
MAY 1961

RESTRICTED DISTRIBUTION

Univac®

LARC
PROGRAMMING

THE
COMPUTING UNIT

7£y,~ 7Isnd ~®
DIVISION OF SPERRY RAND CORPORATION

UNIVAC ENGINEERING CENTER • PHILADElPHIA

Heading

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.
2-11.
2-12.
2-13.
2-14.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.

3-9.

3-10.
3-11.
3-12.

CONTENTS

Title

SECTION 1. INTRODUCTION

SECTION 2. LOGICAL OPERATION OF THE

COMPUTING UNIT

General · • · · · · • · · • · The Control Unit. · · · · · · · · · · · Instruction Registers. · · · • · Control Counters · · • · • · · • •
The B Adder. · · · · · • · · · Memory Address Decoders. · · • · · Operation Decoder. · · • · The Arithmetic Unit · · · · · · • · • · Fast Registers. · · · · · · · · · · Addressable Flip-Flops. · · • · • · · · The High-Speed Bus. • · · · · • · · Execution of an Instruction · · · · · · Instruction Overlapping · · · · · ·

·
· ·

·

Control of Errors, Contingencies, and the
Tracing Mode. · · · · · • · • · • • · ·

SECTION 3. INSTRUCTION DETAILS

· .

·
· ·

•

•

Instruction Format. • •
Index Register Format • · · . .
Operands. • • • • • • • • • • • • • • • • •
Floating-Point Arithmetic
Program Conventions • • • • · .
Data-Transfer Instructions. • ••••
Fixed-Point Arithmetic Instructions
Unconditional-Transfer-of-Control

Instructions. • • • • • • • • •
Conditional-Transfer-of-Control

Instructions ••••••••••••
Extract Instructions. • • • • ••
Shift Instructions. • • • • • • • •
Index-Register-Modification Instructions ••

Page

2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-8
2-9

2-11

3-1
3-2
3-3
3-4
3-6
3-7

3-12

3-21

3-23
3-31
3-36
3-40

iii

iv

Heading

3-13.
3-14.
3-15.
3-16.
3-17.

Title

Floating-Point Arithmetic Instructions •••
Conversion Instructions • • • • • • •
Visual-Display Instructions • • • • • • ••
Flip-Flop Instructions. • • • •••••
Miscellaneous Instructions •••••

SECTION 4. OPERATIONS OF INPUT-OUTPUT EQUIPMENT

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

5-10.
5-11.
5-12.
5-13.

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.

General . . . · • · · · · · · · · · Data Codes. . · · • · · · Magnetic Drums. · · · · · · · · Magnetic Tapes. · • · · · · Line Printer. · · • · · · · · · · · · · Electronic Page Recorder. · · · · ·
SECTION 5. OPERATING PROCEDURES

Operator's Stations · · · · · · · · Operator's Console · · · · · · · · Display Panel · · · · · · Controls. · · · · · · · · Console Keyboard. · · · •
Console Printer · · · · • · · Paper Tape Handling · · •

Tape Preparation · • · Tape Reading · · · · · · · Program Load Procedures · · • · · · · • Load Procedure 1 · · • · · · · Load Procedure 2 · · · • · · · Load Procedure 3 · · · • · · · · ·
SECTION 6. INDIRECT ADDRESSING

SECTION 7. CONTINGENCIES, ERRORS, AND

TRACING MODES

· • · · · · · · · · · ·

· · · · · · · · · · · • · ·
• · · · · · · · · ·
• ·

Introduction. • • • • • • • • •
Contingencies • • • • • • •

Contingency Flip-Flops •

·
Errors. • • • • • • • • • • • • •

Error Flip-Flops • • • •
Tracing Modes • • • • • • • • • •

·

Page

3-44
3-60
3-64
3-66
3-68

4-1
4-3
4-3
4-7
4-9
4-9

5-1
5-1
5-2
5-3
5-4
5-5
5-5
5-5
5-7

5-11
5-11
5-11
5-11

7-1
7-1
7-4
7-6
7-9

7-13

Heading

C-l.
C-2.
C-3.
C-4.
C-5.

Figure

2-1.
2-2.

2-3.
2-4.

5-1.
5-2.

6-1.
6-2.
6-3.
6-4.

C-l.

Title

APPENDIX A. NUMERICAL LIST OF INSTRUCTIONS

APPENDIX B. ADDRESSABLE FLIP-FLOPS IN THE

COMPUTING UNIT

APPENDIX C. REMINGTON RAND UNIVAC

PROCESSOR PROGRAM

Magnetic Drum Summary Orders. • • • • • • •
Magnetic Tape Summary Orders ••••••
Line Printer Summary Orders • • • • • •
Electronic Page Recorder Summary Orders • •
Miscellaneous Summary Orders ••••••••

ILLUSTRATIONS

Title

Computing Unit Block Diagram ••••••••
Allocation of Time Slots on the High-Speed

Bus • • • • • • • • • • • • •
Instruction Overlapping • • • • • • • • • •
Sequencing of an Unconditional-Transfer-of-

Control Instruction • • • • • • • •

Operator's Console. • • ••••••••
Tape Symbols. • • • • • • • • • • • • • • •

Address Selection in Indirect Addressing ••
Example of Classification Tree •••••••
Indirect-Address Tree • • • • • • • • • • •
Determining Indirect Addressing Sequence ••

Summary Order Execution and Filing •••••

Page

C-6
C-8

C-IO
C-12
C-15

Page

2-3

2-7
2-10

2-11

5-2
5-7

6-4
6-9

6-11
6-12

C-5

v

vi

Table

4-1.

5-1.

6-1.
6-2.

TABLES

Title

Larc Computer Codes • • • • • • • • • •

Console Printer Characters and Actions. . .
The Table • • • • • • • • • • • • • • •
Storage Locations for Indirect-Address

Tree. • • • • •
7-1. Contents of 02600 After Transfer to 02601

Occurs. • • • • • •
C-l. Alphanumeric Code for the Console Printer •

Page

4-4

5-6

6-10

6-10

7-7

C-17

SECTION 1

INTRODUCTION

The Univac® Larc* Computing System basically comprises two units, the
Computing Unit,** and the processor. The Computing Unit is the primary
computer; the processor (a secondary computer) handles the input-output
operations. The two units are programmed independently, requiring only a
minimum of intercommunication.

This programming manual is designed to provide the experienced pro­
grammer with the information necessary to write programs for the Larc Com­
puting Unit. The publication Univac Larc Programming, The Processor pro­
vides similar information for programming the processor. Both manuals
assume a familiarity with the essential features of the system. General
information is available in the publication Univac Larc System, General
Description.

The manual begins by introducing the programmer to the function of
the Computing Unit in the system (section 2). This preliminary matter ex­
plains how instructions are sequenced, in general how errors and contin­
gencies affect a program, and how the various parts of an instruction
word are employed.

The main body of the manual (section 3) presents the Computing Unit
instruction repertory. The individual instructions are described by class;
information that applies in general to instructions in a class is given
at the beginning of each class. A condensed list of all the instructions
is found in appendix A.

* Trademark of the Sperry Rand Corporation.

** A Lare system may contain one or two Computing Units. This manual
is written for the Lare System, serials land 2, which contains one Com­
puting Unit.

1-1

Section 4, on input-output operations, describes the numeric and
alphanumeric codes and the input-output equipment including suggestions for
the use of each of the devices. The method of communication between pro­
cessor and Computing Unit is described in detail.

Operating procedures are discussed in section 5. The programmer must
be familiar with this information in order to instruct the operator during
debugging and final runs. Subjects such as program loading, manual inter­
vention, visual display, and PQper tape handling are covered in this sec­
tion.

Section 6 consists of a complete discussion of indirect addressing.
InCluded are the reasons for using indirect addressing, a description of
the method of coding it, and coded examples of its use.

Details of tracing modes, errors, and contingencies are available in
section 7. In this section, the addressable flip-flops are discussed at
length, with information on the way in which they are set, tested, and re­
set. (A complete list of addressable flip-flops is found in appendix B.)
Suggestions are made as to procedures which may be followed in the rou­
tines handling these operations.

The procedures to follow in utilizing the processor program written
by Remington Rand are described in appendix C. This appendix includes an
explanation of the summary orders or pseudo-code converted by the pro­
cessor program into processor instructions.

1-2

SECTION 2

LOGICAL OPERATION OF THE COMPUTING UNIT

2·1. GENERAL

The Larc computer is an extremely high-speed computing device. Its
high speed is obtained in part by using overlapping instructions, that is,
the computer does not wait until an instruction has been executed before
extracting the next from storage. Consequently, instructions follow each
other rather closely through the stages of the control unit. In fact, as
many as four instructions may be in the control unit at anyone time.

This overlapping of instructions of course increases the complexity
of the computer and imposes certain sequencing restrictions on the program­
mer. In some cases by careless use of instructions a programmer may in­
crease the running time of his program. In rare instances errors can be
caused by failing to observe the restrictions. Section 3 of this manual
points out the more obvious restrictions on every individual instruction.

This section presents a simplified description of the Computing Unit
control operations. (See figure 2-1 for a block diagram of the major units
in the Computing Unit.) Because the main function of the control unit is
the sequencing and execution of instructions, each component of this unit
is explained and its function is described. A brief outline of the se­
quencing of instructions is given and a typical instruction is followed
through the various stages of modification, decoding, and execution. The
section ends with a brief introduction to the error and contingency rou­
tines and the tracing mode.

With this background information the programmer will be able to under­
stand more clearly the necessity of precautions in the sequencing of in­
structions and in many instances will be able to work out for himself the
effect of certain sequences on his program.

Before the programmer can fully understand the remainder of this sec­
tion, he must be aware of the structure of the Larc Computing Unit instruc­
tion word. Hence, a brief description follows. (Further information on
this topic will be found in section 3.)

2-1

A Larc word consists of 12 characters. A generalized instruction word
is shown as follows:

T II AA BB MMMMM

The T digit, which need not be numeric, is known as the tracing digit.
Certain values of this character lead to abnormal operation of the control
unit. In general, the tracing digit will usually be a period, which will
cause normal operation. The reader may assume in the discussions that fol­
low that the tracing digit is a period unless otherwise stated.

The two I, or instruction, digits determine the operation that is to
be carried out. The instruction (operation) code is discussed fully in
section 3. In the present section any particular instruction code used
will be explained as it appears.

The two A digits specify the address of a fast, or A, register. Fast
registers are fast-access, 12-digit storage registers. Besides serving as
fast-access storage, they also have some special properties which are ex­
plained in section 3. In this section the reader may assume that in any
operation one of the operands will be the contents of the fast register
specified by the A digits of the instruction.

The M digits of an instruction usually specify a main storage address
from which the second operand of many instructions is extracted. The M
digits may also specify the number of shifts in a shift instruction or the
address to which control is transferred in a transfer-of-control instruc­
tion.

The B digits also specify the address of a fast register. In this
case the contents of the register are used to modify the M address of the
instruction. The five least-significant digits of the B fast register are
known as the modifiers and are added to the M digits of the instruction to
produce the modified address. Any carry produced outside the five least­
significant-digit positions is ignored. Hence, an address can be increased
or decreased by modification. For example, if the modifier 99999 is added
to the address 06500, the modified address will be 06499. Note that mod­
ification does not alter the instruction in its storage location; the mod­
ification takes place only in the control unit. Note also that the fast
registers used in modification are the same fast registers used to hold
operands.

The general pattern of an arithmetic operation is that an operand from
a fast register (A) and an operand from a main storage location (M) enter
the control unit and the result is sent back to the fast register.

This brief explanation of instructions is sufficient to enable the
reader to follow the arguments presented in the rest of this section.

2-2. THE CONTROL UNIT

The control unit may be generally described as the heart of the com­
puter. (See figure 2-1.) Its functions are to fetch instructions from
memory in correct sequence, to decode them, to bring operands from core

2-2

storage and fast registers. to perform a variety of arithmetical and log­
ical operations on the operands, and to return the results to storage.
Figure 2-1 is, of course. a highly simplified diagram and shows only a few
of the many interconnections of the control unit. More complete diagrams
are included in the relevant logic manuals.

The individual major components making up the control unit are de­
scribed in paragraphs 2-3 through 2-7.

Y FAST REGISTERS I
I Results

TO MEMORY
~ (STORE INSTRUCTIONS) I A-INPUT

I--

I
CONTROL UNIT t-, M-INPUT FROM MEMORY

I
SELECTOR FAST- M-INPUT FROM FAST REGISTERS ARITHMETIC
STORAGE r--- REGISTER

2 DIGITS (CONVERSION OR I UNIT
SELECTOR

SHIFT INSTRUCTIONS)

I r----- ---- --- -- - -------------~ h
I L-----l I
I Control rTr;';-sfer-Of- ControiSl9na~ ..J
I Signals

T I
I I
I

B ADDER +--- MEMORY
I ADDRESS I--

I DECODER 2 I OPERATION I INPUT' 1 INPUT 2 DECODER I j TO

btL I ~MEMOR Y

I MEMORY ~ r- -INSTRuCTiON-, ADDRESS I REGIS1ER 2 DECODER t

1 I I I I : I I M I I
L ______ .J CONTROL

COUNTER 2

•
irTIII AI!i-M-~ I

CONTROL It! ! t ! INSTRUCTION COUNTER t

L I~~O!!.!~~-.J
FROM MEMORY ,

1461

Figure 2-1. Computing Unit Block Diagram

2-3. INSTRUCTION REGISTERS

There are two instruction registers in the Larc system control unit.
They are special storage registers which hold instructions while they are
being decoded. All instructions entering the control unit pass through
these two registers.

Instruction register 1 (IRl) is the preliminary storage register and
accepts instructions directly from memory. While an instruction is waiting

2-3

in IRl, its M address is modified by the contents of the specified B re­
gister.

Instruction register 2 (IR2) is the final storage register for in­
structions. This register receives the I and A digits from the first in­
struction register and also stores the modified M address. After modifica­
tion takes place the B digits are no longer required and are not stored in
IR2. The instruction is held in IR2 until the final decoding is completed
and the necessary information for execution of the instruction has been
brought into the control unit.

2-4. CONTROL COUNTERS

A control counter is used to control the extraction of instructions
from storage and to ensure that they are extracted in correct sequence.
Because of the overlapping operations in the Larc Computing Unit two con­
trol counters, numbers 1 and 2, are required. One is used in the normal
sequencing of instructions; the other is used when a transfer-of-control
instruction is being decoded.

Control counter 1 (Cl) contains the five-digit address of the instruc­
tion in IRI. In a normal sequence of instructions, that is, a sequence
containing no transfers of control, the address in Cl is increased by 1
after each instruction has been executed causing the control counter to
fetch the next instruction and store it in IRI.

When a transfer-of-control instruction is decoded, the modified M ad­
dress is sent to control counter 2 (C2). If transfer takes place, the con­
tents of Cl and C2 are interchanged so that Cl contains the first address
of the new sequence of instructions, and C2 contains the address of the
next instruction following the transfer-of-control instruction. If the
transfer of control does not take place (C2) and (Cl) are not exchanged.
In either case, the contents of C2 remain unaltered until the next transfer-
of-control instruction is decoded. Thus, at any stage in a program C2 con­
tains the address of the instruction to which control was not transferred
during the execution of the previous transfer-of-control instruction. If
in instructions 80 and 81, B-modifier increment (or decrement) and trans­
fer, no transfer of control takes place, (C2) is advanced to M + 1 before
the control unit proceeds to the next instruction.

Example:

Storage location 25 contains a test-for-zero instruction.

(00025) = • 72 01 00 00010

The instruction tests the contents of fast register 01. If the con­
tents equal zero, control is transferred to storage location 10; if the
contents do not equal zero the control unit continues with the next in­
struction in sequence, address 00026.

Ini t ially, therefore, 00026 ------+ Cl and 00010 ----+ C2.

2-4

If (01) = 0, then (Cl) and (C2) are interchanged; that is, after the trans­
fer of control:

(Cl) = 00010

(C2) = 00026

If (01) ~ 0, then (Cl) and (C2) are unchanged; that is, after the comple­
tion of the instruction:

(Cl) = 00026

(C2) = 00010

In the first case, the next instruction to be executed will be taken from
storage location 10; in the second case it will be taken from storage lo­
cation 26.

This explanation of the operation of the control counters is simpli­
fied intentionally and is inexact in one or two particulars. For the pro­
grammer's use it is entirely sufficient, however.

2-5. THE B ADDER

The B adder is a five-digit parallel adder whose primary function is
the B-modification of M addresses. The adder also performs many other
operations during the fetching, decoding, and execution of an instruction.
Taking the execution of a simple instruction as an example. the first
operation performed by the B adder is the addition of the number 00001 to
the five-digit address in Cl. This produces the address of the next in­
struction to be brought into IRI.

The B adder is also used to interchange the contents of Cl and C2
after a transfer-of-control instruction, and for various incrementing and
decrementing operations.

2-6. MEMORY ADDRESS DECODERS

There are two memory address decoders in a Larc control unit. They
are used to decode storage location addresses before fetching words from
storage. The memory address decoders in fact partially decode the M ad­
dress, selecting the cabinet, the storage unit within the cabinet, and
partially selecting the storage location. The decoded information is sent
over the address lines to the selected storage unit where the final decod­
ing of the storage location takes place.

Memory address decoder 2 (MAD2) receives from the B adder the ad­
dresses it is to decode. These may be addresses of instructions or of
operands. MAD2 also receives control signals which direct it to decode the
next instruction address in sequence when a transfer of control is not re­
quired.

2-5

Memory address decoder 1 (MADl) receives the addresses it is to decode
from control counter 2. These addresses are only decoded and sent to the
memory when control signals are received indicating that a conditional
transfer of control is to occur.

2-7. OPERATION DECODER

The operation decoder decodes the operation code bits of an instruc­
tion in IR2. The decoding process generates control signals which govern
the rest of the circuits during the execution of the instruction.

The decoder is also used to decode the tracing-mode digit from IR1.
Depending on the character, control signals are generated to signal tracing
mode, indirect-addressing mode, or normal operation.

2-8. THE ARITHMETIC UNIT

The arithmetic unit (AU) carries out all the arithmetic and logic
operations in the Computing Unit. Before the AU can execute an instruction
it needs operands and information about the operation to be performed.
Control information enters the AU before the operands in order to give the
unit sufficient time to prepare its circuits. The information derived from
the decoding of the operation digits of the instruction, arrives in the
form of control signals from the operation decoder.

There are two input channels to the AU for operands. These channels
are known as the M-input and the A-input. In general, operands for the
first input come from the memory location specified by the M digits of the
instruction, whether these refer to a storage location or to a fast re­
gister. Operands for the second input come from the fast register speci­
fied in the A-digit positions of the instruction word. The two operands
arrive at the AU simultaneously.

In shift and conversion instructions no operand is supplied to the M­
input channel. Only the two least-significant M digits, after modifica­
tion, are used and they specify the number of shifts to be performed or the
conversion scale factor. They enter the AU by a special input line from
IR2.

The output from the AU may be results which are sent to fast registers
or storage locations, or may be control signals which govern transfer-of­
control operations. Error and contingency signals are also generated by
the AU.

The AU operates independently after it has been supplied with operands
and control signals.

2-9. FAST REGISTERS

The fast registers in the Larc Computing Unit, known as A registers
or B registers according to whether they are used as arithmetic registers
or index registers, do not have their addresses decoded by the memory ad­
dress decoders, but by a special unit known as the fast-register selector.

2-6

This unit accepts pairs of digits from the instruction registers or from
the B adder and selects the fast register specified. The selector prepares
the fast register to acc7pt information or to transmit it when the appro­
priate control signal is received. In some cases fast-register-result ad­
dresses are temporarily stored in a two-digit storage before being sent to
the fast-register selector. The two-digit storage is known as the selector
storage unit.

2-10. ADDRESSABLE FLIP-FLOPS

Flips-flops are one-bit storage devices which, at any time, are in
either an on (set) condition or an off (reset) condition. In the Larc com­
puting system there are many of these storage devices (not shown in figure
2-1) which are used for a variety of control purposes.

Appendix B to this manual comprises a list of addressable flip-flops
in the computing unit, that is, the flip-flops which can be addressed by
an instruction. The list also indicates the degree of control the pro­
grammer has over the flip-flops, that is, whether he can test, set, or re­
set them.

The flip-flops in the Larc system have many functions. Some are sole­
ly for the use of the programmer and are entirely under his control; others
are used for indicating errors or contingencies and may only be tested and
reset by the programmer. Still others serve as a means of communication
between Computing Unit and processor.

2-11. THE HIGH-SPEED BUS

The high-speed bus is a fast-transfer channel between the main storage
units and the rest of the system. It is used by the Computing Unit, by the
central processor, and by the synchronizers of the various input-output
units by way of the processor dispatcher.

It requires 1/2 microsecond to transfer a word on the high-speed bus.
Thus, during every memory cycle (4 microseconds) the bus can handle eight
words. These 1/2-microsecond periods, or time slots, are allocated in a
special way to the various units using the bus. Figure 2-2 shows how the
eight time slots in a 4-microsecond memory cycle are distributed.

TIME SLOTS (112 -MICROSECOND EACH)

0 1 2 3 4 5 6 7

CENTRAL COMPUTING COMPUTING PROCESSOR
[NOT USED]

COMPUTING COMPUTING PROCESSOR
PROCESSOR UNIT t UNIT 2 DISPATCHER UNIT 2 UNIT t DISPATCHER

INSTRUCTIONS OPERANDS INSTRUCTIONS OPERANDS

1462

Figure 2-2. Allocation of Time Slots on the High-Speed Bus

2-7

2-12. EXECUTION OF AN INSTRUCTION

In order to illustrate the over-all operation of the control unit a
simple instruction will be traced through the unit. Figure 2-1 shows a
simplified block diagram of the control circuits and reference should be
made to this figure in following the explanation in the succeeding para­
graphs.

It is assumed that initially the address in Cl is 00400, and that
storage location 00401 contains the following instruction:

T I A B M

• 01 05 12 00100

and that fast register 12 contains:

000 00 00 00050

The instruction tells the control unit to add the contents of storage lo­
cation 00100 (modified by the contents of fast register 12) to the contents
of fast register 5 and leave the result in register 5.

First, the contents of Cl (00400) are sent to input 1 of the B adder
and the number 00001 is selected for the second input. The output of the
B adder is the sum of the two inputs, or 00401, the address of the next
instruction. This address is returned to Cl to be stored until required
for selection of the next instruction after 00401. The address is also
sent to MAD2 where the cabinet and storage unit containing storage location
00401 are selected. The partially decoded information is sent from the
memory address decoder over the address lines to the relevant storage unit.

In the storage unit the final decoding is done and the selected word
(00401) is transmitted over the high-speed bus to IR1.

As the instruction digits enter IRI the tracing-mode digit (.) enters
the operation decoder and is decoded to signify normal operation. Simul­
taneously, the two B digits of the instruction are sent to the fast­
register selector, which decodes the digits and selects the correct fast
register (register 12). The selector causes the five least-significant
digits of the register (00050) to be transmitted to input 2 of the B adder.
While the B-register selection takes place l the M digits of the instruction
in IRI (00100) are sent to input 1 of the B adder, and at the same time,
the I and the A digits of IRl proceed to IR2.

The two five-digit numbers arrive simultaneously at the adder and a
sum is formed. The result (00150), which is the modified M address of the
instruction, is sent to the M-digit positions of IR2, which now contains
the instruction with the modified M address replacing the original M ad­
dress. (The T digit and the B digits of the instruction are not retained
after modification has taken place.) The modified M address is also sent
to MAD2 which decodes the operand address. The operand is eventually
transmitted from storage to the M-input of the AU.

2-8

The operation digits of the instruction in IR2 enter the operation de­
coder where signals are generated to direct the remaining stages of the in­
struction. In particular, control signals are sent to the AU to prepare it
to handle the operands.

While the M address is being decoded the two A digits of the instruc­
tion are routed from IR2 through the B adder to the fast-register selector.
The selector causes the contents of the specified A register (register 5)
to enter the A-input of the AU. Simultaneously, the other operand enters
the M-input channel from the high-speed bus. The AU has now been provided
with all the information it requires and therefore carries out the addition
and enters the sum in the AU result register.

Meanwhile. the A digits of the instruction have entered the B adder
for the second time and on leaving are retained in the selector storage
unit. When the result of the operation has been stored in the AU result
register, the two A digits go from selector storage to the fast-register
selector where they are decoded to select the fast register which receives
the result. In this case the result is stored in fast register 5, the A­
operand register. (This is not the case, however, for all instructions.)
The old contents of the A register are deleted and the new result is read
in from the AU result register.

2-13. INSTRUCTION OVERLAPPING

It was stated in the introduction to this section that instructions
are not processed serially by the control unit but overlap in time with
preceding and succeeding instructions. The preceding paragraph explained
how a single instruction was decoded and executed. The many stages in the
process can be reduced to five basic operations, named in order, call in­
struction. B modification, operand select, execute, and result. Each of
these operations can be considered to require 4 microseconds to carry out.
The 4-microsecond time unit, known as a memory cycle, is the time actually
required to read a word from or into a storage location.

Figure 2-3 shows a series of instructions passing through the above
five stages. The instructions are staggered by a period of 4 micro­
seconds. When instruction N is being called from storage. the previous
instruction N - 1 is having its M address modified, the operands for N - 2
are being brought from memory, the AU is executing N - 3 and the results
of N - 4 are being stored. In the next memory cycle, N + I is called from
memory, N is B-modified, and so on.

The chart in figure 2-3 shows a series of simple instructions where
the total execution time for each instruction is approximately 20 micro­
seconds. Some more complex instructions, of course, take longer than 20
microseconds and succeeding instructions are delayed accordingly. Note
that although each instruction takes about 20 microseconds to pass through
the control unit. the next instruction is called after only 4 microseconds
have elapsed. That is. for all practical timing purposes a simple instruc­
tion has an execution time of 4 microseconds. In fact, because the basic
memory cycle is 4 microseconds and the time slots are fixed, any execution
time is a multiple of 4 microseconds.

2-9

l\,)
I

'""'" o
INSTRUCTION

N-4

N-3

N-2

N-t

N

N+f

4

CALL I B-MODIFY

I CALL

TIME (IN MICROSECONDS)

8 t.2 t6 20 24 2~8 32 36

I OP SELECT I EXECUTE I RESULT J

I B-MODIFY I OP SELECT I EXECUTE I RESULT I
I CALL I B-MODIFY I OP SELECT I EXECUTE I RESULT I

I CALL I B-MODIFY I OP SELECT I EXECUTE I RESULT I
I CALL I B-MODIFY I OP SELECT I EXECUTE I RESULT I

l CALL I B-MODIFY I OP SELECT I EXECUTE I RESULT

1463

Figure 2-3. Instruction Overlapping

As an example of the use of the chart in figure 2-3, consider a se­
quence of instructions which contains an unconditional-transfer-of-control
instruction. (See figure 2-4.) This instruction (N) merely transfers con­
trol to the instruction in the storage location specified by the modified
M address of the transfer-of-control instruction. The instruction follow­
ing the control transfer (N + 1) will therefore never be needed. However,
due to the overlap of instructions, the instruction in location N + 1 will
in fact be called for before the computer has fully decoded the
unconditional-transfer instruction (operand-select cycle). Therefore, when
the control unit has decoded the control-transfer instruction, a signal is
sent which prevents instruction N + 1 from entering the first instruction
register. The instruction specified by the M digits of the unconditional­
transfer-of-control instruction will be called for in the next memory cycle.
Thus, a memory cycle has been lost during the transfer of control. An
unconditional-transfer-of-control instruction therefore has an effective
execution time of 8 microseconds.

INSTRUCTION
ADDRESS

N CALL
(UNCONDITIONAL
TRANSFER OF
CONTROL TO II)

N+I

M

M+I

TIME (IN MICROSECONDS)

1 , I~ t~ 2.0 2.4

I B-MODIFY I OP SELECT I EXECUTE I RESULT I
SToJ ~+t

I CALL 11-----r - - - --r - - - --r - - --, ___L ___L ___L ___ ..J

USE M FOR
NEXT. CAlL

I CALL I B-MODIFY I OP SELECT I EXECUTE I

I CALL I B-MODIFY I OP SELECT I

Figure 2-4. Sequencing of an Unconditiona1-
Transfer-of-Control Instruction

2.8

RESULT I

EXECUTE I RESULT

4464

2-14. CONTROL OF ERRORS, CONTINGENCIES, AND THE TRACING MODE

These three topics are dealt with at length in section 7. However,
this section gives a useful brief description of the function of the con­
trol unit in these three areas.

An error is usually caused by a computer failure of some kind. How­
ever, incorrect programming also can cause errors to occuri for example, if
an instruction contains the address of a non-existent storage location in
the M-digit positions an error will be signified when the instruction is
executed. There are several error flip-flops in the computer, each relat­
ing to a specific error. When the control unit detects an error it sets
the related flip-flop or flip-flops. This automatically sets the master
error flip-flop during the instruction result time. When the master error

2-11

flip-flop has been set, the control unit stores an unconditional-transfer­
of-control instruction in storage location 02600 which serves as a return
jump to the program. (The M digits of this instruction usually contain the
address of the next instruction after the one in which the error occurr~d,
but this is not always so.) Control is then transferred to the instruction
in address 02601. Obviously, some routine for diagnosing errors must be in
the computer with its first address at 02601. A general discussion of er­
ror routines is given in section 7. In general, however, when an error
occurs the computer does not complete the instruction causing the error be­
fore entering the error routine, although in a few cases the instruction is
actually completed. (See note, page 7-3.)

A contingency is caused by some programming error; overflow and sign
anomalies are examples. The control unit handles contingencies in the same
way as it does errors, that is, one or more contingency flip-flops are set,
causing the master contingency flip-flop to be set. The address of the
next instruction after the one in which a contingency occurred is stored
as the M address of an unconditional-transfer-of-control instruction in
02700 and control is transferred to the instruction in address 02701. A
contingency routine must be stored in the computer with its first instruc­
tion in storage location 02701. A general discussion of contingency rou­
tines is given in section 7.

When contingencies occur the address stored in 02700 is always that
of the next instruction. An instruction in which a contingency occurs is
always completed (and in a few cases the next instruction also is com­
pleted) before the computer enters the contingency routine.

The first character of an instruction, known as the tracing digit, is
usually a period. Its presence causes normal execution of the instruction.
The first character may also be any of the digits 1 through 9.or the ignore
symbol (i).

There are nine tracing mode flip-flops in the Computing Unit corre­
sponding to the digits 1 through 9. They may be set as the result of pro­
grammed instructions. Whenever the control unit decodes an instruction
with one of the digits 1 through 9 in the tracing position, the correspond­
ing flip-flop is tested. If it is in the reset state, the computer con­
tinues in normal operation exactly as if a period had been present. If,
however, the flip-flop is in the set state, the computer enters the tracing
mode before the instruction is executed.

When the computer enters the tracing mode control is in fact trans­
ferred to the error routine exactly as if an error had occurred. The error
routine must be so written as to detect the tracing mode and transfer to a
special tracing routine. This facility is designed to assist a programmer
in debugging programs. The tracing routine, for example, may be programmed
to print out the contents of certain registers before returning to the pro­
gram. A general discussion of tracing routines is found in section 7. It
is important to notice that instructions with tracing digits behave like
any other instructions as long as the corresponding flip-flops are reset.

An ignore symbol (i) in the tracing position always causes the com­
puter to enter the indirect-addressing mode. The M address of the instruc­
tion does not specify the operand but specifies a word where the operand

2-12

address may be found. The indirect-addressing mode is, in fact, more com­
plex than this and a full explanation is found in section 6. The indirect­
addressing mode does not use a separate routine as does the error, contin­
gency, and tracing modes. The extraction of indirect addresses is carried
out solely by the control unit circuits.

2-13

SECTION 3

INSTRUCTION DETAILS

The purpose of this section is to introduce the instruction repertory
of the Larc Computing Unit. Instructions are presented by class and are
described according to their normal use. The execution time in microsec­
onds is specified for each instruction. The times given allow for overlap
and each time is, in fact, the period that elapses from the end of the pre­
vious instruction to the end of the current instruction. (See appendix A
for a condensed numerical list of instructions.)

3-1. INSTRUCTION FORMAT

The format of an instruction word for the Larc Computing Unit has al­
ready been described in section 2. Also in that section the mode of execu­
tion of an instruction was outlined. In this section, descriptions of the
operation of individual instructions are designed specifically for the
programmer's use. They are not intended to be precise descriptions of com­
puter logic. In particular, as the contents of control counter 1 (Cl)
depend not only on the instruction being executed, but also on the two
following (see figure 2-3), this control counter will not be mentioned in
instruction descriptions. In order to avoid using CI, a hypothetical con­
trol counter C will be used. The contents of the hypothetical counter C,
otherwise written as (C), will be the address of the instruction being ex­
ecuted; the symbolic notation, (C) + 1 ~ C, means continue with the next
instruction in sequence; and M ~ C means transfer control to the in­
struction in storage location M. The programmer must remember that in fact
there is no control counter such as C, and that C has been introduced mere­
ly as a device to simplify descriptions.

