
A

RRY NIVAC
ri s 11 0

FORTRAN (ASCII)
Level 1 OR 1
Programmer Reference

SI=e~Y~~UNIVAC UP-8244.2

This document contains the latest information available at the
time of preparation. Therefore, it may contain descriptions of
functions not implemented at manual distribution time. To
ensure that you have the latest information regarding levels of
implementation and functional availability, please contact your
local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the
content of this document. No contractual obligation by Sperry
Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this
document. It is further understood that in consideration of the
receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means
whatsoever, nor to permit such action by others, for any
purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO,
UNIVAC, and ~~ are registered trademarks of the Sperry
Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and
UN IS are additional trademarks of the Sperry Corporation.

THE ASCII FORTRAN LEVEL lORl SOFTWARE DESCRIBED IN
THIS DOCUMENT IS CONFIDENTIAL INFORMATION AND A
PROPRIETARY PRODUCT OF THE SPERRY UNIVAC DIVISION
OF SPERRY CORPORATION.

© 1982 - SPERRY CORPORATION PRINTED IN U.S.A.

8244.2
UP-NUMBER

f

Section

Cover IDisclaimer

PSS

Preface

Contents

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

Appendix A

Appendix B

Appendix C

Appendix 0

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Page Status Summary

Pages Update Section

Appendix K

1 Appendix L

1 Index

1 - 13 User Comment Sheet

1 - 6

1 - 24

1 - 7

1 - 24

1 - 78

1 - 27

1 - 72

1 - 12

1 - 11

1 - 70

1 - 10

1 - 2

1 - 3

1 - 38

1 - 2

1 - 2

1 - 34

1 - 15

1 - 5

1 - 9

UPDATE LEVEL

Pages

1 - 12

1 - 35

1 - 18

,PSS-1 I

PAGE

Update

8244.2
U UMBER

(

I

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

Preface-l
PAGE

Preface

This manual is for users of ASCII FORTRAN level lOR 1. ASCII FORTRAN level lOR 1 contains all the
features of the FORTRAN standard, X3.9-19 7 8 (also known as FORTRAN 77).

Features of ASCII FORTRAN that are extensions to FORTRAN 77 are shaded. For example, the
following nonstandard feature is described in 2.2.3.2:

·FQr .•• ·~Ynt~~,,¢.·.·¢Qm:p~t1g~li~.·:Wi~h,.··.Q~h~r: .• FORTRANp[q~~~~9rji •••• rr~~· •. ~~ •• ·~J~Q •••• ~OQW~[I ••.• :~ii •• · •• ~··
.8P~~~~~~~i~~.~~~r~~[,! ·.:."·:.:·.··.··:······:··· '.'."" .. "

Most of the features that are shaded in this manual also cause a message indicating nonstandard
usage to be printed at compilation time if the T option is used (see 10.5.1 and 10.10):

CHARACTER*4 A,B*8
B = A&'ENO'

*NON-STO USAGE 3151 at line 2 '&' used as concatenation operator

Edit bars, which indicate technical changes, are not used in appendices H, K, and L, since these are
new sections.

The following Sperry Univac Series 1100 manuals provide information related to the use of ASCII
FORTRAN:

• Executive System, Programmer Reference, UP-4144.2 (applicable version*)

• System Utilities, Programmer Reference, UP-8730 (applicable version*)

• System Relocatable Library and Common Bank (SYSLlB), Programmer Reference, UP-8728
(applicable version*)

• Sort/Merge, Programmer Reference, UP-7621 (applicable version*)

• Collector (MAP Processor), Programmer Reference, UP-8721 (applicable version*)

• Multibanking, Programmer Reference, Preliminary, PUP-8722.P1

• Conversational Time Sharing (CTS), Programmer Reference, UP-7940 (applicable version*)

• Assembly Instruction Mnemonics (AIM), Supplementary Reference, UP-9047 (applicable
version*)

* Use the version that reflects the software level used at your site.

./

,/

8244.2
UP U¥8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Page Status Summary

Preface

Contents

1. Introduction

1. 1. Reason for FORTRAN

1.2. Evolution of FORTRAN

1.3. FORTRAN System
1.3.1. FORTRAN Processor
1.3.2. FORTRAN Execution Time System

1.4. Sample Program
1.4.1. Explanation of Main Program Coding
1.4.2. Explanation of Subprogram Coding
1.4.3. Explanation of System Command Coding

1.5. Conventions of Notation Used in This Manual

2. Language Characteristics

2.1. Character Set

2.2. Language Elements
2.2.1. Constants
2.2.1.1. Integer Constant
2.2.1.2. Real Constant
2.2.1.2.1. Single Precision
2.2.1.2.2. Double Precision
2.2.1.3. Complex Constants
2.2.1.4. logical Constants
2.2.1.5. Character Constants
2.2.1.6. Octal and Fieldata Constants
2.2.2. Symbolic Names
2.2.2.1. Uniqueness of Symbolic Names
2.2.2.2. Data Types of Symbolic Names
2.2.2.2.1. Implied Declaration Via the Name Rule
2.2.2.2.2. Implied Declaration Using the IMPLICIT Statement
2.2.2.2.3. Explicit Declaration
2.2.2.3. Variables

Content5-)
UPDATE LEVEL PAGE -

Contents

1-1

1-1

1-2

1-2
1-2
1-4

1-4
1-4
1-5
1-6

1-6

2-1

2-1

2-1
2-2
2-3
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-8
2-8
2-9
2-9
2-9

8244.2
IJII...fMIIEII

3.

4.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.2;4. Arrays and Subscripts
2.2.2.4.1. Array Declaration
2.2.2.4.2. Value of Dimensions
2.2.2.4.3. Constant, Adjustable and Assumed-Size Arrays
2.2.2.4.4. Actual and Dummy Arrays
2.2.2.4.5. Array Element Reference
2.2.2.4.6. Location of Elements Within an Array
2.2.2.5. Character Substrings
2.2.3. FORTRAN Expressions
2.2.3.1. Arithmetic Expressions
2.2.3.1.1. Arithmetic Operators
2.2.3. 1.2. Formation of Arithmetic Expressions
2.2.3.1.3. Evaluation of Arithmetic Expressions
2.2.3.1.4. Type Rules for Arithmetic Expressions
2.2.3.2. Character Expressions
2.2.3.3. Logical and Relational Expressions
2.2.3.3.1. Logical Operators
2.2.3.3.2. Formation of Logical Expressions
2.2.3.3.3. Evaluation of Logical Expressions
2.2.3.4. Typeless Expressions
2.2.3.4.1. Typeless Functions
2.2.3.4.2; Evaluation of Typeless Expressions
2.2.3.5. Hierarchy of Operators
2.2.4. General Statement Form
2.2.5. Comment Line
2.2.6. Continuation Line
2.2.7. Inline Comment

Assignment Statements

3.1. General

3.2. Arithmetic Assignment Statement

3.3. Character Assignment Statement

3.4. Logical Assignment Statement

3.5. Statement Label Assignment (ASSIGN Statement)

Control Statements

4.1. General

4.2. GO TO Statements
4.2.1. Unconditional GO TO
4.2.2. Computed GO TO
4.2.3. Assigned GO TO

4.3. IF Statements
4.3.1. Arithmetic IF
4.3.2. Logical IF

4.4. Blocking Statements
4.4.1. Block IF Statement
4.4.1.1. IF-Level
4.4. 1.2. IF~Block
4.4.1.3. Execution of a Block IF Statement

UPOATELEVa
Contents-2

PAGE

2-10
2-10
2-11
2-11
2-12
2-12
2-12
2-13
2-14
2-14
2-14
2-15
2-16
2-16
2-17
2-18
2-18
2-20
2-20
2-21
2-21
2-22
2-22
2-23
2-23
2-23 "

2-24
"

3-1

3-1

3-1

3-5

3-6

3-7

4-1

4-1

4-2
4-2
4-3
4-5

4-7
4-7
4-8

4-9
4-10
4-·10
4-10
4-10

8244.2
UP-IftJMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

4.4.2. ELSE IF Statement
4.4.2.1. ELSE IF-Block
4.4.2.2. Execution of an ELSE IF Statement
4.4.3. ELSE Statement
4.4.3.1. ELSE-Block
4.4.3.2. Execution of an ELSE Statement
4.4.4. END IF Statement
4.4.5. Examples Using the Blocking Statements

4.5. DO Statement
4.5.1. Range of a DO-Loop
4.5.2. Nested DO-Loops
4.5.3. Active and Inactive DO-Loops
4.5.4. DO-Loop Execution
4.5.4.1. Executing a DO Statement
4.5.4.2. Loop Control Processing
4.5.4.3. Execution of the Range
4.5.4.4. Terminal Statement Execution
4.5.4.5. Incrementation Processing
4.5.5. Extended Range of a DO-Loop
4.5.6. Availability of the DO-Variable Value
4.5.7. DO-Loop Examples

4.6. CONTINUE Statement

4.7. PAUSE Statement

4.8. STOP Statement

4.9. END Statement

5. Input/Output Statements

5.1. General

5.2. Elements of Input/Output Statements
5.2.1. File Reference Number Specification
5.2.2. Record Number Specification
5.2.3. Input/Output List Specifications
5.2.4. Format Statement Specification
5.2.5. Namelist Name Specification
5.2.6. ERR Clause Specification
5.2.7. END Clause Specification
5.2.8. Input/Output Status Clause Specification

5.3. FORMAT Statement
5.3.1. Editing Codes
5.3.2. Editing Code Repetition
5.3.3. Repetition of Groups of Editing Codes
5.3.4. Carriage Control
5.3.5. Complex Variables
5.3.6. Scale Factor
5.3.7. Control of Record Handling and List Fulfillment
5.3.7.1. Multiple Line Formats
5.3.7.2. End of Input/Output List Test
5.3.8. Relationships of a Format to an I/O List
5.3.9. Variable Formats
5.3.10. Representation of Input/Output Data

UPDATE LEVEL
Contents-3

PAGE

4-11
4-11
4-11
4-11
4-11
4-12
4-12
4-12

4-14
4-14
4-14
4-15
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-19
4-19

4-21

4-22

4-23

4-24

5-1

5-1

5-3
5-3
5-4
5-4
5-5
5-6
5-6
5-7
5-7

5-8
5-9
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-17
5-18
5-18

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.4. Namelist
5.4.1. NAMELIST Statement
5.4.2. Namelist Input
5.4.3. Namelist Output

5.5. List-Directed Input/Output
5.5.1. List-Directed Input
5.5.2. List-Directed Output

5.6. Sequential Access Input/Output Statements·
5.6.1. READ Statements
5.6.1.1. Formatted READ
5.6.1.2. Unformatted READ
5.6.1.3. Namelist READ
5.6.1.4. List-Directed READ
5.6.1.5. Reread
5.6.2. Output Statements
5.6.2.1. Formatted WRITE
5.6.2.2. Unformatted WRITE
5.6.2.3. Namelist WRITE
5.6.2.4. List-Directed WRITE
5.6.3. BACKSPACE Statement
5.6.4. ENDFILE Statement
5.6.5. REWIND Statement
5.6.6. Sequential Access DEFINE FILE Statement

5.7. Direct Access Input/Output Statements
5.7.1. Direct Access DEFINE FILE Statement
5.7.2. Direct Access READ Statement
5.7.3. Direct Access WRITE Statement
5.7.4. FIND Statement

5.S. Input/Output Contingencies
5.8.1. Input/Output Contingency Clauses
5.8.2. Input/Output Error Messages

5.9. Internal Files
5.9.1. Internal File Formatted READ
5.9.2. DECODE Statement
5.9.3. Internal File Formatted WRITE
5.9.4. ENCODE Statement

