
UNIVAC
COMPUTER SYSTEMS

-USllCATION5.
REVISION

Operating System/4 (OS/4)

Assembler
Programmer Reference

UP-1935Rev.1

This SPERRY UNIVAC™ Operating System/4 (OS/4) Library Memo announces the release and availability of
"SPERRY UNIVAC Operating System/4 (OS/4) Assembler Programmer Reference," UP-7935 Rev. 1. This is a
Standard Library Item (SLI).

This revision reflects the current version of the OS/4 assembler at the time of publication. Various technical
corrections and additions have been made throughout this manual.

This revision merges the information contained in the "UNIVAC 9400 System Assembler/Central Processor Unit
Programmer Reference," UP-7600 and the "UNIVAC 9700 System OS/4 Assembler Programmer Reference,"
UP- 7935 to provide one OS/4 Assembler manual for the SPERRY UNIVAC 9400, 9480, 90/60, and 90/70 Systems.

Note that the title of the manual has been changed to reflect the software system rather than the hardware system.
\

Section 6 of this revision describes floating-point instructions. These do not apply to SPERRY UNIVAC 9400/9480
System users. Throughout other sections, those instructions that apply to SPERRY UN I VAC 90/60,70 Systems only
are so noted. Also where necessary in the description of an instruction, operational differences between the
9400/9480 OS/4 Assembler and the 90/60,70 OS/4 Assembler are given.

Appendix B describes hardware differences between 9400/9480 and 90/60,70 Systems.

Destruction Notice: This revision supersedes and replaces the following:

• "UNIVAC 9400 System Assembler/Central Processor Unit Programmer Reference," UP-7600, released on
UNIVAC 9400 System Library Memo 4 dated September 30, 1968 and associated update packages.

NOTE: Section 2 of UP-7600 has been superseded by "SPERRY UNIVAC 9400/9480 Systems Processors
Programmer Reference," UP-8080, released in July, 1974.

• "UNIVAC 9700 System OS/4 Assembler Programmer Reference," UP-7935, released in August, 1972. Please
destroy all copies of UP-7600, UP-7600-A, UP-7600-B, UP-7600-C, UP-7600-0, and their Library Memos and
UP-7935 and its Library Memo.

Additional copies may be ordered by your local Sperry Univac Representative.

Mailing Lists 217,
630, and 692

Mailing Lists 60, 61, 65, and 66
(Covers and 379 pages)

Library Memo for
UP-7935 Rev. 1

May, 1975

I_..,

SPERRY UNIV AC
Operating System/4 (OS/4)

Assembler
Programmer Reference

H SPE~y..JLL.JNIVAC .,r COMPUTER SYSTEMS

UP-7935 Rev. 1

This document contains the latest information available at the time of
publication. However, Sperry Univac reserves the right to modify or
revise its conte11ts. To ensure that you have the most recent
information, contact your local Sperry Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

FASTRAND, PAGEWRITER, SPERRY UNIVAC, UNISCOPE, UNISERVO,

and UNIVAC are trademarks of the Sperry Rand Corporation.

@ 1972, 1975 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

PAGE STATUS SUMMARY
ISSUE: UP-7935 Rev.

PSS 1

PAGE REVISION PAGE

Part/Section
Page Update

Number Level Part/Section
Page

Number
Update

Level Part/Section
Page

Number
Update

Level

Cover/Disclaimer

PSS 1

Contents 1 thru 13

1 1 thru 14

2 1 thru 13

3 1 thru 8

4 1 thru 40

5 1 thru 20

6 1 thru 53

7 1 thru 49

8 1 thru 16

9 1 thru 15

10 1 thru 16

11 1 thru 14

12 1 thru 28

13 1 thru 26

14 1 thru 5

Appendix A 1 thru 6

Appendix B 1 thru 4

Appendix C 1 thru 7

Appendix D 1 thru 4

Appendix E 1 thru 6

Appendix F 1 thru 3

Index 1 thru 16

User Comment
Sheet

All the technical changes are denoted by an arrow r-J in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+ J is found. A horizontal arrow(-.) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 1

UP-NUMBER PAGE REVISION PAGE

Contents

PAGE STATUS SUMMARY

CONTENTS

1. INTRODUCTION

1.1. GENERAL 1-1

-._..
1.2. ASSEMBLER CHARACTERISTICS 1-1

1.3. DATA FORMATS 1-2
1.3.1. Fixed-Point Numbers 1-3
1.3.2. Floating-Point Numbers 1-4
1.3.3. Hexadecimal Representation 1-5
1.3.4. Decimal Number Representation 1-5
1.3.5. Character Representation 1-6
1.3.6. Logical Information 1-6

1.4. STATEMENT CONVENTIONS 1-7
1.4.1. Positional Parameters 1-8
1.4.2. Keyword Parameters 1-11
1.4.3. Combination of Positional Parameters and Keyword Parameters 1-12
1.4.4. Subparameters 1-13
1.4.5. Default Options 1-14

2. ASSEMBLY LANGUAGE

2.1. CHARACTER SET 2-1

2.2. STATEMENT FORMAT 2-1
2.2.1. Label Field 2-2
2.2.2. Operation Field 2-2
2.2.3. Operand Field 2-2

'---- 2.2.4. Comments Field 2-2
2.2.5. Continuation 2-3
2.2.6. Statements in Free Format 2-3

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 2

UP-NUMBER PAGE REVISION PAGE

2.3. TERMS 2-3
2.3.1. Self-Defining Terms 2-3 --2.3.1.1. Binary Representation 2-4
2.3.1.2. Hexadecimal Representation 2-4
2.3.1.3. Decimal Representation 2-5
2.3.1.4. Character Representation 2-5
2.3.2. Literals 2-5
2.3.3. Symbols 2-6
2.3.3.1. Value Attribute 2-6
2.3.3.2. Length Attribute 2-6
2.3.3.3. Relocatability Attribute 2-7
2.3.4. Location Counter References 2-7
2.3.5. Attribute References 2-7

2.4. OPERATORS AND EVALUATION 2-8
2.4.1. Arithmetic Operators 2-9
2.4.2. Logical Operators 2-9
2.4.3. Relational Operators 2-9

2.5. EXPRESSIONS 2-10
2.5.1. Absolute Expression 2-10
2.5.2. Relocatable Expressions 2-10
2.5.3. Length Attribute of Expressions 2-11
2.5.4. Character Expressions 2-12
2.5.5. Basic Expressions 2-13

3. INTRODUCTION TO INSTRUCTIONS

3.1. INSTRUCTION TYPES AND FORMATS 3-1

3.2. OPERAND ADDRESSING 3-3
3.2.1. Implied Length 3-5
3.2.2. Implied Base Registers 3-6

3.3. PRIVILEGED OPERATION 3-7

3.4. PRESENTATION OF INSTRUCTIONS 3-7

4. FIXED-POINT INSTRUCTIONS

4.1. GENERAL 4-1

4.2. A (ADD) 4-1

4.3. AH (ADD-HALF-WORD) 4-3

4.4. Al (ADD-IMMEDIATE) 4-4

4.5. AR (ADD) 4-5

4.6. C (COMPARE) 4-6

I -

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 3

UP-NUMBER PAGE REVISION PAGE

4.7. CH (COMPARE-HALF-WORD) 4-8

4.8. CR (COMPARE) 4-9

4.9. CVB (CONVERT-TO-BINARY) - 90/60,70 4-10

4.10. CVD (CONVERT-TO-DECIMAL) - 90/60,70 4-11

4.11. D (DIVIDE) - 90/60,70 4-12

4.12. DR (DIVIDE) - 90/60,70 4-14

4.13. L (LOAD) 4-15

4.14. LCR (LOAD-COMPLEMENT) - 90/60,70 4-16

4.15. LH (LOAD-HALF-WORD) 4-17

4.16. LLR (LOAD-LIMITS-REGISTER) - PRIVILEGED INSTRUCTION - 9400/9480 4-18

4.17. LM (LOAD-MULTIPLE) 4-19

4.18. LNR (LOAD-NEGATIVE) - 90/60.70 4-20

4.19. LPR (LOAD-POSITIVE) - 90/60,70 4-21

4.20. LR (LOAD) 4-22

4.21. LTR (LOAD-AND-TEST) 4-22

4.22. M (MULTIPLY) - 90/60,70 4-23

4.23. MH (MULTIPLY-HALF-WORD) - 90/60,70 4-24

4.24. MR (MULTIPLY) - 90/60,70 4-25

4.25. S (SUBTRACT) 4-26

4.26. SH (SUBTRACT-HALF-WORD) 4-28

4.27. SLA (SHIFT-LEFT-SINGLE) - 90/60,70 4-29

4.28. SLDA (SHIFT-LEFT-DOUBLE) - 90/60,70 4-30

4.29. SLM (SUPERVISOR-LOAD-MULTIPLE) - PRIVILEGED INSTRUCTION 4-31

4.30. SR (SUBTRACT) 4-33

4.31. SRA (SHIFT-RIGHT-SINGLE) - 90/60,70 4-34

4.32. SRDA (SHIFT-RIGHT-DOUBLE) - 90/60,70 4-35

4.33. SSTM (SUPERVISOR-STORE-MULTIPLE) - PRIVILEGED INSTRUCTION 4-36
"-._-.-

4.34. ST (STORE) 4-37

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents4
UP-NUMBER PAGE REVISION PAGE

4.35. STH (STORE-HALF-WORD) 4-38

4.36. STM (STORE-MULTIPLE) 4-39

5. DECIMAL INSTRUCTIONS

5.1. GENERAL 5-1

5.2. AP (ADD-DECIMAL) 5-1

5.3. CP (COMPARE-DECIMAL) 5-4

5.4. DP (DIVIDE-DECIMAL) 5-6

5.5. MP (MULTIPLY-DECIMAL) 5-8

5.6. MVO (MOVE-WITH-OFFSET)
,

5-10

5.7. PACK (PACK) 5-12

5.8. SP (SUBTRACT-DECIMAL) 5-13

5.9. UNPK (UNPACK) 5-16

5.10. ZAP (ZERO-AND-ADD) 5-18

6. FLOATING-POINT INSTRUCTIONS - 90/60,70

6.1. GENERAL 6-1

6.2. AD (ADD-NORMALIZED, LONG FORMAT) - 90/60,70 6-2

6.3. ADR (ADD-NORMALIZED, LONG FORMAT) - 90/60,70 6-4

6.4. AE (ADD-NORMALIZED, SHORT FORMAT) - 90/60,70 6-5

6.5. AER (ADD-NORMALIZED, SHORT FORMAT) - 90/60,70 6-7

6.6. AU (ADD-UNNORMALIZED, SHORT FORMAT) - 90/60,70 6-9

6.7. AUR (ADD-UNNORMALIZED, SHORT FORMAT) - 90/60,70 6-10

6.8. AW (ADD-UNNORMALIZED, LONG FORMAT) - 90/60,70 6-11

6.9. AWR (ADD-UNNORMALIZED, LONG FORMAT) - 90/60,70 6-13

6.10. CD (COMPARE, LONG FORMAT) - 90/60,70 6-14

6.11. CDR (COMPARE, LONG FORMAT) - 90/60,70 6-15

6.12. CE (COMPARE, SHORT FORMAT) - 90/60,70 6-16

6.13. CER (COMPARE, SHORT FORMAT) - 90/60,70 6-17

7935 Rev. 1 SPERRY UNIVAC Operating System/4 contents5
UP-NUMBER PAGE REVISION PAGE

6.14. DD (DIVIDE, LONG FORMAT) - 90/60,70 6-18

'--..--.

6.15. DOR (DIVIDE, LONG FORMAT) - 90/60,70 6-19

6.16. DE (DIVIDE, SHORT FORMAT) - 90/60,70 6-21

6.17. DER (DIVIDE. SHORT FORMAT) - 90/60,70 6-22

6.18. HOR (HALVE, LONG FORMAT) - 90/60,70 6-23

6.19. HER (HALVE, SHORT FORMAT) - 90/60,70 6-24

6.20. LCDR (LOAD-COMPLEMENT, LONG FORMAT) - 90/60,70 6-25

6.21. LCER (LOAD-COMPLEMENT, SHORT FORMAT) - 90/60,70 6-26

6.22. LD (LOAD, LONG FORMAT) - 90/60,70 6-27

6.23. LOR (LOAD, LONG FORMAT) - 90/60,70 6-28

6.24. LE (LOAD, SHORT FORMAT) - 90/60,70 6-29

6.25. LER (LOAD, SHORT FORMAT) - 90/70,70 6-30

6.26. LNDR (LOAD-NEGATIVE, LONG FORMAT) - 90/60,70 6-31

---· 6.27. LNER (LOAD-NEGATIVE, SHORT FORMAT) - 90/60,70 6-32

6.28. LPDR (LOAD-POSITIVE, LONG FORMAT) - 90/60.70 6-33

6.29. LPER (LOAD-POSITIVE, SHORT FORMAT) - 90/60,70 6-33

6.30. LTDR (LOAD-AND-TEST, LONG FORMAT) - 90/60,70 6-34

6.31. LTER (LOAD-AND-TEST, SHORT FORMAT) - 90/60,70 6-35

6.32. MD (MULTIPLY, LONG FORMAT) - 90/60,70 6-36

6.33. MOR (MULTIPLY, LONG FORMAT) - 90/60,70 6-38

6.34. ME (MULTIPLY, SHORT FORMAT) - 90/60,70 6-39

6.35. MER (MULTIPLY, SHORT FORMAT) - 90/60,70 6-41

6.36. SD (SUBTRACT-NORMALIZED, LONG FORMAT) - 90/60,70 6-42

6.37. SOR (SUBTRACT-NORMALIZED, LONG FORMAT) - 90/60,70 6-43

6.38. SE (SUBTRACT-NORMALIZED, SHORT FORMAT) - 90/60,70 6-44

6.39. SER (SUBTRACT-NORMALIZED, SHORT FORMAT) - 90/60,70 6-45

..__.. 6.40. STD (STORE. LONG FORMAT) - 90/60,70 6-46

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents6
UP-NUMBER PAGE REVISION PAGE

6.41. STE (STORE, SHORT FORMAT) - 90/60,70 6-47
..__,,.

6.42. SU (SUBTRACT-UNNORMALIZED, SHORT FORMAT) - 90/60,70 6-48

6.43. SUR (SUBTRACT-UNNORMALIZED, SHORT FORMAT) - 90/60,70 6-50

6.44. SW (SUBTRACT-UNNORMALIZED. LONG FORMAT) - 90/60,70 6-51

6.45. SWR (SUBTRACT-UNNORMALIZED. LONG FORMAT) - 90/60,70 6-52

7. LOGICAL INSTRUCTIONS

7.1. GENERAL 7-1

7.2. AL (ADD-LOGICAL) - 90/60,70 7-1

7.3. ALR (ADD-LOGICAL) - 90/60,70 7-2

7.4. CL (COMPARE-LOGICAL) 7-3

7.5. CLC (COMPARE-LOGICAL) 7-4

7.6. CLI (COMPARE-LOGICAL) 7-6

7.7. CLR (COMPARE-LOGICAL) 7-7

7.8. ED (EDIT) 7-8

7.9. EDMK (EDIT-AND-MARK) - 90/60,70 7-13

7.10. IC (INSERT CHARACTER) 7-15

7.11. LA (LOAD-ADDRESS) 7-16

7.12. MVC (MOVE) 7-17

7.13. MVI (MOVE) 7-19

7.14. MVN (MOVE-NUMERICS) 7-20

7.15. MVZ (MOVE-ZONES) 7-21

7.16. N (AND) 7-22

7.17. NC (AND) 7-23

7.18. NI (AND) 7-25

7.19. NR (AND) 7-26

7.20. 0 (OR) 7-27

7.21. OC (OR) 7-29

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 7
UP-NUMBER PAGE REVISION PAGE

7.22. 01 (OR) 7-30

"'--- 7.23. OR (OR) 7-32

7.24. SL (SUBTRACT-LOGICAL) - 90/60,70 7-33

7.25. SLDL (SHIFT-LEFT-DOUBLE-LOGICAL) - 90/60,70 7-34

7.26. SLL (SHIFT-LEFT-SINGLE-LOGICAL) 7-35

7.27. SLR (SUBTRACT-LOGICAL) - 90/60,70 7-36

7.28. SRDL (SHIFT-RIGHT-DOUBLE-LOGICAL) - 90/60,70 7-36

7.29. SRL (SHIFT-RIGHT-SINGLE-LOGICAL) 7-37

7.30. STC (STORE-CHARACTER) 7-38

7.31. TM (TEST-UNDER-MASK) 7-39

7.32. TR (TRANSLATE) 7-41

7.33. TRT (TRANSLATE-AND-TEST) - 90/60,70 7-42

7.34. X (EXCLUSIVE-OR) 7-44

7.35. XC (EXCLUSIVE-OR) 7-45

·-._.....
7.36. XI (EXCLUSIVE-OR) 7-47

7.37. XR (EXCLUSIVE-OR) 7-48

8. BRANCHING INSTRUCTIONS

8.1. GENERAL 8-1

8.2. EXTENDED MNEMONIC CODES 8-2

8.3. BAL (BRANCH-AND-LINK) 8-3

8.4. BALE (BRANCH-AND-LINK-EXTERNAL) - 90/60,70 8-4

8.5. BALR (BRANCH-AND-LINK) 8-5

8.6. BC (BRANCH-ON-CONDITION) 8-7

8.7. BCR (BRANCH-ON-CONDITION) 8-8

8.8. BCRE (BRANCH-ON-CONDITION-TO-RETURN-EXTERNAL) - 90/60,70 8-9

8.9. BCT (BRANCH-ON-COUNT) 8-11

.___ ..
8.10. BCTR (BRANCH-ON-COUNT) 8-12

7935 Rev. 1 SPERRY UNIVAC Operating System/4 contents s
UP-NUMBE.'R PAGE REVISION PAGE

8.11. BXH (BRANCH-ON-INDEX-HIGH) - 90/60,70 8-13

8.12. BXLE (BRANCH-ON-INDEX-LOW-OR-EQUAL) - 90/60,70 8-14

8.13. EX (EXECUTE) - 90/60, 70 8-15

9. STATUS SWITCHING INSTRUCTIONS

9.1. GENERAL 9-1

9.2. DIAG (DIAGNOSE) - PRIVILEGED INSTRUCTION - 90/60,70 9-1

9.3. HPR (HALT-AND-PROCEED) - PRIVILEGED INSTRUCTION 9-2

9.4. ISK (INSERT-STORAGE-KEY) - PRIVILEGED INSTRUCTION - 90/60,70 9-3

9.5. LBR (LOAD-BASE-REGISTER) - 90/60,70 9-4

9.6. LCS (LOAD-CONTROL-STORAGE) - PRIVILEGED INSTRUCTION - 90/60,70 9-5

9.7. LPSW (LOAD-PROGRAM-STATUS-WORD) - PRIVILEGED INSTRUCTION 9-6

9.8. ROD (READ-DIRECT) - PRIVILEGED INSTRUCTION - 90/60,70 9-8

9.9. SPM (SET-PROGRAM-MASK) 9-9

9.10. SSK (SET-STORAGE-KEY) - PRIVILEGED INSTRUCTION - 90/60,70 9-10 --
9.11. SSM (SET-SYSTEM-MASK) - PRIVILEGED INSTRUCTION 9-11

9.12. SVC (SUPERVISOR-CALL) 9-13

9.13. WRD (WRITE-DIRECT - PRIVILEGED INSTRUCTION - 90/60,70 9-14

10. INPUT /OUTPUT INSTRUCTIONS

10.1. GENERAL 10-1

10.2. HIO (HALT-1/0) - PRIVILEGED INSTRUCTION - 90/60,70 10-3

10.3. LCHR (LOAD-CHANNEL-REGISTER) - PRIVILEGED INSTRUCTION - 90/60,70 10-5

10.4. SCHR (STORE-CHANNEL-REGISTER) - PRIVILEGED INSTRUCTION - 90/60,7010-6

10.5. SIO (START-1/0) - PRIVILEGED INSTRUCTION 10-8

10.6. TCH (TEST-CHANNEL) - PRIVILEGED INSTRUCTION - 90/60,70 10-12

10.7. TIO (TEST-1/0) - PRIVILEGED INSTRUCTION - 90/60,70 10-13

7935 Rev. 1 SPERRY UNIVAC Operating System/4 contents 9
UP-NUMBER PAGE REVISION PAGE

11. DATA AND STORAGE DEFINITION
'-...--'

11.1. GENERAL 11-1

11.2. DC (DEFINE CONSTANT) STATEMENT 11-2

11.3. OS (DEFINE STORAGE) STATEMENT 11-2

11.4. DC AND DS STATEMENT OPERAND SUBFIELDS 11-3

11.4.1. Duplication Subfield 11-4

11.4.2. Type Subfield 11-4

11.4.3. Length Modifier Subfield 11-4

11.4.4. Constant Subfield 11-4

11.5. LITERALS 11-4

11.6. ALIGNMENT 11-5

11.7. DATA CONSTANT TYPES 11-5

11.7.1. Character Constants 11-5

11.7.2. Hexadecimal Constants 11-6

11.7.3. Binary Constants 11-7

11.7.4. Packed Decimal Constants 11-8

11.7.5. Zoned Decimal Constants 11-9

11.7.6. Half-Word Constants 11-10

11.7.7. Full-Word Constants 11-10

11.8. ADDRESS CONSTANT TYPES 11-11

11.8.1. Half-Word Address Constants 11-11

11.8.2. Full-Word Address Constants 11-11

11.8.3. Base and Displacement Constants 11-12

11.8.4. External Address Constants 11-13

11.9. CCW (DEFINE-CHANNEL-COMMAND-WORD) DIRECTIVE 11-13

12. ASSEMBLER DIRECTIVES

12.1. GENERAL 12-1

12.2. EQU (SYMBOL-DEFINITION) DIRECTIVE 12-1

12.3. ASSEMBLY CONTROL DIRECTIVES 12-2

12.3.1. ASCII Directive 12-2

12.3.2. EBCDIC Directive 12-3

12.3.3. CNOP (Conditional-No-Operation) Directive 12-3

12.3.4. END (Program-End) Directive 12-4

12.3.5. L TORG (Generate-Literals) Directive 12-5

12.3.6. ORG (Specify-Location-Counter) Directive 12-5

12.3.7. START (Program-Start) Directive 12-6

12.4. BASE REGISTER ASSIGNMENT DIRECTIVES 12-7
............ 12.4.1. DROP (Unassign-Base-Register) Directive 12-7

12.4.2. USING (Assign-Base-Register) Directive 12-7

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 10
UP.NUMBER PAGE REVISION PAGE

12.5. PROGRAM LINKING AND SECTIONING DIRECTIVES 12-9
12.5.1. COM (Common-Storage-Definition) Directive 12-9

.__.;

12.5.2. CSECT (Control-Section-Identification) Directive 12-11
12.5.3. DSECT (Dummy-Control-Section-Identification) Directive 12-12
12.5.4. ENTRY (Externally-Defined-Symbol-Declaration) Directive 12-14
12.5.5. EXTRN (Externally-Referenced-Symbol-Declaration) Directive 12-14

12.6. LISTING CONTROL DIRECTIVES 12-16
12.6.1. EJECT (Advance-Listing) Directive 12-16
12.6.2. PRINT (Listing-Content-Control) Directive 12-17
12.6.3. SPACE (Space-Listing) Directive 12-18
12.6.4. TITLE (Listing-Title-Declaration) Directive 12-18

12.7. INPUT AND OUTPUT CONTROL DIRECTIVES 12-19
12.7.1. ICTL (Input-Format-Control) Directive 12-19
12.7.2. ISEQ (Input-Sequence-Control) Directive 12-20
12.7.3. PUNCH (Produce-a-Record) Directive 12-21
12.7.4. REPRO (Reproduce-Following-Record) Directive 12-22

12.8. CONDITIONAL ASSEMBLY 12-22
12.8.1. SET Directive 12-22
12.8.2. LCL (local-Symbol-Declaration) Directive 12-23
12.8.3. GBL (Global-Symbol-Declaration) Directive 12-23
12.8.4. DO (Start-of-Range) Directive 12-25
12.8.5. ENDO (End-Range-of-DO) Directive 12-25
12.8.6. GOTO (Assembly-Branch) Directive 12-27
12.8.7. LABEL (Assembly-Destination) Directive 12-27

__ __,,

13. ASSEMBLER PROCEDURES

13.1. SPECIAL DIRECTIVES 13-1
13.1.1. PROC (Procedure-Definition) Directive 13-1
13.1.2. NAME (Call-Label) Directive 13-2
13.1.3. END (Proc-Definition-End) Directive 13-3
13.1.4. PNOTE (Message) Directive 13-3

13.2. CODING PARAMETERS 13-4
13.2.1. Types of Parameters 13-4
13.2.1.1. Positional Parameters 13-4
13.2.1.2. Keyword Parameters 13-5
13.2.1.3. Combined Positional and Keyword Parameters 13-5
13.2.2. Parameter Sublists 13-6

13.3. REFERENCING AND REPLACING PARAMETERS AND SET SYMBOLS 13-6
13.3.1. Reference Formats 13-6
13.3.1.1. Paraforms 13-7
13.3.1.2. Set Symbols 13-10
13.3.2. Replacement 13-10
13.3.2.1. Parameter Replacement 13-10
13.3.2.2. Set Symbol Replacement 13-11
13.3.2.3. Null Character-String Replacement 13-12

13.4. CALL LINE LABELS 13-13

I

. ..___.

7935 Rev. 1
UP-NUMBER

13.5.

13.6.

13.7.
13.7.1.
13.7.1.1.
13.7.2.
13.7.2.1.
13.7.2.2.
13.7.2.3.
13.7.2.4.

SPERRY UNIVAC Operating System/4

NAME LEVELS AND PROC NESTING

METHOD OF WRITING AND REFERENCING PROCS

VARIABLE SYMBOLS
Use of Variable Symbols

Concatenation of Variable Symbols
SYSTEM VARIABLE SYMBOLS

&SYSNDX
&SYSECT
&SYS DATE
&SYSTIME

14. ERROR MESSAGES

14.1. MESSAGE TYPES AND FORMAT

14.2. FATAL ERRORS

14.3. DIAGNOSTIC ERRORS

14.4. ACADEMIC MESSAGES

14.5. ERROR MESSAGE SUMMARY

APPENDIXES

A. INSTRUCTION REPERTOIRE

B. 9400/9480 AND 90/60,70 HARDWARE DIFFERENCES

B.1. GENERAL

B.2. INSTRUCTION DIFFERENCES
B.2.1. Add Immediate (Al)
B.2.2. Add Decimal (AP) and Subtract Decimal (SP)
B.2.3. Compare Decimal (CP)
B.2.4. Divide Decimal (DP)
B.2.5. Load Address (LA)
B.2.6. Multiply Decimal (MP)
B.2.7. Set Program Mask (SPM) and Program Status Word (PSW)
B.2.8. Set System Mask (SSM)

B.3. BUFFER CONTROL WORD (BCW) DIFFERENCES

B.4. CHANNEL COMMAND WORD (CCW) DIFFERENCES

B.5. STANDARD EQUATE PROC (STDEQU)

B.6. REFERENCE TO NONEXISTENT STORAGE

Contents 11

PAGE REVISION PAGE

13-13

13-14

13-21
13-21
13-21
13-22
13-22
13-24
13-26
13-26

14-1

14-1

14-1

14-2

14-3

B-1

B-1
B-1
B-1
B-1
B-2
B-2
B-2
B-2
B-3

B-3

B-3

B-3

B-4

7935 Rev. 1 SPERRY UNIVAC Operating System/4 contents 12
UP-NUMBER PAGE REVISION PAGE

B.7. MCP TELETYPEWRITER LINE TERMINALS B-4

B.8. STORAGE REQUIREMENTS OF PREAMBLE AND EXTENT /PROTECTED DTF AREASB-4

C. ASCII, EBCDIC, AND PUNCHED CARD CODES

D. CONVENTIONS FOR THE USE OF FORTRAN LIBRARY ROUTINES

0.1.

0.2.
D.2.1.
D.2.2.
D.2.3.

0.3.

GENERAL

ROUTINE CALLING CONVENTIONS
Parameter List
Save Area
Calling Sequence

INTERNAL VALUE REPRESENTATION

E. USE OF PARAM STATEMENT

E.1.

E.2.
E.2.1.
E.2.2.
E.2.3.
E.2.4.
E.2.5.
E.2.6.
E.2.7.

GENERAL

PARAM STATEMENT OPERANDS
IN - Source Library Input
LIN - Referencing the PROC Library
LST - Selecting List Options
OUT - Output Module Type
VER - Version Number
COE - Produce Compatible Code
RO$ - Suppressing Covering Error Flag

F. EXECUTING THE ASSEMBLER

F.1. GENERAL

F.2. JOB CONTROL STREAMS

F.3. MAIN STORAGE REQUIREMENTS

F.4. SPECIAL CONSIDERATIONS AND RESTRICTIONS

INDEX

US~COMMENT SHEET

FIGURES

1-1.
1-2.

Fixed-Point Number Formats
Floating-Point Number Formats

D-1

D-1
D-1
D-1
D-1

D-2

E-1

E-1
E-1
E-2
E-2
E-3
E-4
E-5
E-5

F-1

F-1

F-1

F-2

1-4
1-5

. -...-/

7935 Rev. 1 SPERRY UNIVAC Operating System/4 contents 13
UP·NUMBER PAGE REVISION PAGE

2-1. Assembler Coding Form 2-2

3-1. Instruction Formats 3-2
3-2. Relocation Register Format 3-8

TABLES

2-1. Summary of Operators 2-8

3-1. Abbreviations Used in Descriptions of Instructions 3-3
3-2. Operand Specification Using Implied Base Register,

Implied Length, or No Index Register 3-5

7-1. Edit Instruction Operation 7-12

8-1. Extended Mnemonic Codes 8-2

10-1. Channel State Codes 10-2
10-2. HIO Instruction Condition Codes and Initial Status Words 10-4
10-3. LCHR Instruction Condition Codes and Initial Status Words 10-6
10-4. SCHR Instruction Condition Codes and Initial Status Words 10-7
10-5. SIO Instruction Condition Codes and Initial Status Words 10-11
10-6. TCH Instruction Condition Codes and Initial Status Words 10-13
10-7. TIO Instruction Condition Codes and Initial Status Words 10-16

11-1. Characteristics of Constant and Storage Types 11-1
-.....

14-1. Error Message Summary 14-3

C-1. ASCII (American Standard Code for Information Interchange)
Character Codes C-1

C-2. EBCDIC (Extended Binary Coded Decimal Interchange Code)
Character Codes C-2

C-3. Punched Card, ASCII, and EBCDIC Codes C-3

F-1 Assembler Software Element Names F-1

·--~

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-1

UP-NUMBER PAGE REVISION PAGE

1. Introduction

1.1. GENERAL

This manual provides the basic information necessary for programming in assembly language for the SPERRY
UNIVAC Operating System/4 (OS/4). Information is presented concerning data representation, instruction coding,
constant and storage definition, assembler directives, conditional assembly, assembler procedures, and assembler
error messages.

1.2. ASSEMBLER CHARACTERISTICS

The assembler is an efficient software aid designed to handle most programming problems encountered by the user.
Each machine instruction and data form has a simple, convenient representation in assembly language. The assembler
translates this language into a form which can be executed by the computer. The rules governing the use of the
language are not complex and are easily applied by the programmer.

A program is written on a coding form in assembly language. The information on the form is then keypunched to
produce source code cards (the source deck). The source deck is read by the assembler and a relocatable object
module and printer listing are produced. The object module is then linked to other object modules to form a load
module suitable for loading and execution.

This manual describes the operational characteristics of the OS/4 assembler and the use of assembly language. These
characteristics are:

• Mnemonic Operation Codes

A fixed mnemonic code, consisting of from one to four letters, is assigned to each machine instruction; each
code suggests the nature of the instruction. As a further aid in writing branch-on-condition instructions,
separate mnemonic codes are provided for each condition. Restrictions concerning the use of these mnemonic
codes are described in 13.3.2.

• Flexible Data Representation

Data is represented in the assembler in binary, hexadecimal, decimal, or character notation, allowing the
programmer to choose the most suitable form for each constant.

• Symbolic Addressing and Storage Assignment

Symbolic labels can be assigned to instructions or groups of data. An instruction then references the labeled
data by label rather than by main storage address. In many cases, other data required by the instruction, such
as operand length, can be supplied automatically by the assembler. The assembler also keeps track of all main
storage locations used for a program, assigns all incoming instructions and data to specific locations, and
performs base register and displacement calculations.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-2
UP-NUMBER PAGE REVISION PAGE

• Assembler Directives

The assembler includes a set of directives which specify instructions regarding the operation of the assembler
itself. These directives allow the user to control program sectioning, base register assignment, output listing
format, sequence checking, and other auxiliary functions. Restrictions concerning the use of assembler
directives are described in 13.3.2.

• Conditional Assembly

The assembler provides a set of directives which permit the user to specify the order of source statement
generation, exclude sections of code, include a set of lines in the output of the assembly, and vary the content
of generated statements.

• Relocatable Programs and Program Linking

The assembler produces object modules in relocatable form. In this form, the actual storage locations to be
occupied by a program need not be specified at assembly time, but are determined when the program is
loaded. Provisions are made for linking, loading, and executing as one program the results of separate
assemblies, thereby making more efficient use of machine time. The input to one assembly can be divided into
separate sections, each consisting of a group of instructions or data occupying contiguous locations. The
relative positions of the sections can be declared at the time the program is linked.

• Macro Facility

The assembler macro facility can reduce the effort required to write patterns of code which are repeated in a
program or shared by several programs. One instruction to the assembler can result in the inclusion in the
object program of many instructions and constants, or can result in establishing one or more values for use
elsewhere in the program. A macro may be defined so that the pattern of coding generated can vary widely ·--'
depending upon the parameters supplied in the calling macro instruction.

• Program Listing

A printed listing of source and object codes is one output of the assembler. This listing includes error message
flags marking any errors detected by the assembler. Source code errors do not halt the assembly. The
assembler processes the remainder of the source code and performs its usual error checks, thus minimizing the
number of assemblies required to produce error-free code.

• Compatibility

Source programs and macro definitions which are written for the UN IV AC 9400/9480 Systems but which are
to be executed in a UNIVAC 90/60,70 environment may require modification before being acceptable to the
assembler.

1.3. DATA FORMATS

Main storage locations are numbered consecutively. Each address specifies one byte of information. Every time a
storage request is made, four adjacent locations are accessed; therefore, data (depending on the length) is accessed in
groups of four consecutive bytes. The address of a group of bytes is the address of the leftmost byte of the group.
The bits in a byte are also numbered from left to right, starting with zero.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-3
UPwNUMBER PAGE REVISION PAGE

o----7

Half-word data formats consist of two consecutive bytes.

o----7 8----15

Full-word data formats consist of four consecutive bytes.

o----7 8----1516---2324---31

Double-word data formats consist of eight consecutive bytes.

Variable data formats consist of a variable number of consecutive bytes.

0---- 7 0 ----7

First Byte Last Byte

It is possible to store 256 different bit combinations in the byte. Thus, data can be represented in various forms to
the programmer; however, certain restrictions are imposed if the data is to be printed or processed arithmetically.
The contents of a byte can be considered as a binary number, a decimal number, an alphabetic or symbolic
character, or logical information. A field used to represent a binary number uses all of the bit positions (except the
sign bit) to contain the value. However, each byte in a field representing a decimal number, alphabetic character, or
symbol is considered to be divided into zone and digit portions. The zone portion is the most significant four bits;
the digit portion is the least significant four bits.

b b b b b b b b

0 3 4 7

1.3.1. Fbced-Point Numbers

Each fixed-point number is represented in one of three fixed-length formats composed of a single sign bit followed
by an integer field. When the sign bit is 0, the integer represents a positive value; when 1, the integer represents a
negative value. Negative integers are represented in twos complement notation. The half-word, full-word, and
double-word formats are shown in Figure 1-1.

7935 Rev. 1
UP-NUMBER

Half-Word Format

Full-Word Format

Double-Word Format

SPERRY UNIVAC Operating System/4 1-4
PAGE REVISION PAGE

r SIGN

l,J, INTEGER

If
SIGN

INTEGER

If
SIGN

INTEGER \D
..........___ ____ (63

Figure 1-1. Fixed-Point Number Formats

When held in one of the 32 general registers (16 for supervisor functions and 16 for user program functions). a
fixed-point number is generally treated as a 32-bit operand. Certain multiply, divide, and shift operations use a
64-bit operand composed of one sign bit and a 63-bit integer field. A 64-bit operand is located in two adjacent
general registers and is addressed by referring to the even-numbered register of the even-odd register pair.

When fixed-point data is located in main storage, it may be stored in any of the three formats. This data must be
located on the integral main storage boundary of its associated format.

A half word in storage is extended to a full word by propagation of the sign bit through the most significant 16 bits
of the full word when it is transferred to the processor. The half word then operates as a full word in fixed-point
arithmetic operations.

1.3.2. Floating-Point Numbers

Floating-point numbers are represented in signed absolute value form and have a fixed-length format which is either
a full word (short format) or a double word (long format) in length. Both formats may be used in main storage and
in the floating-point registers (6.1). Short format numbers provide faster processing and requires less storage space
than long format numbers. Long format numbers provide greater precision in computations.

In either format, bit 0 is the sign bit, bits 1 through 7 are the exponent, and the remaining bits are the fraction. The
exponent is expressed in excess-64 binary notation. The fraction is expressed as a hexadecimal number having the
radix point to the left of the most significant fraction digit. The quantity expressed by the full floating-point
number is the product of the fraction and the number 16 raised to the power minus 64 of the exponent.

Separate instructions are provided for operations with long and short format operands (Section 6). The short and
long formats are illustrated in Figure 1-2.

·-·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-5
UP .. NUMBER PAGE REVISION PAGE

_r SIGN

Full-Word Format EXPONENT FRACTION
0 1 7 8 31

Double-Word Format

SIGN

~lkPO~NENT7 1 8 __ FRAC-TION ~<D
Figure 1-2. Floating-Point Number Formats

1.3.3. Hexadecimal Representation

Hexadecimal digits are considered base 16 numbers with values 0 through F (15). A hexadecimal digit is used to
denote a particular bit pattern in the zone or digit portion of a byte representing either a decimal number or
alphabetic or symbolic character. (Hexadecimal digits are also used for constant definition as described in Section
11.) The hexadecimal digits and their binary values are:

HEXADECIMAL BINARY HEXADECIMAL BINARY

DIGIT VALUE DIGIT VALUE

0 0000 8 1000
1 I 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 c 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

1.3.4. Decimal Number Representation

Decimal numbers are represented in either unpacked form (one digit per byte) or packed form (two digits per byte).

In unpacked form, the byte is divided into zone and digit portions. The zone portion usually contains a hexadecimal
F bit configuration (1111) which is ignored except in the least significant byte; the zone portion of the least
significant byte is interpreted as the sign of the number.

ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN DIGIT

In packed form, digits are contained in both halves of a byte, except the least significant half byte of the field which
is interpreted as the sign of the number.

7935 Rev. 1
UP-NUMBER

DIGIT

SPERRY UNIVAC Operating System/4 1-6
PAGE REVISION PAGE

DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

The sign of decimal numbers is represented by hexadecimal digits A through F. Any other bit configuration is an
invalid sign code which could produce unpredicatable results.

The interpretation of the contents of the sign position is:

HEXADECIMAL BINARY SIGN

CHARACTER VALUE VALUE

A 1010 Positive

B 1011 Negative

c 1100 Positive (EBCDIC mode)*

D 1101 Negative (EBCDIC mode)*

E 1110 Positive (EBCDIC mode)

F 1111 Positive (EBCDIC mode)**

*Automatically generated in central processor for decimal operations

**Automatically generated in central processor for zone fill during unpack instruction

(Binary value is 0011 in ASCII mode.)

1.3.5. Character Representation

An alphabetic or other symbolic character representation is contained in the full eight bits of a byte. A character _ _,
field is considered as not containing a sign. This type of field is represented:

ZONE DIGIT

~

CHARACTER

1.3.6. Logical Information

ZONE DIGIT ZONE i DIGIT

CHARACTER CHARACTER

ZONE : DIGIT
I

~---
CHARACTER

Logical information consists of alphabetic or numeric character codes. This information is used in operations such as
compare, translate, editing, bit setting, and bit testing. Logical information is handled as fixed or variable length data
and is processed from left to right, one byte at a time.

Fixed-length logical information consists of one, two, four, or eight bytes.

LOGICAL INFORMATION

Variable-length logical information consists of up to 256 bytes.

BYTE I BYTE [= = = ~ ~ -~ ~= = = = = ~ _-_ ,LI _B_Y_T_E-'--B_Y_T_E__J

MOST SIGNIFICANT

BYTE

LEAST SIGNIFICANT

BYTE

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-7

UP-NUMBER PAGE REVISION PAGE

1.4. STATEMENT CONVENTIONS

The conventions used to delineate the control statements in this manual are:

• Uppercase letters and words and the following characters must be coded exactly as shown:

, (comma)

. (period)

= (equal sign)

() (parentheses)

' (apostrophe)

* (asterisk)

#(number sign)

Examples:

c

MCL

RECSIZE=

• Lowercase letters and words are generic terms representing information supplied by the user. Such lowercase
terms may contain hyphens (for readability).

Examples:

n

start-addr

vol-no-1

• Information within braces represents required entries, one of which must be chosen.

Examples:

{
file-id }
'file-id'

{

LAST }
OPR
RESET

7935 Rev. 1
UP-NUMBE.'R

•

SPERRY UNIVAC Operating System/4 1-8
PAGE REVISION PAGE

Information within brackets represents optional entries that are included or omitted (depending upon user
requirements). Braces within brackets signify that one of the specified entries must be chosen if that parameter
is to be included.

Examples:

[version-no]

[(ALT,n)]

[{~~=p}]
[vERIFY= { ~~s }]

• An ellipsis (series of three periods) indicates the presence of a variable number of entries.

Examples:

Statement with a specific number of parameters

lun-1 [.lun-2, ... [.lun-20]]

Statement with an unlimited number of parameters

domid-1, ...

1.4.1. Positional Parameters

Positional parameters must be written in the order specified, and each must be separated by a comma. When a
positional parameter is omitted, the comma, even though it may be shown inside a bracket, must be retained to
indicate the omission, except in the case of omitted trailing positional parameters.

The following examples are provided to aid the user in coding the positional parameter formats used in this manual.
The coding possibilities do not necessarily reflect all the coding options that may be used.

• Optional positional parameters within a series of required parameters

Format:

A,B,[C] ,D,E

Coding possibilities:

·-._./

'-'"

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 1-9
PAGE REVISION PAGE

Format:

A,B,[C] ,[DJ ,E

Coding possibilities:

A,B,C,D,E
t--~-----------'--'~--'--'--'--'--'--'--'--'--'--'--'--'--'--'-'--'--'--'--''--'--'--''--''--'--'-·-··-L-..L___J___J

..------------------~; ~'--------------------~~-L ... J

1-A~, ~B~,~C~,~·-' ~·E_,~~~-~~~~~-~~~~~~~~~-~~~~-~~~1~ L_...L__!

Format:

[AJ.[B].C,D

Coding possibilities:

, , C, D
I ' '

• Optional positional parameters at the end of a series of required parameters

Format:

A,B[.C]

Coding possibilities:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-10

UP-NUMBER PAGE REVISION PAGE

Format:

A,B[.CJ [.DJ

Coding possibilities:

A,:B,,

• Optional positional parameters within a series and at the end of a series of required parameters

Format:

A,B,[CJ ,D,E[,FJ

Coding possibilities:

A , B., C , D,, .E , F
l ! _J

Format:

A,B,[CJ ,[DJ ,E[.FJ

Coding possibilities:

' 1. L-1~.J __ J l .. J __ ..l__j~ L~---' -- --l. l

l . .:.. 1 1 ,;. ___ i - ' L ~ l _ ___;,,. __ _ 1 ... L. i - L.. . _L_l __ L 1. L j L_i __ _;. __ l ... l. . .J.. _L_.._1 ..•

~L> t>L~ cl > P: > L~.L-L.:. ... L J LJ__j_; L .c .L .. L-1. ... i. .. 1 .. ~ .. 1 .. l.

c ... -'-' _ ; .. .J . . '--'--'--'.. L L._L__l

, , E

... .J_J_.J._l

,E
.. ~· ~•_J __ j

L.C. L.L.1 . i "-·-'-J.-.L ... L .. L . .J

.... L. .L!.,_.L~-i.l .. JL . ..L..L L ;

' l __ J_i_ i.

ii

''-"".-'

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-11

UP-NUMBER PAGE REVISION PAGE

1.4.2. Keyword Parameters

A keyword parameter consists of a word or character immediately followed by an equal sign, which is, in turn,
followed by a specification. Commas are required only to separate keyword parameters and need not be retained to
indicate the omission of a keyword parameter. In the format presentation of this manual, all required keyword
parameters are shown first, followed by the optional keyword parameters. In coding, they may be specified in any
order desired.

The initial keyword specified in the operand field is always coded without its associated comma. However, each
succeeding keyword parameter specified must be preceded by a comma. A comma is never used to begin the coding
specified in the operand field when keyword parameters are the only type of parameter specified in a statement.
Beginning a line of coding with a comma is applicable only when an optional positional parameter is defined as the
initial parameter of the coding. See 1.4.1.

The following examples are provided to aid the user in coding the keyword parameter formats used in this manual.
The coding possibilities do not necessarily reflect all the coding options that may be used.

• All keyword parameters required

Format:

ABC=nn,XYZ= { ~ }

Coding possibilities:

A;BC =nn ,)CY~= I
_.,J .L~· _l'_.L l... l ..JL..~ ... I .L .•

l .LL.L .. L

XY2. = 2:> A.BC =,nn . , .
1 _l t._ ~"-- -~······~~--~~----_;___ ·--·"""--~·-· .• l_J__<

• Combination of required and optional keyword parameters

Format:

ARM=HAND[.LEG=FOOT] [,HEAD= { ~~:E}]

Coding possibilities:

IA'RM=HAND> LE.G=.Fb.bT ,,HE,A~=E"llE r.. .,._ L 1 _)_ ;_,_____ _, __ .. l. __ i, __ -~-- 1 L ___ ,.. ____ ,L ____ ,_ . •. .L •. ~l _____ ;.., ~ L1 1

! l I
;: l. 1 .l L ~ 1 --A 1 1 i L L __ L~L : __ .L 1 j j ; L..L.~

LE.G=.F 1b.b.T, .ARM=,HAN~, HEAP.= N,~)S E,
l "- .. l,.L~-l •.... J .. .,_.L-~ •...•. .1..,_. L.~,;,. ... _-l,_t.. i -~·-··· J~_J.._ -~ -~-- J. _·,._J.

HEAD=,HAND
j' .. 1 · ~--- ' 1 .l 1---~----L . .l l. l .. <

~AD=:E.Y~,AM=:H~n~: ~~ .. ~~~' ~~~.~--'l--'. ____,i..........;_.___~......_..__
i

fA~M~HANr), LEG =F5.bf l
l- ~, : ~-~~ L i : ~~-L~J- ,, L __ L .. _,

1 .l. -

l t

I

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4 1-12
PAGE REVISION PAGE

• All optional keyword parameters

Format:

[PAPER=WOODl [.GLASS=SANDl

Coding possibilities:

~-fiE~ 1= ~'?!?iDi) IG l~J_~_L$1S '~l~t!!a L_L.L~'~-LL L _ _Ll....i_JL _l ___ j__i_L L_LJ._LJ. L_

,__,.~~-Ll__l__l__l_LL I I I 1 .. J_LLJ.._J __ LLJ_L __ L ~-~~----····-·· ~--~-·-

~.t,'O,S1=-J§t-~~~tEa~=L~~ __ ;___L_l_ .l

. "· --'--·" J ----~--'----'"---·'-

1.4.3. Combination of Positional Parameters and Keyword Parameters

When positional parameters and keyword parameters are used in the same statement, the keyword parameter must
follow the last specified positional parameter. When a positional parameter within a series of parameters is omitted,
the associated comma must be retained to indicate its omission. When a trailing positional parameter is omitted, its
associated comma is also omitted, except when followed by a keyword parameter.

• All parameters required

Format:

TOY BROKE= {YES} CHILD={ HAPPY}
' NO ' SAD

Coding possibilities:

• Required and optional parameters

Format:

DOG[.Cl [.Al [.Tl ,FIGHT= { ~~s} [.TREE= { ~~s } J [,CATCH" { ~~s} J

' ' ' ' .L ;J

; __ L_-'._

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-13

UP-NUMBER PAGE REVISION PAGE

Coding possibilities:

.1 .. 1 ... L. f _J_L_____;_ ____ J .. 1

i t .. 1_ ~t___L J ... 1~~-i- _1 ... L __ J __ ____i_~i. t __ J _ __L__i~

, G, F:IG~.T=iN,0
.l L J ... i~__;-~-~-------~ L-. ...4..............L.,_l l.~L .. i L L_l_...L.l L l ~---~----·-·'

• Keyword parameters acting as positional parameters

In some instances, an optional keyword parameter performs the same function as a positional parameter, and
is treated as a positional parameter in both presentation and coding (i.e., the comma is shown as being outside
the bracket; when the keyword parameter is not selected, the comma must be used to show its omission). The
second parameter in the following format is a keyword acting as a positional parameter; [.D=E] and [.O=Tl
are keyword parameters.

Format:

'· [A= { ~}] ,b,c[.D=E] [,O=T]

Coding possibilities:

0,l_J~c=°:Bth~_>,C.L>_A=£L,Rt~JT, __ , i .. ~_LJ , __ l_, _; __ ,

l _ _l_j__l___ 1 .• L.Ll._1 ... 1 . .t..o_L_. 1 l . .i

a. , , b. , 1c. , D = ,E,
__L~_J _____ l. ____ _.._-L~-L J_ L .. -~_L ____ J_ -~---~.........._ ___ J_ t ,,,..

1.4.4. Subparameters

Parameters enclosed in parentheses and separated by commas are called subparameters. The parentheses must be
shown to delimit the series of subparameters, and to prevent the commas from being interpreted as parameter
separators. Subparameters follow the same conventions as those for positional and keyword parameters.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-14

UP-NUMBER PAGE REVISION PAGE

1.4.5. Default Options

Underlined parameters are selected automatically when a keyword parameter or subparameter is omitted.

Examples:

{:Oe}

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-1
UP-NUMBER PAGE REVISION PAGE

2. Assembly Language

2.1. CHARACTER SET

The assembly language character sets used in writing statements for the SPERRY UNIVAC Operating System/4
(OS/4) are:

• Letters:

A through Z

• Special Letters:

?$#@

• Digits:

0 through 9

• Special Characters:

+-*/,=blank (). >< & '

The characters ?, $, #, and @ are considered to be special letters because they may be written as one of the
characters in a symbol.

In the description of instructions, the following specific definition terms are used:

• Alphabetic - a character of the letter or special letter set;

• Numeric - a character of the digit set; and

• Alphanumeric - a character of the letter, special letter, or digit set.

2.2. STATEMENT FORMAT

Statements in the OS/4 assembly language are written on the assembler coding form (Figure 2-1). Statements and
comments are generally written in columns 1 through 71. Column 72 is used to indicate continuation. Statements
are continued in column 16 of the following card. Columns 73 through 80 may contain program identification and
sequencing information. This format may be altered by the input format control (ICTL) assembler directive
(12.7.1).

•

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-2
UP-NUMBER PAGE REVISION PAGE

ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE PAGE OF PAGES

LABEL 00PERATION6 OPERAND COMMENTS
10 16 72 80

l L_J_ - l l J L__l __ l__, . '- _I_ l . L, _l_-' l - 1 .1 ... ' ' ' i l ' ' ' '
l L.~ _ _J__j 1 '- 1 1 l 1 t---j ... ,_ l ! ~ l l -~. I, ' I

.. l .. LJ..J.._1 _l I_ t--~ l i l_ ~ l _:_____1_____l_ l ; ~-_L_J J -~--L-- ... Li_____i_ • 1 L_l_. ' ' ' ! I '

Figure 2-1. Assembler Coding Form

Although assembly language is written in free form, it is recommended that source code statements be written with
the first character of the operation code in column 10 and the first character of the operand field in column 16.
Tabulating the statements in this fashion creates a listing which is neater and easier to read. The rules governing the
writing of free form assembler statements are discussed in 2.2.6.

2.2.1. Label Field

The optional label field may contain a symbol for which a value is to be defined. The label field must begin in
column 1 of the coding form and is terminated by a blank column. A blank in column 1 is interpreted as indicating
the absence of this field.

2.2.2. Operation Field

The operation field begins with the first nonblank character after the label field and is terminated by a blank.
Embedded blanks are not permitted. The operation field contains the mnemonic operation code for a machine
instruction, the name of an assembler directive, or the name of a previously defined macro instruction. The
operation code must be written exactly as specified in the assembler instruction or directive format description.

2.2.3. Operand Field

The operand field begins with the first nonblank column after the operation field and is terminated by a blank not
contained in a character constant representation, character self-defining term, or character expression. This field may
contain data and/or information used by the machine instructions or assembler directives, or parameters completing
the specification of the procedure reference. An operand of a source line statement may not terminate in column 71
unless a continuation is called for (in which case column 72 is not blank). Column 72 cannot be used for coding or
as the terminating blank of the operand field.

2.2.4. Comments Field

The comments field for a statement begins with the column following the blank column that terminates the operand
field and it ends at column 71. It may contain any combination of characters including blanks. It is not processed by
the assembler other than to include it on the assembly listing. It may contain remarks to clarify the purpose or
operation of the associated coding.

Lines may consist entirely of comments from columns 2 through 71 if column 1 contains an asterisk. Comments
written on an instruction line may not be continued and must terminate on or before column 71 .

·-..·

7935 Rev. 1 SPERRY UNIVAC Operating System/4
2-3

UP-NUMBER PAGE REVISION PAGE

2.2.5. Continuation

If a nonblank character is entered in column 72, the operand field of the current source code line may be continued
beginning in column 16 of the following line. Column 72 is the normal continuation column and column 16 is the
normal continue column; however, these can be altered by using the ICTL directive described in 12.7.1. Continued
lines are regrouped when listed on the line printer.

2.2.6. Statements in Free Format

Statements may be written in free format disregarding the standard form, providing the following rules are observed:

• The label field must start in the begin column, as specified by the ICTL directive.

• If the label field is omitted, the operation field must begin at least one column to the right of the begin
column.

• The label and operation fields must appear in the first line of the statement.

• A field must be terminated by at least one blank.

• As in normal form, neither the label nor the operation field may contain embedded blanks. The blank is
always used as a delimiter to terminate a field. The operand field can contain blanks within a valid character
string.

• The entries must appear in normal sequence: label, operation code, operand, comments.

• An entry may not extend beyond statement boundaries .

2.3. TERMS

Terms are representations of values. The assembler recognizes five classes of terms:

• Self-defining terms

• Literals

• Symbols

• Location counter references

• Attribute references

Self-defining terms are fixed values coded by the programmer. Literals can have their value specified by the
programmer or computed by the assembler. Symbols, location counter references, and attribute references are
assigned values by the assembler.

2.3.1. Self-Defining Terms

Self-defining terms (SDT) represent fixed values. These representations are not relocatable and are used to specify
immediate data, registers, addresses, and masks in machine instructions. The representation can also be used to
specify values in directive operands or in expressions. Restrictions on the size of SDT's depend on where they are
used. When SDT's are used to designate a register, the value cannot exceed 15. The representation of an address must
not have a value greater than the total size of storage. After conversion to a binary format, the value is truncated or
filled with nonsignificant O's to fit the designated field. SDT's can be represented in binary, hexadecimal, decimal, or
character form. A description of eacb type.of representation follows.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-4

VP-NUMB~R PAGE REVISION PAGE

2.3.1.1. Binary Representation

A binary representation consists of a series of up to 24 zeros and ones enclosed in apostrophes and preceded by the
letter B. The bit pattern is stored as specified with high order O's added when necessary. The following are valid
binary representations:

Binary Representation Binary Value

B'10011' 00010011

B'11' 00000011

B'101101000101' 00001011 01000101

2.3.1.2. Hexadecimal Representation

A hexadecimal representation consists of up to six hexadecimal digits enclosed in apostrophes and preceded by the
letter X. This representation is used primarily to convey binary or bit-pattern information to the system. Each
hexadecimal digit represents a half byte of information. The hexadecimal digits and their values are:

0-0000 8- 1000

1 - 0001 9 - 1001

2 -0010 A-1010

3-0011 B - 1011

4-0100 c -1100

5 - 0101 D - 1101

6 - 0110 E -1110

7 - 0111 F-1111

Examples of hexadecimal representations and the binary values they produce are:

Hexadecimal Representation Binary Value

X'D' 00001101

X'101' 00000001 00000001

X'7FFF' 01111111 11111111

X'ABC' 00001010 10111100

X'F1F2' 11110001 11110010

.. ___,.,

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-5
UP-NUMBER PAGE REVISION PAGE

2.3.1.3. Decimal Representation

A decimal number may be used to specify directly to the assembler a value that will be converted to a binary value
or other bit configuration. The decimal number may consist of up to eight digits, 0 through 9, forming a decimal
number, 0 through 16,777 ,215. This number is converted to a binary value occupying one or more bytes depending
on the type of field for which it is intended. Decimal numbers and the binary values they produce are:

Decimal Representation Binary Value

0 00000000

00000001

15 00001111

257 00000001 00000001

00013 00000000 00001101

32767 01111111 11111111

2.3.1.4. Character Representation

A character representation consists of up to three characters of the 256 valid characters; however, only 63 of the
256 valid characters are printable. The characters must be enclosed in apostrophes and preceded by the letter C.
Each ampersand or apostrophe to be included in a character representation is represented by a double ampersand or
double apostrophe, respectively. In this case, there may be more than three characters within the apostrophes which
delimit the character representation.

The character representation is used to specify immediate data or binary bit patterns. Character representations and
their values are:

Character Representation Binary Value

C'D' 11000100

C'NOT' 11010101 11010110 11100011

C'9' 11111001

C"'&&"' 01111101 01010000 01111101

2.3.2. Literals

A literal is a representation of data which is replaced by the storage address of the actual data. When the assembler
recognizes a literal in the source code, it searches the table of literals that have been previously encountered. If a
duplicate is found, then the relocatable address of the literal in the table replaces the original literal in the source code. If
a duplicate is not found, then the value of the original literal is entered into the table and its address replaces the source
code specification. Literals are similar in form to the operands of DC and DS statements. A more detailed description of
literals is given in 11.5.

7935 Rev. 1 SPERRY UNIVAC Operating System/4
UP.NUMBER PAGE REVISION PAGE

A literal may be used in any machine instruction that specifes a main storage address and must appear as the complete
operand specification. However, the literal may not be specified as the receiving field operand of an instruction that
modifies main storage, in address constants, shift instructions, input/output instructions, nor combined with other
terms or with an explicit base register specification.

2.3.3. Symbols

A symbol is a group of up to eight alphanumeric characters. The first, or leftmost, character must be alphabetic. Special
characters or blanks may not be contained within a symbol. Examples of valid symbols are:

v CARDAREA

GS279 R$1NTRN

BOB BD#4

Not valid symbols for the reasons stated are:

READ ONE Embedded blank

SPEC'L Special character

6AGN First character not alphabetic

A symbol may be more than eight characters long; however, only the first eight characters are analyzed by the assembler.
If the first eight characters of any two symbols are identical, they are considered to be identical symbols regardless of

2-6

following characters. ·....._./

The assembler associates three attributes with each symbol it processes: value, length, and relocatability. Symbols
defined by the EQU directive adopt the attributes of the expression in the operand field of the statement.

2.3.3.1. Value Attribute

A symbol is assigned a value, or defined, when it appears in the label field of any source code statement other than a
comment. A symbol appearing in the label field of an EOU or ORG directive is assigned the value of the expression in the
operand field. In all other cases the value assigned is the current value of the location counter after the adjustment to a
half-word boundary, if necessary. The value is assigned to the current label before the location counter is incremented
for the next instruction, constant, or storage definition. Thus, if a symbol appears in the label field of a statement
defining an instruction, constant, or storage area, the symbol is assigned a value equal to the storage area address of that
instruction, constant, or storage area.

2.3.3.2. Length Attribute

The length attribute of a symbol is the number of bytes assigned to the instruction, constant, or storage area
involved. For example, the label of a 2-byte instruction has a length attribute of 2 and the label of a DS statement
reserving 50 words (four bytes per word) would have a length attribute of 4. Symbols equated to location counter
references and/or absolute value representations usually have a length attribute of 1.

The maximum length attribute that can be generated by the assembler is 256 bytes; however, a DS may be used to
reserve more than 256 bytes of storage.

"-...--•'

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-7

UP·NUMBER PAGE REVISION PAGE

2.3.3.3. Relocatability Attribute

A symbol may either be absolute or relocatable. Values which are assigned to symbols defined in the label field of a
source code line representing an instruction, constant, or storage definition, are relocatable. A relocatable symbol is a
symbol whose value would change by a given number of bytes if the program in which it appears is relocated the same
number of bytes from its originally assigned address. Relocatable symbols are assigned values relative to the location
counter. Decimal, character, binary, and hexadecimal representations are all absolute terms and have a relocation
attribute of 0.

2.3.4. Location Counter References

A location counter is maintained by the assembler for each control section created by the programmer. Each counter
contains the next available location for the associated control section. After the assembler processes an instruction or
constant, it adds the length of the instruction or constant processed to the current location counter.

Each instruction or address constant must have an address which is a multiple of two bytes. This type of address is said to
fall on a half-word boundary. If the value of the location counter is not a multiple of 2 when assembling such a constant
or instruction, a 1 is added to the location counter before assigning an address to the current statement. Storage
locations bypassed in this way receive binary O's when the program is loaded.

The current value of the location counter, under which the program is currently being assembled, is available for
reference by the programmer. It is represented by the special character* (asterisk). If the asterisk is written in a constant
representation or in an instruction operand expression, this character is replaced by the storage address of the leftmost
byte allocated to that instruction or constant. Thus, in the following example the instruction generates an object code
instruction with the address of the MVC instruction as Operand 2. When executed, the MVC instruction will be
transferred to a 6-byte area labeled ADD R.

Example:

LABEL [). OPERA T!OH [). OPERAND
10 i 6

I J

An instruction may address data or other instructions in its immediate vicinity in terms of its own storage address.
This is one kind of relative addressing and it is achieved by an expression of the form *+n or *n where n is the
difference in storage addresses of the referring instruction and the instruction or data being accessed. Relative
addressing is always in terms of bytes and not in terms of words or instructions.

2.3.5. Attribute References

References to symbol attributes assigned by the assembler are treated as terms.

