Univac LARC Instruction Codes

by
R. Tim Coslet
R.TimCoslet (at) gmail.com

05/08/2019

Computer Instruction Word Format: TIIAABBMMMMM
Processor Instruction Word Format: IINNNNNMMMMM

T = trace
II = instruction opcode
AA $=$ arithmetic register
BB = index register
NNNNN $=$ memory address, control fields, registers, device/synchronizer selects, etc.
МММММ = memory address
$+,-, \mathrm{x}, \div \quad=$ fixed point
$\oplus, \otimes, \odot \quad=$ floating point
' = double word
| = absolute value or magnitude
[] Rdd = rounded result
0500000 [] = extend a short number to 12 digits by prepending specified constant digits
00[] $00000=$ extend a short number to 12 digits by appending specified constant digits
\{ \} = clarifying comments

Instruction description pseudocode syntax loosely adapted from Ada.
Table colors loosely adapted from "Moore Business Forms, Inc FORM 1488TG SPEEDIREAD WITH EYE TRACK" printer paper, which was used on the Univac 1106 and Univac 1110 that I ran programs on in college.

Computer Instruction ${ }^{1}$	Opcode	Processor Instruction ${ }^{2}$	
SK \|	Skip: $(\mathrm{C})+1 \rightarrow \mathrm{C}$ \{nop $\}$	00	Skip: (C) $+1 \rightarrow \mathrm{C}$ \{nop $\}$
AX \\|(M)+(A) $\rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	01	Field NNNNN is xxDxx , case D is when $1 . .4$ => If visual-display register D interlock FF set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (rP1) \rightarrow visual-display register D ; (C) + $1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
A $\quad \\|(\mathrm{M}) \oplus(\mathrm{A}) \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	02	Field NNNNN is xxDxx , case D is when $1 . .4$ => (visual-display register D) $\rightarrow \mathrm{rP}$; reset alert FF and interlock FF for visual-display register D ; $(\mathrm{C})+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	
AM $\\|\|(\mathrm{M})\| \oplus(\mathrm{A}) \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	03	Field NNNNN is xxDxx , case D is when $1 . .4$ => If visual-display register D interlock FF set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined \} end case	
AU $\\|(\mathrm{M}) \oplus(\mathrm{A}) \rightarrow \mathrm{A}+1 ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	04	Illegitimate Instruction, Stall Error	
AAX \\| M^{\prime}) + ($\left.\mathrm{A}^{\prime}\right) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	05	$\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$	
AA $\\|\left(\mathrm{M}^{\prime}\right) \oplus\left(\mathrm{A}^{\prime}\right) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	06	Illegitimate Instruction, Stall Error	
	07	Field NNNNN is nnxxx, case n is when $0 . .29$ => Shift rP1 right circular n places; $(\mathrm{C})+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	

[^0]| Computer Instruction | Opcode | Processor Instruction |
| :--- | :---: | :--- |
| | 08 | Field NNNNN is nnxxx, case n is
 when $0 . .29=>$
 Shift rP1 \& rP2 double right circular n
 places; (C) $+1 \rightarrow \mathrm{C}$
 when others $=>$
 end case |

