
I

PROGRAMMERS AEFEAE CE

UP-4133 Ro. 1

494
ASSEMBLER

UP-.4133 Rev. 1

RELEA E

UNNAC 494 Library Memo 12 refea s and ahnounces the avollablllty of th .. UNIVAC 494
R al-Time System mbl er Reference Manual, • UP-4133 Rev. 1, a>vers and 144 pog '·
This 11 a Standard Library Item (SLI).

The UNIVAC 494 Assembler is an integrated program which converts sour ce code
programs (UNIVAC 494 SPURT or UNIVAC 494 Assembler (ASM) l anguage) to relocat able
binary (RB) elements for use by he UNIVAC 494 Operating System. The Operating
System collec s all t he independen RB elements requir ed to produce an absolu e
object code program for execu ion.

The assemb y l anguage is a set of mnemonic s atemen s which are directly con
verted to reloca able binary code . Also con a ined in the assembly l anguage
are direc ives which are instruc i ons to the assembler to permi the user o
define symbols for comp ex operations and to con rol he assembly process .

This r evision reflects changes i n the 494 ssembler adds a description of
pseudo-ops and includes a descr iption of he following assembly directives &
END BLOO<-DATA XREf EDEF Express ion (SLEUTH BITARRAY) INPUT or I NPUTFORM
LET UNLIST and LIST . In addi ion , three appendices have been added . These
appendices describe he error fl ags tha may appear in the listing at assembly
time , depic he order in which var i ous sources are searched in order to define
symbols used in the operation f ield and lis he available options on the
#ASM card .

A listing of the conten s of this manual follows : 1. In roduc i on· 2 . Computer
Formats · 3. Source Language Forma Requiremen s · 4 . Basic Assembler Language
Instruc ions · 5 . Asse ly Directives · 6 . PRcx; FUNC and Associated Directives
Appendix A Abbreviations and Special Symbols · Appendix B Fieldata and Card
Codes for Charac er Representa ion · Appendix C Assembler/SPURT Function Codes ·
Appendix D Error Flags • Appendix E Opera ion Field Hierarchy ; and Appendix F,
#AS Op ions .

Des rue ion o ice i This manual UP-4133 Rev . 1 , supersedes and replaces
"UNIVAC 494 Real -Time Sys em Assembler Reference Manual " UP- 4133 issued
on Library emo 7 dat ed Oc ober 21 1966. Please des roy all copies of
UP- 4133 and/or Library Memo 7 .

(See Reverse)

-H SHEET IS
TO ... S lOU, 217 630,
and 692 Li rary Memo
12 only .

ATT'Ch E T' UP-4133 Rev. l plus Library
Memo 12 to S. P. L. S. lists 43 and 44 .

494 Real-Time System
Library Memo 12
DATE

November 10 1967

O \llJllO OF SPERRY RAND COAPORlll. 10 , !l,P.1....5. P.O. BOX 8100 Pt-ill..AO 1..PHIA. P.t.. 1~ 01 UP·•050 R 3

Distribution of this manual, UP-4133 Rev. 1, and/or the Library Memo 12 is being
made as indicated below. Additional copies may be ordered via a Sales Help
Requisition through your local Univac Manager, from Holyoke, Massachusetts.

MANAGER
Systems Programming Library Services

This manual 1s published by the Uni\·ac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping reocipients apprised of UNIVAC® Systems developments. The infor·
mat1on presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updating packages, utilizing primarily a
page·for·page or unit replacement technique. Such issuance will pro\•ide
notification of software changes and refinements. The Univac Division re·
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

01967 - SPERRY RAND CORPORATION PRINTED IN USA

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

CONTENTS

I. INTRODUCTION

2. COMPUTER l'ORMATS

2.1. GENERAL

2.2. DATA FORMATS
2.2.1. Single Precision Integer Word
2.2.2. Double Precision lnte1er Word
2.2.3. Decimal (BCD) Word
2.2.4. Exponential (Floatin1 Point) Word

2.3. ADDRESSING
2.3.1. Data Addressing
2.3.2. Instruction Addressina
2.3.3. Standard (Fixed) Locations

2.4. INSTRUCTION FORMATS
2.4.1. Normal Instruction Word
2.4.2. 77 (Extended Repertoire) Instruction lord

3. SOURCE LANGUAGE l'ORM.AT REQUIREMENTS

3.1. GENERAL

3.2. SYMBOLIC LANGUAGE FIELDS
3.2.1. Label Field
3.2.1.1. Location Counters
3.2.1.2. Label
3.2.2. Operation Field
3.2.3. Operand Field

3.3. LINE CONTROL AND COMMENTS
3.3.1. Continuation
3.3.2. Comments

3.4. DATA WORD GENERATION
3.4.1. Sinale lord (30 Bits}
3.4.2. Double Word (60 Bits)
3.4.3. Variable Length lord

Contents
SaCTIONI PAGIEI

CONTENTS

1 to 7

1-1 to 1-1

2-1to2-8

2-1

2-1
2-1
2-3
2-3
2-4

2-4
2-5
2-5
2-5

2-5
2-5
2-8

3-1 to 3-20

3-1

3-1
3-4
3-4
3-5
3-6
3-7

3-7
3-7
3-8

3-8
3-8
3-9
3-9

1

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

3.5. EXPRESSIONS
3.5.1. Items
3.5.1.l. Label
3.5.1.2. Location
3.5.1.3. Octal Values
3.5.1.4. Decimal Values
3.5.1.5. Character Strings in Expressions
3.5.1.6. Double Word Constants (60 Bits)
3.5.1.7. Literals
3.5.l.8. Parameters
3.5.2. Operators
3.5.2.1. Arithmetic Product •
3.5.2.2. Equal ::
3.5.2.3. Greater Than>
3.5.2.4. Less Than <
3.5.2.5. Less Than or Equa I < =
3.5.2.6. Greater Than or Equal > =
3.5.2.7. Not Equal To / =
3.5.2.8. Logical Sum++
3.5.2.9. Logical Difference --
3.5.2.10. Logical Product ••
3.5.2.11. Arithmetic Sum+
3.5.2.12. Arithmetic Difference -
3.5.2.13. Arithmetic Division I
3.5.2.14. Covered Quotient //
3.5.2.15. Shift Exponent • /
3.5.2.16. Comments Within Expressions I. . I
3.5.3. Absolute and Relocatable Labels and Expressions

4. BASIC ASSEMBLER LANGUAGE INSTRUCTIONS

4.1. GENERAL

4.2. DESIGNATOR INTERPRETATION
4.2.1. Interpretation of k Designators
4.2.1.1. Standard Read Class k Designators
4.2.1.2. Standard Store Class k Designators
4.2.1.3. Standard Replace Class k Designators
4.2.1.4. Exceptions to Standard k Designator Interpretation
4.2.2. Interpretation of j Designators

4.3. DATA TRANSFER INSTRUCTIONS
4.3.1. load Q (10) lQ
4.3.2. Load A (11) LA
4.3.3. load B· (12) LB
4.3.4. Clear ~j 02) ZB
4;3.5. No Operation (12) NOP
4.3.6. Double Precision load (7721) DPL
4.3.7. Store Q (14) SQ
4.3.8. Clear Q (16) ZQ
4.3.9. Negate Q or Complement Q (14) NQ
4.3.10. Store A (15) SA

Contents
SltCTIONa

3-9
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-12
3-13
3-13
3-13
3-14
3-15
3-15
3-15
3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-18
3-18
3-19
3-19

PAGE•

4-1 to 4-69

4-1

4-1
4-1
4-2
4-4
4-6
4-9
4-9

4-15
4-15
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-18

2

UP-4133
Rev. 1 UNIVAC .tU ASSEMBLER

4.3.11. Negate A or Complement A (15) NA
4.3.12. Clear A (21) ZA
4.3.13. Store Bj (16) SB
4.3.14. Clear Y (16) SZ
4.3.15. Double Precision Store (7725) DPS
4.3.16. Character Pack Lower (7731) CPL
4.3.17. Character Pack Upper (7732) CPU
4.3.18. Character Unpack Lower (7735) CUL
4.3.19. Character Unpack Upper (7736) CUU
4.3.20. Load B·Worker (7771) LBW
4.3.21. Store B·Worker (7775) SBW

4.4. SHIFT INSTRUCTIONS
4.4.1. Right Shift Q (01) RSQ
4.4.2. Right Shift A (02) RSA
4.4.3. Right Shift AQ (03) RSAQ
4.4.4. Left Shift Q (05) LSQ
4.4.5. Left Shift A (06) LSA
4.4.6. Left Shift AQ (07) LSAQ
4.4.7. Logical Right Shift Q (7751) LRSQ
4.4.8. Logical Right Shi fl A (7755) LRSA
4.4.9. Logical Right Shift AQ (7756) LRSAQ
4.4.10. Scale Factor Shift (7730) SFS

4.5. TEST (COMPARISON) INSTRUCTIONS
4.5.l. Test A (04) TA
4.5.2. Test Q (04) TQ
4.5.3. Test Range (04) TR
4.5.4. Test Logical Product (43) TLP
4.5.5. Double Precision Test Equal (7723) DPTE
4.5.6. Double Precision Test Less (7727) OPTL
4.5.7. Masked Alphanumeric Test Equal (7753) MATE
4.5.8. Masked Alphanumeric Test Less (7757) MATL

4.6. JUMP INSTRUCTIONS
4.6.1. Jump (61)J
4.6.2. Jump on Test (60)JT
4.6.3. Store Location and Jump (65) SU
4.6.4. Store Location and Jump Test (64) SLJT
4.6.5. Execute Remote (7737) ER
4.6.6. Enter Bx and Jump (7740 - 7747) LBP J

4.7. SEQUENCE·MOOIFYING INSTRUCTIONS
4. 7 .1. Repeat (70) R
4.7.2. Test Bj and/or Increment (71) TBl
4.7.3. Jump on Bj and Decrement (72) JBD
4. 7 .4. Test and Set (7752) TSET
4. 7 .5. Executive Return (7754) EXRN

Contents
llECTION1

4-19
4-19
4-19
4-20
4-20
4-21
4-21
4-21
4-22
4-22
4-22

4-23
4-23
4-24
4-24
4-25
4-25
4-26
4-26
4-27
4-27
4-27

4-28
4-28
4-28
4-28
4-29
4-30
4-30
4-30
4-31

4-31
4-31
4-32
4-32
4-32
4-33
4-33

4-33
4-34
4-34
4-35
4-35
4-36

3
PAGll:1

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

4.8. ARITHMETIC INSTRUCTIONS
4.8.1. General
4.8.1.l. Integer (Fixed Point) Addition and Subtraction
4.8.1.2. Integer (Fixed Point) Multiplication and Division
4.8.l.3. Floating Point Arithmetic
4.8.1.4. Decimal (BCD) Anthmetic
4.8.2. Fixed Point Single Word Addition
4.8.2.1. Add A (20) A
4.8.2.2. Add Q (26) AQ
4.8.2.3. Load Y t Q (30) LAQ
4.8.2.4. Store A +- Q (32) SAQ
4.8.2.5. Replace A + Y (24) RA
4.8.2.6. Replace Y + Q (34) RAQ
4.8.2.7. Replace Y + 1 or Increment Y (36) RI
4.8.3. Fixed Point Single Word Subtraction
4.8.3.1. Subtract A (21) AN
4.8.3.2. Subtract Q (27) ANQ
4.8.3.3. Load Y-Q (31) LANQ
4.8.3.4. Store A-Q (33) SANQ
4.8.3.5. Replace A-Y (25) RAN
4.8.3.6. Replace Y-Q (35) RANQ
4.8.3.7. Replace Y-1 or Decrement Y (37) RD
4.8.4. Fixed Point Double lord Arithmetic
4.8.4.1. Double Precision Add (7722) DPA
4.8.4.2. Double Precision Subtract (7726) DPAN
4.8.4.3. Double Precision Complement (7724) DPN
4.8.5. Fixed Point Multiplication and Division
4.8.5.1. Multiply (22) M
4.8.5.2. Divide (23) D
4.8.6. Floating Point Arithmetic
4.8.6.1. Floating Point Add (7701) FA
4.8.6.2. Floatlna Point Subtract (7702) FAN
4.8.6.3. Floatina Point Multiply (7703) FM
4.8.6.4. Floating Point Divide (7705) FD
4.8.6.5. Floating Point Pack (n06) FP
4.8.6.6. Floatina Point Unpack (7707) FU
4.8.7. Decimal Arithmetic
4.8.7.1. Decimal Test AQ (7710) OT
4.8.7.2. Decimal Add (7711) DA
4.8.7.3. Decimal Add with Carry (7715) DAC
4.8.7.4. Decimal Subtract (7712) DAN
4.8.7.5. Decimal Subtract with Borrow (7716) DANB
4.8.7.6. Decimal Complement AQ (7714) ON
4.8.7.7. Decimal Test Less (7717) DTL
4.8.7.8. Decimal Test Equal (7713) DTE
4.8.7 .9. Decimal Convert Lower (7733) DCL
4.8.7.10. Decimal Convert Upper (7734) DCU

Contents
SECTIONt

4-36
4-36
4-36
4-37
4-38
4-38
4-38
4-39
4-39
4-39
4-39
4-40
4-40
4-40
4-40
4-41
4-41
4-41
4-42
4-42
4-42
4-43
4-43
4-43
4-43
4-44
4-44
4-44
4-46
4-53
4-53
4-53
4-54
4-54
4-54
4-55
4-55
4-55
4-56
4-57
4-57
4-57
4-58
4-58
4-58
4-59
4-59

4
PAGEi

UP-4133
Rev. 1 UNIVAC 4U ASSEMBLER

4.9. LOGICAL OPERATIONS
4.9.1. Load Logical Product (40) LLP
4.9.2. Store Logical Product (47) SANO
4.9.3. Replace Logical Product (44) RLP
4.9.4. Add Logical Product (41) ALP
4.9.5. Replace A + Logical Product (45) RALP
4.9.6. Subtract Logical Product (42) ANLP
4.9.7. Replace A - Logical Product (46) RAN LP
4.9.B. OR (50) OR
4.9.9. Replace OR (54) ROR
4.9.10. Exclusive OR (51) XOR
4.9.11. Replace Exclusive OR (55) RXOR
4.9.12. NOT (52) NOT
4.9.13. Replace NOT (56) RNOT
4.9.14. Selective Substitute (53) SSU
4.9.15. Replace Selective Substitute (57) RSSU
4.9.16. Application of Logical Instructions
4.10. PSEUDO-OPS
4.10.1. Data Transfer Pseudo-Ops
4.10.2. Linkage Pseudo-Ops
4.10.2. L NOP Pseudo-Op
4.10.2.2. ENTRY and EXIT Pseudo-Ops

5. ASSEMBLY DIRECTIVES

5.1. GENERAL

5.2. EQU (EQUATE)

5.3. RES (RESERVE)

5.4. LIT (LITERAL)

S.S. FORM (FORMAT)

5.6. START

5.7. ENO

5.8. OLD (DOUBLE LENGTH DATA)

5.9. UTAG

5.10. DO

5.11. COMMON

5.12. BLOCK-DATA

5.13. XREF (EXTERNAL REFERENCE)

5.14. EOEF (ENTRY DEFINITION)

5.15. EXPRESSION
5.15. L Expression SLEUTH
5.15.2. Expression Bitarray

Contents
llCC:TION1

4-59
4-61
4-61
4-61
4-62
4-62
4-62
4-62
4-63
4-63
4-63
4-64
4-64
4-64
4-64
4-65
4-65
4-67
4-67
4-67
4-67
4-69

PACllCI

5-1 to 5-14

5-1

5-1

5-2

5-2

5-3

5-4

5-4

5-5

5-5

5-6

5-7

5-9

5-9

5-10

5-10
5-11
5-12

5

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

5.16. INPUT OR INPUTFORM

5.17. LETCGENERAL)

5.18. UNLIST

5.19. LIST

6. PROC, FUNC, AMO ASSOCIATED DIRECTIVES

6.1. GENERAL

6.2. PROC (PROCEDURE) DIRECTIVE
6.2.l. PROC Directive Format
6.2.2. END 011ective
6.2.3. Symbolic Lines Within Procedure
6.2 .4. Cal I Line
6.2.5. Paraforms
6.2.6. Expanded Procedures
6.2. 7. E ffi c 1ent Use of Procedures

6.3. FUNC (FUNCTION) DIRECTIVE
6.3.l. Function Nesting
6.3.2. Function Calls
6.3.3. Function Paraforms

6.4. DIRECTIVES ASSOCIATED WITH PROCEDURES ANO FUNCTIONS
6.4.1. NAME Oirecl1ve
6.4.2. GO 011ect1ve
6.4.3. LET Direchve

APPENDIX A. ABBREVIATIONS AND SPECIAL SYMBOLS

Contents
S1ECTIQN1

5-13

5-13

5-14

5-14

PAGIEI

6-1 to 6-16

6-1

6-2
6-2
6-3
6-3
6-4
6-5
6-7
6-9

6-11
6-11
6-12
6-12

6-14
6-14
6-15
6-16

APPENDIX B. FIELDATA AND CARD CODES FOR CHARACTER REPRESENTATION

A-1 lo A-1

B-1 to B-1

C-1 to C-3 APPENDIX C. ASSEMBLER/SPURT FUNCTION CODES

APPENDIX D. ERROR FLAGS

01. GENERAL

02. U (UNDEFINED)

03. 0 (OOUBL Y DEFINED)

04. RI RELOCATION)

OS. l <LEVEL)

06. T !TRUNCATION)

07. E (EXPRESSION)

DB. I !ILLEGAU

09. P <PARAMETER)

APPENDIX E. OPERATION FIELD HIERARCHY

APPENDIX F. -'ASM OPTIONS

D-1 to 0-2

0-1

0-1

D-1

0-1

0-1

0-2

0-2

D-2

D-2

E-1 to E-1

F-1 to F-1

6

UP-4133
Rev. 1 UNIVAC 49.C ASSEMBLER

FIGURES

2-1. Single Precision Integer Word Format

2-2. Double Precision Integer Word Format

2-3. Decimal Word Format

2-4. Exponential (Floating Point) Word Format

2-5. Instruction Word Formats

3-1. UNIVAC 494 Assembler Coding Form

6-1. Typical Procedure Call Lines

6-2. Simple Paraform

6-3. Simple Function

T J.BLES

2-1. BCD Coding

2-2. Designator Interpretation

3-1. Operator Priority Within Expressions

3-2. Absolute and Relocatable Expressions

4-1. Exceptions from Standard k Designator Interpretation

4-2. Normal j Designator Interpretation

4-3. Special j Designator lnterp1etation for Test (Compare) Instructions

4-4. Special j Designator Interpretation for Jump Instructions

4-5. Special j Designator Interpretation for Repeat Instructions

4-6. Special j Designator Interpretation for Arithmetic and Logical Instructions

4-7. Data Transfer Pseudo-Ops

6-1. Evaluation of PROC Paraforms

6-2. Evaluation of FUNC Paraforms

A-1. Symbols and Abbreviations

B-1. F ieldata and Card Codes for Character Representation

C-1. Assembler/Spurt Function Codes

Contents

SllCTION•

2-1

2-3

2-3

2-4

2-5

3-2

6-5

6-5

6-13

l-4

2-6

3-14

3-20

4-10

4-11

4-11

4-12

4-13

4-14

4-67

6-6

6-12

A-1

B-1

C-1

7

UP-4133
Rev. 1

P A•IU
1

UNIVAC .CU ASSEMBLER Sl:CTIONa

1. INTRODUCTION

The UNIVAC 494 Assembler is an integrated program which converts source code programs
(UNIVAC 494 Assembler (ASll) language) to relocatable binary (RB) elements for use by
the UNIVAC 494 Operating System. The operating system collects all the independent
RB elements required to produce an absolute object code program for execution. This manual
describes use of the assembly language. (For references in this manual to SPURT assembly
language, see "UNIVAC 494 SPURT Reference Manual," UP-4090 (current version).)

The assembly language is a set of mnemonic statements which are directly converted to
relocatable binary (RB) code which is accepted as instruction input by the UN IV AC 494
Operating System. Also contained in assembly language are directives which actually are
instructions to the assembler to permit the user to define symbols for complex operations
and greatly expand the power of the assembler. The term "relocatable binary" refers to the
values assigned by the assembler to symbols representing storage areas, instructions, and
constants. These values will later be changed by the operating system to provide the ab
solute machine addresses required for execution. Thus.the relative addressing feature of
the central processot which optimizes use of core storage in conformance with the require
ment• of a real-time system is fully utilized.

A side-by-aide listing of basic source language instructions and machine instructions is
provided. Directives may not require code generation. Errors detected by the assembler in
the use of source language are flagged.

1

UP-4133
Rev. 1

PA Gllt1
2

UNIVAC 494 ASSEMBLER SltCTIOl\ll

2. COMPUTER FORMATS

2.1. GENERAL

This section describes the computer data and instruction formats of interest to the
programmer. (See "UNIVAC 494 Central Processor General Reference Manual,"
UP-4049 (current version) for a more detailed discussion of central processor hardware.)

2.2. DATA FORMATS

Data (operand) formats are of four distinct types: (1) single precision integer, (2)
double precision integer, (3) Fieldata or decimal, and (4) exponential or floating
point.

2.2.1. Single Precision Integer Word

The fundamental level of storage is the single precision (30-bit) integer word. This
word contains 30 binary bit positions as shown in Figure 2-1. Each of these bit
positions represents a binary value of 1 or 0. The highest order bit (bit 29) uses a
0 bit to represent a positive value; a 1 bit for a negative value.

HIGHEST
ORDER
BIT

LOWEST
ORDER
BIT

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

SIGN
BIT

Figure 2-1. Single Prtttcision /nttttger Word Format

Values may be expressed in binary notation for which the base is 2 instead of 10.
The following equivalence exists:

BINARY DECIMAL

1 1

10 2
11 3

100 4

101 5

110 6

111 7

1000 8

1001 9

1010 10

1011 11

10110101 181

1

UP-4133
Rev. 1

2
UNIVAC .(9.(ASSEMBLER SltCTI0,.1 PAGltJ

The use of binary digits to represent large values is cumbersome. The use of octal
notation for which the base is 8 is used for convenience. The following equivalence
exists:

BINARY OCTAL

1 1

10 2

11 3

100 4

101 5

110 6

111 7

1000 10

111111 77

1100101 145

Binary values may be converted to octal notation by starting from the least significant
(rightmost) digit. Each group of three binary digits is expressed as a digit from 0 to 7.
By this method:

1 100 101 = 145 (octal) ...__.. ...__..

111 101 000 = 750 (octal) __., -,,- -,,-

A computer word containing 30 binary bits could be expressed in octal notation as:

7 7 7 7 7 7 7 7 7 7

Negative integer numbers are represented as the ones complement of positive numbers.
A value of -3 is represented as:

7 7 7 7 7 7 7 7 7 4

The assembler will accept both octal and decimal numbers. To indicate a decimal
number. a "D" is placed at the right end of the number; otherwise, it is assumed
to be octal. Thus, 110 and 13 are equal. When the contents of a computer word are
displayed. or i£ reference is made to a computer instruction word, octal notation will
be assumed.

Most arithmetic instructions permit use of a half-word (15-bit) operand. If the lower
half is specified, then bits 14 through 0 make up the operand with bit 14 used as a
sign indicator. If the upper half is specified in the instruction, bits 29 through 15
make up the operand with bit 29 used as the sign indicator.

2

UP-4133
Rev. 1

UNIVAC ''' ASSEMBLER SSCTIONt
2

PAGa1

2.2.2. Double Precision Integer Word

1.~ I..
t.

The double precision integer word requires two successive memory addresses for
storage or two 30-bit arithmetic registers combined for the 60 bit positions required.
The format of this operand is shown in Figure 2-2.

A REGISTER OR ADDRESS M

Q REGISTER OR ADDRESS M+ 1 . I
Fi9ure 2-2. Double Precision lnrepr Won/ Formaf

The double precision format permits arithmetic operations upon operands having 59
significant bits where the single precision format permits operations upon operands
having 29 significant bits.

2.2.3. Decimal (BCD) Word

The decimal or binary coded decimal (BCD) format permits arithmetic operations upon
digits which are BCD encoded within a six-bit character code such as Fieldata code.
The decimal word requires two successive memory addresses for storage or two
arithmetic registers combined for the 60 bit positions required. The format of the
decimal word (Figure 2-3) permits use of ten decimal digits, each of which represents
a decimal digit 0 through 9. This format, just as the two preceding word formats,
represents a fixed point number - no provision is made for a decimal point.

A REGISTER OR ADDRESS M

z9 C9 ZB CB Z1 C7 Z6 C6 ZS cs
S9 58 57 54 53 52 Sl 48 47 46 4S 42 41 4.11 tt _16 _H__1_4 _n_

Q REGISTER OR ADDRESS M + 1
(
) Z4 C4 Z3 C3 Z2 C2 Zl Cl z s co
c
\29 28 27 24 23 22 21 18 17 16 15 12 11 U! -'-- 6 5 4 3

Flvvre 2-3. Oeclmol Word Formot

Decimal operands are used when inputs arrive as a succession of 10 six-bit char
acters in conformance with a code similar to the Fieldata code. The "Z" (zone)
bits shown in the format are arbitrary and are determined by the code itself. playing
no part in the arithmetic operation. They are unchanged by the arithmetic operation.
However, the lowest-order digit must indicate the sign in its fifth bit: a 1 for positive,
a 0 for negative. The "C" (character) fields, which actually represent the binary
coded decimal (BCD) digit, must be encoded as shown in Table 2-1. No other en
coding is acceptable for the BCD arithmetic instructions in the instruction repertoire.
A positive decimal operand is exactly the same as the negative decimal operand
(having the same absolute value), except for the sign bit.

3

30

0

UP-4133
Rev. 1 UNIVAC 49.C ASSEMBLER SECTION:

2

DIGIT COOING DIGIT COOING

0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Tobie 2-1. BCD Coding

2.2.4. Exponential (Floating Point) Word

The exponential format (Figure 2-4) is used if the computer must "remember" where
the decima I point is located in a series of operands, when each of the operands may
have the decimal point in a different position. This format permits storage of numbers
of high magnitude. The operand is expressed as a fraction (fixed point part) multi
plied by 2n, where n is the exponent shown in the format. This exponent is always
an integer.

A REGISTER OR ADDRESS M

s EXPONENT FIXED POINT PART

59
(CHARACTERISTIC) (MANTISSA)

30 58 48 47

Q REGISTER OR ADDRESS M + l

FIXED POINT PART (continued)
~MANTISSA) (continued)

Figure 2-4. Exponential (Floating Point) Word Format

Two successive memory addresses and/or the AQ register are required for floating
point operations. The sign bit represents the sign of the fixed point part and is a 0
for positive, a 1 for negative. A 1 bit is arithmetically added to the highest order bit
of the 11-bit exponent, thereby biasing the exponent by 210_ This bias eliminates the
need for a sign but limits the exponent to a value less than +1024io and greater than
-102510· The fixed point part is usually "normalized" (shifted left until its highest
order bit is different from the sign bit, with the exponent adjusted accordingly) so
that it represents a fraction between 0.5 and 1.0. The number zero is represented as
all zeros in both characteristic and mantissa.

2.3. ADDRESSING

Each word within the computer has a unique address. If it is a word that requires
successive 30-bit words in storage,it is addressed by the first of the consecutive
addresses. Addresses available to worker programs range from 00000 to 777778.
This leaves a maximum of 15 bits for worker program addressing. However, the rel
ative addressing feature of the central processor adds an increment - making for a
17-bit address - so that a program or parts of a program can be allotted to different
memory areas for optimum use of core memory. This relative addressing is under
executive control and in no way alters the program as written by the programmer.

4

UP-4133
Rev. 1 2

UNIVAC 49' ASSEMBLER SltCTIONI PAGIEI

2.3.1. Data Addressing

Data is addressed by instru,ctions that are themselves contained in the memory of
the computer. When it is required to access data to complete an instruction, the
instruction will contain an address portion capable of containing a maximum value
of 77777.

2.3.2. Instruction Addressing

A basic computer instruction is contained in one computer word. An instruction is
accessed from memory, analyzed by the computer.and then executed. The next in
struction is then accessed at the next sequential location unless a new sequence
is specified.

