
LARC Computing-Unit

Instructions

REMINGTON RAND UNIVAC

DIVISION OF SPERRY RAND CORP.

PHILADELPHIA, PENNSYLVANIA

Publications Engineering Department
, ,

TECHNICAL MEMO NO. 15

REVISION NO.2

DECEMBER 1959

Appendix B

LARC COMPUTING-U1~T INSTRUCTIONS

Section ~

B-1 INTRODUCTION ••• 1

B-2 WORD FORMAT •• 1

2.1 Instruction Words •••••••••••••••••••••••••••••• 2

2.2 Operands ••••••••••••••••••••••••••••••••••••••• 4

2.2.1 Sign-Digit Specification ••••••• 0 ••••••• 5

2.2.2 Specification of Floating-Point Zero ••• 12

B-3 CONVENTIONS •• 15

B-4 INSTRUCTION-EXIDJUTION TIME ••••••••••••••••••••••••••• 18

B-5 COMPUTING-UNIT INSTRUCTIONS •••••••••••••••••••••••••• 19

5.1 Arithmetic Instructions •••••••••••••••••••••••• 19

5.2 Data-Transfer Instructions ••••••••••••••••••••• 24

5.3 Conditional-Transfer-of-Contro1 Instructions ••• 28

5.4- Unconditional-Transfer-of-Control Instructions •)0
, ()

5.5 Shirt Instructions ••••••••••••••••••••••••••••• 31

5.6 Extract Instructions ••••••••••••••••••••••••••• 33

5'.7 Conversion Instructions •••••••••••••••••••••••• 34

5.8 Index-Register-Modification Instructions ••••••• 37

5.9 Visual-Display-Register Instructions ••••••••••• 39

5.10 Miscellaneous Instructions ••••••••••••••••••••• 40

5.11 Numerical List of Instructions ••••••••••••••••• 42

B-6 ADDRESSABLE FLIP-FLOPS IN THE COMPUTING UNIT ••••••••• 45

- 1 -

Apwndix B

LARC COHPUTING-UNlT INSTRUCTIONS

9-1 INTRODUCTION

This appendix is designed to acquaint the progr,ammer with the, LARC

computing-unit i~struction repertoire. For the programmer's convenience, the

jnstl"uctions, 8.S presented in section B-5, are classified according to function.

B-2 ~RD FORMAT

lbch computing-unit instruction word consists of 12 decimal digits; all

t.~e~e instructions are -..rritten in accordance \,lith a standard forlll8t. Operands

ure \.Iri ttan :1 n a 12-d:i gi t format or a 24-digi t format for single-precision or

doub1e-precision operations, respectively. The contents of an index register

lire :.Jl"'itten in a special f0rrnat whj ch is described in section 5.8.

In the following d:i,scussion, digit position references, by number, apply in

Hscending order, from right to left.

- 1 -

8-2.1 Instruction Words

The standard format for a computing-unit instruction ~ord is as-follows:

Instruction
designator

B-register
address

Tracing-mode A-register
selector address

Storage
address

The tenth through twelfth digit positions contain the instruction-designator

digits (TIl). The I-digits specify the number of any legitimate computing-unit

instruction. The T-digit contains one of the tracing-mode sglectors (I, 2, ••• 9)

or, when an instruction is not to be traced, a period (.). An ignore sign' ~} may

also be specified in the T-digit; this causes the computer to enter the indirect-

addressing mode. Any other character in the T-digit of an instruction word causes

a transfer of control to the error routine.

The A-digits of a computing-unit instruction word 'contain the address of

a fast register which is used to store an operand and/or the computational result

of the operation specified by the I-digits; in certain instructions, the A-digits

are used to specify the number of a flip-flop. The B-digits also specify the

address of a fast register; in this case, however, the contents of the specified

- 2 -

fRst register are used to mOdify the ~digits of the current instruction before

that instruction is executed.

The ~igits are used to specify anyone of the following items:

(1) The memory address of an operand. (In this case M may refer to a standard

memory location or to a fastc.,register; see the note at the end of this

section.)

(2) The memory address of the next instruction.

(3) The number of digit positions a word is to be shifted. (This number is

specified by the two least significant ~igits.)

(4) The position of the decimal point in a conversion operation. (This is

indicated by a scale factor in the two least-significant M-digits~ The

scale factor consists of a base-ten exponent expressed in excess-fifty

notation.)

NOTE: A computing unit may contain up to 99 fast registers(addresses

01 through 99) all of which may be addressed and used interchangeably as

accumulator registers,as i?rlex registe~ or in the same manner as standard

memory locations (using M-address9s 99901 through 99999). Although thel:-e

1S no corresponding fast register, the address digits 00 may be used in

- 3 -

any of the digit positions specified, as follows:-

A = ~O: May be used to supply an operand, consisting of a period and

eleven decimal zeros (.00 000 000 000), in instructions which do

not store in A. (The significance of a period in the sign position

of an operand is discussed in section 2.2.1.)

B = 00: Used when no modification of the ~igit8 is required.

M=99900: May be used to supply an operand consisting of a period and eleven

decimal zeros.

B-2.2 Operands

In single-precision, 'fixed-point operations, operands are written in this

format:

I S~ X X X X X X X X X X I
where S = the sign digit, and X = a decimal digit. The computer assumes the

decimal point (A) to be between the sign and the most significant decimal digit.

In single-precision, floating-point notation, the two digit positions'

immediately following the S-digit contain an excess-fifty, base-ten exponent.

Thus, the format is:

I S E ~X X X X X X X X X I
where S = the sign digit, E = an exponent digit, and X = a decimal digit. The

decimal' point occurs between the E and X digits, and the operand is normalized

- 4 -

(i.e., the most signlficant X-digit is not equal to zero).

The t'wo-word format for double-precision, fixed-point operands allo\ls for

22 decimal dieits and an algebraic sign in the twelfth digit position of each word:

1 s~x ~ X X X X ; X X X xIs X X X X X X X X X X X I
__ t

Here, the decimal point is assumed tq be between the S-digit and the most signif-

icant X-digit of the left-hand \lord (i.e. most significant half). The S-digit should

be the same in both words.

The double-precision, floating-point operand consists of 20 decimal digits,

an algebraic sign, and an excess-50, base-ten exponent, which are arranged as

folJ.ows in two l2-digi t words:

~E"vc X X X X X X -;;js X X X X X X X X X X X !

In this notation, the decimal point occurs in the left-hand word between the E.and X

digits, and, as was the case in single-precision, floating-point notation, the

operand is normalized. It is important to note that the sign is repeated in. the

twelfth digit of the right-hand word (as in double-precision, fixed-point notation),

but the exponent is not repeated.