Computer Instruction	Opcode	Processor Instruction	
		memory unit containing N ; $(\mathrm{C})+1 \rightarrow \mathrm{C}$	
MR $\\|[(\mathrm{M}) \otimes(\mathrm{A})] \mathrm{Rdd} \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	22	Set CU 2 interlock FF in the 2500 word memory unit containing N ; (C) $+1 \rightarrow \mathrm{C}$	
$\mathrm{M} \quad \\|(\mathrm{M}) \otimes(\mathrm{A}) \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	23	Reset CU 1 interlock FF and CU 2 interlock FF in the 2500 word memory unit containing N ; $(\mathrm{C})+1 \rightarrow \mathrm{C}$	
$\mathrm{MU} \quad \\|(\mathrm{M}) \otimes(\mathrm{A}) \rightarrow \mathrm{A}+1 ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	24	$(\mathrm{N}) \rightarrow \mathrm{rP} 2 ; 000000$ [odd numbered digit positions (i.e. "digit") discarding even numbered digit positions (i.e. "zone") of the alphanumeric characters of (rP2)] $\rightarrow \mathrm{rP} 1$; (C) $+1 \rightarrow \mathrm{C}$	
ME $\\|(\mathrm{M}) \otimes(\mathrm{A}) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	25	$(\mathrm{N}) \rightarrow \mathrm{rP} 2$; If for every 1 in the three quinary bits of every digit of (rP 1) there is also a 1 in (rP2) then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if	
MMX $\\|\left(\mathrm{M}^{\prime}\right) \times\left(\mathrm{A}^{\prime}\right) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	26	Illegitimate Instruction, Stall Error	
MM \\|(M')囚(A') A^{\prime} '; $(\mathrm{C})+1 \rightarrow \mathrm{C}$	27	Illegitimate Instruction, Stall Error	
	28	Illegitimate Instruction, Stall Error	
$\begin{aligned} & \text { SV } \\| \text { If interlock FF set } \\ & \text { then } \mathrm{M} \rightarrow \mathrm{C}\{\text { jump }\} \\ & \text { else }(A) \rightarrow 02650 ;\left(02650_{\mathrm{M}}\right) \rightarrow 5 \mathrm{DD} ; \\ & \text { (C) }+1 \rightarrow \mathrm{C} \\ & \text { end if } \end{aligned}$	29	Illegitimate Instruction, Stall Error	
DX $\\|(\mathrm{A}) \div(\mathrm{M}) \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	30	Field NNNNN is xxExx , case E is when $0 . .3=>$ If any error FFs specified by E set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined $\}$ end case	
$\begin{gathered} \text { DXE } \\|(\mathrm{A}) \div(\mathrm{M}) \rightarrow \mathrm{A}, \text { Remainder } \rightarrow \mathrm{A}+1 ; \\ (\mathrm{C})+1 \rightarrow \mathrm{C} \end{gathered}$	31	Field NNNNN is xxxDD, case D is when $1 . .24=>$ If action $F F$ of drum D set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$; reset action FF of drum D else $(\mathrm{C})+1 \rightarrow \mathrm{C}$	

Computer Instruction	Opcode	Processor Instruction	
		end if when others $=>$ \{undefined\} end case	
DR $\quad \\|[(\mathrm{A}) \odot(\mathrm{M})] \mathrm{Rdd} \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	32	Field NNNNN is xxxDD , case D is when $1 . .24$ => Set action FF of drum D; (C) $+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	
	33	Illegitimate Instruction, Timeout Error	
$\underset{\mathrm{C}}{\operatorname{DUR}} \\|[(\mathrm{A}) \odot(\mathrm{M})] \operatorname{Rdd} \rightarrow \mathrm{A}+1 ;(\mathrm{C})+1 \rightarrow$	34	Illegitimate Instruction, Timeout Error	
DDX \\|(A^{\prime}) $\div\left(\mathrm{M}^{\prime}\right) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	35	If previously selected drum is on local control then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else step head of drum; $(\mathrm{C})+1 \rightarrow \mathrm{C}$; about 50 ms after step starts set action FF of drum end if	
DD $\\|\left(\mathrm{A}^{\prime}\right) \odot\left(\mathrm{M}^{\prime}\right) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	36	If previously selected drum step direction is forward then start to reverse step direction relay of drum; $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$; 10 ms after reverse starts set action FF of drum else (C) $+1 \rightarrow \mathrm{C}$ end if	
DSE $\\|\left(\mathrm{A}^{\prime}\right) \odot(\mathrm{M}) \rightarrow \mathrm{A}^{\prime} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	37	If previously selected drum step direction is backward then start to reverse step direction relay of drum; $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$; 10ms after reverse starts set action FF of drum else (C) $+1 \rightarrow \mathrm{C}$ end if	
	38	If previously selected drum is on local control then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else jog head of drum to high positions; (C) + $1 \rightarrow \mathrm{C}$; about 50 ms after jog starts set action FF of drum end if	
SVK \\| If interlock FF set	39	If previously selected drum is on local	

