
TECHNICAL BULLETIN

SLEUTH ASSEMBLY SYSTEM

Programmers Re-Ference

Firsf: Edif:ion

April, 1962

TABLE OF CONTENTS

I. INTRODUCTION
A. General Description •

B. Program Types • .
C. Program Structure.

II. ASSEMBLY LANGUAGE FORMAT AND SYMBOLOGY
A. Coding Form . • • . • . .
B. Number and Symbol Representation

III. COMPONENTS OF A LINE OF CODING.
A. General Description .

B. Actual Values
C. Special Characters .••.
D. Function Codes
E. Tags and Labels .
F. Designators ••

IV. MACHINE AND GENERATIVE INSTRUCTIONS
A. Machine Instructions

B. Generative Instructions .

V. DECLARATIVE INSTRUCTIONS

A. Definition •..•.
B. Program Specification .

C. Equality .•...•.
D. Segmenting Instructions .
E. Table Definition
F. List Spacing Instructions.
G. Selective Jump Switch Definition

VI. MACRO-INSTRUCTIONS . . .

A. Purpose •

.
.

.
B. Defining a Macro-instruction
C. Generating a Macro-instruction . .
D. Coding a Macro-instruction

SLEUTH i

Page

1

1

1

2

6

6

7

9

9
9
9

10

1 1

1 5

17
17
22

27

27

27

28
29
31
34
35

36
36
36

37
37

VII.

VIII.

IX.

X.

XI.

XII.

XIII.

XIV.

CORRECTIONS .
A. Purpose
B. Coding .
C. Precautions

ACCIDENTAL SYMBOL DUPLICATION . .
A. Purpose
B. Method

ASSEMBLY LISTING
A. Title Line ..
B. ROC Auxiliary Information
C. Body of the Listing

RELOCATION
SEGMENTATION

INPUT/OUTPUT
A. General
B. Requirements for Programming Input/Output
C. AOC. . . • .
D. DIRECT ROC
E. EXEC ROC •

SPECIAL DATA TABLES
A. $ PARAM
B. $ERROR

LIBRARY SUBROUTINES .

A. General Information
B. Assembly Time Inclusion
C. Load Time Inclusion
D. Creating a Subroutine

· . .
·

·

xv. SAMPLE PROGRAM
A. Statement of Problem ..
B. Method of Solution

SLEUTH ii

Page

42

42

42

43

45
45
45

47
47
47
47

48

49

50
50
50
51
55
55

58
58
58

60

60

60
60

62

63
63
63

Page

APPENDIX A. FIELDATA CHARACTER SET = w e s s 70

APPENDIX B. COMPUTER INSTRUCTION REPERTOIRE 71

APPENDIX C. ASSEMBLER-DEFINED (SOFTWARE) FUNCTIONS. 74

APPENDIX D. EXTERNAL INPUT/OUTPUT FUNCTION
REPERTOIRE

APPENDIX E. ASSEMBLER-DEFINED SYMBOLS

APPENDIX F. MODIFIABLE FIELDS

INDEX •

SLEUTH iii

75

77

78

79

I. INTRODUCTION

A. General Description

SLEUTH (Svmbolic La.n2'uagE for the llNIV AC® 1107 THin
Film Computer) is-an~adv~nced symbolic Assembly System
which provides the prograIT@er with a powerful and effi
cient tool for writing programs for the 1107 Computer.
It accepts instructions containing mnemonic function
codes and designators, and symbolic operand addresses,
and translates these instructions to an absolute or re
lative form ready for loading and execution.

SLEUTH is a two pass assembly system. The first pass
is devoted to' merging corrections wi th the source code
input, developing a dictionary of symbolic aSSignments,
and doing a major portion of decoding each symbolic in
struction. The second pass uses the output of the first
pass and the dictionary to complete every instruction.
It produces the desired binary output, a listing, and a
corrected source code if requested.

A set of declarative functions is provided to instruct
the Assembler in the special details of assembly which
include:

Definition and generation of macros
Insertion of Library Routines from a Library Tape
Equation of symbols
Protection against duplication of symbols
Corrections to the source code
Deletion of any predetermined set of instructions

which is primarily designed for, but not limited
to, deletion of debugging aids a t the completion
of code checking.

B. Program Types

Three types of binary output can be produced by the As
sembler, of which tWD are in relocatable binary form,
or Relative Object Code (RQC). Absolute output (AOC)
can also be obtained for a completely defined program.

Programs which perform input/output operations internal
ly, and which are to be run serially, may be in the
Direct I/O form of ROC (DIRECT ROC). Relocation or re
assignment of addresses, and modification of peripheral
facilities is possible at load time.

SLEUTH 1

Another form of ROC output is produced for concurrent
processing under the control of the Executive System,
using the latter's I/O Functional Routines for all
input/output operations, and allow"ing the Executive
System to make all assignments of memory and I/O units.
This form is called EXEC ROC.

Figure 1 is a system chart illustrating the various
types of SLEUTH output and the manner in which the as
sembled programs are loaded and run.

C. Program Structure

A program may consist of one or more segments. Each
segment of a program consists normally of an instruction,
area, and a data area, in opposite banks of core stor
age.

Data tables, primarily defined for ROC type programs,
are included in the data area. A data table is a group
of data words which may be considered by the program as
an entity. Each entry within a data table bears a fixed
relationship to the first entry and may be referenced
via this first,entry. Each data table is independent of
any other except when specified to begin at the same lo
cation as another. The data tables, although they may
be included within anyone segment, are common to all
segments of a program and may be referenced by any seg
ment.

For ROC type programs each data table is modifiable in
length at load time. A length tag is given to the table,
and a minimum length is assigned during assembly. At
load time a new length can be specified, depending on
the particular data to be operated upon during the run.

Figure 2 illustrates the most complex form of program.
Note that data table number 4 has been specified to be
gin at the same location as data table number 2.

SLEUTH 2

EXEC ROC

EXECUTIVE
SYSTEM INCLUDING
CLAMP AND I/O
FUNCTIONAL ROUTINES

/'

/'
/'

SYSTEM FLOW CHART

/'
/'

/'
/'

SLEUTH

ASSEMBLER

/
/'

CLAMP DIRECT ROC
RELATIVE LOAD

ROUTINE

FIGURE 1
SLEUTH 3

LISTING

CLAMP
AOC LOAD
ROUTINE

SEGMENT SEGMENT

1
#2

1

BANK A

BANK B

I

#1
#2

PROGRAM STRUCTURE

SEGMENT

#3

#3

SEGMENT
-------- r-------.

1

1

1

I
I
1----- ----
I
I

#n

---------,""----...1

~ -----------------------------------

~ -------------------------------- -

I -, -------------- ------- -----------

I t
I t

I # 2 t
t I
1 I
1 ___ - _____ ,

#4
'-----_.1---

G]

#3
------------ - -----------------------

FIGURE 2

SLEUTH 4

DBANK
AREA

DTA8LE
AR A

INSTRUCTION
AREA

DATA
AREA

t 3:HllDIJI

J--

I------

I------

I------ ----------1

I-----

I--- ---- .---.-.

I--- -----.-----.-.--------------------

--------.~-

I----- ----------.--.. ---- -.----

I--- -.-----------.--.--.-------.-

I---

I----- .~---------- ---.----.---.--

1------------. ----.------------------------

I---- ----------------.-...

I-----

I---- -------------.-- ----.-------------- - .. -

I--- -------. -.-- ----------.-.--.----.-- .----- .----.---

I--- ----.---.-----------.-----.-... -----.---.---

1--------_.---. ---------.---.--.--.. --.-----.-.

I--- ---------.---- ---.------.--.---.--.--.-.------

1--------_._._----------------------------.--------------

I---- -.-----------------.--------

I--- ----.--.--- --- --.-.--- -.-.---.-.--.----------... ---.-.-------

I--- -.---- - .. -----.--- --.---.--.... ----.--.. ----.---- .-----.------.. - - -----.. -

I----- ----.--------- .----.--.---.-----.----.----.-----.---

S1.N3WWOJ L£ sa131:J 8ns

S3~"d-- :!O -- 3~Vd 31.Va ~3WW't~~Q~d

W~O:l ~NlaOJ ~3'8W3SSY La.,., @OVJ\INn

I I I I I

--'--'--11--1-

r-rrT-
I-I-T-T~

-'-1-1'-1-\

l
----r-r----r--r- I --

-T1-r--r .. T

I I I TT

~~i-r--r"-
I '-,---r--r-r-T--

II I I I
I----r:------r--r --,-
---l-'·-:-----r-r
I---r--r-',T-r

I I I

--r-r I I

IT I

Lill

III

ill I I I

~-T'I'II
-il I I I I

-T--rl-rll

------rT--, I

I'll I I I
IT""" I I I .,.

IT·-....-.--r.-
h'-T-TII--T

'iT--iT-r--1 t-r.---......-r-T·-
I--,.---r--- r-- r--

~
-l---II-r -r -

I I I T--r

I----r-r--r-r-
i--r-T-r- T'-

I I

--T r--r-
---r --]--I--T-r .. -

[

I-T---r-r ,

,-r--T-'-r-T-
--r-II"-I--'

I--l~ I I r-
--,T--,T--i-

~Trrl-l
L-r -T-T--r--i

-T- r r--r-T -T

~i-r-Ir-II L1'\

~- r -,,- T~T ~
-II-.-r---T p

[I:I

~TT' ,- ul
I I I I I I

-lrl~IT-

ir Tr' I -r
irill-r

1111-.

rrl-r'r .• -

11'---'
-T-r--.--r---, ... r-
- T r r r--I r

~IIT-I-'r-

SI I vI NQI1.JNn:J 61 81l ~v~

WVM~OMd

NOI!'W'I0410:> ONYI A,.I •• t to NOI';'.IO

~ 7"""11. • • -

II. ASSEMBLY LANGUAGE FORMAT AND SYMBOLOGY

A. Coding Form

Programs to be written with the SLEUTH Assembly System
will be coded on the UNIVAC 1107 Assembler Coding Form.
Figure 3 is a reproduction of this form.

The form is divided into 4 major headings: Tag, Function,
Sub-fields, and Comments.

1. Tag field: The Tag field can be blank, or coded with
a Tag or Label. The coded Tag will be defined by the
instruction, and should therefore appear once, and
once only, in the Tag field. A method of protecting
against accidental duplication of tags is described
in Section VIII.

A Tag or Label can be written anywhere in the Tag
field; right or left justification is not required.
Blank spaces are ignored by the Assembler; the follow
ing coding of Tags will generate the same value:

XYZM/j.
/j.XYZM
/j.X/j.Y/j. Z

20 Function field: The Function field will contain one
of the Function codes described in Section III.

3. Sub-fields: The Sub-fields represent the data neces
sary to describe the objective of the Function code:
what is to be acted upon and how.

Each of the sub-fields must be separated by a comma,
except where specified otherwise in context. For
each Function, the order of fields is fixed. How
ever, for many Functions, the use of certain sub
fields may be unnecessary or optional. For example,
indexing mayor may not be desired. The following
rules must be observed when omitting fields from
the coding:

a. To omit any field(s) from the right, the field(s)
and the preceding comma(s) should be omitted.

b. To omit other fields, while preserving the order,
only the separating commas are coded.

SLEUTH 6

Co For a sub-field within an instruction which re
q~ires that it be coded, any number of + or -
signs may be coded in the field to inform the
Assembler that the omission of meaningful coding
is intentional. The field will then be gener
ated as zeros, without causing SLEUTH to print
an error indication.

4. Comments: Any line of coding may have a short des
criptive comment associated with it. Any of the
FIELDATA characters can be used., The COlMlents can
start at any point after the colon. A line of
coding can consist of a Comment only, to separate
and identify portions of the program. A blank line,
for spacing, is a valid use of this application.

B. Number and Symbol Representation

Numbers and symbols are represented in SLEUTH source
code as combinations of the characters of the standard
FIELDATA set shown in Appendix A.

1. Numbers

Numbers may be coded in decimal or octal notation.
Either form may be written whenever an integer value
is to be coded. SLEUTH will not accept direct coding
of binary numbers.

Decimal integers are coded with any combination of
the decimal digits 0 to 9.

Octal integers are coded with any combination of the
octal digits 0 to 7, and are identified as octal by
prefixing them with a dollar sign.

Rational decimal numbers, written with either an ac
tual or implied decimal point, are used in the gene
ration of floating point, and of fixed point scaled
who le number s •

Examples of numerical coding are given below, as
they might appear in the sub-fields portion of a cod
ing line:

1357986
+1357986

- $246753
-99,$32
9986.243,2
998,-2,7

Positive decimal integer
Positive decimal integer
Negative octal integer
Mixed half words
Floating point number
Fixed point scaled number

SLEUTH 7

A negative number must be preceded by a - sign. A
positive number may be preceded by a + sign, or left
unsigned. When a sign is specified, the magnitude of
the generated field is checked by SLEUTH to insure
that a position is available for the sign bit. If
no sign is specified, no check is made. This becomes
especially important in the generation of fractional
words, which will be discussed in detail in Section
IVo See Figure 4.

CODED GENERATED CHECKED RESULT

31 or $37 011 111 No OK

+31 or 437 011 111 Yes OK

32 or $40 100 000 No OK

+32 or 440 100 000 Yes Error

FIGURE 4

2. Symbols

A symbol is some combination of from one to six al
phabetic (A to Z) and numerical (0 to 9) characters.
Each symbol must contain at least one alphabetic
character.

Some symbols are internally defined by SLEUTH, or
by other System components, e.g., Designators, while
others are the inventions of the programmer, e.g.,
Tags and Labels. Symbols defined by SLEUTH are pre
fixed with a dollar Sign, and a list of these given
in Appendix E.

Symbols can appear in the Tag, Function, or Sub
fields areas of the coding line. Examples of various
symbols are given below:

CONST2 Programmer defined symbol
CONST3 " " "
DATA2A " !l "
A45B " " "
1234K " " "
N5 " " "
EXIT " " "

K " " "
ADD Mnemonic Function Code
EQU Assembler defined Function code

$A3 " II Designator
$L " " Current address Tag

SLEUTH 8

III. COMPONENTS OF A LINE OF CODING

A. General Description

A lin2 of coding is a coxplete source language statement.
It illSY be an instr1J.cticn, a data definitiorl, a communica
tion with the Asse~bler, with the Executive System, etc ••
There Iust be an entry in the F~nction field for each
line of coding, ex~ept where the line consists sDlely of
COITEents; entries in any of the other fields ~ay or may
not be required.

The instruction portion of the line of coding is termi
nated by a colon (:), wbich illay be coded at any point
after the la s t coded fie ld. Even wbere no sub -fie lds are
required, the colon illust still be coded.

Following the colon, a comment explaining the line of
coding may be wTitten. Any FIELDATA characters which can
be printed are acceptable, including a blank space (coded
as D. or uncoded), and the colon. The latter, having pre
viously served its purpose as an instruction terminator,
becomes just another character in the comments field.

A line of coding is not limited in length to a single
line of the coding form, but may be extended by indenting
the next, and subsequent, lines by at least 15 spaces.

Any line may be prefixed by an asterisk (*). Such lines
can be optionally either included in the assembly, or
eliminated as explained in Section VII.

The fields and sub-fields which comprise a line of coding
are made up of various components, which can be classi
fied as:

Act ua 1 Val ue s
Special Characters
Function Codes
Tags and Labels
Des ig na to r s

B. Actual Values

An actual value is a true, signed, numerical q~antity,
and can be coded as a decimal or octal intege~ a float
ing point decimal, or a fixed point scaled number.

C. Special Characters

FIELDATA characters other than letters and numbers are
called Special Characters. They can be punctuation
marks, mathematical symbols, symbolic abbreviations,

SLEUTH 9

or non-printing Typew"riter Operations. A list of these
characters is given below, with a brief note about their
use in coding. A more detailed explanation for each
will be given in context. Special characters not shown
here serve no special purpose in programming but may be
used as part of the comments.

1. Punctuation marks:

Colon

Comma

Di t to mark

Parentheses

Slash

Asterisk

"
()

!

*

Instruction Termination

Separator

Function code repetition

Separator

Separator

Instruction Deletion or h- and
i-field incrementation

2. Mathematical Symbols:

Plus

Minus

Equals

+

=

Positive sign or Tag modification

Negative sign or Tag modification
Equality

3. Symbolic Abbreviations:

Blank

Dollar Sign

Blank Space

Octal number and Designator
Identifier

4. Typewriter Operations:

(Octal Codes) 00 Master Space
01 Upper Case

02 Lower Case

03 Tab

04 Carriage Return

05 Space

77 Backspace

D. Function Codes

The Function code is the primary operator of each line
of coding, and must invariably be present in each line,
except as previously noted.

SLEUTH 10

A ditto mark (") coded in the Function code field can be
used to eliminate repetitive coding of the same instruc
t ion. See Fig ur e 5 .

1 TAG 7 8 9 FUNCTION 14 15 SUB FIELDS (
,SI T,~, I , SUM ·) I L I I I L ·

I I I I I
..

,SUM+l · I I , I I I · ..
,SUM+2 · I I I I I I I I I I I · _I

1 ~ I I I L ! 1 1 L J)
- - ~ / - - - - -

FIGURE 5

There are three types of Function codes discussed in this
manual:

1. Hardw'are: These are mnemonic, symbolic equivalents
of the machine functions. They may also be coded as
octal integers, if desired. A complete list of these
codes w'ill be found in Appendix B.

2. Software: These are Assembler defined operations,
some of which will generate words in the object pro
gram, w'hile others prov ide ins truc t ions to the As
sembler. A complete list of these codes will be
found in Appendix C.

3. Macro-instructions and Subroutine Generatives: These
are either system or programmer defined macro-instruc
tions, or subroutine-generative instructions, and will
be discussed in Sections VI and XIV.

E. Tags and Labels

A Tag is a symbol, not to exceed 6 characters which is
defined by the programmer, the Assembler, or other sys
tem components. The use of Tags is not restricted to
the Tag field; they can also appear in any of the vari
able sub-fields.