8-2.2.1 Sign-Digit Specification

;ords written in alphanumeric code must contain a numeric character, 1 through

9, in the S-digit position. (In this case, the S-digit contains the first digit of

a pair representing one of the alphanumeric 6haracters.)

- 5 -

The character in the S-digit position of an algebraic number written in

numeric code should be 'one of the follouing!

(I) A zero, indicating that the number is positiveQ

(2) A minus sign, indicating that tho number is negative.

(3) A period.

In the sign position of an operand, a period has the general effect of

causing an operation to. be performed in an absolute sense e In floating

point notation a period followed by all deci~l zeros is used to indicate

absolute zero (see section 2.2.2).

The computational effect of the character in the S-digit position (especially

a period) varies according to the type of operatiun, as follows:

(1) In all arithmetic operations and in negative data transfers, if there is

any anomaly in the sign, which causes a transfer of control to the con-

tingency routine, a zero is deposited in the sign of the result~

(2) . Addition and Subtractj_on

{a} Fixed Point

(i) A non-n~ric character, other than a minus sign or a period,

in the S-digit of either operand causes an automatic transfer

of control to the contingency routine.

- 6 -

(ii) In double precision op~rations a numor:i.c character, other·

than zero, in tho S-digit of either operand causes an

automatic transfer of control to the contingency routine

[see (2) (d)].

(iii)In single precision operations a numeric character, other

than zero, in the S-digit of one operand (either but not

both) appears unchanged in the result. Numerics other than

zero in the S-digits of both operands caUse an automatic

. transfer of control to the contingency routine.

(iv) A period in the S-digit of either operand causes arithmetic

addition without complementing.

(v) If a number with a period in the S-digit is added to or

subtracted from another number, the result has the sign of

the other number. If a number with a zero or a minus sign

in the S-digit is subtracted from a number with a period in

the S-digit the sign of the subtracted number is inverted

in the result.

(b) 'Floating Point (except I (M) I (f) (A) --~ A)

(1) Any character other tha~ a zero, a minus Sign, or a period

- 7 -

in the S-nigit of eith~r operand causes an automatic transfer

of control to the contingency routine.

(ii) A period in the S-digit of either operand behaves as in fixed

point operation [see (a) - (iv), (v)], with the added rastric-

tion that the exponent overflow and underflow contingency flip-

flops are inhibited.

(c) i eM)1 ® (A) ---) A

(i) The character in the S-digit of the "A"-operand behaves exactly

as in other floating point operations - see (b).

(ii) Any character is permissible in the S-digit of the ~operand~

This character behaves as & zero, in all respects.

(d) Double Precision·

(i) The S-digit in the most significant half only, of each operand~

is examined and used in the computation. The character in the

S-digit of the least significant half of eaoh operand has no

effect.

(ii) The characters in the S-digits of both halves of the result are

identical.

(3) MUltiplication and Division.

Cal Any character other than a zero, a minus sign or a period in the

- 8 -

S-digit of either operand cauoes an flutomatic transfer of control

to the contingency routine.

(b) A period in the S-digit of either operand causes a period to be

deposited in the sign of the result.

(c) Floating Point

If there is a period in the S-digit of either operand the exponent

overnow and underflow contingency flip-flops are inhibited and

the result exponent is replaced by 00.

(d) Double Precision

(i) Division: see (2)(d)

(ii) MUltiplication: the S-digit of the least significant half

only is examined.

(a) There is no restriction on the character in the S-digit.

(b) In all shift operations, except left circular shift, the character

in the S-digit is neither shifted nor changed.

(c) In a left-circular shift the S-digit is shifted but not changed.

(5) Conversion

(a) There is no restriction on the character in the S-digit.

(b) The character in the S-digit is carried forward unaltered.

- 9 -

(6) retch and Store

Ca} Except in a negative store, there is no restriction on the character

in the S-digit,.

(b) Negative store

(i) Any character other than a zero, a minus sign or a period, in

the S-digit, causes an automatic transfer of control to the

contingency routine. c,

(ii) A pe~iod in the ~-digit is transferred unaltered.

(c) Store Absolute Value

The char~cter in the S-digit is always replaced by a zero.

(d) Double Precision

The S-digits of both words are handled independently.

(7) Comparisons_

{a} All Comparisons

(i) A non-numeric, other than a minus sign or a period, in the S-

digit blocks any transfer of control due to the comparison

and causes an automatic transfer of control to the contingency

routineu (In dou~le precision operation all S-digits are

examined independently)

- 10 -

(ii) A period in tho S-digit bohf.lvOS as a zero.

(b) (A) = (A+l)? (A»(A+l)?

(i) A numeric character, other than zero, in the S-digit of one

operand causes that operand to be the greater.

(ii) A numeric character in the S-digit of each operap~ causes. a

twelve decimal digit comparison.

(c) (A»O?

A numeric character other than zero in the S-digit causes the

number to be greater than zero.

(d) (A) negative?

The S-digi t only is examined.

(e) (A)=O?

(i) Compares eleven decimal digits, disregarding the sign.

(ii) Any character other than a zero, a period or a minus sign in

the S-digit blocks any transfer of control due to the comparison

and causes an automatic transfer of control to the contingency

routine."

(f) (AI) = ([A+2]')?

A digit qy digit comparison is made, for all twenty~four digit

positions.

- 11 -

(g) (A') > ([A+2]')?

(i) The most significant halves of both operands are com-

pared following the same rules as for a sin~le precision

comparison [see (b)]

(ii) The least significant halves of both operands are com-

pared only if the most significant halves are equal
.1

(in sign and magnitude). In this case the result of

the comparison is based solely on the relative values

of the least significant halves, followinf, the same

rules as in a single precision comparison [see (b)]

B-2.2.2 Specification of Floating Point Zero

ti

In floating point notation, an absolute zero is represented by a period in

the S-digit followed by eleven decimal zeros.

A floating point relative zero should not normally be represented Qy an ex-

ponen~ and all decimal zeros, since this can cause various anomalies in floating

point arithmetic operations. The relative zero may be represented by an absolute zero

- 12 -

or by an assumed vory sm...111 non-zoro', in the form, SEE 500 000 000, depending on

ho'w the number is to be used.

A l"lo~l.ting point zoro, consisting of an exponent and all decimal zeros may be

obtained either as the result of an algebraic add or Bubtract operation, or qy

converting a fixed point zero to floating point form.

