b
TSPERRY RAND
A
S9400 ..
TAPE LIBRARIAN
N’
N
PROGRAMMER
MERFERENCE
7667 Rev. 2

This document contains the latest information available at the time of publi-
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

. =
© 1969,1970,1971 — SPERRY RAND CORPORATION PRINTED IN U.S.A.

7667—Rev.
UP-.NUMBER

2 J UNIVAC 9400 SYSTEM

Contents 1

| PAGE REVISION PAGE

CON
1.

TENTS

INTRODUCTION

1.1. GENERAL

1.2. LIBRARY STRUCTURES

1.3. GANG OPERATIONS

1.4. NAMING CONVENTIONS

1.5. CONTROL STATEMENT CONVENTIONS

1.6. LIBRARIAN CONTROL STATEMENT FORMAT

LIBRARIAN SYSTEM FORMATS

2.1. LIBRARY FORMAT
2.1.1. LOAD LIBRARY
2.1.2. RESERVE LIBRARY
2.1.3. COPY LIBRARY
2.1.4. SOURCE LIBRARY
2.1.5. PROC LIBRARY

2.2. OBJECT TAPE FORMAT

2.3. PRINTER OUTPUT FORMAT

2.3.1. LIBRARY SERVICES (LIBS} PRINTER FORMAT

2.3.2. DISPLAY AND PUNCH SERVICES (DAPS) PRINTER FORMAT

2.4. PUNCH OUTPUT FORMAT

LIBRARIAN FUNCTIONS

3.1. GENERAL
3.1.1. LOGICAL FILE DESIGNATIONS
3.1.2. JOB CONTROL STATEMENTS

CONTENTS

1to 2

1—1t0 1-3

3—1to3-16

3-1
3-2
3-3

7667—Rev. 2 UNIVAC 9400 SYSTEM

UP.NUMBER

Contents 2

3.2. LIBS PROGRAM

3.2.1. LIB STATEMENT

3.2.2. ADD FUNCTION

3.2.2.1. TRANSIENT ROUTINES
3.2.2.2. VER SUBFUNCTION
3.2.3. DEL FUNCTION

3.2.4. CPY FUNCTION

3.2.5. COR FUNCTION

3.2.5.1. VER SUBFUNCTION
3.2.5.2. INS SUBFUNCTION
3.2.5.3. REP SUBFUNCTION
3.2.5.4. ENDCARD STATEMENT
3.3. DAPS PROGRAM

3.3.1. DIS FUNCTION

3.3.2. PCH FUNCTION

3.3.3. PUD FUNCTION

APPENDIXES

A. SAMPLE CONTROL STREAM FOR LIBS AND DAPS FUNCTIONS

B. ERROR CODES

FIGURES

2—1. System Library Structure

2—2. User Library Structure

2—3. Object Tape Format

24, LIBS Print Format

2--5. DAPS Print Format (Load File)

2-6. DAPS Print Format {Copy, Source, and Proc Files)

3—1. Functional Diagram of the Library Services (LIBS) Program

3-2, Functional Diagram of the Display and Punch Services (DAPS) Program

TABLES

1—1. Function Designators

1—2. Library Designators

3—1. Logical File Name Descriptions

3-—2. Examples of Functions Accomplished by Use of the REP Statement

I PAGE REVISION | PAGE

3-4
3-4
3-56
3—6
3-7
3-8
3-9
3—-10
3-11
3-1
3—-11
3-12

3-13
3-13

3-14
3-15

A—110 A-2

B—1toB-7

€

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER l PAGE REVISION 1 PAGE

. INTRODUCTION

1.1. GENERAL

This manual describes the libraries and control statements comprising the UNIVAC 9400 System Tape Librarian.
The librarian consists of the Library Services (L.IBS) program and the Display and Punch Services (DAPS) program
which permit maintenance, service, and copy functions for tape operations. Descriptions of Librarian System
formats, the librarian functions, examples of the control stream for LIBS and DAPS, and error types and
descriptions are included here. A knowledge of the UN/VAC 9400 Job Control Programmer Reference, UP-7793
(current version) and of UN/VAC 9400 Assembler/Central Processor Unit Programmer Reference, UP-7600 (current
version} is helpful in using this manual.

1.2. LIBRARY STRUCTURES

Library structures are of two types: the system library structure and the user library structure. The system library
structure operates from the system resident volume, and the user library structure operates from separate volumes.
Each structure comprises five libraries. The five libraries are referred to as the Load library, the Reserve library, the
Proc library, the Copy library, and the Source library.

Each library constitutes a single file in the library structure except the Proc library, which may constitute more than
one file.

1.3. GANG OPERATIONS

Some functions of the Tape Librarian may be specified as gang operations; that is, they are performed on groups of
modules within a library rather than on an individual module. Gang operation is controlled through use of the
leading characters of a module name. The specification of gang operation includes the leading characters of the
name, a period, and the word ALL. For example, if the specification SORT.ALL appears, the operation is performed
on all modules with names beginning with SQRT. Gang operations on modules from the object tape or from cards
are not allowed due to the unordered sequence.

The functions of the Tape Librarian for which gang operations may be specified are ADD, DEL, DIS, PCH, and
PUD. Gang operation is applicable to all libraries. See Section 3 for further explanation and examples of these
functions.

7667 Rev. 2
UP-NUMBER

UNIVAC 9400 SYSTEM

IPAGEREWSWN

1.4. NAMING CONVENTIONS

All names of modules within libraries must conform to the following general rules (specific requirements for certain
types of names are described in detail):

Valid EBCDIC characters for names are the letters A through Z, the numerals 0 through 9, and the special
character $ (dollar). No other characters can be used in a name.

The number of characters in a name may vary from one through eight, except the names of phases comprising
modules in the Load library. Phase names are one to six characters followed by a two-character segmeni
number (00-99). If the load module name is less than six characters, it is left justified with padded 0's
(EBCDIC) to fill out the six-character field and is followed by the two-character segment number. Object
module names are from one to eight characters in length. If the object name is less than eight characters, it is
left justified and blank filled.

A module name may not be blank but a control section name (contained within a module in the Reserve
library} may be blank.

The first character of any name may be one of the letters A through Z or the special character $ (dollar).

Key overlays, which are critical to the operation of the system (such as Job Control and transient routines) may
be interspersed in the Load library by constructing their phase names with a leading $ character. This character
allows items {(with the same name) to appear more than once within the library and to be filed disregarding the
normal alphanumeric sequencing. This special handling of $ name modules occurs only in the Load library.

The following reserved names are utilized by the DAPS and LIBS programs and therefore cannot be used as
labels by the user:

DAPS LIBS

ALL ADD
DIR ALL
DIS COR
PCH CPY
PUD DEL
ENDCARD
INS :
REP
70

TR

PAGE

7667 Rev. 2 UNIVAC 9400 SYSTEM 1-3

UP-NUMBER PAGE REVISION PAGE

1.56. CONTROL STATEMENT CONVENTIONS

The conventions used to illustrate librarian control statements in this manual follow:

B Capital letters and punctuation marks (except braces, brackets, and ellipses} are information that must be
coded exactly as shown,

a Lowercase letters and terms represent information that must be supplied by the programmer.
] Information within braces represents necessary entries of which one must be chosen.

| Information within brackets represents optional entries that (depending on program requirements) are
included or omitted.

n An ellipsis indicates the presence of a variable number of entries.

1.6. LIBRARIAN CONTROL STATEMENT FORMAT

The librarian control statements are essentially freeform. Information may start in column 1 with the operation
field; this field must be separated from the operand field by at least one blank column. The operand field is
terminated by the first blank position and cannot extend past column 71. No continuation statements are
recognized {column 72 must be blank).

The operation code is constructed of a function designator and a library designator. A typical operation code is
ADDL; the function designator is ADD, and the library designator is L. Thus, an operation code ADDL adds the
modaules specified in the operand field to the Load library.

Throughout this document when the function designator is stated and a lowercase x follows it, the programmer must
supply the appropriate library designator. Tables 1-1 and 1-2 describe the function and library designators for the
Tape Librarian.

FUNCTION DESIGNATOR DESCRIPTION

ADD Addition

DEL Deletion

CPY Copy

COR Correction

DIs Display

PCH Punch

PUD Punch and Display

Table 1-1. Function Designators B

LIBRARY DESIGNATOR DESCRIPTION

L Load library

R Reserve library

C Copy library

S Source library

Pn Proc library;

n is the file number: 1 to 251

Table 1-2. Library Designators

21
PAGE

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER I PAGE REVISION

2. LIBRARIAN SYSTEM FORMATS

2.1. LIBRARY FORMAT

There are two types of library structures in the Tape Librarian: the system library structure and the user library
structure. Each structure consists of five distinct libraries. The system library structure occupies the system resident
volume, and each user library structure occupies a separate volume. No voiume may contain more than one library
structure, and no library structure may overflow onto another volume. More than one user library structure may
exist for a given job; but only one structure can be updated at any one time.

