.

LNNAC

A

SUPERVISOR

PROBRAMMERS REFERENCE This manual is published by the Univac Division of Sperry Rand Corporation in loose leaf format. This format provides a rapid and complete means of keeping recipients apprised of UNIVAC[®] Systems developments. The information presented herein may not reflect the current status of the programming effort. For the current status of the programming, contact your local Univac Representative.

The Univac Division will issue updating packages, utilizing primarily a page-for-page or unit replacement technique. Such issuance will provide notification of software changes and refinements. The Univac Division reserves the right to make such additions, corrections, and/or deletions as, in the judgment of the Univac Division, are required by the development of its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

UP-7689	UNIVAC 9400 SUPERVISOR	Contents	1
		SECTION:	PAGE:

CONTENTS

CONTENTS	1 to 5
1. INTRODUCTION	1-1 to 1-5
1.1. GENERAL	1-1
1.2. MACRO INSTRUCTION FORMAT	1-1
 1.3. CONTROL STATEMENT CONVENTIONS 1.3.1. R and S Type Macro Instructions 1.3.2. Special Register Notation 	1-2 1-3 1-3
1.4. STANDARD LABEL CONVENTIONS AND THE STDEQU MACRO INSTRUCT	TION 1-3
2. FEATURES	2-1 to 2-3
2.1. GENERAL	2-1
2.2. MODULARITY	2-1
 2.3. MULTIPROGRAMMING 2.3.1. Program Priority 2.3.2. Time Allocation 2.3.3. Input/Output Utilization 	2-1 2-2 2-2 2-3
2.4. SYSTEM RESIDENT STORAGE	2–3
3. STORAGE ALLOCATION AND SUPERVISOR STRUCTURE	3–1 to 3–33
3.1. GENERAL	3–1
3.2. LOW ORDER MAIN STORAGE	3-4
 3.3. SYSTEM ENVIRONMENTAL CONTROL STORAGE AREA 3.3.1. Error Job Preamble 3.3.2. Supervisor Call Interrupt Table 3.3.3. Job Control Blocks 3.3.4. Physical Unit Blocks 3.3.5. Program Switch List 3.3.6. System Information Block 	3-4 3-4 3-8 3-12 3-14 3-17 3-18

UP-7689	UNIVAC 9400 SUPERVISOR	Contents 2 section: Page:
	3.4. SYSTEM CONTROL ROUTINES STORAGE AREA	3-20
	3.4.1. Supervisor Call(SVC)	3-20
	3.4.2. Physical IOCS	3-21
	3.4.2.1. Channel Scheduler	3-21
	3.4.2.2. System Error Job	3-22 3-23
	3.4.3. Program Switcher 3.4.4. Program Check	3-23
	3.4.4.1. Program Interrupt	3-24
	3.4.4.2. Software Program Exception	3-25
	3.4.5. Program Load - Disc Systems	3-25
	3.4.5.1. Absolute Program Loader	3-25
	3.4.5.2. Relocating Program Loader	3–26
	3.4.6. Program Load - Tape Systems	3-26
	3.4.7. Transient Scheduler	3-26
	3.4.7.1. Disc Systems	3-27
	3.4.7.2. Tape Systems	3-27
	3.4.8. Timer Services	3-27
	3.4.9. User Island Code Management	3–28 3–30
	3.4.9.1. Program Check 3.4.9.2. Timer Interval	3-30
	3.4.9.3. Unsolicited Message	3-30
	3.4.10. Operator Communications Control	3-31
	3.4.11. Optional Resident Routines	3–31
	3.5. TRANSIENT AREA(S)	3–32
	3.6. PROBLEM PROGRAM AREA	3-32
	4. PHYSICAL IOCS MACRO INSTRUCTIONS	4-1 to 4-1
: :	4.1. GENERAL	4-1
	4.1.1. CCB Macro Instruction and Command Control Block Structu	
	4.1.2. EXCP Macro Instruction (Type R)	4–5
- -	4.1.3. WAIT Macro Instruction (Type R)	47 4-8
	4.1.4. MARK Macro Instruction (Type R)	4-0 4-9
	4.1.5. YIELD Macro Instruction (Type R) 4.1.6. PIOCB Macro Instruction and Physical I/O Control Block	
	4.1.0. PIOCE Macro Instruction and Physical 1/O Contor Block 4.1.7. RDFCB Macro Instruction (Type R)	4–10 4–13
	4.1.7. ROLED Macro Instruction (Type R)	4-15
	4.2. DYNAMIC RELEASE OF PERIPHERAL DEVICES	4-16
	4.2.1. FREE Macro Instruction (Type R)	4-16

UP-7689	UNIVAC 9400 SUPERVISOR		Contents section:	3 Page:
				,
	5. PROGRAM MANAGEMENT		5—1 to	5-38
\smile	5.1. GENERAL		5-1	
	 5.2. PROGRAM LOADING 5.2.1. LOAD Macro Instruction (Type R) 5.2.1.1. Load Absolute Function (Disc Systems Only) 5.2.1.2. Load Index Function 5.2.1.3. Load Alternate Function - Disc Systems 5.2.1.4. Load Alternate Function - Tape Systems 5.2.1.5. Load Relocate Function 5.2.2. FETCH Macro Instruction (Type R) 		5-1 5-2 5-2 5-3 5-5 5-5 5-7	
	5.3. TIMER AND SIMULATED DAY CLOCK SERVICES 5.3.1. GETIME Macro Instruction (Type R) 5.3.2. SETIME Macro Instruction (Type R)		5-8 5-8 5-8	
	5.4. TRANSIENT AREA MANAGEMENT 5.4.1. TCALL Macro Instruction (Type R)		5-9 5-9	
	5.5. DYNAMIC ALLOCATION OF DIRECT ACCESS STORAG 5.5.1. GIVE Macro Instruction (Type S) 5.5.2. TAKE Macro Instruction (Type S) 5.5.3. QUERY Macro Instruction (Type S)	E	5-10 5-10 5-15 5-16	
	 5.6. SUBROUTINE LINKAGE 5.6.1. Linkage Register Conventions 5.6.2. Linkage Procedure 5.6.3. CALL Macro Instruction (Type R) 5.6.4. SAVE Macro Instruction (Type R) 5.6.5. RETURN Macro Instruction (Type R) 5.6.6. Register Save Area Usage 		5-19 5-19 5-20 5-21 5-22 5-23	
	5.7. LINKAGE TO USER ISLAND CODE SUBROUTINES 5.7.1. STXIT Macro Instruction 5.7.2. EXIT Macro Instruction (Type R)		5-26 5-26 5-28	
	5.8. SYSTEM INFORMATION CONTROL 5.8.1. GETADR Macro Instruction (Type R) 5.8.2. GETCOM Macro Instruction (Type R) 5.8.3. PUTCOM Macro Instruction (Type R)		5-29 5-30 5-31 5-32	
	5.9. CONTROL STREAM READER 5.9.1. GETCS Macro Instruction (Type R)		5-32 5-33	
	5.10. PROGRAM CHECKPOINT 5.10.1. CHKPT Macro Instruction (Type S)		534 534	
	5.11. PROGRAM TERMINATION AND STORAGE DISPLAY 5.11.1. EOJ Macro Instruction (Type R) 5.11.2. CANCEL Macro Instruction (Type R) 5.11.3. DUMP Macro Instruction (Type R) 5.11.4. SNAP Macro Instruction (Type S)		5-35 5-36 5-36 5-37 5-37	

		,	* 1
UP-7689	UNIVAC 9400 SUPERVISOR	Contents section:	4 Page:
			÷
	6. OPERATOR COMMUNICATIONS	6-1 to 6	-28
	6.1. GENERAL	6-1	\bigcirc
	6.2. MESSAGE FORMATS	6-1	
	6.3. OPERATOR MESSAGES TO THE OPERATING SYSTEM	6-2	
	6.4. OPERATING SYSTEM MESSAGES TO THE OPERATOR	6-3	
	6.5. OPERATOR COMMANDS TO THE OPERATING SYSTEM	6-4	
	6.5.1. SET Command 6.5.2. LOG Command	6-5 6-10	
	6.5.3. NOLOG Command	6-10 6-10	
	6.5.4. FILE Command (Disc Systems Only)	6-11	
	6.5.5. DELETE Command (Disc Systems Only)	6-11	
	6.5.6. RUN Command	6-12	
	6.5.7. GO Command	6-12	
	6.5.8. READY Command	6-13	
	6.5.9. LIST Command	6-13	
	6.5.10. PAUSE Command	6-14	
	6.5.11. STOP Command	6-14	
	6.5.12. CANCEL Command 6.5.13. DUMP Command	6-15 6-16	
	6.5.14. ALTER Command	6-16	
	6.5.15. DISPLAY Command	6-20	
	6.5.16. MTC Command	6-21	
	6.5.17. MOUNT Command	6-23	. ~ .
	6.6. PROBLEM PROGRAM MESSAGES TO THE OPERATOR	6-24	
	6.6.1. OPR Macro Instruction (Type R)	6-24	
	6.7. OPERATOR MESSAGES TO PROBLEM PROGRAMS	6-27	
	APPENDIX A. STANDARD EQUATE MACRO INSTRUCTION EXPANSION	A-1 to A	∖ −9

IID.	-76	589
· • • •	- / (··· ·

.

5

TA	B	L	Ε	S
----	---	---	---	---

3-1.	Job Preamble Standard Labels	3-5
3-2.	Supervisor Call Interrupt Standard Labels	3-9
3-3.	Job Control Block Standard Labels	3-12
3-4.	Physical Unit Block Standard Labels	3-15
3-5.	System Information Block Standard Labels	3-18
4-1.	Command Control Block Standard Labels	44
4-2.	Physical I/O Control Block Standard Labels	4-13
FIGU	RES	
3-1.	Main Storage and Auxiliary Storage Contents	3-2
3-2.	Main Storage Contents	3-3
3-3.	Program Switch List Structure	3-17
3-4.	Example of Free Space Linkage in Main Storage	3-33
4-1.	Command Control Block Format	4-3
4-2.	Physical I/O Control Block Format	4-12
4-3.	Interrelationship Between the Command Control Block, Channel Command Word, File Control Block, Physical I/O Control Block, and Physical Unit Block	4-14
5-1.	Standard Register Save Area	5-23

PAGE:

1. INTRODUCTION

1.1. GENERAL

The Supervisory Control program is the component of the UNIVAC 9400 Operating System that operates with problem programs to provide the central control necessary for optimum utilization of the system hardware and software complex. The Supervisor, together with Job Control, constitute the software executive system.

The services provided by the executive system permit the user to define the work to be done and programs to be executed. The major unit of work in the UNIVAC 9400 System is a job. Each job can be divided into serially executed job steps (that is, individual programs executed in the sequence described in the job control stream). Each job step, in turn, can be subdivided into program phases, which are the smallest single units that can be loaded and executed. Data and programs to be processed are introduced to the UNIVAC 9400 System as jobs, with each job step defined by its own control information in the job stream.

This manual describes the Supervisor provided for disc, tape, and disc/tape systems. It includes descriptions of the Supervisor structure and the programmed services provided by the Supervisor, including detailed explanations of the physical Input/Output Control System (IOCS), macro instructions available to the programmer, and operator communications facilities. Knowledge of the UNIVAC 9400 System Description, UP-7566 (current version), is helpful in the use of this manual.

1.2. MACRO INSTRUCTION FORMAT

The Supervisor uses both declarative and imperative macro instructions. Declarative macro instructions (CCB and PIOCB) cause the generation of nonexecutable code sequences in the problem program. These macro instructions are used to allocate areas in main storage that will contain control information for the channel scheduler when the problem program is executed (see Section 4).

The remainder of the macro instructions are imperative, in that they cause the generation of executable code sequences in the problem program. These code sequences are the interface between the problem program and the Supervisor. Imperative macro instructions are used to request services of the Supervisor and direct the operation of the problem program.

The format of all macro instructions is:

LABEL	τ OPERATION τ	OPERAND
[name]	XXXX	yyyy ,,zzz z

PAGE:

A symbolic name can appear in the label field. It can have a maximum of eight characters and must begin with an alphabetic character. The appropriate macro name must appear in the operation field. When parameters are specified in the operand field of all macro instructions (except STDEQU, 1.4), these are positional parameters. Positional parameters (as signified by the name) must be written in the specified order in the operand field and be separated by commas. When a positional parameter is omitted, the comma must be retained to indicate the omission, except in the case of omitted trailing parameters. Assembler rules regarding blank columns and continuation must be observed when writing macro instructions.

1.3. CONTROL STATEMENT CONVENTIONS

The conventions used to illustrate macro instructions and operator commands follow:

- Capital letters and punctuation marks (except braces, brackets, and ellipses) are information that must be coded by the programmer or typed by the operator at the console exactly as shown.
- Lowercase letters and terms represent information that must be supplied by the programmer or operator.
- Information contained within braces represents necessary entries of which one must be chosen.
- Information contained within brackets represents optional entries that (depending on program requirements) are included or omitted. Braces within brackets signify that one of the entries must be chosen if that operand is included.
- An ellipsis (a series of three periods) indicates a variable number of entries.
- Commas are required when positional parameters are omitted, except for trailing positional parameters.

LABEL	+ OPERATION +	OPERAND
[name]	OPR	$\left\{\begin{array}{c} msg-addr\\ (1)\end{array}\right\} \left[, \left\{\begin{array}{c} length\\ (0)\end{array}\right\}\right] \left[, \left\{\begin{array}{c} A\\ I\\ D\end{array}\right\}\right] \left[, \left\{\begin{array}{c} REPLY\\ nn\end{array}\right\}\right]$

Typical format for a macro instruction is:

The following examples illustrate some of the ways in which this macro instruction is coded.

LABEL 1	to OPERA	TION 5	16	OPERAND		 		\$				
	0 P R		MIS	S ₁ G ₁ E ₁ , 2 ₁ 0 ₁ , D ₁ , R ₁ E ₁ P ₁ L ₁ Y		1	1	11		L	1_	1
OIPIMISIGII			M, S	S_G_E_, 3,0,, ,, R E_P_L,Y_		 _1	11		i			1
	Oj P,R		M, S	S ₁ G ₁ E ₁ , 2 <u>1</u> 4 <u>1, 1</u>	JJ	 		L	1	1.1	1	1
0, P, M, S, G 2	0 P R	L	61		1 1	 		1	1	<u> </u>	I	
	0 P ₁ R	цĻ	(1)	1,),,(0,),,,A,, R,E,P,L,Y				1	<u> </u>	<u></u>		1
						1		. 1	1	1_1		1

PAGE:

NOTE: The last two examples illustrate the use of special register notation as described in 1.3.2.

Three important considerations should be noted when writing macro instructions:

- Positional parameters are separated by a comma. When a positional parameter is omitted, the comma must be specified to indicate the omission. Trailing commas are not required.
- There must not be any intervening blanks between positional parameters.
- Column 15 on the coding form is usually blank. However, when the macro instruction operation code is six characters in length, column 15 must contain the last character of the operation code, and column 16 must be blank.
- 1.3.1. R and S Type Macro Instructions

The Supervisor imperative macro instructions are either R or S type. An R type (register) macro instruction is used when none, one, or two parameters are passed to the Supervisor. The first parameter is passed in register 1. The second parameter, if any, is passed in register 0. An S type (storage) macro instruction is used when three or more parameters are passed to the Supervisor as a parameter list. The parameter list consists of a fullword for each parameter. Each fullword contains the address of a parameter to be passed to the Supervisor. The address of the first word of the list is passed in register 1.

1.3.2. Special Register Notation

The user can preload parameter registers 0 and/or 1 prior to executing a macro instruction. When the register option is selected, the designations (0) and/or (1) are actually coded signifying the register(s) used by the Supervisor. This is known as special register notation.

1.4. STANDARD LABEL CONVENTIONS AND THE STDEQU MACRO INSTRUCTION

Label conventions have been established for all elements of the UNIVAC 9400 System software. By convention, all software labels have no more than eight characters and are expressed in the form ee\$xxxxx, where the characters ee identify a software element, the character \$ designates a software label, and the characters xxxxx identify a unique item within a software element.

Certain software labels must be equated to their respective absolute values each time a problem program is assembled. The STDEQU macro instruction is provided for this purpose, and it must be written immediately following the START assembler directive. The following labels are always equated:

SECTION:

1

PAGE:

- R registers R0\$ to RF\$ labels (that is, R0\$ is equated to (0), etc.)
- IC\$ command control block labels
- SV\$ Supervisor call/interrupt table labels
- JF\$ file control block labels
- IB\$ physical I/O control block labels
- IX\$ extend request block labels
- JV\$ volume serial number list block labels
- DI\$ Data Management Define The File labels

If these are the only labels that are required for the problem program, the format of the macro instruction is:

LABEL	τ OPERATION τ	OPERAND
[name]	STDEQU	G1

Parameter:

G1 - the group 1 labels (previously listed) are equated to the respective values.

If any other labels are required in addition to those in group 1, these labels can be specified by means of parameters to the STDEQU macro instruction. These parameters are not positional parameters; therefore they can be written in *any* order. The format of this macro instruction when used to equate all group 1 labels and any other specific labels to their respective absolute values is:

LABEL	t OPERATION t	OPERAND
[name]	STDEQU	[HW] [,SB] [,JB] [,JP] [,IP] [,DM] [,MC]

Parameters:

- HW equate the hardware locations of the Program Status Words, Subchannel Control Words, Channel Status Words, Timer Control Word, H registers (that is, equating a register designation to a specific hardware location), and RS special purpose registers.
- SB system information block labels are equated.
- JB job control block labels are equated.
- JP system error job preamble labels are equated.
- IP physical unit block labels are equated.
- DM all Data Management labels are equated.
- MC all Message Control labels are equated.

PAGE:

If all labels are required for the program, the format of this macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	STDEQU	

No parameters are required for this form of the STDEQU macro instruction.

A sample of the program code generated by the STDEQU macro instruction is provided in Appendix A.

Example:

LABEL 1	to OPERATION 10	5 16	OPERAND	ъ
	S T _I A _I R _I T	0, , , , , , ,		
		J		<u> </u>

PAGE:

2. FEATURES

2.1. GENERAL

The Supervisor, as implemented in UNIVAC 9400 Systems, provides efficient, flexible, and centralized control of all activities in order to meet the requirements of a wide range of user applications. Capabilities are provided that are consistent with small to medium sized disc, tape, or disc/tape-oriented computing systems. The Supervisor provides an interface between the program and the computing system. Environmental control problems are handled directly and promptly with as little internal bookkeeping as necessary while ensuring the integrity of the computing system.

2.2. MODULARITY

Functional modularity is emphasized in the design of the Supervisor to ensure its adaptability to a wide range of data processing activities. The user tailors the Supervisor to accommodate particular applications and provide specific capabilities by parametric selection and specification of the various functional modules at system generation time.

2.3. MULTIPROGRAMMING

The Supervisor permits concurrent processing of user programs with system functions. In disc-oriented systems, a Supervisor can be generated to control from one to five problem programs being executed concurrently in the computing system. In tape-oriented systems, a Supervisor can be generated to control one or more symbiont programs in addition to the execution of one problem program. Many Supervisor functions in both disc-oriented and tape-oriented systems are designed as autonomous activities capable of being executed as independent programs.

The multiprogramming technique employed in this system involves the distribution of processing time to programs based on program priorities, time allocation, and input/output utilization.

Program synchronization is accomplished through the combined operation of the interrupt handlers and the program switching routine, and is controlled by time allocation with the facilities provided by the unique seven-level interrupt structure of the UNIVAC 9400 System. Thus, the Supervisor provides the user with efficient and equitable distribution of processing time to problem programs.

PAGE:

2.3.1. Program Priority

Five program priorities are provided by the Supervisor. Three of these program priorities are intended for the following types of user programs:

Problem Program Priority Level 1 – Message Control program

The highest priority level available to the user is intended for the time-critical Message Control program required by a system involved in data communications processing. Essentially, this program is an extension to the Supervisor, and is provided as an element of the software package in the form of procedure definitions (Procs). Parametrically defined by the user to suit his data communications applications, the Procs are loaded into the system by Job Control.

Problem Program Priority Level 2 – Batch programs with high input/output utilization

Batch-type programs involving frequent input/output utilization are assigned the second level of user priority. Symbiont programs, executed under control of the tape operating system, may be assigned to this program priority. In tape systems, it is suggested that the problem program be assigned to problem program priority three, even though it may be considered a batch program. However, this is not a requirement since programs on a given priority level are cycled by means of time allocation.

Problem Program Priority Level 3 - Batch programs with low input/output utilization

Computational type user programs with low input/output utilization are assigned the lowest user priority level. In tape systems, the problem program can be, and usually is, assigned to this program priority level.

The user can designate priority levels in the job control stream by specifying level 1, 2, or 3 according to the known requirements of the problem programs. Actually, there are no restrictions on user-priority levels 2 and 3. The user's own experience in program mixing determines the particular assignment of these two priority levels.

2.3.2. Time Allocation

Time allocation involves the distribution of processing time in short intervals, which prevents the unauthorized domination of the computing system by a single program and provides a means by which each problem program can make full use of the processing power of the computer.

Time allocation is an effective and efficient method of controlling a multiprogramming environment. Since the timer is a standard feature of the UNIVAC 9400 System hardware, time allocation is a standard functional component of the resident portion of the Supervisor.

PAGE:

2.3.3. Input/Output Utilization

Macro instructions are provided to synchronize programs with the physical input/output control system of the Supervisor. The user can issue input/output requests to the system and continue processing during their execution. When the program reaches a point where processing cannot logically continue until the completion of input/output requests, the user can elect to suspend his processing until the completion of a specific request, of all outstanding requests, or any one of several outstanding requests.

2.4. SYSTEM RESIDENT STORAGE

The availability of auxiliary storage for use by the operating system increases the processing power of the UNIVAC 9400 System. As a result, the functional constituent routines of the Supervisor are categorized as follows:

Resident Routines

This category comprises those routines frequently used or so intrinsic to the Supervisor as to require permanent residence in main storage. This group of routines is referred to as the main storage resident portion of the Supervisor.

Transient Routines

This category comprises those routines not frequently used, which are kept on the system resident auxiliary storage. These transient routines are loaded into main storage only when needed and are executed in special main storage transient areas reserved for the operating system. When needed, a transient routine is located and read from the system resident auxiliary storage device into a main storage transient area and is executed as an extension of the requesting program.

The user can select particular transient routines at system generation time for inclusion in the main storage resident portion of the Supervisor. This permits the user to increase operating efficiency in accordance with program response requirements, size of available main storage, and frequency of use of certain supervisory facilities.

PAGE:

3. STORAGE ALLOCATION AND SUPERVISOR STRUCTURE

3.1. GENERAL

Routines that are intrinsic parts of the Supervisor reside in main storage. A minimum of 12K bytes are required for the Supervisor. However, the exact size of the main storage resident Supervisor at a particular installation depends on the software options selected by the user at system generation time. The entire Supervisor, including main storage resident routines, is stored on auxiliary storage units, which can be either magnetic tapes or disc packs. The contents of main storage and auxiliary storage are shown in Figure 3-1.

The resident Supervisor consists of the following:

- Low order storage (fixed storage assignments)
- System environmental control storage area
- System control routines storage area
- Transient area

Figure 3-2 is a detailed illustration of main storage contents.

The following elements of the UNIVAC 9400 Operating System reside in auxiliary storage:

- Initial Program Loader
- Entire Supervisor
- Job Control
- System Transient Routines
- Language Processors
- Program Libraries (Source and Object Code)
- Scratch Area (Disc Systems Only)
- Execution Area (Disc Systems Only)
- Job File (Disc Systems Only)

PAGE:

*Supervisor occupies this area if communications are not provided

3

PAGE:

LOW ORDER STORAGE	REGISTERS, PROGRAM STATUS WORD STORAGE, ETC.
(FIXED STORAGE ASSIGNMENTS)	MPX. CHANNEL NONSHARED SCW'S IN COMMUNICATIONS SYSTEMS (OR BEGINNING OF SUPERVISOR)
	ERROR JOB PREAMBLE
	SUPERVISOR CALL (SVC) INTERRUPT TABLE
SYSTEM ENVIRON- MENTAL CONTROL	JOB CONTROL BLOCKS (JCB's)
STORAGE AREA	
	├

		SYSTEM INFORMATION BLOCK (SIB)	
		SUPERVISOR CALL (SVC)	
MINIMUM OF 12K		PHYSICAL IOCS	
BYTES		PROGRAM SWITCHER	
		PROGRAM CHECK	
	SYSTEM CONTROL	PROGRAM LOCATE AND LOAD	
	ROUTINES STORAGE AREA	TRANSIENT SCHEDULER	
		TIMER SERVICES	
		USER ISLAND CODE MANAGEMENT	
		OPERATOR COMMUNICATIONS CONTROL (MAY BE LOCATED ON AUXILIARY STORAGE)	
		OPTIONAL RESIDENT ROUTINES*	
		TRANSIENT AREA PREAMBLE	
↓ ↓	TRANSIENT AREA	TRANSIENT PROCESSING AREA	
2K	OPTIONAL	TRANSIENT AREA PREAMBLE	
BYTES EACH	TRANSIENT AREA	TRANSIENT PROCESSING AREA	
-	PROBLEM PROGRAM(S)	ALLOCATED TO PROBLEM PROGRAMS BY JOB CONTROL (MINIMUM-SIZED ALLOCATION IS 8K BYTES CONTIGUOUS TSTORAGE)	

*User selected routines to be included in the main storage resident portion of the Supervisor (not included in minimum of 12K bytes).

Figure 3-2. Main Storage Contents

PAGE:

3.2. LOW ORDER MAIN STORAGE

The first 512 byte locations are reserved for special uses such as the Supervisor general registers, problem program registers, old Program Status Words, new Program Status Words, and Subchannel Control Words for the shared multiplexer channel. Refer to UNIVAC 9400 Assembler/Central Processor Unit Programmer Reference, UP-7600 (current version), for a detailed description of this area.

With the presence of communications capability, requiring one or more nonshared multiplexer subchannels, the size of low order storage is increased to 1024 bytes. The second group of 512 bytes is used to store the Subchannel Control Words for the nonshared multiplexer subchannels; otherwise, the beginning of the System Environmental Control Storage Area occupies these locations. This low order storage area of either 512 or 1024 bytes is referred to as fixed storage assignments.

3.3. SYSTEM ENVIRONMENTAL CONTROL STORAGE AREA

This area contains system control blocks, lists, and tables for storage of environmental descriptive and status information. This information is generated at system generation time and is dynamically altered as required by functions of Job Control and the Supervisor. The contents of this area are described in the following paragraphs.

3.3.1. Error Job Preamble

The error job preamble is a 512-byte area required by the system error job (that is, the system error recovery program) to allow it to run as a separate program on the switch list. The purpose of the preamble is to provide storage area for environmental information about the program. The preamble is always aligned on a doubleword boundary.

The error job preamble structure is identical to preambles used with all problem programs. (The error job preamble is constructed at system generation time; whereas, problem program preambles are constructed by Job Control when the programs are prepared for execution in the system.) Fields within job preambles are identified by standard system labels, which are defined in the STDEQU macro instruction. By convention, all labels are a maximum of eight characters in length and are expressed in the form JP\$xxxxx, where the characters JP\$ identify a preamble reference, and the characters xxxxx identify fields within preambles. Field labels, and brief descriptions of their contents, are given in Table 3-1.

LABEL

CLASSIFICATION

BOUNDARY

ALIGNMENT

FIELD

LENGTH (BYTES)

3 SECTION:

LABEL DESCRIPTION

5

PAGE:

Job Identification	JP\$NJB	fullword	2	Address of associated job control block
	JP\$NJB+2		2	Assigned job number — 10 through 99 (2 EBCDIC characters)
	JP\$JNM	ha Ifw or d	8	Eight-character job name (in EBCDIC)
Console Buffer	JP\$SBA	fullword	1	Buffer length
(OPR Macro Instruction)	JP\$SBA+1		3	Address of OPR buffer
Problem Register Save Area	JP\$SA	fullword	4	Register 0 (R0\$) save area
	JP\$SA+4		4	Register 1 (R1\$) save area
	JP\$SA+8		4	Register 2 (R2\$) save area
	JP\$SA+12		4	Register 3 (R3\$) save area
	JP\$SA+16		4	Register 4 (R4\$) save area
	JP\$SA+20		4	Register 5 (R5\$) save area
	JP\$SA+24		4	Register 6 (R6\$) save area
	JP\$SA+28		4	Register 7 (R7\$) save area
	JP\$SA+32		4	Register 8 (R8\$) save area
	JP\$SA+36		4	Register 9 (R9\$) save area
	JP\$SA+40		4	Register 10 (RA\$) save area
	JP\$SA+44		4	Register 11 (RB\$) save area
	JP\$SA+48		4	Register 12 (RC\$) save area
	JP\$SA+52		4	Register 13 (RD\$) save area
	JP\$SA+56		4	Register 14 (RE\$) save area
	JP\$SA+60		4	Register 15 (RF\$) save area
Input/Output	JP\$IOQ	fullword	8	Multiplexer subchannel 0
Queue Pointers	JP\$IOQ+8		8	Multiplexer subchannel 1
	JP\$10Q+16		8	Multiplexer subchannel 2
	JP\$10Q+24		8	Multiplexer subchannel 3
	JP\$IOQ+32		8	Multiplexer subchannel 4
	JP\$IOQ+40		8	Multiplexer subchannel 5
	JP\$IOQ+48		8	Multiplexer subchannel 6
	JP\$IOQ+56		8	Multiplexer subchannel 7
	JP\$10Q+64		8	Selector channel 1
	JP\$10Q+72		8	Selector channel 2

SECTION:

6

PAGE:

CLASSIFICATION	LABEL	BOUNDARY ALIGNMENT	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Shared Command Control Block	ЈР\$ССВ	fullword	40	Command control block for OPR, LOAD, FETCH, RDFCB and GETCS service requests
Job Communication Region and UPSI	JP\$UCR	fullword	11	Communication region storage area user block
	JP\$USI		1	User program switch indicator
Software/Hardware Error Code	JP\$SF	ha lfw ord	1	Error code - routine identifier
Error Code	JP\$SF+1		1	Error code - type of error
	JP\$EW	fullword	4	Last four bytes of program status word at time of error
User Island Code	JP\$USR	fullword	4	Address of interrupt – program check
Information	JP\$USR+4		1	Indicator:
				if bit 0 is set to 1 — indicates an outstanding request for the user program check island code subroutine
				if bit 1 is set to 0 — user program check island code subroutine can be executed
				if bit 1 is set to 1 — user program check island code subroutine cannot be executed (the user has not provided an island code subroutine or, if pro- vided, the subroutine is in process of execution).
	JP\$USR+5		3	Address of user program check island code subroutine
	JP\$USR+8		4	Address of 72-byte save area — user program check island code subroutine
	JP\$USR+12		4	Address of interrupt — interval timer
	JP\$USR+16		1	Indicator:
				X'00' – user interval timer island code subroutine can be executed
				X'40' — user interval timer island code subroutine cannot be executed.(The user has not provided an island code subroutine or, if provided, the sub- routine is in process of execution.)
	JP\$USR+17		3	Address of user interval timer island code subroutine
	JP\$USR+20		4	Address of 72-byte save area — user interval timer island code subroutine

UNIVAC 9400 SUPERVISOR

SECTION: 3

7

PAGE:

CLASSIFICATION	LABEL	BOUNDARY ALIGNMENT	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
User Island Code Information (Cont.)	JP\$USR+24		4	Address of interrupt — operator communi- cations unsolicited message
	JP\$USR+28		1	Indicator:
				X'00' — user operator communications island code subroutine can be executed.
				X'40' — user operator communications island code subroutine cannot be executed (the user has not provided an island code subroutine or, if provided, the subroutine is in process of execution).
	JP\$USR+29		3	Address of user operator communications island code subroutine
	JP\$USR+32		4	Address of 72-byte save area — the user operator communications island code subroutine
	JP\$UBA	fullword	1	Length of user interrupt buffer area for unsolicited messages entered at the console (1 to 64 in binary).
				If bit 0 is set to $1 - indicates$ that the input buffer is in use (this indicator is reset to 0 by the EXIT macro instruction).
				If bit 0 is set to 0 - Indicates that the unsolicited input message buffer is available for use.
	JP\$UBA+1		3	Address of user input buffer for unsolicited messages entered at the console
Problem Job Main	JP\$PAD	fullword	4	Address of last byte in extent area
Storage Assignments	JP\$PAD+4		4	Address of first byte of phase area
	JP\$PAD+8		4	Address of last byte of phase area
	JP\$PAD+12		4	Address of last byte of job partition
Job Time Accounting	JP\$TME	fullword	4	User specified job time limit (milli- seconds in binary)
	JP\$TME+4		4	Accumulated processing time used (milliseconds in binary)
Dates	JP\$DTE	halfword	8	User date (in EBCDIC)
	JP\$DTE+8		6	Data Management date in the form Tyyddd (in EBCDIC)
	JP\$DTE+14		4	Data Management date in the form Oydd (discontinuous binary)

Table 3–1. Job Preamble Standard Labels (Part 3 of 3)

PAGE:

3.3.2. Supervisor Call Interrupt Table

The supervisor call interrupt table is a list of addresses of all supervisor functions that can be accessed through the execution of an SVC instruction. The supervisor call interrupt table can range from 64 to 256 halfword entries. Thus, the size of this table ranges between 128 and 512 bytes.