In either case this result is detected automati,qally, in the execution of the

instruction, and Sl3ts contingency flip-flop 40 (nzero floating pomt adder result").

NOTE: In single precision addition and subtraction a zero result sets the con-

tingency flip-flop, only if the exponents are equal, i.e. it is assumed

that both operands are normalized.

The appropriate representation of floating point zero can be determined in the

contingency routine.

For a fixed to floating point conversion it might be assumed that the unknown

part of the fixed point number can be represented by a five in the twelfth significant

digit. In the corresponding floating point representation this number is normalized

and given an exponent equal to the ~cale factor minus eleven.

It may be noted that the conversion instructlon~ which is completed before enter-

ing the contingency routine, shifts out eleven zeros trying to normalize and subtracts

this number from the scale factor to give the correct exponent. If the scale factor

is less than eleven, the exponent underflow contingency (flip-flop 43) also occurs.

e.g. the fixed decimal number 000 000 000 000, with a scale factor of 50 would be

- 13 -

converted to the floating point zero, 039 000 000 000. The required representation

is 039 500 000 000.

A floating point zero, resulting from an algebraic additlon or subtraction may

be similarly represented:

In a. floating point arithmetic subtraction, if the result contains significant

ze~os, the number is automatically normalized and the exponent adjusted according~y.
\

In the case of a zero result the operation will shift out nine zeros trying ~o

normalize, and subtract nine from the exponent.

For use in further float~~g point computation, this result may be represented

by assuming that the tenth significant digit, before normalizing, contains 9 five.

e.g. In the instruction -(MX±(A)--~A, where (M)=(A)= 050 123 456 789

The initial result = 050 000 000 000

The final result = 041 000 000 000

The assumed value of the initial result = 050 000 000 000 5

The required representation = 041 500 000 000

A floating point absolute zero, represented by .00 000 000 000, is not changed

by a floating-to-fixed-point conversion. This number may be used in fixed-point

arithmetic and will behave as a normal fixed point zero, 000 000 000 000 (see section

B-2.2.1).

- 14 -

B- 3 CONVFJ'lTI0NS

The followinG convontion::; nrc u~w(l in the: rlc:.)cription of the computin~ uni t-

M The M-digits of the instruction b3ing described. Except in shift

instructions (section 8-5.5) and Conversion instructions (B-7.7),

M is a storage address: M may refer either to a core-storage memory

location or to a fast register; the possible memory addresses range

from 00000 through 97499, and the fast-register addresses range from

99901 through 99999.

In the description of Shift and Conversion instructions, M signifies

the two least significant M-digits, used to specify either the number of

places a word is to be shifted, or the sca.le factor.

A ,B Address of a. fast register (01 through 99): A denotes a, fast register

that is used as an accumulator register, (the n01..rt succeeding fast register

is denotod by A+I, tlP..d the precedin[{ fast register is denoted by A-I).

In certain inotructions, A is the number of a flip-flop (the address-

able flip-flops arc dcscrib3d in section B-6). B donotes a fast

rogistor used as an index 'register.

- 15 -

A Capital-letter subscripts donote u particular part of 11 word in
A

accordance with the instruction-word forrrJ8.t:

AA denotes the A-register-address digits of the word in fast

register A

AB denotes the B-register-address digits of the word in fast

register A

AI denotes the tracing-mode selector and instruction-designator

digits (TIl) of the word in fast register A

AM denotes the memory-address digits of the word in fast register A

AA,B denotes path the A-register-address and B-register-address digits

of the word in fast register A. (more than one part of a word

may be designated by means of successive capital-letter sub-

scripts.)

the same notation is used to denote a portion of a word in

memory location M

C A control counter which can be assumed to contain the storage address

of the instruction currently being executed

Two consecutive storage locations: A' denotes the two fast registers

A and A+l. Normally, the location of a double-preclsio~ word

(). The contents of (8 fa~t regist'3r, menory location, or control counter)

- 16 -

The absolute value of (whatever is represented by the symbol

between the· vertical lines)

o A circled arithmetic symbol denotes e floating-point operation:

(M) (£) (A) denotes floating-point addition of (M) and (A).

Rdd Rounded result (All other results are unrounded.)

M ---> C Control is transferred to a new sequence of instructions starting

with the instruction whose storage address is specified in the

~igits of the instruction being described.

• (C)+l ---> C The present sequence of executing instructions is continued.

(That is, the control counter is stepped by 1 to give the address

of the next inst~lction in sequence.)

- 17 -

8-4 INSTRUCTION-r:<ECUTION TIME

The execution time in microseconds is spocified for each instruction in section

. B-5. The times given are all-inclusive; that is, they include the time reqUired.

for obtaining operands and instructions from storage, the time required for modifying

operand addresses, the time required for calculating floating-point exponents, the

time required for error, contingency, and tracing-mode checking, etc. All input-

output operations may be assumed to be performed in parallel with the instructions.

- 18 -

H-5 COHPUTJ NG-UNJ T 1 tt;TlnJr,Tl ON~)

NOTE: The four itom~ jn the hcadine of each instruction ore (from left to right)

the numeric code, the mnemonic code, the symbolic notation, and the execution

time in microseconds.

8-5.1 Arithmetic Instructions

The following descriptions of the arithmetic instructions have an algebraic

connotation. In all cases tho contents of M remain unchanged.

01 AX (H) + (A) ._--) A 4 J.l secs.

Add the contents of memory location M (addend) to the Gontents of fast register A

(augend) •

Store the sum, with the correct sign, in fast register A.

This is a fixed-point, single-precision operation.

02 A (M) Ef) (A) ---) A 4 J.l sees.

This instruction is the same as instruction 01 except that it performs a floating-

point operation"

OJ AM I (M) 1 ® (A) ---> A 4 J.l secs.

Add the absolute value of the contents of memory location M to the contents of fast

register A.

Store the sum, with the correct sign, in fast register A.

This is a floating-point, single-precision operation.
---~------

- 19 -

04 AU (M) (±) (A) ---> A+l L~ f.lsecs.

This instruction is the same as ipstruction 02 except that the sum is stored in

fast register A+l and the augend is retained in fast register A.
--------------- .-._-._--_ .•. _-------- .. -.. _.---------- ._--_ .. _-

05 AAX (M') + (A') ---> Ar 12 ~secs.

Add the contents of memory locations M and M+l (addend) to the contents of fast

registers A and A+l (augend).

store the sum, with the correct sign, in fast registers A and A+l.

This is a fixed-point, double-precision operation.

06 AA (M') ® (A ') ---> A' 16 posecs.

This instructi~l is the same as 'instruction 05 except that it performs a f1oating-

point operation.
----_._--_._.