• Length

The length attribute of a symbol may be referenced (2.3.3.2) by writing L' followed by the symbol. Thus, ifthe
symbol STORE ND is the name of a full-word field,

L'STOREND

would be considered a term and it would have a value of 4.

The length attribute is not available during conditional assembly processing. Specifically, a paraform (13.3.1.1) may
not be a length attribute if it will be on a "DO" line of the procedure definition.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-B
UP-NUMBER PAGE REVISION PAGE

• Number

The number attribute is only valid for para forms (13.3.1.1) associated with procedure definitions. The attribute
refers to the number of items within the list or sublist specified by the paraform. A reference may be made to a
number attribute by writing N' followed by the paraform. The reference is replaced by the number of elements.

For example, to obtain the total number of positional parameters associated with the parameter named LST, the
following would be coded in the procedure definition:

N'LST

If positional parameter 1 of LSTwas a sublist, it would be possible to determine the number of items in the sublist
by coding:

N'LST(1)

Also, if a keyword parameter, KEY, is equated to a sublist on a procedure definition call line, then the number of
items in the sublist can be determined by coding:

N'KEY

2.4. OPERATORS AND EVALUATION

There are 12 operators in the OS/4 assembler which designate the method, and implicitly the sequence, to be employed
in combining terms or expressions (Table 2-1). Blanks are not permitted within an expression. Evaluation of an
expression begins with the substitution of values for each term. The operations are then performed from left to right in
hierachical order as I isted in Table 2-1. The operation with the highest hierarchy number is performed first; operations
with the same hierarchy number are performed from left to right. Parentheses may be used to alter the order of
evaluation. Division by 0 equals 0. The 12 operators are divided into three classes: arithmetic operators, logical
operators, and relational operators. More detailed descriptions of these operators are provided in the following
paragraphs.

Table 2-1. Summary of Operators

Classification Operator Description Hierarchy

Arithmetic Operators *I A*IB is equivalent to A•2B 6

11 Covered quotient, AllB is equivalent to (A+B-1)IB 5

I AIB means arithmetic quotient of A and B 5

* A• B means arithmetic product of A and B 5

- A-B means arithmetic difference of A and B 4

+ A+B means arithmetic sum of A and B 4

Logical Operators * * A** B means Logical Product AND of A and B 3

++ A++B means Logical Sum OR of A and B 2

-- A--B means Logical Difference XOR or A and B 2

Relational Operators A~B has value 1 if true; has value 0 if false 1

> A>B has value 1 if true; has value 0 if false 1

< A <s has value 1 if true; has value 0 if false 1

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 2-9
PAGE REVISION PAGE

2.4.1. Arithmetic Operators

The symbols+,-,*, I, II, and *I represent the six arithmetic operators. The intrinsic meanings of+,-,*, and I are the
usual ones; that is, + indicates addition, - indicates subtraction, * indicates multiplication, and I indicates binary
division.

The operator II denotes a covered quotient where AllB is equivalent to (A+B-1)IB. A covered quotient is equal to
regular binary division except that if there is a remainder, a 1 is added to the regular quotient.

The operator *I denotes a binary shift left or right, A*IB indicates a left shift and is equivalent to A*28 , A*/(-B)
indicates a right shift and is equivalent to A12-B.

2.4.2. Logical Operators

The symbols **• ++,and -- are the three logical operators. The characters** represent the logical product (AND).
the characters ++ represent the logical sum (OR), and the characters -- represent the logical difference (exclusive
OR).

Each bit of the first term is compared with its corresponding bit in the second term and the result of the comparison is
placed in the corresponding position in the resulting term. The result of the bit comparison for each operator is:

rJm] (ill) El!E

A**B Result A++B Result A--B Result

1 1 1 1 1 1 1 1 0

1 0 0 1 0 1 1 0 1

0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0

2.4.3. Relational Operators

The three relational operators are the equals operator (=),the greater than operator(>), and the less than operator(<).

The equals operator is used to compare the value of two terms or expressions. If the two values are equal, the assembler
assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

The greater than operator makes a comparison between two terms or expressions. If the value of the first (left) term is
greater than the value of the second (right) term, then a value of 1 is assigned to the expression; otherwise, a value of 0 is
assigned.

The less than operator compares the value of the first (left) expression or term with the second (right) expression. If the
value of the first expression is less than the value of the second one, then a value of 1 is assigned to the expression;
otherwise, a value of 0 is assigned.

For the expression A+B>c, if the expression A+B has a value greater than the value of C, then the assembler assigns a
value of 1 to the expression; otherwise, a value of 0 is assigned.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 2-10
PAGE REVISION PAGE

2.5. EXPRESSIONS

An expression consists of one or more terms connected by operators. A leading minus sign is allowed to produce the
negative of the first term.

Two types of expressions, absolute and relocatable, possess various characteristics obtained from the term or terms
which compose them. These two types of expressions are discussed in the following paragraphs.

2.5.1. Absolute Expression

An absolute expression is an expression whose value is unchanged by program relocation. The absolute expression can
be an absolute term or any combination of absolute terms. Arthmetic operators are permitted between absolute terms.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within an absolute
expression. This type of absolute expression requires the following conditions:

• The relocatable terms must be paired in even numbers.

• Each pair of relocatable terms must have opposite signs and have the same relocatability attribute (that is, appear
in the same control section). However, the paired relocatable terms need not be contiguous.

• If a relocatable term in the absolute expression enters into a multiply or divide operation, an error flag is given and
the result is treated as absolute (except multiplication and division by absolute 1). Therefore, R-R*A is flagged
and R *A is treated as absolute. Multiplication by absolute 0 is absolute 0.

The effect of relocation is canceled by the pairing of relocatable terms with the same relocatable attribute and opposite
signs. The absolute expression is thereby reduced to a single absolute value.

The following are examples of absolute expressions:

A
A+A-A
A-A+A+A
R+A-R
R-R+A
{R-R)*A
A*A

where:

A is an absolute term.

R is a relocatable term.

2.5.2. Relocatable Expressions

A relocatable expression is an expression whose value changes with program relocation. Al I relocatable expressions must
be a positive value. All arithmetic operators are permitted between the relocatable terms.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within a relocatable
expression. Either type of relocatable expression requires the conditions:

I

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-11

UP-NUMBER PAGE REVISION PAGE

• An odd number of relocatable terms is necessary.

• All but one relocatable term must be paired .

• A minus sign must not precede the unpaired (remaining) relocatable term.

• Each pair of relocatable terms must have opposite signs and the same relocatability attribute.

• The paired relocatable terms do not have to be contiguous.

• Multiplication and division of a relocatable term by an absolute 1 or multiplication of an absolute 1 by a
relocatable term produces a relocatable expression.

Using the above requirements, a relocatable expression is thereby reduced to a single relocatable expression. The
following are examples of relocable expressions:

R
R+AorA+R
R-R+R
R-R+A+R
R-A
R*1or1*8

where:

A is an absolute term.

R is a relocatable term.

An expression may be negatively relocatable only under certain circumstances (11.8.2). Such an expression consists of
either an absolute term minus a relocatable term or an expression that can be reordered to that form as:

A-R
A-R-R+R
R-R+A-R

where:

A is an absolute term.

Risa relocatable term.

Any expression that does not conform to the rules discussed in this section is flagged. Also, the result of invalid pairing
of terms is treated as an absolute term.

2.5.3. Length Attribute of Expressions

The length attribute of an expression is determined by the assembler and is a function of the leading term of the
expression. If the first term of an expression is an absolute value, a length attribute of one byte is assigned to the
expression. If the leading term is a symbol, the number of bytes attributed to the expression is the same as the length
attributed to the symbol. Thus, if TAG appears in the label field of an LH (load-half-word) instruction, it would have a
length attribute of 4 since LH is a 4-byte instruction. In referencing the same label, the expression T AG+195 also has a
length attribute of 4, but the expression 195+ TAG has a length attribute of 1 because the leading term is a decimal
self-defining term.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 2-12
PAGE REVISION PAGE

2.5.4. Character Expressions

A character expression is either a character string, a character substring, or a concatenation of strings and/or substrings.
Character expressions are used mainly to specify set symbol values for replacement in source code statements (12.8.1).
They can also appear in arithmetic expressions as terms used by relational operators. All arithmetic values are considered
to be greater in value than any character string and any character string is considered to be greater in value than any
shorter character string. Where character expressions appear in arithmetic expressions as terms for operations other than
the relational operators, they are flagged and treated as O's.

• Character Strings

A character string is zero, one, or more of the 256 valid characters enclosed by apostrophes. A character string
differs from a character absolute value representation in that the character absolute value representation is
converted to and treated as a binary value. A character string is not treated as a value. Character strings can be up
to 127 characters in length. Apostrophes within the string must appear as pairs of successive apostrophes.
Ampersands must appear as pairs of ampersands.

• Substring Representation

A character substring is a valid character string followed immediately by two unsigned decimal numbers which are
separated by a comma and enclosed in parentheses. The format is:

character-string(n1 ,n2)

The first number (n1) indicates the leftmost character of the original string which is to be included in the
substring. The second number (n 2) represents the number of characters to be included in the substring.

For example:

'PR EDEF IN ED'(4,6)

represents the same string of characters as does

'DEFINE'

• Concatenation

Concatenation is the joining together of two character strings, two character substrings, or a character string and a
character substring. A period is used to designate concatenation that results in the formation of a single string of
characters. The characters of the second string or substring are placed immediately following the characters of the
first term in the oonstruction of the resultant string. The following example shows concatenation:

'PRE'.'DEFINE' produces PREDEFINE

When a substring is to be concatenated with a following character string, the period may be omitted and
concatenation is assumed.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 2-13
PAGE REVISION PAGE

2.5.5. Basic Expressions

A basic expression consists of one or more basic terms connected by operators. Basic expressions are used to specify
information for certain directives.

The following are basic terms:

• Self-defining terms (SOT)

• Symbols defined by SET directives (set symbols)

• Character expressions

• Number attribute references

• Parameter reference forms (paraforms)

All the operators used by the OS/4 assembler are valid; the rules for expression evaluation are the same as with normal
expressions; and parentheses may be used for grouping. Division by 0 equals 0. Blanks are not permitted in the
expression except within a defined character string or substring. All terms must be predefined.

.___. ..

7935 Rev. 1
UP-NUMBl2"R

SPERRY UNIVAC Operating System/4 3-1
PAGE REVISION PAGE

3. Introduction to Instructions

3.1. INSTRUCTION TYPES AND FORMATS

The normal mode of operation for program run under the control the SPERRY UNIVAC Operating System/4
(OS/4) is the 9400/9480 compatible mode; therefore, the descriptions of the instructions in this manual reflect this
mode of operation.

An instruction is an executable statement for operations involving data. The instructions for the OS/4 are divided
into five types according to the operation specified by the instruction. The instructions are of three lengths: two,
four, or six bytes. In a 2-byte, or half-word instruction, the general registers are referenced for both operands. A
4-byte instruction references main storage for one operand, and the general registers or immediate data for the other
operands. A 6-byte instruction references main storage for both operands. Each instruction is aligned by the
assembler on a half-word boundary; that is, each has an even address. The five instruction types are:

• RR register to register operation, requiring two bytes of main storage .

• RX register and indexed storage operation, requiring four bytes of main storage.

• RS register and storage operation, requiring four bytes of main storage.

• SI storage and immediate operand (one contained in the instruction) operation, requiring four bytes of
main storage. Only self-defining terms may be used as immediate operands.

• SS main storage to main storage operation, requiring six bytes of storage. The SS instruction format is used for
packed decimal arithmetic (maximum operand length is 16 bytes) and for byte-by-byte processing of data
(maximum operand length is 256 bytes).

The basic formats for instruction are shown in Figure 3-1 in source code and object code form.

Table 3-1 defines the abbreviations used in the description of instructions.

Instruction
Type

RR

RX

RS

SI

SS

Source Code
Instruction Format

[symbol] opcode r
1

,r
2

0

[symbol] opcode r
1

,d
2

(x
2

,b
2

)

[symbol] opcode r
1

,r
3

,d
2

(b
2

) 0

[symbol] opcode i
2

,d
1

(b
1

I (i)

[symbol] opcode d
1

(l,b
1

) ,d
2

(b
2

)

I
I
I
I

L

I
I
L

Byte 1

opcode

opcode

opcode

First Half Word

7 : 8

REG
OP 1

Byte 2
11J_l2

REG
OP 2

15 I 16

I
I
I

Object Code Instruction Format

19 J_ 20

Second Half Word

Bytes 3 and 4
31 I 32

,
------1

I r,

I
I REG
I OP 1
I
I,___,,'"_

I

r=-r, J
REG
OP 1

,-~

r,

: ADDRESS I
1 OPERAND 2 I

I

x, b2] d,

I
REG
OP 3

ADDRESS I
OPERAND 2 I --

35 j_36

Third Half Word

Bytes 5 and 6
47

r,

I

I

I

I r 3 I b, I d, I r 1 b,]

--~--..___. I

I I I
IMMEDIATE : ADDRESS I I

OPERAND I OPERAND 1 I I
I --------------- I I

I opcode i2 I b, J d1 I i
I I I I
I LENGTH I ADDRESS 1 ADDRESS I
I OP 1 and OP 2 : OPERAND 1 I OPERAND 2 I

t -------------- : : I
I opcode I 1-1 I b, l d, I b, I d, I
I I I I I
I I LENGTH I ADDRESS [ADDRESS j
I I OP l OP 2 I OPERAND l I OPERAND 2 I

[symbol]opcoded
1

(1
1

,b
1

),d
2

(1
2

,b,I I 1 _, __ ,_ : 1 I
I I 1, - , 1 1, _, I b, 1 d, I b, 1 d, opcode

1o 718 11 112 15116 19 120 31 32 35 36 47

NOTES:

CD The RR instruction has two other forms: @ The RS shift instructions are written without use of the r 3 operand, in the form:

[symbol] opcode i1 for the SVC and SRF instruction [symbol] opcode r1 ,d2(b2l

[symbol] opcode r 1 for the SPM instruction @ Some SI instructions, such as HIO and TIO, do not use an i2 field, They are written in the form:

[symbol] opcoded 1 (b1)

Figure 3-1. Instruction Formats

((
I

c -.J
11 co
·w z (J1

c JJ
;:: "' CD <
IT1 •
::a

11
}>

Gl
IT1

::a
IT1
<
Ul

0
z

-
11
}>

Gl
IT1

(,/)

" m
:::JJ
:::JJ
-<
c
z
<
)>
("')

0
"O
CD
Cl)

::t.
:I

(,Cl

!f
~
CD
3 -~

w
I

I\,)

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-3
UP~NUMBER PAGE REVISION PAGE

Table 3-1. Abbreviations Used in Descriptions of Instructions

Abbreviation Definition

a Absolute term or expression

tJ. Blank

b, Number of the general register which holds the base address of operand 1

b2 Number of the general register which holds the base address of operand 2

cc Condition code

d, Displacement for the base address of operand 1 (absolute displacement)

d2 Displacement for the base address of operand 2 (absolute displacement)

e Expression

i 1 Immediate data used as operand 1

i2 Immediate data used as operand 2

I Length of the operands as stated in source code

1, Length of operand 1 as stated in source code

12 Length of operand 2 as stated in source code

m Mask

opcode Instruction operation code

op, Operand 1

op2 Operand 2

op3 Operand 3

r 1 Number of the general register which holds operand 1

r2 Number of the general register which holds operand 2

r3 Number of the general register which holds operand 3

x2 Number of the general register which holds an index number for operand
2 of an AX instruction

3.2. OPERAND ADDRESSING

Operands may be located in three places:

• contained in the instruction;

• stored in the operating registers; or

• in main storage.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-4
UP-NUMBER PAGE REVISION PAGE

No address is needed for an operand which is part of the instruction, that is, an immediate operand. When operands are
located in the register set, the register is addressed by using a 1-digit value. However, operands in main storage must be
addressed by a main storage address, the formation of which is explained in the following paragraphs.

Instructions which access operands from main storage have two operand specification fields:

b d

4 bits 12 bits

The b (base) field of the operand designates a general purpose register. The value contained in this register represents the
base address. The 12 bits of the d (displacement) field contain the displacement. The base address and the displacement
are added to obtain the effective address of the operand.

The RX instructions use three fields to specify the operand address :

x2 b2 d2

4 bits 4 bits 12 bits

An example of this addressing follows:

Opcode r 1 x2 b2 d2

lo
50

, J.
4 ,, j,, 7 J, 5 ,,j,o

100

31
1

This is the object code format of a store instruction; operand 1 is stored in the effective address of operand 2. The
contents of base register 5, the displacement value 100, and the contents of index register 7 are added to obtain the
effective address into which the contents of register 4 are stored. Each register requires 32 bits or 4 bytes of main
storage.

This example assumes that the flags in the relocation register pertaining to the destination operand are 0.

Before execution:

Contents of register 4

Contents of register 5

Contents of register 7

Contents of main storage locations
19A through 190, right justified

4815

"-.,../

'·•__. ... /

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-5
UP.NUMBER PAGE REVISION PAGE

After execution:

Contents of the registers are unchanged

Effective address is

Contents of main storage locations
19A through 190, right justified

48+100 + 52 = 19A1 6

3216

Where an operand is described in terms of a main storage address and a length, the expression used can be simplified from
that shown in the instruction format by implying the base register or length. Information supplied in the USING and
DROP directives enables the assembler to separate a main storage address into a base register and a displacement (12.4).
Table 3-2 lists the complete specification for the operand referencing main storage, applicable instruction types, and
the operand format as it can be written utilizing an implied base register or length representation.

Table 3-2. Operand Specification Using Implied Base Register, Implied Length, or No Index Register

Complete Operand Specification Using
Applicable Specification
Instruction for One Implied Length Implied Base Register

Implied Base Type
Operand Register

or No Index and Implied Length
Register* or No Index Register*

RR r 1 NA NA NA

r2 NA NA NA

RX d2(X2,b2) s2 (x2) d 2 (.b2) S2

RS d2(b2) s2 NA NA

SI d1 (b1) s1 NA NA

SS d1(1,b1) s1 (I) d 1 (.b1 l s1

d2(b2) s2 NA NA

d1 (11,b1) s, o,) d 1 Lb1) S1

d2(12,b2) s202) d 2(.b2) s2

*The index register cannot be implied. If used, it must be specified as part of the operand.

LEGEND:

NA Not applicable
s1 Symbolic expression -operand 1
s2 Symbolic expression - operand 2

3.2.1. Implied Length

The implied length of an instruction operand is only applicable to the SS instructions. To imply a length, the
programmer specifies no length for the operand. The assembler automatically assembles the length attribute of the first
operand into the length field of the instruction. The length attribute of an operand is the length attribute of the
expression which is used to define the storage location. The length attribute of an expression is equal to the length
attribute of its first term; the length of a self-defining term is 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-6
UP-NUMBER PAGE REVISION PAGE

Some SS instructions contain two length fields (one for each operand), of which one or both can be implied. In either
case, the assembler puts the operand length in the length field.

The following instructions are examples of using the implied length feature of the assembler:

• To move 80 characters from a field labeled OP2 (operand 2) defined asa 90-character field to a field labeled OP1
(operand 1) defined as an 80-characterfield, the instruction is written:

MVC OP1,0P2

In the above instruction, the length attribute of OP1 was used. In the following example, 80 characters are still
moved from OP2 to OP1 but the length is explicitly stated:

MVC OP1 (80).0P2

• If all 90 characters of OP2 are to be moved to OP1. which is defined as 80 characters in length, the instruction
would be written with an explicit length so that the length attribute of OP1 is not used.

The instruction is written:

MVC OP1 (90),0P2

3.2.2. Implied Base Registers

Information supplied in the USING and DR OP directives (12.4) enables the assembler to separate a main storage address
into a base register and a displacement value.

The assembler maintains a USING table of the available registers and the values they are to contain at object time. A
USING directive adds a register and a value to the USING table or revises the value for a register already in the table. A
DROP directive removes a register and its associated value from the USING table. If the operands of a USING and DROP
directive are not valid, that line of the listing is flagged with an error indication.

If an operand address is given as an effective address instead of a base register and displacement specification, the
assembler searches the USING table for a value which yields a valid displacement (a value from Othrough 4095) and has
the same relocatability attribute. If there is more than one valid displacement value, the value which yields the smallest
displacement is used. If more than one register contains a value which yields the smallest displacement, the highest
numbered register is selected. If no register can be found which yields a valid displacement, the field is set to 0 and the
statement is flagged with an error indication. An absolute address without a base register indication is treated as an
effective address and the assembler attempts to convert it into a base register and a displacement value.

The specification of a USING directive indicates that one or more general registers are available for use as base registers.
The USING directive operands also state a value which the assembler assumes to be in the base registers at objecttime.

The value assigned to a register by the USING directive is used by the assembler in the assignment of main storage
addresses. The value assigned is assumed to be in the respective base registers at execution time. The effective addresses
are then derived by the hardware at execution time by adding the contents of the base register to the displacement value
when the instruction is processed.

''-.....-·"

'-··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-7
UP-NUMBER PAGE REVISION PAGE

3.3. PRIVILEGED OPERATION

The assembler instructions may be divided into two categories according to their mode of operation:

• Non privileged Instructions

The nonprivileged, or problem, instructions are available to both user programmer and system software for
normal data processing when the processor is in the problem state; that is, the proper bit of the program status
word (PSW) is set. If the program attempts to execute a privileged instruction, a program exception occurs.

• Privileged Instructions

The privileged, or supervisor, instructions are so named because their execution permits special priority processor
activity. When the processor is in the supervisor state, that is, when the proper bit of the program status word
(PSW) is not set, all instructions are valid. All privileged instructions are designated as such in this manual.

The processor may be switched from one state to the other by providing a new program status word with the proper bit
set appropriately. This may be accomplished by executing the load-PSW instruction (9.6). Since the load-PSW
instruction is a privileged instruction, the processor must have been in a supervisor state. The switching of status may
also occur as a result of an interrupt condition which causes a new program status word to be obtained from main
storage.

3.4. PRESENTATION OF INSTRUCTIONS

Sections 4 through 10 describe each instruction in the assembler repertoire. The instructions are grouped in sets
according to type:

• Fixed-point instructions

• Decimal instructions

• Floating-point instructions

• Logical instructions

• Branching instructions

• Status switching instructions

• Input/output instructions

The description of each instruction is presented in the following format:

• Instruction name - unless otherwise specified, the instruction applies to both the 9400/9480 and 90/60,70
environments

• Symbolic representation, hexadecimal operation code, format type, and length

• Function - the operation performed by the instruction

• Object instruction format - specified only for those instructions which are exceptions to the formats shown in
Figure 3-1

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-8
UP-NUMBER PAGE REVISION PAGE

• Operational considerations

detailed operation information

restrictions on use

condition code settings

possible program exceptions

applicable relocation and indirection flags (90/60,70 systems). Figure 3-2 lists and defines the
abbreviations used for relocation and indirection flags as well as illustrating their respective placement in
the format for the relocation register.

• Examples

Appendix A contains a list of the assembler instructions in alphabetical order according to mnemonic operation
code.

Appendix B describes the hardware differences between the SPERRY UNIVAC 9400/9480 Systems and the
SPERRY UNIVAC 90/60,70 Systems.

The basic concepts of address relocation and of indirect addressing are described in 4.6 of the processor manual,
UP-7936 (current version).

FLAGS

0 R I R I R

I D D 0 0
1 '.l 3 4 5 6 7

Flags (bits 3-7)

Bit Name

3 R1

4 ID

5 RD

6 10

7 RO

Offset (bits 8-19)

8

OFFSET

19 20

branch and relative instruction fetch addresses

0 = absolute addresses
1 = relative addresses

indirect destination operand control

0 = direct addresses
1 = IACW addresses

relative destination operand control

0 = absolute
1 = relative

indirect origin operand control

0 = direct addresses
1 = I ACW addresses

relative origin operand control

0 = absolute addresses
1 = relative addresses

A 12-bit relocation value.

Figure 3-2. Relocation Register Format

(IGNORED)

31

-·

7935 Rev. 1 SPERRY UNIVAC Operating System/4
PAGE REVISION PAGE

4-1
UP.NUMBER

4. Fixed-Point Instructions

4.1. GENERAL

The fixed-point instruction set provides for loading, storing, adding, subtracting, multiplying, dividing, comparing,
shifting, and sign control of fixed-point operands on the SPERRY UNIVAC 9400/9480 Systems, and 90/60,70
Systems. See 1.3.1 for information concerning the manner in which fixed-point numbers are represented and their
sign code established. Radix conversion of fixed-point operands is provided on the 90/60,70 systems. Unless
otherwise noted, both operands are treated as 32-bit signed integers. Negative quantities are always represented in
twos complement notation. A 0 result is always represented with a positive sign.

Fixed-point instructions are available in the RR, RX, RS, and SI formats. With the exception of the add- immediate
instruction, at least one of the operands is contained in one of the 16 general registers. The other operand may be
contained in main storage, in the same general register, or in another register. An operand address in main storage
may be specified as relative or absolute on the 9400/9480 systems. On the 90/60,70 systems, an operand address in
main storage may be specified as relative or absolute and direct or indirect under the control of the applicable
relocation register flags. Unless the first and second operands are contained in the same register, or otherwise noted,
the contents of the second operand location remain unchanged by the execution of the instruction.

This section describes the operation of each fixed-point instruction. The instructions are arranged in alphabetical
order according to mnemonic operation code. Each description includes a list of the possible program exceptions
and condition codes which may result. The relocation and indirection flags that are pertinent to the operand
addresses are listed. The object code format of the instruction is shown only for those instructions which differ from
the format shown in Figure 3-1. See Table 3-1 for an explanation of the abbreviations used in describing

instruction formats and Figure 3-2 for relocation flag abbreviations.

4.2. A (ADD)

Mnemonic Hexadecimal Object
Operation

Source Code
Operation

Format
Operand Format Type

Instruction
Code Code length

A r 1,d2 (x2 ,b2) 5A RX Four Bytes

Function:

The contents of the full-word operand 2 in main storage at the address, specified by d
2

(x
2

,b2), are algebraically
added to the general register specified by r

1
.

Operational Considerations:

• All 32 bits of both operands are added. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree. After overflow, the sign and magnitude
of the result are incorrect.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-2
UP-NUMBER PAGE REVISION PAGE

• Operand 2 must be on a full-word boundary.

• The contents of operand 2 remain unchanged.

• An overflow interrupt may be inhibited if bit 36 of the PSW is set to 0.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than 0; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Fixed-point overflow Binary overflow

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW not
on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Examples:

LABEL (;., OPERA T:ON (;., ERAND
10 16

f. ,__.___~-- i l L L

'2 1Lt+),J;bE
I LO;,It\BLE±20

1. The contents of the full word in main storage location JOE are added to register 14.

2. The contents of the full word in main storage addressed by TABLE+20 are added to register 10.

'-.-..--.·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-3
PAGE REVISION PAGE

4.3. AH (ADD-HALF-WORD)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

AH r 1,d2 (x2 ,b2) 4A RX Four Bytes

Function:

The contents of the half-word operand 2 in main storage atthe address, specified by d2 (x2
,b2), are expanded to a

full word by propagating the sign bit value through the 16 most significant bit positions. The operand is then
algebraically added to the general register, specified by r

1
. The result is stored in operand 1.

Operational Considerations:

•

•
•
•

All 32 bits of both operands are added. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree. After overflow, the sign and magnitude
of the result are incorrect.

The contents of operand 2 remain unchanged .

An overflow interrupt may be inhibited if bit 36 of the PSW is set to 0 .

The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Fixed-point overflow Binary overflow

Indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word boundary

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-4
UP-NUMBER PAGE REVISION PAGE

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Examples:

LABEL /). OPERATION/). OPERAND
10 16

I· , .J.._L.. , t J

2. ~ .L_ L .,, . .l .-L L _ _,L~--L~ i l I - l J. '

1. The contents of the half word in main storage location FOX are added to register 8.

2. The effective address is obtained by adding the contents of base register 12 to 0. The contents of this address
are then added to register 8.

4.4. Al (ADD-IMMEDIATE)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

Al d1 (b1) ,i2 93 (9400/9480) SI Four Bytes

9A (90/60,70)

Function:

The binary value of operand 2, contained in i
2

field, is algebraically added to the contents of the half-word
operand 1 in main storage at the address specified by d

1
(b

1
). The result is stored in operand 1.

Operational Considerations:

• An overflow condition exists when the carry out of the sign bit position and the most significant
numeric bit positions disagree. After overflow, the sign and magnitude of the result are incorrect.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10) if result is greater than 0; or

to 3 (11
2

) if overflow occurs.

'-..--··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-5
UP.NUMBER PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Fixed-point overflow Binary overflow

Indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 1 not on half-word
boundary

2. IACW not on full-word
boundary

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: none

Examples:

LABEL

I· .l._ __ L ___ , ... l 1

f:j_ OPERATl<JN f:j_
10

2. ____ L.l l

AI
AI

x '80. 'l
}1~7 i

1. The value -128, specified by 80
16

, is added to the contents of main storage specified by the displacementO
modified by the contents of the base register 9.

2. The value 127 is added to the contents of the operand labeled SMALL.

4.5. AR (ADD)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

AR r 1,r 2 1A RR Two Bytes

Function:

The 32 bits of operand 2, specified by r
2

, are added to the 32 bits of operand 1, specified by r
1

. The sum is stored
in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-6
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• All 32 bits of both operands are added. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree. After overflow, the sign and magnitude
of the result are incorrect.

• The contents of r
2

remain unchanged .

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than 0;

to 2 (10
2

) if result is greater than 0; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

SPE ARY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Fixed-point overflow Binary overflow

• Relocation and indirection flags (90/60,70): none

Examples:

J.

Ll-.BEL

11 µ__, I t3
'1Z.)1.3
14) 12

1. The contents of register 13 are added to the contents of register 14.

2. The contents of registers 12, 13, and 14 are added and the sum is placed in register 14. The sum of the
contents of registers 12 and 13 is stored in register 12.

4.6. C (COMPARE)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format Type

Instruction
Code Code Length

c r 1 •d2(X2,b2) 59 RX Four Bytes

"·.._/

._.-

--.._.··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-7
UP-NUMBER PAGE REVISION PAGE

Function:

The full-word operand 1, specified by r
1

, is algebraically compared with the full-word operand 2, specified by
d2(x2,b2).

Operational Considerations:

• The contents of both operands remain unchanged.

• The condition code is set as follows:

to 0 (002) if the operands are equal;

to 1 (01) if operand 1 is less than operand 2;

to 2 (10
2

) if operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Examples:

/.
2 .. J

1.

2.

LABEL

6 1CAT
~)CAT+Li

The contents of register 6are compared with the full word in main storage location CAT.

The contents of register 8 are compared with the full word in main storage labeled CAT +4.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-8
UP-NUMBER PAGE REVISION PAGE

4.7. CH (COMPARE-HALF-WORD)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

CH r1 ,d2 (x2 ,b2) 49 RX Four Bytes

Function:

The half-word operand 2 specified by d2 (x2 ,b2), is expanded to a full word by propagating the sign bit value
through the 16 most significant bits. The full-word operand 1, specified by r

1
, is then algebraically compared with

operand 2.

Operational Considerations:

• The contents of both operands remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if the operands are equal;

to 1 (01
2

) if operand 1 is less than operand 2;

to 2 (10
2

) if operand 1 is greaterthan operand 2; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word
boundary

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10 ___ /

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-9
UP~NUMBER PAGE REVIS10N PAGE

Examples:

1. The contents of register 8 are compared with the half word in main storage location CTR.

2. The contents of register 6 are compared with the contents of the half word in main storage location 2564.

4.8. CR (COMPARE)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

CR r 1,r2 19 RR Two Bytes

Function:

The full-word operand 1, specified by r
1

, is algebraically compared with the full-word operand 2, specified by r
2

•

Operational Considerations:

• The contents of both operands remain unchanged.

• The condition code is set as follows:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-10
UP-NUMBER PAGE REVISION PAGE

to 0 (00
2

) if the operands are equal;

to 1 (01
2

) if operand 1 is less than operand 2;

to 2 (10
2

) if operand 1 is greaterthan operand 2; or

code 3 is not used.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

I·

1. The contents of register 6 are compared with the contents of register 7.

4.9. CVB (CONVERT-TO-BINARY)-90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format

Instruction
Code Code

Type
Length

CVB r 1 •d2(x2,b2) 4F RX Four Bytes

Function:

The double-word operand 2, specified by d
2

(x
2

,b
2

), is converted from a packed decimal number to a binary
number and placed in the operand 1 location, specified by r

1
.

Operational Considerations:

• Operand 2 is a signed 15-digit packed decimal number contained in a double-word main storage location. It
must begin on a double-word boundary. The number is checked for valid sign and digit code before
conversion to a 32-bit signed integer.

• The maximum number which can be converted and still contained in a 32-bit register is 2, 147,483,647. The
minimum number is -2,147,483,648. For decimal numbers exceeding this range, the 32 least significant
bits are stored in the first operand location and a fixed-point divide exception is generated.

• If operand 2 is negative, the least significant 32 bits of the result are in twos complement notation.

• The contents of operand 2 remain unchanged.

• The condition code remains unchanged.

··._/

7935 Rev. 1

UP.NUMBER

•

SPERRY UNIVAC Operating System/4 4-11
PAGE REVISION PAGE

Possible program exceptions:

addressing exception

data exception (invalid sign or digit)

fixed-point divide exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

LABEL 6. OPERA T!ON 6.
10

1. The packed decimal number located at main storage location DEC is converted to binary and placed in
register 8.

4.10. CVD (CONVERT-TO-DECIMAL) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

CVD r 1 ,d2(x2,b2) 4E RX Four Bytes

Function:

The full-word operand 1, specified by r
1

, is converted from a binary number to a packed decimal number and
placed in the double-word operand 2, specified by d2 (x2 ,b2).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-12
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• Operand 1 is treated as a 32-bit signed integer. It is converted to a signed 15-digit packed decimal number
and placed in a double-word main storage location. The location must begin on a double-word boundary.

• The contents of the operand 1 register remain unchanged.

• The low order four bits of the result represent the sign.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RD, ID

Example:

/.

LABEL

1 • __ L ___ .L .. i

!':!,OP
10

1. The contents of register 6 are converted to a packed decimal number and placed in the double-word storage
location BIN.

4.11. D (DIVIDE) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

D r 1,d2(x2,b2) 5D RX Four Bytes

Function:

The double-word operand 1 (the dividend), specified by r
1

, is divided by the full-word operand 2 (the divisor), at
the address specified by d

2
(x

2
,b2). The quotient and remainder are stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-13
UP-NUMBE'R PAGE REVISION PAGE

Operational Considerations:

• Operand 1 is treated as a 64-bit signed integer and occupies an even-odd register pair. The operand 1 field
must specify an even-numbered register. The 32-bit remainder and 32-bit quotient replace the dividend in
the even-numbered and odd-numbered register, respectively.

• Operand 2 is treated as a 32-bit signed integer. The contents of operand 2 remain unchanged after
execution.

• The sign of the quotient is determined algebraically and the remainder assumes the sign of the dividend. A 0
quotient or 0 remainder is always positive.

• When the quotient exceeds 32 bits or the divisor is equal to 0, a fixed-point divide exception occurs, no
division takes place, and the dividend remains unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

fixed-point divide exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 field specifies
an odd-numbered register)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

I·

LABf l

1. The contents of registers 8 and 9 are divided by the contents of the full word specified by DIVIS. The
quotient is stored in register 9; the remainder, in register 8.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-14
UP-NUMBER PAGE REVISION PAGE

4.12. DR (DIVIDE) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format Operation

Type
Instruction

Code Code Length

DR r 1,r 2 1D RR Two Bytes

Function:

The double-word operand 1 (the dividend), specified by r
1

, is divided by the full-word operand 2 (the divisor),
specified by r 2 . The quotient and remainder replace operand 1.

Operational Considerations:

• Operand 1 is treated as a 64-bit signed integer and occupies an even-odd register pair. The operand 1
field must specify an even-numbered register. The 32-bit remainder and 32-bit quotient replace the
dividend in the even-numbered and odd-numbered register, respectively.

• Operand 2 is treated as a 32-bit signed integer. The contents of operand 2 remain unchanged after
execution.

• The sign of the quotient is determined algebraically and the remainder assumes the sign of the dividend.

•

A 0 quotient or 0 remainder is always positive.

When the quotient exceeds 32 bits or the divisor is equal to 0, a fixed-point divide exception occurs, no
division takes place, and the dividend remains unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

fixed point divide exception

specification exception (operand 1 field specifies an odd-numbered register)

• Relocation and indirection flags: none

Example:

;.-..-----·-~-..,,~~~->• ,,,..,_,..,,No,'<"'W«<~,o~·-o> --~O~ o=~=,,,,,,._~-~;o,_-,._,_"'"'""""'""'"",.,...=-"-w-,...,,..--

1. l: ·~:" 1ln~70~~~:_, ~~:~:---~~~=fi ~~
1. The contents of registers 6 and 7 are divided by the contents of register 10. The quotient is stored in

register 7; the remainder, in register 6.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-15
UPaNUMBER PAGE REVISION PAGE

4.13. L (LOAD)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

L r1 ,d 2(x2 ,b2) 58 RX Four Bytes

Function:

The contents of the full-word operand 2 in main storage at the address specified by d
2

(x
2

,b
2

). are transferred
to the operand 1 register, specified by r

1
.

Operational Considerations:

• The contents of operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

Examples:

operand 1 : none

operand 2: RO, 10

LABEL

L
L

14rJMCl-l
l H-:) Mf ... H +t..\

1. ·1 he full word in main storage location MCH is loaded into register 14.

2. The four bytes following the four bytes addressed as MCH are loaded into register 14.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-16
UP.NUMBER PAGE REVISION PAGE

4.14. LCR (LOAD-COMPLEMENT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LCR r1 ,r2 13 RR Two Bytes

Function:

The twos complement of the full-word operand 2, specified by r
2

, is stored in the operand 1 location,
specified by r

1
.

Operational Considerations:

• The contents of the operand 2 register remain unchanged.

• A fixed-point overflow condition exists when the maximum negative number is complemented; the
number remains unchanged.

• Zero remains unchanged under complementation.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

fixed-point overflow exception

• Relocation and indirection flags: none

Example:

1. The twos complement of the contents of register 8 is loaded into register 7.

'-...··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-17
UP-NUMBER PAGE REVISION PAGE

4.15. LH (LOAD-HALF-WORD)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

LH r 1 •d2(x2,b2) 48 RX Four Bytes

Function:

The half-word operand 2, specified by d2 (x2 ,b2), is expanded to a full word by propagation of the sign bit
through the 16 most significant bit positions. The resulting ful I word is stored in operand 1, specified by r

1
•

Operational Considerations:

• The contents of operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

Addressing

Indirect address specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word
boundary

• Relocation and indirection flags 90/60,70:

Examples:

operand 1: none

operand 2: RO, 10

LABEL 6. OPERA noN 6.
10

SPERRY UNIVAC 9400/9480 Systems

Addressing

Specification

LJt

fHH
HAF
HAF+2,

1. The two bytes in main storage location HAF are expanded to a full word and placed in register 12.

2. The two bytes in main storage location HAF+2 are expanded to a full word and placed in register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-18
UP-NUMBER PAGE REVISION PAGE

4.16. LLR (LOAD-LIMITS-REGISTER) - PRIVILEGED INSTRUCTION - 9400/9480

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format Operation

Type
Instruction

Code Code Length

LLR d2(b2) 81 RS Four Bytes

Function:

The limits registers are loaded with the half word in main storage specified in operand 1, d
2

(b
2

). Bits 0-7 are
loaded into the upper limits register, bits 8-15 into the lower limits register. Treated as no-op when the
storage protection feature is not installed.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The instruction loads the half-word operand from main storage specified by d
2

(b
2

) into the limits
register.

• The r
1

and r
3

fields of this instruction are ignored.

• The condition code is set as follows:

to 0 (00) if write protection feature is installed;

to 1 (01) if write protection feature is not installed;

codes 2 (10) and 3 (11) are not used.

• Possible program exceptions:

privileged operation exception

specification exception

Example:

LABEL 00PERATION6 OPERAND
10 16

1. The contents of the half word labeled LMT1 are loaded into the hardware limits registers.

--

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-19
UP-NUMBER PAGE REVISION PAGE

4.17. LM (LOAD-MULTIPLE)

Mnemonic Hexadecimal Object
Source Code Format Operation

Operand Format
Operation Instruction

Code Code
Type

Length

LM r1,r3 ,d2(b2) 98 RS Four Bytes

Function:

The general registers starting with the operand 1 register, specified by r
1

, and ending with the operand 3
register, specified by r

3
, are loaded with full-word main storage operands beginning with operand 2 address,

specified by d
2

(b
2

).

Operational Considerations:

• The registers are loaded in ascending numeric sequence beginning with the operand 1 register and
continuing through the operand 3 register.

• One register may be loaded by specifying the same register number for operand 1 and operand 3.

• If the operand 3 specification is lower than the operand 1 specification, all registers with a number
greater than or equal to operand 1 and all registers with a number less than or equal to operand 3, are
loaded.

• The contents of main storage specified by operand 2 remain unchanged .

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-20
UP-NUMBER PAGE REVISION PAGE

Examples:

LABEL

I- ' _J_ _ _LJ_J L.J

2
.9. _l__L_l_i__J_

/::,. OPERA TIOH 6. OPERAND
10 16

. h;-tf.QJ .L.J<J1(a
'>i~fJ)ATA,
J.,5'7~-0..NLL

1 j

1. Registers 6, 7, 8, 9, and 10 are loaded with full words beginning with location 4096.

2. Registers 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, and 6 are loaded, in this order, with full words
beginning at main storage location DATA.

3. Register 5 is loaded with the full word at main storage location COUNT.

4.18. LNR (LOAD-NEGATIVE) - 90/ 60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type Instruction
Code Code Length

LNR r 1 ,r 2 11 RR Two Bytes

Function:

The twos complement of the absolute value of the full-word operand 2, specified by r
2

, is loaded into operand
1, specified by r 1 .

Operational Considerations:

• The contents of the operand 2 register remain unchanged.

• Positive numbers are complemented; negative numbers remain unchanged.

• Zero remains unchanged under complementation.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O; or

codes 2 and 3 are not used.

• Possible program exceptions: none

• Relocation and indirection flags: none

-.....__... ..

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-21

UP-NUMBER PAGE REVISION PAGE

Example:

6
16

L~ i..

1. The twos complement of the absolute value of the contents of register 4 is placed in register 9.

4.19. LPR (LOAD-POSITIVE) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
lnstructi on

Code Code Length

LPR r1 ,r2 10 RR Two Bytes

Function:

The absolute value of the full-word operand 2, specified by r
2

, is placed into operand 1, specified by r 1 •

Operational Considerations:

• The contents of the operand 2 register remain unchanged.

• Positive numbers are unchanged by this operation.

• When operand 2 is negative, the twos complement is placed in the operand 1 location.

• When operand 2 contains the maximum negative number, a fixed-point overflow condition exists and
the number remains unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

code 1 is not used;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

fixed-point overflow exception

• Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-22

UP.NUMBER PAGE REVISION PAGE

Example:

LABEL 6 OPERATION 6
10 16

' .J. ..

1. The absolute value of the contents of register 6 is loaded into register 5.

4.20. LR (LOAD)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

LR r1 ,r2 18 RR Two Bytes

Function:

The contents of the full-word operand 2, specified by r
2

, are transferred to the operand 1 register specified by

r 1 .

Operationa I Considerations:

• The contents of the operand 2 register remain unchanged .

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

LABEL 6 OPERATION 6 OPERAND
l 0 16

1. The full word in register 9 is loaded into register 14.

4.21. LTR (LOAD-AND-TEST)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LTR r1 ,r2 12 RR Two Bytes
___ /

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-23

UP-NUMBE'R: PAGE REVISION PAGE

Function:

The contents of the full-word operand 2 register, specified by r
2

, are transferred to the operand 1 register,
specified by r

1
. the condition code is set.

Operational Considerations:

• The contents of the operand 2 register remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none:

Example:

LABEL 6 OPERA TIOH 6 OPE
10 16

1. The full word in register 9 is loaded into register 14 and the condition code is set.

4.22. M (MULTIPLY) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

M r 1 •d2<x2,b2) 5C RX Four Bytes

Function:

The full-word operand 1 (multiplicand). specified by r
1

, is multiplied by the full-word operand 2 (multiplier),
specified by d

2
(x

2
,b

2
), and the product is stored in operand 1.

Operational Considerations:

• Both operands are treated as 32-bit signed integers.

• The contents of operand 2 remain unchanged .

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 4-24
PAGE REVISION PAGE

• The product is treated as a 64-bit signed integer and occupies an even-odd register pair; therefore, the
operand 1 register must specify an even-numbered register. The first operand is taken from the
odd-numbered register. The contents of the even-numbered register are ignored until replaced by the
most significant 32 bits of the product.

• The sign of the product is determined algebraically.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 specifies an
odd register address)..

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

I

1.

LABEL 6 OPERATION 6
10 16

l .. 1 '

The contents of register 7 are multiplied by the contents of the full word in main storage location
MULT. The product is placed in registers 6 and 7.

4.23. MH (MULTIPLY-HALF-WORD) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format Type

lnstru.::tion
Code Code Length

MH r 1,d2 (x2 ,b2) 4C RX Four Bytes

Function:

The half-word operand 2, specified by d
2

(x 2 ,b2), is expanded to a full word by propagation of the sign bit
through the 1 ~ most significant bit positions. Operand 1 (the multiplicand), specified by r 1 , is then multiplied
by operand 2 (the multiplier) and the product is stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-25
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• Both operands are treated as 32-bit signed integers .

• The product has a length of 47 or fewer bits. After multiplication, the least significant 32 bits of the
product are placed in the operand 1 location. If the product exceeds 32 bits, the most significant bits are
ignored and an overflow condition is not indicated. The sign of the product may be incorrect when the
most significant bits are lost.

• The sign of the product is determined algebraically.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 not on half-word boundary or IACW not on full-word
boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

/.
LABEL 6 OPERA TIOH /:;, OPERAND

10 16

1 _._l~.1 .. L f J i

1. The contents of register 8 is multiplied by the half word in main storage location HALF and product is
stored in register 8.

4.24. MR (MULTIPLY) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format Type

Instruction
Code Code Length

MR r 1,r2 1C RR Two Bytes

Function:

The full-word operand 1 (the multiplicand), specified by r
1

, is multiplied by the full-word operand 2 (the
multiplier), specified by r

2
, and the product is stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-26
UP-NUMBER PAGE. REVISION PAGE

Operational Considerations:

• Both operands are treated as 32-bit signed integers. The product is treated as a 64-bit signed integer and
occupies an even-odd register pair; therefore, the operand 1 specification must specify an even-numbered
register. Operand 1 is taken from the odd-numbered register of the pair. The even-numbered register may
contain operand 2; if not, the contents of the even-numbered register are ignored until replaced by the
most significant 32 bits of the product.

• An overflow cannot occur.

• The sign of the product is determined algebraically.

• The condition code remains unchanged.

• Possible program exceptions:

specification exception (operand 1 specifies an odd-numbered register)

• Relocation and indirection flags: none

Examples:

1. The contents of register 7 are multiplied by the contents of register 9. The result is stored in registers 6
and 7.

2. The contents of register 7 are multiplied by the contents of register 6. The result is stored in registers 6
and 7.

4.25. S (SUBTRACT)

Mnemonic
Source Code

He~adecimal Object
Operation Operation

Format
Operand Format Type

Instruction
Code Code Length

s r 1 ,d2 (x2 ,b2) 58 RX Four Bytes _ __..

Function:

The full-word operand 2, specified by d
2

(x
2
,b), is subtracted from the full-word operand 1, specified by r 1 ,

and the result is stored in operand 1.

Operational Considerations:

• The subtraction is performed by means of signed a!gebraic twos complement binary addition.

·..__.-·

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 4-27
PAGE REVISION PAGE

• All 32 bits of both operands are used. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Fixed-point overflow Binary overflow

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Examples:

LABEL RATION 6

VALUE
I OJ,4000: i ; ~ L

1. The contents stored in the the full word at main storage location VALUE are converted to a twos
complement binary value and added to the contents of register 14.

2. The contents stored in the full word located at address 4000 are converted to a twos complement binary
value and added to the contents of register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-28

UP-NUMBER PAGE REVISION PAGE

4.26. SH (SUBTRACT-HALF-WORD)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SH r1 ,d2 (x2,b2) 4B RX Four Bytes

Function:

The half-word operand 2, specified by d2 (x 2 ,b2), is expanded to a full word by propagation of the sign bit
value through the 16 most significant bit positions. Operand 2 is then subtracted from the full-word operand
1, specified by r

1
, and the result is placed in operand 1.

Operational Considerations:

• The subtraction is performed by means of signed algebraic twos complement binary addition.

• All 32 bits of both operands are used. An overflow condition exists when carry out of the sign bit
position and the most significant numeric bit position disagree.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Fixed-point overflow Binary overflow

Indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word
boundary

·-.._.·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-29
UP-NUMBER PAGE REVISION PAGE

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Examples:

LABEL 6 OPERA TiON 6 OPERAND
10 16

I· L .. LL.L. t . .L i

z __ J _ 1 __ L_.L_ LL_L _ ; 1 i l l

1. Subtract the contents stored in the half word located at DEDTN from the contents of register 10.

2. Subtract the contents stored in the half word located at address 1094 from the contents of register 15.

4.27. SLA (SHI FT-LEFT-SINGLE) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

SLA r 1,d2 (b2) 88 RS Four Bytes

Function:

The 31-bit integer operand 1, specified by r
1

, is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 3 OPERAND 2
0 CODE 7 8 1112 15 16 l 9j_2 0 31

88 r 1 unused b2 I d2

Operational Considerations:

• The vacated least significant bit positions of the operand 1 register are zero filled.

• The sign bit remains unchanged.

• If a bit not equal to the sign bit is shifted out of the most significant numeric bit position, a fixed-point
overflow condition exists.

• For numbers with an absolute value of less than 2
30

, a left shift of one bit position is equivalent to
multiplying the number by 2.

• Shift amounts from 31 to 63 cause the entire integer to be shifted out of the register. When the entire
integer field for a positive number has been shifted out, the register contains a value of O; for a negative

b h . . 231 num er, t e register contains - .

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-30
UP-NUMBER PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

fixed-point overflow exception

• Relocation and indirection flags: none

Example:

/. (_t __ .t ~ L

1. The contents of register 8 are shifted to the left one bit position.

4.28. SLDA (SHIFT-LEFT-DOUBLE) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SLDA r 1 ,d2 (b2) 8F RS Four Bytes

Function:

The 63-bit integer operand 1, specified by r
1

, is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b2).

Object Instruction Format:

OPERATION OPERAND 1 OPERANB 3 OPERAND 2
0 CODE 7 8 1112 15 16 19]_20 31

8F r 1 unused b2 l d2

Operational Considerations:

• The r
1

specification in operand 1 must refer to the even-numbered register of an even-odd register pair.
The contents of both registers, except the sign bit of the even-numbered register, are treated as a 63-bit
integer.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 4-31
PAGE REVISION PAGE

• The vacated least significant bit positions of the register pair are zero filled.

• The sign bit of the even register remains unchanged .

• If a bit not equal to the sign bit is shifted out of the most significant numeric bit position of the
even-numbered register, a fixed-point overflow condition exists.

• A 0 shift value provides a double-length sign and magnitude test.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

Fixed-point overflow exception

Specification exception (operand 1 specifies an odd register number)

• Relocation and indirection flags: none

Example:

/.

1. The contents of register 8 and register 9, taken as a 63-bit integer, are shifted to the left one bit position.

4.29. SLM (SUPERVISOR-LOAD-MULTIPLE) - PRIVILEGED INSTRUCTION

Mnemonic Hexadecimal Object
Operation Source Code

Operation
Format

Operand Format Type
Instruction

Code Code Length

SLM r1,r3 ,d2 (b2) 88 RS Four Bytes

Function:

The problem general registers starting with the operand 1 register specified by r
1

, and ending with the operand
3 register, specified by r

3
, are loaded with full-word main storage operands beginning with the operand 2

address specified by d
2

(b
2

).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-32

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• This instruction is similar to the load-multiple instruction (4.16) except that in the
supervisor-load-multiple instruction the operands always refer to problem general registers even though
the processor is in the supervisor state.

• The registers are loaded in ascending numeric sequence beginning with the operand 1 numbered register
and continuing through the operand 3 numbered register.

• One register may be loaded by specifying the same register number for operand 1 and operand 3.

• If the operand 3 specification is lower than the operand 1 specification, all registers with a number
greater than or equal to operand 1 and all registers with a number less than or equal to operand 3 are
loaded.

• The contents of main storage specified by operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Privileged operation

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Examples:

LABEL

/' l
.. _LL .. _.i ... t 1. l

6 OPERA Ti!)q 6
10

e.. _.l_. L __ c_ _ _L_L_.L_L

1. Problem registers 4 through 9 are loaded with full words beginning at main storage location AREA.

2. Problem registers 9, 10, 11, 12, 13, 14, 15, 0, 1, and 2 are loaded with full words beginning at main
storage location DAT A.

'-.....--·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-33
UP-NUMBE"R PAGE REVISION PAGE

4.30. SR (SUBTRACT)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

SR r1 ,r2 18 RR Two Bytes

Function:

The full-word operand 2, specified by r
2

, is subtracted from the full-word operand 1, specified by r
1

, and the
result is stored in operand 1.

Operational Considerations:

• The subtraction is performed by means of signed algebraic twos complement binary addition.

• All 32 bits of both operands are used. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than 0;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Fixed point overflow Binary overflow

• Relocation and indirection flags: none

Example:

LABEL 6. OPERATION 6. OPE
l () i 6

f_._~~J L.l

1. The contents of register 7 are converted to a twos complement binary value and added to the contents
of register 9.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-34

UP-NUMBER PAGE REVISION PAGE

4.31. SRA (SHIFT-RIGHT-SINGLE) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SRA r 1 •d2(b2) BA RS Four Bytes

Function:

The 31-bit integer operand 1, specified by r
1

, is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION OPERAND Il OPERAND 3 OPERAND 2
0 CODE 7 8 1 12 15 16 1~20 31

BA r 1 unused b2 1 d2

Operational Considerations:

• The vacated high order bit positions of the operand 1 register are sign filled.

• The bits shifted out of the least significant bit position of the registers are lost.

• A right shift of one bit position is equivalent to division by 2 with rounding downward. When an even
number is shifted right one position, the value of the field is obtained by dividing the value by 2. When
an odd number is shifted right one bit position, the value of the field is obtained by subtracting 1, then
dividing the value by 2. For example, 5 shifted right one bit position yields 2, whereas -5 yields -3.

• Shift values from 31 through 63 cause the entire integer field to be shifted out of the register. When the
entire integer field of a positive number has been shifted out, the register contains a value of 0. For a
negative number, the register contains a value of -1 .

• The condition code is set as follows:

to 0 (00
2

) if result is 0;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions: none

• Relocation and indirection flags: none

_,__ .. ·

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 4-35
PAGE REVISION PAGE

Example:

-------------------~·---~-~

LABEL 6 OPERATION 6
l 0 16

J.

1. The contents of register 7 are shifted to the right one bit position.

4.32. SRDA (SHIFT-RIGHT-DOUBLE) - 90/60,70

Mnemonic Hexadecimal Object
Operation Source Code

Operation
Format

Instruction
Code Operand Format

Code
Type

Length

SRDA r1 ,d2 (b2) SE RS Four Bytes

Function:

The 63-bit integer operand 1, specified by r
1

, is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 3 OPERAND 2
0 CODE 7 8 1112 15 16 l 9_L2 0 31

SE r 1 unused b2 l d2

Operational Considerations:

• The r
1

specification in operand 1 must refer to the even-numbered register of an even-odd register pair .
The contents of both registers, except the sign bit of the even-numbered register, are treated as a 63-bit
integer.

• The vacated most significant bit positions of the register pair are sign filled.

• A 0 shift value provides a double-length sign and magnitude test.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 4-36
PAGE REVISION PAGE

• Possible program exceptions:

Specification exception (operand 1 specifies an odd register number)

• Relocation and indirection flags: none

Example:

.--------------------·----·-----~-----------------

LABEL 6. OPERATION 6. OPERAND
10 16

J.L .. L ... i. . .L.l ;

1. The contents of register 8 and register 9, taken as a 63-bit integer, are shifted to the right one bit
position.

4.33. SSTM (SUPERVISOR-STORE-MULTIPLE) - PRIVILEGED INSTRUCTION

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SSTM r1 ,r3,d2 (b2) BO RS Four Bytes

Function:

The contents of a group of problem general registers, starting with the operand 1 register, specified by r
1

,

ending with the operand 3 register, specified by r
3

, are stored in the main storage location designated by
operand 2, specified by d

2
(b

2
).

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• This instruction is similar to the store-multiple instruction (4.35) except that in the
supervisor-store-multiple instruction the operands always refer to problem general registers even though
the processor is in the supervisor state.

• The contents of operand 1 through operand 3 remain unchanged.

• When the operand 3 specification is lower than the operand 1 specification, the register numbers wrap
around from 15 to 0. For this reason, all possible combinations of operand 1 and operand 3 are valid.

• The condition code remains unchanged.

• Possible program exceptions:

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4 4-37
PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing Storage protection

Privileged operation

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RD, ID

Examples:

1. The contents of registers 6, 7, and 8 are placed in the main storage location REGR.

2. The contents of registers 15, 0, 1, 2, 3, and 4 are placed in main storage, beginning at the location
labeled GAIN.

4.34. ST (STORE)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

ST r1 ,d2(x2,b2) 50 RX Four Bytes

Function:

The contents of operand 1, specified by r
1

, are stored in the main storage location operand 2, specified by

d2 (x2,b2).

Operational Considerations:

• The contents of operand 1 remain unchanged.

• The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-38
UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags:

operand 1: none

operand 2: RD, ID

Example:

LABEi.. 6 OPERATION 6 OPERAND
10 Hi

-'" '~o W

/, ' .. L ... LJ i. i. l. _JJ~~U4.T1 j ! .l 1 .:
I
I. ...

1. The contents of register 7 are placed in main storage location RESULT.

4.35. STH (STORE-HALF-WORD)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format Operation

Type
Instruction

Code Code Length

STH r 1 •d2(X2,b2) 40 RX Four Bytes

Function:

The least significant 16 bits of the contents of operand 1, specified by r
1

, are stored in the half-word main
storage location operand 2, specified by d

2
(x

2
,b

2
).

Operational Considerations:

• The contents of the operand 1 register remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:
-. ..__,.,.-

-...._ ··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-39

UP-NUMBER PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word
boundary

• Relocation and indirection flags (90/60,70):

operand 1: none

operand 2: RD, ID

Example:

1. The least significant 16 bits of register 7 are placed in main storage location RESULT.

4.36. STM (STORE-MULTIPLE)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

STM r1 ,r3 ,d2 (b2) 90 RS Four Bytes

Function:

The contents of a group of general registers, starting with the operand 1 register specified by r
1

, and ending
with the operand 3 register specified by r

3
, are stored in the main storage location designated operand 2,

specified by d
2

(b
2

).

Operational Considerations:

• The contents of operand 1 through operand 3 remain unchanged.

• When the operand 3 specification is lower than the operand 1 specification, the register numbers wrap
around from 15 to 0. For this reason, all possible combinations of operand 1 and operand 3 are valid.

• The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-40
UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RD, ID

Examples:

1. The contents of registers 7, 8, and 9 are placed in main storage, beginning at the location labeled
ANSWER.

2. The contents of registers 14, 15, 0, 1, 2, and 3 are placed in main storage, beginning at the location
labeled STORE.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-1
UP-NUMBER PAGE REVISION PAGE

5. Decimal Instructions

5.1. GENERAL

The decimal instruction set provides for adding, subtracting, multiplying, dividing, comparing, and format
conversion of variable-length operands. Unless otherwise noted, operands are treated as signed decimal integers in
packed format. See 1.3.4 for information concerning the manner in which decimal numbers are represented and
their sign codes established.

All decimal instructions are represented in the SS format in which each operand is contained in main storage. On the
SPERRY UNIVAC 9400/9480 Systems, each main storage address is absolute; on the SPERRY UNIVAC 90/60,70
Systems, each main storage address may be specified as relative or absolute and direct or indirect under the control
of the applicable relocation register flags. The address resulting from the relocation and indirection designates the
main storage address of the most significant byte of the operand. Operands are always processed from right to left
(that is, least significant byte to most significant byte). If the operands are of unequal length, the shorter is
considered to be extended with 0 digits. If most significant digits or carries are lost because the first operand field is
too short to accommodate the result of a decimal operation, a decimal overflow exception is detected. Unless the
first and second operands overlap, the contents of the second operand location in main storage remain unchanged by
the execution of the instruction.

This section describes the operation of each decimal instruction. The instructions are arranged in alphabetical order
according to the mnemonic operation code. Each description includes a list of the possible program exceptions and

- condition codes which may result. The relocation and indirection flags that are pertinent to the operand address are
listed. See Table 3-1 for an explanation of the abbreviations used in describing instruction formats.

5.2. AP (ADD-DECIMAL)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

AP d1 (l1,b1),d2(12,b2) FA SS Six Bytes

Function:

The contents of operand 2, specified by d
2

(1
2

,b
2

), are added to the contents of operand 1, specified by
d

1
(1 1 ,b1), and the result is stored in the operand 1 location.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-2

UP-NUMBER PAGE REVISION PAGE

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 19120 31

FA 1, I 12 b1] d1

OPERAND 2

Operational Considerations:

• Addition is performed from right to left.

• If operand 2 is shorter than operand 1, operand 2 is extended with 0 digits.

• An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carry out of the most significant digit position of the result field is lost.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide. This makes it possible to
add a number to itself.

• The condition code is set as follows:

to 0 (00
2

) if result is 0;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Decimal overflow Decimal overflow

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

Data exception

1. Invalid overlap

2. Invalid sign or digit code

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-3
UP-NUMBE'R PAGE REVISION PAGE

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Operational Differences:

• 9400/9480 systems

If both operand 1 and operand 2 are unsigned, a positive sign is assumed.

In the case of overflow, the sign of the answer will be correct even if the answer is zero; a zero
answer normally carries a plus sign.

If operand 2 is longer than operand 1, the remaining digits of operand 2 are ignored.

• 90/60,70 systems

All digits and signs are checked for validity; the sign of the result is determined algebraically.

In the case of overflow where the most significant digits are lost, the partial result has the sign
which the complete result would have had; a zero result is positive when the operation is
completed without overflow.

An interrupt may occur as a result of processing the significant digits.

