
. ..._..,.

SUPERVISOR

-~

A UP-7689

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor­
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re­
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

©) 1969- SPERRY RAND CORPORATION PRINTED IN U.S.A.

I

~

L
A~

UP-7689 UNIVAC 9400 SUPERVISOR Contents 1
SECTION: PAGE:

'-"'

CONTENTS

CONTENTS l to 5

1. INTRODUCTION 1-1 to 1-5

1.1. GENERAL 1-1

1.2. MACRO INSTRUCTION FORMAT 1-1

1.3. CONTROL STATEMENT CONVENTIONS 1-2
1.3.1. Rand S Type Macro Instructions 1-3
1.3.2. Special Register Notation 1-3

l
'--'' 1.4. STANDARD LABEL CONVENTIONS AND THE STDEQU MACRO INSTRUCTION 1-3

2. FEATURES 2-1 to 2-3

2.1. GENERAL 2-1

2.2. MODULARITY 2-1

2.3. MULTIPROGRAMMING 2-1
2.3.1. Program Priority 2-2
2.3.2. Time Allocation 2-2
2.3.3. Input/Output Utilization 2-3

2.4. SYSTEM RESIDENT STORAGE 2-3

3. STORAGE ALLOCATION AND SUPERVISOR STRUCTURE 3-1 to 3-33

3.1. GENERAL 3-1

3.2. LOW ORDER MAIN STORAGE 3-4

3.3. SYSTEM ENVIRONMENTAL CONTROL STORAGE AREA 3-4
3.3.1. Error Job Preamble 3-4
3.3.2. Supervisor Ca 11 Interrupt Tab I e 3-8
3.3.3. Job Control Blocks 3-12
3.3.4. Physical Unit Blocks 3-14

·-..... 3.3.5. Program Switch List 3-17
3.3.6. System Information Block 3-18___/

L
·--~

UP-7689 UNIVAC 9400 SUPERVISOR Contents 2
SECTION: PAGE:

--~

3.4. SYSTEM CONTROL ROUTINES STORAGE AREA 3-20
3.4.1. Supervisor Call (SVC) 3-20 -~

3.4.2. Physical IOCS 3-21
3.4.2.1. Channel Scheduler 3-21
3.4.2.2. System Error Job 3-22
3.4.3. Program Switcher 3-23
3.4.4. Program Check 3-24
3.4.4.1. Program Interrupt 3-24
3.4.4.2. Software Program Exception 3-25
3.4.5. Program Load - Disc Systems 3-25
3.4.5.1. Absolute Program Loader 3-25
3.4.5.2. Relocating Program Loader 3-26
3.4.6. Program Load - Tape Systems 3-26
3.4.7. Transient Scheduler 3-26
3.4.7.1. Disc Systems 3-27
3.4.7.2. Tape Systems 3-27
3.4.8. Timer Services 3-27
3.4.9. User Island Code Management 3-28
3.4.9.1. Program Check 3-30
3.4.9.2. Timer Interval 3-30
3.4.9.3. Unsolicited Message 3-31
3.4.10. Operator Communications Control 3-31
3.4.11. Optional Resident Routines 3-31

3.5. TRANSIENT AREA(S) 3-32

3.6. PROBLEM PROGRAM AREA 3-32 - •. .•
'.._/

4. PHYSICAL IOCS MACRO INSTRUCTIONS 4-1 to 4-1

4.1. GENERAL 4-1
4.1.1. CCB Macro Instruction and Command Control Block Structure 4-1
4.1.2. EXCP Macro Instruction (Type R) 4-5
4.1.3. WAIT Macro Instruction (Type R) 4-7
4.1.4. MARK Macro Instruction (Type R) 4-8
4.1.5. YI ELD Macro Instruction (Type R) 4-9
4.1.6. PIOCB Macro Instruction and Physical 1/0 Control Block Structure 4-10
4.1.7. RDFCB Macro Instruction (Type R) 4-13
4.1.8. SWAP Macro Instruction (Type R) 4-15

4.2. DYNAMIC RELEASE OF PERIPHERAL DEVICES 4-16
4.2.1. FREE Macro Instruction (Type R) 4-16

·-....
''-.._./

L
.···~

UP-7689 UNIVAC 9400 SUPERVISOR Contents 3
SECTION: PAGE:

5. PROGRAM MANAGEMENT 5-1 to 5-38
'\.._./

5.1. GENERAL 5-1

5.2. PROGRAM LOADING 5-1
5.2.1. LOAD Macro Instruction (Type R) 5-1
5.2.1.1. Load Absolute Function (Disc Systems Only) 5-2
5.2.1.2. Load Index Function 5-2
5.2.1.3. Load Alternate Function - Disc Systems 5-3
5.2.1.4. Load Alternate Function - Tape Systems 5-5
5.2.1.5. Load Relocate Function 5-5
5.2.2. FETCH Macro Instruction (Type R) 5-7

5.3. TIMER AND SIMULATED DAY CLOCK SERVICES 5-8
5.3.1. GETIME Macro Instruction (Type R) 5-8
5.3.2. SETIME Macro Instruction (Type R) 5-8

5.4. TRANSIENT AREA MANAGEMENT 5-9
5.4.1. TCALL Macro Instruction (Type R) 5-9

5.5. DYNAMIC ALLOCATION OF DIRECT ACCESS STORAGE 5-10
5.5.1. GIVE Macro Instruction (Type S) 5-10
5.5.2. TAKE Macro Instruction (Type S) 5-15
5.5.3. QUERY Macro Instruction (Type S) 5-16

5.6. SUBROUTINE LINKAGE 5-19

5.6.1. Linkage Register Conventions 5-19
5.6.2. Linkage Procedure 5-19
5.6.3. CALL Macro Instruction (Type R) 5-20

"-' 5.6.4. SAVE Macro Instruction (Type R) 5-21
5.6.5. RETURN Macro Instruction (Type R) 5-22
5.6.6. Register Save Area Usage 5-23

5.7. LINKAGE TO USER ISLAND CODE SUBROUTINES 5-26
5.7.1. STXIT Macro Instruction 5-26
5.7.2. EXIT Macro Instruction (Type R) 5-28

5.8. SYSTEM INFORMATION CONTROL 5-29

5.8.1. GETADR Macro Instruction (Type R) 5-30
5.8.2. GETCOM Macro Instruction (Type R) 5-31
5.8.3. PUTCOM Macro Instruction (Type R) 5-32

5.9. CONTROL STREAM READER 5-32
5.9.1. GETCS Macro Instruction (Type R) 5-33

5.10. PROGRAM CHECKPOINT 5-34
5.10.1. CHKPT Macro Instruction (Type S) 5-34

5.11. PROGRAM TERMINATION AND STORAGE DISPLAY 5-35
5.11.1. EOJ Macro Instruction (Type R) 5-36
5.11.2. CANCEL Macro Instruction (Type R) 5-36
5.11.3. DUMP Macro Instruction (Type R) 5-37
5.11.4. SNAP Macro Instruction (Type S) 5-37

,,
I
.\......_/

L
.,·~

UNIVAC 9400 SUPERVISOR
Contents 4

UP-7689
SECTION: PAGE:

6-1 to 6-28
·~

6. OPERATOR COMMUNICATIONS

6.1. GENERAL 6-1
~·

6.2. MESSAGE FORMATS 6-1

6.3. OPERATOR MESSAGES TO THE OPERATING SYSTEM 6-2

6.4. OPERATING SYSTEM MESSAGES TO THE OPERATOR 6-3

6.5. OPERATOR COMMANDS TO THE OPERATING SYSTEM 6-4
6.5.1. SET Command 6-5
6.5.2. LOG Command 6-10
6.5.3. NO LOG Cornman d 6-10
6.5.4. FILE Command (Disc Systems Only) 6-11
6.5.5. DELETE Command (Disc Systems Only) 6-11
6.5.6. RUN Command 6-12
6.5.7. GO Command 6-12
6.5.8. READY Command 6-13
6.5.9. LIST Comm and 6-13
6.5.10. PAUSE Command 6-14
6.5.11. STOP Command 6-14
6.5.12. CANCEL Command 6-15
6.5.13. DUMP Command 6-16
6.5.14. ALTER Command 6-16
6.5.15. DISPLAY Command 6-20
6.5.16. MTC Command 6-21
6.5.17. MOUNT Command 6-23 .·~

6.6. PROBLEM PROGRAM MESSAGES TO THE OP ERA TOR 6-24 '-../
6.6.1. QPR Macro Instruction (Type R) 6-24

6.7. OPERATOR MESSAGES TO PROBLEM PROGRAMS 6-27

APPENDIX A. STANDARD EQUATE MACRO INSTRUCTION EXPANSION A-1 to A-9

J

L
·.~

UP-7689 UNIVAC 9400 SUPERVISOR Contents 5
SECTION: PAGE:

TABLES
-.....,,,;

3-1. Job Preamble Standard Labels 3-5

3-2. Supervisor Call Interrupt Standard Labels 3-9

3-3. Job Control Block Standard Labels 3-12

3-4. Physical Unit Block Standard Labels 3-15

3-5. System Information Block Standard Labels 3-18

4-1. Command Control Block Standard Labels 4-4

4-2. Physical 1/0 Control Block Standard Labels 4-13

FIGURES

3-1. Main Storage and Auxiliary Storage Contents 3-2

3-2. Main Storage Contents 3-3

3-3. Program Switch List Structure 3-17

3-4. Example of Free Space Linkage in Main Storage 3-33

4-1. Command Control Block Format 4-3

4-2. Physical 1/0 Control Block Format 4-12

\
4-3. Interrelationship Between the Command Control Block, Channel Command Word, File

\........- Control Block, Physical 1/0 Control Block, and Physical Unit Block 4-14

5-1. Standard Register Save Area 5-23

I

~

L

UP-7689 UNIVAC 9400 SUPERVISOR 1
SECTION: PAGE:

1. INTRODUCTION

1.1. GENERAL

The Supervisory Control program is the component of the UNIVAC 9400 Operating
System that operates with problem programs to provide the central control necessary
for optimum utilization of the system hardware and software complex. The Supervisor,
together with Job Control, constitute the software executive system.

The services provided by the executive system permit the user to define the work to
be done and programs to be executed. The major unit of work in the UNIVAC 9400 System
is a job. Each job can be divided into serially executed job steps (that is, individual
programs executed in the sequence described in the job control stream). Each job step,
in turn, can be subdivided into program phases, which are the smallest single units that
can be loaded and executed. Data and programs to be processed are introduced to the
UNIVAC 9400 System as jobs, with each job step defined by its own control information
in the job stream.

This manual describes the Supervisor provided for disc, tape, and disc/tape systems.
It includes descriptions of the Supervisor structure and the programmed services pro­
vided by the Supervisor, including detailed explanations of the physical Input/Output
Control System (IOCS), macro instructions available to the programmer, and operator
communications facilities. Knowledge of the UNIVAC 9400 System Description, UP-7566
(current version), is helpful in the use of this manual.

1.2. MACRO INSTRUCTION FORMAT

The Supervisor uses both declarative and imperative macro instructions. Declarative
macro instructions (CCB and PIOCB) cause the generation of nonexecutable code sequences
in the problem program. These macro instructions are used to allocate areas in main
storage that will contain control information for the channel scheduler when the problem
program is executed (see Section 4).

The remainder of the macro instructions are imperative, in that they cause the generation
of executable code sequences in the problem program. These code sequences are the
interface between the problem program and the Supervisor. Imperative macro instructions
are used to request services of the Supervisor and direct the operation of the problem
program.

The format of all macro instructions is:

LABEL 15 OPERATION 15 OPERAND

[name] xx xx yyyy , ... ,zzzz

.. ··~

1

UP-7689 UNIVAC 9400 SUPERVISOR 1
SECTION: PAGE:

A symbolic name can appear in the label field. It can have a maximum of eight characters
and must begin with an alphabetic character. The appropriate macro name must appear
in the operation field. When parameters are specified in the operand field of all macro
instructions (except STDEQU, 1.4),, these are positional parameters. Positional parameters
(as signified by the name) must be written in the specified order in the operand field
and be separated by commas. When a positional parameter is omitted, the comma must be
retained to indicate the omission, except in the case of omitted trailing parameters.
Assembler rules regarding blank columns and continuation must be observed when writing
macro instructions.

1.3. CONTROL STATEMENT CONVENTIONS

The conventions used to illustrate macro instructions and operator commands follow:

• Capital letters and punctuation marks (except braces, brackets, and ellipses) are
information that must be coded by the programmer or typed by the operator at the
console exactly as shown.

• Lowercase letters and terms represent information that must be supplied by the
programmer or operator.

• Information contained within braces represents necessary entries of which one must
be chosen.

• Information contained within brackets represents optional entries that (depending on
program requirements) are included or omitted. Braces within brackets signify that
one of the entries must be chosen if that operand is included.

• An ellipsis (a series of three periods) indicates a variable number of entries.

• Commas are required when positional parameters are omitted, except for trailing
positional parameters.

Typical format for a macro instruction is:

LABEL b OPE RATION "b OPERAND

[name] OPR

The following examples illustrate some of the ways in which this macro instruction is
coded.

LABEL 1i OPERATION 1i OPERAND
10 16

MSG ,E 1, 12 ,o ,, Io,. IR, E, P,L,YI I I I I I I I I

OPMSGl p R MS GE 3 0 R E PLY L
MSG E

0 PMS 2 I I I I I I I I

REPLY

2

L

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 1

NOTE: The last two examples illustrate the use of special register notation as
described in 1.3.2.

Three important considerations should be noted when writing macro instructions:

PAGE:

• Positional parameters are separated by a comma. When a positional parameter is
omitted, the comma must be specified to indicate the omission. Trailing commas are
not required.

• There must not be any intervening blanks between positional parameters.

• Column 15 on the coding form is usually blank. However, when the macro instruction
operation code is six characters in length, column 15 must contain the last character
of the operation code, and column 16 must be blank.

1.3.1. R and S Type Macro Instructions

The Supervisor imperative macro instructions are either R or S type. An R type
(register) macro instruction is used when none, one, or two parameters are passed
to the Supervisor. The first parameter is passed in register 1. The second parameter,
if any, is passed in register 0. An S type (storage) macro instruction is used when three
or more parameters are passed to the Supervisor as a parameter list. The parameter
list consists of a fullword for each parameter. Each fullword contains the address of
a parameter to be passed to the Supervisor. The address of the first word of the list
is passed in register 1.

1.3.2. Special Register Notation

The user can preload parameter registers 0 and/or 1 prior to executing a macro
instruction. When the register option is selected, the designations (0) and/or (1)
are actually coded signifying the register(s) used by the Supervisor. This is
known as special register notation.

1.4. STANDARD LABEL CONVENTIONS AND THE STDEQU MACRO INSTRUCTION

Label conventions have been established for all elements of the UNIVAC 9400 System
software. By convention, all software labels have no more than eight characters and are
expressed in the form ee$xxxxx, where the characters ee identify a software element,
the character $ designates a software label, and the characters xxxxx identify a unique
item within a software element.

Certain software labels must be equated to their respective absolute values each time
a problem program is assembled. The STDEQU macro instruction is provided for this
purpose, and it must be written immediately following the START assembler directive.
The following labels are always equated:

3

L

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 1 PAGE:

• R - registers RO$ to RF$ labels (that is, RO$ is equated to (0), etc.)

• IC$ - command control block labels

• SV$ - Supervisor call/interrupt table labels

• JF$ - file control block labels

• 18$ - physical 1/0 control block labels

• IX$ - extend request block labels

• JV$ - volume serial number list block labels

• DI$ - Data Management Define The File labels

If these are the only labels that are required for the problem program, the format of the
macro instruction is:

LABEL l5 OPE RATION l5 OPERAND

[name] STDEQU Gl

Parameter:

Gl - the group 1 labels (previously listed) are equated to the respective values.

If any other labels are required in addition to those in group 1, these labels can be
specified by means of parameters to the STDEQU macro instruction. These parameters
are not positional parameters; therefore they can be written in any order. The format
of this macro instruction when used to equate all group 1 labels and any other specific
labels to their respective absolute values is:

LABEL 11OPERATION11 OPERAND

[name] STDEQU [HW] [,SB] [,J B] [,JP] [,IP] [,DM] [,MC]

Parameters:

HW - equate the hardware locations of the Program Status Words, Subchannel Control
Words, Channel Status Words, Timer Control Word, H registers (that is, equating
a register designation to a specific hardware location), and RS special purpose
registers.

SB - system information block labels are equated.

JB - job control block labels are equated.

JP - system error job preamble labels are equated.

IP - physical unit block labels are equated.

DM - all Data Management labels are equated.

MC - all Message Control labels are equated.

4

UP-7689 UNIVAC 9400 SUPERVISOR 1
SECTION: PAGE:

If all labels are required for the program, the format of this macro instruction is:

LABEL '15 OPERATION '15 OPERAND

[name] STDEQU

No parameters are required for this form of the STDEQU macro instruction.

A sample of the program code generated by the STDEQU macro instruction is provided
in Appendix A.

Example:

LABEL 1i OPERATION 1i OPERAND 1i
10 16

START 0

ST DE QU

I I I I I I I I I I

I I I I I I I I I I I I I I

5

L
;,,'tr:-

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 2 PAGE:

2. FEATURES

2.1. GENERAL

The Supervisor, as implemented in UNIVAC 9400 Systems, provides efficient, flexible,
and centralized control of all activities in order to meet the requirements of a wide
range of user applications. Capabilities are provided that are consistent with small to
medium sized disc, tape, or disc/tape-oriented computing systems. The Supervisor
provides an interface between the program and the computing system. Environmental
control problems are handled directly and promptly with as little internal bookkeeping
as necessary while ensuring the integrity of the computing system.

2.2. MODULARITY

Functional modularity is emphasized in the design of the Supervisor to ensure its
adaptability to a wide range of data processing activities. The user tailors the
Supervisor to accommodate particular applications and provide specific capabilities
by parametric selection and specification of the various functional modules at system
generation time.

2.3. MULTIPROGRAMMING

The Supervisor permits concurrent processing of user programs with system functions.
In disc-oriented systems, a Supervisor can be generated to control from one to five
problem programs being executed concurrently in the computing system. In tape-oriented
systems, a Supervisor can be generated to control one or more symbiont programs in
addition to the execution of one problem program. Many Supervisor functions in both
disc-oriented and tape-oriented systems are designed as autonomous activities cap­
able of being executed as independent programs.

The multiprogramming technique employed in this system involves the distribution of
processing time to programs based on program priorities, time allocation, and input/output
utilization.

Program synchronization is accomplished through the combined operation of the interrupt
handlers and the program switching routine, and is controlled by time allocation with the
facilities provided by the unique seven-level interrupt structure of the UNIVAC 9400
System. Thus, the Supervisor provides the user with efficient and equitable distribution
of processing time to problem programs.

-
1

L

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION:

2

2.3.1. Program Priority

Five program priorities are provided by the Supervisor. Three of these program
priorities are intended for the following types of user programs:

• Problem Program Priority Level 1 - Message Control program

PAGE:

The highest priority level available to the user is intended for the time-critical
Message Control program required by a system involved in data communications
processing. Essentially, this program is an extension to the Supervisor, and is
provided as an element of the software package in the form of procedure definitions
(Procs). Parametrically defined by the user to suit his data communications
applications, the Procs are loaded into the system by Job Control.

• Problem Program Priority Level 2 - Batch programs with high input/output
utilization

Batch-type programs involving frequent input/output utilization are assigned
the second level of user priority. Symbiont programs, executed under control of
the tape operating system, may be assigned to this program priority. In tape
systems, it is suggested that the problem program be assigned to problem program
priority three, even though it may be considered a batch program. However, this
is not a requirement since programs on a given priority level are cycled by means
of time allocation.

• Problem Program Priority Level 3 - Batch programs with low input/output
utilization

Computational type user programs with low input/output utilization are assigned
the lowest user priority level. In tape systems, the problem program can be, and
usually is, assigned to this program priority level.

The user can designate priority levels in the job control stream by specifying level
1, 2, or 3 according to the known requirements of the problem programs. Actually,
there are no restrictions on user-priority levels 2 and 3. The user's own expe­
rience in program mixing determines the particular assignment of these two
priority levels.

2.3.2. Time Allocation

Time allocation involves the distribution of processing time in short intervals,
which prevents the unauthorized domination of the computing system by a single
program and provides a means by which each problem program can make full use
of the processing power of the computer.

Time allocation is an effective and efficient method of controlling a multiprogramming
environment. Since the timer is a standard feature of the UNIVAC 9400 System hardware,
time allocation is a standard functional component of the resident portion of the
Supervisor.

...

2

UP-7689 UNIVAC 9400 SUPERVISOR 2
SECTION: PAGE:

2.3.3. Input/Output Utilization

Macro instructions are provided to synchronize programs with the physical input/output
control system of the Supervisor. The user can issue input/output requests to the
system and continue processing during their execution. When the program reaches a
point where processing cannot logically continue until the completion of input/output
requests, the user can elect to suspend his processing until the completion of a
specific request, of all outstanding requests, or any one of several outstanding
requests.

2.4. SYSTEM RESIDENT STORAGE

The availability of auxiliary storage for use by the operating system increases the
processing power of the UNIVAC 9400 System. As a result, the functional constituent
routines of the Supervisor are categorized as follows:

• Resident Routines

This category comprises those routines frequently used or so intrinsic to the

Supervisor as to require permanent residence in main storage. This group of
routines is referred to as the main storage resident portion of the Supervisor.

• Transient Routines

This category comprises those routines not frequently used, which are kept on the
system resident auxiliary storage. These transient routines are loaded into main
storage only when needed and are executed in special main storage transient
areas reserved for the operating system. When needed, a transient routine is
located and read from the system resident auxiliary storage device into a main
storage transient area and is executed as an extension of the requesting program.

The user can select particular transient routines at system generation time for
inclusion in the main storage resident portion of the Supervisor. This permits the

user to increase operating efficiency in accordance with program response require­
ments, size of available main storage, and frec:;uency of use of certain supervisory

facilities.

3

L

UP-7689 UNIVAC 9400 SUPERVISOR 3
SECTION: PAGE:

3. STORAGE ALLOCATION AND

SUPERVISOR STRUCTURE

3.1. GENERAL

Routines that are intrinsic parts of the Supervisor reside in main storage. A minimum
of 12K bytes are required for the Supervisor. However, the exact size of the main storage
resident Supervisor at a particular installation depends on the software options selected
by the user at system generation time. The entire Supervisor, including main storage
resident routines, is stored on auxiliary storage units, which can be either magnetic
tapes or disc packs. The contents of main storage and auxiliary storage ar.e shown in
Figure 3-1.

The resident Supervisor consists of the following:

• Low order storage (fixed storage assignments)

• System environmental control storage area

• System control routines storage area

• Transient area

Figure 3-2 is a detailed illustration of main storage contents.

The following elements of the UNIVAC 9400 Operating System reside in auxiliary
storage:

• Initial Program Loader

• Entire Supervisor

• Job Control

• System Transient Routines

• Language Processors

• Program Libraries (Source and Object Code)

• Scratch Area (Disc Systems Only)

• Execution Area (Disc Systems Only)

• Job File (Disc Systems Only)

1

UP-7689 UNIVAC 9400 SUPERVISOR

MAIN STORAGE CONTENTS

LOW-ORDER ASSIGNMENT

COMMUNICATIONS (If Provided)*

RESIDENT SUPERVISOR

PROBLEM PROGRAM(S)

*Supervisor occupies this area if com­
munications are not provided

3
SE·CTION:

AUXILIARY STORAGE CONTENTS

TAPE SYSTEM

1. Initial Program Loader

2. Supervisor

3. Job Control

4. Transient Routines

5. Language Processors

6. Program Library
(Source and Object Code)

DISC SYSTEM

1. Initial Program Loader

2. Supervisor

3. Job Control

4. Transient Routines

5. Language Processors

6. Program Library
(Source and Object Code)

7. Scratch Area

8. Execution Area

9. Job File

Figure 3-1. Main Storage and Auxiliary Storage Contents

2
PAGE:

_

-_,!

I

UP-7689

MINIMUM
OF 12K
BYTES

'

UNIVAC 9400 SUPERVISOR 3

LOW ORDER STORAGE
(FIXED STORAGE
ASSIGNMENTS)

SYSTEM ENVIRON­
MENTAL CONTROL
STORAGE AREA

SECTION: PAGE:

REGISTERS, PROGRAM STATUS WORD STORAGE, ETC.
1----------------------

MPX. CHANNEL NONSHARED SCW's IN COMMUNICATIONS
SYSTEMS (OR BEGINNING OF SUPERVISOR)

ERROR JOB PREAMBLE
!--------------------

SUPERVISOR CALL (SVC) INTERRUPT TABLE
1-------------------~

JOB CONTROL BLOCKS (JCB's)
I-------- - - - - - -------1

PHYSICAL UNIT BLOCKS (PUB's)
I-------- - ---- -----.-j

PROGRAM SWITCH LIST
f------------------

SYSTEM INFORMATION BLOCK (SIB)

SUPERVISOR CALL (SVC)
1---------------- --- - - - ---I

PHYSICAL IOCS
I--- -- -- -- - - - - --- -- -- -~

PROGRAM SWITCHER
f--- - - - - - -- --- -- -- -- ---

PROGRAM CHECK
I-- - ----- ------- --------

SYSTEM CONTROL PROGRAM LOCATE AND LOAD
ROUTINES STORAGE 1- - - - - - -- --- -- -- -- - -- -
AREA TRANSIENT SCHEDULER

TRANSIENT AREA

1------------------
TIMER SERVICES

I- - - - - - - - - - - - - - - -- -
USER ISLAND CODE MANAGEMENT
!--------------------·-

OPERATOR COMMUNICATIONS CONTROL (MAY BE LOCATED
ON AUXILIARY STORAGE)

I-- - - -- -- -- -- - -- -- --- -- -- --<
OPTIONAL RESIDENT ROUTINES*

TRANSIENT AREA PREAMBLE
1-------------------

TRANSIENT PROCESSING AREA

2K OPTIONAL TRANSIENT AREA PREAMBLE
BYTES TRANSIENT AREA I-- - -- ------ -- --------~ ----'
EACH TRANSIENT PROCESSING AREA

ALLOCATED TO PROBLEM PROGRAMS BY JOB CONTROL
i._fROBLEM PROGRAM(S) J.-.(MINIMUM-SIZED ALLOCATION IS BK BYTES CONTIGUOUS rL-

T'L _______ r1-sT_O_R_A_GE_l _______________ ____,

*User selected routines to be included in the main storage resident portion of the Supervisor (not included
in minimum of 12K bytes).

Figure 3-2. Main Storage Contents

3

L

UP-7689
SECTION:

UNIVAC 9400 SUPERVISOR
3

PAGE:

3.2. LOW ORDER MAIN STORAGE

The first 512 byte locations are reserved for special uses such as the Supervisor
general registers, problem program registers, old Program Status Words, new Program
Status Words, and Subchannel Control Words for the shared multiplexer channel. Refer
to UNIVAC 9400 Assembler/Central Processor Unit Programmer Reference, UP-7600
(current version), for a detailed description of this area.

With the presence of communications capability, requiring one or more nonshared
multiplexer subchannels, the size of low order storage is increased to 1024 bytes.
The second group of 512 bytes is used to store the Subchannel Control Words for the
nonshared multiplexer subchannels; otherwise, the beginning of the System Environmental
Control Storage Area occupies these locations. This low order storage area of either
512 or 1024 bytes is referred to as fixed storage assignments.

3.3. SYSTEM ENVIRONMENTAL CONTROL STORAGE AREA

This area contains system control blocks, lists, and tables for storage of environmental
descriptive and status information. This information is generated at system generation
time and is dynamically altered as required by functions of Job Control and the Super­
visor. The contents of this area are described in the following paragraphs.

3.3.1. Error Job Preamble

The error job preamble is a 512-byte area required by the system error job (that is,
the system error recovery program) to allow it to run as a separate program on the
switch list. The purpose of the preamble is to provide storage area for environmental
information about the program. The preamble is always aligned on a doubleword
boundary.

The error job preamble structure is identical to preambles used with all problem
programs. (The error job preamble is constructed at system generation time; whereas,
problem program preambles are constructed by Job Control when the programs are
prepared for execution in the system.) Fields within job preambles are identified by
standard system labels, which are defined in the STDEQU macro instruction. By
convention, all labels are a maximum of eight characters in length and are expressed
in the form JP$xxxxx, where the characters JP$ identify a preamble reference, and
the characters xxxxx identify fields within preambles. Field labels, and brief
descriptions of their contents, are given in Table 3~1.

4

I
,c. ·. ._...._

UP-7689 UNIVAC 9400 SUPERVISOR
3 5

SECTION: PAGE:

'-. .. ./ BOUNDARY FIELD
CLASSIFICATION LABEL ALIGNMENT LENGTH LABEL DESCRIPTION

(BYTES)

Job Identification JP$NJB fullword 2 Address of associated job control block

JP$NJB+2 2 Assigned job number - 10 through 99
(2 EBCDIC characters)

J P$JNM halfword 8 Eight-character job name (in EBCDIC)

Console Buffer JP$SBA fullword 1 Buffer length
(QPR Macro
Instruction) JP$SBA+l 3 Address of QPR buffer

Problem Register JP$SA fullword 4 Register 0 (RO$) save area
Save Area

.J P$SA+4 4 Register 1 (Rl$) save area

JP$SA+8 4 Register 2 (R2$) save area

JP$SA+12 4 Register 3 (R3$) save area

J P$SA+l6 4 Register 4 (R4$) save area

J P$SA+20 4 Register 5 (R5$) save area

J P$SA+24 4 Register 6 (R6$) save area

JP$SA+28 4 Register 7 (R7$) save area

JP$SA+32 4 Register 8 (R8$) save area
~

J P$SA+36 4 Register 9 (R9$) save area

J P$SA+40 4 Register 10 (RA$) save area

JP$SA+44 4 Register 11 (RB$) save area

JP$SA+48 4 Register 12 (RC$) save area

J P$SA+52 4 Register 13 (RD$) save area

JP$SA+56 4 Register 14 (RE$) save area

JP$SA+60 4 Register 15 (RF$) save area

Input/Output JP$10Q fu I lword 8 Multiplexer subchannel 0
Queue Pointers

JP$10Q+8 8 Multiplexer subchannel 1

JP$10Q+l6 8 Multiplexer subchannel 2

JP$10Q+24 8 Multiplexer subchannel 3

JP$10Q+32 8 Multiplexer subchannel 4

JP$iOQ+40 8 Multiplexer subchannel 5

JP$10Q+48 8 Multiplexer subchannel 6

JP$10Qt56 8 Multiplexer subchannel 7

"....._..,
JP$10Q+64 8 Selector channel 1

JP$10Q+72 8 Selector channel 2

Table3-1. Job Preamble Standard Labels
(Part 1 of 3)

L ,,

UP-7689 UNIVAC 9400 SUPERVISOR 3 6
SECTION: PAGE:

BOUNDARY FIELD -..._./ CLASSIFICATION LABEL ALIGNMENT LENGTH LABEL DESCRIPTION
(BYTES)

Shared Command JP$CCB fu I I word 40 Command control block for QPR, LOAD,
Control Block FETCH, RDFCB and GETCS service

requests

Job Communication JP$UCR ful I word 11 Communication region storage area
Region and UPSI user block

JP$USI 1 User program switch indicator

Software/Hardware JP$SF halfword 1 Error code - routine identifier
Error Code

JP$SF+l 1 Error code - type of error

JP$EW fullword 4 Last four bytes of program status word
at time of error

User Island Code JP$USR fullword 4 Address of interrupt - program check
Information

JP$USR+4 1 Indicator:

if bit 0 is set to 1 - indicates an
outstanding request for the user
program check island code subroutine

if bit 1 is set to 0 - user program
check island code subroutine can be
executed --<......_

if bit 1 is set to 1 - user program '...._./

check island code subroutine cannot
be executed (the user has not provided
an island code subroutine or, if pro-
vided, the subroutine is in process of
execution).

JP$USR+5 3 Address of user program check island
code subroutine

JP$USR+8 4 Address of 72-byte save area - user
program check island code subroutine

JP$USR+l2 4 Address of interrupt - interva I timer

JP$USR+l6 1 Indicator:

x•oo• - user interval timer island
code subroutine can be executed

X'40' - user interval timer island
code subroutine cannot be executed. (The
user has not provided an island code
subroutine or, if provided, the sub-
routine is in process of execution.)

JP$USR+17 3 Address of user interval timer island
code subroutine

JP$USR+20 4 Address of 72-byte save area - user '-, ,,

interval timer island code subroutine J
Table 3-1. Job Preamble Standard Labels

(Part 2 of 3)

UP-7689 UNIVAC 9400 SUPERVISOR 3 7
SECTION: PAGE:

'-'
BOUNDARY FIELD

CLASS I Fl CATION LABEL ALIGNMENT LENGTH LABEL DESCRIPTION
(BYTES)

User Island Code JP$USR+24 4 Address of interrupt - operator communi·
Information (Cont.) cations unsolicited message

JP$USR+28 1 Indicator:

x•oo• - user operator communications
island code subroutine can be executed.

X'40' - user operator communications
island code subroutine cannot be
executed (the user has not provided an
island code subroutine or, if provided,
the subroutine is in process of execution).

JP$USR+29 3 Address of user operator communications
island code subroutine

JP$USR+32 4 Address of 72-byte save area - the
user operator communications island
code subroutine

JP$UBA fullword 1 Length of user interrupt buffer area for
unsolicited messages entered at the
console (1 to 64 in binary).

If bit 0 is set to 1 - indicates that the
input buffer is in use (this indicator is

,I reset to 0 by the EXIT macro instruction).
\,,_.;

If bit 0 is set to 0- Indicates that the
unsolicited input message buffer is
available for use.

JP$UBA+l 3 Address of user input buffer for
unsolicited messages entered at the
console

Problem Job Main JP$PAD fullword 4 Address of last byte in extent area
Storage Assignments

J P$PAD+4 4 Address of first byte of phase area

JP$PAD+8 4 Address of last byte of phase area

JP$PAD+12 4 Address of last byte of job partition

Job Time JP$TME ful !word 4 User specified job time limit (milli-
Accounting seconds in binary)

JP$TME+4 4 Ace umu lated processing time used
(milliseconds in binary)

Dates JP$DTE halfword 8 User date (in EBCDIC)

JP$DTE+8 6 Data Management date in the form
tiyyddd (in EBCDIC)

JP$DTE+14 4 Data Management date in the form
Oydd (discontinuous binary)

\...../
Table 3-1. Job Preamble Standard Lobe/ s

(Part 3 of 3)

L

UP-7689 UNIVAC 9400 SUPERVISOR 3
SECTION: PAGE:

3.3.2. Supervisor Call Interrupt Table

The supervisor call interrupt table is a list of addresses of all supervisor functions
that can be accessed through the execution of an SVC instruction. The supervisor
call interrupt table can range from 64 to 256 halfword entries. Thus, the size of this
table ranges between 128 and 512 bytes.

When an SVC instruction is executed, the SVC code supplied by the programmer is
used to locate an entry within the supervisor call interrupt table. The located entry
contains the address of either a supervisor routine for a particular function or the
transient scheduler routine. If the entry is the address of a supervisor routine for a
particular function, control is transferred to that routine to perform its function. If
the entry is the address of the transient scheduler, control is transferred to that
routine which retrieves the SVC number from the old SVC Program Status Word to
determine the particular transient routine being requested.

Entries in the table are identified by standard system labels; these labels are
defined in the STDEQU macro instruction. By convention, all labels are a maximum
of eight characters in length and are expressed in the form SV$xxxxx, where the
characters SV$ identify SVC labels, and the characters xxxxx identify functions.
The labels of the entries and a brief description of each function are provided in
Table 3-2.