2.3.3. Standard (Fixed) Locations

Some memory locations serve as entrances to input/output control, fault procedures,
and executive routines not available to worker programs. Access to these addresses
is gained by interrupts. The contents of these addresses are loaded at computer
initialization time and supervised by the operating system.

2.4. INSTRUCTION FORMATS

Three different instruction formats are used for worker programs. The normal instruction
format and the 77 (extended repertoire) instruction format are shown in Figure 2-5.
Discussion of the third type - the 1/0 instruction - is beyond the scope of this
manual.

NORMAL INSTRUCTION WORD

I,, ,.i,, . ,J,. . J, . J. y

(EXTENDED REPERTOIRE)
77 INSTRUCTION W(RD

f I b y
1 1 1 1 1 1

29 24 23 18 17 15 14

Figure 2-5. Instruction Word Formors

2.4.1. Normal Instruction Word

The normal instruction word is applicable to all instructions of the machine instruc
tion repertoire except the 77 instructions. The term "normal" has no particular
significance except to indicate that its f designator (described in the next paragraph)
may be any octal number between (but not including) 0 and 77. These instructions
are further subdivided into three classes: 1) read class instruction, which transfers
data from core storage to an appropriate register, 2) store class instruction, which
transfers data between registers or stores the contents of a register in core storage,
and 3) replace class instruction, which replaces the data from core storage with the
result of an operation performed upon the data. A replace class instruction is actually
a combination of read class and store class instruction. The class of an instruction
conditions interpretation of its designators, as shown in Table 2-2.

0

0

5

UP-4133
Rev. l UNIVAC 494 ASSEMBLER SECTION :

HORMAL Y OPERAND MODI FICA TIOHS

REAO STORE REPLACE

Ill

II II

l () l (a) l(o) II

ZEllO
FILL II

Ill

Ill

Ill II

Ulol U(a) U(a) II

II Ill Ill

Ill

" II

s LX() CPLM LXI•) II

II II
II

T

.II
II II

• UXl• I CPUI-) UX(l II

II Ill
II

c

II

Ill " , (•) W(• I (d II

II II
II

lj tc I" "
0 ._, • <CCCC

,
LEGEllD

ZCllO II II r1LL
II AlllTMll IC l!tCISTCll
Ill • CllOllY LOCATION

• Ol'£11A D S1'£C l~ICATIOll

• s WKOLE WOllO

I I Ill
L • LOWtll KALf

tee.f t II u • Ul'l'fll KALI'"

• • SIC un:11s1011

' x ,._ . '"' A Cl' • C l'LEllE T
A • A UC115TEll

• II 0 • 0 ltECIST£11
9 • 1 llfCISTEll

II II

7 A. CPW(a)

II

COW'LEll llT

Tobie 2-2. Dosivnotor Interpretat ion

2 6
PAGEi

UP-4133
Rev. 1 UNIVAC .C94 ASSEMBLER 2

Sl:CTION1

The different designators of the instruction word are:

f A six-bit code (two octal digits) that specifies the basic operation to be
performed.

PAGl:I

j A three-bit code (one octal digit) which further defines the operation to be
performed, thus extending the power of the particular operation. Depending
on the basic operation to be performed, the j designator is interpreted as a
skip designator, register designator, or repeat modification designator. Its
most common interpretation is as a skip designator. For example, an add to
A (20) with the inclusion of a j designator becomes an add to A with a test
for the condition indicated by the j and a possible skip of the next instruc
tion if the condition specified is met.

k A three-bit code (one octal digit) that further defines, together with the class
of instruction, the source, form, size, and destination of the operand used by
the instruction. The interpretation of the k designator is different for the read,
store, and replace class categories of insuuctions. The k designator specifies
an operand to be in the upper or low~r 15 bit positions of a computer word, the
entire 30 bit positions of a computer word with or without additional modifica
tion, or lower 15 bits of the instruction word itself. As an example: a read
class instruction with a k designator of 0 or 4 uses the effective operand
(see y, following) in the instruction; a read class instruction with k designator
of 1,2, or 3 uses, respectively, the lower 15 bits, the upper 15 bits, or the
entire 30 bits of the word (or instruction) at an address; a read class in
struction with k designator of 7 uses the word in the A register (accumulator)
as the operand.

b A three-bit code (one octal digit) in the range of 0 thru 7 which specifies the
8 (index) register containing the value that is added to y to form the effective
operand or operand address. It is a nondestructive modification of the y por
tion of an instruction forming an effective address but the y of the instruction
remains unchanged. Fourteen addressable 8 registers (index registers) are
included in the hardware for operand address modification, index code, and
modifier incrementation. Of these, seven are available to worker programs
and seven are reserved for exclusive use by executive control. The 8 registers
can operate in one of two modes as designated by the internal function regis·
ter (IFR). 8 registers are generally used in the 15-bit operational mode by
worker programs. An additional 17-bit operational mode is available for B
registers 4,5,6, and 7 of each group, specified under executive control, but
most worker programs will only be allowed the 15-bit operational mode; the
17-bit operational mode being reserved for real-time programs and common
subroutine communications.

In general usage, 8 registers 1 thru 7 are 15-bit registers that can be incre
mented or decremented under program control. Register 87 has the additional
function of holding the repeat count during execution of the repeated instruc
tion. Register 86 has the additional function of modification of the y portion
of the repeated instruction when the instruction is a replace class instruction.

7

UP-4133
Rev. 1 2

UNIVAC 494 ASSEMBLER S&CTION1

BO is not a hardware register but functions as a B register containing the
number + 0. It can never be entered with a value but can be used in store
and compare operations.

y A fifteen-bit value (five octal digits) used to form the effective operand or
operand address of the instruction. It can also be used to Corm the shift
count, repeat count, and compare value. It is the portion of the instruction
modified when B register modification is specified.

PAGl:t

J The relative addreSB (relative to an RIR of zero) or effective operand, formed
by the addition of y to the contents of the 8 register specified by the b
designator. Both numbers are treated as unsigned positive numbers. The
addition is always performed in the end-around-carry mode: any carry generated
at the highest order bit position is carried around for addition at the lowest
order bit position. This addition is normally a 15-bit addition but may, under
executive control, be a 17-bit addition. It is not possible to generate an
effective address or operand of all binary zeros unless y is zero and the con
tents of the referenced 8 register is zero (or BO is referenced). The following
examples illustrate operation of this addition (using octal notation):

15-BIT ADDITION 17-BIT ADDITION

y 77777 77777
(Bb) 00001 300001

00000 000000
1 1

y 00001 000001

Table 2-2 presents a general summary of the uses of the k designators;
Table 4-2, the j designators. Designators are shown together with their
corresponding mnemonics in source code. (A more detailed description of
designator application is presented in Section 4 .)

2.4.2. 77 (Extended Repertoire) Instruction Word

In the format for the "77" instruction word, the f designator is 778. Following the 77
is a two-digit (octal) g designator, which, together with the r designator, actually
defines the function to be performed. The b and y designators are similar to their
counterparts in the normal instruction word. No j and k designators can be used in
the 77 instruction word.

8

UP-4133
Rev. 1

PAGIE•
3 UNIVAC 494 ASSEMBLER SIECTIONs

3. SOURCE LANGUAGE
FORMAT REQUIREMENTS

3.1. GENERAL

This section describes assembly language elements and format requirements for coding
program lines on the standard coding form (see Figure 3-1). The symbolic language
fields are described in 3.2; line control and comments in 3.3; data word generation
in 3.4; and basic elements, expressions, and operators in 3.5.

3.2. SYMBOLIC LANGUAGE FIELDS

The basic line of coding is made up of three or fewer fields. These are the label Held
(not always required and sometimes prohibited), the operation field (always required),
and the operand field (not always required). Fields are separated from each other by at
least one space. Each field may be subdivided into subfields. A subfield is an expres
sion which is terminated by a comma (followed by one or more spaces), except if it is
the last subfield. In this case, a space terminates both the subfield and field.

Columns 1-4 represent the card number and provide an external sequencing criterion.
Columns 5-6 represent the insertion number and are treated as the low order digits of the
card number to enable sequential insertion. Normally these are not initially assigned.
Column 7 contains a minus(-) to indicate that this line represents a continuation of the
preceding line of coding. If not a continuation, column 7 of the line is usually left blank.
Column 8 is the start of the label field. From this point on, the assembly language uses
a free field format for operation and operand field(s). A space followed by a period
(before column 80) after the last subfield terminates the scan of the line or column 80
terminates the scan of line (except if it is continued to the next line). Notes may be
printed between the period and column 80. These note$ will be presented on a printout
of the program and in no way affect execution of the program. Notes may be used at
significant points in the program as an aid to debugging. Additional notes may be
written after column 80 for a id to the programmer but these will not be printed out.
Notf!'S may be continued to the next line if a period and blank are placed in columns 8
and 9, respectively.of the next line.

For the basic instructions which are described in Section 4, the correspondence of the
subfield information with the designator information required in machine code (Figure
2-5) is shown in the following table.

OPERATION OPERAND
FIELD FIELD

General Instruction f,k 1; y ,b,j

B Register Instruction £.k 15 j,y,b

77 Instruction fg 15 y,b

NOTE: Borh OenHal and B R•ll•l•r ln•rruc!Jon• u•e Normal machine lna1tuc1/on

formal (l"lfure :J-5).

1

UNIVAC ASSEMBLER UNIVAC 494
PROGRAlllllMG ,ORll

PROGRAM---------------- PROGRAMMER------------- DATE--------- PAGE -OF-PAGES

Fi9u,.. 3-1. UNIVAC 494 Auemhler Codlr19 Fonn

::1.:1C
It .,,
< I .• w

w

c
% -<
> n
~
>
Ill
Ill
m
~
1:1111
r
m
~

..
Pl
n ...
0
z

,.
>
Cl

~

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER 3

SllCTION1 PAOll1

The f (or fg) designator must always be written as the mnemonic representation of the
operation to be performed (Section 4).

The j designator can be written as a number 0 through 7, a valid mnemonic representa
tion (Section 4), an expression which will be evaluated as a number 0 through 7 {Section
3.5), or (for 8 register instructions only) as 80 through B7(Bj).

The k designator can be written as a number 0 through 7, an expression which will be
evaluated as 0 through 7, or as the mnemonic W, X, A, L, U, LX, Q, CPW, CPL, or CPU.

The b designator may be written as a number 0 through 7 or as BO through 87 (Bb).

The y designator is an item or expression (see 3.5) representing a 15-bit number.
This y designator value is added to the contents of 8b to form either the effective
operand or relative operand address, y. Thus, t1'e 8 registers can be used for
indexing. The operating system will then add a relative index to all relat.ive
operand addresses of a program to form the absolute operand addresses for the
program.

The f designator mnemonic is the only designator required of all instructions. When
other designators are not explicitly defined by the programmer or are blank, they are
evaluated as numerical zeros. The following are examples of the three general types
of instructions, where the first column is column 8.

1 LAQ, L TAG,83,APOS

2 L B B 0
1--.._..__~~~~~~--_... ~~----~~~~~~-

3 D PS TAG B 0

.. LA Q , , 3 , POS

Line 1 is an example of a general type instruction. The instruction is~ add the number
in the lower half of the memory word at location TAG + contents of 83 (where, for pur
poses of description, TAG is 12345) to the number in the Q register and retain this
sum in the A register; then skip the next sequential instruction if this sum is positive.
In machine code this instruction would appear as 3061312345. The second line is en
example of a B register instruction. The instruction is: load index register 2 with the
number contained in the upper half of the memory word at location TAG. The machine
code for this instruction is 1222012345. The third line is an example of a 77 instruction.
The instruction is: store the contents of the AQ register at locations TAG and TAG
+ 1; the A portion at TAG, the Q portion at TAG + 1. In machine code, this instruction
would appear as 7725012345. In all of these instructions, it mast be remembered that the
actual operand addresses would be biased by the relative index by the operating system.
The instruction in line 4, similar to that of line 1, is: add the contents of 83 to the
number in the Q register and skip if sum is positive. This would be machine coded es
3060300000 end the operands would not be affected by the relative index of the operet•
ing system (except, possibly, the contents of 83, from some prior instruction).

3

UP-4133
Rev. 1 3

UNIVAC 494 ASSEMBLER PAQIEl llECTION1

3.2.1. Label Field

The label field may contain two subfields, separated by a comma. The first subfield
is used for location counter declaration. The second subfield is used as identifica
tion (for reference purposes) of a symbolic line of coding representing data or an
instruction. This second subfield is commonly called the label of an instruction (as
distinct from "label field"). If either subfield is not entered, no comma should be
present in the label field. If the label field is not entered in a line of coding, column
8 must be blank unless a previous line is being continued on this line. The label
field must start in column 8.

3.2.1.1. Location Counters

There are 64 location counters, numbered 0 through 77g. They are used to control
assembly sequence of the lines of coding by assigning sequential relative
addresses (starting from 00000) under each location counter. Thus,at assembly
time, all lines of coding controlled by location counter 0 are assigned in sequence.
The same is done for those lines controlled by location counter 1, etc. In the
source coding, the location counters may be used in any sequence and this enables
regrouping and segmentation of programs as desired. If there is no location
counter declaration in a program, all lines are assumed to be under control of
location counter 0.

Location counter declaration has the form S(e) where e is any valid entry with a
value of 0 through 31. A specified location counter will control its line of coding
and all succeeding lines until a new location counter is declared. Each initial
location counter declaration begins coding from zero for that location counter.
Coding under a previously specified location counter will start from the last value
used plus one for that location counter. The following illustration depicts use of the
location counter.

1

2 L TAG s
3 TAG+ 2

.. s LB u 8 1 TAG+ 1

5 s ") I TA G 3 L B , TAG

6 TAG .C L B , U B .C , TAG

Lines 1 and 4 will be given sequential addresses under location counter 1.

Lines 2 and 3 are given sequential addresses under location counter 2.

Reference to the current location counter in a line of coding requires only the $
symbol. Reference to any other location counter requires S(e) where e is a valid
expression with a valueof 0 through 31. The following illustration shows use of
the value in a location counter.

4

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

1 $ 2) J $ + 3

2

3

"
5

TAG

LA Q , L T

D PS TAG

J - 1

3
SECTIONI

AP 0 S

When line 1 is executed, it will cause a jump to line 4. When line S is executed,

PAG•1

it will cause a jump to the last line (up to this point) controlled by location counter
1. It is dangerous to use such jumps (involving the S in the operand), because such
a jump may cause a jump into part of a procedure or function (Section 6), or cause
erroneous skipping where any directive which generates more than one line of code
may appear between the jump instruction and its intended operand.

3. 2.1.2. Label

The label is the second subfield of a label field. It identifies either a symbolic
line of instruction or data. Any name made up of no more than ten alphanumeric
characters may be used in a label, and it must start with an alphabetic character.
A label may be subscripted (up to two dimensions) to indicate that it is a unique
element of the array bearing the same name, but the subscript is not counted as
one of the ten (max.) characters permitted. Subscripts within subscripts (see
last line of example following) are permitted provided that the subscripted item
or expression is evaluated by execution time. A label is usually given a value
determined by the current location counter and the number of the location counter.

A label in one program unit can be referenced by another separately assembled
program unit only if the label has an asterisk immediately after lts last character.
In this case, the label is "externally defined." To avoid ambiguity, the programmer
should avoid terms as A, Q, BO through 87, and labels beginning with the alphabetic
characters 0 or X. Labels are shown in the following:

CAMP J I D 86 T I NY

$(2),A2$E LA,05,6

S (I W CAMP

I 0 B (2)) VALi D LABEL

5

UP-4133
Rev. 1 3 UNIVAC 494 ASSEMBLER PAGl:1 SECTION•

3.2.2. Operation Field

The operation field is the first field following the label field. If no label field is
used or there is no continuation of the preceding line, the first non-blank character
(except period or apostrophe) is considered the start of the operation field.
The operation field may be:

• an instruction mnemonic possibly followed by a k designator as a subfield

• + or - to indicate a data word of octal, decimal, or alphabetic designation. In this
case, a space is not necessary to terminate the operation field. The operand may
immediately follow the +or - . As an example, +2 and +1;2 are identical. If the
operation field is a number, the + may be omitted for positive numbers.

• an assembly directive (Sections 5 and 6)

• a label previously defined as an entry point into a procedure or function (Section
6)

In all of these cases, except the second, a space following any character except a
comma ends the operation field. If the operation field contains a directive (other than
RES or DO), the location counter is not affected. Jn all other cases (other than the
RES or DO directives) the location counter is incremented after the line has been
generated. The following shows examples of valid operation fields.

1 D 1 J H 0 RS E

2 R E S 0 1 0 0 0

3 H 0 RS E R I 5 0 , B 2

' LA, u TABLEl, 0 , BZERO

5 BET A 234'5123 ' 5

6 N U 1 2 3451234'5

7 + • A B ,

G

Line 2 increments the location counter by 5120. Line 5 contains a data word. At compila
tion time the octal 1234512345 will be generated at address BETA. Line 6 indicates
that the octal 6543265432 will be generated at address NU (due to the ones complement
representation of negative numbers). Line 7 indicates that the alphabetic characters
AB will be generated, right justified, in their Fieldata code (Appendix B) representa-
tion. The apostrophes indicate that the characters are alphabetic. At compilation time,
the address following NU will contain 0000000607. Data generation is more fully de
scribed in 3.4 and 3.5.1.5.

UP-4133
Rev. 1 3

UNIVAC 494 ASSEMBLER •1ECTION1 PAGIEI

3.2.3. Operand Field

The operand field follows the operation field and must be separated from it by at least
one space not following a comma. An unlimited number of blanks may be used to
separate fields. The subfields of the operand field represent information necessary
to generate the type of line indicated by the operation field. The maximum number of
subfields is determined by the operation entry.

The subfields (except for the first and last) are enclosed within commas. A comma at
the end of a subfield indicates that more subfields are present and scanning of the line
will continue. Any number of spaces (or none at all) may precede the first character of
the next subfield. If the first subfield is to be omitted,a zero followed by a comma must
indicate this or, alternatively, this zero may be replaced by a space. If the last sub
field or subfields are omitted, they are simply left blank but the field must not end with
a comma. If any subfield other than the first or last is to be omitted, two contiguous
commas or comma zero comma must indicate this. When subfield information is not ex·
plicitly defined by the programmer, the parameter represented by this subfield is as·
sumed to be zero. Format requirements demand only that subfields or the lack of a sub
field definition be indicated aa described in this paragraph. The following lines are ap
plications of these rules.

1 BOB LA W NUMB AZ ERO

2CLEAR SB

3 CLEAR SB

4 CLEAR SB

BO, TAG, BO

TAG

0 0

In line 1, the b designator is zero. Lines 2, 3, and 4 are 8 register instructions and
are equivalent to each other. Any one of these has the effect of clearing the 30-bit
word at address TAG.

3.3. LINE CONTROL AND COMMENTS

A line may contain an instruction, data word, or assembler directive, followed by com
ments or the line may contain only comments. Further operand information is not inter·
preted after the maximum number of subfields required by the operation has been
scanned or by the recognition of 80 characters, whichever occurs first. However, a
line may be continued and comments may be provided by the programmer for printout
as desired.

3.3.1. Continuation

A line is continued by the insertion of a minus (-)character in column 7 of the con
tinuation, so long as the line has not been terminated by a period. If a line is broken
with a subfield, the next character should begin in column 8 of the next line. The
following illustrates use of the continuation feature.

7

UP-4133
Rev. l 3

UNIVAC 49' ASSEMBLER SIECTION1

TA B L E 1 I I Z ER 0

Lines 1, 2, 3, and 4 contain the same instruction shown without continuations on
line 5.

3.3.2. Comments

8
PAGIEI

Comments may be freely written by the programmer to aid in programming and debugging.
A comment is separated from the last field on the line by space, period, and space.
The comment may be continued to the next line, or a comment may be started on the
next line if a period is placed in column 8 followed by a space. If additional sub-
fields are required by the operation, they are assumed to be zero. The following is
att example.

ABEL Q N 0 T ADD THE NUMBER

N THE UPPER HALF OF THE WORD T

AT LABEL T NUMBER IN Q AND SKIP

NI IF SUM IS NT ZERO.

3.4. DATA WORD GENERATION

Data words may be either 30 bits in length (single word) or 60 bits in length (double
word), and are generated as depicted below.

3.4.1. Single Word (30 Bits)

A list of one, two, three, or five expressions (see 3.5) may be used as arguments to
generate one computer word, as follows:

SOURCE CODE GENERATED CODE

texp1
!exp1,exp2
texp1 ,exp2,exp3

15 bits

10 bits l

30 bits

l 15 bits

10 bits l 10 bits

!exp1 ,exp2,exp3,exp4 ,exp5 6 bits J 6 bits I 6 bits } 6 bits l 6 bits

Note that the first expression must be signed for this application.

Examples:

LABEL t OPERATION t OPERAND

-2 7777777775
+ 100, l=l 00012 00001
-1+1,-4,0

+'A' I 'B'' 1,2,3

0000 1773 0000
06 07 01 02 03

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER Sll:CTIONI

3

3.4.2. Double Word (60 Bits)

Sixty-bit constants may be specified by the use of the OLD directive (Section 5).
These constants may be:

• Octal

• Decimal

• Floating Point

• Internal Decimal

3.4.3. Variable Length Word

PAGll:I

A string of characters enclosed by apostrophes can be inserted into the generated
code as a string of 6·bit Fieldata characters (Appendix B). Since the apostrophe
is a control character in this case, the apostrophe cannot be one of the characters
in the string. The number of computer words occupied by the string depends upon
the number of characters. The characters are left justified into consecutive computer
words, five characters to a word. Any remaining areas in the last word will be filled
with Fieldata spaces (OSg). (This feature should not be confused with the one des·
cribed in 3.5.1.5, which refers to character strings in an expression and uses only
one word of computer storage.)

Examples:

LABEL 'b OPERATION 'b OPERAND

3.5. EXPRESSIONS

'ABC'
'ABCDE'
'-123ABCD'

0607100505
0607101112
41616263060710110505

An expression is the combination of items or expressions by a logical, relational, or
arithmetic operator. It most commonly appears in the operand field of a symbolic line
as an entry in a subfield. Blanks are not permitted within an expression. Double word
items may not be used to form expressions except with double word operations or, in
the operation field, as literals preceded by OLD.

3.5.1. Items

This section describes the various items which may appear in an expression.

3.5.1.1. Label

Any label may be used as an item. Whenever a label is encountered within an ex
pression, the value equated to the label is substituted for the label within the
expression.

Example:

LABEL o OPERATION 1> OPERAND

VARI EQU
LB Bl,

01000
VARl,82 12 1 0 2 01000

9

UP-4133
Rev. 1

3
UNIVAC 494 ASSEMBLER SIECTIONr PAGE•

3.5.1.2. Location

A location may be used as an item by reflexive addressing. Reflexive addressing
may be achieved by referencing the current location counter, or a specific location
counter, within a symbolic line. This feature has already been described in
3.2.1.1.

Example:

LABEL 11 OPERATION 'b OPERAND

BOB J
LA
SA

$+2
808,6
0,82

The first line transfers control to the third line.

3.5.1.3. Octal Values

61 0 0 0 00502
11 0 0 6 00500
15 0 0 2 00000

Octal digits (0-7) may appear as an item within an expression. The assembler
will create a binary equivalent of the item value. The binary representation of
the value will be right justified in a signed field.

Examples:

LABEL '\ OPERATION 1i OPERAND

3.5.1.4. Decimal Values

+17
-074

0000000017
7777777703

Decimal values may be represented as an item by following the desired digits
with an alphabetic D. A decimal value, containing the characters 0-9 will be
represented by a right justified and signed binary equivalent within the object
field, sign filled.

Examples:

LABEL 11 OPERATION'\ OPERAND

60
+60
+80
-60

3.5.1.S. Character Strings in Expression

0000000006
0000000006
0000000010
7777777771

An item within an expression can be source coded by up to five 6-bit Fieldata
characters (Appendix B). The desired characters are enclosed with apostrophes.
The leftmost apostrophe may be preceded by a plus or minus sign. Since the
apostrophe is a control character in this case, it may not be one of the characters
in the string. Because this item is an expression, it will be treated as an arith
metic or logical value.

10

UP-4133
Rev. 1

3
UNIVAC 494 ASSEMBLER Sl:CTION1

If the leftmost apostrophe is preceded by a plus sign (or no sign at all), the
characters will be right justified in the computer word and empty spaces will

PAGl:I

be filled with 0 bits; if preceded by a minus sign, the ones complement (of the
string preceded by a plus sign) will be the resultant value. Any characters to the
left of the rightmost five characters in the string will be disregarded.

Examples:

LABEL 1S OPERATION 1S OPERAND

+'OOCAT'
'CAT'
-'CAT'
'-CAT'

3.5.1.6. Double Word Constants (60 Bits)

6060100631
0000100631
7777677146
0041100631

Double length constants may be floating point, octal, decimal, and internal decimal
(Fieldata). Only symbols which reference OLD constants are allowed in the operand
field.

Examples:

LABEL 15 OPERATION 'b OPERAND

BOB

DPL
FA

OLD

BOB,6
BOB,6

16384.0

77 21 6 03000
77 01 6 03000

2017400000
0000000000

In this example, the contents of BOB are loaded into the A and Q registers and then
(via the Floating Point Add instruction) added to itself.

' ,
A floating point number is a number with a decimal point. The number is stored
with a normalized mantissa and biased characteristic to conform to the format
shown in Figure 2-4. For example: the number 16384.0 is a floating point number
and, in octal form, corresponds to 40000. A shift of 150 or 173 is required to
normalize this mantissa, so that the unbiased characteristic is 0017g. The biased
characteristic is then 20178 and the complete floating point number is stored as
2017400000 00000000008 in two consecutive words. Since two words are required,
the OLD directive is used (see 5-8).

Ao internal decimal number is an integer appended with the alphabetic character
I. It is stored as its Fieldata coded equivalent, right justified into the second
word with Fieldata coded zero fill (see 5.8), requiring two words. The
number 6661 is stored as 6060606060 6060666666. The label refers to the first
portion (6060606060).

11

UP-4133
Rev. 1

3
UNIVAC '9• ASSEMBLER PAGltl SltCTION1

3.5.1. 7. Literals

1

2 x
3

"
5

6

7

8

9

A literal is a device for indicating operand constants requiring up to 30 bits with just
one line of coding. For example, if it is desired to load the A register with the
octal value 1234512345, the programmer could do this in two lines of coding with-
out the use of a literal. The first line of the following example would load the A
register with the entire word in location X. The second line or the figure is needed
to store the data word 1234512345 at location X. Instead, with the aid of a literal,
only one line of coding would be required. The load A instruction would have as the
operand, the literal 1234512345. When this instruction is scanned, the literal
1234512345 is automatically assigned a 15-bit address in the literal pool for the
location counter and it is this address that is automatically inserted into the operand
portion of this instruction. Thus, one line or coding serves the purpose of two lines.
All literals are placed in the literal table under control of location counter zero un
less inserted under a LIT directive (see 5.4). Since most instructions enable
coding of operand constants requiring 15 bits or less, it is not necessary to
use literals for such constants.

A literal may be represented on an instruction line by immediately preceding the
constant with a colon(:) and immediately ending the constant with a semicolon (;)
in they subfield to generate a word containing the constant. Literals are assigned
addresses at the end of the program, and duplicates will be eliminated. When
location counters are employed, these literals will be assigned to the end of the
coding associated with a particular counter (see 5.4. LIT). In this case, duplicates
are only eliminated for the counter itself.

In addition to a constant data word, the line item may be an instruction word (line
4 in the example). This will be assembled in the constant area at the end or
the coding. Line items within line items, e.g., cascaded addresses, are permitted.

In the case of an instruction word line item, a label is not permitted. The first char·
acter following the colon must be the start or the operation field.

If a literal is split by a comma (see line 7 following) the two portions will constitute
the upper and lower halves, right justified with sign rm. of the literal. Line 8 shows
nested literals. Line 9 shows use of a double length literal (see Section 5 for OLD
directive).

