
REFEFI r~CE, 

UN:I\/A<: 
Fe$EI~L SVSTEIViS DIVIS 



UNIVAC 9200/9300 Systems 
Card As!;;emb1er Programmers Reference 
UP-4092 Rev. 2 

UPDATING PACKAGE "B" 

June 27, 1968 

UNIVAC 9200/9300 Systems P.I.Eo Bulletin 11, UP-7535.11, announces the release 
and availability of Updating Package ttBII for the {UNIVAC 9200/9300 Systems Card 
Assembler Programmers Reference,fI UP-4092 Rev. 2, 25 pages plus 1 Updating Sum­
mary Sheet. This material should be utilized in the following manner: 

SECTION ----
Contents 

Section 2 

Section 3 

Appendix A 

Appendix B 

Appendix C 

DESTROY FORMER 
PAGES NUMBERED 

3 Rev. 
5 Rev. 
7 Rev. 

5 & 6 
7 & 8 

1 & 2 

1 and 4 
1 and 6 
1 

Rev. 

13 Rev. 1 and 14 

1 

7 Rev. 1 & 8 Rev. 1 
37 Rev. 1 & 38 Rev. 1 
39 

1 & 2 
3 Rev. 1 & 4 Rev. 1 
N. A. 

*These are backups of revised pages, and remain unchanged. 
**These are new pages. 

FILE NEW PAGES 
NUMBERED 

3 Rev. 1* & 4 Rev. 1 
5 Rev. 2 & 6 Rev. 2 
7 Rev. 2 

5* & 6 Rev. 1 
7 Rev. 1 & 8* 

1 Rev. 1 and 2* 

13 Rev. 1* & 14 Rev. 1 

7 Rev. 2 & 8 Rev. 1* 
37 Rev. 2 & 38 Rev. 2 
39 Rev. 1 & 40** 

1 Rev. 1 and 2 Rev. 1 
3 Rev. 1* & 4 Rev. 2 
57<-* & 6** 



UNIVAC 9200/9300 Systems 
Card Assembler Programmers Reference 
UP-4092. Rev. 2 

UPDATING PACKAGE "A" 

March 15, 1968 

UNIVAC 9200/9300 Systems P.I.E. Bulletin 8, UP-7535.8, announces the release 
and availability of Updating Package "Alf for the "UNIVAC 9200/9300 Systems 
Card Assembler Programmers Reference," UP-4092 Rev. 2, 66 pages plus 1 Updating 
Summary Sheet. This material should be utilized in the following manner: 

SECTION 

Contents 

3 

4 

5 

A.ppendix A 

Appendix B 

Appendix C 

*These pages are backups of 

DESTROY FORIv1ER 
PAGES NUMBERED 

1 and 2 
3 and 4 
5 and 6 
7 

3 and 4 
5 and 6 
7 and 8 
11 and 12 

1 and 2 

5 and 6 
7 and 8 
15 and 16 
21 

5 and 6 
7 and 8 
13 and 14 
19 and 20 
21 and 22 
23 and 24 
25 and 26 

7 and 8 
9 and 10 
11 and 12 
17 and 18 
21 and 22 
23 and 24 
25 and 26 
27 and 28 
29 and 30 
31 thru 38 

3 and 4 

revised pages, and remain 

FILE NEW PAGES 
NUMBERED 

1* and 2 Rev. 1 
3 Rev. 1 and 4* 
5 Rev. 1 and 6 Rev. 1 
7 Rev. 1 

3 Rev. 1 and 4 Rev. 1 
5 Rev. 1 and 6 Rev. 1 
7 Rev. 1 and 8 Rev. 1 
11 Rev. 1 and 12 Rev. 1 

1 Rev. 1 and 2 Rev. 1 

5 Rev. 1 and 6 Rev. 1 
7 Rev. 1 and 8* 
15* and 16 Rev. 1 
21 Rev. 1 

5 Rev. 1 and 6 Rev. 1 
7 Rev. 1 and 8* 
13 Rev. 1 and 14* 
19 Rev. 1 and 20* 
21* and 22 Rev. 1 
23 Rev. 1 and 24* 
25* and 26 Rev. 1 

7 Rev. 1 and 8 Rev. 1 
9 Rev. 1 and 10* 
11 Rev. 1 and 12* 
1 7 Rev. 1 and 18* 
21* and 22 Rev. 1 
23* and 24 Rev. 1 
25 Rev. 1 and 26* 
27 Rev. 1 and 28* 
29 Rev. 1 and 30* 
31 thru 38 all Rev. 1 

3 Rev. 1 and 4 Rev. 1 

unchanged. 



_u_:_e_-:_.O_~_2 ____ . ______ ~_~_~V_DA_A_C __ S~_~_OM_O_~9 __ ;:_~_~ _______ '---________ SE_c_~_~_~t_:e_n,_ts __ 1 PA G E' 1. __ _ 

CONTENTS 

1. INTRODUCTION 

1.1. GENERAL 

1.2. THE PURPOSE OF AN ASSEMBLER 

1.3. CARD ASSEMBLER FOR THE UNIVAC 9200/9300 

1.4. ASSEMBLY LANGUAGE CHARACTERISTICS 

2. THE ASSEMBLER LANGUAGE 

2,,1. CHARACTER SET 

2 .. 2. STATEMENT FORMAT 
2,,2.1. Label Field 
2,,2.2. Operation Field 
2 .. 2.3. Operand Field 
2:,2.4. Comments Field 

2,,3. EXPRESSIONS 
2 . .3.1. Decimal Representation 
2 . .3.2. H exadeci m al Representation 
2.3.3. Character Representation 
2.,3.4. Location Counter 
2.3.5. Rei ative Addressing 
2 . .3.6. Symbols 
2.3.7. Relocatable and Absolute Expressions 
2.3.8. Length A ttri bute 

2.4. MACHINE INSTRUCTIONS 
2.4.1. RX - Register to Storage Instructions 
2.4.2. SI - Instruction to Storage Instructions 
2.4.3. SSI - Storage to Storage Instructions 
2.4.4. SS2 - Storage to Storage Instructions 
2.4.5. Implied Base Register and Length 

:2.5. DATA AND STORAGE FORMATS 
:2.5.1. DC - Define Constant 
:~ .5.1.1. Character Representation 
:2.5.1.2. Hexadecimal Representation 
:2.5.1.3. Expression Constants 
:2.5.2. DS - Define Storage 

CONTENTS 

1 to 7 

1-1 to 1-4 

1-1 

1-1 

1-2 

1-4 

2-1 to 2-15 

2-1 

2-1 
2-1 
2-1 
2-1 
2-2 

2-2 
2-2 
2-3 
2-4 
2-4 
2-4 
2-5 
2-5 
2-6 

2-6 
2-8 
2-8 
2-9 
2-10 
2-10 

:2-11 
:2-12 
:~-12 

2-13 
2-13 
2-14 



UP-4092 I UNIVAC 9200/9300 Rev. 1 Contents 2 
, __ ~~. 2.~ ___ , ______ C_A_R,_D_A_S_S_E_M_B_L_E_R _______ ",--_____ ...a...;;;S..;;;,E.;;;"CT._1.;;;"O;,.;.;N:;....... __ .&....;..P;.;,.AG;;.,;E;,;.: ___ _ 

3. ASSEMBLER DIRECTIVES AND SYSTEM CODES 

3.1. DIRECTIVES 
3.1.1. Symbol Definition 
3.1.2. Assem bly Contro I 
3.1.2.1. START - Program Start 
3.1.2.2. END - Program End 
3.1.2.3. ORG - Set location Counter 
3.1.3. Base Register Assignment 
3.1.3.1. USING - Assign Base Register 
3.1.3.2. DROP - Unassign Base Register 
3.1.3.3. Function of USING and DROP Directives 
3.1.3.4. Direct Addressing 
3.1.4. Program Linking 
3.1.4.1. ENTRY - Externally Defined Symbol Declaration 
3.1.4.2. EXTRN - Externally Referenced Symbol Dedaration 
3.1.5. Assembler Program listing 
3.1.6. Assembler Control Card 
3.1.7. Operand Format 

3.2. SYSTEM COD ES 

4. OPERATING PROCEDURES 

4.1. GENERAL OPERATING INSTRUCTIONS 
4.1.1. Card Controller Operating Instructions 
4.1.1.1. Sta rt In stru cti ons 
4.1.1.2. Second Pass Rerun Instructions 

4.t:. ASSEMBLER CARD OUTPUT 
4.2.1. Element Definition Card 
4.L:.2. External Definition Card 
4.2:.3. Program Reference Card 
4.L~.4. External Reference Card 
4.2.5. Text Card 
4.L:.6. Transfer Card 

4.~;. CARD ASSEMBLER PRINTED OUTPUT 

4,4,. LINKING THE CARD ASSEMBLER 

5. LlINKER 

5.1. INTRODUCTION 

5.2. LINKER INPUT 

5.3.. LINKER CONTROL CARD FORMATS 
5.3,.1. CTl 
5.3.2. PHASE 
5.3.3. EQU 
5.2:.4. EN 0 
5.3.5. REP 
5.3.6. MOD 

5A. EXAMPLE 

5.~j. ONE- AND TWO-PASS LINKING 

3-1 to 3-18 

3-1 
3-1 
3-2 
3-2 
3-3 
3-3 
3-4 
3-5 
3-5 
3-5 
3-7 
3-7 
3-8 
3-8 
3-8 
3-14 
3-14 

3-14 

4-1 to 4-9 

4-1 
4-1 
4-1 
4-2 

4-2 
4-3 
4-4 
4-4 
4-5 
4-5 
4-6 

4-7 

4-8 

5-1 to 5-21 

5-1 

5-2 

5-2 
5-3 
5-3 
5-4 
5-4 
5-5 
5-5 

5-6 

5-13 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

5.6. LINKING THE LINKER 

5.7. CARD OUTPUT FROM THE LINKER 
5.7.1. Type Q Cards 
5.7.2. Type Y Cards 

5.8. LINKER MAP 
. 5.8.1. Li nker Map P ri nt Li nes 
5.8.2. Linker Map Error Messages 

5.9. LINKER CONSOLE DISPLAYS 

APPENDICES 

A. PREASSEMBL Y MACRO PASS 

AI. GENERAL DESCRIPTION 

A2. MACRO INSTRUCTION FO RMAT 
A2. L Parameters 

A3. WRITING MACRO DEFINITIONS 
A3. L PROC Directive 
A12. NAME Directive 
All END Directive 
A 3. 4, Com men ts 

A4. INCORPORATING PARAMETERS INTO MACRO CODING 

A5. NAME STATEMENT 

A6. CONDITIONAL MACRO PASS INSTRUCTIONS 
A6.1, DO and ENDO Directives 
A6.2. GOTO and LABEL Directives 
A6,3, Set Variables 
A6.3.1. GBL Directive 
A6,3,2, LCL Directive 
A6.3.3. SET Directive 
A6.3.4, Relational and Logical Operators 
A6,3.5, Character Values 
A6.3.6. Use of Character Values 

A7. CONTINUATION CARDS 

A8. LABELS USED IN UNIVAC PRODUCED MACROS 

A9. MACRO INSTRUCTION DECK 

AID. MACRO PASS OUTPUT FORMAT 
AlD.l. Source Code Card Format 
AlD,2. Macro Instruction Card Format 
AlD.3. Comments Card Format 
AIO.4, Error Card Format 

AIL MACRO PASS CONSOLE DISPLAYS 

A12. LINKING THE MACRO PASS 
AI2.1. Operating Instructions 
A12.2, Control Card 

Rev. 1 Contents 
I 1 

SECTION: 

5-13 

5-18 
5-18 
5-18 

5-19 
5-19 
5-20 

5-21 

PAGE: 

A-I to A-30 

A-I 

A-2 
A-2 

A-4 
A-4 
A-5 
A-5 
A-5 

A-6 

A-7 

A-9 
A-9 
A-ll 
A-I2 
A-12 
A-13 
A-13 
A-13 
A-14 
A-14 

A-I7 

A-17 

A-I7 

A-I8 
A-I8 
A-I8 
A-I8 
p.,-- 19 

A-19 

A-21 
A-22 
A-23 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLE R 

A13. THE COMPRESSOR 
A 13.1. Compressed Macro Li brary Deck Format 
A 13.1.1. Da ta Ca rds 
A13.1.2. Fixups 
A13.1.3. Header Specification 
A13.2. Error Indications 
A 13. 3. Com~ressor Conso Ie Di splays 
A13.4. Linking the Compressor 
A13.5. Operating Instructions 
Al3.6. Control Card 

B. INPUT/OUTPUT CONTROL SYSTEM (IOCS) 

81. GENERAL DESCRIPTION 

82. GENERAL USAGE 

83. DE FIN ITION STATEMENTS (DECLARATIVE MACROS) 
83.1. Header Entry Card 
83.2. Detai I Entry Ca rds 
83.2.1. 810ck Size Entry (8KSZ) 
83.2.2. Channel Entry (CHNL) 
83.2.3. Control Entry (CNTL) 
812.4. End-of-File Address Entry (EOFA) 

Rev. 1 

83.2.5. The Function Entry - UNIVAC 1001 Card Controller (FUNC) 
83.2.6. Allowable Functions for the UNIVAC 1001 Card Controller 
812.6.1. Transfer-and-Read Functions 
83.2.6.2. Send-and-Receive Data Functions 
8:L2. 7. Input A rea Entry (lOA 1) 
8:L2.8. Input Area Entry (INAR) 
83.2.9. Input Translate Table Entry (lT8L) 
8:L2.10. Mode Deta i I Entry (MOD E) 
8:3.2.11. Output A rea Entry (OUA R) 
8:3.2.12. Output Translate Table (OT8L) 
8:t2.13. Overlap Entry (ORLP) 
8:3.2.14. Print 8ar Entry (FONT) 
83.2.15. Printer Advance Entry (P RA D) 
83.2.16. Punch Error Entry (PUNR) 
83.2.17. Printer Overflow Entry (PROV) 
8::-1.2.18. Type of File Entry (TVPF) 

8,L SUMMARY OF DETAIL ENTRY CARDS 

85. DEFINITION STATEMENT EXAMPLES 
85.1. Online Serial Punch File Example Definition 
85.2. Reader File Example Definition 
8!5. 3. P r i n te r F i leE x amp leD e fin i t ion 
85.4. Online Serial Read and Punch File Example 
85.5. Card Controller File Example 

I Contents 
SECTION: 

A-23 
A-23 
A-24 
A-24 
A-25 
A-25 
A-27 
A-28 
A-3D 
A-3D 

8-1 to 8-40 

8-1 

8-1 

8-2 
8-2 
8-2 
8-3 
8-3 
8-3 
8-3 
8-4 
8-4 
8-5 
8-5 
8-6 
8-6 
8-6 
8-6 
8-7 
8-8 
8-8 
8-8 
8-8 
8-8 
8-9 
8-10 

8-11 

8-12 
8-12 
8-12 
8-12 
8-13 
8-13 

4 . 



'UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER Rev. 2 SECTION: PAGEl 

con~ents 5 

----------~~.--------------------------------------~----------~-----

B6. IOCS MACRO INSTRUCTIONS (IMPERATIVE MACROS) 
B6.1. GET Macro Instruction 
B6.2. PUT Macro Instruction 
B6.3. Work Area Considerations 
B6.4. Programming Considerations-Read/Punch Combined File 
B6.5. OPEN Macro Instruction 
B6.6. CLOSE Macro Instruction 
B 6.7. C NT R L Mac ro Ins t ru c t ion 
B6.7.1. Printer Spacing 
86.7.2. Printer Skipping 
B6.7.3. Stacker Select 
B6. 7. 4. N umeri c P rin ting 
B6.7.5. Specifying Columns to be Punched 
B6.8. Summary of UNIVAC 9200/9300 Card System IOCS Imperative Macros 

B7. PROGRAMMING CONVENTIONS - PROGRAM REGISTERS 

B8. GENERAL PROCEDURE SUMMARY FOR USING IOCS 

B9. STORAGE REQUIREMENTS 

BI0. APPROXIMATE TIMES FOR IOCS ROUTINE EXECUTION 

Bll. CARD READER DEFINITION STATEMENTS 
BILL Preparing the Card Reader 
Bl1.2. Error Indications 

B12. PRINTER DEFINITION STATEMENTS 
B12.1. Preparing the Printer 
BI2.2. Error Indications 
B 12.3. Paper Low 

B13. SERIAL PUNCH DEFINITION STATEMENTS 

B14. SERIAL READ DEFINITION STATEMENTS 

B15. SERIAL READ/PUNCH DEFINITION STATEMENTS 
BI5.1. Buffer and Work Area Size 
BI5.2. End-ot-File 
BI5.3. Preparing the Serial Read/Punch 
BI5.4. Error Indications 

B16. UNIVAC 1001 CARD CONTROLLER DEFINITION STATEMENTS 
B 16. L Wo rk A rea Size 
BI6.2. Preparing the Card Controller 
B16.3. Error Indications 
BI6.3.1. STOP 1 (65xx) 
B16.3.2. STOP 2 (65yy) 

B17. ROW READ/PUNCH DEFINITION STATEMENTS 
BI7.1. Punch Only 
B17.2. Read Only 
B17.1 Read and Punch 
BI7.4. Buffer and Work Area Size 
BI7.5. End-ot-File 
B17.6. Preparing the Row Read/Punch 
B17.7. Error Indications 

B18. IOCS GENERATION 

B19. ADDITIONAL KEYWORD PARAMETER SPECIFICATIONS 

B-13 
B-13 
B-14 
B-14 
B-14 
B-15 
B-15 
B-15 
B-15 
B-16 
B-16 
B-17 
B-18 
B-18 

B-19 

B-19 

B-19 

B-20 

B-21 
B-21 
B-22 

B-23 
B-23 
B-24 
B-25 

B-25 

B-26 

B-27 
B-27 
B-28 
B-28 
B-29 

B-30 
B-31 
B-31 
B-32 
B-32 
8-34 

B-35 
B-35 
B-36 
B-36 
B-37 
B-37 
B-37 
B-38 

B-40 

B-40 



Rev. 2 
UNIVAC 9200/9300 
CARD ASSEMBLER Rev. 2 

Contents 6 
SECTION: PAGE: 

UP-4L92 

-----. --------------------------------------~----------~----------~-------------

C. CARD LOAD ROUTINE C-l to C-6 

Cl. GENERAL C-l 

C2 .. PAI1AMETERS FOR THE LOAD ROUTINE C-1 

C3. LOADING ADDITIONAL PROGRAMS C-2 

C4. LOAD ROUTINE STOPS C-3 

C5. DESCRIPTION OF OPERATION C-3 
C5.1. Bootstrap Section C-3 
GJ.2. Clearing Section C-4 
C5.3. Reader Section C-4 
C5.4. Loader Section C-4 

C6. PROGRAMMING CONSIDERATIONS C-4 

C7. LOADING FROM CARD READER C-5 

C8. 1001 LOADER LOADING PROCEDURE C-5 

D. EXEC I 0-1 to 0-3 

01. GENERAL 0-1 

02. MACRO INSTRUCTIONS 0-1 
02. L Message Macro (MSG) 0-1 
Di'.2. Restart Macro 0-2 

03. I/O CONTROL ROUTINE MESSAGES 0-3 

E. TRANSLATION TABLES E-1 to E-1 

E1. GENERAL E-1 

F~GURES 

1-1. Source-to-Object Code Translation with Assembler 1-1 

1-2. UNIVAC 9200/9300 Assembl y System 1-3 

2-1. Example of Source Code Statements 2-2 

3-1. Example of Printer Output of a Program 3-9 

5-1. Elements A and B Deck Structure 5-7 

5-2. Linker Input 5-8 

5-3. Header Processing 5-10 

5-4. ESID Processing for Element A 5-11 

~,-5. ESID Processing for Element B 5-12 

~i-6. Linker Input Deck Sequence for Two-Pass Operation 5-14 

~i-7 . Linker Input Deck Sequence for One-Pass Operation 5-15 

1\-1. Schematic of Preassembly Macro Pass Operation A-I 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

T'ABLES 

:~-1. Instruction Mnemonics 

:2-2. Symbols Used in Describing Operand Formats 

Rev. 2 

;~-3. Operand Specifications Using Implied Base Register and Length Notation 

;~-4. Characteristics of the Various Constants 

3-1. Internal Code 

B-l. UNIVAC 1001 Card Controller IOCS Initial Error Indications 

B-2. UN IVAC 1001 Card Controller IOCS Requested Error Indications 

Contents 
SECTION: 

2-7 

2-8 

2-11 

2-14 

3-15 

8-33 

8-34 

7 
PAGE: 





UP-~JU~~ 

Rev. 2 
U" I T A~ 7I.UU/7",UU J. 

CARD ASSEMBLER SEC TION: PAGE: 

1. INTRODUCTION 
1.1. GENERAL 

Use of this manual presupposes a familiarity with the ins truction repertoire and 
instruction and data formats of the UNIVAC 9200/9300 as described in "UNIVAC 
9200/9300 Systems Central Processor and Peripherals Programmers Reference," 
UP-7546 (current version). 

1.2. THE PURPOSE OF AN ASSEMBLER 

An Assembler is one result of the many and continuing efforts to improve communica­
tions between computers and computer users. The general direction of these efforts 
has been towards an intermediate language which is close to the language of the user 
and which relies heavily on the computer for translation into its language. 

In an Assembler language all coding is represented in the form of statements which 
are unperstandable to the programmer. The Assembler then converts these statements 
into a binary form which is understandable to the computer. The programmer's state­
ments, when keypunched, are called source code. The Assembler converts the source 

. code into object code. Figure 1-1 shows the general flow of source-to-object code 
conversion with an Assembler. 

PROGRAMMER 

states the problem in the· 
Language of the Assembler 

SOURCE CODE 

statements keypunched in 
card code form 

ASSEMBLY 

translation to Object Code 

OBJECT CODE 

Binary Expressions 
meaningful to the computer 

Figure 1-7. Source-to-Obiect Code Translation with Assembler 

J. 



UP-4092 
Rlev.2 , ______ .io-_ 

UNIVAC 9200/9300 
CARD ASSEMBLER 

1 
SECiION: PAGE: 

1.3. CARD ASSEMBLER FOR THE UNIVAC 9200/9300 

The Card Assembler for the UNIVAC 9200/9300 System is an efficient, eRsy-to-use 
software aid that satisfactorily handles most of the programming problems encountered 
by the user. Each machine instruction and data form have simple, convenient repre­
sentations in the assembly language. The rules which govern the use of the language 
are not complex; they may be learned quickly and applied easily. 

A program in Card Assembler language for the UNIVAC 9200/9300 is written on a 
standard Univac coding form. The information on the form is keypunched, and the 
resulting source deck is read twice by the Assembler. Output cards, or an object 
deck, are produced by the Assembler in relocatable object code or absolute object code. 
The object deck is ready for loading into the UNIVAC 9200/9300 by means of the 
Card Program Loader routine. The basic flow of the UNIVAC 9200/9300 Card Assemb­
ler and associated software is shown in Figure 1-2. Input to the Assembler is a 
card deck keypunched from an Assembler coding form or is the output from the Pre­
ass em bly Macro Pass. 

The macro library is in macro code. Parameters are established for the macros by means 
of macro instructions. The Preassembly Macro Pass (described in Appendix A) converts 
the macro code into source code in preparation for assembly. 

The assembly operation is a conventional two-pass procedure which produces a card 
deck in relocatable object code. The outputs of several separate assemblies may be 
combined by means of a Linker. The Linker output is in absolute object code. When a 
program is ready to be run, the relocatable or absolute object deck is loaded by a Card 
Program Loader subroutine. 

2 



UP-4092 
Rev. 2 

C-MACRO 

LIBRARY 

--~---' 

(SHO SOURCE 
CODE DECK 

[SEMBLER 

~LOCATABLE L CODE 

UNIVAC 9200/9300 
CARD ASSEMBLER 

PREASSEMBLY 

MACRO PASS 

SECTIONI 

KEYPUNCH 

ASSEMBLER 

LINKER 

ABSOLUTE 

CODE DECK 

LOADER 

Figure 1-2. UNIVAC 920019300 Ass~mbly System 

1 
PAGEl 

MACRO 

CODE 

SOURCE 

CODE 

OBJECT 

CODE 

3 



UP·.4092 I 
__ 2.:.~...:":'...l ___ _ 

UNIVAC 9200/9300 
CARD ASSEMBLER 1 SECTION, 1 PAGE~: 

1.4. ASSEMBLY LANGUAGE CHARACTERISTICS 

The succeeding sections of this manual describe in detail the use of the Assembler 
coding form and the operational characteristics of the Assembler. These characteristics 
are summarized briefly as follows: 

Mnemonic Operation Codes - A fixed name, consisting of two, three, or four letters, is 
assigned to each machine instruction. The n'1me is chosen to suggest the nature 
of the instruction, thereby helping the user to learn and remember the instruction. 

Symbolic Addressing and Automatic Storage Assignment - Symbolic labels may be 
assigned to instructions or groups of data. An instruction may then reference 
the labeled data by label rather than by storage address. In many cases, other 
data required by the instruction (such as operand length) may be supplied auto­
matically by the Assembler. Another major task of the Assembler is to keep 
track of all storage locations used and to assign all incoming instructions and 
data to specific locations. The Assembler also handles all base register and 
displacement calculations. 

Flexible Data Representation - Data may be represented in the Assembler in decimal, 
hexadecimal, or character notation, thus allowing the programmer to choose the 
most suitable form for each constant. 

Relocatable Programs and Program Linking - Programs are prepared by the Assembler 

in an absolute or relocatable form. In relocatable form, the actual storage loca­
tions to be occupied by a program need not be specified at assembly time, or if 
specified, they may easily be altered before loading. Provisions are made for 
linking together, loading, and running as one program the results of separate 
assemblies, thereby reducing the machine time required to make changes to one 
part of a program. 

Program Listing - One of the outputs of the Assembler is a printed listing of source 
and object codes. This listing includes flags marking any errors detected by the 
Assembler. Source code errors do not cause the Assembler to stall. The Assembler 
continues to process the rest of the source code performing its usual error checks, 
thus minimizing the number of assemblies required to produce error-free code. 

4 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER I SEC TION:. .L. PAGE: 

2. THE ASSEMBLER LANGUAGE 

2.1. CHARACTER SET 

The character set used in writing statements in the Assembler language consists of: 

Letters 

Digits 

Special Symbols 

2.2. STATEMENT FORMAT 

A, B, C, ... ,Z 

0, 1,2, ... ,9 

* + - , ( ) , blank 

Statements in the Assembler language are written on a standard coding form. Informa­
tion for the Assembler and comments are written in columns 1 through 71. Column 72 
must be blank. Columns 73 through 80 may contain progtam identification and sequenc­
ing information. The information in columns 1 through 71 consists of the following 
fields. 

2.2.1. Label Field 

The label field begins in column 1 and is terminated by a blank column. There may 

be no embedded blanks. The field may either be blank or contain a symbol whose 
value is to be defined. More detailed information about symbols is contained under 
headings 2.3.6 and 3.1.1. 

2.2.2. Operation Field 

The operation field begins with the first non blank after the label field and is 
terminated by a blank. It contains either the name of an assembler directive or the 
mnemonic operation code for a machine instruction. 

2,,2.3. Operand Field 

The operand field beginS with the first nonblank after the operation field and 
is terminated by a blank not contained in a character representation. This field con­
tains information which defines the op~rands of a machine instruction or which 
supplies the speCifications required with an aSsem bIer directive. 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER 

2 -_ .... _-- I S.CTIO~' 2 PAGE: 

2.2.4. Comments Field 

The comments field begins with the column after the blank that t~rminates the 
operand field and ends at column 71. It may contain any combination of characters 
including blanks. It is not processed by the Assembler other than including it on 
the assembly listing. It may contain remarks to clarify the purpose or operation of 
the associated coding. A line may consist entirely of comments from columns 2 
through 71 if column 1 contains an asterisk. 

----
LABEL 15 OPERATION 15 OPERAND t 

1 10 16 

1. 

2. 
3. 
4. 

*, ,T,H·I IS, ,I S lA, ,C,O MM~ILIIIN,EI'I I I I I I~....i-L-l--L_L.LJ-L.L-L __ 

T,A,G, , I J , B1AJLL_L_ 1-- J.l_~.ld~lJlL~_h~L_LJ __ J. __ .. L~~~L_l._L_L..L_L-1 .... L_L. __ 

, L, H, ,1 I 5" I T A GI3 LL-L_ 1-- _....L I ITIHI EI 10 I P IE 1 R I AI T, I I 01 ~~~~_LL!L.Jl-.JJ1.L~ 
, , , , I / , LIHLLi lIS, ,T/AIG,3, , , I , , ,.-Ll-.L....LJ.~..l-~.L~_.L.J __ 

Figure 2-7. Example of Source Code Statements 

Although the assembler language is free form, it is recommended that source code 
statements be written with the first character of the operation code in column 10 
and the first character of the operand field in column 16. Tabulating the statements 
in this fashion creates a program listing which is neater in appearance and easier 
to read. The standard coding form is ruled to conform to this convention. Thus, 
although the statements on lines 3 and 4 of Figure 2-1 are equivalent to the 
Assembler, the form of line 4 is preferred to that of line 3. 

The Assem bIer ignores the presence of any blank cards in the source code deck. 

2.3. EXPRESSIONS 

The operand field of a statement in the assembler language ordinarily consists of one 
or more expressions. Expressions may be grouped by parentheses and are separated 
by commas. For example, the basic operand formats for computer instructions are shown 

in Table 2-3. In this table, each subscripted letter represents an expression. An ex­
pression may be a single term or a number of terms connected by operators. The 
permissible operators are a plus sigrt (+) represen ting addition and a minus si gn (-) 
representing subtraction. A leading minus sign is also allowed to produce the nega-
tive of the first term. All operations are performed in two's-complement binary nota­
tion. A term may be one of the following: .. 

A decimal, hexadecimal, or character representation of an actual value. 

A location counter reference. 

A symbol. 

2.3 .. 1. Decimal Representation 

A value may be represented directly by a string of up to five digits, 0 through 9, 
forming a decimal number from 0 through 32767. Such a number is converted to a 

binary value occupying one or two bytes depending on the type of field for which it 
is intended. Following are some decimal representations. 



UP-4092 

Rev. 2 

U"IYA~ .,"uu/.,"uu 
CARD ASSEMBLER 

Decimal Representation 

o 
13 

257 

32767 

2.3.2. Hexadecimal Representation 

I 
2 

SECTION: 

Binary Value 

00000000· 

00001101 

00000001 00000001 

01111111 11111111 

A hexadecimal representation consists of a s trin g of digits preceded by X 1 and 
followed by .1 (apostrophe). Each hexadecimal digit represents a half byte of in­
formation. The hexadecimal digits and their values are: 

0 0000 8 1000 

1 0001 g 1001 

2 0010 A 1010 

3 0011 B 1011 

4 0100 C 1100 

5 0101 D 1101 

6 0110 E 1110 

7 0111 F 1111 

Some examples of hexadecimal representations and their values are: 

Hexadecimal Representation 

2.3.3. Character Representation 

Binary Value 

00000001 

01111111 

00001101 

00000001 

11111111 

A character representation consists of a string of characters preceded by CI and 
followed by I. The following are valid character representations. 

Character Representatio EBCDIC Value 

C'D' 11000100 

I PAGE: 3 

C'GROSS' 100011111D11001110101101110001011100010 

e1g l 11111001 

In a character representation, an apostrophe is represented by two successive 
apostrophes, and an ampersand by two successive ampersands. 

In an expreSSion, a self-defining term in character representation can be a 
maximum of one character in length. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLE R 

2.3.4. Location Counter 

l"cT,o",2 1 PAGE, 4 

An indication of the next location available for assignment is maintained as 
a counter called the location counter. After the Assembler processes an instruction 
or constant, it adds the length of the instruction or constant processed to the loca­
tion counter. 

Each instruction or address constant must have an address which is a multiple of 
two. Such an address is said to fall on a halfword boundary. If the va lue of the lo­
cation counter is not a multiple of two when assembling such a constant or an in­
struction, a one is added to the location counter before assigning an address to the 
current line. Storage locations reserved by this process receive binary zeros when 
the program is loaded. 

The current value of the location counter is available for reference in the Assembler 
language and is represented by the single special character * (asterisk). If written 
in a constant representation or in an instruction operand expression, this symbol is 
replaced by the storage address of the leftmost byte allocated to that instruction or 
constant. Thus the instruction 

Be 15,* 

represents a one-instruction loop. 

2.3 .. 5. Relative Addressing 

An instruction may address data in its immediate vicinity in storage in terms of its 
own storage address. This is called relative addressing and is achieved by an ex­
pression of the form *+n or *- n where n is the difference in storage addresses of 
the referring instruction and the instruction or constant being accessed. Relative 
addressing is always in terms of bytes, not words or instructions. For example, in 
the coding 

LABEL 11 OPERA lION 11 OPERAND " 1 10 16 

~...L-1 I , I I I ICJ!iL~L_L_ t-~~JL ,L,MII jI' , , , I , , , , I , i ..L.' I , , , ,L~ 
.-.11 -.l I I , I B~_L-L t-~_D.Ll1£1 , , , I , , , , I ..-.L..L....L , I , , , , L---

, , , , I I I AIH, L-L t- hl..l.! IT1WIOI 1 I I I 1 I I I I I I .1......1 I I I I I.-LL.. 

1 .1 I. , I , 1 Blf..L_L-L 1,5 111 "',-1 11 2 , I I I I I I I I I , ..L.I I L I I I~ 

1 .1 I I I , , MIV,C , A, .,B I .I 1 I ' .. 1 I I I I I I I !. I I I , j I 1 I I 

the address *+12 in the second line is the address of the instruction in the last 
line and the address *-12 in the fourth line is the address of the instruction in the 
first line since each of the first four instructions is four bytes long. 



UP'-4092 
Rev. 2 

UNIVAC 9200/9300 I 2 I 5 
, _____ C_A_R_D_A_S_S_E_M_B_L_E_R ____________ ~~GE: 

2.3.6. Symbols 

A symbol is a group of up to four alphanumeric characters. The first, or leftmost, 
must be alphabetic. Special characters or blanks may not be contained within a 
symbol. The following are examples of valid symbols: 

A LOSS 

A72Z 

CAT 

PRFT 

The following are not valid symbols for the reasons stated: 

GROSS 

N PA 

SR)N 

More than four characters 

Embedded blank 

Special character 

A symbol may be assigned any value from 0 through 32767. It is assigned a value, 
or defined, when it appears in the label field of any source code statement other 
than a comment. A symbol appearing in the label field of an EQU or ORG directive 
is assigned the value of the expression in the operand field. In all other cases the 
value assigned is the current value of the location counter after adjustment to a 
halfword boundary, if necessary. The value is assigned to the current label before 
the location counter is incremented for the next instruction, constant, or storage 
definition. Thus, if a symbol appears in the label field of a statement defining an 
instruction, constant, or storage area, the symbol is assigned a value equal to the 
storage area address of that instruction, constant, or storage area. 

2.3.7. Relocatable and Absolute Expressions 

A sin gle term may be either relocatable or absolute. Decimal, character, and hexa­
decimal representations are all absolute terms. A location counter reference within 
a section of relocatable code yields a relocatable value. If a symbol is defined by 
appearing in the label field of a source code statement within a. section of relocat­
able code, its value will be relocatable. 

An expression is relocatable in the following cases: if it consists of an absolute 
expression plus a relocatable term; if it can be reordered to have that form; or if it 
consists solely of a relocatable term. Some examples of relocatable expressions are: 

R 

A+R 

R+A 

R-R+A+R 

where R represents a relocatable term and A an absolute term. 

An expression is absolute if all of the terms in the expression are absolute or if it 
consists only of absolute terms plus an even number of relocatable terms of which 
exactly half are preceded by minus signs. Some examples of absolute expressions 
are: 

A 

A+A-A 

A·--A+A+A 

R+A-R 

R-R+A 



UN IVAC 9200/9300 
CARD ASSEMBLER 

UP~4092 
Rev. 2 ,---- --- ________ "'--__ R_e_v_. _1 ___ 1~s_E C, T ION: 2 ~GE' 6 

An expression may be nega ti vely reloca table under certain circums tances (see 
2.5.1). Such an expression consists of an absolute expression minus a relocatable 
expression, or an expression which may be reordered to that form. Some examples 
are as follows: 

A-R A-R-R+R R-R+A-R 

2.3.8. Length Attribute 

The Assembler associates a length attribute with a symbol defined in the label field 
of a source code line representing an instruction, constant, or storage definition. 
The length attribute of such a symbol is the number of bytes assigned to the instruc­
tion, constant, or storage area involved. The length attribute of an expression is also 
determined by the Assembler and is a function of the leading term of the expression. 
If the first term of an expression is an absolute value, a len gth attribute of one byte 
is assigned to the expression. If the leading term is a symbol, the number of bytes 
attributed to the expression is the same as the length attributed to the symbol. Thus, 
if TAG appears in the label field of an LH instruction (Load Halfword), it would have 
a length attribute of 4 since LH is a 4-byte instruction. In referencing the same label, 
the expression TAG+195 also has a length attribute of 4; but the expression 195+TAG 
has a length attribute of 1 because the leading term is a constant. 

