

omputer

UN IV AC® Fi I e-C om put er
,. , , ~ " « ·••

model 1

CONTENTS

Chapter

2

INTRODUCTION • • • • • • • • • • • • • •

Data Processing Areas in Business
Market Forecasting and Sales Analysis ••••
Production Scheduling ••••
Inventory Control
Accounts Payable •••••••
Payroll and Labor Distribution •••••
Tax Reports, Union Dues Reports, etc.
Accounts Receivable ••••••••••
Stock Dividends and Transfers •••••

Elements of a Data Processing System

Elements of the Univac File-Computer, Model I System
Comparison of Manual and Electronic Data Processing ••••

-Outstanding Features of the Univac File-Computer, Model I.
Fl ex i bi 1 i ty of Input-Output Equipment • • • • • • • • •
Large Capacity Random-Access Storage •
Time-Sharing Features ••.•••
Internal and External Programming
Checking Features •••••
Alpha-Numeric Operation
Automatic Data Translation •
Three-Address Logic
The Computer Word • • • •
The Program Step ••
Univac File-Computer Code

Synopsis of Programmer's Manual.

PROGRAM CONTROL STORAGE SYSTEM • • • • • • • •

Introduction
Components of the Program Control Storage System •
Functions of the Program Control Storage System .••••
Source and Destination References • • • • • • • • •••

1

Page

I
3
3
lJ.

lJ.
lJ.

5
6
6

6

9
9

13
14-
14-
14-
14-
15
15
15
15
16
17
17

19

21

21
21
22
23

Chapter

3

Program Control Storage Address Format
Word Addresses ••••
Field Addresses •••••
Blockette Addresses
Single Address Locations •

Components of the Program Control Storage System
High Speed Drum ••••••••• . ..

Description •••••••••••.•••
Addressing the High Speed Drum

General Addressing Structure •••••
Input/Output tracks •••••••••
Factor Storage Tracks • • • •
Intermediate Storage Tracks
High Speed Drum Field Selection Pattern Track
Field Addresses on the High S~~ed Drum ••
Word Addresses on the High Speed Drum
Blockette Addresses on the High Speed Drum •

Block Transfer Buffer
Description.... . •••••••••
Addressing Structure • . •••
Block Transfer Buffer Field Selection Pattern

General Storage Buffer ..
Description • • • • • •••
Addressing Structure • • . ••.
General Storage Buffer Field Selection Pattern • •

General Storage Address Register

Program Address Counter

Code Distributor Register

Arithmetic Registers A, B, C, D

Instruction Revolver •

Shift Revolver

PROGRAM CONTROL
Introduction ..

Components Used During Internal Program Control
Operation Pulse/Enable Distributor
Program Address Counter ••..••
Effect of PAK Modification on a Program .•.•
Storage Address Register • ,
Instruction Revolver
Shift Revolver
Shift Counter
Process Register

11

I ~

a I

J>age

2ll-
2ll-
25
25
25

26
26
26
27
27
28
30
30
32
33
35
37

38
38
38
38

ll-0
ll-0
ll-0
ll-1

ll-1

ll-1

4-2

4-2

ll-3

ll-3

4-5

ll-5

ll-6
ll-6
ll-7
ll-8
51
51
52
5ll-
55

Chapter Page

Components Used During I nterna 1 Program Contro 1 ~continued)
Code Distributor Register ••••
Branch Storage • • • • • • • • • • • • • •
Conditional Storage • • • • • • •••
Special Character Register •••••••.••••••
Breakpoints • • • • • • • • • • ••••

Components Used During External Program Control
Operation Pulse/Enable Distributor
Program Address. Counter
Storage Address Register
Instruction Revolver
Shi-ft Revolver
Shift Counter ••••••
Shift Hubs
Code Di st r i but or
Selectors •
Branching ••••
Explanation of Plugboard Branch Wiring
Alternate Switches
Function Delay
Function Sequence ••
Condition Compare ••
Clear Block Transfer Buffer
Selector Hold B+ •••••
Program Indicator Lights

to Ignores

Indicator Switch ••.•
Bus Hubs
Uni bus Hubs • •
Out Expanders .
Error Hubs

Parity Error
Arithmetic Error
General Storage Program Error . • • • . . ••.

Step Repeat • . . • • • • • • • • . . • . • . • • •
Step Clear
Start •
Stop
Special Character Out •
Console a+

I I 55
I I I 55
I I I 56

• 57
o I 57

I I I 58
I I I 58

I I 58
I I 59
I I 59

I I I 61
I I 62

• 62
I I I I I 63

I I 71
I I I I I 73

I I I I I I 76
I 76
I 78
I 80

80
I 80

o I 81
I 0 I 81

0 I 82
• • • 8ij

85
85

0 I 86
•• 86
•• 86

•••• 86

. 87

. 87
••••• 88

• 88

• 89

••• 89

Components Used to E.ffect Combination Control 90
Transfer from Internal to External Program Control . . • • • . .•. 90

Vi a Transcop Instruction Word • • • . • • • . . . • 90
Via Breakpoint . • • • • • . • . • • • • . 90
Via Error-Step Clear Wiring . . . • • • • • . • • . . • •• 91

Transfer from Exte ma 1 to I nterna 1 Program Cont ro 1 . • . • • . • • . . 91
·Via Next Instruction . • • • • • • • • . • • . • • 91
Via Step Out-Stop Wiring . . • • • • . • . • . • . .. 91

111

Chapter

5

REPERTORY OF INSTRUCTIONS •

Introduction

Instruction Definitions .

Analysis of Instructions
Arithmetic and Logical Instructions •

Data Transmission Rules •••
Jump Instructions •.••••••.•
Special Purpose Instructions

Data Transmission Rules - Buffer Transfer .
Input/Output Instructions •.•
Transfer of Control Instruction •

Tables
Special Character Codes ••••
Contents of Arithmetic Registers

GENERAL STORAGE SYSTEM

I n trod uc t i on

Components of the General Storage System
General Storage Drums .
General Storage Address Register
General Storage Buffer
Circuitry • • • • .

Fundamentals
Data Organization •••••.
Time Sharing during General Storage Operations

General Storage Drums
Description .•.•
Address Structure •...
Variability of Unit Record Addressing
General Storage Address Register •.•••

General Storage Buffer
Function .•..•...•.•...•••
General Storage Buffer Addressing •.

General Storage Operations
I n t rod u ct i on
Read Unit Record
Write Unit Record
Write Unit Record and Check .•....•••
Clear General Storage Buffer to Ignores .••.•

l.V

Page

92

92

95

98
98

120
123
130
131
138
1~3

llP.J.
ILP.J.
1~5

lij6

I ij 7

I ij 7
lij7
I ij 7
lij7

I ij8

I ij8

I ij8

I ij 9

11.rn
150
152
156

158
158
158

159
159
160
161
163
165

Chapter

6

7

Channel Search Operations .
Introduction •.•••
Channel Search Equal
Channel Search Unequal
Channel Search Probe
Example of a Channel Search

INPUT/OUTPUT SYSTEM
Introduction

Components of Input/Output Control
Demand Station
Input/Output Tracks •.•••
Track Switch ••••..••
Computer-Input/Output Control Lines (A-J) .••.
Input/Output-Computer Control Lines (a-1) ...•
High Speed Input/Output-Computer Control Lines (W, X,
Demand Test In Hubs . . • • • . . .••..•.
Demand In Hubs

Input/Output Instructions .
Demand Test In
Demand In •••...
Test Incoming Control

y' z) ..

Peripheral Equipment of the Univac File-Computer, Model I.
Console System ••••..
Inquiry Typewriter • • . . . • . ••..•
90 Column Card System (with post-read checking) •
80 Column Card System (Bull)
High Speed Printer •.••••••••
High Speed Paper Tape System •••.•
Univac File-Computer Magnetic Tape Unit.
Univac File-Computer Sort Collate System.
Airline Reservation System • ~ •.•••

ARITHMETIC SECTION

Introduction

Arithmetic Operations
Add ••••••
Add and Check • • • • • • • •
Subtract
Subtract and Check
Mu 1t i p 1 y • • • • •
Multiply and Check

v

Page

166
166
168
170
172
175

179

179

180
180
181
181
182
I 84-
185
185
185

185
185
186
189

189
189
191
193
195
198
200
202
203
205

207

207

208
208
208
208
209
209
209

Chapter

8

ARITHMETIC OPERATIONS (continued)
Divide•
Divide and Check ••
Compare . •
Arithmetic Transfer .
Mask Transfer , . . •
Suppress Left Zeros •
Norma 1 ize ...•.

Rules for Arithmetic Operations

TIMING ••.•..••.. · • • •

Description of Timing Factors
Memory Reference Times
Process Times ...
Constant • . .
Programmed Shifts .•.

Memory Reference Times ..

Process Ti mes

• t •

Page

209
209
210
210
210
210
210

210

215

215
215
216
216
216

216

218

APPENDICES

APPENDIX A - GLOSSARY • 220

APPENDIX B - EXAMPLE OF INTERNAL~ EXTERNAL PROGRAMMING 231

APPENDIX C - EXAMPLES OF GENERAL STORAGE DRUM ADDRESSING
SUBROUTINES • 233

APPENDIX D - PROGRAMMING FORMS ••.•.

APPENDIX E - PROGRAM CONTROL PLUGBOARD

V1

241

2~8

I NTRODUCTION

DATA PROCESSING AREAS IN BUSINESS

The first step in a study of electronic computers is to survey the areas of
business operations wherein a computer may become a useful managerial tool.
These areas are called data processing areas. In its day-to-day functioning,
a manufacturing concern is composed of myriad channels through which money
and material flow in fulfillment of the company's obligations to its stock­
holders, employees, vendors, customers and the government. From a data pro­
cessing point of view, these areas are concerned with management's attempts
to record, measure and effectively control this flow. Because of its broad
yet familiar activities the manufacturing company's activities will be con­
sjdered. Figure 1-1 is a generalized block diagram of a typical manufacturing
company and its environment.

1

A TYPICAL MANUFACTURING O~GANIZATION

AND ITS DATA PROCESSING ENVIRONMENT

UNIONS LDERAL, STATE

AND LOCAL

GOVERNMENT

DUES REPORTS TAX REPORTS STOCK Tf;ANSFERS-DIVIDENDS

,-
PAYROLL AND

LABOR DISTRIBUTION

OPERATING

MANAGEMENT

ACCTS. PAYABLE ACCTS. RECEIVABLE

VENDORS

PURCHASING
•

RECEIVING

ENGINEERING
CALCULATIONS

CUSTOMERS

MARKET FORECAST

SALES ANALYSIS

SALES
•

SHIPPING

PRODUCTION

---'-N_v_E_N_T_o_R_Y __ .,. MAN U FACT UR ING ..,__s_c_H_E_D_u_L_1 N-G--

CONTROL

-·--------
FIGURE 1-1

2

INVENTORY

CONTROL

The most common data processing areas have been indicated on the chart. A
very brief description of each is listed below.

Market Forecasting and Sales Analysis

To attempt to find the beginning of the movement through the channels pictured
would be to search for the beginning of a circle, because of the multitudinous
cross-references and interdependencies which exist. from the point at which
planning for the next year commences, however, a certain sequence does follow.

At that point the big question is, "How good will the new year be?" The
answer can be found by making a reliable sales forecast to serve as a basis
upon which all operatiQnal planning will be laid.

The past sales history is essential to such a forecast. Tl1us, many concerns
break down their sales as often as once per week according to the products
sold, the regions in which they were sold, the dollar values of the sale,
the percentage gross and/or net profit obtained and other significant criteria.
In addition to predicating any immediate action which needs to be taken, such
reports, if compiled over a period of years, will yield information 011 the
seasonal and regional fluctuations of the sales of various products.

A further study of such a sales analysis may bring out some revealing cor­
relation between the concern's sales and the general business trends and cy­
cles, customer activities and similarly relevant factors. Such correlations
are.not always easy to find; but once discovered, they offer the means of

making a reliable forecast of·the sale of each product in each marketing area.
An evaluation of the market forecast will affect the budget and production
levels to'be maintained during the year.

Production Scheduling

The sales forecast and any adjustments to it which may be necessary as the
year progresses are the sources of the production orders. The production
orders indicate the date of completion and size of each LatcL of every product
to be manufactured. Referencing these orders agai!1st a bi 11 of materials
listing is then the basis of the production scheduling operation. This list­
ing coritains the material, machines and time require1J for the completion of
each phase in the manufacture of the product. \\orki11g Lackv.ar<ls from the
"due date" it is possible to list the times at "'hich materials and machines
must be availaLle if the due date is to be met. Proper planning is essential
since anymis-schedulingof machine requirements may result in extra production

3

expense for overtime on the one hand, or time and money loss because of idle
machinery and idle manpower on the other. In addition to yielding a machine
schedule, the bill of materials listing yields the requisitions for the total
ra~ material requirements and the time in the production line at which they
must be available.

Inventory Control

From the bill-of-materials, information is also obtained for inventory control.
As a by-product of the machine scheduling, the quantities of raw materials
needed during each manufacturing phase are also determined. These raw ma­
terial requirements are used for the publication of requisitions. In addi­
tion, they are compared to the current inventory level of the material and
posted to it. If the reorder level is reached, production or purchasing
orders, depending on whether the material is processed within the company or
purchased, are issued in order to replenish the stock. Proper use of re­
order levels can offer considerable savings by accurate control of the minimum
inventory level to be maintained. Accurate inventory control is essential
in reducing capital investment and storage obsolescence costs of large in­
ventories, or the costs of emergency reorders and delays resulting from short­
ages.

Accounts Payable

The accounts payable operation is initiated by the receipt of an invoice
from the vendor. This invoice is first checked for amounts billed against
quantities received and priced against the current price list. Then, although
immediate payment of all accurate invoices is possible, payment is usually
postponed temporarily to allow further use to be made of the available cash.
Such unpaid invoices are listed on the accounts payable ledger. Cash balances
and the efficient use of any discount privileges determine the time for se­
lection from this ledger for payment. Checks are produced and appropriate
entries made in the vendor's account. Information may also be extracted for
such things as general ledger and property accounting, and reports on vendor
activity.

Payroll and Labor Distributions

This area is commonly the most highly mechanized data processing area in bus­
iness today. In spite of the fact that all payrolls are designed primarily
to produce paychecks, the variety in important payroll details caused by

4

unusual or individual labor contracts, differing local and state regulations
and plant policies preclude a complete uniformity of description. With this
precautionary statement in mind, consider payroll data processing to be di­
vided into three parts: determination of gross pay, computation of net pay
from the gross, and labor distribution.

Determination of gross pay may be a trivial operation in the case of a sal­
aried payroll. In most cases, however, the determination of gross pay is
an involved process. Gross pay is often based upon the number of hours worked
in each of several hourly rate categories (regular and overtime factors)
during the pay period. This may be modified in many plants to include bonus
or efficiency payments determined by the output of groups of workers or by
a piecework schedule. The net pay calculation involves the computation of
tax deductions imposed by state, local and federal governments and such other
deductions, usually variable in amount from one pay period to the next, as
specified by union contracts and fringe benefits or employee options. The
end product of the net pay calculations is a series of paychecks (or pay slips
if payment is by cash) and various payroll registers listing gross and net
pay and the several deductions. In addition to these, the individual earnings
record must be updated for end-of-quarter and end-of-year government tax
reports.

The labor distribution phase is used by management to establish product costs
and selling prices. Gross pay and hours-wo-rked data for each employee, es-

tablished in the gross pay phase, are distributed to each product, account
or activity he has engaged in during the pay period. These are then summa­
rized to produce labor costs for each of the distributed categories.

Tax Reports, Un·ion Dues Reports, Etc.

Under present labor-management practices, management assumes many of the
employee's obligations to his environment. Taxes, union dues and various
voluntary deductions are withheld. The necessity arises for the firm to make
reports to the government, union dues reports to the unions, hospitalization
and insurance reports, etc. The information for such reports is available
from the payroll processing itself.

Year-to-date totals of gross pay, income tax withheld and FICA tax are suf­
ficient for the preparation of W-2 forms. Similarly a compilation from the
employee files and payroll processing results is all that is necessary in
the preparation of most other reports.

5

A~counts Receivable

The accounts receivable operation commences when a shipping document is re­
ceived. Products listed on this document are priced and the shipment is ex­
tended to produce the invoice sent to the customer. At the same time, the
total dollar charge is posted to the customer's records on the accounts re­
ceivable ledger.

This ledger is often scanned daily. Cash receipts and any earned discounts
are credited to it. Appropriate informati-0n is entered into the customers'
credit history. Aging accounts are extracted, checked, their credit history
examined and appropria~e action is taken. At the end of the month, the in­
formation present is compiled to form monthly statements, which also may be
sent to the customer.

Stock Dividends and Transfers

Data processing is also necessary in connection with stock dividends and
transfers. Stock~older listings must be periodically maintained to assure
that they reflect the latest results of all stock issues, cancellations and
transfers. When a dividend is declared, it is then only necessary to select
the owners as of that date from the listing and multiply the dividend rate
by the number of their shares to make the proper disbursement. Similarly

a scanning of this list is sufficient when it is necessary to print ~nd dis­
tribute the proxy ballots for the annual stockholders meeting. Year-to-date
dividends paid and other information on this listing may be employed in the
preparation of the year-end state and federal tax reports and of any statis­
tical reports desired.

ELEMENTS OF A DATA PROCESSING SYSTEM

Before turning directly to the study of the characteristics of the lfuivac
File-Computer Model I System, it is advisable to review the basic elereents
of a general data processing system.

Consider a business which keeps a record of its stock in a ledger. Each day
a clerk is supplied with a form which indicates the number of items sold,
listed in stock number order. On the basis of this information, the man
brings the inventory up to date by writing a new column in the ledger.

6

INVENTORY OF STOCK ITEMS

INVENTORY OF STOCK ITEMS

Ff GURE I -2

STOCK ITEMS SOLD
DA TE 1/3

STOCK NUMBER
NUMBER OF ITEMS

7 I

i-------q--,--+- ~-'L
/'/ 3
17 ,.,

Even in such a simple example as this may be found the fundamental elements

of a data processing system: variable information, master file data, a data

processor, reports or other printed output. The list of stock items sold is

the variable information; the stock ledger contains the master file data;

the inventory clerk serves as the data processor; and the output of the data

processing system is the updated stock ledger.

DATA GATHERING
UNITS FOR
VARIABLE OR
TRANSACTION
INFORMATION

MASTER
DATA

FI LES

DATA
PROCESSOR

FIGURE I· 3

THE GENERAL DATA PROCESSOR

7

PERIODIC
REPORTS

OR OTHER

A data prpcess1ng system is best described by its outputs. These are the
various reports, summaries, statistics, bills, checks, invoices,etc. required
by management or government, or the every day facts and figures which are a
necessary part of the detailed operation of the company. The information
required on these printed outputs, and the time intervals at which this data
must be supplied are the two factors which establish the general requirements
of the other three elements.

The inputs to the data processing system, from which the output data are to
be compiled, usually consist of t~o types of information: master data files
that remain essentially unchanged from one reporting cycle to the next or
which change in known or fixed ways; and variable or transaction information
which is produced by the day to day activities of the business.

Master File data are the permanent information records containing ident­
ifying and historical facts about the individual, account, item, product
or service being reported. Examples of master file data are: names and
addresses, employee badge numbers, account numbers, current credits and
debts, running inventories, etc.

Variable information is data introduced into the data processing system
reflecting current operations. It is generated by human activity and is
thus essentially unpredictable. Examples of variable information are:
the hours worked by an employee, receipts, expenditures, sales, shipmeJrlts,
etc. Since the transactions producing these variables are often physi­
cally dispersed (coming from different divisions, departments or branch
offices) some means for gathering the data for injection into the system
is requir:ed.

The data processor is the converter of master and variable data into the out­
put reports. It must also post changes, ~hen necessary, to the master data
fi'les. These changes are introduced to the data processor through essentially
the same data gathering units which are used for the variable information.
Il1e data processor may be:

a clerical staff laboriously making thousands of detailed entries per
working day in the manner of the inventory clerk in Figure 1-2;

an electronic computer such as the Univac File-Computer which performs the
same data-handling operations at electronic speeds;

any of the many combinations of manual, key driven or punched card data
processors between these t"o extremes.

I

In order to be able to produce the desired outputs, the data processing system
must be able to:

Read documents
Record documents and reports
Sort and classify data
Calculate
Make simple decisions

FIGURE I .4

ELEMENTS OF THE UNIVAC FILE-COMPUTER, MODEL I SYSTEM

Comparison of Manual and Electronic Data Processing

How are the basic elements of a data processing system reflected in an elec­
tronic computer application? The following comparison of a manual system
with an electronic computing system, is intended to point out the similari­
ties and differences in overall approach to the accon.plishment of the same
data processing task. In this instance, the manual system is exemplified
by an inventory clerk, and the computer is the l~ivac File-Computer, Model I.

9

The data processing application consists of the updating of a stock ledger
by posting to it the number of items of each stock number sold the previous
day, as shown in Figure 1-5.

lllYEUORY OF STOCK ITEMS

DATE

INPUT~

PROCESSING~

INVENTORY OF STOCK ITEMS

OUTPUT~

FIGURE I· 5

STOCK ITEMS SOLD

DATE I '3
STOCK

NUMBER

_7
q

-/Ji
17
IK

NUMBER
OF I TENS

I

--- II:_

3 ,,

First, the inputs to the system must be prepared for either the inventory
clerk or the computer:

The inventory clerk must get the stock ledger and take it to his desk.
The list of stock items sold must also be prepared for his use.

Although input data might be prepared in one of several different ways
for the versatile lJFC-I system, a typical inventory application might be
as follows: As part. of the previous day's inventory processing, the stock
inventory was unloaded from the large-capacity, random access storage
of the UFC-1 onto a Univac magnetic tape. This "stock ledger" is now
re-loaded onto the general storage magnetic drums. The list of stock
items sold is key-punched into either 80 or 90 column punched cards and
is ready for input to the computer.

Second, to do the processing, the clerk or the computer must go through cer­
tain steps:

10

READ THE FIRST
INVENTORY

STOCK NUMBER

READ THE

NEXT ONE

IS THERE A SALES
ITEM FOR IT? WRITE THE

I NYEllTORY

1....-Y_E_S_.___H_O_ym-..i QUANT I TY I N THE
NEW COLUMN

SUBTRACT THE
SALES QUANTITY

FROM THE INVENT­
ORY QUANTITY

IS THIS THE
LAST INVENTORY
STOCK NUMBER?

HO YES

FIGURE I· 6

PUT THE
LEDGER

AWAY

Both must he able to do arithmetic:

FIGURE 1-7

SUBTRACT THE
SALES QUANTITY

FROM THE INVENT­
ORY QUANTITY

The UFC-1 is capable of performing all of the arithmetic operations of
addition, subtraction, multiplication and division at electronic speeds.
It will also check each one of these processes for complete accuracy Ly
performing a reverse arithmetic opera ti on - ""i th out the necessity for
complicated programming techniques.

Both must be able to make logical decisions:

FIGURE I· 8

IS THERE A SALES
ITEM FOR IT?

YES NO

Any of the logical decisions which the inventory clerk must make in
handling the data may also be made by the UFC-I through suitable pro­
gramming. lfie UFC-1 repertory of instructions contains several decision­
making commands, such as comparisons and jump instructions, and the plug­
board provides devices for decision-making, such as branches, selectors,
and the code distributor.

11

Both the "inventory clerk and the comput:er must be able to remember informa·
tion:

READ THE FIRST
INVENTORY

STOCK NUMBER

READ THE

NEXT ONE

IS THERE A SALES
ITEM FOR IT?

YES HO

WRITE THE
INVENTORY

--e!QUANTITY IN THE
.__------~~~-- HEW COLUMN

~
SUBTRACT THE

SALES QUANTITY
ROM THE INVENT­

ORY QUANTITY

Fr GURE I· 9

The clerk is required to remember the stpck number, quantities, and re­
sults for only a short period of time; the stock ledger "remembers" the

information permanently as it becomes one of the official records of the

Lusines&.

The trFC-I also has means of remembering information for varying lengths

of time. The various registers and magnetic core buffers in the system
provide ten•porary storage for information and controlling data; the mag­

netic drums provide permanent storage for data as long as it is required
in the data processing system; punch card files and magnetic tapes provide

l.istorica 1 records for future reference.

Both the clerk and the computer must perform the necessary steps in the prop­

er sequences:

In the manual system, the clerk is probably following a work procedure
developed by a systems and procedures department and interpreted for the
clerk by his supervisor.

12

The UFC-J follows a "program" or -sequence of computer operations designed
by systems analysts and programmers to accomplish this data processing
task. All decisions and actions to be taken by the computer must be con­
sidered in minute detail by those persons developing the computer program
to insure that provision is made for all predictable variations.

Two methods of controlling the computer program are used in the UFC-J
system: an internally-stored series of instruction "ords, and a 48-step
plugboard providing program steps, substeps, selectors, Lranches, etc.
Typically, these two types of programming are used in combination to
achieve the most efficient overall program.

Finally, all of the items are posted, the clerk puts the ledger away and goes
about his other duties. But what of the llfC-I system? As indicated above,
the inventory records might be unloaded from the magnetic drums for use as
input data the following day. It is much more likely, however, that further
processing of the data, such as the preparation of sales statistics or posting
of accounts receivable information would be accomplished before the updated
inventory is unloaded from the drums.

A further advance in integrated data processing might also be used in this
instance, if the programmer wishes to take advantage of the large capacity
general storage drums of the UFC-I system. The transaction of selling an
item from stock results in a kind of chain reaction throughout the data pro­
cessing system. Every area of the business record-keeping system ~hich is
provided for in a pre-selected area in the general storage drums and ~hich

is effected by the sale of an item receives a posting at the time the sales
entry is processed.

For example: The sale of one item from stock results in the creation of
an account receivable as "ell as the necessity to record
a sale. Inventory is depleted by one unit, possibly requir­
ing the initiation of a requisition to buy or a manufactur­
ing order to produce a unit to replenish stock.

Outstanding Features of the Univac File-Computer, Model I System

The Univac File-Computer, Model I, is a medium sized, general purpose, dig­
ital, electronic co~puting system. It is one of the Remington Rand family
of Univac computers, which also includes the Univac I, Univac II and Univac
Scientific. The UFC-1 system possesses unique features which contribute to

13

its data processing versatility. Among these, the most outstanding are de­
scribed briefly below.

Flexibility of Input/Output Equipment

Any grouping of input/output devices up to ten in number may be connected
to the central computer at the same time. These devices include the UFC-I
Console, Inquiry Typewriter, 90-Column Punched Card System, 80-Column Punched
Card System, High Speed Printer, High Speed Paper Tape System, Magnetic Tape
Unit and special purpose equipments such as those used in the Airline Reser­
vation System.

Large Capacity Random-Access Storage

The UFC-1 may incorporate at the present time from one to ten large-capacity,
magnetic drums in a system, allowing for random access to stored data. 1bis
ability of the computer to accept data in any order eliminates the need for
prior sorting of input information. When the correct address of stored data
is not known, it may be located through a channel search without interruption
of other computer operations.

Time-Sharing Features

Through the demand stations associated with each input/output device, the
central computer and several input/output devices may function independently,
except .during intervals when control information is being exchanged by the
computer and the 1/0 device.

General storage operations, involving the large-capacity, general-storage
drums, may be carried on simultaneously with central computer operations and
with input/output operations. The "busy" or "not busy" condition of both
the general storage system and the various input/output devices may be deter­
mined without interrupting any operation currently in progress.

During execution of internally-stored instructions the next instruction is
locate~ and readied for execution while the current instruction is in progress.

Internal and External Programming

The UFC-J operates as an internally programmed computer through a series of
sequentially stored instruction words. It operates as a plugboard-programmed
computer through the wiring of program steps on a 48-step main program plug-
-board which incorporates other plugboard-controlled devices, such as select­
ors, branches, etc.

14

Most programs developed for the UFC-I incorporate both internally-stored and
plugboard-defined instructions in a single inter-related program to exploit
the strongest features of each type of programming.

Checking Features

During all data transmission operations, a redundant parity check is conducted
by the computer. The computer stops automatically at the point in the program
where a parity error occurs.

All arithmetic operations of the computer may be checked for accuracy by a
reverse operation; i.e., addition is checked by subtraction. In internally
defined programs, checking is performed automatically unless suppressed by
the programmer. In plugboard defined programs, a check or no-check decision
is effected by the process wiring.

Alpha-Numeric Operation

The UFC-I handles any of the 6.3 Univac code characters with equal facility,
regardless of whether the character is a number, letter, or special symbol.
No special programming procedure is required to handle alphabetic information
or special symbols.

Automatic Data Translation

Each input device in the UFC..;I System automatically translates data from its
own language (punched card, paper tape etc.) to the language (Univac code)
of the UFC-I central computer. Each output device translates data from the
language of the central computer to its own language. Therefore, no central
computer time is lost in data translation.

Three-Address Logic

Three-address logic is the three-part principle of computer instruction which
includes:

(a) lbe address (or storage location) from which the first operand is
obtained.

(b) 1he address from which the second operand is obtained.

(c) A third address where the result is to be stored.

In'UFC-1 internal programming, each 12-character instruction word may contain
a) the addresses of two operands, b) the address at which the result is to
be stored, c) the basic process to be performed, and d) a sub-instruction
which may modify or extend the basic operation. Up to 850 of these powerful
instruction words may be stored in the high speed drum. The 48-step program
control plugboard. also operates basically in three-address logic.

15

The Computer Word

A computer word consists of twelve 7-bit Univac characters, of which the least
significant character is usually the sign (+ or -) of the value contained
in the word. Two kinds of computer words are utilized by UFC-I: the stored­
data word and the internal instruction word.

A stored-data ~ord is composed of any combination of 12 alphabetic or numeric
characters stored in a word address within the computer. When this word ad­
dress is called for in the program, the entire 12 characters will be processed
by a single command.

The arithmetic registers, extensively used as intermediate storage locations
during computer processes, are the same length as the standard computer word,
with the sign position occupying the least significant digit.

The internal instruction word differs from the stored-data word; it must al­
ways follow a specific format, as in the following diagram:

INSTRUCTION WORD

Process Instruction Word

Transfer Control Instruction Word

The l.l, V, and W portions of the instruction word usually represent storage
addresses, or, more specifically, the "contents" of particular storage loca­
tions identified by these addresses.

In a process instruction ~ord, the operation code is a process code \\hich
identifies exactly the process (or operation) which the computer is to per­
form in the execution of the instruction.

In a transfer of control to plughoard instruction word (transcop), the opera­
tion code is a number ranging from 51-98 which in~icates the transfer of
program control to a particular plugboard step for a sequence of one or more
plug boa rd-de fined program steps.

In either case, the "S/C" or special character defines a secondary operation
which extends or modifies the basic operation specified by the instruction
word.

16

An instruction word, whether a process or transcop instruction, must contain

exactly 12 characters in order to be interpreted by the computer as a valid

instruction. 1b.erefore, some legal character is always included in each

position of the instruction word. In many cases where some character, or
characters, of the U, V, W or S/C portion of the instruction is to be com­

pletely ignored, a space code 6 is used.

The Program Step

The main program plug~oard of the UFC-I contains hubs for external wiring of

48 program steps. The program step is comparable to the instruction word,

as it directs the execution of similar processes to those programmed inter­

nally. Fixed wiring within the computer controls the execution of an in­

struction word; manually plugged wiring controls the execution of a program

step on the program control plugboard. Each program step consists of a series

of hubs as shown below.

STEP v,
PROCESS

V2 R R NEXT
NO. v,

SHIFT
v2 SHIFT SHIFT STEP

51

PROC. VI ADR. V 1 SH. V 2 ADR. V 2 SH. R ADR R SH.
0--0 0--0 0--0 0--0 0--0 0--0 0--0

51 51 51

Program Step

The wiring of the V1ADR hub to a storage location serves the same function

as the placing of the address of a storage location in the U portion of an

instruction word; V2ADR is comparable to the V address portion; R ADR is
comparable to the W address portion. Wiring of the process PROC hub defines

the basic operation to be performed, and STEP OUT hub wiring defines the sub­
step modification or extension of the basic operation. Whether or not a

sub-step is defined by STEP Olff hub wiring, STEP OUT must be wired directly

or indirectly to a STEP IN hub or a NEXT INSTRUCTION hub in order for the

computer program to continue.

The diagram shown below indicates the comparable relationship of an instruc­

tion word and a program step.

u v w PR S/C
- - - - - ------- ----- - -- - -

V1ADR V2ADR R ADR Proc. Step Out

Univac File-Computer Code

The internal language of the Univac File-Computer is the seven-bit position

Univac representation of alphabetic and numeric characters and certain special

symbols.

17

Within the computer, a character is represented by the presence or absence
of a series of seven electrical pulses or magnetic spots. These individual
pulses rir spots are called "bits" (an abbreviation of "binary digits"). In
the accompanying table, and in subsequent references to the Univac code, the
presence of a bit is represented by an Arabic 1 ahd its absence by a 0.

A four-position, excess-3, binary coded decimal system 1s used to indicate
numeric data. "Excess-3" indicates that, for internal computer reasons, a
3 has been added to each number in the binary coded decimal system. In table
1-1, the pulse patterns have already been adjusted to indicate the addition
of the excess-~.

Jn order to represent alphabetic characters and certain special symbols 1• two
additional positions (zone bits) are included as integral parts of the coded
character. No special programming is necessary when alphabetic characters
and special symbols are employed.

Since the computer is designed to operate only on an odd number of bits per
character, the seventh Lit position is used as an odd-even check position or
parity check position. Thus any character whose excess-3 and zone bits add
up to an even number must contain a 1 in the parity bit position. Conversely,
any character whose bits already total an odd number must contain a zero in
the parity bit position. An odd-even parity check is performed during data
transmissions within the computer, as one of the means of insuring complete
accuracy of computer operations.

Chu•cter

i
/\
-
0
I
2
3
ij

s
6
7
a
9

' TABLE 1-1 (
r

;
A
B
c
0
(

F
G
H
I .
t
•

lllllVAC FILE-COMPUTER CODE

··-
Exce11

Puity Zone Three
Bit Bi ta Bih

I 00 0000
0 00 0001
0 00 0010
I 00 0011
0 00 0100
I 00 0101
I 00 0110
0 00 0111
0 00 1000
I 00 1001
I 00 1010
0 00 1011
I 00 1100
0 00 1101
0 00 1110
I 00 1111
0 01 0000
I 01 0001
I 01 0010
0 01 0011
I 01 0100
0 01 0101
0 01 0110
I 01 r111
I 01 I 000
0 01 1001
0 01 1010
I 01 I 011
0 01 II 00
I 01 1101
I 01 1110
0 01 1111

18

Parity Zone
Character Bit Bi ta

! 0 10
I 10

I I 10
) 0 10
J I 10
K 0 10
L 0 10
M I 10
N I I 0
0 0 10
p 0 10
Q I 10
R 0 I 0
$ I 10

I 10
? 0 10
)' I II
,8 0 II
: 0 II
+ I II
I 0 II
s I II
T I II
u 0 II
v 0 II
w I II
x I II
y 0 II
l I II
~ 0 II
= 0 II

Not Used' I II

• 1111111 is• aelete code for so'""
UFC-1 1/0 units.

Excess
Three
Bits

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
I 001
1010
1011
II 00
II 01
1110
1111

SYNOPSIS OF PROGRAMMERS' MANUAL

In this introductory Chapter 1, the outstanding features of the Univac File­
Computer, Model J, have been described only briefly, as they will be dealt
with in greater detail in the chapter~ tha~·f~llow. TI1e programmer is being
alerted here to the flexibility, the versatility, and the capabilities of the
UFC-I. He would be well advised to exploit them to their fullest extent in
the programs he devi~es.

Chapter 2 , "Program Control Storage Sy~tem" describes the addressable memory
locations which comprise the central operating memory of the computer and
the data transmissions which result when these locations are referred to.

Chapter 3 describes "Program Control", that section of the computer which
directs the interpretation, execution, and sequence of the stored instruc­
tions. There are three types of program control that may be used for pro­
gramming on the UFC-1: internal control, external control, and a combination
of internal and external. Internal control executes internally stored in­
struction words; external control executes plugboard wired instructions. 'lhe
methods by which the programmer uses internal or external control or a com­
bination of both, are outlined in Chapter 3 , together with the distributors,
switches, hubs, and indicators of chief concern to the programmer.

In Chapter 4, "Repertory of Instructions", detailed analysis is given of
the 27 instructions which the UFC-I performs, together with the sub-instruc­
tions or substeps which extend or modify the basic operations.

Chapter 5 discusses the "General Storage System", which is the large capacity
random access, storage system of ·the UFC-I. The components of the general
storage system and the general storage operations which utilize these compo­
nents, are explained.

Chapter 6, Input/Output System , describes the wide variety of input/output
devices which may be incorporated into any UFC-I system, but places major
emphasis on the demand stations and their associated control lines because
these are the dual keys to the time-sharing features of the input/output
system.

19

Chapter 7, "Arithmetic Section", includes basic facts concerning the arith­
metic and logical processes of the computer.

Chapter 8 , "Timing", describes the basic concepts and supplies approximate
times for the operation of the UFC-1 central computer.

Appendix: Appended to this manual is a group of supplements whi~h will aid
the programmer in understanding and applying the text material. It is sug­
gested that the programmer acquaint himself at the outset with the gloss~ry
programming forms, and program control plugboard facsimile. He will also
need to refer to them frequently during his s~udy of this manual.

20

STORAGE SYSTEM

INTRODUCTION

Components of the Program Control Storage System

The program control storage system is the central operating memory of the

UFC-J system. lt is of particular interest to the programmer because it

contains all tl1e addressable storage locations of the central computer's

operating memory (See Table 2-1), and the necessary circuitry for locating

these memory locations and executing data transmissions.

21

PROGRAM CONTROL STORAGE LOCATIONS WHICH ARE WORD,
FIELD, AND BLOCKETTE ADDRESSABLE*

IJ1CATION

Input /Out put Tracks
(H11lh SpePd Drum)

Bl ork Trans f,.r
Buff .,r

Factor Storajlf"
Tr arks D~ ~~ fh Sp,..,d

lnt.,rmf'diet,.
St ora~e- Tr a• k'
(fl I flh Spf'f'd Drum I

------·--·-
Gf'nrr el
Buff.-r

St oraize

PROGRAM CONTROL STORAGE ADDRESSES

AABRE\ I ATIO~

1/0 Tr er ks

·---1
ATl:I

--·---!

Fs Trarks

Addres"'s of
Word

Loretion~
(12 charact.,rR)
-·

000-009
010-019
1)20-029

090-099

100-109

110-119
120- 129

-----·--+-
IS Trac ks 130-139

1 rn-149
150- 159

9i0-979
·····--··--____,
GSB 980-989

Addressf"s of
Field Locat1nns

(Number of characters
sp.,cified by Field
Selection Pattern)

OOA-OOV (n:;i t I

*
0)

OJA-OJV
02A-02V
----------------·--
09A-09V

JOA-10\" (not & 0)

l lA- l lV (n:: t
*

0)
12A-12V

l:lA-lW (not I ~ 0)
IP1-liV
l SA-15\"
--------·-------·--
97A-97V " "

9RA-98V (nut I & 0)

Addresses of
Blockettf'
Locations

(120 characters)

ooz
OlZ
02Z

09Z

!OZ

l lZ
12Z

13Z
14Z
15Z

97Z

98Z

------·~·---·---~ , _______ _.__ _________ _.__ _______ ,
•Earh of thr•r lorat1on• hes a 120-charertrr rapacity and can store JO computer words or

up to tw .. nt~· f1.,lcls.

PROGRAM CONTROL STORAGE LOCATIONS WHICH HAVE ONLY ONE ADDRESS
.---------------- r--- ------, -·-·-----~·------·-----------.

LOCATION ABBR~:v I ATI ON ADDRESS CAPACITY
i::t=====·============·I===== =====t======t.:==============t

R"ll' st .. r B
t----·

Rf'izi st Pr c

R"ll' st" r D

GPnf'rel Stor&jlf' Addre•s
R"ll' s tPr

lnstruc-t1on Rt-volvPr
(High Spf'Pd Drunil

Prn~ram Address Count f'r

Sh I ft RPVO I Vf'r

(H1flh Sp,.,.d Orum\ ____.....__

AlockTransff'r Bufff'r Pettf'rn

RA 990

991

992

993

C:OR 99.i

GSAR 995

IRV 996

l'AK 997

SRV 998

ISP 99W

BTP <J9X

character

digits

12 characters

3 di !lits

12 characters

120 characters (only parity
bit of <'ach characterisused)

120 bits (120 characters are
1--------------+---------+--------1 sent to these I oc at ions, but

GPn~ral Stora~r Huffpr
Patt f'rn

Functions of the Progr,

GSP 99Y

TABLE 2-1

only the parity bits of the
characters transmitted are
stored).

,ontrol Storage System

The program control storage system has two main functions:

When the computer program specifies memory locations from which information

1s to be acquired and other locations at which the results of operations are

to be stored, the program control storage system carries out these data trans­

m1ss1ons. 1bis function is similarly performed whether the computer program

1s defined by internally stored instruction words or by plugboard wired pro·

gram steps.

22

When an internally stored program is being run, the next instruction to be
executed is located during the execution of the current instruction. This
acquisition of successive instruction words is the second important function
of the program control storage system.

Source and Destination References

The programmer will later find statements in this manual to the effect that
certain storage locations are addressable either as "sources", "destinations"
or both. Understanding of the proper use of these storage locations is neces­
sary in order to avoid common programming errors.

In source references, data is obtained from a storage location specified by
the programmer and automatically placed in a temporary memory location by
the computer. In the procurement of operands (which are defined as "the
contents of a computer location, used in arithmetic and logical operations"),
the address of the source is usually derived from the U or V section of an
instruction word, or the locations wired to V1ADR or V2ADR on the plugboard.
The process portion of the instruction determines the location (usually an
arithmetic register) at which the data will be held while it is being added,
subtracted, or manipulated 1n some other manner.

In des~ination references, the process portion of the instruction determines
from which temporary memory location (usually arithmetic register C or D)
the result is to be obtained. The programmer determines, by the coding of
the W portion of the instruction word, or result address R ADR wiring, at
which location the result is to be stored.

INTERNAL: u v w PR SA
Example: INSTRUCTION WORD

I

PLUGBOARD:
STEP v, v,

PROCESS v2 V2 R R NEXT
NO. SHIFT SHIFT SHIFT STEP

51 les ~__,'/_-:a_ +c FS# L-3 M~

The above example shows the coding for similar instruction words and program
steps. The source of the first operand is specified by the U address (120)
of the instruction word or the V1 ADR address (FS#2-0) of the program step.
These two are actually the same word location, expressed in terms of internal
and external programming. The add process determines that arithmetic regis­
ter A wi}l be the temporary storage location of the first operand.

23

The source of the second operand is specified by the V address (113) of the
instruction word or the V2ADR address (FS#l-3) of the program step. The add
process determines that arithmetic register B will be the temporary storage
location of the second operand.

During the process of addition (and checking), the add process determines
that the result of the process, the sum, will be accumulated (automatically)
in arithmetic register D. From this temporary storage location the result
will be transferred to the destination address, which is specified by the
W address 025) of the instruction word or the R ADR address (FS#2-5) of the
program step.

All instructions do not require three storage references; some require two
and a few, only one.

PROGRAM CONTROL STORAGE ADDRESS FORMAT

A three-character code is used to address locations in program control stor­
age when they are to be used in an instruction word. In this format, the
two characters at the left (higher order) are always numeric, and the one

character at the right (low order) may be either numeric or alphabetic.

To address any of these storage locations through plugboard wiring, .each ad­
dressable location is identified by a label, and three hubs are provided for
each location. Jn this manual, whenever internal and external addresses
re fer to the same computer location, the proper addressing technique for both
internal and external programming is shown in the appropriate segments of
programming charts.

Word Addresses

A computer word is composed of twelve characters, of which the low-order
ch a r a c t e r i s usu a l 1 y t l 1 e s i g n . The 1 2 0 ch a r a c t e rs on a t r a ck o f the hi g h
speed drum are divided irrto ten words which are addressed 0 through 9. As
the drum revolves in a counterclockwise direction, word 9 refers to the first
(low order) group of twelve characters on a track, word 8 to the second group
of characters, and word 0 to the tenth (highest order) group of twelve char­
acters.

Word addresses are also applicable in the block transfer buffer and the gene­
ral storage buffer.

24

The internal address of a word location always includes the identification
of the track or buffer in the two higher order characters, and the identifi­
cation of the word in the low order character.

External addresses of word locations are identified by groups of plugboard
hubs labelled I/O WORD 0-9, FS#l WORD 0-9, FS#2 WORD 0-9, GSB WORD 0-9, and
B1B WORD 0-9.

Field Addresses

Because the length of names, addresses, part numbers, quantities, dollars
and cents, seldom falls exactly into twelve-character words, the UFC-I pro­
vides a method of setti~g up data fields of varying lengths to facilitate the
programmer's handling of this data.

As many as 20 fields may be defined in a track on the high speed drum, in
the block transfer buffer, or in the general storage buffer.

The internal address of a field always includes the identification of the
track or buffer in the two higher order characters, and the identification
of the field in the low order character. A field is defined by any letter
A-V, excluding I and 0.

The external addressing of fields is accomplished by w1r1ng of the plugboard
hubs labelled 1/0 FIELD A-V, FS#l FIELD A-V, FS#2 FIELD A-V, BTB FIELD A-V
and GSB FIELD A-V.

Blockette Addresses

A blockette of information in the UFC-1 is the group of 120-characters which
may be contained in 1) a track of the high speed drum, 2) in the block trans­
fer buffer, or 3) in the general storage buffer. Any of the above locations
are blockette-addressable by the letter Z in the low order position in the
source or destination reference of the instruction word or program step. The
same locations are addressable on the plugboard by the wiring of the hubs
labelled 1/0-Z, FS#l-Z, FS#2-Z, GSB-Z and BTB-Z.

Single Address Locations

The program control storage system includes twelve storage locations, each
of which has only one address. These locations are: arithmetic registers

25

(A,B,C,D), code distributor register, general storage address register, in­
struction revolver, program address counter, shift revolver, and the three
field selection patterns.

The internal address of each of these locations contains the numbers 99 in
the high order positions whereas a number in the low order position designates
one of the registers or revolvers, and a letter in the low order position de­
signates a field selection pattern.

For external addressing purposes, a set of three hubs is available on the
main program plugboard for each of these locations.

COMPONENTS OF THE PROGRAM CONTROL STORAGE SYSTEM

High Speed Drum

Description

The high speed drum is physically located within program control cabinet #1
of the UFC-1 system. It revolves at a speed of 12,000 rpm, or one revolu­
tion per five milliseconds. Since it could require either 0 milliseconds
minimum, or 5 milliseconds maximum, to locate a particular piece of data, the
"average access time" to a location on the high speed drum is 2.5 millisec­
onds locating time plus the time required to read or write the number of
characters desired.

Data is stored on the drum surface sequentially (bit by bit) as magnetized
spots. A number of dual purpose read/write heads are located in the housing
of the drum. Each communicates with a narrow band on the drum surface as the
drum revolves. The narrow band associated with each read/write headi'is called
a track and contains 840 bit positions, thus allowing 120 characte"'rs of the
7 bit per character Univac code to be stored per track. From one to 120
characters can be recorded or read from a track, depending on the address
used in the reference. Recorded data is not affected by the removal of com­
puter power, nor by the reading of information from the track.

26

READ/WRITE HEA)

INTERMEDIATE
STORAGE

FIGURE 2 • 1

'.:::::ii j ~ ! ~~j j l l~ ~ l ~~~l l ~ ~ ~f ~;:

.. ,,,"<!Hl:IJ/iili:iii'

NUMERIC BITS

ZONE BITS

DATA SlDRAGE ON HIGH SPEED DRUM

The assignment of tracks on the high speed drum is as follo"s: t~enty are
designated as input/output tracks; two are designated as factor storage

tracks; eighty-five are designated as intermediate storage tracks, and are
used for the storage of constants, intermediate results, and instruction
words; one track is designated as the high speed drum field selection pattern
track. Also, the instruction revolver and the shift revolver lo Le studied

later are physically located on the high speed drum.

