 12 decimal digits; all
these instructions are>uritten in accordance with a standard formst. Operands
ure written in s 12-digit format or a 24-digit format for single-precision or
double~-precision operations, respectively. The contents of an index register
are written in a special fourmat which is described in section 5.8..

In the following discussion, digit position references, by number, apply in

ascending order, from right to left.

B-2.1 Instruction Words

The standard format for a computing-unit instruction word is as-follows:

Instruction B-register
designator address

e Vet Ny
71 |1{Aa|A|B B|M MM MM
\L N———’ e "

Tracing-mode A-register Storage
selector address address

The tenth through twelfth digit positions contain the instruction-designator
digits (TII). The 1-digits specify the number of any 1egitimate computing-unit
instruction. The T-digit contains one of the tracing-mode selectors (1, 2, ... 9)
or, when an instruction is not to be traced, a period (.). An ignore sign (\) ma&
also be specified‘in the T-digitj this causes the computer to enter the indirect-
a@dressing mode. Any other character ;n the T-digit of an instruction word.causes
a transfer of control to the error routine.

The A-digits of a computing-unit instruction word contain the address of
a fast reglster which is used to store an operand and/or the computational result
of the operation specified by the I-digitsj in certain instructions, the A-digits
are used to specify the number of a flip-flop. The B-digits also specify the

address of a fast registerj; in this case, however, the contents of the specified

o~
i

ast

that

(1)

(2)

(3)

(4)

NOTE:

register are used to maj ify the M-digits of the current instruction before
instruction is executed.
The M-digits are used to specify any one of.the following items:
The memory address of an operand. (In this case M may refer té a standard
memory location or to a fastcregisterj see the note at the end of this
section.)
The memory address of the next instruction.
The number of digit positions a word is to be shifted. (This number is
specified by the two least significant M-digits.)
The position of the decimal point in a conversion operation. (This is
indicated by a scale factor in the two least-significant M-digits. The
scale factor consists of a base-ten exponent expressed in excess-fifty
notation.)

A computing unit may contain up to 99 fast registers(addresses
01 through 99) all of which may be addressed and used interchangeably as
accumulator registers,as index registers, or in the same manner as standard
memory locations (using M-addresses 99901 through 99999). Although there

is no corresponding fast register, the address digits 00 may be used in

any of the digit positions specified, as follows:=-

A = 90: May be used to supply an operand, consisting of a period and
eleven decimal zeros (.00 000 000 OOO), in instructions which do
not store in A. (The significance of a period in the sign position

of an operand is discussed in section 2.2.1.)

B

00: Used when no modification of the M-digits is required.
M=99900: May be used to supply an operand consisting of a period and eleven
decimal zeros.
B-2.2 QOperands
In single-precision, fixed-point operations, éperands are written in this

format:

SXXXXXXXXXXX

where S = the sign digit, and X = a decimal digit. The computer assumes the

dgcimal point (A) to be between the sign and the most significant decimal digit.
x In single-precision, floating-point notation, the two digit positions-

immediately following the S-digit contain an excess-fifty, base-ten exponent.

Thus, the format is:

SEEAXXXXXXXXX

where S = the sign digit, E = an exponent digit, and X = a decimal digit. The

decimal point occurs between the E and X digits, and the operand is normalized

-4 -

(i.e., the most significant X-digit is not equal to zero) .
The two-word format for double-precision, fixed-point operands allows for

22 decimal digits and an algebraic sign in the twelfth digit position of each word:

§ SAAXXXXXXXXXXSXYXXXXXXXXXX

Here, the decimal point is assumed to be between the S-digit and the most signif-
jcant X-digit of the left-hand word (i.e. most significant half). The S-digit should
be the same in both words.

The double-precision, floating-point operand consists of 20 decimal digits,
an algebraic sign, and an excess-50, base-ten exponent, which are arranged as

follows in two 12-digit words:

7 i
'S z EXXXXYXXXXXXSXXXXXXXXXX X'

In this notation, the decimal point occurs in the left-hand word between the E and X
digits, and, as was the case in single-precision, floating-point notation, the
operand 1s normalized. It is important to note that the sign is repeated in the
'tuelfth digit of the right-hand word (as in double-precision, fixed-point notation),
but the exponent is not repeated.

B-2.2.1 Sign-Digit Specification

dords written in alphanumeric code must contain a numeric charécter, 1 through

u

9y in the S-digit position. {In this casey the S-digit contains the first digit of

a pair representing one of the alphanumeric characters.)

-5 -

The character in the S-digit position of an algebraic number written in
numeric code should be one of the following:
(1) A zero, indicating that the number is positive.
(2) A minus sign, indicating that the number is negative.
{3) A pericd.
In the sign position of an operand, & period has the general effect of
causing an operation to be performed in an absolute sense. In floating
point notation a perlod followed by all decimgl zeros is used to indicate
absolute zero (see section 2.2.2).
The computational effect of the character in the S-digit position (especially
a period) varies according to th; type of Qperation, as follows:
(1) In all arithmetic operations and in negative data transfers, if there is
any anomaly in the sign, which causes a transfer of control tc the con-
tingency routine, a zero is deposited in the sign of the result.

{2) - 4ddition_and Subtraction

{a}) Fixed Point
{1) A non-numeric character, other than a minus sign or a period,
in the S-digit of either operand causes an automatic transfer

of control to the contingency routine.

-6 -

(11)

In double proéision operations a numeric character, other.

than zero, in the S-digit of either operand causes an

automatic transfer of control to the contingency routine

[see (2) (a)l.

(ii1)In single precision operations a numeric character, other

than zero, in the S-digit of one operand (either but not

both) appears unchanged in the result. Numerics other than

zero in the S-digits of both operands cause an automatic

- transfer of control to the contingency routine.

(iv)

(v)

A period in the S-digit of either operand causes grithmetic
addition without complementing.

If a number with a period in the S-digit is added to or
subtracted from another number, the result has the sign of
the other number. If a number with a zero or a minus sign
in the S-digit is subtracted from‘a number with a period in

the S-digit the sign of the subtracted number is inverted

in the result.