When a location counter reference appears as the first term of an expression, its 
length attribute is defined as having either the length of the instruction in which it 
appears or as a length attribute of 1 (when the reference to the location counter 
occurs in an EQU statement). 

TAG EQU* The length attribute for TAG is 1 

MVC *+12,ABC This instruction will move 6 bytes from ABC to *+12. 

2.4. MACHINE INSTRUCTIONS 

A list of the standard machine instructions giving the numeric and hexadecimal opera­
tion codes with the instruction type is shown in Table 2-1. 

The machine instruction format consists of a label (optional), a mnemonic operation 
code, and an operand. If a symbol is used in the label field of a machine instruction, 
it is assigned the address of the leftmost character of the instruction and receives 
a length attribute equal to the length of that instruction. There are four types of in­
struction formats. These are shown below together with a brief explanation of the func­
tions performed by the instructions within each format type. Table 2-2 defines the sym­
bols used in the ins truction type forma ts. 



'UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

MNEMONIC FUNCTION 

AH ADD HALFWORD 

AI ADD IMMEDIATE 

AP ADD (PACKED) DECIMAL 

BAL BRANCH AND LINK 

BC BRANCH ON CONDITION 

CH COMPARE HALFWORD 

CLC COMPARE LOGICAL CHARACTER 

CLI COMPARE LOGICAL IMMEDIATE 

CP COMPARE (PACKED) DECIMAL 

DP DIVIDE (PACKED) DECIMAL 

ED EDIT 

HPR HAL T AND PROCEED 

LH LOAD HALFWORD 

LPSC LOAD PROGRAM STATE CONTROL 

MP MUL TIPLY (PACKED) DECIMAL 

MVC MOVE CHARACTERS 

MVI . MOVE IMMEDIATE DATA 

MVN MOVE NUMERICS 

MVO MOVE WITH OFFSET 

NC AND CHARACTERS 

NI AND IMMEDIATE DATA 

OC OR CHARACTERS 

01 OR IMMEDIATE DATA 

PACK PACK 

SH SU BTRACT HALFWORD 

SP SUBTRACT (PACKED) DECIMAL 

SPSC STORE PROGRAM STATE CONTROL 

SRC SUPERVISOR REQUEST 

STH STORE HALFWORD 
) 

TIO TEST I/O 

TM TEST UNDER MASK 

TR TRANSLATE 

UNPK UNPACK 

XIOF EXECUTE INPUT/OUTPUT FUNCTION 

ZAP ZERO ADD (PACKED) DECIMAL 

Rev. 1 I S"CTOON, 2 

--
HEXADECIMAL 

OPERATION FORMAT 
CODE 

AA RX 

A6 SI 

FA SS2 

45 RX 

47 RX 

49 RX 

05 SSI 

95 SI 

F9 SS2 

FD SS2 

DE SSI 

A9 SI 

48 RX 

A8 SI 

FC SS2 

02 SSI 

92 SI 

01 SSI 

Fl SS2 

04 SSI 

94 SI 

06 SSI 

96 SI 

F2 SS2 

AB RX 

FB SS2 

AO SI 

Al SI 

40 RX 

A5 SI 

91 SI 

DC SSI 

F3 SS2 

A4 SI 

F8 SS2 

Table 2-1. Instruction Mnemonics 

7 
PAGE: 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER ______ ._-'-_______ -L.I_S_E_C, "ON, 2 ~G E, 8 ____ _ 

,-----_._---- ,---._--_._._ .. __ •...... _--------------------

MEANING 

The number of the register addressed as operand 1 

The i mmed iate data or devi ce address used as operand 2 
of an SI instruction. 

The length of the operands * 

The length of operand i * 

The storage address of operand i 

The base register for operand i 

The displacement for operand 

* This is the true length of the operand, not the length less one, as required in object code. The 
Assembler makes the necessary reduction of one in the length when converting source to object code. 

Table 2-2. Symbols Used in Describing Operand Formats 

2.4.1. RX - Register to Storage Instructions 

~;ODE I RE:;TER ~_B_A_S_:~2~R_E_G_·~I~~~~~D~,s_P_L_:~:~E_M_E_N_T~~~~~ 
o 7 8 11 12 15 16 19 20 31 

Complete Operands Form: Rl,D2(,B2) 4-byte instruction 

In general, instructions in this format are used to process data between registers 
and storage and include such functions as load, store, compare, add, subtract, and 

branch. The mnemonic codes for ins tructions usin g this type of forma tare: 

AH Add Halfword 

BAL Branch and Link 

BC Branch on Condition 

CH Compare Halfword 

LH Load Halfword 

SH Subtract Halfword 

STH Store Halfword 

2.4.2. SI Ins truction to Stora ge Ins tructions 

C:CODE IMM E D IAT
1
: OPE R AN_D_l--,-_B_A_S_:_l R_E_G_ . .,..I _____ D_I S_P_L_A_

D 
C.;;..I_E_M_E_N_T _____ --I 

o 7 8 15 16 19 20 31 

4-byte instruction 

RX 

SI 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER SEC TION: 

1. 

In general, instructions with this format afe IJsed for processing with control data 
contained in the instruction. The mnemonic codes for instructions using this type 
of format are: 

AI Add Immediate 

CLI Compare Logical Immediate 

HPR Halt and Proceed 

LPSC Load Program State Control 

MVI Move Immediate Data 

NI AND Immediate Data 

01 OR Immediate Data 

SPSC Store Program State Control 

SRC Supervisor Request 

TIO Test I/O 

TM Test Under Mask 

XIOF Execute I/O Function 

2.4.3. sst - Storage to Storage Instructions 

LOPCODE 
o 7 8 

OPERAND LENGTH 

L 

BASE REG. 

B1 

15 16 19 20 

DISPLACEMENT 

0 1 

31 

J BASE REG. 

\ B2 

DISPLACEMENT '~ 

O2 ~ 
32 35 36 47 

6-byte instruction 

The instructions in this format are used to process data in storage when the 
operands are of equal length, and include such functions as comparisons, trans­
fers, translations, and logical operations. The mnemonic codes for inst.ructions 
using this type of format are: 

CLC Compare Logical Character 

ED Edit 

MVC Move Characters 

MVN Move Numerics 

NC AND Characters 

OC OR Characters 

TR Translate 

PAGE: 

SSl 



__ uR_Pe_-~_~_~_2_1 .... _________ g_~_~_~_A_~_S9_S~_O~'t3,~ __ g _____ ..--.I'--____ -J...1 '_E_C_TI_O_N:__....

2 _l~~ 

o 

2.4.4. SS2 - Storage to Storage Instructions 

)P CODE 
~~~~~~D BASE REG. DISPLACE'MENT ~ 

) L1 .......:.? B1 01 

7 8 15 16 19 20 31 

BASE REG. DISPLACEMENT ] B2 O2 
~--~----~------------- ---------, 

32 35 36 47 

6-byte instruction 

The instructions in this format are used to process operands of unequal length 
and to process packed decimal values. The various functions include decimal opera­
tions (add, subtract, compare), shift operations, and pack and unpack operations. 

The mnemonic codes for instructions using this type of format are: 

AP Add Packed Decim al 

CP Compare Packed Decimal 

DP Divide Packed Decimal 

MP Multiply Packed Decimal 

MVO Move With Offset 

PACK Pack 

SP Subtract Packed Decimal 

UNPK Unpack 

ZAP Zero Add Packed Decimal 

SS2 

2.4.5. Implied Base Register and Length 

Where an operand is described in terms of a storage address and a length, the ex­
pression used may be simplified from that shown in the instruction format by imply~ 
ing the base register and the length. Information supplied in the USING and DROP 
directi ves enable the Assem bIer to separate a storage address in to a bas.e register 
and a displacement. If a length attribute is associated with the expression but is 
not specified in the statement, a value equal to the length of the operand is supplied 
by the Assembler. Table 2-3 lists the complete speCification for the operand referenc­
ing memory, applicable instruction types, and the operand format as it may be 
written utilizing an implicit base register and/or length representations. 



UP·4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER I 

2 

SECTION: I 
11 

PAGE: 

-----
COMPLETE OPERAND SPECIFICATION USING 

APPLICABLE --SPECI FICATION 
INSTRUCTION IMPLIED BASE IMPLIED BASE 

IMPLIED FOR ONE REGISTER REGISTER TYPES OPERAND LENGTH NOTATION AND LENGTH 

RX °2(,62) S2 NA NA 

SI 0,(6, ) $, NA NA 

SSl O,(L,6, ) S,(L) 0,(,6, ) $, 

SSl °2(62) S2 NA NA 

SS2 O,(L,,6, ) S, (L,) 0,(,6,) $, 

SS2 °2(L2,62) S2(L2) °2(,62) S2 

-

Table 2-3. Operand Specifications Using Implied Base Register and Length Notation 

Example: To move 80 characters from the field labeled OPA defined as a 90-char­
acter field to the field labeled OPB and defined as an 80-character field, 
the instruction could be written as follows: 

MVC OPB,OPA 

The length attribute of OPB is implied. 

If 90 characters were to be moved, the instruction would be written 

MVC OPB(90),OPA 

2.5. DATA AND STORAGE FORMATS 

The formats for data and storage statements are similar to those for a machine instruc­
tion. A symbol may be used in the label field. It is assigned the address of the left­
most character of the constant or storage area being specified and is attributed with 
a length equal to that of the specified constant or storage area. The operation code 
is either DC (Define Constant) or OS (Define Storage). The operand has various 
formats which are explained below. 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER '--,---""'--- , ______ ~.a...... ______ ...II_..;S;;.;E;::.;C:;..;.T ION: 2 

2.5.1. DC - Define Constant 

There are three types of constants: C for character representation; X for hexadecimal; 
and Y for expression. To define a constant, the assembly directlve DC is written in 
the operation field. The statement has the form: 

LABEL OPERA TION CODE OPERAND 

Symbol DC tLn'c' 

or 

LABEL OPERA TION CODE OPERAND 

Symbol DC Vee) 
or 

LABEL OPE RA TION CODE OPERAND 

Symbol DC YL1(e) 

LABEL OPERATION CODE OPERAND 

Symbol DC YL2(e) 

where: n is a decimal number S; 16 specifying the number of bytes the constant 
is to occupy, 

t is X or C denoting hexadecimal or character representation, respec­
tively, 

c is the actual character or hexadecimal representation for the constant, 
and 

e is any acceptable expression as previously defined. 

2.5.1.1. Character Representation 

A character representation is a string of as many as 16 characters, including 
blanks, enclosed by apostrophe marks. The apostrophe mark itself is represented 
by two successive apostrophes and an ampersand by two successive ampersands. 
In each of these cases the two characters count only as one towards t he -limit of 16. 
Thus, to represent a character constant of 16 apostrophes, 32 successive apos­
trophes would be written, preceded by and ended with an apostrophe. The length 
specification may be omitted, in which case the length of the constant is deter­
mined implicitly from the number of characters between the apostrophe marks. If 
the number of characters in apostrophes is greater than the length n, the rightmost 
characters are truncated to fit the field in the area reserved for it. If the number 
of characters between apostrophes is less than the length, the value is padded 
with blanks on the right to fill the field. 

For example, the following lines each result in a two-byte constant consisting of 
the letter A followed by blank. The third representation is flagged with an error 
indication. 



UP-4092 UNIVAC 9200/9300 
CARD ASSEMBLER 

2 13 

PA.GE: Rev. 2 SECTION: ,-.-...;-------'---------------_________ ...... ______ '"""-_______ ..L-__ ,_ .. , __ _ 

LABEL 1) OPERA 1101'04 1i OPERAND 1; 
1 10 16 

I I DJC, I CI LI2 
I 

IAII I I I ~. _LL -L--,_L .L ~L-L_ . ..L.L I I I I I I L---1-1._ I I I 

I I I I I I I Dl~L_L_J_ _. &~~I I I I I I I I I ~.i_L_L_l __ L J _L .. .1 1-_L 

I I I I I I I Dlel I I C1LI2111AI 181 I, , I , I J 1. l_L_L __ LJ~_LL.J..__.LL 

2.5.1.2. Hexadecimal Representation 

A hexadecimal representation is a string of as many as 32 hexadecimal digits en­
closed by apostrophe marks. If the digit string is less than twice the length speci­
fication, the field is padded with hexadecimal zeros on the left. If more than twice 
the length specification, the representation is truncated on the left to produce a 
value equal to the length. The length specification may be omitted, in which case 
the length of the constant is determined as the smallest number of bytes which 
will contain the constant specified. If necessary, the field is padded on the left 
with one hexadecimal zero. 

The followin g illustrates the va lues of source statements which rep resent valid 
hexadecimal constants, three bytes in length: 

CONSTANT REPRESENTATION 

DC XL3 1 1 1 

DC X '123A5 1 

DC X I 1F3456 1 

2.S.1.3. Expression Constants 

VALUE 

00000000 00000000 00000001 

00000001 00100011 10100101 

00011111 00110100 01010110 

Constants of type Y provide a way to write a constant involving a relocatable 
expression. If the length specification L1 is not present, the expression defining 
an expression constant may have any value from - 32,768 to 32,767 inclusive and 
may be absolute, relo catable, or negati vely reloca table. (A negatively relocatable 
expression consists of an absolute expression minus a relocatable expression, or 
an expression that can be reordered to that form.) An expression constant in which 
the length specification L 1 or L2 is not present provides a convenient notation 
for representing a complete storage address. It is for this reason that constants of 
this type are called address constants. 

An address constant always occupies two bytes of storage and location counter 
adjustment to a halfword boundary is performed by the Assembler before storage 
locations are assigned to the constant. No such adjustment is performed for 
hexadecimal or character constants. 

For example, an address constant designed to generate the address assigned to 
the label 'TAG' would take the following form. 

DC Y(TAG) 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

2 
PAGE: 

An expression constant in which the length specification L1 is present may have 
any value from 0 through 255 and may be absolute, relocatable, or negatively ce­
locatable. It always occupies one byte of storage, and no location counter adjust­
tnent is made before assigning a memory location to the constant. It is useful when 
an externally defined symbol is assigned to only one byte. 

An expression constant in which the length specification L2 is present is the same 
as an expression constan t in which no length specification is present, except in 
the former case, no halfword boundary adjustment is made. 

A summary of constant types, lengths, padding and truncation rules appears in 
Table 2-4. 

CONSTANT EXPLICIT IMPLICIT TRUNCATION 
TYPE LENGTH LENGTH OR PADDING 

variable ntaximum on right side 
C 1-16 16 

X 
variable maximum on left side 

1-16 16 

not 
I stated 

2 on left side 

y 

) 1 none on left side 

( 
2 none on left side 

Table 2-4. Characteristics of the Various Constants 

2.5.2. OS - Define Storage 

The format of the assembler language statement to reserve storage is as follows: 

LABEL OPERATION CODE OPERAND 

Symbol (Optional) DS dCLn 

or 

LABEL OPERA TION CODE OPERAND 

Symbol (Optional) DS dH 

where: d is a non-negative integer called the duplication factor, the number of 
fields to be reserved (d may be a maximum of 256), 

n is a decimal number representing the length of the field to be reserved 
(n may be a maximum of 256 and a minimum of one), 

H represents a field whose length is two bytes and whose storage 
address must be on a halfword boundary. 

14 



lJP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER :SEC TION: 

2 
PAGE: 

The statement DS OH causes the location counter to be adjusted to a multiple of 
two without reserving storage. A duplication factor of zero may be used with any 
storage definition statement to define the address and length of a-field without re­
Serving storage for it. The duplication factor may be omitted, in which case a factor 
of one is assumed. 

Thus: 

CARD 

FRST 

LAST 

DS 

DS 

DS 

OCL80 

'CL40 

CL40 

would define an 80-byte field named CARD, a 40-byte field named FRST whose 
address is the same as that of CARD, and a field named LAST whose length is 40 
bytes and whose address is 40 greater than that of CARD and FRST. 

The location counter is not increased in assem bling CARD (because duplication 
factor is 0) but is with FRST and LAST. Therefore, 40 + 40 = 80 spaces are reserved • 

. with FRST and CARD assigned the starting location and LAST assigned the mid­
point. When the duplication factor is specified, it defines the number of fields of 
length n (for C) or the number of pairs of bytes (for H) to be reserved. For example, 

TAG DS 13H 

reserves 13 pairs of bytes. The symbol, TAG, refers to the first pair of bytes only 
and not to the entire 26 bytes. TAG would have a length attribute of two in this 
instance. For example, 

TAGl DS 10CL10 

reserves 10 groups of 10 bytes each, or 100 bytes. The symbol TAG1 refers to the 
first group of ten bytes and not to the entire 100 bytes. In this instance TAG1 would 
have a length attribute of ten. 

15 





UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER Rev. 1 SECTION: 

3 
PAGE: 

3. ASSEMBLER DIRECTIVES 
AND SYSTEM CODES 

3.1.. DIRECTIVES 

In addition to the representation of machine instructions, constants, and s tara ge, 
the Assembler Ian gua ge includes several assem bIer directives. These are ins tructions 
to the Assembler to perform certain functions and provide the user of the Assembler 
language with control of the operation of the Assembler. 

The assem bIer directives, grouped by function, are as follows: 

Sym bol Definition 

EQU 

Assembler Control 

START 

END 

ORG 

Base Register Assignment 

USING 

DROP 

Program Linking 

ENTRY 

EXTRN 

Assembler directives, except START, may use a symbol in the operand field, and, 
with the exception of ENTRY, EXTRN, USING and DROP, the symbol must have 
appeared in the label field of a previous statement. 

3.1..1. Symbol Definition 

EQU - Equate 

The value and length attribute of a symbol may be defined explicitly. The statement 
to accomplish this has the following form: 

LABEL OPERATION OPERAND 

Symbol EQU 

where: eland e
2 

are expressions and must have been previously defined. 



UP-4~92 
Rev. 2 ------ -

UNIVAC 9200/9300 
CARD ASSEMBLER SEC TION: 

3 

The symbol is defined to have a length attribute equal to the value of the second 
expression in the operand. The second expression in the operand may be omitted, 
in which case the symbol is defined to have the length attribute of the first ex­
pression. 

The symbol in the label field is defined to have the value of the first expression in 
the op-erand field. If the value of the first expression in the operand field is not 
between 0 and 32767, the statement will be flagged with an error indication and the 
symbol will remain undefined. 

Thus, if the value of the location counter is 2000 when the following lines are 
en coun tered, 

LABEL 1i OPERA liON 1i OPERAND 
1 10 16 

~~~_.l .L_ 1-- 1:>1~1 ... 1_ 1 -. 2.t 5 1.Cl. L1Jt9.l ... .L .1 I I I I I I I I I I L..I I I I I 

D 

I I 

ful..lQ.L~...LL._L __ J;LQt.lJJ _ J. J1 QJ.QL+ . .lT L&~.L I 1 I 51 0 I I I I I I I ..l........L..1 I I I...L.L...L.. 

S,EIE,K, I , I EI QL!lLL_ . _Tl~jGJ±.LllLdh -I * I I I I I I I I I I 

TAG has a relocatable value of 2000 and a length attribute of 10. 

HIDE has a relocatable value of 2100 and a length attribute of 150. 

SEEK has an absolute value of 20, and a length attribute of 10. 

I I I I I I I ..L. 

3.1.2. Assembly Control 

Assembler directives are available to control the program name and initial location, 
alter the location counter in a specified manner, and indicate the end of the program 
statement and the instruction with which execution of the object program is to begin. 

3.1.2.1. START - Program Start 

The START directive defines the program name and tentative starting location. 
It must precede all other program statements in the source code deck except 
comments. The format of the START directive is as follows: 

LABEL OPERATION OPERAND 

Symbol START Decimal or Hexadecimal representation 

The expression in the operand field is evaluated and incremented if necessary to 

make it a multiple of four. The result becomes the initial setting of the location 
counter and is the value of the symbol in the label field. This symbol becomes 
the Program IDentification (PID) and is available as an entry point without being 
separately defined as such (see 3.1.4). Although the operand of the START 
directive is an absolute value, it is treated as relocatable. 

2 . 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 Rev. 1 I 3 I <, 

_______ C_A_R_D_A_S_S_E_M_B_L_E_R ________ ~ ______ ~~~~ __ 

Thus the value of the location counter and the coding which follows a START 
directive are both relocatable. Anyone of the statements below would result in 
the program having the name SORT, being assigned to locations starting at 1068, 
and having the symbol SORT defined with the relocatable value 1068. 

SORT 

SORT 

SORT 

START 

START 

START 

1065 

1068 

X' 42C' 

A START directive preceded by one or more statements other than comments is 
ignored and flagged as an error. A START directive whose operand field does not 
have a value from 0 to 32764 is ignored and flagged as an error. If there is no 
valid START directive, the program name is left blank and the location counter 
is set to O. 

3.1.2.2. END - Program End 

The END directive indicates to the Assembler the end of the program being 
assembled. The format of the END directive is 

LABEL OPERATION OPERAND 

Symbol (optional) END Expression (optional) 

With an END directive the Assembler stops reading cards, punches any remaInIng 
data which has accumulated, and then punches a Transfer Card. If the operand 
field of the END directive contains an expression, this expression is punched 
into the Transfer Card to signify to the load routine the address at which to begin 
program execution. If there is no expression in the operand field of the END 
directive, the corresponding field of the Transfer Card is blank. In that case when 
the load routine encounters the Transfer Card, it transfers control to the first 
location loaded. 

If a symbol appears in the label field of the END directive, it is assigned the 
current value of the location counter. This is normally one greater than the high­
est address assigned to the program being assembled. 

3.1.2.3. ORG - Set Location Counter 

The ORG directive is used to set the location counter to a specified value. The 
format of the ORG directive is as follows: 

LABEL OPERATION OPERAND 

Symbol (optional) ORG 



UP-4092~ 
Rev. 2 ,------- -

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 

The value to which the location counter is set is determined by the values of the 
expressions in the operand field. If e2 is not specified, then the location counter 
is set to the value of e1' If e2 is expressed, the location counter is set to the next 
value greater than or equal to the value of e1 which is a multiple of e2' Examples 
follow: 

OPERAND 

1000 
1000,2 
1000,16 

The value of e2 must be a power of two. 

RESULTING LOCA TION 
COUNTER VALUE 

1000 
1000 
1008 

If a symbol appears in the label field, its value is also the value to which the 
location counter is set and the symbol is assigned a length attribute of one. The 
value must be either an absolute value between 0 and 32767 or a relocatable value 
between the initial loca tion counter setting and 32768. If the value does not lie 
within this range, the ORG directive is ignored and the line is flagged with an 
error indication. With the ORG directive it is possible to set the location counter 
to a value which is not a halfword boundary. 

The ORG directive to set the location counter to a value 603 less than its current 
setting would be as follows: 

LABEL OPERATION OPERAND 

ORG *-603 

The ORG directive may be used to reserve a number of locations which are not 
expressed as a single decimal integer. For example, to reserve A minus B bytes 
of storage where A and B are previously defined symbols, the statement is written 
as follows: 

LABEL .OPERATION OPERAND 

ORG *+A-B 

Bytes of storage reserved either with a DS or ORG directive are not set to zero 
when the program is loaded. 

If e1 is a relocatable expression, the value to which the location counter is set 
and the coding that follows the ORG directive are both relocatable. If absolute, 
the value to which the location counter is set and the coding that follows the ORG 
directive are both absolute. 

3.1.3. Base Register Assignment 

The Assembler assumes the responsibility for converting storage addresses to base 
register and displacement values for insertion into instructions being assembled. 
To do this the Assembler must be informed of the available registers and the values 
assumed to be in those registers. The assembly directives USING and DROP are 
available for this purpose. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 Rev. 1 I 3 
_______________ C_A_R __ D __ A_S_S_E_M __ B_L_E __ R ______________ ~~ _________ ~~N~: ______ ~P~A~G~E, 

3.1.3.1. USING - Assign Base Register 

The USING directive informs the Assembler that a specified register is available 
for base register assignment and that it contains a specified value. The format 
of the USING directive is as follows: 

LABEL OPERATION OPERAND 

Symbol (optional) USING R,A 

where: R is a relocatable expression and A is an absolute expression. 

It is also possible to specify an absolute value for the first expression in 
the operand of a USING directive. 

The first expression represents the value the Assembler assumes is in the speci­
fied register at object time. The second expression in the operand field must be 
a number from 8 through 15 which denotes the general register specified. 

3.1.3.2. DROP - Unassign Base Register 

The format of the DROP directive is 

LABEL OPERATION OPERAND 

Symbol (optional) DROP Absolute expression 

This directive informs the Assembler that the specified base register no longer 
contains a value available to the Assembler for computing base register and dis­
place men t values. The expression in the operand field of the DROP directive is 
a number from 8 through 15 which denotes the general register no longer available. 

3.1.3.3. Function of USING and DROP Directives 

The Assembler maintains a table of the available registers and the values they 
contain at object time. This table is referred to as the USING table. A USING 
directive adds a register and value to the USING table or revises the value for a 
register already in the table. A DROP directive removes a register and its asso­
ciated value from the table. If the operands of a USING or DROP directive are not 

valid, the line is flagged with an error indication. 

If an operand address is given as a relative address instead of as a base register 
and displacement specification, the Assembler searches the USING table for a 
value yielding a valid displacement, that is, a displacement of 4095 or less. If 
there is more than one such value, that value which yields the smallest displace­
ment is chosen. If no value yields a valid displacement, the operand address is 
set to zero and the line is flagged with an error indica tion. If more than one reg­
ister contains the value yielding the smallest displacement, the highest numbered 
register is selected. 

An absolute address with no base register indicated is treated as an absolute, 
direct address. 

5 



UP-4TL92 
Rev. 2 ,-----

Rev. 1 3 UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: PAGE: 

The placement of a USING directive determines the instructions whose operand 
addresses may be decomposed based on that USING statement. The first operand 
of the USING statement determines the portion of the program which may be 
addressed using the specified register. Thus, if a program contains the coding 

--'-,OO-P'-"-110;-',-. ----------.--~---,-----.------------
F===~~,F==="rF==========~-~=-========================--==~~----~ 

~·1!1"LL.LLLLLIIJ.11.LLLLI L 1 Ld LLLl~J.. . .LLLLl.J._LiJL1 1.11 1LLLL1-LLL1 

'J°I'_JIld LLLL LLUJJ_.LL L LiLLI .dU_LLLL.lJ.L LLJ .LIllLLLL JLll LLLLL 

s.~ l..'.t."l. L L L 1 1 _L.lL1 .1J...L L LU.1 __ LLd __ l .1.Lti.J..J.J __ Li-LLJ..J..h.LLd 1 1.1 IU_LLl 

!-'-'...L.J-..L.J....'-HI-'--'--'-'-+-I-'U-J...J......L...J.J-.JL....LJ.-,-,-,.J.J-LLLJ...l..L I ! ! I I I , , I I I I J I ! I , , I I I I I I I ! ! I I , , 

L J.J.J .LJ lLJJ __ l.Ll --' J L L LL LLLUJ. 1 .1-,---d._LLLUJ..J~LI---,--L,---, ... uh.LLJ.. 

LLLLIIJ...lJ..L.lLU J .ll.lLLLLLLll 1 U 1 LU __ LLLLLLlLLLl l.Lu.lJ.LLLLl 

!-'-'...LL..LLL+--1C-Ll--'-' __ +-f:l(ISlLLLLLLLu __ 1 L I.U.lLl I LJ 11 LLLl I I 111 ~LL1LI.ILLl.l L.LLi 
C,'1~loJ lLl .1 dILl JJ ___ L LL.L L---'--lLL LU __ tl.J..J __ .LLJ __ LL.U...lL LLJ __ 1.LL.1LJ..1 LLL! 

f-'-'...LL..l-L.4-jI--L..l...LL+-f...1cLJ.J....l..J....LLll_LLuJ.J..Ll..LU I I I I I I I I I I I I I I I I I I 1 I I I I 1 I I I I I I I I I 

LLL I I.LLL I JJ LI .1.LLL L.LLLLLLLLLLLLLLLIJ __ LII .. LliL~i~J...Ll 

_1 LLLlLLLLL.LLUJ ___ Llll L IJ...l_l.lL LLLILLLLLLLuL...l.LLIJ...lJ J D..LuJ l.l LLLLl 

the B2 and D2 fields of the instruction la beled A will con tain 10 and 0, respec­
tively. Moreover, if the program contains no USING directives for register 10 other 
than the ones shown, then the second line labeled A is the only line in the pro­
gram for which the Assembler would consider 10 as a register available for address­
ing the line labeled B. 

The load routine stores in register 13 the starting address of the program just 
loaded. All other registers must be loaded by the program itself in a manner con­
sistent with the information given to the Assembler in the USING directives. The 
following example shows how this is done. 

LABEL ti OPERATION ti OPERAND 15 
1 10 16 

_LL-L...LL..L...l Uj~ __ LL.L~ _ r---~L1.L.b._...-L.. I I I 1 I ...L~ I I 1 I I~......LI I I 1 --

.. AL.LJ. ______ L _____ L __ L.L... ____ u,...lJiL ___ L ___ L_ _r---U1.J __ •. l...eL. I .J_____1 .L_L~-----1-L-LL I I I 1...--l_LL...L..~ __ ...J... __ 

I I I...L.-----LLI UISd INI~ r------1---~1121 I I 1 I 1 I I 1 I I I 1 I 1----1 I 1 I ..L.LL.L 

---L...l-L.....L....L..LL_ __ ~J. .. -----L . ......L- f- ~------L I 1 I ...L-l I 1 I I 1 I 1 I I I I..___...l.~-..-----L~.U_ 

I I I I \ I I • I I I I I I I I I I 1 1 I I I 1 I I I 1 1-1 I 1 1 1 I I I 

I---~...L....L...L..L...... _~-----1----LL-. ----~~ I I I I I I I I I ~...L......l..___...l. ______ l __ L ___ ...L.....L-L...u. 

~-L-----L..L..1......LL 0\ C I L..l._ ,- Y.t..h~J...lL.L...L....l I 1 I I I I 1 I I I L.1~_L .. L ___ LLL 

j I I ...L...l. I I • j I L .. l.. ____ __ .l......l_.Li..~-------L I I I I 1 I....L......L.L ___ L . ..l I 1 1 ...L...LL.l 

----L-L....L.....L..l ___ L I • I I L..l. _____ 
'-- -L __ ..1 1 I I 1 I 1 I I 1 1 1 1 I 1 1 l-.-l-..---.-L.t.....-L...L...LU __ 

J I I I I I I · I I I 1 J I 1. I 1 I 1 1 1 L J .1 .J 1. J 1 1 I I I I I I I I 1 -
~c.L...L. __ L.Ll ___ I I 01 SI L __ . ...L __ CILl11 QI I 1 I 1 I I I .L....l--------......LLL _____ L ___ J~J. 1 1 I U .. 

I I 1..1 I I I ! _____ LL_Li._ 
~. ~ 1 1 I 1 I I I I 1 1 ....L...J..~L...l....---J ___ ......J~-----1-----'--------.L...LG .. 

.J I J..1~~ ______ ~L.....L_ -. _-------.L---.l------L-L_L...J.~I 1 I I I I I I I I 1-..-----l_~~L ___ L 

I I I I I I 1 • I I I....i. 1 I 1 1 I 1 1 1 I I 1 1 1 ...L..-L..-L ___ L_L . .....J I I 1 1 1 J~_ 

I I I I I I I EI 1'011 01 I AI I I I I I I I I I I I I I I I I I I I I I I I I 1-

Lines two and three of the above example exemplify the following general rule: 

The loading of a value into a general register must precede the USING 
directive which informs the Assembler the value is available. 

6 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 I SECT'ON, 

3 

PAGE: 

It is also possible to specify an absolute value for the first expression in the 
operand of a USING directive. The entry in the USING table made in response to 
such a USING directive is not used to decompose relative addresses. It is used 
instead to decompose absolute addresses. For example, given the following coding 

A 

USING 

LH 

4000,15 

14,4096 

B2 and D2 fields of the instruction labeled A will contain 15 and 96 respectively. 

3.1.3.4. Direct Addressing 

The machine instruction format provides for either base regis ter and dis placemen t 
addressing (indexed addressing) or direct addressing. Instructions using direct 
addressing have a faster execution time. To facilitate error checking by the 
Assembler, direct addressing is described to the Assembler in terms of the 
pseudo base registers 0, 1, 2, 3, 4, 5, 6, and 7 which contain the values 0, 4096, 
8192, 12288, 16384, 20480, 24576 and 28672, respectively. Thus, the direct 

address 512 would be treated by the Assembler as an address consisting of a 
reference to the pseudo base register 0 and a displacement of 512. The address 
4098 would yield a base of 1 and a displacement of 2. The additional forms of the 
USING directive which are available for direct addressing are, specifically 

LABEL OPERATION OPERAND 

USING *,0 

USING *,1 

USING *,7 

The first line above makes direct addressing available for addresses in the range 
o to 40-95. The second makes direct addressing available for addresses in the 
range 4096 to 8191, and so on. The DROP directive may also refer to the pseudo 
registers 0 through 7 to terminate direct addressing. 

A program involving direct addressin g may s till be reloca ta ble. 

The asterisk (*) when used in the operand of the USING directive specifying a 
pseudo base register has a unique meaning and does not have the normal con­
notation of the current value of the location counter. 

3.1.4. Program Linking 

The Assembler provides, as part of its output, information which allows the results 
of separate assemblies to be linked together, loaded, and then executed as a single 
program. Proper sectioning reduces the machine time required to make changes to an 
existing program. If a change is required, only that part which is changed need be re­
assem bled: The output is then linked with the remaining parts to produce the altered 
program. Proper sectioning of a program also reduces the number of symbols required 
in each of the separate assemblies. 

7 



UP.~4092 
Rev. 2 

,~---

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 
15ECTION' 

3 

PAGE: 

A symbol defined in the label field of element A and addressed in element B is said 
to be externally defined in element A and referenced in element B. Thus, by using 
the ENTRY and EXTRN directives, proper linkage is supplied when the separate 
elements are assembled. This information is handed on to the Linker program by the 
External Definition Cards and the External Reference Card which are outputs of the 
Assembler. 

3.1.4.1. ENTRY - Externally Defined Symbol Declaration 

That portion of a program submitted as input to a single assembly is called an 
element. Each element must declare the symbols defined within that element and 
to which reference is made by other elements. Each symbol is referred to as being 
externally defined and is declared by the ENTRY directive. The ENTRY directive 
has the format 

OPERATION OPERAND 

ENTRY Symbol 

The symbol in the operand field is declared to be externally defined. Its name and 
assigned value are included in the output of the Assembler as an External Defini­
tion Card. 

3.1.4.2. EXTRN - Externally Referenced Symbol Declaration 

The Assembler must also be informed of all symbols referred to in the element 
being assembled but which are defined in some other element. A reference to 
such a symbol is called an external reference, and such symbols are declared in 
the EXTRN directive. The format of the EXTRN directive is 

OPERATION OPERAND 

EXTRN Symbol 

The symbol in the operand field is declared to be a symbol defined in some other 
element. A symbolic name and the External Symbol Indentification assigned by 
the Assembler are included as input of the Linker as an External Reference 

Card. 

3,.1. S. Assembler Program Listing 

Figure 3-1 is a comprehensive example of coding in UNIVAC 9200/9300 Assembler 
language. The listing shown is a reproduction of an actual printout from the prototype 
UNIVAC 9200/9300 System. The example is coding for the self-loading memory dump 
routine described in "UNIVAC 9200/9300 Programming Utility Reference Manual," 
UP-4120 (current version). 

8 



Ouul * THIS Ml~OHY OU~P HOUTINE IS AOJUSTfD TO THE 
UUuC:! * MACHINl:. CONFIGuRATION. 

i,JOUJ * MOSLF POS=132,CH=63 
UUU4 * THf I-OLLOWING COOI~'G IS FQI'IVALENT TO. THE SOURCE CODE 

OUu~ • WHICH IS GFNERATEO BY IHF ~BOVE MACRO INSTRUCTION. 
UUUb • PA~AMETER EXPLANATION 

lJUu.l * PAP.l poS = 9~,12n,OH 132 FOR PRINTER CH. POSITION. 