II 12 13 -----97

TRACK AOORESSES

Addressing the High Speed Drum

General Addressing Structure

INSTRUCTION
REVOLVER(996)

FIELD SELECTION
PATTERN (99Wl

SHIFT
RE VOLVER(998l

FIGURE. 2-2

IBA(]{ ADDRESSES CX'J HIGH SPEED DRUM

A three-character address is used to locate specific positions on the drum.
The two high order characters of the address specify the track, and are al­
ways nUmeric. The low order character of the address determines that either
a section or an entire track is to be used. If only a section is to be ad-

27

dressed, .a word or a field will be specified. A word in this position is
indicated by a number; a field is indicated by an alphabetic character except
for the character Z which indicates the entire 120 characters in the speci­
fied track.

Input/Output Tracks

The high speed drum includes 20 input/output tracks arranged in pairs. Each
pair is addressed as if it were a single track, with numbers 00 through 09
representing the first through the tenth pair of tracks.

This addressing method is possible because the computer is in direct commu­
nication with only one track of each pair at a time, while the input/output
device associated with that pair of tracks is in communication with the other.
Switching commands enaLle the computer and input/output device to exchange
positions in relation to the J/O track. For example, (see Figure 2-3), the
com~uter is in contact with the left hand track and the I/O device is in
contact with the right hand track. After the switching command is executed,
the 1/0 device is in contact with the left hand track, and the computer is
in contact with the right hand track.

c=_UT-ER-~
POSITION ''

POSITION 2

FIGURE 2-3

INPUf/ourPUf TRAO< SWilUUNG

28

Since the plugboard provides only one set of hubs for the ten word addresses

and one set of hubs for the 20 possible fields in any input/output track,
the input/output track of only that unit currently "on demand" is addres­

sable from the plugboard. When a particular input/output unit is placed

"on demand", the computer is in direct contact with that unit, and with the

input/output track directly associated with it. (The "demand" concept is
discussed in Chapter VI.).

Internally, input/output tracks are directly available to program control

storage when addressed by the U, V, or W address of an ipstruction word. Any

1/0 track may be addressed internally at any time.

Externally, input/output tracks are available in either of two situations:

When an input/output unit has been assigned to the 1/0 tracks referred

to, and that 1/0 unit has been placed "on demand";

When a transcop (transfer control to plugboard) instruction word or any

instruction word containing a breakpoint initiates a plugboard sequence

of program steps and two conditions are met: a) the U, V, or W section

of the instruction word refers to an input/output track, and b) the

V1ADR, V2ADR, or R ADR hubs of program steps are wired to the appropri­

ate U ADR, V ADR, or W ADR hubs.

For example: assume that during a plugboard sequence, the programmer

wishes to address word 0 in 1/0 tracks 05, 06 and 07,

without placing each of these 1/0 units on demand. The

transcop instruction word which transfers control to

the plugboard (step #6.5 in this example) may be coded

as follows:
INSTRUCTION WORD

TRANSCOP INSTRUCTirn WORD: v w
0

#65

During the execution of the series of program steps be­

ginning with step #65, the plugboard wiring of a V1ADR

hub to a U ADR hub will supply the contents of storage

location 050; similar wiring to V ADR or W ADR hubs would

provide access to storage locations 060 and 070 respec­

tively.

29

Note th~t this wiring need not follow any specific pattern. V1ADR may be
wired to U ADR, V ADR or W ADR at the option of the programmer. V2ADR and
R ADR may also be wired to any one of the hubs U ADR, V ADR or W ADR at the
option of the programmer.
Tracks" below.)

Factor Storage Tracks

(See also the example under "Intermediate Storage

Tracks addressed internally as 11 and 12 are wired on the plugboard as factor
storage #1 (FS#l) and factor storage #2 (FS#2) respectively.

An important use of the factor storage tracks is for the storage of constants
which may be addressed by either instruction words or program steps, since
these two tracks are always directly available to program control storage.

Intermediate Storage Tracks

Tracks numbered 13 through 97 may be used for storage of intermediate results,
constants, and instruction words. In most instances, a portion of this ge­
neral area is reserved for the internally stored program. Up to 850 ins­
truction words may be stored in this area.

Intermediate storage "IS" tracks are available to program control storage
directly by addressing them in the U, V, or W address of an instruction word.

These IS tracks are available to program control storage on the plugboard
on l y th ro u g I l t he w i r i n g o f the V 1 add re s s (V 1 A DR) , V 2 address (V 2 ADR) o r R
address (A ADA) hubs to the U address (U ADR), V address (V ADR) 1 or W ad­
dress (W ADA) hubs in any combination.

1be tracks referred to in each of these cases are determined by the IS track
address included in the ll, V, or W address of the transfer of control (trans­
cop) instruction word which initiates that sequence of program steps.

Following is an example of internal and plugboard addressing of high speed
drum tracks:

INSTRUCTION WORD

INTERNAi,:

30

To address the same storage locations on the plugboard, two conditions must

be met:

(a} Input/output unit 05 must be "on demand".

(b) lbe following transcop instruction word must precede step 73.

INSTRUCTION WORD

INTERNAL: u V W PR S/i

PLUGBOARD:
STEP v, v,

PROCESS v2 V2 R R NEXT
NO. SHIFT SHIFT SHIFT STEP

73 1 /o-o tc V ADR. FS#t-'f 71-

FIGURE 2-4

ADDRESSING HIGH SPEED DRUM TRACKS

The coding of the above program step indicates that the program

comes into step #73 from step #72, although our example states

that the program comes into step #73 from a transcop instruction

word.

31

This illustrates the ability of the transcop instruction to tran­
fer control to any plugboard step the programmer desires, regard-
1 ess of the plugboard program which may also utilize the same
step.

High Speed Drum Field Selection Pattern Track

The high speed drum field selection pattern track is addressable by the sym­
bol 99W as a destination address only. This track would normally be addressed
for the purpose of transferring a predetermined field selection pattern to
this track.

Construction of a pattern for the field selection pattern track, referred to
as "high speed drum intermediate storage field selection pattern" (ISP), is
accomplished by loading a series of characters without parity bits to indi­
cate the body of a field, and any character \\hich contains a parity bit to
indicute the ending character of a field.

For example: referring to the Univac Code Chart (Table 1-1) the programmer
w i 11 note that the cha ra c te r 4 (0000111), L (0100110), and 6 (0000001) do not
contain parity bits and therefore could be used to fill out the body of the
field. TI1e characters 2 (1000101), A (1010100), and+ (1110011) contain pa­
rity bits and could be used to denote the end of a field.

When a field pattern is transferred to the high speed drum field selection
pattern track ISP, the entire character is stored on the ISP track, but only
the rarity bits are used for field selection. Therefore, in building a field
pattern only the parity bits of the characters need be considered. Since
only twenty fields can be addressed on any track (A through V, excluding I
and 0), a field pattern should not define more than twenty fields.

A number of these field patterns may be stored on the high speed drum or on
the general storage drums, and may be transferred to the ISP when needed.
A pattern on the ISP controls the field addressing of all other tracks on the
high speed drum. However, word addressing is still applicable even though
a field pattern is present.

32

FIELD SELECTION

/
/

/
/

/
/

/
/

" / .,.,.
// ,.,,,,,,,."''

// .,.,..,.,.
/,,.... ...

/
/

/
/

/
/

/
/

/

/

/
/

/

/

READ/WRITE HEAD

,
" "

·::;;: -------------- ---------- ---
',...... i---:-,--=--i

', ' ', ,
'

''',,, '',,,,'',,,

',

' ' ' ' ' ' ' ' ' ' ' ' ' ' '

Field Addresses on the High Speed Drum

F'lfLO c

FI GLIPE ?. • 5

FIELD SELECTJOO PAITEflN

In an instruction word, to address fields on any input/output, factor storage,

or intermediate storage track, the track desired is signified by the two
high-order (numeric) characters of the address, while the field is signified
by the low-order character, which must be a letter from A through V, exclud­

ing I and 0.

33

To address these fields in a program step, I/O FIELD A-V, Fs#l FIElD A-V an
FS#2 FIELD A-V hubs are provided on the main program plugboard.

Example:

(1) OSA identifies the first field of track number 05.

(2) 47V identifies the twentieth field of track number 47.

~STRiJCTION WORD ~
INTERNAL: V W PR SI~

.11 V 1 I~ '& A ~ -'1
STEP v, v,

PROCESS v2 V2 R R NEXT
NO. SHIFT SHIFT SHIFT STEP

PLUGBOARD: 51 .s:z
52 ¥PA -re V A '1>_&_ FS'°'-'~ .S-3

+
c

FIGURE 2-6

FIELD ADDRESSES

34

The above example has been designed to include a field in an input/output
track, a field in an intermediate storage track, and a field in a factor stor­
age track in order to emphasize the point that any field (which is a portion
of the data on a track) is addressable under the same conditions as the track
which contains the field. Therefore, in this example:

For internal programming, all of the above fields are directly addres­
sable at any time.

For external programming: 1) I/O unit 5 must be on demand in order
for field A of track 5 to be available; 2) a transcop instruction
word (or some other method of loading the instruction revolver IRVc)
must make the field address 47V available to the V ADR hub; 3) field
M of a factor storage track is available at all times.

Word Addresses on the High Speed Drum

To address word locations on any input/output, factor storage, or interme­
diate storage track internally, the track desired is signified by the two
high order characters of the address, whereas the word is signified by the
low order character.

To address these words 1n a program step, I/O WORD 0-9, FS#l WORD 0-9, and
FS#2 WORD 0-9 hubs are available on the main program plugboard.

032 indicates track number 03, word number 2.
119 indicates track number 11, word number 9.
870 indicates track number 87' word number 0.

INSTRUCTION WORD

INTERNAL:
0

PLUGOOARD:

STEP v, v,
PROCESS v2 V2 R R NEXT

NO, SHIFT SHIFT SHIFT STEP

76 t /oz., tC FS .,/-'f W.AP~ 77 _.........__,

35

R SH

c 0-0

FIGURE 2-7

WORD ADDRESSES ON HIGH SPEED DRUM

The above example has been purposely designed to include a word location in

an input/output track, in a factor storage track, and in an intermediate

storage track, in order to emphasize the point that any word location is ad­

dressable under the same conditions as the track which contains the word.
Therefore, in the above example:

For internal programming, all of the above word locations are directly

addressable at any time.

For external programming: l) I/O unit 3 must be on demand in order

for word 2 of track 3 to be available; 2) word 9 of factor storage

#1 is available at all times; 3) word location 870 is only available

through the W ADR hub when a transcop instruction (or some other method

of loading the instruction revolver JRVc) precedes the program step

in which 870 is desired.

36

Blockette Addres~ing of the High Speed Drum

Input/output tracks, factor storage tracks, and intermediate storage tracks
are all blockette addressable. Internally, the entire 120 characters which
may be contained in one of these tracks is directly addressable at all times
by the use of the, letter Z in the low order position of the address. Exter­
nally, the plugboard hubs I/0-Z, FS#l-Z and FS#2-Z serve the same purpose.
Blockette addressability of these tracks is exactly the same concept as ex­
pressed in the discussion of high speed drum tracks earlier in this chapter.

An example of the usefulness of blockette addressability is given below, where
an ·instruction to buffer transfer OlZ to 12Z results in the entire contents
of channel 01 being moved to channel 12.

INSTRUCTION WORD

INTERNAL: u V W PR SIC

C> 2

PLUGBOARD:
STEP v, v,

PROCESS v2 V2 R R NEXT
NO. SHIFT SHIFT SHIFT STEP

51 ILa_ 2. 8T FS"":t·2 S-.:2..

PROC

FIGURE 2-8

BLOCKE1TE ADDRESSABILITY

*V1ADR-I/O-Z w1r1ng assumes that I/O unit 1 is on demand.

37

Block Transfer Buffer

Description

The block transfer buffer (BTB) is a rapid access magnetic core memory which
stores up to 120 seven bit Univac characters. In its function as an addres­
sable memory location available to program control storage, the ITTB is word,
field, and blockette addressable. Addresses in the block transfer buffer are
directly available at all times to program control storage through the U, V
or W portion of instruction words or through wiring of the BTB WORD 0-9, BIB
FIELD A-V and BTB-Z hubs on the plugboard.

As its name implies, BIB is used as the intermediate storage location during
the "buffer transfer" operation, which transfers blocks of data from one pro­
gram control storage location to another. Up to 120 characters may be trans­
ferred by a single buffer transfer command.

Addressing Structure

(1) The address of the BTB is 10, supplemented by a letter or number
designating the field or word, or by the letter Z which designates
the entire 120 characters of the buffer.

(2) Word addresses follow the same pattern as words •On the high speed
drum. Each number from 0 through 9 represents a twelve-character
word in the bu ff er.

Examples of word addresses in BTB:

100 indicates B1B, word 0
108 indicates B1B, word 8

(3) Field addresses are defined in the same manner as fields on the
high speed drum. Each letter A through V, excluding Jandl 0,
indicates one of the twenty fields which may be set up in the
buffer by the block transfer buffer field selection pattern (BTP).

Block Transfer Buffer Field Selection Pattern

The address of the block transfer buffer field selection pattern is 99X or
the BTP hubs on the plugboard. The pattern may be thought of as an additio­
nal row of 120 bits, associated with the block transfer buffer. The method

38

of constructing BTP is similar to that used for. the high speed drum field
selection pattern. Characters without a parity bit indicate the body of a
field; any character which contains a parity bit indicates the end of a field.
Since only twenty fields can be addressed, a pattern should not define more
than that number.

The BlP is addressable as a destination only, for receiving a complete 120-
character field pattern.

An example of loading a pre-determined field pattern into the block transfer
field selection pattern 99X follows:

INSTRUCTION WORD

INTERNAL: u V W PR SA

0 :s- z A

STEP v, v,
PROCESS v2 V2 R R NEXT

NO, SHIFT SHIFT SHIFT STEP

PLUGBOARD: 51 S-.:J.
52 ~-Z Bi BTP S-3

FIGURE 2-9 GSP ISP IRV
0-0-0 0-0-0 0-0-0

TRANSFER OF PATIERN TO BTP ~~~
BLOCK TRANSFER

39

General Storage Buffer (GSB)

Description

The general storage buffer is a rapid access magnetic core memory which stores
up to 120 seven bit Univac characters. The function of the general storage
buffer as an intermediate storage location between the program control stor­
age system and the general storage drums is discussed in Chapter 4, "General
Storage System".

In its function as an addressable memory location available to program con­
trol storage, the GSB is addressable by word, field or blockette.

Addresses in the general storage buffer are directly available to program con­
trol storage (except during the times the general storage buffer is engaged
in certain general storage operations) through the U, V, and W address of
instruction words, or through wiring of the GSB WORD 0-9, GSB FIELD A-V and
GSB-Z hubs on the plugboard.

Addressing Structure

The address of GSB is 98, supplemented by a letter or number designating the
field or word, or by the letter Z which designates the entire 120 characters­
of the buffer.

Word addresses follow the same pattern as words on the high speed drum. Each
number from 0 through 9 represents a twelve character word in the buffer.

Examples of word addresses in GSB

980 indicates GSB, word 0
985 indicates GSB, word 5

Field addresses are defined in the same manner as fields on the high speed
drum. Each letter A through V, excluding I and 0, indicates one of the twen­
ty fields which may be set up in the buffer by the general storage buffer
field selection pattern GSP.

See Figure V-6 for a representation of the addressing structure of the gene­
ral storage buffer.

40

General Storage Buffer Field Selection Pattern (CSP)

The general storage buffer field selection pattern may be addressed internal­
~y by the symbol 99Y, or externally by wiring the GSP hubs on the plugboard.
The pattern may be thought of as an additional row of 120 bits associated
with the general storage buffer.

The method of const·ructing GSP ls similar to that used for the high speed
drum field selection pattern. Characters without a parity bit indicate the
body of a field; a character which contains a parity bit indicates the end
of a field. A pattern should not define more than twenty fields within the
buffer, since only twenty fields can be addressed (A through V, excluding
I and O). The pattern may be addressed only as a destination and 120 char­
acters must be transferred to it.

General Storage Address Register (GSAR)

1be general storage address register (GSAR) lS a special purpose memory loca­
tion which has as its prime function the holding of the general storage drum
address in operations involving the finding of storage locations in the ge­
neral storage drum system (See Chapter 5).

In its role as a component of the program control storage system, GSAR is
available to program control storage through code 995 in the U, V, or W ad­
dress of an instruction word or through wiring of the GSAR hub on the plug­
bciard.

When GSAR ls addressed in a source reference, a space code ({\) is automatical­
ly generated by the computer. The space code, fol lowed by the seven digits
held by GSAR is transferred to the temporary storage location specified by
the process. (A space code in the sign position is treated by the computer
as a plus (+) in arithmetic operations.)

When GSAR is addressed in a destination reference, the sign and seven lo~

order digits are transferred from the temporary storage location specified
by the process and loaded into GSAR, the sign being automatically shifted off.

Program Address Counter (PAK)

The program address counter (PAK) is a special purpose memory location which
holds the address of the next instruction word to be located during execution
of instruction words.

41

In its role as a component of the program control storage system, PAK is
available to program control storage by two different methods of addressing:
1) code 997 may be entered in the U, V, or W address of an instruction word,
or 2) the PAK hub may be wired on the plugboard.

When PAK is addressed in a source reference, a space code is automatically
g en e r a t e d by the compute r . The s pa c e code , fo 11 owed by the th re e dig: it s
held by the PAK, is transferred to the temporary storage location specified
by the process. (A space code in the sign position is treated by the compu­
ter as a plus (+) in arithmetic operations.)

When PAK is addressed in a destination reference, the sign and three low or­
der digits are transferred from the temporary storage location specified by
the process and loaded into PAK, the sign being automatically shifted off.

Code Distributor Register (CDR)

The code distributor register (CDR) is a single character register normally
used to store control characters which will effect the distribution of in­
fo rm a t ion by the code d i s t r i bu tor . I t i s d i s cussed in i ts pr i ma r y r o 1 e o f
determining prograw variance in Chapter 3.

In its role as a component of the program control storage system, COR is
available to program control storage by two different methods of addressing:
1) code 994 may be entered in the U, V, or W address of an instruction word,
2) the CDR hub may be wired on the plugboard.

When 01R is addressed in a source reference, a space code (ti) is automatical-
1 y generated by the computer. The space code, followed by the single charac­
ter held in the CDR, is transferred to the temporary storage location speci­
fied by the process. (A space code in the sign position is treated by the
computer as a plus (+) in arithmetic operations.)

When CDR is addressed as a destination, the sign and a single character are
transferred from the temporary storage location specified by the process and
loaded into CDR, the sign being automatically shifted off.

Arithmetic Registers A, B, C, D

Arithmetic registers A, B, C, 0 are used during most of the processes which
the UFC-I executes. They may be used as intermediate storage locations for
operands and results as specified by the particular process involved, or they

42

may be programmed sources or destinations at the choice of the programmer.

As units of the program control storage system, the arithmetic registers

are addressable as follows:

(1) When called for in the U, V, or W portions of an instruction word,

the address of Register A (RA) is 990; Register B (RB) is 991;
Register C (RC) is 992; and Register D (RD) is 993.

(2) Plugboard addressing of these registers is accomplished by w1r1ng

the hubs marked RA, RB, RC, and RD.

(3) Any of the four arithmetic registers may be referred to as either

a source or a destination. In either case, exactly twelve char­

acters is in,olved, usually a sign in the low order position,

called the sign position, and eleven alpha-numeric characters

in the remaining positions.

Instruction Revolver (IRV)

The instruction revolver is addressed internally by the code 996, or by w1r1ng

of the plugboard hub IRV. Although referred to in the singular, the in­

struction revolver is actually two 12 character revolvers.

For purposes of clarity the instruction revolver which holds the current in­

struction being executed is referred to as IRVc. The instruction revolver

which holds the next instruction to be executed is referred to as IRVn.

The instruction revolver may be addressed as either a source or a destination,

supplying or receiving exactly 12 characters in either case. When the in­

struction revolver is specified as the source in a program control storage

reference, the contents of IRVc is supplied. When the instruction revolver

is specified as the destination, the values supplied are loaded into IRVn.

The principal function of the instruction revolver is discussed in Chapter

3, in its relation to the acquisition and execution of instruction words.

Shift Revolver {SRV)

The shift revolver is a 12 character revolver, the function of which is to
hold shift words used to control shifting operations. It may be addressed

only as a destination.

43

ln an instruction word, the shift revolver is addressable by the code 9~8
in the W portion of the instruction word. On the plugboard, the shift revol­
ver is addressed by wiring the SRV hub to an R AOO hub.

Note that:

(a) The special instruction word "Load Shift L" loads the shifts
specified in the instruction word itself (See Chapter 3).

(b) Shift instructions included in the U, V, and W portions of a trans­
cop instruction are available on the plugboard through U, V, and W
SHIFT hubs.

(c) Use of the shift revolver and available internal and plugboard
shifts are discussed in Chapter 3.

44

INTRODUCTION

Program Control is the section of the UFC-I central computer which directs

the interpretation, execution, and sequence of computer instructions. It is

the main control for the entire system.

Program Control executes two types of computer instructions:

words and program steps.

instruction

Internal program control executes internally stored instruction words by co­

ordinating and controlling the actions of the computer components discussed

below, under "Components Used During Internal Program Control". The discus­

sion does not attempt to include all of the components of the computer that

are involved in internal control, but only those of particular concern to

the programmer.

45

External program control, which uses many of the same components as internal

program control, executes plugboard defined program steps through the coordi­

nation of the computer components discussed under "Components Used During

External Program Control".

Normally, a combination of internally stored and plugboard defined programs

is the most efficient method of accomplishing a given data-processing task,

since the best features of each type of program may be utilized as the prob­

lem changes in nature.

The techniques by which the programmer is able to effect a transfer of control

from an internally stored program to a plugboard defined program, and vice

versa, are discussed under "Components Used to Effect Combination Control".

COMPONENTS USED DURING INTERNAL PROGRAM CONTROL

Operation Pulse/Enable Distributor (OED)

The operation pulse/enable distributor is a group of circuits which controls

the time sequence of every computer instruction and supplies the principal

control pulses and/or enables which are required to carry out each part of

an instruction. It is included in this chapter primarily for the purpose of
illustrating the execution of a computer instruction.

OED operates in segments numbered 0-13, and at each setting of OED, one or

more parts of the instruction are executed. During the execution of most

instruction words, CED cycles either from 0-13 or from 2-13 depending upon

whether or not the next instruction to be executed was loaded during the

processing of the previous instruction word. During execution of most program

steps, OED cycles from 3-12.

Table 3-1 shows a typical OED cycle. The specific sequence of OED steps

that is carried out during the execution of each instruction word or program

step varies with different instructions. A complete analysis of the OED cycle

for each instruction will be included in a later publication.

46

TYPICAL OED CYCLE

(El
Operation Sequsice Time

•o Inatruction Word (IW) address to SAii

•1 IW obtained and loaded into UIVn

2
IRV switches; IIIVn becomes IRVc

Process and Special Character of IW set up in Program Control

3
V 1 address to SAii

V 1 shift to S<

4 vl obtained and loaded into rn.

5
V 2 address to SAii

V1 shift in RA

6
v2 obtained and loaded into m
v2 shift to S<

PAK advanced by one

1 Next IW address to SAii

v2 shifted in m

Next IW obtained and loaded into IRVn

8 R shift to S<
Process (check in addition and subtract ion)

9
R address to SAii

R shifted in ID (or IC)

10 R to storage

11 Check (in multiplication and division)

12 Step Out hub emits (program step only)

13 Subinatruction initiated.

• If this IW is already loaded into IRVn• CEl cycles from 2-13; if not, CEl cycles from
0-13.

TABLE 3-1

Program Address Counter (PAK)

The Program Address Counter (PAK) is a three-character shift register address­
able internally by the code 997. Instruction words are always obtained from
the address specified by the contents of PAK. It is the device used by pro­
gram control to "remember" where to get the next instruction word in the pro­
gram. Unless PAK is modified by the program, it always advances by one, and
the next instruction word is taken from the word location next in sequence.

PAK can be set manually to any value in the range of addresses 000 through
999. Operation of a MASTER CLEAR switch automatically sets PAK to 000.
Thereafter, PAK is advanced by one or reset depending on the instructions
executed by program control. If the first instruction word in the program
is tp be obtained from any other location than 000, the correct address of
the first instruction word must be set up in PAI< after the MASTER ClEAR button
has been pressed.

47

Where the contents of PAK are not modified by the program, PAK advances se­
quentially one word location at a time through word locations as described
below, cycling repeatedly through the 130-979 area where instruction words
are usually stored.

0004 130 979 ;t

Where the PAK is manually set to a value within the range of addresses 980-
989, or where a jump is programmed to one of these locations, PAK counts to
989 and then jumps back to 130. 1be complete range of addresses through which
PAK cycles is as follows:

000 130 ~ 979

~
Jump

t
980 __... 989-=i

When Program Control attempts to load the contents of the storage location

specified by PAK into the instruction revolver, it must find there a valid
instruction word as defined above. Therefore, PAK values in the range 990-
999 should normally be avoided in programming since the memory locations in­
cluded in this range may not, and some cases, cannot, contain a valid instruc­
tion word. The CDR, for example, is addressed by the code 994 9 which is.
within the 990-999 range. However, the CDR is a single character register
and could not possibly contain a valid instruction word.

Effect of PAK Modifications on a Program

Where the contents of PAK are modified in any of the ways described below,
the cycling of PAK will be affected as in Figure 3-1.

(1) PAK may be modified by addressing it as the destination in either
an instruction word or a program step. In either case, Program
Control executes the instruction stored at the word location spec­
ified by the modified contents of the PAK as the next instruction.

48

(2) Special instructions, Unconditional Jump and Test Demand In uncon­
ditionally modify PAK with the same effect as the above. Other in­
structions: Channel Search Probe, Test Incoming Control, Demand In,
Jump on Plus, Jump on Negative, Jump on Zero result in modification
of PAK conditionally. (See Chapter 4.)

no

ADVANCE
PAK BY I

PAK OPERATION WITH PROGRAM MODIFICATION
OF PAK SETTING

<

PAK CONTENTS
<, = 979?

SET BEGINNING
ADDRESS IN PAK

PAK CONTENTS
<, =, > 980?

IS PAK SETTING
MODIFIED BY

PROGRAM?

yes yes

RESET PAK
ACCORD I.NG
TO PROGRAM

no

SET PAK
BACK TO 130

no

ADVANCE
PAK BY I

FIGURE 3 -1

49

'>or=

PAK CONTENTS
<, = 989?

yes yes

RESET PAK
ACCORDING

TO PROGRAM

IS PAK SETTING
MODIFIED BY

PROGRAJ.f?

no

SET PAK
BACK TO 130

(3) When program control executes a TRANSCOP (Transfer control to plug­
board), (51-98) instruction, it initiates a sequence of program
steps.

EFFECT OF PLUGBOARD CONTROLLED PROGRAM

ON PAK SETTINGS

-~ INTERNALLY
CONTROLLED PROGRAM

NEXT INSTRUCTION: IS THIS A
PROCESS IMSTRUCTIOM·WORD OR
A TRAMSCOP IMSTRUCTIOM WORD?

Process IW

Transcop IW

PROGRAM COMTROl. JUMPS
TO PLUGBOARD

AOVAMCE ;.;~

LOCATE THIS IMSTRUCTIOM WORD
TRANSFER TO IRV

PLUGBOARD CONTROLLED
PROGRAM CONTINUES

IS PAK MODIFIED BY AMY PLUGBOARD
STEP IN THIS SEQUENCE?

Ho

Ml HUB IS PULSED
TO RETURN CONTROL

TO INTERNAL PROGRAM
{SWITCH REVOLVERS)

EXECUTE INSTRUCTION IN IRVn

CONTINUE INTERNALLY
CONTROLLED PROGRAM

Ml HUB IS PULSED
TO RETURN CONTROL

TO INTERNAL PROGRAM

LOCATE INSTRUCTION WORD SPECIFIED
BY PAK, TRANSFER TO IRVTI, (SWITCH

REVOLVERS)

EXECUTE INSTRUCTION IN
IRVn

FIGURE 3-2

50

During the first program step, PAK is advanced by one, and the instruction
word specified by the contents of PAK is loaded into IRVn.

When next instruction (NI) is pulsed, control returns to the internal program.
The next instruction executed depends upon whether or not the PAK was sent
data during any step during the plugboard sequence:

(1) If PAK was not sent data, the next instruction executed is the in­
struction word loaded during the first program step.

(2) If PAK was sent data, the instruction word specified by the contents
of PAK (at the time NI is pulsed) is obtained, and that instruction
becomes the next instruction executed in the program.

Storage Address Register (SAR)

The Storage Address Register is a three character non-addressable register
which temporarily holds the following "storage addresses" during the execution
of computer instructions:

SAR receives from PAK and holds temporarily the address of the location
from which the next instruction word is to be obtained during OED 7 of
the current instruction word.

SAR holds temporarily the addresses of the locations from which V1 and
V2 are obtained, and the address of the location at which R is stored
during the execution of both internal and external programs.

During the execution of input/output instructions, SAR successively holds the
U and V sections of the instruction word. The interpretation of U and V
determines which input/output unit is called for, whether track switch will
occur, and which computer-I/O control lines will be activated.

Instruction Revolver (IRV)

The instruction revolver (IRV), internally addressable by code 996, actually
consists of two 12-character revolvers, since both have the same address.
One revolver, IRVc contains the current instruction word, and the other,
IRVn, contains the next instruction word to be executed.

51

Program control obtains from IRVc the U, V, W, and OP sections of the current
instruction word as it executes that instruction word. Normally, while one
instruction is being executed, the next instruction word is loaded into IIWn.
Upon completion of the current instruction word, program control switches to
IRVn, finding there the next instruction word to be executed. This method
of operation provides a valuable time-saving factor because the next instruc­
tion may be found and loaded into one revolver, IRVn, while the other revolv­
er, IRVc, 1s occupied by the current instruction word.

When PAK is modified, the next instruction word is not immediately loaded
into IRVn, and program control does not switch revolvers. First it must gain
access to the instruction word specified by the modified contents of P~K,
load it into IRVn, and then switch to that revolver. Thus, the instruction
specified by the modified PAK becomes the next instruction to be executed.

Shift Revolver (SRV)

The shift revolver (SRV) 1s a rapid access storage location of 12 characters,
which contains the shifting instructions to be followed as the vl and v2 oper­
ands are loaded into their respective arithmetic registers and the results
are sent to a destination. SRV can be loaded by the internal instruction
LS, or by the transfer process, addressing 998 as the destination. The format
for all shift words held in SRV is as follows:

IT I x I v L~ L x I w [x J x l -I - l -I
u v w OP

(1) u, v, and w indicate the type of shift to be executed. Available
types of shift, and the code which initiates each type include:

0 = No shift on this operand.

1 = Right end around. All characters including the sign position
move to the right, and the characters shifted off re-enter the reg­
ister at the left end.

2 = Left end off. All characters except the sign position move to
the left, with zeros inserted in the vacated positions: characters
shifted off are lost.

3 = Right end off. All characters except the sign position move
to the right, with space codes inserted in the vacated positions;
characters shifted off are lost.

52

(2) xx in the two character position at the right of u, v, and w indi­
cate the number of character positions to be shifted, ranging from
one character to 11 characters.

(3) The operation (OP) section of a shift word is not significant in
the shift revolver itself. However, in the example below, the code
32 or LS in the OP section of the instruction word loads the U, V,
W pattern into the shift revolver.

Example:

We will assume that arithmetic registers A, B and D contained the charac­
ters shown in the following diagram "Before Shift".

Shift instruction has previously been loaded into SRV.

After execution of the shifts, the registers would appear as shown in the
diagram "After Shift".

u v w PR s I c

lol s!2fo]ajsfoJ1fL ra ~
(a) BEFORE SH I FT

RA Io I o 191 8 I 1ls ls f ij la l2 I 1 I +
RB Io I of g I 8 j1ls fs lij la 12 , , I +
RD I J I 0 I H I N l~IJ lo INjEls 16 I +

(b) AFTER SHIFT

RA I ij I a I 2 I I +I 0 I o I 9 I al 1 j sf 5

RB I s I ij I 3 2 I I o I 0 I o I ol oj oj +

RD I~ I ~I ~I ~I ~I ~I~ I J I 01 HI NI +

SRV is cleared each time access to a new instruction word is obtained, except
where the instruction just executed loaded the SRV, either by transfer or by
the LS internal command. In effect, the shift pattern loaded into the shift
revolver is "used up" by the next instruction word. The following, therefore,
should be observed:

53

(1) SRV should be loaded immediately before a process instruction word
which is to use the shift word held in SRV.

(2) Where a plugboard sequence requires reference to the SRV through U,
V, W SHIFT operations, the SRV must be loaded by the instruction
word immediately preceding the transcop instruction which relin­
quishes control to the plugboard.

Shift Counter (SK)

The shift counter is a three character non-addressable register, which spec­
ifies the type of shift to be performed and the number of places to be shifted
during the execution of both internally stored and plugboard defined instruc­
t ions. When a shift is to be executed the number of places to be shifted
is automatically loaded into SK. As the data is shifted in the arithmetic
register SK counts backward. When it reaches zero, the shift terminates.

INSTRUCTIO~S IN WHICH SHIFTS CAN BE PROGRAMMED TO OCCUI

Add

Co""uter Instructions
in ..hich the following

Processes are executed:

Add & Check
Subtract
Subtract & Check
Mask Transfer
Subatitute U

Multiply Store Upper

Multiply Store Lower

Multip!.ri Store lli>I>_er & Check
Mult!Jtly, Store~er & Check

Divide, Store Quotient

Divide, Store Quotient & Oieck

Divide, Store Remainder

Divide, Store Remainder & Check

<:oq:,are

Suppreaa Left Zeros
Left Nom11lize

Arithmetic Transfer

Quantities for which
Shifts can be

Progranmed

Arithmetic
Registers
Involved:

R in ID

~1n
-V1 I.II •••

]Lin.ll
~1 in L..•••

Vi.11118

v1 Shift
time Three separate •hifu can

be prognnmed. The Source All
O.ta (or the Source 0.ta •hi£ting V2 Siift
plus Space code•) are done in time
manipulated. ID R Siift

.__~~~--~~~~~-........ ~~~~~~~~__..._~~..__-t_ime~_, TABLE 3-2
• In left and right •hifta for n in Multiply proce .. e•, Regi•ter• C and D are •hilted aa a ain­
gle (22-character) register. In right end around ahift. for R in Multiply proceaaea, however,
only the regi•ter from which the re•ult i• atored ia 1hifted.

• • 1£ a •hift for R i• progranrned, the •hi.ft will be performed but will cause an ARinllEJ'IC
OHX EHD\.

••• V1 i• not actually 1hifted in RA, althl!ugh the effect in the Divide algorithm i1 the nme
as if V1 were •l•o ahifted in RA. The ahift for V1 ia performed in OC to provide a correct
remainder •hould the (u-v+n+l)<l condition be detected •t procea1 time (See Oiapter 7).

54

Process Register (PR)

The process register (PR) is a two-character register, not addressable by the
programmer. It contains either the low order four bits of process or transfer
control codes from the operation section of the current instruction word, or
the number of the plugboard step currently being executed.

When process instruction words are initiated, PR receives the process code,
a number < SO.

When transcop instruction words are initiated, PR receives the transfer con­
trol code, always a number > SO. This directs program control to the next·
plugboard step to be· executed.

Code Distributor Register (CDR)

The code distributor register (CDR) is a one-character register addressable
internally by the code 994. In common usage it is addressed in W portions
of instruction words for the purpose of loading a desired control character
into CDR. At some point later in the program, CDR is probed and the code
distributor (CD) functions as a multiple position plugboard switch.

A complete description of the code distributor and the code distributor reg­
ister, together with their use, is included in this chapter under "Components
Used During External Program Control".

Branch Storage

Branch storage, which is not addressable internally, is a temporary memory
location the setting of which is determined by the result of arithmetic or
comparison operations. During execution of instruction words, the setting
of branch storage is used to set conditional storage as described under "Con­
ditional Storage" below. Conditional storage must be set in the instruction
word which sets branch storage if a + or - condition is desired, since branch
storage is cleared to 0 just before the process of each instruction is in­
itiated.

(1) In arithmetic operations:

Where the result, R, 1S > 0, branch storage lS set to +;
Where the result, R, lS 0, branch storage 1S set to O;
Where the result, R, lS < 0, branch storage 1S set to -

55

(2) In comparison operations:

Where u > v branch storage lS set to +;

v1 > v2
Where u v branch storage lS set to 0;

v1 v2
Where u < v branch storage lS set to -

v1 < v2

(Note: For further detail, see "Branch Storage Settings", Chapter 7.)

Conditional Storage

Conditional storage provides a method of varying an internal program when
the sequence of operations is determined by the algebraic sign of the result
of an arithmetic or compare operation. The result of the operation first
establishes the condition +, -~ or 0 in branch storage. TI1is condition may
then be used to set conditional storage. When conditional jump instructions
are executed, the setting of conditional storage becomes the deciding factor
in determining the path which the program will follow (see "Repertory of
Instruction").

Conditional storage may be considered a more permanent storage location than
branch storage. When any of the appropriate special characters appear in
the special character position of an instruction word, conditional storage
is "set" to the +, -, or 0 condition prevailing in branch storage at the time
the special character position is examined. Each setting of conditional
storage prevails until another "Set Conditional Storage" is called for by an
instruction word.

"'Set Conditional Storage" is accomplished by placing a 2, 3, 4, 9, B, C, 0,
or I in the special character position of the instruttion word. When the
character 9 or I is used, only "set conditional storage" will be accomplished.
When any other of the characters listed is used, breakpoints are also examined
as shown in Table 4-2 "Valid Subinstructions", Chapter 4.

If any process instruction word contains.a set conditional storage charac­
ter, and initiates an arithmetic or comparison operation, the result of that
operation will determine the setting of conditional storage.

56

If a process instruction word contains a set conditional storage character

but does not initiate an arithmetic or comparison operation, conditional

storage will be set to the zero (0) condition, since this is the "cleared"

condition of branch storage as described in "Branch Storage" above.

Special Character Register (SR)

The special character register is a one-character, non-addressable register

which receives the contents of the special character S/C portion of the in­

struction word when it is obtained from the instruction revolver (IRVc).

The contents of SR determine which extension or modification of the basic

operation is to be carried out as the instruction word is executed. An ex­

tension or modification of an instruction word may be either (1) a signal,

such as received from a "special character out" plugboard hub, or (2) a sub­

instruction, such as "channel search", which affects a series of events.

(See Chapter 4 for valid S/C characters and descriptions.)

Signals and subinstructions take effect prior to the execution of the next

instruction word except:

(1) Where the subinstruction is "suppress check", in which case the

S/C takes effect during the processing of the current arithmetic
operation.

(2) Where SR received a character from a transcop instruction, in which

case the signal or subinstruction is delayed until after the plug­

board sequence initiated by the TC instruction has been completed

and the NI hub has been signalled.

Breakpoints

When it is desirable to interrupt a program at the end of a particular in­

struction word or at some point in a sequence of plugboard steps, the follow­
ing conditions must be fulfilled:

(1) The appropriate BREAKPOINT SELECTOR button; or combination of

BREAKPOINT SELECTOR buttons on the computer control cabinet is
depressed:

BREAKPOINT SELECTOR 1 Examine breakpoint 1.

BREAKPOINT SELECTOR 2 = Examine breakpoint 2.
BRFAKPOINT SELECTOR 3 = Examine breakpoint 3.
CLEAR = Ignore all breakpoints.

57

(2) The appropriate letter or number is included in the special charac­

ter S/C position of the instruction word.

When a process instruction word containing a breakpoint character in the S/C

position of the word is executed and the appropriate BREAKPOINT SELECTOR is

depressed, the program is interrupted at the end of the execution of the

instruction word, and the corresponding "breakpoint hub" (1, 2, or 3) on the

plugboard emits a pulse.

When a transcop instruction word containing a breakpoint character in the

S/C position of the word is executed and the appropriate BREAKPOINT SELECTOR

is depressed, c~ntrol is transferred to the plugboard and the entire sequence

of plugboard operations initiated by the transcop instruction is executed.

Then the program is interrupted and the corresponding breakpoint hub (1, 2,

or 3) on the plugboard emits a pulse. Special characters and the breakpoint

pulses they initiate are given in the table "Valid Subinstructions", Chapter

4.

COMPONENTS USED DURING EXTERNAL PROGRAM CONTROL

Operation Pu1se/Enab1e Distributor (OED)

The OED is a group of circuits which controls the time sequence and supplies

the principal control pulses and/or enables required to carry out each part

of a program step or instruction word.

Typical steps in the OED are discussed above under "Components Used During

Internal Control".

Program Address Counter (PAK)

The program address counter, previously discussed in its vital role as a

component of internal program control, is also addressable on the plugboard,

and may be modified during external program control.

The following example shows the modification of PAK by the addition of some

value obtained from word 2 of factor storage #1. The STEP OUT hub of step

76 is wired to NEXT INSTRUCTION which transfers control to the internal pro­
gram where the modified contents of PAK designate the address of the next in­
struction to be executed.

58

STEP v, v,
PROCESS v2 V2 R R NEXT

NO, SHI FT SHI FT SHI FT STEFi

75 1'
76 PAI<. +-t!. F.S"'l-..6,.J PA_g Li_I_

FIGURE 3-3

PLUGBOARD MODIFICATION OF PAK

Storage Address Register (SAR)

During plugboard defined programs, SAR holds the addresses of the locations
from which V1 and V2 are obtained, and address of the location at which R is
stored.

Instruction Revolver (IRV)

The instruction revolver, although not actively engaged during external pro­
gram control, is addressable from the plugboard either as a source or as a
destination. When addressed as a source, the contents of IRVc are supplied;
when addressed as a destination, the result of the operation is stored at
IRVn.

59

In the following example, the contents of IRVc have been modified by the addi­
tion of a value obtained from field A of the block transfer buffer. The mod­
i :fied instruction has been stored at IRVn. When the NEXT INSTRUCTION hub
is signalled, instruction revolvers will be switched and the next instruction
to be executed will be the one just modified in program step 74.

STEP v, v,
PROCESS v2 V2 R R NEXT

NO, SHIFT SHIFT SHIFT STEP

73 l_"I
74 /JT8·-1 -t·(! r.RV IRV b_r

FIGURE 3-4

PLUGBOARD MODIFICATION OF IRV

60

Shift Revolver (SRV)

The shift revolver is addressable on the plugboard by wiring one of the "SRV"
hubs as a destination address or one of the U, V, or W SHIFT hubs.

A shift pattern may be "loaded" into the shift revolver (SRV) by a plugboard
step. This pattern must be used during the execution of the first instruction
word after internal program control takes command, since the shift revolver
(SRV) is cleared each time a new instruction word is used.

After a shift pattern has been loaded into the shift revolver, either by the
internal command "LS", by a transfer instruction, or by a plugboard step
as described above, the contents of the shift revolver are accessible to the
programmer through two set.s of "U, V, W SHIFT" hubs on the plugboard. Wiring
of V1SH,• V2SH,.or R SH to any oTle of these hubs will produce the shift specified
by this portion of the shift revolver. Any combination of V1SH, V2SH, R SH
and U, V, W SHIFT hubs may be wired. For example:

STEP
NO.

54

55

v, SHl~T PROCESs' V 2
Vz

SHIF·T
R NEXT

STEP

FIGURE 3.5

SHIFTING OF PLUGBOARD ACCORDING TO SHIFT REVOLVER

61

In. the above example, the contents of FS #1-L will be shifted in accordance
with the W section of the shift revolver (SRV); FS #1-G will be shifted in
accordance with the U section of SRV; the result will be shifted in accordance
with the U section of SRV before it is stored at BfB word 3.

Shift Counter
The shift counter performs the same basic function during external program
control as it performs during internal program control discussed above.

Shift Hubs

Shifting of arithmetic registers 1s accomplished on the plugboard by w1r1ng
V1SH, V2SH, or R SH to the desired shift hubs.

The shifts available externally to the programmer are the same as those dis­
cussed previously in this chapter under "Components of Internal Program Con­
trol-Shift Revolver" and in Table 3-2.

Appropriate wiring to facilitate shifting by the use of shift huhs 1s shown
in the following diagram:

R R
SMIPT

FIGURE 3-6

PLUGBOARD DEFINED SHIFTS

62

Code Distributor

The code distributor provides an effective means of varying a computer pro­
gram, depending on conditions brought to the central computer by an input
device, or conditions which develop during the processing of information.

The code distributor is composed of a single-character register, the code
distributor register (CDR), and a multiple translator which performs the
decision-making function.

The code distributor register (CDR) must first be "loaded" by transferring
a single character to it. The current necessary to continue the program wi 11
be received from the appropri·ate hub of the code distributor, depending upon
the wiring of the code distributor and the character held by CDR.

Altbough 63 characters comprise the Univac code, the code distributor func­
tions only when the code distributor register holds one of the 40 characters
shown in the chart below:

USABLE CODE DISTRIBUTOR CHARACTERS

ZONE XS3 BITS
0011 0100 0101 0110 0111 1000 I 001 I 010 I 011 II 00

00 0 I 2 3 ~ 5 6 7 8 9 Group I
01 ; A B c D E F G H I Group 2
10) J K L M N 0 p Q R Group 3
II + I s T u v w x y z Group ~

The three basic methods of using the code distributor are explained and di­
agrammed as follows:

A. CDR Pulse

When one of the 40 usable characters has first been loaded into the
code distributor register, and one of the CDR PULSE IN hubs is probed,
the code distributor emits a pulse from one of the ten CDR PULSE Olff
hubs labeled 0-9. This pulse directs the program to continue along
the path specified by the wiring of this active hub.

The CDR PULSE OUT hub which will be activated can be determined
from the above chart. Since the code distributor in this method of
operation interprets only the four low order (or XS3) bits of a
character (those at the top· of the vertical columns), there is no
distinguishable difference among the characters in any one column.
The characters 2, B, K, or S are identical in that 0101 represents
the pattern of the low order four bits for each of them. TI1erefore,
if any one of the characters 2, B, K or S is in the COR when CDR
PULSE IN is probed, a pulse will be emitted from the 2 hub. This
function makes it possible for pulses to be switched to one of ten
routes, depending on the character held by the code distributor
register and the wiring of hubs 0 through 9.

63

ETEP v, NO,

51

52 'lJo

v,
PROCESS

SHIFT

-V2 R v2 R
SHIFT

<!'])

COR PULSE IN:

Srep S-:l-
NO OUT NO OUT

0 ~r•P ~-3 3 Sr11.P S-9 ,
SraP .. $"r 4 NZ

2 Sr1P .s-7 5

FIGURE 3-7

CDR PULSE TO SELECT PROGRAM STEP
FROM TRANSACTION CODE

The above wiring diagram illustrates the use of CDR PULSE to select
one of several alternative program paths (in this case alternative
program steps) depending on a transaction code in an input punched
card.

64

(1) Assuming that punched cards represent five different types of
transactions being processed against inventory records, the
transaction codes in effect are:

Code

0
1
2
3
4

Transaction

Stock Receipt
Stock Withdrawal
Purchase Order
Price Change
Physical Inventory Adjustment

(2) Step 52 transfers a code from input word 004 into the code dis­
tributor register COR.

(3) The STEP OUT of step 52 probes COR PULSE IN, and a pulse is
emitted from the 0, 1, 2, 3, or 4 hub, depending on the code in
the COR. Jn the above situation, if a 3 were loaded into COR in
step 52, a pulse would be emitted by hub CDR PULSE 3 and the
program would continue by executing step 59.

B. CDR Group

When one of the 40 usable characters has first been loaded into
the code distributor register COR, and any one of four COR IN hubs
(Gf()UP 1, GROUP 2, GROUP 3, GROUP 4) is probed by a d-c level current,
a d-c enable current is available from one (and only one) of the ten
CDR OlJI' hubs associated with the CDR IN GROUP hub probed.

In this method of operation, the code distributor recognizes only the
four lower order or XS3 bits (the four bits at the top of the verti­
cal columns in the usable character chart). Therefore, when any of
the characters 4, D, M, or U 1s loaded into CDR and CDR IN GROUP 2 1s
probed, a d-c enable current is received from COR OUT hub D.

Summary of CDR GROUP usage:

If a CDR IN GROUP 1 hub is probed, one of the ten COR OUT hubs (0-9)
will have a d-c output.

If a CDR IN GROUP 2 hub 1s probed, one of the ten COR OUT hubs (;-1)

will have a d-c output.

65

If a CDR IN GROUP 3 hub is probed, one of the ten CDR OUf hubs ()-R)
will have a d-c output.