Each Tag symbol should be unique. However, since it is
possible that duplication of symbols may inadvertently
occur - for instance, in a problem which is being writ
ten by two or more prograffilliers - a procedure is provided
to prevent such accidental duplication from destroying
the assembly. This procedure will be disc~ssed in Sec
tion VIII.

SLEUTH 11

Tags are classified by SLEUTH by the method employed in
defining them, and special names are used to describe
each type of Tag.

Absolute Tag
Label
Data Table Tag
Data Table Length Tag
Drum Table Tag
Drum Table Length Tag
Segment Length Tag
System Tag
I/O Channel Tag
I/O Access Word Tag
I/O Uni t Tag

1 0 Absolute Tag

1

An Absolute Tag is a symbol which represents an ac
tual value. It can also be equated to another Ab
solute Tag. Before any reference to an Absolute Tag
can be made, it must have been previously defined.
Each value is a signed quantity, with a maximum
value of 223 _1. In the example in Figure 6, MAXM is
an Absolute Tag which the instruction equates to
50000. TOPS is also an Absolute Tag which is equated
to the previously defined Absolute Tag MAXM.

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS f
,M,A'XIMI I I EIQ,U 1 I Sctctaf1 · J •
,T,O,PI SI , ,E,Q,U, , MAXM · / ·
I I I I I , I I III (
L -- I ~"""'_l...l .1 .." - - -

FIGURE 6

2. Label

A Tag appearing as the symbolic address of a word in
the Instruction or Data area of storage is called a
Label. It alw~ys represents a 16-bit positive value
which is the absolute or relative location of the as
sociated word.

SLEUTH 12

1

I I

I I

~J

A line of coding can be referenced by modifying a
Label in the form: Label ± Increment. 1 The incre
ment is a numerical value derived from the algebraic
sum of a combination of integers and Absolute Tags.
The seq~J_ence in "which this combina tion is coded is
not s ignif icant • The resul ting sunl of the bas ic
label and the increment must be a positive value,
although the increment itself may be negative,
positive or zero. Examples of Labels, incremented
and non-incremented, are:

START
STEP A+8
DATA-MODFR
DATA-10+MODFR
DATA+MODFR-10

no increment
± integer
± Absolute Tag
± integer and Absolute Tag
Same in reverse order

A line of coding can be referenced by using the As
sembler-defined Label "$L" to represent the current
value of the location counter, i.e~ the address of
the current instruction. Modification of this ad
dress can be effected in the form: $L ± Increment,
as described above. In the example in Figure 7, if
the contents of arithmetic register A2 are zero,
the next instruction will be found two lines below
the current instruction:

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS J
I~IR, JjP

1
$A2,$L+2 . (I I I I .

I I J 1 1 I I I I (
I I 1 1 11 1 I I)

_1.,...00'" - --

FIGURE 7

3. Data Table Tag-Data Table Length Tag

A Data Table Tag is a Label which represents the
first address of a table named by the Tag. The
Data Table Tag is defined by the declarative Func
tion code DTABLE, and can be equated to another Data
Table Tag. Associated with the Data Table Tag is

lThe character ± is used to indicate that either a + sign or a
- sign may be used in the coding, but the combination ± can
never be coded.

SLEUTH 13

the Data Table Length Tag, which represents the num
ber of storage locations required to contain the
table. The length is defined by equating the Tag to
an actual value or Absolute Tag.

The uses of these Tags will be explained more fully
in the discussion of the DTABLE instruction in Sec
t ion V •

4. Dr~~ Table Tags - Drum Table Length Tags

These Tags are similar to the Data Table and Data
Table Length Tags, except for the fact that the
storage medium is the magnetic drum rather than core.
A further explanation will be found in the discussion
on the MDT instruction in Section V.

5. Segment Length Tag

The IBANK and DBANK instructions (see Section V)
provide for the coding and definition of Segment
Length Tags. The Assembler counts the number of
generated words in each segment, and assigns that
value to the Segment Length Tag. The programmer
must never assign a value to a Segment Length Tag. It
is coded with the same form as a Label.

6. System Tag

A set of System Tags, defined jointly by SLEUTH and
the Executive System, is used in communications be
tween the object program and the Executive System.

System Tags must never be defined by a program. Ab
solJ_te outP'.lt progra:ns, running independent ly of the
ROC Load and Executive Systems, must never use Sys
tem Tags.

7. Input/Output (I/O)Channel Tags

A symbol of 5 characters or less can be assigned
as an I/O Channel Tag. It provides a 4-bit value
for an a-field channel designation in AOC or DIRECT
ROC type programs. Channel Tags are not required
for EXEC ROC type programs, but may be used if it
is desired to refer to the channel.

Further information on the uses of Channel Tags
will be found in the discussion of Input/Output,
Section XII.

SLEUTH 14

8. I/O Access Word Tag

The I/O Access Word Tag is the sy~bolic address of
the input, or outp~t, access control word correspond
ing to the I/O Channel Tag= It is ~sed for Absolute
and ROC Direct programs only.

The I/O Access Word Tag is defined internally by
SLE0TH, and no programmed definition is required.
For each Channel Tag, SLE0TH provides an Input Access
Word Tag and an Output Access Word Tag, identified
symbolically by an I or 0 prefix to the Channel Tag.
Modification of Access Word Tags is not acceptable.

Further information on the uses of Access Word Tags
will be found in the discussion of Input/Output rou
tines, Section XII.

9. I/O Unit Tag

The I/O Unit Tag is a symbol representing an I/O
Unit. Further information on the uses of Unit Tags
will be found in the dis c us s ion 0 fIn put /0 u t put r 0 u -
tines, Section XII.

F • Des ig na tor s

A Designator is an Assembler derined ~ag, and is the
symbolic address of a special register, or a special in
dicator value. There are two types: a-type Designators,
and j-type Designators.

1. a-type Designators

An a-type Designator is defined as the symbolic ad
dress of one of the special registers of the thin
film memory. It can be coded in the a or b sub
fields of an instruction, and will generate a 4-bit
value in the corresponding field of the machine word.
It can also be coded in the u-field, and in this
case will generate a 16-bit octal address.

The programmer may equate a Tag to an a-type De
signator. The coded Tag would represent the Desig
nator throughout the program. A single change in
the definition of the Tag would have the effect of
changing each reference to the special register.

A table of a-type Designators is given in Figure 8.

SLEUTH 1 5

DESIGNATOR VALUE REFERENCE

Decimal Decima 1 Octal

$B0 0 0 Unassigned 2
$B1 -$B1 5 1-15 1-1 7 B Registers
$A0-$A 1 5 12-27 14-33 A Registers
$Q0-$Q3 12-15 14-1 7 Q Registers 3

$R0 64 100 Real Time Clock
$R1 65 1 01 Repeat Counter
$R2 66 102 M Register
$R3 67 103 T Register

$R4-$R15 68-79 1 04-11 7 R Registers

FIGURE 8

2. j-type Designators

A j-type Designator is a symbol representing the ap
propriate value of the j-field of an instruction. It
should be used only as the representation of the j
field value, and never as a tag representing some
other field. A 4-bit value is always generated.

A table of j-type Designators is given in Figure 9.

DESIGNATOR VALUE REFERENCE

Decimal Decimal Octal

$w 0 0 Whole word
$H1 -$H2 2-1 2-1 Half words
$XH1 -$XH2 4-3 4-3 Half words with sign extension
$T1 -$T3 7-5 7-5 Third words
$S1 -$S6 13-8 1 5-10 Sixth words
$UOp 14 16 U -field is act ua lop era nd
$XUOp 1 5 1 7 Same, with sign extension

.

FIGURE 9

2Becomes one of the B Registers with BTR, LBM, TMO instructions.
It is always a legitimate designator for location 0 of film me
mory.

3Ihe Q Registers are the 4 overlapping A and B Registers.

SLEUTH 16

IV. MACHINE AND GENERATIVE INSTRUCTIONS

A. Machine Instructions

1

The general coding format for a machine instruction word
is shown in Figure 10. The use of each of the fields
will be explained below.

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS

.
I 1 1 t 1 I I I I f I J I a,u,b,i .
I

_.1

I I I I I I I I I I

I I I I I I I I I I ~ - -
FIGURE 10

1. Tag (t)

The Tag, if coded, is a Label, and is the symbolic
address of the line of coding.

2 • F unc t ion cod e (f)

The function code is any appropriate function code
of the machine instruction repertoire, Appendix B.
One Assembler-defined Function - JUMP- can also be
considered as a machine instruction. It is equiva
lent to a CSJP instruction, with an a-field value
of zero.

3. Special Registers (a)

The a-field normally represents the film memory
special register involved in a machine operation.
It can be coded with a decimal or octal integer, an
Absolute Tag, or most frequently with an a-type De
signator. The reference can be to any of the A, B,
Q, or R registers as determined by the Function code.

If a Designa tor is coded w'hich is not of the set
called for by the Function code - for exa~ple, a LDB
instruction to be performed in register A1 - the Assem
bler will attempt to generate a valid a-field value,
w'hich mayor may not be the value intended by the

SLEUTH 17

1 TAG 7 8

I I I L I I

I I I I I I

IL IALB~EIL IA

programmer. If a valid value cannot be generated,
an error warning will be printed.

In the examples in Figure 11, the comments refer to
the a-field coding.

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

IJ IU MI PI , EXIT :UNCODED

IC I S I JI PI I,l', E X IT : lERO CODING (SAME AS JUMP)

IS lUI BI I $A3,LOCA : DESIGNATOR FOR A-REGISTER

/
(
I

I I II I I IL 10 1 BI I $B2 CONST : DESIGNATOR FOR B-REGISTER I

I I I I I I IL 101 RI I $R15,99,,$UOP : DESIGNATOR FOR R-REGISTER

I I I I I I IAI 0 1 0 1 I $Q2,ITEM : DESIGNATOR FOR Q-REGISTER

I I I I I I IS I TI PI I COUNT,TOTAL : ABSOLUTE TAG

I I I I I I ILl 01 PI I 13 DATE : DECIMAL INTEGER = A1

I I IL I I ILl DIP I I $15 DATA : OCTAL INTEGER = A1

I I I I I I ILl DIB I I $Al,DATA+5 :A1 =13=B13.GENERATED AS 13

I I I I I I ILIDIP I I $B12,CONSTB :B12=12=AI,l'. GENERATEDASI,l'

I I I I I I ILIDI81 I $Q2,XY~ :Q2=14=B14. GENERATED AS 14

I I I I I I IAIDID I I $Q2,WXYl: : Q2 = 14 = A2. GENERATED AS 2

I I I I I I IL I DIP I I $B3,ABC : B3 = 3 = A? ERROR WARNING

I I I I I I I I I I I :

I I I I I I I I I I I t-... :

- ---- - -

FIGURE 11

4. Operand field eu)

The u-field serves a variety of purposes and the
method of coding is dependent upon the application:

Operand address
Absolute operand
Next instruction
Shift count
Memory lockout indicator
Indirect addressing

SLEUTH 18

\
I
(

J
/
'\
I

.......,

a. Operand Address

In this application the coding in the u-field
represents the address at which the data to be
operated on will be found. It can be coded as
a Label, to represent a core address, or as an
a-type Designator, to represent a film memory
address. Either type of coding can be modified
as described in Section III, paragraph E.2 ..
For Absolute or ROC Direct output programs, an
octal or jecimal integer may be coded. A 16-
bit value is generated in all operand address
applications.

b. Absolute Operand

When the j-field is $n octal 16 or 1~ i.e.,
coded with Designator $UOP or $XUOP, the value
entered in the u-field becomes the actual oper
and, and not the address of the operand. It is
coded as an octal or decimal integer, or a pre
viously defined Absolute Tag. An 18-bit value
is generated.

Another method of generating an actual value in
the u-field is by coding a literal expression.
This method can be used when the desired value
is a floating point, or fixed point scaled num
ber, or an integer value requiring more than 18
binary places. An Absolute Tag may also be used.

A literal expression consists of two parts: the
appropriate numerical generative Function code
(see paragraph C), and the required value,
separated by a comma. The entire expression is
enclosed within parentheses.

Words are generated for each literal expression,
and are added to the end of the DBANK area being
generated, without duplication.

c. Next Instruction

In jump type instructions, the u-field represents
the core memory address which contains the next
instruction. Coding is the same as for an oper
and address.

SLEUTH 19

8 9 FUNCTION 14 15

\ ILID ,R I I

~L1DIBI I

(IMjP III I

,S I TIP I I

I I LI DIP I I

ILl DIP I I
f

ILl DIP I I

ILl DIP I I

\ ILIDIBI I

)
IS I TIP I I

INI ~I J IPI

I lS~CIS,HI
(ILIMIL IRI

t I S I U,B I I ,
~SlUIBI I

J I S I UIB I I

(IS I UIB I I

L- -"-l.~ J.

d. Shift Count

In all shifting instructions except Scale Factor
Shift (SFSH), the u-field represents the number
of binary places to be shifted. This shift count
should not exceed 72 places, and is coded as a
decimal or octal integer, or an Absolute Tag.

e. Memory Lockout Indicator

A knowledge of the manner in which this instruc
tion operates is essential to an understanding
of the following explanation. A review of
chapter 12 of the UNIVAC 1107 Technical Bulletin
UT 2463, Central Computer, is recommended.

The u-field of this instruction requires four
groups of 4-bi t -nu.mbers. Wr i te out the four
groups in binary, then convert to an octal for
mat. For example, if the desired values are 3,
0, 13, and 9, write in binary:

0011 0000 11 01 1 001

The conversion to an octal format will give the
coding $3033 1 , which is the absolute value to be
coded in the u-field. An Absolute Tag can also
be coded.

SUB FIELDS 37 COMMENTS \
$R6,MAXM : LABEL

$B3,DATA+S : LABEL, MODIFIED /
$A3,$A3 : A- TYP E DESIGNA TO R I
$AS,$714S : ABSOLUTE ADDRESS

$A4,144(1(1,,$UOP : DECIMAL ABSOLUTE OPERAND
,

$A7,$17777,,$UOP : OCTAL ABSOLUTE OPERAND

$A7,MASK,,$UOP : ABSOLUTE TAG OPERAND

$A6,(WF,6.28,-6) : FLOATING POINT LITERAL

$B2,(W,$17777) : OCTAL LITERAL
\

$A3,(W,MASK) : ABSOLUTE TAG LITERAL

$A2,$L-S : NI =MODIFIED CURRENT ADDRESS

$A 3, 3 : SHI FT COUNT I
,$30331 : MEMORY LOCKOUT PARAMETERS f

$AS,*ADDR+S : INDI RECT ADDRESSING

$AS,ADDR*+S : \
$AS,ADDR+*S : .. "
$AS,ADD R+S* : .. "

: -- - -) ---- --- --.,- -

FIGURE 12

SLEUTH 20

(

~

~

f. Indirect Addressing

I nd ir e c t add res sing (s e t t i ng the i - fie ld t 0 1)
is effected by coding an asterisk either before
or after any element of the entry in the u-field~

g. Examples of the above applications are given in
Figure 12:

5 • I nd ex Reg is t e r s (b)

The b-field specifies one of the B-Registers used
for indexing purposes. It is coded with a decimal
or octal integer, an Absolute Tag, or an a-type De
signator. Only $A0-$A3, $Q0-$Q3, and $B1-$B15 are
valid Designators.

B-Register incrementation (setting the h-field to 1)
is effected by coding an asterisk before or after
the entry in the b-field.

Examples of b-field coding are given in Figure 13:

8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS I
! IL 1 0 , P, I $A2,ITEM, $B111 : A·TYPE DESIGNATOR I

ILIDI PI I $A2.ITEM.$12 : OCTAL ABSOLUTE ADDRESS \

ILIDI PI , $A2ITEM.IDXA : ABSOLUTE TAG)
I SIT I PI I $A3,OUTPUT ,*$B5 : B·REGISTER INCREMENTATIO,",

lSI T I PI I $A3,OUTPUT,$BS* : I
: 1

I I I I I \

, I ' I :)

(.1 I I I I I -
V ~

FIGURE 13

6. Operand Interpretation (j)

The j-field is coded with a decimal or octal integer,
an Absolute Tag, or a j-type Designator. No coding
is required where the j-fiBld is the minor Function
code, i.e., where the Function is a 4-letter mnemonic
code. In this case SLEUTH a~tomatically assigns the
correct value.

Examples of j-field coding are given in Figure 14:

S~EUTH 21

~
9 FUNCTION 14 15 SUB FIE LOS 37 COMMENTS)

I LID, Pi I $A3,WORDII$Hl : LOAD LEFT HALF

I LID, P, I $A4,WORD,,$H2 : LOAD RIGH T HAL F)
I AIDI 0 1 I $A5,3gg ,,$UOP : U IS ABSOLUTE OPERAND f
I!, R, J, P, $R15,BEGIN : NOT REQUIRED

1

· J , I I I I ·) - - -- · r
L~ - --- - -

FIGURE 14
B. Generative Instructions

In general, generative instructions are defined as those
instructions which generate one or more word~ in the ob
ject program. The following types of instructions are
classified as generatives:

Numerical word generatives
Character code generative
Block reservation generative
Macro-instruction generatives
Library Subroutine generatives
Input/Output instructions

Macro-instructions, Library Subroutines, and Input/Output
will be discussed in separate Seations.

1. Numerical Word Generatives

SLEUTH provides a set of software function codes
which are used to define and generate whole or par
tial numerical words. The coding line consists of
a Tag (optional), Function code, and a varying nQTI
ber of sub-fields as determined by the Function
code.

a. Whole Word Generation

(1) The F unc t ion cod e W will gene rat e a 3 6 ~ bit
signed numerical word. The single sub
field can be coded with a decimal or octal
integer, an Ab~olute Tag, or any sYIbolic
coding which represents a nUlerical value.

SDEUTH 22

(2) The Function code WF will generate a Float
ing Point number. Tw'o independent ly signed
sub-fields are required: a rational decimal
value, followed by a decimal exponent, se
parated by a comma. If the exponent is zero,
it can be omitted, and only the value need
be coded.