It will have been noted that there are three addresses in the Comput­
ing Unit instruction word. Two of these (A and B) are fast-register ad­
dresses and the third (M) may be either a fast-register address or a
core-storage address. If any of these addresses in an instruction word
exceeds the maximum available, errors will usually occur when the instruc­
tion is decoded. In a few instructions some of the addresses are not used
and may exceed the maximum without causing errors. However, note that in
all instructions modification will invariably take place and hence the M
digits of the instruction must be numeric even if they are not needed. For
the same reason the B address must always specify a fast register and the
M digits of the fast register must also be numeric.

3-1

The original description of a Computing Unit instruction word as given
in section 2 requires some amplification. The T digit is known as the
tracing digit and may be one of the characters 1 through 9, period (.), or
ignore symbol (i). If the tracing digit is one of the digits 1 through 9
and the corresponding tracing flip-flop is set, the execution of an instruc­
tion is delayed while the computer enters the tracing mode. (This mode is
fully explained in section 7.) If the tracing digit is a period (.), the
instruction is executed normally. In the examples contained in this sec­
tion the tracing digit will always be a period. If the tracing digit is
ignore (i), the computer operates in the indirect addressing mode. (This
mode is more fully explained in section 6.)

The five M digits of an instruction word usually contain the address
of a storage location. The addresses range from 00000 to Lim M; Lim M may
vary from system to system but never exceeds 97499. The M digits may, how­
ever, be used to address a fast register. In this case the address would
be of the form 999AA, where AA is a normal fast-register address.

The A and the B digits of an instruction usually specify fast-register
addresses. These range from 01 to Lim A; Lim A never exceeds 99. In the
Larc system (serials 1 and 2), Lim A is, in fact, less than 99. The refer­
ences to Lim A in the manual therefore assume this fact. Note, however,
that in a Larc system with a full complement of fast registers, certain of
the error conditions listed in this manual will not apply.

For example, in a double-precision store instruction (paragraph 3-6),
the use of 78 as the A address will cause errors if Lim A is equal to 78,
but 99 as the A address will not cause errors if Lim A is equal to 99. The
reason for this is that when the A address (99) is incremented by 1 to
give the address for the second half of the store, the resulting two-digit
address will be 00.

The contents of a fast register may either be interpreted as a normal
operand or as a counter and modifier. In the latter case the fast register
is referred to as an index register. It should be noted that any fast re­
gister may be used as an index register.

3-2. INDEX REGISTER FORMAT

The contents of a fast register used as an index register have the
following format:

NNN DDDD AAA66

The three N digits are known as a cycle counter. The repertory of the com­
puter contains index-register instructions which reduce the counter of an
index register and test it for zero. The five 6 digits are known, collec­
tively, as the address modifier. These are the digits that are used in an
instruction to modify the M address. The D digits are used by index regis­
ter instructions to increment or decrement the address modifier.

There is one special fast register (address 00) in the Larc Computing
Unit which may be used to supply an operand consisting of a period and 11

3-2

\

decimal zeros (.00000000000). This operand is permanently stored in the
computer and cannot be changed by the programmer.

3-3. OPERANDS

In arithmetic operations the Larc Computing Unit interprets the oper­
ands as numbers. Numbers may be stored in the Larc computer in four dis­
tinct ways as follows:

(1) Single-precision, fixed-point fractions.

(2) Double-precision, fixed-point fractions.

(3) Single-precision, floating-point numbers.

(4) Double-precision, floating-point numters.

A single-precision, fixed-point number has the following format:

SI\XXXXXXXXXXX

where S is the sign digit and X represents any decimal digit. The decimal
point is automatically taken to be between the sign and the most signifi­
cant decimal digit. A single-precision, fixed-point operand is thus a
signed II-digit fraction.

A double-precision, fixed-point number consists of two Larc computer
words and has the following format:

SI\XXXXXXXXXXX 5 XXXXXXXXXXX

This number represents a signed, 22-digit fraction. The decimal point is
automatically taken to be between the sign and the most significant deci­
mal digit of the left-hand, or most significant word. In double-precision
arithmetic instructions the most significant word is addressed; the least
significant word is always taken from the next higher storage location or
fast register. The signs in both halves of a double-precision operand
should agree.

A single-precision, floating-point number in the Larc Computing Unit
has the following format:

SEE XXXXXXXXX
1\

where 5 and X have the same interpretation as before and the E digits re­
present an excess-50 power of ten, or exponent. The decimal point is taken
to be between the E digits and the most significant decimal digit. A
single-precision, floating-point number thus represents a signed, nine­
digit fraction raised to some power of ten (EE - 50). The operand
should always be normalized, that is, the most significant X digit should
not equal zero. Floating-point results produced ~y the computer are nor­
malized automatically. The fractional part of a floating-point number will
in the future be referred to as the mantissa.

3-3

The ranges of a single-precision, floating-point number (N) are as
follows:

- .999999999 x 1049 ~ N ~ - .1 x la-50

and

.1 x 10-50 ~ N ~ .999999999 x 1049

The format of a double-precision, floating-point number is:

SEEAXXXXXXXXX 5 XXXXXXXXXXX

This number represents a floating-point number with a mantissa of 20 deci­
mal digits. The decimal point is taken to be in the most significant word
immediately following the exponent. The signs of both words should agree
and the mantissa should be normalized.

The ranges of a double-precision, floating-point number (N) are as
follows:

- .99999999999999999999 x 1049 ~ N ~ - 1 la-50
• x

and

.1 x la-50 ~ N ~ .99999999999999999999 x 1049

The rules for addressing a double-precision, floating-point number are the
same as those for a double-precision, fixed-point number.

The character in the sign position of a number should be one of the
following:

(1) Zero (0), indicating that the number is positive.

(2) Minus (-), indicating that the number is negative.

(3) Period (.), indicating a special use of the number. (This is ex­
plained further in paragraphs 3-7 and 3-13.)

Variations in the use of the sign digit depend on the type of operation.
They will be discussed under the appropriate headings in the instruction
repertory.

The format of Larc alphanumeric words is discussed in section 4 in
connection with input-output equipment operations.

3·4. FLOATING·POINT ARITHMETIC

The instruction repertory of the Larc Computing Unit contains instruc­
tions which carry out arithmetic operations on floating-point numbers.
Some general aspects of floating-point arithmetic are reviewed here.

3-4

Overflow, as understood in the fixed-point sense, does not occur in
floating-point operations. Whenever the mantissa would overflow it is
shifted right and the exponent is increased by 1. However, if the exponent
becomes greater than its maximum permissible value (99), an exponent over­
flow contingency will occur. In a similar way, if the result is found to
be non-normalized, the computer shifts the mantissa to the left and de­
creases the exponent accordingly. If the exponent is Qecreased so that it
becomes less than zero, an exponent underflow contingency will occur.

Normally, the result exponent after overflow or underflow has occurred
will be meaningless. If the programmer needs to have this information, he
may use the following general rule: calculate the result by using the true
floating-point representations of the operands (that is, subtract the ex­
cess 50 from the exponents), add 50 to the result exponent,and take the
ten's complement if the excess-50 result exponent is negative. (For ex­
ample, the computer representation of an excess-50 exponent of -34 would
be 66.) This will give the result exponent.

The following table gives the range of result exponents for all
floating-point operations in which an exponent overflow or underflow con­
tingency occurs:

Operation Exponent Range Exponent Range
(overflow) (underflow)

Add or subtract (single precision) 00 99-91

Add or subtract (double precision) 00 99-80

Multiply (single or double pre-
cision) 00-48 99-49

Divide (single or double precision) 00-50 99-51

If the computer uses non-normalized operands in a floating-point com­
putation it is possible for contingencies to occur. Hence, the floating­
point representation of zero requires special treatment, as zero cannot be
normalized. In the Larc Computing Unit, positive or negative zero will
cause contingencies but the computer is designed to handle absolute zero
(period and 11 zeros) without causing contingencies. In all cases where a
zero is required, the programmer should use absolute zero or a small posi­
tive or negative number to avoid contingencies.

If an exponent underflow contingency occurs in a program, control will
be transferred to the contingency routine. In designing a contingency rou­
tine the programmer must decide what he wishes to do in case of underflow.
Underflow is caused by results too small to be in the range of floating­
point numbers. The contingency routine must replace the erroneous result
by Some approximation to the actual value, either a small positive or nega­
tive number (.1 x 10-50 or -.1 x 10-50), or absolute zero.

3-5

It is possible for a floating-point computation to result in zero.
For example, if the two operands below are added, the result will be as
shown:

Operands

Result

o 50 347263157
-50 347263157

o 41 000000000

The initial result in the arithmetic.unit would, of course, be:

o 50 000000000

In attempting to normalize, the arithmetic unit would shift the mantissa
nine places to the left and reduce the exponent by the number of shifts.
In failing to normalize, the arithmetic unit would set the zero floating­
point adder result contingency flip-flop and transfer control to the con­
tingency routine. This routine must be designed to replace the zero result
by some approximation of the true result. If we assume that, on the aver­
age, there is an error of 5 in the tenth place of the mantissa, the approx­
imate result before normalizing would be:

o 50 000000000 5

Therefore an approximate result of:

o 41 500000000

would be the best approximation to replace the zero result. The additional
time required by the contingency routine each time a zero result occurs
would be a very small percentage of the complete program running time. In
special cases, the programmer may wish to use absolute zero to replace a
zero produced by addition or subtraction, but in general, the above proce­
dure tends to reduce the accumulation of error terms.

3·5. PROGRAM CONVENTIONS

The following programming conventions are used in the remainder of
this manual:

3-6

M The five M digits of an instruction. These digits usually spec­
ify a core-storage address or a fast-register address.

A The two A digits of an instruction. These digits usually spec-
ify a fast-register address.

B The two B digits of an instruction. These digits always specify
the address of a fast register which is to be used as an index
register.

AA The two A digits of the word in fast register A.

As The two B digits of the word in fast register A.

•

•

The two A digits and the two B digits of the word in fast regis­
ter A.

The five M digits of the word in fast register A.

The tracing digit and the two instruction-designator digits (TIl)
of the word in fast register A.

The same notation is used to denote a portion of the word in
storage location M; that is, MA, MS' MAB , MM' and MI •

The address of a double precision word stored in two storage lo­
cations or two fast registers.

At = A and A + I

M' = M and M + I

() The contents of
(M) means the contents of storage location M.

()i The initial contents of

)f The final contents of

I I The absolute value or magnitude of
I(M)I means the magnitude of the contents of storage location M.

() Floating-point operation
(M) (±) (A) denotes the float i ng point addi t ion of (M) and (A).

Rdd Rounded result.

3-6. DATA-TRANSFER INSTRUCTIONS

Instructions in this class transfer words of data from fast storage to
memory, from. memory to fast storage or from one fast register to another.
Data-transfer instructions are of two types: single precision, in which the
contents of one location are transferred and double precision, in which the
contents of two adjacent locations are transferred. In double-precision
transfers the word addressed by the instruction forms one half of the oper­
and and the next higher word in the memory or fast storage forms the other
half.

STORE S 40 4~s

T 40 AA SB MMMMM

(A) ---. M

3-7

Transfer the contents of fast register A to storage location M. The
contents of fast register A are not changed.

The instruction will transfer words comprising any combination of le­
gitimate Larc characters.

Storing the contents of fast register 00 is a legitimate operation;
it will place in the specified storage location a word consisting of a per­
iod in the sign position and 11 decimal zeros. For convenience, this num­
ber will in the future be referred to as absolute zero, but the programmer
should note that in a few instances the quantity will have no numerical
sjgnificance.

Words may be stored in a fast register by writing the M address as
999AA, where AA is a fast-register address. For example, the instruction
• 40 03 00 99921 will store the contents of fast register 03 in fast regis­
ter 21. The M address 99900 should not be used in any store instruction
because it will cause errors. Fast register 00 is a special-purpose regis­
ter which cannot be written into.

STORE NEGATIVE SN 41 4~s

T 41 AA BB MMMMM

-(A) ---+ M

Transfer the negative value of the contents of fast register A to
storage location M. The contents of fast register A are not changed.

Only the sign of the word is altered during the transfer. The altera­
tion of the sign takes place according to the rules expressed in the fol­
lowing table:

Sign of Word in A o

Sign of Word in M o

If the sign of the operand is a character other than (0), (-), or (.),
a sign-anomaly contingency will occur. The store operation will take place
and a zero will be deposited in the sign position of M.

The other 11 characters in the word transferred may be any combination
of legitimate Larc characters.

STORE MAGNITUDE SM 42 4~s

T 42 AA BB MMMMM

I(A)I ~ M

Transfer the absolute value of the contents of fast register A to
storage location M. The contents of fast register A are not changed.

3-8

The instruction will transfer words comprising any combination of le­
gitimate Larc characters. Only the sign of the word is altered during the
transferi the sign is always changed to a decimal zero, regardless of its
original value.

Note that the instruction. 42 00 BB MMMMM will store a word consist­
ing of 12 decimal zeros in storage location M.

STORE, DOUBLE PRECISION 55 45 B~s

T 45 AA BB MMMMM

(A) --+ M

(A + 1) ---. M + 1

Transfer the contents of fast register A to storage location M; then,
transfer the contents of fast register A + 1 to storage location M + 1.
The contents of fast register A and A + 1 are not changed. The contents
of the fast register may be any combination of legitimate Larc characters.

As in the single-precision store instructions, words may be stored in
fast registers by writing the M address as 999AA, where AA is a fast­
register address. For example, the instruction. 45 13 00 99916 will store
the contents of fast register 13 in fast register 16, and the contents of
fast register 14 in fast register 17.

The double-precision store instruction virtually operates as two
single-precision store instructions in sequence. This gives unusual re­
sults when an instruction such as • 45 12 00 99913 is executed. In this
case, the contents of fast register 12 are stored in fast register 13, and
the contents of fast register 13 are then stored in fast register 14. The
net effect of the double-precision store instruction is to transfer the
contents of fast register 12 to fast registers 13 and 14. In particular,
the instruction. 45 00 00 99901 will store absolute zero in fast registers
01 and 02.

There is a special restriction on the use of a double-precision store
instruction in the last word position of a memory unit, that is, in storage
locations 02499, 04999, etc. If a double-precision store instruction in
one of these locations has as its M address the address of the instruction,
the next instruction to be executed will be taken from the first location
of the next memory unit before the second half of the store takes place.
For example, if in location 02499 there is the instruction. 45 06 00 02499,
the next instruction will be taken from 02500 before the contents of fast
register 07 have been stored there.

This is contrary, to the normal case in which such an instruction is
held in any location other than the last word position of a memory unit.
In this case the next instruction will be the new contents of the second
storage location.

3-9

It will be seen that the use of Lim A or Lim M as A or M addresses in
any double-precision store instruction will cause errors. The second half
of the store will then be dealing with nonexistent fast registers or stor­
age locations.

STORE NEGATIVE, DOUBLE PRECISION SSN 46 8~s

T 46 AA BB MMMMM

-(A) ---- M

-(A + 1) ~ M + 1

Transfer the negative value of the contents of fast register A to
storage location M; then, transfer the negative value of the contents of
fast register A + 1 to storage location M + 1. The contents of fast reg­
isters A and A + 1 are not changed.

The sign of each word transferred is altered independently. The signs
are altered according to the rules expressed in the following table:

Sign of Word in A o

Sign of Word in M o

If the sign of either word is a character other than (0), (-), or (.), a
sign-anomaly contingency will occur.

If the signs of both words are incorrect, both halves of the store
operation will take place and a 0 will be deposited in the sign positions
of M and M + 1. If the sign of the second word (A + 1) only is incorrect,
storage of the first word will take place normally and storage of the sec­
ond word will be carried out with a 0 deposited in the sign position of
M + 1. If the sign of the first word (A) only is incorrect and M is the ad­
dress of a storage location, storage of the first word will take place and
a 0 will be deposited in the sign position of M; storage of the second
word will take place normally. If the sign of the first word (A) only is
incorrect and Mis the addr'e ss of a fast reg i s ter, the storage oJ t be fi rst
word will take plac€ and a 0 will be deposited in the sign position of M;
storage of the second word will take place with the following rules for
the sign digit established by the rules expressed in the following table:

Sign of Word in A + 1 0

Sign of Word in M + 1 o o Bad parity combination

The bad parity combination will not cause errors until a further attempt
to use fast register M + 1 is made.

The other 11 characters in each word are transferred unchanged, and
may be any combination of legitimate Larc characters.

The double-precision, store-negative instruction virtually operates
as two single-precision store instructions in sequence. This gives unusual
results in an instruction such as • 46 12 00 99913. In this case, the

3-10

negative val~e of the contents of fast register 12 are stored in fast reg­
ister 13, and the negative value of tae contents of fast register 13 is
then stored in fast register 14. The net effect of the instruction is to
transfer the negative value of the contents of fast register 12 to fast
register 13, and the original contents of fast register 12 to fast register
14.

The special restriction on the use of a double-precision store in­
struction in the last word position of a memory unit applies also to the
double-precision, store-negative instruction.

STORE MAGNITUDE, DOUBLE PRECISION SSM 47 8~s

T 47 AA BB MMMMM

1 (A) 1--" M

1 (A + 1) I ~ M + 1

Transfer the absolute value of the contents of fast register A to
storage location M; then, transfer the absolute value of the contents of
fast register A + 1 to storage location M + 1. The contents of fast reg­
isters A and A + 1 are not changed.

The instruction will transfer words comprIsIng any combination of le­
gitimate Larc characters. Only the signs of the two words are altered dur­
ing the transfer. These are always changed to decimal zeros regardless of
their original values.

The instruction. 47 12 00 99913 will-have the net effect of transfer­
ring the absolute value of the contents of fast register 12 to fast regis­
ters 13 and 14.

The special restriction on the use of a double-precision store in­
struction in the last word position of a memory unit applies also to the
double-precision, store-magnitude instruction. However, it is unlikely
that the programmer would use this instruction to store instruction words
as the tracing digit of the stored instruction would be zero, causing er­
rors if the instruction were executed.

FETCH F 43 4 ~s

T 43 AA BB MMMMM

(M) ----- A

Transfer the contents of storage location M to fast register A. The
contents of storage location M are not changed.

The instruction will transfer words comprising any combination of le­
gitimate Larc characters.

Words may be fetched from a fast register by writing the M address as
999AA, where AA is a fast-register address. In particular, the instruc­
tion • 43 01 00 99900 will have exactly the same effect as the instruction
.. ' 40 00 00 99901.

3-11

Note that in this instruction the fast-register address 00 is not a
valid A address. Errors will occur if any attempt is made to write into
this fast register.

FETCH, DOUBLE PRECISION FF 40 8~6

T 48 AA BB MMMMM

(M) --. A

(M + 1) -.. A + 1

Transfer the contents of storage location M to fast register A; then,
transfer the contents of storage location M + 1 to fast register A + 1.
The contents of storage locations M and M + 1 are not changed.

The contents of the two words transferred may be any combinations of
legitimate Larc characters.

As in the single-precision fetch instruction, words may be fetched
from fast registers by writing the M address as 999AA, where AA is a fast­
register address. For example, the instruction. 48 16 00 99902 will trans­
fer the contents of fast register 02 to fast register 16, and transfer the
contents of fast register 03 to fast register 17.

The double-precision fetch instruction virtually operates as two
single-precision fetch instructions in sequence. This gives unusual re­
sults when an instruction such as • 48 17 00 99916 is executed. In this
case the contents of fast register 16 are transferred to fast register 17,
and then the contents of fast register 17 are transferred to fast register
18. The net effect of the instruction is to transfer the contents of fast
register 16 to fast registers 17 and 18. In particular, the instruction
• 48 01 00 99900 will transfer absolute zero to fast registers 01 and 02.

It will be seen that the use of Lim A or Lim M as A or M addresses in
the double-precision fetch instruction will cause errors. The second half
of the store will then be dealing with nonexistent fast registers or stor­
age locations.

3-7. FIXED-POINT ARITHMETIC INSTRUCTIONS

Instructions in this class perform basic arithmetic operations on
words representing fixed-point fractions. Single-precision instructions
are considered first, followed by double-precision instructions. The mne­
monic of every instruction in this class contains an X. Read the X as
'fixed point'.

Characters in the nonsign positions of operands should be numeric only.
If one or more of the nonsign positions of an operand contain a non-numeric
character. an error will occur and no result will be stored. The M oper­
and may be a fast register.

In any fixed-point addition or subtraction in which the signs of the
operands are either (0) or (-), a zero result ~ill take the sign of the A
operand.

3-12

If either operand in a fixed-point addition or subtraction contains a
(.) in the sign-digit position. the absolute value of the result will be
the sum of the absolute values of the operands, and the sign of the result
will be given by the appropriate sign table.

If a sign-anomaly contingency occurs in any fixed-point arithmetic in­
struction, the sign of the result will be (0). In a fixed-point addition
or subtraction in which a sign-anomaly contingency occurs, the absolute
value of the result will be the sum of the absolute values of the operands.

ADD, FIXED POI~l AX 01 4~s

T 01 AA BB MMMMM

(M) + (A) ---. A

Add the fixed-point fraction in storage location M to the fixed-point
fraction in fast register A. Store the sum, with correct sign. in fast
register A. The contents of storage location M are not changed.

The sign position in either word may contain any of the characters
(0), (-). (.), or one of the digits 1 through 9. The sign of the result is
governed by the rules expressed in the following table.

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i , ~.

0 0 0/- 0 1 thru 9 C

- 0/- - - 1 thru 9 C

• 0 - • 1 thru 9 C

1 thru 9 1 thru 9 I thru 9 1 thru 9 C C

it 6. + C C C C C

NOfE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

+

If the absolute value of the sum is greater than I, a fixed-point
overflow contingency will occur.

NEGATIVE ADD, FIXED POINT NX 11 4~s

T 11 AA BB MMMMM

-(M) + (A) ---- A

3-13

Add the negative value of the fixed-point fraction in storage location
M to the fixed-point fraction in fast register A and store the sum, with
correct sign, in fast regi~ter A. The contents of storage location Mare
not changed. More simply, subtract the fixed-point fraction in storage lo­
cation M from the fixed-point fraction in fast register A.

The sign position in either word may contain any of the characters (0),
(-), (.), or one of the digits 1 through 9. The sign of the result is gov­
erned by the rules expressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - . 1 thru 9 i, 6, +

0 0/- 0 0 I thru 9 C

- - 0/- - I thru 9 C

• - 0 . 1 thru 9 C

I thru 9 1 thru 9 1 thru 9 1 thru 9 C C

i, A, + C C C C C

NOTE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the absolute value of the difference is greater than I, a fixed­
point overflow contingency will occur.

MULTI PLY, FIXED-POII\1J' ROUNDED MXR 20 8ti-s

T 20 AA BB MMMMM

[(M) x (A)] Rdd --.. A

Multiply the fixed-point fraction in fast register A by the fixed­
point fraction in storage location M; store the rounded single-length pro­
duct, with correct sign, in fast register A. Rounding is accomplished in
the usual way. The most significant digit of the least significant half of
the double-length product is examined; if it is greater than or equal to
five, I is added to the least significant digit of the most significant
half of the product. If the digit is less than five, the most significant
half of the product is not altered. In either case the most significant
half of the product is stored as the final result. The contents of storage
location M are not changed.

3-14

The sign positions of each operand must contain one of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 1\,

0 0 - • C C

- - 0 • C C

• . . • C C

1 thru 9 C C C C C

i, !:::., + C C C C C

NOfE

The letter C shows that a sign-anomaly contingency
will occur.

+

No overflow contingency can occur in this instruction as the absolute
value of the result is always less than that of either operand.

MULTIPLY, FIXED-POINT EXTENDED MXE 21 l2~s

T 21 AA BB MMMMM

Multiply the fixed-point fraction in fast register A by the fixed­
point fraction in storage location M; store the result as a double­
precision, fixed-point fraction in fast registers A and A + 1. The signs
of (A) and (A + 1) in the result are equal. The contents of storage loca­
tion M are not changed.

The sign position of each operand must contain one of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

3-15

Sign of Sign of Word in M
Word in

A 0 - · 1 thru 9 i , 6,

0 0 ... • C C

- - 0 • C C

• • • • C C

I thru 9 C C C C C

i. A, + C C C C C

NaTE

The letter C shows that a sign-anomaly contingency
will occur.

+

No overflow contingency can occur in this instruction as the absolute
value of the result is always less than that of either operand.

If the A address of the instruction is equal to Lim A, an error will
occur.

DIVIDE, FIXED POINT DX ~O ~2~s

T 30 AA BB MMMMM

(A) -;- (M) ---.. A

Divide the fixed-point fraction in fast register A by the fixed-point
fraction in storage location M; store the quotient in fast register A with
correct sign. The remainder is not retained and the quotient is not
rounded. The contents of storage location M are not changed.

The sign position of each operand must contain one of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 ... • 1 thru 9 i , 6 • +

0 0 ... · C C

... ... 0 • C C

. • . · C C

I thru 9 C C C C C

i, ~, + C C C C C

3-16

N<JrE

The letter C shows that a sign-anomaly contingency
will occur.

If the absolute value of the dividend is greater than or equal to that
of the divisor, then the absolute value of the quotient will be greater
than, or equal to, 1. This condition will cause a fixed-point overflow
contingency to occur. An attempt to divide by a zero divisor will also re­
sult in an overflow.

DIVIDE, FIXED-POINT EXTENDED DXE 31 36~s

T 31 AA BB MMMMM

(A) + (M) ---.. A

Remainder ~ A + 1

Divide the fixed-point fraction in fast register A by the fixed-point
fraction in storage location M; store the quotient, with the correct sign,
in fast register A. Store the remainder, with the sign of the dividend,
in fast register A + 1. The contents of M are not changed.

The sign position of each operand must contain one of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 6,

0 0 - • C C

- - 0 • C C

• • • · C C

I thru 9 C C C C C

i, 6, + C C C C C

NOTE

The letter C shows that a sign-anomaly contingency
will occur.

+

Overflow may occur in this instruction under the same conditions as in
the OX instruction.

If the programmer wishes to continue the division process to obtain a
double-precision result, he may divide the remainder by the original

3-17

divisor. For example, the pair of instructions. 31 04 00 02300 and
• 31 05 00 02300 will store the double-precision quotient of (04) divided
by (02300) in fast registers 04 and 05.

If the A address of the instruction is equal to Lim A, an error will
occur.

ADD, FIXED-POINT, DOUBLE PRECISION AAX 05 l2~s

T 05 AA BB MMMMM

(M') + (A') ---.. A'

Add the double-precision, fixed-point fraction in storage locations M
and M + 1 to the double-precision, fixed-point fraction in fast registers
A and A + 1; store the result, with correct sign in both words, in fast
registers A and A + 1. The contents of storage locations M and M + 1 are
not changed.

During the calculation, the sign position in the most significant half
of each operand is examined. The characters in the other two sign posi­
tions are ignored and may be any legitimate Larc characters. The most sig­
nificant sign positions must contain one of the characters (0), (-), or
(.). The signs of both words of the result are equal and are determined by
the rules expressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - . 1 thru 9 i, 6, +

a a 0/- 0 C C

- 0/- - - C C

. 0 - • C C

1 thru 9 C C C C C

i, 6, + C C C C C

NaTE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the absolute value of the sum is greater than 1, a fixed-point over­
flow contingency will occur.

The use of Lim A or Lim M as A or M addresses in this instruction will
cause errors to occur.

3-18

In contrast to double-precision, data-transfer instructions, double­
precision arithmetic instructions are true double-precision operations.

NEGATIVE ADD, FIXED-POINT, DOUBLE PRECISION NNX 15 12~s

T 15 AA BB MMMMM

- (M') + (A') ---. A'

Add the negative value of the double-precision, fixed-point fraction
in storage locations M and M + 1 to the double-precision, fixed-point frac­
tion in fast registers A and A + 1; store the result, with correct sign in
both words, in fast registers A and A + 1. The contents of storage loca­
tions M and M + 1 are not changed.

During the calculation, the sign position in the most significant half
of each operand is examined. The characters in the other two sign posi­
tions are ignored and may be any legitimate Larc characters. The signifi­
cant sign positions must contain one of the characters (0), (-), or (.).
The signs of both words of the result are equal and are determined by the
rules expressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, ~, +

0 0/- 0 0 C C

- - 0/- - C C

• - 0 • C C

I thru 9 C C C C C

i, ~, + C C C C C

NUfE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the absolute value of the difference is greater than 1, a fixed­
point overflow contingency will occur.

The use of Lim A or Lim M as A or M addresses in this instruction will
cause errors to occur.

MULTIPLY, FIXED-POINT, DOUBLE PRECISION MMX 26 36~s

T 26 AA BB MMMMM

(M') x (A') ~ A'

3-19

Multiply the double-precision, fixed-point fraction in fast registers
A and A + 1 by the double-precision, fixed-point fraction in storage loca­
tions M and M + 1; store the 22 most-significant digits of the product.
with correct sign in both words, in fast registers A and A + 1. The pro­
duct is not rounded. The contents of storage locations M and M + 1 are not
changed.

In contrast to the other double-precision arithmetic instructions. the
sign position in the least significant half of each operand is used in the
calculation. The characters in the other two sign positions are ignored
and may be any legitimate Larc characters. The least-significant sign posi­
tions must contain one of the characters (0). (-), or (.). The signs of
both words of the result are equal and are determined by the rules ex­
pressed in the following table:

Sign of Sign of Word in M + 1
Word in

A + I 0 - · 1 thru 9 i , !::..

0 0 - · C C

- - 0 • C C

• • • • C C

1 thru 9 C C C C C

i. !::.. + C C C C C

NaTE

The letter C shows that a sign-anomaly contingency
will occur.

+

The overflow contingency cannot occur. The use of Lim A or Lim M as
A or M addresses in this instruction will cause errors to occur.

DIVIDE, FIXED-POINT, DOUBLE PRECISION DDX 35 184~s

T 35 AA BB MMMMM

(A .) -;- (M t) ---. A'

Divide the double-precision, fixed-point fraction in fast registers A
and A + 1 by the double-precision, fixed-point fraction in storage loca­
tions M and M + 1; store the quotient, with correct sign in both words, in
fast registers A and A + 1. The remainder is not retained. The contents
of storage locations M and M + I are not changed.

During the calculation, the sign in the most significant half of each
operand is examined. The characters in the other two sign positions are

3-20

ignored and may be any legitimate Larc characters. The most-significant
sign positions must contain one of the characters (0), (-), or (.). The
signs of both words of the result are equal and are determined by the rules
expressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, ~,

0 0 - • C C

- - 0 • C C

• • • • C C

I thru 9 C C C C C

i, 1\, + C C C C C

NaI'E

The letter C shows that a sign-anomaly contingency
will occur.

+

If the absolute value of the dividend is greater than or equal to that
of the divisor, then the absolute value of the quotient will be greater
than or equal to 1. This condition will cause a fixed-point overflow con­
tingency to occur. An attempt to divide by a zero divisor will also re­
sult in an overflow.

The use of Lim A or Lim M as A or M addresses in this instruction will
cause errors to occur.

3-8. UNCONDITIONAL-TRANSFER-OF-CONTROL INSTRUCTIONS

Instructions in this class interrupt the normal sequence of instruc­
tions by transferring control to a specified instruction. The address of
the specified instruction is held in the M digits of the transfer-of­
control instruction. This address must always specify a legitimate storage
location. An attempt to transfer control to a fast register will result in
errors.

TRANSFER T 90 8~s

T 90 AA BB MMMMM

M-C

Transfer control to the instruction in storage location M. The A
digits of the instruction are not decoded and may be any pair of legitimate
Larc characters.

3-21

A T instruction need not be followed by a legitimate instruction. Al­
though the instruction immediately following the T instruction is called
for by the control unit ~efore the transfer of control actually takes place,
the instruction is prevented from entering the instruction registers.
Hence, no errors can be caused by nonlegitimate characters in this instruc­
tion.

Any unconditional-transfer-of-control instruction can be stored in Lim
M without causing errors. Although the control unit would attempt to ob­
tain an instruction from Lim M + I and fail to do so, the transfer of con­
trol would take place before a stall error had time to occur.

It is necessary to point out here that a single-instruction loop using
the T instruction, or a double-instruction loop consisting of a skip (para­
graph 3-17) and a T instruction, cannot be used as a short loop to occupy
control until Computing-Unit program interruption occurs as a result of
intervention signals from the processor or the operator's console. For
example:

(02000) = 90 00 00 02000

or

(02000) = 00 00 00 00000

(02001) = • 90 00 00 02000

The logic of the Computing Unit has been so arranged that intervention will
not occur in such loops. The reason for this arrangement is explained in
the notes on the store-last-jump instruction (paragraph 3-10). (The intro­
ductory paragraphs of section 4 deal with this problem and its solution.)

TRANSFER RETURN TR 91 12~s

T 91 AA BB MMMMM

9 90 00 00 (C) + 1 ----- M

M + 1- C

Store, in location M, a T instruction with a tracing digit 9 and the M
address equal to the address of the instruction immediately following the
TR instruction; then, transfer control to the instruction in storage loca­
tion M + 1. For example:

If (04000) = • 91 00 00 00250, then, after the instruction has
been executed, (00250) = 9 90 00 00 04001 and the next instruc­
tion to be executed will be taken from storage location 00251.

The A digits of the instruction are not decoded and may be any pair of
legitimate Larc characters.

The instruction is intended for use as an entry to a subroutine. In
the example given, if a subroutine had its first instruction in storage lo­
cation 00251, the instruction in location 04000 would cause the computer to

3-22

enter the subroutine at its entry point. The subroutine should be so writ­
ten as to jump to the instruction in 00250 on completion of the calculation.
The T instruction in that location would then return the computer to the
main program at the instruction ·following the entry instruction, that is,
at the instruction in 04001.

