e SYSTEM

SUPERVISOR

A UP.7689

© 1969 - SPERRY RAND CORPORATION

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor-
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re-
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

PRINTED IN U.S.A.

C

C

UP-7689 UNIVAC 9400 SUPERVISOR Contents
SECTION: PAGE:
P
CONTENTS
CONTENTS 1to5
- 1. INTRODUCTION 1-1t01-5
1.1. GENERAL 1-1
1.2, MACRO INSTRUCTION FORMAT 1-1
1.3. CONTROL STATEMENT CONVENTIONS 1-2
1.3.1. R and S Type Macro Instructions 1-3
1.3.2. Special Register Notation 1-3
i
N’ 1.4, STANDARD LABEL CONVENTIONS AND THE STDEQU MACRO INSTRUCTION 1-3
2. FEATURES 2-1to 2-3
2.1. GENERAL 2-1
2.2. MODULARITY 2-1
2.3. MULTIPROGRAMMING 2-1
2.3.1. Program Priority 2-2
2.3.2. Time Allocation 2-2
2.3.3. Input/Output Utilization 2-3
2.4, SYSTEM RESIDENT STORAGE 2-3
3. STORAGE ALLOCATION AND SUPERVISOR STRUCTURE 3-1to 3-33
3.1. GENERAL 3-1
3.2. LOW ORDER MAIN STORAGE 3-4
3.3. SYSTEM ENVIRONMENTAL CONTROL STORAGE AREA 3-4
3.3.1. Error Job Preamble 3-4
3.3.2. Supervisor Call Interrupt Table 3-8
3.3.3. Job Contro! Blocks 3-12
3.3.4. Physical Unit Blocks 3-14
— 3.3.5. Program Switch List 3-17
3.3.6. System Information Block 3-18

UP-7689 UNIVAC 9400 SUPERVISOR Contents
SECTION: PAGE:
3.4, SYSTEM CONTROL ROUTINES STORAGE AREA 3-20 \”
3.4.1. Supervisor Call (SVC) 3-20 ~
3.4.2. Physical 10CS 3-21
3.4.2.1. Channel Scheduler 3-21
3.4.2.2, System Error Job 3-22
3.4.3. Program Switcher 3-23
3.4.4. Program Check 3-24
3.4.4.1, Program Interrupt 3-24
3.4.4.2, Software Program Exception 3-25
3.4.5. Program Load ~ Disc Systems 3-25
3.4.5.1. Absolute Program Loader 3-25
3.4.5.2. Relocating Program Loader 3-26
3.4.6, Program Load — Tape Systems 3-26
3.4.7. Transient Scheduler 3-26
3.4.7.1. Disc Systems 3-27
3.4.7.2, Tape Systems 3-27
3.4.8. Timer Services 3-27
3.4.9. UserIsland Code Management 3-28
3.4.9.1. Program Check 3-30
3.4.9.2, Timer Interval 3-30
3.4.9.3. Unsolicited Message 3-31
3.4,10. Operator Communications Control 3-31
3.4.11. Optional Resident Routines 3-31
3.5. TRANSIENT AREA(S) 3-32
3.6. PROBLEM PROGRAM AREA 3-32 -,
—
. PHYSICAL 10CS MACRO INSTRUCTIONS -1 to 4-1

4.1. GENERAL

4.1.1, CCB Macro Instruction and Command Control Block Structure
4.1.2, EXCP Macro Instruction (Type R)

4.1.3. WAIT Macro Instruction (Type R)

4.1.4. MARK Macro Instruction (Type R)

4.1.5. YIELD Macro Instruction (Type R)

4.1.6. P10CB Macro Instruction and Physical |/0 Control Block Structure
4.1.7. RDFCB Macro Instruction (Type R)

4.1.8. SWAP Macro Instruction (Type R)

4.2, DYNAMIC RELEASE OF PERIPHERAL DEVICES
4.2.1, FREE Macro Instruction (Type R)

()

UP-7689

UNIVAC 9400 SUPERVISOR

Contents

SECTION: PAGE:
i 5. PROGRAM MANAGEMENT 5-1 to 5-38
PN
5.1, GENERAL 5-1
5.2, PROGRAM LOADING 5-1
5.2.1, LOAD Macro Instruction (Type R) 5-1
5.2.1.1, Load Absolute Function (Disc Systems Only) 5-2
5.2.1.2. Load Index Function 5-2
5.2.1.3. Load Altemate Function — Disc Systems 5-3
5.2.1.4, Load Altemate Function — Tape Systems -3
5.2.1.5. Load Relocate Function 5-5
5.2.2, FETCH Macro Instruction (Type R) 5-7
5.3. TIMER AND SIMULATED DAY CLOCK SERVICES 5-8
5.3.1. GETIME Macro Instruction (Type R) 5-8
5.3.2, SETIME Macro Instruction (Type R) 5-8
5.4, TRANSIENT AREA MANAGEMENT 5-9
5.4.1. TCALL Macro Instruction (Type R) 5-9
5.5, DYNAMIC ALLOCATION OF DIRECT ACCESS STORAGE 5-10
5.5.1. GIVE Macro Instruction (Type S) 5-10
5.5.2. TAKE Macro Instruction (Type S) 5-15
5.5.3. QUERY Macro Instruction (Type $) 5-16
5.6. SUBROUTINE LINKAGE 5-19
5.6.1. Linkage Register Conventions 5-19
5.6.2. Linkage Procedure 5-19
_{ 5.6.3. CALL Macro Instruction (Type R) 5-20
5.6.4. SAVE Macro Instruction (Type R) 5-21
5.6.5. RETURN Macro Instruction (Type R) 5-22
5.6.6. Register Save Area Usage 5~23
5.7. LINKAGE TO USER ISLAND CODE SUBROUTINES 5-26
5.7.1. STXIT Macro Instruction 5-26
5.7.2. EXIT Macro Instruction (Type R) 5-28
5.8. SYSTEM INFORMATION CONTROL 5-29
5.8.1. GETADR Macro Instruction (Type R) 5-30
5.8.2. GETCOM Macro Instruction {Type R) 5-31
5.8.3. PUTCOM Macro Instruction (Type R) 5-32
5.9, CONTROL STREAM READER 5--32
5.9.1. GETCS Macro Instruction (Type R) 5-33
5.10., PROGRAM CHECKPOINT 5-34
5.10.1, CHKPT Macro Instruction (Type S) 5-34
5.11. PROGRAM TERMINATION AND STORAGE DISPLAY 5-35
5.11.1, EOJ Macro Instruction (Type R) 5-36
5.11.2, CANCEL Macro Instruction (Type R) 5-36
5.11.3. DUMP Macro instruction (Type R) 5-37
5.11.4. SNAP Macro Instruction (Type) 5-37

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION:

Contents

6. OPERATOR COMMUNICATIONS
6.1, GENERAL
6.2. MESSAGE FORMATS
6.3. OPERATOR MESSAGES TO THE OPERATING SYSTEM
6.4, OPERATING SYSTEM MESSAGES TO THE OPERATOR

6.5. OPERATOR COMMANDS TO THE OPERATING SYSTEM
6.5.1. SET Command

6.5.2. LOG Command

6.5.3. NOLOG Command

6.5.4. FILE Command (Disc Systems Only)
6.5.5. DELETE Command (Disc Systems Only)
6.5.6. RUN Command

6.5.7. GO Command

6.5.8. READY Command

6.5.9. LIST Command

6.5.10, PAUSE Command

6.5.11, STOP Command

6.5.12. CANCEL Command

6.5.13. DUMP Command

6.5.14. ALTER Command

6.5.15. DISPLAY Command

6.5.16, MTC Command

6.5.17. MOUNT Command

6.6. PROBLEM PROGRAM MESSAGES TO THE OPERATOR
6.6.1. OPR Macro Instruction (Type R)

6.7. OPERATOR MESSAGES TO PROBLEM PROGRAMS

APPENDIX A. STANDARD EQUATE MACRO INSTRUCTION EXPANSION

6-1 to 6-28
6-1
6-1
6-2
6-3

6-4

6-5

6-10
6-10
6-11
6-11
6-12
6-12
6-13
6-13
6-14
6-14
6-15
6-16
6-16
6-20
6-21
6-23

6-24
6-24

627

A-1to A-9

PAGE:

UP-7689 UNIVAC 9400 SUPERVISOR Contents
SECTION: PAGE:

W, TABLES
3-1. Job Preamble Standard Labels 3-5
3-2. Supervisor Call Interrupt Standard Labels 3-9
3-3. Job Control Block Standard Labels 3-12
3-4, Physical Unit Block Standard Labels 3-15
3-5. System Information Block Standard Labels 3-18
4-1. Command Control Block Standard Labels 4-4
4-2. Physical 1/0 Control Block Standard Labels 4-13
FIGURES
3-1. Main Storage and Auxiliary Storage Contents 3-2
3-2, Main Storage Contents 3-3
3-3. Program Switch List Structure 3-17
3-4, Example of Free Space Linkage in Main Storage 3-33
4-1, Command Control Block Format 4-3
4-2, Physical I/0 Control Block Format 4-12

‘ 4-3. Interrelationship Between the Command Control Block, Channe! Command Word, File

N Control Block, Physical 1/0 Control Block, and Physical Unit Block 4-14

5-1. Standard Register Save Area 5-23

UP-7689

UNIVAC 9400 SUPERVISOR 1 1

SECTION: PAGE:

1.1.

1.2.

1. INTRODUCTION

GENERAL

The Supervisory Control program is the component of the UNIVAC 9400 Operating
System that operates with problem programs to provide the central control necessary
for optimum utilization of the system hardware and software complex., The Supervisor,
together with Job Control, constitute the software executive system,

The services provided by the executive system permit the user to define the work to

be done and programs to be executed. The major unit of work in the UNIVAC 9400 System
is a job. Each job can be divided into serially executed job steps (that is, individual
programs executed in the sequence described in the job control stream). Each job step,
in turn, can be subdivided into program phases, which are the smallest single units that
can be loaded and executed. Data and programs to be processed are introduced to the
UNIVAC 9400 System as jobs, with each job step defined by its own control information
in the job stream.

This manual describes the Supervisor provided for disc, tape, and disc/tape systems.

It includes descriptions of the Supervisor structure and the programmed services pro-
vided by the Supervisor, including detailed explanations of the physical Input/Output
Control System (IOCS), macto instructions available to the programmer, and operator
communications facilities, Knowledge of the UNIVAC 9400 System Description, UP-7566
(current version), is helpful in the use of this manual.

MACRO INSTRUCTION FORMAT

The Supervisor uses both declarative and imperative macro instructions. Declarative

macro instructions (CCB and PIOCB) cause the generation of nonexecutable code sequences
in the problem program. These macro instructions are used to allocate areas in main

storage that will contain control information for the channel scheduler when the problem
program is executed (see Section 4).

The remainder of the macro instructions are imperative, in that they cause the generation
of executable code sequences in the problem program. These code sequences are the
interface between the problem program and the Supervisor. Imperative macro instructions
are used to request services of the Supervisor and direct the operation of the problem
program.

The format of all macro instructions is:

LABEL b OPERATION b OPERAND

{name] XXXX ‘ VYYYsee0sZZZZ

-UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

1.3.

A symbolic name can appear in the label field. It can have a maximum of eight characters
and must begin with an alphabetic character. The appropriate macro name must appear

in the operation field, When parameters are specified in the operand field of all macro
instructions (except STDEQU, 1.4) these are positional parameters. Positional parameters
(as signified by the name) must be written in the specified order in the operand field

and be separated by commas, When a positional parameter is omitted, the comma must be
retained to indicate the omission, except in the case of omitted trailing parameters.
Assembler rules regarding blank columns and continuation must be observed when writing
macro instructions,

CONTROL STATEMENT CONVENTIONS
The conventions used to illustrate macro instructions and operator commands follow:

® Capital letters and punctuation marks (except braces, brackets, and ellipses) are
information that must be coded by the programmer or typed by the operator at the
console exactly as shown,

® Lowercase letters and terms represent information that must be supplied by the
ptogrammet or operatot.

B Information contained within braces represents necessary entries of which one must
be chosen.

m Information contained within brackets represents optional entries that (depending on
program requirements) are included or omitted. Braces within brackets signify that
one of the entries must be chosen if that operand is included.

B An ellipsis (a series of three periods) indicates a variable number of entries. Y,

B Commas are required when positional parameters are omitted, except for trailing
positional parameters.

Typical format for a macro instruction is:
LABEL

b OPERATION b l OPERAND

[name] OPR

{msg-addr} [{Iength}:' ;* [{REPLY}]
1) ' Yo f|L’ U an

The following examples illustrate some of the ways in which this macro instruction is
coded.

LABEL 5 OPERATION S OPERAND 5

10

16

OPR;, |

Ms G .E, 12,0, D,IREPLY]

1

O,PMS G, |

OPR |

MS,GE (3,0, , I RIEPLY, |

OPR, |

MSGE 12,4, 0, | | |

O PMSGI|2, |

O[PR|_|

(VD) 1400y v b |

O|PR, |

Gl 100y A LIREP LY

T I 1

AR N N S S BN S S S U

UNIVAC 9400 SUPERVISOR

UP-7689

SECTION: PAGE:

NOTE: The last two examples illustrate the use of special register notation as
described in 1.3.2.

Three important considerations should be noted when writing macro instructions:

@ Positional parameters are separated by a comma, When a positional parameter is
omitted, the comma must be specified to indicate the omission. Trailing commas are
not required.

m There must not be any intervening blanks between positional parameters.

8 Column 15 on the coding form is usually blank. However, when the macro instruction
operation code is six characters in length, column 15 must contain the last character
of the operation code, and column 16 must be blank.

1.3.1. R and S Type Macro Instructions

The Supervisor imperative macro instructions are either R or S type. An R type
(register) macro instruction is used when none, one, or two parameters are passed

to the Supervisor. The first parameter is passed in register 1. The second parameter,

if any, is passed in register 0. An S type (storage) macro instruction is used when three
or more parameters are passed to the Supervisor as a parameter list. The parameter

list consists of a fullword for each parameter. Each fullword contains the address of

a parameter to be passed to the Supervisor, The address of the first word of the list

is passed in register 1.

1.3.2. Special Register Notation

~— The user can preload parameter registers 0 and/or 1 prior to executing a macro
instruction. When the register option is selected, the designations (0) and/or (1)
are actually coded signifying the register(s) used by the Supervisor. This is
known as special register notation,

1.4. STANDARD LABEL CONVENTIONS AND THE STDEQU MACRO INSTRUCTION

Label conventions have been established for all elements of the UNIVAC 9400 System
software. By convention, all software labels have no more than eight characters and are
expressed in the form ee$xxxxx, where the characters ee identify a software element,
the character $ designates a software label, and the characters xxxxx identify a unique
item within a software element.

Certain software labels must be equated to their respective absolute values each time
a problem program is assembled. The STDEQU macro instruction is provided for this
purpose, and it must be written immediately following the START assembler directive.
The following labels are always equated:

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION:

u R — registers R0$ to RF$ labels (that is, R0O$ is equated to (0), etc.)
8 IC$ — command control block labels

m SV$ — Supervisor call/interrupt table labels

@ JF$ - file control block labels

m IB$ - physical I/0 control block labels

® IX$ - extend request block labels
B JV$ — volume serial number list block labels

m DI$ - Data Management Define The File labels

If these are the only labels that are required for the problem program, the format of the
macro instruction is:

LABEL ‘ 5 OPERATION B | OPERAND

[name] I STDEQU I Gl

Parameter:

Gl — the group 1 labels (previously listed) are equated to the respective values.

If any other labels are required in addition to those in group 1, these labels can be
specified by means of parameters to the STDEQU macro instruction. These parameters
are not positional parameters; therefore they can be written in any order. The format
of this macro instruction when used to equate all group 1 labels and any other specific
labels to their respective absolute values is:

LABEL } 5 OPERATION & OPERAND
[name] | STDEQU ‘ (uw]l {,sB1[,JB1L,JP] [,1P] [,DM] [,MC]
Parameters:

HW — equate the hardware locations of the Program Status Words, Subchannel Control
Words, Channel Status Words, Timer Control Word, H registers (that is, equating
a register designation to a specific hardware location), and RS special purpose
registers,

SB — system information block labels are equated.
JB - job control block labels are equated.

JP — system error job preamble labels are equated.
IP — physical unit block labels are equated.

DM - all Data Management labels are equated.

MC - all Message Control labels are equated.

PAGE:

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

If all labels are required for the program, the format of this macro instruction is:

L
LABEL ‘ 5 OPERATION b OPERAND
[name] STDEQU ‘
No parameters are required for this form of the STDEQU macro instruction.
A sample of the program code generated by the STDEQU macro instruction is provided
in Appendix A.
Example:
LABEL 5 OPERATION & OPERAND 5
10 16
TR B SITARTL 10, 4 v v v v v o b v b e b b by
| I S l j SlTlDIElQU § I | [) N S S § 1 § N T S| L g N N | I It 1 l‘ [I S | I i
R N B L AT TR O I N U T S U U (Y WO UM O (S WU U SN0 U AU NN Y A
I R B Lot Lo e e s e by by e by e b g by
Lt 1 1 l J1 l J | | IO S W § 1 I IR T N A T A TR N T W] I B S | | O I B l I
AN R | | Lo by e by v b e b g
N

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

2. FEATURES

2.1. GENERAL

The Supervisor, as implemented in UNIVAC 9400 Systems, provides efficient, flexible,
and centralized control of all activities in order to meet the requirements of a wide
range of user applications., Capabilities are provided that are consistent with small to
medium sized disc, tape, or disc/tape-oriented computing systems. The Supervisor
provides an interface between the program and the computing system. Environmental
control problems are handled directly and promptly with as little internal bookkeeping
as necessary while ensuring the integrity of the computing system.

2.2. MODULARITY

Functional modularity is emphasized in the design of the Supervisor to ensure its
adaptability to a wide range of data processing activities. The user tailors the
Supervisor to accommodate particular applications and provide specific capabilities
by parametric selection and specification of the various functional modules at system
generation time.

2.3. MULTIPROGRAMMING

The Supervisor permits concurrent processing of user programs with system functions.
In disc-oriented systems, a Supetvisor can be generated to control from one to five
problem programs being executed concurrently in the computing system. In tape-oriented
systems, a Supervisor can be generated to control one or more symbiont programs in
addition to the execution of one problem program. Many Supervisor functions in both
disc-oriented and tape-oriented systems are designed as autonomous activities cap-
able of being executed as independent programs.

The multiprogramming technique employed in this system involves the distribution of
processing time to programs based on program priorities, time allocation, and input/output
utilization.

Program synchronization is accomplished through the combined operation of the interrupt

handlers and the program switching routine, and is controlled by time allocation with the

facilities provided by the unique seven-level interrupt structure of the UNIVAC 9400

System. Thus, the Supervisor provides the user with efficient and equitable distribution
N of processing time to problem programs.

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

2.3.1.

2.3.2.

Program Priority

Five program priotities are provided by the Supervisor. Three of these program
priorities are intended for the following types of user programs:

m Problem Program Priority Level 1 — Message Control program

The highest priority level available to the user is intended for the time-critical
Message Control program required by a system involved in data communications
ptocessing. Essentially, this program is an extension to the Supervisor, and is
provided as an element of the software package in the form of procedure definitions
(Procs). Parametrically defined by the user to suit his data communications
applications, the Procs are loaded into the system by Job Control,

B Problem Program Priority Level 2 — Batch programs with high input/output
utilization

Batch-type programs involving frequent input/output utilization are assigned

the second level of user priority. Symbiont progtams, executed under control of
the tape operating system, may be assigned to this program priority. In tape
systems, it is suggested that the problem program be assigned to problem program
priority three, even though it may be considered a batch program. However, this
is not a requirement since programs on a given priority level are cycled by means
of time allocation.

B Problem Program Priority Level 3 — Batch programs with low input/output
utilization

Computational type user programs with low input/output utilization are assigned
the lowest user priority level. In tape systems, the problem program can be, and
usually is, assigned to this program priority level.

The user can designate priority levels in the job control stream by specifying level
1, 2, or 3 according to the known requirements of the problem programs. Actually,
there ate no restrictions on user-priority levels 2 and 3. The user’s own expe-
rience in program mixing determines the particular assignment of these two

priority levels.

Time Allocation

Time allocation involves the distribution of processing time in short intervals,
which prevents the unauthorized domination of the computing system by a single
program and provides a means by which each problem program can make full use
of the processing power of the computer.

Time allocation is an effective and efficient method of controlling a multiprogramming
environment. Since the timer is a standard feature of the UNIVAC 9400 System hardware,
time allocation is a standard functional component of the resident portion of the
Supervisor.

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

2.3.3. Input/Output Utilization

Macro instructions are provided to synchronize programs with the physical input/output
control system of the Supervisor. The user can issue input/output requests to the
system and continue processing during their execution. When the program reaches a
point where processing cannot logically continue until the completion of input/output
requests, the user can elect to suspend his processing until the completion of a
specific request, of all outstanding requests, or any one of several outstanding
requests.

2.4, SYSTEM RESIDENT STORAGE

The availability of auxiliary storage for use by the operating system increases the
processing power of the UNIVAC 9400 System. As a result, the functional constituent
routines of the Supervisor are categorized as follows:

B Resident Routines

This category comprises those routines frequently used or so intrinsic to the
Supervisor as to require permanent residence in main storage. This group of
routines is referred to as the main storage resident portion of the Supervisor.

B Transient Routines

This category comprises those routines not frequently used, which are kept on the
system resident auxiliary storage. These transient routines are loaded into main
storage only when needed and are executed in special main storage transient
areas reserved for the operating system. When needed, a transient routine is
located and read from the system resident auxiliary storage device into a main
storage transient area and is executed as an extension of the requesting program.

The user can select particular transient routines at system generation time for
inclusion in the main storage resident portion of the Supervisor. This permits the
user to increase operating efficiency in accordance with program response require-
ments, size of available main storage, and frequency of use of certain supervisory
facilities.

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

3.1.

3. STORAGE ALLOCATION AND
SUPERVISOR STRUCTURE

GENERAL

Routines that are intrinsic parts of the Supervisor reside in main storage. A minimum

of 12K bytes are required for the Supervisor. However, the exact size of the main storage
resident Supervisor at a particular installation depends on the software options selected
by the user at system generation time. The entire Supervisor, including main storage
resident routines, is stored on auxiliary storage units, which can be either magnetic
tapes or disc packs. The contents of main storage and auxiliary storage are shown in
Figure 3-1.

The resident Supervisor consists of the following:
m Low order storage (fixed storage assignments)
m System environmental control storage area

m System control routines storage area

m Transient area
Figure 3—2 is a detailed illustration of main storage contents.

The following elements of the UNIVAC 9400 Operating System reside in auxiliary
storage:

B Initial Program Loader

® Entire Supervisor

® Job Control

® System Transient Routines

m Language Processors

® Program Libraries (Source and Object Code)
B Scratch Area (Disc Systems Only)

m Execution Area (Disc Systems Only)

m Job File (Disc Systems Only)

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION:

PAGE:

MAIN STORAGE CONTENTS

AUXILIARY STORAGE CONTENTS

COMMUNICATIONS (If Provided)*

RESIDENT SUPERVISOR

o o s W N =

LOW-ORDER ASSIGNMENT TAPE SYSTEM

Initial Program Loader
Supervisor

Job Control

Transient Routines
Language Processors

Program Library
(Source and Object Code)

PROBLEM PROGRAM(S)

[+ 2 TN S, RN~ /L B S B e

~

e 8.