OUuti * PAR.2 CH = bj OR ~8 I-OR ~N A~SOCIATEO PRINT ~AR. 

I.lOu~ * PAR.3 BGN = BLANK OR 12~ THROUGH 32767 FOR THE" 

I.lUJ.u * LOCATION AT WHICH MEMORY nUMP IS TO BFGIN. 

uOH * PAR.~ END = BLANK OH 12~ THROIIGH 32767 FOR THE" 

OU1C:! • L~)CATION AT WHICH MEMORY DUMP IS TO E~IO. 

I.lOlj * PA~.!) MfM = 8~'12~,16~,ANQ 32K, IF THE" ENTIRE MfMnRY 

Ou14 • I~ TO BE UU~PfOA~O THE ROUTINE IS TO BE 

lJU1~ * LOAOE" INTO THE HIGHEST MEMORY LOCATIONS. 

UUJ,b * OTHERWISl BLANK. 

UU.&./ * PAR.b LOAU = 2~O THROUGH 3?190 FOR THE LOCATION 

UUJ,~ * AT WHICH ME~ORY OllMP IS TO AE LOAnED. 

UUJ.~ • BLANK IF ~EM PARAMETER EXISTS. 

Ou~U • PAR.7 ROR = BLANK OR 1001 FOR AN ASSOCIATED REAOEP. 

uU~l MO STAHT 0 

lJui~ USING .,n 
uU~j OOOA ORG 10 

OU~4 OOOA nOOOOOOOOOOUUOOUOO1L DC XLtO'lC' LOADER SECTION 1ST CAPO N 

uU~~ UUI" 1I0Ul!0UOooO'OuuouU DC XLA'O' 

I.lU~h onlC n20100400042 MVC 70(2),b6 SET BASE ADnR FOR 2"'0 CARD Po 
UO~ 7 U022 Q25UOO"~ MVI 69,80 CON.t SET 80 To D.C. AREA P 

UlJ~~ 0026 lI,401000c;: )t10F 2,1 READ CARD P 

lJU~~ U02A 1177UU031;. AC 7,62 IS ~IOF ACCEPTEO? DY 

uUjU UOZE I\bU1000u TIO 011 TEST 110 STATUS P 

00.)1 U032 U7Z00U2t. BC 2,46 IS READER WORKING? ON 

(JUj(! 0036 1l1CUOOOlJ TM O,)('CO' TEST STATUS BITS P 

JU.)j U03A 47HUOF7o Ae 8,3952 IS THERE ANY FRROR? O"f 

OUj4 003E 1190lJ21CU HPR X'21CO',0 READER OFF "IOPMAL RE"START H 

UUj~ 01142 nFbb DC Y(394Z) ADDRESS FOR 2NC CARO 

Figure 3-1. Example of Printer Output of a Program 

(Sheet. 1 of 5) 

MO 101" 
MO 1020 

MO 1030 

MO 10~0 

MO 105" 
MO t060 

MO t07" 
MO t080 

MO '090 
MO 110" 
MO t U" 
MO 112" 
MO 1131) 

MO 11~" 

MO 115" 
MO 1161') 

MO 1170 

MO 1180 
MO 119" 
MO 1201"1 

MO 2010 
MO 2011 

MD ~01' 

MO 202" 
MD ?031) 

MO 20~1"I 

MO 205" 
MO ?06" 
MO 207" 

MO 2081'1 

MO 209" 
MO 2101'1 

MO 211" 
MO n2" 
MO 213" 

::tiC:: 
CD "tI 
<: I . ~ 
NO 

\0 
N 

nc: 
~Z 
:;10-
0< 
~ 

~n 
CI'..a 
Cl'N 
mo 
~o 
D:J"-.... 
r..a 
m~ 
:;100 

III 
fT1 
n 
-i 

0 
z 

w 

~ 
\0 



003b 

uV.l7 

lJU;)8 

00.}9 

OO .. U 

lJU ... l 

U042 

OO"J 

OU .. " 
00 .. 5 

I,}O .. b 

Oil .. 7 

1.1048 

0049 

UO!:)U 

OO~l 

00:)2 

OO~J 

IJ05" 
00!l~ 

00:)6 

00~7 

OO!)H 

00!l9 

006U 

0001 

0062 

006l 

000" 

0065 

006b 

0067 

0068 

0069 

0070 

U"4" 1I0UAno4t) 
UF70 

UF70 t;l50()O~ M 

OF74 " 7dOOFAlJ 

U"'18 t150AUFA~ 

uF1e 418110FB .. 

UF80 41FlIOF9b 

uF84 n20uOF91nF~u 

OF8A n2010F9iOFB2 
OF9n n200oFAeoF~8 

UF9b n2010U400FAA 

OFge "1Fu002, 

OFAn n2010FAt)nFB~ 

OFA6 47FOnOOlJ 

OFAA nFAt. 

OOHe 
uuse no au 
OOSE "FFF 
uueo "080 
00e2 OFdlJ 

uoe4 "FeU 
0l')C6 OFF4 

ODC8 405eFOFIF2FjF4F5F6 

0001 F7F8F9CIC2C3C4C!)C6 

OODA o20B005lJ 
OnDE Q2000F6C 

OOE2 n2020F60nF6C 

OOE8 48ElJOF6C 

OOEC ~201UF6AOOC4 

OOF2 A4030001 

OOF6 ',78.00EIO 

OOFA A50JOF7u 

OOFE 47200DF, 

UE02 D2000EoeOF7u 

OE08 A90u2300 

MSG"! 
MEND 

M?I..O 

M?TR 

MENT 

~?A 

M?E 

l)C 

OHG 

ell 

~C 

ell 

HC 

AC 

MVC 

MVC 
MVC 

Mve 

Be 

Mve 

RC 

DC 

ORG 

DC 

oe 
nc 
DC 

OC 

DC 

DC 

DC 

MVI 

MVI 

~ve 

lH 

MVC 

)(IOF 

Ae 

TIO 
RC 

MVC 

HPH 

)cLU'OAU04d' 
3'J~2 

"+f-~.x'OC' 

A.*+44 

.+!i5,X'OA· 

fl.·+8 

15''*+22 
++13(1),*+44 

*+fH 2) , .+40 
*+28(lJ,*+40 

70(2),*+20 

15·34 

*+A(2)·.+2" 
IS,O 

Y(++4) 

*-496 
Yeo) 
Y(409SJ 
Y (128) 

Y,Fw1?PW+6) 

YCFw1?PW+70) 

y (M?PW+132-10·) 

XL9'405CFOFIF2F3F4F5F6' 

XLq'F7F8F9C1C2C3C4CSC6' 

AO,X'OB' 

Fw1?eN+2'O 

M?CN+3(3),M?CN+2 

14,M?CN+2 

"'?CN (2) ,M?CO+4 
1,3 

B,f.'?BO 

"'?CN+6'3 
?,"'?A 

++9(1)'M?CN+6 

X'2300' ,0 

Figure 3- i. Example of Printer Output of a Program 

(Sheet"2 of 5) 

DEV-~E CONTROL FOR 1ST CARD MD 21~" 

LOAnER SECTION 2ND C_Rn N MD 215" 

IS THIS A TYPE Y CARD? ON MO 216" 

IF Y CARD GO TO CON,4 C MD ~17n 

IS THIS A TYPE Q CARD? OY MD 218" 

C MO 219n 
I~ NO GO TO CON.S C 
SET LENGTH FOR LOAD 

SET ADDRESS FOR LOAO 
LOAn TEXT P 

CON.S SET BASE ADDRESS P 
GO TO CON,1 (1ST CARO) R 

CON,4 SET START AODRE~S P 

GO TO MEMORY OUMP B 
ADDRESS FOR SUBSEQUENT CARD 

MEMORY DUMP SECTION N 

eONST. FOR REGI~NG AOnRESS 

CONST. FOR ENOI!N6 AOOFl£5S 
CONSTANT 12A 
STARTING ADDRESS FOR EDIT 

ENDING ADDR~SS FOR EDIT 

TRANSLATION TABLE FOR 

63 CH BAR 

M,D.ENTRY SET LINE AOV AIT P 

SET VC 81,Cl,Fl,AND Kl P 

SET REG 14 TO ZERO P 

SET LIMIT OF EDIT T~ 4 GR. P 

ISStJE PRINT ORDER 63 CH BAR P 

IS ORDER ACCEPTED? 

TEST I/O STATUS 
ON 
P 

IS PRINTER WORKING? ON 

SET STATUS RIlS FOR OISPLAY P 

PR I "ITER OFF NORMAL H 

MO 2201) 

MD 3010 

MD 302n 
MO 3030 

MO 30,.0 

MO 305n 

MO 306n 

MO 3070 
MO 3080 

MO 3090 

MO .51 on 
MD 3110 
MD 3120 
MD 3130 
MO ~l .. n, 
MO 3150 
MO 3160 

MO 3170 

MO 3180 

MO 3190 

MO 3200 
MD 401n 

MO 4021) 
MO 4030 

MD 40,.0 
MD 4050 

MO 4060 

MD 4010 
MD 4080 

:-tiC::: 
Cl) ""0 
< I . ~ 

o 
N \0 

N 

nc 
~z 
;0-
a< 
~ 

~n 
CA-o 
CAN mo 
~o 
01 ......... ,..-0 
m~ 
;00 

III 
1'1 
o 
-t 
o 
Z 

1] 

»-
101 
1'1 

w 

~ 

o 



u (] 11 

JU 12 

uU fj 

lJU/4 

U01~ 

UU/b 

0UII 

uO/~ 

00/9 

JUoU 

I) Uol 

JUd2 

UUoj 

JJd4 

UU(,)~ 

,JUdb 

JUul 

JOod 

UU0Y 

uU'jt) 

J U:l1 

dll'J<: 

,JuJj 

JUJ4 

d U),) 

lJ,j':Jr) 

,0) I 

Ju,m 

J d ;;1'1 

,J 1 u lJ 

diul 

JlJC 

) l,)j 

J 1 U 4 

J 1. U'1 

lif-.OC II7Fu[JUF,,­

UEUJ n~UlfJr61. 

lJ[14 117dlJOc.RI-\ 

UF.lB "2t.t.fJF7J.. 

UElC 11282iJf-7urF If-!. 

UI':22 o51J1 nri)l.; 

ut26 u7dUOl.C,,-

lJF2A D50£''lF61.J 

lJf2E 47cllJPI;;.Cl\ 

UF32 4tiFUfJ(JCc:: 

0F:3fJ r:,34i[)F-7/lnujl.. 

uE3C Q2t.LnF7t. 

UFI"(1 f-,3t./FuOUEuULJ 

G~4h ~11ur:U0LEUUI 

Ut_4C fl6FuFUOL 

uE~O °6FUFUur 

Ut54 112UlnF7,,-fUUb 

uF5A 11612f)U31. 

UE5E fl6UbniJ3L 

UF:62 lllluC)tAL 

uF:6h 1!9t..unDrk 

Ut6" 1172Uf1I:.AL 

UF-bE 1I9FiJf)F-61-1 

UF.72 1174UIJI:.4u 

UE76 1J9LlJ[JUCu 

uF"711 117:3U!)i:.S ... 

UF"7E J'2,J:;flf-74r1r- I.;. 

u~ Ht. n2ulJfl~ t)l. 

Uf-.dH 1!7FUilf-l<.. 

UF IlC <12(11 flf (1,--

uf-.Yn r)~'JldI-6,,( ,ii...l; 

Uf- ')h 'ldt.U(J,.li,\.. 

L f' ') II "t~ I- L fl " :3 '-' 

UF'}F Ill)LlJ'I.)Cu 

U: I\? I, 7,IL "1-1 L 

M?cl" 

r,'I?L' 

M?G 

~C 

ell 

PC 

~'V I 

MVC 

C'Ll 

HC 

eLI 

1:,,'V":'/1 

I\.';'OH<::, 1 

f'., ~-"!H~ 

":'~l','J, X' Er t 

~':'f'W+1 (1:~2-1) , "-'?f-'., 

M:,rN+3'1 

P,~?C2 

M?rN+j'2 

f~C r,r?Cj 

Ul '~,""'!C()+? 

IIJJf-'1\ ~'?h~(~I.hO(3) 

'~V 1 r,':'f"JI+4' X' tF' 

Ilr~f-'K f1 (].." 1 '-) , IJ (", 1 4 ) 

"VO 14(2,1"'),1(1,1 4 ) 

01 14(1~)'X'Fn' 

01 1:;(1~)'X'Fn' 

MVC 

(\T 

AI 
L1C 

r:1t 

He 
CII 

'--1C 

ell 
'lC 

"VC 

"~V I 

,~c 

"VI 

"VC 

1./1 

III 

Cll 

He 

~'?nHb(2) '(',(14) 

h2, 1 e 
hl,;.8 

1 ,~'?H 

14 • "'tt'J!l 

? ,~. ?~i 

1,~,M:'cr'J 

L+ ,II..""?U 

14,W:'Cfl 

~,*+1b 

":'CN+lfi((» ,M:'C~,+A 

/':'("1 J+4, 0 

1:', \~~L 

~':,nHj, 1 

"':'( I! r t:.' ) ,"";'<0+6 

14, "liG~1 

hi, '(' f- J" 

14, "'";'Cll 

1 U' \"!L 

Figure 3-i. Examole of Printer OlJtput of a Program 

(Sheet 3 of 5) 

GO TO A FOR RECnVFRY 
IS I/C IV' SET TO B2? 

IF YES GO Tn 82 

Ul 

r~ MD 40Q'1 

[)~' MD 410n 

c 
~ J 

MD I~' 1" 

MD 4121'1 

CLE"R STAnOf~Y P.qUF~FR ARE/\. P MO If 131'1 

CO IS vc en SET TO C2? 

IF VEe; GO Tn C2 

D~i Mi) 414" 

C MD Iq 51'1 

IS vc cn SET TO C3? 

If- YF.:S roo Tn C3 

[')1'-1 M(') 4161'1 

SET STARTING l\C~R OF FOIT 

[nIT f,DnRFSC; 

[DIT DATA 7 AYTES 

LOIT DATA 8TH bYTE 

C 

p 

P 

p 

p 

MD 4J7" 

Wi 418" 

~~n 4191'1 

~N) Ll ('0 1'1 

MO <)01" 

MO 1)02" 

MO "10:31'1 

MD 1)04" 

STO~E PPEnEr[SSOR HYTFS P Mn ~05" 

k15 + IP TO Rl~ D MD ~n6" 

H14 + 8 TO P.14 P ~D ~n7~ 

IF 0 1'-~ nVEfWLO\\ GO T('I H D~I MO c:;oan 

IS Rill FQUAL TO \1EM LJMTT? n~1 MD c:;ng'l 

IF vE~ GO Tn H C MO ";]0'1 

IS Pl<) FQUAL T(~ EDIT Ll'~JT? nv Mn <)11" 

IF' ~I() Gn TO 0 c Mf) <>12" 

IS Pill !'GlIAI TO 128? 

IF v,s r,0 Tn SS 

D~I MO 'i13" 

lXT~~n PRfDFC~S50R qYTES 

~ET Vr: FO T" Fl 

GO Tn L 

C 

p 

p 

l3 

SS srT VC 1.0 Tn r; P 

SFT U\1JT OJ:' !L'IT P 

SF T r,I"GINt!I"G /,nOp Tn R'lj P 

A~D FPA~E 4 LS~ C 

IS f'G.i\f:. S"ALLfR THI\'1 '~R? ny 
l~ ~I() :;n TO L r 

MO <)14'1 

MO "i15" 

MD 1)16" 

1--'0 1)17r"J 

M(') ";18" 

MD <>19" 

Mn 'ir'O" 

M(') 601" 

MO 602(1 

M[) ~fi3r. 

:;:oC 
(I) '"d 
<: I . ~ 
tv 1.0 

tv 

Oc 
~Z 

"'< C~ 
~n 

~..o 
m"": 
~g 
"''''''­."-0 
m~ 
;::00 

!II 
III 
n 
-i 

o 
Z 

1l 
~ 
G'l 
III 

:;:0 
(I) 

<: 

~ 

w 

'""" ~ 



01Ub 

01u-' 

Q1uI:) 

01U9 

OllU 

0111 

1)112 

0113 

0114 

Oll~ 

Ullb 

UlL7 

UU8 

0119 

012U 

u1t!1 

01~2 

0123 

01~4 

01~~ 

012b 

u12 I 

012ti 

012Y 

01.50 

U1.H 

OU2 

01~3 

01.)~ 

Olj~ 

DUb 

QUI 

OUb 

u1.)9 

0140 

UEA6 48EUOUCu 
OEAA 1J·7FlJnF 1.:: 

OEAE Q2010F6(. 

OES2 t'l2010F61-

UE-~B6 47r:UOHc: 

(JEB/\ Cl2000F6(.; 

OEBE 1.J.7FOOFIb 

UEC2 Q2020F6L; 

UEC6 47Fon£3c: 

OECA 48U(J003(.; 

OECE 1~8FonUC2 

OE02 P50700DunF72 

OEoR u1600E3c: 

OEoC A612003,;. 

(JEEO A6060031-\ 

OEE4 U7100E32 

OEE8 49UOOUBI:. 

OEEC It 7200E3c: 

UEFO 49FOOFbM 

OEF4 474UOE.0c: 

UEFR U8EU003A 

IJEFC Cl5010F6t. 

UFOO 478IJOE.CI:. 

UFD4 Cl2U10F6t. 

UFOS Cl2EFOF8b 

UFOC n2690F92nF8u 

UF12 nC830F7AnCUA 

OFl8 A50;;oF7u 

OFIC u72UOFlb 

UF20 0lF90F7u 

IJF2~ 418UOF3u 

{JF28 °2010F6(. 

(JF2C 47FOOEO.:; 

uF3n "5010F6t­

UF34 47800F4~ 

M?h 

M?b? 

M?(.2 

M?<"3 

M?L 

~!"n 

LH 
~C 

MVI 

MVI 

tiC 

IVIVI 

~C 

~Vl 

BC 

LH 

UI 

CLC 

RC 

AI 
AI 
RC 

CH 

~C 

CH 

RC 

LH 

CLl 

HC 

!V'VI 

~VI 

MVC 

TR 

no 
!K 

TM 

Re 
MVI 

AC 

CLl 

At 

l~,M?CO 

15,M?L 

rqnJ+2' t 
~?CN+5'1 

l!>,MtL 

~'?CN+2' 0 

1b,M?L+6 

~~?CN+j' 2 

15,M?C1 

13,60 

] b,M?CO+? 

O(Ad..)) ,~?(N+8 

6,~r:'C1 

62,U:! 

58,H 

1,N'?Cl 

1.3. ME;.NU 

?, ~"?Cl 

15.M?t:N 

U,M?C.3+8 

]4,58 

~,?CN+4, 1 

R ,~'?t3+4 

~'?CN+4, 1 

~qPW+14,)(' ~F' 

~?PW+24(13~-261.M?PW+b 

M?PW(}j2),M?TU-238 

~'?CN+b. 3 

;>,M?L+b 

"?CN+b, X, FCI' 

B.~?KO 

"-"?CN+2'1 

'!:l.'JI?E:. 

!V'?CN+5'1 

Fl,*+22 

Figure 3-7. Example of Printer Output of a Program 

(Sheet 4 of 5) 

SET AfGHJf\JP'G ADDR TO l'A 
GO TO L 

P 

R 

p SET vc no Tn 112 

SfT VC KO Tn K2 

60 fa L 

SFT VC RO Tn P·l 

GO T0 TT 

SET VC CO Tn C:3 

GO TO C1 

P 

R 

p 

R 

r> 

R 

LOAD P13 FRnM Rt4 p 

pp SET ST.ADDRESS OF ~nIT r 
GO IS DATA FOI JAL TO PPED? DY 

IF ~'O GO TO C 1 C 

RI5 + lA TO R]5 P 

R13 +A TO R13 r 

IF R13 /"lVERF'LOW GO Tn C 1 N' 

IS pn EQUAL TO. MEM LJMTT? D~' 

IF YES r,o Tn C1 C 

IS R15 EQUAL TO EDIT 

IF ~IO GO TO GO 

LOAD P14 FRnM R13 

Ll'-'TT? DY 

C 

p 

FO IS VC F'O SET TO F2' Nt 

IF YES GO Tn pp 

Fl SET VC Fn TO F~ 

FILL * INTO STANOAY 
PR I ""T SUFFER ARF A 

TRA~'SLATE 

C 

p 

p 

C 

p 

p 

MD 0041"1 
MD Msn 

MD n06n 

Mo ,;o7n 

MD 608 il 

MD "n9" 

MD 61nl"l 

MD 6111"1 

MD 612 n 

Mo M3" 

..,0 6141"1 

Mo 615" 

MO 616" 

MD "111"1 

Mo 618" 

MD 6191"1 

MO 6201"1 

~J!O 7" 1 n 

"'10 

MD 

MD 

MO 

"02" 
703n 

704'1 

7n5n 

MD 7n6n 

Mo 707" 

MD 708" 

Mo 709'1 

MO 710'1 

MD 711" TT TEST 1/0 STATUS 

IS nqINTER WORKING? 

IS THFR~ ANY ERROR? 

IF ~!O GO TO VC KO 

SET VC RD TO R2 

n~' MO 

ny MD 

712n 

713'1 

71411 

715!"l 

716n 

7171'1 

718 n 

GO TO E 

IS VC Kn SET TO K?? 

IF YES GO Tn 1"2 

C MO 

P MD 

A MD 
D~I MD 

C MD 

I 

il:::o c::: 

~
.~~ 

I 
I 
I 
I 

. 0 
t-.:)\.O 

t-.:) 

nc 
~Z 
;:0-
c< 
~ 

~n 
CI'-o 
Cl'to.) 
mO 
~o 
0:1' r-o 
m~ 
;:00 

UI 
fTI 
n 
-i 

o 
Z 

1] 

:I>­
G) 

fTI 

:::0 
(D 

< 
..... 

w 

..... 
t-.:) 



01'+1 OF38 CJS020F6F 
01'+2 OF3C q7800FS~ 

01'+3 OF40 n28~OO800F1A 

01'+'+ OF46 47FOODF2 

01'+~ OF4A CJ2020F6f 

014b OF4E q7FOOF4U 

U1'+7 OFS2 Q23COO5u 

0148 OF56 .A4030003 

01,+9 OFSA ~5030F7U 

01~O uFSE Q1200FSA 

01~1 OF62 1\90U2FH 

Ol~2 OF6C, Q7FUOUDA 

Ol~j OF6A 

Ol~'+ OF'/A 

Ol::J5 OOOOOAOvODUA 

M?Kl 

M?K3 

M?(.N 

M?PW 

CLI 
BC 

MVC 

RC 

MVI 

AC 

MVI 

XIOF 

TlO 
RC 

HPR 

gC 

r')S 

OS 

END 

M?CN+S'2 
fhM?K3 

128 (132) .M?PW 

15."I?A 

M?CN+!)'2 
15,M?Kl 

RO,X'JC' 
3,3 

M?CN+b'3 
2,·-4 

X'2FFF',O 

l~.Mt.NT 

CLlb 

CL132 
PoAEt.IT 

Figure 3-1. Exampie of Printer Output of a Program 

(Sheet 5 of 5) 

IS VC KO SET TO K31 ON MO 
IF YES GO TO K3 C MO 

~OAn OATA INTO PRINT ~UFFER P MO 

GO TO A B MO 

K2 SET VC KO TO 1(:5 P MO 

GO TO Kl B MO 
SET LINE ADV AITS F~R H.P. P MD 

AND PAPER FEED TO H.P. POS C MO 

IS PRINTER WORKING? Ct.' MD 

IF YES REPEAT TIO C MD 

SUCCESSFUL STOP H MD 

RETURN TO MENT B MD 

wS FOR VC AND PREDEC. BYTES MO 

STANDBY PRINT BUFFEP ARFA MO 

MD 

119" 
1200 

8010 

802" 
R030 

A04!) 

8n50 
8061] 

807" 

808" 

809" 

AIO" 
AU" 
812" 

A13" 

~c 
I'D '1j 
<: 1. 
. 0 
tV \.0 

tV 

nc: 
~z 
:;0-
0< 
~ 

~n 
(I' 
(1'-.0 
m N 
~g 
m ......... 
.... -.0 

m~ 
:;00 

1111 
111 
n 
-I 

0 
Z 

11 
}> 

~ 
111 

W 

~ 

W 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER --_ ....... _- I SECTION, 3 PAGE: 

3.1.6. Assembler Control Card 

On the first pass, the source code deck may be preceded by a control card which 
has the following form: 

LABEL OPERATION 

CTL 

OPERAND 

ABS , p, q 

where ABS indicates the output element is to be in absolute code form and is not 
to contain any external reference, p is a decimal number representing the largest 
address available on the computer on which the assembly is being done, and q 
is a decimal number representin g the largest address available on the computer 
for which the element is being assembled. Any field in the operand may be omitted. 
If ABS is omitted, the output element is in relocatable code form. If p is omitted, 
the memory size of the computer on which the element is being assembled is 
assumed to be 16,384. If q is omitted, the memory size of the computer for which 
the element is being assembled is assumed equal to the memory size of the computer 
on which the assembly is being done. The CTL card may be omitted, in which case 
the result is the same as indicated for each field omitted. 

3.1. 7. Operand Format 

In general, operands take the format of a series of expressions separated by commas. 
If an expression is not expressed, the comma indicating its position must never­
theless be present. An exception to this rule is the last expression in the operand 
- if it is not expressed, its preceding comma may also be dropped. 

3.2. SYSTEM CODES 

Table 3-1 shows the relation the Assembler assumes between card code, internal 
computer code, and printer graphic. The Assembler reads a source code card in com­
pressed form and then translates it to the internal code shown in Table 3-1. If keypunch 
equipment is used which sets up a different relationship between card code and printer 
graphic than the one shown in Table 3-1, a different translation table may be substituted 
a.t linker time for use by the Assembler in translating source code cards. This translation 
table may set up any relation between card code and printer graphic that is desired; 
however, the relation between internal code and printer graphic shown in Table 3-1 
must remain inviolate, since this is the only way the Assembler can "read" the source 
code. The Assembler prints its listing directly from the internal code. This operation, 
in effect, assumes a 63-character print bar. If a 48-character print bar is used while 
assembling, the Assembler may be modified at linker time to translate printer output 
from internal code to 48-character print bar code before printing. 

The Assembler punches all output cards in a compressed "object code" form which 
may be handled directly by the Linker or the absolute loader. 

14 



UP-4092 
Rev. 2 

r--

---

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 

PAGE: 

Some users may provide programs via the Assembler to be used to process data rep­
resented in an internal code different from the one used by the Assembler. In such a 
case, the user must take special care in the representation of his·constants. For 
example, the Assembler assigns the internal code 11000001 to the graphic "A". If, 
at the time an object program is run, the internal code for the data assigns the code 
11000000 to the g1'aphic "A", a test for equality against a constant represented as 
CIA' in source code language may not be performed as desired. 

In general, when data to be pll'ocessed by an object program is represented in an in­
ternal code other than that used by the Assembler, a11 difficulties can be avoided 
by representing a11 constants in the source code in hexadecimal. 

TWO MOST SIGNIFICANT BITS OF ZONE - 00 

TWO LEAST SIGNIFICANT BITS OF ZONE 
DIGIT 

00 01 10 11 

0000 12-0-9-8·1 12-11-9-8-1 11-0-9-8-1 12-11-0-9-8-1 

0001 12-9-1 11-9-1 0-9-1 9-1 

0010 12-9-2 11-9-2 0-9-2 9-2 

0011 12-9-3 11-9-3 0-9-3 9 .. 3 

0100 12-9-4 11-9-4 0-9-4 9-4 

0101 12-9-5 11-9-5 0-9-5 9-5 

0110 12-9-6 11-9-6 0-9-6 9-6 

0111 12-9-7 11-9-7 0-9-7 9-7 

1000 12-9-8 11-9-8 0-9-8 9-8 

1001 12-9-8-1 11-9-8-1 0-9-8-1 9-8-1 

1010 12-9-8-2 11-9-8-2 0-9-8-2 9-8-2 

1011 12-9-8-3 11-9-8-3 0-9-8-3 9-8-3 

1100 12-9-8-4 11-9-8-4 0-9-8-4 9-8-4 

1101 12-9-8-5 11-9-8-5 0-9-8-5 9-8-5 

1110 12-9-8-6 11-9-8-6 0-9·8-6 9-8-6 

1111 12-9 .. 8-7 11-9-8-7 0-9-8-7 9-8-7 

Table 3-1. Internal Code (Sheet 1 of 4) 

15 



UP·.4092 
Rev. 2 

DIGIT 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 01 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12 11 
0 & -

12-0-9-1 12-11-9-1 0-1 
/ 

12-0-9-2 12-11-9-2 11-0-9-2 

12-0-9-3 12-11-S,3 11-0-9-3 

12-0-9-4 12-:11-9-4 11-0-9-4 

12-0-9-5 12-11-9-5 11-0-9-5 

12-0-9-6 12-11-9-6 11-0-9-6 

12-0-9-7 12-11-9-7 11-0-9-1 

12-0-9-8 12-11-9-8 11-0-9-8 

12-8-1 11-8-1 0-8-1 

12-8-2 11-8-2 12-11 
¢ ! 

12-8-3 11-8-3 0-8-3 
$ , 

12-8-4 11-8-4 0-8-4 
< * % 

12-8-5 11-8-5 0-8-5 
( ) -

12-8-6 11-8-6 0-8-6 
+ ; > 

12-8-7 11-8-7 0-8-7 

I -, ? 

Table 3-1. Internal Code (Sheet 2 of 4) 

3 16 
SECTION: PAGE: 

11 

12-11-0 

12-11-0-9-1 

12-11-0-9-2 

12-11-0-9-3 

12-11-0-9-4 

12-11-0-9-5 

12-11-0-9-6 

12",;),1-0-9-7 

12-11-0-9-8 

8-1 

8 .. 2 
: 

8-3 
It 

8-4 
@ 

8-5 , 

8-6 
= 

8-7 

" 



UP-4092 
Rev. 2 

-. 

-. 

DIGIT 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 10 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12-0-8-1 12-11-8-1 11-0-8-1 

12-0-1 12-11-1 11-0-1 

12-0-2 12-11-2 11-0-2 

12-0-3 12-11-3 11-0-3 

12-0-4 12-11-4 11-0-4 

12-0-5 12-11-5 11-0-5 

12-0-6 12"11-6 11-0-6 

12-0-7 12-11-7 11-0-7 

12-0-8 12-11-8 11-0-8 

12-0-9 12-11-9 11-0-9 

12-0-8-2 12-11-8-2 11-0-8-2 

12-0-8-3 12-11-8-3 11-0-8-3 

12-0-8-4 i2-11-8-4 11-0-8-4 

12-0-8-5 12·al-8-5 11-0-8-5 

12-0-8-6 12~11-8-6 11-0-8-6 

12-0-8-7 12-11-8-7 11-0-8-7 

Table 3-7. Internal Code (Sheet 3 of 4) 

3 17 

SECTION: PAGE: 

11 

12-11-0-8-1 

12-11-0-1 

12-11-0-2 

12-11-0-3 

12-11-0-4 

12-11-0-5 

12-11-0-6 

12-11-0-7 

12-11-0-8 

12-11-0-9 

12-11-0-8-2 

12-11-0-8-3 

12-11-0-8-4 

12-11-0-8-5 

12-11-0-8-6 

12':11-0-8-7 



UP·4092 
Rev. 2 

----------~----

o 

o 

o 

o 

o 

o 

o 

o 

o 

HilT 

000 

001 

010 

011 

100 

101 

1.10 

111 

000 

001 

010 

011 

100 

101 

110 

111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 11 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12-0 11-0 0-8-2 

12-1 11-1 11-0-9-1 
A J 

12-2 11-2 0-2 
B K S 

12-3 11-3 0-3 
C L T 

12-4 11-4 0-4 
0 M U 

12-5 11-5 OMS 
E N V 

12-6 11·6 0-6 
F 0 W 

12·7 11-7 0-7 
G P X 

12-8 11-8 0-8 
H Q y 

12-9 11-9 0-9 
I R Z 

12-0-9-8-2 12-11-9-8-2 11-0-9-8-2 

12-0-9-8-3 12·11-9-8-3 11-0-9-8-3 

12-0-9-8-4 12-11-9-8-4 11-0-9-8-4 

12-0-9-8-5 12-11-9-8-5 11-0-9-8'"-5 

12-0-9-8-6 12-11-9-8-6 11-0·9-8-6 

12-0-9-8-7 12-11-9-8-7 11-0-9-8-7 

Table 3-1. Internal Code (Sheet 4 of 4) 

3 18 

SEC THON: PAGE: 

11 

0 
0 

1 
1 

2 
2 

3 
3 

4 
4 

5 
5 

6 
6 

7 
7 

8 
8 

9 
9 

12-11-0-9-8-2 

12-11-0-9-8-3 

12"11-0-9-8-4 

12-11 .. 0·9-8-5 

12-11-0-9-8-6 

12-11-0-9-8-7 



1 UP-4092 UNIVAC 920019300 Rev. 1 I 4 
__ R_e_v __ ._2 ____ ~ __ . ______________ C_A __ R_D __ A_S_S_E __ M_B_L __ E_R ______________ ~ _____________ ~ ________ P_AG_E_: ___ 

4. OPERATING PROCEDURES 

4.1. GENERAL OPERATING INSTRUCTIONS 

A source code deck ready for assembly must pass through the computer twice. The 
Assembler Load deck marked FIRST PASS precedes the source code deck on the first 
pass; the Assembler Load deck marked LAST PASS precedes the source code deck on 
the second pass. 

All printing and punching is done during the second pass. Consequently, the second 
pass may be repeated as often as required. The LAST PASS Assembler Load deck 
must precede the source code deck each time. When the card reader is used for input, 
feed the first card, then depress the PROC CLEAR and START keys. 

In addition to the regular I/O displays listed in Appendix B, the following displays 
may be used. 

DISPLAY REASON AND ACTION 

1F02 

1FFF 

Sym bol table is full. 
Use larger memory size if possible (specification p on the CTL 
card) and start over. When p is 8191, the Assembler can handle 
about 200 tags. Press RUN to continue (all subsequent tags 
will be undefined). 

LAST PASS is completed. 
Two blank cards must follow the END card on the LAST PASS 
in order to get this display. 

4.1.1. Card Controller Operating Instructions 

The following sections provide instructions for operating the Card Assembler when the 
UNIVAC 1001 Card Controller is being used as the input device. Instructions are given 
for starting the run from the beginning, and for rerunning the second pass. 

4" 1. 1.1. Start Ins tructions 

To start the Assembler, perform the following steps: 

1. Place the source code between the FIRST PASS and LAST PASS load decks. 

2. Place the entire deck in the Card Controller primary read. hopper. 

3. On the Card Controller: 

a. Set AL T 1 to the ON position; set all other ALT switches to the OFF posjtion. 

b. Depress the LOAD PR1, CLEAR, START and RUN switches. 

4. On the UNIVAC 9200/9300 console: 

a. Enter hexadecimal B8 in the DATA ENTRY switches. 

b. Press the CHAN CLEAR, PROC CLEAR, LOAD ON, RUN, LOAD OFF, 
and RUN switches. 

S. On the Card Controller, set AL Tl to the OFF position. 



UP-4~92 
Rev. 2 

, ... _--, 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 4 

SECTION: PAGE: 

4.1.1.2. Second Pass Rerun Instructions 

To rerun the second pass of the Assembler, perform the following steps: 

1. On the Card Controller: 

a. Place the LAST PASS load deck, followed by the source deck, into the 
primary feed hopper. 

b. Set all ALT switches to the OFF position. 

c. Press the LOAD PRI, CLEAR, START, and RUN switches. 

2. On the UNIVAC 9200/9300 console, press the CHAN CLEAR, PROC CLEAR, and 
RUN switches. 

4.2. ASSEMBLER CARD OUTPUT 

The object code produced by the Assembler is punched into six different card types: 
Element Definition Cards, External Definition Cards, Program Reference Cards, Ex­
ternal Reference Cards, Text Cards, and Transfer Cards. These card types have the 
following functions: 

• The Element Definition Card contains the name, the size, and the origin of the 
element as assigned by the Assembler. 

• An External Definition Card specifies the value of a symbol which may be refer­
enced by other elements. 

• The Program Reference Card contains the name of the element and the number by 
which this name is identffied in the relocation information for the element. 