A TR instruction does not have to be followed by a legitimate instruc­
tion. No error can be caused in the TR instruction by a succeeding in­
struction.

It is legitimate to store a TR instruction in Lim M, although it is
difficult to find a use for this capability.

The use of Lim M as the M address in this instruction will result in
errors when the Computing Unit attempts to transfer control to the instruc­
tion in the nonexistent storage location Lim M + 1.

TRANSFER AND STORE B-MODIFIER TB 92 8~s

T 92 AA BB MMMMM

Store the address of the instruction in the M-digit positions of fast
register A (the other digits of fast register A are not changed); then,
transfer control to the instruction in storage location M.

The TB instruction is intended to be used in the same way as the TR
instruction for subroutine entries. For example, if a subroutine has its
first instruction in storage location 00251, and the programmer wishes to
enter the subroutine by an instruction in location 04000, this instruction
could be • 92 13 00 00251. The last instruction in the subroutine should
then be • 90 00 13 00001. This instruction will transfer control to the
instruction in location 04001, that is, the instruction immediately follow­
ing the TB instruction in the main program.

No error will be caused in the TB instruction if it is not followed
by a legitimate instruction. Also, a TB instruction may be stored in Lim
M without causing errors when it is executed.

An error will be caused if the A address of the instruction is 00.
The error will occur when the computer attempts to store the control­
counter address in the M-digit positions of fast register 00.

3-9. CONDITIONAL-TRANSFER-OF-CONTROL INSTRUCTIONS

Instructions in this class test one or more fast registers for a par­
ticular condition. If the condition exists, control is transferred to the
instruction in the location specified by the M address of the transfer-of­
control instruction. If the condition does not exist, the next instruction
in sequence is processed.

3-23

A sign table is given for each instruction but it is worth noting here
that, in all instructions of this class, a period in the sign position of
an operand has the same effect as a zero.

If the M digits of an instruction in this class specify a fast­
register address, an error will occur if the transfer of control takes
place; otherwise, no error will occur.

If an instruction in this class is followed by a nonlegitimate in­
struction, errors will occur if the transfer of control does not take place.
If the transfer of control does take place, errors mayor may not occur de­
pending on which part of the second instruction word is not legitimate.

If a sign-anomaly contingency occurs in any conditional-transfer-of­
control instruction, control will be transferred to the contingency routine
before any transfer of control (due to the comparison) can occur.

For convenience in presentation, only a part of the total conditional­
transfer-of-control instructions in the Larc Computing Unit repertory are
listed in this section. The remaining instructions are described in dif­
ferent paragraphs as follows:

(1) Test Flip-Flop, paragraph 3-16.

(2) B-Modifier Increment and Transfer, paragraph 3-12.

(3) B-Modifier Decrement and Transfer, paragraph 3-12.

(4) B-Modifier Increment and Continue, paragraph 3-12.

(5) B-Modifier Decrement and Continue, paragraph 3-12.

(6) Fetch from Visual-Display Register (500), paragraph 3-15.

(7) Fetch from Visual-Display Register (1200), paragraph 3-15.

(8) Store in Visual-Display Register (500), paragraph 3-15.

(9) Store in Visual-Display Register (1200), paragraph 3-15.

The detailed conditional-transfer-of-control instructions follow.

TRANSFER IF EQUAL TE 70

T 70 AA SB MMMMM

Are (A) = (A + 1) ?

Yes: M - C 12j-Ls

Compare the contents of fast register A with the contents of fast reg­
ister A + 1. If they are equal, transfer control to instruction in storage
location M; if they are not equal, continue with the next instruction in
sequence. The contents of fast registers A and A + 1 are not changed.
3-24

The sign position of each operand must contain one of the characters
(0), (-), (.). or one of the digits 1 through 9. The other 11 positions in
each word must contain decimal digits 0 through 9. Any other character in
the nonsign positions will cause an error.

The rules governing signs in the comparison are expressed in the fol­
lowing table:

Sign of Sign of Word in A + 1
Word in

A 0 - • 1 thru

0 11 NT 11 NT

- NT 11 NT NT

• 11 NT 11 NT

1 thru 9 NT NT NT 12

i, 6, + C C C C

C = sign-anomaly contingency

NT = no transfer

11 = II-digit comparison

12 = 12-digit comparison

An important consequence of these rules is that:

• 00000000000 = 0 00000000000

- 00000000000 i 0 00000000000

- 00000000000 i . 00000000000

9 i, A, +

C

C

C

C

C

If the programmer wishes to use this instruction for comparing two in­
struction words, he must remember that the instruction cannot be used to
compare words with an (i) symbol in the sign position. An attempt to do so
will result in a contingency.

If the A address of the instruction is equal to Lim At A + 1 will
equal Lim A + I, a nonexistent fast register. In this case an error will
occur.

3-25

/

TRANSFER IF GREATER TG 71

T 71 AA BB MMMMM

Are (A) > (A + 1) ?

Yes: M ~ C 12~s

No: (C) + 1 ~ C 4~s

Compare the contents of fast register A with the contents of fast reg­
ister A + 1. If the contents of fast register A are the greater. transfer
control to the instruction in storage location Mi if they are not the
greater. continue with the next instruction in sequence. The contents of
fast registers A and A + 1 are not changed.

The sign position of each operand must contain one of the characters
(0). (-). (.), or one of the digits 1 through 9. The other 11 positions
in each word must contain decimal digits 0 through 9. Any other character
in the nonsign positions will cause an error.

The rules governing signs in the comparison are expressed in the fol­
lowing table:

Sign of Sign of Word in A + 1
Word in

A 0 - • 1 thru 9 i, 6, +

0 11 T 11 NT C

- NT 11 NT NT C

• 11 T 11 NT C

1 thru 9 T T T 12 C

i, 6, + C C C C C

C = sign-anomaly contingency

T = transfer

NT = no transfer

11 = II-digit comparison

12 = 12-digit comparison

An important consequence of these rules is that:

o 00000000000 > - 00000000000

• 00000000000 > - 00000000000

3-26

If the programmer wishes to use this instruction for comparing two in­
struction words, he must remember that the instruction cannot be used to
compare words with an (i) in the sign position. An attempt to do so will
result in a contingency.

If the A address of the instruction is equal to Lim A, A + 1 will
equal Lim A + 1, a nonexistent fast register. In this case an error will
occur.

TRANSFER IF ZERO TZ 72

T 72 AA BB MMMMM

Are (A) = 0 ?

Yes: M ~ C 12~s

No: (C) + 1 ~ C 4~s

If the contents of fast register A are equal to zero, transfer control to
the instruction in storage location M; if they are not equal to zero, con­
tinue with the next instruction in sequence. The contents of fast register
A are not changed.

The character in the sign position of the operand must be one of the
characters (0), (-), or (.). The other 11 positions in the operand must
contain decimal digits 0 through 9. Any other character in the nonsign
positions will cause an error.

The rules governing the sign in the comparison are expressed in the
following table:

Sign of Word in A Operation

o 11

11

• 11

1 thru 9 C

i, ~, + C

C = sign-anomaly contingency

11 = II-digit comparison with zero

An important consequence of these rules is that:

o 00000000000 = 0

- 00000000000 = 0

• 00000000000 = 0

3-27

If the programmer wishes to use this instruction to test an instruc­
tion word for zero content, he must remember that the instruction cannot be
used to test words with an (i) or one of the digits I through 9 in the sign
position. An attempt to do so will result in a contingency.

TRANSFER IF GREATER THAN ZERO TGZ 73

T 73 AA BB MMMMM

Are (A) > 0 ?

If the contents of fast register A are greater than zero, transfer
control to the instruction in storage location M; if they are not greater
than zero, continue with the next instruction in sequence. The contents
of fast register A are not changed.

The sign position of the operand must contain one of the characters
(0), (-), (.), or one of the digits 1 through 9. The other 11 positions
in the operand must contain decimal digits 0 through 9. Any other charac­
ter in the nonsign positions will cause an err0r.

The rules governing the sign in the comparison are expressed in the
following table:

Sign of Word in A Operation

o 11

NT

11

I thru 9 T

i, ~. + c

C = sign-anomaly contingency

T = transfer

NT = no transfer

11 = II-digit comparison with zero

Note that none of the three representations of zero causes a transfer
of control.

3-28

TRANSFER IF LESS THAN ZERO TLZ 14

T 14 AA BB MMMMM

Are (A) ~ 0 ?

Yes: M ---. C 12tJ-s

If the contents of fast regfster A are less than zero, transfer con­
trol to the instruction in storage location M; if they are not less than
zero, continue with the next instruction in sequence. The contents of
fast register A are not changed.

The sign position of the operand must contain one of the characters
(0), (-), (.), or one of the digits 1 through 9. The other 11 positions
in each word must contain decimal digits 0 through 9. Any other character
in the nonsign positions will cause an error.

The rules governing the sign in the comparison are expressed in the
following table:

Sign of Word in A Operat ion

o NT

T

NT

1 thru 9

i. 6" + C

C = sign-anomaly contingency

T = transfer

NT = no transfer

An important consequence of the above rules is that:

- 00000000000 < 0

3-29

TRANSFER IF EQUAL, DOUBLE PRECISION TTE 75

T 75 AA BB MMMMM

Are (A') = (A + 2') ?

Yes: M ~ C 16tJ.s

No: (C) + 1 ---. C 8~s

Compare the double-precision word in fast registers A and A + 1 with
the double-precision word in fast registers A + 2 and A + 3. If they are
equal, transfer control to the instruction in storage location M; if they
are not equal, continue with the next instruction in sequence. The con­
tents of fast registers A, A + 1, A + 2, and A + 3 are not changed.

The sign positions of all four words must contain one of the charac­
ters (0), (-), (.), or one of the digits 1 through 9. Any other character
in any of the four sign positions will cause a sign-anomaly contingency.
The nonsign positions must contain decimal digits 0 through 9. Any other
character in the nonsign positions will cause an error.

The instruction causes the computer to make a 24-digit comparison be­
tween the two double-precision operands. The transfer of control is made
only if all 24 digits in one operand are equal to the corresponding digits
in the other operand (a period in a sign position being equal to a zero).

If the A address of the instruction is greater than Lim A - 3, errors
will occur due to nonexistent fast registers being used in the comparison.

TRANSFER IF GREATER, DOUBLE PRECISION TTG 76

T 76 AA BB MMMMM

Are (A') > (A + 2') ?

No: (C) + 1 ---. C 8~s

More accurately, the operation of the instruction is:

Are (A) > (A + 2) ?

Yes: M - C

No: Are (A) < (A + 2) ?

Yes: (C) + 1 - C

No: Are (A + 1) > (A + 3) ?

Yes: M - C

No: (C) + 1 ---. C

3-30

If the contents of fast register A are greater than the contents of
fast register A + 2, transfer control to the instruction in storage loca­
tion M; if the contents of fast register A are less than the contents of
fast register A + 2, continue with the next instruction in sequence. If
the contents of fast register"A equal the contents of fast register A + 2,
carry out the equivalent of a single-precision TG comparison on the con­
tents of f~st registers A + 1 and A + 3. That is, if the contents of fast
register A + 1 are greater than the contents of fast register A + 3, trans­
fer control to the instruction in storage location M; if they are not
greater, continue with the next instruction in sequence. The contents of
fast register At A + I, A + 2, and A + 3 are not changed.

The sign position of all four words must contain one of the characters
(0), (-), (.), or one of the digits 1 through 9. Any other character In
any of the four sign positions will cause a sign-anomaly contingency. The
nonsign positions of the four words must contain only decimal digits in the
range 0 through 9. Any other character in these positions will cause an
error. Even if wrong characters are contained in one or both of (only) the
least significant halves and these are not needed in the comparison, the
contingency or error will still occur.

The sign rules for each half of the operation are the same as those
for the TG instruction.

As a consequence of the mode of operation of this instruction it is
possible to obtain a 'greater than' transfer when, in fact, (A') < (A + 2').
For example:

(A') = 0 35103248111 o 13520462198

(A + 2') = 0 35103248111 - 86344291183

In the TTG instruction the computer, on finding the most significant
halves equal, will compare the two least-significant halves. In this ex­
ample, (A + 1) > (A + 3); accordingly, the transfer of control will take
place. However, regarded as double-precision operands in all arithmetic
instructions in which the sign of the most significant half is the sign of
the number, (A + 2') > (A'). The programmer will have no difficulties with
this instruction as long as he deals with double-precision numbers in which
the signs of both halves are equal.

If the A address of the instruction is greater than Lim A - 3, errors
will occur due to nonexistent fast registers being used in the comparison.

3-10. EXTRACT INSTRUCTIONS

Extraction is the process of transferring a group of digits from spec­
ified positions" in one word to the corresponding positions in another word.
Digits other than those in the specified positions are usually unaltered,
except in the store-last-jump instruction.

Instructions in this class fall into two groups; one group comprises
those instructions in which the digits transferred depend only on the opera­
tion code of the particular extract instruction. and the other comprises

3-31

those in which the digits to be transferred are specified by another com­
puter word (usually known as a mask).

The M address of the instruction may specify a fast register as in
data-transfer instructions.

EXTRACT OPERATION CODE EOP 60 4j.l.s

T 60 AA BB MMMMM

Transfer the'tracing digit (T) and the instruction designator digits
(II) of the word in storage location M to the corresponding digit positions
of fast register A. All other digits in fast iegister A remain unchanged.
The contents of storage location M are not changed.

The contents of sto~age location M and fast register A may be any com­
bination of legitimate Larc,characters.

If the A address is 00 an error will occur. Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate M address.

EXTRACT' A DIGITS EA 61 4~s

T 61 AA BB MMMMM

Transfer the A digits (AA) of the word in storage location M to the
corresponding digit positions of, fast register A. All other digits in fast
register A remain unchanged. The contents of storage location M are not
changed.

The contents of storage location M and fast register A may be any com­
bination of legitimate Larc characters.~

If the A address is 00 an error will occur. ~Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate M address.

EXTRACT B DIGITS EB 62 4~s

T 62 AA BB MMMMM

(MB) ---. AB '

Transfer the B digits (88) of the word in storage location M to the
corresponding digit positions of fast register A. All other digit posi­
tions in fast register A remain unchange~~ T~e contents 6f s~orage loca­
tion M are not changed.

The contents of storage location M and fa~t· reg~ster A may be any com­
bination of legitimate Larc characters.

3-32

If the A address is 00 an error will occur. Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate M address.

EXTRACT A AND B DIGITS EAB 63 4~s

T 63 AA BB MMMMM

(MAS) - AAB

Transfer the A digits (AA) and the B digits (BS) of the word in stor­
age location M to the corresponding digit positions of fast register A.
All other digit positions in fast register A remain unchanged. The con­
tents of storage location M are not changed.

The contents of storage location M and fast register A may be any com­
bination of legitimate Larc characters.

If the A address is 00 an error will occur. Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate M address.

EXTRACT M DIGITS EM 64 41-"-s

T 64 AA BB MMMMM

Transfer the M digits (MMMMM) of the word in storage location M to
the corresponding digit positions of fast register A. All other digit
positions in fast register A remain unchanged. The contents of storage
location M are not changed.

The contents of storage location M and fast register A may be any com­
bination of legitimate Larc characters.

If the A address is 00 an error will occur. Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate M address.

EXTRACT LOWER EL 65 8~s

T 65 AA SB MMMMM

(A-I) --. A
(M)

Transfer digits from fast register A-I to the corresponding digit
positions of fast register A. Transfer digits only from those positions
where there are decimal l's in the corresponding digit positions of the
word in storage location M. All other digits in fast register A remain
unchanged. The contents of storage location M and fast register A-I are
not changed.

The contents of storage location M and fast register A and A-I may
be any combination of legitimate Larc characters.

3-33

A (-) symbol in the sign position of the word in storage location M
will also cause extraction.

If the A address is 00 an error will occur. Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate, although
useless M address.

Example:

(15)i = 333333333333

(16)i = 777777777777

(04000)i = (- or 1) 36117431111

After the instruction • 65 16 00 04000 is executed the contents of
fast register 16 will be:

(16)f = 377337773333

EXTRACT UPPER EU 66 8fJ.s

T 66 AA BB MMMMM

(A + 1) - A
(M)

Transfer digits from fast register A + 1 to the corresponding digit
positions of fast register A. Transfer digits only from those positions
where there are decimal l's in the corresponding digit positions of the
word in storage location M. All other digits in fast register A remain un­
changed. The contents of storage location M and fast register A + 1 are
not changed.

The contents of storage location M and fast registers A and A + 1 may
be any combination of legitimate Larc characters.

A (-) symbol in the sign position of the word in storage location M
will also cause extraction.

If the A address is 00 an error will occur. Storing in fast register
00 is not a legitimate operation; however, 99900 is a legitimate, although
useless, M address. Unless Lim A is equal to 99, the use of Lim A as an
A address will cause errors. If Lim A is equal to 99, then Lim A + 1 is
equal to 00 and the operation is valid.

STORE LAST JUMP SLJ 93 4fJ.s

T 93 AA BB MMMMM

This instruction differs from other extract instructions in that it
manufactures a computer word, extracts a storage location address, trans­
fers the address to its M digits, and then stores the complete word.

3-34

If M is a storage location address:

9 90 00 00 (C2) ~ M

If M is a fast register address:

o 00 00 00 (C2) ---- M

If the M address of the instruction specifies a storage location.
store in the location: a 90 instruction with an M address equal to the con­
tents of control counter 2; a 9 as tracing digit; and zero A and B ad­
dresses.

If the M address of the instruction specifies a fast register, store
in the register a word with an M address equal to the contents of control
counter 2 (C2), and all other digits equal to zero.

The contents of C2 are not changed.

The two A digits of the SLJ instruction are not used and may be any
legitimate Larc characters.

It was explained in section 2 that when a transfer-of-control instruc­
tion is decoded, the M address of the instruction is stored initially in
C2. If the transfer of control is not effected, the M address remains in
C2; if the transfer is effected, the address in C2 is replaced by the ad­
dress of the instruction immediately following the transfer-of-control in­
struction. Thus, in general, C2 contains the address of the instruction to
which control was not transferred during the execution of the last transfer­
of-control instruction. There is an exception to this rule: after the ex- .
ecution of an 80 or 81 instruction which does not transfer control, the con­
tents of C2 will be M" + 1, not M.

The SLJ instruction is most useful when a program contains a sub­
routine which may be entered from various points in the main program. For
example:

A subroutine begins at address 01300 and its exit line is
in storage location 01370. A program is written which enters
the subroutine by transfer-of-control instructions in storage
locations 01500, 01600, and 01700. The instructions in these
locations might be various conditional-transfer-of-control in­
structions, which enter the subroutine when certain conditions
are satisfied. The instruction in location 01300 should be
• 93 00 00 01370. This instruction, an SLJ instruction, will
store a 90 instruction in 01370, the exit line of the subroutine.
The instructions stored in location 01370 will be as follows:

Entry point Instruction in 01370

01500 9 90 00 00 01501

01600 9 90 00 00 01601

01700 9 90 00 00 01701

3-35

Thus, each time the subroutine completes its operations, the computer
transfers control back to the main program at the instruction immediately
following the subroutine entry.

The initial instruction of the subroutine might also be • 93 00 00
99916, in which case the exit line would be • 90 00 16 00000. The effect
would be exactly the same as that preceding. In this case, however, fast
register 16 must not be altered by the subroutine.

An M address of 99900 will cause an error. Storing in fast register
00 is not a legitimate operation.

The programmer should use the SLJ instruction immediately after the
transfer of control has taken place, as intervention can occur at any time,
destroying the contents of C2. However, when a transfer-of-control in­
struction is executed and the transfer of control to the instruction in
storage location M takes place, intervention cannot occur until the in­
struction in location M has been executed. If this is an SLJ instruction
the computer is certain to store the required contents of C2.

3-11. SHIFT INSTRUCTIONS

Instructions in this class shift the contents of one or two fast reg­
isters either left or right. The number of places to be shifted is spec­
ified by the two least-significant M digits of the instruction. In a dec­
imal computer, shifting a number is equivalent to multiplying or dividing
the number by ten raised to a power equal to the number of shifts.

In all shift instructions there is no restriction on the characters
in the fast registers to be shifted, as long as they are legitimate Larc
characters.

Any attempt to shift the contents of fast register 00 will result in
errors.

Even though the M digits of a shift instruction do not specify an ad­
dress, modification of these instructions takes place in the normal way.

SHIFT RIGfIT PR 52 4~s

T 52 AA BB MMMMM

(A) x 10-M ---. A

Shift the contents of fast register A to the right by the number of
places specified by the two least-significant M digits of the instruction.
The sign digit of the word in fast register A is neither shifted nor
altered by this instruction. Digits shifted out of the register at the
least significant end are lost from the word and decimal zeros are inserted
at the most significant end to fill digit positions that are emptied by
the shift.

The three most-significant M digits of the instruction are not used
and may be any numeric characters.

3-36

A shift of 00 places leaves the contents of fast register A unchanged
and consequently has the effect ofa skip (refer to miscellaneous instruc­
tions, paragraph 3-17).

In shift instructions the overflow condition is caused by loss of
digits at the most significant end of the word. Because digits cannot be
lost at the most significant end of a word in a PH instruction, no overflow
condition can occur.

If the number of shifts is greater than, or equal to, 11 all nonsign
characters are shifted off and the contents of fast register A, after the
shift, will be the sign digit and 11 decimal zeros. No error or contin­
gency will occur.

SHIFT LEFT PL 53 4jJ-s

T 53 AA BB MMMMM

(A) ~ 10M ---. A

Shift the contents of fast register A to the left by the number of
places specified by the two least-significant M digits of the instruction.
The sign digit of the word in fast register A is neither shifted nor
altered by this instruction. Digits of the word shifted out of the reg­
ister at the most Significant end are lost and decimal zeros are inserted
at the least significant end to fill digit positions emptied as a result of
the shift.

The three most-significant M digits of the instruction are not used
and may be any numeric characters.

A shift of 00 places leaves the contents of fast register A unchanged
and therefore has the effect of a skip.

If significant (that is, non-zero) digits are lost at the most
significant end of the word, a fixed-point overflow contingency will occur.

If a shift of 11 occurs, the nonsign positions of the word will be
filled with decimal zeros and, if the word initially contained any nonzero
digits, a fixed-point overflow contingency also occurs.

If the number of shifts is greater than 11, the nonsign positions will
be filled with decimal zeros. If Significant digits are lost during a left
shift of more than 11 places, this mayor may not result in an overflow
contingency. In certain cases, depending on the number of shifts and the
contents of the fast registers, the computer may fail to detect overflow
in a shift of more than 11 places.

SHIFT RIGHT, DOUllLE ffiECISION PPR 57 8jJ.s

T 57 AA BB MMMMM

(A') x 10-M ---. A'

3-37

Shift the double-precision contents of fast registers A and A + 1 to
the right by the number of places specified by the two least-significant M
digits of the instruction. The sign digits of fast registers A and A + 1
are neither shifted noraltered. Digits shifted out of the least signifi­
cant end of A enter the most significant end of A + 1. Digits shifted out
of the least significant end of fast register A + 1 are lost and decimal
zeros are inserted at the most significant end of A to fill digit positions
emptied as a result of the shift.

The three most-significant M digits of the instruction are not used
and may be any numeric characters.

A shift of 00 places leaves the contents of fast registers A and A + 1
unchanged and has the effect of two skips.

No overflow contingency can occur with the PPR instruction.

If the number of shifts is 22, the nonsign positions of A and A + 1
will be filled with decimal zeros.

If the number of shifts is more than 22, certain anomalous results can
occur depending on the value of the least-significant M digit of the in­
struction. The effects are shown in the following table:

Least-Significant M Digit Effective Number of Shifts

0,2,3,4,5,7,8,9 22

1,6 21

Example:

3-38

If the contents of fast registers 13 and 14 are the following:

(13)i 93247032105

(14)i 73512005013

and the instruction. 57 13 00 00045 is executed, the final con­
tents of the registers will be as follows:

(13)f = - 00000000000

(14)f = - 00000000000

On the other hand, the instruction. 57 13 00 00056 will pro­
duce the following:

(13)f = - 00000000000

(14)f = - 00000000009

If the A address equals Lim A an error will occur since
in this case A + 1 = Lim A + 1, the address of a nonexistent
fast register.

SHIFT LEFT, DOUBLE PRECISION PPL 58 8~s

T 58 AA BB MMMMM

(At) x 10M ---. At

Shift the double-precision contents of fast registers A and A + 1 to
the left by the number of places specified by the two least-significant M
digits of the instruction. The sign digits of fast registers A and A + 1
are neither shifted nor altered. Digits shifted out of the most signifi­
cant end of A + 1 enter the least significant end of A. Digits shifted
out of the most significant end of A are lost and decimal zeros are in­
serted at the least significant end of A + I to fill digit positions emp­
tied by the shift.

The three most-significant M digits of the instruction are not used
and may be any numeric characters.

A shift of 00 places leaves the contents of fast registers A and A + 1
unchanged and has the effect of two skips.

If significant, that is, nonzero, digits are lost at the most signif­
icant end of the word, a fixed-point overflow contingency will occur.

If the number of shifts is 22, the nonsign positions of A and A + 1
will be filled with decimal zeros. If the word originally contained any
nonzero digits an overflow contingency occurs.

If the number of shifts is more than 22, certain anomalous results can
occur depending on the value of the least-significant M digit of the in­
struction. The effects are shown in the following table:

Least-Significant M Digit Effective Number of Shifts

0,2,3,4,5,7,8,9 22

1 t6 21

Example:

If the contents of fast registers 31 and 32 are the following:

(31)i = - 83765257319

(32)i = + 63277885827

and the instruction • 58 31 00 00025 is executed, the final con­
tents of the registers will be as follows:

(3l)f = - 00000000000

(32)f = + 00000000000

3-39

On the other hand, the instruction. 58 31 00'00031 will pro­
duce the following:

(31)f = - 70000000000

(32)f = + 00000000000

If significant digits are lost during a double-precision shift left of more
than 22 places, this mayor may not result in an overflow contingency. In
certain cases, depending on the number of shifts and the contents of the
fast registers, the computer may fail to detect overflow in a shift of more
than 22 places.

If the A address equals Lim A an error will occur since in this case
A + 1 = Lim A + 1, the address of a nonexistent fast register.

SHIFT CIRCULAH, DOUBLE PRECISION PPC 59 12~s

T 59 AA BB MMMMM

(A') x 10M ---. At (circular)

Shift the double-precision contents of fast registers A and A + 1 to
the left the number of places specified by the two least-significant M
digits of the instruction. All 24 digits are shifted. Digits shifted out
of the most significant end of A + 1 enter the least significant end of A
and digits shifted out of the most significant end of A enter the least
significant end of A + 1.

The three most-significant M digits of the instruction are not used
and may be any numeric characters.

A shift of 00 places leaves the contents of fast registers A and A + 1
unchanged and has the effect of three skips.

Overflow cannot occur in this instruction since no digits are lost
during the shift.

A shift of 24 places is equivalent to a shift of 00 places and leaves
the contents of the fast registers unchanged.

An attempt to shift more than 24 places results in errors; no shifting
occurs, and the contents of the fast registers are unchanged.

If the A address equals Lim A an error will occur, since in this case
A + 1 = Lim A + 1, the address of a nonexistent fast register.

3-12. INDEX-REGISTER-MODIFICATION INSTRUCTIONS

Instructions in this class enable the programmer to alter the modifier
(6) digits of an index register and also to reduce and test the counter (N)
digits. The instructions may themselves be modified in the usual way.

3-40

The specified index register should contain only numeric characters.
An attempt to alter non-numeric contents of an index register will result
in errors.

B-MODIFIER INCREMENT BI 85 4~s

T 85 AA BB MMMMM

Add the 0 digits of fast register A to the ~ digits of fast register
A. Only the five least-significant digits of the fast register are altered.
Any carry which extends beyond the ~ part of the fast register is ignored.

The M and the B digits of the instruction are not used. The M digits
may be any numeric characters and the B digits may specify any valid fast­
register address.

If the fast-register address specified by the A digits of the instruc­
tion is 00, an error will occur since the contents of fast register 00 can­
not be altered.

The resulting ~ digits in fast register A need not be a legitimate
storage address. Only when the fast register is used as a modifier is it
possible for an invalid address to cause an error.

B-MODIFIER DECREMENT BD 86 4~s

T 86 AA BB MMMMM

(A~) - (~) - A~

Subtract the 0 digits of fast register A from the ~ digits of fast
register A. Only the five least-significant digits of the fast register
are altered. Any carry which extends beyond the ~ part of the instruction
is ignored.

The M and the B digits of the instruction are not used. The M digits
may be any numeric characters and the B digits may specify any valid fast­
register address.

If the fast-register address specified by the A digits of the instruc­
tion is DO, an error will occur since the contents of fast register 00 can­
not be altered.

The resulting ~ digits in fast register A need not be a legitimate
storage address. Only when the fast register is used as a modifier is it
possible for an invalid address to cause an error.

B-MODIFIER INCREMENT AND TRANSFER BIT 80

T 80 AA BB MMMMM

(Ab,) + (~) ---. A~

(AN) - I ----. AN

3-41

Are (AN) = 0 ?

No: M ---. C 8~s

Yes: (C) + 1 ----+ C 12~s

Add the 0 digits of fast register A to the 6 digits of fast register
A. and subtract I from the N digits of fast register A. If the N part of
A is now not equal to zero. transfer control to the instruction in storage
location M; if the N part of A is equal to zero, continue with the next
instruction in sequence. The 0 digits of fast register A are not altered
by this instruction. Any carry which extends beyond the 6 or N parts of
the fast register is ignored.

If the fast-register address specified by the A digits of the instruc­
tion is 00, an error will occur when the computer attempts to subtract 1
from the non-numeric combination .00, the N digits of fast register 00.

If (AN) = 000 initially, they will equal 999 after the execution of
the BIT instruction. In this case control will be transferred to the in­
struction in storage location M.

The resulting 6 digits in fast register A need not be a legitimate
storage address. Only when the fast register is used as a modifier is it
possible for an invalid address to cause an error.

When the computer loop is broken by the counter (NNN) reaching zero.
the address stored in C2 will be M + 1. It is important to remember this
fact if a BIT instruction is followed by an SLJ instruction.

B-MODIFIER DECREMENT AND TRANSFER BOT 81

T 81 AA BB MMMMM

(A6) - (~) ----+ A6

(AN) - 1 ----+ AN

Are (AN) = 0 ?

No: M ---. C 8~s

Subtract the D digits of fast register A from the 6 digits of fast
register A and subtract 1 from the N digits of fast register A. If the N
part of A is now not equal to zero, transfer control to the instruction in
storage location M; if the N part of A is equal to zero, continue with the
next instruction in sequence. The 0 digits of fast register A are not al­
tered by this instruction. Any carry which extends beyond the 6 or N parts
of the fast register is ignored.

If the fast-register address specified by the A digits of the instruc­
tion is 00, an error will occur when the computer attempts to subtract 1
from the non-numeric combination .00, the N digits of fast register 00.

3-42

If (AN) = 000 initially. they will equal 999 after the execution of
the BOT instruction. In this case, control will be transferred to the in­
struction in storage location M.

The resulting ~ digits in fast register A need not be a legitimate
storage address. Only when the fast register is used as a modifier is it
possible for an invalid address to cause an error.

When the computer loop is broken by the counter (NNN) reaching zero,
the address stored in C2 will be M + 1. It is important to remember this
fact if a BOT instruction is followed by an SLJ instruction.

B-MODIFIER INCREMENT AND CONTINUE BIC 82

T 82 AA BB MMMMM

(A6) + (An) ---. A6

(AN) - 1 ~ AN

Are (AN) = 0 ?

Yes: M ~ C 12~s

No: (C) + 1 ~ C 4~s

Add the D digits of fast register A to the 6 digits of fast register
A and subtract 1 from the N digits of fast register A. If the N part of A
is now equal to zero, transfer control to the instruction in storage loca­
tion M; if the N part of A is not equal to zero, continqe with the next in­
struction in sequence. The D digits of fast register A are not altered by
this instruction. Any carry which extends beyond the 6 or N parts of the
fast register is ignor~d.

If the fast-register address specified by the A ~igits of the instruc­
tion is 00, an error will occur when the computer attempts to subtract 1
from the non-numeric combination .00, the N digits of fast register 00.

If (AN) = 000 initially. they will equal 999 after execution of the
BIC instruction. In this case, the computer will continue with the next
instruction in sequence.

The resulting 6 digits in fast register A need not be a legitimate
storage address. Only when the fast register is used as a modifier is it
possible for an invalid address to cause an error.

rule.
The addresses stored in C2 by the BIC instruction follow the normal

B-MODIFIER DECREMENT AND CONTINUE BOC 83

T 83 AA BB MMMMM

(A6) - (An) ---. A6

(AN) - I ---. AN

3-43

Are (AN) :: 0 ?

Yes: M ---. C l2~s

Subtract the D digits of fast register A from the ~ digits of fast
register A and subtract 1 from the N digits of fast register A. If the N
part of A is now equal to zero, transfer control to the instruction in
storage location M; if the N part of A is not equal to zero, continue with
the next instruction in sequence. The D digits of fast register A are not
altered by this instruction. Any carry which extends beyond the ~ or N
parts of the fast register is ignored.