(b) TFloating Point (except |(M)] ® (A) -—> &)

(1)

Any character other than a zero, a minus sign, or a period

-7 -

in the S-digit of either operand causes an automatic transfer
of control to the contingency routine,

(11) A period in the S-digit of either operand behaves as in fixed
point operation {see (a) - (iv), (v)J, with the added restric-
tion that the exponent overflow and underflow contingency flip-
flops are inhibited.

(e} (M@ (&) ~—> 4

(1) The character in the S-digit of the "A"-operand behaves exactly
as in other floating point operations - see {b).

{i1) Any character is permissible in the S-digit of the M-operand.
This character behaves as a zerogy in all respects.

{d) Double Precision:

(1) The S-digit in the most significant half only, of each operand,
is examined and used in the computation. The character in the
S-digit of the least significant half of each operand has no
effect.

{i1) The characters in the S-digits of both halves éf the result‘are
identical.

(3) Multiplication and Division

(a) Any character other than a zeroy & minus sign or a periocd in the
-8 -

(b)

(c)

(a)

S—digit of either operand causes an automatic transfer of contfol
to the contingency routine.

A period in the S—digit of either operand causes a period to be
deposited in the sign of the result.

Floating Point

If there 1s a pericd in the S-digit of either operand the exponent
overflow and underflow contingency flip-flops are inhibited and
the result exponent is replaced by 0O.

Double Precision

(1) Dpivision: see (2)(d)

(11) Multiplication: the S-digit of the least significant half

only is examined.

(4) shift

(5)

(a)

(b)

(c)

There 1s no restriction on the character in the S-digit.
In all shift operations, except left circular shift, the character
in the S~digit is neither shifted nor changed.

In a left-circular shift the S-digit is shifted but not changed.

Conversion

{a) There is no restriction on the character in the S-digit.

(b)

The character in the S-digit is carried forward unaltered.
| .

(6) Yetch and Store

(a) Except in a ﬁegative store, there is no restriction on the character
in the S—digit0
(b} Negative Store
(1) Any character other than a zero, a minus sign or a period, in
the S-digit, causes an automatic transfer of control to the
contingency routine.
(i1) A psriod in the S-digit is transferred unaltered.
{c) Store Absolute Value
The character in the S-digit is always replaced by a zero.
(d) Double Precision

The S-digits of both words are handled independently.

(7) Corrx;:.ari:s"ons_~

{a) All Comparisons
(1) a noh-numeric, other than a minus sign or a period, in the S-
digit blocks any transfer of control due'to the compa?ison
and causes an autoﬁatic transfer of control to the contingerncy
routine. (In double precision operation all S-digits gre

examined independently)

- 10 -

(i1) A period in the S-digit behaves as a zero.
(v) (A) = (A+1)? = (A)>(A+1)?

(1) A numeric character, other than zero, in the S-digit of one
operand causes that operand to be thg greater.

(1i) A numeric character in the S-digit of each operar? causes.a
twelve decimal digit comparison.

(c) (a)>0?
A numsric character other than zero in the S-digit causes the
number to be greater‘than ZEero.

(d) (A) negative?
The S-digit only is examined.

(e) (a)=0?

(1) Compares eleven decimal digits, disregarding the sign.

(ii) Any character other than a zero, a period or a minus sign in
the S-digit blocks any transfer of control éue to the c&mparison
and causes an automgtic transfer of control to the contingency
routine.

(£) (a') = ([a+2]1")2?
A digit by digit comparison is made, for all twenty-four digit‘

positions.

=11 -

(g) (a") > ([a+2]")?

(i) The most significant halves of both operands are com-
pared following the same rules as for a single precision
comparison [see (b)]

(ii) The least significant halves of both operands are com-
pared only if the most significant halves are equal
(in sign and magnitude). In this case the result of
the comparison is based solely on the relative velues
of the least significant halves, following the same

rules as in a single precision comparison [see (b)]

B-2.2.2 Specification of Floating Point Zero

In floating point notation, an absolute zero is repreéénted by a period in
the S-digit followed by eleven decimal zeros.

A floating pecint relative zero should not normally be represented by an ex-
ponent and all decimal zeros, since this can cause varioué gnomalies in floating

point. arithmetic operations. The relative zero may be represented by an absolute zero

|
i

\

-12 -

or by an assumed very small non-zeroy in the form, SEE 500 000 000, depending on

how the number is to be used.

A loating point zero, consisting of an exponent and all decimal zeros may be

/

obtained either as the result of an algebraic add or subtract operation, or by
converting a fixed point zero to flcating point form.
In either case this result is detected automatically, in the execution of the
instruction, and sets contingency flip-flop 40 ("zero floating point adder result").
NOTE: In single precision addition and subtraction a zero result sets the con-
tingency flip-flop, only if the exponents are equal, i.e. it is assumed
that both operands are normalized.
The appropriate representation of floating point zero can be dete;mined in the

contingency routine.

For a fixed to floating point conversion it might be assumed that the unknown
part of the fixed point number can be represented by a five in the twelfth significant
digit. In the corresponding floating point representation this number is normalized
and.given an exponent equal to the scale factor minus eleven.

It may be noted that the conversion instruction, which is completed before enter-

ing the contingency routine, shifts out eleven zeros trying to normalize and subtracts
this number from the scale factor to give the correct exponent. If the scale factor

is less than eleven, the exponent underflow contingency {flip-flop 43) also occurs.

e.g. the fixed decimal number 000 000 000 000y with a scale factor of 50 would be
-13 -

converted to the floating point zero, 039 000 000 000. The required representation
is 039 500 000 000.

A floating point zero, resulting from an algebraic addition or subtraction may
be similarly represented:

In a floating point arithmetic subtraction, if the result contains significant
ze#Ps, the number is automatically normalized and the exponent adjusted accordingly.
In the case of a zero result the operation will shift out nine zeros trying vo
normalize, and subtract nine from the exponent.