Computer Instruction	Opcode	Processor Instruction	
then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump \} else $(\mathrm{A}) \rightarrow 02650$; $(02650) \rightarrow 12 \mathrm{DD}$; $(\mathrm{C})+1 \rightarrow \mathrm{C}$ end if		control then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else jog head of drum to low positions; (C) + $1 \rightarrow \mathrm{C}$; about 50 ms after jog starts set action FF of drum end if	
$\mathrm{S} \quad \\|(\mathrm{A}) \rightarrow \mathrm{M} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	40	Field NNNNN is xxSxx , case S is when $0 . .4$ => If bad-band FF of drum synchronizer S set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
SN $\quad \\|-(\mathrm{A}) \rightarrow \mathrm{M} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	41	Field NNNNN is xxSxx , case S is when $0 . .7$ => Synchronizer S: $0000000[(\mathrm{MAR})] \rightarrow \mathrm{rP} 1$; (MAR) are lost; (C) $+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	
SM $\\|\|(\mathrm{A})\| \rightarrow \mathrm{M} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	42	Field NNNNN is xxSxx , case S is when $0 . .7$ => Synchronizer S: $0000000[(\mathrm{MAR})] \rightarrow \mathrm{rP} 1$; (C) $+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	
F $\quad \\|(\mathrm{M}) \rightarrow \mathrm{A} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	43	Field NNNNN is xxxSx , case S is when $1 . .4$ => Tape Synchronizer S: $0000000[(\mathrm{MAR})] \rightarrow$ rP1; (C) $+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	
	44	Field NNNNN is xxExx, case E^{3} is when $0 . .9=>$ If Computer error FF specified by E set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump \}; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if	

3 The 10 Type I Computer errors tested by Instruction 44 interrupt the Processor when set with a forced 14_00000_00001 instruction, and set the Computer error intervention interlock FF preventing further interrupts until the Instruction 83 executes, reseting the Computer error intervention interlock FF.

Computer Instruction	Opcode	Processor Instruction	
		end case	
$\text { SS } \underset{\mathrm{C}}{\\|(\mathrm{A})} \rightarrow \mathrm{M} ;(\mathrm{A}+1) \rightarrow \mathrm{M}+1 ;(\mathrm{C})+1 \rightarrow$	45	Field NNNNN is xxExx , case E^{4} is when $1 . .5$ => If Computer error FF specified by E set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump ; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
$\underset{\rightarrow C}{\operatorname{SSN}} \underset{\mathrm{C}}{\\|-(\mathrm{A})} \rightarrow \mathrm{M} ;-(\mathrm{A}+1) \rightarrow \mathrm{M}+1 ;(\mathrm{C})+1$	46	Field NNNNN is xxExx , case E is when $0 . .9$ => If Synchronizer error FF specified by E set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump ; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if end case	
$\underset{\rightarrow \mathrm{C}}{\mathrm{SSM}} \\|\|(\mathrm{A})\| \rightarrow \mathrm{M} ;\|(\mathrm{A}+1)\| \rightarrow \mathrm{M}+1 ;(\mathrm{C})+1$	47	Field NNNNN is xxExx , case E is when $0 . .9$ => If Synchronizer error FF specified by E set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump ; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if end case	
$\text { FF } \underset{\mathrm{C}}{\\|(\mathrm{M}) \rightarrow \mathrm{A} ;(\mathrm{M}+1) \rightarrow \mathrm{A}+1 ;(\mathrm{C})+1 \rightarrow}$	48	If Synchronizer master error FF set then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump ; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if	
	49	Field NNNNN is xxSxx , case S is when $0 . .7$ => If Synchronizer S master error FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
CX \\|(A) - FL \rightarrow A - FX, M: scale factor; (C) $+1 \rightarrow \mathrm{C}$	50	Field NNNNN is xxSxx , case S is when $0 . .4$ =>	

4 The 5 Type II Computer errors tested by Instruction 45 interrupt the Processor when set with a forced 14_00000_00001 instruction, and set the error intervention interlock FF preventing further interrupts until the Instruction $8 \overline{3}$ executes, reseting the error intervention interlock FF.

