TSPERRY RAND

OPERATING
SYSTEM

PROGRAMMER
REFERENCE
UP- 7504 Rev. 2

This document contains the latest information available at the time of publi-
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative,

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this publication are:

UNISERVO
FASTRAND
PAGEWRITER
UNISCOPE

© 1967, 1968, 1972 — SPERRY RAND CORPORATION PRINTED IN U.S.A.

7504 Rev. 2 UNIVAC 494 SYSTEM A I PSS 1
PAGE

UP-NUMBER PAGE REVISION

PAGE STATUS SUMMARY
ISSUE: Update Package A to UP-7504 Rev. 2

Section Page Updat;* Section Page |Update Section Page |Update
Number | Level Number | Level Number | Level
Cover/Disclaimer A 4 (cont.) 25 thru 33} Orig.
34 A
PSS 1 A 35 thru 39| Orig.
40 A
Contents 1,2 A 41 Orig.
3 Orig. 42 A
4 thru 6 A 43 thru 53| Orig.
7 Orig.
8 A 5 1thru 5 Orig.
9 Orig. -
10 A 6 1thru 21 | Orig.
1 A*
7 1,2 Orig.
1 1thru 3 Orig.
8 1 thru 16 Orig.
2 1thru3 Orig. 17 A
4 A 18 thru 29| Orig.
5 thru 18 Orig.
19, 20 A 9 1thru9 Orig.
20a, 20b A* 10 A
21 A 10a A*
22 thru 42 | Orig. 11 thru 17| Orig.
43,44 A 18 A
443 A* 19 thru 61| Orig.
45 thru 61 | Orig.
62 A 10 1thrub Orig.
63 thru 80| Orig.
Appendix A 1 thru 33 Orig.
3 1thru 8 Orig.
9 A Appendix B 1thru 4 A*
10, 11 Orig.
12thru15| A User Comment
16 thru 18 | Orig. Sheet
19 A
20 thru 36 | Orig.
37 A
38 thru 44 | Orig.
45 A
46 Orig.
47 A
48, 49 Orig.
50 A
51, 52 Orig.
53, 54 A
55 thru 66 | Orig.
67 A
68 thru 88 | Orig.
4 1 thru 7 Orig.
8 A
9 thru 11 Orig.
12,13 A
14 thru 19 | Orig.
20 A
20a A*
21 Orig.
22thru24 | A
24a A*

*Original at update level indicated.

10U4 ey, £

UP-NUMBER

UNIVAC 494 SYSTEM

A Contents 1
PAGE REVISION | PAGE

PAGE STATUS SUMMARY

CONTENTS
1. INTRODUCTION
1.1. GENERAL
1.2. BASIC FEATURES
1.2.1. Real Time/Online Processing
1.2.2. Batch Processing
1.2.3. Multiprogramming Operation
1.2.4. Program Development
1.2.5. Automatic Operation
1.2.6. Integrity
1.2.7. Modularity

SYSTEM CONTROL

2.1.
21.1.
2.1.2.

22.
2.2.1.
2.2.2.

23.
2.3.1.
2.3.2.
2.3.3.
2.34.
2.3.5.
2.3.6.
23.7.
2.338.
2.3.9.
2.3.10.
23.11.
2.3.12.

GENERAL
Job Control
Task Control

THE EXECUTIVE CONTROL LANGUAGE
Control Statement Format
Control Statement Types

ORGANIZATIONAL CONTROL STATEMENTS
The JOB Statement

The START Statement

The Correction (COR) Statement
The Parameter (PRAM) Statement
The LOG Statement

The DUMP Statement

The END Statement

The FIN Statement

The READY Statement

The CALL Statement

The HDG Statement

The LST Statement

CONTENTS

1-1

11
1-2
1-2
1-2
1-2
1-3
1-3

21
241
21

22
2-3
2-3

25
25
27
2-8
2-11
2-13
2-15
2-18
2-18
2-18
219
220
2-20

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

A

PAGE REVISION

Contents 2
PAGE

24. TASK ACTIVATION STATEMENTS
2.4.1. The GO Statement
2.4.2. Systems Processor Control Statements

25. SERVICE CONTROL
25.1. Summary of OMEGA Service Requests
2.5.2. Internal Control Statements
2.5.2.1. METHOD OF SUBMISSION
25.3. Segment Call (LOAD$, LOADAS) Service Requests
2.5.4. Subroutine Load (FETCH$) Service Request
2.5.5. Locate Table of Contents (FETCHLS$) Service Request
25.6. Common Subroutines
2.5.6.1. OPERATING ENVIRONMENT
2.5.6.2. ENTRANCE CONDITIONS
2.5.6.3. SPECIAL DATA TRANSFER (CMOVES$)
2.5.6.4. EXIT PROCEDURES (CEXITS$, CSWCT$, CABORTS)
2.5.6.5. NAME CONVENTIONS
2.56.6.6. COMMON SUBROUTINE REQUESTS
2.5.7. Send/Receive
25.7.1. THE (SEND$) SERVICE REQUEST
2.6.7.2. THE (RECEIVES$) SERVICE REQUEST
25.8. DATE and TIME Operations
2.5.8.1. THE DELAY (DELAY$) SERVICE REQUEST
2.5.8.2. TIME OF DAY (TIMED$) SERVICE REQUEST
2.5.8.3. ELAPSED CENTRAL PROCESSOR TIME (TIMEL$) SERVICE REQUEST
2.5.8.4. DATE AND TIME (DATIM$) SERVICE REQUEST
25.8.5. DATE AND QUANTUM TIME (TIMEQ$) SERVICE REQUEST
2.5.8.6. DATE AND TIME OF YEAR (TIMEY$) SERVICE REQUEST
25.9. Logical Switches
2.5.9.1. SET OFF (XOFF$) REQUEST
2.5.9.2. SET ON (XON$) REQUEST
2.56.9.3. TEST SWITCHES (XTEST$) REQUEST
2.5.10. Checkpoint/Restart Mechanism
2.5.10.1. CHECKPOINT (CKPT$) SERVICE REQUEST
2.5.10.2. CHECKPOINT PARAMETER TABLE
2.5.10.3. CHECKPOINT STATUS CODES
2.5.10.4. DIAGNOSTIC MESSAGES
2.5.10.5. RESTART ROUTINE
2.5.10.6. RESTART STATUS MESSAGES
2.5.10.7. TAPE MOUNTING DIRECTIVES
2.5.10.8. TAPE CHANGING DIRECTIVE

2.6. ACTIVITY CONTROL
2.6.1. Standard Activity Registration (REG$) Service Request
2.6.2. Queue Process Activity Registration and Activation
2.6.2.1. QUEUE PROCESS ACTIVITY REGISTRATION (REGQ$) SERVICE
REQUEST
2.6.2.2. ACTIVATE QUEUE PROCESS ACTIVITY REGISTRATION (QREFS)
SERVICE REQUEST
2.6.3. Fork and Join Mechanism
2.6.3.1. FORK (FORK$) SERVICE REQUEST
2.6.3.2. JOIN (JOINS$) SERVICE REQUEST
2.6.4. Termination Service Requests
2.6.4.1. THE RETURN (RETURNS$) SERVICE REQUEST
2.6.4.2. THE ABORT (ABORT$) SERVICE REQUEST
2.6.4.3. THE ERROR (ERRORS$) SERVICE REQUEST
2.6.4.4. THE RETURN 1 (RETURN1$) SERVICE REQUEST

2-20a
2-20a
2-21

2-21
2:22
2:24
2:24
2-26
2.27
2-28
2-30
2-30
2-31
2-31
2-32
2-33
2-33
2-33
2-34
2-35
2-36
2-36
2-37
2-37
2-38
2-38
2-39
2-39
2-39
2-40
2-40
2-40
2-41
2-41
2-42
2-43
2-43
2-44
2-44
2-44

2-44a
2-45
2-48

248

2-50
2-54
2-54
2-65
2-57
2-57
2-58
2-58
2-68

UP-NUMBER

UNIVAC 494 SYSTEM

Contents 3

PAGE REVISION | PAGE

27. CENTRAL PROCESSOR CONTROL
2.7.1. The Dispatcher and the Central Processor Queue
2.7.2. Operating Priority

2.38. PRIMARY STORAGE ALLOCATION
2.8.1. Task Primary Storage Allocation
2.8.2. Task Primary Storage Extensions

2.8.2.1. EXTERNAL PRIMARY STORAGE EXTENSIONS (CORE
STATEMENT)

2.8.2.2. INTERNAL PRIMARY STORAGE EXTENSIONS (MADD$)

2.8.2.3. INTERNAL CORE RELEASE (MREL)

2.8.2.4. TEST PRIMARY STORAGE AREA/LIMITS (TCORE)

2.8.3. Worker Program Considerations for Primary Storage Compaction

2.8.3.1. INHIBITING COMPACTION (TCORE1$)
2.8.3.2. PACKET GENERATOR

2.8.4. Register Index Modes

2.8.4.1. SET 15-BIT B REGISTERS (SET15%)
2.8.4.2. SET 17-BIT B REGISTERS (SET17$)
2.8.4.3. SET DUAL INDEX MODE (SETDS$)

2.8.4.4. CLEAR DUAL INDEX MODE (CLD$)

2.8.5. Program Considerations

2.8.5.1. THE RELATIVE INDEX REGISTER (RIR)
2.8.5.2. THE PROGRAM LOCK-IN REGISTER (PLR)
2.8.6.3. PRIMARY STORAGE ADDRESSING

2.9. PROGRAM CONTINGENCIES
29.1. Contingency Types and Interrupts
2.9.2. Error Routine Specification (ERRADD$, FOFADD$, FUFADDS$)

Service Requests

2.9.3. Error Routine Operation

29.3.1. ENTRY , |
2.9.32. EXIT (RETURNS, RETURN1$, ERRORS, ABORTS)

2.9.4. Default Procedures
29.4.1. FAULT CONTINGENCIES
2.9.4.2. FLOATING POINT (TESTFOF$, TESTFUF$)

DATA MANAGEMENT SYSTEM

3.1. GENERAL

3.1.1. Assignment

3.1.2. Duration of Assignments
3.1.3. Data Access Methods
3.1.4. Maintenance Functions

3.2 ASSIGNMENT (ASG) STATEMENTS
3.2.1. The Assignment (ASG) Statement
3.2.2. Peripheral Name

3.2.3. File Code

3.2.4. Direct Access Storage Assignment

3.2.4.1. FEATURES

3.2.4.2. DIRECT ACCESS STORAGE ASSIGNMENT STATEMENT AND
MNEMONICS

3.2.4.3. METHOD OF SUBMISSION

2-58
2-59
2-60

2-61
2-61
2-62

2-62
2-63
2-63
2-64
2-66
2-66
2-66
2-69
2-70
2-70
2-70
2-71

271

271

2-72
273

275
2-76

2-76
277
277
2-78
279
279
2-79

31
31
32
32
33

33
33
34
36
37
38

39
313

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

A

PAGE REVISION

Contents 4

PAGE

3.2.5. UNISERVO Tape Assignment

3.2.5.1.
3.25.2.
3.25.3.
3.2.5.4.
3.2.5.5.

METHOD OF SUBMISSION
BLOCK NUMBERING

NOISE CONSTANT
TRANSLATE FEATURE
9-TRACK FORMAT FEATURE

3.2.6. Card Device Assignment

3.2.6.1.

METHOD OF SUBMISSION

3.2.7. Printer Assignment

3.2.7.1.

METHOD OF SUBMISSION

3.2.8. Paper Tape Device Assignment

3.2.8.1.

METHOD OF SUBMISSION

3.29. The FREE Statement

3.29.1.

METHOD OF SUBMISSION

3.2.10. The SWITCH Statement

3.2.10.1.
3.2.10.2.

METHOD OF SUBMISSION
EXAMPLES

3.2.11. Service Requests

3.2.11.1.
3.2.11.2.
3.2.11.3.
3.2.11.4.

3.2.11.5.

TEST FILE CODE (TFC$)
PARTIAL FILE RELEASE (FREL$ AND FRELAS)
FILE EXTENSION (FADD$ AND FADDAS$)

USER DECLARATION OF “BAD” FILE AREA (FRPL$ AND

FRPLI$)
EXAMPLES

3.3. DEVICE CONTROL

3.3.1. Data Format Considerations
3.3.2. File Codes

3.3.3. Device Control Macros
3.3.4. Status Codes

3.3.5. Drum Macros

3.3.56.1.
3.3.6.2.
3.3.6.3.
3.35.4.
3.3.6.5.
3.3.5.6.
3.3.6.7.
3.3.6.8.
3.35.9.
3.3.6.10.
3.3.5.11.
3.3.5.12.
3.35.13.
3.3.6.14.
3.3.6.15.
3.3.6.16.
3.35.17.

READS$
WRITE$
SEARCHS$
BLOCK READ (BLOCKR$)
BLOCK SEARCH (BLOCKSS$)
SCATTER READ (SREADS$)
GATHER WRITE (GWRITE$)
MULTIPLE READ (MREADS$)
MULTIPLE WRITE (MWRITES)
READ LOCK (READLS$)
WRITE RELEASE (WRITER$)
SEARCH LOCK (SEARCHLS$)
LOCK READ (LOCKRS$)
WRITE RELEASE (WRELS$)
MULTIPLE READ LOCK (MREADLS$)
MULTIPLE WRITE RELEASE (MWRITERS$)
LOCK DEFINITION (LOCKAS$)

3.3.6. Direct Access Storage Image Filing

3.3.6.1.
3.3.6.2.

IMAGE FILE MACROS (LRASL$, RDTS$, AND WRTS$)
EXAMPLES OF IMAGE FILE CONTROL

3.3.7. Magnetic Tape Macros

3.3.7.1.

READ$

3.3.7.2. WRITE$
3.3.7.3. SEARCH$

313
315
3-16
317
317
317
319
3-20
3-20
3-21
3-21
3-22
3-23
3-23
3-24
3-25
3-25
3-25
326
3-27
3-28

3-29
3-31

3-34
3-34
3-34
3-35
3-37
340
340
340
341
341
3-41
342
343
344
344
345
345
346
3-46
347
347
3-48
3-49
3-50
3-50
3-54
357
3-58
3-69
3-59

rous riev. 2 UNIVAC 494 SYSTEM L A l Contents 5
UP-NUMBER PAGE REVISION PAGE
3.3.7.4. SCATTER READ (SREADS$) 3-60
3.3.7.56. GATHER WRITE (GWRITES$) 3-62
3.3.7.6. MULTIPLE READ (MREADS$) 3-63
3.3.7.7. READ BACK (READB$) 3-64
3.3.7.8. REWIND$ 3-66
3.3.7.9. REWIND WITH INTERLOCK (REWINDI$) 3-66
3.3.7.10. WRITE END-OF-FILE (WRTEOF$) 3-67
3.3.7.11. ERASE (ERASES$) 3-67
3.3.8. Unit Record Macros 3-68
3.3.8.1. CARD OPERATIONS 3-68
3.3.8.2. PRINTER OPERATION 370
3.3.8.3. PAPER TAPE OPERATIONS 372
3.4. COOPERATIVE CONTROL 3-76
3.4.1. Input Unit Record Routine 3-76
3.4.2. Input/Output (I/O) Cooperative Control 3-76
3.4.3. Output Unit Record Routines 3-78
3.4.4. Service Requests 3-78
3.4.4.1. PRIMARY INPUT 378
3.4.4.2. PRIMARY OUTPUT 379
3.4.4.3. SECONDARY OUTPUT 3-80
3.45. Method of Operation 3-80
3.4.6. Error Diagnostics 3-81
3.4.6.1. PRIMARY INPUT 3-81
3.4.6.2. PRIMARY OUTPUT OVERFLOW 3-82
3.4.6.3. SECONDARY OUTPUT OVERFLOW 382
3.5. MASTER FILE DIRECTORY (MFD) 382
3.5.1. The MFD Statement 3-82
3.5.2. Examples 3-85
3.5.3. Error Diagnostics and Messages 3-86
4. LANGUAGE PROCESSOR CONTROL
4.1. GENERAL 4-1
4.2, METHOD OF OPERATION 4-1
4.2.1. Preparation of Input 4-2
4.2.2. General Functions 4-2
4.2.3. Loader 4-2
4.2.4. Program Library Editor 4-2
4.3. PROGRAM LIBRARIES 4-3
4.3.1. Element Types 4-3
4.3.1.1. SOURCE ELEMENT 4-3
4.3.1.2. RELOCATABLE (RB) ELEMENT 4-4
4.3.1.3. LOAD ELEMENT 4-4
4.3.2. Libraries 4-4
4.32.1. JOB LIBRARY 4-4
4.32.2. GROUP LIBRARY 4-5
4.32.3. SYSTEM LIBRARY 4-5

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION

A Contents 6

PAGE

44. LANGUAGE PROCESSOR CONTROL STATEMENTS
4.4.1. Statement Format

4.4.2. Language Processor Facilities

4.4.3. SPURT Statement

44.4. ASM Statement

4.45. FOR Statement

4.4.6. COB Statement

4.5, SOURCE CODE FORMAT
45.1. SOURCE Routine — Primary Function
45.2. SOURCE Statement
4.5.3. Error Messages
4.5.4. Source Language Correction
45.41. CORRECTION STATEMENTS
45.4.2. DELETIONS
45.4.3. INSERTIONS
455. Examples.

4.6. LOADER

4.6.1. Control Statement Format

4.6.2. The LOAD Statement

4.6.3. Secondary Control Statements
4.6.3.1. SEGMENT STATEMENT
46.3.2. INCLUDE STATEMENT
46.3.3. MAP STATEMENT
46.3.4. EXCLUDE STATEMENT
4.6.3.5. ENTRY STATEMENT
4.6.3.6. EQUALS STATEMENT
4.6.3.7. MISCELLANEOUS

4.6.4. Loader Requirements

4.6.5. MAP Elements

4.6.6. Error Diagnostics

4.6.7. Element Selection and Placement Algorithm

4.6.8. Loader List Option

4.7. PROGRAM LIBRARY EDITOR
4.7.1. IN Statement

4.7.2. OUT Statement

4.7.3. PRT Statement

4.7.4. DEL Statement

4.75. LINK Statement

4.7.6. Error Messages

4.8. INTERLANGUAGE COMPATIBILITY
4.8.1. Common Area

4.8.2. Data Types

4.8.3. Transfer of Data

4.8.4. Interlanguage Transfer Techniques

OPERATOR COMMUNICATIONS
5.1. GENERAL

5.2. THE MSG STATEMENT

45
4-6
4.7
47
4.9
411
413

4-14
4-15
4-15
4-18
419
4-19
4-20
4-20
4.20

4-24
4-24a
4-24a
4-26
4-27
4-29
4-29
4-30
4-30
4-30
4-31
4-32
4-32
4-33
4-35
4-38

4-39
4-39
4-41
4.44
4-45
4-46
4.48

4-49
4-50
4-50
4-51
4-52

5-1

5-1

fee st e

UP-NUMBER

UNIVAC 494 SYSTEM

Contents 7
PAGE REVISION PAGE

5.3. MAGNETIC TAPE STATEMENTS
5.3.1. MOUNTS$

5.3.2. DEMOUNTS$

5.3.3. CHANGES$

5.4. UNSOLICITED TASK INPUT MESSAGES

TEST SYSTEM

6.1. GENERAL

6.2. CONDITIONAL PROCEDURES

6.3. TEST SYSTEM CALL

6.4. SECONDARY CONTROL LANGUAGE

6.4.1. The AT Statement

6.4.2. The IF Statement

6.4.3. The DUMP Statement

6.4.4. The TRACE Statement

6.45. The TRAP Statement

6.4.6. The EXIT Statement

6.4.7. The SET Statement

6.4.8. The END Statement

6.4.9. Examples of Secondary Control Language Statements
6.5. LOGICAL SWITCHES

6.6. DIAGNOSTIC MESSAGES FROM TEST SYSTEM
6.7. REQUIREMENTS AND METHOD OF OPERATION
6.7.1. Requirements

6.7.2. Service Requests

6.7.3. Segment Control

6.8. SAMPLE PROGRAM

SYSTEM GENERATION
71. SYSTEMS GENERATION AND INITIALIZATION
7.2 SYSTEMS GENERATION

7.3. SYSTEMS INITIALIZATION

UTILITY SERVICE ROUTINES
8.1. GENERAL

8.2. THE REXECUTOR
8.2.1. Restrictions

5-2
5-2

5-4

5-4

6-1

6-1

6-2

6-2
6-3
6-3
6-5
6-6
6-6
6-7
6-7
6-8
69

6-14
6-16
6-17
6-17
6-17
6-17

6-18

71

71

8-1

8-1
81

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

A

PAGE REVISION

Contents 8

PAGE

8.2.2. Control Cards
8.2.3. The MEANS Statement
8.2.4. The PROG Statement
8.25. A Card
8.2.6. Band C Cards
8.2.6.1. B CARD FORMAT
8.2.6.2. C CARD FORMAT
8.2.7. The PS Statement
8.2.8. Control Stream Examples

8.3. THE UTILITY PROCESSOR
8.3.1. The Utility (UTL) Control Statement
8.3.2. Secondary Control Statements
8.3.2.1. GENERAL SPECIFICATIONS AND OPTIONS
8.3.2.2. ACTION STATEMENTS (READ, BLKRD, SEARCH, WRITE, REWIND,
WRTEOF, MOVE, GO TO, DO)
8.3.2.3. TEST STATEMENTS
8.3.2.4. USER OWN CODE ROUTINES
8.3.3. Applicable OMEGA Control Statements
8.3.4. Data Conventions
8.3.5. Utility Processor Examples
8.3.6. Error Messages

REMOTE DEVICE CONTROL

9.1. GENERAL
9.1.1. Device Control Elements
9.1.2. Levels of Interface
9.1.2.1. LEVEL 1 INTERFACE
9.1.2.2. LEVEL 2 INTERFACE
9.1.3. Summary of Service Requests and Control Statements

9.2. REMOTE FACILITY ASSIGNMENT

9.2.1. The LASG Statement

9.2.2. The LACQ Service Request

9.2.3. The LFREE Statement

9.2.4. Miscellaneous Remote Facility Assignment Requests
9.2.4.1. THE CTMFREE SERVICE REQUEST
9.2.42. REMOTE FACILITY UPDATE

9.3. REMOTE DATA ACCESS SERVICE REQUESTS
9.3.1. Message Queue Control
9.3.2. Read/Write Service Requests
9.3.2.1. READ MESSAGE (READM$, READMW$ AND LOOKMS$)
9.3.2.2. WRITE MESSAGE (WRITEM$)
9.3.3. Get/Put Service Requests
9.3.3.1. GET MESSAGE (GETM$ AND GETMWS$)
9.3.3.2. PUT MESSAGE (PUTM$)
9.3.3.3. PUT MESSAGE AFTER PURGE (PUTMPS$)
9.3.4. Message Buffer Format
9.3.6. Own Code Routines

8-3
8-4
8-6
8-7
87
8-7
88
88

814
8-15
8-15
8-16

8-17
821
8-22
8-25
8-25
8-26
8-28

9-1
9-1
9-3
9-4
9-4
9-6

9-7

9-8

912
9-14
9-16
9-16
9-16

9-18
9-18
9-19
9-19
9-23
9-24
9-24
9-26
9-27
9-28
9-29

/5U4 Hev, 2

UP-NUMBER

UNIVAC 494 SYSTEM

Contents 9

PAGE REVISION l PAGE

10.

94. REMOTE SYSTEMS
9.4.1. The Remote UNIVAC 1004 and UNIVAC 9200/9300 Systems
9.4.2. The Remote DCT 2000 System
9.4.3. The Remote UNISCOPE 300 System
9.44. Remote UNISCOPE 100/DCT 1000 System
9.4.4.1. INPUT MESSAGE BUFFER
9.44.2. OUTPUT MESSAGE BUFFER
9.4.4.3. UNISCOPE 100 OUTPUT EDITING FUNCTIONS
9.4.4.4. DCT 1000 OUTPUT EDITING FUNCTIONS
9.45. Remote DCT 500 and Teletypewriter System
9.45.1. INPUT/OUTPUT MESSAGE BUFFER
9.45.2. CONSTRAINTS

9.5. REMOTE SCHEDULER
9.5.1. Operation of Remote Scheduler
9.5.2. SCHEDULE Entry
9.5.3. TIME Entry
95.4. PHONE Entry
955. STOP Entry
9.5.6. HOLD Entry
95.7. TERM Entry
95.8. Error Conditions
95.8.1. ERROR CODES
9.5.8.2. CONNECTION MESSAGE
9.5.9. Examples

BASIC OPERATIONAL DESCRIPTION
10.1. JOB SUBMISSION

10.2. JOB SCHEDULING

10.2.1. Preselection

10.2.2. Control

10.2.3. Selection

10.3. ALLOCATION AND MAINTENANCE OF PRIMARY STORAGE

APPENDIXES

A.