5.10. Auxiliary Input/Output Statements
5.10.1. OPEN
5.10.2. CLOSE
5.10.3. INQUIRE

6. Specification and Data Assignment Statements

6.1. Overview of Specification Statements

6.2. DIMENSION Statement

UI'OATE LEVEL
Contents-4

PAGE

5-19
5-19
5-20
5-22

5-23
5-23
5-25

5-26
5-26
5-26
5-28
5-29
5-29
5-31
5-32
5-32
5-33
5-34
5-35
5-37
5-38
5-39
5-40

5-44
5-44
5-46
5-47
5-49

5-50
5-50
5-51

5-52
5-52
5-53
5-55
5-56

5-58
5-58
5-69
5-71

6-1

6-1

6-2

6.3. Type Statements 6-4
6.3.1. IMPLICIT Statement 6-4
6.3.2. Explicit Type Statements 6-6
6.3.2.1. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL

Type Statements 6-7

8244.2 SPERRY UNIVAC Series 1100
UP-NUMBER FORTRAN (ASCII; Programmer Reference UPDATE LEVEL

Contents-5
PAGE

(~/ 6.3.2.2. CHARACTER Type Statement 6-8

6.4. EQUIVALENCE Statement 6-10

6.5. COMMON Statement 6-13'

6.6. BANK Statement 6-15

6.7. PARAMETER Statement 6-17

6.8. Initial Value Assignment 6-19
6.8.1. DATA Statement 6-19
6.8.2. Statement Labels 6-20
6.8.3. Octal Constants 6-20
6.8.4. Fieldata Constants 6-20
6.8.5. Other Constants 6-20

6.9. Storage Assignment 6-24
6.9.1. Data Storage Assignment 6-24
6.9.2. Location Counter Usage 6-27

7. Function and Subroutine Procedures 7-1

7.1. Procedures 7-1

fe, 7.2. Procedure References 7-2
7.2.1. Function References 7-2

'.,,, '

7.2.2. Subroutine References 7-3
7.2.3. EXTERNAL Statement 7-3
7.2.4. INTRINSIC Statement 7-5

7.3. FORTRAN-Supplied Procedures 7-6
7.3.1. Intrinsic Functions 7-6
7.3.2. Pseudo-Functions 7-14
7.3.2.1. BITS and SBITS 7-14
7.3.2.1.1. BITS 7-14
7.3.2.1.2. SBITS 7-15
7.3.2.2. SUBSTR 7-16
7.3.3. Service Subroutines 7-17
7.3.3.1. DUMP 7-17
7.3.3.2. PDUMP 7-18
7.3.3.3. DVCHK 7-19
7.3.3.4. OVERFL 7-20
7.3.3.5. UNDRFL 7-21
7.3.3.6. OVUNFL 7-22
7.3.3.7. UNDSET 7-23
7.3.3.8. OVFSET 7-24
7.3.3.9. DIVSET 7-25
7.3.3.10. CMLSET 7-26
7.3.3.11. CHKSV$ and CHKRS$ 7-28
7.3.3.12. SSWTCH 7-28

(7.3.3.13. SLiTE 7-29
7.3.3.14. SLiTET 7-30
7.3.3.15. EXIT 7-30
7.3.3.16. ERTRAN 7-31
7.3.3.16.1. Input/Output Executive Requests 7-31
7.3.3.16.2. Miscellaneous Executive Requests 7-37
7.3.3.17. NTRAN$ 7-39

8244.2
UP..fIIUM~

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

7.3.3.17.1. Operations
7.3.3.17.2. NTRAN$ Error Messages
7.3.3.18. CLOSE
7.3.3.19. FASCFD and FFDASC
7.3.3.20. MAXAD$
7.3.3.21. LOC
7.3.3.22. MCORF$ and LCORF$
7.3.3.23. F2DYN$

7.4. Programmer-Defined Procedures
7 A. 1. Statement Functions
7.4.1.1. Statement Function Definition Statement
7.4.1.2. Statement Function References
7.4.2. Function Subprograms
7.4.2.1. Structure
7.4.2.2. FUNCTION Statement
7.4.3. Subroutines
7.4.3.1. Structure
7.4.3.2. SUBROUTINE Statement

7.5. Function and Subroutine Arguments

7.6. RETURN Statement

7.7. ENTRY Statement

7.8. BLOCK DATA Subprograms
7.8.1. Structure
7.8.2. BLOCK DATA Statement

7.9. PROGRAM Statement

7.10. Non-FORTRAN Procedures

7. 11. Scope of Names (Local - Global Definitions)

7. 1 2. SAVE Statement

8. Program Control Statements

8. 1. General

8.2. INCLUDE Statement

8.3. DELETE Statement

8.4. EDIT Statement

8.5. COMPILER Statement
8.5.1. DATA and PARMINIT Options
8.5.2. BANKED Options
8.5.3. LlNK=IBJ$ Option
8.5.4. U 1110 = OPT Option
8.5.5. STD=66 Option
8.5.6. ARGCHK Options
8.5.7. PROGRAM=BIG Option

UPOAlI LEVEL
Contents-6

PAGE

7-41
7-45
7-47
7-47
7-49
7-50
7-50
7-54

7-55
7-55
7-56
7-57
7-59
7-60
7-60
7-61
7-62
7-62

7-63

7-65

7-66

7-68
7-68
7-68

7-69

7-70

7-70

7-72

8-1

8-1

8-1

8-5

8-6

8-7
8-8
8-9
8-10
8-10
8-11
8-12
8-12

8244.2
UP~UM8ER

(-

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) ?rogrammer Reference

9. Debug Facility Statements

9.1. General

9.2. DEBUG
9.2.1. UNIT
9.2.2. SUBCHK
9.2.3. TRACE
9.2.4. INIT
9.2.5. SUBTRACE

9.3. AT

9.4. TRACE ON

9.5. TRACE OFF

9.6. DISPLAY

9.7. Debug Facility Example

10. Writing a FORTRAN Program

10. 1. General

10.2. FORTRAN Program Organization
10.2.1. Program Unit
10.2.2. Types of Program Units
10.2.3. Program Unit Organization
10.2.4. Execution Sequence

10.3. Statement Categories
10.3.1. Statement Classification
10.3.2. Ordering of Statements and Lines

10.4. Source Program Representation and Control
10.4.1. Source Program Format
10.4.1.1. Comment Line
10.4.1.2. Statements
10.4.1.3. Statement labels
10.4.2. Compilation Listing
10.4.2.1. Listing Options
10.4.2.2. Composition of a Compilation Listing
10.4.2.2.1. Identification Line
10.4.2.2.2. Source Code Listing
10.4.2.2.3. Cross Reference Listing
10.4.2.2.4. Object Code Listing
10.4.2.2.5. Storage Assignment Map
10.4.2.2.6. Common Block Listing
10.4.2.2.7. Entry Point Listing
10.4.2.2.8. External References
10.4.2.2.9. Termination Message

10.5. Calling the ASCII FORTRAN Processor
10.5.1. Processor Call Options
10.5.2. Execution of the Object Program
10.5.2.1. Execution Using Checkout
10.5.2.2. Collection and Execution

UPDATE UVEL
Contents-7

PAGE

9-1

9-1

9-2
9-3
9-3
9-4
9-5
9-5

9-6

9-7

9-8

9-9

9-10

10-1

10-1

10-1
10-1
10-1
10-3
10-3

10-5
10-5
10-6

10-7
10-7
10-8
10-8
10-9
10-10
10-10
10-11
10-11
10-11
10-17
10-18
10-19
10-19
10-20
10-20
10-20

10-21
10-21
10-24
10-24
10-24

8244.2
Uf'...NUM8BI

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

10.6. FORTRAN Checkout Mode
10.6.1. Calling Checkout Mode
10.6.2. Interactive Debug Mode in the Checkout Compiler
10.6.2.1. Entering Interactive Debug Mode
10.6.2.2. Soliciting Input
10.6.3. Debug Commands
10.6.3.1. BREAK
10.6.3.2. CALL
10.6.3.3. CLEAR
10.6.3.4. DUMP
10.6.3.5. EXIT
10.6.3.6. GO
10.6.3.7. HELP
10.6.3.8. LINE
10.6.3.9. LIST
10.6.3.10. PROG
10.6.3.11. RESTORE
10.6.3.12. SAVE
10.6.3.13. SET
10.6.3.14. SETBP
10.6.3.15. SNAP
10.6.3.16. STEP
10.6.3.17. TRACE
10.6.3.18. WALKBACK
10.6.4. Contingencies in Checkout Mode
10.6.5. Checkout Mode Restrictions
10.6.6. Restart Processor (FTNR)

10.7. Walkback and the Interactive FTNPMD
10.7.1. Introduction
10.7.2. Diagnostic Tables Generated by ASCII FORTRAN
10.7.3. Initiating FTNWB and FTNPMD
10.7.4. Walkback (FTNWB)
10.7.4.1. Description of the Walkback Process
10.7.4.1.1. Errors Detected by the Math Library (CML)
10.7.4.1.2. Errors Detected by the I/O Library
10.7.4.1.3. Errors Detected in the User Program
10.7.4.1.4. FTNWB Routine Call
1 n 7 A? \A/",I"h " II" .. ~~-~-~ • __ •••. _. ... u •• ,"'u'"''' 1"1~..,~a~v~

10.7.4.3. Walkback Procedures for MASM Subprograms
10.7.4.3.1. F$EP
10.7.4.3.2. F$INFO
10.7.4.3.3. Description
10.7.5. Interactive Postmortem Dump (FTNPMD)
10.7.5.1. Soliciting Input
10.7.5.2. PMD Mode Commands
10.7.5.2.1. DUMP
10.7.5.2.2. EXIT
10.7.5.3. FTNPMD Diagnostics

10.8. Compiler Optimization
10.8.1. Local Optimization
10.8.2. Global Optimization
10.8.3. Optimization Pitfalls

10.9. Hints for Efficient Programming

Contents-8
UPDATE LEVEL PAGE

\

10-25
1'0-""2-5"
10-26
10-26
10-27
10-27
10-29
10-30
10-32
10-33
10-34
10-35
10-36
10-37
10-37
10-38
10-39
10-41
10-42
10-43
10-44
10-45
10-45
10-46
10-48
10-49 j

10-49

10-50
10-50
10-50
10-51
10-52
10-52
10-52
10-53
10-55
10-56
iO-57
10-58
10-58
10-58
10-59
10-61
10-61
10-61
10-61
10-64
10-65

10-67
10-67
10-68
10-68

10-69

8244.2
UP~UM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

10.10. Diagnostic System

UPDATE LEVEL
Contents-9

PAGE

:·10-70

Appendix A. Differences Between SPERRY UNIVAC FORTRAN
Processors A-1

A. 1. General A-1

A.2. Extensions to SPERRY UNIVAC FORTRAN V A-1

A.3. Exceptions to SPERRY UNIVAC FORTRAN V A-3

A.4. Differences in Syntax A-8

Appendix B. ASCII Symbols and Codes B-1

Appendix C. Programmer Check List C-1

C.1. General C-1

C.2. Language Errors C-1

C.3. Techniques C-3

Appendix D. Diagnostic Messages

(~~/ Appendix E. Conversion Table

D-1

E-1

(.