Computer Instruction	Opcode	Processor Instruction	
		If Drum Synchronizer S sector change FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when $5 . .6$ => If Line Printer Synchronizer S action FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when 7 => If Electronic Page Recorder Synchronizer action FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
C $\\|(\mathrm{A})-\mathrm{FX} \rightarrow \mathrm{A}-\mathrm{FL}, \mathrm{M}:$ scale factor; (C) $+1 \rightarrow \mathrm{C}$	51	Field NNNNN is xxSxx , case S is when 7 => $(\mathrm{rP} 1) \rightarrow$ Electronic Page Recorder Synchronizer; (C) $+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case The rP1 format is $\mathrm{xxxxxxXXXY} Y^{\prime} Y^{\prime}$ where $X X X Y Y^{\prime} \mathrm{Y}^{\prime}$ is starting coordinate and $\mathrm{Y}^{\prime} \mathrm{Y}^{\prime}$ is alphanumeric character.	
$\begin{array}{ll} \text { PR } & \\|(\mathrm{A}) \times 10^{-\mathrm{M}} \rightarrow \mathrm{~A} \text { \{right shift } \mathrm{M} \\ \text { places }\} ;(\mathrm{C})+1 \rightarrow \mathrm{C} \end{array}$	52	Field NNNNN is xxSDD , case S is when $0 . .4=>\mathrm{D}$ is range $1 . .24$ Connect Drum Synchronizer S to drum D; Set in-use FF of Synchronizer S; If drum D is on local control then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump \} else step head of drum; $(\mathrm{C})+1 \rightarrow \mathrm{C}$; After a 7 ms delay the Drum Synchronizer is alerted to read a sector band address from the drum; If a sector band address is read within 5 ms then it is stored in the sector address register of the Drum Synchronizer; Set sector-change FF else Set both bad-band FF and sector-	