(3) The Function code WX will generate a Fixed
Point Scaled number. Three independently
signed sub-fields are required: value, de
cimal exponent, and binary scale factDr.
The coding of all three fields should be de
cimal. In the examples of the WX instruc
tion in figure 15, the same value will be
generated for all three forms. The exponent
and/or the scale factor may be omitted if
they are zero values.

b. Partial Word Generation

(1) The Function code H will generate two 18-bit
values into a single word. Each half-word
is generated, and can be signed, independent
ly, and can be coded as a decimal or octal
integer, an Absolute Tag, an a-type Desig
nator, or any symbolic coding which repre
sents a numerical value. The value of each
generated half-word must not exceed 18
binary bi t s •

(2) The Function code T will generate three 12-
bit values into a single word. Each third
word is generated, and can be signed, in
dependently, and can be coded as a decimal
or octal integer, an Absolute Tag, or an
a-type Designator. The value of each gener
ated third-word must not exceed 12 binary
bits.

(3) The Function code S will generate six 6-bit
values into a single word. Each sixth-word is
generated, and can be signed, independently,
and can be coded as a decimal or octal in
teger, an Absolute Tag, or an a-type DeSigna
tor. The value of each generated sixth-word
must not exceed 6 binary bits.

SLEUTH 23

1 TAG 7 8

,L,I,Md~T,

,C,O,N,S,T,

,D,A,T,A[,

,D,R,M,D,A,T

IF/PrN,O,A,

,F,P ,1'4,01 B,

,F,X,P,S,CIA

IF,X'PISIC,B

,F,XIP,SIC,c

IIID,X,W,D'

,W,o, R,D ,A,

,W,O,R~D~B ,

,W,O,R,D,C,

,3 ,WI DI', ,

,3 1 W, D,2, 1

13 I W, D1 3, J

,6 IW, O,R ,D,

,V,A,R,ljB,L

, , I I, ~ ,

I 1 , I I I

(4) The Variable Bit Field Function code G will
generate a number of fields of varying lengths
into a single word. Each variable field con
sists of two parts: the value to be gener
ated, and the size of the field in binary
bits. The two parts are separated by a slash,
and commas separate one field from another.

9 FUNCTION 14 15

I IW I

, ,WI I I

'1 W, I ~
, ,WI , ,

, ,WI FI /

, ,WI F, ,

I ,WI XI ,

, IW, X, I

1 ,W, XI I

I I H, , ,

The desired value of each field is coded as a
decimal or octal integer, an Absolute Tag, an
a-type Designator, or any symbolic coding
which represents a numer ical value.

A total of 36 binary places must be accounted
for, therefore a zero field of the required
size must be coded at some position of the
word, if necessary.

Examples of nlliTIerical word generation are
given in Figure 15.

SUB FIELDS 37 COMMENTS

14411g : POSITIVE DECIMAL INTEGER

-$1357 : NEGA TfVE OCTAL INTEGER

ABC : ABSOLUTE TAG

DRMADD : DRUM ADDRESS

6.28 -6 : FLOATING POINT NUMBER

- 29.33 : NEGATI¥E VALUE, g EXPONENT

9.98, 7 : FIXED POINT SCALED NUMBER

998-27 : SAME VALUE

.998 1 7 : SAME VALUE

1 (I : DECIMAL HALF·WORDS

/
-~
I
I
)

~

)
\
{

, ,HI , , 14982 -$7435 : DECIMAL AND 0'-TA1 HAL F·WORDS ,

, ,H, , , ABSTAG-5,+25 : MODIFIED ABS. TAG AND DECIMAL)

, ,H, ' , 15,ADDR+5 : DECIMAL AND CORE ADDRESS

I ,Til, $A5,72,-16 : THIRD·WORDS

1 ,Till -6,$35,NINE : " "
,

J ,T, J 1 11117,511,11 : .. ")
1 ~ SI ~ ~ $77,$A5, 19, TAGG,-5,/l : SIXTH·WO RDS I
, IG , fJ/2 , V A LUll 6, $ 31/8, $ A 2 14, (
I I I , 3916 : VARIABLE BIT FIELDS \

1 1 1
:

v------~ ~
........ : ./ -

FIGURE 15

SLEUTH 24

I TAG

I I I I , I

,W,AIR,N,GI

I I , I I I

I , , I I I

v-

7 8

2. Character Code Generative

The Character Code Generation Function code SC will
generate a word containing six FIELDATA characters.
The first sub-field of the instruction is coded with
a decimal integer to designate the number of words
to be genera ted; a maximum. of 10 words can be gener
ated with anyone SC instruction. Starting with the
left-most character following the separating comma,
six 6-bit fields from the successive groups of six
written characters form the generated wordso

Any of the FIELDATA characters, including those
which normally serve a definite purpose in the cod
ing, such as the colon, dollar sign, comma, etc.
can be usede A blank space is a valid character
with this Function code, and must be considered when
forming the 6-character groups.

Examples of the SC instruction are given in Figure 16:

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

I ,S IC I ~ 3,ASl1SIMPLEl1ASl1THIS :

I IS IC I I 1Q' NOTE: AMAXIMUM OF TEN 6 • C H A R A c=r E R W 0 R 0 S CAN BEG ENE RAT E 0 W I

I IS IC I I .. TH ONE SC INSTRUCTION
:

I I I I I :

'--- - -- : ~'-- -
FIGURE 16

3. Block Reservation

The FLlnction code RESV w'ill reserve a block of words.
The Label in the Tag field is the address of the
first word of the reserved block. The sub-field may
be coded as a decimal or octal integer, or as an Ab
so lute Tag ± an increment, and is the nun-iber .of word s
to be generated as zeros and reserved. This instruc
tion can be used at any point where word generation
is allowed, ie., in either the instruction or data
areas of the program.

SLEUTH 25

1

....

Examples of the RESV instruction are given in
Figure 17.

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS

ISIB1LIOICIK lR1E,S,V1 48 · ·
lTIBILIOICIK I RI EI S I VI $31 · ·
IU1B1LIOIC1K I RI EI S I VI ABSTAG+8 · ·
I I I 1 1 1 I I I I I - --..... - ~

FIGURE 17

SLEUTH 26

(
/

/
J
)

f

V. DECLARATIVE INSTRUCTIONS

A. Definition

In general, Declarative instructions are instructions
to the Assembler. They do not normally generate wnrds
in the object program. All Declarative Function codes
are Assembler-defined (software) Functions. See Appen
dix C.

Declarative instructions can be classified in the follow
ing categories:

Program Specification
Equali ty
Segmenting
Table Definitions (core and drum)
List Spacing Instructions
Selective Jump Switch Definitions
Macro-Instruction Definition
Input/Output Definition

Macro-instructions and Input/Output are discussed
separately in Sections VI and XII respectively.

B. Program Specification

1. The first line of every program must be a PRO in
~truction. The Tag field of this instruction con
tains the name of the program, and must be left
justified.

The PRO instruction requires one sub-field, which
is coded with one of three Assembler-defined sym
bols which specify the object program format:

ABS Absolute Binary (AOC)

DIR ROC Direct I/O (DIRECT ROC)

EXE ROC Executive I/O (EXEC ROC)

The s pecia 1 comment s of this ins tr uc t ion wi 11 be
printed as the heading for each page of the listing,
up to a maximum of 72 characters. A blank space is
considered to be a valid character.

2 • The la s t 1 i ne 0 f cod i ng 0 f eve r Y p,r 0 gram m u s t be an
. ENDPRO instruction. The Tag field is ignored by

SLEUTH. The sub-field is the address at which exe
cution of the object program is to begin. This

SLEUTH 27

address must be in the instruction area of storage.

Examples of the PRO and ENDPRO instructions are
given in Figure 18.

1 TAG 7 8 9 FUNCTION 14 15 SUB FIELDS

P,R,O,G, IA\ IPIR 1 0
1 I ABS · ·

P,R1O,G I I BI IPI R 101 I DIR · ·
PIRIOI G, lei IPI R 101 I EXE · ·

I I I , I I EINIDIPIRIO BEG I N · ·
I I I I I I I I I I I

~ - ~ - -

FIGURE 18

/
\
/
(
\
\ -

3. The program name is retained in its symbolic format
in the ROC output of the Assembler. The program
name is expanded to a 12-character left-justified
representation.

It is used as the program name by both the Executive
System and the Relative Load Routine to identify the
program, and to indicate the base address of the ROC.
For further information see the manuals on the 1107
Executive System and 1107 Relative Load Routine.

c. Equality

The "equals" Declarative serves the logical function of
defining a Tag by assigning a value to it, or of re
lating two Tags. The Function field can be coded with
either of two synonymous symbols: EQU or the "equals"
sign (=).

The coding in the sub-field defines the Tag or Label in
the Tag field, and may be written as a decimal or octal
integer, a Designator, or any type of Tag or Label. Mo
dification in the form Tag 2 increment is permissible.
The Tag being defined assumes the type of the defining
Tag, i.e., a Tag defined by a Data Table Tag also be
comes a Data Table Tag, etc .•

The "equals" declarative is also used to ,define Tag;s
within other declaratives. In this case it is coded
not in the Function field of the instruction, but in
one of the sub-fields, and only the equals sign form
(=) is permitted. A more detailed explanation of the
latter use will be given in context.

SLEUTH 28

1

V'

TAG

Exa.TIples of the "equals!! declgrative are given in
Figure 19:

7 8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS \

ICIHIAIRILI' [I EQ U I CHUCK : TAG OR LABEL)
IDISIGIII I I [EIQ [u [$A 3 : DESIGNATOR {
IBlflGlllNI I I E1Q1U I START+16 : LABEL + INCREMENT \
I C I 01 NI SIT [X I I EIQ 10 I -48 : INTEGER /
ICI~NIS, TIX I I I = I I -48 : .. ~
I TI ~ BI LI CI D,TIA[BILI E =TABLA,LGTHC=CONST+42 : = IN SUB-FIELDS {
I I I I I [I I I I I : \ --- _..1 - - -

FIGURE 19

D. Segmenting Instructions

Two instructions are available to control the place
ment of words in each bank of storage, and to segment
the program. These instructions are IEANK, for the
instruction area, and DBANK, for the data area.

A Label coded in the Tag field of an IBANK or DBANK in
struction will have the same effect as if it had been
coded in the Tag field of the first machine or genera
tive instruction following the IBANK or DBANK declara
tive.

The format of the sub-field portion of the instruction
will depend on whether storage of the segment on tape
or drum is required. Where storage is not required,
at most a single sub-field will be coded.

For AOe type programs, the sub-field is coded with a
decimal or octal integer, or a previously defined Label
or Tag ± increment specifying the absolute address at
which the next generated word is to be placed. If the
sub-field is uncoded, the next available address will
be assigned.

For ROe type programs, absolute addresses must never
be given to segments, and the sub-field is either left
uncoded if continuation at the next available address
is desired, or is coded symbolically, relative to some
previously defined address of the same type of instruc
tion.

SLEUTH 29

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

~_L_L_L~_~_ _1_1 I I~_~ ~~ __ ~ ____________________ ~ ____ ~ _______ ~~~~~~~~~~~~~~~~~~~~~

r-L~ __ J~_tB_L!l__ _--1J._.L B I A L~L~ c- _$ 3 Q' " _______ . __________ . ____ . __________ . ____ .. : S T A_R_T._=_$_3_Q'_" ______________ --I

__ L_L~_l.-l__ _l'(I E I TIC I) '---------_____ .. ________ ~~~_. __ ~~~~~--.~~~~~~~~~~~-~-_t
~L.~L~~_ ~~~~ J3~ _____ ~ _______ ~ ________________________ ~

-.i.~_.L!JAL!LIL__ ~_Jl.~.L!J~_ ~ ____ . __ . ____ ._. __ . _____ ~. : SA __ M_E._E_F_F_E_C_T ______________ -I

-.L_L..L_L_l_.J____ __lLJJ~lAINJ!.. S TAR T : START MUST BE PRt:-DEFINED

llm!mmlmll~mmimm~mmimmj ~.:I.I.I.I.i. :l!iij~mjjjimm~~m!iiiliij~~ijji ·r.f.l.!.!..l .• R -~_·-·_C __ _ T_ . Y p .. _.-.~ .. _-.. -.. _;. __ ;-_~. -G RAM S lmmmlmmmmmmmmmmmmmmmmm~mllllllll!!!mmmllllllll!1111111IIIIIIIIIIIIII!!!!II!II!1111!111!llill!I!II!!111111111l!!l!llllllllillmlllllllllllllllllilimmllllillmmm ------------- - --- .. - - _._------_._-= = = = = ... ,,,..

\ I I I I I

(f) WS-LT\AI RI TI
t-4

I I I I I

__ LL.LItlA I N I K

.-l(IEITICI)

: ASSEMBLER ASSIGNS NEXT LOCATION -----------------.--------- -.-=-=:....=::....:..-=-=-=~~::...::-=...:.....=...:..:....:=..-.::....:-=....:..:.....:.-=--=-=.::.-=-:..:...=....:...:.-~----I

t~j I I I I I I q
1-3 I I I I I I :::r:: f---L---L---I...--'---..L-~

w ~.\ TIA, RI TI __
a

~.L.-L_L __ L_l __ _

-.Ll_..L_L...L--1. __ _

_ ~J!.~1!!!L'!'1~_
,S IEIGL~~_

...-LI I I I .L_

I I I I I I

LLL.-l_l_1--.l __ _

_..L._L~_L __ 1_1 __ _

~_L.LL~l __ _

I I I I I I

I I I I Li_

I I I I I I

I I I I I I

-L . ..L.L~_

-.L_I ~_

I I I I I I

~~JAL~~
___ I(I EITICI)

w-It BI AI N I K

-L~~ __

-1J _1.I!_L.~ L~l!.

~~.L~~
-1--.L~t.~

I I I i I

w- I 1 ___ -'-.
,.

f---..l_L i
"-. I I

I-_L~ I I

I I I I I

I I .1

I I I I I

I I I I I

I I I I 1

I I I I I

: SAME EF FECT
-~------------~~------------ -~--~~~-~~--~~~~---~

START+8 : RELATIVE LOCATION
J---~~~--------.--.--------.-----.. -~-

1----"-' T~A_P_E~Q.L.' __,L_G_T.~I ___ . _______ . __ . _________ : STO _~~~__'E__'O=--N_'_____'_T_A:..:...P_.:::E'____ _________ ---I

,DRUM,LGTHI :DRUM STORAGE. DRUM TABLE LENGTH ------------------- ~~~-~~~~--=-:..:..::..--::...::...:....=-=-=--=::...=..:-=-=-..:...:..:..-~---I

TAG MUST ALSO BE LGTHI
I---~~~--~~~.----.--.-----.-~~-~~-~--~-~----=-=-~-~~~~~--

The first use of the IBANK or DBANK instruction sets
the location of the. following instruction. The next
use of the same instruction specifies continuation at
the next available location following the preceding
section of the same type. To accomplish this, SLEUTH
maintains a pair of IBANK and DBANK "loca tion counters,"
and increments these as required.

The effect of an IBANK or DBANK instruction is can
celled by the next IBANK, DBANK, or DTABLE instruc
tion. It is not necessary that all instructions of
the same type be grouped together; an IBANK (and its
associated block of instructions) may be followed by
a DBANK, then another IBANK, etc ••

For segment s requir ing tha t the load rout ine be dir·ec ted
to store the segment on tape or drlliTI, two additional sub
fields must be coded. The first sub-field is coded as
described in paragraph 1. above. The second sub-field
will specify the tape unit or the drum address, and is
coded as a Tape Unit Tag, or a DrlliTI Table Tag. The
third sub-field gives the length of the segment and is
coded as a Segment Length Tag. SLEUTH counts the number
of word s genera ted in each segment, and ass igns the ap
propriate value to the Segment Length Tag automatically.
It can be referred to for the number of words of the seg
ment.

If drlliTI storage is req~ested, the Dr~~ Table Length Tag
and the Segment Length Tag must be coded identically.

A further discussion of Segmentation will be found in
Section XI.

Examples of the IBANK and DBANK instructions are given
in Figure 20.

E. Table Definition

Tables can be stored in core memory, or on the magnetic
drum.

1. Core Storage tables

The DTABLE instruction defines a data table for ROC
type programs, which is variable in length, in con
trast to the DBANK area which is fixed in length.

The Tag field of a DTABLE instruction is a Data
Table Tag, and is the name of the table. It repre
sents the address of the first word of the table.

There are two s~b-fields associated with this in
struction. The first sub-field sets the starting
address of the table, i.e., defines the Data Table

SLEUTH 31

Tag. If this sub-field is uncoded, the assign
ment of the address will be left to the Relative
Load Routine. Coding is required only when it is
desired to equate a data table to a previously de
fined data table, thus making their starting ad
dress the same. The coding consists of an "equals"
sign followed by the previously defined Data Table
Tag.

An address within a Data Table can be referenced
by one of tWD possible methods:

Data Table Tag ± increment

Data Table Tag ± Data Table Length Tag

The combined form: Table Tag ± increment ± Length
Tag is never permitted.

If a Data Table Tag is defined as being equivalent
to another Data Table Tag by means of a DTABLE in
struction, both Tags are primary Data Table Tags.
If a Tag is equated to a Data Table Tag ± increment
by means of an EQU declarative, it is called a se
condary Data Table Tag. A primary Data Table Tag
can be referenced by either method shown above, but
a secondary Data Table is limited to the form:
Tag ± increment.

The second sub-fie ld is the Da ta Table Leng th Tag,
and specifies the minimum number of storage loca
tions required to contain all the words generated
for the table. It is modifiable at load time for
ROC type programs. The following methods of coding
are possible.

(blank)
= Absolute Tag
= actual value
Leng th Tag
Length Tag = Absolute Tag
Length Tag = act~al value

If the field is uncoded, a length of zero will be
specified. If the coding is in the form: = Abso
lute Tag or = actual value, the length will be as
specified by the Absolute Tag or actual value. In
all three cases, no modification at load time is
possible.

In the other three cases, the mlnlmum length w'ill
be as specified by the Absolute Tag or actual
value, or zero if no equality is coded, and modi
fication at load time for ROC type programs is
possible.