Appendix F. Tables of FORTRAN Statements

Appendix G. ASCII FORTRAN Input/Output Guide

G.1. General

G.2. System Data Format (SDF) File
G.2.1. SDF File Description
G.2. 1. 1. SDF Labels
G.2.1.2. SDF Data RecordslRecord Segments
G.2.1.3. SDF Block Size
G.2.1.4. SDF End-of-File Record
~.2.1.5. SDF File Layout
G.2.2. SDF File Processing
G.2.2.1. Sequential Access
G.2.2.2. Direct Access
G.2.3. SDF Files Not Written by Processor Common liD

G.3. ANSI Magnetic Tape Interchange Format
G.3.1. ANSI File Description
G.3.2. ANSI File Processing
G.3.3. ANSI Interchange Tapes from Other Systems

G.4. ASCII Symbiont Files

G.5. Unit Reference Number and File Assignment

G.6. File Reference Table Element - F2FRT

F-1

G-1

G-1

G-2
G-2
G-3
G-5
G-6
G-6
G-7
G-7
G-7
G-8
G-9

G-10
G-10
G-13
G-13

G-14

G-15

G-16

8244.2
UI'-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

G.7. Free Core Area Element - F2FCA

G.8. Storage Control Table Element - F2SCT

G.9. Input/Output Errors
G.9.1. ERR Clause Specified
G.9.2. ERR Clause Not Specified
G.9.3. Error Clause Listing

G.10. FORTRAN DEFINE FILE Block Usage

G; 11. Storage-Allocation Packet (Element MPKT)

UPDATE LEVEL

Appendix H. Large Programs and the Multibanking Features
of ASCII FORTRAN

H.1. Large Programs

H.2. Banking
H.2.1. General Banking Example (Dual-PSR System)
H.2. 1. 1. Collection of the General Banking Example
H.2.1.2. Analysis of the Collector Symbolic
H.2.1.3. Large Banks
H.2.1.4. Variations on the Dual-PSR Structure
H.2.2. Banking for Single-PSR 1100 Systems
H.2.3. Banking, Efficiency, and Source Program Directives
H.2.3.1. I-Bank Linkages
H.2.3.2. D-Bank Linkages
H.2.3.3. Multiple I-Banks Only
H.2.3.4. Multiple Paged Data Banks
H.2.3.4.1. The BANK Statement
H.2.3.4.2. Optimization and Program Organization
H.2.4. Banking Summary

Appendix I. Error Diagnostics in Checkout Mode

Appendix J. Comparison of ASCII FORTRAN Level SR 1 to

Contents-10
PAGE

G-18

G-19

G-20
G-20
G-21
G-21

G-32

G-34

H-1

H-1

H-1
H-2
H-4
H-6
H-7
H-8
H-10
H-12
H-12
H-12
H-13
H-13
H-13
H-14
H-15

1-1

Level 9R 1 and Higher J-1

J.1. General

J.2. FORTRAN Terms and Concepts

J.3. Characters, Lines, and Execution Sequence

J.4. Data Types and Constants

J.5. Arrays and Substrings

J.6. Expressions

J. 7. Executable and Nonexecutable Statement Classification

J.8. Specification Statements

J.9. DATA Statement

J-1

J-1

J-2

J-2

J-2

J-3

J-3

J-3

J-6

/

8244.2
UP-MUMIIfR

{"" ,

'"
,,,.,,

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl

J.10. Assignment Statements

J.11. Control Statements

J.12. Input/Output Statements

J.13. Format Specification

J.14. Main Program

J.15. Functions and Subroutines

J.16. Block Data Subprogram

Appendix K. Interlanguage Communication

K.1. ASCII FORTRAN (FTN) to SPERRY UNIVAC FORTRAN V

K.2. ASCII FORTRAN to PUI
K.2.1. Restrictions and Considerations
K.2.2. PUI Argument Counterparts

K.3. ASCII FORTRAN to ASCII COBOL (ACOB)
K.3.1. ASCII COBOL Argument Counterparts

K.4. ASCII FORTRAN and MASM Interfaces
K.4.1. Arguments
K.4.2. ASCII FORTRAN Register Usage
K.4.3. Initializing the ASCII FORTRAN Environment
K.4.4. Terminating the ASCII FORTRAN Environment
K.4.5. Calling an ASCII FORTRAN Subprogram
K.4.6. ASCII FORTRAN Function References
K.4.7. Example

Appendix L. ASCII FORTRAN Sort/Merge Interface

L. 1. General

L.2. Sort/Merge Features Available Through ASCII FORTRAN

L.3. Restrictions with Sort/Merge Interface
L.3.1. Banked Arguments Not Allowed
L.3.2. Sort/Merge Interface Contains Only Formatted 1/0
L.3.3. Use of ASCII FORTRAN Free Core Area Element (F2FCA)

L.4. The CALL Statement to FSORT
L.4.1. The CALL Statement for a Sort
L.4.2. Examples of Sort with Logical Unit Numbers
L.4.3. Examples of Sort with User Subroutines

L.5. The CALL Statement to FMERGE
L.5.t. The CALL Statement for a Merge
L.5.2. Examples of CALL Statements to Merge

Contents-ll
PAGE

J-6

J-6

J-7

J-7

J-8

J-8

J-9

K-l

K-l

K-2
K-2
K-3

K-4
K-5

K-6
K-6
K-8
K-8
K-9
K-9
K-l0
K-l1

L-l

L-l

L-l

L-l
L-l
L-l
L-2

L-2
L-2
L-9
L-l0

L-12
L-12
L-16

L.6. The CALL Statement to FSCOPY L-17
L.6.1. The CALL Statement to Copy an External Sort Parameter Table L-17
L.6.2. Record Size When FSCOPY Is Used L-18
L.6.3. An Example of CALL Statement to FSCOPY L-18

8244.2
UP-HUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

Contents-1 2
PAGE

L. 7. The CALL Statement to FSSEQ L-19
L. 7. 1. The CAll Statement to Provide a User-Specified Collating

Sequence L-19
L.7.2. An Example of the CAll Statement to FSSEQ L-19

L.S. User-Specified Subroutines L-21
L.8.1. User-Specified Input Subroutine L-21
L.8. 1. 1. An Example of a User-Specified Input Subroutine L-21
L.8.1.2. The CAll Statement to FSGIVE L-22
L.8.1.3. An Example of User-Specified Input Subroutine with FSGIVE L-22
L.8.2. A User Comparison Routine L-23
L.8.2.1. An Example of a User Comparison Subroutine L-23
L.8.2.2. An Example of a Runstream with a Comparison Subroutine L-24
L.8.3. User Data Reduction Subroutine L-25
L.8.3.1. A Simple Example of a Data Reduction Subroutine L-25
L.8.3.2. An Example of a Runstream with a Data Reduction Subroutine L-26
L.8.4. User-Specified Output Subroutine L-27
L.8.4.1. A Simple Example of a User-Specified Output Subroutine L-27
L.8.4.2. The CAll Statement to FSTAKE l-27
L.8.4.3. An Example of FSTAKE in an Output Subroutine L-27

L.S. Optimizing Sorts L-28
L.9.1. The Sias of the Input Data L-29
L.9.2. The Size of the Main Storage Scratch Area L-29
L.9.2.1. The Use of R$CORE L-29
L.9.2.2. The Use of the CORE Clause in the Information String L-29
L.9.3. The Scratch Files Used and Checksum L-30
L.9.3.1. Scratch Files Named in the Information String L-30
L.9.3.2. Checksum and the Sort L-30

L. 10. Sorting Very Large Amounts of Data L-31
L. 1 0.1. An Example of a large Single Cycle Sort L-31
L.10.2. An Example of a Multiple Cycle Sort L-32

L. 11. Error Messages from a Sort or a Merge L-33

Index

User Comment Sheet

Figures

Figure 1-1. Compilation Process
Figure 1-2. Sample Program
Figure 8-1. Sample PROC
Figure 10-1. Program Units Within a FORTRAN Program
Figure 10-2. Sample Control Paths During Execution
Figure 10-3. Order of Statements and lines
Figure 10-4. L Option Listing

Tables

Table 2-1. ASCII FORTRAN Character Set
Table 2-2. Composition of an Arithmetic Term
Table 2-3. Length and Type of Result for Arithmetic Expressions

,Table 2-4. Pur~ Logical Operators

1-3
1-5
8-3
10-2
10-4
10-7
10-12

2-2
2-15
2-17
2-19

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Table 2-5. Relational Operators
Table 2-6. Composition of Logical Term
Table 3-1. Conversions for Arithmetic Assignment
Table 3-2. Conversions for Character Assignment
Table 6-1. Valid Data Type and Length
Table 6-2. Storage Units Required for Data Storage
Table 6-3. Data Initializations
Table 6-4. Storage Alignment and Requirement
Table 6-5. Location Counter Usage
TJble 7-1. Typeless Intrinsic Functions
Table 7-2. Intrinsic Functions
Table 8-1. Use of the STD=66 COMPILER Statement Option
Table 10-1. Processor Option Letters
Table B-1. ASCII Control Characters
Table B-2. Graphic ASCII Characters
Table E-1. Conversion Methods for Arithmetic Data
Table F-1. Nonexecutable Statements
Table F-2. Executable Statements
Table 1-1. Messages Occurring During Program Load
Table 1-2. Messages Generated by Interactive Debugging

UPDATE LEVEL
Contents-13

PAGE

2-19
2-20
3-3
3-5
6-4
6-11
6-21
6-25
6-27
7-6
7-8
8-12
10-22
B-1
B-2
E-2
F-1
F-2
1-1
1-2

8244.2
UP-NUM8ER

(-

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

1.1. Reason for FORTRAN

UPDATE LEVEL
1-1

PAGE

1. Introduction

FORTRAN (from FORmula TRANslator) is a programming language designed for extensive use in
mathematical, scientific, and technological areas. The advantages of FORTRAN are minimum
programming time and cost, and maximum interchangeability of FORTRAN programs on different
FORTRAN processors.

FORTRAN statements resemble English statements and the equations of elementary algebra.
Therefore, FORTRAN statements are self-documenting since the intended operation is apparent from
the statement itself. For example, to find the average of two numbers, the programmer can write a
statement such as:

AVRGE = (A+B) / 2.0

Since the FORTRAN programmer uses a programming language that resembles the language
ordinarily used for the solution of problems, relatively little time is required to learn the language. As
a result, programming effort can be devoted to the logic of the problem without being troubled by
the intricacies of computer operation. The self-documenting feature of FORTRAN reduces debugging
time and enables other programmers to grasp readily the logic of a program so that it can be modified
or adapted to other purposes with minimal effort.

SPERRY UNIVAC Series 1100 FORTRAN (ASCII) handles the full American Standard Code for
Information Interchange (ASCII) character set. Throughout this manual, the language will be referred
to as ASCII FORTRAN.

A FORTRAN program written for a particular FORTRAN processor can be accepted by many different
FORTRAN processors with a minimum of change. ASCII FORTRAN has been written in accordance
with the specifications of the American National Standards Institute, Inc. (ANSI), in ANSI X3.9-1978
(also known as FORTRAN 77).

The ASCII FORTRAN language is a superset of the standard FORTRAN language defined by ANSI
X3.9-1978. The ASCII FORTRAN language is highly compatible with SPERRY UNIVAC Series 1100
FORTRAN V. (See Appendix A for a comparison of these two languages.)

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

1.2. Evolution of FORTRAN

UPDATE LEVEL
1-2

PAGE

The fundamental unit of information handled by a data processing system is the bit (from binary digit).
Basic machine language words are composed of a sequence of bits. A word may be interpreted by
the computer as an instruction or as data. The meanings of the bits in instruction words (machine
language) are highly specific to each computer. Each bit has two mutually exclusive states,
represented by 0 and 1.

The next logical step from machine language is what is commonly known as assembly language.
Assembly language requires a language translation program (an assembler). Using assembly
language, the programmer is permitted to use symbolic references to storage and specific mnemonic
codes instead of numeric codes to designate the operation to be performed.

FORTRAN is one of many higher level languages that has evolved from assembly language. It is
considered a higher level language because the translation of a single FORTRAN statement may result
in many machine language instructions. This conversion is performed by a program called the
FORTRAN processor. The design of a FORTRAN processor is definitely machine-oriented and is not
part of the FORTRAN language. Offsetting this processor complexity is the decreased programming
time required for learning, writing, debugging, and maintenance.