Examples:

J.
2..

LABEL 6 OPERAT!ON 6
1 0 1

'_L .. LLJ 1

1. The 4-byte operand specified by the label INPT is added to the 5-byte operand specified by the label
TOT. Assuming that all signs are positive, the contents of the operands may be represented as follows:

TOT before execution 0 9 7 6 9 8 1 3 5 +

INPT before and after execution 9753142+

TOT after execution 0 7 4 5 1 2 7 7 +

2. The operand specified by the label ADD is added to the contents of the operand specified by the label
SUM. The lengths of the operands are implied. The instruction is assigned operand lengths which are
determined during the assembly process. The length attribute for each label is placed into the I field of
the instruction.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-4
UP-NUMBER PAGE REVISION PAGE

5.3. CP (COMPARE-DECIMAL)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

CP d111, ,b, ld2,ll2,b2l F9 SS Six Bytes

Function:

The contents of operand 1, specified by d
1

(1
1

,b
1

), are algebraically compared with the contents of operand 2,
specified by d

2
(1

2
,b

2
).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
31> 0 CODE 7 8 15 16 1~20

F9 '1] '2 b1 I d1

OPERAND 2

·1
Operational Considerations:

• The comparison proceeds from right to left.

• Operands with 0 values and unlike signs compare as equal.

• All valid codes representing the same sign are considered equal.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide.

• The contents of both operands remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if operand 1 equals operand 2;

to 1 (01
2

) if operand 1 is less than operand 2;

to 2 (10
2

) if operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-5
UP-NUMBER PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

Data exception

1. Invalid overlap

2. Invalid sign or digit code

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Operational Differences:

• 9400/9480 systems

If operand 2 is longer than operand 1, the excess high order digits of operand 2 are ignored.

If operand 1 is longer than operand 2, data from operand 2 is zero filled to extend the operand.

• 90/60,70 systems

Example:

If the operand fields are unequal in length, the shorter field is zero filled to the length of the
longer.

All signs and digits are checked for validity and the sign of the result is determined aigebraically.

1. The contents of the location labeled VALU are compared with the contents of the location labeled
INCR. The operand lengths are implied. The condition code is set.

7935 Rev.1 SPERRY UNIVAC Operating System/4 5-6
UP-NUMBER PAGE REVISION PAGE

5.4. DP (DIVIDE-DECIMAL)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type Instruction
Code Code Length

DP d101,b1) ,d2ll2,b2l FD SS Six Bytes

Function:

The contents of operand 1 (dividend), specified by d
1

(1
1

,b1). are divided by the contents of operand 2
(divisor), specified by d

2
(1

2
,b

2
). The quotient and remainder are stored in the operand 1 location.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
31> 0 CODE 7 8 15 16 19_12 0

FD '1-1 I '2-1 b1 I d1

OPERAND 2

Operational Considerations:

• The length of operand 1 specified by the 11 field in the instruction is ignored. The length of operand
1 is determined by scanning operand 1 starting with the most significant digit until a sign code is
found.

• The dividend (operand 1) must be longer than the divisor (operand 2).

• The quotient and remainder occupy the entire operand 1 field. The remainder is right-justified in the
field, carries the sign of operand 1, and is equal in size to operand 2. The quotient, carrying the
algebraically determined sign, is right-justified in the rest of the operand 1 field.

• The maximum dividend (operand 1) size is 31 digits and sign. The maximum quotient size is 29 digits
and sign. The smallest remainder is one digit and sign.

• If the number of quotient digits exceeds the size of the quotient field or if division by 0 is attempted, a
decimal divide exception results; the divisor and dividend remain unchanged in their storage locations.

• A decimal divide exception occurs if the dividend does not have at least one leading 0. The condition for
a decimal divide exception can be determined by aligning the leftmost digit of the divisor (operand 2)
field with the leftmost-less-one digit of the dividend (operand 1) field and performing a subtraction. If,
when so aligned, the divisor is less than or equal to the dividend, a decimal divide exception is indicated.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-7

UP-NUMBER PAGE REVISION PAGE

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Decimal divide Decimal divide

Indirect address specification Write protection

I ndi re ct addressing

Protection

Specification exception

1. IACW not on full-word
boundary

2. Operand 1 is not longer than
operand 2.

Data exception

1. Invalid sign or digit code

2. Incorrect overlap

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Operational Differences:

• 9400/9480 systems

Operand 1 and operand 2 fields may not overlap.

The maximum divisor (operand 2) length is 31 digits plus sign.

Decimal digits greater than 9
16

are not permitted. The sign portion must contain a sign bit
configuration greater than 9

1 6
.

• 90/60 ,70 systems

Operand 1 and operand 2 fields may overlap if their least significant bytes coincide.

The maximum divisor (operand 2) length is 15 digits plus sign.

If a sign is not encountered within the first 16 bytes of data in operand 1, a program exception
occurs.

All signs and digits are checked for validity.

7935 Rev.1 SPERRY UNIVAC Operating System/4 5-8

UP-NUMBER PAGE REVISION PAGE

Example:

LABEL /'::, OPERA TiON /'::,
l ()

1. The contents of the 7-byte area OR are divided by the contents of the 3-byte area DR. The quotient and
remainder are placed in OR.

5.5. MP (MULTIPLY-DECIMAL)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

MP d 1 o1 .b1 , ,d2 02 ,b2) FC SS Six Bytes

Function:

The contents of operand 1 (the multiplicand), specified by d
1

(1
1

,b
1

), are multiplied by the contents of
operand 2 (the multiplier), specified by d

2
(1

2
,b

2
), and the product is stored in the operand 1 location.

Object Instruction Format:

r
OPERATION LENGTH OPERAND l

31) 0 CODE 7 8 15 16 19120

FC 1,-1 r 12-1 b1 I d1

OPERAND 2

Operational Considerations:

•
•
•

•

The sign of the product is determined algebraically .

The size of the multiplier (operand 2) cannot be more than 15 digits and sign .

The length of operand 1 specified by the 1
1

field in the instruction is ignored. The length of operand is
determined by scanning operand 1 starting with the most significant digit until a sign code is found.

The number of digits in the product is equal to the number of digits in the operands; therefore, the
multiplicand (operand 1) must have a field of most significant 0 digits equal to the number of digits in
operand 2. The maximum product size is 31 digits plus sign. At least one most significant digit of the
product field is 0.

.,.._.....·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-9
UP-NUMBER PAGE REVISION PAGE

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70Systems SPERRY UNIVAC 9400/9480 Systems

Protection Write protection

Addressing Addressing

Indirect address specification

Indirect addressing

Specification

1. Multiplier exceeds 15 digits

2. Operand 1 is not longer than
operand 2.

3. IACW is not on full-word
boundary.

Data exception

1. Invalid sign or digit code

2. Incorrect overlap

3. Operand 1 does not have suf-
ficient high-order zero digits.

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Operational Differences:

• 9400/9480 systems

Operand 1 and operand 2 may not overlap.

• 90/60,70 systems

Operand 1 and operand 2 may overlap if their least significant bytes coincide.

All signs and digits are checked for validity.

If the sign if not encountered within the first 16 bytes of data in operand 1, a program exception
occurs.

Example:

LABEL

/.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 5-10
PAGE REVISION PAGE

1. The contents of the operand HOUR are multipled by the contents of the operand RATE. The contents
of the operands may be represented as follows:

HOUR before execution 0 0 0 0 0 0 9 9 9 9 9 9 9 +

RATE before and after execution 9 9 9 9 9 +

HOUR after execution 0 9 9 9 9 8 9 9 0 0 0 0 1 +

5.6. MVO (MOVE-WITH-OFFSET)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

MVO d111, ,b,),d2ll2,b2l Fl SS Six Bytes

Function:

The contents of operand 2, specified by d2 (1 2 ,b2), are shifted to the left four bits and stored in the operand 1
location, specified by d1 (1 1 ,b1) .

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 19.1_20 31

Fl 11-1 l 12-l bl I dl

OPERAND 2

Operational Considerations:

• This instruction proceeds from right to left.

• The operands are not checked for valid codes.

• bverlapping fields may occur. Unless the operands overlap, operand 2 and the least significant four bits
of operand 1 remain unchanged.

• If operand 2 is exhausted before operand 1, the remaining operand 1 field is zero filled. If the result
exceeds the capacity of the operand 1 field, the remaining digits of operand 2 are ignored. This
operation, in effect, prefixes the least significant digit or sign of operand 1 with the digits of operand 2.

• The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-11
UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Write protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Examples:

LABEL

3 LL

/':; OPERA T!ON /':;
1() i6

'Lfl
\f.°f!>'

.~Vbi

OPERAND

_j I (

l J J i

L" ... '. l •. l ---'- .. L ... ,

1. The contents of the 3-byte area in main storage specified by ORIG are moved with offset to the main
storage location specified by DEST. The contents of the operand may be represented as follows:

DEST before execution CBAFEDCBA+

ORIG before and after execution 2 4 6 8 9 1

DEST after execution 0 0 0 2 4 6 8 9 1 +

2. The 4-byte area in main storage specified by VAL is moved with offset to the main storage specified by
VAL. The contents of the operands may be represented as follows:

VAL before execution 2356890+

VAL after execution 356890++

The digit 2, which is in VAL before execution, is lost.

3. The 4-byte area in main storage specified by MAR is moved with offset to the main storage specified by
MAR 1; this effectively results in a shift to the right of one byte and an offset to the left of four bits.
The contents of the operands may be represented as follows:

MAR before execution 9 8 7 6 5 4 3 2 1 +

MAR after execution 0 9 8 7 6 5 4 3 2 +

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4 5-12

PAGE REVISION PAGE

Operand 1 encompasses four bytes on the right end of a 5-byte MAR. Operand 2 encompasses four bytes
on the left end of a 5-byte MAR. The move-with-offset instruction moves operand 2 to operand 1,
offsetting the data four bits. The move is in effect a 4-bit shift to the right.

5.7. PACK (PACK)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

PACK d, (I, ,b,),d2(12,b2) F2 SS Six Bytes

Function:

The contents of operand 2, specified by d
2

(1
2

,b
2

), are converted from unpacked (zoned) format to packed
format and placed in the operand 1 location, specified by d 1 (1 1

,b
1

). This instruction prepares the operand for
decimal arithmetic operations.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
31) 0 CODE 7 8 15 16 1~20

F2 '1 J '2 b1 l d1

OPERAND 2

Operational Considerations:

• This instruction transfers the decimal portion of an unpacked byte in operand 2 to a byte in operand 1,
packing two decimal digits (four bits each) into a single byte. The sign of the operand 2 field (four most
significant bits of the least significant byte) is transferred into the four least significant bits of the least
significant byte of operand 1. The result is automatically padded with a leading 0, if necessary, to cause
the number to begin on a byte boundary. The operation is performed in the manner illustrated:

Unpacked zone-digit format operand 2 Z 4 Z 3 Z 2 sign 7

Packed digit-digit format operand 1 0 4 3 2 7 sign

where:

Z represents the zone portion.

• If operand 2 does not fill operand 1, the remaining operand 1 field is zero filled.

• If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored.

• The operands are not checked for valid codes.

7935 Rev. 1
UP-NUMBE'~

SPERRY UNIVAC Operating System/4 5-13
PAGE REVISION PAGE

• Overlapping fields may occur; each resultant byte is processed after each operand byte. The instruction
proceeds from right to left.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Write protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Examples:

I·
12..

LABEL

.L.L.LL l J l i L I l ' . .l

J l

1. The contents of operand 2, specified by NMBR, are 10 decimal digits and sign. The sign and digits are
transferred to the operand 1 location, AR IT, according to the following representation:

NMBR Z 2 Z 4 Z 6 Z 8 Z 1 Z 3 Z 5 Z 7 Z 9 sign 6

ARIT 0 2 4 6 8 1 3 5 7 9 6 sign

2. Same as example 1, except operand 2 contains 11 decimal digits and sign. The transfer is made according
to the following representation:

NMBR Z 9 Z 8 Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 Z 0 sign 2

ARIT 9 8 7 6 5 4 3 2 1 0 2 sign

5.8. SP (SUBTRACT-DECIMAL)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SP d101,b1) ,d2(l2,b2l FB SS Six Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-14
UP-NUMBER PAGE REVISION PAGE

Function:

The contents of operand 2, specified by d
2

(1
2

,b
2

). are subtracted from the contents of operand 1, specified by
d

1
(1

1
,b1). and the result is placed in the operand 1 location.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 19J_20 31

FB '1-1 l '2-1 b1 I d1

OPERAND 2

Operational Considerations:

• Subtraction is accomplished by reversing the sign of operand 2 and performing a decimal add. The
contents and sizes of operand 2 are not affected by this operation.

• The sign of the result is determined algebraically.

• A 0 result has a positive sign when the operation is completed without overflow.

• When most significant digits are lost because of overflow, the partial result has the sign which the correct
result would have had.

• If operand 2 is shorter than operand 1, operand 2 is extended with 0 digits.

• An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carry out of the most significant digit position of the result field is lost.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

to 3 (11
2

) if overflow occurs.

• Possible program exceptions:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-15

UP-NUMBER PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Decimal overflow Decimal overflow

Indirect address specification Write protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

Data exception

1. Invalid sign or digit code

2. Incorrect overlap

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Operational Differences:

• 9400/9480 systems

If operand 2 is longer than operand 1, the excess high order digits of operand 2 are ignored.

• 90/60,70 systems

All signs and digits are checked for validity.

Example:

LABEL !':. OPERA TiO!'i !':. OPERAND
10 16

I. L.L .. I ... L i l ' I

1. The sign of operand 2, specified by CARD, is reversed and the result is added to the contents of operand
1, specified by RES.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-16

UP-NUMBER PAGE REVISION PAGE

5.9. UNPK (UNPACK)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

UNPK d1 ll1,b1 I ,d2ll2.b2I F3 SS Six Bytes

Function:

The contents of operand 2, specified by d2 (1 2 ,b2
I. are converted from packed format to unpacked (zoned)

format and placed in the operand 1 location, specified by d1 (1 1 ,b1).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 1~20 31

F3 '1-1 I '2-1 b1 I d1

OPERAND 2

·1
Operational Considerations:

• The decimal data of operand 2 is transferred sequentially, right to left, to the numeric portion of each
operand 1 byte. The zone supplied depends on the state of the A mode of the current program status
word (PSW) (1111

2
for EBCDIC, 0011

2
for ASCII).

• The sign in the packed operand, located in the four least significant bits of the least significant byte of
operand 2, is transferred to the four most significant bits of the least significant byte of operand 1, as
shown in the illustration:

Packed digit-digit format operand 2 0 4 3 2 7 sign

7935 Rev. 1

UP-NUMBER

---··

SPERRY UNIVAC Operating System/4
5-17

PAGE REVISION PAGE

Unpacked zone-digit format operand 1 Z 0 Z 4 Z 3 Z 2 sign 7

where:

Z represents the zone portion

• If operand 2 does not completely fill operand 1, the remaining operand 1 bytes are set to 0 with the
appropriate zone.

• If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored.

• The operands are not checked for valid codes.

• Overlapping fields may occur; each result byte is processed after processing each operand 2 byte. Except
for the least significant operand 2 byte, containing the sign, each operand 2 byte produces two result
bytes. If the operand fields are to be overlapped, the least significant position of operand 1 must be to
the right of the least significant position of operand 2 by the number of bytes in operand 2 minus 2. If
one or two bytes are to be unpacked, the least significant positions of the operands may coincide.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Write protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-18
U P·NUMBER PAGE REVISION PAGE

Example:

LABEL 6 OPERA T!ON !::, OPERAND
10 16

t======::::::;::=;==-------·----"-~·-~-··

1
uNBI< . t. pi~ N·&:·;~y-~· j J

1. Assume the contents of operand 2, specified by DIGT, to be 2468901. To unpack the 4-byte operand 2
field, it is necessary to have a 7 -byte operand 1 field. The length of operand 1 equals the length of
operand 2 in bytes times 2 minus 1.

The contents of the operands appear as follows:

DIGIT 2 4 6 8 9 0 1 ~gn

ZONE Z 2 Z 4 Z 6 Z 8 Z 9 Z 0 sign 1

5.10. ZAP (ZERO-AND-ADD)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

ZAP d 1 o1.b1 l,d202.b2l F8 SS Six Bytes

Function:

Operand 1, specified by d1(I1,b1); is cleared to 0, the contents of operand 2, specified by d2 (I 2,b2), are added
to the contents of operand 1.

Object Instruction Format:

OPERATION LENGTH OPERAND l
31) 0 CODE 7 8 15 16 1!!1_20

F8 '1-1 I '2-1 bl I d1 I

OPERAND 2

Operational Considerations:

• The zero-and-add instruction is equivalent to the add-decimal instruction with 0 as the contents of
operand 1.

·-··

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 5-19

PAGE REVISION PAGE

• A 0 result has a positive sign, except when digits are lost due to overflow. In this case, a 0 result has the
sign of operand 2.

• If operand 2 does not fill the operand 1 field, operand 2 is extended with O's.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide, or if the least significant
byte of operand 1 is to the right of the rightmost byte of operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01 2) if result is less than O;

to 2 (102) if result is greaterthan O; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Write protection

Indirect addressing

Protection

Decimal overflow

Specification (IACW not on full-word
boundary I

Data exception

1. Invalid sign or digit code

2. Incorrect overlap

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

_Operational Differences:

• 9400/9480 systems

If operand 2 is longer than operand 1, the most significant digits of operand 2 are ignored.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 s-20
PAGE REVISION PAGE

• 90/60.70 systems

If operand 2 is longer than operand 1 and significant digits are lost, a decimal overflow condition will
occur.

All signs and digits of operand 2 are checked for validity.

Examples:

LABEL /::,OPERA T!OH /::, OPERAND
10 16

I· --~~~t .. J l ... L ...

e ' .L-.. L_Lh_L_!_L~..l.

1. The contents of the 4-byte operand labeled UNIT are added to the area in main storage specified by the
label EXPN after EXPN has been forced to 0. The contents of the operands may be represented as
follows:

EXPN before execution 1 0 C C F F 9 F F 2 F 3 A 7

UN IT before and after execution 3917238A

EXPN after execution 0 0 0 0 0 0 3 9 1 7 2 3 8 c

2. The contents of main storage labeled STOR are not changed unless the sign is modified in the addition.
The condition code is set.

7935 Rev. 1

UP-NUMBER

6.1. GENERAL

SPERRY UNIVAC Operating System/4
6-1

PAGE REVISION PAGE

6. Floating-Point lnstructions-
90/60, 70

The floating-point instruction set is provided on the SPERRY UNIVAC 90/60,70 Systems only. This instruction set
is added to the 90/60,70 systems instruction repertoire as part of the Floating-Point Control Feature, F1334-00.
An operation exception results if a floating-point instruction is issued to a processor in which the floating-point
control feature has not been installed.

The floating-point instruction set provides for loading, adding, subtracting, comparing, multiplying, dividing, storing,
and sign control of short or long format floating-point operands. See 1.3.2 for information concerning the manner in
which floating-point numbers are represented and their sign codes established. Four double-word floating-point
registers are provided to accommodate storing and loading of results and operands. These registers are numbered 0,
2, 4, and 6. The specification of any other register number results in a specification exception. For long format
operands, the entire double-word register is involved in the operation. For short format operands, excluding the
product in the short format multiply instruction, only the most significant word of the double-word register is
involved in the operation. The least significant word remains unchanged.

The floating-point instructions are available in RR and RX formats. Therefore, at least one of the operands is
contained in one of the floating-point registers. The other operand is located in the same or another register or in
main storage. Each main storage address may be specified as relative or absolute and direct or indirect under control
of the applicable relocation register flags.

To increase the precision of certain computations, an additional least significant digit, the guard digit, is carried
within the hardware in the intermediate result of the following operations: add-normalized, subtract-normalized,
add-unnormalized, subtract-unnormalized, compare, halve, and multiply. In the execution of add-normalized,
subtract-normalized, add-unnormalized, subtract-unnormalized, and compare instructions, when a right shift of the
fraction is required to equalize two exponents, the last hexadecimal digit to be shifted out of the least significant
digit position of the fraction is saved by the processor hardware as the guard digit. The shifted fraction, including the
guard digit, is used in computing the intermediate result. In the halve instruction, the least significant bit position of
the fraction is saved as the most significant bit position of the guard digit. In the long format multiply instruction,
the guard digit is carried as the fifteenth digit of the fraction of the intermediate product. If the intermediate result
is subsequently normalized, the guard digit is shifted left to become part of the normalized fraction.

This section describes the operation of each floating-point instruction. The instructions are arranged in alphabetical
order according to mnemonic operation code. Each description includes a list of the possible program exceptions
and condition codes which may result. The relocation and indirection flags pertinent to each operand are also listed.

See Table 3-1 for an explanation of the abbreviations used in describing instruction formats.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-2

UP-NUMBER PAGE REVISION PAGE

6.2. AD (ADD-NORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

AD r 1 'd2 (x2,b2) 6A RX Four Bytes

Function:

The double-word contents of operand 2, specified by d2 (x 2,b2), are algebraically added to the double-word
contents of operand 1, specified by r

1
• The normalized sum is placed in operand 1.

Operational Considerations:

• Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit (6.1), and a possible carry. If
any most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted
left to form a normalized fraction. Vacated least significant digit positions are zero filled and the
exponent is reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current program status word (PSW) is 1, the resultant
floating-point number has a correct and normalized fraction, a correct sign, and an exponent which is
128 more than the correct value. If the exponent underflow mask of the current PSW is 0, the result is a
true 0. The exponent underflow condition causes a program interrupt if the exponent underflow mask
bit and the program exception mask bit of the current PSW are 1.

• Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0 and the intermediate sum is 0, the result is made a true
0. Exponent underflow cannot occur for a 0 fraction. The significance exception causes a program
interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

7935 Rev. 1

UP-NUMBER

•

•

SPERRY UNIVAC Operating System/4 6-3

PAGE REVISION PAGE

The sign of an arithmetic result is determined algebraically. The sign of a result with a 0 fraction is
always positive.

The condition code is set as follows:

to 0 (00
2

) if the result fraction is O;

to 1 (01
2

) if the result fraction is less than 0;

to 2 (102) if the result fraction is greater than O; or

code 3 is not used.

• Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

LABEL [;OPERA T!ON [; OPERAND
l 0 16

t_ __ L_J L l. 1 l t

1. The double-word contents of floating-point register 4 and the main storage location labeled DEND are
added. The result is placed in register 4.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-4

UP-NUMBER PAGE REVISION PAGE

6.3. ADR (ADD-NORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction Operand Format Type Code Code Length

ADR r
1

,r
2 2A RR Two Bytes

Function:

The double-word contents of operand 2, specified by r
2

, are algebraically added to the double-word contents
of operand 1, specified by r

1
• The normalized sum is placed in operand 1.

Operational Considerations:

• Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit (6.1), and a possible carry. If
any most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted
left to form a normalized fraction. Vacated least significant digit positions are zero filled and the
exponent is reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current PSW is 1, the resultant floating-point number has a
correct and normalized fraction, a correct sign, and an exponent which is 128 more than the correct
value. If the exponent underflow mask of the current PSW is 0, the result is a true 0. The exponent
underflow condition causes a program interrupt if the exponent underflow mask bit and the program
exception mask bit of the current PSW are 1.

• Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0 and the intermediate sum is 0, the result is made a true
0. Exponent underflow cannot occur for a 0 fraction. The significance exception causes a program
interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

7935 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/4 6-5

PAGE REVISION PAGE

• The sign of an arithmetic result is determined algebraically. The sign of a result with a 0 fraction is
always positive.

• The condition code is set as follows:

to 0 (00
2

) if the result fraction is O;

to 1 (01
2

) if the result fraction is less than O;

to 2 (10
2

) if the result fraction is greater than 0; or

code 3 is not used.

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

OPERAND

/. j

1. The double-wo~d contents of floating-point registers 2 and 4 are added and the result is placed in register 2.

6.4. AE (ADD-NORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

AE r 1,d2(x2,b2 l 7A RX Four Bytes

Function:

The full-word contents of operand 2, specified by d2 (x2 ,b2), are algebraically added to the full-word contents
of operand 1, specified by r

1
• The normalized sum is placed in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-6

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a possible carry. If any
most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted left
to form a normalized fraction. Vacated least significant digit positions are zero filled and the exponent is
reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current PSW is 1, the resultant floating-point number has a
correct and normalized fraction, a correct sign, and an exponent which is 128 more than the correct
value. If the exponent underflow mask of the current PSW is 0, the result is a true 0. The exponent
underflow condition causes a program interrupt if the exponent underflow mask bit and the program
exception mask bit of the current PSW are 1.

• Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0, and the intermediate sum is 0, the result is made a true
0. Exponent underflow cannot occur for a 0 fraction. The significance exception causes a program
interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

• The sign of an arithmetic result is determined algebraically. The sign of a result with a 0 fraction is
always positive.

• The condition code is set as follows:

to 0 (00
2

) if the result fraction is O;

to 1 (01
2

) if the result fraction is less than O;

to 2 (10
2

) if the result fraction is greater than O; or

code 3 is not used.

7935 Rev. 1

UP-NUMBE"R

SPERRY UNIVAC Operating System/4 6-7

PAGE REVISION PAGE

• Possible program exceptions:

addressing exception

'- exponent overflow exception

exponent underflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 not on full-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

\.

LABEL 6 OPERATION 6 OPERAND
10 16

.-L ..• ! J 1 l

1. The full-word contents of floating-point register 6 and the main storage location FULL are added. The
result is placed in register 6.

6.5. AER (ADD-NORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

AER r
1

,r
2 3A RR Two Bytes

'=unction:

The full-word contents of operand 2, specified by r 2 , are algebraically added to the full-word contents of
operand 1, specified by r

1
. The normalized sum is placed in operand 1.

-I

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-8
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a possible carry. If any
most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted left
to form a normalized fraction. Vacated least significant digit positions are zero filled and the exponent is
reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

• Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current PSW is 1, the resultant floating-point number has a
correct and normalized fraction, a correct sign, and an exponent which is 128 more than the correct
value. If the exponent underflow mask of the current PSW is 0, the result is a true 0. The exponent
underflow condition causes a program interrupt if the exponent underflow mask bit and the program
exception mask bit of the current PSW are 1.

• Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0 and the intermediate sum is 0, the result is made a true
0. Exponent underflow cannot occur for a 0 fraction. The significance exception causes a program
interrupt if the significance mask bit and the program exception mask bit of the current PSW are I.

• The sign of an arithmetic result is determined algebraically. The sign of a result with a 0 fraction is
always positive.

• The condition code is set as follows:

to 0 (00
2

) if the result fraction is O;

to 1 (01
2

) if the result fraction is less than O;

to 2 (10
2

) if the result fraction is greater than 0; or

code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-9
UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL 6. OPE fl A T!ON 6. OPERAND
!() 16

="'=""===-==~""'==7='::c·-~--------·-------------

{. .L. i .L. A

1. The full-word contents of floating-point registers 4 and 6 are added and the result is placed in register 4_

6.6. AU (ADD-UNNORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format Type

Instruction
Code Code Length

AU r 1 'd2(x2,b2) 7E RX Four Bytes

Function:

The full-word contents of operand 2, specified by d
2

(x2 ,b), are algebraically added to the full-word contents
of operand 1, specified as r

1
• The sum is placed in operand 1.

Operational Considerations:

• The execution of the AU instruction is identical to the AE instruction, except that the sum is not
normalized before being placed in operand 1 _

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01 2) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used_

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-10
UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

addressing exception

exponent overflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

LABEL 6 OPERATiOM 6
10 16

l• L_L _L..L J 1 i

1. The full-word contents of floating-point register 6 and main storage location UNOR are added and the
result is placed in register 6.

6.7. AUR (ADD-UNNORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

AUR r 1 .r 2 3E RR Two Bytes

Function:

The full-word contents of operand 2, specified by r
2

, are algebraically added to the full-word contents of
operand 1, specified as r

1
• The sum is placed in operand 1.

,,,__ __ ,

--'->,.---·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 a-11
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The execution of the AUR instruction is identical to the AER instruction, except that the sum is not
normalized before being placed in operand 1.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

exponent overflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL 6 OPERATION 6 OPERAND
10 l 6

\ - _L_L_J. 1.1 J J : : .i ;

1. The full-word contents of floating-point registers 6 and 2 are added and the result is placed in register 6.

6.8. AW (ADD-UNNORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

AW r 1 ,d2(x2 ,b2) 6E RX Four Bytes

Function:

The double-word contents of operand 2, specified by d 2 (x 2 ,b2), are algebraically added to the double-word
contents of operand 1, specified by r

1
. The sum is placed in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-12
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The execution of the AW instruction is identical to the AD instruction, except that the sum is not
normalized before being placed in operand 1.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

addressing exception

exponent overflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

/.

LABEL 6 OPERA TIOH 6
10 16 l 0vT~ t I)~!w~-R~==~~'-C~,,=%=~===~~~~

---------------'~

L

1. The double-word contents of floating-point register 4 and the main storage location WERE are added
and the result is placed in register 4.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-13
UP-NUMBER PAGE REVISION PAGE

6.9. AWR (ADD-UNNORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

AWA r 1 •r2 2E RR Two Bytes

Function:

The double-word contents of operand 2, specified by r
2

, are algebraically added to the double-word contents
of operand 1, specified as r

1
• The sum is placed in operand 1.

Operational Considerations:

• The execution of the AWR instruction is identical to the ADR instruction, except that the sum is not
normalized before being placed in operand 1.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than 0;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

exponent overflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

....--------------
LABE 6. OPERA Tl ON 6. OPERAND

1() 16

JJ~ 1. l
' _J ' : l ;

.. ~.rn.-~~'"~'-"" - , ,_,_,

1. The double-word contents of floating-point registers 2 and 6 are added and the result is placed in register 2.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-14

UP-NUMBER PAGE REVISION PAGE

6.10. CD (COMPARE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

length

CD r 1 ,d2 (x2 ,b2) 69 RX Four Bytes

Function:

The double-word contents of operand 1, specified by r
1

, are algebraically compared with the double-word
contents of operand 2, specified by d2 (x2 ,b2).

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is 0.

• Operands with 0 fractions compare as equal even when their signs or exponents are different.

• The condition code is set as follows:

to 0 (00
2

) when operand 1 equals operand 2;

to 1 (01
2

) when operand 1 is less than operand 2;

to 2 (10
2

) when operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-15
UP-NUM BE'l'l PAGE REVISION PAGE

Example:

LABEL 6 OPERATION 6
10 16

l. J. .•• L .. L L j J

1. The double-word contents of floating-point register 4 and main storage location PARE are compared and
the condition code is set.

6.11. CDR (COMPARE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Instruction
Code Code

Type
Length

CDR r 1 •r2 29 RR Two Bytes

Function:

The double-word contents of operand 1, specified by r
1

, are algebraically compared with the double-word
contents of operand 2, specified by r

2
.

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is 0.

• Operands with 0 fractions compare as equal even when their signs or exponents are different.

• The condition code is set as follows:

to 0 (00
2

) when operand 1 equals operand 2;

to 1 (01
2

) when operand 1 is less than operand 2;

to 2 (10
2

) when operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-16
UP-NUMBER PAGE REVISION PAGE

Example:

/. .l l

1. The double-word contents of floating-point registers 2 and 4 are compared and the condition code is set.

6.12. CE (COMPARE, SHORT FORMAT) -90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

CE r 1,d2(x2,b2) 79 RX Four Bytes

Function:

The full-word contents of operand 1, specified by r
1

, are algebraically compared with the full-word contents
of operand 2, specified by d2 (x2 ,b2).

Operational Considerations:

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The operands are equal
when the intermediate sum, including the guard digit, is 0.

• Operands with 0 fractions compare as equal even when their signs or exponents are different.

• The condition code is set as follows:

to 0 (00
2

) when operand 1 equals operand 2;

to 1 (01
2

) when operand 1 is less than operand 2;

to 2 (10
2

) when operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, or 6)

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-17

UP-NUMBER PAGE REVISION PAGE

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

I·

OP

1. The full-word contents of floating-point register 0 and main storage location GIAR are compared and
the condition code is set.

6.13. CER (COMPARE, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

CER r 1•r2 39 RR Two Bytes

'"--" Function:

The full-word contents of operand 1, specified by r
1

, are algebraically compared with the full-word contents
of operand 2, specified by r

2
.

Operational Considerations:

• Comparison is accomplished by the rules for normalized floating-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is 0.

• Operands with 0 fractions compare as equal even when their signs or exponents are different.

• The condition code is set as follows:

to 0 (00
2

) when operand 1 equals operand 2;

to 1 (01
2

) when operand 1 is less than operand 2;

to 2 (10
2

) when operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-18

UP-NUMBER PAGE REVISION PAGE

• Relocation and indirection flags: none

Example:

LABEL 6. OPERATION 6.
10 16

/.

1. The full-word contents of floating-point registers 0 and 6 are compared and the condition code is set.

6.14. DD (DIVIDE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

DD r1 ,d2(x2,b2) 6D RX Four Bytes

Function:

The double-word contents of operand 1 (dividend), specified by r
1

, are divided by the double-word contents
of operand 2 (divisor). specified by d2 (x2

,b2). The normalized quotient is placed in operand 1. The remainder
is not preserved.

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

• Both operands are normalized before division (6.2). Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

• If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

• Attempted division by a divisor with a 0 fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true 0 result. No program exceptions
occur.

-----·

7935 Rev. 1
U P·NUMBER

SPERRY UNIVAC Operating System/4 6-19
PAGE REVISION PAGE

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

floating-point divide exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

I.

LABEL 6 OPERA T!ON 6 OPERAND
10 16

- "J'$AR.,
'

' >

1. The double-word contents of floating-point register 4 are divided by the double-word contents at main
storage location STAR. The result is placed in register 4.

6.15. DOR (DIVIDE, LONG FORMAT) -90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

DOR r1,r2 20 RR Two Bytes

Function:

The double-word contents of operand 1 (dividend), specified by r
1

, are divided by the double-word contents
of operand 2 (divisor). specified by r

2
. The normalized quotient is placed in operand 1. The remainder is not

preserved.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-20
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

• Both operands are normalized (6.2) before division. Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

• If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

• Attempted division by a divisor with a 0 fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true 0 result. No program exceptions
occur.

• The condition code remains unchanged .

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

floating-point divide exception

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL 6 OPERA TIOH 6 OPERAND
Hl 16

f. t::= ...• = i .. = L.=, .. =L=, .!=.tn=cD=R-~ l l~~H-~--
l l

1. The double-word contents of floating-point register 6 are divided by the contents of floating-point
register 4. The result is placed in register 6.

"-----..

~-·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 s-21
UP-NUMBER PAGE REVISION PAGE

6.16. DE (DIVIDE, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

DE r 1 •d2(X2,b2) 70 RX Four Bytes

Function:

The full-word contents of operand 1 (dividend). specified by r
1

, are divided by the full-word contents of
operand 2 (divisor), specified by d2 (x 2

,b
2

). The normalized quotient is placed in operand 1. The remainder is
not preserved.

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

• Both operands are normalized (6.2) before division. Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

• If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

• Attempted division by a divisor with a 0 fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true 0 result. No program exceptions
occur.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

floating-point~ivide exception

indirect address specification exception

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 6-22
PAGE REVISION PAGE

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 is not 0, 2,
4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

/.

LABEL

1. The full-word contents of floating-point register 4 are divided by the full-word contents in main storage
location MAIN. The result is placed in register 4.

6.17. DER (DIVIDE, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format Type

Instruction
Code Code Length

DER r 1•r2 3D RR Two Bytes

Function:

The full-word contents of operand 1 (dividend), specified by r 1 , are divided by the full-word contents of
operand 2 (divisor). specified by r

2
• The normalized quotient is placed in operand 1. The remainder is not

preserved.

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

• Both operands are normalized before division. Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 6-23
PAGE REVISION PAGE

• If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

An exponent overflow exception causes a program interrupt if the program exception mask bit of the
current PSW is 1.

• If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

• Attempted division by a divisor with a 0 fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true 0 result. No program exceptions
occur.

• The condition code remains unchanged.

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

floating-point divide exception

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL

I I ,
~,er , .-.'-) ; 1

1. The full-word contents of floating-point register 2 are divided by the full-word contents of floating-point
register 4. The result is placed in register 2.

6.18. HOR (HALVE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

HOR r1 ,r2 24 RR Two Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-24

UP-NUMBER PAGE REVISION PAGE

Function:

The double-word contents of operand 2, specified by r
2

, are divided by 2. The normalized quotient is placed
in operand 1, specified by r

1
.

Operational Considerations:

• The fraction of operand 2 is shifted right one bit position, placing the least significant bit of the fraction
into the most significant bit position of the guard digit and filling the vacated fraction bit position with
0. The intermediate result is normalized and placed in the operand 1 location.

• When normalization causes the exponent to become less than 0, an exponent underflow condition exists.
If the exponent underflow mask bit of the current PSW is 1, the exponent of the result is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is 0, the result is made
true 0. An exponent underflow exception causes an interrupt if the exponent underflow mask bit and
the program exception mask bit of the current PSW are 1.

• When the fraction of operand 2 is 0, the result is made a true 0, normalization is not attempted, and a
significance exception does not occur.

• The condition code remains unchanged.

• Possible program exceptions:

exponent underflow exception

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

1.

6 OPERA T!Qtl 6
10 16

') ~

1. The double-word contents of floating-point register 4 are divided by 2. The result is placed in
floating-point register 2.

6.19. HER (HALVE, SHORT FORMAT) - 90/60,70

Mnemonic Hexadecimal Object Source Code Format Operation
Operand Format Operation Instruction

Code Code
Type

Length

HER r 1 ,r 2 34 RR Two Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-25
UP-NUMBE.'"l PAGE REVISION PAGE

Function:

The full-word contents of operand 2, specified by r
2

, are divided by 2. The normalized quotient is placed in
operand 1, specified by r

1
.

Operational Considerations:

• The fraction of operand 2 is shifted right one bit position, placing the least significant bit of the fraction
into the most significant bit position of the guard digit and filling the vacated fraction bit position with
0. The intermediate result is normalized and placed in the operand 1 location.

• When normalization causes the exponent to become less than 0, an exponent underflow condition exists.
If the exponent underflow mask bit of the current PSW is 1, the exponent of the result is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is 0, the result is made
true 0. An exponent underflow exception causes an interrupt if the exponent underflow mask bit and
the program exception mask bit of the current PSW are 1.

• When the fraction of operand 2 is 0, the result is made a true 0, normalization is not attempted, and a
significance exception does not occur.

• The condition code remains unchanged.

• Possible program exceptions:

exponent underflow exception

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

1. The full-word contents of floating-point register 6 are divided by 2. The result is placed in register 0.

6.20. LCDR (LOAD-COMPLEMENT, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LCDR r 1 ,r 2 23 RR Two Bytes

Function:

The sign of double-word operand 2, specified by r
2

, is reversed and the result is placed in operand 1, specified
by r

1
.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-26

UP .. NUMBER PAGE REVISION PAGE

Operationa I Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL /::, OPERA !ION fl
1\l 16

I• -- l ... L i 1

1. The sign of the double-word contents of floating-point register 6 is reversed and the result is placed in
register 2.

6.21. LCER (LOAD-COMPLEMENT, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LCER r 1•r2 33 RR Two Bytes

Function:

The sign of ful I-word operand 2, specified by r
2

, is reversed and the result is placed in operand 1,specified by r
1

•

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 remain unchanged.

-.._.--

~··

....__.--

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-27
UP-NUMBER PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
3

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL /::, OPERA T!ON !::. OPERAND
10 16

/. _J ___ ._ .1 .L l

1. The sign of the full-word contents of floating-point register 4 is reversed and the result is placed in
register 6.

6.22. LO (LOAD, LONG FORMAT) -90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LD r 1,d2(x2,b2) 68 RX Four Bytes

Function:

The contents of double-word operand 2, specified by d
2

(x
2

,b
2

). are placed in operand 1, specified by r 1 •

Operational Considerations:

• The contents of operand 2 remain unchanged .

• The condition code remains unchanged .

• Possible program exceptions:

addressing exception

indirect address specification exception

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-28

UP-NUMBER PA GE RE VISION PAGE

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

LABEL !:::. OPERATION !:::.
10 16

J. iL.i .t J .. r , l ~D ... 1

~-;..;;;;=="'-"-:::;;--c::-=;:oo:c:c:::.-~-======

J ;

1. The double-word contents of main storage location FORM are placed in floating-point register 4.

6.23. LOR (LOAD,LONG FORMAT) -90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LOR r 1 ,r2 28 RR Two Bytes

Function:

The contents of double-word operand 2, specified by r
2

, are placed in operand 1, specified by r 1 •

Operational Considerations:

• The oontents of operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-29
UP-NUMBER PAGE REVISION PAGE

Example:

LABEL /':, OPERA T!ON /':, OPERAND
10 16

/, '_..L__t._L i 1. L l

1. The double-word contents of floating-point register 2 are placed in floating-point register 4.

6.24. LE (LOAD, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LE r1,d2 (x2 ,b2) 78 RX Four Bytes

Function:

The contents of full-word operand 2, specified by d 2 (x2 ,b2), are placed in operand 1, specified by r 1.

Operational Considerations:

• The contents of operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-30

UP-NUMBER PAGE REVISION PAGE

Example:

LABEL !:,. OPERA T!QN !:,.
10 16

2.>MADF- . '

1. The full-word contents of main storage location MADE are placed in floating-point register 2.

6.25. LER (LOAD, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

LEA r 1 ,r 2 38 RR Two Bytes

Function:

The contents of full-word operand 2, specified by r
2

, are placed in operand 1, specified by r
1

.

Operational Considerations:

• The contents of operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

1. The full-word contents of floating-point register 2 are placed in floating-point register 4.

'----

-..._.,.,·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-31

UP-NUMBER PAGE REVISION PAGE

6.26. LNDR (LOAD-NEGATIVE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LNDR r 1'r2 21 RR Two Bytes

Function:

The sign of double-word operand 2, specified by r
2

, is made negative and the result is placed in operand 1,
specified by r

1
•

Operational Considerations:

• Operand 2 is made negative even if the fraction is 0.

• The exponent and fraction are not changed.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O; or

codes 2 and 3 are not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

/ .
LABEL 6 OPERA TiON 6 OP RAN

l 0 16

..-~~~~---L. !

1. The sign of the double-word contents of floating-point register 6 is made negative and the result is placed
in floating-point register 2.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-32

UP-NUMBER PAGE REVISION PAGE

6.27. LNER (LOAD-NEGATIVE, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

LNER r 1 'r2 31 RR Two Bytes

Function:

The sign of full-word operand 2, specified by r
2

, is made negative and the result is placed in operand 1,
specified by r

1
.

Operational Considerations:

• Operand 2 is made negative even if the fraction is 0.

• The exponent and fraction are not changed.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O; or

codes 2 and 3 are not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

J.

LABEL OPE

-~ L .. 1

n=:=""""-==,,-T--f""'"'""·";=~""="'=""--'·"''. :.~·=-.. ·=~=""'=~:=,==··'"=""'::'=-~-~:

f jL.NE./Z. ! jb) H , A .l

1. The sign of the full-word contents of floating-point register 4 is made negative and the result is placed in
floating-point register 6.

7935 Rev. 1 SPERRY UNIVAC Operating System/4
6-33

UP-NUMBER PAGE REVISION PAGE

6.28. LPDR (LOAD-POSITIVE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code Operand Format

Code
Type

Length

LPDR r 1l2 20 RR Two Bytes

Function:

The sign of double-word operand 2, specified by r
2

, is made positive and the result is placed in operand 1,
specified by r

1
•

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 2 (10
2

) if result is greater than O; or

codes 1 and 3 are not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

\.

1. The sign of the double-word contents of floating-point register 6 is made positive and the result is placed
in register 0.

6.29. LPER (LOAD-POSITIVE, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

LPER r 1 ,r 2 30 RR Two Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-34

UP-NUMBE'H: PAGE REVISION PAGE

Function:

The sign of full-word operand 2, specified by r
2

, is made positive and the result is placed in operand 1,
specified by r

1
•

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 2 (10
2

) if result is greater than O; or

codes 1 and 3 are not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

1. The sign of the full-word contents of floating-point register 0 is made positive, and the result is placed in
floating-point register 4.

6.30. L TOR (LOAD-AND-TEST, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LTDR r1 ,r2 22 RR Two Bytes

Function:

The contents of double-word operand 2, specified by r
2

, are placed in operand 1, specified by r
1

.

--

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-35

UP .. NUMBER PAGE REVISION PAGE

Operational Considerations:

• The contents of operand 2 remain unchanged.

• When the same register is specified for operand 1 and operand 2, the operation is equivalent to a test
without data movement.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than O;

to 2 (10
2

) if result is greater than O; or

code 3 is not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL 6 OPERA TIOH 6
l 0 16

/. ,__~~._L_L.L .. L ... I '·

1. The double-word contents of floating-point register 4 are placed in floating-point register 2 and the
condition code is set.

6.31. LTER (LOAD-AND-TEST, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LTER r1 ,r2 32 RR Two Bytes

Function.

The contents of full-word operand 2, specified by r
2

, are placed in operand 1, specified by r 1 •

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-36
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The contents of operand 2 remain unchanged .

• When the same register is specified for operand 1 and operand 2, the operation is equivalent to a test
without data movement.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is less than 0;

to 2 (10
2

) if result is greater than 0; or

code 3 is not used.

• Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL

\ ... ~ l • :. l

1. The full-word contents of floating-point register 2 are placed in floating-point register 0 and the
condition code is set.

6.32. MD (MULTIPLY, LONG FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

MD r 1,d2 (x2 ,b2) 6C RX Four Bytes

Function:

The contents of double-word operand 1 (multiplicand). specified by r
1

, are multiplied by the contents of
double-word operand 2 (multiplier). specified by d

2
(x

2
,b). The normalized product is placed in operand 1.

·----

----··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-37
U P·NUMBER PAGE REVISION PAGE

Operational Considerations:

• Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

• Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits and a guard digit (6.1) before
normalization.

• If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1.

• If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than 0 during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

• When all digits of the intermediate product are 0, the result is made a true 0.

• When the result fraction is 0, a program exception for exponent underflow or overflow does not occur .

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-38

UP-NUMBER PAGE REVISION PAGE

Example:

I.
.) i ' ··'

1. The double-word contents of floating-point register 2 are multiplied by the double-word contents of
main storage location MUL TP. The result is placed in register 2.

6.33. MOR (MULTIPLY, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

MOR r 1 ,r 2 2C RR Two Bytes

Function:

The contents of double-word operand 1 (multiplicand), specified by r
1

, are multiplied by the contents of
double-word operand 2 (multiplier), specified by r

2
. The normalized product is placed in operand 1.

Operational Considerations:

• Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

• Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits and a guard digit before
normalization.

• If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1.

• If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign •. and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than 0 during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

• When all digits of the intermediate product are 0, the result is made a true 0.

. "--"".·

I

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-39

UP-NUMBER PAGE REVISION PA GE

• When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.

• The condition code remains unchanged.

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

operation exception

specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

LABEL 6. OPERA T!ON 6.
Hl !6

I. LL-1 .. L 1 J I

1. The double-word contents of floating-point register 0 are multiplied by the double-word contents of
floating-point register 4. The result is placed in register 0 .

6.34. ME (MULTIPLY, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

ME r1,d
2

(x2,b2) 7C RX Four Bytes

Function:

The contents of full-word operand 1 (multiplicand), specified by r
1

, are multiplied by the contents of
full-word operand 2 (multiplier). specified by d

2
(x

2
,b). The normalized product is placed in operand 1.

Operational Considerations:

• Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

• Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits, the two least significant
digits of which are 0, before normalization.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 6-40
PAGE REVISION PAGE

• If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1.

• If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than 0 during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

• When all digits of the intermediate product are 0, the result is made a true 0.

• When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary; or operand register is
not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

6 OPERA
10

6 RAND
16

1. The full-word contents of floating-point register 6 are multiplied by tl"ie fuil-word contents of main
storage location NORM. The result is placed in register 6.

. __ /

.._ .. ·

-..-·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-41

UP.NUMBER PAGE REVISION PAGE

6.35. MER (MULTIPLY, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type Instruction
Code Code Length

MER r 1 ,r 2 3C RR Two Bytes

Function:

The contents of full-word operand 1 (multiplicand), specified by r
1

, are multiplied by the contents of
full-word operand 2 (multiplier), specified by r

2
• The normalized product is placed in operand 1.

Operational Considerations:

• Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

• Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits, the two least significant
digits of which are 0, before normalization.

• If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1.

• If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than 0 during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

• When all digits of the intermediate product are 0, the result is made a true 0.

• When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.

• The condition code remains unchanged.

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-42

UP-NUMBER PAGE REVISION PAGE

Example:

OPE

1. The full-word contents of floating-point register 2 are multiplied by the full-word contents of
floating-point register 0. The result is placed in register 2.

6.36. SD (SUBTRACT-NORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic Hexadecimal Object
Operation Source Code

Operation
Format

Operand Format Type
Instruction

Code Code Length

SD r 1 •d2(X2,b2) 68 RX Four Bytes

Function:

The double-word contents of operand 2, specified by d2 (x2 ,b2), are algebraically subtracted from the
double-word contents of operand 1, specified by r

1
• The normalized difference is placed in operand 1.

Operational Considerations:

• The execution of the SD instruction is identical to that of the AD instruction, except that the sign of
operand 2 is reversed before addition.

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

• Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

indirect address specification exception

indirect addressing exception

operation exception

7935 Rev. 1

UP.NUMBE'R:

SPERRY UNIVAC Operating System/4 6-43
PAGE REVISION PAGE

protection exception

significance exception

specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

/.

LABEL 6 OPERA.rJOt< 6 OP
Hl 16

1. The double-word contents of main storage location TRACK are subtracted from the double-word
contents of floating-point register 6. The result is placed in register 6.

6.37. SOR (SUBTRACT-NORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

SDR r 1 ,r 2 2B RR Two Bytes

Function:

The double-word contents of operand 2, specified by r
2

, are algebraically subtracted from the double-word
contents of operand 1, specified by r

1
• The normalized difference is placed in operand 1.

Operational Considerations:

• The execution of the SDR instruction is identical to that of the ADR instruction (6.3), except that the
sign of operand 2 is reversed before addition.

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-44

UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

exponent overflow exception

exponent underflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

Example:

'·

LABEL 6. OPERATION 6.
10 16

.. L : .. .l j J !

1. The double-word contents of floating-point register 2 are subtracted from the double-word contents of
floating-point register 4. The result is placed in register 4.

6.38. SE (SUBTRACT-NORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic Hexadecimal Object Source Code Format Operation
Operand Format

Operation
Type

Instruction
Code Code Length

SE r 1 •d2lx2,b2) 78 RX Four Bytes

Function:

The full-word contents of operand 2, specified by d
2

(x
2

,b
2

), are algebraically subtracted from the full-word
contents of operand 1, specified by r

1
• The normalized difference is placed in operand 1.

Operational Considerations:

• The execution of the SE instruction is identical to that of the AE instruction (6.4), except that the sign
of operand 2 is reversed before addition.

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

7935 Rev. 1
U P.NL;MBER

•

SPERRY UNIVAC Operating System/4 6-45
PAGE REVISION PAGE

Possible program exceptions:

addressing exception

exponent overflow exception

exponent underflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

1. The full-word contents of main storage location CLARE are subtracted from the contents of
floating-point register 2. The result is placed in register 2.

6.39. SER (SUBTRACT-NORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Instruction
Code Code

Type
length

SER r 1,r 2 3B RR Two Bytes

Function:

The full-word contents of operand 2, specified by r
2

, are algebraically subtracted from the full-word contents
of operand 1, specified by r

1
• The normalized difference is placed in ooenmrl 1

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-46

UP~NUMBER PAGE REVISION PAGE

Operational Considerations:

• The execution of the SER instruction is identical to that of the AER instruction (6.5). except that the
sign of operand 2 is reversed before addition.

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

• Possible program exceptions:

•
Example:

exponent overflow exception

exponent underflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

Relocation and indirection flags: none

LABEL 6 OPERATION 6
10

,lo

1. The full-word contents of floating-point register 6 are subtracted from the full-word contents of
floating-point register 0. The result is placed in register 0.

6.40. STD (STORE, LONG FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

STD r1 ,d2 (x2 ,b2) 60 RX Four Bytes

Function:

The double-word contents of operand 1, specified by r
1

, are placed in main storage at the location designated
by operand 2, specified by d2 (x2 ,b2).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-47
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RD, ID

Example:

LABEL 6 OPERATION 6 OPERAND
10 16

1. The double-word contents of floating-point register 4 are placed in main storage location STORE.

6.41. STE (STORE, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

STE r1 ,d2(X2,b2) 70 RX Four Bytes

Function:

The full-word contents of operand 1, specified by r
1

, are placed in main storage at the location designated by
operand 2, specified by d2 (x2 ,b2).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-48
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary, or operand 1 register is
not 0, 2, 4, or 6)

• Relocation and indirection flags:

Example:

J , ;

operand 1 : none

operand 2: RD, ID

LABEL 6 OPERA TIOH 6
10

!STE, I
I ,

D

RTM

1. The full-word contents of floating-point register 6 are placed in main storage location ARTM.

6.42. SU (SUBTRACT-UNNORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

SU r 1,d2!x2 .b2) 7F RX Four Bytes

Function:

The full-word contents of operand 2, specified by d2 (x 2 ,b2), are algebraically subtracted from the full-word
contents of operand 1, specified by r

1
• The difference is placed in operand 1.

Operational Considerations:

• The execution of the SU instruction is identical to that of the AU instruction (6.6), except that the sign
is reversed before addition.

·,_

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 6-49
PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than 0; or

code 3 is not used.

• Possible program exceptions:

•

addressing exception

exponent overflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 or IACW not on full-word boundary, or operand 1 register is
not 0, 2, 4, or 6)

Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

LABEL 6 OPERATION 6
10 16

1. ---~--'.Li .i .i f .jsu , -~- ~~-~RA:M--~~,=:~~,%~~=~-~-=-~=,,:=~-~==,=

1. The full-word contents of main storage location TRAM are subtracted from the full-word contents of
floating-point register 4. The result is placed in register 4.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-50

UP-NUMBER PAGE REVISION PAGE

6.43. SUR (SUBTRACT-UNNORMALIZED, SHORT FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SUR r 1 l2 3F RR Two Bytes

Function:

The full-word contents of operand 2, specified by r2 , are algebraically subtracted from the full-word contents
of operand 1, specified by r

1
• The difference is placed in operand 1.

Operational Considerations:

• The execution of the SUR instruction is identical to that of the AUR instruction (6.7), except that the
sign is reversed before addition.

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

• Possible program exceptions:

exponent overflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

Example:

1.

LABEL 6 OPERA T!ON 6 0
10 16

_L__J_ ___ .L __ l _.1

1. The full-word contents of floating-point register 0 are subtracted from the full-word contents of
floating-point register 6. The result is placed in register 6.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-51

UP.NUMBER PAGE REVISION PAGE

6.44. SW (SUBTRACT-UNNORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

SW r 1,d2 (x2,b2) 6F RX Four Bytes

Function:

The double-word contents of operand 2, specified by d2 (x2 ,b2), are algebraically subtracted from the
double-word contents of operand 1, specified by r

1
• The difference is placed in operand 1.

Operational Considerations:

• The execution of the SW instruction is identical to that of the AW instruction (6.8), except that the sign
is reversed before addition.

• The condition code is set as follows:

•

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

Possible program exceptions:

addressing exception

exponent overflow exception

indirect address specification exception

indirect addressing exception

operation exception

protection exception

significance exception

specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-52
UP-NUMBE.'R PAGE REVISION PAGE

Example:

LI.BEL !:::. OPERA TlON !:::. OPERAND
10 16

i j

1. The double-word contents of main storage location SWIFT are subtracted from the double-word
contents of floating-point register 0. The result is placed in register 0.

6.45. SWR (SUBTRACT-UNNORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SWR r 1 ,r2 2F RR Two Bytes

Function:

The double-word contents of operand 2, specified by r 2 , are algebraically subtracted from the double-word
contents of operand 1, specified by r

1
• The difference is stored in operand 1.

Operational Considerations:

• The execution of the SWR instruction is identical to that of the AWR instruction (6.9), except that the
sign is reversed before addition.

• The condition code is set as follows:

to 0 (00
2

) if result fraction is O;

to 1 (01
2

) if result fraction is less than O;

to 2 (10
2

) if result fraction is greater than O; or

code 3 is not used.

• Possible program exceptions:

exponent overflow exception

operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

• Relocation and indirection flags: none

.___-·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-53
UP-NUMBER PAGE REVISION PAGE

Example:

1.

LABEL 6 OPERA TIO!'! 6 OPERAND
1 () 16

_c _ _L.J L J i .l ·~-L-:

1. The double-word contents of floating-point register 2 are subtracted from the double-word contents of
floating-point register 6. The result is placed in register 6.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-1
UP-NUMBER PAGE REVISION PAGE

7. Logical Instructions

7.1. GENERAL

The logical instruction set provides for the adding, subtracting, moving, comparing, bit manipulating, bit testing,
translating, editing, and shifting of logical operands. A logical operand may be a full word or double word, a single
character, or a variable-length field. Depending on the instruction, logical operands may be treated as unsigned
integers or as unsigned and signed, packed and unpacked fields.

Logical operands are available in the RR, RX, RS, SS, and SI formats. The operands may reside in the general
registers, in main storage, or within a field in the instruction itself. On the SPERRY UNIVAC 9400/9480 Systems,
the address of an operand in main storage is specified as absolute_ On the SPERRY UNIVAC 90/60,70 Systems, the
address of an operand in main storage may be specified as relative or absolute and direct or indirect under the
control of the applicable relocation register flags. The first and second operand fields in main storage may overlap in
any way; however, unpredictable results may occur during translation and editing operations. The effect of
overlapping may be understood by considering the operands to be processed one byte at a time from left to right.

This section describes the operation of each logical instruction. The instructions are arranged in alphabetical order
according to mnemonic operation code. Each description includes a list of the possible program exceptions and
condition codes which may result. The relocation and indirection flags that are pertinent to the operand addresses
are listed. The object code format of the instruction is shown only for those instructions which differ from the
format shown in Figure 3-1. See Table 3-1 for an explanation of the abbreviations used in describing instruction
formats.

7.2. AL (ADD-LOGICAL) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

AL r 1 •d2!x2,b2) 5E RX Four Bytes

Function:

The contents of operand 2, specified by d2 (x 2 ,b), are logically added to the contents of operand 1, specified
by r

1
, and the sum is placed in operand 1.

Operational Considerations:

• Logical addition is performed by adding all 32 bits of each operand.

• The contents of operand 2 remain unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-2
UP-NUMBER PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if result is O; no carry out of most significant bit;

to 1 (01
2

) if result is not O; no carry out of most significant bit;

to 2 (10
2

) if result is O; carry out of most significant bit; or

to 3 (11
2

) if result is not O; carry out of most significant bit.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

L.+.BEL !:;, OPERATION!:;, OPERAND
10 16

1. The contents of the main storage location CORR are logically added to the contents of register 5. The
result is placed in register 5.

7.3. ALR (ADD-LOGICAL) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

ALA r 1 ,r 2 1E RR Two Bytes

Function:

The contents of operand 2, specified by r
2

, are logically added to the contents of operand 1, specified by r
1

,

and the sum is placed in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-3
U P·NUMBER PAGE REVISION PAGE

Operational Considerations:

• Logical addition is performed by adding all 32 bits of each operand.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if result is O; no carry out of most significiant bit;

to 1 (01
2

) if result is not O; no carry out of most significant bit;

to 2 (10
2

) if result is O; carry out of most significant bit; or

to 3 (11
2

) if result is not O; carry out of most significant bit.

• Possible program exceptions: none

• Relocation and indirection flags: none

Example:

OPERA T!ON 6 0 ERANO

1. The contents of register 9 are logically added to the contents of register 7. The result is placed in register 7.

7.4. CL (COMPARE-LOGICAL)

I
Mnemonic

Source Code Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

CL r l ,d2 (x2,b2) 55 RX Four Bytes

Function:

The contents of operand 1, specified by r 1 , and operand 2, specified by d 2 (x 2 ,b2), are compared and the
condition code is set according to the comparison.

Operational Considerations:

• Operands are considered as unsigned binary numbers and all bit combinations are valid.

• The contents of both operands remain unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-4
UP-NUMBER PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if the operands are equal;

to 1 (01
2

) if operand 1 is less than operand 2;

to 2 (10
2

) if operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Example:

LABEL /:,OPERA TlON /:, OPERAIW
Hl 16

J. ! I .l

1. The contents of register 8 are compared with the contents of main storage location COMP.

7.5. CLC (COMPARE-LOGICAL)

Mnemonic
Source Code Hexadeci mat

Format
Object

Operation
Operand Format

Operation
Type Instruction

Code Code Length

CLC d1 (l,b1 l,d2(b2l D5 SS Six Bytes

Function:

The contents of operand 1, specified by d
1

(l,b
1

). and operand 2, specified by d
2

(b
2

), are compared and the
condition code is set according to the comparison.

,.__,

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-5
UP-NUMBER PAGE REVISION PAGE

Object Instruction Format:

OPERATION LENGTH OPERAND l
0 CODE 7 8 15 16 l 9_i20 31

05 1-1 b1 I d1

OPERAND 2

Operational Considerations:

• The length specification of operand 1 specifies the length of both operands.

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• The contents of both operands remain unchanged.

• The instruction is processed from left to right, byte by byte.

• The condition code is set as follows:

to 0 (00
2

) if the operands are equal;

to 1 (012) if operand 1 is less than operand 2;
.__...-

to 2 (10
2

) if operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

-...__ ..

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-6
UP-NUMBER PAGE REVISION PAGE

Example:

/.

LABEL .6.0PERATION.6. OPERAND
l 0 i 6

l ,~ . ..1

1. The contents of main storage location SUMMARY are compared with the contents of main storage
location INPUT. SUMMARY and INPUT are labels with defined locations and lengths. The length
attribute of the symbol SUMMARY determines the length of the operands.

7.6. CLI (COMPARE-LOGICAL)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type Instruction
Code Code Length

cu d, (b,),i2 95 SI Four Bytes

Function:

The one-byte contents of operand 1, specified by d
1

(b
1

), and operand 2, contained in the i
2

field, are
compared and the condition code is set according to the comparison.

Operational Considerations:

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• The contents of operand 1 remain unchanged.