• An External Reference Card contains a label to which the element refers but which 
it does not define. The card also contains a number by which this label is identified 

in the relocation information for the element. 

• A Text Card contains the instructions and constants of the element, an address in­
dicating where the instructions and constants are to be loaded into memory for 
execution, and the relocation information pertaining to the instructions and con­
stants. The loading address for the instructions and constants is assigned by the 
Assembler to conform with the origin of the element as described in the Element 
Definition Card. The relocation information performs two functions: 

It permits the relocation of the instructions and constants to an origin other 
than the one given to the element by the Assembler. 

It provides the information required by the Linker to resolve any external ref­
erences made in the instructions or constants with the corresponding external 
definitions made in other elements. 

2 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: PAGE: 

• The Transfer Card is generated by the END assembler directive. If the END direc­
tive specifies the address at which execution is to begin, this address appears in 
the Transfer Card. 

The order and number of these cards in the Assembler object code output deck is as 
follows. First there is a single Element Definition Card. Then there are as many Ex­
ternal Definition Cards as there are ENTRY assembler directives in the source code. 
Then there is a single Program Reference Card followed by as many External Refer­
ence Cards as there are EXTRN assembler directives in the source code. Then there 
are as many Text Cards as are required to contain the instructions and constants repre­
sented in the source code deck. Finally, there is a single Transfer Card. 

If the output of an assembly contains no External Reference Cards, it may be loaded 
directly into the UNIVAC 9200/9300 via the Card Program Loader. In this instance, 
the text is loaded at the addresses indicated in the Text Cards, and job execution 
begins at the point indicated in the Transfer Card. The Element Definition Card, any 
External Definition Cards, the Program Reference Card, and the relocation information 
in the Text Cards are ignored by the Program Loader. 

The format of these assembler output cards is as follows. 

4.2.1. Element Definition Card 

COL. FIELD NAME CONTENTS 

1 Load Key 12-2-9 punch 

2 Type A (Hollerith) 

3 Length 26 

6 Abso lute/relocatable 12 punch if absolute program, relocatable otherwise. 

7 Hole Count Sum of the bytes punched in columns 8-72. 

8 ESID External Symbol Identification assigned by the 
Assembler to the name in columns 17-24. 

13-16 Start Address The base of this element as assigned by the 
Assembler. 

17-24 Name The name assigned to this element. (The name is 
left justified and is punched in EBCDIC.) 

33-36 Length The number of bytes of memory needed by the 
relocatable portions of this element. 

-

3 



Rev. 2 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

4 4 
PAGE: 

UP-40~2 
------ --------------------------------------------.. ------------~------------~~--------------

4.2.2. External Definition Card 

COL. FIELD NAME CONTENTS 

1 Load Key 12-2-9 punch 

2 Type H (Hollerith) 

3 Length 13 (or number of columns used less one from Col. 11). 

7 Hole Count Sum of the bytes punched (columns 8-72). 

9 RLO Length Number of columns of RLO information on card (indi-
cates 3 or 0). 

10 Last RLO Column 11 relative number indicating the most signifi-
cant column of the last item of RLO information on the 
card. The value is 59 if there is relocation data; other-
wise zero. 

14-16 Symbol address The Assembler assigned value of the symbol field. 

17-24 Symbol Symbolic name to be referenced by other program(s) 
(punched in E BCOIC). 

70-72 RLO Relocation field. See the description of this field for 
the Text Card. If present, column 72. contains a 3 and 
the least significant digit of column 71 also contains 
a 3 indicating that columns 14-16 are to be modified. 

4.2.3. Program Reference Card 

COL. FIELD NAME CONTENTS 

1 Load Key 12-2-9 PUll ch 

2 Type J (Hollerith) 
~ 

[! 
~ 3 Length 13 (or number of columns used less one from Col.11). 

~ 7 Hole Count Sum of the bytes punched (columns 8-72). ~ 

8 Program ESIO External Symbol Identification assigned by the 
Assembler to the program name. 

13-16 Assembled Start Address The base of this program as assigned by the Assembler. 

17-24 Name Element name (same as columns 17-24 of the 
Element Definition Card). 



UP·4092 
Rev. 2 

UN IVAC 9200/9300 
CARD ASSEMBLER 

4.2.4. External Reference Card 

COL. FIELD NAME 

1 Load Key 

2 Type 

3 Length 

7 Hole Count 

8 Name ESID 

17-24 Name 

4.2.5. Text Card 

COL. FIELD NAME 

1 Load Key 

2 Type 

3 Text Length 

4-6 Load Address 

7 Hole Count 

8 Program ESID 

9 R LD length 

10 Last RLD 

11 TXT 
& following 

72 RLD 
& preceding 

Example of RLD field: 

4 

SECTION: PAGE: 

CONTENTS 

12-2-9 punch 

K (H 0 II e r i th ) 

13 (or number of columns used less one from Col. 11). 

Sum of the bytes punched (columns 8-72). 

External Symbol Identification assigned by th.e 
Assembler to this symbolic name. 

Symbol ic name being referenced by th is card 
(punched in EBCDIC). 

- ...",.",~~. 

CONTENTS 

12-2-9 pun ch 

Q (Hollerith) 

Indicates the number of columns less one of text 
information on the card. 

The Assembler assigned location where the text is 
to be loaded. 

Sum of the bytes punched (columns 8-72). 

External Symbol Identification assigned by the 
Assembler to the program name to which this load 
address is relative. 

Number of columns of RLD information on this card. 

Column 11 relative number indicating the most 
significant column of the last item of RLD informa-
tion on the card. This number is 59 if there is RLD 
data, otherwise zero. 

The value to be loaded at the load address. The TX T 
field contains information from columns 11 through 
11 + n, where n is the number contained in column 3. 

RLD fields begin in column 72 and occur from right 
to left on the card for the number of columns indica ted 
in column 9. Each RLD field is composed of three 
columns. 

Column 70 contains a name ESID. This points to a value in the linker reference 
table to be applied to the TXT on this card. 

5 



UP~4092 
Re'v.2 ---

UN IV AC 9200/9300 
CARD ASSEMBLER SECTION: 

4 

PAGE: 

Column 71 contains a flag. The four most significant bits indicate the operation. 
All zero bits indicate that the reference table value is to be added to 
the text value to obtain the new text value. If the four most significant 
bits of the flag column are 0001, the reference table value is subtracted 
from the card text value to obtain the new text value. 

The three least significant bits of the flag column indicate (in binary) 
the length of the text field in bytes. The remaining bit is a one if the 
field to be modified contains an additional halfbyte. Thus, the four 
least significant bits would contain the value eight for a four-bit field. 
If all four bits are zero, the field is four bits long and is in the left 
halfbyte. 

Column 72 contains column position. A binary number (relative to column 11) point-, 
ing to the most significant column of the text information to be modified. 
(Column 11 is numbered as zero, column 12 as one, and so on.) 

4.2.6. Transfer Card 
--

COL. FIELD NAME CONTENTS 

1 Load Key 12-2-9 

2 Type Y (Holler ith) 

3 Length 5 (or number of columns less one from Col. 11). 

7 Hole Count Sum of the bytes punched (columns 8-72). 

9 RLD Length Number of columns of RLD information on the card. 
(Indicates 3 or 0.) 

10 Last RLD Column 11 relative number indicating the most signi-
ficant column of the last item of RLD information on 
the card. (Contains 59 if there is relocation data, 
otherwise 0.) 

11-13 Card Count The number of reference type K or t.ext type Q cards 
which were produced by the assembler for this element. 
(Carried in binary.) 

14-16 Start Address 

70-72 RLD Relocation field. Column 72 contains column 11 
relative indicator of the first column of the start 
address (indicates Col. 14). The most significant 
4 bits in column 71 are 0001 if the reference table 
address is to be subtracted from the card start address 
or 0000 if the reference table address is to be added 
to the card start address to obtain the relocated start 
address. The least significant 4 bits In column 71 
indicate that the start address on the card is 3 bytes 
long. Column 70 contains the ESID that pOints to the 
value in the reference table to be applied to the card's 
start address field. 

For all assembler output cards, the PID is left justified in columns 73-76, and a 
sequence number is punched in columns 77-80. Both the PIO and sequence number 
are punched in Hollerith. 

6 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

4.3 .. CARD ASSEMBLER PRINTED OUTPUT 

SECTION: PAGE: 

The first page printed during assembly is a list explaining the on~-character error 
codes that may occur on the succeeding assembly listing. Up to five of the codes may 
appear on one line in the assembly code field. The assembly listing contains the 
following: 

PRINT POSITION 

0-3 

4-8 

10-13 

15-46 

48-127 

FIELD 

Assembler assigned line number 

Assembly codes 

Assembler assigned address of the object code 
or (in the case of an EQU or an ORG line) the 
value assumed by the assembler. 

Assembler produced object code (in hexadecimal). 

Input card 

'The error codes and their meanings are as follows: 

C Cover error, no USING covering relocatable operand address. 

D Doubly defined la be I or reference to doubly defined label. 

E Expression too large or improper syntax. 

H Halfword boundary error on RX or AI operand. 

Instruction error. 

L Location counter too large. 

o Org error, 2nd definition of a label. 

R Relocatable terms in the expression are improper or too many. 

S Sequence break in columns 76 to 80. 

T Truncation of oversize term. 

U Undefined label referenced in this line. 

X Continuation (no blank col 72 on noncomment card)-not permitted. 





UP-4092 
Rev. 2 

UN IV AC 9200/9300 
CARD ASSEMBLER SECTIONI 

4 
PAGE: 

In order to produce an assembler for a machine 'configuration using a row punch instead 
of a serial punch: 

• Substitute an XPRW module for the XPCH module. 

• After the first phase card, place the following card: 

LABEL OPERATION OPERAND 

CHNL EQU n 

where: n is the channel n umber of the row punch. 

In order to make an assembler that would use a UNIVAC 1001 Card Controller instead 
of the standard card reader: 

• Substitute an XRDC module for the XRDR module. 

• Substitute an LDCC module for the LD module . 

.• Change the second parameter of the first phase card from 510 tc 600. 

• Include an EQU card of the following format: 

LABEL OPERATION CODE OPERA"~D 

RDCN EQU n 

where: n is the number of the channel in which the Card Controller is located. 

In order to make an assembler that would print on a 48 character bar: 

• Substitute PRTT EQU 0, TBPR for PRTT EQU 0, TBRD. 

• Substitute BLNK EQU 16 for BLNK EQU O. 

• Substitute PRTR EQU 0 for PRTR EQU 15. 

• Substitute FONT EQU 128 for FONT EQU O. 

• Remove TBPR EQU O. 

• Include the print translation table module (TBPR) immediately after the XPRT 
module. 

9 





UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER I SECTION: .... PAGE: 

5a LINKER 

5.1. INTRODUCTION 

When a job consists of more than one element,' the elements, which are the output of sep­
arate Assembler runs, must be combined before they may be loaded as an executable object 
program. This combining; or linking, is done by a utility program called the Linker. The 
Linker inserts the storage addresses for refere'nces made from one element to another and 
modifies addresses if an element is relocated. 

A provision is included for dividing the output elements into separate loads or "phases". 
Another provision allows corrections, stated in hexadecimal, to be made to any of the 
elements being linked. These corrections must be in terms of the ultimate absolute addresses 
aSSigned to each field being changed. 

Most of the input to the Linker consists of the output of one or more Assembler runs. How­
ever, control cards are supplied by the user to specify: 

- the initial storage address to be allocated to the output element 
(PHASE card) , 

- the start of a new phase of the output (PHASE card) 

- additional ext'ernal definitions (EQU card) 

- corre,ctions to one or more of the elements being linked (REP) 

- the end of the input stream (END) 

The Linker provides an output listing including: 

- the control cards on its input, 

-:- the names and external definitions of the elements being linked and 
the values allocated to each, as well as the number of the phase in 
which it is included. Phases are numbered consecutively from one in 
the order in which they appear in the input. 

Error indications are included in the listing, and most errors cause termination o! the 
punched output. The punched card output is in the same form as the assembler output 
cards, except that no relocation data is punched. The output for each phase consists of 
Text Cards and a T,ransfer Card. , 

If n.ecessary, the Linker increments the address to be assigned to each input element so 
that the base address is a multiple of four. 

The Linker is capable of either a one- or two-pass operation. At the end of pass one a stop 
occurs with a display indicating readiness for pass two. At the end of pass two a stop 
with a display requiring a reply occurs. When the start button is depressed, the Linker 
interrogates this reply to determine its subsequent action, which is to process another 
set of input or to terminate processing. 



Up·4092 
Rev. 2 

UNIVAC 920019300 I 5 2 

PAGE: 
~---------~----

CARD ASSEMBL~_, _____ -,-_____ ....... _sE_c_T~N: --------,--------

The Linker is assembled separately from its inputioutput but is linked to the input/output, 
allowing for input from the standard card reader or the UNIVAC 1001, output to serial or 
row punch, and choice of input translation table and the 6ption of a translation for the 
48-character prin ter. 

5.2. LINKER INPUT 

The major input to the Linker consists of the output of one or more assemblies. The 
input to the Linker is normally formed by placing one element behind the other in 
the order they are to have in storage. Then a PHASE card is placed at the beginning 
of the deck to define the initial storage location and an END card at the end to signal 
the end of the input. If the output element is to consist of more than one phase, each 
input element must be entirely in one phase, with a PHASE card inserted in front of 
the first Element Definition Card in the phase. Each such PHASE card indicates the 
initial address to be allocated to that phase. When the Linker input is arranged in this 
manner, all elements comprising one phase must follow the PHASE card defining that 
phase and precede the PHASE card defining the next phase. Each element in the 
input must have a unique name. 

The order of the input must also be such that the element uSing an externally defined 
symbol must precede all elements referring to that symbol. If there are any symbols 
for which this is not possible, their definitions may be supplied by EQU cards. If 
this is not desi rabie, the Linker provides the option of a two-pass operation. The 
first pass recognizes the headers (Element Definition and External Definition Cards) 
and stores the external definitions. The second pass processes the External Ref­
erence, Text, and Transfer Cards, and produces the output element. 

H desired, a two-pass operation may be avoided by separating the headers of the 
input elements and presenting them first. The procedure is as follows: 

1. Put together the input elements as described above, but without 
control cards; 

2. Sort out the header cards (12 punch in column 2); 

3. P lace the header cards in front of the remaining deck; 

4. Insert the required control cards. 

Each PHASE card should precede the Element Definition Card for the first element 
in the phase being defined. EQU cards fQllow a PHASE Card, Element Definition, or 
External Definition Cards. REP cards must immediately precede the Transfer Card of 
the element they are to alter. 

The Linker ignores the presence of any blank cards in its input deck. 

5.3. LINKER CONTROL CARD FORMATS 

The control card identifier (CTL, PHASE, EQU, REP, or END) is left justified in 
columns 10-14. Columns 1 to 9 are blank except for the EQU card on which columns 
1 to 4 contain the sym bol being defined. The specifications contained on each control 
card begin in column 16 and are terminated by a blank. 



UP-4092 
Rev. 2 

5.3.1. CTL 

UNIVAC 9200/9300 
CARD ASSEMBLER 

5 

SEC TION: 

The CTL card is the first card of the Linker input The specifications consist of 
three fields separated by a comma: 

n,p,q 

where n=l is a one-pass operation of the Linker; 

n=2 is a two-pass operation of the Linker; 

p is a decimal number representing the largest address available during 
linking. 

q is a decimal number representing the largest address available to the 
output element. 

Any field may be omitted. The effect is as follows: 

n omitted 

p omitted 

q omitted 

one-pass operation. 

largest address available for linking is not to change. The 
initial value is 16383. 

maximum address to be allocated is not to change. The initial 
value is 16383. 

The CTL card may be omitted, in which case the result is the same as indicated 
above for each field omitted. 

PAGE: 

If the Linker is to perform a two-pass operation and produce code for a 16K system 
on a 16K system, the CTL card would be 

CTL 2,16383,16383 

5.3.2. PHASE 

A PHASE card defines the name and initial storage address for the output element 
and must be the first or second card of the Linker input, preceded only by the CTL 
card. A PHASE card also precedes the Element Definition Card (type A) for the 
first element of each subsequent load. It specifies the name of the phase and its 
starting address. 

The operand specifications field has the form 

phase-name,displacement, flag, sym bol 

where phase-name is a group of up to four alphabetic characters representin g the 
name of the phase 

displacement is a decimal number (may be preceded by minus) or a hexa­
decim a1 number in the form X 'nnnn' 

3 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLeR PAGE: --_ ...... _- 1 SECTION, 5 

flag 

symbol 

5.3.3 .. EQU 

is C or A for the first PHASE card and C, A, or L for any others. 

C - load address equals the highest core address minus the 
displacement field. 

A - load address is the actual value gi ven in the displacemen t 
field. 

L - load address is obtained by adding the displacement to the 
value of the sym boi. 

is any previously defined sym boI. 

An EQU card supplies the definition of a symbol which is not defined in any of the 
elements being linked or which is defined in an element whose position in the input 
deck is later than that of the first element containing a reference to the symbol. 

The operand specification field of the EQU card has the form: 

value 
or 

value, symbol 

where value is a decimal number, a decimal number preceded by a minus sign, 
or a hexadecimal number in the form X Innnn I 

symbol is any symbol which has been defined previous to the EQU card in 
the input deck. 

In the first form above, the binary value represented by the value field becomes the 
value assigned to the symbol appearing in the label field of the EQU card. For an 
EQU card with a specification field of the second form above, the value of the 
previously defined sym bol is added to this value to yield the value of the sym bol 
being defined. 

An EQU card must follow a PHASE card, an Element Definition Card, an External 
Definition Card, or another EQU card. It must precede the body of the first element 
containing a reference to the symbol defined. The symbol, contained in the specifi­
cation field, must have been previously defined. 

If the Linker control deck contains more than one EQU card defining the same 
symbol, an error indication is made on the listing. However, such an error does 
not terminate the punching of output. Instead, the Linker continues to treat the 
definition given in the first such EQU card as the definition for the symbol. 

5.3..4. END 

The END card indicates the end of the input to the Linker and is the last card in 
the deck. 

The operand specification field has the same form as that of the EQU card, and is 
processed in the same way to produce a single value which is interpreted as the 
address at which to begin executing the last phase being produced by the Linker. 
as such, this value is punched into the Transfer Card at the end of the output 
element. 

4 



UP-4092 UNIVAC 9200/9300 Rev. 1 I 5 I 5 
___ R_e_v_._2 ________ . ______________ C_A __ R_D __ A_S_S_E_M __ B_L __ E_R ________________ L-___________ ~, ______ ._P_A_G_E_: __ __ 

If the output of the Linker consists of more than one phase, the transfer address 
of each phase but the last is determined as follows: 

a. Normally, the transfer address of the phase is the address from the first 
Transfer Card in the input to the phase. 

b. If no Transfer Card in the input contains an address, the transfer address 
is the lowest address assigned to the phase. 

The specification field of the END card may also be blank. In this case the trans­
fer address punched into the terminal Transfer Card of the output element is the 
address from the first Transfer Card of an input element in that phase containing 
an address. If no Transfer Card of an input element contains an address, the 
lowest address assigned to that phase is punched into the terminal Transfer Card. 

5.3.5. REP 

The REP (Replace) cards specify changes which are to be made to an assembled 
element. The REP cards are placed immediately in front of the Transfer Card of 
the element to be altered. Addresses and data are specified in hexadecimal in the 
same form they are to have in the output element. No relocation or linking facilities 
are provided by the Linker for this data. 

The form of the operand specifications field is: 

address ,data, data, ... 

where: address is a field of from one to four hexadecimal digits specifying the 
storage address of the leftmost byte of data to be altered as a 
result of this card. 

5.3.6. MOD 

data is a field of from one to four hexadecimal digits specifying data 
to be right justified in a halfword of storage. The address field 
is followed by a variable number of such data fields specifying 
the contents of successi ve halfwords of memory. The fields are 
separated by commas and terminated by a blank. 

The MOD (modular set) card instructs the linker to set the location counter to the 
value calculated from the operand specifications. The operand specifications field 
has the following form: 

a, b 

where: a must be a power of 2, and may be a decimal or hexadecimal expression. 

b may be omitted, or it may be a decimal or hexadecimal expression. 

The location counter is set to the next number which is the value of "b" more than 
a multiple of the value of "a" and which is greater than or equal to its present value. 



UNIVAC 9200/9300 
CARD ASSEMBLE R 

Examples: 

MOD 8 

Rev. 1 

I 'EcnON, 5 PAGE: 

If the present value of the location counter is 4024, then the value is not modified. 
If the curr~nt value is 4025, it is modified to 4032. 

MOD 8,3 

If the current value of the location counter is 4028, its value is modified to 4035. 

The MOD card must be placed immediately before the object deck of a module. 

5.4. EXAMPLE 

Assume two separately assembled elements, A and B. A was assembled at an ongIn 
of 0 and has a length of 100, while B was assembled at an origin of 400 and has a 
length of 200. Further, A externally defines one entry point M, which is assigned an 
element relative address of SO, and makes external references to symbols X, Y and 
Z. B on the other hand externally defines sym boIs X, Y, and Z and makes an external 
reference to M. Symbols X and Yare entry points with relative addresses of 475 and 
550, respectively, while Z is defined as having an absolute value of 25. Finally, 
neither the A nor the B element Transfer Card specifies a starting address. The object 
code decks for elements A and B have the following construction. 

Element A 

a. One Element Definition Card specifying that this element is named A and has an 
origin of 0 and a length of 100. 

b. One External Definition Card specifying M as an externally defined symbol with 
an element relative value of 50. 

c. One Program Reference Card specifying that this element is named A, that this 
name has an External Symbol Identification (ESID) number of 1, and that element 
A has an origin of O. 

d. Three External Reference Cards specifyin g tha t X, Y, and Z are externally ref­
erenced symbols which have ESIDs of 2, 3, and 4, respectively. 

e. Text Cards containing the instructions and constants of element A and the re­
tocation information for these instructions and constants. Two examples may 
clarify the nature of this relocation information: 

1. An instruction may refer to some other part of element A. This reference is 
relative to the origin of the element. If the origin moves, the reference must 
be adjusted accordingly. The associated relocation information indicates 
where this reference is made in element A and specifies the ESID of element 
A, indicating that this is an element relative reference. 

2. An external reference may be made. In this case, the reference is undefined. 

The associated relocation information indicates where in element A this 
reference is made and specifies the ESID identifying the undefined symbol 
referenced. 

f. One Transfer Card. 

Element B 

a. One Element Definition Card specifying that this element is named B and has an 
origin of 400 and a length of 200. 

6 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

b. Three External Definition Cards. 

Rev. 1 5 

SECTION: PAGE: 

1. One specifies that X is an externally defined sym bol and th at it has an element 
relati ve value of 475. 

2. One specifies Y with an element relative value of 550. 

3. One specifies Z with an absolute value of 25. 

c. One Program Reference Card specifying that the element is named B, that it has 
an ESID of 1, and that it has an origin of 400. 

d. One External Reference Card specifying M as an externally referenced symbol 
with an ESID of 2. 

e. Text Cards containing the instructions and constants of element B and the re­
location information for these instructions and constants. 

f. One Transfer Card. 

These two decks are represented schematically in Figure 5-1. Suppose elements A 
and B are to be linked into one job having an origin of 1000 and whose initial execu­
tion address is to be the beginning of element A. The origin would be specified in a 
PHASE card, the transfer address in an END card. The input to the Linker for a one­
pass operation would appear as shown in Figure 5-2. 

The Linker reads the PHASE card and sets the location counter to 1000 in preparation 
for creating a job to be loaded beginning at memory location 1000. The Linker then 
reads the header cards and sets up the reference table. Each entry in the reference 
table consists of three fields. 

1. The name which this entry describes. 

2. The location assigned to this name. 

3. The relocation factor for this name. The relocation factor is the amount by 
which the value assigned to the name by the Assembler must be adjusted to 
arrive at the value to be assigned to the name by the Linker. 

ELEMENT 
A 

Figure 5-7. Elements A and 8 Deck Structure 

7 



UPoA09l 
Rev. 2 ,-------

UNIVAC 9200/9300 
CARD ASSEMBLER 

ELEMENT A 

BODY 

ELEMENT B 

BODY 

TEXT AND 

RLD INFO 

EXT REF Z 

ESID 4 

ESID 3 

EXT REF X 

ESID 2 

NAME A 
ESID 1 

ORIGIN 0 

EXT DEF Z 

ABS VAL 25 

EXT DEF Y 

ELTREL550 

EXT DEF X 

EL T REL 475 

ELEMENT B 
ORIGIN 400 

LENGTH 200 

/ EXT DEF M 

EL T REL 50 

ELEMENT A 

ORI GIN 0 
LEN GTH 100 

PHASE 

OR IGIN 1000 PHASE 

ELEMENT A 

HEADER 

ELEMENT B 

HEADER 

Figure 5-2. Linker Input 

5 
SECTION: 

RLD INFO 

NAME B 
ESID 1 

ORIGIN 400 

END 

START A 

8 
PAGE: 



Up .. 4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 
PAGE: 

For example, the name "A" 'is to be assigned a value of 1000 by the Linker. It was 
assigned a value of 0 by the Assembler; therefore, its relocation factor is 1000. 

As a second example, consider the name "B". 

1. Since element A begins in location 1000 and is 100 bytes long, the name 
"B" is assigned a value of 1100 by the Linker. 

2. While the body of element A is being processed, the name "B" has a 
relocation factor of 1100, since the name "B" is undefined in element A. 

3. While the body of element B is being processed, the name "B" has a 
relocation factor of 700, since in element B the Assembler assigned a 
value of 400 to the name "B". 

The reference table produced as a result of processing the header cards in Figure 
5-2 is shown in Figure 5-3. 

The Linker then reads the Program and External Reference Cards for element A. 
The information from these reference cards is used by the Linker to build an ESID 
table. Each entry in the ESID table consists of two fields: 

1. The ESID from the reference card. 

2. The reference table entry num ber of the symbol to which the ESID is 
assigned. 

The Program Reference Card is also used to determine the relocation factor for the 
element name. The result of processing the reference cards is shown in Figure 5-4. 

The Linker then processes the text of element A. For each instruction or constant 
on the input text cards it produces an instruction or constant on an output Text 
Card. The absolute portions of the text are produced unaltered. The address at 
which the text is to be loaded is adjusted by the relocation factor for element A. 

If a portion of the text is relocatable, then there is associated with it relocation 
information specifying an ESID of 1. In this case, the Linker looks up in the ESID 
table the associated reference table entry number. It then looks up in the reference 
table the relocation factor (1000) and adjusts the text by the relocation factor. The 
input text is th~n relocated to the origin speCified by the PHASE card, and this 
relocated text is produced as output. 

The Linker performs a similar function if a portion of the text makes an external 
reference. (Assume the reference is made to the symbol Y.) There is associated with 
this text relocation information specifying the ESID of the external reference (3). 
The text is adjusted by the relocation factor (1250) determined by the relation be­
tween ESID and reference table entry number (5). This defines the external reference, 
and the resolved text is produced as output. 

9 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER ______ --l!..-_____ ...".I_S_E_C_T_'O,~ __ ~_.,._ 

ELEMENT .A 

BODY 

ELEMENT B 

~30DY 

RLD INFO 

ESID 4 

ESID 2 

ESID 1 

ORIGIN 0 

EXT DEF Z 
ABS VAL 25 

EXT DEF Y 

EL T REL 550 

EXT DEF X 

EL T REL 475 

ELEMENT B 

) 

ORIGIN 400 
LENGTH 200 

-----,----.' 

EXT DEF M 

EL T REL 50 

ELEMENT A 
ORIGIN 0 

LENGTH 100 

PI;lASE 

ORIGIN 1000 PHASE 

ELEMENT A 

HEADER 

HEADER 

Figure 5-3. Header Processing 

TEXT AND 

RLD INFO 

ENTRY 
NUMBER 

1 

2 

3 

4 

5 

6 

END 

START A 

REFERENCE TABLE 

NAME VALUE 

A 1000 

M 1050 

B 1100 

X 1175 

Y 1250 

Z 25 

RELOCATION 
FACTOR 

1000 

1050 

1100 

1175 

1250 

--
25 



UP-4092 
Rev. 2 

l:l_EMENT A 

BODY 

! 

5 UNIVAC 9200/9300 
CARD ASSEMBLER SEC TION: 

ELEMENT B 

BODY 

RLD INFO 

ESID 4 

EXT REF Y 
ESID 3 

EXT REF X 

ESID 2 

NAME A 
ESID 1 

ORIGIN 0 

TEXT AND 

RLD INFO 

ESID 2 

NAME B 
ESID 1 

ORIGIN 400 

END 

START A 

ESID TABLE 

ESID 
ENTRY 

NUMBER 

1 1 

2 4 

3 5 

4 6 

REFERENCE TABLE 

ENTRY 
NUMBER NAME VALUE 

1 A 1000 

2 M 1050 

3 B 1100 

4 X 1175 

5 Y 1250 

6 Z 25 

Figure 5-4. ESID Processing for Element A 

RELOCATION 
FACTOR 

iooo 

1050 

1100 

1175 

1250 

25 

11 
PAGE: 



Rev. 2 
UNIVAC 920019300 
CARD ASSEMBLER SECTION: 

5 12 
PAGE: 

UP-40~2 
,.,__ _ ___________________ ...... _____ ...... _______ .....IL.-______ _ 

The Linker recognizes the end of element A by means of the Transfer Card. It then 
reads the Program and External Reference Cards for element B and adjusts the 
reference and ESID tables accordingly. The result of this adjustment is shown in 
Figure 5-5. Note that the relocation factor for the name "B" is changed. 

The Linker then uses the ESID and reference tables to process the text of element 
B and produces the related output text completely relocated and with all external 
references defined. In response to the END card, the Linker produces a Transfer 
Card with a value of 1000 (the value of the name "A") in it for a Transfer Address. 
Thus, the output of the Linker is a deck of Text Cards with no relocation information, 
followed by a Transfer Card. 

If a third element were to follow element B as input to the Linker, the relocation 
factor for the name "B" would be set back to 1100 by the Linker before it processed 
this third element. 

/ 

RLD INFO 

'_XT REF M 

ESID 2 

NAME B 
ESID 1 

ORIGIN 400 

END 

START A 

TRANSFER 

ENTRY 
NUMBER 

1 

2 

3 

4 

5 

6 

ESID TABLE 

ESID 
ENTRY 

NUMBER 

"1 3 

2 2 

REFERENCE TABLE 

NAME VALUE 

A 1000 

M 1050 

B 1100 

X 1175 

Y 1250 

Z 25 

Figure 5-5. ES/D Processing for Element B 

RELOCATION 
FACTOR 

1000 

1050 

700 

1175 

1250 

25 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

5.5 .. ONE- AND TWO-PASS LINKING 

5 
SECTION: . F> AGE.: 

One-pass linking of an input deck is possible when all symbols on.External Reference 
(type K) cards have been defined by some preceding Element Definition (type A), 
External Definition (type H), or EQU control card. 

When the definition of a symbol occurs after an External Ref erence to the symbol, a 
two .. pass run is necessary. However, if the definitions are moved to the front of the 
deck, a one-pass run can then be made. The move is accomplished by sorting on a 
12-punch only in column 2 of the Assembler-produced cards. All these definitions 
appear on Element Definition (type A) and External Definition (type H) cards which 
are at the beginning of an Assem bIer-produced element. Consequently, the cards can 
be easily stripped off by hand. 

For the first pass of a two-pass operation, the Linker object deck precedes the input 
deck in the input hopper of the card read unit. For the second pass, the inpu t deck 
only is placed again in the inpu t hopper. 

Figures 5-6 and 5"-7 illustrate the placement of control cards for a one- and two­
pass linking operation. 

5.6. LINKING THE LINKER 

A n.ew loadable Linker program is produced by combining the several separately 
assembled component$ of the Linker by means of a Linker run. The combined 
Linker occupies memory locations from the upper limits of privileged memory to 
approximately 1824. Memory addresses greater then 1824 are used by the Linker 
for ESID tables and the reference table. The Linker can thus handle, when oper­
ating in 8K, approximately 200 external references during linking. 

Computers with larger memory capaci ties can handle an even greater number of 
external references. 

13 



UP-4092 
Rev. 2 

UN IV AC 9200/9300 
CARD ASSEMBLER 

Assemblrer Produced 

Elements 

Element 

A 

Element 

B 

Element 

C 

Element Definition (A) 

External Definitions (H) 

Program Reference (J) 

External Reference (K) 

Text (Q) 

Transfer (Y) 

!Element Definition (A) 

External Definitions (H) 

Program Reference (J) 

External Reference (K) 

Text(Q) 

Transfer (Y) 

Element Defin ition (A) 

External Definitions (H) 

Program Reference (J) 

External Reference (K) 

Text (Q) 

Transfer (Y) 

Linker Input 

Linker { Object 

Deck 

Control 

Cards 

CTL 

PHASE (1) 

EQU 

Element 

A 

Element 

B 

Control Card - PHASE (2) 

Element 

C 

Control Card - EN D 

I SECTION, 5 

Linker Output 

Text (Q) 

Transfer (Y) 

Text (Q) 

Transfer (Y) 

Figure 5-6. Linker Input Deck Sequence for Two-Pass Operation 

I PAGE' 14 

PHASE 
(1) 

PHASE 
(2) 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Assem bier-Produced 

Elements 

type A Sort column 2 

type H (lock out all 

but 12 punch) 

Produces 

type J 

Element type K 

A 

Element A 

type Q Headers 

type A & H 

type Y 12 in Element B 

Col. 2 Headers 

type A type A & H 

type H 

Element C 

H eade rs 

type J type A & H 

Element type K 

B 

Element A 

Body 

type Q type J,K,Q & Y 

12 in Element B 

Col. 2 Body 

type Y type J,K,Q, & Y 

Element C 

type A Body 

type H type J,K,Q & Y 

type J 

Element type K 

C 

type Q 

type Y 

Linker Input 

Control 

Cards 

Element 

A 

Element 

B 

Control 

Card 

Element 

C 

Element 

A 

Element 

B 

Element 

C 

[ Up,,, 
Object 

Deck 

[CTL PHASE(1) 

EQU 

t~pe'H 
[tyP' A 

type H ["P' A 

[ PHASE(2) 

type H ['YP' A 

type J 

type K 

type Q 

type Y 

type J 

type K 

type Q 

type Y 

type J 

type K 

iype Q 

L type Y 

Control [ 
Card 

EN D 

Figure 5-7. Linker Input Deck Sequence for One-Pass Operation 

I ,"eTOON, 5 
15 

PAGE: 

Linker Ou!.e.':!.!. 

tyP' Q I 
PHASE 

. (1) 

type Y 

type Q 

PHASE 
(2) 

type Y 



UP 4092 I UNIVAC 9200/9300 Rev. 1 5 16 
._. __ ~_~y. 2.~ _________ C_A __ R_D_A_S_S_E_M_B_L_E_R ________ ...r-______ ....... _S_E_C_T_IO_N_: ___ ....... _P_A_G_E_: ____ _ 

The Linker, as a program, has one phase. The PHASE control card used when the 

Linker is being linked with the Card Load Routine, LD, is as follows: 

L2bel I opera_t_io_n ___ ~ _____ o_p_e_r_a_n_d ___ 

~HASE LNKR,410,A 

The PHASE card, when linking with the Card Load Routine (LDCC), is: 

. __ l_Ja_b_e_l __ +-__ opera~ Operand 

PHASE -r .. LNKR,500,A 

The EQU cards for the linking operation follow the PHASE card. 

The first element in the input deck must be the Card Load Routine. The program 
name for the routine is LD if the online card reader is used to load the Linker 
being linked. If the Card Controller is used, the name for the Card Load Routine 
is LDCC. 

The last element in the input deck must be the Linker element which has the pro­
gram name, LNKR. The elements between the Card Load Routine and LNKR may 
be in any order. The elements are as follows: 

• Exec I, which is named EXEC. 

• Card Read Routine. This is generated from a call on either the DTFCR macro 
for the card reader or the DTFCC macro for the card controller. In either case: 

a. The "filename" must be RDR. 

b. CNTL=YES is not required. 

c. The MODE parameter is specified as MODE ::CC. 

For DTFCR, the following are also required: 

a. SENT=NO 

b. lOA 1 =IOA 1. 