Computer Instruction	Opcode	Processor Instruction	
		```change FF end if end if when others => {undefined} end case```	
$\begin{aligned} & \text { PL } \begin{array}{l} \\|(\mathrm{A}) \times 10^{\mathrm{M}} \rightarrow \mathrm{~A}\{\text { left shift } \mathrm{M} \text { places }\} ; \\ (\mathrm{C})+1 \rightarrow \mathrm{C} \end{array} \end{aligned}$	53	Field NNNNN is xxSxx , case S is when $0 . .4$ =>   Start Drum Synchronizer $S$ in mode 1; 5   LSDs (rP1) $\rightarrow$ Drum Synchronizer MAR when $5 . .6$ =>   Start Line Printer Synchronizer S; 5 LSDs $(\mathrm{rP} 1) \rightarrow$ Line Printer Synchronizer MAR; digit 6 (rP1) $\rightarrow$ Line Printer Synchronizer Mode Register; Advance paper 1 line; print 1 line in mode $m$ when 7 =>   Start Electronic Page Recorder Synchronizer; 5 LSDs (rP1) $\rightarrow$ Electronic Page Recorder Synchronizer MAR; digit 6 (rP1) $\rightarrow$ Electronic Page Recorder Synchronizer Mode Register; Process 10 words in mode $m$ when others $=>$ \{undefined\} end case; $(\mathrm{C})+1 \rightarrow \mathrm{C}$	
	54	Field NNNNN is xxSxx , case S is when $0 . .4$ =>   Reset Drum Synchronizer S in-use FF; If Drum Synchronizer S is a write synchronizer then disconnect it from the drums end if; If Drum Synchronizer S master error FF set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump \} else (C) $+1 \rightarrow \mathrm{C}$ end if when $5 . .6=>$ Reset Line Printer Synchronizer S in-use FF; If Line Printer Synchronizer S master error FF set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if when 7 =>   Set Electronic Page Recorder Synchronizer	


Computer Instruction	Opcode	Processor Instruction	
		action FF; If Electronic Page Recorder Synchronizer master error FF set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$   end if when others $=>$ \{undefined\} end case	
$\begin{aligned} & \text { CCX } \\|\left(\mathrm{A}^{\prime}\right)-\mathrm{FL} \rightarrow \mathrm{~A}^{\prime}-\mathrm{FX}, \mathrm{M}: \text { scale factor; } \\ & (\mathrm{C})+1 \rightarrow \mathrm{C} \end{aligned}$	55	Field NNNNN is xxSxx , case S is when $0 . .4$ =>   Start Drum Synchronizer S in mode 2; 5 LSDs (rP1) $\rightarrow$ Drum Synchronizer MAR; (C) $+1 \rightarrow \mathrm{C}$   when others $=>$ \{undefined\} end case   After last word of sector 24 is transferred, Drum Synchronizer MAR is adjusted MOD 2500	
$\begin{array}{ll} \mathrm{CC} \quad \\|\left(\mathrm{A}^{\prime}\right)-\mathrm{FX} \rightarrow \mathrm{~A}^{\prime}-\mathrm{FL}, \mathrm{M}: \text { scale factor; } \\ (\mathrm{C})+1 \rightarrow \mathrm{C} \end{array}$	56	Field NNNNN is xxSxx , case S is   when $0 . .4$ =>   If Drum Synchronizer $S$ in-use FF reset   then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$   end if   when $5 . .6=>$   If Line Printer Synchronizer S in-use FF set   then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$   end if   when 7 =>   If Electronic Page Recorder Synchronizer inuse FF set   then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$   end if   when 9 =>   If Tape Positioning Checker in-use FF reset   then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$   end if   when others $=>$ \{undefined\}   end case	


Computer Instruction	Opcode	Processor Instruction	
$\begin{gathered} \text { PPR } \\|\left(\mathrm{A}^{\prime}\right) \times 10^{-\mathrm{M}} \rightarrow \mathrm{~A}^{\prime}\{\text { right shift } \mathrm{M} \\ \text { places }\} ;(\mathrm{C})+1 \xrightarrow[\mathrm{C}]{ } \end{gathered}$	57	Field NnNnN is xxSxx , case S is when $0 . .4$ =>   Continue present sequence when Drum Synchronizer S sequence completes; If Drum Synchronizer S was nor reading or writing then do not continue; set both continue error FF and master error FF of Drum Synchronizer S end if when 7 => Continue Electronic Page Recorder Synchronizer; Process next 10 words in previous mode and memory address sequence when others $=>$ \{undefined \} end case; $(\mathrm{C})+1 \rightarrow \mathrm{C}$	
PPL $\\|\left(\mathrm{A}^{\prime}\right) \times 10^{\mathrm{M}} \rightarrow \mathrm{A}^{\prime}$ \{left shift M places $\}$;   (C) $+1 \rightarrow \mathrm{C}$	58	Field NNNNN is xxSxx , case S is when $0 . .4$ =>   For Drum Synchronizer S (sector-band address registers $00[(\mathrm{BB})] 0000[(\mathrm{SS})] 00) \rightarrow$ $\mathrm{rP} 1 ;(\mathrm{C})+1 \rightarrow \mathrm{C}$   when others $=>$ \{undefined \}   end case	
PPC $\\|\left(\mathrm{A}^{\prime}\right) \times 10^{\mathrm{M}} \rightarrow \mathrm{A}^{\prime}\{$ left circular shift $\} ;$   (C) $+1 \rightarrow \mathrm{C}$	59	(tape/drum number register $00[(\mathrm{AB})] 00000000) \rightarrow \mathrm{rP} 1 ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	
EOP $\\|\left(\mathrm{M}_{\mathrm{I}}\right) \rightarrow \mathrm{A}_{\mathrm{I}} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	60	Field NNNNN is xxxST , case S is when $1 . .4 \Rightarrow \mathrm{~T}^{5}$ is range $0 . .9$   If Synchronizer $S$ availability FF reset then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump \}   else (C) $+1 \rightarrow \mathrm{C}$   end if when others $=>$ \{undefined\} end case	
EA $\\|\left(\mathrm{M}_{\mathrm{A}}\right) \rightarrow \mathrm{A}_{\mathrm{A}} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	61	If previously selected Synchronizer readwrite availability FF reset then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if	