1.3. FORTRAN System

The FORTRAN system is composed of three main entities: the program, the language processor, and
the execution-time system. / '\

Use of the word program is meant to include the source program and the object program. The source
program is what is written by a programmer to solve a particular problem. For the computer to
understand the source program, it must be translated by the FORTRAN processor into machine
language. This output of the FORTRAN processor is called an object program.

1.3.1. FORTRAN Processor

The main function of the ASCII FORTRAN processor is to prepare a machine language object program
from the source program code. Generally the processor is referred to as a compiler.

The source program is composed of the FORTRAN statements, written by the programmer, which
represent logical steps for solving a particular problem. The organization of a source program is
discussed in detail in Section 10.

The compiler makes use of the overall logic structure of the program and generates machine
instructions for each FORTRAN statement contained in the programmer-written source program. To
produce a machine-acceptable object program, it also assigns storage locations for variables and
constants, and creates references to external programs and variables, when required.

The ASCII FORTRAN compiler is a multi phase, modular compiler. The phases have been separated,
on the basis of general operations, into a set of reentrant instruction banks and a single, nonreentrant,
data bank. The separation into banks means that only those portions of the compiler necessary to
process the user's program are loaded. Because the instruction banks are reentrant, any number of
users may simultaneously be executing instructions from a single bank of the compiler. Thus, the
compiler makes efficient use of resources, especially in an active multiprogramming environment.

The compiler reads the source program from a series of statement lines present in a runstream or
saved in a program file. Comment lines may be used freely without affecting the compilation.

,/

8244.2
UP UM8ER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

1-3
PAGE

The main output of a compilation consists of a relocatable binary program. This object program
contains. in binary coded form. the names of all common blocks. external functions. and external
subroutines referenced in the source program. and the machine code for the source program. ASCII
FORTRAN generates reentrant I-bank code (that is. the code does not modify itself).

Optionally. the compiler may be directed to generate code in main storage and immediately execute
it. This mode of operation is the FORTRAN checkout mode. during which additional diagnostic
facilities are provided. Throughput is increased during this mode when the programs being processed
are to be executed only once without modification or when the execution time is relatively short. No
relocatable binary program is produced in this case (see 10.5 and 10.6).

A separate restart processor. FTNR. is available in conjunction with FORTRAN checkout mode. FTNR
allows the user to reenter execution of a previously saved program (see checkout debug SAVE
command. 10.6.3.12). without recompiling the source program. For further information. see 10.6.6.

Much of the compiler"s effort is devoted to the detection of source language errors. If any errors are
detected. or remarks are to be made. the compiler prints diagnostic comments adjacent to the
FORTRAN statements containing these errors. The compilation listing produced is controlled by
several options which determine the amount of information to be printed. The compilation listing
is described in 10.4.2.

Using processor options. the compiler may also be directed to devote additional time to optimizing
the FORTRAN statements. before generating the relocatable binary output. This is done at the
expense of compilation speed. but the resulting output will usually execute significantly faster than
without this additional optimization. The various types of optimization are explained in 10.8.

The compilation process (if not in checkout mode) is illustrated in Figure 1-1.

Source
Program
listing

Source
Program

1
1
1
1
1
1
I
1

"I

Main Storage

ASCII
FORTRAN
Compiler

---.:..------~

Figure 1-1. Compilation Process

Object
Program

8244.2
UP-HUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

1 ;3.2. FORTRAN Execution Time System

UPOATELMl
1-4

PAGE

The FORTRAN execution time system consists of the system software. the compiler and library
elements. the program. the computer itself. and any peripheral devices attached to the computer. The
system software is referred to as the operating system. It may contain programs which control
scheduling. file management. input/output. compilation. debugging. storage assignment. linking.
loading. assembly. and other necessary functions.

1.4. Sample Program

The following simple executable program (Figure 1-2) shows FORTRAN programming and
terminology. The concepts and terminology used in the description of the program are described
in detail in other sections of the manual. How to organize a FORTRAN program is discussed in 10.2.
This sample program consists of two program units: the main program. and the external function
AMEAN.

This program calculates the average of a series of numbers. The subprogram is generalized in order
to calculate the average of a variable number of values. The subprogram results are printed in the
main program together with explanatory text.

This is not the only program that could have been written for the problem. nor is it the shortest in
terms of lines required. It does introduce the general framework of the FORTRAN system and some
of the nomenclature. The number in parentheses preceding each statement is for reference purposes;
it is not part of the program. The delta (il) symbol indicates a significant blank.

1.4.1. Explanation of Main Program Coding

Line 4 is a comment line indicated by the character C in column 1. This comment consists of all blank
characters producing a blank line (except that theC is printed). Comment lines are not required. but
are included to aid the reader in understanding the program.

Line 5 of the program is also a comment line. This line (including the C) is printed when the program
is compiled. but does not affect execution of the program. Comment lines provide documentation
for the programmer.

Line 8 indicates that the symbolic name AMEAN is the name of an external function.

Line 9 causes the ASCII FORTRAN compiler to set aside five locations for array A. A is single precision
real.

Line 10 sets initial values for A (symbolic name for the value of which the mean is to be computed).
The DATA statement does this at compilation time rather than execution time. in order to reduce
execution time for the program.

Line 11 contains a FORMAT statement which specifies that the characters" AVERAGE IS:" are to be
printed. followed by five print positions for the value returned from the function AMEAN. This value
is to be printed with two digits to the right of the decimal point.

Line 12 assigns the average of array A to variable AVE. The average is obtained from function AMEAN.

8244.2
UP-NUMBER

(\

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl

1-5
PAGE

Line 14 is a PRINT statement which specifies that the value stored in AVE is to be printed according
to the FORMAT statement prefixed by the identifying number 1. Sample output would be:

AVERAGEt.IS:63.00

Line 16 indicates the end of the main program.

(1) @RUN SAMPL,999999,SMW
(2) @ASG,PC MY*FILE1
(3) @FTN,SI MY*FILE1.MAIN,TPF$.MAIN
(4) C
(5) C COMPUTE AVG OF NUMBERS TO BE INPUT FROM DATA
(6) C
(7) C I N IT IALI ZE
(8) EXTERNAL AMEAN
(9) REAL A(5)

(10) DATA AI 1 . ,2. ,3. ,4. ,5 . I
(11) FORMAT (. 6 AVE RAG E6 IS: . , F5. 2)
(12) AVE = AMEAN (A,S)
(13) C PRINT AVERAGE AND TEXT
(14) PRINT 1,AVE
(15) C INDICATE END OF MAIN PROGRAM
(16) END
(17) C FOLLOWING FUNCTION IS CALLED BY MAIN PROGRAM
(18) FUNCTION AMEAN(DATA,N)
(19) DIMENSION DATA (N)
(20) SUM = 0
(21) DO 1 I = 1, N
(22) SUM = SUM+DATA(I)
(23) AMEAN = SUMIN
(24) C INDICATE END OF FUNCTION
(25) RETURN
(26) END
(27) @XQT
(28) @FIN

Figure 1-2. Sample Program

1.4.2. Explanation of Subprogram Coding

Line 18 identifies an external function subprogram named AMEAN with inputs of DATA and N. This
procedure computes the average of N numbers and then returns it to the referencing program.

Line 19 is a specification statement. It declares the input variable DATA to be an array. The value
N indicates the array is variable in length, and that the actual length is determined by the main
program.

Line 20 is an arithmetic assignment statement initializing the variable SUM to zero.

Line 21 controls the repeated execution of line 22. In this sample, the statement labeled 1 (line 22)
is repeated fiv,e times since N has been given the value five by the calling ~rogram. The variable I

8244.2
uP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

1-6
PAGE

initially has the value of one. This is incremented by one each time the set consisting of lines 21
and 22 is repeated.

line 22 is an arithmetic assignment statement that updates the running total. It obtains the current
value of SUM, adds to it the Ith number in array DATA, and assigns this sum as the new value for
SUM. line 22 is repeated five times in this sample. Each time the statement is executed, a new value
is obtained from the input array DATA, starting at DATA(1) and ending with DATA(5).

line 23 computes the average as the sum divided by the number of elements, and assigns the result
as the value of function AMEAN.

Line 25 returns control from function AMEAN to the statement in the main program which referred
to or called this function. In this sample, the return is to line 12.

line 26 indicates the end of the function subprogram.

Note that every statement (columns 7 through 72), except the assignment statements, starts with a
keyword. (Comment lines are not considered statements.) The keyword is an English word that
describes the purpose of the statement. Every statement in ASCII FORTRAN, except statement
functions and certain assignment statements, begins with a keyword. Keywords are not reserved
words in ASCII FORTRAN. They may be used anywhere in the program as symbolic names.

1.4.3. Explanation of System Command Coding

line 1 of Figure 1-2 is a RUN statement. It must be the first Executive control command in a run.
It identifies the run to the system and supplies accounting information.

Line 2 is an Executive control statement. It is used to assign an external file to the run under the
given name. It can state input/output requirements for this file. (See EXEC Programmer Reference,
UP-4144.2 (see Preface).)

Line 3 is the ASCII FORTRAN language processor system command for the compilation of the main
program and function AMEAN. It contains information on the location of source input, the type of
listing desired and the placement of relocatable binary code after compilation. (See 10.5.)

Line 27 is an execute command. It causes the program to be collected (if not previously specified
in a @MAP control statement) with the ASCII FORTRAN relocatable library elements in SYS$*RLlB$.
If these elements are not in SYS$*RLlB$, a specific collection (@MAPstatement) must be done before
the program can be executed (@XQT statement).

Line 28 signals the termination of the run.

1.5. Conventions of Notation Used in This Manual

Throughout this manual instructive examples are furnished to illustrate syntax or other material
covered in each section. The comments associated with these examples are shown as FORTRAN
comment statements, with C or * in the first position of each line.

Where the format of a statement or clause is discussed, optional entities or clauses are indicated by
their enclosure in the bracket pair ([]). Allowable repetition of entities or clauses is indicated by
the ellipsis (...). Items to be filled in with program information appear in italics. Variables in example
comments are also italicized for clarity in discussion.

• /

8244.2
UP~

(-

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference . lJIIC)ATE lEVEl;

2-1
PAGE,

2. Language Characteristics

2.1. Character Set

The ASCII FORTRAN programming character set. as distinguished from the literal data set. consists
of 26 letters (uppercase ~~~I:Qi~r,~I!!$!!-). 10 digits. and 16 special chal'a,c:tel's from the ASCII character
set. (Note that use of lowercase letters and other nonstandard ~hal'.acters will not result in a
*NON-STO USAGE message. See 10.10).

The compiler reads all input in the 9-bit character form of the American Standard Code for
Information Interchange (ASCII). All character literal data is ret(linedin this forr' by the compiler. The
9-bit representation of ASCII consists of one zero bit followed by the a-bit ASCII, code.

The literal string 'abcd' is distinct from 'ABCO' in internal representation. In othel' instances the
compiler will consider lowercase alphabetic characters to be identical with uppercase alphabetic
characters. Thus. the symbolic name xxx is identical to the symbolic name XXX. $ource output is
in the ASCII character set unless explicitly directed to be Fieldata (see 10.5). If spurce input is in
Fieldata. however. source output will remain in Fieldata.

The ASCII FORTRAN character set is summarized in Table 2-1. The ASCII code set is given in
Appendix B.

2.2. Language Elements

Combinations of FORTRAN character set members form FORTRAN language elements. These. in turn.
are used to form statements. An appropriate set of statements forms a program unit (see 10.2.3).

The main language elements are comments. constants. variables. arrays. and operators.