ELEMENT FORMAT AND DESCRIPTION

A1. RELATIVE BINARY (RB) ELEMENT (ELEMENT TYPE 1)
A.1.1. Element Organization
A.1.1.1. TOC (TABLE OF CONTENTS)
A.1.1.2. PREAMBLE
A.1.1.2.1. Entry Definition (EDEF)
A.1.1.2.2. External Reference (XREF)
A.1.1.2.3. Control Counter (CC)
A.1.1.24. Common Area
A.1.1.2.6. Symbol Definition (SDEF)
A.1.1.2.6. Preamble Length
A.1.1.3. TEXT

9-30
9-30
9-32
9-34
9-40
9-41
9-44
9-45
9-50
9-51
9-61
9-62

9-52
953
9-65
9-566
9-566
9-67
9-58
9-68
9-59
9-59
9-60
9-60

10-1

10-1
10-2
10-2
10-3

10-3

7504 Rev, 2

UP-NUMBER

UNIVAC 494 SYSTEM

A Contents 10

PAGE REVISION PAGE

1

A.1.2. Tape/Drum Output Format
A.1.2.1. HEADER BLOCK
A.1.2.2. DATA BLOCK
A.1.2.3. END SENTINEL BLOCKS

A.1.3. Card Output Format

A.1.4. Instruction Modification

A.2. LOAD ELEMENT (ELEMENT TYPE 2)
A.2.1. Element Organization
A.2.1.1. TOC (TABLE OF CONTENTS)
A.2.1.2. CONTROL STATEMENTS
A.2.1.3. INSTRUCTIONS
‘A.2.1.4. MODIFICATION-M OPTION
A.2.1.5. SYMBOL DEFINITIONS (SDEF'S)
A.2.2. Tape Output Format
A.2.2.1. DATA BLOCK
A.2.3. Card Output Format
A.2.4. Sample Listings of Load Element Output

A.3. SOURCE ELEMENT (ELEMENT TYPE 3)
A.3.1. Element Organization
A.3.1.1. TABLE OF CONTENTS (TOC)
A3.1.2. TEXT
A.3.2. Tape Output Format
A.3.2.1. DATA BLOCK
A.3.3. Card Output Format

TAPE LABELLING
B.1. GENERAL
B.1.1. Tape Labelling and Facility Assignment
B.1.2. Tape Labelling and the IN Processor
B.1.3. Tape Labelling and the OUT Processor
B.1.4. Tape Labelling and the LINK Processor
B.2. OPERATOR COMMUNICATION
B.3. EXAMPLE JOB STREAM

B4. ERROR MESSAGES

USER COMMENT SHEET
FIGURES

. Task Control

. Cooperative Mechanism

. Data Word Types

. OMEGA Remote Device Control Elements

. Direct Access Queue

. Direction of Message Flow

. Sample Source Code for Relative Binary Text

. Sample Relative Binary Text — 163 -Word Item
. Sample Listing — Load Element

A-10
A-10
A-13
A-16
A-16
A-17

A-19
A-20
A-20
A-22
A-23
A-25
A-26
A-26
A-27
A-27
A-27

A-28
A-30
A-30
A-31
A-31
A-31
A-32

22
3-77
4-51
9-3
9-19
9-20
A-18

A-19
A-28

7504 Rev. 2 UNIVAC 494 SYSTEM A Contents 11

UP-NUMBER PAGE REVISION PAGE

TABLES

2—1. General Service Requests 2-22
3—1. Block Sizes 3-11
3—2. Standard Magnetic Tape Character Conversion 3-18
3—3. Summary of Device Level Input/Output Macros 3-39
3—4. Printer Codes 374
3-5. Card Conversion 3-75
9—1. UNISCOPE 100 Output Editing Functions 9-45

9-2. DCT 1000 Output Editing Functions 9-50

7504 Rev. 2 UNIVAC 494 SYSTEM 1-1

UP-NUMBER PAGE REVISION PAGE

. INTRODUCTION

1.1. GENERAL

The UNIVAC 494 Operating System has been designed and implemented to establish and function within the
efficient multiprogramming environment needed for utilizing the full capabilities of the UNIVAC 494 Real-Time
System. The Operating System comprises the entire system software programs and routines, including the executive
routine, OMEGA, and the system utility processor, language processors, applications processors, and libraries. To
take maximum advantage of the capabilities of this advanced system and to make effective use of a given
configuration, a complex internal operating environment, with a master control, must be created. The environment
must allow for the concurrent operation of many programs, allow the system to react immediately to the inquiries,
requests, and demands of many different users at local and remote stations, allow for the demands of real time
application, be able to store file, retrieve, and protect large blocks of data, and it must make optimum use of all
available facilities, while minimizing job turnaround time.

Only through central control of all activities can the system be fully established and maintained to satisfy the
requirements of all applications. The responsibility for efficient, flexible, centralized control is borne by OMEGA.
By presenting a relatively simple interface to the programmer, OMEGA allows him to use the system with relative
ease, while relieving him of concern for the internal interaction between his program and other coexistent programs.

The capabilities of OMEGA span a broad spectrum of data processing activities. The design of OMEGA is such that
no penalties of inefficiency are imposed upon any one of these activities by the support provided for the other
activities. An installation which is not interested in utilization of specific capabilities may eliminate them at system
generation time.

Emphasis has been placed upon ease of use by the programmer or user of the system. Operator intervention, decision
requirements, and work to be performed by the system are described on control cards to minimize job turnaround
time. The user may construct any logical combination of programs for a particular job by inserting the proper
control cards in his job deck.

Job decks may be collected and entered into the system from many sources, either remote or at the central site.
Once the job deck is entered into the system, OMEGA controls the loading, allocation, and execution of the
described programs. Jobs which cannot be completed due to program error are automatically deallocated and purged
from the system with appropriate diagnostic information.

1.2. BASIC FEATURES

A summary of the major or outstanding components of OMEGA is given in the following paragraphs. Particular
functional capabilities and utilization procedures are presented in subsequent sections.

7504 Rev. 2 UNIVAC 494 SYSTEM -2

UP-NUMBER PAGE REVISION PAGE

1.2.1. Real Time/Online Processing

The most critical requirement of the system is the ability to respond efficiently to the demands of real time
processing, and to give preference to the operational needs of a real time program. Executive services appropriate to
the construction and execution of real time programs are provided. These services allow a real time program to
exercise critical control over system service. The contingencies of real time are supported by nonstop operation with
procedures such as roll-out of conflicting user programs. Roll-out involves the suspension, intermediate storage, and
possible relocation of a program prior to re-initiation.

1.2.2. Batch Processing

Design emphasis has been placed upon facilitating job preparation and submission with minimization of job
turnaround time. A priority specification provides preferential service for batch runs submitted by remote operation
or where turnaround time is critical.

All jobs entering the system are described by a control language. The user has the ability to specify preferred service
for certain jobs, but has no responsibility in planning schedules to achieve machine optimization. Job descriptions
are accepted from any specified source and may be preregistered as a convenience in referencing standard jobs. The
system provides for automatic job-to-job transition, communication within and between jobs, and associated services
such as logging and accouriting.

1.2.3. Multiprogramming Operation

Computer utilization is maximized by the technique of multiprogramming. OMEGA schedules and executes a
combination of independent, real time, and batch jobs in a concurrent mode, and balances utilization of system
facilities.

Multiprogramming involves the cyclic execution of independent jobs ordered by input/output utilization and
response requirements. Multiprogramming is effected by queuing and servicing requests for time-shared elements,
and rotating control between competing programs. The system elements which provide these services use other
elements of the system to perform their functions.

1.2.4. Program Development

To enhance the modularity of the Operating System, a set of standard routines is provided which interfaces the
language processors with OMEGA. Standardization provides the following features not otherwise obtainable:

n The ability to form programs as a combination of elements produced by various language processors such as
COBOL, FORTRAN, etc.

] The ability to incorporate additional systems or language processors into the operating system with little or no
change to system components.

- The elimination of redundant elements used in the control of individual processors; thereby simplifying usage
and standardizing the individual compiler or assembler control elements.

The system provides standardization of common functions by eliminating duplication of these functions in separate
user programs and by establishing a common program and operator interface. Standardization contributes to
installation efficiency by accommodating changes in machine configuration and/or operating procedures without
direct impact on user programs. Changes in one user program which have impact on other user programs are similarly
minimized.

7504 Rev. 2 UNIVAC 494 SYSTEM =3

UP-NUMBER PAGE REVISION PAGE

A test system provides the user with complete control over programs in the debugging process and allows run time
information extraction and display. The test system provides an object time source-level debugging mechanism
common to all programs and eliminates the need for source time planning of debugging strategy. This system
significantly reduces the time and expense associated with program checkout.

1.2.5. Automatic Operation

System operation is defined through control languages which provide efficient and flexible user direction. The
control language is a format description of the functions preparatory to execution of a program. Operator
participation is explicitly defined and minimized as far as possible.

Utilization of direct access storage is the primary method of eliminating the delays and errors inherent in operator
intervention and for increasing overall system efficiency. Direct access storage is used as a system buffer for the job
backlog accepted from system input devices and the resultant images for system output devices shared among the
executed jobs. This buffering allows operation of the system independent of these essential low speed peripheral
devices. All executable programs are obtained from direct access storage. To facilitate automatic operation,
temporary intermediate files required in operation of a program are generally assigned to direct access storage
instead of tape storage.

A catalog of direct access files (the Master File Directory) which transcend a particular job is maintained by the
system. The Master File Directory facilitates automatic operation and provides permanent storage to a collection of
individual and independent users.

1.2.6. Integrity

Complete system integrity is effected through memory lockout and guard mode and system validation of service
requests. An errant program is unable to destroy either the system or other programs in the multiprogram
environment. Comprehensive contingency procedures facilitate recovery from error conditions, and provide restart
from unrecoverable conditions.

System control is enforced at the central site by a System Controller through options exercised at system generation
time or during operation through the operator console. Programmers, users, and engineers are essentially prevented
from exercising basic options in influencing operation of the total system.

1.2.7. Modularity

OMEGA is explicitly modular in design to facilitate future extensions, expansions of particular functions, or
selection of available variants of a basic function. Modularity can be exercised during generation of a system so that
each user can create versions of the system which will operate more efficiently for his system needs and
configuration.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION PAGE

2. SYSTEM CONTROL

2.1. GENERAL

System Control consists of those elements of OMEGA which are concerned with the introduction, allocation, and
control of work to be performed by the system.

2.1.1. Job Control

The job control level provides a formal means for describing work to be performed by the system. Through use of
the executive control language, the user forms a job deck which describes one or more tasks to be selected and
executed sequentially to accomplish an explicit goal. As an example, a programmer desiring to assemble and test an
element of a specific program would have a job deck composed of the following tasks:

L] Assemble the element in question.

L Ready the program for execution.

L] Execute the program in a test mode.
= Perform post-run processing.

Each job deck is recognized and introduced into a job stack via the primary input cooperatives on a first in, first out
basis subject to the priorities allowed for standard production, rush, remotely originated jobs, and available facilities.
The job stack is processed by a selection routine that determines which job will be next introduced into -the
multiprogram environment and which initiates preparatory functions for the execution of the first task. Preparatory
functions include allocation of necessary input/output peripheral units and operator intervention such as tape
mounting. Subsequent to operator setup, the required primary storage is allocated and the first task is initiated.

When an active task completes processing, control is returned through termination to selection. As each task
terminates, the facilities which do not transcend the task are released, and the selection cycle is repeated for the next
task described by the job deck. When all tasks of a job are completed, post-job processes are initiated, including an
accounting information summary, release of facilities, and operator communications.

2.1.2. Task Control

All system functions are performed to effect the actual execution of a user or system task as grouped within the job
deck. Each task is the execution of a specific system or user program and requires executive control statements to
describe the task to the system.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

I PAGE REVISION

PAGE

2-2

P N —]
TASK 3
JoB
DECK TASK 2
TASK 1

A task is activated and controlled through a task addendum which is used by all system elements in performing
functions for the task. The operating task may define parts of itself to be executed concurrently in the multiprogram
environment. Such a part is called an activity. An activity is controlled by an activity addendum which is linked to
the task addendum. Although the activity is in large part independent, the activity shares peripheral allocation, file
reference, and other requirements through a link to the task addendum. An activity may be executed synchronously
or asynchronously through OMEGA, or may be synchronized by the task itself. Declaration of this concurrency is an
essential aspect of most commerical real time control programs. It is this type of definition which attains the

advantages of multiprogramming within a task on a processor.

Figure 2—1 illustrates the basic relationship between the job deck and selection/execution of a task with subsequent

registration of activities.

2.2. THE EXECUTIVE CONTROL LANGUAGE

SELECTION

LOAD AND
EXECUTION
OF OBJECT

PROGRAM

TASK

ADDENDUM

REGISTER
ACTIVITIES

e —— o — — —— e]

SYNCHRONOUS
ACTIVITY

SYNCHRONOUS
ACTIVITY

ACTIVITY
ADDENDUM

ACTIVITY
ADDENDUM

Figure 2—1. Task Control

The Executive Control Language provides the means for a user to direct OMEGA in its execution of the individual
tasks of a job and to relay operational information concerning a job to the executive routine. The language is open
ended and easily expanded, so that features and functions may be added as the specific needs of different

installations dictate.

/504 Kev. 2 UNIVAC 494 SYSTEM

UP-NUMBER lPAGE REVISION | PAGE

The language is made up of control statements which are of two types. Primary control statements, which are
discussed here, are used for organisational control, input/output control, task activation, and system processor
control. Secondary control statements perform various functions for certain routines.

The construction of a job deck is performed by the user and may include supplementary cards representing data,
source code, or object code with control cards.

2.2.1. Control Statement Format

The basic format of the control statement is quite simple and is amenable to a large number of input devices.
Statements are in card-image format. Each primary control statement consists of a leading character (#) for
recognition purposes, a function which categorizes the statement, options as desired, and a variable number of
specifications. The secondary statement has the same format except that a blank occurs in column 1. Normally, the
end of a statement is signified by the end of a card for card input, or by a carriage return or its equivalent for other
types of input. The control statement has the following general form:

functionboption(s)bspecification, specification...

The function field must always be present to determine the basic operation. For certain control statements an
appendage to the function field is recognized and called the option field. The option field is separated from the
function field by a blank (b) and is composed of a string of alphabetic characters, in any sequence. The option field
is terminated by one or more blanks (b); if no options are selected, the function field and specifications field must
be separated by two or more blanks. Specifications are interpreted by the element named by the function code and
are separated by commas. The absence of a specification in an ordered list must be indicated by a comma.

Unless a given specification is explicitly stated as being optional, the specification is required for completion of the
function in accordance with the system’s design.

The contents and number of specifications are dependent upon the named element. Specification fields may contain
subfields that are separated by a slash (/).

All numeric fields may be specified as decimal or octal. Numeric fields specified as decimal must have a D
immediately following the low order numeric. Absence of D on numeric quantity fields implies that the expressed
value is in octal notation.

For operations requiring the specification of a name/version, the name is from 1 to 10 alphanumeric characters, and

the version is from 1 to b alphanumeric characters.

2.2.2. Control Statement Types

The primary control statements are divided into four general categories as noted:

L Organization control statements are used to activate and control a job stream. In general, this category of
statements describes the job decks to be activated; supplies informational data to the system, the operational

personnel, and the program; or in some manner activates a systems process not constituted as a task. These
statements are processed upon their occurrence in the job deck. The statements are summarized as follows:

JOB Delineates an independent ordered sequence of one or more tasks to be executed serially.
START Schedules the execution of a job stream.
COR Enters corrections to a collected program.

SOURCE Introduces supplementary source code, control statements, or data into the job stream.

UP-NUMBER PAGE REVISION

7504 Rev. 2 UNIVAC 494 SYSTEM A 2-4
PAGE

PRAM Conveys operational parameters to a task.

MSG Conveys instructions to console operator.

LOG Records user-specified literal on systems log.

DUMP Submits diagnostic printouts of direct access storage, primary storage or tape storage to the

primary output routine.

DEL Deletes elements from job library.
END Marks the end of the primary input stream for any one task.
FIN Marks the physical end of a control stream from any one device.
READY Identifies a remote terminal requesting service.
CALL Schedules nonstandard output cooperative action.
— HDG Modifies the heading line on each page of primary output.
L] Input/Output Control statements are used to assign and release peripheral devices and direct access storage to
a task.
ASG Associates an input/output device or direct access storage unit to a task.
FREE Releases a particular peripheral device for use by other tasks.
SWITCH Changes the file code reference.
MFD Catalogs, assigns, and releases files in connection with the Master File Directory (MFD).
LASG Assigns a communications line to a task.
LFREE Releases a file code and closes output queues on a communications line.

- Task Activation statements are used to call for the selection and activation of a user program. (System
Processor Control statements are also Task Activation Control Statements).

GO Calls for loading and execution of absolute program elements produced by the Loader.

L System Processor Control statements call for the loading and execution of a processor contained in the
systems library or user-job library. Each system processor is selected as a task, and in general, recognizes a
secondary control language and/or source code. A detailed description of each is contained in subsequent
sections. Processor calls currently available are as follows:

IN,OUT,

PRT, Structure and access internal libraries.

LINK,

TEST Calls the test system. A secondary control language defines the debugging procedures to be
employed.

LOAD Calls for the collection and allocation of an absolute program by the loader from relocatable

binary elements produced by the assemblers and/or compilers. A secondary control defines
the collection parameters.

UP-NUMBER

7504 Rev. 2 UNIVAC 494 SYSTEM l l 2-5
PAGE REVISION PAGE

UTL Calls the utility system. A secondary control language allows distribution or collection of
data as an adjunct to test runs or general utility purposes.

ELM Calls element library maintenance. A secondary control language defines manipulation of
external libraries and systems generation procedures.

REX Calls and activates the UNIVAC 490 REXecutor. A secondary control language describes the
UNIVAC 490 program to be loaded and executed.

SPURT Calls and activates the UNIVAC 494 SPURT Assembler.

ASM Calls and activates the UNIVAC 494 ASM Assembler.

FOR Calls and activates the FORTRAN compiler.

coB Calls and activates the COBOL compiler.

REPORT Calls and activates the UNIVAC 494 Report Writer.

2.3. ORGANIZATIONAL CONTROL STATEMENTS

Organizational control statements are discussed in the following paragraphs.

2.3.1. The JOB Statement

The JOB Statement identifies the beginning of a job deck and furnishes certain parameters necessary for scheduling
and accounting purposes.

] Format:
The JOB statement has the following general form:
JOBboptionsbidentity/individual,account,priority,running time, output/output
L] Options:
A —E Logical switches maintained by the system for each job. The switches can be referenced by each task
within a job, affording simple on/off parameters accessible to, and controllable by, the task, and

initially set external to the program.

F Break in primary output is requested. When the primary output device (printer) is not being used to
full capacity by the present job, the output device may be released temporarily to another job.

G Break in secondary output is requested. When not needed by the present job, the secondary output
device (card punch) can be released temporarily to another job.

| Inhibit printing of page headers on primary output.

L Accounting information will be submitted for this job even if accounting is inhibited in general.
P Print primary output immediately, i.e., at execution time.
Q Applies to remote site job entry only. Any output for job is to be on-site rather than at the remote

site.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER PAGE REVISION PAGE
R The job stream describes a set of RT/COMM (REAL TIME/COMMUNICATIONS) tasks.
T All information on the job is broken into separate task reports. Used with L option.

L Specifications:

Identity/individual specifies the project, department or other identification, and the individual responsibile for
the job. This information is used by the installation for routine purposes upon job completion.

Account supplies a charge number used in logging charges, and must be specified.
Priority specifies job priority and is designated by a single alphabetic character:

A — E This priority is used by scheduling routines for selection purposes and is the initial service priority
assigned to each task at execution time. The priority designators have the following meaning:

A The job deck is a high priority run for real time or mandatory programs, which will be processed at
the expense of other jobs within the system. The option may require the suspension and roll-out of
an operating program to obtain the necessary primary storage.

B The job deck is rush, and is used for remotely originated, high priority production or for jobs having
critical turnaround constraints.

C The job deck comprises normal batch programs submitted on site and requiring no abnormal priority
designation.
D The job comprises program development work on programs which are to be used as background to

production jobs.
E The job has lowest priority {used normally for online maintenance routines).

Running Time is optional and specifies the amount of CPU time in minutes required for the job, as estimated by the
user. If this time is exceeded, the operator may optionally terminate the job, as guided by the operating policy of
the installation, and his own CPU time estimate. If the specification is omitted, running time is determined by the
installation option that has been set at systems generation time. |f the field is marked with a C, the job is indicated
as continuous, as is the case with some RT/COMM programs or long input/output bound batch programs.

As part of the post processing, the total amount of CPU time utilized by each task within the job stream is noted to
the user as an aid in making future running time estimates.

Output/Output is optional and, in the first output field, provides the system with a page-number estimate of the
amount of primary output that the user is expecting. The second output specification is the estimated number of
card images that will be submitted to the secondary output stream. If the field is omitted, the number set at systems
generation time is assumed. If the field is marked with a C, the output is continuous; no estimate is supplied.

L Example:
JOBHbABCHBACCOUNTING/SMITH,312642,C,5,C/0
The above card directs the system to assign normal batch program priority, set logical switches A, B, and C to the

on” condition, and set switches D and E to the “‘off" condition. The department is Accounting, and the individual
submitting the job is Smith. All costs for running the job will be logged to account number 312642. The estimated

7504 Rev., 2 UNIVAC 494 SYSTEM

UP-NUMBER

2-7

PAGE REVISION | PAGE

CPU time required to run tasks described by the job is five minutes. The estimated number of pages of primary
output is C, indicating that the described tasks are continuous. (Normally this option is used for tasks which have
been debugged.) The amount of output is data dependent and varies radically. No secondary output is anticipated.

2.3.2. The START Statement

The START statement identifies a job description which is to be scheduled immediately or at a set time of day. The
statement may identify a job for processing a generated data file, initiating a parallel operation, or initiating jobs
stored with the system as a data file. This is of particular advantage in scheduling jobs from remote terminals to
avoid re-entry and transmission of the required control statements.

L] Format:
#STARTboptionbname/version,library,day clock time date
L Options:
D Delete the job entry from the START list.
N Start the named job now.
R Register the named job for reactivation on the RESTART command.

X Abort the element and remainder of the current job (i.e., skip to the next JOB card) if a find is not
made.

L Specifications:

Name/Version is the symbolic name, and version designator, if any, assigned as the identity of the source
element containing the control stream which is to be located and scheduled. The source element must contain
a complete job stream.*

Library identifies the location of the control stream on mass storage. The following specifications are valid:
SYS specifies that the named control stream element is contained in the systems library.
JOB specifies that the named control stream element is contained in the user’s job library.

xxxxx Group library number, which may be up to five digits, specifies the file number by which the group library is
identified. Decimal numbers may range from 0 to 9999, and must be indicated by a D following; e.g., 9989D. Octal
numbers may range from 0 to 77777.

Day Clock Time specifies the time of day, on a 24 hour clock, at which the job deck will be scheduled. The time
format is HH/MM where HH is O through 23 to indicate the hour of day and MM is O through 59 to indicate the
minute within the hour. Absence of the specification implies that the job deck will be scheduled immediately.

Date specifies the date upon which the job will be initiated. The date has the form YYDDD, where YY represents
the last two digits of the year (range 00—99) and DDD represents the day of the year (range 001—366). If the date
field is omitted the current date will be used.

START statements are processed upon their occurrence in the primary input stream. Each statement will cause the
entry of an independent job deck from the described direct access storage library to be processed in the
multiprogrammed environment. Once the job stream is activated, no form of direct communication exists between
the requesting job and the requested job. All files which are to be conveyed to the activated job stream from the
requester must be previously registered and stored in the Master File Directory.

*The SOURCE statement (see 4.5.1) provides a method for creating and/or updating this type of element.

7504 Rev. 2 UNIVAC 494 SYSTEM 2-8

UP-NUMBER I PAGE REVISION I PAGE

2.3.3. The Correction (COR) Statement

The correction (COR) statement is a means for correcting an absolute element within the library complex or for
applying corrections to absolute memory locations. Corrections applied to the absolute element will remain until the
library is altered or the system is reinitialized. Corrections or modifications to locations in memory are subject to
program modification and are not necessarily permanent. Modifications to memory locations must be made with
extreme caution to prevent inadvertent destruction of vital locations. COR statements may be submitted through
the primary input stream or as internal control statements.

n Format:
For application to an absolute element, the COR statement has the following general form:

#CORboptionsblibrary specification/element identification, relative correction address/segment number,
corrections, etc.

For application to memory locations, the COR statement has the following general form:
#CORboptionsbrelative correction address/corrections, etc.
L] Options:
A For application to memory location correction statement only. Corrections will be applied to the
indicated memory locations. The library specification/element identification field is not required. The

entire range of primary storage locations is accessible. The relative correction address is, in this case,
the location relative to the system base, which is normally zero.

P All secondary executive routines which are not active are purged from memory so that corrected
routines will be used when required.

X An ABORTS$ condition is caused if an error is encountered while processing COR statements.
OMEGA terminates the current job.

4 An ERRORS$ condition is caused if an error is encountered. OMEGA terminates the current task, but
continues the job.

Blank If no options are present, all of the fields described for correcting an element are required.

L Specifications:
Library specification identifies the library file upon which the element that will be corrected can be found:
JOB indicates that the element is in the job library.
SYS indicates that the element is in the systems library.
xxxxx Group library number which may be four decimal or five octal digits, ranging from 0—9999 10 ©F
0—777778, specifies the file number by which the group library is identified. The letter D must follow all

decimal numbers.

Element identification is the symbolic name, and version designator, if any, assigned as identification of the
element which will be corrected.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION PAGE

Relative correction address (absolute element) is the octal position within the segment, relative to the segment
base, to which the correction will be applied. For nonsegmented programs, the correction address is relative to
the element base. The relative correction address is, in all cases, followed by a slash (/).

Relative correction address (memory locations) is the absolute address, relative to zero, to which the
correction or modification will be applied. One or more corrections may immediately follow the relative
correction address.

Segment number is the number of the segment within the collection to which corrections will be applied. For
nonsegmented programs, the segment number is zero.