When an SVC instruction is executed, the SVC code supplied by the programmer is used to locate an entry within the supervisor call interrupt table. The located entry contains the address of either a supervisor routine for a particular function or the transient scheduler routine. If the entry is the address of a supervisor routine for a particular function, control is transferred to that routine to perform its function. If the entry is the address of the transient scheduler, control is transferred to that routine which retrieves the SVC number from the old SVC Program Status Word to determine the particular transient routine being requested.

Entries in the table are identified by standard system labels; these labels are defined in the STDEQU macro instruction. By convention, all labels are a maximum of eight characters in length and are expressed in the form SV\$xxxxx, where the characters SV\$ identify SVC labels, and the characters xxxxx identify functions. The labels of the entries and a brief description of each function are provided in Table 3-2.

UNIVAC 9400 SUPERVISOR

SECTION:

3

9

PAGE:

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	
Supervisor – Physical	SV\$XP	halfword	2	Execute channel program -EXCP macro instruction
Input/Output Control System	SV\$XPC		2	Conditional execute channel program – EXCP macro instruction
	SV\$XPT		2	Position tape - EXCP macro instruction
	SV\$W⊤		2	Wait on a single input/output order - WAIT macro instruction
	SV\$WTA		2	Wait on all input/output orders — WAIT macro instruction
	SV\$MRK		2	Mark command control block – MARK macro instruction
	SV\$YLD		2	Yield program control — YIELD macro instruction
	SV\$RFB		2	Locate and read file control block RDFCB macro instruction
	SV\$S₩P		2	Swap physical unit block addresses — SWAP macro instruction
	SV\$FRE		2	Free physical device(s) — FREE macro instruction
Supervisor — Program Loading	SV\$FET	halfword	2	Fetch program phase — FETCH macro instruction
	SV\$LD		2	Load program (absolute and relocatable) — LOAD macro instruction
	SV\$LDI		2	Load index - LOAD macro instruction
	SV\$LDX		2	Load exit (tape systems only)
	SV\$LDA		2	Load program (load alternate) — LOAD macro instruction
Supervisor - Timer Services	SV\$GTM	halfword	2	Get time of day (the time in milliseconds represented in binary) — GETIME macro instruction
	SV\$GTS		2	Get time of day (hours and minutes repre- sented in pack decimal) - GETIME macro instruction
	SV\$ST		2	Set software interval timer and retain program control — SETIME macro instruc- tion
	SV\$STW		2	Set software interval timer and relinquish program control — SETIME macro instructio
	SV\$STC		2	Cancel previous set time request – SETIME macro instruction

SECTION:

3

PAGE:

10

/

/

Ĵ

CLASSIFICATION	LABEL	BOUNDARY ALIGNMENT	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Supervisor — User Island	SV\$SPC	halfword	2	Define user program check island code subroutine — STXIT macro instruction
Code Information	SV\$SI⊤		2	Define user interval timer island code subroutine — STXIT macro instruction
	SV\$SOC		2	Define user operator communications island code subroutine — STXIT macro instruction
	SV\$EPC		2	Exit from user program check island code subroutine – EXIT macro instruc- tion
	SV\$EIT		2	Exit from user interval timer island code subroutine — EXIT macro instruction
	SV\$EOC		2	Exit from user operator communications island code subroutine — EXIT macro instruction
Supervisor Information	SV\$GSB	halfword	2	Get base address of systems information block - GETADR macro instruction
Control	SV\$GJB		2	Get base address of job control block — GETADR macro instruction
	SV\$GJP		2	Get base address of job preamble – GETADR macro instruction
	SV\$GCR		2	Get contents of job communication region — GETCOM macro instruction
	SV\$PCR		2	Put data in job communication region - PUTCOM macro instruction
	SV\$GCS		2	Get next statement(s) from job control stream — GETCS macro instruction
Supervisor - Console Output	SV\$0P	halfword	2	Display message at system console — OPR macro instruction
Message Control	SV\$OPR		2	Display message at system console and wait for reply — OPR macro instruction

Table 3-2.	Supervisor Call Interrupt Standard Labels
	(Part 2 of 3)

SECTION: 3

11

PAGE:

CLASSIFICATION	LABEL	BOUNDARY ALIGNMENT	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Supervisor — Direct Access Temporary Storage	SV\$GVA	halfword	2	Give cylinder(s) from unallocated disc storage — GIVE macro instruction
	SV\$GVS		2	Give specific cylinder(s) from unallocated disc storage — GIVE macro instruction
	SV\$TKA		2	Take (return) cylinder(s) to unallocated disc storage — TAKE macro instruction
	SV\$TKS		2	Take (return) specific cylinder(s) to unallocated disc storage – TAKE macro instruction
	SV\$QRY		2	Query contents of unallocated disc storage index – QUERY macro instruction
Supervisor - Checkpoint Program	SV\$CPT	halfword	2	Checkpoint program - CHKPT macro instruction
Supervisor — Main Storage Dump	SV\$SNP	halfword	2	Snap display of main storage — SNAP macro instruction
Job Control — Program Termination	SV\$EOJ	halfword	2	Terminate job step — EOJ macro instruc- tion
renimation	SV\$CAN		2	Cancel job - CANCEL macro instruction
	SV\$DMP		2	Dump main storage and terminate job step — DUMP macro instruction
Data Management —	SV\$OPN	halfword	2	Open file - OPEN macro instruction
Data File Access Control	SV\$CLS		2	Close file - CLOSE macro instruction
	SV\$LBR		2	User label return — LBRET macro instruction
	SV\$FEV		2	Force end of volume - FEOV macro instruction
Data Management – Direct Access	SV\$ALL	halfword	2	Allocate space on direct access volume - ALLOC macro instruction
Space Management	SV\$SCR		2	Scratch (release) space on direct access volume – SCRTCH macro instruction
	SV\$RNM		2	Rename file on direct access volume – RENAME macro instruction
	SV\$ОВТ		2	Obtain (locate) file on direct access volume - OBTAIN macro instruction

Table 3–2. Supervisor Call Interrupt Standard Labels (Part 3 of 3)

SECTION:

3

12

3.3.3. Job Control Blocks

A Job Control Block (JCB) is used in conjunction with a job preamble for the storage of control information relating to a particular job. Job control blocks are constructed at system generation time and always exist in main storage whether they are unused or are being used to identify active programs. The number of JCB's ranges from 4 to 13, depending upon user selections at system generation time. The exact number is determined as follows:

- One JCB is required for each transient area (1 to 6) generated at system generation time.
- One JCB is required by the Supervisor for operator communications.
- One JCB is required for the system error job.
- One JCB is required for each user job (1 to 5).

Fields within JCB's are identified by standard system labels; these labels are defined in the STDEQU macro instruction. By convention, all labels are a maximum of eight characters in length and are expressed in the form JB\$xxxxx, where the characters JB\$ identify JCB labels and the characters xxxxx identify fields within JCB's. Field labels and brief descriptions of their contents are provided in Table 3-3.

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Job Control Block Link Address	JB\$LNK	Halfword	2	Absolute address of next job control block (if any) if chained on a single priority level
Software Timer Alarm	JB\$CLK	Halfword	2	Address of a particular timer interrupt servicing routine
	JB\$CLK+2	Fullword	4	Alarm Clock:
		•		Bit 0, always 0 Bit 1, 0 = software timer alarm active 1 = software timer alarm inactive Bits 3 through 31, Time of expiration (millisecond time of day at which time the requested time interval will expire)
Program Status Word	JB\$PSW	Doubleword	8	Program Status Word Storage (provides storage space for the job's PSW during interrupt processing and job switching)

SECTION: 3

13

PAGE:

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Job Synchronization	JB\$SYN	Halfword	1	Job permit byte:
Synchronization Control				 Bit 0, 1 = program check island code outstanding Bit 1, 1 = timer island code outstanding Bit 2, 1 = unsolicited operator communications island code outstanding Bit 3, 1 = input/output complete on WAIT Bit 4, 1 = input/output complete on MARK Bit 5, 1 = resume Bit 6, 1 = a. OPR reply received SETIME WAIT oppind
				b. SETIME WAIT expired Bit 7, 1 = counter for input/output orders outstanding is 0
	JB\$SYN+1		1	Job inhibit byte:
				Bits 0, 1, and 2 are always 0 Bit 3, 1 = WAIT on input/output issued Bit 4, 1 = YIELD on input/output issued Bit 5, 1 = Suspend Bit 6, 1 = a. OPR reply requested b. SETIME WAIT issued Bit 7, 1 = WAIT ALL issued
	JB\$10C		2	Count of input/output orders outstanding (in binary)
Job Identification	JB\$JBN	Halfword	2	Job number (EBCDIC) (range 10 to 99)
	JB\$PRE	Fullword	4	Address of associated job preamble
	JB\$SL	Halfword	2	Address of switch list entry (priority level
	JB\$LR	Halfword	2	Limits register setting
	JB\$SVC	Halfword	1	Transient request identifier
	JB\$\$VC+1		1	X'FF' = no request outstanding X'FO' = requested transient in process X'00' = request outstanding (queued)
	JB\$TME	Halfword	2	Remaining time on current time allocation

Table 3–3. Job Control Block Standard Labels (Part 2 of 2)

PAGE:

3.3.4. Physical Unit Blocks

A Physical Unit Block (PUB) is used for storage of device characteristics, identifying status, and control information relating to a particular onsite peripheral device. One PUB is generated for each device at system generation time. For example, a computer system comprising a system console, card reader, card punch, line printer, two disc units, and four magnetic tape units would be described by ten PUB's. Status indicators located in the PUB are initialized at system generation time and altered as a result of commands entered at the system console, by physical IOCS, by Job Control, or by the system error job. The PUB is always aligned on a fullword boundary.

Fields within PUB's are identified by standard system labels; these labels are defined in the STDEQU macro instruction. By convention, all labels are a maximum of eight characters in length and are expressed in the form IP\$xxxxx, where the characters IP\$ identify PUB labels and the characters xxxxx identify fields within PUB's. Field labels and brief descriptions of their contents are given in Table 3-4.

3

PAGE:

	LABEL	BOUNDARY	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Allocation Control	IP\$A LC	Fullword	1	Bit 0, 0 = device is nonsharable 1 = device is sharable
				Bit 1, Reserved for Supervisor
				Bit 2, Lockout indicator for disc space management
				The following bits (bits 3 through 7) indicate device allocation for the duration of job steps:
				Bit 3, 1 = device is allocated to user job control block number 5
				Bit 4, 1 = device is allocated to user job control block number 4
				Bit 5, 1 = device is allocated to user job control block number 3
				Bit 6, 1 = device is allocated to user job control block number 2
				Bit 7, 1 = device is allocated to user job control block number 1
	IP\$ALC+1		1	Bits 0, 1, and 2 are reserved for the system
				The following bits (bits 3 through 7) indicate device allocation for the duration of a job:
		l l		Bit 3, 1 = device is allocated to user job control block number 5.
				Bit 4, 1 = device is allocated to user job control block number 4.
				Bit 5, 1 = device is allocated to user job control block number 3
				Bit 6, 1 = device is allocated to user job control block number 2
				Bit 7, 1 = device is allocated to user job control block number 1
Mode	IP\$MDE	Halfword	1	Active mode
	IP\$MDE+1		1	Initial mode (set at system generation time)
Device	IP\$DC	Fullword	1	Device type code (binary)
Identification	IP\$DC+1		3	External device identification (EBCD

Table 3-4. Physical Unit Block Standard Labels (Part 1 of 2)

SECTION:

3

PAGE:

16

.

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Alternate Device	iP\$ALT	Halfword	2	Absolute address of physical unit block for alternate device. This field is set to binary zeroes when no alternate device is specified.
Device Status	IP\$SF	Halfword	2	Bit 0, 1 = in use
				Bit 1, 1 = down
				Bit 2, 1 = nonsharable
				Bit 3, 1 = bypass
				Bit 4, 1 = sense
				Bit 5, 1 = error on sense
				Bit 6, 1 = command reject
				Bit 7, 1 = channel end
				Bit 8, 1 = unit check
				Bit 9, 1 = error message indicator
				Bit 10, 1 = attention
				Bit 11, 1 = busy
				Bit 12, 1 = position macro
				Bit 13, 1 = clock scan
				Bit 14, 1 = attention received indicator
				Bit 15, 1 = reposition indicator
	IP\$EC	Fullword	2	Error count (in binary)
	IP\$CLK	Fullword	4	Clock (time of last dispatched order)
	IP\$LNK	Halfword	2	Absolute address of job control block (identifies the Job that issued the last I/O command to the device)
	IP\$LNK+2		4	Address of command control block (identifies the command control block for the last dispatched order)
	IP\$SU	Fullword	1	Channel issued (identifies the I/O channel for last dispatched order)
	IP\$SU+1		1	Device address
	IP\$SU+2		1	Cochannel indicator
	IP\$SU+3		1	Primary channel indicator
	IP\$SU+4		1	Channel and cochannel

Table 3–4. Physical Unit Block Standard Labels (Part 2 of 2)

PAGE:

3.3.5. Program Switch List

The program switch list consists of five priority levels to which programs can be assigned. Two of the five levels are used by the operating system and three by problem programs. The five priority levels, including the three used by problem programs follow:

Priority Level 1 - System Error Job

This is the highest level of priority and is used by the system error job.

Priority Level 2 - Communications type programs (Message Control Program)

This is problem program priority 1.

Priority Level 3 - System service routines

This is the second priority level used by the operating system.

Priority Level 4 – Batch programs with high input/output utilization

This is problem program priority 2. In tape systems, symbiont programs are usually executed at this level.

Priority Level 5 – Batch programs with low input/output utilization

This is problem program priority 3. In tape systems, the main program is executed at this level.

The program switch list, illustrated in Figure 3-3, is constructed at system generation time. The address stored in the first halfword of each priority level (1a through 5a) is initially set by Job Control and altered by the timer servicing routine on each expiration of a time allocation. The value stored in the halfwords identified (1b through 5b) are determined at system generation time and range from 10 to 4000 milliseconds. The values in 2b, 4b, and 5b are set by the user; the values in 1b and 3b are set by the software. Addresses stored in the fields 1c through 5c are set by physical IOCS. Values set in 1d through 5d are set by Job Control.

PRIORITY	BYTES						
LEVELS	0-1	2-3	4-5	6-7			
1	а	b	с	d			
2	а	b	С	d			
3	а	b	с	d			
4	а	b	с	d			
5	а	b	с	d			

Figure 3-3. Program Switch List Structure

PAGE:

3.3.6. System Information Block

The System Information Block (SIB) provides a central storage area for the control status and descriptive information related to the system software. This block is constructed at system generation time and is dynamically altered by the Supervisor and Job Control. The System Information Block is aligned on a fullword boundary.

Fields within the SIB are identified by standard system labels; these labels are defined in the STDEQU macro instruction. By convention, all labels are a maximum of eight characters in length and expressed in the form SB\$xxxxx, where the characters SB\$ identify SIB labels and the characters xxxxx identify fields within the SIB. Field labels and brief descriptions of their contents are provided in Table 3-5.

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Supervisor Identification	SB\$SPV	Fullword	2	Supervisor version number (EBCDIC)
Identification	SB\$SPV+2		2	Supervisor revision number (EBCDIC)
	SB\$CHR	Fullword	4	Supervisor characteristics
System Communication	SB\$SCR	Fullword	11	System communication region
Region	SB\$SPI		1	System program switch indicator
System Dates	SB\$DTE	Halfword	8	User date (in EBCDIC)
	SB\$DTE+8		6	Data Management date in the form byyddd (in EBCDIC)
	SB\$DTE+14		4	Data Management date in the form Oydd (discontinuous binary)
Main Storage- Problem Program Areas	SB\$PA	Fullword	4	Address of first byte in problem program area
Aleas	SB\$HA	Fullword	4	Address of last byte in processor
	SB\$FRE	Fullword	4	Address of first free space element
Physical Unit Blocks	SB\$PUB	Fullword	4	Count of physical unit blocks in the Supervisor
	SB\$PUB+4		4	Address of first physical unit block

Table 3–5. System Information Block Standard Labels (Part 1 of 3)
3

PAGE:

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Job Control	SB\$JCB	Fullword	4	Total count of job control blocks
Blocks	SB\$JCB+4		4	Address of first job control block
	SB\$UJB	Fullword	4	Count of job control blocks for problem programs (from 1 to 5)
	SB\$UJB+4		4	Address of first problem program job control block
	SB\$SJB	Fullword	4	Address of job control block — operator command control
	SM\$MJB		4	Address of job control block — console clock control
Supervisor Call	SB\$SVC	Fullword	4	Count of entries in SVC interrupt table
Table	SB\$SVC+4		4	Address of SVC interrupt table
Program Switch List	SB\$SWL	Fullword	4	Count of priority levels
	SB\$SWL+4		4	Address of program switch list
Transient Area Management	SB\$TA	Fullword	4	Count of transient areas
	SB\$TA+4		4	Address of first transient area
	SB\$TA+8		4	Count of available transient areas
	SB\$TA+12		4	Count of outstanding transient requests
Timer Services	SB\$CLK	Fullword	4	Address of job control block – active software alarm clock
	SB\$CLK+4		4	Address of primary timer
	SB\$CLK+8		4	Address of alternate timer
	SB\$CLK+12		4	Simulated day clock (in milliseconds)
	SB\$TOD	Fullword	8	Console clock in the form hh:mm (EBCDIC)
	SB\$TOD+8		4	Simulated day clock in the form 00hhhmms (packed decimal)
	SB\$TLM	Fullword	4	Job time limit — used when maximum time is not submitted on the job control state- ment (in milliseconds)
Logical Unit	SB\$LUT	Fullword	4	Count of entries in logical unit table
Table	SB\$LUT+4		4	Address of logical unit table

19

20

PAGE:

CLASSIFICATION	LABEL	BOUNDARY Alignment	FIELD LENGTH (BYTES)	LABEL DESCRIPTION
Temporary Storage Obtain Table	ѕв\$овт	Fullword	4	Count of entries in obtain table
	SB\$OBT+4		4	Address of obtain table
Resident Routine Include Table	SB\$INC	Fullword	4	Count of entries in resident routine Include table
	SB\$INC+4		4	Address of resident routine include table
System Peripheral Device	SB\$DVC	Fullword	4	Address of physical unit block – IPT device
	SB\$DVC+4		4	Address of physical unit block — LOG device
	SB\$DVC+8		4	Address of physical unit block — LST device
	SB\$DVC+12		4	Address of physical unit block — PCH device
	SB\$DVC+16		4	Address of physical unit block — RDR device
	SB\$DVC+20		4	Address of physical unit block - RES device
	SB\$ADP	Fullword	4	Count of peripheral devices available through system adapter
	SB\$ADP+4		4	Physical unit block address — hardware adapter
Data Management Common Code	SB\$DMC	Fullword	4	Address of Data Management common code

Table 3–5. System Information Block Standard Labels (Part 3 of 3)

3.4. SYSTEM CONTROL ROUTINES STORAGE AREA

The functions of the system control routines are described in the following paragraphs.

3.4.1. Supervisor Call (SVC)

The supervisor call interrupt routine is activated when a supervisor call (SVC) instruction is executed. The supervisor call is the highest of seven levels of interrupt in the system. An eight-bit interrupt code, which is automatically stored by the hardware in the old SVC program status word each time a supervisor call interrupt occurs, is retrieved and used by the routine to locate an entry in the supervisor call interrupt table identifying the requested function. (The supervisor call/interrupt table is described in 3.3.2.) Certain macro instructions provided by the operating system use the SVC instruction to communicate with the Supervisor.

3.4.2. Physical IOCS

Activity between the central processor and its peripheral devices is controlled by a group of supervisory routines known as the channel scheduler. Channel scheduler elements provide I/O queuing, dispatching, posting, and error detecting services. Also included in physical IOCS is the system error job which coordinates and controls peripheral device error recovery.

3.4.2.1. Channel Scheduler

The channel scheduler controls all data transfers between main storage and peripheral I/O devices. The functional elements of the channel scheduler are:

■ I/O Queuing Routine

This channel scheduler element links all I/O requests submitted by the programmer to the job's channel queues. Direct communication with this routine is provided by the EXCP physical IOCS macro instruction. Each time an I/O request is submitted, a counter is incremented within the user's job control block indicating the number of outstanding requests for the job. Programmed checks are included in the queuing process to validate all I/O requests. Invalid requests are not queued and indicators are set in the associated command control blocks indicating the reason. In some instances, the user program check island code subroutine is activated (if one is provided by the user) or the problem program is aborted.

Following the normal queuing process, this routine ascertains the availability of the particular channel or channels, and, if a required channel route is found to be available, program control is given to the I/O dispatcher routine. Program control is normally returned to the requesting program at the point immediately following the EXCP macro instruction.

■ I/O Dispatcher Routine

This routine selects I/O requests from the channel queues according to the priority of jobs, constructs the required SIO (Start I/O) commands, and issues the I/O orders to the appropriate peripheral device controllers. Program control is passed to this routine from either the I/O queuing routine or the I/O interrupt servicing and error detecting routine.

■ I/O Interrupt Servicing and Error Detecting Routine

This element of the channel scheduler handles all hardware I/O interruptions.

This involves examining the channel status byte following each I/O interrupt to determine its cause. When operations are terminated normally, the associated command control block is posted, the job's channel queue is advanced, and the I/O request counter in the job control block is decremented by one. If more I/O requests are present in the channel queues, program control is transferred to the I/O dispatcher routine. When operations are abnormally terminated, the queue element concerned is marked to indicate the error condition, the I/O channel is marked temporarily inactive, and the resident control routine of the system error job is alerted to the error condition. Program control is always given to to the program switcher routine when the time-critical interrupt servicing is finished. If the programmer provides his own device error recovery routines, the I/O interrupt servicing routine does not alert the system error job when an error occurs. Also in this case, the I/O request is marked as completed in error, the I/O request counter in the job control block is decremented, and the channel queue is advanced as if the I/O order had been completed normally.

3.4.2.2. System Error Job

The system error job is a set of routines, some in the main storage resident portion of the Supervisor and others in auxiliary storage, which are loaded when needed. The control routine is in main storage and exists as an autonomous job complete with an associated job control block and job preamble. With each occurrence of an error, the I/O channel involved is made temporarily inactive and the control routine is alerted to the error condition. The remaining error routines are primarily concerned with handling specific error conditions according to device and error type.

Resident Control Routine

The resident control routine is always assigned to the top priority level of the switch list. When in control, it checks all software channel status indicators to determine which channels have error conditions pending. If a hardware channel error is detected, the routine handles it directly without referencing other corrective routines. Otherwise, the resident control routine is responsible for scheduling appropriate resident or transient corrector routines and transferring control to them.

Device Error Recovery Routines

Each device error recovery routine is designed to handle a specific error condition by programming techniques (such as rereading tape or disc) or by requesting operator intervention and action (such as turning on an offline device).

An error condition, which can be corrected by reissuing the input/output order, is handled immediately by the device error recovery routine involved. If this procedure is successful, the associated command control block is posted, the input/output channel concerned is marked as normal, and program control is returned to the resident control routine. If the error condition cannot be corrected by reissuing the order, or the repetition of the order does not result in successful completion, the input/output queue packet is marked as being in error and added to the error message queue; then, if the channel itself is not in error, its status is set to normal. This allows the input/output dispatcher routine to issue other I/O commands from channel queues associated with other jobs and other devices.

Error Messages to the Operator

The control portion of the peripheral device error recovery function issues either action- or decision-type messages. Action messages indicate that operator assistance is required, while decision messages indicate that an operator decision between alternate courses of action is required.

User Options for Device Error Recovery

The user is permitted to perform his own error recovery at the problem program level (see 4.1.1). This option is indicated by specific bit settings in each command control block. When the user elects to do this, the control portion of the error recovery function is not alerted to device error conditions. Instead, the completion and error indicators in the command control block are set and the associated channel queue is advanced as if no error had occurred. The user is required to test the command control block for this condition, determine the necessary corrective measures, and accomplish the required error recovery procedures.

The user can choose to accept unrecoverable errors following the normal error recovery procedure. This is desirable in certain cases depending on the type of error and user application. For instance, the problem application may be designed to ignore unrecoverable disc read errors rather than to abort the program. Since the acceptance of unrecoverable errors depends on the requirements of the problem program, any one of the following options can be elected by the user:

- Accept only unique unrecoverable errors, which allows the user to accept a certain category of device errors, such as a read error on disc. All errors not included in this classification are considered as unacceptable to the program.
- Accept all unrecoverable errors, which must be handled by the problem program.
- Accept no unrecoverable errors, regardless of the type.

If an unrecoverable error is not acceptable to the problem program, the computer operator is notified by an error message from the resident control routine. In most cases, the operator is given the choice of aborting the program or attempting the normal error recovery procedures.

3.4.3. Program Switcher

The primary function of this routine is the allocation of central processor time among programs loaded in the system. To facilitate this function, programs are categorized as follows:

Active Programs

Only the program currently using the central processor unit is in this category.

Ready Programs

Programs in this category are ready to use the central processor. The next active program is selected from this category.

Nonready Programs

Programs in this category are not ready to use the central processor until the occurrence of one or more events. Nonready programs are further categorized as waiting programs or dormant programs.

- Waiting Programs

Programs in this category cannot use additional central processor time until the completion of an event(s) initiated or requested by them; for example, outstanding I/O orders, scheduled timer interrupt, etc.

- Dormant Programs

Programs in this category cannot use central processor time until the occurrence of an event(s) external to them; for example, the occurrence of an I/O error that results in the dormant peripheral device error recovery program being made ready.

3.4.4. Program Check

This routine is activated when a program interrupt or software program exception occurs in a problem program.

3.4.4.1. Program Interrupt

A program interrupt occurs as a result of any of the following conditions:

- An illegal operation code is detected in the problem program.
- A privileged operation is attempted in the problem program state.
- A main storage write is attempted outside the bounds defined by the limits register. This interrupt can occur only when the optional main storage protection feature is installed in the processor.
- Reference to low order main storage in the problem program state; that is, the first 512 bytes of main storage.
- Reference to a unit of data where the address is not on the required integral boundary.
- Fixed point arithmetic overflow and the carry out of the high order numeric bit does not agree with the carry out of the sign bit.
- The result field is exceeded during a decimal arithmetic operation.
- A quotient digit is formed with a nonnumeric hexadecimal value.

PAGE:

3.4.4.2. Software Program Exception

A software program exception occurs as a result of certain invalid uses of supervisory functions that are detected by the system. When this occurs, the Supervisor stores an error code in the program preamble of the program which caused the error. If the program in error has specified a program check island code subroutine, program control is transferred to it. In the program check island code subroutine the user can interrogate the error code stored in the preamble to determine the cause of the error and possible recourses. Program abort procedures are initiated as specified by the user at system generation time if the user has not specified a program check island code subroutine. Invalid uses of the supervisory functions are explained in the following sections of this manual.

3.4.5. Program Load - Disc Systems

Problem programs are loaded into main storage by either the absolute program loader or the relocating program loader. Communication with these routines is provided by the LOAD and FETCH macro instructions described in Section 5.

The form of program loading to be used for a particular job step is designated by the user on the EXEC Job Control statement. Refer to UNIVAC 9400 Job Control for Disc Systems Programmers Reference, UP-7585 (current version).

3.4.5.1. Absolute Program Loader

Programs to be loaded by the absolute program loader must reside in the execution area on the resident direct access storage device. Programs are stored in the execution area in absolute form when the job is prepared for execution by Job Control.

If the user elects to use the absolute program loader when the program to be loaded does not exist in the execution area, Job Control retrieves the load module from the specified program library, resolves all address constants (making the program absolute), and writes the resultant absolute code in the execution area. This procedure occurs only between job steps. Loading from this point is the same as previously described.

Optionally, at system generation time, the user can choose to include selected programs in the execution area in absolute form. Programs stored in this manner can then be retrieved and loaded into main storage by the absolute program loader without involving Job Control. However, programs stored in this form must always be assigned to specific main storage areas for execution. This restriction can be avoided if the programs are self-relocating.

3.4.5.2. Relocating Program Loader

Programs to be loaded by the relocating program loader must be in load module form and stored in a program library on a direct access storage device. That is, each time a LOAD or FETCH macro instruction is executed in reference to a program load module in a program library, the relocating loader is retrieved by the transient scheduler. When given program control, the relocating loader locates the load module in the program library and reads the object code into its own input area in the transient storage area, resolves address constants, and then moves the absolute object code to the user area. This procedure continues until the entire requested load module is loaded into the user area.

3.4.6. Program Load - Tape Systems

Programs to be loaded into main storage must reside on magnetic tape in load module form. Program loading is accomplished by the relocating program loader, which is written on magnetic tape immediately following each load module header record; this is automatically accomplished by use of the Linkage Editor. When a LOAD or FETCH macro instruction is executed, the program locator locates load modules in the load library based on the alphabetical sequence of program names in the header records. That is, the program locator first determines whether a requested load module precedes or follows the current position of the system tape. If the requested module precedes the current position, then either a tape rewind followed by a forward search or a series of backward reads is executed to locate the requested module. If it is determined that the requested module follows the current position of the system tape, the program locator searches forward until the routine is located or the end of the load library is detected.

