PRELIMINARY INFORMATION
 ON THE
 COMPENT OF REGISTERS OF THE
 1103A FLOATING POINT INSTRUCTIONS

Date: 15 October 1956
Prepared by: P. Warburton
Issued by: Systems Analysis Dept. Systems Group of Univac Scientific Applications

The layout of the "Floating Point Content of Registers" is not the same as that of the fixed point instructions. There are more conditions affecting the final content of A. First, has the NEFF been set or cleared by instruction 05? Second, what is the relative size of (u) and (v)? For these reasons, only the Pack and Unpack commands are in the usual format. Since the arithmetic Floating Point comands do not change (u) and (v), $(u)_{f}$ and $(v)_{f}$ are not ineluded in the Contents of Registers of operations $64,65,66,67,01$, and 02.

The binary point of floating point numbers is usually between the twentyeighth and the twenty-seventh place. After the arithmetic pseudo-normalizing process, the mantissa is in A_{L}, and the binary point is between A_{63} and A_{62}. It may or may not be normalized. The position of the most significant bit (MSB) indicates what has occurred. If normalized, the MSB will be in A $_{62}{ }^{\circ}$

The value of the significant bits depends upon whether rounding has occurred. Rounding in effect adds an extra bit to the value of (a) at \mathbb{A}_{35} (unless the addition of the rounding bit carries into A_{62}, in which case the final left shift is omitted and the rounding bit remains added to the value of $A_{34}{ }^{\circ}$

The value of $(Q)_{f}$ will be either (1) the normalized rounded, and packed result (MRP), or (2) the pseudo-normalized result (PN).

HOTE: If A or Q is the v-address of any floating point command other than the pack or unpack command (A) or (Q) will be destroyed by the Unpack (u) sequence before the unpack (v) sequence is reached.

Instruction: Floating Add (FAuv)				Operation: 64			
Function: Form in Q the normalized rounded and packed floating point sum of (u) and (v).							
HES	Arithmetic Conditions		$(\mathrm{A})_{\underline{P}}$			$(\mathrm{Q})_{1}$	
FF			MSB	Value of significant bits	Round	Norm	Value
0	$\begin{aligned} & (u) \geq(v) \\ & (u)<(v) \end{aligned}$		$\begin{aligned} & A_{62} \\ & A_{62} \end{aligned}$	$\begin{aligned} & \left(u_{m}\right) \cdot 2^{\left(v_{c}\right)-\left(v_{c}\right)_{+}\left(v_{m}\right)} \\ & \left(v_{m}\right) \cdot 2^{\left(v_{c}\right)-\left(u_{c}\right)}+\left(v_{m}\right) \end{aligned}$	yes yes	RRP MRP	$\begin{aligned} & (u)+(v) \\ & (u)+(v) \end{aligned}$
1	$(u) \geq(v)$ $(u)<(v)$	$\left\|\begin{array}{l} \left(u_{c}\right)-\left(v_{c}\right) \geq 2 \\ \left(u_{c}\right)-\left(v_{c}\right)<2 \\ \left(v_{c}\right)-\left(u_{c}\right) \geq 2 \\ \left(v_{c}\right)-\left(u_{c}\right)<2 \end{array}\right\|$	$\left\{\begin{array}{l} A_{61} \\ A_{61}-A_{33} \\ A_{61} \\ A_{61}-A_{33} \end{array}\right.$	$\begin{aligned} & \left(v_{m}\right) .2^{\left(u_{c}\right)-\left(v_{c}\right)}+\left(v_{m}\right) \\ & \left(u_{m}\right) .2^{\left(u_{c}\right)-\left(v_{c}\right)_{+}\left(v_{m}\right)} \\ & \left(v_{m}\right) \cdot 2^{\left(v_{c}\right)-\left(u_{c}\right)_{+}}\left(u_{m}\right) \\ & \left(v_{m}\right) \cdot 2^{\left(v_{c}\right)-\left(v_{c}\right)}+\left(v_{m}\right) \end{aligned}$	no no no no	PII PN PN PN	$\begin{aligned} & (u)+(v) \\ & (u)+(v) \\ & (u)+(v) \\ & (u)+(v) \end{aligned}$

Instruction: Floating Point Polynomial Multiply (PPuv) Operation: 01									
Function: Form in Q the sum of (v) and the product of $(Q)_{i}$. (u) (IRE FF should be cleared for the execution of this instruction. If it is not the product mantissa will be rounded not with one, but with (A_{L}).)									
NE	Arithmetic Condition		$(\mathrm{A})_{\mathrm{f}}$					$(Q)_{f}$	
FF			MSB	Value of	ntissa		Hound	Norm	Value
0	(Q) $(u) \geq(\nabla)$ (Q) $(u)<(v)$		A_{62}	$\begin{aligned} & (Q u)_{m} \cdot 2^{(Q u)_{c}-\left(v_{c}\right)_{+}+\left(v_{m}\right)} \\ & \left(v_{m}\right) \cdot 2^{\left(v_{c}\right)-(Q u)_{c}}+(Q u)_{m} \end{aligned}$			yes yes	NRP	$(Q)_{i}(u)+(v)$