//_\M "

DISC SYSTEM

Initial Program Loader
Supervisor

Job Control

Transient Routines
Language Processors

Program Library
(Source and Object Code)

Scratch Area
Execution Area
Job File

*Sypervisor occupies this area if com-
munications are not provided

Figure 3—1. Main Storage and Auxiliary Storage Contents

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

LOW ORDER STORAGE | REGISTERS, PROGRAM STATUS WORD STORAGE, ETC.
(FIXED STORAGE -]
ASSIGNMENTS) MPX. CHANNEL NONSHARED SCW’s IN COMMUNICATIONS
SYSTEMS (OR BEGINNING OF SUPERVISOR)

ERROR JOB PREAMBLE

SYSTEM ENVIRON- e
MENTAL CONTROL JOB CONTROL BLOCKS (JCB’s)
STORAGE AREA e —

SYSTEM INFORMATION BLOCK (SIB)

SUPERVISOR CALL (SVC)
MINIMUM -——
OF 12K PHYSICAL 10CS
BYTES -_————— e —]

SYSTEM CONTROL PROGRAM LOCATE AND LOAD
ROUTINES STORAGE } — — — — — — |
AREA TRANSIENT SCHEDULER

OPERATOR COMMUNICATIONS CONTROL (MAY BE LOCATED
ON AUXILIARY STORAGE)

OPTIONAL RESIDENT ROUTINES*

TRANSIENT AREA PREAMBLE
TRANSIENT AREA i e e T N —

2K OPTIONAL TRANSIENT AREA PREAMBLE
BYTES | TRANSIENT AREA ISt
EACH TRANSIENT PROCESSING AREA

ALLOCATED TO PROBLEM PROGRAMS BY JOB CONTROL
| PROBLEM PROGRAM(S) L (MINIMUM-SIZED ALLOCATION IS 8K BYTES CONTIGUOUS -

fr TSTORAGE) T

*User selected routines to be included in the main storage resident portion of the Supervisor (not included
in minimum of 12K bytes).

Figure 3-2. Main Storage Contents

UP-7689

UNIVAC 9400 SUPERVISOR

3

SECTION: PAGE:

3.3.

3.3.1.

LOW ORDER MAIN STORAGE

The first 512 byte locations are reserved for special uses such as the Supervisor
general registers, problem program registers, old Program Status Words, new Program
Status Words, and Subchannel Control Words for the shared multiplexer channel. Refer
to UNIVAC 9400 Assembler/Central Processor Unit Programmer Reference, UP-7600
(current version), for a detailed description of this area.

With the presence of communications capability, requiring one or more nonshared
multiplexer subchannels, the size of low order storage is increased to 1024 bytes.

The second group of 512 bytes is used to store the Subchannel Control Words for the
nonshared multiplexer subchannels; otherwise, the beginning of the System Environmental
Control Storage Area occupies these locations. This low order storage area of either

512 or 1024 bytes is referred to as fixed storage assignments.

SYSTEM ENVIRONMENTAL CONTROL STORAGE AREA

This area contains system control blocks, lists, and tables for storage of environmental
descriptive and status information. This information is generated at system generation
time and is dynamically altered as required by functions of Job Control and the Super-
visor. The contents of this area are described in the following paragraphs.

Error Job Preamble

The error job preamble is a 512-byte area required by the system error job (that is,
the system error recovery program) to allow it to run as a separate program on the
switch list. The purpose of the preamble is to provide storage area for environmental
information about the program. The preamble is always aligned on a doubleword
boundary.

The error job preamble structure is identical to preambles used with all problem
programs. (The error job preamble is constructed at system generation time; whereas,
problem program preambles are constructed by Job Control when the programs are
prepared for execution in the system.) Fields within job preambles are identified by
standard system labels, which are defined in the STDEQU macro instruction. By
convention, all labels are a maximum of eight characters in length and are expressed
in the form JP$xxxxx, where the characters JP$ identify a preamble reference, and
the characters xxxxx identify fields within preambles. Field labels, and brief
descriptions of their contents, are given in Table 3-1.

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION:
. BOUNDARY FIELD
N— CLASSIFICATION LABEL ALIGNMENT | LENGTH LABEL DESCRIPTION
(BYTES)
Job ldentification JP$NJIB fullword 2 Address of associated job control block
JPENIB+2 2 Assigned job number — 10 through 99
(2 EBCDIC characters)
JPSJNM halfword 8 Eight-character job name (in EBCDIC)
Console Buffer JP$SBA fullword 1 Buffer length
(OPR Macro
Instruction) JP$SBA+1 3 Address of OPR buffer
Problem Register JPSSA fullword 4 Register 0 (R0$) save area
Save Area
JP$SA+4 4 Register 1 (R1$) save area
JP$SA+8 4 Register 2 (R2$) save area
JP$SA+12 4 Register 3 (R3$) save area
JP$SA+16 4 Register 4 (R4$) save area
JP$SA+20 4 Register 5 (R5$%) save area
JP$SA+24 4 Register 6 (R6$) save area
JP3SA+28 4 Register 7 (R7$) save area
. K JP$SA+32 4 Register 8 (R8%) save area
S
JP$SA+36 4 Register 9 (R9$) save area
JP$SA+40 4 Register 10 (RA$) save area
JP$SA+44 4 Register 11 (RB$) save area
JP$SA+48 4 Register 12 (RC$) save area
JP$SA+52 4 Register 13 (RD$) save area
JP§SA+56 4 Register 14 (RES$) save area
JP$SA+60 4 Register 15 (RF$) save area
Input/Qutput JP$I0Q fullword 8 Multiplexer subchannel 0
Queue Pointers
JP$I0Q+8 8 Multiplexer subchannel 1
JP$10Q+16 8 Multiplexer subchannel 2
JP$10Q+24 8 Multiplexer subchannel 3
JPS$I0Q+32 8 Multiplexer subchannel 4
JP$i0Q+40 8 Multiplexer subchannel 5
JP$10Q+48 8 Multiplexer subchannel 6
| JP$10Q+56 8 Multiplexer subchannel 7
JP$10Q+64 8 Selector channel 1
JP$10Q+72 8 Selector channel 2
Table 3—1. Job Preamble Standard Labels

(Part 1 of 3)

UP-7689

UNIVAC 9400 SUPERVISOR

3

SECTION:

PAGE:

(Part 2 of 3)

BOUNDARY FIELD
CLASSIFICATION LABEL ALIGNMENT [LENGTH LABEL DESCRIPTION
(BYTES)
Shared Command JP$CCB fullword 40 Command contro! block for OPR, LOAD,
Control Block FETCH, RDFCB and GETCS service
requests
Job Communication JPSUCR fullword 11 Communication region storage area
Region and UPSI user block
JP$USI 1 User program switch indicator
Software/Hardware JPSSF halfword 1 Error code — routine identifier
Error Code
JPS$SF+1 1 Error code — type of error
JPSEW fullword 4 Last four bytes of program status word
at time of error
User iIsland Code JPSUSR fullword 4 Address of interrupt — program check
Information
JPS$USR+4 1 Indicator:
if bit0 is set to 1 — indicates an
outstanding request for the user
program check island code subroutine
if bitl is set to 0 — user program
check island code subroutine can be
executed
if bitl is setto 1 — user program
check island code subroutine cannot
be executed (the user has not provided
an island code subroutine or, if pro-
vided, the subroutine is in process of
execution).
JPSUSR+5 3 Address of user program check island
code subroutine
JPSUSR+8 4 Address of 72-byte save area — user
program check island code subroutine
JPSUSR+12 4 Address of interrupt — interval timer
JPSUSR+16 1 Indicator:
X'00' — user interval timer island
code subroutine can be executed
X'40' — user interval timer isiand
code subroutine cannot be executed. (The
user has not provided an island code
subroutine or, if provided, the sub-
routine is in process of execution.)
JPSUSR+17 3 Address of user interval timer island
code subroutine
JP$USR+20 4 Address of 72-byte save area — user
interval timer island code subroutine
Table 3-~1. Job Preamble Standard Labels

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: PAGE:
\ BOUNDARY FIELD
Y’ CLASSIFICATION LABEL ALIGNMENT | LENGTH LABEL DESCRIPTION
(BYTES)
User Island Code JPSUSR+24 4 Address of interrupt — operator communi-
Information (Cont.) cations unsolicited message

JPSUSR+28 1 Indicator:

X'00' — user operator communications
island code subroutine can be executed.
X'40' — user operator communications
island code subroutine cannot be
executed (the user has not provided an
istand code subroutine or, if provided,

the subroutine is in process of execution).

JP$USR+29 3 Address of user operator communications
island code subroutine

JPSUSR+32 4 Address of 72-byte save area — the
user operator communications island
code subroutine

JP$UBA fullword 1 Length of user interrupt buffer area for
unsolicited messages entered at the
console (1 to 64 in binary).

If bit 0 is set to 1 — indicates that the
input buffer is in use (this indicator is
) reset to 0 by the EX{T macro instruction).
\%—/
If bit 0 is set to 0 — Indicates that the
unsolicited input message buffer is
available for use.

JP$UBA+1 3 Address of user input buffer for
unsolicited messages entered at the
console

Problem Job Main JPSPAD fullword 4 Address of last byte in extent area
Storage Assignments

JP$PAD+4 4 Address of first byte of phase area

JP$PAD+8 4 Address of last byte of phase area

JP$PAD+12 4 Address of last byte of job partition

Job Time JPSTME fullword 4 User specified job time limit (milli-
Accounting seconds in binary))

JP$TME+4 4 Accumulated processing time used

(milliseconds in binary)
Dates JPSDTE halfword 8 User date (in EBCDIC)

JPSDTE+8 6 Data Management date in the form
Tyyddd (in EBCDIC)

JPSDTE+14 4 Data Management date in the form
Oydd (discontinuous binary)

N~ Table 3=1. Job Preamble Standard Labels

(Part 3 of 3)

UNIVAC 9400 SUPERVISOR

UP-7689

SECTION: PAGE:

Supervisor Call Interrupt Table

The supervisor call interrupt table is a list of addresses of all supervisor functions
that can be accessed through the execution of an SVC instruction. The supervisor
call interrupt table can range from 64 to 256 halfword entries. Thus, the size of this
table ranges between 128 and 512 bytes,

When an SVC instruction is executed, the SVC code supplied by the programmer is
used to locate an entry within the supervisor call interrupt table. The located entry
contains the address of either a supervisor routine for a particular function or the
transient scheduler routine. If the entry is the address of a supervisor routine for a
particular function, control is transferred to that routine to perform its function. If
the entry is the address of the transient scheduler, control is transferred to that
routine which retrieves the SVC number from the old SVC Program Status Word to
determine the particular transient routine being requested.

Entries in the table are identified by standard system labels; these labels are
defined in the STDEQU macro instruction., By convention, all labels are a maximum
of eight characters in length and are expressed in the form SV$xxxxx, where the
characters SV$ identify SVC labels, and the characters xxxxx identify functions.
The labels of the entries and a brief description of each function are provided in
Table 3-2.

)

UP-7689

UNIVAC 9400 SUPERVISOR

3

SECTION:

~ BOUNDARY FIELD
CLASSIFICATION LABEL ALIGNMENT LENGTH LABEL DESCRIPTION
(BYTES)
Supervisor — SV$XP halfword 2 Execute channel program —EXCP macro
Physical instruction
Input/Output
Control System SV$XPC 2 Conditional execute channel program —
. EXCP macro instruction
SV$XPT 2 Position tape — EXCP macro instruction
SVSWT 2 Wait on a single input/output order —
WAIT macro instruction
SVSWTA 2 Wait on all input/output orders — WAIT
macro instruction
SVSMRK 2 Mark command control block — MARK
macro instruction
SVSYLD 2 Yield program control — YIELD macro
instruction
SV$RFB 2 Locate and read file control block —
RDFCB macro instruction
SV$SWP 2 Swap physical unit block addresses —
SWAP macro instruction
SV$FRE 2 Free physical device(s) - FREE macro
.) instruction
Supervisor — SVS$FET haifword 2 Fetch program phase — FETCH macro
Program Loading instruction
SVSLD 2 Load program (absolute and relocatable) —
LOAD macro instruction
SVSLDI 2 Load index — LOAD macro instruction
SVSLDX 2 Load exit (tape systems only)
SVSLDA 2 Load program (load alternate) — LOAD
macro instruction
Supervisor — SVSGTM halfword 2 Get time of day (the time in milliseconds
Timer Services represented in binary) — GETIME macro
instruction
SVS$GTS 2 Get time of day (hours and minutes repre-
sented in pack decimal) — GETIME macro
instruction
SV$ST 2 Set software interval timer and retain
program control — SETIME macro instruc-
tion
SVSSTW 2 Set software interval timer and relinquish
program control — SETIME macro instruction
SV$STC 2 Cancel previous set time request —
\/ SETIME macro instruction

Table 3=2. Supervisor Call Interrupt Standard Labels

(Part 1 of 3)

PAGE:

UP-7689 UNIVAC 9400 SUPERVISOR 10
SECTION: PAGE:
FIELD ~
CLASSIFICATION | LABEL BOUNDARY | | ENGTH LABEL DESCRIPTION
ALIGNMENT
(BYTES)
Supervisor - SV§$SPC halfword 2 Define user program check island code
User Island subroutine — STXIT macro instruction
Code Information
SVS$SIT 2 Define user interval timer island code
subroutine — STXIT macro instruction
Svs$soC 2 Define user operator communications
island code subroutine — STXIT macro
instruction
SV$EPC 2 Exit from user program check island
code subroutine — EXIT macro instruc-
tion
SVSEIT 2 Exit from user interval timer island
code subroutine — EXIT macro instruction
SV$EOC 2 Exit from user operator communications
island code subroutine — EXIT macro
instruction
Supervisor — SV$GSB halfword 2 Get base address of systems information
Information block — GETADR macro instruction
Control
SV$GJB 2 Get base address of job control block ~
GETADR macro instruction
SV$GJP 2 Get base address of job preamble — . ;
GETADR macro instruction
SV$GCR 2 Get contents of job communication
region — GETCOM macro instruction
SVSPCR 2 Put data in job communication region ~
PUTCOM macro instruction
SVS$GCS 2 Get next statement(s) from job control
stream — GETCS macro instruction
Supervisor — SV$OP halfword 2 Display message at system console —
Console Qutput OPR macro instruction
Message Control
SV$OPR 2 Display message at system console
and wait for reply — OPR macro
instruction
Table 3~2. Supervisor Call Interrupt Standard Labels
(Part 2 of 3)
Fana)

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: 3 PAGE:
N BOUNDARY FIELD
CLASSIFICATION LABEL ALIGNMENT LENGTH LABEL DESCRIPTION
(BYTES)

Supervisor — SVSGVA halfword 2 Give cylinder(s) from unallocated disc
Direct Access storage — GIVE macro instruction
Temporary Storage

SV$GVS 2 Give specific cylinder(s) from unallocated
disc storage — GIVE macro instruction

SVS$TKA 2 Take (return) cylinder(s) to unallocated
disc storage — TAKE macro instruction

SV$TKS 2 Take (return) specific cylinder(s) to
unallocated disc storage — TAKE macro
instruction

SVSQRY 2 Query contents of unallocated disc
storage index — QUERY macro instruction

Supervisor — SVSCPT halfword 2 Checkpoint program — CHKPT macro
Checkpoint Program instruction

Supervisor — SVSSNP halfword 2 Snap display of main storage — SNAP
Main Storage Dump macro instruction

Job Contro! - SV$EOJ halfword 2 Terminate job step — EQJ macro instruc-
Program tion
Termination

SV$CAN 2 Cancel job — CANCEL macro instruction
\ SV$DMP 2 Dump main storage and terminate job
step — DUMP macro instruction

Data Management — SVSOPN halfword 2 Open file — OPEN macro instruction
Data File Access
Control SVS$CLS 2 Close file — CLLOSE macro instruction

SVSLBR 2 User label return — LBRET macro
instruction

SVSFEV 2 Force end of volume — FEOV macro
instruction

Data Management — SVSALL halfword 2 Allocate space on direct access volume —
Direct Access ALLOC macro instruction

Space Management
SVS$SCR 2 Scratch (release) space on direct access
volume — SCRTCH macro instruction

SV$RNM 2 Rename file on direct access volume —
RENAME macro instruction

SV$0BT 2 Obtain (locate) file on direct access
volume — OBTAIN macro instruction

Table 3-2. Supervisor Call Interrupt Standard Labels
(Part 3 of 3)

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION:

PAGE:

12

3.3.3. Job Control Blocks

A Job Control Block (JCB) is used in conjunction with a job preamble for the
storage of control information relating to a particular job. Job control blocks are
constructed at system generation time and always exist in main storage whether
they are unused or are being used to identify active programs. The number of JCB’s
ranges from 4 to 13, depending upon user selections at system generation time. The

exact number is determined as follows:

® One JCB is required for each transient area (1 to 6) generated at system generation

time.

m One JCB is required by the Supervisor for operator communications.

B One JCB is required for the system error job.

B One JCB is required for each user job (1 to 5).

Fields within JCB’s are identified by standard system labels; these labels are
defined in the STDEQU macro instruction. By convention, all labels are a maximum
of eight characters in length and are expressed in the form JB$xxxxx, where the
characters JB$ identify JCB labels and the characters xxxxx identify fields within

JCB’s. Field labels and brief descriptions of their contents are provided in Table 3-3.

Word

FIELD
BOUNDARY LENGTH
CLASSIFICATION LABEL ALIGNMENT (BYTES) LABEL DESCRIPTION
Job Control JBSLNK Halfword 2 Absolute address of next job control
Block Link Address block (if any) if chained on a single
priority level
Software Timer JB$CLK Halfword 2 Address of a particular timer interrupt
Alarm servicing routine
JB$CLK+2 Fullword 4 Atarm Clock:
Bit 0, always 0
Bit 1, 0= software timer alarm active
1 = software timer alarm inactive
Bits 3 through 31, Time of expiration
(millisecond time of day at which
time the requested time interval
will expire)
Program Status JBSPSW Doubleword 8 Program Status Word Storage (provides

storage space for the job's PSW during
interrupt processing and job switching)

Table 3=3. Job Control Block Standard Labels

(Part 1 of 2)

Table 3=-3. Job Control Block Standard Labels

(Part 2 of 2)

UP-7689 UNIVAC 9400 SUPERVISOR 13
SECTION: PAGE:
Sed FIELD
CLASSIFICATION | LABEL | BOUNDARY | pycTH LABEL DESCRIPTION
ALIGNMENT
(BYTES)
Job JB$SYN Halfword 1 Job permit byte:
Synchronization
Control Bit 0, 1 = program check island code
outstanding
Bit 1, 1 =timer island code
outstanding
Bit 2, 1 = unsolicited operator
communications island code
outstanding
Bit 3, 1 = input/output complete on
WAIT
Bit 4, 1 = input/output complete on
MARK
Bit 5, 1 =resume
Bit 6, 1 =a. OPR reply received
b. SETIME WAIT expired
Bit 7, 1 = counter for input/output
orders outstanding is 0
JB$SYN+1 1 Job inhibit byte:
Bits 0, 1, and 2 are always 0
Bit 3,1 = WAIT on input/output
issued
Bit 4,1 = YIELD on input/output
issued
Bit 5, 1 = Suspend
Bit 6,1 = a. OPR reply requested
Nt '
b. SETIME WAIT issued
Bit 7,1 =WAIT ALL issued
JB$I0C 2 Count of input/output orders outstanding
(in binary)
Job JB$JBN Halfword 2 Job number (EBCDIC) (range 10 to 99)
Identification
JB$PRE Fullword 4 Address of associated job preamble
JB$SL Halfword 2 Address of switch list entry (priority level)
JB$LR Halfword 2 Limits register setting
JB$SVC Halfword 1 Transient request identifier
JB$SVC+1 1 X'FF' = no request outstanding
X'FO' = requested transient in process
X'00' = request outstanding (queued)
JB$TME Halfword 2 Remaining time on current time allocation

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: 3 P AGE:

14

3.3.4. Physical Unit Blocks

A Physical Unit Block (PUB) is used for storage of device characteristics, identifying
status, and control information relating to a particular onsite peripheral device. One
PUB is generated for each device at system generation time. For example, a computer
system comprising a system console, card reader, card punch, line printer, two disc
units, and four magnetic tape units would be described by ten PUB’s. Status indicators
located in the PUB are initialized at system generation time and altered as a result of
commands entered at the system console, by physical IOCS, by Job Control, or by the
system error job, The PUB is always aligned on a fullword boundary.

Fields within PUB’s are identified by standard system labels; these labels are defined
in the STDEQU macro instruction. By convention, all labels are a maximum of eight
characters in length and are expressed in the form IP$xxxxx, where the characters

IP$ identify PUB labels and the characters xxxxx identify fields within PUB’s. Field
labels and brief descriptions of their contents are given in Table 3—4.

Table 3=4. Physical Unit Block Standard Labels

(Part 1 of 2)

UP-7689 UNIVAC 9400 SUPERVISOR 3 15
SECTION: PAGE:
N FIELD
BOUNDARY LENGTH
CLASSIFICATION LABEL ALIGNMENT (BYTES) LABEL DESCRIPTION
Allocation IPSALC Fullword 1 Bit 0, 0 =device is nonsharable
Control 1 = device is sharable
Bit 1, Reserved for Supervisor
Bit 2, Lockout indicator for disc
space management
The following bits (bits 3 through 7)
indicate device allocation for the
duration of job steps:
Bit 3, 1 =device is allocated to user
job control block number 5.
Bit 4, 1 = device is allocated to user
job control block number 4.
Bit 5, 1 =device is allocated to user
job control block number 3.
Bit 6, 1 = device is allocated to user
job control block number 2.
Bit 7, 1 = device is allocated to user
job control block number 1.
N
IPSALC+] 1 Bits 0, 1, and 2 are reserved for the
system
The following bits (bits 3 through 7)
indicate device allocation for the
duration of a job:
Bit 3, 1 = device is allocated to user
job control block number 5.
Bit 4, 1 = device is allocated to user
job control block number 4.
Bit 5, 1 = device is allocated to user
job control block number 3.
Bit 6, 1 = device is allocated to user
job contro! block number 2.
Bit 7, 1 = device is allocated to user
job control block number 1.
Mode IP§MDE Halfword 1 Active mode
IPSMDE+1 1 Initial mode (set at system generation
time)
Device IP$DC Fullword 1 Device type code (binar)i)
Identification) .
IP$DC+1 3 External device identification (EBCDIC)
N’

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: 3 PAGE:

16

CLASSIFICATION

LABEL

BOUNDARY
ALIGNMENT

FIELD
LENGTH
(BYTES)

LABEL DESCRIPTION

Alternate Device

IPSALT

Halfword

2

Absolute address of physical unit block
for alternate device. This field is set to
binary zeroes when no alternate device
is specified.

Device Status

IP$SF

IP$EC
IP$CLK

IPSLNK

IP$LNK+2

IP$SU

IP$SU+1
IP$SU+2
IP$SU+3

IP§SU+4

Halfword

Fullword

Fullword

Halfword

Fullword

Bit 0, 1= in use
Bit1, 1 =down
Bit 2, 1 = nonsharable

Bit3, 1

bypass
Bit 4, 1 = sense
Bit 5, 1 =error on sense

Bit 6,

—
i

command reject

Bit7, 1

channel end

Bit 8, 1 = unit check

Bit9, 1

error message indicator

Bit 10, 1= attention

Bit 11, 1= busy

Bit 12, 1= position macro

Bit 13, 1=—clock scan

Bit 14, 1= attention received indicator
Bit 15, 1 = reposition indicator

Error count (in binary)

Clock (time of last dispatched order)
Absolute address of job control block
(identifies the Job that issued the last
1/0 command to the device)

Address of command control block
(identifies the command control block

for the last dispatched order)

Channel issued (identifies the 1/0
channel for last dispatched order)

Device address
Cochannel indicator
Primary channel indicator

Channel and cochannel

Table 3~4. Physical Unit Block Standard Labels

(Part 2 of 2)

UP-7689 UNIVAC 9400 SUPERVISOR 3

SECTION: PAGE:

3.3.5. Program Switch List

The program switch list consists of five priority levels to which programs can be
assigned. Two of the five levels are used by the operating system and three by
problem programs. The five priority levels, including the three used by problem
programs follow:

®m Priority Level 1 — System Error Job

This is the highest level of priority and is used by the system error job.

m Priority Level 2 — Communications type programs (Message Control Program)

This is problem program priority 1.
m Priority Level 3 — System service routines

This is the second priority level used by the operating system.