• The condition code is set as follows:

to 0 (002) if the operands are equal;

to 1 (01
2

) if operand 1 is less than operand 2;

to 2 (102) if operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

-

-

-

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-7

UP-NUMBER PAGE REVISION PAGE

• Relocation and indirection flags (90/60,70):

operand 1: RO, 10

operand 2: none

Examples:

Hl 6

I• ' . .
----rr=~:c:::==r~".:c"'=•:::;;;;:.;;;;.•="'='·'"""o"':;""'=·==~=•=:;::;·:;,.,===:;:;"=====-::--

·. i !Cl.I l fy'ALUE J I .OD. A • • •• .L) l ... J .__ ... -L ~

2 ... L ... i , 't PLL. j fEST,JX~ .03 I

1. The contents of main storage location VALUE are compared with 100.

2. The contents of main storage location TEST are compared with the hexadecimal value 3.

7.7. CLR (COMPARE-LOGICAL)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type Instruction
Code Code length

CLR r1 ,r2 15 RR Two Bytes

Function:

The contents of operand 1, specified by r
1

, and the contents of operand 2, specified by r
2

, are compared and
the condition code is set according to the comparison.

Operational Considerations:

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• The contents of both operands remain unchanged.

• The condition code is set as follows:

to 0 (00
2

) if the operands are equal;

to 1 (01
2

) if operand 1 is less than operand 2;

to 2 (10
2

) if operand 1 is greater than operand 2; or

code 3 is not used.

• Possible program exceptions: none.

• Relocation and indirection flags (90/60,70): none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7--8
UP-NUMBER PAGE REVISION PAGE

Example:

/.

LABEL 6 OPERATIOH 6 OPERAND
10 16

1. The contents of register 6 and the contents of register 7 are logically compared and the condition code is
set.

7.8. ED (EDIT)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type Instruction

Code Code Length

ED d, (l,b,),d2lb2l DE SS Six Bytes

Function:

The data of operand 2, specified by d
2

(b
2

), is changed from packed to unpacked format, is edited under the
control of operand 1 (the mask), and is placed in the operand 1 location, specified by d

1
(I ,b

1
).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 1~20 31

DE 1-1 b1 l d1

OPERAND 2

Operational Considerations:

• Editing includes sign and punctuation control and the suppression and protection of leading O's. It also
facilitates programmed blanking for all 0 fields. Several fields may be edited in one operation, and
numeric information may be combined with text.

• The instruction proceeds from left to right.

• Operand 2 data must be in packed format and must contain valid numerics and sign codes.

• The original contents of operand 1 is the mask, the pattern which controls the edit process. Depending
on the edit requirements, some of the bytes originally in operand 1 are replaced by data from operand 2.
The mask is expressed in unpacked format and may consist of any combination of 8-bit characters.

7935 Rev. 1

UP.NUMBE'R

SPERRY UNIVAC Operating System/4 7-9
PAGE REVlSION PAGE

• As the mask is scanned from left to right, one of three things happens to each mask character:

An operand 2 digit is expanded to a zoned character. The zoned character replaces the mask
character. When the operand 2 digit is stored as the result, its code is expanded from packed to
unpacked format by attaching a generated zone code. When the A mode bit of the current
program status word is 0, the EBCDIC zone code (1111

2
) is generated; when the A mode bit is 1,

the ASCII zone code (0011
2

) is generated.

The mask character is left unchanged.

A fill character is stored in the result. The fill character is taken from the first byte position of the
mask. The choice of this character is not dependent upon the editing function initiated by this
code. The editing function occurs after the code has been assigned as a fill character.

Each mask character is replaced by a result character that depends on three conditions:

the digit obtained from operand 2;

the mask character; and

the S switch status.

When a digit select or significance start byte is found in the mask, the S switch and an operand 2 digit
are examined. This results in either the unpacked operand 2 digit or the fill character replacing the mask
character. A valid decimal digit (if mask byte is significance start) or nonzero decimal digit (if mask byte
is digit select) sets the S switch to on if the operand 2 byte does not contain a plus code in the four least
significant bit positions (Table 7-1).

• Significance Indicator (S Switch)

The significance indicator, referred to as the S switch, indicates by its on or off state the significance or
nonsignificance, respectively, of subsequent operand 2 digits or message characters. Significant operand
2 digits replace their corresponding digit select or significance start characters in the result. Significant
message characters remain unchanged in the result.

When the S switch is off, O's to be transferred from operand 2 are suppressed and the fill character is
inserted in the corresponding operand 1 position. When the S switch is on, any 0 to be transferred from
operand 2 is unpacked into the corresponding operand 1 position. At the beginning of execution the S
switch is off.

• Fill Character

The fill character is the leftmost character of the edit mask (operand 1). Any hexadecimal value
(Appendix C) may be used as a valid fill character. This character is retained for the editing which
follows. This position does not receive a digit from the operand 2 data.

• Digit Select Byte

The digit select byte is a character in the operand 1 mask represented by the EBCDIC code 20 or the
ASCII code 80. If the digit select byte is encountered and the S switch is on, any digit, 0 through 9, is
unpacked to replace the digit select byte. If the S switch is off, the operand 2 digit is examined and only
nonzero digits are unpacked into operand 1. The fill character replaces the digit select byte if the
examined digit is 0. The S switch is turned on when the first nonzero operand 2 digit is encountered; this
allows succeeding O's from operand 2 to be included in the result.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 7-10

PAGE REVISION PAGE

• Significance Start Byte

The significance start byte is represented in the edit mask by the EBCDIC code 21 or the ASCII code 81.
The significance start byte performs the same function as the digit select byte except the significance
start byte turns the S switch on regardless of the value of the current operand 2 digit. Once the S switch
is on, it remains on for all succeeding digits; however, the current digit is not affected. The S switch may
be turned off by a field separator byte or by a positive sign code within operand 2.

• Message Character

Any other symbol or data in the operand 1 edit mask, as represented by hexadecimal codes, is retained
unchanged if the S switch is on. If the S switch is off, the other data is replaced by the fill character.
During this operation, the digit of operand 2 is neither accessed nor address advanced.

• Field Separator Byte

Multiple-field editing operations are indicated by the presence of one or more field separator bytes
(EBCDIC code 22, ASCII code 82). The field separator byte identifies the individual fields in this
operation and is always replaced in the mask with a fill character. The S switch is always off after the
field separator byte is encountered. If field separators are not indicated by the mask, the entire operand
2 is considered one field.

• Sign Consideration for Operand 2

The sign of operand 2, positive or negative, must be a value greater than binary 9 (1001
2

). Any
hexadecimal value A through F is acceptable. The sign itself is not moved to operand 1; instead, a sign
indicator, such as a minus sign or letters CR, is either deleted from or retained in operand 1, depending
on the sign of operand 2.

The sign of operand 2 also affects the S switch. A positive sign turns the S switch off, thus causing the
following characters in operand 1 to be replaced by the fill character. A negative sign leaves the S switch
unchanged.

• If the fill character is a blank, if no significance start byte appears in the mask, and if operand 2 is all O's,
the editing operation blanks the result field.

• Overlapping operand 1 and operand 2 fields produce unpredictable results.

• Operand Length

The length specification in the object instruction specifies the length of the mask (operand 1). The
length of the mask can be determined as follows:

one byte for the fill character;

one byte for each digit select byte, significance start byte, and field separator byte; and

one byte for each message character.

Usually operand 2 is shorter than operand 1, since, for each operand 2 digit, a zone and a numeric are
inserted in the result. The total number of digit select and significance start bytes in the mask must equal
the number of operand 2 digits to be edited.

7935 Rev. 1

UP-NUMBER

•

SPERRY UNIVAC Operating System/4 1-11
PAGE REVISION PAGE

If operand 2 containing unpacked data is to be edited, it must first be packed by the PACK instruction .
In packing an odd number of bytes, an odd number of digit positions and the sign are produced. In
packing an even number of bytes, an odd number of digit positions and the sign are produced. The extra
digit position in the latter case is 0, and is the most significant position in operand 2. The extra position
must be provided for in the mask by specifying an extra DSB or SSB. Space, asterisk, or other character
fill occurs and may be dropped when transferring the edited operand to output.

• The condition code, reflecting the status of the last source field edited, is set as follows:

to 0 when all of the operand 2 digits in the last field are 0. If the mask of the last field has no
significance start or digit select bytes, the operand 2 digits are not examined and the condition
code is set to O;

to 1 (01
2

) when a nonzero operand 2 digit without an associated plus sign is detected;

to 2(10
2

) when an operand 2 digit greater than zero is detected; or

code 3 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

Data exception (invalid sign or digit
code)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

• The operation of the edit instruction is summarized in Table 7-1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-12
UP-NUMBER PAGE REVISION PAGE

Table 7-1. Edit Instruction Operation

Mask (Operand 11 $Switch Data (Operand 21
Resulting

Character
EBCDIC/ASCII Code

Status Character
(Operand 11

Character

Fill character Any Off Not examined Fill
character

Digit select 20/80 On Digit Digit
byte

Off Nonzero Digit

Off Zero Fill
character

Significance 21/81 On Digit Digit
start byte

Off Nonzero Digit

Off Zero Fill
character

Message Any except: On Not examined Message
character 20/80, 21 /81' 22/82 character

Off Not examined Fill
character

Field 22/82 On Not examined Fill
separator byte character

Off Not examined Fill
character

* Sign detection (examined simultaneously with operand 2 digit) affects the S switch as follows:
A plus sign detected as a least significant digit causes the S switch to be turned off.
A minus sign has no effect on the S switch.

Examples:

LABEL OOPERATIONll OPERANO
10 16

COMMENTS

.l. _ _l__

Resulting
SSwitch

Status

Off

On*

On*

Off

On*

On*

On*

On*

Off

Off

Off

!_,

1. The packed operand AMT is edited according to the mask MASK and the result is placed in the operand
location. Assume AMT to contain the value 000012698. This value appears in five bytes as follows:

0 0 0 0 1 2 6 9 8 +

The edit mask appears in 13 bytes as follows:

4 0 2 0 6 B 2 0 2 0 2 0 6 B 2 0 2 1 4 B 2 0 2 0

The result is:

M/WVV\126.98.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-13
UP-NUMBER PAGE REVISION PAGE

2. The packed operand VALU is edited according to the mask MASK and the result is placed in the operand 1
location. If operand 2 is negative, the letters CR are printed to the right of the result amount. Assume VALU
to contain the value 000456789. This value appears in five bytes as follows:

0 0 0 4 5 6 7 8 9-

The edit mask appears in 15 bytes as follows:

4 0 2 0 6 B 2 0 2 0 2 0 6 B 2 0 2 0 2 1 4 B 2 0 2 0 C 3 D 9

The result appears as:

~4,567 .89CR.

This example employs the field separator byte to allow editing of three fields with one edit instruction.

Packed value of operand 2:

0 0 1 2 3 4 5 c 1 2 3 c 1 2 3 4 5 c

Edit mask in hexadecimal:

5C20206B2020204B2020222120202220206B2020204B

The edited result is:

7.9. EDMK (EDIT-AND-MARK) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

EOMK d1 (l,b,),d2(b2l OF SS Six Bytes

The data of operand 2, specified by d
2

(b
2

), is changed from packed to unpacked format, is edited under the
control of operand 1 (the mask), and is placed in the operand 1 location, specified by d

1
(l,b

1
). The address of

the first significant result character is placed in general register 1.

Object Instruction Format:

OPERATION LENGTH OPERAND l
l

0 CODE 7 8 15 16 1912 0 31

OF 1-1 1;>1 1 d1

OPERAND 2

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-14
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The EDMK instruction is identical to the ED instruction with the addition of storing the address of the
first significant result character in the least significant 24 bits of general register 1. This occurs when the
result character is a digit from 1 to 9 and the S switch was off before examination of the digit.

• When an EDMK instruction is used to edit more than one field, the address of each succeeding field
replaces the contents of the least significant 24 bits of general register 1; therefore, only the first
significant character of the last field edited is available.

• This instruction is used to faciliate currency symbol insertion. The address stored in register 1 is one
more than the address where a currency symbol must be inserted. The branch-on-count instruction with
0 in the operand 2 field is used to reduce the inserted address by 1 (BCTR 1,0).

• The condition code, reflecting the status of the last source field edited, is set as follows:

to 0 when all of the operand 2 digits in the last field are 0. If the mask of the last field has no
significance start or digit select bytes, the operand 2 digits are not examined and the condition
code is set to 0.

to 1 (01
2

) when a nonzero operand 2 digit is detected and the S switch is set on after the last mask
digit is examined;

to 2 (10
2

) when a nonzero operand 2 digit is detected and the S switch is set off after the last
mask digit is examined; or

code 3 is not used.

• Possible program exceptions:

addressing exception

data exception (invalid sign or digit code)

indirect address specification exception

indirect addressing exception

protection exception

specification exception (IACW not on full-word boundary)

• Relocation and indirection flags:

operand 1: RD, ID

operand 2: RO, 10

Example:

LABEL 6. OPERA T!ON 6. OPERAND
10 16

/.

'--""

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 7-15
PAGE REVISION PAGE

1. The contents of main storage location TOTAL are edited according to the contents of main storage
location MASK. The result is placed in the MASK location, and the address of the first significant
character is placed in general register 1.

7.10. IC (INSERT CHARACTER)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

IC r, ,d2(x2.b2) 43 RX Four Bytes

Function:

The byte of main storage in the operand 2 location, specified by d 2 (x 2 ,b2), is placed in the least significant
eight bits of the operand 1 register, specified by r

1
.

Operational Considerations:

• The contents of operand 2 remain unchanged.

• The contents of the most significant 24 bits of the operand 1 register remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: none

operand 2: RO, 10

Example:

LABEL

(.
,._.l ,RANN

1. The byte of main storage labeled RANN is placed into the least significant byte of general register 3.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-16
UP-NUMBER PAGE REVISION PAGE

7.11. LA (LOAD-ADDRESS)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

LA r 1 •d2(x2.b2) 41 RX Four Bytes

Function:

The main storage operand 2 address, specified by d2 (x2 ,b2). is loaded into the least significant bits of operand
1, specified by r

1
. The most significant bits of r

1
are set to 0.

Operational Considerations

• The generated address is not checked for validity.

• The contents of operand 2 remain unchanged.

• If x
2

or b
2

specifies the same register as r
1

, the contents of the register are incremented by the value
specified as d

2
.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Operational Differences:

• 9400/9480 systems

The storage address of operand 2, specified by d
2

(x
2

,b
2

), is loaded into the least significant 17 bits of
operand 1, specified by r

1
. The most significant 15 bits of r

1
are set to 0.

• 90/60.70 systems

The storage address of operand 2, specified by d2 (x2 ,b2), is loaded into the least significant 24 bits of
operand 1, specified by r

1
. The most significant 8 bits of r

1
are set to 0.

___ /

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-11
UP~NUMBER PAGE REVISION PAGE

Examples:

8. _.J. .. -.1

>AJ)::D R
)1~&{8>0t) •.

LQ; l·bLo.:t I Dl).

1. The main storage address labeled ADDR is loaded into register 10.

2. The contents of register 8 are incremented by 25, and the most significant bits are set to 0.

3. The contents of register 10 are incremented by 16, and the most significant bits are set to 0.

7.12. MVC (MOVE)

Mnemonic
Source Code

Hexadecimal
Format

Operation
Operand Format

Operation
Type

Code Code

MVC d1 (l,b,) ,d2(b2l 02 SS

Function:

Object

Instruction
Length

Six Bytes

The contents of operand 2, specified by d
2

(b
2

), are placed in the operand 1 location, specified by d
1

(l,b
1

).

Object Instruction Format:

OPERATION LENGTH OPERAND 1 1
0 CODE 7 8 15 16 19..i20 31

02 1-1 b1 I d1

OPERAND 2

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-18
UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• The transfer proceeds from left to right.

• The number of bytes transferred is specified by the length field in operand 1.

• The contents of operand 2 remain unchanged.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Examples:

/.
1..

i=======-===;::"'-::;.r•="°="'=='"··;;;· ··"'r'""°"'"''"· :.~"'°''"···- ··:::::::"•=·= ··='"'="•:••••·•"="··.c:: ··::::••c::.-::::=••"''::::-"""=""'~~.=="""''=:::·.

IMVG in£STIN) 0({1.GtI.N
t t1VG. ! !DESTI.N('t,,O); ~fU6tLN

1. The contents of main storage location ORIGIN are transferred to main storage location DESTIN. The
length is implied by DESTIN.

2. A length of 20 overrides the implied length of DESTIN.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-19
UP-NUMBeR PAGE REVISION PAGE

7.13. MVI (MOVE)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Operand Format Type

Instruction
Code Code Length

MVI d1 (b1) ,i2 92 SI Four Bytes

Function:

The data contained in the i
2

field is moved to the main storage byte of operand 1, specified by d
1

(b
1

).

Operational Considerations:

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

Examples:

LABEL

operand 1: RD, ID

operand 2: none

6. OPERATION 6
1()

1. -1..-.L.1 L I -

!J... .L. L.L.L L ... L Li

REJX I 'lE I

l. LO}) I~,

1. The hexadecimal value 9E (10011110
2

) is placed in main storage location STORE.

2. The binary value of the decimal number 12 is stored in the main storage location specified by the
address value 0 modified by the contents of base register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-20
UP.NUMBER PAGE REVISION PAGE

7.14. MVN (MOVE-NUMERICS)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

MVN d1 (l,b1),d2lb2) 01 SS Six Bytes

Function:

The least significant four bits (the numeric portion) of each byte of operand 2, specified by d
2

(b
2

), are
transferred to the least significant four bits of each byte of operand 1, specified by d

1
(I ,b

1
).

Object Instruction Format:

OPERATION LENGTH OPERAND l ~
0 CODE 7 8 15 16 l 9J_20 31

01 1~1 b1 I d1 l

OPERAND 2

Operational Considerations:

• The four most significant bits of each byte (zone portion) of operand 1 remain unchanged.

• The contents of operand 2 remain unchanged.

• Overlapping of operands is permitted.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-21
UP-NUMBER PAGE REVISION PAGE

Example:

1.

LABEL 6 OPERATION/:,
l(l 16

(L0)
1
J-lERE.: J i

1. The numeric portions of 10 consecutive bytes are transferred from main storage location HERE to main
storage location THERE.

7.15. MVZ (MOVE-ZONES)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

MVZ d1 (l,b,) ,d2(b2) DJ SS Six Bytes

Function:

The most significant four bits (zone portion) of each byte of operand 2, specified by d
2

(b
2

), are transferred to
the most significant four bits of each byte of operand 1, specified by d

1
(l,b

1
).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 19J_ 2 0 31

D3 1-1 b1 1 d1

OPERAND 2

Operational Considerations:

• The four least significant bits of each byte (numeric portion) of operand 1 remain unchanged.

• The contents of operand 2 remain unchanged.

• Overlapping of operands is permitted.

• The condition code remains unchanged.

• Possible program exceptions:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-22

UP-NUMBER PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Example:

/.

1.

LABEL 6 OPERATION 6 OPERAND
10 16

L-LL LL l. I !

The zone portions of 25 bytes are transferred from main storage location SARO to main storage location
TRAY.

7.16. N (AND)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

N r1 ,d2(x2,b2) 54 RX Four Bytes

Function:

A logical product (AND) operation is performed on the contents of operand 1, specified by r
1

, and operand 2,
specified by d2 (x2 ,b2). The result is stored in operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

• The rules of operation for logical product are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1
-·

7935 Rev. 1
U P .. NLJMBER

SPERRY UNIVAC Operating System/4 7-23
PAGE REVISION PAGE

• It is possible to clear selected bits in operand 1 by specifying O's in the corresponding bit positions of
operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1: none

operand 2: RO, 10

Example:

OPE

1. The logical product of the contents of register 10 and main storage location COMP produces a result
which is stored in register 10.

7.17. NC (AND)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

NC d1 (1,b 11,d2 (b21 04 SS Six Bytes

Function:

A logical product (AND) operation is performed on the contents of operand 1, specified by d
1

(1,b
1
), and

operand 2, specified by d
2

(b
2

). The result is stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-24

UP-NUMBER PAGE REVISION PAGE

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 1~20 31

04 1-1 b, I d,

OPERAND 2

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

• The rules of operation for logical product are illustrated by the following truth table:

Operand 1 Operand 2
Result

!Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1

• It is possible to clear selected bits in operand 1 by specifying O's in the corresponding bit positions of
operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

-

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

·"---···

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-25

UP-NUMBER PAGE REVISION PAGE

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Example:

.----------·---------------·--------·---·-----------
LABEL /':>, OPERATION/':>, OPERAND

10 16

/. ' _l_! ___ J . L Li J1l-tAR I ' :

1. The logical product of the contents of main storage locations MAR and HAR produces a result which is
stored in MAR. The length is implied by MAR.

7.18. NI (AND)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

NI d1 (b1 l.i2 94 SI Four Bytes

Function:

A logical product (AND) operation is performed on the contents of the operand 1 byte, specified by d
1

(b
1

),

and operand 2, contained in the i
2

field. The result is stored in operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

• The rules of operation for logical product are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0

0 1 0

1 0 0

1 1 1

• It is possible to clear selected bits in operand 1 by specifying O's in the corresponding bit positions of
operand 2.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-26
UP-NUMBER PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01 2) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: none

Example:

LABEL 6 OPERA T!ON (::., OPERAND
10 16

I · ' _ _L_LJ _L.L l ! ' .t '

1. Assume that CHANGE addresses a byte in main storage containing the following bit configuration:

CHANGE before execution 10101010

FO 11110000

CHANGE after execution 10100000

7.19. NR (AND)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

NR r1 ,r2 14 RR Two Bytes

Function:

A logical product (AND) operation is performed on the contents of opr:ranJ 1, S'J<'~'fa'.i hy r
1

_ and operand 2,
specified by r

2
• The result is stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-27

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

• The rules of operation for logical product are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1

• It is possible to clear selected bits in operand 1 by specifying O's in the corresponding bit positions of
operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

LABEL /::, OPERA T!ON /::, 0 !'
i c 16

"'"""·· ' '"' I'\! ~ . ··"-

1. The logical product of the contents of registers 3 and 4 is placed in register 3.

7.20. 0 (OR)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

0 r 1 ,d2 (x2,b2) 56 RX Four Bytes

Function:

A logical addition (inclusive OR) operation is performed on the contents of operand 1, specified by r1 , and
operand 2, specified by d

2
(x

2
,b2). The result is stored in operand 1.

7935 Rev. 1
SPERRY UNIVAC Operating System/4 7-28

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

• The rules of operation for logical addition are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0

0 1 1

1 0 1

1 1 1

• Selected bits of operand 1 can be set by specifying 1 's in the corresponding bit positions of operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is 0;

to 1 (01
2

) if result is not 0; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC90/60,70Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

I ndi re ct address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundaryl

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Example:

LABEL 6 OPERATION 6 OPERAHD
10 16

1. The logical sum of the contents of register 5 and main storage location TAl3 is placed in register 5.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-29

UP-NUMBE'R PAGE REVISION PAGE

7.21. OC (OR)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code length

oc d1 (l,b,l,d2(b2l 06 SS Six Bytes

Function:

A logical addition (inclusive 0 R) operation is performed on the contents of operand 1, specified by d
1

(I ,b
1

),

and operand 2, specified by d
2

(b
2

). The result is stored in operand 1.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7 8 15 16 19120 31

06 1-1 b1 J d· 1

OPERAND 2

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

• The rules of operation for logical addition are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 1

1 0 1

1 1 1

• Selected bits of operand 1 can be set by specifying 1 's in the corresponding bit positions of operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is 0;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-30

UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

Example:

LABEL 6 OPERATIOH 6 OPERAND
10 16

I• -L .. L.-1 J 1 l. J J J L. l

1. The contents of main storage locations PATR and INCD are logically added. The result is stored in
PATR.

7.22. 01 (OR)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

01 d1(b1l.ii 96 SI Four Bytes

Function:

A logical addition (inclusive OR) operation is performed on the contents of the operand 1 byte, specified by
d

1
(b

1
), and operand 2, contained in the i

2
field. The result is stored in operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

• The rules of operation for logical addition are illustrated by the following truth table:

-··

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-31
UP.NUMBER PAGE REVISION PAGE

Operand 1 Operand 2
Result

(Operand 11

0 0 0

0 1 1

1 0 1

1 1 1

• Selected bits of operand 1 can be set by specifying 1's in the corresponding bit positions of operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60.70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary I

• Relocation and indirection flags:

operand 1: RD, ID

operand 2: none

Example:

LABEL /':, OPERATION /':, RAND
10 16

j, , __t__l_J __ L_L_ 1

1. Assume that REST addresses a byte in main storage containing the following bit configuration:

REST before execution 01111111

80 10000000

REST after execution 11111111

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-32
UP-NUMBER PAGE REVISION PAGE

' 7.23. OR (OR)

Mnemonic Hexadecimal Object Source Code Format Operation
Operand Format Operation Instruction

Code Code
Type

Length

OR r 1,r2 16 RR Two Bytes

Function:

A logical addition (inclusive OR) operation is performed on the contents of operand 1, specified by r
1

, and
operand 2, specified by r

2
• The result is stored in operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

• The rules of operation for logical addition are illustrated by the following truth table:

Operand 1 Operand 2 Result
(Operand 11

0 0 0

0 1 1

1 0 1

1 1 1

• Selected bits of operand 1 can be set by specifying 1 's in the corresponding bit positions of operand 2.

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

LABEL 6 OPERATION 6
10 16

I . .._.__.___,__LJ __ Ji l({_L_L_ ;'(o .!

1. The contents of registers 9 and 6 are logically added and the sum is stored in register 9.

-....-

--...._......-.-

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-33
UP·NUMBER PAGE REVISION PAGE

7.24. SL (SUBTRACT-LOGICAL) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

SL r 1 •d2(X2,b2) 5F RX Four Bytes

Function:

The full-word operand 2, specified by d2 (x2 ,b2), is logically subtracted from the full-word operand 1,
specified by r

1
, and the result is placed in operand 1.

Operational Considerations:

• The subtraction is performed by adding the twos complement of operand 2 to operand 1.

• All 32 bits of both operands are used.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 1 (01
2

) if result is not 0 (no carry out of most significant bit position);

to 2 (10
2

) if result is 0 (carry out of most significant bit position);

to 3 (11
2

) if result is not 0 (carry out of most significant bit position); or

code 0 is not used. A 0 difference cannot be obtained without a carry out of the most significant
bit position.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-34
UP.NUMBER PAGE REVISION PAGE

Examples:

LABEL 6 OPERATION 6 OP ERAN
10 16

1. The contents of the full word addressed by main storage location VALUE are converted to a twos
complement binary value and added to the contents of register 14.

2. The contents of the full word located at main storage address 4000 are converted to a twos complement
binary value and added to the contents of register 14.

7.25. SLDL (SHIFT-LEFT-DOUBLE-LOGICAL) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SLDL r 1 •d2(b2) SD RS Four Bytes

Function:

The double-word operand 1, specified by r
1

, is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION OPERAND 1 OPERAND3 OPERAND 2
0 CODE 7 8 11 12 15 16 1~20 31

SD r 1 unused b2 I d2

Operational Considerations:

• The r
1

specification in operand 1 must refer to the even-numbered register of an even-odd register pair.

• The vacated least significant bit positions of the register pair are zero filled.

• Bits shifted out of the even register are lost.

• The condition code remains unchanged.

• Possible program exceptions:

specification exception (operand 1 specifies an odd-numbered register)

• Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-35
UP-NUMBER PAGE REVISION PAGE

Example:

LABEL 6 OPERAT!ON 6
0 1

! i .l

1. The contents of registers 8 and 9, taken as a double word, are shifted to the left one bit position.

7.26. SLL (SHIFT-LEFT-SINGLE-LOGICAL)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type Instruction
Code Code length

SLL r 1 ,d2 (b2) 89 RS Four Bytes

Function:

The full-word operand 1, specified by r
1

, is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 3 OPERAND 2
0 CODE 7 8 1112 15 16 1~20 31

89 r 1 unused b2 l d2

Operational Considerations:

• The vacated least significant bit positions of the register are zero filled.

• Bits shifted out of the register are lost.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

LABEL 6 OPERA T!ON 6
10 16

1. ;

1. The contents of register 8 are shifted to the left one bit position_

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-36
LJP .. NUMBER PAGE REVISION PAGE

7.27. SLR (SUBTRACT-LOGICAL) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SLR r 1,r 2 1F RR Two Bytes

Function:

The full-word operand 2, specified by r
2

, is logically subtracted from the full-word operand 1, specified by r
1

,

and the result is placed in operand 1.

Operational Considerations:

• The subtraction is performed by adding the twos complement of operand 2 to operand 1.

• All 32 bits of both operands are used.

• The contents of operand 2 remain unchanged.

• The condition code is set as follows:

to 1 (01
2

) if result is not 0 (no carry out of most significant bit position);

to 2 (10
2

) if result is 0 (carry out of most significant bit position);

to 3 (11
2

) if result is not 0 (carry out of most significant bit position); or

code 0 is not used. A 0 difference cannot be obtained without a carry out of the most significant
bit position.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

LABEL /::, OPERA !ION £':., OPERAND
10 i 6

/. '_.l_L_t._J _ .LJ i ... L

1. The contents of register 7 are converted to a twos complement binary value and added to the contents
of register 9.

7.28. SRDL (SHIFT-RIGHT-DOUBLE-LOGICAL) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SRDL r 1 ,d2 (b2) BC RS Four Bytes

·--._..

...._

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-37
UP-NUMBER PAGE REVISION PAGE

Function:

The double-word operand 1, specified by r
1

, is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION OPERAND l OPERAND 3 OPERAND 2
0 CODE 7 8 1112 15 16 1~20 31

SC r 1 unused b2 l d2

Operational Considerations:

• The r
1

specification in operand 1 must refer to the even-numbered register of an even-odd register pair.

• The vacated most significant bit positions of the register pair are zero filled.

• Bits shifted out of the odd register are lost.

• The condition code remains unchanged.

• Possible program exceptions:

specification exception (operand 1 specifies an odd-numbered register)

• Relocation and indirection flags: none

Example:

OPERAIHl

1. The contents of register 8 and register 9, taken as a double word, are shifted to the right four bit
positions.

7.29. SRL (SHIFT-RIGHT-SINGLE-LOGICAL)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

SRL r1 ,d2 !b2) 88 RS Four Bytes

Function:

The full-word operand 1, specified by r
1

, is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d

2
(b

2
) .

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-38

UP-NUMBER PAGE REVISION PAGE

Object Instruction Format:

OPERATION OPERAND 1 OPERAND3 OPERAND 2
0 CODE 7 8 1112 15 16 19_12 0 31

88 r 1 unused b2 I d2

Operational Considerations:

• The vacated most significant bit positions of the register are zero filled.

• Bits shifted out of the register are lost.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags 90/60,70: none

Example:

OPEf1AND

L j "

1. The contents of register 7 are shifted to the right one bit position.

7.30. STC (STORE-CHARACTER)

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

STC r 1 ,d2 (x2 ,b2) 42 RX Four Bytes

Function:

The least significant eight bits of operand 1, specified by r
1

, are stored in the storage location operand 2,
specified by d

2
(x

2
,b

2
).

Operational Considerations:

• The contents of operand 1 remain unchanged.

• The condition code remains unchanged.

---·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-39
UP-NUMBE'R PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60, 70):

operand 1 : none

operand 2: RD, ID

Example:

LABEL /'::,OPERATION/'::, E
10 16

/. ' __ _L__l. .. ; l ..

1. The rightmost eight bits of register 9 are stored in main storage location ST AR.

7.31. TM (TEST-UNDER-MASK)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

TM d1 (b,l,i2 91 SI Four Bytes

Function:

The main storage byte operand 1, specified by d
1

(b
1

), is tested for the presence of 1 bits according to the
8-bit mask operand 2, specified by i

2
.

Operational Considerations:

•
•
•

The 1 bits of the operand 2 mask are used to test the bits of operand 1 .

The contents of operand 1 remain unchanged .

The condition code is set as follows:

to 0 (00
2

) if all the 1 bits in the mask match 0 bits in the byte tested or if all the bits in the mask
are O;

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-40
UP-NUMBER PAGE REVISION PAGE

to 1 (01
2

) if some of the 1 bits in the mask match 0 bits in the byte tested;

to 3 (11 2) if all the 1 bits in the mask correspond with 1 bits in the byte tested; or

code 2 is not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RO, 10

operand 2: none

Examples:

I.
2.

LABEL [:, OPERATION l:. OPERAND
10 16

:.. .. J

1. Assume that main storage location TEST contains the following value:

TEST 10010000

90 10010000

Condition code 3 is set.

2. Assume that main storage location TEST contains the following value:

TEST 10010000

61 01100001

Condition code 0 is set.

l

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-41

UP-NUMBER PAGE REVISION PAGE

7.32. TR (TRANSLATE)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

TR d, (l,b,),d2(b2) DC SS Six Bytes

Function:

Data stored in operand 1, specified by d
1

(l,b
1

). is translated according to a table stored in the operand 2
location, specified by d

2
(b

2
).

Object Instruction Format:

OPERATION LENGTH OPERAND l
0 CODE 7 8 15 16 19_12 0 31

DC 1-1 b1 I d1

OPERAND 2

Operational Considerations:

• The 8-bit code of each character of operand 1 is added to the base table address specified by operand 2
to obtain the address of the character which is to replace the original character of operand 1.

• Translation continues until all characters specified by the length (I) have been translated.

• The contents of the table are not changed unless overlap occurs.

• The condition code remains unchanged.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4
7-42

UP-NUMBER PAGE REVISION PAGE

Example:

LABEL /':,. OPERATION /':,. OPERAND
l 0 16

I ' J

1. Assume TBL specifies the leftmost translate table address, 5000
16

. The table length is 256 bytes. All
values given are hexadecimal.

Location 5000 5001 5008 5080 50FF

Table contents 77 30 1F 01 A9

Assume CODE is a 3-byte area whose contents are:

Operand 1 CODE CODE+l CODE+2

Contents before execution 01 08 80

Contents after execution 30 1F 01

Translate Operation:

•

•

•

•

The contents of main storage location CODE (01
16

) are added to the base address assigned to TB L,
which is 5000

16
. The resulting address is 5001

16
. The contents (30

16
) at table location 5001

16
are

transferred to location CODE, replacing the original value 01
16

with 30
16

.

CODE+l originally contains 08
16

. This is added to the base table address, which is 5000
16

, to derive the
address 5008

16
. Location 5008

16
in the table contains 1F

16
. This value is transferred to location

CODE+l to replace the original con\ents .
•

CODE+2 originally contains the value 80
16

. This is added to the base table address, which is 5000
16

, to
derive the address 5080

16
. After the translation cycle, CODE+2 contains the value 01

16
, obtained from

the translate table.

The programmer may place whatever values are required into the 256-byte translate table. When it is
known what kind of bit configurations are expected as input (each unique configuration produces an
address pointing to a unique table address). the desired value may be placed in the table to produce a
translation.

7.33. TRT (TRANSLATE-AND-TEST) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

TRT d1 (l,b,) ,d2(.b2) DD SS Six Bytes

·.
Function:

The data stored in operand 1, specified by d
1

(l,b
1

). is translated according to a table stored in the location
designated by operand 2, specified by d

2
(b

2
), and the result is tested.

-.._..

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-43

UP-NUMBE'R PAGE REVISION PAGE

Object Instruction Format:

OPERATION LENGTH OPERAND 1
31) 0 CODE 7 8 15 16 19120

DD 1-1 b1 I d1

OPERAND 2

Operational Considerations:

• The translate function of this instruction proceeds in the same manner as the TR instruction.

• The selected byte (result byte) in the translate table is examined and tested for a pattern of all O's. If the
result byte is all O's, it is ignored and the translate operation is continued. If the result byte is nonzero,
the address of the corresponding operand 1 byte is stored in the least significant 24 bit positions of
general register 1; the result byte is stored in the least significant eight bit positions of general register 2
and the operation is terminated.

• The contents of both operands remain unchanged.

• The address stored in general register 1 is a program relative address if the RD flag of the current
relocation register is 1 or if the ID flag of the current relocation register and the R flag of the last
associated IACW are 1. Otherwise, the address stored is an absolute address.

• The condition code is set as follows:

to 0 (00
2

) if all result bytes are 0. In this case, registers 1 and 2 remain unchanged.

to 1 (01
2

) if the result byte corresponding to any except the last operand 1 byte is nonzero;

to 2 (10
2

) if the result byte corresponding to the last operand 1 byte is nonzero; or

code 3 is not used.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (IACW not on full-word boundary)

• Relocation and indirection flags:

operand 1: RD, ID

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4
7-44

UP-NUMBER PAGE REVISION PAGE

Example:

---------------------------~----·-~·

LABEL OPERAND

1. The contents of main storage location TEST are translated according to the table designated as TABLE.
The result is tested for O's and the appropriate data is stored in general registers 1 and 2. The contents of
TEST are not altered by this operation.

7.34. X (EXCLUSIVE-OR)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

x r 1,d2 (X2,b2) 57 RX Four Bytes

Function:

A logical difference (exclusive OR) operation is performed on the contents of operand 1, specified by r
1

, and
the contents of operand 2, specified by d

2
(x

2
b

2
). The result is stored in operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

• The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0

1 0 1

0 1 1

1 1 0

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

--..·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-45
UP·NUMBER PAGE REVISION PAGE

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RO, 10

Example:

/-

1.

.i

An exclusive OR operation is performed on the bits of register 10 and the bits in main storage locatior,
EXOR. The result replaces the contents of register 10.

7.35. XC (EXLUSIVE-OR)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

xc d1 (l,b,),d2 (b2l 07 SS Six Bytes

Function:

A logical difference (exclusive OR) operation is performed on the contents of operand 1, specified by d
1

(l,b
1

), and the contents of operand 2, specified by d
2

(b
2

). The result is stored in operand 1.

Object Instruction Format:

OPERATION LENGTH OPERAND l 1
0 CODE 7 8 15 16 19J.20 31

07 1-1 b1 I d1

OPERAND 2

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-46

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

• The rules of operation for the exclusive 0 R operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0
1 0 1

0 1 1

1 1 0

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60, 70):

operand 1: RD, ID

operand 2: RO, 10

Example:

LABEL 6 OPERATION 6 OPERAND
10 16

/. ~L.1-L.L ... l 1 ;

1. An exclusive OR operation is performed on the contents of main storage locations NUMBER and COMP.
The result is stored in main storage location NUMBER.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-47
UP-NUMBER PAGE REVISION PAGE

7.36. XI (EXCLUSIVE-OR)

Mnemonic Hexadecimal Object Source Code Format Operation
Operand Format Operation

Type Instruction
Code Code Length

XI d1 (b,l,i2 97 SI Four Bytes

Function:

A logical difference (exclusive OR) operation is performed on the operand 1 byte, specified by d
1

(b
1

), and the
operand 2 byte, contained in the i

2
field. The result replaces operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

• The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

1 0 1

0 1 1

1 1 0

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not O; or

codes 2 and 3 are not used.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-48
UP-NUMBER PAGE REVISION PAGE

Example:

LABEL 6 OPERATION 6 OPERAND
10 16

l .. J ; .i
I

. I J.

1. Assume that CNTRLS contains the following value:

CNTR LS before execution 01001100

OF 00001111

CNTR LS after execution 01000011

7.37. XR (EXCLUSIVE-OR)

"

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Type
Instruction

Code Code Length

XR r 1•r2 17 RR Two Bytes

Function:

A logical difference (exclusive OR) operation is performed on the contents of operand 1, specified by r 1 , and
the contents of operand 2, specified by r

2
. The result is stored in operand 1.

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

• The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

{Operand 1)

0 0 0

1 0 1

0 1 1

1 1 0

--·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-49
UP-NUMBER PAGE REVISION PAGE

• The condition code is set as follows:

to 0 (00
2

) if result is O;

to 1 (01
2

) if result is not 0; or

codes 2 and 3 are not used.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

/,

LABEL 11 OPERA T!ON /1 OPE
10 16 -=rt--

' . ..L-1 l \ .L ; I tKfSi

1. An exclusive OR operation is performed on the contents of registers 10 and 12. The result replaces the
contents of register 10.

.___ ..

7935 Rev. 1 SPERRY UNIVAC Operating System/4 s-1
UP-NUMBE."R PAGE REVISION PAGE

8. Branching Instructions

8.1. GENERAL

The branching instruction set provides the program-controlled capability of altering the normally sequential
execution of instructions. Branching instructions provide a means for making a choice, for jumping to or from a
subroutine, or for repeating a segment of coding.

Each branching instruction specifies the address of the instruction to be executed if the conditions specified by the
instruction are met. In all the branching instructions, the second operand address is used as the branch address. A
branch in the sequence of instructions is performed by loading the branch address into the instruction address field
(bits 40 through 63) of the current program status word (PSW). However, since the contents of the instruction
address field of the current PSW must always specify an absolute main storage address, the branch address may be
converted from relative to absolute before the instruction address field is loaded.

On the SPERRY UNIVAC 90/60,70 Systems, whether a specified branch address is to be relocated, that is, whether
it is relative or absolute, depends on the state of the RI flag (bit 3) in the current relocation register. Except for the
branch-and-link-external (BALE) and execute (EX) 90/60,70 instructions, branch addresses are never indirect
addresses.

Arithmetic, logical, and input/output instructions set a 2-bit condition code to one of four states: 0, 1, 2, and 3. The
condition code reflects conditions such as 0, low, high, or overflow results, and equal, low, or high comparisons of
two operands. The condition code remains unchanged until modified by a subsequent instruction. The
branch-on-condition instruction inspects this code and uses the setting as the criterion for branching.

Extended mnemonic codes facilitate the use of branch-on-condition instructions. See 8.2 for a description of
extended mnemonics.

This section describes the operation of each branching instruction. The instructions are in alphabetical order
according to mnemonic operation code. Each description includes a list of the possible program exceptions and
condition codes which may result. The execution of a branch instruction is considered to extend to the point where
the absolute address is loaded into the instruction address field of the current PSW. Only those program exceptions
that may occur before that point are listed. Thus, even though a specified branch address may be invalid (for
example, reference to an out-of-bounds location) the resulting program exception is detected only when the branch
address is actually used to access main storage. However, since the branch instruction is considered to have been
completed by that point, the program exception (address exception) is not listed in the description of the branch
instruction. Furthermore, if an interrupt occurs due to the program exception, the instruction address field of the
program exception old PSW reflects the instruction at the branch address and not the branch instruction itself.

The pertinent relocation and indirection flags are listed for each instruction on 90/60,70 systems. The object
instruction format is shown only for those instructions which differ from the format shown in Figure 3-1. See
Table 3-1 for an explanation of the abbreviations used in describing instruction formats .

7935 Rev. 1 SPERRY UNIVAC Operating System/4 s-2
UP-NUMBER PAGE REVISION PAGE

8.2. EXTENDED MNEMONIC CODES

Extended mnemonic codes are provided in assembly language as abbreviated nototations for writing
branch-on-condition instructions. Table 8-1 lists the extended mnemonic codes and their meanings. These codes
represent the branch-on-condition instruction with different condition code settings in the m

1
field (8.6 and 8.7).

Table 8-1. Extended Mnemonic Codes

RR Type Instructions RX Type Instructions

Hexadecimal Hexadecimal Function
Mnemonic Operation Mnemonic Operation

Code/m1
Code Code/m1

BR 07 F B 47 F Branch
NOPR 07 0 NOP 47 0 No operation

Used After Comparison Instructions

BHR 07 2 BH 47 2 Branch if high
BLR 07 4 BL 474 Branch if low
BER 07 8 BE 47 8 Branch if equal
BNHR 07 D BNH 47 D Branch if not high
BNLR 07 B BNL 47 B Branch if not low
BNER 07 7 BNE 47 7 Branch if not equal

Used After Test Under Mask Instructions

BOR 07 1 BO 47 1 Branch if all ones
BZR 07 8 BZ 47 8 Branch if all zeros
BMR 07 4 BM 47 4 Branch if mixed
BNOR 07 E BNO 47 E Branch if not all ones
BNZR 07 7 BNZ 47 7 Branch if not all zeros
BNMR 07 B BNM 47 B Branch if not mixed

Used After Arithmetic Instructions

BOR 07 1 BO 47 1 Branch if overflow
BZR 07 8 BZ 47 8 Branch if zero
BMR 074 BM 474 Branch if minus
BPR 07 2 BP 47 2 Branch if positive
BNOR 07 E BNO 47 E Branch if no overflow
BNZR 07 7 BNZ 47 7 Branch if not zero
BNMR 07 B BNM 47 B Branch if not minus
BNPR 07 D BNP 47 D Branch if not positive

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-3

UP~NUMBER PAGE REVISION PAGE

Examples:

Source code BR 10 produces an unconditional branch to the address contained in register 10. The object
instruction format is:

07
F j, 10 J

Source code BZ CORRECT produces a conditional branch if the condition code is 0 to the address specified
by CORRECT. The object instruction format is:

47 ,I, 8 J, 7 ,1 5 ,1 100

CORRECT

NOTE:

The value of the index regiater is implied to be 0 if not specifically stated in source code. If it is not equal to 0, it
must be coded.

8.3. BAL (BRANCH-AND-LINK)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

BAL r 1,d2 (x2,b2) 45 RX Four Bytes

Function:

The current PSW instruction length code, program mask, and instruction address field (bits 32 to 63) are
stored in operand 1, specified by r1 , and the address of operand 2, specified by d 2 (x2 ,b2), is stored in the
current PSW instruction address field.

Operational Considerations:

• Operand 2 is the address branched to by the program.

• The return address is preserved in operand 1.

• The branch address is determined before the return address is stored. This allows correct operation if the
r

1
and x

2
or b

2
registers are the same.

• The condition code remains unchanged.

• Possible program exceptions: none

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 8--4
PAGE REVISION PAGE

• Relocation and indirection flags (90/60,70):

operand 1: none

operand 2: RI

• 90/60,70 systems - If RI (bit 3 of the current relocation register) is 1, the offset value contained in the
current relocation register is subtracted from the updated instruction address to form the return address.
If RI is 0, the updated instruction address is the return address and is not modified.

Example:

.i ! ..

..l .J .. L

j 1 .• i

l . ·- L._ i. _J.__ 1.

1. The address of main storage location RETURN is stored in register 10 and branch is made to the address
specified by SUBRTN. After SUBRTN execution, branch is made to the address stored in register 10
(RETURN).

8.4. BALE (BRANCH-AND-LINK-EXTERNAL) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

BALE r 1,d2(x2,b2l 40 RX Four Bytes

Function:

The current relocation and indirection flags and the updated instruction address are stored in operand 1,
specified by r1 (link register). The contents of operand 2, specified by d 2 (x2 ,b2). are used to compute the
branch address.

Operational Considerations:

• Bits 0 through 7 (relocation and indirection flags) of the current relocation register replace bits 0
through 7 of operand 1. If RI (bit 3 of the current relocation register) is 1, the updated instruction
address is converted to relative by subtracting the offset value contained in the current relocation
register. If RI is 0, the updated instruction address remains unmodified. The updated instruction address
is then placed in bit positions 8 through 31 of the operand 1 location (link !egister).

. A -

r

7935 Rev. 1

UP.NUMBER

•

•

•

•
•

SPERRY UNIVAC Operating System/4 8-5

PAGE REVISION PA GE

The d
2

field and the contents of the base register specified by b
2

are added. The sum specifies the
address (relative if RI, bit 3 of the current relocation register, equals 1) of an IACW. The address of the
final I ACW is computed according to the rules of indirect and relative addressing. Bits 8 through 31 of
the final IACW plus the contents of the register specified by x

2
specify the branch address (realtive if R,

bit 6 of the final IACW, is 1). If R is 1, the branch address is converted to absolute by adding the offset
value contained in the current relocation register. If R is 0, the branch address is considered to be an
absolute address and is not further modified. The absolute branch address then replaces the instruction
address field of the current PSW. The RI flags of both the current relocation register and the applicable
relocation register in main storage are replaced by R.

The branch address is computed before the link register is loaded. This allows for correct execution of
the branch if the register specified by r

1
is the same as that specified by x

2
or b

2
.

If the b
2

designator in the instruction contains the value 0, the branch is not accomplishea but the link
information is stored in the operand 1 location.

The condition code remains unchanged .

Possible program exceptions:

- indirect address specification exception

- indirect addressing exception

- operation exception (if current PSW specifies IBM native mode)

- specification exception (IACW not on full-word boundary)

• Relocation and indirection flags:

- operand 1 : none

- operand 2: RI

Example:

1.

1. The current instruction address is stored in register 6 and a branch is made to the main storage address
contained in the location specified by NEW.

8.5. BALR (BRANCH-AND-LINK)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

BALR r 1l2 05 RR Two Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-6

UP-NUMBER PAGE REVISION PAGE

Function:

The current PSW instruction length code, program mask, and instruction address fields (bits 32 to 63) are
stored in operand 1, specified by r

1
, and the address of operand 2, specified by r

2
, is stored in the current PSW

instruction address field.

Operational Considerations:

• Operand 2 is the address branched to by the program.

• The return address is preserved in operand 1.

• If RI (bit 3 of the current relocation register) is 1, the offset value contained in the current relocation
register is subtracted from the updated instruction address to form the link address. If RI is 0, the
updated instruction address is the link address and is not modified.

• The branch address is determined before the operand 2 address is stored. This allows correct operation if
the r

1
and r

2
registers are the same.

• If the operand 2 register is 0, the link information is stored in the operand 1 location, but no branch is
accomplished. Instruction sequencing continues with the updated instruction address.

• The condition code remains unchanged.

• 90/60,70 systems - If RI (bit 3 of the current relocation register) is 1, the offset register is subtracted
from the updated instruction address to form the link address. If RI is 0, the updated instruction address
is the link address and is not modified.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70):

operand 1: none

operand 2: RI

Example:

LABEL ~OPERATION~ OPERAND
10 16

'·t-'--~~-'--'-'--t---+~~-'-~----'+-'~s~u~B~R~T~N_.__._,_~~-'-'--'-~~L__L_-'--'-'---'-'------'-__L__L~~
7

CL 3 I I I I I l I l

I I I I I I I I

:

~ : I ~c~ jj.£,~b, 1 L~__j_l_J__L_J _ __j_~~~_l_~J__J.====
1. The return address is stored in register 6 and a branch is made to i~,,. oddress in register 7. After

SUBRTN execution, an unconditional branch is made to the addrr:~' in'' ,;ster 6 (rl,A R).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-7

UP-NUMBER PAGE REVISION PAGE

8.6. BC (BRANCH-ON-CONDITION)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

BC ffi1 ,d2(x2 ,b2) 47 RX Four Bytes

Function:

The operand 1 mask, specified by m
1

, is compared with the current condition code. If equal, the instruction at
the address specified by operand 2, specified by d

2
(x

2
,b

2
), is executed; otherwise, the next instruction in

sequence is executed.

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 2
0 CODE 7 8 11 12 15116 19_g_o 31

47 m1 x2 I b2 I d2

Operational Considerations:

• The mask, considered operand 1, occupies bits 8, 9, 10, and 11 of the object instruction. The mask
specification determines the condition code setting to be tested, as follows:

An 8 produces the mask 1000
2

which tests bit 8 for a 0 condition code.

A 4 produces the mask 0100
2

which tests bit 9 for a 1 condition code.

A 2 produces the mask 0010
2

which tests bit 10 for a 2 condition code.

A 1 produces the mask 0001
2

which tests bit 11 for a 3 condition code.

A 0 produces the mask 0000
2

which is equivalent to no operation.

Any combination of 1 'sand O's in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

• A mask specification of 15 (1111
2

) produces an unconditional branch.

• See 8.2 for a list of extended mnemonic codes which may be used for branch-on-condition instructions.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RI

7935 Rev. 1

UP-NUMBER

Examples:

LABEL

1-. __ J___ L.L _L._j__L_L.

3 · _L.L.LL..J._.L

SPERRY UNIVAC Operating System/4

£::, OPERAT!ON /:::,
10 l 6

'-~l>c1?;1<00. !
1--~1JAX
l 5.;B,ElGI.bl

1. If the condition code is set to 0, a branch is made to ENDPROG.

2. If the condition code is set to 0 or 1, a branch is made to JAX.

3. An unconditional branch is made to BEGIN.

8.7. BCR (BRANCH-ON-CONDITION)

Mnemonic
Source Code Hexadecimal

Operation
Operand Format

Operation
Code Code

BCR m1 ,r2 07

Function:

8-8
PAGE REVISION PAGE

Format
Object

Type
Instruction

Length

RR Two Bytes

The operand 1 mask, specified by m
1

, is compared with the current condition code. If equal, the instruction at
the address stored in operand 2, specified by r

2
, is executed; otherwise, the next instruction in sequence is

executed.

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 2
0 CODE 7 8 11 12 15

07 m, r2

Operational Considerations:

• The mask, considered operand 1, occupies bits 8, 9, 10, and 11 of the object instruction. The mask
specification dpt_ermines the condition code setting to be tested, as follows:

An 8 produces the mask 1000
2

which tests bit 8 for a 0 condition code.

A 4 produces the mask 0100
2

which tests bit 9 for a 1 condition code.

A 2 produces the mask 0010
2

which tests bit 10 for a 2 condition code.

A 1 produces the mask 0001
2

which tests bit 11 for a 3 condition code.

A 0 produces the mask 0000
2

which is equivalent to no operation.

•

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-9

UP-NUMBE"R PAGE REVISION PAGE

Any combination of 1 'sand O's in the mask tests for more than one condition code.

Any 1 bit on the tested produces the branch.

• A mask specification of 15 (1111
2

) produces an unconditional branch .

• If operand 2 is register 0, the instruction is equivalent to no operation .

• See 8.2 for a list of extended mnemonic codes which may be used for branch-on-condition instructions .

• The condition code remains unchanged .

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RI

Examples:

/.

~-

1. If the condition code is set to 0, branch is made to the address stored in register 10.

2. An unconditional branch is made to the address stored in register 8.

8.8. BCRE (BRANCH-ON-CONDITION-TO-RETURN-EXTERNAL) - 90/60,70

Mnemonic
Source Code Hexadecimal

Format Operation
Operand Format

Operation
Type

Code Code

BCRE m 1 ,r2 oc RR

Function:

Object
Instruction

Length

Two Bytes

The operand 1 mask, specified by m
1

, is compared with the current condition code. If equal, and depending
on the relocation and indirection flags, the instruction at the address stored in operand 2, specified by r

2
, is

executed; otherwise, the next instruction in sequence is executed.

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 2
0 CODE 7 8 11 12 15

oc ml r2

•

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-10

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

• If the operand 1 mask equals 0, bits 0 through 7 of operand 2 are placed in bit positions 0 through 7 of
the current relocation register in main storage. If the new RI flag (bit 3 of the current relocation register)
is 1 and the old RI flag had been 0, the offset value contained in the current relocation register is added
to the updated instruction address to form the next instruction address. If the new RI flag is 0, the
updated instruction address remains unchanged.

• If a bit in the operand 1 mask corresponds to the current condition code setting, bits 0 through 7 of
operand 2 are placed in bit positions 0 through 7 of the current relocation register and the applicable
relocation register in main storage. If the new RI flag is 1, the offset value contained in the current
relocation register is added to the address contained in the register specified by r

2
to form the branch

address. If RI is 0, the branch address is the address contained in the operand 2 register specified by r
2

.

The branch address replaces the instruction address field of the current program status word.

• If the operand 1 mask does not equal 0 and a bit in the mask does not correspond to the current
condition code setting, no operation takes place.

• Except for the no-operation case, the following constraint applies: If the current relocation register flags
indicate relative instruction (R 1=1), the bits in the operand 2 register corresponding to relative
instruction, origin, and destination (RI, RO, RD) must all be set to 1. If this requirement is not met, a
specification exception is generated and no operation takes place.

• The mask, considered operand 1, occupies bits 8, 9, 10, and 11 of the object instruction. The mask
specification determines the condition code setting to be tested, as follows:

•
•
•

An 8 produces the mask 1000
2

which tests bit 8 for a 0 condition code.

A 4 produces the mask 0100
2

which tests bit 9 for a 1 condition code.

A 2 produces the mask 0010
2

which tests bit 10 for a 2 condition code.

A 1 produces the mask 0001
2

which tests bit 11 for a 3 condition code.

A 0 produces the mask 0000
2

which is equivalent to no operation.

Any combination of 1 'sand O's in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

A mask specification of 15 (1111
2

) produces an unconditional branch .

The condition code remains unchanged .

Possible program exceptions:

operation exception (if current PSW specifies IBM native mode)

specification exception (current relocation flags indicate relative instruction and RI, RO, and RD
of operand 2 are not all equal to 1)

• Relocation and indirection flags:

operand 1 : none

operand 2: RI

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-11
UP-NUMBER PAGE REVISION PAGE

Examples:

LABEL /::,, OPERA T!Ot; /::,,
10 16

======~--

/. . tJ.1 . .l .. i . . i.

'2. _ _[__L_J_J__L__,__i__

1. If the condition code is 0, the contents of register 9 are used to form the branch address.

2. An unconditional branch is made to the address determined by the contents of register 8.

8.9. BCT (BRANCH-ON-COUNT)

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

BCT r1 ,d2 (x2 ,b2) 46 RX Four Bytes

Function:

The contents of operand 1, specified by r
1

, are reduced by 1. If the result is 0, instruction sequencing
continues. If the result is nonzero, a branch is made to the operand 2 address, specified by d

2
(x

2
,b

2
).

Operational Considerations:

• The BCT instruction proceeds as follows:

•

•

•
•
•

- The count value is loaded into the operand 1 register, r
1

by a prior instruction.

- The operand 1 register is decremented by 1 each time the BCT instruction is executed.

- The test for 0 is made after each count.

- If 0, the next instruction is executed.

- If not 0, the branch is made to the address specified as operand 2.

If the operand 1 register is initially 0, the count is decremented through 0 and is treated as an unsigned
positive number with a magnitude of 232

.

The branch address is determined prior to the counting operation. This allows correct operation if the r
1

and b
2

or x
2

registers are the same.

The condition code remains unchanged .

Possible program exceptions: none

Relocation and indirection flags:

- operand 1 : none

- operand 2: RI

7935 Rev. 1 SPERRY UNIVAC Operating System/4 s-12
UP-NUMBER PAGE REVISION PAGE

Example:

/.

LABEL 6. OPERA T!OH 6. ERAHD
10 6

1. The count in register 10 is decremented and tested. If it is not equal to 0, branch is made to the address
specified by SET. If it equals 0, the next sequential instruction is executed.

8.10. BCTR (BRANCH-ON-COUNT)

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

BCTR r 1,r2 06 RR Two Bytes

Function:

The contents of operand 1, specified by r
1

, are reduced by 1. If the result is 0, instruction sequencing
continues. If the result is not equal to 0, a branch is made to the address stored in operand 2, specified by r

2
•

Operational Considerations:

• The BCTR instruction proceeds as follows:

- The count value is loaded into the operand 1 register, r
1

by a prior instruction.

- r
1

is decremented by 1 each time the BCTR instruction is executed.

- The test for 0 is made after each count.

- If 0, the next instruction is executed.

- If not 0, the branch is made to the address stored in the operand 2 register.

• If the operand 1 register is initially 0, the count is decremented through 0 and is treated as an unsigned
positive number with a magnitude of 232

.

• If the operand 2 register field is 0, counting is performed without branching.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70):

operand 1 : none

operand 2: RI

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 8-13
PAGE REVISION PAGE

Example:

I

LABEL

1. Decrement and test the count in register 10. If it is not equal to 0, branch is made to the address stored
in register 12. If it equals 0, the next sequential instruction is executed.

8.11. BXH (BRANCH-ON-INDEX-HIGH) - 90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

BXH r1,r3.d2(b2) 86 RS Four Bytes

Function:

The sum of the contents of operand 1 and operand 3, specified by r
1

and r
3

, respectively, is algebraically
compared to a comparison value. If the sum is greater than the comparison value, a branch is made to the
operand 2 address, specified by d

2
(b

2
); otherwise, sequential instruction execution proceeds.

-.._.. Operational Considerations:

• The comparison value is contained in an odd-numbered register. The register is r 3 , if r 3 is odd, or r 3 +1, if
r
3

is even.

• Following the comparison, the sum is placed in the operand 1 register.

• All quantities are treated as signed integers.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags:

- operand 1 : none

-operand2: RI

Examples:

S)-~.A~
BJHIQH

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-14
UP-NUMBER PAGE REVISION PAGE

1. The contents of registers 4 and 5 are added and the sum is placed in register 4. If the new contents of
register 4 are greater than the contents of register 5, a branch is made to main storage location HAR.
Otherwise, instruction execution proceeds sequentially.

2. The contents of registers 6 and 8 are added and the sum is placed in register 6. If the new contents of
register 6 are greater than the contents of register 9, a branch is made to main storage location HIGH.
Otherwise, instruction execution proceeds sequentially.

8.12. BXLE (BRANCH-ON-INDEX-LOW-OR-EQUAL) - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

BXLE r 1,r 3 ,d2 (b2) 87 RS Four Bytes

Function:

The sum of the contents of operand 1 and operand 3, specified by r
1

and r
3

, respectively, is algebraically
compared to a comparison value. If the sum is less than or equal to the comparison value, a branch is made to
the operand 2 address specified by d

2
(b

2
); otherwise, sequential instruction execution proceeds.

Operational Considerations:

•

•
•
•

•
•

Examples:

/.

~.

The comparison value is contained in an odd-numbered register. The register is r
3

, if r
3

is odd, or r
3

+1, if
r
3

is even.

Following the comparison, the sum is placed in the operand 1 register .

All quantities are treated as signed integers .

The condition code remains unchanged .

Possible program exceptions: none

Relocation and indirection flags:

operand 1 : none

operand 2: RI

LABEL /::,. OPERA 11014 /::,. OP!' .!\
Hl 16

7 1 L.'t>W
, ,b; ,SF<ANC H

1. The contents of registers 6 and 7 are added and the sum if placed in register 6. If the new contents of
register 6 are less than or equal to the contents of register 7, a branch is made to the address specified by
LOW. Otherwise, instruction execution proceeds sequentially.

7935 Rev. 1
UP-NUMBER

2.

SPERRY UNIVAC Operating System/4 s-15
PAGE REVISION PAGE

The contents of registers 5 and 6 are added and the sum is placed in register 5. If the new contents of
register 5 are less than or equal to the contents of register 7, a branch is made to the address specified by
BRANCH. Otherwise, instruction execution proceeds sequentially.

8.13. EX (EXECUTE) - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

EX r 1,d2 (x2,b2) 44 RX Four Bytes

Function:

If the contents of operand 1, specified by r
1

, are 0, the instruction at the operand 2 address, specified by
d2 (x

2
,b2), is executed without modification. If operand 1 is not 0, the contents are used to modify the

operand 2 instruction before that instruction is executed.

Operational Considerations:

• The address specified by operand 2 must be on a half-word boundary.