EB $\\|\left(\mathrm{M}_{\mathrm{B}}\right) \rightarrow \mathrm{A}_{\mathrm{B}} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	62	If previously selected Synchronizer read bus	

5 The Instruction 63 following this Instruction 60 selects the specified Uniservo T and connects it to Synchronizer S.

Computer Instruction	Opcode	Processor Instruction	
		availability FF reset then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if	
EAB $\\|\left(\mathrm{M}_{\text {AB }}\right) \rightarrow \mathrm{A}_{\mathrm{AB}} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	63	Must be preceded by an Instruction 60   Reset Synchronizer S availability FF; If Synchronizer S tape-control error FF set then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$; Select Uniservo $T$   After $200 \mu$ s set selection-complete FF end if	
EM $\\|\left(\mathrm{M}_{\mathrm{M}}\right) \rightarrow \mathrm{A}_{\mathrm{M}} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	64	Field NNNNN is xxxSx , case S is when $1 . .4$ =>   If Synchronizer $S$ selection-complete FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
EL $\\|(\mathrm{A}-1) \rightarrow \mathrm{A}(\mathrm{M}) ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	65	Connect positioning checker to Synchronizer; set in-use FF of positioning checker; start check-read operation on Uniservo connected to the Synchronizer; If any of tape-direction error FF or tape-control error FF or write-interlock ring FF set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if	
EU $\\|(\mathrm{A}+1) \rightarrow \mathrm{A}(\mathrm{M}) ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	66	(rP1) $\rightarrow$ previously selected tape Synchronizer instruction register xIKLGxxxxxxx   $\mathrm{I}=$ operation digit, range $1 . .8$   $\mathrm{K}=$ translation digit, range $1 . .2$   $\mathrm{L}=$ SBB length digit, range $0 . .1$   $\mathrm{G}=$ gain digit, range $0 . .2$   If Uniservo tape direction reversal not necessary   then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$	


Computer Instruction	Opcode	Processor Instruction
	67	end if


Computer Instruction	Opcode	Processor Instruction	
TGZ$\\|$ If $(\mathrm{A})>0$   then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$   else $(\mathrm{C})+1 \rightarrow \mathrm{C}$   end if	73	If end of block FF of previously selected tape   Synchronizer set   then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$   else $(\mathrm{C})+1 \rightarrow \mathrm{C}$   end if	
TLZ$\\|$ If $(\mathrm{A})<0$   then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$   else $(\mathrm{C})+1 \rightarrow \mathrm{C}$   end if	74	5 LSDs (rP1) $\rightarrow$ previously selected tape   Synchronizer MAR; (C) $+1 \rightarrow \mathrm{C}$	

6 As of June 1959 (Univac® LARC Processor Instruction and Function-Signal Analyses).

Computer Instruction	Opcode	Processor Instruction	
		end if when others $=>$ \{undefined\} end case	
$\begin{gathered} \text { BIC } \\|\left(A_{\Delta}\right)+\left(A_{D}\right) \rightarrow A_{\Delta} ;\left(A_{N}\right)-1 \rightarrow A_{N} ; \text { If } \\ \left(A_{N}\right)=0 \\ \\ \text { then } M \rightarrow C\{j u m p\} \\ \\ \text { else }(C)+1 \rightarrow C \\ \text { end if } \end{gathered}$	82	Field NNNNN is xxDxx , case D is when $1 . .4$ =>   Turn off console printer $\mathrm{D}^{7}$; $(\mathrm{C})+1 \rightarrow \mathrm{C}$ when others $=>$ \{undefined\} end case	
$\begin{aligned} & \text { BDC } \\|\left(A_{\Delta}\right)-\left(A_{D}\right) \rightarrow A_{\Delta} ;\left(A_{N}\right)-1 \rightarrow A_{N} ; \text { If } \\ & \left(A_{N}\right)=0 \\ & \text { then } M \rightarrow C\{j u m p\} \\ & \quad \text { else }(C)+1 \rightarrow C \\ & \text { end if } \end{aligned}$	83	Reset the Computer error intervention interlock FF; (C) $+1 \rightarrow \mathrm{C}$	
	84	Field NNNNN is xxCxx , in a one Computer system C in range $0 . .4$, in a two Computer system C in range $0 . .9^{8}$   If Processor manual intervention FF C set then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$; reset FF   else (C) $+1 \rightarrow \mathrm{C}$ end if	
BI $\\|\left(\mathrm{A}_{\Delta}\right)+\left(\mathrm{A}_{\mathrm{D}}\right) \rightarrow \mathrm{A}_{\Delta} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	85	Turn on console printer connected to console printer Synchronizer; If either console printer error FF or console printer interlock FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p\}$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if	
BD \\|( $\left.\mathrm{A}_{\Delta}\right)-\left(\mathrm{A}_{\mathrm{D}}\right) \rightarrow \mathrm{A}_{\Delta} ;(\mathrm{C})+1 \rightarrow \mathrm{C}$	86	If console printer Synchronizer action FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if	
	87	Field NNNNN is xxSxx , case S is when $5 . .6$ =>   Advance paper one line on Line Printer on Line Printer connected to Synchronizer S; If mechanical error then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$	

[^1]| Computer Instruction | Opcode | Processor Instruction |
| :---: | :---: | :---: |