If a CDR IN GROUP 4 hub is probed, one of the ten CDR OUT hubs (+-Z)
will have a d-c output.

FIGURE 3-8

USE OF CD TO
SELECT STORAGES

CODE DISTRIBUTOR (CD)

ALPHA/NUMERIC IN:

GROUP 1 IN

VI sr~P s-7
NO OUT

STEP
NO, v, PROCEii R

IHIFT

56

57 <!Z>A-IN A. r.

~ K ~
ILO-O-O:

L

0-0-0:
M .

0-0-0.
N

0-0-0
p

R NEXT
IHll'T STEP

66

T
0-0-0

u
0-0-0

v

C. CDR Alphanumeric (A/N)

When one of the 40 usable characters has first been loaded into the
code distributor register CDR, and the ALPHANUMERIC IN hub is probed
by a d-c level current, a d-c enable current will be available from
only one of the 40 CDR OUT hubs, that hub which corresponds exactly
to the character held by the code distributor register.

STEP v, v,
PROCESS v2 V2 R R NEXT

NO. SHIFT SHIFT SHIFT STEP

74 7..S-
75 Wa-o A·T. <!:J>R 76
76 II!o-1 _±_(! ~J:·1N ~-/A'_ 71

CODE DISTRIBUTOR (CD)

ALPHA/NUMERIC IN:

VR SrE.P 2'_ _i_ K STEP 7,
GROUP 1 IN GROUP 2 IN GROUP 3 IN GROUP 4 IN

NO OUT NO OUT NO OUT NO OUT

0 .
' + '

1 A G.s_s_ ·A J C s_s_ .. :T I

2 B G.SB .. 15 K G~ - /1' s G_.s S_-_,s
3 c G .Sll • e L _G_S_A- I.. T ~_cS 8_-~
4 D ,GS B-J> M LG .s_ g_ .. _11_ u
5 E j_G_S_B- /! N LG_J_Ji ... _N_ v
6 F G.S8 -_F 0 w
7 G ~-C

p
GS_8_~ P x

8 H G.s 6 -II Q __G_&A-0 y

9 I R _fil_B_ - _R_ z

67

FIGURE 3 .. 9

CD TO SELECT STORAGES BY CDR ALPHANUMERIC

68

Jn this method of operation, the code distributor recognizes all six
bits (ignoring parity bit) of the 40 usable characters. Therefore,
a d-c enable current will be available from CDR OlIT hub "D" only on
the condition that a "D" was previously loaded into the code distri­
butor register.

Thus the code distributor probed by CDR A/N provides a choice of none
or one of 40 different routes for the program to follow.

The above diagram, Figure 3-9, illustrates a method of using the code
distributor to select storages (in this case fields in the general
storage buffer) depending upon an alphabetic code in the code distri­
butor register.

(1) Assuming that the inventory records for stock carried at 18
branch warehouses are stored on the general storage drums, a
file entry is maintained on the drum for each stock number, with
the quantity on hand at each of the 18 warehouses stored in a
separate field. Each stock receipt or withdrawal is identified
by a stock number which includes an alphabetic character which
identifies the branch warehouse involved.

(2) In step 75, the alphabetic character which identifies the branch
warehouse is loaded into the code distributor register.

(3) In step 76, a value, such as a stock receipt quantity, is added
to a branch warehouse inventory quantity located through the
code distributor; and the sum of this calculation is stored 1n
the field, again through the use of the code distributor.

D. Multiple choices from a single code:

The use of the code distributor has been simplified in the above
explanation by dividing usage into three separate concepts, but in
actual practice, the code distributor can become a much more power­
ful decision-making device, if the three are integrated, as indicated
in the example below. This example illustrates the ability of the
code distributor to select more than one variable factor, depending
on a single code held in the code distributor register:

69

-CODE DI STR llUTOR (CD!

v1 ~~--.-~:;~
111 e .r.

1--52--i~.W.-..!::._l---+=~=-i>&:l.l"""'-.L.....j~--l.......,:a.;;,,"'Y-:=cd--"S_,l_
.__s_J "'--""'--"''--'----L'O,,..."-"L.U"'-'=--"c.__,(-'-·--'-"'::..a.-OUu...no~S"

Al..l'HA/NUMUllC IN:

Ql'IOUI' 1 IN

VR. fiT•P .S-~

NO OUT

0

,l~fllJ~
2 .n...'!1..-..Jl...
3 a•1-..3!.
4 '.£J... ".L· ..£....
!I f:,l_ "'1-..E_
I ..ft <flJ_.-_

7

a
9

Ql'IOUI' 2 IN

Noj OUT

;
A

B

c
D

IE

F

G

H

I

CDR TO SELECT STORAGE, PROCESS & SUBJECT
FROM A TRANSACTION CODE

70

Gl'IOUI' I IN Ol'IOUI' 4 IN

R.s11. Sr1P $"3 P.f. Srl/O r~
NO OUT NO oui·

'
~

J .:!!J..:._j_Nll'r' I +- t!Nl•~At

K Jfr .JN, ..:3.._ s - llNl'-'Jlt.

L. [Rr ,,,,u_ ti T .1f... ~"~YIC/4

M~...Jt!. S- u +- ~~"llCk
N Rr ...ut....i.. v -~t!.lllt:Jit

o Rr ,JJL1_ W + _Lra. <'NI(/!,_
p x
Q y

R z

FIGURE 3-10

(1) Step 51 transfers, into the code distributor register, a number
ranging from 1 to 6.

(2) V2ADR of step 52 probes CDR IN GROUP l, and receives a d-c enable
from one of the CDR OUf hubs numbered 1 through 6. This deter­
mines the field in factor storage #1, FS #1 FIELD B-G, from
which the V2 operand is to be obtained.

(3) Process PRCX:: of step 53 probes CDR IN GROUP 4 to determine which
one of 6 arithmetic processes is to be performed.

(4) Result shift, RSH of step 53 probes CDR IN GROUP 3 to determine
which one of 6 shifts is to be performed on the result.

In this example, a single code (4) stored in the code distributor register
directs (a) the V2 address to field FS #1-E, {b) the process of step 53 to the
"divide, store quotient" (+SQ) process, and (c) the right shift of step 53
to RIGHI' SHIFT 5.

Selectors

Selectors provide a means of varying the computer program dependin.g on condi­
tions which may arise in the input data or during the processing of that data
by the computer. The current to be controlled is brought to the selector by
wiring of th~ "common" (C) hub of the selector.

(1) Nonselect (NS) is the normal or dormant position of a selector.
Current will flow from the "common" (C) hub through the "nonselect"
(NS) hub whenever the selector is in this position.

(2) Select (S) is the "picked up" position of a selector. Current will
flow from the "common" (C) hub through the "select" (S) hub whenever
the selector is in this position.

The activation or "pick up" of a selector to the "select" pos1t1on is accom­
plished by an electromagnet which pulls the movable switch arm to make contact
with the select side of the switch. Current to activate this electromagnet
may be supplied by a device called a "program select", or by use of the cur­
rent from either a computer input control line or "Selector hold B+".

The wiring necessary to "pick up" a selector by a "program select" is diag­
rammed and explained below:

71

I T • 1 ,, PICK•UP l'FIOM

P.S.~

\
\
I
I
I

-L

v, v,
PROC Ell vz Vz R

aHIFT IHll"T IHIP'T

51

52

53

54

PROGRAM SELECTS I PS J

OFIOP OUT

T

IG~O;NOE SELECT F COMMON

PLUGBOARD WIRING

------ PERMANENT WIRING

FIGURE 3-11 SELECTORS

72

NEXT
ITEP

s-.a
!!i_PSI!

n
S"'J-

F NON•SELECT

,.-[.-,,I c'J-!
I I ~

'(
I
I

We will assume that after completion of step 52, selector 13 is to be picked
up before step 53 is initiated. In this case:

(1) The STEP our of step 52 is wired to the IN hub of program select 2.
Other sources of a pulse to activate a program select include SPE­
CIAL QIARACTER OUT and our of a BRANCH.

(2) DELAY OUf (DEL) of program select 2 is wired to IN of step 53 to
continue the program. Because a delay of approximately 15 milli­
seconds is required to set any selector to the select (S) position,
a DELAY our is used to delay the program 15 milliseconds while the
selector is being picked up for use in step 53. If the selector
were to be used in a later step (at least 15 milliseconds later),
the delay would not be necessary, and the STEP OUT could be wired
to both STEP IN of a later step and the IN hub of program select 2.

(3) The B+ of program select 2 is wired to selector pickup 13, to en­
ergize the electromagnet which moves selector 13 to the "select"
(S) position.

(4) SELECTOR GROUND 13 is wired to COMPUTER GROUND to complete the B+
circuit. (COMPUTER GROUND may be used to ground a selector at any
time.) DEMAND GROUND may be used only when the associated demand
station is "on demand" by the computer. (See Chapter 6.)

Branching

The plugboard BRANCH 1s a method of varying the sequence of a computer program
depending on the result of arithmetic and comparison operations. When any
of these operations is completed, branch storage is "set" to a plus (+),
minus (-), or zero (0) condition. If branch storage is probed the program
continues through the branch on the path determined by this setting of branch
storage.

The setting of branch storage is determined as follows:

(1) Arithmetic operations:
Where result R lS > 0, program continues through + branch.
Where result R lS 0, program continues through 0 branch.
Where result R lS < 0, program continues through branch.

73

(2) Comparison operations:
Where V1 > V2, program continues through + branch.
Where v1 V2, program continues through 0 branch.
Where v1 < v2, program continues through branch.

Each arithmetic or comparison operation, whether internal or plug­
board, sets branch storage to the condition appropriate for the re­
sult of that particular step. Branch storage is only a temporary
memory location, however, since it is always cleared to the 0 condi­
tion just before the process of each instruction is initiated.

(Note: For further detail, see "Branch Storage Settings" in Chapter 7.)
The following example illustrates the use of a plugboard branch to vary the
path of a program:

STEP v, v,
PROCESS v2 V2 R R NEXT

NO. SHIFT SHIFT SHIFT STEP

65 " 66 8~ "I
67 61
68 1,9
69 7"/
70 11
71 7:L
72 13
73 ?"/

!BRANCHING (BR)
NO IN FROM + - 0

1

2

3

4 Our .Sr~e ~~ iN_ Sr&P _b1_ LN_ Srs.P 7d WI

WRITE URA (W}
~· 1 NO IN OUT

....I.

1 08Ae y I IV .I. I

2 I
t--1--- _l

3 I
I

4 I
-1.

74

lol o,q! 0

1°1°1°1
+o+o+og
101 o1 ca
0 0 ~ 0 0
10101~ 0 0)(y

0 0 0 0 0
NEXT

0 0 0 0 0
INSTRUCTION

0

STEP 65

•STEP 66 (ARITHMETIC OR
COMPARISON OPERATION)

0
BRANCH 4 + ______ _

STEP 67 STEP 70

STEP 68 STEP 71

STEP 69 STEP 72

STEP n

STEP 74

WRITE
UNIT RECORD

NE)(T
I NSTAUCTION

IN TERN AL
PROGRAM

71

FIGURE 3·12

PLUGBOARD BRANCH WIRING

We will assume that in step 66 a value, V1 is compared to a second value, V2
and branch storage is set. As indicated 1n the accompanying flow chart:

(1) A plus (+) condition directs the program to the sequence of steps
67, 68, 69 and 74.

(2) A minus (-) condition directs the program to the sequence of steps
70, 71, 72, 73 and 74.

(3) A zero (0) condition directs the program to execute the general
storage operation "WRITE UNIT RECORD", then to proceed to the NEXT
INSTRUCTION hub, which directs program control to leave the plug­
board and to begin execution of internally stored instruction words.

Explanation of Plugboard Branch Wiring

(1) The "OUT" of step 65 lS wired to "IN" of step 66.

(2) The "OUT" of step 66 lS wired to "IN" of Branch 4.

(3) "+" of Branch 4 is wired to "IN" of step 67.

(4) "OUT" of step 67 lS wired. to "IN" of step 68.

(5) "OUT" of step 68 lS wired to "IN" of step 69.

(6) "OUf" of step 69 lS wired to "IN" of step 74.

(7) " " of Branch 4 lS wired to "IN" of step 70.

(8) "OUT" of steps 70, 71, 72, and 73 are wired to "IN" of steps 71,
7 2, 73, and 7 4, respectively.

(9) "O" of Branch 4 is wired to "WRITE UR".

(10) "WRITE UR" is wired to "NEXT INSTRUCTION".

Alternate Switches

Alternate switches provide a means whereby a program sequence may be varied
manually, i.e., by direct intervention of the operator, who sets the switches
to the SELECT (S) or NONSELECT (NS) position.

76

Alternate switches are similar to selectors in two ways: the factor to be
varied is usually wired to the COMMON (C) hub of the alternate switch, and
the alternative courses of action are defined by the wiring of the SELECT
(S) and NONSELECT (NS) hubs.

In the diagram below, the setting of alternate switch #1 determines whether
the program will begin at step 57 or step 61. When th~ program reaches step
65, the setting of alternate switch #6 determines whether the program will
continue by executing step 66 or an instruction in the internal program
through the NEXT INSTRUCI'ICN hub.

STEP v, v,
PROCESS v2 V2 R R NEXT

NO. SHIFT SHIFT SHIFT STEP

57 0_8'
58 s-9
59 60
60 e/
61 6~

62 '13
63 6'1
64 &.s-
65 rC:!·l"'r.
66 ,7
67 '1g'
5·e '" 69 70
70 71
71 72.
72 13
73 7'1
74 1S-

I START TO:

. aoH. /JJ..r. sw. I

ALTERNATE SWITCHES (ALT.SW.)

NO SELECT COMMON NON•SELECT

2

3

4

6 .z

77

0 0 0 0
NEXT

0 0 0 0
INSTRUCTION

0 0 0

Function De1ay

3 4 !5
0 0 0 0

ALTERNATE

0 0 0
SWITCHES

0 0 0

FIGURE 3-13

USE OF ALTERNATE SWITCHES
TO VARY PROGRAM PATH

The FUNCTI~ DELAY hubs provide a method of insuring that two conditions are
fulfilled before the program is allowed to proceed along the path designated
by the OlIT of function delay.

Four groups of FUNCTION DELAY hubs, A, ~, C, D, are provided, each containing
an INl, an IN2, and an OlIT hub. When a predetermined condition has been met,
a pulse travels by plugboard wiring to one of the IN hubs; when a second con­
dition is met, a pulse travels to the other IN hub; and when both conditions
have been met, the our hub emits a pulse which is wired to the plugboa;rd hub
from which the program is to continue.

78

Note that in the use of function delay, the predetermined conditions can be
met in any sequence. That is,JNl need not be pulsed before IN2. It is,how­
ever, imperative that both conditions are met, and both IN hubs are pulsed,
before the our hub will emit the pulse required to continue the program.

When a function delay is "set" by the receipt of an IN pulse at either INl
or IN2, it will remain set until the other IN hub receives a pulse, or until
the MASTER CLEAR button on the control panel is depressed by the operator.

NO

1

2

3

4

NO

A

B

c
D

FUNCTION SEQUENCE (FS)
SET PROBE

FUNCTION DELAY
IN 1 IN2

FUNCTION DELAY

AQ Q 018() Q Q
~ IN 2 OUT! I IN 2 OUT co 0 0100 0 0

FUNCTION SEQUENCE
IQ Q Q12Q Q Q
SET PROBE OUT! SET PROBE OUT

30 0 0140 0 0

79

OUT

(FDl
OUT

FIGURE 3-14

FUNCTION DELAY
&

FUNCTION SEQUENCE

Function Sequence

The FUNCTION SEQUENCE hubs provide a method of insuring that certain condi­
tions are fulfilled in a predetermined sequence before the program is allowed
to proceed along the path designated by the OUT hub of a function sequence.

Four groups of FUNCTION SEQUENCE hubs, numbered l, 2, 3 and 4, are provided,
each group containing a SET hub, a PROBE hub, and an OUf hub. When the first
condition has been met, a pulse travels by plugboard wiring to the SET hub,
and "sets" the function sequence in preparation for the probe. When the sec­
ond condition is fulfilled, a pulse travels to the PROBE hub. When both con-
ditions have been fulfilled, function sequence has been "set" and "probed",
the OUT hub emits the pulse necessary to continue the program.

Note that in the use of function sequence the SET and PROBE must occur in
that sequence in order for the our hub to be activated.

When a function sequence is set, it remains set until the probe is received,
or until the MASTER CLEAR button on the control panel is depressed by the
operator.

Condition Compare

When the condition compare sub-step is initiated by a wiring of the CONDITION
CCMPARE hub, the next compare process is modified so that where a space code
and zero appear in corresponding positions in vl and v2, the zero is consid­
ered greater than the space code. (Normally, a comparison of zero and space
is simply ignored.)

Clear BTB to Ignores

When the CLEAR BTB TO IGNORES hub receives a pulse, an ignore code (i)i is
placed in each of the 120 character positions of the block transfer buffer
BIB.

80

CONDITION COMPARE (C/C)

NO IN I OUT

,
l

2 I
I

3 i
4 I

.1.

CLEAR BLOCK TRANSFER BUFFER (CLBTB)

NO IN -, OUT

' 1 I

2 T

I

3
T

I

4
I

I

Selector Hold B+

,,..
~=><C'l j' .. '.:"·

FIGURE 3-15

CONDITION COMPARE
&

CLEAR BTB TO IGNORES

The selector hold B+ (SEL HOLD B+) hubs emit a constant B+ current as long
as the computer is in operation. This current may be wired to indicators,
indicator switch, or selector pick up hubs only. Once an indicator light
comes on or a selector is picked up by SEL HOLD (B+), the light or selector
remains in this new condition until the computer is turned off. It is pos­
sible, however, to control the B+ current by wiring a selector between the
B+ source (SEL HOLD B+) and the selector or indicator that is to be used.
This intervening selector acts as a switch to interrupt and control the B+
current.

Caution must be exercised in the wiring of SEL HOLD (B+), since serious
damage to the computer may result from wiring a B+ hub to a destination that
cannot accept this powerful current. Only those hubs listed above are capable
of receiving B+ current without damage to the computer. (See Diagram Figure
3-16 for use of Selector Hold B+).

Program Indicator Lights

By applying B+ current (from a PROGRAM SELECT B+,. SELECTOR HOLD B+, or LOW
SPEED l/0-C0\1PUfER CONTROL LINES) to the appropriiate INDICATOR hubs 1 - 6 on
the program control plugboard, any or all of the program indicator lights
on the Console and Program Control Cabinet.'#! may be illuminated.

81

Indicator lights may be used to signal the condition (select or nonselect)
of selectors, to indicate that a particular subroutine is being performed,
or to convey other types of information to the operator concerning the prog­
ress of the program. (See Diagram Figure 3-16 for use of Program Indi­
cator Lights.)

Indicator Switch

The indicator switch, mounted on the console and on control cabinet #1, is
normally in a closed position, allowing current to flow through the switch.
When it is depressed by the operator, the current flow is interrupted until
the operator releases the switch.

Indicator switches may be used to extinguish indicator lights or to interrupt
a B+ current, allowing one. or more selectors to drop out to the nonselect
position. (See Diagram Figure 3-16 for use of Indicator Switch.)

STEP v, v,
PROCESS v2 V2 R R NEXT

NO. SHIFT SHIFT SHIFT STEP I ND I CA TORS (I ND)

61 ':i. NO F.ROM

62 liR._L
2

3

0

l-t: Srte '3 I/, &r11.e '~
4

5

IN P.s.r

PROGRAM SELECTS (P:S)
NO IN DELAY OUT OROP OUT e+

1

2

3

4

5 0 812._L llN~L\i.O. P.S.s1 _12_u. t'JUT. _Ps.rl I...1; .L~a-'-

82

USE OF SELECTOR HOLD B+
INDICATORS & INDICATOR SWITCH

In the above example, program step 62 resulted in a zero (0) condition in
BRANCH l, causing SELECTOR 7 to be picked up (moved to the select position)
and causing INDICATOR 6 to be illuminated. This alerted the operator to the
0 condition in BRANCH 1. By depressing the INDICATOR SWITCH on the control
panel, the internal connection between the IND SWITCH hub will be broken,
the indicator will be extinguished and SELECTOR 7 will drop out (to the non­
select position.)

83

Other Plugboard Wiring Techniques Demonstrated by this Diagram.

The + and - hubs of BRANCH 1 are both wired through a BUS to the IN hub of
STEP 63 to provide the pulse necessary to continue the program.

The 0 hub of BRANCH 1 is wired to the IN hub of PROGRAM SELECT 5. After a
15 millisecond delay (which allows SELECTOR 7 to be picked up), a pulse will
be emitted by the delayed out DEL hub of PROGRAM SELECT f/:5. This pulse will
travel to the bus where it is used to accomplish two functions:

(1) To drop out PROGRAM SELECT 5, and

(2) To continue the program through STEP 63.

The B+ hub of PROGRAM SELECT 5 is wired to accomplish three functions:

(1) To provide B+ current to SELECfOR PICKUP 7,

(2) To provide B+ current to the select side of SELECfOR 7 and,

(3) To light INDICATOR 6.

Bus Hubs

Bus hubs are groups of 3, 4, 5, or 6 hubs, wired together internally, which
allow the programmer to wire two or more out hubs to one or more destinations.
For example, when a partic~lar storage location is referred to many times in
a program, that storage may be wired to a bus hub, and the other hubs in the
bus will provide access to that storage through the bus. Many sets of buses
are provided on the program control plugboard. (See Diagram Figure 3-16
for use of Bus Hubs.)

84

Unibus Hubs

A unibus is a special type of bus which allows current to flow only in one
direction. Each of the eight unibuses contains four IN hubs and one our hub,
providing pulses from four possible sources which are directed to a common
destination. Unibuses are used to insure that no back circuit (reverse cur­
rent), which might adversely affect the program, can occur. (See Diagram
Figure 3-17.)

Out Expander

Out expander hubs are special purpose hubs which amplify and multiply pulses
where a single pulse is to be wired to several destinations. When an IN hub
is pulsed, an amplified pulse is emitted by both our hubs.

HO

1

2

3

4

I

•
7

8

IN OUT UNIBUS
0 010 0 010
0 020 0 020

~O O:sO 0 O;sO
z &!0 040 0 040
)(

Ulo oao 0 oao
ao OeO 0 OeO

0 010 0 010

0 0•0 0 0•0

IN

NO

1

2

3

4

I

•
7

8

I OUT
o 1 o I
010

t
OIO

olo
o 1 o I
010

olo
olo

u N 1 e us Es :ru I BI
IN IN IN OUT

OUT EXPANDERS (OE).
IN IN OUT

BUSES, UNIBUSES, & OUT EXPANDERS

•

FIGURE 3·17

Error Hubs

When any one of the following error conditions exists within UFC-1, the appro­
priate error hub emits a pulse and the computer "hangs up" (the program 1s
interrupted) at the point in the program at which the error is detected.

(1) Parity error:

In order to insure complete accuracy of operation, the UFC-1 per­
forms a parity check as each character is transmitted from one regis­
ter or memory location to another. If any check detects an even num­
ber of binary "ones" in any character, computer operation stops and
the parity error (PAR ERROR) hub on the program control plugboard
emits a pulse.

(2) Arithmetic errors:

pivide Overflow error occurs when the programmed V1 left shift in
a divide operation is so large as to cause the number of quotient
digits to overflow the capacity of arithmetic register D if the
division were to be performed.

Add/Subtract Overflow error occurs when the result of an add or
subtract operation causes a "carry past" the highest order digit
position of arithmetic registers C and D.

Normalize Overflow error occurs when a V1 operand of zero is de­
tected during the left normalize process.

Arithmetic Check error occurs when the result of one of the follow­
ing arithmetic processes does not prove when checked: Add, Subtract,
Multiply-Store Lower, Multiply-Store Upper, Divide-Store Quotient,
and Divide-Store Remainder.

(3) General Storage Program errors (See Chapt·er 5 - General Storage Sys­
tem):

Any one of the following errors causes the computer operation to
stop and a pulse to emitted from the GS PROG ERROR hubs:

(a) Alpha-Zone error: when any character containing zone bits other
than 00 is sent to any character position of the GSAR.

86

(b) Inactive Drum Section error: when a drum section not included
in the computer system is referred to in a general storage ad­
dress.

(c) Odd Angular Address error: when the AA (two lower order digits)
of the GSAR contain an odd number.

(d) Unit Record Identifiers All Ignores error: when a channel
search operation is attempted using an identifier composed com­
pletely of ignore codes.

Step Repeat

When an error hub is wired to a STEP REPEAT hub, and the error hub emits a
pulse, the instruction during which the error occurred is automatically re­
peated. If the error is eliminated after repeated execution of the step,
the program continues. If not, the operator will have to intervene. This
allows the central computer to continue operations even though certain ma­

chine errors have occurred. The parity error and check error hubs are usually
wired to a step repea·t hub. This ins.ures automatic recovery from temporary
or momentary machine failures.

Step Clear

The STEP CLEAR hubs can be wired to continue computer operation even though
a programming error has been detected. Normally it is not practicable to
continue the main program after an error condition has been detected. In­
stead, a subroutine, designed for pinpointing the error, should be initiated.
For example, the subroutine might call for a type-out of the contents of
certain registers or memory locations to enable the programmer to find the
instruction in which the error occurred.

STEP CLEAR iS_QJ_ STEP REPEAT ISRl
ERROR SIGNALS

TYPE TO
NO IN OUT NO FROM

PARITY

1

2

1

2
~01 FLOW

l:!:o• FLOW

3 3

4 4
NO' FLOW

AAITH.

GS PAOG

87

IN OUT j
010!
02oj

~ Q!Oi
ti

Q40,
STEP i

0 0
REPEAT !
0 O!

PAR ERROR
0:-0:

+ O"FLO\V 1 0-01
~ +/-O'Fu:NI
0: 0-0
w N O'FLCNI

;. 0-0
0: CHECK
Cl 0-0

GS PROG
0-0
ERROR

FIGURE 3-18

EIRROR HUBS

St.art

The START hub emits a pulse when the "Start" button 1s pressed after the

"Master Clear" button has first been pressed.

To initiate a plugboard defined program, the START hub may be wired to the
STEP IN hub of the program step at which the program is to begin.

To initiate an internally stored program, the START hub is wired to the NEXT
INSTRUCTION hub. The program will begin by the execution of the instruction
word stored at the location specified by the initial setting of PAK. (See

Diagram Figure 3-19.)

Stop
When the STOP hub receives a pulse, computer operation stops. If a hub which
is wired indirectly to the STOP hub is Y-wired through a bus to the IN hub
of a step, the computer will start (when operation is resumed) at this pro-

gram. step.

88

If the hub which is wired to the SmP hub is not wired to a STEP JN hub, the
computer will resume operations (when the START button is depressed) with the
next instruction word set up in program control. (See Diagram Figure 3-19.)

NOTE: To avoid operating and debugging complications, it is always advisable
to wire the STOP hub when a stop is desired.

Special Character Out

When any of the special characters Q - Y appear in the special character posi­
tion of an instruction word, a pulse is emitted by the corresponding SPECIAL
CHARACTER OUT hub on the plugboard. This pulse may be used to initiate an
operation such as Condition Compare or Clear BTB to Ignores, which is not
directly available to the internally stored program. Special Character Out
must not be wired to initiate a program step, however, since the internally
stored program is not interrupted when a special character out pulse is re­
ceived. (See Diagram Figure 3-19.)

Console B+

The Console B+ (CNSL B+) hub emits a B+ current when the Console-Normal
switch on the typewriter control panel is set to "console". Thus B+ current
will normally be used to pick up a selector. The Console B+ current flows
during all console operations of the typewriter. (See Diagram Figure 3-19.)

I START TO:

BREAK PO I HTS (8/ P)
1

2

3

SPECIAL CHARACTER OUTS (SCO)
NO TO NO TO NO TO

Q T w
R u x
s v y

89

0 0 0 0
NEXT

0 0 0 0
INSTRUCTION

0 0 0 0

[
o!..o o!-o o!-0 0 0 0 0

BREAK POINT STOP

FIGURE 3·19

START, STOP, SPECIAL CHARACTER OUT,
NEXT INSTRUCTION, BREAKPOINT, CNSL B+ HUBS

COMPONENTS USED TO EFFECT COMBINATION CONTROL

Transfer from Internal to External Program Control

A. Via Transcop Instruction Word
When program control executes a transcop instruction word, it in­
terrupts the internally stored program and begins execution of the
plugboard defined program step designated by the process (PR) section

of the transcop instruction.

B. Via Breakpoint

When an instruction word containing a breakpoint special character

is executed and the breakpoint selector is set in order to allow a

pulse to be emitted from the corresponding breakpoint hub on the

program control plugboard, the next operation in the program depends

on the wiring of the BREAKPOINT hub.

90

(1) If the BREAKPOINT hub is wired to a STEP IN hub, the execution of
the internally stored program is interrupted and execution of
program steps begins.

(2) If the BREA«POINT hub 1s wired to a STOP hub, the next instruc­
tion word is set up in program control before the computer stops.
Operation can be resumed from that point in the internally stored
program by the operator's use of the START button. (See Figure
3-19.)

C. Via ERROR-STEP CLEAR Wiring
When an error condition is detected, the corresponding ERROR hub on
the plugboard emits a pulse. When this ERROR hub is wired to a STEP
CLEAR IN hub, program control is cleared of the current instruction.
If the STEP CLEAR OUT hub is wired to a STEP IN hub, a plugboard­
defined error analysis subroutine is initiated. Portions of this
subroutine might be internally stored, in which case the NEXT IN­
STRUCTION hub could be wired, transferring control to the internally
stored program.

Transfer from External to Internal Program Control

A. Via NEXT INSTRUCTION
When a NEXT INSTRUC:TION hub on the program control plugboard receives
a pulse, the plugboard defined program is interrupted and program
control is transferred to the internally stored program. (See Figure
3-19.)

B. Via STEP OUT-STOP Wiring

When the Our of a program step 1s wired directly to the STOP hub and
a pulse is received by the STOP hub, the computer stops with the next
instruction word set up in program control. When the START button
is pressed, the computer resumes operation by executing internally
stored instructions rather than plugboard defined program steps.
(See Figure 3-19.)

91

INTRODUCTION

The repertory of instructions performed by the UFC-J consists of 27 oper­

ations, plus the subinstructions of suLsteps which extend or modify basic

operations.

Jn this chapter, instructions are discussed under five headings:

(1) Arithmetic and Logical instructions

(2) Jump instructions

(3) Special Purpose instructions

(4) Input/Output instructions

(5) Transfer of Control instruction

92

Arithmetic and Logical Instructions

*AD Add SU Substitute u
*SB Subtract sv Substitute v
*MU Multiply, Store Upper SW Substitute w
*rv[. Multiply, Store Lower *SZ Suppress Left Zeros
*IX> Divide, Store Quotient *LN Left Normalize
*DR Divide, Store Remainder *AT Arithmetic Transfer
*CP Compare *MK Mask Trans fer

The arithmetic and logical instructions are discusse~ as a group because
1) the programming techniques are similar; 2) the arithmetic registers, A,
B, C, and D, are used during all of these operations; 3) the sources, des­
tinations, and programmed shifts applicable to all of them are similar; and
4) the computer uses the same basic circuitry for the execution of all of
these instructions.

All of the above operations may be programmed internally; those prefixed by
an (*) also have plugboard hubs available for external programming. When
any of the Add, Subtract, Multiply or Divide operations are execut.ed, the re­
sults may be checked for accuracy. When any of these operations are performed
as part of the execution of an instruction word, the result will be checked
automatically by a reverse arithmetic process, unless the check is suppres­
sed by the initiation of a "check suppress" subinstruction.

When any of these operations is defined in a program step, the decision to
check or not check is put into effect by wiring of the process (PRCX::) hub to
either the check (C) or no check (NC) hub of the appropriate operation.

Jump Instructions

UJ Unconditional Jump JN
JP
JZ

Jump on Negative
Jump on Positive
Jump on Zero

Jump instructions of the UFC-I consist of one unconditional JUmp, UJ, and
three conditional Jumps, JN, JP, and JZ.

All of these jump instructions are "returnable jumps"; that is, during the
execution of the jump instruction itself, a means is provided to return at
some later point in the program to any instruction in the program.

• Operations that have plugboard hubs available for external programming.

93

Special Purpose Instructions

*BT
lA

LS

Buffer Trans fer
Load General Storage

Address Register
1.oad Shift Revolver

*CC
SP

Channel Clear
Search Probe

All of the above special purpose instructions may be programmed internally;
those prefixed by an asterisk (*) are also available through plugboard wiring.

Input/Output Instructions

*Tl Test Incoming Control
*'ID Test Demand In
*DE Demand

Input/Output instructions provide the means of controlling the input/output
units of the UFC-1 system through the integration of the above instructions
and the appropriate groupings of plugboard hubs (See Chapter 6).

Transfer of Control Instruction

TC Transcop (Transfer Control to Plugboard)

The Transcop instruction is the instruction most often used to transfer con­
trol of the program from the internally stored program to the plugboard.

In the detailed description of each of the instructions in the repertory,
storages referred to during internal control are identified as U, V, and W;
storages referred to by plugboard wiring are identified by V1 , V2 , and R.

When a subinstruction is referred to, it defines the extension or modifica­
tion initiated by a character in the S/C position of an instruction word.
A substep refers to a comparable operation initiated by the wiring of the
STEP OlIT hub to a hub which initiates this action on the plugboard.

For internal programming, the next instruction to be executed is taken :from
the address specified by the PAK, except when control is transferred to a
program step designated by a transcop instruction.

For external programming, the next instrµction to be executed is determined
by the wiring of the appropriate STEP IN plugboard hub, except in the case
• Plugboard hubs are available for external programming.

94

of wiring a NEXT INSTRUCTION hub, when control is transferred to the internal
program.

Shifts referred to in this repertory are shown in detail in Table 3-2, Chap­
ter 3.

Special character codes and the subinstructions which they initiate are de­
fined in Table 4-2.

A summary of the initial and final contents of the arithmetic registers RA,
RB, RC, and RD in relation to the instructions which use those registers are
shown in Table 4-3.

INSTRUCTION DEFINITIONS

Arithmetic Instructions

Add (AD): Add to the contents of the U (or V1) address, the contents of the
V (or V2) address and store the sum at the W (or R) address.

Subtract (SB): Subtract from the contents of the U (or V1) address the con­
tents of the V (or V 2) address and store the remainder at the W (or R) address.

Multiply, Store Upper (MU): Multiply the contents of the U (or V1) address
by the V (or V2) address and store the higher order product digits at the W
(or R) address.

Multiply, Store Lower (ML): Multiply the contents of the U (or V1) address
by the contents of the V (or V2) address and store the lower order product
digits at the W (or R) address.

Divide, Store Quotient (DQ): Divide the contents of the U (or V1) address
by the contents of the V (or V2) address and store the quotient at the W
(or R) address.

Divide, Store Remainder (DR): Divide the contents of the U (or V1) address
by the contents of the V (or V2) address and store the remainder at the W
(or R) address.

95

Logical Instructions

Compare (CP): Compare the contents of the U (or V1) address with the contents
of the V (or V2) address -

If: l ~ 1
> v !

v2
branch storage lS set to the plus (+) condition.

>

l ~l < v ! branch storage (-) condition. v2 lS set to the minus
<

~u - v J
v 1 v 2 branch storage 1S set to the zero (0) condition.

Substitute U (SU): Substitute the contents of the U section of the V address
for the contents of the U section of the U address and store the result at
the W address.

Substitute V (SV): Substitute the contents of the V section of the V address
for the contents of the V section of the U address and store the result at
the W address.

Substitute W (SW): Substitute the contents of the W section of the V address
for the contents of the W section of the U address and store the result at
the W address.

Suppress Left Zeros (SZ): Replace by space codes (6) all zeros to the left
of the most significant digit in the contents of the U (or V1) address and
store the result at the W (or R) address. Ignore the V (or V2) address.

Left Normalize (LN): Shift the contents of the U (or V 1) address to the left
in Register A until the first significant digit is in the high order posi­
tion of RA. Store the normalized word at the W (or R) address. Ignore the
V (or V2) address. The normalizing shift count is formed in Register B.

Arithmetic Transfer (AT): Transfer the contents of the U (or V1) address to
the W (or R) address via Register D. Ignore the V (or V2) address.

Mask Tran s f e r (MK) : Ma s k the con ten t s o f the lJ (or V 1) add re s s w i th the
contents of the V (or V2) address and transfer the result to the W (or R)
address. A zero or a space code (6) in the mask causes the corresponding U
(or V1) character to be transferred to the W (or R) address; if the mask
contains any other character, an ignore code will be transferred to the W
(or R) address in the appropriate character position.

96

Jump Instructions

Unconditional Jumps (UJ): Jump unconditionally to the instruction word speci­

fied by the W address of the current instruction. Transfer the U section of

the current instruction word to the W section of the word at the V address.

Jump on Negative (JN): If conditional storage is minus (-), jump to the in­

struction word specified by the W address of the current instruction. Trans­

fer the U section of the current instruction word to the W section of the
word at the V address.

If conditional storage 1s not minus, take the next instruction from the ad­

dress specified by PAK.

Jump on Plus (JP): If conditional storage is plus (+), JUmp to the instruc­

tion word specified by the W address of the current instruction. Transfer

the U section of the current instruction word to the W section of the word
at the V address.

If conditional storage 1s not plus, take the next instruction from the ad­

dress specified by PAK.

Jump on Zero (JZ): If conditional storage is zero (0), JUmp to the instruc­

tion word specified by the W address of the current instruction. Transfer

the U section of the current instruction word to the W section of the word

at the V address.

If conditional storage is not zero, take the next instruction from the ad­

dress specified by PAK.

Special Purpose Instructions

Buffer Transfer (BT): Transfer the contents of the U (or V1) address to the

W (or R) address via the block transfer buffer. Ignore the V (or V2) address.

Load General Storage Address Register (LA): Load the general storage ad­

dress register (GSAR) with the two lowest order digits of U, the three digits
of V, and the two higher order digits of W.

Load Shift Revolver (LS): Load the shift revolver (SRV) with the contents

of the current instruction revolver (IRVc).

97

Channel Clear (CC): Clear the track or buffer specified by the W (or R) ad­
dress to space codes (6). Ignore the U (or Vi) and V (or V2) addresses.

Search Probe (SP): Channel search storage is probed to determine whether a
previously initiated channel search operation is completed.

Input/Output Instructions

Test Demand In (TD): Test the designated I/O unit to determine whether it
is ready or not ready to receive instructions.

Demand In (DE): Place the designated I/O unit on demand, track switch if
specified, and exchange computer <E-+ I/O control information.

Test Incoming Control (Tl): Test high speed I/O - computer control line
storage for incoming control information; track switch if specified.

Transfer of Control Instruction

Transcop: Transfer control to the plugboard step designated by the process
section of this instruction word.

ANALYSIS OF INSTRUCTIONS

Arithmetic and Logical Instructions

Add

Operation Code: 14S
AD Mnemonic Code:

Descriptive Code: (U) + (V) ~ W

Description:

Contents of U (or V1) address are loaded into RA; shift performed if

required.

Contents of V (or V2) address are loaded into RB; shift performed if

required.

Contents of RA and RB are added, forming the sum in RO; check performed

if indicated.

98

Sum in RD is shifted if required and stored at the \'' (or R) address.

Sub-instruction or sub-step is initiated.

Subtract

Operation Code:
Mnemonic Code:
Descriptive Code:

22S
SB
(U)

Description:

Contents of U (or V1)

required.

Con ten ts of V (or V2)

required.

(V) 4 W

address

address

are loaded into RA; shift performed

are loaded into RB; shift performed

if

if

Contents of RB are subtracted from the contents of RA, forming the dif-
ference in RD; check performed if indicated.

Difference in RD is shifted if required, and stored at the W (or R) ad­
dress.

Sub-instruction or sub-step is initiated.

Add • Check; Add • Mo Check
Subtract • Chick; Subtract • Mo Check

OPEllATIOll SEQUENCE INSTRUCT ION WORO PROGRAM STEP

In Regiater A, pl11ce the contents of
t.:-addreu Vi Arm:SS wiring the location apeci fied by:

Shift the contents of negiater A in
Contents of the 1:-
section of the Shift Vi SllFr wiring accordance with:
nevolver

In Regiater D, place the contents of
V-addrells V2 ,\fllt:SS wiring the location apecified by:

Shift the cont en tit of Register B in
umtenta of the V-
section of the Shift V2 Sin1' wiring accordance with:
nevoiver

Add (Subtract) the contentl of rlegieter
PRXFSS to: + C D to (from) the contenta of flesi1ter A,

forming the 11111 (difference) Uparately m• Al' <SJ> or+ Ill: (. C or

in both Regi1ter1 c and· n. • l'l:) wiri111

Determine that checking i• not to be
1uppreHed in thi1 in1truction, and S/C i1 not one of
check the addition (aubtraction), Cl!ae the following: D, C,
11111 (difference) in Regiater C for the D, E, F', G, H, or I
check operation.)

• • • • • • • • • or - - - - •••••• • • • • • • or • • • • •
Determine, that checking ia to be

SIC ia one of the
following: B, C, D,

auppreHed in thi1 instruction. F., F, G, II, or I

Shift the contents of Register D in
Contents of the W-
aect ion of the Shift II SllFr wiring

accordance with: Revolver

Store the final contents of Register
11'-addresa R Alll1ESS wiring D at· the location specified by:

Initiate aub-instruction(a) or sub-
SIC• SllP CXT wiring atep(e) in accordance with:

• If S/C = F, the only sub-instruction (suppress check) specified by thia instruction
haa been completed prior to this time. If S/C = 13, C, D, F, G, H, or I, the other
sub-instruct ion or instruct ions specified by these values are initiated at thia time.

99

Add - Check; Add - Ho Check
Subtract - Check; Subtract - Ho Check

PROGRAMMED SHIFTS

of Shift Pe rm itted Types
Quantities that Arithmetic Registers

Left Right Right End can be shifted Involved
Shift Shift A round Shi ft

V1 v· 1 in Register A yes yes yes

V2 V2 in Register I3 yes yes yes

R R in Register D yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results
and applicable data transmission rules.)

(U) or <V1 Arn)

(V) or (V2 AIR)

Add

Subtract

Multiply, Store Upper

Opera ti on Code:
Mnemonic Code:
Descriptive Code:
Description:

[RA ..

[RB

CONTENTS OF ARITHMETIC REGISTERS
Operands Loaded:

10 o 490482374+1
1 1 I rffi I s I 7 I 6 I 5 I 4 I 3 I 2 I 1 I ~

Li=:Q I 5 4 7 8 7 2 6 5 + I
DJJTo I 91sI1 Is Is I 4 / 3 I 2 11 Is

I RC I PR VIOUS CONTENTS
~-~~-~1_1~1_1~ 8 7 6 5 4 3 2 s

[
RD I =. PREY I ous CONTENTS
~__._ __ 11}i~ 8 7 6 5 4 3 2 s

Process Completed and Checked (If Applicable)

0 0 490482374+
II 10 9 8 7 6 S 4 3 2 I S

CONTENTS UNUSABLE

Augend (Minuend)

Addend (Subtrahend)

Augend (Minuend)

Addend (Subtrahend)

0 0 0 0 0 0 0 0 0 0 0 - ·-----

If No Ch.eek
If Ch.eek

44S
MU

11 . 10 9 8 7 6 s 4 3 2 s

I 1°1 I 1°0] : I : I ~ I : I : I : I : I : I ~ I ~ I Sum
Store at W (or R)

or

I 0 0 3 3 S 6 9 S I 0 9 6 f ___ .-D_i.-ff-e-.r.-en ... c .. e;;.....i .. ~
RD II I I ~9] s 1 1 I s I s I 41 3 I 2 I I I s Store at w (or R)

(lJ) X (V) (RC)....,... W

100

Contents of U (or V
1

) address are loaded into RA; shift performed if
required.

Contents of V (or V2) address are loaded into RB; shift performed if
required.

Contents of RA are multiplied by the contents of RB, forming the pro­
duct in RC and RD.

Product in RC and RD is shifted, if required*, and contents of RC are
stored at the W (or R) address.

Sub-instruction or sub-step 1s initiated, including check if indicated.

Multiply, Store Lower

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

43S
ML
(U) X (V) (RD)___,... W

Contents of U (or V1) address are loaded into RA; shift performed if
required.

Contents of V (or V2) address are loaded into RB; shift performed if
required.

Contents of RA are multiplied by the contents of RB, forming the pro­
duct in RC and RD.

Product in RC and RD is shifted, if required*, and contents of RD are
stored at the W (or R) address.

Sub-instruction or sub-step is initiated, including check if indicated.
* Note special shift conditions in Table 3-2, Chapter 3.

101

Multiply, Store Lower - Check; Multiply, Store Lower - No Check
Multiply, Store Upper - Check; Multiply, Store Upper - No Check

OPERATION SEQUENCE

In Register A, place the contents of
the location specified by:

Shift the contents of Register A, 1n
accordance with:

In Register B, place the contents of
the location specified by:

Shift the contents of Register B, 1n
accordance with:

Multiply the contents of Register A by
the contents of Register B. Determine
the sign of the product in the usual
algebraic manner. Form a 22 character
product as follows:

Form the sign of the product and the
11 lower order digits of the product
in Register D.
Form the sign of the product and the
11 higher order digits of the product
in Register C.

Determine that checking is J:Wt. to be
suppressed in this instruction.

INSTRUCTION WORD

U-address

Contents of the U­
sect ion of the Siift
Revolver

V-address

Contents of the V­
sect ion of the Shift
Revolver

PR= ML <m>

S/C is not one of the
following: B, C, D, E,
F, G, H, or I

PROGRAM STIEP

V1 AIIllFSS wiring

V1 SUIT wiring

V2 AllllESS wiring

V2 SUIT wiring

PRXFSS to: XS...
C or XSL l\C
(x..qj C or XSlJ l'C)

- - - - - - - - - or - - - - - - - - - - - - - - - - or - - - - - ~ - - - - - - - - -

Determine that checking is to be sup­
pressed in this instruction.

If applicable*, shift the contents of
Registers C or D in accordance with:

Store the contents of Register C or D
at the location specified by:

If applicable, check multiplication.
Initiate other sub-instruction(s) or
sub-step(s) in accordance with:

* Applicable only in no-check operations.

S/C is one of the fol­
lowing: B, C, D, E, F,
G, H, or I

G:mtents of the W­
sect ion of the Shift
Revolver

W-address

S/C

102

R SHIT wiring

R AIIl£SS wiring

srEP (lJf wiring

Multiply, Store Upper - Check; Multiply, Store Upper - No Check
Multiply, Store Lower - Check; Multiply, Store Lower - No Check

PROGRAMMED SHIFTS

Types of Shift Permitted
Quantities that Arithmetic Registers
can be shifted Involved Left Right Right End

Shift Shift A round Shi ft

V1 Vl in Register A yes yes yes

V2 V2 in Register B yes yes yes

Check - (No result shift permitted) - - -
No Check R R in both Register C & D yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable data
transmission rules.)

(U) or (V1 ADR) RA

(V) or (V2 ADR) RB

RC

RD

RA

RB

RC

RD

RA

RB

RC

RO

Contents of Arithmetic Registers

Operands Loaded:

lo o 9 q 1 a 9 2 s q

10 0 5 7 2 8 2 3 0 q

I Previous Contents
II 110I9Is17 r 6 l 5 l 41 3 I 2 I

Previous Contents

; I

II 10 9 8 7 6 5 4 3 2 S

Process Completed:

8 9 2 3 q 7 ; I
6 I s I 4 I 3 2 I
8 2 3 0 ~ I 2 I

0 0 0 5

110 I 9 I a I 1
q 2 9 7 q 5 ~I

6 7 4 9

110 I 9 I a I 1
6 7 2 2 7 II I

Process Completed - Check Completed:

0 0 9 lj. 7 8 9 2 3_ 4 7 +

11Itol9Is11
0 0 ,5 7 2 8 2 3 0 lj. +

0 0 0 0 0 0 0 0 0 0 0

11 Ito I 9 I a I 7

0 0 0 0 0 0 0 0 0 0 0

103

Multi p 1 i can d

Multiplier

Multiplicand

Multiplier

Product High Order Digits

If Store Upper, Store at
W (or R) address

Product Low Order Digits

If Store Lower, Store at
W (or R) address

Multiplicand

Multiplier

Divide, Store Quotient

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

48S
00
(U) (V)

Contents of lJ (or VJ) address are loaded into RA and RC; shift performed
if required.