The program locator routine locates the header block for the program to be located and reads the relocating program loader into the transient area for execution. The transient relocating program loader then reads subsequent object blocks into the transient area, resolves address constants, and transfers the resultant absolute object code to the user area. Upon completion of this loading sequence, the transient relocating loader surrenders program control by a TRLSE macro instruction (see Section 5). The transient area is then freed and made available for subsequent transient functions.

3.4.7. Transient Scheduler

The transient scheduler routine coordinates all activity between calling programs and transient routines. Transient routines are self-relocating, stored as absolute load modules on the system resident device, and loaded into system transient areas of main storage only when needed by the operating system or problem programs. Transient routines are considered as logical extensions of the calling programs, but are executed at system priority level 3. All transient routines are designed to operate within a single main storage transient area provided by the Supervisor. In cases where transient routines exceed the size of a transient area, overlay segments are retrieved; therefore, the effective size of transient routines is virtually unlimited.

The user can select certain transient routines at system generation time for inclusion in the main storage resident portion of the Supervisor to reduce the retrieval time and thereby increase the efficiency of the system. This may be desirable due to differences in the user's program response requirements, size of available main storage, and frequency of use of certain supervisory facilities.

Examples of the type of functions that are performed by transient routines are:

- Data Management Open and close files
- Job Control Cancel, end of job, and subroutines required when establishing jobs in the system.
- Supervisor Checkpoint, certain operator commands, and extensions of supervisory functions.

Communications between problem programs or the operating system and the transient scheduler are accomplished by the use of macro instructions.

3.4.7.1. Disc Systems

Transient routines in disc systems are stored in a reserved portion of the execution area on the system resident direct access device at system generation time so that they can be quickly and efficiently located when requested.

3.4.7.2. Tape Systems

Transient routines in tape systems are stored in the load library on the system resident device. Constructing a system resident tape is a function of the UNIVAC 9400 Librarian. Transient routines are stored in object load module format and may be interspersed with other load modules of the operating system and user programs. In order to reduce the amount of time required to retrieve transient routines, the user may choose to repeat certain ones at strategic places on the system tape.

As a system convention, the names of all transient routines begin with the character \$, since it is assumed that the user may desire to repeat the system transient functions in a single load library. This convention is established by the UNIVAC 9400 Librarian and is used to direct the program locator to always search forward on the assumption that another copy of the requested routine may be present before the end of the program load library is reached. If the end of the program load library is reached without having found the requested transient, the system tape is positioned to the beginning of the program load library and a forward search is initiated.

3.4.8. Timer Services

The millisecond timer is a standard hardware feature of the UNIVAC 9400 Central Processor. The timer services routine provides various services by means of this timer. Timer services provided by the Supervisor are:

PAGE:

■ Time Allocation

Time allocation is automatically provided for all programs using the time values supplied by the user at system generation time. These time intervals can range from 10 to 4000 milliseconds. Each time the program switcher activates a problem program, it requests an allotment of processing time from the timer services routine. This request results in the setting of a software alarm clock which, when expired, causes the program switcher to gain control. If the program does not voluntarily surrender control of the central processor before its time interval expires, an interrupt is generated and the program switcher routine is given program control to determine if another program of equal priority is ready to accept program control.

Job Accounting

The estimated maximum run time for each problem job may be submitted to the system on the JOB Job Control statement. If an estimated run time is not submitted in this manner, a standard job time limit which is set by the user at system generation time is used. When program control is taken from a problem program, the timer services routine adds the amount of time used to a time counter in the job preamble. The total elapsed processing time is then compared to the estimated run time for the job. If the estimated run time has been reached, a message is printed at the system console to notify the operator of this condition. The operator can then allot more processing time to the job or initiate abort procedures.

Time of Day

A day clock is simulated by the timer services routine that is accessible to problem programs. The millisecond time of day, as a binary integer, or the hours and minutes time of day, in packed decimal format, can be retrieved by the execution of a GETIME macro instruction (see 5.3.1). In addition to these services, the hours and minutes time of day is also maintained in EBCDIC code in the form hh:mm and is printed as a prefix to all console messages. This time is also printed when the ATTENTION key is depressed at the system console.

Software Timer Alarms

Each program in the system can request notification upon the expiration of a specified interval of time. The SETIME macro instruction is provided for this service (see 5.3.2).

3.4.9. User Island Code Management

The programmer can provide island code subroutines (that is, closed subroutines) that are activated when the problem program is interrupted as a result of a software or hardware program check, the expiration of an interval of time previously requested by the program, or an unsolicited message entered at the system console. These subroutines are intended to function as extensions to interrupt subroutines. Priorities and rules concerning these routines have also been established and must be followed.

PAGE:

The user island code subroutines and their priorities are:

- Program Check highest priority
- Timer Interval second priority
- Unsolicited Messages lowest priority

The rules governing the execution of user island code subroutines are:

- When a problem program is interrupted by either a program check, time interval, or unsolicited message, the appropriate user island code subroutine is immediately given control.
- When an interrupt occurs during the execution of a user island code subroutine which is to directly result in the execution of a *lower* priority user island code subroutine, the routine in control retains control until an EXIT macro instruction is executed. After the execution of the EXIT macro instruction, the user island code subroutine of lower priority is given control.
- When an interrupt occurs during the execution of a user island code subroutine which is to directly result in the execution of a user island code subroutine with a *higher* priority, the subroutine in control is interrupted and program control is transferred to the subroutine of higher priority.
- Program control should not be voluntarily surrendered while executing a user island code subroutine. Therefore, the following macro instructions should not be used in user island code subroutines:
 - WAIT
 - YIELD
 - SETIME (with positional parameter 2, WAIT)
 - OPR (with positional parameter 4, REPLY)
- Requests for Supervisor transient function are not permitted during the execution of any user island code subroutine.

Programmed linkage between the Supervisor and the user island code subroutines is the responsibility of the user programmer and the function of the STXIT and EXIT macro instructions. The STXIT macro instruction is provided to establish, change, or terminate program linkage between each user island code subroutine and the Supervisor. Since a job may consist of more than one job step (programs) executed sequentially in the order specified by the user in the job stream, each job step is responsible for establishing linkage to its own island code subroutine(s) by executing STXIT macro instructions. The EXIT macro instruction is provided to terminate a user island code subroutine and return program control to the point of interrupt in the problem program. The EXIT macro instruction is used in conjunction with the STXIT macro instruction. (For additional information concerning the STXIT and EXIT macro instructions, see 5.7.1 and 5.7.2.)

PAGE

3.4.9.1. Program Check

A program check island code subroutine is a user-generated closed subroutine. This subroutine receives program control when the problem program causes a hardware program check interrupt or a program error has resulted in a software program check. If the user programmer desires to provide a program check island code subroutine, the addresses of the subroutine and a register save area are provided by executing a STXIT macro instruction. If a program error occurs while executing a user program check island code subroutine, the program is scheduled for abort procedures. If the user programmer does not provide a user program check island code subroutine and a program error occurs, the program is automatically scheduled for abort procedures.

3.4.9.2. Timer Interval

A timer island code subroutine is a user-generated closed subroutine. The programmer can submit a request to the Supervisor that the program be interrupted following the expiration of a time interval specified by a SETIME macro instruction. (The form of the SETIME macro instruction referred to is *without* positional parameter 2, WAIT.) If the user desires this capability, he must provide the addresses of the subroutine and register save area by executing a STXIT macro instruction. This subroutine is given program control when the requested time interval expires. If the user does not provide a timer island code subroutine and a previously requested time interval expires, the problem program receives no indication of the time interrupt. A new time interval can be requested by the problem program while the user timer island code subroutine is being executed.

However, should the time request expire before the user timer island code subroutine is terminated by an EXIT macro instruction, the timer interrupt occurs and the problem program does not receive an indication. If a user timer island code subroutine is not provided, a job step does not have the capability of requesting timer interrupts other than the one provided by the SETIME macro instruction (written with WAIT as parameter 2). This form of the SETIME macro instruction does not require an island code subroutine.

PAGE:

3.4.9.3. Unsolicited Message

An operator communications island code subroutine is a user-generated closed subroutine. In order to allow the problem program to accept unsolicited messages entered by the operator at the system console, the user must provide the addresses of the routine, register save area, and input buffer area; he must also specify the length of the buffer area. This subroutine is given program control when an unsolicited message has been entered for the program. The unsolicited message text can be from 1 to 64 EBCDIC characters and is stored in the user-provided input buffer area exactly as entered at the console. If the number of characters in the unsolicited message text exceeds the input buffer area, the message text is truncated to the size of the buffer area. Since unsolicited messages can be entered at any time at the system console, the effect is similar to that of other interrupts in the system. Therefore, an area must be provided to contain the contents of the problem registers so that, following the execution of the operator communication island code subroutine, the problem registers can be restored and program control returned to the point of interrupt (that is, the point in the problem program at which the unsolicited message was entered at the console). During the time a problem program is in the operator communications island code subroutine and until an EXIT macro is executed, a second attempt to enter an unsolicited message at the console is rejected and a message is printed indicating this situation.

If the programmer does not desire to provide an operator communications island code subroutine and an attempt is made to enter an unsolicited message at the console for the program, a message is printed at the console indicating that the program cannot accept unsolicited messages.

3.4.10. Operator Communications Control

The operator communications control routine should be generated as main storage resident in tape systems in order to reduce program retrieval time. In disc systems, the amount of time required to retrieve the operator communications transient routines is significantly less, and therefore, executing these routines as general operator communications transients is perhaps the most desirable mode of operation. For additional information concerning operator communications provided by the Supervisor, see Section 6.

3.4.11. Optional Resident Routines

At system generation time, the user can select certain transient routines to be included in the resident portion of the Supervisor. This option allows the user to increase his operating efficiency at the expense of using additional main storage to contain the generated routines. Transient routines generated in this manner are requested through the transient scheduler and are executed in system transient areas. The transient scheduler routine copies the requested transient routine into an available transient area, thus simulating the retrieval function required to retrieve nonresident transient routines.

PAGE:

3.5. TRANSIENT AREA(S)

A minimum of one transient area is required by the system. The user can choose to generate from one to five additional transient areas in order to increase the efficiency of the system.

Each transient area is fixed at 2048 bytes divided as follows:

- Transient preamble (byte positions 0 through 511)
- Processing Area (byte positions 512 through 2047)

Since all transient routines are executed as jobs, a preamble and job control block are assigned to each transient area. The transient processing area immediately follows the preamble and is fixed at 1536 bytes.

3.6. PROBLEM PROGRAM AREA

The problem program area immediately follows the last transient area and occupies the remainder of main storage. This area is suballocated by Job Control in minimumsized blocks of 8192 contiguous bytes. Where programs exceed 8192 bytes, main storage is allocated in increments of 512 bytes. The first 512 bytes of each block are the job preamble. Unallocated problem storage area is controlled by the Supervisor. If unallocated main storage is a noncontiguous block, link addresses are maintained in each of the blocks with a counter indicating the number of bytes unallocated. This linkage is illustrated in Figure 3-4. Ż

3

PAGE:

ADDRESS OF lst BLOCK SIB SUPERVISOR FREE SPACE BLOCK 1 (first block in chain) ALLOCATED то јов 1 FREE SPACE BLOCK 3 (last block in chain) ALLOCATED то јов 2 FREE SPACE *ADDRESS OF BLOCK 2 NO.OF NEXT FREE BLOCK IN BYTES/BLOCK CHAIN -2 WORD ENTRY-

*The address in the first word of the last free block is the address of the first free block in the chain. If there is only one free block in the chain, the address in the first word of the block is the address of that block.

PAGE:

4. PHYSICAL IDCS MACRO INSTRUCTIONS

4.1. GENERAL

Nine physical IOCS macro instructions are available to the programmer to manage I/O operations and provide the required communications with the channel scheduler. These macro instructions are:

- CCB generate Command Control Block
- EXCP EXecute Channel Program
- WAIT WAIT for I/O completion
- MARK test and MARK command control block for YIELD macro instruction
- YIELD YIELD program control until a marked command control block is posted completed
- PIOCB generate Physical Input/Output Control Block
- RDFCB ReaD File Control Block
- SWAP SWAP physical devices (alternates)
- FREE dynamic release of peripheral devices

Whenever these macro instructions are used, the programmer must supply the Channel Command Words and provide any of the logical functions required by problem programs. These functions include blocking and deblocking records, checking for wrong length records, swapping buffer areas, and detecting and bypassing checkpoint records if they are interspersed with data records. When the data management routines are used, the *physical* IOCS macro instructions are contained in the macro expansions of the *logical* IOCS macro instructions.

4.1.1. CCB Macro Instruction and Command Control Block Structure

A minimum of one CCB macro instruction is required for each type of I/O peripheral device to be controlled by *physical* IOCS macro instructions. An active command control block pertains to one I/O request at a time; therefore, each I/O request must have a unique command control block. The CCB macro instruction is a declarative macro instruction used to generate a command control block. This macro instruction should not appear in a sequence of executable code.

The generated command control block contains information in accordance with user written parameters pertinent to the I/O order and required by the channel scheduler. Fields are allocated to serve as repositories for status information at interrupt time and when WAIT or MARK macros, which reference the command control block, are executed.

PAGE:

The format of the CCB macro instruction is:

LABEL	^Ѣ OPERATION ^Ѣ	OPERAND
name	ССВ	piocb-name,ccw-name[,entry-number] [,X'xx']

LABEL

name - the symbolic address of the first byte of the command control block. All references to the command control block are made using this name.

POSITIONAL PARAMETER 1

piocb-name - the symbolic address of an associated physical input/output control block generated by the PIOCB macro instruction (see 4.1.6).

POSITIONAL PARAMETER 2

ccw-name - the symbolic address of a channel command word, or list of channel command words, if command chaining is used (permitted on selector channels only). If *logical* IOCS macro instructions are used, the channel command words are generated automatically. When using *physical* IOCS macro instructions, the programmer must specify each channel command word according to the I/O functions desired.

POSITIONAL PARAMETER 3

entry-number - 0, 2, 4, or 6 indicating one of four two-byte fields in the physical I/O control block containing the absolute physical unit block address for the peripheral device involved in the I/O operation.

if blank - 0 is assumed.

POSITIONAL PARAMETER 4

- X'xx' user options elected at assembly time. These options are:
 - '00' indicates that *no* error conditions are acceptable to the problem program.
 - '20' indicates that, following the normal error recovery attempts by the Supervisor, those errors classified as unique are acceptable to the problem program.
 - '40' indicates that all *unrecoverable* error conditions are acceptable to the problem program following the normal error recovery attempts by the Supervisor.
 - '80' indicates that all error conditions are to be passed to the problem program and that the Supervisor is *not* to attempt error recovery.

if blank - '00' is assumed.

PAGE:

Examples:

LABEL 1	t OPERATION	5 OPERAND 16	Ъ
O _R D _E R ₁	C C B	F,I,L,E,A,,,C,C,W,1,,6,,,	
0,R,D,E,R 2,	СІСІВІ І	F, I, L, E, B, , C, C, W, 2	

The format of a command control block is shown in Figure 4-1. Fields within command control blocks are identified by standard system labels; these labels are defined in the STDEQU macro instruction (1.4). By convention, all labels are a maximum of eight characters and are expressed in the form ICxxxxx, where the characters IC identify command control block labels and the characters xxxxx identify fields within command control blocks. Field labels, and brief descriptions of their contents, are provided in Table 4-1.

0			2		4 6				
0		AL BYTE UNT	TRANSN Byt		ADDRESS OF ADDRESS OF	FIRST CCW OR FIRST BCW			
8	BCW OR ADDRESS OF NEXT CCW				ADDRESS OF H. POINTER	ALFWORD PUB In Piocb			
16	COMMAND CODE (MPX, CHAN, ONLY)	CONTROL BYTE	RESERVED	ERROR MESSAGE IDENTI- FIER	STATUS INDICATORS	ERROR RECOVERY RETRY COUNTER			
24			EUE ADDRES DR MPX, CHA			EUE ADDRESS CHAN. 2)			
32			UEUE ADDRI OR MPX. CH			UEUE ADDRESS (HAN. 2)			
	When error conditions occur, sense bytes are stored in byte positions 32 through 37 of Command Control Block.								

Figure 4–1. Command Control Block Format

4

PAGE:

LABEL	BOUNDARY ALIGNMENT	FIELD Length	DESCRIPTION
IC\$RBC	Fullword	2	Residual byte count
IC\$T	Halfword	2	Transmission bytes:
			Bit 0: traffic bit 1 = complete or initial condition 0 = order in process
			Bit 1: 1 = unrecoverable error
			Bit 2: 1 = unique unit error
			Bit 3: 1 = additional condition/no record found
			Bit 4: 1 = unit exception/tape mark
			Bit 5: reserved
			Bit 6: 1 = end of track (track overrun)
			Bit 7: 1 = end of cylinder
			Bit 8: 1 = user error recovery
			Bit 9: 1 = unrecoverable error accepted by problem program
			Bit 10:1 = unique unit error accepted by problem program
			Bit11-15=used by system
IC\$CCW	Fullword	4	Address of first CCW or BCW
IC\$BCW	Fullword	4	BCW or address of next CCW
IC\$PIO	Fullword	4	Address of halfword in physical I/O control block containing PUB address
IC\$MCC		1	Command Code (multiplexer channel only)
IC\$CTL		2	Control byte:
			Bits 0-2: always 0
			Bit 3: 1 = WAIT macro instruction executed with reference to this command control block

PAGE:

LABEL	BOUNDARY Alignment	FIELD Length	DESCRIPTION
IC\$CTL			Bit 4: 1 = MARK macro instruction executed with reference to this command control block
			Bit 5: used by system
			Bits 6 and 7: always 0
			Bits 8–15: reserved
IC\$EMN		1	Error message identifier
IC\$SF	Halfword	2	Status flags
IC\$EC	Halfword	2	Error recovery retry counter
IC\$LNK	Fullword	4	Forward queue address (selector channel 1 and multiplexer channel)
IC\$LNK+4	Fullword	4	Forward queue address (selector channel 2 and multiplexer channel)
IC\$LNK+8	Fullword	4	Backward queue address (selector channel 1 and multiplexer channel)
IC\$LNK+12	Fullword	4	Backward queue address (selector channel 2 and multiplexer channel)

Table 4–1. Command Control Block Labels (Part 2 of 2)

4.1.2. EXCP Macro Instruction (Type R)

The EXCP macro instruction communicates directly with the I/O queuing routine of the channel scheduler for the purpose of submitting I/O requests to the system. Before this macro instruction is executed, the programmer must construct an I/O request packet consisting of one command control block, one or more channel command words, and one physical I/O control block.

PAGE:

6

Linkage between these components is as follows:

- The EXCP macro instruction passes the address of the command control block to the I/O queuing routine.
- The address of a two-byte field in a physical I/O control block is stored in the command control block. This field contains the relative address of the physical unit block for the peripheral device concerned.
- The address of the first channel command word is stored in the command control block.
- Each channel command word contains the address of an input/output data area.

Whenever an EXCP macro instruction is executed, the I/O request counter in the job control block is incremented and a status indicator in the command control block is set signifying that the order is outstanding.

The format of the EXCP macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	EXCP	$\left\{\begin{array}{c} \text{ccc-name}\\ (1) \end{array}\right\} \left[, \left\{\begin{array}{c} C\\ (0) \end{array}\right\}\right]$

POSITIONAL PARAMETER 1

ccb-name - the address of the command control block.

(1) - indicates that register 1 has been preloaded with the address of the command control block.

POSITIONAL PARAMETER 2

- C indicates that the I/O request is conditional on the peripheral device not being shared with another program running in the system. This option is intended to allow the programmer to issue conditional seek commands when running in a multiprogramming environment.
- (0) indicates that the EXCP macro instruction is used for tape positioning, and that register 0 has been preloaded with a two-byte block count that identifies the blocks at which the tape will be positioned.
- if blank indicates that the I/O request is unconditional.

Examples:

LABEL 1	t	OPERATION 10	OPERAND 16		b
IISISUUE	Γ	EX _I C _I PI	0 ₁ R ₁ D ₁ E ₁ R 1 ₁ 1 1 1 1 1 1 1 1 1 1 1	1	
		E X _I C _I PI	(₁ 1 ₁) ₁]]]]]]]]]]]]]]]]]]]		
		E X _I C _I P _I	0 ₁ R ₁ D ₁ E ₁ R 2 ₁ , 1	1	

4.1.3. WAIT Macro Instruction (Type R)

The WAIT macro instruction is written in the problem program at point where processing cannot logically proceed until the completion of I/O requests initiated by the EXCP macro instruction. A WAIT macro instruction is executed in reference to a single command control block or to the I/O counter in the problem program's job control block. If the related I/O operation (or operations) is finished, processing continues without any interruption. If the I/O operation (or operations) is not finished, the program is temporarily suspended (nonready status), and program control is given to the program switching routine. As each operation is finished, the interrupt servicing routine posts the command control block as complete, decrements the I/O counter in the program's job control block, the program is made ready and program control is transferred to the program switching routine. When the problem program is reactivated, program control is returned to the point of interruption (immediately following the WAIT macro instruction that results in the delay).

The format of the WAIT macro instruction is:

LABEL	5 OPERATION 5	OPERAND
[name]	WAIT	$ \left\{ \begin{array}{c} \text{ccb-name} \\ (1) \\ \text{ALL} \end{array} \right\} \left[\begin{array}{c} \text{br-addr} \\ (15) \end{array} \right] $

POSITIONAL PARAMETER 1

I.

ccb-name - the address of the command control block to be tested and marked.

- (1) indicates that register 1 has been preloaded with the address of the command control block.
- ALL the I/O counter in the job control block is tested instead of the status byte in the command control block. If no orders are outstanding, the problem program resumes following the WAIT macro instruction. If I/O orders are outstanding, the program is suspended until the I/O counter is zero (indicating all orders completed).

POSITIONAL PARAMETER 2

- br-addr the symbolic address to which program control is transferred if the related requested I/O operation is completed, but is not without exception.
 - NOTE: When using a label as positional parameter 2, the contents of register 15 are not altered even though transfer of control may occur. Base register coverage for this transfer address is assumed.
- (15) indicates that register 15 has been preloaded with the address.
- if blank the WAIT macro instruction tests for complete or incomplete status without testing for exceptions. When ALL specified as positional parameter 1, this parameter *must* be blank.

NOTE: The WAIT macro instruction determines the status of a command control block by testing the transmission byte that is set by the I/O interrupt processing routines and error processing job. The transmission byte is the third byte of the command control block, referenced by the standard label IC\$T, and has the following form:

BIT POSITION		MEANING (when set to 1)
0	_	I/O complete (or initial state)
1	-	Unrecoverable error
2	_	Unique unit error
3	-	Additional condition/no record found
4	-	Unit exception/tape mark
5	-	Reserved
6	-	End of track (track overrun)
7	-	End of cylinder

When determining if a requested I/O operation is complete, the WAIT macro instruction tests for the setting of bit 0 to 1. Then, if positional parameter 2 is specified, the WAIT macro instruction tests bits 1 through 7. If any of these bits are set to 1, program control is transferred to the address specified by positional parameter 2. The branch address specified as positional parameter 2 must be covered by a USING directive.

Examples:

LABEL 1	to OPERATION to 10	OPERAND	b
	WAIIT	0, R, D, E, R 1 ,	
	WAIIT	A.L.L.	
		(1,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	WAILT	0, R, D, E, R 1,, E, R, R 0, R,	
	W A,I,T	(<u>1</u>), (<u>1</u> 5), <u>1</u> , <u>1</u>	1
	WIA, I, T	C, C, R, T, W, O, , E, R, T, N, E, , , , , , , , , , , , , , , , ,	

4.1.4. MARK Macro Instruction (Type R)

The status of an I/O operation is determined by testing the status byte in its associated command control block. The MARK macro instruction can be used to check the status of I/O operations previously initiated by an EXCP macro instruction. At the time this test is made, a bit in the command control block is set indicating that a MARK macro has referenced it, and, if the status byte indicates that the I/O operation is not complete, program control is transferred to a user specified address. This macro instruction is used in conjunction with the YIELD physical IOCS macro instruction (described in 4.1.5).

PAGE:

PAGE:

The format of the MARK macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	MARK	$ \begin{cases} ccb-name \\ (1) \end{cases}, \begin{cases} branch-address \\ (15) \end{cases} $
POSITIONAL F	ARAMETER 1	•
ccb-name	 the symbolic administration marked. 	dress of the command control block to be
(1)		egister 1 has been preloaded with the address control block to be marked.
POSITIONAL P	ARAMETER 2	
branch-addre	related I/O oper parameter 2 is s register coverag branching to the	dress to which control is transferred if the ation is not completed. When positional pecified as a label, it is assumed that base e is provided in the problem program to allow alternate address. The contents of register byed by the MARK macro instruction when this
(15)	 indicates that readdress. 	gister 15 has been preloaded with the branch

Example:

LABEL 1	to OPERATION	ъ 16	OPERAND	b
N10,T,D10 N1E12	MARK		, (1,5,), , , , , , , , , , ,	
	MARK	O,R,D	E, R 3,, N, O, T D, O, N, E, 3	

4.1.5. YIELD Macro Instruction (Type R)

The YIELD macro instruction is written by the programmer at a point in the problem program where he wants to relinquish program control until the completion of any one of several outstanding I/O orders whose command control block has had a bit set by the MARK macro instruction. The YIELD macro instruction causes an interruption to the problem program and control is given to the program switching routine, but the switch list for the respective priority level is not cycled. If no programs of higher priority are ready for activation, and if one or more I/O requests posted by the MARK macro instruction have been completed, the problem program is reactivated at the point of interruption (immediately following the YIELD macro instruction).

10

PAGE:

The format of the YIELD macro instruction is:

LABEL	^δ OPERATION δ	OPERAND
[name]	YIELD	

No positional parameters are required by the YIELD macro instruction.

Example:

1	LABEL	to OPERATION to 16	OPERAND	ъ
		Y I E L D		

4.1.6. PIOCB Macro Instruction and Physical I/O Control Block Structure

The PIOCB macro instruction is used to generate physical I/O control blocks. These blocks serve as repositories for file and device information previously compiled by Job Control at the time the job control stream was evaluated. This information is stored in the form of a file control block. In tape systems, file control blocks are stored in high order main storage of the problem program. It is important that these blocks be retrieved (by issuing RDFCB macro instructions) before the main storage area in which they are stored is overlaid by the problem program. In disc systems, file control blocks are stored in the job file of the system resident direct access device. After the program has been loaded and execution has begun, either an RDFCB or an OPEN macro instruction causes file information to be moved to the physical I/O control block. When Data Management is used, a PIOCB macro instruction appears within the expansion of each Data Management file definition. The PIOCB macro instruction is declarative; therefore, it should not appear in a sequence of executable code.

At assembly time, the PIOCB macro instruction provides main storage space for the following information:

■ Eight-byte search key

An eight-byte character string is generated within each physical I/O control block. This character string is required by the RDFCB macro instruction and is used as a search key to obtain the file control block. The characters in this eight-byte search key are identical to the characters appearing as the label of the PIOCB macro instruction.

Halfword length field

A two-byte field immediately follows the eight-byte search key. This field contains a binary count of the number of bytes reserved for the file control block. This binary count ranges from a minimum of 2 to a maximum of 133. Altering the contents of this halfword field prior to the execution of a RDFCB macro instruction causes the transfer of the number of bytes of the file control block as specified by the alteration.

Part or all of a file control block

Each file control block begins with four two-byte fields which contain the addresses of physical unit blocks for the device or devices allocated to the file. Multivolume direct access files, defined by a single file control block, cannot exceed four volumes, Multivolume direct access files which exceed four volumes should be divided into multiple files and defined by two or more file control blocks. Each file control block requires an associated physical I/O control block.

The format of the PIOCB macro instruction is:

	δ OPERATION δ	OPERAND
name	PIOCB	$\left[\left\{\begin{array}{c} MAX\\ \#-bytes\end{array}\right\}\right]$

LABEL

 name - the symbolic address of the first byte of the physical I/O control block. This name is used whenever reference is made to the physical I/O control block or its contents. The characters appearing in this label become the eight-byte character string generated in the first eight bytes of the physical I/O control block.

POSITIONAL PARAMETER 1

- MAX a binary constant is generated and an area is reserved within the physical I/O control block large enough to contain the complete file control block.
- #-bytes an integer indicating the size of the area for the file control block. This option is used to limit the size of the physical I/O control block for the purpose of reading partial file control blocks.
- if blank a minimum-sized physical I/O control block of twelve bytes is generated allowing for storage of only the first two bytes of the file control block. These first two bytes contain the absolute address of the physical unit block for the device assigned to the file.
- NOTE: A two-byte field is reserved for each device that is simultaneously required online to a single physical I/O control block. A maximum of four fields is permitted. The first two-byte field is referred to as entry 0, the second field as entry 2, the third field as entry 4, and the fourth field as entry 6. Following the successful completion of a RDFCB macro instruction, these fields contain the absolute addresses of the physical unit blocks that identify the assigned devices. Device assignments indicated in the file control block are made by Job Control. Thus, the RDFCB macro instruction, in conjunction with the PIOCB macro instruction, dynamically links the problem program with the results of its evaluated job control stream.

PAGE:

12

Examples:

LABEL 1	B OPERATION	ъ 16	OPERAND	b
F _i I _i L _i E _i A] _i	PII OC B			
FılıLıEıBlı	ΡΙΙ ,Ο,Ο,Β	5,0, _	<u>. </u>	
F,I,L,E,C	P I ,O,C B	MIAIX		

The format of a physical I/O control block is shown in Figure 4-2. Fields within a physical I/O control block are identified by standard system labels; these labels are defined in the STDEQU macro instruction (1.4). By convention, all labels are a maximum of eight characters and expressed in the form IB\$xxxxx, where the characters IB\$ identify physical I/O control block labels and the characters xxxxx identify fields within the physical I/O control block. Field labels, and brief descriptions of their contents, are provided in Table 4-2.

Figure 4-2. Physical I/O Control Block Format.

PAGE:

13

LABEL	BOUNDARY Alignment	FIELD Length	DESCRIPTION
IB\$LBL	Fullword	8	Eight-byte file control block name
IB\$FBL	Fullword	2	Number of bytes in the file control block
IB\$FB	Halfword	2–133	File control block area

4.1.7. RDFCB Macro Instruction (Type R)

The RDFCB macro instruction is used to locate the file control block and read it into the physical I/O control block in main storage. To accomplish this function, positional parameter 1 of the RDFCB macro instruction must be the address of a physical I/O control block that contains an eight-byte character string identifying the desired file control block. This character string is used as a search key when locating the file control block. Any references to a physical I/O block, by means of an EXCP macro instruction, before the device assignment fields are filled by the RDFCB macro instruction results in a software program check interrupt. Therefore, each physical I/O block should be initialized by RDFCB macro instruction before the block is referenced by an EXCP macro instruction. The WAIT macro instruction is used to test for the completion of an RDFCB macro instruction. Figure 4-3 shows the interrelationship between the command control block, channel command word, physical I/O control block, file control block, and physical unit block.

The format of the RDFCB macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	RDFCB	$\left\{\begin{array}{c} \text{piocb-name}\\ (1)\end{array}\right\}\left[\begin{array}{c} \#\text{-bytes}\\ (0)\end{array}\right\}\right]$

POSITIONAL PARAMETER 1

piocb-name - the symbolic address of the physical I/O control block.