® Priority Level 4 — Batch programs with high input/output utilization

This is problem program priority 2. In tape systems, symbiont programs are
usually executed at this level.

m Priority Level 5 — Batch programs with low input/output utilization

This is problem program priority 3. In tape systems, the main program is executed
at this level.

N~ The program switch list, illustrated in Figure 3-3, is constructed at system generation
time. The address stored in the first halfword of each priority level (1a through 5a) is
initially set by Job Control and altered by the timer servicing routine on each expiration
of a time allocation. The value stored in the halfwords identified (1b through 5b) are
determined at system generation time and range from 10 to 4000 milliseconds. The
values in 2b, 4b, and 5b are set by the user; the values in 1b and 3b are set by the
software. Addresses stored in the fields 1c through 5c are set by physical IOCS.

Values set in 1d through 5d are set by Job Control.

PRIORITY ~ BYTES
LEVELS
0-1 2-3 4-5 6-7
1 a b c d
2 a b c d
3 a b c d
4 a b c d
5 a b [4 d

Figure 3-3. Program Switch List Structure

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:
/*
3.3.6. System Information Block N
The System Information Block (SIB) provides a central storage area for the control
status and descriptive information related to the system software. This block is
constructed at system generation time and is dynamically altered by the Supervisor
and Job Control. The System Information Block is aligned on a fullword boundary.
Fields within the SIB are identified by standard system labels; these labels are
defined in the STDEQU macro instruction. By convention, all labels are a maximum
of eight characters in length and expressed in the form SB$xxxxx, where the characters
SB$ identify SIB labels and the charactetrs xxxxx identify fields within the SIB.
Field labels and brief descriptions of their contents are provided in Table 3-5.
FIELD
BOUNDARY LENGTH
CLASSIFICATION LABEL ALIGNMENT (BYTES) LABEL DESCRIPTION
Supervisor SB$SPV Fullword 2 Supervisor version number (EBCDIC)
Identification
SB$SPV+2 2 Supervisor revision number (EBCDIC)
SB$CHR Fullword 4 Supervisor characteristics
System SB$SCR Fullword 11 System communication region v
Communication ~
Region
SB$SPI 1 System program switch indicator
System Dates SB$DTE Halfword 8 User date (in EBCDIC)
SBSDTE+8 6 Data Management date in the form Byyddd
(in EBCDIC)
SB$DTE+14 4 Data Management date in the form Oydd
(discontinuous binary)
Main Storage- SB$PA Fullword 4 Address of first byte in problem program
Problem Program area
Areas
SB$HA Fullword 4 Address of last byte in processor
SB$FRE Fullword 4 Address of first free space element
Physical Unit SB$PUB Fullword 4 Count of physical unit blocks in the
Blocks Supervisor
SB$PUB+H4 4 Address of first physical unit block

Table 3=5. System Information Block Standard Labels

(Part 1 of 3)

UP-7689

UNIVAC 9400 SUPERVISOR

Table 3=5. System Information Block Standard Labels

(Part 2 of 3)

3 19
SECTION: PAGE:
'\/ DARY FIELD
CLASSIFICATION LABEL icL)IUGNNMENT LENGTH LABEL DESCRIPTION
(BYTES)
Job Control SB$JCB Fullword 4 Total count of job control blocks
Blocks)

SB$JCB+4 4 Address of first job control block

SBsuJB Fullword 4 Count of job control blocks for problem
programs (from 1 to 5)

SB$UJB+4 4 Address of first problem program job
contro! block

SB$SJB Fullword 4 Address of job control block — operator
command control

SM$MJB 4 Address of job control block — console
clock control

Supervisor Call SB$SVC Fullword 4 Count of entries in SVC interrupt table
Table
SB$SVC+4 4 Address of SVC interrupt table
Program Switch SB$SWL Fullword 4 Count of priority levels
List
SB$SWL+4 4 Address of program switch list
Transient Area SB$STA Fullword 4 Count of transient areas
, Management
) SB$TA+4 4 Address of first transient area
SB$STA+8 4 Count of available transient areas
SB$TA+12 4 Count of outstanding transient requests
Timer Services SB3CLK Fullword 4 Address of job control block — active
software alarm clock

SBSCLK+4 4 Address of primary timer

SB$CLK+8 4 Address of alternate timer

SB$C LK+12 4 Simulated day clock (in milliseconds)

SB$TOD Fullword 8 Console clock in the form hh:mm (EBCDIC)

SBSTOD+8 4 Simulated day clock in the form 00hhhmms
(packed decimal)

SB$TLM Fullword 4 Job time limit — used when maximum time
is not submitted on the job control state-
ment (in milliseconds)

Logical Unit SBSLUT Fuliword 4 Count of entries in logical unit table
Table
SBSLUT+H4 4 Address of logical unit table

UNIVAC 9400 SUPERVISOR

SECTION: 3 PAGE: 20
BOUNDARY FIELD —
CLASSIFICATION LABEL LENGTH LABEL DESCRIPTION
ALIGNMENT
(BYTES)
Temporary Storage SB$OBT Fullword 4 Count of entries in obtain table
Obtain Table
SBYOBT+4 4 Address of obtain table
Resident Routine SBS$INC Fullword 4 Count of entries in resident routine
Include Table Include table
SB$INC+4 4 Address of resident routine include
table
System SB$DVC Fullword 4 Address of physical unit block - IPT
Peripheral device
Device
SB$DVC+4 4 Address of physical unit block = LOG
device
SB$DVC+8 4 Address of physical unit block — LST
device
SB$DVC+12 4 Address of physical unit block = PCH
device
SB$SDVC+16 4 Address of physical unit block — RDR
device
SB$DVC+20 4 Address of physical unit block — RES e
device !
—r
SB$ADP Fullword 4 Count of peripheral devices available
through system adapter
SBSADP+4 4 Physical unit block address — hardware
adapter
Data Management SB$DMC Fullword 4 Address of Data Management common
Common Code code
Table 3=5. System Information Block Standard Labels
(Part 3 of 3)
3.4. SYSTEM CONTROL ROUTINES STORAGE AREA
The functions of the system control routines are described in the following paragraphs.
3.4.1. Supervisor Call (SVC)
The supervisor call interrupt routine is activated when a supervisor call (SVC)
instruction is executed, The supervisor call is the highest of seven levels of
interrupt in the system. An eight-bit interrupt code, which is automatically stored
by the hardware in the old SVC program status word each time a supervisor call
interrupt occurs, is retrieved and used by the routine to locate an entry in the
supervisor call interrupt table identifying the requested function., (The supervisor
call/interrupt table is described in 3.3.2.) Certain macro instructions provided by —

the operating system use the SVC instruction to communicate with the Supervisor.

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE: 21
3.4.2. Physical I0CS
Activity between the central processor and its peripheral devices is controlled by a
group of supervisory routines known as the channel scheduler. Channel scheduler
elements provide I/0 queuing, dispatching, posting, and error detecting services.
Also included in physical IOCS is the system error job which coordinates and con-
trols peripheral device error recovery.
3.4.2.1. Channel Scheduler
The channel scheduler controls all data transfers between main storage and peripher-
al 1/0 devices. The functional elements of the channel scheduler are:
m I/0 Queuing Routine
This channel scheduler element links all I/0O requests submitted by the program-
mer to the job’s channel queues. Direct communication with this routine is
provided by the EXCP physical IOCS macro instruction. Each time an I/0 request
is submitted, a counter is incremented within the user’s job control block indi-
cating the number of outstanding requests for the job. Programmed checks are
included in the queuing process to validate all I/0 requests. Invalid requests
are not queued and indicators are set in the associated command control blocks
indicating the reason. In some instances, the user program check island code sub-
routine is activated (if one is provided by the user) or the problem program is
aborted.
Following the normal queuing process, this routine ascertains the availability

of the particular channel or channels, and, if a required channel route is
found to be available, program control is given to the I/0O dispatcher routine.
Program control is normally returned to the requesting program at the point
immediately following the EXCP macro instruction.

I/0 Dispatcher Routine

This routine selects I/0 requests from the channel queues according to the
priority of jobs, constructs the required SIO (Start 1I/0) commands, and issues
the I/0 orders to the appropriate peripheral device controllers. Program control
is passed to this routine from either the I/O queuing routine or the I/0O interrupt
servicing and error detecting routine.

I/0 Interrupt Servicing and Error Detecting Routine

This element of the channel scheduler handles all hardware 1/0 interruptions.

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: 3 PAGE:

This involves examining the channel status byte following each I/0 interrupt

to determine its cause. When operations are terminated normally, the associated
command control block is posted, the job’s channel queue is advanced, and the
I/0 request counter in the job control block is decremented by one. If more 1/0
requests are present in the channel queues, program control is transferred to the
I/0 dispatcher routine. When operations are abnormally terminated, the queue
element concerned is marked to indicate the error condition, the I/O channel is
marked temporarily inactive, and the resident control routine of the system

error job is alerted to the error condition. Program control is always given to

to the program switcher routine when the time-critical interrupt servicing is
finished. If the programmer provides his own device error recovery routines,

the I/0 interrupt servicing routine does not alert the system error job when an
error occurs. Also in this case, the I/0 request is marked as completed in error,
the I/0 request counter in the job control block is decremented, and the channel
queue is advanced as if the I/0 order had been completed normally.

3.4.2.2. System Error Job

The system error job is a set of routines, some in the main storage resident portion
of the Supervisor and others in auxiliary storage, which are loaded when needed.

The control routine is in main storage and exists as an autonomous job complete
with an associated job control block and job preamble. With each occurrence of an
error, the I/0 channel involved is made temporarily inactive and the control routine
is alerted to the ertror condition. The remaining error routines are primarily concerned
with handling specific error conditions according to device and error type.

m Resident Control Routine

The resident control routine is always assigned to the top priority level of the
switch list. When in control, it checks all software channel status indicators to
determine which channels have error conditions pending. If a hardware channel
error is detected, the routine handles it directly without referencing other cot-
rective routines. Otherwise, the resident control routine is responsible for
scheduling appropriate resident or transient corrector routines and transferring
control to them.

m Device Error Recovery Routines

Each device error recovery routine is designed to handle a specific error con-
dition by programming techniques (such as rereading tape or disc) or by requesting
operator intervention and action (such as turning on an offline device).

An error condition, which can be corrected by reissuing the input/output order,

is handled immediately by the device error recovery routine involved. If this
procedure is successful, the associated command control block is posted, the
input/output channel concerned is marked as normal, and program control is
returned to the resident control routine. If the error condition cannot be corrected
by reissuing the order, or the repetition of the order does not result in successful
completion, the input/output queue packet is marked as being in error and added
to the error message queue; then, if the channel itself is not in error, its status
is set to normal. This allows the input/output dispatcher routine to issue other
I/O commands from channel queues associated with other jobs and other devices.

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

; y m Error Messages to the Operator

The control portion of the peripheral device error recovery function issues
either action- or decision-type messages. Action messages indicate that
operator assistance is required, while decision messages indicate that an
operator decision between alternate courses of action is required.

m User Options for Device Error Recovery

The user is permitted to petform his own error recovery at the problem program
level (see 4.1.1). This option is indicated by specific bit settings in each
command control block. When the user elects to do this, the control portion of the
error recovery function is not alerted to device error conditions. Instead, the
completion and error indicators in the command control block are set and the
associated channel queue is advanced as if no errot had occurred. The user

is required to test the command control block for this condition, determine the
necessary corrective measures, and accomplish the required error recovery
procedures.

The user can choose to accept unrecoverable errors following the normal error recov-
ery procedure. This is desirable in certain cases depending on the type of error and
user application. For instance, the problem application may be designed to ignore
unrecoverable disc read errors rather than to abort the program. Since the accept-
ance of unrecoverable errors depends on the requirements of the problem program,
any one of the following options can be elected by the user:

N - Accept only unique unrecoverable errors, which allows the user to accept a
certain category of device errors, such as a read error on disc. All errors not
included in this classification are considered as unacceptable to the program.

— Accept all unrecoverable errors, which must be handled by the problem pro-
gram,

— Accept no unrecoverable errors, regardless of the type.

If an unrecoverable error is not acceptable to the problem program, the computer
operator is notified by an error message from the resident control routine. In

most cases, the operator is given the choice of aborting the program or attempting
the normal error recovery procedures.

3.4.3. Program Switcher

The primary function of this routine is the allocation of central processor time among
programs loaded in the system. To facilitate this function, programs are categorized
as follows:

B Active Programs

Only the program currently using the central processor unit is in this category.

m Ready Programs

Programs in this category are ready to use the central processor. The next active
ptogram is selected from this category.

UP-7689

UNIVAC 9400 SUPERVISOR 3

SECTION: PAGE:

24

m Nonready Programs

Programs in this category are not ready to use the central processor until the
occurrence of one or more events. Nonready programs are further categorized as
waiting programs or dormant programs.

— Waiting Programs

Programs in this category cannot use additional central processor time until
the completion of an event(s) initiated or requested by them; for example,
outstanding 1/0 orders, scheduled timer interrupt, etc.

— Dormant Programs

Programs in this category cannot use central processor time until the occurrence
of an event(s) external to them; for example, the occurrence of an 1/0 error that
results in the dormant peripheral device error recovery program being made ready.

3.4.4. Program Check

3.4.4.1.

This routine is activated when a program interrupt or software program exception
occurs in a problem program.

Program Interrupt

A program interrupt occurs as a result of any of the following conditions:

An illegal opetation code is detected in the problem program.
A privileged operation is attempted in the problem program state.

A main storage write is attempted outside the bounds defined-by the limits
register. This interrupt can occur only when the optional main storage protection
feature is installed in the processor.

Reference to low order main storage in the problem program state; that is, the
first 512 bytes of main storage.

Reference to a unit of data where the address is not on the required integral
boundary.

Fixed point arithmetic overflow and the carry out of the high order numeric bit
does not agree with the carry out of the sign bit.

The result field is exceeded during a decimal arithmetic operation.

A quotient digit is formed with a nonnumeric hexadecimal value.

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

3.4.4.2. Software Program Exception

A software program exception occurs as a result of certain invalid uses of super-
visory functions that are detected by the system. When this occurs, the Supervisor
stores an error code in the program preamble of the program which caused the error,
If the program in error has specified a program check island code subroutine, pro-
gram control is transferred to it. In the program check island code subroutine the
user can interrogate the error code stored in the preamble to determine the cause of
the error and possible recourses. Program abort procedures are initiated as specified
by the user at system generation time if the user has not specified a program check
island code subroutine. Invalid uses of the supervisory functions are explained in
the following sections of this manual.

3.4,5. Program Load — Disc Systems

Problem programs are loaded into main storage by either the absolute program loader
or the relocating program loader. Communication with these routines is provided by
the LOAD and FETCH macro instructions described in Section 5.

The form of program loading to be used for a particular job step is designated by the
user on the EXEC Job Control statement. Refer to UNIVAC 9400 Job Control for Disc
Systems Programmers Reference, UP-7585 (current version).

3.4.5.1. Absolute Progtam Loader

Programs to be loaded by the absolute program loader must reside in the execution
W area on the resident direct access storage device. Programs are stored in the
execution area in absolute form when the job is prepared for execution by Job
Control.

If the user elects to use the absolute program loader when the program to be loaded
does not exist in the execution area, Job Control retrieves the load module from the
specified program library, resolves all address constants (making the program absolute),
and writes the resultant absolute code in the execution area. This procedure occurs
only between job steps. Loading from this point is the same as previously described.

Optionally, at system generation time, the user can choose to include selected
programs in the execution area in absolute form. Programs stored in this manner
can then be retrieved and loaded into main storage by the absolute program loader
without involving Job Control. However, programs stored in this form must always
be assigned to specific main storage areas for execution. This restriction can be
avoided if the programs are self-relocating. ‘

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

26

3.4.5.2. Relocating Program Loader

3.4.6.

3.4.7.

Programs to be loaded by the relocating program loader must be in load module
form and stored in a program library on a direct access storage device. That is,
each time a LOAD or FETCH macro instruction is executed in reference to a
program load module in a program library, the relocating loader is retrieved by

the transient scheduler. When given program control, the relocating loader locates
the load module in the program library and reads the object code into its own input
area in the transient storage area, resolves address constants, and then moves the
absolute object code to the user area. This procedure continues until the entire
requested load module is loaded into the user area.

Program Load — Tape Systems

Programs to be loaded into main storage must reside on magnetic tape in load module
form. Program loading is accomplished by the relocating program loader, which is
written on magnetic tape immediately following each load module header record; this
is automatically accomplished by use of the Linkage Editor. When a LOAD or FETCH
macro instruction is executed, the program locator locates load modules in the load
library based on the alphabetical sequence of program names in the header records.
That is, the program locator first determines whether a requested load module precedes
or follows the current position of the system tape. If the requested module precedes
the current position, then either a tape rewind followed by a forward search or a series
of backward reads is executed to locate the requested module. If it is determined that
the requested module follows the current position of the system tape, the program
locator searches forward until the routine is located or the end of the load library is
detected.

The program locator routine locates the header block for the program to be located
and reads the relocating program loader into the transient area for execution. The
transient relocating program loader then reads subsequent object blocks into the
transient area, resolves address constants, and transfers the resultant absolute
object code to the user area. Upon completion of this loading sequence, the tran-
sient relocating loader surrenders program control by a TRLSE macro instruction
(see Section 5). The transient area is then freed and made available for subsequent
transient functions.

Transient Scheduler

The transient scheduler routine coordinates all activity between calling programs
and transient routines. Transient routines are self-relocating, stored as absolute
load modules on the system resident device, and loaded into system transient areas
of main storage only when needed by the operating system or problem programs.
Transient routines are considered as logical extensions of the calling programs,

but are executed at system priority level 3. All transient routines are designed to
operate within a single main storage transient area provided by the Supervisor. In
cases where transient routines exceed the size of a transient area, overlay segments
are retrieved; therefore, the effective size of transient routines is virtually unlimited.

UP-7689

UNIVAC 9400 SUPERVISOR 3

SECTION: PAGE:

27

The user can select certain transient routines at system generation time for inclusion

in the main storage resident portion of the Supervisor to reduce the retrieval time and
thereby increase the efficiency of the system. This may be desirable due to differences
in the user’s program response requirements, size of available main storage, and fre-
quency of use of certain supervisory facilities.

Examples of the type of functions that are performed by transient routines are:

Data Management — Open and close files

Job Control — Cancel, end of job, and subroutines required when establishing jobs
in the system.

Supervisor — Checkpoint, certain operator commands, and extensions of supervisory
functions.

Communications between problem programs or the operating system and the transient
scheduler are accomplished by the use of macro instructions.

3.4.7.1.

3.4.7.2.

Disc Systems

Transient routines in disc systems are stored in a reserved portion of the execution
area on the system resident direct access device at system generation time so that
they can be quickly and efficiently located when requested.

Tape Systems

Transient routines in tape systems are stored in the load library on the system
resident device. Constructing a system resident tape is a function of the UNIVAC
9400 Librarian. Transient routines are stored in object load module format and may
be interspersed with other load modules of the operating system and user programs.
In order to reduce the amount of time required to retrieve transient routines, the
user may choose to repeat certain ones at strategic places on the system tape.

As a system convention, the names of all transient routines begin with the character
$, since it is assumed that the user may desire to repeat the system transient
functions in a single load library. This convention is established by the UNIVAC
9400 Librarian and is used to direct the program locator to always search forward

on the assumption that another copy of the requested routine may be present before
the end of the progtam load library is reached. If the end of the program load library

is reached without having found the requested transient, the system tape is positioned
to the beginning of the program load library and a forward search is initiated.

3.4.8. Timer Services

The millisecond timer is a standard hardware feature of the UNIVAC 9400 Central
Processor. The timer services routine provides various services by means of this
timer. Timer services provided by the Supervisor are:

UP-7689

UNIVAC 9400 SUPERVISOR 28

SECTION: PAGE:

3.4.9.

B Time Allocation

Time allocation is automatically provided for all programs using the time values
supplied by the user at system generation time. These time intervals can range
from 10 to 4000 milliseconds. Each time the program switcher activates a problem
program, it requests an allotment of processing time from the timer services
routine. This request results in the setting of a software alarm clock which, when
expired, causes the program switcher to gain control. If the program does not
voluntarily surrender control of the central processor before its time interval
expires, an interrupt is generated and the program switcher routine is given
program control to determine if another program of equal priority is ready to
accept program control.

® Job Accounting

The estimated maximum run time for each problem job may be submitted to the
system on the JOB Job Control statement. If an estimated run time is not sub-
mitted in this manner, a standard job time limit which is set by the user at

system generation time is used. When program control is taken from a problem
program, the timer services routine adds the amount of time used to a time

counter in the job preamble. The total elapsed processing time is then compared
to the estimated run time for the job. If the estimated run time has been reached,

a message is printed at the system console to notify the operator of this condition.
The operator can then allot more processing time to the job or initiate abort pro-
cedures.

a Time of Day

A day clock is simulated by the timer services routine that is accessible to
problem programs. The millisecond time of day, as a binary integer, or the
hours and minutes time of day, in packed decimal format, can be retrieved by
the execution of a GETIME macro instruction (see 5.3.1). In addition to these
services, the hours and minutes time of day is also maintained in EBCDIC

code in the form hh:mm and is printed as a prefix to all console messages.

This time is also printed when the ATTENTION key is depressed at the system
console.

m Software Timer Alarms

Each program in the system can request notification upon the expiration of a
specified interval of time. The SETIME macro instruction is provided for this
service (see 5.3.2). '

User Island Code Management

The programmer can provide island code subroutines (that is, closed subroutines)
that are activated when the problem program is interrupted as a result of a software
or hardware program check, the expiration of an interval of time previously requested
by the program, or an unsolicited message entered at the system console. These sub-
routines are intended to function as extensions to interrupt subroutines. Priorities
and rules concerning these routines have also been established and must be followed.

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: 3 PAGE:

29

The user island code subroutines and their priorities are:
B Program Check — highest priority
8 Timer Interval — second priority

® Unsolicited Messages — lowest priority

The rules governing the execution of user island code subroutines are:

m When a problem program is interrupted by either a program check, time interval,
or unsolicited message, the appropriate user island code subroutine is immediately
given control.

m When an interrupt occurs during the execution of a user island code subroutine
which is to directly result in the execution of a lower priority user island code
subroutine, the routine in control retains control until an EXIT macro instruction
is executed. After the execution of the EXIT macro instruction, the user island
code subroutine of lower priority is given control.

® When an interrupt occurs during the execution of a user island code subroutine
which is to directly result in the execution of a user island code subroutine with
a higher priority, the subroutine in control is interrupted and program control is
transferred to the subroutine of higher priority.

m Program control should not be voluntarily surrendered while executing a user
island code subroutine. Therefore, the following macro instructions should not
be used in user island code subroutines:

- WAIT
— YIELD

SETIME (with positional parameter 2, WAIT)

OPR (with positional parameter 4, REPLY)

® Requests for Supervisor transient function are not permitted during the execution
of any user island code subroutine.