For use in further float’wg point computation, this result may be represented
by assuming that the tenth significant digit, before normalizing, contains a five.

e.g. In the instruction -(M)P(A)--> A, where (M)=(A)= 050 123 456 789

The initial result

]

050 000 000 000

The final result 041 000 000 000
The assumed value of the initial result = 050 000 000 000 5
The required representation = 041 500 000 000
A floating point absolute zero, represented by .00 000 000 000, is not changed
by a floating-to-fixed-point conversion. This number may beused in fixéd-point
o
arithmetic and will behave as a normal fixed point zero, 000 000 000 000 (see section

B~2.2.1).

-1 -

B-3 CONVENTIONS
The following conventions arc used in the description of the computing unit-
Instructions, in section B-5.
M The M-digits of the instruction being described. Except in shift
instructions (section B-5.5) and Conversion instructions (B-7.7),
M is a storage address: M may refer either to a core-storage memory
location or to a fast registerj; the possible memory addresses range
from 00000 through 97499, and the fast-register addresses range from
99901 through 99999.
In the description of Shift and Conversion instructions, M signifies
the two least significant M-digits, used to specify either the number of
places a word is to be shifted,or the scale factor.
A y B Address of a fast register (01 through 99): A denotes a fast register
that is used as an accumlator register, (the noxt succeeding fast register
' is denoted by A+l, and the preceding fasf register is denoted by A-1).
In certain ingtructions, A is the number of a flip-flop (the address-

able flip-flops arc describsd in section B-6). B denotes a fast

reglstor used as an index register.

- 15 -

()

Capital-letter subscripts denote ¢ particular part of a word in
accordance with the instruction-word format:

AA denotes the A-register-address digits of the word in fast

register A

AB denotes the B-register-address digits of the word in fast
reglister A
AI denotes the tracing-mode selector and instruction-designator

digits (TII) of the word in fast register A

A denotes the memory-address digits of the word in fast register A

AA,B denotes both the A-reglster-address and B-register-address digits
of the word in fast register A, (more than one part of a word
may be designated by means of successive capital-letter sub-
scripts.)

M ete. the same notation is used to denote a portlion of a word in
memory location M

A control counter which can be assumed to contain the storage address

of the Instruction currently being executed

Two consecutive storage locétions: A: denotes the two fast registers

L ard A+l. Normally, the location of a double-precision word

The contents of (a fast registsr, memory location, or control counter)

- 16 -

Rdd

M ——=>C

-{C}+1 ——--> C

The absoluts value of {whatever is represented by the symbol
vetween the*vertical lines)

A circled arithmetic symbol denotes & floating—point operation:
{M) C)(A)»denotes floating-point addition of (M) and {A). -
Rounded result {All other results are unrounded.)

Control is transferred to a new sequence of instructions starﬁing
with the instruction whose storage address is specified in the
M~digits of the instruction being d;scribedo

The present sequence of executing instructions is continued.
(That is, thg control counter is stepped by 1 to glve the address

of the next instrmction in sequence.)

-17 -

B-4 INSTRUCTION-EXECUTION TIMR

The execution time in microseconds is spocified for each instruction in section
B-5. The times given are all-inclusive; that is, they include the time required _
fér obtaining operands and instructions from storage, ﬁhe time requifed for modifying
operand addresses, the time required for calculating floating-point exponentsy the
time required for error, contingency, and tracing-mode checking, etc. All input-

output operations may be assumed to be performed in parallel with the instructions.

- 18 -

-5 COMPUTING-UNIT INSTRUCTIONS

NOTE: The four items in the heading of each instruction are (from left to right)
the numeric code, the mnemonic code, the symbolic notation, and the execution

time in microseconds.

B-5.1 Arithmetic Instructions
‘The following descriptions of the arithmstic instructions have an algebraic

connotation. In all cases the contents of M remain unchanged.

01 AX (M) + (A) -——> & 4 psecs.
Add the contents of memory location M (addend} to the contenta of fast register A
(augend).
Store the sum, with the correct sign, in fast register A.

This is a fixed-point, single-precision operation.

02 A (M@ (4) ---> 4 , 4 psecs.
This instruction is the same as instruction Ol except that it performs a floating-

point operation.

03 AM j(M] @ (4) —> 4 4 psecs.
Add the absolute value of the contents of memory location M to the contents of fast

register A.

Store the sum, with the correct sign, in fast register A.

This is a floating-point, single-precision operation.

- 19 -

| 04 AU (M) @ (4) ---> a4l 4 psecs.
This instruction is the same as instruction 02 except that the sum is stored in

fast register A+l and the augend is retained in fast registerIA.

05 AAX (M') + (A') ~—-—> A" 12 psecs.

Add the contents of memory locations M and M+l {addend) to the contents of fast

registers A and A+l (augend).

Store the sum, with the correct sign, in fast registers A and A+l.

This is a fixed-point, double-precision operation.

06 AA (MY ® (4') ——=> A" 16 psecs.
This instruction is the same as 'instruction 05 exéept that it performs a floating-

point operation.

11 NX V -(M) + (A) ———> A 4 psecs.
Change the sign of the contents of memory locatioﬁ M and add to the contenté of fast
register A.
. Store the sumy with the correct sign, in fast register A.

.This is & fixed—pbint, single-precision operation.

P

12 N f -(M) @ (A) ——> A L psecs.
This instruction is the same as instruction 11 except that it performs a floatiné— ,

point operation.

- 20 -~

14 NU -(M) @ (1) --~> AH) /, psecs.
This instruction is the same as instruction 12 except that the sum is stored in

fast register A+l and the contents of A remain unchanged.

15 NNX -(M') + {(A') ——=> 4! 12 psecs.
Change the sign of the contents of memory locations M and Ml and add to the con-
tents of fast registers A and A+l.
Store the sum, with the correct sign, in fast registers A and A+l.

This is a fixed-point, double-precision operation.