If the fast-register address specified by the A digits of the instruc­
tion is DO, an error will occur when the computer attempts to subtract 1
from the non-numeric combination .00, the N digits of fast register 00.

If (AN) = 000 initially, they will equal 999 after execution of the
BDC instruction. In this case the computer will continue with the next in­
struction in sequence.

The resulting ~ digits in fast register A need not be a legitimate
storage address. Only when the fast register is used as a modifier is it
possible for an invalid address to cause an error.

The addresses stored in C2 by the BOC instruction follow the normal
rule.

3-13. FLOATING-POINT ARITHMETIC INSTRUCTIONS

Instructions in this class perform basic arithmetic operations on
words representing floating-point numbers. Single-precision instructions
are presented first, followed by double-precision instructions.

Characters in the nonsign positions of operands should be numeric only.
If one or more of the nonsign positions of an operand contain a non-numeric
character, an error will occur and no result will be stored.

If the operands in a floating-point operation are normalized and the
result is not zero, the result will be a normalized floating-point number.
When non-normalized operands are used a normalized or a non-normalized
result may be produced depending on the values of the operands and the
type of operation.

The M operand in any instruction of the class may be the contents of
a fast register.

In single-precision, floating-point addition or subtraction operations
in which the signs of the operands are either (0) or (-), a zero result
will take the inverse sign of the A operand (0 if the sign of A is -, - if
the sign of A is 0).

3-44

In double-precision. floating-point addition or subtraction operations
in which the signs of the operands are either (0) or (-). a zero result
will take the sign of the A operand.

If either operand in a floating-point addition or subtraction contains
a period in the sign-digit position. the absolute value of the result will
be the sum of the absolute values of the operands. and the sign of the re­
sult will be given by the appropriate sign table.

If a sign-anomaly contingency occurs in any floating-point arithmetic
instruction. the sign of the result will be a zero. In a floating-point
addition or subtraction in which a sign-anomaly contingency occurs. the
absolute value of the result will be the sum of the absolute values of the
operands. In this case. therefore. the following contingencies cannot
occur: improper operand in arithmetic subtraction. zero floating-point
adder result. and exponent underflow. These contingencies also cannot oc­
cur if either operand in an addition or subtraction contains a period.

ADD. FLOATING POINt' A 02 4p.s

T 02 AA BB MMMMM

(M) @ (A) ----. A

~dd the floating-point number in storage location M to the floating­
point number in fast register A; store the normalized sum. with correct
sign. in last register A. The contents of storage location M are not
changed.

The sign position in either word may contain any of the characters
(0). (-). or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • I thru 9 i. 8., +

0 0 0/- 0 C C

- 0/- - - C C

• 0 - • C C

I thru 9 C C C C C

i, 8.. + C C C C C

NOl'E

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

3-45

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

If the exponent oj the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occuri how­
ever, if the sign of either operand is a (.), the overflow contingency
flip-flop will be inhibited. In the event of an exponent overflow, no con­
tingency will occur and the result will be stored with a 00 exponent.

ADD MAGNITUDE, FLOATING POINI' AM 03 4~s

T 03 AA SS MMMMM

I (M)\ ® (A) ---.A

Add the absolute value or magnitude of the floating-point number in
storage location M to the floating-point number in fast register A; store
the normalized sum, with correct sign, in fast register A. The contents of
storage location M are not changed.

The sign of the word in storage location M may be any legitimate char­
acter. It is automatically converted to zero before the addition takes
place. The sign of the word in fast register A may be any of the charac­
ters (0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 6, +

0 0 0 0 0 0

- 0/- 0/- 0/- 0/- 0/-

• 0 0 0 0 0

1 thru 9 C C C C C

i, 6, + C C C C C

NOfE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation it is shown as 0/-.

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

3-46

If the exponent of the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occur; however,
if the sign of the A operand is a (.), the overflow-contingency flip-flop
will be inhibited. In the event of an exponent overflow, no contingency
will occur and the result will be stored with a 00 exponent.

ADD UPPER, FLOATING POINI' . AU 04 4~s

T 04 AA BB MMMMM

(M) (±) (A) ----. A + 1

Add the floating-point number in storage location M to the floating­
point number in fast register A; store the normalized sum, with correct
sign, in fast register A + 1. The contents of storage location M and fast
register A are not changed.

The sign position in either word may contain any of the characters (0),
(-), or (.). The sign of the result is governed by the rules expressed in
the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 1::::., +

0 0 0/- 0 C C

- 0/- - - C C

• 0 - • C C

1 thru 9 C C C C C

i, 6, + C C C C C

NUfE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

If the exponent of the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the overflow contingency
flip-flop will be inhibited. In the event of an exponent overflow, no con­
tingency will occur and the result will be stored with a 00 exponent.

If the A address of the instruction is equal to Lim A, the result reg­
ister will be the nonexistent fast register Lim A + 1, and an error will
occur.

3-47

NEGATIVE ADD, FLOATING POINT N 12 4~s

T 12 AA BB MMMMM

-(M) <±) (A) ---. A

Add the negative value of the floating-point number in storage loca­
tion M to the floating-point number in fast register A; store the normal­
ized sum, with correct sign, in fast register A. The contents of storage
location M are not changed.

The sign position in either word may contain any of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, b., +

0 0/- 0 0 C C

- - 0/- - C C

• - 0 • C C

1 thru 9 C C C C C

i, b., + C C C C C

NOTE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation it is shown as 0/-.

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

If the exponent of the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the overflow contingency
flip-flop will be inhibited. In the event of an exponent overflow, no con­
tingency will occur and the result will be stored with a 00 exponent.

NEGATIVE ADD UPPER, FLOATING POINT NU 14 4~s

T 14 AA BB MMMMM

-(M) <±) (A) - A + 1

Add the negative value of the floating-point number in storage loca­
tion M to the floating-point number in fast register A; store the

3-48

normalized sum, with correct sign, in fast register A + 1. The contents
of storage location M and fast register A are not changed. The sign posi­
tion in either word may contain any of the characters (0), (-), or (.).
The sign of the result is governed by the rules expressed in the following
table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 1::., +

0 0/- 0 0 C C

- - 0/- - C C

• - 0 • C C

1 thru 9 C C C C C

i, 1::., + C C C C C

NOfE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

If the exponent of the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occur; how­
ever if the sign of either operand is a (.), the overflow contingency
flip-flop will be inhibited. In the event of an exponent overflow, no
contingency will occur and the result will be stored with a 00 exponent.

If the A address of the instruction is equal to Lim A, the result
register will be the nonexistent fast register Lim A + I, and an error will
occur.

MULTIPLY ROUNDED, FLOATING POINT MR 22 l2~s

T 22 AA BB MMMMM

[(M) ® (A)] Rdd ---. A

Multiply the floating-point number in fast register A by the floating­
point number in storage location M; store the rounded normalized product,
with correct sign, in fast register A. The mantissa is rounded in the
usual way. The most significant digit of the least significant half of
the double-length product (after normalizing) is examined. If it is great­
er than, or equal to, five, 1 is added to the least significant digit of

3-49

the most significant half of the product. If it is less than five, the
most significant half is not altered. In either case, the most significant
half of the product is stored as the mantissa of the final result. The
contents of storage locatjon M are not changed.

The sign position in either word may contain any of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • I thru 9 i, fl,

0 0 - · C C

- - 0 • C C

• • • • C C

I thru 9 C C C C C

i, fl, + C C C C C

NOfE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
notlbe detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur. How­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

MULTI PLY, FLOATING POINr M 23 8tLs

T 23 AA BB MMMMM

(M) ® (A) ~ A

Multiply the floating-point number in fast register A by the floating­
point number in storage location M; store the truncated normalized product,
with correct sign, in fast register A. The contents of storage location M
are not changed.

3-50

The sign position in either word may contain any of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign
Word

A

0

-

•

i, 6,

of Sign of Word in M
in

0 - · 1 thru 9 i , 6,

0 - · C C

- 0 • C C

• • • C C

+ C C C C C

N(JfE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

MULTIPLY UPPER, FLOATING POINr MU 24 8tLs

T 24 AA BB MMMMM

(M) ® (A) - A + 1

Multiply the floating-point number in fast register A by the floating­
point number in storage location M; store the truncated normalized product,
with correct sign, in fast register A + 1. The contents of storage loca­
tion M and fast register A are not changed.

3-51

The sign position in either word may contain any of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • I thru 9 i , 6,

0 0 - · C C

- - 0 • C C

• • • • C C

1 thru 9 C C C C C

i, b., + C C C C C

NUfE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If the A address of the instruction is equal to Lim A, the result reg­
ister will be the nonexistent fast register Lim A + 1, and an error will
occur.

MULTIPLY EXTENDED, FLOATING POINT ME 25 12tLs

T 25 AA BB MMMMM

(M) ® (A) --... At

Multiply the floating-point number in fast register A by the floating­
point number in storage location M; store the result as a normalized,
double-precision, floating-point number in fast registers A and A + 1. The
signs of (A) and (A + 1) in the result are equal. As the product of the
two nine-digit mantissas is an 18-digit mantissa (before normalizing), the
computer will fill the two least-significant-digit positions of A + 1 with
decimal zeros. The contents of storage location M are not changed.

3-52

The sign position in either operand may contain any of the characters
(0), (-), or (.). The sign of the result is governed by the rules ex­
pressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 6,

0 0 - · C C

- - 0 • C C

• • • • C C

1 thru 9 C C C C C

i, fj" + C C C C C

NarE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If the A address of the instruction is equal to Lim A, one result reg­
ister will be the nonexistent fast register Lim A + I, and an error will
occur.

DIVIDE ROUNDED, FLOATING POINI' DR 32 28l-Ls

T 32 AA BB MMMMM

[(A) (±) (M)] Rdd ---.. A

Divide the floating-poi9t number in fast register A by the floating­
point number in storage location M; store the rounded normalized quotient,
with correct sign, in fast register A. The mantissa of the quotient is
rounded in the usual way. The tenth significant digit of the normalized
mantissa of the result is examined; if it is greater than or equal to five.
1 is added to the ~inth significant digit. If it is less than five, the
ninth significant digit is not altered. In either case, the mantissa is
truncated to nine digits and stored as the mantissa of the final result.
The contents of storage location M are not altered. No remainder is re­
tained.

3-53

The sign of each operand may be any of the characters (0), (-), or
(.). The sign of the result is governed by the rules expressed in the fol­
lowing table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, fl,

0 0 - • C C

- - 0 • C C

• • • • C C

I thru 9 C C C C C

i, 1::., + C C C C C

NarE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If an attempt is made to divide the dividend by zero or any non­
normalized divisor, a non-normalized, floating-point divisor contingency
will occur.

DIVIDE UPPER ROUNDED, FLOATING POINT DUR 34 28~s

T 34 AA BB MMMMM

[(A) (±) (M)] Rdd --.-. A + 1

Divide the floating-point number in fast register A by the floating­
point number in storage location M; store the rounded normalized quotient,
with correct sign, in fast register A + 1. The mantissa of the quotient is
rounded in the usual way. The tenth significant digit of the normalized
mantissa of the result is examinedi if it is greater than or equal to five,
1 is added to the ninth significant digit. If it is less than five, the
ninth Significant digit is not altered. In either case, the mantissa is
truncated to nine digits and stored as the mantissa of the final result.

3-54

The contents of storage location M and fast register A are not altered. No
remainder is retained.

The sign of each operand may be any of the characters (0), (-), or
(.). The sign of the result is' governed by the rules expressed in the fol­
lowing table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, D.,

0 0 - • C C

- - 0 • C C

• • • • C C

1 thru 9 C C C C C

i, t::., + C C C C C

NaIE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If an attempt is made to divide the dividend by zero or any non­
normalized divisor, a non-normalized, floating-point divisor contingency
will occur.

If the A address of the instruction is equal to Lim A, the result reg­
ister will be the nonexistent fast register Lim A + I, and an error will
occur.

ADD, FLOATING-POINT, DOUBLE PRECISION AA 06 l6~s

T 06 AA BB MMMMM

(M') (±) (A') - A'

Add the double-precision, floating-point number in storage locations
M and M + I to the double-precision, floating-point number in fast

3-55

registers A and A + 1; store the normalized sum, with correct sign in both
words, in fast registers A and A + 1. The contents of storage locations M
and M + 1 are not changed.

Only the signs in the most significant halves of the M and A operands
are used in the computation. These signs may be any of the characters (0),
(-), or (.). The signs in the least significant halves are ignored and may
be any legitimate Larc characters. The sign of the result is governed by
the rules expressed in the following table:

Sign of Sign of Word in M
Word in

A a - • 1 thru 9 i, 1:1, +

0 a 0/- a c c

- 0/- - - C C

• a - • C C

1 thru 9 C C C C C

i, 1:1, + C C C C C

NaTE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

If the exponent of the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the overflow contingency
flip-flop will be inhibited. In the event of an exponent overflow, no con­
tingency will occur and the result will be stored with a 00 exponent.

If the A address is equal to Lim A or the M address is equal to Lim M
or Lim A, an error will occur.

NEGATIVE ADD, FLOATING-POINT, DOUBLE PRECISION NN 16 16~s

T 16 AA BB MMMMM

_ (M ') (±) (A') - A '

Add the negative value of the double-precision, floating-point number
in storage locations M and M + 1 to the double-precision floating-point
number in fast registers A and A + 1; store the normalized sum, with cor­
rect sign in both words, in fast registers A and A + 1. The contents of
storage locations M and M + 1 are not changed.

3-56

Only the signs in the most significant halves of the M and A operands
are used in the computation. These signs may be any of the characters (0),
(-), or (.). The signs in the least significant halves are ignored and may
be any legitimate Larc characters. The sign of the result is governed by
the rules expressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, ~, +

a 0/- 0 0 C C

- - 0/- - C C

• - 0 • C C

1 thru 9 C C C C C

i, ~, + C C C C C

NOTE

The letter C shows that a sign-anomaly contingency
will occur. When the sign of the result can only be
determined by the calculation, it is shown as 0/-.

If the result has a zero mantissa, a zero floating-point adder result
contingency will occur.

If the exponent of the sum is greater than 99 or less than 00, an ex­
ponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the overflow contingency
flip-flop will be inhibited. In the event of an exponent overflow, no con­
tingency will occur and the result will be stored with a 00 exponent.

If the A address is equal to Lim A or the M address is equal to Lim M
or Lim A, an error will occur.

MULTIPLY, FLOATING-POINT, DOUBLE PRECISION MM 21 36~s

T 21 AA BB MMMMM

(M') ® (A .) ----+ A'

Multiply the double-precision, floating-point number in fast registers
A and A + 1 by the double-precision, floating-point number in storage loca­
tions M and M + 1; store the normalized truncated double-precision product,
with correct s~gn in both words, in fast registers A and A + 1. The con­
tents of storage locations M and M + 1 are not changed.

Only the sign in the least significant half of each operand (M + 1,
and A + 1) is used in the computation. The signs may be any of the

3-51

characters (0), (-), or (.). The signs in the most significant halves are
ignored and may be any legitimate Larc characters. The sign of the result
is governed by the ruleS expressed in the following table:

Sign of Sign of Word in M + 1
Word in
A + 1 0 - · 1 thru 9 i, fl,

0 0 - • C C

- - 0 • C C

• • • · C C

1 thru 9 C C C C C

i, fl, + C C C C C

NarE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If the A address is equal to Lim A or the M address is equal to Lim M
or Lim A, an error will occur.

DIVIDE, FLOATING-POINT, DOUBLE PRECISION DD 36 168~s

T 36 AA BB MMMMM

(A ') @ (M') - A'

Divide the double-precision. floating-point number in fast registers
A and A + 1 by the double-precision. floating-point number in storage loca­
tions M and M + 1; store the normalized truncated double-precision quo­
tient, with correct sign in both words. in fast registers A and A + 1. The
contents of storage locations M and M + 1 are not changed. No remainder is
retained.

Only the signs in the most significant halves (M and A) of the oper­
ands are used in the computation. The signs in the least significant

3-58

halves are ignored and may be any legitimate Larc characters. The sign of
the result is governed by the rules expressed in the following table:

Sign of Sign of Word in M
Word in

A 0 - • 1 thru 9 i, 6.,

0 0 - • C C

- - 0 • C C

• • • • C C

1 thru 9 C C C C C

i, 6., + C C C C C

NOfE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder contingency cannot occur in this instruc­
tion. An incorrect zero result, produced by invalid operands, will not be
detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of e,ither operand is a (.). the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If an attempt is made to divide the dividend by zero or any non­
normalized divisor, a non-normalized, floating-point divisor contingency
will occur.

If the A address is equal to Lim A or the M address is equal to Lim
M or Lim A, an error will occur.

DIVIDE BY SINGLE-PRECISION DIVISOR EXTENDED, FLOATING POINT DSE 37 56~s

T 37 AA BB MMMMM

(A ') <±> (M) ---.. A'

Divide the double-precision, floating-point number in fast registers
A and A + I by the single-precision, floating-point number in storage loca­
tion M; store the normalized, truncated double-precision quotient, with
correct sign in both words, in fast registers A and A + 1. The contents of
storage location M are not changed. No remainder is retained.

3-59

The sign of (M) and the sign of (A) are used in the computation. The
sign in (A + 1) is ignored and may be any legitimate Larc character. The
sign of the result is governed by the rules expressed in the following
table:

Sign of Sign of Word in M
Word in

A 0 - • I thru 9 i, ~,

0 0 - • C C

- - 0 • C C

• • • • C C

I thru 9 C C C C C

i. ~, + C C C C C

NOTE

The letter C shows that a sign-anomaly contingency
will occur.

+

A zero floating-point adder result contingency cannot occur in this
instruction. An incorrect zero result, produced by invalid operands, will
not be detected.

If the exponent of the result is greater than 99 or less than 00, an
exponent overflow or underflow contingency, respectively, will occur; how­
ever, if the sign of either operand is a (.), the result will be stored
with a 00 exponent and the overflow and underflow contingency flip-flops
will be inhibited. In the event of an exponent overflow or underflow, no
contingency will occur.

If an attempt is made to divide the dividend by zero or any non­
normalized divisor, a non-normalized floating~point divisor contingency
will occur.

If the A address is equal to Lim A an error will occur.

3-14. CONVERSION INSTRUCTIONS

Instructions in this class convert scaled fixed-point numbers to
normalized floating-point numbers and the reverse. Usually, these instruc­
tions will only be used at the beginning of a program to convert fixed­
point input data to floating-point form, or at the end of a program to
convert floating-point results to the fixed-point format ready for output.

3-60

CONVERT TO FIXED POINT CX 50 4~s

T 50 AA BB MMMMM

(A) - FL ---. A - FX

Convert the single-precision, floating-point number in fast register
A to a single-precision, fixed-point number; store the converted number
in fast register A.

The two least-significant M digits of the instruction specify the
excess-50 scale factor to be associated with the fixed-point numbers. The
computer subtracts the floating-point exponent from the given scale factor,
then shifts the floating-point word two places to the left to shift off the
exponent. Decimal zeros are inserted at the least significant end of the
word. The fixed-point fraction is then shifted to the right the number of
places resulting from the difference between scale factor and exponent.
During the shift, decimal zeros are inserted at the most Significant end
of the word to fill digit positions emptied by the shift. The sign digit
does not take part in the shift and is not altered by the conversion.

As an example of conversion to fixed point, consider the instruction
• 50 13 00 00056 when the contents of fast register 13 are - 51 682314831.
The floating-point number stored in fast register 13 will be - 00000682314.

The three most-Significant M digits of the instruction are not used
and may be any Larc numeric characters.

There is no restriction on the sign digit of the word to be converted.
The sign digit is not changed by the conversion.

A floating-point zero will be converted to a fixed-point zero. In par­
ticular, absolute zero will be unchanged by the conversion and behaves as
a normal zero in fixed-point arithmetic.

If the floating-point exponent is greater than the fixed-point scale
factor, an exponent underflow contingency will occur.

CONVERT TO FLOATING POINT C 51 4~s

T 51 AA BB MMMMM

Convert the single-precision,fixed-point number in fast register A
to a normalized Single-precision, floating-point number; store the con­
verted number in fast register A.

The two least-significant M digits of the instruction specify the
excess-50 scale factor associated with the fixed-point number. The com­
puter first normalizes the fixed-point fraction by shifting it to the left
until all leading zeros have been removed. Decimal zeros are inserted at
the least significant end of the word to fill digit positions emptied by
the shift. The number of shifts is then subtracted from the scale factor
to give the exponent of the floating-point number. The fixed-point

3-61

fraction is then shifted two places to the right and the exponent is in­
serted to give the normalized floating-point number. The sign digit does
not take part in the shift and is not altered by the conversion.

As an example of conversion to floating point, consider the instruc­
tion • 51 03 00 00047 when the contents of fast register 03 are
o 03765437994.

The contents of fast register 03, together with the scale factor, rep­
resent the number + .03765437994 x 10-3• Normalizing this number we get
+ .37654379940 x 10-4 ; that is, a shift of one place is required to normal­
ize. Subtracting 1 from the scale factor (47) results in an exponent of
46, which is -4 in excess-50 representation.

The final result, then, is 0 46376543799.

The three most-significant M digits of the instruction are not used
and may be any Larc numeric characters.

There is no restriction on the sign digit of the word to be converted.
The sign digit is not changed by the conversion.

There is no special provision for the conversion of zero to floating­
point format. During conversion, the computer examines only the 11 nonsign
positions of the number to be converted, and hence will not distinguish
absolute zero from positive or negative zero. The attempted conversion of
any fixed-point zero will result in a zero floating-point adder result con­
tingency. Before control is transferred to the contingency routine, a zero
floating-point number will be stored in fast register A. The result ex­
ponent will be the fixed-point scale factor less 11; the computer will
~hift the zero 11 places to the left in attempting to normalize.

The program may either test for zero before converting or determine
the result required by means of instructions in the contingency routine.
Although both these methods require additional instructions, the extra time
required is negligible.

If the scale factor of the fixed-point number is less than the number
or leading zeros in the number, an exponent underflow contingency will oc­
cur. Note that this contingency occurs during the attempted conversion of
zero to floating-point format if the scale factor is less than 11.

CONVERT TO FIXED POINT, DOUBLE PRECISION CCX 55 12~s

T 55 AA BB MMMMM

(At) - FL ---. At - FX

Convert the double-precision, floating-point number in fast registers
A and A + 1 to a double-precision, fixed-point number; store the converted
number in fast registers A and A + 1.

The two least-significant M digits of the instruction specify the
excess-50 scale factor to be associated with the fixed-point number. The
mode of operation of this instruction is exactly the same as that of the

3-62

convert-to-fixed-point instruction. The sign digits of the floating-point
number do not take part in the shift and are not altered by the conversion.

The three most-significant M digits of the instruction are not used
and may be any Larc numeric characters.

There is no restriction on the sign digits of the word to be con­
verted. These digits are not changed by the conversion.

A double-precision. floating-point zero will be converted to a double­
precision, fixed-point zero.

If the floating-point exponent is greater than the fixed-point scale
factor, an exponent underflow contingency will occur.

If the A address of the instruction is equal to Lim A, an error will
occur.

CONVERT TO FLOATING POINl', DOUBLE ffiECISION CC 56 12tLs

T 56 AA BB MMMMM

(A') - FX ---. A' - FL

Convert the double-precision, fixed-point number in fast registers A
and A + 1 to a normalized double-precision, floating-point number; store
the converted number in fast registers A and A + 1.

The two least-significant M digits of the instruction specify the
excess-50 scale factor associated with the fixed-point number. The mode
of operation of this instruction is exactly the same as that of the
convert-to-floating-point instruction. The sign digits of the fixed-point
number do not take part in the shift and are not altered by the conversion.

There is no special provision for the conversion of zero to floating­
point format. During the conversion, the computer examines only the 22
nonsign positions of the number to be converted, and hence will not dis­
tinguish absolute zero from positive or negative zero. The attempted con­
version of any fixed-point zero results in a zero floating-point adder
result contingency. Before control is transferred to the contingency rou­
tine, a zero floating-point number will be stored in fast registers A and
A + 1. The result exponent will be the fixed-point scale factor less 22;
the computer will shift the zero 22 places to the left in attempting to
normalize.

The program may either test for zero before converting or determine
the result required by means of instructions in the contingency routine.
Although both these methods require additional instructions, the extra
time required is negligible.

If the scale factor of the fixed-point number is less than the number
of leading zeros in the number, an exponent underflow contingency will oc­
cur. Note that this contingency occurs during the attempted conversion of
zero to floating-point format if the scale factor is less than 22.

3-63

If the A address of the instruction is equal to Lim A, an error will
occur.

3-15. VISUAL-DISPLAY INSTRUCTIONS

There are two visual-display registers on the Larc Computing Unit
operator's console. One is a five-digit display (SOD); the other is a 12-
digit display (1200). The l2-digitdisplay is denoted by a K in the mne­
monic of an instruction.

Information may be sent to the displays from a fast register or may
be stored in a fast register from the displays by means of Computing Unit
instructions.

The logic and uses of the visual-display registers, together with the
associated flip-flops (connect and interlock), are explained in section 5
of the manual. In this paragraph, the instructions are given for complete­
ness. The programmer should read the relevant part of section 5 before
using any visual-display instruction.

The interlock flip-flop for a visual-display register must be set if
the computer is reading from the display and must be reset if it is sending
information to the display.

FETCH FROM VISUAL-DISPLAY REGISTER (500) FV 09

T 09 AA BB MMMMM

Is the SOD interlock flip-flop set?

Yes: 0 0 (SOD) - 02650

(02650) - A

Reset 500 interlock and connect flip-flops 4~s

Test the interlock flip-flop for the five-digit display register. If
the flip-flop is set, transfer the contents of the display to the M-digit
positions of storage location 02650, and fill the other digit positions in
location 02650 with decimal zeros. Then, transfer the contents of storage
location 02650 to fast register A. Also, reset the interlock and connect
flip-flops for the five-digit display register. If the interlock flip­
flop is initially reset, transfer control to the instruction in storage
location M.

Storage location 02650 is used as temporary storage for the display
digits before they are transferred to fast register A. When using the
visual-display instructions, the programmer must remember that any informa­
tion he has stored in location 02650 will be changed.

Only the contents of fast register A and storage location 02650 are
altered by the FV instruction.

3-64

If the modified M address is greater than Lim M. an error will occur
only if the interlock flip-flop is reset.

If the A address is greater than Lim A, an error will occur only if
the interlock flip-flop is set.

FETCH FROM VISUAL-DISPLAY REGISTER K (12DD) FVK 19

T 19 AA BB MMMMM

Is the 12DD interlock flip-flop set?

Yes: (12DD) ---. 02650

(02650) - A
Reset 12DD interlock and connect flip-flops 4J..1.s

No: M ----. C 12J..1.s

Test the interlock flip-flop for the l2-digit display register. If
the flip-flop is set, transfer the contents of the display to storage loca­
tion 02650. Then, transfer the contents of storage location 02650 to fast
register A. Also reset the interlock and connect flip-flops for the 12-
digit display register. If the interlock flip-flop is initially reset.
transfer control to the instruction in storage location M.

Storage location 02650 is used as temporary storage for the display
digits before they are transferred to fast register A. When using the
visual-display instructions, the programmer must remember that any infor­
mation he has stored in location 02650 will be changed.

Only the contents of fast register A and storage location 02650 are
altered by the FVK instruction.

If the modified M address is greater than Lim M, an error will only
occur if the interlock flip-flop is reset.

If the A address is greater than Lim A, an error will occur only if
the interlock flip-flop is set.

STORE IN VISUAL-DISPLAY REGISTER (SOD) SV 29

T 29 AA BB MMMMM

Is the 5DD interlock flip-flop reset?

Yes: (A) ---. 02650 4J..1.s

(02650
M

) ---. 5DD 12J..1.s

Test the interlock flip-flop for the five-digit display register. If
it is reset, transfer the contents of fast register A to storage location
02650. Then, transfer the M digits of storage location 02650 to the

3-65

five-digit display register. If the flip-flop is initially set, transfer
control to the instruction in storage location M. The contents of fast reg­
ister A are not changed.

Storage location 02650 is used as temporary storage for the display
digits before they are transferred to the display register. When using
the visual-display instructions, the programmer must remember that any in­
formation he has stored in location 02650 will be changed.

Only the contents of storage location 02650 are altered by the SV in­
struction.

If the modified M address is greater than Lim M, an error will only
occur if the interlock flip-flop is set.

If the A address is greater than Lim A, an error will only occur if
the interlock flip-flop is reset.

STORE IN VISUAL-DISPLAY REGISTER K (1200) SVK 39

T 39 AA BB MMMMM

Is the 1200 interlock flip-flop reset?

Yes: (A) ---- 02650

(02650) ---. 1200 4~s

No: M - C 12~s

Test the interlock flip-flop for the 12-digit display register. If
it is reset, transfer the contents of fast register A to storage location
02650. Then, transfer the contents of storage location 02650 to the 12-
digit display register. If the flip-flop is initially set, transfer con­
trol to the instruction in storage location M. The contents of fast
register A are not changed.

Storage location 02650 is used as temporary storage for the display
digits before they are transferred to the display register. When using
the visual-display instructions, the programmer must remember that any in­
formation he has stored in location 02650 will be changed.

Only the contents of storage location 02650 are altered by the SVK
instruction.

If the modified M address is greater than Lim M, an error will only
occur if the interlock flip-flop is set.

If the A address is greater than Lim A, an error will occur only if
the interlock flip-flop is reset.

3-16. FLIP-FLOP INSTRUCTIONS

Flip-flops were introduced in section 2. It was there explained that
some are under the complete control of the programmer, some are partially

3-66

under his control, and some are outside his control altogether. The last
group does not concern the programmer. The flip-flops in the first two
groups, known as addressable flip-flops, are listed in appendix B of this
manual. The address of a flip-flop comprises two decimal digits; in a
flip-flop instruction the A-digit positions are used to hold the flip-flop
address.

Twenty-two of the addressable flip-flops are completely under the con­
trol of the programmer, that is, they may be tested, reset, and set by the
Computing Unit (instructions 95, 96, 97, respectively). Of these, flip­
flops 00 through 09 are known as sense flip-flops; they are solely for the
programmer's use and have no effect on the computer other than through
Computing Unit flip-flop instructions (all other addressable flip-flops may
affect the control unit during the execution of other instructions). The
programmer is not restricted in his use of the sense flip-flops; there
should be no occasion, however, for the programmer to ever set FF84, the
cycling-unit error flip-flop. Flip-flop 15 is the manual- and IOP­
intervention inhibit flip-floPi its function is described in sections 4
and 5. Flip-flops 21 through 29 are the selected tracing-mode flip-flops
and are described in section 7. Finally, flip-flop 90 is the start-tape
flip-flop and is described in section 5.

The remaining addressable flip-flops are only partially controlled by
the programmer and are grouped as follows:

(1) Input-output flip-flops. (Refer to section 4.)

(2) Enter-tracing-mode flip-flop. (Refer to section 7.)

(3) Error flip-flops. (Refer to section 7.)

(4) Contingency flip-flops. (Refer to section 7.)

A detailed description of the three flip-flop instructions follows.

TEST FLI P-FLOP TF 95

T 95 AA BB MMMMM

Is FF A set?

Yes: M ---. C 12~s

No: (C) + 1 - C 4~s

Test the flip-flop at the address given by the A digits of the in­
struction. If the flip-flop is set, transfer control to the instruction
in storage location M; if the flip-flop is reset, continue with the next
instruction in sequence.

An error will occur if the A address specifies a nonexistent flip­
flop.

3-67

RESET FLIP-FLOP RF 96 4~s

T 96 AA BB MMMMM

Reset FF A

Reset the flip-flop at the address given by the A address of the in­
struction.

If the addressed flip-flop is initially reset, the instruction will
have the net effect of a skip. (Refer to paragraph 3-17 for the effect of
a skip.)

The M and B digits of the instruction are not used, but are subject
to the general restrictions enumerated in paragraph 3-1.

If an attempt is made to reset a flip-flop not resettable by the pro­
grammer (see appendix B) FFIO, for example, an error will occur. An error
will also occur if the A address specifies a nonexistent flip-flop.

SET FLIP-FLOP SF 97 4~s

T 97 AA BB MMMMM

Set FF A

Set the flip-flop at the address given by the A address of the in­
struction.

If the addressed flip-flop is initially set, the instruction will have
the net effect of a skip.

The M and the B digits of the instruction are not used, but are sub­
ject to the general restrictions enumerated in paragraph 3-1.

If an attempt is made to set a flip-flop not settable by the program­
mer (see appendix B) FF20, for example, an error will occur. An error
will also occur if the A address specifies a nonexistent flip-flop.

3-17. MISCELLANEOUS INSTRUCTIONS

SKIP SK 00 4~s

T 00 AA BB MMMMM

(CI) + 1 ---+ Cl

Continue with the next instruction in sequence.

The skip instruction produces no result and does not change the con­
tents of any fast register or storage location. It provides a means of
reserving storage locations within a program to allow for expansion during
debugging or to allow the program to modify itself by inserting instruc­
tions.

3-68

The A digits of the instruction are not used and may be any legitimate
Larc characters. The M and the B digits also are not used but are subject
to the general restrictions enumerated in paragraph 3-1.