 (1) - indicates that register 1 has been preloaded with the address of the physical I/O control block.

- (3) IN DISC STSTEMS: File control blocks are stored in the execution area on the system resident direct access device.
- Figure 4–3. Interrelationship Between the Command Control Block, Channel Command Word, File Control Block, Physical I/O Control Block, and Physical Unit Block

PAGE:

POSITIONAL PARAMETER 2

ead into main
the halfword count
ins until altered
programmer.
1

- (0) indicates that register 0 has been preloaded with the number of bytes.
- if blank the number of bytes to be read is specified by a constant in the physical I/O control block.

NOTES:

- (1) Program control is returned to the issuing program at the point immediately following the RDFCB macro instruction. The address of a command control block is returned in register 1. The programmer can issue a WAIT or MARK macro instruction referencing this command control block. Thus, synchronization with the read file control block function is similar to that used with physical IOCS.
- (2) An RDFCB macro instruction cannot be issued when there is either an OPR, GETCS, or LOAD macro instruction outstanding. If this is attempted, a software program check error will result.

Examples:

	ħ	OPERATION 5	16	OPERAND	b
<u> </u> N T		R D ₁ F ₁ C ₁ B	F	I,L,E,A ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		RID, FICIB	F	I,L;E,C,,,,,0,0,	
	L	R D, F, C, B	6	1,),,(]0,),,, <u> </u>	

4.1.8. SWAP Macro Instruction (Type R)

The SWAP macro instruction is used to cause the exchange of a physical unit block address in a physical I/O control block with the address of its alternate. Only physical unit blocks that are linked to alternates can be exchanged.

The format of the SWAP macro instruction is:

LABEL	t OPERATION to	OPERAND
[name]	SWAP	$\left\{\begin{array}{c} \text{piocb-name} \\ (1) \end{array}\right\} \left[, \left\{\begin{array}{c} \text{entry-number} \\ (0) \end{array}\right\} \right]$

SECTION: 4 PAGE

16

POSITIONAL PARAMETER 1

piocb-name - the symbolic address of the physical I/O control block.

 indicates that register 1 has been preloaded with the address of the physical I/O control block.

POSITIONAL PARAMETER 2

- entry-number 0, 2, 4, or 6 indicating the two-byte field to be changed by the SWAP macro instruction. Each field can contain the address of a physical unit block identifying a device linked to the physical I/O control block.
- (0) indicates that register 0 has been preloaded with the value 0, 2, 4 or 6.
- if blank 0 is assumed (first entry in physical I/O control block is changed).

Examples:

LABEL 1	t OPERATION	ቴ OPERAND 16	\$
	S WIAIPI		
	S W AP	F ₁ I ₁ L ₁ E ₁ C , 141 1 1 1 1 1 1 1 1 1 1 1	1
	S W AP		

4.2. DYNAMIC RELEASE OF PERIPHERAL DEVICES

The programmer can release devices during the execution of a job step, providing the released devices are not assigned for the duration of the job. The FREE macro instruction is provided for this purpose.

4.2.1. FREE Macro Instruction (Type R)

The FREE macro instruction is used by the programmer to release peripheral devices from assignment to the job step. Devices released from the job step are returned to the system's pool of unallocated devices only if the job control stream has not assigned the device for the duration of the job.

The format of the FREE macro instruction is:

LABEL	ቴ OPERATION ቴ	OPERAND
[name]	FREE	$\left\{\begin{array}{c} \text{piocb-name}\\ (1)\end{array}\right\}\left[, \left\{\begin{array}{c} \text{ALL}\\ \text{entry-n}\\ (0)\end{array}\right\}\right]$

PAGE:

POSITIONAL PARAMETER 1

- piocb-name the symbolic address of the physical I/O control containing the address(es) of the physical unit block(s) for the device(s) to be released.
- indicates that register 1 has been preloaded with the address of the physical I/O control block.

POSITIONAL PARAMETER 2

- ALL all devices assigned to the physical I/O control block addressed by positional parameter 1 are released.
- entry-n 0, 2, 4, or 6 indicate the two-byte entry within the physical I/O control block containing the address of the physical unit block for the device to be released.
- (0) indicates that register 0 has been preloaded with the value 0, 2, 4, or 6.

if blank - ALL is assumed.

NOTE: Whenever devices are released, their alternates, if any, are also released.

Examples:

LABEL 1	t OPERATION	5 OPERAND 16	ŧ
	F R, E, E,	F, I, L, E, A,	
	FREE	(,1,), , , , , , , , , , , , , , , , , ,	<u> </u>
	F _i R _i E _i E	F, I, L, E, B, , 2,	

PAGE:

5. PROGRAM MANAGEMENT

5.1. GENERAL

Program management facilities are provided to assist the programmer in the efficient management of problem programs. These facilities include:

- Program loading
- Timer and simulated data clock services
- Transient area management
- Dynamic acquisition of temporary direct access storage
- Subroutine linkage
- Linkage to user interrupt routines
- System information control
- Control stream reader
- Program checkpoint
- Program termination

5.2. PROGRAM LOADING

The LOAD and FETCH macro instructions are provided for program loading. The LOAD macro instruction is used primarily to locate and load overlay segments of a problem program. Program overlay segments loaded by the LOAD macro instruction are not automatically given program control. Rather, program control is returned to the program that issued the LOAD macro instruction. The FETCH macro instruction is used to locate and load program phases which are to be given program control following a successful loading sequence.

5.2.1. LOAD Macro Instruction (Type R)

The LOAD macro instruction is used to locate and load absolute or relocatable program overlay segments into main storage. In addition to loading executable program overlay segments, the LOAD macro instruction can also be used to load tables and other nonexecutable data for subsequent inspection by the problem program. Optionally, the LOAD macro instruction can be used to locate and load self-relocating program overlay segments into main storage areas other than the ones specified by the Linkage Editor. Main storage address constants within program overlay segments loaded in this manner are not adjusted. When relocatable load modules are retrieved from a program library, all address constants are automatically adjusted by the relocatable program loader. Synchronization between the calling program and the load function of the Supervisor is similar to the synchronization used with physical IOCS.

PAGE:

2

Four load functions are available to the programmer through the LOAD macro instruction. They are:

- Load absolute function
- Load index function
- Load alternate function
- Load relocate function

In disc systems, all four load functions are available to the programmer. In tape systems, only the load relocatable function is available to the programmer. However, for purposes of compatibility, especially for those users who plan to convert from a tape-oriented system to a disc-oriented system, the LOAD macro instruction can be written in the form used for the load absolute, load index, and load alternate functions.

5.2.1.1. Load Absolute Function (Disc Systems Only)

The load absolute function is used to locate and load absolute program overlay segments from the execution area on the system resident direct access device into main storage areas as specified by the Linkage Editor.

The format of the LOAD macro instruction when used to call the load absolute function is:

LABEL	t OPERATION t	OPERAND
[name]	LOAD	$ \begin{cases} \text{segment-name} \\ (1) \end{cases} $

POSITIONAL PARAMETER 1

segment-name - the eight-character name of the program overlay segment to be loaded (exactly as it appears in the index of the execution area). The format of the segment name is: nnnnnpp (nnnnn is the name of the program and pp is the phase number).

(1) - indicates the register 1 has been preloaded with the address of the eight-character segment name.

5.2.1.2. Load Index Function

In disc systems, the load index function locates a program index entry within the execution area index on the system resident direct access device. When the program index is located, it is read into a temporary work area in the job preamble of the calling program. Each program index entry contains the following information about a program:

- the direct access device address of the first record of the overlay segment;
- the number of records in the program overlay segment;
- the length of the program overlay segment (in bytes);
5

PAGE:

- the entry point of the program overlay segment;
- the main storage starting address of the program.

In addition to the index entry, a channel program is read into the preamble of the calling program that is specifically designed to retrieve subsequent records of the program overlay segment.

In tape systems, the load index function is used to locate a program header record within a load library. When the program header record is located, it is read into a temporary work area in the job preamble of the calling program. In effect, in tape systems, the load index is a call on the tape program locator.

The format of the LOAD macro instruction when used to call the load index function is:

LABEL	ъ OPERATION ъ	OPERAND
[name]	LOAD	$\left\{ \begin{array}{c} {\rm segment-name} \\ { m (1)} \end{array} \right\}$,I

POSITIONAL PARAMETER 1

- segment-name the eight-character name of the program overlay segment in the form nnnnnpp.
- (1) indicates that register 1 has been preloaded with the address of the element name.

POSITIONAL PARAMETER 2

I

indicates a load index function.

5.2.1.3. Load Alternate Function - Disc Systems

The load alternate function is used to read absolute program text records for the program identified by a preceding LOAD *index* macro instruction. The address of the main storage area into which the first text record is to be read is specified by positional parameter 2 of the first LOAD alternate macro instruction. Programs consisting of more than one text record can be retrieved, one text record at a time, by subsequent LOAD alternate macro instructions.

The LOAD alternate macro instruction is normally used when the programmer desires to load a self-relocating program from the execution area into a main storage area other than the one specified by the Linkage Editor. Other uses include the retrieval of nonexecutable portions of a program for inspection by the problem program.

PAGE:

The format of the LOAD macro instruction when used to call the load alternate function is:

LABEL	δ OPERATION δ	OPERAND
[name]	LOAD	$\left[\begin{array}{c} \left\{\begin{array}{c} address \\ (1) \end{array}\right\}\right]$

POSITIONAL PARAMETER 1 – unused, must be left blank

POSITIONAL PARAMETER 2

- address the symbolic address of an area into which the first program text record is to be read. On subsequent LOAD alternate macro instructions for records of the same program, this parameter may be specified but it is ignored by the load alternate SVC processing routine.
- (1) indicates that register 1 has been preloaded with the address of the main storage area.
- if blank the main storage address in the index entry within the problem program's job preamble will be used.

NOTE:

The load alternate SVC processing routine returns the following information to the user in problem registers 0 and 1:

- Register 0 the count plus one (in binary) of the number of program text records remaining to be loaded. This convention was adopted to permit the use of the branch on count, BCT, instruction in conjunction with multiple load alternate requests.
- Register 1 the address of a command control block within the problem program's job preamble that can be referenced by a subsequent MARK or WAIT macro instruction.

Example:

LABEL 1	B OPERATION B	OPERAND 16	b	COMMENTS	
		<u></u>	<u></u>		LILLALL
		P, A, Y, R, 0 0 , 1 , 0 , , 1			
	WA, I, T	(1),,ERR,OR		<u></u>	Limber Charles
L, D, A, L, T	LOAD	, LD, A, R E, A,		<u></u>	
	WIAII,T,	(,1,),, E R,R,O,R, , , , ,			
	BICIT,	R.0, \$,, L D, AL, T			
		<u> </u>	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	Liniti
			<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>	
			<u></u>	<u></u>	LILLILL
LIDIAIREIA	D S.		<u> </u>		
				<u></u>	Les en la la

5

5.2.1.4. Load Alternate Function - Tape Systems

In tape-oriented systems, the load alternate function is used only when loading transient routines from the system tape into a transient area. This facility cannot be called by problem programs.

5.2.1.5. Load Relocate Function

In disc systems, the load relocate function causes the transient scheduler to locate and load the transient relocatable program loader from the system resident direct access device. This program loader then locates the requested program within a program library, reads the problem program text records into a main storage buffer area within the transient area, resolves all address constants, and moves the resultant absolute code to the user area.

In tape systems, the relocatable program loader is written by the Linkage Editor immediately following each load module header record. Therefore, once a header record is located, a copy of the relocatable loader is immediately available as the next tape block for reading into the system transient area. Once the relocatable program loader is given control as a transient routine, it reads the following program text records into a buffer area within the transient area, resolves address constants, and moves the resultant absolute code to the user area.

The format of the LOAD macro instruction when used to call the load relocate function is:

LABEL	δ OPERATION δ	OPERAND
[name]	LOAD	$ \left\{ \begin{array}{c} \text{segment-name} \\ (1) \end{array} \right\} $

POSITIONAL PARAMETER 1

- segment-name the eight-character name of the program overlay segment to be loaded (exactly as it appears in the index of the execution area). The format of the segment name is nnnnnpp.
- (1) indicates that register 1 has been preloaded with the address of the eight-character segment name.

NOTES:

- (1) When the load index, load alternate, or load absolute functions are called, program control is immediately returned to the calling program at the point following the LOAD macro instruction. This allows processing to continue asynchronously with the program loading function. A WAIT or MARK macro instruction should be executed in reference to the load request to determine when the load function is complete.
- (2) When the load relocate function is used, program control is taken from the calling program until the load function terminates. When the called program is loaded, program control is returned to the calling program at the point following the LOAD macro instruction.

(3) Following the execution of a LOAD macro instruction, the load SVC processing routine returns information to the user in problem registers 0 and 1 as indicated in the following table:

Load Function	Register 0	Register 1
Load index, load absolute, and load relocate	index-area-ad	ccb-address
Load alternate	count+1	ccb-address

Where:

index-area-ad - is the main storage address of an area in the problem program's job preamble that is used to store the retrieved program index block. The first word of this area contains the entry-point-address of the called program.

- NOTE: When a LOAD index macro instruction is executed, the program index block is not available in the index area until the function is complete.
- ccb-address the address of a command control block within the problem program's job preamble that can be referenced by a WAIT or MARK macro instruction to determine the status of the load request.
- count+1 the count plus one (in binary) of the number of program text records remaining to be loaded.
- (4) A LOAD macro instruction cannot be issued when any of the following macro instructions are outstanding: GETCS, OPR, or RDFCB. If this is attempted, a software program check error results.
- (5) The user must choose which of two loading techniques he intends to use and indicate this choice in each EXEC control statement in the job control stream. The two choices are:
 - (1) load absolute, load index, and load alternate, or
 - (2) load relocate.

The load index and load alternate functions are forms of the load absolute function; whereas the load relocate function is entirely different and results in the execution of a transient job.

to OPERATION to 10	5 16	OPERAND	b
	(1)		
LIOAD	(,1,),,		
LIOAD	, (, 1,)		
LIOAD			
	$ \begin{array}{c c} 10 \\ L & O_1 A_1 D_1 \\ L & O_1 A_1 D_1 \\ L & O_1 A_1 D_1 \\ \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Examples:

PAGE:

5.2.2. FETCH Macro Instruction (Type R)

The FETCH macro instruction is used to locate program phases in auxiliary storage, load them into main storage, and transfer program control to them. In tape systems, the FETCH macro instruction is, in effect, a call on the relocatable loader.

The format of the FETCH macro instruction is:

LABEL	ъ	OPERATION 5	OPERAND
[name]		FETCH	$ \begin{cases} \text{segment-name} \\ (1) \end{cases} \begin{bmatrix} \text{entry-name} \\ (0) \end{bmatrix} $
POSITIONAL	PARA	METER 1	
segment-na	me —	the eight-char form nnnnnp	racter name of the program overlay segment in the p.
(1)	-	indicates that the segment r	t register 1 has been preloaded with the address of name.
POSITIONAL	PARA	METER 2	
entry-name	-	passed after t	address (entry point) to which program control is to be the loading process is completed and the program is ne active program by the program switching routine.
(0)	-	indicates that address.	register 0 has been preloaded with the entry point
if blank	-	the entry poin	t specified by the Linkage Editor is used.
NOTE: A H	FETC	H macro instru	ction cannot be issued when there are any I/O requests

NOTE: A FETCH macro instruction cannot be issued when there are any I/O requests outstanding. This restriction includes OPR, LOAD, GETCS, and RDFCB functions. If this is attempted, a software program check error will result.

Examples:

LABEL 1	to OPERATION	OPERAND 16	ъ
	F E T CH	P A Y R 0 0 0 9 , E N T R Y 1	
	FIE, T, CH	(,1,),,(10,),,,,,,,,,,,,,,,,,,,,,,,,,,,,	

PAGE:

5.3. TIMER AND SIMULATED DAY CLOCK SERVICES

Two macro instructions are available to the programmer which can be used to communicate with the timer services routine. These macro instructions are:

- GETIME get time of day
- SETIME set time interval

5.3.1. GETIME Macro Instruction (Type R)

The GETIME macro instruction is used by the programmer to obtain the time from the simulated day clock function of the Supervisor.

The format of the GETIME macro instruction is:

LABEL	δ OPERATION δ	OPERAND
[name]	GETIME	$\left[\left\{ { s \atop M } \right\} \right]$

POSITIONAL PARAMETER 1

S

- the time is returned in register 1 in the format: 00hhhmms (where h is hours, m is minutes, and s is the sign) expressed in packed decimal data format.

M - the time in milliseconds is returned in register 1 as a binary integer.

if blank - M is assumed.

Examples:

LABEL 1	ħ	OPERATION 10		16						0	PEI	RA	ND													ħ			
T _I I _I M _I E _I 1 1		GE _I T _I I _I M	E	_s_	.1	L	1	1	1	1	.1						1	L	1	1		1	I	1	1	1	L	1	
		GEITIIM	Ε	IWI		L	1		1	1	1	1	L		1	1	1	1	L	L	L			1	1		L	L	L
	-	GIETIM	Е	11	.1	1		L	I	I.	L			_1			1	1	T	1	L	1.	_L		1	L	1-	1_	L

5.3.2. SETIME Macro Instruction (Type R)

The SETIME macro instruction is used by the programmer to request scheduled interrupts in the problem program based on elapsing of actual time.

The format of the SETIME macro instruction is:

LABEL	τ OPERATION τ	OPERAND
[name]	SETIME	$\left\{ \begin{array}{c} \text{time} \\ (1) \end{array} \right\} \left[\text{, WAIT} \right]$

PAGE:

9

POSITIONAL PARAMETER 1

- time the time interval in milliseconds to elapse before generating an interrupt.
- (1) indicates that register 1 has been preloaded with the time interval.
- if blank used to cancel a previous SETIME request, thus preventing the scheduled interrupt.

POSITIONAL PARAMETER 2

- WAIT the soliciting program is suspended until the time interval expires.
 When the interrupt occurs, the waiting program is reactivated at the point immediately following the SETIME macro instruction.
- if blank the soliciting program retains program control. When the time interval expires, the job's timer island code subroutine, as specified by a STXIT macro instruction, is activated. If no timer island code, subroutine is specified, or if a timer interrupt occurs while the problem program's timer island code subroutine is being executed, the interrupt is ignored.

Examples:

LABEL 1	t OPERATION to	OPERAND	b
T [M E 1	SETIIME	3,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	SIETIIME	, 1,0,0,, W,A,I, T, , , , , , , , , , , , , , , , , ,	

5.4. TRANSIENT AREA MANAGEMENT

One macro instruction is available to the programmer to call user written transient routines. This macro instruction is:

- TCALL generate parameter list and request transient routine
- 5.4.1. TCALL Macro Instruction (Type R)

The TCALL macro instruction is used to call user written transient routines. This macro instruction is also used to pass parameters from problem programs to user written transient routines. Direct communication with the transient area scheduling routine is the primary function of this macro instruction. Program control is not returned to the calling program until the requested transient routine has been located, loaded, executed, and released. Control always returns to the line immediately following the TCALL macro instruction.

10

PAGE:

The format of the TCALL macro instruction is:

LABEL	^Τ OPERATION Τ	OPERAND
[name]	TCALL	$ \begin{cases} \text{routine} \\ (1) \end{cases} \begin{bmatrix} \text{(param-1,,param-n)} \\ (0) \end{bmatrix} $
POSITIONAL	PARAMETER 1	
routine	- a symbolic name	identifying the transient routine required.
(1)		gister 1 has been preloaded with a one-byte value esired routine (assigned SVC code).
POSITIONAL	PARAMETER 2	
param-1 param-n	 parameters to the called transient routine. The parameters can be written in a sublist of the TCALL macro line. These parameters are generated in the same order as written in the sublist. 	
(0)	 indicates that reg of the parameter 	gister 0 has been preloaded with the address of list.
if blank	 no parameters are 	e assumed.
Examples:		

LABEL 1	t OPERATION	t OPERAND 16	ъ
	TCALLL	S ₁ V ₁ \$ ₁ R ₁ T <u>IN</u> ₁ E ₁ , ((P A R ₁ 1), P A)	Ri 2 I, I P A I RI 3 I) I I I I I I I I I I
	T _I C_A_L_L	(,1,),,(10,),,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		<u></u>	!

5.5. DYNAMIC ALLOCATION OF DIRECT ACCESS STORAGE

When disc packs are mapped, the user has the option of specifying the number of cylinders to be reserved for temporary suballocation to problem programs. Three macro instructions are provided for allocating, releasing, and interrogating the status of temporary direct access storage.

These macro instructions are:

- GIVE Allocate temporary direct access storage.
- TAKE Release (that is, deallocate) temporary direct access storage.
- QUERY Interrogate the use of both allocated and unallocated temporary direct access storage.
- 5.5.1. GIVE Macro Instruction (Type S)

The GIVE macro instruction is used to request the allocation of temporary direct access space to the problem program.

PAGE:

The format of the GIVE macro instruction is:

LABEL	τ OPERATION τ	OPERAND
[name]	GIVE	$ \left\{\begin{array}{c} \text{list-name}\\ (1) \right\} $

POSITIONAL PARAMETER 1

- (1) indicates that register 1 has been preloaded with the address of the parameter list.

The format of the parameter list used with the GIVE macro instruction is:

Input parameters (that is, directions to the Supervisor) are stored by the user in the list prior to executing the associated macro instruction. After executing the macro instruction, the Supervisor alters the contents of certain fields indicating the results of the operation. A description of the contents of these fields follow.

Minimum List is Three Words (Words 3 through n are Individual

Requests)

BYTE IDENTIFICATION	PARAMETER TYPE	DESCRIPTION
STATUS	INPUT	Set by user to X'00'
	OUTPUT	Set by Supervisor as follows:
		X'00' – request(s) performed exactly as specified
		X'01' - one or more parameters in the list required a con- dition that could not be met. The user should check all R bits in each of the FLAGS bytes to determine what allocation, if any, has been made.
		۲۰۵۷ – the option byte is in error. No allocation has been made.
		X'03' – physical I/O control block address, or entry number is in error. No allocation has been made.
		X'04' the volume specified by the physical I/O control block does not contain any temporary stor- age space. No allocation has been made.
		X'05' - the wrong volume is mounted on the specified device. No allocation has been made. ed.
		X'06' – an invalid use code has been specified. No allocation has been made.
		X'10' – I/O error during an input operation. No allocation has been made.
		X·20· - this status code is used in combination with other codes (that is, X·20·, X·21·, X·22·) to indicate an I/O error during an output operation. Since there is no record of the amount of allocation, the request(s) for direct access storage space should be repeated.

UNIVAC 9400 SUPERVISOR

UP-7689

SECTION:

5

13

BYTE IDENTIFICATION	PARAMETER TYPE	DESCRIPTION
OPTION	INPUT	Set by the user as follows:
INDÍCATOR		X'00' - allocate as many cylinders as possible at a position that minimizes fragmentation of direct access storage (that is, the smallest area on the disc that is large enough to satisfy the request). If the number of cylinders requested is greater than the number allocated, the number allocated is stored and the R bit is set to 1 in the par- ticular request word.
		X'01' -allocate as many cylinders as possible starting at the specified cylinder. If the number of cylinder requested is greater than the num- ber allocated, the number allocate is stored and the R bit is set to 1 in the particular request word.
		X'02' - allocate at a position that mini- mizes fragmentation of direct access storage only if the speci- fied number of cylinders is avail- able. If this is not possible, no allocation is made; the R bit is set to 1 and X'00' is stored in the second byte of the particular request word.
		X'03' – allocate starting at the specified position only if the specified number of cylinders is available. If this is not possible, no alloca- tion is made; the R bit is set to 1 and X'00' is stored in the second byte of the particular request work

.

SECTION:

5

14

BYTE IDENTIFICATION	PARAMETER TYPE	DESCRIPTION
USE CODE	INPUT	A number assigned by the user in the range of 1 through 63 which identifies the use for which the space is requested. This number is appended to the requesting program's job number and written in the allocation control table on the volume.
PHYSICAL INPUT/OUTPUT CONTROL BLOCK ADDRESS, ETC.	INPUT	The address of a two-byte field within a physical I/O control block containing the address of the physical unit block that identifies the direct access device and volume on which allocation is desired (see 4.1.6).
FLAGS	INPUT	Set by the user as follows:
		X'00' - initial setting of the first byte of each word (each request) except the last word of the list.
		X'80' - last word of the parameter list.
	OUTPUT	Set by the Supervisor as follows:
		X·01 – an error occurred while process- ing a request.
		X'81' - an error occurred while process- ing a request in the last word of the parameter list.
NUMBER OF CYLINDERS	INPUT OUTPUT	the number of cylinders requested. the number of cylinders allocated. If no cylinders are allocated, X'00' is stored in this byte by the Supervisor.
STARTING CYLINDER NUMBER	INPUT	the cylinder number at which allocation is to begin. (This number is not furnished if option indicator X'00' or X'02' is speci- fied.)
	OUTPUT	the cylinder number at which allocation has begun when option indicator X'00' or X'02' has been provided.

PAGE:

Example:

LABEL 1	t OPERATION 1 10	5 OPERAND 16	b
	GII V,E	P,A,R,L,I S, T, , , , , , , , , , , , , , , , , ,	
			<u> </u>
		0,,4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
P _i A _I R _I L _I I _I S _I T _I	DC	x, , 0, 0, , ,	
		X ₁ ',0,2,',	
	DIC	X,',0,0,'	
	DIC	A ₁ L ₁ 1 ₁ (<u>12</u> 0 <u>1)</u>	1
	DIC	A, (, F, I, L, E, A, +, I, B, \$, F, B, +, 2) ; , , , ,	
		X, ', 0, 0, ', _, , , , , , , , , , , , , , , , ,	
	DIC	A,L,1,(,1)0,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		X, ',0,0,', , , , , , , , , , , , , , , ,	
	DIC	A, L, 1, (, 0)	
	DIC	X, '18,0, '1,	
	DIC	A, L, 1, (, 2, 0,)	
	DIC	X, ', 0, 0, ', _, _, _, _, _, _, _, _, _, _, _, _, _,	
	DIC	A,L,1,(,0]), , , , , , , , , , , , , , , , , , ,	<u> </u>

5.5.2. TAKE Macro Instruction (Type S)

The TAKE macro instruction is used to deallocate temporary direct access storage space.

The format of the TAKE macro instruction is:

LABEL	Ъ OPERATION ъ	OPERAND
[name]	TAKE	$ \left\{\begin{array}{c} \text{list-name}\\ (1) \end{array}\right\} $

POSITIONAL PARAMETER 1

- list-name the symbolic address of a user-generated parameter list which specifies a group(s) of contiguous cylinders to be deallocated on a particular volume or all mounted volumes.
- (1) indicates that register 1 has been preloaded with address of the parameter list.

16

PAGE:

The format of the parameter list used with the TAKE macro instruction is the same as the list used with the GIVE macro instruction. The only differences are the manner in which the option indicator code is interpreted and that X'00' may be specified for the use code.

BY TE IDEN TIFICATION	PARAMETER TYPE	DESCRIPTION
OPTION INDICATOR	INPUT	 set by the user as follows: X'00' - deallocate only the group(s) of contiguous cylinders specified in words 3 through n of the list. X'01' - deallocate all cylinders allocated for the specified use code on the specified direct access volume. NOTE: words 3 through n are irrelevant for this option. X'03' - deallocate all cylinders allocated for the specified use code on all mounted direct access volumes. NOTE: words 2 through n are irrelevant for this volume.

Example:

LABEL 1	t OPERATION to 10	OPERAND 16	ts
	T A,K,E	(,1,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
~ 1 1 1 1 1 1			

5.5.3. QUERY Macro Instruction (Type S)

The QUERY macro instruction is used to interrogate the use of both allocated and unallocated direct access storage. This macro instruction is used with the same type of parameter list as the GIVE macro instruction. The QUERY macro instruction can be used for any of the following purposes:

- Given a particular use code, return the number of cylinders remaining which can be allocated for this use.
- Given a particular cylinder number, return the code indicating its use.
- Given a particular use code, return a list of the contiguous group of cylinders now allocated for this use.

PAGE:

17

The format of the QUERY macro instruction is:

LABEL	も OPERATION も	OPERAND	
[name]	QUERY	list-name (1)	}

POSITIONAL PARAMETER 1

- (1) indicates that register 1 has been preloaded with the address of the parameter list.

The format of the parameter list used with the QUERY macro instruction is the same as the list used with the GIVE macro instruction. The only differences are the manner in which the OPTION INDICATOR code is interpreted and that a use code of X'00' can be specified.

BYTE IDENTIFICATION	PARAMETER TYPE	DESCRIPTION
OPTION INDICATOR	INPUT	Set by the user as follows: X'00' - the Supervisor returns the remaining number of cylinders that this job can request and stores them in the second byte of word 3 of the list. The Super- visor also returns the starting cylinder number and the number of cylinders for each contiguous area allocated to a specific use code of a particular job in words 4 through n. The last entry of the list is signified by the L flag bit being set to 1. If there are too many parameters for the list, a status code of X'07' is returned and the list is terminated.
		X'01' - the Supervisor returns the use code in the fourth byte of word 1 for the user-furnished cylinder number in the fourth byte of word 3 in the parameter list.
		X '02' - the Supervisor returns the remaining number of cylinders that this job can request and stores them in the second byte of word 3 of the list.

PAGE:

BYTE	PARAMETER TYPE	DESCRIPTION
OPTION INDICATOR (CONTINUED)		X'03' - the Supervisor returns the starting cylinder and the number of cylinders for each contiguous area allocated to a specific use code of a particular job in words 3 through n. The last entry of the list is signified by the L flag bit being set to 1.
USE CODE	INPUT	Set by the user as follows: X'00' - used with OPTION INDICATOR code X'02' to indicate that the macro in- struction pertains to all uses for this job.
		number - used with OPTION INDICATOR codes X:00' and X:03' to specify a particular use.
	ΟυΤΡυΤ	When OPTION INDICATOR X'01' is specified, the use code is returned by the Supervisor in the fourth byte of word 1. When OPTION IN- DICATOR X'01' is not specified, this field does not contain an output parameter.

Example:

1	LABEL	t OPERATION	5 16	OPERAND	ъ
		QUUEIRIY	L1,S,T1		
					<u> </u>

. . .

PAGE:

5.6. SUBROUTINE LINKAGE

Direct linkage between programs residing in main storage is accomplished by the CALL, SAVE, and RETURN macro instructions. These macros never involve the Supervisor during their execution. If direct linkage is desired with a program not resident in main storage, the program must first be loaded by the LOAD macro instruction.

5.6.1. Linkage Register Conventions

During the direct linkage process, certain registers are used for specific purposes to avoid conflicts in register use. These registers and their uses in the linkage procedure are:

- Register 0 parameter register
- Register 1 parameter or parameter list register

Registers 0 and 1 are used for passing parameters between linked programs (each parameter is four bytes long and is aligned on a word boundary). These registers are loaded with the parameters to be passed, or, in the case of a parameter list, the address of the first parameter in the list is loaded in register 1. The last parameter in a parameter list has its sign bit set to 1.

Register 2 through 12 - free registers

These registers are never used or referenced by the direct linkage macro instructions.