16 NN -(M') ®(4a') —> 7! 16 Msecs.

This instruction is the same as instruction 15 except that it performs a floating-

point operation.

20 - MXR (M) x (A)] Rdd ---> A 8 usecs.
Multiply the coﬁtents of fast register A (multiplicand) by the contents of memory
location M (multiplier).
Store the rounded product, with the correct sign, in fast register A.

This is a fixed-point, single-precision operation.

21 MXE (M) x (1) ---> A! 12 usecs.
This instruction is the same as instruction 20 except that a double-precision

unrounded product is stored in fast registers A and A+l.

- 21 -

22 MR [(M) (A)] RAdd ———> A 12 psecs.
This instruction is the same as instruction 20 except that it performs a floating-

point operation.

23 Mo (M) & (&) ——=> K 8 psecs.
This Instruction is the same as instruction 22 except that the product is not

rounded.

2/ MU (M) @ () ——-> A+l 8 usecs.
This instruction is the same as instruction 23 except that the product is stored

in fast register A+l and the multiplicand is retained in fast register A..

25 ‘ ME (M) ® (4) ~==> A' 12 psecs.

This instruction is the same as instruction 21 except that it performs a floating-

point operation.

26 | MMK (M') x {A') —==> A? 36 psecs.
Multiplly the contents of fast registers A and A+1 (multiplicand) by the contents.
of memory locations M and M+l (multiplier).

Store the product, with the correct sign, in fast registers A and A+l.

This is a fixed-point, double-precision operation.

27 MM (M) ® (A') ———> 4" . 36 psecs.
This instruction is the same as instruction 26 except that it performs a floating-

point operation. N

- 22 -

30 ‘DX (A) & (M) ——=> & 32 psecs.
Divide the contents of fast register A (dividend) by the contents of memory
location M (divisor).
Store the quotient, with the correct sign, in fast register A3 the remainder is
not retained.

This is a fixed-point, single-precision operation.

3 DXE (4) ¢ (M) ~=> a° 36 psecs.

This instruction is the same as instruction 30 except that the remainder, which
(s hemd TN

retains the sign of the dividend, is stored in fast register A+l.

32 DR [(A) ®@(M] Rdd ——> & 28 psecse
This instruction is the same as instruction 30 except that it performs a floating-

point operation and produces a rounded quotient.

34 DUR [(a) ® (M)] RAd ——-> AH1 28 psecs.
This instruction is the same as instruction 32 except that the rounded quotient is

stored in fast register A+l and the dividend is retalned in fast register A.

35 DDXV (A') & (M') ——=> a? 18/ psecs.
Divide the contents of fast registers A and A+l by the contents of memory locations
M and Mtl.
Store the quotient5 with the correct sign, in fast registers A and A+l1§ the remain-

der is not retained.

- 23 -

35 (continued)

This is a fixed-point, double-precision operation.

Ceamewmi b L e WY sedw st bn e tem e b 4 B het sew

R R I ——

36 DD A"y (M) —=> A" ‘ 168 psecs.

This instruction is the same as instruction 35 except that it performs a floating-

point operation.

37 DSE (A" ® (M) —==> 4! 56 psecs.

Divide the contents of fast registers A and A+l by the contents of memory location M,

Store the quotient, with the correct sign, in fast registers A and A+l

der is not retained.

the remain-

This is a floating-point operation. A double precision dividend is divided by a

single precision divisor giving a double precision quotient.

B~-5.2 Data-Transfer Instructions

40 S (A) --—> M 4 psecs.

v

Transfer the contents of fast register A to memory location M,

The contents of A remain unchanged.

b -

L1 SN -{A) —-> M 4 psecs.
This instruction is the same as instruction 40 except that the negative

the quantity in fast register A 1s transferred.

value of

42 SM - | (A)] --——> M L psecs
Thig instruction is the same as instruction 40 except that the absolute

the quantity in fast register A is transferred.

value of

- 24 -

43 F (M) ——=> & L psecs.

Transfer the contents of memory location M to fast register A.

The contents of M remain unchanged.

45 ss (') -->M' 8 psecs.
This instruction is the same as instruction 40 except that it performs a double-
precision operation. (That is, the contents of fast registers A and A+l are
transferrad to memory locations M and M+l, respectively, and both A and A+l

remain unchanged.)

46 SSN -{(A') —=> M 8 psecs.
This instruction is the same as instruction 41 .except that it performs a double-

precision operation.

L7 SSM [(a")] —=—> M 8 psecs.
This instruction is the same as instruction 42 except that it performs a double-

precision operation.

48 FF (M') —==> A" 8 psecs.
This instruction is the same as instruction 43 except that it performs a double-

precisicn operation.

- 25 -

1 prmsss e

JTI '2-: lj : \V\\‘\J\ \\A\\“A»V\\
L. . op.
60 EOP (M) ===> 4, L paees.

Transfer the tracing-mode selector digit and the instruction-designator digits

-
of the word in memory location M to the corresponding digit positions of the word

in fast register Aj all other digit positions in A remain unchanged.

61 EA (M)A == A, 4 psecs.
This instruction is the same as instruction 60 except that the two A-difgits are

transferred.

62 EB] (M)B -==> Ag L psecs.

This instruction is the same as instruction 60 except that the two 3-digits are

transferred.

63 EAB (M)AB—--> AAB l p3ecs.

This instruction is the same as instruction 60 except that both the A-digits and

B-digits are transferred.

64, EM (M) ===> Ay 4, psecs.
This instruction is the same as instruction 60 except that the five M-digits are

transferred,

93 SLJ (or(c2)] --—> M L piecs.
Transfer the contents of C2 (as the M-address digits of a 90 instruction) to memory

location M.

- 26 -

93 (continued)

H

In the notation, [9T(C2)]: 9 the tracinpg-mode selector (no other digit may be

used in this particular case)

—
i

the 90 instruction

C2

i

a five digit register containing the address of the
instruction which would have followed the last con-
ditional or unconditional transfer of control instrgc—<
tion if this had operated in the opposite sense.
Specifically: whenever an instruction which could
cause a transfer of control is executed, the Pkdigits
of that instruction are stored in C2. If no transfer
of control occurs this address is retained in C2j if

a transfer of control does take place the contents of

-

C2 are replaced by {C)+1 (the address of the next
v o { F !