8

L

UP-7689 UNIVAC 9400 SUPERVISOR 3 9
SECTION: PAGE:

-·~----------"---'L--------------L.--------------'-------------~

..._./
CLASSIFICATION

Supervisor -
Physical
Input/Output
Control System

Supervisor -
Program Loading

Supervisor -
Timer Services

LABEL

SV$XP

SV$XPC

SV$XPT

SV$WT

SV$WTA

SV$MRK

SV$YLD

SV$RFB

SV$SWP

SV$FRE

SV$FET

SV$LD

SV$LDI

SV$LDX

SV$LDA

SV$GTM

SV$GTS

SV$ST

SV$STW

SV$STC

BOUNDARY
ALIGNMENT

halfword

halfword

halfword

FIELD
LENGTH
(BYTES)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

LABEL DESCRIPTION

Execute channel program -EXCP macro
instruction

Conditional execute channel program -
EXCP macro instruction

Position tape - EXCP macro instruction

Wait on a single input/output order -
WAIT macro instruction

Wait on all input/output orders - WAIT
macro instruction

Mark command control block - MARK
macro instruction

Yield program control - YIELD macro
instruction

Locate and read file control block -
RDFCB macro instruction

Swap physical unit block addresses -
SWAP macro instruction

Free physical device(s) - FREE macro
instruction

Fetch program phase - FETCH macro
instruction

Load program (absolute and relocatable) -
LOAD macro instruction

Load index - LOAD macro instruction

Load exit (tape systems only)

Load program (load alternate) - LOAD
macro instruction

Get time of day (the time in milliseconds
represented in binary) - GETIME macro
instruction

Get time of day (hours and minutes repre­
sented in pack decimal) - GETIME macro
instruction

Set software interval timer and retain
program control - SETIME macro instruc­
tion

Set software interval timer and relinquish
program control - SE TIME macro instruction

Cancel previous set time request -
SETIME macro instruction

Table 3-2. Supervisor Call Interrupt Standard Labels
(Part 1 of 3)

L

UP-7689 UNIVAC 9400 SUPERVISOR 3 10
SECTION: PAGE:

BOUNDARY
FIELD "-""

CLASSIFICATION LABEL LENGTH LABEL DESCRIPTION ALIGNMENT (BYTES)

Supervisor - SV$SPC halfword 2 Define user program check island code
User Is land subroutine - STXIT macro instruction
Code Information

SV$SIT 2 Define user interval timer island code
subroutine - STXIT macro instruction

SV$SOC 2 Define user operator communications
island code subroutine - STXIT macro
instruction

SV$EPC 2 Exit from user program check island
code subroutine - EXIT macro instruc-
ti on

SV$EIT 2 Exit from user interval timer island
code subroutine - EXIT macro instruction

SV$EOC 2 Exit from user operator communications
island code subroutine - EXIT macro
instruction

Supervisor - SV$GSB halfword 2 Get base address of systems information
Information block - GETADR macro instruction
Control

SV$GJB 2 Get base address of job control block -
GETADR macro instruction ---

SV$GJP 2 Get base address of job preamble - -_,I
GETADR macro instruction

SV$GCR 2 Get contents of job communication
region - GETCOM macro instruction

SV$PCR 2 Put data in job communication region -
PUTCOM macro instruction

SV$GCS 2 Get next statement(s) from job control
stream - GETCS macro instruction

Supervisor - SV$0P halfword 2 Display message at system console -
Console Output OPR macro instruction
Message Control

SV$0PR 2 Display message at system console
and wait for reply - OPR macro
instruction

Table 3-2. Supervisor Call Interrupt Standard Labels
(Part 2 of 3)

UP-7689 UNIVAC 9400 SUPERVISOR

CLASSIFICATION

Supervisor -
Di re ct Access
Temporary Storage

Supervisor -
Checkpoint Program

Supervisor -
Main Storage Dump

Job Control -
Program
Termination

Data Management -
Data Fi le Access
Contro I

Data Management -
Di re ct Access
Space Management

SECTION: 3 PAGE:

BOUNDARY FIELD
LABEL ALIGNMENT LENGTH LABEL DESCRIPTION

(BYTES)

SV$GVA halfword 2 Give cylinder(s) from unallocated disc
storage - GIVE macro instruction

SV$GVS 2 Give specific cylinder(s) from unallocated
disc storage - GIVE macro instruction

SV$TKA 2 Take (return) cylinder(s) to unallocated
disc storage - TAKE macro instruction

SV$TKS 2 Take (return) specific cylinder(s) to
unallocated disc storage - TAKE macro
instruction

SV$QRY 2 Query contents of unallocated disc
storage index - QUERY macro instruction

SV$CPT halfword 2 Checkpoint program - CHKPT macro
instruction

SV$SNP halfword 2 Snap display of main storage - SNAP
macro instruction

SV$EOJ halfword 2 Terminate job step - EOJ macro instruc-
ti on

SV$CAN 2 Cancel job - CANCEL macro instruction

SV$DMP 2 Dump main storage and termlnate job
step - DUMP macro instruction

SV$0PN halfword 2 Open file - OPEN macro instruction

SV$CLS 2 Close file - CLOSE macro instruction

SV$LBR 2 User label return - LBRET macro
instruction

SV$FEV 2 Force end of volume - FEOV macro
instruction

SV$ALL halfword 2 Allocate space on direct access volume -
ALLOC macro instruction

SV$SCR 2 Scratch (release) space on direct access
volume - SCRTCH macro instruction

SV$RNM 2 Rename file on direct access volume -
RENAME macro instruction

SV$0BT 2 Obtain (locate) file on direct access
volume - OBTAIN macro instruction

Table 3-2. Supervisor Call Interrupt Standard Labels
(Part 3 of 3)

11

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

3.3.3. Job Control Blocks

A Job Control Block (]CB) is used in conjunction with a job preamble for the
storage of control information relating to a particular job. Job control blocks are
constructed at system generation time and always exist in main storage whether
they are unused or are being used to identify active programs. The number of JCB's
ranges from 4 to 13, depending upon user selections at system generation time. The
exact number is determined as follows:

• One JCB is required for each transient area (1 to 6) generated at system generation
time.

• One JCB is required by the Supervisor for operator communications.

• One JCB is required for the system error job.

• One JCB is required for each user job (1 to 5).

Fields within JCB's are identified by standard system labels; these labels are
defined in the STDEQU macro instruction. By convention, all labels are a maximum
of eight characters in length and are expressed in the form JB$xxxxx, where the
characters JB$ identify JCB labels and the characters xxxxx identify fields within
JCB's. Field labels and brief descriptions of their contents are provided in Table 3-3.

FIELD

BOUNDARY LENGTH

CLASSIFICATION LABEL ALIGNMENT (BYTES) LABEL DESCRIPTION

Job Control
Block Link Address

Software Timer
Alarm

Program Status
Word

JB$LNK Halfword 2 Absolute address of next job control
block (if any) if chained on a single
priority level

JB$C LK Halfword 2 Address of a particular timer interrupt
servicing routine

JB$CLK+2 Fullword 4 A I arm Clock:

Bit 0, always 0
Bit 1, 0 =software timer alarm active

1 =software timer alarm inactive
Bits 3 through 31, Time of expiration

(millisecond time of day at which
time the requested time interval
will expire)

JB$PSW Doubleword 8 Program Status Word Storage (provides
storage space for the job's PSW during
interrupt processing and job switching)

Table 3-3. Job Control Block Standard Lobel s
(Part 7 of 2)

12

--....__

UP-7689

'"-..-/

UNIVAC 9400 SUPERVISOR

CLASSIFICATION

Job
Synchronization
Control

Job
Identification

3
SECTION: PAGE:

BOUNDARY
FIELD

LABEL LENGTH LABEL DESCRIPTION
ALIGNMENT (BYTES)

JB$SYN Halfword 1 Job permit byte:

Bit 0, 1 =program check island code
outstanding

Bit 1, 1 =timer island code
outstanding

Bit 2, 1 =unsolicited operator
communications island code
outstanding

Bit 3, 1 = input/output complete on
WAIT

Bit 4, 1 = input/output complete on
MARK

Bit 5, 1 = resume
Bit 6, 1 = a. OPR reply received

b. SETIME WAIT expired
Bit 7, 1 = counter for input/output

orders outstanding is 0

JB$SYN+l 1 Job inhibit byte:

Bits 0, 1, and 2 are always 0
Bit 3, 1 =WAIT on input/output

issued
Bit 4, 1 =YIELD on input/output

issued
Bit 5, 1 =Suspend
Bit 6, 1 =a. QPR reply requested

b. SETIME WAIT issued
Bit 7, 1 =WAIT ALL issued

JB$10C 2 Count of input/output orders outstanding
(in binary)

JB$JBN Halfword 2 Job number (EBCDIC) (range 10 to 99)

JB$PRE Fullword 4 Address of associated job preamble

JB$SL Halfword 2 Address of switch list entry (priority level)

JB$LR Halfword 2 Limits register setting

JB$SVC Halfword 1 Transient request identifier

JB$SVC+l 1 X 1 FF 1 =no request outstanding
X 1 F0 1 = requested transient in process
x•oo• = request outstanding (queued)

JB$TME Halfword 2 Remaining time on current time allocation

Table 3-3. Job Control Block Standard Labels
(Part 2 of 2)

13

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

3.3.4. Physical Unit Blocks

A Physical Unit Block (PUB) is used for storage of device characteristics, identifying
status, and control information relating to a particular onsite peripheral device. One
PUB is generated for each device at system generation time. For example, a computer
system comprising a system console, card reader, card punch, line printer, two disc
units, and four magnetic tape units would be described by ten PUB's. Status indicators
located in the PUB are initialized at system generation time and altered as a result of
commands entered at the system console, by physical IOCS, by Job Control, or by the
system error job. The PUB is always aligned on a fullword boundary.

Fields within PUB's are identified by standard system labels; these labels are defined
in the STDEQU macro instruction. By convention, all labels are a maximum of eight
characters in length and are expressed in the form IP$xxxxx, where the characters
IP$ identify PUB labels and the characters xxxxx identify fields within PUB's. Field
labels and brief descriptions of their contents are given in Table 3-4.

14

UP-7689

'-'

\,,,_.,./

UNIVAC 9400 SUPERVISOR 3

CLASSIFICATION

Allocation
Control

Mode

Device
Identification

SECTION: PAGE:

FIELD

BOUNDARY LENGTH
LABEL ALIGNMENT (BYTES) LABEL DESCRIPTION

IP$ALC Fullword 1 Bit 0, 0 =device is nonsharable
1 =device is sharable

Bit 1, Reserved for Supervisor

Bit 2, Loe kout indicator for disc
space management

The following bits (bits 3 through 7)
indicate device allocation for the
duration of job steps:

Bit 3, 1 = device is a I located to user
job control block number 5.

Bit 4, 1 =device is allocated to user
job control block number 4.

Bit 5, 1 =device is a I located to user
job control block number 3.

Bit 6, 1 =device is allocated to user
job control block number 2.

Bit 7, 1 =device is a I located to user
job control block number 1.

IP$ALC+l 1 Bits 0, 1, and 2 are reserved for the
system

The following bits (bits 3 through 7)
indicate device allocation for the
duration of a job:

Bit 3, 1 =device is a I located to user
job control block number 5.

Bit 4, 1 =device is allocated to user
job control block number 4.

Bit 5, 1 =device is a I located to user
job control block number 3.

Bit 6, 1 = device is a I located to user
job control bloc~ number 2.

Bit 7, 1 = device is a I located to user
job control block number 1.

IP$MDE Halfword 1 Active mode

IP$MDE+l 1 Initial mode (set at system generation
time)

IP$DC Fullword 1 Device type code (binary)

IP$DC+l 3 External device identification (EBCDIC)

Table 3-4. Physical Unit Block Standard Labels
(Part 1 of 2)

15

UP-7689 UNIVAC 9400 SUPERVISOR 3

CLASSIFICATION

Alternate Dev ice

Dev ice Status

SECTION: PAGE:

BOUNDARY
FIELD

LABEL
ALIGNMENT

LENGTH LABEL DESCRIPTION
(BYTES)

IP$ALT Halfword 2 Absolute address of physical unit block
for alternate device. This field is set to
binary zeroes when no alternate device
is specified.

IP$SF Halfword 2 Bit 0, 1 = in use

Bit 1, 1 = down

Bit 2, 1 = nonsharable

Bit 3, 1 = bypass

Bit 4, 1 = sense

Bit 5, 1 =error on sense

Bit 6, 1 =command reject

Bit 7, 1 =channel end

Bit B, 1 =unit check

Bit 9, 1 =error message indicator

Bit 10, 1 =attention

Bitll,l=busy

Bit 12, 1 =position macro

B it 13 , 1 = c I oc k scan

Bit 14, 1 =attention received indicator

Bit 15, 1 =reposition indicator

IP$EC Fullword 2 Error count (in binary)

IP$CLK Fullword 4 Clock (time of last dispatched order)

IP$LNK Halfword 2 Absolute address of job control block
(identifies the Job that issued the last
1/0 command to the device)

IP$LNK+2 4 Address of command control block
(identifies the command control block
for the last dispatched order)

IP$SU Fullword 1 Channel issued (identifies the 1/0
channel for last dispatched order)

IP$SU+l 1 Dev ice address

IP$SU+2 1 Cochannel indicator

IP$SU+3 1 Primary channel indicator

IP$SU+4 1 Channel and cochannel

Table 3-4. Physical Unit Block Standard Labels

(Part 2 of 2)

16

UP-7689 UNIVAC 9400 SUPERVISOR 3
SECTION:

3.3.S. Program Switch List

The program switch list consists of five priority levels to which programs can be
assigned. Two of the five levels are used by the operating system and three by
problem programs. The five priority levels, including the three used by problem
programs follow:

• Priority Level 1 - System Error Job

This is the highest level of priority and is used by the system error job.

• Priority Level 2 - Communications type programs (Message Control Program)

This is problem program priority 1.

• Priority Level 3 - System service routines

This is the second priority level used by the operating system.

• Priority Level 4 - Batch programs with high input/output utilization

This is problem program priority 2. In tape systems, symbiont programs are
usually executed at this level.

• Priority Level S - Batch programs with low input/ output utilization

PAGE:

This is problem program priority 3. In tape systems, the main program is executed
at this level.

The program switch list, illustrated in Figure 3-3, is constructed at system generation
time. The address stored in the first halfword of each priority level (la through Sa) is
initially set by Job Control and altered by the timer servicing routine on each expiration
of a time allocation. The value stored in the halfwords identified (lb through Sb) are
determined at system generation time and range from 10 to 4000 milliseconds. The
values in 2b, 4b, and Sb are set by the user; the values in lb and 3b are set by the
software. Addresses stored in the fields le through Sc are set by physical IOCS.
Values set in ld through Sd are set by Job Control.

PRIORITY BYTES
LEVELS

0-1 2-3 4-5 6-7

1 a b c d

2 a b c d

3 a b c d

4 a b c d

5 a b c d

Figure 3-3. Program Switch List Structure

17

UP-7689

.-----

UNIVAC 9400 SUPERVISOR 3
PAGE: SECTION:

3.3.6. System Information Block

The System Information Block (SIB) provides a central storage area for the control
status and descriptive information related to the system software. This block is
constructed at system generation time and is dynamically altered by the Supervisor
and Job Control. The System Information Block is aligned on a fullword boundary.

Fields within the SIB are identified by standard system labels; these labels are
defined in the STDEQU macro instruction. By convention, all labels are a maximum
of eight characters in length and expressed in the form SB$xxxxx, where the characters
SB$ identify SIB labels and the characters xxxxx identify fields within the SIB.
Field labels and brief descriptions of their contents are provided in Table 3-5.

CLASSIFICATION

Supervisor
Identification

System
Com mun ication
Region

System Dates

Main Storage-
Problem Program
Areas

Physical Unit
Blocks

FIELD

BOUNDARY LENGTH

LABEL ALIGNMENT (BYTES) LABEL DESCRIPTION

SB$S PV Fullword 2 Supervisor version number (EBCDIC)

SB$SPV+2 2 Supervisor revision number (EBCDIC)

SB$CHR Fu I lword 4 Supervisor characteristics

SB$SCR Fullword 11 System communication region

SB$SPI 1 System program switch indicator

SB$DTE Halfword 8 User date (in EBCDIC)

SB$DTE+8 6 Data Management date in the form lfyyddd
(in EBCDIC)

SB$DTE+14 4 Data Management date in the form Oydd
(discontinuous binary)

SB$PA Fullword 4 Address of first byte in problem program

area

SB$HA Fullword 4 Address of last byte in processor

SB$FRE Fullword 4 Address of first free space element

SB$PUB Fullword 4 Count of physical unit blocks in the
Supervisor

SB$PUB+4 4 Address of first physical unit block

Tobie 3-5. System Information Block Standard Labels
(Port 1 of 3)

18

UP-7689 UNIVAC 9400 SUPERVISOR
3

CLASSIFICATION

Job Control
Blocks

Supervisor Call
Table

Program Switch
List

Transient Area
Management

Timer Services

Logical Unit
Table

SECTION: PAGE:

FIELD
LABEL

BOUNDARY
LENGTH LABEL DESCRIPTION

ALIGNMENT
(BYTES)

SB$JCB Fullword 4 Total count of job control blocks

SB$JC B+4 4 Address of first job control block

SB$UJB Fullword 4 Count of job control blocks for problem
programs (from 1 to 5)

SB$UJB+4 4 Address of first problem program job
control block

SB$SJB Fullword 4 Address of job control block - operator
command control

SM$MJB 4 Address of job control block - console
clock control

SB$SVC Fu I lword 4 Count of entries in SVC interrupt table

SB$SVC+4 4 Address of SVC interrupt tab le

SB$SWL Fullword 4 Count of priority levels

SB$SWL+4 4 Address of program switch list

SB$TA Fullword 4 Count of transient areas

SB$TA+4 4 Address of first transient area

SB$TA+8 4 Count of available transient areas

SB$TA+12 4 Count of outstanding transient requests

SB$CLK Fullword 4 Address of job control block - active
software alarm clock

SB$C LK+4 4 Address of primary timer

SB$CLK+8 4 Address of alternate timer

SB$C LK+12 4 Simulated day clock (in milliseconds)

SB$TOD Fullword 8 Console clock in the form hh:mm (EBCDIC)

SB$TOD+8 4 Simulated day clock in the fOlm OOhhhmms
(packed decimal)

SB$TLM Fullword 4 Job time limit - used when maximum time
is not submitted on the job control state-
ment (in milliseconds)

SB$LUT Fu I lword 4 Count of entries in logical unit table

SB$LUT+4 4 Address of logical unit table

Table 3-5. System Information Block Standard Labels
(Part 2 of 3)

19

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

BOUNDARY FIELD
CLASSIFICATION LABEL ALIGNMENT LENGTH LABEL DESCRIPTION

(BYTES)

Temporary Storage SB$0BT Fu I lword 4 Count of entries in ob ta in tab le
Obtain Table

SB$0BT+4 4 Address of obtain table

Resident Routine SB$1NC Fullword 4 Count of entries in resident routine
Include Table Include tab le

SB$ INC+4 4 Address of resident routine include
table

System SB$DVC Fullword 4 Address of physical unit block - IPT
Peripheral device
Device

SB$DVC+4 4 Address of physical unit block - LOG
device

SB$DVC+8 4 Address of phys ica I unit block - LST
device

SB$DVC+l2 4 Address of physical unit block - PCH
device

SB$DVC+l6 4 Address of physical unit ·block - RDR
device

SB$DVC+20 4 Address of physical unit block - RES
device

SB$ADP Fullword 4 Count of peripheral devices available
through system adapter

SB$ADP+4 4 Physical unit block address - hardware
adapter

Data Management SB$DMC Fullword 4 Address of Data Management common
Common Code code

Table 3-5. System Information Block Standard Labels
(Part 3 of 3)

3.4. SYSTEM CONTROL ROUTINES STORAGE AREA

The functions of the system control routines are described in the following paragraphs.

3 .4 .1. Supervisor Call (SVC)

The supervisor call interrupt routine is activated when a supervisor call (SVC)
instruction is executed. The supervisor call is the highest of seven levels of
interrupt in the system. An eight-bit interrupt code, which is automatically stored
by the hardware in the old SVC program status word each time a supervisor call
interrupt occurs, is retrieved and used by the routine to locate an entry in the
supervisor call interrupt table identifying the requested function. (The supervisor
call/interrupt table is described in 3.3.2.) Certain macro instructions provided by
the operating system use the SVC instruction to communicate with the Supervisor.

20

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

3.4.2. Physical IOCS

Activity between the central processor and its peripheral devices is controlled by a
group of supervisory routines known as the channel scheduler. Channel scheduler
elements provide I/O queuing, dispatching, posting, and error detecting services.
Also included in physical IOCS is the system error job which coordinates and con­
trols peripheral device error recovery.

3.4.2.1. Channel Scheduler

The channel scheduler controls all data transfers between main storage and peripher~
al 1/0 devices. The functional elements of the channel scheduler are:

• 1/0 Queuing Routine

This channel scheduler element links all 1/0 requests submitted by the program­
mer to the job's channel queues. Direct communication with this routine is
provided by the EXCP physical IOCS macro instruction. Each time an 1/0 request
is submitted, a counter is incremented within the user's job control block indi­
cating the number of outstanding requests for the job. Programmed checks are
included in the queuing process to validate all I/O requests. Invalid requests
are not queued and indicators are set in the associated command control blocks
indicating the reason. In some instances, the user program check island code sub­
routine is activated (if one is provided by the user) or the problem program is
aborted.

Following the normal queuing process, this routine ascertains the availability
of the particular channel or channels, and, if a required channel route is
found to be available, program control is given to the 1/0 dispatcher routine.
Program control is normally returned to the requesting program at the point
immediately following the EXCP macro instruction.

• I/O Dispatcher Routine

This routine selects 1/0 requests from the channel queues according to the
priority of jobs, constructs the required SIO (Start 1/0) commands, and issues
the I/O orders to the appropriate peripheral device controllers. Program control
is passed to this routine from either the 1/0 queuing routine or the 1/0 interrupt
servicing and error detecting routine.

• I/O Interrupt Servicing and Error Detecting Routine

This element of the channel scheduler handles all hardware 1/0 interruptions.

21

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

This involves examining the channel status byte following each 1/0 interrupt
to determine its cause. When operations are terminated normally, the associated
command control block is posted, the job's channel queue is advanced, and the
1/0 request counter in the job control block is decremented by one. If more 1/0
requests are present in the channel queues, program control is transferred to the
1/0 dispatcher routine. When operations are abnormally terminated, the queue
element concerned is marked to indicate the error condition, the 1/0 channel is
marked temporarily inactive, and the resident control routine of the system
error job is alerted to the error condition. Program control is always given to
to the program switcher routine when the time-critical interrupt servicing is
finished. If the programmer provides his own device error recovery routines,
the 1/0 interrupt servicing routine does not alert the system error job when an
error occurs. Also in this case, the 1/0 request is marked as completed in error,
the 1/0 request counter in the job control block is decremented, and the channel
queue is advanced as if the 1/0 order had been completed normally.

3.4.2.2. System Error Job

The system error job is a set of routines, some in ·the main storage resident portion
of the Supervisor and others in auxiliary storage, which are loaded when needed.
The control routine is in main storage and exists as an autonomous job complete
with an associated job control block and job preamble. With each occurrence of an
error, the 1/0 channel involved is made temporarily inactive and the control routine
is alerted to the error condition. The remaining error routines are primarily concerned
with handling specific error conditions according to device and error type.

• Resident Control Routine

The resident control routine is always assigned to the top priority level of the
switch list. When in control, it checks all software channel status indicators to
determine which channels have error conditions pending. If a hardware channel
error is detected, the routine handles it directly without referencing other cor­
rective routines. Otherwise, the resident control routine is responsible for
scheduling appropriate resident or transient corrector routines and transferring
control to them.

• Device Error Recovery Routines

Each device error recovery routine is designed to handle a specific error con­
dition by programming techniques (such as rereading tape or disc) or by requesting
operator intervention and action (such as turning on an offline device).

An error condition, which can be corrected by reissuing the input/output order,
is handled immediately by the device error recovery routine involved. If this
procedure is successful, the associated command control block is posted, the
input/output channel concerned is marked as normal, and program control is
returned to the resident control routine. If the error condition cannot be corrected
by reissuing the order, or the repetition of the order does not result in successful
completion, the input/ output queue packet is marked as being in error and added
to the error message queue; then, if the channel itself is not in error, its status
is set to normal. This allows the input/output dispatcher routine to issue other
1/0 commands from channel queues associated with other jobs and other devices.

22

UP-7689 UNIVAC 9400 SUPERVISOR
3

SECTION:

• Error Messages to the Operator

The control portion of the peripheral device error recovery function issues
either action- or decision-type messages. Action messages indicate that
operator assistance is required, while decision messages indicate that an
operator decision between alternate courses of action is required.

• User Options for Device Error Recovery

PAGE:

The user is permitted to perform his own error recovery at the problem program
level (see 4.1.1). This option is indicated by specific bit settings in each
command control block. When the user elects to do this, the control portion of the
error recovery function is not alerted to device error conditions. Instead, the
completion and error indicators in the command control block are set and the
associated channel queue is advanced as if no error had occurred. The user
is required to test the command control block for this condition, determine the
necessary corrective measures, and accomplish the required error recovery
procedures.

The user can choose to accept unrecoverable errors following the normal error recov­
ery procedure. This is desirable in certain cases depending on the type of error and

user application. For instance, the problem application may be designed to ignore
unrecoverable disc read errors rather than to abort the program. Since the accept­
ance of unrecoverable errors depends on the requirements of the problem program,
any one of the following options can be elected by the user:

- Accept only unique unrecoverable errors, which allows the user to accept a
certain category of device errors, such as a read error on disc. All errors not
included in this classification are considered as unacceptable to the program.

- Accept all unrecoverable errors, which must be handled by the problem pro­
gram.

- Accept no unrecoverable errors, regardless of the type.

If an unrecoverable error is not acceptable to the problem program, the computer
operator is notified by an error message from the resident control routine. In
most cases, the operator is given the choice of aborting the program or attempting
the normal error recovery procedures.

3.4.3. Program Switcher

The primary function of this routine is the allocation of central processor time among
programs loaded in the system. To facilitate this function, programs are categorized
as follows:

• Active Programs

Only the program currently using the central processor unit is in this category.

• Ready Programs

Programs in this category are ready to use the central processor. The next active
program is selected from this category.

23

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION:

3

• Nonready Programs

Programs in this category are not ready to use the central processor until the
occurrence of one or more events. Nonready programs are further categorized as
waiting programs or dormant programs.

- Waiting Programs

Programs in this category cannot use additional central processor time until
the completion of an event(s) initiated or requested by them; for example,
outstanding 1/0 orders, scheduled timer interrupt, etc.

- Dormant Programs

PAGE:

Programs in this category cannot use central processor time until the occurrence
of an event(s) external to them; for example, the occurrence of an 1/0 error that
results in the dormant peripheral device error recovery program being made ready.

3.4.4. Program Check

This routine is activated when a program interrupt or software program exception
occurs in a problem program.

3.4.4.1. Program Interrupt

A program interrupt occurs as a result of any of the following conditions:

• An illegal operation code is detected in the problem program.

• A privileged operation is attempted in the problem program state.

• A main storage write is attempted outside the bounds defined, by the limits
register. This interrupt can occur only when the optional main storage protection
feature is installed in the processor.

• Reference to low order main storage in the problem program state; that is, the
first 512 bytes of main storage.

• Reference to a unit of data where the address is not on the required integral

boundary.

• Fixed point arithmetic overflow and the carry out of the high order numeric bit
does not agree with the carry out of the sign bit.

• The result field is exceeded during a decimal arithmetic operation.

• A quotient digit is formed with a nonnumeric hexadecimal value.

24

UP-7689 UNIVAC 9400 SUPERVISOR 3
SECTION: PAGE:

3.4.4.2. Software Program Exception

A software program exception occurs as a result of certain invalid uses of super­
visory functions that are detected by the system. When this occurs, the Supervisor
stores an error code in the program preamble of the program which caused the error.
If the program in error has specified a program check island code subroutine, pro­
gram control is transferred to it. In the program check island code subroutine the
user can interrogate the error code stored in the preamble to determine the cause of
the error and possible recourses. Program abort procedures are initiated as specified
by the user at system generation time if the user has not specified a program check
island code subroutine. Invalid uses of the supervisory functions are explained in
the following sections of this manual.

3.4.5. Program Load - Disc Systems

Problem programs are loaded into main storage by either the absolute program loader
or the relocating program loader. Communication with these routines is provided by
the LOAD and FETCH macro instructions described in Section 5.

The form of program loading to be used for a particular job step is designated by the
user on the EXEC Job Control statement. Refer to UNIVAC 9400 fob Control for Disc
Systems Programmers Reference, UP-7585 (current version).

3.4.5.1. Absolute Program Loader

Programs to be loaded by the absolute program loader must reside in the execution
area on the resident direct access storage device. Programs are stored in the
execution area in absolute form when the job is prepared for execution by Job

Control.

If the user elects to use the absolute program loader when the program to be loaded
does not exist in the execution area, Job Control retrieves the load module from the
specified program library, resolves all address constants (making the program absolute),
and writes the resultant absolute code in the execution area. This procedure occurs
only between job steps. Loading from this point is the same as previously described.

Optionally, at system generation time, the user can choose to include selected
programs in the execution area in absolute form. Programs stored in this manner
can then be retrieved and loaded into main storage by the absolute program loader
without involving Job Control. However, programs stored in this form must always
be assigned to specific main storage areas for execution. This restriction can be

avoided if the programs are self-relocating.

25

UP-7689 UNIVAC 9400 SUPERVISOR 3
SECTION:

3.4.5.2. Relocating Program Loader

Programs to be loaded by the relocating program loader must be in load module
form and stored in a program library on a direct access storage device. That is,
each time a LOAD or FETCH macro instruction is executed in reference to a
program load module in a program library, the relocating loader is retrieved by

PAGE:

the transient scheduler. When given program control, the relocating loader locates
the load module in the program library and reads the object code into its own input
area in the transient storage area, resolves address constants, and then moves the
absolute object code to the user area. This procedure continues until the entire
requested load module is loaded into the user area.

3.4.6. Program Load - Tape Systems

Programs to be loaded into main storage must reside on magnetic tape in load module
form. Program loading is accomplished by the relocating program loader, which is
written on magnetic tape immediately following each load module header record; this
is automatically accomplished by use of the Linkage Editor. When a LOAD or FETCH
macro instruction is executed, the program locator locates load modules in the load
library based on the alphabetical sequence of program names in the header records.
That is, the program locator first determines whether a requested load module precedes
or follows the current position of the system tape. If the requested module precedes
the current position, then either a tape rewind followed by a forward search or a series
of backward reads is executed to locate the requested module. If it is determined that
the requested module follows the current position of the system tape, the program
locator searches forward until the routine is located or the end of the load library is
detected.

The program locator routine locates the header block for the program to be located
and reads the relocating program loader into the transient area for execution. The
transient relocating program loader then reads subsequent object blocks into the
transient area., resolves address constants, and transfers the resultant absolute
object code to the user area. Upon completion of this loading sequence, the tran­
sient relocating loader surrenders program control by a TRLSE macro instruction
(see Section 5). The transient area is then freed and made available for subsequent
transient functions.

3.4.7. Transient Scheduler

The transient scheduler routine coordinates all activity between calling programs
and transient routines. Transient routines are self-relocating, stored as absolute
load modules on the system resident device, and loaded into system transient areas
of main storage only when needed by the operating system or problem programs.
Transient routines are considered as logical extensions of the calling programs,
but are executed at system priority level 3. All transient routines are designed to
operate within a single main storage transient area provided by the Supervisor. In
cases where transient routines exceed the size of a transient area, overlay segments
are r•etrieved; therefore, the effective size of transient routines is virtually unlimited.

26

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

The user can select certain transient routines at system generation time for inclusion
in the main storage resident portion of the Supervisor to reduce the retrieval time and
thereby increase the efficiency of the system. This may be desirable due to differences
in the user's program response requirements, size of available main storage, and fre­
quency of use of certain supervisory facilities.

Examples of the type of functions that are performed by transient routines are:

• Data Management - Open and close files

• Job Control - Cancel, end of job, and subroutines required when establishing jobs
in the system.

• Supervisor - Checkpoint, certain operator commands, and extensions of supervisory
functions.

Communications between problem programs or the operating system and the transient
scheduler are accomplished by the use of macro instructions.

3.4.7.1. DiscSystems

Transient routines in disc systems are stored in a reserved portion of the execution
area on the system resident direct access device at system generation time so that
they can be quickly and efficiently located when requested.

3.4.7.2. Tape Systems

Transient routines in tape systems are stored in the load library on the system
resident device. Constructing a system resident tape is a function of the UNIVAC
9400 Librarian. Transient routines are stored in object load module format and may
be interspersed with other load modules of the operating system and user programs.
In order to reduce the amount of time required to retrieve transient routines, the
user may choose to repeat certain ones at strategic places on the system tape.

As a system convention, the names of all transient routines begin with the character
$, since it is assumed that the user may desire to repeat the system transient
functions in a single load library. This convention is established by the UNIV AC
9400 Librarian and is used to direct the program locator to always search forward
on the assumption that another copy of the requested routine may be present before
the end of the program load library is reached. If the end of the program load library
is reached without having found the requested transient, the system tape is positioned
to the beginning of the program load library and a forward search is initiated.

3.4.8. Timer Services

The millisecond timer is a standard hardware feature of the UNIVAC 9400 Central
Processor. The timer services routine provides various services by means of this
timer. Timer services provided by the Supervisor are:

27

UP-7689 UNIVAC 9400 SUPERVISOR 3
SECTION: PAGE:

• Time Allocation

Time allocation is automatically provided for all programs using the time values
supplied by the user at system generation time. These time intervals can range
from 10 to 4000 milliseconds. Each time the program switcher activates a problem
program, it requests an allotment of processing time from the timer services
routine. This request results in the setting of a software alarm clock which, when
expired, causes the program switcher to gain control. If the program does not
voluntarily surrender control of the central processor before its time interval
expires, an interrupt is generated and the program switcher routine is given
program control to determine if another program of equal priority is ready to
accept program control.

• Job Accounting

The estimated maximum run time for each problem job may be submitted to the
system on the JOB Job Control statement. If an estimated run time is not sub­
mitted in this manner, a standard job time limit which is set by the user at
system generation time is used. When program control is taken from a problem
program, the timer services routine adds the amount of time used to a time
counter in the job preamble. The total elapsed processing time is then compared
to the estimated run time for the job. If the estimated run time has been reached,
a message is printed at the system console to notify the operator of this condition.
The operator can then allot more processing time to the job or initiate abort pro­

cedures.

• Time of Day

A day clock is simulated by the timer services routine that is accessible to
problem programs. The millisecond time of day, as a binary integer, or the
hours and minutes time of day, in packed decimal format, can be retrieved by
the execution of a GETIME macro instruction (see 5.3.1). In addition to these
services, the hours and minutes time of day is also maintained in EBCDIC
code in the form hh:mm and is printed as a prefix to all console messages.
This time is also printed when the ATTENTION key is depressed at the system
console.

• Software Timer Alarms

Each program in the system can request notification upon the expiration of a
specified interval of time. The SETIME macro instruction is provided for this

service (see 5.3.2).

3.4.9. User Island Code Management

The programmer can provide island code subroutines (that is, closed subroutines)
that are activated when the problem program is interrupted as a result of a software
or hardware program check, the expiration of an interval of time previously requested
by the program, or an unsolicited message entered at the system console. These sub­
routines are intended to function as extensions to interrupt subroutines. Priorities
and rules concerning these routines have also been established and must be followed.