A system library structure begins with a Bootstrap record followed by an Initial Program Load (IPL) record (see
Figure 2-1), and a user library structure begins with a VOL1 label followed by a HDR1 iabel (see Figure 2-2). The
user library structure usually contains programs pertinent to a particular user. Thus, no time is wasted in copying the
system programs when the user library structure is updated. In a minimum tape system, however, it may be
necessary to use the system library structure because of the lack of additional tape units.

BOOTSTRAP

LOAD LiBRARY

RESERVE LIBRARY

-

COPY LIBRARY

-

SOURCE LiIBRARY

PROC LIBRARY 1

.

PROC LIBRARY n

ENDLIB SENTINEL

l.egend:
*signifies the presence of a tape mark

Figure 2-1. System Library Structure

7667 Rev. 2 UNIVAC 9400 SYSTEM l 2-2

UP-NUMBER | PAGE REVISION PAGE

LOAD LIBRARY

RESERVE LIBRARY

-

COPY LIBRARY

»

SOURCE LIBRARY

PROC LiBRARY 1

-

.

PROC LIBRARY n

-

-

ENDLIB SENTINEL

Legend:

*signifies the presence of a tape mark

Figure 2-2, User Library Structure

2.1.1. LOAD LIBRARY

The Load library consists of load modules which are produced by the Linkage Editor. Each load module may be
either a single phase or a group of phases. A phase is a single loadable entity. Load modules are processed by the
librarian through use of the gang operation option (see 1.3). Single phases of load modules are processed by the
librarian by name, one at a time, through use of the OBJFIL or CARD option. Multiphase load modules are
processed as a group (thay all have the same prefix) through the use of the ALTLIB option.

The Load library is constructed of phase header blocks and phase blocks. A phase header block describes the phase
blocks which constitute a single phase. Each phase header block is immediately followed by one and only one prefix
loader block. The phase blocks follow the prefix loader block. Phases are filed in the library in ascending
alphanumeric order {A through Z and 0 through 9) according to the phase name in the header block.

Load library updating is done by phase. When library updates involving interspersed load modules (the load module
name begins with the $ character) are processed, the following characteristics must be considered:

n Load modules beginning with a $ character are not filed in ascending alphanumeric sequence, Interspersed
modules are processed with no recognition of sequence. if a $ name module is to be added (for example,
ADDL $TRNO00O0O), it is added to the library output tape in the current tape position. If a $ name module is
to be deleted (for example, DELL $TRNOO0OO), the library input tape is copied in a forward direction until the
first occurrence of a match ($TRNOO0OO). Any subsequent occurrences of the same module remain unchanged.

7667 Rev. 2 UNIVAC 9400 SYSTEM 2-3

UP-NUMBER | PAGE REVISION IF’AGE

] When a library access of a $ name module is performed, alphanumeric sequence is ignored. Accessing an
existing $ name module by a DELL $ name or CPYL TO, $ name statement causes a search on equal through
the LOAD file with no cutoff when module name of greater alphanumeric order is recognized. An ordinary
tape search is performed until the first occurrence of the module is encountered. Subsequent references to the
same $ name module located in the LOAD file in several other places requires additional DELL $ name or
CPYL TO, $ name statements.

2.1.2. RESERVE LIBRARY

The Reserve library is primarily used for storing object modules created by one of the language processors
(Assembler, FORTRAN, COBOL, RPG). These object modules must be processed by the Linkage Editor before they
are executable. Therefore, reserve object modules, unlike the phase modules in the Load library, cannot be accessed
by a LOAD or FETCH macro instruction,

The Reserve library is constructed of header blocks and associated object blocks. A header block describes the object
blocks which comprise a reserve moduie; the object blocks immediately follow the header block. A reserve module is
filed in the library in ascending alphanumeric order according to its module name in the header block.

2.1.3. COPY LIBRARY

The Copy library consists of copy moduies. These modules are sets of source statements associated with COBOL
COPY statements. The Copy library is constructed of header blocks and source blocks. A header block identifies the
source blocks which comprise a copy module; the source blocks immediately follow the header block. The source
statements of the copy module are filed in their full 80-character (byte) card image format. A copy module is filed
in the Copy library in ascending alphanumeric sequence according to its module name in the header block.

2.1.4. SOURCE LIBRARY

The Source library consists of source modules. These modules are sets of source statements to be processed by a
language processor.

The Source library is constructed of header blocks and source blocks. A header block describes the source blocks
which comprise a source module; the source blocks immediately follow the header block. The source statements of a
source module are filed in their 80-character {byte) card image format. A source module is filed in the Source library
in ascending alphanumeric sequence according to its module name in the header block.

2.1.5. PROC LIBRARY

The Proc library consists of Proc groups. Each Proc group is delimited by a tape mark; the last Proc group in the
Proc library is delimited by two tape marks.

A Proc group is made up of Proc modules which are a set of source statements that constitute a procedure
definition. Within the Assembler, a Proc module may be referred to by any of its names which are designated on the
NAME cards within the Proc definition. During a library update, however, a Proc module may only be referred to by
the module name which is contained in its header record. This name when included on a control statement (ADDP2
PROCNAME) need not correspond to any of the names on the NAME statements within the Proc module.

The Proc group is constructed of header blocks and source blocks. A header block identifies the source biocks which
comprise a Proc module; the source blocks immediately follow the header biock. A Proc module is filed in ascending
alphanumeric sequence within the Proc group. Proc groups are accessed by group number. The group number
follows the library designator P, which follows the desired function code. {An example of this sequence is DELP2
PROC1, which deletes a Proc module identified as PRCC1 in Proc group 2.) The source statements which make up a
Proc module are filed in the library in their fuli 80-character card image format (80-byte EBCDIC statement).

2-4
PAGE

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP.NUMBER | PAGE REVISION

2.2. OBJECT TAPE FORMAT

The main difference between the formats of the object tape and the library tapes is that the items on the object tape
are not filed in ascending sequence; they are filed on the object tape in the order they were processed. Consequently,
an object tape cannot be utilized as a library tape. The format of an object tape is shown in Figure 2-3.

VOL1

HDR1

*

Various object and load modules

ENDOBJ block

Legend:

*signifies the presence of a tape mark

Figure 2-3. Object Tape Format

2.3. PRINTER OUTPUT FORMAT

The Library Services (LIBS) program and the Display and Punch Services (DAPS) program produce specific printed
output formats.

The DVC and LFD job control statements are required for use of the printer. If the statements are omitted, DAPS or
LIBS issues a console error message and the job is aborted.

2.3.1. LIBRARY SERVICES (LIBS} PRINTER FORMAT

The printer output format for the LIBS program is a listing of five fields. The purpose of the LIBS program listing is
to have a record of the control statements and of the activity that has been performed. An example of the LIBS
program printer output is shown in Figure 2-4,

7667 Rev. 2
UP-NUMBER

UNIVAC 9400 SYSTEM

PAGE REVISION PAGE

2-5

ERROR CODE ERROR FIELD CONTROL LINE NUMBER SOURCE STATEMENT

**LiB IPL,INIT

**ADDL CONV0001,CONV0003,CONV0007,CONVO005
S3F CONVO0005

**ADDS COBOLSRC(ALT)
T2F

**CORS CONVERT

INS 13
0014 LI$TBL DC XL3'003F27
ENDCARD

Figure 2-4. LI8S Print Format

Error Code Field
This field contains three subfields.

— The first subfield designates which of the four categories of errors was encountered.

T = Tape error

S = Control statement error
E = Miscellaneous errors

C = Card errors

— The second error code subfield is the error designator. Each category comprises a number of error
conditions, which are defined in Appendix B.

— The third error code subfield designates the error origin within the librarian. This code has no
significance to the user.

Error Field

The error field contains the expression which was in error or it contains supplemental information as explamed
in the individual error descriptions in Appendix B.

Contro! Field

The control field is used to list librarian control statements and subfunction control statements, Control
statements, such as ADDL and CORS, are displayed with two leading asterisks. Subfunction control
statements, such as INS and REP, are displayed without the two ieading asterisks.

Line Number Field

The line number field contains the source statement line number. The line number, which is automatically
applied to the source statement by the librarian, is displayed on listings obtained by running the DAPS
program of the Tape Librarian. Each source statement is consecutively numbered starting with 1. Any
corrections made in the source program on tape must be based on these line numbers.

7667 Rev. 2 UNIVAC 9400 SYSTEM 26

UP-NUMBER PAGE REVISION PAGE

[| Source Statement Field

The source statement field reflects the 80-column source statement image and is indented to distinguish it
from control statements.

2.3.2. DISPLAY AND PUNCH SERVICES (DAPS) PRINTER FORMAT
The printer output format for the DAPS program is a listing, which shows, at the option of the user, the contents of
the tape, a specified library, or a module in a specified file. The option of printing only header labels is available.

Examples of the DAPS program printer output are shown in Figures 2-5 and 2-6.

**LOAD FILE (started on new page)

BLK NO. FID NAME VER NO. FLAGS ESID PHS ADR LENGTH PROTECT MDL ADR LENGTH
cccecc ccce ccceecee cc-cc hhhh hh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh
BYTES BLOCK NO ccccc OBJECT STATEMENTS
hhhh hhhhhhhh h —— 12 bytes/line h
hhhh hhhhhhhh h h
hhhh hhhhhhhh h h
hhhh hhhhhhhh h h
Legend: c signifies alphanumeric characters

h signifies hexadecimal notation

cccee represents the decimal block number value.