Corrections may be any numeric instructions or data desired. Numeric values which are decimal must be
followed by the letter D. Leading zeros are not required. Consecutive locations may be changed by a series of
correction fields separated by commas. A new correction address need not start on a new card. If nore than
one card is required, continuation cards may be used, with continuation being indicated by a 12—7—8 punch
(#) as the terminating character on a card.

Examples:
- Correction of an absolute element in the job (JOB) library:

#CORbZbJOB/FCA,67/2, 65000 01002, 15130 00131, 165/4, 16035 00001, 65000 00100#
(continuation card) 14030 00131, 61000 01172, 060710, 3715

This COR statement causes the absolute element FCA to be found in the job library, and changes
locations 67—70 relative to the base of segment 2 and locations 165—172 relative to the base of segment
4.

— Correction of an absolute element in the system (SYS) library:
#CORBXHSYS/LOAD, 323/2, 16070 02710, 12000 00000, 12000 00000

This COR statement causes the absolute element LOAD in the system library to be found, and changes
locations 323—325 relative to the base of segment 2.

- Correction of a location in memory:
#CORbAXH6541/11430 07621, 61000 05462, 7231/1, 17, 6

This COR statement changes the contents of memory locations 65641—6542 and 7231-7233.
Method of Operation:

The COR routine locates the absolute element by using the library specification and the element identification
to retrieve the table of contents (TOC) for the element which locates the element in the system. If the element
is segmented, as shown in the TOC, the COR routine reads the segment descriptors appended to the element
by the Loader during collection, which locate the segment in the element.

The corrections for the first determined relative correction address, and for all consecutive locations, are held
in the system until a second address encountered. At this point, the corrections being held are deposited at the
first and consecutive addresses. The corrections for the second address will be held until a third address is
determined, etc. This mechanism permits access to a maximum number of locations through a minimum
number of specifications. There is no limit to the number of corrections which can be made through the COR
statement.

7504 Rev. 2 UNIVAC 494 SYSTEM L l 2-10
PAGE REVISION PAGE

UP-NUMBER

When correcting memory locations under the A option, the COR routine deposits the corrections at the
address specified. The deposit address is incremented after each correction or until replaced by a new deposit
address. Any number of corrections may be applied.

- Diagnostic Messages

The following diagnostic messages reflect error conditions which may be encountered while processing the
COR statement. These messages appear in the primary output stream. Error status codes, if applicable,
are returned in the A register.

DRUM ERROR

An unrecoverable drum error has occurred during processing of the COR statement. The correction routine
will continue processing.

ERROR ON CARD READ

An error has occurred on the attempt to read a continuation card. The card in error will be printed, and the
next card will be read.

CARD FORMAT ERROR

The format of the correction card being read is in error. The field(s) in error are passed over, and processing is
continued.

ERROR, X OPTION, ABORT JOB

An error condition has occurred during processing of the COR statement and the validity of subsequent tasks
depends upon the present corrections being error free. The job is terminated.”

ERROR, Z OPTION, TERM TASK

An error condition has occurred during processing of the COR statement and the validity of the task depends
upon the present corrections being error free. The task is terminated, but processing continues for the
remainder of the job.*

SEARCH FOR ELT PRODUCED ERROR

The element named on the COR statement cannot be located. The correction routine will terminate according
to specified options.

ERROR STATUS FROM UNSTRINGER

An error condition has occurred during processing of the UST$ request. The routine will continue or terminate
according to specified options.

ERROR STATUS FROM CONVERSION

An error condition has occurred during processing of the CVT$ request. The routine will continue or
terminate according to specified options.

*The cause of the error conditions for the X and Z options will be specified on the basis of the other defined
error message.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

| PAGE REVISION | PAGE

2-11

2.3.4. The Parameter (PRAM) Statement

The parameter (PRAM) statement provides the user with a method for submitting operational parameters to a task
at execution time. These statements are submitted externally to the program through the primary input stream or
internally as a service request.

Format:

The PRAM statement has the following general form:

#PRAMboptionsbparameter1,parameter2,...
Options:

A Parameters contained in the specification field are in alphanumeric form, with each containing one or
more characters from the groups A through Z and 0 through 9. No special characters are allowed in the
specification field.

In the absence of the option, parameters contained in the specification field are considered to be
numeric values. Decimal numbers are indicated by a character D at the end of the number. Octal
numbers are recognized as containing 1 to 10 octal characters from the number set 0 through 7. Decimal
numbers are converted to the binary equivalent. The conversion process limits the magnitude of the
number to 30 bits. For octal numbers, characters are converted to binary and are right justified in a
30-bit word. Negative values in numeric fields are indicated by a leading minus sign (-); positive values
are indicated by a leading plus sign (+) or by the absence of a sign.

C Parameters sent with this option are considered as ‘literals’. All alphanumeric and special characters are
valid with the exception of delta (b or 11—-7—8 punch) which will terminate the literal.

X Abort the task and the remainder of the job (i.e., skip to the next JOB card) if errors are detected on the
PRAM statement.

Y Accept the next task although errors are detected on the PRAM statement.

Z Abort the next task but continue the remainder of the task if errors are detected on PRAM statement.
Specifications:

Each parameter contained in the specification field will be translated or converted to a 30-bit word(s) as
indicated by the inclusion or omission of the A option. When the A option is specified, all parameters on any
one statement are mapped as alphanumeric fields, leading blanks are ignored, and the fields are left justified
with interim and trailing blank characters. When the A option is omitted, all parameters on any one statement
are mapped as numerics and converted to equivalent binary form. A parameter field which consists of blank(s)
only will be ignored for both alphanumeric and numeric number fields. The maximum number of fields on any
one statement is limited to 2410 words.

Termination Control:
Termination control may be used to indicate the end of the parameters on the PRAM statement. This control
is useful for indicating the necessary blanks in the last alphanumeric field. A period (.or 12—3-8 punch)

or a delta (b or 11—7—8 punch) is used for this purpose.

NOTE: The period is not a valid terminating character when the C option is used; in this case, the delta is
the terminating character.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION PAGE

Method of Operation:
Each parameter statement encountered during the processing of the primary input stream is unstrung and the
parameters contained are mapped into 30-bit words. The number of words is determined by the number of

parameters contained in the statement.

The words are arranged sequentially, as indicated by their left-to-right order on the statement, and transferred
to executive storage linked to the task addendum. Subsequent statements will be handled in the same manner.

An operating task acquires parameters through the use of the SEND/RECEIVE service request mechanism
which transfers data to the ‘requester’s’ deposit area under control of OMEGA (see 2.5.6). The RECEIVE
operator specifies the base primary storage address and the number of 30-bit parameters desired. Words will be
consecutively transferred to the requester on a first in, first out basis until the specified number is attained or
the supply submitted through the PRAM is exhausted. Identification 77777 will be specified by the RECEIVE
operator.

Status Codes:

Upon return of program control from the internal PRAM request, the following status information is conveyed
to the requesting task in the A register.

Normal Completion: The A register is set to binary 0 which indicates that parameters on the statement have
been transferred through the SEND operator to the request with 77777 identification.

Abnormal Completion: The A register contains one of the following values, dependent upon the cause. The
parameters specified by the request will not be entered into parameter storage.

4000000000 Deposit area has overflowed.

4100000000 Deposit area is not within the lock limits of requester.
4100000010 No parameter given on PRAM statement.
4200000000 Invalid option specified or SEND is abnormal.
4200000001 Nonoctal value specified.

4200000002 Octal number greater than 7777777777 used.
4200000004 Non-numeric character used.

4200000010 Decimal number greater than 536870911 used.
4300000000 Exceeds maximum number of fields (24 decimal).
4400000000 No primary storage available for this request.
Examples:

The following sample indicates various ways in which parameters may be submitted:

7504 Rev. 2

UP.NUMBER

UNIVAC 494 SYSTEM

| PAGE REVISION lPAGE

2-13

#RAM Y 1277

'

#PRAM Y 123,,256,
#PRAM AY ABCD,

#PRAMY 255D, + 256D

2048D

,FGHUJKL,, ZXCVBNbbbAb
753,+753,+77775.

#PRAM Y 256D, —256D , 753,—753,—456321.
#PRAM YC DATA TRANSMITTED INTACT, WITH PUNCTUATION &

Assume the execution of:

RECEIVES$ TOM, 32D,77777

The following will be the contents of 32 words after the location TOM:

TOM

2.35. The LOG Statement

0000001277
0000012777
0000004000
0000000123
0000000256
0000000123
0607101105
1314153217
2021050505
3735103307
2305050505
0000000377
0000000400
0000000753
0000000753
0000077775
0000000400
7777777377
0000000753
7777777024
7777321456
1106310605
3127062330
2216313112
1105162331
0610315605
3416311505
2532231031
3206311624
2305050505

Remarks:

1. Leading blanks are ignored for alphanumeric fields.

2. Interim and trailing blanks are saved for alphanumeric fields.

3. Leading and trailing blanks have no meaning for numeric number fields.

4. Wholly blank fields are ignored.

The LOG statement provides the user with a means for entering information into the systems log. This statement
may be submitted through the control stream as a primary input statement or as an internal control statement.

Format:

The LOG statement has the following general form:

#LOGboptionsbcode number literal

7504 Rev. 2
UP-NUMBER

UNIVAC 494 SYSTEM

PAGE

J PAGE REVISION

2-14

Options:

A—K Specify the nature or source of the LOG message contained in the code and the literal, and are
conventionalized as follows:

A Miscellaneous

B User LOG Messages

C Console Messages

D System Information

E Job Accounting

F Input/Output Diagnostics

G CPU and Core Diagnostics

H Program Contingency Diagnostics

| Used by OMEGA For Logging Control
J (Unused)

K Output To Exec Primary Output Stream

Only one of the option letters A through K may be specified per request. Absence of A through K options in
this case implies the D option.

Specifications:

Code number is an octal value which specifies a particular message within a group. Groups are specified by
option letters A through K. The range of codes is 000 through 777.

Literals are the messages to be contained on the Systems Log and displayed for user interpolation through the
accounting routine. Literals can be of variable length containing both binary and alphanumeric fields. All
literals to be displayed by the accounting routine must be specified previously by the user through the code
word, with the exception of literals submitted with B option, for proper interpolation and processing. The
maximum size of a literal is 2768 words.

Method of Operation:

Log statements may be submitted externally through the control stream and/or collected with the task
element or they may be submitted dynamically during execution of the task. Upon return of program control
from a dynamically submitted log statement, the following status information is conveyed in the A register:

Normal Completion The register is set to binary zero.

Abnormal Completion The register contains one of the following values dependent upon the cause. No
logging is performed.

4200000000 Incorrect parameter: log statem:nt could not be interpolated.
4300000000 An unrecoverable error was encountered during the operation.

Registers B1 through B6 and Q will contain the original values held prior to execution. B7 contains the address
of the log statement.

2-15
PAGE

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER | PAGE REVISION

2.3.6. The DUMP Statement

The DUMP statement may be used to obtain a postmortem dump of all, or part of the primary storage used for the
execution of a task; or selected areas of direct access storage or selected tape blocks. The statement calls for a
reentrant secondary executive routine, DUMP, and can be submitted through the primary input stream or during
execution of the task through service requests. When submitted through the control stream, the DUMP statements
must immediately follow the end-of-task statement to which they pertain.
Upon submission of a service request or termination of a task, the specified areas are extracted from primary storage,
direct-access storage, or tape storage. The areas are edited into a readable format and submitted to the primary
output stream.
L] Format:

The DUMP statement has the following general form:

#DUMPboptionsb VorVqiVay Vg

L Options:

O, A, D, F Specify format to which each extracted word will be converted before submission to
the primary output stream, as follows:

(0] Each word is 10 octal characters.
A The extracted data is in Fieldata alphanumeric form and needs no conversion.

D Each 30-bit word will be converted from binary to decimal and will be represented as
a signed decimal value.

F The extracted data is a two-word floating point number and will be converted and
represented as a signed decimal number.

P Specifications Vor Ve Voo and v, describe a peripheral device or direct
access storage.

E Perform the indicated dump only if the task is terminated by an ERROR or ABORT
condition.

C Space the paper to a new page before printing.

L Include a listing of the operating task addendum, activity addendum of the requesting
activity and all storage modules linked from the activity addendum.

L] Specifications:
Vo is the alphabetic character(s) of the file code to which peripheral or direct access storage is assigned.

v, is the number of words of primary storage, or direct access storage, to be dumped. Whenever Vo specifies a

1
tape, v, will specify the number of tape blocks to be dumped. A maximum of 62008 words will be dumped

per block. V1 may not exceed a value of 777708.
v, has meaning based upon the task, and may specify:

the starting address of primary storage relative to the PLR, or the task base of the requestor,

2-16
UP-NUMBER PAGE REVISION | PAGE

7504 Rev. 2 J UNIVAC 494 SYSTEM

the logical increment in the case of direct access storage, or
the number of tape blocks to be bypassed at the beginning of the tape storage.

vy is an optional parameter specifying the number of lines to space before each print operation. If this
parameter is not used one line is assumed. This parameter may be used for skipping blocks when dumping

from tape.

L Method of Operation:

When the DUMP statement is submitted through a service request, the executive entry instruction is used (see
2.5).

Two calls are recognized by the DUMP routine:

EXRN*20741

Action: Requests the DUMP routine to unstring a card image and to perform the specified display
operations.

User: Unrestricted.

Where used:

- The #DUMP card may be entered into the primary input stream, where it is detected and submitted by
the Control Card Interpreter (CCl) routine. Usually this card is placed after the #END card of the
operating task’s input stream, causing postmortem dump. The card may also be entered among the data
parameters, where it will be detected by the CCI routine and processed immediately without affecting
the operation activity.

- A BDUMP card may be read as a parameter and submitted by the operating task. B7 must be set (relative
to the task base) to the buffer base with an EXRN*20741 given.

- The #DUMP card (starting in column 18) may be inserted in a SPURT source deck. SPURT recognizes
the #sign and generates the necessary packet.

On receiving the 20741 call, the DUMP routine takes the task base from the operating task addendum, and all
increments are added to this base. The primary storage limits are also taken from the task addendum and no
dumping is permitted outside these limits.

EXRN*20740

Action: Requests the DUMP routine to process an internal packet.
User: Unrestricted.

Where used:

— Must be sumbitted as an internal packet, with the following format:

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

| PAGE REVISION | PAGE

2-17

EBJP*B7 N

FILE CODE (vy) | NO. OF WORDS (vy)

INCREMENT (v,)

29 4|3 0
OPTIONS SP(v3)

N - EXRN 20740

The parameters within the packet correspond to the indicated v-fields on the #DUMP statement. The option
field is a-master bit designation of the desired alphabetic character beginning with bit 29 for A and ending with
bit 4 for Z (e.g., for the D and C options, set bits 26 and 27, respectively).

B7 must be set relative to the lower lock of the requesting activity. The DUMP routine takes the starting
increment and primary storage limits from the storage module of the requesting activity. No data will be
dumped outside of the lock limits set in the storage module.

Examples:
#DUMPHObH,70000,0,1 (For primary storage assignment)

DUMP 70000 words of primary storage, in octal format, starting at the task base, and space one line between

print images. If 70000 is larger than the primary storage assigned to the task, only that primary storage
assigned to the task will be dumped.

#DUMPHDEDH,100D,400,2 (For primary storage assignment)

The E option indicates that the dump is to be performed only if the task is terminated with an ERROR or
ABORT service request. The D option implies that each data word is to be converted to its signed decimal
value; 100D, 400 specifies a dump of 100, , words beginning at the primary storage area relative address at
4008 ; the 2 requests that printing be double spaced.

#DUMPHPADBC,5,0 (For tape assignment)

The A option indicates that the described data is in Fieldata or printable form, ready for submission to
primary output as ten word lines. Specification of C indicates file code C; 5 requests printing of five
consecutive blocks; O requests rewind of tape and bypass of zero blocks.

#DUMPHPODBA ,400D,300,1 (For direct access storage assignment)

The O option indicates that the described data will be represented on the dump in its octal form. Specification
A indicates file code A; 300 specifies the starting logical increment from File A of direct access storage; 1
specifies a one line space before printing; 400D specifies a dump of 4001 ° consecutive words.

7504 Rev. 2 UNIVAC 494 SYSTEM 218

UP-NUMBER PAGE REVISION PAGE

2.3.7. The END Statement
The END statement is required to mark the end of the primary input stream of a task.
- Format:
The END statement has the following form:
#END
The statement is nonoperational; therefore, no options or specifications are required. The end-of-task

statement is required to separate the end of one task from the beginning of a subsequent task within the job
deck. The only control statements pertaining to the current task which can follow the END statement are the

postmortem DUMP statements.

2.3.8. The FIN Statement

The FIN statement is a termination indicator used in several situations for delineating end-of-input stream conditions,
such as end-of-tape or end-of-transmission from remote terminals, and to avoid interlocks or hangups on card
equipment. The statement is not used to mark the end of a job deck.

- Format:
The FIN statement has the following form:
#FIN

Since the statement is basically nonoperational, no options or specifications are required.

2.3.9. The READY Statement

The READY statement precedes each run of jobs or data submitted from a remote terminal. The statement is
transmitted only once, when connection is made with the central site.

= Format:
The READY statement has the following form:
#READY boptionsbstation

i Options:

Options are variable depending upon the remote unit (see individual documents for remote peripheral
systems).

L Specifications:

Station identifies the remote terminal. A list of communicating terminals is created by systems generation
which is used to verify legality, and to determine station priority and output line, and other unit capacities.

10U4 MeV, £

UNIVAC 494 SYSTEM l A l 2-19
PAGE

UP-NUMBER PAGE REVISION

2.3.10. The CALL Statement

The CALL statement is used to override normal system action in routine primary or secondary output. The normal
system action is set at systems generation time to the high speed printer and card punch.

n Format:
The CALL statement has the following general form:
#CAL Lboptionsbname/version, library, type, file ID -
L Options:

Options are passed to the named unit record routine for its interpretation. The only option recognized by
OMEGA itself is the X option.

X Abort the job if the called for unit record routine cannot be located or activated.

Absence of the X option implies use of normal output unit record routine if the called for routine cannot be
located or activated and the CALL statement is ignored.

L] Specifications:

Name/Version is the symbolic name and version, assigned as identification of the called for unit record
routine. At the time of the call the named unit record routine must be in absolute form with all required
peripheral facilities collected with it in the form of the ASG statement.

Library identifies the random access program library file in which the called for program element is contained.
The following specifications apply:

Type:
P Primary Output Routine

S Secondary Output Routine
SYS indicates that the named absolute element is contained in the systems library.
JOB indicates that the named absolute element is contained in the user’s job library.

xxxxxGroup library number, which may be four decimal or five octal digits, specifies the file number by
which the group library is identified. Decimal numbers may range from O to 9999, and must be indicated by a
D following, e.g., 9989D. Octal numbers may range from 0 to 77777.

Absence of a specification implies a search of the user’s job library.

File is used to specify the primary and/or secondary output stream which the called unit record routine is
responsible for processing. P indicates primary output stream; S indicates secondary output stream.

File 1D is an optional parameter that may be specified for tape primary output routines. If present, the tape
unit record will submit a CHANGES$ request to inform the operator that ID file is to be used.

Because of the unpredictability of the time at which output unit record routines will be activated, CALL
statements should be positioned toward the beginning of the job deck, immediately following the JOB
statement. For example, upon encountering the CALL statement in the primary input stream, the system will
store the statement as an override for normal unit record call. The statement will be processed when the
system requires primary and/or secondary output in the normal manner. (See 3.4.3 for determining when
output unit record routines are activated.)

UP-NUMBER

7504 Rev. 2 I

UNIVAC 494 SYSTEM I A

PAGE REVISION

PAGE

2-20

{

2.3.11. The HDG Statement

The HDG statement is used to modify the heading line normally printed at the top of every page of primary output.

] Format:

The HDG statement has the following general form:

#HDGboptionsbtext

L] Options:

N

R

Revert to the normal page heading from a revised heading.

Re-set the page count on the revised heading to one.

L Specification:

Text specifies the data that will be printed, left justified, in the central 701 o print positions of the heading line
of the following pages. The JOB NUMBER and PAGE NUMBER information is not affected.

The text is limited to 701 0 characters and spaces. There are no restrictions on special characters.

L] Methods of operation:

The HDG statement may be used in one of three ways.

The HDG card may be entered into the primary control stream where it is detected and submitted to the
Control Card Interpreter where it is processed to provide information for the primary output routines.
Usually, the card is placed after the #END card of the operating task’s input stream, causing the header
information on the following pages to be updated. The card may also be submitted as part of a data
deck, in which case it will be processed immediately without affecting normal processing.

The HDG card may be submitted via an EXRN call on CCl (EXRN 20406). If the HDG card (starting in
column 18) is submitted in a SPURT source deck, SPURT will recognize the '# sign and generate the
necessary instructions and packet.

The HDG card may be submitted to the LOADER as a secondary control card with a space in COL. 1
instead of a '#. The LOADER will accept the card, generate necessary code and, upon execution of the
absolute element, submit the HDG card for evaluation.

2.3.12. The LST Statement

The LST statement is used to control the production of primary output. Upon detection of a #LST card, the system
will ignore all PRINT requests, thereby effectively terminating all primary output, until a subsequent #LST card is
detected, at which time normal operation will be resumed. There is no limit to the number of times that the LST
card may be used.

L Format:

The LST statement has the following format:

#LST

1004 Hev. 2 UNIVAC 494 SYSTEM I A 2-208

UP-NUMBER PAGE REVISION l PAGE

L] Options:
There are no options for this statement.

L] Method of Operation
The LST statement can be submitted for operation in one of two ways:
1. Via the primary input stream as part of a job control sequence.

2. As part of the object code of an element. If the LST card is submitted to the SPURT Assembler, starting
in column 18, the Assembler will generate the necessary code for execution at program run time.

2.4. TASK ACTIVATION CONTROL STATEMENTS

Task Activation Control Statements are the primary control statements which describe an absolute program
produced by the Loader. These include statements which are selected on the basis of priority and available facilities;
statements readied for execution by assigning peripheral devices, direct access storage, and primary storage area; and

statements activated by loading into primary storage and by registering the initial activity addendum on CPU queue
(see 10.2).

Two forms of task activation statement are recognized by OMEGA. The first calls for the activation of a systems

processor or utility routine which may require special preprocessing during the allocation phase. The second is the
GO statement which is the normal method of activating user-developed programs.

2.4.1. The GO Statement
The GO statement is used to initiate the execution of an absolute program prepared by the Loader routine:
L Format:

The GO statement has the following general form:

#GOboptionsbname/version, library, time estimate -
L] Options:
A—E Identify logical test switches maintained by the system for each job. The switches are specified on

the JOB card as applicable throughout the job. When the switches are defined or being reset with
the GO card, the R option must be used.

P (FORTRAN only) Indicates 90-column card input.

R Reset or clear logical switches as defined by A—E option letters.

HM,L Set service and selection priority (high, medium, low) for execution of the task.

w Specifies that timing by task is required. -
X Abort the element and the remainder of the job (i.e., skip to the next JOB card) if error occurs

during loading or execution.

Y Accept the absolute element for execution although the element is marked as containing an error.

7504 Rev. 2
UP-NUMBER

2—-20b

PAGE REVISION PAGE

UNIVAC 494 SYSTEM I A

Specifications:

Name/Version is the symbolic name and version, if any, of the absolute element which will be entered into
memory and initiated.

Library identifies the library in which the absolute element is contained on direct access storage. Any of the
following specifications are valid:

SYS specifies that the absolute element is contained in the system’s library.

JOB specifies that the named element is contained in the user’s job library or in a group library previously
linked to the user’s job library.

7504 Rev. 2 UNIVAC 494 SYSTEM l A 2-21

UP-NUMBER PAGE REVISION I PAGE

xxxxx Group library number, which may be four decimal or five octal digits, specifies the file number by
which the group library is identified. Decimal numbers may range from 0 to 9999, and must be indicated by a
D following; e.g., 9989D. Octal numbers may range from 0 to 77777.

Absence of a library specification implies a search of the user’s job library.

Time Estimate — If the W option is present this field is interpreted as the number of tenths of a second to

be allowed for this task. If the estimate is exceeded, CP OF LW process will occur in the same manner as when
JOB time estimate is exceeded.

2.4.2. Systems Processor Control Statements

Systems processor control statements call for the execution of a task whose name/version and processing
requirements are known to the system. In general, all specifications and options contained in the control statement
are passed to the implied processor. The processor is specified by the function code in the control statement. TEST,
used to call the Test system, and FOR, used to call and activate the FORTRAN compiler, are examples of processors

called in this way. A detailed description of applicable statements and secondary language is contained in subsequent
sections.

Implied processors, other than the Program Library Editor, may be contained in the systems library, job library, or
group library. When locating the called processor, the selection process will search the systems library and then the
job library. Because of the nature of the Program Library Editor, it must be contained in the systems library.

A list of system processors and utility routines activated in this manner is given on the following pages. Detailed
description of control statements and secondary language is contained in subsequent sections.

25. SERVICE CONTROL

Service control is the interface by which an operating task communicates with and requests services from OMEGA.
An operating task requests service by a sequence of instructions which submits a parameter packet appropriate to
the request with interrupts to OMEGA.

Since hardware guard mode is enforced against operating tasks, the special executive entry instruction (EXRN) is
used to submit a request. This instruction causes an interrupt and includes a 15-bit field identifying the function
requested. In many cases, operational registers A, Q, and B7 are also used in communication of parameters for the
request, and the status or condition upon completion. Registers B1 through B6 are always preserved. The calling
sequences are consistent with reentrant programs since they are restricted to the operational registers.