11 NX -(M) + (A) ---> A 4 ,""sees.

Change the sign of the contents of memory location M and add to the contents of fast

register A •

. store the sum, with the correct sign, in fast register A.

This is a fixed-point, single-precision operation.

.12 N -(M) <±> (A) ---> A 4~ecs.

This instruction is the same as instruction 11 except that it performs a floating-

point operation.

- 20 -

14 NU -(M) (f) (A) ---> A+l I" ~secs.

This instruction is the same as instruction 12 except that the sum is stored in

fast register A+l and the contents of A remain unchanged.
------------ --_ .. - _._-_._------------------

15 NNX -(MI) + (A') ---> AI 12 JL sees.

Change the sign of the contents of memory locations M and M+l and add to the con-

tents of fast registers A and A+l.

Store the sum, with the correct sign, in fast registers A and A+l.

This is a fixed-point, double-precision operation.

16 NN - (M I) ® (A I) ___ > A t 16 J.Lsecs.

This instruction is the same as instruction 15 except that it performs a floating-

point operation.

20 MXR [(M) x (A)] Rdd ---> A 8 J.LSecs.

MUltiply the contents of fast register A (multiplicand) by the contents of memory

location M (multiplier).

store the rounded product, with the correct sign, in fast register A.

This is a fixed-point, single-precision operation.

21 MXE (M) x (A) ---> AI 12 ILsecs ..

This instruction is the same as instruction 20 except that a double-precision

unrounded product is stored in fast registers A and A+l •
. _------ -------_.------------------------------

- 21 -

22 [(H) ~ (A)] Held ---> A 12 llsecso

This instruction is the same as instruction 20 except that it performs a floating-

point operation ..
--------_._--------

23 M (M) ~ (A) ---> A 8 llsecs.

This instruction is the same as instruction 22 except that the product is not

rounded.

24 MIT (M) ~ (A) ---> A+l 8 ~secs.

This instruction is the same as instruction 23 except that the product is stored

in fast register A+l and the multiplicand is retained in fast register A •.

25 ME (M) ® (A) ---> A' 12 ~secs.

This instruction is the same as instruction 21 except that it performs a floating-

point operation.

26 (M r) X (A') ---> A I 36 ~secso

MUltiply the contents of fast registers A and A+l (multiplicand) by the contents.

of memory locations M and Mtl (multiplier).

Store the product, with the correct sign, in fast registers A and A+l.

This is a fixed-point, double-precision operation.

27 MM (M t) @ (A') - __ > A t 36).Iosecs.

This instruction is the same as instruction 26 except that it performs a floating-

point operation"

- 22 -

,30 'DX (A) ~(M) ---> A 32 ~socs.

Divide the contents of fast register A (dividend) by tho contents of memory

location M (divisor).

Store the "quotient, with the correct sign, in fast register A; the remainder is

not retained.

This is a fixed-point, single-precision operation.

31 DXE (A) • (M) ---> A' 36 J.1secs.

This instruction is the same as instruction 30 except that the remainder, which
, --"

, :J 1\ '-',-- l) "

retains the sign of the dividend, is stored in fast register A+l.
(.

32 DR [CA) (i) (M)] Rdd ---> A 28 ~secs.

This instruction is the same as instruction 30 except that it performs a floating-

point operation and produces a rounded quotient.

34 DUR [(A) @ (M)] Rdd ---) A+l 28 ~secs.

This instruction is the same as instruction 32 except that the rounded quotient is

stored in tast register A+l and the dividend is retained in fast register A.

35 DDX (A') f (M') ---> A' 184 llsecs.

Divide the contents of fast registers A and A+l by the contents of memory locations

M and M+l.

Store the quotient, with the correct sign, in fast registers A and A+l; the remain-

der is not retained.

- 23 -

This is a fjxcd-point, doublc-preci~ion ope~ntion •
.. ~ •. "--'---' ~.- •• -~. - -- _._ .. _ .. -- "'_~ • J ____ .' ••• ~., ,t ' -.-~--.--~

36 DD (A I) G (M') ---> Ai 168 ~secs.

This instruction is the same as instruction 35 except that it performs a floating-

point operation.
--.----..... -------.-...... - ... ------. ., ...• .-. _ .• - -~-,_ _ ___ ._~'A--... _______ • __ w_. "~ . ___ _

37 DSE (A ') e (M) ---> A I 56 ~secs.

Divide the contents of fast registers A and A+l by the contents of memory location M.

Store the quotient, with the correct sign, in fast registers A and A+I; the remain-

der is not retained.

This is a floating-point operation. A double precision dividend is divided by a

single precision divisor giving a double precision quotient.
---_ .. --.- •.. _-_.--.,_.-. --' _ .. _ ... _._--_.-.-~-

B-5.2 Data-Transfer Instructions
---_._--_ ... _-_._._-_ .. _-_ ----------._._._-_ _._.--.-.

40 s (A) ---> M 4 ~ecs.

Transfer the contents of fast register A to memory location M.

The contents of A remain unchanged.
------------~--~ .. -., -.~---.-.--

41 SN -(A) ---> M 4 l-Lsecs •

This instruction i3 the same as instruction 40 except that the negative value of

the quantity in fast register A is transferred •
. - .. -.--.-------.. ~---- .. - .. _ _-_._-------------------

42 8M 1 {A)l ---> M 4 ~secs

This instruction is the same as instruction 40 except that the absolute value of

the quantity in fast register A 1s transferred. ----_.-
- 24 -

F (~~) ---> A

Transfer the contents of rr.emory location M to fast register A.

The contents of H remain unchanged.

45 SS (A') ---) HI 8 l-lsecs.

This instruction is the same as instruction 40 except that it performs a double-

precision operation. (That is, the contents of fast reeisters A and A+l are

transferred to memory locations M and t1+1, respectively, and both A and A+1

remain unchanged.)

SSN -(A I) ___ > HI 8 l-lsecs.

This instruct jon is the same as instruction 41 except that it perfor~s a double-

precision operation.

47 SSM I (A')I ---> MI 8 J.Lsecs.

This instruction is the same as instruction 42 except that it performs a double-

precision operation.

----.-~ ... ---.- _---------

48 FF (M') ---> A I

This instruction is the same as instruction 43 except that it performs a doub1e-

precisicn operation.