28

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

The user island code subroutines and their priorities are:

• Program Check - highest priority

• Timer Interval - second priority

• Unsolicited Messages - lowest priority

The rules governing the execution of user island code subroutines are:

• When a problem program is interrupted by either a program check, time interval,
or unsolicited message, the appropriate user island code subroutine is immediately
given control.

• When an interrupt occurs during the execution of a user island code subroutine
which is to directly result in the execution of a lower priority user island code
subroutine, the routine in control retains control until an EXIT macro instruction
is executed. After the execution of the EXIT macro instruction, the user island
code subroutine of lower priority is given control.

• When an interrupt occurs during the execution of a user island code subroutine
which is to directly result in the execution of a user island code subroutine with
a higher priority, the subroutine in control is interrupted and program control is
transferred to the subroutine of higher priority.

• Program control should not be voluntarily surrendered while executing a user
island code subroutine. Therefore, the following macro instructions should not
be used in user island code subroutines:

- WAIT

- YIELD

SE TIME (with positional parameter 2, WAIT)

OPR (with positional parameter 4, REPLY)

• Requests for Supervisor transient function are not permitted during the execution
of any user island code subroutine.

Programmed linkage between the Supervisor and the user island code subroutines is
the responsibility of the user programmer and the function of the STXIT and EXIT
macro instructions. The STXIT macro instruction is provided to establish, change,
or terminate program linkage between each user island code subroutine and the
Supervisor. Since a job may consist of more than one job step (programs) executed
sequentially in the order specified by the user in the job stream, each job step is
responsible for establishing linkage to its own island code subroutine(s) by executing
STXIT macro instructions. The EXIT macro instruction is provided to terminate a
user island code subroutine and return program control to the point of interrupt in
the problem program. The EXIT macro instruction is used in conjunction with the
STXIT macro instruction. (For additional information concerning the STXIT and
EXIT macro instructions, see 5.7.1 and 5.7.2.)

29

UP-7689 UNIVAC 9400 SUPERVISOR
3

SECTION:

3.4.9.1. Program Check

A program check island code subroutine is a user-generated closed subroutine.
This subroutine receives program control when the problem program causes a
hardware program check interrupt or a program error has resulted in a software
program check. If the user programmer desires to provide a program check island
code subroutine, the addresses of the subroutine and a register save area are
provided by executing a STXIT macro instruction. If a program error occurs
while executing a user program check island code subroutine, the program is
scheduled for abort procedures. If the user programmer does not provide a user
program check island code subroutine and a program error occurs, the program is
automatically scheduled for abort procedures.

3.4.9.2. Timer Interval

PAGE:

A timer island code subroutine is a user-generated closed subroutine. The pro­
grammer can submit a request to the Supervisor that the program be interrupted
following the expiration of a time interval specified by a SETIME macro instruc­
tion. (The form of the SETIME macro instruction referred to is without positional
parameter 2, WAIT.) If the user desires this capability, he must provide the
addresses of the subroutine and register save area by executing a STXIT macro
instruction. This subroutine is given program control when the requested time
interval expires. If the user does not provide a timer island code subroutine and
a previously requested time interval expires, the problem program receives no
indication of the time interrupt. A new time interval can be requested by the
problem program while the user timer island code subroutine is being executed.

However, should the time request expire before the user timer island code sub­
routine is terminated by an EXIT macro instruction, the timer interrupt occurs
and the problem program does not receive an indication. If a user timer island
code subroutine is not provided, a job step does not have the capability of re­
questing timer interrupts other than the one provided by the SETIME macro
instruction (written with WAIT as parameter 2). This form of the SETIME macro
instruction does not require an island code subroutine.

30

UP-7689

I

UNIVAC 9400 SUPERVISOR 3
SECTION: PAGE:

3.4.9.3. Unsolicited Message

An operator communications island code subroutine is a user-generated closed sub­
routine. In order to allow the problem program to accept unsolicited messages
entered by the operator at the system console, the user must provide the addresses
of the routine, register save area, and input buffer area; he must also specify the
length of the buffer area. This subroutine is given program control when an un­
solicited message has been entered for the program. The unsolicited message
text can be from 1 to 64 EBCDIC characters and is stored in the user-provided
input buffer area exactly as entered at the console. If the number of characters
in the unsolicited message text exceeds the input buffer area, the message text
is truncated to the size of the buffer area. Since unsolicited messages can be
entered at any time at the system console, the effect is similar to that of other
interrupts in the system. Therefore, an area must be provided to contain the
contents of the problem registers so that, following the execution of the operator
communication island code subroutine, the problem registers can be restored and
program control returned to the point of interrupt (that is, the point in the problem
program at which the unsolicited message was entered at the console). During
the time a problem program is in the operator communications island code sub­
routine and until an EXIT macro is executed, a second attempt to enter an un­
solicited message at the console is rejected and a message is printed indicating

this situation.

If the programmer does not desire to provide an operator communications island
code subroutine and an attempt is made to enter an unsolicited message at the
console for the program, a message is printed at the console indicating that the
program cannot accept unsolicited messages.

3.4.10. Operator Communications Control

The operator communications control routine should be generated as main storage
resident in tape systems in order to reduce program retrieval time. In disc systems,
the amount of time required to retrieve the operator communications transient routines
is significantly less, and therefore, executing these routines as general operator
communications transients is perhaps the most desirable mode of operation. For
additional information concerning operator communications provided by the Super­

visor, see Section 6.

3.4.11. Optional Resident Routines

At system generation time, the user can select certain transient routines to be
included in the resident portion of the Supervisor. This option allows the user to
increase his operating efficiency at the expense of using additional main storage
to contain the generated routines. Transient routines generated in this manner are
requested through the transient scheduler and are executed in system transient
areas. The transient scheduler routine copies the requested transient routine into
an available transient area, thus simulating the retrieval function required to
retrieve nonresident transient routines.

31

UP-7689

-

UNIVAC 9400 SUPERVISOR
SECTION: 3 PAGE:

3.5. TRANSIENT AREA(S)

A minimum of one transient area is required by the system. The user can choose to
generate from one to five additional transient areas in order to increase the efficiency
of the system.

Each transient area is fixed at 2048 bytes divided as follows:

• Transient preamble (byte positions 0 through 511)

• Processing Area (byte positions 512 through 2047)

Since all transient routines are executed as jobs, a preamble and job control block
are assigned to each transient area. The transient processing area immediately
follows the preamble and is fixed at 1536 bytes.

3.6. PROBLEM PROGRAM AREA

The problem program area immediately follows the last transient area and occupies
the remainder of main storage. This area is suballocated by Job Control in minimum­
sized blocks of 8192 contiguous bytes. Where programs exceed 8192 bytes, main
storage is allocated in increments of 512 bytes. The first 512 bytes of each block
are the job preamble. Unallocated problem storage area is controlled by the Supervisor.

If unallocated main storage is a noncontiguous block, link addresses are maintained
in each of the blocks with a counter indicating the number of bytes unallocated. This

linkage is illustrated in Figure 3-4'.

32

-··

UP-7689 UNIVAC 9400 SUPERVISOR

ADDRESS OF '-,~------------...,
1st BLOCK

,-L.. 1
.-----.__t--_ ___J _ ___J

FREE SPACE
BLOCK 1 (first block in chain)

FREE SPACE
BLOCK 3 (last block in chain)

_1.-.:.+-] 1
---- L._ --- ~---'--~ ------- /

/
/

*ADDRESS 0 F
NEXT FREE
BLOCK IN

CHAIN

NO. OF
BYTES/BLOCK 1/

//

'-------'-----~~v·
-----2 WORD ENTRY---.-

/ FREE SPACE

/ BLOCK2

SECTION:

SUPERVISOR

ALLOCATED
TO JOB 1

ALLOCATED
TO JOB 2

*The address in the first word of the last free block is the address of the first free block in the
chain. If there is only one free block in the chain, the address in the first word of the block is
the address of that block.

Figure 3-4. Example of Free Space Linkage in Main Storage

3 33
PAGE:

UP-7689 UNIVAC 9400 SUPERVISOR 4
SECTION: PAGE:

4. PHYSICAL IOCS MACRO

INSTRUCTIONS

4.1. GENERAL

Nine physical IOCS macro instructions are available to the programmer to manage
1/0 operations and provide the required communications with the channel scheduler.
These macro instructions are:

• CCB

• EXCP

• WAIT

• MARK

• YIELD

• PIOCB

• RDFCB

• SWAP

• FREE

generate Command Control Block

EXecute Channel Program

WAIT for 1/0 completion

test and MARK command control block for YIELD macro instruction

YIELD program control until a marked command control block is
posted completed

generate Physical Input/Output Control Block

ReaD File Control Block

SWAP physical devices (alternates)

dynamic release of peripheral devices

Whenever these macro instructions are used, the programmer must supply the
Channel Command Words and provide any of the logical functions required by
problem programs. These functions include blocking and deblocking records,
checking for wrong length records, swapping buffer areas, and detecting and
bypassing checkpoint records if they are interspersed with data records. When
the data management routines are used, the physical IOCS macro instructions are
contained in the macro expansions of the logical IOCS macro instructions.

4.1.1. CCB Macro Instruction and Command Control Block Structure

A minimum of one CCB macro instruction is required for each type of 1/0 per­
ipheral device to be controlled by physical IOCS macro instructions. An active
command control block pertains to one 1/0 request at a time; therefore, each
1/0 request must have a unique command control block. The CCB macro instruction
is a declarative macro instruction used to generate a command control block. This
macro instruction should not appear in a sequence of executable code.

The generated command control block contains information in accordance with user
written parameters pertinent to the 1/0 order and required by the channel scheduler.
Fields are allocated to serve as repositories for status information at interrupt time
and when WAIT or MARK macros, which reference the command control block, are
executed.

1

UP-7689 UNIVAC 9400 SUPERVISOR
PAGE: SECTION:

4

The format of the CCB macro instruction is:

LABEL o OPERATION o OPERAND

name CCB pioc b-na me ,ccw-name[,entry-num her] [,X •xx']

LABEL

name - the symbolic address of the first byte of the command control block. All
references to the command control block are made using this name.

POSITIONAL PARAMETER l

piocb-name - the symbolic address of an associated physical input/output control
block generated by the PIOCB macro instruction (see 4.1.6).

POSITIONAL PARAMETER 2

ccw-name - the symbolic address of a channel command word, or list of channel
command words, if command chaining is used (permitted on selector
channels only). If logical IOCS macro instructions are used, the
channel command words are generated automatically. When using
physical IOCS macro instructions, the programmer must specify
each channel command word according to the 1/0 functions desired.

POSITIONAL PARAMETER 3

entry-number - 0, 2, 4, or 6 indicating one of four two-byte fields in the physical
1/0 control block containing the absolute physical unit block
address for the peripheral device involved in the 1/0 operation.

if blank 0 is assumed.

POSITIONAL PARAMETER 4

X•xx• user options elected at assembly time. These options are:

•00• indicates that no error conditions are acceptable to the problem
program.

•20• indicates that, following the normal error recovery attempts by
the Supervisor, those errors classified as unique are acceptable
to the problem program.

140 1 indicates that all unrecoverable error conditions are acceptable
to the problem program following the normal error recovery attempts
by the Supervisor.

180 1 indicates that all error conditions are to be passed to the problem
program and that the Supervisor is not to attempt error recovery.

if blank - •OO• is assumed.

2

UP-7689 UNIVAC 9400 SUPERVISOR
4

SECTION:

Examples:

LABEL 1i OPERATION 1i OPERAND
10 16

OR DE R l CC B Fl L EA cc w l • 6

ORDER2 CCB F I LE B CCW2 _l__

I I I I I I I I

The format of a command control block is shown in Figure 4-1. Fields within
command control blocks are identified by standard system labels; these labels
are defined in the STDEQU macro instruction (1.4). By convention, all labels
are a maximum of eight characters and are expressed in the form IC$xxxxx, where
the characters IC$ identify command control block labels and the characters
xxxxx identify fields within command control blocks. Field labels, and brief
descriptions of their contents, are provided in Table 4-1.

16

24

32

I
I
I
I

RESIDUAL BYTE TRANSMISSION

COUNT BYTE

BCW OR ADDRESS OF NEXT CCW

COMMAND ERROR

CODE CONTROL MESSAGE

(MPX. BYTE
RESERVED IDENTI·

CHAN. FIER

ONLY)

FORWARD QUEUE ADDRESS
(SEL. CHAN. 1 OR MPX. CHAN.)

BACKWARD QUEUE ADDRESS

(SEL. CHAN. 1 OR MPX. CHAN.)

ADDRESS OF FIRST CCW OR

ADDRESS OF FIRST BCW

ADDRESS OF HALFWORD PUB
POINTER IN PIOCB

ERROR RECOVERY
STATUS INDICATORS RETRY COUNTER

FORWARD QUEUE ADDRESS

(SEL. CHAN. 21

BACKWARD QUEUE ADDRESS

(SEL. CHAN. 2)

I
I

:+-- When error cond1t1ons occur, sense bytes are stored

1n byte positions 32 through 37 of Command Control

Block.
----..:

I
I
I
I

1
I
I
!

Figure 4-1. Command Control Block Format

3
PAGE:

UP-7689 UNIVAC 9400 SUPERVISOR

LABEL

IC$RBC

IC$T

IC$CCW

IC$BCW

IC$PIO

IC$MCC

IC$CTL

SECTION: 4

BOUNDARY FIELD
ALIGNMENT LENGTH DESCRIPTION

Fullword 2 Residua I byte count

Halfword 2 Transmission bytes:

Bit 0: traffic bit
1 =complete or initial condition
0 = order in process

Bit 1: 1 =unrecoverable error

Bit 2: 1 =unique unit error

Bit 3: 1 =additional condition/no
record found

Bit 4: 1 =unit exception/tape mark

Bit 5: reserved

Bit 6: 1 =end of track (track overrun)

Bit 7: 1 =end of cylinder

Bit 8: 1 = user error recovery

Bit 9: 1 =unrecoverable error
accepted by problem
program

Bit 10: 1 =unique unit error accepted
by problem program

Bit 11-15 =used by system

Fu I lword 4 Address of first CCW or BCW

Fullword 4 BCW or address of next CCW

Fullword 4 Address of halfword in physical
1/0 control block containing PUB
address

1 Command Code (multiplexer channel
only)

2 Control byte:

Bits 0-2: always 0

Bit 3: 1 =WA IT macro instruction
execut~d with reference to
this command control
block

Table 4-1. Command Control Block Labels
(Part 1 of 2)

PAGE: 4

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 4

BOUNDARY FIELD
LABEL ALIGNMENT LENGTH DESCRIPTION

IC$CTL Bit 4: 1 =MARK macro instruction
executed with reference to
this command control
block

Bit 5: used by system

Bits 6 and 7: always O

Bits 8-15: reserved

IC$EMN 1 Error message identifier

IC$SF Halfword 2 Status flags

IC$EC Halfword 2 Error recovery retry counter

IC$LNK Fullword 4 Forward queue address (selector
channel 1 and multiplexer channel)

IC$LNK+4 Fullword 4 Forward queue address (selector
channel 2 and multiplexer channel)

IC$LNK+B Fullword 4 Backward queue address (selector
channel 1 and multiplexer channel)

IC$ LN K+12 Fullword 4 Backward queue addcess (selector
channel 2 and multiplexer channel)

Table 4-1. Command Control Block Labels
(Part 2 of 2)

4.1.2. EXCP Macro Instruction (Type R)

The EXCP macro instruction communicates directly with the I/0 queuing routine
of the channel scheduler for the purpose of submitting I/O requests to the system.
Before this macro instruction is executed, the programmer must construct an 1/0
request packet consisting of one command control block, one or more channel
command words, and one physical I/0 control block.

PAGE: 5

UP-7689 UNIVAC 9400 SUPERVISOR
4

SECTION: PAGE:

Linkage between these components is as follows:

• The EXCP macro instruction passes the address of the command control block
to the 1/0 queuing routine.

• The address of a two-byte field in a phys ica 1 I/ 0 control block is stored in the
command control block. This field contains the relative address of the physical
unit block for the peripheral device concerned.

• The address of the first channel command word is stored in the command control
block.

• Each channel command word contains the address of an input/ output data area.

Whenever an EXCP macro instruction is executed, the 1/0 request counter in the
job control block is incremented and a status indicator in the command control
block is set signifying that the order is outstanding.

The format of the EXCP macro instruction is:

LABEL "b OPERATION 15 OPERAND

[name] EXCP
{

ccc-name} [{ C }]
(1) , (0)

POSITIONAL PARAMETER 1

ccb-name

(1)

the address of the command control block.

indicates that register 1 has been preloaded with the address of the
command control block.

POSITIONAL PARAMETER 2

c

(0)

if blank

Examples:

LABEL

indicates that the 1/0 request is conditional on the peripheral device
not being shared with another program running in the system. This
option is intended to allow the programmer to issue conditional seek
commands when running in a multiprogramming environment.

indicates that the EXCP macro instruction is used for tape positioning,
and that register 0 has been preloaded with a two-byte block count
that identifies the blocks at which the tape will be positioned.

indicates that the 1/0 request is unconditional.

15 OPERATION 1i OPERAND
10 16

6

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 4 PAGE:

4.1.3. WAIT Macro Instruction (Type R)

The WAIT macro instruction is written in the problem program at point where
processing cannot logically proceed until the completion of 1/0 requests initiated
by the EXCP macro instruction. A WAIT macro instruction is executed in reference
to a single command control block or to the 1/0 counter in the problem program's
job control block. If the related 1/0 operation (or operations) is finished, processing
continues without any interruption. If the 1/0 operation (or operations) is not
finished, the program is temporarily suspended (nonready ·status), and program
control is given to the program switching routine. As each operation is finished,
the interrupt servicing routine posts the command control block as complete,
decrements the 1/0 counter in the program's job control block, the program is
made ready and program control is transferred to the program switching routine.
When the problem program is reactivated, program control is returned to the point
of interruption (immediately following the WAIT macro instruction that results in
the delay).

The format of the WAIT macro instruc;tion is:

LABEL '15 OPERATION '15 OPERAND

WAIT
{

ccb-name}[{ br-addr }]
(l) (15)

ALL
[name]

POSITIONAL PARAMETER 1

ccb-name

(1)

ALL

the address of the command control block to be tested and marked.

indicates that register 1 has been preloaded with foe address of the
command control block.

the 1/0 counter in the job control block is tested instead of the status
byte in the command control block. If no orders are outstanding, the
problem program resumes following the WAIT macro instruction. If 1/0
orders are outstanding, the program is suspended until the 1/0 counter
is zero (indicating all orders completed).

POSITIONAL PARAMETER 2

br-addr - the symbolic address to which program control is transferred if the
related requested 1/0 operation is completed, but is not without exception.

NOTE: When using a label as positional parameter 2, the contents of
register 15 are not altered even though transfer of control may
occur. Base register coverage for this transfer address is
assumed.

(15) indic;ates that register 15 has been preloaded with the address.

if blank - the WAIT macro instruction tests for complete or incomplete status
without testing for exceptions. When ALL specified as positional
parameter 1, this parameter must be blank.

7

UP-7689 UNIVAC 9400 SUPERVISOR 4
SECTION:

NOTE: The WAIT macro instruction determines the status of a command control
block by testing the transmission byte that is set by the I/O interrupt
processing routines and error processing job. The transmission byte is
the third byte of the command control block, referenced by the standard
label IC$T, and has the following form:

BIT POSITION

0
1
2
3
4
5
6
7

MEANING (when set to 1)

I/O complete (or initial state)
Unrecoverable error
Unique unit error
Additional condition/no record found
Unit exception/tape mark
Reserved
End of track (track overrun)
End of cylinder

When determining if a requested I/O operation is complete, the WAIT macro
instruction tests for the setting of bit 0 to 1. Then, if positional parameter 2 is
specified, the WAIT macro instruction tests bits 1 through 7. If any of these bits
are set to 1, program control is transferred to the address specified by positional
parameter 2. The branch address specified as positional parameter 2 must be
covered by a USING directive.

Examples:

LABEL t; OPERATION t; OPERAND
10 16

T ORDERl

T ALL

T (1)

T ORDER E RR 0 R I I

T (1),(15

WA T CCRTWO ERTNE

4.1.4. MARK Macro Instruction (Type R)

The status of an I/O operation is determined by testing the status byte in its·
associated command control block. The MARK macro instruction can be used to
check the status of I/O operations previously initiated by an EXCP macro instruc­
tion. At the time this test is made, a bit in the command control block is set
indicating that a MARK macro has referenced it, and, if the status byte indicates
that the I/O operation is not complete, program control is transferred to a user
specified address.. This macro instruction is used in conjunction with the YIELD
physical IOCS macro instruction (described in 4.1.5).

PAGE:
8

UP-7689

I .__.,.

r --- -- -

UNIVAC 9400 SUPERVISOR 4
SECTION:

The format of the MARK macro instruction is:

LABEL "b OPERATION "b OPERAND

[name] MARK {
ccb-name} {branch-address}

(1) , (15)

POSITIONAL PARAMETER 1

ccb-name

(1)

the symbolic address of the command control block to be
marked.

indicates that register 1 has been preloaded with the address
of the command control block to be marked.

POSITIONAL PARAMETER 2

branch-address - the symbolic address to which control is transferred if the
related 1/0 operation is not completed. When positional
parameter 2 is specified as a label, it is assumed that base
register coverage is provided in the problem program to allow
branching to the alternate address. The contents of register

(15)

Example:

LABEL

NOTDONE2

15 are not destroyed by the MARK macro instruction when this
occurs.

indicates that register 15 has been preloaded with the branch
address.

t OPERATION t OPERAND
10 16

MARK

PAGE:

MARK I I I I

4.1.5. YIELD Macro Instruction (Type R)

The YIELD macro instruction is written by the programmer at a point in the problem
program where he wants to relinquish program control until the completion of any
one of several outstanding 1/0 orders whose command control block has had a bit
set by the MARK macro instruction. The YIELD macro instruction causes an
interruption to the problem program and control is given to the program switching
routine, but the switch list for the respective priority level is not cycled. If no
programs of higher priority are ready for activation, and if one or more 1/0 requests
posted by the MARK macro instruction have been completed, the problem program
is reactivated at the point of interruption (immediately following the YIELD macro
instruction).

9

UP-7689

. -

UNIVAC 9400 SUPERVISOR 4
SECTION: PAGE:

The format of the YIELD macro instruction is:

LABEL "b OPERATION 1> OPERAND

[name] YIELD

No positional parameters are required by the YIELD macro instruction.

Example:

LABEL t OPERATION t OPERAND
10 16

YI ELD

4.1.6. PIOCB Macro Instruction and Physical 1/0 Control Block Structure

The PIOCB macro instruction is used to generate physical 1/0 control blocks. These
blocks serve as repositories for file and device information previously compiled by
Job Control at the time the job control stream was evaluated. This information is
stored in the form of a file control block. In tape systems, file control blocks are
stored in high order main storage of the problem program. It is important that these
blocks be retrieved (by issuing RDFCB macro instructions) before the main storage
area in which they are stored is overlaid by the problem program. In disc systems,
file control blocks are stored in the job file of the system resident direct access
device. After the program has been loaded and execution has begun, either an RDFCB
or an OPEN macro instruction causes file information to be moved to the physical
1/0 control block. When Data Management is used, a PIOCB macro instruction appears
within the expansion of each Data Management file definition. The PIOCB macro
instructicn is declarative; therefore, it should not appear in a sequence of executable
code.

At assembly time, the PIOCB macro instruction provides main storage space for the
following information:

• Eight-byte search key

An eight-byte character string is generated within each physical 1/0 control block.
This character string is required by the RDFCB macro instruction and is used as
a search key to obtain the file control block. The characters in this eight-byte search
key are identical to the characters appearing as the label of the PIOCB macro
instruction.

• Halfword length field

A two-byte field immediately follows the eight-byte search key. This field contains
a binary count of the number of bytes reserved for the file control block. This binary
count ranges from a minimum of 2 to a maximum of 133. Altering the contents of this
halfword field prior to the execution of a RDFCB macro instruction causes the transfer
of tile number of bytes of the file control block as specified by the alteration.

10

UP-7689 UNIVAC 9400 SUPERVISOR 4
SECTION: PAGE:

• Part or all of a file control block

Each file control block begins with four two-byte fields which contain the addresses
of physical unit blocks for the device or devices allocated to the file. Multivolume
direct access files, defined by a single file control block, cannot exceed four
volumes, Multivolume direct access files which exceed four volumes should be
divided into multiple files and defined by two or more file control blocks. Each
file control block requires an associated physical 1/0 control block.

The format of the PIOCB macro instruction is:

LABEL

name

LABEL

name

o OPERATION o OPERAND

PIOCB

the symbolic address of the first byte of the physical 1/0 control block.
This name is used whenever reference is made to the physical 1/0
control block or its contents. The characters appearing in this label
become the eight-byte character string generated in the first eight bytes
of the physical 1/0 control block.

POSITIONAL PARAMETER l

MAX a binary constant is generated and an area is reserved within the physical
1/0 control block large enough to contain the complete file control block.

#-bytes - an integer indicating the size of the area for the file control block. This
option is used to limit the size of the physical 1/0 control block for the
purpose of reading partial file control blocks.

if blank - a minimum-si.zed physical 1/0 control block of twelve bytes is generated
allowing for storage of only the first two bytes of the file control block.
These first two bytes contain the absolute address of the physical unit
block for the device assigned to the file.

NOTE: A two-byte field is reserved for each device that is simultaneously required
online to a single physical 1/0 control block. A maximum of four fields is
permitted. The first two-byte field is referred to as entry 0, the second field as
entry 2, the third field as entry 4, and the fourth field as entry 6. Following
the successful completion of a RDFCB macro instruction, these fields contain
the absolute addresses of the physical unit blocks that identify the assigned
devices. Device assignments indicated in the file control block are made by
Job Control. Thus, the RDFCB macro instruction, in conjunction with the
PIOCB macro instruction, dynamically links the problem program with the
results of its evaluated job control stream.

11

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 4 PAGE:

Examples:

LABEL 1i OPERATION 'Ii OPERAND 1;
10 16

FI LE A 0 CB

FI LE B 0 C B S 0

FI LE C OCB MAX

The format of a physical 1/0 control block is shown in Figure 4-2. Fields within a
physical 1/0 control block are identified by standard sy~tem labels; these labels
are defined in the STDEQU macro instruction (1.4). By convention, all labels are
a maximum of eight characters and expressed in the form IB$xxxxx, where the
characters IB$ identify physical 1/0 control block labels and the characters xxxxx
identify fields within the physical 1/0 control block. Field labels, and brief des­
criptions of their contents, are provided in Table 4-2.

PIOCB NAME
MINIMUM

) PIOCB IS

.... ~~~~~~~~~~~~~~-'-~~~~~~~~~~~~~~j) 12BYTES

COUNT OF BYTES RESERVED FOR FCB }HALFWORD PUB ADDRESS (FIRST 2 BYTES OF
FOLLOWING TH IS HALFWORD ENTRY FILE CONTROL BLOCK)

12 I i
I REMAINDER OF FILE CONTROL BLOCK

: l
I
I
I
I
I
I
I
I
I
I
I
I
I
I

----- -- - ---- - ---- ----------
-
Figure 4-2. Physical 1/0 Control Block Format.

FROM 2 TO 131
ADDITIONAL BYTES > RESERVED TO CON­
TAIN THE REMAIN­
DER OF THE FCB

12

UP-7689

I

UNIVAC 9400 SUPERVISOR
4

SECTION: PAGE:

BOUNDARY FIELD
LABEL ALIGNMENT LENGTH DESCRIPTION

IB$LBL Fullword 8 Eight-byte file control block name

IB$FBL Fullword 2 Number of bytes in the file control block

IB$FB Halfword 2-133 File control block area

Table 4-2. Physical 1/0 Control Block Standard Labels

4.1.7. RDFCB Macro Instruction (Type R)

The RDFCB macro instruction is used to locate the file control block and read it
into the physical I/O control block in main storage. To accomplish this function,
positional parameter 1 of the RDFCB macro instruction must be the address of a
physical 1/0 control block that contains an eight-byte character string identifying
the desired file control block. This character string is used as a search key when
locating the file control block. Any references to a physical 1/0 block, by means of
an EXCP macro instruction, before the device assignment fields are filled by the
RDFCB macro instruction results in a software program check interrupt. Therefore,
each physical 1/0 block should be initialized by RDFCB macro instruction before the
block is referenced by an EXCP macro instruction. The WAIT macro instruction is
used to test for the completion of an RDFCB macro instruction. Figure 4-3 shows the
interrelationship between the command control block, channel command word, physical
I/O control block, file control block, and physical unit block.

The format of the RDFCB macro instruction is:

LABEL o OPERATION o OPERAND

[name] RDFCB {
piocb-name} r {#-bytes }]

(1) l'. (0)

POSITIONAL PARAMETER 1

piocb-name

(1)

the symbolic address of the physical I/O control block.

indicates that register 1 has been preloaded with the address of
the physical I/O control block.

13

UP-7689 UNIVAC 9400 SUPERVISOR ,4
SECTION: PAGE:

RDFCB FILEA

ISSUEl EXCP ORDERl

• • • • •
ORDERl CCB FILEA,CCWl

~~---~

LEGEND:

CCB - COMMAND CONTROL BLOCK

CCW - CHANNEL COMMAND WORD

FCB - FILE CONTROL BLOCK

I

CCB (ORDERl) I

FIRST

CCW ADDRESS 1--

ADDRESS OF A
FIELD IN THE
PIOCB CONTAIN- I-­
ING THE PUB
ADDRESS

NEXT CCB AD­

DRESS IN QUEUE

FOR MPX. CHAN.

OR SEL. CHAN. l

NEXT CCB AD­

DRESS IN QUEUE

FOR SEL. CHAN. 2

PIOCB - PHYSICAL 1/0 CONTROL BLOCK

PUB - PHYSICAL UNIT BLOCK

FILEAOOO

FCB

FIRST
PUB ADDRESS

ccw (CCWl)

DATA ADDRESS

PIOCB (FILEA)

FILEAOOO

(SEARCH KEY)

FIRST
PUB ADDRESS

D
NOTES: (1) The RDFCB macro instruction is used to read the FCB into the PIOCB which

is referenced later by the CCB macro instruction.
(2j IN TAPE SYSTEMS: File control blocks are stored in high order main storage

of problem program.
(3) IN DISC SYSTEMS: File control blocks are stored in the execution area on the

system resident direct access device.

Figure 4-3. Interrelationship Between the Command Control Block, Channel Command
Word, File Control Block, Physical 1/0 Control Block

1
and Physical Unit Block

PUB

VOLUME

SERIAL

NUMBER

DEVICE

CHARACTERISTICS

CCB ADDRESS

(ADDRESS OF

ORDERl WHEN
DISPATCHED)

14

UP-7689 UNIVAC 9400 SUPERVISOR
4

SECTION: PAGE:

POSITIONAL PARAMETER 2

11-bytes the number of bytes of the file control block to be read into main
storage. This value is stored as a binary integer in the halfword count
field within the physical 1/0 control block and remains until altered
by subsequent RDFCB macro instructions or by the programmer.

(0)

if blank

NOTES:

indicates that register 0 has been preloaded with the number of
bytes.

the number of bytes to be read is specified by a constant in the
physical 1/0 control block.

(1) Program control is returned to the issuing program at the point immediately
following the RDFCB macro instruction. The address of a command control
block is returned in register 1. The programmer can issue a WAIT or MARK
macro instruction referencing this command control block. Thus, synchronization
with the read file control block function is similar to that used with physical
IOCS.

(2) An RDFCB macro instruction cannot be issued when there is either an OPR,
GETCS, or LOAD macro instruction outstanding. If this is attempted, a
software program check error will result.

Examples:

LABEL 1i OPERATION 1i OPERAND
l 0 16

N I T l RDFCB FILEA

NI T 2 RDFCB Fl LEC 00

RDFCB (1),(0)

4.1.8. SWAP Macro Instruction (Type R)

The SWAP macro instruction is used to cause the exchange of a physical unit
block address in a physical 1/0 control block with the address of its alternate.
Only physical unit blocks that are linked to alternates can be exchanged.

The format of the SWAP macro instruction is:

LABEL 15OPERATION15 OPERAND

[name] SWAP
{

piocb-name} [{ entry-number } J
(1) , (0)

15

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 4

POSITIONAL PARAMETER 1

piocb-name the symbolic address of the physical 1/0 control block.

(1) indicates that register 1 has been preloaded with the address of
the physical 1/0 control block.

POSITIONAL PARAMETER 2

PAGE:

entry-number - 0, 2, 4, or 6 indicating the two-byte field to be changed by the
SWAP macro instruction. Each field can contain the address of a
physical unit block identifying a device linked to the physical 1/0
control block.

(0) indicates that register 0 has been preloaded with the value 0, 2, 4
or 6.

if blank 0 is assumed (first entry in physical 1/0 control block is changed).

Examples:

LABEL 1i OPERATION 1i OPERAND
10 16

4.2. DYNAMIC RELEASE OF PERIPHERAL DEVICES

The programmer can release devices during the execution of a job step, providing the
released devices are not assigned for the duration of the job. The FREE macro
instruction is provided for this purpose.

4.2.1. FREE Macro Instruction (Type R)

The FREE macro instruction is used by the programmer to release peripheral
devices from assignment to the job step. Devices released from the job step
are returned to the system's pool of unallocated devices only if the job control
stream has not assigned the device for the duration of the job.

The format of the FREE macro instruction is:

LABEL 1> OPERATION 1> OPERAND

[name] FREE
ALL

entry-n
(0) }]

16

UP-7689

I

UNIVAC 9400 SUPERVISOR 4
SECTION:

POSITIONAL PA RAM ET ER l

piocb-name - the symbolic address of the physical I/O control containing the
address(es) of the physical unit block(s) for the device(s) to be
released.

(1) indicates that register 1 has been preloaded with the address of
the physical I/O control block.

POSITIONAL PARAMETER 2

ALL

entry-n

(0)

if blank

all devices assigned to the physical 1/0 control block addressed
by positional parameter 1 are released.

0, 2, 4, or 6 indicate the two-byte entry within the physical I/O
control block containing the address of the physical unit block
for the device to be released.

indicates that register 0 has been preloaded with the value 0, 2, 4,
or 6.

ALL is assumed.

NOTE: Whenever devices are released, their alternates, if any, are also released.

Examples:

LABEL t OPERATION t OPERAND
l 0 16

F REE F I LE

F R E E (l

F R E E F I L E B , 2

17
PAGE:

UP-7689

-.._,·

I

UNIVAC 9400 SUPERVISOR
SECTION: 5

PAGE:

5. PROGRAM MANAGEMENT

5.1. GENERAL

Program management facilities are provided to assist the programmer in the efficient
management of problem programs. These facilities include:

• Program loading

• Timer and simulated data clock services

• Transient area management

• Dynamic acquisition of temporary direct access storage

• Subroutine linkage

• Linkage to user interrupt routines

• System information control

• Control stream reader

• Program checkpoint

• Program termination

5.2. PROGRAM LOADING

The LOAD and FETCH macro instructions are provided for program loading. The LOAD
macro instruction is used primarily to locate and load overlay segments of a problem
program. Program overlay segments loaded by the LOAD macro instruction are not
automatically given program control. Rather, program control is returned to the program that
issued the LOAD macro instruction. The FETCH macro instruction is used to locate
and load program phases which are to be given program control following a successful
loading sequence.