LA w x
1 2 3 • 5 1 2 3 " 5

LA w 1 2 3 • 5 1 2 3 • 5

LA w N 0 P T H E A

REG I ST E R W 0 UL D

CON TAI N 1200000 0 0 01 I I I I I I I I I I I I I I I

LA w 1 2 3 L I T I S 0012377732

L w LB

DP L D L D 7 3 1 8 7 6 0 .

12

UP-4133
Rev. 1

3
UNIVAC'" ASSEMBLER IECTION1 PAGEi

3.5.1.8. Parameters

A PROC or FUNC parameter may also be an item. Parameters will be discussed in
detail in the section pertaining to PROC's and FUNC's (Section 6).

3.5.2. Operators

An operator is a mathematical, logical, or relational symbol representing an operation
to be performed.

Items may be combined into expressions by means of operators.

There are 15 operators which designate the method and, implicitly, the sequence to
be employed in combining items or expressions within a subfield. Blanks are not
permitted within an expression. Evaluation of an expression begins with substitution
of values for each element. The operations are then performed from left to right in
order of hierarchy (see Table 3-1). No two operators may appear in immediate
succession, but parentheses may be used for separation.

Each operator has a position in the precedence hierarchy which determines the se
quence (highest precedence first) of evaluation of an expression: consecutive opera
tions with the same precedence are executed from left to right. Interruption of the
normal precedence is accomplished by using parentheses. If an item or an expression
is enclosed in parentheses and an operator appears adjacent to the parentheses, the
function of the parentheses in this instance is that of algebraic grouping. The value
of this quantity is the algebraic solution of the items or expression enclosed in
parentheses. There is no restriction on the number of nested parentheses within an
expression. (See 5.2 for a description of the EQU directive used in the following
examples.)

3.5.2.1. Arithmetic Product *

The value of the first item is used as the multiplicand, the value of the second is
used as the multiplier; the value of the expression is the product obtained by the
multiplication of the two items or expressions.

Example:

N EQU 170
N*OlO

The value of the expression is 13610.

13

UP-4133
Rev. 1 UNIVAC '9~ ASSEMBLER

PRECEDENCE

6

s
s
5

4

4

3

2

2

1

1

1

1

1

1

OPERATOR

• I

•
I

II

t

••
++

<

<::

>=

I=

IECTIONt

DESCRIPTION

a*/b is equivalent to a*2 b (see text)

arithmetic product

arithmetic quotient

covered quotient (a//b) is equivalent
to (a+b-1)/b

arithmetic sum

arithmetic difference

logical product

logical sum

logical difference

a=b has the value 1 if true, 0 otherwise

a>b has the value 1 if true, 0 otherwise

3

a<b has the value 1 if true, 0 otherwise

a~b has the value 1 if true in either
case, otherwise 0

a~ b has the value 1 if true in either
case, otherwise 0

a.th has value 1 if true and 0 otherwise

Table 3-1. o,,_roror Priority Within E11presslons

3.5.2.2. Equal =

PAGEi

The "equal" operator compares the value of two items or expressions. If the two
values are equal, the assembler will assign a value of 1 to the combined expression.
If the values are not equal, the value of the combined expression is 0.

A = 1

If A is equal to 1, the value of the expression is 1 (true). If A is unequal to 1,
the value of the expression is 0 (false).

Example:

DO A= 3, RES 3

If A is equal to 3, the controlling location counter will be incremented by 3; if
not, the line will be skipped.

14

UP-4133
Rev. 1 3

UNIVAC 494 ASSEMBLER Sll:CTIONI

3.5.2.3. Greater Than >

The "greater than" operator compares two items or expressions. If the value of
the first operand is greater than the value of the second operand, the combined
expression is assigned the value 1 (true). If the value of the first is equal to or
less than that of the second, a value of 0 (false) is assigned.

8>2

If B is greater than 2, the expression value is 1. If B is not greater than 2, the
expression value is 0.

Example:

(A>2) *5

If A is greater than 2, the value of the expression is 5, otherwise the expression
is 0. Note that the parentheses interrupt the normal order of precedence. If the
parentheses are omitted, the result is a 1 (if A is greater than 1010) or a 0 (if A
is not greater than 1010>·

3.5.2.4. Less Than <

The "less than" operator compares the values of two items or expressions. If
the first is less than the second, the combined expression is assigned the value
1 (true); otherwise, a value of 0 (false) is assigned.

C<l

PAGll:I

UC is less than 1, the expression value is 1. If C is not less than 1, the expression
value is 0.

Example:

(A<2) *2

If A is less than 2, the expression value is 2, otherwise the value is 0

3.5.2.5. Less Than or Equal <=

The "less than or equal" operator compares two items or expressions. If the value
of the first operand is less than or equal to the value of the second operand, the
combined expression is assigned the value 1 (true); otherwise, a value of 0 (false)
is aasigned.

D<= 2

If D is less than or equal to 2, the expression value is 1. If D is not leas than or
equal to 2, the value of the expression is 0.

15

UP-4133
Rev. 1 3

UNIV AC 494 ASSEMBLER PAGl:t SECTION•

Example:

If B s_ 2, the combined expression value is 2, otherwise the expression value is O.

3.5.2.6. Greater Than or Equal > =

The "greater than or equal" operator compares two items or expressions. If the
value of the first operand is greater than or equal to the value of the second
operand, the combined expression is assigned the value 1 (true); otherwise,&
value of 0 (false) is assigned

E >= 4

lfE is greater than or equal to 4, the expression value is 1. If E is not greater
than or equal to 4, the value of the expression is 0.

Example:

(F > = 5) *3

If F ~ 5, the combined expression value is 3, otherwise the expression value is zero.

3.5.2.7. Not Equal To I=

The "not equal to" operator compares two items or expressions. If the two values
are not equal, the assembler will assign a value of 1 (true) to the combined ex
pression. If the values are equal, the value of the expression is 0 (false).

A/= 2

If A is not 2, the value of the expression is 1, if A is 2, the value of the expression
is 0.

Example:

(Cl= D) *4

If C is not equal to D, the value of the expression is 4. If C is equal to 0, the
value of the expression is zero.

3.5.2.8. Logical Sum ++

The "logical sum" operator provides the logical sum of values of two items or
expressions. The assembler will produce the logical sum and use it as the value
of the combined expression. The operation tests the bits in corresponding bit
positions of both operands. The result will contain a 1 bit where either, or both,
bits is a 1 bit. Thus, the logical sum corresponds to a bit-by-bit OR operation.

16

UP-4133
Rev. 1

3 UNIVAC 494 ASSEMBLER lltCTION1 PAC11t1

Example:

A EQU 3
At +5

The value of the expression is 7.

3.5.2.9. Logical Difference ••

The "logical difference" operator produces the logical difference between the
values of two expressions or items. The operation compares the bits in cone
sponding bit positions of the two expressions or items. Where the bits are unlike,
the logical difference will contain a 1 bit; if alike, a 0 bit. Thus, the logical
difference corresponds to a bit·by·bit Exclusive OR operation.

Example:

A EQU
A--5

6

The value of the expression is 3.

3.5.2.10. Logical Product ••

The "logical product" operator produces the logical product of the values of two
expressions or items. The two operands are compared, bit-by-bit. Where both are
1 bits, the logical product will have a 1 bit; otherwise, a 0 bit. Thus, the logical
product corresponds to a bit-by-bit AND operation.

Example:

N EQU 170
N .. 30

The value of the combined expression is 1.

3.5.2.11. Arithmetic Sum+

The "arithmetic sum" operator produces the algebraic sum of the values of two
items or expressions. The value of the combined expression will be the sum of
the value of the items or expressions.

Example:

A EQU 740
A+ (A .. 061)

The value of the combined expression is 740.

17

UP-4133
Rev. 1

3
UNIVAC 494 ASSEMBLER PAGltt SltCTION1

3.5.2.12. Arithmetic Difference -

The "arithmetic difference" operator produces the algebraic difference between
the values of two items or expressions. The assembler will subtract the value of
the second operand from the value of the first, and the difference is the value of
the combined expression.

Example:

B EQU 0662
(B--0511)-B

The value of the combined expression is -0267.

3.5.2.13. Arithmetic Division I

The value of the first item or expression is the dividend, the value of the second
item or expression is the divisor; the result of the operation is the quotient. The
remainder is discarded by the assembler.

Example:

B EQU 170
(B .. 3 = 1)*8/4

The value of the combined expression is 4. Note that the remainder is discarded.

3.5.2.14. Covered Quotient //

The covered quotient operates in the same fashion as the arithmetic quotient with
this modification: if a remainder greater than 0 is created during the division, the
quotient is increased by 1.

Example:

A EQU 3
(A-3 = O)*A//2

The value of the combined expression is 2.

3.5.2.15. Shift Exponent •I

The shift exponent indicates that the operand (preceding the shift exponent) shall
be shifted by the number of positions denoted by the value immediately after the
shift exponent. The shift is left or right according to the sign of the exponent
(negative will produce a right shift). a*/b is equivalent to a•2b, where b must be
an integer and no sign or significant bits are shifted out. "a" will be shifted as
though it were a binary quantity, with zero fill.

Examples:

A EQU 2
A*/3

B EQU 160
B*/(-3)

(Result is 2:a:2 3 or 160)

{Result is 160 x 2 -3 or 2)

18

UP·4133
Rev. 1 Sll:CTION1

3 UNIVAC 494 ASSl!MBLER

3.5.2.16. Comments Within Expressions I. . I

Comments can be inserted within expressions by means of the two delimiters
I. and • I as shown in the examples. Insofar as processing is concerned,
these comments will be ignored.

Examples:

+ TAPEm5/,TAPE .. 5 IS SYSTEM./-1

+ TAPE=S-1

The same data will be stored for the two examples.

3.5.3. Absolute and Relocatable Labels and Expressions

PAGll:I

The value assigned to a label is either relocatable or absolute. If the values
assigned to label entries in the source statement are later displaced by a constant
number from their originally assigned relative addresses, the labels are termed
"relocatable" items. (This displacement normally occurs when the object program
is loaded into storage locations other than those originally assigned by the assembler
program.) If the values assigned to labels are unaffected by relocation procedures
and remain set equal to a constant absolute value, the labels are termed "absolute.,
items. As examples, a label may be set absolute by an EQU or a LET directive
(see Sections 5 and 6 for descriptions of these directives).

When plus(+) or minus(-) operators alone are used to form an expression, the
expression is absolute if: 1) it has an even number of relocatable items (zero is
considered an even number). and 2) each relocatable item is paired with a relocatable
item or opposite sign (not necessarily contiguous), controlled by the same location
counter. An expression is relocatable if: 1) it has a positive value, and 2) it has an
odd number of re locatable items, and 3) the relocatable items (except one) are
paired under the same location counter, with opposite signs.

When the other operators (all but plus and minus) are used to form an expression,
the immediate result is an absolute item. (This absolute item can be used to form
a relocatable item in the same line of coding.) If either, or both, of the items used
in forming this absolute item are relocatable, the result will be £lagged with a
relocation error.

A literal is also a relocatable item since, in the source coding, it is represented by
an assembler-assigned address. However, literals cannot be combined, by means of
operators, to form expressions. A reference to a location counter with the symbol S
is also a relocatable item.

19

UP-4133
Rev. 1

3
UNIVAC 49' ASSEMBLER SECTIONo

Examples of absolute and relocatable expressions are shown in Table 3-2.

EXPRESSION TYPE RELOCATION ERROR FLAG?

A+B absolute

A+B-3 absolute

A+Rl2 relocatable

A +Rl2-R23-R22+R13 absolute

B+R12•R13-R22 relocatable

A//B absolute

R12-A/ /B relocatable

R22•A absolute

R12-R22•A relocatable

R22•1 relocatable

(R12-R22)*A absolute

R12-R22*A relocatable

R12/R22 absolute

NOTE: A end B ••• eb•olut• "••• (unequel to l).

RI' end"''••• relocetebl• llem• under locetlon counter 2.
RlJ end R2J ere refocareble lrem• under locerlon counter J.

no

no

no

no

no

no

no

yes

yes

no

no

yes

yes

Table 3-2. Absolute and Relocatable E111presslons

20
PAOIEI

UP-4133
Rev. 1 Sl:CTIONt

4 UNIVAC 494 ASSEMBLER PAGl:t

4. BASIC ASSEMBLER
LANGUAGE INSTRUCTIONS

4.1. GENERAL

The basic instructions are those instructions used by "worker" programs. Where the
same instruction may operate differently under executive control, indication is provided
in text. Basic assembler instructions consist of:

• Transfer instructions, to move data between memory storage and registers.

• Shilt instructions, to move the contents of a selected register to the right or left as
many bit positions as specified.

• Comparison instructions, to compare two operands either arithmetically or alpha
numerically and skip (as determined by the comparison) the next instruction.

• Jump instructions, to transfer control of the program to another area within memory
storage.

• Special sequence-modifyini instructions, to enable repetitions, conditional skips,
programmed interrupts, or use of programmed "electronic switches".

• Arithmetic instructions, to perform arithmetic operations in fixed point, floating point,
or binary coded decimal (BCD) mode.

• Loaical instructions, to operate upon and edit selected portions of a word.

In some cases.the classification may seem arbitrary, since an instruction may perform
more than one function. For example: the RANQ (Replace Y-Q) incorporates both an
arithmetic and a transfer function but, since its greatest utility lies in the arithmetic
function, it is listed only under arithmetic instructions.

The format of each instruction is followed by an example written in assembly language.
The executable instruction that is generated from the assembler mnemonics is shown at
the right.

When the label is used in the examples, it is written as LABEL. The assembler-assigned
computer address represented by LABEL will be 01234. This will maintain a consistent
reference in the examples. For actual coding, any valid label could be used.

4.2. DESIGNATOR INTERPRETATION

This subsection contains a detailed description of the k and j designators used in the
instructions and is to serve as a reference in the descriptions of the instructions which
follow:

4.2.1. Interpretation of k Designators

The first three subsections which follow deal with standard k designator interpreta
tion for read class, store class, and replace class instructions, in that order. The
fourth subsection presents a table showing the deviations from standard interpretation.

1

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

4
PAGl:t SECTIONS

4.2.1.1. Standard Read Class k Designators

k = 1 indicates that the value is obtained from the lower 15 bits of the memory
L location specified by the operand and is transferred into the lower 15 bits

of an arithmetic register. The remaining bits, i.e., the upper 15 bits, are
filled with zeros.

k = 2

u

k = 3

w

k = 5

LX

j

ZERO
FILL

)c

Memory

Arithmetic
Register

In the 17-bit B register operational mode, bits 15 and 16 of the value are lost.

indicates the value is obtained from the upper 15 bits of the memory
location specified by the operand and placed in the lower 15 bits of the
register.

Note: The transfer is to the lower 15 bits of the arithmetic register. The
upper 15 bits are zero filled.

~
ZERO
FILL

Memory

Arithmetic
Register

specifies that the entire 30 bits of the value at the memory location indicated
by the operand are to be transferred to an arithmetic register.

Memory

Arithmetic
Register

indicates transfer of the lower 15 bits of the value in the memory location
specified by the operand to the lower 15 bits of an arithmetic register. The
difference between L and LX is that with an LX specification, a sign ex
tension is obtained in the arithmetic register, i.e., the highest order bit
(the sign bit) of the 15-bit value is extended through the upper 15 bit posi
tions of the register.

2

UP-4133
Rev. 1 UNIVAC 49.C ASSEMBLER

4
PAGl:I SECTION&

~

SIGN
EXT. x

.x

)I Memory

Arithmetic
Register

NOTE: An X in the alphabetic notation for the k designator always indicates
sign extension.

k = 6

ux

k = 0

0

k = 4

x

indicates transfer of the upper 15 bits of the value at the specified memory
location to the lower 15 bits of an arithmetic register. With X present in the
alphabetic notation, there is a sign extension in the upper 15 bits of the
register, otherwise it is identical to a k of 2.

~
SIGN
EXT.

Memory

Arithmetic
Register

indicates transfer of the 15 bits of the operand portion of the instruction.
The 15 bits contained in the instruction word after B register modification
are transferred into the low order 15 bits of an arithmetic register and the
remainder of the register is zero filled. In this case, the operand is a datum
rather than the address of a datum.

b

T

ZERO
FILL

y

x
C1L.

Memory

Arithmetic
Register

indicates transfer of the 15 bits contained in the instructiQtt word after B
register modification into the low order 15 bits of an arithmetic register.
The upper 15 bits of the arithmetic register are filled with the sign bits, i.e.,
sign extension occurs.

3

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION I PAGEi

k = 7

A

b

L

SIGN

EXT.

y

I
t

Memory

Arithmetic
Register

indicates transfer of the entire 30 bits in the A register into the A or Q
register.

><

Arithmetic
Register

Arithmetic
Register

NOTE: For Load B Register instructions, only the low order 17 bits are
transferred.

4.2.1.2. Standard Store Class k Designators

A store class instruction involves transfer of a value from an operational register
to a register or memory address. Again there are eight possible k designations
for this class.

k : 1

L

k: 2

u

indicates that the lower 15 bits from an arithmetic register are to be stored as
the lower 15 bits of word at memory address y. The upper 15 bits at location
y are undisturbed.

Arithmetic
Register

.Memo•y
indicates storage of the lower 15 bits from an arithmetic register as the
upper 15 bits o(the word at memory address y. The lower 15 bits at location
y are undisturbed.

4

UP-4133
Rev. 1 4

UNIVAC 49-4 ASSEMBLER llECTION1 PAGl:I

k = 3

w

k = 5

CPL

k = 6

CPU

~
'X

Arithmetic
Register

Memory

indicates storage of the entire 30 bits of the register as the word at the
memory address y.

"X ~ 'lS<)(

")('.)(

~ XS(<
xx

y xx

Arithmetic
Register

Memory

indicates that the ones complement of the lower 15 bits of an arithmetic
register is to be stored as the lower 15 bits of the word at memory address
y; the upper 15 bits are not changed. It is identical to a k of 1 except that
the value is ones complemented.

"Y

tCP

Arithmetic
Register

Memory

i11dicates that the ones complement of the lower 15 bits of an arithmetic
register is to be stored as the upper 15 bits of the word at memory address
y; the lower 15 bits of the word are unchanged.

/cP

")(

Arithmetic
Register

Memory

5

UP-4133
Rev. 1 UNIVAC .CU ASSEMBLER SltCTIONt

4
PAGEi

k = 0

g
indicates that there is to be an entire word transfer from a register to the Q
register.

Register

Q
Register

NOTE: Contents of the 8 register (Bj) are stored in the lower 17 bits of Q;
the upper 13 bits of Q will be zero filled.

6

k = 4

A

indicates that there is to be an entire word transfer from a register into the A
register.

k = 7

CPW

)<)(:x
Register

A
Register

NOTE: Contents of the 8 register (Bj) are stored in the lower 17 bits of A;
the upper 13 bits of A will be zero filled.

indicates transfer of the ones complement of the entire 30 bits of a register
into the 30-bit word of the specified memory location.

x x

CP

Arithmetic
Register

Memory

4.2.1.3. Standard Replace Class k Designators

A replace class instruction involves transfer of a value from the address in
memory specified by the operand in the instruction to an arithmetic register where
the operation designated by the operator field takes place. The result then replaces
the initial contents of the memory location. The k designators of 0, 4, and 7 are in
valid for use with replace class instructions.

UP·4133
Rev. 1 UNIVAC 49.f ASSEMBLER

4 7
SltCTION1 PAGE•

k = 1

L

k :: 2

u

indicates transfer of the lower 15 bits of the word at the specified memory address
to the lower 15 bits of the arithmetic register where the operation takes place.
The result is then transferred from the lower 15 bits of the arithmetic register
into the lower 15 bits of the memory location, i.e., the original contents of the
memory location are destroyed and the value obtained as a result of the com·
putation replaces the original value in the memory address.

:JI:

Memory

Arithmetic
Register

Memory

indicates transfer of the upper 15 bits of the word at the specified memory
address into the lower 15 bits of the arithmetic register where computation
specified by the operation field of the instruction takes place. After compu·
ta~ion, the result then replaces the original 15 bits of the memory location.
The lower 15 bits of the memory location remain unchanged.

~

~
')(

Memory

Arithmetic
Register

Memory

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER S&:C: T IONI PAGEi

k :: 3

w

k :: 6

ux

k = 5

LX

indicates transfer of the entire 30 bits of the word in the specified memory
location into the entire 30 bits of the arithmetic register, where the oper
ation is performed. The entire 30 bits of the result will replace the previous
contents of the memory address.

)<

Memory

Arithmetic
Register

Memory

indicates transfer of the upper 15 bits of the word in the specified memory
address to the lower 15 bits of the arithmetic register, with sign extension.
When the logical or arithmetic operation is completed, the result, i.e., the
lower 15 bits of the arithmetic register, replaces the upper 15 bits of the
memory address.

.xx
xx
~

~
SIGN
EXT.

~

Memory

Arithmetic

Register

Memory

indicates transfer of the lower 15 bits of the word in the specified memory
address into the lower 15 bits of the arithmetic register, with sign extension,
where the operation takes place. The result replaces the lower 15 bits of the
memory location.

8

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

SIGN
EXT.

Arithmetic
Register

4.2.1.4. Exceptions to Standard k Designator Interpretation

91:C:TIONI

Table 4-1 lists deviations from standard k designator interpretation,

4

previously described, for particular instructions. These instructions are grouped
by functions with function code and mnemonic code reference.

4.2.2. Interpretation of j Designators

The most common use of the j portion of the instruction word is to specify a skip
condition. If the specified condition (such as a negative value or a value of zero)
in an arithmetic register is present, the next instruction will be skipped. This
permits the user to control program sequence based on the result or an operation.
For those instructions that do not have skip conditions, this portion of the in
struction word may have other uses.

In the majority of instructions, the normal j designator is used, i.e., the result in

PAGlh

a particular register, the A or Q, is tested and a transfer of control takes place if the
tested condition ex is ts,

The following figures list the interpretation of the j designator for various instruc
tions. Table 4-2 shows the "normal" j designator interpretation; Table 4-3,
deviations from the normal interpretation for test (compare) instructions; Table
4-4, deviations for jump instructions; Table 4-5, the repeat instructions; Table
4-6, arithmetic and logical instructions. Abbreviations and special symbols used
in these tables are explained in Appendix A.

9

UP-4133
Rev. 1 UNIVAC .CU ASSEMBLER ll:CTIONr

TYPE FUNCTION MNEMONIC " DEVIATION
CODE DESIGNATOR

T1ansltt 12 LB 0 17-1111,_81

l lS·llll lilL-111 •illl UIO fill
11 11111> end ol 8 1

J ; 4, S, Ii. 2 15-1>1.1 tilu-a1 ••Ill ze•• 1111
.. 1 11 h11t1 tnd GI BJ

J 11-1111 <r>o.1.-a1

4 15-4111i-8i w1111 ••an ••••••••

5 15-41il !y)L -111 w1111 111• eatt1111C111

6 IS-4111 lilu-111 w1111 lip eatHllOI

1 11-41111Ai0 .16-a1

0 1s-11111-e1
I 15-1111 <il -111

l ' 1. Z. 2 15-4111 <ilu ..e1
°' ! J IS·t11t !Ylo.14-81

4 15-41111-11,

5 IS-1>11 !ill -111

& 1s-1111 ti>u-111

1 15-1>11 IA lo.l4-al

I '0 HO OPUATIOM

u SQ 0 CPIQl-Q.

IS SA 4 CPIAl-A.

16 SB 0 1111- QL •111\ uro loll.

J 181-@IL
4 1111- AL '"Ill ie10 loll.

7 cP1111 - rv 1L ••Ill •• .., u1on11

''"" 01. 11$Q, I, 3, S St11ft cou•t 11 G lor.-oo.
02, RSA,

2,' 511111 counl •1 lflzo.u· OJ, ltSAQ,
05, LSQ, 0, 4 $11111 con I 11 i OS-00·
06. and LSA, and
07 LS.AQ 1 Sll1ft counl •• 1A1g5•00 .

Juep 60, JT, l. J, 5 Adll>n• or nu11n111uc11on 11 191L·

61, J, 2,' Adlllen of nut 1n111uc11on •• 19lu·

'"· ... SLJT, anti 0, 4 A11Sdte1• of ne1ot 1n1ttuchon r1 y.
n SLJ 1 Allllreu ol nu11n1lrutlio~ u IA'L.

s.ci.-d. 70 R 0 lloeal count •• 17-t>•I Y:.

1.4. llt 5 Ro .. t count •• 15-1>11 !YlL·

2 or I Repeat co..,t 11 ts-1111 1Y:lu

) Repeat count 11 l7·b1t lYIOO·l6
7 Rtput count II 17-t>•I Aoo.u.

12 JllO l, J, 5 Jum0 lo (i't_ IOt nul 1nU1uc11on.

2,' J111011 to lily lot neat 1111u11chon.

o. 4 J p ID i lot ftUI lftlllutllOft.

7 Ju10p lo <A lL lo• nu! 1n1ttucllon.

Lo11c.11 47 SANO 0 LP-Q

l LPL-fill.

2 LPL-filu·

3 LP -r,1.

' LP-A.

5 CPILP;_ - iyll.

6 CPILP'i.. -'Y'u·

Table 4- J, E KCepflons from Standard le Designotor /nterprefotion

4 10
PAGE&

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

4 11
Sl:CTIONI PAGEi

MACHINE
MNEMONIC CODE (OCT AL) RESULT

j DESIGNATOR
j DESIGNATOR

0 EXECUTE NI

I SKIP SKIP NI

2 QPOS SKIP NI IF (Q) POS.

3 QNEG SKIP NI IF (QI NEG.

4 AZ ERO SKIP NI IF (A)= 0

5 ANOT SKIP NI IF (Alt 0

6 APOS SKIP NI IF (A) POS.

7 AMEG SKIP Ml IF (Al NEG.

To&I• 4-2. Normo/ J D•signotor /nr•rprerorlon

MACHINE TA (04) TQ (O.C) TR (04)
CODE (OCTAL)

j MNEMONIC RESULT jMNEMONIC RESULT jMNEMONIC RESULT j DESIGNATOR

0 xx xx xx xx xx xx

1 SKIP SKIP NI SKIP SKIP NI SKIP SKIP NI

2 x x YLESS IF Y5 Q x x
SKIP NI

3 x x YMORE IF Y> Q
SKIP NI

x x

4 x x x x YIN IF Q~Y>A
SKIP NI

s x x x x YOUT IFQ<Y,SA
SKIP NI

6 YLESS
IF Y~A x x x x SKIP NI

7 YMORE
IF Y>A x x x x SKIP NI

NOTB: XX lndicetH Ill•••• (ln••lldJ v••·
JC lndlc•I•• non••l•••nc• (nor ueed); cave•• lncon•cl, bur ••lid eltllr

Ta&I• 4-3. S~lal j Designator lnt•rprerotion lor THr (Compor•J /nsrructions

UP-4133
Rev. 1

MACHINE
CODE (OCT AL)
j DESIGNATOR

0

1

2

3

4

5

6

7

4 12
UNIVAC 49' ASSEMBLER SECTIONI PAGE•

J(61)/SLJ(65) JT(60) SLJT(6")

jMNEMONIC RESULT jMNEMONIC RESULT jMNEMONIC RESULT

1; ALWAYS RIL RELEASE SIL SET
OR JUMP INTERRUPT INTERRUPT

UNDEFINED LOCKOUT LOCKOUT

KEY 1 JUMP IF RILJP RELEASE SILJP SET
KEY 1 SET INTERRUPT INTERRUPT

LOCKOUT LOCKOUT
AND JUMP AND JUMP

KEY 2 JUMP IF QPOS JUMP IF QPOS JUMP IF
KEY 2 SET !Q) PCS. (Q) POS.

KEY3 JUMP IF QNEG JUMP IF QNEG JUMP IF
KEY3SET !Ql NEG. IQ) NEG

STOP ALWAYS AZ ERO JUMP IF AZ ERO JUMP IF
STOP (Al = 0 IA) o 0

STOPS STOP IF ANOT JUMP IF ANOT JUMP IF
KEY 5 SET !A)~ 0 !Al; 0

STOP& STOP IF APOS JUMP IF APOS JUMP IF
KEV& tAl POS. (Al POS.