< i . v { : .
I T T & e

>
instruction in sequence).

At the completion of this 93 instruction, M contains 990 00 00 mmmmm, where mmmmm = (C2}.
The 93 instruction may also be used to psrform this transfer:
(c2) —-—> Ay 4 4secs.
In this case, the M-digits of the 93 instruction contain an A-register
address which is specified by 999AA.

- 27 -

93 : (C2) ——-> hyg (cont ')
At the completion of this transfer, fast registor A contains 000 00 00 mmmmm,
where mmmmm = (C2).

NOTE: A 93 instruction may be employod most usefully at the beginﬁing of &
sub-routine which is entered via a test instruction. The 93 instruction
ensures that the point of origin, several of which may be scattered through-
out the program, is avgilable for use as a return point or for selecting

some branch in the subroutinz,

B-5.3 Conditional-Transfer~of-Control Instructions

70 TE (a) = (a41) 2
Test to see if the contents of fast register A are equal to the contents of fast

register A+l.

If (A) = (A+1), M -—=> C. 12 psecs.
If (A) # (a+l), (C)+1 ---> C. " 4 psecs.
7N e (4) = (a41) ?

Test to see if the contents of fast register A are greater than the contents of
fast register A+l.
1f () > (A¥1)y M ——> C. ' 12 psecs.

If (A) < (a+1), (C)+1 —--> C. L psecs.

- 28 -

72 ‘ 2 (A) =072

Test to see if the contents of fast register A are numerically equal to zero.

If (a) = Oy M -—->C. 12 psecs.
If (A) # 0, (C)+1 ~--> C. 4 psecs.
73 TGZ (A) >07?

Test to see if the contents of fast register A are greater than zero.

If (A) > 0, M -——-> C. 12 psecs.
If (4A) <0, {(C)+1 -——> C. 4 psecs.
74 TLZ (1) negative ? Aoy =D

Test to see 1f the contents of fast register A are negative.

If (A) negative, M —---> C. 12 psecs.
If (A) not negative, (C)+1 ---> C. L psecs.

75 . TTE (a') = ([a+2]') ?
Test to see if the contents of fast registers A and A+l are equal to the contents

of fast registers A+2 and A+3.

If (A') = ([A+2]"), M —--> C. 16 usecs
If (A') # ([a+2]1'), (C)+1 ———> cC. 8 psecs.
76 TTG (a') > ([A+2]") 2

Test to see if the contents of fast registers A and A+l are greater than the con-

tents of fast registers A+2 and A+3.

- 29 -

I (A") > ([at2]"), M ——> C. 16 psecs.

I (a') < {{a+=2]"), (C)+1 --=> C. 8 poecs.

95

3
"z

Test FFA

Test to see if {lip-flop A is set.
If FFA is set, M ---> C. 12 psecs.
If FFA is reset, (C)+1 ---> C. 4 psecs.

NOTE: The number of the flip-flop is specified in the A-digits of the instruction

word. Refer to section B-6 fo}‘a description of the addressable flip-flops.

B-5.4 Unconditional-Transfer-of-Contirol Instructions

90 T M-=->C 8 psecs.

Transfer control to the instruction in memory location M.

——

91 TR (9T{C)+1] —=-> M "12 psecs.

and Ml ---> C
Store in memory location M a 90 instruction which specifies the address of the
next instruction in sequence (that is, the instruction immediately following the
91 instruction).
Transfer control to the instruction in memory location M+i.
Memory location M+l contains the first instruction in a subroutine. At the comple-
tion of that subroutine, control is transferred to memory location M which contains

" the exit instruction of that subroutine; this exit instruction returns control to

the originating program. 30

91 (continued)

NOTE: In the notation, [OT(C)+1]: 9

H

the tracing-mode selector {no other digit may

be used in this particular case)

T = the 20 instruction
{C)+1 = the address of the next instruction in the
originating program.
92 TB {C) ———> Ay & usecs.
and M ---> C

Store the contents of the control counter (that is, the current address of the 92
instruction) in the M-digits of fast register A. The contents of the remaining seven
digit positions in A are not changed.

Transfer control to the instruction in memory location M,

Memory location M contains the first instruction in g subroutine. The contents of fast
register A are used to modify the exit instruction of that subroutine so that, at the .

completion of thé'subroutine, control is returned to the originatirig program. More
specifically, the exit instruction of the subroutine is in the form T90 00 BB 00001

(where the B-digits of the 90 instruction and the A-digits of the 92 instruction

specify the same fast register)j the M-digits of this instruction, when modified by

the M-digits of the specified B-register, specify the address C+l.

B-5¢5. Shift Instructions

.

52 PR : {a)10™M > 4 4 psecs.
Shift the contents of fast register A to the right M places.

- 31 -

52 (continued)

Fill the digit positions which are emptied by the shift with decimal zeros.

Store the result in fast register A.

The sign digit is neither shifted hor changed in this operation.

53 PL (a)10" ——> & 4 wsecs.

This instruction is the same as instruction 52 except that the digits are shifted

to the left.

——— & St e . 4 s ot aw e el o R s

57 PPR (an10-" > 4 8 psecs.
This instruction is the same as instruction 52 except that it performs a double-
precision shift. ({That is, the contents of fast registers A and A+l are shifted

similtaneously toc the right so that digits shifted out of A occupy the digit

positions vacated by the shift in A+1)

S——

58 PPL (A')lOM — 8 psecs-
This instruction is the same as instruction 53 except that it performs a double-~
precision shitt. (That is, the contents of fast registers A and A+l are shifted
simultaneously to tﬁe left so thgt the digits shifted out of A;l occupy fhe digit

positions vacated by the shift in A)

59 PPC (A)10M ——> 4 12 usecs.
{(circular)

Shift the contents of fast registers A and A+l simultaneously to the left M places.