■ Register 13 – save area register

If a save area is provided for the called program by the calling program (for temporary register storage), the address of the save area is loaded in register 13 by the calling program.

Register 14 - return address register

This register is loaded by the calling program with the address to which control should be returned following the execution of the called program.

Register 15 – entry point register

This register is loaded by the calling program with the address of the entry point in the called program. This register can be used to provide initial addressability in the called program.

5.6.2. Linkage Procedure

The calling program establishes direct linkage with another program by means of the CALL macro instruction. If registers are used in the called program (other than 0, 1, and 15), the SAVE macro instruction must be used to save their content. The RETURN macro is used to return control to the calling program.

PAGE:

The calling program is responsible for the following:

- Loading register 13 with the address of a 72-byte save area (if one is required by the called program).
- Loading the parameter registers, if necessary.
- Loading register 14 with the return address.
- Loading register 15 with the entry point in the called program.

The called program is responsible for the following:

- Saving the content of all registers used by it, with the exception of registers 0, 1, and 15 which are considered volatile. The contents of registers are saved in the area addressed by register 13.
- Following its execution, the called program must reload the saved registers and transfer program control to the return address loaded in register 14 by the called program.
- 5.6.3. CALL Macro Instruction (Type R)

The CALL macro instruction is written in the calling program to establish direct linkage with the called program. Only programs loaded into main storage can be called with this macro instruction.

The format of the CALL macro instruction is:

LABEL	t OPERATION t	OPERAND				
[name]	CALL	$ \left\{ \begin{array}{c} entry-point \\ (15) \end{array} \right\} \left[\begin{array}{c} \left(param-1, \dots, param-n) \\ list-address \\ (1) \end{array} \right) \right] $				

POSITIONAL PARAMETER 1

entry-point - the symbolic address of the entry point in the called program to which program control is to be given.

(15) - indicates that register 15 has been preloaded with the address of the called program.

POSITIONAL PARAMETER 2

param-1 - specifies the parameter list to be passed to the called program.
The parameters of the list must be written in a sublist of the call line. Included in the CALL macro expansion is the generated list of parameters in the same order as written on the call line. Each parameter is considered as one fullword and is aligned on a fullword boundary. The three low order bytes of each generated word contain the address of a parameter. The sign bit of the last parameter in the list is set to 1. The address loaded in register 1, prior to control being transferred to the called program, is the address of the first parameter in the list.

5

PAGE:

of

21

list-address	- the symbolic address of a parameter list.
(1)	 indicates that register 1 has been preloaded with the address of the parameter list.
if blank	– no parameters are assumed.

Examples:

to OPERATION	5 OPERAND 16	15
	S, Q, R, T, F, A, C, T, S	
	S,I,N,E,, (,1,), , , , , , , , , , , , , , , , , ,	
CALL	(<u>1</u> 5), (11), (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

5.6.4. SAVE Macro Instruction (Type R)

The SAVE macro instruction is written at the entry point of the called program. Its purpose is to save registers used by the called program. The save area is supplied by the calling program and its address is contained in register 13. If no registers are to be saved by the calling program, the SAVE macro instruction can still appear at the entry point to denote the beginning of a callable routine.

The format of the SAVE macro instruction is:

LABEL	₺ OPERATION ₺	OPERAND
[name]	SAVE	[(r1,r2)][,T]

POSITIONAL PARAMETER 1

(r1,r2) - specifies the registers whose contents are to be saved (in the form required by the Store Multiple, STM, instruction).

if blank - no registers are saved.

POSITIONAL PARAMETER 2

- T specifies that the contents of registers 14 and 15, if not saved by positional parameter 1, are to be saved in words 4 and 5 of the save area. If T and r2 are specified, and r1 is 14, 15, 0, 1, or 2, the contents of all registers from 14 through the register specified by r2 are saved.
- if blank the contents of the registers specified by positional parameter 1 are stored in the save area.

PAGE:

Examples:

LABEL 1	t OPERATION	ъ 16	OPERAND	b
	S A V E	(121,161)		
	SAVE	, T, , ,		
		┝┉╋╼┸╶┵╶┼╌		

5.6.5. RETURN Macro Instruction (Type R)

The RETURN macro instruction is used to reload the registers, whose contents were saved by a SAVE macro instruction, and return program control to the calling program. Register 13 must contain the address of the save area before this macro instruction is executed.

The format of the RETURN macro instruction is:

LABEL	to OPERATION to	OPERAND
[name]	RETURN	[(r1, r2)][,T]

POSITIONAL PARAMETER 1

 (r1, r2) - specifies the registers to be reloaded (in the form required by the Load Multiple, LM, instruction).

if blank - no registers are reloaded.

POSITIONAL PARAMETER 2

Т	- specifies that registers 14 and 15, if not reloaded by the positional
	parameter 1, are to be reloaded from words 4 and 5 of the save
	area. If T and r2 are specified, and r1 is 14, 15, 0, 1, or 2, then
	all registers from 14 through the register specified by r2 are re-
	loaded. In addition, binary ones are stored in the high order byte
	of word 4 of the save area to indicate that the return has occurred.
if blank	- the registers specified by positional parameter 1 are loaded from
	the save area.

Examples:

LABEL 1	to OPERATION 1	OPERAND 16	ъ
	RETUR		
	R E,T,U,R		
	┶╋╋╌╍╍┙╋		

PAGE:

23

5.6.6. Register Save Area Usage

Standard register save areas are used with the CALL, SAVE, and RETURN macro instructions. In addition to these macro instructions, proper save area usage depends upon the user observing the conventions and procedures described in 5.6.1 and 5.6.2.

A save area is established by one program (the calling program) for use by a second program (the called program). If the called program finds it necessary to use any of registers 2 through 14 thereby destroying their contents, the called program must store the original contents of these registers in the save area provided by the calling program, before using them. The called program itself can be a calling program, and must provide a save area for its called program (the third program in the chain). Any number of programs can be chained together in this manner. It is not necessary to have a save area in the last program of a chain.

0 INDICATOR 0 SAVE AREA LENGTH 4 SAVE AREA BACKWARD LINK ADDRESS (RDs) 8 SAVE AREA FORWARD LINK ADDRESS (RDS) 12 CALLING PROGRAM RETURN ADDRESS (RE\$) 16 CALLED PROGRAM ENTRY POINT ADDRESS (RF\$) 20 PROBLEM REGISTER 0 (R0\$) 24 PROBLEM REGISTER 1 (R1\$) 28 PROBLEM REGISTER 2 (R2\$) 32 PROBLEM REGISTER 3 (R3\$) PROBLEM REGISTER 4 (R4\$) 36 40 PROBLEM REGISTER 5 (R5\$) 44 PROBLEM REGISTER 6 (R6\$) 48 PROBLEM REGISTER 7 (R7\$) 52 PROBLEM REGISTER 8 (R8\$) PROBLEM REGISTER 9 (R9\$) 56 60 PROBLEM REGISTER 10 (RA\$) PROBLEM REGISTER 11 (RB\$) 64 PROBLEM REGISTER 12 (RC\$) 68

The format of a save area is shown in Figure 5-1.

NOTE: Each word in the save area is aligned on a fullword boundary.

Figure 5-1. Standard Register Save Area

PAGE

24

A more detailed description of the contents of the fields within a save area is provided in the following paragraphs.

- Byte 0 can be used as an indicator for the problem program; however, this area is free for any use by the problem program.
- Bytes 1 3 can be used to indicate the length of the save area; however, this area is free for use by the problem program.
- Bytes 4 7 if zero, indicates the first save area of a chain. Otherwise, this is the address of the save area used by the calling program which is located in the higher level program that called the calling program. For example, bytes 4-7 of SAVE B (a save area in program B for the use of program C) contains the address of SAVE A (a save area in program A for the use of program B). It is the responsibility of the calling program to store the backward link address in this field from register 13 before loading the current save area address in register 13.
- Bytes 8 11 if zero, indicates the last save area in a chain. Otherwise, this is the address of the save area in the most recently called program. It is the responsibility of this called program to store the save area address in this field before calling a lower level program.
- Bytes 12 15 the address in the calling program (as loaded in register 14) to which control is to be returned. This address must be stored in this field by the called program if that program intends to alter the contents of register 14.
- Bytes 16 19 the entry point address of the called program (as stored in register 15) to which control is to be transferred. This address must be moved to this field by the calling program.
- Bytes 20 71 a storage area provided to contain the contents of registers 0 through 12. The called program determines the number of registers, if any, to be saved.

UNIVAC 9400 SUPERVISOR

PROGRAMA			PROGRAM B			PROGRAM C	
LABEL 1	t OPERATION to 10	OPERAND	LABEL 1	t OPERATION 1 10	5 OPERAND 16	LABEL 1	to OPERATION to OPERAND 10 16
	·	<u></u>					
	+						
La	LA	RDS, SAVEA					
		P ₁ R ₁ O ₁ G ₂ B	<u></u>				
LI I I I I I I I I I I I I I I I I I I			P ₁ R ₁ O ₁ G ₁ B ₁	SIAIVE	(<u>1</u> ,4,,1,2)		
	<u>↓</u>				+++++++++++++++++++++++++++++++++++++++		
		<u></u>			<u></u>		
	1				R G \$ S A . V . E . B		
	1			SIT	R ₁ D ₁ \$ ₊ , 4 (_0,,R ₁ C \$ ₁),		
	$\frac{1}{1}$			SIT	R ₁ C ₁ \$ ₁ , 8{(,0 ₁ , R ₁ D ₁ \$ ₁),		
					R, D, \$, , R C; \$, , , , , , , , , , , , , , , , , , ,		
	┦ <mark>┦</mark> ┟└└└└╽				P, R, O, G, C		
<u> </u>	1					P,R,O,G,C	S A,V,E, (,1,4,,9), , , , , ,
	1						
							$R E_{1}T_{1}U_{1}RN_{1}(1,4,1,9,1), \dots, 1$
				1			
	\downarrow						
				RETUR	<u>, (,1,4, 1,2), , i , , , , </u>		
S _I A, V, E _I A	D C	X,L,7,2,'10,0,'	SIAIVEB	DIC	X,L,6,0,'0,0,',		
	1 I - T	1			1		

An example of how three programs can be linked together using CALL, SAVE, and RETURN macro instructions.

PAGE:

25

SECTION:

сл

PAGE:

26

5.7. LINKAGE TO USER ISLAND CODE SUBROUTINES

The programmer can provide routines that are activated when the problem program is interrupted for:

Operator Communications

An unsolicited message entered at the system console for the problem program.

Timer

The expiration of an interval of time previously specified by a SETIME macro instruction (without positional parameter 2, WAIT).

Program Check

The problem program has caused a hardware program check interrupt or a program error has resulted in a software program check.

Programmed linkage between the Supervisor and each user island code subroutine is the responsibility of the programmer and a function of the STXIT and EXIT macro instructions. When an interrupt occurs which results in the activation of a user island code subroutine, problem registers 0 through 15 are stored in a save area specified by a STXIT macro instruction; the address of the save area is loaded into register 13. It is a function of the EXIT macro instruction to reload the registers from the save area at the termination of the island code subroutine.

5.7.1. STXIT Macro Instruction

The STXIT (set exit) macro instruction is used to establish, change, or terminate linkage between the Supervisor and each user island code subroutine. This macro instruction is used in conjunction with the EXIT macro instruction. The user may have a program check island code subroutine, an operator communications island code subroutine (required for unsolicited typeins from the operator to the problem program), and a timer island code subroutine, each of which must be linked to the Supervisor with a STXIT macro instruction. In the event of a timer interrupt for which no linkage is provided, the interrupt is lost and the problem program is not notified. If a program check interrupt occurs and no program check island code subroutine is provided, the problem program is automatically aborted.

 STXIT macro instruction (Type S) for operator communications island code subroutines.

The format of the STXIT macro instruction when used to establish or terminate linkage with the user operator communications island code subroutine is:

LABEL	t OPERATION t	OPERAND		
[name]	STXIT	$OC\left[, \left\{\begin{array}{c} entry-point, save-area, input-area, length \\ (1) \end{array}\right\}\right]$		

POSITIONAL PARAMETER 1

oc

- indicates linkage is to be established, changed, or terminated with respect to the user operator communications island code subroutine.

5

PAGE:

27

POSITIONAL PARAMETER 2

entry-point	- the symbolic address of the entry point in the user operator com-
	munications island code subroutine.

 (1) - indicates that register 1 has been preloaded with the address of a four-word parameter list containing positional parameters 2, 3, 4, and 5. The sequence of the parameters within the parameter list follows:

First word: Positional Parameter 2 (entry-point)

Second word: Positional Parameter 3 (save-area)

Third word: Positional Parameter 4 (input-area)

Fourth word: Positional Parameter 5 (length)

When the register option is not elected for positional parameter 2, positional parameters 2, 3, 4, and 5 are written in sequence on the STXIT coding line.

if blank - previous linkage with the user operator communications island code subroutine is terminated.

POSITIONAL PARAMETER 3

save-area - the symbolic address of a standard 72-byte save area for register storage.

POSITIONAL PARAMETER 4

input-area - the address of an area reserved for unsolicited messages from the operator.

POSITIONAL PARAMETER 5

- length the length of the input area. The size of this area can be from 1 to 64 bytes. Messages that exceed this length will be truncated.
- The STXIT macro instruction (Type R) for program check and timer island code subroutines.

The format of the STXIT macro instruction when used to establish or terminate linkage with the user program check and interval timer island code subroutines is:

LABEL	τ OPERATION τ	OPERAND
[name]	STXIT	$\begin{bmatrix} \left\{ IT \\ PC \right\} \end{bmatrix} \begin{bmatrix} \left\{ entry-point, save-area \\ (1) & (0) \end{bmatrix} \end{bmatrix}$

5

PAGE:

28

POSITIONAL PARAMETER 1

IT	 indicates linkage is to be established, changed, or terminated with respect to the user timer island code subroutine.
PC	 indicates linkage is to be established, changed, or terminated with respect to the user program check island code subroutine.
if blank	- IT is assumed.
POSITIONAL PA	RAMETER 2
entry-point	 the symbolic address of the entry point of the user timer or program check island code subroutine.
(1)	 indicates that register 2 has been preloaded with the entry-point address.
if blank	 linkage to the user timer or program check island code subroutine is terminated.
POSITIONAL PA	RAMETER 3
save-area	 the symbolic address of a standard 72-byte save-area for register storage.
(0)	 indicates that register 0 has been preloaded with the save-area address.

Examples:

LABEL 1	も OPERATIONも 10	OPERAND 16	\$
		O ₁ C ₁ , (1)), , , , , , , , , , , , , , , , , , ,	
	SITIXIIIT	0,C,,O,P C,O,M,M,,S,V,A,R,E A,,O,P	I N, , 4 0,
		I 1 T 1, P T I I M E R 1, S V A R E A	
	<u></u> S T X T	P ₁ C ₁ , (<u>1</u>), (<u>0</u>)	
	┠┠┵┵┵╇		

5.7.2. EXIT Macro Instruction (Type R)

The EXIT macro instruction is used to terminate a user island code subroutine, restore the registers, and return program control to the point of interrupt in the problem program. The EXIT macro instruction is used in conjunction with the STXIT macro instruction.

The format of the EXIT macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	EXIT	$\left[\left\{ \begin{matrix} \mathbf{PC} \\ \mathbf{IT} \\ \mathbf{OC} \end{matrix} \right\} \right]$

PAGE:

POSITIONAL PARAMETER 1

PC	— exit from a user program check island code subroutine.
IT	- exit from a user timer island code subroutine.
ос	- exit from a user operator communications island code subroutine.
if blank ·	- IT is assumed.

Examples:

LABEL 1	to OPERATION 1	OPERAND 16	b
	E X11 IT		
	EXIIT	PIC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ΕΧΙΙΤ		
	EXIIT	01C111111111111111	

5.8. SYSTEM INFORMATION CONTROL

The system information block exists within the storage area assigned to the Supervisor along with a number of job control blocks. Each problem program is assigned a 512-byte storage area at the beginning of the program which is known as the job preamble. The programmer can retrieve or read information from the system information block, the program's job control block, and the job preamble. In addition, the programmer can establish, change, or cancel information only within the 12-byte communication region of the job preamble. The programmer cannot alter any other of the contents of these privileged storage areas. The communication region is most commonly used to pass information from one job step to the next; 12 bytes of data can be stored by one job step and retrieved by subsequent job steps associated with the same job.

The following macro instructions are provided to assist the programmer in accessing these restricted storage areas:

- GETADR get absolute base address of:
 - (1) the system information block
 - (2) the job control block
 - (3) the job preamble
- GETCOM retrieve the contents of the 12-byte communication region from within the job preamble.
- PUTCOM write a 12-byte character string into the communication region within the job preamble.

PAGE:

5.8.1. GETADR Macro Instruction (Type R)

The GETADR macro instruction is used to acquire the absolute base addresses of the system information block, the job control block, and the job preamble. All programs are permitted to read and retrieve information from these storage areas. Whenever this macro instruction is executed, only the requested base address is given to the problem program; no data is moved as a result of issuing this macro instruction. If the information desired must be moved to the program area, the programmer must provide the commands using the returned address as the base address. The requested address is returned in register 1.

The format of the GETADR macro instruction is:

LABEL	₲ OPERATION ₺	OPERAND
[name]	GETADR	$\begin{bmatrix} {\rm SIB} \\ {\rm JCB} \\ {\rm PRE} \end{bmatrix}$

POSITIONAL PARAMETER 1

SIB - get the base address of the system information block.

JCB - get the base address of the job control block.

PRE - get the base address of the job preamble.

if blank - SIB is assumed.

Examples:

LABEL 1	も OPERATION も 10 16	OPERAND	b
	GET ADR		
	G _I E _T A _D R _{PR}	E	
		3	<u> </u>
	G E T A D R J C	B	

The following example illustrates the use of the GETADR macro instruction in conjunction with standard system labels.

	OPERATION 5	16	ъ												
	GETADR														
	MIV, C	D, A, T, E, (8 ,),,,\$ ₁ B ₁ \$_D ₁ T ₁ E ₁ (1_)												
	•														
	· · · · · · · · · · · · · · · · · · ·														
D,A,T,E, , ,	DIC	C,L,8,', 1'													

PAGE:

The execution of line 1 causes the base address of the system information block to be returned in problem register 1. The execution of line 2 causes the transfer of eight characters from a field in the system information block identified by the standard system label SB\$DTE (date field) to the user field identified by the label DATE.

5.8.2. GETCOM Macro Instruction (Type R)

The GETCOM macro instruction is used to retrieve the contents of the 12-byte communication region from within the job preamble. When this macro instruction is issued, 12 bytes of information are moved to a storage area specified by the programmer.

The format of the GETCOM macro instruction is:

LABEL	ъ OPERATION ъ	OPERAND
[name]	GETCOM	$ \begin{cases} \text{to-addr} \\ (1) \end{cases} $

POSITIONAL PARAMETER 1

- to-addr the address of a 12-byte main storage area to which the contents of the communication region will be moved.
- (1) indicates that register 1 has been preloaded with the address of a 12-byte main storage area.

Example:

1	L	A E	BE	L			đ	0 10		R	A T	101	4 15	16							0	PE	RA	N [)													ħ					
									L,			1.						i.		1	1	1		1	ł	ı	ł	1	I	1		1	1	1	1	L.		1					1
1	ł	I	ı	I	ł	1			ļ	1	ł	ī			1	1		1	l	1	1	1	L I	1	. 1	1	t.	L		1	1	. 1		1	.1	1	1	Į	1	I	L	1	1
	1	1		1		-		G	E	:, т	r,c	: , c	M		с	0	м	A	R	E	A	1		ł		1	1	1	1	1	1	1		1	ı	1	1	1	1	1	1	1	I
,	1	,		1		1				1	1	1	Ι				1	1		1				1	1	1	1	1	1	1	1	1	1		1		1		1	1		1	1
	1	1		1		1				1			T						I	ì	• ····			1	1	1		1	1		1	1	1	1	1	1	1	1	Î				1
	ì			I			Γ	Ι.	 				Τ					•		1				1	1	1	1		1	1	1		1			1	1	1	1			,	1
C ₁ C) ,N	A, 1	F	21	<u>Е</u> ,	Α,		D	ı C				T		c	, L,	1	,2	۱۱		<u>, '</u>								,		- -	- -	1				1			:	1		
			L			1		1	۰ ۱			<u> </u>	t	T		L			ـــــــــــــــــــــــــــــــــــــ				 .										1					1					1.
			- I				 ⊢	+	1	1	1	1	+	+	L]			L	L	L.,		L			<u> </u>					- I	1	i	1	-	1	1							- I

5

PAGE:

5.8.3. PUTCOM Macro Instruction (Type R)

The PUTCOM macro instruction is used to write 12 bytes of information into the 12-byte communication region within the job preamble. When this macro instruction is issued, the information is moved from the area specified by the programmer to the 12-byte communication region in the job preamble.

The format of the PUTCOM macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	PUTCOM	$ \left\{\begin{array}{c} fr-addr\\ (1) \end{array}\right\} $

POSITIONAL PARAMETER 1

fr-addr	- the symbolic address of a 12-byte main storage area containing
	the data characters to be written in the communication region
	of the job preamble.

(1) - indicates that register 1 has been preloaded with the address of the 12-byte storage area.

Example:

LABEL 1	15 OP	ERATIO		16		-			OP	ERA	ND											15					
		A ,		R,	1,\$.	c 0	. <mark>M</mark> .	A, R	₹,E	A,	1	<u></u>		1	<u>. </u>			J	1	1			1		1	
	Pit	J'L'C	,0 M		1),		.		1.1	L	.1	1 1	_1	1	1_1	I		I	1.	1		1		-1	L	
	1.		4				1	L.)			L	1.	1L	1	1	1_1		1	1	1_	1				∽⊢	I	
	<u> .</u> _			 _				<u> </u>	d	l	1	ı	1_1	1	1			1	I	I	1		_1		~ L	1	
			டி	┢								ł	1_1		L		I				1		1			<u> </u>	Ļ
C,O,M,A,R E,A	D	c	\square	C,I	<u>.</u>]	2	U	<u>, s </u>	e _i r	r•1	i _l n	₁ f	. o 1	r n	n _i a	1 1	i ₁ 0	1	<u>'</u>		1		L				L
							1	<u> </u>		L	. I	1	11		1	<u> </u>			I	1	<u>і </u>					1	L
							1	.	<u> </u>	1	1	1	<u> </u>		L_	1 1	L	1	1	1	1.3		1		_ _	1	L
								11		1	1	1	11		1	LL	1.	1	1	1		_1				1	Lı

5.9. CONTROL STREAM READER

In disc systems, Job Control stores all job control streams on the resident direct access storage device. The GETCS macro instruction permits the problem program to read certain control statements and data images from their associated control streams.

In tape systems, control streams are not stored on auxiliary storage, but are processed as they are introduced by the card reader. The GETCS macro instruction permits the problem program to read certain control statements and data images from the control stream in the card reader.

PAGE:

33

5.9.1. GETCS Macro Instruction (Type R)

The GETCS macro instruction is used to retrieve data images and certain control statements from the job's control stream. Problem programs are permitted to access their respective control streams in order to retrieve PARAM, \$ (start-of-data), and * (end-of-data) Job Control statements and data images. Each record retrieved is an exact image of the 80-byte source statement.

The format of the GETCS macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	GETCS	$ \left\{ \begin{array}{c} \text{input-area} \\ (1) \end{array} \right\} \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right\} \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right] \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right\} \right] $

POSITIONAL PARAMETER 1

input-area	- the symbolic address of the first byte of a main storage area large enough to contain the retrieved records. As each 80-byte record is retrieved from the control stream, it is copied into contiguous byte locations beginning with this address.
(1)	 indicates that register 1 has been preloaded with the address of the main storage input area.

POSITIONAL PARAMETER 2

#-record	 number of records requested.
(0)	 indicates that register 0 has been preloaded with the number of records.
if blank	- 1 is assumed.

NOTES:

- Following the execution of a GETCS macro instruction, register 0 contains the binary count of records retrieved. If no records are available in the control stream (that is, if the next sequential record in the control stream is not a PARAM, \$, or * Job Control statement, or a data image), register 0 is set to binary zero.
- (2) If two or more records are requested by a single GETCS macro instruction, the first occurrence of an * (end-of-data) Job Control statement causes termination of the control stream reader function. Also, the first occurrence of a record that is not a PARAM or \$ Job Control statement, or a data image causes termination of the function.
- (3) If the control stream reader function is automatically terminated due to the detection and transfer of an * Job Control statement, a subsequent GETCS macro instruction causes the following record to be retrieved from the control stream.

PAGE:

- (4) In tape systems, each execution of a GETCS macro instruction is limited to the retrieval of one control statement or one data image (that is, one card).
- (5) Program control is returned to the issuing program at the point immediately following the GETCS macro instruction. The address of a command control block is returned in register 1. The programmer can issue a WAIT or MARK macro instruction referencing this command control block. Thus, synchronization with the control stream reader is similar to that used with physical IOCS.
- (6) A GETCS macro instruction cannot be issued when there is either an OPR, RDFCB, or LOAD macro instruction outstanding. If this is attempted, a software program check error results. Examples:

LABEL 1	t OPERATION	OPERAND	ъ
	G E, T, C, S	S,T,A,T,E,,7,,,,,,,,,,,,,,	
	GIE,T,C,S		
	<mark><mark>╋╷┥╺┶╍┙┙┥</mark></mark>		

5.10. PROGRAM CHECKPOINT

When a problem program is expected to run for an extended period of time, the programmer should make provisions for periodic checkpoints. The CHKPT macro instruction is provided for this purpose and is used in conjunction with the restart function of Job Control. The restart function is called and activated when Job Control detects a RSTRT control statement in the job control stream.

5.10.1. CHKPT Macro Instruction (Type S)

The CHKPT macro instruction is used by the programmer to cause checkpoint records to be written, thus preserving the program's operating environment. This macro can be executed as frequently as the programmer wishes. When this macro instruction is issued, a serial number is assigned for subsequent reference by the RSTRT control statement.

The format of the CHKPT macro instruction is:

LABEL	ъ OPERATION ъ	OPERAND
[name]	СНКРТ	<pre>{file-name,restart,file-list,error</pre>

5

PAGE:

POSITIONAL PARAMETER 1

file-name	 the symbolic address of the DTF (file definition) specified by the Data Management routines to be used when writing the checkpoint records.
(1)	- indicates that register 1 has been preloaded with the address of a parameter list that contains the addresses of positional para- meters 1 through 4.
POSITIONAL PA	RAMETER 2
restart	 the symbolic address to which control is to be given when re- starting the checkpointed program.
POSITIONAL PA	NRAMETER 3
file-list	the symbolic address of a list of file addresses. This parameter is required for repositioning files when restarting the checkpointed program.
POSITIONAL PA	RAMETER 4

error - the symbolic address to which control is passed if an error occurs during the checkpoint operation.

Examples:

LABEL 1	to OPERATION to 10	OPERAND 16	ѣ
	C H K P T	F.I.; L.E.A.I., .B.E.G.I.N., .F.L.I.S.T., .E.R.R.O.R.	
	СІНІКІРІТ	(1),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>

5.11. PROGRAM TERMINATION AND STORAGE DISPLAY

Four macro instructions are provided which cause program termination and storage display.

EOJ

Normal job-step termination is a function of the EOJ (end-of-job step) macro instruction.

CANCEL

The CANCEL macro instruction causes the immediate cessation of all activity scheduled for the job.

PAGE:

DUMP

The DUMP macro instruction causes a display of main storage followed by the termination of the job step, but it does not cause the cancellation of remaining scheduled job steps associated with the job.

SNAP

The SNAP macro instruction is used to display main storage during the execution of a job step.

Job Control is called into main storage when program termination takes place.

5.11.1. EOJ Macro Instruction (Type R)

The EOJ macro instruction is used to cause normal job step termination.

Job Control is then loaded in the problem program area to prepare the next scheduled job step or, if the current job step is the last, terminate the job.

The format of the EOJ macro instruction is:

LABEL	ъ OPERATION ъ	OPERAND
[name]	EOJ	

No parameters are required by the EOJ macro instruction.

Example:

LABEL 1	t OPERATION to	16	OPERAND	t
	E O J			

5.11.2. CANCEL Macro Instruction (Type R)

The CANCEL macro instruction is used to cause the immediate cessation of all processing for the current job step and any remaining job steps scheduled for the job. This macro instruction can be executed at any time and cancellation is immediate (the CANCEL macro instruction has the same function as the CANCEL operator command, see 6.5.12).

The format of the CANCEL macro instruction is:

LABEL	в OPERATION в	OPERAND
[name]	CANCEL	

No parameters are required by the CANCEL macro instruction.

UP-7689

5

PAGE:

37

Example:

1 LA	BEL	ħ	OPERATION	ъ	16						C	P	ER	AN	D													b					
			CAINICIE	L				1		1	.i.	1						1	1	1	_1_		1	1	1	1	1				1	1	
						1	I	1	1		1_	1		L	1	1	_1_	1		I	1	1		1	1	1	_1		1	1	1		<u>i</u>

5.11.3. DUMP Macro Instruction (Type R)

The DUMP macro instruction is used to cause a printout of main storage followed by termination of the job step. The termination procedure used is identical to the EOJ function (job step termination).

The format of the DUMP macro instruction is:

LABEL	t OPERATION t	OPERAND
[name]	DUMP	

No parameters are required by the DUMP macro instruction.

Example:

1	LABEL	OPERATION 10	16			OPE	RAN	D							15			
		DUMP			t			lL.	1_1	1.	1	l		L	ı		1_1	
		\mathbf{I}		<u> </u>	1.	1 I		i	<u> </u>	1	i	LI	k		L	 	. 1	

5.11.4. SNAP Macro Instruction (Type S)

The SNAP macro instruction is used to display the contents of the 16 problem registers and selected main storage areas within the problem program.

The format of the SNAP macro instruction is:

LABEL	в OPERATION в	OPERAND
[name]	SNAP	<pre>beginning-addr,ending-addr,,addressing-pairs (1)</pre>

POSITIONAL PARAMETER 1

beginningaddr - the symbolic beginning address of the main storage area to be displayed. This parameter is used with positional parameter 2 to form a beginning and ending addressing pair of a main storage area. Successive parameter pairs (3 and 4, 5 and 6, etc.) specify the beginning and ending addresses of additional main storage areas to be displayed.

PAGE:

38

(1) - indicates that register 1 has been preloaded with the address of a parameter list which contains the beginning and ending addresses of the main storage area(s) to be displayed. When the special register notation form of the SNAP macro instruction is used, the programmer has the responsibility of providing a parameter list containing the beginning and ending addresses of the main storage area(s) to be displayed. The end of the parameter list is indicated by setting the sign bit of the last word in the parameter list to 1.

POSITIONAL PARAMETER 2

ending-address – the symbolic ending address of the main storage area to be displayed. This parameter is used with positional parameter 1 to form a beginning and ending addressing pair of a main storage area. Successive parameter pairs (3 and 4, 5 and 6, etc.), specify the beginning and ending addresses of additional main storage areas to be displayed.

POSITIONAL PARAMETERS 3 THROUGH n

addressing- - symbolic addresses specifying the beginning and ending addresses pairs of additional main storage areas to be displayed.