Contents of V (or V2) address are loaded into RB; shift performedl if
required.

Contents of RA are divided by the contents of RB, forming the remainder
in RC and the quotient in RD.

Quotient in RD is shifted if required*, and contents of RD are stored
at the W (or R) address.

Sub-instruction or sub-step is initiated, including check if indicated.

Divide, Store Remainder

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

49S
DR
(U) (V) (RC)-+-W

Contents of U (or V1) address are loaded into RA and RC; shift performed
if required.

Contents of V (or V2) address are loaded into RB; shift performed if
required.

Contents of RA are divided by contents of RB, forming the remainder in
RC and the quotient in RD.

Remainder in RC shifted, if required*, and contents of RC stored at the
W (or R) address.

Sub-instruction or sub-step initiated, including check if indicated.
• Note special shift conditions in Table 3-2, Oiapter 3.

104

Divide, Store Quotient - Check; Divide, Store Quotient - No Check
Divide, Store Remainder -Check; Divide, Store Remainder -No Check

OPERATION SEQUENCE INSTRUCTION WORD PROGRAM STEP

In Registers A and C, place the contents
U-address vl ADDRESS wiring

of the location specified by:

Contents of the U:-Shi ft the contents of Registers A and c section of the Shift v1 SHIFT wiring
in accordance with: Revolver

In Register B, place the contents of the
V-address V2 ADDRESS wiring location specified by:

Contents of the V-
Shi ft the contents of Register B in

section of the Shift V2 SHIFT wiring
accordance with: Revolver

Divide the contents of Register A by the
contents of Register B. Determine the
sign of the quotient in the usual algebraic
manner. Form a quotient and remainder as PROCESS to: + SQC
follows: or + SQNC (+ SRC

Form up to a 12 char-ac ter quotient in PR= DQ (DR) or + SRNC) wiring
Register D. (11 characters and the correct
sign)
Form up to a 12 character remainder in
Register c. (Sign of remainder same as
sign of dividend)

S/C is not one of the
Determine that checking is !!.£.!'. to be sup- following: B, c D, E,

' pressed in the instruction, L G, H, or T

------------------- or ----------------~---- ----------- or ---------- ------------------~-

S/C is one of the fol-
Determine that checking ll to be suppressed lowing: B, c, D, E, F,
in the instruction. G, H, or I

Con ten ts of the W-
If applicable,• shift the contents of

section of the Shi ft R SHIFT wiring
Register C or D in accordance with:

Revolver

Store the contents of Register C or D at
W-address R ADDRESS wiring

the location specified by:

lni ti ate sub-instruction(s} or sub-step(s) S/C STEP OUT wiring
1n accordance with:

• Applicable only in no-check operations,

105

Divide, Store Quotient - Check; Divide, Store Quotient - No Check
Divide, Store Remainder - Check; Divide, Store Remainder - No Check

PROGRAMMED SHIFTS

Quantities that
can be shifted

v1

V2

Check -

No Check R

V1

V2

(No

Arithme
I
tic
nvo

Registers
lved

in ste Regi· rs A & C

in Regi ste r B

result sh i.f t permitted)

R in Regis ter C or D

Types of Shift Permitted

Left Right Right End
Shift Shift A round Sh if t

yes yes yes

yes yes yes

- - -
yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable
data transmission rules,)

Contents of Arithmetic Registers
Ope rands Loaded:

(u) 0 r (v 1 ADR) • I. --~l-!....!.-+-:~-lj.=---i.-5, 6 7 9 3 2 5 lj. +s I
- RA ~I I 1°01 9 I a;1~~~6~l~s~;1 ~4-~1~3;~~2~;:;1~~;~.

(V) or (V 2 ADR) 1.-----...... ,------· I _______ ...,. oooooooall-so+

5
111

RB 11 I 1 ol 9 I L[1 I 6 l s I 4- I 3 2 .

(U) or (V1 ADR) I I I _______ ...,...,.. OOLl-56793254-+s

• RC I I I I 0 I 9 I LI 7 I 6 I 5 i lj. I 3 2 -

I RD I 11

Previous Contents

l1olgl8]1 6 s 4- 3 2
Process Completed:

Contents Unusable
,__R_A__...__~I O_._l _9--'--J !::] 7 6 5 4- 3 2

Contents Unusable

s

s

s

0 0 0 0 0 0 0 5 7 8 4- 6
RC 11 1 o g Li--:.7_____.-'6:..+-__,,s'--'--'4-'-'-...::;.3__._-=2--l-.:....1 _.._.=;..s __,

Dividend

Divisor

Dividend

Remainder

If Store Remainder, Store
at W or R Address

l~I ~I :1: ~~~~~~-:~-:~-:~-~~-3~-~~~Q-Iu-fo-:-:-:-:-:-Q-u_o_t_i_e_n_t-,-~-;t_o_r_e-~•tW
or R Address

RD

Process Completed - Check Completed:

RA
I Contents Unusable
! 1 I 1 ol 9 IL 1 6 s LI 3 2 s

RB
I Contents Unusable

11 I 1 ol 9 I .L 1 s s 4- 3 2 s

RC
I Contents Unusable

II I 101 9 I!__ 7 6 5 lj. 3 2 s

RD
I Contents Unusable
! 1 I 1 ol g I a 1 s s 4- 3 2 s

106

Compare

Opera ti on Code:
Mnemonic Code:
Descriptive Code:
Description:

37S
CP
< U) (V) Set Branch Storage

Contents of U (or V1) address are loaded into RA; shift performed if
required.

Contents of V (or V2) address are loaded into RB; shift performed if
required.

Contents of RA are compared with the contents of RB:

If (U) > (V) Branch storage is set to the plus (+) conch ti on.

(\T 1) > (V2)

If (U) < (V) Branch storage lS set to the minus (-) condition.

(V 1) < (V 2)

If (U) (V) Branch storage lS set to the zero (0) condition.

(V 1) (V 2)

Sub-instruction or sub-step lS initiated

OPERATION SEQUENCE INSTRUCTION WORD PROGRAM STEP

In Register A, place the contents of the
U-address v ADDRESS wiring

, location specified by: i

Con ten ts of the U-
Shift the contents of Register A in section of the Shift Vi SHIFT wiring
accordance with: Revolver

In Register B, place the contents of the
V-address V2 ADDRESS wiring

location specified by:

Contents of the u-
Shift the contents of Register B in section of the Shift V2 SHIFT wiring
accordance with: Revolver

Left end around shift Register A and B.
Compare (on a bit by bit basis, highest
order character first) the word Vi held
in Register A with the word V2 held in POOCESS to COMP
Register B to determine the relative PR= CP wiring
magnitude of thes.e two words:

If V1 > V2, set Branch storage to +
If V1 :: V2, set Branch storage to 0

If Vi < V2, set Branch storage to -
Initiate sub-instruction(s) or sub-step(s)

S/C STEP OUT wiring
in accordance with:

107

Compare

PROGRAMMED SHIFTS

Quantities that Ari thm etic
lnvo

Registers Types of Shift Permitted

can be shifted lved Left Right Right End
Shift Shift Around Shi ft

V1 v1 i n Re .gister A yes yes yes

v..2.. v_..2._ i :gister B yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable data
transmission rules.)

Contents of Arithmetic Registers

Operands Loaded:

0 3 9 q 2 0 I q 7 2 3 ; I 11pol9lsl 1l&lslqlal2I (U) or (V1 ADR)
11

[RA I
!=====~:::!::::::::::=::::::=:

(V) ., cv, ADii) I RB

~[}==R=C::!:;::::::==::::::=:::::==:!::::::=::::=::::==::=::==:=::::=:!:~
; I

Substitute U

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

0 3 9 q 2 0 I q 7 2 3

11I10 I ITa I 1lsl slql a 12'
Previous Contents

11l1ol9la 7 6 5 q 3 2 s
Previous Contents

11l1ol9ls 7 6 5 q 3 2 s

Process Completed:

[R_A_,_1~~...a..l...a..l~r~"-"-l-:~1~:1&....Ll~!_._t~~-'~5-1 ~'~:~,_; l_~~l ~--~
I 1

0 3 9 q 2 0 I q 7 2 3

~8 11 I 1 o I Us I 1 I 6 I s I q I a I 2 I 1

I I - Previous Contents

::==R=c =;:-::::' ':::'::'.::' ::::o ==' us 1 a s q a 2

[RD_~L...:..:_i..:-=-i_~~~'"--P'-re..:.v_I '-ou.=..a.,.1....;Co:...n...a..t....:en.....Jt1-a.::.......i....=-.L-::_._ ___ , ·- rTiJLQJg a 1 a s q a 2

24S
SU
Sub U

v1 Operand

v2 Operand

v1 Operand

v2 Operand

~ Branch Storage
set to 0 condition in
this example.

Contents of the U address are loaded into RA; shift performed if re­
quired.

Contents of the V address are loaded into RB; shift performed if re­
quired.

108

Contents of the ll section of RB are substituted for the contents of the
lJ section of RA; modified contents of RA are sent to RC and RD.

Contents of RD are shifted, if required, and stored at the W address.

Sub-instruction is initiated.

Substitute V

Operation Code: 25S
Mnemonic Code: sv
Descriptive Code: .Sub V
Description:

Contents of the U address are loaded into RA; shift performed if re­
quired.

Contents of the V address are loaded into RB; shift performed if re­
quired.

Contents of the V section of RB are substituted for the contents of the
V secti'on of RA, modified contents of RA are sent to RC and RD.

Contents of RD are shifted, if required, and stored at the W address.

Sub-instruction is initiated.

Substitute W

Opera ti on Code:
Mnemonic Code:
Descriptive Code:
Description:

26S
SW
Sub W

Contents of the U address are loaded into RA; shift performed if required.

Contents of the V address are loaded into RB; shift performed if re­
quired.

Contents of.the W section of RB substituted for the W section of RA;
modified contents of RA are sent to RC and RD.

Contents of RD shifted, if required, and stored at the W address.

Suh-instruction is initiated.

109

Substitute u
Substitute v
Substitute w

OPE RAT I ON SEQUENCE I HSTRUCT I OH WORD

In Register A, place the contents of the loca-
U-address of word tion specified by: this instruction

Shift the con tents of Register A in accordance Contents of the u section of the Shift
with: Revolver

In Register B, place the contents of the loc a-
tion specified by: V-address of this instruction word

Shift the contents of Register B in accordance Contents of the V section of the Shift
with: Revolver

Right-end-around shift the contents of Regis-
ters A and B; send a modified copy of the con-
tents of Register A to Registers C and D as
follows:

Substitute U lnstructi2n PR= SU

Replace the contents of the U section
of Register A by the con ten ts of the u
section of Register B, when forming the
modified copy of the con tents of Regi.s-
ter A in Registers c and D •

Substitute v Instruction· PR= SV

Replace the contents of the V section
of Register A by the contents of the V
section of Register B, when forming the
modified copy of the contents of Regis-
ter A in Registers c and D •

Substitute w Instruction PR= SW

Replace the contents of the W section
of Register A by the contents of the W
section of Register B, when forming the
modified copy of the contents of Regis-
ter A in Registers C and D.

Shift the contents of Register D in accordance Contents of the w section of the Shift
with: Revolver

Store the final contents of Register D at the W-address o.f this instruction word
location specified by:

Ini hate sub-instruction(s) in accordance with: S/C

110

Quantities that
can be shifted

u

v
w

Substitute U
Substitute V
Substitute W

PROGRAMMED SHIFTS

Arithmetic Registers
Involved

u in Register A

v in Register B

w in Register D

Types of Shift Permitted

Left Right Right End
Shift Shi ft Around Shift

yes yes yes

yes yes yes

yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable
data transmission rules,)

Contents of Arithmetic Registers

Operands Loaded:

3 2 0 9 8 4 3 2 5 A D !::,
(U) RA 1111019IsI11s1 5 14 I 3 I 2 I I I s

4 7 0 2 7 0 4 7 2 A D !::,
(V) RB I 1019 I I 1 I s I 14 I I 2 I I I s II 8 5 3

Previous Contents
RC ! 1019 I s I 1 I s I s 14 I a I 2 I I I s II

Previous Contents
RD

I l 10 9 8 7 6 5 4 3 2 s

Process Completed:

3 2 0 9 8 4 3 2 5 A D ~I RA 11l1ol9lsl 1 I s I 5 1 4 I 3 21 I I
,. 7 0 2 7 0 4 7 2 A D ~I RB ~ 11 I 10 I s I s I 1 I s I 14 I I 2 I I I 5 3

I 4 7 o 9 8 4 3 2 5 A D ~ I RC ~11l1olslsl 1 I s I 5 I ii I 3 2 I I I
4 7 0 9 8 4 3 2 5 A D !::, Modified Operand

Substitute U RD
II I 0 9 8 7 6 5 4 3 2 s Store at W address

3 2 0 2 7 0 3 2 5 A D !::, Modified 0 erand
Substitute V RD II 10 9 8 7 6 5 4 3 2 s Store at W address

3 2 0 9 8 4 4 7 2 A D !::, Modified Operand
Substitute W RD

II 10 9 8 7 6 5 4 3 2 s Store at W address

111

Suppress Left Zeros

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

29S
SZ
(U) Less Zeros_... W

Contents of lJ (or V1) address are loaded into RA; shift performed if
required.

Space codes (6) replace all zeros to the left of the most significant
digit· of RA, and result is transferred to RD.

Result shifted if required and contents of RD stored at the W (or R)
address.

Sub-instruction or sub-step is initiated.

OPERATION SEQUENCE INSTRUCT I ON WORD PROGRAM STEP

In Register A, place the contents of the
U-address V1 ADDRESS wiring

location specified by:

Contents of the U-
Shift the contents of Register A in section of the Shift V1 SHIFT wiring
accordance with: Revolver

Left Shift the cont~nts of Register A until
the most significant character of the word
held in Register A is located in Register
A's most significant character position:
Keep track of the number af shifts required PR= SZ

POOCESS to SLZ

to do this, and then right shift the con- wiring

tents of Register A the same number of places,
substituting space codes <6> in Regiuter A's
higher-order character positions. Transmit
the final contents of Register A to Register D.

Contents of the W-
Shift the contents of Register D in section of the Shift R SHIFT wiring
accordance with: Revolver

Store the final contents of Register D at
W-address R ADDRESS wiring

the location specified by:

Initiate sub-instruction(s) or sub-step(s) S/C STEP OUT wiring
in accordance with:

112

Suppress Left Zeros

PROGRAMMED SHIFTS

Quantities that Arithmetic Registers Types of Shi ft Permitted
can be shifted Involved Left Right Right End

Shi ft _$_hi ft A round Shi ft

V1 Vl in Register A yes yes yes

R R in Register D yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable data
transmissi9n rules.)

Contents of Arithmetic Registers

Operand Loaded:

(Vl ADR). I 10 0 0 0 q I 3 2 0 q 9 ;I (U) or RA ~ 11110 I 9 I a I z I § I 5 I !i I a I 2 I 1 I Operand

I RB
I Previous Contents

: 11I10 I 9 I s I 1 I s I s I q I s I 2 I I I s I
Previous Contents

RC
II 10 9 8 7 6 5 q

Previous Contents
RD

II 10 9 8 7 5 q

Process Completed:

16 6 6 6 q I 3 2 0 q 9 ; I RA ; II 110 I 9 I 8 I 7 Is I s I q I s I 2 I Operand with zeros suppressed

Previous Contents
RB

II 10 9 8 7 6 5 q 2

RC
Previous Contents

II 10 9 8 7 6 5 q

{j 6 ~ 6 q 0 q 9 + Operand with zeros suppressed
RD

II 10 9 8 7 6 5 q 2 Store at W (or R) address

Left Normalize

Opera ti on Code: 3SS
Mnemonic Code: LN
Descriptive Code: Normalize (U)__..W; RB Shift Count
Description:

Contents of the U (or V1) address are loaded into RA; shift performed
if required.

Contents of RA are shifted to the left until the first significant digit
is in the high order position of RA, forming the normalizing shift count
in register B.

Normalized word transferred to RD; shift performed if required, and
contents of RD stored at the W (or R) address.

Sub-instruction or sub-step is initiated.

113

OPERATION SEQUENCE INSTRUCTION WORD PROGRAM STEP

In Register A, place the contents of the
U-address V1 ADDRESS wiring location specified by:

Shi ft the contents of Register A in Contents of the U-section
\' accordance with: of the Shi ft Revolver 1 SHIFT wiring

Left shift the contents of Register A until
the most s i gni fie ant character of the word
held in Register A is in Register A's most
significant character position. Count the PROCESS to NORM
number of shifts required to do this, Place PR= L~ wiring
this count in Register B; and send t.he
(normalized) contents of Register A to
Register D.

Shift the contents of Register D in Contents of the W-section
R SHIFT wiring accordance with: of the Shi ft Revolver

Store the fina 1 contents of Register D at
W-address R ADDRESS wiring

the location specified by:

Initiate sub-instruction(s) or sub-step(s)
S/C STEP OUT in accordance with:

Left Horma Ii ze

PROGRAMMED SHIFTS

Types of Shift Permitted
Quantities that
can be shifted

R

Arithmetic Regis
Involved

v1 in Register

R in Register

ters

A

D

Left Right Right End
Shift Shift A round Shi ft

yes yes yes

yes yes yes

(See Table 4-1 for permissible sources of.operands, destinations for results, and applicable
data transmission rules.)

Contents of Arithmetic Registers

Operand Loaded:

(U) or (Vl ADR)
r-rooo·og 5 0 I 2

~lslslql3I
7

I I OpeTand

~-·~ ... o_us_c_o_nT"'te_n_,t s--.--.---.---1
~.6 q

~ Previous Contents

~ 11I10 Is I s LiJ s Is I q I 3 I 2

I __ I Previous Contents

~ 11I10 I s I s I 1 I s Is I q I a I 2

Process Co~pleted:

lie 5 0 I 2 3 7 0 0 0 0 +
I RAl 11I10 I s I s ITTiTs I q I a I 2 I 1 i Normalized Operand

I jo o o o o o o o o o q +
RB I I I I 0 I 9 I 8 Il:I 6 I 5 I q I 3 I 2 I I I

I I Previous Contents
~c 1 1 I 1 o I s I s I 1 I s I 5 . I q I a I 2 I 1 I

Normalized Operand

wiring

~950!2370000 +
L~.~-JTIIIITITTII] 8 I 5 I q I 3 I 2 I I I Store at W (or R) address

114

Arithmetic Transfer

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

13S
AT
(U)__.....RD-...w

Contents of U (or V1) address are loaded into RD; shift performed if
required.

Contents of RD are shifted again if required (V 2 shift time).

Contents of RD are shifted a third time, if required (R shift time),
and result stored at the W (or R) address.

Sub-instruction or sub-step is initiated.

OPERATION SEQUENCE INSTRUCTION WORD PROGRAM STEP

Transfer data (1 to 12 characters) from
PROCESS AT one storage location to another via PR= AT to

Register D as follows: wiring

In Register D, place the contents of the
U- address V1 ADDRESS wiring location specified by:

Shift the contents of Register D in accor- Contents of the U-section
Vl SHIFT wiring dance with: of the Shift Revolver

Shift the contents of Register D in accor- Contents of the V-section
V2 SHIFT wiring dance with: of the Shift Revolver

Shift the contents of Register D in accor- Contents of the W-section
R SHIFT wiring dance with: of the Shift Revolver

Store the contents of Register D at the
W-address R ADDRESS wiring location specified by:

Initiate sub-instruction(s) or sub-step(s)
S/C STEP OUT wiring

in accordance with:

115

Arithmetic Transfer

PROGRAMMED SHIFTS

Types of Shift Permitted
Quantities that Arithmetic Registers

Right Right fod can be shifted Involved Left
Shift Shift A round Shi ft

EID in V1 Shift Time yes yes yes

V1 Source Data held
RD in v2 Shift Time yes yes yes

in Register D

RD in R Shift Time yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable data
transmission rules.)

Contents of Arithmetic Registers

0 p e r a n d Lo ad e d :

Previous Contents
RA

II 10 9 8 7 6 5 ij 3 2

Previous Contents
RB

II 10 9 8 7 6 5 ij 3 2 s

RC. I Previous Contents
11l1olgl:i}1 s s ij 3 2 s

(U) or CV1 ADR) RD
12 0 0 3 0 0 q 0 0 M

I s
L ~

11l1ojglsJ1 lslslijls l2l
Process Completed:

Previous Contents
RA

II 10 9 8 7 6 5 ij 3 2

RB
I Previous Contents

s

RC
r Previous Contents

II I 10 I 9 l 8 I 7 I 6 I 5 I ij I 3 I 2 I s
2 0 0 3 0 0 ij 0 OM L ~ Result

RD
11 10 9 8 7 6 5 ij 3 2 s Store at W (or R) address

116

Mask Trans fer

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

42S
MK
Mask (U) with (V) __,.... W

Contents of U (or V1) are loaded into RA; shift performed if required.

Contents of V (or V2) are loaded into RB; shift performed if required.

Contents•of RA masked with the contents of RB; the character in RA is
transferred to RC and RD if the corresponding RB character is a zero or
space code (6), otherwise an ignore code (i) is transferred to RC and RD.

Result is shifted in RD, if required, and contents of RD stored at the
W (or R) address.

Sub-instruction or sub-step is initiated.

OPERATION SEQUENCE INSTRUCTION WORD PROGRAM STEP

In Register A, place the contents of the
location specified by: u.address V1 ADDRESS wiring

Shift the contents of Register A in a cc or- Contents of the U-section
dance with: of the Shift Revolver v1 SHIFT wiring

In Register B., place th·e contents o{ the
V-address location specified by: V2 ADDRESS wiring

Shift the contents of Register B in a cc or- Contents of the V-aection
dance with: of the Shift Revolver v2 SHIFT wiring

Right-end-around shift Registers A and B.
Beginning with the sign posi-tion, examine
each of the 12 characters of the word (V2)
held in Register B. If the (V2) character is PR= MK PROCESS to MASK T

a zero, transmit the corresponding V1 char- wiring

acter to a correspondingly significant char-
acter position in Registers C and D.

-------·--------·--- or -------------------- ------------ or ----------- ------------------
If the (V2) character is not zero, transmit
an Ignore code (i) to the correspondingly
significant character position in Registers
C and D.

Shift the contents of Register D in ace or- Contents of the W-section
R SHIFT wiring

dance with: of the Shift Revolver

Store the final contents of Register D at
W-address R ADDRESS wiring

the location specified by:

Initiate sub-instruction(a) or sub-step(s)
S/C STEP OUT wiring

in accordance with:

117

Mask Transfer

PROGRAMMED SHIFTS

-

Quantities that Arithmetic Registers Types of Shift Permitted

can be shifted lnvol ved Left Right Right End
Shift Shift Around Shi ft

V1 Vl in Register A yes yes yes

V2 V2 in Register B yes yes yes

R R in Register D yes yes yes

(See Table 4-1 for permissible sources of operands, destinations for results, and applicable
data transmission rules.)

(U) or (V1 ADR) I
(V) or (V2 ADR) .1

I

Contents of Arithmetic Registers

Ope rands Loaded:

I J ll J 0 N E s 7 6 8 2 -1
RA 1 1 I 1 o I g I al 1 I s I s I q I a I 2 I 1 I s .

RB

RC

RA

RB

loo o o o o o e e e eel
11 I 10 I 9 I aI1 Is I s I q 1. 3 I 2 I s

I Previous Contents
_11lt019IIT1 6 sq a 2 s

Process Completed:

J /:1J 0 NE S 7 6 S 2

RC I IJI 11~ I ~ I G ~ I : I : I q I 3 I 2 I s

RD I ~I I 1~ I ~ I h : : : q 3 2 s

118

Operand

Mask

Operand

Mask

Result

Store at W (or R) address

PERMISSABLE SOURCES AND APPLICABLE
DATA TRANSMISSION RULES

Source Source Address Specifies

High Speed Drum Tracks (except Any word location 0-9 (12 charwc ters)
ISP) or

Block Transfer Buffer Any field location A-V (excluding I
General Storage Buff er and 0) containing from 1 up to 12

characters. (If more than 12 charac-
ters are specified, only the lower
order 12 of the field are obtained.)

Arithmetic Registers A, B, c, D
Exactly 12 characters

Instruction Revolver

General Storage Address Register A space(A) and the 7 characters
in the General Storage Address
Register.

Program Address Counter A space(A) and the 3 characters
in the Program Address Counter.

Code Distributor Register A space(.6.) and the 1 character
in the Code Distributor Register.

PERMISSABLE DESTINATIONS AND APPLICABLE
PROGRAMMED DATA TRANSMISSION RULES

Dest i nation Destination Address Specifies

High Speed Drum Tracks (except Any word location 0-9 (!1.2 characters)
ISP) or

Block Transfer Buffer Any field location A-V (excluding I
General Storage Buffer and 0) from 1 up to 119 characters

(Z or 120 character blockettes not
p_ermi t ted).

Arithmetic Registers A, B, c, D

Instruction Revolver Exactly 12 characters

Shift Revolver

General Storage Address Register Sign and 7 characters (sign is auto-
ma tically shifted off as General
Storage Address Register is loaded).

Program Address Counter Sign and 3 characters (sign is auto-
matically shifted off as Program
Address Counter is loaded).

Code Distributor Register Sign and 1 character (sign is auto-
matically shifted off as Code Dis-
tributor Register is loaded).

TABLE q-1

119

Rules

1 or 3 or 4

3 or 5

3

2

2

2

Rules

6 or 8 or 9

8 or 10

8

8

7

7

7

Data Transmission Rules

Arithmetic Transfer
Add
Subtract
Multiply, Store Upper
Multiply, Store Lower

Introduction

Divide, Store Quotient
Divide, Store Remainder
Mask Trans fer
Substitute U
Substitute V

Substitute W
Suppress Left Zeros
Left Normalize
Compare

Storage locations that may be addressed to obtain operands (called "Permis­
sible Sources") and storage locations that may be addressed as destinations
for the storage of results (called "Permissible Destinations") are given in
the tables on the preceding page. If any storage locations other than those
listed in the tables are specified in any of the instructions listed above,
the program is automatically stopped.

The source (or sources) and the· destination specified in an instruction
need not contain the same number of characters.

Source Rules

(1) If the source address specifies less than 12 characters and the
block transfer buffer, general storage buffer, or high speed drum
is involved, a copy of the contents of. the source address is loaded
into the lower order character positions of the arithmetic regis­
ter, and the higher order character positions of the arithmetic
register (those not receiving source data) are filled with space
codes (6).

, .. ARITHMETIC REGISTER .1
HIGH ORDER LOW ORDER

I 6. 6 6. 6. 8-CHARACTER FI ELD I
II 10 9 8 7 6 5 q 3 2 s

(2) If the source address specifies GSAR, PAK or CDR, a space code {6.)*
is automatically sent to the arithmetic register as the first (or
low order) character of the transfer; a copy of the contents of
GSAR, PAK or CDR is then sent to the other lower order character

• A space code in the sign position is treated by the computer as a plus in arithmetic operations.

120

positions of the arithmetic register, and the higher order char­

acter positions of the arithmetic register are filled with space

codes (6).

I· ARITHMETIC REGISTER
HIGH ORDER

6 6 6 6 6 6 6 /j /j

6 /j 6 /j /j /j /j /j l
/j 6 /j /j J GSAR

LOW ORDER

/j l CDR ~

PAK D.

l.

II 10 9 8 7 6 5 LI- 3 2 S

t3) If the source address specifies 12 characters, the arithmetic re­

gister is loaded with an exact copy of the contents of the source
address.

I~ ARITHMETIC REGISTER • I HIGH ORDER LOW ORDER

I SOURCE DATA = 12 CHARACTERS I
11 10 9 8 7 6 5 lj. 3 2 s

(4) If the source address specifies more than 12 characters, only the

12 lower order characters of the source address are loaded into

the arithmetic register. Higher order characters of the source

data are not sent to the arithmetic register.

ARITHMETIC REGISTER

HIGH ORDER LOW ORDER

LOWER ORDER 12 CHARACTERS 0.F SOURCE DATA

II 10 9 8 7 6 5 LI- 3 2 S

(5) Where the same arithmetic register that is to receive the source

data is also referred to as the source, that register performs a

right-end-around shift of 12 characters.

Destination Rules

(6) If the destination address specifies less than 12 characters, and

a BTB, GSB or HSD field is involved, data is transferred out of

121

the arithmetic register C or D until the number of characters spec­
ified by the destination has been transmitted; the transfer oper­
ation then terminates.

HIGH ORDER

[

~-
BTB, GSB

or
HSD FIELD

LOW ORDER

LOWER-ORDER
CHARACTERS IN RC OR RD

11 10 9 8 7 6 5 ~ 3 2 s

HIGHER-ORDER CHA~ACTERS IN REGISTER C or
D ARE NOT TRANSMITTED

Note: The data transmitted is shifted out the low-order end of
RC or RD, sent to the destina~ion, and also re-entered into
RC or RD at the high order end. Although the transfer of
data to a destination terminates when the capacity of the
destination is filled, the recirculation (or end around
shift) of RC or RD does not. Twelve c~aracters are always
shifted out of RC or RD, and they are left in the same sta­
tus as at the beginning of the transfer.

(7) If the destination address specifies GSAR, PAK or CDR, the sign
character in register C or·D and a number of characters equal to
capacity of GSAR, PAK, or CDR are transferred out of register C or
D, and shifted into these registers from the high order enp. When
the last character transmitted (the high order character) is shifted
into these registers, the sign character is shifted off the low or­
der end. (Note following Rule 6 applies).

3 2

7 6 5 q 3 2

---~ ~R
HIGHER-ORDER CHARACTERS
IN REGISTER C OR D ARE
NOT TRANSMITTED.

122

1-s-!~
--.J l1N EACH CASE THE SIGN

CHARACTER FROM RC OR
RD IS SHIFTED OFF THE
RIGHT END.

(8) If the destination address specifies exactly 12 characters, a copy
of the entire contents of register C or D is stored at the desti­
nation address.

DEST I NATI ON • I
HIGH ORDER LOW ORDER

ENTIRE CONTENTS OF REGISTER C OR D

(9) If the destination address specifies more than 12 characters, a
copy of the contents of register C or D is stored in the 12 lower
order character positions of the destination and the higher order
character positions in the destination are filled with space codes.

.... 1 • .,._ ___ -4((,,______ DESTINATION

HIGH ORDER) J LOW ORDER I ti ti ti i _\ ___ 6_6_6_6 ________ C_ON_T_E_NT_S_OF-R-EG_l_S_T_ER_C_O_R_D ___ I

(10) Where Register D is referred to as a destination, a right-end-around
shift of 12 characters occurs, and the transfer terminates.

Jump Instructions

Unconditional Jump

Operation Code:
Mnemonic Code:
Descriptive Code:
Description:

41S
UJ
U Jump

Address in the U section of the instruction word is transferred to the
W section of the word at the address given in the V section of the in­
struction word.

Address given in the W section of the instruction word is transferred
to PAK and is used as the address of the next instruction.

Sub-instruction is initiated.

123

OPERATION SEQUENCE

Modify the contents of PAK and cause a jump to
occur as follows:

Transfer the three characters which form:

to the W-section of the word location
specified by:

--0-------------------~-----------------~-------
Transfer the three characters which form:

to PAK, and take the next instruction word
from the location specified by the modified
contents of PAK.

INSTRUCTION WORD

PR = UJ

u-section of this instruction word

V-address of this instruction word

W-section of this instruction word

Initiate sub-instruction(s) in accordance with: ~C

Jump on Plus

Operation Code:
Mnemonic Code:
Descriptive Code:

17S
JP
Jump +

Description:

Conditional storage 1s examined for plus state:

If conditional storage 1s plus (+}, the address 1n the U section of the
instruction word is transferred to the W section of the word at the ad­
dress given in the V section of the instruction word. The address given
1n the W section of the instruction word is transferred to PAK and used
as the address of the next instruction.

If conditional storage is not plus (either - or 0), the U, V, and W sec­
tions of the instruction word are ignored and the next instruction is
taken from the address specified by PAK.

Sub-instruction is initiated.

OPERATIOll SEQUENCE I MSTRUCT I 011 WORD

Exa•ine Conditional Storage for plua (+), PR= JP

If Conditional Storage ia plua:
................. ·········- .. ~

Tranafer the three charactera wh.ich form: U0 aection of thia instruction word

to the •·•ection of the word location
apeci fi ed. by:

V0 aection of thia inatruction word

... +
Trana fer:

to PAK, and uae the 11odified eontenta
of PAK aa the addreu of the next
inatruct.ion.

If Conditional Storage ia not plua (+):

Ignore the U, V, and I section• of thi•
inatruction word and take ihe next in·
atruction word fro• the location apeci•
lied by the unaltered co.nt,.nta of PAK.

W0 aection of thia inatruction word

Initiate aub 0 inatructionJ_a) in accordance with: !!l_C

124

Jump on Negative

Operation Code: lSS
JN
Jump -

Mnemonic Code:
Descriptive Code:
Description:

Conditional storage is examined for minus state:

If conditional storage is minus (-), the address in the U section of the
instruction word is transferred to the W section of the word at the
address given in the V section of the instruction word. The address
given in the W section of the instruc~ion word is transferred to PAK
and used as the address of the next instruction.

If conditional storage is not minus, (either +or 0), the U, V, and W
sections of the instruction word are ignored, and the next instruction
is taken from the address specified by PAK.

Sub-instruction is initiated.

Jump on Zero

Operation Code:
Mnemonic Code:

lll'ERAll ON SEQUENCE I HSTRUCTJ ON WORD

Examine Conditional Stora.ge for negative (-). PR= JN

If Conditional Storage is negative:

----------------... -----------------.. -........ -.. -.... --.. -- -.. --.. --.. ---.. --.... -----.. -.. ---------. -.
Transfer the three charactus which form: u-section of this instruction word

- ~- - .. • l'f .. - - - - .. - - .. - - .. - - - .. - - - .. - - - - - - - - - - - - - - .. - .. - - - -

Y-section of this instruction word
to the W-section of the word location
specified by:

- -- - -- ----- --- --- -- - - -- - --- - -- -- -- -- • - -- -- - -- - - - -t- - - - - - -- - -- - - - - - •••••• -- ••• - •• - • - • -- •
Tr'ansfer~ W-section of this instruction word

to PAK, and use the modified contents of PAK
as the address of the next instruction.

If Conditional Storage is not negative (·):
Ignore the U, V, W sections of this instruc­
tion word and take the next instruction word
from the location specified by the unaltered
contents of PAK.

Initiate sub-instruction(s) in accordance with: S/C

19S
JZ

Descriptive Code: Jump 0
Description:

Conditional storage 1s examined for zero state:

If conditional storage is zero, the address in the U section of the
instruction word is transferred to the W section of the word at the ad-

125

dress given in the V section of the instruction word. The address given
in the W section of the instruction word is transferred to PAK, and
used as the address of the next instruction.

If conditional storage is not zero, (either+ or-), the U, V, andW
sections of the instruction word are ignored, and the next instruction
is taken from the address specified by PAK.

Sub-instruction is initiated.

OPERAT 1<111 SEQUENCE INSTRUCT IOll WORD

Examine Conditional Storage for aero (0). PR= JZ

If Condition.! Storage ia zero:

- - - - - - - - - - - - - - - - - - --1----- ---·- -- ------·--
Transfer the three characters which form: U-aection ot thia inatruction word

!--·--------- -----------1-------------------
To the 1-aection of. the word location
specified by: V-section of this instruction word

---- ------- --- ------ - t----- - - ----------
Transfer: W-aection of this instruction word

~------------------- ~-- - ------ ------
To PAK, and use the modified contents
of PAK 11• the addreaa of the next in·
at ruction

If Conditional Storage is not zero (0):
Ignore the U, V, and W sections of thia
instruction word and take th" next in·
•truction word from the location speci­
fied ~the unaltered contents of P~K.

Initiate aub-inatruction(a) in accordance
with:

Use of Jump Instructions

~c

Jump instructions provide a means of modifying the sequence of oper­
ations in an internal program. The kind of decisions which are reflected
through plugboard wiring of selectors, branches, etc. may be made in­
ternally through the use of jump instructions.

Unconditional and Conditional Jumps

Unconditional Jump UJ is the only unconditional JUmp instruction 1n the
UFC-I repertory. When this instruction is executed, the jump always
occurs; that is, the next instruction is always taken from the Word ad­
dress specified in the W section of the unconditional jump instruction
word.

Conditional Jump instructions in the UFC-I repertory include Jump on
Plus JP, Jump on Negative JN and Jump on Zero JZ. Jn each of these
commands, the state (+, 0) of conditional storage (a special purpose
memory location discussed in Chapter 3) determines whether or not the

jump will occur. If the condition specified by the jump instruction
coincides with the state of conditional storage, the jump will be exe­
cuted. If not, the jump is ignored and the next instruction is taken
from the address specified by PAK, which is the next instruction in se­
quence.

126

Returnable Jump Feature

All of the jump instructions in the UFC-J repertory are "returnable
jumps"; that is, during the execution of the jump instruction, a means
is provided to return to any valid instruction word -- after the sub­
routine initiated by the subroutine has been completed. No additional
or complicated programming technique is necessary to exploit the re­
turnable feature built into the UFC-I jump instructions.

A returnable jump usually modifies the main chain of events by jumping
to a series of instruction words called a "subroutine". At completion
of the subroutine, control returns to the main program through a second
jump instruction.

For example:

MAIN PROGRAM SUB-ROUTINE

Instruction
Word 159

l
jump Jump Instruction

Instruction ...,... Word 300
160 I I no jump

Instruction
Instruct ion Word 301

Word 161 -
l l Instruct ion

Instruction Word 302
Word 162

l I Jump
Instruction Instruction

Word 163 303

I
Instruction

161.J.

l

127

Jump instruction 160 is coded as follows:

I 1
60 I 1 ~ 1 I s ~s S/C

fj

U the instruction word in the main program to which control re­

turns.

V the last instruction word of the subroutine.

W the first instruction word of the subroutine.

Jump instruction 303 is coded as follows:

I sos 6"hf9:2 I 1:1 I:~ I sbc

This instruction Jumps control back to the main program at instruction

word 161.

Note: This method of coding a returnable Jump may be applied to any of

the four jump commands.

In some cases, particularly in connection with programs utilizing "straight

line" coding, the programmer may wish to jump to another part of the

main program or subroutine with no thought of returning to the main

program. To accomplish this, the programmer may vary his coding of the

returnable jump so that the jump is executed in the shortest possible
time.

This modified returnable Jump is accomplished by the use of a "dummy"

address in the V section of the jump instruction. Because Arithmetic

Register C (addressed by 992) is used as an intermediate storage loca­

tion during the execution of jump instructions, the use of RC as the

dummy location will result in the fastest execution of a jump instruc-

ti on.