8244,2

2.2.1. Constants

SPERRY UNIVAC Seriea1100
FORTRAN (ASCII) Programmer Reference UI'OATt I.ML

Tabl. 2-1. ASCI/FORTRAN Character Set

Character Group

Digits

Special Characters blank

=

+

*
/

Members

ABCDEFGHIJKLM
NOPQRSTUVWXYZ

o 1 234 5 6 7 8 9

(represented by "!:J." in this
manual)

(equals)

(plus)

(minus)

(asterisk)

(slash)

(left parenthesis)

(right parenthesis)

(comma)

(decimal point)

(colon)

(apostrophe)

l<mrrm::::::::::~~ ... :::.b."~}

:I>liiil::!m:!:j!!!(gr~~.~r::jb."~~

$ (currency symbol)

2-2
PAGE

A constant is an item whose value is determined from its name and initial value. The value of a
constantc~lInnot be changed.

'''._., 7"

8244.2
UI'-NUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

The constants that may be used in FORTRAN fall into the following four categories:

• Numeric

Integer

Real

Double precision real

Complex

• Logical

• Literal (HQO~r~t6.:pr character)

2-3
PAGE

Sometimes. constants are referred to as scalars. A scalar is a single item. Constants and single
variables may be referred to as scalars. Arrays are not scalars.

2.2.1.1. Integer Constant

The absolute value of an integer constant must be less than or equal to:

235 - 1 = 34.359.738.367

An integer is represented internally as a fixed point number. occupying one word of storage. It must
not contain a decimal or comma. It may assume a positive. negative. or zero value. Therefore. it may
be prefixed with a plus or minus sign. The following are valid integer constants:

o
+753
-999999
2501

2.2.1.2. Real Constant

2.2.1.2.1. Single Precision

A single precision real constant may be expressed in one of two forms.

In the basic form. a real constant is expressed as a string of one to nine significant decimal digits
with one decimal point preceding, imbedded in, or following the digits. The constant may be signed
or unsigned.

The second form consists of a real constant followed by a decimal exponent. The power of ten is
expressed by appending the letter E followed by a signed or unsigned integer to the real constant.
A decimal point does not need to be included in the real part of this form.

8244.2
~

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

2-4
PAGE

The approximate magnitude of a real constant must be between 10-38 and 1038. A real constant
occupies one word (four bytes) of storage:

rs I Characteristic I . Mantissa
361

A real constant is approximate if it contains a fractional part, since the value is stored in binary
floating-point form. The following are valid real constants:

0.0
.0
1.
-15.07
2.0E2 (means 200.0)
2E2 (means 200.0)
0.00095
4.0E2 (means 400.0)
4.0E+2 (means 400.0)
4.(\E-2 (means 0.04)

2.2.1.2.2. Double Precision

A double precision real constant may have up to 18 significant digits and may have an approximate
magnitude in the range of 10-308 to 10308.

Generally, double precision real constants are specified with a decimal point and 1 to 18 significant
digits. A double precision constant must contain an exponent which consists of the letter 0 followed
by a signed or unsigned integer. The 0 has the same meaning for double precision as the E has for
single precision.

This form of constant occupies two words (eight bytes) of storage:

Characteristic
12113

Mantissa (continued)

The following are acceptable double precision constants:

0.000 (means 0)
1.000 (means 1.0)
1 DO (means 1.0)
16.90+ 1 (means 169.0)
+8.8970+ 10
-1750.0+19
123.4567891 DO

Mantissa

.123456789103 (The values of these last two constants are equal.)

361

8244.2
UP-HUMIIER

(-

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

2.2.1.3. Complex Constants

A complex constant is written as a pair of real or integer constants. The general form is:

(r,i)

2-5
PAGE

where r is the real part and i is the imaginary part. Both parts may be either single precision (integer
or real) ~r~~~~I,~:pr-E.t~~~l A single precision complex constant requires two consecutive words
(eight bytes) of storage, with the real part occurring first. C;' :~:pr~J,$~~~::~~':""'H::
.1~rm.~~~.~~~rp.~~p.~~~~pr~Q~$~p~:~~t~p.i1$.~~$:~~f:', .. , :;;t~P~$(:~:~:.':;;.. , .. ,••
~~~~';~F; Both parts of a complex constant must have the same precision. The following are valid 
complex constants: 

(0.0,1.0) 
(2,3) 
(3426.78,293.6) 
(4.12E2,6.5) 
(4.12E-2,6.5E+3) 

~~U~~~;~~~·H~~:J.} ·:::.::;(~~q~J~;Pr~~.~Prij 
A single precision complex constant specified with two integer constants will be represented 
internally (in storage) as two single precision real numbers. 

2.2.1.4. Logical Constants 

A logical constant specifies a logical value which is either "true" or "false." The only valid logical 
constants are: 

.TRUE . 

. FALSE. 

2.2.1.5. Character Constants 

A character constant is a string of characters which may include any of the ASCII characters. 
Character constants are sometimes referred to as literals p.rHpr,f,-E.tr~t.~~p~$~~.$L They may be 
indicated in one of two ways: 

• The string may be enclosed in apostrophes (referred to as the literal form). Two apostrophes 
in succession represent a single apostrophe in the text. The following are valid character 
constants: 

'ABCD' 
'123ABC$! !' 
'THAT'S' 
~~~' .(mp.~~~.~~~rtj.:~~c:i~~~e.':~'9P~t.~im~~pW~rq~~~~~ij~r~j: 

In the third example, the code produced would be:

THAT'S

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

•

UPDATE LEVEl
2-6

PAGE

Each character requires one 9-bit byte (one-fourth of a word) of storage. A character constant
consisting of n characters requires the integer value of ((n +3)/4) words of storage for its
representation. All character data is represented in the full ASCII form. The 9-bit representation of
ASCII consists of one O-bit followed by the 8-bit ASCII code. The maximum size of a character
constant is 511 characters.

If a character constant is split between two or more lines in the source program, it is important to
remember that the constant extends through column 72 of the first line and begins again in column
7 of the following continuation line.

2.2.2. Symbolic Names

A symbolic name consists of one to six of the following characters:

• uppercase ~~~i~w~r~a$,~: letters

• numerics (0, 1, 2, ... , 9)

The first character of each symbolic name must be alphabetic.

The programmer is entirely free in the choice of words for symbolic names. Keywords such as GO
TO, READ, FORMAT, etc., are not considered reserved words and may therefore be used as symbolic
names or as parts of symbolic names. However, when GO TO, READ, FORMAT, etc., are used as
statement keywords, they are not considered to be symbolic names. The same applies to sequences
of characters which are format field descriptors such as 13 (see 5.3.1). The use of keywords as
variables, function' names, or subroutine names is not recommended since such usage makes
programs difficult to read.

Symbolic names containing lowercase alphabetics are identical to symbolic names containing
uppercase alphabetics. Thus, the name xxx is identical to the name XXX.

8244.2
UI'-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.2.1. Uniqueness of Symbolic Names

UI'DATt LEVEl
2-7

PAGE

In a program unit, a symbolic name, perhaps qualified by a subscript, identifies a member of one (and
only one) of the following fourteen classes unless noted otherwise:

• An array and the elements of that array

, • A scalar variable

• A statement function

• An intrinsic function

• An external function

• An external subroutine

• An external procedure which cannot be classified as either a subroutine or a function in the
program unit in question.

• A common block

• A constant defined in a PARAMETER statement

• ~:~~M~~i$T:~~m ..

• ~:pt99r~m.:::~6~:~.m~

• A main program name

A common block ~t:~~n~:6~m~ in a program unit may also be the name of any local entity other than
a parameter constant, intrinsic function, or local variable that is also an external function in a function
subprogram.

A main program name is global to the executable program and must not be the same as the name
of an external subprogram in the same executable program.

A FUNCTION subprogram name must also be a variable name in the FUNCTION subprogram.

Once a symbolic name is used as ~:pr~gr~:m:~~~.ri~:ri~g~ a FUNCTION subprogram name, a
SUBROUTINE subprogram name, or an external procedure name in any unit of an executable program,
no other program unit of that executable program may use that name to identify another member
of any of these four classes.

Note that the source input to the compiler may contain more than one program unit (see 10.2). Each
compilation produces one relocatable element regardless of the number of program units. There are
:i~~~~ri~i~~~: external program units. The only variables shared between external program units are
parameters passed between them and variables defined in common blocks. Local variable names
in one external program unit have no relationship to the local variable names in another external unit.
iri~~tm~~··~9~pr9gr~m$:m~Y.·~~v~.·~h~~r •• 9W6~~~I~~~I:V~~~~'~$·:·~fu~~ •• ifu.·~~f;ii~lp6~.·m~Y.:~ir~q~ly~~~q~~~$·j~~:
y~t~~~~~$:Pf:~h~~t~*~tm~~pr99r~m~p~~(~~7~4~~~p~7H4~~I;

\
\
\

8244.2
UP-NUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

2-8
PAGE

For example, suppose the source input consists of a main program and an external subroutine. The
symbolic name A may be used as a local scalar variable in the main program and also as a local
array in the subroutine. The two As have no relationship to each other; each A has its own storage
location.

2.2.2.2. Data Types of Symbolic Names

A symbolic name representing a function (except intrinsic functions), a variable, or an array must have
only a single data type in a program unit. This type is associated with usage of the symbolic name
throughout the program unit.

A symbolic name may be one of five types:

• Integer

• Real (single precision or double precision)

• Logical

• Character

There are no literal symbolic names (that is, 'CON' versus CON). Literals can only be represented as
constants. A constant automatically defines its own type by the form of its appearance.

The data type of a symbolic name can be explicitly declared by the programmer or implied by its first
letter. The data type of a function determines the type of the datum it supplies to the expression in
which it appears.

The data type of an array element name is the same as that of its array name.

2.2.2.2.1. Implied Declaration Via the Name Rule

Each variable, array, or function (except intrinsic functions) has a type implied by the name rule. This
convention determines the type based on the first character of the symbolic name:

• If the first character of the variable name is one of the six alphabetics I, J, K, L, M, N, the variable
is type integer.

• If the first character of the name is any other alphabetic character, the type is real, single
precision.

This convention is the traditional FORTRAN method of implicitly specifying the type of a variable as
being either integer or real. Variables defined using this convention are of standard length. Double
precision real, complex (single precision ~ri~:~9~~~~pr~qi~i9m), logical, and character types cannot
be declared by the name rule.

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

2.2.2.2.2. Implied Declaration Using the IMPLICIT Statement

The IMPLICIT statement overrides the type established by the name convention.

2-9
PAGE

The IMPLICIT statement allows the programmer to specify the data type and length to be associated
with specified initial letters. The IMPLICIT statement can be used to specify all types of variables
(integer, real, character, complex, and logical) and to indicate length specifications (precision).

See 6.3.1 for details on the IMPLICIT statement.

2.2.2.2.3. Explicit Declaration

Declaration by a type statement overrides the name rule and type specifications of IMPLICIT
statements.

Explicit specification statements differ from the first two ways of specifying the type of variable, in
that an explicit specification statement declares the type of a particular variable by its name rather
than that of a group of variable names beginning with a particular letter.

A symtolic name can be assigned a specific type and a specific length using an explicit specification
statement (see 6.3.2).

2.2.2.3. Variables

A variable is a symbolic name that identifies a single storage area in which its current value can be
found. The size of this storage area and the type of value to be put in that area are determined by
the type declared implicitly or explicitly for that variable. The allowed types for variables are: integer,
single or double precision real, single ~~~~~'iii' precision complex, character, or logical.

The contents of the storage area represented by the variable is undefined prior to assignment of its
first value. Any reference to the variable before its assignment or initialization is undefined unless
the reference assigns it a value. The value of a variable may be defined by a DATA statement, by
an input/output statement, by an assignment statement, by its use as an argument in a subprogram
reference, by its use in a DO statement, or by association in a COMMON or EQUIVALENCE statement.
The data type of a variable corresponds to the type of data the variable represents. Thus, an integer
variable represents integer data, a real variable represents real data, etc. A variable occupies the same
number of storage locations as a constant of the same type.