For DTECC, specification of the CHAN parameter is also required. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 

• Input Translation Table. The Linker reads input cards in compressed code. If it 
identifies a card as a control card, it must translate the card before processing 

PAGE: 

it. To allow the user to punch control cards in any card code he wishes, the 
Linker uses a user-supplied translation table to effect the translation. The Linker 
assumes that the result of the translation is EBCDIC. The user-supplied input 
translation table must be labeled TRN. The Hollerith-to-EBCDIC translation 
table, labeled TBRD, supplied by the Univac Division, can be used when 
control cards are punched in Hollerith. In this case, the following EQU card 

LABEL OPERATION OPERAND 

TRN EQU O,TBRD 

should be included with the other EQU cards in the input deck. 

• Card Punch Routine. This is generated from a call either on the DTFRP macro or 
on the DTFRW macro for the online serial read/punch or for the row read/punch, 
respectively. If the online se rial read/ punch is used, the PUNR=YES parameter 
specification is made. If the row punch is used, the CHAN parameter must be 
specified. For both macros: 

a. The "filename" must be RPP. 

b. CNTL=YES is not required. 

c. The MODE parameter is specified as MODE=CC. 

d. The OUAR parameter is specified as OUAR=OUP. 

e. The TYPF=OUTPUT parameter specification is used. Therefore, the EOFA, 
INAR, ITBL, and ORLP parameters are not specified. 

f. The OTBL parameter is not required because Linker output is punched in com­
pressed code. 

• Printer Routine. This routine is generated from a call on the DTFPR macro. For 
this macro: 

a. The "filename" must be PRNT. 

b. The BKSZ parameter is specified as BKSZ=96. 

c. CNTL=YES is not required. 

d. PROV=YES is used. Consequently, a paper loop containing form overflow and 
home paper punches, at appropriate points, must be in the printer when the 
Linker is run. 

17 



Rev. 2 
UNIVAC 920019300 
CARD ASSEMBLER 

JP-4092~ 

-----_. . ------------------------------ 1 I SEC TOON, 5 PAGE: 

e. The FONT parameter specified should agree with the print bar used in the printer 
during Linker execution. The OTBL parameter must be specified if a 48-character 
bar is used (FONT=48). In this case, an EBCDIC to 48-character print code trans­
lation table must also be included in the Linker input deck. If the table TBPR, 
supplied by the Univac Division, is used, the OTBL=TBPR parameter must 
be specified when generating the printer routine. 

£. PRAD may be specified as one or two, as desired. 

The format for the END control card used when the Linker is being linked is as follows: 

Label Operation Operand 

END 0, BEGN 

For convenience, blank cards may be used to separate elements in the input deck since 
the Linker ignores blanks. 

5.7. CARD OUTPUT FROM THE LINKER 

The Linker produces two types of output cards: 

Type (col. 2) 

Q 

y 

5.7.1. Type Q Cards 

Name 

Text card 

Transfer card 

Caused By 

Input Q cards or REP cards. 

See 5.3.4. 

The Q cards contain the program in loadable absolute form. They are produced when 
enough contiguous input text is available to fill an output Text card, when text is not 
contiguous, or when a REP card is processed. An input program could consist of REP 
cards and no Q cards. This permits the programmer to write short programs in hexa­
decimal to be linked without assembling. 

The format for a Q card is as follows: 

Type (Hollerith Q) 

Card Length 

Load Address 

Hole Count 

Absolute Program 

5.7.2. Type Y Cards 

Column 2 

Column 3 

Column 5-6 

Column 7 

Column 11-72 (depending of column 3) 

The Y cards occur as separators between the loadable phases (overlays) and at the 
end of the last phase. The Y cards cause the Loader to stop loading and to transfer 
con trol to the transfer address in the Y card. 

18 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

The format for a Y card is as follows: 

Type (Hollerith Y) 

Card Length 

Hole Count 

Card Count of 
Preceding Phase 

Transfer Address 

Column 2 

Column 3 

Column 7 

Column 12-13 

Column 15-16 

5 
SECTION: PAGE: 

NOTE: All Linker output cards have the first three characters of the program name 
(from the first input PHASE card) in column 73--75, a phase identification 
in columns 76 and 77, a serial number in columns 78-80, and a load key (12-
2 .... 9) in column one. The phases are numbered sequentially in hexadecimal. 
The program name and serial number are punched in Hollerith. 

5.8. LINKER MAP 

The Linker map is printed during a one-pass Linker run or during the second pass of 
a two-pass Linker run. The map contains a line for each Linker Control Card and for 
each of the following Assembler-produced cards: 

Card Card 
Type Name 

A Element Definition 

H External Definition 

J Program Reference 

K External Reference 

Y Transfer 

No line is printed for type Q (Text) cards. 

5.8.1. Linker Map Print Lines 

Generated in 
assembly by 

START Directive 

ENTRY Directive 

START Directive 

EXTRN Directive 

END Directive 

For a type A card, the printed line contains (in order from left to right) the load 
location, in hexadecimal, assigned to the element name, the card type identification 
code (A), the Assembler-assigned ESID number, the element start address, the 
element name, the element length, and the output phase (overlay) number. 

For a type H card the printed lines contain the value; in hexadecimal; assigned 
to the externally defined symbol, the card type identification code (H), the Assembler­
assigned value of the externally defined symbol, and the name of the externally 
defined sym bol. 

19 



_ ~~~~°ct ____ _ UNIVAC 920019300 
CARD ASSEMBLER I SECTION' 5 

For a type J card the printed lines contain the load location, in hexadecimal, 
assigned to the element name, the card type identification code 0), and the 
element name. On the line for the first type J card of a phase, the phase number 
is printed following the element name. 

For a type K card the printed lines contain the value assigned to t he externally 
referenced symbol, the card type identification code (K), the Assembler-assigned 
ESID number, and the name of the externally referenced symbol. 

For the first type Y card following a PHASE card and containing a start address, 
the printed line contains the start address and the card type identification code. 

The type Q cards are not printed. For each input element, the type Q cards 
immediately precede the type Y card. 

A t the left of each PHASE, EQU, and END control card line is printed the value 
specified on the card. For the PHASE control card, the value printed is the 
initial storage address as specified in the card. For the EQU card, the value is 
that of the symbol defined by the EQU card. For the END card, the value is the 
specified transfer address. 

If a line is flagged with an error message, the error message precedes the card 
type identification code. 

5.8.2. Linker Map Error Messages 

TBL END Too many external references for the combined table area to 
handle. 

PAGE: 

SHORT A PHASE card has missing information. The PHASE card may 
be partially processed by the Linker. Punching is discontinued. 

NO SYMB 

UNEQU 

ESIDX 

NO DEF 

An undefined sym bol was contained in the operand of a PHASE, 
EQU, or END card. Partial processing of the erroneous card may 
occur. Punching is discontinued. 

Label field (columns 1-4) on an EQU card was previously defined 
differently. The value printed on the left is the previously definled 
value. The new value is ignored. Punching continues.. 

The ESID number (column 8) on a type A card is not 01. The name 
is used by the Linker but values are not. Punching is discontinued. 

The sym bol on a type J or K card was not defined by a type A 
(Element Definition) or type H (External Definition) card from 
assembly or by a manually entered EQU to the Linker. The card 
is partially processed by the Linker. Punching is discontinued. 

20 



UP-4092 UNIVAC 9200/9300 L I Rev. 1 5 21 
_____ R_e_v_._2 __ ~ __ . _______________ C_A __ R_D __ A_S_S_E_M __ B_L_E __ R ______________ ~~__________ 5ECTION:, _______ ~P_A_GE_:_ 

EXT VAL 

CCOUNT 

X 

The external val ue defined by an External Definition (type H) 
card is not equal to the value previously defined for the sym bol. 
The value printed on the left is the previously defined value. 
The new value is ignored. Punching is discontinued. 

The card count on a Transfer (type Y) card does not agree with 
card count of the preceding element. Punching continues. 

An output load address has exceeded the object memory 
size specified by q of the CTL card. 

S.9. LINKER CONSOLE DISPLAYS 

DISPLAY 

IF03 

IF04 

IFOS 

IF06 

IFOF 

IFFF 

REASON FOR STOP 

Invalid card type. 

After a Y card, no J card 
was found preceding the 
next K or Q inpu t card. 

Input card hole count error. 

An external reference has 
been made to a label not 
defined by a K card. (The 
K card could have been lost 
or misplaced in the input 
deck.) 

First pass is finished. 

Last pass is finished. 

ACTION 

Press START to ignore card. 

Press START to ignore card. 

The card on which the error occurred is 
the second one from the top of the output 
stacker. To reread the error card, place 
it and all cards that follow it (including 
the card in the wait station of the reader) 
a t the bottom of the deck in the input 
hopper, manually feed a card, and press 
the START button. 

Check the Linker map against the Assembly 
listing, re-order the card deck appropriately, 
and start the Linker operation over again. 

Press START to begin last pass.* 

Press START to begin new Linker run. 

* Note that, to start the last pass, the input deck must be removed from the hopper 
and once more placed in the input hopper. If the Card Controller is being used as 
the input device, at the end of the first pass the last two cards of the input deck 
are still in the device and must be run out by pressing the PRI UNLOAD button 
twice. 





UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SECTION: PAGE: 

APPENDIX A. PREASSEMBLY 
MACRO PASS 

AI. GENERAL DESCRIPTION 

The Preassembly Macro Pass of the UNIVAC 9200/9300 Card System is used in conjunction 
with the Assembler to promote ease and efficiency in preparing programs for execution on 
the UNIVAC 9200/9300. A schema tic of the Preassembly Macro Pass is shown in Figure 
A-I. 

MACRO 
INSTRUCTION 
DECK 

MACRO 
LIBRARY DECK 

UNIVAC 
9200/9300 

SOURCE CODE 
DECK 

READY FOR 
ASSEMBLY 

Figure A-1. Schematic of Preassembly 
Macro Pass Operation 

1 



UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 2 UP-409L 
Rev. 2 SECTION: PAGE: 

,------ -------------------------------------------------------------------~--~-----------

The macro library is a card deck in which the "macros in the library are punched in a 
compressed form to minimize both library passing time and memory storage space. The 
macro library is read in first and is stored in memory. Then, the card deck of macro 
instructions is read in. This deck contains the parameters and controls required to 
generate a source code deck in Assembler format. The output deck represents the 
selected library routines modified as instructed. The source code deck may be combined 
with user source code cards and assembled as one element, or it may be assembled as 
a separate element and linked with other relocatable elements to make up a program. 

Because it is a card deck, the library is separable; only those routines called for during 
lthe operation of a particular Preassembly Macro Pass need be in the library for storage. 
The Preassembly Macro Pass ignores the presence of any blank cards in both the macro 
library and the macro instruction deck. 

A2. MACRO INSTRUCTION FORMAT 

A macro instruction is similar in form to a source code instruction; it has a label 
(optional), an operation code, and an operand consisting of one or more expressions 
separated by commas. The prime difference is that the macro instruction causes the 
generation of a series of source code instructions representing a number of Assembler 
operations; whereas a source code instruction causes the Assembler to do one specific 
operation. 

The format for a macro instruction is as follows: 

LABEL OPERATION OPERAND 

label operation 

The label may be any symbol, but is not necessarily assigned the current value of 
th(~ location counter. The operation is the name of the macro definition describing 
the pattern of the code to be included. The operand, PI through P n+m, is a sequence 
of expressions specifying parameters. PI through P n are called positional parameters. 
p nt 1 through P n+m are called keyword parameters. A macro instruction may have 
positional parameters only, keyword parameters only, neither, or both positional and 
keyword parameters. 

A2.1. Parameters 

There are two types of parameters; positional and keyword. 

II Positional Parameters. All positional parameters must be specified before any 
keyword parameters may be specified. The order of the expressions in the operand 
determines the order of the parameters specified. Parameter specifications are 
separated by commas. When a positional parameter specification is omitted, the 
comma must be retained to indicate the omi ssion. Thus, if a macro has three posi­
tional parameters and the second one is not specified, the operand appears as 
follows: 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SE.C TION: PAGE: 

If the third parameter is not specified, and the second is specified, the operand is 
written: 

Thus, no trailing commas need be present • 

• Keyword Parameters. The specification of a keyword parameter is as follows: 

N=P 

where: N is the name of the parameter (any symbol of four or fewer characters 
is a legitimate keyword name). 

P is the parameter specification (a value or a character string). 

Keyword parameter specifications are separated by commas; however, the comma 
need not be retained if the specification is omitted. There must be a comma between 
the last positional parameter and the first keyword parameter. The order of the 
keyword parameter specifications is not significant. For example, if a macro has 
three keyword parameters, the operand of the macro instruction might be: 

or 

and so on. 

A macro may have positional and/ or keyword parameters with Commas separating 
the specifications. For example, the operand of a macro instruction with three 
positional and two keyword parameters might be as follows: 

The number of parameters which may be specified with one macro instruction depends 
on how much space is required to store the specifications. One macro instruction 
may normally specify as many as 50 parameters in its operand. When the operand 
overflows the space provided in one record, provision is made to continue the operand 
in the following record by putting a nonblank in column 72. The continuation of the 
operand begins with column 16. The Macro Pass searches for a continuation record 
as soon as one of the two following events occurs: 

• Information is taken from column 71 of the current record • 

• A comma followed by a space is detected in the current record. 

Columns 1 through 15 of a continuation record must be blank. 

3 



Rev. 2 
UNIVAC 920019300 
CARD ASSEMBLER 

Appendix A 4 
SECTION: PAGE: 

U~P4092 
------ -------...----------------------------------------------------------------------------------------------------------------~----------------

If the information in a record is terminated prior to column 71 by means of a comma 
followed by a space, comments may be written after the space. For example, a macro 
ins truction with three keyword parameters might be written as follows: 

LABEL 15 OPERATION ti OPERAND 
10 16 72 80 

L _L J 1 1 I ~R,O N l.h~.lE.1U.LL~ 0 I MIMI E I NIT I 

L~J== Je12 LLi_LC:d~L~! MI EI NI T I 

~ ~ .--.L_Ll._L.L~_ 

LI I I I I LL~_ N I I 1 X I I I I .1_ 

l _L .1 1 J I I ..1-L I N L I I -L_L.l_-.l_ 

The specification of a parameter may not contain an equal sign or a comma, except 
when it occurs between apostrophes. 

A3. WRITING MACRO DEFINITIONS 

The routines for the macro library are written in standard Assembler source code. They 
are then passed through a special run (the Compressor) to compress them into the 
library form expected by the macro pass. To distinguish one macro from another in the 
library, three directives are used: PROC, NAME, END. 

A3.1. PROC Directive 

The first source code statement of a macro definition is a PROC directive, which 
has the following form: 

LABEL OPERATION OPERAND 

( optional) PROC (optional) 

The label may be any symbol, but it is optional. When used, the label in the macro 
instruction calling on the macro is substituted for the PROC label, wherever the PROC 
label appears in the macro. For example, suppose the symbol MOVE were specified for 
the label of a macro instruction, that the label of the PROC directive of the associated 
macro was NAME, and that the macro contained the following line of source code: 

LABEL 15 OPERATION 15 OPERAND 1» 
10 16 

Then, the source code generated by the macro definition would appear as follows: 



UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 Appendix A 

If the PROC directive does not have a label, but the macro instruction does, the 
1a bel of the macro ins truction remains undefined. 

A3.2. NAME Directive 

The second line of a macro definition must be a NAME directive, which has the form: 

LABEL OPERATION 

label NAME 

This is the call name for the macro and is the name that is specified in the operation 
field of the macro instruction. The name may have as many as five characters, the 
first of which must be alphabetic; the others alphanumeric. 

A3.3. END Directive 

M 

The end of a macro definition is indicated by an END directive. It has no operand 
and requires no label. 

If the following macro is in the library: 

LABEL 1; OPERATION 1; OPERAND 
10 16 

1 1 1 1 I I I PI R10,C 1 I 1 I 1 I 1 1 1 1 I 1 1 1 1 I 1 1 L--.i J L-L __ l _Ll I I I I 

I01V,E 1 I 1 1 NIA,M,El 1~_1 1 1 1 1 I 1 1 1 -.l.-L_...l __ .L _Ll J _L _L ____ l 1 I I 1 1 I 

LI 1 

LL.I 

1 I 1 I MI~ 1 DI E IS 1 T 1 , I 0 1 RI I IG 1 I I 

I I I 1 EI NIDI I I I I I I I I I I I I 

then the macro instruction: 

is equivalent to the source code instruction: 

1 

I 

I 1 I 1 1 1 lJ _L....l_L_L J 

I I I I I l L L...-L....Ll_L_J 

: 

I I I I -'---' J nLLJ L I 

_~~J_L.LJ 1_1 

I J I I 

LJ .L 1 

IlL 1 

L 1 I 1 I 

: --'--'-- L J L_ J ___ J _1 11 J 1 I I 

I I I I I 1 I I I _..Ll...-L.L_.L 

Note that none of the macro directives (PROC, NAME, END) are produced as output 
of the macro pass. 

A3.4. Comments 

Comment lines may be inserted between the last NAME directive and the END 
directive in a macro definition. Each of these comment cards must have an asterisk 
in column 1 and must end at or before column 67. (Columns 68-71 are used by the 
Preassembly Macro Pass for card sequencing.) 

Comments are not permitted on a PROC line if the PROC directive does not specify 
any parameters. However, they may be written after the last parameter specified in 
the operand and must be separated from the operand by at least one blank. 

5 



__ U:e~~2 1 __ _ 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 1 Appendix A 
SECTION: PAGE: 

Comments may be written on Assem bIer source code lines, but they are not reproduced 
by the Macro Pass when the source code lines are generated. 

A4. INCORPORATING PARAMETERS INTO MACRO CODING 

The operand of a PROC directive, when used, has the following form: 

The first expression (p) in the operand is a symbol used to address the parameters 
for the macro. The second expression (n) is the number of positional parameters 
associated with the macro. The series (Nl, ... Nm) are the names of the keyword 
parameters. Any symbol of four or fewer characters is a legitimate keyword name. 
Listing the keyword parameters in this way makes them, in effect, positional parameters 
to the macro. For example, suppose the PROC directive has the following form: 

OPERATION OPERAND 

PROC p,3,Nl,N2,N3 

The macro has three positional parameters, Pl, P2, and P3. It also has three keyword 
parameters, Nl, N2, and N3. Thus, the keyword parameters become, in effect, positional 
parameters P4, PS, and P6. 

The value specified for a parameter is substituted in the macro coding for an expression 
of the following form: 

pen) 

where: p is the first expression in the PROC directive operand. 

n is the decimal number of the positional parameter. The first has a number 
of one, the second, two and so forth. 

For example, if the following macro is in the library: 

15 OPERA liON 15 OPERAND 
10 16 

-~-~LL---.J_i-- !1&9..1<::.J ___ f--f'L'_l()Lul~L~~l TI ' I LI GI TI HI' 101 R_lJ_iQL-L __ L~~~1 I I I I I 

,_~~~~LJ------.-L...l ___ NI AI~...L~L I I .L L L_L-.L_-----L.._L..1.-L~L__.__L_L_L_..L_L_.L._J____.LLi __ l_L_~~ 

_LL-LLL_l MI VI C..L~ __ ~J(J1L~}~..J_L3} I) 1'1 P I ( 13 1) I I I I I I I I I l_L I I I I 

then the macro instruction: 

is equivalent to the source code instruction: 

6 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 Appendix A 
SEC TION: 

A keyword parameter may also be addressed by writing its name preceded by an 
ampersand. Thus, the MVC instruction within the macro definition of the previous 
example could also have been written: 

OPERAND 

If a parameter value is unspecified, it will be replaced by the value zero. 

PAGE: 

When the operand space overflows the space provided in one record, provision is 
made to continue the operand in the following record by putting a nonblank in column 
72. The continuation of the operand begins with column 16. The Macro Pass searches 
for a continuation record as soon as one of the two following events occur: 

• Information is taken from column 71 of the current record . 

• A comma followed by a space is detected in the current record. 

Columns 1 through IS of a continuation record must be blank. If the information in 
a record is terminated prior to column 71 by means of a comma followed by a space, 
and if column 72 contains a nonblank, then all columns between the comma and 
column 72 must be blank. 

AS. NAME STATEMENT 

More than one NAME statement may follow the PROC statement of the macro. However, 
all the NAME statements in a macro must immediately follow the PROC statement. Each 
such NAME statement specifies a different name for the same macro. 

The object of giving a macro more than one name is to permit reference to different 
versions of the procedure embodied in the macro. The versions are distinguished 
within the macro by means of the operands of the NAME statements. 

Only one expression may appear in the operand of a NAME statement and may be 
assigned a value ranging from 0 through 2 16_1. The expression may be a decimal 
number, a hexadecimal number, or a character expression of the form C'xx'. Any 
value greater than 216_1 will be truncated with no error indica tion given. This 
expression is essentially a parameter of the macro; it may be addressed in the 
macro as: 

p(O) 

where p is the first expression in the PROC statement operand; consequently, it may 
be used to distinguish between versions of a macro. 

'/ 



UNIVAC 9200/9300 
CARD ASSEMBLER 

F or example, if the follow ing macro is in the library: 

LABEL 15 OPERA 1101'415 OPERAND 
10 16 

I Appendix A 
5 EC TION: PAGE: 

_-.l_L...LL~----.L~ ____ !1 R I 0LS ______ Pl 1 L IlL l L ~J_l_L_LJ_L_LLi~_L.-.l __ L_~~~_J.~l~ 

~'.1Y-.J_~L_LL-.L~ __ ~l"_~l_E;l Ai Ll l I j _ L LJJ_LL1_l~ __ 1 .L.L L. LL LJ __ L_L_L_L_L_L-.l 

M~L~~ I j I I ~J.~J.~L~L- ___ t!L_L_l_l._J __ .J. __ l._.L~ __ LJ_LJ_--.Ll __ .-LL_L_LL_L_L_L-.l~_L-LU 

__ -.l-.J_LJJ~ ___ .M.L~J ___ r-I2L~LS_l!lLl~LLQJ_.J.LL!.~9.-.l!!.L!.J§l_...LL __ l_J._.L _l_.l __ L.L-.l_L-L-LU 

.L.J , , I 'I EIN,D , I I I -Ll..~ I" I I I I , I I I , , , , I I I I 1 I 

then the macro ins truction 

would produce the source code 

while the macro instruction 

would produce 

If a NAME statement has no operand, the parameter p(O) is assigned a value of zero. 

If a macro has no parameters and it makes no reference to the operand of any of its 
NAME statements, then its PROC statement has no operand. 

8 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER 

Appendix A 
SECTION: PAGE: 

A6. CONDITIONAL MACRO PASS INSTRUCTIONS 

The Macro Pass recognizes certain directives which can: 

• exclude lines of c·oding from the output of the Macro Pass, 

• include a set of lines in the output of the Macro Pass more than once 

• establish and alter values which may be used to determine whether a set of lines 
shall be included or excluded. 

These directives are provided to control the pattern of coding generated, based on 
the parameters supplied in the macro instruction. 

A6.1. DO and ENDO Directives 

r--

1 ..... 

f-...1 , 

f-...1 , 

A DO directive controls the inclusion or exclusion of the lines following it, up 
to its associated ENDO directive. For example, in the following sequence of 
coding: 

LABEL 1$ OPERATION 1$ OPERAND 1$ 
10 16 

, I I , , 010, , , 1" , I I I I I I I , I ..1 I I I ... LL L I ... _L..L..~.....L..L.L-L-l 

, , I , , I , , , 2, , , , L, , , I I , , , , I , , .L .. L L J_ ... L.....1........J ....... L.l ......... L..........LJ 

_...1 I .[ J I , I 010, , , 3[ , , , I I I I , I [ , , , I , , ..1.........l... L 1 _L ......... L......1........... ... _L......LL-L-l 
_...1 , , , I , , I , , , 4, , , , I I I I I I I I I I I I I I , L .l_L-L......L....l ... ...L....J...... ... 1...........L..J 

[ , , , I , , I , , , 5, , , , I , , , , I , , , I , , , :, I I I I I I I I I I I 
_.i , , I I , , EIN,D,O, 6, , , , I [ [ I [ I [ , I I I 1 ...... ...L~LL_I.............L ... ...L...l...... . ....l-L...L.......L-l 

~...1 , , , I , , I , , , 7, , , , I I I I I I I I I I I I I ..LLL.1............L....J..........l.......LJ......L...l.........J 

~.i J 11 I I I 1 I I I 8 1 L I I 1 [ I I [ I I , I I I I I .1......l......L ... ~~....l-LL....l......... 

~.i 

... ..1. 

, , , I , , EIN,D 0, 9, , , , I I I I I I I I I [ I I I I I 1 I I I I 1.......LJ......L....l......... 

I I I I I I I I , I , I , , I I , L I I I -' I L 1 I [ 1 I I I I I I I I I I I I 

the first ENDO directive is associated with the second DO directive, the second 
ENDO directive with the first DO directive. In other words, DO and ENDO directives 
are paired to produce nests. Thus, the first DO directive controls lines 2 through 
8, and the second DO directive controls lines 4 and S. DO's may be nested to a 
depth of 10. 

The operand field of a DO statement contains a single expression. If the value of 
this expression is greater than zero, it represents the number of times the lines 
controlled by the DO statement will be included in the output. Otherwise, these 
lines will not appear. For example, if the following macro is in the library: 

9 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER 

I Appendix A 

SECTION: . PAGE: 

LABEL 15 OPERATION 15 OPERAND 
10 16 

...Li ~ J I I PIR OIC I PU.l°I , IAI CITI I I I I I I I I I I I I I I I I I I I I I -.U 
~IEI I I I NIA1MIEI ~-L....J I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I 

Ll 

1 I 

I I 

I I I I ~Ol I I PI ( I 1.J.L I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I MIV1Cj • D\ E, 5 I T I ' I 01 RI I I G I I I I I I I I I I I I I I I I I I I I I I 

1 I • I EIN1D,0. 
• I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I EIN,D, I I I----L-l I I I I I I I I I I I I I I I I I I I I I I I I I I 

then the macro instruction 

would produce the instruction 

in the output of the macro pass; whereas, the macro instruction 

would not produce the instruction. 

Note that the macro instruction 

I I 

I I 

would also cause the suppression of the instruction. 

A DO statement may have a symbol in the label field. This symbol may be used only 
in the statements controlled by the DO. Its value is one the first time these state­
ments are generated, two the second time they are generated, and so on. If the DO 
is under the control of another DO, and is activated again, the count begins a tone 
again. Only two DO directives within a nest of DO's may be labeled. 

10 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SECTION: P ,.GE: 

A6,,2. GOTO and LABEL Directives 

.J 

-1 

I 

The form of the LABEL statement is 

LABEL OPERATION OPERAND 

symbol LABEL not used 

The symbol in the label field of the LABEL statement is not defined in the usual 
sense. It may be used only in the operand field of a GOTO statement. 

The GOTO directive is used to direct the Macro Pass to another point in the macro 
definition in its production of source code. 

The form of the GOTO statement is 

LABEL OPERATION OPERAND 

not used GOTO symbol 

The symbol in the operand field must be the label of a LABEL sratement. 

If the following macro definition is available: 

LABEL ti OPERATION 1> OPERAND 
10 16 

I I I -L . .J _ __ flfh~~ PI ' I 0 '~-1J.JL~L.J_ J~L.J _l~L_.l _1 L 1 L Li~-.L _ .~._ L 1 _1 

~~ ..1 ..1 _ N1Al MLEL 
f-- _L L L..-L_l_.l---L._ L LL-L-L.J l~ __ l_L..L.L..1 -L .. L1 ..l 1 1...L._L1 J 

I I I I I 1 DIOI I I PI ( I 1 1 ) , I , , 1 1 1 I I I 1.-1. l-.L.-l~--L.J...LL~_L-L_L.L_J 

.L.L-L 1 .1 , MIYLCI I Di E..lSJ T I( 14 I) I IOJRjl1GL , I I I I I L~ ..l _..L_l._.LJ __ L __ L~_LJ 

I I I I I I GIOI TIOI 6 NI ~ 1 1 , 1 1 I I I I I I I 1 1 1 I I I I I I I I I J 

I I I I -L .. l EjNID10 1 1 ..--LJ I I I I I I I I I I I .-L ..l.-L~_ I I I I I __ ~.LJ 

.L-.~I I MjV,C I 1 Q fJ SI Td 18 I) II 1 0 11li1 i G I I .L I I I I I .-l--4-. ..L~_L1-L--Ll 

A--1..1..l 1 ~lBIEIL I , -L.J....-L.J_..LL_l_J. I I I I ~~--L.....L-L-.l..~~--Ll 

I I I I I 1 EiNIDJ , I I I , I , I I I I I I I I I I ~.11 I I I I 1~..l_J. 

then the macro instruction 

.would produce the instruction 

11 



UP~4092 
Rev. 2 

-~ . -
UNIVAC 9200/9300 
CARD ASSEMBLER 

while the macro instruction 

15 OPERATION 15 
10 16 

I 
Appendix A 

SECTION: PAGE: 

------------~------------~------------~-

OPERAND 

Ll4MIO.,VI EL~l_ul _LLJ .LI.-I L. L_L I LL LL_'--L_L1LL.LLLL-'---1_LL I 

would produce the instruction 

For any GOTO statement, the corresponding LABEL statement must appear in the 
same macro definition as does the GOTO statement. If a GOTO is within the range 
of statements under con trol of a DO statement, but the addressed LABEL statement 
is not, then execution of the GOTO will terminate the DO whether the DO count, 
as expressed in the operand field of the DO statement, is exhausted or not. 

A6.3. Set Variables 

A set variable is a symbol to which a value is assigned during the generation of the 
code corresponding to macro instructions. Unlike an ordinary symbol, the value 
assigned to a set variable may be altered during the course of the Macro Pass. A 
set variable may be either a local or a global variable. A global variable, once 
dec lared and given a va lue by a SE T state ment, remains defined throughout the 
Macro Pass and retains the same value until that value is changed by another SET 
statement for that variable. A local variable is defined only within the macro def­
inition within which it is declared. A value assigned to a local variable within one 
macro definition does not affect its value within any other macro definition in which 
a local variable with the same na me is dec lared. 

Before a set variable may be set, it must first be declared by a GBL or a LCL 
directive. The sy mbol naming a se t variable must cons is t of four characters. 

A6.3.1. GBL Directive 

The GBL statement has the form 

LABEL OPERATION OPERAND 

not used GBL &G%xx 

where: OO:S.xx~49 

The symbol in the operand field of the GBL statement is declared to be the name 
of a global set variable. The symbol must consist of four characters, not counting 
the ampersand, and take the form shown above. 

12 



UNIVAC 9200/9300 
CARD ASSEMBLER 

A6.3.2. LCL Directive 

The LCL statement has the form 

LABEL OPERATION 

not used LCL 

where: OO:;;,.xx:;;,.49 

Rev. 1 Appendix A 
SECTION: PAGE: 

OPERAND 

&L%xx 

The symbol in the operand field of the LCL statement is declared to be the name 
of a local set variable. The symbol must consist of four characters, not counting 
the ampersand, and take the form shown above. 

A6.3.3. SET Di rective 

The SET directive is used to assign a value to a set variable. The form of the 
SET statement is 

LABEL OPERATION OPERAND 

symbol SET expression 

The symbol in the label field is the name of the global or local set variable to 
which a value is being assigned; the expression in the operand is the value to 
which the set variable is to be set. The value of the expression may range from 
o through 2 16_1. Until a GBL or LCL variable is set by a SET directive, it has 
the value zero. Once it has been set to a specific value by a SET directive, the 
set variable retains that value until it loses its declaration, or until it is set to 
another value by another SET directive. Declaring a set variable does not affect 
its value. 

A set variable may be addressed by writing its name preceded by an ampersand. 

A6,,3.4. Relational and Logical Operators 

Expressions in the operands field of machine instructions and most Assembler 
directives contain only the arithmetic operators, add and subtract. The expression 
in the operand field of a SET or DO statement may contain these arithmetic 
operators; and in combination with these, it may also contain the following: 

• Arithmetic Operators 

- multiply (*) 

• Relational Operators 

grea ter than (» 

equal (=) 

less than «) 

13 



UP-40~2 
Rev. 2 ._---

UNIVAC 9200/9300 
CARD ASSEMBLER 

• Logical Operators 

logical-and (**) 

logical-or (++) 

Rev. 1 
I Appendix A 

SECTION: 

The re la tional opera tors compare tw 0 uns igned binary numbers. The va lue of a 
relational expression is 1 if the relation is satisfied; otherwise, it is O. Thus, if 
CHAN is the name of a keyword parameter, the expression 

&CHAN=5 

PAGE: 

would have the value 1 if 5 had been specified as a value of the parameter CHAN; 
otherwise, it would have the value O. 

The logical operators treat a value as a string of 16 bits and produce a 16-bit 
value. The "logical and" operator corresponds to the NC instruction and the 
"logical or" corresponds to the OC instruction. 

The precedence re lation of the various operators in decreasing order is as follows: 

1. * 

2. +-

3. ** 

4. ++ 

5. > = < 

Parentheses may be used to override this precedence relation. 

A6.3.5. Character Values 

A character value is a string of up to 13 characters enclosed in single apostrophes. 
Apostrophes within the character string must appear as pairs of successive apostro­
phes. Ampersands within the character string must appear as paris of successive 
ampersands. 

A6.3,6. Use of Character Values 

A character value may appear as an operand of a relational operator. The following 
rules apply: 

• A numeric value is greater than a character value . 

• A character value is greater than any shorter character value. 

A series of characters enclosed by separators is considered a character value. 
The following are separators: 

* > 

** .--: 

II 

14 



UP-4092 
Rev. 2 

,...-' 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A . 15 
SEC TION: PAGE: 

Such a character value may have a maximum length of 15 (including leading and 
ending apostrophes when they occur). 

A character string in the macro definition which: 

1. Matches a set variable name except for the a bsence of the leading ampersand, 
and 

2. Is not enclosed in apostrophes, 

will be accepted as the name of that set variable. This type of character string 
must be enclosed in apostrophes to be treated as a character value. 

If the operand field of a SET or'DO statement contains an expression which could 
not otherwise be evaluated, that expression will be treated as a character value 
even though it is not enclosed in apostrophes. 

The following is an example of the use of a local set variable. If the following 
macro is in the library: 

LABEL 15 OPERATION 1i OPERAND 15 
1 10 16 

f--L' , , I , , ipl~,n,(", p, ,a , AI CU:L-L_L~--.-L __ ~.-J~LL_l __ 1 J 1 .1- _L-LL 1 -L_~.Ll 

rM-t.9 , V, E, I , I NU.LM, E, ---LL'_L_.L'l-----L-L..~~....L~_l,_L __ ~l_ j J J L _..L L1 _l ..J. _-L __ .Ll 

f--L' 
, , I , , LIC,L, , &,L, % 0,01 , , j 1 J 1 1 , , I J __ L_l .1_ 1 j 1- _L_l ~L..L.l..--LJ. 

~J,.'%I 0, ° I I , 51 E,T, , P, Cl d ,=1' ,V, E, 5/ I , , , , L-.l.._L_l 1 1 , _1 ,...J __ L~ L ~_.L..l 

~L' 
, , I I I 010 , I , &,L,%,OtOI 1 I I 1 I I 1 I I I I I I I 1.J.. J I , I _L.L..l---Ll 

__ L~ I I , Mlv,C, I 0IE1S1T,'10~G, I , , , , L_L _L-L_.L.-l _-L.---L --1-L_L_~--.L.l 

__ L' , I 

f---L~' 

I I , EIN,O,O, , , , , I , I I I I I I I I I I L-LLJj .-L _"l_.1_L __ L_L_-L~ 

I , , EIN,O, , , , , , LL-L-L I I I , , , I I I I -L-l __ 1 _"...L .....L-LJ __ l-L.-J ___ L1 

then the macro ins truction 

would produce the source code instruction 

while any other form of the MOVE macro instruction would suppress production 
of the source c ode instruction. 