For example:
[
~~~~8HT LIME PROGRAM 

INSTRUCTION -ju_•P __ _ 

160 
no ju.p 

128 



Jump instruction 160 = u v 
t:M 992 

U may contain any valid characters 

w I PR 16~: JP 

V dummy address (in this case Register C) 

S/C 

W = address of the instruction at which the program is to continue. 

Note: Any of the four Jump instructions may be coded in the above man­
ner. 

Permissable Destinations 

In jump instructions the V section of instruction word specifies a word 
or field address which is referred to for address modification purposes. 

This address may specify: 

A word location on the high speed drum, general storage buffer or 
block transfer buffer. 

Register C (where a non-returnable JUmp is desired). 

Contents of Arithmetic Registers after execution of a Jump instruction: 

PREVIOUS CONTENTS 
RA 

II 10 9 8 7 6 5 lf. 3 2 s 

PREVIOUS CONTENTS 
RB 

II 10 l9(s l1lslslq.lal2 I s 

CONTENTS UNUSABLE* w section 
RC of word at 

II 10 9 8 7 6 5 ..,. 3 2 s V address 

PREVIOUS CONTENTS 
RD 

s 

*Register C is used as an intermediate storage location for the U sec­
tion of the jump instruction word when a jump occurs and the W section 
of the word at the V address is modified. 

129 



Final contents of Register C are unusable. The address modification 
of the PAK which occurs during jump instruction is accomplished automa­
tically as the jump instruction is executed. 

Special eurpose tnstructions 

Buffer Transfer 

Operation Code: 
Mnemonic Code: 
Descriptive Code: 
Description: 

23S 
BT 
(U )--+- l3TB __... w 

Contents of the source address specified by U (or V1 ) are transferred 
to a destination address specified by W (or R) address, via the bl-0ck 
transfer buffer. V (or V2) address is ignored. 

Sub-instruction is initiated. 

During the first half of a BT operation, the contents of the source ad­
dress are transferred into the low order positions of the BTB, replacing 
as many characters as required. Higher order positions of BTB are not 
disturbed. 

During th~ second half of a BT operation, the number of characters speci­
fied by the destination address is transferred from the low order posi­
tions of BTB to the destination. 

The BT operation may not be used to trans fer da'ta from one BIB location 
to another, since BTB is not word and field addressable during the BT 
operation. 

130 



BUFFER TRANSFER 
OPERATION SEQUENCE INSTRUCT I ON WORD PROGRAM STEP 

Transfer data (1 up to 120 characters) from 
one program control storage location to PR= BT POOCESS to BT wiring 
another, via BTB, as follows: 

Transfer, to the block transfer buffer, 
lowest-order character first, the con- u-address VI ADDRESS wiring 
tents of the location specified by: 

Load the first character received* into 
BTB' s word 9, character S position. Load 
the next character received into BTB's 
word 9, character 1 position, etc, unti 1 
entire contents of the source are stored 
in BTB in this manner, When less than 120 
characters are loaded into BTB, do not 
alter the higher-order character positions 
of BTB (i. e,, those which do not receive 
data). 

Transfer data, out of BTB, to the location W-addreae R ADDRESS wiring specified by: 

Send the data to the destination,•• loweat 
order character first, beginning with BTB'a 
word 9, character S position, Store the 
character from BTB' s word 9, character 1 
.position in the next lowe.s t-order charac. 
ter position of the destination, etc, 
Transmit out only the number of characters 
required to fill the capacity of the des• 
tination. 

Initiate sub-instruction (s) or sub-step( s) S/C 
STEP Otrr. wirinff in accordance with: 

• If BTB J.s specified as the source, the first half of this instruction is omitted, 
If BTB is specified as the destination, n.o transfer out of BTB occurs (i.e., the second half 
of the instruction is .omitted), 

Data Transmission Rules - Buffer Transfer 

Introduction 

Storage locations that may be addressed to obtain operands (called "Per­

missible Sources") and storage locations that may be addressed as destin­

ations for the storage of results (called "Permissible Destinations") are 
given in the tables on the following page. If any storage locations other 
than those listed in these tables are specified in a Buffer Transfer, the 

program is automatically stopped. 

Source and destination references need not contain the same number of char­

acters. 

Source Rules 

(Numbers preceding rules refer to numbers on the following tables) 

(1) If the block transfer buffer is not referred to in either the source 

or destination address and: 

131 



(la) 

I · 

If the number of characters specified by the source address lS 
less than 120 characters, a copy of the source data is stored 
ln the block transfer buffer beginning with word 9, character 
S; and the higher-order stages of BTB, those which do not re­
ceive source data, are left unaltered. 

BLOCK TRANSFER BUFFER 

High Order Low Order 

Unaltered 
Stages of BTB 

Source Data < 120 characters 

Word 0 
Character 11 

Word 9 
Character S 

(lb) If the number of characters specified by the source address lS 
120 characters, an exact copy of the contents of the source 
address is stored in the block transfer buffer, beginning with 
BTB'& word 9, character S position. 

PERMISSIBLE SOURCES AND APPLICABLE 
BUFFER TRANSFER DATA 

TRANSMISSION RULES 

Source Source Address Spee if i es Rules 

Block Transfer Buffer Same number of characters as destine ... 
2 or 5 tion address 

High Speed Drum Tracks (except 
Any word location 0-9 (12 characters) ISP) _ _, or 
Any field location A-V (excluding I 

1 (IA or lB) and 0) containing from 1 up to 119 
General Storage Buffer characters 

or 
A blockette (Z) 120 characters 

Arithmetic Registers A, B, C, D Exactly 12 characters 1 (IA) 

PERMISSIBLE DESTINATIONS AND APPLICABLE 
BUFFER TRANSFER DATA 

TRANSMISSION RULES 

Destination Destination Address Specifies ~ules 

Block Transfer Buffer 
Same number of characters as source 

4 o·r 5 
address 

High Speed Drum Trac ks (except 
Any word location 0-9 12 characters) 

ISP) 
or 

Any field location A-V (excluding I 3 (3A or 3B or 3C) 

General Storage Buffior 
and 0), from 1 up to 119 characters 

or 
A b locket te ('Z:) 120 characters. 

Arithmetic Registera A, B, C, D 

Instruction Revolver Exact Iv 12 characters 3 (3A or 38) 

Shift. Revolver 

High Speed Drum Field Selection 
Pattern ISP 

General Storage Buffer Field 
Exactly 120 characters 3 (3C) 

Selection Pattern GSP 

Block Transfer Buffer Field 
Selection Pattern BTP 

132 



...-----------------------BTB-----------------------11M 
High Order Low Order 

Source Data = 120 Characters 

Word 0 
Character 11 

Word 9 
Character S 

(2) If the block transfer buffer is referred to as the source address, 
no transmission into BTB occurs during first half of a buffer trans­
fer. During the second half of a buffer transfer, the data supplied 

by BTB is always transferred out of BTB beginning with word 9, 

character S position. In this case, the number of characters BTB 
supplies as a source depends on the number of characters specified 
by the destination address. Data transmitted is always sent from 
BTB beginning with the lowest order character position of BTB (word 
9, character S). The destination address may specify a particular 
field in the case of field-addressable destinations. 

Note: In buffer transfers, BTB is not word and field addressable 
since program control storage ignores the lower-order char­
acter in the BTB address. 

Destination Rules 

(3) If the block transfer buffer is not referred to in either the source 
or destination address, and: 

(3a) If the number of characters specified by the destination ad­
dress is less than the number of characters specified by the 
source address, not all the source data is sent to the destipa­
tion. That is, only those character positions in BTB beginning 
with word 9, character S and extending up to the capacity of 
the destination supply data. 

~1-...... ---------------BLOCK TRANSFER BUFFER------------------~~~1 
High Order 

Unaltered Stages of BTB 

Word 0 
Character 11 

Higher-order characters of 
source data and original 
unaltered data in BTB are 
not transmitted. 

133 

Low Order 

Source Data 

Word 9 
Character S 

Destination 

Low-order Characters 
of Source Data 



(3b) If the number of characters specified by the destination ad­
dress is greater than the number of characters specified by 
the source address, more characters of BTB data are transmitted 
out to the destination than were received from tLe source. The 
destination's lower-order character positions thus receive a 
copy of the source data, and the higher-order character posi­
t ions of the destination receive a copy of the data held in 
correspondingly significant BTB character positions. 

Block Transfer Buffer~------------~~._.I 

High Order 

Original (Unaltered) BTB Data 

Word 0 
Character 11 

Data in higher-order 
character positions 
in BTB are not trans­
mitted. 

Low Order 

Source Data 

Word 9 
Character S 

Destination 

Data from corresponding 
BTB character positions. Source Data ] 

(3c) If 120 characters are specified by the destination address, 
the entire contents of BTB are transferred to the destination. 

Destination ~1 
Order Low Order 

Entire Contents of BTB Transmitted 

(4) If the block transfer buffer is referred to as the destination ad­
dress, no transmission out of BTB occurs during the second half 
of a Buffer Transfer. (The note ~allowing rule 2 also applies to 
rule 4.) 

BTB Both Source and Destination 

(5) If the block transfer buffer is referred to as both source and des­
tination, nothing happens ·in BTB. Both halves of the buffer trans­
fer are suppressed, an "end of operation" pulse is immediately pro­
duced, and the program continues. A buffer transfer cannot be used, 

the r e f o re , t o t ran s f e r d a t a fro m on e B TB l o c a t i on t o an o t h e r BT B 

location. 

134 



Load General Storage Address Register 

Operation Code: 
Mnemonic Code: 
Descriptive Code: 
Description: 

31S 
LA 
IRV~ -+--GSAR 

The general storage address register (GSAR) is loaded with the two lower 
order digits of U, the three digits of V and the two higher order digits 
of W. 

Sub-instruction is initiated. 

Instruction Word 

u v w PR S/C 

0 I 2 3 8 "" 0 LA 

0 I 2 3 8 "" 0 
L D S C H A A 

In this instruction, the data loaded into the General Storage Address 
Register (GSAR) is obtained from the instruction itself (from the In­
struction Revolver currently being used, IRVc>· As part of the execu­
tion of the instruction, program control storage is automatically noti­
fied that the general storage address register is the required destina­
tion. 

The general storage address register may also be loaded by addressing 

GSAR as the destination in an instruction word or a program step. 

OPERATION SEQUENCE INSTRUCTION WORD 

Load GSAR with 7 characters from this instruc-
tion word (i.e., from IRVC) as follows: PR= LA 

Place the lower order 2 digits of the U 
section of this instruction word in u-section of this IW 
GSAR'a 2 higher order digit positions: 

Place the ·3 digits of the V section of 
this instPuction word in GSAR's next V-section of this IW 
three higher•order digit positions. 

Place the 2 higher order digits of the 
W section of this instruction word in W-section of this IW 
GSAR's two lowest-order digit positions: 

Initiate sub-instruction(s) in accordance with: S/C 

135 



Load Shift Revolver 

Operation Code: 
Mnemonic Code: 
Descriptive Code: 
Description: 

32S 
LS 
( IRV c) --... SRV 

Contents of the current instruction revolver (IRVc) are transferred to 
the shift revolver (SRV). 

Sub-instruction is initiated. 

0 5 2 0 3 0 4 LS ,L 0 5 2 0 3 0 4 LS l~ 
a--~u-----.~-v----.----w----~P-R-.--s~-s-R_v ___ .___u ________ v _______ w ______ PR ___ sj~ 

In this instruction, the data loaded into the shift revolver (SRV) is 
obtained from the instruction itself (from current instruction revolver 
IRVc). As part of this instruction·, program control storage is auto­
matically notified that the sh~ft revolver SRV is the required desti­
nation. 

The shift revolver may also be loaded by addressing SRV as the desti­
nation in an instruction word or a program step. 

OPERATION SEQUENCE INSTRUCTION WORD 

Transfer the contents of IRVC to the Shift 
Revolver, as follows: PR = LS 

Place the u section of this instruction 
word in the U-section of the Shift Re- U-section of this IW 
volver. 

Place the v section of this instruction 
word in the V-section of the Shift Re- V-section of this IW 
volver. 

Place the w section of this instruction 
word in the W-section of the Shift Re- W-section of this IW 
volver. 

Place the OP section of this instruction 
word in the lower-order character posi- OP-section of this IW 
tions of the Shi ft Revo 1 ver. 

Initiate sub-instruction(s) 1n accordance with: S/C 

136 



Channel Clear 

Operation Code: 
Mnemonic Code: 
Descriptive Code: 
Description: 

33S 
cc 
6 -+-(W) 

The track or 
space codes. 

buffer specified by the W (or R) address is cleared to 
The U (or V1 ) and V (or V2 ) addresses are ignored. 

Sub-instruction or sub-step is initiated. 

The Channel Clear operation includes only one programmed storage refer­
ence ~ a destination. When this instruction is executed, 120 space 
codes (6) are automatically generated by the computer and stored at the 
destination (W or R address). 

OPERATION SEQUENCE INSTRUCTION WORD PROGRAM STEP 

Place a space code in each of the PR= CC POOC to U1 Cl wiring 
120 character positions of the - - - -- -- -- --- -- - --track or buffer specified by: W-address• R ADDRESS wiring• 

Initiate sub-instruction(s) or sub-
S/C STEP Otrr wiring step(s) in accordance with: 

*Permissible destinations in a channel clear instruction are: 

High Speed Drum: Input/Output Tracks 
Factor Storage Tracks 
Intermediate Storage Tracks 

General Storage Buffer 

Block Transfer Buffer 

Channel Search Probe 

Operation Code: 
Mnemonic Code: 

27S 
SP 

-

Descriptive Code: ?C.5 Storage~ 
Found: 
Busy: 
Not Found: 
Ignore Found: 

PAK 
U_.,..PAK 
V....,..PAK 
W ~PAK 

137 

- - - -I 



Description: 

Channel Search Storage is examined to determine whether a previously 

initiated channel search operation is completed. 

If the search is completed successfully (found), channel search stor­

age is set to the plus (+) state, and the next instruction is taken 
from the address specified by the PAK. 

If the search is not completed 

from the ·U address. 

(busy) the next instruction is taken 

If the search is completed unsuccessfully (not found) channel sear·ch 

storage is set to minus (-) state and the next instruction is taken 

from the V address. 

If the search is completed and the ~pecial Condition "ignore foand" 

occurs, channel search storage is set to the zero (O) state and the next 

instruction is taken from the W address. (This condition does not occur 

on channel search unequal operations.) 

Sub-instruction is initiated. 

OPE RAT I ON SEQUENCE INSTRUCTION WORD SEARCH PROBE SUB-STEP 

Test to see if a previously in1- STEP OUT to 
tiated Channel Search Operation is PR= SP STEP OUT to cs PROBE + 
completed: cs POOBE wiring WAIT wiring 

If the previously initiated search 
The location is not completed, proceed with the ACTIVE out Wait un ti 1 

and take the next instruction specified by wiring search is program 
from: the u address completed 

If the previously initiated search is 
completed, examine Channel Search 
Storage: i 

If Channel Search Storage is set The location 
MINUS ( -) (-) 

MINUS, take the next inst rue- specified by out MINUS out 
to 

wiring wiring 
ti on from: the v address 

t- --- ------- --- ----~-i t----------------r---·---
If Channel Search Storage is set The location 

ZERO (0) (0) 
ZEOO, take the instruc- specified by OU·t ZERO out 

to next 
wiring wiring 

ti on from: the w address 
1--------- ------1-------- -------t-------· 

If Channel Search Storage is set The location 
PLUS (+) PLUS (+) 

take the instruc- specified by out out 
to PLUS, next 

wiring wiring 
ti on from: PAK 

Initiate sub-instruction(s) in accor-
S/C 

dance with: 

Input/Output Instructions 

Test Demand In 

Operation Code: 34S 

Mnemonic Code: TD 

Description: 

138 



I/O unit "b" is tested to determine whether it 1s ready or not ready for 
use as follows: 

UNIT "b" 
0-9 

IF NOT 
READY 

OP£RATION SEQUENCE 

A DEMAND TEST JN signal is sent to the 1/0 
unit specified by the middle digit "b" of 
the U section of this instruction word. 

If I/O unit "b" is READY, the next instruc­
t ion is taken from the V address of this 
instruction word. 

If I/O unit "b" is NOT READY, the next in­
struction is taken from the W address of 
this instruction word. 

Sub-instruction is initiated. 

INSTRUCTION WORD 

Determine whether I/O unit "b" is READY or NOT PR= TD 
READY for subsequent use, as follows: 

Examine: Middle digit (b) of the U-section 
of this instruction word. 

Send the I/O unit specified by this digit a 
DEMAND TEST IN signal. 

If I/O unit "b" is READY, take the next in- V-section of this instruction word. 
struction word from the location specified by: 

If I/O unit "b" is NOT READY, take the next 
instruction word from the location specified W-section of this instruction word. 
by: 

Initiate sub-instruction(s) in accordance with: S/C 

Test Incoming Control 

Operation Code: 39S 
Mnemonic Code: TI 
Description: 

High Speed I/0-Computer Control Line Storage is tested as follows: 

The low order character "c" of the U section of this instruction \\<ord 
is examined. If "c" equals W, X, Y or z., Higb Speed J/0-Computer Con­
trol l.ine Storage is tested for the corresponding condition: 

139 



Track 
Switch 

a =f:. I 
No 

Track 
Switch 

If W, X, Y or Z condition is 
found: 

The middle digit "b" and 
high order digit "a" of 
the U section of this in­
struction word are examined. 

If "a" = l, track switch is 
executed on 1/0 tracks speci­
fied by "b". 

If "a" f l, no track switch 
is executed on I/O tracks 
specified by "b". 

The next instruction is taken 
from the W section of this 
instruction word. 

Sub-instruction is initiated. 

u v 

1/0 
Track "b" 

0-9 

140 

w S/C 

W,X,Y,Z 

If W, X, Y or Z condition 
is not found: 

Track switch is not execu­
ted. 

Next instruction is taken 
from the location specified 
by PAK. 

Sub-instruction is initiated. 



OPERATION SEQUENCE 

Test High Speed I/O -Computer Control Line Stor­
age for W, X, Y, or Z, as follows: 

Examine: 

If 

If c = W, test High Speed I/0-Computer 
Control Line Storage for the W-condition: 

If c = x, test for the x condition 
If c = Y, test for the y condition 
If c = z, test for the z condition 

the particular w, X, Y, or z condition 
tested is found, examine: 

For track switching: 
"b" specifies the I/O unit whose associ­
ated I/O tracks are to be conditionally 
switched: 

If a= 1, track switch 
If a= 0, do not track switch 

Take the next instruction word from the 
location specified by: 

If the particular W, X, Y, or Z condition 
tested is not found, do not track switch, 
regardless of the value of "a". Take the 
next instruction word from the location 
specified by the contents of PAK. 

INSTRUCTION WORD 

PR= TI 

W, X, Y, or Zin the lowest order 
character (c) of the U-section of 
this instruction word 

Middle digit (b) and highest order 
digit (a) of the U-section of this 
instruction word 

W-address of this instruction word. 

Initiate sub-instruction(s) in accordance with: S/C 

Demand In 

Operation Code: 45S 
Mnemonic Code: DE 
Description: 

I/O unit 1s placed on demand; track switch is performed conditionally, 
and computer - I/O unit control information is exchanged as follows: 

I/O unit "b" 1s sent a DEMAND IN signal. 

When I/O unit "b" becomes READY, it produces a DEMAND OlIT or SPECIAL OUT 
signal: 

141 



a"/: I, 
No Track 
Switch 

DEMAND OUT: 

S/C 

Cort ro I Lines 
A-I 

SPECIAL OUT: 

Next instruction is taken from 
location specified by PAK. 

No Track Switch; 
Mo Control via 
Computer - I /O 

Control Lines in 
V of this IW 

Sub-instruction is initiated. 

OPERATION SEQUENCE 

Place 1/0 unit "b" on demand conditionally track 
switch and exchange control inform•tion aa fol• 
lows: 

Examine: 

Send 1/0 unit "b" a DEMAND IN signal: i.e., 
place 1/0 unit "b" on demand: 

(LS) 1/0-Computer control lines (a-1) 
from 1/0 unit • b" are energized 

Control via Computer-
1 /0 Control Lines in 

V of this IW 

Next instruction .is taken from W address. 

Sub-instruction is initiated. 

INSTRUCTIOll WORD 

PR= DE 

Middle digit (b) of the U-aection 
of this instruction word 

When 1/0 unit • b" becomes READY, it produces a DEMAND OlTI' or a SPECIAL OlTI' signal. 
If it produces a SPECIAL OIJf it also sends one or more signals o•er the (HS) 1/0-
Computer c·ontro l lines (W, X, Y ,Zl to High Speed 1/0-Computer Control Line Storage. 

If a DEMAND our "b" is produced, track 
switch if: 

is a "l"; do not track switch if it is a 
"O". Whether track •witching occura or 
not, send 1/0 unit "b" the control infor­
mation aped fied by: 

(Yia the Computer-1/0 control lines), and 
take the next instruction word from the 
location specified by the contents of PAK. 

If a SPECIAL OUT is prod\lced, examine: 

If c = 0, do not track awi tch regard lea a 
of the •aluf' of • •", and do not send the 
conuol information (V) to 1/0 Unit "b". 

If c =I, track ••itch if •a•= 1, do not 
track switch if "a" = O. Send the control 
information (V) to 1/0 Unit "b". 

In any eunt, if a SPECIAL OUT is produced, 
take the next instruction from the location 
a pee i fied by: 

lni ti ate sub-inatruction(s) in accordance with: 

142 

Highest order digit (a) of the U­
eection of this instruction woril. 

V-aection of this inatr·uction word. 

Loweat•order digit (c) of the U· 
section of this instruction word~ 

W-addreas of this instruction worci. 

S/C 



Transfer of Control Instruction 

Transcop (Transfer Control to Plugboard) 

Operation Code: 51 through 98 
Description: 

The execution of instruction words is interrupted and control is trans­
ferred to the plugboard step identified Ly the operation code of this 
instruction word. 

This instruction word is retained in IRVc. U, V, and W portions of 
this instruction are available during the plugboard sequence through U, 
V ancf W ADDRESS HUBS. 

When the plugboard sequence is completed and NEXT INSTRUCTION is sig­
nalled, the sub-instruction of the transcop word is initiated. 

OPERATION SEQUENCE INSTRUCTION WORD 

Interrupt the execution of Instruction Words; 
retain this instruction Word in IRVC; transfer 
Program Control to the Plugboard Step numer- PR= 51 - 98 

ically equal to: 

Execute the Program Step wired there. 

A sequence of one or more program steps is thus initiated. The U, V, 
and W addresses of this instruction word are available to each pro-
gram step in the TC - initiated plugboard sequence. 

If the plugboard-defined program pulses the NEXT INSTRUCTION hub, 
program control resumes the internal program, then ini ti-ates the sub-
instruction ( s) specified by S/C in this instruction word. 

143 



Note: 

SPECIAL CHARACTER CODES 

S/C in an IW 

Certain values of S;C specify but one Sub-Instruction; others specify two or three Sub­
Instructions. For ready reference, each Sub-Instruction's unique Yalue of S/C is indi­
cated by a shaded area, and cross-hatching is employed when two or three Sub-Instructions 
are specified by a \'alue of S/C. 

TABLE q-2 

144 



INITIAL AND FINAL CONTENTS OF RA, RB, RC, AND RD 
FOR INSTRUCTIONS WHICH USE ARITHMETIC REGISTERS 

INSTRUCT I OMS Register A 

Initial Final 

Add A~end Aqend 

Add & Check Augend .\ugend 

Subtract Minuend Minuend 

Subtract & Minuend Minuend Check 

Multiply, Store Multiplicand Multiplicand 
Upper 

Multiply, Store Multiplicand Multiplicand Upper & Check 

Multiply, Store Mult ip lie and Multiplicand Lower 

Multiply, Store Multiplicand Multiplicand 
Lower & Check 

Divide, Store Dividend lN Quotient 

Di vi de, Store 
Quotient & Dividend lN 
Check 

Divide, Store 
Dividend lN Remainder 

Divide, Store 
Remainder & Dividend lN 
Check 

(Any) Divide 
Where Di visor Dividend lN 
= 0 

(Any) Divide 
Where Quotient Dividend lN 
Digit < 1 

Mask Transfer Operand Operand 

Compare vl Operand v 1 Operand 

Suppress Left 
vl Operand R Zeros 

Left Normalize vl Operand Normalized 
Operand 

Substitute 
V1 Operand v 1 Operand 

(U, V, or W) 

Jump on Plus 

Jump on Minus 

Jump on Zero PC PC 

Unconditional 
Jump 

Arithmetic PC PC Transfer 

R - Result 
PC - Previous contents 

lN - Unusable 

CONTENTS OF 

Register B Register C Register D 

Initial final Initial Final Initial Final 

Addend Addend PC lN PC Sum 

Addend Addend PC 
Negative 

PC Sum Zero 

Subtrahend Subtrahend PC lN PC Difference 

Subtrahend Subtrahend PC Negative PC Difference Zero 

Multiplier Multiplier PC pro[) u PC PIO> L 

Multi plier Multiplier PC 
Negative 

PC Negative 
Zero Zero 

Multiplier Multiplier PC PRJD U PC PllD L 

Multiplier Multiplier PC 
Negative 

PC Negative 
Zero Zero 

Di visor lN Dividend Remainder PC Quotient 

Di visor lN Dividend lN PC lN 

Divisor lN Dividend Remainder PC Quotient 

Divisor lN Dividend lN PC lN 

Divisor UN Dividend Zero PC Zero 

Dividend Di visor UN Dividend (Remainder) PC Zero 

Mask Mask PC R PC R 

v2 Operand v2 Operand PC PC PC PC 

PC PC PC PC PC R 

PC Normalized PC PC PC Normalized 
Count Operand 

v2 Operand v 2 Operand PC R PC R 

OC used as 
intermediate 
storage for U. 

PC PC PC Final Con ten ts PC PC 

of OC are 
unusable. 

PC PC PC PC Source Data 
Data transmitted 

RA - Register A 
RB - Register B 
RC - Register C 
RD - Register D 

POOD U - higher-order characters of product 
POOD L - lower-order characters of product 

TABLE l.J-3 

145 

RESULT RESULT 
FORMED STORED 

IN FR()f 

fl) fl) 

fl) fl) 

RD RD 

fl) fl) 

RC & R> RC 

RC & R> RC 

RC & R> RD 

RC & RD ff) 

RC & RD ff) 

RC & R> ff) 

oc & fl) RC 

OC & RD oc 

OC or RD & II> fl) 

OC or oc & fl) ff) 

RC & R> fl) 

Branch 
Storage +, o,-
Set to 

RA & fl) R> 

RA, RB, fl) 
& fl) 

RC & R> RD 

oc RC 

ff) fl) 



GENERAL STORAG 

INTRODUCTION 

Modern business operations demand split-second decisions on the part of man­

agerial and supervisory personnel. In order to make these decisions intel­

ligently, the manager must have access to the very latest facts and figures 

pertinent to the question at hand. The following are typical situations where 

the large capacity random access general storage system of the UFC-1 con­

tributes to effective decision-making by keeping information readily avail­

able: 

Inventory control, where inventory balances and other continuing infor­

mation may be carried in general storage. Immediate posting of random 

receipts and withdrawals always maintains inventory status up to date. 

146 



Production scheduling, where a highly volatile situation exists. Sched~ 

ule and process changes must be reflected immediately in order to deter­
mine shipping dates and quantities. 

Sales analysis, where vast amounts of random data must be classified, 
accumulated, and reduced in volume. 

Insurance and transportation problems, where large rate tables may be 
stored for reference periodically during calculations. 

Recapitulation and reporting, in any situation where a mountain of detail 
must be ~ondensed so that reference, calculation, summarization and re­
porting may be accomplished in a single operation. 

COMPONENTS OF THE GENERAL STORAGE SYSTEM 

lhe general storage system is the large capacity, random access memory of the 
Univac File-Computer, Model I, system. It is composed of the following prin­
cipal parts: 

(1) General storage drums (GSD). A UFC-1 system may include from 1 to 
10 magnetic drums, called general storage drums (GSD). Each drum 
is capable of storing 180,000 7-bit alpha-numeric characters. 

(2) General storage address register (GSAR). This 7-digit register holds 
the address of the general storage location involved in a general 
storage reference. 

· (3) General storage buffer (GSB). This 120-character, magnetic core 
buffer serves as an intermediate storage in data transmissions to 
and from the general storage drums, and holds the unit record iden­
tifier in channel search operations. 

(4) Circuitry. The controlling, locating,. and synchronizing circuitry 
necessary for execution of general storage operations is also con­
sidered a basic part of the general storage system. 

147 



FUNDAMENTALS 
Cl 

Data organization in general storage. The basic unit of data handled by the 
general storage system is the "unit record". A unit record may be read from 
a location in general storage; it may be stored at a location in general stor­
age; it may be searched for in general storage. 

A unit record is a group of adjoining characters handled by the computer as 
a unit during general storage operations. A unit record must consist of at 
least 12 characters (one computer word), but may also consist of any integral 
multiple "of 12 characters .up to a maximum of 120 characters. 

An "item" or "file-entry" is a group of facts pertaining to a m~jor unit of 
a file. Each item, or major unit, is identifiable as unique from all othe! 
major uni~s in the file. For example, an individual payroll record may be 
an item in a payroll file; a part number and its related information may be 
an item in an inventory file; an account receivable may be an item in a cus­
tomer file. 

"Unit records" and "items" bear the following relationship to each other in 
general storage of the Univac File-Computer. 

(1) A unit record may be a complete item in itself. 
(2) A unit record may be only a portion of an item. 
(3) A unit record may contain several complete items. 

When files are recorded in general storage, the maximum amount of space neces­
sary for further processing of any item is usually allotted to all items in 
that file. Thereafter, reference to any item is rnade on a unit record basis, 
the length of which is specified by the programmer within the limits previ­
ously prescribed. Thus, data held in general storage of UFC-I may be obtained., 
altered, and stored selectively on a unit record basis. 

Time Sharing during General Storage Operations. General storage operations, 
which provide access to the data on the general storage drums, may be time­
shared with operations of the central computer and the input-output un:Lts. 

Whenever the general storage buffer (GSB) and the general storage address 
register (GSAR) are engaged in general storage operations, they are not avail­
able to program control storage operations of the central computer. However, 
by suitable programming, operations of the general storage system and the 
program control storage system may be carried out simultaneously, with a 
resultant time-saving factor in accomplishing the assigned processing of data. 

148 



GENERAL STORAGE DRUMS 

Description 

The general storage magnetic drums provide the large capacity, random access 

storage of the lWC-1. A maximum of 10 drums, containing a total of 1,800,000 

characters of information, may be included in the system. ' Segments of this 

information may be located by drum section, channel, and uni~ record area, 

.as described below: 

(1) Each general storage drum is divided into three sections, each 

section containing 100 channels of information. 

(2) A channel contains the informirtion available to one read/write head 

around the circumference of the magnetic drum. (See Figure 5-1.) 

(3) Each channel consists of (a) space for 600 characters of filed in­

formation, (b) a 6-character search control location, important 

in the channel search operations discussed below, and (c) a dead 

space, which allows channel search to continue from channel to 
channel without waiting for a complete drum revolution. 

GENERAL STORAGE 
DRUM 01 

EACH GENERAL STORAGE 
DRUM IS DIVIDED INTO 
THREE SECTIONS 

~----lr--t---- SECTION 00 

I 
I 

I, 
I 

.....i,_--1-~- SECTION O I 
~--SECTION 02 

. EACH CHANNEL CONTAINS 

THERE ARE 100 
CHANNELS IN 

EACH DRUM 
SECTION 

CHANNEL 00 
CHANNEL 99 

50 12- CHARACTER GROUPS \00-98) 
IN WHICH UNIT RECORDS ARE STORED. 

A SEARCH CONTROL LOCATION ('O) IN 
WHICH CHANNEL SEARCH (SEQUENCE) 
CONTROL DATA IS STORED; AND 

A DEAD SPACE (USEFUL IN CHANNEL 
SEARCH OPERATIONS TO ALLOW TIME 
FOR NEW ADDRESS TO BE SET UP 
IN GSAR SO THAT SEARCH CAN 
CONTINUE DURING NEXT 
REVOLUTION) 

'CHANNEL 00 
ONE READ/WRITE 
HEAD PER CHANNEL 

I 
I 

149 

FIGURE 5 -1 

CONTENTS OF A CHANNEL 



Address Structure 
Two types of general storage addresses are employed 1n UFC-1: unit record 

area (URA) addresses and search control location (SCL) addresses. 

A Unit Record Area 1s identified lby means of a 7-character format as follows: 

L 

Unit Record 
Length 

DS 

Drum 
Section 

CH 

Channel 

AA 

Angular 
Address 

All characters in the 7-character format must be numeric. 

The Unit Record Length Code specifies the length or number of characters to 

be called for in a particular general storage reference. This code may be 

any number from 0 through 9. The ~ode digit, multiplied by 12, defines the 

number of characters in a unit record area, except in the case of 0 which may 

be considered as 10, as it designates a 120 character unit record area. 

The Unit Record Selector (a switch on the general storage control cabinet) 

performs two important functions 1n relation to the unit record length code: 

(1) If this switch is set to "GSAR", the length code (L) held in the 

general storage address register (GSAR) specifies the length of 

the unit record. 

(2) With the switch set at any one of the positions 0 through 9, the 

unit record length is 1e;ined by the switch setting, and the ~L" 

code is ignored. 

The General Storage Drum Section is identified by "DS" in the address format. 

Each drum is divided into thre~ sections. A ten-drum system contains thirty 

such sections, designated by addresses 00 through 29. For example, 00, 01 

and 02 indicate the three dru~ sections of the first drum in the system. 

Channel Address (CH) specifies.a particular 600-character channel of the iOO 
channels available on each drum section. Addresses of these channels are 00 

through 99 in any section of any general storage drum. 

Angular Address (AA) specifies the exact location within a partiuclar channel 

at which a unit record area begins. The variation of these numb;rs depends 

on the length of the unit r~cord used. 

The initial URA on each channel is addressed by 00, with the angular address 
increasing by two fo~ each succeeding group of twelve characters. Thus, 

150 



successive 12-character unit record areas are addressed by multiples of two, 
while 24 character unit record areas are addressed by multiples of four. This 
type of format provides a method of continuous addressing throughout the 
general storage syst~m for unit record areas of 12, 24, 60 and 120 characters. 

120-CHARACTER UNIT RECORD AREAS 

1st AA f of of 1 Jof of olol 

5th AA lolol 1lololalol 

Drums 
per 

System 12 24 

I 15,000 7,500 

2 30,000 15,000 

3 45,000 22,500 

4 60,000 30,000 

5 75,000 37,500 

6 90,000 4-5,000 

7 105,000 52,500 

8 120,000 60,000 

9 135,000 67,500 

10 150,000 75,000 

FIGURE 5-2 

SEARCH CONTROL 
LOCATION 

DEAD SPACE 

120-CHARACTER UNIT RECORD AREAS 

NUMBER OF UNIT RECORD AREAS 
FOR VARIOUS DRUM SYSTEMS 

Characters per Unit Record Area 

36 48 60 72 84 

4,800 3,600 3,000 2,400 2, I 00 

9,600 7,200 6,000 q ,800 4,200 

14,400 10,800 9,000 7,200 6,300 

19,200 14 ,400 12,000 9,600 8,lfOO 

24,000 18,000 15,000 12,000 10,500 

28,800 21'600 18,000 14 ,400 12,600 

33,600 25,200 21 ,000 16,800 14,700 

38,400 28,800 24,000 19,200 16,800 

43,200 32,400 27,000 21 ,600 18,900 

48,000 36,000 30,000 24,000 21'000 

151 

96 108 120 

I, 800 I ,500 I ,500 

3,600 3,000 3,000 

5,400 4 ,500 4,500 

7,200 6,000 6,000 

9,000 7,500 7,500 

10,800 9,000 9,000 

12,600 10,500 10,500 

14,tlOO 12,000 12,000 

16,200 13,500 13,500 

18,000 15,000 15,000 



Variability of Unit Record Addressing 

Items or file entries of varying lengths may be stored (a) in different drums 
within a general storage system, (b) in different sections of a single drum, 
(c) in different channels of a section, or (d) in different character groups 
within a channel. For example, payroll, accounts receivable, and accounts 
payable may be stored in neighboring sections of a drum, as in the following 
illustration: 

DEA[) SPACE 

END 

SEVERAL GSD
1
S MAY BE 

HEQUIRED FOR A II FILE" OR 

I 

152 

SEVERAL FILES 
MAY BE STORED 
ON ONE DRUM 

FIGURE 5-3 

ADJACENT STORAGE OF 

LIRA'S OF VARYING LENGTHS 



VALID GENERAL STORAGE UNIT RECORD AREA ADDRESSES 

Unit Record Area Length Code (L) 
Characters per Unit Record Area 
Complete Unit Record Areas per Channel 
Characters Utilized per Channel 

153 

I 
12 
~o 

600 

00 
02 
04 
06 
08 
10 
12 
14 
16 
18 
20 
22 
211 
26 
28 
30 
32 
34 
36 
38 
LIO 

42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 

2 
24 
25 

600 

00 

04 

08 

12 

16 

20 

24 

28 

~2 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

80 

8lt 

88 

92 

96 

3 lj 

36 48 
16 12 

576 576 

00 00 

06 
08 

12 

16 
18 

211 24 

30 
32 

36 

40 
42 

lf8 4-8 

54 
56 

60 

64 
66 

72 72 

78 
80 

84 

88 
90 

LS:2J ~ ~ 

·r---r--·-

5 6 7 8 9 0 
60 72 84 96 I 08 120 
10 8 7 6 5 5 

600 576 588 576 540 600 

00 00 00 00 00 00 

10 
12 

14 
16 

18 
20 20 

24 

28 
30 

32 

36 36 

40 40 
42 

48 48 
50 

54 
56 

60 60 60 

64 

70 70 
72 72 

80 80 80 

84 84 

90 \t -n•,•-----x 
~/1 IS:LJ ZI 
~ C>< 7SJT ' 



When items on the drum are short, and when they may be desired in sequence, 
several short items may be read by a single read command. In the same manner, 
these several small items may be restored on the drum by a single write com­
mand. For example: a group of ten 12-character items stored in unit record 
areas 00, 02, 04 through 18 could be called up as a single 120 character 
unit record by inserting a 0 (120 character URL code) in the unit record 
length code position of the address beginning at angular address 00 on the 
channel. 

Any size of unit record (of the ten sizes available) may be read out, begin­
ning at any valid 12-character group angular address provided there are 
enough character positions between the beginning angular address and the end 
of the channel. For example, unit record length code 0 (120 characters) may 
be called for beginning at any angular address up to and including 80, which 
is the last valid 120-character unit record address. In any address greater 
than 80, the full 120 characters cannot be obtained from the channel. 

A Search Control Location (SCL) refers to a specific 6~character memory lo­
cation on each channel of general storage. It is addressed by drum section, 
channel and the designation 'O (prime zero) in the following format: 

- OS CH '0 

Unit 
Record Drum Search 

Length Section Channel Control 

(Ignored) Location 

The Unit Record length code may be any computer character, since it is ig­
nored in any operations associated with the search control location. 

Drum section, and channel within that drum section, identify the channel 
search control location used as a reference. Each character in the drum sec­
tion and channel portions of the format must be numeric or an error will re­
sult. 

Search control location "'O" is the exact code which must be used to differen­
tiate the search control location address from any unit record angular ad­
dress. The characters 'O, when stored in any search control location, act 
as a stop code, terminating channel search operations when 'O is interpreted 
in the general storage address register. 

During channel search operations, discussed more fully below, an "overflow 
address" stored in the search control location of each channel directs the 
computer where to continue the search if the desired unit record is not found 
in the channel just searched. 

154 



The method of loading an overflow address into the search control location 
1·s as ·follows: 

(1) Place the 6-character address (to be stored in the search control 

location) in character positions 1 - 6 (Field A) of the general 
storage buffer (GSB). For example, if search is to continue at 
location 030500, these numbers would be loaded into the GSB. 

(2) Place the address of the desired search control location in the 

general storage address register (GSAR). An example might be search 
control location 0250'0. 

(3) Execute a "Write Unit Record" general storage operation. Thus, 

overflow address 030500 would be loaded into the search control 

memory location 'O of channel 50, drum section 02. 

Instruction. INSTRUCT/ON WORD 
location 

Internal: 

STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO. SHIFT SHIFT SHIFT STEP 

External: 
51 S-.:l 
52 OOA AT G-56 A 53 
53 00 8 AT G-SAR wuR 

PROC v,ADR v,sH V2ADR V2SH RADA 

~ 0;-0 o--0 05P 0-0 D;j-0 

FIGURE 5-4 

LOAD OVERFLOW ADDRESS 
INTO SEARCH CONTROL LOCATION 

155 



General Storage Address Register (GSAR) 

The General Storage Address Register is a 7-digit register the principal func­
tion of which is to hold general storage addresses during general storage op­
erations. 

The two types of valid addresses held in GSAR are: 

Unit Record Area Addresses 
Search Control Location Addresses 

The GSAR performs a secondary function in its role as an addressable unit of 
the program control storage system. This secondary function was discussed 
in Chapter 2, "Program Control Storage System". 

The General Storage Address Register is addressable internally by the code 
995, or by wiring of the GSAR hubs on the main program plugboard. 

An address may be loaded into the GSAR by one of several methods: 

(1) Internal command LA (see example l, below). 

(2) Internal arithmetic transfer of an address to the GSAR. 

(3) Through modification or calculation of an address, with the GSAR 
as the destination address R. 

(4) Plugboard version of 2 above (see example 2, below). 

(5) Plugboard version of 3 above. 

Example 1 

The operation code LA loads the GSAR with the two lower order digits of the 
U section, plus the V section and the two higher order digits of the W section 
of the instructi~n word. 

Instruction 

Location 

x )( 

* Any computer character. 

156 



In this example, the address 5038890 will automatically be loaded into GSAR, 
and general storage operations ·utilizing GSAR may be initiated. 

Example 2 

Assuming that the desired general storage address is stored at Field J of 

the input/output track on demand, the following programming would transfer 
this address to the general storage address register. 

STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO, SHIFT SHIFT SHIFT STEP 

63 ''i_ 
64 Q;(a__ .:r _Al G_SAR_ &s-

R SH 

0-0 

FIGURE 5-5 

LOAD GSAR BY ARITHMETIC TRANSFER ON 

157 



GENERAL STORAGE BUFFER {GSB) 
Function 

The general storage buffer is a 120 character, magnetic core memory that pro­
vides rapid access to general storage drum data. Whenever a unit record is 
referred to on the drum and read into the GSB, it is held in the buffer while 
its component words and fields are being processed. Conversely, data to be 
recorded on the drum is held in the GSB while words and fields are being 
processed. The GSB, therefore, serves as in intermediate storage location, 
or "buffer~ between the general storage drums and the program control storage 
system. 

General Storage Buffer Addressing 

The address of the general storage buffer (GSB) is 98, supplemented by a third 
number or letter to indicate a word, field, or blockette. Word addresses 
are designated by 0 through 9. Fields, which can be of any length up to 119 
characters and any number up to 20, are designated by letters A through V', 
omitting I and 0. The entire contents of the buJfer (120 characters) is 
designated by the blockette address Z. 

For example: 
985 designates th~ general storage buffer word number 5. 
98F designates the sixth field in the general storage buffer, field F. 

In addressing the GSB, note,that field A begins at word 9, character S posi­
tion. Access to a particular field in GSB requires scanning .. the buffer begin­
ning at word 9, character S, until the field is located, whereas any buffer 
word address is directly accessible, regardless of its position in the buffer. 
Both word 9, character S position and field A, character S position represent 
the first character in the buffer. 

The lengths of fields in the unit record area are determined by the general 
storage buffer field selection pattern (GSP), which is addressed internally 
as 99Y. It can be addressed only as a destination, i. e., for storing a 120 
character pattern which will control the field addressing of the buffer until 
replaced by a different pattern. The field pattern may be changed at any 
time throughout the program as various types and sizes of unit record areas 
are processed. 

Construction of the GSP is similar to the block transfer pat tern (BTP) and 
high speed drum intermediate storage pattern (ISP) disctissed under Program 
Control Storage System. 

158 



NAME 

0 980 2 N 

0 T 980 I E 
0 T 980 .s 
0 T 981 
0 T 981 
0 T 981 9 
0 T 8 

EMPLOYEE NO. 

HOURLY RATE 

GROSS PAY TO DATE 

NET PAY TO DATE 

FIGURE 5-6 

GENERAL STORAGE BUFFER ADDRESSING 

GENERAL STORAGE OPERATIONS 

Introduction 

The general storage operations described below provide the link between the 

program control storage system of the central computer and the general storage 

system which provides the large capacity random access storage. Each of the 

general storage operations can be time-shared with central computer oper­

ations, since each general storage operation is performed as a subinstruction 

internally or substep on the plugboard. In other words, the operation may 

may be carried on simultaneously with any program controlled operations which 

do not require use of the same registers and buffers. 

159 



Read Unit Record (RI -·R~) 

This operation: (1) locates the specific unit record for which the 7-digit 
general storage address.is held in GSAR, or it locates a specific search 
control location for which the 6.-digit aadre$s is held in GSAR, and (2) trans­
fers the unit record to the general storage buffer. "Read Unit·Record" is 
initiated when two conditions are met: 

(1) The general storage address of the desired unit record has been 
placed in the general storage address register. 

(2) The lett~r "L" is placed in the special character "S/C" portion of 
the instruction word, or the "READ UR" hub on the main program 
plugboard is signaled. 

An example of the proper internal instruction word is: 

s .. TRUCTION WORD 

V W PR S~ 

o ''-4*.LAJ. 
• Any computer character 

The process code (PR) is LA, indicating "Load GSAR" with the address 1020962; 
special character L indicates that Read Unit Record should be executed. 

Wiring of the substep "Read Unit Record" on the plugboard is illustrated in 
the following diagram: 

FIGURE 5-7 

READ UNIT RECORD 

160 



STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO. SHIFT SHIFT SHIFT STEP 

56 RI 
READ URA (R) 

NO IN : OUT 
...... 

1 _&o/14. _s:z: s-G.._~r_£._P I.1 
2 I 

J_ 

3 I 
c i 

4 I 
I 

Access to the· general storage address register and general storage buffer is 
prevented by an inte.rlock during this operation. 

The time required. to execute the Read Unit Record operation (assuming that 
GSAR is already loaded) is indicated in the following table. 

Length Code: I 2 3 ij 5 6 7 8 9 0 

Number of Characters: 12 2ij 36 ij8 60 72 8ij 96 108 120 

Average Time: 17.65 18.30 18.95 19.60 20.25 20.90 21 .55 22.20 22 .85 23.50 

Maximum Time: 3ij.65 35 .30 39. 95 36.60 37.25 37.90 38.55 39.20 39.85 ij0.50 

The data in any search control location may be read in the same manner as a 
unit record, with the exception that the 6.-digit: address (OS CH 'O) is placed 
in the GSAR before Read Unit Record is initiated. 

The time required to read the contents of a search control location into the 
GSB (assuming that GSAR is already load.ed) is: 

Average time (in milliseconds): 17.65 
Maximum time (in milliseconds): 34.65 

Note: Six characters of the d~ad space are read into GSB in addition to the 
~ characters stored in the search control location, since a minimum of 12 
characters is processed in this general storage operation. 

Write Unit Record (WI - W~) 

Write Unit Record (1) locates the unit record or search control data held 
in the GSB and (2) stores that record in its proper location in the general 

storage system. For this operation two conditions are necessary: 

(1) The general storage address of the specific unit record or the 
search control location must be placed in the GSAR. 

161 



(2) The letter "Mn must be placed in the special characte, "S/C" posi­
tion of the instruction word, or the "WRITE UR" hub on the plugbbard 
must be signaled. The example given above would apply here, except 
that the letter "L" would be replaced by an "M" which indicates 
the Write Unit Record Operation. 

Plugboard wiring of "Write Unit Record" 1s as follows: 

STEP v, NO. 

58 

v, 
SHIFT 

NO 

2 

3 

4 

PROCESS v2 V2 R 
SHIFT -

WRITE URA (W) 

IN OUT 

x rx- i 
AND CHECK 

1\l\\~1\n\111\lill~j:1H\11111j 1lll\j1\11\\1~j\j\j\\mrn111rn\ 
:::::~:::::::::~:~::::::::::::::::::::::·:::·::::::::: 

::::::::::::::::::::::::::::·:::.::: ::::::::::::::::::: .... ::::::::::: 

l\1~\!\\\,''lll·~l'~\\·" ·.\\~ll~llll!l~·l\ll\\,~\111~ 
FIGURE 5-8 

WRITE UNIT RECORD 