The routines which perform the requested service are logically executed as an extension of the requester activity.
This maintains CPU service at the priority level assigned to the requester and provides for direct logging of CPU time
used in the execution of the function to the requesting task. An organization is also achieved which maintains
interruptability for the extent of the function. Service routines which are not permanently resident will be called
and controlled by OMEGA. Some functions will be performed by reentrant routines which will service simultaneous
requests for several user or systems elements, such as input/output handlers and the segment loader.

Since a service request is executed as an extension of the calling activity, the caller, under the current activity
addendum, will be delayed until completion of the request. If the task has previously fragmented itself (see 2.6), the
task may be eligible for program control under another activity addendum associated with the task.

Essentially, all OMEGA functions called upon during execution of a task are service requests, such as activity
control, contingency control, and input/output. The service requests are explained in detail in other sections of this
manual. The service requests which are contained in this section are the miscellaneous functions which are not
covered in subsequent chapters.

7504 Rev. 2
UP.-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION | PAGE

2-22

2.5.1. Summary of OMEGA Service Requests

Table 2—1 presents a summary of general service requests to OMEGA which can be performed by a batch or real
time communications program. Some of the requests are restricted to use by OMEGA only. The summary is broken
into general service requests as shown below, input/output service requests (see 3.4.4), and optional real

time/communications requests (see Section 9).

GENERAL SERVICE REQUESTS
MNEMONIC DESCRIPTION RESTRICTION SECTION
ABORTS$ Purge job from system No 26.4.2
CABORTS$ Deallocate current activity 1 2564
CEXIT$ Common subroutine exit 1 2564
CHANGES$ Direct operator to change tape reel No 5.3.3
CKPT$ Records environment as part of program interruption No 2.5.10.1
CLD$ Clear dual index mode No 28.4.4
CMOVE$ Perform data transfer 1 25.6.3
CSWCT$ Switches control between routines 1 2564
DATIM$ Supply current date and time No 2583
DELAY$ Delay activity for a given time period No 2584
DEMOUNTS$ Direct operator to dismount tape reel No 5.3.2
ERRADDS$ Establish fault routine address No 29.2
ERROR$ Purge task from system No 2643
FADD$ Expand direct access storage No 3.2.11.3
FADDA$ Expand direct access storage No 3.2.11.3
FETCH$ Subroutine load No 25.4
FETCHL$ Locate Table of Contents No 255
FOFADD$ Establish floating point overflow address No 29.2
FORK$ Split program control No 2.6.3.1
FREL$ Release direct access storage No 3.2.11.2
FRELAS Release direct access storage No 3.2.11.2
FRPL$ Replace direct access storage No 3.2.11.4
FRPLI$ Replace direct access storage No 3.2.114
FUFADD$ Establish floating point underflow address No 29.2
JOINS Close split program control path No 2.6.3.2
LOADS$ Load Segment No 2.6.3
LOADAS$ Load and activate segment No 2.5.3

Table 2—1. General Service Requests (Part 1 of 2)

7504 Rev. 2
UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION

PAGE

2-23

GENERAL SERVICE REQUESTS

S/R or non-resident exec. service routines).

Table 2—1. General Service Requests (Part 2 of 2)

MNEMONIC DESCRIPTION RESTRICTION SECTION
MADD$ Extent core assigned No 28.2.2
MOUNTS$ Direct operator to mount tape reel No 5.3.1
MREL$ Release core assigned No 28.23
QREF$ Activate queue process activity No 26.2.2
RECEIVES$ Receive parameters and/or data No 25.7.2
REGS$ Standard activity registration No 26.1.1
REGQ$ Queue process activity registration No 26.2.1
RETURNS Terminate activity (conditional) No 2.6.4.1
RETURN1$ Terminate activity (unconditional) No 2644
SEND$ Send parameters and/or data No 25.71
SETD$ Set B registers to dual index mode No 28.4.3
SET15$ Set B registers to 15-bit mode No 284.1
SET17$ Set B registers to 17-bit mode No 284.2
TCORE$ Supply primary storage limits of task No 28.24
TCORE1$ Request that a task be not subject to compaction No 2.8.3.1
and supply primary storage limits of task.
TESTFLS$ Test floating point overflow/underflow No 294.2
TESTFOF$ Test floating point overflow No 294.2
TESTFUF$ Test floating point underflow No 29.4.2
TFC$ Test file code for type device No 3.2.11.1
TIMED$ Supply edited time of day No 25.8.1
TIMEL$ Supply elapsed central processor time for task No 25.8.2
TIMEQ$ Supply current quantum time No 25.8.5
TIMEY$ Supply current time of year No 25.8.6
UNSOL$ Unsolicited operator messages No 5.4
XOFF$ Set logical switches off No 25.9.1
XONS$ Set logical switches on No 25.9.2
XTESTS$ Supply current logical switches No 2593
Submit control statement internally No 25.2
@ Can only be used by routines that operate under control of the content supervisor (i.e., common

7504 Rev. 2
UP-NUMBER

UNIVAC 494 SYSTEM

2-24
PAGE REVISION | PAGE

2.5.2. Internal Control Statements

OMEGA recognizes a subset of external control statements which can be submitted and processed as internal control
statements during execution of the task, thereby providing the user a degree of dynamic control over the task/job
environment. Essentially all nontask activation control statements may be submitted in this manner by either of the
two methods illustrated below, which include the following set:

CONTROL

STATEMENT DESCRIPTION NOTE

OPERATOR

START Schedule the execution of a related job deck Will be queued for scheduling

PRAM Convey operational parameters to a task Processed immediately

COR Enter corrections to user program Processed immediately

MSG Convey abnormal operating instructions to Processed immediately
console op.

LOG Record user specified literal on systems log file Processed immediately

DUMP Perform diagnostic printouts of direct access Processed immediately
storage, primary storage or tape

ASG Assign input/output device or direct access Processed immediately
storage to a task

FREE Release input/output device or direct access Processed immediately
storage assigned to the task

SWITCH Change input/output reference codes Processed immediately

DEL Delete elements from job library Processed immediately

Details of the function and operation of the above statements may be found in appropriate sections of

this manual.

25.2.1. METHOD OF SUBMISSION

Two methods are provided for submitting control statements during task execution. The first method involves the
use of the control statement contained in the task code entered there through parameter mechanism or generated by
an assembler. The second method involves the submission of statements through the job control stream. In either
case, the operating task/activity dynamically submits the control statement to OMEGA by a service request. The
format of the service request is as follows:

7504 Rev. 2 UNIVAC 494 SYSTEM

2-25
UP-NUMBER PAGE REVISION | PAGE

ENT*Q NUMBER OF WORDS
EBJP*B7 N
CONTROL
STATEMENT
N —» | EXRN 20406

Number of words specifies the length of the control statement literal.

Control Statement is a literal containing the complete statement in Fieldata, left justified in the field. The statement
format must be identical to that of the externally submitted control statements, with one exception: the # symbol
in position one (1) of the statement is present at execution time. Otherwise, 2ll fields are present and follow normal
conventions described in 2.2.1.

Upon submission of a service request, OMEGA will perform the following functions:

L] Interpret and unstring the literal address by B7 and switch to the OMEGA routine responsible for performing
functions as determined by the function code.

L Process or queue the processing of the request, if possible, dependent upon the requested function.

L] Return program control to the instruction following EXRN.

Upon return of program control from the requester, registers B1 through B6 will contain original values held prior to
the request, and the Q register will contain the length of the literal submitted. In general, the A register will contain
one of the following status indications:

0000000000 Normal completion of request.

4100000000 Inappropriate function: the literal contains a control statement such as GO, SOURCE, LOAD,
etc., other than the subset allowed by the system.

4200000000 Incorrect parameter: the submitted literal could not be unstrung properly, or incorrect function
code, options, or specifications have been included.

4300000000 Unrecoverable subsystem error is encountered during processing of the requested function.
5000000000 Function is not performed due to lack of facilities or other system requirements.
The above register settings and status codes may be further modified depending upon the function requested.

The method of submitting control statements during execution of the task through use of the job control stream is
detailed in 3.4.4.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

| PAGE REVISION IPAGE

2.5.3. Segment Call (LOAD$, LOADAS$) Service Requests

Segmentation is the normal method of overlay utilized by the system. Segments or overlays are defined during the

collection of a program by the Loader (see 4.6.4.1).

Segment calls can be performed by direct or indirect methods. The LOAD service request is the direct method for
utilizing a segment. Upon submission of the LOAD request, an original copy of the segment is read from direct
access storage. The indirect method provides for automatic loading of a segment referenced by a jump type
command. For an indirect reference, the segment may be entered directly since the segment is in primary storage
from a previous reference; when not in primary storage, the original copy is brought from direct access storage. Since
segments exist in absolute form, a segment call involves only a single direct access reference with no modification of

the code after it is read in.

L] Format:

The format of direct segment call service requests is as follows:

Load (LOAD) requests that a referenced segment be loaded at this time with control returned immediately

following the request:

LOAD$blabel

where label is an external reference which is defined by an entry definition in the called segments.

The generated request parameter is as follows:

ENT*B7

LABEL

EXRN

20004

Load and activate (LOADA) requests that a referenced segment be loaded at this time with control given to

the segment:

LOADAS$btag

where tag is any external reference which is defined by an entry definition in the called segment and to which

control will be transferred.

The generated request parameter is as follows:

ENT*B7

LABEL

EXRN

20005

When a LOAD or LOADA request is made, all operational registers are preserved unless an error condition
arises. If a direct access storage error occurs, control is returned following the request, and the direct access
storage error status is shown in the A register. If the LOAD or LOADA cannot be completed because of
erroneous information, a status of 4200000000 will be returned in the A register. When the indirect method is

used, all operational registers are also preserved; if an error occurs, the routine will be aborted.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2-27
PAGE REVISION | PAGE

2.5.4. Subroutine Load (FETCHS$) Service Request

A subroutine load requests the loading of a named absolute library program at a specified location. This function
permits an operating task to control operation of absolute programs as an alternate to formal segmentation. The
requester must have an existing allocation of primary storage to accommodate the absolute element. The subroutine
will not be activated until a fragmentation request is made. The operating base and memory lockout protection
associated with the fetched subroutine is a subset defined by the requester through activity registration.
L] Format

The format of the call is as follows:

FETCHS$bbase address, name/version,library
L] Specifications:

Base address is a primary storage address relative to the lower lock register in which the element will be loaded.

Base address may be specified as a label, tag, or constant. However, the generated address or binary value must

be a multiple of 1008 from an assumed base of 0 to facilitate its registration.

Name/Version is the symbolic name and version, if any, in alphanumerics assigned as identification for the
called element.

Library identifies the library in which the absolute element is contained on random access storage. The
following specifications are valid:

SYS specifies that the absolute element is contained in the systems library.

JOB specifies that the absolute element is contained in the job library.

xxxxx Group library number, which may be four decimal or five octal digits, specifies the file number by
which the group library is identified. Decimal numbers may range from 0 to 9999, and must be indicated by a

D following; e.g., 9989D. Octal numbers may range from 0 to 77777.

Absence of specification implies that a search for the element will start with the job library and continue
through any group libraries and the systems library or until the element is found.

The generated request parameter is as follows:

EBJP*B7 | N
|BASE ADDRESS
NAME Left justified
NAME in Fieldata
VERSION form
LIBRARY
N—| EXRN 20320

L] Method of Operation
Upon submission of the FETCH service request, OMEGA performs the following functions:
- Interprets the packet addressed in B7.

- Locates and reads into primary storage the named element from the specified library.

7504 Rev. 2 UNIVAC 494 SYSTEM

2-28
UP-NUMBER PAGE REVISION | PAGE

- Returns program control to the instruction following EXRN.
Upon return of program control to the requester, B1 through B6 will contain the original values held prior to

the request. B7 will contain the address of the packet. The A register will contain one of the following status
indications:

0000000000 Normal completion

4200000000 Incorrect parameters, address outside task area of packet unrecognizable. In this case, the re-
quested function was not performed.

4300000000 Unrecoverable direct access storage error was encountered in performing the request. The
function may or may not be complete.

The contents of the Q register will be destroyed.

25.5. Locate Table of Contents (FETCHLS$) Service Request
This request is used to locate the table of contents (TOC) of any source, relocatable binary or absolute program on
the system, job or group library. This function is used when a requester wishes to have information about a
particular library program.
L Format

The format of the call is as follows:

FETCHL$bbase address,name/version,library

L] Specifications

Base address is a primary storage address relative to the lower lock register of the nine word area where the
TOC is to be deposited. Base address may be specified as a label, tag, or constant.

Type of TOC indicates whether the TOC is for source code, relocatable binary, or an absolute element.

Name/version is the symbolic name and version, if any, in alphanumerics assigned as identification to the
element whose TOC is to be read.

Library identifies the library in which the TOC is contained on random access storage. The following
specifications are valid:

SYS specifies that the TOC is contained in the systems library.

JOB specifies that the TOC is contained in the job library.

xxxxx Group library number, which may be four decimal or five octal digits, specifies the file number by
which the group library is identified. Decimal numbers may range from 0 to 9999, and must be indicated by a

D following; e.g., 9989D. Octal numbers may range from 0 to 77777.

Absence of specification implies that a search for the TOC will start with the job library and continue through
any group libraries and the systems library or until the TOC is found.

7504 Rev. 2 UNIVAC 494 SYSTEM >

UP-NUMBER i PAGE REVISION |PAGE

The generated request parameter is as follows:

EBJP*B7 { N
TYPE OF TOC]| BASE ADDRESS
NAME
Left justified

NAME in Fieldata

VERSION form

LIBRARY

N — EXRN 20322

Type of TOC field; if this field is O it is assumed that a TOC to an absolute element is wanted, otherwise there
has to be a specification. If the field is 01, TOC is for RB element; if 02, TOC is for absolute element (same as
00); if 03, TOC is for a source element.

] Method of Operation
Upon submission of the FETCHL service request, OMEGA performs the following functions:
- Interprets the packet addressed in B7.
- Locates and reads into primary storage the name TOC from the specified library.
- Returns program control to the instruction following EXRN.
Upon return of program control to the requester, B1 through B6 will contain the original values held prior to
the request. B7 will contain the address of the packet. The Q register will contain the file code of the library
where the TOC was found. The A register will contain one of the following status indications:
0000000000 Normal completion
4200000000 Incorrect parameter, specified TOC not in library.

4300000000 Unrecoverable system error was encountered in performing the request.

7504 Rev. 2 UNIVAC 494 SYSTEM %0

UP-NUMBER | PAGE REVISION | PAGE

2.5.6. Common Subroutines

A common subroutine is an element that is cataloged, maintained, and controlled by OMEGA so that the element
may be referenced by any operating task through the Executive Return (EXRN) service request mechanism. The use
of common subroutines can increase the throughput of a multiprogrammed system by conserving both primary
storage and direct access storage.

All requests for common subroutines are channeled through a resident element that established and maintains the
linkages required to allow multiple tasks to utilize the same code. The common subroutines, along with a directory,
are contained within the systems library on direct access storage; and a specific common subroutine is established in
primary storage only when its services are required. Once a common subroutine has been loaded, the subroutine will
be maintained as a resident element until such time as it is inactive and the primary storage assigned to it is required
for another purpose.

When a common subroutine call is performed, the requesting activity will be suspended until control has been
returned.

2.5.6.1. OPERATING ENVIRONMENT

The design and coding of a common subroutine must include consideration of the operating environment which will
be established when the routine is activated.

The operating environment which is needed by a particular common subroutine is specified at systems generation
time and will consist of the combination of conditions, one out -of each set, that have been selected from the
following:
® RE-ENTRANT
NON RE-ENTRANT
s 15-BIT B REGISTERS
18-BIT B REGISTERS
L] NORMAL INDEXING
DUAL INDEXING
» ROUTINE LOCK

REQUESTER LOCK

OPEN LOCK

7504 Rev. 2 UNIVAC 494 SYSTEM

2-31
UP.NUMBER PAGE REVISION | PAGE

2.5.6.2. ENTRANCE CONDITIONS

A common subroutine is supplied with necessary parameters contained by the values in the operational registers at
the time that the EXRN service request is performed.

The manner in which a common subroutine accesses the parameter values is dependent upon the operating
environment specified for the routine. A routine that operates with open lock and dual indexing must refer to the
parameters through a Storage Module (SMOD) that is addressed by register B4. The values of the registers B1
through to B7, A and Q are contained in consecutive locations, in the order indicated, beginning at the word

addressed by B4+5 through to B4+15. A routine that operates with lock limits will be activated with the parameters
contained in the registers.

2.5.6.3. SPECIAL DATA TRANSFER (CMOVES$)

A CMOVES$ service request is provided which permits a common subroutine with lock limits to perform data
transfers either to or from a requester.

L] Format:
The CMOVE request has the following general form:
CMOVES$bv, v,

n Specifications:
v, is the address of the data area within the common subroutine.

v, is the size of the data area (if bit 14 is set to one, the transfer will be made from the common subroutine; if
bit 14 is zero, the transfer will be made to the common subroutine).

The generated service request is as follows:

ENT*B7 Vo
ENT*Q v1
EXRN 20007

u Method of Operation:

This function requires that the data address with the requester program be contained in register B7 at the time
that the common subroutine service request is performed.

When program control is returned to the requester, the B and Q registers will be undisturbed, and the A
register will contain one of the following status indicators:

00000XXXXX Normal completion: XXXXX is the number of words transferred.

4200000000 Transfer has not been performed because the transfer would have violated lock limitations of
either or both elements.

4400000000 Parameter error in the number of words to transfer

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER PAGE REVISION PAGE

2-32

2.5.6.4. EXIT PROCEDURES (CEXITS, CSWCTS$, CABORTS)

When a common subroutine has completed the processing of a request, the subroutine must relinquish control in a
manner which allows the system to update linkage information that is created when the request is initiated.

When a common subroutine exits, the A, Q, and B7 registers should contain any values that are to be conveyed to
the requester. The system automatically transfers these registers to the original requester at the time that the system

is reactivated.

The following is a description of the service requests and the resultant returns that are permitted for the common
subroutines:

= CEXITS$
The CEXIT operator is the normal means for exit.
- Format:
The CEXIT request has the following form:
CEXITS$

The generated service request is as follows:

ENT*B1 0
EXRN 05004

This return indicates that processing is completed and control should be returned to the requester.
n CSWCT$
The CSWCT operator is a means for routing control to a point other than that of the normal exit.
— Format:
The CSWCT request has the following general form:
CSWC'I'$bv0
— Specifications:

Yo is the service call value of another common subroutine to which control will be switched. The
generated service request is as follows:

ENT*B1 1
ENT*B2 M0
EXRN 05004

This return allows requests to be channeled through a series of common routines without requiring the worker
task to make a series of requests. When exiting from a common subroutine by the CSWCT operator to another
common subroutine, the register settings which are set when entering the first common subroutine are the
same register settings used when entering the second common subroutine.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2-33
PAGE REVISION | PAGE

@ CABORTS$
The CABORT operator is used to deallocate the current activity.
— Format:
The CABORT request has the following form:

CABORT$

The generated service request is as follows:

ENT*B1 2
EXRN 05004

This return is required by system elements which are controlled by the content supervisor and which
cannot issue an ABORT CONTROL THREAD request directly.

25.6.5. NAME CONVENTIONS

The name of each common subroutine that is defined within the system is used to form an entry definition (EDEF)

item within the system library. The EDEF permits referencing of a common subroutine by its symbolic name
without concern for the system-created call value.

A naming convention has been established to eliminate conflicts between symbolic EDEF’s which must be
maintained within the system. A set of two characters has been reserved for use as the initial portion of names which

are required as EDEF’s in a particular group of elements. The characters which have been reserved for common
subroutine names are D$.

2.5.6.6. COMMON SUBROUTINE REQUESTS

A common subroutine is requested ‘by an Executive Return (EXRN) instruction that contains a service call value
which uniquely identifies the particular routine.

The service call value for a specific common subroutine consists of the library number which was assigned at systems
generation time plus the constant 50040.

In symbolic coding, the common subroutine name may be used as an operand on the EXRN instruction. An external
reference (XREF) will be created at assembly time which will be satisfied by a system-created EDEF when the
absolute program is formed by the system load routine.

Any parameters that are required by the common subroutine must be contained in the proper operational registers
- when the EXRN service call is executed.

25.7. SEND/RECEIVE

The SEND/RECEIVE mechanism provides the user with a means for storing and transferring limited data sets
between independent tasks and/or activities. The mechanism also provides communication between consecutively
executed tasks within a job stream or between asynchronous activities within a task.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2-34
PAGE

PAGE REVISION

2.5.7.1. THE (SEND$) SERVICE REQUEST

The SENDS$ operator transfers data from a specified core area to executive mass storage. The executive mass storage
is provided by OMEGA from the Input/Output Cooperative Library and is linked to the requesting job. The
RECEIVE operator reverses this process, and transfers the stored data from executive mass storage to the requesting
task/activity. Once data is transferred to the requesting task/activity, the data is purged from executive mass storage
and cannot be received again. The RECEIVE operator can also be used by an operating task/activity to obtain data
submitted by the PRAM control statement.

A 15-bit binary identity, supplied by the requester, is attached to each parameter that is stored in executive storage.
This mechanism makes it possible for the user to establish different sets of parameters that can be received, to the
exclusion of other parameter or data sets. The user must establish conventions for the use of identity numbers for
communicating between different tasks/activities. The one binary identity that has special meaning is 77777. If a
data set has any other identity, only that amount of data transmitted by one SEND operation can be received per
RECEIVE request on a first in, first out basis. For example, if three SEND operations send 20 words each, all having
the binary identity of 12345, the first RECEIVE operation having a binary identity of 12345 will get only the first
20 word data set that is sent and will not receive all of the 60 words. The 77777 identity specifies that all data sets
with this 77777 identity will be received regardless of the number of SEND operators used to transmit the data. In
the example above, all 60 words would have been transmitted by the RECEIVE operator, if the binary identity were
77777.

The maximum number of words which can be sent by any one SEND operation is 177778.
- Format:

The SEND request has the following general form:

SEND$bv0, Vv,
L] Specifications:

Vo is the base address of the data area, relative to the lower lock.

v, is the number of consecutive core locations which are to be transferred to executive storage.

v, is a binary identity number which is to be used when transferred data will be separated into different sets.

The identity is limited to 15 bits.

The generated service request is as follows:

ENT*B7 vo
ENT*Q 1
ENT*A)
EXRN 20304

Operands v, and v, may be specified as constants or tags with k-designator and B register modification.
L] Method of Operation
Upori submission of a SEND service request, OMEGA perforrns the following functions:

— Interprets and verifies parameters submitted through registers A, Q, and B7.

7504 Rev. 2 UNIVAC 494 SYSTEM

2-35
UP-NUMBER PAGE REVISION | PAGE

- Acquires sufficient direct access storage from the 1/O Cooperative Library to fulfill the request, and
transfers data to the acquired storage.

- Returns program control to the instruction following the EXRN instruction.

Upon return of program control, registers B1 through B6 will contain their original values; values in registers
B7 and Q will be destroyed. The A register will contain one of the following status indications:

0000000000 Normal completion

4200000000 Incorrect parameters: all or part of the data to be stored lies outside of the primary storage
limits assigned to task.

2.5.7.2. THE (RECEIVE$) SERVICE REQUEST

The RECEIVES$ operator transfers data from executive direct access storage to the requestor. This data must be sent
previously to executive storage by SEND operators initiated through an independent or asynchronously executed
activity or previously executed task. Each set of data transmitted by the SEND operator has a 15-bit binary identity
making possible the selection of particular data or parameter sets to the exclusion of all other sets having different
binary identities. The one binary identity with special meaning is 77777. Any single RECEIVE request for data with
a binary identity other than 77777 will cause only that data transmitted by one SEND operation to be received. This
will be on a first in, first out basis. Only data with the 15-bit binary identity contained in the A register at the time
of the RECEIVE request will be transferred from executive storage. In order for data to be received at all, the
corresponding binary identity must be attached by the SEND operator to the data set.

Data will be purged from executive storage as it is received, and the data cannot be received again. Upon return of
control to the user, the A register will show the number of words actually received. If the receiving field is too small,
the A register will be set to negative. The Q register will contain a count of the number of words of data left to be
received. Data which is already received will be purged from executive storage and the next request for data having
this binary identity will cause the remainder of the data to be received. If the binary identity in the A register at the
time of the request is 77777, all of the data having this identity will be received, regardless of the number of SEND
operations which have transmitted data to executive storage. This identity is used by OMEGA; worker programs
should use the identity with caution. Data with this identity is purged between tasks. Binary identity 77776 is
reserved for system usage.

L] Format:
The RECEIVE request has the following general form:
RECEIVE$bv0, Vv,

- Specifications:
Vo is the base address of the area where the data is to be deposited, and is relative to the lower lock.
v, is the maximum number of consecutive primary storage locations reserved for the deposit area.

v, is an identity number associated with the requested data, and attached by the SEND operator.

The generated service request is as follows:

ENT*B7 v
ENT*Q vy
ENT*A D)
EXRN 20305

7504 Rev, 2 UNIVAC 494 SYSTEM 2-36

UP-NUMBER l PAGE REVISION |PAGE

Operand vy may be specified as a label, tag, or constant with k-designator and B register modification.
Operand v, and v, may be specified as constants or tags with k-designator and B register modification.

= Method of Operation:
Upon submission of the RECEIVE service request, OMEGA performs the following functions:
- Interprets and verifies parameters submitted through registers A, Q, and B7.

