LINIVAC

FEDERAL SYSTEMS DIVIS ON

UNLVAC 9200/9300 Systems June 27, 1968
Card Assembler Programmers Reference
UP-4092 Rev. 2

UPDATING PACKAGE "B"

UNIVAC 9200/9300 Systems P.I.E. Bulletin 11, UP-7535.11, announces the release

and availability of Updating Package "B" for the 'UNIVAC 9200/9300 Systems Card

Assembler Programmers Reference," UP-4092 Rev. 2, 25 pages plus 1 Updating Sum-
mary Sheet. This material should be utilized in the following manner:

DESTROY FORMER FILE NEW PAGES
SECTION PAGES NUMBERED NUMBERED
Contents 3 Rev. 1 and 4 3 Rev. 1% & 4 Rev. 1
5 Rev. 1 and 6 Rev. 1 5 Rev. 2 & 6 Rev. 2
7 Rev. 1 7 Rev. 2
Section 2 58 6 5% & 6 Rev. 1
7 & 8 7 Rev. 1 & 8*%
Section 3 1 &2 1 Rev. 1 and 2*
Appendix A 13 Rev, 1 and 14 13 Rev. 1*¥ & 14 Rev. 1
Appendix B 7 Rev. 1 & 8 Rev. 1 7 Rev. 2 & 8 Rev. 1%
37 Rev. 1 & 38 Rev. 1 37 Rev. 2 & 38 Rev. 2
39 39 Rev. 1 & 40%%
Appendix C 1&2 1 Rev. 1 and 2 Rev. 1
3 Rev. 1 & 4 Rev. 1 3 Rev. 1¥ & 4 Rev. 2
N. A. 59(“)6 & 6**

*These are backups of revised pages, and remain unchanged.
**These are new pages.

UNIVAC 9200/9300 Systems
Card Assembler Programmers Reference
UP-4092 Rev. 2 March 15, 1968

UPDATING PACKAGE "A"

UNIVAC 9200/9300 Systems Pe.I.E. Bulletin 8, UP-7535.8, announces the release
and availability of Updating Package "A" for the "UNIVAC 9200/9300 Systems

Card Assembler Programmers Reference," UP-4092 Rev. 2, 66 pages plus 1 Updating
Summary Sheet., This material should be utilized in the following manner:

DESTROY FORMER FILE NEW PAGES
SECTION PAGES NUMBERED NUMBERED ‘
Contents 1 and 2 i1* and 2 Rev. 1
3 and 4 3 Rev. 1 and 4%
5 and 6 5 Rev. 1 and 6 Rev. 1
7 7 Rev. 1
3 3 and 4 3 Rev. 1 and 4 Rev. 1
5 and 6 5 Rev. 1 and 6 Rev. 1
7 and 8 7 Rev.e 1 and 8 Rev. 1
11 and 12 11 Reve 1 and 12 Rev. 1
4 1 and 2 1 Rev. 1 and 2 Rev. 1
5 5 and 6 5 Rev. 1 and 6 Rev. 1
7 and 8 7 Rev. 1 and 8%
15 and 16 15*% and 16 Rev. 1
21 21 Rev. 1
Appendix A 5 and 6 5 Rev. 1 and 6 Rev. 1
7 and 8 7 Rev. 1 and 8%
13 and 14 13 Rev. 1 and 14%
19 and 20 19 Rev. 1 and 20%
21 and 22 21% and 22 Rev. 1
23 and 24 23 Rev. 1 and 24%
25 and 26 25% and 26 Rev. 1
Appendix B 7 and 8 7 Rev. 1 and 8 Rev. 1
9 and 10 9 Rev. 1 and 10*%
11 and 12 11 Rev. 1 and 12%
17 and 18 17 Rev. 1 and 18%
21 and 22 21% and 22 Rev. 1
23 and 24 23*% and 24 Rev. 1
25 and 26 25 Rev. 1 and 26*%
27 and 28 27 Rev. 1 and 28%
29 and 30 29 Rev. 1 and 30%
31 thru 38 3l thru 38 all Rev. 1
Appendix C 3 and 4 3 Rev. 1 and 4 Rev. 1

*These pages are backups of revised pages, and remain unchanged.

UP-4092 UNIVAC 9200/9300 Contents
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
CONTENTS
CONTENTS lto7
1. INTRODUCTION 1-1to 1-4
I.1. GENERAL 1-1
1.2, THE PURPOSE OF AN ASSEMBLER 1-1
1.3. CARD ASSEMBLER FOR THE UNIVAC 9200/9300 1-2
1.4, ASSEMBLY LANGUAGE CHARACTERISTICS 1-4
2. THE ASSEMBLER LANGUAGE 2-1to 2-15
2.1. CHARACTER SET 2-1

2.2. STATEMENT FORMAT
2.2.1. Label Field

2.2.2. Operation Field
2.2.3. Operand Field

2.2.4. Comments Field

2.3. EXPRESSIONS

2.3.1. Decimal Representation

2.3.2. Hexadecimal Representation

2.3.3. Character Representation

2.3.4. Location Counter

2.3.5. Relative Addressing

2.3.6. Symbols

2.3.7. Relocatable and Absolute Expressions
2.3.8. Length Attribute

2.4. MACHINE INSTRUCTIONS

2.4.1. RX - Register to Storage Instructions
2.4.2. S1 - Instruction to Storage Instructions
2.4.3. S$S1 - Storage to Storage Instructions
2.4.4. S$S2 — Storage to Storage Instructions
2.4.5. Implied Base Register and Length

2.5. DATA AND STORAGE FORMATS
2.5.1. DC - Define Constant

2.5.1.1. Character Representation
2.5.1.2. Hexadecimal Representation
2.5.1.3. Expression Constants

2.5.2. DS —~ Define Storage

I

NN RN N RO N NN N RO RN N N
|
QB NON N b=t = =t

!

1
— = WO o oo d O

[CRENCINCRECR CR)
[|
o o

N NS
[

—
N —

2-12
2-13
2-13
2-14

UP-4092 UNIVAC 9200/9300 ‘ Rev. 1 Contents
Rev. 2 CARD ASSEMBLER SECTION: | PacE:

3. ASSEMBLER DIRECTIVES AND SYSTEM CODES 3-1to 3-18
3.1. DIRECTIVES 3-1
3.1.1. Symbol Definition 3-1
3.1.2. Assembly Control 3-2
3.1.2.1. START - Program Start 3-2
3.1.2.2. END - Program End 3-3
3.1.2.3. ORG - Set Location Counter 3-3
3.1.3. Base Register Assignment 3-4
3.1.3.1. USING — Assign Base Register 3-5
3.1.3.2. DROP - Unassign Base Register 3-5
2.1.3.3. Function of USING and DROP Directives 3-5
3.1.3.4. Direct Addressing 3-7
3.1.4. Program Linking 3-7
3.1.4 ENTRY - Extemally Defined Symbol Declaration 3-8
3.1 4 2 EXTRN — Externally Referenced Symbol Dectaration 3-8
3.1.5. Assembler Program Listing 3-8
3.1.6. Assembler Control Card 3-14
3.1.7. Operand Format 3-14
2.z. SYSTEM CODES 3-14

4. OPERATING PROCEDURES 4-1to 4-9
4.1. GENERAL OPERATING INSTRUCTIONS 4-1
4.1.1. Card Controlier Operating Instructions 4-1
4,1.1.1. Start Instructions 4-1
4.1.1.2. Second Pass Rerun Instructions 4-2
4.7. ASSEMBLER CARD OUTPUT 4-2
4.z.1. Element Definition Card 4-3
4,7.2. External Definition Card 4-4
4.2.3. Program Reference Card 4-4
4.72.4. External Reference Card 4-5
4.2.5. Text Card 4-5
4.7.6. Transfer Card 4-6
4.3, CARD ASSEMBLER PRINTED OUTPUT 4-7
4.4, LINKING THE CARD ASSEMBLER 4-8

5. LINKER 5-1to 5-21

5.1. INTRODUCTION 5-1

5.2, LINKER INPUT 5-2

5.3. LINKER CONTROL CARD FORMATS

5.3.1. CTL
5.3.2. PHASE
5.3.3. EQU
5.3.4. END
5.3.5. REP
5.3.6. MOD
5.4, EXAMPLE

5.5. ONE- AND TWO-PASS LINKING

UP-4092 UNIVAC 9200/9300 Rev. 1 Contents
Rev. 2 CARD ASSEMBLER ' SECTION: PAGE:
5.6. LINKING THE LINKER 5-13
5.7. CARD OUTPUT FROM THE LINKER 5-18
5.7.1. Type Q Cards 5-18
5.7.2. Type Y Cards 5-18
5.8. LINKER MAP 5-19
5.8.1. Linker Map Print Lines 5-19
5.8.2. Linker Map Error Messages 5-20
5.9. LINKER CONSOLE DISPLAYS 5-21
APPENDICES
A. PREASSEMBLY MACRO PASS A-1to A-30
Al. GENERAL DESCRIPTION A-1
A2, MACRO INSTRUCTION FORMAT A-2
A2,1. Parameters A-2
A3, WRITING MACRO DEFINITIONS A-4
A3.1. PROC Directive A-4
A3.2. NAME Directive A-5
A3.3. END Directive A-5
A3.4, Comments A-5
A4, INCORPORATING PARAMETERS INTO MACRO CODING A-6
A5. NAME STATEMENT A-7
A6. CONDITIONAL MACRO PASS INSTRUCTIONS A-9
A6.1. DO and ENDO Directives A-9
A6.2. GOTO and LABEL Directives A-11
A6.3. Set Variables A-12
A6.3.1. GBL Directive A-12
A6.3.2. LCL Directive A-13
A6.3.3. SET Directive A-13
A6.3.4. Relational and Logical Operators A-13
A6.3.5. Character Values A-14
A6.3.6. Use of Character Values A-14
A7. CONTINUATION CARDS A-17
A8. LABELS USED IN UNIVAC PRODUCED MACROS A-17
A9, MACRO INSTRUCTION DECK A-17
A10. MACRO PASS OUTPUT FORMAT A-18
A10.1. Source Code Card Format A-18
A10.2. Macro Instruction Card Format A-18
A10.3. Comments Card Format A-18
A10.4. Error Card Format A-19
All, MACRO PASS CONSOLE DISPLAYS A-19
A12. LINKING THE MACRO PASS A-21
A12.1. Operating Instructions A-22
A12.2. Control Card A-23

UP-4092 UNIVAC 9200/9300 l Rev. 1 Contents

Rev. 2 CARD ASSEMBLER SECTION: PAGE:
A13. THE COMPRESSOR A-23
A13.1. Compressed Macro Library Deck Format A-23
A13.1.1, Data Cards A-24
A13.1.2. Fixups A-24
A13.1.3. Header Specification A-25
A13.2. Error Indications A-25
A13.3. Compressor Console Displays A-27
A13.4. Linking the Compressor A-28
A13.5. Operating Instructions A-30
A13.6. Control Card A-30

B. INPUT/OUTPUT CONTROL SYSTEM (10CS) B-1to B-40

Bl. GENERAL DESCRIPTION B-1

BZ. GE

B3. DEFINITION STATEMENTS (DECLARATIVE MACROS)

NERAL USAGE

B3.1. Header Entry Card
B3.2. Detail Entry Cards

B3.2.1.
B3.2.2.
B3.2.3.
B3.2.4.
B3.2.5.
B3.2.6.

B3.2.7.
B3.2.8.
B3.2.9.

B3.2.10.
Bi.2.11.
B3.2.12.
B3.2.13.
B3.2.14.
B3.2.15.
B3.2.16.
B3.2.17.

B3.2.18.

Block Size Entry (BKSZ)

Channel Entry (CHNL)

Control Entry (CNTL)

End-of-File Address Entry (EOFA)

The Function Entry — UNIVAC 1001 Card Controller (FUNC)
Allowable Functions for the UNIVAC 1001 Card Controller
B3.2.6.1. Transfer-and-Read Functions
B3.2.6.2. Send-and-Receive Data Functions

Input Area Entry (10A1)

input Area Entry (INAR)

input Translate Table Entry (ITBL)
Mode Detail Entry (MODE)
Output Area Entry (OUAR)
Output Translate Table (OTBL)
Overlap Entry (ORLP)

Print Bar Entry (FONT)

Printer Advance Entry (PRAD)
Punch Error Entry (PUNR)
Printer Overflow Entry (PROV)
Type of File Entry (TYPF)

B4. SUMMARY OF DETAIL ENTRY CARDS

B5. DE

FINITION STATEMENT EXAMPLES

B3.1. Online Serial Punch File Example Definition
B5.2. Reader File Example Definition

B5.3. Printer File Example Definition

B5.4. Online Serial Read and Punch File Example
B5.5. Card Controller File Example

|
—

| A T T T e

F?U wwwwwwwwwwmﬁnwwwwwmwwwww e e}
b ggooooooooooo\nmmmmmm-bpwwwwml\vv\)
—

i
[T —
(RS N

B-12
B-12
B-13
B-13

UP-4092 UNIVAC 9200/9300

Content
Rev. 2 CARD ASSEMBLER l Rev. 2 secmom T e
B6. I0CS MACRO INSTRUCTIONS (IMPERATIVE MACROS) B-13
B6.1. GET Macro Instruction B-13
B6.2. PUT Macro Instruction B-14
B6.3. Work Area Considerations B-14
B6.4. Programming Considerations-Read/Punch Combined File B-14
B6.5. OPEN Macro Instruction B-15
B6.6, CLOSE Macro Instruction B-15
B6.7. CNTRL Macro Instruction B-15
B6.7.1. Printer Spacing B-15
B6.7.2. Printer Skipping B-16
B6.7.3. Stacker Select B-16
B6.7.4. Numeric Printing B-17
B6.7.5. Specifying Columns to be Punched - B-18
B6.8. Summary of UNIVAC 9200/9300 Card System I0CS Imperative Macros B-18
B7. PROGRAMMING CONVENTIONS - PROGRAM REGISTERS B-19
B8. GENERAL PROCEDURE SUMMARY FOR USING I0CS B-19
B9. STORAGE REQUIREMENTS B-19
B10. APPROXIMATE TIMES FOR I0CS ROUTINE EXECUTION B-20
Bil. CARD READER DEFINITION STATEMENTS B-21
B11.1. Preparing the Card Reader B-21
B11.2. Error Indications B-22
B12. PRINTER DEFINITION STATEMENTS B-23
B12.1. Preparing the Printer B-23
B12.2. Error Indications B-24
B12.3. Paper Low B-25
B13. SERIAL PUNCH DEFINITION STATEMENTS B-25
B14. SERIAL READ DEFINITION STATEMENTS B-26
B15. SERIAL READ/PUNCH DEFINITION STATEMENTS B-27
B15.1. Buffer and Work Area Size B-27
B15.2. End-of-File B--28
B15.3. Preparing the Serial Read/Punch B-28
B15.4. Error Indications B-29
B16. UNIVAC 1001 CARD CONTROLLER DEFINITION STATEMENTS B-30
B16.1. Work Area Size B-31
B16.2. Preparing the Card Controller B-31
B16.3. Error Indications B-32
B16.3.1. STOP 1 (65xx) B-32
B16.3.2. STOP 2 (65yy) B-34
B17. ROW READ/PUNCH DEFINITION STATEMENTS B-35
B17.1. Punch Only B-35
B17.2. Read Only B-36
B17.3. Read and Punch : B-36
B17.4. Buffer and Work Area Size B-37
B17.5. End-of-File B-37
B17.6. Preparing the Row Read/Punch B-37
B17.7. Error Indications B-38
Bi18. 10CS GENERATION B-40

B19. ADDITIONAL KEYWORD PARAMETER SPECIFICATIONS B-40

UP-4092 UNIVAC 9200/9300 l Contents
Rev. 2 CARD ASSEMBLER Rev. 2 SECTION: PAGE:
C. CARD LOAD ROUTINE C-1to C-6
Cl. GENERAL C-1
C2. PARAMETERS FOR THE LOAD ROUTINE C-1
C3. LOADING ADDITIONAL PROGRAMS C-2
C4. LOAD ROUTINE STOPS C-3
C5. DESCRIPTION OF OPERATION C-3
C5.1. Bootstrap Section C-3
C5.2. Clearing Section C-4
C5.3. Reader Section C—4
C5.4. Loader Section C-4
C6. PROGRAMMING CONSIDERATIONS C-4
C7. LOADING FROM CARD READER C-5
8. 1001 LOADER LOADING PROCEDURE C-5
D. EXECI D-1to D-3
Di. GENERAL D-1
DZ. MACRO INSTRUCTIONS D-1
DZ.1. Message Macro (MSG) D-1
2. Restart Macro D-2
D3. 1/0 CONTROL ROUTINE MESSAGES D-3
E. TRANSLATION TABLES E-1to E-1
Eil. GENERAL E-1
FIGURES
1-1. Source-to-Object Code Translation with Assembler 1-1
1-2. UNIVAC 9200/9300 Assembly System 1-3
2-1. Example of Source Code Statements 2-2
3—1. Example of Printer Output of.a Program 3-9
5-1. Elements A and B Deck Structure 5-7
5-2. Linker Input 5-8
5-3. Header Processing 5-10
£—4. ESID Processing for Element A 5-11
£-5. ESID Processing for Element B 5-12
5-6. Linker Input Deck Sequence for Two-Pass Operation 5-14
5—7. Linker Input Deck Sequence for One-Pass Operation 5-15
A-1. Schematic of Preassembly Macro Pass Operation A-1

UP-4092 UNIVAC 9200/9300 l Rev. 2 Contents
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
TABLES
2-1. Instruction Mnemonics 2-17
2-2. Symbols Used in Describing Operand Formats 2-8
2-3. Operand Specificatioﬁs Using Implied Base Register and Length Notation 2-11
2-4. Characteristics of the Various Constants 2-14
3~1. Internal Code 3-15
B-1. UNIVAC 1001 Card Controller 10CS Initial Error Indications B-33
B-2. UNIVAC 1001 Card Controller 10CS Requested Error Indications B-34

UP-4UYZ
Rev. 2

CARD ASSEMBLER

UNIYAL 74VV/73VV
SECTION:

PAGE:

1.1.

1.2.

1. INTRODUCTION

GENERAL

Use of this manual presupposes a familiarity with the instruction repertoire and
instruction and data formats of the UNIVAC 9200/9300 as described in ‘“UNIVAC
9200/9300 Systems Central Processor and Peripherals Programmers Reference,”’
UP-7546 (current version).

THE PURPOSE OF AN ASSEMBLER

An Assembler is one result of the many and continuing efforts to improve communica-
tions between computers and computer usetrs. The general direction of these efforts
has been towards an intermediate language which is close to the language of the user
and which relies heavily on the computer for translation into its language.

In an Assembler language all coding is represented in the form of statements which
are understandable to the programmer. The Assembler then converts these statements
into a binary form which is understandable to the computer. The programmer’s state-
ments, when keypunched, are called source code. The Assembler converts the source

‘code into object code. Figure 1—-1 shows the general flow of source-to-object code

conversion with an Assembler.

PROGRAMMER

states the problem in the "
Language of the Assembler

SOURCE CODE

statements keypunched in
card code form

ASSEMBLY

translation to Object Code

OBJECT CODE

Binary Expressions
meaningful to the computer

Figure 1-1. Source-to-Object Code Translation with Assembler

UP-4092
Rev. 2

UNIVAC 9200/9300 1
CARD ASSEMBLER SECTION: FAGE:

CARD ASSEMBLER FOR THE UNIVAC 9200/9300

The Card Assembler for the UNIVAC 9200/9300 System is an efficient, easy-to-use
software aid that satisfactorily handles most of the programming problems encountered
by the user, Each machine instruction and data form have simple, convenient repre-
sentations in the assembly language. The rules which govern the use of the language
are not complex; they may be learned quickly and applied easily.

A program in Card Assembler language for the UNIVAC 9200/9300 is written on a
standard Univac coding form. The information on the form is keypunched, and the
resulting source deck is read twice by the Assembler. Output cards, or an object

deck, are produced by the Assembler in relocatable object code or absolute object code.
The object deck is ready for loading into the UNIVAC 9200/9300 by means of the

Card Program Loader routine. The basic flow of the UNIVAC 9200/9300 Card Assemb-
ler and associated software is shown in Figure 1-2. Input to the Assembler is a

card deck keypunched from an Assembler coding form or is the output from the Pre-
assembly Macro Pass.

The macro library is in macro code. Parameters are established for the macros by means
of macro instructions. The Preassembly Macro Pass (described in Appendix A) converts
the macro code into source code in preparation for assembly.

The assembly operation is a conventional two-pass procedure which produces a card
deck in relocatable object code. The outputs of several separate assemblies may be
combined by means of a Linker, The Linker output is in absolute object code. When a
program is ready to be run, the relocatable or absolute object deck is loaded by a Card
Program Loader subroutine.

UP-4092 UNIVAC 9200/9300 | 1

Rev. 2 CARD ASSEMBLER SECTION: PAGE:
MACRO
MACRO INSTRUCTION
LIBRARY DECK
PREASSEMBLY ‘ MACRO
MACRO PASS CODE
T KEYPUNCH
MACRO SOURCE MACRO
CODE DECK SOURCE
CODEDECK
l SOURCE
CODE
ASSEMBLER ASSEMBLER
” /
RELOCATABLE RELOCATABLE
CODE CODE
RELOCATABLE"
LINKER CODE
OBJECT
’ CODE
ABSOLUTE
CODE DECK
LOADER

Figure 1=2. UNIVAC 9200/9300 Assembly System

UP-4092
Rev. 2

UNIVAC 9200/9300 1
CARD ASSEMBLER secTion: PAGE:

1.4,

ASSEMBLY LANGUAGE CHARACTERISTICS

The succeeding sections of this manual describe in detail the use of the Assembler
coding form and the operational characteristics of the Assembler. These characteristics
are summarized briefly as follows:

Mnemonic Operation Codes — A fixed name, consisting of two, three, or four letters, is
assigned to each machine instruction. The nime is chosen to suggest the nature
of the instruction, thereby helping the user to learn and remember the instruction.

Symbolic Addressing and Automatic Storage Assignment — Symbolic labels may be
assigned to instructions or groups of data. An instruction may then reference
the labeled data by label rather than by storage address. In many cases, other
data required by the instruction (such as operand length) may be supplied auto-
matically by the Assembler. Another major task of the Assembler is to keep
track of all storage locations used and to assign all incoming instructions and
data to specific locations. The Assembler also handles all base register and
displacement calculations.

Flexible Data Representation — Data may be represented in the Assembler in decimal,
hexadecimal, or character notation, thus allowing the programmer to choose the
most suitable form for each constant.

Relocatable Programs and Program Linking — Programs are prepared by the Assembler
in an absolute or relocatable form. In relocatable form, the actual storage loca-
tions to be occupied by a program need not be specified at assembly time, or if
specified, they may easily be altered before loading. Provisions are made for
linking together, loading, and running as one program the results of separate
assemblies, thereby reducing the machine time required to make changes to one
part of a program.

Program Listing — One of the outputs of the Assembler is a printed listing of source
and object codes. This listing includes flags marking any errors detected by the
Assembler. Source code errors do not cause the Assembler to stall. The Assembler
continues to process the rest of the source code performing its usual error checks,
thus minimizing the number of assemblies required to produce error-free code.

UP-4092
Rev. 2

UNIVAC 9200/9300 Z 1
CARD ASSEMBLER SECTION: l PAGE:

]
.
i

2.2,

2.2.1,

2.2.2.

- 2.2.3.

2. THE ASSEMBLER LANGUAGE

CHARACTER SET

The character set used in writing statements in the Assembler language consists of:

Letters A,B,C,...,Z
Digits’ 0,1,2,...,9
Special Symbols * +-, () ' blank

STATEMENT FORMAT

Statements in the Assembler language are written on a standard coding form. Informa-
tion for the Assembler and comments are written in columns 1 through 71. Column 72
must be blank. Columns 73 through 80 may contain program identification and sequenc-
ing information, The information in columns 1 through 71 consists of the following
fields.

Label Field

The label field begins in column 1 and is terminated by a blank column. There may
be no embedded blanks. The field may either be blank or contain a symbol whose
value is to be defined. More detailed information about symbols is contained under
headings 2.3.6 and 3.1.1.

Operation Field

The operation field begins with the first nonblank after the label field and is
terminated by a blank. It contains either the name of an assenibler directive or the
mnemonic operation code for a machine instruction.

Operand Field

The operand field begins with the first nonblank after the operation field and

is terminated by a blank not contained in a character representation. This field con-
tains information which defines the operands of a machine instruction or which
supplies the specifications required with an assembler directive.

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

2 2
SECTION: . PAGE:

2.2.4., Comments Field

The comments field begins with the column after the blank that terminates the
operand field and ends at column 71. It may contain any combination of characters
including blanks. It is not processed by the Assembler other than including it on
the assembly listing. It may contain remarks to clarify the purpose or operation of
the associated coding. A line may consist entirely of comments from columns 2
through 71 if column 1 contains an asterisk.

LABEL 5 OPERATION & OPERAND 5
1 10 16
1. * THHS, sl 1A COMMENT, ILENE) o v vl oo b el
2, TAG | | 1« BIAIL, VS TAlG2, o o b v b acacn b a b
3. (L H 115, TIAIGI3, | 11 1 THIE OPEIRATION, (CODIE IS, [LiH
4. RO B! LIH 4 UWS TAIG3y o Loy v v vy Lo by

Figure 2--1. Example of Source Code Statements

Although the assembler language is free form, it is recommended that source code
statements be written with the first character of the operation code in column 10
and the first character of the operand field in column 16. Tabulating the statements
in this fashion creates a program listing which is neater in appearance and easier
to read. The standard coding form is ruled to conform to this convention. Thus,
although the statements on lines 3 and 4 of Figure 2—~1 are equivalent to the
Assembler, the form of line 4 is preferred to that of line 3.

The Assembler ignores the presence of any blank cards in the source code deck.
2.3. EXPRESSIONS

The operand field of a statement in the assembler language ordinarily consists of one
or more expressions. Expressions may be grouped by parentheses and are separated

by commas. For example, the basic operand formats for computer instructions are shown
in Table 2-3. In this table, each subscripted letter represents an expression. An ex-
pression may be a single term or a number of terms connected by operators. The
permissible operators are a plus sign (+) representing addition and a minus sign (=)
representing subtraction. A leading minus sign is also allowed to produce the nega-
tive of the first term. All operations are performed in two’s-complement binary nota-
tion. A term may be one of the following:

A decimal, hexadecimal, or character representation of an actual value.

A location counter reference.

A symbol.

2.3.1. Decimal Representation

A value may be represented directly by a string of up to five digits, 0 through 9,
forming a decimal number from O through 32767. Such a number is converted to a

binary value occupying one or two bytes depending on the type of field for which it
is intended. Following are some decimal representations.

UP-4092 UNIVAL Y4UU/Y3UU 2
Rev._ 2 CARD ASSEMBLER . SECTION: PAGE:
Decimal Representation A Binary Value
-0 , 00000000 -
13 00001101
257 00000001 00000001
32767 01111111 11111111

2.3.2. Hexadecimal Representation

2.3.3.

A hexadecimal representation consists of a string of digits preceded by X' and
followed by ' (apostrophe). Each hexadecimal digit represents a half byte of in-
formation. The hexadecimal digits and their values are:

0 - 0000 8 - 1000
1 - 0001 9 - 1001
2 - 0010 A - 1010
3 - 0011 B - 1011
4 - 0100 Cc - 1100
5 - 0101 D - 1101
6 - 0110 E - 1110
7 — 0111 F - 1111

Some examples of hexadecimal representations and their values are:

Hexadecimal Representation Binary Value
X'D 00001101
X'101: 00000001 00000001
X'7FFF"' 01111111 11111111

Character Representation

A character representation consists of a string of characters preceded by C' and
followed by '. The following are valid character representations.

Character Representation| EBCDIC Value
c'D! 11000100
C'GROSS' 1100011111011001110101101110001011100010
c'9' 11111001

In a character representation, an apostrophe is represented by two successive
apostrophes,.and an ampersand by two successive ampersands.

In an expression, a self-defining term in character representation can be a
maximum of one character in length.

UP-4092 UNIVAC 9200/9300 I 2

Rev. 2 CARD ASSEMBLER

l SECTION: . PAGE:

2.3.4. Location Counter

An indication of the next location available for assignment is maintained as

a counter called the location counter. After the Assembler processes an instruction
or constant, it adds the length of the instruction or constant processed to the loca-
tion counter.

Each instruction or address constant must have an address which is a multiple of
two. Such an address is said to fall on a halfword boundary. If the value of the lo-
cation counter is not a multiple of two when assembling such a constant or an in-
struction, a one is added to the location counter before assigning an address to the
current line, Storage locations reserved by this process receive binary zeros when
the program is loaded.

The current value of the location counter is available for reference in the Assembler
language and is represented by the single special character * (asterisk). If written
in a constant representation or in an instruction operand exptession, this symbol is
replaced by the storage address of the leftmost byte allocated to that instruction or
constant. Thus the instruction

BC 15,*

represents a one-instruction loop.

2.3.5. Relative Addressing

An instruction may address data in its immediate vicinity in storage in terms of its
own storage address. This is called relative addressing and is achieved by an ex-
pression of the form *+n or *¥-n where n is the difference in storage addresses of
the referring instruction and the instruction or constant being accessed. Relative
addressing is always in terms of bytes, not words or instructions. For example, in

the coding
LABEL 5 OPERATION & OPERAND)

10 16 —
R CIH, | W LMty o b by e b e g
RS R BIC, | Ty a4 042 oy o Loy v b v by e b
IR AH 4 VS, TWI0 o v b v v by g
R N S BIC, 1151‘:1*1"11121 e v v b v by by
TR S MIVIC, AB g Ly b e s L g g

the address *+12 in the second line is the address of the instruction in the last
line and the address *-12 in the fourth line is the address of the instruction in the
first line since each of the first four instructions is four bytes long.

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

SECTION: PAGE:

2.3.6. Symbols

A symbol is a group of up to four alphanumeric characters. The first, or leftmost,
must be alphabetic. Special characters or blanks may not be contained within a
symbol. The following are examples of valid symbols:

A LOSS
A72Z PRFT
CAT

The following are not valid symbols for the reasons stated:
GROSS More than four characters
N PA Embedded blank
SR)N Special character

A symbol may be assigned any value from 0 through 32767. It is assigned a value,
or defined, when it appears in the label field of any source code statement other
than a comment. A symbol appearing in the label field of an EQU or ORG directive
is assigned the value of the expression in the operand field. In all other cases the
value assigned is the current value of the location counter after adjustment to a
halfword boundary, if necessary. The value is assigned to the current label before
the location counter is incremented for the next instruction, constant, or storage
definition. Thus, if a symbol appears in the label field of a statement defining an
instruction, constant, or storage area, the symbol is assigned a value equal to the
storage area address of that instruction, constant, or storage area.

2.3.7. Relocatable and Absolute Expressions

A single term may be either relocatable or absolute. Decimal, character, and hexa-
decimal representations are all absolute terms. A location counter reference within
a section of relocatable code yields a relocatable value. If a symbol is defined by
appearing in the label field of a source code statement within a section of relocat-
able code, its value will be relocatable.

An expression is relocatable in the following cases: if it consists of an absolute
expression plus a relocatable term; if it can be reordered to have that form; or if it
consists solely of a relocatable term. Some examples of relocatable expressions are:

R

A+R

R+A
R—-R+A+R

where R represents a relocatable term and A an absolute term.

An expression is absolute if all of the terms in the expression are absolute or if it
consists only of absolute terms plus an even number of relocatable terms of which
exactly half are preceded by minus signs. Some examples of absolute expressions
are:

A

A+A-A
A-A+A+A
R+A-R
R-R+A

UP-4092
Rev. 2

UNIVAC 9200/9300 2
CARD ASSEMBLER Rev. 1 SECTION: PAGE:

2.3.8.

2.4.

An expression may be negatively relocatable under certain circumstances (see
2.5.1). Such an expression consists of an absolute expression minus a relocatable
expression, or an expression which may be reordered to that form. Some examples
are as follows:

A—-R A—R-R+R R-R+A-R

Length Attribute

The Assembler associates a length attribute with a symbol defined in the label field
of a source code line representing an instruction, constant, or storage definition.

The length attribute of such a symbol is the number of bytes assigned to the instruc-
tion, constant, or storage area involved. The length attribute of an expression is also
determined by the Assembler and is a function of the leading term of the expression.
If the first term of an expression is an absolute value, a length attribute of one byte
is assigned to the expression. If the leading term is a symbol, the number of bytes
attributed to the expression is the same as the length attributed to the symbol. Thus,
if TAG appears in the label field of an LH instruction (Load Halfword), it would have
a length attribute of 4 since LH is a 4-byte instruction. In referencing the same label,
the expression TAG+195 also has a length attribute of 4; but the expression 195+TAG
has a length attribute of 1 because the leading term is a constant.