- 32 -

59 (continuod)
The digits shifted out of the most significant oend of fast reglster A re-enter
fasu register A+l at the least significant ord.

The sign digits are included in +thris circular-left shift operation,

e e Sbream v [

B-5.6 PExtract Instructions

65 EL (4-1) E—;>-A 8 psecs.
: 1

In accordance with an extract pattern specified by the word in memory location M,
replace certain digits of the word in fast register A with the corresponding digits
of the word in fast register A-l.

Store the result in fast register A.

The contents of A-1l aﬁd M remain unchanged.

Extractioh occurs in those digit positions occupied by a ONE in (M). In the sign

position of (M) either a ONE or a minus sign causes extraction.

For example, if

(M) = <11 023 111 456
(A) = XXX XXX XXX XXX
(A-1) = YYY YYY YYY YYY

then, aiver the execcution of a 65 instruction,

(A) = YYY XXX YYY XXX

- 33 -

(6 o) (AHL) ——=> A 8 panca.
' (1)

Thls instruction is the samo as instruction 65 except that digits of the word in

\

fast register A arc replaced by diglts from the word in fast register A+l.

B-5.7 Conversion Instrictiongs

50 CX FL =—==> TX L psecs.

A

M = scale factor

Convert the single-precision, floating-point numbsr in fast register A to a single-
precisioh, fixed-point numbar.

Store the rcosult in fast registcr A.

The conversion is made in accordance with a scale factor which ie spacified in the

two least signifi: .-~at digits of the instructlon word.

The floating-to~-fixcd point conversion process is illustrated by an example at tho

end of this sccticn.

51 c N > Tl 4 psccse.
i = geale factor

Convert the single-precision, fixcd-point numbor in fast rogister A to a single-
vrecisiong floating—point numbor.

Store the rosult in fast reglstor A.

Thas convcrsion 1s made in accordanco with a scale factor which is cpacified in the
tuo least gignificant digits of the ingtruction word.

Tho fixcd—to—floating—point couvoraion process is illustratcd by an oxarple at the

cend of this coction.

- 34 -

55 ccX FL' ---> FX' 12 psecs.

M = scale factor
This instruction is the same as instruction 50 except that it performs a double-

precisiony floating-point-to-fixed-point conversion.”

56 cC FX' -—=> FL' 12 secs.

M = scale factor

This instruction is the same as instruction 51 except that it performs a double-

precisiony fixed-point-to-floating~point conversion.

i Examples:

A fixed point number, as it appears in the machine, has associated with it
a scale factor which indicates the true magnitude of the number. When this number
is converted to floating-point form, the scale factor determines the value of the
floating point exponent, subject to the restriction that the floating point number
mast be normalized. Conversely, when a floating point number is converted to
fixed point formy based on some previously establ?shed scale factor, the apparent
magnitude of the number as expressed in fixed point notation is determined by the
relative values of the floating point exponent and the scale factor.

1. Fixed-to-Floating-Point Conversion

True magnitude of number -.0001987654.32

Fixed point number as it appears in the computer -01987654320

(&8

- 35 -

2.

Scale Factor:-

Express the number as it appears in the computef
in its true magnitude, using powsrsof 10
Express the 10's exponent in excess 50 notation:
This number is the scale factor

Conversion: -
Subtract from the scale factor, the number of
zeros which must be shifted out to normalize thé
fixed-point number, as it appears in the computer.
The difference is the floating point exponent

Normalized number in floating-point notation

Floating-to-Fixed-Point Conversion

Floating—pointbnumber to be converted
Fixed-point scale factor
Conversion: -
Subtract the flosting-point exponent from
the scale factor
Shift the normalized number right a number

of places equal to the difference between

- 36 -

-01987654320 x 10™2

48

48-1 = L7
~4,7198765.32
-541234,56789
57

57-54 = 3

the gcale factor and the oxportint. The

rosult is tho numbor in Tixed-point notation. 123456789 --->-00012345678

B-5.8 Index-Roristor~Medification Instruetions

——— e ———a s e ——— . e

NOTE 1: In the six index-rogister-medification instructions, the B-register address
(01, 02, ...99) is specified in the A-rogister-address digits.
KOTE 2: The format for words stored in a B-reglster is
NNNDDDDALAAA
where NN = cycle count: the numbar of times a program
loop is to bo ropoatod {Once in each iteration,
N is‘roddccd by 13 when I = O, the iterative
process is torminated.) Since, in the instructions
(80 through 83) which modify the cycle counter,
NON is reduced by one before it is tested for zero,
it is possible to count to ons thousand by starting
with KN = zoro.
DDDD = increment or decremant to 44AAA: the amount which
is added to or subtracted from the address modifier

bafore or aftor each itoration

- 37 -

AAAAA = addross modifisr: the amcunt which is added to the

M-digits of an instruction that addressos the B-reg-

.

izter before that instruction is sxecuted

80 BIT U-1 ——> ¥
&4D ——=> A
N=00?

Modify the spscified B-register in this ways
(a) Reduce the cycle count by 1
{(b) Increase tho addross modifisr (A-digits)
by the amount spocified by the D-digits

Compare the reduced cycle count with zero:

f new N = 0y (C)+1 ---> C. 12 psecs.
If new N # 04 M -—->C. 8 psecs.
81 EDT R-1 «—> N
&D ——-> &
N=07

This instruction is the same as inastruction 80 except that the address modifier

is decreased by the amount specified by the D-digits.

- 38 -

82 ' BIC N-l —==> N
LD ——=> A

H=07

This Instruction is the same as instruction 80 with one exception:

If new N =0, M ---> C. 12 psecs.
If new N # 0, (C)1 ---> C. 4 usecs.
83 EDC N-1l ——=>H
A-D ——=> A
=07

This instruction is the samo aaz instruction 81 with one excoptions

If now N = 0y ¥ —-> C, 12 psecs.
If new Il # 0, (C)31 -—-> C. / usecs.
85 BI AD ~==> A 4 psecs.