— Locates, by binary identity, the data to be transferred, and transmits data to the requesters deposit area.
The transferred data is deleted from the system.

- Returns program control to the instruction immedately following the EXRN.

Upon return of program control to the register registers B1 through B6 will contain the values held prior to the
RECEIVE request. The B7 register contents will be destroyed. The A register will contain one of the following
status codes:

00000XX XXX Normal completion of request: XXXXX represents the number of words actually received.

4200000000 Incorrect parameter: all or part of the deposit area is outside the primary storage limits
assigned to the task.

4300000000 An unrecoverable subsystem error has been encountered in transferring data from executive
storage to the requester.

44000XXXXX Overflow condition: the requesters deposit area is not large enough to hold all of the data
that should have been received for this binary identity. As much data as could be received
was transferred and purged from executive storage.
The lower 15-bits of the A register will show the number of words that are actually received.
Subsequent RECEIVE requests will cause receipt of the remainder of the data. The Q

register will show the number of words remaining to be received.

4500000000 No data is in executive storage for this particular binary identity.

2.5.8. DATE and TIME Operations

OMEGA provides date and time operations for both internal and external uses. Timing functions for activity control
and for running programs at specific time of day are also provided.

25.8.1. THEDELAY (DELAY$) SERVICE REQUEST

The DELAY$ service request provides a method for deactivation of activities and task fragments for a specific time
period. Upon completion of this delay time period, the activity or task fragment is then eligible for program control.
The period, specified by the user, may range from one millisecond to a maximum of 24 hours. If the delay period is
five minutes or more, the delay will be established on the day clock time chain, and reactivation will occur at the
closest six-second interval to the time specified. For delays under five minutes, the real time clock chain will be used.
The operator for the delay service request is:

DELAYS$bv o

where Yo is the delay counter, a number (octal, or decimal followed by a D) in one millisecond units.

7504 Rev. 2 UNIVAC 494 SYSTEM 237

UP-NUMBER I PAGE REVISION | PAGE

The packet generated is:

ENT*Q vo
EXRN 04001

The delaying routine requesting the delay will be eligible for control only upon completion of the delay time.
Subsequent return of control may be further delayed by higher priority activities.

Program control will be returned to the instruction immediately following the packet. The Q register will contain the
time of day at which the activity was eligible for control and the time at which control was returned.

The A register and registers B1 through B7 will remain unaltered.

25.8.2. TIME OF DAY (TIMED$) SERVICE REQUEST

The TIMEDS service request supplies an edited time for external representation, such as the system log or console
output, which time is supplied as ten Fieldata characters in the AQ register. The format is:

HH:MM:SSbb

All characters will be Fieldata, including the two space characters (05).
The operator for the time of day request is:

TIMED$

The generated packet is:

EXRN 04002

Upon return of control to the instruction following the packet, the A register will contain five Fieldata characters in
the form HH:MM, for use where seconds are not needed and the Q register will contain: SSbb. Registers B1 through
B7 will remain unaltered.

2583 ELAPSED CENTRAL PROCESSOR TIME (TIMEL$) SERVICE REQUEST

The TIMELS$ service request produces an account of the amount of CPU time used by this task and previous tasks of
this job, and the allowable time that the job stream has remaining, as specified originally by the job control
statement.

The operator for the elapsed time request is:

TIMEL$

The packet generated is:

EXRN 04003

7504 Rev. 2 UNIVAC 494 SYSTEM 2-38

UP-NUMBER PAGE REVISION PAGE

Upon return of control to the instruction following the packet, the A register will contain in binary form the
number of real time clock updates that have been used by the job stream.

The Q register will contain the maximum number of updates allowed the job stream. Registers B1 through B7 will
remain unaltered.

If time specified on the job control statement is exceeded, the console operator will be given the option of
terminating the job stream.

2.5.8.4. DATE AND TIME (DATIM$) SERVICE REQUEST

The DATIMS$ request will supply the current date and the time of day. The date supplied will be in Fieldata
characters in the form YYDDD; for external representation the time of day will be a binary representation of the
number of real time clock updates that have occurred since the previous midnight.

The operator for the date and time request is:

DATIM$

The packet generated is:

EXRN 05013

Upon return of control to the instruction following the packet, the A register will contain five Fieldata numeric
characters in the form YYDDD representing the year and date. YY will be the last two digits of the year (range
00—99) and DDD will be the day of the year (range 001 through 366). The Q register will contain the time of day.
Registers B1 through B7 will remain unaltered.

2.5.8.5. DATE AND QUANTUM TIME (TIMEQ$) SERVICE REQUEST

The TIMEQS$ request will supply the current date in the form YYDDD, and the current time in terms of quantums.
A quantum time interval is defined at tape generation time, and is equal to a multiple of real time clock increments,
or updates. The multiple must be a whole number.

The operator for the date and quantum time service request is:

TIMEQ$

The packet generated is:

EXRN 04005

Upon return of control to the instruction following the packet, the A register will contain five Fieldata numeric
characters in the form YYDDD representing the year and date. YY will be the last two digits of the year and DDD
will be the day numbered 001 through 366. The Q register will contain the time of day. Time of day will be the
binary number of quantum units elapsed from the previous midnight. Registers B1 through B7 will remain unaltered.

2-39

PAGE

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER I PAGE REVISION

2.5.8.6. DATE AND TIME OF YEAR (TIMEY$) SERVICE REQUEST

The TIMEY$ request will supply the current date and the time of year. The date supplied will be in the form
YYDDD. The time of the year will be a binary representation of the number of 100 millisecond units since the start
of the new vyear.

The operator for the date and time of year service request is:

TIMEY$

The packet generated is:

EXRN | 04006

Upon return of control to the instruction following the packet, the A register will contain five Fieldata numeric
characters in the form YYDDD representinf the year and date. YY will be the last two digits of the year and DDD
will be the day numbered 001 through 366. The Q register will contain the time of year. Registers B1 through B7
will remain unaltered.

2.5.9. Logical Switches

A set of logical switches is maintained by the system for each job entering the system and the switches are
referenced by each task within a job deck. This provides the user with a simple on/off parameter to be conveyed to
each task, which can be set external to the program. The switches A through E are initially set by the JOB control
statement, from which point they may be changed or tested dynamically by a task through service requests. The
switches may be reset or altered by the GO control statement. The on/off condition of the switches is represented
by binary 1 for on and binary 0 for off.
25.9.1. SET OFF {XOFF$) REQUEST

This operation will set all or any combinations of logical switches A through E to the off condition (binary 0) as
established by the JOB or GO statement.

The operator for the set off request is as follows:
XOFF$bswitches

Switches are any combination of alphabetic Fieldata characters, A through E, with each letter representing the
respective switch which is to be turned off.

The generated service request is:

ENT*Q*W($+1)*SKIP
FIELDATA SWITCHES
EXRN 20104

The Q register at request time contains the logical switch names, in Fieldata form, which are to be turned off. The
switch letters A—E may be in any order. Registers B1 through B7 are unaltered upon execution of the XOFF service
request, while A register will always be zero.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2—-40
PAGE REVISION | PAGE

25.9.2. SET ON (XON$) REQUEST

The operation sets all or any combination of logical switches A through E to the on condition (binary 1) as
established by the JOB or GO control statements.

The operator for the set on request is as follows:
XONS$bswitches

Switches are any combination of alphabetic characters A through E, with each letter representing the respective
switch which is to be turned on.

The generated service request is:

ENT*Q*W($+1)*SKIP

FIELDATA SWITCHES

EXRN 20105

The Q register, at execution time, contains the logical switch name, in Fieldata form, of switches which are to be
turned on. The switch letters A—E may be in any order. Registers B1 through B7 are unaltered upon execution of
the XON service request, while A registers will always be zero.

2.5.9.3. TEST SWITCHES (XTEST$) REQUEST

This operation supplies the current condition (on/off) of logical switches A through E.
The operator for the Test Switches is as follows:
XTESTS$

The generated service request is:

EXRN 20106

Upon return of program control, registers B1 through B7, and Q will remain unaltered. The A register will contain
the current state of switches A through E, in binary form, in bit positions 29 through 25, respectively. Bit positions
24 through 0 will be cleared to binary 0. For example, if switches B, D, and E are on, and switches A and C are off,
bit positions 29 through 25 will be as follows: 01011.

2.5.10. Checkpoint/Restart Mechanism

The Checkpoint Restart mechanism of OMEGA provides the user with the ability to record and utilize rerun dumps
as the means of recovery for batch programs. Checkpoint/Restart is a segmented secondary executive routine that is
responsible for processing two service requests. The checkpoint function allows a batch program to record a
complete description of the operational environment existing at a given point during execution. The restart function
permits the user to re-initiate a run at any previously recorded checkpoint.

7504 Rev. 2 2-41

UNIVAC 494 SYSTEM

UP-NUMBER I PAGE REVISION l PAGE

Checkpoint dump information is recorded on a tape file assigned by the user. This file may be either an independent
file reserved for checkpoint use, or an output data file. The checkpoint routine does not reposition-the output unit
prior to recording the rerun information, and standard bypass sentinel items are used as header and trailer blocks.
This permits recording of multiple rerun dumps on a single file and enables the user to detect rerun information that
is interspersed with other data. A unique identity is included within the header block of each rerun dump so that the
particular dump can be specified at restart time.

The checkpoint routine automatically records most of the information needed to reconstruct the operational °
environment at a particular time. The notable exceptions and the reasons for them, are presented in the following
paragraphs.

The contents of temporary direct access storage files that are to be recorded must be specified by descriptor items
with the checkpoint parameter table. In many cases the pertinent data areas are only a small percentage of the total
area assigned. Automatic recording of all temporary direct access storage files would use significant amounts of time

to transfer meaningless data.

The contents of direct access storage files that are cataloged within the Master File Directory (MFD) are never

dumped. The structure of these files remains intact, and, therefore, re-assignment is all that is required at restart
time.

No provision is made for set up of unit devices, such as card or paper tape readers and punches, and printers. The
assignments are recorded, but the user is responsible for repositioning the input or output device.

2.5.10.1. CHECKPOINT (CKPT$) SERVICE REQUEST

Checkpoint is the secondary executive service function that is responsible for forming rerun dumps for batch
programs.

L] Format:
The checkpoint operator is:
CKPT$bv0

The generated packet is:

ENT*B7 vQ
EXRN 21241
= Specification:
v - is the address of the user constructed parameter table to be used in conjunction with

this request. The format and content of this table is presented in the following section.

2.5.10.2. CHECKPOINT PARAMETER TABLE

The checkpoint parameter table is of variable length. The minimum requirement is two words. The user must append
an additional two word descriptor for each direct access storage area that is to be recorded.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION PAGE

2—-42

The initial two words have the following format:

Word 0 Upper
0 Lower
Word 1 Upper

1 Lower

29 15 14 0

Zero

The file code of the tape unit upon which the checkpoint dump is to be recorded.

The number of the two word mass storage descriptor items that are appended to this table.
The address to which control is to be transferred upon a restart from this checkpoint.

If this location contains 77777, the restart address is the same as the checkpoint
completion address.

Each mass storage area descriptor has the following form:

Word 0 bit 29

bit 28 — bit 15

bit 14 — bit 0

Word 1

29 15 14 0

An indicator that can be set to 1 to specify that the file is optional. If the file is not assigned
or if the file is an MFD file, the descriptor is bypassed without causing an error diagnostic.

The file code of a storage area that is assigned to the requester.
The number of words in the storage area. A value of zero indicates that this descriptor is to
be bypassed. A value of 77777 indicates that all words up to the end-of-file are to be

dumped.

The logical address of the first word of the data to be dumped.

2.5.10.3. CHECKPOINT STATUS CODES

When control is returned following a checkpoint request, the A register contains a value indicating the status.

UP-NUMBER

7504 Rev. 2 UNIVAC 494 SYSTEM A 2-43
PAGE

PAGE REVISION

VALUE MEANING

0000000XXX Normal completion. XXX represents the job number of the requester.

4100000000 Inappropriate function. This status is returned if the requester has an open PLR setting, or if
communications devices are assigned.

4200000000 Parameter error. This status is returned if the checkpoint file is unassigned or assigned to a device
other than a magnetic tape unit, or when the user supplied parameter table cannot be interpreted.

4300000000 Subsystem error. An unrecoverable hardware error was encountered by the checkpoint routine.

4400000000 Direct access storage 1/0 error on worker file.

2.5.10.4. DIAGNOSTIC MESSAGES

One of the following messages is submitted to the primary output stream and to the console printer for each
checkpoint request (xxxxx represents the identity assigned to the checkpoint):

CHECKPOINT xxxxx COMPLETED
CHECKPOINT ABORTED DUE TO BAD REQUEST PACKET
CHECKPOINT xxxxx ABORTED DUE TO RANDOM STORAGE 1/0 ERROR

CHECKPOINT xxxxx ABORTED DUE TO END OF TAPE ERROR ON CHECKPOINT TAPE

2.5.10.5. RESTART ROUTINE

Restart is the secondary executive service function that is responsible for processing rerun dumps to re-initiate batch
programs at the point where a checkpoint was taken.

The restart routine is activated by an unsolicited console entry.
L] Format:

The restart request is:

RRbVobV1bV2 ®

. Specification:

v — is the identity of the checkpoint dump that is to be used. (The identity that was assigned by OMEGA
at the time that the checkpoint was taken).

v, — is the peripheral name that is used to assign a tape unit for the checkpoint file.
v, - (optional) either U or N may be used to specify, respectively that the tape is in unnumbered or
numbered block format. If no specification is given, numbered block format is assumed. ‘

H, M, or L specifies high, medium, or low density recording.
X, Y, or Z specifies A, B, or C format to be used with UNISERVO 12/16 tape units.

E specifies that errata cards are to be read in at restart.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

A 2-44
PAGE REVISION PAGE

2.5.10.6. RESTART STATUS MESSAGES

One of the following messages is printed on the console printer in response to a restart typein:

RESTART FROM CHECKPOINT xxxxx COMPLETED

RR TYPEIN IS INCORRECT

TAPE NOT AVAILABLE FOR RESTART

RESTART TAPE FORMAT ERROR

RESTART TAPE UNREADABLE

RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO RANDOM STORAGE I/0 ERROR

RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO JOB LIBRARY OVERFLOW

RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO TAPE FORMAT ERROR ON CHECKPOINT TAPE
RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO SUBSYSTEM ERROR ON CHECKPOINT TAPE
RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO END OF FILE ERROR ON CHECKPOINT TAPE

RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO SUBSYSTEM ERROR ON TAPE FILE
POSITIONING

RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO SEND/RECEIVE ERROR
RESTART FROM CHECKPOINT xxxxx ABORTED DUE TO ERROR IN RESTORING CORE

xxxxx represents the identity assigned to the checkpoint.

2.5.10.7. TAPE MOUNTING DIRECTIVES

Unless a tape file has been cataloged in the Master File Directory, the file is referred to by its file code in the tape
mounting directive.

2.5.10.8. TAPE CHANGING DIRECTIVES

If in the course of recording a checkpoint, the end of tape is reached, then the checkpoint is aborted, the tape is
re-wound, and the following message is displayed on the console:

LBL FC C/U CHECKPOINT TAPE + MNT NEW TAPE

When the operator has replaced the tape, the checkpoint will be recorded on the new tape.

7504 Rev. 2 UNIVAC 494 SYSTEM I A 2-44a

UP-NUMBER PAGE REVISION | PAGE

2.6. ACTIVITY CONTROL

An activity is established by definition of an operating task or another activity. The function allows a dynamic
declaration of parallel parts of a task, thereby achieving a multiprogram environment within the task. Activity
control is particularly appropriate and has been used in real time processing where activities are selected on the basis
of the data (transaction) being processed. The batch program(s) may utilize activities to regain CPU control during

input/output waits for instruction executions, thereby decreasing task turnaround time and utilizing available CPU
time more efficiently.

Activities are established at execution time through the use of fragmentation service requests by the operating task.
Three forms of fragmentation requests are provided by OMEGA.

u Standard activity is normally used to register and activate an independent program or subprogram. Once the
program is activated, little or no communication or synchronization exists between the requester and the
requested activity.

7504 Rev. 2 UNIVAC 494 SYSTEM o

UP-NUMBER I PAGE REVISION | PAGE

= Queue process activity provides a method for controlling access to an independent subprogram or process. This
form of fragmentation request is generally useful where the subprogram or process is to be performed serially
or is non re-entrant due to complexity of code or data (e.g. tables, files, buffers). Only one point in a queue
processing activity is eligible for control although other queued references exist.

L] Fork and Join — A FORK service request provides the user with a method for establishing two points of
program control, and the ability to synchronize a completion point of the two, through use of the JOIN
service request.

A fragmentation service request implicitly requires the allocation of additional primary storage to serve as the
activity addendum necessary to execute the requested fragment. Once established, an activity or fork may make the
same service requests as a task, and will share with the task operational identity, primary co-operative streams,
facility allocation, logging and accounting.

2.6.1. Standard Activity Registration (REG$) Service Request

The REGS$ service request defines a point of program control within a task which is to be registered with the
OMEGA dispatcher. Once the service request is executed by the task, the registered activity is eligible for program
control. Optional parameters may specify the data area to be locked in, the response priority, and the abnormal
index register setting. The activity may voluntarily terminate through use of the RETURNS$, RETURN1$, ERRORS,
or ABORTS$ service requests. At this time, the point of program control and associated activity addendum will be
deallocated and purged from the system.

L] Format:
The standard activity registration operator has the following general form:

REG$b v, v,,v,, V5, V,, Vs

L] Specifications:

v, defines the address of the activity in primary storage relative to the lower lock or RIR setting of the
requester, dependent upon v,- Specification Yo is the implicit starting point of the activity when initially
given program control. At the initiation time of the registered activity, all operational registers are set to
the address of the requester at registration time.

v is the activity mode indicator:

one (1) mode specifies that the activity is an entity and contains all referenced data exclusive of the
declared data area, and that the activity has been independently compiled and collected so that the first
instruction is relative to address 0. In this case, the RIR will be set to Vor which is assumed relative to the
lower lock.

Zero (0) mode indicates that the activity is integral to the requester (collected as part of the requester
task through the Loader) and that the RIR is set to the address of the requesting activity. Specification
v, is assumed relative to the RIR.

v is the relative response priority (O through 178) which may be declared to attain a differentiation with
respect to other activities within the task (see 2.7.2). When priority is not specified, or is specified as 0,
service priority of the requesting task is used. Priority can be changed to any value between 5 and 37 for
a batch job; all priorities are legal for a real time job.

v specifies the starting primary storage address of the data area which is to be utilized by the activity, and
is optional. The address is relative to the lower lock limit of the requester.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

I PAGE REVISION IPAGE

2-46

v

specifies length of data area and is required when Vg is given.

4
Vg isthe data area mode. Bits 29 and 28 will cause the generation of the desired IFR setting.
Vg 15B 15/178B RIR | RIR/PLR GUARD | WRITE READ U(IFR)
00* X X X X X 02100
10* X X X X 16300
01 X X X X X 06100
1 X X X X 12300
*SPURT will generate these options in the REG$ operator
The packet generated is:
15 14
EBJP*B7 N
29128 18]17
V1 Yo
25 18]17
V2 V3
27 1817
Vg Va
R EXRN 00010

Operands Vo V
values must be multiples of 1008 from the assumed base of 0 in order to set the hardware address properly.

a

Operands Vi Y, and vg are specified as binary constants or as tags, defining constants.

L] Method of Operation

Upon submission of the REG$ service request, OMEGA performs the following functions:

Upon return of program control to the requesting activity, registers B1 through B6, and the Q register will
contain original values held prior to the request. B7 will contain the address of the registration packet. The A

Interprets the packet address by B7 and forms the activity addendum for the requested fragment; sets

the program register as determined by the packet.

Places the formed activity addendum on CPU queue, at which point the activity addendum is eligible for
program control if the requesting activity is interrupted because of activity time out or because of high

priority activity regaining program control upon occurrence of an 1/0O interrupt.

Returns program control to the instruction following EXRN under the activity addendum of the

requesting activity.

register will contain one of the following status indications:

and v, may be specified as labels, tags, or constants. However, generated addresses or binary

7504 Rev. 2 UNIVAC 494 SYSTEM o

UP-NUMBER | PAGE REVISION | PAGE

0000000000 Normal completion.
4200000000 Incorrect parameters: address outside task area or packet unrecognizable.

When a task in initially activated by selection, the task is under standard activity addendum with: the RIR set
to the base of the task primary storage assigned, the PLR set to allow access to all of primary storage assigned
to the task, and B registers set to 15-bit mode relative to the RIR.

n Examples:
Example 1

REG$bSTART2

This operator will cause the activation of a second activity at location START2. Lack of specifications v
through v, indicates use of the PLR and RIR of the requester with no abnormal constraints on the registered
activity. The following illustration of task primary storage assignment shows eligible points of program control
and program register settings:

-<+— RIR

REG$ REQUEST
-<— POINT OF PROGRAM

CONTROL
VO J\
PLR LIMITS AND
PRIMARY STORAGE
LIMITS OF TASK
— FOR BOTH ACTIVITIES
| FIRST
‘ .
START2 INSTRUCTION «_ POINT OF PROGRAM
™ | OF ACTIVITY CONTROL

Both activities are free to access all primary storage assigned to the task or to make service requests, utilizing
input/output or other assignment modes, to the task. Once an activity is registered, it is unpredictable
(dependent upon dispatcher queue) as to which activity may have program control at any one point in time.
Therefore, access to common data areas or code must be controlled by the task code through design (truly
independent subprograms in which parameters are contained in registers), or by the use of test and set
instructions to control access to common code or data.

Example 2

REG$bSTART2, 1,0,DATA, 100,1

7504 Rev. 2 UNIVAC 494 SYSTEM

2—-48
UP.NUMBER PAGE REVISION | PAGE

This operator will cause the activation of a second activity whose code has the following constraints:

— The activity must be individually compiled and collected as an absolute element relative to 0, and
brought into primary storage by the FETCH$ service request or some similar function.

— The activity must be a re-entrant subroutine which will not write or store within the program code. Data
area used to store or write will be reached through use of registers B4 through B7 in an 18 bit mode
relative to the PLR lower.

The following illustration of task primary storage assignment shows eligible points of program control and
register settings:

<+— RIR
OF REQUESTOR

REG$ REQUEST POINT OF
PROGRAM
CONTROL

Yo V3
] PLR LIMITS OF

REQUESTOR AND

DATA L, PRIMARY STORAGE
PLR OF LIMITS OF TASK
DATA AREA REGISTERED
ACTIVITY
START2 . <« RIR OF REQUESTED

ACTIVITY AND
POINT OF PROGRAM
CONTROL

2.6.2. Queue Process Activity Registration and Activation

Queue processing of an activity is a means for utilizing a task-permanent activity to respond to a series of events.
Transactions are accepted and queued by the system, and the activity is executed whenever a queue entry exists and
the activity is dormant. The activity signals completion for a given transaction by return of control through the
return operator. OMEGA re-activates the activity if transactions remain on the queue.

Use of this function allows the scheduling of events at the time of occurrence. The function is appropriate where no
advantage can be gained from registration of concurrent executions by re-entrant code. Two operators are associated
with use of this function. The first defines the activity; the second supplies the data to be queued, and causes
activation of the fragment.

2.6.2.1. QUEUE PROCESS ACTIVITY REGISTRATION (REGQ$) SERVICE REQUEST

The REGQ$ service request defines the activity to be registered.

L Format

The queue process registration operator has the following general form:

v

REGQ$b v, v,, v,, v,

7504 Rev. 2 2-49
UNIVAC 494 SYSTEM I J
PAGE REVISION PAGE

UP-NUMBER

= Specifications

Vo defines the address of the activity in primary storage relative to the lower lock or RIR setting of the
requesting activity. v, is the implicit starting point of the activity when activated through QREF.

v, is the activity mode indicator:

One (1) mode specifies that the activity is an entity, and has been independently compiled and collected
so that the first instruction is relative to address 0. In this case, the RIR will be set to v, €ach time that a
QREF activates the registered processing routine.

Zero (0) mode indicates that the activity is integral to the requester collected as part of the requester
task (through the Loader) and that the RIR is set to that of the requesting activity. In either case, mode
1 or 0, the program lock register and B register mode will be set to the mode of the activity making the
QREF and not to that of the activity performing the registration.

v is the relative response priority (0 through 174) which may be declared to attain a differentiation with
respect to other activities within the task (see 2.7.2). When priority is not specified or is specified as 0,
the current service priority of the task is used. (The priority created by this parameter cannot be 0 — 4
for a batch job, all priorities are legal for real time jobs).

vy contains a binary identity of the activity to be used on all references to the established activity.

The packet generated is:

EBJP*B7 N
291 28 18 117

vi Yo
25 12 |11
V2 V3

EXRN 00012

N =

Operand v, may be specified as a label, tag, or constant. The generated address must be a multiple of 1008
from an assumed base of O if v, is 1 in order to set the RIR properly; v v, and v, are specified as binary
constants or as tags defining constants; v, is limited to four octal characters (0—7777).

Upon submission of the REGQS$ service request, OMEGA performs the following functions:

- Interprets the packet address by B7 and forms the activity addendum for the requested fragments. Set
up of RIR, identity, and priority are determined by the packet.

- Links the formed activity addendum to the task addendum as a latent activity to be activated upon
QREF.

- Returns program control to the instruction following EXRN under the activity addendum of the
registering activity.