- 25 -

~OP (M) ---) A
I J

Transfer the tracin~-m~e selector digit and the instruction-designutor digits

(".,

of the word in memory location M to t~e corresponding digit positions of the word

in fast reeister A; all other digit positions in A remain unchanged.
-----_ .. _----------

61 EA (M) ---) A
A A 4 tL secs •

This instruction is the same as instruction hO except that the two A-dif,its are

transferred.
-----------------_._----------------_ .. _--------- -------

62 EB (M) ---) A B B 4 tL secs •

This instruction is the same as instruction 60 except that the two 3-digits are

transferred.

63 EAB 4 tJ.3ecs.

This instruction is the same as instruction 60 except that both the A-digits and

B-digits are transferred.

64 EM (M) '---) A M M 4 tL3ecs.

This instruction is the same as instruction 60 except that the five ~1-digits are

transferred.
.-----.. -.--------......:..-----------~

93 8LJ [9T(C2)] ---) M 4 ~ 1ecs.

Transfer the contents of C2 (as the M-address digits of a 90 jnstruction) to memory

location M.

- 26 -

93 (continued)

1n the notation, [9T(C2) J: 9 = tho trucine-rncdo selector (no oth~r dieit rnuy ~

used in this particular caso)

T = the 90 inotruction

C2 = a five digit reginter containing the address of th~

instruction which would have followed the last con-

ditional or unconditional transfer of control instruc- .

tion if this had opera~ed in the opposite sense.

Specifically: whenever an instruction which could

cause a transfer of control is executed, the ~digit8

of that instruction are stored in C2. If no transfer

of control occurs this address is retained in C2; if

a transfer of control does take place the contents of

C2 are replaced ~ (C)+l (the address of the next

JL ___,....~; .. :

instruction in seq~ence).

At the completion of this 93 instruction, M contains 990 00 00 mmmmm, where mmmmm = (C2)0

The 93 instruction looy also be used to perform this transfer:

(C2) ---) A
M

In this case, the ~igits of the 93 instruction contain an A-register

address which 1s specified by 999AA.

- 27 -

93

At the complotJon of this trlJnsfor, fast rc~~istor A contain3 000 00 00 mmmmm,

",here mmmmm = (C2).

A 93 instruction may bo employod most usefully at tho beginning of a

sub-routine which is entered via a test instruction. The 93 instruction

ensures that the point of origin, several of which may be scattered through-

out the program, is available for use as a return point or for selecting

some branch in the subroutino.

8-5. J Condi tional-Transfer-of -Control Instru.ctlons

70 TE (A) = (A+l) ?

Test to see if the contents of fast register A are equal to the contents of fast

register A+l.

If (A) = (A+l), M ---) C. 12 I-Lsecs.

If (A) ~ (A+l) , (C)+l ---> C. 4 I-Lsecs.

71 TG (A) = (A+l) ?

Test to see if the contents 'of fast register A are greater than the contents of

fast register A+l.

If (A) > (A+l), M ---) C. 12 Ilsecs.

If (A) ~ (A+l) , (C)+1 ---) C. 4 Ilsecs •

- 28 -

72 TZ (A) = ° ?

Test to see if the contents of fast register A aro numerically equal to zero.

If CA) = 0, M ---) c. 12 ~1.secs.

If (A) I 0, (C)+l ---> C. 4 ~secs.

73 TGZ (A) > ° ?

Test to see if the contents of fast register A are greater than zero.

If (A) > 0, M ---> C. 12 l-Lsecs.

If (A) ~ 0, (C)+l ---> C. 4 posecs.

74 TLZ (A) negative ?

Test to see if the contents of fast register A are negative.

If (A) negative, M ---> C. 12 p.secs.

If (A) not negative, (C)+l ---> C. 4 p.secs.
--_._----_._-----------------

75 TTE (A I) = ([A+2] I) ?

Test to see if the contents of fast registers A and A+1 are equal to the con~ents

of fast registers A+2 and A+3.

If (A') = ([A+2]'), M ---> C. 16 p.secs

If (A') f. ([A+2]'), (C)+l ---> C. 8 p.secs •
. _----------_._._-------

76 TTG (AI) > ([A+2]t) ?

Test to see if the contents of fast registers A and A+1 are greater than the con-

tents of fast regist~rs A+2 and A+3.

- 29 -

If (I\. ') > ([1\+2J'), M ---) ,,9- 16 p,3CCS.

If (A') ~ ([Af2]'), (e)+l ---> C. 8 f-LDOCS.
- _" ______ •• _ .0' , _______ ... ______ •• _ ... ____ ,_. __ •• _ _.,, ________ ______ _

95 'IF Tost FFA

Test to see if flip-flop A is set.

If FFA is set, H ---) c. 12 jJ. sees.

If FFA is reset, (C)+l ---> C. 4 tL secs •

NOTE: The number of the flip-flop is specified in the A-digits of the ,instruction

(\'

word. Refer to section 8-6 for a description of the addressable flip-flops.

B-5.4 Unconditional-Transfer-of-Control Instructions

90 T M ---) C 8 f-Lsecs.

Transfer control to the instruction in memory location H.

91 TR [9T(C)+1] ---) M , 12 l.L sees.

and M+ 1 ---) C

S tor e in m emory location M a 90 instruction which specifies the address of the

next instruction in sequence (that is, th~ instruction immediately following the

91 instruction).

Transfer control to the instruction in memory locution M+I.

Hemory location M+I contains the first instruction in a subroutine. At the comple-

tion of that 3ubroutine, control is transferred to memory location M which contains

the exit instruction of that subroutine; this exit instruction returns control to

the originating program.
- .30 -

91 (continued)

NOTE: In the notntjon, [()T(C)+l]: 9 = the trndnr,-moc1o seJector (no other nip,it may

he used in J..' •
~n) !:) p:l Y't i cu] nr case)

T -- the 90 j ns tructi or.

(C)+l = the address of the nex-t instruction in the

originating program. ------.----
92 TB (C) ---) AH P, ~secs.

and M ---) C

Store the contents of the control counter (that is, the current address of the 92

instruction) in the M-digits of fast register A. The contents of the remaining seven

digit positions in A are not changed.

Transfer control to the instruction in memory location M.

Memory location H contains the first instruction in a subroutine. The contents of fast

register A are used to modify the exit instruction of that subroutine so that, at the

completion of the' subroutine, control is returned to the orir,inatine progz:-am. HOre

specjfically, the exit jnstruction of the subroutine is in the form T90 00 DB 00001

(where the B-digits of the 90 instruction and the A-dieits of the 92 instruction

specify the same fast register); the M-dlgi ts of till s instruction, when modified by

the M-digits of the specified B-register, specify the address C+l.
,-----

3-5.5. Shift Instructions

-----------_.-.. _--------
52 PR (A)lO-M ---) A 4 !lsecs.