•

•

When operand 1 is not 0, modification of the operand 2 instruction proceeds as follows: A logical
addition (OR) is performed on the contents of bits 24 through 31 of operand 1 and bits 8 through 15 of
the instruction at the operand 2 address. The result replaces bits 8 through 15 of the operand 2
instruction. The rules of operation for logical addition are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0

0 1 1

1 0 1

1 1 1

Modification of the operand 2 instruction affects only the execution of the instruction and does not
alter the contents stored at the operand 2 location.

• The modified instruction is executed as if it were in the normal instruction sequence except that the
instruction length code and updated instruction address fields of the current PSW reflect the EX
instruction.

• Normally, instruction sequencing continues with the instruction following the EX instruction. However,
if the instruction at the operand 2 address is a successful branch instruction, the instruction address field
of the current PSW is replaced by the branch address and instruction sequencing continues with the
instruction located at the branch address. If the operand 2 instruction is branch-and-link or
branch-and-link-external, the instruction address stored in the link register is that of the instruction
following the EX instruction.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 8-16
PAGE REVISION PAGE

• If an interrupt occurs after the completion of the subject instruction, the old PSW contains the address
of the instruction following the EX instruction or the branch address.

• The condition code may be set by the instruction at the operand 2 address.

• Possible program exceptions:

NOTE:

A program exception condition can be caused by the EX instruction or the instruction specified in the
EX instruction.

addressing exception

execute exception

indirect address specification exception

indirect addressing exception

protection exception

specification exception (IACW not on full-word boundary; or the address specified by operand 2 is
odd)

• Relocation and indirection flags:

operand 1 : none

operand 2: RO, 10

Example:

/.

LABEL

' t l ~ i

1. The instruction located at the address specified by SUBST is executed after modification according to
the contents of register 6. After the execution of the instruction at main storage location SUBST,
instruction sequence continues with the instruction following the EX instruction.

··~-----·

7935 Rev. 1
UP-NUMBE:'R

SPERRY UNIVAC Operating System/4 9-1
PAGE REVISION PAGE

9. Status Switching Instructions

9.1. GENERAL

The status switching instruction set provides the capacility of altering the operating characteristics of the SPERRY
UNIVAC Processor. Status switching instructions may be used to replace part or all of the current program status
word (PSW) or to alter the contents of the SPERRY UNIVAC 90/60,70 protect key main storage. Certain of these
instructions provide maintenance functions.

Status switching instructions are available in the RR, RS, and SI formats. As such, the operands may be contained in
the general registers, main storage, or within the instruction itself. The address of an operand in main storage may be
specified as relative or absolute and direct or indirect under the control of the applicat.!e relocation register flags.

This section describes the operation of each status switching instruction. The instructions are arranged in
alphabetical order according to mnemonic operation code. Each description includes a list of the possible program
exceptions and condition codes which may result. In addition, the 90/60,70 relocation and indirection flags
pertinent to the operand addresses and, in the case of the LPSW instruction, to the operand itself are listed.

The object instruction format is shown only for those instructions which differ from the format shown in Figure
3-1. For an explanation of the abbreviations used in describing instruction formats, see Table 3-1.

9.2. DIAG (DIAGNOSE) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

DIAG d1(b1lh 83 SI Four Bytes

Function:

The DIAG instruction is used to control diagnostic operation:

• Channel Tester

When the i
2

field specifies a value of 80
1 6

or 81
1 6

, the D IAG instruction relates to the channel tester.
The contents of the 32-bit base register specified by b

1
are added to the contents of the d

1
field to form

a 32-bit field with the following format:

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 9-2
PAGE REVISION PAGE

CHANNEL

!NUMBER

If the i
2

field specifies 80
1 6

, the channel specified by bits 21 through 23 is disconnected from the 1/0
interface and connected to the channel tester.

If the i
2

field specifies 81
16

, the channel specified by bits 21 through 23 is disconnected from the
channel tester and reconnected to the 1/0 interface.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The condition code remains unchanged.

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags: none

9.3. HPR (HALT-AND-PROCEED) - PRIVILEGED INSTRUCTION

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

HPR d1(b1l.i2 99 SI Four Bytes

Function:

The processor is halted without loss of data and the contents of the operands may be displayed.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• 9400/9480 systems - The processor halts and the storage address formed by d
1

+ (b
1

) is placed into the
internal data address register, A. The contents of this register can be displayed on the maintenance panel.
The next instruction in the program is executed when the operator presses the RUN switch. The i

2
field

of this instruction is ignored. A diagnostic error is issued whenever i
2

is specified.

• 90/60, 70 systems - The operand 1 address is placed in bit positions 8 to 31 of the storage address
register. Operand 2, contained in the i

2
field, if present, is placed in bit positions 8 to 15 of the

operation code register. The processor halts and the HPR indicator is activated on the system
maintenance panel. The registers may then be selected and displayed on the system maintenance panel.
The processor remains halted until the RUN switch is pressed.

• The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-3

UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags (90/60,70): none

Examples:

-----------------~···~~--~-~------~--------

LABEL !:::i. OPERATION !:::i. OPERAND
10 i 6 ======--·-

/. _J_j__l .L1 ~ .J j
i
i.•

2 .. ASA I I '.

~~.EL': (o)L. .
a(iSJ7 ~X'la11 't
.£(lf,0)i,IA6.1)(1 .. 1

' l !

:3. I I

1. The processor is halted and the value 0000000011110001
2

is displayed. {Applicable only to 9400/9480
format.)

2. The processor is halted and the value of the address specified by 0 indexed by the contents of register 5
is displayed. On the 90/60,70, the hexadecimal value 81 is placed in the operation code register. (Format
correct for 90/60,70.)

3. The processor is halted and the value 0000000011111010
2

is displayed. On the 90/60,70, the value of
TAGX, which must have been previously equated to a value in the range 0 to 255, is placed in the
operation code register. (Format correct for 90/60,70; an error code is generated in 9400/9480 system.)

9.4. ISK (INSERT-STORAGE-KEY) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

!SK r 1 •r2 09 RR Two Bytes

Function:

The 5-bit st()rage key contained in the key memory location in operand 2, specified by r
2

, is inserted into the
operand 1 register, specified by r

1
.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• Bits 8 through 20 of operand 2 designate the location from which the storage key is to be taken.

• The storage key is inserted into bits 24 through 28 of operand 1.

• Operand specifications are the same as for the SSK instruction (9.10).

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception (operand 2 specifies a nonexistent block of storage)

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-4

UP-NUMBER PAGE REVISION PAGE

privileged operation exception

specification exception (bits 28 through 31 of operand 2 are not 0)

• Relocation and indirection flags: none

Example:

/.

LABEL l:i.OPERATION!:i. OPERAND
l 0 16

' .. "'J

1. Presuming that R4$ and R5$ have been equated to 4 and 5, respectively, the storage key in the key
memory location specified by bits 8 through 20 of register 5 is inserted in bit positions 24 through 28 of
register 4.

9.5. LBR (LOAD-BASE-REGISTER) - 90/60,70

Mnemonic Hexadecimal Object
Operation Source Code Operation Format

Instruction
Code

Operand Format
Code Type

Length

LBR r OB RR Two bytes

Function:

The offset value contained in the current relocation register is subtracted from the updated instruction
address. The relative instruction address thus formed is placed in bit positions 8 through 31 of the register
specified by r. Binary zeros will be placed in bit positions 0 through 7 of the register specified by r. The
constant 00010101 is placed in bit positions 0 through 7 of the current relocation register and the applicable
relocation register in main storage.

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 2
0 CODE 7 8 11 12 15

OB unused r

Operational Considerations:

• If the r designator is zero, no operation takes place.

• The condition code remains unchanged.

• Possible program exceptions: none

• Relocation and indirection flags: none

I

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-5

UP-NUMBER PAGE REVISION PAGE

Example:

LABEL i:-.OPERATIONL:\ OPERAND
10 16

I I

9.6. LCS (LOAD-CONTROL-STORAGE) - PRIVILEGED INSTRUCTION -90/60,70

Mnemonic
Source Code T Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

LCS r1 ,r3 ,d2 (b2) 81 RS Four Bytes

Function:

The number of microinstructions specified by the r
1

field plus 1 are transferred from main storage, beginning
with the microinstruction located at the operand 2 address, specified by d

2
(b

2
), to the proper section of the

control storage, beginning at the address specified by the contents of operand 3, specified by r
3

.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The number of microinstructions to be transferred is computed as the operand register specification
plus 1.

• The register specified by operand 3 contains the address of the section of control storage to be loaded as
follows:

If bit 16 of the operand 3 register is 0, bits 23 through 31 specify the location in the address
calculator (AC) section of the control storage into which the first microinstruction is to be loaded.
Bits 0 through 15 and 17 through 22 are ignored.

If bit 16 of the operand 3 register is 1, bits 21 through 31 specify the location in the operand
manipulation (OM) section of the control storage into which the first microinstruction is to be
loaded. Bits 0 through 15 and 17 through 20 are ignored.

• The condition code remains unchanged.

• Possible program exceptions:

privileged operation exception

addressing exception (specified main storage or control storage location is nonexistent)

indirect address specification exception

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-6

UP.NUMBER PAGE REVISION PAGE

indirect addressing exception

protection exception

specification exception (operand 2 or IACW not on full-word boundary)

Examples:

LABEL /::, OPERA TlON /::, Of' RAND
10 16

I. __L_J_.LL L -- J,,,[c._~ S:7ri.J ;r.NST
~.,___..._.~.1-LL _iCS. 1,)1'3rD(Lf), , i t L ~- l

3 "l--'---'-~.L_..L_"------1-_c.5. _j ---- ";tJ1_,_,.8tL.2)
4. l__L __ LLL bCS___.L - b:.)'Jl;) TJA~4.LZ.}, ,_L i . L.

1. Six instructions, beginning at location INST, are loaded into control storage. Register 2 contains the
address in control storage into which the instructions are loaded.

2. Eight instructions, beginning at the location specified in register 4, are loaded into control storage.
Register 3 contains the address in control storage into which the instructions are loaded.

3. Ten instructions, beginning at location 8 indexed by the value in register 3, are loaded into control
storage. Register 1 contains the address in control storage into which the instructions are loaded.

4. Seven instructions, beginning at location TAG4 indexed by the value in register 2, are loaded into
control storage. Register 7 contains the address in control storage into which the instructions are loaded.
TAG4 must have been previously equated to a value not greater than 4095.

9.7 LPSW {LOAD-PROGRAM-STATUS-WORD) - PRIVILEGED INSTRUCTION

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Operand Format Instruction
Code Code

Type
Length

LPSW d, lb,) ,i2 82 SI Four Bytes

Function:

The current program status word (PSW) is altered according to the contents of operand 1, specified by d
1

(b
1

).

Operand 2, contained in the i
2

field, contains a secondary operation code.

Operational Considerations

• This is a privileged instruction which is executed and controlled by the supervisor.

• 9400/9480 systems - The double-word operand is in storage at address d
1

+ (b
1

). This operand is placed
into the program status register unaltered. The interrupt code and instruction length code of the current
PSW, bits 16 through 33, remain unchanged. The i

2
field of this instruction is ignored. A diagnostic error

is issued whenever i
2

is specified.

..__ ..

7935 Rev. 1
UP-NUMBE.'R

SPERRY UNIVAC Operating System/4 9-7

PAGE REVISION PAGE

• Bits 0 through 23 and 34 through 39 of double-word operand 1 replace the corresponding bits of the
current PSW. If the RI flag of the current relocation register is 0, bits 40 through 63 of operand 1
replace the corresponding bits (the instruction address field) of the current PSW. If the RI flag of the
current relocation register is 1, bits 40 through 63 of operand 1 are added to the offset value from the
current relocation register. The sum replaces bits 40 through 63 of the current PSW.

• 90/60,70 systems - The i
2

field contains the secondary operation code. If the secondary operation code
is 0, the hardware priority circuit examines the state of all interrupt request lines immediately after the
current PSW is replaced by operand 1. If an interrupt request is pending and the corresponding mask bit
of the current PSW is 1, an interrupt initiation sequence (llS) takes place. If the secondary operation
code is 1, the hardware priority circuit is inhibited and no I IS can occur after the current PSW is
replaced by operand 1. This inhibition is removed when the processor resumes instruction execution
under control of the current PSW. If the secondary operation code is not 0 or 1, the result of the LPSW
instruction is unpredictable. If i

2
is not specified, 0 is assumed.

• The condition code is set equal to bits 34 and 35 of operand 1.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Privileged operation

Indirect address specification Specification

Indirect addressing

Privileged operation

Protection

Specification (operand 1 or IACW
not on full-word boundary)

• Relocation and indirection flags (90/60,70):

operand 1: RO, 10

operand 2: none

bits 40 through 63 of operand 1: RI

Examples:

LABEL /::,. OPERA TlON /::,. RAM
Hl

I .. .L L .. .L
1PSW
f'SW

~-=~..::=:::::::~==-:::·:~'"%;;.~~"'===.=: '"%;;.""""'"'"·""=-::;;":;;.~:c;;;.=;;.;;.;;;-.;c=:=:=~'""=""''

1NsWP.SW
~ .L. . .L L..L.L ... L ~:EM/ Ps.w > f J

1. Bits 0 through 23 and 34 through 63 of the double word specified by NEWPSW replace the contents of
the current PSW. The secondary operation code is presumed to be 0 (9400/9480 format).

2. Bits 0 through 23 and 34 through 63 of the double word specified by NEWPSW replace the contents of
the current PSW. Since the secondary operation code is 1, on 90/60,70 systems, no interrupt can take
place after the current PSW is replaced until the processor resumes execution of instructions (90/60,70
format).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-8

UP-NUMBER PAGE REVISION PAGE

9.8. ROD (READ-DIRECT) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

RDD d,(b1).i2 85 SI Four bytes

Function:

The operand 1 address specified by d
1

(b
1

) is used as the storage location for the data received on the direct
control bus-in lines. Acceptance of this data prepares the processor for receiving data from an external device
or processor from which the signal originated. The operand 2 byte, contained in the i

2
field, is sent as eight

timing signals on the timing signal bus-out lines.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The RDD instruction is used as part of the Direct Control and External Interrupt Feature (F1335-00)
which provides direct communications of controlling and synchronizing information between two
processors or between a processor and an external device.

• The signal received on the eight direct control bus-in lines is placed in the operand 1 storage location,
provided no HOLD signal is present. The HOLD signal prevents the direct control bus-in lines from being
read until the signal data is present. A parity bit is generated as the data is stored.

•

•
•

The byte specified as i
2

is sent as eight timing signals on the timing signal bus-out lines. No parity is
associated with these signals. At the same time, an identical timing signal is sent on the read-out line to
inform the other device that the processor is receiving data on the direct control bus-in I ines.

The condition code remains unchanged .

Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception (direct control and external interrupt feature not installed)

privileged operation exception

protection exception

specification exception (IACW not on full-word boundary)

• Relocation and indirection flags:

operand 1: RD, ID

operand 2: none

"-"

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-9
UP-NUMBER PAGE REVISION PAGE

Examples:

JJo}j
1
){

108'1
OC9),:JVALU8

I..S_'B_(iL)J1)(I LL h '.

1. One byte is read into main storage location 0 indexed by the value in register 6. The value 08
16

is
transmitted to the sending processor.

2. One byte is read into main storage location 0 indexed by the value in register 9. The hexadecimal value
in main storage location VALUE is transmitted to the sending processor. VALUE must have been
previously equated to a value in the range 0 to 255.

3. One byte is read into main storage location DISP indexed by the value in register 1. The value 1F
16

is
transmitted to the sending processor. DISP must have been previously equated to a value not greater
than 4095.

9.9. SPM {SET-PROGRAM-MASK)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SPM r 04 RR Two bytes

Function:

The program mask field of the current PSW is changed according to the contents of the register specified by r.

Object Instruction Format:

OPERATION OPERAND l OPERAND 2
0 CODE 7 8 11 12 15

04 r unused

Operational Considerations:

• 90/60,70 systems - Bits 2 through 7 of the full-word contents of the specified register replace the
program mask field (bits 34 through 39) of the current PSW.

• Bits 0, 1, and 8 through 31 of the register are ignored.

• 9400/9480 systems - Bits 2 through 5 of the register, defined by r, replace the condition code and
program mask portion of the current program status word (PSW), bits 34 through 37. All other bits of
this register are ignored.

• The condition code is set equal to bits 2 and 3 of the specified register.

• Possible program exceptions: none

• Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-10
UP-NUMBER PAGE REVISION PAGE

Example:

LABEL !::, OPERA T!ON !::, OPERA.ND
10 16

/. .~ ' l i l ~L J, I l .I

1. The program mask field of the current PSW is changed to the value specified by the contents of bits 2
through 7 of register 3.

9.10~ SSK (SET-STORAGE-KEY) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

SSK r 1 'r2 08 RR Two Bytes

Function:

A main storage key is defined by the contents of operand 1, specified by r
1

and is placed in the processor key
memory location designated by the contents of operand 2, specified by r

2
. ·

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The 5-bit value contained in bit positions 24 through 28 of operand 1 is placed in the processor key
memory location specified by bits 8 through 20 of operand 2.

• The processor key memory location designated by operand 2 is associated with a block of main storage
located on an integral boundary which is a multiple of 2048 bytes. Bits 28 through 31 of operand 2
must be 0. Bits 0 through 7 and 21 through 27 of operand 2 are ignored.

• The main storage key, bits 24 through 28 of operand 1, provides for write only or write and read
protection within a 2048-byte block of main storage. Bits 24 through 27 provide write protection
identity for the specified block. If bit 28 is 1, read protection is provided. Bits 0 through 23 and 29
through 31 of operand 1 are ignored.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception (operand 2 specified a nonexistent block of main storage)

privileged operation exception

specification exception (bits 28 through 31 of operand 2 are not 0)

• Relocation and indirection flags: none

I

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-11
UP-NUMBER PAGE REVISION PAGE

Example:

1. Presuming that R4$ and R5$ have been equated to 4 and 5, respectively, bit positions 24 through 28 of
register 4 are placed in the key memory location specified by bits 8 through 20 of register 5.

9.11. SSM (SET-SYSTEM-MASK) - PRIVILEGED INSTRUCTION

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SSM d(b) 80 SI Four Bytes

Function:

The system mask bits of the current PSW are changed according to the contents of the operand, specified by
d(b).

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 7 8 OPERAND 15 16 19i 20 31

80 unused b I d

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• 9400/9480 systems - The byte operand in storage at address d
1

+ (b
1

) replaces the system mask field of
the current PSW, bits 0 through 6. The low order bit of the byte operand is ignored.

• 90/60,70 systems - Bits 0 through 12 of the half-word operand replace the system mask (bits 0 through
12) of the current PSW.

• The condition code remains unchanged.

• If the location specified by the operand contains the hexadecimal value FFD8, the following interrupts
are al lowed:

program check

machine check

external

timer

read direct

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 9-12
PAGE REVISION PAGE

selector 1

selector 2

selector 3

selector 4

communications intelligence channel

multiplexer channel · standard

multiplexer channel · status table

If the location specified by the operand contains the value 000016, all interrupts are inhibited except the
supervisor call interrupt.

• Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Privileged operation

Indirect address specification

Indirect addressing

Privileged operation

Protection

Specifications

1. Operand 1 not on half-word
boundary

2. IACW not on full-word
boundary

• Relocation and indirection flags (90/60,70):

operand 1: RO, 10

Example:

/.

1. 9400/9480 systems - Bits 0 through 6 of the byte specified by SYSMASK replace the system mask (bits
0 through 6) of the current PSW.

90/60,70 systems - Bits 0 through 12 of the half word specified by SYSMASK replace the system mask
(bits 0 through 12) of the current PSW.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-13
UP-NUMBER PAGE REVISION PAGE

9.12. SVC (SUPERVISOR-CALL)

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SVC i OA RR Two Bytes

Function:

A supervisor call interrupt request is generated.

Object Instruction Format:

OPERATION OPERAND 1
0 CODE 7 8 15

OA i

Operational Considerations:

• When the interrupt is granted, the contents of the i field are stored as the interrupt code in the current
PSW. The current PSW is stored in the supervisor call old PSW location, and the contents of the
supervisor call new PSW location replace the current PSW.

• The condition code is set equal to bits 34 and 35 of the supervisor call new PSW. It remains unchanged
in the old PSW.

• Possible program exceptions: none

• Relocation and indirection flags (90/60,70): none

Example:

/.

OP RMHl

1. A supervisor call interrupt is generated and the value 00001111
2

is stored in the old program status
word.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-14
UP-NUMBER PAGE REVISION PAGE

9.13. WRD (WRITE-DIRECT) - PRIVILEGED INSTRUCTION -90/60,70

Mnemonic
Source Code Hexadecimal Object

Operation Operation
Format

Instruction
Code

Operand Format
Code

Type
Length

WAD d1 (b1),i2 84 SI Four Bytes

Function:

The contents of the byte at the operand 1 main storage location specified by d
1

(b
1

) are made static signals on
the direct control bus-out lines. The operand 2 byte, contained in the i

2
field, is sent as eight timing signals on

the timing signal bus-out I ines. These signals are used to alert an external device or another processor for
communications.

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The WRD instruction is used as part of the Direct Control and External Interrupt Feature (F1335-00)
which provides direct communications of controlling and synchronizing information between two
processors or between a processor and an external device.

• The byte contents of operand 1 are made a static signal on the eight direct control bus-out lines. No
parity is associated with the signal. The signal remains until the execution of another WRD instruction.

• The byte contained in the i
2

field is sent as eight timing signals on the timing signal bus-out I ines. No
parity is associated with these signals. At the same time, an identical timing signal is sent on the
write-out line to inform the external device that the processor is sending data on the direct control
bus-out lines.

• The condition code remains unchanged.

• Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception

operation exception (direct control and external interrupt feature not installed)

privileged operation exception

protection exception

specification exception (IACW not on full-word boundary)

• Relocation and indirection flags:

operand 1: RO, 10

operand 2: none

. ,____ ..

·......__..·

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-15

UP-NUMBE.'"l PAGE REVISION PAGE

Examples:

LABEL
6

/. ~ .L • L I l

~. I
.. .. .l ... -.;.., .-J. ··---L~"l

Wf<..D

1 RD,
3. ~RD

1. One byte is written from main storage location 0 indexed by the value in register 5. The hexadecimal
value 01 is transmitted to the receiving processor.

2. One byte is written from main storage location 0 indexed by the value in register 5. The hexadecimal
value in main storage location VALUE is transmitted to the receiving processor. VALUE must have been
previously equated to a value in the range 0 to 255.

3. One byte is written from main storage location D ISP indexed by the value in register 1. The value 1F
16

is transmitted to the receiving processor. DISP must have been previously equated to a value not greater
than 4095 .

·---,/

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-1
UP-NUMBER PAGE REVISION PAGE

10. Input/Output Instructions

10.1. GENERAL

The input/output instruction set of the SPERRY UNIVAC Operating System/4 (OS/4) Assembler provides for the
initiation, testing, and termination of operations executed by the multiplexer channel selector channel,
communications intelligence channel (CIC), and operating system storage facility (OSSF) control channel.

The execution of an input/output instruction begins with the activation of a signal from the processor to the
appropriate channel requesting initiation of the operation. The processor then waits for an acknowledge signal from
the channel. Depending on the state of the channel, the operation is initiated, or the processor is informed of the
reason why the operation was not initiated.

This section describes the operation of each input/output instruction. The instructions are arranged in alphabetical
order according to mnemonic operation code. A list of the possible program exceptions and condition codes which
may result is included. There are no pertinent relocation and indirection flags for input/output instructions. See

Table 3-1 for an explanation of the abbreviations used in describing instruction formats ..

Table 10-1 describes the letters used to form codes describing the channel states as applicable to the input/output
instruction. The state of the individual unit is indicated by the position of the letter in the channel state code. From
left to right within the code is an indication of the state of the channel, subchannel, and subsystem.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-2
UP-NUMBER PAGE REVISION PAGE

Table 10-1. Channel State Codes

Code Meaning Unit Description

A Available Channel Ready to accept 1/0 instruction and execute the operation specified.
Multiplexer channel is always available.

Subchannel Selector channel: same as available channel.
Multiplexer channel: mode in the hard channel control word is idle.

Subsystem If subsystem control unit contains information on the state of the
addressed device or queries the addressed device, the subsystem is
available if neither the control unit nor the addressed device is
executing a previously initiated operation or is holding pending status.
If the subsystem contains no information on the state of the addressed
device or does not query the addressed device, it is ava.ilable if the
control unit is neither executing a previously initiated operation nor
holding pending status.

I Interrupt Channel Selector channel: interrupt-causing device or subchannel status has developed,
Pending an interrupt request has been activated, and all other

operations have been halted.
Multiplexer channel: device status has been accepted from a standard device and

stored in the hard channel control word, or an interrupt has
been detected in a channel command word related to a
standard subchannel, an interrupt request has been activated,
and all other status is in a waiting state.

Subchannel Selector channel: same as channel in interrupt pending state.
Multiplexer channel: mode in the hard channel control word is terminated or reset.

Subsystem The subsystem is holding pending device status.

N Nonopera- Channel Channel is offline or not present.
ti on al

Subchannel Multiplexer channel: specified subchannel is not installed.
Selector channel: same as nonoperational channel.

Subsystem Offline, powered down, not installed, or does not recognize its
address during the initial selection sequence.

w Working Channel Selector channel: operating in burst mode or a chaining sequence is
in progress.

Multiplexer channel: not possible.

Subchannel Selector channel: same as working channel.
Multiplexer channel: mode in the hard channel control word is active

or chain.

Subsystem Control unit or device is executing a previously initiated operation.

x Any operational state

....._ ___ .

I

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-3
UP-NUMBE.'"'< PAGE REVISION PAGE

10.2. HIO (HALT-1/0) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal Object
Operation Operation

Format
Instruction

Code
Operand Format

Code
Type

Length

HIO d(b) 9E SI Four Bytes

Function:

The halt-1/0 instruction causes the addressed selector channel, subchannel, and device to terminate the current
operation. Any pending device or subchannel status is stored in the initial status word (ISW), and the
appropriate condition code is set.

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 7 8 OPERAND 15 16 19_120 31

9E unused b I d

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The HIO instruction applies to the operation of the selector channel only.

• The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:

IGNORED

CHANNEL

NUMBER i
DEVICE

ADDRESS

• The channel specified by bits 21 through 23 and the device and subchannel, implied by the device
number, specified by bits 24 through 41 are addressed, and the operation proceeds as follows:

State

AAX

wwx

Procedure

If the addressed channel and subchannel are in the available state, the condition code is set
to 0 and no ISW is written.

If the addressed channel is transferring data in burst mode, the device address in the HIO
instruction is ignored, and the operation with the device is terminated by an interface
disconnect sequence. Command or data chaining is suppressed. An ISW with the device
address of the terminated device and the incorrect length bit set to 1 is written. The
condition code is set to 2. The mode is set to idle.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 10-4
PAGE REVISION PAGE

State Procedure

llX If the addressed channel and subchannel are in the interrupt pending state with pending
device or subchannel status, the pending status is written into the ISW, the interrupt pending
condition is cleared, and the condition code is set to 1. The mode is set to idle.

NXX If the channel is not available or nonoperational, the condition code is set to 3 and no ISW is
written. If the channel is available or in the interrupt pending state, the device is not
addressed. In these cases, the fact that a device was nonoperational would not be indicated
until the next reference of the device for a test-1/0 or start-1/0 instruction.

Table 10-2 summarizes the resulting condition codes and ISW contents for the HIO instruction.

Table 10-2. HID Instruction Condition Codes and Initial Status Words

ISW Contents

Channel Channel Condition
State Code Device Address Device Status

Subchannel
Status

Selector AAX 0 No ISW written

wwx 2 Active device address • Unpredictable Incorrect length and any
other present

llX 1 Address of device Any pending status Any pending status
associated with
pending status *

NXX 3 No ISW written

Multiplexer xxx 1 Addressed device 0 Program check

*The device address specified in the operand field of HIO is ignored.

• An HIO instruction issued to the multiplexer channel results in an ISW with the program check bit set
and a condition code of 1.

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags: none

Example:

/. j '

1. The channel and device address is represented by the sum of 10 and the contents of register 8.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-5
UP-NUMBER PAGE REVISION PAGE

10.3. LCHR (LOAD-CHANNEL-REGISTER) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

LCHR d(b) AD SI Four Bytes

Function:

The load-channel-register instruction is used to transfer 32 bits of information from location 180
16

in main
storage to a location in the channel register stack (CRS). specified by d(b).

Object Instruction Format:

OPERATION OPERAND l OPERAND 2
0 CODE 7 8 15 16 19~0 31

AD unused b I d

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The LCH R instruction applies to the operation of the multiplexer channel.

• The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:

IGNORED

0

CHANNEL
NUMBER

20 21

l
t

23 24

l
IGNORED

t
REGISTER
NUMBER

25 26 31

• The register number field (bits 26 through 31) specifies in binary the location of one of 32 full words in
the CRS (64 if the Subchannel Expansion Feature, F1518, is installed). The contents of location 180 are
transferred to the specified register, and the condition code is set as follows:

If the transfer is completed successfully, the condition code is set to 0.

If the channel detects a storage error on the access of location 180, an ISW with the appropriate
channel control check code is written and the condition code is set to 1.

If the channel is nonoperational or the specified register is not installed, the condition code is set
to 3.

If the LCHR instruction is issued to a selector channel in the available state, an ISW with the
program check bit set is written; the condition code is set to 1. An LCHR instruction issued to a
selector channel in any state other than available causes the condition code to be set to 2.

Table 10-3 summarizes the condition codes and ISW's for the LCHR instruction. The codes for the channel
states are given in Table 10-1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-6
UP-NUMBER PAGE REVISION PAGE

Table 10-3. LCHR Instruction Condition Codes and Initial Status Words

Channel Condition ISW Contents
Channel

Code l l Subchannel State Device Address Device Status
Status

Multiplexer AXX 0 No ISW written

AXX 1 0 I 0 I Channel control check *

NXX
3 No ISW written

ANX

Selector AXX 1 0 l 0 l Program check

IXX
2 No ISW written wxx

*Storage error in access of 18016.

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags: none

Example:

LABEL I::!. OPERA T!ON !::J. OPERAND
10 16

1. The contents of location LOADC and the contents of register 6 are added to form the binary value of
the channel and device address. Assume that LO ADC has been previously defined as equal to a value not
greater than 4095.

10.4. SCHR (STORE-CHANNEL-REGISTER) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
Instruction

Code Code Length

SCHR d(b) AC SI Four Bytes

Function:

The store-channel-register instruction is used to transfer 32 bits of information from a specified location in the
CRS, specified by d(b). to location 180

16
in main storage.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 10-1
PAGE REVISION PAGE

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 7 8 OPERAND 15 16 19_120 31

AC unused b l d

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The SCH R instruction applies to the operation of the multiplexer channel.

• The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:

0

Channel

IGNORED

CHANNEL
NUMBER

20 21

l
f

23 24

l
IGNORED

t
REGISTER
NUMBER

25 26 31

The register number field (bits 26 through 31) specifies in binary the location of one of 32 full words in
the CRS (64 if the Subchannel Expansion Feature, F 1518, is installed). The contents of the specified
register are transferred to location 180

16
, and the condition code is set as follows:

If the transfer is completed successfully, the condition code is set to 0.

If the channel detects a storage error on the access of location 180, an ISW with the appropriate
channel control check code is written and the condition code is set to 1.

If the channel is nonoperational or the specified register is not installed, the condition code is set
to 3.

If the SCHR instruction is issued to a selector channel in the available state, an ISW with the
program check bit set is written; the condition code is set to 1. An SCHR instruction issued to a
selector channel in any state other than available causes the condition code to be set to 2.

Table 10-4 summarizes the condition codes and initial status words for the SCHR instruction. The
codes for the channel states are given in Table 10-1.

Table 10-4. SCH R Instruction Condition Codes and Initial Status Words

Channel Condition
ISW Contents

l l State Code Device Address Device Status
Subchannel

Status

Multiplexer AXX 0 No ISW written

AXX 1 0 I 0 I Channel control check *

NXX
3 No ISW written

ANX

Selector AXX 1 0 I 0 l Program check

IXX
2 No ISW written

wxx

*Storage error in accesss of 180
16

.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-a
UP-NUMBER PAGE REVISION PAGE

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags: none

Example:

LABEL /::,_ OPERATION/::,. OPERA D
i 0 16

/. ' L...L ... L Li J :c~:t~E(5).

1. The contents of main storage location STORE and the contents of register 5 are added to form the
binary value of the channel and device address. Assume that STORE has been previously equated to a
value not greater than 4095.

10.5. SIO (START-1/0) - PRIVILEGED INSTRUCTION

Mnemonic
Source Code

Hexadecimal
Format

Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

SIO d(b) 9C SI Four Bytes

Function:

The start-1/0 instruction is used to initiate all read, read backwards, write, control, and sense operations. If in
the proper state, the specified channel reads the channel address word (CAW) and the first CCW and initiates
the operation with the device. On the 90/60,70 systems, if any device or subchannel status develops during the
initiation of the operation, an ISW is written. The completion of the SIO instruction sets the appropriate
condition code in the current PSW.

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 7 8 OPERAND 15 16 19_120 31

9C unused b I d

9400/9480 Operational Considerations:

• This is a privileged instruction and is executed only in the supervisor mode.

• Execution of the start 1/0 instruction performs the following:

Accesses the channel address word (CAW) for the address of the first channel command word
(CCW) for selector channels. CAW is stored in supervisor general register 0.

The selector channel puts the CCW into hardware.

The channels access the device and initiate the operation.

.. ._.,,.

''-.. /

7935 Rev. 1
UP-NUMBER

•

•

SPERRY UNIVAC Operating System/4 10-9
PAGE REVISION PAGE

The CCW for the selector channel or the SCW and BCW for the multiplexer channel specify the type of
operation, data address, controls, and data byte count.

The 32 binary value produced by adding the contents of b
1

to the d
1

field specify the channel and
device address. The channel is specified by bits 21 through 23 and the device specified by bits 24
through 31.

The specified device is initiated by and operates under the control of the CCW, SCW, or BCW.

• Condition code is set as follows:

to 0 (0) if the 1/0 operation is initiated and is being executed;

to 1 (01) if an immediate status word has been stored;

to 2 (10) if the selector channel is busy;

to 3 (11) if device or channel is not operational.

• Basic procedures for using the start 1/0 instruction are as follows:

establish one or more CCWs, (SEL), or SCWs and BCWs (MPX) in main storage;

load the channel address word (CAW) with the address of the first CCW (SEL) or the command in
the CAW (MPX);

specify the channel and device number in the operand 1 portion of the start 1/0 instruction:

issue the start 1/0 instruction;

test the conditon code for determination of result of 1/0 operation.

90/60, 70 Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The SIO instruction applies to the operation of the multiplexer and selector channels.

• The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 10-10
PAGE REVISION PAGE

CHANNEL

J,
!NUMBER

J J, DEVICE
IGNORED ADDRESS

• The channel specified by bits 21 through 23 and the device specified by bits 24 through 31 are addressed
and the operation proceeds as follows:

State Procedure

AAA If the addressed channel, subchannel, and device are in the available state, the condition
code is set to 0 and the prescribed 1/0 operation proceeds under the control of the channel
and subchannel.

~~ect;) If the addressed channel is in any state other than available, the device is not addressed; the
11x. wwx~

(M '·~ X operation is halted, and the condition code is set to 2.
u tl-

~D~) ,

AAW, AAI If the addressed channel and subchannel are available but the addressed device is in the
working or interrupt pending state, an ISW with the appropriate device status is written and
the condition code is set to 1. For devices which present channel end and device end
separately, an available subchannel may have a working or interrupt pending device. In this
case, the selector channel or multiplexer subchannel becomes available after the interrupt
with the channel end indication. The SIO instruction is issued before the device end has been
accepted at the channel. Similarly, in subsystems with the dual channel access or dual access
facility, the control unit may be operating under the control of an active subchannel in
another channel while receiving the SIO instruction from the addressed channel.

NXX,
XNX,
XNN

If the control unit is in the interrupt pending state with device status (for example, device
end or attention) for the addressed device, the pending device status including the busy bit is
written into the ISW and cleared in the control unit. If the control unit is working or in the
interrupt pending state with pending status for a device other than the addressed device, the
device status written into the ISW will contain the busy and status modifier bits; however,
the pending status is not cleared in the control unit.

If the addressed channel, subchannel, or device is nonoperational, the condition code is set
to 3.

The resulting condition codes and ISW contents are summarized in Table 10-5. The codes

for the chai::mel states are given in Table 10-1.

·....._/

._,

I

7935 Rev. 1 SPERRY UNIVAC Operating System/4
UP-NUMBER PAGE REVISION

Table 10-5. SIO Instruction Condition Codes and Initial Status Words

ISW Contents
Channel

Channel Condition
Subchannel State Code Device Address Device Status

Status

Multiplexer AAA 0 No ISW written
and

Addressed device CD 0 Selector AAI 1

AAW 1 Addressed device @ 0

NXX
XNX 3 No ISW written
XXN

Multiplexer XIX
2 No ISW written xwx

Selector
llX

2 No ISW written wwx

CD If the control unit contains pending status for the addressed device, busy and pending status bits are set in the device
status field; otherwise, busy and status modifier bits are set.

® If the control unit is working, busy and status modifier bits are set in the device status field. If the control unit is
available and the device is working, only the busy bit is set.

10-11
PAGE

• Detection of any of the following errors causes the operation to be aborted by a selective reset to the
device:

storage errors in the access of the CAW, the relocation register, or the first CCW;

format errors in the contents of the CAW or CCW;

parity errors in the address or status from the device.

If any of these errors are detected, an ISW is written with the appropriate subchannel status bits set and
the condition code is set to 1.

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags: none

none

Example:

LABEL 6 OPERATION f::.,
10 16

/. ; __L__L__L_J __ J .. l Ca)

1. Ten is added to the contents of register 8 to form the binary value of the channel and device address.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-12

UP-NUMBER PAGE REVISION PAGE

10.6. TCH (TEST-CHANNEL) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code Hexadecimal

Format
Object

Operation
Operand Format

Operation
Type

Instruction
Code Code Length

TCH d(b) 9F SI Four Bytes

Function:

The test-channel instruction is used to determine the current state of the addressed channel. The appropriate
condition code is set in the current PSW and any pending status is written into the ISW.

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 7 8 OPERAND 15 16 19_120 31

9F unused b I d

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The contents of the 32-bit register specified by the b field are added to the d field to form a 32-bit field
with the following format:

CHANNEL

IGNORED ,1 (I.'" IGNOijED

• The channel specified by bits 21 through 23 is addressed and the condition code is set. The operation
proceeds as follows:

State Procedure

AXX If the addressed channel is available, the condition code is set to 0 and no ISW is written.

IXX If the addressed channel is in the interrupt pending state, the pending device and subchannel
status and the device address associated with that status are written into the ISW and the
condition code is set to 1. The interrupt request associated with the pending status is
cleared.

wxx

NXX

If the addressed channel is in the working state, the condition code is set to 2 and no ISW is
written. A condition code of 2 from the selector channel implies that the channel is
operating in burst mode. A condition code of 2 from the multiplexer channel is not possible.

If the addressed channel is not present or not operational, the condition code is set to 3 and
no ISW is written.

'--··

--.....__.·

\. ___ .

7935 Rev. 1
UP-NUMBE'R

SPERRY UNIVAC Operating System/4 10-13
PAGE REVISION PAGE

Table 10-6 summarizes the resulting conditi:Jn codes and ISW contents for the TCH instruction. The
codes for the channel states are given in Table 10-1.

Table 10-6. TCH Instruction Condition Codes and Initial Status Words

ISW Contents
Channel Condition

Channel State Code Subchannel
Device Address Device Status

Status

Multiplexer AXX 0 No ISW written

and
Address of device Any pending status Any pending status

Selector IXX 1
associated with pending
status

!

NXX 3 No ISW written

Selector wxx 2 No ISW written

• Possible program exceptions:

privileged operation exception

• Relocation and indirection flags: none

Example:

LABEL f::.. OPERATION[:..
l 0 16

1. One is added to the contents of register 9 to form the binary value of the channel and device address.

10.7. TIO (TEST-1/0) - PRIVILEGED INSTRUCTION - 90/60,70

Mnemonic
Source Code

Hexadecimal
Format

Object
Operation

Operand Format
Operation

Type
lnstructi on

Code Code length

TIO d(b) 90 SI Four Bytes

Function:

The test-1/0 instruction is used to determine the current state of the addressed channel, subchannel, and
device. The appropriate condition code is set in the current PSW. Any status pending in the subchannel or
device is written into the ISW and the pending interrupt condition is cleared.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-14
UP-NUMBER PAGE REVISION PAGE

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CO_Q_E 7 8 OPERAND 15 16 l9J.20 31

9D unused b l d

Operational Considerations:

• This is a privileged instruction which is executed and controlled by the supervisor.

• The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a field with the following format.

CHANNEL

J,
t NUMBER

J J, DEVICE
LG NORED ADDRESS

• The contents of the 32-bit register specified by bits 21 through 23, and the device and subchannel
implied by the device address specified by bits 24 through 31, are addressed and the condition code is
set. The operation proceeds as follows:

State Procedure

AAA If t~e addressed channel, subchannel, and device are available, the condition code is set to 0
and no ISW is written.

-
AAI, AAW If the addressed channel and subchannel are available and the control unit contains pending

AIX
(Multi
plexer)

status for the addressed device, the device status is cleared in the control unit and written
into the ISW. The condition code is set to 1. If the control unit is working .. or contains
pending status for a device other than the one addressed, the device status written in the ISW
contains the busy and status modifier bits, and any pending status is not cleared in the
control unit. If the control unit is available but the addressed device is working, the device
status contains the busy bit only.

If the addressed channel is available (or interrupt pending for other than the addressed
device) but the addressed subchannel is in the interrupt pending state for the addressed
device, the device is addressed and any device status returned is written along with any
pending subchannel status into the ISW. The condition code is set to 1. Depending on the
setting of the mode in the appropriate hard channel control word (HCCW) and the device
status returned, the subchannel is left in the interrupt pending state or cleared to the
available state. If the mode is reset, then any device status returned and the pending
subchannel status are written in the ISW. The mode is then set to idle and the subchannel is
available. If the mode is terminate, the device status must be examined. If the device status
contains at least the busy bit, the device status and any pending subchannel status are
written into the ISW. However, the mode is left as terminate and the subchannel remains in
the interrupt pending state. If the device status contains at least the channel end bit, the
device status and any subchannel status are written into the ISW. The mode is then set to
idle and the subchannel is available.

7935 Rev. 1
UP-NUMBER

·____.,

....__..

SPERRY UNIVAC Operating System/4 10-15
PAGE REVISION PAGE

State Procedure

If the addressed subchannel contains pending subchannel status for a device other than the
addressed device, the addressed device is not interrogated, the condition code is set to 2 and
the subchannel status is left pending.

llX If the addressed channel (or subchannel) contains pending device or subchannel status for the
(Selector) addressed device, the device is addressed and any status returned is merged with the pending

status in the ISW; the condition code is set to 1. If the addressed channel contains pending
status for a device other than the addressed device, the condition code is set to 2 and the
status is left pending. (If the addressed device became nonoperational between the time that
device status was accepted or subchannel status developed and the time that the device is
addressed, the pending status would be written into the ISW and the condition would be
cleared in the channel. The fact that the device was nonoperational would be indicated the
next time the device is interrogated.)

IXX
(Multi
plexer)

If the addressed channel is in the interrupt pending state with pending device status for the
addressed device, the device is interrogated and any device status is merged with the pending
device status. The merged device status and any associated subchannel status is written into
the ISW and the condition code is set to 1. If the addressed channel is in the interrupt
pending state for other than the addressed device, the state of the subchannel determines
further operation. That is, if the subchannel is in the interrupt pending state, the operation
continues as for the /\IX state; if in the working state, as for the XWX state.

WXX If the addressed channel or subchannel is in the working state, the condition code is set to 2
(Selector) and the operation with the device continues.

xwx
(Multi
plexer)

NXX,
XNX,
XXN

If the addressed subchannel is in the working state, the condition code is set to 2 and the
operation with the device continues.

If the addressed channel, subchannel, or device is not present or not operational, the
condition code is set to 3.

The resulting condition codes and ISW contents are summarized in Table 10-7. The codes for the
channel states are given in Table 10-1 .

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-16

UP-NUMBER PAGE REVISION PAGE

Table 10-7. TIO Instruction Condition Codes and Initial Status Words

--·
Channel Condition

ISW Contents
Channel

State Code Device Address Device Status
Subchannel

Status

Multiplexer AAA 0 No ISW written

and
Pending status l2J

Selector AAI 1 Addressed device Any present

Busy and status modifier""0"

AAW 1 Addressed device Busy and status modifier@ Any present

Busy @)

NXX
XNN 3 No ISW written
XXN

Multiplexer AIX 1 Addressed device Any returned by device~ Pending status

2 No ISW written ®
IXX 1 Addressed device Merge of returned and Any present

pending Q)

Same as AXX, where X =A, I, or W ""@

xwx 2 No ISW written

Selector llX 1 Addressed device Merge of returned and
pending ®

Any pending

"' w 2 No ISW written

wxx 2 No ISW written

CD Pending status for addressed device.

@ Pending status for other than addressed device.

@ Control unit working.

@) Control unit available; device working.

@ Interrupt pending for addressed device.

@ Interrupt pending for other than addressed device.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-1
UP-NUMBER PAGE REVISION PAGE

11. Data and Storage Definition

11.1. GENERAL

Two statements are available to the SPERRY UNIVAC Operating System/4 (OS/4) for specifying either data to be
used as stored constants (DC) or storage areas to be reserved (DS). The formats for these statements are similar to
machine instruction format. A symbol may appear in the label field, is assigned the address of the leftmost character
of the constant or storage area specified in the operand field, and has a length attribute equal to that of the constant
or storage area. The maximum length attribute of a symbol is 256. The programmer must branch around areas
reserved in line with the program.

The operation code is DC (define constant) or DS (define storage). The operand field is divided into subfields which
specify the information needed to create the data or storage area. The general format of the operand field is
described in 11.2 and 11.3. Table 11-1 lists the characteristics of constant and storage types. Detailed descriptions
are provided in 11. 7 and 11.8.

Table 11-1. Characteristics of Constant and Storage Types

Type Storage Code Truncation
Length in Bytes

Constant or Storage Type Alignment Storage Format
Code Specification or Padding

Implied
Minimum Maximum
Explicit Explicit

c Character None Characters Character Right Variable 1 256 (DC)

65,535 (DSI

x Hexadecimal None Hexadecimal Hexadecimal Left Variable 1 256 (DC)

digits 65,535 (DS)

B Binary None Binary Binary Left Variable 1 256

digits

p Packed decimal None Decimal Packed Left Variable 1 16

digits decimal

z Zoned decimal None Decimal Character Left Variable 1 16

digits

H Half-word fixed point Half word Decimal Fixed-point Left 2 1 8
digits binary

F Full-word fixed point Full word Decimal Fixed-point Left 4 1 8
digits binary

y Half-word address Half word Expression Binary Left 2 1 2

A Full-word address Full word Expression Binary Left 4 1 4

s Base and displacement Half word One or two Base and None 2 2 2
expressions displacement

v External address Full word Relocatable Binary Left 4 4 4

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-2
U P·NUMBER PAGE REVISION PAGE

11.2. DC (DEFINE CONSTANT) STATEMENT

The DC statement specifies data to the assembler that is to be used as stored constants. These constants are
generated and produced in object output format ready to be loaded along with the program instructions. The format
of the DC statement is:

LABEL /::,OPERATION/::, OPERAND

[symbol] DC [d]t[Ln] ~;~; ~

where:

d is the duplication factor.

t is the type of constant.

Ln is the explicit length (modifier).

C is the constant specification.

Multiple operands in a DC statement are not permitted.

The various constants and the specifications necessary for each type of DC statement are described in 11.4.

11.3. OS (DEFINE STORAGE) STATEMENT

The DS statement is used to specify a storage area to be reserved by the assembler .

LABEL .:'.).OP ERA TION .:'.). OPERAND

[symbol] DS [d]t [Ln] D ;~; fJ

where:

d is the duplication factor.

t is the type of constant.

Ln is the explicit length (modifier).

c is the constant specification.

The various constants and specifications necessary for each type of DS statement are described in 11.4. The
following modifications should be noted:

• Data can be specified in the constant subfield; however, the constant is not assembled. It allows the assembler
to determine the size of the storage area needed when implied length is variable. The type field must be
specified.

• All types of constants are legal.

·-...___..·

"--...--'

'--·'

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-3

UP-NUMBER PAGE REVISION PAGE

• C and X type constants have a maximum length of €5,535 bytes instead of 256 bytes as in DC statements and
literals. However, the maximum length attribute associated with the constant subfield is 256.

• Storage areas reserved by a OS statement are not set to 0.

• Storage locations reserved by boundary alignment for OS statements are not set to 0.

The grouping together of all OS statements produces a more efficient object code.

11.4. DC AND DS STATEMENT OPERAND SUBFIELDS

The operand field (dtlc) is divided into four subfields that describe and identify the data or storage space to be
generated. The four subfields are:

• Duplication (d)

• Type (t)

• Length modifier (I)

• Constant (c)

The subfields must be specified in the stated order with the duplication factor first and the constant last. The type
(t) subfield is always present, the constant (c) subfield is required for DC statements only.

The following is a valid example for a typical DC statement with the subfields identified.

Example:

LABEL 6. OPERATION 6. OPERAND
10 i 6

Blanks or punctuation marks cannot separate the subfields. Blanks can appear only in the constant subfield as part
of a character constant.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-4

UP-NUMBER PAGE REVISION PAGE

11.4.1. Duplication Subfield

The duplication subfield designates the number of identical constants to be generated. Either an unsigned decimal
self-defining value or a positive absolute expression enclosed in parentheses (with all terms predefined) may be used
to specify the duplication factor. If the subfield is omitted, the duplication factor is assumed to be 1. A duplication
factor of 0 does not generate a constant or storage area, but advances the location counter to proper boundary
alignment if no length is specified and assigns the location counter value to the symbol in the label field (if a label is
present). In generating literals, a duplication factor of 0 is illegal.

11.4.2. Type Subfield

The type subfield designates the type of constant to be generated (11.7). One of 11 characters is used to specify this
type. Paraforms and set symbols cannot be used to specify replacement of the type character. Valid characters and
what they represent are shown in Table 11-1. The type subfield is to be present as it determines the alignment,
truncation, storage form, and implicit length of the constant.

11.4.3. Length Modifier Subfield

The length modifier subfield designates the number of bytes to be used in generating the constant. The length factor
follows the character L and can be either an unsigned decimal value or a positive absolute expression enclosed in
parentheses (with all terms predefined). This factor can be stated for all types of constants and is used to establish
the number of bytes the constant or storage definition occupies. Constants that do not exactly fit the area specified
are padded or truncated to the length specified. The character L may not be generated by the replacement of
paraforms or set symbols.

If the length factor is specified, boundary alignment is not provided; however, when the length is omitted, the
implied length is used and boundary alignment is provided for most types of constants (Table 11-1).

11.4.4. Constant Subfield

The constant subfield specifies the value (subject to modification by the length subfield) of the constant to be
generated. The values for the various types of constants are represented in different ways. A data value
representation is specified by enclosing it in apostrophes and an address value representation is specified by enclosing
it in parentheses.

Data Constant Address Constant

'constant' (constant)

11.5. LITERALS

Literals can be used in machine instructions wherever a storage address is permitted, because they are replaced with
the storage address of the constant generated from the literal specifications.

A literal is identified by an equal sign (=) preceding a constant specification in the format described in 11.4.

The handling of literals by the assembler is described in 2.3.2.

··....._,,.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-5
UP-NUMBER PAGE REVISION PAGE

Example:

LABEL /::,. OPERA T!ON /::,. OPERAND
0 16

L ..

The following restrictions must be observed in the use of literals:

• Only one literal can appear in an instruction.

• Assembler directives cannot contain literals.

• Literals cannot have a duplication factor of 0.

• S type literals are not permitted.

11.6. ALIGNMENT

All machine instructions must be aligned on half-word boundaries. The first byte of the instruction must have an
address that is divisible by 2. Constams, however, can be aligned on a half word, full word, or no boundary at all.
Table 11-1 indicates the kind of alignment, when necessary, for data or storage definition statements if no length
factor is stated. When a length factor is specified by the programmer, no alignment is provided. A duplication factor
of 0 in DC and OS statements does not generate a constant or storage area, but for some types of constants it forces
a boundary alignment if no length factor is coded. This method provides a convenient means of obtaining a
boundary alignment before generating a constant that is not automatically aligned by the assembler. Any bytes
skipped to align constants are zero filled. However, bytes skipped to align storage areas are not zero filled.

11.7. DATA CONSTANT TYPES

Data constants are absolute values generated by the assembler which require no modification by the relative loader.
The seven types of data constants are discussed in the following paragraphs.

11. 7 .1. Character Constants

A character constant is specified by the character C in the type subfield and up to 255 characters enclosed by
apostrophes in the constant subfield. Any of the 256 valid card punch combinations can be used. Each character is
stored in one byte using the 8-bit character code. If no length factor is specified, the length in bytes of the constant
equals the number of characters specified. If the length factor is present, the character specification is truncated or
filled with blanks (if necessary) to the right of the last character and to the length specified. Boundary alignment is
not required.

Two consecutive apostrophes or two consecutive ampersands are necessary to generate the character code for one
apostrophe or one ampersand within the constant. A single apostrophe in the character representation terminates the
constant. Multiple constants are not permitted for this constant type.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-6

UP-NUMBER PAGE REVISION PAGE

Examples:

J.f. .l ... i ~

5.

"'· ... l L

7. _.l__' _L __ j ____ .. ' L .l

1. A 2-byte constant containing the following:

2. A 1-byte constant containing the following:

A

3. A 2-byte constant containing the following:

4. A 10-byte constant containing the following:

~MPL.6DIVL'.l

5. A 12-byte constant containing blanks.

6. A 12-byte constant containing the following:

123412341234

7. An 18-byte constant containing the following:

12345L'.l12345L'.l12345

11.7.2. Hexadecimal Constants

A hexadecimal constant is specified by the character X in the type subfield and up to 255 hexadecimal digits
enclosed by apostrophes in the constant subfield. Two hexadecimal digits are assembled into one byte. The
maximum length that can be specified in the length modifier for a hexadecimal constant is 256 bytes (512
hexadecimal digits). If an odd number of digits is specified, the first, or leftmost, byte of the constant contains a
hexadecimal 0 in the four leftmost bits and the first digit in the four rightmost bits. If no length factor is specified,
the length in bytes of the constant is half the sum of the number of digits or O's specified. If the length factor is
present, the hexadecimal specification is truncated or filled with hexadecimal O's (on the leftmost end) if necessary,
to the length specified.

·.._/

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-7

UP-NUMBER PAGE REVISION PAGE

Examples:

LABEL 6. OPERATION 6. D
10 16

I . ' LL. l L.1 't_~q,'JJ, I. l .. j

1. L .. l-L.~~~,~ i
111~:1:5' L

3.,__.__.~ .1
1Milli23D 11

JI-· . .L..LJ .. ;... t .. ;k,;~_ 1.rfJfifi. 1L-LL~.LL .. ! i L.l

5.1-'-...._._...l..--'-........_.-r~.;L,_J_..i...+~.....:.w~F~R~O~Q~O~·~··-..l-l_.__L...L.l-.L..J-.L-l-J-'--~..J._j_--l-.!._;_,~~
0.,_..~~~~ .. L.L .. J--<&....._,,""'

1. A 3-byte constant containing the following:

00000000 00000000 00000001

2. A 3-byte constant containing the following:

00000001 00100011 01000101

3. A 4-byte constant containing the following:

00001010 10111100 00010010 00111101

4. A 4-byte constant containing the following:

00000000 00000000 00001111 11111111

5. A 3-byte constant containing the following:

111111111111000000000000

6. A 4-byte constant containing the following:

00000000 00000000 00000000 00001010

7. A 2-byte constant containing the following:

00100011 01000101

11.7.3. Binary Constants

A binary constant is specified by the character B in the type subfield and up to 255 binary digits (bits) enclosed by
apostrophes in the constant subfield. Eight bits are assembled into one byte. The maximum length that can be
specified in the length modifier for a binary constant is 256 bytes. Because only 255 bits can be specified, only the
least significant 32 bytes of the constant may have their value specified. The high order bytes are zero filled. Binary
O's are added to the leftmost end as necessary to ensure byte boundary alignment. If no length factor is specified,
the length in bytes of the constant is one-eighth the number of the digits specified (the binary O's added are counted
as digits). If the length factor is present, the binary specification is truncated or filled with binary O's (on the
leftmost end) as necessary, to the length specified.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-s
UP-NUMBe'R PAGE REVISION PAGE

Examples:

LABEL !:::, OPERA TlON !:::, OP RAND
Hi 16

B'j LOJ: I /.
~. _;

:3.
-···-.L L ,L_J. ____ L_i__J __

~t..12~ 1
c L j L0,0 l;Q I LO L QQQO L l Q IQ'.

j.sb...i-1,iCtL LO L1 t L '- .. L • 1 • • l

1. A 1-byte constant containing the following:

00000101

2. A 2-byte constant (with most significant bits truncated) containing the following:

01011010 00011010

3. A 2-byte constant containing the following:

00000000 10110111

11. 7 .4. Packed Decimal Constants

A packed decimal constant is specified by the character P in the type subfield and up to 31 decimal digits enclosed
by apostrophes in the constant subfield. The digits are packed two digits to a byte; therefore, each decimal digit
requires four bits. A leading sign (+ or -) can be coded within the apostrophes. A plus sign is represented by a
hexadecimal C and a minus sign is represented by a hexadecimal D. If a sign is not specified, a plus sign is assumed.
Multiple constants are permitted.

If no length factor is specified, the length of the constant is the required number of bytes needed to contain the
constant, a sign, and the possible addition of 0 bits. When an even number of packed decimal digits is specified, the
leftmost digit is unpaired because the rightmost digit is paired with the sign. In this case, the most significant four
bits of the leftmost byte contain a hexadecimal 0 and the most significant four bits of the least significant
(rightmost) byte contain the first (rightmost) digit. The least significant four bits of the rightmost byte always
contain the sign of the constant.

If a length factor is present, the decimal specification is truncated or filled with hexadecimal O's if necessary (on the
leftmost end), to the length specified.

Examples:

LABEL !:::. OPERATION!:::. OPERAND
10 1

{, -" .. i ... i L ! .l l .l. l. > >

L

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-9
UP-NUMBER PAGE REVISION PAGE

1. A 2-byte constant containing the following:

468C

2. A 2-byte constant (with most significant digit truncated) containing the following:

476C

3. A 3-byte constant containing the following:

003250

4. A 6-byte constant containing the following:

381C381C381C

11. 7 .5. Zoned Decimal Constants

A zoned (unpacked) decimal constant is specified by the character Z in the type subfield and by up to 16 decimal
digits enclosed by apostrophes in the constant subfield. A plus or minus sign can be coded within the apostrophes; if
none is present, a positive sign is assumed. The digits are assembled one to a byte with a hexadecimal F (EBCDIC) or
hexadecimal 3 (ASCII) inserted into ~he most significant four bits of all but the least significant byte. The most
significant four bits of the least significant byte contain the sign. If no length factor is specified, the length in bytes
of the constant is the number of decimal digits in the constant subfield. If the length factor is present, the decimal
specification is truncated or filled with decimal O's, if necessary (on the leftmost end). to the length specified. The
rightmost byte always contains the sign and the rightmost digit specified. A plus sign is represented by a hexadecimal

-...__., C, and a minus sign is represented by a hexadecimal D. A decimal point may be included in the constant subfield,
but is ignored by the assembler.

Examples:

LABEL /::, OPERA Tl ON /::, OPERAND
10 !6

}. ' _ _;__t. _ _L __ L L. i DC _ -1z45~?b82
1

• --~I
121+4 , _ fpZS'+ 2. .L_l__J_ ___ L_j_l__L_ ,(.. __ L i.

1.

2.