HALT H 99

T 99 AA BB MMMMM

Stop

When the computer has stopped due to a halt instruction. it may be re­
started by depressing the start pushbutton on the operator's console. The
computer will then continue with the instruction following the halt in­
struction. A processor intervention (refer to section 4) which interrupts
a Computing Unit program to transfer control to the contingency routine.
will also restart the Computing Unit.

The A digits of the instruction are not used and may be any legitimate
Larc characters. The M and B digits also are not used but are subject to
the general restrictions enumerated in paragraph 3-1.

Due to the overlap of instructions. the instruction following a halt
must have a legitimate tracing digit. (•• digits 1 through 9. or i). If
the tracing digit is not legitimate. error flip-flop 49 will be set before
the computer stops. (The flip-flop is not set if the halt instruction is
in storage location Lim M.) Whenever the computer is restarted. either by
processor intervention or by the start pushbutton being depressed. the
master error flip-flop (98) will be set and control will be transferred to
the error routine.

On the other hand. if the tracing digit of the instruction following
a halt is legitimate but other digits in the instruction are incorrect. no
error flip-flop will be set before the computer stops. If the computer is
then restarted by the processor intervention. no error will occur. Of
course. if the computer is restarted by depressing the start pushbutton.
the computer will continue to execute the instruction following the halt.
and errors will result.

If a halt instruction is held in the last storage location, Lim M, no
error will occur before the computer stops. As in the case mentioned in
the preceding paragraph, if the computer is restarted by processor in­
tervention, no error will occuri if the computer is restarted by depressing
the start pushbutton. a stall error will result.

3-69

SECTION 4

OPERATIONS OF INPUT-OUTPUT EQUIPMENT

4-1. GENERAL

The input-output operations of the Larc system are under the control
of the processor, which is a separately programmed computer. However, the
sequence in which operations should be performed by the processor is de­
pendent upon the input-output requirements of the Computing Unit program.
If the processor is not used to its fullest capacity in controlling input­
output processes, it may be used to edit data, merge, or perform some
other side routine. The Larc computer work load can be divided between
the processor and the Computing Unit so that each handles the tasks for
which it is best suited.

The Computing Unit program must convey its input-output requirements
to the processor; in addition, the processor program must have some way to
communicate with the Computing Unit so that it can notify the Computing
Unit of the completion of requested operations.

Because the core storage is accessible to both the Computing Unit
and the processor, it forms the main communication link between the two.
Information may be deposited in the core storage by one unit for the use
of the other. In addition, a special communication device, the disclosure
flip-flop (FFIO), connected directly to the processor is available to the
Computing Unit. This device can be set and tested by the Computing Unit,
and can be reset and tested by the processor. Normally, when the Com­
puting Unit program is ready to transmit orders to the processor, it sets
the disclosure flip-flop. The processor program should be designed so
that it periodically tests the flip-flop and when it is found set, per­
forms some predetermined procedure. The processor program can reset the
diSClosure flip-flop to indicate to the Computing Unit program that it
has completed some phase of its operation. The Computing Unit program, of
course, must test the flip-flop to determine when it has been reset. The
exact significance of setting and resetting the disclosure flip-flop is
dependent upon the design of the Computing Unit and processor programs.

In addition to the communication possibilities provided by the dis­
closure flip-flop, the processor has available to it a processor interven­
tion flip-flop (FFIl) which enables it to interrupt the computer program.

4-1

This flip-flop can be tested and set by the processor, and can be tested
and reset by the Computing Unit.

Intervention by the processor can occur at any point in the Computing
Unit program, and can be used to notify the program that certain input­
output operations are now finished and that the program should go on to
some other computation. The processor intervention flip-flop can also be
used to indicate such things as a malfunction in the input-output equip­
ment and errors in the input-output data. It can request that the Com­
puting Unit perform certain operations required by the processor but which
cannot be performed by it. Multiplication and division functions fall
into this last category.

If the processor intervention flip-flop is set, the Computing Unit
completes the current instruction; then control transfers to the contin­
gency routine beginning in line 02701. A return jump to the current in­
struction plus 1 will be recorded automatically in line 02700. The con­
tingency routine must be designed so that it tests the entire series of
contingency flip-flop (11,30 ..• 34,39 ... 45) to determine which ones have
been set. When the set flip-flop is discovered, control is transferred
to a subroutine designed to handle the individual contingency. (Addi­
tional details on the contingency routine and flip-flops are found in
section 7.) In the case of the processor-intervention contingency, the
subroutin~ can either operate on the assumption that each time it is
entered the same processor condition has occurred, or it can require the
processor to record some indication of what it requires from the Com­
puting Unit.

The programmer may want to include short loops in his program to
delay computation until processor intervention indicates that certain
input-output procedures have been completed; however, because intervention
cannot occur during one-line loops and during two-line loops with an un­
conditional transfer as the second instruction, they should not be used
for this purpose. Any loop of three or more lines may be used as a delay.
It is also possible to use a two-line loop which includes a conditional
transfer of control. Such a loop could consist of a skip instruction
followed by a 72 instruction testing fast-register zero.

Setting the processor intervention flip-flop will not cause any
action in the Computing Unit if one of the following conditions exists in
the Computing Unit:

(1) The master error flip-flop (FF98) is set.

(2) The Computing Unit is in an unconditional-transfer loop
(see section 3).

(3) Flip-Flop 15 is set (see section 5).

(4) The master contingency flip-flop (FF99) is set.

Setting the processor intervention flip-flop will start the Com­
puting Unit if it was stopped before the flip-flop was set. The Unit
will start with the master contingency flip-flop set and control in 02701.

4-2

Resetting of the processor intervention flip-flop by the Computing
Unit can be used to indicate to the processor that the required operation
has been completed. Obviously, this communication requires that the pro­
cessor test the flip-flop to determine when it has been reset.

4-2. DATA CODES

In the Larc computer system there is no change in the data code as
data is transferred between input-output devices and core storage. (The
magnetic tapes are a special case and are described in paragraph 4-4.)
Data can be coded in either a numeric or alphanumeric code.

In the numeric code, a single digit represents one character. In
this code, the numerals 0 through 9 and the special symbols (+), (-),
(i), (A), and (.) can be represented. This code is used for data to be
operated on arithmetically.

In the alphanumeric code, a pair of digi~s is required to represent
each character. A 12-digit word in this code will. obviously, consist
of only six characters. A total of 64 characters can be represented.
Decimal characters are distinguishable because the most significant digit
of the pair is a 2.

If alphanumeric information is operated on arithmetically, the re­
sults will not necessarily consist of meaningful digit combinations;
consequently, these characters should be translated into numeric code
before they are sent through the arithmetic unit of the computer.

Table 4-1 lists the Larc computer codes and their equivalents for the
Unityper* II device, electronic page recorder, and line printer. A blank
space in a column indicates that the character is not available in that
code or on that device. On the devices which operate in both edited and
unedited modes, the functions performed by characters in the edited mode
are indicated in parentheses following the character printed in the
corresponding unedited mode. (In the unedited mode. all digits in a data
word are represented by a printout; in the edited mode some digits may
result in an action other than printout of a character.)

4-3. MAGNETIC DRUMS

The magnetic drums constitute both an input-output and a storage
device. From the programmer's point of view, however, it is more useful
to consider them as input-output equipment because they are handled by
the Computing Unit program in the same way as other input-output devices.
The drums are directly controlled by the processor program, but the Com­
puting Unit program is indirectly responsible for activating the pro­
cessor.

--lie Trademark of the Sperry Rand Corporation.

4-3

Table 4-1. Larc Computer Codes

Larc Electronic Line
Larc Computer Standard Page Recorder Printer

Computer A1pha- Unityper II Numeric numeric Code Numeric Alpha- Numeric A1pha-
Code Code Mode numeric Mode numeric

Mode Mode

\ 15 i \ (EOW) \ (IG) I (SP)

" 16 1\ 1\ (SP) 1\ (SP) A(SP) W (SP)
- 17 - - - - -
0 20 0 0 0 0 0
1 21 1 1 1 1 1
2 22 2 2 2 2 2
3 23 3 3 3 3 3
4 24 4 4 4 4 4
5 25 5 5 5 5 5
6 26 6 6 6 6 6
7 27 7 7 7 7 7
8 28 8 8 8 8 8
9 29 9 9 9 9 9

32 t

= =
33 & ..., -34 (((
35 r f (EOL)
36 , , , . 37
40 ; 'J V
41 A A A
42 B B B
43 C C C
44 0 D 0
45 E E E
46 F F F
47 G G G
48 H H H
49 I I I
52 # < < 53 ¢ p
54 @ rr
55 t a
56 It]
57 I [
60)))
61 J J J
62 K K K
63 L L L
64 M M M
65 N N N
66 0 0 0
67 P P P

4-4

Table 4-1. Larc Computer Codes (Cont.)

Larc Larc Computer Standard Computer Alpha- Unityper II Numeric numeric Code Code Code

68 Q
69 R
72 $
73 •
74 ?
75 L
76 ~
77 · ·

+ 00 +
81 /
82 S
83 T
84 U
85 V
86 W
87 X
88 y
89 Z
92 %
93 :::

94

Abbreviations:

EOW - End of Word
SP - Space
IG - Ignore
EOL - End of Line

Electronic Line
Page Recorder Printer

Numeric Alpha- Numeric Alpha-

Mode numeric Mode numeric
Mode Mode

Q Q
R R
> >
• •

---+
~

11
: :

+ + + +
/ /
S S
T T
U U
V V
W W
X X
y y
Z Z

" "
"" 0

4-5

As many as 24 drum storage units can be included in the Larc system.
Each drum has a maximum storage capacity of 250,000 12-digit words. A
drum contains 100 circumferential bands, each of which has a storage capa­
city of 2500 words. Each band is divided into 25 100-word sectors; a
sector is the smallest unit that can be read or written during anyone
reference to a drum. A read or write operation can start only at the
beginning of a sector; any sector may be the first one in such an oper­
ation.

Six parallel tracks on the drum form a band. The four information
bits and the parity check bit are recorded in parallel on five of the
tracks. The sixth track is used to store (serially) a band number and
an address for each sector. The tracks of one band are interlaced with
the tracks of another.

A floating-on-air read-write head assembly is mounted above each
drum; program instructions move the "unit lengthwise along the drum surface
so that the single assembly has access to the entire drum. The head can
read or record at a pulse density of 450 pulses per inch. The drum ro­
tates at 880 revolutions per minute. and attains a surface velocity of
1120 inches per second. The six individual read-writ~ heads on the head
assembly are spaced at twice the track spacing. Two interlaced bands
are read (or recorded) by reading the first with the head in one position,
then jogging the head assembly the distance of one track space to read
the interlaced band. The head assembly can also be moved (stepped) from
one band of an interlaced pair to the equivalent position on an adjacent
pair. Movement of the head assembly can be in either direction along the
axis of the drum, and can occur in parallel with head assembly movement on
another drum. Also, the head movement on one drum can occur in parallel
with a read or write operation performed on another drum.

The 100 bands on the dtbm are numbered in this order: 00,99:01,90:02,
97 ••• 47,52~48,51;49,50, where 00 and 99 are the first pair of interlaced
bands, 01 and 98 the second pair, and so on. When the head assembly is
over a band numbered 00 through 49 inClusive, it is said to be in the low
position; when it is over a band numbered 50 through 99, it is in the high
position. The most efficient method of processing data on the drum is to
process an" entire band (using only one instruction), and move consecutive­
ly from band 00 to band 49; then, jog the head assembly to band 50, re­
verse the stepping mechanism, and continue processing consecutively to
band 99. This sequence of head movement expends the least time. Of
course, it is also possible to use other organization of data; however,
efficiency in drum utilization will be sacrificed. Information can be
processed in any number of sectors up to a full band, but processing time
is increased if the read or write operation must wait for the appropriate
sectors to be under the read-write head. If a full band is being pro­
cessed, there is no latency; however, if only one specific sector is de­
sired, latency time may be as much as the equivalent of a complete drum
revolution (68 milliseconds).

4-6

Seventy milliseconds are required to step the head assembly from one
band of an interlaced pair to an equivalent position on the next pair.
Jogging the head assembly from one band to the band-with which it is
interlaced requires 50 milliseconds, and reversing the direction of step­
ping requires 10 milliseconds. Note, however, that the jogging and re­
versing operations can be performed simultaneously.

The head assembly on a drum can be moved to the next band in sequence
in less time than it takes to perform a read or write operation on another
drum. This means, therefore, that the fastest way to organize data is to
read (or write) alternately on two drums. Organizing data in this way
means that while a read or write operation is taking place on one drum,
the head assembly on another drum is being positioned over the next band.

4-4. MAGNETIC TAPES

Because tape storage references are much more time consuming than
drum references, the magnetic tapes are used primarily as long-term
storage media. Tapes are used to introduce instructions or data into the
Larc system or to record output for long storage or for off-line conver­
sion on an auxiliary device such as the Univac high-speed printer. Inter­
mediate results are normally not written on tapes. Initial data is re­
corded on tape by a Unityper II device.

The tape system includes both individual tape reels and Uniservo* II
tape-transport units. Each Uniservo II tape unit is associated with a
synchronizer which controls operation of the unit. A fixed number of
units are associated with each synchronizer, but only one of these may be
connected to the synchronizer at anyone time for reading or writing.
However, anyone or all other tapes can be rewound while a read or record
operation is in progress. The tape synchronizers can perform in parallel
with each other and with the other input-output synchronizers in the
system.

By changing a plugboard, it is possible to substitute one tape unit
for another under control of the same synchronizer. This would be done
if one of the units was not able to function correctly.

Both 8- and 10-inch reels can be used on the Uniservo II magnetic
tape units connected to the Larc computer. These reels contain, respec­
tively, 1600 and 2400 feet of tape. Data can be recorded on the tape
at a density of 104 or 208 characters per inch (cpi). (For the Larc com­
puter, serial 2, the densities are 125 and 250 cpi.) The 104-cpi density
is for tapes used on the Univac I system or on Univac off-line auxiliary
devices; the 208~cpi density is for tapes used on the Larc or Univac II
systems. A wider range of densities can be read by the system; this in­
cludes the 20-character-per-inch density of the Unityper I device.

--. Trademark of the Sperry Rand Corporation.

4-7

The information is arranged on tapes in groups of words termed blocks.
A block can be any multiple of 10 words in length; the clear area between
each block is termed space between blocks (SBB). The SBB can be either
1 or 2.4 inches long. Normally, the I-inch SBB is used on the higher
density tapes.

The total word capacity of the tape reels is variable, depending on
reel size, recording density, number of words per block, spaces between
blocks, and bad spots on the tape. The frequency of occurrence and length
of the last two items vary with individual tapes. Detection of bad spots
on the tape is performed automatically by a photocell on each tape unit.
Bad spots, indicated by holes punched through the center of the tape at
2-1/2 inch intervals, are skipped during a tape read or write operation.
Tapes may be spliced and the splice joint rendered unusuable by punching
properly spaced holes through it.

Data can be written on tape moving in a forward direction; it can be
read from tape moving in either a backward or forward direction. The
speed with which the tapes move on the Uniservo II tape units is 100-
inches per second. Access to the nearest block on tape requires 15 milli­
seconds; if the tape is in the rewound state, access to the first block
requires an additional 1.8 seconds. Reversal of tape direction adds 0.6
second to the access time. Because the rewind operation is relatively
time consuming, the programmer should avoid giving, in close succession,
rewind and read or write orders to the same tape units. Normally, data
which is output from one portion of a problem and input to another would
be read backwards by the second portion of the program.

It is possible either to read from a tape and transfer data to main
storage, or merely to move a tape a specified number of blocks to gain
access to a particular block. While positioning the tape, the processor
can check the information on it for readability. This procedure ensures
that the recording was executed without error. A special positioning
checker may be used to perform this operation. Use of the checker permits
the synchronizer to be used to control both the checking operation and a
simultaneous write operation on another tape.

Two types of interlock are available in the tape system. One type
is a write-interlock ring which can be inserted into any individual tape
reel. The ring prevents the tape from being written on when it is being
used on a Uniservo tape unit. Protection of this kind is used on a tape
which contains data to be preserved from one problem run to another. The
second type of interlock is contained in each tape unit. It can be put
to use by the processor during a rewind operation. This interlock pre­
vents the tape from being moved forward from the rewound state until the
interlock is manually released by the operator. Interlock of this type
is used when the rewound tape contains output data which must be pre­
served.

All data on t~pe is in the Univac XS-3, 7-bit code. It must be
translated from this code into the codes used by the Larc computer system.
The reverse translation must be made when data is written onto tape.
These translations are performed by built-in translators in the tape syn­
chronizers. The translation from XS-3 code can be into either the one­
digit numeric or two-digit alphanumeric code.

4-8

are multiples Qf ten tape words in length, tape data translated into
alphanumeric code will.pe a multiple of twenty words long in core storage.
The characters available in the XS-3 code are listed in table 4-1.

4-5. LINE PRINTER

The on-line, high-speed, line printer is used to produce a printout
of the results of computation; intermediate or final results may be prin­
ted. It is normally used to print large quantities of data in either
single or multiple copies. The printer prints out the 51 printable numer­
ic and alphanumeric characters listed in table 4-1.

The printer speed is 600 lines per minute, with 130 character-posi­
tions per line, 10 characters-per-inch horizontally, and 6 lines per inch.
Single or multiple line spacing can be used, and the printer accepts paper
varying in width from 4-1/2 to 21 inches. The format of the data on the
printed page is controlled by the programmer in his choice of data and
print mode. The printer can operate in four modes: (1) numeric unedited,
(2) numeric edited, (3) alphanumeric unedited, and (4) alphanumeric
edited.

In the numeric unedited mode, a single digit is decoded to print a
character. Both the ignore (1IIQO) and space (00100) digits are decoded
to print as I and~, respectively.

In the numeric edited mode all digits except the ignore and space
are decoded as they are in the unedited mode. The ignore and space are
both decoded to leave a space on the printed page.

In the alphanumeric modes, the two-digit combinations are decoded
to determine the character to be printed or the function to be performed.
In the alphanumeric unedited mode, a 16-combination is decoded to print
a W; in the alphanumeric edited mode, the 16-combination is decoded

to leave a space. If the data to be printed in the alphanumeric modes
includes a character not available on the printer, a space is left. For
a list of the characters printed in the different modes, refer to table
4-1.

In the unedited numeric mode, ten 12-digit words are printed on each
line, and a space is left between each word; in the unedited alphanumeric
mode, ten 6-digit words are printed on each line, with a space between
each word. In the edited modes, the insertion of spaces is dependent upon
the presence of space and/or ignore characters in the data being printed.

4-6. ELECTRONIC PAGE RECORDER

The electronic page recorder is used for large volume output, espe­
cially in tabular or graphical form. Output may be represented in the
form of a curve plot, grid pattern, or alphanumeriC characters. Or,
output can be a combination of these three: that is, a plotted curve with
callouts, titles, scales, grid patterns, etc. The outpwt is displayed on

4-9

the face of a cathode ray tube and is recorded by a high-speed, 35-mm
camera. For intermediate checking purposes, the display may also be re­
corded by a Polaroid* Land (self-developing) camera.

The electronic page recorder prints or plots characters at a maximum
rate of 20.000 characters per second. Because th~ cathode ray tube has a
single electron beam, only one character is displayed at a time. The dis­
played characters are registered on film, and after each frame of data has
been recorded, the 35-mm camera film is advanced electromechanically.
Because the camera has no shutter, the advance is made while the cathode
ray tube is cut off. The film can be advanced at a maximum rate of ten
frames per second. The camera accepts a 400-foot film magazine. The
Polaroid Land camera requires the operator to advance the film manually.
This camera produces either standard paper prints or positive transparen­
cies; the paper print can be developed in approximately one minute and a
transparency in approximately two minutes. The cameras and the cathode
ray tube are enclosed so that the only light striking the film is from the
tube.

There are two electronic page recorders (including cameras) with but
one synchronizer serving both. Only one recorder can be connected to the
synchronizer at a time. I! one recorder becomes inoperative or runs out
of film, the other recorder can be used to record all the output.

The format of the frame or page displayed on the electronic page re­
corder is a 1000 by 1000-point mesh. The center of any character being
displayed can be directed to any point in the mesh. However, because the
area occupied by a character'is eight horizontal points by 15 vertical
points, a maximum of 67 lines of 125 characters in each line can be dis­
played for one frame. The origin of the Cartesian coordinate system on
the face of the tube is at the lower left-hpnd corner, and the points in
the x and y directions are numbered from 000 to 999. There are 64 dif­
ferent characters (table 4-1) which can be recorded, any of which can be
selected for use in curve plotting.

The recorder can operate in several modes and combinations of modes.
In the numeric mode. a single digit selects the character to be recorded;
in this case the character is either numeric or one of five special sym­
bols. In the alphanumeric mode, two digits select the character to be
recorded; this character can be anyone of the 64 available. The edited
and unedited modes are used when nongraphical data is to be displayed.
Either the numeric or alphanumeric mode may be used in conjunction with
the edited and unedited modes. In the unedited numeric mode, data is dis­
played in lines of ten 12-digit words; in the unedited alphanumeric mode,
it is displayed in lines of ten 6-digit words. In the unedited modes the
spaces between words are smaller than the normal character spacing. In
the edited modes, the format is dependent upon the data to be recorded.
Specific characters in the data are decoded to indicate a function to be
performed rather than a character to be printed. For example, in the
numeric edited mode, the ignore digit (11100) indicates the end of a word;
no digits beyond it are displayed. The space digit (00100) causes a space

* A registered trademark of the Polaroid Corporation, Cambridge, Mass.

4-10

to be left in the display. In the alphanumeric edited mode. a 15-combina­
tion neither records a character. performs a function. nor leaves a space;
the combination is ignored. A 16-combination causes a space to be left
in the display. A 35-combination indicates the end of a line in the dis­
play.

There are two plotting modes available. In both, one plotting symbol
is selected (alphanumeric), and the coordinates of the points to be plotted
are specified by the data words. In the first plotting mode, two sets of
x and y coordinates (two points) are specified in a single data word. The
format for the data words in this mode is XXXYYYX'X'X'Y'Y'Y'. In the
second plotting mode, the x and y coordinates of one point are specified
in two consecutive data words in the format as follows:

xxxXXXxxxxxx
xxxYYYxxxxxx

A space symbol in a data word indicates the end of plotting. The symbol
must be in the least significant digit of the appropriate section of the
word.

The electronic page recorder can operate in two additional modes to
plot horizontal and vertical grid lines. In these two modes, the data
specifies the points on the coordinate axes through which the lines are to
be drawn. In plotting vertical grid lines, two abscissas specifying two
full-length lines are contained in each data word. The format for the
data words is as follows:

vvv xxx V'V'V'xxx.

In plotting horizontal grid lines, two ordinates specifying two full­
length lines are contained in each data word in the following format:

xxxHHHxxxH'H'H' .

As in the other plotting modes, a space symbol in the data signifies the
end of plotting. It should be noted that in all modes the electronic page
recorder operates on data in groups of ten words each. If less than ten
words of data are to be used, an end-of-line (in alphanumeric edited) or
end-of-plot (in all plotting modes) symbol should be included in the data
after the last valid item. If these symbols are not used or are not
available in the mode being used, the data will be filled out to ten words
with the information from the locations where valid data is expected to be.

4-11

SECTION 5

OPERATING PROCEDURES

This section contains a brief description of the operator's equipment
and operating procedures used in the Larc computing system. The purpose
of the description is to familiarize the programmer with the equipment used
in operating the system, so that he can give adequate instructions to the
operator. Detailed operating information is found in the Univac Larc
System, Operator's Manual.

5-1. OPERATOR'S STATIONS

There are two identical operator's stations in the Larc system, these
are known as the local and remote stations, respectively. The local
station, adjacent to the engineer's panel, is normally used only during
maintenance periods. The remote station is a separate unit for general
use. The two stations are used individually to operate both the Computing
Unit and the processor.

Each station consists of an operator's console (figure 5-1), which
contains the equipment necessary for transmitting information to the
computing system during normal operation. Next to each console is the
console printer (Flexowriter*) used for low-speed printout by the system.
(The printer also includes a paper tape reader and punch.) Only one
operator's station at a time may be used for communicating with the system.
The required station is selected by actuating a switch on the engineer's
console.

5-2. OPERATOR'S CONSOLE

An operator's console consists of a display panel which can display
various types of information, a set of controls for the Computing Unit and
the Processor, a console keyboard for typing small amounts of data into the
computer, a console printer, and some aural monitoring controls. Those
features of the console which particularly concern the Computing Unit pro­
grammer are discussed in paragraphs 5-3 to 5-6, following.

* A registered trademark of Friden, Inc., San Leandro, Calif.

5-1

TAPE

CARD

INTERLOCKS

HSP

CON PR

INTERLOCK INDICATORS

CU lOP

MANUAL INTERVENTION
SWITCHES

EPP

FILM

COMPUTER
CHECK

MACHINE

PROGRAM

CONSOLE
KEYBOARD

ABNORMAL
MODE

COMPUTER

IOP

WARNING INDICATORS

START AND
STOP SWITCHES

Figure 5-1. Operator's Console

FAULT

POWER

DRUM

5-3. DISPLAY PANEL. The elements of the display panel present computer
information in visual form to the operator for reference. Three ways of
displaying visual information are used in the Larc computing system, as
follows:

(1) Neon bulbs.

(2) Illuminated indicators.

(3) Backlighted ground-glass indicator panels.

There are 20 neon bulbs on the display panel; ten correspond to the
ten sense flip-flops (FFOO through FF09) in the Computing Unit, nine
correspond to the selected-tracing-mode flip-flops (FF21 through FF29)
also in the Computing Unit, and one is for the manual- and IOP-intervention­
inhibit flip-flop (FFI5). Each neon bulb lights when the corresponding
flip-flop is set.

The illuminated indicators that concern the Computing Unit programmer
are those marked CONNECT 5, INTERLOCK 5, CONNECT 12, and INTERLOCK 12. The
CONNECT 5 indicator is illuminated when the five-digit-display connect flip­
flop is set (that is, when the five-digit display is connected, either to
the console keyboard or to the console printer). The INTERLOCK 5 indicator

5-2

is illuminated when the five-digit-display interlock flip-flop is set (that
is, when the five-digit display is interlocked against use by the computer
or the operator). The other two indicators carry out the same functions
for the 12-digit display. Further information about the connect and inter­
lock flip-flops is given in paragraphs 5-5 and 5-9.

There are five sets of backlighted indicators. Four of the sets are
Iconcerned ~ith input-output equipment and abnormal operation of the system;
these are not of particular interest to the programmer. The fifth set
consists of three displays of computer information, as follows:

(1) CONTROL COUNTER. This display is actuated only when the
Computing Unit stops. It displays the five-digit address of the
instruction that was about to be fetched from storage when the
computer stopped. This address is in fact the address of the
last instruction completed plus 2.

(2) 5-DIGIT REGISTER. The five-digit display shows the contents of
the five-digit display register. This register may be used to
hold information consisting of five or less Larc characters.

(3) 12-DIGIT REGISTER. The 12-digit display shows the contents of
the 12-digit display register. This register may be used to hold
information consisting of 12 or less Larc characters.

The 5- and the 12-digit display registers can accept data from either
the Computing Unit or the processor. Data can also be sent to the Computing
Unit or the processor from the display registers. External information is
stored in the display registers, either by means of the console keyboard
or by reading punched paper tape.

5-4. CONTROLS. When the STOP pushbutton on the operator's console is
depressed, the computer will stop immediately after it finishes executing
the instruction which is in its operand-selected cycle. When the computer
has stopped, the instruction following the last one completed will be in
instruction register 1, and the control counter display will show the
address of the instruction which was about to be called.

The START pushbutton will cause the computer to restart from the point
at which it was stopped (whether by depression of the STOP pushbutton or
as a result of a halt instruction). The address of the next instruction to
be executed when the START pushbutton is depressed is normally given by the
control counter reading less 1.

There are ten manual-intervention pushbuttons on the console. Five
of these are for the Computing Unit and five for the processor. (The latter
we are not concerned with in this manual.) Each of the five Computing Unit
manual-intervention pushbuttons (0 through 4) sets one of the manual­
intervention flip-flops (FF30 through FF34). When one of these flip-flops
is set, the master contingency flip-flop (FF99) is set automatically. A
transfer to the contingency routine then takes place normally immediately
after the current instruction in the Computing Unit has been completed.
The contingency routine (section 7) must be so written as to test flip­
flops 30 through 34 and transfer control to the corresponding manual­
intervention routine when one of them is set. This facility enables the

5-3

operator to modify routines during the running of a problem. Manual­
intervention flip-flop 30 is also used during paper tape read operations.

Intervention in Computing Unit programs can also be caused by the
processor setting the lOP intervention flip-flop (FFll). This flip-flop
cannot be'setby the Computing Unit or the operator. The lOP intervention
has the same effect on the Computing Unit as a manual intervention. The
processor will use this facility either when it requires the Computing
Unit to carry out some complex arithmetic operations or when it has a need
to notify the ,Computing Unit that certain input-output operations have been
completed.

If the programmer requires that a certain part of his program be
executed without interruption, he may cause the manual and IOP-interven~ion­
inhibit flip-flop (FF15) to be set. While this flip-flop is in the set
state, setting flip-flops 30 through 34 or flip-flop 11 will not set the
master contingency flip-flop and no intervention can take place. However,
as soon as flip-flop 15 is reset, the master contingency flip-flop will
be set automatically if one or more of the intervention flip-flops are set.

The INITIAL LOAD pushbutton on the console is used during the reading
of punched paper tape (paragraph 5-9).

5-5. CONSOLE KEYBOARD. The console keyboard is used by the operator to
type information directly into the two visual display registers. The
keyboard has 15 keys corresponding to the 15 following computer characters:
digits 0 through 9; (t), (-), (/\), (.), and (i). Additionally, there are
three keys which control keyboard operations, as follows:

5-4

(1) C5. Does the following:

(a) Connects the console keyboard to the five-digit display
register. (Sets the five-digit-display connect and inter­
lock flip-flops.)

(b) Disconnects the console keyboard from the 12-digit display
register. (Resets the 12-digit-display connect and inter­
lock flip-flops.)

Clears the five-digit display to decimal zeros.

(2) C12. Does the following:

(a) Connects the console keyboard to the 12-digit display
register. (Sets the 12-digit-display connect and inter­
lock flip-flQPs.)

(b) Disconnects the console keyboard from the five-digit dis­
play register. (Resets the five-digit-display connect and
interlock flip-flops.)

Clears the 12-digit display to decimal zeros.

(3) D. Disconnects the console keyboard from the display registers
to which it is connected. (Resets whichever connect and
interlock flip-flops are set.)

To type into either display register the operator depresses the appro­
priate connect key (C5 or C12) and types the required number of characters
beginning with the most significant. Shifting to the left takes place
automatically.

Both the Computing Unit and the processor are prevented from storing
any information in a register while it is connected to the keyboard:
however, they may read from the register as soon as it is connected. The
visual-display-register instructions automatically reset the connect and
interlock flip-flops after reading from a display register. The Computing
Unit or the processor may store information in a register when it is dis­
connected from the keyboard.

5-6. CONSOLE PRINTER. The console printer, located at the side of the
operator's console, is a low-speed printer controlled by the processor.
Normally, the programmer uses the printer to type out information necessary
for running the program, namely, operator instructions, program identifica­
tion, timing, and contingency and error information. Because of its slow
operating rate, the console printer is not used as a data input-output
device. (It prints at the rate of one character per 100 milliseconds and
a carriage return from the end of one line to the start of the next re­
quires one-half to one second.)

The printer accepts two code digits at a time and interprets and con­
verts them into either a single print character or a printer action. The
printer operates in either of two positions, upper case or lower casei the
characters printed and the printer actions in the two operating positions
are listed in table 5-1.

The operator may use the keyboard of the console printer to type head­
ings and other information on the printer page.

The console printer also contains a paper tape reader and punch, des­
cribed in the following paragraph.

5-7. PAPER TAPE HANDLING

The punched paper tape used by the console printer has eight informa­
tion channelsi five channels are used for data, and three channels are used
for control symbols. The numbering of channels across the tape is 5, 4, 3,
2, 1, sprocket hole, 8, 7, 6. The permissible tape symbols are shown in
figure 5-2. The data symbols are in standard Larc computer code and re­
quire no further explanation. The control symbols are explained in later
paragraphs of this section.

5-8. TAPE PREPARATION

Tapes may be prepared on the paper tape equipment1when the operator
types information on the console printer keyboard; however, only the char­
acters shown in figure 5-2 may be used. Similarly, when the computer
(under processor control) is typing out information on the console printer,
a punched paper tape record can be produced. The production of tapes in
both cases is at the option of the operator, as the console printer will
only punch tape when the PUNCH ON pushbutton on the keyboard is depressed.