5.2.1. LOAD Macro Instruction (Type R)

The LOAD macro instruction is used to locate and load absolute or relocatable
program overlay segments into main storage. In addition to loading executable program
overlay segments, the LOAD macro instruction can also be used to load tables and
other nonexecutable data for subsequent inspection by the problem program. Optionally,
the LOAD macro instruction can be used to locate and load self-relocating program

overlay segments into main storage areas other than the ones specified by the Linkage
Editor. Main storage address constants within program overlay segments loaded in
this manner are not adjusted. When relocatable load modules are retrieved from a
program library, all address constants are automatically adjusted by the relocatable
program loader. Synchronization between the calling program and the load function of
the Supervisor is similar to the synchronization used with physical IOCS.

1

UP-7689 UNIVAC 9400 SUPERVISOR
PAGE: 2 5 SECTION:

Four load functions are available to the programmer through the LOAD macro instruction.
They are: -..__/

• Load absolute function

• Load index function

• Load alternate function

• Load relocate function

In disc systems, all four load functions are available to the programmer. In tape
systems, only the load relocatable function is available to the programmer. However,
for purposes of compatibility, especially for those users who plan to convert from a
tape-oriented system to a disc-oriented system, the LOAD macro instruction can be
written in the form used for the load absolute, load index, and load alternate functions.

5.2.1.1. Load Absolute Function (Disc Systems Only)

The load absolute function is used to locate and load absolute program overlay
segments from the execution area on the system resident direct access device into
main storage areas as specified by the Linkage Editor.

The format of the LOAD macro instruction when used to call the load absolute
function is:

LABEL 1i OPERATION 1i OPERAND

[name] LOAD {
segment-name}

(1)

POSITIONAL PARAMETER l

segment-name - the eight-character name of the program overlay segment to be
loaded (exactly as it appears in the index of the execution area).
The format of the segment name is: nnnnnnpp (nnnnnn is the
name of the program and pp is the phase number).

(1) indicates the register 1 has been preloaded with the address
of the eight-character segment name.

5.2.1.2. Load Index Function

In disc systems, the load index function locates a program index entry within
the execution area index on the system resident direct access device. When the
program index is located, it is read into a temporary work area in the job preamble
of the calling program. Each program index entry contains the following information
about a program:

• the direct access device address of the first record of the overlay segment;

• the number of records in the program overlay segment;

• the length of the program overlay segment (in bytes);

UP-7689

I

UNIVAC 9400 SUPERVISOR 5
SECTION: PAGE:

• the entry point of the program overlay segment;

• the main storage starting address of the program.

In addition to the index entry, a channel program is read into the preamble of the
calling program that is specifically designed to retrieve subsequent records of the
program overlay segment.

In tape systems, the load index function is used to locate a program header record
within a load library. When the program header record is located, it is read into
a temporary work area in the job preamble of the calling program. In effect, in
tape systems, the load index is a call on the tape program locator.

The format of the LOAD macro instruction when used to call the load index function
is:

LABEL o OPERATtON o OPERAND

[name] LOAD {
segment-name}

(1) ,I

POSITIONAL PARAMETER l

segment-name - the eight-character name of the program overlay segment in the
form nnnnnnpp.

(1) indicates that register 1 has been preloaded with the address
of the element name.

POSITIONAL PARAMETER 2

indicates a load index function.

5.2.1.3. Load Alternate Function - Disc Systems

The load alternate function is used to read absolute program text records for the
program identified by a preceding LOAD index macro instruction. The address of
the main storage area into which the first text record is to be read is specified by
positional parameter 2 of the first LOAD alternate macro instruction. Programs
consisting of more than one text record can be retrieved, one text record at a
time, by subsequent LOAD alternate macro instructions.

The LOAD alternate macro instruction is normally used when the programmer
desires to load a self-relocating program from the execution area into a main
storage area other than the one specified by the Linkage Editor. Other uses
include the retrieval of nonexecutable portions of a program for inspection by the
problem program.

3

UP-7689

LABEL

LDALT

I

UNIVAC 9400 SUPERVISOR
SECTION:

5

The format of the LOAD macro instruction when used to call the load alternate
function is:

LABEL o OPERATION o OPERAND

[nfime]

POSITIONAL PARAMETER l unused, must be left blank

POSITIONAL PARAMETER 2

address - the symbolic address of an area into which the first program text

PAGE:

record is to be read. On subsequent LOAD alternate macro instructions
for records of the same program, this parameter may be specified but it
is ignored by the load alternate SVC processing routine.

(1) indicates that register 1 has been preloaded with the address of the
main storage area.

if blank - the main storage address in the index entry within the problem program's
job preamble will be used.

NOTE:

The load alternate SVC processing routine returns the following information to
the user in problem registers 0 and 1:

Register 0 - the count plus one (in binary) of the number of program text records
remaining to be loaded. This convention was adopted to permit the
use of the branch on count, BCT, instruction in conjunction with
multiple load alternate requests.

Register 1 - the address of a command control block within the problem program's
job preamble that can be referenced by a subsequent MARK or WAIT
macro instruction.

Example:

t OPERATION~ OPERAND COMMENTS
10 16

p AYR010,l,01,1ll I I I I I I I I I I I

(1),ERROR

LDAREA

RO$,LDALT

4

UP-7689 UNIVAC 9400 SUPERVISOR 5
SECTION: PAGE:

5.2.1.4. Load Alternate Function - Tape Systems

In tape-oriented systems, the load alternate function is used only when loading
transient routines from the system tape into a transient area. This facility cannot
be called by problem programs.

5.2.1.5. Load Relocate Function

In disc systems, the load relocate function causes the transient scheduler to
locate and load the transient relocatable program loader from the system resident
direct access device. This program loader then locates the requested program
within a program library, reads the problem program text records into a main storage
buffer area within the transient area, resolves all address constants, and moves
the resultant absolute code to the user area.

In tape systems, the relocatable program loader is written by the Linkage Editor
immediately following each load module header record. Therefore, once a header
record is located, a copy of the relocatable loader is immediately available as the
next tape block for reading into the system transient area. Once the relocatable
program loader is given control as a transient routine, it reads the following program
text records into a buffer area within the transient area, resolves address constants,
and moves the resultant absolute code to the user area.

The format of the LOAD macro instruction when used to call the load relocate
function is:

LABEL o OPERATION o OPERAND

[name] LOAD {
segment-name }

(1)

POSITIONAL PARAMETER l

segment-name - the eight-character name of the program overlay segment to be
loaded (exactly as it appears in the index of the execution area).
The format of the segment name is nnnnnnpp.

(1) indicates that register 1 has been preloaded with the address
of the eight-character segment name.

NOTES:

(1) When the load index, load alternate, or load absolute functions are called,
program control is immediately returned to the calling program at the point
following the LOAD macro instruction. This allows processing to continue
asynchronously with the program loading function. A WAIT or MARK macro
instruction should be executed in reference to the load request to determine
when the load function is complete.

(2) When the load relocate function is used, program control is taken from the
calling program until the load function terminates. When the called program
is loaded, program control is returned to the calling program at the point
foliow ing the LOAD macro instruction.

5

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 5 PAGE:

(3) Following the execution of a LOAD macro instruction, the load SVC processing
routine returns information to the user in problem registers 0 and 1 as indicated
in the following table:

Load Function Register 0 Register 1

Load index, load absolute, index-area-ad cc b-address
and load relocate ...
Load alternate count+l ccb-address

Where:

index-area-ad is the main storage address of an area in the problem program's
job preamble that is used to store the retrieved program index
block. The first word of this area contains the entry-point-address
of the called program.

NOTE: When a LOAD index macro instruction is executed, the
program index block is not available in the index area
until the function is complete.

ccb-address the address of a command control block within the problem program's
job preamble that can be referenced by a WAIT or MARK macro
instruction to determine the status of the load request.

count+l the count plus one (in binary) of the number of program text records
remaining to be loaded.

(4) A LOAD macro instruction cannot be issued when any of the following macro
instructions are outstanding: GETCS, OPR, or RDFCB. If this is attempted,
a software program check error results.

(5) The user must choose which of two loading techniques he intends to use
and indicate this choice in each EXEC control statement in the job control
stream. The two choices are:

(1) load absolute, load index, and load alternate, or

(2) load relocate.

The load index and load alternate functions are forms of the load absolute
function; whereas the load relocate function is entirely different and results
in the execution of a transient job.

Examples:

LABEL 1i OPERATION 11 OPERAND 11
10 16

(1) , I

' (1)

6

UP-7689

I

UNIVAC 9400 SUPERVISOR
SECTION: 5 PAGE:

5.2.2. FETCH Macro Instruction (Type R)

The FETCH macro instruction is used to locate program phases in auxiliary storage,
load them into main storage, and transfer program control to them. In tape systems,
the FETCH macro instruction is, in effect, a call on the relocatable loader.

The format of the FETCH macro instruction is:

LABEL 'b OPERATION Ir OPERAND

[name] FETCH

POSITIONAL PARAMETER 1

segment-name - the eight-character name of the program overlay segment in the
form nnnnnnpp.

(1) indicates that register 1 has been preloaded with the address of
the segment name.

POSITIONAL PARAMETER 2

entry-name

(0)

if blank

the symbolic address (entry point) to which program control is to be
passed after the loading process is completed and the program is
selected as the active program by the program switching routine.

indicates that register 0 has been preloaded with the entry point
address.

the entry point specified by the Linkage Editor is used.

NOTE: A FETCH macro instruction cannot be issued when there are any 1/0 requests
outstanding. This restriction includes OPR, LOAD, GETCS, and RDFCB
functions. If this is attempted, a software program check error will result.

Examples:

LABEL 15 OPERATION 15 OPERAND
10 16

FE T CH

FE T CH

I I I I I I

7

UP-7689 UNIVAC 9400 SUPERVISOR 5
SECTION: PAGE:

5.3. TIMER AND SIMULATED DAY CLOCK SERVICES

Two macro instructions are available to the programmer which can be used to communicate
with the timer services routine. These macro instructions are:

• GETIME - get time of day

• SETIME - set time interval

5.3.1. GE TIME Macro Instruction (Type R)

The GETIME macro instruction is used by the programmer to obtain the time from the
simulated day clock function of the Supervisor.

The format of the GETIME macro instruction is:

LABEL o OPERATION o OPERAND

[name] GE TIME [{~}]
POSITIONAL PARAMETER 1

s

M

if blank

Examples:

LABEL

the time is returned in register 1 in the format: OOhhhmms (where h is hours,
m is minutes, and s is the sign) expressed in packed decimal data format.

the time in milliseconds is returned in register 1 as a binary integer.

M is assumed.

1i OPERATION 1i OPERAND
10 16

5.3.2. SETIME Macro Instruction (Type R)

The SETIME macro instruction is used by the programmer to request scheduled
interrupts in the problem program based on elapsing of actual time.

The format of the SETIME macro instruction is:

LABEL 15OPERATION15 OPERAND

[name] SE TIME

8

UP-7689

I

1

SECTION:

UNIVAC 9400 SUPERVISOR
5 PAGE:

POSITIONAL PARAMETER l

time the time interval in milliseconds to elapse before generating an interrupt.

(1)

if blank

indicates that register 1 has been preloaded with the time interval.

used to cancel a previous SETIME request, thus preventing the scheduled
interrupt.

POSITIONAL PARAMETER 2

WAIT the soliciting program is suspended until the time interval expires.
When the interrupt occurs, the waiting program is reactivated at the
point immediately following the SETIME macro instruction.

if blank - the soliciting program retains program control. When the time interval
expires, the job's timer island code subroutine, as specified by a STXIT
macro instruction, is activated. If no timer island code, subroutine is
specified, or if a timer interrupt occurs while the problem program's timer
island code subroutine is being executed, the interrupt is ignored.

Examples:

LABEL 1i OPERATION 1i OPERAND 1i
10 16

T.l.l_l_M_j_E-1 ll i i SlEiT_l_liM E _j_3_j_O _j_ l _l J_ _l_ J_ l _j_ _j_ _l_ l _l _j_ _l l_j_ J_ _l _i_l _l J_ _l i l

_j__j__J__ll-1..L SlEiT_l_liM E I 110 I 0 I• I WI Al I I Tl I
_j__j__j__ll-1-1 l J_ _j_ _j_ _j__l_j_ J_l J__j__j__j_l_j__J__l _j_l I I I I I I I I I I I I I I I

5.4. TRANSIENT AREA MANAGEMENT

One macro instruction is available to the programmer to call user written transient
routines. This macro instruction is:

• TCALL - generate parameter list and request transient routine

5.4.1. TCALL Macro Instruction (Type R)

The TCALL macro instruction is used to call user written transient routines. This
macro instruction is also used to pass parameters from problem programs to user
written transient routines. Direct communication with the transient area scheduling
routine is the primary function of this macro instruction. Program control is not
returned to the calling program until the requested transient routine has been
located, loaded, executed, and released. Control always returns to the line
immediately following the TCALL macro instruction.

9

UP-7689 UNIVAC 9400 SUPERVISOR s
SECTION: PAGE:

The format of the TCALL macro instruction is:

LABEL li OPERATION li OPERAND

[name] TCALL {
routine} [{(param-1, .•. ,param-n)}]

(1) ' (0)

POSITIONAL PARAMETER l

routine a symbolic name identifying the transient routine required.

(1) indicates that register 1 has been preloaded with a one-byte value
indicating the desired routine (assigned SVC code).

POSITIONAL PARAMETER 2

param-1

param-n

parameters to the called transient routine. The parameters
can be written in a sublist of the TCALL macro line. These
parameters are generated in the same order as written in the
sublist.

LABEL

(0)

if blank

Examples:

indicates that register 0 has been preloaded with the address of
of the parameter list.

no parameters are assumed.

t; OPERATION 1l OPERAND
l 0 16

s v
(1),(0)

S.S. DYNAMIC ALLOCATION OF DIRECT ACCESS STORAGE

When disc packs are mapped, the user has the option of specifying the number of
cylinders to be reserved for temporary suballocation to problem programs. Three
macro instructions are provided for allocating, releasing, and interrogating the
status of temporary direct access storage.

These macro instructions are:

• GIVE Allocate temporary direct access storage.

• TAKE Release (that is, deallocate) temporary direct access storage.

• QUERY - Interrogate the use of both allocated and unallocated temporary direct
access storage.

S.S.1. GIVE Macro Instruction (Type S)

The GIVE macro instruction is used to request the allocation of temporary direct
access space to the problem program.

10

UP-7689

Minimum List is
Three Words
(Words 3 through
n are Individual
Requests)

UNIVAC 9400 SUPERVISOR

The format of the GIVE macro instruction is:

LABEL 15OPERATION15

[name] GIVE

POSITIONAL PARAMETER l

OPERAND

{
list-name l

(1) J

SECTION:
5

PAGE:

list-name - the symbolic address of a user generated parameter list which
contains a request(s) for group(s) of contiguous cylinders on a
particular volume.

(1) indicates that register 1 has been preloaded with the address of the
parameter list.

The format of the parameter list used with the GIVE macro instruction is:

WORD

0

STATUS

2

0

3 L FLAGS

0::-

0

n L FLAGS

BYTE

1 2 3

OPTION INDICATOR x•oo• USE CODE

PHYSICAL 1/0 CONTROL BLOCK ADDRESS+ IB$FB [l J
7

R

7

R

NUMBER OF
CYLINDERS

NUMBER OF
CYLINDERS

STARTING
CY LINDER

NUMBER (IF
SPECIFIED)

STARTING
CYLINDER

NUMBER (IF
SPECIFIED)

Input parameters (that is, directions to the Supervisor) are stored by the user in
the list prior to executing the associated macro instruction. After executing the
macro instruction, the Supervisor alters the contents of certain fields indicating the
results of the operation. A description of the contents of these fields follow.

11

\,)..-..

UP-7689 UNIVAC 9400 SUPERVISOR

BYTE
IDENTIFICATION

STATUS

PARAMETER
TYPE

INPUT

OUTPUT

SECTION: 5

DESCRIPTION

Set by user to X •OO •

Set by Supervisor as follows:

X 100' - request(s) performed exactly
as specified

X •O l 1 - one or more parameters
in the list required a con­
dition that could not be
met. The user should check
all R bits in each of the
FLAGS bytes to determine
what allocation, if any, has
been made.

X 102 1
- the option byte is in error.

No allocation has been made.

X 103' - physical I/O control block
address, or entry number is
in error. No allocation has
been made.

X 104 1 - the volume specified by the
physical I/O control block does
not contain any temporary stor­
age space. No allocation has
been made.

X•OS• - the wrong volume is mounted
on the specified device. No
allocation has been made.
ed.

X 106 1 - an invalid use code has been
specified. No allocation has
been made.

X•lO• - I/O error during an input
operation. No allocation has
been made.

X •20 • - this status code is used in
combination with other codes
(that is, X 120 1

, X•21•, X 122 1
•••)

to indicate an I/O error during
an output opera ti on. Since there
is no record of the amount of
allocation, the request(s) for

PAGE:

direct access storage space should
be repeated.

12

UP-7689 .. UlttVAC 1J400-9UPER¥~$0ft> 5 13
Sl!;C TION: PAGE:

BYTE PARAMETER
DESCRIPTION lDENtlFICATION TYPE

OPTION INPUT Set by the user as follows:
INDICATOR

X •OO 1
- allocate as many cylinders as

possible at a position that
minimizes fragmentation of
direct access storage (that is,
the smallest area on the disc
that is large enough to satisfy
the request). If the number of
cylinders requested is greater
than the number allocated, the
number allocated is stored and
the R bit is set to 1 in the par-
ticular request word.

X•Ol• -allocate as many cylinders as
possible starting at the specified
cylinder. If the number of cylinders
requested is greater than the num-
ber allocated, the number allocated
is stored and the R bit is set to 1
in the particular request word.

X 102' - allocate at a position that mini-
mizes fragmentation of direct
access storage only if the speci-
fied number of cylinders is avail-
able. If this is not possible, no
allocation is made; the R bit is
set to 1 and X •OO' is stored in
the second byte of the particular
request word.

X•03• - allocate starting at the specified
position only if the specified
number of cylinders is available.
If this is not possible, no alloca-
tion is made; the R bit is set to 1
and X •00' is stored in the second
byte of the particular request word.

UP-7689 UNIVAC 9400 SUPERVISOR 5 14
SECTION: PAGE:

BYTE PARAMETER
DESCRIPTION '-6/

IDENTIFICATION TYPE

USE CODE INPUT A number assigned by the user in the
range of 1 through 63 which identifies
the use for which the space is requested.
This number is appended to the requesting
program's job number and written in the
allocation control table on the volume.

PHYSICAL INPUT The address of a two-byte field within a
INPUT/OUTPUT physical I/O control block containing the
CONTROL BLOCK address of the physical unit block that
ADDRESS, ETC. identifies the direct access device and

volume on which allocation is desired
(see 4.1.6).

FLAGS INPUT Set by the user as follows:

X 100' - initial setting of the first byte
of each word (each request)
except the last word of the list.

X •80' - last word of the parameter list.

OUTPUT Set by the Supervisor as follows:
,-~

.._,,
X 101 1

- an error occurred while process-
ing a request.

X 181 1
- an error occurred while process-

ing a request in the last word of
the parameter list.

NUMBER OF INPUT the number of cylinders requested.
CYLINDERS OUTPUT the number of cylinders allocated. If no

cylinders are allocated, X •00 •is stored
in this byte by the Supervisor.

STARTING INPUT the cylinder number at which allocation
CYLINDER is to begin. (This number is not furnished
NUMBER if option indicator X 100' or X •02 1 is speci-

fied.)

OUTPUT the cylinder number at which allocation
has begun when option indicator X 100 1

or X 102 1 has been provided.

I

UP-7689 UNIVAC 9400 SUPERVISOR
SECTION: 5 PAGE:

Example:

LABEL 1i OPERATION1i OPERAND
10 16

p 0 t 4

PARLIST X• 0 Q I

DC X• 0 2 I

DC x• 0 0 I

AL 1

A Fl L EA+ I B I I

x I 0 0 I

AL 1 (1 0)

x•oo•
AL 1 (0)

x I 8 0 I

AL 1 (2 0)

X• 0 0 I

A L 1 0

5.5.2. TAKE Macro Instruction (Type S)

The TAKE macro instruction is used to deallocate temporary direct access storage
space.

The format of the TAKE macro instruction is:

LABEL 1i OPERATION 'b

[name] TAKE

POSITIONAL PARAMETER 1

OPERAND

{
list-name}

(1)

list-name - the symbolic address of a user-generated parameter list which
specifies a group(s) of contiguous cylinders to be deallocated on
a particular volume or all mounted volumes.

(1) - indicates that register 1 has been preloaded with address of the
parameter list.

15

UP-7689 UNIVAC 9400 SUPERVISOR
5

SECTION: PAGE:

The format of the parameter list used with the TAKE macro instruction is the same
as the list used with the GIVE macro instruction. The only differences are the manner
in which the option indicator code is interpreted and that X •00' may be specified for
the use code.

BYTE PARAMETER DESCRIPTION
IDENTIFICATION TYPE

OPTION INPUT set by the user as follows:
INDICATOR

X•OO• - deallocate only the group(s) of
contiguous cylinders specified
in words 3 through n of the list.

X •01 • - deallocate all cylinders allocated
for the specified use code on the
specified direct access volume.
NO TE: words 3 through n are

irrelevant for this option.

X 103 1 - deallocate all cylinders allocated
for the specified use code on all
mounted direct access volumes.
NOTE: words 2 through n are

irrelevant for this volume.

Example:

LABEL 1i OPERATION 1i OPERAND
10 16

TAKE (1

5.5.3. QUERY Macro Instruction (Type S)

The QUERY macro instruction is used to interrogate the use of both allocated and
unallocated direct access storage. This macro instruction is used with the same
type of parameter list as the GIVE macro instruction. The QUERY macro instruction
can be used for any of the following purposes:

• Given a particular use code, return the number of cylinders remaining which can
be allocated for this use.

• Given a particular cylinder number, return the code indicating its use.

• Given a particular use code, return a list of the contiguous group of cylinders
now allocated for this use.