Programmed linkage between the Supervisor and the user island code subroutines is
the responsibility of the user programmer and the function of the STXIT and EXIT
macro instructions. The STXIT macro instruction is provided to establish, change,
or terminate program linkage between each user island code subroutine and the
Supetvisor. Since a job may consist of more than one job step (programs) executed
sequentially in the order specified by the user in the job stream, each job step is
responsible for establishing linkage to its own island code subroutine(s) by executing
STXIT macro instructions. The EXIT macro instruction is provided to terminate a
user island code subroutine and return program control to the point of interrupt in
the problem program. The EXIT macro instruction is used in conjunction with the
STXIT macro instruction. (For additional information concerning the STXIT and
EXIT macro instructions, see 5.7.1 and 5.7.2.)

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

30

3.4.9.1.

3.4.9.2.

Program Check

A program check island code subroutine is a user-generated closed subroutine.
This subroutine receives program control when the problem program causes a
hardware program check interrupt or a program error has resulted in a software
program check. If the user programmer desires to provide a program check island
code subroutine, the addresses of the subroutine and a register save area are
provided by executing a STXIT macro instruction. If a program error occurs
while executing a user program check island code subroutine, the program is
scheduled for abort procedures. If the user programmer does not provide a user
program check island code subroutine and a program error occurs, the program is
automatically scheduled for abort procedures.

Timer Interval

A timer island code subroutine is a user-generated closed subroutine. The pro-
grammer can submit a request to the Supervisor that the program be interrupted
following the expiration of a time interval specified by a SETIME macro instruc-
tion. (The form of the SETIME macro instruction referred to is without positional
parameter 2, WAIT.) If the user desires this capability, he must provide the
addresses of the subroutine and register save area by executing a STXIT macro
instruction. This subroutine is given program control when the requested time
interval expires. If the user does not provide a timer island code subroutine and
a previously requested time interval expires, the problem program receives no
indication of the time interrupt. A new time interval can be requested by the
problem program while the user timer island code subroutine is being executed.

However, should the time request expire before the user timer island code sub-
routine is terminated by an EXIT macro instruction, the timer interrupt occurs
and the problem program does not receive an indication. If a user timer island
code subroutine is not provided, a job step does not have the capability of re-
questing timer interrupts other than the one provided by the SETIME macro
instruction (written with WAIT as parameter 2). This form of the SETIME macro
instruction does not require an island code subroutine.

UP-7689

UNIVAC 9400 SUPERVISOR 3

SECTION: PAGE:

31

3.4.9.3.

3.4.10.

3.4.11.

Unsolicited Message

An operator communications island code subroutine is a user-generated closed sub-
routine. In order to allow the problem program to accept unsolicited messages
entered by the operator at the system console, the user must provide the addresses
of the routine, register save area, and input buffer area; he must also specify the
length of the buffer area. This subroutine is given program control when an un-
solicited message has been entered for the program. The unsolicited message

text can be from 1 to 64 EBCDIC characters and is stored in the user-provided
input buffer area exactly as entered at the console. If the number of characters

in the unsolicited message text exceeds the input buffer area, the message text

is truncated to the size of the buffer area. Since unsolicited messages can be
entered at any time at the system console, the effect is similar to that of other
interrupts in the system. Therefore, an area must be provided to contain the
contents of the problem registers so that, following the execution of the operator
communication island code subroutine, the problem registers can be restored and
program control returned to the point of interrupt (that is, the point in the problem
program at which the unsolicited message was entered at the console). During

the time a problem program is in the operator communications island code sub-
routine and until an EXIT macro is executed, a second attempt to enter an un-
solicited message at the console is rejected and a message is printed indicating
this situation.

If the programmer does not desire to provide an operator communications island
code subroutine and an attempt is made to enter an unsolicited message at the

console for the program, a message is printed at the console indicating that the
program cannot accept unsolicited messages.

Operator Communications Control

The operator communications control routine should be generated as main storage
resident in tape systems in order to reduce program retrieval time. In disc systems,
the amount of time required to retrieve the operator communications transient routines
is significantly less, and therefore, executing these routines as general operator
communications transients is perhaps the most desirable mode of operation. For
additional information concerning operator communications provided by the Super-
visor, see Section 6.

Optional Resident Routines

At system generation time, the user can select certain transient routines to be
included in the resident portion of the Supervisor. This option allows the user to
increase his operating efficiency at the expense of using additional main storage
to contain the generated routines. Transient routines generated in this manner are
requested through the transient scheduler and are executed in system transient
areas. The transient scheduler routine copies the requested transient routine into
an available transient area, thus simulating the retrieval function required to
retrieve nonresident transient routines.

UP-7689

UNIVAC 9400 SUPERVISOR ‘

SECTION: 3

PAGE:

32

3.5.

3.6.

TRANSIENT AREA(S)

A minimum of one transient area is required by the system. The user can choose to
generate from one to five additional transient areas in order to increase the efficiency
of the system.

Each transient area is fixed at 2048 bytes divided as follows:
m Transient preamble (byte positions 0 through 511)

m Processing Area (byte positions 512 through 2047)

Since all transient routines are executed as jobs, a preamble and job control block
are assigned to each transient area. The transient processing area immediately
follows the preamble and is fixed at 1536 bytes.

PROBLEM PROGRAM AREA

The problem program area immediately follows the last transient area and occupies

the remainder of main storage. This area is suballocated by Job Control in minimum-
sized blocks of 8192 contiguous bytes. Where programs exceed 8192 bytes, main
storage is allocated in increments of 512 bytes. The first 512 bytes of each block

are the job preamble. Unallocated problem storage area is controlled by the Supervisor.
If unallocated main storage is a noncontiguous block, link addresses are maintained

in each of the blocks with a counter indicating the number of bytes unallocated. This
linkage is illustrated in Figure 3-4.

\

UP-7689

UNIVAC 9400 SUPERVISOR

33

—
///
//
*ADDRESS OF
NEXT FREE NO. OF
BLOCK IN BYTES/BLOCK

CHAIN

/
/

/
/ FREE SPACE
/ BLOCK 2

/

4———2 WORD ENTRY ————

*The address in the first word of the last free block is the address of the first free block in the
chain. If there is only one free block in the chain, the address in the first word of the block is

the address of that block.

Figure 3—4. Example of Free Space Linkage in Main Storage

SECTION: PAGE:
. ADDRESS OF | \
1st BLOCK T
\,,
~
~ SIB\
~
~— SUPERVISOR
FREE SPACE
BLOCK 1 (first block in chain)
ALLOCATED
T0 JOB 1
FREE SPACE
BLOCK 3 (last block in chain)
N
ALLOCATED
T0 JOB 2

UP-7689

UNIVAC 9400 SUPERVISOR 4

SECTION: PAGE:

4.1,

4. PHYSICAL 10CS MACRO
INSTRUCTIONS

GENERAL

Nine physical IOCS macro instructions are available to the programmer to manage
1/0 operations and provide the required communications with the channel scheduler.
These macro instructions are:

m CCB — generate Command Control Block

m EXCP - EXecute Channel Program

m WAIT — WAIT for I/0O completion

m MARK - test and MARK command control block for YIELD macro instruction

m YIELD - YIELD program control until a marked command control block is
posted completed

m PIOCB generate Physical Input/Output Control Block

8 RDFCB — ReaD File Control Block
m SWAP — SWAP physical devices (alternates)

m FREE -~ dynamic release of peripheral devices

Whenever these macro instructions are used, the programmer must supply the
Channel Command Words and provide any of the logical functions required by
problem programs. These functions include blocking and deblocking records,
checking for wrong length records, swapping buffer areas, and detecting and
bypassing checkpoint records if they are interspersed with data records. When
the data management routines are used, the physical IOCS macro instructions are
contained in the macro expansions of the logical IOCS macro instructions.

4.1.1. CCB Macro Instruction and Command Control Block Structure

A minimum of one CCB macro instruction is required for each type of I/0O per-
ipheral device to be controlled by physical IOCS macro instructions. An active
command control block pertains to one I/0 request at a time; therefore, each

I/0 request must have a unique command control block. The CCB macro instruction
is a declarative macro instruction used to generate a command control block. This
macro instruction should not appear in a sequence of executable code.

The generated command control block contains information in accordance with user
written parameters pertinent to the I/O order and required by the channel scheduler.
Fields are allocated to serve as repositories for status information at interrupt time
and when WAIT or MARK macros, which reference the command control block, are
executed.

UP-7689 UNIVAC 9400 SUPERVISOR 4 9

SECTION: PAGE:

The format of the CCB macto instruction is:
N
LABEL b5 OPERATION B OPERAND
name ’ CCB piocb-name,ccw-name[,entry-number] [,X'xx']
LABEL
name - the symbolic address of the first byte of the command control block. All
references to the command control block are made using this name.

POSITIONAL PARAMETER 1
piocb-name — the symbolic address of an associated physical input/output control

block generated by the PIOCB macro instruction (see 4.1.6).
POSITIONAL PARAMETER 2
ccw-name — the symbolic address of a channel command word, or list of channel

command words, if command chaining is used (permitted on selector

channels only). If logical IOCS macro instructions are used, the

channel command words are generated automatically. When using

physical IOCS macro instructions, the programmer must specify

each channel command word according to the I/0 functions desired.
POSITIONAL PARAMETER 3

—

entry-number — 0, 2, 4, or 6 indicating one of four two-byte fields in the physical

I/0 control block containing the absolute physical unit block
address for the peripheral device involved in the I/O operation.

if blank — 0 is assumed.

POSITIONAL PARAMETER 4
Xtxx' - user options elected at assembly time. These options are:

100 indicates that no error conditions are acceptable to the problem
program.

20" indicates that, following the normal error recovery attempts by
the Supervisor, those errors classified as unique are acceptable
to the problem program.

40 indicates that all unrecoverable error conditions are accepfable
to the problem program following the normal error recovery attempts
by the Supervisor.

‘80" indicates that all error conditions are to be passed to the problem
program and that the Supervisor is not to attempt error recovery.

if blank — *00' is assumed.

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

Examples:

LABEL 5 OPERATION &
1 10 16

OPERAND

olRIDlEIRI'I 1.1 clclBl 1

FI LEA, CCWIL 6

lll[llll

OR,DERI|Z, | CiC.B, |

FlllLlElalllclclwlzl | S B l S T S

R O A A | I S N

The format of a command control block is shown in Figure 4—1. Fields within
command control blocks ate identified by standard system labels; these labels
are defined in the STDEQU macro instruction (1.4). By convention, all labels

are a maximum of eight characters and are expressed in the form IC$xxxxx, where
the characters IC$ identify command control block labels and the characters
xxxxx identify fields within command control blocks. Field labels, and brief
descriptions of their contents, arte provided in Table 4-1.

Q RESIDUAL BYTE
COUNT

TRANSMISSION
BYTE

ADDRESS OF FIRST CCW OR
ADDRESS OF FIRST BCW

8 BCW OR ADDRESS OF NEXT CCW

ADDRESS OF HALFWORD PUB
POINTER IN PIOCB

COMMAND
CODE
{MPX,
CHAN.
ONLY)

ERROR
MESSAGE
IDENTI-
FIER

CONTROL

BYTE RESERVED

ERROR RECOVERY

STATUS INDICATORS RETRY COUNTER

FORWARD QUEUE ADDRESS

2 {SEL. CHAN. 1 OR MPX, CHAN.)

FORWARD QUEUE ADDRESS
(SEL. CHAN. 2)

32 BACKWARD QUEUE ADDRESS
(SEL. CHAN. 1 OR MPX. CHAN.)

BACKWARD QUEUE ADDRESS
(SEL, CHAN. 2)

I

Block.

Figure 4-1.

When error conditions occur, sense bytes are stored
in byte positions 32 through 37 of Command Control —

Command Control Block Format

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: 4

PAGE:

(Part 1 of 2)

BOUNDARY FIELD
LABEL ALIGNMENT LENGTH DESCRIPTION
IC$RBC Fullword 2 Residual byte count
IC$T Halfword 2 Transmission bytes:
Bit 0: traffic bit
1 = complete or initial condition
0 = order in process
Bit 1: 1 = unrecoverable error
Bit 2: 1 = unique unit error
Bit 3: 1 = additional condition/no
record found
Bit 4: 1 = unit exception/tape mark
Bit 5: reserved
Bit 6: 1 = end of track (track overrun)
Bit 7: 1 =end of cylinder
Bit 8: 1 = user error recovery
Bit 9: 1 = unrecoverable error
accepted by problem
program
Bit 10:1 =unique unit error accepted
by problem program
Bitll—-15=used by system
IC$CCW Fullword 4 Address of first CCW or BCW
IC$BCW Fullword 4 BCW or address of next CCW
IC$PIO Fullword 4 Address of halfword in physical
1/0 control block containing PUB
address
IC$MCC 1 Command Code (multiplexer channel
only)
IC$CTL 2 Control byte:
Bits 0-2: always 0
Bit 3: 1 =WAIT macro instruction
executed with reference to
this command control
block
Table 4—1. Command Control Block Labels

(Part 2 of 2)

4.1.2. EXCP Macro Instruction (Type R)

The EXCP macro instruction communicates directly with the I/0 queuing routine

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 4 PAGE:
— BOUNDARY FIELD
LABEL ALIGNMENT LENGTH DESCRIPTION
IC$CTL Bit 4: 1 = MARK macro instruction
executed with reference to
this command contsol
block
Bit 5: used by system
Bits 6 and 7: always 0
Bits 8-15: reserved
IC$EMN 1 Error message identifier
IC$SF Halfword 2 Status flags
IC$EC Halfword 2 Error tecovery retry counter
ICSLNK Fullword 4 Forward queue address (selector
channel 1 and multiplexer channel)
IC$LNK+4 Fullword 4 Forward queue address (selector
channel 2 and multiplexer channel)
; IC$LNK+8 Fullword 4 Backward queue address (selector
N channel 1 and multiplexer channel)
ICSLNK+12 Fullword 4 Backward queue address (selector
channel 2 and multiplexer channel)
Table 4—1. Command Control Block Labels

of the channel scheduler for the purpose of submitting I/0 requests to the system.

Before this macro instruction is executed, the programmer must construct an I/0

request packet consisting of one command control block, one or more channel
command words, and one physical I/0 control block.

UP-7689 UNIVAC 9400 SUPERVISOR 4 6
SECTION: PAGE:

Linkage between these components is as follows: -
8 The EXCP macro instruction passes the address of the command control block

to the I/0 queuing routine.
B The address of a two-byte field in a physical I/0 control block is stored in the

command control block. This field contains the relative address of the physical

unit block for the peripheral device concerned.
B The address of the first channel command word is stored in the command control

block.
8 Each channel command word contains the address of an input/output data area.
Whenever an EXCP macro instruction is executed, the 1/0 request counter in the
job control block is incremented and a status indicator in the command control
block is set signifying that the order is outstanding.
The format of the EXCP macro instruction is:
LABEL 5 OPERATION & OPERAND
[name] EXCP ccc-name ’ C

¢Y) (0)

POSITIONAL PARAMETER 1 7
ccb-name — the address of the command control block. S
1) — indicates that register 1 has been preloaded with the address of the

command control block.

POSITIONAL PARAMETER 2

C — indicates that the I/0 request is conditional on the peripheral device
not being shared with another program running in the system. This
option is intended to allow the programmer to issue conditional seek
commands when running in a multiprogramming environment.

) — indicates that the EXCP macro instruction is used for tape positioning,
and that register 0 has been preloaded with a two-byte block count
that identifies the blocks at which the tape will be positioned.

if blank — indicates that the I/O request is unconditional.

Examples:
LABEL 5 OPERATION® OPERAND 5
1 10 16
LssEy 1] JEXGR [JoRDERIY y oy by Levsalvraaling
ot ExeR Py e b beraa b e i
s Lo PIEXGR L IORPERIZGG gyl v e b

()

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: 4 PAGE:

4.1.3. WAIT Macro Instruction (Type R)

The WAIT macro instruction is written in the problem program at point where
processing cannot logically proceed until the completion of I/0 requests initiated
by the EXCP macro instruction. A WAIT macro instruction is executed in reference
to a single command control block or to the I/O counter in the problem program’s
job control block. If the related 1/O operation (or operations) is finished, processing
continues without any interruption. If the I/O operation (or operations) is not
finished, the program is temporarily suspended (nonready status), and program
control is given to the program switching routine. As each operation is finished,
the interrupt servicing routine posts the command control block as complete,
decrements the I/0 counter in the program’s job control block, the program is

made ready and program control is transferred to the program switching routine.
When the problem program is reactivated, program control is returned to the point
of interruption (immediately following the WAIT macro instruction that results in
the delay).

The format of the WAIT macro instruction is:

LABEL 5 OPERATION B OPERAND

ccb-name
[name] WAIT 1) [{b"add’ }]
ALL 1s)

POSITIONAL PARAMETER 1

ccb-name — the address of the command control block to be tested and marked.

8 — indicates that register 1 has been preloaded with the address of the
command control block.

ALL — the I/O counter in the job control block is tested instead of the status
byte in the command control block. If no orders are outstanding, the
problem program resumes following the WAIT macro instruction. If I/0
orders are outstanding, the program is suspended until the I/O counter
is zero (indicating all orders completed).

POSITIONAL PARAMETER 2

br-addr — the symbolic address to which program control is transferred if the
related requested I/O operation is completed, but is not without exception,

NOTE: When using a label as positional parameter 2, the contents of
register 15 are not altered even though transfer of control may
occur. Base register coverage for this transfer address is
assumed.

(15) — indicates that register 15 has been preloaded with the address.

if blank — the WAIT mactro instruction tests for complete or incomplete status
without testing for exceptions. When ALL specified as positional
parameter 1, this parameter must be blank.

UP-7689

UNIVAC 9400 SUPERVISOR 4

SECTION: PAGE:

NOTE: The WAIT macro instruction determines the status of a command control
block by testing the transmission byte that is set by the I/0 interrupt
processing routines and error processing job. The transmission byte is
the third byte of the command control block, referenced by the standard
label IC$T, and has the following form:

BIT POSITION MEANING (when set to 1)

0 — 1/0 complete (or initial state)

— Unrecoverable error

— Unique unit error

— Additional condition/no trecord found
Unit exception/tape mark

— Reserved

— End of track (track overrun)

— End of cylinder

N A W N
I

When determining if a requested 1/0O operation is complete, the WAIT macro
instruction tests for the setting of bit 0 to 1. Then, if positional parameter 2 is
specified, the WAIT macro instruction tests bits 1 through 7. If any of these bits
are set to 1, program control is transferred to the address specified by positional
parameter 2. The branch address specified as positional parameter 2 must be
covered by a USING directive.

Examples:
LABEL 5 OPERATION OPERAND A‘B
10 16

I A WIALLT, ORDERIV, | v v |y vy by v v v by b g L
oty WAL flALL b s b by by s e 1y
N B WIALT, LTI Y I U AT N O U VAN AU U T AN U SO A
T WA LT, ORDERIT, E\RRIOWR ¢ | 4y ¢y gy v b vy by a1y
[B WA LT (WL AT S LTI NN B A A S AN AN AN AN TN S AN SR Er i
' WIALLT, CCRTWIOL,ER,TINE, 1 v v v b v v b by
|- I |- l | I | O N | l I I | l 11 SO N | l J I | l 1111 l 1

4.1.4, MARK Macro Instruction (Type R)

The status of an I/O operation is determined by testing the status byte in its’
associated command control block. The MARK macro instruction can be used to
check the status of I/0 operations previously initiated by an EXCP macro instruc-
tion. At the time this test is made, a bit in the command control block is set
indicating that a MARK macro has referenced it, and, if the status byte indicates
that the I/0 operation is not complete, program control is transferred to a user
specified address. This macro instruction is used in conjunction with the YIELD
physical IOCS macro instruction (described in 4,1.5).

UNIVAC 9400 SUPERVISOR ‘

NO,TDOINE2] [MIARK, G s o b v v b b g by

1

T IMJA R K, ORDER3, NOTIDONE 3| , | ; , | 4y | ¢,

B B L1 Lo v o b b v v b e b

4,1.5. YIELD Macro Instruction (Type R)

The YIELD macro instruction is written by the programmer at a point in the problem

program where he wants to relinquish program control until the completion of any
one of several outstanding I/0 orders whose command control block has had .a bit

set by the MARK macro instruction. The YIELD macro instruction causes an

interruption to the problem program and control is given to the program switching
routine, but the switch list for the respective priority level is not cycled. If no

programs of higher priority are ready for activation, and if one or more I/O requests

posted by the MARK macro instruction have been completed, the problem program
is reactivated at the point of interruption (immediately following the YIELD macro

instruction).

UP-7689 4 9
SECTION: PAGE:
. The format of the MARK macro instruction is:
N’
LABEL OPERATION B OPERAND
b-name branch-address
[name] MARK {CC } { }
(1) (15)
POSITIONAL PARAMETER 1
ccb-name — the symbolic address of the command control block to be
marked.
) —~ indicates that register 1 has been preloaded with the address
of the command control block to be marked.
POSITIONAL PARAMETER 2
branch-address — the symbolic address to which control is transferred if the
related I/0O operation is not completed. When positional
parameter 2 is specified as a label, it is assumed that base
register coverage is provided in the problem program to allow
branching to the alternate address. The contents of register
15 are not destroyed by the MARK macro instruction when this
occurs.
(15) — indicates that register 15 has been preloaded with the branch
: address.
N
Example:
LABEL t OPERATION® OPERAND 5
1 10 16

UNIVAC 9400 SUPERVISOR l

10
SECTION: PAGE:
The format of the YIELD macro instruction is: i
~
LABEL + OPERATION & OPERAND
[name] ‘ YIELD l
No positional parameters are required by the YIELD macro instruction.
Example:
LABEL 5 OPERATION® OPERAND 5
1 10 16
SR S Yt ELD v b v b e b b boe e Loy
lllllJl llll llll|1lllllJJl]JLLllJlll'llllll
4.1.6. PIOCB Macro Instruction and Physical I/O Control Block Structure
The PIOCB macro instruction is used to generate physical I/O control blocks. These
blocks serve as repositories for file and device information previously compiled by
Job Control at the time the job control stream was evaluated. This information is
stored in the form of a file control block. In tape systems, file control blocks are
stored in high order main storage of the problem program. It is important that these
blocks be retrieved (by issuing RDFCB macto instructions) before the main storage
area in which they are stored is overlaid by the problem program. In disc systems, ,d-;‘/'“
file control blocks are stored in the job file of the system resident direct access S

device. After the program has been loaded and execution has begun, either an RDFCB
ot an OPEN macro instruction causes file information to be moved to the physical

I/0 control block. When Data Management is used, a PIOCB macro instruction appears
within the expansion of each Data Management file definition. The PIOCB macro
instructicn is declarative; therefore, it should not appear in a sequence of executable
code,

At assembly time, the PIOCB macro instruction provides main storage space for the
following information:

m Eight-byte search key

An eight-byte character string is generated within each physical I/O control block.
This character string is required by the RDFCB macro instruction and is used as

a search key to obtain the file control block. The characters in this eight-byte search
key are identical to the characters appearing as the label of the PIOCB macro
instruction,

8 Halfword length field

A two-byte field immediately follows the eight-byte search key. This field contains
a binary count of the number of bytes reserved for the file control block. This binary
count ranges from a minimum of 2 to a maximum of 133. Altering the contents of this

halfword field prior to the execution of a RDFCB macro instruction causes the transfer

of the number of bytes of the file control block as specified by the alteration.