Instruction: Floating Point Inner Product (PIuv)				Operation:			02
Function: Form in Q the normalized, rounded and packed sum of $\left(Q_{1}\right)$ and the product of (u) and (v). (NE FF should be cleared for the execution of this instruction; if it is not, the product one, but with $\left(A_{L}\right)$)							
HE	Arithmetic Condition	$(\mathrm{A}){ }_{f}$					$(\mathrm{Q})_{\mathrm{f}}$
FF		MSB	Value of significant Round			Horm	Value
0	$\begin{aligned} & (Q)_{i} \geq(u)(v) \\ & (Q)<(u)(v) \end{aligned}$	$\begin{aligned} & A_{62} \\ & A_{62} \end{aligned}$	$\begin{aligned} & \left(Q m_{m}\right)_{i} 2^{(Q c)_{i}-(u v)_{c_{+}(u v)_{m}}} \\ & \left(u v_{m}\right) \cdot 2^{\left.(u v)_{c}-(Q c)_{i+(\text { (Qm }}\right)_{i}} \end{aligned}$		$\begin{array}{r} \text { yes } \\ \text { yes } \end{array}$		$\begin{aligned} & (Q)_{i}+(v \\ & (Q)_{i}+(v \end{aligned}$

Function: Replace (u) with the normalized rounded packed floating point number obtained from the possibiy unnormalized mantissa in (u) ${ }_{i}$ and the biased characteristic in $(v)_{c}$.

It is assumed that $(u)_{i}$ has the binary point between u_{27} and u_{26} $\left((u)_{i}\right.$ is scaled $\left.2^{-27}\right)$.

Storage Class		Contents of Registers \& Storage Position After Operation					
		$(\mathrm{MC})_{c}$ or	(MD) 1		$(\mathrm{A}){ }_{\mathrm{f}}$		(Q)
\mathfrak{u}	\checkmark	u	∇	MSB	Value of bits	Round	
$\begin{aligned} & \text { MC } \\ & \text { or } \\ & \text { MD } \end{aligned}$	MD or MC A Q	$\begin{aligned} & \operatorname{RRP}(u)+\left(v_{c}\right) \\ & \operatorname{RRP}(u)+\left(v_{c}\right) \\ & \operatorname{RRP}(u)+\left(v_{c}\right) \end{aligned}$	No change	${ }^{A_{62}}$ ${ }^{A_{62}}$ ${ }^{A_{62}}$	$\begin{aligned} & \left(u_{m}\right)_{f} \\ & \left(u_{m}\right)_{f} \\ & \left(n_{m}\right)_{f} \end{aligned}$	yes yes yes	No change Ho change No change
A	MC MC A Q		No change	$\begin{aligned} & A_{34} \\ & A_{34} \\ & A_{34} \end{aligned}$	$\begin{aligned} & \operatorname{RRP}\left(A_{R}\right)_{i}+\left(\nabla_{c}\right) \\ & \operatorname{RRP}\left(A_{R}\right)_{i}+\left(A_{R c}\right)_{i} \\ & \operatorname{RRP}\left(A_{R}\right)_{i}+\left(Q_{C}\right) \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \\ & \text { yes } \end{aligned}$	Ho change Ho change No change
Q	MD or MC A Q		No change	$\begin{aligned} & A_{62} \\ & A_{62} \\ & A_{62} \end{aligned}$	$\begin{aligned} & \left(u_{m}\right)_{f} \\ & \left(n_{m}\right)_{f} \\ & \left(u_{m}\right)_{f} \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \operatorname{RRP}(Q)_{i}+\left(\nabla_{c}\right) \\ & \operatorname{HRP}(Q)_{i}+\left(A_{R c}\right)_{i} \\ & \operatorname{HRP}(Q)_{i}+\left(Q_{c}\right)_{i} \end{aligned}$

Instruction:	Floating Point Normalize Exit (HEJ)	Operation:	05
Function:	If $J=0$ clear the normalize exit flip-ilop (designated HFF); if $j-1$ set LIFF to 1 (a) The results of setting NFF te 1 is set forth in the Contents of Registers ${ }^{n}$ (b) Then EFF in set to π, it will remain set until cleared by another REJ - intaruction (c) Hif must be cleared for FP, FI, and instructions		