16

r
UP-7689 UNIVAC 9400 SUPERVISOR

SECTION:
5

PAGE:
17

~~~~~~ ....... ~~~~~~~~~~~~~~~~~~~~~~~~~ ...... ~~~~~~~ ....... ~~~~~~~.._~~~~~~~--' 

The format of the QUERY macro instruction is: 

LABEL "b OPERATION 15 OPERAND 

[name] list-name } 
(1) 

QUERY 

POSITIONAL PARAMETER 1 

list-name 

(1) 

- the symbolic address of a user-generated parameter list which 
contains request(s) concerning cylinder usage. 

- indicates that register 1 has been preloaded with the address of 
the parameter list. 

The format of the parameter list used with the QUERY macro instruction is the same 
as the list used with the GIVE macro instruction. The only differences are the manner 
in which the OPTION INDICATOR code is interpreted and that a use code of X •00• 
can be specified. 

BYTE 
IDENTIFICATION 

OPTION 
INDICATOR 

PARAMETER 
TYPE 

INPUT 

DESCRIPTION 

Set by the user as follows: 

X •OO • - the Supervisor returns the remaining 
number of cylinders that this job can 
request and stores them in the second 
byte of word 3 of the list. The Super­
visor also returns the starting cylinder 
number and the number of cylinders for 
each contiguous area allocated to a 
specific use code of a particular job 
in words 4 through n. The last entry of 
the list is signified by the L flag bit 
being set to 1. If there are too many 
parameters for the list, a status code 
of X •07 • is returned and the list is 
terminated. 

X•Ol • - the Supervisor returns the use code 
in the fourth byte of word 1 for the 
user-furnished cylinder number in 
the fourth byte of word 3 in the 
parameter list. 

X •02 • - the Supervisor returns the remaining 
number of cylinders that this job can 
request and stores them in the second 
byte of word 3 of the list. 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 

BYTE 
IDENTIFICATION 

OPTION 
INDICATOR 
(CONTINUED) 

USE CODE 

Example: 

LABEL 

PARAMETER 
TYPE 

INPUT 

OUTPUT 

'6 OPERATION '6 
10 16 

QUERY LISTI 

SECTION: 5 PAGE: 

DESCRIPTION 

X 103' - the Supervisor returns the starting 
cylinder and the number of cylinders 
for each contiguous area allocated to 
a specific use code of a particular job 
in words 3 through n. The last entry of 
the list is signified by the L flag bit 
being set to 1. 

Set by the user as follows: 

X 100' - used with OPTION INDICATOR code 
X•02• to indicate that the macro in­
struction pertains to all uses for this 
job. 

number - used with OPTION INDICATOR codes 
X •OO' and X •03' to specify a particular 
use. 

When OPTION INDICATOR X 101 1 is specified, 
the use code is returned by the Supervisor in 
the fourth byte of word 1. When OPTION IN­
DICATOR X•Ol• is not specified, this field 
does not contain an output parameter. 

OPERAND 

18 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 

5 

5.6. SUBROUTINE LINKAGE 

Direct linkage between programs residing in main storage is accomplished by the 
CALL, SAVE, and RETURN macro instructions. These macros never involve the 
Supervisor during their execution. If direct linkage is desired with a program not 
resident in main storage, the program must first be loaded by the LOAD macro in­
struction. 

5.6.1. Linkage Register Conventions 

During the direct linkage process, certain registers are used for specific purposes 
to avoid conflicts in register use. These registers and their uses in the linkage 
procedure are: 

• Register 0 - parameter register 

• Register 1 - parameter or parameter list register 

PAGE: 

Registers 0 and 1 are used for passing parameters between linked programs 
(each parameter is four bytes long and is aligned on a word boundary). These 
registers are loaded with the parameters to be passed, or, in the case of a 
parameter list, the address of the first parameter in the list is loaded in register 
1. The last parameter in a parameter list has its sign bit set to 1. 

• Register 2 through 12 - free registers 

These registers are never used or referenced by the direct linkage macro instruc­

tions. 

• Register 13 - save area register 

If a save area is provided for the called program by the calling program (for 
temporary register storage), the address of the save area is loaded in register 

13 by the calling program. 

• Register 14 - return address register 

This register is loaded by the calling program with the address to which control 
should be returned following the execution of the called program. 

• Register 15 - entry point register 

This register is loaded by the calling program with the address of the entry point 
in the called program. This register can be used to provide initial addressability 
in the called program. 

5.6.2. Linkage Procedure 

The calling program establishes direct linkage with another program by means of 
the CALL macro instruction. If registers are used in the called program (other than 
0, 1, and 15), the SAVE macro instruction must be used to save their content. The 
RETURN macro is used to return control to the calling program. 

19 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 5 
SECTION: 

The calling program is responsible for the following: 

• Loading register 13 with the address of a 72-byte save area (if one is required 
by the called program). 

• Loading the parameter registers, if necessary. 

• Loading register 14 with the return address. 

• Loading register 15 with the entry point in the called program. 

The called program is responsible for the following: 

• Saving the content of all registers used by it, with the exception of registers 0, 
1, and 15 which are considered volatile. The contents of registers are saved in 
the area addressed by register 13. 

• Following its execution, the called program must reload the saved registers and 
transfer program control to the return address loaded in register 14 by the called 
program. 

5.6.3. CALL Macro Instruction (Type R) 

The CALL macro instruction is written in the calling program to establish direct 
linkage with the called program. Only programs loaded into main storage can be 
called with this macro instruction. 

The format of the CALL macro instruction is: 

LABEL 15 OPERATION 15 OPERAND 

[name] 
[ {

(param-1, ... ,param-n)}] 
, list-address 

(1) 
{

entry-point} 

(15) 
CALL 

POSITIONAL PARAMETER 1 

en try-point - the symbolic address of the entry point in the called program to 
which program control is to be given. 

PAGE: 

(15) indicates that register 15 has been preloaded with the address of 
the called program. 

POSITIONAL PARAMETER 2 

param-1 

param-n 

- specifies the parameter list to be passed to the called program. 
The parameters of the list must be written in a sublist of the call 
line. Included in the CALL macro expansion is the generated list 
of parameters in the same order as written on the call line. Each 
parameter is considered as one fullword and is aligned on a full­
word boundary. The three low order bytes of each generated word 
contain the address of a parameter. The sign bit of the last para­
meter in the list is set to 1. The address loaded in register 1, 
prior to control being transferred to the called program, is the 
address of the first parameter in the list. 

20 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 
SECTION: 5 PAGE: 

list-address - the symbolic address of a parameter list. 

(1) - indicates that register 1 has been preloaded with the address of 
the parameter list. 

if blank - no parameters are assumed. 

Examples: 

LABEL 1i OPERATION 1i OPERAND 1i 
10 16 

s 

I I I I I I I 

5.6.4. SAVE Macro Instruction (Type R) 

The SAVE macro instruction is written at the entry point of the called program. Its 
purpose is to save registers used by the called program. The save area is supplied 
by the calling program and its address is contained in register 13. If no registers 
are to be saved by the calling program, the SA VE macro instruction can still appear 
at the entry point to denote the beginning of a callable routine. 

The format of the SAVE macro instruction is: 

LABEL 1> OPERATION 15 OPERAND 

[name] SAVE [(rl,r2)][, T] 

POSITIONAL PARAMETER 1 

(rl,r2) 

if blank 

- specifies the registers whose contents are to be saved (in the 
form required by the Store Multiple, STM, instruction). 

- no registers are saved. 

POSITIONAL PARAMETER 2 

T 

if blank 

- specifies that the contents of registers 14 and 15, if not saved 
by positional parameter 1, are to be saved in words 4 and 5 of 
the save area. If T and r2 are specified, and rl is 14, 15 , 0, 1, 
or 2, the contents of all registers from 14 through the register 
specified by r2 are saved. 

- the contents of the registers specified by positional parameter 
1 are stored in the save area. 

21 



UP-7689 

1 

UNIVAC 9400 SUPERVISOR 5 
SECTION: PAGE: 

Examples: 

LABEL 1i OPERATION t; OPERAND t; 
10 16 

_i _i l 1 1 I SIA V1E1 ( 121 6i) I I I I I I I I I J__i I I I I I I _i_iJ_i 

_i l l _j 
s 1 A v1E 1 ' Tl I I I I I I I I I I _i J 

_l_l_ill11 j I I I _i I I I I I I I I I I I I I I I l_l-11-1 I I I I I 1_i_iJ_i 

5.6.5. RETURN Macro Instruction (Type R) 

The RETURN macro instruction is used to reload the registers, whose contents 
were saved by a SAVE macro instruction, and return program control to the calling 
program. Register 13 must contain the address of the save area before this macro 
instruction is executed. 

The format of the RETURN macro instruction is: 

LABEL 1> OPE RATION 15 OPERAND 

[name] RETURN [(rl, r2)][,T] 

POSITIONAL PARAMETER 1 

(rl, r2) 

if blank 

- specifies the registers to be reloaded (in the form required by 
the Load Multiple, LM, instruction). 

- no registers are reloaded. 

POSITIONAL PARAMETER 2 

T 

if blank 

- specifies that registers 14 and 15, if not reloaded by the positional 
parameter 1, are to be reloaded from words 4 and 5 of the save 
area. If T and r2 are specified, and rl is 14, 15, 0, 1, or 2, then 
all registers from 14 through the register specified by r2 are re­
loaded. In addition, binary ones are stored in the high order byte 
of word 4 of the save area to indicate that the return has occurred. 

- the registers specified by positional parameter 1 are loaded from 
the save area. 

Examples: 

LABEL 1i OPERATION t; OPERAND 
10 16 

( 2 ' 6 ) 

I I I I I I 

22 



UP-7689 

. ....__.., 

UNIVAC 9400 SUPERVISOR 
SECTION: 5 PAGE: 

5.6.6. Register Save Area Usage 

Standard register save areas are used with the CALL, SAVE, and RETURN macro 
instructions. In addition to these macro instructions, proper save area usage depends 
upon the user observing the conventions and procedures described in 5.6.1 and 
5.6.2. 

A save area is established by one program (the calling program) for use by a second 
program (the called program). If the called program finds it necessary to use any of 
registers 2 through 14 thereby destroying their contents, the called program must 
store the original contents of these registers in the save area provided by the calling 
program, before using them. The called program itself can be a calling program, and 
must provide a save area for its called program (the third program in the chain). Any 
number of programs can be chained together in this manner. It is not necessary to 
have a save area in the last program of a chain. 

The format of a save area is shown in Figure 5-1. 

J_ I _j_ 

INDICATOR l SAVE AREA LENGTH 

SAVE AREA BACKWARD LINK ADDRESS (RD$) 

SAVE AREA FORWARD LINK ADDRESS (RD$) 

12 CALLING PROGRAM RETURN ADDRESS (RE$) 

16 CALLED PROGRAM ENTRY POINT ADDRESS (RF$) 

20 PROBLEM REGISTER 0 (RO$) 

24 PROBLEM REGISTER 1 (RI$) 

28 PROBLEM REGISTER 2 (R2$) 

32 PROBLEM REGISTER 3 (R3$) 

36 PROBLEM REGISTER 4 (R4$) 

40 PROBLEM REGISTER 5 (R5$) 

44 PROBLEM REGISTER 6 (R6$) 

48 PROBLEM REGISTER 7 ( R7$) 

52 PROBLEM REGISTER 8 (R8$) 

56 PROBLEM REGISTER 9 (R9$) 

60 PROBLEM REGISTER 10 (RA$) 

64 PROBLEM REGISTER 11 (RB$) 

68 PROBLEM REGISTER 12 (RC$) 

NOTE: Each word in the save area is aligned on a fullword boundary. 

Figure 5-1. Standard Register Save Area 

23 



UP-7689 

i 

UNIVAC 9400 SUPERVISOR 
SECTION: 

5 
PAGE: 

A more detailed description of the contents of the fields within a save area is provided 
in the following paragraphs. 

• Byte 0 

• Bytes 1 - 3 

• Bytes 4 - 7 

- can be used as an indicator for the problem program; however, 
this area is free for any use by the problem program. 

can be used to indicate the length of the save area; however, 
this area is free for use by the problem program. 

- if zero, indicates the first save area of a chain. Otherwise, this 
is the address of the save area used by the calling program which 
is located in the higher level program that called the calling pro­
gram. For example, bytes 4-7 of SAVE B (a save area in program 
B for the use of program C) contains the address of SAVE A (a 
save area in program A for the use of program B). It is the respon­
sibility of the calling program to store the backward link address 
in this field from register 13 before loading the current save area 
address in register 13. 

• Bytes 8 - 11 - if zero, indicates the last save area in a chain. Otherwise, this 
is the address of the save area in the most recently called pro­
gram. It is the responsibility of this called program to store the 
save area address in this field before calling a lower level pro­
gram. 

• Bytes 12 - 15 - the address in the calling program (as loaded in register 14) to 
which control is to be returned. This address must be stored in 
this field by the called program if that program intends to alter 
the contents of register 14. 

• Bytes 16 - 19 - the entry point address of the called program (as stored in 
register 15) to which control is to be transferred. This address 
must be moved to this field by the calling program. 

• Bytes 20 - 71 

--------- - ---- --- -

a storage area provided to contain the contents of registers 0 
through 12. The called program determines the number of registers, 
if any, to be saved. 

24 



( ( ( 

PROGRAM A ROGRAM~-B~~~~~- ·~~~~--~~~~~~~-PROGRAM~-C~~~~~~~--~~~~~~~~ 

LABEL 15 OPERATION 15 
1 10 

J J_. _J_ 

J_ J_. 

_J__L_J_ _J_ J _J_ _J_ l:J_A_1__L __!_ 

J CJ_A L L 

J_ J_ 

__L _J_ _J_ J_ _J_ l 

_j___L__L_J_J_J_ _l _J_ 

J J 

__L_J__J__j_J __L l _j_ 

...L...L...!....!.l...1...1. l ...!. 

J J_ 

__L 1 l 

J l 

J J_ _J_ 

J_ .l ...!. ...L 

..l. l _L J_J_ ...!. 

__L_J_ _J__j__ l l _j__ 

.l J_ ...!. 

l l_j__ 

...!. l _j_ l...1. ...L 

_J_ _j___Ll_j___L l· 

_j_ _J__L_j__ Ji_L 1· 

_j__ l _j__ l'_j___j__J__ 

S_1_A ~1§.i_Aj llj_C 

_j__j_.J....Ll...1....1. J....1....1. ...L 

OPERAND LABEL 15 OPERATION 15 OPERAND LABEL 15 OPERATION 15 
16 1 10 16 1 10 

_l ~__l_J_J_ _J_ _J_J_J_ J _J_ _J_ J_ J J_ J J 

_l J J_ J I J J J J 

&_D_L$_t_._LS_lA_LV_LE_LA_L J __!_ _L__L _J__L_J_ _J_ J _J_ _J_ J· _L__LJ _J_ _J_ _J_ _J_ l_1__J_ _J_ _j_J _L_L l _L l _J__L _J_ 

PR 0 G Bl- J_ _J_ J_ J· _J_ J J_ LL J_ J 

J_ ~ PR 0 G BJ SJ_A V E (_j_l 4' 1J_2) J_ J J J 

J_ J_ __L l J_. _l J_ J_ l l 

__L_j_ J_ _j_ J J J_. _l J J_ _J_ l __L J_ 

_J_ _l J J LJA_J_i ..L _B.Si_$ S_j_AVE B J_L J_ _J_ J J __L 

_J__J___L__LJ___L J l SJ_T R D $ , 4j_ ( 0 , R C_i$ ) J_ l l 

...!....!. J_ J J SJT RC$, BJ( 0, RD_i$) J J J· 

J_ J J LJ_R R Dti_ RJCciJ J_ J_ J l· 

_l J_ J CJ_A L L PR 0 G C+-- _l J_ J l· 

J_ l J l J J_ :r_ PROG CJ_ SJ_A VE 

_J_ __L__L_l J 1 J_ J_ _l J_ j J_. 

...!. ...!. ...L ...!. J_ ..l. ...!. ...!. ...!. .l ...!. ...!. ...L .l J_ J _l J ...!. .l ...1. 1· 

_J_ _J___L _1_J_ J J J J l J _j__J_J ._, RJE TU RN 

_J_ _J__j__ J__j__ ...!. l _J_ _J__j__ l_j___j__ l•_j__ ...!. _j__ J__j__j_ _j_ l _j_ _J_ J_ _1__l__i_ _j_ _J_ _j_l b:::i::::l _j__ _j__ J_1_..1. _J_ 

_J_ ...!. ...Ll _J_ _J_ _J_ _J_ .l _j___L_J_ _J_ _J_ __L _j_ J_ _J_ _J_ J· l _l l ->._L.l_J__J_ l 

J _J_ 1 _J__J___L_j_ l_j_ -1· l _l J_ _J__j__ l J 

...!. ...!. ...1.l...1...1. ...!. J_ ...l....l....L...l. j fil_E TUR N __ii_ 1 4 Jl 2 _l _l l J J_ 

_l J ~ _l. J_ J_ _j_ J_ l J_ _... 
_l J J_ J_· J J_ J_ J_ l 

_J_ _J___L _J_j__J___J_ _J_ _J_ l _J_ _J__j___j_ J__1_ _j_ _l_· J J_ J _J__j__l l 
XL 7 2 '_10 0 ' l SA VE BJ_ llj_C X_1_L 6 0 'J_O 0 '_1__1_J_ J_ l J_ _L 

...!. J_ l J__1_ _l_i_ _J_ ...L ...!. _j_ 1...1....1....1. _1__l_...1. ...1.l ...L...L l_i_ J_ ...L J_ ...L 

An example of how three programs can be linked together using CALL, SAVE, and RETURN 
macro instructions. 

OPERAND 
16 

J_ J 

J_ J 

_J_ _j__J_ _J_ J_ _J__L_j_ J_J_ 

J_ J_ 

J J_ 

l J_ 

J J_ 

_L_J_ J_ J 

l J 

J J_ 

J J 

l J 

( 1 4 ' 9J_) J 

J_ J 

J J_ 

( 1 4 ,J9) J 

J__j___j_ _j_ l J__j___j___j_ l J_ 

l __l___i__ 

l J_ 

l .l 

__L _J_ J_ _J_ _J_ J 

__L J_1_ _J_J 

_L_j___J_ _j__J _j_ l 
J_ _j___j_J 

...1.l...1....1....1....1.l...1. 

.. 
JTI 
0 
-t 
0 
z 

(Jl 

1l 
> 
a 
JTI 

tv 
(Jl 

c:: 
"'Cl • -..:i 

°' 00 
\0 

c: 
z 
< 
> n 

"° .,... 
0 
0 

Vt 
c: 
"ti 
m 
::0 
< 
Vt 
0 
::0 



UP-7689 UNIVAC 9400 SUPERVISOR 
PAGE: 5 SECTION: 

5. 7. LINKAGE TO USER ISLAND CODE SUBROUTINES 

The programmer can provide routines that are activated when the problem program is 
interrupted for: 

• Operator Communications 

An unsolicited message entered at the system console for the problem program. 

• Timer 

The expiration of an interval of time previously specified by a SETIME macro 
instruction (without positional parameter 2, WAIT). 

• Program Check 

The problem program has caused a hardware program check interrupt or a program 
error has resulted in a software program check. 

Programmed linkage between the Supervisor and each user island code subroutine is 
the responsibility of the programmer and a function of the STXIT and EXIT macro 
instructions. When an interrupt occurs which results in the activation of a user island 
code subroutine, problem registers 0 through 15 are stored in a save area specified by 
a STXIT macro instruction; the address of the save area is loaded into register 13. 
It is a function of the EXIT macro instruction to reload the registers from the save 
area at the termination of the island code subroutine. 

5. 7 .1. STX IT Macro Instruction 

The STXIT (set exit) macro instruction is used to establish, change, or terminate 
linkage between the Supervisor and each user island code subroutine. This macro in­
struction is used in conjunction with the EXIT macro instruction. The user may 
have a program check island code subroutine, an operator communications island 
code subroutine (required for unsolicited typei_ns from the operator to the problem 
program), and a timer island code subroutine, each of which must be linked to the 
Supervisor with a STXIT macro instruction. In the event of a timer interrupt for 
which no linkage is provided, the interrupt is lost and the proble!Il program is not 
notified. If a program check interrupt occurs and no program check island code 
subroutine is provided, the problem program is automatically aborted. 

• STXIT macro instruction (Type S) for operator communications island code sub­
routines. 

The format of the STXIT macro instruction when used to establish or terminate 
linkage with the user operator communications island code subroutine is: 

LABEL 15 OPERATION 15 

[name] STX IT 

OPERAND 

[ { 

en try-point,s ave-area, input-area ,length 
OC , 

(1) }] 
POSITIONAL PARAMETER 1 

oc indicates linkage is to be established, changed, or terminated with respect 
to the user operator communications island code subroutine. 

26 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 5 
SECTION: PAGE: 

POSITIONAL PARAMETER 2 

en try-point 

(1) 

if blank 

- the symbolic address of the entry point in the user operator com­

munications island code subroutine. 

indicates that register 1 has been preloaded with the address of 
a four-word parameter list containing positional parameters 2, 3, 
4, and 5. The sequence of the parameters within the parameter 

list follows: 

First word: Positional Parameter 2 (entry-point) 

Second word: Positional Parameter 3 (save-area) 

Third word: Positional Parameter 4 (input-area) 

Fourth word: Positional Parameter 5 (length) 

When the register option is not elected for positional parameter 
2, positional parameters 2, 3, 4, and 5 are written in sequence 

on the STXIT coding line. 

- previous linkage with the user operator communications island 

code subroutine is terminated. 

POSITIONAL PARAMETER 3 

save-area - the symbolic address of a standard 72-byte save area for register 

storage. 

POSITIONAL PARAMETER 4 

input-area - the address of an area reserved for unsolicited messages from 

the operator. 

POSITIONAL PARAMETER 5 

length the length <?f the input area. The size of this area can be from 
1 to 64 bytes. Messages that exceed this length will be truncated. 

• The STXIT macro instruction (Type R) for program check and timer island code 

subroutines. 

The format of the STXIT macro instruction when used to establish or terminate 
linkage with the user program check and interval timer island code subroutines is: 

LABEL o OPERATION o OPERAND 

[name] STXIT [{

IT t] [·{entry-point, save-area t,] 
Pcj (1) (O) j 

27 



UP-7689 UNIVAC 9400 SUPERVISOR 5 
SECTION: 

POSITIONAL PARAMETER 1 

IT 

PC 

if blank 

- indicates linkage is to be established, changed, or terminated 
with respect to the user timer island code subroutine. 

- indicates linkage is to be established, changed, or terminated 
with respect to the user program check island code subroutine. 

- IT is assumed. 

POSITIONAL PARAMETER 2 

entry-point - the symbolic address of the entry point of the user timer or 
program check island code subroutine. 

PAGE: 

(1) - indicates that register 2 has been preloaded with the entry-point 
address. 

if blank - linkage to the user timer or program check island code subroutine 
is terminated. 

POSITIONAL PARAMETER 3 

save-area - the symbolic address of a standard 72-byte save-area for register 
storage. 

(0) - indicates that register 0 has been preloaded with the save-area 
address. 

Examples: 

LABEL t; OPERATION ti OPERAND 
10 16 

T oc 

T 0 c' OPCO MM ' 
S VAR E A,, ,O,P,I IN,, 14 ,0 1 I I I 

T I T PT MER 
' 

SVARE A1 I I I l I I I I I I I 

T PC 0 

5.7.2. EXIT Macro Instruction (Type R) 

The EXIT macro instruction is used to terminate a user island code subroutine, 
restore the registers, and return program control to the point of interrupt in the 
problem program. The EXIT macro instruction is used in conjunction with the 
STXIT macro instruction. 

The format of the EXIT macro instruction is: 

LABEL t OPERATION t OPERAND 

[name] EXIT 

I 

I 

28 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 5 
SECTION: PAGE: 

POSITIONAL PARAMETER l 

PC - exit from a user program check island code subroutine. 

IT - exit from a user timer island code subroutine. 

oc - exit from a user operator communications island code subroutine. 

if blank - IT is assumed. 

Examples: 

LABEL 1i OPERATION 1i OPERAND 
10 16 

5.8. SYSTEM INFORMATION CONTROL 

The system information block exists within the storage area assigned to the Supervisor 
along with a number of job control blocks. Each problem program is assigned a 512-byte 
storage area at the beginning of the program which is known as the job preamble. The 
programmer can retrieve or read information from the system information block, the 
program's job control block, and the job preamble. In addition, the programmer can 
establish, change, or cancel information only within the 12-byte communication region 
of the job preamble. The programmer cannot alter any other of the contents of these 
privileged storage areas. The communication region is most commonly used to pass 
information from one job step to the next; 12 bytes of data can be stored by one job 
step and retrieved by subsequent job steps associated with the same job. 

The following macro instructions are provided to assist the programmer in accessing 
these restricted storage areas: 

• GET ADR - get absolute base address of: 

(1) the system information block 

(2) the job control block 

(3) the job preamble 

• GETCOM - retrieve the contents of the 12-byte communication region from within 
the job preamble. 

• PUTCOM - write a 12-byte character string into the communication region within 
the job preamble. 

29 



UP-7689 UNIVAC 9400 SUPERVISOR 5 
SECTION: PAGE: 

5.8.1. GETADR Macro Instruction (Type R) 

The GETADR macro instruction is used to acquire the absolute base addresses of 
the system information block, the job control block, and the job preamble. All 
programs are permitted to read and retrieve information from these storage areas. 
Whenever this macro instruction is executed, only the requested base address is 
given to the problem program; no data is moved as a result of issuing this macro 
instruction. If the information desired must be moved to the program area, the 
programmer must provide the commands using the returned address as the base 
address. The requested address is returned in register 1. 

The format of the GETADR macro instruction is: 

LABEL ti OPERATION t; OPERAND 

[name] GETADR 
[{

SIB t] 
JCB ( 
PRE) 

POSITIONAL PARAMETER l 

SIB get the base address of the system information block. 

JCB get the base address of the job control block. 

PRE get the base address of the job preamble. 

if blank - SIB is assumed. 

Examples: 

LABEL 1i OPERATION 1i OPERAND 
l 0 16 

GETADR 

ADR PRE 

S I B 

J CB 

The following example illustrates the use of the GETADR macro instruction in 
conjunction with standard system labels. 

LABEL 1i OPERATION 1i OPERAND 1i 
l 0 16 

DR S I B I l 

DATE( 8), SB$ DTE( l) 

I I I I I I 

I I I I 

DATE DC I J 

I I 

I I 

30 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 
SECTION: 5 PAGE: 

The execution of line 1 causes the base address of the system information block 
to be returned in problem register 1. The execution of line 2 causes the transfer of 
eight characters from a field in the system information block identified by the 
standard system label SB$DTE (date field) to the user field identified by the label 

DATE. 

5.8.2. GETCOM Macro Instruction (Type R) 

The GETCOM macro instruction is used to retrieve the contents of the 12-byte com­
munication region from within the job preamble. When this macro instruction is issued, 
12 bytes of information are moved to a storage area specified by the programmer. 

The format of the GETCOM macro instruction is: 

LABEL 15 OPERATION 15 OPERAND 

{ 

to-addr} 

(1) 
[name] GETCOM 

POSITIONAL PARAMETER l 

to-addr - the address of a 12-byte main storage area to which the contents 
of the communication region will be moved. 

(1) 

Example: 

LABEL 

COMAR EA 

indicates that register 1 has been preloaded with the address of 
a 12-byte main storage area. 

1i OPERATION 1i OPERAND 
l 0 16 

GETCOM COMAREA 

I I I I I I I 

DC I I I I I I I I I I 

31 



UP-7689 UNIVAC 9400 SUPERVISOR 
5 

SECTION: PAGE: 

5.8.3. PUTCOM Macro Instruction (Type R) 

The PUTCOM macro instruction is used to write 12 bytes of information into the 
12-byte communication region within the job preamble. When this macro instruction 
is issued, the information is moved from the area specified by the programmer to 
the 12-byte communication region in the job preamble. 

The format of the PUTCOM macro instruction is: 

LABEL 1s OPERATION 1s OPERAND 

[name] 
{ 

fr-addr} 

(1) 
PU TC OM 

POSITIONAL PARAMETER 1 

fr-addr 

(1) 

Example: 

LABEL 

COMAR EA 

the symbolic address of a 12-byte main storage area containing 
the data characters to be written in the communication region 
of the job preamble. 

indicates that register 1 has been preloaded with the address of 
the 12-byte storage area. 

t; OPERA TIOM 1; OPERAND 
10 16 

L A R1$,COMAREA 

PUT COM 

CL12'user·• nformat 0 n I 

5.9. CONTROL STREAM READER 

In disc systems, Job Control stores all job control streams on the resident direct 
access storage device. The GETCS macro instruction permits the problem program 
to read certain control statements and data images from their associated control 

streams. 

In tape systems, control streams are not stored on auxiliary storage, but are processed 
as they are introduced by the card reader. The GETCS macro instruction permits the 
problem !:lrogram to read certain control statements and data images from the control 

stream in the card reader. 

32 



UP-7689 

~/ 

I 

UNIVAC 9400 SUPERVISOR 5 
SECTION: PAGE: 

5.9.1. GETCS Macro Instruction (Type R) 

The GETCS macro instruction is used to retrieve data images and certain control 
statements from the job's control stream. Problem programs are permitted to access 
their respective control streams in order to retrieve PARAM, $ (start-of-data), and 
*(end-of-data) Job Control statements and data images. Each record retrieved is 
an exact image of the 80-byte source statement. 

The format of the GETCS macro instruction is: 

LABEL 15 OPERATION 15 OPERAND 

[name] GETCS 

POSITIONAL PARAMETER 1 

input-area 

(1) 

the symbolic address of the first byte of a main storage area 
large enough to contain the retrieved records. As each 80-byte 
record is retrieved from the control stream, it is copied into 
contiguous byte locations beginning with this address. 

indicates that register 1 has been preloaded with the address of 
the main storage input area. 

POSITIONAL PARAMETER 2 

#-record 

(0) 

if blank 

NOTES: 

- number of records requested. 

indicates that register 0 has been preloaded with the number of 
records. 

1 is assumed. 

(1) Following the execution of a GETCS macro instruction, register 0 contains the 
binary count of records retrieved. If no records are available in the control stream 
(that is, if the next sequential record in the control stream is not a PARAM, $, 
or* Job Control statement, or a data image), register 0 is set to binary zero. 

(2) If two or more records are requested by a single GETCS macro instruction, the 
first occurrence of an * (end-of-data) Job Control statement causes termination 
of the control stream reader function. Also, the first occurrence of a record that 
is not a PARAM or $Job Control statement, or a data image causes termination 