Figure 2—5, DAPS Print Format (Load File)

**COPY FILE (started on new page)

BLK NO. FID NAME VER NO. FLAGS
ccecee ccce ccceecee cc-cc hhhh
LINE NO. SOURCE STATEMENT

ccece c C

ccecee c c
cceee c c
cccee c c
Legend: c signifies alphanumeric characters

h signifies hexadecimal notation

Figure 2—6. DAPS Print Format (Copy, Source, and Proc Files)

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER

2-7

PAGE REVISION | PAGE

2.4. PUNCH OUTPUT FORMAT

The DAPS program also produces output in punched card form. The format for source card output is an exact
duplication of the 80-character tape source record. The format for object punched card output is a copy of the
records as they appear in a block on tape. Seventy-two columns are reserved for object data; additional
identification, such as program identification and sequence number, is inserted into each card in columns 73 through
80. However, it is necessary to have several cards in object format before an entire tape block can be composed.
When object output in card format is added to a library, a sequence number check is made to ensure the presence of
all cards that have been output by the DAPS program.

When a hole count error occurs in the DAPS PCH or PUD function, eight attempts are made to repunch the card.
The cards in error are stacker selected into the error stacker.

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP.NUMBER PAGE REVISION

PAGE

3-1

3. LIBRARIAN FUNCTIONS

3.1. GENERAL

The Tape Librarian consists of two programs:

n Library Services (LIBS) program

] Display and Punch Services (DAPS) program

Library services are defined as those library routines which alter the contents of a library. These functions are used
to add, delete, copy, and correct components of the libraries through use of the LIBS program. The LIBS program is
initiated through use of the EXEC LIBS job control statement. Each LIBS function performed is accompanied by
printed statements reflecting the actions accomplished. The programmer may suppress this printing by using the
NOPRNT option as described in 3.2. A diagram of the functions of the LIBS program is shown in Figure 3-1.

Display and punch services are routines which do not alter the contents of a library. These functions are used to
retrieve information from a given library, display it as printed output, and/or convert a given module into a punched
card output deck. These functions are accomplished through use of the DAPS program. The DAPS program is
initiated by an EXEC DAPS job control statement. A diagram of the functions of the DAPS program is shown in
Figure 3-2.

[OBJFIL \ I ALTLIB)
\ (IF SPECIFIED) } \ (IF SPECIFIED) |
\ / \ /
\ (\\ L
N =7 M

~ ~
~ P

_.'_____J
\\ 1 -
S—

—

e & ¥ -

LIBS PROGRAM

|]
! |
| PRINTER "
LISTING |
| (F SPECIFIED) |
|
L~

-

Figure 3—1. Functional Diagram of the Library Services (L1BS) Program

7667 Rev. 2
UP.NUMBER

UNIVAC 9400 SYSTEM

PAGE REVISION PAGE

3-2

LIBIN

DAPS PROGRAM

] 1 -
' i e CARDS !
: PLl?éerg } | (IF SPECIFIED) :
| (IF SPECIFIED) ! L]
! 1
o

-_——

Figure 3—2. Functional Diagram of the Display and Punch Services (DAPS) Program

3.1.1. LOGICAL FiLE DESIGNATIONS

Logical file names specified in the LFD statements defining the four tapes which can be involved in a library update
are discussed in the following table.

LOGICAL
FILE NAME

MEANING

FUNCTION OR DESCRIPTION

LIBIN

LIBOUT

OBJFiIL

ALTLIB

PRNTR

PUNCH

Input library tape

Output library tape

Object tape

Alternate library
tape

Printer

Punch

This input tape may be assigned as a system
resident (SYSRES) volume or as another tape
volume.

The input fibrary is updated and copied onto
this tape. This tape has ordered sequence, with
the exception of the interspersed modules.

Output of the Linkage Editor and the language
processors is ‘‘stacked’’ onto this tape. This
tape has a random sequence.

A library structure may be assigned as ALTLIB
to enable selected components to be merged with
LIBIN. This tape has an ordered sequence, with
the exception of the interspersed modules.

Required; if omitted, a console error message
is produced and the job step is terminated.

Required in DAPS only for punch options. If
omitted, a console error message is produced
and the job step is terminated.

Table 3-1. Logical File Name Descriptions

)

()

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER] PAGE REVISION I PAGE

3-3

3.1.2. JOB CONTROL STATEMENTS

The librarian functions are performed through use of librarian control statements. The job control statements used
for a complete Tape Librarian run are:

] JOB statement

] DVC, VOL, LFD, LBL,..., device allocation statements (allocation of printer is required)

| EXEC statement with the applicable librarian program designated

|] PARAM statements (for DAPS only)

m /$ statement which indicates start of librarian control statements

] Librarian control statements pertaining to the function to be accomplished

n /* statement which delimits the librarian control statements

B /& statement

The device allocation control statements used for LIBS functions should follow these conventions. For each library
tape that is required, a logical file name (LFD) statement must be included for those logical file names listed in 3.1.1
(for example, // LFD OBJFIL). In addition, VOL and LBL job control statements allow the librarian to check input
tapes (LIBIN, OBJFIL, and ALTLIB with VOL1 and HDR1 labels) to ensure that the correct volumes are mounted.
The library file identification and volume serial number may be confirmed to prevent the merging or copying of an
incorrect tape volume. The system library structure may be updated from the master tape or from an alternate tape.
The DVC statement associated with the LFD LIBIN determines the input source.

The device allocation control statements used for the DAPS functions are similar to the requirements previously
described. If a library display and/or punch is performed, LIBIN must be assigned as the logical file name for the

input tape. Back-to-back library operations may be accomplished by reallocating a specific device associated with
the previous LIBOUT to LIBIN.

The PARAM statements in a control stream for a DAPS operation allow the user the following options:

[| a check for the maximum block size of specified LIBIN modules
[| a sequence number check of tape source image statements.
The format of the PARAM statement for requesting a block size check is:

1 I1o

// PARAM BLKSZERR

The DAPS routine checks the number of bytes in the specified modules to determine whether the maximum system
standard block size has been exceeded. This check can be used for all DIS and PUD options except the DIR option.

The format of the PARAM statement for requesting a sequence number check is:

1 |10

// PARAM SEQCHKER

DAPS checks for an ascending order of the sequence numbers.

7667 Rev. 2 UNIVAC 9400 SYSTEM

3-4
UP-NUMBER PAGE REVISION

PAGE

3.2. LIBS PROGRAM

The LIBS functions are performed by updating LIBIN in the order of its libraries (files). The order of the libraries is
shown in Figures 2-1 and 2-2. If a particular library is not affected by an update, the entire library is automatically
copied from the input library tape.

Within a given library the modules must be updated according to their order on tape. In all libraries the modules are
filed in ascending alphanumeric sequence by module name. In the Proc library, modules are sequenced within each

Proc group, but no sequencing relationship is found from one Proc group to another.

Before any of the LIBS functions (add, delete, copy, and correct) may be accomplished, certain parameters must be
submitted. The parameters are introduced through use of the LIB librarian control statement.

A tape file used in a librarian run can have only one device assignment and logical file name associated with it within
a job step. For example, in a given job step, a file specified as LIBIN cannot also be specified as an ALTLIB or a
LIBOUT file.

3.2.1. LIB STATEMENT

The format for the LIB librarian control statement is:

OPERATIOND l OPERAND

LIB , [tPL][,INITI[,NOPRNT][,NOBJ] [NALT]
OPTIONS
IPL — specifies that the Bootstrap and IPL blocks and a tape mark are to be written as the first items on

the output library tape (LIBOUT) in the system library structure,

if blank — causes VOL1 and HDR1 blocks and a tape mark to appear as items on LIBOUT signifying a user
library structure. The user has the normal option of specifying labeling information through use of
VOL and LBL statements.

INIT — specifies that a new library structure is to be initiated (on LIBOUT). During this operation, there is
no input library structure (LIBIN); LIBOUT is constructed from only the items which are added
during this library update. The input items are obtained from OBJFIL or punched cards as defined
in the following sections.

if blank — the librarian assumes a LIBIN exists. The user should define the input library to the LIBS program
by means of the appropriate job control statements.

NOPRNT - causes the suppression of all printing of the librarian control statements and their related messages.
if blank — printing of the librarian control statements is performed.
NOBJ — specifies that no OBJFIL is required for this particular library update; no LFD or DVC job control

statements will have been provided for OBJFIL.

if blank — the librarian assumes that OBJFIL is present; the run is terminated if the conditions are found to
be otherwise.
NALT — specifies that no ALTLIB is required for this library update; no LFD or DVC job control

statements will have been provided for ALTLIB.