UP-7689

UNIVAC 9400 SUPERVISOR 4 11
SECTION: PAGE:

B Part or all of a file control block

Each file control block begins with four two-byte fields which contain the addresses
of physical unit blocks for the device or devices allocated to the file. Multivolume
direct access files, defined by a single file control block, cannot exceed four
volumes, Multivolume direct access files which exceed four volumes should be
divided into multiple files and defined by two or more file control blocks. Each

file control block requires an associated physical I/0O control block.

The format of the PIOCB macro instruction is:

LABEL 5 OPERATION B OPERAND

name PIOCB [{ MAX }]
#-bytes

LABEL

name — the symbolic address of the first byte of the physical I/0 control block.
This name is used whenever reference is made to the physical I/0
control block or its contents. The characters appearing in this label
become the eight-byte character string generated in the first eight bytes
of the physical I/O control block.

POSITIONAL PARAMETER 1

MAX — a binary constant is generated and an area is reserved within the physical
I/0 control block large enough to contain the complete file control block.

#-bytes — an integer indicating the size of the area for the file control block. This
option is used to limit the size of the physical I/0O control block for the
purpose of reading partial file control blocks.

if blank — a minimum-sized physical I/0 control block of twelve bytes is generated
allowing for storage of only the first two bytes of the file control block.
These first two bytes contain the absolute address of the physical unit
block for the device assigned to the file.

NOTE: A two-byte field is reserved for each device that is simultaneously required
online to a single physical 1/0 control block. A maximum of four fields is
permitted. The first two-byte field is referred to as entry 0, the second field as
entry 2, the third field as entry 4, and the fourth field as entry 6. Following
the successful completion of a RDFCB macro instruction, these fields contain
the absolute addresses of the physical unit blocks that identify the assigned
devices. Device assignments indicated in the file control block are made by
Job Control. Thus, the RDFCB macro instruction, in conjunction with the
PIOCB macro instruction, dynamically links the problem program with the
results of its evaluated job control stream.

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: 4 PAGE:
Examples:
LABEL 5 OPERATION & OPERAND b]

1 10 16

Fl,LEA| |, Pli 0.C B [T RS AN N T TN N SR TN TN NN N AN A W M AU EAN MR N A R
Fll lLlElBl L i P“ lolc IB 5[01 | l B (S Y S | l L1 I 1 N | l 1 1 1 1 l N W A | I

Ft LECH, | PHOCB] IMAX) | v ol v v v b v by v by g L
Lt L TRSTUNN VT T G VU N VOUSY U AU VR S T W SN N N T N SN U WA T N0 N A

The format of a physical I/0 control block is shown in Figure 4—2, Fields within a
physical I/O control block are identified by standard syétem labels; these labels
are defined in the STDEQU macro instruction (1.4). By convention, all labels are

a maximum of eight characters and expressed in the form IB$xxxxx, where the
characters IB$ identify physical I/0 control block labels and the characters xxxxx
identify fields within the physical I/O control block. Field labels, and brief des-
criptions of their contents, are provided in Table 4-2.

0
PIOCB NAME MINIMUM
PIOCB 1S
4 12 BYTES
COUNT OF BYTES RESERVED FOR FCB HALFWORD PUB ADDRESS (FIRST 2 BYTES OF
FOLLOWING THIS HALFWORD ENTRY FILE CONTROL BLOCK)

1

REMAINDER OF FILE CONTROL BLOCK

12

FROM 2 TO 131
ADDITIONAL BYTES
RESERVED TO CON-
TAIN THE REMAIN-
DER OF THE FCB

f—:igure 4-2. Physical 1/0 Control Block Format.

UP-7689 UNIVAC 9400 SUPERVISOR I

SECTION: PAGE:
et BOUNDARY FIELD
LABEL ALIGNMENT LENGTH DESCRIPTION
IBSLBL Fuliword 8 Eight-byte file control block name
IB$FBL Fullword 2 Number of bytes in the file control block
IB$FB Halfword 2-133 File control block area

Table 4=2. Physical 1/0 Control Block Standard Labels

4.1.7. RDFCB Macro Instruction (Type R)

The RDFCB macro instruction is used to locate the file control block and read it

into the physical I/O control block in main storage. To accomplish this function,
positional parameter 1 of the RDFCB macro instruction must be the address of a
physical 1/0 control block that contains an eight-byte character string identifying

the desired file control block. This character string is used as a search key when
locating the file control block. Any references to a physical 1I/0 block, by means of
an EXCP macro instruction, before the device assignment fields are filled by the
RDFCB macro instruction results in a software program check interrupt. Therefore,
each physical I/0 block should be initialized by RDFCB macro instruction before the
block is referenced by an EXCP macro instruction. The WAIT macro instruction is
et used to test for the completion of an RDFCB macro instruction. Figure 4—3 shows the
interrelationship between the command control block, channel command word, physical
I/0 control block, file control block, and physical unit block.

The format of the RDFCB macro instruction is:

LABEL 5 OPERATION B
piocb-name #-bytes
[name] RDFCB { N }[{ ©) }]

POSITIONAL PARAMETER 1

OPERAND

piocb-name — the symbolic address of the physical I/0 control block.

(1 — indicates that register 1 has been preloaded with the address of
the physical I/0 control block.

UP-7689 UNIVAC 9400 SUPERVISOR 4 14
SECTION: P AGE:
o
FILEAQOO
FCB
FIRST
PUB ADDRESS
RDFCB FILEA
L
1 ’__—/
° /\/
M cce (ORDER1)
ISSUELl EXCP ORDER1
o
[)
L)
*
. CCw (CCW1)
ORDER1 CCB FILEA,CCW1 T~
" /__/
DATA ADDRESS
FIRST
CCW ADDRESS
ADDRESS OF A
FIELD IN THE
PIOCB CONTAIN- e,
ING THE PUB
ADDRESS PIOCB (FILEA)
NEXT CCB AD- ——
DRESS IN QUEUE
FOR MPX. CHAN. FILEA0OO —r
OR SEL. CHAN. 1
(SEARCH KEY)
NEXT CCB AD-
DRESS IN QUEUE
FOR SEL. CHAN. 2
FIRST PUB
PUB ADDRESS
VOLUME
— — SERIAL
/\/ /‘—_/ NUMBER
LEGEND: DEVICE
CCB — COMMAND CONTROL BLOCK CHARACTERISTICS
CCW — CHANNEL COMMAND WORD /__/
FCB - FILE CONTROL BLOCK [—
PIOCB — PHYSICAL I/0 CONTROL BLOCK
PUB — PHYSICAL UNIT BLOCK CCB ADDRESS
(ADDRESS OF
ORDER1 WHEN
NOTES: (1) The RDFCB macro instruction is used to read the FCB into the PIOCB which DISPATCHED)
is referenced later by the CCB macro instruction.
(2) IN TAPE SYSTEMS: File control blocks are stored in high order main storage T~
of problem program. T S~
(3) IN DISC SYSTEMS: File control blocks are stored in the execution area on the
system resident direct access device.
-

Figure 4-3. Interrelationship Between the Command Control Block, Channel Command
Word, File Control Block, Physical 1/0 Control Block and Physical Unit Block

UP-7689

UNIVAC 9400 SUPERVISOR |

4,1.8. SWAP Macro Instruction (Type R)

The SWAP macro instruction is used to cause the exchange of a physical unit
block address in a physical I/0 control block with the address of its alternate.
Only physical unit blocks that are linked to alternates can be exchanged.

The format of the SWAP macro instruction is:

LABEL l 5 OPERATION b OPERAND

piocb-name entry~-number
[namel i SWAP { 2 } l:, {) } J
|

15
SECTION: PAGE:
\ , POSITIONAL PARAMETER 2
#-bytes — the number of bytes of the file control block to be read into main
storage. This value is stored as a binary integer in the halfword count
field within the physical I/0 control block and remains until altered
by subsequent RDFCB macro instructions or by the programmer.
0) — indicates that register 0 has been preloaded with the number of
bytes.
if blank — the number of bytes to be read is specified by a constant in the
physical I/0O control block.
NOTES:
(1) Program control is returned to the issuing program at the point immediately
following the RDFCB macro instruction. The address of a command control
block is returned in register 1. The programmer can issue a WAIT or MARK
macro instruction referencing this command control block. Thus, synchronization
with the read file control block function is similar to that used with physical
I0Cs.
(2) An RDFCB macro instruction cannot be issued when there is eithér an OPR,
GETCS, or LOAD macro instruction outstanding. If this is attempted, a
software program check error will result.
Examples:
N\
LABEL 5 OPERATION S OPERAND 5
1 10 16
NG T, RDFCBf |IFILEA L v vy o by g b by v Iy
NG T2, RIDLFCB| |FI,LEC], 3,000 | v v L gy v by by g Ly
S RIDFCBL 16,0y 100y v v b v v v e b v b g g Ly

UP-7689 UNIVAC 9400 SUPERVISOR I 4 16
SECTION: PAGE:
™~
POSITIONAL PARAMETER 1 >
N
piocb-name — the symbolic address of the physical I/0 control block.
€)) — indicates that register 1 has been preloaded with the address of
the physical I/0 control block.
POSITIONAL PARAMETER 2
entry-number — 0, 2, 4, or 6 indicating the two-byte field to be changed by the
SWAP macro instruction. Each field can contain the address of a
physical unit block identifying a device linked to the physical I/0
control block.
0) — indicates that register 0 has been preloaded with the value 0, 2, 4
or 6.
if blank — 0 is assumed (first entry in physical I/0O control block is changed).
Examples:
LABEL t OPERATION & OPERAND +
1 10 16
LN T b Jdstwaey [frrgeiEBl oy s Ly g e levan oyl
co el stwae JruECh g b Ly e br v by
coaado Listwiap Pl oy gy o la g v b s g baaag ~’
4.2, DYNAMIC RELEASE OF PERIPHERAL DEVICES
The programmer can release devices during the execution of a job step, providing the
released devices are not assigned for the duration of the job. The FREE macro
instruction is provided for this purpose.
4.2.1. FREE Macro Instruction (Type R)
The FREE macro instruction is used by the programmer to release peripheral
devices from assignment to the job step. Devices released from the job step
are returned to the system’s pool of unallocated devices only if the job control
stream has not assigned the device for the duration of the job.
The format of the FREE macro instruction is:
LABEL 5 OPERATION B OPERAND
iocb-name ALL
[name] FREE P } , entry-n
~

UP-7689 UNIVAC 9400 SUPERVISOR 4 17
SECTION: PAGE:
A POSITIONAL PARAMETER 1
[
piocb-name — the symbolic address of the physical I/O control containing the
address(es) of the physical unit block(s) for the device(s) to be
released.
(1) — indicates that register 1 has been preloaded with the address of
the physical I/0 control block.
POSITIONAL PARAMETER 2
ALL — all devices assigned to the physical I/O control block addressed
by positional parameter 1 are released.
entry-n ~ 0, 2, 4, or 6 indicate the two-byte entry within the physical I/O
control block containing the address of the physical unit block
for the device to be released.
0) — indicates that register 0 has been preloaded with the value 0, 2, 4,
or 6.
if blank — ALL is assumed.
NOTE: Whenever devices are released, their alternates, if any, are also released.
Examples:
N’
LABEL 5 OPERATION & OPERAND 5
1 10 16
llllill FlRlElEl FllllﬂEiﬁlll11111111]1111!lll|
| S T | l 11 F‘RIEIEi (l]l)l | l F I | i I) I | I l J I A | l J I S | 1 1
R B FREE FYVLEB 2 vl b v b Ly

W

SECTION:

UP-7689 UNIVAC 9400 SUPERVISOR l

PAGE:

N
5. PROGRAM MANAGEMENT
5.1. GENERAL
Program management facilities are provided to assist the programmer in the efficient
management of problem programs. These facilities include:
B Program loading
B Timer and simulated data clock services
® Transient area management
B Dynamic acquisition of temporary direct access storage
m Subroutine linkage
m Linkage to user interrupt routines
® System information control
8 Control stream reader
\//’ ® Program checkpoint

B Program termination

5.2. PROGRAM LOADING

The LOAD and FETCH macro instructions are provided for program loading. The LOAD
macro instruction is used primarily to locate and load overlay segments of a problem
program. Program overlay segments loaded by the LOAD macro instruction are not
automatically given program control. Rather, program control is returned to the program that
issued the LOAD macro instruction. The FETCH macro instruction is used to locate

and load program phases which are to be given program control following a successful
loading sequence.

5.2.1. LOAD Macro Instruction (Type R)

The LOAD mactro instruction is used to locate and load absolute or relocatable
program overlay segments into main storage. In addition to loading executable program
overlay segments, the LOAD macro instruction can also be used to load tables and
other nonexecutable data for subse quent inspection by the problem program. Optionally,
the LOAD macro instruction can be used to locate and load self-relocating program
overlay segments into main storage areas other than the ones specified by the Linkage
Editor. Main storage address constants within program overlay segments loaded in
this manner are not adjusted. When relocatable load modules are retrieved from a
program library, all address constants are automatically adjusted by the relocatable
program loader. Synchronization between the calling program and the load function of
the Supervisor is similar to the synchronization used with physical IOCS.

UP-7689

UNIVAC 9400 SUPERVYISOR |

SECTION: 5 PAGE:

Four load functions are available to the programmer through the LOAD macro instruction.
They are:

B Load absolute function

B Load index function

B Load alternate function

B Load relocate function

In disc systems, all four load functions are available to the programmer. In tape
systems, only the load relocatable function is available to the programmer. However,
for purposes of compatibility, especially for those users who plan to convert from a

tape-oriented system to a disc-oriented system, the LOAD macro instruction can be
written in the form used for the load absolute, load index, and load alternate functions.

5.2.1.1. Load Absolute Function (Disc Systems Only)

The load absolute function is used to locate and load absolute program overlay
segments from the execution area on the system resident direct access device into
main storage areas as specified by the Linkage Editor.

The format of the LOAD macro instruction when used to call the load absolute
function is:

LABEL 5 OPERATION B I OPERAND
[name] LOAD {Segment-name
¢y

POSITIONAL PARAMETER 1

segment-name — the eight-character name of the program overlay segment to be
loaded (exactly as it appears in the index of the execution area).
The format of the segment name is: nnnnnnpp (nnnnnn is the
name of the program and pp is the phase number).

1) — indicates the register 1 has been preloaded with the address
of the eight-character segment name.

5.2.1.2. Load Index Function

In disc systems, the load index function locates a program index entry within

the execution atea index on the system resident direct access device. When the
program index is located, it is read into a temporary work area in the job preamble
of the calling program. Each program index entry contains the following information
about a program:

@ the direct access device address of the first record of the overlay segment;
m the number of records in the program overlay segment;

s the length of the program overlay segment (in bytes);

UNIVAC 9400 SUPERVISOR |

5.2.1.3.

UP-7689
SECTION: PAGE:
® the entry point of the program overlay segment;
m the main storage starting address of the program,
In addition to the index entry, a channel program is read into the preamble of the
calling program that is specifically designed to retrieve subsequent records of the
program overlay segment.
In tape systems, the load index function is used to locate a program header record
within a load library. When the program header record is located, it is read into
a temporary work area in the job preamble of the calling program. In effect, in
tape systems, the load index is a call on the tape program locator.
The format of the LOAD macro instruction when used to call the load index function
is:
LABEL B OPERATION B I OPERAND
[name] LOAD {segment-name} I
(1)
POSITIONAL PARAMETER 1
segment-name -~ the eight-character name of the program overlay segment in the
form nnnnnnpp.
¢ — indicates that register 1 has been preloaded with the address
N of the element name.

POSITIONAL PARAMETER 2

I — indicates a load index function.

Load Alternate Function — Disc Systems

The load alternate function is used to read absolute program text records for the
program identified by a preceding LOAD index macro instruction. The address of
the main storage area into which the first text recotd is to be read is specified by
positional parameter 2 of the first LOAD alternate macro instruction. Programs
consisting of more than one text record can be retrieved, one text record at a
time, by subsequent LOAD alternate macro instructions.

The LOAD alternate macro instruction is normally used when the programmer
desires to load a self-relocating program from the execution area into a main
storage area other than the one specified by the Linkage Editor. Other uses
include the retrieval of nonexecutable portions of a program for inspection by the
problem program.

UP-7689 UNIVAC 9400 SUPERVISOR I

SECTION: 5 l PAGE:

The format of the LOAD macro instruction when used to call the load alternate
function is:

LABEL 5 OPERATION B ! OPERAND

[namel LOAD [, {adzllr;ass }]

POSITIONAL PARAMETER 1 — unused, must be left blank

POSITIONAL PARAMETER 2

address — the symbolic address of an area into which the first program text
record is to be read. On subsequent LOAD alternate macro instructions

for records of the same program, this parameter may be specified but it
is ignored by the load alternate SVC processing routine.

¢)) — indicates that register 1 has been preloaded with the address of the
main storage atea.

if blank — the main storage address in the index entry within the problem program’s
job preamble will be used.

NOTE:

The load alternate SVC processing routine returns the following information to
the user in problem registers 0 and 1:

Register 0 — the count plus one (in binary) of the number of program text records
remaining to be loaded. This convention was adopted to permit the
use of the branch on count, BCT, instruction in conjunction with
multiple load alternate requests.

Register 1 — the address of a command control block within the problem program’s
job preamble that can be referenced by a subsequent MARK or WAIT
macro instruction.

Example:
LABEL 5 OPERATION S OPERAND 5 COMMENTS

1 10 16

NIRRT S J I PRSI NS S TY U0VYONYO T S GO O T S S U S S S S N N A SN T A B W NI |

N 1o Lo e e e e b v by oy by 1 P B
SR S by s v by ot v v b e ey v bvr v e v v be e ey b
[T R LiOAD, PVAYROIOVO, 0 v v v v b vy by b g by g v b g b g b
[N S R WALT, (W GERROR |y v by e Ly v by e by b b b
LiDALTI , LIOAD, (LOAREA b o e by v v ey v b e b e by v v ey b
Laa by WAIT, 1D ERROR |y v v ey b v e b s b b v vy s by v vt

IR 8CT | ROS, LDALT | v v vt v b e b b ey b v e b by

U B ey o VAR I SNER SN ISV AN RS A S RV AV AV IS B SN E N RV AN SN R I A A S S B RS R |

IS A 1) g P Y N ST U OO O S VO U0 SO T [N NS O O T S S S S Y I S
T N Y s b b by v b v b s g ey b e b e b b
L,DARE[A DS L by v e b v by v b s b b b e b e e e 1
[B [e o b e by v v b e b ey e b vy b Iy e By

C)

()

UP-7689

UNIVAC 9400 SUPERVISOR 5 5

SECTION: PAGE:

5.2.1.4,

5.2.1.5.

Load Alternate Function — Tape Systems

In tape-oriented systems, the load alternate function is used only when loading
transient routines from the system tape into a transient area. This facility cannot
be called by problem programs.

Load Relocate Function

In disc systems, the load relocate function causes the transient scheduler to

locate and load the transient relocatable program loader from the system resident
direct access device. This program loader then locates the requested program
within a program library, reads the problem program text records into a main storage
buffer area within the transient area, resolves all address constants, and moves
the resultant absolute code to the user area.

In tape systems, the relocatable program loader is written by the Linkage Editor
immediately following each load module header record. Therefore, once a header
record is located, a copy of the relocatable loader is immediately available as the
next tape block for reading into the system transient area. Once the relocatable
program loader is given control as a transient routine, it reads the following program
text records into a buffer area within the transient area, resolves address constants,
and moves the resultant absolute code to the user area.

The format of the LOAD macro instruction when used to call the load relocate
function is:

LABEL D OPERATION B ’ OPERAND

[name] LOAD {segment-name
1)

POSITIONAL PARAMETER 1

segment-name — the eight-character name of the program overlay segment to be
loaded (exactly as it appears in the index of the execution area).
The format of the segment name is nnnnnnpp.

(1) — indicates that register 1 has been preloaded with the address
of the eight-character segment name.

NOTES:

(1) When the load index, load alternate, or load absolute functions are called,
program control is immediately returned to the calling program at the point
following the LOAD macro instruction. This allows processing to continue
asynchronously with the program loading function. A WAIT or MARK macro
instruction should be executed in reference to the load request to determine
when the load function is complete.

(2) When the load relocate function is used, program control is taken from the
calling program until the load function terminates. When the called program
is loaded, program control is returned to the calling program at the point
foliowing the LOAD macro instruction.

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

T

(3) Following the execution of a LOAD macro instruction, the load SVC processing
routine returns information to the user in problem registers 0 and 1 as indicated
in the following table:

Load Function Register 0 Register 1

Load index, load absolute, index-area-ad ccb-address
and load relocate

Load alternate count+1 ccb-address
Where:
index-area-ad — is the main storage address of an area in the problem program’s

job preamble that is used to store the retrieved program index
block. The first word of this area contains the entry-point-address
of the called program.

NOTE: When a LOAD index macro instruction is executed, the
program index block is not available in the index area
until the function is complete.

cch-address — the address of a command control block within the problem program’s
job preamble that can be referenced by a WAIT or MARK macro
instruction to determine the status of the load request.

count+l — the count plus one (in binary) of the number of program text records
remaining to be loaded.

(4) A LOAD macro instruction cannot be issued when any of the following macro
instructions are outstanding: GETCS, OPR, or RDFCB. If this is attempted,
a software program check error results.

(5) The user must choose which of two loading techniques he intends to use
and indicate this choice in each EXEC control statement in the job control
stream, The two choices are:

(1) load absolute, load index, and load alternate, or
(2) load relocate.
The load index and load alternate functions are forms of the load absolute

function; whereas the load relocate function is entirely different and results
in the execution of a transient job.

Examples:
LABEL 5 OPERATION S OPERAND h]
10 16
Lo by LIOAD, Ve o b v b v v v by e by |
[T B L|OAD GW¥Wyroolbb v v v b b v b by
[B S Li0,AD, 1L I BT AN B A AR N B AN B S S S A B A NS
Lo by L|OAD, e b s s by v bov e e by o v b g |

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: 5 PAGE:

5.2,2, FETCH Macro Instruction (Type R)

The FETCH macro instruction is used to locate program phases in auxiliary storage,

load them into main storage, and transfer program control to them. In tape systems,
the FETCH macro instruction is, in effect, a call on the relocatable loader.

The format of the FETCH macro instruction is:

LABEL ‘ 5 OPERATION b OPERAND

[name] ‘ FETCH

{segment-name}[{entry-name }]
1) ' (0)
POSITIONAL PARAMETER 1

segment-name — the eight-character name of the program overlay segment in the
form nnannnpp.

1) — indicates that register 1 has been preloaded with the address of
the segment name.

POSITIONAL PARAMETER 2
entry-name — the symbolic address (entry point) to which program control is to be
passed after the loading process is completed and the program is
selected as the active program by the program switching routine.

0) — indicates that register 0 has been preloaded with the entry point
address.

if blank — the entry point specified by the Linkage Editor is used.

NOTE: A FETCH macro instruction cannot be issued when there are any I/0 requests
outstanding. This restriction includes OPR, LOAD, GETCS, and RDFCB
functions. If this is attempted, a software program check error will result.

Examples:
LABEL 5 OPERATION & OPERAND 5
10 16
I B FIE,T, CH| P, AYR010:0,9,, EINNTRY UL ¢ v 4 v by v by g0 |

I | FlEJTIClH (l]l)L1l(loill 1t J I 1 i

Ll [RN B A N R B SRS S I S A O S S A

UP-7689 UNIVAC 9400 SUPERVISOR

—

SECTION: PAGE:

5.3. TIMER AND SIMULATED DAY CLOCK SERVICES

Two macro instructions are available to the programmer which can be used to communicate
with the timer services routine. These macro instructions are:

8 GETIME - get time of day
m SETIME — set time interval
5.3.1. GETIME Macro Instruction (Type R)

The GETIME macro instruction is used by the programmer to obtain the time from the
simulated day clock function of the Supervisor.