Shift the contents of fast register A to the rjght M places.

- 31 -

52 (eontjnnc(l)

Fill the dieit positjons which aro emptiod by the shift with decimnl zer03 ..

Store the result in fast register A~

The sign digit is neither shifted nor changed in this operation.

53 PL M (A)lO ---) A 4 posecs ..

This instruction is the same as instruction 52 except that the digits are shifted

to the left ..

57 PPR (A I)lo-M ---) A. 8 psecs.

This instruction is the same as instruction 52 except that it performs a double-

precision shift. (That is, the contents of fast registers A and A+l are shifted

simultaneously to the right so that digits shifted out of A occupy the digit

positkns vacated by the shift in A+l)

58 PPL (A ')lOH ---) A W 8 ~secs-

This instruction is the same as instruction 53 except that it performs a double-

precisi~:>n shirt.. (That is, the contents of fast registers A and A+l are shifted

simultaneously to thA left so that the digits shifted out of A+l occupy the digit

positions vacated by the shift in A)

59 PPC (A')lOM ---> A'
(circular)

12 ~secs.

Shift the contents of fast registers A and A+l simultaneously to the lei't M places:,

- 32 -

59 (continuod)

The digits shifted out of the most oir~ificant cnd of fast register A re-enter

fas~ register A+l at the least significant ond.

.
The sign digits are included in th!s circular-left shift operation.

""" .. " "," .-------,,-- -,.----,-.--.,~----

8-5.6 Extrgct Inntructiono

65 EL (A-I) ---)·A
(l\f)

8 ~secs.

In accordance with an extract pat~ern specified by the word in memory location M,

replace certain digits of the word in fast register A with the corresponding digits

of the yord in fast register A-I.

Store the result in fast register A.

The contents of A-I and M remain unchanged.

Extraction occurs in those digit positions occupied Qy a ONE in (M). In tho sign

position of {N} either a OIlE or a minus sign causes extraction.

For example, i.f

(M) = -11 023 111 456

(A) = ~ XXX XXX XXX

(A-I) = YYY yyy yyy yyy

then, al~er the exocution of a 65 instruction,

fA) = YrY XXX yyy XXX

---------------------~----

- 33 -

ETJ (AI-1) ----) Ii.
(I ;)

8 1.l!J0cn.

This instruction is the :Jnma 0.8 instrll.ctioi.l 65 oxcept thnt di~lts of tho word in

fast rOGIster A nrc replaced by diCl'i:'~l [1'o:n tho 'Word in fast rocistor A+l.

50 CX F1 ---> F'X 4 l.I. secs.

f'! = scale fuctor

Convort tho sinGlo-precision, flo~ting-point numb8r in fast register A to a single-

precicion, fixed-point nttmb3r.

Store tho rosult in fast register A.

The convorsion is f.:':ldo in accordance ... rit.h a scala factor Hhich is sp3cificd in tho

tHO least signi!: ','~~.r.:. dieits of tho instruction Hord.

The floating-to-fixcd point convorsion })rOC0SS is illustratod by an oxample at tho

er~ of this soction.

51 C FX ---> Fi.. 4 J.LSOCS.

H = scola factor

Convert the single-procision, fixod-point numbor in fast rOG~stor A to a single-

precision, floatin::;-point numb:Jr.

Storo tho rosult in fant rcaistor A.

The conversion is made in accordanco with a scole factor which is op3cified in ~he

t\:o least ~iGnificant diaito of tho inotruction \lord.

Tho fixcd-to-floatincr-point cOllvoraiol1 procoos is illustrut8d by lln oxar:plo at the

crci of thin ~cction.

- 3/ .. -

55 ccx FL I ---) F'X' 12 ~secs.

H = scale factor

This instruction is the snme as instruction 50 except that it performs a double-

precision, floating-point-to-fixed-point conversion.:
---'-'-"--'--'-'~-"'-----'-"-' '-'" -... _-_.-... _-----_._ -.... -... _., _._ - .-.

56 CC FX' ---) FL' 12 ~ecs.

M = scale factor

This instruction is the same as instruction 51 except that it performs a double-

precision, fixed-point-to-floating-point conversion.

Examples:

A fixed point number, as it appears in the machine, has associated with it

a scale factor which indicates the true magnitude of the number. When this number

is converted to floating-point form, the scale factor determines the value of the

floating point exponent, subject to the restriction that the floating point number

must be normalized. Conversely, when a floating point number is converted to

fixed point form, based on some previously established scale factor, the apparent

magni tude of the number as eJ<PreSSErl in fixed point notation is determined by the

relative values of the floating point exponent and the scale factor.

1. Fixed-to-Floating-Point Conversion

True magnitude of number -.000198765432

Fixed point number as it appears in the computer -01987654JZO

- 35 -

Scale Fnctor:-

Express the number as it appears in the cOMputer

in its true magnitude, using powers of 10

Express the 10's exponent in excess 50 notation:

This number is the scale factor

Conversion: -

Subtract from the scale factor, the number of

zeros \.,rhich must be shifted out to norrr.alize the

fixed-point number, as it appears in the computer.

The difference is the floating point exponent

Normalized number in floating-point notation

2~Floating-to-Fixed-Point Conversion

Floating-point number to be converted

Fixed-point scale factor

Conversion: -

Subtract the floating-point exponent from

the scale factor

Shift the normalized number right a number

of places equal to the difference between

- 36 -

-01987654320 x 10-2

48

48-1 = 47

-47198765432

-54123456789

57

57-54 = 3

123456789 --->-00U1234,5678
.----~.-----,--- -"'--- _-_ ... ---_ - ... _- ._----------_._----_ .. _-------

----.---

l!OTE1: In the six indcx-rogister-mcdification in~tructions, the B-rogister address

(01, 02, ••• 99) is sp8cified in tho A-roGister-addross digits.

!rOTE 2: The format for words stored in a B-rcgiater is

where ImN = cycle count: tho numb3r of tin:as a program

loop is to b~ rop3atod (Once in each iteration,

rnn~ ia reduced by 1; when n:lN = 0, the itoratiYe

process is terminated.) Since, in tho instructions

(80 through 83) which modify the' cycle counter,

rum is roduced by one oofora it is tested for zero,

it is possible to count to ona thousand by starting

with NNN = zoro.

DDDD = increment or docroffi3nt to ~~A6z the amount which

is added to or subtracted from the address modifier

bafore or aftor each iteration

- 37 -

~ = addross modifior: the amount which is a.ddod to tho

~i&its of an instruction that addroBsos the B-reg-

80

ietor before that instrllction is executed

BIT I1-l --> N

A-ll ---) A

Ii = 0 ?