7667 Rev. 2 UNIVAC 9400 SYSTEM

3-5
UP.NUMBER l PAGE REVISION I PAGE

if blank — the librarian assumes that ALTLIB is present; the run is terminated if the conditions are found to
be otherwise.
Example:
L i0 79 3% 40 50
; AR TN YO NN WU NS O SO S SO SO P ORE SN Y SO SO TOON ST IO S SNS HOOT S OO SO0 SO OO YOUD SN AR SUONs SO O SO0 T SO SO SN WU S S WA DAL N0 ST ST W

According to this example, the Bootstrap and IPL blocks and a tape mark are written as the first items on the output
library tape, and a new library structure is initiated on LIBOUT. There is no printing of library control statements
and their related messages. However, if a librarian control statement is out of order, it is ignored and a message
stating this action is printed.

3.2.2. ADD FUNCTION

The ADD function adds a module or group of modules to the library which is specified by the library designator.
Any number of modules may be added during a single run. Modules, which are inputs from various sources, must be
added in their proper order. If a module to be added to a particular library has the same name as a module which is
already resident in the library, the resident module is replaced. Thus, the delete function is automatically provided.
An exception to the automatic delete function takes place when interspersed modules are added {$name modules,
see 2.1.1) to the load file. An interspersed module is added immediately. No checking of sequence or position is
done; therefore, an explicit delete statement must be added before the ADD statement for $ name modules. If an
advanced position is desired, the existing library tape must be explicitly positioned by the user. The copy function
(CPY) or the delete function (DEL) is useful for this purpose.

The ADD statement has three basic formats. Choice of a format depends on the library being added to and the input
source. The first format is used for adding to the Load or Reserve library, the second for adding to the Copy or
Source library, and the third for adding to a Proc library. Because of duplication of positional parameters among
formats, each parameter is described only once following the formats. The formats are:

OPERATIOND OPERAND
. " ((CARD)

ADD R% name-1 (OBJ) [,name-2...]
_{ (ALT)

oSl | e A | e ‘
" ((CARD)

ADDPn name-1 (ALT) [.name-2...]
|_{ (ALT,group)

Positional Parameter 1

name-1 — may be up to eight characters in length, representing the modules to be added. The gang operation
{see 1.3) causes all modules having the same leading characters to be added to the library.

(CARD) — indicates that input is from the card reader.

7667 Rev. 2 UNIVAC 9400 SYSTEM 3-8
UP.NUMBER PAGE REVISION PAGE
(OBJ) — indicates that input is from the OBJFIL tape. The OBJFIL tape contains only load modules

produced by the Linkage Editor, an assembly, or a compilation. These modules can be transferred
to the librarian load file; however, a language processor is not acceptable for inclusion in the load

file.

{ALT) — indicates that input is from the ALTLIB tape. The modules in the ALTLIB file are in
alphanumeric sequence. The tape remains positioned after the last module specified.

(ALT,group) — indicates that input is from the ALTLIB tape and specifies the group number which contains the
Proc. If group is not present, the library designator is used to identify the alternate library file. If

the module name specified is greater in value than the name associated with the ALTLIB tape
position, the tape is rewound to the beginning of the file.

NOTE: If no input source is indicated, the following input sources are assumed:

LIBRARY SOURCE

Load OBJFIL

Reserve OBJFIL

Copy Card
Source Card
Proc Card

Positional Parameter 2

name-2... — if present, positional parameter 2 has the same form as positional parameter 1.
Examples:
! 2 ! 56

DDL, GONVIIFL, TNPT OODO .\ (it s i L
4DDR FORT « ALL CAL. r>t, rwsfr (&ﬁv) T R R
APDC IN.T.9000 ((CARD.): T R T A N T T s I T e e

Ll
AL FCRT e L L (ALT) | i IR AR TN X TOU0 Y SO YOO TN WO NOO TN WA W WAON WA VAN WO SO N W SO W
DOP6 COS(ALT, 2) ,SQRT (AL 7‘1.172) Y WO W ST W WO VOO TN SO WY N AL U SO VO AT WA O M
PSS O YO U0 TN W WA T NN WY T R Y UUNN WY SOE WA W T WOON N U YOO TN WO N SO W K TN UUOC SO TN SO MO OO Y SO AU SN0 WY SO WY SO SO SO S O I :

3.2.2.1. TRANSIENT ROUTINES

The ADD function may be used to create transient routines from existing phase or object modules and add the
transient routines to the Load or Reserve library. The input phase must be self-relocating and must not exceed 1536
bytes.

An input module may be on an ALTLIB or an OBJFIL tape volume. An attempt to construct a transient routine
from an existing transient routine produces an error and the control statement related to the transient routine is
ignored.

3-7
UP.NUMBER

7667 Rev. 2 I UNIVAC 9400 SYSTEM

| PAGE REVISION I PAGE

The format of the ADD statement for creation of transient routines is:

OPERATIOND OPERAND
ApD {t TR y [JoBa bl o 2.1
R ,name- (ALT) ,TR,name-2...

Positional Parameter 1

TR — specifies that a transient routine is to be created. This parameter must be present.

Positional Parameter 2

name-1 — represents the name of the phase which is to be transformed into a transient routine. This
parameter may be eight characters in length; if muitiple appearances occur within the Load library,
the first character must be $ (see 2.1.1).

(OBJ) — indicates that the input is from the OBJFIL tape.

(ALT) — indicates that the input is from the ALTLIB tape.

Positional Parameter 3

TR — specifies that a transient routine is to be created. This parameter must be present if posltlonal
parameter 4 is present.

Positional Parameter 4

name-2 — if present, positional parameter 4 has the same form as positional parameter 2.

Exampiles:

1 10 28 38 40 50
ADDL. Jﬂ ilaPWLO O4(ALT).. SSE Y T SNSRI SRS WONE W SO SO WOOE N SO OSSO S SO N Y ST SO NSO SO WO S

ApDDL TR, LPUTO0012,TR, G'TTTG 003 S U R S R R R AR AR S

R WO SO O N W G i bbb bt e b

3.2.2.2. VER SUBFUNCTION

The VER subfunction of the ADD function creates a version number for differentiation between the versions of
source code when adding to the Copy, Source, or Proc libraries. The VER statement is used only when input is from
card. The VER statement must immediately follow the ADD statement. If positional parameter 2 is used in the ADD
statement, the VER statement follows the ENDCARD for the source statements of the module named in positional
parameter 1 of the ADD statement. The format of the VER statement is:

OPERATIOND | OPERAND

VER level-number,update-number

7667 Rev. 2 UNIVAC 9400 SYSTEM

3-8
UP-NUMBER | PAGE REVISION J PAGE

Positional Parameter 1

level-number — specifies the new two-digit level number. This number is the first part {(or byte) of the version
number. The range is 00-99. Two digits must always be specified.

Positional Parameter 2

update -number — specifies the new two-digit update number. This number is the second part (or byte} of the version
number. The range is 00-99. Two digits must always be specified.

NOTE: When a VER statement is not supplied, it is assumed that O's are inserted for the version number field.
For an ADD function that replaces information, no automatic updating of the version number occurs,

Example:

!

1 49 33 S0 iy

ARG DU SO SRR SN SN SUN0S SEUU OO SRS WU WU GO FSON DU WU SN SN SO WOVRY VR SO SR U U UV WU NOOPR ANED S N MO0 SO SR SN SR SO S s A

3.2.3. DEL FUNCTION

The DEL function deletes a module or group of modules from the library specified by the library designator. Any
number of modules may be deleted during a single run; modules to be deleted must be in proper order and module
names must be separated by commas if more than one operand appears on a librarian control statement. The DEL
function is also used when updating $ name modules (interspersed modules) in the load file to position the tape to
the correct location or to replace a $ name module of the same name.

The DEL statement has four formats. The first is used to delete the entire remaining portion of the library structure
(therefore, no library designator appears); the second, to delete the entire remaining portion of a specific library.
The third is used to delete a group of modules. The fourth is used to delete a specific module or a number of specific
modules. In the DEL statement formats, the lowercase x represents the library designator. Because of the
duplication of positional parameters among formats, each parameter is described only once following the formats.
The formats are:

OPERATIONB| OPERAND

DEL ALL

DELx ALL

DELx TO,module
DELx name-1[,name-2]

Positional Parameter 1

ALL — causes all or the remaining portion of a library or the entire library structure to be deleted,
beginning at the current tape position.

7867 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER

3-9
PAGE REVISION | PAGE

NOTE: If LIBIN is positioned in the Reserve library and DEL ALL is specified, the remaining reserve modules
are deleted along with the Source, Copy, and Proc libraries, and two tape marks are generated on
LIBOUT followed by the ENDLIB sentinel.

TO — specifies that the deletion process is to begin with the module in the current tape position.

name-1 — specifies the particular module or group of modules to be deleted. The gang operation option (see
1.3) causes all modules with the same specified leading characters to be deleted from the library.

Positional Parameter 2

module — specifies the first module which is not to be deleted.

name-2 — if present, positional parameter 2 has the same form as positional parameter 1.