When a location counter reference appears as the first term of an expression, its
length attribute is defined as having either the length of the instruction in which it
appears or as a length attribute of 1 (when the reference to the location counter
occurs in an EQU statement).

TAG EQU* The length attribute for TAG is 1

MVC *¥+12,ABC This instruction will move 6 bytes from ABC to *+12.

MACHINE INSTRUCTIONS

A list of the standard machine instructions giving the numeric and hexadecimal opera-
tion codes with the instruction type is shown in Table 2-1.

The machine instruction format consists of a label (optional), a mnemonic operation
code, and an operand. If a symbol is used in the label field of a machine instruction,

it is assigned the address of the leftmost character of the instruction and receives

a length attribute equal to the length of that instruction. There are four types of in-
struction formats. These are shown below together with a brief explanation of the func-
tions performed by the instructions within each format type. Table 2—2 defines the sym-
bols used in the instruction type formats.

‘UP-4092
Rev. 2

UNIVAC 9200/9300

CARD ASSEMBLER

Rev. 1

SECTION:

PAGE:

HEXADECIMAL
MNEMONIC FUNCTION OPERATION FORMAT
CODE
AH ADD HALFWORD AA RX
Al ADD IMMEDIATE A6 N
AP ADD (FACKED) DECIMAL FA $S82
BAL BRANCH AND LINK 45 RX
BC BRANCH ON CONDITION 47 RX
CH COMPARE HALFWORD 49 RX
CLC COMPARE LOGICAL CHARACTER D5 §s1
cLi COMPARE LOGICAL IMMEDIATE 95 St
CP COMPARE (PACKED) DECIMAL F9 §82
DP DIVIDE (PACKED) DECIMAL FD §S2
ED EDIT DE §S1
HPR HALT AND PROCEED A9 Sl
LH LOAD HALFWORD 48 RX
LPSC LLOAD PROGRAM STATE CONTROL A8 St
MP MULTIPLY (PACKED) DECIMAL FC §§2
Mve MOVE CHARACTERS D2 $S1
MVI *MOVE IMMEDIATE DATA 92 S|
MVN MOVE NUMERICS D1 sS1
MVO MOVE WITH OFFSET Fl §§2
NC AND CHARACTERS D4 $s1
NI AND IMMEDIATE DATA 94 St
oc OR CHARACTERS D6 §S1
Ol OR IMMEDIATE DATA 96 N
PACK PACK F2 §82
SH SUBTRACT HALFWORD AB RX
SP SUBTRACT (PACKED) DECIMAL FB §§2
SPSC STORE PROGRAM STATE CONTROL A0 S1
SRC SUPERVISOR REQUEST Al St
STH STORE HALFWORD 40 RX
TIOJ TEST 1/0 A5 S1
™ TEST UNDER MASK 91 Si
TR TRANSLATE DC SS1
UNPK UNPACK F3 §§2
XIOF EXECUTE INPUT/QOUTPUT FUNCTION A4 Si
ZAP ZERO ADD (PACKED) DECIMAL F8 §§2

Table 2—1. Instruction Mnemonics

UP-4092 UNIVAC 9200/9300 . 2 8
RBV. 2 CARD ASSEMBLER SECTION: PAGE:
SYMBOL MEANING
R1 The number of the register addressed as operand 1
[The immediate data or device address used as operand 2
of an Sl instruction.
L The length of the operands *
L The length of operand i *
Si The storage address of operand i
B; The base register for operand i
D; The displacement for operand i
* This is the true length of the operand, not the length less one, as required in object code. The
Assembler makes the necessary reduction of one in the length when converting source to object code.
Table 2—-2. Symbols Used in Describing Operand Formats
2.4.1. RX — Register to Storage Instructions
REGISTER BASE REG. DISPLACEMENT
OP CODE RX
Rl 82 DZ
0 7 8 11 12 15 16 19 20 31
Complete Operands Form: Rq,Do(,Byp) 4-byte instruction
In general, instructions in this format are used to process data between registers
and storage and include such functions as load, store, compare, add, subtract, and
branch. The mnemonic codes for instructions using this type of format are:
AH Add Halfword
BAL Branch and Link
BC Branch on Condition
CH Compare Halfword
LH Load Halfword
SH Subtract Halfword
STH Store Halfword
2.4.2. SI — Instruction to Storage Instructions
IMMEDIATE OPERAND BASE REG. DISPLACEMENT
OP CODE Sl
I By D;
0 7 8 15 16 19 20 31

Complete Operands Form: D1(By1). 1y 4-byte instruction

UP-4092 UNIVAC 9200/9300 | 2
Rev. 2 CARD ASSEMBLER cecrion:

In general, instructions with this format are vsed for processing with control data
contained in the instruction., The mnemonic codes for instructions using this type
of format are:

Al Add Immediate

CLI Compate Logical Immediate
HPR Halt and Proceed

LPSC Load Program State Control
MVI Move Immediate Data

NI AND Immediate Data

Ol OR Immediate Data

SPSC Store Program State Control
SRC Supervisor Request

TIO Test 1/0

™ Test Under Mask

XIOF Execute I/0 Function

2.4.3. SS1 - Storage to Storage Instructions

OPERAND LENGTH BASE REG. DISPLACEMENT
OP CODE SS1
0 78 15 16 19 20 31
BASE REG. DISPLACEMENT
By Dy
32 35 36 47
Complete Operands Form: Dl(LvBI)'DZ(BZ) 6-byte instruction

The instructions in this format are used to process data in storage when the
operands are of equal length, and include such functions as comparisons, trans-
fers, translations, and logical operations. The mnemonic codes for instructions
using this type of format are:

CLC Compare Logical Character
ED Edit

MVC Move Characters

MVN Move Numerics

NC AND Characters

ocC OR Characters

TR Translate

UP-4092 UNIVAC 9200/9300 2 10
ReV. 2 CARD ASSEMBLER SECTION: PAGE:
2.4.4. SS2 — Storage to Storage Instructions
OPERAND .
LENGTH BASE REG. DISPLACEMENT
OP CODE §82
Ly Ly By D;
0 7 8 15 16 19 20 31
BASE REG. DISPLACEMENT
B, Dy
32 35 36 47
Complete Operands Form: Dl(Ll,Bl),Dz(LZ,BZ) 6-byte instruction

2.4.5.

The instructions in this format are used to process operands of unequal length
and to process packed decimal values. The various functions include decimal opera-
tions (add, subtract, compare), shift operations, and pack and unpack operations.

The mnemonic codes for instructions using this type of format are:

AP
Cp
DP
MP
MVO
PACK
SP
UNPK
ZAP

Add Packed Decimal
Compare Packed Decimal
Divide Packed Decimal
Multiply Packed Decimal
Move With Offset

Pack

Subtract Packed Decimal
Unpack

Zero Add Packed Decimal

Implied Base Register and Length

Where an operand is described in terms of a storage address and a length, the ex-
pression used may be simplified from that shown in the instruction format by imply-
ing the base register and the length. Information supplied in the USING and DROP
directives enable the Assembler to separate a storage address into a base register
and a displacement. If a length attribute is associated with the expression but is

not specified in the statement, a value equal to the length of the operand is supplied
by the Assembler, Table 2—3 lists the complete specification for the operand referenc-
ing memory, applicable instruction types, and the operand format as it may be

written utilizing an implicit base register and/or length representations.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:

PAGE:

11

2.5,

COMPLETE OPERAND SPECIFICATION USING
APPLICABLE | cppciricaTION
INSTRUCTION IMPLIED BASE IMPLIED BASE
FOR ONE IMPLIED
TYPES REGISTER REGISTER
OPERAND NOTATION LENGTH AND LENGTH
RX D,(,B,) s, NA NA
S| D,(B,) s, NA NA
$s1 D,(L,B,) $,(L) D,(,B,) s,
$81 D,(B,) S, NA NA
$52 D,(L,,B,) $,(L,) D,(,B,) s,
$52 D,(L,,B,) 5,(L,) D,(,B,) s,

Table 2—-3. Operand Specifications Using Implied Base Register and l_ength Notation

Example:

To move 80 characters from the field labeled OPA defined as a 90-char-

acter field to the field labeled OPB and defined as an 80-character field,

the instruction could be written as follows:
MVC

The length attribute of OPB is implied.

OPB,0PA

If 90 characters were to be moved, the instruction would be written

MVC

DATA AND STORAGE FORMATS

OPB(90),0PA

The formats for data and storage statements are similar to those for a machine instruc-
tion. A symbol may be used in the label field. It is assigned the address of the left-
most character of the constant or storage area being specified and is attributed with

a length equal to that of the specified constant or storage area, The operation code

is either DC (Define Constant) or DS (Define Storage). The operand has various

formats which are explained below.

UP-4092
Rev. 2

UNIVAC 9200/9300 2 12
CARD ASSEMBLER SECTION: PAGE:

2.5.1.

2.5.1.1.

DC - Define Constant

There are three types of constants: C for character representation; X for hexadecimal;
and Y for expression. To define a constant, the assembly directive DC is written in
the operation field. The statement has the form:

LABEL OPERATION CODE OPERAND

Symbol DC tLn'c'
or

LABEL OPERATION CODE OPERAND

Symbol DC Y(e)
or

LABEL OPERATION CODE OPERAND

Symbol DC YL 1(e)

LABEL OPERATION CODE OPERAND

Symbol DC YL2(e}

where: n is a decimal number < 16 specifying the number of bytes the constant
is to occupy,

t is X or C denoting hexadecimal or character representation, respec-
tively,

c is the actual character or hexadecimal representation for the constant,
and

e is any acceptable expression as previously defined.
Character Representation

A character representation is a string of as many as 16 characters, including
blanks, enclosed by apostrophe marks., The apostrophe mark itself is represented
by two successive apostrophes and an ampersand by two successive ampersands.
In each of these cases the two characters count only as one towards the limit of 16.
Thus, to represent a character constant of 16 apostrophes, 32 successive apos-
trophes would be written, preceded by and ended with an apostrophe. The length
specification may be omitted, in which case the length of the constant is deter-
mined implicitly from the number of characters between the apostrophe marks. If
the number of characters in apostrophes is greater than the length n, the rightmost
characters are truncated to fit the field in the area reserved for it. If the number
of characters between apostrophes is less than the length, the value is padded
with blanks on the right to fill the field.

For example, the following lines each result in a two-byte constant consisting of
the letter A followed by blank. The third representation is flagged with an error
indication.

UP-4092 UNIVAC 9200/9300 2 13
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
LABEL 5 OPERATION & OPERAND k]
1 10 16
RN SR DIC, | cu2 A v b o b e b g b
| S S l L1 DICL do 13 cl 'lAl L' i | I j Lo i LiJAL_L4J_ | S S L__l_
B RN B DIC, | CLi2y AL B Yy L v g b e e e b]

2.5.1.2. Hexadecimal Representation

A hexadecimal representation is a string of as many as 32 hexadecimal digits en-
closed by apostrophe marks. If the digit string is less than twice the length speci-
fication, the field is padded with hexadecimal zeros on the left. If more than twice
the length specification, the representation is truncated on the left to produce a
value equal to the length. The length specification may be omitted, in which case
the length of the constant is determined as the smallest number of bytes which
will contain the constant specified. If necessary, the field is padded on the left
with one hexadecimal zero.

The following illustrates the values of source statements which represent valid
hexadecimal constants, three bytes in length:

CONSTANT REPRESENTATION VALUE
bCc XL3'1' 00000000 00000000 00000001
DC X'123A5! 00000001 00100011 10100101
DC X'lF3456' 00011111 00110100 01010110

2.5.1.3. Expression Constants

Constants of type Y provide a way to write a constant involving a relocatable
expression, If the length specification L1 is not present, the expression defining
an expression constant may have any value from — 32,768 to 32,767 inclusive and
may be absolute, relocatable, or negatively relocatable. (A negatively relocatable
expression consists of an absolute expression minus a relocatable expression, or
an expression that can be reordered to that form.) An expression constant in which
the length specification L1 or L2 is not present provides a convenient notation
for representing a complete storage address. It is for this reason that constants of
this type are called address constants.

An address constant always occupies two bytes of storage and location counter
adjustment to a halfword boundary is performed by the Assembler before storage
locations are assigned to the constant. No such adjustment is performed for
hexadecimal or character constants,

For example, an address constant designed to generate the address assigned to
the label ‘TAG’ would take the following form.

DC Y(TAG)

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:

An expression constant in which the length specification L1 is present may have
any value from 0 through 255 and may be absolute, relocatable, or negatively re-
locatable. It always occupies one byte of storage, and no location counter adjust-
ment is made before assigning a memory location to the constant. It is useful when
an externally defined symbol is assigned to only one byte.

An expression constant in which the length specification L2 is present is the same
as an expression constant in whith no length specification is present, except in

the former case, no halfword boundary adjustment is made.

A summary of constant types, lengths, padding and truncation rules appears in

Table 2—4.
CONSTANT EXPLICIT IMPLICIT TRUNCATION
TYPE LENGTH LENGTH OR PADDING
variable maximum on right side
¢ 1-16 16
X variable maximum on left side
1-16 16
not 2 on left side
stated
Y
1 none on left side
2 none on left side

Table 2-4. Characteristics of the Various Constants

2.5.2. DS - Define Storage

The format of the assembler language statement to reserve storage is as follows:

LABEL OPERATION CODE OPERAND
Symbol (Optional) DS dCLn
or
LABEL OPERATION CODE OPERAND
Symbol (Optional) DS dd
where:

d is a non-negative integer called the duplication factor, the number of

fields to be reserved (d may be a maximum of 256),

n is a decimal number representing the length of the field to be reserved

(n may be a maximum of 256 and a minimum of one),

H represents a field whose length is two bytes and whose storage

address must be on a halfword boundary.

UP-4092
Rev. 2

UNIVAC 9200/9300 2 15
CARD ASSEMBLER SECTION: . PAGE:

The statement DS OH causes the location counter to be adjusted to a multiple of
two without reserving storage. A duplication factor of zero may be used with any
storage definition statement to define the address and length of a-field without re-
serving storage for it. The duplication factor may be omitted, in which case a factor
of one is assumed,

Thus:
CARD DS 0CL80
FRST DS ‘CL40
LAST DS CL40

would define an 80-byte field named CARD, a 40-byte field named FRST whose
address is the same as that of CARD, and a field named LAST whose length is 40
bytes and whose address is 40 greater than that of CARD and FRST.

The location counter is not increased in assembling CARD (because duplication
factor is 0) but is with FRST and LAST. Therefore, 40 + 40 = 80 spaces are reserved,

-with FRST and CARD assigned the starting location and LAST assigned the mid-

point. When the duplication factor is specified, it defines the number of fields of
length n (for C) or the number of pairs of bytes (for H) to be reserved. For example,

TAG DS 13H

reserves 13 pairs of bytes. The symbol, TAG, refers to the first pair of bytes only
and not to the entire 26 bytes. TAG would have a length attribute of two in this
instance. For example,

TAG1 DS 10CL10

reserves 10 groups of 10 bytes each, or 100 bytes. The symbol TAGI refers to the
first group of ten bytes and not to the entire 100 bytes. In this instance TAG1 would
have a length attribute of ten,

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER Rev. 1

SECTION:

PAGE:

3. ASSEMBLER DIRECTIVES
AND SYSTEM CODES

3.1, DIRECTIVES

In addition to the representation of machine instructions, constants, and storage,

the Assembler language includes several assembler directives. These are instructions
to the Assembler to perform certain functions and provide the user of the Assembler
language with control of the operation of the Assembler.

The assembler directives, grouped by function, are as follows:

Symbol Definition
EQU
Assembler Control
START
END
ORG

Base Register Assignment
USING
DROP

Program Linking
ENTRY
EXTRN

Assembler directives, except START, may use a symbol in the operand field, and,
with the exception of ENTRY, EXTRN, USING and DROP, the symbol must have
appeared in the label field of a previous statement.
3.1.1. Symbol Definition
EQU — Equate

The value and length attribute of a symbol may be defined explicitly. The statement
to accomplish this has the following form:

LABEL ’ OPERATION | OPERAND

Symbol ' EQU | e, e,

where: e, and e, are expressions and must have been previously defined.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:

PAGE:

3.1.2.

The symbol is defined to have a length attribute equal to the value of the second
expression in the operand. The second expression in the operand may be omitted,
in which case the symbol is defined to have the length attribute of the first ex-
pression.

The symbol in the label field is defined to have the value of the first expression in

the operand field. If the value of the first expression in the operand field is not

between 0 and 32767, the statement will be flagged with an error indication and the

symbol will remain undefined.

Thus, if the value of the location counter is 2000 when the following lines are
encountered,

LABEL 5 OPERATION b OPERAND h]
1 10 16
TAG | | 4 DIS, v v ff25C 000 v o v v o b b b
HIIIDIE[| | | EJQIUI . ,]|0|0|+|T]A|G|1L115[0| L 1 1 i 1 | | | Il 1 { L l L
SEEK | 1 ElQU |, § ITAG+ 2170~ * [1 1 o ol oo o a1 1

TAG has a relocatable value of 2000 and a length attribute of 10.
HIDE has a relocatable value of 2100 and a length attribute of 150.
SEEK has an absolute value of 20, and a length attribute of 10.

Assembly Control

Assembler directives are available to control the program name and initial location,
alter the location counter in a specified manner, and indicate the end of the program
statement and the instruction with which execution of the object program is to begin.

3.1.2.1. START - Program Start

The START directive defines the program name and tentative starting location,
It must precede all other program statements in the source code deck except
comments. The format of the START directive is as follows:

LABEL ’ OPERATION ‘ OPERAND

Symbol I START ‘ Decimal or Hexadecimal representation

The expression in the operand field is evaluated and incremented if necessary t
make it a multiple of four. The result becomes the initial setting of the location
counter and is the value of the symbol in the label field. This symbol becomes
the Program IDentification (PID) and is available as an entry point without bein
separately defined as such (see 3.1.4). Although the operand of the START
directive is an absolute value, it is treated as relocatable.

(o]

g

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

SECTION: PAGE:

3.1.2.2.

3.1.2.3.

Thus the value of the location counter and the coding which follows a START
directive are both relocatable. Any one of the statements below would result in
the program having the name SORT, being assigned to locations starting at 1068,
and having the symbol SORT defined with the relocatable value 1068.

SORT START 1065
SORT START 1068
SORT START X'42C

A START directive preceded by one or more statements other than comments is
ignored and flagged as an error. A START directive whose operand field does not
have a value from 0 to 32764 is ignored and flagged as an error. If there is no
valid START directive, the program name is left blank and the location counter
is set to 0.

END — Program End

The END directive indicates to the Assembler the end of the program being
assembled. The format of the END directive is

L ABEL ’ OPERATION l OPERAND

Symbol (optional) I END I Expression (optional)

With an END directive the Assembler stops reading cards, punches any remaining
data which has accumulated, and then punches a Transfer Card. If the operand
field of the END directive contains an expression, this expression is punched
into the Transfer Card to signify to the load routine the address at which to begin
program execution. If there is no expression in the operand field of the END
directive, the corresponding field of the Transfer Card is blank. In that case when
the load routine encounters the Transfer Card, it transfers control to the first
location loaded.

If a symbol appears in the label field of the END directive, it is assigned the
current value of the location counter. This is normally one greater than the high-
est address assigned to the program being assembled.

ORG — Set Location Counter

The ORG directive is used to set the location counter to a specified value. The
format of the ORG directive is as follows:

LABEL I OPERATION I OPERAND

Symbol (optional) | ORG | €1, €9

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

3 4
SECTION: PAGE:

The value to which the location counter is set is determined by the values of the
expressions in the operand field. If ey is not specified, then the location counter
is set to the value of e,. If ey is expressed, the location counter is set to the next
value greater than or equal to the value of e which is a multiple of ej. Examples

follow:
RESULTING LOCATION
OPERAND COUNTER VALUE
1000 1000
1000,2 1000
1000,16 1008

The value of ey must be a power of two.

If a symbol appears in the label field, its value is also the value to which the
location counter is set and the symbol is assigned a length attribute of one. The
value must be either an absolute value between 0 and 32767 or a relocatable value
between the initial location counter setting and 32768. If the value does not lie
within this range, the ORG directive is ignored and the line is flagged with an
error indication. With the ORG directive it is possible to set the location counter
to a value which is not a halfword boundary.

The ORG directive to set the location counter to a value 603 less than its current
setting would be as follows:

LABEL I OPERATION | OPERAND

*—603

l ORG

The ORG directive may be used to reserve a number of locations which are not
expressed as a single decimal integer. For example, to reserve A minus B bytes
of storage where A and B are previously defined symbols, the statement is written
as follows:

LABEL I OPERATION I OPERAND

ORG I *+A—B

Bytes of storage reserved either with a DS or ORG directive are not set to zero
when the program is loaded.

If €] is a relocatable expression, the value to which the location counter is set
and the coding that follows the ORG directive are both relocatable. If absolute,
the value to which the location counter is set and the coding that follows the ORG
directive are both absolute.

3.1.3. Base Register Assignment

The Assembler assumes the responsibility for converting storage addresses to base
register and displacement values for insertion into instructions being assembled.
To do this the Assembler must be informed of the available registers and the values
assumed to be in those registers. The assembly directives USING and DROP are
available for this purpose.

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1 3
CARD ASSEMBLER SECTION:] PAGE:

n

3.1.3.1.

3.1.3.2.

3.1.3.3.

USING - Assign Base Register

The USING directive informs the Assembler that a specified register is available
for base register assignment and that it contains a specified value. The format
of the USING directive is as follows:

LABEL | OPERATION | OPERAND

Symbol (optional) l USING l R,A

where: R is a relocatable expression and A is an absolute expression.

It is also possible to specify an absolute value for the first expression in
the operand of a USING directive.

The first expression represents the value the Assembler assumes is in the speci-
fied register at object time. The second expression in the operand field must be
a number from 8 through 15 which denotes the general register specified.

DROP — Unassign Base Register

The format of the DROP directive is

LABEL J OPERATION | OPERAND

Symbol (optional) | DROP ‘ Absolute expression

This directive informs the Assembler that the specified base register no longer
contains a value available to the Assembler for computing base register and dis-
placement values. The expression in the operand field of the DROP directive is

a number from 8 through 15 which denotes the general register no longer available.

Function of USING and DROP Directives

The Assembler maintains a table of the available registers and the values they
contain at object time. This table is referred to as the USING table. A USING
directive adds a register and value to the USING table or revises the value for a
register already in the table, A DROP directive removes a register and its asso-
ciated value from the table. If the operands of a USING or DROP directive are not

valid, the line is flagged with an error indication.

If an operand address is given as a relative address instead of as a base register
and displacement specification, the Assembler searches the USING table for a
value yielding a valid displacement, that is, a displacement of 4095 or less, If
there is more than one such value, that value which yields the smallest displace-
ment is chosen. If no value yields a valid displacement, the operand address is
set to zero and the line is flagged with an error indication. If more than one reg-
ister contains the value yielding the smallest displacement, the highest numbered
register is selected.

An absolute address with no base register indicated is treated as an absolute,
direct address.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Rev. 1

SECTION:

PAGE:

The placement of a USING directive determines the instructions whose operand
addresses may be decomposed based on that USING statement. The first operand
of the USING statement determines the portion of the program which may be
addressed using the specified register. Thus, if a program contains the coding

LABEL % OPERATION® OPERAND * COMMENTS
1 10 16 72 80
sev e b i e leato s besna v bevanbeaa b b e b becsa bl b Lo
A b PEA G PO B L b b beaocdbenc b b b Ly b L e b
s Lo PRISSNS G0 e b b baaan Lo b D b devae e [Ly L
s b PRl b b b becaa Lo b Dy lnacac e b Lo L L L

ol Pl sl b L Lo b b S b by e bepan cily e
L1y l 11 'I E 0T T S B | I,J A LJJ,,LJ.JJJ Lo L I,L,L..l.LLLJ_ J...LJ‘LJ_I_J.J,J_JJ.JJ_L_LIALJALLA_L.LJ L‘LLJ_LJ_.; .J,l;LlA,J.-LA
o bbb e b by deeaa Lo bveea b braee bepea Toenan deaa L b b
B b d PG e PGS e b becea b v b e oo v Lo s Lo I o by e |
S T L TR A LU NS FER RN AR ST FE TS SRS SR TN AN TR SN Ul FR TR FR Ry AN TS T

e Lo PPl e v b D b Lo by b b by e by 4 i la i
o b PP le v e b bsseac s bean L D P b beena Lo L P b |
R T | P T N T T T N e T N e

the B2 and D2 fields of the instruction labeled A will contain 10 and 0, respec-
tively. Moreover, if the program contains no USING directives for register 10 other
than the ones shown, then the second line labeled A is the only line in the pro-
gram for which the Assembler would consider 10 as a register available for address-

ing the

line labeled B.

The load routine stores in register 13 the starting address of the program just

loaded, All other registers must be loaded by the program itself in a manner con-
sistent with the information given to the Assembler in the USING directives. The
following example shows how this is done.

LABEL 5 OPERATION® OPERAND h)
1 10 16
Lo by UISENG] JAL Y3 by g b e e b o
LY LIH 1 L2, B | oo Loy [B SR TSI N
IO I B UlSi NGt 1€, 0420 Lo b e ey by v
T ed v e b v e b v b v b e by
I ! S R AN T SO N T N S S VY N VU A S M S A B
IS B B | e by e e b e Lo e by b
Bl 1 b1y DIC | YZWOCD by o b e b L
IR N Loy [T R I ST A S B AV AV AR ST N B B ST)
IR R Ly e b e b e by by g)
RN S R B cen e e e b g by Ly
Coi 1 b1y DIS| ¢ 1 cLivior oy o by e e v b v Ly
[S S R Y S R ce e b e b v e v by e g
I B! | oo by e by e b by 1y
) U | I I 'I 1 1 1) I T | 1 | S ' S U | [N O | l i | |] 1
ISR W EIND Ao e e b e b g Ly g 1

Lines two and three of the above example exemplify the following general rule:

The loading of a value into a general register must precede the USING

directive which informs the Assembler the value is available.

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

SECTION: PAGE:

It is also possible to specify an absolute value for the first expression in the
operand of a USING directive., The entry in the USING table made in response to
such a USING directive is not used to decompose relative addresses. It is used
instead to decompose absolute addresses. For example, given the following coding

USING 4000,15
A LH 14,4096

B2 and D2 fields of the instruction labeled A will contain 15 and 96 respectively.

3.1.3.4. Direct Addressing

3.1.4.

The machine instruction format provides for either base register and displacement
addressing (indexed addressing) or direct addressing, Instructions using direct
addressing have a faster execution time. To facilitate error checking by the
Assembler, direct addressing is described to the Assembler in terms of the
pseudo base registers 0, 1, 2, 3, 4, 5, 6, and 7 which contain the values 0, 4096,
8192, 12288, 16384, 20480, 24576 and 28672, respectively. Thus, the direct
address 512 would be treated by the Assembler as an address consisting of a
reference to the pseudo base register 0 and a displacement of 512. The address
4098 would yield a base of 1 and a displacement of 2. The additional forms of the
USING directive which are available for direct addressing are, specifically

LABEL OPERATION OPERAND
USING *,0
USING *,1
USING *,7

The first line above makes direct addressing available for addresses in the range
0 to 4095. The second makes direct addressing available for addresses in the
range 4096 to 8191, and so on. The DROP directive may also refer to the pseudo
registers 0 through 7 to terminate direct addressing.

A program involving direct addressing may still be relocatable.

The asterisk (*) when used in the operand of the USING directive specifying a
pseudo base register has a unique meaning and does not have the normal con-
notation of the current value of the location counter.

Program Linking

The Assembler provides, as part of its output, information which allows the results
of separate assemblies to be linked together, loaded, and then executed as a single
program. Proper sectioning reduces the machine time required to make changes to an
existing program. If a change is required, only that part which is changed need be re-
assembled. The output is then linked with the remaining parts to produce the altered
program. Proper sectioning of a program also reduces the number of symbols required
in each of the separate assemblies.

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

SECTION: PAGE:

A symbol defined in the label field of element A and addressed in element B is said
to be externally defined in element A and referenced in element B. Thus, by using
the ENTRY and EXTRN directives, proper linkage is supplied when the separate
elements are assembled. This information is handed on to the Linker program by the
External Definition Cards and the External Reference Card which are outputs of the
Assembler.

3.1.4.1.

3.1.4.2,

ENTRY — Externally Defined Symbol Declaration

That portion of a program submitted as input to a single assembly is called an
element. Each element must declare the symbols defined within that element and
to which reference is made by other elements. Each symbol is referred to as being
externally defined and is declared by the ENTRY directive. The ENTRY directive
has the format

LABEL | OPERATION l OPERAND

| ENTRY | Symbol

The symbol in the operand field is declared to be externally defined. Its name and
assigned value are included in the output of the Assembler as an External Defini-
tion Card.

EXTRN — Externally Referenced Symbol Declaration

The Assembler must also be informed of all symbols referred to in the element
being assembled but which are defined in some other element. A reference to
such a symbol is called an external reference, and such symbols are declared in
the EXTRN directive. The format of the EXTRN directive is

LABEL l OPERATION | OPERAND

I EXTRN I Symbol

The symbol in the operand field is declared to be a symbol defined in some other
element. A symbolic name and the External Symbol Indentification assigned by
the Assembler are included as input of the Linker as an External Reference
Card.

3.1.5. Assembler Program Listing

Figure 3—1 is a comprehensive example of coding in UNIVAC 9200/9300 Assembler
language. The listing shown is a reproduction of an actual printout from the prototype
UNIVAC 9200/9300 System. The example is coding for the self-loading memory dump
routine described in “UNIVAC 9200/9300 Programming Utility Reference Manual,’’
UP-4120 (current version).

Quul
Quue

qous
ouuy
00ud
vluvob
vou7
gous
g0uY
uolv
yoil
Uiz
0013
gule
ulld
0010
ovars
uuig
)
oueu
vuel
ubee
yues
Que4
uled
ueh
voe?
uues
ULy
ulJsu
00351
9032
NIUSK)
0034
QU3dS

U00A
000A
VoY
¢o1c
unz2
un2e
un2A
Un2E
0032
0036
003A
UO3E
0ng2

noouN0O0LOOLLUNOLNOLL
10040U0U0OUULOLY
N20100400042
02560048
a4010002
7700030
ASU1000U
4724002c
a1CcuouoL
4T8U0FTY
AQ0u21CU

NFeb

: MACHINE COMFIGURATION.
* MDSLF POS=132,CH=63
*
*
* PARAMETER EXPLANATION
* PAR.1 POS =
* FAR .2 CH = 635 OR 48
* PAR«3 BGN = BLANK OR
* LOCATION
* PAR.4 END = BLANK OR
* LOCATION
* PARS MFM =
*
*
*
* PAR.6 LOAD =
*
*
* PAR.7 RDR =
MD START 0
USING *¢0
ORG 10
ocC XL10*iCy
oc XLB'0!
MvC T70(2) 66
MVI 69+80
XIOF 21
RC 762
TIo 001
RC 2246
™ 0ex*CO*
RC 803952
HPR x*21Cu',0
nc Y(3942)
Figure 3~1. Example of Printer Output of a Program

THIS MEMORY DUMP ROUTINE IS ADJUSTED TO THE

THE FOLLOWING CODIMG IS EQIIVALENT TO. THE SOURCE CODE
WHICH 1S GENERATED BY IHE BABOVE MACRO INSTRUCTION,

(Sheet 1 of 5)

96¢120y0R 132 FOR PRINTER CH., POSITION,

FOR AN ASSOCIATED PRINT B
128 THROUGH 32767 FOR THE
AT WHICH MEMORY DUMP IS T
128 THROIIGH 32767 FOR THE
AT WHICH MEMORY DUMP IS T

8K»12K 16K 9 AND 32Ky IF THE ENTIRE
IS TO BE VUMPED 'AMD THE ROUTINE IS TO BE
LOADED INTO THE HIGHEST MEMORY LOCATIONS,
OTHERWISE BLANK,.

260 THROUGH 32190 FOR THE LOCATIOM
AT WHICH MEMORY DUMP IS TO BE LOADED,
BLANK IF MEM PARAMETER EXISTS.
BLANK OR 1001 FOR AN ASSOCIATED READER,

LOADER SECTION 1ST C

SET BASE ADNPR FOR 2MD CARD

CON.1 SET 80 To D.
READ CARD

IS XI0F ACCEPTED?
TEST 1/0 STATUS

IS READER WORKING?
TEST STATUS BITS

IS THERE ANY FRROR?
READER OFF MORMAL
ADDRESS FOR 2NC CARD

AR,

O BFGIN.