162 

R NEXT 
SHIFT STEP 

WI 



Access to the general storage address register and general storage buffer is 

interlocked or prevented during this operation, as it is during·"Reud Unit 
Record". 

The time required to execute a Write Unit Record operation (assuming that GSB 

and GSAR are already loaded) is the same as that required for a Read Uni.t 

Record operation of a comparable number of characters. (See the table in­

cluded with Read Unit Record.) 

The Write Unit Record operation 1s also used in the loading of overflow ad­

dresses into search control locations, as described under Search Control 

locations in this chapter. 

The time required to write the 6~character overflow address or stop code into 

a search control location (assuming that GSB and GSAR are already loaded) is: 

Average time (in milliseconds): 17.65 

Maximum time (in milliseconds): 34.65 

. 
Note: Characters 7 through 12 of GSB are written ,into the dead space of the 

I 

channel in addition to characters 1 through 6. which are written into the 

search control location, since a m1n1mum of 12 characters is processed in 

this general storage operation. 

Write Unit Record and Check (W/CI - W/C ~) 

This operation is similar to Write Unit Record 1n two ways: (1) it locates 

the unit record or search control data held in the GSB, and (2) it stores 

that record in its proper location in the general storage system. It differs 

from Write Unit Record in one respect: after the record has been written on 

the drum, it is re-read to check the acc~racy of the writing operation. 

Two conditions must be met 1n order for this operation to be initiated: 

(1) The general storage address of the specific unit record or search 

control location must be placed in the GSAR. 

(2) The letter "P" is placed in the special character "S/C" position 
of the instruction word, or the WRITE UR AND CHECK hub is signaled. 

163 



Plugboard w1r1ng 1s as follows: 

STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO, SHIFT SHIFT SHIFT STEP 

60 \ w1e1 

WRITE & CHECK URA (W/C) 
NO 

2 

' 3 

4 

<6 
0 0 0 

FIGURE 5.9 

WRITE UNIT RECORD AND CHECK 

Access to the general seorage address register and general storage buffer 1s 
interlocked or prevented during this operation, as in the preceding two. 

The time required to execute a Write Unit Record a@.d Check operation (as~mm-
' mg that GSB and GSAR are already loaded) 1s indica~ed in the following.table: 

Length Code: I 2 3 q 5 6 7 8 9 0 

Number of Characters: 12 2q 36 qa 60 72 sq 96 108 120 
-

Average Time: 51 .65 52.30 52.95 53 .60 5q.25 5q,90 55.55 56.20 56.85 57.50 

Maximum Time: 6'8.65 69.30 69.95 70.60 71 .25 71 .90 72.55 73.20 73 .85 zq.50 
--.,-

The Write Unit Record and Check operation also may be use~ in the loading of 
overflow addresses into search control locations, as described under Search 
Control locations in this chapter. 

164 



The time required to write and check the 6~character overflow address or stop 
code into a search control location (assuming that GSB and GSAR are already 
loaded) is: 

Average time (in milliseconds): 51.650 
Maximum time (in milliseconds): 68.325 

Note: Characters 7 through 12 of GSB are written into the dead space of th-is 
channel in addition to characters 1 through 6. which are written into .the 
search control location, since a minimum of 12 characters is processed in 
this general storage operation. 

C1ear Genera) Storage Buffer to Ignores (CLGSB) 

This operation clears the GSB to ignores; in other words, each of the 120 
characters in the buffer is replaced with an ignore code (i). It is initiated 
either by a "K" in the special character position of an instruction word, or 
by wiring of the ClEAR GSB TO IGNORES hub on the plugboard. 

An important use of this operation occurs in relation to channel search oper­
ations discussed immediately below. It is essential that before initiating 
a channel search operation, the GSB is fi~st cleared to ignores. 

Programming to accomplish this operation 1s as follows: 

Instruction INSTRUCTION WORD 
Location u V W PR 

Plugboard: STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO. SHIFT SHIFT SHIFT STEP 

54 CJ.ll_S_B 

CLEAR GEN' L STORAGE BUFFER ~CLGSBJ 

NO IN I OUT 

1 FRoH $i:_ .S-Y ~ To ..3._T .. _.s:_.r 
2 i 
3 T 

I 

4 I 
..l 

165 



:::- I GUR E 5 • 1 0 

CLEAR GENERAL STORAGE BUFFER TO IGNORES 

Access to the general storage buffer only; is interlocked during this process. 
Time required to execute this operation, either as a subinstruction or sub­
step, is 5 milliseconds~ 

CHANNEL SEARCH OPERATIONS 

Introduction 

lri some applications, the exact drum address for a particular unit record 

area is readily available or may be calculated from the source data. However, 
in instances where it is impossible to obtain a complete address or where it 
is desired to identify all records falling within a desired category, a unique 
feature of the Univac File-Computer, Channel Search, is extensively usefuL 

Channel search scans the unit records, starting with the one at the address 
contained in GSAR, in order to locate those that either agree or disagree, 
in certain character positions, with an identifier contained in the general 
sto~age buffer (GSB). 

166 



An identifier is a group of characters which can be used to isolate (1) a 

unique item in storage, such as an individual employee or account number, or 

(2) a group of individuals or accounts which satisfies a given condition, 

such as all employees ~hose labor has been charged to a certain account. 

Identifiers stored in the GSB may be any length, from one to the entire 120 

character length of the buffer. They may also be split, that is, combinations 

of char.acters from various areas of the buffer may form the complete identi­

fier. lbis is made possible by the fact that comparison is made through the 

entire length of the unit record size specified. 

lbe channel search operation is time-shared with program control storage op­

erations of the central computer, and as such may run simultaneously with the 

arithmetic unit. The channel search operation establishes a condition in 

channel search storage.which the programmer may call upon at a later time. 

This provides an efficient method of time-sharing, since the program may 
continue after the search has been initiated and a periodic check may be made 

to see if the channel search is completed. If the channel search is still 

ac~•e, the program can continue to process additional data. 

In channel searching~ the identifier upon which the search is conducted is 
contained in the general storage buffer. All other character positions in 

the GSB must be ignored, since the comparison is made on the entire unit 

record area. Initially, therefore, the GSB must be cleared to ignores (i) 

and the desired identifier written in the exact field on the GSB. 

The role of the overflow address located in a special memory location, called 

a "Search Control Location", on each channel of the general storage drums, 

has been discussed previously in this chapter·. It is important to note, how­

ever, that through proper loading of overflow addresses into the search con­

trol locations, the programmer may effectively control the channels to be 

searched with no restrictions as to the sequence of channels. The length 

code of unit records that are being searched cannot be changed while a search 

is in progress, but searches in various areas of the drums may be conducted 

on different lengths of unit records if each new search initiated contains 

the proper length code. 

The blank area associated with each search control location is so coordinated 

with the drum revolutions that searching on the new channel, designated by 

the overflow address, can begin at the first character of the new channel. 

Thus, a new channel can be searched on each drum revolution; this provides 

an important time-saving factor during channel search operations. 

167 



lJRA BEING 
COMPARED 

GENERAL 
STORAGE 

DRUM 

FIGURE 5·11 

CHANNEL SEARCH OPERATIONS 

Channel Search Equal (ECS) 

COMPARATOR 
CIRCUIT 

GENERAL J 
STORAGE 

L.----------1111 BUFFER 
.,____ 

IDENTIFIER 
FROM GSB 

Channel Search Equal is an effective means of locating a desired unit record 

when the identifying characteristic is known but its specific storage location 

on the general storage drum is unknown. For example, an employee record, 

inventory item, or account receivable may be identified by a badge number, 

part number, or account number respectively, even though the drum storage 

location is unknown. (This is only one of many data processing techniques 

where Channel Search Equal might be utilized.) 

Channel Search Equal is initiated when: (1) the identifier to which each 

unit record is to be compared is loaded into GSB, (2) the general storage 

address of the starting point of the search is loaded into GSAR, and (3) 
the letter "N" appears in the "S/C" position of the instruction word, or the 
"CS=" hub on the plugboard is signaled. 

Instruction INSTRUCTION WORD 
~------~~~--~~~---~----f Location U V W PR 

-----~=r.--1--....J--~---'---'--~ 

r STEP v, v, 
PROCESS v2 V2 R R NEXT 

i NO, SHIFT SHIFT SHIFT STEP 

r 75 lt=.(! S-1 

CHANNEL SEARCH EQUAL (ECS) 
NO IN OUT 

2 

3 

4 

168 



FIGURE 5-12 

CHANNEL SEARCH = 

Beginning at the address given in GSAR, the contents of each unit record on 

the specifred channel are compared with the contents of the general storage 

buffer. Ignore codes in the GSB suppress comparison in the position in which 

they occur. 

If an equal comparison occurs, (1) channel search storage is set to the plus 
(+) state, indicating that the desired record has been "found" (2) channel 

search terminates, (3) tne unit record on which the equal comparison occurs 

is transferred to the GSB, and (4) its address is transferred to GSAR. 

If lgnore codes (i) appear in the unit record at each position for which a 

character other than an ignore code appears in the buffer, (1) channel search 

storage is set to the 0 state, indicating an "ignore found" condition, (2) 

channel search terminates, (3) the unit record is transferred from general 

storage to the general storage buffer, and (4) its address is transferred 

to the general storage address register. 

If neither of the above conditions occurs before the six characters of the 

search control location are examined, these six characters are transferred 

to GSAR and the search is continued from the new address, if valid. 

169 



If the six characters 1n the search control location, however, contain an 

"end of file" (XXXX'O) code, channel search is terminated and channel search 

storage is set to the minus state, indicating a "not found" condition. 

Channel Search Unequal (UCS) 

Channel Search Unequal is a method of finding exceptions to a general rule, 

such as all direct labor employees who charge time to a certain direct labor 

account, or all inventory items in stock that have had withdrawals during the 

past month. During the loading of information on the general storage drums, 

Channel Search Unequal may be used to locate the first "open" unit record 

on which to write the next item. (Many other applications of Channel Search 

Unequal can be developed by an ingenious programmer.) 

Channel Search Unequal is initiated when: (1) the identifier, to which each 

unit record is to be compared, is loaded into GSB, (2) the general storaie 

address of the starting point of the search is loaded into GSAR, and (3) the 

letter "O" appears in the "S/C" position of the instruction word, or the "CS;if" 

hub on the plugboard is signaled. 

Beginning at the address given in GSAR, the contents of each unit record on 

the specified track is compared with the contents of the general storage 

buffer. 

STEP 
NO. 

75 

Instruction 

Location 

v, v, 
SHIFT 

u 

PROCESS 

INSTRUCTION WORD 

v w 

v2 V2 R 
SHIFT 

CHANNEL SEARCH UNEQUAL ( UCS) 

NO IN OUT 

~- I io ST. 
2 

3 

4 

170 

PR S/i 

0 

R NEXT 
SHIFT STEP 

CJCS-/ 



FIGURE 5-13 

CHANNEL SEARCH ~ 

Ignore codes 1n the buffer suppress comparison 1n the positions 1n which they 
occur. 

If no unequal comparison occurs before the six characters in the search con­
trol location are examined, these six characters are transferred to GSAR and 
the search is continued from the new address, if valid. 

If the six characters 1n the search control location, however, contain an "end 
of file" (XXXX'O)code, channel search is terminated and channel search storage 
1s set to the minus state, indicating a "not found" condition. 

Note that an uignore found" condition 1s not possible on channel search un­
equal. 

Access to the general storage address register and general starage buffer 1s 
interlocked or prevented during this operation. 

171 



Channel Search Probe (CSP) 

Channel search operations described above may proceed as time-shared oper­

ations while program contr'ol proceeds to execute other instruction words or 

program steps. Periodically, the main program may interrogate channel search 

storage to determine the status of the search previously initiated. This 

interrogation is performed either by a channel search probe instruction (SP) 

in the process section of an instruction word as below, or by plugboard wiring 

as later discussed. 

Instruction INSTRUCTION WORD 
Location u v w PR SIC 

~ 0 .J I o CJ OS PA 

Assuming that Channel Search is 1n progress and the instruction word Search 

Probe (SP) is to be executed, the following conditions and results would be 

in force: 

(1) If channel search (equal or unequal) is not yet completed, the next 

instruction is taken from the U address of the instruction word. 

(2) If search is completed unsuccessfully (not found), channel search 

storage is set to the minus (-) condition, and the next instruction 

word is taken from the V address of the instruction word. 

( 3) If search is completed and "ignore found" ha,s occurred, thereby 

setting the channel search storage to the zero (0) condition, the 

next instruction word is taken from the W address of the instruction 

word. 

(4) If search is completed successfully and the "found" has occurred, 

thereby setting channel search storage to the plus (+) condit~on, 

the next instruction is taken from the PAK. 

Where a series of subroutines are to be processed during the time a channel 

search is in progress, a series of Channel Search Probe instructions provide 

the means of init~ating ~hese subroutines. At the end 6f each subroutine, 

a Jump instruction should be used to return program control to the main pro­

gram. 

If channel search storage is to be interrogated on the plugboard, the CS 

PHOBE hub can be signaled to initiate a substep which tests whether or not 

the channel search has been completed. 

172 



(1) If channel search is'flot completed, a pulse will be emitted from 
the ACTIVE hub; if channel search is completed, a pulse will be 
emitted from the +, -, or 0 hub, depending on whether channel search 
storage has been set to +, -, or 0 as a result of the channel search. 

NO 

2 

3 

4 

STEP 
NO, 

76 

IN FROM 

v, v, 
SHIFT 

PROCESS 

CHANNEL SEARCH PROBE 
ACTIVE + 

BUS 

V2 
SHIFT 

(CS PJ 

CS PROBE 

R 

0 0 0 
-Ac:T'1VE:--

173 

O 0 0 

O+O 0 
0-0 

R 
SHIFT 

NEXT 
STEP 

cs p 

0 

Sr. 8.r 

FIGURE 5-14 

CHANNEL ~EARCH PROBE 



Where it is desir~ble to p~oceed with subr6utines during the time a channel 
-s~arch is in progress, the-·_signalling of the ACTIVE hub in each channel sea:rch 
probe operation may initi~te a subroutine. It is advisable, however, to 
provide a means of keepi~g track of which subroutines have been completed. 
For example, picking up a selector could prevent repetition of a subroutine 
once it has been performed in a channel search probe sequence. 

The CS PROBE & WAIT hub can also be signaled subsequent to the ini tia t:ion 
of a channel search equal or unequal substep. In this case, however, the 
substep initiated causes program control to wait until the channel search is 
completed. When the channel search is completed, a signal is emitted from 
the appropriate +, or 0 hub as in the channel search probe substep, and 
the program continues. 

STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO. SHIFT SHIFT SHIFT STEP 

82 as P/w 
CHANNEL SEARCH PROBE & WAIT (CS P/W) 

t----r-~~~~~~~-.-~~~~ 

NO IN FROM + 0 

2 

3 

4 

FIGURE 5-15 

CHANNEL SEARCH PROBE AND WAIT 

174 



Access to.the general storage buffer is prevented during this operation. 

Channel search probe is not considered a general storage operation, but is 

included here because of its logical relation to general storage operations 

involving channel search. 

Examp 1 e of a Channel Search 

The following example indicates a possible sequence of events in a channel 

search operation. Comparable internal and plugboard programs which accomplish 

the same purpose are shown: 

CHAU.EL SEARCH f:QUAL IECSJ 

0 

0 

0 

0 

CHUMEL SEARCH PROB£ tCS Pl 

175 



Assumptions: 

The general storage drum contains inventory items, each one 24 character.s i.n 
length, with data arranged as follows: 

l..._Pr_i_c_e_(_5_)---'•--o-n _o_r_d_e r ~ On Hand (q ) Part Number ( 122] 

The item to be found by channel search equal contains the following infor­
mation and may be addressed by the indicated fields when this information is 
held in the general storage buffer. 

~ ___ . _ __.._2 __ o_s---L... o g q 1 A i+ 1 3 q 1 2 g o o o ~ 2 3 5 

Fie1d D 

Instruction Word 201} 
or 

Program Step 64 

Fie 1d C Fie Id B Field A 

Load starting address of search into General Storage 
Address Register: 

I 2 0 2 0 0 

D s c H A A 

Sub-instruction K or substep "CLEAR GSB 1D IGNORES" accomplishes that purpose. 
General storage buffer would appear as follows: 

Q si i I 
F ii e ld V Field E 

Instruction Word 
or 

Program Step 

I~?i. 
Field V Fie Id E 

Field D 

202} 
65 

Field D 

Field C Field B Field A 

Identifier transferred from Input/ Output track to 
Field A of General Storage Buffer: 

A 4- 7 3 4- 7 2 9 0 0 D £] 
Field C Field B Fie Id A 

Sub-instruction "N" or substep "CS=" initiates channel search equal. 

Each unit record of channel 02 and subsequent overflow channels is compared 
to the identifier held in the general storage buffer. The general storage 
address register adv~nces to the address of each unit record as that unit 
record is compared to the identifier. 

176 



Instruction Word 203} 
or Probe channel search storage: 

CS PROBE hub 

If Search is still in progress: 

Internal: 

Program continues at instruction word 203 (channel search storage will 

be probed again until the search is completed). 

External: 

Plugboard hub ACTIVE emits a pulse and the program continues at program 

step 66 .. 

If the search is unsuccessful,: 

Internal: 

Channel search storage is set to a minus (-) condition, and the in­

ternal program continues at instruction word 220. 

External: 

Plugboard hub "-" emits a pulse and the program continues at program 

step 72. 

If the search is successful: 

Internal: 

Channel search storage is set to a plus (+) condition, the unit record 

is automatically read into the general s•torage buffer, and the internal 

program continues at instruction word 204. 

External: 

Plugboard hub "+" emits a pulse, the unit record is read into the gen­

eral storage buffer, and the program continues at program step 70. 

A unit record containing the same identifier as Field A of the general 

storage buffer has been found: Unit Record 

Jo 2 3 5 I 2 0 8 I 0 9 ij 7 A ~ 7 3 4 7 2 9 0 0 D 

General Storage Buffer 11 tr 11 11 rr tr 
Field V Field E Field D Field C Field B Field A 

The found unit record is transferred into the lower order character positions 

of the general storage buffer and the address of the unit record is held i 11 

the general storage address register. 

177 



General Storage Buffer 

0 2 a s f 2 o s o 9 q 1 I A tJ 7 a q -7 2 9 o o o ~ 

Field V Field E Field D Field C Field B Fiel~ A 

2 I 3 3 I 0 q 

GSAR 
L D s c H A A 

This assumes that the record was found 1n drum section 13, channel 31, unit 

record 04. 

If the search ends 1n an "ignore found" (possible only on channel search 

equal): 

Internal: 

Channel search storage is set to a zero (0) condition, the unit record 

at which the ignores were found is automatically read into the general 

storage buffer, and the address of that unit record is held in the 

general storage address register. The internal program continues at 

instruction word 230. 

External: 

Plugboard hub "O" emits a pulse, the unit record is read into the 

general storage buffer, and the program continues at program step 73. 

A unit record containing ignore codes (i) in all of the identifier 

character positions is found: 

Unit Record 

_[_x_x __ x __ x __ x~l_x~x_x_~~-x __ x __ x_x~l.__i --~~------~--i~·i~ 
General Storage Buffer I I I r I I r I r I I I 

AIJ73q72900!~ 

Field V Field E Field D Field C Field B Field A 

The found unit record 1s transferred into the lower order character pos1t1ons 

of the general storage buffer and the address of that unit is held in the 

general storage address register as indicated in the successful search above. 

For further study of some of the methods of locating data in the general 

storage drums, turn to Appendix C, General Storage Drum Addressing Subroutines. 

178 



INPUT -OUTPUT SYSTEM 
INTRODUCTION 

The components of the UFC-I Input/Output System which are of special interest 
to the programmer include the demand stations, input/output tracks of the 
high speed drum and their track switching circuitry, input/output control 
lines, and the various input/output devices which may be included in any 
UFC-I system. These devices are the 

Console System 
Inquiry Typewriter 
90 Column Card System (with post-read checking) 
80 Column Card System (Bull) 
UFC High Speed Printer 
High Speed Paper Tape System 
UFC Magnetic Tape Unit 
UFC Sort-Collate System 
Airline Reservation System 

179 



Several time-sharing and time-saving features contribute to the ability of 

the UFC-I input/output system to transfer large volumes of data into and out 

of the central computer. To gain maximum efficiency in accomplishing a given 

data processing task, the programmer should always attempt to exploit to 

the fullest extent the following time-sharing features provided in this 

system: 

Each I/O unit is capable of performing its functions independently, 

without being subject to control by the central computer, except during 

the intervals when the computer and the I/O device are exchanging con­

trol information. 

Track switching circuits enable the computer and each I/O device to 

share the use of pairs of I/O tracks on the high speed drum, providing 

for the simultaneous reading or writing of data on one track while the 

computer processes data from the other track. 

Without interruption of its activities, each I/O unit may be tested to 

determine its ready or not ready condition. If an I/O unit is busy 

(not ready) at the time it is tested, the computer may proceed with its 

program or may communicate with other I/O units. Thus, several I/O units 
may be tested in sequence to determine which one is currently ready for 

further instructions. 

COMPONENTS OF INPUT/OUTPUT CONTROL 

Demand Station 
A demand station is a group of circuits that serves as the communication 

center between the central computer and the I/O units employed in a UFC-I 

system. Because all demand stations are logically identical, an I/O unit 

may be plugged into any one of the ten demand station connectors on the pro­

gram control cabinet of the computer. 

The principal function of a demand station is to facilitate the exchange of 

information between the central computer and the I/O units. Through the de­

mand station, the computer is able to 

test the status of an I/O unit to determine whether it is ready or not 

ready, and 

put a unit "on demand" so that a) control information may be given to 

the specific I/O unit, b) control information may be received from 

that I/O unit, and c) access may be provided to the I/O tracks asso­

ciated with that I/O unit through the plugboard addressing system. 

180 



Through the demand station, the I/O unit IS able to 

notify the computer regarding the I/O unit's ready or not ready status, 

receive from the computer the instruction the I/O unit is to perform, 

and notify the computer of conditions existing in the I/O unit so that 

the computer may modify its program accordingly. 

Other functions of the demand station include track switching on command of 

the central computer, and the routing of data to the specific I/O unit on 

demand. 

When an I/O unit IS placed "on demand", either by internal or external pro­

gramming, that unit remains "on demand" until it receives an I/O instruction 

from the central computer, or until some other I/O unit is placed "on demand". 

Most UFC-I system 1/0 units automatically take themselves "off demand" when 

an I/O instruction is received. Thus they are "not ready" for further in­

structions until the operation initiated by the current instruction is com-

pleted. 

Input/Output Tracks 

When the demand station of an I/O unit IS plugged into a demand station con­

nector, the pair of I/O tracks associated with that connector on the high 

speed drum is automatically assigned to that I/O unit. The central compu­

ter and I/O unit may then share the use of this pair of tracks, the computer 

communicating with one track while the I/O unit communicates with the other. 

(See Chapter 2.) When a "track switch" operation is performed, the compu­

ter communicates with the I/O track previously used by the J/O unit and vice 

versa. If less than ten I/O units are employed, the I/O tracks not associated 

with a unit are available for use as additional storage locations. No track 

switch can be performed, however, on I/O tracks to which an I/O unit is not 

connected. 

Only the pair of I/O tracks associated with the I/O unit currently on demand 

is available through the plugboard addressing system. Internally, however, 

information on any I/O track is directly addressable regardless of the de­

mand status of the associated I/O unit. 

Track Switch 

One of the outstanding time-sharing features of UFC-I is the circuitry which 

allows the computer to have access to data from one of a pair of l/0 tracks 

while the I/0 unit is in communication with the other. For example, the com-

181 



puter may be processing data from the left track of I/O 5 while the 1/0 unit 
is loading new information onto the right track of 1/0 5. Then a "track 
switch" is performed and the newly loaded data on the right track becomes 
available to the computer while the left track is loaded with new information. 

Track switch is initiated by the wiring of a pulse source to TRACK. SWITCH 
(0-9) hubs on the plugboard or by the insertion of a 1 in the proper posi­
tions of Test Incoming Control and Demand In instruction words. 

When a track switch command is initiated, it 1s performed immediately whether 
or not the 1/0 unit is on demand and/or ready. Therefore it is advisable 
to program a demand test in sequence to determine whether an 1/0 unit 1s 
ready before initiating a track switch of the corresponding I/O tracks. 

Computer - lnput/Outp~t Lines (A-J) 

Computer - 1/0 control lines provide the means of sending instructions from 
the central computer to the 1/0 unit. Only the I/O unit which is on demand 
and ready receives the information sent via these lines. 

The instruction which is executed by an I/O unit when it receives a signal 
over one or more of the computer - I/O control lines depends on the charac­
teristics of the I/O unit. The magnetic tape unit, for example, has been 
assigned a complete set of instructions and corresponding computer - 1/0 
control lines. In other I/O devices, however, all or most of the computer 
·~ 1/0 instructions and the control lines are coordinated through proper wi­
ring. 

Externally, the choice of the 1/0 - computer control lines is made by w1r1ng 
a pulse source, usually a DEMAND OlIT hub or a SPECIAL OlIT hub to the computer 
- I/O CCNTROL LINES desired. 

Internally, the computer - I/O control lines are set up by a pattern of bits 
in the V-section of the "Demand In" instruction word. In this usage, the 
computer interprets only the three low-order bits of each character. In each 
bit position where a "l" bit is found, the corresponding computer - 1/0 con­
trol line is activated. 

182 



V section of lnsttuction Word 

I II 111 111 
IHG FED CBA 

Although other computer characters containing the same low-order bits (see 

"Univac Code" in Chapter 1) may be used to activate these lines, a pattern 

composed of the digits 0-9 is used in most programs. An example of a method 

of coding v· to activate each of the computer - I/O lines is given below: 

Computer - 1/0 Line Coding of 
Bit Pattern Activated V-section Digits 

A 556 000 000 001 

B 557 000 000 010 

c 559 000 000 100 

D 565 000 001 000 

E 575 000 010 000 

F 595 000 100 000 

G 655 001 000 000 

H 755 010 000 000 

I 955 100 000 000 

The following table is a further example of the method used in programming 

control instructions via the computer - I/O lines. The pattern in this ex­

ample illustrates the instructions performed by the UFC-I magnetic tape unit. 

Only the four lower order bi ts of the 9 bit pattern are used 1n this instance 

because combinations of lines A, B, C and D only are used by the magnetic 

tape unit. 

183 



Instruct ion 
Instruction Exte rna 1 lnterna 1 

Bit Pattern 
No. OCL used V-section Digits 

Read Forward 1 ---A(OOOl) 556 000 000 001 

Search Forward = 2 --B-(0010) 557 000 000 010 

Search Forward = or > 3 --BA(OOll) 558 000 000 011 

Wind Forward 4 -C--(0100) 559 000 000 100 

Write 6 -CB- ( 0110) 553 000 000 110 

Write & Check 7 -CBA( 0111) 554 000 000 111 

Tr. Tape Unit Buffer con-
D-- - (1000) 565 000 001 000 

tents to 1/0 Track 
8 

-

Read Backward 9 D--A(lOOl) 566 000 001 001 

Search Backward = 10 D-B- (1010) 567 000 001 010 

Search Backward = or < 11 D-BA( 10 ll) 568 000 001 011 

Rewind 12 DC--(1100) 569 000 001 100 

Rewind with Interlock 13 DC-A( 1101) 562 000 001 101 

Tr. Contents of I/O Track 
DCBA( 1111) 564 000 001 111 

to Tape Unit Buffer 
15 

1/0 - Computer Control Lines (a-1) 

The 1/0 - computer control lines (a-1) are low speed lines which may be ener­
gized when a particular I/O unit goes on demand. These lines may be c,aused 
to emit a B+ current by signals originating in the I/O unit during the time 
an I/O unit is "on demand", and are normally used to activate selectors on 
the main program control plugboard. 

Externally the control information received via a low speed I/O - computer 
control line is put into effect by wiring the I/O - COMPUTER CONTROL LINE 
(a-1) hubs to a SELECTOR PICKUP hub or other hubs capable of accepting a B+ 
current. 

Internally the control information received via an I/O - computer control 
line is put into effect by programming a transcop or breakpoint sequence so 
that the I/O - COMPUTER CONTROL LINE (a-1) hubs may control the program as 
described in the preceding paragraph. In other words, program modification 
via 1/0 - computer control lines (a-1) can only be effected by plugboard wi­
ring. 

184 



High Speed 1/0 - Computer Control LinP.s (W, X, Y, Z) 

The high speed 1/0 - computer control lines W, X, Y, and Z provide a means 
by which the 1/0 unit notifies the central computer of conditions which may 
exist in the I/O unit. For example, a UFC-I magnetic tape unit may have de­
tected an "End of Tape" signal in the tape; this information must be relayed 
to the central computer immediately so that appropriate action may be taken. 

Whenever pulsing of a DEMAND IN hub results in a signal being emitted by a 
SPECIAL OUT hub on the plugboard, or a Demand In instruction results in a 
special out jump to the W address, this indicates that a condition (such as 
"End of Tape") exists in the I/O unit and some programmed action is required 
before the program continues. High Speed I/O - Computer Control line Stor­
age "remembers" which condition is found. HS I/1 - computer control line 
storage must then be tested by plugboard wiring as in Diagram 6-1,or by the 
execution of a series of Test Incoming Control instruction words to determine 
which co~dition or combination of conditions, W, X, Y, or Z, is being remem­
bered by High Speed I/O - computer control line storage. 

As many as sixteen different conditions may be indicated. by combinations of 
W, X, Y and Z. Therefore, when a special out condition arises, it may be 
necessary to probe the W, X, Y·and Z hubs successively on the plugboard, or 
to initiate a series of Test Incoming Control instructions internally in or­
der to determine the exact status of the I/O unit which indicated the condi­
tion. 

Demand Test In Hubs 

The plugboard hubs labeled DEMAND TEST IN (0-9), READY (0-9) and NOT READY 
(0-9) and the corresponding functions performed internally, are discussed in 
a following section, in their relationship to I/O instructions. 

Demand In Hubs 

The pl ugboard hubs labeled DEMAND JN ( 0-9), DEMAND OUT ( 0-9) and SPECIAL 
OUT ( 0-9), and the corresponding functions per formed internal! y are discussed 
below in their relationships to I/O instructions. 

INPUT - OUTPUT INSTRUCTIONS 

Demand Test In 

The Demand Test In sequence is used to determine the "ready" or "not ready" 
status of a particular I/O unit. A unit is considered "ready" when a) it 

185 



is not engaged in the execution of a previously. initiated operation and wltere 
b) it has no abnormal or erroneous condition present which would prevent the 
I/O unit from functioning properly. 

Internally, a Demand Test In sequerke is performed by the execution of a Test 
Demand In, ID, instruction word. If the I/O unit tested is ready, the next 
instruction is taken from the V address of the ID instruction word. If the 
unit is not ready, the next instruction is taken from the W address of the 
TD· instruction word. (See Test Demand In, in the repertory of instructions, 
Chapter 4.) 

Externally, the "demand test in" substep is accomplished by the wiring of a 
pulse source to the DEMAND TEST IN hub associated with the I/O unit the sta­
tus of which is to be tested, and the wiring of the corresponding READY and 
NOT READY hubs to continue the program. 

In the plugboard sequence shown in diagram 6.-1, the START hub has been wired 
to DEMAND TEST IN of I/O unit 0. 

If 0 is ready, a pulse will be received from the READY hub and I/O unit 0 
will be demanded by pulsing the DEMAND IN hub. If I/O unit 0 is not ready, 
a pulse will be emitted by the NOT READY hub which has been wired to the DE­
MAND TEST IN hub associated with I/O unit 1. 

If I/O unit 1 is ready, a pulse travels from the READY hub to the IDEMAND IN 
hub of I/O unit 1. If I/O unit 1 is not ready at this t~me, the pulse emit­
ted by its NOT READY hub is directed to DEMAND TEST IN of I/O unit 0 to de­
termine whether it is ready or not ready. 

In the above manner, several I/O units may be tested in sequence in 0rder to 
determine which I/O unit is currently ready to supply information to, or re­
ceive information from the computer. 

Demand In 

The Demand In sequence is usually used to place a particular I/O unit "on de­
mand", so that control information may be exchanged via the computer - I/O 
control lines (A-J), low speed I/O computer control lines (a-1) and the high 
speed I/O - computer con~rol lines W, X, Y and Z. It is also used to place 
an I/O unit on demand so that storages on the corresponding I/O track may 
be referred to on the plugboard (the reference must occur during the time the 
I/O unit is on demand). Also, during the time the I/O unit is on demand, 
any selectors wired to the DEMAND GROUND (0-9) hub corresponding to the I/O 
unit demanded, are grounded and may be activated. 

186 



DEMAND IN SEQUENCE 

SEND DEMAND IN 
SIGNAL TO 1/0 

UN IT 

CLEAR HIGH SPEED 
I /O ·- COMPUTER 
CONTROL LI HES 

(W, X, Y, Z) 

and 
TAKE ALL OTHER 
1/0 UNITS OFF 

DEMAND 

APPLY B+ TO 1/0 -
COMPUTER CONTROL 
LINES (a-1) WHERE 

PROGRAMMED 

CONDITION EXIST JN 
1/0 UNIT? 

no 

yes 

and 
GROUND COMPUTER 

SELECTORS USING THIS 
1/0 GROUND 

CONNECT LOW SPEED 
COMPUTER - I /O 

CONTROL LINES (A~J) 

COMPUTER 
STOPS 

IS 1/0 UNIT READY? ··--B 
yes 

SET COMPUTER - 1)0 
HIGH SPEED CONTROL LINE 
STORAGE IF W, X, Y OR Z 

ENERGIZED 

ANY COMPUTER - 1/0 
HIGH SPEED rONTROL LINES 

ENERGIZED 

no 

DEMAND OUT 

yes 

SPECIAL OUT 

Internally, a demand in sequence is performed by the execution of a Demand 
In instruction word, as described in detail in the repertory of instructions 
rn Chapter 4. 

Externally, the demand in substep is defined by the w1r1ng of a pulse source 
to the DEMAND IN (0-9) hub corresponding to the I/O unit being placed on de­
mand, and the wiring of the DEMAND OUT (0-9) and SPECIAL OUT (0-9) hubs asso­
ciated with that DEMAND IN to hubs which define the operations which will 
continue the program. 

187 



Diagram 6-1 includes a possible Demand In sequence on the plugboard: 

A 

BQ 0 0 0 

co 0 0 0 0 

DQ 0 0 0 0 

EQ 0 0 0 0 
COMPUTER+JiO 

FQ 0 0 0 0 
CONTROL 

GQ 0 0 0 0 
LINES 

HQ 0 0 0 0 

10 0 0 0 0 

NOT READY 

NO 

z 

NO 

FIGURE 6-1 

INPUT-OUTPUT HUBS 

I START. TO: 

- TEST IN • 1>M.I> 0 

Hl·SPEED CONTROL LINES HCL 
IN YES NO 

OUTPUT CONTROL LINES (OCL) 
FROM NO FROM 

A SPac. au~· 7>11:!>-0 F 

B G 

c H ----
D I 

E J 

DEMAND UNITS co'MD) 
CEMANC OUT SPECIAL OUT 

188-



When DEMAND IN associated with 1/0 unit 0 is pulsed, a DEMAND OUT directs the 
program to STEP IN of step 51. A SPECIAL OUT, however, pulses COMPUTER - I/O 
CONTROL LINE A, 1 and directs the program to STEP JN of step 58. 

When DEMAND IN 1 is pulsed, a DEMAND OUT djrects the program to STEP IN of 
step 56. A SPECIAL OUT, in this instance, is directed to test the HIGH SPEED 
I/O - COMPUTER CONTROL LINES W, X, Y, Z to determine the condition which 
caused the SPECIAL OJJT and to take appropriate action by· pulsing STEP IN of 
one of the steps numbered 61, 63, 68 or 69. 

Test Incoming Control 

When a Demand In sequence results in the emission of a pulse from a Special 
Out hub on the plugboard or a jump to the W address during the ex~cution of 
a Demand In instruction, a series of test Incoming Control signals must be 
programmed to determine the exact condition or conditions present in the I/O 
unit which caused the Special Out situation. 

Internally, the function of testing the incoming control signals received via 
the high speed I/O - computer control lines W, X, Y, Z, is performed by the 
execution of a series of Test Incoming Control (TI) instructions. This in­
struction is described in detail in the Repertory of Instructions, Chapter 4. 

Externally, Test Incoming Control is usually initiated by a pulse emitted 
by a SPECIAL OUT hub. This pulse is directed by plugboard wiring to test 
the W, X, Y, Z conditions remembered by high speed 1/0 - computer control 
line storage in order to determine which incoming condition or conditions 
caused the SPECIAL OUT hub to emit. (See Diagram 6~1.) 

PERIPHERAL EQUIPMENT OF THE UFC-1 SYSTEM 

Console System 

The UFC-J Console system consists of a console control panel, a UFC Inquiry 
Typewriter, a typewriter control panel and a desk which contains the control 
circuitry. 

189 



CONSOLE CONTROL 
PANEL~ 

.s.. .. ~ .. \. .• \r.n •. ~ .. tc..tm\.,u.\. 
uu '::ut~~ uu·u~t~" 1H!~: 

t:\~U :~11 
.. '4.~':. ~~:~ t::! :: : .. " .. !\\\:::~ 

it~~\ \t i;;~t_• ~ \•,\~\' ... ~\ tt. ucc"'•• 

:!~·~~~~ ~\:!~-.. !~::. ~:!n~ ~ ........ ~ "\~ 

::-1 GURE 6 • 2 

CONSOLE SYSTEM 

TYPEWRITER 
CONTROL: 

,.......~...,,._,(PAN EL 

The console control panel provides the operator with a visual display of 

lights which indicate the progress of the computer program. The panel also 

provides cohtrdls which enable the operator to alter the program when neces­
sary. 

Demand station "O" is assigned to the console system when the console includes 

the inquiry typewriter. The modes of operation of the typewriter in its re­
lation ship to the console system are discussed under the section "Inquiry 

Typewriter". 

190 



Inquiry Typewriter 

The UFC Inquiry Typewriter is a Remington.Rand Encoding/Decoding Typewriter 
with the additional manual controls and electronic circuitry necessary.for 
its use in on-line, two-way communication with the UFC-1 system. Operation 
of the typewriter is essen~ially manual; however, ~n automatic output mode 
is provided which allows repetitiv~ output from one selected word address in 
the central comput~r. 

TYPEWRITER 
CONTROL PANEL 

------~~~--:--~/ 

FIGURE 6-3 

INQUIRY TYPEWRITER 

In its input mode, the inquiry typewriter may execute either a NORMAL or 
CONSOLE type of operation. The NORMAL operation provides a means of entering 
information manually into the computer for use in a manner determined by the 
computer program. The CONSOLE operation provides a means by which an oper­
ator may intervene at any time during a program run for the purpose of chang­
ing or modifying the program. 

191 



In its output mode, the inquiry typewriter may execute either a MANUAL or 

AUTOMATIC type of operation. Under MANUAL operation, each computer word ad­

dress is selected manually by depressing tlie appropriate WORD ADDRESS button. 

As each word address is selected, the contents of that location are automa­

tically typed out. Under AUTOMATIC operation, the computer program selects 

the successive words to be typed out and transfers them into the word location 

indicated by the WORD ADDRESS button. The typewriter automatically types 

out the contents of the wcrd address as the computer places each new word 
in that address. 

Computer - 1/0 Instructions 

Computer - 1/0 control lines A, B, and C are used to send to the typewriter_ 

signals which exercise control over typewriter operation. 

Control line A takes the typewriter "off demand", and places it in a ~not 

ready" condition. The typewriter becomes "ready" when the "COMPUTE" button 
on the typewriter is depressed. 

Control line B is used in the output mode to initiate the ~yping of the word 

designated by the particular WORD ADDRESS button that is depressed on the 

typewriter control panel. 

Control line C is used in conjunction with control line Bin the automatic 

output mode of typewriter operation~ Control line C sets the typewriter to 

the "ready" condition as soon as the word initiated by control line B is 
typed. 

1/0 - Computer Instructions 

Signals sent to the computer over low speed I/O - computer control lines a, 

b, c and d may be used to modify the computer program. As each of four 

switches, labeled a, b, c and d on the typewriter control panel, are activa­

ted by the operator, a B+ current flows from the corresponding hub on the 

program plugboard. This current is normally used to activate selectors which 

modify the computer program. 

Demand Station 

Whenever the inquiry typewriter is used in conjunction with the UFC-I console 

or when the typewriter, by itself, is operated in the "console mode", demand 
station 0 is assigned to the typewriter. 

192 



90-COLUMN CARD SYSTEM (WITH POST-READ CHECKING) 

The UFC 90- Column Card System (with Post-Read Checking) may be used as a UFC 
tabulating card input unit, as a card output unit, or as a combined input­
output unit. The "post-read" checking consists of an automatic re-reading 
of the processed card and a checking of it against comparison data stored 
in the system. 

ACCESS DOOR TO 
PLUGBOARD 

i 

FIGURE 6-4 

CONTROL CAB I NET 

193 

"'.J.JJ.JJ. 

J" J J ".JJJ 
J J.IJ.J.I 

"J JJ 

.JJJ.1.1Jo1o1 

~JJJ 

.J .JJJJ J 
.JJ.JJJJJ.J 

··----

DISPLAY 
PANEL 

ACCESS DOOR TO 
MAINTENANCE 
PANEL 



CONTROL 
CARO PANEL 
RECEIVERS 

FIGURE 6-5 

CARD PROCESSOR 

/CARD STACKING TRAY 

POWER SWITCH 

Used as an input device, the 90-column card system reads information from 

cards and transmits it to the computer. Used as an output device, it accepts 

output information from the computer and punches it into cards. Used as a 

combined input-output ~evice, it performs both functions together. Except 

during manual run-in and run-out operations, the system is controlled en­

tirely by the computer commands received via the computer - I/O control lines. 

Conversely, the system may send program-altering signals to the computer by 

way of the I/O - Computer control lines. 

194 



Computer - 1/0 Instructions 

lbe 90-column card system is capable of executing any of the following in­
structions when they are received via the computer - I/O control lines: 

A Trip instruction initia~es a card cycle during ~hich one new (input) 
card is taken in and one new (outpµt) card is produced. 

A Skip instruction prevents the punching operation. 

A No Check instruction inhibits the checking operation. 

A Sort instruction initiates the isolation of a selected card. 

lbe trip instruction is assigned to computer - I/O control line A; assignment 
of other lines is optional. 

1/0 - Computer Instructions 

High speed 1/0 - computer control lines ma~ be used to modify the computer 
program. As many as sixteen codes may be used via combinations of lines W, 
X, Y and Z. 

Whenever a card jam, an error in the post-read check, or a malfunction exists 

in the card unit, a "not ready" condition is indicated within the computer. 

80-COLUMN CARD SYSTEM (BULL) 
I 

TI1e UFC BO-Column Card system (Bull~ is used as a UFC-I tabulating card in-
put unit, as a card output unit, or 1as a combined input-output unit. It can 
operate simultaneously on two stackd of cards, punching output data into one 
stack and reading input data from eitiher or both stacks . 

• 195 



DISPLAY 
PANEL 

DOOR TO 
MAINTENANCE 
PANEL 

(,."''It c." .. (,. \.C.\. c. 
<. <.L<. C. '-t C. 

" c. .. c. 
"'" c. ........ 
"(,.f.. 
(,.(.C. c.c." 

"""' 

0 

DOOR TO 
PLUGBOARO 

196 

FIGURE 6-6 

CONTROL CAB I NET 

FIGURE 6-7 

CARD PROCESSOR 



The system is provided with two card feeding magazines, each of which feeds 
cards through a separate channel to a corresponding receiver. The channels 
are called the "punch" and "read" channels, respectively. 

The two channels work simultaneously, each performing three, parallel, se­
quential operations. The punch channel picks the bottom card from the punch 
magazine, reads it, punches it, checks it, and deposits it in the punch re­
ceiver. 

The re ad chann.el picks the bot tom ca rd from the read magazine, reads it, 
checks it, re-reads it, and deposits it in the read receiver. Oper&tion of 
the two channels is synchronized so that the processing of corresponding 
cards from the two stacks may be co-ordinated. 

Computer - 1/0 Instructions 

The 80-Column punched card unit performs any of the following five commands 
received from the central computer via the computer - I/O control lines as­
signed by the programmer: 

Program Complete. Each Program Complete command advances the cards in 
both channels to the next station. Five Program Complete commands are 
required to carry one card through the card processor from feed magazine 
to receiver. 

Trip Read Feed prepares the first station in the read channel to execute 
a Program Complete command. 

Skip prevents the punching operation. 

Punch Non-Check suppresses the checking operation in the punch channel. 

Stop causes the card processor to stop at the end of the card cycle un­
der way when the signal is received. 

1/0 - Computer Instructions 

The I/O - computer control lines are used to transmit to the computer any 
control signals that are read from punched cards in either channel. Control 
signals indicating the beginning and end of the card file in both channels 
are also carried by these lines. 

197 



HIGH SPEED PRINTER 

When used as an on-line output device the UFC High Speed Printer consists of 
a printer unit and a control cabinet. During off-line operations, a magnetic 
tape unit 1s added as the source of data to be printed. 

FIGURE 6-9 
PRINTER CONTROL CABINET 

(C:C(<'C(CCCC 

C ( C<" C' C' c c 
cc C' (' c (' • c c 
ccrcccc<'cc .. 

cc cc C! 
((' C' (' 

( c cc t cc c. 

0 

198 

Iii 

FIGURE 6-8 
PRINTER UNIT 



FIGURE 6-10 

MAGNETIC TAPE UNIT 

The high speed printer is capable of printing alpha-numeric data in 130 col­
umns at a rate of 600 lines per minute off-line or 400 lines per minute on­
line. Information fed into the printer must be expressed in 120-character 
blockettes, with 1.0" interblockette spacing, and a 2.4" spacing every sixth 

blockette. 

On-Line Operations 

During on-line operation, the printer is controlled from the computer, and 
any special control characters contained in the blockettes are ignored. The 
following control signals transmitted over computer-to-I/O control lines af-

fect printer operation: 

199 



(1) Print 
(2) Fast Feed l, Fast Feed 2, Fast Feed 3, Fast Feed 4 
( 3) Multi line 
(4) Double Space 
(5) Triple Space 

The form sensing signals from the paper feed control loop are sent over I/O­
to-computer control lines, and may be used to modify the computer program. 

'The choice of which computer-to-I/O and I/0-to-computer control lines should 
be used for specific purposes is optional. However, care must be exercised 
to inspre the proper coordination of commands between the high speed printer 
and the UFC central computer. 

Off-Line Operations 