5-5

5-6

Table 5-1. Console Printer Characters and Actions

Two-Digit Upper
Code Case

10 OC

11 LC

2- -
2" " 2+ +

2. ·
2\ \
15 IG
16 SP
17 -
20 0
21 1
22 2

23 3
24 4

25 5

26 6
27 7

28 8

29 9
32

33 E

34

35 CR
36 8

37 ·
40

41

42 >
43 •
44 -
45 1:

Abbrevi ations:

UC = Upper Case
LC = Lower Case
IG = Ignore
SP = Space

Lower
Case

tJC

LC

-
Tr

+

·
p

IG
SP

-
~

U
I
0

J

K

L
..
·
/
I:

..
(

CR

·
·
V
A

B

C
D
E

CR = Carriage return
TAB = Tabulate

Two-Digit Upper Lower
Code Case Case

46 '1 F

47 : G
48 H

49 2 I
52 <
53 \ p

54 " 1r

55 TAB TAB

56]

57 a [

60 0)

61 4 J

62 5 K

63 6 L

64 7 ..
65 N

66 3 0

67 P

68 Q

69 R

80 + +

81 9 /
82 S
83 T

84 1 U

85 V

86 W

87 X

88 y

89 Z

92 II

93 0 ~

CHANNELS 5 4 3 2 • · 8 7 6 5 4 3 2 · 8 7 6

0 • •
• • • • · + • • • · 2 • · i • • • 3 • • • · Il • • • 4 • • 5 • • • CON 5 (CR) • SYMBOL -6 • • • · CON .2 (TAB) • 7 • • • · TRANSMIT (D) • • 8 • • • · TRANS TO CU (a) · • 9 • • • TRANS TO PROC · • • DISC · • • • TAPE FEED • •••• ·

6'47

Figure 5-2. Tape Symbols

The punching of data on tape is a straightforward matter. When a key
is depressed, the character is printed on the console printer page and the
character is simultaneously punched onto paper tape. On the other hand,
the punching of control symbols will not always cause printing. Depressing
the CR CON 5 key causes the printer carriage to return and the CON 5 con­
trol symbol to be printed on the tape. Depressing the TAB CON 12 key
causes the carriage to position at a preset marker and the CON 12 control
symbol to be punched on the tape. Depressing the TAPE FEED key causes tape
to feed through the punch and continue as long as it is depressed and to
punch the tape feed control symbol on the tape in every position. De­
pressing the (0) key caused the symbol (0) to print and punches the trans­
mit control symbol on the tape. Depressing the (a) key prints the symbol
(a) and punches the transfer-to-Computing-Unit control symbol on the tape.
The other control symbol keys merely cause the correct control symbol to be
punched on the tape without causing any printing.

5-9. TAPE READING

Punched paper tapes may be read by the console printer tape reader
and used to store information in memory either by means of Computing Unit
instructions or by means of the operator's controls. In either case, the
visual-display registers are used as buffers between the tape reader and
the core storage. The sections of tape shown in figure 5-2 illustrate the
way in which data and control symbols are represented on tape. The
function carried out by the control symbols (shown in the right half of the
figure) when they are read from tape are described below:

CON 5 (CR)

(1) Clears the five-digit display register to zero.

(2) Sets the five-digit-display connect flip-flop.

(3) Sets the five-digit-display interlock flip-flop.

(4) Resets the l2-digit-display connect flip-flop.

5-7

5-8

(5) Blocks the visual display of the contents of the five­
digit display register.

CON 12 (TAB)

(I) Clears the 12-digit display register to zero.

(2) Sets the 12-digit-display connect flip-flop.

(3) Sets the 12-digit-display interlock flip-flop.

(4) Resets the five-digit-display connect flip-flop.

(5) Blocks the visual display of the contents of the
l2-digit display register.

TRANSMIT (0)

(1) Stops the tape reader.

(2) Sends the contents of the 12-digit display register to
the storage location whose address is in the five­
digit display register.

(3) Resets the 5- and 12-digit-display connect and interlock
flip-flops.

(4) Start the tape reader.

TRANS TO CU (a)

(I) Stops the reader.

(2) Resets the initial load flip-flop.

(3) Resets the completed stop flip-flop. This flip-flop
is set when the Computing Unit stops. When it is
reset the Computing Unit is allowed to start.

(4) By setting manual-intervention flip-flop 30, trans­
fers control in the Computing Unit to the instruc­
tion in location 02701 (contingency routine).

TRANS TO PROC (processor)

(1) Stops the reader.

(2) Resets the initial load flip-flop.

(3) Transfers processor control to the instruction in
location 00001.

DISC (disconnect)

Resets the 5- and 12-digit-display connect and interlock
flip-flops.

TAPE FEED

Is ignored by the tape reader. (Tape feed symbols may be
punched anywhere in a tape; punching a number of tape feed
symbols at the start of a tape is useful in providing a
length of tape to aid in positioning tape in the reader.)

Setting the connect flip-flops by paper tape control causes the rele­
vant display register to be connected to the paper tape reader (refer to
paragraph 5-5 to compare the action of the console keyboard connect keys).

There are two methods of reading punched paper tape: one method is to
press the INITIAL LOAD pushbutton on the operator's console (initial load
control); the other is by programming Computing Unit instructions to read
tape (program control). Punched paper tape is, in fact, the only input
medium directly available to the Computing Unit. The format of a tape
depends upon which method is used to read it.

Only one format is permissible for a tape which is to be read under
initial load control, as follows: a CON 5 control symbol followed by a
five-digit, core-storage address; a CON 12 control symbol followed by a
12-character computer word; and finally a transmit symbol. (The first two
groups of characters may be interchanged if required.) This arrangement is
repeated for each word to be stored in memory. After the final transmit
symbol a transfer-to-Computing Unit or a transfer-to-processor symbol must
be punched.

The way in which a tape is read under initial load control is des­
cribed in the next paragraph. As the name suggests, the method is used to
load an initial program in the computer. (Refer to paragraph 5-10 for
program load procedures.) The initial load procedure can only be used if
the Computing Unit is stopped. Otherwise, the INITIAL LOAD pushbutton on
the operator's console will have no effect.

When the tape has been positioned in the reader, the INITIAL LOAD
pushbutton is depressed. This starts the tape feeding through the reader.
The first length of tape will contain tape-feed symbols which are ignored
by the tape reader. The first significant character on the tape must be a
CON 5 symbol which connects the reader to the five-digit display register.
The next five Larc characters (a computer address) are then read and stored
in the five-digit display register. After the address, the next symbol on
the tape must be a CON 12 symbol which disconnects the five-digit display
and connects the l2-digit display. The next 12 Larc characters are then
read and stored in the l2-digit display register. A transmit symbol on the
tape then stops the tape and causes the contents of the l2-digit display
register to be stored in the location whose address is in the five-digit
display register. If the transfer of information from display to storage
is satisfactory, the reader restarts and the cycle recommences. An error
in the transfer will result in the setting of error flip-flop 52.

A transfer-to-Computing-Unit symbol or a transfer-to-processor symbol
must fOllow the la'st transmit symbol. Either of these symbols stops the
reader. The transfer-to-Computing Unit symbol, by setting manual-inter­
vention flip-flop 30, causes the master contingency flip-flop (FF99) to
set, resulting in an automatic transfer of control in the Computing Unit
to the instruction in location 02701 (contingency routine). Control is

5-9

transferred immediately to the contingency routine. Instructions which
were in the control unit when the computer stopped will not be completed
(see note on ,page 7-3). The transfer-to-processor symbol, by setting the
lOP error flip-flop, causes control of the processor to automatically
transfer to the instruction in location 00001.

The format of a program-control tape may be more varied than the fore­
going; however, each entry on the tape must have one of the following
formats:

C5 X X X X X

Cl2 X X X X X X X X X X X X

C5 X X X X X Cl2 X X X X X X X X X X X X

in which each X may be any Larc character. The transfer-to-processor
symbol may be used in place of the transfer-to-Computing Unit symbol (a).

I

Before the Computing Unit can read tape the 5- and 12-digit-display
interlock flip-flops must both be reset. Reading starts when the Comput­
ing Unit, utilizing a set-flip-flop instruction, sets the start-tape flip­
flop (FF90). If no tape is in the reader when the flip-flop is set,
nothing happens until the tape is placed in position and the operator de­
presses the START READING pushbutton on the console printer. If either the
5- or 12-digit-display interlock flip-flop is set when the Computing Unit
attempts to set flip-flop 90, the control error flip-flop (FF47) will be
set instead of flip-flop 90 and control will be transferred to the error
routine.

Assuming tape of the correct format in the reader, both interlock
flip-flops reset, and flip-flop 90 set (by the Computing Unit), the tape
will feed automatically through the reader while the Computing Unit con­
tinues with its sequence of instructions. Data from the tape will be
stored in the 5- or 12-digit display registers in the same way as data
from an initial load-control tape. The transfer-control symbol following
the data will stop the reader, and, by setting manual-intervention flip­
flop 30, will interrupt the Computing Unit program and transfer control to
the contingency routine. The interruption will take place in the same way
as a contingency (section 7). Note that the transmit symbol must not be
used in a program-control tape. Use of this symbol sets the improper-tape
error flip-flop (FF38). Storage of the data from the display registers
must be carried out either by Computing Unit or processor instructions.
The transfer of control executed by the transfer symbol of the tape should
be to a routine which will store the information which is held in the dis­
play registers.

As the transfer symbol stops the tape reader, the Computing Unit must
set flip-flop 90 again to read-in further data; however, flip-flop 30 must
first be reset. It is not necessary that flip-flop 90 be reset. If the
Computing Unit attempts to set flip-flop 90, the tape reader will start
whether flip-flop 90 was originally reset or not.

To summarize, the Computing Unit reads tape by executing an instruc­
tion to set flip-flop 90. Information will then be read from tape into

5-10

the display registers without further Computing Unit operations being
required. When the information has been stored in the display registers a
transfer-control symbol on tape will stop the reader and interrup~ either
the Computing Unit or the processor. The programmer must arrange that the
routine to which control is transferred will make use of the contents of
the display registers.

Whenever the Computing Unit is about to read paper tape it should
cause some identifying data to be typed out on the console printer to­
gether with a relative time. This will give a permanent record of the
read operation and will notify the operator that a paper tape is needed.

Note that if the Computing Unit is operating in the program-display,
manual-display, or error-display mode, flip-flop 47 will be set whenever
flip-flop 90 is set. The net effect will be to transfer control to the
error routine. This preserves the information in the display registers
by preventing the reading of tape. The three display modes are used for
engineering purposes and will not usually concern the programmer.

5·10. PROGRAM LOAD PROCEDURES

There are three basic load procedures in the Larc computing system
for reading programs into the core storage. They are described briefly
below.

5-11. LOAD PROCEDURE 1

USing the initial load procedure, the operator can read a short pro­
gram from paper tape into core storage. The last symbol on the tape should
be a transfer-to-Co~puting-Unit symbol. This will transfer control to the
short program, which may read in additional sections of program from mag­
netic tape or drum file. This method is seldom used.

5-12. LOAD PROCEDURE 2

The following method may be used for the normal loading of programs
during a working day. In this case it is assumed that a processor program
and contingency and manual-intervention routines are already in the core
storage. The operator types into one of the visual-display registers a
code word indicating which Uniservo magnetic tape unit the new program
tape is mounted on. He then presses a manual-intervention pushbutton which
transfers control in the Computing Unit to the selected manual-intervention
routine. This routine should be organized to read the code word from the
visual-display register and use it to instruct the processor to read-in the
program.

5-13. LOAD PROCEDURE 3

When the core storage is completely empty and it is required to read a
processor program into core storage, the processor initial-read hardware
can be used. This hardware is built into synchronizer 1 of the processor

5-11

and uses Uniservo tape unit 10. Before starting the operation, various
controls on the engineer's console must be set to allow the initial read
to take place. The program tape is then mounted on Uniservo tape unit 10.
When the INITIAL READ and START pushbutton on the engineer's console are de­
pressed simultaneously, a block of data will be read from the tape into
consecutive storage locations beginning with location 00000. This block
can be of any length but must be a multiple of ten words. At the end of
the block an automatic transfer of control to the processor instruction in
location 00001 takes place. This load procedure is normally used only for
engineering purposes.

5-12

SECTION 6

INDIRECT ADDRESSING

Indirect addressing is a method of indicating the effective M address
of an instruction in a location other than that of the original instruc­
tion. This provides the programmer with additional flexibility and con­
venience in certain programming applications.

The indirect-addressing provision can be so used that it supplies the
same programming convenience as an unlimited number of index registers.
Indirect addressing is particularly useful if the determination of the
correct operand for an instruction depends on a variety of conditions.
This usefulness is increased further if the determinations of the condi­
tions are made at different times.

When the programmer wishes to enter the indirect-addressing mode, he
places an ignore symbol (i) in the sign position of the instruction which
is to use this mode. Detection of tllis digit by the computer inhibits the
normal decoding and execution of the instruction, and initiates a process
to determine the appropriate address to be used in the instruction. When
the appropriate address has been selected, the instruction is executed
with this address as the operand address. The programmer provides the
series of possible addresses and the indication as to which of the series
is to be chosen.

Each address named in the series contains the next two addresses in
the chain. Also included is an index-register address. The form for the
contents of each location is LLLLL BB RRRRR, where the L's and R's re­
present storage addresses and BB signifies an index-register address.
Suppose, for example, 00220 is an address in the series. Its contents
might be 00335 16 04445, where 00335 and 04445 are other addresses in the
series, and 16 is an index-register address.

At each level in the process, only one of the two addresses named is
actually selected to continue the sequence. Further flexibility is pro­
vided by the ability to select or reject index-register modification.
The contents of the address finally selected as the operand address for
the original instruction may be any legitimate operand for that instruc­
tion.

6-1

The path followed through the indirect-address chain may be varied
each time the series of addresses is used. For each use the programmer
must provide directions for the path to be followed through the chain.
The proper address selections and index-register options are indicated by
a series of key digits. The key digits are examined sequentially; the
value of each one indicates the following:

(1) Whether or not the previously selected address is to be
modified by an index register.

(2) Which portion of the contents of the resultant address is the
next address in the series.

The value of the key digit also indicates when the selected address is to
be used as the final operand address, thus ending the indirect-address
chain.

The original instruction, the key-digit series, and the beginning of
the address chain are set up in the following form:

Original instruction:

L2L2L2L2L2B3B3R2R2R2R2R2

L3L3L3L3L3B4B4R3R3R3R3R3

where ~~ is modified by the contents of BO (note that this modification is
always carried out) contains 5 key digits, KI through K5. and the first
address, Ml' and index register, Bl' specification in the series. Ml is
modified by (Bl) if Kl indicates modification. The contents of Ml (or MI
modified) are the next possible addresses in the seriesi Kl indicates
which of these is selected. K2 is then picked to determine whether LI
or RI is to be modified by B2i K2 also selects either the left or right por­
tion of LI (or LI modified) or Rl (or Rl modified). The sequence continues
in this way with L2. R2, L3. and R3. each specifying two more storage
addresses and an index-register address. Only the final address in the
series (that used as an operand address) may be a fast-register address.

If more than five key digits are required to determine the operand
address, 1\10 + I i~ used for additional digits. These will be examined
in sequence after digits KI through K5 have been examined. Similarly. if
more than 17 key digits are required, MO + 2 is used for additional key
digits. These are used after those in ~~ + 1 have been used up. This
process continues until the final operand address is selected.

6-2

The key digit functions in the following manner:

(1) If K is 5 or greater than 5, the address selected by the pre­
ceding key is modified by the associated B box; if the key is
less than 5, no B-box modification occurs. In either case, the
word indicated by the address is called from storage.

(2) If the key digit is 0 or 5, the left-hand address is selected
as the next address in the chain; if the key digit is 1 or 6,
the right-hand address is selected. In these cases, the next
key digit is picked up and the process is repeated. However,
if the key is 4 or 9, the address selected by the previous key
is to be used as the operand address in the original instruc­
tion. If Kl = 4 or 9, then Ml with the appropriate index zeg­
ister modification is the operand address. Keys of 2, 3, 7, 0
should not be used, as they may cause errors. The possibility
of errors occurring depends on the combination of the current
key and the preceding key.

Figure 6-1 illustrates the steps in the process of address selection
in the indirect-addressing mode.

The following examples illustrate the mechanism of indirect address­
ing. The circled numbers on the left correspond to points on the flow
chart, figure 6-1.

The contents of these index registers apply to all 3 examples:

(17) = 000000000007
(18) = 000000000000
(19) = 000000000009
(20) = 000000000010
(22) = 000000000012
(23) = 000000000013

6-3

NO

a. M I IS MODIFIED BY BI FOR i = I
b. i >1

MODIFY ADDRESS Mj (SELECTED

BY K i-I IN PREVIOUS STEP) BY

Bj AND CALL CORRESPONDING

WORD FROM STORAGE

EXECUTE INSTRUCTIONS IN IR 2
WITH MiAS M ADDRESS

SELECT LEFT-HAND ADDRESS Lj

OF (Mj) =Lj BI+l R j

SELECT RIGHT-HAND ADDRESS R j

OF (M i) = LiB j t 1 R i

r----------,
Ki~ 0,1,4,5,6,9, SHOULD NOT BE I
USED AS IT MAY CAUSE ERRORS L _________ ..J

REPLACE Mj BY THE MODIFIED Mj

IN BRANCH ®
REPLACE Kj BY Ki - 5 FOR THE

TESTS UNDER ®
Mj MODIFIED BY Bi -Mi KI-5 - Kj

Figure 6-1. Address Selection in Indirect Addressing

1460

Example 1

i = 1

i = 2

i = 3

i = 4

(5009) = i 01 05 00 07500

(7500) = 50040 17 07500

(a) (B1) = (17) = 000000000007

Ml + (B1) = 7507 ----.. Ml

0-----' KI

Kl = 0, (M1) = 07501 18 07502

M2 = 7501 is selected

2-----. i

K2 = 0, M2 = 7501

(M2) = (7501) = 07503 19 07504

~ = 7503 is selected

3 ----. i

IS = 0, M:3 = 7503

(~) = (7503) = 07505 20 07506

M4 = 7505 is selected

4 .i

K4 = 4, M4 = 7505

M4 = 7505 = address to be used
in original instruction

Comments

Bl = 17; modification
to occur

Ml = 7500

Ml is modified by Bl

and becomes Ml = 7507
Kl - 5 ----.. Kl

B2 = 18

Ll = 7501

B4 = 20

L3 = 7505

6-5

Example 2

i = 1

i = 2

i = 3

i = 4

6-6

(3214) = i 43 01 00 00500

(500) = 01595 17 07500

Kl = 0, Ml = 7500

(M1) = (7500) = 07501 18 07502

~ = 7501 is selected

2 -----.. i

K2 = 1, ~ = 7501

(~) = (7501) = 07503 19 07504

M3 = 7504 is selected

3---+i

K:3 = 5, M3 = 7504

(83) = (19) = 000000000009

M:3 + (83) = 7513

7513 • ~, 0 • K:3

K:3 = 0, (M3) = (07513) =
07505 20 07506

M4 = 7505 is selected

4 ----+ i

K4 = 9, M 4 = 7505

(84) = (20) = 000000000010

M4 + (84) = 7515

7515 ----+ M4; 4 ---+ K4

M4 = 7515 is selected as
address to be used
in original instruction.

Comments

~ is modified by
?,3 and becomes
"~ = 7513

K:3 - 5 ---+ K:3

84 = 20, ~ = 7505

M4 is modified by 84
and becomes M4 =
7515

K4 - 5 --+ K4

Example 3

i = 1

i = 2

i = 3

i = 4

(2413) = i 02 0400 00915

(915) = 15690 17 07500

K1 = 1, M1 = 7500

(M1) = (7500) = 07501 18 07502

M2 = 7502 is selected

2 ----+ i

K2 = 5 t M2 = 7502

(B2) = (18) = 000000000008

M2 + (B2) = 7510

7510 ~~, 0~K2

K2 = 0, (M2) = 07513 22 07514

M3 = 7513 is selected

3 • i

IS = 6, M..3 = 7513

(B3) = (22) = 000000000012

M3 + '(B3) = 7525

7525 ----+ M3' 1 • IS
IS = 1, (M3) = (7525) =
07515 23 07516

M4 = 7516 is selected

4 .i

K4 = 9, M4 = 7516

(84) = (23) = 000000000013

M4 + (84) = 7529

7529 ----.-. M4, 4 ~ K4

M4 = 7529 is selected as address
to be used in original in­
struction.

Comments

M2 is modified
by B2 and becomes
M2 = 7510

K2-5~K2

B3 = 22

L2 = 7513

~ is modified by
?;3 and becomes
IYJ3 = 7525

IS - 5~IS
B4 = 23

R3 = 7516

M4 is modified by
84 and becomes
M4 = 7529

6-7

The time taken by an instruction which uses indirect addressing is
increBsed by the number of key digits used multiplied by 8 microseconds.
For example, a normal 4-microsecond instruction would need a total of 28
microseconds if three key digits were used. Note that the number of key
digits used includes the one that indicates that the address is the
operand address. There is no limit to the number of levels through which
the indirect-addressing chain may pass. The stall condition, which nor­
mally occurs if a new instruction is not read into IR2 within 3000 micro­
seconds is blocked during the indirect-addressing process.

The indirect-addressing mode of the Larc computer system can be used
to perform a table lookup operation. This process consists of locating a
given item in a table. The items in the table can bem consecutive or
random storage locations.

The procedure to follow in locating an item depends on the evaluation
of a series of criteria related to the item. Suppose, for example, a
table consists of people's names. The location of each item is determined
by the following classification in which each major classification is
divided into two classes:

(1) Sex: male or female

(2) Marital status: married or single

(3) Place of residence: east or west of the Mississippi River

(4) Initial letter of last name in the range: A-L or M-Z

(5) And so on.

The order of items in the table can be illustrated by the tree in
figure 6-2.

In order to locate a particular name in the table, it is necessary to
determine whether the person is male or female, married or single, lives
east or west of the Mississippi River, and so on. Each choice indicates
which branch of the tree is followed to reach the next choice pOint. Thus.
by always halving the chosen area of the table, the name is converged on.
This technique is particularly powerful if the examination of the criteria
is separated in time by many other calculations.

To use the indirect-addressing mode with this technique, three things
must be present in storage:

6-8

(1) The table

(2) A group of storage locations set aside to form a tree of loca­
tions. (The indirect-addressing mode travels down this tree
until it arrives at the proper entry of the table.)

(3) The key digits which indicate the branches of the tree to be
followed.

SEX

I
I I

MALE FEMALE

I I
I I I I

MARRIED SINGLE MARRIED SINGLE

I I I I
EAST OF WEST OF EAST OF WEST OF EAST OF WEST OF EAST OF WEST OF

~~;c;~~;r-;~;c;
A-L M-Z A-L M-Z A-L M-Z A-L M-Z A-L M-Z A-L M-Z A-L M-Z A-L M-Z

6155

Figure 6-2. Example of Classification Tree

A sample table is illustrated in table 6-1. The indirect-address
tree is illustrated in figure 6-3, and the contents of the corresponding
group of storage locations are shown in table 6-2. Figure 6-4 is a flow
chart which illustrates t~e sequence of testing the criteria, setting up
the appropriate key digits, and performing the actual table lookup oper­
ation. Following the flow chart is some sample coding which assumes that
the evaluation of the criteria (conditions 1, 2, and 3.) are indicated by
setting and resetting sense flip-flop 01.

6-10

Table 6-1. The Table

(04999) = the 000(0) entry of the table

(00063) = the 001(1) entry of the table

(12500) = the 010(2) entry of the table

(18732) = the 011(3) entry of the table

(04000) = the 100(4) entry of the table

(03000) = the 101(5) entry of the table

(03999) = the 110(6) entry of the table

(00062) = the 111(7) entry of the table

Table 6-2. Storage Locations for Indirect-Address Tree

(02833) = 04033 00 05010

(04033) = 0602200 03400

(06022) = 04999 00 00063

(03400) = 12500 00 18732

(05010) = 02399 00 02867

(02399) = 04000 00 03000

(02867) = 03999 00 00062

0"­
I

010 011 100

Figure 6-3. Indirect-Address Tree

101 110 111

1476

6-12

Set
Initial

Conditions

r---, 0---! C"P"to L __ .J

r---, 0---! Compute
L __ ..J

r---,
0---.j Compute

L __ ...J

False

False

False

Fetch from Table
according to K}K2K3

Figure 6-4. Determining Indirect Addressing Sequence

t477

10200

10205

10206

10207

10208

10209

10210

10310

10315

10316

10317

10318

10319

10320

Table Lookup with Indirect Addressing

· 430 200 1 2 5 2 5

· 950 100 1 o 2 0 8

· 430 2 0 U 12526

· 430 100 1 2 5 2 0

· 660 I o 0 1 2 5 2 7

.40 0 1 001 2 5 2 0

· 430 200 1 2 5 2 5

· 950 100 1 o 3 1 8

· 430 200 1 2 5 2 6

· 430 100 1 2 5 2 0

· 660 100 1 2 5 2 8

.40 0 100 1 2 5 2 0

Compute: Part of Computation
will set FFOI if first con­
dition is true. reset FFOI
if first condition is false.

Test Condition 1

Set K1

Compute: Part of computation
will set FF01 if second con­
dition is true. reset FF01
if second condition is false.

Test Condition 2

Set IS

6-13

10421

10426

10427

10428

10429

10430

10431

10552

12520

12525

12526

12527

12528

12529

6-14

Table Lookup with Indirect Addressing

· 430 200 1 2 5 2 5

· 950 100 104 2 9

· 430 200 1 2 5 2 6

· 430 1 o 0 1 2 5 2 0

· 660 100 1 2 5 2 9

.40 0 1 001 2 5 2 0

i 430 200 1 2 5 2 0

4 4 4 4 0 000 2 833

111 o 0 0 0 0 0 000

00000 000 0 0 0 0

1 0 000 0 0 0 0 000

o 1 000 0 0 0 0 0 0 0

o 0 1 0 0 0 0 0 0 000

Compute: Part of computation
will set FFOI if condition 3
is true, or reset FFOI if
condition 3 is false.

Test condition 3

Set ~

Fetch entry from table

K = 1

K = 0

Extractors for Kl

Extractors for IS
Extractors for IS

SECTION 7

CONTINGENCIES, ERRORS, AND TRACING MODES

7 -1. INTRODUCTION

Included in the Larc computing system are circuits for automatic de­
tection of error conditions. The occurrence of an error condition in the
system sets a flip-flop and causes a transfer of control to a predetermined
location where the programmer places coded instructions to handle the con­
dition. Error conditions can be divided into those caused by programming
mistakes and those caused by machine faults; the former are termed con­
tingencies, the latter, errors. (Certain programming mistakes also re­
sult in error indications. These mistakes are noted in paragraph 7-4.)

Contingency and error conditions are discussed in paragraphs 7-2 and
7-4. These paragraphs also include brief descriptions of the contingency
and error flip-flops and of suitable contingency and error routines, which
will in many cases automatically correct the contingency and error con­
ditions.

The section concludes (paragraph 7-6) with a detailed treatment of
the tracing modes and their application in monitoring the progress of
Computing Unit programs as they are running.

7-2. CONTINGENCIES

Contingency conditions can be either caused by programming error con­
ditions, or planned by the programmer when he wants automatic notification
of certain occurrences. The occurrence of each contingency condition
causes a flip-flop associated with the specific condition to be set. Set­
ting of this associated flip-flop causes the master contingency flip-flop
(FF99) to be set. Control is then automatically transferred to location
02701 and a return jump to the next main program instruction is recorded
automatically in location 02700. The programmer must place in location
02701, the first instruction (or a transfer thereto) of a routine to handle
contingency situations. Twenty microseconds is added to the time of the
instruction causing the contingency to allow for recording of the return
jump and transfer to the contingency routine.

7-1

The master contingency flip-flop is set after completion of the exe­
cution phase of the instruction causing the contingency. The result of the
instruction is stored before control transfers to the contingency routine.
The transfer of control occurs before execution of the next instruction;
however, if full overlap is achieved and a store instruction follows an
instruction which caused a contingency, the store instruction will be com­
pleted.

At the time control reaches the contingency routine, the instruction
causing the contingency is not contained in any of the instruction regis­
ters. It is accessible, however, because the return jump in 02700 contains
the address of the instruction following the one which caused the contin­
gency.

The master contingency flip-flop is automatically set when any of the
individual flip-flops are set; it is automatically reset when all of the
individual flip-flops are reset. The individual contingency flip-flops
provide for arithmetic contingencies (flip-flops 39 through 45). processor
intervention (flip-flop 11), and manual intervention (flip-flops 30 through
34).

The operation of the master contingency flip-flop can be varied by
controls Qn the engineer's console. These controls, marked CONTINGENCY
OPTION, consist of normal (N), ignore (I), and stop (5) pushbuttons. When
the N pushbutton is depressed, the contingency flip-flop operates as al­
ready described. If the I pushbutton is depressed, there is no transfer
of control to the contingency routine when flip-flop 99 is set. If the
5 pushbutton is depressed, the Computing Unit stops and there is no trans­
fer of control when flip-flop 99 is set.

The exact nature of the contingency routine may be varied from one
program to the next, since it depends, in part, on the methods used in the
particular program. In general, the routine will consist of a central con­
trol portion and a series of subroutines. The central control portion
will make the initial flip-flop tests to ascertain which contingency has
caused entrance into the routine. Control can then be transferred to the
subroutine written to handle the particular contingency. The function of
the subroutine depends on the contingency and the design of the main pro­
gram. In typical problems. the subroutine may print out the data which
caused the contingency. indicate the point in the program at which it
occurred, and (in some arithmetic contingencies) substitute a predeter­
mined quantity for the given (contingency-causing) result.

After a subroutine has completed its operation, it must arrange for
the individual flip-flop to be reset. If the given contingency were the
only one which occurred, the master contingency flip-flop would be reset
automatically. However, if several contingencies occurred, the master
flip-flop would remain set. The main control routine must therefore test
the master contingency flip-flop to determine if it remains set. If it
does, the flip-flops must be retested to determine which additional ones
are set. As each set flip-flop is discovered, the correction subroutine
is executed and the flip-flop is reset. This procedure is repeated until

7-2

all individual contingency flip-flops are reset, and the master contingen­
cy flip-flop is reset. Control is then returned to the main program
through the return jump recorded in 02700.

If a contingency occurs while the master contingency flip-flop is set
(control is in the contingency routine), the individual flip-flop is set,
but the return jump is not recorded. This insures that control will al­
ways return to the main program when the contingency routine is completed.
If the return jump were altered when a contingency occurred during the con­
tingency routine, the jump would be addressed to a location in the contin­
gency routine, and the main program address would be lost.

It is possible that if a given contingency occurs, the programmer
would not want a return to the main program. In this case, control would
not be transferred to the main program, but would be transferred to a rou­
tine that would wind up the program and bring in a new one.

NOTE

If a contingency or error occurs during the
execution of an instruction N and either
N + I or N + 2 is a halt instruction, control
transfers normally to the contingency or
error routine; however, depending on the type
of error and whether N + I and N + 2 are sub­
ject to any delay, the Computing Unit may
stop after completing the first instruction
in the subroutine.

The halt instruction has no effect on the
error routine if it follows an instruction
which is traced (FF20) or one in which occurs
a decoding error in tracing-mode selector
digit, (FF49); an instruction odd-even error,
(FF51); or a fast register odd-even error in
M-address modification, (FF53).

When any of the following individual flip-flops are set, the master
contingency flip-flop is also set, causing transfer of control to the con­
tingency routine. The flip-flops are as follows:

(1) Processor-intervention flip-flop, FFll.

(2) Console manual-intervention flip-flops, FF30 through FF34.

(3) Improper operand in arithmetic subtraction flip-flop, FF39.

(4) Zero floating-point adder result flip-flop, FF40.

(5) Non-normalized divisor flip-flop, FF41.

(6) Exponent overflow flip-flop, FF42.

(7) Exponent underflow flip-flop, FF43.

7-3

(0) Fixed-point overflow flip-flop, FF44.

(9) Sign-anomaly flip-flop, FF45.

7-3. CONTINGENCY FLIP-FWPS

Operation of the individual contingency flip-flops is described in
the following paragraphs. The conditions listed as causing the arithmetic
contingencies are representative but not exhaustive. Sign rules for all
instructions are covered in section 3.

PROCESSOR-INTERVENTION CO~~INGENCY FLIP-FLOP (FFll)

The processor intervention flip-flop is set by the processor program
when it requires certain Computing Unit functions or when it is necessary
to notify the Computing Unit of specific conditions in the processor. The
processor may require multiplication, division, or complex editing func­
tions from the Computing Unit, or may have a need to notify the Computing
Unit of the state of input-output operations or error conditions which
have occurred in the input-output equipment. Normally, the processor will
place in the contingency subroutine some notification of the condition
causing it to interrupt the Computing Unit program. This notification
may take the form of a transfer-of-control instruction placed in a fixed
location and addressed to a location containing the instructions for hand­
ling the specific condition. The Computing Unit contingency routine would
then transfer control to the instruction recorded by the processor. This
instruction would, in turn, transfer control to the instructions written
to satisfy the processor's requirements. In using this sort of communica­
tion, it is imperative, of course, that both the Computing Unit and pro­
cessor programs be designed to use the same locations for the same func­
tions; that is, if the processor places a transfer-of-control instruction
addressed to 01150 when a multiplication is required, the Computing Unit
program must include a multiplication routine in 01150. Agreement must
also be reached on the location of input and output for such an operation.

The programmer is cautioned against attempting to use one-line or
certain two-line loops to delay the Computing Unit operations while wait­
ing for processor notification (through intervention) of completion of
certain input-output operations. (Refer to paragraph 4-1.)