0 EMD.
MEMORY

ARD N

C. AREA

v v

RESTART H

MD
MD

MD

MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD

MD
MD
MD
MD
MD
MD
MD
MD
MD
Mo
MD
MD
MD
MD
MD

1019
1020

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
114N
1150
1169
1170
1180
1190
1200
2010
2011
2012
2029
20310
2040
2050
2060
2070
2080
2099
2100
2110
212n
2130

¢ 'A9Y
Z60v-dN

YIA1IWISSY QA VD
00£6/0026 DVAINN

INOIL O3S

:39vd

0036
uda7
uods
0039
0040
UU«l
uoe2
Q043
QU4
0045
0046
U477
uo4s
uo49
(OETT
yosl
0052
0053
V054
0055
0056
0057
0058
0059
0060
U0ol
0062
00063
0004
0065
0066
0067
0068
0069
0070

unyn
UF70
UF70
UF 74
UF78
UF7C
uFan
UFBY
UFBA
UFg90
UF96
OF9C
OF A0
UF A6
UFAA
0o8C
VOBC
ODBE
voco
ooc2
00Cu
once
oncs
00D1
VDDA
ONDE
QLE2
UDES
ODEC
ODF2
ODFe6
ODFA
ONFE
VED2
0E08

NUUANG4D

a5000F Ar
H7400F AU
AS0AUF AF
478U0F B4
47FL0F 90
N20UVOF9L0FBY
N2010F920FB2
N2VUVOFACNFB8
N201004ONFAA
47FL002&
N2010FAsNFBC
u7FU0Q0uL

0F AL

noou

OFFF

nosou

NFgu

nFCy

OFF&

40SCFOF1F2F SFUF5F6
F7FBF9C1C2C3LUC5Ch
0208005u

92000F6C

N2020F 6DOF6C
u4BEULOF6C
N2010F6A0DCYH
A4030001

#T8ONELOQ

A5030F Ty

u72000F2
D20VVEOBOFTU
A90U2300

MBGM
MEND
M2C0

uc
ORG
CLl
ac
CcLI
BC
RC
MVC
MyC
MVC
L1
AC
MVC
RC
DC
ORG
0C
nc
DC
DC
3]
ocC
nc
DC
MVI
MVl
Mye
LH
Mve
X10F
B8C
TI0
BC
MVC
HPR

XLU'0AUpug*

3952

*+630X°0C

Ry %+4y
*#+55,X°0A"

Re¥4+8

1Dr %422
*+13(1),%+u4
*+R(2) v 2440
*428(1) ,%x+4Q
T0(2) v %420

15034
*+B(2)rx4+2R

1500

Y{e+4)

*=U96

Y(0)

Y(4095)

v(128)

Y(M?2PWtg)
Y(M2Pw+70)
Y(M2PW+132=10)
XL9'40SCFUF1F2F3IFUFSF6*
XLO*F 7HgF9C1C2C3C4C5CH*
80:X'08"
MPCN+29 0
M2CN+3(3) s M2CN+2
14/MPCN42
M2CN{(2) yM2CO+4
1.3

8280

MPCN+603

2IMPA .
*+9(1) rMPCN+E
X*2300°%,0

Figure 3—1. Example of Printer Ouiput of a Program

(Sheet’2 of 5)

DEV™CE CONTROL FOR 1ST CARD
LOADER SECTION 2ND CARN N

IS THIS A TYPE Y CARD? DN
IF Y CARD GO TO CON.4 [+
IS THIS A TYPE @ CARD? DY
c
IF NO GO TO CON.S c
SET LENGTH FOR LOAD
SET ADDRESS FOR LOAD
LOAD TEXT]
CON.S SET BASE ADDRESS P
GO TO CON.1 (1ST CARD)]
CONW& SET START ADDRESS P
GO TO MEMORY DUMP B8

ADDRESS FOR SUBSEQUENT CARD
MEMORY DUMP SECTION N
CONST, FOR REGINWING ADDRESS
CONST, FOR ENDING ADDRESS
CONSTANT 128

STARTING ADDRESS FOR EDTY
ENDING ADDRESS FOR EDIT

TRANSLATION TABLE FOR
63 CH BAR
M.D+ENTRY SET LINE ADV RIT P

SET VC B1,CleF1sAND K1 P
SET REG 14 TO ZERO P
SET LIMIT OF EDIT TO 4 GR, P
ISSUE PRINT ORDER 63 CH BAR P

IS ORDER ACCEPTED? DN
TEST 1/0 STATUS P
IS PRINTER WORKING? DN
SET STATUS RITS FOR DISPLAY P
PRIMTER OFF NORMAL H

MD
MD
MD
MD
MD
MD
MO
MD
MD
MD
MO

MD

MD
MD
MD
MD
MD
MD
MD
MD
MD

MD
MD
MD
MD
MD
MD
MD
™MD
MD
MD
MD

2140
2150
2160
2170
2180
2190
2200
jo10
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130

3140

3150
3160
3170
3180
3190
3200
4010
4020
4030
4040
4050
4060
4070
4080

C A9y
¢60v-dNn

INOILDAS

i39vd

Y379W3SSY QiVD
00€6/0026 DVAINN

01

BONAY
Juie
VSN
uu/4
yar7s
uo/e
wozz
uore
9079
JUol
Juol
Jlas2
Yol
Qdad
Jdob
JUdo
U/
1008
U oY
vyIu
J021
U2
Yyuss
JUI
Juas
yugo
3037
Juas
Ju 24
Jlul
Jlul
Jlue
11ud
jluu

Jlub

UROC
UELlD
UEl4
VELR
UELC
uf22
UL 24
UF2A
UERE
UF 32
GE36
UE3C
UF 40
UF 46
ueuC
UEb0
ut.5u
UE5A
UESE
UF62
UFE 66
Uk 6A
UE BE
VET72
UET6H
UF7a
UETE
UF B4
Lk a8
uFac
ukan
PLIT
LEaA
UF9F
LE AP

W7FU0UF
a5010F6L
nT78ULERA
A2ELOF 74
N2B2UFTuRF 1A
05010FbL
u75unkCe
A5020FbHu
4730NECA
a4yFunNCe
F34e0F 7nnude
A2ELOF TR
F3L /FUNUEGLUL
FlluFuCLEQU/
QgFUFU0L
QGFUFULOF
NZU1NF 78Ul
A61enNide
AeUBs003L
471008 AL
NGRUNDEBL
w7200 A
UGFUNFHA
u74unkby
ug9LyopCu
n73098 8
N2050F 760k /o
A200ANF HL
u7FULOF e
A20400F 6o
Ngalitkbaltoce
naeuiahe
AF LN 3B
nyLuiCo
HTALTRL e

M2en CLi

MV T
MY C
CLI
HC
CcLI
RC
M2C 9 LH
NP K
My 1
M7y UINPK
VO
0l
0l
My C
Al
Al
21
CH
RC
CH
i
CH
HC
MV C
V1
ne
VW1
Ve

15eM24

MPCMN+g ey

LRI
MR X TEE
M2PWH] (132=1)¥2Py
MPCN+3

ByNM2C2

MPON4 592

ReM2CS

15eM2C042
M2PW(5Y 46D (3)
2PNty e X TEF Y
0(15919) 018y 1)
14(2015) e 7(1011)
14019) e xFOY
15015) e x*FN?
MACN4B(2) rA(1L)
herll

(IR]

102 2H

14 P MEND

2yt 2H

15 e M2

LeN20

14 eM2C0O

Red+1ls
MZONF16(6) s MECHER
PACHA L D

THeVMPL

MAOMNE S
MM Z), NP0046
T4 e"bBOMN

HleX RO

TG eMACN

TuevL

Figure 3-1. Examcle of Printer Output of a Pregram
(Sheet 3 of 5)

GO
IS
F

i
8]

TO A FOR RECOVERY
YC BM SEY TG 822

‘ES

60 TN Rz

CLEAR STAMDRY P,BUFFFR ARERA

co
IF
IS
IF

1s
YES

vC €0 SET 70 C2?
GO TN C2

VC Cn SET TO C3?

YES

GO TN €3

SET STARTING ACDR OF FDIT
EDIT ADNRESS

EDIT DATA 7 RYTES
EDIT DATA B8TH LYTE

STORE PRENECESSOR BYTFS
R1% + 18 T0O R1%
KRly + B TO P14

IF
Is
1F
Is

iF’

Is
IF

Py
Riu
YE€,

~ 5

P15

CVERFLOW GO TO H
FQUAL TO MEM LIMTT2
GO TO H

FQUAL TQ EDIT LIMIT?

Mo oGN TO D

Piy
vES

EQUAL. To 1287
50 TN SS

EXTFND PREDFCESSOR RYTES
SET ve

GO To L

55

Fo Tn F1

SET VC g T €2

SET LIMIT OF FL:IT

SET BFGINMIMG APDR TO Ry
AND FPASE 4 LSF

1S 76,AN, SMALLER THAM 1287
MO 5N TO L

1F

T

Ial

< U o

fo I ® B » .o

MO
M
MD
MD
MD
M0
MD
MD
MD
mn
mMn
MnD
MD

M0
MD
MD

MO
MO

MD
MDD
MD
MD
M0
MD
MD
(]
MD
MnD
MD

MD
MD

4090
u10n
4110
uy2zn
4130
uiyn
150
416N
417N
418n
u19n
uppn
s01N0
5020
503N
S04N
ens5n
‘06N
SN70
5080
sngn
510N
511N
s12n
5130
S140
"150
5160
5171
5180
5181
520N
ANLN
02N
ANZN

7 89y
¢60v-dN

ac
>z
=
<
O
>0
A
m
=S
ow
-3
meoc
R

t39Vvd :NOILDAS
11 o T "A9Y

0lue
0197
Qlus
0lus
01iv
0111
0lliz
0113
0lis
0115
Ulie
0117
ulig
0119
glav
ulzl
0l1le2
0123
0ic4
0125
0leb
ula7
0las
0129
0130
0131
0132
0133
[IPRL)
0135
0136
Q157
0lo8
ulag
0140

UEAB
OEAA

OEAE
UEB2
VEB6
OEBA
OEBE
VEC2
0ECH
OECA
0ECE
0ED2
OEDS8
0EDC
VEED
OEEW
0EEB
OEEC
UEFD
OFFuY
OEFa
GEFC
0F00
0FQu
GF08
UFoC
UF12
0F18
0F1C
0F20
uF2u
UFe8
UF2c
UF30
UF 34

48EU0DCU
u7FUNFle
92010F6¢
n2010F6F
UTFUOFl1e
G2000F6¢C
47F0NFls
92020F 6L
Y4IFONE3E
ugpPuno3C
ugFonpcz
NS07D0OUNFT2
u7oUnNE3L
A612003c
R6EULOU3A
e7100E32
1900 0DBE
87200E3¢
4SFU0F DA
uT7400EDZ
U8EULOU3A
a95010F6L
47800NECE
Q2U10F6E
QREFNFBs
N2690F32NF8u
NC83NF7ABCDA
A5030F7u
n7200F1b
Q1F90F7u
u78U0F 3L
Q2010F6C
u7FUCEODe
0501 0F6F
a7800F4A

LH
RC
M2H MVI
MV I
318
M2b2 MV1
RC
M2L2 MVI
RC
M2C3 LH
LH
CLC
RC
Al
Al
BC
CH
RC

RC
LH
CLI
HC
Myl
MV I
myC

TI10
Qac
™
RC
MV 1
RC
M2KN CLI
RC

14eM2CO

159 M20
MPACN+2 ey
M2CN+50)
15eM7L
MPCN+2e g
15eM2L 46
MICN+50 2
15,M2C1

13060
15eM2C0O42
0(Re13),M2CN+8
62M2C1

62018

5868

1.M2C1

13+ MEND
2yM2C1

15 M2CN

QM0 35+
14958
M2CN+4 ey
RyM2C3+y
MPCN+4 1
MPPWHLU, X IFF
MPPW+2U (132=26) 'M2PW+0
MPPW(132) M2TH=238
MPCN+61 3
2IMIL+6
M2CN+o e X 'FOY
BMPKO
M2ON+21]
159M2E
MPCN+50 1
Bok+22

Figure 3—1. Example of Printer Output of a Program
(Sheet 4 of 5)

SET RFEGINNIMG ADDR TO 1728
GO TO L

SET vC RO TN R2

SET vC€ KD TH K2

6O 1O L

SET v€ RO TN R1

GO TO TT

SET ve Co TN C3

GO 10 C1

LOAD R13 FROM R1u

PP SET ST.ADDRESS OF FNIT
Qe IS DATA EQUAL TO PRED?
IF MO0 GO TO C1

R15 + 1R TO R15

R13 +8 7O R13

IF R13 OVERFLOW GO TO Ct
IS P13 EQUAL. TO MEM LIMIT?
IF YES 60 T0 C1

IS P15 EGUAL 70 EDIT LIMIT?
IF MO GO TO Q0

LOAD R14 FROM R13

Fo IS VC FO SET TO F2?
IF YES 60 TO PP

F1 SET VC Fn TO F?

FILL * INTO STANDBY

PRINT SUFFER ARFA
TRAMSLATE

TT TEST 1/0 STATUS

IS PRINTER WORKING?

IS THFRE ANY FRROR?

IF NO GO TO VC KO

SET VC RO TO R2

G0 TO E

IS VC KN SET TO K22

IF YES 60 T2 K2

TV ®L®» VDV IJ D T VD OV IJO

Y

o

DM

MD
MD

MD
MD
mD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
Mo
MD
M0
MD
MD
MD
MD
MD
MD
MD

604N
~050
606N
ANTN
6080
/09N
A10N0
A11N
h120
6130
6140
6150
6160
A17N
6181
6191
620N
70N
ro2n
7030
7040
7050
706N
7070
7080
7080
7100
7110
7120
7130
7140
7150
7160
7170
7180

C 'A%y
¢601-dN

tINOILD3S

13ovd

4I3TIWISSY QY¥VD

I a2y 00£6/00Z6 DVAINN

AN

0lul
0le2
0l43
0144
0145
0lee
Ul47
0148
0149
0150
0151
12 %-Y]
0153
0lo4
0159

0F38
OF3C
0F40
OFu46
OF4A
OF4E
0F52
0F56
UF5A
UFSE
0F62
UF 66
UF6A
OF7A

95020F6F
47800FSe
N2830080UNFTA
4T7FO0DF2
92020F6F
47F00F40
923C005¢

A4030003

25030F 7V
47200FSA
A9QU2FFF
47FVO0UDA

00000A0y0ODDA

M?K3

M2K3

Figure 3-1.

CcLl
BC
MVC
ac
MVl
8C
MV1
XI1OF
TI0
RC

8C
ns
0s
END

MP2CN+592
RoeM2K3
128(132) /M?PW
15¢M?A
M2CN+502
15,M2K1
BOyX*3Cr
33
MP2CN+613
20 %=l
XV2FFF*,0
15¢MENT
cLie
CL132
MENT

Example of Printer Ouiput of a Program

(Sheet 5 of 5)

IS VC KO SET TO K32
IF YES GO TO K3

LOAD DATA INTO PRINT RUFFER P

GO TO A

K2 SEY VC KO 70O K3

GO TO K1

SET LINE ADV RITS FOR H,P,

AND PAPER FEED TO H.P, POS C

IS PRINTER WORKING?
IF YES REPEAT TloO
SUCCESSFUL SToP
RETURN TO MENT

WS FOR VC AND PREDEC, BYTES

STANDBY PRINT BUFFER ARFA

ON MD

MD
MD
“D
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD

7190
7200
8010
8020
/030
AD4O
80s0
8060
8070
8080
8090
A10N
A110
8129
A13n

INOILD3S

t3Aovd

¢ 'A%y
¢60¥-dN

4379W3SSY Qivd
00€£6/0026 DVAINN

£l

UP-4092 UNIVAC 9200/9300 3 14
Rev. 2 CARD ASSEMBLER SECTION: PAGE:

3.1.6. Assembler Control Card

On the first pass, the source code deck may be preceded by a control card which
has the following form:

LABEL | OPERATION | OPERAND
| CTL | ABS, p, q

where ABS indicates the output element is to be in absolute code form and is not
to contain any external reference, p is a decimal number representing the largest
address available on the computer on which the assembly is being done, and q

is a decimal number representin g the largest address available on the computer
for which the element is being assembled. Any field in the operand may be omitted.
If ABS is omitted, the output element is in relocatable code form. If p is omitted,
the memory size of the computer on which the element is being assembled is
assumed to be 16,384. If q is omitted, the memory size of the computer for which
the element is being assembled is assumed equal to the memory size of the computer
on which the assembly is being done. The CTL card may be omitted, in which case
the result is the same as indicated for each field omitted.

3.1.7. Operand Format

In general, operands take the format of a series of expressions separated by commas.
If an expression is not expressed, the comma indicating its position must never-
theless be present. An exception to this rule is the last expression in the operand

— if it is not expressed, its preceding comma may also be dropped.

3.2, SYSTEM CODES

Table 3—1 shows the relation the Assembler assumes between card code, internal
computer code, and printer graphic. The Assembler reads a source code card in com-
pressed form and then translates it to the internal code shown in Table 3—1. If keypunch
equipment is used which sets up a different relationship between card code and printer
graphic than the one shown in Table 3—1, a different translation table may be substituted
at linker time for use by the Assembler in translating source code cards. This translation
table may set up any relation between card code and printer graphic that is desired;
however, the relation between internal code and printer graphic shown in Table 3—1

must remain inviolate, since this is the only way the Assembler can ‘‘read’’ the source
code. The Assembler prints its listing directly from the internal code. This operation,

in effect, assumes a 63-character print bar. If a 48-character print bar is used while
assembling, the Assembler may be modified at linker time to translate printer output

from internal code to 48-character print bar code before printing.

The Assembler punches all output cards in a compressed ‘‘object code’’ form which
may be handled directly by the Linker or the absolute loader.

3

SECTION: |

UP-4092 | UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

PAGE:

Some users may provide programs via the Assembler to be used to process data rep-
resented in an internal code different from the one used by the Assembler. In such a
case, the user must take special care in the representation of his-constants. For
example, the Assembler assigns the internal code 11000001 to the graphic ‘‘A”’. If,
at the time an object program is run, the internal code for the data assigns the code
11000000 to the graphic ‘“A’’, a test for equality against a constant represented as
C'A' in source code language may not be petformed as desired.

In general, when data to be processed by an object progtam is represented in an in-

ternal code other than that used by the Assembler, all difficulties can be avoided
by representing all constants in the source code in hexadecimal.

TWO MOST SIGNIFICANT BITS OF ZONE - 00

TWO LEAST SIGNIFICANT BITS OF ZONE

BIGIT :

- 00 o1 10 n
0000 12-0-9-8-1 12-11-9-8-1 11-0-9-8-1 12-11-0-9-8-1
o001 12-9-1 11-9-1 0-9-1 9-1
0010 12-9-2 11-9-2 0-9-2 9-2
0011 12-9-3 11-9-3 0-9-3 9-3
0100 12-9-4 11-9-4 0-9-4 9-4
0101 12-9-5 11-9-5 0-9-5 9-5
0110 12-9-6 11-9-6 0-9-6 9-6
0111 12-9-7 11-9-7 0-9-7 9-7
1000 12-9-8 11-9-8 0-9-8 9-8
1000 12-9-8-1 11-9-8-1 0-9-8-1 9-8-1
1010 12-9-8-2 11-9-8-2 0-9-8-2 9-8-2
1011 12-9-8-3 11-9-8-3 0-9-8-3 9-8-3
1100 12-9-8-4 11-9-8-4 0-9-8-4 9-8-4
1101 12-9-8-5 11-9-8-5 0-9-8-5 9-8-5
1110 12-9-8-6 11-9-8-6 C0-9-8-6 9-8-6
1111 12-9-8-7 11-9-8-7 0-9-8-7 9-8-7

Table 3-1. Internal Code (Sheet 1 of 4)

UP-4092
Rev. 2

UNIVAC 9200/9300 3
CARD ASSEMBLER secTION:

PAGE:

16

TWO MOST SIGNIFICANT BITS OF ZONE - 01

TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT
00 01 10 n
12 11 12-11-0
0000 5 N 3
0001 12-0-9-1 12-11-9-1 0-1) 12-11-0-9-1
0010 12-0-9-2 12-11-9-2 11-0-9-2 12-11-0-9-2
0011 12-0-9-3 12-11-9+3 11-0-9-3 12-11-0-9-3
0100 12-0-9-4 12-11-9-4 11-0-9-4 ~ 12-11-0-9-4
0101 12-0-9-5 12-11-9-5 11-0-9-5 12-11-0-9-5
0110 12-0-9-6 12-11-9-6 11-0-9-6 12-11-0-9-6
0111 12-0-9-7 12-11-9-7 11-0-9-7 12411-0-9-7
1000 12-0-9-8 12-11-9-8 11-0-9-8 12-11-0-9-8
1001 12-8-1 11-8-1 0-8-1 8-1
1010 12-8-2 11-8-2 12.11 8.2
¢ ! :
1011 12-8-3 11-8-3 0-8-3 8-3
$) #
1100 12-8-4 11-8-4 0-8-4 8-4
< * % @
1101 12-8-5 11-8-5 0-8-5 8-5
{) - '
1110 12-8-6 11-8-6 0-8-6 8-6
+ ; > =
1111 12-8-7 11-8-7 0-8-7 8-7
' ,__‘ 7 ”"

Table 3-1. Internal Code (Sheet 2 of 4)

UP-4092 UNIVAC 9200/9300 3 17
Rev. 2 CARD ASSEMBLER secTion: PacE:
TWO MOST SIGNIFICANT BITS OF ZONE - 10
TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT
. 00 01 10 11

0000 12-0-8-1 12-11-8-1 11-0-8-1 12-11-0-8-1
0001 12-0-1 12-11-1 11-0-1 12-11-0-1

. 0010 12-0-2 12-11-2 11-0-2 12-11-0-2
0011 12-0-3 12-11-3 11-0-3 12-11-0-3
0100 12-0-4 12-11-4 11-0-4 12-11-0-4
0101 12-0-5 ° 12-11-5 11-0-5 12-11-0-5
0110 12-0-6 12-11-6 11-0-6 12-11-0+6
0111 12-0-7 12-11-7 11-0-7 12-11-0-7
1000 12-0-8 12-11-8 11-0-8 12-11-0-8
1001 12-0-9 12-11-9 11-0-9 12-11-0-9
1010 12-0-8-2 12-11-8-2 11-0-8-2 12-11-0-8-2
1011 12-0-8-3 12-11-8-3 11-0-8-3 12-11-0-8-3
1100 12-0-8-4 12-11-8-4 11-0-8-4 12-11-0-8-4
1101 12-0-8-5 12+11-8-5 11-0-8-5 12-11-0-8-5
1110 12-0-8-6 12-11-8-6 11-0-8-6 12-11-0-8-6
1111 12-0-8-7 12-11-8-7 11-0-8-7 12-11-0-8-7

Table 3-1. Internal Code (Sheet 3 of 4)

UP-4092 UNIVAC 9200/9300 3 18
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
TWO MOST SIGNIFICANT BITS OF ZONE - 11
TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT
00 01 10 11
0000 12-0 11-0 0-8-2 0 0
12-1 11-1 11-0-9-1 1
0001 A J 1
12-2 11-2 0-2 2
0010 B K S 2
12-3 11-3 0-3 3
o011 c L T 3
' 12-4 11-4 0-4 4
0100 D M u 4
12-5 11-5 0-5 5
0101 E N v 5
12-6 11-6 0-6 6
0110
F 0 w 6
12-7 11-7 0-7 7
0111 G P X 7
12-8 11-8 0-8 8
1000 H Q Y 8
12-9 11-9 0-9 9
1001 | R z 9
1010 12-0-9-8-2 12-11-9-8-2 11-0-9-8-2 12-11-0-9-8-2
1011 12-0-9-8-3 12-11-9-8-3 11-0-9-8-3 12-11-0-9-8-3
1100 12-0-9-8-4 12-11-9-8-4 11-0-9-8-4 12-11-0-9-8-4
1101 12-0-9-8-5 12-11-9-8-5 11-0-9-8<5 12-11-0+9-8-5
1110 12-0-9-8-6 12-11-9-8-6 11-0-9-8-6 12-11-0-9-8-6
1111 12-0-9-8-7 12-11-9-8-7 11-0-9-8-7 12-11-0-9-8-7
Table 3=1. Internal Code (Sheet 4 of 4)

UP-4092
Rev. 2 -

UNIVAC 9200/9300 : Rev. 1
CARD ASSEMBLER

SECTION:

4.1.

4.1.1.

4. OPERATING PROCEDURES

GENERAL OPERATING INSTRUCTIONS

A source code deck ready for assembly must pass through the computer twice. The
Assembler Load deck marked FIRST PASS precedes the source code deck on the first
pass; the Assembler Load deck marked LAST PASS precedes the source code deck on
the second pass.

All printing and punching is done during the second pass. Consequently, the second
pass may be repeated as often as required. The LAST PASS Assembler Load deck
must precede the source code deck each time. When the card reader is used for input,
feed the first card, then depress the PROC CLEAR and START keys.

In addition to the regular I/0 displays listed in Appendix B, the following displays
may be used.

DISPLAY REASON AND ACTION

1F02 Symbol table is full.

Use larger memory size if possible (specification p on the CTL
card) and start over. When p is 8191, the Assembler can handle
about 200 tags. Press RUN to continue (all subsequent tags
will be undefined).

1IFFF LAST PASS is completed.
Two blank cards must follow the END card on the LAST PASS
in order to get this display.

Card Controller Operating Instructions

The following sections provide instructions for operating the Card Assembler when the
UNIVAC 1001 Card Controller is being used as the input device. Instructions are given

for starting the run from the beginning, and for rerunning the second pass.

4.1.1.1. Start Instructions

To start the Assembler, perform the following steps:
1. Place the source code between the FIRST PASS and LAST PASS load decks.
2. Place the entire deck in the Card Controller primary read hopper.

3. On the Card Controller:

a. Set ALTI1 to the ON position; set all other ALT switches to the OFF position.

b. Depress the LOAD PR1, CLEAR, START and RUN switches.

4. On the UNIVAC 9200/9300 console:
a. Enter hexadecimal B8 in the DATA ENTRY switches.

b. Press the CHAN CLEAR, PROC CLEAR, LOAD ON, RUN, LOAD OFF,
and RUN switches.

5. On the Card Controller, set ALT1 to the OFF position.

PAGE:

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

SECTION: PAGE:

4.1.1.2. Second Pass Rerun Instructions

To rerun the second pass of the Assembler, perform the following steps:
1. On the Card Controller:

a. Place the LAST PASS load deck, followed by the source deck, into the
primary feed hopper.

b. Set all ALT switches to the OFF position.

c. Press the LOAD PR1, CLEAR, START, and RUN switches.

2. On the UNIVAC 9200/9300 console, press the CHAN CLEAR, PROC CLEAR, and
RUN switches.

4.2. ASSEMBLER CARD OUTPUT

The object code produced by the Assembler is punched into six different card types:
Element Definition Cards, External Definition Cards, Program Reference Cards, Ex-
ternal Reference Cards, Text Cards, and Transfer Cards. These card types have the
following functions:

The Element Definition Card contains the name, the size, and the origin of the
element as assigned by the Assembler.

An External Definition Card specifies the value of a symbol which may be refer-
enced by other elements.

The Program Reference Catrd contains the name of the element and the number by
which this name is identified in the relocation information for the element.

An External Reference Card contains a label to which the element refers but which
it does not define. The card also contains a number by which this label is identified
in the relocation information for the element.

A Text Card contains the instructions and constants of the element, an address in-
dicating where the instructions and constants are to be loaded into memory for
execution, and the relocation information pertaining to the instructions and con-
stants. The loading address for the instructions and constants is assigned by the
Assembler to conform with the origin of the element as described in the Element
Definition Card. The relocation information performs two functions:

— It permits the relocation of the instructions and constants to an origin other
than the one given to the element by the Assembler.

— It provides the information required by the Linker to resolve any external ref-
erences made in the instructions or constants with the corresponding external
definitions made in other elements.

UP-4092 UNIVAC 9200/9300 ‘ 4

Rev. 2 CARD ASSEMBLER

I SECTION: PAGE:

m The Transfer Card is generated by the END assembler directive, If the END direc-
tive specifies the address at which execution is to begin, this address appears in
the Transfer Card.

The order and number of these cards in the Assembler object code output deck is as
follows, First there is a single Element Definition Card. Then there are as many Ex-
ternal Definition Cards as there are ENTRY assembler directives in the source code.
Then there is a single Program Reference Card followed by as many External Refer-
ence Cards as there are EXTRN assembler directives in the source code. Then there
are as many Text Cards as are required to contain the instructions and constants repre-
sented in the source code deck. Finally, there is a single Transfer Card.

If the output of an assembly contains no External Reference Cards, it may be loaded
directly into the UNIVAC 9200/9300 via the Card Program Loader. In this instance,
the text is loaded at the addresses indicated in the Text Cards, and job execution
begins at the point indicated in the Transfer Card. The Element Definition Card, any
External Definition Cards, the Program Reference Card, and the relocation information
in the Text Cards are ignored by the Program Loader,

The format of these assembler output cards is as follows.

4.2,1., Element Definition Card

coL. FIELD NAME CONTENTS

1 Load Key 12-2-9 punch

2 Type A (Hollerith)

3 Length 26

6 Absolute/refocatable 12 punch if absolute program, relocatable otherwise.

7 Hole Count Sum of the bytes punched in columns 8-72.

8 ESID External Symbol Identification assigned by the
Assembler to the name in columns 17-24.

13-16 Start Address The base of this element as assigned by the
Assembler,

17-24 Name The name assigned to this element. (The name is

left justified and is punched in EBCDIC.)

33-36 Length The number of bytes of memory needed by the
relocatable portions of this element,

UP-4092 UNIVAC 9200/9300 l 4
Rev. 2 CARD ASSEMBLER sEcTIoN: - P AGE:
4.2.2. External Definition Card
coL. FIELD NAME CONTENTS
1 Load Key 12-2-9 punch
2 Type H (Hollerith)
3 Length 13 (or number of columns used less one from Col. 11).
7 Hole Count Sum of the bytes punched (columns 8-72).
9 RLD Length Number of columns of RL.D information on card (indi-
cates 3 or 0).
10 Last RLD Column 11 relative number indicating the most signifi-

cant column of the last item of RLD information on the
card. The value is 59 if there is relocation data; other-

wise zero.
14-16 Symbol address The Assembler assigned vallue of the symbol field.
117-24 Symbol Symbolic name to be referenced by other program(s)

(punched in EBCDIC).

70-72 RLD Relocation fieid. See the description of this field for
the Text Card. If present, column 72 contains a 3 and
the least significant digit of column 71 also contains
4 3 indicating that columns 14—16 are to be modified.

4.2.3. Program Reference Card

COL. FIELD NAME CONTENTS
1 Load Key 12-2-9 punch
2 Type J (Hollerith)
3 Length 13 (or number of columns used less one from Col.11).
7 Hole Count Sum of the bytes punched (columns 8-72).
8 Program ESID External Symbol Identification assigned b-y the
Assembler to the program name.
' 13-16 Assembled Start Address The base of this program as assigned by the Assembler.
117-24 Name Element name (same as columns 17-24 of the
Element Definition Card).

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION: PAGE:

4.2.4. External Reference Card

coL. FIELD NAM__E CONTENTS

1 Load Key - 12-2-9 punch

2 Type K (Hollerith)

3 Length 13 (or number of columns used less one from Col. 11).

7 Hole Count Sum of the bytes punched (columns 8-72).

8 Name ESID External Symbol Identification assigned by the
Assembler to this symbolic name.

17-24 Name Symbolic name being referenced by this card
(punched in EBCDIC).

4.2.5. Text Card

CcoL. FIELD NAME CONTENTS

1 Load Key 12-2-9 punch

2 Type Q (Hollerith)

3 Text Length Indicates the number of columns less one of text
information on the card.

4-6 Load Address The Assembler assigned location where the text is
to be loaded.

7 Hole Count Sum of the bytes punched (columns 8-72).

8 Program ESID External Symbol Identification assigned by the
Assembler to the program name to which this load
address is refative.

9 RLD length Number of columns of RLD information on this card.

10 - L.ast RLD Column 11 relative number indicating the most
significant column of the last item of RLD informa-
tion on the card. This number is 59 if there is RLD
data, otherwise zero.

11 TXT The value to be loaded at the load address. The TXT

& following field contains information from columns 11 through
11+4n, where n is the number contained in column 3.

72 RLD RLD fields begin in column 72 and occur from right

& preceding to left on the card for the number of columns indicated
in column 9. Each RLD field is composed of three
columns.

Example of RLD field:

Column 70 contains a name ESID. This points to a value in the linker reference

table to be applied to the TXT on this card.

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

SECTION: PAGE:

Column 71 contains a flag. The four most significant bits indicate the operation.
All zero bits indicate that the reference table value is to be added to
the text value to obtain the new text value. If the four most significant
bits of the flag column are 0001, the reference table value is subtracted
from the card text value to obtain the new text value.

The three least significant bits of the flag column indicate (in binary)
the length of the text field in bytes. The remaining bit is a one if the
field to be modified contains an additional halfbyte. Thus, the four
least significant bits would contain the value eight for a four-bit field.
If all four bits are zero, the field is four bits long and is in the left
halfbyte.