|  |  | else (C) $+1 \rightarrow \mathrm{C}$ <br> end if <br> when $7=>$ <br> Advance film one frame on Electronic Page <br> Recorder connected to Synchronizer; If <br> Electronic Page Recorder is printing or already advancing film or has a failure then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ <br> else (C) $+1 \rightarrow \mathrm{C}$ <br> end if <br> when others $=>$ \{undefined \} <br> end case |
|  | 88 | Field NNNNN is xxDxx , case D is when 1 => <br> Open shutter of land camera of Electronic Page Recorder connected to Electronic Page Recorder Synchronizer; If shutter was already open then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$ else (C) $+1 \rightarrow C$ end if when $2=>$ <br> Close shutter of land camera of Electronic Page Recorder connected to Electronic Page Recorder Synchronizer; If shutter was already closed then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow C$ end if when others $=>$ \{undefined \} end case |
|  | 89 | Field NNNNN is xxDxx , case D is when $1 . .2=>$ <br> If camera of Electronic Page Recorder D either out of film or film not moved since Instruction 87 then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined $\}$ end case |
| T $\\| \mathrm{M} \rightarrow \mathrm{C}\{\mathrm{jump}\}$ | 90 | Field NNNNN is xxDxx , case D is |


Computer Instruction	Opcode	Processor Instruction	
		when $1 . .2$ =>   If camera action FF of Electronic Page Recorder D set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined\} end case	
TR $\begin{aligned} & \\| 9 _90 _00 _00 _[(C)]+1 \rightarrow \mathrm{M} ; \mathrm{M}+1 \\ &\rightarrow \mathrm{C} \text { \{jump }\}\end{aligned}$	91	Field NNNNN is xxDxx , case D is when 1.2 =>   If film changed FF of Electronic Page Recorder D set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump ; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined \} end case	
TB $\\|(\mathrm{C}) \rightarrow \mathrm{A}_{\mathrm{M}} ; \mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$	92	If any of action FF of Electronic Page Recorder Synchronizer or camera action FF of Electronic Page Recorder D or film changed FF of Electronic Page Recorder D set then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if	
SLJ \|	If M is storage location then 9_90_00_00_[(C2)] $\rightarrow \mathrm{M}$ elsif $\bar{M}$ is fast register then 0_00_00_00_[(C2)] $\rightarrow \mathrm{M}\left\{\mathrm{A}_{\mathrm{M}}\right\}$ end if; $(\mathrm{C})+1 \rightarrow \mathrm{C}$	93	Field NNNNN is xxDxx , case D is when $1 . .4$ =>   Connect console printer D to the console printer synchronizer; If console printer D cannot be connected because either printing is already in progress or console printer D is either on local control or does not exist ${ }^{9}$ then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$   else (C) $+1 \rightarrow \mathrm{C}$   end if   when others $=>$ \{undefined\}   end case
	94	Illegitimate Instruction, Timeout Error	

[^2]| Computer Instruction | Opcode | Processor Instruction |
| :---: | :---: | :---: |
| TF \\|If FF A then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C ) $+1 \rightarrow \mathrm{C}$ end if | 95 | If realtime clock FF set then $\mathrm{M} \rightarrow \mathrm{C}\{j u m p\}$; reset FF else (C) $+1 \rightarrow \mathrm{C}$ end if <br> The realtime clock FF is set every 8.33 ms |
| RF \\|Reset FF A; (C) + $1 \rightarrow \mathrm{C}$ | 96 | Field NNNNN is xxPxx , case P is when $1 . .2$ => <br> Reset Disclosure FF in Computer P; If FF failed to reset then $\mathrm{M} \rightarrow \mathrm{C}$ \{jump $\}$ else (C) $+1 \rightarrow \mathrm{C}$ end if when $3 . .4$ => Set Processor Contingency FF in Computer P-2; If FF failed to set then $\mathrm{M} \rightarrow \mathrm{C}$ (jump) else (C) $+1 \rightarrow \mathrm{C}$ end if when others $=>$ \{undefined \} end case |
| SF $\quad \\|$ Set FF A; (C) $+1 \rightarrow \mathrm{C}$ | 97 | Field NNNNN is xxPxx , case P is when $1 . .2=>$ <br> If Disclosure FF in Computer P set then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$ <br> else (C) $+1 \rightarrow \mathrm{C}$ <br> end if <br> when $3 . .4=>$ <br> If Processor Contingency FF in Computer P-2 reset <br> then $\mathrm{M} \rightarrow \mathrm{C}\{$ jump $\}$ <br> else (C) $+1 \rightarrow \mathrm{C}$ <br> end if <br> when others $=>$ \{undefined \} <br> end case |
|  | 98 | Field NNNNN is xxBxx , case $\mathrm{B}^{10}$ is when $0 . .4$ => <br> If breakpoint stop B on engineer control console is pressed then Stop the Processor; |

[^3]

[^4]Univac LARC Instruction Codes

Computer Instruction	Opcode	Processor Instruction
		```else (C) \(+1 \rightarrow \mathrm{C}\) end if when 5 => If action FF of any Drum set, then \(\mathrm{M} \rightarrow \mathrm{C}\) \{jump \(\}\) else (C) \(+1 \rightarrow \mathrm{C}\) end if when 6 => If action FF of one Drum (7..12) set then \(\mathrm{M} \rightarrow \mathrm{C}\) \{jump \(\}\) else (C) \(+1 \rightarrow \mathrm{C}\) end if when 7 => If action FF of one Drum (13..18) set then \(\mathrm{M} \rightarrow \mathrm{C}\) \{jump \} else (C) \(+1 \rightarrow \mathrm{C}\) end if when \(8=>\) If action FF of one Drum (19..24) set then \(\mathrm{M} \rightarrow \mathrm{C}\) \{jump \(\}\) else (C) \(+1 \rightarrow C\) end if when 9 => If selection-complete FF of any Tape Synchronizer set then \(\mathrm{M} \rightarrow \mathrm{C}\) \{jump \(\}\) else (C) \(+1 \rightarrow \mathrm{C}\) end if```