Examples:

3 % 20 3z 40 50

DEL ALLL R N TR S S T T W R T T e N N I A T e R T T T T

DJE:L el 'A'Lll-(i SO TSN NUU SO U SN WS YN SO WS SNS S DU SUNE YOS SO GO ONDE SO S SN SO SO GO SO b b s b bt

DEL.S, 57‘1(9{,.560350“- SRC: SO T SO T W T W A0 O TG WK SO 0 SO ST N [SO S ST W N0 N N

beLR aﬂxy‘@w Y A A R N U U N N SN O S N ST BT A N TN N AU TN AN NN B NN N N M RN A N
SO TR Y008 WO NN NN TR VNN WO NN VOO YO Y WOOE W00 VOUE WC VN WU JOU WAL WO UOE YO0 OOF SOON A YON T VOOT UOOC TR WO VU U TONS WO WV NS N NN N NOT NS W O A

3.2.4. CPY FUNCTION

The CPY function is used to copy LIBIN selectively or entirely. A complete copy consists of generating the
Bootstrap and IPl (system library structure) or checking and updating the VOL1 and HDR1 label {user library
structure) and copying all of the individual libraries (files). During a library update, the lack of reference to a
particular library causes the entire file to be copied into LIBOUT. Therefore, if the library is to be skipped, a DELx
ALL statement is required.

The CPY statement has three formats. The first format is used to copy an entire library structure; therefore, no
library designator appears. The second format is used to copy groups of modules; the third, to copy a specific
module or a number of specific modules. In the CPY statement formats, the lowercase x represents the library
designator. The formats are:

OPERATIONB| OPERAND

CPY ALL
CPYx TO,module

CPYx name-1[,name-2...]

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER

3=10

PAGE REVISION | PAGE

Positional Parameter 1

ALL — causes the entire library structure to be copied. The information on the LIB statement causes the
appropriate library tape records or labels to be generated on LIBOUT. Thus, either the Bootstrap
and IPL records are generated, or the VOL 1 and HDR1 labels are generated.

TO — designates that the copy process is to begin with the module in the current tape position.

name-1 — specifies a module to be copied.

Positional Parameter 2

module — specifies the first module which is not to be copied.
name-2 — specifies an additional module to be copied.
Examples:
3 I8 29 30 40 50
CPJY A\l iLI - dodieb bbb e b LR TS TR SO SN S S SO AN S SO0 WA O O - §ovdie b ds i d ! S
CPYL 1ﬁd; GENRO. 0O i i | i tiosiit bt bbb .
GPY L i TRILOOOOD iiiitoidbbeiodb bbbt s e b1
Y YOO YO T VO W N NN T N WO W VAN YO N0 N YA WO YO0 FUNN VOO TN VU TN VOO TR NN WU WU NN SUUN WO MU SN0 NN SANN TN S UUNN TN VG TS U WS T U TN A NV T

3.2.5. COR FUNCTION

The COR function with its subfunctions is used to correct lines of source code within the Source, Copy, and Proc
libraries and optionally to update the version number. Permissible source corrections include adding, deleting, and
replacing source lines. Any number of modules may be corrected in a single run; modules must be corrected in their
proper order. The librarian control statements used to correct modules are as follows:

OPERATIONDB| OPERAND

CORx name

VER level-number,update-number
INS n,

ENDCARD

REP n,.n,

ENDCARD

The COR statement is used to specify the name of the module that is to be corrected. Only the Source, Copy, and
Proc libraries may be corrected.

7667 Rev. 2 I UNIVAC 9400 SYSTEM 311

UP.NUMBER | PAGE REVISION |PAGE

OPERATION®B | OPERAND
C

COR{ S name
P

Positional Parameter 1

name — specifies the module to be corrected; name has a maximum of eight characters.

3.2,6.1. VER SUBFUNCTION

The VER subfunction creates a version number for the user to differentiate between the versions of his source code.

The VER statement is used only when input is from card. it must immediately follow the COR card.

OPERATIONBD | OPERAND

VER I level-number,update-number

Positional Parameter 1

level-number — specifies the two-digit new level number. This number is the first part {or byte) of the version
number. The range is 00-99, Two digits must always be specified.

Positional Parameter 2

update-number — specifies the two digit new update number. This number is the second part (or byte) of the version
number. The range is 00-99. Two digits must always be specified.

NOTE: When a VER statement is not supplied, the update number is automatically incremented by 1.

3.2.6.2. INS SUBFUNCTION

The INS subfunction is used to insert source statements in a module. The source statements to be inserted must
immediately follow the INS statement and terminate with an ENDCARD statement.

OPERATIONbl OPERAND

INS n,

Positional Parameter 1

n — specifies which line the inserted source statements are to follow. The line numbers may be
obtained through use of the DAPS program (see 3.3).

3.2.5.3. REP SUBFUNCTION

The REP subfunction is used to replace or delete source statements in a module. The source statements which are to

replace the existing lines (n1 to n, inclusive) must immediately follow the REP statement and terminate with the
ENDCARD statement. Table 3-2 lists some of the subfunctions which may be accomplished by the REP statement.

3-+12
PAGE REVISION | PAGE

7667 Rev. 2 | UNIVAC 9400 SYSTEM

UP-NUMBER

OPERATIOND I OPERAND -~
~—
REP n,.n,
Positional Parameter 1
n, — specifies the first line to be replaced.
Positional Parameter 2
n, — specifies the last line to be replaced.
NOTE: n, and n, may be equal.
TASK SEQUENCE OF CONTROL STATEMENTS TO
ACCOMPLISH TASK
LINE A PRECEDING LINE 1 REP 1,1
Source statement A to be added
Source statement formerly in line 1
ENDCARD
DELETE LINE 3 REP 3,3 ~
ENDCARD
REPLACE FIVE LINES WITH REP 11,15
ONE LINE
MVC WMP,EGP
ENDCARD
Table 3-2. Examples of Functions Accomplished by Use of the REP Statement
3.2.5.4. ENDCARD STATEMENT
The last card to be included after the source statements associated with an INS or REP statement is the ENDCARD
statement. This statement is used by the LIBS program as a sentinel for terminating an INS or REP operation. If the
ENDCARD immediately follows the REP statement, the positional parameters of the REP statement are omitted.
The format of the ENDCARD statement is:
OPERATIOND | OPERAND
ENDCARD T
-

No positional parameters are required.

7667 Rev. 2 UNIVAC 9400 SYSTEM 3-13

UP-NUMBER | PAGE REVISION | PAGE

3.3. DAPS PROGRAM

The DAPS functions (display, punch, and display and punch) must be performed on a library structure in the same
order as defined previously for the LIBS functions. The order of the libraries is given in Figures 2-1 and 2-2. The
modules in the libraries are filed in ascending alphanumeric sequence by module name.

Additional checking is provided to ensure the integrity of the multifile librarian tape. Validity checks are included to
detect:

[] Missing or incorrect file identification field.

] Missing prefix loaders for all modules in the Load library except transients.

| Block size exceeding the maximum allowed for a specified file.

] When modules are punched, ascending order of sequence numbers, which appear in columns 73 through 80 for
all Copy, Source, and Proc files. For source formatted modules, the number consists of a five-character
sequence number, incremented by 10, and a three-character program identification number. For object
formatted files, the number consists of a four-character sequence number, incremented by 1, and a
four-character program identification number. For sequence number checking, the parameter statement
// PARAM SEQCHKER
must be included between the // EXEC and the /$ statements in the contro! stream. If the user has specified
no sequence number on the first statement of the module, DAPS creates its own sequence numbers.

3.3.1. DIS FUNCTION

The DIS function displays a module, a group of modules, an entire library, or the header records of an entire library.
Any number of modules may be displayed during a single run.

The DIS statement has three formats. The first format is used to display the entire library structure; therefore, no
library designator appears; the second is used to display a particular library, and the third, to display a specific
module or a number of specific modules. In the DIS statement formats, the lowercase x represents the library
designator. Because of duplication of positional parameters among formats, each parameter is described only once
following the formats. The formats are:

OPERATIONB | OPERAND
DIR
ALL
DISx DIR
ALL

DISx name-1[,name-2...}

DIS

3.3.2. PCH FUNCTION

The PCH function is used to convert a module in a library into a punched card output deck. This function may be
used to punch an entire library, a group of modules, or a specific module. Any number of modules may be punched
during a single run. When object modules are converted to cards using this function, the header block is punched;
however, when source modules are converted to cards, the header block is ignored.

The PCH statement has two formats. The first is used to produce a punched card deck of an entire library with
header records; the second, to produce a punched card output of specific modules with header records. in the PCH
format, the lowercase x represents the library designator. The formats are:

OPERATIOND OPERAND
PCHx ALL
PCHx name-1{,name-2]

Positional Parameter 1

ALL

— causes each module in the designated library to be punched with its header record and associated
records.