SLEUTH 32

I TAG

ITIAIBILIAI

ITIAIBILIBI

ITIAIBILICI

I I I I I I

I IMIDISI I

I JJiJlSI I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I , Ii'

I I I I I I

v

78

The Data Table Tag and the Data Table Length Tag
are retained in the object program in symbolic form
for the Relative Load and Executive Systems.

A Data Table may be preset in the same manner as a
DBANK area, by coding the data which will comprise
the table immediately following the table definition.
Following the last coded data line, an IBANK, DBANK,
or DTABLE instruction will signal the end of the
current table.

Further information on Data Tables will be found in
the discussion of Library Subroutines, Section XIV.

Examples of DTABLE instructions are given in Figure
21 •

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS I
D,TIA,B,Llc TLGA=6.4 : PRiMARY.

DITIAIBILIE , TLGB=CONST+2fi)' : PRIMARY. 1
DITIAIBILIE = TA B LA T LGC : PRIMARY. MIN. LENGTH = fi)'

! I I I I :

I EIQIU I I TABLA+18 : SECONDARY

I EIQ,U I I TABLB+24 : SECONDARY I
I I I I I : J
I LID I PI I $A2,TABLA+5 : CORRECT REFERENCE I
I LID IP I I SA2. TABLA+TLGA : .. II \

I
I LID IP I ; I $A2,MDS+2 : " " I
LID p. $A2 JJS+TLGB : INCORRECT " I

I I iii : \
....I-- -r- -- -- -

FIGURE 21

2. Drum Storage Tables

The MDT instruction defines a drum data table for
absolute or ROC type programs.

The Tag field of an MDT instruction is a Drum Table
Tag, and is the name of the table. It represents
the address of the first word of the table.

For absolute type programs, the address of the Drum
Table Tag may be specified by coding the first sub
field with a decimal or octal integer, or an Absolute
Tag. Or a secondary Drum Table Tag may be equated to
a primary Drum Table Tag by coding the sub-field with
the tlequalsl! declarative and the primary Tag.

For ROC type programs, a drum table may be equated to
another drum table as described in the preceding
paragraph. If the sub-field is uncoded, the assign
ment of the starting address will be left to the Re-
lativ~ Load Routine.

SLEUTH 33

Associated with each Drum Table Tag is the Drum Table
Length Tag, which is written as the second sub-field.
For absolute type programs it need not be coded un
less a reference to it is desired. It is then coded
with the "equals" declarative followed by a decimal,
or octal integer.

For ROC type programs the Length Tag may be coded as
an Absolute Tag, or an absolute length may be assigned
by coding in the following format:

Length Tag = value

w'here the value is coded as an Absolute Tag or as a
decima'l or octal integer.

The Drum Table Tag and the Drum Table Length Tag
are retained in the object program in symbolic form
for the Relative Load and Executive Systems.

Examples of the MDT instruction are given in Figure
22.

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS (

I I I I I , , I I , ,
,D,R I T I A,l, ,M,D,T, I 5,1(1

ID 1R 1T,A,2, ,MID,T 1
, DT5,LGA2=5G' · ·

,D,R,T IA,3, ,MID,T I , = DRTAl ·) ·
I I I , , , I , , , ,

~1~j~l~jj~j~~~ll~l~jllll~ijjjjjl~llmmmm JlI!lllll!l1111l11\llllll11111m~ml~lilllllll iIIlll mmmlmm ROC T Y PEP R 0 G RAM s ll~lmlllmmmmmll~~lll
I I I I I I I I I I I I · , ,D,R,T 1 R,1 I I MID,T I I LGRl · \
,DIR 1 TI R,2 1 ,MID, T, I = DR T R 1, L G R 2 = 6 9'9' ~------------------~)
I I I , I I I , I I ,

I I I I I , I I , I ,
v

FIGURE 22

F. Listing Spacing Instructions.

TWD instructions are available to control the format of
the assembly side-by-side listing. They are coded in
the body of the program at the point where spacing or
ejecting is desired. They will have no effect on the
assembly of the object program.

SLEUTH 34

1

1. To instruct SLEUTH to leave n number of bla~~
lines in the listing, the SPACE instruction is
coded in the function field, and n is coded in
the sub-field as a decimal or octal integer.

2. To instruct SLEUTH to cause a skip to the top of a
new page, the EJECT instruction is coded in the
function field. No sub-field coding is required.

Examples of the SPACE and EJECT instructions are
given in Figure 23.

1 TAG 7 8 9 FUNCTION 14 15 SUB FIELDS

ISIPIA/CIE 5 · I I I I I I ·
I I I I I IEIJIEICIT · I ·
I I I I I I I I I I I

.- ~ -..... - -
FIGURE 23

I
I
\
(,

G. Selective Jump Swi tch Defini tion

TAG

Selective Jump Switch Tags are defined by the SWITCH
declarative. Figure 24 illustrates the coding for this
instruction. The JQTIP Switch Tag in the Tag field is
equated to the value shown in the sub-field for AOC and
Direct ROC type programs. The value must fall in the
range: 0-15, and is preceded by the "equals" declara
tive. For EXEC ROC type programs it is left uncoded,
since Jump Switches must be assigned by the Executive
S y stem. A s wit c h val ue 0 f 0 ha s the e f f e c t 0 fan un con -
ditional JUMP instruction.

7 8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

IJIPISIWlll SIWII,T,C1H = 1 : FOR AOC AND DIRECT ROC

IJIPISIWI31 SIWtl tT!CjH : FOR EXEC ROC
:

I I I I I I I I I I I

I I I I I -' I j I t I : -- -
FIGURE 24

SLEUTH 35

)
(
I
~

VI. MACRO-INSTRUCTIONS

A. Purpose

Macro-instructions provide a method whereby a series of
instruction or data words can be generated by a single
line of coding. A macro-instruction, once defined, can
be used any number of times in a program, and for each
use a different set of parameters can be coded, thus
varying the function, data, registers, etc. of the
basic set of instructions.

Macro-instructions can be either system or program macro
instructions, with the definitive coding on a separate
input medium or coded directly into the program.

A complete macro-instruction routine consists of t~o
par t s : the de f i ni t i v e set 0 fin s t r uc t ions 0 r " s ke 1 e ton" ,
and a single line of coding to generate the instructions
or data for each macro-instruction.

B. Defining a Macro-instruction.

A macro-instruction is defined once, prior to any actual
reference to it in a program. In defining a macro
instruction, a name is given to it which is a Label un
like any hardware or software Function code.

Two declarative Function codes are used in the defini
tion of a macro-instruction. The symbol MACRO signals
the Assembler that the instructions which follow it are
to constitute the skeleton. The name of the macro
instruction is coded in the Tag field, the Function
code is the symbol MACRO, and no sub-field coding is re
quired. The symbol ENDMAC signals the end of each macro
instruction definition. No Tag or sub-field coding is
required.

The Skeleton is written between the MACRO and ENDMAC in
structions, and consists of lines of normal instruction
coding, except that any variable fields are coded with
parameter identifiers. These are decimal integers, en
closed in parentheses, and ranging from 1 to the number
of parameters involved. Each parameter identifier can
be thought of as representing the nth parameter of the
generative macro-instruction to which it applies.

The sequence in which the parameters are coded, either
in the skeleton or in the generative instruction, is of
no significance, as long as they are related properly
to each other. Any field, except comments, can be a
parameter.

SLEUTH 36

Each parameter in the generative instruction replaces
the corresponding parameter identifier of the associ
ated skeleton instruction on a character-by-character
basis. Thus, any number, letter, or valid special
character is permissible. Elements of the skeleton in
struction which are not parameter identifiers are re
tained.

A Label should never be coded in symbolic form in the
Tag field of a skeleton instruction, as it would be de
fined at each iteration. However, a parameter identi
fier may be coded in the Tag field and subsequently
identified as a parameter in the generative instruction.

C. Generating a Macro-instruction

The set of instructions comprising the skeleton of a
macro-instruction will be generated and inserted into
the program by each generative macro-instruction. The
coding line consists of an optional Label in the Tag
field, the name of the macro-instruction in the Func
tion field, and the parameters required at each itera
tion coded in the sub-fields, arranged in the sequence
specified in the skeleton. The parameters are enclosed
in parentheses, and commas must not be used to separate
parameters.

D. Coding a Macro-instruction

The coding of a macro-instruction is illustrated by the
examples given in Figure 25a, 25b, and 25c. The basic
macro-instruction is labeled MAC2, and contains within
itself references to three other macro-instructions:
MAC1 for data, and MAC3 and MAC4 for additional func
tions. MAC3 and MAC4 will not be coded as separate
lines of instruction coding, but will be generated
automatically as a result of parameters (5), (6), and
(7) of MAC2. Both MAC3 and MAC4 must still be defined,
however. Note the parameter identifiers: the 6th
and 7th parameters of MAC2 are first translated to
(A4) and (TESTA) in the first iteration, and these in
turn become A4 and TESTA, without parentheses, the
parameters of MAC3.

The notes in the comments field of the example, Figures
25a, 25b, and 25c are explained below:

Note 1: Parameter (5) is defined by the generative in
structions as LABLA and LABLB for the two iter
ations of MAC2. MAC2 can thereby make refer
ence to the data of MAC1.

Note 2: A function field can be one of the parameters.

SLEUTH 37

Note 3: An entire macro-instruction can be coded as
parameters of another macro-instruction.

Note 4: MAC1 generates data words. The parentheses
enclose a complete sub-field in the form in
which it would have been written in straight
programming.

Note 5: MAC2 generates instruction words.

Note 6: MAC3 and MAC4 are defined with MAC2. Since
the parameters are first translated as MAC3
(A4) (TESTA), double parentheses are required.

SLEUTH 38

TAG 7 8

W-L~~'LL-
r-L_l_i~ .1 1

0_L_~_.-l __ .1 ... _1. __

I I I I I I

I I , I I I

I , , I I I

I IM,A 1CI 2 1

LLLl-.--l I I

I I I I I I

I I I I I I
(f)

L' I I I I I 1
~

I I I I -L~ f-3
::r::

I M I A I S1.l--. I
W
~ I I I '~.J._

I I I I . .l~

I I I

.-LLLl- .1 ___ 1-

, 1M, Al Cl 4J

I I I I-L~

I I I I I I

I I I I.J.~

, I I I I I

I I I I I I

I I I I I I

, I I I I I

, , , I I I

, , I I I I

, I I I I I

I I I I I I

1 I , I I I

9 FUNCTION 14

MAC R 0 __ J~ __ '..L' __ J _ L ___

W ___ L ~_~~ __ L-.l __

__ .l_~_--L __

r--L.-l~J~~l--
__ J _ I HI I L __

~~~I 0 1 MIA I~ __ 

MIAIC I RI~_ 

r--b~---L--
~IOIOI L 

I (4) I I 

~Lill I I 

~Jl!i_OIM I!~ 

~..L A I C I RIO I 

___ I S I U I B I ---.L __ 

_J!I RI J IP I 

___ -L~J~~_~ __ L_ 

!J_~~L_~_~L_~ 

~~~EL ___ 
---I_el R~l~

I J IU I MjP 1

!iNIOIMI_~~. ,
,---.1_1. --.l---.l-J-i

r----I I I I I

c---L--L_L~_L_

f--.l I I I I

I I .I

I I

f--~

f--~-

I I I I I

15 SUB FIELDS 37 COMMENTS NOTES

-----------------.-.--.---.----------------~------~--------------- -------1-~----=~

(1)
f-----------.------- .------.-. --~.--- ---.. ----------.-.-.. -----... ---------------------------- --+---___i

(2)
f- ------.-----.-------.-.---.. -.--.-.-.-----. -----------.~.-------~ -.---~----~--- -------1-----1

(3) :
r-- -----~--------------------------+--,

(4)
1-----------------------------.--.--.-.. --.---------.----.-~- .. -------------------------__+_--___I

r--.--.-----.---.--.~~--~---.--- .---------------------- .. --------.----------------------~----I

r--------.----------. ----.-~--.----... ---~-------------~-----------------1-----1

(1),(2) :
---------.- --------------~-.--- --------.---------~------------------- --------1------1

(1), (3)
-----.---.----.-.------~------- -----------.---~----.---- --------------------+----~

(1), (8)+1 11&2

_~~1JZ1 ______ ~~. ________ . ___ . ____ .. _________ .. ___________ ~ _____ __I__--3_1

------------------- -----------------_._------------------ ------+----~

-_._--_._-------_.- ---.---.-.--------.----.---------------------+----~
(1), (2)

---.-- ----.----------~---------.-----.---------.------.---~- -------t----.....

(1), NG
1--------------------- ---------------------~--------.-~--------------.-----_+-----I

,OKAY
1------------_._------- ---------------.----.-------------.------

t----------~-------- -.-~ ~----.----.--.--------.-.-.-------------~----------+_--_t

r------------------.- ----------.-.--- ------------------.-----1------1

(l),NG

,OKAY
-----------_ .. __ . ---.---.----------------------~--

c------------------~---

-----------~---

c-.-----.------------~------------------.-----------__+--___i

1---.------+-----1

FIGURE 25a

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS NOTES

J~_J_~~-L _1 ~, , , ,~.-~ e-.-----~--~.---~-~-.~--.---.~.---.----.--.. -.----~~ .. ----~.-.------------------------------------~----t

~ ___ L~_l_____1_L ~~l A, C L~~_ (325) QJ gXi}/F I !-_~_~.1_C~~!Lt~_~_B_l_._A._) : _____ ------ ______________ ---1-__ 4_1

~~~..l~_ _1 M, A, C, 2 L_ ($ A 4) (TOT A l A) (I T E M A) (S U B) 5

~~ __ L 'I ~_~-.l_L_ J-~ A _C ~)_lLtA 4)JJ1~~~ T ~)_t lAB l ~l_: ____ . _._: ___ , ____________ -I--_6-=--1

;~~~mmimmilllmi iIlll ~~ \!j\!j! mmiimmmmm G-ENERArE .~~ s Jmi\i~rnmii!iillmrrmllil\ijilllii!limWllil~li!I!~iililllllliiiiii!ilmmmmi!ii!ililiiiliiimiiillliiiiliimmmmmmmmmmii!!imiiimmimm
_~_L~~~~ "" I ________ ~ ____________ _

u_b~l!!L~ ~~I ,WI L ~~~ _______ u __ _

MACl STARTS HERE

I , I I I' I" W, , 75"
[j)

E; -.1 __ LJ __ -'----'---'--_-I

q
1-3 I I I

_L~WI 1

---.J , ,HI_~

~l~/=F~I~l~E~--------------------------------'------------------------~~

1 , "
0:::
+i_L-.-I~ __ l_L_

o _~ __ L_l_L~_.---L_

_ ---.--L~J~_i_~~

~ __ L~~_

_ ---LL~~ __ Ll_.L_

I I I I I I

.~._J._...l._LL __

_~_L __ L~,.--l __

I I 1~-..-1-.----L __ _

~-~

I I , I I ,

I I

LLl

I I I I I I

I I I r I I

[~ID'P,
~ , ,A, 0, 0,

l--i ,S, U I B,

-L ,S IU, B,

W_~_Iil~~!LP1 _
~~~~~!L_ 

U-~~j-~ 
, , I 11 

f-J , I ~ ___ L-., 
,. 

--l-L~~i 
f--L I ,I 
'-~ I I , I 

, , , , , 
, 1 

I I I , , 

I , I I I 

, , I I , 
, , , J 1 

~--~---~----------------------------------------------------------------+--~ 

$A4, TOTAlA MAC2 STARTS HERE 
----------------

J A 4 , I T E M A _~ __________ . _______ _ ---------------------
$A 4 , lAB E l A + 1 _________________ _ 

-----~---------

$A4,TESTA MAC3 INSERTED HERE 
-------.--~---

$A 4 • N G .- -~-- ~--~~ - ------~------------~ --------.----------------------+----~ 
,OKAY 

--- - ---- --~---~------ ------------------------------1------1 

~,-------------------------------------------------------------------~---~ 

--

FIGURE 25'b 



-.. 9 FUNCTION 14 SUB FIELDS 37 COMMENTS ~()TES 
SECOND ITERATION CODING 

· I I I I I 1 1 I I I 1 · 
( $ 1 77) ( 1 2 5 g) ( 1 IF I L E B) ( 1 , (1) ( LAB L B) : · 4 

I I I I I I I I I · I I 

I I I I I I IMI I 121 ($A2) (TOTAL B) (ITEMB) (ADD) 5 

(MAC4) «$A2» ( ) (LABLB): 
.. 6 I I t I I I 1 I I I I · 
"' I I I I I I I I I ., 

.:.:.:" 

::::::::::::::::j~~~~~~~~~~~~~~t~l~~l~ltt~l~~~\~~~~~~~~l~~~~~~~~~fl~ GENERATED A S:mr~t~: 

I I I I I I , I I 
.. 

I 1 .. 

ILIAIBILIBI , I I I $177 0 MAC1 STARTS HERE I 0 

I I I I I I I , I I I 1259' ~ 

J I I I I I I I S I C I I 11F I L E B .• .. 

I I I I I I , I I HI I 1 , g .. .. 

I 1 J I I I 1 I $A2,TOTALB · MAC2 STARTS HERE 1 I I · 
I I I I I I 1 lA, 0, 01 $A2,ITEMB : 

IAI '1 0 1 $A2,LABLB+1 · I I I 1 I I I · 
I J I PI $A2,NG · MAC41NSERTED HERE I I I I I I I I · 

,0 KAY · I I I I I 1 1 1 I I I · 
I I I I I J I I I : 

· I I I I I 1 I 1 I i 1 · 
I I I I I I · 1 I I i J · 

· I I I I I I I I I I L · 
· I I I I I J I I , I I · 

I I I I I I I I I I I : 

I I I I I 1 I I I I L : 

I I I I I I · I I I I I · 
· I I I I I I I I I I I · 

I I I I I I I 1 1 I I · · · · I I I I J I I I I I I 

· I I I I I I 1 I I I I · · I I I I I I I I I I I · 
FIGURE: 25c 



VII. CORRECTIONS 

A. Pur pose 

Corrections to the source program can be made by means 
of a correction program, produced on a separate input 
medium (cards, paper tape or magnetic tape). They will 
be merged with the source code input of the program 
which is to be corrected, during the first Assembler 
pass, and must therefore be in the same sequence as the 
main program. 