STOP7 STOP IF ANEG JUMP IF ANEG JUMP IF
KEY 7 SET !A) NEG. (A) NEG.

Tabltt 4-4. Special j Designator lnu:rpretation for Jump /nsrrucrions

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER SECTIONS

MACHINE R (70)
CODE (OCT AL) .

MNEMONIC RESULT j DESIGNATOR J

0 NE:y:::y

1 ADV NE:y::Y+ 1

2 BACK NE:Y.,y-1

3• ADDB NE:y:::yt(Bbl

4 R NE:y=Y

5 ADVR NE:y::'Ytl

6 BACKRNE NE:y:::j-1

7• ADDBR NE:y=i+(Bb)

NOT£S:

1. For th• R (7(J) ln•tructlon I de•l•n• IOU 0, I, 2 •nd 3 ••• ••clual•• to

tf!ad •nd/or •lore cla•• ln•lrucllon• and 4, S, II •nd 7 ••clu•I•• to

tepl•r:• cl••• lnatrucf/on•, In '°P"•' ol raplace cla•• ln•lructlon•, the
reaull la atorod el y (ol NB) plua (B6J.

2. NE rel•r• to •••cul/on ol n••I repelllton In term• of Pr•'lflou• Y•

For Mth •••cutlon: y=:y+M11(B,.J•

Tobie 4-S. Special j Oesignotor lnterpretorion for Repe'1f lnsrrucrions

4 13
PAGl:t

UP-4133
Rev. 1 UNIVAC '" ASSEMBLER

4 14
SECTION! PA.Gita

MACHINE AQ(26)/ ANQ(27) LLP(40)/R LP(44) 0(23)
CODE (OCTAL)
j DESIGNATOR MNEMONIC RESULT MNEMONIC RESULT MNEMONIC RESULT

0 EXECUTE NI EXECUTE NI EXECUTE NI

1 SKIP SKIP NI SKIP SKIP NI SKIP SKIP NI

2 APOS SKIP NI EVEN SKIP NI NOOF SKIP NI
IF (Al IF (Al IF NO
POS. EVEN NO. OVERFLOW

OF 1 BITS

3 ANEG SKIP NI ODO SKIP NI OF SKIP NI
IF (Al IF (A) IF OVERFLOW
NEG. ODO NO.

OF I BITS

.. QZERO SKIP NI AZ ERO SKIP NI AZ ERO SKIP NI IF
IF IF A~O

(Ql=O IAl=O

5 QNOT SKIP NI ANOT SKIP NI ANOT SKIP NI IF
IF IF !Alt 0
!QltO (A);! 0

6 QPOS SKIP NI APOS SKIP NI APOS SKIP NI IF
IF IF (A) (A) POS.
!Ql POS. POS.

7 QNEG SKIP NI ANEG SKIP NI ANEG SKIP NI IF
IF IQl IF IA) !A) NEG.
NEG. NEG.

Table 4-6. Special j Designator /n1.,rpre1011on lor Arirnme11c and Logical lnstruclions

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

4
SECTIONS PAGl:1

4.3. DATA TRANSFER INSTRUCTIONS

Transfer instructions are used to move data within the central processor: core memory
locations to registers, registers to core memory locations, registers to registers. All
transfers are nondestructive in that the original source of data remains unchanged except
in replace class instructions. Transfers may consist of 15 bits, 30 bits, or in character
packing and unpacking, 6 bits, as detenn ined by the k designator or the instruction
itself. Transfers may consist of the original bits or their ones complements, as specified.

4.3.1. Load Q (10) LQ

Transfer the operand, y, as determined by k, to the Q register.

Operation k Space y b j

LQ NORMAL

Examples:

LQ,W LABEL
LQ,A

'b READ CLASS Note NORMAL

10 0 3 0 01234
10 0 7 0 00000

NOTE: If the k designator is 7, y is effectively zero and no B register modification is
possible; Q and A registers will be the same after instruction execution.

4.3.2. Lood >. (11) LA

Transfet the operand , y , as determined by k, to tbe A register.

Operation

LA

Examples:

k Space

NORMAL 'b

2,82 LA,O
LA,U
LA,A

LABEL t 3, 82

y b

READ CLASS Note

j

NORMAL

11 0 0 2 00002
11 0 2 2 01237
11 0 7 0 00000

NOTE: If the k designator is 7, y is effectively zero and (Bb) has no ef(ect; the A
register remains unchanged.

15

UP-4133
Rev. 1 SECTION!

4
UNIVAC .(94 ASSEMBLER PAGEi

4.3.3. Load B j (12) LB

Transfer the operand, y, to the active (executive or worker) B register (1-7) specified
by the j designator.

Operation

LB

Examples:

k Space

See Table 4-1 1;

LB,W
LB,L

87,00005
6,LABEL+l,82

j

Bj (Note 1)

y

READ CLASS

12 7 3 0 00005
12 6 1 2 01235

b

Bb

NOTE l: The j designator specifies the selected B register; consequently, a skip
condition cannot be programmed in this instruction. The j of the Bj notation
may be 0, 1,2,3,4,5,6, or 7, to specify the B register of the operation. With
a j designator of 0, no operation is performed; the program advances to the NI.

NOTE 2: Transfers of data into and out of 17-bit B registers usually are full words (k
of 0, 3, or 7), but can be half words (k of 1, 2, 4, 5, or 6) if desired. The
lower 17-bit value is stored in the lower 17 bits of a 30-bit location. When
ha lf·words a re transferred into a B register, the upper two bits of a 17-bit
B register are O's. Half-word transfers out of a 17-bit B register result in the
loss of the upper two bits.

NOTE 3: This instruction may not be used immediately following an Enter IFR (7761)
or Enter RIR (7766) instruction, each of which is used under executive control.

4.3.4. Clear Bj (12) ZB

The contents of a specified B register are cleared to zero. The particular B register
to be cleared is specified by the j designator. This is a variation of the Load Bj
instruction. where Bb is BO and y is zero.

Operation k

ZB

Example:

none

LB, 0
ZB

1i

83

83

j

Bj

y

none

12 3 0 0 00000

12 3 0 0 00000

b

none

16

UP-4133
Rev. l

4
UNIVAC 494 ASSEMBLER Sli.C: TIONI PAlllh

4.3.5. No Operation (12) NOP

No operation is performed and the program advances to the next instruction. This is
actually a variation of the Load Bj instruction where Bj is BO.

Operation k

NOP

Example:

none

LB
NOP

15

BO

j

none

y b

optional none

12 0 0 0 00000
12 0 0 0 00000

See 4.10.2.l for examples using y portion.

4.3.6. Double Precision Load (7721) DPL

This operation loads the AQ register.

Operation y, b

DPL I> base address

The double length register AQ will be loaded. The contents of y are placed in A and
the contents ofy+l are placed in Q.

Examples:

DPL
DPL

4.3.7. Store Q (1') SQ

LABEL

LABEL, B3

77 21 0 01234

77 21 3 01234

Store the contents of the Q register in the k designated portion of the storage location

specified by y.

Operation

SQ

Examples:

k Space

See Table 4-1 ~

SQ,W
SQ,l
SQ,l
SQ,1

LABEL
01234,3,2
LABEL,83,QPOS
LABEL,83,2

y b

STORE CLASS Bb

14 0 3 0 01234
14 2 1 3 01234
14 2 1 3 01234
14 2 1 3 01234

j

NORMAL

17

UP-4133
Rev. 1 PAGEi

4
UNIVAC -'94 ASSEMBLER 1£CTIONI

4.3.8. Clear Q (16) ZQ

The contents of the Q register will be cleared to zero by this instruction. This is a
variation of the Store Bj instruction where Bi is BO and the transfer is to the Q register
because the k designator is 0 (see Table 4-2).

Operation k

ZQ

Example:

none

SB,Q
ZQ

j

~ none

BO

4.3.9. Negate Q ar Complement Q (1.C) HQ

y

none

b

none

16 0 0 0 00000
16 0 0 0 00000

The contents of the Q register will be ones complemented as a result of this operation
and stored in a memory location. This is a variation of the Store Q instruction where k
is 0.

Operation

NQ

Example:

SQ
NQ

k

none

4.3.10. Store A (15) SA

y

READ ?;
CLASS

TAG
TAG

b

Bb

j

NORMAL

14 0 0 0 01234
14 0 0 0 01234

Store the contents of the A register in the storage location specified by y, perk.

Operation

SA

Examples:

k

See Table 4-1

SA,2
SA,W

LABEL
LABEL·2,3

Space

t

y b

STORE CLASS Bb

15 0 2 0 01234
15 0 3 3 01232

j

NORMAL

18

UP-4133
Rev. 1 4

UNIVAC 49' ASSEMBLER SECTIONt PA Gilt

4.3.11. Negat. A or Complement A (15) MA

The contents of the A register are ones complemented as a result of this operation and
stored in a memory location. This is a variation of the Store A instruction where the
k designator is 4.

Operation

NA

Example:

SA,A
NA

k

none t;

y

STORE
CLASS

TAG
TAG

b

Bb

j

none

15 0 4 0 01234
15 0 4 0 01234

4.3.12. Clear A (21) ZA

The contents of the A register will be cleared to zero by this operation. This is a
variation of the Subtract A instruction where the A register is subtracted from itself
due to a k designator of 7 (see 4.8.3.1).

Operation

ZA

Example:

AN,A
ZA

k

none 'b

y b

none none

j

NORMAL

21 0 7 0 00000
21 0 7 0 00000

4.3.13. Store Bj (16) SB

Store the contents of a selected B register, indicated by the j designator, in the k
designator-modified portion of the storage location specified by y.

Operation k Space j y b

SB

Examples:

Note 2 ~

SB,1
SB,1
SB,1

87,LABEL
87,LABEL-3,82
80,LABEL

Bj (Note 1) STORE CLASS

16 7 l 0 01234
16 7 1 2 01231
16 0 l 0 01234

(L(LABEL) is cleared to zero by the preceding instruction.)

SB,CPL BO.LABEL 16 0 5 0 01234

(L(LABEL) is set to all ones by the preceding instruction.)

Bb

19

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SEC:TIONt

NOTE I: The j designator specifies the selected B register; consequently, a skip
condition cannot be programmed in this inslTuction.

PAGEi

The j of the Bj notation may be 0, l, 2, 3, 4, 5, 6, or 7 to specify the B register
of the operation. With a j designator of 0, all zeros are stored at the y specified;
program advances to NI.

NOTE 2: It is necessary to use a full word (30-bit) transfer k of 0, 3, 4, or 7 in order to
store the contents of an active 17-bit index register.

4.3.14. Clear Y (16) SZ

The k determined portion of a storage location specified by V is cleared to zero. This
is a variation of the Store Bj instruction where Bj is BO.

Operation

sz

Example:

k

See
4.3.13

SB,W
sz.w

1i

j

none

BO.TAG
TAG

4.3.15. Double Precision Store (7725) DPS

y

STORE
CLASS

16 0 3 0 01234
16 0 3 0 01234

b

Bb

The contents of the AQ register will be stored iny and y•l; (A) in y and (Q) in
y ... l.

Examples:

Operation

DPS

DPS
DPS

15

LABEL
LABEL,84

y, b

base address

77 25 0 01234
77 25 4 01234

20

UP-4133
Rev. 1 UNIVAC 49' ASSEMBLER SltCTION1

4

4 .3.16. Character Pack Lower (7731) CPL

This operation packs five 6-bit characters into the A register.

Operation y, b

CPL 15 base address

Initiate a transfer to A of five 6-bit characters located in bits 5-0 of the addresses
specified by y through y+4. <Y>s-o will enter A29-24; (Y+l)5.o will enter A23-18i
etc.

Examples:

CPL
CPU

LABEL
LABEL, B2

4.3.17. Character Pack Upper (7732) CPU

77 31 0 01234
77 31 2 01234

This operation packs five 6-bit characters into the A register.

Operation y, b

CPU 15 base address

Initiate a transfer to A of five 6-bit characters located in bits 20-15 of the addresses
specified by y through y+4. CY) 20_15 will enter A29-24; (y+l) 20•15 will enter
A23-18i etc.

Example:

CPU
CPU

LABEL
LABEL,84

4.3.18. Character Unpack Lower (7735) CUL

77 32 0 01234
77 32 4 01234

This operation unpacks the A register intoy through yt4.

Operation y,b

CUL 'b base address

Five 6-bit characters are taken from the A register and distributed into bits 00
through 05 of the five locations, y through y+4. A24.29 is transferred to (y)00_05;
A1g.23 to (Y+t)00_05; etc.

Examples:

CUL
CUL

LABEL
LABEL, 83

77 35 0 01234
77 35 3 01234

21

UP-4133
Rev. 1 4

UNIVAC 494 ASSEMBLER PAGE& SECTION&

4.3.19. Character Unpack Upp•r (7736) CUU

This instruction unpacks the A register into the upper half of addresses y through
y+4.

Operation y,b

cuu 1f base address

Five 6-bit characters are taken from the A register and distributed successively
into bits 15 through 20 of the five locations y through y+4. A24 _29 is transferred

to <Y>o.s• A1s-23 to cY+l>o-s •... , Ao-s to <Y'•4>o-s

Examples:

cuu
cuu

LABEL
LABEL, es

4.3.20. Loacl B-Worhr (7771) LBW

77 36 0 01234
77 36 5 01234

This instruction transfers the lower 15 (or 17) bits from seven successive memory
locations to the seven worker B registers. The first transfer is from the base
address to Bl; the second, from the next address to 82, etc. Transfers to Bl, 82,
and 83 are 15 bits; to 84, BS, 86, and 87, 17 bits. The initial contents of the B
registers are available for base address modification.

Operation y, b

LBW ti base address

Example:

LBW LABEL, BO 77 71 0 01234

4.3.21. Store I-Worker (7775) SBW

This instruction transfers 15 (or 17) bits from the seven worker B registers to
seven successive memory locations. The first transfer is from Bl to the base
address; the second, from 82 to the next address, etc. Transfers from Bl, 82,
and 83 are 15 bits; from 84, BS, 86, and 87, 17 bits. Transfers are made to the
lower 15 (or 17) bits of the memory word with the upper 15 (or 13) bits zero filled.
The B registers are unchanged and are available for base address modification.

Operation y,b

sew "' base address

Example:

sew LABEL,82 77 75 2 01234

22

UP-4133
Rev. 1

4
UNIVAC 49" ASSEMBLER •1tCTION1 P~Gl:I

4.4. SHIFT INSTRUCTIONS

Shift instructions move the contents of a selected register to the right or left as many
positions as indicated. In a right shift, all bits shifted out at the right are lost. In the
basic right shift, vacated bit positions are sign extensions; in the logical right shift,
zero filled. All left shifts are circular, i.e .. bits shifted out at the left are returned
at the right. Except for the Scale Factor Shift (SFS) instruction, the number of positions
to be shifted (the shift count) is determined by the number formed by the lowest order
six bits of the operand specified under y. A shift count greater than 59 to (73g) will
cause an incorrect shift. In all logical right shifts the first subfield (if used) of the
operand must be a number; the second subfield (if used), a B register.

The k designators operate as follows for all shift instructions:

• k of 1,3, or 5 - the shift count is the low order six bits contained in the lower
half of the word at address l·

• k of 2 or 6 - the shift count is the low order six bits contained in the upper
half of the word at address 1'·

• k of 0 or 4 - the shift count is the low order six bits contained in the instruction
word after B register modification - the number}.

• k of 7 - the shift count is the low order six bits contained in the A register.

4.4.1. Right Shift Q (01) RSQ

Shift contents of the Q register to the right the number of positions specified by the
shift count with sign extension. If the shift count is equal to 2910 or ranges be
tween 2910 and 5910 all bit positions of the Q register will be filled with the orig
inal value of the sign position.

Operation k Space y b j

See
RSQ Figure 4-1 ~ READ CLASS Bb NORMAL

Examples:

RSQ,U LABEL 01 0 1 0 01234
Initial (Q) =100100101111111011100001110101
Shift Count =8
Final (Q) =111111111001001011111110111000

RSQ 290 01 0 0 0 00035
Initial (Q) =011111111111111111111111111111
Shift Count =2910
Final (Q) =000000000000000000000000000000

23

UP-4133
Rev. 1 UNIVAC 49' ASSEMBLER SECTION!

4
PAGEi

4.4.2. Right Shift A (02) RSA

Shift contents of A register to the right the number of positions specified by the shift
count, with sign extension. If the shift count is between 2910 and 5910 all bit
positions of the A register will be filled with the original sign.

Operation k Space y b j

RSA See Table 4-1 ~ READ CLASS Bb NORMAL

Examples:

RSA,L LABEL 02 0 1 0 01234

4.4.3. Right Shift AQ (03) RSAQ

Shift contents of the AQ register to the right the number of positions specified by the
shift count, with sign extension. Both A and Q may be considered as a single combined
register, AQ, containing 60 bit positions.

Bits that are shifted off the right end of the Q register are lost; bits that are shifted
off the right end of the A register replace the shifted high order positions of the Q
register. The sign value (bit position 29 of the A register) will be extended through
the shifted high order positions of the A register and into the Q register. If the shift
count is between 2910 and 5910 all bit positions of the A register will contain the
initial sign value. If the shift count is 5910 all bit positions of both the A and Q
registers will contain the initial sign value of the A register.

Operation k Space y b j

RSAQ See Table 4-1 "b READ CLASS Bb NORMAL

Examples:

RSAQ 12D 03 0 0 0 00014

Initial contents of AQ:

24

(A)
11101001111111111011010001100

(Q)
001110101101010010100011001001

Final contents of AQ:

(A)

111111111111111010011111111111

RSAQ,2 00035.82

(Q)

011010001100001110101101010010

03 0 2 2 00035

UP-4133
Rev. 1 SIECTION1

4
UNIVAC 49.f ASSEMBLER

The shift count will be obtained from the sum of the value in the upper half
of word 00035 modified by 82. A shift count 5910 ls assumed.

Initial contents of AQ:
(A)

101111000011101010000000000001
Final contents of AQ:

(A)
111111111111111111111111111111

4.4.4. Left Shift Q (05) LSQ

(Q)
111111111100000101010101010101

(Q)

111111111111111111111111111111

PAGl:I

Shift contents of the Q register to the left, circularly, the number of positions specified
by the shift count. If the shift count is 30l0• the Q register will be restored to its
initial condition.

Operation k Space y b j

LSQ See Table 4-1 t READ CLASS Bb NORMAL

Examples:

LSQ,L LABEL+l OS 0 1 0 01235

Initial (Q) = 001110101101010010100011001001

Shift Count= 1510

Final (Q) = 010100011001001001110101101010

LSQ 300 OS 0 0 0 00036

Initial (Q) = 010111111100000110000010011100

Shift Count= 3010

Final (Q) = 010111111100000110000010011100

4.4.5. Left Shift A (06) LSA

Shift contents of the A register to the left, circularly, the number of positions specified
by the shift count. If the shift count is 3010• the A register will be restored to its
initial condition.

Operation k Space y b j

LSA See Table 4-1 15 READ CLASS Bb NORMAL

25

UP-4133
Rev. 1 UMIV4C '"ASSEMBLER

4
SllCTION1 PAGlt1

4.4.6. Left Shift 4Q (07) LS4Q

Shift contents of the AQ register to the left, circularly, the number of positions speci
fied by the shift count. For this instruction, the A and Q registers function as a single
60-bit register, AQ, in which high order bit positions are contained in the A register.
The bit positions shifted off the left end of the A register replace the bit positions
vacated from the right end of the Q register. Bit positions shifted off the left end of the
Q register replace the bit positions vacated from the right end of the A register. If the
shift count is 3010 the contents of the A register and the Q register will be inter
changed.

Operation k Space y b j

LSAQ See Table 4-1 tJ READ CLASS Bb NORMAL

Examples:

LSAQ 60

Initial (AQ):

(A)

111010011111111111011010001100

Final (AQ):
(A)

011111111111011010001100001110

LSAQ 300,,ANEG

Initial (AQ):

(A)
101111101010001100010011101101

Final (AQ):
(A)

000000011111111010101010011001

07 0 0 0 00006

(Q)

001110101101010010100011001001

(Q)
101101010010100011001001111010

07 7 0 0 00036

(Q)
000000011111111010101010011001

(Q)
101111101010001100010011101101

4.4.7. Logical Right Shift Q (7751) LRSQ

This operation shifts the Q register right by the shift count with zero fill.

Operation y,b

LRSQ t; Number

The shift count N, must be a number and may be modified by a B register. It must
not be an address.

26

UP-4133
Rev. 1 UNIVAC .. , .. ASSEMBLER

Examples:

LRSQ
LRSQ
LRSQ

110
0, Bl
6, 84

4.4.8. Logical Right Shift A (7755) LRSA

SltCTIONt

77 51 0 00013
77 51 1 00000
77 51 4 00006

This operation shifts the A register right by the shift count with zero fill.

Operation y. b

LRSA i; Number

Example:

LRSA 20 77 55 0 00020

4.4.9. Logical Right Shift AQ (7756) LRSAQ

..

This operation shifts the AQ register right by the shift count with zero fill.

Operation y, b

LRSAQ ts Number

Example:

LRSAQ 20 77 56 0 00020

4.4.10. Scale Factor Shift (7730) SFS

~····

This instruction shifts the contents of the A register to the left until the two highest
order bits are unlike and records the number of shifts required in the Q register as
the six lowest order bits. All bits shifted out at the left are returned. in turn, at the
right in a circular shift. If all bits in the A register are alike, a count of 2810 will
be recorded in the Q register, the A register will remain unchanged, and the program
will proceed to the next instruction. This instruction is used to "normalize" the
fixed point part (mantissa) of a number in the exponential (floating point) word
format (Figure 2-4), and is used in floating point arithmetic (see 4.8.6).

Operation y, b

SFS 11 none

Example:

SFS 77 30 0 00000

27

UP-4133
Rev. 1

28
UNIV AC '94 ASSEMBLER IECTION1 .. AGIE:

4.5. TEST (COMPARISON) INSTRUCTIONS

The following test (comparison) instructions extend the ability to perform comparisons
over that already available in most instructions by use of the j designator. These compari
sons may be either alphanumeric or arithmetic. In an arithmetic comparison, the sign bit
is recognized as such, so that a negative number is always treated as less than a posi
tive number, thereby using the following scale of values: any negative number < -0 < +O <
any positive number. In an alphanumeric comparison, no sign bit is recognized as such;
the rule is that a 1 bit is greater than a 0 bit. Therefore, as an example, in an alpha
numeric comparison, -0 > +O.

4.5.1. Test A (04) TA

Compare the signed value of the operand with the signed (A) and skip the next instruc·
lion as determined by the j designator. This comparison can be used on fixed point or
floating point binary operands but may not be used for operands in the zoned BCD mode.

Operation

TA

Example:

TA,W
TA,L

4.5.2. Test Q (04) TQ

k Space

NORMAL t

LABEL,.YMORE
LABEL-2,83,6

y b

READ CLASS Bb

04 7 3 0 01234
04 6 1 3 01232

j

See Table 4-3

Compare the signed value of the operand with the signed (Q) and skip the next instruc
tion as determined by the j designator. This comparison can be used on fixed point or
floating point binary operands but may not be used for operands in the zoned BCD mode.

Operation

TQ

Examples:

TQ,W
TQ,1

4.5.3. Test RHg• (04) TR

k Space

NORMAL

LABEL,.YMORE
01234,3,YLESS

t

y b j

READ CLASS Bb See Table 4-3

04 3 3 0 01234
04 2 1 3 01234

Compare the signed value of the operand with the signed (A) and (Q) and skip the
next instruction as determined by the j designator. It is a range test; the operand
must be within a specified range in order to skip NI. This comparison can be used
on fixed point or floating point binary operands but may not be used for operands in
the zorted BCD mode.

UP-4133
Rev. 1 4

SltCTION1 UNIVAC 494 ASSEMBLER

Operation k Space y b j

TR NORMAL 11 READ CLASS Bb See Table 4-3

Example:

TR,W
TR,l

LABEL,, YIN
LABEL-2,83,5

4.5.4. Test Logical Product (43) TLP

04 4 3 0 01234
04 5 1 3 01232

Compare the contents of the A register to a masked operand. The comparison is made
by forming the logical product (LP) of the Q register and the operand specified as y.
(See "Logical Product" under LOGICAL INSTRUCTIONS.) The logical product is
subtracted from the contents of the A register to form a difference. Skip the NI if
conditions denoted by the j designator are met. The logical product is then added
back to the A register. There is no change in the contents of any of the operational
registers as a result of this instruction.

Operation k Space y b j

TLP NORMAL i READ CLASS Bb Note

Example:

TLP,W LABEL,.AZERO 43 4 3 0 01234

Operand contents = 100100001100111000101101110111
Contents of Q = 000000000000000000000000111111

LP CY and Q) = 000000000000000000000000110111
Contents of A = 000000000000000000000000111111
A-LP(Y and Q) = 000000000000000000000000001000

The jump condition is not present, i.e., A is not zero. The result of the logical
operation is then added back to A to return the register to the initial condition.
Note that the difference is stored in the A register for j sensing before the A register
is returned to its original state.

NOTE: The normal j designator is interpreted as follows:

j = 0: No skip.
j = 1: Skip.
j = 2: Skip if sign in (Q) is positive.
j = 3: Skip if sign in (Q) is negative.
j = 4: Skip if difference is + 0.
j = S: Skip if difference is not + O.
j = 6: Skip if difference has positive sign.
j = 7: Skip if difference has negative sign.

UP-4133
Rev. l 4

UNIV AC '94 ASSEMBLER SltCTIONt

4.5.5 Doultle Precision Test Equal (7723) DPTE

Compare the signed contents of the AQ register with the signed contents of the
designated double word memory location. (The sign and most significant bits are

PAOIE1

in the A register and in the first word of the double word location.) If the numbers
are equal, the next instruction will be skipped; if unequal, the next instruction will
be performed. The AQ register remains unchanged.

Examples!

DPTE
DPTE

Operation

DPTE

LABEL
LABEL,87

'
y, b

base address

77 23 0 01234
77 23 7 01234

4.5.6. D .. lale Precision THt Leu (7727) DPTL

This instruction will cause a skip if the signed number in the AQ register is leas
than the signed number in the designated double word memory location. The AQ
resister remains unchanged.

Examples:

DPTL
DPTL

Operation

DPTL

LABEL
LABEL, B7

'
y,b

base address

77 27 0 01234
77 27 7 01234

4.5.7. Masked Alphanuaaeric THt Equal (7753) MATE

This instruction causes a skip if the masked A register is equal to the masked
operand, where tbe Q register is the mask, in an alphanumeric comparison. (The
masked A register is the logical product of A and Q. The masked operand is the
logical product of y and Q.)

Ezample:

MATE
MATE

Operation

MATE

LABEL
LABEL, 87

y, b

t. address

77 53 0 01234
77 53 7 01234

30

UP-4133
Rev. 1 4

UNIVAC 494 ASSl!MBLER SIECTIONI

4.5.8. Masked Alphanumerlc THt LeH (7757) MATL

This instruction causes a skip if, in an alphanumeric comparison, the masked A
register is less than the masked operand.

Example:

MATL
MATL

4.6. JUMP INSTRUCTIONS

Operation

MATL

LABEL
LABEL,86

y,b

15 address

77 57 0 01234
77 57 6 01234

Instructions are normally executed in sequential order. Jump instructions are used
to depart from this sequential order and may also specify a point in the program at
which the sequential order will again be resumed (return jump). The jump may be un•
conditional or it may be based on various conditions. Manual jumps (depending on
manual key settings) should be used with caution for programs under control of the
Executive. Table 4-1 describes interpretation of the k designator for jump in
structions; Table 4-4, the j designator.

A read class operand may be specified with the following reatrictiona:

• If the A register is specified, only the 15 low order bit positions will be meanin1ful.

• If a B register is specified, no sign extension is permitted.

• If an actual computer address is used, it cannot exceed 77776 or the decimal
equivalent.

4.6.1. Jump (61) J

A jump instruction may be unconditional or manual (dependin& upon a manual key
setting). If the jump condition is not satisfied, control proceeds to the next sequential
instruction.