Rev. 2 CARD ASSEMBLER PAGE: ,------_ ........ _--, 

The following is an example of the use of a global set variable. Assume the 
follow ing two macros a re in the library: 

15 OPERA liON 15 OPERAND 
10 16 

.~+----l~,--,--Q.l..-'--L~l CIILL-L~.LJ_~_L~-L~-.L..L._ LL...L_L.LJ. _.L1-1~ 

L_L.L_L.L L.~L __ L i.iLl 1.L.L--1 .. J 

.L........k-..!----L--,-----,--I _--'1'---'---'-----'-----'----'-1--'...1 _LL.L.....L....L...L ...... I---'------'---"----'---'­

~~.~~~~~~+-~~~~-+~~~~~~~~~~~~~~~~~~~~~~1--~1 ~~~ 

1 

I 

I 

1 

I 

...1.......--'--...L.-.L....I . ...L....l-1 I 1 1 1 1 I 1 1 l...L.ll 1.-.-1 

~_L.........L.......J'___.L....L....J--.-L_L __ L..1......L-.L..L......L_L.L I 1 1 1 

.L.....-'---''---J.--'---'---"--.......L....-II--,-J 1 J I 1 .....L-L....L..l...-L.L_L_.J......J 

If the only macro instructions in the source statements for a particular assembly 
are the following: 

in the order shown, then the following source code would be produced: 

1 1 1 I 11 1 1 1 1 I I I I I I I I 1 1 I I I I I 1 I I I I I I 1 I 1 I I 
I I I MIV1CI I D,E,S-1IJ.LL~~LI I 1 I I 1 1 1 1 I 1.-1-L......L __ L.L_L-L-.LJ 

1 I I MlvICl I o lRlUG..L....lJ)....iB.....S 1 T I I 1 I I I I I I I 1 l-.-.L_L_L......L I 1 I L....Ll 

If the only macro instructions in the source statements for a particular assembly 
are the following: 

1 L i J L 1 1 .L....L..L-.l.....L....L-.l_ ( I ( ( I ( I I I I ( I I ( 1 1 I I I I 1.....1 

I 1 1 Gill VI EI 1 1 I I I I I I I I I I I I I I I I 1 I 1 I I I I 1 I I I I 

I I 1 TIAIKI E, I ..L....L_LJ I I I 1 I I i I I I I I 1 1 I I 1 I......l. I I I ..L......L....J 



UP-4092 
Rev. 2 

--

UNIVAC 920019300 
CARD ASSEMBLER 

no source code would be produced. 

Appendix A 17 
SEC TION: PA G E: 

1£ the only macro instructions in the source statements are the following: 

ILABEL t OPERATION t OPERAND 1) 
1 

_L-L I I 

-1_ I I I 

10 16 

I I I TIAIKlEL_ f- f-n l I I I I I -1-1-l~--'--~-.l I I I I 1_ L.I _~~l_J __ 1- _1 __ 1 

I I I G11_-LYLE;L_ 
~- '--~ CI TI =~l~L~~-L_.-L.-l~_.-L---L-LL-LL. L.-l.-1-L~J. __ .L_L~ 

then the following source code would be produced. 

: : 
I I I I I I I I L I I I I I I I 

Thus, the value of a global set variable is a function of the order of the macro 
instructions in the source statements. 

A7. CONTINUATION CARDS 

Continuation cards are allowed on all cards in a macro definition except comment 
cards. 

The following rules w ill cause a continuation mark to be searched for: 

• A comma followed .by a space is detected. 

• A comma in column 71 is detected. 

• A separator in column 71 is detected (except on a PROC directive card). 

Columns 1 through 15 of a continuation card must be blank. Column 16 of a continuation 
card must contain the next valid character of the operand. 

A8. LABELS USED IN UNIVAC PRODUCED MACROS 

It should be noted that if the output of a macro pass is to be combined with user source 
code cards and assembled as one element, any symbol used as a l.abel in a source 
code instruction produced by the macro pass may not be used as a label in the user's 
own code. To avoid the necessity of the user checking a list of symbols used in 
Univac written macros, a special feature has been incorporated into the Assembler to 
allow all such symbols to incorporate a question mark as their second character. 

A9. MACRO INSTRUCTION DECK 

Regardless of the order of the macro routines in the library, the macro instruction 
deck may be in random order with respect to the library, and a particular macro may 
be referenced as many times as desired. However, the order of the macro instructions 
does determine the sequence of the source code instructions generated as output of 
the macro pass operation. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 18 

SECTION: PAGE: 

During the macro pass operation, any cards in the macro instruction deck that are not 
macro instructions referring to macros in the macro library are reproduced unchanged in 
the output source deck. 

The macro pass operation recognizes the end of the macro instruction deck by means 
of an END card which it reproduces and includes at the end of the output source code 
deck. 

AIO. MACRO PASS OUTPUT FORMAT 

The Preassembly Macro Pass can produce four types of output cards. The formats 
for these cards are presented in the following paragraphs. 

AlO.l. Source Code Card Format 

Columns 

1-4 
5 

6-10 
11 

12-67 
69-71 
72-73 

74 
75-76 
77-80 

Contents 

Label 
Blank 
Operation 
Blank 
Operand Field (No Comments) 
Card number within the macro 
Blank 
Asterisk 
Blank 
Columns 77-80 of last parameter card 

AlO.2. Macro Instruction Card Format 

Columns 

1 
2-72 

73-80 

Contents 

Asterisk 
Columns 1-71 of the input card 
Columns 73-80 of the input card 

AI0.3. Comments Card Format 

Columns 

1 
2 

3-68 
69-80 

Contents 

Asterisk 
Blank 
Comment 
Same as standard source code format 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 Appendix A 19 
SECTION: PAGE: 

A maximum of 65 characters of the original comment line w ill be preserved and all 
leading and terminal blanks will be dropped. 

AIO.4. Error Card Format 

There are certain rules of writing macro definitions which may have been broken. 
If they have been broken, a card will be punched containing the following information: 

Columns 

1 
2-4 

5 
6 

7-68 
69-80 

Contents 

* 
Blank 

E 
Error Code (see below) 
Blank 
Same as standard source code format 

The error codes are: 

CODE 

1 

3 

9 

MEANING 

Too many right or left p'arentheses occur in a DO or SET directive. 

The first character of a DO or SET directive is a separator other than 
a minus sign, a left parenthesis, or an apostrophe. 

The information to be turned out as one source code statement will 
not fit on one card. 

All. MACRO PASS CONSOLE DISPLAYS 

Display 

01FF 

1FFF 

0111 

Reason for Stop 

Macro Library is loaded. 

Current macro instruction 
deck has been processed 
(END card has been read). 

Card count check failure 
while loading the Macro 
Library. After the card 
read device has been 
cleared, the card in error 
w ill be the third card from 
the last in the output stacker. 

Action 

Press the START switch to process 
the macro instruction deck. 

Press the START switch to process 
another set of macro ins tructions. 

Remove all cards, beginning with the 
error card, from the read unit. 

Determine reason for error (shuffled 
cards, etc.) and place corrected deck 
in the input stacker. Feed one card, 
press the START switch. The next 
card to be read w ill be examined to see 
if it is in correct sequence. If it is, 
normal processing w ill continue. If it 
is not, it will be assumed that a new 
macro is being loaded. The card count 
expected w ill be card number 1 and the 
prev ious macro w ill be ignored. 



UP-
4092l 

Rev. 2 ---_._-

Display 

0122 

0177 

0100 

0133 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Reason for Stop 

Hole count check failure 
while loading the Macro 
Library. After the card 
read device has been 
cleared, the card in error 
w ill be the third card from 
the last in the output stacker. 

Not a library card. Column 
1 does not contain a 
12-3-9 punch and the card 
is not a blank card. After 
the card read device has 
been cleared, the card in 
error will be the third card 
from the last in the output 
stacker. 

An end sentine 1 card has 
been detected (1*) but the 
card preceding is not a 
'2' type card. After the 
card read device has been 
cleared, the end sentinel 
card w ill be the third card 
from the last in the output 
stacker. 

Current library will not 
fit in computer memory. 

Appendix A 20 
SECTION: PAGE: 

Action 

Remove all cards, beginning with the 
error card, from the read unit. Replace 
in read unit, feed one card and depress 
the START sw itch. If the same stop 
occurs again, the card has been in­
correctly punched. Restart with different 
library. 

Remove error card. Place all cards 
follow ing error card back in input 
hopper. Feed one card. Depress START 
switch to continue normal processing 
of the Macro Library. 

Remove all cards, beginning with the 
end sentine 1 card, from the reader. Find 
the' 2' c;ard and place in reader followed 
by rest of library deck. Feed one card and 
and depress START sw itch. If the card now 
read is a '2' card, normal processing will 
be resumed. If it is not a '2' card, the 
current macro will be destroyed and it 
will be assumed that a new macro is 
be ing proces sed. 

Remove rest of current macro (up to first 
'2' card) deck. Place rest of library back 
in reader and depress the START switch. 
Processing will resume with processing 
of a new macro which will overlay start 
of the previous one. 

Another choice is to break down the Macro 
Library deck into smaller libraries and 
reload. 



A12. LINKING THE MACRO PASS 

The Macro Pass is composed of several separately assembled parts which must be 
combined with a Linker run in order to produce a loadable Mc:cro Pass. The following 
description of how to link the Macro Pass assumes a two-pass Linker operation. The 
Macro Pass can operate in an 8K UNIVAC 9200/9300 system. 

The Macro Pass is a single-phase program. The PHASE control card to be used in 
linking the Macro Pass is as follows. 

OPERAND 

L 1 L L~L L I ILL 1 

EQU cards for the linking operation should follow the PHASE card. Following the 
EQU cards should be the relocatable object code decks of the elements making up 
the Macro Pass. 

The first element of the input deck must be the Card Load Routine. !f the online 
card reader is going to be used to load the Macro Pass, the name of the Card Load 
Routine is LD. If the Card Controller is going to be used, the name of the Card 
Load Routine is LDCC. 

The last element of the input deck must be the Macro Pass element named MP. 
The follow ing elements may appear in any order between the Card Load Routine 
and the MP elements. 

• A card read routine. This could be either the Systems Programming internal routIne 
for the online serial card reader, named XRDR, or the Systems Programming internal 
routine for the Card Controller named XRDC. If XRDC is used, then an EQU card 
of the form 

LABEL OPERATION OPERAND 

RDCN EQU n 

should be included with the other EQU cards in the input deck. In' is the number 
of the channel on which the Card Controller is located . 

• An input translation table. To allow the user to punch source code in any card 
code that he wishes, the Macro Pass uses a user-supplied translation table to 
translate from card to internal c ode. The Macro Pass assumes that the result 
of the translation is EBCDIC. The input translation table must be labeled RDTT. 
If source code cards are punched in Hollerith, then the UNIVAC supplied Hollerith­
to-EBCDIC translation table, which is named TBRD, can be used. In this case 
the following card should be included with the other EQU cards in the input deck: 

,-----------------------------------------
L.ABEL 15 OPERATION 15 OPERAND 

F ~ DLTITI I 

10 16 

IIEIQIUI I IIOI'ITIBIRIDI 



UP_40~2 
Rev. 2 ._---_. 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 Appendix A 22 

SECTION: PAC;E: 

• A card punch routine. This is either the UNIVAC supplied internal routine for 
the online serial punch, named XPCH, or the UNIVAC supplied internal routine 
for the row pun ch, named XPRW. If XPRW is used, then an EQU of the form 

___________ L_A __ B_E_L _____ +OPERATION 

CHAN EQU n 

OPERAND 

should be included with the other EQU cards in the input deck. 'n' is the number 
of the channel on which the row punch is located . 

• An output translation table. To allow the user to have the output source code of 
the Macro Pass punched in any card code that he wishes, the Macro Pass uses a 
user-supplied trans lation table to translate from internal code to card code. The 
Macro Pass expects all information to be translated from EBCDIC. The output 
translation table must be labeled PHTT. If it is desired to have the cards punched 
in Hollerith, then the UNIVAC supplied EBCDIC-to-Hollerith translation table, 
named TBPU, can be used. In this case, the following card should be included with 
the other EQU cards in the input deck: 

t OPERATION 0 OPERAND 
10 16 

Blank card separators may be placed between the elements in the input deck, as the 
Linker ignores blank cards. 

The END control card used when the Macro Pass is linked must have the operand 
fie ld: 

O,INIT 

A 12.1. Operating Ins tructions 

1. Place the Macro Pass deck, the optional CTL card, the compressed library 
deck including the final /* card, and one blank card in the reader. 

2. Load cards. 

3. Stop X'OlFF' 

4. Place macro instructions including the END card in the reader followed by 
two blank cards. 

5. Press the START switch. 

6. Stop X'lFFF'. Final stop. 

7. The punch output hopper contains the source code cards for assembly. 

8. To process another set of macro instructions return to Step 4· 

To process a second library, the Macro Pass must be reloaded, since in processing 
macro instructions, the Macro Pass overlays the routine used to load the library. 



Up-4092 

Rev. 2 
UNIVAC 9200/9300 
CARD ASSEMBLER 

AI2.2. Control Card 

Rev. 1 Append ix A 23 
SEC TION: PAGE: 

The compressed library deck may be preceded by a control card, which contains 
CTL in columns 10, 11, and 12, and a decimal number beginning in column 16. The 
number may take any value between 8191 and 32767. If a control card is present, 
the decimal number tells the Macro Pass the memory size in which it is to operate. 
If the control card is absent, or if the value specified lies outside the permissible 
range, the Macro Pass ass urnes that it is to operate in a 16K memory. 

A 13. THE COMPRESSOR 

The purpose of the Compressor is to process source coded macro definitions and from 
these create a binary compressed macro library, whi ch may then be used by the Macro 
Pass to create a source code deck from macro instructions and the Macro Library. 

The Compressor run creates a macro library from macro definitions which may then 
be used as input to the Macro Pass. One or many macro definitions may be passed 
through the Compressor at a time. 

Each macro definition is terminated by an END card and each library of macro 
definitions is terminated by an end sentinel card U* in columns 1 and 2 of the 
input card). 

The Compressor run takes all macro definitions, up to an end sentinel card, and 
produces both a printed listing and an EBCDIC, binary punched card deck. 

The printer output consists of a listing of all input cards, plus an error code wherever 
the macro definition is incorrect. At the end of each macro definition, a total macro 
error count is printed and the paper is advanced to a new page. 

The card output consists of one or more macro definitions punched in compressed 
binary format. Each binary card is numbered consecutively within the current macro 
definition. Each macro within the library causes several binary cards to be punched. 
These cards begin with a count of one, and contain an identification which is taken 
from columns 73-77 of the PROC directive of the macro definition. The output macro 
library is followed by an end sentinel card. 

AI3.L Compressed Macro Library Deck Format" 

All cards in the macro library produced by the Compressor have the following format: 

--------------------r-----------------------------------------------------------
Col umns 

1 

2 

3 

4-72 

73-77 

78-80 

Contents 

12-3-9 punch 

Checksum of columns 3-72 in binary 

Card type ID; B, C, or Z 

Variable informa tion in binary 

Identification 

Card number in Hollerith (starts with 1 for each macro) 

The card number is stored in the numeric portions of columns 78-80. These 
columns may be overpunched. 

End of library is /* in columns 1-2. 



UP-~092 
Rev. 2 

----
UNIVAC 9200/9300 
CARD ASSEMBLER I Appendix A 24 

SECTION: PAGE: 

,----~--------------~-

A13.1.1. Data Cards 

These cards contain the actual representation of the macro in the order it appears 
in the internal format. In this internal format, each macro definition is preceded by 
an eight-byte header, containing information used by the Macro Pass to process the 
macro definition when it is called. When the macro definition is processed by the 
Compressor, it leaves the first six bytes of this header filled with zeros. In the 
last card of the macro definition, it supplies the information that the Macro Pass is 
to insert in these six bytes before processing the macro definition. 

The information on a data card is as follows: 

Columns 

3 

4 

5-n 

A13.1.2. Fixups 

Contents 

B Identifies data card. 

A number which is one less than the number of 
characters of macro definition on this card. 

The actual characters of macro definition. 

This information may extend as far as column 72. 

Since GOTO references to a label of a LABEL directive may be forward references, 
all such references to a single label are chained. The operand field of a GOTO 
receives the address of the last previous reference ( relative to the address of the 
first character of the header of this macro) . The information for fixing these refer­
ences is contained on special cards after the end of the body of the macro. The 
format of these special cards is: 

Columns 

3 

4 

5 -7 2 

Contents 

C Identifies a fixup card. 

The number of items of fixup information on 
this card. 

A variable number of items of fixup information. 
Each item consists of four bytes of information. 

0,1: relative value of the label. 

2,3: relative address of las t reference to the 
label. 

Note: Fixups also occur for other types of information. Some of these may occur 
in the punched output interspersed with the data cards. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLE R 

A13.1.3. Header Specification 

Appendix A 

SECTION: PAGE: 

This is the last card of the representation of a macro. It contains the information 
required for fixing up the header. 

Columns 

3 

4 

5,6 

7,8 

9,10 

Contents 

z 

blank 

Identifies this card as a header specification. 

The total number of bytes occupied by the macro 
in internal format. 

The relative position of the start of the Name 
ta ble within the macro. 

The relative position of the start of coding 
within the macro. 

,-----------'------------------------------------
The last card of input to the Compressor must contain /* in columns 1 and 2. 
The last card of output from the Compressor is such a card. 

Several macro libraries rna y be created from one library by inserting an end 
sentinel card after any or all '2' cards. 

One macro library may be created from several by removing all end sentinel 
cards from each library and combining these decks, followed by an end 
sentinel card. 

A 13 .2. Error Indications 

When the Compressor detects an error in the source code of a macro definition, 
it flags the erroneous line of source code with a one-character flag. One or more 
of these flags may occur on a line. The flag is an indication of the error type. 
Flags and their meaning are as follows: 

® One of the following has been detected: 

A label of a line other than a macro language directive consists of more than 
four characters. 

An operation consists of more than five characters. 

® One of the following rules was broken on the operand field of a DO or SET Line: 

A right parenthesis must be followed by a space, a right parenthesis, or an 
operator. It must be preceded by a term or a left parenthesis. 

A comma may not appear. 

A left parenthesis must be preceded by an operator, a left parenthesis, or a 
space. It must be followed by a term, a minus sign, or a left parenthesis. 

25 



UP-4092 
Rev. 2 
--~---

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 Appendix A 
SECTION: PAGE: 

© A character string is greater than 15 characters, including leading and ending 
apostrophes. 

@ A label which has been defined by a LABEL directive occurs as a label of 
a nothe r line. 

® One of the following has been detected: 

In parameter references of the type Pen), a right parenthesis is missing, or it 
is not followed by a space. 

In parameter references of the type Pen), an illegal separator occurs after 
the left parenthesis. 

The operand of a NAME directive specifies a value of more than 2 16_1. 

On C' ... ' type constants, the terminal apostrophe is not followed by a 
separator. 

The explicit length specified in a DC or DS directive is less than one. 

A hexadecimal constant is greater than 16 bytes. 

A location counter reference (*) is not followed by a +, space, or comma. 

® More than ten DO's are nested together. 

@ A comma is followed by a separator in the operand field of a PROC directive. 

CD One of the following has been detected: 

Part, or all of the line has not been processed due to the occurrence of 
one of the other errors. The other error code will be printed with the I. 

An ENDO occurs without a corresponding preceding DO. The line is ignored, 

The line is not under the control of a PROC directive and will be ignored. 

® The keyword which is referenced within the macro is not defined in the PROC 
directive. 

© More than two DO labels occur ·within nested DO's. 

® An ENDO is missing. Each DO must match with an ENDO. 

® The number of positional parameters defined in the PROC directive is nonnumeric. 

@ One of the following has been detected: 

There is no operation field on this line. 

A NAME directive does not follow a PROC directive or another NAME directive. 

® The macro is incomplete. An END record does not occur before the next PROC 
directive or before the end sentinel card. 

26 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

GJ One of the following has been detected: 

Appendix A 
SECTION: 

A GOTO directive label consists of more than 4 characters. 

A keyword defined by the PROC directive is more than 4 characters long. 

PAGE: 

The name defined on the PROC directive for referencing positional parameters 
is more than 4 characters long. 

@ A GO TO references an undefined label (LABEL directive is missing). 

® Some restriction whic h the Compress or places on the continua tion of informa tion 
from one card to the next has been violated. The restrictions are as follows: 

If an input card has a continuation mark in column 72, the last character from 
this ca rd must be a separator. 

If a PROC directive card has a continuation mark in column 72, the last 
character from this card must be a comma. 

A13.3. Compressor Console Displays 

[) ISPLAY REASON FOR STOP ACTION 

1 111 A GOTO or LABEL directive The Compressor does not have 
is being processed and the enough memory space to continue 
label table is full. processing this macro definition. 

If the user desires the Compressor 
to begin the processing of another 
macro definition, he should remove 
any remaining cards of the current 
macro definition from the card read 
unit, load the next macro definition 
into the card read unit and depress 
the START switch. The Compressor 
will terminate processing of the 
current macro definition and start 
processing the next macro definition. 

1 FFF The Compressor has either Depress the START sw itch to have 
just been loaded or has the Compressor process the next 
completed processing a Macro Library. 
Macro Library. 

27 



u ..... ,,"''''' 7"VV/7~VV 

Rev. 2 
----------------~-----

CARD ASSEMBLER 
I Appendix A 

SECTION: PA<&E: 

A 13.4. Linking the Compressor 

The Compressor is composed of several separately assembled parts which must 
be combined by a Linker run in order to produce a loadable Compressor. The following 
description of how to link the Compressor assumes a two-pass Linker operation. 
The Compressor can operate in an 8K UNIVAC 9200/9300 System. 

The Compressor is a single-phase program. The PHASE control card to be used in 
linking the Compressor is as follows: 

OPERAND 

EQU cards for the linking operation should follow the PHASE card. These EQU 
cards define the following labels as indicated: 

- BLNK - 64 if a 63/ character print bar is to be used when running the Compressor; 
otherwise, 16. 

FONT - Zero if a 63/character print bar is to be used; otherwise, 128. 

PRTR - Fifteen if a 63/character print bar is to be used; otherwise, zero. 

PRTT - Zero if a 63/ character print bar is to be used; otherwise, 0, TBPR. 

The EQU cards should be followed by the relocatable object code decks of the 
elements making up the Compressor. The first element of the input deck must be 
the Card Load Routine. If the on line card reader is going to be used to load the 
Compressor, the name of the Card Load Routine is LD. If the Card Controller is 
going to be used, the name of the Card Load Routine is LDCC. 

The last element of the input deck must be the Compress or element, named CP. 
In between the Card Load Routine and CP elements, the following elements may 
appear in any order: 

• A card read routine. This could be either the online seria 1 card reader routine, 
named XRDR, or the Card Controller routine, named XRDC. If XRDC is used, 
then an EQU card of the form: 

LABEL OPERATION OPERAND 

RDCN EQU n 

should be included with the other EQU cards in the input deck, where en' is the 
number of the channel on which the Card Controller is located. 

:.!l:S 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SECTION: 

• An input translation table. To allow the user to punch source code in any card 
code that he wishes, the Compressor uses a user-supplied translation table to 
translate from card to internal code. The Compressor assumes that the result 

PAGE: 

of the translation is EBCDIC. The input translation table supplied must be 
labeled RDTT If source code cards are punched in Hollerith, then the UNIVAC 
supplied Hollerith to EBCDIC translation table, whi ch is named TBRD, can be 
used. In this case, an EQU card of the form: 