of the function. 

(3) If the control stream reader function is automatically terminated due to the 
detection and transfer of an * Job Control statement, a subsequent GETCS 
macro instruction causes the following record to be retrieved from the control 

stream. 

33 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 5 PAGE: 

(4) In tape systems, each execution of a GETCS macro instruction is limited to the 
retrieval of one control statement or one data image (that is, one card). 

(5) Program control is returned to the issuing program at the point immediately 
following the GETCS macro instruction. The address of a command control 
block is returned in register 1. The programmer can issue a WAIT or MARK 
macro instruction referencing this command control block. Thus, synchronization 
with the control stream reader is similar to that used with physical IOCS. 

(6) A GETCS macro instruction cannot be issued when there is either an OPR, 
RDFCB, or LOAD macro instruction outstanding. If this is attempted, a soft­
ware program check error results. 

Examples: 

LABEL 15 OPERATION 1; OPERAND 
10 16 

STATE 7 

5.10. PROGRAM CHECKPOINT 

When a problem program is expected to run for an extended period of time, the program­
mer should make provisions for periodic checkpoints. The CHKPT macro instruction 
is provided for this purpose and is used in conjunction with the restart function of 
Job Control. The restart function is called and activated when Job Control detects 
a RSTRT control statement in the job control stream. 

5.10.1. CHKPT Macro Instruction (Type S) 

The CHKPT macro instruction is used by the programmer to cause checkpoint 
records to be written, thus preserving the program's operating environment. This 
macro can be executed as frequently as the programmer wishes. When this macro 
instruction is issued, a serial number is assigned for subsequent reference by the 
RSTRT control statement. 

The format of the CHKPT macro instruction is: 

LABEL 1i OPERATION 15 OPERAND 

{

file-name ,res tart, file-list, error} 
[name] CHKPT 

(1) 

34 



UP-7689 UNIVAC 9400 SUPERVISOR 5 
SECTION: 

POSITIONAL PARAMETER l 

file-name - the symbolic address of the DTF (file definition) specified by 
the Data Management routines to be used when writing the 
checkpoint records. 

PAGE: 

(1) - indicates that register 1 has been preloaded with the address of 
a parameter list that contains the addresses of positional para­
meters 1 through 4. 

POSITIONAL PARAMETER 2 

restart - the symbolic address to which control is to be given when re­
starting the checkpointed program. 

POSITIONAL PARAMETER 3 

file-list - the symbolic address of a list of file addresses. This parameter 
is required for repositioning files when restarting the checkpointed 
program. 

POSITIONAL PARAMETER 4 

error - the symbolic address to which control is passed if an error occurs 
during the checkpoint operation. 

Examples: 

LABEL 15 OPERATION 'Ii OPERAND 
l 0 16 

CHKPT Fl E 

CHKPT 

5.11. PROGRAM TERMINATION AND STORAGE DISPLAY 

Four macro instructions are provided which cause program termination and storage 
display. 

• EOJ 

Normal job-step termination is a function of the EOJ (end-of-job step) macro 
instruction. 

• CANCEL 

The CANCEL macro instruction causes the immediate cessation of all activity 
scheduled for the job. 

35 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 

5 

• DUMP 

The DUMP macro instruction causes a display of main storage followed by the 
termination of the job step, but it does not cause the cancellation of remaining 
scheduled job steps associated with the job. 

• SNAP 

PAGE: 

The SNAP macro instruction is used to display main storage during the execution 
of a job step. 

Job Control is called into main storage when program termination takes place. 

5.11.1. EOJ Macro Instruction (Type R) 

The EOJ macro instruction is used to cause normal job step termination. 

Job Control is then loaded in the problem program area to prepare the next scheduled 
job step or, if the current job step is the last, terminate the job. 

The format of the EO J macro instruction is: 

LABEL 15 OPERATION 15 OPERAND 

[name] EOJ 

No parameters are required by the EOJ macro instruction. 

Example: 

LABEL 11 OPERA TIOM 1i OPERAND 
l 0 16 

ND J S 

5.11.2. CANCEL Macro Instruction (Type R) 

The CANCEL macro instruction is used to cause the immediate cessation of all 
processing for the current job step and any remaining job steps scheduled for the 
job. This macro instruction can be executed at any time and cancellation is immedi­
ate (the CANCEL macro instruction has the same function as the CANCEL operator 
command, see 6.5.12). 

The format of the CANCEL macro instruction is: 

LABEL 15 OPERATION 15 OPERAND 

[name] CANCEL 

No parameters are required by the CANCEL macro instruction. 

36 



UP-7689 

. .._..,. 

UNIVAC 9400 SUPERVISOR 5 PAGE: SECTION: 

Example: 

LABEL 11 OPERATION 1i OPERAND 1i 
10 16 

L 

5.11.3. DUMP Macro Instruction (Type R) 

The DUMP macro instruction is used to cause a printout of main storage followed 
by termination of the job step. The termination procedure used is identical to the 
EOJ function (job step termination). 

The format of the DUMP macro instruction is: 

LABEL 15 OPERATION 15 OPERAND 

[name] DUMP 

No parameters are required by the DUMP macro instruction. 

Example: 

LABEL 11 OPERATION 1i OPERAND 1i 
10 16 

DUMP 

5.11.4. SNAP Macro Instruction (Type S) 

The SNAP macro instruction is used to display the contents of the 16 problem 
registers and selected main storage areas within the problem program. 

The format of the SNAP macro instruction is: 

LABEL 15OPERATION15 OPERAND 

[name] SNAP 
{

be ginning-addr, endin g-addr, ... , addressing-pairs } 

(1) 

POSITIONAL PARAMETER 1 

beginning­
addr 

- the symbolic beginning address of the main storage area to be 
displayed. This parameter is used with positional parameter 2 
to form a beginning and ending addressing pair of a main storage 
area. Successive parameter pairs (3 and 4, 5 and 6, etc.) specify 
the beginning and ending addresses of additional main storage 
areas to be displayed. 

37 



UP-7689 UNIVAC 9400 SUPERVISOR 5 

(1) 

SECTION: PAGE: 

- indicates that register 1 has been preloaded with the address of 
a parameter list which contains the beginning and ending addresses 
of the main storage area(s) to be displayed. When the special register 
notation form of the SN AP macro instruction is used, the programmer 
has the responsibility of providing a parameter list containing the 
beginning and ending addresses of the main storage area(s) to be 
displayed. The end of the parameter list is indicated by setting the 
sign bit of the last word in the parameter list to 1. 

POSITIONAL PARAMETER 2 

ending-address - the symbolic ending address of the main storage area to be 
dis played. This parameter is used with positional parameter 1 
to form a beginning and ending addressing pair of a main storage 
area. Successive parameter pairs (3 and 4, 5 and 6, etc.), specify 
the beginning and ending addresses of additional main storage 
areas to be displayed. 

POSITIONAL PARAMETERS 3 THROUGH n 

addressing­
pairs 

Examples: 

- symbolic addresses specifying the beginning and ending addresses 
of additional main storage areas to be displayed. 

LABEL 1i OPERATION 1i OPERAND 1i 
10 16 

LI T 

L I ST 

A FROM2 

x I 8 0 I 

AL3(T02) 

FRO Ml, TOt, FROM2, T02 

38 



UP-7689 UNIVAC 9400 SUPERVISOR 6 
SECTION: PAGE: 

S. OPERATOR COMMUNICATIONS 

6.1. GENERAL 

Facilities are provided in the UNIVAC 9400 System to permit two-way communications 
between the operator and both the operating system and problem programs. These 
communications facilities include the following: 

• Operator messages _t_o the operating system 

• Operating system messages to the operator 

• Operator commands to the operating system 

• Operator messages to problem programs 

• Problem program messages to the operator 

All messages between the operator and the operating system or problem programs are 
printed at the system console and are automatically time stamped by the operator 
communications function of the Supervisor (that is, prefixed by the time). All messages 
are printed at the system console by means of the OPR macro instruction. Operator 
replies to problem program messages are handled automatically by the Supervisor, but 
unsolicited messages by the operator must be handled by the operator communications 
island code subroutine (see 5.7). 

6.2. MESSAGE FORMATS 

All messages have the following general format: 

prefix mes sage•text® 

The prefix always contains the time expressed in the form hh:mm. 

where: 

hh specifies the hour (00 to 99) 

mm specifies the minute (00 to 59) 

The prefix can also contain additional information and symbols depending on the type 
of message. The second part of the message (that is, the message text) contains either 
a clear text message for the operator, or specific words and/or symbols required by the 
operating ~ystem or problem program. The end-of-message symbol® is always required 
as the last character of a message. 

1 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 

6 
PAGE: 

6.3. OPERATOR MESSAGES TO THE OPERATING SYSTEM 

All messages from the operator to the operating system are either solicited (replies to 
messages) or unsolicited (directions to the systems error job). 

Messages from the computer operator have the format: 

@bhh:mmhj j Rhrep ly® 

or 

@bhh:mmhjj ,hunsol ic ited-message® 

NOTE: The symbol 15 signifies a required space; this symbol is not printed. 

• Character positions 1 through 8 

prefix - the prefix (@tihh:mmo) is printed as a response when the ATTENTION 
key at the system console is depressed. This response is printed to 
indicate the readiness of the Supervisor to accept a message from the 
operator. If the Supervisor is not ready to accept a message, the time 
response is delayed and the console is temporarily locked. As 
soon as the Supervisor is ready, the time is printed and the carriage 
is not returned to the left margin of the page. The operator can then 
type in his message. 

• Character positions 9 and 10 

jj - the number of the job for which the message is intended. 

• Character positions 11 and 12 

,o 

- when replying to a previous message, the operator types Rt5 
in these character positions. 

following the job number typein for an unsolicited message, the 
operator depresses the end-of-message key. If the error job can 
accept the unsolicited message, the Supervisor responds with a 
,o. Then the operator types the message-text. 

• Character positions 13 through 75 

message-text - the operator types in the reply or unsolicited message according to 
the prescribed format. The format depends on the particular element 
of the operating system that is to receive the message. 

® the end-of-message symbol must be the last character of the message. 

2 



UNIVAC 9400 SUPERVISOR 
SECTION: 6 PAGE: 

6.4. OPERATING SYSTEM MESSAGES TO THE OPERATOR 

All messages between the operating system and the computer operator are printed at 
the operator's console and are automatically time stamped by the operator communica­
tions function of the Supervisor. 

Elements of the operating system issue the following types of full text messages to 
the computer operator: 

• Action 

This type of message is issued when operator intervention and assistance are 
required before processing of the requesting element can continue. Mounting 
disc packs, and turning on power to devices are examples of operator actions 
requested by this type of message. 

• Information 

This type of message is issued when information is passed to the operator for his 
information and for inclusion in the system's chronological log. Notification of normal 
job termination is an example of this type of message. 

• Decision 

This type of message is issued when the operating system reaches a point in its 
processing where a choice between the alternate courses of action must be made by 
the operator before processing can continue. Asking the operator to decide whether 
to retry an error recovery procedure or to abort the problem program are examples of 
this type of message. 

All messages from the Supervisor to the operator have the format: 

*thh:mm'bj j'bmessage•text 

or 

'bthh :mm'bj j'bme s sage-text 

NOTE: Theo symbol signifies the presence of a required space; this symbol is not 
printed. 

• Character position 1 

* 

if blank 

- indicates that the operator must reply to the message before processing 
of the affected job step(s) can continue. 

- no reply is necessary. Processing continues immediately following 
the message typeout. 

• Character position 2 

t - type of message character: 

A - action 

I - information 

D - decision 

3 



UP-7689 UNIVAC 9400 SUPERVISOR 

• Character positions 3 through 7 

prefix - hh:mm 

where: 

hh is the hour of day (00 to 99) 

mm is the minute (00 to 59) 

• Character position 8 

always blank 

• Character positions 9 and 10 

jj - jo b-num her 

• Character position 11 

always blank 

• Character positions 12 through 15 

6 
SECTION: 

eenn - ee are two alphabetic characters identifying a particular element 
of the operating system. 

PAGE: 

- nn are two alphanumeric characters identifying a particular message 
from that element. 

• Character position 16 

always blank 

• Character positions 17 through 75 

message-text - clear text 

6.5. OPERATOR COMMANDS TO THE OPERATING SYSTEM 

Commands from the operator to the operating system are messages directing the 
Supervisor in its operations, 

These commands have the following format: 

@bhh:mm'bcommand® 

• Character positions 1 and 2 

always blank 

• Character positions 3 through 7 

prefix - the prefix (hh:mm) is printed by the Supervisor as a response, whenever 
the ATTENTION key at the operator's console is depressed. 

4 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 

6 
PAGE: 

• Character position 8 

always blank 

• Character positions 9 through 80 

command - a string of from three to eight characters and beginning with an alphabetic 
character is considered a command. This character string is compared 
against a list of valid commands before the command is accepted. 

If parameters are required by the command, at least one blank character 
must separate the command from its parameters, and parameters are 
separated by commas. 

NOTE: All operator commands are from 2 to 8 characters in length, but can be defined 
by typing in only the first two characters; for example, SE for SET, DE for 
DELETE, etc. Likewise, parameters which identify subfunctions can also 
be specified by the first two characters; for example, SE CL for SET CLOCK. 

@ - the end-of-message symbol must be the last character of this message. 

6.5.1. SET Command 

The SET command is used for any of the following: set the date (month, day, and 
year) in the system information block, set the time of day in the simulated day clock, 
set the system program switch indicator in the system information block, store a 
character string in the system communication region of the system information block, 
or set specific information and status bits in the physical unit blocks. The particular 
function performed by the SET command is determined by positional parameter 1 which 
follows the word SET. Due to the complex structure of the SET command, each of the 
functions previously mentioned is illustrated separately. 

• DATE 

The SET command when used to set the date field in the system information block 
has the format: 

SET DATE,xx/xx/xx [,yyddd] [,yyddd] 

POSITIONAL PARAMETER 1 

DATE - indicates that the following positional parameter(s) will be stored 
in the appropriate date fields within the system information block. 

POSITIONAL PARAMETER 2 

xx/xx/xx - usually specifies the month (01-12), the day (01-31), and the year 
(00-99) in any order. (However, any eight characters can be specified 
as positional parameter 2.) 

5 



UP-7689 UNIVAC 9400 SUPERVISOR 6 
SECTION: PAGE: 

POSITIONAL PARAMETER 3 

yyddd - this date is stored in the form 15yyddd (in EBCDIC) and is used by 
data management when checking tape file labels. 

if blank - the appropriate field in the system information block remains 
unchanged. 

POSITIONAL PARAMETER 4 

yydd - is stored in the form "bydd (discontinuous binary) and is used by 
data management to check disc file labels. 

if blank - when positional parameter 3 is not specified, the appropriate field in the 
system information block remains unchanged. If, however, positional param­
eter 3 is specified, the date specified by that parameter is converted to 

• CLOCK 

the form 1iydd and stored in the appropriate field of the system information 
block. 

The SET command, when used to set the time of day in the simulated day clock, 
has the format: 

SET CLOCK,hh:mm 

POSITIONAL PARAMETER l 

CLOCK - indicates that the simulated day clock will be set to the time 
specified by positional parameter 2. 

POSITIONAL PARAMETER 2 

hh:mm - hh specifies the hour (00 to 99) and mm specifies the minute 
(00 to 59). 

• COMREG (Communication Region) 

The SET command, when used to store information in the system communication 
region, has the format: 

SET COMREG,character-string 

POSITIONAL PARAMETER l 

COM REG - indicates that the character-string specified by positional parameter 
2 will be stored in the system communication region in the system 
information block. 

POSITIONAL PARAMETER 2 

character-string - 1 to 24 hexadecimal characters (specified by x•xx ... ') or 1 to 12 
EBCDIC characters (specified by C•cc ... ')to be stored in the 
12-byte system communication region. 

6 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 

6 
PAGE: 

• SPSI (System Program Switch Indicator) 

The SET command, when used to set the system program switch indicator, has the 
format: 

SET SPSl,switch-setting 

POSITIONAL PARAMETER 1 

SPSI - indicates that the system program switch indicator will be set to 
the bit pattern specified by positional parameter 2. 

POSITIONAL PARAMETER 2 

switch-setting - one to eight characters, either 0, 1, or X. Each typed-in 1 or 0 
character is used to change an individual bit position of the system 
program switch indicator within the system information block. (The 
SPSI is the last byte in the 12-byte system communication region.) 
Character positions containing 0 cause the respective bit positions 
to be set to O; character positions containing 1 cause the respective 
bit positions to be set to 1; character positions containing X are 
unchanged. Any unspecified rightmost character positions are 
assumed to be X. 

Examples: 

SPSI BIT POSITIONS 
CONDITION 

0 1 2 3 4 5 6 7 

ASSUMED SETTING 0 1 1 1 0 0 0 1 

FIRST TYPEIN - SET SPSI, 1 

FIRST RESULT 1 1 1 1 0 0 0 1 

SECOND TYPEIN - SET SPSI, XOOOl 

SECOND RESULT 1 0 0 0 1 0 0 1 

THIRD TYPEIN - SET SPSI, XXXXXXXO 

THIRD RESULT 1 0 0 0 1 0 0 0 

FOURTH TYPEIN - SET SPSI, 00000000 

FOURTH RESULT 0 0 0 0 0 0 0 0 

7 



UP-7689 

• 

UNIVAC 9400 SUPERVISOR 
SECTION: 6 PAGE: 

• IO 

The SET command, when used to set bits within the physical unit blocks, has 
the format: 

Q2.WN 
Y! 
~ARE 
NOSHARE 
ALT, pub-identifier 
ftlANNEL, chnl/cochnl 

SET 10,pub-identifier, ll PE, type-code 
DEVICE, device-address 
VOLUME, volume-serial-number 
RES 
RDR 
iPT 
bQG 
PCH 
LST 

POSITIONAL PARAMETER 1 

IO - indicates that a change is to be made within the physical 
unit block specified by positional parameter 2. 

POSITIONAL PARAMETER 2 

pub-identifier - three characters identifying the physical unit block to 
be changed (these characters are available following 
system generation). 

POSITIONAL PARAMETER 3 

DOWN 

UP 

SHARE 

NO SHARE 

ALT 

CHANNEL 

TYPE 

DEVICE 

VOLUME 

- sets the device status to down. 

- sets the device status to up. 

- permits the device to be allocated to more than one program 
simultaneously. 

- forbids allocation of the device to more than one program 
simultaneously. 

- stores the address of the physical unit block identified by 
positional parameter 4 in the alternate device field of the 
physical unit block. 

- stores positional parameter 4 in the channel/cochannel 
field of the physical unit block. 

- stores positional parameter 4 in the device field of the 
physical unit block. 

- stores positional parameter 4 in the device-address field 
of the physical unit block. 

stores positional parameter 4 in the volume-serial-number 
field of the physical unit block. 

8 



UP-7689 UNIVAC 9400 SUPERVISOR 

RES 

RDR 

IPT 

LOG 

PCH 

LST 

SECTION: 6 

- used to identify the peripheral device specified by posi­
tional parameter 2 as the system resident device. This 
device can be either a magnetic tape unit or disc drive. 

- used to identify the peripheral device specified by posi­
tional parameter 2 as the system reader. This device can 
be a card reader, magnetic tape unit, or disc drive. 

PAGE: 

- used to identify the peripheral device specified by posi­
tional parameter 2 as the system primary input device for 
reading control streams. 

- used to identify the peripheral device specified by posi­
tional parameter 2 as the system logging device. This 
device is usually the system console. 

- used to identify the peripheral device specified by posi­
tional parameter 2 as the system card punch. 

- used to identify the peripheral device specified by posi­
tional parameter 2 as the system listing device. This 
device can be a line printer, magnetic tape unit, or disc 
drive. 

POSITIONAL PARAMETER 4 

pub-identifier 

chnl/ cochnl 

- three characters identifying the alternate physical unit 
block. 

- two characters specifying the legal channel routes to the 
device. The first character specifies the primary channel 
and the second specifies the secondary channel. If the 
two characters are equal, no cochanneling is possible. 

type-code - two characters specifying the device and its options. 

device-address - two characters specifying the device address. 

volume-serial-number - from one to six characters representing the volume serial 
num her to be stored in the physical unit block. This 
number is considered to be right-justified and, if less than 
six characters, is zerofilled to the left. 

9 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 

6 
PAGE: 

Examples of the SET command follow: 

@ 09:40 SET DATE,09130167e 

@ 09:50 SET CLOCK,09:59• 

@ 11: 40 SET COMREG,X'01001A4BFFFF01298800FFFF'e 

@ 11:59 SET SPSl,0111XXX• 

@ 12:22 SET I 0,802, UP• 

@ 12:42 SET I 0,802,SHAR.E• 

@ 12:50 SET IO,AC0,RES• 

6.5.2. LOG Command 

The LOG command is used to cause all Job Control statements to be included in the 
system log as they are processed and executed by Job Control. 

The LOG command has the format: 

LOG 

No parameters are required by the LOG command. 

An example of the LOG command is: 

=-==-:J 
6.5.3. NOLOG Command 

The NOLOG command is used to suppress the logging of all Job Control statements. 

The NOLOG command has the format: 

NO LOG 

No parameters are required by the NOLOG command. 

An example of the NOLO G comm and is: 

10 



UP-7689 

I 

UNIVAC 9400 SUPERVISOR 
SECTION: 6 

6.5.4. FILE Command (Disc Systems Only) 

The FILE command is used to call the file function of Job Control for the purpose 
of filing job streams in the job file on the system resident direct access device. 

The FILE command has the format: 

FILE [nn] 

POSITIONAL PARAMETER 1 

nn - the number of job streams to be read from the card input device and 
filed in the job file on the resident direct access storage device (nn 
equals the number of JOB statements appearing in the control stream to 
be filed), Each time a job stream is filed, nn is decremented by one. 
When nn equals zero, the file function terminates, 

if blank - the file function terminates upon encountering the first blank card 
following an & (end-of-job) Job Control statemenL 

An example of the FILE command is: 

@ 1?:42 FILE® 

@ 14:)0 Fl 6® 

6.5,5. DELETE Command (Disc Systems Only) 

The DELETE command is used to call the delete function of Job Control for the 
purpose of deleting job streams from the job file on the system resident direct 
access device. 

The DELETE command has the format: 

{ 

jobname} 
DELETE 

ALL 

POSITIONAL PARAMETER 1 

PAGE: 

jobname - the one- to eight-character job identification appearing in the JOB state­
ment of the filed job stream to be deleted from the job file. 

ALL - used to delete all entries in the index of the job file. When ALL is used, 
the entire storage area assigned to the job file is reclaimed for subsequent 
filing operations. 

Examples of the DELETE command are: 

@ 15:29 DELETE TESTRUN0® 

@ 16: 16 OE ALL© 

11 



UP-7689 UNIVAC 9400 SUPERVISOR 6 
SECTION: PAGE: 

6.5.6. RUN Command 

The RUN command is used to call the control portion of Job Control for the purpose 
of preparing and loading a job for execution. In disc systems, only job streams filed 
in the job file can be selected. In tape systems, the job stream is introduced through 
the card reader. 

The RUN command has the format: 

RUN jobname[,priority ][,GO] 

POSITIONAL PARAMETER l 

jobname - the one- to eight-character job identification appearing in the JOB state­
ment of the job stream to be executed. 

POSITIONAL PARAMETER 2 

priority - the number 1, 2, or 3 indicating the user priority level at which the job 
will be run. This priority code overrides the one specified by the JOB 
statement. 

if blank - the priority level specified by the JOB statement is used. 

POSITIONAL PARAMETER 3 

GO - the job is assigned to the switch list and marked ready immediately 
following the job preparation and loading sequence. 

if blank - the job is assigned to the switch list and marked nonready. A GO 
command is necessary to change the status to ready when the GO param­
eter is not included in the RUN command. 

An example of the RUN command is: 

TEST~-'-G_O_©-~-~~~~~-~~~~] 
6.5.7. GO Command 

Jobs loaded by the RUN command without the GO parameter are not allowed to 
compete for central processor time due to their nonready status. The GO command 
changes the job's status from nonready to ready. 

The GO command has the format: 

GO jobnumber 

POSITIONAL PARAMETER l 

jobnumber - the job number (10 through 99) assigned by Job Control and printed at 
the console following the RUN command. This number identifies 
the job to be made ready for execution. 

12 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 6 

An example of the GO comm and is: 

~-?©---~------------==------] 
6.5.8. READY Command 

The READY command is used to inform Job Control that requested operator actions 
have been completed, 

The READY command has the format: 

READY jobnumber 

POSITIONAL PARAMETER 1 

PAGE: 

jobnumber - the jobnumber (10 through 99) assigned to the job by Job Control and 
printed at the system console following the RUN command. This number 
indicates which job the operator's actions pertain to and can be correlated 
with the requests appearing in the system log. 

An example of the READY command is: 

----
6.5.9, LIST Command 

The LIST command causes the contents of the system information block, the job 
control blocks, the physical unit blocks, and the index of the job file to be included 
in the system log. 

The LIST command has the format: 

1 
SIB J 

LIST JP 
- 10 

JOBS 

POSITIONAL PARAMETER 1 

SIB 

JP 

IO 

JOBS 

- print the system information block. 

- print the job control blocks and job preambles. 

- print the physical unit blocks. 

- print the index of the job file. 

13 



UP-7689 UNIVAC 9400 SUPERVISOR 

Examples of the LIST command are: 

@ 17:57 LIST SIB© 

@ 18:44 LI JOBS~ 

6.5.10. PA USE Command 

6 
SECTION: PAGE: 

The PA USE command is used to cause a delay between two job steps of a specific 
job, and can be used for operator intervention. This command can be given at any 
time with the delay occurring at the conclusion of the currently running job step. 

The PAUSE command has the format: 

PAUSE jobnumber, user-comment 

POSITIONAL PARAMETER 1 

jobnumber - the job number assigned to the job by Job Control and printed at 
the console following the RUN command. 

POSITIONAL PARAMETER 2 

user-comment - any character string to be printed at the system console. 

NOTE: When the pause occurs, the word "PA USING" and the jobnumber are printed 
at the console. 

An example of the PAUSE command followed by the message printed when the delay 
occurs is: 

@ 1 1 : Ql 0 PA USE 1 9 , END PA SS 1 $ 

I 11 : 12l 1 01 JC~ 7 19 PA US l NG 

6.5.11. STOP Command 

The STOP command is used to suspend a job between job steps. To be effective, 
it must follow a PAUSE command for the same job. 

The STOP command has the format: 

STOP jobnumber, jobname 

POSITIONAL PARAMETER 1 

jobnumber - the jobnumber assigned to the job by Job Control and printed at the 
system console following the RUN command. 

14 

---



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 6 PAGE: 

POSITIONAL PARAMETER 2 

jobname - the one- to eight-character job identification appearing in the JOB 
statement. The job's number and name are both required to avoid 
erroneous job suspensions due to type-in errors by the operator, The 
jobname is retrieved and compared against the name appearing in the 
STOP command. If the name and number are not as specified by Job 
Control, the STOP command is rejected, The operator must then re -
submit the command with the correct number and name, 

An example of the STOP command is: 

~12;:;3 ST~ 12,MEANVALU• ______ ] 
6.5.12. CANCEL Command 

The CANCEL command is used to cause the immediate cessation of all processing 
for a job running in the system. The CANCEL command can be given at any time 
and results in immediate termination of the currently running job step and any re­
maining job steps scheduled for the job. 

The CANCEL command has the format: 

CANCEL jobnumber,jobname 

POSITIONAL PARAMETER l 