7667 Rev. 2 UNIVAC 9400 SYSTEM 3-14
UP-NUMBER PAGE REVISION PAGE
Positional Parameter 1 -
~—
DIR — causes all of the header records in the library structure or the designated library to be displayed.
The output is in EBCDIC or hexadecimal notation, depending on the type of information.
ALL — causes the display of each module in the library structure or designated library to be printed with
its header record and associated records. The information is displayed in EBCDIC or hexadecimal
notation according to the type of information.
name-1 — specifies the module to be displayed and contains a maximum: of eight characters. The gang
operation option (see 1.3) causes all modules having the same leading characters to be displayed as
printed output. The printed output is in EBCDIC or hexadecimal notation according to the type
of information.
Positional Parameter 2
name-2 — if present, positional parameter 2 has the same form as positional parameter 1.
Examples:
3 i0 20 38 ’ A0 50
DIs ALL I S O R T O OOt TONE SO0 NS SN S SO R TR TN SO YOO SUOY O OO0 Y SN W S S SUOE AUO% HON VONE SO NUN SOOI S SO SO SO SO AN A O A
DISL:, CORMFM, WNPEGP . | ; L
D;/:.SJ'C: PLR o Ui i i i i i : Lok ~
SR ST N0 W SN 00 WL YO0 TR0 VO WOON S WY UL OC WO TNV SO MUY W TOE WO ST VA TN WU UNE JO0% N S S ST YOOF VUNY S WSS JUND JNY YOO ST SO DAY U SOV SN S SO S N

UP-NUMBER

7667 Rev. 2 UNIVAC 9400 SYSTEM L ‘ 3-15
PAGE REVISION | PAGE

name-1 — specifies the module to be punched. Each module is punched with its header record and associated
records. The gang operation option (see 1.3) causes all modules having the same specified leading
characters to be punched.

Positional Parameter 2

name-2 — if present, positional parameter 2 has the same form as positional parameter 1.

Examples:

7 1o 20 38 40 50
PC.HJI ﬁ;L L i bk Lohe ESNEN VO S SO S SO N TS e THNU TSNS O N SO SOUN WS HOOF SO SU WOT O A0 S WS

.PxCLMLW _LEL_PI.Gdo 0_2 e WM,.de 4 LO.:I‘ F T SN U SRS TV SUV IURDLU SO FPTS TR JOPUR DS AR WU SO § T b Lodhdh

FSNR SO SR SO WA VTS SN VU WD WY SO SN SN SO SO U NN AU SN SUPNE STNE VUOOE VU W T SO SO UG TOU MOV VOOUE U OO AU TN SN SO S N N T A A NI A

3.3.3. PUD FUNCTION

The PUD function is used to display a module as printed output and to convert the module into a punched card
output deck. The display and punch function may be used to display and punch an entire library or to display and
punch an individual module or group of modules. Any number of modules may be displayed and punched during a
single run. When object modules are converted to cards using this function, the header block is punched; however,
when source modules are converted to cards, the header block is ignored. All header blocks are displayed, however,
regardiess of the type of module.

The PUD statement has two formats. The first is used to display and punch an entire library with header records; the

second, to display and punch specific modules with header records. In the PUD format, the lowercase x represents
the library designator, The formats are:

OPERATIONG | OPERAND

PUDx ALL

PUDXx name-1[,name-2}

Positional Parameter 1

ALL — causes each module of the designated library to be printed and punched with its header record and
associated records.

name-1 — specifies the module to be displayed and punched. The gang operation option (see 1.3) allows all
modules having the same specified leading characters to be displayed and punched.

7667 Rev. 2 UNIVAC 9400 SYSTEM 3-16

UP.NUMBER ' PAGE REVISION I PAGE

Positional Parameter 2 S~
name-2 — if present, positional parameter 2 has the same form as positional parameter 1.

Examples:

1 W I 35 Al 50

PU:D.SJ ALL s s
PUDC. SUPE (002, WE Li.d001

i

()

()

7667 Rev. 2 UNIVAC 9400 SYSTEM

A-1
UP-NUMBER l PAGE REVISION I PAGE

APPENDIX A. SAMPLE CONTROL
STREAM FOR LIBS AND
DAPS FUNCTIONS

1 0 20 RIS A L &i

.Z_/J_ AM_..L_.._‘...;meaamcz.,.. F R S I T F O U P PR O OO |

VAV A /A s L R S SO S S SO SO S SNt U N VT S SO U O SO U S ST SO S

(il LED. . . iPRNTR . N W S PR S SO UE NS SO T U N SO0 SO ST N TN SO SO SO SO O OY WY SO S SONES SS S S SO DSOS
(/. _DVC RES, | i i lA.f’:{r.sw.s’ 5’m‘x55‘ A3 ZHPOT. ,zfim/mL TA. PE. NI
4 LED o WL IBEN oo Lo g b e b e e b
NJ_,\Q.!LC:_,L.J_,J_.J;..L,L,_L_.L,,L__.LL.. [T TSNS U N O U G0 SO0 TR TS W SO SOF WU SN ST S FHOE S NS HO R SO ST S O P i it bt
/s LED o OBWELL | il i ek b e s e i
/20 DVC 0 0 M i e el ‘

L LFD o B EBOUT e i b ettt e U
L0 DVC 0 0T e e NI
AL LED o RCTLETB, s b i U : ; - PRI SRR SO
1/ EXEC WEBS i e e
L¢L__\.LJ_L.J._J__L TR SV N N0 YU SO N YA WO VNN O WA WO SO0 (O SOR S SO SO SO AR SO SO0 SO YA SO GREONNY WA U SN W SO S SO0 WU ST SIS T S N
‘Mﬁmﬁﬁﬁfﬁwéi_ﬁd&udﬁﬁT.YLLKM _LK_EJS’ ORDS i i)y
Py / £, Ll LOAD, (LITORARY WP IT0 BUT .| .
b v a s o o MOT LNOL UBING (COMVAZAL o o o h a0

| DELL TS, KON Y0204 PELETES pLL LOAD MODUVLES UP TG BUT (| i

L i v aa g e L MET TN SDINME CEMV0 GO o | s il
M@MMMLMP L 10404 WITtH VERSTOM FRIM | |
s e b s b ALTLEIS AND GOLTES ENTIRE RESERVE . |] |
b v o b g s sl LTARARY: v b e b s
| DELC ALL o ISKIPS. ENTDRE, COF JJIJ@M&;ZA,JM_‘_/A_LJEZLL!J_LIQ‘ T -
saa gt GEMERAT.ED \ON LIBEUT | i SNUNINT O
i i ADDS. LB IPROGCL(CARD). ADDS SuRCE MODUL. F},LBJPR-dGI.,
bt s g b va s e |FROM CARDS .. ﬁ&j‘Pk&’ﬁL IS LZM E . i
bl a b \VORUME MamE USED | IN CREATION, OF
v v b g gl s s \THE HEADER RECORD- ;| ot st soaaa il
P U S SN VA0 O T SO0 W (T SO S U W 0 U ST U0 O T S W A Y S SN U U WS S WO ST SO S S O WO S SO S TN S S A S VO W W S0 Y S
o YER O7,00 1 s VER STATEMENMT. SPECTALES USER S .
ik s by | YERSTAOM MUMEBER . T F OMITTED,: .| .
v b e \BINARY, ZEROS ARE. STORED: . IA_(_,..L_JJ_x
i g s a1 VERSTON MUMBER FIELD, . i

H i H
jlllL‘JJJ{LL‘[L“.llL‘l}[‘I‘llL‘jJ!LuliLx‘Ll]LJll‘l‘llL{'lLl

7667 Rev. 2 UNIVAC 9400 SYSTEM

A--2
UP-NUMBER PAGE REVISION

PAGE

1 0 20) 30 40 50 60

A WTART 2884, o o oy e by g g)
| OSTIMG |RLZ)¢*1 PRV S T SRV SOV IO NS £ NN SN TAVHUN S SR SN SO O T VOO SO A S S W SO Y S WA IOV N S0 WUk ENS VO I
L PEAMO \BALR \R2, B oo DATA ORRDS. iy a0
1|L1LJljilLlanipxqucfnnllx14111111|\||11L;fiL111;||||||';1111'111
il‘llllLlwmdiilllltl!I)I(AII%]!!'iLLllllI!ll(lll!ijl
L JEMDCARD, L i WSENMTINEL, TNDICATIMG, \TERMINA= | |
pg it b b s o (T OM SF ADD GPERATION. i s]y
CORS L WTZLLTY. . o VPDATES, UTLLITY: SOURCE MODULE:: i . |
CINS B i e b e e L
"L,LJDLQ& el S, RES s IMSERTS SEURCE STATEMENTI AFTER | o+ i |
AT B S SN S A A A AT Y SN N AR ST AV 47, 7 = W 0 W S N S NS B N W NS S N SR A U SN N T S N ST A A
L ENDCARD L il END SEMTINEL - L i L
L REP 1029029 b a1 s REPLACES LIME 129 WITH FALOW= o . |
PSRN ST SN WS TN W U U N VA0 SO0 S0 A YO0 T S N W S S JJ_L_J.Z_/,V_GL_.[QQM‘%M_LQ.:J_: TS U Y N S S S VA SR SR T P
L K RESTART. . SCAN . IS U O W TR TN SN STNT VNN T A0 O SO SN WY FRSSTTENS SN0 YN S S U0 WY NS VU TN 0N NOUN VS S WO SN SO W SO SO N A
v EMDCARD (i oooi g1 EMD, S'EWTI”[él‘L N S S N SR TS T W S O T HT N ST S S SO A
L DELPT nll & oo DELETES! AL L GF LPRSC EROUL . 1]
| ADDAS | . TAPE-ALL(ALT, 1) ADDS 78 RREC QROUP 4 AMY. MAME | | |
bttt g v s [BEGINNMIMG WITH THAPE IM PREC | 1 1 | 4
it ittt ottt CRKUP. TG MTLLB o o g g1 b
VAN N A 1C§MG‘|QQFJ;’ L LBRARY, UPDATE By, COPY~ |
Lao i1 JHNG IREMAIMING LT BRARY. JNEMSo o 1 i1
VAN 3 X« IR N - N A A A O N O AT O SR AT R AT A T AT N AU O B S A S A A N A O A
/z/ilLlEall‘tl'PU_MGHii:siillxtlj!li'll!lﬁillillli]llitl:!illjl!i