Operation

J

Examples:

k Space

See Table 4-1 'b

J, u
J, u

LABEL,,KEY 1
LABEL

y b

See 4.6. Bb

61 1 2 0 01234
61 0 2 0 01234

j

See Table 4-4

31

UP-4133
Rev. 1

- -----,- -

4
UNIVAC 494 ASSEMBLER SllCTION1

4.6.2. jump on Test (60) JT

This jump may be conditioned by an arithmetic test of the A or Q registers
or it may condition the state of interrupt lockout.

Operation k Space y b

PAGll1

j

JT See Table 4-1 b See 4.6 Bb See Table 4-4

Examples:

JT,L

JT

LABEL.,Q POS

LABEL,,ANOT

4.6.3. Store Location and Jump (65) SLJ

60 2 1 0 01234

60 5 0 0 01234

This return jump may be unconditional or manual (depending on a manual key setting).
If an unconditional jump is specified, or if the jump condition exists, a jump is
made to the address specified in y incremented by l, i.e., y + 1. The address of
the instruction immediately following this jump is stored in the lower portion of
the storage location at the address specified in y. If the jump condition is not
satisfied, the instruction immediately following the return jump instruction is
executed.

Operation

SLJ

Examples:

SLJ
SLJ

k Space

See Table 4-1

LABEL,,KEY
LABEL

1s

y

See 4.6

65 3 0 0 01234
65 0 0 0 01234

b j

Bb See Table 4-4

If the SLJ instruction shown above is located at address 23344, location 01234
will appear as follows:

LABEL 00000 23345 CY>
. ly + 1)

A jump instruction could terminate the sequence of instructions and bring the
program back to the instruction following the SLJ instruction as follows:

J, L LABEL

4.6.4. Store Locatian and Jump Test (6•) SLJT

This instruction is arithmetic; i.e., it depends upon the contents of an arithmetic
register. If the jump condition exists, a jump is made to the address specified by
y incremented by l, i.e., y + 1. The address of the instruction immediately following
is stored in the lower portion of the storage location at the address y. If the jump
condition is not satisfied, the next sequential instruction is executed.

32

UP-4133
Rev. 1 4

UNIVAC 494 ASSEMBLER SIECTION1

Operation k Space y b j

SLJT See Table 4-1 'b See 4.6 Bb See Table 4-4

Example:

SLJT LABEL,.ANEG 64 7 0 0 01234

4.6.5, Execute Remote (7737) ER

Jump to the instruction at location y. If that instruction does not skip or jump,
return to the instruction following the Execute Remote after its execution.

Examples:

ER
ER

Operation

ER

LABEL
LABEL, 86

Space y, b

'b remote address

77 37 0 01234
77 37 6 01234

4.6.6. Enter Bx ond Jump (7740-7747) LBPJ

.. AOl£1

Load the B register specified by the x designator (where x = BO through B7) with the
current setting of the P register (of NI) and jump to y. If x = 80, an unconditional
jump occurs. The x designator specifies the B register to be loaded; the b designator,
the B register used for address modification.

Operation Space x, y, b

Examples:

LBPJ
LBPJ

LBPJ

Bl, LABEL
84, LABEL, 82

4.7. SEQUENCE.-MODIFYING INSTRUCTIONS

'b Bb address

77 41 0 01234
77 44 2 01234

These instructions permit modification of the normal sequential execution of instruc
tions and include:

• Repeat instruction - enabling repetition of an instruction.

• Test B and/or Increment instruction - enabling the contents of a specified B
register to condition a skip.

• Jump on B and Decrement instruction - enabling the contents of a specified B
register to condition a jump to a specified location.

• Test and Set instruction - enabling generation of an interrupt and a jump to
address 00030 as conditioned by bit 14 of the selected operand.

• Executive Return instruction - enabling generation of an interrupt and a jump
to address 00007.

33

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SIECTIONI PAGE•

4.7.1. Repeat (70) R

This instruction causes the instruction immediately following it to be repeated
the number of times specified by a 15-bit or 17-bit value in they operand. The
value may be equal to or greater than zero but cannot be greater than 131,07110·
The value determined by y is placed in B7. If the value is zero the instruction
immediately following the Repeat instruction is skipped. Uthe value is not zero,
the repeat mode which is determined by the j portion of the instruction is initiated.
Any modifications to the initial instruction are performed in transient registers;
the instruction as it is stored in the computer is not altered. If a conditional skip
is performed over a storage location containing a Repeat instruction, the next in
struction (following the Repeat instruction) will be executed once. If the repeated
instruction specifies a skip condition with its j designator, this designator may
cause termination of the repeat mode (a skip of the Repeat instruction) when the
skip condition is satisfied, even though the repeat count is not satisfied.

Operation k Space y b j

R See Table 4-1 ~
See

Bb See Table 4-5 Table 4-1

Example:

The following example shows bow the Repeat instruction can be use~ to clear
3010 successive locations in storage.

ZA
R
SA,W

300.,ADV
BUFFER

4. 7.2. THt lj and/or Increment (71) TBI

21 0 7 0 00000
70 1 0 0 00036
15 0 0 3 BUFFER

This operation tests the contents of a specified 8 register. If the value in the B
register is equal to the value in a memory location specified by y, the 8 register
is cleared and the next operation ls skipped. U the value in the 8 register is not
equal to the operand location, the value in the B register is incremented by 1 and the
normal sequence of operations continues.

Operation k Space j y b

TBI See Table 4-1 1; Bj Note Bb

j may be 0, l, 2, 3, 4, 5, 6, or 7 to specify the B register being tested.

NOTE: A read class operand. The form TBl,W refers to the low order 15 bits of
the operand location.

34

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SltC:TION1

Examples:

TBI, L B2,LABEL+3 71 2 1 0 01237
TBI a2:,s2 71 2 0 2 00000
{This instruction will clear 82 and skip.)

Either of the above instructions will result in the low order 15 bits of
01237 being referenced as Y·

TBI,W
TBl,L

Bl,LABEL+3
B2,LABEL+3

4.7.3. Jump on Bj and DecremHt (72) JBD

711 3 0 01237
7121 0 01237

This instruction tests the content of a specified B register. If the value in the
register is zero, the normal sequence of operations continues. If the value in the
register is not zero, the register is decremented by 1 and a new sequence of oper
ations begins at the address specified by the y operand.

Operation k Space j y b

JBD Note '& Bj Note Bb

j may be 0, 1, 2, 3, 4, S, 6, or 7 to specify the B register being tested. If j is 0,
a No Op results.

NOTE: A read class operand. The form JBD,W refers to the low.order 15 bits
of the operand location.

Examples:

J8D,W 84,LABEL,82
J8D,L 84,LABEL,82

4.7.4. THt and Set (7752) TSET

72 4 3 2 01234
72 4 1 2 01234

PAG1l1

Test bit 14 of y. If this bit is a 0, set bits 0 through 14 to l and proceed to the next
instruction; if bit 14 is already a l, interrupt to location 308.

Examples:

TSET
TSET

Operation

TSET

LABEL
LABEL, 84

Space

1J

y, b

address

77 52 0 01234
77 52 4 01234

35

UP-4133
Rev. 1 4

UNIVAC 494 ASSEMBLER IECTION1 PAGEi

4.7.5. Executive Retum (7754) EXRN

Th is instruction interrupts the computer to a fixed address (00007) in memory enabling
the executive program to capture the P register value of the program which is
interrupting.

Operation Space y. b

EXRN t Note

36

NOTE: They portion of this instruction may contain a constant or an address, with or
without B register modification, as needed by the user. It has no bearing on the
executable instruction.

Examples:

EXRN
EXRN
EXRN
EXRN

10
LABEL
LABEL+10,85

4.8. ARITHMETIC INSTRUCTIONS

77 54 0 00000
77 54 0 00010
77 54 s 01234
77 54 s 01244

This section describes the various arithmetic operations provided by the instruction
repertoire of the assembler - addition, subtraction, multiplication, division, and
(for decimal instructions) testing of results.

4.8.1. General

Arithmetic operations may be performed upon different types of operands - fixed
point binary, floating point, and BCD (binary coded decimal). The following
paragraphs summarize assembler features for each of the different operand modes.

4.8.1.1. Integer (Fixed Point) Addition and Subtraction

The actual mechanics of the arithmetic operations are beyond the scope of this
manual but the following characteristics of these operations are of interest to
the programmer:

• The programmer must guard against overflow conditions. For single word
o~erations, the absolute value of the o_perands and results should not exceed
229_1; for double word operations, 259_1. In the event of an overflow the
result will be incorrect.

• A sum of negative zero cannot be generated unless both addend and augend
are negative zeros. A difference of negative zero cannot be generated unless
the minuend (the A register) is a negative zero and the subtrahend (Y) is a
positive zero. In all other cases involving an operand of negative zero, the
same result is obtained as if a positive zero were used in its place. These cases
are shown in the following:

Generation of negative zero:

77777
+ 77777

77777

77777
-00000

77777

UP-4133
Rev. 1

4 UNIVAC 494 ASSEMBLER •&CTtONt

4.8.1.2. Integer (Fixed Point) Multiplication and Division

Fixed point multiplication and division are performed as a series of additions
and/or subtractions. The following characteristics of these operations are of
interest to the programmer:

• The result of multiplication will have the correct algebraic sign. Where sicns
of operands are alike, the product will be positive; where unlike, negative.

~••a1

In division, the sign of the quotient (which will be in the Q register) will have
its sign determined in the same manner. The remainder (which will be in the
A register) will have the same sign as the quotient.

• In multiplication, the entire product will be in the Q portion of the AQ register
if bit position 28-n of the multiplier contains a sign bit, where n is the most
significant bit position of the multiplicand. (The most significant bit position
is the highest order bit position containing a 1 in a positive number or a 0 in
a negative number.) The entire product may be in the Q portion if bit position
28-n has the most significant bit. The entire product will spill over into the
A portion of the AQ register if bit position 29-n does not contain a sign bit.
No product can be generated that will overflow the AQ register. The maximum
positive product is 17777777770000000001s; the maximum negative product,
600000000011111111168.

• In division, the quotient is retained in the Q portion of the AQ register. The
dividend in the AQ register may have up to 59 significant bits while the
divisor may have as few as 1. In these cases, a quotient may be generated
that has as many as 59 significant bits. Since the Q register has a 30-bit
capacity, an overflow situation will result when a quotient is generated that
has more than 29 significant bits. An overflow will not occur if the dividend
bas no significant bits past bit position n + 28 where n is the most significant
bit position of the divisor. An overflow will occur if the dividend has a signficant
bit past bit position n + 29. An overflow may occur if the most significant bit
of the divident is in bit position n + 29. If overflow does occur, the quotient
will appear as +O or -0 (depending upon the similarity of signs in divisor and
dividend). For j interpretation, the Q register will contain -0 if an overflow
occurs.

A negative zero in the A or Q portion of the AQ register may have an adverse
affect on further calculations and will be caused by the following conditions:

• The dividend is an integral multiple of the divisor (within the limits of resolution),
the signs of both are different, and both values are not 0 (+or-). The quotient
will be correct but (A) will be -0. For j sensing, (Q) will appear as the absolute
value of the quotient and (A) will be +O.

•The absolute value of the divisor is greater than the absolute value of the
dividend, signs are different, and both are nonzero. In this case, (Q) will be
-0 and (A) will be the ones complement of the absolute value of the dividend.
For j sensing, (Q) is +O and (A) is the absolute value of the dividend.

37

UP..4133
Rev. 1 SllCTION1

4
UNIVAC 49' ASSEMBLER

Division by +O or -0 has the following results:

• If a positive number is divided by +O, (Q) will be -0 and the remainder in (A)
will be the initial (Q). For j sensing. these final (Q) and (A) are used.

• If a negative number is divided by +O, (Q) will be +O and the remainder in (A)
will be the initial (Q). For j sensing. (Q) will be -0 and (A) will be the com
plement of the initial (Q).

•If a positive number is divided by -0, (Q) will be +O and the remainder in (A)
will be the ones complement of the initial (Q). For j sensing, (Q) will be -0,
and (A) will be the initial (Q).

•If a negative number is divided by -0, (Q) will be -0 and the remainder in (A)
will be the ones complement of the initial (Q). For j sensing, these final (Q)
and (A) are used.

4.8.1.3. Floating Point Arithmetic

la floating point arithmetic, the following are of interest to the programmer:

• During execution, a Ooating point overflow interrupt is generated (tuming
control over to the executive) if an exponent of an operand is greater than
102310 or when division by a tO (floating point) is attempted.

• During execution, a floating point underflow interrupt is generated if the
exponent is less than -102310·

4.8.1.4. Decimal (BCD) Arithmetic

BCD (binary coded decimal) addition and subtraction can be programmed directly,
where the BCD digits are present in the form of zoned BCD digits - six bits per
character - such as Fieldata code, for example. The zone bits are disregarded
during the arithmetic operation but are returned in the result. These decimal
operatioDB are available for single precision (ten or less BCD digits per operand
and result) or for multiprecision operations. Instructions are present to test for
an overflow borrow or carry after an operation.

4.8.2. Fixed Point Single Word Addition

These instructions consist of the following:

• Add A

• Add Q

• Load Y + Q

• Store A+ Q

• Replace A+ Y

• Replace Y + Q

• Replace Y + or Increment Y

38

UP-4133
Rev. 1

4
UNIVAC .C9.C ASSEMBLER •aCTION1

4.8.2.1. Acid A (20) A

This instruction adds a specified operand to the contents of the A register and
retains the sum in the A register.

Operation k

A NORMAL

Examples:

A,LX LABEL,2
A 773

4.8 .2. 2. Aclcl Q (26) AQ

Space

"
y

READ CLASS

20 0 5 2 01234
20 0 0 0 00773

b j

Bb NORMAL

Add a specified operand to the contents of the Q register and retain the sum in
the Q register.

Operation k Space y b j

AQ NORMAL " READ CLASS Bb See Table 4-6

Example:

AQ,U LABEL,,QNOT 26 5 2 0 01234

4.8.2.3. Loacl Y t Q (30) LAQ

Add a specified operand to the contents of the Q register and retain the sum in
the A register. The contents o(the Q register and operand are undisturbed by
this instruction.

Operation k Space y b j

LAQ NORMAL ~ READ CLASS Bb NORMAL

Example:

LAQ,W LABEL 30 0 3 0 01234

4.8.2.4. Store At Q (32) SAQ

Add the contents of the A and Q registers, retain the sum in the A register, and
store the sum in the storage location specified.

Operation k Space y b j

SAQ NORMAL 11 STORE CLASS Bb NORMAL

Example:

SAQ,U LABEL,83 32 0 2 3 01234

39
~·••1

UP-4133
Rev. 1

PAGEi
4

UNIVAC 494 ASSEMBLER SECTION I

4.8.2.5. Replace A + Y (24) RA

Add a specified operand to the contents of the A register. Retain this sum in the
A register and replace the original operand with this sum.

Operation k Space y b j

RA NORMAL 1i REPLACE CLASS Bb NORMAL

Example:

RA,UX LABEL + 3 24 0 6 0 01237

4.8.2.6. Replace Y + Q (34) RAQ

Add the specified operand to the contents of the Q register, retain the sum in the
A register, and store the sum in the storage location from which the operand was
obtained. ·

Operation k Space y b j

RAQ NORMAL 11 REPLACE CLASS Bb NORMAL

Example:

RAQ,W 0,87 34 0 3 7 00000

4.8.2.7. Replace Y + 1 or Increment Y (36) RI

Increment the specified operand by 1, retain the sum in the A register, and store
this sum in the storage location from which the operand was obtained.

Operation k Space y b j

RI NORMAL 11 REPLACE CLASS Bb NORMAL

Example:

Rl,UX LABEL,83,AZERO 36 4 6 3 01234

4.8.3. Fixed Point Single Word Subtraction

These instructions consist of the following:

• Subtract A

• Subtract Q

• Load Y-Q

• Store A-Q

• Replace A-Y

• Replace Y -Q

• Replace Y-1 or Decrement Y

40

UP-4133
Rev. l

4
UNIVAC -'94 ASSEMBLER SSCTIONI

4.8.3.1. Subtract A (21) AN

Subtract a specified operand from the contents of the A register and retain the
difference in the A register.

Operation

AN

Examples:

AN,W
AN,3

k Space

NORMAL 15

LABEL.,ANOT
LABEL,3,5

4.8.3.2. Subtract Q (27) ANQ

y

READ CLASS

21 s 3 0 01234
21 s 3 3 01234

b j

Bb NORMAL

Subtract a specified operand from the contents of the Q register and retain the
difference in the Q register.

Operation

ANQ

Examples:

ANQ
ANQ

k

NORMAL

12D,.QNOT
120,4,4

4.8.3.3. Lood Y-Q (31) LANQ

Space

15

y

READ CLASS

27 s 0 0 00014
27 4 0 4 00014

b j

Bb See Table 4-6

Subtract the contents of the Q register from a specified operand and retain the
difference in the A register. The contents of the Q register are not disturbed
by this instruction.

Operation k Space y b

LANQ NORMAL ' READ CLASS Bb

Example:

LANQ,L
LANQ,U
LANQ,W

LABEL
LABEL,3,2
LABEL,S,AZERO

31 0 l 0 01234
31 2 2 3 01234
31 4 3 5 01234

j

NORMAL

41
PAOltt

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SltCTIOIU

4.8.3.4. Store A-Q (33) SANQ

Subtract the contents of the Q register from the A register, retain the difference
in the A register, and store this difference in the storage location specified.

Operation k

SANQ NOTE

Examples:

SANQ,6
SANQ,CPL

Space

'&

LABEL,3
LABEL

y b

STORE CLASS Bb

33 0 6 3 01234
33 0 5 0 01234

j

NORMAL

NOTE: The k designator governs storage in both the memory and A register.

4.8.3.5. Replace A-Y (25) RAM

Subtract a specified operand from the contents of the A register, retain the dif·
fereace in the A register, and store this difference in the storage location from
which the operand was obtained.

Operation k Space y

RAN NORMAL 1i REPLACE CLASS

Examples:

RAN,L LABEL 25 0 1 0 01234
RAN,U LABEL.,AZERO 25 4 2 0 01234

4.8.3.6. Replace Y -Q (35) RANQ

b j

Bb NORMAL

Subtract the contents of the Q register from a specified operand, retain the dif·
ference in the A register, and store this difference in the storage location from
which the operand was obtained.

Operation k Space y b j

RANQ NORMAL 1i REPLACE CLASS Bb NORMAL

Example:

RANQ,L LABEL 35 0 1001234

42

UP-4133
Rev. 1 PAGIEI

4
UNIVAC ·'94 ASSEMBLER SIECTION1

4.8.3. 7. Replace Y-1 or Decrement Y (37) RD

Decrement a specified operand by 1, retain the difference in the A register, and
store this difference in the storage location from which the operand was obtained.

Operation k

RD NORMAL

Examples:

RD,UX
RD,6

Space y

" REPLACE CLASS

LABEL.,AZERO 37 4 6 0 01234
LABEL+2,B3 37 0 6 3 01236

4.8.4. Fixed Point Double Word Arithmetic

b j

Bb NORMAL

The fixed point double word arithmetic instructions use ones complementation
arithmetic for addition, subtraction, and ones complementation (or negation) upon
60-bit operands. In fixed point double word arithmetic, the sign and high order
bits are retained in the A register or stored in the first of two consecutive addresses
referenced by y. The Q register retains the low order 30 bits; the next consecutive
address stores the low order 30 bits. These instructions include:

• Double Precision Add

• Double Precision Subtract

• Double Precision Complement

4.8.4.1. Double Precision Add (7722) DPA

The contents ofj and y + 1 are added to the contents of the double length AQ
register. The sum will be in AQ.

Examples:

DPA
DPA

Operation

DPA

LABEL
LABEL,82

Space

"

4.8.4.2. Double Precision Subtract (7726) DPAM

y,b

base address

77 22 0 01234
77 22 2 01234

The contents of y and y + 1 are subtracted from tbe contents of the double length
register AQ. The difference will be in AQ.

Examples:

DPAN
DPAN

Operation

DPAN

LABEL
LABEL,83

Space

"
y,b

base address

77 26 0 01234
77 26 3 01234

43

UP-4133
Rev. 1 4

UNIVAC 49.4 ASSEMBLER SltC TION1 PAGEi

4.8.4.3. Double Precision Complement (772") DPH

The contents of the AQ register are converted to its ones complement.

Operation Space y, b

DPN 'b none

Example:

DPN 77 24 0 00000

4.8.5. Fixed Point Multiplication and Division

The fixed point multiplication and division instructions use ones complementation
arithmetic, and include:

• Multiply

• Divide

4.8. 5. 1. Multiply (22) M

This instruction multiplies the contents of the Q register by the operand specified
in the instruction. The product is formed in the 60 bit positions of the combined
AQ register.

Operation k Space y b j

M NORMAL 1; READ CLASS Bb Note

The following rules apply for multiplication:

• If a positive number is multiplied by a positive number or a negative number
by a negative number, the product will be positive.

• If a positive number is multiplied by a negative number or a negative number
by a positive number, the product will be negative.

• If positive 0 is multiplied by positive 0 or negative 0 by negative 0, the
product will be positive 0.

• If positive 0 is multiplied by negative 0 or negative 0 by positive 0, the
product will be negative 0.

No product can be generated which will overflow AQ. The maximum positive
product is:

17777 77777
~

A

The maximum negative product is:

60000 00000
~

A

00000 00001
~

Q

77777 77776
~

Q

44

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER 4

•11tCTION1

Example:

M,W LABEL 22 0 3 0 01234

The result of operations for various values contained in the Q register and the
A register (initially the location defined by LABEL) follows:

A Q AQ

00000 00012 x 00000 00010 = 00000 00000 00000 00120

77777 77767 x 00000 00012 = 77777 77777 77777 77657
77777 77765 x 77777 77767 = 00000 00000 00000 00120

P AGl£t

NOTE: The skip condition is tested prior to any final sign conversion. The sig-

45

nificance of the normal skip condition for a multiple operation may be outlined
as follows:

j Machine

0

1

2

3

4

5

6

7

J MNEMONIC

(absent)

SKIP

QPOS

QNEG

AZ ERO

ANOT

APOS

ANEG

SKIP CONDITION

No skip.

Skip next instruction.

Skip next instruction if there is no overflow into
the A register. If a skip does not occur, a double
length product is indicated since there is a sig
nificant bit in bit position 29 of the Q register.
(The highest order bit that is different from the
sign bit is the most significant bit.)

Skip next instruction if there is an overflow into
the A register. If a skip occurs, a double length
product is indicated since there is a significant
bit in bit position 29 of the Q register.

Skip next instruction if the product is entirely
within the Q register. If a skip occurs, it indicates
that the product has 30 or less significant bits,
and that the A register contains only sign bits.
This does not mean the Q register contains the
correct product, since bit position 29 of the Q
register may contain a significant bit of the
product, thus making bit position 0 of the A
register the first sign bit. If a skip does not
occur, it indicates that significant bits of the
product are in the A register.

Skip next instruction if product overflows. If a
skip occurs, it indicates that significant bits or
the product are in the A register. If a skip does
not occur, it indicates the same condition that
exists when a skip occurs with AZERO.

Skip next instruction.

Do not skip next instruction.

UP·4133
Rev. 1 4 UNIVAC '9.f ASSEMBLER , aaCTIONa

4.8.5.2. Divide (23) D

This instruction divides the contents of the combined AQ register by the operand
specified in the instruction and retains the quotient and remainder in the Q and
A registers, respectively.

Operation k Space y b j

D NORMAL 15 READ CLASS Bb See Table 4-6

The following rules apply for division:

• If a positive number is divided by a positive number or a negative number by
a negative number, the quotient and remainder will be positive numbers.

• lf a positive number is divided by a negative number or a negative number by
a positive number, the quotient and remainder will be negative numbers.

Neiative Zero Quotients and Remainders

Division, if handled improperly, may generate a negative 0 quotient or remainder
that can have an adverse affect on further calculations. This situation can occur
in the following four cases:

• Remainder is zero, the dividend and divisor have unlike signs, and are
both nonzero.

• Absolute value of divisor is greater than the absolute value of the dividend,
signs are unlike, and both are nonzero.

• Division by positive or negative zero

• Division of positive or negative zero by nonzero divisor with an unlike
sign.

(1) Remainder is zero, the dividend and divisor have unlike signs and are
both nonzero:

The result of such a division is that the correct quotient will be in the Q
register and the remainder in the A register will be a negative 0.

When the j designator is interpreted, the Q register will appear as the absolute
value of the quotient and the A register will appear as a positive O. For example:

At j

0000000000000001010011100101 (dividend)

111111111111111110101100011010 (di visor)

OO<K>OOOOOOCl<nOOOOO<K>ODOOIOCK>OlO (quotient)

interpretation (remainder)

Final Result
111111111111111111111111111101 (quotient in the

Q register)
111111111111111111111111111111 (remainder in

the A register)

46

UP-4133
Rev. 1 UNIVAC "' ASSl!MBLER SIEC TION1

(2) Absolute value of the divisor is greater than the absolute value of
dividend, signs are unlike, and both are nonzero:

4

When division is performed in this case, the quotient in the Q register will
be a negative 0 and the remainder in the A register will be the ones comp•
lement of the absolute value of the dividend. When the j designator is
interpreted, the Q register will appear as a positive 0 and the A register
will appear as the absolute value of the dividend. For example:

000000000000000000000000000000 000000000000000000000000000011 (div id~nd)

111111111111111111111111111010 (divisor)

000000000000000000000000000000 (quotient)
Atj

interpretation 000000000000000000000000000011 (rem ai nde r)

.......

Final Result
111111111111111111111111111111 (quotient in the

Q register)
111111111111111111111111111100 (remainder in

the Q register)
(3) Division by positive or negative zero:

a If a positive number is divided by positive 0, the quotient in the Q register
will be a negative 0 and the remainder in the A register will be the initial
contents of the Q register. For j designator interpretation, the final contents
of the Q and A registers are used.

• Jf a negative number is divided by a positive 0, the quotient in the Q
register will be a positive 0 and the remainder in the A register will be
the initial contents of the Q register. For j designator interpretation the
Q register will appear as negative 0 and the A register will appear as the
ones complement of the initial contents of the Q register.

• If a positive number is divided by negative 0, the quotient in the Q
register will be a positive 0 and the remainder in the A register will
be the ones complement of the initial contents of the Q register. For j
designator interpretation, the Q register will appear as a negative 0 and
the A register will appear as the initial contents of the Q register.

• If a negative number is divided by negative 0, the quotient in the Q
register will be a negative 0 and the remainder in the A register will be
the ones complement of the initial contents of the Q register. For j desig
nator interpretation, the final contents of the Q and A registers are used.

47

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER 4

lltCTION1 PAG£1

The following examples illustrate these rules:

A positive number divided by positive 0.

000000000000000000000000000001 000000000000000000000000000001 (dividend)

000000000000000000000000000000 (di visor}

111111111111111111111111111111 (quotient)
Atj

interpretation

Final Result

000000000000000000000000000001 (remainder)

111111111111111111111111111111 (quotient in the
Q register)

000000000000000000000000000001 {remainder in
the A register)

A negative number divided by a positive 1.

111111111111111111111111111111 111111111111111111111111111110 (dividend)

000000000000000000000000000000 (di visor)

111111111111111111111111111111 (quotient)
Atj

interpretation

Final Result

000000000000000000000000000001 (remainder)

000000000000000000000000000000 (quotient in the
Q register)

111111111111111111111111111111 {remainder in
the A register)

A positive number divided by a negative 0.

010111111111111111111111111111 110111111111111111111111111111 (dividend)

111111111111111111111111111111 (divisor)

111111111111111111111111111111 (quotient)
Atj

interpretation

Final Result

11011111111111111111111111111 l (remainder)

000000000000000000000000000000 {quotient in the
Q register)

001000000000000000000000000000 (remainder in
the A register)

48

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER 4

SltC'TION:

A negative number divided by a negative 0.