Upon return of program control to the requesting activity, registers B1 through B6, and the Q register, will
contain original values held prior to the request. B7 will contain the address of the registration packet. The A
register will contain one of the following status indications:

0000000000 Normal completion.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

2-50
PAGE REVISION | PAGE

4200000000 Incorrect parameter: v, is outside the task area or not a multiple of 100,; the binary

identity has been previously assigned; or the packet is unreadable, or an illegal priority

was generated by the value specified in v,
The registered activity will remain dormant until referenced by a QREF request at which
time the activity will be placed on the CPU queue and become eligible for program control.
Registration of queue process activity will remain task permanent until: all activity
addendums have executed a RETURN service request; an activity has given up program
control through an ABORT or ERROR service request; or, an explicit request to deallocate
queue process activity is given by the RETURN1 service request.

2.6.2.2. ACTIVATE QUEUE PROCESS ACTIVITY REGISTRATION (QREF$) SERVICE REQUEST

The Q

REFS$ service request causes a specified queue process activity to be activated.

Format:

The queue process activity reference operator has the following form:

QREF$by,

Specifications:

v, contains binary identity of the queued activity as defined by the REGQ operator (v,).

Queue activity reference represents the mechanism for queuing requests to previously defined activities
registered by the REGQ operator. All parameters to be conveyed to the queued activity will be contained in
the operational registers A, Q, and B1 through B6, at the time of reference. The lock register and B register

mode will be set to that of the requester when the registered activity is initiated. B7 will contain the binary
identity.

The packet generated is:

ENT *B7 Vo

EXRN 00002

Upon submission of the QREF service request, OMEGA performs the following functions:
- Locates the activity addendum specified by the binary identity.

- Forms a queue packet for the activity containing the requester’s register values B1 through B7, A, and Q,
together with the requester’s PLR and index register mode. The packet is queued to the addendum on a
first in, first out basis. |f the queue process activity is dormant, the packet will be registered on the CPU
queue for activation.

- Returns program control to the instruction following EXRN under the activity addendum submitting
the QREF. Control will be returned to the requesting activity before control is given to the referenced
activity unless the referenced activity is of a higher priority.

7504 Rev. 2 UNIVAC 494 SYSTEM 2-51

UP-NUMBER | PAGE REVISION I PAGE

Upon return of program control to the referencing activity, registers B1 through B6, and Q will contain the
original values held prior to the request; B7 will contain the binary identity. The A register will contain one of
the following status indicators:

0000000000 Normal completion

4200000000 Incorrect parameter: v
terminated.

o specifies binary identity which is not registered or has been

L] Example

The following sample coding illustrates a tape to drum routine utilizing two queue process activities as follows:

Activity 1 reads data from magnetic tape in the form of blocks and activates Activity 2 to process data
through use of QREF. Activity 1 assumes that a tape was assigned to file code A and has been mounted. Upon
each activation, B1 contains the address of a buffer adequate to hold the largest tape block.

Activity 2 records data submitted by Activity 1 on direct access storage and returns the buffer to Activity 1
upon completion through use of QREF. Activity 2 assumes an assignment of direct access storage to file code
B and will request extensions when exhausted. Upon each activation, B1 contains the address of the buffer in
which data is contained, B2 shows the number of words of data.

The routine utilizes two buffers in order to achieve overlap of reading from tape and recording on drum. Note
the processing activities code would be the same if one or N buffers were used.

For simplicity of description L(ERR) is set to nonzero when nonrecoverable error is reached. U(ERR) is set to
nonzero when end-of-file or end-of-reel is reached on tape, or additional direct access storage cannot be
attained.

Sample Code

Initialisation Routine

START REGQ$HACT1,0,0.1 —> Register tape process routine
REGQ$HACT2,0,0,2 => Ragister drum process routine
ENT*B1*BUFF1 —> Activate tape process routine
QREF$b1 = With buffer
ENT*B1*BUFF2 => Queue second buffer to tape
QREF$b1 => Process routine
RETURNS$ —> End of initialization

BUFF1 RESERVE*10000 -

BUFF2 RESERVE*10000 -

7504 Rev. 2
UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION

PAGE

2-52

Tape Process Routine

ACT 1

ABNORM

END

ERR1

ERR

READ

WRITE

ENT*A*W(ERR)*AZERO

RETURNS$
STR*B1*L($+3)
EBJP*B7*$+3
06*LENGTH

0*0

EXRN*READ
ENT*B2*A
JP*ABNORM*ANEG
QREF$b2
RETURNS$
LSH*A™6
SEL*XL*X77770
SUB*A*4*AZERO
JP*END
PRINT$bERR1,2,1
STR*BO*CPL(ERR)
ERROR$
STR*BO*CPU(ERR)
RETURNS$
FD*2*TAPE ERROR
0*0
EQUALS™*10001

EQUALS*10002

- Abnormal completion of end of processing

> Yes

= Store buffer base in packet

= Tape packet

—» Save number of words

—» Abnormal completion

== Queue drum routine

= Check status code

—» End-of-file or end-or-reel

= Submit error message to primary

-» Qutput

=» Abnormal indicator

7504 Rev. 2
UP.NUMBER

UNIVAC 494 SYSTEM

2-53

| PAGE REVISION IPAGE

Drum Process Routine

ACT 2

WRT

LINCR

ABNORM1

ASG

ERR2

ERR3

ENT*A*W(ERR)*AZERO
RETURNS$
STR*B1*L($+4)
STR*B2"L($+2)
EBJP*B7*$+4

07*0

0*0

0*0

EXRN*WRITE
JP*ABNORM1*ANEG
RPL*A+Y *W(LINCR)
QREF$*1

RETURNS$

LSH*A*6
SEL*CL*X77744*ANOT
JP*ASG
PRINT$HERR2,2,1
STR*BO*CPL(ERR)

ERRORS$

ASGbMbDRUM,B,5000/10000

JP*WRT*APOS
PRINT$HERR3,4,1
STR*BO*CPU(ERR)
ERROR$

FD*2*DRUM ERROR

= Abnormal end condition
—>Yes
—> Store buffer base in packet

—> Store number of words in packet

=> Drum packet

—» Abnormal completion
—> No update drum increment

=> Queue read routine

= Check status

— End of drum assignment

—> Yes

= Submit error message to primary

= Qutput

—> Additional direct access storage assigned

= No

FD*4*INSUFFICIENT DRUMbbb =

I
2-54
PAGE REVISION | PAGE

7504 Rev. 2 UNIYAC 494 SYSTEM

UP-NUMBER

2.6.3. Fork and Join Mechanism
The FORK and JOIN service requests provide a method of activity registration in which OMEGA correlates all

fragments from a given level. Completion of the asynchronous activities from a level can be tested through the use of
the JOIN function.

2.6.3.1. FORK (FORK$) SERVICE REQUEST
The FORK operator is more applicable to general batch processing programs than the real time transactions, since
the operator provides a higher level interface, and synchronization is on a gross basis. An activity established by a
form may, in turn, establish other forks which provide additional levels of controlling parallel paths. All FORK
activities are considered integral to the requester. They attain the same RIR, lock register value, and index mode of
the requester. A queue processing activity may not execute a fork.
L] Format:

The FORK operator has the following general form:

FORK$bv0

L] Specification:

Yo is the starting address of the requested activity relative to the lower lock of the requesting activity and may
be specified as a label, tag, constant, or B register modification with any of the read k-designators.

The generated packet is:

EN T* B7 Vo

EXRN 00013

Upon return of program control to the requesting activity, registers B1 through B6 and the Q register will
contain original values held prior to the request. B7 will contain the address of the forked activity. The A
register will contain one of the following status indicators:

0000000000 Normal completion.

4200000000 Incorrect parameter: Fork address is outside program limits; forking attempted from a queue
processing activity.

Upon submission of a FORK service request, OMEGA performs the following functions:

- Forms an activity addendum for the requested fragment. Operational registers B1 through B6, A, Q,
PLR, RIR, and the index mode of the forked activity are set to those of the requester.

- Places the forked activity addendum on the CPU queue, at which time the activity is eligible for program
control under the following conditions: (a) if the requesting activity is interrupted because of self-
invoked activity time-out, and (b) if a high priority activity regains program control due to input/output
interrupt.

- Returns program control to the instruction following EXRN under the activity addendum of the
requesting activity.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

| PAGE REVISION PAGE

2-55

2.6.3.2. JOIN (JOINS) SERVICE REQUEST

The JOIN entry requests a wait until all asynchronous activities previously established by FORK have been
completed as indicated by the task completion operator RETURN. A JOIN requests completion of all activities
directly emanating from the requesting activity. A JOIN request given by the originating task activity, itself, will
wait on all fork requests outstanding within the task since the original task activity is the base of all forking. A JOIN
request by subsequent activities will wait on only those activities established either directly by the activity or
indirectly by forks from activities which are themselves direct forks from the requester. No parameters are required
for this operation. :

L] Format:
The JOIN operator has the following general form:
JOINS

The generated packet is:

EXRN 00014

Upon submission of the JOIN operator, OMEGA checks for any activity addenda which still exist and which
were formed by the FORK operator under current activity addendum. If none exists, program control will be
returned to the activity submitting the JOIN request.

If activity addenda do exist, the current activity will be held dormant until all linked activities have been
completed. In this case, a check for reactivation of dormant activity will be made each time that an activity
under current task makes a RETURN service request.

Upon return of program control to the requesting activity, registers B1 through B7, A, and Q will contain
original values held prior to the JOIN request. Program control will be given to the primary storage cell
immediately following the JOIN instruction.

L] Example
The following instruction shows the sequence of three forks executed from a base activity A causing the

activation of activities B, C, and D, and the subsequent points of synchronization. The code within activities is
described by a,,a,...n, and the point at which the code is eligible for execution is shown by (- - -)

} 2y } bl
FORK 5 e e FORKy, ==—==— —
}"z } 9
ay [
JOINy) === RETURN),
[
JOIN) <———-——— RETURN(3 ===—-—-— RETURNy

e

RETURN(”

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-.NUMBER

2-56
PAGE REVISION | PAGE

a, is

In the preceding illustration, coding contained in a 4 Will not be executed until coding contained in a,, a,

completed, and activities B, C, and D have executed a RETURN.

As can be seen, OMEGA exercises synchronization for completion of activities formed through the FORK
operator; but, by definition, each activity, once on the CPU queue, may operate in parallel with other
activities within the task. Therefore, no form of synchronization is imposed by OMEGA on an activity once it
is activated. Each activity can access input/output devices and primary storage assigned to the task or perform
any OMEGA service requests. Therefore, the sequence for execution of the FORM, JOIN, or RETURN service
requests varies between tasks, and could vary between executions of a particular task. The factors causing
variance are as follows:

- The amount of CPU time required to complete the code in (nm), including input/output waits and
input/output error recovery procedures.

— The number of tasks currently operating in the multiprogram environment, eausing rotation of activities
and a switch of control to higher priority programs.

The following chart illustrates an assumed sequence of service requests emanating from the illustrated task and
the code eligible for program control:

SEQUENCE IN SERVICE REQUESTING CODE ELIGIBLE
TIME (EVENTS) REQUEST ACTIVITY FOR CONTROL

1 task OMEGA a,

initiated

2 FORK,,, A a,, b,

3 FORK,, A a,,b,,c,

4 FORK 3, B a, b,, c;,d,

5 -~ JOIN,, A b,.c,,d,

6 JOIN,,, B c,.d,

7 RETURN“) D b,. c,

8 RETURN,,, B c,

9 RETURN 5, C a,

10 RETURN ,, A task terminated

UP-NUMBER

7504 Rev. 2 UNIVAC 494 SYSTEM 2-57
PAGE REVISION PAGE

The preceding is an assumed sequence, and, dependent upon the variance factors, the sequence could have
been as follows:

SEQUENCE IN SERVICE REQUESTING CODE ELIGIBLE
TIME (EVENTS) REQUEST ACTIVITY FOR CONTROL

1 task OMEGA a,

initiated

2 FORK,,, A a,, b,

4 FORK 3, B a,b,,d,

7 RETURN,,, D a,, b,

6 JOIN ,, B a,, b,

8 RETURN,,, B a,

3 FORK(Z) A ay, ¢,

9 RETURN ,, c a,

5 JOIN 5, A a,

10 RETURNM) A task terminated

The two charts show that events 1, 2 and 10 are fixed. However, once 2 is executed, either 3 or 4 are eligible;
once 4 is executed, either 7, 6 or 3 is eligible etc.; and the user should not rely upon the sequence.
2.6.4. Termination Service Requests

The following service requests are the formal means for termination of an activity, task, or job.

2.6.4.1. THE RETURN (RETURNS$) SERVICE REQUEST

The Return is used to relinquish control to the executive (RETURNS) Service at the conclusion of an activity or
task. Since the request may have no outstanding business which would cause reactivation (with the exception of
queued activity registration), the associated task is checked. If no outstanding activities, forks, incomplete hardware
level 1/0 requests or latent time-of-day restart requests exist, the task is terminated. Subsequent to task termination,
facilities are deallocated and the next job task is sequenced, or the job is terminated if no tasks remain; otherwise,
control is switched to some other task/activity active.in the multiprogram environment. No parameters are required
for the RETURN operator.

L] Format
The operator has the following form:
RETURNS$

The generated request is:

EXRN 00005

2-58

PAGE

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER | PAGE REVISION

2.6.4.2. THE ABORT (ABORT$) SERVICE REQUEST

The ABORTS Service Request causes voluntary release of the CPU by the operating task/activity. The system purges
all references to the task, including outstanding 1/0 and service requests, with the exception of primary and
secondary output which will be processed in the normal manner to the point of ABORT. The entry is an indication
of abnormal operation and implies that the entire job be terminated. No parameters are required for the ABORT
operator.

L] Format:
The operator has the following form:
ABORT$

The generated request is:

EXRN 20502

2.6.4.3. THE ERROR (ERROR$) SERVICE REQUEST

The ERRORS$ Service Request is the same as ABORT except that only the associated task is terminated, and
processing will continue with the next task in the input stream. No parameters are required for the ERROR
operator.

- Format:
The operator has the following form:
ERRORS$

The generated request is:

EXRN 20503

2.6.4.4. THE RETURN 1 (RETURN18) SERVICE REQUEST
The RETURN1$ Service Request is the same as RETURN except that, given by an activity that was registered as a
queue process activity, the request will cause the activity’s deallocation along with all outstanding QREF's associated
with the activity. No parameters are required for the RETURN 1 operator.
L] Format:

The operator has the following form:

RETURN1$

The generated request is:

EXRN 00004

2.7. CENTRAL PROCESSOR CONTROL

Central processor control consists of those elements of OMEGA which affect and control the multiprogram system
environment of the UNIVAC 494. The elements determine which activity registered with the system will be given
program control. Once determined, program control is returned to the activity at the point of previous interrupt.
Central processor control is composed of the dispatcher and the CPU queue function.

e UNIVAC 494 SYSTEM o
UP-NUMBER PAGE REVISION PAGE

RESPONSE OPERATING
PRIORITY PRIORITY ACTIVITY FUNCTION
17 17-17=0 TELPAK™ buffer clearing
16 17-16=1 Staging TELPAK data to drum
10 17-10=7 Low speed buffer clearing triggered by communications interrupt
7 17-7 =10 Staging low speed data to drum
6 17—-6 =11 Output.transmission control
0 17-0 =17 Processing functions

*Registered Trademark of American Telephone and Telegraph Corporation.

Response priorities may range from 0—17,.

2.8. PRIMARY STORAGE ALLOCATION

The function of primary storage allocation control is to maintain the availability and status of all assignable primary
storage associated with the UNIVAC 494 system. To perform this function, OMEGA utilizes chaining techniques,
and allocates or releases primary storage upon demand via a service request.

OMEGA maintains chains of available primary storage for four distinct purposes (see 10.3). Description and links of
available core storage within any one chain is held within the free storage which the chain describes.

2.8.1. Task Primary Storage Allocation

Primary storage allocated for any one task is always contiguous. The relative index register (RIR) allows the program
to operate in any contiguous area in a 262K memory. All primary storage assigned to a task element and extensions
are in multiple units of 1008 words, thereby allowing the Program Lock-in Register (PLR) to be effective for the
total primary storage assigned to one task. Although restrictions are placed on the instruction execution area (as
explained in 2.8.4), the total prirhary storage assigned to a task is not restricted to 32,7681 o words.

The initial primary storage limits for a task program are determined at selection time of the task. These limits are
specified in the preamble of the task element and in any optional CORE statements used to extend the initial
allocation. The preamble primary storage limits of the task code are determined by the Loader at collection time.
The optional CORE statemerit may be collected with the task element or the statement may be contained in the
control stream.

Once activated, the task program may dynamically expand or contract primary storage assigned to the program by a
service request to the operating system. Additional allocations of primary storage are always added to and/or
released from the end of the task element. Since primary storage allocation for an operating task is always
contiguous, dynamic expansion requests should be minimized, as either compaction of primary storage or roll-out of
a low priority task is often required to maintain the contiguous area.

The RIR makes it feasible for the operating system to dynamically relocate program elements. By a contiguous area
of physical core storage can be made available for selection of a task or expansion of an operating task compacting
or re-ordering of programs. Compacting is only performed when necessary, since it requires that the task(s) to be
moved is temporarily stable. Stability implies that all /O transfers into the program code, common subroutine, or
service requests are complete.

7504 Rev. 2 UNIVAC 494 SYSTEM

A 2-62
UP-NUMBER PAGE REVISION PAGE

2.8.2. Task Primary Storage Extensions

Four Executive services are provided by OMEGA for control of additional assignments of contiguous primary
storage to the task element. External primary storage extensions may be made through the CORE statement
submitted at task selection time to obtain optional primary storage without invoking compaction procedures.
Internal primary storage extensions may be made through the memory add (MADD) service request, which permits
dynamic expansion of primary storage assigned to the task. An internal primary storage release mechanism, using the
memory release (MREL) service request, permits dynamic contraction of the assigned primary storage. The test
primary storage limits (TCORE) service request allows the operating task to obtain its current primary storage
assignment as made by the foregoing requests.

2.8.2.1. EXTERNAL PRIMARY STORAGE EXTENSIONS (CORE STATEMENT)

External primary storage extensions are the preferred ways for allocating additional primary storage to the task; and
may be obtained by either or both of two methods. The first method is the inclusion of the CORE statement with
the Loader’s secondary language. The first character control symbol (#) must be changed to a blank (see 4.6).

The Loader will include the image with the absolute element, and the image will be processed by OMEGA. The
second method is inclusion of the assign image as part of the primary input control language. When the CORE
statement is part of the input control language, the control symbol # is the first character. The statement is included
in the input job stream at any place after the END statement for the preceding task (after the JOB statement if there
is no preceding task), and before the activation statement.

If both methods are used, i.e. an assignment image is included with the collection and an image is included in the job
stream, OMEGA will add the minimum/maximum fields to compute the total additional primary storage required
for assignment to the task.

L] Format:
The CORE statement has the following general form:
#COREboptionbminimum/maximum
L] Options:
R — This usage of #CORE is the declaration of an expansion area for a real time job. The primary

storage is not to be assigned to the task; use of the storage will be assigned to tasks which may be
rolled out to satisfy a MADDS$ request.

—_— L — Total core assignment from all sources should not exceed 32K.

- Specifications:

Minimum/maximum specifies the minimum and maximum number of words by which primary storage
assigned to the task element will be extended. The values may be given as an octal or decimal pair of numbers
(XXXX/YYYY implies octal and XXXXD/YYYYD implies decimal). Minimum specifies the smallest number
of words acceptable for an extension which satisfies the request; if this value is not available at selection time,
no extension will be made. Maximum is the largest number of words desired to satisfy the request. The
maximum, or a part thereof, will be assigned at request time, if available, in multiples of 1008 words. When a
fixed amount of primary storage is desired, only the minimum field need be specified. If the R option is
present minimum specifies the number of words by which the real time task may extend task primary storage
limits. The maximum specification is not used with the R option.

7504 Rev. 2

UP-NUMBER

2-59

PAGE

UNIVAC 494 SYSTEM

PAGE REVISION

2.7.1. The Dispatcher and the Central Processor Queue

The dispatcher is the basic OMEGA element responsible for controlling the CPU queue which contains activity
addendums eligible for return of program control. The dispatcher allocates CPU time among the active
task/activities in the multiprogram environment. A simple, efficient algorithm provides for ordering of activities by
potential input/output dependence; that is, compute-limited activities operate within the wait of 1/0 limited
activities. In this way, both the peripheral devices and the CPU are efficiently utilized. This algorithm may be altered

by two additional factors: (1) the operating priority of the activity and, (2) the rotation mechanism imposed upon
compute-bound activities.

The CPU queue is essentially a table of 408 positions used by the dispatcher to determine which activity will gain
program control. A position is reserved in the table for each of the operating priorities. Activity addendums eligible
for program control are linked by chaining techniques to the appropriate position in the table as determined by the
operating priority. CPU queue can be illustrated as follows:

0

1

2 CENTRAL | AcTiviTy .| ACTIVITY -
PROCESSOR ADDENDUM ADDENDUM

35 QUEUE L AcTiviTy .

36 ADDENDUM

37

Through use of chaining, any number of activities may be registered on the CPU queue for return of program
control.

The dispatcher, when taking an activity off the queue for return of program control, will determine the highest
priority position containing an entry on the CPU queue (0 through 37 represents priorities high to low, respectively),
and with return program control to the first activity chained to the position. When an activity is placed on queue,
activity is entered at the end of the chain on any one priority position. This assures a first in, first out sequence for
program control within any one priority level.

Switching between activities or linking of an activity to the CPU queue occurs in the following four cases:

L An activity addendum is formed by OMEGA to initiate a task; or by the user through the FORK and REG
fragmentation service requests; or as the result of a QREF to an activity which is currently dormant. In the
latter case, the activity addendum is linked to the CPU queue and switching does not occur.

L On occurrence of an input/output interrupt, a latent activity is entered on the CPU queue at the appropriate
priority. Program control is normally returned to the interrupted activity. Since a switch is never made to
operate an activity of equal priority, a real time activity of the highest priority is assured of a logically
noninterruptable cycle which experiences only minimum physical interruption.

. On rotation, since input/output dependence for a given task and associated activities may change irregularly. A
rotation is imposed by the system on any one activity utilizing the CPU for one time quantum. Rotation
effects an automatic switch whereby the current activity, if having program control for more than one time
quantum, will be requeued to the CPU queue and the dispatcher will locate a new activity to which control
may be returned. The rotation value may be altered at system’s generation time. (MAX = 200 millisecs;
MIN = 200 microsecs.)

7504 Rev. 2 2—-60

UNIVAC 494 SYSTEM

UP-NUMBER | PAGE REVISION I PAGE

L] On the occurrence of a POP service routine by an OMEGA control element. The routine generally occurs as
the result of a service request which could not be performed due to the requested OMEGA element being
non-re-entrant and currently processing a request, or requiring the use of a common list or table which is
currently in use. When conflicts of this type occur, OMEGA places the activity and its associated addendum on
a dormant chain through the PUSH service request until such time as the list or routine is free. The POP is the
inverse of PUSH and places the dormant activity addendum back on the CPU queue when the element or list is
free.

2.7.2. Operating Priority

Communications equipment processing may require an arbitrary precedence over all other processing. Similarly,
nonproductive programs should be suppressed to the lowest priority to avoid conflict with productive processing.
The operating priority defines the basic position of each activity scanned by the dispatcher.

The operating priority has a range of 0 to 37, positions in which a given activity can be registered. Zero is the
highest operating priority which an activity can attain, indicating logical nonstop processing. The lowest priority
level which an activity can attain is 378 operating priority, and is used normally for nonproductive routines.

Operating priority of an activity is a combination of service priority, high, medium, or low, as specified on the task
control card, and of optional response prioirity given through activity registration.

Service priority as originally specified or implied on the task control statement is used as operational priority during
the select/initiate phase and the start of the task. The value is conveyed to selection by options letters H,M,and L
contained on the GO statement. All implied task activation statements, such as SPURT, COB, and LOAD, are
assumed to contain an M option. Therefore, service priority is both selection priority (in case of equal task
candidates during select phase) and the initial operating priority (when the task is given program control). High,
medium, or low service priority is normally used for the following:

L] High (operational priority 178) is used for real time processing routines where throughput or turnaround time
constraints are necessary due to equipment type or application.

L Medium (operational priority 278) is the normal service priority assigned to batch programs and system
routines (LOAD, SPURT, FOR, and others).

= Low (operational priority 373) is used for nonproductive routines and background jobs.

Response priority to balance utilization and control of peripheral devices may require a differential priority for
activities within a task. Response priority simply allows a task to spread its activities over a continuum of priority
whose endpoint or low priority is the service priority. The submission of an 1/0 request by an |/O cooperative, or
buffer clearing for communications input, are typical uses of response priority.

When response priority is specified at activity registration time, the priority specification is considered as a negative
increment to the service priority associated with the task. A real time task with service priority of 178, for example,

may establish several levels of response priority.

The following chart illustrates priority levels in the system:

7504 Rev. 2 2-63

UNIVAC 494 SYSTEM

UP-NUMBER | PAGE REVISION | PAGE

2.8.22. INTERNAL PRIMARY STORAGE EXTENSIONS (MADDS$)

The (MADDS$) service request allows the operating task to dynamically expand primary storage assigned to, and
addressable by, the task. If primary storage is not available, contiguous to the end of the requesting task element,
compaction and roli-out procedures will be invoked only for real time tasks which declared an expansion area via
#CORE with the R option. Compaction and roll-out procedures, action causes temporary suspension of the task and
possibly other concurrent tasks. The service request will not be honoured if primary storage is not available in the
configuration or if obtaining the primary storage would cause suspension of a higher priority program.