Column 72 contains column position. A binary number (relative to column 11) point-
ing to the most significant column of the text information to be modified.
(Column 11 is numbered as zero, column 12 as one, and so on.)

4,2,6, Transfer Card

coL. FIELD NAME CONTENTS

1 Load Key 12-2-9

2 Type Y (Hollerith)

3 Length 5 (or number of columns less one from Col. 11).

7 Hole Count Sum of the bytes punched (columns 8~72).

9 RLD Length Number of columns of RLD information on the card.

(Indicates 3 or 0.)

10 Last RLD Column 11 relative number indicating the most signi-
ficant column of the last item of RL.D information on
the card. (Contains 59 if there is relocation data,
otherwise 0.)

11-13 Card Count The number of reference type K or text type Q cards
which were produced by the assembler for this element.
(Carried in binary.)

14-16 Start Address

70-72 RLD Relocation field. Column 72 contains column 11
relative indicator of the first column of the start
address (indicates Col. 14). The most significant

4 bits in column71 are 0001 if the reference table
address is to be subtracted from the card start address
or 0000 if the reference table address is to be added
to the card start address to obtain the relocated start
address. The least significant 4 bits in column 71
indicate that the start address on the card is 3 bytes
long. Column 70 contains the ESID that points to the
value in the reference table to be applied to the card’s
start address field.

For all assembler output cards, the PID is left justified in columns 73-76, and a
sequence number is punched in columns 77-80. Both the PID and sequence number
are punched in Hollerith,

UP-4092
Rev. 2

UNIVAC 9200/9300

PAGE:

CARD ASSEMBLER | secTion:

4.3. CARD ASSEMBLER PRINTED OUTPUT

The first page printed during assembly is a list explaining the one-character error

codes that may occur on the succeeding assembly listing. Up to five of the codes may

appear on one line in the assembly code field. The assembly listing contains the
following:

PRINT POSITION FIELD
0-3 Assembler assigned line number
4-8 Assembly codes
10-13 Assembler assigned address of the object code

or (in the case of an EQU or an ORG line) the
value assumed by the assembler.

15-46 Assembler produced object code (in hexadecimal).

48-127 Input card

‘The error codes and their meanings are as follows:

Cover error, no USING covering relocatable operand address.
Doubly defined label or reference to doubly defined label.

Expression too large or improper syntax.

I m o

Halfword boundary ertror on RX or Al operand.

L]

Instruction error.

Location counter too large.

Org error, 2nd definition of a label.

Relocatable terms in the expression are improper or too many.
Sequence break in columns 76 to 80.

Truncation of ovetsize term.

Undefined label referenced in this line.

“ & 9 v o x»m O

Continuation (no blank col 72 on noncomment card)-not permitted.

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION: PAGE:

Rev. 2

LINKING THE CARD ASSEMBLER

The source code for the Assembler consists of nine elements. From these elements
the Linker produces three phases.

The first phase (having 1 punched in column 77) is the Assembler’s FIRST PASS.

The second and third phases together (having 2 or 3 punched in column 77) become the
Assembler’s LAST PASS.

The example shown below would produce a card assembler for the following machine

"configuration:

Standard card reader

Serial punch

Standatd printetr/63 character print bar
LINKER INPUT LINKER OUTPUT

CTL 2,16383,16383
PHASE A91,510,A
RDTT EQU O,TBRD
PRTT EQU O,TBRD
BLNK EQU 64
PRTR EQU 15
FONT EQU 0
TBPR EQU 0

Loader module (LD)
Punch module (XPCH)
Reader module (XRDR) PHASE1 A91 - First Pass
Printer module (XPRT)

Read translate table module (TBRD)
Assembler first module (FIRP)
PHASE A92,0,L,INTF

Assembler second module (MIDP) } PHASE2 A92
Punch translate table module (TBPU)

PHASE A93,0,L,INTF
Assembler third module (LASP) - PHASE3 A93
END

} Last Pass

UP-4092 UNIVAC 9200/9300 4
‘Rev.2 ~ CARD ASSEMBLER — PAGE:

In order to produce an assembler for a machine configuration using a row punch instead
of a serial punch: ‘

m Substitute an XPRW module for the XPCH module.

m After the first phase card, place the following card:"

LABEL I OPERATION OPERAND

CHNL [EQU l n
-where: n is the channel number of the row punch.

In order to make an assembler that would use a UNIVAC 1001 Card Controller instead
of the standard card reader:

B Substitute an XRDC module for the XRDR module.

8 Substitute an LDCC module for the LD module.

Change the second parameter of the first phase card from 510 tc 600,
® Include an EQU card of the following format:

LABEL I OPERATION CODE I OPERAND

RDCN EQU n

where: n is the number of the channel in which the Card Controller is located.
In order to make an assembler that would print on a 48 character bar:

s Substitute PRTT EQU 0, TBPR for PRTT EQU 0, TBRD.
m Substitute BLNK EQU 16 for BLNK EQU 0.

m Substitute PRTR EQU 0 for PRTR EQU 15.

B Substitute FONT EQU 128 for FONT EQU 0,

®m Remove TBPR EQU 0.

® Include the print translation table module (TBPR) immediately after the XPRT
module.

UP-4092 UNIVAC 9200/9300 R v
Rev. 2 CARD ASSEMBLER _ SECTION: PAGE:

5. LINKER

5.1. INTRODUCTION

When a job consists of more than one elefnent,' the elements, which are the output of sep-
arate Assembler runs, must be combined before they may be loaded as an executable object
program. This combining, or linking, is done by a utility program called the Linker. The
Linker inserts the storage addresses for references made from one element to another and
modifies addresses if an element is relocated.

A provision is included for dividing the output elements into separate loads or ‘‘phases’’.
Another provision allows corrections, stated in hexadecimal, to be made to any of the
elements being linked. These corrections must be in terms of the ultimate absolute addresses
assigned to each field being changed.

Most of the input to the Linker consists of the output of one or more Assembler runs. How-
ever, control cards are supplied by the user to specify:

— the initial storage address to be allocated to the output element
(PHASE card)

— the start of a new phase of the output (PHASE card)

— additional external definitions (EQU card)

corrections to one or more of the elements being linked (REP)
the end of the input stream (END)

The Linker provides an output-listing including:

— the control cards on its input,

. — the names and external definitions of the elements being linked and
the values allocated to each, as well as the number of the phase in
which it is included. Phases are numbered consecutively from one in
the order in which they appear in the input.

Error indications are included in the listing, and most errors cause termination of the
punched output. The punched card output is in the same form as the assembler output
cards, except that no relocation data is punched. The output for each phase consists of
Text Cards and a Transfer Card. .

If necessary, the Linker increments the address to be assigned to each input element so
that the base address is a multiple of four.

The Linker is capable of either a one- or two-pass operation. At the end of pass one a stop
occurs with a display indicating readiness for pass two. At the end of pass two a stop

with a display requiring a reply occurs. When the start button is depressed, the Linker
interrogates this reply to determine its subsequent action, which is to process another

set of input or to terminate processing.

UP-4092
Rev. 2

UNIVAC 9200/9300 5
CARD ASSEMBLER SECTION: | PAGE:

The Linker is assembled separately from its input/output but is linked to the input/output,
allowing for input from the standard card reader or the UNIVAC 1001, output to serial or
row punch, and choice of input translation table and the option of a translation for the
48-character printer,

5.2. LINKER INPUT

The major input to the Linker consists of the output of one or more assemblies. The
input to the Linker is normally formed by placing one element behind the other in

the order they are to have in storage. Then a PHASE card is placed at the beginning
of the deck to define the initial storage location and an END card at the end to signal
the end of the input. If the output element is to consist of more than one phase, each
input element must be entirely in one phase, with a PHASE card inserted in front of
the first Element Definition Card in the phase. Each such PHASE card indicates the
initial address to be allocated to that phase. When the Linker input is arranged in this
manner, all elements comprising one phase must follow the PHASE card defining that
phase and precede the PHASE card defining the next phase. Each element in the
input must have a unique name.

The order of the input must also be such that the element using an externally defined
symbol must precede all elements referring to that symbol. If there are any symbols
for which this is not possible, their definitions may be supplied by EQU cards. If
this is not desirable, the Linker provides the option of a two-pass operation. The
first pass recognizes the headers (Element Definition and External Definition Cards)
and stores the external definitions. The second pass processes the External Ref-
erence, Text, and Transfer Cards, and produces the output element.

If desired, a two-pass operation may be avoided by separating the headers of the
input elements and presenting them first. The procedure is as follows:

1. Put together the input elements as described above, but without
control cards;

Sort out the header cards (12 punch in column 2);
3. Place the header cards in front of the remaining deck;

4, Insert the required control cards.

Each PHASE card should precede the Element Definition Card for the first element
in the phase being defined. EQU cards follow a PHASE Card, Element Definition, or
External Definition Cards. REP cards must immediately precede the Transfer Card of
the element they are to alter.

The Linker ignores the presence of any blank cards in its input deck.
5.3. LINKER CONTROL CARD FORMATS

The control card identifier (CTL, PHASE, EQU, REP, or END) is left justified in
columns 10—14. Columns 1 to 9 are blank except for the EQU card on which columns
1 to 4 contain the symbol being defined. The specifications contained on each control
card begin in column 16 and are terminated by a blank.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION: PAGE:

5.3.1. CTL

5.3.2.

The CTL card is the first card of the Linker input The specifications consist of
three fields separated by a comma:

n,p,q

where n=1 is a one-pass operation of the Linker;
n=2 is a two-pass operation of the Linker;
p is a decimal number representing the largest address available during

linking.

q is a decimal number representing the largest address available to the
output element.

Any field may be omitted. The effect is as follows:
n omitted : one-pass operation.

p omitted : largest address available for linking is not to change. The
initial value is 16383,

q omitted : maximum address to be allocated is not to change. The initial
value is 16383,

The CTL card may be omitted, in which case the result is the same as indicated
above for each field omitted.

If the Linker is to perform a two-pass operation and produce code for a 16K system
on a 16K system, the CTL card would be

CTL 2,16383,16383

PHASE

A PHASE card defines the name and initial storage address for the output element
and must be the first or second card of the Linker input, preceded only by the CTL
card. A PHASE card also precedes the Element Definition Card (type A) for the
first element of each subsequent load. It specifies the name of the phase and its
starting address. »

The operand specifications field has the form

phase-name,displacement,flag,symbol

where phase-name is a group of up to four alphabetic characters representing the
name of the phase

displacement is a decimal number (may be preceded by minus) or a hexa-
decimal number in the form X’nnnn’

UP-4092 UNIVAC 9200/9300 5
Rev. 2 CARD ASSEMBLER SECTION: - PAGE:
flag is C or A for the first PHASE card and C, A, or L for any others.

C — load address equals the highest core address minus the
displacement field.

A — load address is the actual value given in the displacement
field.

L — load address is obtained by adding the displacement to the
value of the symbol.

symbol is any previously defined symbol.

5.3.3. EQU

5.3.4.

An EQU card supplies the definition of a symbol which is not defined in any of the
elements being linked or which is defined in an element whose position in the input
deck is later than that of the first element containing a reference to the symbol.

The operand specification field of the EQU card has the form:

value
or
value,symbol
where value is a decimal number, a decimal number preceded by a minus sign,

or a hexadecimal number in the form X'nnnn®

symbol is any symbol which has been defined previous to the EQU card in
the input deck.

In the first form above, the binary value represented by the value field becomes the
value assigned to the symbol appearing in the label field of the EQU card. For an
EQU card with a specification field of the second form above, the value of the
previously defined symbol is added to this value to yield the value of the symbol
being defined.

An EQU card must follow a PHASE catd, an Element Definition Card, an External
Definition Card, or another EQU card. It must precede the body of the first element
containing a reference to the symbol defined. The symbol, contained in the specifi-
cation field, must have been previously defined.

If the Linker control deck contains more than one EQU card defining the same
symbol, an error indication is made on the listing. However, such an error does
not terminate the punching of output. Instead, the Linker continues to treat the
definition given in the first such EQU card as the definition for the symbol.

END

The END card indicates the end of the input to the Linker and is the last card in
the deck.

The operand specification field has the same form as that of the EQU card, and is
processed in the same way to produce a single value which is interpreted as the
address at which to begin executing the last phase being produced by the Linker.
as such, this value is punched into the Transfer Card at the end of the output
element.

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

SECTION: PAGE:

5.3.5.

5.3.6.

If the output of the Linker consists of more than one phase, the transfer address
of each phase but the last is determined as follows:

a. Normally, the transfer address of the phase is the address from the first
Transfer Card in the input to the phase.

b. If no Transfer Card in the input contains an address, the transfer address
is the lowest address assigned to the phase.

The specification field of the END card may also be blank. In this case the trans-
fer address punched into the terminal Transfer Card of the output element is the
address from the first Transfer Card of an input element in that phase containing
an address. If no Transfer Card of an input element contains an address, the
lowest address assigned to that phase is punched into the terminal Transfer Card.

REP

The REP (Replace) cards specify changes which are to be made to an assembled
element. The REP cards are placed immediately in front of the Transfer Card of
the element to be altered. Addresses and data are specified in hexadecimal in the
same form they are to have in the output element. No relocation or linking facilities
are provided by the Linker for this data.

The form of the operand specifications field is:
address,data,data,...

where: address is a field of from one to four hexadecimal digits specifying the
storage address of the leftmost byte of data to be altered as a
result of this card.

data is a field of from one to four hexadecimal digits specifying data

to be right justified in a halfword of storage. The address field
is followed by a variable number of such data fields specifying
the contents of successive halfwords of memory. The fields are
separated by commas and terminated by a blank.

MOD

The MOD (modular set) card instructs the linker to set the location counter to the
value calculated from the operand specifications. The operand specifications field
has the following form:

a, b
where: a must be a power of 2, and may be a decimal or hexadecimal expression.

b may be omitted, or it may be a decimal or hexadecimal expression.

The location counter is set to the next number which is the value of ‘‘b’’ more than
a multiple of the value of ‘‘a’’ and which is greater than or equal to its present value.

UP-4092
Rev. 2

CARD ASSEMBLER

PAGE:

UNIVAC 9200/9300 | Rev. 1

SECTION:

5.4.

Examples:
MOD 8

If the present value of the location counter is 4024, then the value is not modified.
If the current value is 4025, it is modified to 4032.

MOD 8, 3

If the current value of the location counter is 4028, its value is modified to 4035.
The MOD card must be placed immediately before the object deck of a module.

EXAMPLE

Assume two separately assembled elements, A and B. A was assembled at an origin
of 0 and has a length of 100, while B was assembled at an origin of 400 and has a
length of 200. Further, A externally defines one entry point M, which is assigned an
element relative address of 50, and makes external references to symbols X, Y and

Z. B on the other hand externally defines symbols X, Y, and Z and makes an external
reference to M. Symbols X and Y are entry points with relative addresses of 475 and
550, respectively, while Z is defined as having an absolute value of 25. Finally,
neither the A nor the B element Transfer Card specifies a starting address. The object
code decks for elements A and B have the following construction.

Element A

a. One Element Definition Card specifying that this element is named A and has an
origin of 0 and a length of 100,

b. One External Definition Card specifying M as an externally defined symbol with
an element relative value of 50.

c. One Program Reference Card specifying that this element is named A, that this
name has an External Symbol Identification (ESID) number of 1, and that element
A has an origin of 0.

d. Three External Reference Cards specifying that X, Y, and Z are externally ref-
erenced symbols which have ESIDs of 2, 3, and 4, respectively.

e. Text Cards containing the instructions and constants of element A and the re-
location information for these instructions and constants. Two examples may
clarify the nature of this relocation information:

1. An instruction may refer to some other part of element A. This reference is
relative to the origin of the element. If the origin moves, the reference must
be adjusted accordingly. The associated relocation information indicates
where this reference is made in element A and specifies the ESID of element
A, indicating that this is an element relative reference.

2. An external reference may be made. In this case, the reference is undefined.
The associated relocation information indicates where in element A this
reference is made and specifies the ESID identifying the undefined symbol
referenced.

f. One Transfer Card.

Element B

a. One Element Definition Card specifying that this element is named B and has an
origin of 400 and a length of 200.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Rev. 1 [
SECTION:

b. Three External Definition Cards.

1. One specifies that X is an externally defined symbol and that it has an element
relative value of 475.

2. One specifies Y with an element relative value of 550.

3. One specifies Z with an absolute value of 25.

c. One Program Reference Card specifying that the element is named B, that it has
an ESID of 1, and that it has an origin of 400.

d. One External Reference Card specifying M as an externally referenced symbol
with an ESID of 2.

e. Text Cards containing the instructions and constants of element B and the re-
location information for these instructions and constants.

f. One Transfer Card.

These two decks are represented schematically in Figure 5—1, Suppose elements A
and B are to be linked into one job having an origin of 1000 and whose initial execu-
tion address is to be the beginning of element A. The origin would be specified in a
PHASE catd, the transfer address in an END card. The input to the Linker for a one-
pass operation would appear as shown in Figure 5-2.

The Linker reads the PHASE card and sets the location counter to 1000 in preparation
for creating a job to be loaded beginning at memory location 1000. The Linker then
reads the header cards and sets up the reference table. Each entry in the reference
table consists of three fields.

1. The name which this entry describes.
2. The location assigned to this name.

3. The relocation factor for this name. The relocation factor is the amount by
which the value assigned to the name by the Assembler must be adjusted to
arrive at the value to be assigned to the name by the Linker.

PAGE:

EXT REF Z
ESID 4
EXT REF Y
ESID 3

ELEMENT
A

B ESID 1
ORIGIN 400
EXT REF X EXT DEF 2
ESID 2 | ABS VAL 25
NAME A
ESID 1 EXT DEF Y
ORIGIN 0 ELT REL 550
EXT DEF M EXT DEF X
ELT REL 50 ELT REL 475
ELEMENT A ELEMENT B
ORIGIN 0 ORIGIN 400
LENGTH 100 LENGTH 200

TRANSFER TRANSFER
TEXT AND TEXT AND
RLD INFO RLD INFO

EXT
ESID 2

REF M

ELEMENT NAME B

Figure 5—1. Elements A and B Deck Structure

UP-4092
Rev. 2

UNIVAC 9200/9300 5
CARD ASSEMBLER sEcTION: PAGE:

e —

END
START A

TRANSFER

ELEMENT B TEXT AND
BoDY RLD INFO
EST REF M
ESID 2
NAME B
ESID 1
ORIGIN 400
TRANSFER

/]

TEXT AND

RLD INFO
ELEMENT A EXT REF Z
ESID 4
BODY
EXT REF Y
ESID 3
EXT REF X
ESID 2

NAME A

ESID 1

ORIGIN 0

EXT DEF z
ABS VAL 25
EXT DEF Y
ELT REL 550
ELEMENT B
EXT DEF X HEADER
ELT REL 475

ELEMENT B
ORIGIN 400
LENGTH 200

/ EXT DEF M

J ELT REL 50

ELEMENT A
ORIGIN 0
LENGTH 100

PHASE
ORIGIN 1000

ELEMENT A

HEADER

PHASE

Figure 5-2. Linker Input

UP-4092 UNIVAC 9200/9300 5
Rev. 2 CARD ASSEMBLER » SECTION: PAGE:

For example, the name ‘‘A’’ is to be assigned a value of 1000 by the Linker. It was
assigned a value of 0 by the Assembler; therefore, its relocation factor is 1000.

As a second example, consider the name ‘‘B”’.

1. Since element A begins in location 1000 and is 100 bytes long, the name
““B”’ is assigned a value of 1100 by the Linker.

2. While the body of element A is being processed, the name ‘‘B’’ has a
relocation factor of 1100, since the name ‘‘B’’ is undefined in element A.

3. While the body of element B is being processed, the name ‘‘B’’ has a
relocation factor of 700, since in element B the Assembler assigned a
value of 400 to the name ‘‘B’’.

The reference table produced as a result of processing the header cards in Figure
5-2 is shown in Figure 5-3.

The Linker then reads the Program and External Reference Cards for element A.
The information from these reference cards is used by the Linker to build an ESID
table. Each entry in the ESID table consists of two fields:

1. The ESID from the reference card.

2. The reference table entry number of the symbol to which the ESID is
assigned.

The Program Reference Card is also used to determine the relocation factor for the
element name. The result of processing the reference cards is shown in Figure 5-4.

The Linker then processes the text of element A. For each instruction or constant
on the input text cards it produces an instruction or constant on an output Text
Card. The absolute portions of the text are produced unaltered. The address at
which the text is to be loaded is adjusted by the relocation factor for element A.

If a portion of the text is relocatable, then there is associated with it relocation
information specifying an ESID of 1. In this case, the Linker looks up in the ESID
table the associated reference table entry number. It then looks up in the reference
table the relocation factor (1000) and adjusts the text by the relocation factor. The
input text is then relocated to the origin specified by the PHASE card, and this
relocated text is produced as output. .

The Linker performs a similar function if a portion of the text makes an external
reference. (Assume the reference is made to the symbol Y.) There is associated with
this text relocation information specifying the ESID of the external reference (3).

The text is adjusted by the relocation factor (1250) determined by the relation be-
tween ESID and reference table entry number (5). This defines the external reference,
and the resolved text is produced as output.

UP-4092 UNIVAC 9200/9300 5

Rev. 2 CARD ASSEMBLER SECTION: | PAGE:
' END
START A
TRANSFER
TEXT AND
ELEMENT B RLD INFO
30DY
EXT REF M
ESID 2
NAME B
-ESID 1
ORIGIN 400
TRANSFER

TEXT AND

RLD INFO
ELEMENT A
EXT REF Z
BODY ESID 4
EXT REF Y
ESID 3
EXT REF X
ESID 2
NAME A
ESID 1
ORIGIN 0
EXT DEF 2
2
ABS VAL 25 REFERENCE TABLE
- EXT DEF Y Novaeg | NamE VALUE R'E,,'fg-?g;?”
ELT REL 550
ELEMENT B 1 A 1000 1000
EXT DEF X HEADER
ELT REL 475 2 M 1050 1050
. ELEMENT B
ORIGIN 400 3 & 1o 100
LENGTH 200
e 4 X 1175 1175
EXT DEF M
ELT REL 50 5 Y 1250 1250
! ELEMENT A
ELEMENT A
ORIGIN 0 HEADER 6 z 25 25
LENGTH 100
PHASE
ORIGIN 100C PHASE

Figure 5-3. Header Processing

UP-4092 UNIVAC 9200/9300 l 5 1
Rev. 2 CARD ASSEMBLER SECTION: FPAGE:
END
START A
TRANSFER
TEXT AND
ELEMENT B RLD INFO
BODY EXT REF M
ESID 2
NAME B
ESID 1
ORIGIN 400
TRANSFER
TEXT AND
RLD INFO
\ ESID TABLE
EXT REF 2
ENTRY
ESID 4 ESID NUMBER
EXT REF Y 1 1
ESID 3
2 4
EXT REF X
ESID 2 3 5
NAME A
ESID 1 4 6
ORIGIN 0
REFERENCE TABLE
ENTRY RELOCATION
NUMBER NAME VALUE FACTOR
1 A 1000 1000
2 M 1050 1050
3 B 1100 1100
4 X 1175 1175
5 Y 1250 1250
6 z 25 25

Figure 5—4. ESID Processing for Element A

UP-4092
Rev. 2

UNIVAC 9200/9300 5 12
CARD ASSEMBLER secrions . | eace

The Linker recognizes the end of element A by means of the Transfer Card. It then
reads the Program and External Reference Cards for element B and adjusts the
reference and ESID tables accordingly. The result of this adjustment is shown in
Figure 5-5. Note that the relocation factor for the name ‘‘B’’ is changed.

The Linker then uses the ESID and reference tables to process the text of element

B and produces the related output text completely relocated and with all external
references defined. In response to the END card, the Linker produces a Transfer
Card with a value of 1000 (the value of the name ‘“A’’") in it for a Transfer Address.
Thus, the output of the Linker is a deck of Text Cards with no relocation information,
followed by a Transfer Card.

If a third element were to follow element B as input to the Linker, the relocation
factor for the name ‘‘B’’ would be set back to 1100 by the Linker before it processed
this third element.

END
START A
TRANSFER
ELEMENT B e
BODY TEXT AND
RLD INFO ESID TABLE
" XT REF M ESID NEUNMTBREYR
ESID 2
/ 1 3
NAME B
ESID 1
ORIGIN 400 2 2
REFERENCE TABLE
ENTRY RELOCATION
NUMBER NAME VALUE FACTOR
1 A 1000 1000
2 M 1050 1050
3 B 1100 700
4 X 1175 1175
5 Y 1250 1250
6 z 25 25

Figure 5-5. ESID Processing for Element B

UP-4092
Rev. 2

5 13

SECTION: . PAGE.:

UNIVAC 9200/9300
CARD ASSEMBLER

5.5.

5.6.

ONE- AND TWO-PASS LINKING

One-pass linking of an input deck is possible when all symbols on External Reference
(type K) cards have been defined by some preceding Element Definition (type A),
External Definition (type H), or EQU conttol card.

When the definition of a symbol occurs after an External Ref erence to the symbol, a
two-pass run is necessary. However, if the definitions are moved to the front of the
deck, a one-pass run can then be made. The move is accomplished by sorting on a
12-punch only in column 2 of the Assembler-produced cards. All these definitions
appear on Element Definition (type A) and External Definition (type H) cards which
are at the beginning of an Assembler-produced element. Consequently, the cards can
be easily stripped off by hand.

For the first pass of a two-pass operation, the Linker object deck precedes the input
deck in the input hopper of the card read unit. For the second pass, the input deck
only is placed again in the input hopper.

Figures 5—-6 and 5-7 illustrate the placement of control cards for a one- and two-
pass linking operation.

LINKING THE LINKER

A new loadable Linker program is produced by combining the several separately
assembled components of the Linker by means of a Linker run. The combined
Linker occupies memory locations from the upper limits of privileged memory to
approximately 1824. Memory addresses greater then 1824 are used by the Linker
for ESID tables and the reference table. The Linker cah thus handle, when oper-
ating in 8K, approximately 200 external references during linking.

Computers with larger memory capacities can handle an even greater number of
external references.

UP-4092 UNIVAC 9200/9300 l

Rev. 2 CARD ASSEMBLER (sgchoN: 5 lPAGE: 14

Assembler Produced

Elements |:.inker Input Linker Output
Element Definition (A) Linker Text (Q)
External Definitions (H) Object .
Deck - PHASE
' (1
. Transfer (Y)
Element Program Reference (J) CTL Text (Q)
A E xternal Reference (K) Control PHASE (1)
PHASE

Cards EQU

(2)

. Transfer (Y)
Text (Q)

Transfer (Y)

Element Definition (A)

E xternal Definitions (H) Element

1
\
|

Element Program Reference (J)

B External Reference (K) Control Card — PHASE (2)

[

Text (Q)
. Control Card — END
Transfer (Y)

Element Definition (A)
External Definitions (H)

Element Program Reference (J)
C External Reference (K)

Text (Q)

Transfer (Y)

Figure 5-6. Linker Input Deck Sequence for Two-Pass Operation

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

5

SECTION:

PAGE:

Assembler-Produced

Eiements

Element
A

Element
B

Element
c

type A
type H

type J
type K

type Q

type Y

type A
type H

type J
type K

%
|
-
;

type A
type H

type J
type K

type Q

type Y

Figure 5~7. Linker Input Deck Sequence for One-Pass Operation

12 in
Col. 2

12in
Col. 2

Sort column 2
(lock out all
but 12 punch)
Produces

Element A
Headers
type A & H

Element B
Headers
type A & H

—

Element C

Headers ey

type A & H

Element A —T

Body
type J,LK,Q & Y

Element B
Body .
type J,K,Q, & Y

Etement C
Body
type J,K,Q & Y

Linker Input

Control
Cards

Eement
A

Element
B

Control
Card

—

lement
c

] |

Element
A

Element
B

Etlement
C

Contro!
Card

[~ Linker
Object
L Deck

— CTL
PHASE(1)
EQU

[type A
type.H

[type A
type H

L

[PHASE(Z)

[type A
type H

type J
type K

type Q

L typeY

type J
type K

type Q

L. typeY

type J
type K

type Q

L typeY

[END

type Q
PHASE
(D
type Y
type Q
PHASE
(2)
type Y

UP-4092
Rev. 2

5

SECTION:

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

PAGE:

16

The Linker, as a program, has one phase. The PHASE control card used when the
Linker is being linked with the Card Load Routine, LD, is as follows:

Lebel ' Operation I Operand

I PHASE | LNKR,410,A

The PHASE card, when linking with the Card Load Routine (LDCC), is:

Operand

Label i Operation

l PHASE , LNKR,500,A

The EQU cards for the linking operation follow the PHASE card.

The first element in the input deck must be the Card Load Routine. The program
name for the routine is LD if the online card reader is used to load the Linker
being linked. If the Card Controller is used, the name for the Card Load Routine
is LDCC.

The last element in the input deck must be the Linker element which has the pro-
gram name, LNKR. The elements between the Card Load Routine and LNKR may
be in any order. The elements are as follows:

8 Exec I, which is named EXEC.

1

m Card Read Routine. This is generated from a call on either the DTFCR macro
for the card reader or the DTFCC macro for the card controller. In either case:

a. The ‘“‘filename’’ must be RDR.
b. CNTL=YES is not required.

c. The MODE parameter is specified as MODE=CC.
For DTFCR, the following are also required:

a. SENT=NO
b. IOA1=I0A1.

For DTECC, specification of the CHAN parameter is also required.

UP-4092
Rev. 2

5

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

PAGE;

17

m Input Translation Table. The Linker reads input cards in compressed code. If it

identifies a card as a control card, it must translate the card before processing
it. To allow the user to punch control cards in any card code he wishes, the
Linker uses a user-supplied translation table to effect the translation. The Linker
assumes that the result of the translation is EBCDIC. The user-supplied input
translation table must be labeled TRN. The Hollerith-to-EBCDIC translation
table, labeled TBRD, supplied by the Univac Division, can be used when

control cards are punched in Hollerith. In this case, the following EQU card

LABEL OPERATION | OPERAND

TRN I EQU I O.TBRD

should be included with the other EQU cards in the input deck.

Card Punch Routine. This is generated from a call either on the DTFRP macro or
on the DTFRW macro for the online serial read/punch or for the row read/punch,
respectively. If the online serial read/punch is used, the PUNR=YES parameter
specification is made. If the row punch is used, the CHAN parameter must be
specified. For both macros:

a. The ‘‘filename’’ must be RPP.

b. CNTL=YES is not required.

c. The MODE parameter is specified as MODE=CC.

d. The OUAR parameter is specified as OUAR=0OUP.

e. The TYPF=OUTPUT parameter specification is used. Therefore, the EOFA,
INAR, ITBL, and ORLP parameters are not specified.

f. The OTBL parameter is not required because Linker output is punched in com-
pressed code,

Printer Routine. This routine is generated from a call on the DTFPR macro. For
this macro:

a. The “filename’’ must be PRNT.

b. The BKSZ parameter is specified as BKSZ=96.

c. CNTL=YES is not required.

d. PROV=YES is used. Consequently, a paper loop containing form overflow and

home paper punches, at appropriate points, must be in the printer when the
Linker is run.

JP-4092
Rev. 2

5

SECTION: | PAGE:

UNIVAC 9200/9300
CARD ASSEMBLER

18

5.7.

e. The FONT parameter specified should agree with the print bar used in the printer
during Linker execution. The OTBL parameter must be specified if a 48-character
bar is used (FONT=48). In this case, an EBCDIC to 48-character print code trans-
lation table must also be included in the Linker input deck. If the table TBPR,
supplied by the Univac Division, is used, the OTBL=TBPR parameter must
be specified when generating the printer routine.

f. PRAD may be specified as one or two, as desired.

The format for the END control card used when the Linker is being linked is as follows:

Label | Operation | Operand

| END I O, BEGN

For convenience, blank cards may be used to separate elements in the input deck since
the Linker ignores blanks.

CARD OUTPUT FROM THE LINKER

The Linker produces two types of output cards:

Type (col. 2) I Name Caused By
Q Text card Input Q cards or REP cards.
Y Transfer card See 5.3.4.

5.7.1. Type Q Cards

5.7.2.

The Q cards contain the program in loadable absolute form. They are produced when
enough contiguous input text is available to fill an output Text card, when text is not
contiguous, or when a REP card is processed. An input program could consist of REP
cards and no Q cards. This permits the programmer to write short programs in hexa-
decimal to be linked without assembling.

The format for a Q card is as follows:

Type (Hollerith Q) Column 2

Card Length Column 3

Load Address Column 5-6

Hole Count Column 7

Absolute Program Column 11-72 (depending of column 3)

Type Y Cards

The Y cards occur as separators between the loadable phases (overlays) and at the
end of the last phase. The Y cards cause the Loader to stop loading and to transfer
control to the transfer address in the Y card.