jobnumber - the jobnumber assigned to the job by Job Control and printed at the 
console following the RUN command. 

POSITIONAL PARAMETER 2 

jobname - the one- to eight-character job identification appearing in the JOB 
statement. The job's number and name are both required to avoid 
erroneous job cancellations due to type-in errors by the operator. 
The jobname is retrieved and compared against the name appearing 
in the CANCEL command. If the name and number are not as specified 
by the Job Control program, the CANCEL command is rejected. The 
operator must then resubmit the command with the correct number and 
name. 

An example of the CANCEL command is: 

~ 1: 43 CANCEL ~-P-A_Y_R_o_LL_• _____ =:== =1 

15 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 6 

PAGE: 

6.5.13. DUMP Command 

The DUMP command is used to get a printout of main storage and terminate a job 
step if specified. Remaining job steps for the job are not cancelled and control is 
given to Job Control following the printout. 

The DUMP command has the format: 

DUMP { SYSTEM } 
- jobnumber, jobname 

POSITIONAL PARAMETER l 

jobnumber - the jobnumber assigned to the job by Job Control. 

SYSTEM - causes the printout of the entire main storage. No jobs are terminated. 

POSITIONAL PARAMETER 2 

jobname - the one- to eight-character job identification appearing in the JOB 
statement. The job's nun;iber and name are both required to avoid 
erroneous job step cancellations due to type-in errors by the operator. 
The jobname is retrieved and compared against the name appearing in 
the DUMP command. If the name and number are not as specified by 
Job Control, the DUMP command is rejected. The operator must then 
resubmit the command with the correct number and name. 

E_9_o_u_iv._~_J_;_;_0_1© ________ ===1 
E_2_o_u~_r_E_M_~ ______ = J 

6.5.14. ALTER Command 

The ALTER command is used to introduce object code alterations by means of 
the system console at program run time. 

The format of the ALTER command is: 

ALTER [job11] 

PM 
RST 
A*address 
P*address 
R*address 
address 
ORG 

[~ program-mask J J [ J RESET rst·address -
change ' CARDS 
o•g-odd•en {LAST } 

16 

_,.,,,..-- __ 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 6 PAGE: 

POSITIONAL PARAMETER 1 

joblt 

if blank 

- a two-character job number assigned to the job by Job Control and 
printed at the system console following the RUN command. (This 
parameter is not required if positional parameter 2 is in the form A* 
address or ORG. 

- A *address or ORG must be specified as positional parameter 2. 

POSITIONAL PARAMETER 2 

PM 

RST 

A*address 

P*address 

R*address 

address 

ORG 

- indicates that bits 2 through 5 of the byte specified by positional 
parameter 3 are to replace the condition code and program mask 
portion of the job's program status word, bits 34 through 37. (These 
bits are located in the job control block at JB$PSW+4.) Bits 0, 1, 
6, and 7 are ignored. 

- indicates that the main storage address specified by positional 
parameter 3 is to replace the program restart address in the job's 
program status word, bits 47 through 63. (These bits are located 
in the job control block at JB$PSW+S through JB$PSW+7.) 

- the characters A* are used to indicate an absolute address. 

- the characters P* are used to indicate an address that is relative 
to the first byte of the problem program's job preamble. 

the characters R* may be used to indicate that the address is 
relative to the code image area of the problem program. 

- the hexadecimal main storage address of the first byte of an area into 
which the byte or bytes specified by positional parameter 3 (change) 
are to be stored. This field may be one through five hexadecimal 
digits. 

When this address is not prefixed with the characters A* or P*, it 
is assumed to be relative to the code image area of the problem 
program (that is, this address agrees with the code-edit listing 
for programs assembled relative to zero). 

- indicates that the address specified by positional parameter 3 is to 
be added to the addresses appearing in the following ALTER commands. 
This address is used as the base address in the calculation of ef­
fective addresses in the following ALTER commands. This base 
address remains effective until another ORG operation is encountered 
or until LAST is specified as positional parameter 4. 

17 



UP-7689 UNIVAC 9400 SUPERVISOR 
6 

NOTES: 

SECTION: 

(1) The alter routine calculates effective main storage addresses as 
follows: 

(a) if address or R*address: E = I+A+O 

(b) if A *address: E = A+O 

(c) if P*address: E = P+A+O 

where: E is the effective address, 
I is the code image base address, 
P is the preamble address, and 
A is the address from positional parameter 2, and 
0 is the ORG address previously specified 

PAGE: 

(2) Main storage addresses specified in the forms R*address, P*address, 
and address are verified to be within the main storage area assigned 
to the job. In the event an address is not within the permitted address 
range, the ALTER command is rejected. 

(3) Main storage addresses in the form A*address do not require a job 
number in positional parameter 1. 

(a) If a job number is supplied, the A*address is verified to be 
within the main storage area assigned to the job. 

(b) If a job number is not supplied, the A *address is verified to be 
within the limits of the central processor as defined in the 
system information block. 

POSITIONAL PARAMETER 3 

program-mask- two hexadecimal digits representing a single byte to replace the 
condition code and program mask portion of the job's program 
status word, bits 34 through 37. The format of this byte is: 

BIT POSITIONS 0 1 2 3 4 5 6 7 

1 1 
NEW NEW 

CONTENTS 0 0 CONDITION PROGRAM 0 0 

CJDE CJDE 

rst-address - the hexadecimal address relative to the first byte of the code image 
area of the job at which the job is to resume control. This value 
plus the code base address is stored in the restart PSW in the 
problem job's job control block. 

The effective address rst-address + I is verified to be within the 
problem program's code image. 

18 



UP-7689 UNIVAC 9400 SUPERVISOR 
6 

change 

SECTION: PAGE: 

- specifies the byte or bytes to be stored in main storage beginning 
at the address specified by positional parameter 2 and extending for 
as many byte positions as indicated by this parameter. 

This parameter can take the following forms: 

(a) X•cccccccc ... ' - either of these forms can be used to specify 
or the change characters in hexadecimal. The 

cccccccc... number of characters in the character string 
must be even, thus indicating a change to one 
or more complete byte·s. The maximum number 
of hexadecimal characters allowed is 16; that 
is, 8 bytes. 

(b) C•cccccccc .•. ' - used to specify EBCDIC characters. The 
number of characters in the string indicates 
the number of bytes to be changed in main 
storage. 

Change characters are not stored if both the lowest and the highest 
effective addresses of the change are not valid. (See notes (2) and 
and (3) under positional parameter 2.) 

org-address - a base address that is to be added to subsequent main storage 
addresses in the computation of effective addresses. This may be 
one through five hexadecimal digits. 

POSITIONAL PARAMETER 4 

LAST 

RESET 

CARDS 

if blank 

Examples: 

- used to indicate the last of a series of alterations beginning initially 
with an ALTER command or ALTER Job Control statement. The 
parameter causes the termination of the alter function. 

- causes the resetting of the job's alter mode indicator after this 
command is processed. Reset implies the LAST option. 

- causes the ALTER statements to be read from the card reader. 

- the alter routine processes the current change and solicits another 
by means of a console message. 

@ 16:45 AL 24,1000,X'01FF)41000'© 
* 16:45 02 ST19 ENTR~ 
@ 16:46 AL 79,PM,1g~ 
* 16:46 02 ST19 ENTR~ 
@ 16:46 02R 10E0,C'ABC',LA~ 

19 



UP-7689 UNIVAC 9400 SUPERVISOR 6 
SECTION: PAGE: 

6.5.15. DISPLAY Command 

The DISPLAY command can be used to cause the printing of selected areas of main 
storage at the system console. 

The format of the DISPLAY command is: 

PM 

DISPLAY [job1t], 

RST 
A*address 
P*address 
R*address 
address 

G number-bytes J 

POSITIONAL PARAMETER l 

jobnumber 

if blank 

a two-character job number assigned to the job by Job Control and 
printed at the system console following the RUN command. (This 
parameter is not required if positional parameter 2 is in the form 
A*address.) 

- A*address must be specified as positional parameter 2. 

POSITIONAL PARAMETER 2 

PM 

RST 

- indicates that the job's program mask and condition code (at the last 
interrupt) should be displayed. The information is obtained from the 
job control block located at JB$PSW+4. 

The format of the printout is: 

STlO xx 

where: 

xx - is the hexadecimal representation of a single byte. 

The format of this byte is: 

BIT POSITIONS 0 1 2 3 4 5 6 7 

1 I 
CONDITION PROGRAM 

CONTENTS 0 0 CODE MASK 0 0 

l 1 

- indicates that the program relative address of the job's restart 
point at the last interrupt is to be displayed. This is obtained in 
the job control block at JB$PSW+5 through JB$PSW+7 and converted 
to a relative address. 

20 



UP-7689 UNIVAC 9400 SUPERVISOR 6 

A *address 

P*address 

R*address 

address 

SECTION: 

- the characters A* are used to indicate an absolute address. 

- the characters P* are used to indicate an address the is relative 
to the first byte of the problem program's job preamble. 

- the characters R* may be used to indicate that the address is 
relative to the code image area of the problem program. 

- the hexadecimal main storage address of the first byte of an area 
which is to be displayed. This field may be one through five 
hexadecimal digits. 

When this address is not prefixed with the characters A* or P*, it 

PAGE: 

is assumed to be relative to the code image area of the pro bl em pro­
gram (that is, this address agrees with the code-edit listing for 
programs assembled relative to zero). 

POSITIONAL PARAMETER 3 

number-bytes - designates the number of main storage locations to be printed at 
the system console. The forms of this parameter for hexadecimal 
printout is: 

n - where n is a decimal integer 1 through 8. 

XLn - where n is a decimal integer 1 through 8. 

The form of this parameter for EBCDIC printout is: 

CLn - where n is a decimal integer 1 through 58. 

if blank - 1 is assumed. 

Example: Assume the contents of main storage beginning at the job relative 
address X 1 F00 1 to be X•F1F2F3F4F5F6F7F8 ... • 

@ 13:51b DI 
113:51 02 

@ 15:51 01 
115:51 02 

6.5.16. MTC Command 

42,F00,q_8<J> 
ST 10 12)456 78© 
42,F00,4rJ> 
ST10 F1F2F~F4® 

The MTC (Magnetic Tape Control) command is used to position tape volumes pre -
viously mounted on tape units. The following functions can be directed by the MTC 
command: 

• Forward space volume a specified number of tape marks 

• Forward space volume a specified number of blocks 

• Backward space volume a specified number of tape marks 

• Backward space volume a specified number of blocks 

21 



UP-7689 UNIVAC 9400 SUPERVISOR 

• Rewind volume to load point 

• Rewind volume and unload 

• Write tape mark 

The format of the MTC command is: 

filC pub-identifier, 

POSITIONAL PARAMETER 1 

FM,nn 
F 8,nn 
8M,nn 
88,nn 
RL 
RU 
WM 

6 
SECTION: 

pub-identifier - three characters identifying the physical unit block for the tape 
unit to be positioned. 

POSITIONAL PARAMETER 2 

FM 

FB 

BM 

BB 

RL 

RU 

WM 

- Forward space volume a specified number of tape marks 

- Forward space volume a specified number of blocks 

- Backward space volume a specified number of tape marks 

- Backward space volume a specified number of blocks 

- Rewind volume to load point 

- Rewind volume and unload 

- Write tape mark 

POSITIONAL PARAMETER 3 

nn 

Examples: 

- specifies the number of blocks or tape marks that the volume is 
to be spaced, either backward or forward. 

E5S ~TC~® ==-----======---> __ :] 

22 
PAGE: 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 6 PAGE: 

6.5.17. MOUNT Command 

The MOUNT (mount disc or tape volume) command is used to inform the Supervisor 
that a volume has been mounted on a tape or disc peripheral device. The volume 
mount function verifies that the device spec,ified by the operator is operable and 
available for assignment. The volume label is then read and the serial numbers are 
compared to verify that the correct volume has been mounted. If the serial numbers 
agree, the six-character volume serial number is stored in the physical unit block 
to identify the mounted volume; if the volume is magnetic tape, it is rewound to its 
load point. If the volume serial numbers do not agree, a message is typed at the 
system console, and EBCDIC blanks are stored in the volume serial number field 
of the physical unit block; if the volume is a magnetic tape, it is rewound with 
interlock. 

The format of the MOUNT command is: 

MOUNT pub-identifier[, volume-serial-number] [,S] 

POSITIONAL PARAMETER l 

pub-identifier - three characters identifying the physical unit block for 
the peripheral device on which the disc or tape volume 
is mounted. 

POSITIONAL PARAMETER 2 

volume-serial-number - one to six characters identifying the disc or tape volume 
mounted on the peripheral device. If this number is less 
than six characters, it is right-justified and zerofilled 

if blank 

to the left. 

used to indicate a dismounted volume. EBCDIC blanks are 
stored in the physical unit block. 

POSITIONAL PARAMETER 3 

s 

if blank 

- indicates that the volume mounted is sharable and that the 
appropriate indicator within the physical unit block is to 
be set to 1. 

- the disc or tape volume is assumed to be nonsharable and 
the appropriate indicator within the physical unit block is 
to be set to 0. 

23 



UP-7689 UNIVAC 9400 SUPERVISOR 6 
SECTION: PAGE: 

6.6. PROBLEM PROGRAM MESSAGES TO THE OPERATOR 

Problem programs can issue messages that are printed at the system console with the 
option of allowing replies from the operator. All messages printed at the console are 
automatically prefixed with the time and job number. A message requiring a reply causes 
the problem program to be temporarily suspended until the reply is typed in by the 
operator. A message that does not require an operator reply permits the problem program 
to continue processing during the time of printing. Program synchronization between 
the problem program and the operator communications function is similar to that used 
with physical IOCS. The OPR macro instruction is provided to print messages at the 
system console. 

6.6.1. OPR Macro Instruction (Type R) 

The OPR macro instruction is used by the programmer to transmit messages to the 
Supervisor for printing at the system console. The programmer must provide a storage 
area large enough to contain the message text. The message text can be from 1 to 
64 character positions in length. The message prefix area is automatically provided 
and filled in by the Supervisor, and consists of an asterisk (if a reply is required 
from the operator), the time, a type-of-message indicator, and job number. The last 
character of the message prefix is always blank and separates the prefix from the 
first character of the message text. 

The format of the OPR macro instruction is: 

LABEL I> OPERATION 1> OPERAND 

[name] OPR 

POSITIONAL PARAMETER l 

msg-addr - the symbolic address of the first byte of a buffer area containing the 
message to be printed. 

(1) - indicates that register 1 has been preloaded with the address of the 
buffer area. 

POSITIONAL PARAMETER 2 

length 

(0) 

- the length in bytes of the message to be printed. 

- indicates that register 0 has been preloaded with the length of the 
message. 

if blank - 64 bytes is assumed. 

NOTE: This length is used to determine the maximum number of bytes to be 
printed at the console. If an end-of-message character (X•37•) is encountered 
in message text during the printing operation, the message is terminated. 

24 



UP-7689 UNIVAC 9400 SUPERVISOR 
6 

SECTION: PAGE: 

POSITIONAL PARAMETER 3 

A 

I 

D 

indicates an action message. 

indicates an information message. 

indicates a decision message. 

The second character position of the message prefix (the type of message 
character) is set to the character submitted as positional parameter 3. 

if blank - the type of message indicator of the message prefix is blank. 

POSITIONAL PARAMETER 4 

REPLY - program control is not returned to the problem program until the operator's 
reply is received and available in the message buffer area specified by 
positional parameter 1. The message text of the operator's reply is 

nn 

if blank 

stored beginning with the first byte of the buffer area. The maximum 
length of an operator reply is limited to 64 bytes or to the length of the 
message buffer area as specified by positional parameter 2, whichever 
is smaller. Replies that exceed the length of the message buffer area 
are truncated. If the reply is shorter than the message buffer area, the 
remaining positions in the buffer area are space filled. 

- program control is not returned to the problem program until the operator's 
reply is received and available in the message buffer area specified by 
positional parameter 1. The message text of the operator's reply is stored 
beginning with the first byte of the buffer area. The length of an operator 
reply is limited to the length specified by nn. If the length of the reply 
is greater than nn, the message is truncated. If the length of the reply is 
less than nn, the remaining positions up to nn are space filled. 

program control is returned to the program immediately following the 
queuing of the request; the address of the associated command control 
block is returned in register 1. This procedure allows the user to address 
the command control block with a MARK or WAIT macro instruction. This 
option allows the problem program to continue processing during the 
printing of the message. Thus, synchronization with the operator commun­
ications function is similar to that used with physical IOCS. 

25 



UP-7689 UNIVAC 9400 SUPERVISOR 
PAGE: 6 SECTION: 

Examples: 

LABEL 15 OPERATION 1i OPERAND 
l 0 16 

MSG E C• IS STAT DUMP NEEDED ? Y OR N• 

MSG EL *-MSGE 

MSGBUF CL 6 4 

In this first example, the operator's reply is limited to the absolute value of the 
label MSGEL or 64, whichever is smaller, and the remaining byte positions in the 
buffer area are space filled. 

In this second example, the operator's reply is limited to one character and the 
remaining byte positions in the buffer are unchanged. 

The following illustration is an example of how the message could appear at the 
system console: 

26 



UP-7689 UNIVAC 9400 SUPERVISOR 6 
SECTION: 

6.7. OPERATOR MESSAGES TO PROBLEM PROGRAMS 

All messages from the operator to problem programs are either solicited (replies to 
messages from the problem programs) or unsolicited (inquiries or commands, from 
the operator to the problem programs). Replies are handled automatically by the 
Supervisor; whereas, unsolicited messages from the operator to the problem program 
must be handled by the operator communications island code subroutines provided 

PAGE: 

by the programmer. Problem programs, without operator communications island code 
subroutines, cannot receive unsolicited messages from the system operator. The 
address of the operator communications island code subroutine must be made available 
to the Supervisor by executing an STXIT (set exit) macro instruction. 

Messages from the computer operator to problem programs have the format: 

@bhh:mm'bjj R"brep ly® 

or 

@lihh :mm'6j j,'6unsol icited·message® 

NOTE: The 15 symbol signifies the presence of a required space; this symbol is 

not printed. 

• Character positions 1 through 8 

prefix - the prefix (@bhh:mmb) is printed by the Supervisor as a response 
when the ATTENTION key at the system console is depressed. 
This response is printed to indicate the readiness of the Supervisor 
to accept a message from the operator. If the Supervisor is not 
ready to accept a message, the time response is delayed and the 
console is temporarily locked. As soon as the Supervisor is 
ready, the time is printed and the carriage is not returned to the 
left margin of the page. The operator can then type in his message. 

• Character positions 9 and 10 

jj - the number of the job for which the message is intended. 

• Character positions 11 and 12 

Rt 

;b 

- when replying to a previous message, the opera tor types Rb­
in these character positions. 

- following the job number typein for an unsolicited message, the 
operator depresses the end-of-message key. If the error job can 
accept the unsolicited message, the Supervisor responds with a 
,15. Then, the operator types the message text. 

• Character positions 13 through 75 

message text - the operator types the reply or unsolicited message according to 
the prescribed format in these character positions. The format 
depends on the particular problem program that is to receive 
the message. 

® - the end-of-message symbol must be the last character of the 
message. 

27 



UP-7689 UNIVAC 9400 SUPERVISOR 
SECTION: 6 

Example: The following illustration shows a message caused by an OPR macro 
instruction and the operator's reply to it: 

*014:32 60 IS STAT DUMP NEEDED? Y OR N 
@ 14:)) 60R N© 

PAGE: 
28 

----..... 



v 

v 

UNIVAC 9400 SUPERVISOR Appendix A 
SECTION: PAGE: 

APPENDIX A. EQUATE MACRO 
EXPANSION 

STANDARD 
INSTRUCTION 

• TouuuuJO 
• Do '• • = • • > ++' • '= • '=u 1 TUUOUU'ID 
• TuUUUO!>U .. SYSTEM ,, E GIST E.R:;, lUUU006U .. Tuuuuo7u 

OoOOOO 1'10$ L {iJ t; u Rt.ulSHk u Tooouoao 
ouooo1 Rl$ E(,/11 I Rt.(.,ISTl:.i'i I Touooo9o 
oooon2 R2$ r: "'u 2 i-lt.ulSJEt< 2 Tuuuu1ou 
OUOOOJ R3$ LlllJ .3 REi:ilSill< J ToUOOllO 
OUOO(l'f R'l$ L"IU 't t<t.<:dSIER 'l TOU00l20 
ooouos RS$ E\;ll s ki;.u!Slt.R s TUOOUl30 
000006 R6$ EiJU 6 Rt.ulSTlR b TOOUOl'IO 
Ou0007 R7$ r;t>iu 7 Rt.ulSTER 7 TUUOUISO 
ououos RB'b E l,/U d kt.u I SJ t.R l:l Tu00016U 
Ou0009 R9s. L ••ll 9 Rt.ulSTE.R 9 TUOUUl70 
OUOUOA IH1$ f_l.IU l u Rt.u I ST E.R 10 TUOOUl80 
OJOOUB RtH E ;iu ) I kt:(, J St El'< 11 ToOOOl90 
uuo-ooc RCS J:.llU 1£ RE.i.IS1E.R 12 roooo200 
ouoooo RD$ f: l'tJ 13 kE.u I Sl E.R 1.3 Tooou210 
00000£ RE$ r:i<u J'i kEblSlbi l'I Tuuoo220 
ouoooF RF$ Fl.Ill IS kl:.GISlER J!; TOU002l0 

• TU0002'10 
• SPEC!i•L PuRPOSI:. 1,l:.u IS I EkS 1000,02.so 
• TU000260 

000002 RS,;S•~R 'i./U :<2> AUOR (,f 5., 1 r <..HEi< TuUD0270 
uuuoo3 RS$J(l:l ,.-{,/(; .<3$ Au OR lJf AC.TI n: ..ic., TD000280 
ouOOO'I RS$PkE. ,. i.a!U R'l:. Au OR UF AC l 1 Vt: PRi:AHt:ILE ruuut129u 
000005 RS'liS I tl ,·Qu i{5l> AOUR lJf 5 i D TouOU300 

• E !•OU TuUOU310 
• oo l••=''J++( 1 •= 1 h~•)++l• 1 = 1 H~ 1 )++( 11 =•H~-•,++( 11 = 1 •iW')++(t; 

•='11~')++( 11 : 1 Hw'J++(''='H~ 1 J++l''=';1~•1++t••=•ti~•)++t•1; 

='t1,,•)++c••=•na')++t••=•Hw•J TUOOOlSO 
• TuulJOl6U 
• SUPE.t< Vt'' U!< uL,,C:hAL •1EulSTFl'S Ti;,u0Ul70 
• TOUU038U 

000000 HO'OS i. ~u q SuPt::Rv I SO« .;E.u Is TE:.R 0 ToOU0390 
000010 HI l>S L'>IJ 10 sui>ER v I.SOI< ;,Eul~T1:.R I TouOu'IOO 
U00ll2ll H2SS [l,l) jl. SuPt:RvJSUr< ,;LulSTt.R 2 ToUUO'llO 
0J003() H3SS t_ WIJ ~b SuPE.t\vlSOr< ,;t. i> IS TI:. I< 3 TUOOU't20 
OuOU'IO H'lSS c GiU ;,'l ::>uPt.iivlSOr< ,(!;._; J;, l L11 'I TuUUO'l30 
ouooso HS\5 ;::•;u j iJ SuPl:.Rv I so..: ,,t.u l::. TER !:> TuUOU't'IO 
OJ(l06J H6SS r::Qu 91> SuPE.kv I SOI< ;,E." I::> f 1:.r( 6 TOUOO'lSO 
Ou007U H 7!.S t. "1U 11.< SuPEl<v I 50>1 .; l:.u I::; T t.1< 7 TvUUO'l60 
0Q0080 Hfl$S r..~u I 2d SuPERvl:iO" ,.l:.u l S Tt:I< 8 TOOOU'l7U 
fJuU090 d9$S E '~U t'l'l SuPERv 1 so;, ,, t::" I ':i T 1:. i< 9 ToUOO'l8U 
OoODAO HAS.S [·-hi JOU suPt:l<VISOI< ,<i:.iJ I STtR Iu ToUUO't90 
OuOOBO HS!bS L \stU I 7 o SuPC:t< v I SOI< t<t..., I:> TLI< I J Touuusou 
OuUOCO HC$S F -~U I 9<. SvPt.R~ I SO it t<C:u i::.Tt:_K 12 ruuOUSIO 
ouoooo Hfl$S t_Ql) Zlld ':iUPE.Ry bOI< t<t.ublt::R 13 TOU00!>20 
OuOOEO HE!bS [\,/LI £2'1 SuP<:i<v I so..: i\t.i.blt.R l'I 1UOUUS30 
UuOOFU HF!l>S E"iJ z'lu SuPEl<v 1501< 1<E.u I::> Tc.I< IS luUUU!>'IO 

• Tuoousso 
• PR0BU.M ut:Nt:.F<11L kt.ulSIE.kS TOOOU!.60 

Tooous10 
ouuoo't HOSP L ivU 'I P;(Ol:lLt.M Rt.i.1 S TE.i< u Touooseo 
00001 'l HI !bP [ l>JI) 20 Pl<UdLl:.M Rt:u I :>Tl::i< roou1:is9o 
0U002'1 H2'l>P i::tiu 36 Pt<OBLl:.M kt.u I::> TE.ii " .. rouuoooo 
ouUOJ'I H3$P EOU s2 Pl<OdLE.M Rt:u(STEX 3 Touuuc.10 
0(100'1'1 H'l$P ,,Qu 68 P1<tJBLlM Rt.lo i STE.I< .. Touoa62u 
UUOUS•i HS'l>P [tW e<i 1-'i<UilLE.M RLu(STl::R !S TOUU0630 
00001)'1 H6$P El./U 1UO P1NBLE.M F<c'.i.1 ST El'< 6 Touooo'IO 
00007'1 H7$P t o,/ II Ji 0 Pt<OtlLE.M Rt:u i ':i TEk l TDUOOc.SO 
00008'1 H8$P F.:iJU 132 Pi;OBL.t.M RE.'1 I ::OT E.I< L TOU0066U 
00009'! H9$P (QU J '18 PROBLt.M RE.i:i IS I Et< ., T0000670 
OUOOA'i HA$P f!,/lJ 16'1 P;<Ot:ILE.M Rl:.u IS f 1::1, I 0 Ti;i000680 
OUUDb'l HBSP EQU 1su Pf\OtlLE.M kEGJSTE.t< 1 I T000069U 
0U00C'l HCSP E!.<U I 9b PkOBLE.M Rt.GJSTEk 12 TOOU0700 
OOOOD'i HD$P E(W 212 Pi<ObLEM Rl:.13 I ST l:.i< J l TOUOU71U 
OuOOE'I H£$P EQL' 22tl PkOBLE.M Rl:.u I STE.I< J'I TU000720 
OUOOF'i HF$P E.lltJ 2'1 ~ PkOtlLlM Rl:.GJSTEI< IS To000730 

• TU(IOU7'10 
• OLD p5,\5 TOOOIJ7SO 
• TOU00760 

000008 HP$OS E WU ~ Sl/C ULU PSI• TuUOU770 · 
OJOUIS HP!>OP e.Qu 2'l Pt-;OGRAM OU; 1-'Sil TUOOU780 
000020 HP'liO T i:<.iu •tU TIMER OLD f'::;il TuOU0790 
Ou003fl HP$QM::; L \,/IJ $6 MPX 5hAREu uLu PS-. TDOOOBOO 
01.JOO'la HP'l.OMli [lo/IJ 72 MF'X NuN-SHARt.0 UL{; ps,, TUOU0810 
oouosa HP$QSJ E'HI t1b 51:.L I OLD f'SIV Tuuooe20 

1 

,~ 



OU006B 

000090 

uuooaa 
0000A8 
000088 
oooocs 
000008 
ouOOEi! 

000100 
OUOllO 
OUOl 1'1 
ouo120 
0U0130. 
OuOl'IO 
OuOISO 
000160 
000170 
01)0180 

000190 

0001AO 
OOOIA8 

uuoooo 
00000'1 
Ou0007 
000001 
000002 
0U000'1 
000008 
0000011 
000013 
00001'1 
0Q0028 
000038 
0000'10 
0000'11! 
000058 
0U0060 
00006'1 
000068 
00006( 
000070 
00007'1 
000078 
00007( 
000080 
00008'1 
000088 
·Ou0090 
00009'1 
00009( 
OUOOAO 
OU00A8 
OU00AC 
000080 
00008'! 
000088 
oooosc 
ooooca 
OOOOCA 
ouoocc 
000000 
00000'1 

UNIVAC 9400 SUPERVISOR Appendix A 

HP$0S2 
• 
• NEW 
HP$NP 

• 
HPSNS 
HPSNT 
HPSNMS 
HPSNMN 
HPSNSI 
HPSNS2 
• 
• sew:; 
• 
HSSO 
HSSI 
HSSILB 
HSS2 
HS'li3 
HS$'! 
HSSS 
HS$6 
HSS7 
HSSST 
• 
• TCW 
• 
HU 
• 
• cs~is 

• 
HCSI 
HCS2 
• 
• 

• 

• 

<.QU 

ps.~s 

E<.llJ 

El.iU 

El.iU 
c:Qu 
c:r.iu 
£l./U 
Ei.!lJ 

e:Qu 
EbiU 

Eb/U 
£QU 

E Gill 
EQU 

EQU 
EGl\J 
E ''U 
t:GiU 

[ .. U 

E(;/IJ 

EIW 
ENOU 
oo 

sassPv EQU 
SBSCHR EQU 
SBSCHR3 [QU 
SSSTAPE EQU 
SBSOISC EQIJ 
SBSSEL EQU 
SB'liPOS EGU 
StlSSCi< EQU 
SBSSPI c:QU 
sesoTE E.'W 
SBSCLK EQU 
SBSJCB EQU 
SBSUJll EQLJ 
SB STA E"1U 
SBSPUll El.HJ 
SBSSJll [QU 
SBSMJB EQU 
SB'liEJtl E"1U 
SB$J(f EwU 
SBSRfN [QU 
SBSTLM [QU 
SB SPA £QU 
SB SHA t:QU 
SBSSEt< f_Wll 
SBSISL EQU 
SBSPIO E.QU 
SBSFRE 1:Qu 
SSSSWL E.1.IU 
SBSTRT EQU 
SBSSVC [QU 
SSSSET E1.IU 
SBSTIN EQU 
SBSTME El./ll 

ssssTc 1::Qu 
SS SP Rf E"!U 
SBSTOO E'.W 
SBSEOJ E'-U 
SBSBCR Et.ill 
SBSOMC EiW 
SBSJBF EQU 
SBSTRf E.r.IU 

I U't 

15.i: 

t 316 
16ii 
11!'1 
2uu 
216 
232 

256 
2 7l. 
276 
21lll 
JU't 
:szo 
3J6 
J52 
360 
38'1 

~uu 

SECTION! 

SEL 2 OLD l'S.V 

SVC NEl'll PS11 
TIMER NEW Psn 
MPX SHA~EU NEW PSn 
MPX NON-SHANt.O NE• PSn 
SU. 1 NEW l'SW 
SE.L 2 NEW I':;;; 

SttAREU ::iUbC;,ANNE.L 
SHARtO SUbC. HANIH:.L 
_INITIAL LUAU tl ( ~-
SHARt.O SUb(HANNt::.L 
SilAR£o SUbCHANNEL 
SfiAREO SUllCHANNEL 
SHAkEO SUlllHANNEL 
SHARt.ll SlJb(11ANNt.L 
SHAN EU SUbCttANNt:.t. 
STATU!:i TAtlLE S(;< 

TIMER CUNlkOL. liURU 

SE.L I CSl'i 
SE.L 2 CSW 

J sew 
I ::i(W 

2 so. 
3 sew 

" sew 
s sew 
6 S(l't 
7 SCI> 

<••=''l++l'ts•sll•l++(' 1 • 1 Sll'l++l''=•Sb'l++l''•'Sb'l++I•; 
••'Sb'l++(''•'SB 1 1++1''•'51l'l+~l''•'Sb 1 1++1••=•Stl')++(t1; 

PAGEi 

T000Ult30 
TuuOUlt'IO 
Touooaso 
TuOOU860 
Touoo1110 
Tuoooaao 
TDOOU89tJ 
TouO'OYOO 
ToOOU910 
10000920 
ToU00930 
TOOOU9'10 
TooOOYSO 
T0000960 
Touuu970 
TOU00980 
TuU0099U 
T 1)00 lllilO 
TuOOIOIO 
10001020 
TOU01030 
Tl;IOOIO'IO 
TOOOlOSO 
TOOOI060 
T000.1070 
TOUOIOBO 
T0001090 
TuOOllOO 
Tooo1110 
TuOU1120 
TOU01130 
ToOUll'IO 
TuuOllSO 
TD001160 

: 1 Stl' I++(' •=•SB 1 l++ (I '• 1 Sl:l' I T0001200 

IJ 
Sl:l$SPV+'i 
SBSCHk+J 
I 
2 

tl 
5l:l$CHR+'1 
sB.,SCR+11 
SU!>SPl+i 
S6$0TE+2U 
SBliCLK+t6 
5tUJCb+8 
51:l$UJB+1,1 
58$TA+l6 
SB!i>PUB+B 
S<i>SJB+'t 
58$MJEI+'! 
SBSEJti+'I 
5tlS.JO +'I 
StlSRf N+'I 
SUSTLM+'! 
5bSPA+'I 
5U:i.H11+'1 
51:lSSER+'1 
5tl'.iol ::iL +'I 
SU:OP I U+B 
Stl'.if RE+'! 
51:l$Si1L+ll 
5B'.iTt<T+'1 
StH>l)V(+ti 
:;0$:,[ T +'I 
SB'.il Iii+'! 
51l:OTM~-+'1 

5:;:;.:; Tl+'! 
Stl:OP;<F+'! 
s1nroo+12 
SLilit:OJ+2 
:;B:>uCR+2 
StloiiUMC+'t 
Stl$Jt.lf ... 

SUPV VER/RE~ NUMoEk 
CHAkACTERISTJCS 
LAST bYTE Of SYSTEM CHAR ~OkO 
MASK fDR TApE SYSTEM CAPAUILlTY 
MASK FOR Disc SYSTEM CAPAblLITy 
MASK tDR SE~ECTOR CHAN PIOCS 
MASK FOR l'Os MACl<o PRESENCE 
SYS COMM RE'3!0N 
SPSI 
OATES 
TIMER t'OINlERS 
NMBR JCbS,AUuR OF FIRST 
NMBk U::iEK ~CttS,AODk Of FIRST 
TRANSIENT CUNTkOL 
NMllN PoBS,ADuN OF tlRST 
AODNESS Of SySTErlS JC8 
ADON - MAINTENANCE CLK JtB 
AOURESS OF t.kkOR J(tl 
FLAGS, JOB CONTROL 
SE"1• NOo fDk VSNLB ANu £Rb 
DEFAULT TIME. LIMll FOR USN JOBS 
ADOR-IST BYTE PROB AREA 
ADuN-LAST bYTE IN pNOCESSOk 
AODR-SPV EkROk RINE 
AOoR-ISL CUDE PREP RTNE 
AOUR-SySTEM PlOC~S 

AOOR-l::;T Fkt.E ELEMLNT 
NMt!R PR LVLoAOUR O~ ::iW LIST 
AODR-Tk fElL PfRS 
LENGTH,AOOR of Svc Tt!L 
AOOR-::iET TIME SLICE RINE 
AOuk-SISTI" Rlt.E 
AOOk-STOI' JOb CLK HIN~ 

AOOR-St.TIM~ cAt.CEL RTNE 
CRLF AND l•O EUCOll 6LAN~S 
CON::iOLE CLult<;S 
SVC EUJ INS[KUClluN 
bCN 15,RES IN::ilNUCflON 
ADON OF OATA MANAGEMENT COMMON 
RT A-JOi:lf I Lt. 

T0001210 
TOCl01220 
TD001230 
100012'10 
100012so 
T0001260 
10001210 
T0001280 
ToOOl290 
Tooo 1300 
ToOOIJIO 
To001320 
ToOOl330 
ToOOl3'10 
To0013SO 
Tl)001360 
ToOOl370 
ToOU13BO 
ToOOl390 
ToOOl'IUO 
ToOOl'llO 
ll)U01'120 
TOU01'130 
TuOOl'l'IO 
TuOOl'l!>O 
Tu001'160 
TD001'170 