100111111111111111111111111111 110111111111111111111111111111 (dividend)

111111111111111111111111111111 (divisor)

111111111111111111111111111111 (quotient)
At j

interpretation 001000000000000000000000000000 (remainder)

111111111111111111111111111111 (quotient in the
Final Result Q register)

000000000000000000000000000000 (remainder in
the A register)

(4) Division of positive or negative zero by a nonzero divisor with an unlike
sign:

When division is performed in this case, the quotient in the Q register and the
remainder in the A register will be a negative 0. When the j designator is
interpreted, both the Q and A register will appear as a positive 0. The
following examples will illustrate this:

000000000000000000000000000000 000000000000000000000000000000 (dividend)

111111111111111111111111111110 (divisor)

000000000000000000000000000000 (quotient)
Atj

interpretation 000000000000000000000000000000 (remainder)

111111111111111111111111111111 (quotient in the
Final Result Q register)

111111111111111111111111111111 (remainder in
the A register}

111111111111111111111111111111 111111111111111111111111111111 (dividend)

000000000000000000000000000000 (divisor)

000000000000000000000000000000 (quotient)
At j

interpretation 000000000000000000000000000000 {remainder)

111111111111111111111111111111 {quotient in the
Final Result Q register)

111111111111111111111111111111 (remainder in
the A register)

49

UP-4133
Rev. 1

4
UNIVAC 49' ASSEMBLER SaCTIONI ,.,.0•1

Divide Overflow with Nonzero Divisor and Dividend

In division, the dividend in the AQ register may have up to 59 significant bits
while the divisor may have as few as 1. In these cases, a quotient may be gen
erated that has as many as 59 significant bits. Since the Q register has a 30-bit
capacity, an overflow situation will result when a quotient is generated that has
more than 29 significant bits. If overflow does occur, the quotient in the Q register
will be a positive 0 if the divisor and dividend have unlike signs, or it will be a
negative 0 if the signs were the same. At the time the j designator is interpreted,
the Q register will appear as a negative 0.

The following rules govern the occurrence of a divide overflow:

• If the most significant bit of the divisor is in bit position n, a divide overflow
will not occur if the dividend bas no significant bits beyond bit position n+28.

• If the most significant bit of the divisor is in bit position n, a divide overflow
will occur if the dividend has a significant bit in bit position n+30 or beyond.

• If the most significant bit of the divisor is in bit position n, a divide overflow
may occur if the most significant bit of the dividend is in bit position n+29.

The following examples illustrate these rules:

• No overOow.

00000000000000010110001011100 (dividend)

0000000000000001010011100 (divisor)

10001 (quotient)
Atj

interpretation (remainder)

10001 (quotient in the
Final Result Q register)

(remainder in the
A register)

• Overflow occurs .

000000000000000100011001100011 010011110111100111100110101011 (dividend)

000000000000001000000001000000 (divisor)

111111111111111111111111111111 (quotient)
Atj

interpretation 010011110111100001100111101011 (remainder)

111111111111111111111111111111 (quotient in the
Final Result Q register)

010011110111100001100111101011 (remainder in the
A register)

so

UP-4133
Rev. 1 UNIVAC 49' ASSEMBLER

4
•IECTIONr

• Overflow may occur.

111111111111111011100101011100 101100001000011010001100111111 (dividend)

00000000000000010000001000000 (di visor)

111111111111111111111111111111 (quotient)
Atj

interpretation 010011110111100111110011000000 (remainder)

PAOIEr

Final Result
000000000000000000000000000000 (quotient in the

Q register)
101100001000011000001100111111 (remainder in the

A register)

(In this example, overflow occurs).

Atj
interpretation

Final Result

(dividend)

OOCIOOC>OODOOOOCIOOC>OOOOOOOCIOOOll (di visor)

000010001000100010000111101101 (quotient)

OOOCIOOOOQ()()(>0000000CIOOIOO<l00<>01 (remainder)

000010001000100010000111101101 (quotient in the
Q register)

0000000000000000000001 (remainder in the
A register)

(In this example, overflow does not occur.)

The remainder in overflow division ls difficult to determine and the value of such
information, when obtained, is questionable. The rules that are stated below are
valid at least in the above exaa;iples. They should not, however, be considered
universal rules.

- If the dividend and divisor are positive numbers, add the dividend and
divisor. The remainder in the A register will be the low order 30 bits of
the sum that is formed. At the time the j designator is interpreted, the final
contents of the A register will be used.

- If the dividend and divisor are negative numbers, complement the dividend
and divisor, and then add them. The remainder in the A register will be the
low order 30 bits of the sum that is formed. For interpretation of the j desig·
nator, the final contents of the A register will be used.

- If the dividend is a positive number and the divisor is a negative number,
the divisor should be ones complemented and then added to the dividend. The
final remainder in the A register will be the ones complement of the low order
30 bits of the sum that is formed. For interpretation of the j designator, the
contents of the A register will appear as the low order 30 bits of the sum that
ia formed.

51

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION1 PAGEi

If the dividend is a negative number and the divisor is a positive number, the
dividend should be ones complemented and then added to the divisor. The
final remainder in the A register will be the ones complement of the low order
30 bits of the sum that is formed. For j designator interpretation the contents
of the A register will appear as the low order 30 bits of the sum that is formed.

Examples:

Examples are for normal division, where all results are shown following final
sign correction, if correction is required.

• 00000 00000 00000 26134 ... 00000 01234

quotient in Q = 00000 00021
remainder in A = 00000 00000
(A) and (Q) used for j interpretation

• 00000 00000 00000 26152 00000 01234

quotient in A = 00000 00021
remainder in A = 00000 00016
(A) and (Q) used for j interpretation

• 777777 777777 777777 51625 .;. 77777 76543

quotient in Q = 00000 00021
remainder in A = 00000 00016
final (A) and (Q) used for j interpretation

• 02400 21166 21233 52654 .;. 5400 16354

quotient in Q = 67i77 03046
remainder in A = 54733 20156
(A) and (Q) appear as their ones complements for j interpretation

• 75377 56611 56544 25123 - 23777 61423

quotient in Q = 67777 03046
remainder in A = 54733 20156
(A) and (Q) appear as their ones complements for j interpretation

• 00000 00000 00000 12345 .;. 77777 65432

quotient in Q = 77777 77776
remainder in A = 77777 77777 (even division)
(A) and (Q) appear as their ones complements for j interpretation

52

UP-4133
Rev. 1

4 UNIVAC 494 ASSEMBLER SIECTIONs

4.8.6. Floating Point Arithmetic

Floating point arithmetic enables uses of the exponential (floating point) format
(Figure 2-4) for arithmetic with operands having the decimal point in different
positions. These instructions include:

• Floating Point Add

• Floating Point Subtract

• Floating Point Multiply

• Floating Point Divide

• Floating Point Pack

• Floating Point Unpack

in addition to the Scale Factor Shift (see 4.4.10).

4.8.6.1. Floating Point Add (7701) FA

PAGEi

The signed floating point number contained in y and y + 1 is added to the floating
point number in the AQ register. The adjustment to AQ is made by a comparison
of the characteristics involved. The contents ofy and y + 1 are added to AQ after
the comparison. The sum will be contained in AQ.

Examples:

FA
FA

Operation

FA

LABEL, Bl
LABEL

Space

1S

y, b

base address

77 01 1 01234
77 01 0 01234

4.8.6.2. Floating Point Subtract (7702) FAN

The signed floating point number contained In y and Y + 1 is subtracted from the
floating point number in the register. The adjustment to AQ is made by a comparison
of the characteristics involved. The contents ofy and y + 1 are subtracted from
AQ after the comparison. The difference will be contained in AQ.

Example:

FAN
FAN

Operation

FAN

LABEL, 85
LABEL

Space y, b

ti base address

77 02 5 01234
77 02 0 01234

53

UP-4133
Rev. l 4 UNIVAC 494 ASSEMBLER Sl:CTI0 .. 1

4.8.6.3. Floating Point Multiply (7703) FM

The signed floating point number contained in the AQ register is multiplied by
the signed floating point number in y and y + 1. The product is contained in AQ.
This product will be normalized and correct only if both numbers were originally
normalized.

Examples:

FM
FM

Operation

FM

LABEL
LABEL, B2

4.8.6.4. Floating Point Divide (7705) FD

Space y, b

1J base address

77 03 0 01234
77 03 2 01234

The signed floating point number in the AQ register is divided by the signed
floating point number in y and y + l. Both numbers must be normalized prior to
the divide sequence. The normalised quotient will be in the AQ register; any
remainder will be discarded.

Examples:

FD
FD

Operation

FD

LABEL
LABEL, Bl

4.8.6.5. Floating Point Pack (7706) FP

Space y, b

1J base address

77 05 0 01234
77 OS l 01234

This operation forms a floating point number in A and Q using as its mantissa,
the value in AQ, and as its characteristic, the biased value represented by y.

Operation Space y,b

FP 1J base address

PAOIEI

The mantissa in the combined AQ register is normalized. A biased characteristic
is then taken from y and inserted in bits A29 - Al8 of the AQ register.

Example:

FP
FP

LABEL
LABEL, B6

77 06 0 01234
77 06 6 01234

54

UP-4133
Rev. 1

4 UNIVAC 494 ASSEMBLER SIECTIONI

4.8.6.6. Floating Point Unpack (7707) FU

This operation separates the characteristic and mantissa of the floating point
number in AQ.

Operation Space y, b

FU ~ address

A positive, biased characteristic is taken from the AQ register and stored at
y. Bits A29 - A18 of the AQ register are sign filled.

Examples:

FU
FU

4.8. 7. Decimal Arithmetic

LABEL
LABEL, B4

77 07 0 01234
77 07 4 01234

........

These operations expect fixed point, zoned binary-coded-decimal, double precision
operands which consist of 10 six-bit characters conforming to a predetermined code
similar to the Fieldata code. The 11Z" (zone) bits shown in Figure 2-3 are arbitrary
and have no effect on arithmetic operations. However, the fifth bit of the lowest
order digit is a sign bit. A positive zoned BCD operand is the same as a negative
zoned BCD operand (having the same absolute value), except for the sign bit.
(See Figure 2-3.)

Decimal arithmetic instructions include:

• Decimal Test AQ

• Decimal Add

• Decimal Add With Carry

• Decimal Subtract

• Decimal Subtract With Borrow

• Decimal Complement AQ

• Decimal Test Less

• Decimal Test Equal

• Convert Lower

• Convert Upper

4.8.7.1. Decimal THI AQ (7710) DT

This operation tests the decimal contents of AQ for one or more of the
options listed below.

Operation Space y, b

OT ~ See list which follows

SS

UP-4133
Rev. 1

4
UNIVAC 49' ASSEMBLER PAOIEI SltCTIONt

Wherever there is a 1 bit in the operand, perform the test indicated in the following
table for that bit position. If a condition is satisfied in one or more of the tests
(more than one test may be specified), skip the next sequential instruction. If
none of the conditions is satisfied, or no tests are indicated, advance to the
next sequential instruction.

If there is a 1 and then

in bit position

0 overflow designator = 1 (on)

1 overflow designator = 0 (off)

2 (AQ) ;. 0 and sign is +

3 (AQ) = 0 (neglecting sign)

4 (AQ) ;. 0 and sign is - skip next

5 sixth decimal digit in AQ ;. 0
sequential
instruction

6 seventh decimal digit in AQ ;. 0

7 eighth decimal digit in AQ ;. 0

8 ninth decimal digit in AQ ;. 0

9 tenth decimal digit in AQ;. 0

10 (AQ) ;. 0 (neglecting sign)

NOTES: 1. All tests on (AQ) assume decimal format. Zone bits are not tested.
2. Bit positions 5 through 9 may be used to detect a decimal number

exceeding one word in length.
3. Bit positions 11 through 17 of the instruction word have no

effect upon the instruction.

Examples:

OT
OT

2000
1*/110

77 10 0 02000
77 10 0 02000

(Skip the next instruction if AQ 1- 0)

4.8.7.2. Decimal Add (7711) DA

This operation adds two decimal numbers.

Operation Space y. b

DA '& base address

The ten-character decimal contents of AQ are added to the decimal contents of
y and y + 1. The sum will be left in the AQ register. The zone bits of AQ will
not be changed.

56

UP-4133
Rev. 1 UNIVAC '94 ASSEMBLER

Examples:

DA
DA

LABEL
LABEL, B6

4.8. 7.3. Decimal Add With Carry (7715) DAC

77 11 0 01234
77 11 6 01234

SIECTION1

This operation adds two decimal numbers and a carry if present.

Operation Space y, b

DAC 1> base address

4

The contents of y and y + 1 are added to the AQ register. If the carry has been
generated from a previous decimal operation, the carry is added into the least
significant position to enable multiprecision operations.

Examples:

DAC
DAC

LABEL
LABEL, Bl

4.8. 7.4. Decimal Subtract (7712) DAN

77 15 0 01234
77 15 1 01234

This operation subtracts two decimal numbers.

Operation Space y, b

DAN '& base address

The ten-character decimal contents ofy and y + 1 are subtracted from the con
tents of the AQ register. The signed result will be in AQ. The zone bits which
were in AQ will not be changed.

Example:

DAN
DAN

LABEL
LABEL, 83

77 12 0 01234
77 12 3 01234

4.8.7.S. Decimal Subtract With Borrow (7716) DANI

This operation subtracts two decimal numbers and a "borrow" if necessary.

Operation Space y, b

DANS 1s base address

The contents ofy and y + 1 are subtracted from the contents of the AQ register.
If a borrow has been generated from a previous decimal operation, the borrow is
subtracted starting from the least significant position. If this operation requires
a borrow, the borrow is stored for a succeeding decimal operation to enable
multiprecision operations.

57
PAGIE1

UP-4133
Rev. 1 UNIVAC"' ASSEMBLER

Examples:

DANB LABEL
DANS LABEL, Bl

4.8.7.6. Decl•al Comple•ent AQ (771•) DM

77 16 0 01234
77 16 1 01234

SllCTIONI

4
~AOIU

Tbe decimal number in the AQ register is converted to its decimal complement. If
y is odd, the nines complement results (each digit is replaced by its difference
from 9); if even, the tens complement (the nines complement plus one). The sign
is unchanged.

Operation Space y, b

ON ' Number

Example:

ON 12345 77 14 0 12345

4.8.7.7. Dech.al THt Leu (7717) DTL

Skip the next instruction if the decimal number in AQ is less thaa the decimal
number in l and V + 1. Zone bits are ignored.

Examples:

DTL
DTL

Opera lion

DTL

LABEL
LABEL, BS

4.8.7.8. Deci•ol Test Equal (7713) DTE

Space

'
y,b

base address

77 17 0 01234
77 17 5 01234

Skip the next instruction if the decimal contents of AQ equals the decimal
contents ofy and y + 1. Zone bits are ignored.

Example:

DTE
DTE

Operation

DTE

LABEL
LABEL, 87

Space

'
y,b

base address

77 13 0 01234
77 13 7 01234

58

UP-4133
Rev. 1 4

SKCTIONI

4.8.7.9. Decimal Convert Lower (n33) DCL

This operation converts decimal to binary.

Operation Space y,b

OCL 'b base address

Initiate a transfer and conversion of (Y)i by converting the decimal numbers
in bits 3-0 of y through y t 4 to binary in AQ. The AQ register must have been
initially cleared.

Examples:

DCL
DCL

LABEL
LABEL, 86

77 33 0 01234
77 33 6 01234

PAGKI

This operation is a successive convert-and-shift-left operation into the AQ
register. Only the first 34 bit positions of the AQ register can be used for this
instruction. Thus, it is possible to convert 9,999,999,999 to binary by two
successive conversions of 99999 since this does not require more than 34 bit
positions. The result of this operation is not affected .by any sign bit in a decimal
number; only the absolute decimal digits are converted.

4.8.7.10. Decimal Convert Upper (7734) DCU

This operation converts decimal to binary.

Operation Space y, b

DCU 11 base address

Initiate a transfer and conversion of (Y)i by converting the decimal numbers in
bits 18-15 of y through y + 4 to binary in AQ. The AQ register must have been
initially cleared. As described for the DCL operation (see 4.8.7.9) only 34
bits are available in the AQ register for this convert-and-shift-left operation.

Examples:

DCU
DCU

LABEL
LABEL, Bl

4.9. LOGICAL OPERATIONS

77 34 0 01234
77 34 1 01234

Logical instructions provide the programmer with the means of operating upon specific
bits of a word. These logical operations are the logical product (LP), the OR operation,
the NOT operation, the Exclusive OR operation, and the selective substitute. The
logical operation is performed upon the bits in the same corresponding bit positions
of each of the words to form the resulting word. For all j interpretations which use the
contents of a register to determine a skip, it is always the final state of the register
which is used for j interpretation.

59

UP-4133
Rev. 1 4

~ON1 UNIVAC 494 ASSEMBLER

The logical product is generally used for "masking" {lifting the selected bits of a
wold and uaing 0 bits for unselected positioas). This is accomplished by placing
l's in the mask to select bits and O's for the other bits. Wherever there is a 1 in
the mask, the conespondiag bit of the operand will appear in the logical product.
Whezever tbeie ls a 0 in the mask, a 0 wW appear in the logical product. Tbaa, the
logical pioduct corresponds to the AND function - the logical pioduct is a 1 when
the Msk and the operand are both l's; otherwise it is a 0. The following example
illustrates the logical product:

II ask

Operand

LP

111 000 001 010 011 100 101 110 111 000

010 100 110 000 001 011 110 111 101 100

010 000 000 000 001 000 100 110 101 000

~····

The OR operation (selective set) is used to force l's into selected bits of the A
nt&later. Wherever there is a 1 in the operand a 1 is forced into the A register. If
the A register bit la already a 1, it remains undisturbed. Wherever there is a 0 in
the operu.d the A re1ister bit remains undisturbed. Described differently, the result
la a 1 if die A register bit la a 1 «the operand bit is a 1, or both. The following
example illatratea operation of the selective set.

Operand

A register (initial)

OR

010 100 110 000 001 011 110 111 101 100

111 000 001 101 011 100 101 110 111 000

111 100 111 101 011 111 111 111 111 100

The NOT operation (selective clear) forces O's into selected bits of the A register.
Wherever there ls a 1 ia the operud a 0 will be forced into the A register. If the A
register bit is a 0 it remaias undisturbed. Wherever there is a 0 la the operand the
A register bit semaina undisturbed. Tbe selective clear can also be regarded •• a
modified making operation. Wherever there ls a 0 in the operand (mask) the cor
respoadia1 bit of tbe accumulator is lifted and placed in the final result. The fol
lowlag eumple illustrates operation of tbe NOT operation:

Operand

A register (initial)

A register (final)

010 100 110 000 001 011 110 111 101 100

111 000 001 101 011 100 101 110 111 000

101 000 001 101 010 100 001 000 010 000

The Ezclasive OR operation (selective complement) operates upon selected bits
.of the A register. Wherever there ls a 1 in the operand, the A register bit la ones
campleaeoted. Described differently, if either of the two corresponding bits, but not
both, i8 a 1, tbe result is a 1 bit.

Operand

A register (initial)

Ezclasive OR

010 100 110 000 001 011 110 111 101 100

111 000 001 101 011 100 101 110 111 000

101 100 111 101 010 111 011 001 010 100

60

--- ------

UP-4'133
Rev. 1 SIECTIONr

4 UNIVAC '9.C ASSEMBLER

The selective substitute replaces selected bits ia the A register with the cones
ponding bit of the operand. Selection is performed by the Q register - for each 1 bit
in the Q register the substitution ls made. Tbe foilowing example illustrates oper
ation of the selective substitute:

Q register 101 010 000 111 100 011 110 001 110 011

Operand 010 100 110 000 001 011 110 111 101 100

A register (initial) 111 000 001 101 011 100 101 110 111 000

A register (final) 010 000 001 000 011 111 111 111 101 000

4.9.1. Load Logical Product (40) LLP

Thia instruction forms the logical product of the contents of the Q register and an
operand and retains it in the A register.

Operation k Space y b j

LLP NORMAL ' READ CLASS Sb
See

Table 4-6

Example:

LLP,W LABEL.,EVEN 40 2 3 0 01234

4.9.2. Store Logical Product (47) SAND

Thia instruction forms the logical product of the contenbl of the Q re1ister and the
A register and stores this product in a storage location.

Operation k Space y b j

SAND See Table 4-1 ' STORE CLASS Bb NORMAL

Example:

SAND,L LABEL,SS 47 0 1 5 01234

4.9.3. Replace Logical Product (.C.C) RLP

This instruction forms the logical product of the contents of the Q register and an
operand, retains the logical product in the A register, and stores this logical pro
duct ia the storage location from which the operand was obtained.

Ope1ation k Space y b j

RLP NORMAL ' REPLACE CLASS Sb See
Table 4-6

Example:

RLP,W LABEL.,ODD 44 3 3 0 01234

61
PA•IEr

UP-4133
Rev. 1 SIECTIOff1

4
UNIVAC .494 ASSEMBLER

4.9.4. Add Logical Product (41) ALP

This instruction adds the contents of the A register to the logical product of the
contents of the Q register and an operand. The sum is retained in the A register.

Opemtion k Space y b j

ALP NORMAL 1s READ CLASS Bb NORMAL

Example:

ALP,X 77773 41 0 4 0 77773

4.9.5. Replace A+ Logical Product (45) RA.LP

Tb is instruction forms the logical product of the contents of the Q register and an
operand, then adds this product to the contents of the A register. The sum is re
tained in the A register and is stored in the location from which the operand was
obtained.

Operation k Space y b j

RALP NORMAL o REPLACE CLASS Bb NORMAL

Example:

RALP,LX LABEL,84 45 0 5 4 01234

4.9.6. Subtract Logical Product (42) ANLP

This instruction subtracts the logical product of the contents of the Q register
and an operand from the contents of the A register. The difference is retained in
the A register.

Operation k Space y b j

ANLP NORMAL i READ CLASS Db NORMAL

Example:

ANLP,W LABEL.,QPOS 42 2 3 0 01234

4. 9. 7. Replace A - Logical Product (46) RAHL P

This instruction forms the logical product of the contents of the Q register and an
operand, then subtracts this product from the contents of the A register. The dif
ference is retained in the A register and is stored in the location from which the
operand was obtained.

Operation k Space y b j

RAN LP NORMAL '& REPLACE CLASS Bb NORMAL

62

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SllCT10Nt

Example:

RANLP,UX LABEL,83 46 0 6 3 01234

4.9.8. OR (50) OR

This instruction forces 1 bits into selected bit positions of the A register. For
corresponding bit positions of operand and A register, a 1 bit will be forced into
the final A where either, or both, the initial A register or the operand bas a 1 bit;
otherwise, a 0 bit will occur in the final A register.

Operation k Space

OR NORMAL 1;

Example:

OR,W

4.9.9. Replace OR (5.t) ROR

LABEL

y b j

READ CLASS Bb NORMAL

so 0 3 0 01234

This instruction compares the bits of the initial A register with corresponding bits
of the operand. Where at least one bit is a 1 bit, a 1 bit is forced into the final A
register; otherwise, a 0 appears in the final A register. After the selective set
operation is performed, the result is retained in the A register and is also stored
in the location from which the operand was obtained.

Operation k Space y b j

ROR NORMAL '& REPLACE CLASS Bb NORMAL

Example:

ROR,UX LABEL,l 54 0 6 1 01234

4.9.10. Exclu11.,. OR (51) XOR

This instruction compares the bits of the operand with the corresponding bits of the
initial A register to form the Exclusive OR function in the final A register. Wherever
either, but not both, of the corresponding bits is a 1, a 1 is forced into the final A
register; otherwise, a 0 occurs in the final A register.

Operation k Space y b j

XOR NORMAL "6 READ CLASS Bb NORMAL

Example:

XOR 77777 51 0 0 0 77777

63

UP-4133
Rev. 1 l&CTIOM1

4
UNIVAC 49• ASSIMBL!R

4.9.11. Reploce Exclusive OR (55) RXOR

This instruction forms the Exclusive OR function off and A as described for the
previous instruction and also replaces the original j by the Exclusive OR function.

Operation . k Space y b j

RXOR NORMAL ' REPLACE CLASS Bb NORMAL

Example:

RXOR,U LABEL 55 0 2 0 01234

4.9.12. MOT (52) NOT

This instruction will clear selected bit positions of the A register to zero. A 1
bit in an operand bit position clears the corresponding bit position in the A
register.

Operation k Space y b j

NOT NORllAL ' READ CLASS Bb NORMAL

Ezample:

NOT,W LABEL,86 52 0 3 6 01234

4.9.13. Replace NOT (56) RNOT

This instnaction clean selected bit positions of the A register. The bit positions
tllat aN cleared are determined by the presence of 1 bits in the corresponding
bit positions of the operand. After the NOT operation is performed, the result ls
retained in the A register and is also stored in the storage location from which
the operand wu obtained.

Operation k Space y b j

RNOT NORMAL ' REPLACE CLASS Bb NORMAL

Example:

RNOT,L LABEL.,SKIP 56 11 0 01234

4. 9.14. S.lectlve Su Its ti tut. (53) SSU

This instruction replaces the contents of selected bit positions of the A register
with the content of corresponding bit positions in an operand. The bit positions
selected for replacement are determined by the presence of 1 bits in the corres
poading bit positions of the Q register.

64

UP-4133
Rev. 1

4
UNIVAC 494 ASSIMILER aSCTIONI ~

Operation k Space y b j

ssu NORMAL '& READ CLASS Bb NORMAL

Example:

SSU,X 11000 53 0 4 0 11000

4.9.15. Replace Selective Substitute (57) RSSU

This instruction replaces the contents of selected bit positions of the A register
with the contents of selected bit position• of the operand. The bit positioaa that
will be replaced are determined by 1 bits in the corresponding bit positioaa of the
Q register. After the selective substitute operation is performed, the result is
retained in the A register and is also stored in the location from which the
operand was obtained.

OperaUon k Space y b j

RSSU NORMAL .. REPLACE CLASS Bb NORMAL

Example:

RSSU,LX LABEL 57 0 5 0 01234

4.9.16. Appllcotloa of Lo9icol Instructions

The uses of logical instructions are varied. An individual example is meaningless
unleBS aeen in its context. The portion of codin1 presented below is designed to
add two numbers in Fieldata code to produce a sum in Fieldata code.

MASK
ADJ

6060606060
5252525252
LQ,W FDl (1)
ANQ, W ADJ (2)
AQ,W FD2 (3)
LLP,W MASK (4)
LSAQ 30D (5)
LSQ 270 (6)
OR,W MASK (7)
SA NQ, W FDSUll (8)

65

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTIOH1

As an example: FD 1 = 12345 and FD2 = 1234.

The result will be 24690 (FDSUM). The following operations are performed:

(1) The first number is entered in the Q register.

(2) An adjusting value (ADJ) is subtracted from this number, and

(3) the second number is added to the first number as follows:

6162636465 (FDl, in Fieldata)
5252525252 (ADJ)

0710111213
6162636465 (F02, in Fieldata)

7072747700 (Contents of Q register)

(4) The logical product of the contents of the Q register and the operand MASK
is formed and entered in the A register as follows:

111000 111010 111100 111111 000000 (Q)
110000 110000 110000 110000 110000 (MASK)

110000 110000 110000 110000 000000 (A)

(5) The contents of A and Q are interchanged by a 30-bit left shift of AQ, and

(6) the resulting contents of Q are shifted to account for a carry &om one
Fieldata digit to the next. The result of these operations appears in Q
as follows:

000110 000110 000110 000110 000000

(7) An OR operation, and

(8) a storage of AQ results in the sum of the two Fieldata numbers as follows:

111000 111010 111100 111111 000000 (A)
110000 110000 110000 110000 110000 (MASK)

111000 111010 111100 111111 110008 (A)
000110 000110 000110 000110 000000 (Q)

110010 110100 110110 111001 110000 (FDSUM) _..,._ _,,,._ -- -- ---
62 64 66 71 60 (24690 in Fieldata)

66
PAGEi

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SltCTIONI

4.10. PSEUDO-OPS

The term "pseudo-ops., refers to that group of instructions which are actually
specific variations of a basic instruction. A pseudo-op is a facility offered by
the UNIVAC 494 Assembler to the programmer. whereby often-used instructions
can be source coded without j and k designators and with implicit operands. This
feature is similar to the single-ops of UNIVAC 494 SPURT. Each pseudo-op
occupies one word of memory.