Once the type of a variable has been defined, it may be assigned different values of this type as
desired within the program. This changeability distinguishes it from a constant. The following is an
example of variables in use:

SUM = TOTAL 1 + TOTAL2

The symbol "=" indicates that the value of the evaluated right-hand expression is to be assigned to
the variable on the left. SUM, TOTAL 1, and TOTAL2 are variables. The sum ofthe values represented
by TOTAL 1 and TOTAL2 is to be stored in the storage area represented by SUM at execution time.
As with all expressions, TOTAL 1 and TOTAL2 must have been previously assigned values to obtain

(a defined (predictable) value for SUM.

Variables and constants are sometimes referred to as scalars.

A choice of appropriate variable names can aid documentation of a program and make the program
more r~adable.

8244.2
UI'-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.2.4. Arrays and Subscripts

UPOATElML
2-10

PAGE

An array is an indexed set of variables identified by a symbolic name (the array name). The members
of the set represented by the array are referred to as array elements.

The array name together with its position in the array comprise the unique identification of an array
element. An element's position in the array is indicated by a parenthesized expression, known as
a subscript. following the array name. The subscript must be present to ensure proper identification
of the array element. For example:

A(1)

identifies the first element in array A (if the lower dimension bound for A is 1; see 2.2.2.4.1). Each
appearance of an array name must be with its qualifying subscripts except in the following cases:

• In a DIMENSION statement. Note that although the dimension declarator may resemble an
array's subscripts they are not the same.

• In a COMMON statement.

• In a type statement.

• In an EQUIVALENCE statement.

• In a DATA statement.

• In a list of arguments for a reference to a subprogram.

• In a list of dummy arguments.

• In a list of an input/output statement, if the array is not an assumed-size array.

• As a unit identifier for an internal file in an input/output statement. if the array is not an
assumed-size array.

• As the format identifier in an input/output statement. if the array is not an assumed-size array.

• In a SAVE statement.

For the preceding cases, the array name without the qualifying subscripts identifies the entire
sequence of elements of the array except for the EQUIVALENCE statement (see 6.4).

As with variables, an array and its elements have no defined value until they have been assigned a
value in some way.

2.2.2.4.1. Array Declaration

Like a variable, an array may be integer, single or double precision real, single ~r':~~~~~~: precision
complex, character, or logical. The type of the array is also that of its data elements. This type may
be declared implicitly or explicitly.

8244.2
UP-NUMIIER

f ~.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

2-11
PAGE

An array can be declared in a DIMENSION statement. a COMMON statement, or type statement. The
form of the array declaration part is:

a(d [,d]. .)

where a is a symbolic name and d is a dimension declarator of the form:

[dl:]d2

The dimension d 1 is the optional lower dimension bound and is assumed to be 1 if omitted; d2 is
the upper dimension bound. The number of dimensions of an array is the number of dimension
declarators in the array declaration. The minimum number of dimensions is one, and the maximum
is seven.

The lower and upper dimension bounds are arithmetic expressions in which all constants, parameter
constants, and variables must be type integer. The upper dimension bound of the last dimension may
be an asterisk (*) in an assumed-size array (see 2.2.2.4.3). A dimension bound expression must not
contain a function or array element reference. Integer variables may appear in dimension bound
expressions only for adjustable arrays.

A variaole or parameter constant appearing in a dimension bound expression which is not of default
integer type must be specified as integer by an IMPLICIT statement or a type statement prior to its
use in the dimension bound expression.

The following are valid array declarations:

DIMENSION ARRAY1(2,3), VARIED(-10:L)
DOUBLE PRECISION ARRAY2(15), LIST2(K:2*K, 100)
COMPLEX RTAB(0:10, 0:20, *), USIZ(*)
COMMON WANTED(3,4,5)

2.2.2.4.2. Value of Dimensions

The value of either dimension bound may be positive, negative, or zero. The value of the upper
dimension bound must be greater than or equal to the value of the lower dimension bound. If only
the upper dimension bound is specified, the value of the lower dimension bound is one. An upper
dimension bound of an asterisk is always greater than or equal to the lower dimension bound.

2.2.2.4.3. Constant, Adjustable and Assumed-Size Arrays

Arrays dimensioned with only integer constant expressions are known as constant dimensioned
arrays. An adjustable array has one or more integer variables specified in its dimension declarator.
The integer variables must be either formal parameters or common block variables which must be
defined at the time of execution of the reference to the subprogram containing the adjustable array.
An assumed-size array is a constant or adjustable array except that the upper dimension bound of
the last dimension is an asterisk.

An adjustable array or assumed-size array can only appear in functions or subroutines, and the array
name must appear in the formal parameter list. An array name in a formal parameter list ;s called
a dummy array. The actual argument corresponding to the dummy array name may be an array name,
array element, or array element substring. The number and values of the dimensions need not be
the same in both the calling and called routines. Storage for the dummy array is not allocated in the
subprogram and the dummy array can not assume more storage than what its corresponding actual
argument has been allocated.

8244.2
UP-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

The following are examples of the three types of arrays:

SUBROUTINE SUB1(X,Y,Z,I)
DIMENSION X(1900:1978)
REAL Y (I : 2* I)
CHARACTER*8 Z(*)

2.2.2.4.4. Actual and Dummy Arrays

UPOAT£ lEVEl
2-12

PAGE

Arrays dimensioned with the array name not appearing in a formal parameter list are known as actual
arrays. An actual array has a determinable size and is allocated storage. Actual arrays must also be
constant dimensioned arrays. An actual array may be declared in a DIMENSION, COMMON, or type
statement.

A dummy array is an array in which the array name appears in a formal parameter list. A dummy
array may be either a constant, adjustable, or assumed-size array. A dummy array is permitted in
a DIMENSION statement or a type statement, but not in a COMMON statement. A dummy array may
appear only in a function or subroutine subprogram.

2.2.2.4.5. Array Element Reference

An array element is identified by the array name followed by a parenthesized subscript expression
representing its position within the array. The expression consists of one to seven subscripts
separated by commas, forming a list which is enclosed in parentheses. The number of subscripts
must correspond to the number of dimensions specified when the array dimensions were declared.

Each subscript must be an arithmetic expression which yields an integer,r~~~~:qt~~q~~~~~pr~~I$i~n.
:r~aJ value. When the subscript is evaluated, and converted to integer if necessary, the value may be
negative, positive, or zero. The value must not exceed its corresponding array dimension. T:tir

~~;;'H'H':;~=~~~~~~W~W~~~~:~~~'~~li"II~H'~~~~~j,~?f:~:Y~:::~~~~:~~ns~it~
bound is an asterisk, the value of the corresponding subscript expression must be such that the
subscript value does not exceed the size of the actual array. Subscript references are unrestricted
in form and may include array element or function references.

The expression B(3,2) refers to the element in thethird row, second column of array B. The expression
C(3/3,SQRT(4.),4) refers to the element in the second row, fourth column, of the first plane of array
C.

2.2.2.4.6. Location of Elements Within an Array

The elements of each array are stored in column-major order. This means the array element with
lowest subscripts is stored in the lowest storage position and those with higher subscripts (leftmost
subscripts increasing most rapidly) are stored in subsequent storage positions. For example, if array
B is declared:

DIMENSION B(3,3)

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

2-13
PAGE

The array elements of B would be stored in ascending storage positions in the following order:

B(1,1)
B(2,1)
B(3,1)
B(1,2)
B(2,2)
B(3,2)
B(1,3)
B(2,3)
B(3,3)

2.2.2.5. Character Substrings

A character substring is a contiguous portion of a character variable or array element and is of type
character. A character substring is identified by a substring name and may be assigned values and
referenced.

The forms of a substring name are:

v([e,]

a(s[, 51

where:

v

a(s[, 51

e 1 and e 2

is a scalar character variable name.

..) is a character array element name.

are integer expressions called substring expressions.

The value e 1 specifies the leftmost chiHacter position of the substring, and the value e 2 specifies
the rightmost character position.

For example, A(2:4) specifies characters in positions two through four of the scalar character variable
A. B(4,3)(1 :6) specifies characters in positions one through six of character array element B(4,3).

The values of e 1 and e 2 must satisfy the following relational expression:

1 $ e 1 $ e 2 $ len

where len is the length of the scalar character variable or array element. If e 1 is omitted, a value
of one is implied. If e 2 is omitted, a value of len is implied. Both e 1 and e 2 may be omitted. For
example, the form v (:) is equivalentto v, and the form a (5 L 5] ...)(:) is equivalent to a (5 L 5] ...).

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Example:

CHARACTER*4 C1. C2(2.2)
C
C - THE FOLLOWING STATEMENTS ARE EQUIVALENT
C

2.2.3. FORTRAN Expressions

UI'OATE LEVEl
2-14

PAGE

An expression is a group of one or more elements and operators which is evaluated to form a single
value within a statement.

Four kinds of FORTRAN expressions result from combinations of operands and operators. They are:

• Arithmetic

• Character

• Logical

using logical operators
using relational operators

The value of an arithmetic expression is always integer. real (single or double precision). or complex
(single ~r:~p~~~. precision). A character expression always yields an ASCII character string of length
one or greater. The value of a logical expression is always .TRUE. or .FALSE .• ~~~I~tfI~j~:pf~jY~~~$.~
~~pr~$.$.~p~::~~::~:I~~Y$.::~:::~~h~I*-::.t.~~~gi:

2.2.3.1. Arithmetic Expressions

A simple arithmetic expression consists of one or two operands and an arithmetic operator.

2.2.3.1.1. Arithmetic Operators

The following set of arithmetic operators is included in the language:

Operator

+

*
/
**

Operation

Binary addition or unary plus
Binary subtraction or unary minus
Multiplication
Division
Exponentiation -- "

"_. j

(

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.3.1.2. Formation of Arithmetic Expressions

UI'OATE lEVEL
2-15

PAGE

A simple arithmetic expression is [a] op b where a and b are variables and op is an arithmetic
operator. The form of a more complex arithmetic expression is:

[[sign] term] op term

Table 2-2 gives the form of term.

Table 2-2. Composition of an Arithmetic Term

Entity Definition Examples

term A term is composed of a product. term + A*B
product, or term - product. A+B+C*D

A+B-C*D

product A product is a factor, a product*factor, or a A**A
product/factor. A*B*A**B

A/B*A**B

factor and A factor is a primary, or a primary**power. A
power Power has the form of a factor. A**A**A

primary A primary is an unsigned constant, variable A
reference, array element reference, function 10
reference, or an arithmetic expression in (A+B)
parentheses. ARRAY(I)

FUNC(A,B)

As indicated in Table 2-2, an arithmet:c expression may not contain two consecutive operators.

Examples of valid arithmetic expressions are:

X(2)
-2
- (-2)
4**2
- (-2)+4**2-16

where X is an arithmetic array or function.

8244.2
UI4tUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.3.1.3. Evaluation of Arithmetic Expressions

UPDATE L£VE\..
2-16

PAGE

If an arithmetic expression includes more than one arithmetic operator, evaluation of that expression
is performed based on the following hierarchy:

Order of
Operation Example Performance (Rank)

Expressions in (e) 1st

parentheses

Function evaluation SQRT(e) 2nd

Exponentiation 2**3 3rd

Multiplication 2*3 4th

and division 2/3

Addition and 2+3 5th

subtraction or their -2
unary operations

Expressions are evaluated, with one exception, in a left-to-right fashion. If a subexpression contains
the form:

a op 1 b oP2 c

the part a op 1 b is evaluated first as long as op 1 has a greater or equal rank with respect to op 2

as described by the preceding table. The one exception is the form:

a ** b ** c

The part b * * c is evaluated first.