TuOOl'IBO 
TU001'190 
Tuoo1soo 
TuOOISlO 
TD001!>20 
Tuu01!>30 
TOOlH!>'IO 
TuOOIS!>O 
TUU01!>60 
TOU01!>70 
TUOUl!>80 
Toool!>90 
TOU01600 
Touo 161 o 
TUOUl620 
ToOOl630 
TuoOl6'10 



. ,~tf P-7689 

UUU008 
Uu.UODc 
0uOUEu 
OUUOE'! 
OtiOOE8 
OUOOFU 
Ou00~8 

OUOIOO 
OuOl Ill 
OGUl20 
000128 
OOUIJU 
000130 
uuo l 3!l 
ouUIJc 
Ooi:l I 'lo 
0001'18 
OuUISO 
000150 
Ou015f. 
uUUl6ll 
00016'! 

ouo I 7U 
DUO I 7'! 

ouoooo 
oouoo2 
OUOUIJ!l 
OuOlllJ 
UUllUIZ 
00001 '! 
UuOO I !l 
OUUOIA 
OuOOlc 
OOUOIE 
000020 
000026 
00002B 

OJOOUU 
OuOUO'I 
ououoa 
O(JOU'IR 
UU0098 
ouuoco 
OuOOD'! 
OOOUDF 
UUOOE8 
OUOIZR 
0001$0 
ouo l 6'i 
UUUl88 
OU018C 
llU0190 
ODO I AO 
UUOIA8 
0UOl1!8 
OoUICO 
OOOIC'I 
OUOICC 
OUOID'I 
()[)01£6 
000200 

UNIVAC 9400 SUPERVISOR 

SIUSYS 1:.•>1U 
S!HPRS E."1U 
Sl!STMP E"1U 
SB$Cl<P 1:.«U 
Sl:l!i>LU f E•IU 
Stl'f>Ol:ll E«U 
Sfl$!N(. [QLJ 

SB'l>OVC l\t/U 
S6$A0P E«U 
ScH>DMI"' [f;U 
Slls.CAN E<>U 
StnMTbL E"1U 
St!S.MCP EllU 

SiHMLt<F EQu 
SB!i>ML IBL Ef<tJ 
Si!SMJCB UH' 
Sfl$MTTBL £(,JU 
SBS.MBUF El.IU 
SB$MB•iA Et.IV 
SBs.MMt'S ElW 
SBH!XTR £"1ll 
SBSMll 1 tl E<W 

• 
SB!>MLHB [\,/U 
S:Js;L t;;:;1J 

5ti.ii l t<t +'f 
5l>:>SYS+'! 
5IH1P1lS+'1 
;;,tl~ I Mf' +"f 
so:i.Lt<f'+'I 
5dliLUT+;,. 
StlSuJT•o 
St.IS.INC+<! 
5d:>UvL+i'f 
Sd:i,.iJP+8 
Sd'.>OMP+b 
Sd'.li(AN+b 
::>tl:o~"Tl:lL 

Sl:iJirl f tll..+ll 
:,tll>MLr<f+'I 
Slhi'1LTt:1L+IO 
Sd~NJCi.!+l 

Stl:OM rlic!L+tJ 
5tlS.1ibUF 
',O:OM8Uf+l'i 
Sti,.MMPS+2 
sd:i>;'iliTH+'I 

Stl$MUlo+l2 
:,tl,.MLHd+'I 

KfA•SYSlt::.M 
RT A-PKOl:lLE1•1 
HT A- Tt.MPOk Ak y 
fl T A - C I'. PU I 1;T 

Appendix A 

L.O..,ICAL uNI I lAdLE DESO<IPTOH 
#1::.~lkJES/AOuH Ot TRALC TAoLE 
~O. l::.Nl~lf.SIAOOk LSft INCL TbL 
Z'I PUb AJDHt::.~Sl:.S. ~YS UVCS 
tl AOOk Of AUr' PUd t. NOo 
OUHP M"(NO St::.WUl::.NCt::. 
CANCL MACRU st::wut::.NCE 

b NUM OF A1,o AUDI\ Of MCP S~( 

u l::.~UATEu TO srANT OF MCp 518 
'i TAbLE AUDRl::.SS - Ll~E t<EQ• fUNCT, 

• lu LUI' INfU• AUoH.; NuMbEN. LLNGTH 
Z MCP JCb ADUHlSS 
!l I t.r<11Tl:lL I iff U • All OH; (tlARS; NUMl:lo 

• l'i bUffEK-~•Ao/l:loA•/LEN/~/RES 
'i tlUfFl::N h()HK AHt::.A 
~ MPSTAHT "OHi'. AKl::.A Ll:.NGTH 
'i TI ttEN I NTEt<H11PT ·1 At;LE ADUHt::.SS 

• ll Oise lhFO· u1sc UASE ADON·- TBL 
• OISC A~EA AODft; KLUS/INK; # Of THKS 

'i HLH TAtiLE bA~I::. AuUftESS 
• LLNblH OF Sib 

TuOOIC.!>0 
ToUOlbbO 
TuUOIC.70 
ToOUlb80 
TUUOJC.90 
ToOU1700 
TuOOl71CJ 
Tuuo1120 
1U001730 
TOUUl7'10 
TDU017SU 
roou111:.0 
TOUOI 770 
Tooo11so 
TDUUl790 
T0001800 
T ()00181-0 
Tu001820 
T;;OOl830 
ToOOIB'IO 
TDOUlllSO 
TDOOUl:.O 
ToOOl870 
1UUUU80 
10001890 

• 
• 

1:.1rnu TDOOl90Q 
00 '''=''>++l'•='Jb•J•+<••=•Jti')++c••=•Jti 1 )++l''z'JB•)++(•; 

• 
• JCB 
• 
JB!>LNI( 
JB$CLK 
JiHPS>i 
Jtl!f>S Y N 
JH!!>SVC 
Jll!!iPRL 
J!HIOC 
Jtl'SNf' 
Jll'f>LR 
Jb$SL 
Jfll>JllN 
JBl>TMt:: 
JB'f>L 
• 

• 

L ';)LI 

E'W 
f.t,/l) 

E 1~U 

E«U 
E "1U 
E •ilJ 
EtlU 
f_ iil) 

E oi lJ 
E;HJ 

F.:.iU 
E'~U 
E ;JI) U 
DO 

• JOB p,;F 1\t'i8L1::. 
• 
JP$tJJti 
JPSSflA 
JP!!iSA 
JP'!> I Ot.1 
JP$CCu 
JP$SliA 
JP$lJ(R 
JP'liUS I 
JP$LF( 
JP$NOX 
JPS>AEP 
JP$USH 
JP$UBA 
JP$E'll 
JPS.PAD 
JP$L Ill 
JP$JU11 
JP'liTML 
JP$QPK 
JP$JNM 
JPS.Sf 
JP$UTI::. 
JP$10P 
JP$L 

• 
• 
• 
• ((8 

• 

£•1U 
t.t.IU 
El>lll 

£'.W 
FlHI 

["10 
l lt/U 
t. \~ u 
E •lll 
E"11J 

E••U 
t:4U 
E 1~U 

El.IU 
l lt/U 
t:_•W 
l()U 

ltW 
fWU 
I::. QIJ 
E••U 
t.WU 
EWU 
EtW 
ENOU 
DO 

•=·J~'l++(''='J8'1++<''='JJ 1 )++(••=•Jo'l++(' 1 = 1 Jl! 1 1++1•t; 

I] 

Jtl:liLNf\+Z 
Jtil>CLK+1> 
J8l>PS••+o 
Jtl"'::;y,.+2 
JB,,~vc+z 

Jti·>f'lll +'f 
Jb:i> I <JC+2 
Jti»NP+2 
Jtll>t..i<+2 
JO:.SL+l 
JO$Jt)f';+ 6 
Jll'lit11t::+z 

AUON Ht:XT Jttl O~ PRIORITY LEVEL 
ALilHM CLOCI\ 
KLSTAKT PS11 
PLKMIT/INHltJIT FLAbS 
Tt<A~Sll~T SVC IOENTIFICATJON 
AUUH PREAMbLt. 
1/0 v.i.lf COU•~T 

JUb NUMtlE~/pNIORITY 
LIMITS RE~ISIEN St::.TTING 
Auu~ S~ITCH LIST 1::.~THY 

EXTERNAL JUD NUMB[H 
T !Ml SLICf. 11ALUt: 

LENGTH OF JCti 

(''=''>++l'•='JP•1++(••= 1 JP 1 >++c••=•Jf 1 )++l•'='JP•J++(t; 
•='JP 1 l++(''='Jf''l++(''='JP'l++( 1 '= 1 JP'l++( 11 ~'JP 1 1++1•t; 

ruOOIY'IO 
Tououso 
TDOUIYl:.O 
rDuOl970 
T 0001980 
TDUUl990 
TDuo2oao 
TuU020lU 
rouo2020 
Ti.>002030 
TUU020'10 
Tl>U020!>U 
tuuozut.o 
Tuuo2010 
TOUU208U 
Touo..io9o 
Toou2100 
Tuuu2110 

='JP'l++<••=•JP'l++l•'='JP'l ruuo21so 

JP:;.;;Jb+'i 
JP!b:ltlA+'! 
JPl>SA+6'1 
JPJ.10\>l+dO 
JPS.(Cti+'IO 
JP!l>:i·,.A+,lU 
JP$UCR+tl 
Jf'$US(+9 
Jt':liLf C+6'f 
Jf':i>tHJX+'!O 
JP,.At::1'+20 
Jf''>uSN+Jb 
JPl>utlA+'f 
Jf'!bl:.ii+'i 
JP!ltt'AO+j6 
JPS.Lib+8 
JP!>JUA+Jil 
JPl>TMl:.+8 
Jl'$Upf(+1; 
JP!i>JNM+l:I 
JPl!SF+ll 
JPl>uTl:.+18 
!;,IL 

, . ·=·' )++( •••• '=Cl) 

Jod NUMBER ANO J~o 

l\uOtl vf'H dOH Lr< 
HE~ISTEN SAVI::. At<EA 
l/U QUEUE!> 
SYSTt:M CCtl 

USLtl LOMM kt...,JOI; 
UPS I 
LUAUl•t::.rcH CHANNEL 
OVERLAY l~UlA AkEA 
ALfENNAIE ENTNY PT 
PC PS,. 

AUOR 

ONSOLIC!Tlu bUF~EH AUOR 
ER><OR PSW 
LASl bYTE LATLNT AREA 
Lltii(AkY 
NfA JUb FILE 
JUr> T111lt. lLil.Ji~lt.KS 

FIHST '! CtiANS F~R MSG PREFIX 
JOti NAME, 
SYSTEM FLAGS 
DATES XX/XX/XXo~YYDUO,UYUD 

Tt<SCHO SYNCHkONIZAllON AKEA 

TDU021t.O 
TOU02170 
TOUU2180 
TUU02190 
Tuuu22.oo 
TDUD2210 
TUU0222D 
TD002230 
TOUU22'10 
Touo22!>0 
T00022t.O 
T0002270 
Tuoo22ao 
Tu002290 
TD0023QU 
TUOU2310 
TDU02J20 
TUUO.i:33U 
T00023'10 
ruuozno 
TDOU2360 
TOU02370 
TOU02380 
T0002390 
TOOU2't00 
T0002'1IO 
T OU02'tf0 
T0002'130 
TOOD2'1'10 
TD002'1SO 
TD002'160 
TOOD2'170 

3 



..... ~~~"--.....-~~~~U-N_l_v_A_c~9-4_oo~s-u_P_E_R~V-IS_o_R~~~~~~..1-~~~~~.....L~SA~E~:~:~~on~:~.i-x_A~--a~P~A~G~E~·----4--~'~ 

OuOOOO 
uuooo2 
uuauo .. 
0CJ0008 
oouooc 
000010 
000011 
OuOOIJ 
00001'1 
ouou16 
000018 
000020 
000026 
000028 

000000 
000006 
000008 
OOOOOA 
oouooc 
000010 
00001!> 
U00016 
OOOOIC 
000020 
000022 
UU002'i 
000020 

ooooou 
000002 
00000'1 
0(10006 
ouoooa 
OOOOOA 
ouoooc 
OOOU!JE 
000010 

·000012 
!JOOUl't 
oouui6 
000018 
OOOOIA 
OOUUIC 
OOOOIE 
ououzu 
000022 
00002'1 
000026 
CI0002A 
000\12A 
00002( 
0U002E 
000030 
000032 
00003'1 
000036 
0U003B 
U0003A 
OUU03C 
0U003E 
OOOO'IU 
0000'12 
OUOO'l'I 
OOOO'f6 
0000'18 
UOOD'IA 
OtJOD'IC 
OOUO'IE 
ooooso 
000052 

IC$RBC 
ICST 
I C$CC1i 
ICSBCl> 
ICSPIO 
IC$MCC 
ICSCTL 
ICSEMN 
ICSSF 
ICSEC 
ICSLNi< 
Jessa 
IC!tNB;i 
I CSL: 
• 
• 

• 
• PUB 
• 
IPSVSN 
IPSBCT 
IPsALC 
IPSMDI:. 
IPSO( 
IPSJSO 
IPSJPt< 
IPSLNi< 
IPSCLK 
IPSEC 
IPSALT 
IPSSf 
IPsL 
• 
• 
• 

El.IU 
El>lll 
E'lU 
EliU 
El.IU 
El.IU 
[QU 
lQU 
l•~U 

t:(,/IJ 
El~U 

EQlJ 
E'iU 
E(,IU 
[NOU 
lJO 

E"lll 
£ t•u 
E•IU 
t: t<lJ 
t.l>ilJ 
E(•U 
EliU 
E'"'J 
EQU 
ElillJ 
[iiU 

[!,/U 
E11U 
i::1·rnu 
DO 

• SVC t;UATES 
• 
svsxP E'~IJ 

svsxPc i::rw 
S\lsXPl Ei.iU 
svswT EQU 
S\/$1\ TA l'HI 
SVSMRK f.£,ilJ 
S\1$YLO ElW 
511,oRf'b E•.W 
SVSSlif' f QIJ 
SV$fRl E•W 
SVSFE I t:<W 
SV'liLD E.<HJ 
SV$LDI EliU 
SVSLDX E"1U 
SV$LDA El>iU 
SVSGTM t.'~IJ 
S\lliGTS f"lil 
svssT El.tu 
SV$ST11 E(;U 
svssTc E"'u 
SVSTR E'llJ 
SVSGVA t,!,/U 
SVsGVS EWU 
SVSTKA E '•U 
sv•HKS E(HJ 
SVsQRY [(,jlJ 

svssoc E.Qll 
svssPc El•u 
SVSSIT E'•U 
SV$EOC EfHJ 
SV!!iEPC [!,/lJ 
SV$EIT [!,/U 
SVsGSb EGIU 
SVSGJil t:<>U 
SV$GJP EWU 
SVsGCR E(,IU 
SVsPCI< t:tHJ 
SVSGCS E"1U 
SVSCPT EQU 
SV$EOJ EQU 
SVSCAN E"IU 
SVSOHP [!,/U 

u 
!CSkbC+2 
!CST+.l 
I C$CCi•+'I 
I C::.bCiti•'I 
I Clif' I u+'t 
1Co11CC.+ I 
iC$CTL+2 
JCl>t:MI•+ I 
IC ll '.:if'+ l 
JC'>t.t+.2 
Jl,.LNK+i;, 
ICH.NK+i'I 
I CSNLl•••l 

KlSIDUAL BYtE COUNT 
TKANSHISSIUN BYTE 
AUOR FIRST ''* uR B(n 
B(H Fol< MUX/NEXT <.CW ADlJR 
P!UCB PU!t;IUI 
COMMAND COUt. f Ur< MUX 
(iJIHl\OL BYTE. 
i::Kl<OR Ml:.SSAGt. NOo 

SIATloS bYTt. 
Er<i\01< CUlJNI 
SE.L #J OR MuX FDR~ARD ADDK 
SENSE tlYTES 
Nu11BlK OF tlc11•S 
LEN<iilH Uf CCtl 

(''=''>++<'••'IP•l++l''•'lP')++l''='lt''>++l'';ii:'lP') ... +C•t 
'=' IP' l ++I ' '"' IP' I++ I ' '=·• IP' I++ I ' '=' If'' I++ I 1 '= 1 If'' I++ I ' ' ; 

TUU02'180 
TDU02'19U 
TU002!>00 
Tuuu2SIO 
TuUU2!>20 
Tu1.102i.Jo 
Tu002!>'10 
l0002!>SO 
l0002!>61i 
TlJUU;tS70 
lU002!>8U 
TuuU2!>8S 
Tuuu2590 
ruuOloOO 
tua026lO 

='IP'l•+( 11 ••1P'l++l 11 •'1P'I TOU026SO 

u 
!PS\ISN+b 
!PlibCT•2 
If'JoALC+.2 

I P>uC+'I 
I P!i> I Sl.J +5 
!P>JPR+i 
j l'l>LIJ~ •6 
I P$(.Ll\+'I 
!Pl>t.C+2 
ll'»AL T • 2 
I f''>:>f +'! 

l ''=''I++ ( '• •' '=c1 J 

ll 
SV'.ioXP+2 

5V»XP1•2 
SV,.•.l+.l 
5V:bv;lk+2 
:, v J>/'11(!<; +,/. 

5V'>YLU+./ 
SV,."fb+2 

::.V\>fl(l+2 
::,VSf t. T+2 
SV5.LU+.i! 
SV!l>LU I +2 
5V!i>LUX+Z 
5V::.LuA+.i! 
SV>t. fM+2 
sv,.i;rs+2 
svs.::.T+2 
;; V1>::. I 1~•l 

SV'>SIC•2 

SV!li<,VA+.,/ 
SV,.bVS+2 
SV$lKA+.! 

5Vl>"11\Y+z 
:,V:i.!.>OC.+2 
SV!li!:>f'(+l 
SV$Sll+2 
:>V!iol(J(+2 
5V!it.l'C+2 
SV!f>lll+Z 
sv5iuSb+2 
S\13>(oJB+2 
5V$(oJP+2 
5\1$(,(f-(+2 
SV$P(k+2 
SV$<iiCS+2 
SV$CPT+2 
SV'>l0J+2 
SVS.CAN+2 

VuLUMt. SEIAL hUo 

CAKO UR BLLICK cou~T 

AL.LOCATION BYTl::S 
MutJt: 
lJI:. v I CC. T Yt'E. 
CHANNEL I SSuEtJ 
JUb P1duR!Ty 
JC.LI A.;Ur<l!:>S 
OEVICt. CLul.11 
EtdWk' CL1UiloT5 
ALI f'UB AUUf< 
I/Li STATUS t;YTES 

!:.XCP1 CUNDITJUNAL 
POSITIUN TAPl lXC.P 
nA IT 
NA!f ALL 
MAi<K 
YI ELD 
IWrCB 

FETCH 
LOAD 
LUAO !NOEii 
LUAU !:.XIT 
LUAU ALT Ekf<~ IE 
bE.TIMl - MS 
<iiEJIME - STA~OARU 

SETI Ml 
St.TIME - WAIT 
SEflMI:. - CANCEL 
TRLSI:. 
(olVl - ALL CYL 
(olVE - SPEL!flC 
TA Kl - ALL C YL 
TAKE - SPl:.CJf !C 
ltlOlRY 

CYL 

CyL 

SlXIT - 0PlOIH1 
!:>l~IT - PROb CHlC.K 
STxlT-llMI:.;< 
EXIT - DP COttM 
EXIT - PROu CHECK 
EXIT - TIMlri 
(oETAUR - Sib 
b[IAOI< - J(tl 
(o[fADk - Pl<l:.AHbLI:. 
uETCOM 
f'UICOM 
uElCS 
CHKF1 
l::C'J 
l J\I E.L 
l..o011P 

TLlUU.!660 
TouUl670 
TUUUZ680 
Tu002690 
TtJoo:ooo 
TUU02710 
TOOUZ720 
10002130 
Touo27'10 
lDU0.27!>0 
ltJUUZ760 
10002770 
TuOOZ780 
TuUU279U 
Touozaoo 
TuuOZt;IO 
Tuoo2a20 
TU002830 
ltJ0028'10 
lt)U02aSU 
lDUU2860 
Toooia7u 
T0002880 
Tt.>U0.2;>90 
TouU2900 
T0002910 
10002920 
TouOZ930 
TOOU29'10 
TUU02YSO 
Tou0296U 
ToOU2Y70 
ruoOZ'IBO 
lOOU.2'190 
lUOUJOOO 
ToOOJUIO 
TOUUJ020 
TOOOJUJU 
TDOOJO'IO 
TUOUJUSU 
TUUOJ060 
TuOOJU70 
TOU0JU80 
TOOOJ090 
TDOOJIOO 
TiiOOJl 10 
lOOUJl20 
TOOOJl3U 
TOOUJl'IO 
T00031SO 
l 0003160 
ll.iU03 I 70 
TOU03180 
lUOOJl90 
TUOOJ200 
T000321U 
TOOOJ220 
TUOOJ230 
TUOOJ2'10 
TD0032SO 
liiOOJ260 
TUOOJ27U 
TOU03280 

·::1 
----~ __ -:::_::::f:-~f 

,_) ! 



r 
• t.tP-7689 UNIVAC 9400 SUPERVISOR Appendix A 5 

SECTION: PAGE: 

Lt OOUO!>q Sil liOP Et.Ill SVS.uHP+.1 UPI< luOOJ;t90 
CJU00!>6 SV$0Pk ("1lJ sv,;up+;< OPk - kt.PLY ToOUJ;iOO 
oooosa SV$ALT £C,,U <;Vci>t.JPk+2 ALTEk ll)UOJJ I 0 
OuOOSA SV$DSP ~-"'Li 5Vi>ALT+2 Dl:iPL)' 100UJ32U 
OuOO!>C Sl/$Ll<J E"ilJ 5V,.uSP+2 LLR - JOB L 111JT:. loU03J30 
OUOO!>E S V!bL"P Ei.iU 51/'l>Ll'(J+2 LLF< - PkOClSSUt< Lit.ITS ToOUJJ'IO 
U00U60 Sl/$LRk E'W sVi>LkP+2 LU< - LAST 2 tlYTt.S OF I< I$ T DU-llJ ..150 
Ou0062 SVsPAS E"1U S V S.Lt<tl + 2 SET SYS TE.MS FLAbS !NJCb ., 1)003360 
(J(JUU6'! SV$DIS £[HJ :,V:>t'AS+2 110 (JI SPA l lt;Et< ToOOJJ7U 
000066 SVSOPN E«U SV!i>U I 5+2 Ot't:N 10U03J8U 
0(.10068 SVSCLS E'>IU sv:.ut'N+2 CLO!>[ TouOJJ90 
OU006A SV'liLBt< El>iU SV$lLS+2 LBkET To'003'!00 
0(J006C SV!iiFEV EQU SV$Lt!R+2 FEuV TD003'110 
00006[ SV'>RUN [t,;U SV'l>H::V+2 kUN TDOU3't20 
Ou0070 SV$ALL [JU SV$t<UN+2 ALLOCATE TouU3't3U 
01)0072 SV$SCr< E WIJ <,V!>ALL+2 SCt<ATU1 TUUU3'1'10 
00007'! SV$RNM LlW s \/ s.:.>CR+i t<ENAMl:. TUUUJ'i!>O 
OUOU76 SVS>OBT EGIU 5Vl>kNM+2 Oll TAJ 1..; T0003'i60 
0lJ0078 SVSRTU EGIU SV!l>Ubl+2 Rli-IOTI:. TAt'l:. UUMP TOUU3'i7U 
OOOU7A SV$TST EQU SV5ifHU+2 IESl"•SJ TRAN::,IE.Nl TOUU3'i80 
00007C SV'bOPJ El>IU •; Vl> 1 ST +2 TRAl•Slt.NT OP JUl:l luUOJ'i9U 
00007E SV'bSET E \/U SV$UPJ+2 :.>£ r T0003!>00 
ooouao S VS.ST J. E ''U SV!DSl:. T+2 SET CUl•iMAIH.J, O\/Ekl:.1• Y TUU03!:.IU 
000082 SVSiLST E(,JLJ ::,V$5T 2+2 LI::, l TUU,Ul!:.20 
U0008q 5V!>LT2 ECIU 5Vl>L'> I +2 Lbl CivLl<LAY TuOUJ530 
OJUOBo S11$MTC t.<W Sll:»LT2+2 i"t"T c.. TuOU3!>'iO 
000088 SV$MC:l El.JU SVl>MTC+2 111 t 0\/UiLAY TOU03!>!>U 
OUOUl!A SV$LDk E'<U :;VsMC2+2 L0111JlR l(JC.103!:.bO 
ouooac SV$0VL E<~U SV'>l:.uk+2 svc t<TNl, kE.;, Tl<ANS O\/ERLAY CNTL TuuOJ!:.70 
OUOOBE SV!>TRO £1,lU SVl>UVL+2 JUb CNTL T ht.,, ll KT Nt. TU003!i>80 
0UOU90 -svs.SNP EuiU SVl> I t-.D+2 SNAP UUMP TU003!>90 
000092 SV$FLt f u!U S V!!> '.>l<P+ 2 f I Ll: TuU0..160~ 
00009'! SVS(JLT E<.U ;,VSfLl+2 UEU.: TE lUU03olU 
00009t. SVS>MTV [QU SVi>ULI+.,! MOU•H Touo3c.2u 
000098 SV'iiPRM E ·~IJ svs11rv+2 PAt<AMi:.TEI\ 1<T,,i:. CALL TDU03b30 
00009A SV!i>M56 f.(,/IJ SV\.t-'1l~1+2 MESSAbL IHNL CALL TDOOJb'+O 

J 
Uu009C SV'bSFL E;.)U ;, V :>1·1S<i+2 !SAM Si:.TfL TUOU36!>0 
00009E SV$STL E"1U SV»SFL+2 !SAM SETL TUU03ob0 
OOOOAO SV$EFL EWU SV»STL+.! !SAM 1:.NUFL T0003o7U 
0UODA2 SV$FOPN [\JU 5Vi>t:FL+2 FUk TR At• uPt.N T0003671 
OUOOA'I SV$FCLS r::w :.vsf ut'•<+l FOt-. Tt<AI• CLUSL T0003672 
0[JU0A6 SV$Tl<lE EIW SV'ld-CLS+2 TRACE IU:. TU1<N TDUU3673 
0UOOA8 SV$RSi<V I f_(H) 5V;,Tt;(t-;+2 TOU03b7'1 
OuOOAA SV$RSi<V2 E'W 5V:.i(SRV I +2 TOU0367!> 
OUOOAC SV$RStlV3 t:<HJ SV$t<Si<V2+.l TOli03676 
OOOOAE SV'ii~Al)V EUllJ SV!ii<SKV 3+2 . SVC COUE - AOVANlE Tu003b80 
OOOOAE SV$MCP E"1U SV $1HiU V . Svl Cl.JUE - STAkT SVl (00£ - HCP TOOU3b90 
uoooao SV$MSOR Et.IU SI/ :i.~I Al.IV +2 . 51/C cout: - SOUkllo TOU03700 
UOOOB2 SV$MTJM E•1U 5V'.i>1·1SOH+2 . svc Cu OE - r l 14E :.TA14P lU003710 
OODOB'I SV$M0AT 1:::-..IU S V 'i>li TI 11+2 . :>vc CuUE - DA Tl STAMP T0003720 
OOOOBb SV$M5wi E'~U Slli11UAf+2 . SVC COUE - SE"1U[NCE 11, To003730 
OOOOBB SVSMS(,jQ El>iU 5V$MSt,1 l +2 . ::i\/C COUE - SEi.iUlNlE ouT T00037'tU 
OOOOt!A SVl>MMSG Ei<ll <;VsoMS"'u+2 . svc COUi:. - Ml::::i::i/\1:1£ lYfE ToOU3750 
00000(: SVSMPLT E"1U Sl/$Mo1S"+2 . svc (Qi)[ - POLL LI 1'1 IT To00376U 
OuOOBE SV$MDIR £(,JlJ SV:>11PL f+;,: . ;,vc cuot: - u I t<l:.c l TuOOJ77U 
ouooco SV$MRTE E(lLJ SVS.t1D I ~+.2 . svc Cu OE - ROUTL TOU0378U 
oouoc2 SV$MCNM UiU Sll$Milh.+2 . :; vc cuuE - CANCEL MESSAbE TUU03790 
OOOOC'f SV$MERM E<HJ S V '.i>MC N11+ 2 . SVC Cul)[ - ERR UR MESSAGE TolJU31!00 
0000C6 SV$MEOB EliU SV$MlRM+2 . svc CODE - (NU uF bLOCK T UlJCJlll I 0 
ooooca SV$MRkT [l;U SV$M[Od+2 . Svt CuuE - KERUuTt: TUU031!20 
OOOOCA SV$MINT £(W SV:»l'IRRT+2 . :iVl COOE - IN l t. r< Ct.t' T t I LE TOOCJ383U 
oooocc SV$MRI EQU 5Vi>MINT+2 . SVC CUDE - f{ESEt<HU luuOJll'+O 
OOOOCE SV$MR2 EQU 5V'l>11r< I +2 . SVC CUIJE - RESl::kVEU T00038!>U 
000000 SV$MR3 EQU SV$11R2+2 SVC COUE RESi:.F<l/ED TuuOJllbU 
000002 SV$MR'f E"1U Sll!>Mf~3+2 . :>vc (Ol)t: - RESt.1nt.o T0003870 
00000'! SV$MR5 [(,IQ SV5'Mr<'f+2 . SVC COO£ - kESl:RVEO TOUUJ1!80 
000006 SV'bMR6 EQU SVliMr<5+2 . svc cout. - RESltHlO TD003890 
000008 SV$MR7 EQlJ SV'.i>MRb+2 . SVC CODE - RESERVED TOU03900 
OOOOOA SV$MR8 [QLJ SV$Mil7+2 . svc CUDE - RESlRVEO T0003910 
oooooc SV5MR9 EiW SV$Mfl0+2 . SVC COOE ~ RESLRVt:O T0003Y20 
DUO ODE SV'f;MR I() £QU SlfliMi<9+2 . svc COOE - t-<ESl:.kVEl) To003930 
OOOOEO SV$MRI! E'W SVS>Ml<li.1+2 . SVC COllE - tlESt:RVEO TOOOJY'+U 
OOOOE2 SV$UPR E'<U SVH1idl+2 . SH CUUE - USl::K Pl'(U.:,R11M REQUEST TOU039!>U 
OOOOE'I SV$MCPR E'IU SV$UPK+2 . SVC CUUE - MCP pRUliKAtl t<f.t,;UE.ST TOUU3960 v OUOOE6 SV$MBRQ E"1U SV!.MCPl<+L . svc C.ODE - blJf f El< RlQuEST T0003970 
OOOOE8 SVSMExc EWU SVSMtlfq+2 . svc COUE - MCP EllCP T0003990 
000075 SV$ENO E_,U (SVliMEJlC+2)/7 LENGTH OF svc TAt!LE ToOO'IOOO • ENDO TOOO'tOIO • Do '. ·=·' l++t • ·=· '=01 TOOO'IU2U • TOOO't030 • FCt! TOOO'tO'tO • TOOO'IOSO 



000000 
000008 
000'110 
00001'1 
Ou0018 
000029 
OU0029 
0UOU2F 
000033 
Ou0037 
000030 
OU00'13 
OOOO'IY 
0000!;1 
0000'1'1 
0000'1!; 
0000'18 
0000'11) 
0000!:.0 
0000!;6 
OU007S 
00007C 
000085 

ouoooo 
000008 
OUOOOA 

ouoooo 
000002 
UOOOOA 
000012 
000_08!; 

ouoooo 
000008 
000078 
00008!; 

000012 
ouoo1c 
OU0020 
00002'1 
UU002't 
000028 
OU0028 
0U0028 
OU0028 
00002c 
000030 
00003'1 
00003'1 

uuoooo 
00000'1 
000008 
OOODOE 

UNIVAC 9400 SUPERVISOR 

JF$PUI:! 
JF5VSN 
JFSVCF 
JFSEBA 
JF5LBL 
JFSTLB 
JFSTVS 
JFSTVlol 
JFSTFQ 
JF5TGV 
JFSTCD 
JFSTEU 
JF$TSi:I 
JF$TSC 
JFSDLtl 
JFSl.lf S 
JF$DV1o1 
JFSDCU 
JFSDEO 
JFSDSC 
JF SOMf 
JFSEBK 
Jf5L 
• 
• 
• 
• PIOCo 
• 
IBSLBL 
IB5FBL 
IB$FB 
• 
• 
• 

Elo!U 
EQU 
EiW 
EQU 
EfW 

EGIU 
EQU 
EQU 
ElolU 
EQU 
EQU 
EQU 
EQU 
E'>iU 
EQU 
EQU 
EQU 
£QU 
EQU 
ElolU 
EQU 
E•W 
EIW 
C:NDO 
DO 

u 
JrSt>Ul3+ii 
.iF:i.vsN+a 
Jf$1/C.F+'I 
jFU.flA+'I 
Jf$Li:;L+i7 
JFHLB 
JFSrVS+6 
JFSTVt.l+'t 
JFS rFl,/+'t 
JfSlGV+6 
JfsTC0+6 
JF!HE.D+6 
JFSTSB+B 
Jf:iLbL+'t't 
Jf,iilJLb+ I 
Jf $UfS+6 
Jf$i)V(~+2 

Jf$UC.0+3 
Jt' :liUt::0+6 
JFSOSC+3i 
JF SLJ11f + 7 

J l..1 

Ec.iU U 
E"1U JB1'LBL+B 
E.biU I ll!H bL+l 
t::NDu 
DO (''•''l++('••''•IJI 

• EXTENT REQULST t;LUCK 
• 
JX$NEI< 
JXSFCI:! 
JXSVSN 
JXSEXT 
JXSL 
• 
• 
• 

EQU U 
EGIU J.l\3'Nt::i<+2 
EQU JXSFCB+IJ 
EQU JX!iVSN+ll 
f"1U JFSL 
ENDO 
DO (•'•''l++('••''•OI 

• VOLUME SERIAL NUMBEri LIST bLDCK 
• 
JVSFCb 
JVSVSN 
JVSLNK 
JVsL 
• 
• 
• 
• 
DISOTF 
DISGET 
D ISPUT 
DlsCNT 
0 I Sl.\NK 
DISRLS 
DISTNC 
0 I SAFT 
D ISESL 
OURD 
D ISWRT 
OISEFL 
0 ISWTF 
• 
• 

EQU 
EIJU 
fQU 
fQU 
EN Du 
IJO 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

[) 

JV!H Cb+& 
JYSVSN+Jl2 
JFSL 

Appendix A 
SECTION: 

PUS AUDRESSES 
VULUME SERIAL NUMbER 
VOLUME COUNTERS • FLAi:.S 
E~TENT bLDCK DESCRIPTOR 
TAPE UR DISC FILE LABEL 
TAPE FILE INFORMATION 
TAt>E ~ILE SERIAL NUMBER 
TAPt:: VOLUME SEQ NUMBER 
TAPE FILE SEQ NUMdER 
TAPE bEN 6 vt::RSION NO 
TAPE LREATIQN UATE 
TAPE LXt>INATION DATE 
TAPE SECURITY 6 BLOCK COUNT 
TAPE SYSTEM COOE 
IJl!>C F !Lt:: INFO 
lll::iC FILE INFO 
~ISC FILE VOLUMC: SEQ NO 
DISC FILE CREATION OATE 
DISC flLE E.XPIRATION DATE 
OISC FILE SYSTEM LODE 
FLAl>S 
DISC-FILE EAT REQ BLK KEY 
LENbTH Of f'Ct! 

B LrlAi<ACrEN srRINb 
2 REMAININb LENbTH 
flNST bYrE UF FCB 

NUMbER OF C:NTRIES 
ADDRESS OF fCti 
VOLUME SERIAL NUMBEI< 
EXTENT rNFORMATIUN 
LEt,bTH Of U<i;J 

ADDRESS OF fcb 
VOLUME SC:RIAL NUMBEl<S 
SEARCH KEY OF NEXT BLOCK 
LENI> TH OF II S1•LB 

DISPLA(EMENT TO FILE TyPE JN UTF 
i>ET MOUULE ADDRESS IN uTF 
PUT MODULE ADDRESS IN D~F 

CNTRL MODULE AUDkESS IN OTF 
NE~KEY MODULE ADDNESS IN UTF 
NELSE MODULE ADDRESS IN Off 
lkUNC MODULE ADDRESS IN Dlf 
AFTER MODULE AIJORESS IN oTF 
t:SETL MODULE ADDRESS IN oTf 
t<t::AD MODULE AUDNESS IN oTF 
wRITE MUUULl AIJURESS IN OTf 
ENDFL MODULE ADDRESS IN OTf 
""AITF MODULE ADDRESS IN Dlf 

• 
l!'ND(l 
DO t••·••1++t'••'OM•)++t••·•uM'~++c••••OM'l++(••·•oM'l++C•I 

••'UM'l++C''•'OM•)++C''•'DM'l++(''• 1 DM'l++t' 1 • 1 0M 1 1++t 1 •1 
•'OM'l++t• 1 ••0M'l++t•'• 1 0M'I 

• 
• 
• DIRECT ACCESS VOLUME I LABEL .. 
DL.SVL 
OLSVLI 
DLSVSN 
DLSVSB 

0 
QLSVL+'t 
QL5VLl+'I 
OLSVSN+6 

~ bYTE KEY 'VULI' 
'I L~L IOENllFIE~- •VOLi' 
6 VOLUME SERIAL NUMBER 
I VOLUME SC:LURITY bYTE 

PAGE: 

TD00'1060 
TD00'1070 
ToUO't080 
TOUO't090 
TDOO'tlOO 
TOOO'lllO 
TOUCJ.'1120 
TD00'1130 
TOOO'll'IO 
TuOO'tlSO 
ToUO'IUO 
TDOO'l.170 
TD00'tl80 
TDOO'tl90 
TD00'1200 
ToOO'l210 
TD00'1220 
T000'1230 
TD00'12'10 
TDU0'12SO 
TDUO't260 
TD00'1270 
TDOO'f 280 
TOU0'1290 
TD00'1300 
TD00'1310 
TD00'1320. 
TD00'1330 
TOUU't3'10 
TOOO't3SO 
TU00'1360 
To00'1370 
TDDO'IJ80 
T000'1390 
Tou.O'l'tOO 
TDUO'l'llO 
TL>U0'1'120 
TDOO't'IJO 
TOOO'l'l'IO 
ToUO'l'l!iO 
TOUO'l't60 
TuOO't'l70 
TDOO't'l80 
ToUO'l'190 
TIJUO'l!iOO 
TOOO't!ilO 
TL>UO't!i20 
TOOO'IS30 
TDOO't!i'IO 
T L>OO'l!i!iO 
TUOO'tS60 
Tl.IUO'l!i70 -
Tl.IOO'l!i80 
TOU0'1!;90 
TL>00'1600 
TD00'1610 
TOU0'1620 
TD00'1630 
TuOO't6't0 
TQUU't6!:.U 
TD00'1660 
TL>OU't670 
TU00'1680 
T000'1690 
T000'1700 
l000'1710 
TL>00'1720 
TD00'1730 
TL>00'17'10 
l000'17!:.0 

TL>00'1790 
TDOO't800 
T000'18l0°' . 
TOOO'IUO 
TOOO't830 
T000'18't0 
TOOO't850 
TD00'1860 
T000'1870 



UP-7689 

i;';'}:,"f 

;7•-0~-
UUUUl)f 

0U002Li 

uuooou 
uuuuu1 
OOUUu7 
UUl.lUU9 
UuUOUt 
UuOOUF 
DuUOIU 

U00026 
OOU021J 
OOU0.29 
Ou0fl2A 
UOUD2C 
UuD02E 
OOUUZF 
000031 
UUU032 
UUOOJb 

OUOOJ[J 
0U003E 
OU00·3F 
OOOD'f J 

OOIJUSB 

OuOUUU 
000001 
ooooua 

oooouo 
00001'! 

uoouzc 
OuU02f) 
OuU02E 
0U002F 
ououJ2 
0U003'! 
uUU03S 
OUOUJb 
UOU037 
Otl0038 

UllOU3B 
UuOLIJu 
OUOO'IU 

OuUU'l2 

OQUO'f 3 
0000~7 

0Ull0'18 
UUflO'fF 
000056 
OU005o 
OUUObS 
UUlJUbA 
UU0ll6F 

uuou,,. 
UUIJO IC 
0UiJ07E 
OOOUb[) 
ounofJ2 

UNIVAC 9400 SUPERVISOR 

DLs.vrc 

f l.\!U uL:.v TC+ Ju 

• 
• Olkt:CT A((~::;S Fu~MAI 1 LAulL 
• 
DL$ l li 1 
lJL!bf 5 l 
flL$VS l 
OL$ClJ 1 
DLS.E::ln 
DL $ XC 1 
DL<J>LlJl 

• 
• 
IJL<;;f T 1 
llL'llH 1 
DL'>Otl 
DU.BL I 
DLo;;RLI 
DU·KYI 
flL$KL 1 
UL$D51 
1)LliSA I 
OL$Lkl 
• 
DL:.X TI 
DL 'i> XS I 
DLSXLI 
uL '>XU I 
• 
• 
DLiCPl 

• 
OL $ l ll2 
DL'>M2.:: 
l•LS.L2 <! 

• 
0L'l>M32 
DL:>L 32 
• 
DL'.hf U 
DL'!'1 U! 
DL :>HL2 

DL s.RC.2 
DV!>LC2 
ULsTD2 
DLS.HH2 
OLSHP2 
DL$H02 
DL!LLR2 

0LST02 
0LSNf2 
DL!>Hil2 
• 
OL 'b HT 2 

• 
OL">PfU 
.DL$Sl2 
DL!i>Cl2 
DL!l>LM2 
DL$HH2 
DL$,LP2 
DL$LT2 
DL$LE2 
DL!!>Ml2 
• 
• 
DL$Ll2 
DL$flR2 
OL!!ii02 
0Ls;OR2 
DL\CU2 

• 

t:IW 
[WU 
£fhJ 

E"1U 

[c,/ll 

E«U 

Et•u 
E~U 
EliU 

- E.;;u 
E'•U 

lJ 

uL•>lul•i 
ULH'.>1+6 
UL:P>'S I +l 
ul:.CiJ I +J 
{)L,.t.O I +J 
[JL!oA( I+ I 

DL"'Ll;, 1 +,!.l 

lll :.r TI+'­
DL '>'1 f I+ 1 
uL!!>uC1+1 
DL!otiL 1 +l 
DLl>1\L I+<! 
11L>Oi<. YI+ 1 
t)L$1\LI+.:: 
i)L$USl+J 
IJL'>'.>A 1 +'I 

U.L~Lt<i+7 

DL!oATl+I 
uL!oX'.> I+ 1 
JL:>XL 1 +'f 

1j 

lJL'l>iv2+J 
DLii112l+7 

lJL$U!2+s 
OLHJ.32+ I 

uLl>LJ2+.2'1 
;;L:Hl2•i 
UL$IL2+1 
,)Ll>HL2+ 1 
i)L$i"'-+J 
,;L!>LC2+2 
:JL!oTUi+I 
i;Lc>HllZ+ l 
uL'ld1f',!_+ I 
i;Ll>HUi+ I 

DL,,Li'<.2+3 
,;Ll>IU2•2 
l)Ll>Nf 2+J 

:)L '>ti0 2 + 2 

uL,,hl2•1 
DL:H'r<2+'! 
wL 1>::.12+ 1 
DL>ll2+7 
uL:i>Ll-12+7 
DL :1>111'1«+ l 
[)LiLP2+B 
oLiL f:<.+5 
UL:l>Li:.2+!;> 

fJL:iiMl2+!> 
{JL:>L l Z+ti 
OL$L!IU+.1 

IJL:>l02+2 
OL!i>Uf'2+2 

Appendix A 

SECTION: 

10 ~TDC AOOk- CCHHK 
20 kL'.>LkVElJ 
10 OPTIONAL U~NEH NAHL/AUDK COE 
29 REStkVEU 

I FLlkHkT lul~TIFIEh- ••01• 
b FI Lt. SLR I AL NUhBLR 
2 VULUhL SLWULNCE ~UMblR 

3 Cl<lAl !UN liATE:: 
J lAPlhATION OATL 

LXllNl CUU;•d 
uYTts USElJ IN LAST DIR ULOCK 
SPAkE 

13 IDE::NTlFIES PROG•G SYSTl::M 
I ld:.SlhVt:D 
2 flLE TYPl 
I HtCvl<ll FUhnA f 

u P T I UN C u1lJ ES 
<! tlLOC.11, LEl">Tti 
£ tll(Urd) LL\;_, TH 

11,lY LlNGlH 
I. )\LY LDCAl~Ol'S 
I vAl11 5£1 ii.UICAIORS 
'i SEtUNUAt<Y ~LLUCATION 

5 LAS1 NECUHU PUINIEN 
2 SPAhl 

LAlLl'<T lYpL IND- ISJ LXIE::HI 
LAILNl SL• NUMULN 

~ tXTLNT LUnLH LlnlT 
'! lXlLNT UPPlk LlnlT 
1 u 2 NU L X ·1 t 1~ T 

1 u 3 R L> t. X 11:. 1; T 
s Cul<T lt<UAl 1u1; f-'0!1HEI\ -CCl-HiR 

1 l<.EY INOLtqlFlER - x•u.1• 
7 AUUh OF <!HO L~L MASTER INDLX 
S AOOk OF LAST iNu LVL MSTR ID~ 

7 ADUN OF lRU LVL MASTEt< INDEX 
S AOUK Uf LA6T 3Ru LVL MSTR IOA 
1 'f SPARE 

fUki'!Al IDtrHlflU< 
fOkMAT Ur I NDLX LEVELS 
nlGH LE~t:.L INDE1-otv !Nu 

3 FlkST DATA RECOt<O IN CYLINllER 
2 AUUR Of LAST OATA TRKS IN CYL 

NUMtlEN Of THl<.S f0H CYL uVFLO 
til KtkD N UN Hl-LVL IND• TRK 
rll KCkD u UN PRIME UAfA TRK!> 
HI POSS K(RU u uN OVFLO UTRKS 
HCku u Of LAST u-HCRD/SH•TRK 

2 SPAKE 
2 TAG DEL£ 1 I UN CUUIH 
3 NON-IST OvtLO Pt<EFERLNCE CUNT 
l NUMbEK tlYLS FUR Hl-LVL-l~k 

'f PRIME Rll(JNU LOuNT 
1 STATUS lNulCATUn 
7 AUOt< Of CyLINOEk INDE• 
7 AUUk Of LO-LVL hSTk IOX 
7 ADUk OF Hl-LVL MSTR INDA 
8 LAST PRIME o-KC~O AODR 
§ LAST TRI\ iOX NTNY ADDK 
!o LAST CYL IOI NTY AUDR 
b LAST MASlEN INPE~ ENTR~ ADON 

8 LAST 1ND'£NT OVL/ RCRD ADOR 
2 tlYTtS Rt:M• 11~1> 01; UVFLO Tl<K 
2 NUMtlEN INUP'ENT OV~LO TNKS 
2 OVFLO RCl<O CUUNJ 
2 CYL UVFLO AREA L00NT 

3 SPAkt 

PAGE: 

TDUO'fll80 
TOU0'1890 
TuOO'IYUO 
ToOO'i9lU 
TouO'f9ZU 
Too0.'1930 
TOUU'f9'!0 
TDOU'!9SO 
TOOU'f960 
TuUU'f970 
TUUU'f'i8U 
TOUO'f990 
Tuuusuoo 
TOOUSOIO 
Touusuzu 
TOOOS03U 
TOOO!>U'fU 
Tl>OUSOSU 
TOUO!>U60 
T0005070 
TUUU!>U80 
TLiU0!>09U 
TuuU!>IOO 
T DOU!> 110 
TDUU!>l20 
TouUSi30 
TOOU!>l'IO 
T OUO!il SO 
TUOU!>l60 
TU00!>170 
1ooos1eu 
TbOOS190 
T000!>200 
T 1.100-!>Z I U 
TD00!>2ZO 
TDUOS230 
TOUO!:IZ'IU 
TU00!>2SO 
TU00!>260 
TUv0!>270 
TOU05Z80 
TOUU!>29U 
TouUSJOU 
TOOUSJIO 
T000!>320 
TuuUS330 
TOUOSJ'fU 
TOUU!>JSO 
TD00!>360 
TOOOS.370 
TOOU!>380 
TOUU!>390 
TOOOS'!OO 
TOUUS'llU 
loOU!>'IZU 
lOOUS'l30 
TDOOS'f'IU 
TDOO!>'!!':tO 
TU00!:.'!60 
TOOU!>'!7U 
TD005''!80 
Too0!>'19D 
TOUOSSOO 

.TOOD!>SIO 
TOOO!oSZO 
10005!>30 
TOUOSS'IO 
TUUOS!:>SO 
TOOUSS60 
roouss7u 
TOU05S8U 
To07!':tS90 
T0005600 
TOOU!>4lu 
TDUOSt.20 
ToU0563U 
TUU0!>6'10 
T UOU!>6SO 
1000!>660 
TOUUS670 
TOOOS.680 

7 



0000117 

ouoooo 
00000'1 
OUIJOU!i 
0(J00U6 
UUUUOA 

00002( 
Ou002D 
000087 

ououuo 
000001 

000006 
0000011 
ououoc 
OUOOOE 
OuOOOF 

000012 
000016 
000018 
ooUOIB 
UOOOIC 
OOOOIE 
OOOOIF 

000030 

000000 
00000'1 
000006 
000008 

00002c 
000020 
000087 

000002 
OUOOOJ 
UwUOU'i 
UUOUfJS 
0U0Ull6 
0UUUU7 
OUOOC_l8 
OuUUll9 
UOOUUA 
UUOUUE\ 
uunouc 

UUOUFI 
UUOOF'I 
OOOOF2 
OUOO'IU 
OUOOFO 
0Ll00F I 
OOUOF3 
OuUOF'i 
0UOUF5 
UOOOF6 

UNIVAC 9400 SUPERVISOR 

DL'l>CP.l 

• 
• 

E.,/U 

• DIRt:Cl 11cct:ss Fur<MA I J LAbf.L. 
• 
D L'fd DJ 
DL,;XTJ 
DL'5SNJ 
DL.SXLJ 
lll$XUJ 
• 
• 
• 
DLSFl.l 
DLSXSJ 
DL'iCPJ 
• 

EQU 
E .. U 
E<.!lJ 

u 
UL$ I OJ+'! 
DL5XTJ+i 
oL'l>Sr<3+ I 
DL :i.l\LJ+'I 

DL;>XUJ+J'I 
OL>FIJ+i 
uL$XS3+'1U 

• DIRECT ACCESS FUNMAT 'I LA~EL 

• 
DUi!D'i 
DLSLF'i 
• 
DLSAF'I 
OLSHA'I 
DL!>A T 'I 
llL 5V I 'i 
DLSXC'I 

• 
OL$0S'i 
OL$JL'i 
OL$RO'i 
DLSFG'i 

·OL 'Ii TO'I 
OL'iiL T'I 
UL$BT'I 
• 
OL$VX'I 
• 
• 
• 

EQIJ 
EOIU 

Et.IV 

0 
l)L'ii!D'I+ I 

OL5Lf'l+S 
1.JL$AF '1+2 
OL5tiA'l+'I 
uL'iAT'l+2 
oLS.V I 'I+ I 

OL!!.XC'l•3 
UL!P•JS1 •'I 
t>L'.DTL'l+2 
IJL:oiW't•J 
•;L>Fll'l+i 
DL:»TU'i+l 
DL:llL T'I +I 

uL'.Di:lT'l+JU 

• DIRECT ACCESS FuNMAT S LA~lL 
• 
DL!> Io:. 
DLSXTS 
OLSXC:. 
0L$XE:> 
• 
• 
DL$FIS 
DLSXSS 
DLSCPS 

• 
• 
• 
• 
• 

EQIJ 
E(W 
E<>IU 
E<.!lJ 

u 
L)L:D I ll:.+'1 
uL .. X I ;,+z 
oL:;.xcs+z 

uLs;.l5+J6 
ULllr 15+1 
uL>;.S~+9U 

Appendix A 
SECTION: 

S PNTN TO FuNMAT J LBL 

'I KEY IDENT1FIEN - x•oJ• 
I EXTlNT TYPE INOICAlOR 
I EXltNT SEQ NUHBL.R 
'I lXTENT LO"lff LIMIT 
'I EXTENT UPPER LIMIT 
lu EXTENT 2 
IU t:;XTENT J 
IU EXlENT 'I 
I FORMAT IUENTIFltR - x•o3• 
9U EXIENTS 5 THROUGH 13 
S PNTN TO tOkMAT .I LABEL 

FOkMAT IUENTIFILR - C''I' 
!i LASl ACTIVI;; FORMAT I 

2 AVAILABLE flLE LABEL HCHOS 
'I rllGHEST ALT THK 
2 NUMbER Of ALT TNKS 
I VTOC INulCATllkS 
I NUMbEN Of lXTENTS 
2 RESt.RVELJ 
'I DEVICE :.I.i:E 
2 T iHI L K Lt:. 1~ b I It 
J HECUNO U~ENHEAO 

I F LAli 
2 TOLlNANCE 

LAIH.LSllkACK 
iJLUC.K/TNAcl\ 

29 Rt:.SE1<Vt.i.J 
1 u vTuc 1::0 ENT 
2:. kt.SENVlU 

'I KlY IUENTIFICATJON 
2 Nt:.L~TIVt. TN~ AOuR 
2 NUMbt:.R UF CYL. IH EXTENT 

NUMbEN UF TNKS JN LATENT 
5 AVAILABLE EXTENT 
Ju SIX MON~ AVAILA~LE E~lENTS 
I rORMAT JI) 
'lu FIFTEEN AVAILAbLE EXTENlS 
S PNlk TO ANUTHER FMT S LbL 

•DATA MANAGEhlNT Nl~ISTL.N ,~UAlLS 

02$ 
03$ 
D'l5o 

05'> 
U6'1> 
07$ 
08$ 
09$ 
DAS 
Dt>s. 
DC$ 
• 
• DAT A 

DI SE ff 
Dl$EFE 
DISEFD 
Dl$EOU 
DI SEO I 
DlsE02 
Dl$EOJ 
DISiEUS 
DISE06 
Dl$£0l 

Ei.lu 
Ei>IU 
l<iU 
E(HJ 
('>llJ 

Et.IU 
E.<.IU 
EQU 

E<.!U 
El.IU 

Et.IU 

R,:i.;JSllH 2 
R/;.blSTlt< J 
Ht:.l11STEK 'I 
Rtl.llSTE1< s 
HL.l.llSTEN b 

Ht.GISlEH 7 
RL.ul5llr( " 
REulSTEN 'I 
Rt::ulSTlR IU 
RlGISTlH II 
Ht.1:1ISTl1< ll 

~ANAGEriE~T lHNUN t~UATlS 
Ei>IU C' I' 

(' 't. 

c 'l.. 
c. • 
c. J. 

C' I' 
c'.P 
c. 'i. 
( ':.. 
c. b. 

t'~OCE5SING TIML coi-;STA1,T 
TRANSIENT llME CuNSTANT 

bLANK fOM 1-TYPl MS"15 ~iT8 NO USEri l~nOkS 
EkHUR - OPENINb AN AL~tAllY OPENED Fill 
EkHUH - CL.OSIN~ AN AL.~lAUY LLUSEtl Fill 
EkkUR - CANNOT ~lAU tlLE CONTHOL iJLUCK 
EhHUH - BLOCK Sill SPECIFICATIUN 
lkHuR - REGJSTlk SPECIFICATION 
EkkUR - MISSIN~ HUOULl 

TUOUS690 
TOUU!.700 
TOUU!.710 
TUU0!>720 
TOU0!>730 
ToOOS7'10 
rouu::;1so 
TOUOS760 
TuOU5770 
TUUU!.780 
TUUU!:>/90 
tuoosaoo 
ToUUS.810 
Touosa20 
Tooosuu 
T000!ir8'11J 
f[)OO!>dSO 
ToUOS.860 
To00587U 
rooosaao 
TOUUS890 
lOOIJ!>YOO 
T000!>910 
Tl>UOS920 
TOOO'S930 
TOOU!>9'10 
TOUOS9SO 
TuOU!:>960 
TOCi05970 
TOOO!>YBU 
T(1UOS990 
To001>UOO 
TOU06UIO 
TUUU6UZO 
TOU0603U 
ToU06U'IO 
ToOUoOSO 
TuOU6060 
TOU0o070 
To006080 
tuuoao9o 
TU006100 
ToUUo I HI 
TOU0612-0 
ToUUt>i lO 
TouOol'IO 
TOUOOISO 
T000616U 
TOOU6170 
TOUUQl80 
l 1)(106190 
HlUUo200 
lOUOoZIO 
Tuuuo22U 
Tl:IU06230 
T000o2'10 
lOOUoZSO 
TOUU6260 
ToUOt>27U 
Touuozao 
Ti.JOOt.290 
T0006300 
T00063IO 
TDu0632U 
Tu006JJU 
TuU06J'IO 
IOUU635'0 
TUU06~60 
TOUU6J70 
IOUU638U 
Tt>U06J90 
rou06'IOD 
TUU06't.IO 
ToUOo'l20 
Ti.JUU6'12!> 
TOUU6'130 
TuUU6'1'10 
To006'1SO 
TuuUo'l6U 
TOUU6'17U 
TUUUo'IBO 

,'~ 

·>-1~~ .. ·. 

0 



.·. ,;.UP-7689 UNIVAC 9400 SUPERVISOR 
Appendix A 9 

PAGE: SECTION: 

"' 
OOOOF7 Ol$ED9 EQU c' 7' ERRuR - E.XTE.rH T Ac!L£ FULL TOUOC.'!90 
0000f8 DJ$EI I EQU c' 1:1 • t:.kRuR - NU PUB 11LLOCAlt:D 1ouuc.5ou 
CJOU0f9 Dl$EIJ E•~U c '9' EkRUii - VOLi TOUOC.SIO 
ouooc1 DI $EI!:> E'~U C 'A 1 Et\ROR - FORMAT I OR HiJfd rouuc.szo 
ooooc2 DJ$E II> EQU c • .,' EkRUR - TAP!:: STANDArW LA!>EL TOU01>530 
OUOOC3 DISEl7 ElW c•c• i::KRUR - FORMAT2 Ok FOkMATJ TUUOC.S'IO 
OUOOC'i D J$E 19 £"1U c•o• i::RHOR - fORMAT'I ruuoc.550 
oooocs 01$EZC EQU C 'E' EkRUR - USEt-< Ht.AUER OK TRAILEI< LABEL TDUU1>!>60 
OUOOCI> 01$EZI EYLI C'f' Et<ROR - NIS!>ING FILE 10 IN ~Cc! TOOOC.570 0UOOC7 DISEZJ El>IU c' l,J' Et<ROR - 110 TOUOC.580 
OOODC8 015EZS £QU C'H' ERROR - ACCESS I l•G UNOPt:NEU FILE TOOOC.590 
OOOOC9 Ol$EZ7 t::QIJ C' I' ERROf~ - VSNLd TUOOl>t.00 
000001 DISE2'1 EQU ( 'J' El'\kOR - JOB CONTROL STRt:AM INCONSISTENCY TUOUC.610 
ououuz DISE31 EQU C 'K' Et<ROR - SYSTt:M STANUARO LABLL BLOCK TUUOC.oZU 
000003 01$[33 EQU C'L' Ei<t<UR - USEtt LABEL BLOCK TUUUC.t.30 00000'1 DUE3S £QU C'M' ERROR - UNE.X:P I Rt.D EKPIRATION DATE TDOUot.'10 
UUllODS DISE37 E1.iu C'N' ERROR - STANUAkl) LABEL FI t.Lu INCOKRECT TOOU6t.SO 
000006 Dl$E39 ElW c•o• f.l<RUR - l/O LIMITS CHElK FAILUl<E TOOUC.C.60 OU·OOD 7 DI $E'l I EQU c 'f'' Et<t!OR - I NV11L Ill lMPEkAT!Vt: MACKO T llOUl>I> 70 
ouoooa Dl$E'IJ [(,IU c' {,j' i::KRuR - wAITf NllT 1 ssut:L> TL>OU1>680 
000009 D1$E'I!> ElolU c 'k' Et<RUR - TRANS I t.l•T Ort COMMON CODE INoEx TOU01>1>90 OOOOEZ OUE'l7 EYU c 's' EkRUR - CHAIN AkEA OVERFLOW TOOOC.700 llUOOE3 D1$E'19 EQU c '1' EKkOR - TI Mt. LIMIT REA CHEU TD001>710 OOUOE'I D 1$ES I EQU c. •u• ERROR - KEYLENGTH !NCORKECT TOOOl>720 OOODE5 Dl$ESJ EiolU c' v' ERROR - BLOCK Lt.NGTti INCOt<Rt.CTIFIXED/VARI 10001>730 OOOOE6 Dl$ESS i:;Qu c' Iii. EkRUR - CHKpT NuMilEl"<S lHl Nor MATCH ToUUl>7'10 
OOOOE7 D1$ES7 EQU c 'x' EF<ROR - BLOCK NUMclER uR DATA bLOCK COUNT TOOOC.7SO OOOOEs 01$(59 t:QU c' y' t.RROR - INVALIO/INCO~SlSTt:.NI ovc ASGNMENT TuUUC.760 
OUOOE9 01$El>l EQU c 'I.' WARNING - Rt.SIUl::NT Cl CANT clE SPTO T0001>770 
UUOO'IA DISEl>3 EQU c '¢' o'IARNING - MULTl-BLOCI' l/U CANT tlE SPTD TOUOC.780 







-

U P-7689 A 