The internal request for additional primary storage must be used with care by the task that has many activities
registered. The additional primary storage assigned will be added to the task limits; and the PLR for the requesting
activity will be modified, if possible, to enable addressing the additional primary storage. All other activities that
have been registered by the task and which have PLR limits equal to that of the requesting activity will be modified
to reflect the additonal primary storage.
L Format:

The service request has the following general form:

MADDS$bmaximum/minimum

L] Specifications:

Maximum, minimum specify the maximum and minimum number of words of storage to add to the current
primary storage assigned to the task. Additional allocations will be made only in multiples of 1008.

The generated service request is:

ENT*Q | MAXIMUM
ENT*A | MINIMUM
EXRN (20703

Upon completion of the requested extension, program control will be returned to the requesting activity with
one of the following status indications in the A register:

00000 00000 Successful completion. The Q register will indicate the number of words of primary storage
acquired.

41000 00000 Unsuccessful completion. The number of words is not a multiple of 1008, or primary storage
from the end of the task to the end of the program chain is insufficient for satisfying the
request.

42000 00000 Incorrect parameter. The requesting activity does not have access to all primary storage
assigned to the task.

50000 00000 Primary storage is not available. This status is returned to a batch program if the extension
would require the roll out of some other task. The status is returned to a real time program
if the request still cannot be satisfied with roll-out and compaction procedures.

28.23. INTERNAL CORE RELEASE (MREL)

The memory release (MREL) service request allows the operating task to dynamically release core assigned to it. The
core is released from the upper end (high addresses) of the task allocation and is returned to the program chain for
use in running other operating tasks.

2-64
PAGE

l PAGE REVISION

7504 Rev. 2 [UNIVAC 494 SYSTEM

UP-NUMBER

L] Format:
The MREL service request has the following general form:
MREL$bnumber of words

L] Specifications:

Number of words specifies the quantity of words to be released from the end of primary storage currently
assigned to the task element. Primary storage will be released in multiples of 1004 only.

The generated service request is:

ENT*Q NUMBER OF WORDS

EXRN 20704

After verifying that the release request is valid, OMEGA will modify the program lock limits of all activities
registered under the requester’s task to reflect the change in program limits.

Upon completion of the requested release, program control will be returned to the requesting activity with one
of the following status indications in the A register.

0000000000 Successful completion: The requested amount of primary storage has been released from the
end of the task element and the PLR has been adjusted to exclude the released primary
storage.

4100000000 Inappropriate function (normally a program error): the requested amount of primary storage

to be released exceeds the amount of primary storage assigned; the MREL service request is
being executed from the primary storage being released. Some activity registered under the
task has its upper lock limit within the area being released; the activity making the request
does not have access to the primary storage being released, or some activities have
outstanding service requests that will return program control to a point within the released
primary storage.

2.8.2.4. TEST PRIMARY STORAGE AREA/LIMITS (TCORE)
The Test Core limits (TCORE) service request supplies the requester with information concerning the amount of
primary storage, including task coding and supplementary allotments, that has been assigned to the task at run time.
The TCORE request provides the requesting activity with its location in primary storage (RIR value), the task
program’s lower lock limit (PLR value), and the number of contiguous 100, — or 64, , — word groups assigned to
the task.
- Format:

The TCORE operator has the following form:

TCORE$

No operands are required for the TCORE request.

The generated service request is:

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

l PAGE REVISION | PAGE

2—-65

EXRN 20117

Upon return of program control to the requesting task, the following values will be contained in registers A, Q,
and B7.

A will contain the lower lock limit (PLR value) of the requesting activity and the number of 100, — word
groups of task code. This length of task code does not include the primary storage assigned from CORE
statements and internal primary storage extensions. The lower lock is always a multiple of 1008; hence, the
lower six bits of this value will be zero. The format of the A register is:

l/29 18 /17 6/5 0/

l | o0 |

\—/\r—""\lo—w; lock of the requesting activity

number of 100g-word groups of task code

Q will contain the RIR value of the requesting activity. The format of the RIR value is the same as that for the
lower lock.

B7 will contain the total number of contiguous 100,- word groups assigned to the task. This value includes the
length of the task code plus the primary storage assigned from any CORE statement and/or internal primary
storage extensions. The register format is:

14

or

17 12 /11 0

——— \,\[:/
total number of 100g-word groups

assigned to the task; this value may
be shifted left six bits to obtain the
total number of words allocated to the
task.

—- not used: set to binary zeros.

Registers B1 through B6 will contain the original values held prior to the request.

Because of the ability of a task to fragment itself into multiple activities with modified primary storage limits,
the primary storage limits supplied are those of the requesting activity. Hence, primary storage limits of the
task should be requested before any fragmentation is done.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2—-66
PAGE REVISION | PAGE

2.8.3. Worker Program Considerations for Primary Storage Compaction

To make efficient use of program primary storage, the primary storage compaction routine relocates programs at the
discretion of OMEGA. Through compaction, elements of a program are established in contiguous areas of primary
storage by elimination of blank areas and removal of extraneous elements from between the desired program
elements. For compaction, temporary suspension of concurrent tasks is required, and a worker program may be
rolled out. The task suspension and resumption, and the rolling out and rolling in of programs, are normal functions
of OMEGA, and usually occur without concern to or knowledge by the programmer.

Some worker programs may be designed to pick up and save program RIR values in order to modify packets for
input/output and other functions, in which cases the orderly compaction process by OMEGA is interfered with, and
system operations may be affected. Programs of this kind may be used with either of alternative procedures. The
first procedure is to inhibit compaction of the task/program through the TCORE1$ service request; the other
procedure is to have OMEGA make the modification for the task, based upon the RIR bias at the time of the service
request.

2.8.3.1. INHIBITING COMPACT/ON (TCORE1$)

The TCORE1$ service request may be used by the programmer to specify that a program/task be made not subject
to compaction. The service request will also furnish the primary storage limits for the task.

The TCORE1 service request has the following form:
TCORE1$
No specifications are required for the service request.

The generated packet is:

EXRN 20134

Upon return of program control to the requesting task, the following values will be contained in registers A, Q, and

B7:
A Bits 29—18 Number of 100,, word groups of task code
Bits 17—0 Lower lock of the requesting activity
Q RIR value of the requesting activity
B7 Total number of continuous 100, word groups assigned to the task

In addition, a bit is set in the task addendum which inhibits compaction. Caution should be exercised in use of
TCORE1$ since compaction may terminate the task in the event that the task interferes with a MADD$ request by a
real time job.

2.8.3.2. PACKET GENERATOR

The packet generator is activated through an EXRN*60000 call, using the A register, or an EXRN*60001 call, using
the Q register. The generator function will cause OMEGA to modify parameters in the storage module based upon
information in the requester’s packet. After modification, the request is processed in the same manner as a normal
service request.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM 2-67
PAGE REVISION PAGE

Parameter area format:

The packet for the generator is as follows:

Word A0 Bits 29 — 21
Bits 20—15

Bits 14—0

Words A1 —An Bits 29—27

Bits 26—21

0 0 0 X X | EXRN value

RIR/PLR F.C. Bb

RIR/PLR F.C. By

RIR /PLR F.C. By

RIR/PLR F.C. By

<< < =<

Set to 0.

XX represents the number of parameter words exclusive of Ao'

EXRN value represents the number of the EXRN which is to be simulated, that
is the number of the EXRN call which is to be made upon completion of the
generation function.

RIR/PLR represents the modification indicator:

0

Y+ Bb is to be modified by the RIR value from the storage module of the
requester.

Y + Bb is to be modified by the PLR value from the storage module of
the requester.

Y + B, needs no modification by the RIR or PLR values.

F.C. represents the function code:

00

01

02

03

Y+B, + RIR/PLR is formed and saved in storage.

The word in working storage is transferred to Y + B, +-Rl R/PLR
as defined in the current parameter word.

The B register indicated in the parameter word is modified
by RIR/PLR.

The word in working storage is transferred to the indicated B field
in the requester’s storage module.

7504 Rev. 2 UNIVAC 494 SYSTEM I I 2-68
UP-NUMBER PAGE REVISION PAGE
Bits 20—15 Bb represents the register specification that is to be used:
01-07 B registers, B1—-B , respectively.
7
10 A register
1 Q register.
Bits 14—0 Y represents the address (operand) portion of the instruction, assumed relative
to the RIR.

Generator call format:

The call for the packet generator has the following form:

ENT*A vQ
EXRN 60000
or

ENT*Q V0
EXRN 60001

v, fepresents the address of the parameter packet:
Vo = A0 if relative to the RIR.

Vo = 40000*A0 if relative to the PLR.

Upon completion of the generation function, control is returned to the requester, with the status indicated in
the A register:

4200000000 Bad information is found, for example, illegal function code or B register field, or violation
of PLR limits.

XXXXXXXXXX Any other return that may come from the specified EXRN.
Example

The following sample coding shows usage of the generator function, with input/output by a routine with open
lock limits:

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2-69

PAGE

PAGE REVISION

ENT*B7*IOP ‘Unmodified packet address

ENT*A*PP ‘Parameter packet address relative to the RIR

EXRN *60000

10P06* 306 ‘File A, 306 words
0*BUFF ‘Buffer address
714 ‘Logical increment
PP3*10002 ‘3 word packet, write call
0*BUFF ‘BUFF + RIR to working storage
100*I0P + 1 ‘Working storage to IOP + 1 + RIR
207*0 ‘Modify B7 in SMOD (storage module) by RIR

In the sample, the packet generator will modify the address and buffer base of the 1/O packet by the RIR
value of the job, and the write function is submitted to OMEGA.

2.8.4. Register Index Modes

The minimum memory primary storage size available on the UNIVAC 494 is 65,53610 words. The memory size is
expandable in 65K increments to 262,14410 words maximum. With 15-bit index registers, only 32,76810 words of
continuous primary storage can be addressed. A 17-bit address field is necessary for accessing all of the locations in
the 131K primary storage range. An 18-bit address value is needed for accessing the maximum primary storage range,
i.e., beyond 131K. Since the address portion of an instruction is 15 bits, register modes have been defined which
permit all of the B registers to operate as 15-bit index registers, or some B registers to operate as 17 or 18-bit
registers while the others continue in the 15-bit mode. The index register mode is controlled by bit 26, the B length
designator, of the Internal Function Register (IFR). When the B length designator is set to 1, registers B4, B5, B6
and B7 of the executive register set or the worker register set, whichever is active, will operate as 17 or 18-bit
registers, providing access to all of primary storage. Registers B1, B2, and B3 will continue to operate as 15-bit
registers. When the B length designator is set to 0, all of the registers operate as 15-bit registers.

On each primary storage reference, the UNIVAC 494 normally adds the contents of the RIR to the operand of the
instruction being executed (see 2.8.5.1 for details of relative indexing). However, another indexing mode, dual
indexing, is provided which uses the lower lock limit of the PLR as the index base in lieu of the RIR value. Through
activity registration (as explained in 2.6 Activity Control), a worker program might fragment its code and assign
modified program lock limits to different activities. With the dual index mode, registers B4, B5, B6 and B7 provide
modifications based on the lower limit of the PLR while BO (no modification), B1, B2, and B3 continue to provide
modification based on the RIR. The dual index mode is used in executing drum-based OMEGA routines in which a
base is selected from free primary storage and used as the RIR, and the lower limit of the PLR is set to O to allow
communication between the drum-based routines and the resident OMEGA system. The dual index mode is
controlled by bit 27, the lower lock designator, of the IFR. When the lower lock designator is set to 1, registers B4,
B5, B6, and B7 of the active set operate relative to the base of lower lock register value while BO, B1, B2 and B3
continue to operative relative to the RIR.

OMEGA provides four operators, SET156$, SET17$, SETD$, and CLD$, in addition to the options available with
activity registration, which define and set the operational mode of the index registers. These operators allow the
worker program to specify and change the operational mode for the requesting activity.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

PAGE REVISION I PAGE

2-70

2.8.4.1. SET 15-BIT B REGISTERS (SET15$)

The SET15$ operator sets all index registers to the 15-bit mode.

L] Format:
The SET 15 operator has the following form:
SET15%
No operands are required by the SET 15 request.

The generated service request is:

EXRN

20120

This request will set bit 26 of the IFR to 0 in the requesting activity’s storage module (SMOD). Upon return of
control to the requesting activity, all B registers will operate in the 15-bit mode. If this operation is used in a
queue processing activity, only the operation of the current processing mode will be changed.

2.8.4.2. SET 17-BIT B REGISTERS (SET17$)

The SET 17 operator sets registers B4, B5, B6, and B7 to the 17-bit mode, or, if greater than primary storage is used,

to the 18-bit mode. Registers B1, B2, and B3 continue in the 15-bit mode.

- Format:
The SET 17 operator has the following form:

SET17$

No operands are required for the SET17 statement.

The generated service request is:

EXRN

20121

This request will set bit 26 in the IFR to 1 in the reduesting activity’s SMOD. Upon return of control to the'
requesting activity, registers B4, B5, B6 and B7 will operate in the 17 or 18 bit mode. If the operator is used.in
a queue processing activity, only the operating mode of the current QREF will be affected.

2.8.4.3. SET DUAL INDEX MODE (SETD$)

The SETD$ operator sets the dual index mode for the requesting activify. All primary storage references with
operand modification by B4, B5, B6 or B7 will be relative to the lower lock limit of the PLR. This operator will

cause no change in B length.

7504 Rev. 2 l UNIVAC 494 SYSTEM

UP-.NUMBER l PAGE REVISION | PAGE

2-71

= Format:
The SETD operator has the following form:
SETD$
No operands are required for the SETD statement.

The generated service request is:

EXRN 20127

This request will set bit 27 of the IFR in the requesting activity’s SMOD. Upon return of control, the
requesting activity will operate in the dual index mode, that is primary storage references with modifications
of B4, B5, B6 or B7 will be relative to the lower lock limit of the PLR. If the operator is used in a queue
processing activity, only the operating mode of the current QREF will be affected.

2.8.4.4. CLEAR DUAL INDEX MODE (CLD$)

The CLD$ operator clears the dual index mode for the requesting activity. All primary storage references will be
relative to the RIR. The operator will cause no change in B length.

- Format:
The CLD operator has the following form:
CLD$
No operands are required with the CLD statement.

The generated service request is:

EXRN 20130

This request will clear bit 27 of the IFR in the requesting-activity’s SMOD. Upon return of control, primary
storage referencd will be relative to the RIR. If this operator is used by a queue processing activity, only the
operating mode of the current QREF will be affected.

2.8.5. Program Considerations

This section discusses the functions of the Relative Index Register (RIR), Program Lock-in Register (PLR) and B
registers, and their contribution to memory addressing.

2.8.5.1. THE RELATIVE INDEX REGISTER (RIR)

The primary function of the Relative Index Register (RIR) in the UNIVAC 494 system is to provide OMEGA with
the ability to load or relocate any absolute program in primary storage without instruction modification. When all of
the separate elements of a program have been collected and allocated (relative to zero), the program may be loaded
and executed at any primary storage address ending in 00. This eliminates the need for modification at load time.

7504 Rev. 2 UNIVAC 494 SYSTEM 272

UP-NUMBER | PAGE REVISION PAGE

The RIR also permits OMEGA to move programs already loaded and to compact primary storage, making larger
contiguous areas available for use. A complex multiprogram environment, with tasks being selected and terminated,
creates continuously changing demands on primary storage usage, and many small areas of discontinuous available
primary storage may be formed. The RIR allows OMEGA to compact and make the most efficient use of the
available primary storage.

As the worker program executes its instructions, which have been collected and allocated relative to zero, the RIR
acts as a bias for all primary storage references. Although worker programs are restricted to 32,76810 continuous
instructions, the programs are not restricted to location in one storage bank. The RIR permits a program to cross the
program boundaries and to operate as though primary storage were loaded at absolute address zero. The example
below shows a worker program that is 70,0008 words in length which has been loaded at address 150,0008. The
program has absolute address 150,000 through 237,777 and relative addresses 000000 through 067,777.

Absolute Relative
Addresses Addresses
000000

150000 000000
177777

237777 067777
377777

L] Format:

The RIR is a hardware register which uses 17 or 18-bits as shown below:

29 18 17 65
I

0
| NOT USED | RELATIVE INDEX | 000000 |

The lower six bits (0—5) are equal to 00; the succeeding 12 bits (6—17) specify the address; and the upper 12
bits (18—29) are not used.

The RIR is loaded by the ERIR (Enter RIR) instruction or, in conjunction with loading the IFR, by using the
EIFR (Enter IFR) instruction. Both instructions are privileged and are used only by OMEGA.

. 2.8.5.2. THE PROGRAM LOCK-IN REGISTER (PLR)

The primary function of the Program Lock-in Register (PLR) is to provide OMEGA with the ability to set limits for
worker and system programs beyond which the programs are prevented from reading or storing information. The
PLR protects OMEGA from destruction by untested worker programs and prevents unwanted interference among
the concurrently operating worker programs. Through the PLR, and by software verification of service requests,
untested programs may be included in the mix of real time and batch programs.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

! PAGE REVISION lPAGE

2-73

L Format:

The PLR is a hardware register which uses 22 bits as shown below:

29 26 25

15 14

11 10

0000

UPPER
LIMIT

0000

LOWER
LIMIT

The 11-bit fields specify the limits of the program in increments of 1004. The lower limit is specified in bits
0—10 and the upper limit is specified in bits 15—25. As shown in the example below, the program of 70,0008
words in length which is loaded at location 150,000, (see 2.8.5.1) would have a lower limit set at 1500 and an
upper limit set at 2377, allowing the program to reference 150,000 as the lowest absolute address and 237,777

as the highest absolute address.

Absolute
Addresses

PLR
Program Limits

000000

150000

237777

1500 Lower Limit

2377 Upper Limit

377777

The PLR is loaded by the EPLR (Enter PLR) instruction, which is privileged, and is used only by OM EGA. Before
giving control to any program OMEGA will load the PLR. Any attempt to violate the limits will be captured by a

fault interrupt.

2.8.5.3. PRIMARY STORAGE ADDRESSING

A variety of index register lengths and index modes are available on the UNIVAC 494 for primary storage
addressing. The following discussion will clarify some aspects of primary storage access. For the discussion, the

following definitions are made:

= B is the index register (B register) specified in bits 15 — 17 of an instruction word.

m vy is the lower 15 bits (0 — 14) of an instruction word.

®m ¥ is the sum formed by the addition of y to the contents of an index register (y =y + Bb).

® Y is an absolute primary storage address consisting of y plus a relative index value.

7504 Rev. 2 UNIVAC 494 SYSTEM 2-74

UP-NUMBER I PAGE REVISION | PAGE

In the normal single index mode of operation, primary storage is referenced using the contents of the RIR. The
UNIVAC 494 first forms a relative index by adding y and Bb. The absolute address is then formed by the addition of
y + Bb + RIR. The addition forming y + Bb is either a 15-, 17-, or 18-bit addition with an end-around carry:
overflow from the highest order bit is brought around and added to the lowest order bit of the partial sum. The
y-designator of the instruction word is always 15-bits, obtained from the lower half of the word. B, iseither 15, 17
or 18 bits depending upon the B register selected in the instruction word and the B length designator, bit 26, in the
Internal Function Register (IFR). If bit 26 is 0, all B registers are 15 bits in length. If the bit is 1, registers B1, B2
and B3 are 15 bits in length while B4, B5, B6, and B7 are 17 or 18 bits, dependent upon the primary storage range.

When B, is 15 bits, the addition of y + B, is the same as in the UNIVAC 490: address 00000 cannot be generated
unless y and Bb are both 00000. When y and Bb are complements of each other, the sum of the addition is 77777.
Some examples (in octal notation) of 15 bity + Bb addition follow:

y 12345 y 00005 y 00001 y 77774
By 35610 B, 77772 B, 77777 B, 00005
Yy 50155 y 77777 y 00001 Y 00002

When Bb is 17 or 18 bits, the addition of y + Bb adds a 15-bit and a 17— or 18-bit number; thus y, the 15-bit
number, can never appear as negative. Some examples (in octal notation) of 17-bity + B, addition are:

y 00005 y 00001 y 77774
B, 377772 B, 377777 B, 000005
Y 377777 Yy 000001 vy 100001

After y + Bb is formed, a second addition is used to formy + Bb + RIR. The RIR value is a 17 or 18-bit value with
the lower six bits always equal to 00; so, the lower six bits of the absolute address are determined by y + Bb. The
- forming of RIR + Bb +y,or RIR +Y, is an additive process with no end-around carry.

Some examples (in octal notation) of RIR + y addition are:

RIR 000700 RIR 377700 RIR 200000
y 300105 vy 000100 vy 377777
Y 301005 Y 000000 Y 177777

A number of programs require that the instructions be located in one area of primary storage and that data be
located in a different area. An example is the common subroutine concept which permits the subroutine to be
located in primary storage only once, but with the ability to operate on data in all parts of primary storage. For
handling this type of program more efficiently, two relative index values are needed: one value for instruction
references and another for operand (or data) references. The dual index mode is a means for obtaining the relative
index values, using the contents of the RIR for biasing the instructions and the lower limit (LL) of the PLR, because
the PLR is set to enclose the data area, for references to the data area. When using the LL, the absolute address for
an operand, Y, is formed by y + Bb +LL.

Bit 27 in the IFR activates the dual relative index mode. When the bit is 0, all primary storage re*arznces will be
made relative to the RIR. When the bit is 1, primary storage references will be made relative to the RIR or the LL
according to the following rules:

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

PAGE REVISION PAGE

B Y

0| Y+RIR

1 Y +B1+RIR

2 | Y+B2+RIR

3 Y + B3+ RIR

4 | Y+B4+LL

5| Y+B5+LL

6 | Y+B6+LL

7Y +B7+LL

NOTE: Transfers of data into and out of 17- or 18-bit index registers may be either full words or half words. For
full word transfer, the lower 17 or 18 bit value is transferred out of the register into the location. When
half words are transferred into the 17 or 18 bit register, the upper two or three bits are zero. Half word
transfers out of a 17 or 18 bit register will result in the loss of the upper two or three bits.

The STORE B worker instruction uses full words of memory; that is, the complete 30-bit location is altered,
although only 15-bit registers may be involved.

When entering a register with an operand having a k-designator of 4, the sign extension is performed of bit 14 of y +
Bb regardless of the length of Bb. For example, if B6 is a 17 bit register, and contains the value 301010, the
instruction 11046°00000 will enter the A register with the value 00000°01010.

When operating, the UNIVAC 494 in the dual index mode, and the RIR differs from the lower limit of the PLR,
care must be taken in use of the Enter B and Jump instruction with index registers B4 — B7. The relative address
captured by this instruction is, in all cases, the absolute primary storage address minus the value of the RIR
Therefore, mnemonic statements (such as READ$, WRITES, etc.) which cause the generation of the Enter B7 and
Jump instruction may not be used since the packet address captured is relative to the RIR and not to the PLR lower
limit. Also, the exit from a subroutine entered through an Enter B (4 — 7) and Jump instruction cannot be made to
the point of entry by executing a Jump to B (4 — 7) since the return point is relative to the RIR, and the exit jump
is relative to the PLR lower limit.

2.9. PROGRAM CONTINGENCIES

A program contingency is defined for this system as an occurrence within an operating program which makes the
continued operation of that program impossible without exception processing. The contingency occurs as the result
of improper instruction execution and usually indicates an error or bug in the operating program.

OMEGA permits an operating task to specify routines for processing program contingencies by establishing the
starting point of an error routine as the address to which program control is to be returned if a program contingency
occurs. In the absence of error routine specification by the user, OMEGA will take certain predetermined actions of
its own.

The user error routines are given information concerning the contingency. The routines may then inspect the
circumstances and take the action desired, such as, return to the point of interrupt, terminate the activity causing
the interrupt, terminate the task, or terminate the entire job.

2-76

PAGE REVISION | PAGE

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2.9.1. Contingency Types and Interrupts

Four hardware interrupts are currently classified in OMEGA as program contingency interrupts. These are: illegal
instruction/guard mode, memory protect/timeout, floating point overflow, and floating point underflow.

- Illegal instruction/guard mode interrupt occurs when a program attempts to execute an instruction with an
octal function code of 00 or 7700, and when a program operating in guard mode attempts to execute an
instruction with a function of 13, 17, 62, 63, 66, 67, 73 through 76, 7760 through 7767, 7770, and 7772
through 7777. All user programs operate in guard mode.

— Memory protect/timeout interrupt occurs when a program attempts to read, write, or jump outside the area
defined by the PLR, and when a program, operating in guard mode, locks out 1/O interrupts for a period of
approximately 100 microseconds by executing a Set /nterrupt Lockout instruction that is not followed by a
Release Interrupt Lockout instruction within the time limit.

- Floating point overflow interrupt occurs during the execution of a floating point add, subtract, multiply,
divide, or pack instruction when the magnitude of the biased characteristic of the answer exceeds the capacity
of the characteristic portion of the register (i.e., the biased characteristic exceeds 37778 or the unbiased
characteristic exceeds 102310). An overflow interrupt also occurs when a floating point division by O is
attempted.

- Floating point underflow interrupt occurs during the execution of a floating point add, subtract, multiply,
divide, or pack instruction when the magnitude of the biased characteristic of the answer is less than zero (i e
the unbiased characteristic is less than —1024,)

Overflow or underflow will not be generated when a mantissa of zero results from a floating point operation. In this
case, the instruction proceeds to normal completion with a zero mantissa and a zero characteristic.