[^0]: 1 Instruction Mnemonics shown for Computer Instructions. See documents: LARC Computing-Unit Instructions, Univac® LARC Programming the Computing Unit, An Introduction to the LARC® Data-Processing System. Behavior of Illegitimate Computer Instructions does not seem to be defined in these documents.
 2 Instruction Mnemonics not shown for Processor Instructions. Univac may not have documented them as they provided a standard Processor program that the Computers could request services from as needed. See documents: Univac® LARC Processor Instruction and Function-Signal Analyses, An Introduction to the LARC® Data-Processing System. Illegitimate Processor Instructions result in either a Stall Error or a Timeout Error, stopping the Processor.

[^1]: 7 The console printer 1 is on Computer 1's engineer control console, the console printer 2 is on Computer 1's operator control console, the console printer 3 is on Computer 2's engineer control console, the console printer 4 is on Computer 2's operator control console (in a two Computer system, no such LARC system was ever built).
 8 The manual intervention buttons $0 . .4$ are on Computer 1's operator control console, the manual intervention buttons $5 . .9$ are on Computer 2's operator control console (in a two Computer system, no such LARC system was ever built).

[^2]: 9 The console printer 1 is on Computer 1's engineer control console, the console printer 2 is on Computer 1's operator control console, the console printer 3 is on Computer 2's engineer control console, the console printer 4 is on Computer 2's operator control console (in a two Computer system, no such LARC system was ever built).

[^3]: 10 Field designation of Instruction 98 changed from C to B to avoid confusion with C register.

[^4]: 11 Behavior in this situation not explicitly specified in Univac® LARC Processor Instruction and Function-Signal Analyses. Logical inference is that if force transfer switch is off Instruction 98 continues after start without jumping.