The format of the GETIME macro instruction is:

LABEL T OPERATION B OPERAND

[name] GETIME [{ ;1}]

POSITIONAL PARAMETER 1

S — the time is returned in register 1 in the format: O00hhhmms (where h is hours,
m is minutes, and s is the sign) expressed in packed decimal data format.

M — the time in milliseconds is returned in register 1 as a binary integer.
if blank — M is assumed.
Examples:

LABEL 5 OPERATION S OPERAND h]
1 10 16
TOMEN] g JISETOMIEL S s by b la e b Ly
gt plelemrmME M o b b b b e braa

pr v Lo | [SIE T ME

1Ty Pr ot oo b v br e by aag

5.3.2. SETIME Macro Instruction (Type R)

The SETIME macro instruction is used by the programmer to request scheduled
interrupts in the problem program based on elapsing of actual time,

The format of the SETIME macro instruction is:

LABEL 5 OPERATION & OPERAND

[namel SETIME {t(il";e}[, WAIT]

|

UP-7689

UNIVAC 9400 SUPERVISOR s

SECTION: PAGE:
. POSITIONAL PARAMETER 1
time — the time interval in milliseconds to elapse before generating an interrupt.
69 -~ indicates that register 1 has been preloaded with the time interval.
if blank — wused to cancel a previous SETIME request, thus preventing the scheduled
interrupt.
POSITIONAL PARAMETER 2
WAIT — the soliciting program is suspended until the time interval expires.
When the interrupt occurs, the waiting program is reactivated at the
point immediately following the SETIME macro instruction.
if blank — the soliciting program retains program control. When the time interval
expires, the job’s timer island code subroutine, as specified by a STXIT
macro instruction, is activated. If no timer island code, subroutine is
specified, or if a timer interrupt occurs while the problem program’s timer
island code subroutine is being executed, the interrupt is ignored.
Examples:
LABEL 5 OPERATION & OPERAND 5
1 10 16
\ T, LME T SIETUEMIE} 1300 v 1 o b v b e b b
11] l 11 leITlllME lllololllwlAlllTl l i 1 1 I 1t 1 l F S I B | ! - 1t l

[| I bt v v be v b g brov vy b g b

5.4. TRANSIENT AREA MANAGEMENT

One macro instruction is available to the programmer to call user written transient
routines. This macro instruction is:

m TCALL — generate parameter list and request transient routine

5.4.1.

TCALL Macro Instruction (Type R)

The TCALL macro instruction is used to call user written transient routines. This
macro instruction is also used to pass parameters from problem programs‘to user
written transient routines, Direct communication with the transient area scheduling
routine is the primary function of this macro instruction. Program control is not
returned to the calling program until the requested transient routine has been
located, loaded, executed, and released. Control always returns to the line
immediately following the TCALL macro instruction.

UNIVAC 9400 SUPERVISOR

UP-7689 10
SECTION: PAGE:
The format of the TCALL macro instruction is: —
LABEL B OPERATION B OPERAND
routine (param-1,...,param-n)
[name] TCALL { }[, { PN
(1) (0)
POSITIONAL PARAMETER 1
routine — a symbolic name identifying the transient routine required.
@)) — indicates that register 1 has been preloaded with a one-byte value
indicating the desired routine (assigned SVC code).
POSITIONAL PARAMETER 2
param-1 — parameters to the called transient routine. The parameters
can be written in a sublist of the TCALL macro line. These
parameters are generated in the same order as written in the
param-n sublist.
) — indicates that register 0 has been preloaded with the address of
of the parameter list.
if blank — no parameters are assumed.
Examples: -
~—r’
LABEL 5 OPERATION® OPERAND 5
10 16
RN B TICALL] |SV$RTINE, ((PIAR T, ,PIA;R2), PIAR3D | 1 ¢ 4 1] |
llLALlll TlclAlLlL (I]l)L'A(IOI)ll lJllJ Il () lllll III [Illl
|- Ly o b r e e v e by v b ey g Ly
5.5. DYNAMIC ALLOCATION OF DIRECT ACCESS STORAGE
When disc packs are mapped, the user has the option of specifying the number of
cylinders to be reserved for temporary suballocation to problem programs. Three
macro instructions are provided for allocating, releasing, and interrogating the
status of temporary direct access storage.
These macro instructions are:
® GIVE — Allocate temporary direct access storage.
m TAKE — Release (that is, deallocate) temporary direct access storage.
m QUERY — Interrogate the use of both allocated and unallocated temporary direct
access storage.
5.5.1. GIVE Macro Instruction (Type S) -
The GIVE macro instruction is used to request the allocation of temporary direct S

access space to the problem program.

UP-7689 UNIVAC 9400 SUPERVISOR 5

SECTION: PAGE:

The format of the GIVE macro instruction is:

L
LABEL | 5 OPERATION B I OPERAND
list-
[hame] GIVE { 18 namel
n
POSITIONAL PARAMETER 1
list-name — the symbolic address of a user generated parameter list which
contains a request(s) for group(s) of contiguous cylinders on a
particular volume.
(1) — indicates that register 1 has been preloaded with the address of the
parameter list.
The format of the parameter list used with the GIVE macro instruction is:
WORD BYTE
0 1 2 3
1 STATUS OPTION INDICATOR X'00* USE CODE
p—
Minimum List is
Three Words
(Words 3 through g
n are Individual 2 PHYSICAL 1/0 CONTROL BLOCK ADDRESS + IBSFB | +,
Requests)
6
0 7
STARTING
CYLINDER
3 FLAGS R NUMBER OF
- G CYLINDERS NUMBER (IF
SPECIFIED)
N b~
~ ~—
0 7
STARTING
NUMBER OF CYLINDER
n L FLAGS R CYLINDERS NUMBER (IF
SPECIFIED)
Input parameters (that is, directions to the Supervisor) are stored by the user in
“ the list prior to executing the associated macro instruction. After executing the

macro instruction, the Supervisor alters the contents of certain fields indicating the
results of the operation. A description of the contents of these fields follow.

UP-7689

UNIVAC 9400 SUPERVISOR

SECTION: 5 PAGE:

12

BYTE

PARAMETER

IDENTIFICATION TYPE

DESCRIPTION

STATUS

INPUT

OUTPUT

Set by user to X'00*
Set by Supervisor as follows:

X'00' — request(s) performed exactly
as specified

X'01' — one or more parameters
in the list required a con-
dition that could not be
met. The user should check
all R bits in each of the
FLAGS bytes to determine
what allocation, if any, has
been made.

X'02' — the option byte is in error.
No allocation has been made.

X+*03' — physical I/0 control block
address, or entry number is
in error. No allocation has
been made.

X'04' — the volume specified by the
physical I/0 control block does
not contain any temporary stor-
age space. No allocation has
been made.

X105' — the wrong volume is mounted
on the specified device. No

allocation has been made.
ed.

X'06' — an invalid use code has been
specified. No allocation has
been made.

X+10* — I/0 error during an input
operation. No allocation has
been made.

X120 — this status code is used in
combination with other codes
(that is, X'20+, X211, X122'..))
to indicate an I/O error during
an output operation. Since there
is no record of the amount of
allocation, the request(s) for
direct access storage space should
be repeated.

UP-7689

’r‘f,f © UNIYAG 9400-SUPERVISOR

13

« .

l ' SECTION: PAGE:

BYTE
IDENTIFICATION

PARAMETER
TYPE

DESCRIPTION

OPTION
INDICATOR

INPUT

Set by the user as follows:

X'00' — allocate as many cylinders as
possible at a position that
minimizes fragmentation of
direct access storage (that is,
the smallest area on the disc
that is large enough to satisfy
the request). If the number of
cylinders requested is greater
than the number allocated, the
number allocated is stored and
the R bit is set to 1 in the par-
ticular request word.

X'01* —allocate as many cylinders as
possible starting at the specified
cylinder. If the number of cylinders
requested is greater than the num-
ber allocated, the number allocated
is stored and the R bit is set to 1
in the particular request word.

X102 — allocate at a position that mini-
mizes fragmentation of direct
access storage only if the speci-
fied number of cylinders is avail-
able. If this is not possible, no
allocation is made; the R bit is
set to 1 and X'00' is stored in
the second byte of the particular
request word.

X'03' — allocate starting at the specified
position only if the specified
number of cylinders is available.
If this is not possible, no alloca-
tion is made; the R bit is set to 1
and X'00' is stored in the second
byte of the particular request word.

UP-7689 UNIVAC 9400 SUPERVISOR i

SECTION: PAGE:

BYTE
IDENTIFICATION

PARAMETER
TYPE

DESCRIPTION

USE CODE

PHYSICAL
INPUT/OUTPUT
CONTROL BLOCK
ADDRESS, ETC.

FLAGS

NUMBER OF
CYLINDERS

STARTING
CYLINDER
NUMBER

INPUT

INPUT

INPUT

OUTPUT

INPUT
OUTPUT

INPUT

OUTPUT

A number assigned by the user in the
range of 1 through 63 which identifies

the use for which the space is requested.
This number is appended to the requesting
program’s job number and written in the
allocation control table on the volume.

The address of a two-byte field within a
physical I/0 control block containing the
address of the physical unit block that
identifies the direct access device and
volume on which allocation is desired

(see 4.1.6).
Set by the user as follows:

X'00* — initial setting of the first byte
of each word (each request)
except the last word of the list.

X'80' — last word of the parameter list.
Set by the Supervisor as follows:

X'01' — an error occurred while process-
ing a request,

Xt81' — an error occurred while process-
ing a request in the last word of
the parameter list.

the number of cylinders requested.

the number of cylinders allocated. If no
cylinders are allocated, X'00* is stored
in this byte by the Supervisor.

the cylinder number at which allocation

is to begin. (This number is not furnished
if option indicator X'00' or X'02' is speci-
fied.) i

the cylinder number at which allocation
has begun when option indicator X'00"
or X'02' has been provided.

~—’

TAKE Macro Instruction (Type S)

The TAKE macro instruction is used

space.

to deallocate

The format of the TAKE macro instruction is:

LABEL | B OPERATION % |

OPERAND

[name]

TAKE

{hst-name}
1

POSITIONAL PARAMETER 1

list-name

ey

temporary direct access storage

— the symbolic address of a user-generated parameter list which

specifies a group(s) of contiguous cylinders to be deallocated on

a particular volume or all mounted volumes.

— indicates that register 1 has been preloaded with address of the
parameter list.

UP-7689 UNIVAC 9400 SUPERVISOR |
secTion: 9 PAGE: 15
f\/ Example:
LABEL 5 OPERATION 5 OPERAND 1)
1 10 16
RS B G V.E, PARLIUST v v v v b v v b o b
[leg 4 e b v b ey by ey by v vy
[T O B led 1 v b b vty ey by oy o
S B CINO,P, 0,4 v | v v b b b by
PARLTS|T, AT X 00 oy v b b b by 1
[DIC X020y v by ooy by e b v g b g
IR I B DIC) 4 X000 Ly oy v b e b e s b by g |
RN B DIC) | ALV 2100) 0 ¢ 4y vy e b ey b
R B! DIC, , | AGFILLIEA+ L BI$SFB+20) v o [v by |
I B i S| DIC; | | X 000 [y oy v Loy g by b b b
I S N DIC, , ALV CWO) v oy by e b by)
I DIC, | | Xp 90400 by oy v ov by o g P by oy |
ey Ly DIC, ALV GOD v b v b s b e |
P by DIC, , X80,y v v by v by b e by gl
R BT DIC; 4 ALV (2100, v vy v b b byl
I B DiC, X000 1 vov vy b v g by vy b b g d
N IS A i LT ALVCOD),y v v v b v b b by g |
[[IR v by v v by b e b e e by g |

UP-7689

UNIVAC 9400 SUPERVISOR ‘

SECTION:

PAGE:

16

The format of the parameter list used with the TAKE macro instruction is the same
as the list used with the GIVE macro instruction. The only differences are the manner
in which the option indicator code is interpreted and that X'00' may be specified for
the use code.

BYTE PARAMETER DESCRIPTION
IDENTIFICATION TYPE
OPTION INPUT set by the user as follows:
INDICATOR

X100 — deallocate only the group(s) of
contiguous cylinders specified
in words 3 through n of the list.

X'01' — deallocate all cylinders allocated
for the specified use code on the

specified direct access volume.
NOTE: words 3 through n are
irrelevant for this option.

X'03' — deallocate all cylindetrs allocated
for the specified use code on all
mounted direct access volumes.
NOTE: words 2 through n are

irrelevant for this volume.

Example:
LABEL 5 OPERATION® OPERAND 5
1 10 16
BN B TIAKE, VL U RS B A R B BT S S S B RS R A

lllllll Illl lJlllJlIIILlIllJLl)llllllllllll

5.5.3. QUERY Mactro Instruction (Type S)

The QUERY macro instruction is used to interrogate the use of both allocated and
unallocated direct access storage. This macro instruction is used with the same
type of parameter list as the GIVE macro instruction. The QUERY macro instruction
can be used for any of the following purposes:

m Given a particular use code, return the number of cylinders remaining which can
be allocated for this use.

m Given a particular cylinder number, return the code indicating its use.

B Given a particular use code, return a list of the contiguous group of cylinders
now allocated for this use.

UP-7689 UNIVAC 9400 SUPERVISOR ‘ 5

SECTION: PAGE:

The format of the QUERY macro instruction is:

LABEL,b OPERATION ‘bl OPERAND

[name]

1

QUERY ' list-name

POSITIONAL PARAMETER 1

list-name — the symbolic address of a user-generated parameter list which
contains request(s) concerning cylinder usage.

1) — indicates that register 1 has been preloaded with the address of
the parameter list.

The format of the parameter list used with the QUERY macro instruction is the same
as the list used with the GIVE macro instruction. The only differences are the manner
in which the OPTION INDICATOR code is interpreted and that a use code of X'00*
can be specified.

BYTE PARAMETER DESCRIPTION
IDENTIFICATION TYPE

OPTION INPUT Set by the user as follows:

INDICATOR
X1'00' — the Supetvisor returns the remaining

number of cylinders that this job can
N request and stores them in the second
byte of word 3 of the list. The Super-
visor also returns the starting cylinder
number and the number of cylinders for
each contiguous area allocated to a
specific use code of a particular job
in words 4 through n. The last entry of
the list is signified by the L flag bit
being set to 1. If there are too many
parameters for the list, a status code
of X'07" is returned and the list is
terminated.

X'01' — the Supervisor returns the use code
in the fourth byte of word 1 for the
user-furnished cylinder number in
the fourth byte of word 3 in the
parameter list.

X102+ — the Supervisor returns the remaining
number of cylinders that this job can
request and stores them in the second
byte of word 3 of the list.

UNIVAC 9400 SUPERVISOR

SECTION: 5 PAGE: 18
BYTE PARAMETER —
IDENTIFICATION TYPE DESCRIPTION
OPTION X'03* — the Supervisor returns the starting
INDICATOR cylinder and the number of cylinders
(CONTINUED) for each contiguous area allocated to
a specific use code of a particular job
in words 3 through n. The last entry of
the list is signified by the L flag bit
being set to 1.
USE CODE INPUT Set by the user as follows:
X'00' — used with OPTION INDICATOR code
Xt02' to indicate that the macro in-
struction pertains to all uses for this
job.
number — used with OPTION INDICATOR codes
X100' and X'03" to specify a particular
use.
OUTPUT When OPTION INDICATOR X'01' is specified,
the use code is returned by the Supervisor in
the fourth byte of word 1. When OPTION IN-
DICATOR X'01' is not specified, this field .
does not contain an output parameter. ~
Example:
LABEL t OPERATION & OPERAND 5
10 16
B U | l Il QIUIEIRIY LLllsJTJll) l | I I l | S . | l | S | 1 S I |

I t 1} 1

llJlllJlllllIIII|IIIIlllIl

o1 !

1

1

|

Cia |

C

UP-7689

UNIVAC 9400 SUPERVISOR J

The calling program establishes direct linkage with another program by means of

the CALL macro instruction. If registers are used in the called program (other than

0,

1, and 15), the SAVE macro instruction must be used to save their content. The

RETURN macro is used to return control to the calling program.

5 19
SECTION: PAGE:
s’ 5.6. SUBROUTINE LINKAGE
Direct linkage between programs residing in main storage is accomplished by the
CALL, SAVE, and RETURN macro instructions. These macros never involve the
Supervisor during their execution. If direct linkage is desired with a program not
resident in main storage, the program must first be loaded by the LOAD macro in-
struction.
5.6.1. Linkage Register Conventions
During the direct linkage process, certain registers are used for specific purposes
to avoid conflicts in register use. These registers and their uses in the linkage
procedure are:
m Register 0 — parameter register
m Register 1 — parameter or parameter list register
Registers 0 and 1 are used for passing parameters between linked programs
(each parameter is four bytes long and is aligned on a word boundary). These
registers are loaded with the parameters to be passed, or, in the case of a
parameter list, the address of the first parameter in the list is loaded in register
1. The last parameter in a parameter list has its sign bit set to 1.
m Register 2 through 12 — free registers
) These registers are never used or referenced by the direct linkage macro instruc-
hut tions.
m Register 13 — save area register
If a save area is provided for the called program by the calling program (for
temporary register storage), the address of the save area is loaded in register
13 by the calling program.
m Register 14 — return address register
This register is loaded by the calling program with the address to which control
should be returned following the execution of the called program. i
® Register 15 — entry point register
This register is loaded by the calling program with the address of the entry point
in the called program. This register can be used to provide initial addressability
in the called program.
5.6.2. Linkage Procedure

UP-7689

SECTION:

UNIVAC 9400 SUPERVISOR ‘

PAGE:

20

5.6.3.

The calling program is responsible for the following:

® Loading register 13 with the address of a 72-byte save area (if one is required
by the called program).

m Loading the parameter registers, if necessary.
B Loading register 14 with the return address.

m Loading register 15 with the entry point in the called program.

The called program is responsible for the following:

B Saving the content of all registers used by it, with the exception of registers 0,
1, and 15 which are considered volatile. The contents of registers are saved in
the area addressed by register 13.

m Following its execution, the called program must reload the saved registers and
transfer program control to the return address loaded in register 14 by the called
program.

CALL Macro Instruction (Type R)

The CALL macro instruction is written in the calling program to establish direct
linkage with the called program. Only programs loaded into main storage can be
called with this macro instruction.

The format of the CALL macro instruction is:

LABEL |5 OPERATION 5 OPERAND

entry-point (param-1,...,param-n)
[name] CALL s list-address

(15) 1

POSITIONAL PARAMETER 1

entry-point — the symbolic address of the entry point in the called program to
which program control is to be given.

(15) — indicates that register 15 has been preloaded with the address of
the called program.

POSITIONAL PARAMETER 2

param-1 — specifies the parameter list to be passed to the called program.
The parameters of the list must be written in a sublist of the call
line. Included in the CALL macro expansion is the generated list
of parameters in the same order as written on the call line. Each

param-n parameter is considered as one fullword and is aligned on a full-
word boundary. The three low order bytes of each generated word
contain the address of a parameter. The sign bit of the last para-
meter in the list is set to 1. The address loaded in register 1,
prior to control being transferred to the called program, is the
address of the first parameter in the list.

UP-7689 UNIVAC 9400 SUPERVISOR 5 21
SECTION: PAGE:
.. list-address — the symbolic address of a parameter list.
N
1 — indicates that register 1 has been preloaded with the address of
the parameter list.
if blank — no parameters are assumed.
Examples:
LABEL t OPERATION® OPERAND 5
1 10 16
JE Ly AL L SQRT L IFACTSl v v o b v v v v by v v by b
| S - | CIAALILI Sl'lNlEul(;‘L)llllllll|111111L||11111L
Lt Lo CALL, VSO GN Y L oy Loy by Ty vy
S B boya 0 AR T T U N TV U U MU U U O S U N OO N Y W A
5.6.4. SAVE Macro Instruction (Type R)
The SAVE macro instruction is written at the entry point of the called program. Its
purpose is to save registers used by the called program. The save area is supplied
by the calling program and its address is contained in register 13. If no registers
are to be saved by the calling program, the SAVE macro instruction can still appear
at the entry point to denote the beginning of a callable routine.
- The format of the SAVE macro instruction is:

LABEL | OPERATION & | OPERAND
[name] , SAVE | [(r1,r2)][,T]

POSITIONAL PARAMETER 1

(r1,12) — specifies the registers whose contents are to be saved (in the
form required by the Store Multiple, STM, instruction).

if blank — no registers are saved.
POSITIONAL PARAMETER 2

T — specifies that the contents of registers 14 and 15, if not saved
by positional parameter 1, are to be saved in words 4 and 5 of
the save area. If T and r2 are specified, and rl is 14, 15, 0, 1,
or 2, the contents of all registers from 14 through the register
specified by r2 are saved.

if blank — the contents of the registers specified by positional parameter
1 are stored in the save area.

UP-7689 UNIVAC 9400 SUPERVISOR 5 92
SECTION: PAGE:
Examples:
~
LABEL 5 OPERATION & OPERAND 5
10 16
N B SIAVIE G20,00600 0 o ey v e b g b
1L J 1 | SIAIVIEI ’lTl i1 l J I | i ‘ i1 4 | L) N | I { t 11 1 L1 1 I 1
R Lgy TS T I U WO AN SN U AU 0% W M Y VN T Y SO A S
5.6.5. RETURN Macro Instruction (Type R)
The RETURN macro instruction is used to reload the registers, whose contents
were saved by a SAVE macro instruction, and return program control to the calling
program. Register 13 must contain the address of the save area before this macro
instruction is executed.
The format of the RETURN macro instruction is:
LABEL |5 OPERATION & OPERAND
[name] RETURN (1, 2D, T]
POSITIONAL PARAMETER 1
(rl, £2) — specifies the registers to be reloaded (in the form required by
the Load Multiple, LM, instruction). -
,\/

if blank — no registers are reloaded.

POSITIONAL PARAMETER 2

T — specifies that registers 14 and 15, if not reloaded by the positional
parameter 1, are to be reloaded from words 4 and 5 of the save
area. If T and r2 are specified, and rl is 14, 15, 0, 1, or 2, then
all registers from 14 through the register specified by r2 are re-
loaded. In addition, binary ones are stored in the high order byte
of word 4 of the save area to indicate that the return has occurred.

if blank — the registers specified by positional parameter 1 are loaded from
the save area.

Examples:
LABEL 5 OPERATION 5 OPERAND 5
10 16
A S RETURING ((2,,060) v v b v v o b g b v Lo o
1 1 l 1 1 RIEITIUIR N J N 1 I 1 1 [| 1 1 [1 J 1 i 1 I | it 1 l J | I 1 1
AN A [Lo b vy b v v by o |

Figure 5~1. Standard Register Save Area

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 5 PAGE: 23
5.6.6. Register Save Area Usage
N
Standard register save areas are used with the CALL, SAVE, and RETURN macro
instructions. In addition to these macro instructions, proper save area usage depends
upon the user observing the conventions and procedures described in 5.6.1 and
5.6.2.
A save area is established by one program (the calling program) for use by a second
program (the called program). If the called program finds it necessary to use any of
registers 2 through 14 thereby destroying their contents, the called program must
store the original contents of these registers in the save area provided by the calling
program, before using them. The called program itself can be a calling program, and
must provide a save area for its called program (the third program in the chain). Any
number of programs can be chained together in this manner. It is not necessary to
have a save area in the last program of a chain.
The format of a save area is shown in Figure 5—1.
0 1 i 2 q 3
0 INDICATOR , SAVE AREA LENGTH
4 SAVE AREA BACKWARD LINK ADDRESS (RD$)
8 SAVE AREA FORWARD LINK ADDRESS (RDS)
12 CALLING PROGRAM RETURN ADDRESS (RES$)
)
-’ 16 CALLED PROGRAM ENTRY POINT ADDRESS (RF$)
20 PROBLEM REGISTER 0 (ROS)
24 PROBLEM REGISTER 1 (R1S)
28 PROBLEM REGISTER 2 (R2$)
32 PROBLEM REGISTER 3 (R3%)
36 PROBLEM REGISTER 4 (R4$)
a0 PROBLEM REGISTER 5 (RSS)
34 PROBLEM REGISTER 6 (R6S)
48 PROBLEM REGISTER 7 (R7S)
52 PROBLEM REGISTER 8 (R8S)
56 PROBLEM REGISTER 9 (R9S)
60 PROBLEM REGISTER 10 (RAS)
64 PROBLEM REGISTER 11 (RB$)
68 PROBLEM REGISTER 12 (RCS$)
NOTE: Each word in the save area is aligned on a fullword boundary.
N’

UP-7689 UNIVAC 9400 SUPERVISOR 5

SECTION: PAGE:

A more detailed description of the contents of the fields within a save area is provided
in the following paragraphs.

m Byte 0 — can be used as an indicator for the problem program; however,
this area is free for any use by the problem program.