Increase the address modifier (4-digits) by the amount specified by the D-digits.

g6 ED L-D —-—-> A 4 psecs.

Decrvase the address medifier (4-digits) by the amount specified by the D-digits.

- ——— -t s mamimime . emem e sasn we e . N

B~5.9 Visvvl—Dihnlav—Req1§§ar Inatructions

09 FV (5-digit regicter) > Ay

If Interlock is sot, transfer the contents of the 5-digit
visual-display rogistor to the M-digits of fast register

4y the remaining digit positions of A are filled with

201r03. Reset the Connect and Interlock flip-flops. 4 psecs.

- =39 -

09 (continued)

If Interlock is resety M ---> C. 12 psecs.

19 FVK {(12-aigit register) ~—-> 4
This instruction is the sams as Instruction 09 except that the entire contents

of the 12-digit visuval-display register are transférred.

29 SY (A)M —=> 5-digit register
If Interlock is resot, transfer the contents of 4 psecs.
the M-digits of fast regioter A to the 5-digit
visual-display regiéter.

If Interlock is sot, M ---> C. 12 psecs.

39 SVK (A) ~--> 12-digit register
This instruction is the same as instruction 29 except that the contents of fast

register A are transferred to the 12-digit visual-display register.

B-5.,10 }lscellaneons Instructions

00 SK Skip 4 psecs.

Go on to the next instruction in ths sequence.

96 RF Reset FFA 4 psecs.

Reset flip-fiop A.
HOTE: The number of the flip-flop is specified in the A-digits of the instructicn

word. Refer to section B-6 for a description of the addressable flip-flops.

- 40 ~

97 SF Set FFA 4 upsecs.
Set flip-flop A.
KOTE: The number of the flip-flop is specified in the A-digits of the instruction

word. Refer to section B-6 for a description of the addressable flip-flops.

99 H Stop

Stop computation.

- 41 -

B-5.11

hurrical List

of Inatructiona

Numeric Mnemonic Symbolic Notation Tims | Numeric Mnomonic Symbolic Notation Time
Code Code {8 Code Code us
[i}
00 SK 4 Skip 4 25 ME 22 (M) @) (A) ———v > A' 12
01 AX 1 (M) + (&) ——-—- >A 4 26 MK » (M') X (A') -=-=> A' 36
02 A v (M@ @) ———- >SA 4 27 w2t () @A) ——-> A" 36
03 AM o MW@ >4 4 29 SV 4o (4) ——=> 5 digit ,
display register. 4
04 AU o (M (® (L) ———m- > A+l 4 If Interlock set:
| J— > C 12
05 AAX o (M') + (A') ——> A' 12
30 DX 7 (A) = (M) === >A 32
06 AR a0 (M)A ——> A 16 |
31 DXE * {4) =+ (M) ——=—- > A' 36
09 FV 39 (5 digit display
register) ————- > A 32 DR 1» (A)@(M)Rdd --> 4 28
M
and reset Connect
and Interlock. A 34 DUR 23 (A)(S (M)Rdd --> A+l 28
If Interlock not set:
| g— > C 12 35 DDX 25 (A') = (M') ---> A' 18,
11 NX 10 ~{M) + (&) ——=> A 4 36 DD w (A)EO) ——-> 4" 168
12 N o M@ >4 4 37 DSE~* {a") DM —> A" %6
14 NU 2 =) D (A) ———-> A+ 4 39 SVK 40 (A) ---> 12 digit
display register. 4
15 NNX 2 =(M') + (4') -=> A' 12 If Interlock set:
. , , G— > 0 12
16 NN (M) @A"Y > A 16
: 40 S n {L) cemeeee> M A
19 FVK 4o (12 digit display ,
register) ————- > 4 41 1531 R ¢ [——— > M L
and reset Connect
and Interlock. 4 42 SM v j(A)] ————-> M 4
If Interlock not set:
Y g—— >¢C 12 43 T () — > A 4
20 MR 40 (M) X (A)Rdd ——> A 8 45 SS s (A') —————- > M 8
21 ME 1 (M) X (A) ——> A' 12 46 SSN 2¢ =(A') ~=e—e==d> M! 8
22 Moo (M@ (AR --> 4 12 47 SSM 25 [(A")] —mmm=d M 8
23 M ow (M () ——- >A 8 48 FF 25 (M') =—mmem- > A 8
2/ o v (N (A) ———- > A+l 8 50 6) QSRS A— > FX 4
' M = scale factor

- 42 -

Tunorliecal List of Instructions

Numeric Mnemonic Symbolic Notation Time j(Numoric Mnemonic Symbolic Hotation Time
Code Code s Code Code ps
(8 g
51 C 4 FX ~meemme=> TFL 4 71 TG (A) > (a+1) ?
M = scale factor No: (C)+1 —==-> C 4
Yes: M ——mmeeme > C 12
52 PR ' (a)107M >y L
M 72 T2 29 (A) =07?
53 PL » (A)10 ————- > A 4
No: (C)41 -—-=>C 4
55 CCX 35 FL' —mm—mmmm > FX! 12 FCTTI | e —— > C 12
= scale factor !
73 TGZ 1 (a) > 0?
56 CC 35 FX' mmmmmeme > FL' 12
= gcale factor Ho: (CY*1 —=—=->C 4
Yeg: M =~eeeeme >C 12
57 PPR 32 (A")10°M >t g '
(right shift M 74, TLZ 29 {A) negative?
places)
No: {C)+1 ———=>C 4
58 PFL 3> (A')10M ————> a! 8 Yes: M mmmmm—mmm Sc 12
{left shift M :
places) 75 TTE 29 (A') = (A+2)' ?
59 PPC 372 Left circular shift 12 Nos (C)+1 ——-->C 8
A'y, M places Yes: M ——=————- >C 16
60 EOP 2% (M) —-=mm= > A A 76 TTC 24 {4') > (a+2)'?
61 EA 7. (M)A ------- > &y 4 No: (C)+l ==——-> C 8
Yes: M =—m—m—mm >C 16
62 EB .t (M)B ------- > Ag 4
80 BIT 32 N-1 --> N and A+D-->4
63 EAB 9t (M), o ————-- > A 4
AB AB New N # 03 M —mmmm >C 8
64 B b (M) - >Ay 4 New N = 03 (C)+1--> C 12
65 B 9% (a-1) --;—--> A 8 81 EDT 3¢ N-1--> N and &-D--> A
New N # 03 M —=mmm >C 8
66 E0 34 (A+1) --;---> A 8 New N = 03 (C)+1--> C 12
(M '
82 BIC 37 N-1--> N and A+D--> &
70 TE 2% {(A) = (A+1) 7
New N # 03 (C)+1--> C 4
No: (C)+1 ——=-=>C 4 New N = 03 M —==emme >C 12
Yeg: M ———eeewe >C 12