Examples of equivalent expressions:

a - b * c ** d is equivalent to a - (b*(c**d))

a - b * c * d is equivalent to a - ((b*c)*d)

a ** (b - c) * d is equivalent to (a**(b - c))*d

2.2.3.1.4. Type Rules for Arithmetic Expressions

Table 2-3 is used in evaluating an arithmetic expression a op b.

8244.2
UI4tUllBER

('

f"

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Table 2-3. Length and Type of Result for Arithmetic Expressions

Type of Right Operand (b)

UPDATE LEVEL
2-17

PAGE

...

Type of Left
Operand (a)

INTEGER REAL DOUBLE COMPLEX cO:~fillei~:1G:
: IIII11111111 i ill illl!l i [~j!: ~j ~~ i f~j;~ ;~]:]1;~ PRECISION
:::::::::::::::::::::::::::::::::::::':::::::::

INTEGER INTEGER REAL REAL COMPLEX :~p.~~§X~~~
.............. : .. ::.:.:: :.: ... : ... ::

REAL REAL REAL REAL COMPLEX ~p.~~§x~~,~i:
:: :: .. : : .. ::::.:.:::::::: ... : ... ::: :::

DOUBLE PRECISION REAL REAL REAL ·~p.~~§X~~'~· :~p.~~§X~~,~m,:
... :::: ::: :::::::::: :

COMPLEX COMPLEX COMPLEX R~~~X~~~m: COMPLEX ~P.M~§X~~·~:
.. :.: :.: ... :::: .. : :.::: ... :::.::::::: : ... :.:::: ::::.: ... : : ... ::.::.:.: .. : .. :::::::::::::::::::::: .. :.:::.:::::.:::::: .. .

c.OMPLEx.'le;H::cOMPLEx.,e ; "~p.~~~X~:~.~, :~p.~~~X~'~~:~p.~~§X~~:~ "".~p.~~§X~~.~:
.......... :::::::::::::::::::::::::::::::::;;:::::;::::;::::::;:::::::::::::::::::;::::;::::::::::::::::::::::::::::::::

The length of the operands and results are:

REAL and INTEGER - one word (4 ASCII characters)

DOUBLE PRECISION and COMPLEX - two words (8 ASCII characters)

~qM~~X~j~ - four words (16 ASCII characters)

The data type of a unary operation is the same as that of its operand.

2.2.3.2. Character Expressions

A character expression has a value representing a sequence of one or more ASCII characters. It may
be a character constant (literal), chara~ter variable, character array element. character substring (see
2.2.2.5), character function reference, or another character expression enclosed in parentheses. A
character expression may also be two or more of the aforementioned items combined by using the
binary concatenation operator "/ /".

The binary concatenation operator "/ /" is the only character operator in FORTRAN. It is used in the
following manner, where e 1 and e 2 are character expressions:

Assume e 1 is a character expression of length m and e 2 is a character expression of length n. The
result of the expression is a character expression of length m + n. The first m characters of the
resulting expression are those of e 1. The remaining n characters are those of e 2·

8244.2

~

SPERRY UNIVAC Seri .. 1100
FORTRAN (ASCII) Programmer Reference

For example, the expression:

'TWIST~' / / 'AND~ TURN'
,.

results in the value 'TWIST AND TURN'.

The expression:

'TYPE' / / '123'

results in the value 'TYPE 123'.

UPDATE LEVEL
2-18

PAGE

FORTRAN 77 does not allow a character item with a length of * to appear as a concatenation operand
.i~.iJ.~.~.~P.~~.!>,~i()O in a subprogram argument or an I/O list. :~~~~v~t;::~$~~f:~QRTR~N::i~~::n.~~::~ .. ~.:
tl:Hs.UrmriCtloni ,

2.2.3.3. Logical and Relational Expressions

A logical expression has the value .TRUE. or .FALSE ..

Logical expressions can be divided into two groups based on the type of data handled by their
operators. These two groups are:

• Pure logical

• Relational

Pure logical expressions allow only logical operands.

Relational expressions allow logical, integer, real (single or double precision), complex (single ~r
ip~~f,~ precision), *Vp.~~~~ and character expressions as operands.

The basic form of a logical expression is similar to that of an arithmetic expression.

2.2.3.3.1. Logical Operators

Logical operators can be divided into two groups: pure logical (Table 2-4) and relational (Table 2-5).
The operands (e j) for pure logical operators may be of logical ~::~~~~$~ type (see 2.2.3.4).

./

8244.2
UI4tUMIIER

Operator

.NOT.

.AND.

.OR.

.EOV.

.NEOV.

Operator

. GT.

. GE.

. LT.

. LE.

.EO.

.NE.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

Table 2-4. Pure Logical Operators

Usage Explanation

.NOT. e 1 The expression has the logically opposite
value of the expression e 1.

e 1 .AND. e2 If both e 1 and e 2 have the value of .TRUE.,
the expression has the value .TRUE. ;
otherwise it has the value .FALSE.

e 1 .OR. e 2 If either, or both, e 1 or e 2 has the value
.TRUE, then the expression has the value
.TRUE. ; otherwise the expression has the
value .FALSE.

e 1 .EOV. e2 If both e 1 and e 2 have the value of .TRUE. or
both have the value of .FALSE., then the
expression has the value of .TRUE., otherwise
it has the value of .FALSE.

e 1 .NEOV. e 2 If e 1 has the value of .TRUE. and e 2 has the
value of .FALSE., or if e 1 has the value of
.FALSE. and e 2 has the value of .TRUE., then
the expression has the value of .TRUE.;
otherwise the expression has the value of
.FALSE.

Table 2-5. Relational Operators

Usage Explanation

e 1 .GT. e2 True if e 1 is greater than e 2 .

e 1 .GE. e2 True if e 1 is greater than or equal to e 2 .

e 1 .LT. e2 True if e 1 is less than e 2 .

e 1 .LE . e2 True if e 1 is less than or equal to e 2.

e 1 . EO. e2 True if e 1 is equal to e 2 .

e1 . NE. e2 True if e 1 is not equal to e 2 .

2-19
PAGE

The opE:lrc:trl~~J~j) for relati()rl.al()p~ra.tors may be integer, real (single or double precision), complex
(single p'~:~q~~'~ precision),:~y~~~$~jor character. A complex operand is permitted only when the
relational operator is .~() .. ().r. .. f\J~:: ... ~()I/II~,,~r., .. if.()rt~.()t. .. ~.~~ .. f!i.i~.()ftyp~.c:~a.rac:!e.r.~ ... t.~e..()t.~E:lr.r.t:l,:,st. .. c:tI~()
be of type character. ~~:¢9mP~~~nUqf~~q~~~.p~¢.pi$~q~¥~'ilI~.~m~~~qmpl~*Y~~~~i~p~f:m~~~~;

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.3.3.2. Formation of Logical Expressions

UPDATE lEVEL
2-20

PAGE

A logical expression consists of iogical operators and allowable operands. It produces a logical value
of .TRUE. or .FAlSE ..

A logical expression has one of two forms:

• logical term

• logical expression.OR. logical term

Table 2-6 defines a logical term.

Table 2-6. Composition of Logical Term

Entity Definition Examples

logical term A logical term is composed of a logical factor. or l .AND .. NOT. L
logical term .AND. logical factor.

logical factor A logical factor can be either a logical primary .NOT.(A .GT. 8)
or .NOT. logical primary.

logical primary A logical primary is a logical constant. logical L
variable reference. logical array reference. logical .TRUE.
function reference. relational expression. or LARRAY(I)
logical expression enclosed in parentheses. A.GT.8

(A .OR. 8)

A relational expression is of the form:

e 1 re/op e 2

where re/op is a relational operator and e i are expressions. If one of the e i is of type character.
the other must also be of type character.

2.2.3.3.3. Evaluation of Logical Expressions

If a logical expression contains more than one logical operator. evaluation of that expression is
performed using the following hierarchy:

Operator Rank

Relationals 1st (evaluated first)
.NOT. 2nd

.AND. 3 rd

.OR. 4th

.EOV .•. NEOV. 5 th (evaluated last)

'\

8244.2
U UMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UfIOATt LEVEL

2-21
.. AGE

If more than one relational operator exists, they are performed in left-ta-right order. The same applies
to multiple appearances of the same operator.

In relational expressions with character operands, character relations are performed left to right using
the ASCII collating sequence. If one of the two expressions needs to be extended to make it equal
in length to the other, it is extended on the right using blanks.

Assuming A has the value .TRUE. and B the value .FALSE., examples of logical expressions and their
values are:

Expression Evaluation

A.AND. B .FALSE.

A .AND .. NOT. B A .AND .. TRUE .
. TRUE.

3.LT.4.0R.B .TRUE .. OR.B
.TRUE.

.NOT. A .AND. B .FALSE .. AND. B
.FALSE .

. NOT.3.LE.4.0R.B .NOT .. TRUE .. OR. B
.FALSE .. OR.B
.FALSE.

A.NEOV. B .TRUE.

8244.2
UP-MJMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

2.2.3.5. Hierarchy of Operators

UPDATE LEVEL
2-22

PAGE

The following hierarchy should be used to determine the evaluation order of subexpressions involving
the operators mentioned in subsections of 2.2.3.

Kind

Parenthesized

Functions

Arithmetic

Character

Logical

Operation

All

All

Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction (+ and -)

and unary operation

Concatenation (I / ~~~~)

Relational comparisons
(.GT., .GE., .LT., .LE., .EO., .NE.)

.NOT.

.AND.

.OR.

.EOV., .NEOV.

Rank

1 st (evaluated first)

7th

8th

9th

10th

11 th (evaluated last)

8244.2
UI'-NUM8fR

(-.,

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Note the following:

UPDATE LEVEL
2-23

PAGE

• Expressions are evaluated left-to-right. except where the hierarchy dictates otherwise, or in the
case of successive exponentiation operators (see 2.2.3.1.3).

• Logical expressions may not require that all parts be evaluated. For example, if A is a logical
variable whose value is .TRUE. and LEG is a logically valued function, the expression A .OR.
LEG(x) may not result in a call to the function LEG. Since A has a true value, the value of the
expression is already determinable.

2.2.4. General Statement Form

The general form of all FORTRAN statements is:

1 5 6 7 72 73 80

label or statement nonprocessed
blank documentation

Column 6 is used for a continuation character, if the line is to be a continuation line (see 2.2.6).

Note that any text (except comments) extending beyond column 72 is moved over three columns and f a space-period-space is inserted before the source line is printed.

2.2.5. Comment Line

Any line with the characters C or * in column 1 is treated as a comment and not as a FORTRAN
statement. A line that contains only blank characters in columns 1 through 72 will be treated as a
comment line. Comments are included with listings and in the symbolic element for the convenience
and information of the programmer, but they are not compiled as FORTRAN statements.

~9mm~~~J~~~~m~y~pp~~·h~mYw~~r~WI~h~~~I:#9gr~~~nl*; FORTRAN 77 does not allow comment
lines following an END statement.

2.2.6. Continuation Line

Any character other than a blank or zero appearing in column 6 of a FORTRAN statement signifies
that this line is a continuation of the prior FORTRAN statement. Columns 1 through 5 of a continuation
line may contain only blank characters.