During off-line opeiation, printer operation may be modified by any of the 
following special control characters stored in the blockettes: 

(1) Fast Feed 1-, Fast Feed 2, Fast Feed 3, Fast Feed 4 
( 2 ) Mu 1 ti line 
( 3) Breakpoint 
( 4) Stop 
(5) Suppress Printing 

HIGH SPEED PAPER TAPE SYSTEM 

The high spe.ed paper tf).pe system is an input/output device used for proces­
sing 5 level, 6. level, or 7 level pµnched paper tape. The data contained 
in the tape as a 5, 6~ or 7 level code is translated into the 7-level Univac 
code as it is entered into or received from the I/O tracks of the UFC cen­
tral computer. 

200 



. ~~!iii! I !Iii 

FIGURE 6-11 

READ/PUNCH CABINET 

FIGURE 6-12 

HSPTS CONTROL CABINET 

The HSP'IS is strictly an on-line device; that is, it operates under control 
of a computer program. Its function is to supply input data to or receive 
output data from the computer. Accordingly, two modes of operation, Input 
or Output 1 can be specified·by the computer. External wiring on the HSPTS 
plugboard is employed to define the details of each input or output operation. 

In either mode, operation is initiated when the required manual preparations 
are completed and the computer program sends the appropriate 1/0 Instruction 
(Input or Output) to the HSPTS. Stop control can be achieved by an I/O In­
struction (Stop) or by the HSPTS's own plugboard-defined program. 

Computer - I/O control lines, high speed I/O - computer control lines, and 

low speed 1/0 - computer control lines may be used to control the operation 
of the HSPTS system. Assignment of the control lines to be used and the 
function each will perform are at the option of the programmer. 



MAGNETIC TAPE UNIT 

As an I/O unit of the UFC-I system, the magnetic tape unit is an on-line de­

vice; i.e., its operations are controlled by the central computer program. 
Except during intervals when control information is exchanged, however, the 
central computer and the magnetic tape unit operate independently on a time~ 

shared basis. 

FIGURE 6-13 
MAGNETIC TAPE UNIT 

The magnetic tape unit is also used as a component of the Sort Collate Sys­

tem and as a data source for the High Speed Printer during off-line activi­

ties. 

Data are recorded on mylar magnetic tapes at a density of 139 characters per 

inch, with blockettes of i20 characters separated by blank spaces of either 

1.0" or 0.5". Standard reels of tape are 2400~ in length and have a capacity 

of 20,000 blockettes at 0.5" spacing or 14,100 blockettes at 1.0" spacing. 

When 1.0" interblockette spacing is used, a 2.4" space occurs every sixth 

blockette. 

202 



Computer - 1/0 Instructions 

The thirteen magnetic tape unit instructions which are ~eceived via the com­

puter-1/0 control lines have been given above in the discussion of the com­

puter-1/0 control lines. 

1/0 - Computer lnst~uctions 

The following seven signals may be sent to the computer during "Demand In" 

sequence via the high speed 1/0 - computer control lines: 

Search Find = End of Blockette Count 

Search Find > or < Beginning of Tape 

End of File End of Tape 

End of Data 

Each of the seven types of control information is detected automatically by 
circuitry in the Magnetic Tape Unit. "End of File" and "End of Data" are 

code words which must be stored on the t~pe together with the actual data. 

An End of File code consists of at least one complete word of "Z1 s". 

An End of Data code consists of at least one complete word of "%'s". 

UFC SORT-COLLATE SYSTEM 

The UFC Sort-Collate System is a special-purpose magnetic tape file-processing 
device which performs a wide variety of collating operations, including a 
sort-by-collation and a sequence-checking operation. Although designed pri­

marily as an independent, off-line device for use in Univac File Computer 

installations, the UFC Sort-Collate System also has a (psuedo) on-line mode 

of operation (computer alert) in Univac File Computer systems. 

203 



FJGURE 6-14 

SORT-COLLATE UNIT 

..... > ,·, 

Four UFC magnetic tape units and a sort-collate unit compose the system. 

Each tape unit is either an input tape unit, functioning as a source to s~p­

ply tape data to the system, or an output unit, functioning as a d~stinat{~n 
at which the system rewrites sorted or collated data. The sort-collate unit 
controls the operation of each tape unit and executes the programs required 

to place the tape data in a desired order. 

Three major types of data manipulation, extraction, merging, and sorting··by­

collation, are performed by the sort-collate system. Extraction and merging 

programs are defined by plugboard wiring; sorting-by-collation is defined 

by internal wiring within the system arid "is therefore fully automatic. 

204 



Computer Alert Operations 

The computer alert operation may be utilized to permit more effici,nt use of 

tape units in the updating of magnetic tape files. At some point or points 

in the plugboard-defined program of the sort collate system, a COMPUTER ALERT 

hub on the sort collate plugboard receives a pulse. When this occurs, col­

lating stops, the information held in each tape unit's buffer is written on 

the 1/0 track associated with that tape unit, coritrol of the four tape units 

is turned over to .the computer, and each tape unit becomes READY to accept 

computer commanda. 

After the updating routine has been completed, the computer returns control 

of the tape units to the sort-collate unit, collation operations resume, and 

'the computer continues its own program. 

The 1/0 - computer control lines which direct magnetic tape units during 

computer alert operations are the same lines, and perform the same functions, 

as are discussed under UFC Magnetic Tape Unit. 

AIRLINE RESERVATION SYSTEM 

A Univac Airlines Reservation System includes a Model-I Univac File Computer 

together with special-purpose devices that adapt it to rapid scheduling of 

flight space. It acts as a central information file that is shared by ticket 

agents at widely separated point-of-sale offices. The central computer stores 

a current record of flight space. Each ticket agent in the system can ob­

tain information from the file and can alter the file to record reservations 

and cancellations. 

205 



ORIGIN SELECTOR 
BUTTONS 

FLIGHT STATUS AND 
SPACE INDICATOR LIGHTS-...:.=-_. 

CARTRIDGE 
ENTRY 

DESTINATION SELECTOR 
BUTTONS 

FIGURE 6-15 

TICKET AGENT SET 

CARTRIDGE 
POSITIONING 

KNOS 

TIME TABLE INDEX 
WINDOW 

A typical Univac Airlines Reservation System includes a Univac File Computer, 
and local and remote ticket agent sets, an updating set, connective circUtitry 
linking the agent and updating sets to the central computer, -~h inquiry type­
writer system, and a program loading system. 

206 



INTRODUCTION 

All of the arithmetic processes: Add, Subtract, Multiply and Divide, and 
most of the logical processes, such as Compare, Normalize, and Mask Trans­
fer, are performed in the arithmetic section of the computer. 

The values to be processed are temporarily stored, during the above opera­
tions, in arithmetic registers called Register A (RA), Register B (RB), Re­
gister C (RC), and Register D (RD). Each arithmetic register is a 12-char­
acter shift register, the lower order position of which is reserved for the 
algebraic sign. 

During the execution of arithmetic processes, the arithmetic registers re­
ceive the following information: 

207 



RA receives the first operand from program control storage. 

RB receives the second operand, the quantity used to operate on the 

first operand. 

RC accumulates the result in add and subtract operations so that check­

ing may be performed by a reverse process; in divide operations, it 

receives the remainder, and in multiplication, it receives the most 

significant digits of the product. 

RD accumulates the result in add and subtract operations; in divide 

operations, it stores the quotient, and in multiplication, it stores 

the least significant product digits. 

ARITHMETIC OPERATIONS 

The following processes are carried out in the Arithmetic Section of the 

computer: 

Add 

The contents of RA and RB are added and the sum is stored in both RC 

and RD. 

Add and Check 

The process is the same as add, except that after the sum is stored, 

the contents of RB are subtracted from the contents of RC and the re­

mainder is stored in RC; then the contents of RA are subtracted from 

RC and that remainder is tested to determine whether or not it equals 

zero. If it equals zero, the process terminates and the result is ready 

for storage. If it is not zero, an Arithmetic Error pulse is emitted 

on the program plugboard. 

Subtract 

The smaller of the contents of RA and RB is subtracted from the larger 

and the difference is stored in both RC and RD. The sign of the dif­

ference is the sign of the larger quantity in RA and RB. 

208 



Subtract and Check 

The operation is the same as subtract, except that after the difference 

is stored, the smaller of the contents of RA and RB is added to the 

contents of RC and the sum is stored in RC. Then the contents of the 

larger of RA and RB is subtracted from RC and the remainder is zero 

tested. If the remainder is zero, the process is terminated, and the 

result is ready for storage. If the remainder is not zero, an Arith­

metic Error pulse is emitted on the program plugboard. 

Multiply 

The contents of RA are multiplied by the contents of RB and the high 

and low order product digits are accumulated in RC and RD respectively. 

Multiply and Check 

The operation is the same as multiply except that after the product 

digits are transferred from RC or RD to memory, the contents of RA are 

subtracted from the contents of RC and RD the number of times specified 

by the contents of RB, and the remainder is stored in RC. The remain­

der is tested for zero, and if zero, the process is terminated. If 
the remainder is not zero, an Arithmetic Error pulse is emitted on the 

program plugboard. 

Divide 

The contents of RA are divided by the contents of RB, the quotient dig­

its are stored in RD, and the remainder is stored in RC. If the quo­

tient is more than 11 significant digits, the Divide Overflow hub on 

the program plugboard emits .a pulse. If the quotient is equal to or 

less than zero, the quotient is zero and the dividend is stored as the 

remainder. 

Divide and Check 

The same as Divide, except that after the quotient and remainder are 
stored, the remainder in RC is added to the product of the contents of 

RB and RD and subtracted from the contents of R~. The remainder is 

zero tested and if zero, the process is terminated. If it is not zero, 

an Arithmetic Error pulse is emitted on the program plugboard. 

209 



Compare 

The contents of RA and RB are compared for relative magnitude. If the 

contents of RA are greater than the contents of RB, branch storage is 

set to+; if the contents of the registers are equal, branch storage 

is set to O; if the contents of RB are less than the contents of RA, 

branch storage is set to -

Arithmetic Transfer 

This process uses only RD as the information goes from one storage loca­

tion to another. 

Mask Transfer 

The contents of RA are masked by the contents of RB and transferred 

to HD. 

Suppress Left Zeros 

All zeros to the left of the most significant digit in RA are replaced 

by space codes and a count of the number of zeros suppressed is placed 

in HB. 

Norma 1 ize 

The contents of RA are shifted left until the most significant digit 

is in the high order position. The normalizing count is placed in RB 

and the unused positions of RB are filled with space codes. If the 

contents of RA is zero, the program is interrupted, the Normalize Over­

flow hub on the program plugboard emits a pulse, and RB is set to a 

count of one. 

RULES FOR ARITHMETIC OPERATIONS 

In Add, Subtract, Multiply, and Divide operations, space codes are converted 
to zeros when the result is formed in RC and RD. 

In Add and Subtract, the following rules for signs are observed: 

(1) A zero, space code, or plus sign in the RB sign position is in­

terpreted as a plus sign. 

210 



(2) A minus sign in the RA sign position is interpreted as a negative 
sign. 

(3) All other characters in the RA sign position except an ignore code 
are treated as if they were alpha characters. 

(4) In the RB sign position, all characters except a minus sign or 
an ignore code are treated as plus signs. 

(5) An alpha character in the RA sign position is transferred to the re: 

sult in either an add or subtract operation. In all other cases 
ihe algebraic sign is produced. 

(6J An ignore code in the sign position of either register will cause 
the sign character to be transferred from the other register to 
the result. (Exception: a space code(!::.) and an·ignore code (i) will 
result in a 0.) 

ADD - SUBTRACT 

RESULT SIGN - UFC -

v1 Sign 1-9 

6, 
A-Z 

+, 0 - Special 
i 

v2 Sign Characters 

Algebraic * 

6, 
6 Sign Vl Sign v2 Sign 

+, 0 (plus) 6 = Plus Character Character 

- = Minus 

Algebraic 
Sign - v1 Sign V2 Sign 

- 6 = Plus (Minus) Character Character 

- = Minus 

1-9 Algebraic 
A-Z /!_, Sign v1 Sign V2 Sign 

Special (Plus) 6 = Plus Character Character 
Characters - = Minus 

* 

i Vl Sign Vl Sign vl Sign 
i 

Character Character Character 

* See exception in Sign Rule 6. 

211 



In Add and Subtract operations the following rules are observed for the char­
acter positions: 

(1) If the correspa.nding characters in RA and RB are numeric, the quan­
tities are added (subtracted). 

(2) If, in corresponding character positions, either RA and RB or both 
contain alphabetic characters, the character from RA is transferred 
unchanged to the corresponding position in the result. 

(3) Ignore codes appearing 1n either register will cause the corre­
sponding character in the other register to be transferred to the 
result. 

(4) Carries (borrows) generated by preceding characters in (2) and 
(3) above are destroyed. 

ADD - SUBTRACT 

RESULT CHARACTERS - UFC-1 

v1 Alpha 

0 - 9 
Special 

i 
Characters 

V2 +, -

* * 

0 - 9 Sum v1 Character v2 Character 

Alpha * * * 
Special 

vl Character 
Characters vl Character v2 Character 

+. -
* * * 

i v1 Character v1 Character i 

* Carry or borrow from adjacent digit position is destroyed. 

212 



In Add and Subtract operations the following rules are observed for the char­
acter positions: 

(1) If the correspa.nding characters in RA and RB are numeric, the quan­
tities are added (subtracted). 

(2) If, in corresponding character positions, either RA and RB or both 
contain alphabetic characters, the character from RA is transferred 
unchanged to the corresponding position in the result. 

(3) Ignore codes appearing 1n either register will cause the corre­
sponding character in the other register to be transferred to the 
result. 

(4) Carries (borrows) generated by preceding characters in (2) and 
(3) above are destroyed. 

ADD - SUBTRACT 

RESULT CHARACTERS - UFC-1 

v1 Alpha 

0 - 9 
Special 

i 
Characters 

V2 +, -

* * 

0 - 9 Sum v1 Character v2 Character 

Alpha * * * 
Special 

vl Character 
Characters vl Character v2 Character 

+. -
* * * 

i v1 Character v1 Character i 

* Carry or borrow from adjacent digit position is destroyed. 

212 



In Multiplication and Division, any character in the character positions of 

RA and RB other than 0-9 will be treated as numeric. 

In Multiplication and Division, any character except a minus sign in the 

RA or RB sign position is treated as a plus sign and the sign of the result 

is determined in the usual algebraic manner. 

In Division the sign of the remainder corresponds to the· sign of the dividend. 

Branch Storage Settings 

The following statements further detail and supplement the discussion of 

branch storage found in Chapter 3. The conditions peculiar to each type 

of arithmetic operation are given. 

Numeric Add or Subtract: 

V1 Sign is 6, 0, + , or -
V~ Sign is not an Ignore Code 

v~ and v2 are numbers 

If: Sign of Result Setting of 

( R f O) 6 
(R f 0) 
( R = 0) 6 or -

Alpha Add or Subtract: 

V1 Sign is 6, 0, J, or -

V~ Sign is bot an Ignore code 

Branch 

+ 

0 

vl and/or v~ (apart from sign character) 
are alphanumeric. 

Sign of Result Setting of Branch Storage 

+ 

Storage 

Note: The conditions R = 0 and Rf 0 are not detected when the computer 
performs an Alpha Add or Subtract. Branch Storage is therefore always given 

either a + or - setting. 

213 



In Multiplication and Division, any character in the character positions of 

RA and RB other than 0-9 will be treated as numeric. 

In Multiplication and Division, any character except a minus sign in the 

RA or RB sign position is treated as a plus sign and the sign of the result 

is determined in the usual algebraic manner. 

In Division the sign of the remainder corresponds to the· sign of the dividend. 

Branch Storage Settings 

The following statements further detail and supplement the discussion of 

branch storage found in Chapter 3. The conditions peculiar to each type 

of arithmetic operation are given. 

Numeric Add or Subtract: 

V1 Sign is 6, 0, + , or -
V~ Sign is not an Ignore Code 

v~ and v2 are numbers 

If: Sign of Result Setting of 

( R f O) 6 
(R f 0) 
( R = 0) 6 or -

Alpha Add or Subtract: 

V1 Sign is 6, 0, J, or -

V~ Sign is bot an Ignore code 

Branch 

+ 

0 

vl and/or v~ (apart from sign character) 
are alphanumeric. 

Sign of Result Setting of Branch Storage 

+ 

Storage 

Note: The conditions R = 0 and Rf 0 are not detected when the computer 
performs an Alpha Add or Subtract. Branch Storage is therefore always given 

either a + or - setting. 

213 



Alpha Sign or Subtract: 

V 1 Sign is not !::., 0, +, or 
and/or 

v~ Sign 1S an Ignore code 

Branch Storage has a 0 setting after all Alpha Sign Add or Subtract opera­
tions, regardless of the sign of the result. 

Multiply: 

Divide: 

If: Sign of Result Setting of Branch Storage 

( R I 0) 
(R I O) 

(R = O) !::. or -

Sign of Result 

0 

Setting of Branch Storage 

+ 

The conditions Quotient = 0 and Quotient I 0 are not detected in connection 
with the setting of Branch Storage. Branch Storage is always set to f or -
after a Divide instruction. 

214 



Alpha Sign or Subtract: 

V 1 Sign is not !::., 0, +, or 
and/or 

v~ Sign 1S an Ignore code 

Branch Storage has a 0 setting after all Alpha Sign Add or Subtract opera­
tions, regardless of the sign of the result. 

Multiply: 

Divide: 

If: Sign of Result Setting of Branch Storage 

( R I 0) 
(R I O) 

(R = O) !::. or -

Sign of Result 

0 

Setting of Branch Storage 

+ 

The conditions Quotient = 0 and Quotient I 0 are not detected in connection 
with the setting of Branch Storage. Branch Storage is always set to f or -
after a Divide instruction. 

214 



TIMING 

DESCRIPTION OF TIMING FACTORS 

To determine the approximate interval of time required by UFC-I to execute 
a complete program step or instruction word, four factors derived from the 
following tables and text should be used. All of the figures quoted below 
are based on average computer time. 

Memory Reference Times 

In the table labeled "Memory Reference Times" will be found the time re­
quired to locate the first operand and load it into RA, the time required 
to locate the second operand and load it into RB, and the time required to 
store the result from RC or RD. 

215 



TIMING 

DESCRIPTION OF TIMING FACTORS 

To determine the approximate interval of time required by UFC-I to execute 
a complete program step or instruction word, four factors derived from the 
following tables and text should be used. All of the figures quoted below 
are based on average computer time. 

Memory Reference Times 

In the table labeled "Memory Reference Times" will be found the time re­
quired to locate the first operand and load it into RA, the time required 
to locate the second operand and load it into RB, and the time required to 
store the result from RC or RD. 

215 



Process Times 

The time required for the performance of the process in an instruction may 

be determined from the table headed "Process Times". However, it must be 

recognized that during the execution of one instruction word, the computer 

locates the next instruction during the process time of the current instruc­

tion. Where the process time is found to be less than 3.1 milliseconds, the 

3.1 value should be used as the process time. 

Constant 

An instruction word requires a slightly longer time to execute than a pro­

gram step performing the same operation. This additional time is included 

in Table A as a constant. 

Programmed Shifts 

Table A includes time factors necessary to determine the time of execution 

of a computer instruction except the time required to execute programmed 

shifts of tl1e contents of the arithmetic registers. When a shift of V1 , V2 
or R (U, V~ or W) is programmed, the time required to execute the shift must 

be added to the total of the other factors in Table A. Each operand shifted 

requires the following shift time: 

.042 (n + 1) milliseconds 

where n the number of programmed shifts 

MEMORY REFERENCE TIMES 

The time required to refer to any of the following locations as V1 , V2 or 

R, is 0.9 milliseconds: 

Register A GSAR 

Register B PAK 

Register c CDR 

Register D SRV 

IRV 

216 



Process Times 

The time required for the performance of the process in an instruction may 

be determined from the table headed "Process Times". However, it must be 

recognized that during the execution of one instruction word, the computer 

locates the next instruction during the process time of the current instruc­

tion. Where the process time is found to be less than 3.1 milliseconds, the 

3.1 value should be used as the process time. 

Constant 

An instruction word requires a slightly longer time to execute than a pro­

gram step performing the same operation. This additional time is included 

in Table A as a constant. 

Programmed Shifts 

Table A includes time factors necessary to determine the time of execution 

of a computer instruction except the time required to execute programmed 

shifts of tl1e contents of the arithmetic registers. When a shift of V1 , V2 
or R (U, V~ or W) is programmed, the time required to execute the shift must 

be added to the total of the other factors in Table A. Each operand shifted 

requires the following shift time: 

.042 (n + 1) milliseconds 

where n the number of programmed shifts 

MEMORY REFERENCE TIMES 

The time required to refer to any of the following locations as V1 , V2 or 

R, is 0.9 milliseconds: 

Register A GSAR 

Register B PAK 

Register c CDR 

Register D SRV 

IRV 

216 



The time required to locate and transfer the contents of the following loca­
tions to an arithmetic register is: 

From 

BTB or GSB Word 
High Speed Drum Word 
BTB or GSB Fields: 

Field A 
Field B - v· 

High Speed DTum Field 

Milliseconds 

0.9 
3.1 

0.9 
(.02lx + 0.9) 

3.1 

(x = the number of the character 
(position of the first character 
(of the field. 

The time required to transfer R from an arithmetic register to the following 
addresses is: 

To 
BTB or GSB Word 
High Speed Drum Word 

BTB or GSB Fields: 
>12 characters 
Field A 
Field B - V 

<12 characters 
Field A 
Field B - V 

High Speed Drum Fields 
>12 characters 
<12 characters 

Milliseconds 
0.9 
3.1 

(.042z + 0.9) 
(.02lx + .042z + 0.9) 

0.9 
(.02lx + 0.9) 

(.042z + 3.1) 

3.1 

(x = the number of the 

(character positionof the 
(first character of the 
(field. 
(z =number of characters 
(in the field minus 12.) 

The time required to locate and place V1 in the BTB is: 

From 

GSB Word 
High Speed Drum Word 

GSB Fields: 
Field A 
Field B 

High Speed Drum Field 

Milliseconds 

0.9 
3.1 

(.042y + 0.4) 
(.02lx + .042y + 0.3) 

(.042y + 2.6.) 

217 

(x = the number of the 
(character position of 
(the first character of 
(the field. 
(y = the number of char­
(acters in the field.) 



The time required to locate and transfer the contents of the following loca­
tions to an arithmetic register is: 

From 

BTB or GSB Word 
High Speed Drum Word 
BTB or GSB Fields: 

Field A 
Field B - v· 

High Speed DTum Field 

Milliseconds 

0.9 
3.1 

0.9 
(.02lx + 0.9) 

3.1 

(x = the number of the character 
(position of the first character 
(of the field. 

The time required to transfer R from an arithmetic register to the following 
addresses is: 

To 
BTB or GSB Word 
High Speed Drum Word 

BTB or GSB Fields: 
>12 characters 
Field A 
Field B - V 

<12 characters 
Field A 
Field B - V 

High Speed Drum Fields 
>12 characters 
<12 characters 

Milliseconds 
0.9 
3.1 

(.042z + 0.9) 
(.02lx + .042z + 0.9) 

0.9 
(.02lx + 0.9) 

(.042z + 3.1) 

3.1 

(x = the number of the 

(character positionof the 
(first character of the 
(field. 
(z =number of characters 
(in the field minus 12.) 

The time required to locate and place V1 in the BTB is: 

From 

GSB Word 
High Speed Drum Word 

GSB Fields: 
Field A 
Field B 

High Speed Drum Field 

Milliseconds 

0.9 
3.1 

(.042y + 0.4) 
(.02lx + .042y + 0.3) 

(.042y + 2.6.) 

217 

(x = the number of the 
(character position of 
(the first character of 
(the field. 
(y = the number of char­
(acters in the field.) 



GSB (120 characters) 
High Speed Drum (120 

characters) 

5.4 

7.7 

The time required to transfer R from the BTB to the following locations is: 

To 

GSB Word 
High Speed Dr urn 

GSB Fields: 
Field A 
Field B - v· 

High Speed Drum 
BTP 

PROCESS TIMES 

Milliseconds 

0.9 
Word 3.2 

( . 042y + 2. 6.) 
c~o21x + .042y + 2.6) 

Fields (. 042y + 2.7) 
5.1 

(x = the number of the 
(character position of 
(the first character of 
(the field. 
(y = the number of char­
(acters in the field.) 

Below are the process times for Add, Subtract, Multiply and Divide. All 
times are in milliseconds: 

Add (AD) and Subtract (SB) 
Check 

TOTAL 

Multiply (MU or ML) 
Check 

where: 

Normal Division 

Check 

where: 

218 

Normal V1 V2 Alpha 
1. 2 1. 2 0.7 

..Q.:.1- 1. ::s 
1. .9 2.5 0.7 

1. 60 + . 588 (mu + m10 + ... mu 
LOO+ ~mu + m10 + .•• mu 

(mll + m10 + ... mu is the sum of the 
multiplier digits. 

. 042 ( 26. - u - v) + 1. 2 ( u - v + n + 1) 
+ .462 - .042v + .588 (sum of the quo­
tient digits) 

1. 6. + . 042 (11 - v - n) + . 588 (sum of 
the quotient digits) 

u number of v1 digits 
v number of v2 digits 
n number of programmed V' 1 shifts 



GSB (120 characters) 
High Speed Drum (120 

characters) 

5.4 

7.7 

The time required to transfer R from the BTB to the following locations is: 

To 

GSB Word 
High Speed Dr urn 

GSB Fields: 
Field A 
Field B - v· 

High Speed Drum 
BTP 

PROCESS TIMES 

Milliseconds 

0.9 
Word 3.2 

( . 042y + 2. 6.) 
c~o21x + .042y + 2.6) 

Fields (. 042y + 2.7) 
5.1 

(x = the number of the 
(character position of 
(the first character of 
(the field. 
(y = the number of char­
(acters in the field.) 

Below are the process times for Add, Subtract, Multiply and Divide. All 
times are in milliseconds: 

Add (AD) and Subtract (SB) 
Check 

TOTAL 

Multiply (MU or ML) 
Check 

where: 

Normal Division 

Check 

where: 

218 

Normal V1 V2 Alpha 
1. 2 1. 2 0.7 

..Q.:.1- 1. ::s 
1. .9 2.5 0.7 

1. 60 + . 588 (mu + m10 + ... mu 
LOO+ ~mu + m10 + .•• mu 

(mll + m10 + ... mu is the sum of the 
multiplier digits. 

. 042 ( 26. - u - v) + 1. 2 ( u - v + n + 1) 
+ .462 - .042v + .588 (sum of the quo­
tient digits) 

1. 6. + . 042 (11 - v - n) + . 588 (sum of 
the quotient digits) 

u number of v1 digits 
v number of v2 digits 
n number of programmed V' 1 shifts 



Special Cases 

Division (V2 ) = 0 : 1.1 
Dividend (V~) = 0 : 1.596 - .042 (v) 
Divide Overflow: .042(26 - u - v) 

TIMING CHART - UFC-1 

(milliseconds) 

AD, SB, Mr, * 
AD, 

ML, MU, AT *SU, *SV BT JZ, JP 
SB 

DJ, DR *SW JN, UJ 

v1 address x x x x x ---
v2 address x x --- x --- ---
Process p p 0.0 0.6 0.0 ---
R address x x x x x ---

* 

cc LS 
LA 

--- ---
--- ---

@ 

8.0 ---
--- -- -

-- - - -I - --I -- -I I- - -- -i f- - -I ~ -
Program Step Totals --- 8.0 ---

u address x x x x x 0.8 --- ---
v address x x --- x --- --- --- -- -

@ 

Process 3.1 p 3.1 3.1 3.1 3.1 3.1 3.1 

w address x x x x x x --- 0.8 

Constant 1. 8 1. 8 4.1 1. 8 1. 5 2.3 8.7 1. 4 
-- - - -+- - - - - - ~ - - t- - t-- -

Instruction Word 

Totals 11. 8 5.3 

* 

sz CP 

LN 

x x 
--- x 
1. 0 0.6 

x ---
~ --1 -

x x 
-- - x 
3.1 3.1 

x ---
3.7 1. 4 
- 1-- -

These are internal program instructions that do not appear on the plugboard. 

P See Process Times 

X See Memory Reference Times 

---, 

* * * * 

ID DE TI SP 

---I 

--- --- --- ---
-- - --- --- ---
--- --- ---
--- --- -- - ---_,_ - ,___ - -~ f- --

--- --- ---
"-

--- --- --- -- -
--- --- --- ---
3.1 3.1 3.1 3.1 

--- --- --- ---
1. 5 2.0 1. 5 1. 1 

r - - - - t- - -

4.6 5.1 4.6 4.1 

@ The Channel Clear process does not occur simultaneously with the finding of the next instruction. 

TABLE A 

219 



Special Cases 

Division (V2 ) = 0 : 1.1 
Dividend (V~) = 0 : 1.596 - .042 (v) 
Divide Overflow: .042(26 - u - v) 

TIMING CHART - UFC-1 

(milliseconds) 

AD, SB, Mr, * 
AD, 

ML, MU, AT *SU, *SV BT JZ, JP 
SB 

DJ, DR *SW JN, UJ 

v1 address x x x x x ---
v2 address x x --- x --- ---
Process p p 0.0 0.6 0.0 ---
R address x x x x x ---

* 

cc LS 
LA 

--- ---
--- ---

@ 

8.0 ---
--- -- -

-- - - -I - --I -- -I I- - -- -i f- - -I ~ -
Program Step Totals --- 8.0 ---

u address x x x x x 0.8 --- ---
v address x x --- x --- --- --- -- -

@ 

Process 3.1 p 3.1 3.1 3.1 3.1 3.1 3.1 

w address x x x x x x --- 0.8 

Constant 1. 8 1. 8 4.1 1. 8 1. 5 2.3 8.7 1. 4 
-- - - -+- - - - - - ~ - - t- - t-- -

Instruction Word 

Totals 11. 8 5.3 

* 

sz CP 

LN 

x x 
--- x 
1. 0 0.6 

x ---
~ --1 -

x x 
-- - x 
3.1 3.1 

x ---
3.7 1. 4 
- 1-- -

These are internal program instructions that do not appear on the plugboard. 

P See Process Times 

X See Memory Reference Times 

---, 

* * * * 

ID DE TI SP 

---I 

--- --- --- ---
-- - --- --- ---
--- --- ---
--- --- -- - ---_,_ - ,___ - -~ f- --

--- --- ---
"-

--- --- --- -- -
--- --- --- ---
3.1 3.1 3.1 3.1 

--- --- --- ---
1. 5 2.0 1. 5 1. 1 

r - - - - t- - -

4.6 5.1 4.6 4.1 

@ The Channel Clear process does not occur simultaneously with the finding of the next instruction. 

TABLE A 

219 



APPENDIX A 
Term 

access time 

address 

alpha-numeric 

angular address 

arithmetic operation 

B+ current 

binary-coded decimal 

notation 

binary digit 

bit 

block 

GLOSSARY 

Explanation 

The interval between the time that program con­

trol initiates a storage reference and the time 

that storage reference is completed. 

A label, name or number, identifying a memory 

location at which information can be stored, 

and from which information can be obtained. 

A symbol containing letters and/or other non­

numeric characters in addition to numbers. 

A term used in connection with magnetic drums. 

It refers to a distinct and separate location 

around the periphery of a track or channel. 

(A track number and an angular address define a 

unique location on a magnetic drum.) 

An operation involving addition, subtraction, 

multiplication or division. 

A steady direct current used by the programmer 

to pick up selectors and to light indicators 

(any other use of this current will result in 

damage to the computer.) 

One of many systems of writing numbers in which 

each decimal digit of the number is expressed 

by a different code written in binary (two­

state) digits. (See "excess-three code".) 

A representation of a two-state condition of 

a unit of storage in a digital computer: 0 or 

1, on or off, yes or not. 

An abbreviatibn of "binary digit". 

A group or ensemble of characters. 

220 



APPENDIX A 
Term 

access time 

address 

alpha-numeric 

angular address 

arithmetic operation 

B+ current 

binary-coded decimal 

notation 

binary digit 

bit 

block 

GLOSSARY 

Explanation 

The interval between the time that program con­

trol initiates a storage reference and the time 

that storage reference is completed. 

A label, name or number, identifying a memory 

location at which information can be stored, 

and from which information can be obtained. 

A symbol containing letters and/or other non­

numeric characters in addition to numbers. 

A term used in connection with magnetic drums. 

It refers to a distinct and separate location 

around the periphery of a track or channel. 

(A track number and an angular address define a 

unique location on a magnetic drum.) 

An operation involving addition, subtraction, 

multiplication or division. 

A steady direct current used by the programmer 

to pick up selectors and to light indicators 

(any other use of this current will result in 

damage to the computer.) 

One of many systems of writing numbers in which 

each decimal digit of the number is expressed 

by a different code written in binary (two­

state) digits. (See "excess-three code".) 

A representation of a two-state condition of 

a unit of storage in a digital computer: 0 or 

1, on or off, yes or not. 

An abbreviatibn of "binary digit". 

A group or ensemble of characters. 

220 



blockette 

borrow (noun) 

bus 

buffer 

carry (noun) 

channel 

clear (verb) 

code (noun or verb) 

A group of 120 adjacent characters. The block­

ette is the UFC System's fundamental unit of 
input/output format (e.g., card unit and mag­
netic tape unit data transmissions to and from 

the computer are 120 character or blockette 

transmissions. In these devices the blockette 

is the principal operating unit). The blockette 
is also used to specify the entire contents 

of a 120-character buffer or a track on the 

high speed drum. 

The digit to be taken from the next higher di­

git position (and subtracted from that digit 

position) when the subtrahend digit of one di· 

git position exceeds the minuend digit of that 

digit position. 

A line, or trunk, over which data transmissions 
occur from any of several sources to any of 

several destinations. 

A temporary storage for data; an isolating de­

vice, generally used to transfer data between 
two storage elements that are not synchronized. 

The digit to be taken to the next-higher order 

digit position (and there added) when the sum 

of the digits in one digit position equals or 

exceeds the number base. 

A narrow band on the periphery of a general 
storage drum; the area which passes beneath a 

read/write head as the general storage drum 
revolves; the equivalent of a track of the 
high speed drum. Also a level on punched paper 
tape or magnetic tape. 

To replace information 1n a register by (Uni­
vac coded) zeros, ignore codes, or space codes. 

(Noun) A system of symbols for representing 
information in a computer and the rules for 
associating them. (See Univac code.) 

221 



blockette 

borrow (noun) 

bus 

buffer 

carry (noun) 

channel 

clear (verb) 

code (noun or verb) 

A group of 120 adjacent characters. The block­

ette is the UFC System's fundamental unit of 
input/output format (e.g., card unit and mag­
netic tape unit data transmissions to and from 

the computer are 120 character or blockette 

transmissions. In these devices the blockette 

is the principal operating unit). The blockette 
is also used to specify the entire contents 

of a 120-character buffer or a track on the 

high speed drum. 

The digit to be taken from the next higher di­

git position (and subtracted from that digit 

position) when the subtrahend digit of one di· 

git position exceeds the minuend digit of that 

digit position. 

A line, or trunk, over which data transmissions 
occur from any of several sources to any of 

several destinations. 

A temporary storage for data; an isolating de­

vice, generally used to transfer data between 
two storage elements that are not synchronized. 

The digit to be taken to the next-higher order 

digit position (and there added) when the sum 

of the digits in one digit position equals or 

exceeds the number base. 

A narrow band on the periphery of a general 
storage drum; the area which passes beneath a 

read/write head as the general storage drum 
revolves; the equivalent of a track of the 
high speed drum. Also a level on punched paper 
tape or magnetic tape. 

To replace information 1n a register by (Uni­
vac coded) zeros, ignore codes, or space codes. 

(Noun) A system of symbols for representing 
information in a computer and the rules for 
associating them. (See Univac code.) 

221 



command (noun) 

comparator 

computer character 

computer ground 

computer instruction 

computer language 

contents of ( ) 

d-c enable 

debug 

demand ground 

(Verb) To program. 

A pulse, signal, or set of signals initiating 

one step in the execution of a computer instruc­

tion, sub-instruction, or sub-step. 

A group of circuits which compare two quanti­
ties and present an appropriate indication of 

the result of the comparison. 

The basic unit of data for the UFC. A legal 

character is any letter, number, or symbol that 
can be expressed in Univac code. 

A computer current recognized by the programmer 

as the plugboard hubs labelled COMPUTER GROUND,' 

which complete the coil circuit of a selector 

allowing that selector to be picked up at any 

time during the computer program (see demand 

ground). 

A completely defined operation for the compu­

ter; the principal unit of a computer program. 

Two types of computer instructions are employed: 

Instruction Words for internally-stored 
programs. 

Program Steps for plugboard-defined pro-
grams. 

Univac coded characters. 

The information stored within. 

A computer-controlled direct current the plug­

board wiring of which allows the computer to 

gain access to storages, processes and shifts. 

To isolate and remove a computer malfunction 

or the program mistakes in a computer program. 

A computer current recognized by the programmer 
as the plugboard hubs 1-abelled DEMAND GROUND 

222 



command (noun) 

comparator 

computer character 

computer ground 

computer instruction 

computer language 

contents of ( ) 

d-c enable 

debug 

demand ground 

(Verb) To program. 

A pulse, signal, or set of signals initiating 

one step in the execution of a computer instruc­

tion, sub-instruction, or sub-step. 

A group of circuits which compare two quanti­
ties and present an appropriate indication of 

the result of the comparison. 

The basic unit of data for the UFC. A legal 

character is any letter, number, or symbol that 
can be expressed in Univac code. 

A computer current recognized by the programmer 

as the plugboard hubs labelled COMPUTER GROUND,' 

which complete the coil circuit of a selector 

allowing that selector to be picked up at any 

time during the computer program (see demand 

ground). 

A completely defined operation for the compu­

ter; the principal unit of a computer program. 

Two types of computer instructions are employed: 

Instruction Words for internally-stored 
programs. 

Program Steps for plugboard-defined pro-
grams. 

Univac coded characters. 

The information stored within. 

A computer-controlled direct current the plug­

board wiring of which allows the computer to 

gain access to storages, processes and shifts. 

To isolate and remove a computer malfunction 

or the program mistakes in a computer program. 

A computer current recognized by the programmer 
as the plugboard hubs 1-abelled DEMAND GROUND 

222 



destination address 

digit 

End of Data code 

End of File code 

error 

erase 

excess-three code 

0-9, which complete the coil circuit of a se­
lector, allowing that selector to be picked up 
only during the time the correspondingly num­
bered input/output unit is on demand. 

An address that specifies a particular loca-. 
tion (of definite capacity) at which informa­
tion held in some intermediate iocation is to 
be stored. 

A term for the computer characters 0-9. 

A term generally used in connection with input 
operations. An End of Data code is control 
information that is included along with the 
actual data to indicate that no further data 
is available. On magnetic tapes, End of Data 
is designated by at least 12 characters of "%" 
codes. 

A special code stored along with actual data; 
used to separate files. In general storage, 
prime zero ('O) is used; on magnetic tape 12 
"Z's" in at least one word are employed. 

A detected computer malfunction. 

A term usually applied to magnetic drums and 
magnetic tapes to mean "record binary O's" on 
the drum or tape. In this connection it effec­
tively "clears" the area on which the O's are 
recorded. Since other methods of "clearing" 
are employed in UFC (e.g., space codes and ig­
·nore codes are used by certain devices to clear 
drum areas) the term "erase" is used in UFC 
only in connection with revolvers and magnetic 
tapes~ as: "the area ahead of the read/write 
head is erased prior to recording". 

A binary coded decimal notation for decimal 
numbers. This code represents each decimal 
digit by a binary number (four bits in length) 
whose value is three greater than the value of 
tpe decimal digit that is coded. 



destination address 

digit 

End of Data code 

End of File code 

error 

erase 

excess-three code 

0-9, which complete the coil circuit of a se­
lector, allowing that selector to be picked up 
only during the time the correspondingly num­
bered input/output unit is on demand. 

An address that specifies a particular loca-. 
tion (of definite capacity) at which informa­
tion held in some intermediate iocation is to 
be stored. 

A term for the computer characters 0-9. 

A term generally used in connection with input 
operations. An End of Data code is control 
information that is included along with the 
actual data to indicate that no further data 
is available. On magnetic tapes, End of Data 
is designated by at least 12 characters of "%" 
codes. 

A special code stored along with actual data; 
used to separate files. In general storage, 
prime zero ('O) is used; on magnetic tape 12 
"Z's" in at least one word are employed. 

A detected computer malfunction. 

A term usually applied to magnetic drums and 
magnetic tapes to mean "record binary O's" on 
the drum or tape. In this connection it effec­
tively "clears" the area on which the O's are 
recorded. Since other methods of "clearing" 
are employed in UFC (e.g., space codes and ig­
·nore codes are used by certain devices to clear 
drum areas) the term "erase" is used in UFC 
only in connection with revolvers and magnetic 
tapes~ as: "the area ahead of the read/write 
head is erased prior to recording". 

A binary coded decimal notation for decimal 
numbers. This code represents each decimal 
digit by a binary number (four bits in length) 
whose value is three greater than the value of 
tpe decimal digit that is coded. 



external memory 

fault 

field 

file 

flow-chart 

flow diagram 

Any memory device in the system which can per­
manently store (and subsequently supply) data 
but which is not directly accessible to pro­
gram control storage. 

A condition indicating a computer malfunction 
or a mistake in programming; an error. 

A unit of data on the High Speed Drum, in the 
General Storage Buffer, or in the Block Trans­
fer Buffer, which is a collection of adjacent 
characters; the number of characters vary from 
1 up to 119 as defined by a field selection 
pattern. 

The programming unit used for overall organi­
zation of data. On magnetic tape, a collection 
of adjacent items each of which consists of a 
fixed master portion comprising subjects com­
mon to all, or practically all, items, and to 
which are added or appended a variable number 
of other "trailer" subjects which may range in 
number from none to several hundred. In gene­
ral storage a similar concept applies except 
that: 

(a) Unit records are involved, and 

(b) The general storage address for a 
unit record can be used to specify 
a portion of the information that 
must be coded in the master portion 
of items on magnetic tape. 

A graphical representation of a sequence of 
programming operations using symbols to repre­
sent operations such as compute, substitute, 
compare, jump, etc. 

A schematic-type of representation of a se­
quence of sub-routines designed to solve a 
problem. It is less detailed and less symbolic 
that a flow-chart and frequently includes de­
scriptive text. 

224 



external memory 

fault 

field 

file 

flow-chart 

flow diagram 

Any memory device in the system which can per­
manently store (and subsequently supply) data 
but which is not directly accessible to pro­
gram control storage. 

A condition indicating a computer malfunction 
or a mistake in programming; an error. 

A unit of data on the High Speed Drum, in the 
General Storage Buffer, or in the Block Trans­
fer Buffer, which is a collection of adjacent 
characters; the number of characters vary from 
1 up to 119 as defined by a field selection 
pattern. 

The programming unit used for overall organi­
zation of data. On magnetic tape, a collection 
of adjacent items each of which consists of a 
fixed master portion comprising subjects com­
mon to all, or practically all, items, and to 
which are added or appended a variable number 
of other "trailer" subjects which may range in 
number from none to several hundred. In gene­
ral storage a similar concept applies except 
that: 

(a) Unit records are involved, and 

(b) The general storage address for a 
unit record can be used to specify 
a portion of the information that 
must be coded in the master portion 
of items on magnetic tape. 

A graphical representation of a sequence of 
programming operations using symbols to repre­
sent operations such as compute, substitute, 
compare, jump, etc. 

A schematic-type of representation of a se­
quence of sub-routines designed to solve a 
problem. It is less detailed and less symbolic 
that a flow-chart and frequently includes de­
scriptive text. 

224 



higher-order 

hub 

information 

ignore code 

instruction word 

intermediate storage 
(buffer storage) 

logical operations 

lower-order 

The significance given data in the computer 
which is the same as that associated with the 
reading or hand-writing of data; the left-most 
character is the most significant or highest 
order digit; the right-most character is the 
least significant or lqwest-order digit. (Ex­
ception: the sign digit is always the lowest­
order digit in the computer.) 

A receptacle for wiring on a plugboard; the 
breakoff point between plugboard wiring (vari­
able) and internal wiring (fixed). 

A general term for both actual data and for 
control data. 

A computer character (1000000 in Univac code) 
used primarily to suppress comparisons. 

A 12-character computer word that defines a 
computer instruction; is stored in the operation 
memory of the computer, usually in sequence 
with other instruction words on the high speed 
drum. 

A temporary storage location into which data 
is automatically transmitted from a programmed 
source or from which data is automatically 
obtained for storage in a programmed destina­
tion. 

The operations of masking, comparing, norma-
1 izing, etc., where, in essence, characters 
or bits constitute the elements being operated 
upon. In contrast to arithmetic operations 
wherein the elements of the operation are nu­
merical values. 

Pertaining to the right-most digit of a type­
written or handwritten number or message. (See 
higher-order.) In UFC words, the sign is the 
lowest-order character. 



higher-order 

hub 

information 

ignore code 

instruction word 

intermediate storage 
(buffer storage) 

logical operations 

lower-order 

The significance given data in the computer 
which is the same as that associated with the 
reading or hand-writing of data; the left-most 
character is the most significant or highest 
order digit; the right-most character is the 
least significant or lqwest-order digit. (Ex­
ception: the sign digit is always the lowest­
order digit in the computer.) 

A receptacle for wiring on a plugboard; the 
breakoff point between plugboard wiring (vari­
able) and internal wiring (fixed). 

A general term for both actual data and for 
control data. 

A computer character (1000000 in Univac code) 
used primarily to suppress comparisons. 

A 12-character computer word that defines a 
computer instruction; is stored in the operation 
memory of the computer, usually in sequence 
with other instruction words on the high speed 
drum. 

A temporary storage location into which data 
is automatically transmitted from a programmed 
source or from which data is automatically 
obtained for storage in a programmed destina­
tion. 

The operations of masking, comparing, norma-
1 izing, etc., where, in essence, characters 
or bits constitute the elements being operated 
upon. In contrast to arithmetic operations 
wherein the elements of the operation are nu­
merical values. 

Pertaining to the right-most digit of a type­
written or handwritten number or message. (See 
higher-order.) In UFC words, the sign is the 
lowest-order character. 



magnetic core 

magnetic drum 

magnetic tape 

malfunction 

memory 

mi 11 isecond 

mnemonic code 

microsecond 

normalize 

"on demand" 

"off demand" 

operand 

A form of rapid-access storage wherein infor­
mation is represented as the polarization of 
a wire-wound cpre. 

A rapidly rota ting cylinder, the surface of which 
is coated with a magnetic material on which in­
formation can be stored as small polarized 
spots. 

Tape consisting of a metal or a plastic base 