When overflow or underflow occurs, the arithmetic operation proceeds to completion; the mantissa portion of the
AQ register is arithmetically correct. The magnitude of the characteristic will be one beyond the limit value, and the
sign bit will be the complement of the correct sign.

2.9.2. Error Routine Specification (ERRADD$, FOFADD$, FUFADDS$ Service Requests)

The user may establish a recovery or error routine for fault and floating point contingency interrupts by specifying
the starting address of the recovery routine relative to the base of the primary activity of the task. The primary
activity is defined as the activity established as the result of the processing of the task card in the job stream. For
example, the task card #GOBBTEST would cause the coding TEST to be activated as the primary activity of the
task. The primary activity may activate other activities through the use of the REG$, REGQS$, and FORKS$ service
requests. These activities, essentially formed by the primary activity, are called secondary activities.

A specified error routine must handle all errors of the same type for all activities of the task, both primary and
secondary. Since secondary activities may have different RIR and PLR values from those of the primary activity, a
convention has been set that the error routines are activated with the RIR and PLR of the primary activity. Thus,
the activity establishing the error routines must be the primary activity. If in addition, the program is segmented, the
error routine must be contained within the control segment.

The error routines are specified through the use of a menomonic operator.

L] Format:

The error routines have the following general form:

operator$ by,

7504 Rev. 2 UNIVAC 494 SYSTEM =7

UP-NUMBER | PAGE REVISION l PAGE

L] Specification:

Vo is the beginning address, relative to the RIR of the primary activity, of the error routine, and may be any
valid read class operand.

The coding generated is:

ENT*B7 v

EXRN Executive Call

The operators and executive calls for the error conditions are as follows:

ROUTINE OPERATOR EXECUTIVE CALL
Fault ERRADDS$ 20112
Floating point overflow FOFADDS$ 20113
Floating point underflow FUFADD$ 20114

Control is returned to the user following the EXRN instruction with one of the following status codes in the A
register:

0000000000 Successful completion: The error routine has been successfully established.

4100000010 An error address for this type of contingency has already been established by the task. The new
address is not established.

4200000000 Parameter error: The address specified is outside the task limits or the activity attempting to
establish the error address has an RIR value different from that of the primary activity. The error
address is not established.

2.9.3. Error Routine Operation

As given, the error routine must handle all errors of that type for the entire task, when a task consists of more than
one activity, the error routine must be re-entrant to provide for the possibility of simultaneous errors in the multiple
activities.

29.3.1. ENTRY

When a contingency interrupt occurs, the appropriate error routine is activiated by returning control to the
established error address. The routine operates under the addendum of the activity causing the contingency
interrupt, but with the RIR and PLR of the primary activity. Thus, the error routine may access any area of the
task. If a program contingency occurs within any of the program contingency error routines, the task is aborted by
the system.

At activation time, parameters concerning the contingency are given to the error routine. The parameters and their
location in various registers are as follows:

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

2-78

[PAGE REVISION I PAGE

Fault

B7 contains the address of the illegal instruction relative to the RIR of the error routine primary activity.

B6 contains the address field of the Internal Function Register (IFR) at interrupt time. For nonjump
instructions, this field contains the address of the last referenced memory location. For jump instructions, the
field contains the address of the memory location following the jump instruction. The captured address will be

modified relative to the RIR of the primary activity.

B5 contains the RIR value of the activity causing the contingency. The RIR value will be relative to the RIR
of the error routine.

B4 contains the PLR lower limit of the activity causing the contingency. The value given will be relative to the
RIR of the error routine.

B1 contains a code defining the type of program contingency:
B1=0 indicates an illegal instruction/guard mode interrupt
B1=1 indicates a memory protect/timeout interrupt
Floating point overflow/underflow

B7 contains the address, relative to the RIR of the error routine, of the floating point instruction causing the

"overflow/underflow.

B6 contains the address, relative to the RIR of the error routine, of the operand used in the floating point
instruction causing the overflow/underflow.

B5 contains the RIR value of the activity causing the overflow/underflow. The RIR value will be relative to
the RIR of the error routine.

B4 contains the PLR lower limit value of the activity causing the contingency. The value will be given relative
to the RIR of the error routine.

AQ will contain the result of the floating point operation. The mantissa will be arithmetically correct. The
magnitude of the characteristic will be one beyond the limit value, and the sign bit will be the complement of
the correct sign.

The error routine may now inspect the circumstances surrounding the contingency, and access or change any area of
the task. OMEGA service requests may also be issued by the error routines.

2.9.3.2. EXIT (RETURNS$, RETURN1$, ERROR$, ABORTS)

After

performing its function, the error routine exits to OMEGA. The exits available, and the action taken by

OMEGA, are as follows:

RETURNS$ Returns control to the instruction following the instruction which caused the contingency
interrupt. All operational registers are restored to the values held at the time that the
contingency occurred. For floating point overflow and underflow, the AQ register value of the
contingency routine will be returned, thereby allowing the contingency routine to alter the
result of the floating point operation.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

2-79
PAGE REVISION | PAGE

RETURN1$ Terminates the activity causing the contingency. If the activity to be terminated is a queue
processing activity, all QREF’s associated with the activity will be deallocated.

L] ERROR$ Terminates the task, and continues the rest of the job.

] ABORTS$ Terminates the entire job.

2.9.4. Default Procedures

When a program contingency occurs, and the user has not specified a routine for processing the error condition,
OMEGA processes the contingency interrupt as outlined in the following paragraphs.

2.9.4.1. FAULT CONTINGENCIES

In the absence of a fault routine specification, the occurrence of an illegal instruction/guard mode or memory
protect/timeout will cause OMEGA to terminate the offending task. The message FAULT CONDITION, TASK
TERMINATED is submitted to the primary output stream of the task together with the values in the operational
registers of the program at fault time. The following values are displayed:

RIR (absolute memory address)

RELP (P register value at interrupt, relative to the RIR)

LLOCK (lower lock limit from the PLR)

ULOCK (upper lock limit from the PLR)

B1 — B7 (contents of program’s index registers)

AQ (contents of the A and Q registers)
P-1 (instruction causing the contingency interrupt)
LMR (last memory reference, bits 0 — 17 of the IFR)

2.9.4.2. FLOATING POINT (TESTFOF$, TESTFUF$, TESTFL$ SERVICE REQUESTS)

In the absence of floating point contingency routines, OMEGA will adjust the result of the floating point operation,
set the appropriate point switch in the task addendum, and return control to the program. For floating point
overflow interrupts, the result of the operation in the AQ register is returned, either as the maximum possible
positive floating point number (3777:77777777777777778) or as the minimum possible negative floating point
number (4000:00000000000000003), depending upon the direction of the overflow. For floating point underflow
interrupts, the result in the AQ register is returned as positive 0 or 0000:0000000000000000.

When a floating point overflow/underflow interrupt occurs, and an error routine has not been established for the
contingency, the floating point overflow or underflow switch is set. These switches are contained in the task
addendum and, therefore, apply to all activities of the task. The appropriate switch is set on the occurrence of the

interrupt and is not cleared until the corresponding test is made. The switches may be tested by using the operators
shown as follows:

7504 Rev. 2
UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION I

2-80
PAGE

FUNCTION OPERATOR
Testing floating point overflow TESTFOF$
Test floating point underflow TESTFUF$
Test overflow/underflow TESTFL$
TESTFOF
other registers are undisturbed. The switch is then turned off.
TESTFUF
other registers are undisturbed. The switch is then turned off.
TESTFL

EXECUTIVE CALL

20107

20110

20111

Provides a test of the overflow switch. If the switch is not set, control is returned to the requester
with the A register cleared. If the switch is set, control is returned with the A register set to 1: all

Provides a test of the underflow switch. If the switch is not set, control is returned to the requester,
with the A register cleared. If the switch is set, control is returned with the A register set to 1: all

Provides a test of both the overflow switch and the underflow switch. The floating point overflow
switch in the task addendum is tested first. If the overflow is set, the A register is set to 1 and control
is returned to the requester. If the overflow switch is not set, the underflow switch is tested. If the
underflow switch is set, the A register is set —1 (7777777776) I¥ neither switch is set, the A register
is set to 0. Both switches are turned off, regardless of the results of the test. If both switches are set,
only the overflow switch will be reported. All registers other than the A register will be undisturbed.

7504 Rev. 2 UNIVAC 494 SYSTEM .

UP-NUMBER PAGE REVISION PAGE

3. DATA MANAGEMENT SYSTEM

3.1. GENERAL

The Data Management System of OMEGA exercises centralized control over all peripheral resources available on the
UNIVAC 494: their assignment, usage, and access. This centralized control of facilities is the basis for establishing an
efficient multiprogram and multiactivity environment. In addition, centralization establishes the procedures
necessary for providing programmers and operational personnel with the tools necessary for storage, retrieval, and
manipulation of the large volume of data and programs involved in the utilization of a computing system.

To effectively utilize hardware resources in a multiprogram and multiactivity environment, the Data Management
System performs three major roles: Assignment, File Access, and File Manipulation.

3.1.1. Assignment

One of the major functions of OMEGA is the efficient assignment of the system resources. The assignment is
performed so that a relatively simple interface is provided between the user and the hardware while a high degree of
device independence is achieved. Device independence permits flexibility in the choice of peripheral devices assigned
to the program at execution time without need for changing the program.

References to direct access storage or to peripheral devices within a user program are symbolic so that the program
may be compiled, collected, entered and rolled out, independent of assignments. The association of physical device
or area with symbolic reference is made when the task programs are set up, without modifying the text of the
program.

The type of device or direct access storage desired is expressed to the system by the ASG. The ASG statement can be
submitted to OMEGA by any one of or a combination of three methods:

- The normal method for submitting ASG statements is through the primary input stream, immediately
preceding the task activation card to which the statements pertain.

L] The second method for submission of ASG statements is through the Loader, at the time when relative binary
(RB) elements are collected into an absolute program. The Loader recognizes an option to collect control
statements as part of the preamble of the collected program. This description will allow the selection
mechanism to consider the allocation requirements of the program and to relieve the user of providing the
ASG statements each time that the program is run. All systems processors, utility routines, assemblers, and
compilers use this method of facility assignment.

L] A third method for ASG statement submission involves the active task program which may submit statements
dynamically during execution of the program. Caution must be used in the submission of dynamic requests. In
a multiprogram environment, selection elements of OMEGA determine which tasks can be entered into the
system from the external definitions of the task’s primary storage and facility requirements. Therefore,
requested peripheral device or large allocations or direct access storage may not be available during execution
of a task.

3-2
7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER

| PAGE REVISION PAGE

3.1.2. Duration of Assignments

Assignments of direct access storage or peripheral devices are made at the task level at the time when the task is
selected for execution, and are automatically released back to OMEGA upon termination of the task. Two notable
exceptions to this rule are provided to allow intratask and intrajob control over assignment of generated data files:

L] Intratask Assignment

As an option on the ASG statement, a hold specification is provided, directing the system to maintain the
described assignment for the duration of the job or until explicitly released by the FREE statement. This
feature provides the user with an ability to employ program chaining techniques such as generation of a file
with one task, processing with another, and disposing of a processed file with a third.

The function is applicable to the assignment of tape units or direct access storage, and should not be used for
unit record devices such as card equipment, high speed printers, etc.

L] Intrajob Assignment

The Master File Directory (MFD) allows the user to permanently hold data files or their descriptors which
transcend jobs. The MFD is applicable to direct access storage where the installation data base is contained, or
for maintaining semipermanent data files. A second application of the MFD is for holding description of
magnetic tape reels containing files originally recorded on magnetic tape or which were relocated from direct
access storage because of low frequency usage or expiration date.

Allocation of primary storage and storage extensions to a task are performed at activation time and do not transcend
tasks within the job deck. Any data in primary storage which is to be saved between successive tasks of a job; for
example, blank commom blocks utilized by FORTRAN object code, may utilize the SEND and RECEIVE
operators. The SEND operator requests the system to transfer described primary storage data to executive direct
access storage until a requesting task within the job accepts the data by a RECEIVE operator.

3.1.3. Data Access Methods

OMEGA provides the centralized control over data access in a multiprogram and multiactivity environment
necessary to coordinate utilization by concurrent users. This control includes three levels of user interface: device
control, cooperative control, and file control. The user of either device control or file control must acquire
assignment of required peripherals or direct access storage prior to access. Assignment associates the physical device
or the area of direct access storage with a unique alphabetic character file code as the symbolic reference for each
data source contained in the program. The file code, in turn, is presented with each data access either explicitly
through device control or implicitly through file control, and establishes the link between data and device or area.

L Device Control

The device control level of interface provides for functional control of a particular type of device or direct
access storage area. The user submits parameter packets describing the functions to be performed and assumes
the responsibility for buffer, item, and device strategies.

Packet requests are formatted for execution by common subroutines referred to as input/output handlers. The
basic handlers required by the system are permanent residents of the systems primary storage. Infrequently
used handlers are maintained in the systems library and called into primary storage only when an assignment
for the type of associated device is made.

All OMEGA system elements and processors utilize this level of data access.

7504 Rev. 2 UNIVAC 494 SYSTEM 7

UP-NUMBER PAGE REVISION PAGE

- Cooperative Control

Cooperative control is inherent in the OMEGA executive routine and is available for use through direct service
request. Functions performed are requests for primary input images, normally cards, which were included in
the job stream; and submission of print images and card images for processing by system output routines. No
assignment is required for utilization of cooperative control by the user. Data requested or conveyed to
cooperative control is buffered to direct access storage, and is collected and distributed to system allocated
peripheral units, and determined at systems generation time.

L] File Control

File control involves a group of standard elements providing data handling operations at the block or item
level. These elements provide a high level device-independent interface which manages blocking and buffering
while utilizing and augmenting the system facility for storing and retrieving data. File control utilizes device
level input/output to perform its functions.

3.1.4. Maintenance Functions

The OMEGA executive routine contains elements used in the maintenance and manipulation of data files or program
libraries, and elements used to perform general utility functions. These elements are provided with the operating
system, but are not an intrinsic part of OMEGA. In general, they are system processors and utility routines activated
by control card or service request to perform an explicit function with minimal interface with OMEGA.

Data management maintenance routines fall into three categories: maintenance of program libraries, maintenance of
program libraries, maintenance of the file directory, and routines used for utility functions. Later sections of this
manual give a detailed explanation of their use and functions performed.

3.2. ASSIGNMENT STATEMENTS

The following paragraphs discuss assignment statements, peripheral names and file codes used for requesting system
facilities, and methods for effectively utilizing the statements in the system.

3.2.1. The Assignment (ASG) Statement

The function of the assignment elements within OMEGA is to maintain the status and availability of assignable
peripheral subsystems attached to the UNIVAC 494. To perform this function, facility assignment maintains the
peripheral and direct access storage requirements of all active tasks and OMEGA elements by responding to their
static and dynamic, peripheral, and direct access storage assignment requests.

The association of peripheral device or area of direct access storage to a task is specified by the ASG statement. The
statement contains specifications and options for selecting and initializing a specific device, or a device from a
general class of subsystems, dependent upon availability. In addition to describing the desired subsystem, the ASG
statement specifies the symbolic link which the operating task will use at access time. The ASG statement is of the
normal primary control statement format and is amendable to many types of peripheral subsystems. The variety of
input/output devices available for the UNIVAC 494 makes it necessary to describe the ASG statement according to
the class of subsystem, e.g., direct access storage, tape units, unit record peripherals, and remote devices. However,
the general form of the statement will be fairly standard as follows (subsequent sections describe specific formats by
the class of subsystem):

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

PAGE REVISION PAGE

3-4

L] Format: #

#ASGboptionsbperipheral name, file code, assignment specifications.

Options, in general, specify the grade of subsystem desired and supply initialization parameters.

Peripheral name is a one to five character alphanumeric name of the desired device or class of devices.

File code is one- or two-alphabetic character(s) used as the symbolic link between an active task and a physical

assignment.

Assignment specifications are peculiar to the type of subsystem and are discussed in detail in subsequent

sections of this manual.

3.2.2. Peripheral Name

The peripheral name is the mnemonic name of the requested peripheral unit or direct access storage assignment, e.g.,
TAPE, UN6C, FH880, etc. The permissible mnemonics for this field are determined by the names applied by the
installation at systems generation time to represent a particular configuration or order of assignment. The choice of
mnemonics is completely open-ended. Several names may describe a single peripheral subsystem or a unique name
may specify a particular unit on a specific peripheral subsystem. Omega assignment provides a mapping function of
mnemonic names whereby a specific name may contain a number of alternate choices for assignment in a preset

order.

To illustrate the use of peripheral name, mnemonic names and assignment dropout rules, assume the following
hypothetical configuration with each unit being assigned a specific peripheral name and alternates:

TYPE OF DEVICE PHYSICAL NAME(1) NAME(2) NAME(3) NAME(4)
CHANNEL/UNIT

UNISERVO VI C 13/0 SEQ TAPE UN6C UN6CA
UNISERVO VI C 13/1 SEQ TAPE UN6C UNBCA
UNISERVO VI C 13/2 SEQ TAPE UNG6C UN6CA
UNISERVO Vi C 14/0 SEQ TAPE UN6C UN6CB
UNISERVO VI C 14/1 SEQ TAPE UN6C UN6CB
UNISERVO VI C 14/2 SPT - - -
UNISERVO VI C 14/3 SPT - - -
UNISERVO VIl C 16/0 SEQ TAPE UNSC -
UNISERVO VIII C 16/1 SEQ TAPE UNSC -
UNISERVO VIII C 16/2 SEQ TAPE UNSC -
FH-880 Drum 17 SEQ RAN FH880 -

Note: SPT is a mnemonic for a special tape unit not available for general assignment; with two units eligible for

SPT, both would contain functionally the same information.

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

l PAGE REVISION | PAGE

3-5

As can be seen from the above example, a request for a sequential file (SEQ) is the most general assignment which
could be requested and may be satisfied by either a tape unit or an allocation of direct access storage. In contrast, a
request for a tape file (TAPE) limits the choice to UNISERVO tape units. Through the specification of additional
mnemonic names, the generality of assignment may be further limited to a specific type of tape unit (UNISERVO
V1 or VIII), to the request for a unit from a specific channel (UN6CA or UNGCB), or to the request for a specific

unit on a channel (SPT).

In the above example, the assignment mapping element of OMEGA could have been adjusted at systems generation
time to allow the use of alternates to satisfy the request. Alternates could have specified that units from the UN8C
and/or UNGCB group could be assigned if units in the UNGCA group were not available.

The following chart illustrates the choices which could be used as alternates from the above example:

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NAME CHOICE | CHOICE | CHOICE | CHOICE | CHOICE | CHOICE | CHOICE | CHOICE | CHOICE
SEQ 17 16/0 16/1 16/2 13/0 13/1 13/2 14/0 14/1
TAPE 16/0 16/1 16/2 13/0 13/1 13/2 14/0 14/1 -
RAN 17 - - - - - - - - _
UN6C 13/0 13/1 13/2 14/0 14/1 16/0* 16/1* 16/2* -
UNSC 16/0 16/1 16/2 13/0* 13/1* 13/2* 14/0* 14/1* -
FH880 17 - - - - - - - - -
UN6CA 13/0 13/1 13/2 16/0* 16/1* 16/2* 14/0* 14/1* -
UN6CB 14/0 14/1 16/0* 16/1* 16/2* 13/0* 13/1* 13/2* -
SPT 14/2 14/3 - - - - - - -

*Indicates optional alternates to the original assignment. The alternate may be specified at systems generation time as desired by the

installation.

.= 1/0 Handler

In addition to specifying a physical device, the peripheral name also implies the device handler which will be
used in processing 1/O requests by the operating task to the assignment. Input/output handlers, for
infrequently used devices or nonstandard 1/O processing, are entered into primary storage and are initialized
only when the device is assigned or when nonstandard processing is to take place. The major use of this
specification is for devices such as paper tape and card subsystems which are essential to common subroutines.
This provides the user with the following features:

The ability to conserve primary storage during periods when a particular input/output handler is not
required because of lack of assignment.

7504 Rev. 2 UNIVAC 494 SYSTEM

UP-NUMBER PAGE REVISION PAGE

- The ability to utilize nonstandard input/output handlers for the shared usage of the system or a
particular channel on the system. That is, two or more tape or direct access storage handlers may utilize
a physical channel concurrently. This is particularly advantageous to the installation which requires
special or additional processing for a class of input/output access, for example, double queueing of file
updates, audit trails, and other operations. This also permits the integrated subsystem test to operate
concurrently with production tasks, with little or no impact upon their functional requirements.

3.2.3. File Code

File code is the symbolic bridge by which an operating task accesses or references the physical device or area
assigned to it. Once the choice is made by the ASG statement, the user conveys the file code with each device level
1/0 request or other reference to the assigned peripheral device or area of direct access storage. This establishes a
mapping arrangement whereby the task code does not require modification at execution for 1/O access. File code
also affords the user a procedure whereby a task cannot inadvertently access a unit or area of direct access storage
which has not been previously equated to the task through the ASG statement.

File codes are established at the task level. That is, each task currently operating within the system has a complete
set of file codes eligible for the task’s use. Therefore, no programming conventions are required by the user for
specifying file codes, other than those conventions required for intratask control of assignments. However, all
activities emanating from the task have shared usage of all facilities assigned to the task.

Each task addendum is provided with a basic set of 25 file codes to which the user may assign a peripheral device or
areas of direct access storage. The codes are symbolically referenced by an alphabetic character from the set A
through Y. In cases where 25 file codes are inadequate for the task, a user may specify that a designated file code be
fragmented into an additional set of 26 file codes which have the same characteristics as the original set. For
example, if the file code B were fragmented, the new set would be referred to as BA, BB . .. BZ.

Fragmentation of a particular file code is implied when an ASG statement is submitted which specifies a two letter
file code. A file code from the basic set A through Y which is to be fragmented may not be used for assignment.
Essentially only one peripheral device, file of direct access storage, or fragment of file codes may be associated with
any one file code from the basic set, and only one peripheral device or area of direct access storage may be
associated with any one file code of the extended set.

The file code Z from the basic set is reserved for OMEGA and installation control program routines. The Z file code
is automatically fragmented to access the following files or devices:

FILE CODE RESERVED USAGE
ZA Unit record routine (primary input)
ZB Unit record routine (primary output)
ZC Unit record routine (secondary output)
ZD Cooperative library assignment
ZE Systems library assignment
ZF Job library assignment

ZG Source routine

7504 Rev. 2 UNIVAC 494 SYSTEM >

UP-NUMBER I PAGE REVISION l PAGE

FILE CODE RESERVED USAGE
ZH Systems scratch file
V4| Systems scratch file
ZJ) Systems compaction file

3.2.4. Direct Access Storage Assignment

A request for the assignment of direct access storage can be satisfied on any one of several available subsystems,
including the FH series drums, the FASTRAND series mass storage, and the 8400 series discs. Each assignment
request is satisfied by a multiple of the block size used to map the subsystem. The block size for any one type of
subsystem is a practical minimum number of words consistent with the characteristics of the device. On
FASTRAND mass storage, for example, the block size is a multiple of a track.

The physical description of an assigned direct access file may consist of discrete noncontiguous areas across available
blocks of direct access storage. The noncontiguous areas may cross drums, channels, and even types of systems. As
an example, a file may be composed of blocks from FH-880 drum and FASTRAND mass storage.

This may occur either through planned positioning of a file or as the result of successive extensions to a sequential
(SEQ) or random (RAN) file. However, to the operating task, all direct access storage assigned to a file code is word
addressable and logically continuous.

OMEGA file routines and direct access storage handler provide the user with a word-addressable interface for all
types of direct access storage through the use of file code and logical increment. The logical increment is essentially a
pseudo drum address relative to the file code to which the assignment was made. At execution time, the task code
submits the logical increment of the file segment being accessed along with the desired 1/0 function. The OMEGA
Random Storage File Handler then maps the logical increment to the physical address to perform the 1/0 function.
The following example illustrates the relationship of physical address to logical increment:

Assume a file composed of three discrete noncontiguous areas of direct access storage. The first two areas are
FASTRAND mass storage assignments, split because of nonavailability of a contiguous area to satisfy the original
request or as the result of an original assignment and subsequent extension to the assignment. The third area is
FH-880 drum storage assigned dynamically as an extension to the original file. The relationship between the physical
address and the logical increment would be as follows:

7504 Rev. 2

UP-NUMBER

UNIVAC 494 SYSTEM

I PAGE REVISION I PAGE

3-8

Beginning Sector Beginning Logical
Address 1400 Increment 0

Three Contiguous Tracks
of FASTRAND Mass
Storage Assigned

Ending Sector Ending Logical
Address 1591 : Increment 6,335
Beginning Sector Beginning Logical
Address 300 Increment 6,336

Three Contiguous Tracks
of FASTRAND Mass
Storage Assigned

Ending Sector Ending Logical
Address 427 Increment 10,559
Beginning Drum Beginning Logical
Address 1,000 Increment 10,560

Two 256 Word Blocks of
FH-880 Drum Assigned

Ending Drum Ending Logical
Address 1,511 Increment 11,071

3.2.4.1. FEATURES

OMEGA direct access assignment and data access elements provide the user with the following important features
necessary in a multiprogram environment:

File protection

This is the ability to protect direct access storage files assigned to a task from advertent destruction by
concurrently operating tasks. At the same time, through use of the file directory, two or more concurrently
operating tasks may share usage of common files and interlock records in process of update (see file directory
and logical lock 1/0 requests).

File expansion

This is the logical increment in conjunction with the file code which allows direct access storage files to be
dynamically expanded or co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>