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

5

SEC TION: PAGE:

19

The format for a Y card is as follows:

Type (Hollerith Y)

Card Length
Hole Count

Card Count of

Preceding Phase

Transfer Address

Column 2
Column 3
Column 7

Column 12-13
Column 15-16

NOTE: All Linker output cards have the first three characters of the program name
(from the first input PHASE card) in column 73-7%, a phase identification
in columns 76 and 77, a serial number in columns 78--80, and a load key (12—
2-9) in column one. The phases are numbered sequentially in héexadecimal.
The program name and serial number are punched in Hollerith.

5.8. LINKER MAP

The Linker map is printed during a one-pass Linker run or during the second pass of
a two-pass Linker tun. The map contains a line for each Linker Control Card and for

each of the following Assembler-produced cards:

Card
Type

Card
Name

Generated in
assembly by

A
H
J
K

Y

No line is printed for type Q (Text) cards.

Element Definition
External Definition
Program Reference
External Réference

Transfer

5.8.1. Linker Map Print Lines

START Directive
ENTRY Directive
START Directive
EXTRN Directive

END Directive

For a type A card, the printed line contains (in order from left to right) the load
location, in hexadecimal, assigned to the element name, the card type identification
code (A), the Assembler-assigned ESID number, the element start address, the
element name, the element length, and the output phase (overlay) number.

For a type H card the printed lines contain the value, in hexadecimal, assigned
to the externally defined symbol, the card type identification code (H), the Assembler-
assigned value of the externally defined symbol, and the name of the externally

defined symbol.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:

PAGE:

20

5.8.2.

For a type J card the printed lines contain the load location, in hexadecimal,
assigned to the element name, the card type identification code (J), and the
element name. On the line for the first type J card of a phase, the phase number
is printed following the element name.

For a type K card the printed lines contain the value assigned to the externally
referenced symbol, the card type identification code (K), the Assembler-assigned
ESID number, and the name of the externally referenced symbol.

For the first type Y card following a PHASE card and containing a start address,
the printed line contains the start address and the card type identification code.

The type Q cards are not printed. For each input element, the type Q cards
immediately precede the type Y card.

At the left of each PHASE, EQU, and END control card line is printed the value
specified on the card. For the PHASE control card, the value printed is the
initial storage address as specified in the card. For the EQU card, the value is

. that of the symbol defined by the EQU card. For the END card, the value is the

specified transfer address.

If a line is flagged with an error message, the error message precedes the card
type identification code.

Linker Map Error Messages

TBL END Too many external references for the combined table area to
handle.

SHORT A PHASE card has missing information. The PHASE card may
be partially processed by the Linker. Punching is discontinued.

NO SYMB An undefined symbol was contained in the operand of a PHASE,
EQU, or END card. Partial processing of the erroneous card may
occur. Punching is discontinued.

UNEQU Label field (columns 1-4) on an EQU card was previously defined
differently. The value printed on the left is the previously defined
value. The new value is ignored. Punching continues.

ESIDX The ESID number (column 8) on a type A card is not 01. The name
is used by the Linker but values are not. Punching is discontinued.

NO DEF The symbol on a type J or K card was not defined by a type A

(Element Definition) or type H (External Definition) card from
assembly or by a manually entered EQU to the Linker. The card
is partially processed by the Linker. Punching is discontinued.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

5 21

SECTION: PAGE:

' Rev. 1

EXT VAL

The external value defined by an External Definition (type H)

card is not equal to the value previously defined for the symbol.
The value printed on the left is the previously defined value.
The new value is ignored. Punching is discontinued.

CCOUNT

The card count on a Transfer (type Y) card does not agree with

card count of the preceding element. Punching continues.

X An output load address has exceeded the object memory
size specified by q of the CTL card.

5.9. LINKER CONSOLE DISPLAYS

DISPLAY REASON FOR STOP ACTION
1F03 Invalid card type. Press START to ignore card.
1F04 After a Y card, no J card Press START to ignore card.
: was found preceding the
next K or Q input card.
1FO05 Input card hole count error. The card on which the error occurred is
the second one from the top of the output
stacker. To reread the error card, place
it and all cards that follow it (including
the card in the wait station of the reader)
at the bottom of the deck in the input
hopper, manually feed a card, and press
the START button.
1F06 An external reference has Check the Linker map against the Assembly
been made to a label not listing, re-order the card deck appropriately,
defined by a K card. (The and start the Linker operation over again.
K card could have been lost
or misplaced in the input
deck.)
1FOF First pass is finished. Press START to begin last pass.*
1FFF Last pass is finished. Press START to begin new Linker run.

* Note that, to start the last pass, the input deck must be removed from the hopper
and once more placed in the input hopper. If the Card Controller is being used as
the input device, at the end of the first pass the last two cards of the input deck
are still in the device and must be run out by pressing the PRI UNLOAD button

twice.

UP-4092 UNIVAC 9200/9300 -
Rev. 2 CARD ASSEMBLER Appendix A

SECTION: | PAGE:

APPENDIX A. PREASSEMBLY
MACRO PASS

Al. GENERAL DESCRIPTION

The Preassembly Macro Pass of the UNIVAC 9200/9300 Card System is used in conjunction
with the Assembler to promote ease and efficiency in preparing programs for execution on
the UNIVAC 9200/9300. A schematic of the Preassembly Macro Pass is shown in Figure
A-1.

MACRO
INSTRUCTION
DECK

MACRO
LIBRARY DECK

Y

UNIVAC
9200/9300

SOURCE CODE
DECK

READY FOR
ASSEMBLY

Figure A-1. Schematic of Preassembly
Macro Pass Operation

Appendix A

SECTION: . PAGE:

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

The macro library is a card deck in which the macros in the library are punched in a
compressed form to minimize both library passing time and memory storage space. The
macro library is read in first and is stored in memory. Then, the card deck of macro
instructions is read in. This deck contains the parameters and controls required to
generate a source code deck in Assembler format. The output deck represents the
selected library routines modified as instructed. The source code deck may be combined
with user source code cards and assembled as one element, or it may be assembled as
a separate element and linked with other relocatable elements to make up a program.

Because it is a card deck, the library is separable; only those routines called for during
the operation of a particular Preassembly Macro Pass need be in the library for storage.
The Preassembly Macro Pass ignores the presence of any blank cards in both the macro
library and the macro instruction deck.

A2. MACRO INSTRUCTION FORMAT

A macro instruction is similar in form to a source code instruction; it has a label
(optional), an operation code, and an operand consisting of one or more expressions
separated by commas. The prime difference is that the macro instruction causes the
generation of a series of source code instructions representing a number of Assembler
operations; whereas a source code instruction causes the Assembler to do one specific
operation.

The format for a macro instruction is as follows:
OPERAND

LABEL OPERATION

label l operation pl'PZ'PS""'Pn’N1=Pn+1’N2=Pn+2'N3=Pn+3""’Nm=pn+m

The label may be any symbol, but is not necessarily assigned the current value of

the location counter. The operation is the name of the macro definition describing

the pattern of the code to be included. The operand, P1 through Py, is a sequence
of expressions specifying parameters. Py through P are called positional parameters.
P, through P, . are called keyword parameters. A macro instruction may have
positional parameters only, keyword parameters only, neither, or both positional and
keyword parameters.

A2.1. Parameters

There are two types of parameters; positional and keyword.

s Positional Parameters. All positional parameters must be specified before any
keyword parameters may be specified. The order of the expressions in the operand
determines the order of the parameters specified. Parameter specifications are
separated by commas. When a positional parameter specification is omitted, the
comma must be retained to indicate the omission. Thus, if a macro has three posi-
tional parameters and the second one is not specified, the operand appears as
follows:

Py,,P3

UP-4092
Rev. 2

Appendix A

CARD ASSEMBLER SECTION:

PAGE:

UNIVAC 9200/9300 l

If the third parameter is not specified, and the second is specified, the operand is
written:

Py,Py
Thus, no trailing commas need be present.
B Keyword Parameters. The specification of a keyword parameter is as follows:
N=pP

where: N is the name of the parameter (any symbol of four or fewer characters
is a legitimate keyword name).

P is the parameter specification (a value or a character string).

Keyword parameter specifications are separated by commas; howevet, the comma
need not be retained if the specification is omitted. There must be a comma between
the last positional parameter and the first keyword parameter. The order of the
keyword parameter specifications is not significant. For example, if a macro has
three keyword parameters, the operand of the macro instruction might be:

N1=P1,N2=P5,N3=P3

or

N2=p2,N1=P1,N3=P3
and so on.

A macro may have positional and/or keyword parameters with commas separating
the specifications. For example, the operand of a macro instruction with three
positional and two keyword parameters might be as follows:

P1,P,P3,N1=P4,Ng=P5

The number of parameters which may be specified with one macro instruction depends
on how much space is required to store the gpécifications. One macro instruction

may normally specify as many as 50 parameters in its operand. When the operand
overflows the space provided in one record, ptovision is made to continué the operand
in the following record by putting a nonblank in column 72. The continuation of the
operand begins with column 16. The Macro Pass searches for a continuation record
as soon as one of the two following events occurs:

® Information is taken from column 71 of the current record.
® A comma followed by a space is detected in the current record.

Columns 1 through 15 of a continuation record must be blank.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Appendix A

SECTION: .

PAGE:

If the information in a record is terminated prior to column 71 by means of a comma

followed by a space, comments may be written after the space. For example, a macro
instruction with three keyword parameters might be written as follows:

LABEL 5 OPERATION S OPERAND
1 10 16
J T B MIAGRO| N1 =P;1l,; (COMIMENT, | | |

A3.

A3.1.

N;2,=P2],

1COMIMENT,

N3=P3} |, | COMMENT,

The specification of a parameter may not contain an

when it occurs between apostrophes.

WRITING MACRO DEFINITIONS

The routines for the macro library are written in standard Assembler source code. They

equal sign or a comma, except

72

are then passed through a special run (the Compressor) to compress them into the
library form expected by the macro pass. To distinguish one macro from another in the
library, three directives are used: PROC, NAME, END.

PROC Directive

The first source code statement of a macro definition is a PROC directive, which

has the following form:
LABEL | OPERATION | OPERAND
(optional) ‘ I (optional)

The label may be any symbol, but it is optional. When used, the label in the macro

instruction calling on the macro is substituted for the PROC label, wherever the PROC
label appears in the macro. For example, suppose the symbol MOVE were specified for
the label of a macro instruction, that the label of the PROC directive of the associated

macro was NAME, and that the macro contained the following line of source code:

LABEL 5 OPERATION S OPERAND 5
1 10 16
NAME | | | MV.C | DEST.ORVG | |\ \ v vl vy v v b b gl

Then, the source code generated by the macro definition would appear as follows:

doia

1

Mv.Cc

D EST ORI G |

Lo

|,MQ1V|E| R

UP-4092
Rev. 2

Appendix A

SECTION: PAGE:

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

If the PROC directive does not have a label, but the macro instruction does, the
label of the macro instruction remains undefined.

A3.2. NAME Directive
The second line of a macro definition must be a NAME directive, which has the form:
LABEL OPERATION
label NAME
This is the call name for the macro and is the name that is specified in the operation
field of the macro instruction. The name may have as many as five characters, the
first of which must be alphabetic; the others alphanumeric.
A3.3., END Directive
The end of a macro definition is indicated by an END directive. It has no operand
and requires no label,
If the following macro is in the library:
LABEL 5 OPERATION & OPERAND 1)
1 10 16 B
R B PIR,O,C, TR NN AT NS N I SN R U N S RV S R S B RO R
MOVE | | N AME, AR ER U U N NN WS Y NN NN T A KO N AN SO RN N WA SO R TS
R B MV.C DES T\ JORVG | | v vl v e) o |
[R B ElNIDI i AR AN TR N R S N Y S N S A A RO A AU RN TN W AU A T
then the macro instruction:
N B L1 U IR N S N SN N N N N N T U N T S A N R IS B O O IO O
[B! MOV E, YRR Y N NN N N N T N S Y IS TN Y A N EN B WO A W B SRR
is equivalent to the source code instruction:
RN B I RIS U NI WA U N ST NI NN NN NS T U A R AT S S SR T ¢
AR A MIV,C DESTORV,G, |y v vl vv v v g i baa L
Note that none of the macro directives (PROC, NAME, END) are produced as output
of the macro pass.
A3.4. Comments

Comment lines may be inserted between the last NAME directive and the END
directive in a macro definition. Each of these comment cards must have an asterisk
in column 1 and must end at or before column 67. (Columns 68—71 are used by the
Preassembly Macro Pass for card sequencing.)

Comments are not permitted on a PROC line if the PROC directive does not specify
any patameters. However, they may be written after the last parameter specified in
the operand and must be separated from the operand by at least one blank.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

' Rev. 1

Appendix A

SECTION:

PAGE:

Comments may be written on Assembler source code lines, but they are not reproduced
by the Macro Pass when the source code lines are generated.

A4, INCORPORATING PARAMETERS INTO MACRO CODING
The operand of a PROC directive, when used, has the following form:
Prner’N2'N3""'Nm
The first expression (p) in the operand is a symbol used to address the parameters
for the macro. The second expression (n) is the number of positional parameters
associated with the macro. The series (Ny,...N) are the names of the keyword
parameters. Any symbol of four or fewer characters is a legitimate keyword name.
Listing the keyword parameters in this way makes them, in effect, positional parameters
to the macro. For example, suppose the PROC directive has the following form:
OPERATION l OPERAND
PROC p,3,N1,N2,N3
The macro has three positional parameters, P1, P2, and P3. It also has three keyword
parameters, N1, N2, and N3. Thus, the keyword parameters become, in effect, positional
patameters P4, P5, and P6.
The value specified for a parameter is substituted in the macro coding for an expression
of the following form:
p(n)
where: p is the first expression in the PROC directive operand.
n is the decimal number of the positional parameter. The first has a number
of one, the second, two and so forth.
For example, if the following macro is in the library:
LABEL 5 OPERATION & OPERAND)]
1 10 16
oo oy P|R,O,C, P,,0., DEST , LGTH ,ORIG | | | ; L1
%OI\IIEI l L1 NIAIMIEI,,) S S N] | S S | l) N } | S U S | l | T B § L1
IR T ! Mve PG PG D PGB Lo
-_.L__L_Ll_].____l_l E\NIDII IlJJ,,,LIlLlllllllIIlIlLIll L |
then the macro instruction:
RN B | AN SN T O N Y N U N TN AN T N U WO AUV WO W A O WO O
RS B MOV E DEST=OYT, LIGTH=16,0RIG=TN | | |
is equivalent to the source code instruction:
R S L1 11 e b b v e Lo b b
Caon b MG oOu TGN 6 VN b b Ly

UP-4092
Rev. 2

Appendix A

SECTION:

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

PAGE:

~7

A keyword parameter may also be addressed by writing its name preceded by an
ampersand. Thus, the MVC instruction within the macro definition of the previous
example could also have been written:

LABEL 5 OPERATION & OPERAND 5
10 16)
1 L1 | 1 Mlvicl 1 &lDlElslTl(l&lLlGlTlHl)1’ I&lqullG_L il l L1 . l | S T

AS.

If a parameter value is unspecified, it will be replaced by the value zero.

When the operand space overflows the space provided in one record, provision is
made to continue the operand in the following record by putting a nonblank in column
72. The continuation of the operand begins with column 16. The Macro Pass searches
for a continuation record as soon as one of the two following events occur:

® Information is taken from column 71 of the current record.

B A comma followed by a space is detected in the current record.

Columns 1 through 15 of a continuation record must be blank. If the information in
a record is terminated prior to column 71 by means of a comma followed by a space,
and if column 72 contains a nonblank, then all columns between the comma and
column 72 must be blank.

NAME STATEMENT

More than one NAME statement may follow the PROC statement of the macro. However,
all the NAME statements in a macro must immediately follow the PROC statement. Each
such NAME statement specifies a different name for the same macro.

The object of giving a macro more than one name is to permit reference to different
versions of the procedure embodied in the macro. The versions are distinguished
within the macro by means of the operands of the NAME statements.

Only one expression may appear in the operand of a NAME statement and may be
assigned a value ranging from 0 through 216—1. The expression may be a decimal
number, a hexadecimal number, or a character expression of the form C‘xx’. Any
value greater than 2161 will be truncated with no error indication given. This
expression is essentially a parameter of the macro; it may be addressed in the
macro as:

p(0)

where p is the first expression in the PROC statement operand; consequently, it may
be used to distinguish between versions of a macro.

UP-4092 UNIVAC 9200/9300 I

dix A
Rev. 2 CARD ASSEMBLER .cAppendix e ace:
For example, if the following macro is in the library:
LABEL t OPERATION b OPERAND b)
10 16
L by PROC | IP o vl bo o ba o bl
MV4, | | NLAME [14, 0 v lv o b o b b v o b el
MV8, | i NjA M E, 8 vl b e v b b |
S MlV,C, DES T(iPC,O) DI, ORIVG | v 0 L o b a o !
SRR R B E|ND, b b v v e by e by |
[IR Lo i e b e b e e b e b e o e a
then the macro instruction
I | |,l L1 e dor e b e e b e b e e e
oo by M V4, crea b e Lo b o b e b e |
would produce the source code
L | crta e b v o oo b o b g d
AR B MVIC DES T ({4, ORILG v L vy g b by g |
while the macro instruction
Lo b L1 ce e oo e o b e e v v e b e e el
1 1 L1 |] L M] vlal 1 1 Lo L _L,,J i L 1 ‘ Lo L1 1 I { ! L1] 1 | |]] | l
would produce
[N B L 11 ey ool v b e b e by b gt
R M{V|C, | DES,TI(I8),ORIVG | v § v v i v b Lol

If a NAME statement has no operand, the parameter p(O) is assigned a value of zero.

If a macro has no parameters and it makes no reference to the operand of any of its
NAME statements, then its PROC statement has no operand.

UP-4092
Rev. 2

UNIVAC 9200/9300 .
CARD ASSEMBLER shppendix & | .

A6. CONDITIONAL MACRO PASS INSTRUCTIONS

The Macro Pass recognizes certain directives which can:

®m exclude lines of coding from the output of the Macro Pass,

B include a set of lines in the output of the Macro Pass more than once

B establish and alter values which may be used to determine whether a set of lines

shall be included or excluded.

These directives are provided to control the pattern of coding generated, based on
the parameters supplied in the macro instruction,

A6.1. DO and ENDO Directives
A DO directive controls the inclusion or exclusion of the lines following it, up
to its associated ENDO directive. For example, in the following sequence of
coding:
LABEL 5 OPERATION S OPERAND %
1 10 16
SRS S DO (| Voo oo boren e b e b b b g
S L1 2, ool s by e b v b e b a
R DO | < S T S O U T O N S S OO 1 O S WO EA I OB B B |
[N | ! 4 v b b v b b b |
NONEE RN BN [11 i Seov o Lo o b v by s b b g
[N B E/N, DO, 6 vy b v v b v e b e s b b
SRS B A Zov v by v by v v by by v b g |
I B L1 TN RO R SR R SR I S S SRS A R S AN SR S AR
e 1y E[N, D O, 9 v v b v v b b v v b e e g |
SRS A Jou v e b e b b e by e g

the first ENDO directive is associated with the second DO directive, the second
ENDO directive with the first DO directive. In other words, DO and ENDO directives
are paired to produce nests. Thus, the first DO directive controls lines 2 through

8, and the second DO directive controls lines 4 and 5, DO’s may be nested to a
depth of 10.

The operand field of a DO statement contains a single expression. If the value of
this expression is greater than zero, it represents the number of times the lines
controlled by the DO statement will be included in the output. Otherwise, these
lines will not appear. For example, if the following macro is in the library:

UP-4092 UNIVAC 9200/9300 Appendix A 10
Rev. 2 CARD ASSEMBLER SECTION: . PAGE:
LABEL 5 OPERATION & OPERAND 5
1 10 16
Lo Ly PIROC, POy AIST v o b v v by b o by g
MOVE | . INJAME, oo e e v b s b b o b L
AR EE SE Do, PCY) by v v by s b v v s b v bl
ARG U S MY, C DEST,JORY G |) v 4 o Vv v b g g |
e by E{ND O ST TS U RS O TR B ST SN A ST SN T I T A RV T A p |
FEN N N B! E{ND v b o e e b e e e b e by o
then the macro instruction
TR O I Lo L e v v be e v e g b e by L
RS M|OV,E, ACTi =0 v o b v b e by by |
I 1 1 I_L 1 l 1.1 1 | | l R I N R [| I .| I R I | | - |]
would produce the instruction
I R | l i i l L1 1 1) | l | S L L1 1 L 1 | | l] | O | l i I J
Lo b MiV,C, | DES T, JORVI G | ¢ v v by vy v by vl gy L |
in the output of the macro pass; whereas, the macro instruction
y U N l . l - i | S O - & [L1 ¢ l 1 1] 1 L) O N N | l i | J L1 [l
[N MIO; V E ACT=0 v by g g b e b 4o |
would not produce the instruction.
Note that the macro instruction
RN | [NN I BT BN R SN SNSRI NN ST S BN R SR B G S
PR I B MOV, E Lo e e b b b ey by .

would also cause the suppression of the instruction.

A DO statement may have a symbol in the label field. This symbol may be used only
in the statements controlled by the DO, Its value is one the first time these state-
ments are generated, two the second time they are generated, and so on. If the DO
is under the control of another DO, and is activated again, the count begins at one
again. Only two DO directives within a nest of DO’s may be labeled.

UP-4092 UNIVAC 9200/9300 Appendix A
Rev_ 2 CARD ASSEMBLER SECTION: PAGE:

Ab.2. GOTO and LABEL Directives

The form of the LABEL statement is

LABEL

OPERATION l OPERAND

symbol LABEL not used

The symbol in the label field of the LABEL statement is not defined in the usual
sense. It may be used only in the operand field of a GOTO statement.

The GOTO directive is used to direct the Macro Pass to another point in the macro
definition in its production of source code.

The form of the GOTO statement is

LABEL l OPERATION | OPERAND

not used l GOTO l symbol
. The symbol in the operand field must be the label of a LABEL statement.

If the following macro definition is available:

LABEL 5 OPERATION & OPERAND *
10 16
R R PR, O C PO FIOUR | | v v b b bl
MOVE | ; , | INJA/ME, T T I U WS VU N T N S WY NS N U UAVUNN NN ST N S SRS S
[B D0, | , PO b v b o b e b Lol
R B MIViC DES T(}4) , ORIV Gy ¢ | 1 v 1w v o]
[S T GO, T,0 END (| ool by by i
Ll | [ENDO, o b v b b b v o b o
R B MIVIC, DES T(8) L, ORING ¢ | v v L v o by vyl
END, | | ;| LIABEL T I I A AN AT SN N B R R BB S e |
el E[N,D, | AU B R A N O R R T A N AN R R R S i AR AR

then the macro instruction

R Wt Ly cov o Lo o b b b L b

RN B MOV E, F|°1U|&=L‘1111|11|11L11:|1L41L11L14L

[B | T ST AU T B S i B SN RS B B R S S S R R |
AR B B MVE Dlelsle([“L).llo;Rchln1!|A11111|L1L1411

UP-4092
Rev. 2

UNIVAC 9200/9300 Appendix A
CARD ASSEMBLER SECTION: PAGE:

while the macro instruction

LlLABEL 5 OPERATIONS® OPERAND 5
1 10 16
TR MOV E l,l oo oo b s e b o b e e g

would produce the instruction

N [et b e v v v v b o b b |
TR S MVC | D/ES T (8, ORILG o v | v o b o byl

For any GOTO statement, the corresponding LABEL statement must appear in the
same macro definition as does the GOTO statement. If a GOTO is within the range
of statements under control of a DO statement, but the addressed LABEL statement
is not, then execution of the GOTO will terminate the DO whether the DO count,

as expressed in the operand field of the DO statement, is exhausted or not.

A6.3, Set Variables

A set variable is a symbol to which a value is assigned during the generation of the
code corresponding to macro instructions. Unlike an ordinary symbol, the value
assigned to a set variable may be altered during the course of the Macro Pass. A
set variable may be either a local or a global variable. A global variable, once
declared and given a value by a SET statement, remains defined throughout the
Macro Pass and retains the same value until that value is changed by another SET
statement for that variable. A local variable is defined only within the macro def-
inition within which it is declared. A value assigned to a local variable within one
macro definition does not affect its value within any other macro definition in which
a local variable with the same name is declared.

Before a set variable may be set, it must first be declared by a GBL ora LCL
directive. The symbol naming a set variable must consist of four characters.

A6.3.1. GBL Directive

The GBL statement has the form

LABEL l OPERATION l OPERAND

not used | GBL l &G%xx
where: 00<xx<49
The symbol in the operand field of the GBL statement is declared to be the name

of a global set variable. The symbol must consist of four characters, not counting
the ampersand, and take the form shown above.

UP:4092
Rev. 2

Appendix A

SECTION:

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

PAGE:

13

A6.3.2.

A6.3.3.

A6.3.4,

LCL Directive

The LCL statement has the form

LABEL OPERATION OPERAND

not used LCL &L %xx

where: 00<xx<49

The symbol in the operand field of the LCL statement is declared to be the name
of a local set variable. The symbol must consist of four characters, not counting
the ampersand, and take the form shown above.

SET Directive

The SET directive is used to assign a value to a set variable. The form of the
SET statement is

LABEL | OPERATION | OPERAND

symbol I SET | expression

The symbol in the label field is the name of the global or local set variable to

which a value is being assigned; the expression in the operand is the value to

which the set variable is to be set. The value of the expression may range from
0 through 216—1. Until a GBL or LCL variable is set by a SET directive, it has
the value zero. Once it has been set to a specific value by a SET directive, the
set variable retains that value until it loses its declaration, or until it is set to
another value by another SET directive. Declaring a set variable does not affect

its value.

A set variable may be addressed by writing its name preceded by an ampersand.

Relational and Logical Operators

Expressions in the operands field of machine instructions and most Assembler
directives contain only the arithmetic operators, add and subtract. The expression
in the operand field of a SET or DO statement may contain these arithmetic
operators; and in combination with these, it may also contain the following:

® Arithmetic Operators

— multiply (¥)

M Relational Operators
— greater than (>)
— equal (=)

— less than (<)

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER Rev. 1

Appendix A 14
PAGE

SECTION:

A6.3.5.

A6.3.6.

m Logical Operators
— logical-and (**)
— logical-or (++)

The relational operators compare two unsigned binary numbers. The value of a
relational expression is 1 if the relation is satisfied; otherwise, it is 0. Thus, if
CHAN is the name of a keyword parameter, the expression

&CHAN=5

would have the value 1 if 5 had been specified as a value of the parameter CHAN;
otherwise, it would have the value 0.

The logical operators treat a value as a string of 16 bits and produce a 16-bit
value. The ‘‘logical and ’’ operator corresponds to the NC instruction and the

‘‘logical or’” corresponds to the OC instruction.

The precedence relation of the various operators in decreasing order is as follows:

1. *
2. +—
3. ¥*
4. ++
5. > =<

Parentheses may be used to override this precedence relation.

Character Values

A character value is a string of up to 13 characters enclosed in single apostrophes,
Apostrophes within the character string must appear as pairs of successive apostro-
phes. Ampersands within the character string must appear as paris of successive
ampersands.

Use of Character Values

A character value may appear as an operand of a relational operator. The following
rules apply:

® A numeric value is greater than a character value.
® A character value is greater than any shorter character value.

A series of characters enclosed by separators is considered a character value.
The following are separators:

UP-4092
Rev. 2

Appendix A

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

PAGE:

15

Such a character value may have a maximum length of 15 (including leading and
ending apostrophes when they occur).

A character string in the macro definition which:

1. Matches a set variable name except for the absence of the leading ampersand,
and

2. Is not enclosed in apostrophes,

will be accepted as the name of that set variable. This type of character string
must be enclosed in apostrophes to be treated as a character value.

If the operand field of a SET or DO statement contains an expression which could
not otherwise be evaluated, that expression will be treated as a character value
even though it is not enclosed in apostrophes.

The following is an example of the use of a local set variable. If the following
macro is in the library:

LABEL 5 OPERATION® OPERAND b
1 10 16
SR PIRIOIC! PO AICT o Lo v v b v b s b |l
MO/ VE | NIA M, E TSN ET Y S S SR N AN G SR T NN SOV SN UV OO U0 VY R G W) S AU ST T |
S S B LICL, | 8L %001 v v o L vov oy v by s by by e b
18(L.:%.,0,0] | SIEIT | P () e=l" YYES' | v v oo b b v e b goa d
(S S DO, , 4 &L%0,01 v v e b b]
[B MVv.c | DEST,IORV.G, | v ¢ vl v b byl
R B E(N;D O, v b e b e s b e by e by
S T E/ND v b b v v by e b b

then the macro instruction

Ill Illl lllllllllllLllLLJLLJJ;LJIllJLLJ

l 1 | MIOIVIEI AlclTl=lYlElsl 1 l WS N I Lo 1 lalﬂ,.L_J_l_‘Ldl._J__.lm"Lrl

would produce the source code instruction

lll llll lllIllllllllxIlllillllllllllLl

l il MlecL 1 DlElSlTJ_llolRlllG] l F U S T ¢ l Lol AJ_,J,,J. L1 J § W T | l

while any other form of the MOVE macro instruction would suppress production
of the soutce code instruction.

Rev. 2

CARD ASSEMBLER

| SECTION:

PAGE:

The following is an example of the use of a global set variable., Assume the
following two macros are in the library:

LABEL 5 OPERATION® OPERAND 5
10 16

[T R PIRO.C, PLaQL AICIT oo v v v b g b b |
Gl ViE | NAME [v ol bbb e b o b ool
[S GBL . 86%00) , v v vl iy by g b e b
86%00 , , SIET PO ELYNES | v v L b L

IR AN Do, , | 8G6%001 v v Lo by o by by
N S MIV.C, | DESTLIORIG | v ¢ ool vou v b v v by aa |
I B E|ND, O R T S U N N TS S N O S S (Y N S N A WOVUN S O E A M
[T SN EIND, , pte e e v b e b b e b g |
RN S P{RO,C e ey v v by e b g
TAKE | | NIAM E e b v b b e by e b |
L1 1. | B Dlol T & G1%1°19_1~L_1_J_1~L_J_.¢“J~L1_J_1_L_LL_J_J_L_LJ__J_L_1_J_1
[S MYC ORVG,DES T, | v v vyl v v v b e Lo aad
TR R B E|ND,O, e e b b e by g vy b b
) I I | l I Elr‘lDl 1 I T . | l J S l o 1 1 I NS S N | l | I T ¢ l U T S| l

If the only macro instructions in the source statements for a particular assembly

are the following:

Lt o | oo b e b v e v b v bl

[A GlI1,V,E ACT=YIE;S, v v |y v o s Lo v dls v bl

TN T S B TIAKE, ool o b v e v e b e b
in the order shown, then the following source code would be produced:

| N) L [l i1 | S . l I l Lol 11 I | L N l | I . W | l

AU S MiV.C DES TLIORYVG, | v v o b vy v b oo b oo h

[N B! MIV,C, | ORI G IBES T | vyl oy v b o b v g
If the only macro instructions in the source statements for a particular assembly
are the following:

AT A Ly i b o b o b e b e by]

RN A Gl VI E TN IR N I NN A A S B S BRSO B ST

[N T A TAK E PR N S U0 AN U0 N R U KN U S0 S S A S S R N NSNS D O B R R |

UP-4092
Rev. 2

UNIVAC 92G0/9300 Appendix A

CARD ASSEMBLER SECTION: PAGE:

no source code would be produced.

If the only macro instructions in the source statements are the following:

LABEL 5 OPERATION b OPERAND)]
1 10 16
[B TIA KE | Voo b e v e b e b e boea o d
4 JE B Gil |V, E CT=YES | vy v b b b

then the following source code would be produced.

N A [Cov v e e e b e e by b e b 1

[MIV,C, DESTLIORNV G, [v ¢ v oo v v Lo by o)

A7.

A8,

A9,

Thus, the value of a global set variable is a function of the order of the macro
instructions in the source statements.

CONTINUATION CARDS

Continuation cards are allowed on all cards in a macro definition except comment
cards.

The following rules will cause a continuation mark to be searched for:

B A comma followed by a space is detected.
® A comma in column 71 is detected.
® A separator in column 71 is detected (except on a PROC directive card).

Columns 1 through 15 of a continuation card must be blank. Column 16 of a continuation
card must contain the next valid character of the operand.

LABELS USED IN UNIVAC PRODUCED MACROS

It should be noted that if the output of a macro pass is to be combined with user source
code cards and assembled as one element, any symbol used as a label in a source
code instruction produced by the macro pass may not be used as a label in the user’s
own code. To avoid the necessity of the user checking a list of symbols used in
Univac written macros, a special feature has been incorporated into the Assembler to
allow all such symbols to incorporate a question mark as their second character.