Modify the specified B-ragister in this waY3

{a} Reduce the cycle count by 1

(b) Increase tho addross modifier (~igits)

by the amount spacifi€-d by the D-digi ts

Compare thG reduced cycla count with zero:

81

If new N = 0, (G)+l ---> C.

If new N ~ 0, M --->C.

IDT N-1 --> II

A-D ---) ~

N = 0 ?

12 iLsecBe

8 Ilsecs.

This instruction is the same as instruction 80 except that the address modifier

is decreased by the a.mount specified by the D-digits6l

- 38 -

82 BIC N-l ---> N

~+D ---> A

11 = 0 ?

This instruction is the same as instruction 80 with ono excoption:

If new N = 0, M ---> c. 12 ~secs ..

I f no w N t- 0, (c) ~>1 ---> c. 4 ,""sees.

8.3 BOC N-l ---> N

A-D ---> A

lJ = 0 ?

This instruction is the snm~ as inotruction 81 with on8 excoption:

If now N = 0, ;1 -_._> C. 12 ~secs.

If new Yl 1 0, (C)~'l ---> c. 4 ~seCB •
. _-----------------_._---

85 BI AiD ---> A 4 ~socs.

Increase the addross ~odifier (A-digit3) by the amount specified by the D-digits •
. _-------------_ .. _----- .---

86 ED b.-D ---> A 1+)J.socs.

Decr~a8o the addross modifier (~lgits) by the amount specified by the D-digits •

09 (5-d i ai t regiotor) --->AM

If Intorlock is sot, transfer tho contents of tho 5-digit

v1Dt~1-diDplay rogiotor to the r~igits of fast reGister

L~ tho r0~~ining digit positions of A aro filled with

zoro3. Res6t the Connect and Intorlock flip-flops.

- 39 -

.. - -----. ----

4 lJ-secs.

09 (continued)

If Intorlock is reset, M ---> c. 12 psocs • .
19 FVK (12-digit register) ---> A

This instruction is the sa~2 as instruction 09 except that the entire contents

of the 12-digit visual-display register are transferredo

sv (A)M ---> 5-digit register

If Interlock is resot, transfer the contents of 4 jJ.Secs.

the ¥rdigits of fast regioter A to the 5-digit

visual-display register.

If Interlock is sot., 1>1 ---> c. 12 ~seca.

39 SVl.. (A) ---> 12-<iigit register

This instruction is the same as instruction 29 except that the contents of fast

register A are transferred to the 12-dicrit visual-display register •
. ---_ .. -.~~----

8-5.10 !::i:1cBl1~neons In3trnction~

00 SK Skip 4 J.LSeca.

Go on to the next instruction in the sequence.

---_.-._ .. _-------------------------------------
96 RF Reast FFA 4 ~eCB.

Reset flip-flopA.

~1OTE: The number of the nip-flop is specified in the A-dlgits of the inotructirn

word. Refer to section B-6 for a description of tho addressable flip-flops.

- 40 -

97 SF Set FFA 4 J.Lsecs.

Set nip-flop A.

~¥ The number of the flip-flop is specified in the A-digits of the insi~ru(~t1on

word. Refer to section B-6 for a description of the addressable flip-flops.

99 H Stop

Stop computation.

- 41 -

B-5.11 lJluw·~! .. :i.clll ~J.~t of In:Jtructj_?n:J

I
Numeric Mnemonic Symbolic Notation Ti rca I Nu.:TI3ric },illomonic Symbolic Notation Time

Cede Code ~s ! Code Code ~s
i-(I ~

,\

00 SK 4-0 Skip 4 '25 ME ~?.- (H) ® (A) _____ > AI 12

01 AX Iq (H) + (A) -----> A 4 26 r-u1X n.- (H') X (A') ---> A' .36

02 A 1,/ (M) G) (A) -----> A 4 27 MM 11- (l-t') cY (A I) ---> A' .36
i

0.3 AM I' I (~f) I ® (A) ---> A 4 29 sv Lto (A) ---) 5 digit
display register. 4

04 AU 1..0 (M) e (A) -----> A+1 4 If Interlock set:
M -----> e 12

05 AAX ').0 (M') + (A ') --_> AI 12
.30 DX z., (A) -: (M) -----> A .32

06 AA 1,.-0 (M') (3 (A ') ___ > At 16
.31 DXE '2.'\ (A) :- (M) --..;.--> A' .36

09 FV ~, (5 digit display
register) -----> A .32 DR L..., (A) 0 (M)Rdd --> A 28
and reset Connect 11
and Interlock. 4 .34 DUR 'Z') (A) (l) (N)Rdd --> A+1 28
If Interlock not set:

(A I) '7 (M') M -----) C 12 .35 DDX 2) ---> A' 184

11 NX 10 -(M) + (A) ----> A 4 .36 DD 'LL\ (A')(D{M') ---> AI 168

12 N 1,) -(M) 0 (A) ----> A 4 .37 DSE""~ (A ') e (M) ----> A I 56

14 NU 1-\ -(M) ® (A) ----> A+1 4 .39 SVK 4'0 (A) ---> 12 digit
display l"egister. 4

15 NNX L\ -(M') + (A') --> A' 12 If I nter10ck set:
M -----> Q 12

16 NN . , -(M') 0 (A I) --> A' 16
40 S l~' (A) ------> M 4

19 FVK Lfo (12 digit display
register) -----> h 41 SN ~~. -(A) ------> M 4
and reset Connect
and Interlock. 4 42 SM I (A)I -----> M 4
If Inte~lock not set:
H -----> e 12 4.3 F U (M)-------> -4. 4

20 Mx:R ~a (M) X (A)Rdd --> A 8 45 SS l.."l (A ') -------> H' 8

21 NXE 1.1 (M) X (A) -----> A' 12 46 SSN '2.-'., -(A I) -----> M' 8

22 MR
~

tV (M) (Xl (A)Rdd .--> A 12 47 SSM ~.; 1 (A r) I ---->,M' 8

2.3 M 1.1.- (M) (g) (A) -----> A 8 48 FF ~ { (HI) _______ > A I 8

24 MU "LV (M)@ CA) -----) A+1 8 50 ex 3~ FL ---------> FX 4
M = scale factor

- 42 -

- 43 -

Numerical JJi!lt of In:Jtruc·tlonn

Numeric Mnemonic Symboli~ Notation Time
Cede Cooe ~s

8)

85

86

90

91

IDC

BI

ID

T

TR

~'1

~i

~ i

3D

30

N-1--> Nand A-D-->A

New N ~ O;(C)+l -->0
New N = 0; M ----->e

~ + D --------->6

6. - D ------>A

M ---------------->e

[9T(C) + lJ ------>M
M + 1 ------------>C

4
12

4

4

8

12

-44-

..