B. Coding 

The special declarative instructions which direct the 
Assembler in making corrections and which are used only 
in the correction routine, are discussed below. They 
are coded in the Function field. 

1. COR 

The first instruction of the correction input is 
the COR instruction. The Tag field of this instruc
tion contains the name of the program to which the 
corrections are directed, written exactly as in the 
PRO instruction of the main program, including left 
jus t if ica tion. No sub-field coding is required. 

2. DELETE 

Three forms of the DELETE instruction are possible: 

a. Coding an asterisk in the sub-field of the 
DELETE instruction will delete all instruc

tions in the main program which were prefixed 
by an asterisk, as previously described in 
Section III. paragraph A. 

When this form of the DELETE instruction is 
used, it must be written immediately following 
the COR instruction. 

Instructions which are added by means of the 
correction routines may be prefixed by asterisks, 
and such instructions will remain, to be deleted, 
if desired, at some future Assembler pass. 

b. A single instruction may be deleted by coding 
the Label of the instruction, or the previous 
Label modified by a positive increment, or the 
item number (see Section IX), in the sub-field. 

SLEUTH 42 



Any nlliTIber of new instructions can be inserted 
in place of the deleted line by coding them on 
the correction input immediately following this 
form of the DELETE instruction. The replacement 
will be halted by the next corrective declara
tive. 

c. The DELETE instruction will delete a block of 
instructions if the lower and upper limits are 
coded in the sub-fields as Labels or item num
bers. If modified Labels are used, the incre
ments must be positive. 

Substitution of new instructions is effected 
as described in paragraph B.2.b. above. 

3. FOLLOW 

Any number of lines of coding can be inserted, with
out deletion of any existing instructions, by coding 
such instructions i~TIediately following a FOLLOW in
struction. The sub-field of the FOLLOW instruction 
must contain a Label or item number representing the 
instruction which will be followed by the new in
structions. If a modified Label is used, the incre
ment must be positive. Insertion of new instruc
tions will be halted by the next corrective declara
tive. 

4. ENDCOR 

The last instruction of the correction input m~st 
be an ENDCOR instruction. No Tag or sub-field 
coding is required. 

c. Precautions 

The programmer should exercise caution to insure that 
the main program is not adversely affected by any cor
rections. For instance, modified addresses of the 
$L+5 type will definitely be affected if any deletion 
or addition occurs between $L and $L+5, and a reference 
to $L+5 in the corrected program might not be the same 
as in the original program. 

Corrections must not overlap. 

PRO and ENDPRO instructions in the main program should 
not be prefixed with an asterisk. They can be indivi
dually deleted and replaced with new instructions. The 
Assembler checks to insure that the deletion of either 
is accompanied by a corresponding insertion. 

In general, any line of coding which has an item number 
associated with it can be corrected. 

Examples of corr ec t ion prograrr~TIing are g iv en in Figure 
26. 

SLEUTH 43 



1 TAG 7 8 9 FUNCTION 14 15 SUB FI E LOS 37 COMMENTS 

.~~_~ 10 ,GIM,~ COR : START CORRECTION ROUT.'NE _---.l-.l __ ~_J. __ L_ -------_._._-_ .. _---_. -----

-.-LL-.l ___ L.~--L ~.~ILIEI!i~_. * : DELETE ALL * LINES 1---------_._----_ .. _-----_ .. _._-_._---- ----.-----. ---- · I I I I I ~!~_1L~ LABLA+5 · DELETE ONE LINE L -----.---.. -------------------.-.----.---

.PJEILIEIT1~ 127 · DEL ETE ONE LINE (ITEM NO.) I I I I I , · 
---L~-L!L __ $B3,72, ,$UOP · INSERT CORRECTED LrNE I I I I I I · --------------- ------_._-_. 

1-.0 I E ~ , E I T, E LABLB,LABLB+3 · DELETE BLOCK OF INSTRUCTIONS I I I , 1 1 · 1---._------

D,E,L,E,T,E 245,248 · " " f I " I 1 I I I I · _. ------

~.LL-.l I I I 0, ElL , E..L!L~ LABLB,248 · " " 'f If · ---------------

W-l--i....L...LL liL~1 L, LI OL! LABLC+7 · PREPARE TO ADD INSTRUCTIONS · .-

*1 I I I , I , I L, 0, P, $A2,ITEMA : ADD NEW INSTRUCTIONS CODED FOR 

*1 I 1 I I , __ Ll.!.i E I Q, _$..!.. 2, I T E M X : DELETION AT SOME SU BSEQU ENT 
0 ______ -_._----

*1 I 1 1 1 1 I J1U,M 1 PI _~ LAB L F · ASSEMBL Y RUN · 
I 1 I I I EINID,CIO,R · END CORRECTION ROUTINE I · 

· 1 I I I , I , , , , 1 · -.---.------- . --- --· I I I I , I · , I , , , 
---------.------~---. 

· I I I I I , ---L 1 I , , · · 1 I I 1 I _L -.1_. __ LJ_. ___ L_.l._ _. · ---------------------

I I I I I I -L.L~.L.....L_ 
: 

· J I I I 1 1 _L_l---1-.L-L- · 
· I I 1 I 1 , 1 , , i , · 
· , I 1 I I I I I , , --.-~. · ----------,. · I I I 1 I , 

1---.l-L....1 I I i · .. 

I 1 I I I I 1-' 
, , , I : 

1 I I 1 , 1 1--. I I I I I · · 
I 1 I I 1 , , I , I I · · 

· I I I 1 1 I , , L~ · 
I 1 1 1 , , I , i , I · · · · 1 I I I I I I I , , , 

· I 1 I I 1 , 1 , , I I · 
· I 1 I I J I I , , , , · 

FIGURE 26 



VIII. ACCIDENTAL SYMBOL DUPLICATION 

A. Purpose 

~~ is always preferable to have all ~ags and Labels com
pletely unique, but since accidental duplication of sym
bols can occur, a method is available to provide some 
protection against such a contingency. 

B. Method 

The program can be divided into sections by means of an 
SEC instruction. No Tag field or sub-field coding is 
required. A SEC instruction is not required at the be
ginning of a program, since the first part of a progrmm 
automatically becomes the first (or only) section. All 
instructions which follow an SEC instruction become a 
part of that section. The effect of an SEC instruction 
is terminated by another SEC instruction, or by the end 
of the program. 

If a Tag is defined only once in a program, this defi
nition will prevail throughout all sections of the pro
gram. This definition can occur in any section. If a 
tag is defined in more than one section, it will be 
assumed to be an accidental duplication, and the defi
nition in a section will apply to that section only. 
Hence, reference to a Tag should never be made outside 
the section '_'lhich contains its definition, unless it 
is absolutely certain that only one definition of the 
Tag exists for the entire program. 

The rules for coding of Tags and Labels for programs 
making use of the symbol duplication feature are illus
trated in Figure 27. The numbered notes in the comments 
colwTIn are explained below: 

Note 1: This Tag is acceptable, since it is defined in 
the section in which it appears. The symbol 
ALICE appears in all three sections, either as 
a Label or as a Data Table Tag. Each section 
generates a different value for ALICE. 

Note 2: Since BONNY and DOTTY are defined only once in 
the entire program, any reference to these Tags, 
in any section, is acceptable. 

Note 3: CHRIS in section 3 is incorrect, since it is 
not defined in this section, bJt is defined in 
sections 1 and 2. CHRIS will be generated as 
as two different values in sections 1 and 2. It 
will be generated as zero in section 3, and an 
error indication will appear on the program 
lis t ing • 