Examples:

LABEL	ħ	OPERATION 15		16												C		P	E	R			1	D						_														t	5						 _	 -
				1.1	1	L	ļ		s		ľ	Г	1		1		L		_				1		_		L.		-			1		1			1	I	.1	.1		1	_				 L	_		_1	l	
	L	SINIAIP		(_1	_)	L		L		L		1		1		1		1				1		1		1		ł	T		L		L			L	 L		 I		L	1				 1		L		 I	L.,
		•••••		1	_1		L		L		L		L		1		1		1						1		1		L	1		1		1			1	 I		I		L	1			_	 1			1	I	 L
		$\left[\cdot \right] $		1	-1		L		L		1		L		1		1		1		1		ł		1		1		L	1		I		L			L	1	1			1	1		[_	L			1	1	L
				A _i (-1	F	1	R	10	2	ĺ	м	կ	1	1)	I		1		l				.1		1		١.	1		L		1.			1		1	1		1	1		ł.	1	1		1		 1	L
			Τ	A , (1		1		1		1		1		. 1				T		1	1		1		1.		ι	1		1	ı		1	1		1	ĺ.	 1		1		1	_
		DIC	4	A . ((F	1	R	ر	כ	Ŀ	M	1	2	1)	1		1		1		1		1		L			1		Ì		1	1		_	1	i	I		ι	1		ł	1	1		L	-1	1	L
		DC		Х <u>,</u> '	<u> </u>	8	, (0	, '		I		ı		1		1		1		1		1		1		L			1		1		1			1	1		L		L	1		1	ł	1		l	1	1	
			4	A , L	-1	3	. ((T _i	F	1	0) ₁ :	2	1)	1		1				1		1		L		L	1		L		1.			_	1	1	L	_	L	1		1		 1			1	1	
				1	_1		1		1		1		L		L		1		1		ł		1		1		1		I	1		1		1	. 1		1	ł	1	1		1	1		L	_	1		I	I	I	
				- 1-			1		1_		1		1		1		1		1						1		L		1	1		1		1			ı	L		L.			Т		L	4	I		1	1	T	
		S _I N, A, P,		F	۲,	0	, 1	M	, 1		1	,	1	Т		C)	1	1	,	1	F	:	R	2	0	Ľ	M	2	1	,	1	Т	_ (כ	2	1	I	I	 L		1	1			.1	1-		1	1	1	Ĺ
											1						1				1									1		1					-	1	1	1			1			1	1		•	1	1	
6. OPERATOR COMMUNICATIONS

6.1. GENERAL

Facilities are provided in the UNIVAC 9400 System to permit two-way communications between the operator and both the operating system and problem programs. These communications facilities include the following:

- Operator messages to the operating system
- Operating system messages to the operator
- Operator commands to the operating system
- Operator messages to problem programs
- Problem program messages to the operator

All messages between the operator and the operating system or problem programs are printed at the system console and are automatically time stamped by the operator communications function of the Supervisor (that is, prefixed by the time). All messages are printed at the system console by means of the OPR macro instruction. Operator replies to problem program messages are handled automatically by the Supervisor, but unsolicited messages by the operator must be handled by the operator communications island code subroutine (see 5.7).

6.2. MESSAGE FORMATS

All messages have the following general format:

prefix message-text®

The prefix always contains the time expressed in the form hh:mm.

where:

hh specifies the hour (00 to 99) mm specifies the minute (00 to 59)

The prefix can also contain additional information and symbols depending on the type of message. The second part of the message (that is, the message text) contains either a clear text message for the operator, or specific words and/or symbols required by the operating system or problem program. The end-of-message symbol is always required as the last character of a message.

6.3. OPERATOR MESSAGES TO THE OPERATING SYSTEM

All messages from the operator to the operating system are either solicited (replies to messages) or unsolicited (directions to the systems error job).

Messages from the computer operator have the format:

@bhh:mmbjjRbreplys

or

@bhh:mmbjj,bunsolicited-message®

NOTE: The symbol 5 signifies a required space; this symbol is not printed.

- Character positions 1 through 8
 - prefix the prefix (@bhh:mmb) is printed as a response when the ATTENTION key at the system console is depressed. This response is printed to indicate the readiness of the Supervisor to accept a message from the operator. If the Supervisor is not ready to accept a message, the time response is delayed and the console is temporarily locked. As soon as the Supervisor is ready, the time is printed and the carriage is not returned to the left margin of the page. The operator can then type in his message.
- Character positions 9 and 10
 - jj the number of the job for which the message is intended.
 - Character positions 11 and 12
 - Rb when replying to a previous message, the operator types Rb in these character positions.
 - ,b following the job number typein for an unsolicited message, the operator depresses the end-of-message key. If the error job can accept the unsolicited message, the Supervisor responds with a ,b. Then the operator types the message-text.
 - Character positions 13 through 75
 - message-text the operator types in the reply or unsolicited message according to the prescribed format. The format depends on the particular element of the operating system that is to receive the message.
 - the end-of-message symbol must be the last character of the message.

6.4. OPERATING SYSTEM MESSAGES TO THE OPERATOR

All messages between the operating system and the computer operator are printed at the operator's console and are automatically time stamped by the operator communications function of the Supervisor.

Elements of the operating system issue the following types of full text messages to the computer operator:

Action

This type of message is issued when operator intervention and assistance are required before processing of the requesting element can continue. Mounting disc packs, and turning on power to devices are examples of operator actions requested by this type of message.

Information

This type of message is issued when information is passed to the operator for his information and for inclusion in the system's chronological log. Notification of normal job termination is an example of this type of message.

Decision

This type of message is issued when the operating system reaches a point in its processing where a choice between the alternate courses of action must be made by the operator before processing can continue. Asking the operator to decide whether to retry an error recovery procedure or to abort the problem program are examples of this type of message.

All messages from the Supervisor to the operator have the format:

*thh:mmbjjbmessage-text

or

bthh:mmbjjbmessage-text

NOTE: The 5 symbol signifies the presence of a required space; this symbol is not printed.

Character position 1

 indicates that the operator must reply to the message before processing of the affected job step(s) can continue.

if blank - no reply is necessary. Processing continues immediately following the message typeout.

• Character position 2

t

type of message character:

A - action

- I information
- D decision

SECTION:

б

PAGE:

4

Character positions 3 through 7

prefix

where:

- hh:mm

hh is the hour of day (00 to 99)

mm is the minute (00 to 59)

Character position 8

always blank

Character positions 9 and 10

jj – job-number

■ Character position 11

always blank

- Character positions 12 through 15
 - eenn

- ee are two alphabetic characters identifying a particular element of the operating system.

- nn are two alphanumeric characters identifying a particular message from that element.
- Character position 16

always blank

Character positions 17 through 75

message-text - clear text

6.5. OPERATOR COMMANDS TO THE OPERATING SYSTEM

Commands from the operator to the operating system are messages directing the Supervisor in its operations.

These commands have the following format:

@bhh:mmbcommand@

Character positions 1 and 2

always blank

- Character positions 3 through 7
 - prefix the prefix (hh:mm) is printed by the Supervisor as a response, whenever the ATTENTION key at the operator's console is depressed.

PAGE:

5

Character position 8

always blank

- Character positions 9 through 80
 - command a string of from three to eight characters and beginning with an alphabetic character is considered a command. This character string is compared against a list of valid commands before the command is accepted.

If parameters are required by the command, at least one blank character must separate the command from its parameters, and parameters are separated by commas.

- NOTE: All operator commands are from 2 to 8 characters in length, but can be defined by typing in only the first two characters; for example, SE for SET, DE for DELETE, etc. Likewise, parameters which identify subfunctions can also be specified by the first two characters; for example, SE CL for SET CLOCK.
- I the end-of-message symbol must be the last character of this message.
- 6.5.1. SET Command

The SET command is used for any of the following: set the date (month, day, and year) in the system information block, set the time of day in the simulated day clock, set the system program switch indicator in the system information block, store a character string in the system communication region of the system information block, or set specific information and status bits in the physical unit blocks. The particular function performed by the SET command is determined by positional parameter 1 which follows the word SET. Due to the complex structure of the SET command, each of the functions previously mentioned is illustrated separately.

DATE

The SET command when used to set the date field in the system information block has the format:

SET DATE, xx/xx/xx [,yyddd] [,yyddd]

POSITIONAL PARAMETER 1

<u>DATE</u> - indicates that the following positional parameter(s) will be stored in the appropriate date fields within the system information block.

POSITIONAL PARAMETER 2

xx/xx/xx - usually specifies the month (01-12), the day (01-31), and the year (00-99) in any order. (However, any eight characters can be specified as positional parameter 2.)

PAGE:

POSITIONAL PARAMETER 3

- yyddd this date is stored in the form byyddd (in EBCDIC) and is used by data management when checking tape file labels.
- if blank the appropriate field in the system information block remains unchanged.

POSITIONAL PARAMETER 4

- yydd is stored in the form bydd (discontinuous binary) and is used by data management to check disc file labels.
- if blank when positional parameter 3 is not specified, the appropriate field in the system information block remains unchanged. If, however, positional parameter 3 is specified, the date specified by that parameter is converted to the form bydd and stored in the appropriate field of the system information block.
- CLOCK

The SET command, when used to set the time of day in the simulated day clock, has the format:

SET CLOCK, hh:mm

POSITIONAL PARAMETER 1

<u>CL</u>OCK - indicates that the simulated day clock will be set to the time specified by positional parameter 2.

POSITIONAL PARAMETER 2

hh:mm - hh specifies the hour (00 to 99) and mm specifies the minute (00 to 59).

COMREG (Communication Region)

The SET command, when used to store information in the system communication region, has the format:

SET COMREG, character-string

POSITIONAL PARAMETER 1

<u>COMREG</u> - indicates that the character-string specified by positional parameter 2 will be stored in the system communication region in the system information block.

POSITIONAL PARAMETER 2

character-string - 1 to 24 hexadecimal characters (specified by X'xx...') or 1 to 12 EBCDIC characters (specified by C'cc...') to be stored in the 12-byte system communication region.

PAGE:

7

■ SPSI (System Program Switch Indicator)

The SET command, when used to set the system program switch indicator, has the format:

SET SPSI, switch-setting

POSITIONAL PARAMETER 1

<u>SPSI</u> – indicates that the system program switch indicator will be set to the bit pattern specified by positional parameter 2.

POSITIONAL PARAMETER 2

switch-setting - one to eight characters, either 0, 1, or X. Each typed-in 1 or 0 character is used to change an individual bit position of the system program switch indicator within the system information block. (The SPSI is the last byte in the 12-byte system communication region.) Character positions containing 0 cause the respective bit positions to be set to 0; character positions containing 1 cause the respective bit positions to be set to 1; character positions containing X are unchanged. Any unspecified rightmost character positions are assumed to be X.

Examples:

CONDITION		SPSI BIT POSITIONS							
		1	2	3	4	5	6	7	
ASSUMED SETTING	0	1	1	1	0	0	0	1	
FIRST TYPEIN - SET SPSI, 1									
FIRST RESULT	1	1	1	1	0	0	0	1	
SECOND TYPEIN - SET SPSI, X0001									
SECOND RESULT	1	0	0	0	1	0	0	1	
THIRD TYPEIN - SET SPSI, XXXXXX0									
THIRD RESULT	1	0	0	0	1	0	0	0	
FOURTH TYPEIN - SET SPSI, 0000000									
FOURTH RESULT	0	0	0	0	0	0	0	0	

PAGE:

IO

.

The SET command, when used to set bits within the physical unit blocks, has the format:

<u>SE</u> T <u>10</u> ,pub-identifier,	DOWN UP SHARE NOSHARE ALT, pub-identifier CHANNEL, chnl/cochnl TYPE, type-code DEVICE, device-address VOLUME, volume-serial-number RES RDR IPT LOG PCH LST	
--	--	--

POSITIONAL PARAMETER 1

<u>IO</u> - indicates that a change is to be made within the physical unit block specified by positional parameter 2.

POSITIONAL PARAMETER 2

pub-identifier	 three characters identifying the physical unit block to
	be changed (these characters are available following
	system generation).

POSITIONAL PARAMETER 3

DOWN	- sets the device status to down.
<u>UP</u>	- sets the device status to up.
<u>SH</u> ARE	 permits the device to be allocated to more than one program simultaneously.
<u>NO</u> SHARE	 forbids allocation of the device to more than one program simultaneously.
<u>AL</u> T	 stores the address of the physical unit block identified by positional parameter 4 in the alternate device field of the physical unit block.
<u>CH</u> ANNEL	 stores positional parameter 4 in the channel/cochannel field of the physical unit block.
<u>TY</u> PE	 stores positional parameter 4 in the device field of the physical unit block.
DEVICE	 stores positional parameter 4 in the device-address field of the physical unit block.
<u>VO</u> LUME	 stores positional parameter 4 in the volume-serial-number field of the physical unit block.

SECTION:

6

PAGE:

9

<u>RE</u> S	 used to identify the peripheral device specified by posi- tional parameter 2 as the system resident device. This device can be either a magnetic tape unit or disc drive.
RDR	 used to identify the peripheral device specified by positional parameter 2 as the system reader. This device can be a card reader, magnetic tape unit, or disc drive.
<u>IP</u> T	- used to identify the peripheral device specified by posi- tional parameter 2 as the system primary input device for reading control streams.
<u>LO</u> G	 used to identify the peripheral device specified by positional parameter 2 as the system logging device. This device is usually the system console.
РСН	 used to identify the peripheral device specified by posi- tional parameter 2 as the system card punch.
<u>LS</u> T	 used to identify the peripheral device specified by positional parameter 2 as the system listing device. This device can be a line printer, magnetic tape unit, or disc drive.
POSITIONAL PARAMET	ER 4
pub-identifier	 three characters identifying the alternate physical unit block.
chnl/cochn1	 two characters specifying the legal channel routes to the device. The first character specifies the primary channel and the second specifies the secondary channel. If the two characters are equal, no cochanneling is possible.
type-code	- two characters specifying the device and its options.

device-address - two characters specifying the device address.

volume-serial-number – from one to six characters representing the volume serial number to be stored in the physical unit block. This number is considered to be right-justified and, if less than six characters, is zerofilled to the left.

10

Examples of the SET command follow:

6.5.2. LOG Command

The LOG command is used to cause all Job Control statements to be included in the system log as they are processed and executed by Job Control.

The LOG command has the format:

LOG

No parameters are required by the LOG command.

An example of the LOG command is:

@ Ø8:17 LOG•

6.5.3. NOLOG Command

The NOLOG command is used to suppress the logging of all Job Control statements.

The NOLOG command has the format:

NOLOG

No parameters are required by the NOLOG command.

An example of the NOLOG command is:

@ 09:41 NOLOG .

PAGE:

6.5.4. FILE Command (Disc Systems Only)

The FILE command is used to call the file function of Job Control for the purpose of filing job streams in the job file on the system resident direct access device.

The FILE command has the format:

FILE [nn]

POSITIONAL PARAMETER 1

- nn the number of job streams to be read from the card input device and filed in the job file on the resident direct access storage device (nn equals the number of JOB statements appearing in the control stream to be filed). Each time a job stream is filed, nn is decremented by one. When nn equals zero, the file function terminates.
- if blank the file function terminates upon encountering the first blank card following an & (end-of-job) Job Control statement.

An example of the FILE command is:

e 13:42 FILE●e 14:30 FI 6●

6.5.5. DELETE Command (Disc Systems Only)

The DELETE command is used to call the delete function of Job Control for the purpose of deleting job streams from the job file on the system resident direct access device.

The DELETE command has the format:

$$\underline{DE}LETE \left\{ \begin{array}{c} \mathsf{jobname} \\ \underline{AL} \\ \end{array} \right\}$$

POSITIONAL PARAMETER 1

- jobname the one- to eight-character job identification appearing in the JOB statement of the filed job stream to be deleted from the job file.
- <u>ALL</u> used to delete all entries in the index of the job file. When ALL is used, the entire storage area assigned to the job file is reclaimed for subsequent filing operations.

Examples of the DELETE command are:

@ 15:29 DELETE TESTRUNØ\$
@ 16:16 DE ALL\$

PAGE:

6.5.6. RUN Command

The RUN command is used to call the control portion of Job Control for the purpose of preparing and loading a job for execution. In disc systems, only job streams filed in the job file can be selected. In tape systems, the job stream is introduced through the card reader.

The RUN command has the format:

RUN jobname[,priority][,GO]

POSITIONAL PARAMETER 1

jobname - the one- to eight-character job identification appearing in the JOB statement of the job stream to be executed.

POSITIONAL PARAMETER 2

- priority the number 1, 2, or 3 indicating the user priority level at which the job will be run. This priority code overrides the one specified by the JOB statement.
- if blank the priority level specified by the JOB statement is used.

POSITIONAL PARAMETER 3

- <u>GO</u> the job is assigned to the switch list and marked ready immediately following the job preparation and loading sequence.
- if blank the job is assigned to the switch list and marked nonready. A GO command is necessary to change the status to ready when the GO parameter is not included in the RUN command.

An example of the RUN command is:

֎ 09:01 RUN TEST01,,GOΦ

6.5.7. GO Command

Jobs loaded by the RUN command without the GO parameter are not allowed to compete for central processor time due to their nonready status. The GO command changes the job's status from nonready to ready.

The GO command has the format:

<u>GO</u> jobnumber

POSITIONAL PARAMETER 1

jobnumber - the job number (10 through 99) assigned by Job Control and printed at the console following the RUN command. This number identifies the job to be made ready for execution.

PAGE:

An example of the GO command is:

6.5.8. READY Command

The READY command is used to inform Job Control that requested operator actions have been completed.

The READY command has the format:

READY jobnumber

POSITIONAL PARAMETER 1

jobnumber - the jobnumber (10 through 99) assigned to the job by Job Control and printed at the system console following the RUN command. This number indicates which job the operator's actions pertain to and can be correlated with the requests appearing in the system log.

An example of the READY command is:

6.5.9. LIST Command

The LIST command causes the contents of the system information block, the job control blocks, the physical unit blocks, and the index of the job file to be included in the system log.

The LIST command has the format:

$$\underline{LIST} \left\{ \begin{array}{c} \underline{SIB} \\ \underline{JP} \\ \underline{IO} \\ \underline{JO} \\ \underline{JO} \\ \underline{JO} \\ BS \end{array} \right\}$$

POSITIONAL PARAMETER 1

- <u>SIB</u> print the system information block.
- <u>JP</u> print the job control blocks and job preambles.
- <u>IO</u> print the physical unit blocks.
- JOBS print the index of the job file.

PAGE:

Examples of the LIST command are:

@ 17:57 LIST SIB•
@ 18:44 LI JOBS•

6.5.10. PAUSE Command

The PAUSE command is used to cause a delay between two job steps of a specific job, and can be used for operator intervention. This command can be given at any time with the delay occurring at the conclusion of the currently running job step.

The PAUSE command has the format:

PAUSE jobnumber, user-comment

POSITIONAL PARAMETER 1

jobnumber - the job number assigned to the job by Job Control and printed at the console following the RUN command.

POSITIONAL PARAMETER 2

user-comment – any character string to be printed at the system console.

NOTE: When the pause occurs, the word "PAUSING" and the jobnumber are printed at the console.

An example of the PAUSE command followed by the message printed when the delay occurs is:

● 11:00 PAUSE 19,END PASS1 ●
 Ⅰ11:01 01 JC07 19 PAUSING

6.5.11. STOP Command

The STOP command is used to suspend a job between job steps. To be effective, it must follow a PAUSE command for the same job.

The STOP command has the format:

STOP jobnumber, jobname

POSITIONAL PARAMETER 1

jobnumber - the jobnumber assigned to the job by Job Control and printed at the system console following the RUN command.

SECTION:

6

PAGE

POSITIONAL PARAMETER 2

jobname - the one-to eight-character job identification appearing in the JOB statement. The job's number and name are both required to avoid erroneous job suspensions due to type-in errors by the operator. The jobname is retrieved and compared against the name appearing in the STOP command. If the name and number are not as specified by Job Control, the STOP command is rejected. The operator must then resubmit the command with the correct number and name.

An example of the STOP command is:

@ 12:13 STOP 12,MEANVALU@

6.5.12. CANCEL Command

The CANCEL command is used to cause the immediate cessation of all processing for a job running in the system. The CANCEL command can be given at any time and results in immediate termination of the currently running job step and any remaining job steps scheduled for the job.

The CANCEL command has the format:

CANCEL jobnumber, jobname

POSITIONAL PARAMETER 1

jobnumber - the jobnumber assigned to the job by Job Control and printed at the console following the RUN command.

POSITIONAL PARAMETER 2

jobname - the one- to eight-character job identification appearing in the JOB statement. The job's number and name are both required to avoid erroneous job cancellations due to type-in errors by the operator. The jobname is retrieved and compared against the name appearing in the CANCEL command. If the name and number are not as specified by the Job Control program, the CANCEL command is rejected. The operator must then resubmit the command with the correct number and name.

An example of the CANCEL command is:

@ 11:43 CANCEL 33, PAYROLL®

PAGE

6.5.13. DUMP Command

The DUMP command is used to get a printout of main storage and terminate a job step if specified. Remaining job steps for the job are not cancelled and control is given to Job Control following the printout.

The DUMP command has the format:

 $\underline{\text{DUMP}}\left\{\underbrace{\underline{\text{SYSTEM}}}_{\text{jobnumber, jobname}}\right\}$

POSITIONAL PARAMETER 1

jobnumber - the jobnumber assigned to the job by Job Control.

SYSTEM - causes the printout of the entire main storage. No jobs are terminated.

POSITIONAL PARAMETER 2

jobname - the one- to eight-character job identification appearing in the JOB statement. The job's number and name are both required to avoid erroneous job step cancellations due to type-in errors by the operator. The jobname is retrieved and compared against the name appearing in the DUMP command. If the name and number are not as specified by Job Control, the DUMP command is rejected. The operator must then resubmit the command with the correct number and name.

@ 06:39 DUMP 12, JOB010

@ Ø9:32 DUMP SYSTEM €

6.5.14. ALTER Command

The ALTER command is used to introduce object code alterations by means of the system console at program run time.

The format of the ALTER command is:

PAGE:

17

POSITIONAL PARAMETER 1

- job# a two-character job number assigned to the job by Job Control and printed at the system console following the RUN command. (This parameter is not required if positional parameter 2 is in the form A* address or ORG.
- if blank A*address or ORG must be specified as positional parameter 2.

POSITIONAL PARAMETER 2

- <u>PM</u> indicates that bits 2 through 5 of the byte specified by positional parameter 3 are to replace the condition code and program mask portion of the job's program status word, bits 34 through 37. (These bits are located in the job control block at JB\$PSW+4.) Bits 0, 1, 6, and 7 are ignored.
- <u>RST</u> indicates that the main storage address specified by positional parameter 3 is to replace the program restart address in the job's program status word, bits 47 through 63. (These bits are located in the job control block at JB\$PSW+5 through JB\$PSW+7.)
- A*address the characters A* are used to indicate an absolute address.
- P*address the characters P* are used to indicate an address that is relative to the first byte of the problem program's job preamble.
- R*address the characters R* may be used to indicate that the address is relative to the code image area of the problem program.
- address the hexadecimal main storage address of the first byte of an area into which the byte or bytes specified by positional parameter 3 (change) are to be stored. This field may be one through five hexadecimal digits.

When this address is *not* prefixed with the characters A* or P*, it is assumed to be relative to the code image area of the problem program (that is, this address agrees with the code-edit listing for programs assembled relative to zero).

ORG - indicates that the address specified by positional parameter 3 is to be added to the addresses appearing in the following ALTER commands. This address is used as the base address in the calculation of effective addresses in the following ALTER commands. This base address remains effective until another ORG operation is encountered or until LAST is specified as positional parameter 4.

SECTION:

6

PAGE:

NOTES: (1) The alter routine calculates effective main storage addresses as follows:

- (a) if address or R^* address: E = I + A + O
- (b) if A * address: E = A+O
- (c) if P*address: E = P+A+O
 - where: E is the effective address,
 - I is the code image base address,
 - P is the preamble address, and
 - A is the address from positional parameter 2, and
 - O is the ORG address previously specified
- (2) Main storage addresses specified in the forms R*address, P*address, and address are verified to be within the main storage area assigned to the job. In the event an address is not within the permitted address range, the ALTER command is rejected.
- (3) Main storage addresses in the form A*address do not require a job number in positional parameter 1.
 - (a) If a job number is supplied, the A*address is verified to be within the main storage area assigned to the job.
 - (b) If a job number is not supplied, the A*address is verified to be within the limits of the central processor as defined in the system information block.

POSITIONAL PARAMETER 3

program-mask - two hexadecimal digits representing a single byte to replace the condition code and program mask portion of the job's program status word, bits 34 through 37. The format of this byte is:

BIT POSITIONS	0	1	2	3	4	5	6	7
CONTENTS	0	0	NE CONDI CO	TION	PRO	EW GRAM DDE	0	0

rst-address - the hexadecimal address relative to the first byte of the code image area of the job at which the job is to resume control. This value plus the code base address is stored in the restart PSW in the problem job's job control block.

The effective address rst-address + I is verified to be within the problem program's code image.

PAGE:

19

;

change	- specifies the byte or bytes to be stored in main storage beginning at the address specified by positional parameter 2 and extending for as many byte positions as indicated by this parameter.
	This parameter can take the following forms:
	 (a) X'cccccccc' - either of these forms can be used to specify or the change characters in hexadecimal. The number of characters in the character string must be even, thus indicating a change to one or more complete bytes. The maximum number of hexadecimal characters allowed is 16; that is, 8 bytes.
	(b) C'cccccccc' - used to specify EBCDIC characters. The number of characters in the string indicates the number of bytes to be changed in main storage.
	Change characters are not stored if both the lowest and the highest effective addresses of the change are not valid. (See notes (2) and and (3) under positional parameter 2.)
org-address	 a base address that is to be added to subsequent main storage addresses in the computation of effective addresses. This may be one through five hexadecimal digits.
POSITIONAL F	PARAMETER 4
<u>la</u> st	 used to indicate the last of a series of alterations beginning initially with an ALTER command or ALTER Job Control statement. The parameter causes the termination of the alter function.
<u>re</u> set	 causes the resetting of the job's alter mode indicator after this command is processed. Reset implies the LAST option.
<u>CA</u> RDS	- causes the ALTER statements to be read from the card reader.
if blank	 the alter routine processes the current change and solicits another by means of a console message.
Examples:	
* 16:45 • 16:46 * 16:46	AL 24,1000,X'01FF341000' 02 ST19 ENTR AL 79,PM,18 02 ST19 ENTR 02R 10E0,C'ABC',LA

PAGE

6.5.15. DISPLAY Command

The DISPLAY command can be used to cause the printing of selected areas of main storage at the system console.

The format of the DISPLAY command is:

<u>DI</u>SPLAY [job#], <u>P*address</u> R*address R*address address

POSITIONAL PARAMETER 1

- jobnumber a two-character job number assigned to the job by Job Control and printed at the system console following the RUN command. (This parameter is not required if positional parameter 2 is in the form A*address.)
- if blank A*address must be specified as positional parameter 2.

POSITIONAL PARAMETER 2

<u>RS</u>T

<u>PM</u> – indicates that the job's program mask and condition code (at the last interrupt) should be displayed. The information is obtained from the job control block located at JB\$PSW+4.

The format of the printout is:

ST10 xx

where:

xx - is the hexadecimal representation of a single byte.

The format of this byte is:

BIT POSITIONS	0	1	2	3	4	5	6	7
CONTENTS	0	0		DITION DDE		GRAM ASK	0	0

- indicates that the program relative address of the job's restart point at the last interrupt is to be displayed. This is obtained in the job control block at JB\$PSW+5 through JB\$PSW+7 and converted to a relative address.

PAGE:

21

A*address - the characters A* are used to indicate an absolute address.

- P*address the characters P* are used to indicate an address the is relative to the first byte of the problem program's job preamble.
- R*address the characters R* may be used to indicate that the address is relative to the code image area of the problem program.
- address the hexadecimal main storage address of the first byte of an area which is to be displayed. This field may be one through five hexadecimal digits.

When this address is *not* prefixed with the characters A* or P*, it is assumed to be relative to the code image area of the problem program (that is, this address agrees with the code-edit listing for programs assembled relative to zero).

POSITIONAL PARAMETER 3

number-bytes - designates the number of main storage locations to be printed at the system console. The forms of this parameter for hexadecimal printout is:

n - where n is a decimal integer 1 through 8.

XLn – where n is a decimal integer 1 through 8.

The form of this parameter for EBCDIC printout is:

CLn - where n is a decimal integer 1 through 58.

- if blank 1 is assumed.
- Example: Assume the contents of main storage beginning at the job relative address X'F00' to be X'F1F2F3F4F5F6F7F8...'

● 13:50 DI 42,F00,CL8●
■ 13:51 02 ST10 12345678●
● 13:51 DI 42,F00,4●
■ 13:51 02 ST10 F1F2F3F4●

6.5.16. MTC Command

The MTC (Magnetic Tape Control) command is used to position tape volumes previously mounted on tape units. The following functions can be directed by the MTC command:

- Forward space volume a specified number of tape marks
- Forward space volume a specified number of blocks
- Backward space volume a specified number of tape marks
- Backward space volume a specified number of blocks

PAGE:

- Rewind volume to load point
- Rewind volume and unload
- Write tape mark

The format of the MTC command is:

POSITIONAL PARAMETER 1

pub-identifier - three characters identifying the physical unit block for the tape unit to be positioned.

POSITIONAL PARAMETER 2

<u>FM</u>	 Forward space volume a specified number of tape marks 		
FB	 Forward space volume a specified number of blocks 		
BM	 Backward space volume a specified number of tape marks 		
BB	- Backward space volume a specified number of blocks		
RL	- Rewind volume to load point		
RU	- Rewind volume and unload		
<u>WM</u>	- Write tape mark		
POSITIONAL PARAMETER 3			

nn - specifies the number of blocks or tape marks that the volume is to be spaced, either backward or forward.

Examples:

@ 05:58 MTC AC0,RL♥

6.5.17. MOUNT Command

The MOUNT (mount disc or tape volume) command is used to inform the Supervisor that a volume has been mounted on a tape or disc peripheral device. The volume mount function verifies that the device specified by the operator is operable and available for assignment. The volume label is then read and the serial numbers are compared to verify that the correct volume has been mounted. If the serial numbers agree, the six-character volume serial number is stored in the physical unit block to identify the mounted volume; if the volume is magnetic tape, it is rewound to its load point. If the volume serial numbers do not agree, a message is typed at the system console, and EBCDIC blanks are stored in the volume serial number field of the physical unit block; if the volume is a magnetic tape, it is rewound with interlock.

The format of the MOUNT command is:

MOUNT pub-identifier[,volume-serial-number][,S]

POSITIONAL PARAMETER 1

pub-identifier –	- three characters identifying the physical unit block for the peripheral device on which the disc or tape volume is mounted.

POSITIONAL PARAMETER 2

volume-serial-nu	mber — one to six characters identifying the disc or tape volume mounted on the peripheral device. If this number is less than six characters, it is right-justified and zerofilled to the left.
:f 1, 1, 1,	und to indicate a diamounted unland. EDCDIC blanks and

if blank - used to indicate a dismounted volume. EBCDIC blanks are stored in the physical unit block.