MACRO INSTRUCTION DECK

Regardless of the order of the macro routines in the library, the macro instruction
deck may be in random order with respect to the library, and a particular macro may
be referenced as many times as desired. However, the order of the macro instructions
does determine the sequence of the source code instructions generated as output of
the macro pass operation.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Appendix A

18

During the macro pass operation, any cards in the macro instruction deck that are not
macro instructions referring to macros in the macro library are reproduced unchanged in
the output source deck,

The macro pass operation recognizes the end of the macro instruction deck by means
of an END card which it reproduces and includes at the end of the output source code

deck.

A10. MACRO PASS OUTPUT FORMAT

The Preassembly Macro Pass can produce four types of output cards. The formats

for these cards are presented in the following paragraphs.

A10.1. Source Code Card Format

Columns Contents
1-4 Label
5 Blank
6-—-10 Operation
11 Blank
12-67 Operand Field (No Comments)
69-71 Card number within the macro
72-73 Blank
74 Asterisk
75-76 Blank
77-80 Columns 77-80 of last parameter card

A10.2, Macro Instruction Card Format

Columns Contents
1 Asterisk
2-72 Columns 1-71 of the input card
73-80 Columns 73-80 of the input card

A10.3. Comments Card Format

Columns Contents
1 Asterisk
. 2 Blank
3-68 Comment
6980 Same as standard source code format

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

‘ Rev. 1 Appendix A

SECTION:

PAGE:

19

A maximum of 65 characters of the original comment line will be preserved and all

leading and terminal blanks will be dropped.

A10.4. Error Card Format
There are certain rules of writing macro definitions which may have been broken.
If they have been broken, a card will be punched containing the following information:
Columns Contents
1 *
2-4 Blank
5 E
6 Error Code (see below)
7—-68 Blank
69-80 Same as standard source code format
The error codes are:
CODE MEANING
1 Too many right or left parentheses occur in a DO or SET directive.
3 The first character of a DO or SET directive is a separator other than
a minus sign, a left parenthesis, or an apostrophe.
9 The information to be turned out as one source code statement will
not fit on one card.
All. MACRO PASS CONSOLE DISPLAYS

Display Reason for Stop Action
01FF Macro Library is loaded. Press the START switch to process
the macro instruction deck.
1FFF Current macro instruction Press the START switch to process
deck has been processed another set of macro instructions.
(END card has been read).
0111 Card count check failure Remove all cards, beginning with the

while loading the Macro
Library. After the card
read device has been
cleared, the card in error
will be the third card from

the last in the output stacker.

error card, from the read unit.

Determine reason for error (shuffled
cards, etc.) and place corrected deck
in the input stacker. Feed one card,
press the START switch. The next
card to be read will be examined to see
if it is in correct sequence. If it is,
normal processing will continue. If it
is not, it will be assumed that a new
macro is being loaded. The card count
expected will be card number 1 and the
previous macro will be ignored.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Appendix A

SECTION:

PAGE:

20

Reason for Stop

Action

Display

0122

0177

0100

0133

Hole count check failure
while loading the Macro
Library. After the card
read device has been
cleared, the card in error
will be the third card from

the last in the output stacker.

Not a library card. Column
1 does not contain a
12—3-9 punch and the card
is not a blank card. After
the card read device has
been cleared, the card in
error will be the third card
from the last in the output
stacker.

An end sentinel card has
been detected (/*) but the
card preceding is not a
‘Z’ type card. After the
card read device has been
cleared, the end sentinel
card will be the third card
from the last in the output
stacker.

Current library will not
fit in computer memory.

Remove all cards, beginning with the
error card, from the read unit. Replace
in read unit, feed one card and depress
the START switch. If the same stop
occurs again, the card has been in-
correctly punched. Restart with different
library.

Remove error card. Place all cards
following error card back in input
hopper. Feed one card. Depress START
switch to continue normal processing
of the Macro Library.

Remove all cards, beginning with the

end sentinel card, from the reader. Find
the ‘Z’ card and place in reader followed
by rest of library deck. Feed one card and
and depress START switch. If the card now
read is a ‘Z’ card, normal processing will
be resumed. If it is not a ‘Z’ card, the
current macro will be destroyed and it

will be assumed that a new macro is

being processed.

Remove rest of current macro (up to first
¢Z’ card) deck. Place rest of library back
in reader and depress the START switch.
Processing will resume with processing
of a new macro which will overlay start
of the previous one.

Another choice is to break down the Macro
Library deck into smaller libraries and
reload.

UP-4092
Rev. 2

UNIVAC 9200/9300 ' l Appendix A 21

CARD ASSEMBLER

SECTION: PAGE:

A12. LINKING THE MACRO PASS
The Macro Pass is composed of several separately assembled parts which must be
combined with a Linker run in order to produce a loadable Macro Pass. The following
description of how to link the Macro Pass assumes a two-pass Linker operation. The
Macro Pass can operate in an 8K UNIVAC 9200/9300 system.
The Macro Pass is a single-phase program. The PHASE control card to be used in
linking the Macro Pass is as follows.

LABEL 5 OPERATION & OPERAND b
1 10 16
i L] l Lo PlHlAISIE MlAJCJI JllzlsillAl | | I l N I | l BT W T Li R | l

EQU cards for the linking operation should follow the PHASE card. Following the
EQU cards should be the relocatable object code decks of the elements making up
the Macro Pass.

The first element of the input deck must be the Card Load Routine. If the online
card reader is going to be used to load the Macro Pass, the name of the Card Load
Routine is LD. If the Card Controller is going to be used, the name of the Card
Load Routine is LDCC.

The last element of the input deck must be the Macro Pass element named MP.
The following elements may appear in any order between the Card Load Routine
and the MP elements.

® A card read routine. This could be either the Systems Programming internal routine
for the online serial card reader, named XRDR, or the Systems Programming internal
routine for the Card Controller named XRDC. If XRDC is used, then an EQU card
of the form

LABEL | OPERATION l OPERAND

RDCN | EQU l n

should be included with the other EQU cards in the input deck. ‘n’ is the number
of the channel on which the Card Controller is located.

M An input translation table. To allow the user to punch source code in any card
code that he wishes, the Macro Pass uses a user-supplied translation table to
translate from card to internal code. The Macro Pass assumes that the result
of the translation is EBCDIC. The input translation table must be labeled RDTT.
If source code cards are punched in Hollerith, then the UNIVAC supplied Hollerith-
to-EBCDIC translation table, which is named TBRD, can be used. In this case
the following card should be included with the other EQU cards in the input deck:

LABEL t OPERATION S OPERAND 5
10 16

ROITIT L)) JElouy JJo mBRID s by beava b baa e by

UP-4092
Rev. 2

UNIVAC 9200/9300 ‘ Rev. 1 Appendix A

CARD ASSEMBLER

SECTION:

PAGE:

22

A card punch routine. This is either the UNIVAC supplied internal routine for
the online serial punch, named XPCH, or the UNIVAC supplied internal routine
for the row punch, named XPRW. If XPRW is used, then an EQU of the form

OPERAND

LABEL I OPERATION

n

CHAN l EQU

should be included with the other EQU cards in the input deck. ‘n’ is the number
of the channel on which the row punch is located.

An output translation table. To allow the user to have the output source code of
the Macro Pass punched in any card code that he wishes, the Macro Pass uses a
user-supplied translation table to translate from internal code to card code. The
Macro Pass expects all information to be translated from EBCDIC. The output

translation table must be labeled PHTT. If it is desired to have the cards punched

in Hollerith, then the UNIVAC supplied EBCDIC-to-Hollerith translation table,

named TBPU, can be used. In this case, the following card should be included with

the other EQU cards in the input deck:

LABEL 5 OPERATION & OPERAND)
1 10 16
ELJ-JJILTJ..J44144,lElQLU1 | 0, TBPIU, v v b b b e

Blank card separators may be placed between the elements in the input deck, as the

Linker ignores blank cards.

The END control card used when the Macro Pass is linked must have the operand
field:

0,INIT

Al12.1. Operating Instructions

1.

S

o N O wn

Place the Macro Pass deck, the optional CTL card, the compressed library
deck including the final /* card, and one blank card in the reader.

Load cards.
Stop X‘01FF’

Place macro instructions including the END card in the reader followed by
two blank cards.

Press the START switch.
Stop X‘1FFF’. Final stop.
The punch output hopper contains the source code cards for assembly.

To process another set of macro instructions return to Step 4-

To process a second library, the Macro Pass must be reloaded, since in processing
macro instructions, the Macro Pass overlays the routine used to load the library.

UP-4092
Rev. 2

UNIVAC 9200/9300 Rev. 1 Appendix A
CARD ASSEMBLER

SECTION:

PAGE:

23

A12.2, Control Card

The compressed library deck may be preceded by a control card, which contains
CTL in columns 10, 11, and 12, and a decimal number beginning in column 16. The
number may take any value between 8191 and 32767. If a control card is present,
the decimal number tells the Macro Pass the memory size in which it is to operate.
If the control card is absent, or if the value specified lies outside the permissible
range, the Macro Pass assumes that it is to operate in a 16K memory.

A13, THE COMPRESSOR

The purpose of the Compressor is to process source coded macro definitions and from
these create a binary compressed macro library, which may then be used by the Macro
Pass to create a source code deck from macro instructions and the Macro Library.

The Compressor run creates a macro library from macro definitions which may then
be used as input to the Macro Pass. One or many macro definitions may be passed
through the Compressor at a time.

Each macro definition is terminated by an END card and each library of macro
definitions is terminated by an end sentinel card (/* in columns 1 and 2 of the
input card).

The Compressor run takes all macro definitions, up to an end sentinel card, and
produces both a printed listing and an EBCDIC, binary punched card deck.

The printer output consists of a listing of all input cards, plus an error code wherever
the macro definition is incorrect. At the end of each macro definition, a total macro
error count is printed and the paper is advanced to a new page.

The card output consists of one or more macro definitions punched in compressed
binary format. Each binary card is numbered consecutively within the current macro
definition. Each macro within the library causes several binary cards to be punched.
These cards begin with a count of one, and contain an identification which is taken
from columns 73-77 of the PROC directive of the macro definition. The output macro
library is followed by an end sentinel card.

A13.1. Compressed Macro Library Deck Format’

All cards in the macro library produced by the Compressor have the following format:

Columns Contents
1 12—-3-9 punch
2 Checksum of columns 3—72 in binary
3 Card type ID; B, C, or Z
4-72 Variable information in binary
73-77 Identification
78-80 Card number in Hollerith (starts with 1 for each macro)

The card number is stored in the numeric portions of columns 78—80. These
columns may be overpunched.

End of library is /* in columns 1-2.

UP-4092
Rev. 2

Appendix A

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

PAGE:

24

A13.1.1. Data Cards
These cards contain the actual representation of the macro in the order it appears
in the internal format. In this internal format, each macro definition is preceded by
an eight-byte header, containing information used by the Macro Pass to process the
macro definition when it is called. When the macro definition is processed by the
Compressor, it leaves the first six bytes of this header filled with zeros. In the
last card of the macro definition, it supplies the information that the Macro Pass is
to insert in these six bytes before processing the macro definition.
The information on a data card is as follows:
Columns Contents
3 B Identifies data card.
4 A number which is one less than the number of
characters of macro definition on this card.
5-n The actual characters of macro definition.
This information may extend as far as column 72.
A13.1.2. Fixups

Since GOTO references to a label of a LABEL directive may be forward references,
all such references to a single label are chained. The operand field of a GOTO
receives the address of the last previous reference (relative to the address of the
first character of the header of this macro) . The information for fixing these refer-
ences is contained on special cards after the end of the body of the macro. The
format of these special catds is:

Columns Contents
3 C Identifies a fixup card.
4 The number of items of fixup information on
this card.
5-72 A variable number of items of fixup information.

Each item consists of four bytes of information.
0,1: relative value of the label.

2,3: relative address of last reference to the
label.

Note: Fixups also occur for other types of information. Some of these may occur
in the punched output interspersed with the data cards.

UP-4092
Rev. 2

UNIYAC 9200/9300
CARD ASSEMBLER

Appendix A

SECTION: PAGE:

25

Al13.1.3. Header Specification

This is the last card of the representation of a macro. It contains the information
required for fixing up the header.

Columns Contents
3 Z Identifies this card as a header specification.
4 blank
5,6 The total number of bytes occupied by the macro
in internal format.
7,8 The relative position of the start of the Name
table within the macro.
9,10 The relative position of the start of coding

within the macro.

Al3.2,

The last card of input to the Compressor must contain /* in columns 1 and 2.
The last card of output from the Compressor is such a card.

Several macro libraries may be created from one library by inserting an end
sentinel card after any or all ‘Z’ cards.

One macro library may be created from several by removing all end sentinel
cards from each library and combining these decks, followed by an end

sentinel card.

Error Indications

When the Compressor detects an error in the source code of a macro definition,
it flags the erroneous line of source code with a one-character flag. One or more
of these flags may occur on a line. The flag is an indication of the error type.
Flags and their meaning are as follows:

@ One of the following has been detected:

— A label of a line other than a macro language directive consists of more than

four characters.

— An operation consists of more than five characters.

One of the following rules was broken on the operand field of a DO or SET Line:

— A right parenthesis must be followed by a space, a right parenthesis, or an
operator. It must be preceded by a term or a left parenthesis.

— A comma may not appear.

— A left parenthesis must be preceded by an operator, a left parenthesis, or a
space. It must be followed by a term, a minus sign, or a left parenthesis.

Appendix A

SECTION: PAGE:

UP-4092 UNIVAC 9200/9300 Rev. 1
Rev. 2 CARD ASSEMBLER

© A character string is greater than 15 characters, including leading and ending
apostrophes.

(D A label which has been defined by a LABEL directive occurs as a label of
another line.

(® One of the following has been detected:

— In parameter references of the type P(n), a right parenthesis is missing, or it
is not followed by a space.

— In parameter references of the type P(n), an illegal separator occurs after
the left parenthesis.

— The operand of a NAME directive specifies a value of more than 216_1,

— On C¢. ..’ type constants, the terminal apostrophe is not followed by a
separator.

— The explicit length specified in a DC or DS directive is less than one.

— A hexadecimal constaﬁt is greater than 16 bytes.

—~ A location counter reference (*) is not followed by a +, —, space, or comma.
() More than ten DO’s are nested together.
© A comma is followed by a separator in the operand field of a PROC directive.

(D One of the following has been detected:

— Part, or all of the line has not been processed due to the occurrence of
one of the other errors. The other error code will be printed with the I.

— An ENDO occurs without a corresponding preceding DO. The line is ignored.
— The line is not under the control of a PROC directive and will be ignored.

(® The keyword which is referenced within the macro is not defined in the PROC
directive.

(© More than two DO labels occur within nested DO’s.
M An ENDO is missing. Each DO must match with an ENDO.
(N) The number of positional parameters defined in the PROC directive is nonnumeric.
(© One of the following has been detected:
— There is no operation field on this line.
— A NAME directive does not follow a PROC directive or another NAME directive.

(P The macro is incomplete. An END record does not occur before the next PROC
directive or before the end sentinel card.

UP-4092 UNIVAC 9200/9300 Appendix A 27
Rev. 2 CARD ASSEMBLER SECTION: PAGE:

(@ One of the following has been detected:

A GOTO directive label consists of more than 4 characters.

A keyword defined by the PROC directive is more than 4 characters long.

The name defined on the PROC directive for referencing positional parameters
is more than 4 characters long.

® A GOTO references an undefined label (LABEL directive is missing).

& Some restriction which the Compressor places on the continuation of information
from one card to the next has been violated. The restrictions are as follows:

— If an input card has a continuation mark in column 72, the last character from
this card must be a separator.

— If a PROC directive card has a continuation mark in column 72, the last
character from this card must be a comma.

Al13.3. Compressor Console Displays

DISPLAY REASON FOR STOP ACTION

1111 A GOTO or LABEL directive The Compressor does not have
is being processed and the enough memory space to continue
label table is full. processing this macro definition.

If the user desires the Compressor
to begin the processing of another
macro definition, he should remove
any remaining cards of the current
macro definition from the card read
unit, load the next macro definition
into the card read unit and depress
the START switch., The Compressor
will terminate processing of the
current macro definition and start
processing the next macro definition.

1FFF The Compressor has either Depress the START switch to have
just been loaded or has the Compressor process the next
completed processing a Macro Library.

Macro Library.

uUr-4auvs

Rev. 2

UINIYAL 7L4VV/ 7aVV Appendix A 28

CARD ASSEMBLER SECTION: PAGE:

Al13.4. Linking the Compressor

The Compressor is composed of several separately assembled parts which must

be combined by a Linker run in order to produce a loadable Compressor. The following
description of how to link the Compressor assumes a two-pass Linker operation.

The Compressor can operate in an 8K UNIVAC 9200/9300 System.

The Compressor is a single-phase program. The PHASE control card to be used in
linking the Compressor is as follows:

LABEL 5 OPERATION & OPERAND]
10 16
Lo e o PI/HASEl] |ICMP, 2160, A | v v o b vy v Lpa o bl

EQU cards for the linking operation should follow the PHASE card. These EQU
cards define the following labels as indicated:

— BLNK - 64 if a 63/character print bar is to be used when running the Compressor;
otherwise, 16. ’

— FONT - Zero if a 63 /character print bar is to be used; otherwise, 128,

PRTR — Fifteen if a 63 /character print bar is to be used; otherwise, zero.

PRTT - Zero if a 63/character print bar is to be used; otherwise, 0, TBPR.

1

The EQU cards should be followed by the relocatable object code decks of the
elements making up the Compressor. The first element of the input deck must be
the Card Load Routine. If the online card reader is going to be used to load the
Compressor, the name of the Card Load Routine is LD. If the Card Controller is
going to be used, the name of the Card Load Routine is LDCC.

The last element of the input deck must be the Compressor element, named CP.
In between the Card Load Routine and CP elements, the following elements may
appear in any order:

® A card read routine. This could be either the online serial card reader routine,
named XRDR, or the Card Controller routine, named XRDC. If XRDC is used,
then an EQU card of the form:

LABEL I OPERATION l OPERAND

RDCN | EQU I n

should be included with the other EQU cards in the input deck, where ‘n’ is the
number of the channel on which the Card Controller is located.

UP-4092
Rev. 2

Appendix A

SECTION:

UNIVAC 9200/9300 |
CARD ASSEMBLER B

PAGE:

29

An input translation table. To allow the user to punch source code in any card
code that he wishes, the Compressor uses a user-supplied translation table to
translate from card to internal code. The Compressor assumes that the result
of the translation is EBCDIC. The input translation table supplied must be
labeled RDTT If source code cards are punched in Hollerith, then the UNIVAC
supplied Hollerith to EBCDIC translation table, which is named TBRD, can be
used. In this case, an EQU card of the form:

LABEL b OPERATIONS OPERAND "
0

ROITT | gy | JElQup g Jlopmeirior g g sl vy aa dborva e ag bl

Leaa i | N pr vt b vrv e b b bl

should be included with the other EQU cards in the input deck.
A card punch routine. This is either the online serial punch routine, named
XPCH, or the row punch routine, named XPRW. If XPRW is used, then an EQU

card of the form:

LABEL l OPERATION l OPERAND

n

CHAN I ~ EQU

should be inciuded with the other. EQU catds in the input deck, where ‘n’ is the
number of the channel on which the row punch is located.

The Systems Programming internal rout'inAe for the printer, XPRT.
If the PRTR EQU cards has been used to specify a value of TBPR, the UNIVAC

supplied EBCDIC to 48-character-print-code translation table, which is named
TBPR.

Blank card separators may be placed between the elements in the input deck,
as the Linker ignores blank cards.

The operand field of the END control card used when the Compressor is linked
must be: O,INIT

Appendix A

SECTION:

UP-4092 UNIVAC 9200/9300
Rev, 2 CARD ASSEMBLER

PAGE:

A13.5. Operating Instructions

1. Place the Compressor deck in the reader.

2. Home paper; clear the reader, punch, and printer.
3. Load the Compressor deck.

4. Stop X‘1FFF’.

5. Place the macro definition source cards in the reader. Follow these cards
by an end sentinel card and two blank cards.

6. Depress the START switch.

7. Stop X‘1FFF’
Punch output hopper contains the Macro Library.

8. To process another library, return to Step 5,

A13.6. Control Card

When the Compressor is being run from initial load, the macro definition source

card deck may be preceded by a control card, which contains CTL in columns

10, 11, and 12, and a decimal number beginning in column 16. The number may

take any value between 8191 and 32767. If a control card is present, the decimal
number tells the Compressor the memory size in which it is to operate. If the control
card is absent, or if the value specified lies outside the permissible range, the
Compressor assumes that it is to operate in a 16K memory.

UP-4092
Rev. 2

UNIVAC 9200/9300 Aovendix B
CARD ASSEMBLER seomioms Pace:

B1.

B2.

APPENDIX B. INPUT/OUTPUT CONTROL

SYSTEM (IOCS)

GENERAL DESCRIPTION

The Input/Output Control System (IOCS) provides the user with tested input/output
routines to control the data which are the input or output of programs written in Assem-
bler language. IOCS consists of two parts:

(a) the input/output routines themselves, which are macros and generated as a result
of macro calls. The macros used to generate the input/output routines are called
declarative macro instructions.

(b) the macro instructions used by the worker program to communicate with the input/
output routines. These macro instructions are called imperative macro instructions.

GENERAL USAGE

The user is provided with a complete set of routines for controlling all input/output
operations required by the system. Since not every source program requires every
routine or its variable functions, Univac Division of the Sperry Rand Corporation
provides a Preassembly Macro Pass program which in effect is a generator capable
of adapting each input/output routine to the requirements of the user.

The Preassembly Macro Pass first reads declarative macro instructions made by the
user describing the input/output operations required by the application. Based on these
instructions the Preassembly Macro Pass selects the required routines from the macro
library, develops them for the specific appiication, and punches them into cards in the
Assembler language format. They may then be assembled as part of the source program
or assembled separately and linked with the user program at linker time. This function
is provided by the UNIVAC 9200/9300 Card Linker program.

The user communicates with the IOCS routines through use of the macro calls (imperative
macro instructions) in his problem program. Typical imperative macro instructions are
OPEN, CLOSE, GET for an input file, and PUT for an output file. These imperative
macro instructions are related to the input/output routine to which they refer by means

of a file name. The same file name appears as a parameter in all of the imperative

macro instructions referring to one file and also appeats as the label of the declarative
macro instruction generating the input/output routine for the file.

wa LRV

Rev. 2

UVINI VAW 7&LUV/ 79VV Appendaix b

CARD ASSEMBLER SECTION: | BAGE:

Z

B3.

B3.1.

DEFINITION STATEMENTS (DECLARATIVE MACROS)

The programmer must use definition statements to describe to the Preassembly Macro
Pass the characteristics of the particular input/output file to be processed. These
statements are then used by the macro pass to specialize the particular input/output
routine to meet the requirements of the file and the program.

Each input/output device required by the program must be defined by reans of these
definitions. A definition statement is herein defined as consisting of one Header Entry
card and a number of Detail Entry cards. In a definition statement, each header and
detail entry card must have a character punched in column 72, except the final detail
entry card which must not contain this continuation character in column 72.

Header Entry Card

A header entry card is the first card of a definition statement and requires three items of
information. The first is the symbolic name of the file assigned by the user and is entered
in the label field of the card. The symbol may consist of as many as four characters and
must adhere to the Assembler language rules for labels. The second item is written in the
operation field and must be one of the following:

1. DTFCR - DEFINE THE FILE FOR THE CARD READER

2. DTFPR — DEFINE THE FILE FOR THE PRINTER

3. DTFRP - DEFINE THE FILE FOR THE READ/PUNCH

4. DTFCC - DEFINE THE FILE FOR THE CARD CONTROLLER
5. DTFRW - DEFINE THE FILE FOR THE ROW READ/PUNCH

The third item is a keyword parameter specification, described in Section B3.2,
and is entered in the operand field.

For example, the header entry card for a reader routine with a file named ‘“MSTR”’
would appear as follows: ‘
LABEL ' OPERATION | OPERAND

MSTR ‘ DTFCR | keyword = specification

Detail Entry Cards

The detail entry cards are used to define parameters such as mode of processing, buffer
area name, and print bar.

Each detail entry card is composed of a keyword immediately followed by an equal (=)

sign which is in turn followed by one specification. A comma must immediately follow

the specification for each detail entry card in the definition statement except for the final
detail entry card. A given detail entry must be used only once in each definition statement,
Entries which do not apply to a particular application should be omitted. The summary of
detail entry cards listed in Appendix B4, gives the optional as well as the required

detail entry cards for a given peripheral device. The format for a detail entry card,

with the continuation character in column 72, is as follows:

LABEL OPERATION I OPERAND | 72

symbol | DTFxx I keyword=specification, I X

UP-4092 UNIVAC 9200/9300 Avvendix B ;
Rev. 2 CARD ASSEMBLER secmons o ace:

B3.2.1. Block Size Entry (BKSZ)

This entry must be provided for all printer files. The keyword is BKSZ. Any number
from 1 through 132 may be specified, but the number should be no larger than the number
of print positions available. The user-defined work area where print images are made
available to IOCS must contain the same number of bytes as is specified for BKSZ.
I0CS left justifies the print images on the printed line and supplies spaces for printing
in the remaining unspecified print positions. The keyword and specification for 132
print positions have the following form in the operand field:

BKSZ=132

B3.2.2. Channel Entry (CHNL)

This entry is used to define the general purpose channel to which the UNIVAC 1001
Card Controller or the Row Read/Punch is connected. The keyword is CHNL; the
allowable specification is one of the general putpose channels 5 through 12. The
keyword and specification for a channel entry for general purpose channel 5 have

the following form:
CHNL =5

B3.2.3. Control Entry (CNTL)

This entry must be provided for all files to which a CNTRL macro instruction is
directed in the main program.

The keyword is CNTL. The specification is YES.
CNTL=YES

CNTL is a detail entry card within a definition statement. CNTRL is an imperative
macro and its use is described in a later section.

B3.2.4. End-of-File Address Entry (EOFA)

This entry is used to specify the symbolic name of the end-of-file routine provided
by the user. The keyword is EOFA and the specification is the symbolic name of
the user end-of-file routine. The format for an end-of-file routine labeled END is as
follows:

EOFA=END

If the image to be delivered is an end-of-file card, IOCS jumps unconditionally to the
user end-of-file routine when a GET macro instruction is issued for an input file.

An end-of-file card contains a slash (/[0-1 punch]) in column one and an asterisk in
column two. (In actuality, the card system IOCS routines recognize an end-of-file card
by means of the slash in column one alone.) An end-of-file card must be followed by

~ other cards in the input hopper to avoid a hopper empty indication before the end-of-
file card is sensed. The following cards may be special if the user has some purpose
for them (such as an overlay to be loaded); otherwise, their content is not significant
and any cards the user wants may be used (such as blank cards or more end-of-file
cards).

Ur-4uvs UNRIYAL 74VV/ 79VV Appenaix b

Rev. 2 CARD ASSEMBLER SECTION: PRGE:

For the online card reader, when control is transferred to the user end-of-file address,
the end-of-file card image is in the work area and the image of the card immediately
following the end-of-file card is in the input area.

The EOFA parameter is not applicable to the UNIVAC 1001 Card Controller. The
user must test for his own end-of-file.

B3.2.5. The Function Entry — UNIVAC 1001 Card Controller (FUNC)

This entry specifies the symbolic name of a one-byte user-defined area where the
hexadecimal value for the required function is stored before each GET or PUT
macro instruction.

The keyword is FUNC. The specification is the label of the one byte user area, and
for a function area labeled CCXF, has the following form:

FUNC=CCXF

B3.2.6. Allowable Functions for the UNIVAC 1001 Card Controller

The following table illustrates the allowable hexadecimal values which may be
stored into the user-defined one-byte area before each GET or PUT macro instruc-
tion is issued. Once set, the area may remain the same or be altered as desired.

HEXADECIMAL VALUE FUNCTION SPECIFIED
08 Transfer and Read Primary
09 Transfer and Read Secondary
00 Transfer Primary
01 Transfer Secondary
02 Transfer Primary and Secondary
0A Transfer and Read Primary and Secondary
24 Send Data to 1001 (1001 code only)
14 Receive Data from 1001 (1001 code only)

The GET macro is used with all functions but ‘‘Send Data to 1001’’. With this func-
tion a PUT macro is used.

Appendix B

SECTION: PAGE:

UP-4092 “UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

B3.2.6.1. Transfer-and-Read Functions

The previous image read into the UNIVAC 1001 Card Controller is transferred
into the UNIVAC 9200/9300 memory and another image is read into the UNIVAC
1001. The function for the first GET executed after opening a Card Controller
file should be a transfer-and-read function which, in contrast to the general
case, causes the first card in the feed specified to be read and transferred,

and the second card to be read.

B3.2.6.2. Send-and-Receive Data Functions

These functions are not available on the standard board. However they are pro-
vided for by :IOCS in the event the user wishes to wire his own board for
a particular application.

No translation is provided for these functions and they must be performed in
UNIVAC 1001 mode only.

The user work area must contain one byte more than is required for the data to
be sent or received. The extra byte must be the first byte of the area and must
contain the number of characters to be transmitted. This first byte must not be
in UNIVAC 1001 mode, but must contain a binary number.

Typically, the data sent to the UNIVAC 1001 contains some function character the
-modified board is to interpret, as well as data to be used in the execution of the
function.

For example, assume the board has been modified to interpret the code of a hexa-
decimal value of 77 as a search primary for a name. The following steps implement
this function:

(1) - Set function entry area to a send-data function.

(2) Store hexadecimal 77 into the second byte of the work area.

(3) Store name (assume 6 characters) in work area bytes 3 through 8.

(4) Store a binary 7 (6+1 function) into first byte of the work area (the number
of characters to be transmitted).

(5) Issue a PUT macro instruction.

When the UNIVAC 9200/9300 prdgram receives the data the UNIVAC 1001 has
developed as a result of performing this seatrch, the following steps are taken:

(1) Set the function entry area to a receive-data function.

(2) Store the number of characters to be received in the first byte of the work
area.

(3) Issue a GET macro instruction.

The data will be received in byte 2 and the following bytes of the work area.
Typically, the data received from the UNIVAC 1001 contains some status
character (find/no-find, for example) and the data requested by the preceding

coandadata function.

UP-4092
Rev. 2

UNIVAL 7£UU/ 750U Appendix B

CARD ASSEMBLER SECTION: PAGE:

B3.2.7.

B3.2.8.

B3.2.9.

The nature of any function or status characters embedded in data to be sent or
received and the location of these chatacters in the data message is a user
responsibility. The IOCS system makes no attempt to control the information
content of data sent or received.

Input Area Entry (I0OA1)

This entry specifies the name of the input buffer area. In the UNIVAC 9200/9300
Card System, it is used only for the reader file. The keyword is IOAl. The speci-
fication is the symbolic name of the input buffer area assigned to the device. This
symbolic name must be the symbol used by the programmer in the DS statement de-
fining the area in his main progtam.

I0A1=CARD

In this instance, CARD is the symbolic name of the input buffer area. The symbolic
name assigned by this entry is never referenced directly by the programmer. Images
are delivered by the input/output routines into a specified work area.

Input Area Entry (INAR)

-This entry is used to specify the symbolic name of the user-defined input buffer area

when the read feature of the read/punch unit is required. The keyword is INAR. The
specification is the symbolic name of the area assigned to the read/punch unit as
defined by the programmer. The operand for a read/punch buffer area labeled INPC
has the following form.

INAR=INPC

Input Translate Table Entry (ITBL)

This entry specifies the symbolic name of a translate table located in the main |
gram by which all records of a given input file are to be translated.

The keyword is ITBL and the specification is the symbolic name assigned by the
programmer to the table. The operand for a translate table labeled CODE has the
following form:

ITBL=CODE

B3.2.10. Mode Detail Entry (MODE)

This entry is used to specify the mode of the input/output file and is required as
part of the definition statement for all devices but the printer. The keyword of the
entry is MODE. The allowable specifications are:

UP-4092
Rev. 2

UNIVAC 9200/9300 Appendix B
CARD ASSEMBLER Rev. 2 SEC TION: PAGE:

B3.2.11.

OPERAND FORM REMARKS

MODE=BINARY For cards read and/or punched in column
binary mode.

MODE=CC For cards read and/or punched in compressed
code (80-byte I/0 area required).

MODE=1001 For cards read in UNIVAC 1001 mode with-
out translation (Card Controller only) (80-
byte 1/0 area required).

MODE=TRANS For cards to be read and/or punched trans-
lated by the table specified by the ITBL
or OTBL entry.

MODE=TRANSTC For Card Controller only, if translation of
UNIVAC 1001 code is required through the
translation table specified by the ITBL entry.

There are two translation modes which may be defined with the UNIVAC 1001 Card
Controller.

B TRANS, implies all cards read into the UNIVAC 9200/9300 from the UNIVAC 1001
are translated from compressed code by the translate table specified by the ITBL
detail entry card.

m TRANSTC, implies all cards read into the UNIVAC 9200/9300 from the UNIVAC
1001 are translated from 1001 code by the translate table specified by the ITBL
detail entry card. This mode is used when combined reading (both primary and
secondary in one function) is required, since basic UNIVAC 1001 memory cap-
ability is exceeded if two images are read in other than 1001 code.