CONSOLE MANUAL-Il\TERVEi\1'rON O}NTINGENCY FLIP-FWPS
(FF30 THROUGH FF34)

Depressing one of the manual-intervention pushbuttons on the opera­
tor's console causes the corresponding manual-intervention flip-flop to
be set. The caution regarding one-line loops, discussed under processor
intervention, also applies to manual intervention. The use of the manual­
intervention pushbuttons and the use of FF30 with paper-tape-read opera­
tions is discussed in section 5.

7-4

IMPROPER OPERA~'D IN ARITHMETIC SUBTRACTION CONfINGENCY
FLIP-FLOP (FF39)

This flip-flop is set during floating-point addition or subtraction
if one of the operands is not in proper form, that is, not normalized. The
flip-flop is set, for example, when the following conditions occur simul­
taneously in an addition:

(1) Unequal exponents.

(2) Unlike signs.

(3) Magnitude of number with larger exponent is less than that of
number with smaller exponent. (This implies that the number
with the larger exponent is not normali2ed. The other number
mayor may not be normalized.)

If the flip-flop is not set when the operand is not normalized, then
the result is correct. If the flip-flop is set, the result obtained from
such an operation is meaningless.

ZERO FLOATING-POINT ADDER RESULT CONTINGENCY FLIP-FLOP (FF40)

This flip-flop is set during floating-point addition and subtraction
operations when the result is zero. It also occurs in conversion from a
fixed to a floating-point instruction if the number to be converted is
2ero.

NON-NORMALIZED DIVISOR CO~1'INGENCY FLIP-FLOP (FF 41)

This flip-flop i~ set during floating-point division if the divisor
is 2ero or if it is not normali2ed.

EXPONE~T OVERFLOW CO~1'I~GENCY FLIP-FLOP (FF42)

This flip-flop is set during any floating-point arithmetic operation
if the excess-50 exponent of the result exceeds 99.

EXPONENT UNUERFLOW CONTII\GENCY FLIP-FLOP (FF43)

This flip-flop is set during any floating-point arithmetic operation
or fixed-to-floating-point conversion operation if the excess-50 exponent
of the result is less than 00. This flip-flop is also set if in floating­
to-fixed-point conversion operations the scale factor is less than the ex­
ponent. In this case, significant digits will be lost.

FIXED-POINT OVERFLOW CONTINGENCY FLIP-FLOP (FF44)

This flip-flop is set during fixed-point addition, subtraction, or
division operations if the absolute result is equal to or greater than 1.
In all such cases (except division when the divisor is equal to or less
than the dividend) the result is equal to the true sum minus 1. In the
division case cited, the result is incorrect and meaningless.

7-5

This flip-flop is also set during a shift-left instruction if the
number of shift places is greater than the number of significant zeros in
the number to be shifted. This means that significant non-zeros are
shifted off.

SIGN-ANOMALY CDNTINGENCY FLIP-FLOP (FF45)

This flip-flop is set when the rules governing the sign digit have
been violated.

7-4. ERRORS

An error condition in the Larc Computing Unit causes an error flip­
flop associated with the particular condition to be set. An error will
usually be traced to a machine fault, but a programming mistake may cause
errors in certain cases; for example, if a program attempts to store in­
formation in a nonexistent fast register or storage location, or if the
operands in an arithmetic operation are not numeric, errors will result.

The setting of one or more error flip-flops will cause the master
error flip-flop (FF90) to be set. The master error flip-flop will be set
during the result phase of an instruction; this instruction will normally
be the instruction in which the error occurred, but may be some other in­
struction. This will result in an automatic transfer of control to the
instruction in location 02601. (The programmer should store, in the area
of core storage beginning at location 02601, a routine to handle errors.)
When the transfer of control to location 02601 takes place, a return jump
to the main program will automatically be stored in location 02600. This
jump instruction will be of the form 9 90 00 00 MMMMM, where M is normally
the address of the instruction following the one in which the error occur­
red. When an error occurs, an additional 20 microseconds are taken by the
computer in storing the return jump and transferring control to the error
routine. (See Note, page 7-3.)

The master error flip-flop will not necessarily be set immediately
after the execution of the instruction causing the error. (The address
stored in location 02600 is therefore not necessarily the address of the
instruction following that which caused the error.) Table 7-1 is a guide
for the programmer indicating the range of possible addresses stored in
location 02600. In this table E signifies the address of the instruction
caus ing the error. Two of the error fl ip-flops, (FF38 and FF84) , are not
listed in the table. In the case of these two flip-flops, the address
stored in location 02600 will have a special meaning which will be dis­
cussed when the flip-flops are described in detail in paragraph 7-5.

7-6

Address

FF Number

Table 7-1. Contents of 02600
After Transfer to 02601 Occurs

E-2 E-l E E+l

50,56,57,58 20; 46 thru 70

E+2

46,50

An error routine will usually attempt to find out the cause of an
error and print out any relevant data. The following remarks will be use­
ful in attempting to analyze this data. The instruction which is in its
result phase when the master error flip-flop is set will be prevented from
storing a result in a fast register. (However, if this instruction stores
a result in a storage location it will be completed.) If the next instruc­
tion is a store instruction, and is in its execution phase when the master
error flip-flop is set, it will be completed.

There are 28 error flip-flops in the Computing Unit. One of them
(FF20) is the enter-tracing-mode flip-flop which is automatically set when
an instruction is decoded which has a tracing digit corresponding to a set
selected-tracing-mode flip-flop (covered in paragraph 7-6). Each of the
other error flip-flops is used to indicate an error condition.

Any of the 12 "digit flip-flops" (FF7l through FF82) may be set, in
addition to the error flip-flops, when certain errors occur. The setting
of one of 'these flip-flops indicates an incorrect bit pattern in the cor­
responding digit position of an operand or a result, but will not of it­
self cause the master error flip-flop to be set. However, it is not pos­
sible for a digit flip-flop to be set without some error flip-flop first
being set.

The master error flip-flop is automatically set when any of the in­
dividual error flip-flops are set and is automatically reset when all of
the individual error flip-flops are reset. Flip-flop 84 is an exception
to the general rule. It is discussed separately later on in this section
in the detailed list of error flip-flops.

Error flip-flops 52 and 59 through 70 (which include all the arith­
metic flip-flops and two flip-flops connected with inputs to the arithmetic
unit) have the following special property: if one or more flip-flops in
the group are set (several flip-flops in the group may set simultaneously),
the other flip-flops in the group are subsequently prevented from setting.

One or more of the 12 "d·igit flip-flops" (FF7l through FF82) will be
set when any of the following error flip-flops are set: FF51 through FF55 ,
FF59, FF60, FF67 , FF68 and FF70. However, once one of these error flip­
flops has been set and the relevant digit flip-flops have also been set,
no subsequent error will alter the state of the digit flip-flops.

No fixed rules can be given for the organization of an error routine;
however, the f~llowing outline may be of assistance to the programmer.

7-7

Since the enter-tracing-mode flip-flop (FF20) causes a transfer to the
error routine. the routine must test this flip-flop and transfer control
to the tracing routine if it is set. This subject is discussed in para­
graph 7-6.

The error routine must also test all error flip-flops and digit flip­
flops. and list those which have been set. Details of the error should be
printed on the console printer. Such details might be the flip-flops
which were set. the address of the instruction causing the error. the in­
struction itself, and the addresses and contents of registers or storage
locations relevant to the instruction.

When all the error flip-flops have been reset and details of the
error have been printed out, the error routine may attempt to repeat the
instruction causing the error, if this is possible. If the instruction is
repeated without error, then control may be transferred to the main program
using the jump instruction stored in location 02600. This approach will
only be useful if the error was caused by an intermittent machine fault.
If it is impossible to repeat the instruction or if the error occurs a
second time, ~e error routine may either stop the computer or cause the
processor to bring in a new program.

If an error and a contingency occur simultaneously, both the master
error flip-flop (FF98) and the master contingency flip-flop (FF99) will be
set, but control will be transferred to tne error routine and the return
jump will be stored in location 02600. Hence. when the error routine has
completed testing the error flip-flops. it must also test flip-flop 99.
the master contingency flip-flop. If flip-flop 99 is set, control must be
transferred to the contingency routine; however, the programmer should
note that if an error occurs in the contingency routine, the error circuits
will function in the normal way and a transfer to the error routine will
occur. In this case also, the error routine will find that flip-flop 99
is set. These two situations require the following different treatments
by the error routine:

(1) If flip-flop 99 is set and the address in 02600 is a main pro­
gram address, store the instruction located in 02600 in loca­
tion 02700 and transfer control to 02701.

(2) If flip-flop 99 is set and the address in 02600 is a contingency­
routine address, execute the jump instruction located in 02600
and leave the contents of 02700 unchanged.

In both of these cases, it is assumed that the error routine has com­
pleted its work satisfactorily and has successfully repeated the erroneous
instruction.

There is a possibility for a contingency to occur in the error rou­
tine while the master error flip-flop is still set. The master contingen­
cy flip-flop will then be set but no transfer to the contingency routine
will occur. This situation will be indistinguishable from case I above.
This however is not likely to cause trouble, as normally the error routine

7-8

results in a contingency only when it is attempting to repeat the erroneous
instruction in the main program, in which case the procedure outlined in
(1) will be satisfactory. In any event, a contingency in an error routine
is an unlikely occurrence.

When the error routine has reset all the error flip-flops, the master
error flip-flop will automatically be reset. Once this has occurred an­
other error will result in a transfer of control to 02601 and the storing
of a return jump in 02600. Unless precautions are taken, the return jump
to the main program which was originally stored in location 02600 will be
destroyed by such a sequence. This eventuality may be avoided by causing
the error routine to test the address in 02600 at the beginning of the
routine. If, after test it is found not to be an error-routine address,
the instruction in location 02600 should be preserved in a special loca­
tion; however, if it is an error-routine address, the instruction in loca­
tion 02600 should not be preserved in the special location. This organi­
zation of the error routine will ensure the preservation of the return
jump to the main program. Note that if an error occurs while the master
error flip-flop is still set, the computer will automatically stop. This
condition is known as a second-error stop.

Although not normally of use to the programmer, two special modes of
operation are available for handling errors. Mode selection is controlled
at the engineer's console by three adjacent CHECK OprrON pushbuttons.
These pushbuttons, which are individually marked N (normal), I (ignore).
and S (stop). control the operation of the error circuits as follows:

(1) N: the error circuits operate as previously explained.

(2) I: if errors occur and flip-flop 98 sets, control will not trans­
fer to the error routine. The Computing Unit program will con­
tinue without interruption.

(3) S: if errors occur and flip-flop 98 sets, the computer will stop.
The computer may be restarted by manually resetting the error
flip-flops and depressing the START pushbutton.

7-5. ERROR FLIP-FWPS

The operation of the individual error flip-flops is described in the
following paragraphs. The treatment is not exhaustive and attempts prima­
rily to explain how a programming mistake may set a particular error flip­
flop. Further details about the error flip-flops and machine faults are
found in the logic manuals covering the control system and the arithmetic
system.

Setting any of the 20 error flip-flops listed, unless otherwise
stated, will set the master error flip-flop and cause an automatic trans­
fer of control to the instruction in location 02601.

7-9

ENTER TRACING MODE FLIP-FLOP (FF20)

Flip-flop 20 is set when the instruction to be executed has in its
tracing mode position a digit which corresponds to a set selected-tracing­
mode flip-flop (FF21 through FF29). Control is transferred to the error
routine before the instruction is executed. When FF20 is set, the address
recorded with the return jump in location 02600 is always that of the in­
struction following the one with the selected tracing mode digit.

IMPROPER-TAPE ERROR FLIP-FLOP (FF38)

ThiS flip-flop is set if the paper tape reader attempts to read a
transmit symbol when the operation is being controlled by the Computing
Unit through flip-flop 90. When flip-flop 38 is set, the Computing Unit
will normally be executing a sequence of instructions. The error will in­
terrupt the sequence and transfer control to the error routine. The ad­
dress stored in location 02600 will be the address of the instruction fol­
lowing the last one completed before the transfer of control took place.

STALL ERROR FLIP-FLOP (FF46)

A stall error can occur when the control unit sends a call for the
contents of a core storage location and no memory-not-busy signal is re­
ceived. If at the end of 3 milliseconds the control unit is still waiting
for the signal, FF46 will be set. The stall error will occur if the modi­
fied M address of an instruction exceeds Lim M. The error will also occur
if an attempt is made to transfer control to an instruction in a fast re­
gister.

CONTROL ERROR FLIP-FLOP (FF47)

If an instruction tests, sets, or resets a nonexistent flip-flop,
error flip-flop 47 is set. Flip-flop 47 is also set if an instruction
tests, sets, or resets an existing flip-flop and for some reason the exe­
cution of the instruction is not completed (refer to paragraph 5-9).

FAST-REGISTER CONTROL ERROR (ON RESULT TI~lli) FLIP-FLOP (FF48)

This flip-flop is set only as a result of machine error.

OEroOING ERROR (IN TRACING-MOOE SELECTOR DIGIT) FLI P-FLOP (FF 49)

This flip-flop is set if the tracing digit of the instruction being
executed is (0), <td, (-), (+), or is not a legitimate Larc character.

B ADDER ODD-EVEN ERROR (ON INSTRUCTION OR OPERAND CALL)
FLIP-FLOP (FF50)

This flip-flop is set when the output from the B adder on an operand
or instruction call contains odd-even errors. This flip-flop will be set
if the M address or modifier of an instruction contains non-numeric
characters.

7-10

I~STRUCl'ION ODD-EVEN ERROR FLIP-FLUP (FF51)

This flip-flop is set when the instruction called contains an odd­
even error.

OPERA1~D ODD-EVEN ERROR FLIP-FLOP (FF52)

If an operand called from memory contains odd-even errors, flip-flop
52 is set.

FAST REGISTER ODD-EVEN ERROR (IN M-ADDRESS MOOIFICATIO\,\)
FLIP-FWP (FF53)

This flip-flop is set when M-address modification is attempted using
a B modifier which contains odd-even errors.

FAST REGISTER ODD-EVEN ERROR (ON TIME SLOT M)
FLIP-FLOP (FF54)

If odd-even errors exist in the contents of the fast-register operand
read out on the M slot, this error flip-flop is seto For example, the
flip-flop is set if an attempt is made to read from a non-existent fast
register or a fast register which contains odd-even errors.

FAST REGISTER ODD-EVEN ERROR (ON RESULT TI~E)
FLIP-FLOP (FF55)

This flip-flop is set if an attempt is made to store in a non-existent
fast register or in a fast register which contains characters with odd­
even errors.

B ADDER ODD-EVEN ERROR (ON OUTPUT TO CI, TO HIGH-SPEED BUS.
OR TO ARITHMETIC UNIT) FLIP-FLOP (FF 56)

This flip-flop is set only as a result of machine error.

B ADDER ODO-EVEN ERROR (ON OUTPUT TO FAST-REGISTER SELECTOR,
TO SELECTOR STORAGE, OR TO M DIGITS OF IR2) FLIP-FillP (FF51)

This error flip-flop can be set by non-numeric characters appearing
in the At B, or M fields, or in the B modifier.

B ADDER ODD-EVEN ERROR (ON OUTPUT TO C2) FLIP-FLOP (FF58)

This flip-flop is set only as the result of machine error.

ADDER OUTPUT ODD-EVEN OR NOr\-NU~1ERIC ERROR FLIP-FLOP (FF59)

This flip-flop is set if non-numeric characters are added to other
characters in the adder. This flip-flop is also set if odd-even errors
exist in the output of the addero These conditions can occur in compari­
son, shift, conversion, index, or arithmetic instructions o

7-11

SHIFTER OUTPUT ODD-EVEN ERROR FLIP-FLOP (FF60)

If the signals which indicate how much to shift are lacking, error
flip-flop 60 is set. If a circular-shift instruction indicates a shift
greater than 24, error flip-flop 60 is set. (Refer also to FF63.) Flip­
flop 60 can also be set when non-numeric characters are present in nonsign
positions of operands in certain fixed-point and floating-point arithmetic
instructions. A non-numeric character in an indirect addressing key word
will also set flip-flop 60.

COMPARATOR ERROR (SINGLE-PRECISION DIVISION)
FLIP-FWP (FF6l)

This flip-flop is set only as a result of machine error.

MULTIPLIER, QCOTIENT, A~'D EXTRACTOR ERROR
FLIP-FLOP (FF62)

This flip-flop is set only as a result of machine error.

SHIFT CONTROL ERROR FLIP-FLOP (FF63)

If the shift digits in a circular-shift instruction specify a shift
which is greater than 24 places, error flip-flop 63 is set.

ADDER-OVERFLOW ERROR FLIP-FLOP (FF64)

This flip-flop can be set when non-numeric characters are present in
nonsign positions of operands in certain arithmetic and conversion instruc­
tions.

ARITHMETIC-UNIT PROGRAM COUl\TER Al\'O DECODER ERROR
FLI P-FWP (FF65)

This flip-flop is set only as a result of machine error.

ENDING-PULSE ERROR FLIP-FLOP (FF66)

This flip-flop is set only as a result of machine error.

All REGISTER ODD-EVEN ERROR FLIP-FLOP (FF67)

This flip-flop can be set if non-numeric characters are contained in
nonsign positions of the multiplier or divisor in fixed-point or floating­
point multiplication or division.

AD REGISTER ODD-EVEN ERROR FLIP-FLOP (FF.68)

This flip-flop is set only as a result of machine error.

7-12

SIGN DIGIT ODD-EVEN ERROR FLIP-FLOP (FF69)

When an odd-even error occurs in the sign position of the operand
read out on the M slot, error flip-flop 69 is set. Flip-flop 69 will be
set, for example, in a store instruction in which the A address exceeds
Lim A or in which the sign position of fast register A contains an odd­
even error.

A REGISTER OOD-EVEN ERROR (ON TIME SLOT A) FLI P-FLOP (FF70)

This error flip-flop is set when an odd-even error is detected in the
contents of a fast register when they are read out on time slot A. Flip­
flop 70 will be set, for exampic, in a single-precision, fixed-point add
instruction in which the A address exceeds Lim A or in which the contents
of fast register A include odd-even errors.

CYCLING-UNIT ERROR FLIP-FLOP (FF84)

This error flip-flop is set if the cycling unit stops or if there is
a component failure in the cycling unit.

The cycling unit provides the basic timing pulses for the Larc system
Computing Unit. If the cycling unit fails completely then flip-flop 84
will set and the computer will stall (FF46 will set); the lack of timing
pulses will prevent the setting of the master error flip-flop, control
will not transfer to the error routine, and nothing will be stored in loca­
tion 02600. If the cycling unit fails for only a short time and then re­
starts, flip-flop 84 will set and flip-flop 98 will set after the restart.
In addition, other error flip-flops will invariably be set. In any event,
control will be transferred to the error routine. The address stored in
location 02600 cannot be precisely defined in this case, but will be with­
in ~ne or two locations of the instruction that was in its execution phase
when the cycling unit failed.

It is possible for the programmer to set flip-flop 84 by means of a
set-flip-flop instruction. In this case, the master error flip-flop will
not be set and control will not be transferred to the error routine. ~ote

however, that if flip-flop 84 is set and the master error flip-flop is
also set, then the latter flip-flop will not reset until flip-flop 84 is
reset.

7-6. TRACING MODES

It is well known that a computer program will rarely work correctly
the first time it is run. Sometimes programmers may write short programs
which are free of errors, but in a complex program of any length, it is
usual for numerous typographical errors and mistakes in program logic to
remain even after the program has been checked visually many times.

7-13

The remaining errors in a program must be discovered by running the
program on the computer, usually with a set of test-data. Typographical
errors and many mistakes in program logic will often result in machine
errors or contingencies. In the Larc Computing Unit the occurrence of
errors or contingencies will transfer control to special routines which
will print out information relating to the errors or contingencies. Using
the printouts, the programmer should be able to correct the more obvious
programming mistakes.

Some programming mistakes cannot be so easily corrected. For example,
if a typographical error in a program results in an erroneous jump, a
machine error might occur many instructions after the mistake in the pro­
gram. Or, as another example, a program might appear to run without
error, but produce incorrect results. In these cases it would be useful
to be able to monitor the progress of programs as they are running. This
facility is provided in the Larc Computing Unit in the form of tracing
modes.

Normally, a Larc Computing Unit instruction word will- have a period
in the most significant, or tracing digit, position. When such an in­
struction is decoded, it will be executed normally. If a programmer wishes
to monitor a program he will place one of the digits 1 through 9 in the
tracing-digit position of selected instructions, and at the beginning of
his program he will set the corresponding selected-tracing-mode flip-flop
(FF21 through FF29). When an instruction with one of the digits I through
9 is decoded and the corresponding selected-tracing-mode flip-flop is set,
the execution of the instruction will be inhibited and the computer will
operate in the selected tracing mode. In detail, what happens is this:
the control circuits set the enter-tracing-mode flip-flop (FF20). A skip
is then inserted automatically into IR2 and executed. While the skip is
being executed the master error flip-flop (FF98) is set, and control is
transferred to the error routine in the normal way. The error routine
entry (location 02601) is used as a common entry point for the error and
tracing routines. Computing Unit control is transferred to the instruction
in location 02601 and a return jump to the main program is stored in loca­
tion 02600a This jump is of the form 9 90 00 00 MMMMM, where M is the
address of the instruction following the instruction being traced.

After testing the various error flip-flops, the error routine must
test flip-flop 20 and. if it is set, transfer control to the tracing rou­
tine. The tracing routine may be written by the programmer to suit the
special purposes of his program. The organization of such a routine might
be as follows: After preserving the return jump instruction stored in
location 02600, the tracing routine should reset the enter-tracing-mode
flip-flop; then, if no error flip-flops were set, the master error flip­
flop would automatically reset. (The jump instruction must be preserved
so that a possible error in the tracing routine will not destroy it.) The
routine should next bring from storage the instruction being traced.
After examining the tracing digit of the instruction to see which traCing
mode is required, the routine should change the tracing digit to a period
and cause the instruction to be executed. The tracing routine should then
transfer control to a subroutine corresponding to the particular tracing

7-14

mode. This subroutine might then cause the processor to print out in­
formation required by the programme~ for the monitoring of his program.
Such information might be intermediate results, contents of fast registers,
the states of counters, etc. After the tracing routine has completed its
monitoring work, it may transfer control back to the main program by exe­
cuting the jump instruction which was originally stored in location 02600,
and was later preserved by the tracing routine. If flip-flop 29 is set,
however, the tracing digit (9) in the jump instruction must be replaced by
a period before the jump is executed. Otherwise, control will be trans­
ferred immediately back to the error routine and tracing routine.

There are two things the programmer must be aware of when using the
tracing routine. First, the tracing routine must reset flip-flop 20 which
will automatically reset the master error flip-flop (provided that no
error flip-flops are set). If this is not done, the occurrence of an
error or the tracing of another instruction will cause the computer to
stop. This stop is known as a second-error stop. Secondly, if a set flip­
flop instruction sets one of the selected-tracing-mode flip-flops (FF21
through FF29) , the two instructions immediately following the set-flip-flop
instruction cannot normally be traced in that particular mode. The reason
for this is that by the time the flip-flop is set, the two instructions
will have already passed the point in their execution cycle where their
tracing digits are compared with the corresponding selected-tracing-mode
flip-flop. This is not a serious restriction because usually the re­
quired selected-tracing-mode flip-flops will be set at the start of a pro­
gram before any instruction is encountered which requires tracing. For
the same reason, if a reset flip-flop instruction resets one of the selec­
ted-tracing-mode flip-flops, the two instructions immediately following
the reset-flip-flop instruction can still be traced in that particular
mode.

A tracing digit in an instruction will have no effect unless the
corresponding tracing mode flip-flop is set. Accordingly, when a program
has been monitored and corrected by use of the tracing routine, it re­
quires only slight alteration to remove the tracing facility. The re­
moval of those instructions which set the selected-tracing-mode flip-flops
at the start of the program will prevent all tracing. The tracing digits
in instructions do not need to be changed to periods.

The discussion in the following paragraphs covers the special pur­
poses for which tracing modes I and q are used in the Larc computing sys­
tem.

Tracing mode I is used in conjunction with the engineer's console and
the visual-display registers for engineering monitoring of special regis­
ters and signals. The special use of tracing mode I is activated by set­
ting up the program display mode by controls on the engineer's console.
When the Computing Unit is operating in this mode, the decoding of an in­
struction with a I as the tracing digit will produce special displays in
the visual-display registers according to the engineer's needs. The ac­
tual tracing function in the Computing Unit is not affected in any way
by the program mode.

7-15

Tracing mode 9 may be used as a common printing routine for errors
and contingencies, as the return instructions stored in locations 02600
(for errors) and 02700 (for contingencies) have a 9 as the tracing digit.
If the error or contingency routine following resetting of the master
error or master contingency flip-flop executes the return instruction, and
flip-flop 29 is set, control will be transferred to the tracing routine
corresponding to digit 9. This routine should be so written that it
causes a printout of information previously stored in special locations
by the error or contingency routines.

If tracing mode 9 is used for this purpose, the error routine must
make special provision for preserving the return jump stored in location
02600. If this instruction is not preserved, the reentry to the error
routine caused by the decoding of tracing digit 9 will destroy the in­
struction and prevent a return to the main program. If the error routine
and contingency routine do not use tracing mode 9, the mode may be used by
the programm~r in the normal way.

The programmer should note that both the SLJ and the TR instructions
store jump instructions with a 9 tracing digit. If tracing mode 9 is used
as a print routine, these jump instructions will require special attention.

7-16

APPENDIX A

NUMERICAL LIST OF INSTRUCTIONS

This appendix contains a list of
Computing Unit instructions in
numerical order. The instructions are
listed by numeric code number, and the
information covers the mnemonic code,
symbolic notation, time of execution,
and a page reference to the text.

A-I

Numeric Mnemonic Symbolic Notation Time Page
Code Code (~s) Reference

00 SK Skip 4 3-68
(Cl) + 1 ---.. Cl

01 AX (M) + (A) -... A 4 3-13

02 A (M) (f) (A) ---. A 4 3-45

03 AM I(M) I ® (A) .. A 4 3-46

04 AU (M) (f) (A) -A+ 1 4 3-47

05 AAX (M') + (A') ---.. At 12 3-18

06 AA (M') ® (A') •. A' 16 3-55

09 FV If interlock set, 3-64
0--0 (500) --. 02650;
then (02650) --... A and
reset connect and inter-
lock FF's 4

If interlock reset,
M-C 12

11 NX -(M) + (A) ~ A 4 3-13

12 N -(M) (f) (A) -A 4 3-48

14 NU -(M) ® (A) ----. A + 1 4 3-48

15 NNX -(M') + (A') --. A' 12 3-19

16 NN -(M') ® (A') ~ A' 16 3-56

19 FVK If interlock set, 3-65
(1200) ---. 02650; then
(02650) ~ A and
reset connect and inter-
lock FF's 4

If interlock reset,
M-C 12

20 MXR [(M) x (A)] Rdd ----. A 8 3-14

21 MXE (M) x (A) ~ A' 12 3-15

22 MR [(M) <8> (A)] Rdd --. A 12 3-49

23 M (M) ® (A) ----. A 8 3-SO

A-2

Numeric Mnemonic Symbolic Notation Time Page
Code Code (~s) Reference

24 MU (M) ® (A) --. A + 1 ti 3-51

25 ME (M) ® (A) --. A' 12 3-52

26 MMX (M') x (A') --. A' 36 3-19

27 MM (M') ® (A') --. A' 36 3-57

29 SV If interlock reset, 3-65
(A) - 02650; then
(02650M) - 5UU 4

If interlock set,
M-C 12

30 DX (A) 7- (M) - A 32 3-16

31 DXE (A) + (M) - A 36 3-11
Remainder ---. A + 1

32 DR [(A) ® (M)] Rdd~A 28 3-53

34 DUR [(A) ® (M)] Rdd ---. A + 1 28 3-54

35 DDX (A .) 7- (M') - A ' 184 ~-20

36 DD (A') e (M') - A' 168 3-58

37 DSE (A •) ® (M) - A' 56 3-59

39 SVK If interlock reset, 3-66
(A) - 02650; then
(02650) --. l2DD 4

If interlock set,
M~C 12

40 S (A) - M 4 3-1

41 SN -(A) ~ M 4 3-8

42 SM \(A)\- M 4 3-8

43 F (M) --- A 4 3-11

45 SS (A) - M 8 3-9
(A + 1) - M + 1

46 SSN -(A) --. M 8 3-10
-(A+I) - M + 1

A-3

Numeric Mnemonic Symbolic Notation Time Page
Code Code (llS) Reference

47 SSM I(A)I ~ M
I (A + 1)\ --. M + 1

8 3-11

48 FF (M) ~A 8 3-12
(M + 1) ------. A + 1

50 CX (A) - FL ---. A - FX 4 3-61
M: scale factor

51 C (A) - FX ---. A - FL 4 3-61
M: scale factor

52 PR (A) x 10-M - A 4 3-36
(right shift M places)

53 PL (A) x 10M ----. A 4 3-37
(left shift M places

55 CCX (A')-FL-A' - FX 12 3-62
M: scale factor

56 CC (A ') - FX ----. A ' - FL 12 3-63
M: sca Ie factor

57· PPR (A') x 10-Ai ---. A' 8 3-37
(right shift M places)

58 PPL (A ') x 10M ~ A ' 8 3-39
(left shift M places)

59 PPC (A') x 10M ~ A' (circular) 12 3-40
(left circular shift)

60 EOP (M
I

) ---. AI 4 3-32

61 FA (M) ~ A
A A 4 3-32

62 EB (MB) - AB 4 3-32

63 FAB (MAB) ~ AAB 4 3-33

64 EM (M) - AM 4 3-33
M

65 EL (A - l)--.A 8 3-33
(M)

66 EU (A 1- 1) ------. A 8 3-34
(M)

A-4

Numeric Mnemonic Symbolic Notation Time Page
Code Code (l1S) Reference

70 TE (A) = (A + 1) ? 3-24

Yes: M-C 12
No: (C) + 1 ---. C 4

71 TG (A»(A+1) ? 3-26

Yes: M-C 12
No: (C) + 1 ----.. C 4

72 TZ (A) = 0 ? 3-27

Yes: M ~ C 12
NO: (C) + 1 ---. C 4

73 TGZ (A) > 0 ? 3-28

Yes: M ----.. C 12
No: (C) + 1 - C 4

74 TLZ (A) < 0 ? 3-29

Yes:M--"C 12
No: (C) + 1 --.. C 4

75 TTE (A .) = (A + 2') ? 3-30

Yes: M - C 16
No: (C) + 1 ---. C 8

76 TTG (A .) > (A + 2') ? 3-30

Yes: M ---. C 16
No: (C) + 1 ---. C 8

80 BIT (AL'l) + (AD) ----.. AL'l 3-41

(A)-I-A N N

New (AN) :I- 0; M-C 8

New (AN) = 0; (C) T 1 -- C 12

81 Bur (AL'l) - (AD) ---. AL'l 3-42
(A) - 1 ----. A N . N

New (AN) ¢ 0; M-C 8

New (AN) = 0; (e) T 1 ---.. e 12

A-5

Numeric Mnemonic Symbolic Notation Time Page
Code Code (11 5) Reference

82 BIC (A6) + (Au) --. A6 3-43
(A)-l------A N N

New (AN) = 0; M------ C 12

New (AN) "I 0; (C) + 1 ----. C 4

83 BDC (A6) - (AD) ----. A6
3-43

(A) - 1 ----. A
N N

New (A) = 0;
N

M ---. C 12
New (AN) :f. 0; (C) + 1 --. C 4

85 BI (A6) + (AD) ----. A6 4 3-41

86 BD (A6) - (AD) ---. A6 4 3-41

90 T M --. C 8 3-21

91 TR 990--0 (C) + 1 ----... Ai 12 3-22
M+1----.C

92 TB (C) ----. AM 8 3-23
M-C

93 SLJ If M is storage location, 4 3-34
990--0 (C2) -- M
If M is fast register,
0--0 (C2) -- M

95 TF Test FF A: 3-67

If set, M - C 12
If reset, (C) + 1 ----. C 4

96 RF Reset FF A 4 3-68

97 SF Set FF A 4 3-68

99 H STOP - 3-69

A-6

APPENDIX B

ADDRESSABLE FLIP-FLOPS IN THE COMPUTING UNIT

Flip-Flop Title

00 ••• 09 Sense

10

11

15

20

Disclosure (can be tested and reset by
processor)

Processor-intervention contingency
(can be tested and set by processor)

Manual- and lOP-intervention inhibit

Enter tracing mode

21 ••• 29 Selected tracing mode

30 ••• 34 Console manual-intervention contingency

38 Improper-tape error

39 Improper operand in arithmetic sub­
traction contingency

40 Zero floating-point adder result
contingency

41 Non-normalized-divisor contingency

42 Exponent-overflow contingency

43 Exponent-underflow contingency

Controllable by
Computing Unit

Program Instruction

Test Reset Set

95

95

95

95

95

95

95

95

95

95

95

95

95

96

96

96

96

96

96

96

96

96

96

96

96

97

97

97

97

8-1

Flip-Flop

44

45

46

47

48

49

51

52

53

54

55

56

57

58

Title

Controllable by
Computing Unit

Program Instruction

Test Reset Set

Fixed-point overflow contingency 95

Sign-anomaly contingency 95

Stall error 95

Control error 95

Fast-register control error (on result
time) 95

Decoding error (in tracing-mode selector 95
digit)

B-adder odd-even error (on instruction or 95
operand call)

Instruction odd-even error 95

Operand odd-even error 95

Fast-register odd-even error (in 95
M-address modification)

Fast-register odd-even error (on time 95
slot M*)

Fast-register odd-even error (on result 95
time)

B-adder odd-even error (on output to 95
control counter 1. or to the high-speed
bus, or to the arithmetic unit)

B-adder odd-even error (on output to the 95
fast-register selector, or to selector
storage, or to the M digits of instruc-
tion register 2)

B-adder odd-even error (on output to 95
control counter 2)

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

• Time slot M is the time at which the contents of a fast register
are read out when addressed by the M digits of an instruction. In certain
instructions a fast register addressed by the A digits is read out on time
slot M.