I

A 5-byte constant containing the following:

BYTE 1 2 3 4 5

Hexadecimal

EBCDIC
Character }

LiJiJ Fl1IFl6IFlalcl2I
~~~~ 

0 7 6 8 B 

A 6-byte constant containing the following: 

BYTE 1 2 3 4 5 6 

Hexadecimal 

EBCDIC 
Character } 2 5 M 2 5 M 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-10 
UP-NUMBER PAGE REVISION PAGE 

11.7.6. Half-Word Constants 

A half-word constant is specified by the character H in the type subfield and up to 10 significant decimal digits 
enclosed by apostrophes in the constant subfield. A plus or minus sign can be included within the apostrophes. If no 
length factor is specified, the constant has the implied length of two bytes and must not contain a value greater than 
+32767 or -32768. If the length factor is present, the decimal value specification is truncated or filled with binary 
O's if necessary (on the leftmost end), to the length specified. The value specified in the constant subfield may be an 
integer, a fraction, or a mixed number. However, the fractional portion of the mixed number is lost and the decimal 
value of the entire number is converted into a binary format for storage. 

Examples: 

I. 
2. 

LABEL 

1. A 2-byte constant containing the following: 

00000000 00011011 

2. A 3-byte constant containing the following: 

00000000 00000000 00011011 

11.7.7. Full-Word Constants 

A full-word constant is specified by the character F in the type subfield and up to 10 significant decimal digits 
enclosed by apostrophes in the constant subfield. A plus or minus sign can be included within the apostrophes. If a 
length factor is not specified, the constant has the implied length of four bytes. If the length factor is present, the 
decimal value specification is truncated or filled with binary O's, if necessary (on the leftmost end), to the length 
specified. The value specified in the constant subfield may be an integer, a fraction, or a mixed number. However, 
the fractional portion of a mixed number is lost and the decimal value is converted into a binary format for storage. 

Example: 

LABEL ~ OPERA T!ON ~ OPERAND 
10 16 

A 4-byte constant containing the following: 

00000000 00000000 00000000 00011011 



I 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 11-11 
UP-NUMBER PAGE REVISION PAGE 

11.8. ADDRESS CONSTANT TYPES 

Address constants are relocatable values generated by the assembler that are usually altered by the relative loader to 
reflect the storage address that the program occupies when it is executed. Address constants are often used to load 
base registers or to provide a means of referencing external addresses. If there is a location counter reference in the 
constant subfield of an address constant and the duplication factor is greater than 1, then the value of the location 
counter is adjusted for each duplication of the constant. 

Each type of constant is described and examples of its use are shown in typical DC statements. 

11.8.1. Half-Word Address Constants 

A half-word address constant is specified by the character Y in the type subfield, and an expression enclosed by 
parentheses in the constant subfield. The expression may be absolute or relocatable. A length factor of 1 can be 
specified only for absolute expressions. Negative relocatable values are permitted. If no length factor is specified, the 
constant has an implied length of two bytes. If the length factor is present, the binary value is truncated or filled 
with binary O's (on the leftmost end) to the length specified. 

NOTE: 

Y-type constants allow addressing of only the first 32K bytes of main storage. Due to the possibility of 
multiprogramming in an environment of greater than 32K, the use of A-type constants instead of Y-type constants is 
recommended. 

Examples: 

LABEL /::,. OPERATION /::,. 
10 6 

J . I ._L_.L.L L l ~C~-'" 
I)... L_i_Ll__L_L .. (._ 

'L(J3~.8J 
,y;LLC lo), 

OPERAND 

1. Assuming that BOB equals 1446, the hexadecimal value is stored as a 2-byte constant containing the 
following: 

05A6 

2. A 2-byte constant is generated containing the following: 

0606 

11.8.2. Full-Word Address Constants 

A full-word address constant is specified by the character A in the type subfield and an expression enclosed by 
parentheses in the constant subfield. The expression may be absolute, relocatable, or complexly relocatable. A 
length factor of less than three bytes can be specified only for absolute expressions. Negative relocatable values are 
permitted. If no length factor is specified, the constant has an implied length of four bytes and is aligned to a 
full-word boundary. If the length factor is present, the binary value is truncated or filled with binary O's (on the 
leftmost end), to the length specified, The maximum length that may be specified is four bytes. The maximum value 
that may be specified for a full-word constant is 224-1. 



I 

7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 11-12 
PAGE REVISION PAGE 

Examples: 

LABEL !':i OPERATION !':i OPERAND 
10 16 

'· '_L_J __ l L_ L i GSAM). 
,i,AL.LCX ','+J 6 I+, L), 

1. Assuming that SAM equals 3863, the hexadecimal value is stored as a 4-byte constant containing 
the following: 

OOOOOF17 

2. A 2-byte constant is generated containing the following: 

1717 

11.8.3. Base and Displacement Constants 

A base and displacement constant is specified by the character S in the type subfield and one or two expressions 
enclosed by parentheses for each constant in the constant subfield. Only a length factor of 2 can be specified. If no 
length factor is specified, the constant has an implied length of two bytes and is aligned on a half-word boundary. 
Negative relocatable values are not permitted. This type of constant is used to store addresses in the base and 
displacement form; the leftmost four bits represent the base, and the remaining 12 bits represent the displacement. 
If a constant is defined by a single expression, it may be either an absolute or a relocatable expression and the 
assembler converts it to a base plus displacement value. If two expressions are used to define a constant, the 
expression representing the base is enclosed in parentheses with the other expression (representing the displacement) 
preceding it and another set of parentheses enclosing the base and displacement specifications. In this case, both 
expressions must be absolute. The S-type constants may not be specified as literals. 

Examples: 

LABEL ~ OPERATION ~ OPERAND 
l 0 1 IJ 

I. t-JLL.L.J. .. ! .. 

:?_. ___L_L.J •.. L.l .i. L - - .l .. i.. "-

o--~~; __ _;___J__L.l _ .. l - L. L. .L ... L J_ _ _;__ 

j, .--~"-'-'1._J_t_l__ . ·~··· L. L ... J . . l. ... .l .A.. .... ""~"" -----· •--- __ , ___ •• 

I 
.. l-.-~l~-h~ -L~ ;,._J. J l .1 

... L 1 __ L i 1 



'-.....-.· 

I 

7935 Rev. 1 

UP-NUMBER 

SPERRY UNIVAC Operating System/4 11-13 
PAGE REVISION PAGE 

Assume that constant with the label JOHN (line 3) h.is been assigned an address value of 1125 by the location 
counter, and that the USING directive (line 2) gives the effective value 1000, which is assumed to be in register 
3 at execution time (12.4.2). The operands in the two statements (lines 4 and 5) produce the same stored base 
and displacement value. The hexadecimal representation of this stored value is 3070: 

3 0 7 I D 

Base 
Register 
(4 bits) 

Displacement 
(12 bits) 

11.8.4. External Address Constants 

An external address constant is specified by the character V in the type subfield and an external symbol enclosed by 
parentheses in the constant subfield. The constant cannot be used to reference external data. The symbol need not 
be identified by an EXTRN statement. A length factor of 4 is permitted. If no length factor is specified, the constant 
has an implied length of four bytes and is aligned to a full-word boundary. The specification of a symbol in the 
operand field of a V-type constant does not constitute a definition of that symbol. A V-type constant within a 
CSECT of reference is converted to an A-type constant. 

Until the linkage editor replaces the hexadecimal representation in each byte with the correct value of the external 
labels, the value of each assembled constant is 0. 

Example: 

LABEL 

~ ·-·--·=·=· ====== 
--'--... L.L .. l i l l 

This DC statement generates the following constant: 

00000000 

11.9. CCW (DEFINE-CHANNEL-COMMAND-WORD) DIRECTIVE 

The CCW directive defines and generates an 8-byte channel command word aligned on a double-word boundary. The 
cha·nnel command word is used to direct the operation of the multiplexer and selector channels. The format of the 
CCW directive is: 

LABEL /::,.OPERATION/::,. OPERAND 

[symbol] ccw code.address, flags, count 



I 

7935 Rev. 1 
UP-NUMBER 

where: 

code 

address 

flags 

count 

SPERRY UNIVAC Operating System/4 11-14 
PAGE REVISION PAGE 

is an absolute expression specifying the oommand code. 

is an expression specifying the address of the data. This value is assembled as a 3-byte 
oonstant. 

is an absolute expression specifying the flag bits. 

is an absolute expression specifying the number of bytes to be transferred. 

If a symbol appears in the label field, it is defined as equal to the address of the leftmost byte of the CCW and has a 
length attribute of 8. 

All four operands must be specified and separated by commas. 

Example: 

LABEL !J. OPERATION !J. OPERAND 
HJ 16 

where: 

is the command code for a write operation. 

TED is the label of the data address. 

X'40' indicates a command chaining operation. 

50 is the number of bytes to be transferred. 

/'~ 



·-

...__ .. 

• 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-1 
UP-NUMBER PAGE REVISION PAGE 

12. Assembler Directives 

12.1. GENERAL 

The SPERRY UNIVAC Operating System/4 (OS/4) Assembler directives are statements which enable the user to 
control assembler operation. These directives control the assembler at assembly time just as operation codes control 
the operation of the central processor at execution time. Assembler directives are represented by mnemonic codes 
entered in the operation field of a line of code. The directives are used to define symbols, adjust location counter 
values, control assembly 1/0 formats, section programs, provide boundary alignment, and assign base registers. 

The following paragraphs describe the directives for the OS/4 assembler. The directives are arranged alphabetically 
within functional groups. 

12.2. EOU (SYMBOL-DEFINITION) DIRECTIVE 

The EQU directive is provided for symbol definition. It is used primarily for defining the length and value of a 
symbol. The format of the EQU directive is: 

LABEL 6. OPERATION 6. OPERAND 

symbol EQU e[.a] 

where: 

e represents an absolute or relocatable expression. 

a represents an absolute expression. 

All terms must be predefined. 

The symbol in the label field is defined as having the value of the first expression in the operand field. This value 
must be of the range -223 to 224-1. If overflow occurs during evaluation of this expression, the directive is flagged. 
The symbol has a length attribute equal to the value of the second expression in the operand. The maximum value 
allowed for this expression is 256. This expression may be omitted, in which case the ~ymbol is defined as having the 
length attribute of the first term in the first expression. If that term is * or a self-defining term, the length attribute 
is 1. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-2 
UP-NUMBER PAGE REVISION PAGE 

Examples: 

LABEL 

/·µ.-'<~lf.- .. \. LL1 

~. 

3 . ...,.-"""Ji;o;u:"1. .. _L1-L 

Jf. 

Assuming that the value of the location counter is 2000 when these lines of code are encountered, the symbols 
are assigned the following values: 

1. TAG has a relocatable value of 2000 and a length attribute of 10. The location counter is advanced to 
2250. 

2. HIDE has a relocatable value of 2100 (100 + 2000) and a length attribute of 150. The location counter 
remains at 2250. 

3. SEEK has an absolute value of 1020 (2000 + 1270 - 2250) and a length attribute of 10 (same as length 
of first term). 

4. GO has an absolute value of 1020 (2000 + 1270 - 2250) and a length attribute of 200. (The 200 
overrides the length of TAG.) 

12.3. ASSEMBLY CONTROL DIRECTIVES 

Assembler directives are available to control the program name and initial location, to section the program, to alter 
the location counter in a specified manner, to indicate the end of a program statement, and to designate the 
instruction with which execution of the object program is to begin. 

12.3.1. ASCII Directive 

The ASCII directive is used to define ASCII constant generation and literals immediately following the directive, up 
to the recognition of the next mode directive. The format of the ASCII directive is: 

LABEL !:::. OPERATION !:::. OPERAND 

unused ASCII unused 

If no mode directive is used, EBCDIC constants are generated. For further information, see 3.6.1 in DOS interchange 
standards, UP-7902 (current version). Literal constants are generated according to the mode under which they are 
referenced rather than the mode for the region in which they are generated. 

Example: 

LABEL !::.OPERATION!::. OPERAND 
10 16 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-3 
UP-NUMBER PAGE REVISION PAGE 

12.3.2. EBCDIC Directive 

The EBCDIC directive is used to define EBCDIC constant generation immediately following the directive, up to the 
recognition of the next mode directive. The format of the EBCDIC directive is: 

LABEL /",OPERATION/", OPERAND 

unused EBCDIC unused 

If no mode directive is specified, EBCDIC constants are generated. 

Example: 

LABEL OOPERATION/", OPERAND 
1 10 16 

EBCDI 

12.3.3. CNOP (Conditional-No-Operation) Directive 

The CNOP directive is used to adjust the location counter to a half-word, full-word, or double-word storage 
boundary. The format of the CNOP directive is: 

LABEL /",.OPERATION/",. OPERAND 

unused CNOP a,a 

where: 

a is an absolute expression. 

The first expression in the operand field indicates a byte to which the location counter must be set. Legal values for 
the first expression are 0 and 2 for alignment relative to a full-word boundary and 0, 2, 4, and 6 for alignment 
relative to a double-word boundary. Zero indicates that the full-word or double-word boundary is desired; 2, the 
second byte (first half word) past the boundary; 4, the fourth byte (second half word) past a double-word boundary; 
and 6, the sixth byte (third half word) past a double-word boundary. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-4 
UP-NUMBeR PAGE REVISION PAGE 

Permissible values for the second expression are 4 and 8, indicating that the adjustment is relative to a full-word or 
double-word boundary, respectively. 

If the location counter is already set to the indicated byte, CNOP has no effect. When alignment is needed, one, two, 
or three no-operation instructions are generated to increment the location counter to the proper half-word boundary 
and to ensure correct instruction processing. All terms must be predefined. 

Examples: 

LABEL 

/. '_...L_L_.J J ... L .. .! 

I)..· _ _L_i _ _L.LLL_L 

/::,. OPERA T!ON /::,. 
Hl 

GNb: Pc .. 
ON~H~ 

10}8. 
~'JH 

ND 

1. The current location counter is advanced, if necessary, to the first byte of the next double-word 
boundary. A legal double-word boundary is any address value divisible by 8. 

2. The current location counter is advanced, if necessary, to the second byte (first half word) past the next 
full-word boundary. A legal full-word boundary is any address value divisible by 4. 

12.3.4. END (Program-End) Directive 

The END directive indicates to the assembler the end of a source module or a procedure definition being assembled. 
The format of the END directive for program end is as follows; the format for Proc-Definition-End directive is 
described in 13.1.3. 

LABEL 6.0PERATION /::,. OPERAND 

[symbol] END [e] 

where: 

e is a relocatable expression. 

If a symbol appears in the label field of the END directive, it is assigned the current value of the location counter. 
This is normally one greater than the highest address assigned to the program being assembled. The END directive 
must always be the last statement in the source module or procedure definition. If the operand field contains an 
expression, it designates the point in the program or in a separately assembled program where control may be 
transferred after the program is loaded. If the END directive is missing, an END directive with a blank operand field 
is supplied by the assembler. 

Examples: 

---------------------·----------~"~---

LABEL /::,. OPERATION/::,. OPERAND 
10 16 --

/, µ_;~LL._...J .L .... L 

?.. 

-'·~--'---'-'--'--'---'-+-I"""'· 



-.........· 

7935 Rev. 1 

UP-NUMBER 

1. 

SPERRY UNIVAC Operating System/4 12-5 
PAGE REVISION PAGE 

When the statement FOX is encountered, the c;ssembly process is brought to an orderly halt. A transfer 
record is produced to identify the transfer address as the address of the instruction labeled BEGN. The 
label FOX receives an address value equal to the value of the location counter when the END statement 
is assembled. 

2. If GO has a value of 1000, a transfer record with a transfer address of 1324 is generated. 

3. A transfer record is generated with a transfer address equal to the first address loaded. 

12.3.5. L TORG (Generate-Literals) Directive 

The L TORG directive is used to generate all literals previously defined, but not generated, in the source 'llodule. The 
format of the L TORG directive is: 

LABEL /::,OPERATION/::, OPERAND 

[symbol] LTORG unused 

The literals are generated following tre occurrence of the L TORG directive. A symbol coded in the label field 
represents the first byte of the generated literal pool. L TORG directives may not appear within a dummy control 
section or in a blank common storage area. If there are no L TORG statements in a program and literals are specified 
or if any literals are specified after the last L TORG directive in a program, these literals are generated at the end of 
the first control section. The programmer must then ensure that there is a valid base register available at all times to 
address the locations at the end of the first control section. 

12.3.6. ORG (Specify-Location-Counter) Directive 

The ORG directive is used to set or reset the locati.'.)n counter to a specified value. The format of the ORG directive 
is: 

LABEL /::,OPERATION/::, OPERAND 

[symbol] ORG [e] 

where: 

e is a relocatable expression. 

The location counter is set to the value of the expression in the operand field. When the expression is not present, 
the location counter is set equal to a value one greater than the highest location previously assigned in the current 
section. If a symbol appears in the label field, its value is also the value of the expression in the operand field and it 
is assigned a length attribute of 1. The expression in the operand field must be a relocatable expression whose 
unpaired relocatable term must represent an address in the same control section in which the ORG occurs. The value 
must be equal to or greater than the initial setting of the current location counter. If the expression is in error, the 
ORG directive is ignored and the line is flagged. The ORG directive makes it possible to set the location counter to a 
value which is not a half-word boundary. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-6 

UP-NUMBER PAGE REVISION PAGE 

All terms in the expression must be predefined. 

Bytes of storage reserved with a DS statement or an ORG directive are not set to 0 or cleared when the program is 
loaded. 

Example: 

LABEL 

EA l i .1 

This statement reserves A plus B bytes of storage, where A and B are previously defined symbols with absolute 
values. If A= 80, B = 160, and the value of the location counter is 1048, then 240 bytes are reserved beginning 
at the location 1048. The program may reference this 240-byte area by specifying AREA minus 240 as an 
operand. 

12.3. 7. ST ART (Program-Start) Directive 

The START directive defines the program name and tentative starting location. The format of the START directive 
is: 

LABEL /:).OPERATION/:). OPERAND 

[symbol] START [a] 

where: 

a is an absolute expression. 

All terms must be self-defining terms. 

The expression in the operand field is evaluated and incremented, if necessary, to make it a multiple of 8. The result 
becomes the initial setting of the location counter for listing purposes and is the value of the symbol in the label 
field. This symbol is available as an entry point without being separately defined as such, and is the name assigned to 
the object module. The length attribute of this symbol is 1. If no name is assigned, the object module name is 
ASMOBJOO. The operand of the ST ART directive is an absolute value but is treated as relocatable. Thus, the value 
of the location counter and the coding following a START directive are relocatable. The actual storage location at 
which the program is to be located is determined by the supervisor. 

A START directive may be preceded by statements which do not alter or reference the location counter. If no 
START directive appears within the program, an invalid one is encountered, or the operand field is left blank, and 
the program is assembled relative to 0. If the label field is blank, an unnamed control section is defined. 

Example: 



.........._.. .. -

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-7 

UP-NUMBER PAGE REVISION PAGE 

Either one of these statements results in the prograP1 being assigned to locations starting at 1064 and having 
the symbol TEST defined with the relocatable value 1064. 

12.4. BASE REGISTER ASSIGNMENT DIRECTIVES 

The assembler assumes the responsibility of converting storage addresses to base register and displacement values for 
insertion into instructions being assembled. To do this the assembler must be informed of the available registers and 
the values assumed to be in those registers. The assembly directives USING and DROP are available for this purpose. 

12.4.1. DROP (Unassign-Base-Register) Directive 

The DROP directive informs the assembler that the specified registers are not available for base register assignment. 
The format of the DROP directive is: 

LABEL .6. OPE RA Tl ON .6. OPERAND 

unused DROP 

where each operand is an absolute expression which specifies by number (0 through 15) a register which is no longer 
available. 

Registers previously made available for base register assignment can be dropped and registers can be made available 
again (in a USING directive) after they have been dropped. The value which is assumed to be in a base register can be 
changed by coding another USING directive without an intervening drop of that register. 

Example: 

OPERAND 

This statement specifies that register 1 is no longer available to the assembler. 

12.4.2. USING (Assign-Base-Register) Directive 

The USING directive informs the assembler that a specified register is available for base register assignment in 
operand addresses and that it will contain a specific value at execution time. The value must be loaded by the 
problem program into the registers specified by the USING directive. The format of the USING directive is: 

LABEL .6. OPERATION .6. OPERAND 

unused USING 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-s 
UP-NUMBER PAGE REVISION PAGE 

where: 

v is an expression which gives the value that is assumed to be in the specified registers at execution 
time. This value may be relocatable or absolute. Literals are not permitted. 

r 1 [. ... ,r n) are absolute expressions specifying the numbers (0 through 15) of the registers into which the 
value or modified values are placed. These register numbers do not necessarily have to be assigned 
in ascending sequence. 

The first register specified after the expression (v) is assigned the value of v, the next register is assigned the value of 
the first register plus 4096, the next register is assigned the value of the second register plus 4096, and so on through 
all the registers specified. A USING directive may specify a single register or a group of registers, or the registers may 
be specified by individual USING directives. 

The only addresses that may be covered by the registers indicated in a USING statement are those in the same 
control, dummy, or common section as the address represented by the first expression of the operand field of the 
USING statement. 

Register 0 may be specified as a valid base register. However, the assembler assumes that is always contains the value 
0. Any program using register 0 as a base register is not relocatable. Register 0 must be operand r 

1
, and any register 

specified in the operand field following register 0 is assumed to contain increments of 4096 from 0. If cover by 
Register 0 is desired for load address instructions and register 0 is not specified in a USING statement, cover error 
messages can be avoided through the use of the RO$ PARAM statement (E.2.7.). 

When the expression vis absolute, the indicated registers can be used to process only absolute effective addresses. 

When the expression v is relocatable, the indicated registers can be used to process only relocatable effective 
addresses. The registers r 1 , ... are used to process only those addresses in the same control section as the address 
represented by the expression v. 

The value specification in a USING directive sets the lower limit of an address range. The upper limit of the range is 
automatically set 4095 bytes above the lower limit. The upper limit of a USING directive may be set less than 4095 
bytes by being overlapped by the lower limit of another USING directive. 

The range specified by a USING directive is used by the assembler to assign base register and displacement values to 
those effective operand addresses that fall within that range. 

If an operand address is specified as an effective address instead of a base register and displacement specification, the 
assembler searches the USING table for a value yielding a displacement of 4095 or less. If there is more than one 
such value, the value that yields the smallest displacement is chosen. If no value yields a valid displacement, the 
operand address is set to 0 and the line is flagged with an error indication. If more than one register contains the 
value yielding the smallest displacement, the highest numbered register is selected. 

Examples: 

L 

1. A range of 4096 bytes is specified beginning at location 4000 and ending at 8095. A value of 4000 is 
assumed to be stored in register 8. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-9 
UP-NUMBER PAGE REVISION PAGE 

2. The value 8000 is assumed to be in register 1, 12096 in register 2, 16192 in register 3, 20288 in register 
6, 24384 in register 7, 28480 in register 8, and 32576 in register 12. These register numbers and their 
assumed values are entered into the USING table in the order specified. 

3. This statement indicates to the assembler that the current value of the location counter is to be in 
register 10 at object time. (This is a relocatable value. A label can be used in place of a location counter.) 

12.5. PROGRAM LINKING AND SECTIONING DIRECTIVES 

A program or a portion of a program that is assembled as a single unit is called a module. A complex program can be 
made up of many modules, some of which are standard subroutines that can be used in any program. 

The assembler provides, as part of its output, information which allows these modules to be linked together, loaded, 
and then executed as a single program. Proper partitioning or sectioning reduces the execution time required to 
make changes to an existing program. If a change is required, only that module which is changed must be 
reassembled. The output is then linked with the remaining parts to produce the altered program. Proper partitioning 
of a program also reduces the number of symbols required in each of the separate assemblies. 

A symbol defined in the label field of module A and addressed in module B is said to be externally defined (by an 
ENTRY directive) in module A and referenced (by an EXT RN directive) in module B. Thus, by using the ENTRY 
and EXTRN directives, proper linkage is supplied when the separate modules are assembled. This information is 
passed to the linkage editor by the external definition records and the external reference records which are outputs 
of the assembler. 

The assembler also provides the capability of dividing one module into different sections. A control section is a 
group of instructions, constants, and storage areas. The proper execution of an instruction in one section must not 
depend on its position relative to instructions or data in another section. Sections can appear in the input in any 
order, and statements belonging to one section may be separated by statements belonging to one or more other 
sections. If the first statement is a STA RT directive, its label becomes the name of the first control section. 

Each module can have a maximum of 255 external symbol identification items ( ESI D items). An ESID item contains 
special information that is used by the linkage editor in relocating modules and module sections, and in resolving 
references between modules. The following items cause the assembler to generate an ESID item: 

• each symbol in the operand field of an EXTRN directive; 

• each symbol used in an external address (V-type) constant; 

• each control section; 

• each dummy control section; and 

• a common storage definition section. 

12.5.1. COM (Common-Storage-Definition) Directive 

The COM directive enables the programmer to define a control section which is a storage area common to two or 
more separately assembled routines. The format of the common section can be described by DS and DC directives. 
Labels which appear within the sections are defined. No data or instructions are assembled in a common section 
which has a separate location counter with an initial value of 0. Data may be entered into a common section only by 
execution of a program which refers to it. Labels defined in a common section are not subject to the restrictions 
imposed on dummy section labels. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-10 

UP-NUMBER PAGE REVISION PAGE 

One assembly can define only one common section. However, several COM directives may appear among the source 
statements. Each COM directive after the first is taken to define a continuation of the common section previously 
described. When several routines defining common storage are linked, the resulting module contains only one section 
corresponding to the common section previously described. When several routines defining common storage are 
linked, the resulting module contains only one section corresponding to the common sections in the input modules. 
The length of this section is the length of the largest common section in the input modules. The format of the COM 
directive is: 

LABEL t, OPERATION t, OPERAND 

unused COM unused 

Examples: 

/. 

:3. 

tf. 

PROGRAM MD i)ULE 

LABEL 

~11 l Ll 

' J_ ___ l__J _ __L~ __ _L _ 

.L.J. _J __ L .l 

I I 

...LJ__i J LL 

_L .. L.L.Li 

10 

L 

PROGRAM_l'1~ Dl)J,,,.,E;. .~ .. 

I 
LABEL t, OPERA T!ON t, 

.. 

10 16 

.l__Llfil 

_j__c_._L L .. L 

OPERAND 

I J 

J L L .. J i ) ' 

' . t.. .1 .• i .. L.~-

.'. j .. j L .. L .L. 

PROGRAMMER 

OPERAND 

- .L .1 . . .1 . .L t .J 

.J __ - .. _l__ ___ L_l~ _ _l __ .L ... 1 ....... L ...... l . _.l • 

i.. . . J i~ L. j J 1 .• .l. .. L .L_.:_ 

1. When module 1 is assembled, it uses the common storage area defined by line 2. 

2. The common storage area used by module 1 and module 2. 

3. When module 2 is assembled, it also uses the common storage area defined by line 2. 

4. The common storage area used by module 1 and module 2. 

·--~·---

·..__,/ 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-11 

UP-NUMBER PAGE REVISION PAGE 

12.5.2. CSECT (Control-Section-Identification) Directive 

The CSECT directive indicates to the assembler that the source statements which follow belong to a control section 
diffent from other preceding source statements. Use of the CSECT directive allows the programmer to code parts of 
logical sections of a program in the order in which he encounters the need for them. The format of the CSECT 
directive is: 

LABEL !J. OPE RAT ION !J. OPERAND 

[symbol] CSE CT unused 

The label field of the CSECT statement contains the name of the control section. This symbol must 1.ot appear in 
the label field of any other source statement except another CSE CT statement. It is the name of the control section 
and is defined as an entry point of the program being assembled. The value of the symbol is the address of the first 
byte of the control section. If the label of the CSECT statement has appeared as a label of a previous CSECT 
statement, the succeeding statements are a continuation of the control section of that name. 

The use of CSECT eliminates the need to discontinue coding a section of a program in order to code another section 
upon which the original section is dependent by setting up the new section with CSE CT and continuing. After the 
second logical section is coded or even partly coded, the programmer can revert to the original section by setting up 
CSECT with the same label given to the original section. The assembler reorganizes parts of each section and 
assembles it as one continuous control section. It is important to note, however, that neither the listing nor the 
sequence of object coding is reorganized. The reorganization that takes place is with respect to the final structure of 
the coding within main storage after loading; the addresses of the coding within main storage are indicated on the 
listing. 

Example: 

LABEL 

_J__ l __ L_i L.1 L. 

L_.LL . .J __ j L.l 

__ [ .L 

~,!)~,! J l .i 

!J. OPERATION !J. OPERAND COMMENTS 
10 16 

_ [ __ _L 1 .L 

J_1'.i__1 

. wS1E_iC_1I 

J L~~ 

CiSE.itJ 

:_ '. t ~C~DJ: ,NJ!iL:~-:M:R~~ ~ ~~~:-~:r~i~ ~-~ l ~- , 

- L~ d l_l_. L.J S~1CTI1>.N1 C.LAt J j i.~ ; -~ j J 

Ll J ..L j _ _i __ J "· .! .L t.J L.L l _;_ l ;__l L_l. , 1 L_1 LJ L.J 

_i __ J. :C1M1Lll1Gr:. PART. B. ~~F.FJiR,S_T_ ~l l 

.L, SE:CTU>M~CI BJ 
_ _,_ l .. L t _l l l j j .1 J - j 

J.__L~ L..L. .J. _ j [ __ 
1 ----- j •--.: 

I l 

J_j 

--'--L....l--l~~l--l-J'---L.l~l--l-J--l.-.lµ_J~~lll:!d!..:..,__[,PLJAl..URLLJ.L.1-, lLJ),F l ,s E Cb tJD 
j _J L . L i i l .S£1CJ.1 ~HJ ,( l.B) i . 

BJ,LJ .. , l ,_ C:S,SCT. 1 ' 

l C~DllJG-: PART ,C ~F FIRST 
.....L.........~-............... -~-~-- .. ···-~---~~- .. ___ ___s~ c T ll>H ..... L.L&.J.. --~-------------------



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-12 

UP-NUMBER PAGE REVISION PAGE 

• Assembled output: 

First section labeled Bl LL - all of coding 1 A, 18, and 1 C; 

Second section labeled MI Kl - all of coding 2A and 28. 

• Operational conditions: 

Direct addressing between control sections must not be attempted. 

The first CSE CT with a unique label also sets up an automatic entry point. 

NOTE: 

Care must be taken to prevent linking CSECT and COM directives with duplicate names. A blank label field is 
permitted as a legitimate label only once. When both CSECT and COM directives have no labels, the label used 
for both is a blank; however, only one such label is permitted. 

USING directive values between sections which define the same register must be redefined when each 
section is reentered. 

12.5.3. DSECT (Dummy-Control-Section-Identification) Directive 

The DSECT directive indicates to the assembler that the statements which follow are used to redefine a data storage 
area reserved either in the module being programmed or in another separately assembled module. If the data storage 
area is reserved in a separately assembled module, that module is later linked to the module containing the dummy 
control section. No storage is reserved for a dummy control section. Data and instructions appearing in a dummy 
control section do not become part of the <:tSsembled program. The format of the DSECT statement is: 

LABEL 6 OPERATION/::,. OPERAND 

[symbol] DSECT unused 

A DSECT statement may not have a blank label field in a program which either has no ST ART statement or has a 
START or CSECT statement with a blank label field. 

An L TORG directive may not appear in a dummy section. Labels of statements in a dummy section are called 
dummy labels. 

The following rules must be observed in the use of dummy labels: 

• An unpaired dummy label may appear only in an expression defining a storage address for a machine 
instruction or a constant of type S. 

• A base register may not be designated for this address field, but the resulting value must be covered by a 
USING statement. 

• The programmer must ensure that the appropriate value is loaded into the register specified in the USING 
statement. 

• To guarantee alignment between the actual storage area and the dummy control section, the programmer 
should align the storage areas on doubl-word boundaries. All dummy control sections are adjusted to begin at 
location 0. 

• The last source code input to an assembly must not be part of the dummy control section. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-13 
UP-NUMBE.'R PAGE REVISION PAGE 

More than one dummy control section can be used within a module. 

Example: 

PROGRAM ·--M~DULE A 
LABEL !:::. OPERATION !:::. OPERAND 

HJ 16 

SiI~AST 
ELN:IR't 

LJ. .. i 

PROGRAM _MOPULE 13 

LQ~5LL i _ _L J 
AJ~_E1~1 l_J L.J .... i L, 

' _J •. --..L. L __ . .,.. .. L _J_ •. "-1.~ 

OPERAND 

L.J 

In module A, the symbol AREA, defined as an ENTRY point, is specified as 260 bytes. 

PROGRAMMER 

L .. ..L i.__L.L 

PROGRAMMER 

L 

In module B, the base address of AREA is externally defined. Portions of AREA are redefined by DSECT as 
FLDA, containing two bytes, and FLDB, containing four bytes. FLDA and FLDB are relatively addressed as 
location 0 and location 2, respectively. Before FLDA and FLDB are addressed, register 9 must contain the 
base address of LAKE, which receives its true value at linker time. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-14 
UP-NUMBER PAGE REVISION PAGE 

12.5.4. ENTRY (Externally-Defined-Symbol-Declaration) Directive 

Each module must declare to the assembler the symbols defined within the module to which reference is made by 
other modules. Each symbol is referred to as being externally defined and is declared by the ENTRY directive. The 
format of the ENTRY directive is: 

LABEL ~OPERATION~ OPERAND 

unused ENTRY symbol [.symbol, ... ,symbol] 

Each symbol in the operand field is declared to be defined in this module. Their name and assigned values are 
included in the output of the assembler as external definition records. The maximum number of operands in an 
ENTRY Directive statement is nine. Continuation is not allowed. 

12.5.5. EXTRN (Externally-Referenced-Symbol-Declaration) Directive 

The assembler must be informed of all symbols referred to in the module being assembled but defined in some other 
module. A reference to such a symbol' is called an external reference, and such symbols are declared in the EXT RN 
directive. The format of the EXTRN directive is: 

LABEL 6 OPERATION~ OPERAND 

unused EXTRN symbol [.symbol, ... ,symbol] 

Each symbol in the operand field is declared to be a symbol defined in some other module. The symbolic name and 
the external symbol identification assigned by the assembler are included as input to the linkage editor as an external 
reference record. Each symbol is assigned a unique ESID and, therefore, cannot be paired with another symbol in an 
expression. 

Examples: 

PROGRAM __ MO_OLJLE A 

LABEL ~ OPERATION ~ OPERAND 
10 16 

1~STl:SJ1} ~~t:b<i(31)L1 _L_L 

AlC1A;Tl2i I _L : .... J, .. ! ' t_J L-1. 

. A(OOGuj_ 
-'->iLOi~-1--

L-L ' __ ,,_J 

L01~-~r~T 
,(~;lJ?J )L: 

L.J._ .: ..... L Li. _j , .. L.l 

.L 

PROGRAMMER ___ _ 

' L_L ... :. ___ L__l .-1.. 

-----



7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 12-15 
PAGE REVISION PAGE 

Coding continued: 

M~VULE 13 PROGRAM .. ·-·········--···· . ···-·········· _ PROGRAMMER ___ ·-·· 

LABEL 6. OPERATION 6. OPERAND 
10 16 

AL_8LLLL-1 __ LL.LJ. .... ..L...L.L.J.._ .. L...L ... ;. ___ L.i ... __L_l .. __ J_L . .L...L.LLi.__J_ 

J. 

:t_µWi.G._,..i."'PJ:Gi.--L ... i . ...'. .. L _J_l .. L...L ... LLL--L...LL .... L...L .... Ll... .. :_ 

.iKi+iJbi~1MAiTL.L, __ .L.l .... L..J .. ~ ..... ~ ...... ~ 

In module A, the symbols FOX, JOE, and MAT are specified with the ENTRY directive sc that they may be 
used in module Bas specified by EXTRN. 

In module B, the symbols CAT, DOG, and PIG are specified with the ENTRY directive so that they may be 
used in module A as specified by EXTRN. 

An externally defined symbol may be an absolute value which forms the explicit base/displacement specification of 
an instruction. 

Examples: 

PROGRAM MbD lJ L.E'_A_ PROGRAMMER __ 

LABEL fl.OPERATIONl:i OPERAND 
10 16 



7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 12-1a 

PROGRAM _MO:tlv~_E_ _B .. 

LABEL l:.OPERATIONl:i OPERAND 
10 16 

... L .. L_l_J l ... L ... 

> I I 1.J. .. L 

e~yL_L 

~T. y 
L2.1 LL.LL1 

~Yi. T,, ,B1 I .. L ... J.~~~~ - _L_L.LL 

PAGE REVISION PAGE 

PROGRAMMER __ _ 

In module B, OUT is defined as the absolute displacement of the desired location under the explicit cover 
register C which is also defined in module B. 

The only valid EXT RN symbol references, other than the base/displacement specification, are those used in address 
constants. 

12.6. LISTING CONTROL DIRECTIVES 

One of the outputs of the assembler process is a listing of source and object codes. Assembler directives are available 
to control the format of the listing. Their functions are: 

• to provide headings for each page; 

• to eject or skip to a new page; 

• to space for extra blank lines; and 

• to provide for printing or nonprinting of the output. 

12.6.1. EJECT (Advance-Listing) Directive 

The EJECT directive causes the assembler to advance to the next page for continued listing. The format of the 
EJECT directive is: 

LABEL li. OPE RAT ION ti. OPERAND 

unused EJECT unused 



·.__ .. 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-11 
UP-NUMBER PAGE REVISION PAGE 

If the next line of the listing were to cause a page change, the EJECT directive has no effect. 

When the EJECT directive is encountered, the form is skipped to the next page. If a title has been previously 
specified, the title is printed on the new page. 

12.6.2. PRINT (Listing-Content-Control) Directive 

The PRINT directive enables the programmer to control the contents of the assembly listing. The format of the 
PRINT directive is: 

LABEL 6 OPERATION 6 OPERAND 

unused PRINT 

where: 

ON specifies the printed listing. 

OFF specifies that no listing is printed. 

GEN specifies that lines generated by a macro instruction are printed. 

NOGEN specifies that lines generated by a proc call are not printed, except that the proc call, any 
PNOTE messages generated, and generated lines that contain error flags are printed. 

DATA specifies that all characters of each constant representation are printed. 

NODA TA specifies that only the first eight characters of each constant representation are printed. 

If a PRINT directive specifies OFF and also other parameters, the other specifications are not effective until a 
PR INT directive is encountered which specifies that the I isting facility is to be turned ON. 

In this directive, the comma is not required if a parameter is omitted. The initial print condition of assembly printing 
is ON, GEN, NODATA. This condition remains until the first PRINT directive changes it. PRINT directives may 
change only one or two of the parameters; any unspecified parameters remain in their previous condition. A PRINT 
directive may not appear in a procedure definition. 

Any program statement or instruction that produces an assembly error condition is listed regardless of specified 
PR I NT options. 

Examples: 

LABEL 6 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-1a 
UP-NUMBER PAGE REVISION PAGE 

1. Data is printed in full. 

2. All printing is suppressed except lines of coding which produce error conditions. 

3. Full printing is restored with complete printing of data constants. 

12.6.3. SPACE (Space-Listing) Directive 

The SPACE directive causes the assembler to advance the paper in the printer a specified number of lines. The 
operand field contains an unsigned decimal integer which specifies the number of lines the paper is to be advanced. 
If no operand is coded, one line is spaced. If the number specified is greater than the number of lines remaining on 
the page, the SPACE directive has the same effect as an EJECT directive. The SPACE directive does not appear on 
the listing. 

The format of the SPACE directive is: 

LABEL 6 OPERATION 6 OPERAND 

unused SPACE [i] 

where: 

is an unsigned decimal integer. 

Examples: 

LABEL 6 OPERATION 6 OPERAND 
10 16 

/ . .---~~LJ_J ... J .... .L .• l 

~. L . .L. l __ : __ L .. .L.. I [ , l l 

1. The printer advances the form six lines before printing the next line. 

2. The printer advances the form 22 lines before printing the next line. 

12.6.4. TITLE (Listing-Title-Declaration) Directive 

The TITLE directive provides data for the heading appearing at the top of each page of the assembler listing. A 
TITLE directive also causes the printer form to be advanced to a new page. The format of the TITLE directive is: 

LABEL 60PERATION 6 OPERAND 

[symbol] TITLE 'c' 

.____,. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-19 
UP-NUMBER PAGE REVISION PAGE 

where: 

c is up to 100 characters of heading. 

The following conditions apply to characters in the operand field: 

• Any character may be specified, including spaces, within the defining apostrophes. 

• An apostrophe within the operand must be specified as a pair of apostrophes. 

• An ampersand within the operand must be specified as a pair of ampersands. 

• Spaces may be specified freely to separate heading words. 

More than one TITLE directive is permitted in a program. A TITLE directive provides the heading for all pages in 
the listing which succeed it. 

The first TITLE card in the program may have a special symbol in the label field (one to four alphanumeric 
characters in any order) which is used as a program identification on the listing. 

Examples: 

~-------··-··--···. ----·------·-· 
LABEL 6 OPERATIOt>i 6 

10 
('PF RAND COMMENTS 

71 •• 
~--'' j. I' WEEKLY PAYRDLL SbU~C.E AND. bBJE.C.T .C.~.Dc Ll.ST!.NGi ·:·. AS.Sfjz , , I, , , , 

1M6L.ED JMJVARY ~TH 1.'172' I '' 'i '' 1.' '' 
j1 f>AY!Z'OL.L. .SuBSECT.l.~111 • • JAtJ ..... 6T~ 1 q 72.' . , , , , 1 , , 1 , , , , 

1. The Z in column 72 specifies that the title is continued on the next I ine. 

2. The second title line indicates a change in the page heading, and the page headings are specified in the 
second title line. 

12.7. INPUT AND OUTPUT CONTROL DIRECTIVES 

The assembler input and output control directives provide the necessary control for sequence checking, formatting, 
punching data, and reproducing data. 

12. 7 .1. I CT L (Input-Format-Control) Directive 

The ICTL directive specifies new values for the beginning, ending, and continuation coding columns. The format of 
the ICTL directive is: 

LABEL fl. OPERATION fl. OPERAND 

unused ICTL [bl [,el [,cl 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-20 

UP-NUMBER PAGE REVISION PAGE 

where: 

b is an unsigned decimal integer specifying the beginning column. It must be less than 80. 

e is an unsigned decimal integer specifying the ending column. It must be greater than band less than or 
equal to 80. 

c is an unsigned decimal integer specifying the continuation column. It must be greater than b and less 
then e. 

If b is omitted, it is assumed to be 1. If e is omitted",it is assumed to be 71. If c is omitted or if e equals 80, 
continuation records are not allowed. 

There can be only one ICTL directive in a source code module and it must immediately precede or follow any 
program-defined procedure definitions. The ICTL directive applies only to those source statements that follow it. All 
procedure definitions are assumed to have normal output format. 

Example: 

/. 

1. Coding is to follow standard format except that it is to start in column 2. 

12.7.2. ISEQ {Input-Sequence-Control) Directive 

The ISEO directive specifies to the assembler which columns of the source statement contain the field used for 
checking the sequence of statements. It also controls the initiation and termination of sequence checking. The 
format of the ISEO directive is: 

where: 

LABEL 6 OPERATION 6 OPERAND 

unused ISEO [l,r] 

is a decimal integer specifying the leftmost column of the field to be used for the sequence check. 

is a decimal integer specifying the rightmost column of the field to be used for the sequence check. 
r must be greater than or equal to the specification for I. 

Columns to be checked should not fall between the beginning and ending input columns specified for the program. 

The sequence check begins with the first source statement after the first ISEQ directive and is terminated by an 
ISEQ directive with a blank or invalid operand field. 

Sequence checking is not performed on statements generated from procedure definitions. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-21 
UP.NUMBER PAGE REVISION PAGE 

Example: 

LABEL /'::, OPERATION /'::, OPERAND 
10 16 

'· 
1. Input record sequence is to be checked using the sequence numbers found in columns 56 through 60. 

12.7.3. PUNCH (Produce-a-Record) Directive 

The PUNCH directive is used to produce specified data i.1 the object code output of the assembled program. The 
format of the PUNCH directive is: 

LABEL /'::,OPERATION/'::, OPERAND 

unused PUNCH ·c, , ... ,cao' 

where: 

c1 ····Cao represents a string of up to 80 characters produced as a record in the object code output. 

The following conditions apply to the characters specified in the operand field: 

• Up to 80 characters including spaces, may be specified within the enclosing apostrophes. 

• An apostrophe within the operand must be specified as a pair of apostrophes. 

• An ampersand within the operand must be specified as a pair of ampersands. 

• Spaces may be used to separate fields. 

• In counting characters for the limit of 80, a pair of ampersands or apostrophes written to express a single 
ampersand or apostrophe counts as one character. 

Although this directive may be included within a procedure definition, it may not occur before or between the 
procedure definitions. It may be written after the procedure definitions, but prior to the first control section of the 
program. PUNCH directives thus written produce records prior to the object module. 

Example: 

LABEL /'::, OPERATION /'::, OPERAND COMME 
10 16 

' ... L .. Ll j J l 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-22 
UP-NUMBE'R PAGE REVISION PAGE 

12.7.4. REPRO (Reproduce-Following-Record) Directive 

The REPRO directive is used to reproduce a record in its entirety (columns 1 through 80) during assembly time. The 
format of the REPRO directive is: 

LABEL /'-,OPERATION/'-, OPERAND 

unused REPRO unused 

This directive causes the contents of the following record on the coding form to be produced as a record in the 
assembler output. Each RE PRO directive produces one record. A maximum of 80 bytes are reproduced. 

A REPRO directive prior to the first control section of the program produces records prior to the first control 
section. 

No substitution for variable symbols occurs in the record thus produced. This directive cannot appear in a macro 
definition. 

12.8. CONDITIONAL ASSEMBLY 

The assembler recognizes certain directives which can exclude lines of coding from the output of the assembly, 
include a set of lines in the output of the assembly more than once, or establish and alter values which may be used 
to determine whether a set of lines shall be included or excluded. 

These directives are known as conditional assembly directives. While they are frequently used within procedure 
definitions, they can be effectively used at the basic assembly level. 

12.8.1. SET Directive 

The SET directive is used to define or redefine the value represented by set symbols. A set symbol is a symbol to 
which a value is assigned during the generation of code corresponding to procedure references and DO directives. It 
can be used as a counter or as a switch to control the generation of code. Unlike an ordinary symbol, the value 
assigned to a set symbol can be altered during the course of an assembly. 

A set symbol can be either local or global. A global set symbol, once declared and given a value by a SET statement, 
remains defined throughout the assembly and retains the same value until that value is changed by another SET 
statement. A local set symbol is defined only within the procedure definition in which it is declared. The value of a 
local set symbol within one procedure definition is not affected by the declaration of either a local or global set 
symbol with the same name in another procedure definition or at the source code level. 

Before a set symbol may be set or referenced, it must first be declared by a GBL or an LCL directive. 

The format of the SET directive is: 

LABEL /'-,OPERATION/'-, OPERAND 

symbol SET b 



·--.....,...· 

._-·· 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-23 
UP-NUMBER PAGE REVISION PAGE 

where: 

b is a basic expression (2.5.5). 

The symbol in the label field is assigned the value represented by the basic expression in the operand field. Only a 
basic expression may be used. 

Operand expressions cannot be greater in value than +224-1. Set symbols may represent character strings up to 
eight characters in length; also, symbols originally set to an arithmetic value can be redefined to represent a character 
string of up to eight characters. 

12.8.2. LCL (Local-Symbol-Declaration) Directive 

The LCL directive is used to declare and initialize local set symbols before they are defined or referenced. The 
format of the LCL directive is: 

LABEL [\.OPERATION 6 OPERAND 

unused LCL symbol [,symbol, ... ,symbol] 

Each symbol which appears in the operand field is declared to be a local set symbol and is set equal to a null 
character string. 

Although the LCL directive is primarily for use within procedure definitions, it may be used at the basic source code 
level to declare set symbols which may be referenced only at the source code level. 

12.8.3. GBL (Global-Symbol-Declaration) Directive 

The GBL directive is used to declare that a symbol is a global set symbol. 

The format of the GBL directive is: 

LABEL 6 OPERATION 6 OPERAND 

unused GBL symbol [,symbol, ... ,symbol] 

Each symbol which appears in the operand field is declared to be a global set symbol, and is set equal to the null 
character string when declared for the first time. Declaring, as a global set symbol, a symbol which has already been 
defined as a global set symbol does not affect its value . 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-24 
UP-NUMBER PAGE REVISION PAGE 

Examples: 

LABEL !'::. OPERATION !'::. OPERAND 
10 Hi 

_J 

1. I-' ...................................... ....._ 

2. • _L__L l .• _ l 

_j_.L .. ~' ~' 

3.~l,,,L__L. . .1 

L 

. , ._L 

1. Declares the label WALT to be a global set symbol. 

2. Declares the label TED to be a local set symbol. 

3. Defines the value labeled WALT. 

4. Defines the value labeled TED. 

5. Redefines the value labeled WALT. 

6. Redefines the value labeled TED. 

· .. __ , 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-25 

UP-NUMBER PAGE REVISION PAGE 

12.8.4. DO (Start-of-Range) Directive 

The DO directive defines the start of the range of code to be generated repetitively and specifies the number of times 
it is to be generated. The format of the directive is: 

LABEL !':!.OPERATION!':!. OPERAND 

[symbol] DO b 

where: 

b is a basic expression (2.5.5). 

The expression in the operand field indicates the number of times the source code statements following the DO 
directive are to be produced in the object code. All lines of coding following the DO directive, until its associated 
ENDO directive is encountered, are generated. The value of the expression in the operand field may be any positive 
value or 0. 

Any valid source code statement may be within the range of a DO directive including other DO directives with their 
corresponding ENDO statements. DO directives may be nested up to 10 levels. 

The symbol in the label field, when specified, is used as a counter for the number of times a set of lines within the 
range of a DO statement have been generated. Its value is 1 the first time through the statements, 2 the second time 
through the statements, and so forth. It may be referenced in the same manner as a set symbol. 

If a DO directive is within the range of another DO directive and the nested DO directive is reentered, its count 
begins at 1 again. The value of the label of the DO directives is available to the statements following the ENDO 
directive even if the operation of the DO directive cycle is interrupted. 

12.8.5. ENDO (End-Range-of-DO) Directive 

The ENDO directive is used to signal the end of the range of a DO statement. The ENDO directive has the following 
form: 

LABEL !':!.OPERATION!':!. OPERAND 

unused ENDO unused 

For every DO directive there must be an ENDO directive to define the range. 



7935 Rev. 1 

UP-NUMBER 

Examples: 

1. 
2. 
3. 
4. 

SPERRY UNIVAC Operating System/4 

.·J 

l)i~L . .L 

12-26 
PAGE REVISION PAGE 

I 
l L 

l l 

5.i--i.-....._........._....._ ........ ~+._,_..__._.._-4-~-'-"'-'ll--'-7<.l..,,....; .......... """"--.b.....i.--'-~'--'-....:..-.......... _._~~"--'-~'"'-.......... -"-..__._........._._ 

6. 

9. ... .L.J. '-·•···'----'···· 

10..._._...._._._...._.__._+-+-_,__.__.__.._,_-+-'-'-..._._.___.__,___._._~-'-~-'-~-'---~-'---lr-'-"'-'--'--'-'--'-"---""--'-
11. DQZL..L 
12 .. 1--J-. .l._J_ 

13. 
1 ~- ---'··-·'---.i.-.L.. .. • 

15. ~--............ ~-~~,__,__,+--1=...........__...__..__'-1 
;__' ...__, ~'-'-Ir-'--'-'-........... 

llo.t-.1--'... 
1( 
18. Dl>.L#.l 
1 '3. 
2.0. ---L-~~.......I~-'-· 
21. 
22. 
23. 
24. 

-~ •• .J.. •• L 

1 .• ~~-. .l ... _L 

l__: .. ... . 1--1. . J__l ___ . L ... 

l -~~~ ..l . L__l. . ,L_l ....... L 

. L ~ ...•. L . 

Z 5.~~ -1---..+-4J!eJIX~'-L . .J,H-·.L......L •• ..i... • .L-1--•• ..;,~.-.c-...:..~--.;.....-..i...-~ . ...__l-,... •• .;.,....;. __ ....;..,_l-,.......1....-.~~-l....-'-

@ Lines 4, 5, 6, and 7 following the first DO directive (on line 3) are produced in the output five different 
times. The ENDO directive on line 8 signals the end of the lines of coding to be generated. 

@ Lines 12, 13, 14, 24, and the lines produced by the operation of the two DO directives (lines 15 and 18) 
are generated in the output 10 different times. 

@) Within each of the 10 sets produced by the DO directives on line 11, lines 16 and 17 and the lines 
generated by the operation of the DO directive on line 18 are produced in the output three different 
times. 

@ Within each of the 30 sets produced by the two DO directives (lines 11 and 15). lines 19, 20, and 21 are 
generated in the output five different times. 

NOTE: -~· 

The first DO directive produces 20 lines of output coding. The second, third, and fourth DO directives combined 
produce 550 lines of coding. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-21 
UP-NUMBER PAGE REVISION PAGE 

12.8.6. GOTO (Assembly-Branch) Directive 

The GOTO statement is used to direct the assembler to another point in the source code. The form of the GOTO 
directive is as follows: 

LABEL L'iOPERATION 6 OPERAND 

unused GOTO symbol 

The symbol in the operand field specifies the LABEL directive at which the assembler should resume p.-ocessing the 
source code. The following rules and conditions must be observed when using the GOTO directive: 

• The symbol used must be identical to the symbol in the label field of the LABEL directive. 

• A GOTO directive within a section of basic source code may not indicate a destination within a procedure 
definition. 

• A GOTO directive within a procedure definition may not specify a destination within another procedure 
definition and it may not specify a destination within a section of basic source code. 

• A GOTO statement, within the range of a DO directive that specifies a LABEL directive that is not within the 
same range, interrupts the operation of the DO directive and continues source code processing at the LABEL 
statement. 

• A GOTO directive may specify a destination point either forward or backward in the source code . 

• A period is allowed as the first character of the operand. The period will not appear on the assembly 
listing. 

• If the symbol in a GOTO statement is not ~atisfied by a LABEL statement, the assembler falls through to the 
next line of source code. 

12.8.7. LABEL (Assembly-Destination) Directive 

The LABEL directive is used to identify a destination point for the GOTO directive only. 

The format of the LABEL directive is as follows: 

LABEL 6 OPERATION 6 OPERAND 

symbol LABEL unused 

The symbol specified in the label field of the LABEL directive is not defined by the assembler in the usual way; 
instead, the assembler maintains a special list of LABEL directive symbols which are the only valid destination 
points for the GOTO directive. 

The GOTO directive may not specify a label that has not been defined by a LABEL directive. 

A period is allowed as the first character of the label field of a LABEL statement. The period will not appear on the 
assembly listing. 



7935 Rev. 1 

UP-NUMBER 

Example: 

LABEL 

l ' ..__. .... J_ • ..J. _:.__l 

z. 
3. 
J./.. 
5. l-J-..l-.l...-l--l.-..l.......1....-. 

6. 

SPERRY UNIVAC Operating System/4 

6. OPERA T!ON 6. OPERAND 
10 16 

-A ... 1 

' ··+-l······•-~·'··-~-- .. L _L_L .• LJ. _L_J. 

12-28 
PAGE REVISION PAGE 

L .. .L_ 1 

L~-L .... i. .. ,_J_ 

JQl-J-..l.-l.-'-'-'-""'--+-+-'-'-._,__-+--+_._._.__........___._,_._...._.__,.__.._,__"'--'-....._.__..__'-'-...__._-'-'-'--'-'--'--_.__._ 

11. 1----'---''--·'·-'-~--~--L -+--·+·· 

l2 . 
.l 3. "--'---'---' ·-~~ ---.L-~ ... .__, •... .L.~ •• ·'----4--

1 Jf. ~MIJJJ...Jl~ .L-1 ... l ~~----.1. ... _l_____j . L-1 _L 

15!-l-..l.-J..-'--'-'-.__._+..-i-......... _._i-I-.._... ........... _,__'-'--~-'--'---'-'-'-.........__.__....__.__'-'_~~-'-'--'-'-'-..._.__~ 
1 

..... L .. L ~-'~- ... ~ L_Ll .... Ll. 

The GOTO directive on line 3 provides an unconditional branch to line 8. Lines 9 and 10 and processed by the 
assembler; then line 11 specifies a GOTO to line 4, where I ines 5 and 6 are processed by the assembler. Line 7 
specifies a GOTO to line 14 where the assembler continues processing at line 15. 