For the online serial card reader operating in translated mode, card images are read
into the input area in compressed code, moved to the work area, and translated there.
For example, when control is transferred to the user end-of-file address, the image
of the end-of-file card is in the work area in translated mode, and the image of the
card immediately following the end-of-file card is in the input area in compressed
code.

For the Card Controller operating in translated mode, card images are read into the
work area in compressed code and are translated in the work area.

Output Area Entry (OUAR)

The entry specifies the symbolic name of the output buffer area as defined in the
main program when the punch function of the punch, read/punch unit is required.

The keyword is OUAR. The specification is the symbolic name assigned by the
programmer in the DS statement defining the area. The operand for an output area
labeled OUPC has the following form:

OUAR =0OUPC

UP-4092
Rev. 2

UNIVAC 9200,/9300 di
CARD ASSEMBLER Rev.1 | AppendixB |

B3.2.12.

B3.2.13.

B3.2.14.

B3.2.15.

B3.2.16.

There is no need to define an output buffer area for the printer, since IOCS uses
the print buffer area in restricted memory.

Output Translate Table (OTBL)

The entry specifies the symbolic name of the translation table located in the problem
program through which all output images are to be translated.

The keyword is OTBL. The specification is the symbolic name assigned to the
table. The operand for a translation table labeled CRDC has the following form:

OTBL=CRDC

Overlap Entry (ORLP)

This entry specifies that the read/punch unit file is to be processed in an overlap
mode and applies only to the read/punch unit when used as both a reader and a
punch. The entry is omitted when information is to be punched in a card which has
been read previously.

The keyword of this entry is ORLP and the specification is YES. The operand has
the following form:

ORLP =YES

Print Bar Entry (FONT)

The entry specifies the print bar the program expects to find in the user configura-
tion. The keyword is FONT and the allowable specifications are 48 ot 63. The
operand for a 63-character print bar has the following form:

FONT =63

When using a UNIVAC 9300 System with a 16-character print bar, FONT=48 should
be specified. Numeric printing must be specified in the CNTRL macro instruction
(B6.7.4); an alphanumeric print may damage the print bar.

Printer Advance Entry (PRAD)

This entry is used in conjunction with printer files and enables the programmer to
specify a standard advance of one or two lines.

The keyword is PRAD. The allowable specifications are 1 or 2. The operand for
double spacing has the following form:

PRAD =2

Punch Error Entry (PUNR)

This entry specifies that automatic error recovery, where possible, is to be provided
in the online serial or row punch routine and applies only to these devices. If it is
not specified, all punch errors bring the computer to a stop.

The keyword is PUNR. The allowable specification is YES. The operand has the
following form:

PUNR =YES

UP-4092
Rev. 2

Appendix B

SECTION:

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

PAGE:

B3.2.17.

Printer Overflow Entry (PROV)

This entry must be provided if the user wants any special action as a result of
form overflow on the printer. If the printer overflow entry is not provided, printer
spacing proceeds as directed by the printer advance detail entry and/or the CNTRL
macro specifying skipping or spacing.

The keyword of the entry is PROV. The specification may be either YES or a label.
The operand has the following form:

PROV =YES
or
PROV =label

If the specification is YES, an automatic skip to channel 7 (home paper) in the
paper tape loop is provided in response to form overflow.

If the specification is a label other than YES, control is transferred unconditionally
to the specified label in response to form overflow. The label specified should be
the symbolic name assigned to the user overflow routine provided to perform the
desired form overflow action.

The user indicates the point at which form overflow is to occur by a channel 1 punch
in the paper tape loop. The form overflow punch (channel 1 punch) is recognized
when spacing paper, either in response to a CNTRL macro specifying spacing before
printing or in response to a PUT macro after printing a line. (The form overflow punch
is not recognized during a printer skip operation.)

Response to recognition of a form overflow punch may be illustrated by the following
sequence of operations:

@D) PUT FILA
(or CNTRL FILA,SP,m,n m#0)
- Process
(2) PUT FILA
(or CNTRL FILA
- Process
3) PUT FILA
(or CNTRL FILA
RET

- Process

UP-4092
Rev. 2

Appendix B

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

PAGE:

B3.2.18.

If the form overflow punch is recognized during the spacing associated with (1),
then after (3) is executed, the form overflow action specified is taken. If the action
is to transfer control to a user subroutine, then control goes to that subroutine
rather than to the label RET. The address of the label RET is in general register 14
when control is transferred to the form overflow subroutine.

Type of File Entry (TYPF)

This entry indicates whether the file is an input, output, or a combined file. It is
applicable only to the UNIVAC 9200/9300 Read/Punch Unit.

The keyword of the entry is TYPF. The allowable specifications are given below.

OPERAND FIELD COMMENTS

TYPF =INPUT Reading only
=0OUTPUT Punching only
=COMBND Reading and punching

UP-4092 UNIVAC 9200/9300 Rev. 1 Appendix B 11
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
B4. SUMMARY OF DETAIL ENTRY CARDS
OPERANDS FIELD APPLIES TO
o o - T oz
ALLOWABLE = E 520 ;ég EZ.UZIJJ
< Z L=z Z|l £0O
KEYWORD SPECIFICATION n E &J&JE 83:"2 Oog REMARKS
BKSZ 1-132 X Required for online printer
CHNL 5 thru 12 X X Required for UNIVAC 1001
CNTL YES X X X X jRequired if CNTRL macro is used
EOQOFA Symbolic name of user X X X Applies to input files only
end-of-file routine
FUNC Symbolic name of user X Required by Card Controller
defined 1-byte area where
function is stored
10A1 Symbolic name of user X If binary image requested, 160-byte area
defined input buffer area required
INAR Symbolic name of user X X Required if reading in the read/punch file
defined input buffer area
ITBL Symbolic name of user X X X X Required if translation of input file desired
defined input translate
table
MODE See Appendix B,3.2.10 X X X X
OUAR Symbolic name of user X X Required for punch files and read/punch files
defined output buffer area
OTBL Symbolic name of user X X X Required if translation of output file desired
defined output translate
table
ORLP YES X X
FONT 48 or 63 X Specifies 48- or 63-character print font
PROV YES or symbolic name of X Required if form overflow action is to be taken
user form overflow routine
PRAD lor2 X Specifies standard print advance
PUNR YES X X Automatic error recovery desired
TYPF INPUT X X Reading only
OUTPUT X X Punching only
COMBND X X Reading & punching

UP-4092 UNIVAC 9200/9300 Appendix B 12
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
B5. DEFINITION STATEMENT EXAMPLES
The following are examples of definition statements.
B5.1. Online Serial Punch File Example Definition
LABEL 5 OPERATION & OPERAND COMMENTS
10 & o 72 80
MS$ TR | |, DIT.FiRP[JCN,TL=IYES,, | . b oo LIXE o b1
[A Lig st } IMODE=TRANS L ¢ o0 o DX i
R B Lo OTBL=MTCC, | o ol v L Xpe o Ly gy
por i by [11 OUAR=PUNC,; S | X L L
I S b TYPF=0UTPUT, [[T R
B5.2. Reader File Example Definition
LABEL 5 OPERATION & OPERAND COMMENTS
1 10 16 5 72 80
I lNIPIUl I 1 1 DlTlFlclR ,ELOI FIA!___{ ,El Ul.pl,,’l ‘J\ Lo Lo L L..L ST | L.l I Lo i 1 1 11
U N B L1 11,0, A =CARD,! bl I SRR
[B | LB, CTMC, e s] N A |
O | l 11 1 I M|01DlE,=| TIR'AlNLSJ | I N l L l N
B5.3. Printer File Example Definition
LABEL 5 OPERATION GG OPERAND COMMENTS
1 10 16 _ 72 80
Ly, T |y DIT,FIPR| ICN Tis=l Y EiSu, oy oo oo LX) ol
R A Lo FOMNT =148, L oo o4 oo LX) o by g
[R L PRAD =2, + Ll ya v o b v v WAXE v by g1
R |1 PROV:=YES, |, | [T o .S T A
TR N S N Loy |0 T B, L =P B48,,] i Lo X L
L b L BKSZ=11,32 , | . _i. Lol [B

WINI Y A T &VV/ IVVV nppTuulA D

1o

Rev 2 CARD ASSEMBLER SECTION: PAGE:
B5.4. Online Serial Read and Punch File Example
LABEL 5 OPERATION & OPERAND/ /COMMENTS
1 10 72 80
Byl LiL | ¢ DIT,FIR\P| ICGNT Li=[Y,E S, |)Sl L4 T A e
bt (I ELOFA=Fl N, | | X Lo
Lo 1o L a0 I NIALRI—[READI.|4> [I o X o by
N S| | LTBL=CTMC,| | \J b X Ly
N B L4y M, O,DE=TRANS|,, } (l XL Loy
Lot i L1 OUIAIR!"lFUNclllL){l CIXE oy
t oo by L o4 0T BL=MCTC,, | l(\Ll X
b by | I TYPF=[{COMBND A ((iLLl 1 R AR
B5.5. Card Controller File Example
LABEL 5 OPERATION® OPERAND } {COMMENTS
1 10 16 72 80
SIALS, | DIT,FICC|] |CNTL,=YES,,, IJ(AR T IR

B6.

LT7,BL=1BCD,, |)ZL L1t
FUNC=IREQS,, | , (>J L
M,O,DtE,=|T,R,A,N,S]lL§ }| L
CHNL=I5 ,, 1 L0 N R

X IX (X X

I0CS MACRO INSTRUCTIONS (IMPERATIVE MACROS)

This section describes the format, function, and use of the IOCS macro instructions

used to communicate with the input/output routines and to control their operations.

These symbolic instructions are used in the problem program to provide the communication
necessary with the JOCS routines previously defined by means of the definition statements
to the Preassembly Macro Pass. The handling of records into and out of I/O areas is
performed by IOCS exclusively. Each file is processed in the manner dictated by the
definition statement.

Source programs using IOCS may not contain any Assembler I/O instructions.

The format of the macro instruction follows the rules of the Assembler coding format.
The macro verb is the operation, and the operand field may contain up to four param-
eters as required by the particular macro. All macros may have a label. The impera-
tive macro instructions are not handled by the Preassembly Macro Pass but are
processed by the Assembler itself.

B6.1. GET Macro Instruction

The GET macro makes the next record available in the user-defined work area or
transfers control to the end-of-file address entry upon recognizing an end-of-file card
in an input file.

UP-4092 UNIVAC 9200/9300 Appendix B 14
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
The GET macto has the following form
LABEL ' OPERATION | OPERAND
I GET] filename,workarea

B6.2.

B6.3.

B6.4.

where ‘“filename’’ is the symbolic name defined in the label field of a DTF(XX)
header entry catd.

““workarea’” is the symbolic name of the user-defined storage where the
record is made available for output.

PUT Mactro Instruction

The PUT macro transfers a record from the work area for printing, punching, or sending
to the UNIVAC 1001 and immediately frees the work area for problem program use.

The PUT macro has the following form

OPERATION . OPERAND

PUT j filename,workarea

where ‘“filename’’ is the symbolic name defined in the label field of a DTF(XX)
header entry card.

‘‘workarea’’ is the symbolic name of the user-defined storage where the
record is made available for output.

Work Area Considerations

The imperative macro instructions, GET and PUT, require as a second parameter the
symbolic name of a work area for transferring records from and to input/output buffer
areas. Input/output areas (those assigned by I0A1l, INAR, and OUAR detail entry
cards) may not be used as work areas as they are used by IOCS to maintain standby
reserve areas.

The programmer must therefore provide, through the use of DS statements, work areas
where records are processed. These work areas may be common to more than one file
as efficiency demands, but must be as large as the largest record to be processed
therein.

Programming Considerations — Read/Punch Combined File

When the Overlap detail entry card is used for a read/punch combined file, the follow-
ing rule applies:

A PUT macro instruction causes punching into the card which follows the one
made available by the last GET macro instruction, because the card made avail-
able by the last GET macro is already past the punch station when the PUT
macro is given.

When the Overlap detail entry card is omitted for a read/punch combined file, a PUT
macro instruction causes punching into the card made available by the last GET macro

instruction. It should be noted that in this nonoverlap mode, the read/punch unit is cycled

on PUT’s only; therefore, successive GET’s must be separated by at least one PUT.

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

Appendix B 15
PAGE

SECTION:

B6.5. OPEN Macro Instruction

This macro instruction initializes the file and must be issued before any other macro
instruction pertaining to the same file.

The OPEN macro has the following form:

OPERATION |) OPERAND

OPEN I filename

where ‘“filename’’ is the symbolic name defined by the user in the label field
of the DTF(XX) header entry card.

After a file has been OPENed, it should be CLOSEd before reOPENing the same file.
In such a case, the input/output routine is set back to an initial state. As as example:

1. For an input file, the card image delivered in response to the first GET executed
after a second OPEN macro is the image immediately in front of the read station
at the time the second OPEN macro is given.

2. For an output file, the first item transmitted after the second OPEN macro is the
item delivered by the first PUT executed after the reOPEN.

B6.6. CLOSE Macro Instruction

This macro instruction insures the proper closing of all files. The CLOSE macro has
the following form:

OPERATION . OPERAND

CLOSE I filename

where ‘“filename’’ is the symbolic name defined in the label field of the DTF(XX) header
entry card.

B6.7. CNTRL Macro Instruction

The CNTRL macro is used by the programmer for printer spacing, printer skipping,
stacker selection, numeric printing, and specifying the number of columns of card
punching.

B6.7.1. Printer Spacing
The CNTRL macro for printer spacing has the following form:

OPERATION OPERAND

CNTRL l filename,SP,m,n

UP-4092
Rev. 2

UNIVAC 9200/9300 Appendix B 16
CARD ASSEMBLER SECTION: PAGE:

B6.7.2.

B6.7.3.

where ‘‘filename’’ is the symbolic name of the file defined in the label field of
. the DTFPR header entry card.

SP specifies spacing.
m is the number of lines to space the form before printing (m=0,
1 or 2).
n ~ is the number of lines to space the form after printing (n=0,1 or 2).

The programmer may omit ‘““m’’ or “‘n’’. If no CNTRL macro instruction specifying delayed
spacing is given before the next PUT macro for the printer file, the printer advances the
standard amount as specified in the PRAD detail entry card of the definition statement.

If more than one CNTRL macro specifying paper movement after printing is given
between PUT macros to the printer file, only the last CNTRL macro is effective.

Printer Skipping
The CNTRL macro for printer skipping has the following form:

OPERATION OPERAND

CNTRL filename,SK,m,n

where ‘‘filename’’ is the symbolic name of the file defined in the label field of the
DTFPR header entry card.

SK specifies skipping

m is the number of the tape channel the carriage is skipped to
before printing (m=1,2....7).

n is the number of the tape channel the carriage is skipped to
after printing (=1,2....7).
The programmer may omit ‘“‘m’’ or “‘n’’. Between PUT macros, only the last CNTRL
macro specifying paper movement after printing is effective.

Due to timing conditions, throughput is maintained at the best possible level if
delayed. spacing and skipping are used where possible.

Stacker Select

The CNTRL' macro for selecting other than the normal stacker on the serial punch,
read/punch, or for selecting any stacker on the card controller has the following
form:

OPERATION | OPERAND

CNTRL filename,SS,n

where ‘‘filename’’ is the symbolic name of the file defined in the label field of
the header entry card.

SS specifies stacker select.

n is the stacker number where the card is to be selected on the
' - card controller only. Allowable values are specified in the
following table.

UP-4092

UNIVAC 9200/9300 ' Rev. 1 Appendix B 17
Rev. 2 CARD ASSEMBLER . secTion: PacE:
FEED
PRIMARY SECONDARY
Stacker 1 2 3 C 1 2 3 C
Specification (n) 1 2 3 4 5 6 7 8

NOTE: If this CNTRL macro is not given for the UNIVAC 1001, primary feeds are
selected to P1 and secondary feeds to S1.

The CNTRL macro for Card Controller stacker selection operates under the following
rules. The card made available by a transfer-and-read from a particular feed is selected
on the next transfer-and-read from that feed. The card made available by a transfer

only from a particular feed is selected on the second following transfer-and-read from
that feed. If the user issues a CNTRL macro after receiving a particular card image, the
CNTRL macro governs the stacker selection for that particular card, regardless of the
sequence of operations following that CNTRL macro. If no stacker is selected from a
card in the manner described here, the card will be put in the normal stacker, which is
P1 for the primary feed and S1 for the secondary feed.

The CNTRL macro instruction for selecting a stacker on the read/punch should
be executed before the PUT for the card to be selected, or in the case of reading
only, after the GET for the card to be selected. If the CNTRL macro instruction
is to be used for selecting a stacker when both reading and punching, and if
stacker selection is done on the basis of information in the card read, the read/
punch routine must be operated in the no overlap mode.

B6.7.4. Numeric Printing

The CNTRL macro instruction for numeric printing enables the programmer to maintain
maximum printing speeds. Once set, it remains set until and unless another numeric
print CNTRL macro is given specifying that alphanumeric printing is requested.

The CNTRL macro instruction for numeric printing has the following form:

OPERATION OPERAND

CNTRL I filename,NP,m

where ‘““filename’’ is the symbolic name of the file as defined in the label field
of the DTFPR header entry card.

NP specifies a change in the mode of printing.
m is mode of printing requested.
m = 0, alphanumeric printing required.

m

1, numeric printing required.

NOTE: Alphanumeric printing is assumed by IOCS if no CNTRL macro is given.

The CNTRL macro instruction should be used only in conjunction with a
48- or 16-character print bar.

UP-4092
Rev. 2

Appendix B

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

P AGE:

B6.7.5.

Specifying Columns to be Punched

The CNTRL macro instruction enables the programmer to vary or alter the number of
columns punched in the punch file. This function enables the punch to tun at maximum
speed for the particular application. Once set by the macro, the number of columns
punched remains the same unless or until another such macro is given. If no CNTRL
macro is given, IOCS assumes a full card is required.

The CNTRL macro for punching has the following form

OPERATION OPERAND

CNTRL ' filename, NC,n

where ‘“filename’’ is the symbolic name of the file defined in the label field of
the DTFRP header entry card.

NC identifies a number-of-columns specification.

n is the number of columns to be punched (an even number

2,4,6...80).

B6.8. Summary of UNIVAC 9200/9300 Card System IOCS Imperative Macros

DEVICE ADDRESSED
SERIAL ROW
LABEL | OPERATION OPERANDS READER | PRINTER | READ/ | READ/ CARD

PUNCH PUNCH | CONTROLLER
OPEN filename X X X X X
GET filename, workarea X X X X
PUT filename, workarea X X X X

OPTIONAL. CLOSE filename X X X X X

CNTRL filename, SP, m, n X
CNTRL filename, SK, m, n X
CNTRL filename, NP, m X
CNTRL filename, NC, n X X
CNTRL filename, SS, n X X X

UP-4092
Rev. 2

UNIVAC 9200/9300

B7.

B 8.

BO9.

CARD ASSEMBLER cppendix B | 19

PROGRAMMING CONVENTIONS — PROGRAM REGISTERS

A user routine may be required in the main source program that is accessed by IOCS
when certain checking features are required (for example, printer overflow). IOCS
automatically stores the program re-entry address in register 14 when the branch to

the user routine occurs., The user routine is therefore required to provide the necessary
return linkage to the main source program, If the user routine uses register 14, it must,
therefore, preserve and restore register 14 before terminating. This must also be done

if any macro instruction is executed by the user routine, since all macros use program
registers 14 and 15, If register 14 is not preserved, the re-entry address is lost. Register
15 may also be used by the user routine and it need not be preserved. However, its con-
tents are altered by the execution of any macro instruction.

GENERAL PROCEDURE SUMMARY FOR USING IOCS

The programmer defines his input/output control routines and their associated files
through the use of definition statements presented to the Preassembly Macro Pass
program. The generated 1/0 routines are then either assembled as part of the main
source program or assembled separately and linked with the main program at load

time. If the I/0O routines are assembled independently, the user must supply

appropriate USING directives; no USING directives are generated by IOCS.
During the execution of the main program, input/output functions are accomplished
through the imperative macro calls.

STORAGE REQUIREMENTS

The IOCS routines require the use of EXEC I. The following two charts show the
storage requirements for the IOCS routines.

DEVICE MODE OF STORAGE
OPERATION REQUIREMENT
EXEC1I - 180
Reader - 150
Printer - 330
Serial Read/Punch . - -
Read - 190
Punch - 260
Read/Punch No overlap 330
Read/Punch Overlap 340
Card Controller - 720
Row Read/Punch - -
Read - 360
Punch - 400
Read/Punch No overlap 530
Read/Punch Overlap - 560

Appendix B

SECTION;

UP-4092 UNIVAC 9200/9300
Rev. 2 CARD ASSEMBLER

PAGE:

20

MACRO INSTRUCTION | STORAGE REQUIREMENT

OPEN
GET
PUT
CNTRL
CLOSE

H 00 O O

B10. APPROXIMATE TIMES FOR IOCS ROUTINE EXECUTION

The following chart shows the approximate execution times (in milliseconds) required for
the various IOCS macro instructions on the UNIVAC 9200. The UNIVAC 9300 execution
times are one half the UNIVAC 9200 execution times.

DEVICE MODE OF TIME REQUIRED

OPERATION (IN MILLISECONDS)

GET PUT
Reader* - 5 S
Printer - - 4

Serial Read/Punch - - -

Read* — 5 -
Punch* - - 5
Read/Punch¥* No overlap 5 5
Read/Punch* Overlap 5 5
Card Controller* - 5 -

Row Read/Punch - - -

Read* - 7 _
Punch* - - 7
Read/Punch* No overlap 5 7
Read/Punch* Overlap 7 8

*T'ranslation time included.,

UP-4092 UNIVAC 9200/9300 Appendix B 21
Rev. 2 CARD ASSEMBLER . SECTION: PAGE:
B1l. CARD READER DEFINITION STATEMENTS
LABEL OPERATION QPERAND 72
filename DTFCR EOFA = location of the user end-of-file X
routine,
IOA1 = location of the input buffer area, X

ITBL = location of the input translate
table,

MODE = BINARY

or

MODE = CC
or

MODE = TRANS

ITBL is required if MODE = TRANS.

EOFA, IOA1l and MODE must always be present.

The input buffer area and word area are each 80 bytes long, if MODE = CC or TRANS,

and 160 bytes long if MODE = BINARY.

At the time control is unconditionally transferred to the end- of-file routine, both the

end-of-file card and the following card are in the output stacker.

B11.1, Preparing the Card Reader
1. Empty the read wait station.
Place the reader online.
Place the input deck in the hopper.

Depress the reader CLEAR switch.

g1 A W N

Feed one card into the wait station.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

I Rev. 1

Appendix B

SECTION: PAGE:

22

B11.2. Error Indications
STOP REASON FOR STOP RESULTING CONDITION OPERATOR ACTION
RDR ABN | Unit placed offline Recoverable Put online to continue.
(Program while in the process
Locp) of reading a card.
6100 Offline Recoverable Put online.
RDR ABN Press START to continue.
6140 Not ready, hopper Recoverable Correct condition.
RDR ABN | empty, stacker full. Clear reader abnormal.
Press START to continue.
6140 Misfeed — card has Recoverable One card, the card in wait
RDR ABN | not properly entered station, must be placed at
the wait station. bottom of input deck.
Feed one card.
Clear reader abnormal.
Press START to continue.
6180 Card jam or Photo- Recoverable Two cards, the last card to
cell check error — go to stacker and card in
card did not progress wait station, must be placed
thru read station at bottom of input deck.
properly. Feed one card.
Clear reader abnormal.
Press START to continue.
6104 Interrupt pending Not an error No action is required by
operator. This display can
occur only in conjunction with
some other display.
NOTE:

m The first two characters (61) displayed identify the stop as a Reader stop.

® The next two characters represent the status byte.

® The status byte may reflect a combination of bit settings; therefore, the operator may
have to take cotrective action for more than one error condition before attempting to
continue.

UP-4092 UNIVAC 9200/9300 . Appendix B 23
Rev. 2 __CARD ASSEMBLER sEcTION: PacE:
B12, PRINTER DEFINITION STATEMENTS
LABEL OPERATION OPERAND 72
filename DTFPR BKSZ = n, X
CNTL = YES, X
OTBL = location of the output X
translate table,
FONT = 48, X
or
FONT = 63, X
PROV = YES, X
or
PROV = location of the form overflow | X
routine,
PRAD =1
or
PRAD =2

where: n = the number of bytes to be moved from the work area to the printer buffer
’ area for printing (1—132). If BKSZ is omitted, this is assumed to be 132
bytes.

CNTL is required only if the CNTRL macro instruction for spacing or skipping
is used by the problem program.

OTBL is required only if MODE = TRANS.

PROV is required only if form overflow is not to be ignored.
If FONT is omitted, the 63-character print bar is assumed.
If PRAD is omitted, normal spacing is set to 1.

B12.1. Preparing the Printer

1. Install the proper paper loop for the program to be run.

IOCS assumes 001 = form overflow position.
111 = home paper position.

If the paper loop is absent, the paper will space one position and the CNTRL SK
option in the IOCS routine should not be accessed.

UF-4092
Rev. 2

UNIVAC 9200/9300 24

CARD ASSEMBLER

‘ Rev. 1 Appendix B

SECTION:

PAGE:

2. Install the proper paper for the program to be run, and adjust it to the top of the
page (matching loop).

3. Place the printer online.

4. Depress the printer CLEAR switch.

B12.2. Error Indications

STOP REASON FOR STOP RESULTING CONDITION OPERATOR ACTION

Program Offline Recoverable Put online to continue.

L oop

6301 Paper low Recoverable Correct condition.

Press START to continue.

6302 Form overflow Not an error No action required by

001 sensed at paper operator. This display can
loop station, while occur only in conjunction
single or double with some other display.
spacing.

6304 Interrupt pending Not an error No action required by
operator. This display can
occur only in conjunction
with some other display.

6308 Wrong bar setting Recoverable Insert correct bar.

PRNT ABN| in XIOF. Set bar switch appropriately.
Press START.

6320 Memory overload Recoverable Press START to continue.

6340 Paper runaway Recoverable when Check paper loop.

PRNT ABN paper position can Replace with proper loop.

be reestablished Clear printer abnormal.
Press START to continue.
If form position has been lost,
go to RESTART.

6380 Abnormal or not Recoverable Correct abnormal condition.

ready Clear printer abnormal.
Press START to continue.
NOTE:
® The first two characters (63) displayed identify the stop as a Printer stop.
B The next two characters represent the status byte.

m The status byte may reflect a combination of bit settings; therefore, the operator may
have to take corrective action for more than one error condition before attempting to
continue,

UP-4092 UNIVAC 9200/9300 ‘ Rev. 1 Appendix B 25

Rev. 2 CARD ASSEMBLER

SECTION: PAGE:

B12.3. Paper Low

On encountering a paper low condition, the Printer IOCS routine continues to permit
printing until paper is homed. At this point, a paper low display is made. To assure
proper paper positioning, a page from the new stock should be placed directly over
the page in the printer on which the computer stopped.

B13. SERIAL PUNCH DEFINITION STATEMENTS

LABEL OPERATION OPERAND 72

Filename DTFRP CNTL=YES, X
MODE=BINARY,

or

MODE=CC X
or

MODE=TRANS, X

OUAR-=location of the output buffer X
area,

OTBL=location of the output translate| X
table,

PUNR=YES, X
TYPF=OUTPUT

CNTL is required only if the CNTRL macro instruction for stacker selection or number
of columns to be punched is used by the problem program.

OTBL is required if MODE=TRANS.

PUNR is required only if automatic error recovery (try five times) is desired for punch
check errors.

If TYPF is not specified, output will be assumed.

MODE and OUAR must always be present.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:

‘ } Appendix B

PAGE:

26

B14. SERIAL READ DEFINITION STATEMENTS

LABEL OPERATION OPERAND 72
filename DTFRP CNTL=YES X
EOFA=location of the user end-of-file
routine,
INAR=location of the input buffer area,] X
ITBL=location of the input translate
table,
MODE=BINARY X
or
MODE=CC, X
or
MODE=TRANS, X

TYPF=INPUT

CNTL is required only if the CNTRL macro instruction for stacker selection is used
by the problem program.

ITBL is required if MODE=TRANS.

EOFA, INAR, MODE and TYPF must always be present.

UP-4092 UNIVAC 9200/9300 Rev. 1 Appendix B 27
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
B15. SERIAL READ/PUNCH DEFINITION STATEMENTS
LABEL OPERATION OPERAND 72
filename DTFRP CNTL=YES, X
EOF A=location of the user end-of- X
file routine,
INAR=location of the input buffer X

area,

ITBL=location of the input translate | X

table,

MODE=BINARY, X
or

MODE=CC, X
or

MODE=TRANS, X

OUAR-=location of the output buffer X
area,

OTBL=location of the output translate| X
table,

ORLP=YES, X
TYPF=COMBND

CNTL is required only if the CNTRL macro instruction for stacker selection or
number of columns to be punched is used by the problem program.

ITBL and OTBL is required if MODE=TRANS.

ORPL is required when not punching into the same card made available by the last
GET macro instruction.

EOFA, INAR, MODE, OUAR and TYPF must always be present.

B15.1. Buffer and Work Area Size

The input buffer area and work area are each 80 bytes long if MODE=CC or
TRANS, and are 160 bytes long if MODE=BINARY.

The output buffer area and work area lengths are each equal to the number of
columns to be punched, if MODE=CC or TRANS, and are each equal to two times
the number of columns to be punched, if MODE=BINARY.

UP-4092
Rev. 2

Appendix B

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

PAGE:

28

B15.2.

B15.3.

End-of-File

If the Serial Read/Punch is being used for reading only, or if combined reading
and punching is being done with overlap at the time control is transferred to the
end-of-file routine, the end-of-file card is in the output stacker. If combined
reading and punching is being done in a no overlap mode, the end-of-file card is
in the punch wait station.

Preparing the Serial Read/Punch

1.

2
3
4.
5

Empty the wait stations.
Place the Serial Read/Punch online.
Place the deck in the hopper.
Depress the Serial Read/Punch CLEAR switch.
If Reading alone or
Feed 1 card into wait station.

Reading and Punching

If Punching alone Feed 2 cards into wait station.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

\ Rev. 1

Appendix B

SECTION: PAGE:

29

B15.4. Error Indications

STOP REASON FOR STOP RESULTING CONDITION OPERATOR ACTION

PNCH ABN Unit placed offline Recoverable Put online to continue.

(Program while in the process

Loop) of punching or read-
ing a card.

6200 Offline Recoverable Put online.

PNCH ABN Clear punch abnormal.
Press START to continue.

6202 Hopper empty or Recoverable Correct condition. Clear

PNCH ABN stacker full. punch abnormal. Press
START to continue.

6204 Interrupt pending Not an error No action required by
operator. This display can
occur only in conjunction
with some other display.

6208 Photocell check Recoverable only if Two cards — card at punch

PNCH ABN error indicates using read alone wait and card at read wait

improper recog- . station must be placed at

nition of card bottom of input deck.

presently at punch Feed one card.

wait station. Clear punch abnormal.
Press START to continue.

6220 Punch check error Recoverable only if Error card in error stacker,

PNCH ABN using punch alone Clear abnormal condition.
Press START to continue.

6280 Interlock — casework Recoverable Correct condition.

PNCH ABN is open. Clear punch abnormal.
Press START to continue.

6280 Misfeed Recoverable Clear punch abnormal.

PNCH ABN Fill unit stations.

Press START to continue.

6280 Stacker jam, punch Recoverable only Error card is last card to

PNCH ABN entry, exit check. for punch alone go to error stacker. Clear
abnormal condition.

Press START to continue.
NOTE:

B The first two characters (62) displayed identify the stop as a Serial Read/Punch stop.

@ The next two characters represent the status byte.

UP-4092 UNIVAC 9200/9300 | Appendix B 30
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
B16. UNIVAC 1001 CARD CONTROLLER DEFINITION STATEMENTS
LABEL OPERATION OPERAND 72
filename DTFCC CNTL=YES, X
FUNC=location of the 1001 function, X
MODE=BINARY, X
MODEO—:CC, X
or
MODE=1001, X
MODE?:rTRANS, X
MODEO:TRANSTC, X
ITBL=location of the input translate table, X
CHNL=5 thru 12

CNTL is requited only if the CNTRL macro instruction for stacker selection is used
by the problem program.

ITBL is required only if MODE=TRANS or TRANSTC.

MODE=1001, must be used with UNIVAC 1001 functions ‘14’ and ‘24’.

MODE=BINARY, CC, or TRANS must not be used with UNIVAC 1001 functions ‘02’
or ‘0A’.

FUNC, MODE, and CHNL must always be present with header entry card DTFCC.