Ll DYC sl 6y ASISTGNS. DEVICE 6 .(FROM PRENIGUS . . |
ooy i by STER) AS LTBIM. L

|

!

iji‘l[!ilil!AL'élL'

Ll M FPD L B TBTNG e e e
L EXEC L DAPS. o s o b i s b b gy 1
i

oot H
/J$ll?JLIIIi!illxlljllllJliJ-LLi!‘!illl;l!‘lllilllllll}JJlil

o PESL L DTR aa J&LSJEJLLA.M_JALLJALJ HEADER REQORDS JM o 1 1
U AR N S AT AN B A S AR S AR AR ST 4.7 1Y 2. S TBRARY e 4 o i vy ey
L RISPG i TAPEALL o o DISOLAYS AMY AMANE, FECTINNING WITH | |
TV WS ST U ON YONS S NN U YOS U W 1O A WO S S0 U WS W AU | xTAip]E! I, PROC QRAVP 1 Sher i i | 4 1y i 0gi]

T

_L_L_LB_Qx.QPJ__x_L L_LAJ___L..L.J._ et L.i_IMMMMM-&MCM@;..&A&M#&&QL.L_

lilllJlll:ll’llllilllliLLlGxR&qqpll PN TSNS N NN U H VNS S SN S N A N S U N S A O S AN S S W |
/x |
L0 SO SO S S LU0 NN SRS IURNG SO DR SO U ST

FUUE N SO G N WS SOF SO YUY WA SN S ST WU WO ST N SN VO U G SR S S N T G U SN S S WS IO ST SRR I
,
!

/,&5.;: S SOUSSF S S NOF-JRNE TP S S SN S AR SN J NS U S S T Aewdee e doh L

i FUT O SN U SIOTYUR SRS Y N WO SO SO0 SOY SO USRS ST U0 O TN SIS SR U AU T S T S SO ST WU U T W SO NOY U SO T S 0SS T R

b bk E S R SN N PO S SN SRV SO

7667 Rev. 2
UP-NUMBER

UNIVAC 9400 SYSTEM

I PAGE REVISION I PAGE

B—1

APPENDIX B. ERROR CODES

This appendix describes the types of errors, the associated codes, and suggested error recovery procedures.

co

C3

C5

EO

E1

E2

E3

Description: The object module being added from cards is missing a header record or the module
name is incorrectly specified.

Suggested Recovery Procedure: Insert the missing header record or correct the module name on
the control statement; resubmit the job.

Description: Incorrect sequence of module name. Names must be in ascending order.
Suggested Recovery Procedure: Reposition control card into correct sequence.

Description: The /* card was encountered before the ENDCARD statement when adding a module
from cards or correcting source code. The LIBIN tape, if used, is copied to completion,

Suggested Recovery Procedure: Insert the missing ENDCARD statement; resubmit the job.
Description: The specified module was not found on the OBJFIL tape.

Suggested Recovery Procedure: Either the module does not exist on the OBJFIL tape or it is not
the correct type of module (a load module). Correct and resubmit job.

Description: Punched card hole count error detected.

Suggested Recovery Procedure: The incorrectly punched card is sent to the error stacker. Eight
attempts are made to punch a card correctly before the job step is terminated. Continued incorrect
punching indicates a punch hardware failure.

Description: LIBS statement is missing. A printer is required and the following files are assumed to
exist: an IPL systems library tape, a non-IPL library input tape (LIBIN), an ALTLIB, and an
OBJFIL.

Suggested Recovery Procedure: LIBS program processing continues. If any of the devices required
are not specified, the run is terminated. |If a systems dump occurs, insert the appropriate LIB
parameter statement; resubmit the job.

Description: Two or more logical library files are assigned to the same device. The job step is
aborted.

Suggested Recovery Procedure: LIBIN, LIBOUT, and the ALTLIB files must be assigned to
separate devices. Correct the assignments and resubmit the job.

7667 Rev. 2
UP-NUMBER

UNIVAC 9400 SYSTEM B—2

PAGE REVISION PAGE

E4

ES

EG6

E7

EA

EB

EE

SO

S1

Description: The length of a module being converted to a transient routine exceeds 1536 bytes.
The transient routine processing is terminated.

Suggested Recovery Procedure: Reduce the module size. Reassemble the module and resubmit the
job.

Description: The module being processed to produce a transient routine is neither an object nor a
load module. Processing continues. If the data records conform to the formats in object or load
modules, the transient processing produces a useful transient routine. If the data records do not
conform, the routine is not constructed.

Suggested Recovery Procedure: Correct the module and resubmit the job.

Description: Records being processed for a transient routine are not text records. Possibly an
incorrect module is being used.

Suggested Recovery Procedure: The records are ignored, but processing continues. Correct the
module and resubmit the job.

Description: The maximum number of bytes allowable in the transient routine being created has
been exceeded. Transient processing is terminated.

Suggested Recovery Procedure: Reduce the module size. Reassemble the module and resubmit the
job.

Description: Sequence numbers in a source statement are not in ascending sequential order.
{Check is made when the statement PARAM SEQCHKER is specified.) Processing continues.

Suggested Recovery Procedure: Correct the error and resubmit the job.

Description: A data error was encountered when converting string data from decimal to binary.
The library control expression in error is ignored; processing continues when the next expression is
encountered. The error may be a double punch in the decimal field or a field contains

alphanumeric characters.

Suggested Recovery Procedure: Correct the expression and resubmit the job.

Description: Module could not be found in ALTLIB file. Either a module name was found that is
greater than the specified module name, or a tapemark was encountered.

Suggested Recovery Procedure: Correct the error and resubmit the job.

Description: An invalid delimiter was found in an expression on a control statement. The
expression is ignored but the succeeding expressions in the control statement are evaluated.

Suggested Recovery Procedure: Correct delimiter error in control statement and resubmit the job.

Description: The module name exceeds eight characters. The expression is ignored but the
succeeding expressions in the control statement are evaluated.

Suggested Recovery Procedure: Modifying the module name; resubmit the job.

7667 Rev. 2
UP.NUMBER

UNIVAC 9400 SYSTEM

PAGE REVISION PAGE

B-3

$2

S3

S4

S5

S6

S7

S8

S9

SA

Description: Two or more expressions specified in a control statement are mutually exclusive. The
expressions are ignored but the succeeding expressions in the control statement are evaluated.

Suggested Recovery Procedure: Correct expression in the control statement; resubmit the job.
Description: Incorrect sequence of module name. Names must be in sequence in ascending order
(except for $name entries). The name is ignored but the succeeding expressions in the control

statement are evaluated.

Suggested Recovery Procedure: Reposition the control statement and correct sequence; resubmit
the job.

Description: One of these conditions has occurred: an invalid function was specified (the function
is valid in type construction but does not meet the requirements of the function’s options); a
special character is misused if the delimiter following the function is other than a space; invalid file
designator is specified; Proc file designator exceeds a value of 250; invalid option for
corresponding function; line number is not specified with INS or REP statement; incorrect
delimiter before or after line number. The specifications in the statement are ignored.

Suggested Recovery Procedure: Correct the expression in control statement; resubmit the job.
Description: Invalid delimiter or an element in control statement.

Suggested Recovery Procedure: Correct the expression in control statement and resubmit the job.

Description: Module name is all zeros or all blanks. When an ADD operation was being performed
using the OBJFIL tape, the name element was omitted.

Suggested Recovery Procedure: Correct error; resubmit job.

- Description: Prefix for module group was not found during a COPY-GANG operation (a greater

prefix value was found). Either an incorrect tape was used or an incorrect prefix was specified.
Suggested Recovery Procedure: Correct prefix; resubmit job.

Description: Prefix for module group not found. Tape reached end-of-file configuration. Either an
incorrect tape was used or an incorrect prefix specified.

Suggested Recovery Procedure: Correct prefix; resubmit job.

Description: Specified module not found. Tape reached end-of-file configuration. Either the wrong
tape was used or the wrong prefix specified.

Suggested Recovery Procedure: Correct module name; resubmit job.
Description: Prefix for module group not found when a CPY name or CPY TO option was
specified (a prefix value greater was found). Either an incorrect tape was used or an incorrect

prefix specified.

Suggested Recovery Procedure: Correct prefix; resubmit job.