-.___.. 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-1 
U P ... NUMBER PAGE REVISION PAGE 

13. Assembler Procedures 

13.1. SPECIAL DIRECTIVES 

The SPERRY UNIVAC Operating System/4 (OS/4) Assembler, by the use of special directives and conditional 
assembly directives (12.8). allows the programmer to specify and generate repetitive sequences of coding. To save 
time and effort required to write a series of instructions repeatedly and to eliminate possible errors in transcription, 
the series can be written once in a procedure definition. A procedure definition {proc) is a series of one or more 
assembler statements beginning with a PROC directive, followed by one or more NAME directives, and ending with 
an END directive. The PROC directive signals the beginning of a procedure definition. The NAME directive declares 
a label by which the procedure definition can be referenced. The END directive signals the end of the procedure 
definition. Each time the instructions are needed, a procedure call line is written. The assembler inserts 0 or more 
lines of coding at the point of reference. 

The procedure definition specifies to the assembler the coding and instructions for a particular operation, and the 
procedure call line specifies the variable parameters. The assembler then combines the coding of the procedure with 
the parameters to produce a specific section of coding. 

13.1.1. PROC (Procedure-Definition) Directive 

The procedure definition is introduced into the source program by the PROC directive. This directive is used to 
signal the beginning of a procedure definition. The format of the procedure definition is: 

LABEL !:i OPERATION !:i 

[symbol] PROC 

where: 

[l s 1] s,n 
s,n,k 
s,n,k, ... 

OPERAND 

s represents the name or symbol in the operand field to be used in referencing parameters. 

n is a decimal, self-defining term that represents the maximum number of positional parameters that are 
found in the proc call line. 

k represents keyword parameters. 

If the label field contains a valid symbol, it represents the label of the proc call line ( 13.4). 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-2 
UP.NUMBER PAGE REVISION PAGE 

The operand field specifies the names to be used when referring to parameters in the source code statement of the 
proc call line. The first subfield (s) must contain a valid symbol if any parameters are to be referenced, and the 
second subfield (n) must contain a number that indicates the maximum number of positional parameters that can be 
specified in the proc call line if any keyword parameters are to be referenced. The remaining subfields specify names 
used in referencing keyword parameters in the body of the procedure coding. 

A method is provided whereby the programmer can preset the value of a keyword. This preset value is automatically 
used if the particular keyword is not specified; however, the preset value can be changed or overridden by specifying 
a new value for that keyword. A predefined keyword appears in the operand field of the PROC directive as follows: 

k=v 

where: 

k represents a symbol or name which is used to identify the parameter. 

v represents the preset value. 

13.1.2. NAME (Call-Label) Directive 

The NAME directive specifies a name by which the procedure is referenced. The format of the NAME directive is: 

LABEL L'-.OPERATION 6 OPERAND 

symbol NAME [p] 

where: 

p is a parameter or a parameter sublist. 

The first NAME directive must immediately follow the PROC directive. More than one NAME directive may be 
coded but all must be at the beginning of the definition. Each such NAME directive specifies a different name for 
the proc. The symbol in the label field is available for reference within procs as well as at the source code level. 

The operand field is used to provide a parameter to the proc. When more than one NAME directive follows the 
PROC directive, only the operand of the NAME directive whose symbol is used to reference the proc is available to 
the body of the definition. 

Reference is made to the parameter or parameter sublist in the operand field by means of paraforms which are 
discussed in 13.3.1.1. 

Multiple NAME directives allow the programmer to specify a different parameter for each NAME directive and to 
select the parameter by calling on that particular NAME directive. The following example lists three NAME 
directives; the proc can be called by any one of them. 

·-~-



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-3 
UP-NUMBER 

Examples: 

1. 

2 
3. 

OPERAND 

1,_ia,1K~,Y1t,J<.1fY,.Z11 J<.1~X3, 
'b_Si 

.J 

1. MOVE1 calls in the procedure and provides parameter 25. 

2. MOVE2 calls in the procedure and provides parameter 50. 

3. MOVE 3 calls in the procedure and provides parameter 75. 

13.1.3. END (Proc-Definition-End) Directive 

PAGE REVISION PAGE 

I 
L 

' __ [_,] . ,_;__J __;___ 

The END directive is used to signal the end of a proc, as well as the end of the source module. An END directive 
format is: 

LABEL L OPERATION L OPERAND 

unused END unused 

The operand field should be blank. The assembler pairs each END directive with the most recently encountered 
PROC directive which is unpaired. 

The statements between paired PROC and END directives are defined as the body of a proc. An END directive that 
cannot be paired signals the end of the module to be assembled. 

13.1.4. PNOTE (Message) Directive 

The PNOTE directive may be used within a proc or at the source code level to generate comments and/or error 
messages on the printer listing. The format of this directive is: 

LABEL L OPERATION L OPERAND 

unused PNOTE e,c 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-4 
UP-NUMBER PAGE REVISION PAGE 

where: 

e is a message character string. 

c is a comments character string. 

The PNOTE directive indicates to the assembler that a comment line is to be generated in the output listing. The 
first subfield of the operand must contain either an asterisk or a character expression of not more than six 
characters. The second subfield may contain a character expression of not more than 79 resultant characters. When 
the first subfield contains a character expression, the resultant characters appear on the listing as error flags and the 
resultant characters of the second expression are printed as a comment line. If the first subfield contains an asterisk, 
an asterisk is printed in the error flag field and the resultant characters of the second expression are printed as a 
comment line. 

Any characters generated in the error flag field are treated as diagnostic errors. Message and error flags appear in the 
listing even when the NOGEN option of the PRINT directive is in effect. 

13.2. CODING PARAMETERS 

In order to activate a proc, certain information must be given to it at the time it is referenced. Each item of 
information is called a parameter and coded in a subfield on the line which calls a proc. A string of subfields 
separated by oommas is called a field and is the operand field for a proc reference. 

13.2.1. Types of Parameters 

There are two types of parameters: positional and keyword. The distinction between the two is in the way they are 
identified. Positional parameters are identified by their position within the operand field of the call line. Keyword 
parameters are identified by the symbols which are assigned to them in the call line. 

13.2.1.1. Positional Parameters 

Positional parameters must be specified before the keyword parameters in any call line. The order of the expressions 
in the operand determines the order of the parameters specified. Positional parameter specifications are separated by 
oommas. When a nontrailing positional parameter specification is omitted, the comma must be retained to indicate 
the omission. Thus if a proc call line has four positional parameters 

and the second one is not specified, the operand would appear: 

If the third and fourth parameters are not specified, the operand is written: 

If only the last parameter is specified, the operand is written: 

Thus, preceding or intervening missing parameters must be indicated by a comma. Trailing parameters which are 
missing need not be indicated. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-5 

UP-NUMBER PAGE REVISION PAGE 

13.2.1.2. Keyword Parameters 

Keyword parameters must follow the positional parameters, when both are used, on the call line. Keyword 
parameters need not appear in any specific order. Each keyword is equated to a symbol, value, or character string. 
Keywords are coded on the call line as follows: 

where: 

k represents a symbol or name which is used to identify the parameter and 

v represents the parameter value. 

Keyword parameter specifications must be separated by commas and can appear in any order. Because a keyword 
parameter is identified by name and not by position, a comma must not be used to indicate a missing keyword 
parameter. A comma must separate the last positional parameter from the first keyword parameter when a 
combination of both is used. 

If a PROC directive specifies three keyword parameters in the operand field 

and if the call line specifies only two of the three with the second keyword parameter missing, the format is: 

or 

or if the call line specifies only one of the parameters, the format is: 

If the value of the missing keyword parameters has been preset in the PROC directive, then the preset values will be 
used in the called procedure. If values have not been preset, then the missing keyword parameters are set to a null 
character string. 

13.2.1.3. Combined Positional and Keyword Parameters 

Both positional and keyword parameters can be specified in the proc call line. The following rules apply to the proc 
call line: 

• In all cases all parameters are separated by commas. 

• Positional parameters can be specified without keyword parameters, or keyword parameters can be specified 
without positional parameters, or a combination of both can be used. 

• Preceding or intervening positional parameters which are missing must be indicated by a comma; trailing 
positional parameters which are missing need not be indicated. 

• Omitted keyword parameters do not need a comma to indicate the omission. 

• Keyword parameters can be specified in any order. 

• An omitted keyword parameter that has been assigned a preset value receives the preset value in the procedure 
coding. 

• An omitted keyword parameter without a preset value receives a value of a null character string. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-6 

UP.NUMBER PAGE REVISION PAGE 

13.2.2. Parameter Sublists 

Each subfield in the proc call line can contain more than one parameter. Multiple parameters in either positional or 
keyword subfields are called parameter sublists. Each of the parameters in a parameter sublist is separated by 
commas, and the whole parameter sublist is enclosed by parentheses. A proc call line operand having a positional 
parameter sublist in the second subfield appears as follows: 

LABEL /',OP ERA TION /', OPERAND 

proc-name 

where each v represents a parameter. A keyword parameter sublist has the format: 

LABEL /';OPERATION/'; OPERAND 

kn =(vn 1 'v 2, ... ,v ) , n, n,m 
proc-name 

where: 

represents the symbol or name used to identify the keyword parameter sublist and 

represent the parameters within the parameter sublist. 

13.3. REFERENCING AND REPLACING PARAMETERS AND SET SYMBOLS 

A coordinate system is provided by the assembler for references to parameters coded on a proc call line. In addition, 
keyword parameters may be referenced by the keyword symbol alone. Parameter references may be coded in any 
statement within the proc. When the proc is referenced (called), the assembler replaces all parameter references with 
the information coded in the designated subfield of the proc call line. 

In this section, the referencing and replacing of set symbols is compared to the referencing and replacing of 
parameters in order to show the similarities and differences. The basic term paraform is a parameter reference form. 
Thus, a paraform is a reference to the parameter or parameter sublist in the operand field of the NAME directive, or 
a reference to the parameters on the PROC call line. 

13.3.1. Reference Formats 
,. 

References to parameters and set symbol values are usually made by coding the papiform or the set symbol at the 
place where replacement is desired. However, delimiters must be coded in certain cases to separate the reference 
from the remainder of the statement. 

Where replacement is desired in proc call line operand fields, in NAME directive operand fields, or within paired 
apostrophes, the reference must be preceded by a single ampersand. 

• Any data constant specification 

• Character self-defining terms 

• Hexadecimal self-defining terms 

• Binary self-defining terms 

• Character-strings or substrings 

•-._/ 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-7 

UP-NUMBE.'R PAGE REVISION PAGE 

A paraform or set symbol may be concatenated with other characters within the apostrophes. If the paraform or set 
symbol is followed by an alphanumeric character, a period, or a left parenthesis, a period (designating 
concatenation) must be coded after the reference. 

When a period follows a set symbol or paraform, the period is discarded when replacement occurs. For example, if 
the set symbol ABC has the character value '5' the term 

C'&ABC .. 7' 

after replacement would yield 

C'5.7' 

A set symbol or paraform may also be concatenated with other characters, set symbols, or paraforms to form a 
single term outside of paired apostrophes. The reference may be coded exactly as it would have been to concatenate 
with the same preceding and following characters within paired apostrophes. However, the leading ampersand is 
required only if the character preceding the reference is alphanumeric. In this case a period could be used instead of 
the ampersand with the same results. However, it is strongly recommended that the leading ampersand always be 
written. 

13.3.1.1. Paraforms 

Two types of paraforms are used within the body of a procedure to reference the parameters on the proc call line: 
positional and keyword. 

Positional paraforms may be used to reference any parameter on the call line. The format of a paraform is: 

s(n) 

where: 

s represents the name or symbol in the first subfield of the PROC directive operand field. This is the name 
used to reference parameters. 

n represents the numeric order of the positional parameters in the call line and/or the position of the 
keyword parameters in the operand of the PROC directive. 

The parameters are identified by the numbers assigned to the subfield they occupy. Subfield s(O) is defined as the 
operand of the line on which the procedure name is specified. Subfields s(1) through s(n) are defined as the n 
positional parameters coded on the proc call line. The maximum number (n) of positional parameters to be expected 
for any procedure is coded in the second subfield of the PROC directive operand field. The next subfields, s(n+1) 
through s(n+m). correspond to the keywords shown in the operand field of the PROC directive. 

Keyword paraforms may be used to reference keyword parameters only. A keyword parameter reference consists of 
the keyword itself coded in the statements where replacement is desired. No subfield is needed because the parameter 
value is identified by the keyword on the proc call line. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-8 

UP-NUMBER PAGE REVISION PAGE 

Example: 

LABEL L OPERA l'iON L OPERAND 
HI 16 

___ L ... 1 .... L .. ~ ..... 1 

! i l 

,,.i , .. L ..... L .. -""-

I ; 1 1 l I i [ 

The preceding example specifies six variable parameters and one fixed parameter. The fixed parameter is 
defined when the procedure is written (in this case 24). and the six variables are defined &BOB(1). &BOB(2). 
&BOB(3). &KEY1, &KEY2, and &KEY3. The parameters represented by &KEY1, &KEY2, and &KEY3 could 
also be referenced by paraforms &BOB(4), &BOB(5), and &BOB(6), respectively. 

These seven parameters can be referred to as paraforms and are referenced by: 

&BOB(O) represents the fixed value on the NAME line. 
&BOB (1) represents the first positional parameter. 
&BOB(2) represents the second positional parameter. 
&BOB(3) represents the third positional parameter. 
&BOB(4) represents the first keyword parameter. 
&BOB(5) represents the second keyword parameter. 
&BOB(6) represents the third keyword parameter. 

LABEL L OPERATION L OPERAND 

TRANSFER 4.,2,KEY3=7,KEY2=10 

The preceding procedure call line allows replacement of the paraforms with these values: 

&BOB(O) is 24. 
&BOB(1) is 4, the first positional parameter~ 
&BOB(2) is a null character string. 
&BOB(3) is 2, the third positional parameter. 
&BOB(4) is a null character string. 
&BOB(5) is 10, for the second keyword parameter. 
&BOB(6) is 7, for the third keyword parameter. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-9 
UP-NUMBER PAGE REVISION PAGE 

Missing parameters are equated to a null character string. f. procedure can have more than one name assigned by the 
NAME directives and each name can have a different value in the operand field. The different values can be selected 
by specifying the appropriate name in the call line. 

If a subfield contains a parameter sublist, a different numbering system is necessary to reference its contents. A 
matrix notation system is used where the first number indicates the subfield and the second indicates the parameter 
within the subfield. A paraform referencing a parameter within a parameter sublist would have the form: 

s(n,i) 

where: 

s represents the name or symbol used for referencing the parameters. 

n represents the subfield number. 

represents the parameter number within the subfield. 

In the previous example, if the operand field of the NAME directive had been 

then: 

(24,17) 

&808(0, 1) would be replaced by 24. 
&808(0,2) would be replaced by 17. 

When a parameter sublist is coded in a subfield and the subfield only is addressed, the paraform is replaced by all the 
characters in the sublist including the surrounding parentheses. Thus in the previous example where the NAME 
directive of the operand contained a sublist, the reference &808(0) would be replaced by: 

(24,17) 

If the operand had contained a sublist of three factors 

(32,, 12) 

then: 

&808(0) would be replaced by (32,, 12) 

Keyword paraforms may be used to reference parameters in a keyword parameter sublist in the format: 

k(i) 

where: 

k represents the keyword symbol. 

represents the parameter number within the subfield. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-10 
UP-NUMBER 

Thus, if the following proc call line were coded 

then: 

LABEL 

&KEY1 
&KEY1(1) 
&KEY1(2) 

13.3.1.2. Set Symbols 

L'. OPERATION L'. 

PCL KEY1=(14,56) 

would be replaced by (14,56). 
would be replaced by 14. 
would be replaced by 56. 

PAGE REVISION PAGE 

OPERAND 

The expressions and values which set symbols represent may be referenced in the assembly module anywhere they 
are defined. The set symbol itself-is coded where the value is desired. The assembler replaces the symbol as explained 
in 13.3.2.2. 

Although it is seldom necessary to precede set symbol references by an ampersand, it should be done to differentiate 
the set symbol from the other characters. 

13.3.2. Replacement 

References to parameters and set symbol values cause information to replace those references in the source code 
line. The format of the references and the rules for where references may occur are similar to those for keywords, set 
symbols, and paraforms. However, parameters are not replaced by the same method as set symbols. 

Replacement is subject to the following limitations: 

• Parameter and set symbol replacements may not be used to construct other parameter or set symbol 
references. 

• Character substrings and the concatenation of character strings may not be used to construct parameter or set 
symbol references. 

• Parameter and set symbol replacements and character manipulation may not be used to construct the 
following directive mnemonics: 

SET, DO, ENDO, PROC, NAME, END, ISEQ, ICTL 

• Assembler directive and operation code mnemonics should not be used as set symbols, keyword names, PROC 
directive labels, or DD statement labels. 

• Parameter and set symbol replacement may not be used to construct the type subfield or the character L in 
DC, DS, or literal operand fields. 

13.3.2.1. Parameter Replacement 

Parameters which appear in the operand field of a proc call line or a NAME directive are not evaluated. Parameter 
references and set symbol references that appear on a proc call line are replaced but are not analyzed. Information 
coded as a parameter is treated as a collection of one or more characters delimited by commas. 

. ...___./· 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-11 

UP-NUMBER PAGE REVISION PAGE 

In any statement other than proc call lines, after the set wmbol values have been referenced and all the paraforms 
and keywords have been replaced by the characters from the appropriate parameter subfields, the newly constructed 
source code line is scanned for conversion and evaluation. This allows the programmer to submit parameter 
combinations of characters which could not otherwise be used. 

Example: 

Given the following proc call line 

LABEL OPERAND 

L .l. .J 

the following line coded within the proc 

I 

, .. ·~~:!&Pi131)L 

would effectively produce the following line 

and no error flags would occur. If the characters 1 B had occurred anywhere else in the module as a term (e.g., 
2+18+34). they would have caused an expression error to be generated. 

13.3.2.2. Set Symbol Replacement 

Set symbol replacement differs from parameter replacement. The expression or character string which the set 
symbol represents has already been evaluated. The expression in the operand field of a set directive has been 
converted into a binary value. When the set symbol value is referenced, it is converted to a string of decimal digits 
which represents that value. These decimal characters then replace the set symbol reference as part of the newly 
constructed source code line. When the set symbol represents a character string, no conversion is necessary; thus 
characters of the character string replace the set symbol reference. 

After all set symbol value and parameter references have been replaced, the new source code line is converted and 
fully evaluated. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-12 

UP-NUMBER PAGE REVISION PAGE 

Example: 

Given the following SET directive statements: 

LABEL !::, OPERATION/::, OPERAND 
10 16 

and a reference to those symbols 

I ' 

+-l~~~-L+__p,11!...ll""L F ,A I+ I I I __L_l_L.L .. L..LLL .. L J..,. ..• '--1..--'--'---'---'L-o.l .. - .. L. ..• • .. -..L.......'-..l.--L-'

'"-'-''--'--'--'--~~.L..+--J=!=i.::L..-L-f-~&+.1.?t.7LLLL.LJ__L_J __ J ..... L.1 ... L . .i....~-~• .......LLJ.l..-'1.___.__,__,__-'--''-

then the effective results after substitution would be: 

The value that symbol BETA represents is 256, and if BOB represents the value 17, then Y would represent 
the value 44. 

13.3.2.3. Null Character-String Replacement 

When a parameter is referenced but is not present on the proc call line or when a set symbol is referenced after it has 
been declared but before it has been defined, the reference is treated as a null character string. A null character string 
is a convenient representation of a void. Null character strings generated from references to undefined set symbols or 
parameters delete the original reference. 

Given the following proc call 

LABEL /::, OPERATION /::, OPERAND 
10 16 

this statement within the proc 

' : I I I i I I I I _.L..l_] __ L_L_l__.i_J_L.L...l_LJ__j_ i..:.._t___L.L.L 

E_Q!,IL_LJ......L.t413 ,+1 T,b_M__.u_.L..L..L __ LLL .... L.L..J_L_L_.L __ L_L.....L_.L 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-13 

UP-NUMBER PAGE REVISION PAGE 

would appear and be processed as follows: 

LABEL LiOPERATIONLi OPERAND 
10 16 

The null character string may also be coded in certain places in the source statements. As coded, a null character 
string consists of two successive apostrophes which are not inside any other paired apostrophes. It should only be 
coded as a separate term in arithmetic expressions. Unless it is an argument of a relational operation, a null character 
string is treated as 0. 

In a relational operation, the null character string can be used effectively to test for the presence or the absence of 
parameters. Thus, given the preceding proc call line, the following expression would have a value of 1; 

and these expressions would have a value of 0: 

In a relational operation in which one operand is a paraform or set symbol that may be replaced by the null 
character string, it should be coded as the second operand. 

13.4. CALL LINE LABELS 

The label of a proc call line is represented by a dummy label which is specified in the PROC directive statement label 
field. The dummy label is coded within the proc wherever the call line label is to be generated. When the proc is 
called, the call line label replaces the dummy label wherever it is coded. If there is no label on the call line, the 
dummy label is replaced by a null character string. The dummy label may be coded in the label operation code, 
and/or operand field of any instruction, directive, or proc call statement (except special directives) within the proc. 
It is used like a set symbol (13.3). 

13.5. NAME LEVELS AND PROC NESTING 

A Proc reference may appear within a proc definition; this is considered a second level reference. A maximum of 
three levels of proc references may be generated within an assembly module. At the source code level and at each of 
the three proc levels, set symbol definitions may be declared to be available for reference anywhere in the module. 
Set symbols declared this way (by means of the GBL directive) are globally defined. When a set symbol is declared 
to be locally defined (by means of the LCL directive), its definition may only be referenced at the level where it is 
declared. A set symbol locally declared at the source code level is not available for reference within procs and one 
which is locally declared at some proc level can only be referenced within that proc. Locally declared set symbols 

·'-· may be used within procs or at the source code level without fear of conflicting with set symbols defined locally at 
some other level or globally throughout the module. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-14 

UP-NUMBER PAGE REVISION PAGE 

Keyword symbols, the dummy label, and the symbol used to reference positional parameters are treated in the same 
way as locally declared set symbols. They cannot be referenced outside of the proc in which they are declared. When 
the proc is completely processed, all the locally declared symbols and their values are discarded. 

13.6. METHOD OF WRITING AND REFERENCING PROCS 

Although the following examples are limited to procedures within a given program, the system library also contains 
procs. A call on a library procedure causes that proc to be brought into memory. The assembler then substitutes the 
input information given in the operand field of the call line and produces the required object lines. 

The generation of code from a given procedure is done only at assembly time when a proc call is encountered. The 
coding thus generated is an integral part of the object program. 

Program-defined procs must precede all other statements in the source code module. 

Examples: 

1. 

The following examples illustrate all of the pertinent points and rules necessary in writing and generating 
procedures. 

In a given program it is found necessary to compare two numbers frequently and to load the smaller of the 
two numbers into a register. The symbolic labels assigned the storage positions to be compared are BOB and 
JOE, respectively. Because the same load and comparison must be done several times, a proc to generate the 
proper code can be written. Such a proc might look like this: 

LABEL /::, OPERA TIOM /::, OPERAND 
10 16 

t--'---'-----'--'--'---'--'---1-4' 

2' l.w.JIC.lJ.C:W•-U..L_l__!___J - '' ~ _) _ _L L.J ___ L.J.__J _Li __ L_J _ _i_J ···'·--'-·····'--L,,.,, _ __._ __ ,,,,,__.__L' ·'---'···· ····'--'-······-'--'----'--

3. ,_..~~~ - ,, 161D1B I _L.J__j I I I L .... L.L_J_L_l___.i__LLLLL_i_t_l-LL ... L.1-

4 ......... ~~~~~ ~'-->--+"6~;) u ,0,E1 I I I __.J__j__L_L_.J_J_LL._L_L;__LJ_J__J_J_LJ_j_ __ L__L _ _LJ._ 

5 . .,._._ ........... _._.._._..1..-f-+'"'-="'-..._..-+-..,._,_+~8=--._._ .......... _._.._._...._.._._........__........._._........__._._._.._..._._.._._ .......... _._ 

b,,1-'--'--'--'--'-· -'--+-t-"b"'-'+.@E1 I I L_L ... L LL LLJ~_ L_L_J I I i 1...~·~l __ _L 

7.l--'--'--'--'L.......l..-'--'---1f-F=--'-'=-L-~-

1. Initiates a proc. 

2. Names the proc. 

3. Loads the contents of BOB into register 6. 

4. Compares contents of JOE to register 6. 

5. Branches out if BOB is smaller. 

6. If JOE is smalll!r, loads JOE into register 6. 

7. Ends the proc. 



7935 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/4 13-15 

PAGE REVISION PAGE 

Register 6 has been designated to contain the smaller number. When the following proc call line is encountered 
in the source code 

LABEL 6 OPERATION 6 OPERAND 
10 16 

lines 3 through 6 within the proc are generated and inserted at the point where the proc call, SMALL, is 
encountered. 

In order to compare two numbers not located in BOB and JOE, and to store the smaller number in a register other 
than register 6, the following proc could be coded to allow parameters. 

~Rbc 
]MAME 
1L 
~ 

L;BJ"'·'' i iL. 11 . ' 
J IEMU 
l i 

&P)3 
p 
~.P(;I .). }&P( 2) 
~-P( f.)1 )&1'(3) 
~+8' 
~i): (T.)''',~&:PI35. 

I 
l 
I . 

1. Initiates a proc with parameters. 

2. Names the proc. 

3. Uses paraforms to reference parameters. The &DL in the label field causes the symbol in the label field 
of the call to be defined as the label of this instruction. 

4. Uses paraforms to reference parameters. 

5. Branches out if &P(2) is smaller than &P(3). 

6. If &P(3) is smaller than or equal to &P(2). load &P(3) into &P(1 ). 

7. Ends the proc. 

The &P,3 on line 1 specifies that there are three positional parameters in the body of the procedure; these 
parameters are referenced on lines 3, 4, and 6. Note that a parameter can be used many times. 



7935 Rev. 1 
SPERRY UNIVAC Operating System/4 

13-16 

UP-NUMBER PAGE REVISION PAGE 

A calling statement to generate the same object code as in the previous example would contain these expressions in 
the call line: 

Using the same procedure, other values can be compared and another register can be used by coding: 

where TEMP and CONT represent the addresses of two other numbers, and the 3 represents register 3. 

To provide a more general procedure to handle two numbers anywhere in storage, using any register and also 
comparing for either a smaller or larger factor and storing that factor in the register, a proc could be written as 

follows: 

l.~l)L :P'R~C ~1',3 
2.~MALL !~AME. :o 
·31,.AR<S:E i1J.AME II 
LJ.~l)L IL . ; &PC I) '>&P (2) 
,5.j ... _. ... i.~. . jJ~~'.P{;Ll""J.&P(3}.. 
61 jOO : ~'P:(O) =I 
7.l jBH 1*+8 
s.I SO\~ , lT~1', 
~1 ~po, jJ., 
jQ • .,

1 
.. ,,., ... ·-···'···-·•···-4·-':""""~L~--·- 4 ·· ~:.±8. _ .. _ . ..J.. ••• ~.~-·····1~···-~'----'--'--·~-·-···~,,;.--~--·· .. ·-·-'-~~~ •• ~~---'-~ 

! I 

11 A~EL..t 1 .. L : ' ·' ' ··'· ' i ' 

12 :. j ~PlC L}. ,&t1?{3J' 
p, · ! I 

l.. 

1. Initiates a proc with parameters. 

2. Names the proc for smaller comparison. 

3. Names the proc for larger comparison. 

4. Uses paraforms to reference parameters. 

5. Uses paraforms to reference parameters. 



"-...,_.-· 

7935 Rev. 1 

UP-NUMBeR 

SPERRY UNIVAC Operating System/4 13-17 

PAGE REVISION PAGE 

6. Does the following two lines of coding if &P(fl) equals 1 (this makes comparison for the larger of two 
factors). 

7. Branches out if &P(2) is larger. 

8. Branches to label defined as TND. 

9. Terminates DO statements. 

10. Branches out if &P(2) is smaller. 

11. Defines TND as a GOTO label. 

12. Uses paraforms to reference parameters. 

13. Ends the proc. 

A call line using the proc name SMALL generates the same object coding as in the previous examples, because the 
expression in the operand field &(P(O)) of the DO line is O; therefore lines 7 and 8 are not evaluated. If the following 
call line is used 

LABEL /':, OPERA TIOU /':, OPERAND 
1() 16 

then the DO line expression is equal to 1, lines 7 and 8 are evaluated, line 10 is skipped, and the followiRg object 
statements are generated. 

A simpler procedure to accomplish the same result can be coded: 

'·i&DL 
2$MALL 
3.tLA~GE 
'ta"DL 
).l '\ ... 

'-i 

-i: 
8i ; 

'P'Rbc 
}JAME 
W\ME. ; 

L 

&P 3 
; \ 

L 
H 
&Yf 1) • &:P (2) 

.F :·~P(1J+&PJ31 
'B8P(p); *+8 
L . ~1'( I ) I &P( 3) 
1E~ 



7935 Rev. 1 

UP-NUMBER 

SPERRY UNIVAC Operating System/4 
13-18 

PAGE REVISION PAGE 

1. Initiates proc with three parameters. 

2. Names the proc for smaller (low) comparison. 

3. Names the proc for larger (high) comparison. 

4. Uses parameter reference forms for the register (&P(l), displacement (&P(2, 1)), index register (&P(2,2)), 
and base register (&P(2,3)). 

5. Same as line 4 except uses parameter 3 instead of 2. 

6. Branches out. &P(O) varies either Lor H depending on the call line. 

7. Same as line 5. 

8. Ends the proc. 

The character Lor H on lines 2 or 3 replaces the parameter &P(O) in the source code line on line 6. Line 6 is then 
evaluated as either: 

LABEL /:::,. OPERATION /:::,. OPERAND 
HJ 16 

l ... L 

or 

··1·rLL ... L.Lf-t-··1 ..... Lt . .l. 
~-··-~·~'--·· t-LL.:.... . : H.L.. ..Li . ~--1 

... L.L ... L . .1..L.Li · .. L..L.t.L. 

The explicit form of base displacement addressing with the ability to specify index registers for the generated 
instruction can be provided by the following: 

?Rbc 
NAME 
NAME 
L &1'( I) ,&1'(2, I) ,&1'(2 ,2) l&'P(2 '3 ). 

LC . . .. ~J' {J ) ·}'&P ( ~t) L).l.&1?~ 3 1 2) l&_E_(3." il __ _ 
"B&-P(O); -*+8 
L 81'( I) ,&'P(3) I) (&P(3,2) 1&'P(3, 3)) 
E~D 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-19 
U P·NUMBER PAGE REVISION PAGE 

If the proc call line is specified as follows: 

LABEL /':,. OPERATION /':,. OPERAND 
10 16 

the following object coding would be generated: 

1. 
l.~_.__,_ __ .....__, ..... J_~~-4-+=.L-L_.l..-~.--\-
.3, !-. ...L .... L .. '--1--"'--1.- .L..+-l' 

'i.l-J..,...l.-l-.J......L......l-1....~!:1......1.......J......l.-J-..P::::.i+'L.!...!11!:...i..:.1~:J.1-!-!....i=:.l.L:..~-L...:......l.-l.-...l......J....-i.......J-........... ...J......l......l.-'-.i-.l._.._J.......l.. 

The generated coding on line 1 specifies loading into register 6 the contents of a location whose address is 
determined by adding the displacement 50 to the contents of index register 4 and then adding the contents of base 
register 15. Lines 2 and 4 are handled similarly by using the displacement of 150 plus the contents of index register 
5 plus the contents of base register 15. 

If one of the numbers is already in the correct register, then the first load instruction need not be generated. By 
omitting the second parameter on the call line when the number is in the register, the proc can test that subfield to 
determine when to generate the first load instruction. 

I. 
z. 

&P,.3 
[L 

..! - - -·L--..... ~---~ 

' ~ ........ ~~ 

f l 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-20 

UP-NUMBER PAGE REVISION PAGE 

4. Declares a local set symbol for use in inserting the label of the proc call in the first generated I ine. 

5. Sets the local set symbol to the character string in the label of the proc call line. 

6. Generates the load instruction only if the call to this proc has a non-null second operand. 

7. The load instruction, if generated, always has the label of the proc call. 

8. Sets the local set symbol to a null character string so that line 8 will be unlabeled if line 7 is generated. 

10. Defines the label on the proc call line only if line 7 is not generated. 

If the call line for the preceding is: 

f 1 
LABEL OOPERA TIONll. 

to 16 
OPERAND 

j ;,_ J 1 l 

then the object code of the following statements would be generated: 

... LL .. C. _j_ .. 

.L1 .L..J 

A proc call such as: 

.. i .L L + . ' . i ' .. 1.1" ·······'·-·'--- -' _; i. .... l .. . _\. . ··-'··· -~-.-' --· - - - .. . 

_~-''~'~(SJ 
~1-t ... LL 

L.LJ ... -L-J. .... 

... L±_~LLJ .. L' 

J,J_i_~J~l~~)).i_ .! 

_L_L 

would generate the following statements in object coding: 

_ 6 _, jR~BLf1J__L_1 
L-~--.L-4-·· ~.J-)-ll,LfilLL~JLJ 

--1±Lfl.l 

~1,JL~~E!(;~,) 

' ' 

.! 

L_i___;_L_J .Ll.L-L 1_L_.L 

.L ... L. .L 

' L-'--! _.L.._l . .,,i._ 

-'--~ L_:.. .. .l~.J ... L .. : ... .L 



·..___..,· 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-21 
UP-NUMBER PAGE REVISION PAGE 

13.7. VARIABLE SYMBOLS 

A variable symbol may be used as any of the following: 

• a symbolic parameter 

• a set symbol 

• the label of a DO directive 

• the label of a PROC directive 

• a system variable symbol 

A variable symbol consists of from two through nine characters, the first of which is an ampersand (&),the second a 
letter or special letter, and each of the remaining characters a letter, special letter, or digit. A symbolic parameter 
represents the label or the macro instruction or one of the operands of the macro instruction by which the macro 
definition is called. SET symbols and the DO directive are described in 12.8 and 12.8.4, respectively. System variable 
symbols are described in 13.7_2. 

13.7.1. Use of Variable Symbols 

SET symbols are replaced whenever found, including operation fields and label fields, except for SET statements. 
Therefore, assembler directives and mnemonic operation codes are not permitted to be used as: 

• SET symbols ( LCL or GBL) 

• keyword parameters 

• labels of PROC directives 

• labels of DO statements 

13.7.1.1. Concatenation of Variable Symbols 

A variable symbol may appear in a statement concatenated with other variable symbols or other characters_ If a 
variable symbol is to be immediately followed by a letter, digit, left parenthesis, or period, a period must be written 
after the variable symbol to distinguish the variable symbol from the characters following it. The variable symbol 
and the period following it are replaced by the characters representing the value of the variable symbol_ The period 
does not appear in the resultant statement. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-22 

UP-NUMBER PAGE REVISION PAGE 

13.7.2. System Variable Symbols 

System variable symbols are assigned values automatically by the assembler. Two of these symbols, &SYSNDX and 
&SYSECT, can appear only in the label, operation, or operand fields of statements in proc definitions. Two other 
system variable symbols, &SYSDATE and &SYSTIME, can appear in proc definitions or in source modules. 

13.7.2.1. &SYSNDX 

The system variable symbol &SYSNDX is used to prevent the occurrence of doubly-defined labels; that is, 
&SYSNDX can be combined with other characters to create unique names for statements generated within the same 
proc definition. 

Initially, &SYSNDX is assigned 4-digit number 0001 to correspond to the first proc definition processed by the 
assembler. For each subsequent proc definition, symbol &SYSNDX is incremented by 1 so that it effectively keeps a 
running count of all procs being processed. Thus, if &SYSNDX is used in a proc definition, the value substituted for 
it will correspond to the current proc definition being processed. 

Throughout one use of a proc definition, the value of &SYSNDX remains constant, independent of any nested procs 
within that definition. 

The following coding example illustrates the use of the &SYSNDX symbol. The assumption is that the program is 
calling the same proc twice, and that the proc itself (called MAIN) contains a nested proc (called NEST) . 

2. 

4. 

. i L l 
I 

L 
l 
I 
I 

,:. __ l .. ~---·--l,. .... t 

L_L , 
' l 

..... L __ ....... _ ~' ~, ___ ..;,___ 

... L __ j__ ____ :.__ _ _;_ ___ 1 .... L __ ._ __ 

..i .i ... .::.....;; __ . ··-l~--~--

_L .l .... • L ..... ~ .... 

....... --1 _____ ;_ __ ..__ . .l 

x .. 1 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-23 

UP-NUMBER PAGE REVISION PAGE 

Coding continued: 

LABEL f10PERATION6 OPERAND 
10 16 

5. 

8. Gene ra"ted Code . . ~ - ,_ 

K!lUM__~-+·---'-~------+----f-~t"~...f..~--
-· Gen~ra"ted.~e , (fini."tcall) 

f'r"om NESI proc 
,(fi.v-s.°t'c~\I) . 

14. 

15. 
,_ l ' ~-- j l ~ "' ' j l -

16. A.o...00ii.t , , 61 1 __ , , Genensted Code 
GeneraTep Code 
.-from Mt\1"1 pVt>C. 
(_second ca 11 ) 

\1.1--_._._ _ _._,_+-l"""""--'-'-+-l'-A=·3.._b_._L _·-~-· _· _-·_· _._.f_(~_o_:_· ~-es_C6_:r_t~1 \'""OC.~ ~------~- - --·--·~··--
18 •... l ! t~QQft J .~ l . 

19. o~o3, f''s . . l _ .. 

I 
. - l l . 

1. Start of nested proc definition. 

2. Start of main proc definition. 

3. &SYSNDX is initially assigned the value 0001. 

4. Call line for nested proc. 

5. Start of main program (showing all generated coding). 

6. Call line for main proc (first time). 

7. &SYSNDX = 0001, &NDXNUM set to 1 (leading O's dropped). 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-24 

UP-NUMBER PAGE REVISION PAGE 

8. Call line for nested proc (first time). 

9. &SYSNDX = 0002. 

10. &NDXNUM = 1 (from main proc). 

11. &SYSNDX = 0002. 

12. &SYSNDX = 0001, within first call to MAIN. 

13. Call line for main proc (second time). 

14. &SYSNDX = 0003, &NDXNUM set to 3 (leading O's dropped). 

15. Call line for nested proc (second time). 

16. &SYSNDX = 0004. 

17. &NDXNUM = 3 (from main proc). 

18. &SYSNDX = 0004. 

19. &SYSNDX = 0003. 

13.7.2.2. &SYSECT 

The system variable symbol &SYSECT is used to represent the name of a control section in which a proc call 
appears; that is, for each proc call processed by the assembler, &SYSECT is assigned a value that corresponds to the 
name of the control section in which the proc call appears. 

Control section statements (CSE CT or DSECT) processed in a proc definition affect the value for &SYSECT for any 
subsequent nested procs in that definition. However, throughout the use of a proc definition, the value of &SYSECT 
may be considered a constant, independent of any CSECT or DSECT statements or nested procs. The name assigned 
to &SYSECT will always be that of the last CSECT, DSECT, or START statement, regardless of whether that 
statement is correct. 

The following coding example illustrates the use of the &SYSECT symbol. Here, the program is calling two procs 
(called MAINA and MAINS) in succession, the first of which (MAINA) involves calling the same nested proc twice in 
succession. 

·--· 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-25 
UP-NUMB~R PAGE REVISION PAGE 

--------·------------------------------------
LABEL 6 OPERATION 6 OPERAND 6 COMMENTS 

I 10 16 

I. -MESECJ;--lP:R~C I &,; ... 0 
• L__, J. L - • , __ ' l I I·--' l 

1eS;-r 1 •• ~ AME. 1 

N.r;si:;c.r _ . Ise.cl . _J • 

__ l_ .. , L __ J C. 
~ 

C&iY1SE.c:r). ~- i._ _ __J_____ j___J_ __ .LJ_ • l L L . .....i 

2. 

6. 

·-·- l . ..L.i 
.L.l , ___ j L 

-~ -- l _j_J_ L.L 

,__J_j_ ____ Li_ 

12. 
13. -· 

l -- ' l 

,. 

;_ i ! I-" _l ' 

L.l L._1 ! l ~ , _ , _ _.___ L_ l -+-

.L [ 

1 .. -.-.L 

---' i.~ 

t_i • --' 1 - ·-· _ _i...._l_ <.-L l 

l _l 

..... _ .... i l -- J .. J 

L. 

1 ___ _. I _J -- - __ L I L. - !. j l - t ...:__ j I 

J -- I -~-. __ L. _;_ __ [ _~" 

(>-LEST A), , 
__ (MAI.t-fPRbG:} 

G_eoe.~at~.Code~ _ . _ 
NE.~T_pmc,~_c:aU). 

L 

L - .J. __ 1 

1 ... -1 

t.r+. __ A~;P~, -· LJ J -- ._.L • _ _L, j .L - , - , --- . ' L L j -~--A--.l __ _ 

I •.. 

i ' 

' ! 

15.l-L~~.....J--'-+-l.:.ID..W::i!Ul-+-..L....~~-L.J_L~;__"""4-_;_~_L_~_;_~_;_~~----~-:-'--~~~~-'-~~ 
f b. ' l L .( M..Al.1-J:PRh.aj_J j~~~r~te? c~~ f'_r·c:~"t~:a, P,t-oc:r 

___ l J 

I __J : _ _L 1 -"'· I l L , .I. __ 1 1 -~- '· _..l,__ .• --- - ~ 

-.... l ; _j L_J 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-26 

UP-NUMBER PAGE REVISION PAGE 

1. Start of nested proc definition. 

2. Start of main proc A definition. 

3. Call line for nested proc NESTA. 

4. Call line for nested proc NESTB. 

5. Returns to the CSECT under which code was being generated when MAINA was called. 

6. Start of main proc B definition. 

7. Start of main program (showing all generated coding). 

8. Call line for main proc A. 

9. Call line for nested proc NESTA. 

10. &SYSECT = CSMAINA. 

11. Call line for nested proc NESTB. 

12. &SYSECT =NESTA. 

13. Return to main proc A (&SYSECT = MAINPROG). 

14. Returns to the CSECT under which code was being generated when MAINA was called. 

15. Call line for main proc B. 

16. &SYSECT = NESTB. 

13.7.2.3. &SYSDATE 

The system variable symbol &SYSDATE provides the date of the assembly. The format of &SYSDATE is the 
character string mm/dd/yy representing month, day, and year. The value of &SYSDATE is constant during the 
assembly. 

13.7.2.4. &SYSTIME 

The system variable symbol &SYSTIME provides the time of the assembly. The format of &SYSTIME is the 
character string hh:mm representing hours and minutes. The value of &SYSTIME is constant during the assembly. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 14-1 

UP-NUMBER PAGE REVISION PAGE 

14. Error Messages 

14.1. MESSAGE TYPES AND FORMAT 

Fatal, diagnostic, and academic are the three levels of error messages provided by the assembler. Each error message 
(flag) is a single alphabetic character. The assembler analyzes each source code statement (except after a fatal error) 
as it processes the statement. When an error is found, the appropriate flag is printed on the same line as the source 
code statement containing the error on the program listing to the left of the relative storage address. 

14.2. FATAL ERRORS 

Fatal error flags signify that the processing of any remaining source code statements would produce meaningless 
results. The assembler produces a partial I isting of the program but all statements are not completely analyzed. 

The fatal errors are: 

• ESID Overflow - B 

• Storage Overflow - F 

14.3. DIAGNOSTIC ERRORS 

Diagnostic error flags signify incorrectly specified source code statements. These errors are not serious enough to 
prevent the normal processing and the generation of binary output; however, they prohibit execution of the 
program. The appropriate flags are printed on the program I isting on the same I ine as the statements containing 
errors. 

The diagnostic errors are: 

• Expression Not Relocatable - A 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 14-2 
UP-NUMBER PAGE REVISION PAGE 

• Covering Error - C 

• Duplication Error - D 

• Expression Error - E 

• Statement Too Large - G 

• Boundary Alignment - H 

• Operation Code Error - I 

• Syspool Overflow - K 

• Location Counter - L 

• Undefined Symbol - U 

• Internal Assembler Failure - V 

• Continuation Error - X 

• Too Many Nested DO or PROC Directives - Z 

14.4. ACADEMIC MESSAGES 

Academic message flags signify that certain actions have been taken by the assembler. These actions can be caused 
by erroneous coding or by the programmer who wishes to obtain a specific result. Academic messages do not 
prohibit or have any effect on the output of an assembly, and these occurrences are not considered serious in nature. 

• Conditional Assembly Error - M 

• Name Field Error - N 

• Relocation Information Dropped - R 

• Statement Out of Sequence - S 

• Truncation - T 

• Symbol to a Character String - W 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 14-3 
UP-NUMBER PAGE REVISION PAGE 

14.5. ERROR MESSAGE SUMMARY 
-..__.,.· 

Table 14-1 is a summary of all error messages, the type of error, and the meaning of each message. 

Table 14-1. Error Message Summary (Part 1of3) 

Flag Level Explanation Response Action 

A Diagnostic Expression not relocatable - An Replace absolute expression with relocatable 
absolute expression is provided expression. 
where a relocatable expression is 
required. 

B Fatal External symbol identification Reduce number of ESIDs to conform •o limit 
(ESI D) overflow - More than 254 of 254. 
external symbol identifications 
exclusive of COM are specified. 

c Diagnostic Covering error - No valid base Specify appropriate base register. 
register can be found to cover 
or reach the effective storage 
address and still have a displace-
ment value from 0 to 4095. 

D Diagnostic Duplication error - A label is Eliminate duplicate labels. 
defined more than once. Set 
symbols can be redefined without 
producing a flag. 

E Diagnostic Expression error - The operand Correct incorrect formats. 
field for an instruction or a 
directive has an incorrect 
format. 

F Fatal There is no more space available 
to the assembler for expanding 
tables during macro generation. 
This does not apply i.o literals, 
location counter derived symbols, 
and symbols defined by the EQU 
directive. 

G Diagnostic Statement too large - The number of Either decrease size of statement, or 
characters included in the increase the size of buffer. 
statement exceeds the size 
of the buffer from which 
the statement is processed. 

H Diagnostic Boundary alignment error - Refer to Correct alignment. 
the II PARAM LST=(4) statement in 
E.2.3. The operand addresses of RX, SI, 
and RS instructions are checked for 
boundary alignment. The flag is generated 
if the address violates the boundary 
alignment rules. 

I Diagnostic Operation code error - An Correct specification. 
illegal operation or an 
undefined operation is 
specified. 

K Diagnostic Syspool overflow - The disc Remap the syspool using DACMAP (utility 
assembler has overflowed the and service routines, UP-7713) and resubmit 
syspace area allotted to job. If problem persists, additional syspool 
processing EXTRN and ENTRY area must be allotted to the job. 
records. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 14-4 

UP-NUMBER PAGE REVISION PA GE 

Table 14-1. Error Message Summary (Part 2 of 3) 

Flag Level Explanation Response Action 

L Diagnostic Location counter overflow - Reassemble specifying correct object computer 
Either one of the location size. 
counters has overflowed or the 
assembled program has exceeded 
the specified maximum storage 
space available. The assembler 
assumes that the computer in 
which the object module is to 
be executed has the same 
configuration as the computer in 
which the program is assembled, 
unless otherwise stated. 

M Academic Conditional assembly error - Ensure that DO and ENDO statements are 
DO and ENDO statements have paired. 
not been paired. 

N Academic Name field error - The label Correct label error. 
field contains an illegal 
symbol, no symbol when one is 
necessary, or a symbol when 
one is not allowed. 

R Academic Relocation information dropped - Correct the usage of relocatable terms. 
A relocatable term is used in 
such a manner that its relo-
cation information is no longer 
valid in this instance. This 
condition occurs frequently 
when a relocatable term is 
used in an expression. 

s Academic Statement out of sequence - An Place statements and records in proper 
S flag signifies that a START, sequence. 
PROC, NAME, or ICTL statement 
is out of sequence. This flag 
also signifies that sequence 
numbers in the source records 
are not in ascending order. 

T Academic Truncation - A specified or Reduce length of value or increase length 
completed value is too large tor of receiving field, if truncation is not 
the field in which it is stored; intentional. 
therefore, it is truncated and 
inserted into the field. Truncation 
can be intentional; it does not 
prevent the execution of the program. 

u Diagnostic Undefined symbol - One or Define all undefined symbols. 
more symbols in a source code 
statement are undefined during 
the assembly. Any symbols that 
remain undefined are equated to 
O. However, undefined paratorms 
do not produce an error flag. 
All symbols that are defined in 
another object module must be 
identified in the EXTRN statement 
so that they can be properly processed 
and not cause U flags. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 14-5 
UP-NUMBER PAGE REVISION PAGE 

Table 14-1. Error Messag0 Summary (Part 3 of 3) 

Flag Level Explanation Response Action 

v Diagnostic Internal assembler failure - Notify Sperry Univac customer representative. 
An internal assembler failure 
is detected. This error is 
caused primarily by catas-
trophic hardware failure. 

w Academic Symbol to character string - Correct coding errors. 
An undefined symbol is coded 
in a basic expression. The 
symbol is treated by the 
assembler as a character 
string. 

x Diagnostic Continuation error - A Correct coding errors. 
continuation card has not been 
provided for a statement whose 
operand field is incomplete. 

z Diagnostic Too many nested DO or PROC Correct coding errors. 
directives - More than 10 
levels of DO directives or 
three levels of PROC directives 
are coded for assembly. 





7935 Rev. 1 SPERRY UNIVAC Operating System/4 A-1 

UP-NUMBER PAGE REVISION PAGE 

Appendix A. Instruction Repertoire 

Mnemonic 
Description 

Operation Type 90/60, 9400/ 
Code Code 70 9480 

A Add 5A RX x x 

AD Add-normalized (long format) 6A RX x 

ADR Add-normalized (long format) 2A RR x 

AE Add-normalizP.d (short format) 7A RX x 

AER Add-normalized (short format) 3A RR x 

AH Add-half-word 4A RX x x 

Al Add-immediate 9A SI x 

93 SI x 

AL Add-logical 5E RX x 

ALA Add-logical 1E RR x 

AP Add-decimal FA SS x x 

AR Add 1A RR x x 

AU Add-unnormalized (short format) 7E RX x 

AUR Add-unnormalized (short format) 3E RR x 

AW Add-unnormalized (long format) 6E RX x 

AWA Add-unnormalized (long format) 2E RR x 

BAL Branch-and-link 45 RX x x 

BALE Branch-and-I ink-ex tern al 4D RX x 

BALA Branch-and-link 05 RR x x 

BC Branch-on-condition 47 RX x x 

BCR Branch-on-condition 07 RR x 

BCRE B ranch-on-condition-to-return-ex tern a I oc RR x 

BCT Branch-on-count 46 RX x x 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 A-2 

UP-NUMBER PAGE REVISION PAGE 

Mnemonic 
Description 

Operation 
Type 

90/60, 9400/ 
Code Code 70 9480 

BCTR Branch-on-count 06 RR x x 

BXH Bra nch-on-i ndex-h igh 86 RS x 

BXLE Branch-on-index-low-or-equal 87 RS x 

c Compare 59 RX x x 

CD Compare (long format) 69 RX x 

CDR Compare (long format) 29 RR x 

CE Compare (short format) 79 RX x 

CER Compare (short format) 39 RR x 

CH Compare-half-word 49 RX x x 

CL Compare-logical 55 RX x x 

CLC Compare-logical 05 SS x x 

cu Compare-logical 95 SI x x 

CLR Compare-logical 15 RR x x 

CP Compare-decimal - F9 SS x x 

CR Compare 19 RR x x 

CVB Convert-to-binary 4F RX x 

CVD Convert-to-decimal 4E RX x 

D Divide 50 RX x 

DD Divide (long format) 60 RX x 

DOR Divide (long format) 20 RR x 

DE Divide (short format) 70 RX x 

DER Divide (short format) 30 RR x 

DIAG Diagnose (privileged instruction) 83 SI x 

DP Divide-decimal FD SS x x 

DR Divide 1D RR x 

EA Emulation-aid EZ . x 

ED Edit DE SS x x 

EDMK Edit-and-mark DF SS x 

EX Execute 44 RX x 

HOR Halve (long format) 24 RR x 

HER Halve (short format) 34 RR x 

HIO Halt-1/0 (privileged instruction) 9E SI x 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 A-3 
UP-NUMBE'R PAGE REVISION PAGE 

Mnemonic Operation 90/60, 9400/ 
Code 

Description 
Code 

Type 
70 9480 

HPR Halt-and-proceed (privileged instruction) 99 SI x x 

IC Insert-character 43 RX x x 

ISK Insert-storage-key 09 RR x 

L Load 58 RX x x 

LA Load-address 41 RX x x 

LBR Load-base-register OB RR x 

LCDR Load-complement (long format) 23 RR x 

LCER Load-<:omplement (short format) 33 RR x 

LCHR Load-<:hannel-register (privileged instruction) AD SI x 

LCR Load-<:omplement 13 RR x 

LCS Load-control-storage (privileged instruction) 81 RS x 

LO Load (long format) 68 RX x 

LOR Load (long format 28 RR x 

LE Load (short format) 78 RX x 

LER Load (short format) 38 RR x 

LH Load-half-word 48 RX x x 

LLR Load-I imits-register 81 RS x 

LM Load-multiple 98 RS x x 

LNDR Load-negative (long format) 21 RR x 

LNER Load-negative (short format) 31 RR x 

LNR Load-negative 11 RR x 

LPDR Load-positive (long format) 20 RR x 

LPER Load-positive (short format) 30 RR x 

LPR Load-positive 30 RR x 

LNR Load-negative 10 RR x 

LPSW Load-program-status-word (privileged instruction) 82 SI x x 

LR Load 18 RR x x 

LTDR Load-and-test (long format) 22 RR x 

LTER Load-and-test (short format) 32 RR x 

LTR Load-and-test 12 RR x x 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 A-4 
UP-NUMBER PAGE REVISION PAGE 

Mnemonic 
Description Operation 

Type 
90/60, 9400/ 

Code Code 70 9480 

M Multiply 5C RX x 

MD Multiply (long format) 6C RX x 

MOR Multiply (long format) 2C RR x 

ME Multiply (short format) 7C RX x 

MER Multiply (short format) 3C RR x 

MH Multiply-half-word 4C RX x 

MP Multiply-decimal FC SS x x 

MR Multiply lC RR x 

MVC Move 02 SS x x 

MVI Move 92 SI x x 

MVN Move-numerics Dl SS x x 

MVO Move-with-offset Fl SS x x 

MVZ Move-zones 03 SS x x 

N AND 54 RX x x 

NC AND 04 SS x x 
'" 

NI AND 94 SI x x 

NR AND 14 RR x x 

0 OR 56 RX x x 

oc OR 06 SS x x 

01 OR 96 SI x x 

OR OR 16 RR x x 

PACK Pack F2 SS x x 

RDD Read-direct (privileged instruction) 85 SI x 

s Subtract 58 RX x x 

SCHR Store-channel-register (privileged instruction) AC SI x 

SD Subtract-normalized (long format) 68 RX x 

SOR Subtract-normalized (long format) 28 RR x . 
SE Subtract-normalized (short format) 78 RX x 

SER Subtract-normalized (short format) 38 RR x 

SH Subtract-half-word 48 RX x x 

SIO Start-I /0 (privileged instruction) 9C SI x x 
·-· 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 A-5 
UP-NUMBER PAGE REVISION PAGE 

Mnemonic Operation 90/60, 9400/ 
Code 

Description 
Code 

Type 
70 9480 

SL Subtract-logical 5F RX x 

SLA Shift-left-single 88 RS x 

SLDA Shift-left-double 8F RS x 

SLDL Shift-left-double-logical 80 RS x 

SLL Shift-left-single-logical 89 RS x x 

SLM Supervisor-load-multiple (privileged instruction) 88 RS x x 

SLR Subtract-logical 1F RR x 

SP Subtract-decimal F8 SS x x 

SPM Set-program-mask 04 RR x x 

SR Subtract 18 RR x x 

SRA Sh iit-right-single BA RS x 

SRDA Shift-right-double 8E RS x 

SRDL Sh if t-r i gh t-doubl e-logi ca I 8C RS x 

SRL Shift-right-single-logical 88 RS x x 

SSK Set-storage-key (privileged instruction) 08 RR x 

SSM Set-system-mask (privileged instruction) 80 SI x x 

SSTM Supervisor-store-multiple (privileged instruction) BO RS x x 

ST Store 50 RX x x 

STC Store-character 42 RX x x 

STD Store (long format)" 60 RX x 

STE Store (short format) 70 RX x 

STH Store-half-word 40 RX x x 

STM Store-multiple 90 RS x x 

SU Subtract-unnormalized (short format) 7F RX x 

SUR Subtract-unnormalized (short format) 3F RR x 

SVC Supervisor-call OA RR x x 

SW Subtract-Unnormalized 6F RX x 

SWR Subtract-unnormalized (long format) 2F Rrl x 

TCH Test-channel (privileged instruction) 9F SI x 

TIO Test-I /0 (privileged instruction) 90 SI x 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 A-6 
UP-NUMBER PAGE REVISION PAGE 

Mnemonic 
Description 

Operation 
Type 

90/60, 9400/ 

Code Code 70 9480 

TM Test-under-mask 91 SI x x 

TR Translate DC SS x x 

TRT Translate-and-test DD SS x 

UNPK Unpack F3 SS x x 

WRD Write-direct (privileged instruction) 84 SI x 

x Exclusive-OR 57 RX x x 

xc Exclusive-OR D7 SS x x 

XI Exclusive-OR 97 SI x x 

XR Exclusive-OR 17 RR x x 

ZAP Zero-and-add F8 SS x x 



___..· 

-------

'-...-

7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 s-1 
PAGE REVISION PAGE 

Appendix 8. 9400/9480 and 90/60,70 

Hardware Differences 

B.1. GENERAL 

The SPERRY UNIVAC Operating System/4 (OS/4) provides SPERRY UNIVAC 9400/9480 compatibility mode on 
SPERRY UNIVAC 90/60,70 hardware. This compatibility mode does not duplicate all the characteristics of the 
9400/9480 systems hardware. Therefore, there are minor hardware differences between the 9400/9480 systems and 
the 90/60,70 systems. These differences may require some coding modifications to 9400/9480 programs. 

For additional hardware information, see the processor programmer references, UP-7936 (current version) for 
90/60,70 and UP-8080 (current version) for 9400/9480 systems. 

B.2. INSTRUCTION DI FF~RENCES 

B.2.1. Add Immediate (Al) 

• 9400/9480 systems 

Al has an op code of 93
1 6 

• 90/60,70 systems 

In 9400/9480 compatibility mode, the Al op code is 9316 or 9A16 . 

B.2.2. Add Decimal (AP) and Subtract Decimal (SP) 

• 9400/9480 systems 

If operand 2 is longer than operand 1, the high-order digits of operand 2 are ignored. 

• 90/60,70 systems 

A program exception interrupt may occur as a result of processing the significant digits. 

B.2.3. Compare Decimal (CP) 

• 9400/9480 systems 

If operand 2 is longer than operand 1, the high-order digits of operand 2 are ignored. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 s-2 
UP-NUMBER PAGE REVISION PAGE 

• 90/60,70 systems 

The shorter operand is extended with O's. 

B.2.4. Divide Decimal (DP) 

• 9400/9480 systems 

Operand 1 length is ignored and execution depends upon first occurrence of a sign. The divisor (operand 2) 
may be a maximum of 31 digits plus a sign. 

• 90/60,70 systems 

If a sign is not encountered with the first 16 bytes of data, a program exception interrupt occurs. The divisor 
(operand 2) may be a maximum of 15 digits plus a sign. 

B.2.5. Load Address (LA) 

• 9400/9480 systems 

The 9400/9480 systems use 18-bit main storage addresses. 

• 90/60,70 systems 

The 90/60,70 systems use 24-bit main storage addresses. 

B.2.6. Multiply Decimal (MP) 

• 9400/9480 systems 

Operand 1 length is ignored and execution depends upon first occurrence of a sign. 

• 90/60,70 systems 

If sign is not encountered with the first 16 bytes of data, a program exception interrupt occurs. The multiplier 
{operand 2) may be a maximum of 15 digits plus a sign. 

B.2.7. Set Program Mask (SPM) and Program Status Word (PSW) 

• 9400/9480 systems 

Bit position 12 is for ASCII mode. 

Bit positions 38 and 39 of the PSW are not used. 

• 90/60,70 systems 

Bit positions 2 to 7 of the specified register are transferred to bit positions 34 to 39 of the current PSW. 

Bit position 16 is for ASCII mode. 

Bit positions 38 and 39 are used due to the additional hardware capabilities. Other differences will be noted in 
the interrupt code portion of the PSW. 



7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 B-3 
PAGE REVISION PAGE 

8.2.8. Set System Mask (SSM) 

• 9400/9480 systems 

The operand (mask) is a 1-byte data field. 

• 90/60,70 systems 

The operand (mask) is a 2-byte data field which must be aligned on a half-word boundary. 

8.3. BUFFER CONTROL WORD (BCW) DIFFERENCES 