UP-4092
Rev. 2

Appendix B

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

SECTION:

PAGE:

31

B16.1. Work Area Size

The work area size is a function of the Card Controller function and the mode in

which the file is to be read. The work area size is shown in bytes on the following

chart:
MODE
CC or 1001 or
FUNCTION TRANS TRANSTC BINARY
Transfer Primary 80 80 161
Transfer and Read Primary ‘ 80 80 161
Transfer Secondary 80 80 161
Transfer and Read Secondary 80 80 161
Transfer Both —— 160 -
Transfer and Read Both - 160 —

B16.2. Preparing the Card Controller

1)

(2)

(3)

(4

(5)
6)

(7

Ensure that the unit is online and that the power is on. (The online switch
for the Card Controller is housed in the lower left area at the back of the
Printer Processor Cabinet.)

Ensure that the ON-LINE Standard Interface Panel (plugboard program) is
mounted.

Set the MODE switch to CONT; set the alternate switches (ALT 1 to ALT 4)
off.

Empty the ready and wait stations.

Press: CLEAR
UNLOAD PRI (3 times)
UNLOAD SEC (3 times)

Place the card decks in the input hopper face down, nine edge first.

Rotate the display mask switch until Step 2 appears in the indicators.
Place the first card in the ready station by pressing:

L.OAD PRI
LOAD SEC
CLEAR
START
RUN

Ensure that Step 2 light is on.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

l Rev. 1

Appendix B

SECTION:

PAGE:

32

B16.3. Error Indications

When the Card Controller IOCS routine detects an error, it displays the function
on which the error occurred, except for the 650F display. Possible displays are
as follows:
9200/9300

DISPLAY 1001 FUNCTION 9200/9300 MODE

6500 Transfer Primary 1001 or TRANSTC

6501 Transfer Secondary 1001 or TRANSTC

6502 Transfer Both 1001 or TRANSTC

6504 Transfer Primary Binary, CC, or TRANS

6505 Transfer Secondary Binary, CC or TRANS

6508 Transfer Primary and Read 1001 or TRANSTC

6509 Transfer Secondary and Read 1001 or TRANSTC

650A Transfer Both and Read 1001 or TRANSTC

650C Transfer Primary and Read BINARY, CC, or TRANS

650D Transfer Secondary and Read BINARY, CC, or TRANS

6514 Receive Data -

6524 Send Data —

650F Not Applicable Not Applicable
The 650F display indicates either a device address parity error has occurred or
the Card Controller is offline. Check the special adapter offline switch located
in the lower left area at the back of the Printer Processor Cabinet. Press the
START switch on the UNIVAC 9200/9300 to reissue the XIOF. If the problem
persists, there may be a hardware malfunction.
For any Card Controller function display other than the 650F, if the cause of the
error cannot be determined from the indicator lights on the Card Controller and from
the function displayed on the UNIVAC 9200/9300 console, the IOCS routine can be
requested to display the Card Controller sense byte in an attempt to determine the
cause of the error. The request for this second display (STOP 2) is made by keying
a hexadecimal 01 into location 4 and then pressing the START switch.

B16.3.1. STOP 1 (65xx)

The first two characters (65) of the display identify the stop as a Card Controller
stop. The next two characters (xx) represent the Card Controller function being

executed.

The operator should note the stop and check the 9200/9300 panel lights. The
Card Controller indicator lights then determine the specific type of error.

Table B-1 lists the possible Card Controller displays at STOP 1. Indication for
the display is given either in the control panel lights or in the display mask
indicator lights.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Rev. 1 Appendix B

SECTION: PAGE:

3

O

CARD
CONTROLLER
DISPLAY

REASON FOR
STOP

RESULTING
CONDITION

OPERATOR ACTION

PRI or SEC MISF

STKR FULL

P or SW JAM

STKR JAM

P or S RD JAM

PRGM HALT
STOP switch
lighted

INTERI.OCK (OFF
switch lighted)

POWER OFF (OFF
switch lighted)

Hopper empty or empty
ready station due to
damaged card in input
hopper.

Stacker associated

Card jam at wait 1
or wait 2 station

Card jam after wait
2 station.

Card jam at Read

Possible program
error.
Switch depressed

Door or frame open

Power dropped

Recoverable

Recoverable

Recoverable
only if stacker
selection for
jammed cards is
known by
operator.

Otherwise, non-
recovetable
Recoverable
only if stacker
selection for
jammed cards is
known by
operator.

Otherwise, non
recoverable

Recoverable

Nonrecoverable

Recoverable

Recoverabie

Recoverable in
some cases

Correct condition (replace damaged card if
necessary). Press PRI or SEC LOad, RUN on
the Card Controller. Press START on 9200/9300
control panel. (XIOF will be reissued.)

If STEP=02,03,04: Correct condition.

Press CLEAR,START,RUN on

the Card Controller.

Press START on 9200/9300 panel.
1f STEP#£02,03,04: Correct condition.

Press RUN on the Card Controller.

Press START on 9200/9300C panel.
(XIOF will be reissued.)

Remove the jammed cards by opening the back frame.
Repair damaged cards. Manually place them in the
appropriate stackers. Follow instructions for

STKR FULL.

Go to RESTART.

Remove the jammed cards by opening the back frame.
Repair damaged cards. Manually place them in the
the appropriate stacker. Follow instructions for
STKR FULL.

Go to RESTART.

Card at wait 1 must be reread. Remove cards from
ready station and wait 1 station by opening back
frame. Place the 2 cards in proper input hopper.

Press PRI or SEC LOAD, RUN on 1001.
Press S TART on 9200/9300 control panel (XIOF
will be reissued).

Take control counter reading and a memory dump.
Go to RESTART to try again.

Follow instructions for STKR FULL.

Follow instructions for STKR FULL.

Check the wall plug and circuit breaker at the rear
of the Card Controller. Press the ON switch and
momentarily hold it on. The ON indicator should
light and the OFF indicator should be extinguished.

If power dropped at the very beginning of a program,
continue the program. (XIOF will be reissued.)

If power dropped while a program was running, go
to RESTART.

Table B-1.

UNIVAC 1001 Card Controller IOCS Initial Error Indications

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Rev. 1

Appendix B

SECTION: PAGE:

34

B16.3.2.

STOP 2 (65yy)

When the cause of an error cannot be determined from the STOP 1 display, the
Card Controller sense byte can be displayed by keying a hexadecimal 01 into
location 4 and then pressing the START switch. The first two characters (65) of
the display identify the stop as a Card Controller stop. The next two characters
(yy) represent the Card Controller sense byte.

The sense byte may reflect a combination of bit settings. Therefore, corrective
action may have to be taken for more than one error condition before an attempt

can be made to continue.

Table B—2 lists the sense byte displays for STOP 2. It also gives the reason for
the stop and the action required to correct the error.

REASON RESULTING
STOP 2 FOR STOP CONDITION OPERATOR ACTION
6580 Unspecified command or Recoverable in some Press START to reissue order. If it
bad parity in command cases fails again, take control panel reading
sent to 1001 control. and memory dump. Suspect program
error of possible hardware malfunction.
6540 Operator intervention Recoverable in some Check INTERLOCK/POWER OFF
required. cases switch plus mask position 6 in order
to determine action required.
6520 Parity error on BUS OUT Recoverable in some Press START to reissue order. If
check. cases error persists, suspect possible
hardware malfunction. Go to RESTART,
6510 Data parity error causing Nonrecoverable Go to RESTART.
a selective reset to 1001
control or interface error
or address error or device
address parity error on
BUS IN.
6508 or Control logic flip-flop set Nonrecoverable Should never happen. Take control
6504 (primarily intended to be counter reading and memory dump.
used in conjunction with
failure-finding programs).
6502 Inhibit status Not an error No action required by operator. This
display can occur only in conjunction
with some other display.

Table B—2. UNIVAC 1001 Card Controller IOCS Requested Error Indications

UP-4092 UNIVAC 9200/9300 l Rev. 1 Appendix B

Rev. 2 CARD ASSEMBLER

SECTION: PAGE:

35

B17. ROW READ/PUNCH DEFINITION STATEMENTS

The following sections describe the Row Read/Punch definition statements for punch
only, read only, and read/punch operation.

B17.1. Punch Only

LABEL OPERATION OPERAND 72
filename DTFRW CHNL=5 thru 12, X
CNTL=YES,
MODE=BINARY, X
or
MODE=CC, X
or
MODE=TRANS, X
OUAR=location of the output buffer X
area,
OTBL=location of the output translate X
table,
TYPF=OUTPUT

CNTL is required if the CNTRL macro instruction is used by the problem program.
OTBL is required only if MODE=TRANS.
If TYPF is not specified, output will be assumed.

CHNL, MODE and OUAR must always be present.

UP-4092 UNIVAC 9200/9300 Rev. 1 Appendix B 36
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
B17.2. Read Only
LABEL OPERATION OPERAND 72
filename DTFRW CHNL=5 thru 12, X
CNTL=YES, X
EOFA=location of the user end-of-file X
routine,
INAR=location of the input buffer area, | X
ITBL=location of the input translate X
table,
MODE=BINARY X
or
MODE=CC, X
or
MODE=TRANS, X

TYPF=INPUT

CNTL is required if the CNTRL macro instruction is used by the problem program.

ITBL is required if MODE=TRANS.

CHNL, EOFA, INAR, MODE and TYPF must always be present.

B17.3. Read and Punch
LABEL OPERATION OPERAND 72
filename DTFRW CHNL=5 thru 12 X
CNTL=YES, X
EOFA=location of the user end-of-file X
routine,
INAR=location of the input buffer area, | X
ITBL =location of the input translate X
table,
MODE=BINARY, X
or
MODE=CC, X
or
MODE=TRANS, X
OUAR-=location of the output buffer area,| X
OTBL=location of output translate table,| X
ORLP-=YES, X

TYPF=COMBND

UP-4092 UNIVAC 9200/9300

37
Rev. 2 CARD ASSEMBLER } Rev. 2

PAGE:

Appendix B

SECTION:

CNTL is required if the CNTRL macro instruction is used by the problem program.

ITBL and OTBL are required if MODE=TRANS.

ORLP is required when not punching into the same card made available by the last
GET macro instruction.

CHNL, EOFA, INAR, MODE, OUAR and TYPF must always be present.

B17.4. Buffer and Work Area Size

The input buffer area and work area are each 80 bytes long if MODE=CC or TRANS,
and are each 160 bytes long if MODE=BINARY.

The output buffer area and work area lengths are each equal to the number of columns
to be punched if MODE=CC or TRANS; and are each equal to two times the number
of columns to be punched, if MODE=BINARY.

B17.5. End-of-File

POSITION OF EOF CARD WHEN GET TRANSFERS TO EOFA

[=] =

< [&]

ul =

o)

L 2

READ ALONE ' c B A EOF I | l
READ & PUNCH OVERLAP c B A EOF
READ & PUNCH NONOVERLAP B A EOF

EOF CARD is in work area (translated if required).
Following card, A, is in the input buffer area INAR,

Next card, B, is in the Row Punch read buffer verified for Read alone and for Read & Punch
overlap.

B17.6. Preparing the Row Read/Punch
(1) Place the unit offline.
(2) Make certain that the AC/DC light is on and the INTL/READY light is on.

(3) Preload the punch track with blank cards by pressing manual FEED followed
by CLEAR until a blank card is fed into the output stacker. (Jam indications
will occur after each of the first three feeds.)

(4) Place the input deck into the input hopper, face down, 9-edge leading.
(5) If reading only or reading and punching, feed one card.
(6) If punching only, feed three cards.

(7) Press CLEAR on the row read/punch.

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

. Rev. 2

38

PAGE:

Appendix B

SECTION:

(8) Place the unit online. At this time:
m The AC/DC light must be on.
m The INTL/READY light must be on.

m All other lights must be off.

NOTE: In order to clear error lights on the unit:
(1) Correct the error condition at the unit.

(2) Press:
(a) OFFLINE
(b) CLEAR
(c) OFFLINE

B17.7. Error Indications

STOP

REASON FOR STOP

RESULTING CONDITION

OPERATOR ACTION

Looping on AS,
47 instruction

640F

6401

6402

INTL light on
and no error
lights on

6402
error light on

Unit nonoperational (in
OPEN coding).

Unit nonoperational.

Hole count error.

Parity error on data
transfer during execu-
tion of a LOAD or
UNLOAD XIOF.

HOPPER empty.
CHIP box full.
STKR full.
STKR jam.

Recoverable.

Recoverable.

Recoverable
for punch alone.

Recoverable.

Recoverable.

Correct the condition to con-
tinue.

Correct the condition. Press
START to continue.

The error card and following
card are diverted to the error
stacker.

Press START to repunch last
two cards and continue.
(NOTE: if PUNR=YES, this
stop will not occur as I0CS
will provide automatic
recovery.)

All cards in wait stations are
assumed to be good.

Press START to continue.
(XIOF will be reissued.)

If the card at the post punch
station is bad or if the error
persists, suspect a hardware
malfunction. Restart.

Correct the condition.
Press OFF LINE, CLEAR,
OFF LINE.

Press START to continue.
(XIOF will be reissued.)

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Rev. 1

Appendix B 39

SECTION: PAGE:

STOP

REASON FOR STOP

RESULTING CONDITION

OPERATOR ACTION

6402
INTL light off

6402

A JAM or
B JAM
Light on

One of following con-

ditions:

m Punch assembly and
upper card feed
taised or improperly
seated.

m Read station brushes
not in place.

m Protective covers
not in place.

Misfeed or card jam.

Recoverable.

Recoverable in
some cases for
read only or
punch only.

Correct the condition.

The INTL, light must be ON.
Press OFF LINE, CLEAR,
OFF LINE.

Press START to continue.
(XIOF will be reissued.)

READ ONLY:

Remove the cards from the
input hopper.

Place the unit offline.

Open the punch frame.
Remove all cards from the
track.

Repair the damaged card.
Place the cards in the input
hopper.

Replace the rest of the deck
in the input hopper.

Press CLEAR on the unit.
Feed three cards.

Close the punch frame.
Press CLEAR, OFF LINE.
Press START to continue.
(XIOF will be reissued.)

If nonrecoverable, restart.
PUNCH ONLY:

The card at the post punch
station is assumed to be in

error.

Place the unit offline.
Open the punch frame.
Remove all cards from the
track and discard.

Press CLEAR on the unit.
Feed three cards.

Close the punch frame.
Press CLEAR, OFF LINE.
Press START to continue.
(XIOF will be reissued.)

If nonrecoverable, restart.

UP-4092 UNIVAC 9200/9300 Appendix B 40"
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
STOP REASON FOR STOP RESULTING CONDITION OPERATOR ACTION
6404 Device end. Not an error.
6408 Channel end. Not an error. No action is required by the
operator. These displays can
6410 Busy. Not an error only occur in conjunction
with some other error.
6440 Status Modifier. Not an error.
Power OFF Power dropped during Nonrecoverable. Restart.
execution of program.

B18. IOCS GENERATION

The Preassembly Macro Pass for a card reader, serial punch, 8K UNIVAC 9200/9300
configuration allows approximately 2700 bytes for macro library storage. IOCS macro
library routines require approximately the following number of bytes of storage:

NUMBER
ROUTINE) OF BYTES
Reader (DTFCR) 600
Printer (DTFPR) 1200
Serial Read/Punch (DTFRP) 1800
Card Controller (DTFCC) 2200
Row Punch (DTFRW) 2400

B19, ADDITIONAL KEYWORD PARAMETER SPECIFICATIONS

Certain additional keyword parameter specifications have been built into the DTFCR,
DTFRP, and DTFRW macro definitions to provide functions designed primarily for
Univac Systems Programming use. These parameters are available and can be used by
the user if he so desires. These parameters are as follows:

m SENT=X ‘value’ — The IOCS routines test for standard end-of-file sentinels
(slash in column 1 of the input cards). The above parameter may be used if
something other than the standard sentinel is to be tested. If MODE=CC or TRANS,
the IOCS routine tests word zero in the input buffer against X‘34’. If MODE=BINARY,
the IOCS routine tests for X‘OC’. Only one byte is tested; therefore, the value
specification must be only one byte in length.

m SENT=NO - This parameter may be used if no EOF sentinel test is to be made
by the IOCS routine. Coding for the EOF test will be eliminated during the macro
pass if SENT=NO is present.

B INCR=m — This parameter may be used if the user expects the EOF sentinel in a
column other than column L. The specification m is a variable, numeric quantity
indicating column n—1.

UP-4092
Rev. 2

Appendix C

SECTION: PAGE:

UNIVAC 9200/9300 Rev. 1
CARD ASSEMBLER

C1.

C2.

APPENDIX C. CARD LOAD ROUTINE

GENERAL

The Card Load Routine for the online card reader and the 80-column UNIVAC 1001 Card
Controller consists of the following sections of coding:

a. Bootstrap coding to read the Load Routine into memory. Before transferring control
to the Load Routine, the bootstrap coding sets the EBCDIC mode and enters the
processor state.

b. Coding to clear a selected portion of memory to a selected character. This coding
is executed before the Load Routine itself is read into memory. If the area specified
to be cleared includes the Load Routine and its read area, they are not cleared.

c. Coding to load a program in Assembler output format into the internal storage of the
UNIVAC 9200/9300. The Load Routine performs a hole count check of each card
used. Upon encountering a Transfer Card (a card with Y in column 2) signifying
termination of loading, the Loader compares the number of External Reference (type
K), Text (type Y), and blank cards read with the number contained in columns 12 and
13 of the Y card. If the numbers agree, the Load Routine loads register 13 with the
address at which to begin program execution and transfers control to that address.
This is the address contained in columns 15 and 16 of the Y card. If these columns
are blank, the transfer address used is that contained in columns 15 and 16 of the
program reference card (type J).

If the card count check fails, the Load Routine halts. At this point pressing the
START switch causes the Load Routine to begin execution of the program just
loaded. During the loading of the EXEC I portion of a program, the Load Routine
sets up the I/0 PSC for EXEC L.

The name of the Load Routine for the online card reader is LD; for the Card Control-
ler, LDCC.

PARAMETERS FOR THE LOAD ROUTINE

The Load Routine can be maintained as an object code deck ready to be linked. Certain
labels exist as external references. Defining these labels supplies the variable infor-
mation required by the Load Routine. These labels may be defined by means of EQU
control cards at the time the Load Routine is linked to a program. The external labels
and their meaning are shown below. See 5.6 for further use of these labels.

UP-4092 UNIVAC 9200/9300 Rev. 1 Appendix C
Rev. 2 CARD ASSEMBLER SECTION: BAGE:

LABEL MEANING

L?AR Start of the read area for the Load Routine.

L?PG Start of the coding of the Load Routine.

L?LO First memory location to be cleared.

L?HI Last memory location to be cleared.

L?CH Character with which to fill the area to be cleared.

L?AM The value assigned determines whether alterations are to be
stored in memory location 4 or the memory location specified in
the address switches. If the value assigned is four, alterations
are stored in location 4; if zero, in the location specified by the
memory address switches.

C3.

Note that all labels used by the Load Routine begin with the characters ‘‘L?"’.

The read area for the Load Routine is 80 bytes long and does not have to be contiguous
with the Load Routine, but each must begin on a halfword boundary. The coding for

the Load Routine is approximately 275 bytes long in the case of routine LD and

360 bytes long in the case of routine LDCC.

The Load Routine is coded relative to the labels L? AR and L?PG. Thus, once these two
labels are defined by EQU cards, the location at which the Load Routine and its read
area reside in memory is fixed. In setting up the Linker input deck the user must be
certain that the Linker does not allocate to any other part of the phase in which the
Load Routine appears the memory that has been allocated to the Load Routine by the
L?AR and L?PG EQU cards.

When the Load Routine is linked to a program, it must appear as the first element in

the input deck for the first phase of the program being linked. To produce a self-contained
loader that will load the object program that follows it, add an END card with an operand
of L?PG to the Load Routine deck and link the loader separately.

For routine LDCC, L?AR must be set equal to 160 or more.

LOADING ADDITIONAL PROGRAMS

If the Load Routine is in memory, it may be used to load another program by branching
to the initial location of the Load Routine (represented by the tag L?PG). The program
to be loaded must not overlay the Load Routine or its read area. The first card

loaded will be the card at the wait station at the time L?PG is branched to.

A terminating program may also initiate the loading of a successor program if the suc-
cessor contains a load routine of its own. The program must read the first card (boot-
strap card) of the successor into a location in memory, set the address of that location
into register 15, and transfer to that address plus 26. The address chosen for the boot-
strap card must not overlap either the load routine of the successor program or the
read area of the Load Routine. The bootstrap card must be read in in compressed code
and must not be translated. This facility is possible only if the online card reader is
being used to load programs.

UP-4092 UNIVAC 9200/9300 " Rev. 1 Appendix C
Rev. 2 CARD ASSEMBLER SECTION: PAGE:
C4. LOAD ROUTINE STOPS
DISPLAY MEANING ACTION
4300 Card Count error Press START to begin execution
of program just loaded.
61ss (LD) Hole count error: Press START to ignore the

C5.

C5.1.

65CE (LDCC)

61ss (LD)
(Reader
abnormal
light on)

6504

650C

sum of the bytes
read from columns
8-72 does not agree
with the hole count
byte column 7 (ss
has no meaning).

Card Read Error
(ss is the status
byte)

Card Controller
error

Card Controller
error while trying
to execute a TR &
RD PRI or TR PRI
function

card and continue loading.

Press READER, CLEAR.
Refeed the error card (if any).
Press START to continue
reading.

Nonrecoverable. Less than 10 cards
have been read. Start over.

Recoverable in some cases. Cause of
error may be determined by the display
lights on the Card Controller. Check the
masks and follow the error recovery pro-
cedure as outlined under STOP 1 of the
Card Controller IOCS operating instruc-
tions; however, the sense byte display
(STOP 2) cannot be made available in
the LOADER.

The 61ss displays are applicable to the LD Load Routine only.

In the case of a card read error, the error is at the top of the output stacker and is
present unless the error is misfed, not ready, offline, hopper empty, or stacker full.

DESCRIPTION OF OPERATION

The Card Load Routine consists of four parts: Boot, Reader, Clearing, and Loader.

Bootstrap Section

The Bootstrap section is the first card in the Load Routine and is read into privileged
memory (0—79) by a console operation. The Bootstrap section is a card reader routine
that reads the next card in the input hopper into L? AR and exits to the first instruction
(at L?AR+10) on the card read. The first instruction at.L? AR+10 stores the remainder
of the card into L?PG. The instruction that follows transfers control back to the Boot-
strap section. This cycle of reading and storing of cards continues until the Reader
and Clearing sections are stored in L?PG. The last card of the Clearing section read
into L? AR sets all alteration switches as determined by the value in L? AM, sets
further operations under processor PSC, and transfers control to the Clearing section

coding in the L?PG area.

UP-4092
Rev. 2

Appendix C

SECTION:

UNIVAC 9200/9300 Rev. 2
CARD ASSEMBLER

PAGE:

C5.2. Clearing Section

C5.3.

C5.4.

Co.

The Clearing section clears memory specified to the specified character except for
the privileged area and the L?PG area. Control is then transferred to the Reader
section in the L?PG area to read in the Loader section.

Reader Section

The Reader section reads the next card in the input hopper into L? AR and exits to the
first instruction on the card which stores the remainder of the card into L?PG above
the Reader section. The second instruction on the card transfers control back to the
Reader section in L?PG to read the next card. The cycle continues until all the cards
making up the Loader Section are read and transferred into L?PG. The last card on the
Loader section read into L? AR changes the transfer-control address in the Reader
section from L? AR+10 to the Loader section. Control is then transferred to the Loader
section.

Loader Section

This section remains in the L?PG area with the Reader section during the loading
process. The Reader section brings in the program cards. The Loader section checks
the hole count and the card count, loads the program from the Text (Q) cards, and on
detection of a type Y (END) card, determines the start address, places the start
address in register 13, and transfers control to it. The Loader section loads the

I/0 PSC with the first four bytes of data (columns 11—-14) of any type Q (Text) card
with a load address of 16.

PROGRAMMING CONSIDERATIONS
In situations where memory is at a premium, it is possible to use the problem program

1/0 areas to store the Loader and then overlay the Loader with input or output data.
This can be accomplished by the following example:

m Coding
LABEL OPERATION OPERANDS COMMENTS
CTL 2,8191,8191
PHASE UNI,256,A Program UNI will start at location
256 absolute.
L?AR EQU 160 80 byte read-in area begins at
location 160.
L?PG EQU 240 Loader will be loaded starting at
location 240.
L7HI EQU 8191
L?2Lg EQU 160 Locations 160—8191 will be cleared
to zero before loading loader.
I.7CH EQU 0
L7AM EQU 4 All alterations will be stored in
location 4.

W LD or LDCC object code deck

B Problem program starting with DS statements for 1/0 areas and working areas.
m Other elements

m END card

UP-4092
Rev. 2

Appendix C
- CARD ASSEMBLER

SECTION: PAGE:

UNIVAC 9200/9300 : ‘

C7.

Cs8.

In the above example, the problem program must have the DS statements for I/0

areas and working areas as the first lines of coding. The total memory requirements

of all DS statements must be greater than 275 bytes when using the card reader loader,
or 360 bytes when using the 1001 Card Controller loader. If the total of the DS state-
ments is less than this, the starting address in the PHASE card must be adjusted to
make up the difference so that the loader will not be overlayed before loading has
been completed.

Text cards are not punched for DS statements; therefore, nothing is loaded into these
memory locations at load time., Thus, if this approach is used, the problem program must
clear the output areas before using them, as they may contain parts of the Loader routine.
It should be noted that the loader is then destroyed and must be loaded again for any
subsequent programs.

The example above also can be used for creating a freestanding loader, except that
no problem program or other elements will follow the loader deck. Still required is a

PHASE card, in which any fictitious parameters may be used.

LOADING FROM CARD READER.

1. Place program deck in hopper.

2. Press READER CLEAR, READER FEED.
3. Set DATA ENTRY switches to 0000 0001.
4. Press general CLEAR.

5. Set LOAD.

6. Press START.

7. Reset LOAD.

8. Press START.

1001 LOADER LOADING PROCEDURE

1. Remove all cards from the PRI hopper of the Card Controller by pressing UNLOAD
PRI three times.

foe]

Place program deck in PRI hopper.

Set the ALT 1 switch on.

S W

Press the CLEAR, LOAD PRI, CLEAR, START, RUN, switches on the Card
Controller.

5. Set the ALT 1 switch off.

6. Enter the device address in the DATA ENTRY switches of the 9200/9300.
(Example: The Card Controller is on channel 7; therefore, enter B8 in DATA
ENTRY switches. B8 =10111000)

channel 7

must always be 1

UP-4092
Rev. 2

UNIVAC 9200/9300
CARD ASSEMBLER

Appendix C

SECTION:

PAGE:

Press the
Press the
Press the
Reset the

Press the

PROC CLEAR, CHANNEL CLEAR switches on the 9200/9300.
LOAD switch on the 9200/9300.

START switch on the 9200/9300.

LOAD switch on the 9200/9300.

START switch on the 9200/9300.

UP-4092
Rev. 2

Appendix D

SECTION:

UNIVAC 9200/9300
CARD ASSEMBLER

PAGE:

D1.

D 2.

D2.1.

APPENDIX D. EXEC I

GENERAL

EXEC I is designed for UNIVAC 9200/9300 Card System only and takes the form of a
relocatable element which must be included in the worker program at Linker time. The
primary functions of EXEC I are to monitor interrupts, handle messages to and from
the operator, and provide restart communication,

MACRO INSTRUCTIONS

EXEC I provides the following macro instructions:

Message Macro (MSG)

The message macro has the format given below:

OPERATION OPERAND

MSG | Message, REPLY

The REPLY parameter is optional. Message may be any acceptable two-byte hexadeci-
mal expression of the form X‘nnnn’.

This macro generates the following code:

OPERATION OPERAND
SRC 0,8
DC Y(message)
DC CL1%’
DC X(O’

where message is the two-byte hexadecimal display which appears in the HPR instruc-
tion. It takes the form of an assembler language expression.

x = A, if the parameter REPLY appears; x = a blank (EBCDIC code 01000000),
if it does not.

The one-byte reply, keyed in by the operator into location 4, appears in the last byte
of the calling sequence.

UP-4092
Rev. 2

Appendix D

SECTION:

UNIVAC 9200/9300 ‘
CARD ASSEMBLER

PAGE:

D2.2.

EXEC I tesponds to this macro by doing a BAL, using register 15, to its own display
subroutine. It moves the message from the calling sequence of the SRC instruction

to the calling sequence of the BAL instruction before executing the BAL instruction.
The display subroutine sets location 4 to binary zero and displays the message by
means of an HPR instruction. When the START swiich is depressed, the display sub-
routine returns control through register 15. EXEC I then moves the contents of location
4 to the reply byte of the calling sequence and returns control to the problem program.

For example, if the user codes the following macro instruction,

DSPL MSG X‘FFF’,REPLY

the Assembler treats this macro instruction the same as the following source code:

DSPL SRC 0,8
DC Y(X‘FFF’)
DC CL1‘A’
DC X0’

When the object code produced from this source code is executed, the computer stops
with a display of 000111111111111. The operator may then answer this display using
the DATA ENTRY and ALTER switches. When the START switch is subsequently
depressed, control is returned to the user’s coding at the instruction located at
DSPL + 8. The byte inserted into the computer by the operator through the DATA
ENTRY and ALTER switches is in location DSPL + 7. If the operator did not intro-
duce any data through the DATA ENTRY and ALTER switches, then on return of
control to the problem program, the byte in location DSPL + 7 contains binary zeros.

The MSG macro instruction is not handled by the Preassembly Macro Pass, but is
ptocessed by the Assembler itself.

Restart Macro

The restart macro has the following format:

OPERATION l OPERAND

RSTRT Restart-name

The restart-name is the label of a user-coded routine which is designed to handle a
restart operation.

This thacro generates the following code:

OPERATION OPERAND

SRC 0,0

DC Y(Restart-name)

UP-4092
Rev. 2

Appendix D

SECTION: PAGE:

UNIVAC 9200/9300
CARD ASSEMBLER

D3.

In response to this macro instruction, EXEC I stores the address of the restart-name.
Restart is accomplished by a general clear followed by depression of the START
switch. This causes the instruction in memory locations 22 through 25 to be executed
in I/0 mode. EXEC I has a branch unconditional instruction in this location that allows
it to force all alterations to be stored in memory location 4, set the processor PSC to
the restart-name and then go to RE-ENTRY. At RE-ENTRY, EXEC I sets the device
address byte to zero, resets (without destroying the SRC field) the I/0 PSC in pre-
paration for the next interrupt, and returns to processor state.

At the restart-name location the user must provide a restart routine. This routine must
re-establish variable information in the program and set initial conditions for all input/
output routines. (To aid the user in accomplishing this goal, the execution of the OPEN
macro resets the initial conditions for all IOCS routines.) The user must establish
conventions to reposition card decks and printer paper.

The RSTRT macro instruction is not handled by the Preassembly Macro Pass, but is
processed by the Assembler itself.

I/0 CONTROL ROUTINE MESSAGES

All IOCS routines operating in I/0 mode may display messages through direct access
to the display subroutine. After execution, if a reply is expected, the control routine
itself must'examine the contents of location 4,

The following instructions are required to execute a display:

OPERATION J OPERAND
BAL 15,E?DS
DC XL2‘message’

where E?DS is the label for the first byte of the display routine.

message is a two-byte hexadecimal expression.

UP-4092 UNIVAC 9200/9300 Appendix E
Rev. 2 CARD ASSEMBLER SECTION: PAGE:

APPENDIX E. TRANSLATION TABLES

El. GENERAL

The UNIVAC 9200/9300 I/0 software enables any desired internal 8-bit code to result from
the reading of most punch configurations, to be punched into nearly any desired punch con-
figuration, and to cause printing of any character of a 63- or 48-character font. This is
accomplished by the optional use of automatic translation in the I/O routines. Input/output
data is translated according to specified translation tables. The programmer may use his
own translation tables or he may use any of the standard translation tables.

Standard translation tables are available in source code form and in iject code form. The
source code form can be assembled with another program or can be assembled by itself to
provide a linkable element, The object code form is a relocatable element with its name
defined by the External Definition (type H) card. Each table occupies 256 bytes of object
memory. :

There are three standard translation tables; Table Read, Table Punch, and Table Print. -
Each table is used by the appropriate, associated I/0 routine.

Table Read, TBRD, converts the compressed image read from Hollerith-coded input cards
to internal EBCDIC code.

Table Punch, TBPU, converts the internal EBCDIC code to a compresAsed image that pro-
duces output cards punched in Hollerith code.

Table Print, TBPR, converts the internal EBCDIC code to a code which causes the 48-
character print bar to print the same character as would be printed if the 63-character
print bar were used. Characters other than 0—-9, A—-Z, and .+&$*—/,%’#@ are treated as
blanks.

LINIWVAC
FEDERAL SYSTEMS DIVISION
UP 4092 — Rev 27 MAY 1968

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	xBack