POSITIONAL PARAMETER 3

S	 indicates that the volume mounted is sharable and that the appropriate indicator within the physical unit block is to be set to 1.
if blank	 the disc or tape volume is assumed to be nonsharable and the appropriate indicator within the physical unit block is to be set to 0.

@ 03:47 MOUNT AC2, SP9763, S@

PAGE

6.6. PROBLEM PROGRAM MESSAGES TO THE OPERATOR

Problem programs can issue messages that are printed at the system console with the option of allowing replies from the operator. All messages printed at the console are automatically prefixed with the time and job number. A message requiring a reply causes the problem program to be temporarily suspended until the reply is typed in by the operator. A message that does not require an operator reply permits the problem program to be time of printing. Program synchronization between the problem program and the operator communications function is similar to that used with physical IOCS. The OPR macro instruction is provided to print messages at the system console.

6.6.1. OPR Macro Instruction (Type R)

The OPR macro instruction is used by the programmer to transmit messages to the Supervisor for printing at the system console. The programmer must provide a storage area large enough to contain the message text. The message text can be from 1 to 64 character positions in length. The message prefix area is automatically provided and filled in by the Supervisor, and consists of an asterisk (if a reply is required from the operator), the time, a type-of-message indicator, and job number. The last character of the message prefix is always blank and separates the prefix from the first character of the message text.

The format of the OPR macro instruction is:

LABEL	5 OPERATION 5	OPERAND	
[name]	OPR	$ \left\{ \begin{array}{c} m \text{ sg-addr} \\ (1) \end{array} \right\} \left[, \left\{ \begin{array}{c} l \text{ ength} \\ (0) \end{array} \right\} \right] \left[, \left\{ \begin{array}{c} A \\ I \\ D \end{array} \right\} \right] \left[, \left\{ \begin{array}{c} REPLY \\ nn \end{array} \right\} \right] $	

POSITIONAL PARAMETER 1

- msg-addr the symbolic address of the first byte of a buffer area containing the message to be printed.
- indicates that register 1 has been preloaded with the address of the buffer area.

POSITIONAL PARAMETER 2

- length the length in bytes of the message to be printed.
- (0) indicates that register 0 has been preloaded with the length of the message.
- if blank 64 bytes is assumed.
- NOTE: This length is used to determine the maximum number of bytes to be printed at the console. If an end-of-message character (X'37') is encountered in message text during the printing operation, the message is terminated.

PAGE:

POSITIONAL PARAMETER 3

- A indicates an action message.
 - indicates an information message.
- D indicates a decision message.

The second character position of the message prefix (the type of message character) is set to the character submitted as positional parameter 3.

if blank - the type of message indicator of the message prefix is blank.

POSITIONAL PARAMETER 4

- REPLY program control is not returned to the problem program until the operator's reply is received and available in the message buffer area specified by positional parameter 1. The message text of the operator's reply is stored beginning with the first byte of the buffer area. The maximum length of an operator reply is limited to 64 bytes or to the length of the message buffer area as specified by positional parameter 2, whichever is smaller. Replies that exceed the length of the message buffer area are truncated. If the reply is shorter than the message buffer area, the remaining positions in the buffer area are space filled.
- nn

Ι

- program control is not returned to the problem program until the operator's reply is received and available in the message buffer area specified by positional parameter 1. The message text of the operator's reply is stored beginning with the first byte of the buffer area. The length of an operator reply is limited to the length specified by nn. If the length of the reply is greater than nn, the message is truncated. If the length of the reply is less than nn, the remaining positions up to nn are space filled.

if blank - program control is returned to the program immediately following the queuing of the request; the address of the associated command control block is returned in register 1. This procedure allows the user to address the command control block with a MARK or WAIT macro instruction. This option allows the problem program to continue processing during the printing of the message. Thus, synchronization with the operator communications function is similar to that used with physical IOCS.

PAGE:

26

Examples:

LABEL	ħ	OPERATION 5		OPERAND 6	t
		1			
					<u> </u>
MISIGE		DIC	6	C <u>IIISIISITIAITIIDIUIMPIIN</u>	N, E, E, D, E, D, , ? , , Y, O, R, , N, ', ,
MSGEL		EIQU	ŀ	*,-,M,S,G;E,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				<u> </u>	
		1		<u> </u>	
M, S, G, B, U F,		DIS	4		
		M V C	N	M_S,G,B,U1F,(,M,S,G1E,L,),,,M1S	G,E, , , , , , , , , , , , , , , , , ,
	Γ	OIP,R	N	A,S,G,B,U F,, ,M,S,G E,L,, ,D,, F	R, E, P, L, Y , , , , , , , , , , , , , , , , , ,

In this first example, the operator's reply is limited to the absolute value of the label MSGEL or 64, whichever is smaller, and the remaining byte positions in the buffer area are space filled.

			 	ı	
	:	O _I P _I R	G, B, U F, , , M, S, G E, L, , D, , 1		

In this second example, the operator's reply is limited to one character and the remaining byte positions in the buffer are unchanged.

The following illustration is an example of how the message could appear at the system console:

*D14:32 60 IS STAT DUMP NEEDED? Y OR N

PAGE:

6.7. OPERATOR MESSAGES TO PROBLEM PROGRAMS

All messages from the operator to problem programs are either solicited (replies to messages from the problem programs) or unsolicited (inquiries or commands, from the operator to the problem programs). Replies are handled automatically by the Supervisor; whereas, unsolicited messages from the operator to the problem program must be handled by the operator communications island code subroutines provided by the programmer. Problem programs, without operator communications island code subroutines, cannot receive unsolicited messages from the system operator. The address of the operator communications island code subroutine must be made available to the Supervisor by executing an STXIT (set exit) macro instruction.

Messages from the computer operator to problem programs have the format:

@bhh:mmbjjRbreply@

or

@bhh:mmbjj,bunsolicited-message®

- NOTE: The 5 symbol signifies the presence of a required space; this symbol is not printed.
- Character positions 1 through 8
 - prefix
- the prefix (@bhh:mmb) is printed by the Supervisor as a response when the ATTENTION key at the system console is depressed. This response is printed to indicate the readiness of the Supervisor to accept a message from the operator. If the Supervisor is not ready to accept a message, the time response is delayed and the console is temporarily locked. As soon as the Supervisor is ready, the time is printed and the carriage is not returned to the left margin of the page. The operator can then type in his message.
- Character positions 9 and 10
 - jj the number of the job for which the message is intended.
- Character positions 11 and 12
 - Rb when replying to a previous message, the operator types Rb in these character positions.
 - ,b following the job number typein for an unsolicited message, the operator depresses the end-of-message key. If the error job can accept the unsolicited message, the Supervisor responds with a ,b. Then, the operator types the message text.
- Character positions 13 through 75
 - message text the operator types the reply or unsolicited message according to the prescribed format in these character positions. The format depends on the particular problem program that is to receive the message.

s

 the end-of-message symbol must be the last character of the message.

SECTION: 6

PAGE:

Example: The following illustration shows a message caused by an OPR macro instruction and the operator's reply to it:

*D14:32 60 IS STAT DUMP NEEDED? Y OR N @ 14:33 60r N\$

Appendix A section:

PAGE:

1

APPENDIX A. STANDARD EQUATE MACRO INSTRUCTION EXPANSION

	-	STDEQL	J SB.JP.IP.JB.HW				
	• •				T0000030		
	•	D0 ([**=**)++(**=**=O)		T0000040		
	-	REGISTE	- R S		T0000050 T0000060		
	* 310168	1((1			10000070		
00000	RUS	E&U 1	ن ا	REGISTER U	TDOODOSO		
000001	R15		1	REGISTER 1	T0000090		
000002	R25		2	REGISTER 2	T0000100		
000003	R3\$		3	REGISTER 3	TD000110		
000004	R45		- ' 1	REGISTER 4	T0000120		
000005	R55	EWU	5	REGISTER 5	TD000130		
000006	R6\$	EQU	6	REGISTER 6	T0000140		
000007	R75	EQU	7	REGISTER 7	T0000150		
000008	R85	EQU	3	REGISTER B	T0000160	÷.,	
000009	895	E&U .	9	REGISTER 9	T0000170		
0000A	RAS		10	REGISTER 10	T0000180		
000008	RBS		11	REGISTER 11	TDU00190		
00000c	RC \$		12	REGISTER 12	10000200		
00000p	RD\$		13	REGISTER 13	10000210		
00000E	RES		14	REGISTER 14	T0000220		
00000F	RF\$	EQU	15	REGISTER 15	T0000230		
	*	0.000	and the first second for		T0000240		
	* SPECIA	L PURPU	SE REGISTERS		T0000250		
000002	RSSSWR	. 0.0	A 2 4	ACOR OF SALACHES	T0000270		
000003	R55JC8		₹25 ₹35	ADDR OF SRITCHER ADDR OF ACTIVE JCD	TD000280		
000004	RSSPRE		R46	ADDR OF ACTIVE SCD ADDR OF ACTIVE PREAMBLE	10000290		
000005	RSSSIB		R55	ADDR OF SID	10000300		
000003	*	ENDU	K 3 3	KDUR OF SID	T0000310		
	•	00	(**=**)++(**=*Hw*)++(**=	*日₩*】++(**=+日☆*」++(**=*日☆*】++(*;			
				H&)++(**=*;;;**;++(**=*H&*)++(**	;		
			=*Ha*)++(**=+ha*)++(**=*		10000350	1	
	*				TD000360)	
	* SUPERV	tour ge	NERAL REGISTERS		TUU00370	11	
	•				TD000380	Ľ.	
00000	HOSS	EQU:	<u>Q</u>	SUPERVISOR REGISTER D	10000390) (s.	
000010	H155		16	SUPERVISOR REGISTER 1	T0003400		
000020	H2\$5		32	SUPERVISOR REGISTER 2	T0000410		
000030	H355		46	SUPERVISOR REGISTER 3	TD000420		
000040	H455		54	SUPERVISOR REGISTER 4	T0000430		
000050	H5%5		.j0	SUPERVISOR REGISTER S	T0000440		
000060	H655		96	SUPERVISOR REGISTER 6	T0000450		
000070 000080	H755 H855		112	SUPERVISOR REGISTER 7	T0000460		
000090	1955	ENU ENU	128	SUPERVISOR REGISTER 8 Supervisor Register 9	T0000470 T0000480		
000040	HA\$5		160	SUPERVISOR REGISTER 10	T0000480		
000080	HBSS		176	SUPERVISOR REGISTER 11	TD000500		
0000 c 0	HC\$S	-	192	SUPERVISOR REGISTER 12	T0000510		
000000	HDSS		203	SUPERVISOR REGISTER 13	T0000520		
0000E0	HESS		224	SUPERVISOR REGISTER 14	T0000530		
0600F0	HFSS		240	SUPERVISOR REGISTER 15	T0000540		
	•		-		T0000550		
	· PROBLE	M GENER	AL REGISTERS		T0000560		
	*				10000570	j C	
00004	HOSP		4	PROBLEM REGISTER U	TDUUQ580		
000014	HISP		20	PROBLEM REGISTER 1	10000590		
000024	H25P		36	PROBLEM REGISTER 2	TD000600		
000034	H3\$P		52	PROBLEM REGISTER 3	TD000610		
000044	H45P	14	68	PROBLEM REGISTER 4	TD000620		
000054	H5\$P		84	PROBLEM REGISTER 5	TD000630		
000064 000074	H65P		100	PROBLEM REGISTER 6	T0000640		
	H7\$P		116	PROBLEM REGISTER 7	T0000650		
000084	H8SP		132	PROBLEM REGISTER &	T0000660		
000094 0000a4	H95P HA5P		148 164	PROBLEM REGISTER 9 Problem register 10	TD000670 TD000680		
000084	назр Нвяр				TD000680		
000084	HCSP	-	180 196	PROBLEM REGISTER 11 Problem register 12	T0000700		
000004	HDSP	-	212	PROBLEM REGISTER 12	TD000710		
0000E4	HESP		228	PROBLEM REGISTER 13	T0000710		
0000F4	HFSP	-	244	PROBLEM REGISTER 15	TD000720		
	+	L . 10 1	— · ·		TD000740		
	. OLD PS	∛ S			10000750		
	•			· · ·	T0000760		
000008	HP\$05		5	SVC OLD PSW	T0000770		
000018	HPSOP		24	PROGRAM OLD PSW	T0000780		
000028	HPSOF		4 0	TIMER OLD PSW	T0000790		
000038	HPSOMS	-	56	MPX SHARED OLD PSW	T0000800		
000048	HPSOMN		72	MPX NON-SHARED OLD PSW	T0000810		
000058	HP\$051	E 9 U - 1	98 · · · ·	SEL 1 OLD PSW	T0000820	r . '	

	UNIVAC 9400 SUPERV	ISOR
1		

Appendix A section:

PAGE

					, ,	
	000068	HP\$0S2	EQU	104	SEL 2 OLD PSW	T0000830
	000008	*	E. C	101	JEL 2 OLD FSW	T0000840
		• NEW PS	# 5			TD000850
	000098	HPSNP	EQU	152	PROGRAM NEW PSW	T0000860
		•				T0000870
	000088	HPSNS	EQU	1 3/6	SVC NEW PSW	TD000880
	000048	HPSNT	EQU	168	TIMER NEW PSW	TDODU890
	000088	HPSNMS	EQU	184	MPX SHARED NEW PS	T0000900
	0000C8 000008	HPSNMN HPSNS1	£90	200	NPX NON-SHARED NEW PSW Sch 1 New Rea	TD000910
	0000E8	HPSN52	EUU EUU	216 232	SEL 1 NEW PSN SEL 2 NEW PSW	TD000920 TD000930
	000028	*	540	252	SEC 2 NEW ISH	T0000940
		* SCWS				T0000950
		•				T0000960
	000100	HSSO	EQU	256	SHARED SUBCHANNEL J SCW	TD000970
	000110	HSS1	EUU	272	SHARED SUBCHANNEL 1 SCW	T0000980
	000114	HSSILB	EQU	276	INITIAL LOAD BEW	T000990
	000120	HS\$2	EQU	288	SHARED SUBCHANNEL 2 SCW	10001000
	000130	HS\$3	EQU	304	SHARED SUBCHANNEL 3 SCW	T0001010
	000140 000150	HS\$4 HS\$5	EQU	320	SHARED SUBCHANNEL 4 SCW	T0001020
	000160	HS\$6	EQU EQU	336 352	SHARED SUBCHANNEL 5 SCW Shared Subchannel 6 Scw	TD001030 TD001040
	000170	HS\$7	E40 E90	368	SHARED SUBCHANNEL 7 SCW	T0001050
	000180	HSSST	EQU	384	STATUS TABLE SCA	TD001060
		+				T0001070
	· · ·	* TC₩				T0001080
		•				T0001090
	000190	HT\$	EGA	400 '	TIMER CONTROL WORD	T0001100
1		•				T0001110
		• CSWS				T0001120
	OCOLAD	+ HCS1	e 0.0	416	SEL 1 CSW	TD001130 TD001140
	000148	HC\$2	EQU Equ	424	SEL 2 CSW	T0001150
		*	ENDU		520 - (5%	TD001160
		٠	Do	(*+=**)++(*+=*SB+)++(*	*=*SB*)++(**=*SB*)++(**=*SB*)++(*;	
					*=*SB*}++(**=*SB*}++(**=*SB*)++(**	;
				="S8")++(**=+S8")++(**		T0001200
		•	_			10001210
		+ SIB EQ	UATES			T0001220
	00000	* 506584	- 04	<i></i>		TD001230
	000000	SBSSPV	EQU	Ú CRECEVA D	SUPV VER/REV NUMBER	10001240
	000004 000007	SB\$CHR SB\$CHR3	EQU EQU	5855PV+4	CHARACTERISTICS	T0001250
e 18 - 1	000001	SBSTAPE	EQU	SB\$CHR+3 1	LAST BYTE OF SYSTEM CHAR WORD Mask for tape system capability	T0001260 T0001270
	000002	SBSDISC	EQU	2	MASK FOR DISC SYSTEM CAPABILITY	TD001280
	000004	SBSSEL	EQU	- 4	MASK FOR SELECTOR CHAN PLOCS	TDUU1290
. •	000008	SBSPOS	EQU	6	MASK FOR POS MACRU PRESENCE	T0001300
	000008	SBSSCR	EQU	SBSCHR+4	SYS COMM REGION	T0001310
	000013	58\$SP1	EQU	SB#SCR+11	SP51	TD001320
	000014	SBSDTE	EQU	SB\$SPI+1	DATES	10001330
	000028	SBSCLK	EQU	SB\$DTE+20	TIMER POINTERS	T0001340
	000038	SB\$JCB	EQU	SBSCLK+16	NMBR JCBS,ADDR OF FIRST	TD001350
	000048	S8\$UJ8 S8\$TA	EQU EQU	58\$JC8+8 58\$UJ8+8	NMBR USER JCBS+ADDR OF FIRST TRANSIENT CONTROL	TD001360 TD001370
	000058	SBSPUB	EQU	SBSTA+16	NMBR PUBS, ADDR OF FIRST	T0001380
	000060	SBSSJB	EQU	SB\$PUB+8	ADDRESS OF SYSTEMS JCB	T0001390
	000064	SB\$MJB	EQU	585538+4	ADDR - MAINTENANCE CLK JCB	T0001400
	000068	SBSEJB	EQU	SB\$HJB+4	ADDRESS OF ERROR JCB	T0001410
	00006c	SBSJCF	EQU	SB\$EJB+4	FLAGS, JOB CONTROL	TDU01420
	000070	SBSRFN	EQU	58\$JCF+4	SEQ. NO. FOR VSNLB AND ERB	TDU01430
	000074	SBSTLM	EQU	SBSRFN+4	DEFAULT TIME LIMIT FOR USE JOBS	T0001440
	000078	SBSPA	EQU	SB\$TLM+4	ADDR-IST BYTE PROB AREA	T0001450
	00007C	SUSHA	EQU	SBSPA+4	ADDR-LAST BYTE IN PROCESSOR	T0001460
	000080	SBSSER	EQU	SB\$HA+4	ADDR-SPV ERROR RINE	T0001470
	000084	S85ISL S85PI0	EQU EQU	58\$5ER+4 58\$15L+4	ADDR-ISL CODE PREP RTNE ADDR-System piocbs	T0001480 T0001490
	000090	SBSFRE	EQU	SBSPI0+8	ADDR-SYSTEM PIOLBS ADDR-1ST FREE ELEMENT	TD001500
	000094	SBSSWL	EWU	58\$FRE+4	NMBR PR LVL:ADDR OF SW LIST	T0001510
	00009c	SBSTRT	EQU	58\$5¥L+8	ADDR-TR TBL PTRS	TD001520
	DADDAD	SB\$SVC	EQU	58\$TKT+4	LENGTH, ADDR OF SVC TBL	TDU01530
	840000	SBSSET	EQU	58\$6VC+8	ADDR-SET TIME SLICE RTNE	T0001540
	OUDDAC	SBSTIN	EQU	S8\$≈SET+4	ADUR-SISTIN RINE	T0001550
	000080	SBSTME	EQU	585T14+4	ADDR-STOP JOB CLK RTNE	T0001560
	000084	SBSSTC	EQU	SBSTME+4	ADDR-SETIME CANCEL RINE	10001570
	000088	SBSPRF	EQU	SB\$STC+4	CRLF AND TWO EBCDIC BLANKS	T0001580
	000080	SBSTOD	EQU	SBSPRF+4	CONSOLE CEUCKS	T0001590
	0000C8 0000CA	SB\$E0J SB\$BCR	ENU ENU	SB\$T0D+12 SB\$E0J+2	SVC EOU INSTRUCTION	TD001600
	000000	SBSDMC	EQU	585600+2 5856CR+2	BCR 15,RES INSTRUCTION ADDR OF DATA MANAGEMENT COMMON	TDU01610
	000000	SBSJBF	EQU	5850MC+4	RTA-JOBFILE	TD001630
	000004	SBSTRF	EQU	58\$JBF+4	· RTA-TRANSIENT	TUU01640
		-		•		

UP-7689

UNIVA	C 9400	SUPERV	ISOR

PAGE

Ψ.

1. T. A.

80008	58\$\$Y5 EQ	U 5851RF+4	RTA-SYSTEM	T0001650
00,000 C	SUSPRS EW	U 58\$5Y5+4	RTA-PROBLEM	T0001660
ουσαευ	SBSTMP EQ	U SBSPRS+4	RTA-TEMPORARY	TD001670
0000E4	SBSCKP EQ	U 5551MP+4	RTA-CK PUINT	T0001680
0000E8	SBSLUT EQ	U SD\$CKP+4	LOGICAL UNIT TABLE DESCRIPTOR	T0001690
0000F0	SBSOBT EQ	U S∂%LUT+8	HENTRIES/ADDR OF TRALC TABLE	TD001700
0000F8	SB\$INC EQ	U S8\$03T+8	NO. ENTRIES/AUDR LST. INCL THE	TUB01710
000100	SBSDVC EW	U SBSINC+8	24 PUB ADDRESSES. SYS DVCS	TDU01720
000118	SB\$ADP EV	U SB\$DVC+24	8 ADDR OF ADP PUB 6 NO.	TD001730
000120	SBSDMP EQ	U SB\$ADP+8	DUMP MACRO SEQUÈNCE	TD001740
000128	SBSCAN EQ	U S850MP+8	CANCL MACRU SEQUENCE	TD001750
000130	SBSMTBL EW	U SBSCAN+8	• 8 NUM OF AND ADDR OF MCP SVC	10001760
000130	SB&MCP EQ	U SBSMTBL	 U EQUATED TO START OF MCP SIB 	TDU01770
000138	SBSMLRF EQU	· •	• 4 TABLE ADDRESS - LINE REQ. FUNCT.	
000 13c	SBSMLTBL EQU	-	• 10 LOP INFO. AUDR.: NUMBER & LENGTH	
000146	SUSMUCH EN		 Z MCP JCB ADDRESS 	TD001800
000148	SB\$MTTBL EQU		• 8 TERMTEL INFU. ADDR; CHARS: NUMB.	
000150	SBSMBUF EU		 14 BUFFER=4+A+/B+A+/LEN/#/RES 	T0001820
000150	SBSMBWA EUL	-	 4 BUFFER WORK AREA 	TD001830
00015E	SBSMMPS EQU		 2 MPSTART WORK AREA LENGTH 	TD001840
000160	SBSMXTR EVE		 4 TINER INTERRUPT TABLE ADDRESS 	TD001850
000164	SBSMD1B EQU	J 58\$XXX+4	+ 12 DISC INFO. DISC BASE ADDR. TBL	TD001860
	•		• DISC AREA ADDR: RCUS/TRK: # OF TRK5	
000170	SBSMLH8 EQU		H RLH TABLE BASE ADDRESS	TD001880
000174	SOSL EQU	ј 58жисни+4	• LENGTH OF SIB	T0001890
	• ENI			TD001900
	• DO		++(**=*J8*)++(**=*J8*)++(**=*J8*)++(*;	
			; * *) + + (* 8 ل * = * +) + + (* 8 ل * = * *) + + (* 5 ل * = * *) + + (
		= * jo *) + + (* * = * jo *) +	(* ± + + + + + + + + + + + + + + + + + +	FD001940
	•			T0001950
	* JCB			TD001960
	•			TDU01970
00000	JBSLNK EQU		ADDR NEXT JCB ON PRIORITY LEVEL	
000002	JBSCLK EQU	U JBSLNK+2	ALARM CLOCK	TDU01990
000008	JBSPSW EQU	U JBSCLK+6	RESTART PSW	T0002000
000010	JBSSYN EQU	-	PERMIT/INHIBIT FLAGS	TD002010
000012	JASSVC EN	-	TRANSIENT SVC IDENTIFICATION	T0002020
000014	JUSPRE EUI	-	ADUR PREAMBLE	T0002030
000018	JB\$10C EW	U JB\$PRE+4	I/O WAIT COUNT	TD002040
000014	JBSNP EQU	U J8510C+2	JUB NUMBER/PRIORITY	TD002050
00001c	JԵՏ⊑R ԷՉՈ	U JB\$NP+2	LIMITS REGISTER SETTING	T <u>DU</u> 02060
00001E	JESSL EUL	U UBSLR+2	ADDR SWITCH LIST ENTRY	TDu02070
000020	JBSJBN EN	ປີ ມອີຈິລີ⊾+2	EXTERNAL JUD NUMBER	TDUU2080
000026	JBSTME EQI	U JA\$JBN+6	TIME SLICE VALUE	TD002090
000028	JBSL EW	J J8\$TME+2	LENGTH OF JCB	TD002100
	• Ent	20		T0002110
	* DO		;*)++(*90*=**)++(*90*=**)++(*90*=**)++	
			; * *) + + (* 9b * = * * } + + { * 9b * = * * } + + { * 9b * = * * } + +	
		=*{+{*96*=**}++{**=*06*	+(**±*JP*)	TUU02150
	*			TD002160
	 JOB PREAME 	3L£	,	T0002170
	•			TDU02180
00000	JPSNJB EQU		JOB NUMBER AND JCB ADDR	T0002190
00004	JPSSBA EQU		AUDR UPR BUFFER	TD002200
000008	JPSSA EVI		REGISTER SAVE AREA	TD002210
000048	JPSION EQU		I/O QUEUES	TD002220
000098	JPSCCB EQU		SYSTEM CCB	TD002230
000000	JPSSWA ENI		SHARED WORK AREA	T0002240
000004	JPSUCR EWE		USER COMM REGION .	TD002250
00000F	JPSUSI EQU		UPSI	TDU02260
0000E8	JPSLFC EQU		LUAD/FETCH CHANNEL PROGRAMS	TD002270
000128	JPSNDX EQI		OVERLAY INDEX AREA	T0002280
000150	JPSAEP EN		ALTERNATE ENTRY PT	TDU02290
000164	JPSUSH EQU		PCPSW	T0002300
000188	JPSUBA EN		UNSOLICITED BUFFER ADDR	TD002310
000180	JPSEN EQU		ERROR PSW	TD002320
000190	JPSPAD EW	-	LAST BYTE EXTENT AREA	T0002330
0001A0	JPSLIB ERU		LIBRARY	T0002340
0001A8	JPSJDA EQI		RTA JOB FILE	T0002350
000188	JPSTME EQI		JUB TIME COUNTERS	TDUU2360
000100	JPSOPR EQ		FIRST 4 CHARS FOR MSG PREFIX	T0002370
0001C4	JPSJNM EQI	•	JOB NAME,	T0002380
000100	JP\$SF EN		SYSTEN FLAGS	T0002390
000104	JPSDTE EQI		DATES XX/XX/XX,BYYDDD,UYDD	T0002400
0001E6	JPSIOP EQI	U JP\$UTE+18	TRSCHD SYNCHRUNIZATION AREA	TD002410
000200	JPSL EQ	U 512		TD002420
	* EN			TD002430
	* DO	(**=**)++(**=**=0)		TD002440
	•			TD002450
	* CCB			TD002460
	•			TD002470
		•		

UP-7689

1089		UNIVAC	7400	SUPERVISOR	· ·			
	·			· · · · · · · · · · · · · · · · · · ·		SECTION:	PAGE	
								· · ·
000000		IC\$RBC	EŴU	Û	RESIDUAL BYTE COUN	T ·	TDU02480	
000002		ICST	EQU	ICSRBC+2	TRANSMISSIUN BYTE		T0002490	1
000004		ICSCCW ICSBCw	EQU EQU	[C\$T+2 [C\$CC#+4	ADDR FIRST CCW UR BCW FOR MUX/NEXT C		T0002500 T0002510	$= 1_{\rm A}$
000000		ICSPIO	EQU	1C=5C#+4	PLUCE POINTER		TU002520	
000010		ICSMCC	EQU	IC\$P10+4	CUMMAND CODE FUR M		TUG02530	
000011		ICSCTL	EQU	IC\$MCC+1	CONTROL BYTE		10002540	
000013 000014		ICSEMN ICSSF	E9U 690	ICSCTL+2	ERROR MESSAGE NO. Status byte		T0002550 T0002560	
000016		ICSEC	ENU Enu	ICSEMN+1 ICSSF+2	ERROR COUNT		TD002570	
000018		ICSLNK	EQU	ICSEC+2	SEL #1 OR MUX FORM		T0002580	
000020		ICSSB	EQU	1C>LNK+8	SENSE BYTES		TD002585	
000026 000028		ICSNBA	EQU		NUMBER OF BOW'S		TDUU2590 TDUU2600	
000025		1050	EQU Endu	IC\$NB#+2	LENGTH OF CCB		10002610	
		*	DO	(**=**)++(**=*IP+)+4	·(**=*1P*)++(**=*1P*)++(
				*=*16*)++(**=*16*)++	+(**=*IP*)++(**=*IP*)++(**=*1P*)++(**;		
				=*1P*)++(**=+(P*)++([**=*[P*]		TUU02650	
· · · · ·		* • PUB					TDU02660 TDU02670	
		•					T0002680	
000000		IPSV5N	EQU	0	VULUME SEIAL NO.		T0002690	
000006		IP\$8CT	EQU	IP\$VSN+6	CARD OR BLUCK COUN		T0002700	
000008		IP\$ALC IP\$MDE	EAN	1898CT+2 189ALC+2	ALLOCATION BYTES Mode		TDU02710 TDU02720	
000000		IPSDC	E40 E40	IPSHDE+2	DEVICE TYPE		T0002730	
000010		IPSISU	EQU	IPSUC+4	CHANNEL ISSUED		10002740	
000015		IPSJPR	EQU	IPSISU+5	JUB PRIORITY		10002750	
000016		IPSLNK	EQU	IPSJPR+1	JCB ADDRESS		T0002760	
00001C 000020		IP\$CLK IP\$EC	EQU EQU	18561846 18561844	DEVICE CLOCK Error counts		T0002770 T0002780	
000022		IPSALT	EQU	IPSEC+2	ALT PUB ADDR		TD002790	
000024		1P\$SF	EQU	IPSALT+2	I/U STATUS BYTES		TD002800	
000028		IP\$L	ENU	18836+4	LENGTH OF PUB		Tuu02810	
		*	ENDO Do	(**=**)++(**=**=())			TD002820 TD002830	
		•	00	() = () + + () + = () = ()			TUUU2840	
•		+ SVC Ea	UATES				T0002850	
		•					10002860	
000000		SVSXP	EWU	0	EXCP		T0002870	
000002		SV\$XPC SV\$XPT	EQU	SV\$XP+2 SV\$XPC+2	EXCP, CONDITIONAL Position tape excp		T0002880 T0002890	
000004		5V5WT	EQU	SV&XPT+2	WAIT		TU002900	
000008		SVSWTA	EQU	SV5WT+2	WAIT ALL		TD002910	
00000A		SVSMRK	EQU	5V5wT++2	MARK		TD002920	۰.
00000c		SV SYLD	EŴU	SV=MRK+2	YIELD		T0002930 T0002940	
00000E 000010		SV≴RFB SV\$SWP	EQU EQU	SV5YLD+2 SV5RFB+2	RDFCB Swap		TD002950	
000012		SVSFRE	ENU	SV\$5vP+2	FREE		T0002960	
000014		SV\$FE1	ĒŴU	SVSFRE+2	FETCH		10002970	
000016		SVSLD	EQU	SVSFET+2	LOAD		T0002980	
000018 00001A		SVSLDI SVSLDX	EQU	SV\$LD+2 SV\$LU1+2	LOAD INDEX Load exit		T0002990. T0003000	
000010		SVSLDA	ENU	SVELDX+2	LUAD ALTERNATE		T0003010	
00001E		SVSGTM	EQU	SVSLDA+2	GETIME - MS		T0003020	
000020		SVSGTS	EWU	SV\$GTH+2	GETIME - STANDARD		TD003030	
000022		SV\$ST SV#ST	EQU	5V56T5+2	SETIME SETIME - WAIT		TD003040 TD003050	
000026		SV\$STW SV\$STC	EQU EQU	SV\$ST+2 SV\$ST#+2	SETIME - CANCEL		TD003050	
000028		SVSTR	ENU	SV\$STC+2	TRLSE		T0003070	•
00002A		SV\$GVA	EQU	SVS R+2	GIVE - ALL CYL		T0003080	
000020		515615	EQU	SV&GVA+2	GIVE - SPECIFIC CYL	•	TD003090	
00002E 000030		SVSTKA SVSTKS	EGU	5V5GV5+2 5V5TKA+2	TAKE - ALL CYL Take - specific cyl		T0003100 T0003110	
000032		SVSQRY	EQU EQU	SV\$TKS+2	QUERY	-	10003120	
000034		5V\$50C	EQU	SVSQRY+2	SIXIT - OPCOMM		T0003130	
000036		SVSSPC	EQU	5V\$50C+2	STAIT - PROG CHECK		T0003140	
000038		5V\$511	EWU	SV\$5PC+2	STAIT - TIMER		T0003150	
00003A 00003C		SVSEOC SVSEPC	EQU EQU	5V\$51T+2 5V\$EUC+2	EXIT - OP COMM EXIT - PROG CHECK		TD003160 T0003170	
00003E		SVSEIT	EQU	SV\$LPC+2	EXIT - TIMER		10003180	
000040		5V5G56	EQU	SV\$EIT+2	GETAUR - SIB		TD003190	
000042		SV\$GJB	EQU	5V\$658+2	GETADR - JCB		T0003200	
000044		SVSGJP	EQU	5V\$GJB+2	GETADR - PREAMBLE	· -	T0003210	
000046		SV\$GCR SV\$PCR	EQU	SV\$GJP+2 SV\$GCR+2	GETCOM Putcom		T0003220 T0003230	
000044		SVSGCS	EQU	SVSPCR+2	GETCS		TD003248	
00004c		SVSCPT	EQU	SV\$GCS+2	СНКРТ		TD003250	
000046		SVSEOJ	EQU	SVSCPT+2	ECJ		T0003260	
000050 000052		SVSCAN SVSDMP	EQU	SV%LUJ+2 SV%CAN+2	CAN EL DUNP		T0003270 T0003280	
000002		2780°F	C. 44 U	JTTCON'E	DOM			

UNIVAC 9400 SUPERVISOR

UP-7689

Appendix A

I

4

UP-7689

UNIVAC 9400 SUPERVISOR

Appendix A SECTION:

PAGE:

ALC: NO.