The 90/60,70 1/0 interfaces do not use BCWs. Any prol)rams which may have communicated with the 1/0 at the 
physical 1/0 level require BCW translation to channel command words (CCW). 

8.4. CHANNEL COMMAND WORD (CCW) DIFFERENCES 

The 90/60,70 1/0 channels contain minor differences from those used in the 9400/9480 systems. Therefore, the 
following considerations must be given to the CCWs used in 1/0 prncesses: 

• Command code field of 0 (Gcceptable in the 9400/9480 systems) is not acceptable in the 90/60,70 
environment. 

• A TIC-to-TIC operation (acceptable in the 9400/9480 systems) causes a program check in subchannel status in 
the 90/60,70 systems. 

• The 9400/9480 command codes TIO. SIS, and RIS require modification for the OS/4 environment. 

• A 0-byte count field for commands other than TIC (acceptable in 8400/9480 systems) results in an 1/0 
interrupt (subchannel status) in the 90/60,70 systems. 

• The 90/60,70 hardware has the ability to create an interrupt in an incorrect length condition when the length 
of data transferred does not equal the byte count. 

• Although the CCW proc facilities of the 9400 system software provided double-word alignment, the 
9400/9480 systems hardware did not actually enforce this requirement. In the 90/60,70 systems, CCWs must 
be aligned on double-word boundaries or execution is not allowed. 

8.5. STANDARD EQUATE PROC 

• 9400/9480 systems 

This proc (STDEQU) contains appropriate system labels, including those which represent 9400/9480 systems 
low order storage areas. 

• 90/60,70 systems 

This proc (STDEQUSH) contains additional system labels, unique to the OS/4 90/60,70 environment. 



7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 B-4 
PAGE REVISION PAGE 

8.6. REFERENCE TO NONEXISTENT STORAGE 

• 9400/9480 systems 

In systems with 262K storage, reference to nonexistent storage results in wraparound addressing. In smaller 
systems, the result varies according to the operation as follows: 

Read (load), zeros are picked up. 

Write (store) results in no-op unless write-protection is included thus causing interrupts. 

Branch results in illegal instruction interrupt at the nonexistent location. 

• 90/60,70 systems 

References to nonexistent storage result in an addressing exception interrupt. 

8.7. MCP TELETYPEWRITER LINE TERMINALS 

• 9400/9480 systems 

MCP supported use of multiplexer channel adapter which checks start of message (SOM) and end of message 
(EOM) functions. 

• 90/60,70 systems 

Multiplexer channel adapter SOM and EOM check features are not available. 

8.8. STORAGE REQUIREMENTS OF PREAMBLE AND EXTENT/PROTECTED DTF AREAS 

• 9400/9480 systems 

Storage allocated to the preamble and the extent/protected DTF areas is: 

Storage Size 

131 Kor less 

262K 

• 90/60,70 systems 

Preamble Area 
(Bytes) 

512 

1024 

Extent/Protected DTF Area 
(Bytes) 

512 or a multiple thereof 

1024 or a multiple thereof 

Storage allocation for both the preamble and the extent/protected DTF areas is 2048 bytes or a multiple 
thereof. 



7935 Rev. 1 
UP-NUMBE.'_, 

SPERRY UNIVAC Operating System/4 c-1 
PAGE REVISION PAGE 

Appendix C. ASCll,EBCDIC, and 

Punched Card Codes 

Table C-1. ASCII (American Standard Code for Information Interchange) Character Codes 

000 001 010 

0000 NUL OLE SP 

0001 SOH DC1 ,© 

0010 !:TX DC2 .. 

0011 ETX DC3 # 

0100 EQT DC4 $ 

0101 ENO NAK % 

0110 ACK SYN & 
Bit 

0111 BEL ETB 
Positions 

1000 BS CAN ( 

4, 3, 2, 1 
1001 HT EM ) 

1010 LF SUB . 
1011 VT ESC + 

1100 FF FS 

1101 CR GS -

1110 so RS 

1111 SI us I 

NOTES: 

ASCII bits are numbered from the left in descending numerical sequence: 

The following optional graphics can be substituted 
in the character set: 

1 tor A 

11or, I 
@ For 63-<:haracter printers, the following substitution 

is made: 

I 
\tor I 

@ 

© 

® 

Bit Positions 7, 6, 5 

011 100 101 110 111 

0 @ p p 

1 A Q a q 

2 B R b r 

3 c s c s 

4 D T d t 

5 E u e u 

6 F v f v 

7 G w g w 

8 H x h x 

9 I y i y 

J z j z 

; K [ k { 

< L \ I !® I 

= M l m } 

> N ;\© n -
? ) - 0 DEL 

® 

7654321 

Sixty-three printable character set. 

Graphics available by use of the type 0768-02 printer 
which prints a 94-character set (DEL is not a graphic) 

Ninety-four printable character set. 



Table C-2. EBCDIC (Extended Binary Coded Decimal Interchange Code) Character Codes 

0000 0001 0010 0011 0100 

00000 NUL DLE DS Q) SP 

0001 SOH DC1 sosQ) 

0010 STX DC2 FS Q) SYN 

0011 ETX DC3 

0100 

0101 HT LF 

0110 BS ETB 
Bit 

Positions 0111 DEL ESC EOT 
4,5,6, 7 

1000 CAN 

1001 EM 

1010 [ 

1011 VT 

1100 FF FS DC4 < 
1101 CR GS ENO NAK ( 

1110 so RS ACK + 

1111 SI us BEL SUB ! 

NOTES: 

EBCDIC bits are numbered from the left in ascending numerical order: 

<D 

01234567 

DC, SOS, FS are the control characters for the EDIT instruction and 
have been assigned for ASCII mode processing so as not to conflict 
with the corresponding character positions previously assigned in the 
EBCDIC chart. As these characters are not outside the range as 

defined in American National Standard, X3.4 - 1968, 
they must not appear in external storage media, such as 
ANSI standard tapes. This presents no difficulty due to 
the nature of the EDIT instruction. 

@ 

0101 

& 

I@ 

$ 

. 
) 

; 

/\ 

@ 

@ 

© 

Bit Positions 0, 1, 2. 3 

0110 0111 1000 1001 1010 1011 1100 

I {© -

I a@ j -© A 

b k s B 

c I t c 

d m u D 

e n v E 

t 0 w F 

g p x G 

h q y H 

' © i r z I 

:@ : 

I # 

% @ 

. 
-
> = 

? " 

The following optional graphics can be substituted in the character set: 

¢for[ 

! for I 

For 63-character printers, the following substitution is made: 

I 
\for I 

The lowercase alphabet and indicated graphics are introduced by 
use of the type 0768-02 printer, which prints a 94-character set. 

( 

1101 1110 

}© \ © 
J 

K s 

L T 

M u 

N v 

0 w 

p x 

Q y 

R z 

1111 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

( 

c -.J 
ll co ,w z (11 

c JJ 
;:: C1I 
[JJ < 
Ill. 

:n 

ll 
)> 

Gl 
Ill 

:n 
Ill 
< 
IJI 

0 
z 

-
ll 
)> 

(I) 
"'D 
m 
JJ 
JJ 
-< 
c 
z 
< 
)> 
C') 

0 
"C 
CD .... 
I» 
r+ s· 

CCI 

!R s 
3 -.i::o. 

Gl 
Ill () 

I 
(\.) 



793S Rev. 1 SPERRY UNIVAC Operating System/4 c-3 
UP-NUMBER PAGE REVISION PAGE 

Table C-3. Punched Card, ASCII, Jnd EBCDIC Codes (Part 1 of 5) 

Printed Card ASCII EBCDIC 
Character Symbol Punches Hexadecimal Decimal Decimal Hexadecimal 

Letters 

Uppercase A A 12-1 41 6S C1 193 

Uppercase B B 12-2 42 66 C2 194 

Uppercase C c 12-3 43 67 C3 19S 

Uppercase D 0 12-4 44 68 C4 196 

Uppercase E E 12-S 4S 69 cs 197 

Uppercase F F 12-6 46 70 C6 198 

Uppercase G G 12-7 47 71 C7 199 

Uppercase H H 12-8 48 72 ca 200 

Uppercase I I 12-9 49 73 C9 201 

Uppercase J J 11-1 4A 74 01 209 

Uppercase K K 11-2 48 7S 02 210 

Uppercase L L 11-3 4C 76 03 211 

Uppercase M M 11-4 4D 77 04 212 

Uppercase N N 11-S 4E 78 OS 213 

Uppercase 0 0 11-6 4F 79 06 214 

Uppercase P p 11-7 so 80 D7 21S 

Uppercase Q Q 11-8 Sl 81 D8 216 

Uppercase R R 11-9 S2 82 09 217 

Uppercase S s 0-2 S3 83 E2 226 

Uppercase T T 0-3 S4 84 E3 227 
../ 

Uppercase U u 0-4 SS as E4 228 

Uppercase V v 0-S S6 86 ES 229 

Uppercase W w 0-6 S7 87 E6 230 

Uppercase X x 0-7 SS 88 E7 231 

Uppercase Y y 0-8 S9 89 ES 232 

Uppercase Z z 0-9 SA 90 E9 233 

Lowercase a a 12-0-1 61 97 81 129 

Lowercase b b 12-0-2 62 98 82 130 

Lowercase c c 12-0-3 63 99 83 131 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 C-4 
UP-NUMBER PA GE RE VISION PAGE 

Table C-3. Punched Card, ASCII, and EBCDIC Codes (Part 2 of 5) 

Printed Card ASCII EBCDIC 
Dtaracter Symbol Punches Hexadecimal Decimal Hexadecimal Decimal 

Lowercased d 12-0-4 64 100 84 132 

Lowercase e e 12-0-5 65 101 85 133 

Lowercase f f 12-0-6 66 102 86 134 

Lowercase g g 12-0-7 67 103 87 135 

Lowercase h h 12-0-8 68 104 88 136 

Lowercase i i 12-0-9 69 105 89 137 

Lowercase j j 12-11-1 6A 106 91 145 

Lowercase k k 12-11-2 68 107 92 146 

Lowercase I I 12-11-3 6C 108 93 147 

Lowercase m m 12-11-4 60 109 94 148 

Lowercase n n 12-11-5 GE 110 95 149 

Lowercase o 0 12-11-6 6F 111 96 150 

Lowercase p p 12-11-7 70 112 97 151 

Lowercase q q 12-11-8 71 113 98 152 

Lowercase r r 12-11-9 72 114 99 153 

Lowercases s 11-0-2 73 115 A2 162 

Lowercase t t 11-0-3 74 116 A3 163 

Lowercase u u 11-0-4 75 117 A4 164 

Lowercase v v 11-0-5 76 118 A5 165 

Lowercase w w 11-0-6 77 119 A6 166 

Lowercase x x 11-0-7 78 120 A7 167 

Lowercase y y 11-0-8 79 121 AB 168 
,, 

Lowercase z z 11-0-9 7A 122 A9 169 

Numerals 

0 0 0 30 48 FO 240 

1 1 1 31 49 F1 241 

2 2 2 32 50 F2 242 

3 3 3 33 51 F3 243 

4 4 4 34 52 F4 244 

5 5 5 35 53 F5 245 

6 6 6 36 54 F6 246 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 c-5 
UP-NUMBER PAGE REVISION PAGE 

Table C-3. Punched Card, ASCII, 1nd EBCDIC Codes (Part 3 of 5) 

Character 
Printed Card ASCII EBCDIC 
Symbol Punches Hexadecimal Decimal Hexadecimal Decimal 

7 7 7 37 55 F7 247 

8 8 8 38 56 F8 248 

9 9 9 39 57 F9 249 

Symbols 

Exclamation point ! 12-8-7 21 33 4F 79 

Quotation mark, dieresis .. 8-7 22 34 7F 127 

Number sign, pound sign # 8-3 23 35 78 123 

Dollar sign $ 11-8-3 24 36 58 91 

Percent sign % 0-8-4 25 37 6C 108 

Ampersand & 12 26 38 50 80 

Apostrophe, acute accent 8-5 27 39 70 125 

Opening parenthesis ( 12-8-5 28 40 40 77 

Closing parenthesis ) 11-8-5 29 41 50 93 

Asterisk * 11-8-4 2A 42 5C 92 

Plus sign + 12-8-6 28 43 4E 78 

Comma, cedilla 0-8-3 2C 44 68 107 

Minus sign, hyphen - 11 20 45 60 96 

Period, decimal point 12-8-3 2E 46 48 75 

Slash, virgule, solidus I 0-1 2F 47 61 97 

Colon : 8-2 3A 58 7A 122 

Semicolon ; 11-8-6 38 59 5E 94 

Less than < 12-8-4 JC 60 4C 76 

Equal sign = 8-6 30 61 7E 126 

Greater than > 0-8-6 3E 62 6E 110 

Question mark ? 0-8-7 3F 63 6F 111 

Commercial at symbol @ 8-4 40 64 7C 124 

Opening bracket [ 12-8-2 58 91 4A 74 

Closing bracket l 11-8-2 50 93 5A 90 

Reverse slash \ 0-8-2 5C 92 EO 224 

Circumflex /\ 11-8-7 5E 94 5F 95 

I 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 C-6 
UP-NUMBER PAGE REVISION PAGE 

Table C-3. Punched Card, ASCII, and EBCDIC Codes (Part 4 of 5) 

Printed Card ASCII EBCDIC 
Character Symbol Punches Hexadecimal Decimal Hexadecimal Decimal 

Underline - 0-8-5 5F 95 6D 109 

Grave accent 
\ 

8-1 60 96 79 121 

Opening brace { 12-0 7B 123 co 192 

Closing brace } 11-0 7D 125 DO 208 

Vertical line 
I 

12-11 7C 124 6A 106 I 

Overline, tilde ...., 11-0-1 7E 126 A1 161 

Card ASCII EBCDIC 
Character Punches Hexadecimal · Decimal Hexadecimal Decimal 

Nonprintable Characters 

ACK (Acknowledge) 0-9-8-6 06 6 2E 46 

BEL (Bell) 0-9-8-7 07 7 2F 47 

BS (Backspace) 11-9-6 08 8 16 22 

CAN (Cancel) 11-9-8 18 24 18 24 

CR (Carriage return) 12-9-8-5 OD 13 OD 13 

DC1 (Device control 1 I 11-9-1 11 17 11 17 

DC2 (Device control 2) 11-9-2 12 18 12 18 

DC3 (Device control 31 11-9-3 13 19 13 19 

DC4 (Device control 41 9-8-4 14 20 3C 60 

DEL (Delete) 12-9-7 7F 127 07 7 

OLE (Data link escape) 12-11-9-8-1 10 16 10 16 

OS (Digit select) 11-0-9-8-1 80 128 20 32 

EM (End of medium) 11-9-8-1 19 25 19 25 

ENO (Enquiry) 0-9-8-5 05 5 20 45 

EQT (End of transmission) 9-7 04 4 37 55 

ESC (Escape) 0-9-7 1B 27 27 39 

ETB (End of transmission block) 0-9-6 17 23 26 38 

ETX (End of text) 12-9-3 03 3 03 3 

FF (Form feed) 12-9-8-4 oc 12 oc 12 

FS (File separator) 11-9-8-4 1C 28 1C 28 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 c-1 
UP-NUMBER PAGE REVISION PAGE 

Table C-3. Punched Card, ASCII, and EBCDIC Codes (Part 5 of 5) 

Character 
Card ASCII EBCDIC 

Punches Hexadecimal Decimal Hexadecimal Decimal 

FS (Field separator) 0-9-2 82 130 22 34 

GS (Group separator) 11-9-8-5 1D 29 1D 29 

HT (Horizontal tabulation) 12-9-5 09 9 05 5 

LF (line feed) 0-9-5 OA 10 25 37 

NAK (Negative acknowledge) 9-8-5 15 21 30 61 

NUL (Null) 12-0-9-8-1 00 0 00 0 

RS (Record separator) 11-9-8-6 1E 30 1E 30 

SI (Shift in) 12-9-8-7 OF 15 OF 15 

SO (Shift out) 12-9-8-6 OE 14 OE 14 

SOH (Start of heading) 12-9-1 01 1 01 1 

SOS (Significance start) 0-9-1 81 129 21 33 

SP (Space) 20 32 40 64 

STX (Start of text) 12-9-2 02 2 02 2 

SUB (Substitute) 9-8-7 1A 26 3F 63 

SYN (Synchronous idle) 9-2 16 22 32 50 

US (Unit separator) 11-9-8-7 1F 31 1F 31 

VT (Vertical tabulation) 12-9-13--3 OB 11 OB 11 



___.,, . 

..._/' 



-~ 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 D-1 
UP-NUMBER PAGE REVISION PAGE 

Appendix D. Conventions for 
the Use of FORTRAN 
Library Routines 

D.1. GENERAL 

References to FORTRAN library routines may be included in the assembly language program. Both arithmetic and 
elementary analytic functions are available. For a list of the routines and their corresponding argument 
requirements, refer to the FORTRAN supplementary reference, UP-7693 (current version). 

0.2. ROUTINE CALLING CONVENTIONS 

The following paragraphs describe the ~onventions required for using the FORTRAN library routines. 

D.2.1. Parameter List 

The address of the parameter list must be placed in register 1. The parameter list contains the address or addresses of 
arguments, set up according to FORTRAN specifications, to be used by the library routine. Each e11try in the 
parameter list consists of four bytes aligned on a full-word boundary. The last three bytes of each entry contain the 
24-bit address of an argument. The first byte of each entry contains zeros unless it is the last parameter in the list. If 
it is the last parameter, the sign bit of the entry is set (contains hexadecimal 80). 

D.2.2. Save Area 

The address of an 18-word save area, aligned on a full-word boundary, must be placed in register 13 by the assembly 
language program. This storage is used by the library routine to save information, such as the entry point to this 
program, the address to which this program returns, register contents, and save area addresses used by programs 
other than the FORTRAN subroutine. This may be the same save area used by data management except when a 
FORTRAN routine is used within an exit from a data management routine. 

D.2.3. Calling Sequence 

A calling sequence must be coded to transfer control to the library routine which includes: 

1. establishing an EXTRN for the particular FORTRAN library routine; 

2. placing the address of the save area in register 13; 

3. loading. register 1 with the address of the parameter list; 

4. placing the entry address of a called FORTRAN library routine in register 15; and 

5. branching to register 15 and saving the address in register 14. 

Upon return from the called library routine, register 15 contains the address of the result. 



7935 Rev. 1 

UP.NUMBER 

Example: 

LABEL 

J J_: • - I 

1-'---'- l _J l .L..J. 

-~- I L.LLL 

fA,Y,ILi L.L 

_--1.........1 

- L.1 1......1 

l ~-~: :~" 
~-l -• -• l --~ 1 

SPERRY UNIVAC Operating System/4 D-2 

PAGE REVISION PAGE 

t; OPERATION /',, OPERAND COMM EH TS 
10 16 

i j ~-,f~,~r~,_AJl\_C.TAll~e,fil, Jl..LD,~li'L _LO_u;I',t»,,L 
, c_J•,l.,_eAJ>L-'-Ail>~ .bF'_l ,(J3, ~~I>. ,SA.i."•-' A&elA u , l 

ttLL..,SlAJAll . u i_1 Li•_i_l.,bA:PL~~ob.fi ,fil\&A'\~ifU-"--1.ititL:___ Li j_, • j 

li.i,.!L~Ut~,~)" 1~Li.i/tl!i_,~\lU~Jl ~J,_A,~;J'AiN6-.f!Jlt.J'._~.ll~i6 -~ LJ , _ 
I 5 

~- l 'j l .. J. .Ll Ei'LllJIJl.~TbL-•ll.U1!1tl RJ),Ll,_'lJL\lfi_.JtL I --1-. _l_ I LJ J -1 

-·-, ,_ 1 , __ ·-' :~&MCi«lf.& Al!t~SM/:6',E,NX &t)~E__, ,_i u , _i " 

- L.L '~- __ , :_, L.J l AlJ:llLUS, J™__ ,~61I_SU& ,Ill __ J . ' '-- I-' . .L. __ L,_ L-'. 

L~~_L j _L_l _,___,_! ; • Ll_ L.i... ... L . ....L...i .l....-J_ j___J_ i_ ... L J L.J .L; L..l ;_j [_.i_ L.......L_1 _l__J L_~ . 1.l LJ 

L-1 J---1 l_ 

1. L [ [ __ • _.._J _ _;_____;_ .LJ L_l_, __l_.1 L_l _.__ 1 l~ I ~ l -· L, 

.L J L-1 l -- l ~-, 

;_, , __ , .__i, --- ~I .J_ ! _LL -- • L 1 

l __ ~ . _l ._L_l ~- '--~ t__t..._J l__l •-- L __ ; c_ l L ... 1 J _, .~. _l_, ~-- ~- , , J J 

,_j__"--" "-'-- 1·-~~Ci~~~I"J ;~,!,__ '-~L~~:M ~t,c;r~~~:t :~_u:r;x~ tl _. 

1._,':fi(§JA,_ft6-,l, i ~ 
l.. L-' 1&0 • ,_~ ,_, 
,!..3,tS1~~(r l S.)_ 

.-1 

' I 

_ L...;,___ L ..... ..L .. l .l__ .. _L_l_. , _ __._' ...... L.l _l__. '_J ,_J ! '... • _1 L __ .__I 

L ~ l _l_ I _ _..I.__ • __ _l 

. _.J l J._ ...... L -L...' 1 I _l_~ L ___ t __... J _-1....... J - l _l_ l 

c__I• ,J:;N;trr1c:,,_.~J:e.s J ... ~1S1T'_ ,PA,RA"1.£.T&_~ I ' 

'- .1 - ~. 

0.3. INTERNAL VALUE REPRESENTATION 

The types of variables and their internal representation used by the FORTRAN functions are as follows: 

INTEGER - 5 bytes 

range of integer= ±999999999 

00 00 00 51 2 c +512 

00 00 97 64 3 D -97643 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 0-3 

UP·NUMBeR PAGE REVISION PAGE 

REAL - 4-byte mantissa 

1-byte exponent 

mantissa range = ±9999999 

exponent range = +127 to -128 biased by 128 

81 31 41 00 oc 3.141 = .3141 x 101 

7E 31 41 00 OD -.003141=-.3141x10- 2 

t 
assumed decimal point 

DOUBLE PRECISION - 9-byte mantissa 

1-byte exponent 

mantissa range = ±99999999999999999 

exponent range = +127 to -128 biased by 128 

exponent 

! I mantissa 

1 88 l 97 I 66 I '" I 21 12 30 00 00 oc 

assumed decimal point 

97654321.123 = .97654321123 x 108 

exponent 

mantissa 

78 12 47 99 00 00 00 ()() 00 oc .00000000124799 = .124799 x 10-8 

assumed decimal point 

I 



7935 Rev. 1 

UP-NUMBER 

SPERRY UNIVAC Operating System/4 

COMPLEX - 10 bytes 

Real part: 4-byte mantissa 

1-byte exponent 

Imaginary part: 4-byte mantissa 

1-byte exponent 

The range of real and imaginary parts is the same as specified for the real number. 

Real Imaginary 

exponent exponent 

~mantissa --1 ~ mantissa ------1 
81 ~ 00 00 oc 00 ~ 00 00 oc 4.5 + .79i 

assumed decimal points 

D-4 
PAGE REVISION PAGE 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 E-1 
UP-NUMBER PAGE REVISION PAGE 

Appendix E. Use of Param Statement 

E.1. GENERAL 

The user may include PARAM statements in a control stream to supply additional information to the assembler. The 
information is specified by means of operands in the PAR AM statement. This appendix describes the operands and 
their use. It is an assembler function to process the PARAM statements; however, because the PA RAM statement is a 
part of the control stream, it is a job control function to obtain each statement and make it available to the 
assembler. 

An error detected in the operand field of a PA RAM statement results in the automatic abort of the job step after 
any remaining operands in the statement and any additional PA RAM statements are evaluated. 

Error messages are written on the line printer and a message indicating a program abort is sent to the console 
typewriter. 

Termination of PAR AM statement processing occurs when any of the following conditions are detected: 

1. an end-of-data response is given; 

2. a start-of-data image is detected (/$);or 

3. a slash is not detected in column 1. 

The remaining statements in that job are bypassed until the first statement of the next job step is encountered; 
statement processing then continues. 

E.2. PARAM STATEMENT OPERANDS 

The following sections describe the options that may be specified in the operand field of the PA RAM statements for 
an assembly operation. 

E.2.1. IN - Source Library Input 

This option is used to indicate the file on which the source program resides. 

Format: 

1 10 

//6.PARAM IN= program-name/file-name 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 E-2 
UP-NUMBER PAGE REVISION PAGE 

where: 

program-name is the source program name which can consist of up to eight characters. 

file-name is the file name of the source program and consists of up to eight characters. This name 
must be specified in an LFD control statement. 

The file name may be any user-specified name. SCR2 may be submitted as file name for the assembler. If no file 
name is submitted, then SYSRES is assumed. 

This option directs the assembler to search the file indicated for the specified program name in the source library. 
The tape being searched must be in standard library format. If the option is omitted, the source code will be in the 
control stream (preceded by a 1$ statement and followed by a I* statement). 

E.2.2. LIN - Referencing the Proc Library 

This option is used to identify a library containing proc groups. 

Format: 

1 10 

116PARAM LIN = { file-name(group1 ,group
2 

, ... ) } 
(N) 

where: 

file-name 

group; 

N 

identifies the file on which the input library resides. The name must appear on an LFD 
control statement and consists of up to eight characters. 

is a proc group number. A maximum of 10 groups may be specified. 

indicates that a proc library is not to be searched (only procs defined within the source 
module being assembled will be considered). 

An LIN statement other than LIN=(N) must specify at least one group number. Only those groups specified in the 
LIN statement are searched for proc definitions on the specified file. If a file name is not specified, the file searched 
will be that named PROC$. 

A maximum of one file name may be specified. The file containing the procs must be in standard library format. The 
names OBJFIL, SCR1, SCR2, or SCR3 are not permitted. 

If an LIN statement is not specified, processing proceeds as though LIN=( 1) had been specified. The procs accessed 
are those in the first group PROC$. 

E.2.3. LST - Selecting List Options 

This option allows the programmer to indicate the types of listings desired. 

Format: 

1 10 

II PARAM LST = (spec
1 

,spec2'" .. ) 



7935 Rev. 1 

UP-NUMBER 

where: 

SPERRY UNIVAC Operating System/4 E-3 
PAGE REVISION PAGE 

may be any or all of the following: 

B produce debug mode proc generation 

C produce cross-reference listing 

H provide a boundary alignment check for the operand address of RX, SI, and RX 
instructions. If the addresses violate the boundary alignment rules, an H flag will 
be generated by the assembler. The check is made based on the effective 

addresses; i.e., the assembler checks the value which results from adding the 
covering register value and the displacement value. 

N inhibit all output listings 

0 produce object program listing with corresponding source code (code-edit) and 
external symbol dictionary 

P - list source code defined procs 

W - inhibit the listing of warning diagnostics (errors identified by a severity code of 
P) 

If a single specification is written, parentheses are not required. 

If an LST option is not submitted, the assembler produces an object program listing, diagnostic errors, and a 
nondebug proc mode listing. 

E.2.4. OUT - Output Module Type 

This option allows the programmer to determine whether the output of the assembler is to be an object module or a 
load module. It also allows the object module to be copied to a tape. 

Format: 

1 

//b.PARAM 

where: 

(L) 

(N) 

(T) 

(P) 

10 

OUT= (N) 

{

(L) ~ 
(T) 

(P) 

indicates a load module is to be produced. 

indicates that writing of a primary output for the assembler is to be inhibited. 

indicates that the object module generated by the assembler is to be copied from MCL to a 
tape specified as OBJFI L. 

indicates a loadable load module is to be produced with a prefix loader which will not be 
processed by the linkage editor. This need not be used for the disc assembler; if L and T are 
specified, the module is unconditionally produced with a prefix loader. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 E-4 
UP-NUMBER PAGE REVISION PAGE 

If L is specified, the load module name generated is eight characters in length, left-justified, and zero filled if less 
than eight characters. 

If the OUT option is not specified, an object module is produced in the MCL only by the disc assembler. The 
resultant object module must be processed by the linkage editor before being executed. The object module name 
generated is eight characters in length, left-justified, and blank filled, if less than eight characters. 

If the L parameter is used, the source program being assembled is subject to the following restrictions: 

• Unresolved EXTRN references are not permitted. 

• 1/0 protect is not provided. 

• V-type constants are not permitted. 

• Common directives are not permitted. 

• Only single phase load modules are permitted. 

• The resultant load module may not be processed by the linkage editor. 

E.2.5. VER - Version Number 

This option allows a change to be made to the version number of an object module. 

Format: 

1 10 

//6.PARAM VER = level-number [/update-number] 

where: 

level-number is a 1- or 2-digit decimal number (0-99) representing a level number. 

update-number is a 1- or 2-digit decimal number (0-99) representing an update number. 

The assembler converts the version number to one or two packed decimal digits (as required) and stores it in the 
version number field in the object module header and sets the least significant bytes (the update number portion) to 
0 if the update number is not specified with the VER option. 

If the VER option is not specified, the assembler assigns a version number as follows: 

• The version number field is set to packed decimal zeros in the object module header if the source module was 
submitted in the job stream. 

• The version number inserted into the object module header is identical to that of the source module if the 
source module was submitted from tape. 



..._. .. 

'--"" 

'-._....· 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 E-5 

UP-NUMBER PAGE REVISION PAGE 

E.2.6. COE - Produce Compatible Code 

The OS/4 assembler produces code intended to be run on the SPERRY UNIVAC 90/60,70. If it is desired to 
assemble a program which can run on either the 90/60,70 or the SPERRY UNIVAC 9400/9480, the following 
PARAM statement should be included in the control stream. 

Format: 

1 10 

//6.PARAM 

This statement, in either format, causes the assembler to: 

• flag as an illegal operation code any instruction not in the repertoire of the UNIVAC 9400, and 

• assemble the Al instruction with the hexadecimal operation code (X'93') that is appropriate for execution on 
the 9400/9480. 

In this mode, the only legal instructior. mnemonic operation codes are: 

A BCTR ED LTR NR SLM STM 
AH c HPR MP 0 SP SVC 
Al CH IC MVC oc SPM TM 
AP CL L MVI 01 SR TR 
AR CLC LA MVN OR SRL UNPK 

BAL CLI LH MVO PACK SSM x 
BALR CLR LLR MVZ s SSTM xc 

*BC CP LM N SH ST XI 
*BCR CR LPSW NC SIO STC XR 

BCT DP LR NI SLL STH ZAP 

*The extended mnemonic operation codes associated with these instructions are also legal. 

E.2.7. RO$ - Suppressing Covering Error Flag 

When the RO$ PARAM statement is specified, the disc assembler will not generate a C flag on the instruction line for 
either of the following conditions: 

• Displacement field has an absolute value that is less than 4096. 

• Displacement field has a relocatable value that is less than 4096. 

If the RO$ PARAM statement is omitted, the disc assembler generates C flags for both of the aforementioned 
conditions. 

Format: 

1 10 

//6.PARAM RO$= YES 



I 

7935 Rev. 1 SPERRY UNIVAC Operating System/4 E-6 
UP.NUMBER PAGE REVISION PAGE 

The following example illustrates typical situations or conditions in which source statements are flagged as covering 
errors. 

Example: 

LABEL OOPERATIO~ OPERAND 
1 10 16 

I. T~ST 

2.t-'-'---'-....__~~-+-t-_._~~-1--t-->+-~~~~~~-'--'--'--~~~-'-~~~~-~~~~~~-'--~ 
3 . ........,._.___.____.__..___.___._-t--1---'L__L--'---'-+-ll-'-I-'--'-...__._.__,___._.._._.____.__,__.._,__.__,__.._..___._,__,__.._.._._.__..___.._~~ 

~ ......... __.__._..__.__.__.__-1--1,__.__~-'--''-=+---+-~'-'---'--'-..__._-'---'---""----'-'--'--'----'~-'--'-~--'---'---_..___._,__.___~~--'-~ 

s. ........................................... ""'--if-+-'-...... __._-+-+-'-,_._....__ ....................................... _._ ........... _.__._ ........ _._...._ .......... _._...._ .......... __._...._ ......... __._ ............... 

b. 
t-''--'----'--'-__.__~"-it-t~-'--'--_._+-t-'-f-L-~~__._,__~~___.___._~~..__.~~-'-~~~~~---'--'-~~,__~ 

7 . .._,L..l._.___._.....__.___-'--41-f--'--'-........ _.._+-"l-=-<--'--'--_.__.._.._.__.__.___._.....__.___..__.'--'_._-'-~---'--'--~l~!__.___.__.___.__~1__._1_.._i......__; 

f 0 1--JL....1._L_J_..L....L_l-j~"'-l..:=..!t:LL~~J:..!..:1-;pc""'-..L.....l_..L_L-'L....1.--.l...--'--'--'--J.___;L_J _ _.L~· LI --'--'-~LI -·-' ~~,__ _ _.1____1_LL_ 

q . .._.._.__....___,.._.___._-'--1'--+'=<-'----'---'----l-l--'-'--l-=~'--'--'--'---''----'----'--'---'---'--'--'-'-'---"-'--'---'--'_L 
/04--'--l-1.---1.---'--L---.L_l-l~=-----'----'-+-J-..'.-'~~_L_J___l_J_j__~!._L___:_ . .____._,___,___.__,_._._..:_~•-L_L_l_l.~_._~1__._1_1'----'-

If RO$=YES is not specified, the source statements coded on lines 2, 3, 6, and 10 are flagged as covering 
errors. If RO$=YES is specified, however, only coding lines 3 and 6 are flagged as covering errors. Flags are not 
generated for coding lines 2 and 10, respectively, because RO$=YES implies that absolute displacements less 
than 4096 are allowed (line 2); and the USING *,O and RO$=YES are both in effect (line 10). Coding lines 3 
and 6 are still in error because the appropriate USING directives are not in effect. 



·--

7935 Rev. 1 
SPERRY UNIVAC Operating System/4 F-1 

UP-NUMBER PAGE REVISION PAGE 

Appendix F. Executing the 
Assembler 

F.1. GENERAL 

The assembler software elements and the hardware systems to which each is related are listed in Table F-1. 

Table F-1. Assembler Software Element Names 

Name 
Software Element 

9400/9480 Systems 90/60,70 Systems 

Tape assembler ASM 

I BM 360 compatible tape assembler ASMC 

Basic tape assembler BASM 

Basic disc assembler BDASM 

Disc assembler DASM 

Disc assembler DASM4 

IBM 360 compatible disc assembler DASMC 

Disc/tape assembler DTASM 

F.2. JOB CONTROL STREAMS 

Sample job control streams for executing assembler software elements are provided in the current versions of the 

9400/9480 operations handbook, UP-7871 and the 90/60.70 operations handbook, UP-7937. 

F.3. MAIN STORAGE REQUIREMENTS 

The assembler utilizes additional main storage when it is assigned. The following effects are realized. 

• Additional space is assigned for the variable symbols table which permits a greater number of variable symbols 
to be defined. This includes PROC labels, DO labels, SET symbols, PROC parameters, and system SET 
symbols. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 F-2 

UP-NUMBE.'R PAGE REVISION PAGE 

• Reduces the recycling of cross-reference listing. 

• Increases performance by reducing assembly time through the use of additional tables and 1/0 buffers. 

F.4. SPECIAL CONSIDERATIONS AND RESTRICTIONS 

• Blank Cards 

Blank cards cannot be placed between PROC definitions appearing in a source code deck or between the last 
source defined PROC and the first statement of the source deck. PROC definitions appearing in a source deck 
must immediately precede the START directive. 

• Restrictions for BASM and BDASM Software Elements 

The BASM and BDASM software elements do not support the following PARAM statement options: 

II PARAM LST=(N) 

II PARAM OUT=(N) 

• Restrictions for ASM, BASM, BDASM, and DTASM Elements 

The preservation of the UPSI byte applies only to job steps and not to the entire job. 

• Restrictions for ASM, BASM, and BDASM Elements 

A restriction in the use and processing of local and global set symbols exists in ASM, BASM, and BDASM 
elements. This restriction is due primarily to the fact that the DTF macro instruction for index sequential 
access method (DTFIS) makes extensive use of these symbols and therefore approaches the current limit of 
the assembler to process such symbols. Consequently, if a user is also using global or local set symbols in his 
source module, he may exceed the limit of the assembler. If the user source module does not include any 
global or local set symbols, but does include a DTFIS call, then the assembler limit is not exceeded unless the 
source module includes calls to macros which define other global set symbols. If, however, global and/or local 
set symbols are declared in the source module, it is then possible that the global set symbols previously defined 
may become undefined. In the event that this occurs, the DTFIS macro call must be assembled separately and 
the appropriate linkage established with the processing modules. 

Five levels only of DO nesting are permitted. 

Replacement of parameter or s~t symbols in the operations field is not permitted. 

When specifying a TITLE directive that is shorter in length than that previously defined by a TITLE 
directive, make certain that the new directive contains enough trailing blanks to make the new length 
equal to the previously defined TITLE. This requirement is necessary to insure that the buffer for the 
TITLE directive is properly reinitialized. 

The PRINT directive is not implemented. 

The number of EXTRN and ENTRY directives processed by this version of the assembler is limiti::d to 
50 each. 

The ICTL directive is not supported. 



-

7935 Rev. 1 SPERRY UNIVAC Operating System/4 F-3 
UP-NUMBeR PAGE REVISION PAGE 

• Restrictions for BDASM Element 

No single SYSPOOL support is provided and use of the 8424/8425 disc unit is restricted. 

• Restriction of Specifying a Literal in an Address Constant 

The assembler terminates abnormally whenever it encounters a literal specified as an operand of a supervisor 
imperative macro instruction. Assembler design does not allow a literal to be specified as an address constant. 

• File Overflow Error Condition 

Whenever it is unable to recycle EXTRN and ENTRY records due to an overflow of allotted space on 
SYSPOOL, the assembler causes a Fl LE OVERFLOW error condition to be displayed on the conrnle, produce5 
a main storage dump, and terminates processing. Th1 corrective action to be taken for such a situation consists 
of remapping SYSPOOL by use of DACMAP and resubmitting the job. If the problem persists, additional 
SYSPOOL space must be allotted to the job. 

• Incorrect Proc Processing 

The disc tape assembler (DTASM) may incorrectly process the last proc of a tape proc file due to the failure of 
a WAIT instruction to be issued. This condition may be prevented by including a dummy proc as the last proc 
of the file. 





7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 1 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

A 
A (i;dd) fixed-point instruction 4.2 4-1 Add-unnormalized, short format floating-point 

instructions 
Absolute expressions 2.5.1 2-10 AW 6.8 6-11 

AWR 6.9 6-13 
Academic error messages 

description 14.1 14-1 Add-unnormalized, short format floating-point 
summary Table 14-1 14-3 instructions 

AU 6.6 6-9 

AD (add-normalized, long format) floating-point AUR 6.7 6-10 
instruction 6.2 6-2 

Address constant types 

Add-decimal instruction 5.2 5-1 base and displacement 11.8.3 11-12 

B.2.2 B-1 description 11.8 11-11 
external 11.8.4 11-13 

Add fixed-point instructions full-word 11.8.2 11-11 

A 4.2 4-1 half-word 11.8.1 11-11 
AR 4.5 4-5 

AD R (add-normalized, long format) 
Add-half-word fixed point instruction 4.3 4-3 floating-point instruction 6.3 6-4 

Add-immediate fixed-point instruction 4.4 4-4 Advance-listing directive 12.6.1 12-6 
B.2.1 B-1 

AE (add-normalized, short format) 
Add-logical instruction floating-point instruction 6.4 6-5 

AL 7.2 7-1 
ALR 7.3 7-2 AER (add-normalized, short format) 

floating-point instruction 6.5 6-7 
Add-normalized, long format floating-point 

instructions AH (add-half-word) fixed-point 
AD 6.2 6-2 instruction 4.3 4-3 
ADR 6.3 6-4 

Al (add-immediate) fixed-point 
Add-normalized, short format floating-point instruction 4.4 4-4 

instructions B.2.1 B-1 
AE 6.4 6-5 
AER 6.5 6-7 AL (add-logical) instruction 7.2 7-1 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 2 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Alignment Assembler language 
boundary 11.6 11-5 character set 2.1 2-1 

12.1 12-1 expressions 2.5 2-10 
data and storage Table 11-1 11-1 operators 2.4 2-8 

statement format 2.2 2-1 
Alphabetic character set 2.1 2-1 terms 2.3 2-3 

Alphanumeric character set 2.1 2-1 Assembler output listing 
error messages 1.2 1-2 

ALR (add-logical) instruction 7.3 7-2 14.1 14-1 
external symbol identification items 12.5 12-9 

AND logical instructions object code 1.2 1-1 
N 7.16 7-22 12.6 12-6 
NC 7.17 7-23 options 12.5 12-9 
NI 7.18 7-25 source code 1.2 1-1 
NR 7.19 7-26 12.6 12-6 

AP (add-decimal) instruction 5.2 5-1 Assembler, 9400/9480 compatible code E.2.6 E-5 
B.2.2 B-1 

Assembly-branch directive 12.8.6 12-7 
AR (~dd) fixed-point instruction 4.5 4-5 

Assembly control directives 
Arithmetic operators ASCII 12.3.1 12-2 

description 2.4.1 2-9 CNOP (condition-no-operation) 12.3.3 12-3 
summary Table 2-1 2-8 description 12.3 12-2 

EBCDIC 12.3.2 12-3 ------
ASCII END (program-end) 12.3.4 12-4 

character codes Table C-1 C-1 L TO RG (generate-literals) 12.3.5 12-5 
directive 1.2.3.1 12-2 0 RG (specify-location-counter) 12.3.6 12-5 
summary comparison Table C-3 C-3 START (program-start) 12.3.7 12-6 

ASM Assembly-destination directive 12.8.7 12-7 

restrictions F.4 F-2 
software element name Table F-1 F-1 Assign-base-register directive 12.4.2 12-7 

ASMC, software element name Table F-1 F-1 Attribute references of symbols 
length 2.3.3.2 2-6 

Assembler characteristics 1.2 1-1 2.3.5 2-7 
I 

number 2.3.5 2-8 

Assembler directives relocatability 2.3.3.3 2-7 

assembly control 12.3 12-2 value 2.3.3.1 2-6 
base register assignment 12.4 12-7 
conditional assembly 12.8 12-22 AU (add-unnormalized, short format) 
deseriptinn 12.1 12-1 floating-point instruction 6.6 6-9 
EOU (symbol definition) 12.2 12-1 
input and output control 12.7 12-19 AU R (add-unnormalized, short format) 
listing control 12.6 12-16 floating-point instruction 6.7 6-10 
program linking and sectioning 12.5 12-9 

AW (add-unnormalized, long format) 
Assembler elements floating-point instruction 6.8 6-11 

names Table F-1 F-1 .__,,.-
restrictions for ASM, BASM, AWR (add-unnormalized, long format) 

BDAM, and DTASM F.4 F-2 floating-point instruction 6.9 6-13 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 3 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

B Branch-on-count instructions 
BCT 8.9 8-11 
BCTR 8.10 8-12 

BAL (branch-and-link) instruction 8.3 8-3 

BALE (branch-and-link-external) 
Branch-on-index-high instruction 8.11 8-13 

instruction 8.4 8-4 
Branch-on-index-low-or-equal instruction 8.12 8-14 

BALR (branch-and-link) instruction 8.5 8-5 
Branching instructions 

BAL (branch-and-link) 8.3 8-3 
Base and displacement constants 11.8.3 11-12 

BALE (branch-and-link-external) 8.4 8-4 
BALR (branch-and-link) 8.5 8-5 

Base register assignment directives 
BC (branch-on-condition) 8.6 8-7 description 12.4 12-7 
BCR (branch-on-condition) 8.7 8-8 DROP (unassign-base-register) 12.4.1 12-7 
BCR E (branch-on-condition-to-return-

USING (assign-base-register) 12.4.2 12-7 
external) 8.8 8-9 

BCT (branch-on-count) 8.9 8-11 
BASM 

BCTR (branch-on-count) 8.10 8-12 
restrictions F.4 F-2 

GX H (branch-on-index-high) 8.11 8-13 
software element name Table F-1 F-1 

BXLE (branch-on-index-low-
or-equal) 8.12 8-14 

BC (branch-on-condition) instruction 8.6 8-8 description 8.1 8-1 
EX (execute) 8.13 8-15 

BCR (branch-on-condition) instruction 8.7 8-8 extended mnemonic codes Table 8-1 8-2 

BC RE (branch-on-condition-to-return-external) Buffer control word (BCW) B.3 B-3 '-~--

instruction 8.8 8-9 

BCT (branch-on-count) instruction 8.9 8-11 
BXH (branch-on-index-high) instruction 8.11 8-13 

BXLE (branch-on-index-low-or-equal) 
BCTR (branch-on-count) instruction 8.10 8-12 instruction 8.12 8-14 

BCW (buffer control word) B.3 B-3 c 
BDASM C (compare) fixed-point instruction 4.6 4-6 

restrictions F.4 F-2 
software element name TableF-1 F-1 CCW (define-channel-command-word) 

Binary constants ~1.7.3 11-7 
directive 11.9 11-13 

2.3.1.1 2-4 
CD (compare, long format) floating-point Binary representation 

instruction 6.10 6-14 

Branch-and-link-external instruction 8.4 8-4 
CD E - produce compatible code E.2.6 E-5 

Branch-and-link instructions 
CDR (compare, long format) floating-point BAL 8.3 8-3 

instruction 6.11 6-15 BALR 8.5 8-5 

Branch-on-condition instructions CE (compare, short format) floating-point 

BC 8.6 8-7 instruction 6.12 6-16 

BCR 8.7 8-8 
CE R (compare, short format) floating-point 

Branch-on-condition-to-return-external instruction 6.13 6-17 

instruction 8.8 8-9 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 4 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

CH (compare-half-word) fixed-point Compare-logical instructions 
instruction 4.7 4-8 CL 7.4 7-3 

CLC 7.5 7-4 
Channel state codes CLI 7.6 7-6 

description 10.1 10-1 CLR 7.7 7-7 
summary Table 10-1 10-2 

COMPARE, long format floating-point 
Character constants 11.7.1 11-5 instructions 

CD 6.10 6-14 
Character expressions 2.5.4 2-12 CDR 6.11 6-15 

Character representation COMPARE, short format floating-point 
definition 1.3.5 1-6 instructions 

2.3.1.4 2-5 CE 6.12 6-16 
type of field 1.3.5 1-6 CER 6.13 6-17 

Character set 2.1 2-1 Compatibility 1.2 1-2 

Character strings 2.5.4 2-12 Concatenation 
character strings 2.5.4 2-12 

Character substrings 2.5.4 2-12 character substrings 2.5.4 2-12 

CL (compare-logical) instruction 7.4 7-3 Condition codes 
See also individual instructions. 3.4 3-8 

CLC (compare-logical) 
instruction 7.5 7-4 Conditional assembly 12.8 12-22 

____.. 

CU (compare-logical) instruction 7.6 7-6 Conditional assembly directives 
description 1.2 1-1 

CLR (compare-logical) instruction 7.7 7-7 12.8 12-22 
DO 12.8.4 12-25 

CNOP (conditional-no-0peration) directive 12.3.3 12-3 ENDO 12.8.5 12-25 
GBL 12.8.3 12-23 

Coding form Figure 2-1 2-2 GOTO 12.8.6 12-27 
LABEL 12.8.7 12-27 

COM (common-storage-definition) directive 12.5.1 12-9 LCL 12.8.2 12-23 
SET 12.8.1 12-22 

Comments field 2.2.4 2-2 
( 

Conditional-no-operation directive 12.3.3 12-3 
Common-storage-definition directive 12.5.1 12-9 

Constant subfield 11.4.4 11-4 
Compare-decimal instruction 5.3 5-4 

B.2.3 B-1 Continuation 2.2.5 2-3 

Compare fixed-point instructions Control-section-identification directive 12.5.2 12-11 
c 4.6 4-6 
CR 4.8 4-9 Conventions, statement 1.4 1-7 

Compare-half-word fixed-point Convert-to-binary fixed-point instruction 4.9 4-10 
instruction 4.7 4-7 

Ccnvert-to-decimal fixed-point instruction 4.10 4-11 -._../ 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 lndex5 
UP-NUMBER PAGE REVISION PAGE 

Term Referem:e Page Term Reference Page 

CP (compare-decimal) instruction 5.3 5-4 DC (define constant) statement 

B.2.3 B-1 description 11.2 11-2 
example 11.4 11-3 

CR (compare) fixed-point instruction 4.8 4-9 format 11.2 11-2 
operand subfields 11.4 11-3 

CSE CT (control-section-identification) 
directive 12.5.2 12-11 DD (divide, long format) floating-point 

instructions 6.14 6-18 

CVB (convert-to-binary) fixed-point 
instructions 4.9 4-10 DD R (divide, long format) floating-point 

instructions 6.15 6-19 

cva (convert-to-decimal) fixed-point 
instruction 4.10 4-11 OE (divide, short format) floating-point 

instructions 6.16 6-21 

D Decimal constants 
packed 11.7.4 11-8 

a (divide) fixed point instructions 4.11 4-12 unpacked 11.7.5 11-9 

DASM, software element name Table F-1 F-1 Decimal instructions 
AP (add-decimal) 5.2 5-1 

DASMC, software element name TableF-1 F-1 CP (compare-decimal) 5.3 5-4 
description 5.1 5-1 

OASM4, software element name Table F-1 F-1 OP (divide-decimal) 5.4 5-6 
MP (multiple-decimal) 5.5 5-8 

·-- Data access 1.3 1-2 MVO (move-with-offset) fi.6 5-10 
PACK (pack) 5.7 5-12 

Data and storage definition SP (subtract-decimal) 5.8 5-13 
characteristics of storage types Table11-1 11-1 UNPK (unpar.k) 5.9 5-16 
DC (define constant) statement 11.2 11-2 ZAP (zero-and-add) 5.10 5-18 
DC operand subfields 11.4 11-3 
description 11.1 11-1 Decimal numbers 1.3.4 1-5 
as (define storage) statement 11.3 11-2 
as operand subfields 11.4 11-3 Decimal representation, binary values 2.3.1.3 2-5 

Data constant types Define-channel-command-word 

binary 11.7 .3 11-7 (CCW) directive 11.9 11--13 
character 11.7.1 11-5 B.4 B-3 

description n.1 11-5 
full-word 11.7.7 11-10 Define constant (DC) statement 11.2 11-2 
half-word 11.7 .6 11-10 
hexadecimal 11.7 .2 11-6 Define storage (OS) statement 11.3 11-2 
packed decimal 11.7.4 11-8 
zoned decimal (unpacked) 11.7 .5 11-9 DER (divide, short format) floating-point 

instruction 6.17 6-22 
Data formats 

character representation 1.3.5 1-6 OIAG (diagnose) status switching 
data addressing 1.3 1-3 instruction 9.2 9-1 
decimal numbers 1.3.4 1-5 
description 1.3 1-2 Diagnose status switching instruction 9.2 9-1 
fixed-point numbers 1.3.1 1-3 

""----' floating-point numbers 1.3.2 1-4 Diagnostic errors 
hexadecimal numbers 1.3.3 1-5 description 14.3 14-1 
logical information 1.3.6 1-6 summary Table 14-1 14-3 



7935 Rev.1 SPERRY UNIVAC Operating System/4 lndex6 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Direct control and external interrupt Edit-and-mark logical instructions 7.9 7-13 
feature 9.13 9-14 

Edit logical instruction 7.8 7-8 
Divide-decimal instruction 5.4 5-6 

B.2.4 B-1 EDMK (edit·and-mark) logical 
instruction 7.9 7-13 

Divide fixed-point instructions 
D 4.11 4-12 EJECT (advance-listing) directive 12.6.1 12-16 
DR 4.12 4-14 

Element names, software Table F-1 F-1 
Divide, long format floating-point 

instructions ENO directive 

DD 6.14 6-18 proc-definition-end 13.1.3 13-3 
DOR 6.15 6-19 program-end 12.3.4 12-4 

Divide, short format floating-point END (program-end) directive 12.3.4 12-4 
instructions 

DE 6.16 6-21 END 0 (end-of-range) directive 12.8.5 11-25 
DER 6.17 6-22 

ENTRY (externally-defined-symbol· 
DO (start-of-range) directive 12.8.4 12-25 declaration) directive 12.5.4 12-14 

DP (divide-decimal) instruction 5.4 5-6 EOU (symbol-definition) assembler directive 12.2 12-1 
B.2.4 B-2 

Error and informational messages 
DR (divide) fixed-point instruction 4.12 4-14 description 14.1 14-1 

PNOTE 13.1.4 13-3 
DR OP ( unassign-base-register) directive 12.4.1 12-7 

Error messages 
OS (define storage) statement academic 14.4 14-2 

description 11.3 11-2 diagnostic 14.3 14-1 
format 11.3 11-2 explanation 14.1 14-1 
operand subfields 11.4 11-3 fatal 14.2 14-1 

summary and meanings Table 14-1 14-3 
DSECT (dummy-control-section identification) 

directive 12.5.3 12-12 ESID items 12.5 12-9 

DTASM EX (execute) branching instruction 8.13 8-15 
restrictions F.4 I F-2 
software element name Table F-1 F-1 Exclusive·O R logical instructions 

x 7.34 7-44 
Dummy-control-section-identification xc 7.35 7-45 

directive 12.5.3 12-12 XI 7.36 7-47 
XR 7.37 7-48 

Duplication subfield 11.4.l- 11-4 

E Execute branching instruction 8.13 8-15 

EBCDIC Exponent 

character codes Table C-2 C-2 floating-point addition 6.3 6-4 

directive 12.3.2 12-3 normalization 6.3 6-4 

summary Table C-3 C-3 underflow 6.3 6-4 
zero result 6.3 6-4 .._.,-

ED (edit) loyical instruction 7.8 7-8 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 7 
UP.NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

..__.. 
Expressions SLA (shift-left-single) 4.27 4-29 

absolute 2.5.1 2-10 SLOA (shift-left-double) 4.28 4-30 
basic 2.5.5 2-13 SLM (supervisor-load-multiple) 4.29 4-31 
character 2.5.4 2-12 SR (subtract) 4.30 4-33 
description 2.5 2-10 SRA (shift-right-single) 4.31 4-34 
length attribute 2.5.3 2-11 SROA (shift-right-double) 4.32 4-35 
relocatable 2.5.2 2-10 SSTM (supervisor-store-multiple) 4.33 4-36 

ST (store) 4.34 4-37 
Extended mnemonic codes 8.2 8-2 STH (store-half-word) 4.35 4-38 

STM (store-multiple) 4.36 4-39 
External address constants 11.8.4 11-13 Fixed-point number formats 1.3.1 1-3 

Figure 1-1 1-4 
External symbol identification items 12.5 12-9 

Flexible data representation 1.2 1-1 
Externally-defined-symbol-declaration 12.5.4 12-14 

Floating-point instructions 
Externally-referenced-symbol-declaration AO (add-normalized, long format) 6.2 6-2 

directive 12.5.5 12-14 AO R (add-normalized, long format) 6.3 6-4 
AE (add-normalized, short format) 6.4 6-5 

EXTR N (externally-referenced-symbol· AER (add-normalized, short format) 6.5 6-7 
declaration) directive 12.5.5 12-14 AU (add-unnormalized, short format) 6.6 6-9 

F 
AU R (add-unnormalized, short format) 6.7 6-10 
AW (add-unnormalized, long format) 6.8 6-11 

File overflow error condition F.4 F-3 
AWR (add-unnormalized, long forr.;at) 6.9 6-13 
CO (compare, long format) 6.10 6-14 

.._,__... 
Fixed-point instructions 

CO R (compare, long format) 6.11 6-15 

A (add) 4.2 4-1 
CE (compare, short format) 6.12 6-16 

AH (add-half-word) 4.3 4-3 
CER (compare, short format) 6.13 6-17 

Al (add-immediate) 4.4 4-4 
00 (divide, long format) 6.14 6-18 

AR (add) 4.5 4-5 
DOR (divide, long format) 6.15 6-19 

C (compare) 4.6 4-6 
OE (divide, short format) 6.16 6-21 

CH (compare-half-word) 4.7 4-8 
DER (divide, short format) 6.17 6-22 

CR (compare) 4.8 4-9 
description 6.1 6-1 

CVB (convert-to-binary) 4.9 4-10 
HOR (halve, long format) 6.18 6-23 

CVO (convert-to-decimal) 4.10 4-11 
HER (halve, short format) 6.19 6-24 

0 (divide) 4.11 4-12 
LCD R (load-complement, long format) 6.20 6-25 

description 4.1 4-1 
LCER (load-complement, short format) 6.21 6-26 

OR (divide) 4112 4-14 
LO (load, long format) 6.22 6-27 

L (load) 4.13 4-15 
LOR (load, long format) 6.23 6-28 

LCR (load-complement) 4.14 4-16 
LE (load, short format) 6.24 6-29 

LH (load-half-word) 4.15 4-17 LER (load, short format) 6.25 6-30 

LLR (load-limits-register) 4.16 4-18 
LN 0 R (load-negative, long format) 6.26 6-31 

LM (load-multiple) 4.17 4-19 
LN ER (load-negative, short format) 6.27 6-32 

LN R (load-negative) 4.18 4-20 
LPO R (load-positive, long format) 6.28 6-33 

LPR (load-positive) 4.19 4-21 
LPER (load-positive, sho1t format) 6.29 6-33 

LR (load) 4.20 4-22 
LOOR (load-and-test, ~'Jng format) 6.30 6-34 

L TR (load-and-test) 4.21 4-22 
L TE R (load-and-test, short format) 6.31 6-35 

M (multiply) 4.22 4-23 
MO (multiply, long format) 6.32 6-36 

MH (multiply-half-word) 4.23 4-24 
MOR (multiply, long format) 6.33 6-38 

MR (multiply) 4.24 4-25 
ME (multiply, short format) 6.34 6-39 

-------· S (subtract) 4.25 4-26 
MER (multiply, short format) 6.35 6-41 

SH (subtract-half-word) 4.26 4-28 
SO (subtract-normalized, long format) 6.36 6-42 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 8 
UP-NUMBE.'R PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

SD R (subtract-normalized, long format) 6.37 6-43 HI 0 (halt-1/0) 1/0 instruction 10.2 10-3 
SE (subtract-normalized, short format) 6.38 6-44 
SER (subtract-normalized, short format) 6.39 6-45 HPR (halt-and-proceed) status switching 
STD (store, long format) 6.40 6-46 instruction 9.3 9-2 
STE (store, short format) 6.41 6-47 I SU (subtract-unnormalized, short format) 6.42 6-48 
SUR (subtract-unnormalized, short format) 6.43 6-50 IC (insert-character) logical instruction 7.10 7-15 
SW (subtract-unnormalized, long format) 6.44 6-51 
SWR (subtract-unnormalized, long format) 6.45 6-52 I CTL (input-format-control) directive 12.7.1 12-19 

FORTRAN Implied base registers 
functions D.1 D-1 description 3.2.2 3-6 
internal variable representation D.3 D-2 referencing main storage Table 3-2 3-5 
library routine conventions D.2 D-1 
transfer control D.2.3 D-1 Implied length operand addressing 

description 3.2.1 3-5 
Full-word address constants 11.8.2 11-11 referencing main storage Table 3-2 3-5 

G IN - source library input E.2.1 E-1 

GB L (global-symbol-declarative) directive 12.8.3 12-23 
Input and output control directives 

Generate-literals directive 12.3.5 12-5 description 12.7 12-19 
I CTL (input-format-control) 12.7.1 12-19 

GOTO (assembly-branch) directive 12.8.6 12-27 ISEQ (input-sequence-control) 12.7.2 12-20 
PUNCH (produce-a-record) 12.7.3 12-21 

H REPR 0 (reproduce-following-record) 12.7.4 12-22 

Half-word address constants 11.8.1 11-11 Input/output instructions 
description 10.1 10-1 

Half-word constants 11.7.6 11-10 HI 0 (halt-1/0) 10.2 10-3 
LCH R (load-channel-register) 10.3 10-5 

Halt-and-proceed status switching SCH R (store-channel-register) 10.4 10-6 

instruction 9.3 9-2 SIO (start-1/0) 10.5 10-8 
TCH (test-channel) 10.6 10-12 

Halt-I /0 instruction 10.2 10-3 TIO (test-1/0 10.7 10-13 

Halve, long format floating-point 
Input-sequence-control directive 12.7.2 12-20 

instruction 6.18 6-23 
Insert-character logical instruction 7.10 7-15 

Halve, short format floating-point 
Insert-storage-key status switching 

instruction 6.19 6-24 
instruction 9.4 9-3 

Hardware differences B.1 B-1 
Instruction differences, hardware B.2 B-1 

HD R (halve, long format) floating-point 
Instruction formats Figure 3-1 3-2 

instruction 6.18 6-23 

HER (halve, short format) floating-point 
Instruction repertoire Appendix A 

instruction 6.19 6-24 Instructions 
description 3.1 3-1 

Hexadecimal constants 11.7 .2 11-6 formats Table 3-1 3-3 
Hexadecimal representation, examples of summary Appendix A 

binary values 2.3.1.2 2-4 types 3.1 3-1 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 9 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Interrupt-request instruction, supervisor Length attribute 
call 9.12 9-13 expressions 2.5.3 2-11 

references 2.3.5 2-7 
ISE 0 (input-sequence-control) directive 12.7.2 12-20 symbols 2.3.3.2 2-6 

ISK (insert-storage-key) status switching Length modifier subfield 11.4.3 11-4 
instruction 9.4 9-3 

J 
LER (load, short format) floating-point 

instruction 6.25 6-30 

Job control streams, samples F.2 F-1 
LH (load-half-word) fixed-point instruction 4.15 4-17 

K LIN - referencing proc library E.2.2 E-2 

Keyword parameters 13.2.1.2 13-5 Listing-content-control directive 12.6.2 12-17 

L Listing control directives 
description 12.6 12-16 L (load) fixed-point instruction 4.13 4-15 
EJECT (advance-listing) 12.6.1 12-16 
PR I NT (listing-content-control) 12.6.2 12-17 LA (load-address) logical instruction 7 .11 7-16 
SPACE (space-listing) 12.6.3 12-18 B.2.5 B-2 
TIT LE (listing-title-declaration) 12.6.4 12-18 

LABEL (assembly-destination) directive 12.8.7 12-27 Listing-title-declaration directive 12.6.4 12-18 

Label field 2.2.1 2-2 Listings, types of output E.2.3 E-2 
'"---' 

LBR (load-base-register) status Literals 
switching instruction 9.5 9-4 data and storage address 11. 5 11-4 

LCD R (load-complement, long 
restriction F.4 F-3 

format) floating-point instruction 6.20 6-25 LLR (load-limits register) fixed-point 

LCER (load-complement, short format) 
instruction 4.16 4-18 

floating-point instruction 6.21 6-26 LM (load-multiple) fixed-point instructio1. 4.17 4-19 

LCH R (load-channel-register) I /0 instruction 10.3 10-5 LN OR (load-negative, long format) floating-point 
instruction 6.26 6-31 

LCL (load-symbol-declarative) directive 12.8.2 12-23 
I 

LN ER (load-negative, short format) floating-point 
LCR (load-complement) fixed-point instruction 4.14 4-16 instruction 6.27 6-32 

LCS (load-control-storage) status switching 
LN R (load-negative) fixed-point instruction 4.18 4-20 

instruction 9.6 9-5 

Load-address logical instruction 7.11 7-16 
LO (Load, long format) floating-point 

B.2.5 B-2 
instruction 6.22 6-27 

Load-and-test fixed-point instruction 4.21 4-22 
LOR (load, long format) floating-point 

instruction 6.23 6-28 Load-and-test, long format floating-point 
instruction 6.30 6-34 

LE (load, short format) floating-point 
-,____. 

instruction 6.24 6-29 Load-and-test, short format floating-point 
instruction 6.31 6-35 



7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 Index 10 
PAGE REVISION PAGE 



7935 Rev. 1 
UP·NUMBER 

SPERRY UNIVAC Operating System/4 Index 11 
PAGE REVISION PAGE 



7935 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/4 Index 12 
PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Numeric character set 2.1 2-1 Packed decimal constants 11.7.4 11-8 

0 Packed decimal numbers 1.3.4 1-5 

0 (OR) logical instruction 7.20 7-27 
Para forms 13.3.1.1 13-7 

Object and source code output listing 
description 12.6 12-6 

PARAM statements 

module types E.2.4 E-3 
description E.1 E-1 
CDE E.2.6 E-5 

Object modules E.2.4 E-3 
IN E.2.1 E-1 
LIN E.2.2 E-2 

OBJFI L E.2.4 E-3 
LST E.2.3 E-2 
OUT E.2.4 E-3 

OC (0 R) logical instruction 7.21 7-29 
RO$ E.2.7 E-5 
VER E.2.5 E-4 

01 (OR) logical instruction 7.22 7-30 
Parameter sub I ists 13.2.2 13.6 

Operand addressing 
contained in instruction 3.2 3-4 

Parameters 

implied base registers 3.2.2 3-6 
combined positional and keyword 13.2.1.3 13-5 

implied length 3.2.1 3-5 
keyword 13.2.1.2 13-5 

referencing memory Table 3-2 3-5 
multiple 13.2.2 13-6 

stored in main storage 3.2 3-4 
positional 13.2.1.1 13-4 

stored in registers 3.2 3-4 
referencing and replacing 13.3 13-6 

Operand subfields 
PNOTE statement 13.1.4 13-3 

constant modifier 11.4.4 11-4 
description 11.4 11-3 

Positional parameters 13.2.1.1 13-4 

duplication 11.4.1 11-4 
length modifier 11.4.3 11-4 

PR I NT (listing-content-control) directive 12.6.2 12-17 

type 11.4.2 11-4 
Privileged instructions 

Operation field 2.2.2 2-2 
description 3.3 3-7 
DIAG (diagnose) 9.2 9-1 

Operators 
HIO (halt-1/0) 10.2 10-3 

arithmetic 2.4.1 2-9 
HPR (halt-and-proceed) 9.3 9-2 

description 2.4 2-8 
ISK (insert-storage-key) 9.4 9-3 

logical 2.4.2 2-9 
LCH R (load-channel-register) 10.3 10-5 

relational 2.4.3 2-9 
LCS (load-control-storage) 9.6 9-5 

summary Table 2-1 2-8 
LPSW (load-program-status-word) 9.7 9-6 
RDD (read-direct) 9.8 9-8 

Options listing (operand) E.2.3 E-2 
SCH R (store-channel-register) 10.4 10-6 
SI 0 (start-1/0) 10.5 10-8 

OR (OR) logical instruction 7.23 7-32 
SLM (supervisor-load-multiple) 4.29 4-31 
SSK (set-storage-key) 9.10 9-10 

ORG (specify-location-counter) directive 12.3.6 12-5 
SSM (set-system-mask) 9.11 9-11 
SSTM (supervisor-store-multiple) 4.33 4-36 

OUT, output module type E.2.4 E-3 
TCH (test-channel) 10.6 10-12 
TIO (test-1/0) 10.7 10-13 

p 
Privileged operation 3.3 3-7 

Pack decimal instruction 5.7 5-12 

Problem instructions 3.3 3-7 

---

._.. 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 tndex 13 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Proc definitions, restrictions for F.4 F-2 Relocatability attribute symbols 2.3.3.3 2-7 

PROC directive 13.1.1 13-1 Repetitive code generation 
description 12.8.4 12-25 

PROC formats DO (start-of-range) directive 12.8.4 12-25 
END directive 13.1.3 13-3 ENDO (end-of-range) 12.8.5 12-25 
example 13.1.2 13-3 
NAME directive 13.1.2 13-2 REPRO (reproduce-following-record) directive 12. 7-4 12-22 
PNOTE directive 13.1.4 13-3 
PROC directive 13.1.1 13-1 RO$ - suppressing covering error flag E.2.7 E-5 

Proc I ibraries E.2.2 E--2 s 
Proc processing, incorrect F.4 F-3 

S (subtract) fixed-point instruction 4.25 4-26 

Program-end directive 12.3.4 12-4 
SCH R (store-channel-register) 1/0 instruction 10.4 10-6 

Program linking and sectioning directives 
SD (subtract-normalized, long format) floating-

point instruction 6.36 6-42 
COM (common-storage-definition) 12.5.1 12-9 
CSE CT (control-section-identification) 12.5.2 12-11 SD R (subtract-normalized, long format) 
description 12.5 12-9 

floating-point instruction 6.37 6-43 
DSECT (dummy-control-section-

identification) 12.5.3 12-12 SE (subtract-normalized, short format) 
ENTRY (externally-defined-symbol- floating-point instruction 6.38 6-44 

declaration) 12.5.4 12-14 

~- EXTRN (externally-referenced-symbol- Self-defining terms (SOT) 
declaration) 12.5.5 12-14 binary representation 2.3.1.1 2-4 

character representation 2.3.1.4 2-5 
Program listing 1.2 1-2 decimal representation 2.3.1.3 2-5 

description 2.3.1 2-3 
Program-start directive 12.3.7 12-6 hexadecimal representation 2.3.1.2 2-4 

Program status word B.2.7 B-2 SER (subtract-normalized, short format) 
floating-point instruction 6.39 6-45 

Programming considerations, assembler 
output listing 12.6 12-16 SET directive 12.8.1 12-22 

PSW (program status word) B.2.7 B-2 Set-program-mask status switching instruction 9.9 9-9 

I 
B.2.7 8-2 

PUNCH (produce-a-record) directive 12.7.3 12-21 
Set-storage-key status switching instruction 9.10 9-10 

Punched card code summary Table C-3 C-3 
Set symbols 13.3.1.2 13-10 

R 
Set-system-mask status switching instruction 9.11 9-11 

ROD (read-direct) status switching instruction 9.8 9-8 B.2.8 B-3 

Relational operators SH (subtract-half-word) fixed-point instruction 4.26 4-28 
description 2.4.3 2-9 

summary Table2-1 2-8 Shift-left-double fixed-point instruction 4.28 4-30 

-------' Relocatable expressions 2.5.2 2-10 Shift-left-double-logical instruction 7.25 7-34 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 14 
UP-NUMBER PAGE REVISION PAGE 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 15 
UP-NUMBER PAGE REVISION PAGE 



7935 Rev. 1 SPERRY UNIVAC Operating System/4 Index 16 

UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

_, 
System variable symbols v 

description 13.7.2 12-2 
&SYSOATE 13.7.2.3 13-26 Value attribute symbols 2.3.3.1 2-6 
&SYSECT 13.7.2.2 13-24 
&SYSNDX 13.7.2.1 13-22 Variable symbols 
&SYSTIME 13.7.2.4 13-26 concatenation 2.5.4 2-12 

13.11.1 13-21 
T description 13.7 13-21 

system 13.7 .2 13-22 
TCH (test-channel) 1/0 instruction 10.6 10-12 table F.3 F-1 

types in FORTRAN 0.3 0-2 
Terms use 13.7.1 13-21 

attribute references 2.3.5 2-7 
definitions 2.3 2-3 VER - version number E.2.5 E-4 
literals 2.3.2 2-5 
location counter references 2.3.4 2-7 w 
self-defining (SOT) 2.3.1 2-3 
symbols 2.3.3 2-6 WRO (write-direct) status switching 

instruction 9.13 9-14 
Test-channel 1/0 instruction 

Write-direct status switching instruction 9.13 9-14 
Test-1/0 instruction x 
Test-under-mask logical instruction 7 .31 7-39 

X (exclusive-0 RI logical instruction 7.34 7-44 

Time utilization 1.2 1-2 
XC (exclusive-OR) logical instruction 7.35 7-45 

Tl 0 (test-1/0) instruction 10.7 10-13 
XI (exclusive-0 RI logical instruction 7.36 7-47 

TITLE (listing-title-declaration) directive 12.6.4 12-18 
XR (exclusive-OR) logical instruction 7.37 7-48 

TM (test-under-mask) logical instruction 7.31 7-39 z 
TR (translate) logical instruction 7.32 7-41 ZAP (zero-and-add) decimal instruction 5.10 5-18 

Translate-and-test logical instruction 7.33 7-42 Zero-and-add decimal instruction 5.10 5-18 

Translate logical instruction 7.32 7-41 Zoned decimal constants 11.7 .5 11-9 

TRT (translate-and-test) logical instruction 7.33 7-42 

Type subfield 11.4.2 11-4 

u 
Unassign-base-register directive 12.4.1 12-7 

Unpack decimal instruction 5.9 5-16 

Unpacked decimal numbers 1.3.4 1-5 

UNPK (unpack) decimal instruction 5.9 5-16 --
USING (assign-base-register) directive 12.4.2 12-7 



I
:> 
(.) 

Comments concerning this manual may be made in the space provided below. Please fill in the requested information. 

UP No:-------- Revision No:-------- Update:--------

Name of User=---------------------------------------------~ 

Address of User=-------------------------------------------------------

Comments: 

I 



FOLD 

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

UNIVAC 
P.O. BOX 500 
BLUE BELL, PA. 

19422 
ATTN: SYSTEMS PUBLICATIONS DEPT. 

FOLD 

0 
c 
-I 