PAGltl

Pseudo-ops fall into two classes - data transfer and linkage pseudo-ops. Although
the NOP (No Operation) pseudo-op is technically a data transfer pseudo-op, it
merits description as a linkage pseudo-op because of its many applications in this
area.

4.10.1. Data Transfer Pseudo-Ops

The pseudo-ops of this group have already been described in 4.3 and are listed
here (Table 4-7) for reference purposes together with their counterparts in
UNIVAC 494 SPURT.

494 SEE 494
ASSEMBLER SECTION SPURT

ZB 4.3.4 CL•B n
ZQ 4.3.8 CL•Q
NQ 4.3.9 CP•Q
NA 4.3.11 CP•A
ZA 4.3.12 CL•A
sz 4.3.14 CL•Y

To&le 4-7. Doto Tron•ler P•eudo-Op•

4.10.2. Linkage Pseudo-Ops

Linkage pseudo-ops are used for block and subroutine control and comprise the
NOP, ENTRY, and EXIT pseudo-ops.

4.10.2.1. NOP Pseudo-OP

The NOP pseudo-op (see 4.3.S) conesponds to the NO-OP of UNIVAC 494
SPURT. Applications of the NOP in subroutine linkage include its use as:
(1) a logical switch to alter program flow; (2) a furnisher of arguments to
a called subroutine; (3) an entry point of a subroutine. The following examples
illustrate these uses.

67

UP~133
Rev. 1 UNIV AC 494 ASSIMILER

Example as logical switch:

SWITCH2 NOP

LA,W

SA,W

SWITCHX J

SWITCHX

SWITCH2

OUT

Eumple as araament list:

SLJ SUBR
NOP SOD
NOP 10-A
NOP B

4
81tCTION1

In this eumple, each of tbe NOP'• contai.na data in the rigbtmoat portion of the
word which caa be aa an arpment in subroutine SUBR. When control ia returned
to the instruction followin1 the SLJ in9traction, the NOP'• act•• a "fall-through"
sequence, aad con~l will actaally be returned to the fint inatnaction followiJlg
the laat NOP.

Esample aa entry point:

SUB RN NOP A

J,L SUBRN

The retam adclreaa la represented by A.

68

UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER •1tCTION1 It.

4.10.2.2. ENTRY and EXIT Pseudo-Ops

The ENTRY and EXIT pseudo-ops ,are the standard entrance to, and exit from,
a subroutine. Each of these pseudo-ops is a special form of the Jump instruction
(see 4.6.1). The difference between the two is that a k deslpator of 0 is generated
for the ENTRY and a k designator of l for the EXIT.

The ENTRY mnemonic is the first line of the subroutine and, therefore, should have
a label which is the name of the subroutine. The jump to a subroutine is the SLJ
instruction (see 4.6.3) which places the retum addresa la the rightm011t half
(lower half) of the computer instruction generated by ENTRY.

An EXIT pseudo-op can appear wherever an exit from the subroutine is desired.
More than one EXIT can be used in a subroutine if alternate patha are present.
The computer i.astructioa generated will refer back to the retum address that was
placed in the computer address associated with ENTRY. The use of j deai1aatora
is permitted.

LABEL OPERATION y

name ENTRY none

OPERATION y

EXIT none

Example:

CHKINPUT ENTRY

EXIT

SLJ CHKINPUT
(retum addresa)

j

none

j

see
4.6.1

Computer Code

02244

02277

04322
04323

6100000000

6101002244

6500002244

69

UP-4133
Rev. 1

5
UNIVAC 494 ASSEMBLER SECTION• PAGEi

5. ASSEMBLY DIRECTIVES

5.1. GENERAL

5.2.

Symbolic assembly directives direct and control the assembly processor just as oper
ation codes direct and control the central processor. Directives are represented by
mnemonics written in the operation field of a line of symbolic coding. Their uses are
varied: to equate expressions; to adjust the location counter value; to offer the pro
grammer special controls over the generation of object coding. Directives are pro
cessed as encountered by the assembler.

Some directives do not cause generation of object code while others cause generation
of more than one line of object code. Some directives may appear anywhere within an
assembly while others are limited to PROC's and FUNC's. Those directives which are
limited to PROC and FUNC directives are discussed in the next section (Section 6).

The directives, discussed in this section, not limited to PROC's and FUNC's are:

• EQU (Equate) • BLOCK-DATA

• RES {Reserve) • XREF

• LIT {Literal) • EDEF
• FORM (Format)

• EXPRESSION
• START

• INPUT or INPUTFORM
• END

• LET
• OLD (Double Length Data)

• UTAG
• UNLIST

•DO • LIST

• COMMON

EQU (EQUATE)

The EQU directive equates the label {in the label field) to the value of the expression
or item in the operand field.

This value may be referenced in any succeeding line by use of the label equated to
it. If a label is to be assigned a value by the programmer, it must appear in the label
field of an EQU line before it is considered defined. Only then may it be used or
referenced in subsequent lines of symbolic coding. If it is referenced prior to the
EQU line ht which it was equated, the label is considered undefined.

1

UP-4133
Rev. 1 UNIVAC '94 ASSEMBLER

Ezample:

T3
Tl

EQU
EQU

LA
LA,l

300
0500

Tl
T3,B2

11 0 0 0 00500
1101 2 00036

The EQU directive does not permit redefinition of a label. Thus,

A EQU A+2

is invalid since it involves redefinition of a label.

5.3. RES (RESERVE)

5
SSCTIONI ,

The RES directive may be used to create work -areas for data or to specify absolute
location counter positioning to the assembler. If a label is placed on the coding line
which contains a RES directive, the label is equated to the present value of the lo
cation counter, which is in effect the address of the first reserved word. Its immediate
effect is to increment (or decrement) the controlling location counter by the number
of words specified by an item or ezpression in the operand. The RES directive may
not be used as the first code·generatin& statement of a program.

Ezample:

TABLE RES
SA,W

SOD
TABLE+ 5

The SA instruction will store the contents of the A register in the sixth word of the
area reserved for TABLE.

5.4. LIT (LITERAL)

The LIT directive defines a class of literals which are placed under the control of a
specific control counter. Only one LIT directive is allowed under each control counter.
The directive may have a label.

Use of the label with a literal will place the literal generated in the table of literals
associated with the control counter current at the time the related LIT directive was
encountered. The origin of the literal table follows the last coding line of the spec
ified control counter. Duplicate literals are discarded in each table, but may exist in
separate literal tables.

Through the use of LIT directives, a number of separate literal tables can be created.
In the absence of a LIT directive, all literals will be placed in the literal table under
control of location counter zero. The entries in the label field of a LIT directive com·
ply with the mies of labeling.

If a literal table which is not under the control of control counter zero is required, a
LIT directive is used. If a LIT directive bas no label, all literals which are not pre
ceded by a label will be placed in the literal tible designated by this LIT directive.
There may be only one LIT directive i.n a program which does not have a label asso
ciated with it.

2

UP-4133
Rev. 1

s
UNIVAC''' ASSEMBLl!R S llC TION.!.

If a LIT directive has a label, all literals to be placed in this literal table must be
preceded by the label associated with this LIT directive.

Example 1:

LA,3 :OS;

PAG...l_I

The octal literal 0000000005 will be placed in the literal table controlled by counter
zero.

Exampltf 2:

$(3) LIT
LA,W :OS;

The octal literal OOOOOOOOOS will be placed in tbe literal table controlled by counter
three.

Example 3:

$(3),BILL LIT
LA,3
LB,W

:SD;
2,BJLL:OlOO;

The octal literal 0000000005 will be placed in the literal table controlled by counter
zero. The octal literal 0000000100 will be placed in the literal table controlled by
counter three.

S.S. FORM (FORMAT)

The FORM directive is a means of describlnc a special word format deaiped by the
user. Thia word format may comprise fields of variable length {within the word). The
length in bits of each field is defined by the user through expressions in the operand
field of a FORM line. The value of each expreaaion specifies the number of bite
desired in its respective field.

The number of bite specified by the sum of the values of the operand expressions
cannot exceed 30 (the size of a UNIVAC 494 word). The aHembler uses the values
of the operand expressions within the FORM line to create a control pattern that
dictates a word format.

A reference to the word format is accomplished by writing the label of the FORM
directive in the operation field followed by a aeries of expressions in the operand
field which specify the value to be inserted in each field of a generated word. A
reference to a specific FORM label will always create a word composed of fields in
the same format. Of course, the contents of the fields may vary according to the
expression values in the referencing line.

3

UP-4133
Rev. 1 UNIVAC '94 ASSEMBLER I UCT>ONo 5 I 4

Example:

1 I NS TR F RM 6,3,3 ,3, 15

2 I NS TR 014,0 4,0,05000

The relocatable instruction that will be generated alongside the second line will be
14 0 4 0 05000.

5.6. START

The START assembly directive defines the starting line entry point of a program
portion. No label is used with this directive. The operation field is START; the
operand field is the label of a line to which control will be transferred.

Example:

5.7. END

The characters END in the operation field signal the end of an assembly. This
end-of-assembly indicator may be omitted, but such a practice is not recommended.
When this directive is omitted, the required OMEGA •ENO will indicate the final
source card of an element.

UP-4133
Rev. 1

PAGIEt
s UNIVAC 494 ASSEMBLER SIECTION1

5.8. OLD (DOUBLE LENGTH DATA)

AA

B B

cc

OD

The OLD assembly directive permits a two-word literal to be specified by one line
of coding. The assembler will generate the literal and assign it to two consecutive
memory locations. A label may be used, if required. The operation field is OLD. The
operand is the literal and may be an octal, decimal, floating point, or internal decimal
(Fieldata) value, as shown in the following:

DLD 4177364 3 2 1 7 6 6 .. 2

ADDRESS A A STORES 0000041 7 7 3

AO OR ES s AA+ 6432176642

O LO 5368709120

ADDRESS 8 8 s T 0 R ES 0 00 0 000 000

ADDRESS 8 8+ 1 .. 0 0 0 000 00 0

D L 0 1 6 3 8 4 • 0

ADDRESS cc STORES 2 0 1 7 40 000 0

ADDRESS CC+ 1 0 0 0 0 000 000

D L D 6 6 6 I

ADDRESS DD STORES 6 0 6 0 606060

ADDRESS DD+ 1 6 0 60666666

5.9. UTAG

The UT AG assembly directive enables division of a computer word into upper and
lower halves. Any valid expression, constant, or variable can be supplied for the
upper and lower portions. The assembler will evaluate each and generate the resultant
values as the upper and lower portions of the word. This directive is particularly use
ful for the preparation of jump tables.

A label may be used, if required. The operation is UTAG. The operand consists of two
subfields, each of which may be a valid arithmetic expression or a constant. The value
of the first subfield is stored in the upper portion of the computer word; the second, in
the lower portion. A maximum of 15 bits is available for each portion.

5

UP-4133
Rev. l s

UNIVAC .49.4 ASS!MBLER PAGIEI SIECTIONI

Examples:

TABLE UTAG ABLE

THE GNED ADDRESSES

•

IN THE SUBFIELDS

VALUES UT AG D+ Q U + 1 0 D A 1 + C .4

CH EXPRESSION WILL

BE SUBS Tl TUTEO N SUBFIELDS

S.10. DO

The DO directive is used within a procedure or function to generate a specified
line of coding a number of times. The operation DO is followed by at least one
blank ud then the expression which conditions the number of times a line of
coding is to be generated. This expression is followed by one blank. a comma,
aad then the coding which ls to be done. If there are no intervening blanks
between the comma and the first character of the second operand entry, the
symbolic line to be produced is assumed to have a label. The line of coding
•sociated with the DO directive starts with the first column following the
comma as though this first column were the first column of a separately written
line.

If the DO directive is labeled, the value of the label will be N the Nth time the
line is coded. ne label serves as a counter and not as a reference name. A
typical example is the following:

The "I" is set to one immediately after the first operation DO and is available for
use only in the coding line to be done. This "I" cannot be obtained outside the
coding to be done unless the coding stores it (as in the example shown) at a point
where it can be obtained.

6

UP-4133
Rev. 1 UNIVAC 49' ASSEMBLER lll:CTIONt

5

The following illustrates the use of a DO directive with an arithmetic, relational,
and/or logical condition determining coding of the instruction:

TAG 1 DO A<2 L A I w D 0 G

I F A I S L E SS TH A N 2 I G E ERATE THE

LINE OF CODE

DO A<N**3

IF THE RELATIONA

EXPRESSION IS TRUE,THE INSTRUCTION

.. AGIU

~ GENERATED. FOR EXAMPLE LET N-170.

F A•O THE INSTRUCTION s GENERATED

I NS TRUCTI ON

5.11. COMMON

The COMMON directive defines an area of core to be shared by two or more in
dependently compiled program units (main program, PROC's, and FUNC's),
permitting these program units to communicate with each other. The format of
this directive is:

• Label field:

optional

• Operation field:

COMMON

• Operand field:

number of a location counter (0 through 31)

The COMMON directive must appear in each program unit which is to share a
common. area. If the label field contains a normal label subfield (up to ten
characters, starting with an alphabetic character), the common area so defined
is termed a labeled common block: if not, it is a "blank common block". The
control counter assigned to a common block by the COMMON directive in one
program unit need not be the same as the control counter assigned to the same
block in another program unit. However, within a program unit, once a control
counter has been assigned to a common block, all instructions and data under
that control counter will form part of that common block. Similarly, all instructions
and data to be shared by that common block must be governed by that control
counter assigned in the COMMON directive as shown in the following example:

7

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

5
IECTIONI

8 L K 4 C 0 flit 0 H 2 5

8 L K 5 CO flit 0 N 2 3

PROGRAM
UNIT 1

2 RES D

R 9 D ADV

8 L K 5 1 7

$(17) ,LIL3 RES 1 2 D

s 3) H CR t 1

LB W 8 G

R 3

R I , W LIL3+8D

As can be seen from the example, all references to a given block, within the
same program unit, use the name assigned to that block by the RES directive.
Identification of the common blocks among program units is accomplished by
the label (or blank) assigned to that block in the COMMON directive. In this
example, if program unit 1 and program unit 2 are the only references affecting
the contents of the labeled common block BLKS, this common block will
consist of 120 words - the first nine will contain zeros; the tenth, 1; the
eleventh, 2; the twelfth, 3.

8
PAGl:t

UP-4133
Rev. 1

5
UNIVAC 49' ASSEMBLER SllCTIONI PACllll

5.12. BLOCK-DATA

This directive creates an element that is recognized by the UNIVAC 494 Operating
System as a FORTRAN-compatible element (see "UNIVAC 490/491/492/494 FORTRAN
IV Programmers Reference," UP-4087 (current version)). This element may not con·
lain EDEF /XREF references or a start address.

OPERATION

BLOCK-DATA

5.13. XREF (EXTERNAL REFERENCE)

The XREF lists those symbols that are used in this assembled portion of the program
(program element) but are defined in another program element. Since references to
these symbols cannot be satisfied at assembly time, they must be satisfied {that is,
the symbols must be defined) at collection time by a corresponding EDEF (see 5.14).
No XREF may appear as a program label (excluding labels for PROC, FUNC, DO, and
FORM).

The number of symbols in the list is limited only by card continuation requirements.
A program element may contain more than one XREF,

Format of the XREF directive is:

• Label:

none

• Operation:

XREF

• Operand:
list of symbols, each separated from the next by a comma

An alternate method of specifying external references is to pass on all undefined
unsubscripted symbols to OMEGA to be satisfied at load time. However, the use of
XREF's is preferred because it avoids the confusion caused by U (undefined) flags
(see Appendix D). The use of the U option on the •ASM card (see Appendix F) will
insure that only those symbols listed as XREF's will be considered valid external
references. If a reference in this element cannot be satisfied by a label within the
element and is not listed as an XREF, the U (undefined) flag will be generated
(when the U option is used). ·

9

UP-4133
Rev. 1

5
UNIVAC 49.C ASSEMBLER SKCTION1 flACllCI

5.14. EDEF (ENTRY DEFINITION)

This directive lists all labels which ase defined within this program element and may
be used by other program elements. This directive, together with the XREF directive in
the other program element(s), provides linkage between program elements. During the
collection process of the operating system, each XREF is satisfied by an EDEF. Tbe
number of symbols in an EDEF directive is limited only by card continuation require
ments. More than one EDEF directive may be used in an assembled program element.

Format of the EDEF directive is:

• Label:
none

• Operation:
EDEF

• Operand:
list of labels, each separated from the ne:ir:t by a comma

An alternate method of specifying entry definitions is the use of an asterisk
immediately after a label. This convention is derived from the use of entry points
in PROC's and FUNC's (Section 6).

Example:

EDEF
TAGl NOP
TAG2 NOP

TAG1,TAG2,TAG3 .LINE 1
.LINE 2
.LINE 3

Error Flag
u

The error flag was generated because, in this particular e:ir:ample, TAG3 has not
been used in a source statement of this program element.

5.15. EXPRESSION

This directive permits changing conventions in soUtce coding constants used in
e:ir:presaions. Two different versions of this directive are available. In the first,
the operand field contains the characters SLEUTH; in the other, the characters
BITARRAY.

10

UP-4133
Rev. 1

5
SSCTION1 UNIVAC '94 ASSEMBLER

5.15.1. Expression SLEUTH

Thia directive changes the method of specifying constants as follows: if the constant
has a leading 0 (zero), it is assumed to be an octal number; if the leading digit
is different from 0, the number is assumed to be a decimal number. If a string
of digits is preceded by 0 and contains an 8 or 9, an error flag will be printed
(see Appendix D).

Format of the directive is:

• Label:

none

• Operation:

EXPRESSION

• Operand:

SLEUTH

Example:

Sgurcs Code Generated Code

EXPRESSION SLEUTH

+ 10-010 3000000002

11

UP-4133
Rev. 1

5.15.2.

5
UMIVAC '94 ASSEMBLER SECTION a

12
PAGE•

Expression BIT ARRAY

This directive permits partial word values to be used as items within assembly·
time expressions.

Example:

Source Code Generated Code

EXPRESSION BIT ARRAY

A EQU 01010 0000001010

c EQU 1 0000000001

LB BS,2 00000 12 s 0 0 00002

LB 86,3 00001 12 6 0 0 00003

+ A 00002 0000001010

+ W(Tl+BS) 00003 0000000002

+ L(T2-(C• l)+B6) 00004 0000000012

+ A+W(Tl+BS)-L(T2-(C*l)+B6) 00005 0000001000

Tl + 0 00100 0000000000

+ 1 00101 0000000001

+ 2 00102 0000000002

T2 + 0000,010 00200 00000 00010

+ 0111.011 00201 00111 00011

+ 0222,012 00202 00222 00012

+ 0333,013 00203 00333 00013

UP-4133
Rev. 1

5
UNIVAC 494 ASSEMBLER SECTIONI

5.16. INPUT OR INPUTFORM

The INPUT directive and the INPUTFORM directive are alternate names for the
directive which is used to alter the format of source cards to be assembled.

Format of the directive is:

LABEL 'b OPERATION 'b OPERAND

none INPUT or
INPUTFORM

exp1 ,exp2,exp3 ,exp4,exp5

where expl through exp5 are expressions which specify the following:

Expression expl specifies the start of label field.

Expression exp2 specifies end of card.

Expression exp3 specifies the continuation column.

Expression exp4 specifies start of sequence number.

Express ion exp5 start of operation field (fixed format).

Example:

CARD COLUMNS
1

1 _jo
~PUTFORM l,71D,72D,73D,12

ABCDEFGH~ ~A,W BOB

---- ~ - ~ -
5.17. LET (GENERAL)

7 8
OJ 134567890

ij"oooooo1

boooooo2

poooooo3 - -

PAGEi

The LET directive is actually a variation of the EQU directive (see 5.2) but its use
is confined to variables which may require redefinition. It is intended to avoid the
possible confusion that may arise when an EQUated variable is redefined, causing
generation of a possible error indicator. Although use of the LET directive is not
confined to PROC's and FUNC's, it is most generally used within a procedure or
function. For this reason, it is described in detail in 6.4.3.

13

UP-4133
Rev. 1 5

Sl:CTION1 UNIVAC'" ASSIMBLER

5.18. UNLIST

This directive completely suppresses output listing after the line containing the
UNLIST directive is printed.

OPERATION

UN LIST

5.19. LIST

PAGl:I

This directive will allow normal printout of the aaaembly listing from (and including)
the line on which the LIST directive occurs.

OPERATION

LIST

14

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER 6

lltCTIONI

6.1. GENERAL

6. PROC, FUNC, AND
ASSOCIATED DIRECTIVES

PAGEi

PROC and FUNC directives are used to define often-used sequences of coding which
are not necessarily identical but are similar enough so that repetition of the coding
requires only the insertion of parameters or arguments when the sequence is called.
For both directives, the lines of coding representing the definition must precede the
reference (or references) to the sequence and this coding is saved when encountered.
The PROC directive is different from the FUNC directive in that the PROC directive
usually generates lines of object code at assembly time at its point of reference to
be executed at object time. The FUNC directive is executed entirely at assembly
time and stores its results into the program at this time. The FUNC directive cal
culates a value when referenced and does not cause generation of object code. For
purposes of this discussion, the PROC (procedure) directive will be described first
and the FUNC (function) directive will be described afterwards in terms of its diff
erences.

The first line that defines a procedure is the PROC directive. The last line must be
an END line to indicate its logical termination. Between the PROC directive and the
END line, the special following directives may be used (in addition to the universal
directives described in Section 5):

• NAME

• GO

• LET

1

UP-4133
Rev. 1

Sll:CTlONa
6 UNIVAC 494 ASSEMBLER PAGE•

6.2. PROC (PROCEDURE) DIRECTIVE

The PROC directive is the header for a procedure that is terminated by an END line.
The following is a simple procedure:

LDZER* PROC

L A I 0

END

Lines 1 and 3 are the limits of the procedure. LDZER is the label by which this
PROC may be referenced. The asterisk after the label is necessary, to indicate
that the label LDZER can be used to call this PROC. Each time this PROC is
called by a source line containing the word LDZER. the code provided by line 2
will be generated. Thus, the sequence:

START LDZER .CALL LINE
SA DOG,82
LDZER .CALL LINE

STOP J KAT

is equivalent to (expanded source code):

START LA,0
SA DOG,82
LA,O

STOP J KAT

and each time the PROC LDZER is called, the A register is cleared.

6.2.1. PROC Directive Format

The label, operation, and operand of the PROC line are as follows:

• Label:

2

Any normal unsubscripted label is acceptable as identification of the PROC sequence.
Every PROC line must be labeled. This label can be used as an entry point for the
sequence if the label is concluded with an asterisk.

• Operation:

PROC

• Operand:

Some expression or item may be given to indicate the number of lines of code that
will be generated as a result of a call on this procedure. This value may only be
supplied if the number of words generated will always be the same and only if the
PROC contains no forward references. (See 6.2. 7 for example.)

UP-4133
Rev. 1 6

UNIVAC 494 ASSEMBLER PAGEi llECTIONI

6.2.2. END Directive

The END directive signals the logical end of a sequence. In a procedure, its format
is as follows:

• Label:

None required since it serves no purpose.

• Operation:

END

• Operand:

None since it serves no purpose. (In a function, the operand field provides the value
of the function,)

6.2.3. Symbolic Lines Within Procedure

The formats of the lines within a procedure (exctfpl NAME directives) are as follows:

• .Label:

3

Any normal label may be employed; however, its definitions will be restricted to the
bounds of the PROC, unless it is an entry point. Any label may be available immediately
outside the bounds of the PROC that contains it by appending an asterisk to the label;
this label is then referred to as a reference point. Multiple reference points are per
missible and multilevels are permissible. A label is raised one level for each asterisk
following it. An asterisk following the label of a PROC or NAME directive indicates an
entry point.

• Operation:

Any mnemonic, meaningful special character, label of a PROC, or directive is permissible.

• Operand:

Any operand appropriate to the operation code is acceptable. The operand may also be
taken from the Call line by means of a paraform. {Paraforms are described in 6.2.5.)

UP-4133
Rev. ·1

IECTION1
6 UNIVAC 494 ASSEMBLER

The following example shows nesting of PROC's and use of multilevel reference
points:

r-----A•
r---B•

etc.

PROC

PROC

r-C• PROC

PAGIEI

I W*** + 1

I x•• + 2
I Y* + 3
I
I Z +4

·CARRIES 3 LEVELS

·CARRIES 2 LEVELS

·CARRIES 1 LEVEL

·KNOWN HERE ONLY

6.2.4. Call Line

l-------END

C·

+Z

+ W,X,Y

'----------END

B·
+ Y, Z

+ w. x
-----------·END

A·
+ X, Y, Z

+W
etc.

·UNKNOWN

·KNOWN

·UNKNOWN

·KNOWN

·UNKNOWN

·KNOWN

A Call line is a symbolic line of code which uses an external label of a procedure
in its operation field as an entry point into a procedure. (An external label of a
procedure is u asterisked label of a PROC or NAME line. Any other asterisked
labels are "reference points".) It informs the assembler that generation and
modification of a procedure (or part of a procedure beginning at an entry point)
should begin at this point. The Call line provides any required parameters for use
in the procedure. A Call line must not appear in the program until the procedure
baa been defined by the PROC and END directives, including any optional NAME
directives. The format of the Call line is as follows:

• Label:

Any normal label is acceptable. It refers to the first line of code generated, unless
an asterisk is located in column 1 of some part of the procedure. The asterisk is a
flag indicatin1 that the label is to be applied on this line of code.

• Operation:

4

An entry point label of a procedure. (An entry point label of a procedure is an asterisked
label prefixin1 a PROC or NAME directive within the procedure.) Additional subfields
(separated by commas) may be added to furnish parameters to the procedure called.

UP-4133
Rev. 1 6 5 UNIVAC 494 ASSEMBLER PA•l:1 Sl:CTIONt

• Operand:

Any number of fields and subfields, in any sequence, is acceptable. Fields are separated
by one or more blanks not preceded by a comma. The use of an asterisk preceding a
subfield is explained in the evaluation of paraforms. An example, for a hypothetical
procedure entry point °COMPAR" is shown in Figure 6-1.

FiflUre 6-1. Typlcol Procedure Coll Lin ..

6.2.5. Paraforms

A paraform (parameter reference form) is the means whereby an operation within
the procedure can obtain values of parameters used in the operation from the Call
line or entry point. This enables the same procedure to be used many times with
the Call line or point of entry furnishing a different set of parameters each time
the procedure is called.

A paraform appears in the operand portion of the symbolic coding within the pro
cedure. It consists of the name of the procedure called, followed by a set of
parentheses. The parentheses enclose a double coordinate reference system ex
pressed as n,e. The n refers to the nth operand field of the call line; thee, to the
eth subfield within that field. A typical paraform, using the same hypothetical pro
cedure COMPAR is shown in Figure 6-2, where the reference ls to field 3, subfield
1 of the operand of the Call line. This paraform can be used with the first of the
two Call lines shown in Figure 6-1, since the second has only one field in its
operand portion.

Figure 6-2. Simple Paroforrn

In addition to the simple paraform just described, paraforms may be written in dif
ferent forms to extend their applicability. The general rules regarding their inter
pretation are presented in Table 6-1 for a hypothetical procedure beaded by a
PROC directive with the label L. (All directives used within the procedure not
previously described, such as the NAME directive, are described in 6.4.)
If a paraform is not supplied, its value is zero.

UP-4133
Rev. 1 6

UNIVAC 494 ASSEMBLER IECTION1

If the paraform is it is given the numerical value equal to
written as, or In the
form

L the number of fields in the operand of the Call line.
If entry is by a NAME directive, this value is in-
creased by 1.

L(O) the total number of subfields, minus l, in the
operation field of the Call line. If the entry
point is a PROC directive, this value is 0.

L(N) the number of subfields of the Nth field in the
operand of the Call line.

L(O,O) the operand of the NAME line used for entry into
the procedure. If the entry point is a PROC dir-
ective, this value is 0.

L(O,C) the Cth subfield after the entry point label in the
operation field of the Call line.

L(A,*B) l (on) if an asterisk precedes subfield B of
field A in the operand of the Call line; if no
asterisk, the value 0 (off).

To&I• 6-1. E11oluolion o(PROC Parolorms.