7667 Rev. 2
UP-NUMBER

UNIVAC 9400 SYSTEM

| PAGE REVISION I PAGE

B—4

SB

SC

SD

SE

SF

SG

SH

St

Description: One of the following conditions has occurred: the file specified in this control
statement is not the file in which LIBIN is positioned; the ALTLIB file was not specified using the
group notation [ADDx NAME(ALT,GROUP)]; a tape block in the DAPS operation does not have
a file ID consistent with the file in which it is located; when a module was being corrected, a
source type file was not designated.

Suggested Recovery Procedure: Check the control statements for proper sequence and for correct
specifications. Correct error; resubmit job.

Description: During a correct operation, the first statement after the COR statement is not a VER,
INS, or REP card. The COR statement is ignored. The LIBIN fiie is copied onto the LIBOUT file
through the specified module. Processing resumes when an ADD, DEL, CPY, or COR statement is
encountered.

Suggested Recovery Procedure: Correct the erroneous statement; resubmit the job.

Description:. A line number specified on an INS or REP statement does not exist in the module
specified. The previous COR statement is ignored. The LIBIN file is copied onto the LIBOUT file
through the specified module. Processing resumes when an ADD, DEL, CPY, or COR statement is
encountered.

Suggested Recovery Procedure: Correct the erroneous line number or module; resubmit the job.
Description: After a read operation, a card image was not returned by the system because of a
control stream discrepancy. Error caused by a missing /$ or /* statement or misplacement of job
control statements.

Suggested Recovery Procedure: Correct error; resubmit the job.

Description: A block which contains an inconsistent file identification code has been read. DAPS
processing continues.

Suggested Recovery Procedure: Re-create the module in which the error occurred and place it in
the correct file; resubmit the job.

Description: The Proc definition does not begin with a PROC directive. DAPS processing
continues.

Suggested Recovery Procedure: Correct the Proc module before submitting the job to the
Assembler.

Description: The Proc END statement is missing from a DIS DIR function. DAPS processing
continues. »

Suggested Recovery Procedure: Correct the error before submitting the job to the Assembler.

Description: More than one END statement is detected for a DIS DIR function. DAPS processing
continues,

Suggested Recovery Procedure: Remove unnecessary END statement. Reprocess Proc.

7667 Rev. 2
UP-NUMBER

UNIVAC 9400 SYSTEM B—5

I PAGE REVISION | PAGE

T1

T2

T3

T4

T6

T6

T7

Description: The input block number does not match the internal biock number counter. For
DAPS, the LIBIN tape volume is rewound and the following console message is produced:

DP30 1/0 TROUBLE — JOB ABORTED

For LIBS, two tape marks and the ENDLIB record block are written on LIBOUT, all applicable
tapes are rewound, and the foilowing console message is produced:

LB40 1/O0 TROUBLE — JOB ABORTED

Suggested Recovery Procedure: Resubmit the job. For DAPS, properly processed modules need
not be specified in the rerun, For LIBS, the aborted run output may be used as the LIBIN,
provided that there is no need for modules from the previous LIBIN. The module in which the
error occurred cannot be used.

Description: Block count error on LIBS tape.

Suggested Recovery Procedure: Reprocess the module in error by submitting another job.

Description: Block count error on ALTLIB tape. The module is truncated and processing is
terminated.

Suggested Recovery Procedure: Reprocess the module in error.
Description: Incorrect header record format in the first block of LIBIN file.

Suggested Recovery Procedure: Ensure that the correct volume is mounted according to the LIBIN
file assignment.

Description: Incorrect header record format in first block of OBJFIL.

Suggested Recovery Procedure: Ensure that the correct volume is mounted according to the
OBJFIL file assignment.

Description: Incorrect header record format in first block of ALTLIB.

Suggested Recovery Procedure: Ensure that the correct volume is mounted according to the
ALTLIB file assignment.

Description: The end of the LIBOUT tape has been reached. The tape is rewound and the
following console message is produced:

LB40 /O TROUBLE — JOB ABORTED
Two tape marks and the ENDLIB record block are written on LIBOUT and the tape is rewound.

Suggested Recovery Procedure: The remaining modules must be added to another LIBOUT tape in
another job step. If the LIBOUT tape is faulty, rerun using a new LIBOUT tape.

Description: During transient processing, the next module header is reached before the transfer
record of the module being processed. This indicates that some object code has been truncated.

Processed information is placed in the transient format block.

Suggested Recovery Procedure: Reassemble module; resubmit job step.

7667 Rev. 2 UNIVAC 9400 SYSTEM

UP-NUMBER

B—6-
PAGE REVISION | PAGE

T8 Description: The file control block for the specified file was not found. The job is aborted and the
name of the file and a specific error code are printed. The error codes are:

CODE DESCRIPTION

0] The file control block is missing. Ensure that the LFD statement specified the
correct filename.

02 The device type specified is not tape and is not acceptable.
03 The device type specified is disc and is not acceptable.
04 The specified output tape had no write-enable ring and a U code was returned by

the operator to the OPR message informing him of the problem, causing control
to be transferred to the user’s error address. If the operator had inserted the ring
and typed in an R {retry) response, the test for a ring would have been retried.

05 The specified output OBJFIL file is missing the ENDOBJ block.

06 The first block on the specified tape file does not conform to the standard
VOL1 or BOOT labeled block and cannot be processed.

07 The volume serial number in the VOL1 block does not match the volume serial
| number specified in the control stream (either the wrong VOL statement was
submitted or the wrong tape was mounted for the specified file).

08 The HDR1 block, which is the first block after the VOL1 or VOL blocks on any
standard tape, was not found for the specified tape file.

09 The file 1D in the file control block does not match the file ID in the HDR1
block (either the wrong file ID on the LBL statement was submitted or the
wrong tape was mounted).

10 The creation date in the file control block and the HDR1 block do not match
(either the creation date on the LBL statement is incorrect or the wrong tape
was mounted).

11 The specified output tape file's expiration date did not match the expiration
date (Julian date format) in the job preamble and a U {unrecoverable) indicator
was returned by the operator in reply to the OPR message informing him of the
problem (either the expiration date in the LBL statement is incorrect or the
wrong tape was mounted or the Julian date part of the SET DATE command was
not keyed in by the operator at the start of the run).

Suggested Recovery Procedure: Correct the job control statement or LIB librarian control
statement and resubmit the job.

T9 Description: Tape file definition error caused by one of these conditions: wrong device code;
missing write-enable ring on output file; for LIBIN, ALTLIB, LIBOUT, and OBJFIL tape volumes
the first block does not contain VOL1 or BOOT. The name of the file and a specific error code are
printed. See the description of error code T8 for definitions of these error codes.

Suggested Recovery Procedure: Correct error and resubmit job.

7667 Rev. 2
UP.NUMBER

UNIVAC 9400 SYSTEM |

I PAGE REVISION PAGE

B-7

TC

TD

TE

TF

TG

TH

Tt

TJ

Description: The ALTLIB tape is positioned to the next file but the preceding file is referenced.
Possible causes: a missing ALTLIB tape header record or a reference to a file which has been
passed through in a search for nonexistent module. If the ALTLIB file is incorrectly positioned,
the current librarian control statement is ignored and processing continues. If the header record in
the desired file is missing, the ALTLIB tape is positioned to the next available header record, the
current librarian control statement is ignored, and processing continues.

Suggested Recovery Procedure: If the ALTLIB tape is incorrectly positioned, correct the error and
resubmit the job. If the header record is missing, the first module of that file must be rebuilt.

Description: The maximum block size for a file has been exceeded. The block number and file
name are printed and processing continues. This error is usually caused by a faulty LIBIN tape.

Suggested Recovery Procedure: Resubmit the LIBS program that created the LIBIN tape.

Description: The maximum block size for a file has been exceeded and the PARAM statement
BLKSZERR has been inserted before the /$ statement. This error is usually caused by a faulty
LIBIN tape.

Suggested Recovery Procedure: Resubmit the LIBS program that created the LIBIN tape.

Description: Modules in the load file are missing a prefix loader block immediately after the
header. Processing continues.

Suggested Recovery Procedure: Either of these methods are used: reassemble modules using
PARAM QUT=(P); employ the system alter routine which inserts a prefix loader block after each
module header.

Description: The output tape being used to create a user library volume is labeled BOOTSYSRES.
The job step is terminated.

Suggested Recovery Procedure: Resubmit the job step using an output tape labeled VOL1, HDR1,
or specify IPL in the LIB statement.

Description: Information on tape HDR1 record is inconsistent with information specified in the
LBL statement. The name of the file and a specific error code are printed. See the description of
error code T8 for definitions of these error codes.

Suggested Recovery Procedure: Correct error; resubmit job.
Description: Block count error or read parity error during the open phase of a tape operation. The
name of the file and a 'specific error code are printed. See the description of error code T8 for

definitions of these error codes.

Suggested Recovery Procedure: Resubmit the job. DTF CCB may be set to accept read parity
errors and interrogate the error status byte.

Description: Checksum character inconsistency. Processing continues.
Suggested Recovery Procedure: Blocks in question may be displayed to determine whether the

data was written or read incorrectly. If incorrectly written, resubmit the job after restoring
erroneous modules. If incorrectly read, resubmit the job, preferably on a different tape device.