SLEUTH 45 



1 TAG 7 8 9 FUNCTION 14 15 SUB FI ELDS 37 COMMENTS NOTES 

~~~i~-1~~- PRO EXE : SECTION 1 AUTOMATrCALLY 
_~-.l __ ..L_J __ L __ ------------------- ----

~-L-L-~--~-L~ IEITIC I · ANY MISCELLANEOUS COOING -.1_ · -"-- f------------------------ ----------- ---- ----------

c-_~~i!_~~L _.-1 ____ I E I Q I ~_ TABTAG · · ---_._-----------_. __ ._------_._--

ICIH,RII,SI IEIQIUI STRTAG+2 · _1 ·
I , --.-l_~~ C L_ · _.l __ L~ __ L · ------------------------------------- --

_~Li_LL- __ ~~I 0 1 PI $A2,ALICE · 1 · -----------

.--LL~_~I I L.l~~~ $A2,BONNY · 2 · ----------

r-~_i __ J __ L __ L __ I ISITI~_ $A2,CHRIS · 1 · --------_ .. __ . ---------------

r--~-~-~ I I LL-.L~L- :
--------_._-_._----------------- -. , I I I I I I lSI EI C I

: SECTION 2

IB,0IH,NIY 1 _L~WI I 2a-a- · · -- --- ------------------------

10 10 1 TITIY L --.-l IEIQIU I QUTTAG+S · ·
, 'J. lEI TIC I · I I I I · - -

IA I L II I CI E I I ILIOI~ ___ $AS,ITEM :
- - _ ... - . ---

I I I I I _L- --.l IS lUI BI $AS,BONNY : 2
------ -

-LNIGI JIP 1
$AS,CHRIS · 1 I , I I I I · -------------

I , , ~_L ~_ .-l_~!L~l_ · I · --_ .. _-- - ------------_._--, I I I , I ~~~~!.L __ ,ALICE : 1
- ---------------------

ICIHI RillS I --.l~10~ $AS,OOTTY : 2

I I I J I I I I S I TI PI $AS,OOTTY : 2

I~l~ I lEI T~_~L. · I I · -----

I I I ~~-L~~~ · SECTI;ON 3
i I I · --"--_ .. _-----------

---L-L~ __ L.L ___ f-I IEITIC I - :

IA,LI_LL~ ,-_L_~QI UI TTAG · - · , I I I I I L1~OIPI $A4,ALICE · 1 ·
I I I I , I I ,At 0

1
0

1
$A4,BONNY · 2 ·

I I I I I I IS i TI PI $A4,CHRIS • · 3
I ·

IE I TIC I · , I I I I I I ·
I I I I I I EINIOIPIRIO START · · · L.L..J I I I I I I I I I ·

IX. ASSEMBLY LISTING

SLEUTH will auto~atically produce a listing of each as
se~bled program to provide a record of its interpretation
of the Source program. The only progra~ed control over
the listing is the spacing as described in Section V, para
graph F.

The listing consists of three principal sections:

A. Title Line

B.

The first line shows the program name as it appears in
the PRO instruction of the source program. At the cen
ter of the page, the word "LIST" appears, followed by
the date.

ROC Auxiliary Information

The contents of the following are listed:

1 . Facility record.

2. Directory record.

3. Modification record.

For the uses of the above~ refer to the manuals on the
Relative Load Routine and· the Executive System.

C. Body of the Listing

The source program and the assembled object program are
listed side by side. For generative instructions the
generated word is printed in an expanded octal format.
Values associated with declaratives are listed, e.g.,
the value assigned to a tag by the Equals declarative.

An item number is assigned to each line of coding and
appears on the listing. As previously mentioned in
Section VII, the item number may be used to identify
lines of coding for corrections.

Coding errors detected by SLEUTH will be listed as
error codes.

SLEUTH 47

X. RELOCATION

Assembled object programs can be in AOC, DIRECT ROC, or
EXEC ROC form, as specified in the PRO instruction.

Absolute output is in binary form, ready for loading and
execution.

For ROC type programs, fields within some generated words
are necessarily incomplete. Final assignment of absolute
addresses and I/O units will depend upon the Relative Load
Routine and the Executive Routine at load time.

When ROC output is specified at the beginning of a program,
SLEUTH will produce the data required by the Relative Load
Routine to effect proper modification and relocation.

Coding special tags in a field gives to the Assembler the
information necessary to construct modification indicators
describing how a field is to be modified. The Assembler
also produces, as a part of the ROC format, tables defining
the special tags. From this information the load routine
can modify each word and make the program ready for execu
tion.

The Table in Appendix F gives the fields within each word
which may be modified on loading if necessary. The possi
ble forms of coding which may be used to generate the
field are also listed.

Field 29-00 is an unnatural division of a word which is used
as part of the calling sequence for the Executive I/O pack
age. Both the unit or drum address and channel assignments
are inserted in the field at load time.

Actual modification to the 30-bit field is restricted to
bits 29-26, and 22-00 for drum addressing or 15-00 for unit
assignment. Within a word two combinations of these modi
fiable fields may occur:

Field

or

25-22 and 15-00

33-18 and 15-00

Complete information on modification and relocation will be
found in the separate Relative Load Routine manual.

SI,EUTH 48

XI. SEGMENTATION

All three types of binary output can contain segmented
programs. After initial loading of the program by the
loader into core, and into drQ~ or magnetic tape storage,
the program itself must read segments. Information neces
sary to read a segment should be available within a pro
gram being assembled, using unit tags, drum table addresses
and length tags. Instructions must be generated to perform
this reading.

An analysis of the operation of the 1107 Relative Load Rou
tine should make clear the situation that exists at the be
ginning of execution. The words generated for a segment
are modified if necessary (i.e., for ROC type binary output)
and loaded in core at the execution position. For each
IBANK or DBANK area a single block is written on tape or on
drlliTI if storage was specified. Any section not requiring
storage remains in core, and the initial operating section
m~st therefore come last, or not be written over by a suc
ceeding section.

Sections stored on drum do not necessarily have ascending
drum addresses, but each table name gives the beginning
location of storage. Block markers are not written on
drum. Storage on tape will be in blocks in the order of
original coding. The first and/or last word of a section
generat~d can be used as a search word to locate the seg
ments.

SLEUTH 49

XII. INPUT/OUTPUT

A. Gener a 1

Assembled object programs can be in AOC, DIRECT ROC, or
EXEC ROC form, as specified in the PRO instruction. Each
type differs in the method of programming for input/output
operations, and each is discussed separately in this sec
t ion.

For AOC and DIRECT ROC type programs, all input/output
instructions must be coded in detail} using the four
types of I/O instructions as required:

1. Computer Hardware I/O Instructions

These instructions are functions performed by the
computer to initiate input/output, or function modes
etc. A full list will be found in the Computer In
struction Repertoire, Appendix B; they are identi
fied by the octal Function code 75.

2. I/O External Function Instructions

These instructions are functions performed by the
peripheral equipment, such as Rewind Tape, Read
Drum, Punch Car"d, etc.. A full list will be found
in the I/O Function RepertOire, Appendix D.

3. I/O Generative Instructions

These are software instructions which are used to
generate external Function words and Access Control
words. See Appendix C.1.

4. I/O Declarative In3tructions

These are software instructions which are used in
channel and unit definitions. A full list will
be found in Appendix C.2.

B. Requirements for Programming Input/Output

Each input/output operation involves so~e I/O channel,
and some I/O unit of peripheral equipment, both of
which must be assigned, either absolutely or symbolical
ly, by the source program. In addition, the actual ope
ration to be performed must be stated by means of Exter
nal Function words and I/O Access-Control words.

A channel or unit can be defined without being specified,
i.e., a line of coding will be written to indicate that
such a channel or unit is required, but no speGific iden
tification is stated.

SLEUTH 50

1

C. AOC

TAG

I I I I I I

I I I I , I

I I T I CIHI2 1

IT1A1P 1 Eill

IT I A I P,E,2,

I T I A I PI EI3 ,

IP1TIRIC,HI

IP, R, NIT I R,

I I I I I I

I I I I I I

I I I I I I

I I I I I I
......,

--

For AOe type programs, all input/output instructions
must be coded in detail, and all assignments of I/O
channel, units, drum addresses etc. must be coded in
absolute.

1. I/O Channel Definition and Assignnent

7 8

An absolute Channel Assignment is made by coding a
decimal (00-15) or octal (00-1 7) integer, or a pre
viously defined absolute Channel Tag as the first
sub-field of a Computer I/O instruction.

A Channel Tag is a symbol of not more than 5 char
acters, and is defined by means of a Channel Defi
nition declarative instruction. The Channel Tag
is coded in the Tag field, the Channel Definition
declarative is coded in the Function field, and an
absolute equation of the Channel Tag with channel
!In" is made by coding the sub-field as: =n.

I/O Channel Assignment and definition is illustrated
in Figure 28.

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

II I P MI 1,A BC : ABSOLUTE CHANNEL ASSIGNMENT

I I I I I :

,M,TI CIH I =2 : ABSOLUTE CHANNE L DEFINITION

IINIMIT,A I =2 : ABSOLUTE UNIT DEFINITION

IIN,M,T,A,O =s : .. " " (OPTIONAL)

IMITIAI I =3 : "
IH I PICIH I =4 : " CHANNEL DEFINITION

I ,H IS, PI = 1 : " UNIT "

I I I I I :

IIIIIPIMI TCH2,BCD : ABSOLUTE SYMBOLIC CHANNEL ASSIGNMENT

I I I I I :

I I I I I :
........ -- -- --~ -

FIGURE 28

2. I/O unit Definition and Assignnent

An Absolute unit assignment is made by coding a
decimal or octal integer (up to the maximum number
of I/O units associated with any given channel),

SLEUTH 51

-.r---

or a previously defined absolute Unit Tag in the
p-field of an External Function word.

A Unit Tag is a symbol of not more than 6 charac
ters and is defined by meanS of a Unit Definition
decl~rative instruction. The Unit Tag is coded in
the Tag field, the Unit De.finition is coded in the
Function field, and an absolute equation of the
Unit Tag with Unit lin" is made by coding the sub
field as: = n. The generated value will be in
master bit format.

I/O units are grouped by I/O channels by defining
all the units associated with a given channel
immediately after the channel definition.

The unit definition declarative may be suffixed
with the letter 0 to indicate that such units are
optional, and may be deleted at load time.

I/O unit assignment and definition are illustrated
in Figure 28.

3. I/O Access Control Words

1 TAG

I I I t I I I

I i It L I L

I 1 I L i L

V

The actual word-by-word transmission of input data,
output data, or external function words between
the Computer and the peripheral equipment is governed
by I/O Access-control words stored in the Access
Control Registers. These Registers are two groups of
film-memory locations specifically assigned as follows:

40-57 (octal) Input Access-Control Registers

60-77 (octal) Output Access-Control Registers

Location 40 is the Input Access-control Register for
Channel 0, location 41 is the Register for Channel
1, etc •. Similarly, location 60 is the Output Access
control Register for Channel 0, location 61 is the
Register for Channel 1, etc ••

To generate Access-control words, two possible in
struction formats are available, as illustrated in
a generalized form in Figure 29.

7 8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS ')

I IAI I

I I giL I

I l ILl

-

g w v

w,v

.-

FIGURE 29

SLEUTH 52

: METHOD 1 (
: METHOD 2 I
: ~
~ - ~

1 TAG

I IAtB, C, ,

I IAIBICI I

II ~ ~ i ~

, ,B,CID I I

I ,C/O, EI ,

I I I I I 1 -..... -

7 8

The Tag field, t, is coded with a Label, or it may
be omitted. The letter A used in method 1 is an
actual generative Function code. The increment
designator g will generate a two bit binary field
into positions 34-35 of the Access-control word,
and is coded as I, D, N, or ND:

I = 00 Increment u address
D = 10 Decrement u address

NI = 01 Inhibit Increment
ND = 1 1 Inhibit Decrement

The word count, w, is coded as a decimal or octal
integer, or an Absolute Tag. The address, u, is
coded in any acceptable u-field format.

An Access-control word is set up in an Access
control Register by coding the core address of the
word in absolute or symbolic form as the second sub
field of an appropriate Computer I/O instruction.
See Figure 28.

Examples of the coding of Access-Control words are
shown in Figure 30.

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

; IAI I 9,56 $68119 : METHOD 1 - ABSOL.UIE

I IAI 1 I I , W DC N T RB LJLCJ(: METHOD 1 - SYMBOLIC
:

I I I I I

I II I I I 56,RBLOCK : METHOD 2 - INCREMENTING

I 1°1 I I 5,AREAB : METHOD 2 - DECREMENTING

I I I I I :

-

I
}

(
\

\
)

J -- -
FIGURE 30

4. I/O External Function Words

I/O Function Words are actually instructions forming
the repertoire of the various types of peripheral
equipment. A list of the functions for each type of
equipment will be found in Appendix D. Any of the
instructions may be modified by prefixing the Func
tion code with the letter I, which will produce a
monitoring effect by causing an external interr~pt
signal to be emitted by the peripheral equipment at
the normal conclusion of the operation.

SLEUTH 53

1 TAG 7 8

, , ,t I , I

, I It, , I

, , , , , ,
, , , , , ,

..... -1....0

I TAG 7 8

, ,D.E,F, ,

, ,D,E, F, ,

•• E,F,G, I

, ,F,G.H I ,

, I , I I I

, ,D,E, FI I

, ,DIE, FI ,

, ,EIFIG, I

, ,F,G,H, I

As far as .the Central Computer is concerned, these
external function instructions are treated simply
as data words. They are generated by an I/O Func
tion generative instruction, which can be coded in
either of the two possible methods shown in a gener
alized form in Figure 31.

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

I IF I I f, p, x : METHOD 1

I If I I I p,x : METHOD 2
:

I I I I

I , , I , :

- -----./'" - -
FIGURE 31

The Tag field, t, is coded with a Label, or it may
be omitted. The letter F used in method 1 is an
actual generative Function code. The letter f re
presents the appropriate Function code for the
peripheral unit. The letter p represents the unit
assignment, and is coded either as a Unit Tag, or
as a decimal or octal integer, written in a form
which will produce the same master bit configura
tion as the Unit definition declarative would pro
duce. For example: Unit 3 should be coded as $4,
for a bit configuration of 100; Unit 5 should be
coded as $20, for a bit configuration of 010 000,
etc .•

The letter x represents a third field which is re
quired in some functions, such as printer line
spacing. The field is coded with a decimal or oc
tal integer, or an Absolute Tag, with values
ranging from 0 to 63.

Examples of the coding of External Function words
are shown in Figure 32.

9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS

I I F I R TF'N,3 : METHOD 1

I I I FI I IRTFH TAPE3 :

I I I Fl I PC,2 :

I , I F, I PHSP,1,2 :

I I I I I :

IRI TI FI HI 3 : METHOD 2

II I RI T, FIN TAPE3 :

I I PI CI I 2 :

I PIH, S,P I 1,2 :

/
\
I

\
.1

I

I
\

)
\.
\

~ - - -~ - - : - 1

FIGURE 32

SLEUTH 54

-

D. DIRECT ROC

AOC and DIRECT ROC type programs are essentially Slml
lar in their basic programming requirements. For both
types, all input/output instructions must be coded in
detail, using the four types of I/O instructions pre
viously discussed in paragraph A of this section.

The chief point of difference between the two types is
that in DIRECT RQC programs, final assignment of memory,
I/O channels, units etc. may be made through the Relative
Load Routine.

Thus in the source program, such assignments can be
either specific or relative. If the assignments are
specific, they will be honored by the Relative Load
Routine at load time unless modification is desired,
and such modifica tion will be governed by the Loca tion
Input records associated w·i th the Loader. A symbolic,
or unspecified, assignment in the source program re
quires Location Input data with the Loader so that
final assign~ent can be made.

Absolute or specific assignments are made as described
for AOC type programs. Symbolic assignments are made
by omitting the field in the coding line which speci
fies the absolute value of the channel, unit, etc ••
For example, in a channel or unit definition instruc
tion (see Figure ~), the sub-field would be left
blank, and not equated to some specific channel or
unit. Similarly, in the generation of an External
Function word (see Figure 30), the input/output unit
designated by the p-field should be coded in symbolic
form.

The word count in Access-control words should, of
course, be coded as an actual value.

For a detailed explanation of load time operations, see
the manual on CLAMP, the Relative Load Routine.

E. EXEC ROC

Input/Output programming for "EXEC ROC type programs
differs completely from the programming for AOC and
DIRECT ROC. The Computer hardware instructions and
the External Function instructions are not used; in
stead, an instruction repertoire consisting of a set
of Bxecutive System pseudo-instructions is used.

SLEUTH 55

EXECU-
TION

PACKET

An Input/Output command, therefore, is not programmed
as an instruction to the Computer system, but rather
as a request to the Executive System for Input/Output
action. An I/O Execution Packet is submitted to the
Executive System, and contains the desired pseudo
function which is to be performed, as well as the
parameters associated with it. The Executive System
interprets this packet, and calls on the Executive
I/O Functional Routines to perform the desired opera
t ion.

This relationship can be shown graphically:

EXECU- I/O EQUIP-Submi t ted to \,. TIVE Sets uJ2 ... FUNCTION Activates MENT , . SYSTEM ' ROUTINES r

FIGURE 33

For EXEC ROC, all I/O channel and unit assignments
must be made in symbolic form. They will be assigned
absolute values at load time by the Executive System,
working through the Relative Load Routine.

Channel Tags are not required in defining I/O Channels
for EXEC ROC, and a specific channel designation must
not be given. Therefore, a complete channel definition
can consist of only the channel definition declarative
coded in the Function field. There is one exception to
the rule about specifying channels: if a channel is
specified as: = 0, then EXEC, tre 1107 Executive
System, will assign the I/O units grouped under such
a channel to any available chan~els.

I/O units are defined, by channels, as described for
AOC and DIRECT ROC, except that again no unit specifi
cation can be made. The Executive System will atte~pt
to assign tapes classified as input tapes to units
which currently do not contain a physical tape, thus