To illustrate use of these special parafonns, two Call lines are shown.

The procedure to which these call lines refer is

PROC X Y , SEE MOTE BELOW

MAME 8

MAME 0

AMY PARAFORM

LE BELOW MAY

6
PAGE•

UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER Sl:CTIONs

The following table shows the values assigned to different paraforms within this
procedure.

If the Call line is and the paraform is then its value is

A 7,G p 2
P(O) 0
P(l) 2
P(l, l) 7
P(l,2) G
P(l,3) 0
P{l, *2) 0 (off)
P(0,0) 8
P(0, 1) 0
P{O,*O) 0 (off)

B, *14 8, *13 6 p 3
P(l,2) 13
P(2, 1) 6
P(l, *2) 1 {on)
P(2,2) 0
P(O) 1
P(0,0) 10
P(O, l) 14
P(0,2) 0
P(0,*1) 1 (on)

6.2.6. Expanded Procedures

The following example illustrates the use of the NAME and GO directives.

1 p PROC

2

3 LA w DOG

.. G 0 F I N I S H

5 S T 0 R E * NAME

6 S A w K A T

7 F I N I S H NAME

8 END

7
PAGl:t

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

6
SECTION: PAGE•

Line 1 provides a label P which is the name of the procedure, but cannot be used
to call the procedure. It must be used, however, when referencing parameters; this
method is explained later.

Lines 2 and 5 contain the NAME directive and provides the labels: LOAD and
STORE. Since each label is flagged, each may be used to call the procedure.
These are external definitions or entry points.

Line 4 contains a GO directive; the operand of a GO must always be the label
of a NAME line or PROC line. If the label appears in the same procedure as the
GO, it may be flagged with an asterisk. Hit appears in a different procedure, it
must be flagged. lt is not possible to reference an entry point which has not yet
been encountered by the assembler. The effect of the GO directive is to skip over
lines 5 and 6.

Assume the following calls:

S TA R T LOAD

S T 0 RE

LOAD

F I N I S S T 0 R E

This would be equivalent to (expanded source code):

START LA w O O G

A w KAT

LA w DOG

F I N I S S A w KAT

Notice that each call generates only that code which is encountered in the procedure.

It is possible to provide parameters on the line calling the procedure, thus:

ST AR T L 0 A 0 ST AR T

STORE START

LOAD START

END STORE START+2

8

UP-4133
Rev. 1

1

2

3

4

5

6

7

8

6
UNIVAC 494 ASSEMBLER 5ECTION1

It is also possible to select the desired parameter via the parameter construction:

p PR 0 C

L 0 A D * NAME

LA I w P(l,1)

GO BEND

STORE* NAME

SA w P(l,1)

BEND NAME

END

The construction P (1,1) on line 6 is a paraform. P is the label of the procedure and
is the common re£erence. The coordinates in parentheses indicate field 1 of the
operand, and subfield 1 or field 1, respectively.

This procedure call when expanded will appear as:

S T RT w ST ART

SA W ST AR T

LA W ST ART

E N D S A W START+2

6.2. 7. Efficient Use of Procedures

When a procedure is used many times, e.g., as a code generating method in compil·
ation, care should be taken in its construction to avoid time consuiring operations.
Several simple devices may be used to advantage in this regard.

• Parameters

If a parameter to a procedure is referenced many times, efficiency is increased by
equating the parameter to a simple label. (This device should not be used, however,
if the parameter may be preceded by an asterisk in the call, as the equivalence
will not retain the indirect flag. However, when the same parameter preceded by
an asterisk is called indirectly via several nested paraforms, each reference
includes the asterisk.)

• Call lines

Use of the period to terminate each call line saves time by stopping the scan
of the line for possible parameters.

9

UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER SECTION• P"GE1

• Procedure levels

Where practical, the depth of nesting of procedures should be limited. Use of
distributed NAME lines and the GO directives may be helpful in decreasing the
depth required.

• Specification of the number of object lines to be generated

A feature has been included to greatly reduce assembly time for procedures
which produce a predetermined number of lines of object code. This number
will be indicated as the operand field in a PROC line, as follows:

Procedures which define an external label, or which make a forward reference
to a label defined within the procedure, may not use this feature. Where possible,
procedures should be constructed to take advantage of this feature.

• Summary

PROC's may be nested, i.e., they may be included within each other. Nesting
may be physical or it may be implied.

Physical nesting means that the procedure is physically located within the
bounds of another procedure.

Implied nesting means that although a procedure is not physically contained
within another, it may be temporarily considered so by implication, i.e., its
reference line is contained within another PROC.

The primary purpose of nesting procedures is to restrict labels should they inter
fere with labels from other procedures, or the main program. Another purpose is
to re-equate labels for homogeneity. Nesting allows simpler block building
techniques but requires longer assembly time.

The Conditional DO statement allows symbolic lines to be created or negated.
The GO may also be employed to include or skip lines of code.

The NAME directive allows alternate entrances into a procedure. This is a method
for qualifying a procedure.

PROC's employ all directives. Since procedures allow the presence of all dir
ectives their power is enhanced. Of special value are the NAME, GO, DO, and
EQU directives.

PROC's are reflexive and may refer to themselves.

10

UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER S£CTION1

• Restrictions

While restrictions may help develop unique situations, they may also hinder
general methods. Therefore, careful analysis should precede their usage.

Labels are local to procedures; they must be flagged to make them more
universal by levels.

Nesting further restricts the locale of labels of inner procedures, but
enlarges the locale of labels of the outer procedures.

The redefinition of labels is a restrictive process since it destroys pre
vious values. It may not always be intentional.

6.3. FUNC (FUNCTION) DIRECTIVE

PAG£1

The FUNC directive enables the user to obtain a value at assembly time contingent
upon a set of parameters. The function is a device which will cause certain prede
termined lines of coding to be saved when encountered during assembly and, when
referenced subsequently during the assembly, a computation will be made according
to this coding. The evaluated quantity is then substituted for the reference call with
in the program.

The function is similar to the procedure in that the lines of coding representing the
definition must precede any call (reference point) and this delineation of code is
saved when encountered. The function is different from the procedure in that a value
is calculated when a function is referenced and, unlike the procedure, no object lines
of coding are ever generated. The procedure usually generates lines of object code
at assembly time at its point of reference to be executed at object time. The function
executes entirely at assembly time and stores its results into the program at this time.

The general rules of definition are similar to the PROC. A FUNC directive must start
the function area. This line must have an unsubscripted label which may be flagged.
If this line is an entry point into the function, it must be flagged. The delineation of
code is terminated with an END directive which must have an operand. This operand
field will be an expression whose evaluation will result in the proper quantity being
substituted into the reference point in the program.

NAME lines may be alternate entry points into the fonction. The labels associated
with these NAME lines must be flagged in this event. NAME lines may also be used
as local reference points within the function. Forward references should be avoided.

6.3.1. Function Nesting

When a function is nested it is not necessarily assembled when the outer code is
called; assembly occurs only if the function has been specifically called. Until
a function has been called, no information contained in it, except the label and
code level of its entry points, is available to the assembler. Following a call,
information is available according to the standard code level rules.

11

UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER PAGIE1 SECTION1

6.3.2. Function Calls

A function is called by coding one of its entry points in any operand expression. This
differs from a procedure which is called from the operation field. Parameters for the
function may be specified by the programmer by following the call with a paren
thesized single list of items or expressions. The items may not be logically forward
referenced.

6. 3. 3. Function Para forms

Parameters supplied with a function call can be substituted in programmer-designated
places within the function coding through the use of parafonns. Unlike PROC. how
ever, FUNC paraforms are, at most, sinaly subscripted labels, whose primary is the
label of the FUNC directive.

The paraforms of a function are evaluated as shown in Table 6-2, where F is
the label of the FUNC directive.

If the paraform is it is given o numerical value equal to
written as, or in the
form

F the number of parameters (items or expressions)
supplied with the call, plus 1 if the entry
line is a NAME directive.

F{O) the value of the expression, if any, in the
operand field of the NAME directive used for
entry into the function. If the entry line is
the FUNC directive, this value is 0.

F(K} the Kth expression in the parameter list
supplied in the call. If less than K
expressions are supplied, this value is 0.

Table 6-2. Evaluation ol FUNC Paralorms

Note that F is a true implicitly defined subscripted label, whose value is derived
from the call line and the method of call. Paraforms differ from true subscripted
labels in one respect: when a function is terminated, a paraform that was referenced,
but not otherwise defined,is given the value of zero. Additional subscripted labels
whose primary is the label of the FUNC directive may be defined within the function
and will affect the appropriate previously defined paraform, if not externalized.
Paraforms of a function are available to the function called by the FUNC.

An example of the function is the case where a certain average calculation is made
throughout the coding. The programmer should keep in mind that this calculation could
have been made by hand and is not dependent upon the execution of the object
code. If "a" is the number of first type objects and "b" is its unit price and "c"
is the number of second type objects and "d" is its unit price and it is necessary
to calculate the average price of the combined number of objects, a mathematical
expression which would calculate this value would be:

ab+ cd
Average cost =---

a + c

12

UP-4133
Rev. 1 6

UNIVAC '9' ASSEMBLER SKCTIONI

If at assembly time, a, b, c, and dare known to have the values 1, 2, 3, and 4,
respectively, the calculation can be accomplished by a FUNC directive as shown
in Figure 6-3.

AVGCOS* FUN C I I I I I I I I I I I I I I

A (1) E Q U VG C 0 S '*AVG COS

B (1) E Q U AVGCOS (3) *AVGCOS

c (1 E (1)

D (1 E Q U VG C 0 S (1) +AVG COS

END c (1)/D(l)

PAOEI

ALTHOUGH THE CALCULATI 0 N c ULD BE

D 0 N E I N 1 S TE p , I T I S ORE EXP EDI·

E N T T 0 us E SEPARATE EXPRES S I 0 N S

AND THEN COMBINE

LB 6 AVGCOS 2

ABOVE IS CALL WH

ATION OF VALUE AT ASSEMBLY TIME

Figure 6-3. Simple Function

13

UP-4133
Rev. 1

1

2

3

4

5

6

7

8

9

10

11

12

13

u

6
UNIV AC 4'94 4SSl!MBLER PAGIU •l:CTIONI

The next example shows a function which bas a procedure embedded within it. The
problem is to find the square root of the largest square which is less than or equal
to a given number. Although it is not the most elegant method, it illustrates coding
features of interest to the programmer.

SQRT * FUN C

A () E u 0

B (1) E u 0

c • PR 0 C

* E Q U A(1)+2* (1) + 1

E u 8(1)+1

ND

NAME

0 SQRT(l) > A (1 GO D

END 8 (1) -

+ SQRT(64) F I RS T CALL

+ 2*SQRT(13) SECOND CALL

END

The calculation is based upon the equation (a+-1)2 = a2 + 2a + 1. Line 6 supplies
successive a's while line 5 contains successive a2•s. Lines 1 through 11 are the
function with a nested procedure which, in tum, contains a nested DO. The first
call upon the procedure, line 12, will produce the object code 0000000010. The
second call upon the procedure, line 13, will produce the object code 0000000006.
Line 14 terminates the assembly or program.

6.4. DIRECTIVES ASSOCIATED WITH PROCEDURES AND FUNCTIONS

This section describes the following directives, which are associated with procedures
and functions: NAME, GO, and LET.

6.4.1. NAllE Directive

The NAME directive has three functions: to act as a local reference point within
a procedure or function, to act as an alternate entrance into a procedure or function,
and to assign a value to a procedure. It must be located between the PROC (or FUNC)
directive and its associated END line. Those variables in the procedure or function
defined previous to the NAME directive are considered undefined. The operand
portion of the NA ME can be used to supply a parameter, P(0,0), to the procedure
or function. (See Tables 6-1 and 6-2 for evaluation of paraforms, and 6.4.4 for
an example.)

14

UP-4133
Rev. 1 UNIV AC 494 ASSEMBLER 6

SIECTIONt

6.4.2. GO Directive

The GO directive is used within a procedure or function to transfer control of the
assembler to the line whose label is in the operand field of this directive. This
operand field must be one of the following:

PAGll:I

• The label of a NAME directive in the same procedure. If this is a forward transfer,
the label must end with an asterisk (in the NAME directive).

• An external label of a NAME directive of any procedure.

• The label of a PROC or FUNC directive which must be suffixed by an asterisk
if in another program unit.

Examples:

A simple example is the following:

G LABEL1

LABEL1 NAME

Another example is shown in 6.2.6.

15

UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER PAGEi SECTION:

6.4.3. LET Directive

A LET directive is generally used within a procedure or function (see 5.17). It is
used lo assign (and reassign, if required) values to assembly variables which may later
require reassignment. The variables upon which it may operate must not have been
defined elsewhere (e.g., by an EQU directive). The format of the LET directive is
LET V = e where V is a LET-defined variable and e is any expression, as in the
following:

p PROC I t I

D 0 G • M AME 0 5

L E T A= 0

B AC K MA ME

LA 0 CAT

S A w D 0 G A + 2)

L E T A .. A + 1

D 0 A < 2 5 G B AC K

D 0 G 1 • HA ME

L ET B .. 1

B K 1 HAM E

LA w PC AT + B

s A w p (1 B

L E T B ... B + 2

D O B < 2 0 GO B K 1

E ND

16

UP-4133
Rev. 1

Appendix A
SECTIONt UNIV.AC 494 .ASSEMBLER

APPENDIX A. ABBREVIATIONS AND

SPECIAL SYMBOLS

The following is an explanation of special symbols and abbreviations used in text:

SYMBOL
OR MEANING

AHREYIATIOM

- dinrction of dala transfer.

(a) !he conlenls of a location or reclsler, "a".

(a)n lhl' n lh bit or (a).

(a)L lhe lower 1 S bits of (•).

<11>u the 11pper 15 bits or (a).

A 30-bit A re1isler (acc11m11la1or).

AQ 60-bll 1e1isler mad" 11p of A and Q.

11 blank.

b desi 11,11ator three·bil dnipalor In an instruction word lndicatinc an index
recis1er whose contents ue added to the y designator to forni
tbl' effecttve address or erfecllv., oprrand. y. of H instruction
(also ternied "base address" or "bssl' operand address").

B index re&iBIH.

eb index reaister determined by b dea1gnalor.

Bl lnde• re&iller determined by j desl1nator

BCD binary coded decimal

CP(•) ones complement of the contenl• of x.

f designator six-bit function des11ns1or In instruction word.

c des11nator six-bit desigutor in 77 instruction word which supplemHI• the
r duipator.

IFR Internal function resister

l designator three-bit designator in instruction word which usually defines
a condition for slclppin& the NI.

k designator three-bit dealpalor in lnslructlon word for defining so11rce of
operand and/or deatlnalion of result.

LP 101ical producl.

nines complement vain formed by subtracting each dee Ima I digit from the number 9.

onl'a complemenl val11e formed by subtracting e.ch bil from the number 1.

NI next sequential Instruction.

p Program register-containing address of ne-xt Instruction duria1
e-xec111ion of current ln11lruction.

Q 30-bit Q resister

RB re-locatable binary.

RIR relative Index regist.,,.

tens complement v.lue formed by adding l to the nines complement (performing
all carries).

y desicnator lower 15 bitll or an instruction word.

y designator value formed by addition of co111ents of Bb toy lo be used
either as eUective aper.ad or relative (relative to RIR) addreaa
or operand.

Y designator operand, hoin whatevl'r sourcl' derived.

To&I• A-1. Symbols ond A&Meviot/o"s

1
PAGEt

UP.4133
Rev. 1 UNIVAC 494 ASSEMBLER

Appendix B
llECTIONs

APPENDIX B. FIELDATA AND CARD

CODES FOR CHARACTER

REPRESENTATION

Fl ELDA TA HIGH CARD
FIELDATA HIGH CARD CODING SYMBOL CODE SPEED CODE

CODING SYMBOL CODE SPEED CODE
(OCTAL) PRINTER (OCTAL) PRINTER

V (Mastef Space) 00 (I 7-8) IRl&flt Parenthesis 40) 12-4-8
[(Lett Bl acJcet) 01 [12-5-8 -(Minus) 41 - 11
l (Ri&ht Bracket) 02 l 11-5-8 +(Plus) 42 t 12
• (Pound) 03 II 12-7·8 <.-: (Less Than) 43 •, lNi-8

/!,.(Caret) 04 :\ 11-7-8 ={Equal) 44 ~ 3-8
(Blank) 05 (Space) (Stank~ >(Greater Than) 45) 6-8
A 06 A 12-1 & (AmpefSandl 46 & 2-8
B 01 B 12·2 S (Dollat) 47 s 11-3-8

c 10 c 12·3 • (Asterisk) 50 • 114-8
D 11 D 12-4 ((Lert Parenthesis) 51 I 0-4-8
E 12 E 12-5 ~!Pet Cent) 52 ... 0..5-8
F 13 F 121 : (Colon) 53 : 5-8

G 14 G 12-7 ? (Question) 54 ? 12-0
H 15 H 12-3 ! (Exclamation) 55 ! 11-0
I 16 I 12-9 , (Comma) 56 . 0-3-8
J 17 J 11·1 \(Slant) 57 \ o-&-8

K 20 K 11-2 0 60 0 0
L 21 L 11·3 l 61 1 1
M 22 M 11-4 2 62 2 2
N 23 N 11-5 3 63 3 3

0 24 0 11~ 4 64 4 4
p 25 p 11-7 5 65 5 5
Q 26 Q 11-8 6 66 6 6
R 27 R 11-9 7 67 7 7

s 30 s 0-2 8 70 8 8
T 31 T 0.3 9 71 9 9
u 32 u ()-4 _.(End Statement) 72 '(Apos.I 4-8
v 33 v 0-5 ; (Semicolon) 73 . 11-6-8

w 34 w ().6 I (Vir&ule) 74 I 0-1
x 35 x 0-7 • (Petiod) 75 . 12-3-8
y 36 y 0-8 J:I (Lozenge) 76 0 0-7-6
z 37 z 0-9 Not Used 77 l 0-2-8

NOTE: (NP) Sllnlfi•• lhar the print••• will aubarlrul• • •pac• for lhi• character.

Tobie 8-1. Fielc/ara and Cord Codes for Charocter Rapresenfotiop

1

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER Appendix C

SEC:"rlON1 PA CJ Et

APPENDIX C. ASSEMBLER I SPURT
FUNCTION CODES

The following table (Table C-1) lists both Assembler and SPURT mnemonics by function
code.

F MNEMONIC DESCRIPTION ASSEMBLER SPURT

01 Right Shift Q RSQ RSH*Q

02 Right Shift A RSA RSH*A

03 Right Shift AQ RSAQ RSH*AQ

04 Test A, Test Q, Test R TA, TQ, TR COM*A*Q•AQ

05 Left Shift Q LSQ LSH*Q

06 Left Shift A LSA LSH*A

07 Left Shift AQ LSAQ LSH*AQ

10 Load Q LQ ENT*Q

11 Load A LA ENT*A

12 Load B j LB Bj ENT*B· J
14 Store Q SQ STR*Q

15 Store A SA STR*A

16 Store B j SB B j STR*Bj

20 Add A A ADD*A

21 Subtract A AN SUB*A

22 Multiply M MUL

23 Divide D DIV

24 Replace A + Y RA RPL*A+Y

25 Replace A- Y RAN RPL*A-Y

26 Add Q AQ ADD*Q

27 Subtract Q ANQ SUB*Q

30 Load Y + Q LAQ ENT*Y+Q

31 Load Y- Q LANQ ENT*Y-Q

32 Store A + Q SAQ STR*A+Q

33 Store A - Q SANQ STR*A-Q

34 Replace Y + Q RAQ RPL*Y+Q

35 Replace Y - Q RANQ RPL*Y-Q

36 Replace Y + 1 (Increment Y) RI RPL*Y+l

37 Replace Y - 1 (Decrement Y) RD RPL*Y-1

Tobie C-1. Assembler/SPURT Fu"c:t/on Codes (port 1 ol 3)

1

UP-4133
Rev. 1

F

40

41
42

43
44

45
46

47
so
51

52
53

54

SS
56

57
60

61

64

65
70

71
72

7701

7702

7703
7705
7706

no1
nio
7711
7712

UNIVAC 49' ASSEMBLER

MNEMONIC DESCRIPTION ASSEMBLER

Load Logical Product LLP

Add Logical Product ALP

Subtract Logical Product ANLP

Test Logical Product TLP

Replace Logical Product RLP

Replace A t Logical Product RALP

Replace A - Logical Product RANLP

Store Logical Product SAND

OR OR

Exclusive OR XOR

NOT NOT

Selective Substitute ssu
Replace OR ROR

Replace XOR RXOR

Replace NOT RNOT

Replace Selective Substitute RSSU

Jump on Test JT

Jump J

Store Location and Jump on Test SLJT

Store Location and Jump SLJ

Repeat R

Test B and/or Increment TBI B j

Jump on B and Decrement JBD B.
J

Floating Add FA

Floating Subtract FAN

Floating Multiply FM

Floating Divide FD

Floating Point Pack FP

Floating Point Unpack FU

Decimal Test OT

Decimal Add DA

Decimal Subtract DAN

To&le C-1. Assern&ler/SPURT Funefion CrxJ.s (port 2 ol 3J

PAGl:1
2 Appendix C

Sl:CTION1

SPURT

ENT*LP

ADD*LP

SUB*LP

COM*MASK

RPL*LP

RPL*A+LP

RPL*A-LP

STR*LP

SEL*SET

SEL*CP

SEL*CL

SEL*SU

RSE*SET

RSE*CP

RSE*CL

RSE*SU

JP

JP

RJP

RJP

RPT

BSK*Bj

BJP*Bj

FADD

FSUB

FMUL

FDIV

FPP

FPU

DTEST

DADD

DSUB

UP-4133
Rev. 1

F

7713

7714

771S

7716

7717

7721

7722

7723

7724

7725

7726

7727

7730

7731

7732

7733

7734

7735

7736

7737

7740

7741

7742

7743

7744

774S

7746

7747

7751

7752

77S3

7754

775S

7756

77S7

7771

7775

UNIVAC 494 ASSl!Mal.ER

MNEMONIC DESCRIPTION ASSEMBLER

Decimal Test Equal DTE

Decimal Complement AQ ON

Decimal Add with Carry DAC

Decimal Subtract with Borrow DANB

Decimal Test Less DTL

Double Precision Load DPL ..
Double Precision Add DPA

Double Precision Test Equal DPTE

Double Precision Complement DPN

Double Precision Store DPS

Double Precision Subtract DPAN

Double Precision Test Less DPTL

Scale Factor Shift SFS

Character Pack Lower CPL

Character Pack Upper CPU

Convert Lower DCL

Convert Upper DCU

Character Unpack Lower CUL

Character Unpack Upper cuu
Execute Remote ER

Unconditional Jump LBPJ BO

Load Bl with contents P register and Jump LBPJ Bl

Load B2 with contents P register and Jump LBPJ 82

Load 83 with contents P register and Jump L8PJ 83

Load 84 with contents P register and Jump L8PJ 84

Load BS with contents P register and Jump LBPJ BS

Load 86 with contents P register and jump LBPJ 86

Load 87 with contents P register and Jump L8PJ 87

Logical Right Shift Q LRSQ

Test and Set TSET

Masked Alphanumeric Test Equal MATE

Executive Return EXRN

Logical Right Shift A LRSA

Logical Right Shift AQ LRSAQ

Masked Alphanumeric Test Less MATL

Load B-Worker Registers LBW

Store 8-Worker Registers SBW

Tahle C-1. Assembler/SPURT Funcflon Codes (part 3 of 3)

Appendix C
S&CTION1

SPURT

OCME

DCP

DAD DC

DSUBB

DCML

DPENT

DPADD

OPCME

DPCP

DPS TR

DPSUB

OPCML

SFSH

CREL

CREU

DCVL

DCVU

CRSL

CRSU

XQT

EBJP*BO

EBJP*Bl

EBJP*B2

EBJP*B3

EBJP*84

EBJP*BS

EBJP*B6

EBJP*B7

LRSQ

TSET

MACE

EXRN

LRSA

LRSAQ

MACL

EWB
SWB

3
PAGl:t

UP-4133
Rev. 1

Appendix D

UNIVAC 494' ASSEMBLER SIECTION1

APPENDIX D. ERROR FLAes

Dl. GENERAL

D2.

The following error flags may appear in the listing at assembly time.

FLAG INDICATION

u Undefined symbol
D Doubly defined
R Relocation
L Level
T Truncation
E Expression error
J Illegal operation
p Parameter error

U (UNDEFINED)

If a symbol bas not been defined in its own program element, the U flag will result,
even though the symbol may be listed as an external reference (in an XREF directive)
Thus, this flag may not always indicate a logical error (see 5.13).

03. D (DOUBLY DEFINED)

The D flag will result when a label has been defined more than once in a program
element. In some cases, this may be desired by the programmer and the LET directive
avoids any such confusion (see 5.17).

04. R (RELOCATION)

The R flag indicates that a relocatable item in an expression bas lost its relocatability
property due to an_ arithmetic operation. (See 3.5.3 for those operations causing the R
flag.)

OS. L (LEVEL)

The L flag indicates that some capacity of the assembler has been exceeded. Possible
causes of the L flag are:

• nesting of PROC's and FUNC's beyond the maximum of 16

• nesting of DO-loops beyond the maximum of 8

1

•

UP-4133
Rev. 1

Ap_pendix D
SECTION• UNIVAC 494 ASSEMBLER

06. T (TRUNCATION)

The T flag indicates that a value is too large for its destined field. As an example,
in the source-coded line ALPHA

ALPHA +'A','B',l,2,670

the decimal 67 is too large for the rightmost six bits of the word, and the T flag
will be generated.

07. E (EXPRESSION)

PAGEi

The E flag indicates an invalid expression. Possible causes are {but are not restricted
lo) the inclusion of a decimal digit in an octal number (e.g., 080) or a fractional ex
ponent with the shift exponent operator (e.g., A*/3.50).

08. I (ILLEGAL)

The I flag indicates that the first source coded subfield does not contain the name
of a directive, nor the name of an available procedure, nor a legitimate mnemonic.
The one exception to this is the case where the operation field starts with a plus
or minus sign to indicate data.

09. P (PARAMETER)

The P flag indicates faulty specification of argument(s) for an operation. For example,
the pseudo-op ZA W would result in a P flag because no operand (argument) is re
quired for the instruction to clear the A register.

2

UP-4133
Rev. 1 PAGEi

Appendix E
ICCTION1 UNIVAC 494 ASSEMBLER

APPENDIX E. OPERATION FIELD
HIERARCHY

A symbol in the operation field may be defined in different areas of the UNIVAC 494
Operating System. The following sources are searched, in the order shown, until the
symbol is defined. As soon as it is defined, the search ends.

The sources are:

• FORM labels (see S.S)

• Assembler directives

• PROC entry points

• Assembler mnemonics

• SPURT directives

• SPURT mnemonics

• SPURT macro labels

• SPURT poly-ops

• system operators (OMEGA packets)

l

UP-4133
Rev. 1

Appendix F
UNIVAC 49' ASSEMBLER Sl:C:TION1 PAOll:t

APPENDIX F. #ASM OPTIONS

The following table lists available options on the •ASM card (see "UNIVAC 494 Operating
System Programmer Reference Manual, .. UP-7504 (current version)).

OPTION

B

c
D

F

G

H

I

L

M

N

0

p

Q

R

s

u

w

x
y

z

FUNCTION

Inhibit basic mnemonics

Check sequence numbers

Delete sequence numbers from listing

Inhibit PROC's and FUNC's

Allow extended language features

Reverse normal operation field hierarchy

Use single spaced listing

Prial relocation information

Print outline of UNIVAC 494 Assembler Reference Manual

Suppress listing except for errors

Inhibit OMEGA packets

Punch deck

Absolute assembly

Produce cross referencing

Place SDEF's (Symbol DEFinitions) with RB element

Only symbols listed in XREF directives are valid external references

Suppress error printout

Abort job on errors

Do not indicate errors in TOC

Abort task on errors

1

I UNIVAC I

UP--4133 Rn. 1

	0000
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	A-01
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	F-01
	xBack