LABEL 15 OPERATION 15 OPERAND 
10 16 

~~~~~~+4~~~~~~~~~~~~~~~~~~_~~~~I~ 
.~~~~~~~~~~~~~~~~~~~~~~~.~~~~I~ 

should be included with the other EQU cards in the input deck. 

• A card punch routine. This is either the online serial punch routine, named 
XPCH, or the row punch routine, named XPRW. If XPRW is used, then an EQU 
card of the form: 

LABEL OPERATION OPERAND 

CHAN EQU n 

should be included with the other EQU cards in the input deck, where en' is the 
number of the channel on which the row punch is located. 

• The Systems Programming internal routine for the printer, XPRT. 

• If the PRTR EQU cards has been used to specify a value of TBPR, the UNIVAC 
supplied EBCDIC to 48- character-print-code translation table, which is named 
TBPR. 

Blank card separators may be placed between the elements in the input deck, 
as the Linker ignores blank cards. 

The operand field of the END control card used when the Compressor is linked 
must be: O,INIT 

29 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER 

A13.5. Operating Instructions 

1. Place the Compressor deck in the reader. 

2. Home paper; clear the reader, punch, and printer. 

3. Load the Compressor deck. 

4. Stop X'lFFF'. 

I Appendix A 
SEC TION: . 

5. Place the macro definition source cards in the reader. Follow these cards 
by an end sentinel card and two blank cards. 

6. Depress the START switch. 

7. Stop X'lFFF' 
Punch output hopper contains the Macro Library. 

B. To process another library, return to Step 5. 

A13.6. Control Card 

When the Compressor is being run from initial load, the macro definition source 
card deck may be preceded by a control card, which contains CTL in columns 
10, 11, and 12, and a decimal number beginning in column 16. The number may 

PAGE: 

take any value between B191 and 32767. If a control card is present, the decimal 
number tells the Compressor the memory size in which it is to operate. If the control, 
card is absent, or if the value specified lies outside the permissible range, the 
Compressor assumes that it is to operate in a 16K memory. 

30 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SEC TION: PAGE: 

APPENDIX B. INPUT /OUTPUT CONTROL 
SYSTEM (IOCS) 

B 1. GENERAL DESCRIPTION 

The Input/Output Control System (IOCS) provides the user with tested input/output 
lroutines to control the data which are the input or output of programs written in Assem­
bler language. IOCS consists of two parts: 

(a) the input; output routines themselves, which are macros and genera ted as a result 
of macro calls. The macros used to generate the input/output routines are called 
declarative macro instructions. 

(b) the macro instructions used by the worker program to communicate with the input/ 
output routines. These macro instructions are called imperative macro instructions. 

B 2. GENERAL USAGE 

The user is provided with a complete set of routines for controlling all input/output 
operations required by the system. Since not every source program requires every 
routine ,or its variable functions, Univac Division of the Sperry Rand Corporation 
provides a Preassembly Macro Pass program which in effect is a generator capable 
of adapting each input/output routine to the requirements of the user. 

The Preassembly Macro Pass first reads declarative macro instructions made by the 
user describing the input/output operations required by the application. Based on these 
instructions the Preassembly Macro Pass selects the required routines from the macro 
library, develops them for the specific application, and punches them into cards in the 
Assembler language format. They may then be assembled as part of the source program 
or assembled separately and linked with the user program at linker time. This function 
is provided by the UNIVAC 9200/9300 Card Linker program. 

The user communicates with the IOCS routines through use of the macro calls (imperative 
macro instructions) in his problem program. Typical imperative macro instructions are 
OP.EN, CLOSE, GET for an input file, and PUT for an output file. These imperative 
macro instructions are related to the input/output routine to which they refer by means 
of a file name. The same file name appears as a parameter in all of the imperative 
macro instructions referring to one file and also appears as the label of the declarative 
macro instruction generating the input/output routine for the file. 

1 



Rev. 2 
U~ll' """ 7I.VV/70l1VV 

CARD ASSEMBLER 

B3. DEFINITION STATEMENTS (DECLARATIVE MACROS) 

I i\ppenalx.t:S 
SECTION: 

The programmer must use definition statements to describe to the Preassembly Macro 
Pass the characteristics of the particular input/output file to be processed. These 
statements are then used by the macro pass to specialize the particular input/output 
routine to meet the requirements of the file and the program. 

f5AGE: 

Each input/output device required by the program must be defined by rr~ans of these 
definitions. A definition statement is herein defined as consisting of one Header Entry 
card and a number of Detail Entry cards. In a definition statement, each header and 
detail entry card must have a character punched in column 72, except the final detail 
entry card which must not contain this continuation character in column 72. 

B3.1. Header Entry Card 

L. 

A header entry card is the first card of a definition statement and requires three items of 
information. The first is the symbolic name of the file assigned by the user and is entered 
in the label field of the card. The symbol may consist of as many as four characters and 
must adhere to the Assembler language rules for labels. The second item is written in the 
operation field and must be one of the following: 

1. DTFCR 

2. DTFPR 

3. DTFRP 

4. DTFCC 

5. DTFRW 

DEFINE THE FILE FOR THE CARD READER 

DEFINE THE FILE FOR THE PRINTER 

DEFINE THE FILE FOR THE READ/PUNCH 

DEFINE THE FILE FOR THE CARD CONTROLLER 

DEFINE THE fILE FOR THE ROW READ/PUNCH 

The third item is a keyword parameter specification, described in Section B3.2, 
and is entered in the operand field. 

For example, the header entry card for a reader routine with a file named "MSTR" 
would appear as follows: 

LABEL OPERATION OPERAND 

MSTR DTFCR keyword = specification 

B3.2. Detail Entry Cards 

The detail entry cards are used to define parameters such as mode of processing, buffer 
area name, and print bar. 

Each detail entry card is composed of a keyword immediately followed by an equal (=) 
sign which is in turn followed by one specification. A comma must immediately follow 
the specification for each detail entry card in the definition statement except for the final 
detail entry card. A given detail entry must be used only once in each definition statement. 
Entries which do not apply to a particular application should be omitted. The summary of 
detail entry cards listed in Appendix B4, gives the optional as well as the required 
detail entry cards for a given peripheral device. The format for a detail entry card, 
with the continuation character in column 72, is as follows: 

______ L_A_B_E_L ______ ~----O-P-E--RA--T-IO-N----~--------O-P-E-R-A-N--D I 72 

sym bol DTFxx keyword=specification, Ix 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B 3.2.1. Block Size Entry (BKSZ) 

Appendix B 
SEC TION: PAGE: 

This entry must be provided for all printer files. The keyword is BKSZ. Any number 

3 

from 1 through 132 may be specified, but the number should be no larger than the number 
of prin t posi tions available. The user-defined work area where print im ages are made 
available to IOCS must contain the same number of bytes as is specified for BKSZ. 
IOCS left justifies the print images on the printed line and supplies spaces for printing 
in the remaining unspecified print positions. The keyword and specification for 132 
print positions have the following form in the operand field: 

BKSZ=132 

B3.2.,2. Channel Entry (CHNL) 

This entry is used to define the general purpose channel to which the UNIVAC 1001 
Card Controller or the Row Read/Punch is connected. The keyword is CHNL; the 
allowable specification is one of the general purpose channels 5 through 12. The 
keyword and specification for a channel entry for general purpose channelS have 
the following form: 

CHNL=5 

B3.2,,3 .. Control Entry (CNTL) 

This entry must be provided for all files to which a CNTRL macro instruction is 
directed in the main program. 

The keyword is CNTL. The specification is YES. 

CNTL=YES 

CNTL is a detail entry card within a definition statement. CNTRL is an imperative 
macro and its use is described in a later section. 

B3.2.4. End-of-File Address Entry (EOFA) 

This entry is used to specify the symbolic name of the end-of-file routine provided 
by the user. The keyword is EOFA and the specification is the symbolic name of 
the user end-of-file routine. The format for an end-of-file routine labeled END is as 
follows: 

EOFA=END 

If the image to be delivered is an end-of-file card, IOCS jumps unconditionally to the 
user end-of-file routine when a GET macro instruction is issued for an input file. 

An end-of-file card con tains a slash (/ [0-1 punch]) in column one and an asterisk in 
column two. (In actuality, the card system IOCS routines recognize an end-of-file card 
by means of the slash in column one alone.) An end-of-file card must be followed by 
other cards in the input hopper to avoid a hopper empty indication before the end-of­
file card is sensed. The following cards may be special if the user has some purpose 
for them (such as an overlay to be loaded); otherwise, their content is not significant 
and any cards the user wants may be used (such as blank cards or more end-of-file 
cards). 



U ..... 1'A\.. 7~VV/7~VV I f\ppenalX 0 

________ C_A __ R_D __ A_S_S_E_M __ B_L_E __ R ______________ ~ ____________ ~.~s~E~c~T_IO~N~~: ______ ~P~GE_: __________ ~ 

For the online card reader, when control is transferred to the user end-of-file address, 
the end-of-file card image is in the work area and the image of the card immediately 
following the end-of-file card is in the input area. 

The EOFA parameter is not applicable to the UNIVAC 1001 Card Controller. The 
user must test for his own end-of-file. 

83.2.5. The Function Entry - UNIVAC 1001 Card Controller (FUNC) 

This entry specifies the symbolic name of a one-byte user-defined area where the 
hexadecimal value for the required function is stored before each GET or PUT 
macro instruction. 

The keyword is FUNC. The specification is the label of the one byte user area, and 
for a function area labeled CCXF, has the following form: 

FUNC=CCXF 

83.2.6. Allowable Functions for the UNIVAC 1001 Card Controller 

The following table illustrates the allowable hexadecimal values which may be 
stored into the user-defined one-byte area before each GET or PUT macro instruc­
tion is issued. Once set, the area may remain the same or be altered as desired. 

HEXADECIMAL VALUE 

08 

09 

00 

01 

02 

OA 

24 

14 

FUNCTION SPECIFIED 

Transfer and Read Primary 

Transfer and Read Secondary 

Transfer Primary 

Transfer Secondary 

Transfer Primary and Secondary 

Transfer and Read Primary and Secondary 

Send Data to 1001 (1001 code only) 

Receive Data from 1001 (1001 code only) 

The GET macro is used with all functions but "Send Data to 1001". With this func­
tion a PUT macro is used. 



UP-4092 
Rev. 2 

. UNIVAC 9200/9300 
CARD ASSEMBLER 

B3.2.6.1. Transfer-and-Read Functions 

Appendix B 
SECTION: 

The previous image read into the UNIVAC 1001 Card Controller is transferred 
into the UNIVAC 9200/9300 memory and another image is read into the UNIVAC 
1001. The function for the first GET executed after opening a Card Controller 
file should be a transfer-and-read function which, in con trast to the general 
case, causes the first card in the feed specified to be read and transferred, 
and the second card to be read. 

B3.2.6.2. Send-and-Receive Data Functions 

These functions are not available on the standard board. However they are pro­
vided for by 'IOCS in the event the user wishes to wire his own board for 
a particular application. 

No translation is provided for these functions and they must be performed in 
UNIVAC 1001 mode only. 

The user work area must contain one byte more than is required for the data to 
be sen t or received. The extra byte must be the first byte of the area and must 
contain the number of characters to be transmitted. This first byte must not be 
in UNIV AC 1001 mode, but must contain a binary number. 

PAGE: 

Typically, the data sent to the UNIVAC 1001 contains some function character the 
-modified board is to interpret, as well as data to be used in the execution of the 
function. 

For example, assume the board has been modified to interpret the code of a hexa­
decimal value of 77 as a search primary for a name. The following steps implement 
this function: 

(1) Set function entry area to a send-data function. 

(2) Store hexadecimal 77 into the second byte of the work area. 

(3) Store name (assume 6 characters) in work area bytes 3 through 8. 

(4) Store a binary 7 (6+1 function) into first byte of the work area (the number 
of characters to be transmitted). 

(5) Issue a PUT macro instruction. 

When the UNIVAC 9200/9300 program receives the data the UNIVAC 1001 has 
developed as a result of performing this search, the following steps are taken: 

(1) Set the function entry area to a receive-data function. 

(2) Store the number of characters to be received in the first byte of the work 
area. 

(3) Issue a GET macro instruction~ 

The data will be received in byte 2 and the following bytes of the work area. 
Typically, the data received from the UNIV AC 1001 contains some status 
character (find/no-find, for example) and the data requested by the preceding 
Q~n~_~~t~ fnnrHnn_ 

5 



UP 4092 I ~~~YDA~S~~Ev~~7~~; I Appendix B. b __ ~v. 2~ _________________ , _______________________________ ~ .... ___ .... ________ ~._S_E_C_T_IO_N_: _______ ~_P_A_G_.E_: __________ __ 

The nature of any function or status characters embedded in data to be sent or 
received and the location of these characters in the data message is a user 
responsibility. The IOCS system makes no attempt to control the information 
content of data sent or received. 

B3.2 .. 7. Input Area Entry (IOA1) 

This entry specifies the name of the input buffer area. In the UNIVAC 9200/9300 
Card System, it is used only for the reader file. The keyword is IOAL The speci­
fication is the symbolic name of the input buffer area assigned to the device. This 
symbolic name must be the symbol used by the programmer in the DS statement de­
fining the area in his main program. 

IOA1=CARD 

In this instance, CARD is the symbolic name of the input buffer area. The symbolic 
name assigned by this entry is never referenced directly by the programmer. Images 
are delivered by the input/output routines into a specified work area. 

B3.2,,8. Input Area Entry (INAR) 

. This entry is used to specify the sym bolic name of the user-defined input buffer area 
when the read feature of the read/punch unit is required. The keyword is IN AR. The 
specification is the symbolic name of the area assigned to the read/punch unit as 
defined by the programmer. The operand for a read/punch buffer area labeled INPC 
has the following form. 

lNAR=INPC 

B3.2 .. 9. Input Translate Table Entry (ITBL) 

This entry specifies the symbolic name of a translate table located in the main 
gram by which all records of a given input file are to be translated. 

The keyword is ITBL and the specification is the symbolic name assigned by the 
programmer to the table. The operand for a translate table labeled CODE has the 
following form: 

ITBL=CODE 

B3.2" 10. Mode Detail Entry (MODE) 

This entry is used to specify the mode of the input/output file and is required as 
part of the definition statement for all devices but the printer. The keyword of the 
entry is MODE. The allowable specifications are: 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

OPERAND FORM 

MODE=BINARY 

MODE=CC 

MODE=1001 

MODE=TRANS 

MODE=TRANSTC 

Rev. 2 
Appendix B 

SEC T10N: PAGE: 

REMARKS 

For cards read and/or punched in column 
binary mode. 

For cards read and/or punched in compressed 
code (80-byte I/O area required). 

For cards read in UNIVAC 1001 mode with~ 
out translation (Card Controller only) (80-
byte I/O area required). 

For cards to be read and/or punched trans­
lated by the table specified by the ITBL 
or OTBL entry. 

F or Card Con troller only, if translation of 
UNIVAC 1001 code is required through the 
translation table specified by the ITB L en try. 

There are two translation modes which may be defined with the UNIV AC 1001 Card 
C on troller . 

• TRANS, implies all cards read into the UNIVAC 9200/9300 from the UNIVAC 1001 
are translated from compressed code by the translate table specified by the ITBL 
detail entry card . 

• TRANSTC, implies all cards read into the UNIVAC 9200/9300 from the UNIVAC 
1001 are translated from 1001 code by the translate table specified by the ITBL 
detail entry card. This mode is used when combined reading (both primary and 
secondary in one function) is required, since basic UNIVAC 1001 memory cap~ 
ability is exceeded if two images are read in other than 1001 code. 

For the online serial card reader operating in translated mode, card images are read 
into the input area in compressed code, moved to the work area, and translated there. 
For example, when control is transferred to the user end~of-file address, the image 
of the end~of-file card is in the work area in translated mode, and t he image of the 
card immediately following the end-of~file card is in the input area in compressed 
code. 

For the Card Controller operating in translated mode, card images are read into the 
work area in compressed code and are translated in the work area. 

B3.2.11. Output Area Entry (OUAR) 

The entry specifies the symbolic name of the output buffer area as defined in the 
main program when the punch function of the punch, read/punch unit is required. 

The keyword is OUAR. The specification is the symbolic name assigned by the 
programmer in the DS statement defining the area. The operand for an output area 
labeled OUPC has the following form: 

OUAR =OUPC 

7 



UP-4092 I UNIVAC 9200/9300 Rev. 1 Appendix B 8 
, __ ~~v. ~ ________ C_A_R_D_A_S_S_E_M_B_L_E_R ________ ..I-______ .-..I._s_E_C_T_IO_N_: ___ .-..I._P_A_G_E: _____ _ 

There is no need to define an output buffer area for the printer, since IOCS uses 
the print buffe r area in restricted memory. 

B 3.2.12. Output Translate Table (OTBL) 

The entry specifies the symbolic name of the translation table located in the problem 
program through which all output images are to be translated. 

The keyword is OTBL. The specification is the symbolic name assigned to the 

table. The operand for a translation table labeled CRDC has the following form: 

OTBL=CRDC 

B 3.2.13. Overlap Entry (ORLP) 

This entry specifies that the read/punch unit file is to be processed in an overlap 
mode and applies only to the read/punch unit when used as both a reader and a 
punch. The entry is omitted when information is to be punched in a card which has 
been read previously. 

The keyword of this entry is ORLP and the specification is YES. The operand has 

the following form: 

ORLP =YES 

B 3.2.14. Print Bar Entry (FONT) 

The entry specifies the print bar the program expects to find in the user configura­
tion. The keyword is FONT and the allowable specifications are 48 or 63. The 
operand for a 63-character print bar has the following form: 

FONT = 63 

When using a UNIVAC 9300 System with a 16-character print bar, FONT=48 should 
be specified. Numeric printing must be specified in the CNTRL macro instruction 
(B6.7.4); an alphanumeric print may damage the print bar. 

B3.2.1S. Printer Advance Entry (PRAD) 

This entry is used in conjunction with printer files and enables the programmer to 
specify a standard advance of one or two lines. 

The keyword is PRAD. The allowable specifications are 1 or 2. The operand for 
double spacing has the following form: 

PI~AD = 2 

B 3.2.16. Punch Error En try (PUNR) 

This entry specifies that automatic error recovery, where possible, is to be provided 
in the online serial or row punch routine and applies only to these devices. If it is 
not specified, all punch errors bring the computer to a stop. 

The keyword is PUNR. The allowable specification is YES. The operand has the 
following form: 

PUNR =YES 



UP-4092 
Rev. 2 

B3 .. 2.17. Printer Overflow Entry (PROV) 

This entry must be provided if the user wants any special action as a result of 
form overflow on the prin ter. If the printer overflow entry is not provided, printer 
spacing proceeds as directed by the printer advance detail entry and/or the CNTf(L 
macro specifying skipping or spacing. 

The keyword of the entry is PROVo The specification may be either YES or a label. 
The operand has the following form: 

PROV = YES 
or 

PROV = label 

If the specification is YES, an automatic skip to channel 7 (home paper) in the 
paper tape loop is provided in response to form overflow. 

If the specification is a label other than YES, control is transferred unconditionally 
to the specified label in response to form overflow. The label specified should be 
the symbolic name assigned to the user overflow routine provided to perform the 
desired form overflow action. 

The user indicates the point at which form overflow is to occur by a channell punch 
in the paper tape loop. The form overflow punch (channell punch) is recognized 
when spacing paper, either in response to a CN TRL macro specifying spacing before 
printing or in response to a PUT macro after printing a line. (The form overflow punch 
is not recognized during a printer skip operation.) 

Response to recognition of a form overflow punch may be illustrated by the following 
sequence of operations: 

(1) 

(2) 

(3) 

(or 

(or 

(or 

RET 

PUT 
CNTRL 

Process 

PUT 
CNTRL 

Process 

PUT 
CNTRL 

Process 

FILA 
FILA,SP,m,n mFO) 

FILA 
FILA 

FILA 
FILA 



UP-~092 
Rev. 2 

,1'1<0., ___ .. _... ___ _ 

UNIVAC 9200/9300 
CARD ASSEMBLE R I 

Appendix B I 10 
______ , __ ~ ______________ ~~S~E~C~T~I~PAGE: ______ __ 

If the form overflow punch is recognized during the spacing associated with (1), 
then after (3) is executed, the form overflow action specified is taken. If the action 
is to transfer control to a user subroutine, then control goes to that subroutine 
rather than to the label RET. The address of the label RET is in general register 14 
when control is transferred to the form overflow subroutine. 

B 3.2.18. Type of File Entry (TYPF) 

This entry indicates whether the file is an input, output, or a combined file. It is 
applicable only to the UNIVAC 9200/9300 Read/Punch Unit. 

The keyword of the entry is TYPF. The allowable specifications are given below. 

OPERAND FIELD COMMENTS 

TYPF = INPUT Reading only 

=OUTPUT Punch in g only 

=COMBND Reading and punching 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B4. SUMMARY OF DETAIL ENTRY CARDS 

OPERANDS FIELD 

KEYWO 

0::: 0::: -I ::I: UJ UJ 
~ou 0 I-

D 
ALLOWABLE « Z O:::«Z 

SPECIFICATION UJ 0::: UJUJ::l 
0::: (L (l)O:::(L 

R 

BKS' z 1-132 X 

CHN L 5 thru 12 

CNT L YES X X 

EOF A Symbol ic name of user X X 
end-of-fi Ie routine 

FUN c Symbolic name of user 
defined I-byte are a where 
function is stored 

IOA1 Symbolic name of user X 
defined input buffer area 

INAR Symbolic name of user X 
defined input buffer area 

ITBL. Symbolic name of user X X 
defined input translate 
table 

MOD E See Appendix B,3.2.10 X X 

OUA R Symbolic name of user X 
defined output buffer area 

OTB L Symbolic name of user X X 
defined output translate 
table 

ORL P YES X 

FON T 48 or 63 X 

PRO V YES 0 r s y m bo I i c n a m e 0 f X 
user form overflow routine 

PRA D 1 or 2 X 

PUN R YES X 

TYP F INPUT X 

OUTPUT X 

COMBND X 

Rev. 1 Appendix B 11 
SECTION: PAGE: 

APPLI ES TO 

0::: 
'--...::1: Ol~ CU o:::z-I 3:«z «DO REMARKS OUJ::l uUo::: o:::a::(L 

I-

Required for online printer 

---.-
X X Required for UNIVAC 1001 

~~-.---<--."---.-----. -- -

X X Required if CNTRL macro is used 

-
X Appl ies to input files only 

-_. ---
X Req u i red by Card Contro Iler 

If binary image requested, 160-byte area 
requ ired 

----
X Required if reading in the read/punch file 

---'"' ---
X X Required if translation of input file desired 

_ ... _------ -- -

X X 
-,--

X Required for punch files and read/punch files 

_ .. _----------

X Requ ired if translation of output file desired 

--.- -

X 

Spec ifies 48- or 63-cha racter pr int font 
-

Requ ired if form overflow action is to be taken 

---------_ .. _-- -- -

Specifies standard print advance 

--.--.. --.- -
X Automatic error recovery desired 

X Reading only 

X Punching only 

X Reading & punching 
_. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER ______ ...&.. ______ ....&.I_S_E_~_~_;O,:~diX B I PAGE< 12 ___ _ 

85. DEFINITION STATEMENT EXAMPLES 

The followin g are examp les of defini tion statem ents. 

85.1. Online Serial Punch File Example Definition 

--------------_ .•. _,."._ .... _, ,. ""._-_ ... _-----
LABEL ti OPERATION ti OPERAND COMMENTS 

10 16 72 80 
-

~. I DIL..E.LRLE"'f CLN L.L_LL 1_ ... I LX J ; JL_1 1 _1 

LLL I I ~L __ M;() J{ _LL_Li_.1_ 

L...LL.J.~ I-- ~_L.....L.J._ .. 
0, T! Bl L ==!MI TC;Cj~ 1 J i l LL_L.....L....L. ____ L ___ '5 _: __ L..L.l~L ' 

I I I I I 1 I I , 0 1 l!L~:..~.'_=i~.Y~~'....L __ .;.___ I I 1 . L J. X ..l... I I ! I I 

LLL I I _.1..._L __ 1. T. 'Y '! P F =) O! U. TI P: Ul T j ! ! L 1 I !. 1 _ L 1..;.,_L..1.....l ____ L_1 

B 5.2. I~eader File Example Definition 

LABEL ti OPERATION ti OPERAND COMMENTS 
10 16 72 80 

~I DIT,FIC,R ~LOI F,Aj =1 E, t-ILD[I 1_1 1 I. _L 

L..L....Lt J 1 .L..!....-L... I J01 All. 

LI I I I I .L-L..l. I ,Tl.!?..L~' ~:lf1.1_~;_c;,~.J _ L _L _L .:.. __ LL_.J_...LLL--+-=-X-+ ___ L ___ LI __ LI_JI_~_LI __ c ..... __ ll 

I I I I , 1 , I I M,01D 1 E, I , L I I I I I I I I I I I 

B 5.3.. Printer File Example Definition 

LABEL ti OPERATION ti OPERAND COMMENTS 
10 16 72 80 

=:=====;==r==;-=-·"··;"-·-"·~=Fr=---c:·;::· ,-:--=. -::;::.=:.;:=== 

L 1 [1 X 1 j 1 1. . .1 _L_1 

_l ___ L..1-.1_ . ___ ~~ l?l:=1~L_L..!_J __ l .J._..l .LL..1.....L_.L_L..l_ X _L.J_...l...l._L_LJ. 

11 I PI R! 0, "I =1 VI EJ 5 I I I ii, I I I I I I X I I I I I I • 



Rev. 2 
VI'I ... "' .... ,.VV/ ,VVV 

CARD ASSEMBLER 

B 5.4.. Online Serial Read and Punch File Example 

LABEL 11 OPERATION 11 
10 16 

Bs.s.Card Controller File Example 

LABEL 11 OPERATION 15 

l"l.PP'I;llUIA D 

SECTION: 

72 

PAGE: 

80 

10 16 72 80 

B6. IOCS MACRO INSTRUCTIONS (IMPERATIVE MACROS) 

This section describes the format, function, and use of the 10CS macro instructions 
used to communicate with the input/output routines and to control their operations. 
These symbolic instructions are used in the problem program to provide the communication 
IH~cessary with the 10CS routines previously defined by means of the definition statements 
to the Preassembly Macro Pass. The handling of records into and out of I/O areas is 
performed by 10CS exclusively. Each file is proces sed in the manner dictated by the 
definition statement. 

Source programs using 10CS may not contain any Assembler I/O instructions. 

The format of the macro instruction follows the rules of the Assembler coding format. 
The macro verb is the operation, and the operand field may contain up to four param­
eters as required by the particular macro. All macros may have a label. The impera­
tive macro instructions are not handled by the Preassembly Macro Pass but are 
processed by the Assembler itself. 

B6.1. GET Macro Instruction 

The GET macro makes the next record available in the user-defined work area or 
transfers control to the end-of-file address entry upon recognizing an end-of-file card 
in an input file. 



UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: 

14 
PAGE: 

UP-ll092 
Rev. 2 

,~----- ------------------------------------------~------------~------------~--------------

The GET macro has the following form 

LABEL OPERATION OPERAND 

GET filename, workarea 

where "filename" is the symbolic name defined in the label field of a DTF(XX) 
header entry card. 

"workarea" is the symbolic name of the user-defined storage where the 
record is made available for output. 

B6.2. PUT Macro Instruction 

The PUT macro transfers a record from the work area for printing, punching, or sending 
to the UNIV AC 1001 and immediately frees the work area for problem program use. 

The PUT macro has the following form 

OPERATION OPERAND 

PUT filename, workarea 

where "filename" is the symbolic name defined in the label field of a DTF(XX) 
header entry card. 

"workarea" is the symbolic name of the user-defined storage where the 
record is made available for output. 

B 6.3. Work Area Considerations 

The imperative macro instructions, GET and PUT, require as a second parameter the 
symbolic name of a work area for transferring records from and to input/output buffer 
areas. Input/output areas (those assigned by IOA1, INAR, and OUAR detail entry 
cards) may not be used as work areas as they are used by IOCS to maintain standby 
reserve areas. 

The programmer must therefore provide, through the use of OS statements, work areas 
where records are processed. These work areas may be common to more than one file 
as efficiency demands, but must be as large as the largest record to be processed 
therein. 

B6.4. Programmin g. Considerations - Read/Punch Combined File 

When the Overlap detail entry card is used for a read/punch combined file, the follow­
ing rule applies: 

A PUT macro instruction causes punching into the card which follows the one 
made available by the last GET macro instruction, because the card made avail­
able by the last GE T macro is already past the punch station when the PUT 
macro is given. 

When the Overlap detail entry card is omitted for a read/punch combined file, a PUT 
macro instruction causes punching into the card mace available by the last GET macro 
instruction. It should be noted that in this nonoverlap mode, the read/punch unit is cycled 
on PUT's only; therefore, successive GET's must be separated by at least one PUT. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B 6. S. OPEN Macro Instruction 

Appendix B 
SEC TION: 

15 
PAGE: 

This macro instruction initializes the file and must be issued before any other macro 
instruction pertaining to the s arne file. 

The OPEN macro has the following form: 

OPERATION OPERAND 

OPEN filename 

where "filename" is the symbolic name defined by the user in the label field 
of the DTF(XX) header entry card. 

After a file has been OPENed. it should be CLOSEd before reOPENing the same file. 
In such a case, the input/output routine is set back to an initial state. As as example: 

1. For an input file, the card image delivered in response to the first GET executed 
after a second OPEN macro is the image immediately in front of tbe read station 
at the time the second OPEN macro is given. 

2. For an output file, the first item transmitted after the second OPEN macro is the 
item delivered by the first PUT executed after the reOPEN. 

B6.6. CLOSE Macro Instruction 

This macro instruction insures the proper closing of all files. The CLOSE macro has 
the following form: 

OPERATION OPERAND 

CLOSE filename 

where "filename" is the sym bolic name defined in the label field of the DTF(XX) header 
entry card. 

B 6.7. CNTRL Macro Instruction 

The CNTRL macro is used by the programmer for printer spacing, printer skipping, 
stacker selection, numeric printing, and specifying the number of columns of card 
punching. 

B 6.7 .1. Printer Spacing 

The CNTRL macro for printer spacing has the following form: 

OPERATION OPERAND 

CNTRL filename,SP ,m,n 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER 

16 
SECTION: PAGE: ~ ___________ -h __ _ i 

Appendix B 

-------'"-------'---,-----"'--

where "filename" is the symbolic name of the file defined in the label field of 
the DTFPR header entry card. 

SP specifies spacing. 

m is the number of lines to space the form before printing (m=O, 
1 or 2). 

n is the number of lines to space the·form after printing (n=0,1 or 2). 

The programmer may omit "m" or "n". If no CNTRL macro instruction specifying delayed 
spacing is given before the next PUT macro for the printer file, the printer advances the 
standard amount as specified in the PRAD detail entry card of the definition statement. 

If more than one CNTRL macro specifying paper movement after prin ting is given 
between PUT macros to the printer file, only the last CNTRL macro is effective. 

B6.7.2. Printer Skipping 

The CNTRL macro for printer skipping has the following form: 

OPERATION OPERAND 

CNTRL filename ,SK,m ,n 

where "filename" is the symbolic name of the file defined in the label field of the 
DTFPR header entry card. 

SK specifies skipping 

m is the num ber of the tape channel the carria ge is skipped to 
before printing (m=1,2 .... 7). 

n is the number of the tape channel the carriage is skipped to 
after printing (=1,2 .... 7). 

The programmer m"ay omit "m" or "n". Between PUT macros, only the last CNTRL 
macro specifying paper movement after printing is effective. 

Due to timing conditions, throughput is maintained at the best possible level if 
delayed, spacing and, skipping are used where possible. 

B 6.7.3. Stacker Select 

The CNTRL macro for selecting other than the' normal 'stacker on the serial punch, 
read/punch, or for selecting any stacker on the card controller has the following 
form: 

OPERATION t- OPERAND 

CNTRL~~~i1ename ,SS,n 

where "filename" is the symbolic name of the file defined in the label field of 
the header entry card. 

SS specifies stacker select. 

n is the stacker num ber where the card is to be selected on the 
card controller only. Allowable values are specified in the 
followin g table. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLE R 

Stacker 1 

Specification Cn) 1 

FEED 

PRIMARY 

2 3 C 

2 3 4 

Rev. 1 Appendix B 
SECTION: PAGE: 

SECONDARY 

1 2 3 C 

5 6 7 8 
--

NOTE: If this CNTRL macro is not given for the UNIVAC 1001, primary feeds are 
selected to PI and secondary feeds to Sl. 

The CNTRL macro for Card Controller stacker selection operates under the following 
rules. The card made available by a transfer-and-read from a particular feed is selected 
on the next transfer-and-read from that feed. The card made available by a transfer 

17 

only from a particular feed is selected on the second following transfer-and-read from 
that feed. If the user issues a CNTRL macro after receiving a particular card image, the 
CNTRL macro governs the stacker selection for that particular card, regardless of the 
sequence of operations following that CNTRL macro. If no stacker is selected from a 
card in the manner described here, the card will be put in the normal stacker, which is 
PI for the primary feed and SI for the secondary feed. 

The CNTRL macro instruction for selecting a stacker on the read/ punch should 
be executed before the PUT for the card to be selected, or in the case of reading 

only, after the GET for the card to be selected. If the CNTRL macro instruction 
is to be used for selecting a stacker when both reading and punching, and if 
stacker selection is done on the basis of information in the card read, (he read/ 
punch routine must be operated in the no overlap mode. 

B6.7.4. Numeric Printing 

The CNTRL macro instruction for numeric printing enables the programmer to maintain 
maximum printing speeds. Once set, it remains set until and unless another numeric 
print CNTRL macro is given specifying that alphanumeric printing is requested. 

The CNTRL macro instruction for numeric printing has the following form: 

OPERATION OPERAND 

CNTRL filename,NP,m 

where "filename" is the symbolic name of the file as defined in the label field 
of the DTFPR header entry card. 

NP specifies a ch ange in the mode of prin tin g. 

m is mode of printing requested. 

m == 0, alphanumeric printing required. 

m = 1, numeric printing required. 

NOTE: Alphanumeric printing is assumed by lacs if no CNTRL macro is given. 

The CNTRL macro instruction should be used only in conjunction with a 
48- or 16-character print bar. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER I Appendix B 

SECTION: PAGE: 

B6.7.5. Specifying Columns to be Punched 

The CNTRL macro instruction enables the programmer to vary or alter the number of 
columns punched in the punch file. This function enables the punch to run at maximum 
speed for the particular application. Once set by the macro, the number of columns 
punched remains the same unless or until another such macro is given. If no CNTRL 
macro is given, IOCS assumes a full card is required. 

The CNTRL macro for punching has the following form 

OPERATION OPERAND 

CNTRL filename, NC,n 

where "filename" is the symbolic name of the file defined in the label field of 
the DTFRP header entry card. 

NC identifies a number-of-columns specification, 

n is the number of columns to be punched (an even number 
1,4,6 ... 80). 

B6.8. Summary of UNIVAC 9200/9300 Card System IOCS Imperative Macros 

DEVICE ADDRESSED 

LABEL 
SERIAL ROW 

OPERATION OPERANDS READER PRINTER READ/ CARD 

18 

READ/ 
PUNCH PUNCH CONTROLLER 

OPEN fi lena me X X X X X 
.-

GET fi lena me , workarea X X X X 

PUT filename, workarea X X X X 

OPTIONAL CLOSE fi lename X X X X X 
--

CNTRL filename, SP, m, n X 

CNTRL filename, SK, m, n X 

CNTRL filename, NP, m X 

CNTRL fi lename, NC, n X X 

CNTRL filename, SS, n X X X 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B 7. PROGRAMMING CONVENTIONS - PROGRAM REGISTERS 

Appendix B 
SEC TION: PA.GE: 

A user routine may be required in the main source program that is accessed by IOCS 
when certain checking features are required (for example, printer overflow). IOCS 
automatically stores the program re-entry address in register 14 when the branch to 
the user routine occurs. The user routine is therefore required to provide the necessary 
return linkage to the main source program. If the user routine uses register 14, it must, 
therefore, preserve and restore register 14 before terminating. This must also be done 

19 

if any macro instruction is executed by the user routine, since all macroS use program 
registers 14 and 15. If register 14 is not preserved, the re-entry address is lost. Register 
15 may also be used by the user routine and it need not be preserved. However, its con­
tents are altered by the execution of any macro instruction. 

B 8. GENERAL PROCEDURE SUMMARY FOR USING 10CS 

The program mer defines his input/ outpu t control rou tines and their associated files 
through the use of definition statements presented to the Preassembly Macro Pass 
program. The generated I/O routines are then either assembled as part of the main 
source program or assembled separately and linked with the main program at load 
time. If the I/O routines are assembled independently, the user must supply 
appropriate USING directives; no USING directives are generated by 10CS. 
During the execution of the main program, input/ output functions are accomplished 
through the imperative macro calls. 

B 9. STORAGE REQUIREMENTS 

The IOCS routines require the use of EXEC 1. The following two charts show the 
storage requirements for the IOCS routines. 

DEVICE MODE OF STORAGE 
OPERATION REQUIREMENT 

EXEC I - 180 

Reader - 150 

Printer - 330 

Serial Read/Punch - -

Read - 190 

Punch - 260 

Read/Punch No overlap 330 

Read/Punch Overlap 340 

Card Controller - 720 

Row Read/Punch - -
Read - 360 

Punch - 400 

Read/Punch No overlap 530 

Read/Punch Overlap 560 



UP_409~ 
Rev. 2 ,-----

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: 

MACRO INSTRUCTION STORAGE REQUIREMENT 

OPEN 4 

GET 6 

PUT 6 

CNTRL 8 

CLOSE 4 

B 10. APPI~OXIMATE TIMES FOR IOCS ROUTINE EXECUTION 

The following chart shows the approximate execution times (in milliseconds) required for 
the various IOCS macro instructions on the UNIV AC 9200. The UNIVAC 9300 execution 
times are one half the UNIVAC 9200 execution times. 

DEVICE MODE OF TIME REQUIRED 
OPERATION (IN MILLISECONDS) 

GET PUT 
JRe ader* - 5 -

Pr inter - - 4 

Se rial Read/Punch - - -

Read* - 5 -

Punch* - - 5 

Read/Punch* No overlap 5 5 

Read/Punch* Overlap 5 5 

Ca rd Controller* -- 5 -

Ro w Read/Punch - - -

Read* - 7 -

Punch* - - 7 

Read/Punch* No overlap 5 7 

Read/ PU:1ch* Overlap 7 8 

*l'ranBlation time included. 

20 
PAGE: 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER I I Appendix B 

SECTION: 

B 11. CARD READER DEFINITION STATEMENTS 

LABEL OPERATION 

filename DTFCR 

ITBL is required if MODE = TRANS. 

OPERAND 

EOFA = location of the user end-of-file 
routine, 

72 

x 

lOA 1 = location of the input buffer area, X 

ITBL = location of the input translate X 
ta ble, 

MODE = BINARY 

or 

MODE = CC 

or 

MODE = TRANS 

EOFA, lOA 1 and MODE must always be present. 

PAGE: 

The input buffer area and word area are each 80 bytes long, if MODE = CC or TRANS, 
and 160 bytes long if MODE = BINARY. 

At the time control is unconditionally transferred to the end- of-file routine, both the 
end-of-file card and the following card are in the output stacker. 

B 11.1. Preparing the Card Reader 

1. Empty the read wait station. 

2. Place the reader online. 

3. Place the input deck in the hopper. 

4. Depress the reader CLEAR switch. 

5. Feed one card into the wait station. 



UP-4:rL92 
Rev. 2 

,---- -
UNIVAC 920019300 
CARD ASSEMBLER 

B11.2. Error Indications 

STOP 

RDR ABN 
(Program 
Loop) 

6100 
RDR ABN 

6140 
RDR ABN 

6140 
RDR ABN 

6180 

6104 

REASON FOR STOP 

U nit placed offline 
while in the process 
of reading a card. 

Offline 

Not ready, hopper 
empty, stacker full. 

Misfeed - card has 
not properly entered 
the wait station. 

Card jam or Photo­
cell check error -
card did not progress 
thru read station 
properly. 

Interrupt pending 

____________ ~ ____ R_e_v_._._1 ____ ~I_s_E_c_:_:._:_~_n_d_i_x, ~GE' 22_' ____ __ 

RESULTING CONDITION 

Recoverable 

Recoverable 

Recoverable 

Recoverable 

Recoverable 

Not an error 

OPERATOR ACTION 

Put online to continue. 

Put online. 
Press START to continue. 

Correct condition. 
C lear reader abnormal. 
Press START to continue. 

One card, the card in wait 
station, must be placed at 
bottom of input deck. 
Feed one card. 
Clear reader abnormal. 
Press START to continue. 

Two cards g the last card to 
go to stacker and card in 
wait station, must be placed 
at bottom of input deck. 
Feed one card. 
Clear reader abnormal. 
Press START to continue. 

No action is required by 
operator. This display can 
occur only in conjunction with 
some other display. 

-------~--------------------~ ----------------------~------------------------------

NOTE: 

• The first two characters (61) displayed identify the stop as a Reader stop. 

• The next two characters represent the status byte. 

• The status byte may reflect a combination of bit settings; therefore, the operator may 
have to take corrective action for more than one error condition before attempting to 
continue. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 23 
SECTION: PAGE: 

B12. PRINTER DEFINITION STATEMENTS 

LABEL OPERATION 

filename DTFPR 

OPERAND 

BKSZ = n, 

CNTL = YES, 

OTBL = location of the output 
translate table, 

FONT = 48, 

or 

FONT = 63, 

PROV = YES, 

or 

72 

x 

x 

x 

x 

x 

x 

PROV = location of the form overflow X 
routine, 

PRAD 1 

or 

PRAD = 2 

where: n:: the number of bytes to be moved from the work area to the printer buffer 
area for prin ting (1-132). If BKSZ is omitted, this is assumed to be 132 
bytes. 

CNTL is required only if the CN TRL macro instruction for s pacing or skipping 
is used by the problem program. 

OTBL is required only if MODE = TRANS. 

PROV is required only if form overflow is not to be ignored. 

If FONT is omitted, the 63-character print bar is assumed. 

If PRAD is omitted, normal s pacing is set to 1. 

B 12.1. Preparing the Printer 

1. Install the proper paper loop for the program to be run. 

IOCS assumes 001 = form overflow position. 

111 = home paper position. 

If the paper loop is absent, the paper will space one position and the CNTRL SK 