minimizing operator effort.

I/O Access-control words form a part of the I/O Packet
and are coded as prpviously described.

SLEUTH 56

A complete list of all Executive System pseudo-func
tions, as well as a description of the format of the
I/O Execution Packet and the manner in which an I/O
request is submitted to the Executive System, is con
tained in the manual on EXEC, the 1107 Executive
System.

SLEUTH 57

XIII. SPECIAL DATA TABLES

Two special tables can be defined for EXEC ROC type pro
grams by giving them special names as described below.

A. $PARAM

The table named $PARAM will receive the input from the
Parameter Cards which are a part of the Executive Sys
te~ Job Request. Each card contains 11 words, and ac
cordingly the table lengths will normally be multiples
of 11.

B. $ERROR

The table named $ERROR is recognized by the Executive
System as a table of eight addresses corresponding to
the eight error interrupt locations (300-377

8
). If

an error occurs during the operation of the program,
the Executive System will consult the proper address
entry, place the P-register value at the time of the
error in the location specified, and jump to the
following word. Simulation of direct use by the pro
gram of the error interrupts is thus accomplished.

SLEUTH 58

BANK 1

BANK 2

SEGMENTED COMPLEX PROGRAM

CSR1

CSR2

CSR3

MC

51
52

SR1

SR2
SR1

SR2

DCSR1

DC5R2

DCSR3

DMC
1-----

DS1 DS2

DSR1

DSR1 DSR2

D5R2

Associated Data Tables Not Shown

FIGURE 34

SLEUTH 59

-

SR1

SR2

SR3

DSN

DSR1

DSR2

DSR3

CSR = common subroutine
MC = master control
S = segment
SR = subroutine
o prefix denotes data

XIV. LIBRARY SUBROUTINES

A. General Information

A program requiring the addition of subroutines from
an external library is called a main program. A main
program, together with its associated subroutines, is
called a complex program. Complex programs, as well
as simple programs (i.e., programs with no associated
subroutines) mayor may not be segmented. Figure 34
illustrates the form of a segmented comnlex program.
The inclusion of subroutines can be done either at as
sembly time or at load time.

In general, each subroutine defines its needed I/O
equipment, and drum or core tables, which are then
equated to tags in the main program. The assignment
of common I/O equipment, drum and data tables, and the
use of multiple entry points allows considerable freedom
in the design of subroutines. The methods used, there
fore, to communicate between the main program and the
subroutine, or between subroutines,will be to a great
extent dependent on the programming standards estab
lished at each UNIVAC 1107 Computer installation.

If the subroutine is to be incl~ded at assembly time,
its position within the main program is specified. If
the call for the subroutine is at load time, it is
added to the end of the main program.

B. Assembly Time Inclusion

Subroutines which are to be inserted into a main pro
gram at assembly time will be in symbolic notation on
a library tape, and the format will be that of a macro
instruction skeleton. The actual generation and in
sertion are effected by an instruction in which the
name of the subroutine is used as the Function code.
Any required parameters are coded in the sub-fields
portion of this instruction.

In general, subroutine inclusion at assembly time is
handled in exactly the same manner as the use of macro
instructions, except that the definition and skeleton
appear on the library tape and not in the main program.

C. Load Time Inclusion

Subroutines which are to be added to a main program at
load time will be in a modified ROC format on a library
tape.

SLEUTH 60

1

A main program requiring subroutines at load time must
specify the subroutines and the various entry points
required by means of the XREF declarative. Figure 35
illustrates such an external reference to two subrou
tines: SIN, COS, and TAN are multiple entry points of
the subroutine TRIG. The subroutine name (TRIG) is
automatically an entry point. SQRT is a subroutine
with no additional entry points.

TAG 7 8 9 FUNCTION 14 15 SUB FIE L OS {
I I I I I I X R EF

_~~~_l_~_
TRIG (SIN,COS, TAN) ,SQRT:)

~~==-------~---I I I I I I I --.1_ I I I -.-1 ____ --

I I I I I I -LI I I-L_ - --- - J - - -

FIGURE 35

The main program coding required to enter a subroutine
is dependent on the manner in which the subroutine is
wr i t ten.

Main program coding should observe the following con-
nontinnC'. v \ ... ;..L...1. U ...!...V.L..1.Io".}.

1. All segmentation is handled within the main pro
gram.

2. The required subroutines are specified by means of
an XREF declarative in each main program segment if
more than one segment exists. Any subroutine speci
fied in a section always in core is considered a
common subroutine, and may be referenced by any sec
tion of the program. Subroutines nlaced within a
program segment which has been stored on drum or
tape can be referenced only by that segment.

3. The total requirements of the subroutine data
tables must be contained within the data tables
specified for the main program.

4. Similarly all drum tables and I/O equipment must
be specified for the total configuration needed
by the main program and subroutines.

5. A facility record must be made up which describes
the total requirements of the combination of pro
grams.

SLEUTH 61

D. Creating a Subroutine

1

-

Subroutines, whether they are to be added at assembly
or load time, must be coded within the following limi
tations:

1. Subroutines are never segmented; the main program
controls segmentation.

2. The subroutine consists at most of one lBANK and
DBANK area, and one set of data tables.

3. A subroutine may itself contain an XREF declarative
cross-referencing other subroutines, if required,
i.e., subroutines within subroutines.

4. A subroutine may have several entry points which
are defined by the ENTRY declarative. The various
entry points are coded in the sub-fields portion of
the ENTRY instruction and each entry point label
so defined will appear on the Directory Record so
that in adding subroutines each entry point may be
an entrance from other programs. More than one
ENTRY declarative can be used; their effect is
cumulative. The subroutine name is automatically
an entr y point.

I I

See Figure 36 for an illustration of the ENTRY de
clarative.

TAG 7 8 9 FUNCTION 14 15 SUB FIELDS (

I I I I EINIT,R1YI SIN.COS.TAN . I . - \

- - -

FIGURE 36

SLEUTH 62

YJ1. SAMPLE PROGRAM

A. Statement Problem

The sample problem given here will evaluate the ex
pression

f(x) = x 3 + ax2 + b (x~~~) - c

The values of x range from 0 to 999 in stens of 1.
200 sets of random values for a, b, and c are assumed
to be stored in a drum table, each set consisting of
three words containing the values for a, b, and c,
making the total length of the drum table equal to
600. The arrangement of the drum table is:

a stored in ABC
1

b stored in ABC +
1

C " " ABC + I"")
~

1
a " II ABC + 3

2
b 11 II ABC + 4

2
C

11 11 ABC + 5
2

a 11 II ABC + 6
3

etc.

The expression within parentheses
as a macro instruction.

wi II be handled

Figure 37 is a flow chart of the problem, and figure 38
illustrates the coding.

B. Method of Solution

The method used in the sample progra~ is to evaluate
f(x) for a , b , and c

1
, and 0 ~ x ~ 999, write 1000

1 1

results on tape, then solve for a , b , c , etc., until
222

the results for the 200 sets of values of a, b, and c
have been written.

The explanations given below refer to the corresponding
number in the comments section of the written program.

1. The program name is EFFEX, and the object progra,n
will be an EXEC ROC type program.

2. The symbol XREG is equated to Register B2, and
any reference to XREG is a reference to B2.

SLEUTH 63

3. A single blank space will appear on the program
listing at this point.

4. The heading 111/0 DEFINITIONS II is an extension of
the previous instruction, and must therefore have
no instruction terminating colon of its own.

5. DRUM1 is defined as a magnetic drum channel, but
since this is an EXEC ROC type program, no specific
channel identification is made.

6. ABC is defined as a drum table on some unspecified
drum unit. The length of the table is 600.

7. OUTPUT is defined as an unspecified tape channel.

8. TAPE1 is defined as an unspecified tape unit.

9. TABC is defined as a data table in core, with a
length of 3 words, and with an unspecified start
ing address. It represents the 3 core addresses
into which will be read, from the drum table, the
3 words representing the val~es of a, b, and c.

10. TOUT is a data table in core, which will be used
to contain the 1000 results calculated for each
set of a, b, and c values, and from which these
results will be written on tape.

11. MACA is the name of the macro instruction whose
skeleton is defined by the instructions coded
between the MACRO and ENDMAC instructions.

12. The instructions which follow the IBANK line will
be stored in the instruction bank of core storage
(see comment #23). Because of the previous EJECT
instruction, the coding lines beginning with the
IBANK instructions will be printed on a new page
of the program listing.

13. START is the symbolic address of the first actual
instruction of the program. The instruction will
place the actual value 199 in Register B5, which
is used as an "iteration counter" to determine
whether the program is completed.

14. These 2 lines constitute the standard calling se
quence for submission of I/O requests to the
Executive System.

15. Register B4 is used as an iteration counter to de
termine the end of the minor loop, i.e., whether
X has reached 999.

SLEUTH 64

16. XREG (see comment #2) is used as an Index Register
to modify TOUT, so that successive results will be
stored in successive locations of the TOUT table.
The 16 least significant positions of XREG are
also stored in ALOe, which becomes the address of
the current value of X.

17. The actual evaluation of x 3 + ax2 is performed.

18. The macro-instruction is executed with the para
meters representing the addresses of the current
values of x and b.

19. The result of each iteration is stored in some
location within the table TOUT, as determined by
the value of XREG. XREG is incremented, as spe
cified by the asterisk.

20. A test is made to determine whether the value of
x has reached 999. If no, the contents of the
iteration counter B4 are decreased by 1, and
another iteration is made. If it has, the main
loop is finished, and the 1000 results are to be
written on tape.

21. The Read Drum instruction is modified so that the
next set of values for a, b, and c will be read.

22. This is the standard ending instruction to ter
minate the program and relinquish control to the
Executive System.

23. The follow'ing instructions are placed in the data
bank. See comment #12.

24. PKT1 consists of 4 lines of coding which constitute
the Read Drum I/O Execution Packet.

25. REQ1 is a Request Parameter for the above.

26. INDXWD is the initial setting of XREG.

27. REQ2 is a Request Parameter for the Write Tape I/O
request.

28. PKT2 consists of 4 lines of coding which constitute
the Write TaDe I/O Execution Packet.

29. ENDPRO defines the end of the program and identifies
START as the address of the first instruction to be
executed.

SLEUTH 65

INITIALIZE

EVALUATE
FOR

Xj (Aj Bj Cj)

STEP UP X
BY 1

SAMPLE PROGRAM FLOW CHART

FIGURE 37

SLEUTH 66

WRITE 1000
RESULTS

FINISHED?

NO

RESET INDEX
REGISTER

FOR X TO 99

1 TAG 7 8 9 FUNCTION 14 15 SUB FIELDS 37 COMMENTS N()TES

ElF ,F, E, X, , , ,Pi RIO, EXE : POLYNOMIAL EVALUATION 1

I ,X,R ,E,G, , ,E,Q,U1 $B2 · 2 ·
,S,P,A,C,E 1 · 3 , , , I , , ·

, , , , , , , , , , , I/O D E FIN I T 10 H S 4

,D IR 1U,M,l, JM[DJCJH J · 5 ·
,A,B, C, , , , ,M,D,T, LGTH=6gg · 6 , ·
~~,U,T ,M, T, C,H, · 7 ·

JT,AIPIElll , 1M, TIAI · 8 · , , I , I , ,S ,P,A,C, E 1 · ·
I I , , , I , , , , , DATA TABLE DEFINITIONS

, ,T,A,B,C, D,T,A,B,LIE ,LABC=3 .. 9 . '

, ,T,O, U, T, D,T,A,B,L,E ,LOUT=lggg OJ 10 .,

,S, P, Al C, E 1 " , , I , I I ..

J IM,A,CIA , ,M,A,C,R,O .. 11 "

IL, 0, P, $All,(l) ..
I , I I I , I "

, S, U, B, $A 11,5, ,$UOP I.
I I , I , , , "

, ,L, D, P, $A12,(1)
,.

, , I I I , ,.

J I , I I , , IMI P: S, $A12,(1) .. · ..

I , I I , , , ,A,D; D, $A12,(2) · ·
I I , I , , , I D, Vi II $A12,$Al1 · ·
, , , I E,N,D,M,A,C · , , ·
I I , , , , ,E,J,E,C]T · ·
J I I L I , ,I ,B,A, H, K · 12 ·
,SIT,A,RITI , ,L, 0, BI $85.199,,$UOP · 13 ·
I , , , I , , IL, 0, P, $Qf1,REQl · 14 ·
I , , I I , IL,M, J, P, $B1,$XI0 · 14 · , , , I I , , ,L, D, B, $B4,999,,$UO P · 15 ·

I ILl D, B, XREG.INDXWD · 16 J , I I I 1 · , I I I , I liS, T, B1 XREG,XLOC,,$H2 · ·
1 I L I I I ,S,P,A,C,E :

FIGURE 38

1 TAG 7 8 9 FUNCTION 14 15 SUB FIE LOS 37 COMMENTS NOTES

I IEIV"~ILI L D P $A5,XLOC · 17
~.---l-L_L_.~_ · --------_._-------- --

I I I I I IMIPIS I $A5,$A5 · I _1- · ------ ~--------------- -------------------------------------- --· , ,
$A5,XLOC · I I I I I L_ ---.J_~_-L_ -----"--- .------~~~--.--- _.--_._----------

1 I I I I I I-J ILIDI PI $A6,XLOC :
-

I --.l_~_L~_L_ $A6,$A6 · I I I I --.L_ · ~---------------------------------- ----.------, ,
$A6,ABC · 1 I 1 I I I ---.LI I I I · f------------------

1 I I I I IMIAICIAI (XLOC) (ABC+l) · 18 I · -

I I 1 I I I I IMIPIS I $A12,ABC+l · · ----- ---- ------

1 I l-L_IAIDIDL $A5,$A6 · I I I I · -- _.

I I I I I I , IA,D,D I $A5,$A12 :

1 I I I I I r-' IS ,U, BI $A5,ABC+2 · ·
I I I I I I IS I TIP, $A5,TOUT, XREG* · 19 I ·
I I I I~- II IX, J I PI $B4,EVAL-2 · 20 · ------

I I I I I I I ILID,P I $A7,PKT1+l · · -_._._---

IAID,D I $A7,3,,$UOP · 21 , I I , I --.L_ I · - --

I , I , SI TIP, $A7,PKT1+l · 21 I I I -L · --

J WI R II I T I ~L_ W_-1~.~L~J_ $Qg,REQ2 · 14 · -_._--- --- -

I , I I I I c-~_L!-L~ $Bl,$XIO : 14 ----------------------

1 1 I I I I W~~~ $B5,START+l · ·
I I I I I I IL 1M , J i P , $Bl,$END · 22 ·
1 I I I I , ,S IP I AI~~ 1 · · - ------

I I 1-.1~LB I AI N I K · 23
..L.I I I · -- --

I IXIL10IC, 1--_1 I WI I L · I · -------

I IP IK I Till 1--1 I IWI I g · 24 ·
I I I I I I l--l I R, D, , ABC · ·
I I I I I I I I I I I LABC,TABC · I ·
I I I I I I , I ,WI I

g · ·
lRI EI Q1 11 IHI g,PKTl · 25 I I I I ·

1 1,N,D I X I WID 1 I , H, , 1,g · 26 ·
,R, EI QI 21 I , HI , g,PKT2 · 27 I , ·

FIGURE 38 (Cant)

(f)
r
t.:r:j
q
f-3
0::

(J'\
'.0

TAG 7 8 9 FUNCTION 14 15

P K T 2
~_Lj __ Ll_J=--t __

W-LLl~L

W __ l __ L_1-_ J._L_.

I I I l-.l~

I I I-.l.~~_

I I I I I I

.1.._.1_J __ l_l.~

1 1 I l----...Ll_

0-.L--l-L-J .---1-

I I I I I I

l-l--L_j----.l_...1~

c--1- .11._1 _1._.1_

l-LLi.-.l __ ...1------1-

~..LLl _ _.L_..l_

W_l.....i.....i_l·~

I I I

I 1-.--1_.1_

I I I I~-----L....

1 I 1 1--1..-.-L....

L 1 1 J I I

L I I I I I

r-.L-L...L.L-.-l_1 _

_1 J I 1 I I

I I_L.....l_

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I 1 I I

W
_....l ___ L_...L_J __ L __

._.1 '!' I T I 2 I 5.1_._.

....l._..L~._......L __

W r-1-.-L.....L'-L-L-

~J~ DJ!_L!L<?_
e-....J.-LI I I

e-.....i __ l_L._L_L_

I I LLL

1-..l_ . .1_....L..L.....L __ _

I I I I I

. 1 . _i ___ L---.L...L-

....J---L----.Ll __ 1...._

_L_L_L.L....L....

l~L1.. . .L

~--L-l-L...L-L

--L....l. I I L_

W _l __ L. __ L .. L __

L1-L.....L~_~

I I I il

r-J __ ~L.1 ___ .L....
,.

f---.1_L J---.L-L-i

1--1. I I I -L __ :

_ __ .L_l_L....L.L_

U I I I I

I I .l-L...L_

I I.-L.....L....L....

I I I I I

I I I I I

I I I I I

SUB FIELDS 37 COMMENTS NC)TES

28
. ________ . _______ . ______ . __ . ___ _.. _____________________ . _____ --.------------.-------1-----

TAPEl
1---._-_._------_ ... _----_._. __ .. __ -.._ __ ._-- .. _-. .----.-----... -.----.-.--------------------.-------.--------1----

LOUT,TOUT
______ .. _. __ ... __________ . __ .. _. ___ ._. _______ . __________ . _______ ----------------------.--1---------1

g
1----. ----.-.-------.. --.-----~---------------------- .----.-------+--------1

START 29
r---------------... -------------------------.. ----.----.--.----.-.-.---... -.. ----------------.---------11-----1

e-----.--.--.-... ----.. --.. -.----------.--. -.. --.-----------.--.-----------------------.-----------~

J..---------.------------.-------.-----.------------------------.---------1-------1

----_._.--.-_._--_ _ .. _-_._ _-_ .. _--_._.- --I~--......

_ __ . __ .. ___ ._. ____ .. ___ ._._._ .. _. ___ . ________________ . ______ ... _________________________ ------.--------4----~

- . __________________ . ________ . ____ --_._--------_._--------------------1

---------------.----. _ .. _-- ._._-------- --------.-------

--------.-----------.---. -- -.-.-.. -.-.----.------.--.-~.---.------------.------- -----J.-----I

-.--.------------.-----.- ----.. ------.----.---.-----------.------.---... --------.- --------Ir----_I

~----------------------.----.- ------.--.----.---.---.-.---~-----.--------------------.----------11-----1

------------.----------.------------.-.----.-------.--------_._---------_._-----+-------1

-----------.-----.-----.-.- -----.-.--------------- -----------------.. -------ll----~

-------------.------.- -.-.---.. ------------------------------.-------.. -----1------

___ _____________________ . ----.--___ . ____ . ____________________________ . _____ . ___ ._~--____I

~----- .----------- ----.--.-----_-.. -------ll----~

~------------ ----------------------------------

~----------------- - .. -----------.---~-----.-----.---------.------I---___t

FIGURE 38 (Cant)

APPENDIX A

FIELDATA CHARACTER SET

OCTAL OCTAL
CODE CHARACTER CODE CHARACTER

00 Master Space 40)
1 Upper Case 1
2 Lower Case 2 +
3 Tab 3 < or %
4 Carriage Return 4 = or #
5 Space or /::, 5 > or &
6 A 6
7 B 7 $

10 C 50 * 1 D 1 (
2 E 2 "
3 F 3
4 G 4 ?
5 H 5
6 I 6 ,
7 J 7 STOP EiJ

20 K 60 0
1 L 1 1
2 M 2 2
3 N 3 3
4 0 4 4
5 P 5 5
6 Q 6 6
7 R 7 7

30 S 70 8
1 T 1 9
2 U 2

,t

3 V 3 ;
4 w 4 I
5 X 5 .
6 y 6 Special
7 Z 7 Backspace

SLEUTH 70

APPENDIX B
INSTRUCTION REPERTOIRE

f NAME DESCRIPTION

EXECUTION
TIME

IN J1. SEC. MNEMONIC

Alternate Same CODE
Core Core

01 0-17
02
03
04
05
06

10
11
12
13
14
15
16
17
20
21
22t

23
24
25
26
27
30
31
32

34

35

36

40

41

42

43

44

45

47

50

51

52

53

54

55

56

57

Store Positive
Store Negative
Store Magnitude
Store Ra
Store Zero
Store Ba

Load. Positive
Load Negative
Load Positive Magnitude
Load Negative Magnitude
Add
Subtract
Add Magnitude
Subtract Magnitude
Add and Load
Subtract and Load
Block Transfer

Load Ra
Add to Ba
Subtract from Ba
Load Ba Modifier Only
Load Ba
Multiply Integer