B Bytes 1 — 3 — can be used to indicate the length of the save area; however,
this area is free for use by the problem program.

m Bytes 4 — 7 — if zero, indicates the first save area of a chain. Otherwise, this
is the address of the save area used by the calling program which
is located in the higher level program that called the calling pro-
gram. For example, bytes 4—7 of SAVE B (a save area in program
B for the use of program C) contains the address of SAVE A (a
save area in program A for the use of program B). It is the respon-
sibility of the calling program to store the backward link address
in this field from register 13 before loading the current save area
address in register 13.

m Bytes 8 —~ 11 - if zero, indicates the last save area in a chain. Otherwise, this
is the address of the save area in the most recently called pro-
gram. It is the responsibility of this called program to store the
save area address in this field before calling a lower level pro-
gram.

B Bytes 12 — 15 — the address in the calling program (as loaded in register 14) to
which control is to be returned. This address must be stored in
this field by the called program if that program intends to alter
the contents of register 14.

m Bytes 16 — 19 — the entry point address of the called program (as stored in
register 15) to which control is to be transferred. This address
must be moved to this field by the calling program.

m Bytes 20 — 71 — a storage area provided to contain the contents of registers 0
through 12, The called program determines the number of registers,
if any, to be saved.

-

PROGRAM__ A PROGRAM__B PROGRAM__C
LABEL 5 OPERATIONS® OPERAND LABEL 5 OPERATIONS OPERAND LABEL 5 OPERATION® OPERAND
1 10 16 10 16 10 16
RS S B feg U U RS R RSN S YRR I [oo b b b b [[T ETES SR i
| S| I 11 I'l Ll 1 1 1 | T T | J Lol) I T | ‘ i l 11 1 | N ' ! I | l FI W I) I S ‘ 11 l FE - T T | 1 | | l |
R TR B LA, g RDS, SIAVEA | v v ol 4y leg 1 [N S B SO N AT SO N N WU B Lo I I B N '
SRR ClALL, PROG B~ L0 ol a 1 [+1 11 Lo v s b e e by g | oy b e
[N B | v Ly oy TMPIROGIB] SIA\VE Gv4y, 0§20 v by v gy | I AN T T S OOOE N A
T S I J I v b e bl | BT R A NS TN S U N SUOU VNN T N Y N R I L a TR I S A S N I
TS S | PUSINTN S RN E A EAE A EATENY RNVERTERT RO ! fe g0 TN EN S SR S O B S B B ORS U R | NI I R R
TR SV |4, e by e v b e e e by LiA) RGS SIAVEB | v v iy | S IR ST G I
S B Loy vy coa b s by b ey I SITy 4 1 RDS$,, 410, RCI$D, v I |]y | I I S B S S O
I I vy PN SO S RS N U N WO N N S A SIT 4y RC$., 8{CO, RDS), \ (I & v 1|1, b I U B W O A
TR B | T) o v b e ey b LiRi 4 RDS$,, RIC$ 4 o b v v v gy 1y bey 4y I T TR
Loaoaa sy Ly 1 I BRSO SR Er] RS CiALIL, PROG Crmpm 4 0o o L vy v by fed 4 T SN RO S S RO N U
OO RN B [T i ca b v v b b ey 1 Ly T S Y TS ST A SR PROGC| , | S|AVE CVd 90 0 o
RS B | i PRI B TSR S AU UN N U0 UOF S T A | I Lo boer e be e s v P e g b le 1 4 [T ER RN BN R S
R R [! TN N T DO DV ANN TS T S S S S I L1y PRI I BN ST S AU N R T R Py T T Y S R T N B
N Py g I N SR S R SR S | ceae v e b v e I vy i oy setRIETURING (14,1950 0
peroe by A, vy b by gy Jeg g s b b by gl ml Lo [I R |
R B L1y] [N VAU T ST SNVUT N AN O N A LTI T BN S SN AR N B R R L1 I S B S S R
TR | cava v b e ey by fer 4 NI EVEN NN SIS SRR N S A BRI S A B A Loy [T S S SR
A B Lo T S U TN ETERUSNTE I S S S O RIE T,URIN a4 (120 b v P e Ll T S SN S ST N A
'R B Lo 1 | I SO B 1 1 leg 1 AR RO U AN SRS S SN I B R R N A Loy L b b
—
R B L1 ST B R R AR G I ey I BT EN SE RN B SRR B | FO T R N S RO I
R B | [AN B IS R N RANETY N R A A IR TR SR R S B R A T A Lo+ I SRS
SAVEA |, DS , XL7,2,'100 SAVEB| DG | XL 6,0,'10,0"'; y 1 v v v by L | N BTN RO
Ll L1 TSI B AR I ANEENT N RN AR A 11 S AR S N S S E R 1 RN N S IR S R B SRR

An example of how
macro instructions.

three programs can be

linked together

using CALL, SAVE, and RETURN

689.-dN

AO0SIAYIANS 00¥6 DVAINN

S =NOI.L335i

139vd

St

UP-7689

UNIVAC 9400 SUPERVISOR i

PAGE: 26

SECTION:

5.7.

5.7.1.

LINKAGE TO USER ISLAND CODE SUBROUTINES

The programmer can provide routines that are activated when the problem program is
interrupted for:

m Operator Communications
An unsolicited message entered at the system console for the problem program.
m Timer

The expiration of an interval of time previously specified by a SETIME macro
instruction (without positional parameter 2, WAIT).

m Program Check

The problem program has caused a hardware program check interrupt or a program
error has resulted in a software program check.

Programmed linkage between the Supervisor and each user island code subroutine is
the responsibility of the programmer and a function of the STXIT and EXIT macro
instructions. When an interrupt occurs which results in the activation of a user island
code subroutine, problem registers 0 through 15 are stored in a save area specified by
a STXIT macro instruction; the address of the save area is loaded into register 13.

It is a function of the EXIT macro instruction to reload the registers from the save
area at the termination of the island code subroutine.

STXIT Macro Instruction

The STXIT (set exit) macro instruction is used to establish, change, or terminate
linkage between the Supervisor and each user island code subroutine. This macro in-
struction is used in conjunction with the EXIT macro instruction. The user may

have a program check island code subroutine, an operator communications island
code subroutine (required for unsolicited typeins from the operator to the problem
program), and a timer island code subroutine, each of which must be linked to the
Supervisor with a STXIT macro instruction. In the event of a timer interrupt for
which no linkage is provided, the interrupt is lost and the problem program is not
notified. If a program check interrupt occurs and no program check island code
subroutine is provided, the problem program is automatically aborted.

m STXIT macro instruction (Type S) for operator communications island code sub-

routines.

The format of the STXIT macro instruction when used to establish or terminate
linkage with the user operator communications island code subroutine is:

LABEL | % OPERATION & OPERAND

entry-point,save-area,input-area,length
[name] STXIT ocC |,
ey

POSITIONAL PARAMETER 1 o

oC

— indicates linkage is to be established, changed, or terminated with respect
to the user operator communications island code subroutine.

UP-7689 L

UNIVAC 9400 SUPERVISOR ‘

SECTION: PAGE:

27

POSITIONAL PARAMETER 2

entry-point

1)

if blank

— the symbolic address of the entry point in the user operator com-
munications island code subroutine.

— indicates that register 1 has been preloaded with the address of
a four-word parameter list containing positional parameters 2, 3,
4, and 5. The sequence of the parameters within the parameter
list follows:

First word: Positional Parameter 2 (entry-point)
Second word: Positional Parameter 3 (save-area)

Third word: Positional Parameter 4 (input-area)
Fourth word: Positional Parameter 5 (length)

When the register option is not elected for positional parameter
2, positional parameters 2, 3, 4, and 5 are written in sequence
on the STXIT coding line.

— previous linkage with the user operator communications island
code subroutine is terminated.

POSITIONAL PARAMETER 3

save-area

_ the symbolic address of a standard 72-byte save area for register
storage.

POSITIONAL PARAMETER 4

input-area

_ the address of an area reserved for unsolicited messages from
the operator.

POSITIONAL PARAMETER 5

length

— the length of the input area. The size of this area can be from
1 to 64 bytes. Messages that exceed this length will be truncated.

8 The STXIT macro instruction (Type R) for program check and timer island code

subroutines.

The format of the STXIT macro instruction when used to establish or terminate

linkage with the user program check and interval timer island code subroutines is:

LABEL |5 OPERATION b OPERAND
IT l entry—point,save-areal
[name] STXIT , ’
PCS O I () 5

UP-7689

UNIVAC 9400 SUPERVISOR |

28
SECTION: PAGE:
POSITIONAL PARAMETER 1
~r
IT — indicates linkage is to be established, changed, or terminated
with respect to the user timer island code subroutine.
PC — indicates linkage is to be established, changed, or terminated
with respect to the user program check island code subroutine.
if blank — IT is assumed.
POSITIONAL PARAMETER 2
entry-point — the symbolic address of the entry point of the user timer or
program check island code subroutine.
(1) — indicates that register 2 has been preloaded with the entry-point
address.
if blank — linkage to the user timer or program check island code subroutine
is terminated.
POSITIONAL PARAMETER 3
save-area — the symbolic address of a standard 72-byte save-area for register
storage.
)] — indicates that register 0 has been preloaded with the save-area
address. —
Examples: -
LABEL 5 OPERATION S OPERAND 5
1 10 16
ngLllJl SlTlxlllT olcl:l(l]l)llllilllJllllllllllliJlll
R sit,x,1,7{ j0.¢, OPICO MM, |SYAREA,OPIIN, 40 |, 1|,
Lot by sy X v W\ PTYVMER,,[SYAREIA, v | v v 1 b v 1y
[R SIT XL IPC, (W Py Oy oy by vy by e b b
SR A [AN T U AN T U UV AV S S (N Y YN S S Y MY O

EXIT Macro Instruction (Type R)

The EXIT macro instruction is used to terminate a user island code subroutine,
restore the registers, and return program control to the point of interrupt in the
problem ptogram. The EXIT macro instruction is used in conjunction with the
STXIT macro instruction.

The format of the EXIT macro instruction is:

LABEL | 5 OPERATION & | OPERAND
gPC
[name] EXIT 1T

oc

UP-7689

UNIVAC 9400 SUPERVISOR

29
SECTION: PAGE:
\ POSITIONAL PARAMETER 1
PC — exit from a user program check island code subroutine.
IT — exit from a user timer island code subroutine.
oC — exit from a user operator communications island code subroutine.
if blank - —IT is assumed.
Examples:
LABEL 5 OPERATION & OPERAND 5
1 10 16
cv v doa e [b s beaa boaa s b bavaaa bia o
g e PEXT PG gy b e beva b vaa o
cr v Lo PEXOST T g e b bvv e be o ra by
pro b JEXNT PG by g b g berg s by e by
5.8. SYSTEM INFORMATION CONTROL
The system information block exists within the storage area assigned to the Supervisor
along with a number of job control blocks. Each problem program is assigned a 512-byte
storage area at the beginning of the program which is known as the job preamble. The
N programmer can retrieve or read information from the system information block, the

program’s job control block, and the job preamble. In addition, the programmer can
establish, change, or cancel information only within the 12-byte communication region
of the job preamble. The programmer cannot alter any other of the contents of these
privileged storage areas. The communication region is most commonly used to pass
information from one job step to the next; 12 bytes of data can be stored by one job
step and retrieved by subsequent job steps associated with the same job.

The following macro instructions are provided to assist the programmer in accessing
these restricted storage areas:

m GETADR - get absolute base address of:
(1) the system information block
(2) the job control block
(3) the job preamble

GETCOM - retrieve the contents of the 12-byte communication region from within
the job preamble.

m PUTCOM - write a 12-byte character string into the communication region within
the job preamble.

UP-7689 UNIVAC 9400 SUPERVISOR 5 30
SECTION: PAGE:
5.8.1. GETADR Macro Instruction (Type R) ~
The GETADR macro instruction is used to acquire the absolute base addresses of
the system information block, the job control block, and the job preamble. All
programs are permitted to read and retrieve information from these storage areas.
Whenever this macro instruction is executed, only the requested base address is
given to the problem program; no data is moved as a result of issuing this macro
instruction. If the information desired must be moved to the program area, the
programmer must provide the commands using the returned address as the base
address. The requested address is returned in register 1.
The format of the GETADR macro instruction is:
LABEL | 5 OPERATION 5 OPERAND
SIB
[name] | GETADR JCB |
PRES
POSITIONAL PARAMETER 1
SIB — get the base address of the system information block.
JCB — get the base address of the job control block.
PRE — get the base address of the job preamble.
~
if blank — SIB is assumed.
Examples:
LABEL 5 OPERATION® OPERAND 5
1 10 16
[B GETADIR| , v v v d v o b v v b o b g
L1 1) l | GIEJTIAID R lPlRLEl | [T | l B l U N | I J S I T | I I | |]
TSI B GETADIR| S UB, | v oy Lo v v by v b v b g Ly
R A I B GETAPIR J.CB AR T T N U U A N U N W TS U U N U T U O
The following example illustrates the use of the GETADR macro instruction in
conjunction with standard system labels.
LABEL t OPERATION® OPERAND)]
1 10 16
[B GETADR| SV By | v v v v b by b b Ly
| S I | S| Mlvlcl 1 DLAITIEI(18 1) 17]SJBllelTlEl(ll l)l il I | T | l S N N | I 1
TS | o R v b ey by by g b e b gy L
[[by oo e v by Loy be oy e o 1y
[B G| [10 b e b e by e by e by

DATE |, DC ., CL8 ;' v I v by e b b by oy

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 5 PAGE: 31
N’ The execution of line 1 causes the base address of the system information block
to be returned in problem register 1. The execution of line 2 causes the transfer of
eight characters from a field in the system information block identified by the
standard system label SB§DTE (date field) to the user field identified by the label
DATE.
5.8.2. GETCOM Macro Instruction (Type R)
The GETCOM macro instruction is used to retrieve the contents of the 12-byte com-
munication tegion from within the job preamble. When this macro insttuction is issued,
12 bytes of information are moved to a storage area specified by the programmer.
The format of the GETCOM macro instruction is:
LABEL | 5 OPERATION b OPERAND
to-addr
[name] GETCOM
(1)
POSITIONAL PARAMETER 1
to-addr — the address of a 12-byte main storage area to which the contents
of the communication region will be moved.
‘ 1) — indicates that register 1 has been preloaded with the address of
ot a 12-byte main storage area.
Example:
LABEL t OPERATION OPERAND 5
1 10 16
lllll(llll llllllllllll!l'llllllllllil|lil
| I i I 1 1 | I | j I | l U U T | I S . [i SO N | l | I | l i1 4 I 1
N B GETCOM COMAREA | | |\ \ v vl v v il v il v ia gy
R T | WA U U S NN Y AT N S N AU T S N U S S S '
[B [Lo e b v g b Lo e by s by g g
N B Ly 1 Lo b v b b e b v e by b
ClolMIAlRIEIAl DICI [ICILIIIZIII Ill { 1 [T T O B | l Lt 1 1 l 1t 1 1 l 1
Illlll Illl lllllLJiLlilllIIlllllllllllllll

UP-7689 UNIVAC 9400 SUPERVISOR

SECTION: PAGE:

5.8.3. PUTCOM Macro Instruction (Type R)

The PUTCOM macro instruction is used to write 12 bytes of information into the
12-byte communication region within the job preamble. When this macro instruction
is issued, the information is moved from the area specified by the programmer to
the 12-byte communication region in the job preamble.

The format of the PUTCOM macro instruction is:

LABEL |5 OPERATION b OPERAND
fr-addr
[name] PUTCOM
¢y
POSITIONAL PARAMETER 1
fr-addr — the symbolic address of a 12-byte main storage area containing

the data characters to be written in the communication region
of the job preamble.

69 — indicates that register 1 has been pteloaded with the address of
the 12-byte storage area.
Example:
LABEL 5 OPERATION® OPERAND 5
1 10 16
IR B LA R1,$, COMAREIA | v vy Ly byguy by
Lo b PUTCOME (YD) 1w e b e by v b by g
A SN B S R oo by v b e by e b by oy g
TR ST B! N I TR T S U S OO O N S MY AN S S S N N SO S ARSI SO A B
[N S i B oo b b b b b gy 1
COMARIE A DG, ¢ CL12,"|uysieyr-jiymfioyrmatiiolnty | |y 3 vy |
e b I e e by v ey b by by
R B Lvg g vy e b e by v by v b gy
R SR B l v oo v v b v e oy o b e ey g I

5.9. CONTROL STREAM READER

In disc systems, Job Control stores all job control streams on the resident direct
access storage device. The GETCS macro instruction permits the problem program
to read certain control statements and data images from their associated control
streams.

In tape systems, control streams are not stored on auxiliary storage, but are processed
as they are introduced by the card reader. The GETCS macro instruction permits the
problem nrogram to read certain control statements and data images from the control
stream in the card reader.

UP-7689 UNIVAC 9400 SUPERVISOR 5 33
SECTION: PAGE:
5.9.1. GETCS Macro Instruction (Type R)
p—

The GETCS macro instruction is used to retrieve data images and certain control

statements from the job’s control stream. Problem programs are permitted to access

their respective control streams in order to retrieve PARAM, § (start-of-data), and

* (end-of-data) Job Control statements and data images. Each record retrieved is

an exact image of the 80-byte source statement.

The format of the GETCS macro instruction is:

LABEL | 5 OPERATION & OPERAND
input-area #-records
[name] GETCS ,
ey (0)

POSITIONAL PARAMETER 1

input-area — the symbolic address of the first byte of a main storage area
large enough to contain the retrieved records. As each 80-byte
record is retrieved from the control stream, it is copied into
contiguous byte locations beginning with this address.

@) — indicates that register 1 has been preloaded with the address of
the main storage input area.

‘) POSITIONAL PARAMETER 2
g

#-record — number of records requested.

()] — indicates that register 0 has been preloaded with the number of
records.

if blank — 1 is assumed.

NOTES:

(1) Following the execution of a GETCS macro instruction, register 0 contains the
binary count of records retrieved. If no records are available in the control stream
(that is, if the next sequential record in the control stream is not a PARAM, §,
or * Job Control statement, or a data image), register 0 is set to binary zero.

(2) If two or more records are requested by a single GETCS macro instruction, the
first occurrence of an * (end-of-data) Job Control statement causes termination
of the control stream reader function. Also, the first occurrence of a record that
is not a PARAM or § Job Control statement, or a data image causes termination
of the function.

(3) If the control stream reader function is automatically terminated due to the
detection and transfer of an * Job Control statement, a subsequent GETCS
macro instruction causes the following record to be retrieved from the control

stream.

UP-7689 UNIVAC 9400 SUPERVISOR I

SECTION: D l PAGE:

(4) In tape systems, each execution of a GETCS macro instruction is limited to the
retrieval of one control statement or one data image (that is, one card).

(5) Program control is returned to the issuing program at the point immediately
following the GETCS macro instruction. The address of a command control
block is returned in register 1. The programmer can issue a WAIT or MARK
macro instruction referencing this command control block. Thus, synchronization
with the control stream reader is similar to that used with physical IOCS.

(6) A GETCS macro instruction cannot be issued when there is either an OPR,
RDFCB, or LOAD macro instruction outstanding. If this is attempted, a soft-
ware program check error results.

Examples:
LABEL 5 OPERATION & OPERAND %
1 10 16
[N B GETCS| ISTATE, 7, v | v v v o4 vv v g b g b vy
R B GIE,T.CS CUyy ol v e b v o b b b gy by
[T BN [AU U T U S N SN T W (O S Y S O SO A O N O WO S W

5.10. PROGRAM CHECKPOINT

When a problem program is expected to run for an extended period of time, the program-
mer should make provisions for periodic checkpoints. The CHKPT macro instruction
is provided for this purpose and is used in conjunction with the restart function of

Job Control. The restart function is called and activated when Job Control detects

a RSTRT control statement in the job control stream.

5.10.1. CHKPT Macro Instruction (Type S)

The CHKPT macro instruction is used by the programmer to cause checkpoint
records to be written, thus preserving the program’s operating environment. This
macro can be executed as frequently as the programmer wishes. When this macro
instruction is issued, a serial number is assigned for subsequent reference by the
RSTRT control statement.

The format of the CHKPT macro instruction is:

LABEL |5 OPERATION & OPERAND

file-name,restart,file-list,error
[name] CHKPT
1

UNIVAC 9400 SUPERVISOR I

PROGRAM TERMINATION AND STORAGE DISPLAY

Four macro instructions are provided which cause program termination and storage
display.

a EOJ

Normal job-step termination is a function of the EOJ (end-of-job step) macro
instruction. ’

s CANCEL

The CANCEL macro instruction causes the immediate cessation of all activity
scheduled for the job.

UP-7689 35
SECTION: PAGE:
POSITIONAL PARAMETER 1
N
file-name — the symbolic address of the DTF (file definition) specified by
the Data Management routines to be used when writing the
checkpoint records.
1) — indicates that register 1 has been preloaded with the address of
a parameter list that contains the addresses of positional para-
meters 1 through 4.
POSITIONAL PARAMETER 2
restart — the symbolic address to which control is to be given when re-
starting the checkpointed program.
POSITIONAL PARAMETER 3
file-list - the symbolic address of a list of file addresses. This parameter
is required for repositioning files when restarting the checkpointed
program.
POSITIONAL PARAMETER 4
error — the symbolic address to which control is passed if an error occurs
during the checkpoint operation.
Examples:
R
LABEL 5 OPERATION & OPERAND 3
10 16
Ll JJCHKPT] R L EAL (BEGH NG Fil BIS\ T ERIRIOIRL b 1140 | g
llll CJﬂIKlPIT (Ill)lllllll[llllngLll||llllllllIJ

UP-7689 UNIVAC 9400 SUPERVISOR ‘

SECTION: 5 ‘ PAGE:

m DUMP

The DUMP macro instruction causes a display of main storage followed by the
termination of the job step, but it does not cause the cancellation of remaining
scheduled job steps associated with the job.

m® SNAP

The SNAP macro instruction is used to display main storage during the execution
of a job step.

Job Control is called into main storage when program termination takes place,

5.11.1. EO]J Macro Instruction (Type R)

The EOJ macro instruction is used to cause normal job step termination.

Job Control is then loaded in the problem program area to prepare the next scheduled
job step or, if the current job step is the last, terminate the job.

The format of the EOJ macro instruction is:

LABEL l 5 OPERATION 5 I OPERAND
[name] I EOjJ I

No parameters are required by the EOJ macro instruction.