- 43 -

Numerical List of Instructions

Numeric Mnemonic Symbolic Notation Time Numsric Mnemoniec Symbolic Notation Time
Code Code us Code Code ps
2%
S
83 BDC 3% N-1--> N and &-D--34& 92 ©~ TB 3| (C) > Ay 8
o : M >C
New N # 03(C)+1 -->C 4 '
New N = 0§ M =——mm >C 12 93 SLJ 2%%[9T(C2)] ~——=--—- > M 4
85 BI 97 A 4D ———meemeeeDA 4 95 TF 3o Test FF 4
86 BD 39 8 -D —m—————>4 4 If reset: (C)+1--> C 4
If set: M ———veee > C 12
90 T 3 M >C 8
: 96 RF 40 Reset FF A 4
91 TR %o [9T(C) + 1] —=—-mm >M 12
M+ 1 ——memeeeee>C 97 SP 40 Set FF 4 4
99 H 4o STOP -

B-6 ADDRESSAEVE FILIP-F7.0FS Ti THE COMPUTIKG UIIT

FF Fumbar Description Tost Rscot Set
(Tast. 95) |{Inst 96) |[(Inst. 97)
10 Disclosure Fil X] Poox
}L |
11 Processor-intervention contin- § :
goncy FF< X X !
|
15 Manuel intcrvention inhibit ¥ X X i X
20 Enter-tracing-mode FP b ¢ X
21y 224 +ee 29 Selected-tracing-mcde FFs X X X
30y 31y eee 34 Console-manual-intervention X X
contingency FFs
38 Improper-tape error FP X X
39 Improper operand in arithmstic X X
subtraction contingency FF
40 Zero floating-point eder result X X
cantingency FF

1This FP can also bs tested and resot by the processor.

“$ais FF can also be tested and sot by the processor.

-~ 45 -

CU Program Cant

(in M-addross mcdification)

FF Number Description Test Reset Set
{Inst. 95)| (Inst. 96)| (Inst. 97)
41 Non-normalized divisor contin- X X
gency FF
42 Exponent-overflow contingency ¥ X X
43 Exponent-underflow contingency IT X X
IvA Fixed-point overflow contin-~ X X
gency F¥
45 Sign-anomaly contingency FF X X
46 Stall-error FF X X
47 Control-error FF X X
48 Fast-rogister control-error F¥ X X =
{on result tims)
49 Decading-error FF X X
(in tracinz mode selector digit)
50 E~adder Cid-even error 7 X X
{on instruction or oporand call)
51 Instruction ocdd-even error FF X X
52 Oporard . odd-even error FF X X
53 Fast-rogzistor odd-cven error FF X X

FF Number

Description

Test

(Inst. 95)

I Reset

(Inst. 96)

CU Propram Can:

= Set

(Inst. 97%

54

' Fast-register odd-even error FF

(on timg-slot M:

Tims-slot M is the time at which
the contents of a fast register
are read out when addressed by
the M-digits of an instruction.
In certain instructions a fast
regiéter addressed by the A-

digits is read out on time-slot M)

e e S s o e e el

55

A-register odd-even error FF

(on result time)

56

57

58

B-adder odd-even error FF
(on output to control counter 1,
or to the high-speed bus, or to

the arithmetic unit)

B-adder odd-even error FF

(on output to the fast-register
selector or to selector storage,
or to the M-digits of instruction

register 2)

B-adder odd-even error FF
(on output to control counter 2.

Refer to saction B-5.2, instruc-

tion 93, for a description of C2.)

L

...["7-

CU Program Can:
I'® Number Description Test Reset Set
‘Inst. 95) | (Inst. 96) |(Inst. 97)
59 Adder-output cdd-even or non-
nureric error FF X X
60 Shifter-output odd-even error FF i X X
61 Comparator-error FF : X X
(single precision division)
62 Multiplier, quotient, and ex- ! X X
tractor error FF
63 Shift-control error FF X X
64 Adder-overflow error FF X X
65 Error FF for arithmetic-unit X X
rrogram counter and decoder
66 Ending-Pulse error FF X X
3
67 5 AH-register odd-even error FF X X
68 AD-register odd-even error FF X X
69 Sign-digit odd-even error FF X X
70 E A-register odd-even error FF X X
i
!
| (on time-slot A:
i
Time-slot A is the time at which
the contents of a fast register &re
i normally read out when addressed
by the A-digits of an instruction.
See note on FF 54.) |

—Z8 =

CU Program Can:

FF_Numbaer Deseription Test Reset Sat
(Inst. 95) (Inst. $6) | (Inmst. 97}
Tig T2y voe 82 Odd-sven error, digit position FF's X #
&4 Cyecling Unit Error FF X X
90 Start-tape FF X X X
98 Master error FF X
99 Master ‘contingency FF X

#Fiip-flops 71 through 82 are automatically reset when all of the following FF's

are resets

50, 51, 52, 53, 54y 55, 56, 57, 58, 59, 60, 67, 68, 70.

- 49 -

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49