that is coated with a magnetic material on which 
polarized spots representing information can be 
recorded. 

Equipment failure. 

Information storage; any device into which in­
formation can be introduced and from which it 
can be extracted at a later time. 

One thousandth of a second. 

The (two) letters that suggest the name of the 
instruction and have the same lower-order four 
bits in Univac code as the numbers they repre­
sent. The process codes of instruction words 
have a mnemonic as well as numeric listing. 

One millionth of a second. 

An operation in the UFC arithmetic section 
wherein an operand is shifted left until its 
most significant character is in a register's 
most significant character position. 

The status of an input/output unit after a 
"Demand In" sequence is executed. In generaL 
an 1/0 unit stays "on demand" until it receives 
an 1/0 instruction or until another 1/0 unit 
1s placed "on demand". 

The status of an input/output unit after it 
receives an I/O instruction or after another 
I/O unit is placed "on demand". 

The contents of a computer location used 1n 
arithmetic and logical operations. 

226 



magnetic core 

magnetic drum 

magnetic tape 

malfunction 

memory 

mi 11 isecond 

mnemonic code 

microsecond 

normalize 

"on demand" 

"off demand" 

operand 

A form of rapid-access storage wherein infor­
mation is represented as the polarization of 
a wire-wound cpre. 

A rapidly rota ting cylinder, the surface of which 
is coated with a magnetic material on which in­
formation can be stored as small polarized 
spots. 

Tape consisting of a metal or a plastic base 
that is coated with a magnetic material on which 
polarized spots representing information can be 
recorded. 

Equipment failure. 

Information storage; any device into which in­
formation can be introduced and from which it 
can be extracted at a later time. 

One thousandth of a second. 

The (two) letters that suggest the name of the 
instruction and have the same lower-order four 
bits in Univac code as the numbers they repre­
sent. The process codes of instruction words 
have a mnemonic as well as numeric listing. 

One millionth of a second. 

An operation in the UFC arithmetic section 
wherein an operand is shifted left until its 
most significant character is in a register's 
most significant character position. 

The status of an input/output unit after a 
"Demand In" sequence is executed. In generaL 
an 1/0 unit stays "on demand" until it receives 
an 1/0 instruction or until another 1/0 unit 
1s placed "on demand". 

The status of an input/output unit after it 
receives an I/O instruction or after another 
I/O unit is placed "on demand". 

The contents of a computer location used 1n 
arithmetic and logical operations. 

226 



operation code 

overflow 

packing 

pad 

parity bit 

parity check 

plugboard 

probe 

process 

The right-most (or lowest-o~der) three charac­
ters of an instruction word. 

A number whi~h is beyond the capacity of a 
counter or register. 

Combining several different brief fields of 
information into one or more machine units of 
storage (as word locations on a track) for the 
purpose of con~erving memory space. 

The filling out of a word or field with (Univac 
coded) zeros, space codes, or ignore codes. 

A redundant bit stored with each 6-bit Univac 
coded character. If the number of "l's" in the 
6 bits of the Univac code is even, the parity 
bit is a "l"; if the number of "l's" in the 
6. bits of the Univac code is odd, the parity 
bit is "O". An odd-even check on each char­
acter can thus be made during data transmis­
sions. The parity bit is also used in defining 
the field selection patterns used in ~ield ad­
dressing. 

A check made on each character, generally du­
ring data transmissions, to determine if the 
number of "l's" in each 7-bit computer char­
acter is odd or even. If odd, operation con­
tinues; if even, a parity error is indicated. 

A removable connection panel whereon external 
wiring can be employed to define a program. 
The central computer's plugboard is called the 
"program control plugboard". Several I/O units 
Rlso have plugboards. 

To interrogate; both pulse and d.c. probes are 
used. 

The basic operation to be perfotmed during a 
computer instruction. 

227 



operation code 

overflow 

packing 

pad 

parity bit 

parity check 

plugboard 

probe 

process 

The right-most (or lowest-o~der) three charac­
ters of an instruction word. 

A number whi~h is beyond the capacity of a 
counter or register. 

Combining several different brief fields of 
information into one or more machine units of 
storage (as word locations on a track) for the 
purpose of con~erving memory space. 

The filling out of a word or field with (Univac 
coded) zeros, space codes, or ignore codes. 

A redundant bit stored with each 6-bit Univac 
coded character. If the number of "l's" in the 
6 bits of the Univac code is even, the parity 
bit is a "l"; if the number of "l's" in the 
6. bits of the Univac code is odd, the parity 
bit is "O". An odd-even check on each char­
acter can thus be made during data transmis­
sions. The parity bit is also used in defining 
the field selection patterns used in ~ield ad­
dressing. 

A check made on each character, generally du­
ring data transmissions, to determine if the 
number of "l's" in each 7-bit computer char­
acter is odd or even. If odd, operation con­
tinues; if even, a parity error is indicated. 

A removable connection panel whereon external 
wiring can be employed to define a program. 
The central computer's plugboard is called the 
"program control plugboard". Several I/O units 
Rlso have plugboards. 

To interrogate; both pulse and d.c. probes are 
used. 

The basic operation to be perfotmed during a 
computer instruction. 

227 



program control plugboard 

pulse 

random access 

read 

read/write head 

register (noun) 

result 

reverse process 

revolver 

rewind 

serial (adjective) 

The central computer's plugboard. 

A short burst of electrical energy which is 
wired by the programmer to route the plugboard 
program from step to step and to initiate sub­
steps. 

Access to storage locations in a nonsequential 
order. 

The action whereby stored data is sensed and 
transmitted elsewhere, or is shifted out of a 
location and sent elsewhere. 

A dual-purpose device used to read and record 
data on a magnetic medium. 

A device capable of storing a computer word or 
computer address. 

The sole (or, in some cases, the principal) 
quantity produced in an arithmetic or logical 
process. 

The interchange of the relative function of 
operands in an arithmetic sequence to check a 
previous (normal) arithmetic operation. 

A device which makes special use of a track on 
a magnetic drum to store and recirculate a 
fixed number of characters for the purpose of 
making the recirculated data readily accessible 
to the computer program. 

To reposition tape by moving the tape in a 
backward direction. 

Handling one character (or bit) after another 
using the same device, as opposed to parallel, 
the handling of all characters (or bits) si­
multaneously, each having a separate device. 

228 



program control plugboard 

pulse 

random access 

read 

read/write head 

register (noun) 

result 

reverse process 

revolver 

rewind 

serial (adjective) 

The central computer's plugboard. 

A short burst of electrical energy which is 
wired by the programmer to route the plugboard 
program from step to step and to initiate sub­
steps. 

Access to storage locations in a nonsequential 
order. 

The action whereby stored data is sensed and 
transmitted elsewhere, or is shifted out of a 
location and sent elsewhere. 

A dual-purpose device used to read and record 
data on a magnetic medium. 

A device capable of storing a computer word or 
computer address. 

The sole (or, in some cases, the principal) 
quantity produced in an arithmetic or logical 
process. 

The interchange of the relative function of 
operands in an arithmetic sequence to check a 
previous (normal) arithmetic operation. 

A device which makes special use of a track on 
a magnetic drum to store and recirculate a 
fixed number of characters for the purpose of 
making the recirculated data readily accessible 
to the computer program. 

To reposition tape by moving the tape in a 
backward direction. 

Handling one character (or bit) after another 
using the same device, as opposed to parallel, 
the handling of all characters (or bits) si­
multaneously, each having a separate device. 

228 



sign position 

source address 

space code 6 

storage reference 

stored program or (inter­

nally-stored program) 

sub-instruction 

sub-step 

temporary storage 

three-address logic 

track 

The low-order character position 1n any arith­

metic register or in any location specified by 

a word address. 

An address specifying the location from which 

data can be obtained. 

A computer character (0000001) in Univac code) 

used to represent a space or blank area. 

Usually, the action whereby a memory location 

specified by a computer address is found, and 

data is placed in or received from that loca­

tion. Each storage reference actually involves 

two locations: in general, one is programmed, 

and the other (the intermediate or buffer loca­

tion) 1s automatically determined by the in­

struction being executed. 

A sequence of instruction words which defines 

a computer program. 

An operation specified by one of the legal va­

lues of the special character "S/C" in an in­

struction word. 

An addition to or extension of a program step. 

The plugboard counterpart of sub-instruction. 

Intermediate or buffer storage. 

A type of computer instruction which includes: 

(a) The address (or storage location) 

from which the first operand is ob­

tained, 

(b) The address from which the second 

operand is obtained, 

(c) A third address where the result 1s 

to be stored. 

A narrow band on the periphery of the high­

speed drum; the area which passes beneath a 

229 



sign position 

source address 

space code 6 

storage reference 

stored program or (inter­

nally-stored program) 

sub-instruction 

sub-step 

temporary storage 

three-address logic 

track 

The low-order character position 1n any arith­

metic register or in any location specified by 

a word address. 

An address specifying the location from which 

data can be obtained. 

A computer character (0000001) in Univac code) 

used to represent a space or blank area. 

Usually, the action whereby a memory location 

specified by a computer address is found, and 

data is placed in or received from that loca­

tion. Each storage reference actually involves 

two locations: in general, one is programmed, 

and the other (the intermediate or buffer loca­

tion) 1s automatically determined by the in­

struction being executed. 

A sequence of instruction words which defines 

a computer program. 

An operation specified by one of the legal va­

lues of the special character "S/C" in an in­

struction word. 

An addition to or extension of a program step. 

The plugboard counterpart of sub-instruction. 

Intermediate or buffer storage. 

A type of computer instruction which includes: 

(a) The address (or storage location) 

from which the first operand is ob­

tained, 

(b) The address from which the second 

operand is obtained, 

(c) A third address where the result 1s 

to be stored. 

A narrow band on the periphery of the high­

speed drum; the area which passes beneath a 

229 



transfer 

translate 

Univac 

!Univac code 

unpacking 

w1r1ng 

word 

write 

read/write head as the high-speed drum revolves; 
the equivalent of a channel on a general stor­
age drum. 

To move a copy of data from one location to 
another. 

To change information from one code to another 
without affecting the value. In the UFC, all 
I~O units are equipped with translators so that 
Univac coded characters are delivered to and 
can be received from the central computer with­
out any translation or conversion time being 
required in the central computer. 

Universal Automatic Computer. 

A system of notation in which (commonly) 63 
letters, numbers, and symbols are given values 
in a binary scale of notation. The notation 
is based on the (four-bit) excess-three code 
employed for the digits 0-9. In this code, 
the decimal digit "O" is represented as 0011 
(binary "three"); the decimal digit "l" is re­
presented as 0010 (binary "four"); and in ge­
neral each of the decimal digits 0-9 is repre­
sented by a binary code whose value is three 
greater than the actual value of the digit. 
fo the four-bits required to represent the 
decimal digits 0-9 in excess-three binary code, 
two higher-order bits, called zone bits, were 
added to formulate the rest of the Univac code. 
That is, the digit-portion of the code was ex­
panded, and letters and symbols assigned to 
different values of the six bit combinations. 

Separating packed fields of information. 

Manually-plugged wiring used on a plugboard or 
pinboard to connect various circuits within a 
unit for the purpose of defining what operations 
the unit is to perform. 

12 characters; the operational (or machine) 
unit of data in arithmetic and logical oper­
ations of UFC. 

To record; to store on a magnetic medium. 

230 



transfer 

translate 

Univac 

!Univac code 

unpacking 

w1r1ng 

word 

write 

read/write head as the high-speed drum revolves; 
the equivalent of a channel on a general stor­
age drum. 

To move a copy of data from one location to 
another. 

To change information from one code to another 
without affecting the value. In the UFC, all 
I~O units are equipped with translators so that 
Univac coded characters are delivered to and 
can be received from the central computer with­
out any translation or conversion time being 
required in the central computer. 

Universal Automatic Computer. 

A system of notation in which (commonly) 63 
letters, numbers, and symbols are given values 
in a binary scale of notation. The notation 
is based on the (four-bit) excess-three code 
employed for the digits 0-9. In this code, 
the decimal digit "O" is represented as 0011 
(binary "three"); the decimal digit "l" is re­
presented as 0010 (binary "four"); and in ge­
neral each of the decimal digits 0-9 is repre­
sented by a binary code whose value is three 
greater than the actual value of the digit. 
fo the four-bits required to represent the 
decimal digits 0-9 in excess-three binary code, 
two higher-order bits, called zone bits, were 
added to formulate the rest of the Univac code. 
That is, the digit-portion of the code was ex­
panded, and letters and symbols assigned to 
different values of the six bit combinations. 

Separating packed fields of information. 

Manually-plugged wiring used on a plugboard or 
pinboard to connect various circuits within a 
unit for the purpose of defining what operations 
the unit is to perform. 

12 characters; the operational (or machine) 
unit of data in arithmetic and logical oper­
ations of UFC. 

To record; to store on a magnetic medium. 

230 



APP.ENDl.X B 
EXAMPLE OF INTERNAL~ EXTERNAL PROGRAMMING 

The UFC-I, with its combination of internal and external programming, provides 
a wide range of programming possibilities. Several of the ways in which con­
trol may be transferred from the internally-stored program to th~ plugboard 
and from the plugboard to the internal p~ogram are included in the accompa­
ny1ng program chart. 

·in example #1 control is transferred via a transcop instruction (instruction 
word 150) to program step #72. The result of step #72 is wired to the W ADR 
hub. This allows access to word location 162 from the plugboard. Wiring of 
the STEP our hub to NI returns control to the internal program. 

Instruction INSTRUCTION WORD 
Location u v w PR IS/C 

I S' D A Ll 4 a Ll A I -'- ~ _7j :i. la. 
j_ s- J__ 

STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO, SHIFT SHIFT SHIFT STEP 

72 lrl" .... J_ + (! FS...'1-K. WA~ _1YZ_ 

Example #2 shows how the shift revolver may be loaded internally just prior 
to the transcop instruction, making the shifts defined in the shift revolver 
available to the external program. The shifts specified in instruction word 
200 and the storages specified in instruction word 201 are available to ex­
ternal control until activation of the next instruction NI hub returns con­
trol to the internal program. 

STEP 
N.O, 

60 

Instruction 

Location 

v, v, 
SHIFT 

PROCESS 

INSTRUCTION WORD 

231 

V2 
SHIFT 

v 
R R 

SHIFT 
NEXT 
STEP 

:z: 



APP.ENDl.X B 
EXAMPLE OF INTERNAL~ EXTERNAL PROGRAMMING 

The UFC-I, with its combination of internal and external programming, provides 
a wide range of programming possibilities. Several of the ways in which con­
trol may be transferred from the internally-stored program to th~ plugboard 
and from the plugboard to the internal p~ogram are included in the accompa­
ny1ng program chart. 

·in example #1 control is transferred via a transcop instruction (instruction 
word 150) to program step #72. The result of step #72 is wired to the W ADR 
hub. This allows access to word location 162 from the plugboard. Wiring of 
the STEP our hub to NI returns control to the internal program. 

Instruction INSTRUCTION WORD 
Location u v w PR IS/C 

I S' D A Ll 4 a Ll A I -'- ~ _7j :i. la. 
j_ s- J__ 

STEP v, v, 
PROCESS v2 V2 R R NEXT 

NO, SHIFT SHIFT SHIFT STEP 

72 lrl" .... J_ + (! FS...'1-K. WA~ _1YZ_ 

Example #2 shows how the shift revolver may be loaded internally just prior 
to the transcop instruction, making the shifts defined in the shift revolver 
available to the external program. The shifts specified in instruction word 
200 and the storages specified in instruction word 201 are available to ex­
ternal control until activation of the next instruction NI hub returns con­
trol to the internal program. 

STEP 
N.O, 

60 

Instruction 

Location 

v, v, 
SHIFT 

PROCESS 

INSTRUCTION WORD 

231 

V2 
SHIFT 

v 
R R 

SHIFT 
NEXT 
STEP 

:z: 



In Example #3, a breakpoint sequence is initiated by the special character 
6. Assuming that BREAKPOINT #1 is depressed on the computer control panell, 
the BREAKPOINT #1 hub on the plugboard emits a pulse. This pulse is wired 
to CONDITION COMPARE and then to the IN of step #80, demonstrating that a 
breakpoint sequence may be used to transfer control to the plugboard, wheJre 
both program steps and substeps may be executed. 

INSTRUCTION WORD 

STEP 
NO. 

BO 

81 

v, v, 
SHIFT PROCE~S. 

@oMP 

v2 

r& fl I-A 

F.s"2-a - c.. 

V2 R R NEXT 
SHIFT SHIFT STEP 

B1t Jc.. 

lGsB -:JJ SroP 

~ B.~RANCHING (BR) J 
..... N:°':::::':N::F:R:O:M:::::::======+-=11/fJ~== .... ~==============:l::::::::O::::::::· £2fSree 80 Srae A-- . §rr;e t 'fSrEe 'fl 

Wiring of the STOP hub out of step #81 stops the computer program. Howevel', 
wben STOP is wired in this mannel', the program will resume internally with 
instruction word 301 when the START button on the control panel is pressed. 
This illustrates a method of transferring control from an external to inter­
nal program. 

232 



In Example #3, a breakpoint sequence is initiated by the special character 
6. Assuming that BREAKPOINT #1 is depressed on the computer control panell, 
the BREAKPOINT #1 hub on the plugboard emits a pulse. This pulse is wired 
to CONDITION COMPARE and then to the IN of step #80, demonstrating that a 
breakpoint sequence may be used to transfer control to the plugboard, wheJre 
both program steps and substeps may be executed. 

INSTRUCTION WORD 

STEP 
NO. 

BO 

81 

v, v, 
SHIFT PROCE~S. 

@oMP 

v2 

r& fl I-A 

F.s"2-a - c.. 

V2 R R NEXT 
SHIFT SHIFT STEP 

B1t Jc.. 

lGsB -:JJ SroP 

~ B.~RANCHING (BR) J 
..... N:°':::::':N::F:R:O:M:::::::======+-=11/fJ~== .... ~==============:l::::::::O::::::::· £2fSree 80 Srae A-- . §rr;e t 'fSrEe 'fl 

Wiring of the STOP hub out of step #81 stops the computer program. Howevel', 
wben STOP is wired in this mannel', the program will resume internally with 
instruction word 301 when the START button on the control panel is pressed. 
This illustrates a method of transferring control from an external to inter­
nal program. 

232 



APPENDIX C 
EXAMPLES OF GENERAL STORAGE DRUM 

ADDRESSING SUBROUTINES 

EXAMPLE I: A CALCULATED GENERAL STORAGE DRUM ADDRESSING SUBROUTINE 

In many cases, a system of part numbers, account numbers, employee badge num­
bers or inventory item numbers already in use by a company can be utilized 
as the basis for calculation of the drum addresses at which this information 
will be stored in the general storage drum system. 

The following example demonstrates a method of arriving at a general. storage 
drum address, using an account number carried on each labor ticket (punched 
card) as the basis for calculation. 

Assumptions: 

(1) A labor cost accounting system uses 6000 accounts, with account 
numbers ranging from 1001 to 7000. 

(2) Accounts will be drum stored, 120 characters allotted to each ac­
count. Total requirements: four general storage drums. 

Range of Addresses 

General Number of 
Storage From To Unit Records 

Drum OS CH AA OS CH AA Available 

1st drum 00 00 00 02 99 80 1500 
2.nd drum 03 00 00 05 99 80 1500 
3rd drum 06 00 00 08 99 80 1500 
4th drum 09 00 00 11 99 80 1500 

Total ..... 6000 

(3) Each incoming labor ticket (punched card) will carry an account 
number, which will be read.into field A of the I/O track. 

(4) Constant 1000 is stored in word address 111. Constant 20 1s stored 
in word address 112. 

(5) Unit record selector switch 1s set at position 0. 

233 



ln1tructi'!n 

location 

1IJ o 

J :1 I 

J 3la 
I 3 .'If 

u 

FLOW CH~RT - ~XAMPLE I 

IW 130 

IW 131 

IW 132 

IW 133 

IW 1311-
139 

IW 1110 

-START-
l!ST CARD READ 
~ITO I /O TRACIC 

1 
MAND STATION DE 

ON E; WHEN READY 
lRACK SWITCH 
~IP OUT CARD* 

T 

TRACT CONSTANT 
0 FROM ACCOUNT 
ADJUSTED ACCT'. 

NUMBER 

T 

[ 

SUB 
100 

LTIPLY CONSTANT 
20 X THE 

JUSTED ACCOUNT 
NUMBER [ 

MU 

AD 

SU 
20 
TH 

SE 
TO 

[ .. 
[ 

T 
BTRACT CONSTANT 
FROM PRODUCT OF 
E PREY I OUS STEP 

llRUM ADDRESS. 
Nil DRUM ADDRESS 
GSAR. READ UN IT 

RECORD 

1 
UPDATE UN IT 

RECORD 

l""E UN IT RECORD 

1 

HETURN JUMP 
TO IW 130 

• Next card read into alternate 1/0 track during the 
execution of the main program. 

INSTRUCTION WORD 

v w PR s.<j 

01IA 11 1 J~lt')IS.RILI 
I ~ Io I I . :2 I .:>lo tf "- .a 
1 ~lo 1 1 I~ :fl q 9 sl~ 1-

I .3 4' ~ LJ~-+-1--1--i--l-f--t---t--+-1 
I 31.$1 

l 3 ' I) IM' 11J .Pon,"- bA ill 
I 311 

~--.. -+--· 

J 13 18 
I 1319 IJ 
J l-'t'k1 .4 _.a_ .11. lq q II. J _'! 0 u .rl..:1. 

234 

LINE 
REMARKS NO .. 

9 
10 
11 

12 
13 

14 



Following is a series of typical account numbers and their condition at var1-
ous points during the program as the address is being calculated. 

I. w. Typical Account Numbers 

130 1001 4127 6999 7000 

~ + + ~ 
131 0001 3127 5999 6000 

~ + + i 
132 0020 6.2540 119980 120000 

~ + + ~ 
133 000000 062520 119960 119980 

EXAMPLE 2: GENERAL STORAGE DRUM ADDRESS CALCULATED FROM CODES 

The following example describes a method of using a combination of two codes 
to determine the exact drum location to which each transaction will be posted. 

Assumptions: 

(1) The ABC Freight Company desires a summarization of (1) the number 
of shipments, (2) total weight, and (3) total revenue, accumu­
lated by a combination of commodity ~odes and destination codes. 
These summaries show the distribution, by commodity, of all ship­
ments directed to each of 25 destinations. 

(2) Input to the computer is obtained from a punched card containing 
data taken from a common carrier freight billing. The following 
information will be punched into the card: 

Commodity code (range 01-190) (read into field OOA) 
Destination code (range 01-25) (read into field 008) 
Amount of billing (read into field OOC) 
Weight of shipment (read into field 000) 

(3) Each summary unit record will contain 24 characters, which will be 
addressed as follows when held in the general storage buffer: 

Field A - Numb~r of shipments 
Field B - Total weight 
Field C - Total revenue 

(4 characters) 
(10 characters) 
(10 characters) 

A total of 4750 Unit Records (190 x 25) will be required. 

235 



Range of Addresses 

Number of 
From To Unit Records 

OS CH AA OS CH AA Available 

llrum Section 00: 00 00 00 00 99 96. 2500 
Drum Section 01: 01 00 00 01 89 96. 2250 

Total. .4750 

( 4) Channel number 1s determined from commodity code. 
her is determined from destination code. 

Unit record num-

(5) Constant 1 1s stored 1n word 111. 
Constant 4 1s stored 1n word 112. 

(6) Unit Record Sele.ctor Switch set at position 2. 

FLOW CHART - EXAMPLE 2 

IW 130 
START -] 

FIRST CARD READ ·---------------------. 

IW 131 

IW 132 

IW 133 

IW 134 

IW 135 

IMTO I /O TRACK 00 

DEMAND STATION 0 -] WHEN READY: 
(I) TRACK SWITCH 
(2) TRIP OUT C~ • 

SUBTRACT C~NSTA-;;J 
FROM COMMOO ITY 

CODE =.ADJUSTED 
COMMODITY CODE 

SU9T.RACT CONS~-;;] 
FROM OEST I NAT I ON 
CODE = ADJUSTED 

DESTINATION CODE - ~--

ADJUSTED DESTIN~~N 
CODE TIMES CONSTANT 

4 = UN IT RECORD HUM ~ER 

LOAD SH I FT REV~] 
(SHIFTING ADJUSTED 

COMMODITY CODE LEFT 
2 = ORUM SECT I ON 

& CHANNEL 
'----~---

0-- ---] SH I FTEO ADJUSTED 
OMMOO HY CODE PlllS 
NIT RECORD HUMBE;1 

= ADDRESS - GSAF:, 
RUR 

L __ 

PP.E'/I DUS TOTAL SH I PMENTS 
PLUS CONSTANT I 

= NEW TOTAL SH I PMENTS 

PREVIOUS TOTAL WEIGHT 
PLUS WEIGHT OF SHIPMENT 

=NEW TOTAL WEIGHT 

PREVIOUS TOTAL REVENUE PLUS 

IW 136 

IW 137 

AMOUN.T OF BILLING= IW 138 
NEW TOTAL REVENUE, WUR & CHECK 

RETURN JUMP 
TO IW 130 IW 139 

•Next cdrd read into alternate 1/0 tr·ack cluring execution of the main program. 

236 



Instruction INSTRUCTION WORD LINE 
Location U V W PR SIC 

REMARKS NO. 

l 
2 

-

3 
4 
5 -
6 
7 
--· 

8 

EXAMPLE 3: PARTIAL ADDRESS CALCULATION WITH CHANNEL SEARCH AND OVERFLOW 

The following example describes one of many methods which may be used to 

store, and subsequently locate, items in general storage when tlte ~tern identi­

fier is long, and is complicated by mixed alpha-numeric characters. 

Problem: 

(1) The XYZ co~pany maintains inventory records for 10,000 items within 

the general storage system of UFC-1. Each item contains 60 charac­

ters .. 1000 channels of general storage are required. 

(2) Input to the computer consists of random sequenced punched cards 

representing various types of inventory activity. 

(3) Stock numbers vary in length up to a maximum of nineteen alpha­

numeric characters, and a direct addressing scheme or calculated 

addressing scheme is not feasible. 

237 

• 



Solution: 

(1) Add the low-order 10 characters of each nineteen character stock 
number (identifier) to the 9 high-order characters of the same 
identifier to obtain a randomized identifier. 

(2) Choose a prime number (defined as: a number, not zero, divisible 
only by itself and ± 1) nearly equivalent to the number of channels 
required for sto.rage of the inventory. This example uses 997 as 
the prime number. 

Identifier: 8RQ394269932SA6°9378 

Randomize: 
+ 

8RQ394269 
932SA69378 

101RQ363647 

(3) Divide the sum of the previous addition by the prime number selected 
(997), developing a remainder of 797. The high-order digit of this 
remainder provides the drum section (07) and the low-order two dig­
its provide the channel (97) at which a channel search is initiated. 

10229050 

997 101RQ363647 

797 or OS 07 
CH 97 

(4) During loading of data onto the drums, channel search locates the 
first open unit record area on this channel, and the item is stored 
at that location. 

During the processing of data, channel search is initiated at th~ 
drum section and channel address calculated as above, and the item 
1s read into the general storage buffer when found. 

(5) An overflow address is loaded into the search control location of 
each channel. This overflow address will direct the search to an 
overflow area when the track where the search begins has been fill­
ed. 

Comment: 

fn summary, the objective of the overflow method of storing and locating data 
1n general storage is to distribute the items to be stored as evenly as possi-

238 



ble over the available drum area by developing reproducible random numbers 
from the file identifiers to be used as track addresses. Thus, instead of 
directly addressing a record, its approximate location is ascertained and a 
channel search locates the exact record desired. 

If the criterion for a successful overflow system is met, by far the greater 
percentage of the file items are located by sear.ch of a single channel, and 
the remainder of the items are located in a search of less than two channels. 

IW 137-1 .. 1 

IW 1 .. 2 

OVER FLOW METHOD ORUM ADDRESSING 

IW 130 

IW 131 

IW 132 
IW 133 
IW 13 .. 
IW 135 

IW 136 

FIRST CARO READ 
INTO I /0 TRACK 

DEMAND STATION D. 
WHEN RFADY: 

TRACK SWITCH,TRIP 

ADD IDFNTIFIERS TO 
RANDOMIZE: CLEAR 

GSB TO IGNORES 

DIVIDE; STORE 
REMA I NDER IN GSAR; 

IDENTIFIER TO 
CORRECT POSITION 

IN GSB; INITIATE CS = 

SEARCH PROBE 

FOUND NOT FOUND 

UPDATE UNIT R~CORD; 

WRITE UNIT RECORD 
ERROR IN IDENTIFIER; 

ERROR ROUTINE 

RETURN JUMP TO 
IW 130 

239 

IW 150 



Instruction INSTRUCTION WORD LINE 
REMARKS NO. 

.P,..-,4Np srer10N 1 nie lRAQt $1.Lttrt?N 1 
) • 

tl.llll. A1e,.r.10N,.S,_ fJ. E. l~&.tx.L..U:.1.6.&~' (!j.6_8_& (i.~4. 2 
• 

~E.r. 11.e. ~11..lE.L. 3 

l'l!,1.~r_1Ftiff.. t C.~tJ.U:Abl. r::. ~2 Z ~ '1.~t1 ~~ LE._,:r ~ 4 

b.li.'3.r. N.tf.'E. OE_ l~LlFl~& 
_,, 

G~B 5 

SHCDN.1> l(,,fk F a~ l "IJ.£.N.L.t..Fl6..tz. -2 G ~.B.. Q.S....=__. 6 
) 

~ S..U!f..<ltt. Pl2o8.£. 
8 
9 

2fo~E.SS. lTE,,!:J. 10 
11 

ONA! STl!P pt= l!!.~~c.~.;,.t.dl.6. • wwe 12 
> ·~ 

&'l:.ta.N.. .J::_{,/.t:t,l!, l:Q J:. llit. lt!l.a 13 

240 



APPENDIX D 

PROGRAMMING FORMS 

The following group of programming forms are suggested for use by programmers 
and analysts in coding programs for UFC-I. Segments of these forms are used 
throughout the manual to illustrate coding techniques for both internal and 
external programming. 

Figure 1 1s designed for use 1n internal programm~ng. 

Figure 2 1s designed for use 1n external programming. 

Figures 3, 4, and 5 provide an aid to the programmer in keeping track 
of the many computer functions available to him on the program control 
plugboard. 

Figure 6 serves a similar purpose in programming for the use of selec­
tors. 

241 





MODEL 1 UNIVAC 
CUSTOMER:. 

STEP v, NO, 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

v, 
SHIFT 

FILE-COMPUTER EXTERNAL PROGRAM CHART 

PROCESS 

APPLICATION: 

V2 
SHIFT 

R R 
SHIFT 

NEXT 
STEP 

REMARKS 

--·- ·--- -

-

~---11------+----1-----1-----+---l-----+----+---..,.----1----------------·--·---·-··-·- ·--------
80 

81 

82 

83 

84 
1-----IL------1-----1-----1-----+.---1------+---1------1---------·------------·------------------1 

85 

86 
----- ·-

87 --
88 

~---11---~--+----1-----1-----+---1-----+---I-------+------------- ------ --------- ·-
89 -
90 

91 
1-----11------+----1-----1-----+---1-----+---I--------+--------------·---- - -·--- ·- -

92 
-------- -

93 
-----

94 
------ ---------

95 

96 
---· ··-

97 
i.----IL------+-----l-----l------1----+------1-----1-----t~-------· ------ ---- ----

98 

u 1356.3 
243 FIGURE 2 



MODEL 1 UNIVAC~ FILE COMPUTER CONTROL CHART #1 
----------·~--------·------------.--------------------------------------~-------------------~-----------' APPL.ICATION• rROGRAMMEO av. OATE I PROGRAM NO. 

----------~--------·------------~----------------·------------------'--------------------------------

CUSTOMER: 

OEMAf\10 UNITS COMO> 
UTS TEST IN NOT READY READY DEMAND IN DEMAND OUT SPECIAL: OUT TRACK SWITCH 
~-+-------------------------------------~-------------+--------------1--------------1--------------

0 
---t--~----------+--------~-------1-~---------t-------+--------+-~--~----~ 

1 
------------+---------11----------~-~-~--+-------+--------t-------

2 
t---+----·-------+--------1--------+-~-~--------if--------+------------~·--

3 

4 
~----·-·------·~------1--------+-~--------t-------t-----~--1-~--~--~ 

5 

6 
t---+-~·-·-·-----+-·-------1----------+---~--~----tf--------+--------+--·--~---

7 
--------·-------------1---------+-~--------1!--------+--------+-----~---

8 
----~--·-----+-------~1----~----1-~----~-----if---------1--------+-~---~---

9 

NO 

= I START TO• ~ - UNIBUSES _(_U/B) 
IN IN IN IN OUT -

1 ERROR SIGN.LI. LS 
~·--~-~-----+----------4---------

2 TYPE TO 
-

3 PARITY 

1----+-·-------~---il- ·--1 t--· 
4 .;.o• FLOW 

-~· 

[~0' FLOW 5 
-

6 N 0' FLOW 
--j 

7 ARITH, 

8 GS PROG 

---.,__H_l0 SPEED CONTROL LINES (HCL) STEP CLEAR (SC) STEP REPE. I\ T (SR) 
NO IN YES NO NO IN OUT NO FRO M 

t---+-----------~-------------1--------------1 w 1 1 

x 2 2 

y 3 3 

z 4 4 

=========-==================================~ FUNCTION SEQUENCE (FS) OUT EXPANDERS (OE) 
---.--~-------.--·--------.------~ 
NO SET PROBE OUT NO IN IN OUT 
t---+-----------~-------------+--------------1 

1 
r--t-----------+------------1-------~ 

2 2 
t--t-----------+-·--------1---------« 

3 3 

4 4 

FUNCTION DELAY 1FDl 5 

NO llN 1 OUT 6 
-----------------1~------------+------------~ 

A 7 
t--i ----------t-·-------+-------· 

B 8 
1--+----------+---------1---------1 

c OUTPUT CONTROL LINES (OCL) 
D NO FROM NO FROM ,__..._ _____ , ______ .__ __ , ________ _... ____________ _ 
REMARKS: A F 

B G 

c H 

D 

E J 

..___ ___________________________ ------------ ----------------·--
u 1 356.4 

244 FIGURE 3 



MODEL 1 UNIVAC R FILE-COMPUTER CONTROL CHART #2 
CUSTOMER: I APPLICATION: lPROGRAMMED BY: DATE PROGRAM 

READ URA (R) BRANCHING (BR) 

NO IN 1 OUT NO IN FROM + - 0 

1 1 
l. 1 

2 I 2 
l. 

3 I 3 
_l_ 

4 I 4 I 

WRITE URA (W) 5 

NO IN : OUT 6 

1 I 7 
-------

2 I 8 
_l_ 

3 I 
9 I 

4 l 
--

10 

WRITE & CHECK URA (W/C) 11 

NO 11-1 I OUT 12 I 
I 

1 I CHANNEL SEARCH PROBE & WAIT (CS P/W) 

2 I NO 
_ _l_ 

IN FROM + - 0 

3 I 1 
...l ·--

4 I 2 I 
t------- ---------

CHANNEL SEARCH EQUAL (ECS) 3 

: -------
NO IN OUT 4 

T 
1 I CHANNEL SEARCH PROBE (CS p) 

2 ' NO + 
-0---

I IN FROM ACTIVE -
3 

T 
1 I ---------------

4 l 2 

CHANNEL SEARCH UN EQUAL (UCS) 3 

l 
--+---

NO IN OUT 4 

1 I CODE DISTRIBUTOR (CO) _._ 

2 I ALPHA/NUMERIC IN: 
.1 

3 I 
.J.. 

4 l 
GROUP 1 IN GROUP 2 IN GROUP 3 IN GROUP 4 IN 

CONO ITI ON COMPARE (C/C) 

NO IN T OUT NO OUT NO OUT NO OUT NO OUT 

1 I 0 . + .i ' ' 
2 I 

I 1 A J I 
3 I 2 B K s 
4 I 3 c L T J_ 

CLEAR BLOCK TRANSFER BUFFER (CLBTB) 4 D M u 
NO IN l OUT 5 E N v 

1 I 6 F 0 w 
2 I 

7 G p x I 

3 
.-

8 H Q I y 

4 
I 

9 I R z I 

CLEAR GEN' L STORAGE BUFFER (CLGSB) CDR PULSE IN: 

NO IN I OUT 

I 

1 I NO OUT NO OUT NO OUT NO OUT 

2 : 0 3 6 9 

3 T 
1 4 7 I 

4 ' I 
2 5 8 

U 1356.S 

245 FIGURE 4 



MODEL 1 UNIVACf!> FILE-COMPUTER CONTROl CHART #3 I APPLICATION: I PROO RAMMED BVO DA TE I PROGRAM NO. ~ 

INPUT CONTROL LINES ( ICL) INDICATORS (IND) PROGRAM SELECTS (PS) 
-

NO TO NO FROM NO IN DELAY OUT DROP OUT e+ 
-

a 1 1 

b 2 2 
-

c 3 3 
-

d 4 4 

e 5 5 
- ·-I 

f 6 6 

g IND, 7 SWITCH IN: 

h IND, 8 SWITCH OUT: 

i BREAKPOINTS (8/ P) 9 

i 1 '10 - ·-k 2 ·11 
-I 3 '12 

REMARKS: CLEAR 
PROGRAM 

:SELECTS: 

SPECIAL CHARACTER OUTS (SCO) 

~ 
TO 

rn 
TO 

IN~I 
,. 

~= ALTERNATE SWITCHES (ALT.SW.) 

0 

NO SELECT COMMON :LECT NON-Sf· 

1 

2 

3 

4 

5 

6 

-
U 1 S56.6 

246 FIGURE 5 



MULICL U"IYA\.. r IL C•\..UMl"U I CK ~CL C\.. I UK \..MAK I 

CUSTOMER: APPLICATION: PROGRAMMED BY! DATE PROGRAM NO. 

Tl PICK-UP FROM GROUND SELECT COMMON NON-SELECT 

---------------1----------------'---ll----·----- ---·-·· ·- - -

1----------------1----------------1-----------------

--------- -- - -
----------

--------- - -

----·---------·--- ---- ·--· -·- - -I 

t--~~t--~~~~~~~~-+~~~~-1-~~~~~~~~~~~~~~1--~~~~~~~~~~~~~-+-~~~~~~~-~~~~~~--~ 

1- ----------------11--------------- -----+------------ -- -------I 

..... ~~+-~~~~~~~~~+-~~~~+-~~~~~~~~~~~~~~+-~~~~~~~~~~~~~~+-~~~~~~~-~~~~~~-·~ 

t-­

~ 

t----

-----------------1--------------------t---------- ----------I 

---------­

r-------------------11------------------11-------------------

1-------------~---t----------------t----------,-----~-----

i--~~+-~~~~~~~~~-t-~~~~-t-~~~~~~~~~~~~~~+-~~~~~~~~~~~~~~+-~~~~~~~~~~~~~--

r-----------------11------------------11------------ --------

r-----------------11-----------------tt-----------·------~~ 

u 1356.7 

247 FIGURE 6 



APPENDIX E 
PROaRAM CONTROL PLUGBOARD 

COMPUTER CURRENTS AND PULSES 

As the programmer wires the program control plugboard of the UFC-I, he should 
bear in mind that the internal wiring behind the plugboard provides several 
kinds of electrical energy designed for specific programming purposes: 

Pulse: 

D-C Enable: 

B+ Current: 

Computer Ground: 

Demand Ground: 

A short burst of electrical energy which is wired by 
the programmer to route the plugboard program from step 
to step, and to initiate substeps. 

A computer-controlled direct current, the plugboard 
wiring of which allows the computer to gain access to 
storages, processes and shifts. 

A steady direct current used by the programmer to pick 
up selectors and to light indicators (any other use of 
this current may result in damage to the computer). 

A level of zero potential which completes the coil c1r­
cui t of a selector allowing that selector to be picked 
up at any time during the computer program. 

A level of zero potential which completes the coil cir­
cuit of a selector allowing that selector to be picked 
up only during the time the corresponding I y-numbered 
I/0 unit is on demand. 

FUNDAMENTAL PLUGBOARD PROGRAMMING RULES 

1. Pulse outs (red) may be wired only to pulse ins (green). This can be done 
directly or via buses, selectors or alternate switches. 

2. Enable outs (blue) may be wired only to enable ins (yellow). This can 
be done directly or via buses, selectors or alternate switches. 

248 



3. B+ outs (black) may be wired only to B+ ins (purple·). This can be done 
directly or via buses, selectors or alternate switches. 

4. Selector ground (orange) may be wired to ei~her computer ground (orange) 
or demand ground (orange). 

5. Multipurpose hubs (not color coded) may be wired to route pulses, enables, 
ground or B+. 

6,. The combination green-red hubs are actually bused pulse in hubs; either 
hub can be wired from a pulse source, and the other wired to define the 
next operation. 

7. The combination blue-yellow hubs are actually bused enable out hubs; they 
are shown in combination color code because these hubs may be "chain 
wired". 

8. The combination purple-black hubs are connected by a switch-controlled 
bus; either can function as an in and the other as an out for B+. 

CHAIM WIRING 

Chain wiring is a technique which allows the programmer to wire several enable 
out (yellow-blue) hubs to a common enable in (yellow) hub without the use of 
a bus. For example: assuming that the process for steps 51, 52, 55 and 60 
is arithmetic transfer, the process hubs for these steps may be chain wired 
together and the chain tied to arithmetic transfer AT by a single wire. The 
PROC, V 1 ADR, V 2ADR, R ADR, V'1 SH, V'2SH and R SH may be cha in wired to any of 
the enable in (yellow) hubs which specify processes, storage locations and 
shifts. 

Another convenient w1r1ng technique which incorporates chain w1r1ng 1s fa­
c ili ta ted by the three plugboard hubs provided for each storage location 
and shift on the plugboa,rd. Whenever a V1ADR or V1SH is wired either singly 
or in a chain, the receiving hub at the left of the storage or shift enable 
in may be used. Similarly a V2ADR or V'2SH may use the middle enable in hub, 
and the R ADR and R SH may use the right enable in hub. 

Through the use of the above techniques, buses are made available for other 
purposes, plugboard wiring is simplified, and debugging procedures made easier. 

249 



9 PULSE IN 8 PULSE OUT ., B+ IN e B + OUT e GROUND POTENTIAL 

2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 -18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

DEMAND TEST IN 

x eeeoeooooe 
0 I 2 3 4 5 6 7 B 9 

w eeo0000000 
- - - - -NoTREADY- -- - --

V •••••eeeee 
- - - - - - READY- - - - - -

u • • • • • o e ·• o e 
DEMAND IN 

t oeeeoooooc 
0 I 2 3 4 S 6 7 B 9 

s 80G0000000 
- - _,... - - DEMAND OUT - - - - -

r •••••••• e Q 
- - - - - SPECIAL OOr - - - - -

q •• eooeeG>ee 
TRACK SWITCH 

P eooeoooooe> 
0 I 2 3 4 5 6 7 8 9 

o eeoooeoooQ 
n oeecooooeoe 
m Afb G e GD 0 0 ~s I G I 0 • 

0 I I 
BG. e e 0 0~•1•1•. 

k c e e e O O O ~· I ew e e 
-1--- ~ -

D8 e e e 0 
COMP -TO - I/O 

EG e e e o 
CONTROL 

h FG e o o o 
LINE 

g GO • ® 0 0 

t HO e e e o 
e 18 e G e 0 

d J• • e e o 

0!:e1 •.~ 1e e 
€> :39 I•~ e e 

>- I ~ 

o ~•' •~ o e --1--l:l-
0~01 e~e ® 

fl) I . T 
o~o 1 e 1 e e 
o ~e' • 10 e w x y z 

00000 
1/0 - TO - COMP NEXT 

c aebecedeeete e ~ e G 
CONTROL LINE INSTRUCTION 

b g•h•i• i•k•1• e e e e 
BR AK POINT 

a ...... C>-0 9--e e €> () • 
I 2 3 STOP 

x 

BUSES START STEP BUSES 
e Gs1e 

IN OUT 
e52e 

f.)539 

854. 

()559 

$560 

f)57<:,i) 

@see) 

859e 

860C\) 

061f) 

es2e 

9639 

()64® 

@65@ 

@s6e 

0670 

Osee 

€)696) 

9100 

I I I :::: I I @73@) 
IN OUT 

9740 
BUSES STEP BUSES 

BUSES STEP 
975G) 
IN OUT 
t)768 

BUSES 

CONDITION 

I I I l 
COMPARE 

~lEI~UI 
~Iml~III · 
~!~III l · 
~I ~III l 
...-.-------1 ~ 

~x· o::I 0l~l ~ a: => ~ ::c (!) 
;JI: 0 

--------iffi 
• @1@ 01-
IN + 0 ~ 
e 02e Oo 

0 030 0 

c ~4€) 

• 959 
BRANCH 

G 060 

e e1e e 
e eae e 
e o9e 

e ~1ot!) 

0 @)119 

G 0129 

CS PROBE 

.!)_•-~-· 
ACTIVE 

e e o o 

• eie • 
I IN B+ I .... , 
2 DEL DO 2 • •2• • 
3 IN B+ 3 ... •· 
4 DEL DO 4 

•• 3 •• 
5 IN B+ 5 

•••• 6 DEL DO 6 

•• 4. •· 
7 IN B+ 7 

• • • • 8 DEL DO 8 

• 05• 8· 
9 IN B+ 9 

• • • • 0 10 DEL DO~ 10 

~ t;e se ~· 
o 11 ~ IN B+ 0: 11 
a: l&J 
(!).fl) •• a:. 
a: 12 ::& DEL DO ~ 12 

~.:.1·~· ~ 13 g IN B+ ~ 13 

~- ~- .(f). 0 14 DEL DO 14 

9 eee e 
15 IN B+ 15 

• e • • 16 DEL DO 16 

• • 17 17 

• • 18 __.............___ 18 

• • 19 19 

• • 20 20 

BUSES 

• 21 

• 22 

• 23 

• ! I I 
24 BUSES 24 BUSES 

•• 9 •• 
25 IN B+ 25 

• e • • 26 DEL DO 26 

• eioe • 
27 IN B+ 27 

•••• 28 DEL DO 28 . •"• . 29 IN B+ 29 

• e • • 30 DEL DO 30 

• e12e • 
31 IN B+ 31 

• e • • 32 DEL DO 32 

• •13• • 
~33 ,_IN B+ ~33 

::>. ~· • ~· ~ 34 jj DEL DO ii: 34 

<!>. Cl"l.14. ere 
a:35 2 IN B+ l&J35 

t• ~c • S. 
~36 ~DEL DO Lil36 

~· a.•15• ~ 
37 IN B+ 37 

• e • • 38 DEL DO 38 

•• ,6 •• 
39 IN B+ 39 

• e • • 40 DEL DO 40 

• • 41 41 

• • 42 42 

• • 43 43 

• • 44 44 

BUSES 

• 45 

• 46 

• 47 i I I • 48 BUSES 48 BUSES 

S C NS S C NS 
QI Q Q Q13Q Q 

02 0 0 Qt4Q 0 

OaO 0 OoO 0 
3 15 

ObO 0 ObO 0 

OaO 0 OoO 0 
4 16 

ObO 0 ObO 0 

OaOOOaOO 
5 17 

ObOOObOO 

OoO 0 QoO 0 
a:: 

ObO O~ObO 0 
6 ~ IS 

OcO QjjOcO 0 
fl) 

QdO 0 OciO 0 

0 7 0 0 Ql9Q 0 

0 8 0 0 0200 0 

OaO 0 QoO 0 
9 21 

ObO 0 ObO 0 

0 a 0 0 Oo 0 0 
10 22 

ObO 0 ObO 0 

OaO 0 OoO 0 
II 23 

ObOQObOO 

OaO 0 OaO 0 

ObO 0 ObO 0 
12 24 

OcO 0 OcO 0 

OdO 0 QdO 0 
S C NS S C NS 

S C NS S C NS 
Q25Q 0 Q37Q 0 

Q2so o osaO O 

OaO 0 QaO 0 
27 39 

ObQ 0 ObO 0 

OaOOOoQO 
28 40 

QbO 0 ObO 0 

OaOQOoOQ 
29 41 

ObOOObOO 

QaO 0 OoO 0 
0: 

Obo oeobo o 
30 ~ 42 

OcO O~OcO 0 

OdO O QdO 0 

Q31 0 0 Q43Q 0 

032Q 0 Q44Q 0 

oaO O QaO 0 
33 4fi 

ObOOObOO 

Oa 0 0 OoO 0 
34 4G 

QbO 0 ObO 0 

Oao O QoO 0 
35 4? 

QbO 0 ObO 0 

QaO 0 QaO 0 

ObO 0 ObO 0 
36 4fl 

Oco o oco o 
OdOQQdOO 
S C NS S C NS 

2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 8 9 30 31 32 33 



0 ENABLE IN C> ENABLE OUT 

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 !51 52 53 54 55 56 57 58 59 60 61 62 63 64 ~55 GE:; 67 68 

+ PROC V 1 ADI~ v1 sH v2ADR v2sH R ADR R SH 
ccr-o OslG ~ 0-0 ~ o=-o Csi-0 (}--0 

NCQ--0 ~e ~ 0-0 OszO 0-0 ~ 0--0 52 

0-~0 ~ 0-~ ~ er:~~ Io~ 
0--0-0 0-0--0 0--0-0 0-0--0 0--0--() 0--0-0 

2 

x 

w 

c0-::-0 ~ O;-;<> 0--0 0=-0 0-0 ~ 0--0 
53 53 

0--0--0 0-0--0-0--0 0--0--0-0-0 0-(>--0-0-0 
3 BUSES 

v 

NC0--Q 0::--e ~ cr--o 0-s;Q ()--() ~ 0-0 
54 

X SL 

~ Ds;E> c0--0 0-0 0-r.-;9 ~ ~ 0-0 
·> 

0--0-0 0-0--0-0-0 o---o---o-cr-o 0-0--0-0--0 
4 

0--0--0 0-0---0 o-o--0 0-0---0 Q-0-() 0·--0-0 
5 0 0 0 0 0 

u 

t 

NC0--Q OssO ~ 0---0 0:-::0 o--0 Css-0 0-0 
I-
IL.I 

56 ::i::: 
X SU 

~ 
en 

cO---O Os7<> ()-() O=G cr--o 0;;-0 0--0 1-I 
57 IL.. 

NCQ---Q Osae 
I.LI 

~ <r-o C>-__-:-Q 0-0 O;eG 0-0 ..JI 
56 

-:-- SQ co--o o---e o---Q 0--0 O;gO C>-G ~ 0-0 I 
59 59 

NC0--Q Osc;G Oao-O 0-0 Oeo9 0---0 0:-:{) 0-0 f 
60 

-:- SR co--o C>sj-0 ~ Q--0 Osl€> 0-0 OslO 0-0 f 

I-· 
NCQ---Q °"620 °'62<> o--e Os20 o-e ~ 0--0 f 

COMP u 
0--0 OsiO 0:-:-e• ()-Q ~ Q--G ~ ~ ( 

63 
A.T. ~· 

0--0 0s-40 Os40 0---0 ~ o---e ~ 0--0 ( 

BT 

:>--0---0 0--0-0 0-0-0 0-0--0 0-0-0 0·-0--0 
6 o I 0 I I 0 I I 

0--0-0 ~Q-0--0 ~0--0-0 ~0-0--0 ~0-0---<) 0·--0-0 
7 2 ~ 2 ~ 2 3S 2 ~ 2 

'.)---0--0 ~0-0--0 a:O-O-O _o-o-o No-o-<) ~0·--0----0 
8 l::: 3 ~ 3 :1J: 3 ~ 3 3 

:>--0-o ~0-0-0 ~0-0--0 LLIO-O-O ~0---0---C) ~O·-o--0 
9 4 III 4 ~ 4 CS: 4 ~ 4 

::>--o-o ~o-o---0 ~o-o-o go--0---o eo-o-o 60·-0-0 
10 ~ 5 ~ 5 :;; 5 en 5 I 5 

:>--0-0 ~0-0-0 ~0-0-0 a:O-O--O a:o--0---<) ~0·-0--0 
II 1- 6 en 6 o 6 g 6 11. 6 

~ ~ ~ ~0--0--0 ;10-0-0 ~0-0--0 ~ o-o-<> ~0-'-0-0 
V WO 7 ffi 7 IL 7 7 7 

a:o--0--0 f5 0-0-0 0-0---0 ~) 0.·-0--0 
SHI Fr 8 <!l 8 8 8 6 

)-0-0 0-0-0 0-0-0 0-0--0 Q--0-() 0-·-0--0 
I 9 9 9 9 9 

s 

r 

q 

p 

0 

n 

m 

k 

0--0 Cs;-0 ~ 0--0 0s5e 0-0 o--0 0-0 ( 

MASK T 
65 

0--0 Os60 0:-:-01 0--0 e:-:-e 0-0 o-a-se 0-0 ( 
66 66 

)--0-0 0-0---0--0-0 0--0--0--0--0 o-<>-0·-0-0 
2 BUSES 

>-0---0 0-0-0-0-0 0--0-0--0-0 O-C>---0--0--0 
S L Z 

0-0 ~ o-:-:tJ1 o--e o--e ()-Q Oa7-G ()-€) ( 
67 67 

h 
NORM 

0--0 Osse ~I o-e OseG o-G 0--0 0-0 I- ( 
68 IL.. 

CH CL :c 
0--0 o-sge OsgO o-e o---e o--e o-e 0-0 111( 

69 69 .... 

~ 0--0 0-0 
::i::: 

OroO o-e ~ ~ !::! ( 

:>--~ i'N I e • • e eR eT e e e> e 1 cr--:o:~ 
4 z l.]>_1_,L_L ~ Gi_6_7_L..i..I-- GROIU~I __ 

)-~O: :' --'_-' ~-- ~- _L_ ·.F _, __ ~- _,~~~;~-- g >-0--0 o 9 9 G 0 e e O S O 8 C>--0-·-0-0 f 
6 ° I ) J K L M N 0 p Q R I GROUP 3 

0--0 19-9 .-.-0 -.-. 8-ee-r<>--0-·--0-0-- e 
)-- 7 I + I s T u v w x y z I GROUP 4 70 a: 

> > ~ °"716 cr--e °"71G 0--0 °="-0 0--0 c 
71 

)-0-0 0-0--0-0-0 0-0----0--0---0 o-<>--0-·-0--0 
8 BUSES 

( 0::-:-0 0::-:-e C>--0 ~;O 0-0 e-;;o 0-G ( 
72 72 

O=::--G On0 ()-Q ~ 0-0 ~ e---0 ( 
73 73 73 

~ ~ o--e ~ ~ 0::-;;() e-G c 
BUSES 74 

PROC V1 ADR v1sH v2 ADR v2 SH R ADR R SH 

)-(}-() 0--0---0--0---0 0-0--0--0---0 ~>-0-·-0--0 
9 

BTP GSP ISP IRV ~ SRV 
).--0-0 0-0---0 0-0-0 0-0--0 o-o--<> 0-·-0--0 

10 BTB- z GSB-Z FSi¥1-Z FS#2-Z [/o-z 
)-0-0 0-0--0 0-0--0 0-0-0 0--0-C) 0-·-0-0 

11 BLOCKETTE TRANSFER 

+ PROC V1ADR V1SH V2ADR V2SH RADR RSH BUSES 

c 0--0 ~ ~ -~ -~ ·e=-O ·~ &-G C>-0-0 0-0---0-0--0 o--0---0-0-0 O-C>--0-·-0-0 
I 

NCQ--0 "7P '~ 0-0 ~ te>--Q ~ e--o C>-0-0 0--0---0--0--0 o-o-o---0-0 O-C>---0-·-0-0 
2 

c o-=-o S:n-0 ·e-no . ·e--0 °"77-0 te---G ~ ·e-o ()-r-o 0-0--0--0-0 0--0-0--0-0 O-C>--0-·-0--0 

NC0-0 ~ ~ E>-0 '°"7a0 ()-Q &:;-p 'ef---0 ~(>--()---() o--o--cr-o--o 0-0-0-0-0 cr-c>-O-·--Q-0 
~ 4 

X SL en 
c 0-0 ~ ·°"790 0--0 ·°'790 e---Q ~ 0-0 0 C>-0--0 0-0--0 0-0--0 0-0---0 0-0-0 0-·--0-0 

z !5 A A A A A 

NC0-0 -~ 0eo0 0--0 °aQO 0-0 ·0ec;0 &-Q ~C>-0-0 0-0--0 0-0--0 0-0-0 0--Q-{) 0-·-0--0 
X SU <e 6 B B B B B 

c o-0 9s70 ~ o--o 9si-O ·e-o -~ e-Q ~c~r-o ~ <>r° ~ o-~--o o-·~ 
NCQ---{) Oa20 9e20 ()--Q Oe2-0 ~ '"820 &-Q ~0---()--Q 0-0--0 0-0--0 0-0-0 0--()--{) 0-·-0--0 

<!l 8 D 0 D D D D 

e-Q irC>---0--0 30-0--0 ~0-0-0 0--0-0 0--0-Ci O-·-o--0 
9 I.LIE ii: E E E E 

e--Q 0--0---0 ii:O-O--O crO--O-O 3o-o--O ~0--0-0 3()-.-0--Q 
10 ffi F LLl F I.LI F F ~ F 

e-G ~J---O~o-o-o *o-o-o ii:o-o--o C\lo-o-0i l&.o-·-o-o 
_II ~ G III G ; G G ~ G 

0--0 ~) b ~ a:o-o--0 wO-O-O LIJO-O-O 0--0-Q f;0---0-0 
U V WI.LI H ~ H e> H H ::> H 

6---Q > ~0-0-0 ~0--0-0 ~ 0-0-0 0-0-0 ~0-·-0--0 
SHIFT <l J :ii J 1- J J 1- J 

e--o )- ~0-0--0 ..Jo-o-o eno-o--o 0--0--0 ~0-·-0-0 
:it: K· ~ K ~ K K ~ K 

go-o-o ~0-0-0 t; 0--0-0 0-0---C> 0-·-0--0 
a: L ~ L : L L L 

0-0-0 Q--0--0 0--0-0 0-0---0 0-·-0--0 
M M M M M 

0-0--0 0--0--0 0---0-0 Q-0--01 0-·-0-0 
N N N N N 

0-0-0 0-0-0 0-0--0 0-0-C> 0-·-0--0 
p p p p p 

0---0-0 0--0--0 0-0--0 0-0--0 cr·-o--o 
Q Q Q Q Q 

-;- SQ 

c cr-o -~ 0e;O 0-0 :~ e--Q ~ 

NC0--0 ~ -~ ~ ~4-" e-Q &--Q 
~R 84 

co-o easO ~ G-0 ~ 'e-Q ~ 

NC0--0 OssO ~ o-Q Oes-O. e--Q Os60 
COMP 

0-0 9e70 ~ e--o Oa7"0 ~ ~ 
A.T. 

0-0 9saO 0-seG 0-0 ·0se-0 '0--0 'Oe;O 
BT 

0--0 ·OsgO ·&sgO e-o Osg-0 0--0 ·0;g-0 
MASK T 

0-0 ~ ~ 0--0 Sgo-0 ·c:r--o ~ 
SL Z 
0--0 e:-Q E)--0 0-0 0--G 'S-0 0-0 

91 91 91 91 
NOHM 

0--0 ~ -~ C>--0 °"92-0 e>--0 ~ 
CH CL 

0-0 ·~ 0s3-o 0--0 Og;-0 0-0 eg;-o 
0 Og-p ~ 0---0 ~ e-o ~ G-Q 

·Og;-O e>gsQ e--Q °"9;-Q e--o Og;Q e---o 
0-0-0 0-0-0 0-0-0 0-0-0 0-·-0-0 

R R R R R 

0---0-0 cr-o--o 0-0-0 0--0-0 o--·-0-0 
s s s s s 

BUSES 

O? ~ 0-0 ·Og;-O C>-Q 

OgsO OgsQ e--0 Cge-0 e-g 
PROC V1ADR V1SH V2ADR V2SH 

o---G 
96 

~ 
~ 

R ADR R SH 

o-o-o o-o--o o-o-o o--o-<:> 0-·-0--0 
T T T T T 

0-0-0 0-0---0 0-0-0 0-0--0 0-·-0--0 
u u u u u 

cr--0--0 0-0-0 0---0-0 0-0-0 0-·-0-0 
v v v v v 

BUSES 

~36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 511>2 53 54 55 56 5 7 58 59 60 61 62 63 64 6~5 66 '67 68 

d 

c 

b 

a 

x 
w 
v 
u 
T 

s 
R 

Q 

p 

0 

N 

M 

L 

K 

J 

H 

G 

F 

E 

D 

c 
B 

A 






	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	212
	213
	213
	214
	214
	215
	215
	216
	216
	217
	217
	218
	218
	219
	219
	220
	220
	221
	221
	222
	222
	223
	223
	224
	224
	225
	225
	226
	226
	227
	227
	228
	228
	229
	229
	230
	230
	231
	231
	232
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253