Multiply Single (Integer)
Multiply Fractional

Divide (I nteger)

Divide Single and Load (Fractional)

Divide (Fractional)

Selective Set

Selective Complement

Selective Clear

Selective Substitute

Selective Even Parity Test

Selective Odd Parity Test

Test Modifier

Test Zero

Test Not Zero

Test Equal

Test Not Equal

Test Less Than or Equal

Test Greater Than

Test Within Limits

Test Outside Limits

(A) ~ U
- (A) ~ U

. I(A)I ~ U
(Ra) ~ U
o ~ U (Clear U)
(Ba) ~ U

(U) ~ A
- (U)~ A
IlU)1 ~ A
-I(U)I ~ A
(A) + (U) ~ A
(A) - (U) ~ A
(A) + I(U)I ~ A
(A) - I (U) I ~ A
(A) + (U) ~ A + 1
(A) - (U) ~ A + 1
(W)i ~ (V)i repeated k times. •
Initial V1 address is u + (Bb) 17--0, and subse
quent addresses are formed by incrementa
tion by (Bbhs--1S. Similarly, V2 addresses are
u + (Ba)17--0 incremented by (Bahs--18.
(U) ~ Ra
(Ba) + (U) ~ Ba
(Ba) - (U) ~ Ba
(U) ~ Ba17--0
(U) ~ Ba
(A) • (U) ~ A, A + 1
(A) • (U) ~ A
(A) • (U) ~ A, A + 1

(A, A + 1) -7- (U); Quotient ~ A
Remainder~ A + 1

(A) -7- (U); Quotient ~ A + 1
No Remainder

(A, A + 1) -7- (U); Quotient ~ A
Remainder ~ A + 1

(A) ~ A + 1. Then set (A + l)n for (U)n= 1
i.e., (A) E9 (U) ~ A + 1
(A) ~ A + 1. Then complement (A + l)n
for (U)n = 1
i.e., (A) tt> (U) ~ A + 1
(A) ~ A + 1. Then clear (A + l)n for
(U)n = 1
i.e., (A) 0 (U) ~ A + 1
(A) ~ A + 1. Then (U)n ~ (A + l)n for
(M)n = 1
i.e., (A) 0 (M)'+ (U) 0 (M) ~ A + 1
If [(A) <:) (U)] is even parity, Skip NI

Banks BJrlk

4.0
4.0
4.0
4.0
4.0
4.0

4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
8.0

4.0
4.0
4.0
4.0
4.0

12.0
12.0
12.0

31.3

31.3

31.3

4.0

4.0

4.0

4.7

8.0
8.0
8.0
8.0
8.0
8.0

8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0

8.0
8.0
8.0
8.0
8.0

16.0
16.0
16.0

35.3

35.3

35.3

8.0

8.0

8.0

8.7

If [(A) 0 (U)] is odd parity, Skip NI

No Skip 6.0 10.0
Skip 10.0 14.0

No Skip 6.0 10.0
Skip 10.0 14.0

If (Ba)17--0 < (U), take NI; If (Ba)17~-0 > (U),
Skip. In either case, No Skip
(Ba)17--0 + (Bahs--18 ~ Ba17-.0 Skip
Skip NI if (U) = 0 No Skip

Skip NI if (U) =1= 0

Skip NI if (U) = (A)

Skip NI if (U) =1= (A)

Skip NI if (U) ~ (A)

Skip NI if (U) > (A)

Skip NI jf (A) < (U) s: (A + 1)
(Note: (A) < (A + 1»

Skip NI if (U) s: (A) or (U) > (A + 1)
(Note: (A) < (A + 1»

Skip
No Skip
Skip
No Skip
Skip
No Skip
Skip
No Skip
Skip
No Skip
Skip

No Skip I Skip
No Skip
Skip

4.7
8.7
4.0
8.0
4.0
8.0
4.0
8.0
4.0
8.0
4.0
8.0
4.0
8.0
4.7
8.7
4.7
8:7

8.7
12.7

8.0
12.0
8.0

12.0
8.0

12.0
8.0

12.0
8.0

12.0
8.0

12.0
8.7

12.7
8.7

12.7

t Repeat operations 62-67, 71 take 16/1- sec combined setup and termination time. The block transfer (22)
takes 12 /1- sec combined setup and termination time:

SLEUTH 71

STP
STN
STM
STR
STZ
STB

LOP
LON
LDM
lNM
ADD
SUB
ADM
SBM
ADL
SBL
BTR

LOR
ADB
SBB
LBM
LOB
MPI
MPS
MPF

DVI

DVL

DVF

SSE

SCP

SCL

SSU

SEP

SOP

TMO

TZR

TNZ

TEQ

TNE

TLE

TGR

TWl

TOL

INSTRUCTION REPERTOIRE

EXECUTION
TIME

f j NAME DESCRIPTION IN Ji. SEC. MNEMONIC

Alternate Same CODE
Core Core

Banks Bank

60 0-17 Test Positive Skip NI if (U) 2:. 0 No Skip 4.0 8.0 TPQ
Skip 8.0 12.0

61 Test Negative Skip NI if (U) < 0 No Skip 4.0 8.0 TNG
Skip 8.0 12.0

62t Search Equal Skip NI if (U)j = (A) No Skip 4.0 4.0 SEQ
Repeated k times Skip 4.0 4.0

63t Search Not Equal Skip NI if (U)j =1= (A) No Skip 4.0 4.0 SNE
Repeated k times Skip 4_0 4.0

641" Search Less Than or Equal Skip NI if (U)j < (A) No Skip 4_0 4.0 SLE
Repeated k tiri1"es Skip 4.0 4.0

65t Search Greater Than Skip NI if (U)j > (A) No Skip 4_0 4.0 SGR
Skip 4.0 4.0

66t Search Within Limits Skip NI if (A) < (U)j ~ (A + 1) No Skip 4.7 4.7 SWL
(Note: (A) < (A + 1» Skip 4.7 4.7

67t Search Outside Limits Skip NI if (U)j < (A) or (U)j > (A+1) No Skip 4.7 4.7 SOL
(Note: (A) «A + 1» Skip 4.7 4.7

70 Index Jump If (CM)ia > 0, Jump to U No Jump 8.0 8.0 IXJP
(CM)ia < 0, Take NI Jump 4.0 4.0

Then (CM)ja - 1 ~ CMia
NOTE: j in this instruction serves with the

a-designator to specify anyone of the 128
words of Control Memory.

71t *
00 Masked Search Equal Skip NI if (U)j 0 (M) = (A) 0 (M) No Skip 4.0 4.0 MSEQ

Repeated k times Skip 4.0 4.0
01 Masked Search Not Equal Skip NI if (U)j 0 (M) =1= (A) 0 (M) No Skip 4.0 4_0 MSNE

Repeated k times Skip 4.0 4.0
02 Masked Search Less Than Skip NI if (U)j 0 (M) < (A) 0 (M) No Skip 4.0 4.0 MSLE

or Equal Repeated k times - Skip 4.0 4.0
03 Masked Search Greater Than Skip NI if (U)j 0 (M) > (A) 0 (M) No SKip 4.0 4.0 MSGR

Repeated k times Skip 4.0 4.0
04 Masked Search Within Limits Skip NI if (A) 0 (M) < (U)j 0 (M) MSWL

< (A + 1) 0 (M) No Skip 4.7 4.7
- (Note: (A) 0 (M) < Skip 4.7 4.7

(A + 1) 0 (M»
Repeated k times

05 Masked Search Outside Limits Skip NI if (U)j 0 (M) < (A) or MSQL
(U) 0 (M) < (A + 1)- No Skip 4.7 4.7

(Note: (A) 0 (M) < Skip 4.7 4.7
(A + 1) 0 (M»

Repeated k times

72 *
00 Wait for Interrupt The computer program sequence stops 4.0 WAIT

(i.e., P is not advanced). The wait condi-
tion is removed by an interrupt.

01 Return Jump (P) ~ U17--0 and Jump to U + 1 8.0 8.0 RTJP
02 Positive Bit Control Jump If (Ahs = 0, Jump to U No Jump 4.0 4_0 PBJP

Shift (A) left one in either case Jump 8.0 8.0
03 Negative Bit Control Jump If (Ah5 = 1, Jump to U No Jump 4_0 4.0 NBJP

Shift (A) left one in either case Jump 8.0 8.0
04 Add Halves (A)17--0 + (U)17--0 ~ A17--0 4_0 8.0 ADDH

(Ah5--18 + (Uh5--18 ~ A35--18
05 Subtract Halves (A)17--0 - (U)17--0 ~ A17--0 4.0 8.0 SUBH

(Ah5--18 - (Uh5--18 ~ A35--18
06 Add Thirds (Ah5--24 + (Uh5--24 ~ A35--24 4.0 8.0 ADDT

(A)23--12 + (Uh3--12 ~ A23--12
(A)ll--O + (U)1l--0 ~ All--O

07 Subtract Thirds (Ah5--24 - (Uh5--24 ~ A35--24 4.0 8.0 SUBT
(A)23--12 - (U)23--12 ~ A23--12
(A)ll--O - (U)1l--0 ~ All--o

10 Execute Remote Instruction Execute the Instruction at U 4.0 - EXRI
+ Execution Time

11 Load Memory Lockout Register U5--0 ~ MLR 4.0
For Uo = 1 lockout 0-4095

U1 = 1 lockout 4096-8191
U2= 1 lockout 8192-16383
U3= 1 lockout 16384-32767
U4= 1 lockout applies to 1st BANK
Us =c:: 1 lockout applies to 2nd BANK

73:1: -.-

00 Single Right Circular Shiftt Shift (A) right U places circularly 4.0
01 Double Right Circular Shift Shift (A. A + 1) right U places circularly 4_0
02 Single Rig/U Logical Shift Shift (A) right U places, end off; fill with 4.0

zeros (Max_ Shift -- 36)
*J serves as part of the FunctIon Code

1" Repeat operations 62-67, 71 take 16 f.l sec combined setup and termination time. The block transfer (22)
takes 12 f.l sec combined setup and termination time.

- LMLR

SCSH
DCSH
SLSH

j:lnstruction execution time is independent of the number of shifts performed (e.g. a shift of 72 takes 4 microseconds). There
are no memory references in the first six shift instructions. 73 00 - 73 05; consequently, the distinction between alternate core
banks and the same core bank is irrelevant.

S~EUTH 72

INSTRUCTIO~ REPERTOIRE

, i i

I
EXECUTION

TIME

j NAME DESCRIPTION IN!L SEC. MNEMONIC

Alternate Same CODE

I
Core Core

Banks Bank

! 03 Double Rigi-;t Logical Shift Ch;~+ {'" '" I 1 \ r;,.,h+ II "I",,,,,,,,,, ""n~ r.ff· 4.0 DLSH ~.;.,;;,. \r1i, r. T':'; ::6::"" 'toJ ""=I: .. a ... 'to.>,.;;:rt,~:l"t...: v::,

fill with zeros. (Max. Shift = 72)
04 Single Right Arithmetic Shift Shift (A) right U places, end off; fill with sign bits. 4.0 SASH

05 Double Right Arithmetic Shift Shift (A, A + 1) right U places, end off; 4.0 DASH
fill with sign bits. (Max. Shift = 72)

06 Scale Factor Shift (U) ~ A, shift A left circularly until A35 T A34 6.0 10.0 SFSH
or until A has been shifted 36 times. Store
the scaled quantity in A and the number of
shifts that occurred in A + l.

74 *
00 Zero Jump Jump to U if (A) = 0 No Jump 4.0 4.0 ZRJP

Jump 8.0 8.0
01 Non-zero Jump Jump to U if (A) =1= 0 No Jump 4.0 4.0 NZJP

Jump 8.0 8.0
02 Positive Jump Jump to U if (A) 2: 0 No Jump 4.0 4.0 POJP

Jump 8.0 8.0
03 Negative Jump Jump to U if (A) < 0 No Jump 4.0 4.0 NGJP

Jump 8.0 8.0
04 Console Selective Jump Jump to U if A = key setting on console (1 of 15) 4.0 4.0 CSJP

05 Selective Stop Jump Stop if A = stop key setting on console (1 of 4), 4.0 4.0 SSJP
always jump to U

06 No Operation Do Nothing; continue with NI 4.0 4.0 NOOP

07 Enable All External Interrupts Jump to U and permit interrupts to occur 4.0 4.0 EIJP
and Jump

10 Even Jump Jump to U if (A)o = 0 No Jump 4.0 4.0 EVJP
Jump 8.0 8.0

11 Odd Jump Jump to U if (A)o = 1 No Jump 4.0 4.0 ODJP
Jump 8.0 8.0

12 Modifier Jump If (Ba)17--0 > 0, Jump to U No Jump 4.0 4.0 MOJP
If (Ba)17--0 < 0, Take NI Jump 8.0 8.0
In either case (Ba)17--0 + (Bah5--1B ~ Ba17--0

13 Load Modifier and Jump (P) ~ (Ba)17--0 and Jump to U 4.0 4.0 LMJP
14 Overflow Jump Jump to U if overflow condo is set 4.0 4.0 OVjP
15 No-Overflow Jump Jump to U if overflow condo is not set 4.0 4.0 NOJP
16 Carry Jump Jump to U if carry condo is set 4.0 4.0 CYJP
17 No-Carry Jump Jump to U if carry condo is not set 4.0 4.0 NCJP

75 *
00 Initiate Input Mode (U) ~ input control word a, and initiate 4.0 8.0 IIPM

input mode on channel a.
01 Initiate Monitored Input Mode (U) ~ input control word a, and initiate 4.0 8.0 1M 1M

input mode on channel a with monitor.
02 Input Mode Jump Jump to U if channel a is in the input mode. 4.0 4.0 IMJP
03 Terminate Input Mode Terminate input mode on channel a. 4.0 4.0 TIPM
04 Initiate Output Mode (U) ~ output control word a, and initiate 4.0 8.0 IOPM

Initiate Monitored Output Mode
output mode on channel a.

05 (U) ~ output control word a, and initiate 4.0 8.0 IMOM
output mode on channel a with monitor.

06 Output Mode Jump Jump to U if channel a is in the output mode. 4.0 4.0 OMJP
07 Terminate Output ~jude Terminate output mode on channel a. 4.0 4.0 TOPM
10 Initiate Function Mode (U) ~ output control word a, and initiate 4.0 8.0 IFNM

function mode on channel a.
11 Initiate Monitored Function Mode (U) ~ output control word a, and initiate 4.0 8.0 IMFM

function mode on channel a with monitor.
12 Function Mode Jump Jump to U if channel a is in the function mode. 4.0 4.0 FMJP
13 Force External Transfer Request external function or output word 4.0 4.0 FEXT

on channel a.
14 Enable All External Interrupts All external interrupts are permitted to occur. 4.0 4.0 EAEI
15 Disable All External Interrupts All external interrupts are prevented 4.0 4.0 DAEI

from occurring.
16 Enable Single External Interrupt An external interrupt on channel a 4.0 4.0 ESEI

is permitted to occur.
17 Disable Single External Interrupt An external interrupt on channel a 4.0 4.0 DSEI

is prevented from occurring.
76 *

00 Floating Add (A) + (U) ~ A, A + 1 14.0 18.0 FLAD
01 Floating Subtract (A) - (U) ~ A, A + 1 14.0 18.0 FLSB
02 Floating Multiply (A) . (U) ~ A, A + 1 13.3 17.3 FLMP
03 Floating Divide (A) -7- (U); Quotient ~ A 26.7 30.7 FLDV

Remainder ~ A + 1
04 Floating Point Unpack Unpack (U), store mantissa in A + 1 and store 4.0 8.0 FLUP

the biased characteristic in A
05 Floating Point Normalize Pack Normalize (A) pack with biased characteristic 7.3 11.3 FLNP

from (Ui and store at A + 1
06 Floating Characteristic

Difference Magnitude Absolute value of 1(A)34 .. 271-1 (Uh4-.271 ~ A + 1 4.0 8.0 FLCM

07 Floating Characteristic
1(A)34"2,-~Uh4"271~ A + 1 Difference 4.0 8.0 FLCD

*j serves as part of the Function Code SLEUTH 73

APPENDIX C

ASSEMBLER-DEFINED (SOFTWARE) FUNCTIONS

1. Generatives

1/0 Function word
1/0 Access-control word
Whole Word
Floating point word
Fixed point scaled word
Half-W"ord
Third-word

t
t
t
t
t
t
t

F
A
W
WF
WX
H
T

f , f 2 , f3
f~, f 2 ' f3
fl
fl' f
fl' f2 f

2' 3
fl' f2
fl' f 2 , f3

Sixth-word
Var,iable Field
Character Code
Block Reservation

t
t

S fl' f2' f 3 , f 4 , f5' f6
G f l /b l , f2/b ,9 •• f

t SC n, fl' f2,.~.fn

2. Declaratives

Program start
Program end
Equali ty

Instruction Bank Definition
Data Bank definition
Data Table definition
Start Macro definition
End Macro definition

t RESV n

t PRO
t END PRO
t EQU
t =

IBANK
DBANK

t DTABLE
t MACRO

ENDMAC

fl
fl
f
fl

1
f 1 , f 2 ,
fl' f 2 ,
= n, f 1

JQmp Swith Definition t SWITCH

I/O channel definition-drum
-tape
-paper tape
-Printer
-Card

I/O Uni t defini tion input- tape
-non-input tape

-paper tape reader
-paper tape punch
-High-Speed Printer
-Card Reader
- Card Punch
-Card Read-Punch

Drum Table definition
Space (program listing)
EJECT(program listing)
Start Correction routine
End Correction routine
Delete Instructions-*

-s ing 1e line
-many lines

Insert neW" instructions

SLEUTH 74

t
t
t
t
t
t
t
t
t
t
t
t
t

t

t

MDCH =n
MTCH =n
PTCH =n
HPCH =n
CDCH =n
INT =n
MTT =n
PTR =n
PTP =n
HSP =n
CR =n
CP =n
CRP =n

MDT =n,
SPACE n
EJECT

COR
ENDCOR
DELETE
DELETE
DELETE
FOLLOW

f3
f3

fl

n!bn

APPENDIX D:

EXTERNAL INPUT/OUTPUT FUNCTION REPERTOIRE

Each of the hardware mnemonic codes may be modified by pre
fixing the letter I. This will change the code to the corre
sponding function followed by an external interrupt. Execu
tive I/O functions are never prefixed.

In the fourth column below Hand E stand for hardware and
executive respectively.

Tape (Octal Code) (Mnemonic) (Function Name)

01 WT12 Write Tape at 12. 5 KC
02 WT25 Write tape at 25 KC
20 REW Rewind
21 REWL Rewind with interlock
40 BOOT Bootstran
41 RTFL Read tape forward low

gain
42 RTFN Read tape forward

normal gain
43 RTFH Read tape forward

high gai.n
61 RTBL Read tape backward low

gain
62 RTBN Read tape backward

normal gain
63 RTBH Read tape backward

45
high gain

STFL Search tape forward

46
low gain

STFN Search tape forward
normal gain

47 STFH Search tape forward
high gain

65 STBL Search tape backward
low gain

66 STBN Search tape backward
normal gain

67 STBH Search tape backward

43
high gain

RTFS Read tape forward with
sentinel check

63 RTBS Read tane backward with
sentinel check

41 MTF Move tane forward
61 MTB Move tane backward

Drum
02 WD Write drum
42 RD Read drum
\ -'

4-) SD Search drum
46 SRD Search Read Drum

SLEUTH 75

(Use)

HE
HE
HE
HE
HE
H

HE

H

H

HE

H

H

TTT.1
ilJ2J

l-T
.L.L

H

HE

H

E

E

E
E

HE
HE
HE
HE

Card

Printer

CO:'.1.trol

52
55
56
62

62

63

64

04

05

06

43
41
42
44

02
03
60
61

02

22
23
24
26
07

1 7

33

BRD
BSD
BSRD
CBRD

CFDI

CCBI

CRBI

CFDO

CCBO

CRBO

TC
RC
RCTF
RCTS

PCS.0
PCS1
SS1
SS2

PHSP

CCH
TERM
RCH
DCH
RLI

IRLI

ITERM

SLEUTH 76

Block read drum
Block Search drum
Block search read drum
Chain Block read drum

E
E
E
E

Condition Fieldata in- HE
put

Condition column binary HE
input

Condition row binary HE
input

Condition Fieldata HE
Output

Condition column binary HE
Output

Condition row binary HE
Output

Trip card HE
Read card HE
Read card trip fill HE
Read card trip fill E

sentinel check
Punch card stacker .0 E
Punch card stacker 1 E
Select Stacker 1 H
Select Stacker 2 H

Print high speed
printer

Clear channel
Terminate channel
Request channel
Demand channel
Remove logical inter

lock
Input only-remove

interlock
Input only-terminate

requests

HE

H
HE
H
H
E

E

E

APPENDIX E

ASSEMBLER-DEFINED SYMBOLS

1. a-type Designators

$B0 to $B15
$A0 to $A15
$Q0 to $Q3
$R0 to $R15

B-Registers
A-Registers
Q-Registers
Special Registers

2. j-type Designators

$W
$H1 -$H2
$XH1 -$XH2
$T1 -.$T3
$S1 -$S6
$UOP
$XUOp

Whole word generative
Half-wDrd generative
Half-word generative with sign extension
Third-word generative
Sixth-word generative
u-field is actual operand
Same, with sign extension

3. Miscellaneous Symbols

$L
$p AR.LLT\1
$ERROR

Current instruction address
Special Data Table for EXEC ROC
Special Data Table for EXEC ROC

SLEUTH 77

APPENDIX F

Field Bits

25-22

29-00

22-00

33-18
33-18

or

1 5-00

MODIFIABLE FIELDS

Coding

Channel Tag

I/O Unit Tag

Drum Address + Constant -
Drum Address + Drum Length Tag -
Drum Address + Constant -
Drum Address + Drum Length -
Drum Length .:t Constant

Drum Length .:t Constant

I/O Unit Tag

I/O Access Word Tag

System Tag

Label .:t Constant

Data Table Tag .:t Constant

Length Tag .:t Constant

Data Table Tag .:t Length Tag

L + Constant

SLEUTH 78

Tag

Restricted To

Direct I/O

Executive I/O

Executive I/O

Executive I/O

Direct I/O
Direct I/O

Length < 216

Direct I/O

INDEX

A, 52
A-type Designator, 15
ABS, 27
Absolute Operana, 19
Absolute Tag, 12
Accidental duplication, 45
Actual value, 9
AOC, 1, 51

A

Asterisk:instruction deletion, 9
b-field incrementation, 21
h-field incrementation, 21

B-field, 21
B-field incrementation, 21
Block reservation, 25

Character code generation, 25
Character, FIELDATA, 9
Character, special, 9
Comments, 7
COR, 42
Corrections, 42
CSJP, 17, 35'

B

C

Current Location Counter ($L), 13

D, 53
Data Table Length Tag, 13, 32
Data Table Tag, 13, 31
DBANK, 29
Declarative instructions, 27
DELETE, 42
Designator: a-type, 15

j-type, 16
DIR, 27
DIRECT ROC, 1
D itt 0 rna r k , 1 1
Drum Table Length Tag, 14,33
Drum Table Tag, 14,33
DTABLE, 31
Duplication, accidental, 45

D

S~E~T:I 79

EJECT, 35
ENDCOR, 43
ENDMAC, 36
ENDPRO, 27
ENTRY, 62
EQU, 28
Equality), 28
ERROR, 5(5
EXE, 27
EXEC ROC, 2

F 54

E

F

FIELDATA codes, 9,25
Fixed point scaled numbers, 8,23
Floating point numbers, 8,23
FOLLOW, 43
Function code, 10, 17
Function field, 6

G,24
Generative instructions, 22

H,23
H-field incrementation, 21
Half-word generation, 23

I, 53

G

H

I

I/O Access Word Tag, 15,52
I/O Channel Tag, 14, 51
I/O External Function words, 53
I/O Unit Tag, 15,51
IBANK, 29
Incrementation: b-field, 21

h-field, 21
Label, 13
Table Length Tag, 22

Index Registers, 21
Indirect Addressing, 21
Input/Output, 50
Integer, decimal and octal, 6

J -field, 21
J-type Designator, 16
JUMP, 17,35

J

SLEUTH 80

Label, 1'2
Library sub-routines, 60
Line of coding, 9
Listing, 34,47
Literal expression, 29

MACRO, 36
Macro-instructions, 36
Memory lockout, 20
Modifiable fields, 48

NI, 53
ND, 53
Next instruction, 19
Numbers, 6
Numerical word generation, 22

Omitting fields, 6
Operand, 18

PARAM, 58
Partial word generation, 23
PRO, 27
Program specification, 27

Relocation, 48
RESV, 25
ROC-DIRECT,
ROC-EXEC, 2

S, 23
Sample program, 63
SC, 25
SEC, 45
Segmenting, 29,49
Segment Length Tag, 14
Selective Jump Switch, 35
Shift Count, 20
Sign-coded or urrcoded, 8
Sixth-\.,rords, 23
Skeleton, macro-instruction 37

L

M

N

°

P

R

S

SLEUTH 81

SPACE, 35
Special Character, 9
Special Data Tables, 58
Special Registers, 17
Sub-fields, 6
SWITCH, 35
Symbol, 8
System Tag, 14

T, 23
Table definition, 31
Tag definition, 11, 17
Tag field, 6
Third-words, 23

T

v

Variable Bit Generation, 24

U-field, 18

W, 22
WF, 23
WX, 23
Whole Words, 22

XREF, 61

U

W

x

SLEUTH 82

UNIVAC
OIVISION OF SPERRY RANO CORPORATION

9~\~:(O U T 2574
us."

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	xBack