Example:
LABEL 5 OPERATION® OPERAND 5
10 16
ND:JST) ElOJ) crooa b v b v by b e b s b

5.11.2. CANCEL Macro Instruction (Type R)

The CANCEL macro instruction is used to cause the immediate cessation of all
processing for the current job step and any remaining job steps scheduled for the
job. This macro instruction can be executed at any time and cancellation is immedi-
ate (the CANCEL macro instruction has the same function as the CANCEL operator
command, see 6.5.12).

The format of the CANCEL macro instruction is:

LABEL I‘b OPERATION B l OPERAND
[name] I CANCEL |

No parameters are required by the CANCEL macro instruction.

()

UP-7689

UNIVAC 9400 SUPERVISOR

37

Example:

LABEL 5 OPERATION© OPERAND
10 16

[N EN I CIANCEILE b oy L b e o

[B | (TR I SRS i AN A |

5.11.3. DUMP Macro Instruction (Type R)

The DUMP macro instruction is used to cause a printout of main storage followed
by termination of the job step. The termination procedure used is identical to the

EO]J function (job step termination).

The format of the DUMP mactro instruction is:

LABEL | 5 OPERATION b l OPERAND

[name] | DUMP l

No parameters are required by the DUMP macro instruction.

Example:
LABEL 5 OPERATION & OPERAND
1 10 16
lllllll DlulMlPl lllllllllllLlll

lllllll ‘lll llLIlllllIlllll

5.11.4. SNAP Macro Instruction (Type S)

The SNAP macro instruction is used to display the contents of the 16 problem
registers and selected main storage areas within the problem program.

The format of the SNAP macro instruction is:

LABEL l 5 OPERATION & l OPERAND

beginning-addr,ending-addsr,...,addressing-pairs

[name] SNAP
1

POSITIONAL PARAMETER 1

beginning- — the symbolic beginning address of the main storage area to be

addr displayed. This parameter is used with positional parameter 2
to form a beginning and ending addressing pair of a main storage
area. Successive parameter pairs (3 and 4, 5 and 6, etc.) specify
the beginning and ending addresses of additional main storage

areas to be displayed.

UP-7689 UNIVAC 9400 SUPERVISOR p

SECTION: PAGE:

1 — indicates that register 1 has been preloaded with the address of
a parameter list which contains the beginning and ending addresses
of the main storage area(s) to be displayed. When the special register
notation form of the SNAP macro instruction is used, the programmer
has the responsibility of providing a parameter list containing the
beginning and ending addresses of the main storage area(s) to be
displayed. The end of the parameter list is indicated by setting the
sign bit of the last word in the parameter list to 1.

POSITIONAL PARAMETER 2

ending-address — the symbolic ending address of the main storage area to be
displayed. This parameter is used with positional parameter 1
to form a beginning and ending addressing pair of a main storage
area. Successive parameter pairs (3 and 4, 5 and 6, etc.), specify
the beginning and ending addresses of additional main storage
areas to be displayed.

POSITIONAL PARAMETERS 3 THROUGH n

addressing- — symbolic addresses specifying the beginning and ending addresses
pairs of additional main storage areas to be displayed.
Examples:
LABEL t OPERATION & OPERAND 5
1 10 16
T B LIA, | Yo L STy e b e v by b Ly
Lo SIN,A P, (V) v by vy By by e by v v by 1y
11 b L R v by e by e e by e by e vy 1y
O S B o B FUY U S O T R U T T U A U WO Y WO O S [N O W A
LyyST) | g DIC, | A(FROMIY, gy g L b g L
P T B! DIC, | AGTON N vy v L v by e b e b ey 1y
[N B DIC AGEROIM2), o by v v v vy o by by by
a1 b DIC, | | X 00800) v v v o by e b v by v b vy
R B DIC | AL (TIO2) |y vy v b e Ly e by e by
) S | 1 J | I L1 | L1 1 1 1 J S S | I | S | l f | I . | LJALI | I L
I B Ly 1o vy ey b s by v e by e b o]y
oLl SN AP, FRO MY, TO1, | FROM2|, TO2, | , |, | | 111 L
IR Loy cov v b e by v b e b v by g

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: PAGE:
—
6.1. GENERAL
Facilities are provided in the UNIVAC 9400 System to permit two-way communications
between the operator and both the operating system and problem programs. These
communications facilities include the following:
m Operator messages to the operating system
m Operating system messages to the operator
® Operator commands to the operating system
B Operator messages to problem programs
® Problem program messages to the operator
St All messages between the operator and the operating system or problem programs are
printed at the system console and are automatically time stamped by the operator
communications function of the Supervisor (that is, prefixed by the time). All messages
are printed at the system console by means of the OPR macro instruction. Operator
replies to problem program messages are handled automatically by the Supervisor, but
unsolicited messages by the operator must be handled by the operator communications
island code subroutine (see 5.7).
6.2. MESSAGE FORMATS

All messages have the following general format:

prefix message-text®
The prefix always contains the time expressed in the form hh:mm.

where:
hh specifies the hour (00 to 99)

mm specifies the minute (00 to 59)

The prefix can also contain additional information and symbols depending on the type
of message. The second part of the message (that is, the message text) contains either
a clear text message for the operator, or specific words and/or symbols required by the
operating system or problem program. The end-of-message symbol ® is always required
as the last character of a message.

UP-7689

UNIVAC 9400 SUPERVISOR 6

SECTION: PAGE:

6.3.

OPERATOR MESSAGES TO THE OPERATING SYSTEM

All messages from the operator to the operating system are either solicited (replies to
messages) or unsolicited (directions to the systems error job).

Messages from the computer operator have the format:
@hh:mmbijjRbreply®
or
@hh:mmbjj,Bunsolicited-message®
NOTE: The symbol b signifies a required space ; this symbol is not printed.

@ Character positions 1 through 8

prefix — the prefix (ébhh:mmb) is printed as a response when the ATTENTION
key at the system console is depressed. This response is printed to
indicate the readiness of the Supervisor to accept a message from the
operator. If the Supervisor is not ready to accept a message, the time
response is delayed and the console is temporarily locked. As
soon as the Supervisor is ready, the time is printed and the carriage
is not returned to the left margin of the page. The operator can then
type in his message.

m Character positions 9 and 10

jj — the number of the job for which the message is intended.

m Character positions 11 and 12

Rb — when replying to a previous message, the operator types Rb
in these character positions.

B — following the job number typein for an unsolicited message, the
operator depresses the end-of-message key. If the error job can
accept the unsolicited message, the Supervisor responds with a
5. Then the operator types the message-text.

m Character positions 13 through 75

message-text — the operator types in the reply or unsolicited message according to
the prescribed format. The format depends on the particular element
of the operating system that is to receive the message.

® — the end-of-message symbol must be the last character of the message.

UP-7689 UNIVAC 9400 SUPERVISOR ‘

SECTION: 6 PAGE:

6.4. OPERATING SYSTEM MESSAGES TO THE OPERATOR

~—
All messages between the operating system and the computer operator are printed at
the operator’s console and are automatically time stamped by the operator communica-
tions function of the Supervisor.
Elements of the operating system issue the following types of full text messages to
the computer operator:
B Action
This type of message is issued when operator intetvention and assistance are
required before processing of the requesting element can continue. Mounting
disc packs, and turning on power to devices are examples of operator actions
requested by this type of message.
® Information
This type of message is issued when information is passed to the operator for his
information and for inclusion in the system’s chronological log. Notification of normal
job termination is an example of this type of message.
8 Decision
This type of message is issued when the operating system reaches a point in its
processing where a choice between the alternate courses of action must be made by
the operator before processing can continue. Asking the operator to decide whether
: to retty an error recovery ptocedure or to abort the problem program are examples of
" this type of message.
All messages from the Supervisor to the operator have the format:
*thh:mmbjjbmessage-text
or
bthh:mmbjjbmessage-text
NOTE: The ® symbol signifies the presence of a required space; this symbol is not
printed.
Character position 1
* — indicates that the operator must reply to the message before processing
of the affected job step(s) can continue.
if blank — no reply is necessary. Processing continues immediately following
the message typeout.
® Character position 2
t — type of message character:
A — action
1 — information
kv/

D — decision

UP-7689

UNIVAC 9400 SUPERVISOR |

SECTION: PAGE:

6.5.

® Character positions 3 through 7
prefix — hh:mm
where:
hh is the hour of day (00 to 99)
mm is the minute (00 to 59)
® Character position 8

always blank

Character positions 9 and 10
jj — job-number
8 Character position 11

always blank

Character positions 12 through 15

eenn — ee are two alphabetic characters identifying a particular element
of the operating system.

— nn are two alphanumeric characters identifying a particular message
from that element.

Character position 16

always blank

m Character positions 17 through 75

message-text — clear text

OPERATOR COMMANDS TO THE OPERATING SYSTEM

Commands from the operator to the operating system are messages directing the
Supervisor in its operations,

These commands have the following format:
@hh:mmbcommand®

8 Character positions 1 and 2

always blank

m Character positions 3 through 7

prefix — the prefix (hh:mm) is printed by the Supervisor as a response, whenever
the ATTENTION key at the operator’s console is depressed.

—

C)

UP-7689 UNIVAC 9400 SUPERVISOR 6

SECTION: PAGE:

m Character position 8

always blank

8 Character positions 9 through 80

command — a string of from three to eight characters and beginning with an alphabetic
character is considered a command. This character string is compared
against a list of valid commands before the command is accepted.

If parametets are required by the command, at least one blank character
must separate the command from its parametets, and parameters are
separated by commas.

NOTE: All operator commands are from 2 to 8 characters in length, but can be defined
by typing in only the first two characters; for example, SE for SET, DE for
DELETE, etc. Likewise, parameters which identify subfunctions can also
be specified by the first two characters; for example, SE CL for SET CLOCK.

® — the end-of-message symbol must be the last character of this message.

6.5.1. SET Command

The SET command is used for any of the following: set the date (month, day, and
year) in the system information block, set the time of day in the simulated day clock,
set the system program switch indicator in the system information block, store a
character string in the system communication region of the system information block,
N or set specific information and status bits in the physical unit blocks. The particular
function performed by the SET command is determined by positional parameter 1 which
follows the word SET. Due to the complex structure of the SET command, each of the
functions previously mentioned is illustrated separately.

a DATE

The SET command when used to set the date field in the system information block
has the format:

SET DATE,xx/xx/xx [,yyddd] [,yyddd]

POSITIONAL PARAMETER 1

DATE — indicates that the following positional parameter(s) will be stored
in the appropriate date fields within the system information block.

POSITIONAL PARAMETER 2

xx/xx/xx — usually specifies the month (01-12), the day (01-31), and the year
(00-99) in any order. (However, any eight characters can be specified
as positional parameter 2.)

UP-7689 UNIVAC 9400 SUPERVISOR I

6 6
SECTION: PAGE:

POSITIONAL PARAMETER 3

yyddd — this date is stored in the form Byyddd (in EBCDIC) and is used by
data management when checking tape file labels,

if blank — the appropriate field in the system information block remains
unchanged.

POSITIONAL PARAMETER 4

yydd — is stored in the form bydd (discontinuous binary) and is used by
data management to check disc file labels.

if blank — when positional parameter 3 is not specified, the appropriate field in the
system information block remains unchanged. If, however, positional param-
eter 3 is specified, the date specified by that parameter is converted to

the form Bydd and stored in the appropriate field of the system information
block.

s CLOCK

The SET command, when used to set the time of day in the simulated day clock,
has the format:

SET CLOCK, hh:mm

POSITIONAL PARAMETER 1

CLOCK — indicates that the simulated day clock will be set to the time ~

specified by positional parameter 2,

POSITIONAL PARAMETER 2

hh:mm — hh specifies the hour (00 to 99) and mm specifies the minute
(00 to 59).

m COMREG (Communication Region)

The SET command, when used to store information in the system communication
region, has the format:

SET COMREG,character-string

POSITIONAL PARAMETER 1

COMREG — indicates that the character-string specified by positional parameter
2 will be stored in the system communication region in the system
information block.

POSITIONAL PARAMETER 2

character-string — 1 to 24 hexadecimal characters (specified by X'xx...") or 1 to 12
EBCDIC characters (specified by C'cc...') to be stored in the
12-byte system communication region.

UP-7689 UNIVAC 9400 SUPERVISOR I

SECTION: PAGE:

m SPSI (System Program Switch Indicator)

N
The SET command, when used to set the system program switch indicator, has the
format:
SET SPSI,switch-setting

POSITIONAL PARAMETER 1

SPSI — indicates that the system program switch indicator will be set to
the bit pattemn specified by positional parameter 2.

POSITIONAL PARAMETER 2

switch-setting — one to eight characters, either 0, 1, or X. Each typed-in 1 or 0
character is used to change an individual bit position of the system
program switch indicator within the system information block. (The
SPSI is the last byte in the 12-byte system communication region.)
Character positions containing 0 cause the respective bit positions
to be set to 0; character positions containing 1 cause the respective
bit positions to be set to 1; character positions containing X are
unchanged. Any unspecified rightmost character positions are
assumed to be X.

Examples:

SPSI BIT POSITIONS
S CONDITION
01112|3]4|5(6(7
ASSUMED SETTING 0l1f1)1/0|0f0O)1

FIRST TYPEIN — SET SPSI, 1
FIRST RESULT 111]1{1{010]0¢1
SECOND TYPEIN — SET SPSI, X0001
SECOND RESULT 110|0f{0]1|0]0]|1
THIRD TYPEIN — SET SPSI, XXXXXXX0
THIRD RESULT 1]0j0({0]1;0]01]0
FOURTH TYPEIN — SET SPSI, 00000000
FOURTH RESULT 0/0(0}0]0|0|0Of0

UP-7689 UNIVAC 9400 SUPERVISOR I

] SECTION: 6 PAGE: 8
¢
a IO
-
The SET command, when used to set bits within the physical unit blocks, has
the format:
DOWN
up
SHARE
NOSHARE

ET, pub-identifier
CHANNEL, chnl/cochnl

SET 10,pub-identifier, TYPE, type-code
DEVICE, device-address
YOLUME, volume-serial-number
RES
RDR

T

l

rro |-|—
|c_z;|g|8 o

POSITIONAL PARAMETER 1

IO — indicates that a change is to be made within the physical
unit block specified by positional parameter 2.

POSITIONAL PARAMETER 2

pub-identifier — three characters identifying the physical unit block to ~
be changed (these characters are available following
system generation).

POSITIONAL PARAMETER 3

DOWN — sets the device status to down.

UupP — sets the device status to up.

SHARE — permits the device to be allocated to more than one program
simultaneously.

NOSHARE — forbids allocation of the device to more than one program
simultaneously.

ALT — stores the address of the physical unit block identified by
positional parameter 4 in the alternate device field of the
physical unit block.

CHANNEL — stores positional parameter 4 in the channel/cochannel
field of the physical unit block.

TYPE — stores positional parameter 4 in the device field of the
physical unit block.

DEVICE — stores positional parameter 4 in the device-address field
of the physical unit block. —

\//

VOLUME — stores positional parameter 4 in the volume-serial-number
field of the physical unit block.

device. The first character specifies the primary channel
and the second specifies the secondary channel. If the
two characters are equal, no cochanneling is possible.

type-code — two characters specifying the device and its options.
device-address — two characters specifying the device address.

volume-serial-number — from one to six characters representing the volume serial
number to be stored in the physical unit block. This
number is considered to be right-justified and, if less than
six characters, is zerofilled to the left.

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 6 PAGE: 9
RES — used to identify the peripheral device specified by posi-
B tional parameter 2 as the system resident device. This
device can be either a magnetic tape unit or disc drive.

RDR — used to identify the peripheral device specified by posi-
tional parameter 2 as the system reader. This device can
be a card reader, magnetic tape unit, or disc drive.

IPT — used to identify the peripheral device specified by posi-
tional parameter 2 as the system primary input device for
reading control streams.

LOG — used to identify the peripheral device specified by posi-
tional parameter 2 as the system logging device. This
device is usually the system console.

PCH — used to identify the peripheral device specified by posi-
tional parameter 2 as the system card punch.

LST — used to identify the peripheral device specified by posi-
tional parameter 2 as the system listing device. This
device can be a line printer, magnetic tape unit, or disc
drive.

POSITIONAL PARAMETER 4

pub-identifier — three characters identifying the alternate physical unit
block.

et chnl/cochnl — two characters specifying the legal channel routes to the

UP-7689 |

UNIVAC 9400 SUPERVISOR l

6 10

SECTION: PAGE:

6.5.2.

6.5.3.

Examples of the SET command follow:

Wv\/tﬁ/\f\/\

@ 99:40 SET DATE,09/3@8/67e
@ ©9:50 SET CLOCK,C9:59e

@ 11:48 SET COMREG, X"B 10D 1AUBFFFFB1298800OFFFF'®

11455 SET SPSI,8111XXX®

@ 12:22 SET 10,BD2,UFe®

®

@ 12:42 SET 10,8D2, SHARE®

@ 12:50 SET 10,ACO,RES®

LOG Command

The LOG command is used to cause all Job Control statements to be included in the
system log as they are processed and executed by Job Control.

The LOG command has the format:

LOG

No parameters are required by the LOG command.

An example of the LOG command is:

@ 28:17 LoGe

NOLOG Command
The NOLOG command is used to suppress the logging of all Job Control statements.

The NOLOG command has the format:

OLOG

No parameters are required by the NOLOG command.

An example of the NOLOG command is:

@ 89:41 NOLOGe ~

UP-7689 UNIVAC 9400 SUPERVISOR 6 11
SECTION: PAGE:
6.5.4. FILE Command (Disc Systems Only)
R

The FILE command is used to call the file function of Job Control for the purpose

of filing job streams in the job file on the system resident direct access device.

The FILE command has the format:

FILE [nn]

POSITIONAL PARAMETER 1

nn — the number of job streams to be read from the card input device and
filed in the job file on the resident direct access storage device (nn
equals the number of JOB statements appearing in the control stream to
be filed). Each time a job stream is filed, nn is decremented by one.
When nn equals zero, the file function terminates.

if blank — the file function terminates upon encountering the first blank card
following an & (end-of-job) Job Control statement.

An example of the FILE command is:

@ 13:42 FILE®
@ 14:30 FI 6o
R
6.5.5. DELETE Command (Disc Systems Only)

The DELETE command is used to call the delete function of Job Control for the

purpose of deleting job streams from the job file on the system resident direct

access device.

The DELETE command has the format:

jobname
DELETE
ALL

POSITIONAL PARAMETER 1

jobname — the one- to eight-character job identification appearing in the JOB state-
ment of the filed job stream to be deleted from the job file,

ALL — used to delete all entries in the index of the job file. When ALL is used,
the entire storage area assigned to the job file is reclaimed for subsequent
filing operations.

Examples of the DELETE command are:

TN
@ 15:29 DELETE TESTRUNZ®
\-/'

® 16316 DE ALL®

UP-7689 UNIVAC 9400 SUPERVISOR 12
SECTION: PAGE:
6.5.6. RUN Command
~—r’
The RUN command is used to call the control portion of Job Control for the purpose
of preparing and loading a job for execution, In disc systems, only job streams filed
in the job file can be selected. In tape systems, the job stream is introduced through
the card reader,
The RUN command has the format:
RUN jobname[,priorityl[,GO]

POSITIONAL PARAMETER 1
jobname — the one- to eight-character job identification appearing in the JOB state-

ment of the job stream to be executed.
POSITIONAL PARAMETER 2
priority — the number 1, 2, or 3 indicating the user priority level at which the job

will be run. This priority code overrides the one specified by the JOB

statement.
if blank — the priority level specified by the JOB statement is used.
POSITIONAL PARAMETER 3
GO — the job is assigned to the switch list and marked ready immediately

following the job preparation and loading sequence.

Ny

6.5.7.

if blank — the job is assigned to the switch list and marked nonready. A GO
command is necessary to change the status to ready when the GO param-
eter is not included in the RUN command.

An example of the RUN command is:

29:21 RUN TESTO1,,GO0®

GO Command

Jobs loaded by the RUN command without the GO parameter are not allowed to
compete for central processor time due to their nonready status. The GO command
changes the job’s status from nonready to ready.

The GO command has the format:
GO jobnumber

POSITIONAL PARAMETER 1

jobnumber — the job number (10 through 99) assigned by Job Control and printed at
the console following the RUN command. This number identifies
the job to be made ready for execution.

()

UP-7689

UNIVAC 9400 SUPERVISOR |

SECTION: 6

PAGE:

13

6.5.8.

6.5.9.

An example of the GO command is:

@ 10:20 GO 279

READY Command

The READY command is used to inform Job Control that requested opetator actions
have been completed.

The READY command has the format:
READY jobnumber

POSITIONAL PARAMETER 1

jobnumber — the jobnumber (10 through 99) assigned to the job by Job Control and
printed at the system console following the RUN command. This number
indicates which job the operator’s actions pertain to and can be correlated
with the requests appearing in the system log.

An example of the READY command is:

—
@ 19:1¢ READY 20

LIST Command

The LIST command causes the contents of the system information block, the job
control blocks, the physical unit blocks, and the index of the job file to be included
in the system log.

The LIST command has the format:

w

iB
P

Sl

LIST

o

JOBS

POSITIONAL PARAMETER 1

SIB — print the system information block.

JP — print the job control blocks and job preambles.
10 — print the physical unit blocks.

JOBS — print the index of the job file.

UP-7689

UNIVAC 9400 SUPERVISOR I

SECTION:

PAGE:

14

6.5.10.

6.5.11,

Examples of the LIST command are:

@ 17:57 LIST SiBe

@ 18:44 L1 JoBSe

PAUSE Command

The PAUSE command is used to cause a delay between two job steps of a specific
job, and can be used for operator intervention. This command can be given at any
time with the delay occurring at the conclusion of the currently running job step.

The PAUSE command has the format:
PAUSE jobnumber, user-comment

POSITIONAL PARAMETER 1

jobnumber — the job number assigned to the job by Job Control and printed at
the console following the RUN command.

POSITIONAL PARAMETER 2

user-comment — any character string to be printed at the system console.

NOTE: When the pause occurs, the word ‘“PAUSING’’ and the jobnumber are printed
at the console.

An example of the PAUSE command followed by the message printed when the delay
occurs is:

@ 11:90 PAUSE 19,END PASST ®

111:81 61 JCB7 19 PAUSING

STOP Command

The STOP command is used to suspend a job between job steps. To be effective,
it must follow a PAUSE command for the same job.

The STOP command has the format:
STOP jobnumber, jobname

POSITIONAL PARAMETER 1

jobnumber — the jobnumber assigned to the job by Job Control and printed at the
system console following the RUN command.

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 6 PAGE: 15
POSITIONAL PARAMETER 2
v - . . e, . . .

jobname — the one-to eight-character job identification appearing in the JOB
statement. The job’s number and name are both required to avoid
erroneous job suspensions due to type-in errors by the operator. The
jobname is retrieved and compared against the name appearing in the
STOP command. If the name and number are not as specified by Job
Control, the STOP command is rejected. The operator must then re -
submit the command with the correct number and name.

An example of the STOP command is:

@ 12:13% STOP 12,MEANVALU®
6.5.12. CANCEL Command

The CANCEL command is used to cause the immediate cessation of all processing

for a job running in the system. The CANCEL command can be given at any time

and results in immediate termination of the currently running job step and any re-

maining job steps scheduled for the job.

The CANCEL command has the format:

CANCEL jobnumber,jobname
S POSITIONAL PARAMETER 1

jobnumber — the jobnumber assigned to the job by Job Control and printed at the
console following the RUN command,

POSITIONAL PARAMETER 2

jobname — the one-to eight-character job ident