NUIr.3ric VlIlemonic Symbolic Notation Time
Dode Code ~B

92

93

95

96

97

99

rl

TB 81 (e) -------------> A . M ________ > eM.

SLJ 2~-~&[9T(e2)] --------> M

TF ~tO Test FF A

If reset: (C)+l--> C
If set: M -------> C

RF 40 Reset FF A

SF 4() Set FF A

H 4'.) STOP

8

4

4
12

4

4

B-6 ADDRFSSABT,E FJ~IP-F1JOFS IH TiRE COEYD1'ING UNIT

---.---- .---

CU PrQrrrA m Can;
IT lIumber Description T0Gt ! Meet Set

I

(T~c.l. - ..." LI. 9S) (Inst 96) (Inst. 97)

I
i I I I 00, 01, ... 09 Sense FFs i X I X I X
! i I

I t
I I \

I
17,,1 t I 10 Disclosure I

,
X .. 1. i I

i f ! --- ----.- --.----------f---. --- I I ----,
I i , I

I Processor-intervention contin- i I I

I
i I

I
,

I
..

I

goncy FF 2 X

I

X I
I- I I

.. ~.----..
!

I

Hanual intervention inhibit PF X I t X . ,

~
I i

.

1 I

11

15

I

Enter-tracing-mode FF X I

I

Selected-tracing-mode FFs X X X
I ,

xl
i

-.- ---_. __ ._-- -- ---- I
Cons ole-manual-interventi on X I
conti~t'lGncy FFs I

I

20

21, 22, ••• 29

30, 31, ••• 34

_.'---" .' _ ... - '-"'-- ... , --- .. --~-.

38 Improper-tapa error FF x I
t-----------f----.. -----___ . ___ --._.--t-------if------+-----!

I 39 : Improper operand in aritluootic

j------- ~Ubtraction contingency FF

I

40 I Zero noating-pointaiier result

contin-gency FF .

I x

x I

lThia FF can also ba tested and raaot by the processor.

/.7nia FF can also be tested and sot by the procossor.

- 46 -

I

- ---_._ _--
! CU Pro'Vam Can:
I

FF Number I Description 'l'est
I

Reset Set

--~ (Inst. 95) (rnst. 96) (lnst. 97)
.. _-_. __ . -'"~

I ! ---I

41 I
Non-normalized divisor contin- I X X

!
I

J

gency FF i
I

42 I Exponent-overflow contingency fi7 X X
I

43 Exponent-Underflow contingency FF X X
1 I

44
I Fixed-point overflow contin- f.. X

I gency FF
!

45 I Sign-ano~~ly contingoncy FF X X I
I

46 Stall-error IT X X

47
I Control-error FF X X

... I 48 Fast-rogif::tor control-error FF X X -
(on result ti~) I

!
I

49 Decoding-error FF v- X I A

(in tracing modo selector digit)

50 E-adder Odd-evon error F7 X X

(on in~tr~ction or oporand call)

51 Inatructionodd-avon error FF X X

52 Oporar..d, odd-ovon orror FF X X
(,

53 Fast-rogistor odd-ovon arror FF X X

(in M-addrona mcxlification)

- 46 -

4
I
I

I
I
I
I
(

I
!

FF Number

54 I

I

55

r

Description Test

I (Insto
I

Fast-register cxld-even error FF X

(on tirr-..s-slot M:

Time-slot M is the time at which

the contents of a fast register

are read out when addressed by

the M-digits of an instruction.
I

In certain instructions a fast

register addressed by the A-

digits is read out on tirr~-slot M,

A-register odd-even error FF X

CU Program Can:

j Reset I

I
qS) I (Inst. 96)

X

x

i (on result time)
f-.----------+---------_________ _
!
I 56 B-adder odd-even error FF X x

(on output to control counter 1,

or to the high-speed bus, or to I
the arithmetic unit) I

----------1-----
57 B-adder odd-even error FF X I x

(on output to the fast-register

selector or to selector storage,

or to the ~igits of instruction i
I

register 2) :
... , -....... .,.. _ __ r_._ .. -.,,-.. -~.-... .o.' .••• __ •• __ ._ .. __ ••• -.-.------.--. ----to<

B-adder odd-even error FF X X I
(on output to control counter 2. I

Refer to section B-5.2, instruc-

tion 93, for a description of C2o)
-----·---......---------~~·---____ __.,j.t_

- 47 -

f

... Set

(Insto q7j
-I

\

i
I ,
(
J

1
1
I

!
i , ,
!
i

----;.

I

I
1

CU Program Can:

10' Number Description Test Reset Set

1t
fInst. 95) (rnst. 96) (Inst. 97)
I

I
.

59 Adder-output cdd-even or non-

nlliT.eric error FF X X

I
!

I 60 Shifter-output cdd-even error FF ~ X X

I t
\ : ,

61 Comparator-error FF X X

(single precision division)

62 Multiplier, quotient, and ex- 1
X X

i

tractor error FF

!
63 Shift-control error FF X X

I
!

64 Adder-overflow error FF X X

65 . Error FF for arithmetic-unit ~ X X

~rogram counter and decoder
I

t
I

I
I

66 I Ending-Pulse error FF X X
i i ,

I
67 AH-register odd-even error FF I X X

!
i

68 AD-register odd-even error FF X X

I
.
I

69 Sign-digit cdd-even error FF X X

70 A-register odd-even error FF I X X

(on time-slot
A: 1

Time-slot A is the time at which I
!

the contents of a fast register ~ e ~
I r
£)

I
normally read dut when addressed I I
by the A-digits of an instructi 0T I 1

~ I ! See note on FF 54.) I ! .J
- 48 -

Q!l Program Q~!l* J
I

IT Number Description Test ! Reset I Set

(rnst. 95) (Inst. ~) j (lnat. 97)

71~ 72., 82 Odd-even error, digit position FF'. X * I

I 84 Cycling Unit Error FF I X X
I ;

I
I

90 Sta.rt-tape FF X X I X
I

I
. ,

98 Master error FF X I

99 Master-contingency FF X

t

w71ip-flops 71 through 82 are automatically reset when all of the following FFig

are raset¥ 50, 51, 52, 53, 54, 55, 56, 57, 58~ 59, 60, 67, 68, 70.

- 49 -

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49