option in the IOCS routine should not be accessed. 



UP-4092 L 
Rev. 2 
--

UNIVAC 9200/9300 
CARD ASSEMBLER I 

Appendix B 

SECTION: PAGE: 

,--------------~------------~--- ,----------~-

Rev. 1 24 

2. Install the proper paper for the program to be run, and adjust it to the top of the 

page (matching loop). 

3. Place the printer online. 

4. Depress the printer CLEAR switch. 

B 12.2. Error Indica tions 
.-r--------------.,.----------.-------

STOP 

Program 
Loop 

6301 

6302 

6304 

6308 
PRNT ABN 

6320 

6340 
PRNT ABN 

6380 

NOTE: 

REASON FOR STOP 

Offline 

Paper low 

Form overflow 
001 sensed at paper 
loop station, while 
single or double 
spacing. 

Interrupt pending 

Wrong bar setting 
in XIOF. 

Memory overload 

Paper runaway 

A bnormal or not 
ready 

----.------

RESULTING CONDITION 

Recoverable 

Recoverable 

Not an error 

Not an error 

Recoverable 

Recoverable 

Recoverable when 
paper position can 
be reestablished 

Rec overable 

OPERATOR ACTION 

Put online to continue. 

Correct condition. 
Press START to continue. 

No action requ ired by 
operator. This display can 
occur only in conjunction 
with some other dis play. 

No action required by 
operator. This display can 
occur only in conjunction 
with some other display. 

Insert correct bar. 
Set bar switch appropriately. 
Press START. 

Press START to continue. 

Check paper loop. 
Replace with proper loop. 
Clear printer abnormal. 
Press START to conti.nue. 

If form position has been lost, 
go to RESTART. 

Correct abnormal condition. 
e lear printer abnormal. 
Press START to continue. 

• The first two characters (63) displayed identify the stop as a Printer stop. 

• The next tw 0 characters represent the status byte. 

• The status byte may reflect a combination of bit settings; therefore, the operator may 
have to take corrective action for more than one error condition before attempting to 
continue. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B12.3. Paper Low 

Rev. 1 Appendix B 25 

SECTION: PAGE: 

On encountering a paper low condition, the Printer IOCS routine continues to permit 
printing until paper is homed. At this point, a paper low display is made. To assure 
proper paper positioning, a page from the new stock should be placed directly over 
the page in the printer on which the computer stopped. 

B13. SERIAL PUNCH DEFINITION STATEMENTS 

LABEL OPERATION 

Filename DTFRP 

OPERAND 

CNTL=YES, 

MODE=BINARY, 

or 

MODE=CC 

or 

72 

X 

X 

X 

MODE=TRANS, X 

OUAR=location of the output buffer X 
area, 

OTBL=location of the output translate X 
table, 

PUNR=YES, 

TYPF=OUTPUT 

X 

CNTL is required only if the CNTRL macro instruction for stacker selection or number 
of columns to be punched is used by the problem program. 

OTBL is required if MODE=TRANS. 

PUNR is required only if automatic error recovery (try five times) is desired for punch 
check errors. 

If TYPF is not specified, output will be assumed. 

MODE and OUAR must always be present. 



UNIVAC 9200/9300 
CARD ASSEMBLER 

I Appendix B 
SECTION: PAGE: 

B14. SERIAL READ DEFINITION STATEMENTS 

LABEL OPERATION 

filename DTFRP 

OPERAND 72 

CNTL=YES x 

EOF A=location of the user end*of*file X 
routine, 

INAR=location of the input buffer area, X 

ITBL=location of the input translate X 
ta ble, 

MODE=BINARY X 

or 

MODE=CC, 

or 

MODE=TRANS, 

TYPF=INPUT 

X 

X 

CNTL is required only if the CNTRL macro instruction for stacker selection is used 
by the problem program. 

ITBL is required if MODE::TRANS. 

EOFA, INAR, MODE and TYPF must always be present. 

26 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

R'ev.l Appendix B 27 
SECTION: PAGE: 

B15. SERIAL READ/PUNCH DEFINITION STATEMENTS 

LABEL OPERATION 

filename DTFRP 

OPERAND 72 

CNTL=YES, X 

EOFA=location of the user end-of- X 
file routine, 

INAR=location of the input buffer X 
area, 

ITBL=location of the input translate X 
table, 

MODE=BINARY, X 

or 

MODE=CC, X 

or 

MODE=TRANS, X 

OUAR=location of the output buffer X 

area, 

OTBL=location of the output translate X 
table, 

ORLP=YES, 

TYPF=COMBND 

X 

CNTL is required only if the CN TRL macro ins truction for s tacker selection or 
number of columns to be punched is used by the problem program. 

ITBL and OTBL is required if MODE=TRANS. 

ORPL is required when not punching into the same card made available by the last 
GE T macro instruction. 

EOFA, INAR, MODE, OUAR and TYPF must always be present.. 

B 15.1. Buffer and Work A rea Size 

The input buffer area and work area are each 80 bytes long if MODE=CC or 
TRANS, and are 160 bytes long if MODE:.:BINARY. 

The output buffer area and work area lengths are each equal to the number of 
columns to be punched, if MODE=CC or TRANS, and are each equal to two times 
the number of columns to be punched, if MODE=BINARY. 



UNIVAC 9200/9300 
CARD ASSEMBLER 

B15,,2. End-of-File 

I Appendix B 
SECTION: 

If the Serial Read/Punch is being used for reading only, or if combined reading 
and punching is being done with overlap at the time control is transferred to the 
end-of-file routine, the end-of-file card is in the output stacker. If combined 
reading and punching is being done in a no overlap mode, the end-of-file card is 
in the punch wait station. 

B15.3. Preparing the Serial Read/Punch 

1. Empty the wait stations. 

2. Place the Serial Read/Punch online. 

3. Place the deck in the hopper. 

4. Depress the Serial Read/Punch CLEAR switch. 

5. If Reading alone or } 

Reading and Punching 
Feed 1 card into wait station. 

6. If Punching alone Feed 2 cards into wait station. 

28 
PAGE: 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B15.4. Error Indications 

STOP REASON FOR STOP 

I 
PNCH ABN U nit placed offline 
(Program while in the process 
Loop) of punching or read-

ing a card. 

6200 Offline 

I 
PNCH ABN 

6202 Hopper empty or 
PNCH ABN stacker full. 

6204 Interrupt pending 

6208 Photocell check 
PNCH ABN error indicates 

improper recog-
nition of card 
presently at punch 
wait station. 

J 

6220 Punch check error 

PNCH ABN 

6280 Interlock - casework 
PNCH ABN is open. 

6280 Misfeed 
PNCH ABN 

I 
6280 Stacker jam, punch 
PNCH ABN entry, exit check. 

L 
NOTE: 

Rev. 1 Appendix B 29 

SECTION: PAGE: 

--
i RESUL TING CONDITION OPERATOR ACTION 
~ 

Recoverable Put online to continue. I 
I 

1 

I 
i 

Recoverable Put online. I 
C lear punch abnormal. 

I 

Press START to continue. 

Recovera ble Correct condition. Clear 
punch abnormal. Press I STA:RT to continue. 

Not an error No action required by 
operator. This display can 
occur only in conjunction 
with some other display. 

Recoverable only if Two cards - card at punch 
using read alone wait and card at read wait 

station must be placed at 
bottom of input deck. 
Feed one card. 
C lear punch abnormal. 
Press START to continue. 

Recoverable only if Error card in error stacker. 
using punc h alone Clear abnormal condition. 

Press START to continue. 

Recovera ble Correct condition. I 
Clear punch abnormal. 
Press START to continue. 

Recovera ble Clear punch abnormal. 
Fill unit stations. I 
Press START to continue. I 

Recoverable only Error card is last card to I 
for punch alone go to error stacker. Clear I abnormal condition. 

Press START to continue. I 
--1 

II The first two characters (62) displayed identify the stop as a Serial Read/Punch. stop. 

II The next two characters represent the status byte. 



UP~-092 
Rev. 2 ,----, -

UNIVAC 9200/9300 
CARD ASSEMBLER 

,I Appendix B 
SECTION: 

--------~------------~--,-------~----------------

30 
PAGE: 

B16. UNIVAC 1001 CARD CONTROLLER DEFINITION STATEMENTS 

LABEL OPERATION OPERAND 72 

filename DTFCC CNTL=YES, x 
FUNC=location of the 1001 function, X 

MODE=BIN ARY, X 
or 

MODE=CC, X 
or 

MODE=1001, X 
or 

MODE=TRANS, X 
or 

MODE=TRANSTC, X 

ITBL=location of the input translate table, X 

CHNL=5 thru 12 

CNTL is required only if the CNTRL macro instruction for stacker selection is used 
by the problem program. 

ITBL is required only if MODE=TRANS or TRANSTC. 

MODE=1001, must be used with UNIVAC 1001 functions '14' and '24'. 

MODE=BINARY, CC, or TRANS must not be used with UNIVAC 1001 functions '02' 
or 'OA'. 

FUNC, MODE, and CHNL must always be present with header entry card DTFCC. 



UP-4092 
Rev. 2 

UN IV AC 9200/9300 
CARD ASSEMBLER 

B 16.1. Work A rea Size 

Rev. 1 Appendix B 31 
SECTION: PAGE: 

The work area size is a function of the Card Controller function and the mode in 
which the file is to be read. The work area size is shown in bytes on the following 
chart: 

------------

MODE 

CC or 1001 or 

FUNCTION TRANS TRANSTC BINARY 

Transfer Primary 80 80 161 

Transfer and Read Primary 80 80 161 

Transfer Secondary 80 80 161 

Transfer and Read Secondary 80 80 161 

Transfer Both -- 160 ---

Transfer and Read Both -- 160 -- .. -
- ----

B 16.2. Preparin g the Card Con troller 

(1) Ensure that the unit is online and that the power is on. (The online switch 
for the Card Controller is housed in the lower left area at the back of the 
Printer Processor Cabinet.) 

(2) Ensure that the ON -LINE Standard Interface Panel (plugboard program) is 
mounted. 

(3) Set the MODE switch to CONT; set the alternate switches (AL T 1 to ALT 4) 
off. 

(4) Empty the ready and wait stations. 

Press: CLEAR 
UNLOAD PRI (3 times) 
UNLOAD SEC (3 times) 

(5) Place the card decks in the input hopper face down, nine edge first. 

(6) Rotate the display mask switch until Step 2 appears in the indicators. 
Place the first card in the ready station by pressing: 

LOAD PRI 
LOAD SEC 
CLEAR 
START 
RUN 

(7) Ensure tha t Step 2 light is on. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLE R 

Rev. 1 

,._--,--_ ........ _- I Appendix B 
SECTION: PAGE: 

B16.3. Error Indications 

When the Card Controller IOCS routine detects an error, it displays the function 
on which the error occurred, except for the 650F display. Possible displays are 
as follows: 

9200/9300 
DISPLAY 1001 FUNCTION 9200/9300 MOD E 

6500 Transfer Primary 1001 or TRANSTC 
6501 Transfer Secondary 1001 or TRANSTC 
6502 Transfer Both 1001 or TRANSTC 
6504 Transfer Primary Binary, CC, or TRANS 
6505 Transfer Secondary Binary, CC or TRANS 
6508 Transfer Primary and Read 1001 or TRANSTC 
6509 Transfer Secondary and Read 1001 or TRANSTC 
650A Transfer Both and Read 1001 or TRANSTC 
650C Transfer Primary and Read BINARY, CC, or TRANS 
6500 Transfer Secondary and Read BINARY, CC, or TRANS 
6514 Receive Data 
6524 Send Data 
650F Not Applicable Not Applica ble 

The 650F display indicates either a device address parity error has occurred or 
the Card Controller is offline. Check the special adapter offline switch located 
in the lower left area at the back of the Printer Processor Cabinet. Press the 
START switch on the UNIVAC 9200/9300 to reissue the XIOF. If the problem 
persists, there may be a hardware malfunction. 

For any Card Controller function display other than the 650F, if the cause of the 
error cannot be determined from the indicator lights on the Card Controller and from 
the function displayed on the UNIVAC 9200/9300 console, the IOCS routine can be 
requested to display the Card Controller sense byte in an attempt to determine the 
cause of the error. The request for this second display (STOP 2) is made by keying 
a hexadecimal 01 into location 4 and then pressing the START switch. 

B16 . .3.1. STOP 1 (65xx) 

The first two characters (65) of the display identify the stop as a Card Controller 
stop. The next two characters (xx) represent the Card Controller function being 
executed. 

The operator should note the stop and check the 9200/9300 panel lights. The 
Card Controller indicator lights then determine the specific type of error. 

Table B-1 lists the possible Card Controller displays at STOP 1. Indication for 
the display is given either in the control panel lights or in the display mask 
indica tor lights. 

3.2 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 Rev. 1 Appendix B I 
CARD ASSEMBLER SECTION: , ___ -----J..-_,~ _ ____I___., __ ,_ PAGE: 

"-
CARD 

CONTROLLER REASON FOR RESUL TING 

DISPLAY STOP CONDITION OPERATOR ACTION 

PRJ or SEC MJSF Hopper empty or empty Recoverable Correct condition (replace damaged card if 

ready station due to necessary). Press PRior SEC LOad, RUN on 

damaged card in input the Card Controller. Press START on 9200/9300 

hopper. control panel. (XIOF will be reissued.) 

STKR FULL Stacker assoc iated Recoverable If STEP=02,03,04: Correct condition. 
Press CLEAR,START,RUN on 

the Card Controller. 
Press START on 9200/9300 panel. 

If STEP;t02,03,04: Correct condition. 
Press RUN on the Card Controller. 
Press START on 9200/9300 panel. 

(XIOF will be reissued.) 

P or SW JAM Card jam at wait 1 Recoverable Remove the jammed cards by opening the back frame. 

or wait 2 station only if stacker Repair damaged cards. Manually place them in the 

selection for appropriate stackers. Follow instructions for 

jammed cards is STKR FULL. 
known by 

operator. 

Otherwise, non- Go to RESTART. 

recoverable 

STKR JAM Card jam after wait Recoverable Remove the jammed cards by opening the back frame. 

2 station. only if stacker Repair damaged cards. Manually place them in the 

selection for the appropriate stacker. Follow instructions for 

jammed cards is STKR FULL. 
known by 
operator . 

Otherwise, non Go to RESTART. 
recoverable 

P or S FW JAM Card jam at Read Recoverable Card at wa it 1 must be reread. Remove cards from 
ready station and wait 1 station by opening back 
frame. Place the 2 cards in proper input hopper. 

Press PRJ or SEC LOAD, RUN on 100l. 

Press S TART on 9200/9300 control panel (XIOF 

wi II be reissued). 

PRGIVI HALT Possible program Nonrecoverable Take control counter reading and a memory dump. 

error. Go to RESTART to try again. 

STOP switch Switch depressed Recoverable Follow instructions for STKR FULL. 

lighted 

INTERLOCK (OFF Door or frame open Recoverable Follow instructions for STKR FULL. 

switch lighted) 

POWER OFF (OFF Power dropped Recoverable in Check the wall plug and circuit breaker at the rear 

switch lighted) some cases of the Card Controller. Press the ON switch and 
momentarily hold it on. The ON indicator should 
I ight and the OFF indicator should be extinguished. 

If power dropped at the very beginning of a program, 

continue the program. (XIOF will be reissued.) 

If power dropped while a program was running, go 

to RESTART. 

'''---Table 8-7. UNIVAC 1001 Card Controller IOCS Initial Error Indications 



Upa4092 
Rev. 2 ------ -

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 

I 
Appendix B 

• SECTION: PAGE: 

34 

1316.3.2. STOP 2 (65yy) 

When the cause of an error cannot be determined from the STOP 1 display, the 
Card Controller sense byte can be displayed by keying a hexadecimal 01 into 
location 4 and then pressing the START switch. The first two characters (65) of 
the display identify the stop as a Card Controller stop. The next two characters 
(yy) represent the Card Controller sense byte. 

The sense byte may reflect a combination of bit settings. Therefore, corrective 
action may have to be taken for more than one error condition before an attempt 
can be made to continue. 

Table B-2 lists the sense byte displays for STOP 2. It also gives the reason for 
the stop and the action required to correct the error. 

--
REASON RESUL TING 

STOP 2 FOR STOP CONDITION OPE RA TOR ACTION 

6580 Unspecified command or Recoverable in some Press START to reissue order. If it 

--

bad parity in command cases fai Is again, take control panel reading 
sent to 1001 contr 01. and memory dump. Suspect program 

error or possible hardware malfunction. 

6540 Operator intervention Recoverable in some Check INTERLOCK/POWER OFF 
required. cases switch plus mask position 6 in order 

to determine action required. 

6520 Parity error on BUS OUT Recoverable in some Press START to reissue order. If 
check. cases error persists, suspect possible 

hardware malfunction. Go to RESTART. 

6510 Data parity error causing Nonrecoverab Ie Go to RESTART. 
a selective reset to 1001 
control or interface error 
or address error or device 
address parity error on 
BUS IN. 

6508 or Control logic flip-flop set Nonrecoverable Should never happen. Take control 
6504 (primarily intended to be counter reading and memory dump. 

used in conjunction with 
failure-finding programs). 

6502 Inhibit status Not an error No action required by operator. This 
display can occur only in conjunction 
with some other display. 

Table B-2. UNIVAC 1001 Card Controller IOCS Requested Error Indications 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

B17. ROW READ/PUNCH DEFINITION STATEMENTS 

Rev. 1 Appendix B 35 
SECTION: PAGE: 

The following sections describe the Row Read/Punch definition statements for punch 
only, read only, and read/ punch operation. 

B 17 .1. Punch Only 

LABEL OPERATION 

filename DTFRW 

OPERAND 

CHNL=5 thru 12, 

CNTL=YES, 

MODE=BIN ARY, 

or 

MODE=CC, 

or 

72 

x 
X 

X 

x 

MODE=TRANS, X 

OU AR =location of the output buffer X 
area, 

OTBL=location of the output translate X 
table, 

TYPF=OUTPUT 

CNTL is required if the CNTRL macro instruction is used by the problem program. 

OTBL is required only if MODE=TRANS. 

If TYPF is not specified, output will be assumed. 

CHNL, MODE and OUAR must always be present. 



UP 4091 I UNIVAC 920019300 Rev. 1 Appendix B 36 
,,_~~~-v. 2 ~ ________ C_A_R_D_A_S_S_E_M_B_L_E_R _______ -,-______ ...... _s_E_C_T_IO_N_: ___ -'-_P_A_G_E_: ____ _ 

B17.2. Read Only 
-_._._------,------------ - ---------------_._--------------_._------.----

LABEL OPERATION 

filename DTFRW 

OPERAND 72 

CHNL=S thru 12, X 

CNTL=YES, X 

EOF A=location of the user end=of=file X 
rou tine, 

INAR=location of the input buffer area, X 

ITBL=location of the input translate X 
table, 

MODE=BINARY X 

or 

MODE=CC, 

or 

MODE=TRANS, 

TYPF=INPUT 

X 

X 

CNTL is required if the CNTRL macro instruction is used by the problem program. 

ITBL is required if MODE=TRANS. 

CHNL, EOFA, INAR, MODE and TYPF must always be present. 

B17.3. Read and Punch 

LABEL OPERATION 

filename DTFRW 

OPERAND 72 

CHNL::S thru 12 x 

CNTL=YES, X 

EOF A=location of the user end-of-file X 
routine 1 

INAR::location of the input buffer area, X 

ITBL=location of the input translate X 
table, 

MODE=BINARY, X 

or 

MODE=CC, X 

or 

MODE=TRANS, X 

OUAR=location of the output buffer arp.a, X 

OTBL=location of output translate table, X 

ORLP=YES, 

TYPF=COMBND 

X 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER Rev. 2 

Appendix B 37 
SEC TION: PAGE: 

CNTL is required if the CNTRL macro instruction is used by the problem program. 

ITBL and OTBL are required if MODE=TRANS. 

ORLP is required when not punching into the same card made available by the last 
GET macro instruction. 

CHNL, EOFA, INAR, MODE, OUAR and TYPF must always be present. 

B 17.4. Buffer and Work Area Size 

The input buffer area and work area are each 80 bytes long if MODE=CC or TRANS, 
and are each 160 bytes long if MODE=BINARY. 

The output buffer area and work area lengths are each equal to the number of columns 
to be punched if MODE=CC or TRANS; and are each equal to two times the number 
of columns to be punched, if MODE=BINARY. 

B1.7.s. End-of-File 

POSITION OF EOF CARD WHEN GET TRANSFERS TO EOFA 

u 
READ ALONE C 

READ & PUNCH OVERLAP C 

READ & PUNCH NONOVERLAP B 

o 
« 
UJ 
0:: 

B 

B 

A 

EOF CARD is in work area (translated if required). 

Following card, Ag is in the input buffer area INAR. 

A 

A 

EOF 

J: 
t) 
z 
::::> 
0.. 

EOF 

EOF 

Next card, B, is in the Row Punch read buffer verified for Read alone and for Read & Punch 
overlap. 

B17.6. Preparing the Row Read/Punch 

(1) Place the unit offline. 

(2) Make certain that the AC/DC light is on and the INTL/READY light is on. 

(3) Preload the punch track with blank cards by pressing manual FEED followed 
by CLEAR until a blank card is fed into the output stacker. (Jam indications 
will occur after each of the first three feeds.) 

(4) Place the input deck into the input hopper, face down, 9-edge leading. 

(5) If reading only or reading and punching, feed one card. 

(6) If punching only, feed three cards. 

(7) Press CLEAR on the row read/punch. 



UP~4092 
Rev. 2 ._---

UNIVAC 9200/9300 
CARD ASSEMBLER Rev. 2 

(8) Place the unit online. At this time: 

• The AC/DC light must be on. 

• The INTL/READY light must be on. 

• A II other lights must be off. 

NOTE: In order to clear error lights on the unit: 
(1) Correct the error condition at the unit. 
(2) Press: 

(a) OFFLINE 
(b) CLEAR 
(c) OFFLINE 

B17.7. Error Indications 

STOP 

Looping on AS, 
47 ins truction 

640F 

6401 

6402 
INTL light on 
and no error 
lights on 

6402 
error light on 

REASON FOR STOP 

Unit nonoperational (in 
OPEN coding). 

Unit nonoperational. 

Hole count error. 

Parity error on data 
transfer during execu­
tion of a LOAD or 
UNLOAD XIO F. 

HOPPER empty. 
CHIP box full. 
STKR full. 
STKR jam. 

RESULTING CONDITION 

Recovera ble. 

Recovera ble. 

Recovera ble 
for punch alone. 

Recovera ble. 

Recoverable. 

Appendix B 38 
SECTION: PAGE: 

OPERATOR ACTION 

Correct the condi tion to con­
tinue. 

Correct the condition. Press 
START to continue. 

The error card and following 
card are diverted to the error 
stacker. 
Press START to repunch last 
two ca rds and continue. 
(NOTE: if PUNR=YES, this 
stop will not occur as IOC S 
w ill provide au toma tic 
recovery. ) 

A11 cards in wait stations are 
assumed to be good. 
Press START to continue. 
(XIOF will be reissued.) 
If the card at the post punch 
station is bad or if the error 
persis ts, suspect a hardwa re 

malfunction. Restart. 

Correct the condition. 
Press OFF LINE, CLEAR, 
OFF LINE. 
Press START to continue. 
(XIO F w ill be reissued.) 



UP-4092 
Rev. 2 

STOP 

6402 
INTL light off 

6402 
A ] AM or 
B JAM 
Light on 

UNIVAC 9200/9300 
CARD ASSEMBLER 

REASON FOR STOP 

One of following con­
ditions: 

• Punch assem bly and 
upper card feed 
raised or improperly 
seated. 

• Read s ta tion brus hes 
not in place. 

• Protective covers 
not in place. 

Misfeed or card jam. 

Appendix B 39 

Rev. 1 
SEC TION: PAGE: 

RESULTING CONDITION OPERATOR ACTION 

Recovera ble. Correct the condi tion. 

Recoverable in 
some cases for 
read only or 
punch only. 

The INTL, light must be ON. 
Press OFF LINE, CLEAR, 
OFF LINE. 
Press START to continue. 
(XIOF will be reissued.) 

READ ONLY: 

Remove the cards from the 
input hopper. 
Place the unit offline. 
Open the punch frame. 
Remove all cards from the 
track. 
Repair the damaged card. 
Place the cards in the input 
hopper. 
Replace the rest of the deck 
in the input hopper. 
Press CLEAR on the unit. 
Feed three cards. 
Close the punch frame. 
Press CLEAR, OFF LINE. 
Press START to continue. 
(XIOF will be reissued.) 

If nonrecovera ble, res tu rt. 

PUNCH ONLY: 

The card at the post punch 
s ta tion is ass umed to be in 
error. 
Place the unit offline. 
Open the punch frame. 
Remove all cards from the 
track and discard. 
Press CLEAR on the unit. 
Feed three cards. 
Close the punch frame. 
Press CLEAR, OFF LINE. 
Press START to con tinue. 
(XIOF will be reissued.) 

If nonrecoverable, restart. 



UP~4092 
Rev. 2 

' .. ----
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 40 of 

SECTION: PAGE: 

STOP REASON FOR STOP 

6404 Device end. 

6408 Channel end. 

6410 Busy. 

6440 Status Modifier. 

RESUL TlNG CONDITION 

Not an error. 

Not an error. 

Not an error. 

Not an error. 

OPERATOR ACTION 

No action is requ ired by the 
opera tor. These displays can 
only occur in conjunction 
with some other error.. 

Power OFF Power dropped during 
execution of program. 

Nonrecoverable. Res tart. 

B18. IOCS GENERATION 

The Preassem bly Macro Pass for a card reader, serial punch, 8K UNIVAC 9200/9300 
configuration allows approximately 2700 bytes for macro library storage. IOCS macro 
library routines require approximately the following number of bytes of storage: 

--------,.-------------------------...., 

ROUTINE 

Reader (DTFCR) 

Printer (DTFPR) 

Serial Read/Punch (DTFRP) 

Card Controller (DTFCC) 

Row Punch (DTFRW) 

NUMBER 
OF BYTES 

600 

1200 

1800 

2200 

2400 

B19, ADDITIONAL KEYWORD PARAMETER SPECIFICATIONS 

Certain additional keyword parameter specifications have been built into the DTFCR, 
DTFRP. and DTFRW macro definitions to provide functions designed primarily for 
Univac Systems Programming use. These parameters are available and can be used by 

the user if he so desires. These parameters are as follows: 

• SENT=X 'value' - The IOCS routines test for standard end-of-file sentinels 
(slash in column 1 of the input cards). The above parameter may be used if 
something other than the standard sentinel is to be tested. If MODE=CC or TRANS, 
the IOCS routine tests word zero in the input buffer against X'34'. If MODE=BINARY, 
the IOCS routine tests for X'OC'. Only one byte is tested; therefore, the value 
specification must be only one byte in length. 

• SENT=NO - This parameter may be used if no EOF sentinel test is to be made 
by the IOCS routine. Coding for the EOF test will be eliminated during the macro 
pass if SENT=NO is present. 

• INCR=m - This parameter may be used if the user expects the EOF sentinel in a 
column other than column l. The specification m is a variable, numeric quantity 
indica ting column n-l. 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 Appendix C 
SECTION: PAGE: 

APPENDIX C. CARD LOAD ROUTINE 

C 1. GENERAL 

The Card Load Routine for the online card reader and the 80-column UNIVAC 1001 Card 
Con troller consists of the followin g sections of coding: 

H. Bootstrap coding to read the Load Routine into memory. Before transferring control 
to the Load Rou tine, the bootstrap coding sets the EBCDIC mode and enters the 
processor state. 

b. Coding to clear a selected portion of memory to a selected character. This coding 
is executed before the Load Routine itself is read into memory. If the area specified 
to be cleared includes the Load Routine and its read area, they are not cleared. 

c. Coding to load a program in Assembler output format into the internal storage of the 
UNIVAC 9200/9300. Th~ Load Routine performs a hole count check of each card 
used. Upon encountering a Transfer Card (a card with Y in column 2) signifying 

termination of loading, the Loader compares the number of External Reference (type 
K), Text (type Y), and blank cards read with the number contained in columns 12 and 
13 of the Y card. If the numbers agree, the Load Routine loads register 13 with the 

address at which to begin program execution and transfers control to that address. 
This is the address contained in columns 15 and 16 of the Y card. If these columns 
are blank, the transfer address used is that contained in columns 15 and 16 of the 
program reference card (type J). 

If the card count check fails, the Load Routine halts. At this point pressing the 
START switch causes the Load Routine to begin execution of the program just 
loaded. During the loading of the EXEC I portion of a program, the Load Routine 
sets up the I/O PSC for EXEC I. 

The name of the Load Routine for the online card reader is LD; for the Card Control­
ler, LDCC. 

C 2. PARAMETERS FOR THE LOAD ROUTINE 

The Load Routine can be maintained a$: an object code deck ready to be linked. Certain 
labels exist as external references. Defining these labels supplies the variable infor­
mation required by the Load Routine. These labels may be defined by means of EQU 
control cards at the time the Load Routine is linked to a program. The external labels 
and their meaning are shown below. See 5.6 for further use of these labels. 

1 



UP-4092 
Rev. 2 

,----,--.-~--

UNIVAC 9200/9300 
CARD ASSEMBLER 

Rev. 1 

LABEL MEANING 

Start of the read area for the Load Routine. 

Start of the coding of the Load Routine. 

First memory location to be cleared. 

Last memory location to be cleared. 

Appendix C 
SECTION: 

Character with which to fill the area to be cleared. 

PAGE: 

L?AR 

L?PG 

L?LO 

L?HI 

L?CH 

L?AM The value assigned determines whether alterations are to be 
stored in memory location 4 or the memory location specified in 
the address switches. If the value assigned is four, alterations 
are stored in location 4; if zero, in the location specified by the 
memo ry address switches. 

Note that all labels used by the Load Routine begin with the characters "L?". 

The read area for the Load Routine is 80 bytes long and does not have to be contiguous 
with the Load Routine, but each must begin on a halfword boundary. The coding for 
the Load Routine is approximately 275 bytes long in the case of routine LD and 
360 bytes long in the case of routine LDCC. 

The Load Routine is coded relative to the labels L? AR and L?PG, Thus, once these two 
labels are defined by EQU cards, the location at which the Load Routine and its read 
area reside in memory is fixed. In setting up the Linker input deck the user must be 
certain that the Linker does not allocate to any other part of the phase in which the 
Load Routine appears the memory that has been allocated to the Load Routine by the 
L? AR and L?PG EQU cards. 

When the Load Routine is linked to a program, it must appear as the first element in 
the input deck for the first phase of the program being linked. To produce a self-contained 
loader that wi 11 load the object program that follows it, add an END card with an operand 
of L?PG to the Load Routine deck and link the loader separately. 

For routine LDCC, L? AR must be set equal to 160 or more. 

C 3. LOADING ADDITION AL PROGRAMS 

If the Load Routine is in memory, it may be used to load another program by branching 
to the initial location of the Lo ad Rou tine (rep resen ted by the tag L? P G). The program 

to be loaded must not overlay the Load Routine or its read area. The first card 
loaded will be the card at the wait station at the time L?PG is branched to. 

A terminating program may also initiate the loading of a successor program if the suc­
cessor contains a load routine of its own. The program must read the first card (boot­
strap card) of the successor into a location in memory, set the address of that location 
into register 15, and transfer to that address plus 26. The address chosen for the boot­
strap card must not overlap either the load routine of the successor program or the 
read area of the Load Routine. The bootstrap card must be read in in compressed code 
and must not be translated. This facility is possible only if the online card reader is 
being used to load programs. 

2 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

C 4. LOAD ROUTINE STOPS 

DISPLAY 

4300 

61ss (LD) 
65CE (LDCC) 

61ss (LD) 
(Reader 
abnormal 
li ght on) 

6504 

650C 

MEANING 

Card Coun t erro r 

Hole count erro r: 

sum of the bytes 
read from columns 
8-72 does not agree 
with the hole count 
byte column 7 (ss 
has no meaning). 

Card Read Error 
(ss is the status 
byte) 

Card Con troller 
error 

Card Controller 
error while trying 
to execute a TR & 
RD PRIor TR PRI 
function 

Rev. 1 Appendix C 
SEC TION: 

ACTION 

Press START to begin execution 
of program just loaded. 

Press START to ignore the 
card and continue loading. 

Press READER, CLEAR. 
Refeed the error card (if any). 
Press START to continue 
readin~. 

PAGE: 

Nonrecoverable, Less than 10 cards 
have been read. Start over. 

Recoverable in some cases. Cause of 
error may be determined by the display 
lights on the Card Controller. Check the 
masks and follow the error recovery pro­
cedure as outlined under STOP 1 of the 
Card Con troller IOCS operating ins truc­
tions; however, the sense byte display 
(STOP 2) cannot be made a vaila ble in 
the LOADER. 

The 61ss displays are applicable to the LD Load Rou tine only, 

In the case of a card read error, the error is at the top of the output stacker and is 
present unless the error is misfed, not ready, offline, hORper empty, or stacker full. 

C 5. DESCRIPTION OF OPERA TION 

The Card Load Routine consists of four parts: Boot, Reader, Clearing, and Loader 

C 5.1. Boots trap Section 

The Bootstrap section is the first card in the Load Routine and is read into privileged 
memory (0-79) by a console operation. The Bootstrap section is a card reader routine 
that reads the next card in the input hopper into L? AR and exits to the first instruction 
(at L?AR+I0) on the card read. The first instruction at.L?AR+I0 stores the remainder 
of the card into L?PG. The instruction that follows transfers control back to the Boot­
s trap section. This cycle of readin g and storing of cards contin ues un til the Reader 
and. Clearing sections are stored in L?PG. The last card of the Clearing section read 
into L? AR sets all alteration switches as determined by the value in L? AM, sets 
further opera tions under processor P SC, and transfers control to the Clearin g section 
coding in the L?PG area. 

3 



UNIVAC 9200/9300 
CARD ASSEMBLER 

C 5 .2. Clearing Section 

Rev. 2 I Appendix C 
SEC TION: PAGE: 

The Clearing section clears memory specified to the specified character except for 
the privileged area and the L?PG area. Control is then transferred to the Reader 
section in the L?PG area to read in the Loader section, 

C 5.3. Reader Section 

The Reader section reads the next card in the input hopper into L? AR and exits to the 
first instruction on the card which stores the remainder of the card into L?PG above 
the Reader section. The second instruction on the card transfers control back to the 
Reader section in L?PG to read the next card. The cycle continues until all the cards 
making up the Loader Section are read and transferred into L?PG. The last card on the 
Loader section read in to L? AR changes the transfer-control address in the Reader 
section from L? AR+10 to the Loader section. Control is then transferred to the Loader 
section. 

C 5.4. Loader Section 

This section remains in the L?PG area with the Reader section during the loading 
process. The Reader section brings in the program cards. The Loader section checks 

the hole count and the card count, loads the program from the Text (Q) cards, and on 
detection of a type Y (END) card, determines the start address, places the start 
address in register 13, and transfers control to it. The Loader section loads the 
I/O PSC with the first four bytes of data (columns 11-14) of any type Q (Text) card 
with a load address of 160 

C6. PROGRAMMING CONSIDERATIONS 

In situations where memory is at a premium, it is possible to use the problem program 
I/O areas to store the Loader and then overlay the Loader with input or output data. 
This can be accomplished by the following example: 

• Cod ing 

LABEL 

L?AR 

L?PG 

L?HI 

L?LO 

L?CH 
L?AM 

OPERATION 

CTL 
PHASE 

EQU 

EQU 

EQU 

EQU 

EQU 
EQU 

• LD or LDCC object code deck 

OPERANDS COMMENTS 

2,8191,8191 
UNI,256,A Program UNI will start at location 

256 abso I uteo 

160 80 byte read- in area begins at 
location 160. 

240 Loader will be loaded starting at 
location 240. 

8191 

160 Locations 160-8191 will be cleared 
to zero before loading loader. 

0 
4 All alterations will be stored in 

location 4. 

• Problem program starting with DS statements for I/O areas and working areas. 

• Other elements 

• END card 

4 



• UP-4092 
Rev. 2 

UN IV AC 9200/9300 
CARD ASSEMBLER 

I Appendix C 
SECTION: 

In the above example, the problemprogram must have the DS statements for I/O 
areas and working areas as the first lines of coding. The total memory requirements 
of all DS statements must be greater than 275 bytes when using the card reader loader, 
or 360 bytes when using the 1001 Card Controller loader. If the total of the DS state­
ments is less than this, the starting address in the PHASE card must be adjusted to 
make up the difference so that the loader will not be overlayed before loading has 
been completed. 

Text cards are not punched for DS statements; therefore, nothing is loaded into these 
memory locations at load time. Thus, if this approach is used, the problem program must 
clear the output areas before using them, as they may contain parts of the Loader routine. 
It should be noted that the loader is then destroyed and must be loaded again for any 
subsequent programs. 

The example above also can be used for crea tin g a frees tandin g loader, except tha t 
no problem program or other elemen ts will follow the loader deck. Still required is a 

PHASE card, in which any fictitious parameters may be used. 

C7. LOADING FROM CARD READER. 

1. Place program deck in hopper. 

2. Press READER CLEAR, READER FEED. 

3. Set DATA ENTRY switches to 0000 0001. 

4. Press general CLEAR. 

S. Set LOAD. 

6. Press START. 

7. Reset LOAD. 

8. Press START. 

CS. 1001 LOADER LOADING PROCEDURE 

1. Remove all cards from the PRI hopper of the Card Controller by pressing UNLOAD 
PRI three times. 

2. Place program deck in PRI hopper. 

3. Set the ALT 1 switch on. 

4. Press the CLEAR, LOAD PRI, CLEAR, START, RUN, switches on the Card 
Controller. 

S. Set the AL T 1 switch off. 

6. Enter the device address in the DATA ENTRY switches of the 9200/9300. 
(Example: The Card Controller is on channel 7; therefore, enter BS in DATA 
ENTRY switches. BS = 10111000) f -Lchannel 7 

must always be 1 



UNIVAC 9200/9300 
CARD ASSEMBLE R 

7. Press the PROC CLEAR, CHANNEL CLEAR switches on the 9200/9300. 

8. Press the LOAD switch on the 9200/9300. 

9. Press the START switch on the 9200/9300. 

10. Reset the LOAD switch on the 9200/9300. 

11. Press the START switch on the 9200/9300. 



UP-4092 
Rev. 2 

UNIVAC 920019300 
CARD ASSEMBLER 

Appendix D 
SEC TION: PAGE: 

APPENDIX D. EXEC I 

Dl. GENERAL 

EXEC I is designed for UN IV AC 9200/9300 Card System only and takes the form of a 
relocatable element which must be included in the worker program at Linker time. The 
primary functions of EXEC I are to monitor interrupts, handle messages to and from 
the operator, and provide restart communication. 

D 2. MACRO INSTRUCTIONS 

EXEC I prov ides the following macro instructions: 

D2.1. Message Macro (MSG) 

The message macro has the format given below: 

OPERATION OPERAND 

MSG Message,REPLY 

The REPLY parameter is optional. Message may be any acceptable two-byte hexadeci­
mal expression of the form X'nnnn'. 

This macro generates the following code: 

OPERATION 

SRC 

DC 

DC 

DC 

OPERAND 

0,8 

Y(message) 

CL1'x' 

X'O' 

where message is the two-byte hexadecimal display which appears in the HPR instruc­
tion. It takes the form of an assembler language expression. 

x == A, if the parameter REPLY appears; x = a blank (EBCDIC code 01000000), 
if it does not. 

The one-byte reply, keyed in by the operator into location 4, appears in the last byte 
of the calling sequence. 

1 



Up-4092 
Rev. 2: 

UNIVAC 920019300 Appendix D 
__________ ~C~A~R~D~A~SS~E~M~B~L~E~R~ ____________ ~ ____________ ~~s~E~cT~1~O~N~: ______ ~PAGE: 

EXEC I responds to this macro by doing a BAL, using register 15, to its own display 
subroutine. It moves the message from the calling sequ~nce of the SRC instruction 
to the calling sequence of the BAL instruction before executing the BAL instruction. 
The display subroutine sets location 4 to binary zero and displays the message by 
means of an HPR instruction. When the START switch is depressed, the display sub­
routine returns control through register 15. EXEC I then moves the contents of location 
4 to the reply byte of the calling sequence and returns control to the problem program. 

For example, if the user codes the following macro instruction, 

DSPL MSG X'FFF', REPLY 

the Assem bIer treats this macro instruction the same as the following source code: 

DSPL SRC 
DC 

0,8 
Y(X'FFF') 

DC CL1 'A' 
DC X'O' 

When the object code produced from this source code is executed, the computer stops 
with a display of 000111111111111. The operator may then answer this display using 
the DATA ENTRY and ALTER switches. When the START switch is subsequently 
depressed, control- is returned to the user's coding at the instruction located at 
DSPL + 8. The byte inserted into the computer by the operator through the DATA 
ENTRY and AL TER switches is in location DSPL + 7. If the operator did not intro­
duce any data through the DATA ENTRY and AL TER switches, then on return of 
control to the problem program, the byte in location DSPL + 7 contains binary zeros. 

The MSG macro instruction is not handled by the Preassem bly Macro Pass, but is 
processed by the Assembler itself. 

D2.2. Restart Macro 

The restart macro has the following format: 

OPERATION OPERAND 

RSTRT Restart-name 

The restart-name is the label ofa user-coded routine which is designed to handle a 
restart opera tion. 

This i'hacro generates the following code: 

OPERATION OPERAND 

SRC 0,0 

DC Y(Restart-name) 

2 



UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix D 
SECTION: PAGE: 

In response to this macro instruction, EXEC I stores the address of the restart-name. 
Restart is accomplished by a general clear followed by depression of the START 
switch. This causes the instruction in memory locations 22 through 25 to be executed 
in I/O mode. EXEC I has a branch unconditional instruction in this location that allows 
it to force all alterations to be stored in memory location 4, set the processor PSC to 
the restart-name and then go to RE-ENTRY. At RE-ENTRY, EXEC I sets the device 
address byte to zero, resets (without destroying the SRC field) the I/O PSC in pre­
paration for the next interrupt, and returns to processor state. 

At the restart-name location the user must provide a restart routine. This routine must 
re-establish variable information in the program and set initial conditions for all input/ 
output rou tines. (To aid the user in accomplishing this goal, the execution of the OPEN 
macro resets the initial conditions for all 10CS routines.) The user must establish 
conventions to reposition card decks and printer paper. 

The RSTRT macro instruction is not handled by the Preassembly Macro Pass, but is 
processed by the Assembler itself. 

D 3. I/O CONTROL ROUTINE MESSAGES 

All 10CS routines operating in I/O mode may display messages through direct access 
to the display subroutine. After execution, if a reply is expected, the control routine 
itself must' examine the contents of location 4. 

The following instructions are required to execute a display: 

OPERATION 

BAL 

DC 

OPERAND 

15,E?DS 

XL2'message' 

where E ?DS is the label for the first byte of the display routine. 

message is a two-byte hexadecimal expression. 

3 





UP-4092 
Rev. 2 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix E 
SECTION: PAGE: 

APPENDIX E. TRANSLATION TABLES 

El.. GENERAL 

The UNIV AC 9200/9300 I/O software enables any desired internal 8-bit code to result from 
the reading of most punch configurations, to be punched into nearly any desired punch con­
figulration, and to cause printing of any character of a 63- or 48-character font. This is 
accomplished by the optional use of automatic translation in the I/O routines. Input/output 
data is translated according to specified translation tables. The programmer may use his 
own translation tables or he may use any of the standard translation tables. 

Standard translation tables are available in source code form and in object code form. The 
source code form can be assembled with another program or can be assembled by itself to 
provide a linkable element. The object code form is a relocatable element with its name 
defined by the External Definition (type H) card. Each table occupies 256 bytes of object 
memory. 

There are three standard translation tables; Table Read, Table Punch, and Table Print. 
Each table is used by the appropriate, associated I/O routine. 

Table Read, TBRD, converts the ~ompressed image read from Hollerith-coded input cards 
to internal EBCDIC code. 

Table Punch, TBPU, converts the internal EBCDIC code to a compressed image that pro­
duces output cards punched in Hollerith code. 

Table Print, TBPR, converts the internal EBCDIC code to a code which causes the 48-
character print bar to print the same character as would be printed if the 63-character 
print bar were used. Characters other than 0-9, A-Z, and .+&$*-/, %' ti@ are treated as 
blanks. 

1 





,=eOEFIAL SYSTEMS DIVISION 
tJ P 4092 _ ~tev Z-7M~YT908-


	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	xBack