	00005 /	Change B	- 311			~		
	000054 000056	SV\$OP SV\$OPR	EQU EQU	SVSUMP+2 SVSUP+2		UPR		10003290 10003300
	000058	SVSALT	EQU	SVSUPR+2		ALT		10003310
	00005A	SVSDSP	EWU	SVSALT+2		DIS		0003320
	0u005c	SVSLRJ	EQU	SV\$DSP+2				0003330
	00005E 000060	SVSLRP	EQU	SV&LRJ+2				0003340
	000062	SVSLRK SVSPAS	ENU ENU	SV\$LRP+2 SV\$LRR+2				0003350
	000064	SV#D15	EQU	SVSPAS+2				10003360 10003370
	000066	SVSOPN	ENU	SV\$015+2		OPE		0003380
$\overline{\mathbf{x}}$	000068	SVSCLS	EQU	SV&UPN+2		CLO		10003390
	00006A	SVSLBR	EWU	SV\$CLS+2		LBR		10'003400
	00006C 00006E	SVSFEV SVSRUN	EQU	SVSLBR+2		FEO		FD003410
	000070	SVSALL	EQU EQU	SV\$FEV+2 SV\$kun+2		RUN		[D003420
	000072	SVSSCR	E Q D	5V\$ALL+2				TDUÜ3430 TDUÜ3440
	000074	SVSRNM	EWU	SVSSCR+2		REN		TD003450
	000076	5V 508 T	EŴU	SV\$RN#+2		081		10003460
	00078	SVSRTD	EQU	585061+2				TD003470
	000074	SVSTST	EQU	SVSRTD+2				TDU03480
	00007C 00007E	SVSOPJ SVSSET	EQU EQU	5V5151+2 5V50PJ+2		IRA SET		10003490
	000080	SVSST2	EQU	SVSSET+2				T0003500 T0003510
	000082	SVELST	EQU	SV\$ST2+2		LIS		TDQ03520
	000084	SV\$LT2	EWU	SV&LST+2				T0003530
	000086	SVSMTC	EQU	SV\$LT2+2		MTC		T0003540
	000088	SVSMC2	EQU	SVSMTC+2				10003550
	00008A 00008c	SV\$LDK SV\$OVL	E9U	SV54C2+2		LOA		TD003560
	000085	SVSTRD	EQU	SV&LDR+2 SV&UVL+2			RTNE, RES TRANS OVERLAY CNTL CONTL TREND RTNE	
nova Recent de la constante Recent	000090	SVSSNP	ENU	SV\$TRD+2				TDOO3580 TDOO3590
	00092	SVSFLE	EQU	SVSSNP+2		FIL		T0003600
	000094	SVSDLT	EGU	SVSFLE+2		DEL		10003610
	000096	SVSMTV	EŴU	SV&DLT+2		MOU		TD003620
	000098 -00009A	SVSPRM	EQU	SVShTV+2				10003630
	000072	SVSMSG SVSSFL	EQU EQU	SV\$PRM+2 SV\$MSG+2				TD003640
A P	00009E	SVSSTL	EQU	SVSSFL+2				T0003650
	OAUOOO	SVSEFL	EQU	SVSSTL+2				TDUO3660. TDOO3670
	0000A2	SVSFOPN	ENU	SVSEFL+2				TDU03671
	000044	SVSFCLS	EUU	SV\$FUPN+2		FOR	-	TD003672
	0000A6	SVSTRCE	EQU	SVSFCLS+2		TRA		TDUU3673
	0000A8 0000AA	SVSRSRV1 SVSRSRV2		SVSTRCE+2				TDU03674
1.1	0000AC	SV\$RSRV2	, - · ·	SVSRSRV1+2 SVSRSRV2+2				TDUU3675 TDUU3676
	ODODAE	SVSMADV	ENU	SV\$KSRV3+2	•	SVC CO		TU003680
	DUUDAE	SV\$MCP	EQU	SVSHADV			-	10003690
	000060	SV\$MSUR	EŴU	5V5MADV+2	•	SVC CO	DE - SOURCE	TD003700
	000082 000084	SVSMTIM	EQU	SV\$MSOR+2				TU003710
	000086	SV&MDAT SV&MSQI	EQU EQU	5V5HTIM+2 5V5HDAT+2				T0003728
- 1 -	000088	SVSMSQO	ENU	5V5M5Q1+2				TDOO3730 TDOO3740
	OODDBA	SVSMMSG	EQU	SV5454J+2				10003750
	0000BC	SV\$MPLT	EQU	5V\$MMS0+2				T0003760
	OOOOBE	SV\$MDIR	EQU	SVSHPLI+2				10003770
	000000	SVSMRTE	EQU	SVSMDIR+2				TD003780
	0000C2 0000C4	SVSMCNM SVSMERM	EQU EQU	SVSNRTL+2 SVSNCNM+2				T0003790
	0000006	SVSMEOB	EQU	SV\$HERN+2				TDUU3800 TDUU3810
	000008	SVSMRRT	EQU	SVSMEOH+2				TUÚÚ3820
	0000CA	SVSMINT	EQU	SVSHRRT+2	٠	SVC CO	DE - INTERCEPT FILE	TD003830
	0000 CC	SVSMR1	EQU	SVSMINT+2	٠	SVC CU	DE - RESERVED	TD003840
	0000CE	SV\$MR2	EQU	SV5MR1+2				TDD03850
	000000 000002	SVSMR3 SVSMR4	EQU	SVSMR2+2				T0003860
	000004	SVSMR5	EQU EQU	5V5MR3+2 5V\$MR4+2				TDOO3870 TDOO3880
	000006	SVSMR6	EQU	SVSMR5+2				TD003880
-	000006	SV\$MR7	EQU	SVSNR6+2				TUDU3900
	0000DA	SV\$MR8	EQU	5V5MR7+2	•	SVC CU	DE - RESERVED	T0003910
	0000DC 0000DE	SVSMR9	EQU	SVSMR8+2	•	SVC CO	DE - RESERVED	TD003920
у	000060	SV\$MR10 SV\$MR11	EQU	5V5HR9+2 5V5HR9+2				TD003930
	0000E2	SVSUPR	EQU	SV\$MR10+2 SV\$NR11+2				TD003940
ē.	0000E4	SVSMCPR	E 90 E 90	5V\$UPR+2	:	SVC CO		TD003950 TD003960
	000086	SVSMBRQ	EQU	SVSMCPR+2		SVC CO		TD003980
	0000E8	SVSMEXC	EQU	SV\$HBR∂+2		SVC CO	DE - MCP EXCP	TDUU3990
	000075	SVSEND	EQU	(SVSMEXC+2)/2		LE		T0004000
		*	ENDO	/ • • • • • • · · · · • • • • •				T0804010
		*	DO	(**=**)++(*+=**=())				10004020
		+ FCB						TD004030 TD004040
		•						TD004040

UP-7689

6	

			\sim
000000	JESPUB EQU D	PUB ADDRESSES	TD004060
000008	JESVSN EQU JESPUB	· · · · · · · · · · · · · · · · · · ·	TD004070
000010	JESVCE EQU JESVSN	·	TD004080
000014	JESEBA EQU JESVCE		TDUD4090
00018	JESLAL EQU JESEBA		TD004100
000029	JESTLB EQU JESLBL	+17 TAPE FILE INFORMATION	T0004110
000029	JESTVS EQU JESTLB		TD004120
00002F	JESTVQ EQU JESTVS		TD004130
00033	JESTEQ EQU JESTVQ		T0004140
00037	JESTOV EQU JESTEQ		T0004150
000030	JESTCD EQU JESTGV		TDUU4160
00043	JESTED EQU JESTCO	+6 TAPE EXPIRATION DATE	TD004170
000049	JESTSB EQU JESTED	+6 TAPE SECURITY & BLOCK COUNT	T0004180
00051	JESTSC EQU JESTSB	+8 TAPE SYSTEM CODE	TD004190
300044	JFSDLB EQU JFSLBL		T0004200
00045	JESDES EQU JESDEB		T0004210
000046	JESDVA EAU JESUES		10004220
00040	JESDCD EQU JESDVQ		TDU04230
00050	JESDED EQU JESUCO		T0004240
000056	JESDSC EQU JESDED		TDU04250
00075	JESDME EQU JESDSC		TDU04260
0007C	JESEBK EQU JESDHE		TD004270
00085	JESL EQU 133	LENGTH OF FCB	T0004280
	• ENDO		TDU04290
	• ĐO (••=•	*)++(**=**=0)	T0004300
	•		TD004310
	* PIOCB		TD004320.
	•		TD004330
00000	IBSLBL EQU O	B CHARACTER STRING	TDUU4340
00008	IBSFBL EQU IBSLBL		TD004350
A0000A	IBSEB EQU IBSEBL	+2 FIRST BYTE OF FCB	T0004360
	♦ ENDU		TD004370
	* DO (**=**)++(**¤**=())	TD004380
	•		TD004390
	• EXTENT REQUEST BLUC	κ	T0004400
	•		T0004410
00000	JXSNER EQU D	NUMBER OF ENTRIES	TD004420
00002	JXSECB EQU JXSNER		TD004430
ADDODA	JXSVSN EQU JXSFCB		TDU04440
00012	JXSEXT EQU JXSVSN		T0004450
100085	JXSL EQU JFSL	LENGTH OF ERB	TDU04460
	• ENDO		T0004470
	• DO (**#**)++(*;*=**=())	TD004480
	•		T0004490
	VOLUME SERIAL NUMBE	K LIST BLOCK	T0004500
	•	a mana taman kana kana aka sa	T0004510
00000	JVSFCB EQU D	ADDRESS OF FCB	TD004520
00008	JVSVSN EQU JVSFCB		T0004530
00078	JARTNK EGA JARASH		TD804540
00085	JVSL EQU JFSL	LENGTH OF VSNLB	TD004550
	* ENDO		TU004560
	+ DO (**±**)++(*+=**=0)	TD004570
	•		T0004580
	# DATA MANAGEMENT DIFF	EQUATES	T0004590
	•		T0004600
000012	DISDTF EQU 18	DISPLACEMENT TO FILE TYPE IN DI	
00001c	DISGET EQU 28	GET MODULE ADDRESS IN DI	
00020	DISPUT EQU 32	PUT MODULE ADDRESS IN D	
00024	DISCNT EQU 36	CNTRL NODULE ADDRESS IN D	
00024	DISWNK EQU 36	NEWKEY HUDULE ADDRESS IN D	
000028	DISRLS EQU 40	RELSE NODULE ADDRESS IN D	
00028	DISTNC EQU 40	TRUNC MODULE ADDRESS IN D	
000028	DISAFT EQU 40	AFTER MODULE ADDRESS IN D	
00028	DISESL EQU 40	ESETL MODULE ADDRESS IN D	
D0002C	DISRD EQU 44	READ MODULE ADDRESS IN D	
000030	DISWRT EQU 48	WRITE NODULE ADDRESS IN D	
000034	DISEFL EQU 52	ENDEL MODULE ADDRESS IN D	
00034	DISWTF EQU 52	WAITE MODULE ADDRESS IN D	
1 -	•		TD004740
	ENDO		TD004750
		++(**=*DM*)++(**=*DM*)++(**=*DM*)++(**=*DM*)++(
)++(**=*DM*)++(**=*DM*)++(**=*DM*)++(**=*DM*)++(
	= * D M * 1	++{**=*DH*}++{**=*DM*}	T0004790
	•		TD004800
	•		TD004810""
	DIRECT ACCESS VOLU	1E I LABEL	TD004820
			TDU04830
	••		
00000	++ DLSVL EQU O	4 BYTE KEY "VOL1"	TD004840
00004	♦• DLSVL EQU D DLSVLI EQU DLSVL	+4 4 LBL IDENTIFIER- +VOL1*	TD004840 TD004850
	++ DLSVL EQU O	+4 4 LBL IDENTIFIER- +VOL1* 1+4 6 VOLUME SERIAL NUMBER	TD004840

U	P	-7	6	8	9
---	---	----	---	---	---

UNIVAC 9400 SUPERVISOR

Appendix A

PAGE:

7

UUUUOF	DLSVIC	EQU DESVSU-	+ I	10 VTOC ADDR- CCHHR	TD004880
000007	*	F.40 0F3430		20 RESERVED	T0004890
000020	DLSONK	EQU DESVIC	+30	10 OPTIONAL OWNER NAME/ADDR CDE	T0004900
	*		Ĩ	29 RESERVED	10004910
	♦ ● 5.198271	FORTE FORME	F 1 1 0 - K1		TDUU4920 TDU04930
	* DINELI *	ACCESS FORMA	I LAUCL		T0004940
000000	DLSIDI	E90 u		I FORNAT IDENTIFIER- X.01.	TD004950
000001	DLSFSI	EWU OLSIDI		6 FILE SERIAL NUMBER	TDUU4960
000007 000009	015V51 D15CD1	EQU DESFSI- EQU DESVSI-		2 VOLUME SEQUENCE NUMBER 3 CREATION DATE	TUUU4970 Tuuu4980
000000	DLSEDI	EQU DESCOL		3 EXPIRATION DATE	TD004990
00000F	DLSXC1	ENU DESEDI-		L EXTENT COUNT	T0005000
000010	DLSLD1	EQU DESKCI-		I BYTES USED IN LAST DIR BLOCK	T0005010
	*			I SPARE	T0005020
				I3 IDENTIFIES PROG®G SYSTEM / RESERVED	TD005030 TD005040
000026	OLSFT1	ENU DESEDI-		2 FILE TYPE	T0005050
000028	DLSRF1	EQU DESETI-	+2 1	L RECORD FÜRMAT	TD005060
000029		EQU DLSRF1		I OPTION CUDES	TD005070
DUDD2A	DLSBLI	EQU DESUCI-		2 BLOCK LENGTH	T0005080
00002C 00002E	015811 015871	EQU DESKEL EQU DESKEL		Z RECURD LENGTH	TD005090 TD005100
00002E	DLSKLI	ENU DESKEL-		I KEY LENGTH 2 Key Locations	TD005110
000031		EQU DLSKLI		1 DATA SET INDICATORS	TD005120
000032		EQU DESUSI		SECUNDARY ALLOCATION	T0005130
000036		EQU DLSSAI		D LAST RECORD POINTER	T0005140
000036	*			2 SPARE	T0005150
000030 00003e		EQU DESERIA		L EXTENT TYPE IND- IST EXTENT L EXTENT SEG NUMBER	T0005160 T0005170
0000-3F		EQU DESXS1		I EXTENT LOWER LINIT	TD005180
000043		ENU DESXLI	-	EXTENT UPPER LIMIT	TDU05190
	*		1	LU 2ND EXTENT	T0005200
00005 5	*			LU BRU EXTENT	T0005210
00005B	DLSCPI	EQU DESXUL	+ 2 4	5 CUNTINUATION POINTER -CCHHR	T0005220
	* DIRECT	ACCESS FURMAT	T 2 LAREL		TDU05230 TDU05240
	*		~		T0005250
000000		EQU 0		I KEY INDENTIFIER - X+02+	T0005260
000001		EQU DESID2-		7 ADDE OF 2ND LVL MASTER INDEX	T0005270
000008		EQU DLSH22-	*/ :	5 ADDR OF LAST 2ND LVL MSTR $1D_{\chi}$	T0005280 T0005290
000000	_	EQU DLSL22-	+5 7	ADDR OF 3RD LVL MASTER INDEX	T0005300
000014	DLSL32	EQU DLSM324		ADDR OF LAST 3RD LVL MSTR IDX	T0005310
	•		· 1	19 SPARE	T0005320
00002c	DLSFI2	EQU DESE32	4 .24	1 600×11 10/01161/0	T0005330
000020	DLSIL2	ENU DLSFI2		I FORMAT IDENTIFIER I FORMAT OF INDEX LEVELS	T0005340 T0005350
DUU02E	DLSHL2	EWU DLSIL2-		I HIGH LEVEL INDEX-DEV IND	T0005360
00002F	DLSRC2	EQU OLSHL2-		3 FIRST DATA RECORD IN CYLINDER	T0005370
000032	DLSLC2	EQU DLSRC2.		2 ADDR OF LAST DATA TRKS IN CYL	TD005380
000034 000035		ENU DESEC2.		I NUMBER OF TRKS FOR CYL OVFLO	10085390
000036		EQU DLST02- EQU DLSHH2-	-	L HI RCRD # ON HI-LVL INDX TRK . L HI RCRD # ON PRIME DATA TRKS .	TD005400 TD005410
000037		EQU DESHP24		L HI POSS KCRD # ON OVFLO DTRKS	TD005420
000038		ENU DESHUZI	-	L RCRD # OF LAST D=RCRD/SH-TRK	10005430
	•			2 SPARE	TD005440
000036		EQU DLSLR2		2 TAG DELETION COUNT	TDU05450
000035 000040		EQU JLSTD2		B NON-1ST OVELO PREFERENCE CONT	T0005460
000010	DLSHD2 *	EQU OLSNE24	2 د .	2 HUMBER BYES FOR HI-LVL-NOX	TD005470 TD005480
000042	_	ENU OLSH024	+2 1	NUMBER TRKS FOR HI-LVL-IDX	TD005490
an	*	-			TD005500
000043		EQU DLSH124		PRINE RECORD COUNT	T0005510
000047 000048		ENU DLSPR2+ ENÚ DLSSI2+		L STATUS INDICATOR 7 Addr of Cylinder Index	T0005520
00004F		EQU DESCIZ	-	ADDR OF LO-LVL MSTR IDX	TD005530 TD005540
000056		EQU DESEMP		7 ADDR OF HI-LVL HSTR INDX	T0005550
000050	DLSLP2	EQU DLSHM2+	+7 8	B LAST PRIME D-RCRD ADDR	TD005560
000065		EQU DLSLP2		5 LAST TRK IDX NTRY ADDR	T0005570
00006A 00006F		EQU DL5LT24 EQU 0151E24		ELAST CYL IDX NTY ADDR	T0005580
000007	ULSM12 *	EQU DL\$LE2.	• 3 .	3 LAST MASTER INDEX ENTRY ADDR	T0075590 T0005600
	•				T0005610
000074	DLSLI2	EQU DESM12	+5 8	B LAST IND'ENT OVL/ RCRD ADDR	T0005620
00007c		EQU DLSL12	+8 2	2 BYTES REMIING ON OVELO TRK	TD005630
000076		EQU DLSBR24		2 NUMBER INDPIENT OVELO TRKS	TD005640
000088 000082		EQU DESIG2+ EQU DESOR2+		2 OVFLO RCRD COUNT 2 Cyl ovflo area count	T0005650
000002	•		· •	L CIE OVIEO AREA LOUNI	TD005660 TD005670
	•		3	3 SPARE	TD005680

UNIVAC 9400 SUPERVISOR

Appendix A section:

PAGE:

	000087	DLSCP2	EQU	WL\$C02+5		5 PNTR TO FORMAT 3 LBL	10005690	
		•	-	-			TD005700	-
		•					T0005710	
		• DIRECT	ACCESS	5 FURMAL 3 LABEL			TD005720	•
		•					TD005730	
	000000	DLSID3	ENU	0		4 KEY IDENTIFIER - X*03*	T0005740 T0005750	
	000004 000005	DLSXT3 DLSSN3	EQU	0L\$103+4		I EXTENT TYPE INDICATOR I EXTENT SEQ NUMBER	10005760	
	000006	DLSXL3	EQU EQU	DL\$XT3+1 DL\$SN3+1		4 EXTENT LOWER LIMIT	T0005770	
	DUUDDA	DLSXU3	E 40 E 40	DLSXL3+4		4 EXTENT UPPER LIMIT	10005780	
	000004	*	240	DEFACE		LU EXTENT 2	10005790	
		•				10 EXTENT 3	TU005800	
						10 EXTENT 4	T0005810	
	00002c	DLSFI3	EQU	DL\$XU3+34		1 FORMAT IDENTIFIER - X+03+	TD005820	
	000020	DLSX53	EQU	DLSF13+1		90 EXTENTS 5 THROUGH 13	TD005830	
	000087	DLSCP3	EQU	UL\$X53+90		5 PNTR TO FORMAT 3 LABEL	TD005840	
		*					TD005850	
		 DIRECT 	ACCES	S FORMAT 4 LABEL			10005860	
		*					T0005870	
	000000	015104	EQU	0			T0005880	
	000001	DLSLF4	EQU	DLSID4+1		5 LAST ACTIVE FORMAT 1	T0005890	
		•					10005900	
	00006	DLSAF4	EQU	DLSLF4+5		2 AVAILABLE FILE LABEL RCRDS	TD005910 TD005920	
	000008	DLSHA4	EQU	0L\$AF4+2		4 HIGHEST ALT TRK	TD005920	
	00000C	DLSAT4 DLSVI4	EQU	DLSHA4+4 DLSAT4+2		2 NUMBER OF ALT TRKS 1 vtoc indicatoks	T0005940	
	00000E 00000F	DLSXC4	EQU	DLSV14+1		I NUMBER OF EXTENTS	T0005950	
	200001	*	240			2 RESERVED	TU005960	
	000012	DLSDS4	ENU	DLSXC4+3		4 DEVICE SIZE	T0005970	
	000016	DLSTL4	EQU	015054+4		2 TRACK LENGTH	TD005980	
	000018	DLSR04	EQU	DLSTL4+2		3 RECORD UVERHEAD	T0005990	
	000018	DLSFG4	EQU	DL#R04+3		I FLAG	10006000	
	000010	DLST04	EQU	5L\$F64+1		2 TOLERANCE	TDU06010	
	00001E	DL\$LT4	EQU	DLST04+2		1 LABELS/TRACK	10006020	
	00001F	DL\$BT4	EQU	DL%LT4+1		1 BLOCK/TRACK	TD006030	
		•				29 RESERVED	T0006040	
	00003D	DLSVX4	EWU	DL\$BT4+30		LU VTUC EXTENT	T0006050	,
		•				25 RESERVED	T0006060	
		•					T0006070 T0006080	
		A DIRECT		S FURMAT 5 LABEL			10008090	
		* UINECI	ACCES	STURARY STRAGE	-		TD006100	
	00000	01\$105	EQU	0		4 KEY IDENTIFICATION	TD006110	
	000004	DLSXTS	EQU	015105+4		2 RELATIVE TRK ADDR	T0006120	
	000006	DLSXC5	ENU	ULSX15+2		2 NUMBER OF CYL IN EXTENT	10006130	
	000008	DLSXES	EQU	0L\$XC5+2		1 NUMBER OF TRKS IN EXTENT	TD006140	
		•				5 AVAILABLE EXTENT	T0006150	
		+				30 SIX MORE AVAILABLE EXTENTS	TD006160	
	00002C	DLSFI5	EQU	DL\$XE5+36		1 FORMAT ID	10006170	
	000020	DLSXS5	EQU	0L3+15+1		90 FIFTEEN AVAILABLE EXTENTS	TD006180	
	000087	DLSCP5	EQU	01585+90		5 PNTR TO ANOTHER FMT 5 LBL	10006190	
		•					T0006200	
		*				· · · · ·	10006210	
		•					T0006220	
							T0006230 T0006240	
		• DATA и	ANACEN	ENT REGISTER FOU	411.5		T0006250	
		• • • • •		-u- upordicu Fac			TD006250	
	000002	025	EQU	R2»		REGISTER 2	TDU06270	
	000003	D35	EQU	R35		REGISTER 3	TDUU6280	
	000004	D45	ENU	к4.5		REGISTER 4	T0006290	
	000005	055	EQU	R55		REGISTER 5	T0006300	
	000006	065	EQU	265		REGISTER 6	T0006310	
	000007	D75	EQU	R75		REGISTER 7	TD006320	
	000008	D85	ENU	R 8 2		REGISTER B	TUDU6330	
	000009	D95	EQU	R95		REGISTER 9	TD006340	
	A00000	DA5	EQU	RAS		REGISTER 10	10006350	
	000008	088	EQU	RBS		REGISTER 11	TD006360	
	00000 c	DCS	EWU	RC\$		REGISTER 12	TD006370	
		* 		п.т. сарах <i>од</i> а т	- e-		TD006380	
				ENT ERROR EQUATE			T0006390	
	0000F1	DISEFF	EQU	C*1*		SSING TIME CONSTANT	10006400	
	0000F4	DISEFE	ENU	C*4*	TRAN	SIENT TIME CONSTANT	T0006410	
	0000F2 000040	DISEFD	EQU	c*2* c* *		LIVE ACLE ATE AD HER COLORS	T0006420	
	0000F0	DISEOU DISEO1	EQU EQU	C* * C*0*		I-TYPE MSGS WITH NO USER ERKORS Pening an Already opened file	TD006430	
	0000F1	DISEOZ	EQU EQU	C*1*		LOSING AN ALREADY CLUSED FILE	10008430	
•	0000F3	01\$203	EQU	C*3*		ANNOT READ FILE CONTROL BLUCK	TD006450	
	0000F4	DISEUS	EQU	C*4*		LOCK SIZE SPECIFICATION	T0006460	
	0000F5	DISEO6	EQU	C*5*		EGISTER SPECIFICATION	T0006470	
	U000F6	DISE07	EQU	C*5*		ISSING MUDULE	TUUU6480	

Appendix A section:

PAGE:

9

0000F7	DISED9	EQU	c'7'
0000F8	DISEL	EQU	C'8'
0000F9	D1\$E13	ENU	C191
000001	DISEIS	EQU	C*A*
0000C2	DISEL6	EQU	C'B*
0000C3	DISE17	EQU	C'C'
0000C4	DISE19	EQU	C'0'
000005	DISEZC	EQU	C*E*
000006	DISE21	EQU	C'F!
000007	D1\$E23	EQU	C*4*
0000C8	DISE25	EQU	с*н*
000009	D1\$E27	EQU	C'1'
000001	DISE29	EQU	('J'
000002	DISE31	EQU	С*К*
000003	DISE33	EQU	C'L'
000004	DISE35	EQU	C * M *
000005	D1\$E37	EQU	C * N *
000006	DISE39	EQU	C'0'
000007	DI\$E41	EQU	C * P *
000008	DISE43	EQU	C'4'
000009	DISE45	EQU	C*R*
0000E2	DI\$E47	EQU	c's'
0000E3	DI\$E49	EQU	C'1'
0000E4	DI\$E51	EQU	C'U'
0000E5	D15E53	EQU	C*V*
0000E6	D1\$E55	EQU	C * * *
0000E7	DI\$E57	EQU	C*X*
0000E8	DI\$E59	EQU	C*Y*
0000E9	DISE61	EQU	C*2*
000048	DISE63	EQU	с'¢'

ERROR -	EXTENT TABLE FULL	TD006490
ERROR -	NU PUB ALLOCATED	T.0006500
ERRUR -	VOLI	T0006510
ERROR ~	FORMATI OR HDRI	10006520
ERROR -	TAPE STANDARD LABEL	TD006530
ERROR -	FORMAT2 OR FORMAT3	TD006540
ERROR -	FORMAT4	T0006550
ERROR -	USER HEADER OR TRAILER LABEL	TD006560
ERROR -	MISSING FILE ID IN FCB	TDU06570
ERROR -	1/0	T0006580
ERROR -		T0006590
ERROR -	VSNLB	TD006600
ERROR -	ere erende ernenn freenststenet	T0006610
ERROR -	SYSTEM STANDARD LABEL BLOCK	TDU06620
	USER LABEL BLOCK	TD006630
ERROR -	UNEXPIRED EXPIRATION DATE	TD006640
ERROR -		T0006650
	1/0 LIMITS CHECK FAILURE	TD006660
ERROR -		TDOU6670
ERRUR -		T0006680
	TRANSIENT OR COMMON CODE INDEX	TDU06690
ERROR -	CHAIN AREA OVERFLOW	TD006700
	TIME LIMIT REACHED	TD006710
ERROR -	in the state of th	T0006720
ERROR -	BLOCK LENGTH INCORRECT(FIXED/VAR)	T0006730
ERROR -		T0006740
ERROR -	BLOCK NUMBER OR DATA BLOCK COUNT	TD006750
	INVALID/INCONSISTENT DVC ASGNMENT	TDU06760
	- RÉSIDENT CI CANT BE SPTD	TD006770
WARNING	- MULTI-BLOCK 1/0 CANT BE SPTD	TDUU6780

•

.

A