B-2

Controllable by
Computing Unit

Flip-Flop Title Program Instruction

59 Adder output odd-even or non-numeric
error

60

61

62

63

64

65

66

67

68

69

70

71 ••• 82

84

90

98

99

Shifter output odd-even error

Comparator error (single-precision
division)

Multiplier, quotient, agd extractor
error

Shift-control error

Adder-overflow error

Arithmetic-unit program counter and
decoder error

Ending-pulse error

AH register odd-even error

AD register odd-even error

Sign digit odd-even error

A register odd-even error (on time
slot A*)

Odd-even error, digit position

Cycling-unit error

Start tape

Master error

~~ster contingency

Test

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

III Time slot A is the time at which the contents of a fast register
are normally read out when addressed by the A digits of an instruction.
Refer to note on FF54 •

•• Flip-flops 71 through 82 are automatically reset when all the
following error flip-flops are reset: 51 ••• 55; 59, 60, 67, 68, 70 •

••• FF98 is automatically reset when all of the error flip-flops (20,
38, 46 ••• 70, and 84) are reset.

**** FF99 is automatically reset when all of the contingency flip­
flops (11, 30 ••• 34, and 39 ••• 45) are reset.

Reset Set

96

96

96

96

96

96

96

96

96

96

96

96

**

96 97

96 97

**.

.***

8-3

APPENDIX C

REMINGTON RAND UNIVAC PROCESSOR PROGRAM

It is possible to write many different processor programs which are
specifically tailored for each program run on the computer; however, this
would be costly and time consuming. Because many input-output procedures
will not vary from one problem to the next, it is possible to write a
general-purpose processor program which will work relatively efficiently
for most applications.

Remington Rand has developed such a general-purpose processor pro­
gram. l In USIng this processor program, the Computing Unit programmer
writes summary orders to express commands to the processor. A summary
order is a pseudo-command to the processor, and indicates to the processor
program the exact series of opera~ions which must be performed. The pro­
cessor program picks up and analyzes the summary orders, and according to
the analysis, executes the required instructions.

This program occupies all of the first storage unit, which is perman­
ently interlocked against computer access. In addition, the program uses
the last 1500 words of the second storage unit. These locations should not
be altered by the computer program.

The first two digits of the summary order specify the type of opera­
tion to be performed; the remaining digits indicate which particular device
is to be used, which part of the device is involved, and what storage lo­
cations, if any, are involved. The exact format depends on the specific
summary order.

Summary orders are transferred to the processor in what are called
packets. A packet may consist of a single summary order or a group of
summary orders placed in sequential storage locations. An end-of-packet
word must be placed in the storage location immediately following the last
summary order in the packet. The end-of-packet word provides a means of
determining when summary orders which transfer data into or out of storage
have been completed. The time of completion of non-storage summary orders,
however, will not usually be of interest to the Computing Unit programmer.

1 H. Bruch, The Standard Processor Program, Remington Rand Univac
Division of Sperry Rand Corporation, 1961.

C-l

The processor performs these orders in sequence, but they do not affect
data or equipment required by the Computing Unit program.

The end-of-packet word can be in either of two formats: a computer­
check end-of-packet word or a processor-interrupt end-of-packet word.

The computer-check end-of-packet word is used when the Computing Unit
program is going to use the input-output data when it is free and able to
do so. The processor-interrupt end-of-packet word is used when the Com­
puting Unit intends to use the data from the summary orders as soon as it
is available. The processor-interrupt end-of-packet word provides the
Computing Unit program with immediate notification of the completion of sum­
mary orders through automatic transfer of control to that part of the Com­
puting Unit routine which is to handle the summary order information. The
end-of-packet word must be included even though there are no data-transfer
summary orders in the packet. If there are no data-transfer summary orders
the completion indication is made as soon as the summary orders have been
either executed or filed for execution. The computer-check end-of-packet
word has the following format:

o 00 00 00 MMMMM

where MMMMM is the address of a core-storage location in which the proces­
sor program stores a word made up of all zeros (.00000000000) when all stor­
age summary orders in the packet are complete. By checking MMMMM for zeros,
the computer program can determine when the summary orders have been car­
ried out. It is also possible to use MMMMM in the following manner: if the
programmer has a loop to perform while waiting for the summary orders to be
completed, he can use MMMMM as an unconditional-transfer-of-control instruc­
tion at the end of the loop; then, when the processor stores zeros in MMMMM,
it will function as a skip instruction, and control will pass to the in­
structions following MMMMM.

The processor-interrupt end-of-packet word has the following format:

. 90 00 00 MMMMM

where MM~~M is the address of a location to which control is to be trans­
ferred when the storage summary orders have been completed. This transfer
of control is effected in the following manner: when the summary orders
have been completed, the processor places the end-of-packet word
(. 90 00 00 MMMMM) in location 02799 and sets the processor intervention
flip-flop; the Computing Unit then enters the contingency routine, and
through the processor intervention subroutine, executes the
. 90 00 00 MMMMM instruction, transferring control to location MMMMM.

Note that digits 4 through 7 of both types of end-of-packet word must
be zeros. These digits are used by the processor program, and must not be
altered by the Computing Unit program until the processor has completed pro­
cessing the packet.

If a packet is to be used more than once, the programmer may list a
series of end-of-packet words after the packet, and each time the packet is
issued, a different end-of-packet word address is listed in the disclosure
word. An end-of-packet word which precedes the effective one is treated as
a skip summary order.
C-2

After the summary orders are placed in desired locations, the Comput­
ing Unit program places a disclosure word in storage location 02500 and
sets the disclosure flip-flop. When the processor finds the disclosure
flip-flop set, it picks up the disclosure word and resets the flip-flop.
After the flip-flop is reset, the computer can set it again for another
group of summary orders. The processor will not check the disclosure flip­
flop again until the current summary orders are being executed or are dis­
tributed to the appropriate files to await execution.

The disclosure word provides the programmer with one method of deter­
mining whether the program is in an endless loop. There are two forms of
the disclosure word, a primary disclosure word and a secondary disclosure
word. A primary disclosure word has the format 15 NNNNN MMMMM, and the
secondary disclosure word has the format 14 NNNNN MMMMM; NNNNN is the
address of the first summary order in the packet and MMMMM is the address
of the end-of-packet word. The processor records the time it picks up the
disclosure word. If it is a primary disclosure word, and there is no other
primary disclosure word given within 5 minutes of this time, there is a
printout on the console printer indicating this situation. The printout
will be repeated every 5 minutes until there is another primary disclosure
word.

If the disclosure word is a secondary disclosure word, and there is no
other secondary disclosure word given within 5 minutes, there will be a
printout on the console printer indicating this fact. In the case of the
secondary disclosure word, the printout is not repeated. The secondary dis­
closure word is generally used in a side routine being performed when the
main program does not occupy the full time of the Computing Unit. In this
situation, the programmer needs to be able to distinguish between a tieup
in a loop in the secondary program and a tieup in the main program.

The disclosure word printout is only effective in detecting loops
which do not include delivery of summary orders. This mechanism will not
be able to indicate a loop in which the same disclosure word is continually
being issued.

If it is important to the programmer to know if the last packet of
summary orders has been picked up, he can issue a pseudo-disclosure word
(OOOOOOOOOOOO or .00000000000) and set the disclosure flip-flop. The
processor does not examine the disclosure flip-flop and pick up a new dis­
closure word (and therefore does not reset the flip-flop) until the pre­
ceding packet has either been executed or distributed to the proper files.
Therefore, the program is aware that if the disclosure flip-flop is reset
(the disclosure word picked up) after the pseudo-disclosure word is issued,
the preceding packet has been filed or executed. The pseudo-disclosure
word, then, permits the programmer to check the progress of the last packet
without issuing any additional summary orders. The pseudo-disclosure order
does not initiate any other action in the processor.

After the processor has picked up the disclosure word, it begins to
execute the summary orders in the sequence in which they are listed. Ex­
ecution of a summary order may be delayed if the device it calls on or the
required synchronizer is already in use, or if the storage area it affects
is in use or reserved to be used by a prior summary order.

C-3

To ensure that the summary orders are executed according to the cor­
rect priority, the processor program keeps files (device files) of the
summary orders waiting to be executed. A device file is maintained for
each input-output device. As tha device completes one summary order, the
next summary order in the file is picked up and executed.

A storage-conflict file is maintained for summary orders which refer
to storage areas. The file consists of ten 3-word slots and one conflict
slot. The 3-word slots are used to contain the beginning and ending ad­
dresses of the storage area affected by the summary order and an instruc­
tion which is to be executed when the summary order is completed. This
instruction subtracts I from the summary order count connected with the end­
of-packet word. The conflict slot is used when the current summary order
refers to a storage area which overlaps with a storage area used by a pre­
vious uncompleted summary order. In this case, zeros are placed in the
current summary order's place in the device file. When the storage area is
released by the completion of the conflicting summary order, the current
summary order is removed from the conflict slot and placed in the device
file.

Figure C-I is a flow chart illustrating the steps by which a summary
order is executed or filed to await execution. It is not intended to show
details of procedures performed by the processor program.

As it stands, the processor program does not include any provision for
notifying the Computing Unit of errors it detects, except for the errors
discovered by the synchronizers which cause printouts on the console print­
er. The processor program does detect errors such as bad summary orders
and bad disclosure words, but as it is written, the program merely stops
the processor when such conditions occur. It is up to the individual pro­
grammer or installation to determine the method by which error information
is conveyed to the Computing Unit program. Processor and Computing Unit
programs must be written according to the same communication system. One
suggested method is as follows: store a list of instructions to transfer to
fixed locations. The fixed locations contain instructions for handling
specific errors. When an error occurs the processor program picks up the
appropriate transfer instruction, places it in a specified location in the
contingency routine, and sets the processor intervention flip-flop. When
this flip-flop is set, the contingency routine transfers control to the
specified location; control is then transferred to the appropriate instruc­
tions to handle the error.

The summary orders are listed in paragraphs £-1 through C-4, following,
according to the input-output device to which they apply. Miscellaneous
summary orders which do not apply to specific devices are listed in para­
graph C-S. An x in the format of a summary order indicates a digit posi­
tion which is not interpreted by the processor program; however. this posi­
tion must contain one of the digits 0 through 9.

The summary orders for each device are followed by gross timings for
phases of'the input-output operations. These timings are maximum timings
assuming the equipment is available. It would be misleading to give total
timing for each summary order, because the time is dependent upon the posi­
tion of the equipment at the time the order is received, and the amount of
movement re~uired to complete the order.

C-4

n
I

c.n

SO PACKET

PLACED IN

STORAGE AREA

RESET
DISCLOSURE

WORD

- 2500

CU SETS

DISCLOSURE FF

PROCESSOR

TESTS

DISCLOSURE FF

o ~ MMMMM

END-OF-PACKET

WORD - 2799

SET PROCESSOR­
INTERVENTION FF

PROCESSOR
PICKS UP

SUMMARY ORDER

STORAGE AREA FILED
IN STORAGE CONFLICT

CONTROL FILE

PLACE SUMMARY

ORDER IN

CONFLICT SLOT

PROCESSOR PROCEEDS TO OTHER

SUMMARY ORDERS. CURRENT SUMMARY

ORDER IS EXECUTED AFTER PREVIOUS

SUMMARY ORDER USING SAME STORAGE

AREA IS COMPLETED

DEVICE FILE

EMPTY?

NO

SET

PROCESSOR
PICKS UP

DISCLOSURE WORD

PROCESSOR

RESETS
DISCLOSURE FF

EXECUTE
SUMMARY ORDER

PROCESSOR GOES

TO SOME OTHER

INSTRUCTION SEQUENCE

FILE SUMMARY

ORDER IN
DEVICE FILE

PROCESSOR PROCEEDS TO OTHER

SUMMARY ORDERS. CURRENT SUMMARY

ORDER IS PICKED UP AND EXECUTED

WHEN DEV I CE I S FREE

Figure C-l. Summary Order Execution and Filing

6146

C-l. MAGNETIC DRUM SUMMARY ORDERS

The magnetic drum summary orders available to the Computing Unit pro­
grammer include instructions for reading, writing, positioning the head
assemblies, interlocking the drum, and setting up the drum format.

It is possible for the programmer to limit the effective number of
bands on each drum. If this is desired, he can give a drum-format summary
order specifying the number of bands to be used and the actual band which
is to be considered as the new 00 band. The drum-format summary order has
the following format:

93 000 DD SB x HB

where DD is the drum number, SB is the new starting band (new 00 band), and
HB is one-half the number of bands to he used. In addition to setting up
the drum format, this summary order causes the head assembly to be posi­
tioned over band SB. (Note that SB + HB must be less than, or equal to,
50.) If the complete drum is to be used, SB will equal 00 and HB will
equal 50. The format specified in this summary order will be in effect for
the given drum until another drum-format order is given.

Before a drum read or write instruction is given, the programmer must
be sure that the head assembly is positioned over the correct band. If the
head is not. correctly positioned, the programmer must first give one of the
summary orders which move the head assembly. The next-Iower-band summary
order has the following format:

94 xxx DD xxxxx
where DD is the drum involved. This summary order causes the head assembly
to be positioned over the next lower band. If the head assembly is already
over band 00, this summary order causes it to be positioned over the high­
est numbered band. Both the 00 band and the highest numbered band are in
accordance with the specifications in the most recently executed summary
order 93 for drum DD.

The next-higher-band summary order has the following format:

95 xxx DD xxxxx

where DD is the drum number. This summary order causes the head assembly
to be positioned over the next higher band on drum DD. If the head is al­
ready positioned over the highest numbered band, the order causes it to be
positioned over band 00. Both band 00 and the highest numbered band are
those specified by the most recently executed summary order 93 for drum DD.

The position-head summary order positions the head assembly of the
specified drum over the indicated band (relative to SB as specified in the
last summary order 93 from the drum). The format for this summary order is
as follows:

96 x BB DD xxxxx

where BB is the band <0 ~ BB ~ 2HB-l) and DD is the drum.

C-6

The read summary order causes the words of a specified number of sec­
tors to be read from the drum and transferred to sequential storage loca­
tions. The summary order has the following format:

8 55 NN DD MMMMM

where 55 is the starting sector, NN is the number of sectors to be read, DD
is the drum, and MMMMM is the first of the storage locations into which the
words are to be transferred. To read a full band in minimum time, 55NN
should equal 0025.

The write summary order has the following format:

9 55 NN DD MM~~M

where 55 is the first of NN sectors to be written on drum DD. The words
are written from sequential storage locations beginning with location MMMMM.
To write a full band in minimum time, 5SNN should equal 0025.

In order to prevent destruction of information which has been recorded
on the drum, the 'programmer gives an interlock summary order, which pre­
vents the execution of any future write summary orders addressed to the in­
dicated drum. This summary order has the following format:

98 xxx DD xxxxx

where DD is the drum number.

To remove the drum write interlock and permit write operations on the
interlocked drum, a remove-interlock summary order is given. The format
for this summary order is as follows:

99 xxx DD xxxxx
where DD is the drum number.

The following table shows the gross timing for selected drum opera­
tions:

Operation Time in
Milliseconds

Drum head step or jog 50

Drum head reversal 10

Drum revolution 68

Drum connect to synchronizer 10

Full band read or write 80

Sector processing time 2.7

C-7

C-2. MAGNETIC TAPE SUMMARY ORDERS

The first summary order which is given when a new tape (or Uniservo)
unit is used is one of the block-format orders. The fixed-block-length
summary order has the following format:

63 K L x ST xx WWW

and indicates that the length of all blocks on the tape will be equal to
~~WO core-storage words. The tape number is indicated by digits ST, where
S represents the synchronizer to which tape unit T is to be connected. If,
in a write operation, the space between blocks (SBB) is to be one inch,
L = 0; if the SBB is to be 2.4 inches, L = 1. In a read instruction, L
should equal 0 to read a Larc computer-generated tape, or 1 to read a
Univac computer-generated tape. The K digit indicates the type of transla­
tion to be performed. If K = 1, data read from the tape is translated into
Larc computer one-digit numeri~ code and data written on the tape will be
translated from this code. If K = 2, the Larc computer two-digit alpha­
numeric code is used in connection with the tape. The variable-block­
length summary order has the following format:

64 KL x ST MMMMM

and means that the blocks on tape ST are (or will be) of different lengths
(but always multiples of ten words). following read operations in the
variable mode, the address of the last location loaded, + 1 (+1 for a 73
instruction, -1 for a 74 instruction), will be deposited-in location MMMMM
(MMMMM ~ 05000). The format of the word in location MMMMM will be 0000000
(M' + BBBO) where M' is the beginning location and BBB the limit specifi­
cation in the read summary order. Digits K and L are interpreted as they
are in summary order 63. Block-length summary orders are in effect for all
other tape summary orders on a given tape until new block-length summary
orders are given for the same tape.

After the tape format has been established, the tape must be properly
positioned. If the tape is already in position, no summary order need be
given for this; otherwise, one of the two position-summary orders should be
issued. The position-forward order, has the following format:

71 CD x ST EEEEE

where EEEEE is the number of blocks through which tape ST is moved forward.
If the programmer wishes to check the readability of the tape, he sets
C = 0; otherwise, C = 1. A special positioning checker may be used for
checking tape readability if the programmer needs to use the synchronizer
to write on another tape concurrently with the checking operation. In this
case, he sets D = I; otherwise, D = 0, and synchronizer S is used for the
checking operation during which it is not free for either a read or write
operation. When two checking operations occur simultaneously, the longer
operation should be assigned to the positioning checker, so that the other
synchronizer performing the checking operation will sooner be free to per­
form read and write operations. (Note that the positioning checker should
not be used to check-read a Univac I tape.)

C-8

The position-backward summary order has the following format:

72 CD x 5T EEEEE

and moves tape 5T backward through EEEEE blocks. Digits C and D are in­
terpreted as they are in summary order 71.

The read summary orders are used to transfer data from tape into core
storage. The read-forward summary order has the following format:

73 BBB 5T MMMMM

In the fixed mode this order indicates that tape 5T is to be read in a for­
ward direction, and the data is to be stored in locations MMMMM to
MMMMM + BBBO - I, inclusive. In the variable mode it indicates that the
next block of data on Sf is to be read into storage locations beginning
with MMMMM. If the block extends beyond location MMMMM + BBBO - I, an
error is indicated.

The read-backward summary order has the following format:

74 BBB 5T MMMMM

This order is analogous to the read-forward summary order, but the tape is
read in backward direction and the words are stored in locations MMMMM to
MMMMM - BBBO + 1.

The two write summary orders are used to transfer data from the core
storage to tape. The write-density-200 summary order has the following
format:

75 BBB 5T MMMMM

and causes data to be written on tape at a density of 200 characters per
inch. (On Larc computer, serial 2 it writes at a 250 character-per-inch
density.) In the fixed mode, BBBO words are written from storage locations
MMMMM to MMMMM + BBBO - 1. A space between blocks is inserted after each
group of WWWO words, as specified in the block-length summary order. In
the variable mode, BBBO words are written as one block.

The second-write summary order has the following format:

77 BSB 5T MMMMM

This order is the same as summary order 75, except that the data is written
on tape at a density of 100 characters per inch. (On Larc computer, serial
2, the density is 125 characters per inch.)

C-9

In order to rewind a tape, the programmer issues one of the rewind
summary orders. These summary orders have formats as follows:

66 xxx 5T xxxxx

and

68 xxx 5T xxxxx

the 66 is a plain rewind order and the 68 is a rewind with interlock order.

The following table shows the gross timing for tape operations:

Operation Time in
Milliseconds

First block delay 1800

Tape reversal 800

Servo setup 10

Space between blocks:

(a) 1 inch 10

(b) 2.4 inches 24

Process 10 words on tape:

(a) 104 characters per inch 11.52

(b) 125 characters per inch 9.6

(c) 208 characters per inch 5.76

(d) 250 characters per inch 4.8

C-3. LINE PRINTER SUMMARY ORDERS

The page format on the line printer can be established in a summary
order which has the following format:

43 PP S SL xxx FL

where S is the printer number (5 or 6 for printer 1 or 2, respectively), ~p
is the number of lines on each page (normal size paper is 66 lines), SL the
number of the line to which each page is advanced before any printing oc­
curs, and FL the last line of printing on the page. FL must be greater
than SL. This summary order provides for automatic paper advance for the
situations when-less than full pages of printing is desired. If the pro­
grammer on occasion wants to print above line SL, he must then use summary
order 42 below, to position the paper. The processor program does not per­
mit any printing below line FL.

C-IO

The advance-paper summary order has the following format:

42 LL S xx xxxx C

If C = 0, the paper on printer S is advanced LL lines. If C = 1, the paper
is advanced to the top of the next page, then advanced LL lines.

The format for the print summary order is as follows:

40 NN SQ P MMMMM

The summary order causes a number of words of data to be printed on printer
number S. The words to be printed are those in storage locations beginning
with MI\1MMM. The paper is advanced Q lines (Q> 0) before each line is prin­
ted. (Q = 1 for single spacing, Q = 2 for double spacing, etc.) Digit P
indicates one of the following print modes:

1 = Numeric edited

2 = Numeric unedited

3 = Alphanumeric edited

4 = Alphanumeric unedited

The number of words that are printed is a multiple of the number of words
per line (np) which is fixed for each mode according to the following table:

~
1 11

2 10

3 22

4 10

The number of lines, K, (and, consequently, the total number of words)
which will be printed can be calculated from the following relationships:
K x np ~ NN x 10 and(K + 1) x np > NN x 10. The first relationship does
not hold in the case where np = 11 and NN = 1. In this case, K will equal
1 and K x np will be greater than NN x 10.

C-ll

The following table shows gross timings for on-line printer operations:

Operation

Print one line:

Time in
Milliseconds

(a) numeric 80

(b) alphanumeric 100

Advance paper one line 10

C-4. ELECTRONIC PAGE RECORDER SUMMARY ORDERS

In the following summary orders for the electronic page recorder, S,
Z, L, X, and Y must be expressed as a number of points in a 1000 x 1000-
point mesh. One normal line spacing is equal to 15 points.

The connect summary order must be given before the electronic page re­
corder can be used. This order has the following format:

59 xxxx C xxxxx

It causes recorder C to be connected to the synchronizer, and advances the
film.

If the programmer wants to alter the set spacing, he can execute a
line-spacing summary order which has the following format:

52 SSS xxxx ZZZ

where SSS is the number of spaces the beam is to be moved immediately and
ZZZ is the number of spaces to be left between succeeding lines or groups
of lines. ZZZ is counted from the first line of one group to the first
line of the next group. If S = 0, no immediate spacing is executed; if
Z = 0, there is no change in the spacing. The spacing indicated by Z is in
effect until another summary order 52 is given.

The position summary order has the following format:

53 x LLL XXX YYY

It causes the beam to be positioned at point XXX, YYY before each frame is
displayed. In addition, it indicates that the display is to be terminated
after line LLL (LLL < YYY) has been recorded, and at that point the film is
to be advanced and the beam repositioned at XXX, YYY. This summary order
is in effect for all print orders until a new 53 order is given. The check
to determine whether line LLL has been reached is made after each group of
W x 10 words (see summary order 50 following) has been displayed. There­
fore, if W > 1, it is possible to record beyond line LLL.

C-12

If the display is to be in the plotting modes, the plotting character
must be selected. This is done in the select-plotting-character summary
order, which has the following format:

56 xxxxxxxx KK

where KK is the character to be used. Character KK, which must be alpha­
numeric, is used for all plotting until a new plotting character is speci­
fied.

The summary order for printing or plotting has the following format:

50 BBB W P MMMMM

where BBB x 10 words are to be printed or plotted, beginning with the word
in location MMMMM. If the display is printed rather than plotted, it ap­
pears in groups of W x 10 words. (In the alphanumeric modes, a word is 12
digits long as a data word, but only 6 characters long as a printed word.)
For the plotting modes, W must equal O. The mode for the display is indi­
cated by P, where P can have one of the following values and meanings:

1 = Numeric edited mode

2 = Numeric unedited mode

3 = Alphanumeric edited mode

4 = Alphanumeric unedited mode

5 = Graphing with the X and Y coordinates for two points contained
in each data word. The format of the data word is
XXXYYYX'X'X'Y'Y'Y'.

6 = Graphing with the X and Y coordinates for a single point con­
tained in two successive data words. The format for a pair of
data words is xxxXXXxxxxxx and xxxYYYxxxxxx.

7 = Plotting vertical grid lines with two abscissas for two full­
length vertical grid lines contained in each data word. The
data words are in the format, VVVxxxV'V'V'xxx.

8 = Plotting horizontal grid lines with two ordinates for two full­
length horizontal grid lines contained in each data word. The
data words are in the format, xxxHHHxxxH'H'H'.

The contents of each line in a group of words being printed are depen­
dent upon the mode. In the edited modes, the characters are printed one
after another for a maximum of 125 characters to a line. A word can be
broken between the end of one line and the beginning of the next. Spacing
is inserted only as indicated in the data words. If an end-of-line symbol
is reached, the program will adjust its counters as if it had completed
printing a block of ten words. This must be kept in mind when specifying
W in the alphanumeric edited mode. Note that to allow the printing of a
full line (twenty 6-character words) in the alphanumeric edited mode, W
must equal 2. Within a group of W x 10 words, the line spacing is the nor­
mal 15 points to a line. However, between groups of words the spacing is
determined by ZZZ as specified in the last summary order 52. Lines within

C-13

a group are printed starting at the left margin (X = 0); however, the
first line of a group is indented to the value of X specified in the last
summary order 53.

The print-or-plot-and-advance summary order has the following format:

51 BBB W P MMMMM

This summary order is the same as summary order 50 except that after the
display the film is advanced and the beam repositioned to XXX, YYY as spec­
ified in the last summary order 53.

To open the shutter of the Polaroid Land camera, the programmer gives
the open-shutter summary order, 57 xxxxx xxxxx.

For the data to be recorded on the film, this summary order must be
given before the print or plot summary order for the desired data is given.
The close-shutter summary order, in the format 58 xxxxx xxxxx is given
after the print or plot summary order. To operate the Polaroid camera,
the programmer need only surround the appropriate print or plot order
with the open- and close-shutter orders. The timing problems are handled
by the processor program. A printout on the console printer notifies the
operator to pull the developing tab on the camera.

The following table shows the gross timing for the electronic page
recorder operations:

C-14

Operation

Camera movements:

(a) Advance film (35 mm)

(b) Open shutter (Polaroid)

(c) Close shutter (Polaroid)

Print 10 words:

(a) Modes 1 and 2 (120 characters)

(b) Modes 3 and 4 (60 characters)

Plot 10 words:

(a) Mode 5 (20 points)

(b) Mode 6 (5 points)

(c) Modes 7 and 8 (20 grid lines)

Time in
Milliseconds

100

110

110

9

4.5

4

1

12

C-S. MISCELLANEOUS SUMMARY ORDERS

If the programmer wants to prevent the computer program from writing
in a given core-storage unit, he executes a storage-unit-write-interlock
summary order. This summary order has the following format:

08 xxx xx MMMMM

where MMMMM is any storage location in the 2500-word storage unit to be in­
terlocked. To remove this interlock, the programmer executes a remove­
interlock summary order with the following format:

09 xxx xx MMMMM

If the storage location in summary order 09 is in the same storage unit as
the processor program, the operator will be notified to this effect by a
printout on the console printer.

A storage-interlock summary order prevents the execution of any sum­
mary order which would alter the contents of a specified storage area.
This summary order has the following format:

28 NNNNN MMMMM

where NNNNN is the first location and MMMMM the last location of the pro­
tected area. If the processor program receives a summary order which would
alter the specified area, it records in location 02799 a transfer of con­
trol to NNNNN and sets the processor intervention flip-flop. (This assumes
that the processor intervention subroutine in the contingency routine will
include a control transfer to location 02799, and that location 02799 will
cont~in instructions to handle the clnflict situation.) At anyone time,
only one storage area may be interlocked by a summary order 28. In addi­
tion, this interlock can be removed only by issuing another summary order
28. If the programmer wants to remove this interlock without interlocking
another storage area, he can address a summary order 28 to an area occupied
by the processor program. Because this area is interlocked anyhow, the pro­
grammer will not be affecting usable storage.

To instruct a console printer to print, the programmer issues a sum­
mary order in the following format:

20 NN 0 W P MMMMM

This summary order causes a carriage return on printer 0, followed by a
printout of NN words of data beginning with the word stored in location
MMMMM. For the engineer's console printer, 0 = 1; for the operator's con­
sole printer, 0 = 2. The printing is done in mode P, with P equal to one
of the following:

I = Numeric edited mode

2 = Numeric unedited mode

3 = Alphanumeric edited mode

After every W words (W = I through 9) a carriage return is executed, except
that in mode 3 carriage returns are indicated in the data words. Note that

C-IS

100 millise~onds is required to print one character on the console printer.
Carriage return time may take as long as 1/2 to 1 second.

If either numeric mode is specified, the processor program translates
each digit of the data words into the two-digit code required by the prin­
ter. In mode 1, the printer prints digits 0 through 9 and the symbols (+),
(-), and (.). The code for space (A) and ignore (,) are translated into
the codes for the corresponding printer actions. Mode 2 differs from mode
1 only in that the codes for space and ignore cause the printing of the
appropri~te character rather than a printer action. In mode 3 the data
must be prepared in the two-digit code listed in table C-l. The only
printer function codes which may appear in the data in mode 3 are 35
(carriage return), 55 (tabulate), 15 (ignore), and 16 (space).

If, using the processor program, the programmer wants information
displayed in the visual display registers, he uses the visual-display
summary order,~:~ which has the following format:

10 C x TIT MMMMM

If the display is to be in the l2-digit display register, C = 1, and MMMMM
is the location of the word to be displayed. If the 5-digit display re­
gister is to be used, C = 2. In this case, the display will consist of
the contents of the five least-significant-digit positions of MMMMM.
Digits TIT indicate the number of seconds the information is to be dis­
played.

The Computing Unit programmer can time an operation throug~ the use
of the time-limit summary order which has the following format:

03 TTTTT MM~IMM

This summary order causes a .900000 MMMMM instruction to be placed in lo­
cation 02799 and the processor intervention flip-flop to be set TTTTT
seconds after the summary order is executed. The programmer should in­
clude in the contingency routine a transfer to 02799 when the processor
intervention flip-flop is found set. Control will then transfer from
02799 to MMr.lMM. Location MMMMM should contain the first instruction re­
quired after the timed interval has elapsed.

A stop summary order is given when the Computing Unit program termin­
ates a certain phase of operation. The stop summary order has the follow­
ing format:

06 S xxxx MMMMM

Normally, when the computer is ready to switch to a new problem, it would
issue this summary order with S = O. The processor would then stop
accepting summary orders but would complete those already accepted.

* This summary order unusable with the processor program supplied with
Larc System, Serial 2.

C-16

Table C-l. Alphanumeric Code for the Console
Printer

Printer Two-lJigit Symbol or Code

2.
2-

2"
2+
2\

15

16

17

20

21

22

23

24

25

26

27

28

29

32

33

34

35

36

37

40

41

42

43

44

45

46

47

48

49

52

SP = Space
IG = Ignore

Action

.
-
" +

\
IG

SP

-
0

1

2

3

4

5

6

7

8

9

=
-
(

CR

.
V
A

B

C

0

E

F

G
H

I

<

CR = Carriage return
TAB = Tabu1 ate

Two-Digit Printer
Symbol or Code Action

53 p

54 1'1:

55 TAB

56]

57 [

60)

61 J

62 K

63 L

64 M

65 N

66 0

67 P

68 Q
69 R

72 >
73 ...

74 ---
75 ~

76 11
77 :

80 +

81 /
82 S
83 T

84 U

85 V

86 W

87 X

88 y

89 Z

92 ~

93 A
94 0

C-17

Computer control would be transferred (through the contingency routine and
location 02799) to location MMMMM, and the processor would b~gin again to
accept summary orders. Locati on MM~.1MM would be the begi nning of the new
problem. ..

In case of uncorrectable difficulty in the Computing Unit and/or pro­
cessor program~ S should be set to 1 in the stop surranary order. The pro­
cessor will then stop executing summary orders and will transfer the con­
tents of storage to drum 1, hands 10 through 15 and 84 through 89. (This
information is thus available for analysis, if desired.) The processor
hardware is set to initial conditions, and a new copy of the processor pro­
gram is transferred into core storage. Computer control will be trans­
ferred through the contingency routine and location 027~9 to location
MMMMM. Location MMMMM would be a rerun point.

If a word with zeros in the first two digit positions occurs in a
summary order packet, it will be considered a skip order and will be
ignored.

C-IB

	000
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18