Each FORTRAN statement may contain ~~,~~~~ 20 lines but not more than 1320:~i,gnif~p~n~characters.
Blanks are not significant characters except in character literals ~n~1TII90~rij6~~~~~~, For instance,
a FORTRAN statement containing only significant characters could be continued for a maximum of

~~~i;~~~:~~:~~;~~~~~~~~~ijrn~~a~e~i:~~i~~d.·W3Q~:t~~I~W~~~rt~i-~~&~'f~~hl~~~~llr:$t~~m~~~ 
(~. Each continuation line must be preceded by an initial line or another continuation line. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

2-24 
PAGE 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

3-1 
PAGE 

3. Assignment Statements 

3.1. General 

Assignment statements are the basic mechanism by which the result of an expression is stored (and 
therefore, saved) in a variable for future reference. Many types of conversions may be induced during 
evaluation of the expression before the final result is stored. 

There are four types of assignment statements: 

• Arithmetic assignment, for storing the result of an arithmetic expression, cha:reter:oonstantPOr 
HpO.r~~¢g~$~~t in a numeric (integer, real. or complex) variable or arra~l"eiement:""""" 

• Character assignment, for storing the result of a character expression into a character variable, 
character array element, or character substring. 

• Logical assignment. for storing the .TRUE. or .FALSE. result of a logical expression into a logical 
variable or logical array element. 

• Statement label assignment (ASSIGN statement), for storing the location of a statement label 
in an integer variable. The unique form of this type of assignment statement unambiguously 
differentiates statement labels from numeric constants. 

The equal sign (=) is the usual assignment operator. 

Special rules for conversion, size determination, etc., apply in many cases. These are cited in the 
discussion of each type of assignment statement. 

3.2. Arithmetic Assignment Statement 

Purpose: 

The arithmetic assignment statement is used to transfer a numeric value, the result of an arithmetic 
expression, to a variable or array element of type INTEGER. REAL, DOUBLE PRECISION, COMPLEX, 

("' p~CQ~e~~X~I~L 



8244.2 
UI'-ftlMER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I ~2 

PAGE 

Form: 

where: 

Description: 

The result of the expression is stored in the target variables which appear to the left of the assignment 
"=" operator. If the result of the expression differs in type from the target variables. conversions will 
be performed in most cases. as indicated in the Table 3-1. 

Caution should be exercised when using user-defined functions as array subscripts ~~: 
R'~~~Y~~j~~~$.::~r .. Ym..~ji 
The sequence of execution is as follows: 

1. Subscripts ~'::6'~~~Y:n~~~~::~r .. Ym..~j~ of the target variables are evaluated. 

The order of this evaluation is not set. Therefore. side effects. which are hidden changes in 
variables other than the one being evaluated. may produce results dependent on the sequence 
of object code. The results of such side effects are not defined. Programs containing such 
constructs may therefore produce different results when executed on different FORTRAN 
systems. See the examples at the end of this subsection. 

2. The expression is evaluated. Beware of side effects which may be present since their effect is 
undefined. 

3. For each target variable. the result of the expression is converted. if necessa 
the variable. The order of this assi nt is not specifie(i.. . 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

INTEGER 

imaginary 
part. 

Table 3-1. Conversions for Arithmetic Assignment 

REAL 

imaginary 
part. 

to Vlr".n,n to 
double. 
Store. 

COMPLEX 

as imaginary 
part. 

UPDATE lEVEL 
3-3 

PAGE 



8244.2 
UP-NUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I~ PAGE 

Examples: 

A=BtC 
C The value of the expression B t C is stored in A. 

INDX=INDXtl 
C The value of the expression INDXtl is stored in INDX. 

X=CSIN(W*PltTHETA)-ORIGIN 
C The value of the expression is stored in the variable X. 

C 

C 
C 
C 
C 

C 

C 
C 
C 
C 
C 
C 

N=l 

END 
The constant one is stored in N. 

The fol lowing program sequence may depend upon side effects 
because of the order of evaluation and optimization. 
Since side effect dependence is forbidden, the sequence 
may not produce the results intended by the programmer. 

DIMENSION A( 10,10,10) 
COMMON/WATCH/MI GHT ,CHANGE 
SUBJCT = 1 
MIGHT = 2 
CHANGE = 4 
A(MIGHT, FC(SUBJCT) ,CHANGE) = D 

END 

FUNCTION FC(A) 
COMMON/WATCH/MIGHT,CHANGE 
MIGHT = MIGHT t 1 
CHANGE = CHANGE t 1 
FC = MIGHT t CHANGE - A 

END 
The example above shows the introduction of side effects during 
evaluation of the function FC due to the COMMON properties of 
MIGHT and CHANGE. ASCI I FORTRAN presently evaluates 
A(MIGHT,FC(SUBJECT) ,CHANGE) to A(3,7,5). However, the user 
is warned not to rely upon side effects because a change in 
compi ler evaluation of the code could change the result. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

3.3. Character Assignment Statement 

Purpose: 

UPDATE lEVEL 
3-5 

PAGE 

The character assignment statement is used to transfer the result of a character expression to a 
character variable, character array element, or character substring. 

Form: 

·r······· .. ·]· ::::":::;:;::::::::::::" 
C .)~ .HHn+ = ce 

where: 

c is a character variable, character array element. character substring, 9':~~~~<hf~~pt.!prn: 
($~~:7:l~;~~ 

ce is a character expression. 

Description: 

The result of the character expression is stored in the target variables which are on the left of the 
assignment ( "=" ) operator. 

If the expression involves character variables, character array elements, character substrings, ~r 
~~~~9rtf,~h:Q~'9~~, the target c must be type character since no type conversions will be performed. 
:If:;I,~~.;~*~~~~19~.:·I~: ••• ~~~r~~~r:''I~~'~.I:.9':.H~i~~li~::~n~g~·:~~.·~rg~~.~~r~~~~$ •• ~~p .• ~~ •• pf,.·~nv··~p~;·rn~
~~~V~~I~~"Wm·~~·~"'~rm~4l 

If the length of the character string result of the expression differs from the size of the target variables, 
the string will be truncated or padded with blanks as indicated in Table 3-2 (L, is the length of the 
target in characters; L2 is the length of the result of the character expression in characters): 

Condition 

Table 3-2. Conversions for Character Assignment 

Action 

The leftmost L, characters of the expression result are 
stored in the target; the remaining characters of the 
expression result are ignored. 

The expression result is stored in the target. 

The expression result is stored in the leftmost L2 
characters of the target; the remaining rightmostL, 
minus L2 characters are filled with blanks. 

The sequence of execution is the same as for arithmetic assignment statements. 



8244.2 
UNUIBEII 

Examples: 

SPERRY UNIVAC Serie. 1100 
FORTRAN (ASCII) Programmer Reference 

CHARACTER*12 CSFMSG. COMMND 
CSFMSG='@' II COMMND 

UPOATELML 
3-6 

PAGE 

C 
C 

The character string result of the concatenation expression 
'@' II COMMND is stored in the character variable CSFM5G. 

CHARACTER BLANK*l 

BLANK=' 
C The single blank is stored in character variable BLANK. 

END 

CHARACTER*4 S2(10,10) 

S2(I,J) = 'abed' 
C The string 'abed' is stored into the character array 
C element 52(I,J) 

S2 ( I ,J) (2: 3) = 'e f ' 
C The string 'ef' is stored into the substring in character 
C positions 2 through 3 of array element 52(1 ,J) which 
C makes S2(I,J) the string 'aefd'. 

3.4. Logical Assignment Statement 

Purpose: 

The logical assignment statement is used to transfer a logical value, that is, either .TRUE. or .FALSE., 
to a logical variable or logical array element. 

Form: 

where: 

I is a logical variable or logical array element. 

Description: 

The result of the logical expression is stored in the target variables appearing to the left of the 
assignment ( "=" ) operator. 

No conversions are performed, so the expression must be a logical expression, and the target 
variables must be logical variables. )f:t~~:.:~h~r~~~r:~p~.t..~~:prH.p~i~ri~~:~p~~~t.:{~:~p~~ .. ii~.~J~ ." ./ 
*-~~~:ijh~:i~~ji:V!pr4.:::p'::jh.:::~~m~ .. :m~::~$i::$jPr.~:·:~~r~~t.lyii~·jh~i:irii~;i::W~j~:iii1~i~~~r~~pril 

The sequence of execution is the same as that for arithmetic assignment statements. 



( 

(: 

8244.2 
UP-NUMBER 

Examples: 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

LOGICAL INDIC. FLAG 
INDIC=LEFT .LT. RIGHT 

UI'OATELEVEL 

The logical result of the logical expression 

3-7 
PAGE 

C 
C LEFT .LT. RIGHT is stored in the logical variable INDIC. 

FLAG=.TRUE. 
C The value .TRUE. is stored in the logical variable FLAG. 

3.5. Statement Label Assignment (ASSIGN Statement) 

Purpose: 

The ASSIGN statement is used to transfer the location of a statement label constant to a variable for 
subsequent reference in a GO TO statement or an I/O statement. 

Form: 

ASSIGN n TO iv 

where: 

n is an unsigned positive integer indicating an executable or FORMAT statement label. 

iv is an unsubscripted integer variable. 

Description: 

The location of the statement is stored in the target variable that follows TO. 

Note that this statement is not the same as an arithmetic assignment. The value of the statement 
label is not stored and is not subsequently available. such as for output. in that form. Only its location 
is stored. 

The target variable must be of type integer. No conversion is allowed. 

The location of the indicated statement label is stored into the target variable in a single operation. 

The target variable may be redefined with the same or different statement label value or an integer 
value. 

Example: 

ASSIGN 10 TO ISTMT 
C The location of statement 10 is stored in variable ISTMT. 



\"--..-. 



8244.2 
UP-NUMIIER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

4.1. General 

UPDATE I.EYEl. 
4-1 

PAGE 

4. Control Statements 

Normal execution of a program unit is sequential, starting with the first executable statement, and 
continuing with each successive statement until the last executable statement of the program unit. 

Control statements change this normal sequence of execution. Some of these statements specify 
unconditional modifications of program flow while others will change the sequence of execution 
depending on the results of a test contained within the statement. 

FORTRAN control statements are: 

• GO TO statements (unconditional GO TO, computed GO TO, assigned GO TO) 

• IF statements (arithmetic IF, logical IF) 

• Blocking statements (block IF, ELSE IF, ELSE, END IF) 

• DO 

• CONTINUE 

• PAUSE 

• STOP 

• END 

• CALL 

• RETURN 

CALL and RETURN are not discussed in this section, but are discussed with procedures in Section 
7. 

Both the control statement and the label referred to must be in the same program unit. A unique 
statement label may appear on any statement. However, there are rules as to which labels can be 
referenced (see 10.3.1). 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Seri .. 1100 
FORTRAN (ASCII) Programmer Reference 

4.2. GO TO Statements 

UPDATE LEVa 
4-2 

PAGE 

GO TO statements permit transfer of control to an executable statement specified by a statement label 
cited in the GO TO statement. Control may be transferred either unconditionally or conditionally. 
Under certain circumstances this transfer can be within the boundaries of a DO statement. This is 
discussed further in 4.5.5. 

The three types of GO TO statements are: 

• Unconditional GO TO 

• Computed GO TO 

• Assigned GO TO 

4.2.1. Unconditional GO TO 

Purpose: 

The unconditional GO TO statement transfers program control to a specified statement. 

Form: 

GO TO x 

where x is the number (statement label) of an executable statement within the same program unit. 

Description: 

Each execution of an unconditional GO TO statement causes control to be transferred to the statement 
specified by the statement label. 

Any executable statement immediately following this statement should have a statement label. 
Otherwise, control can never reach such a statement. 

Examples: 

110 
180 
C 
C 

100 
C 
C 
C 
C 

GO TO 180 

x = X + 1 
Causes control to be transferred to the statement 
labeled 180. 

IF (RENT .GT. HIGH) GO TO 100 
OCCUpy = OCCUpy + NEW 
TOTAL = OCCUpy * RENT 

If RENT is not greater than the current HIGH. 
new occupants wi I I be added. The total rent which is 
collectable is the product of the number of occupants 
times the cost of renting. 

/ 



8244.2 
UP-MJM8ER 

,{'" , 

./ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

SUM = O. 
DO 1 I = 1, 10 

C This is a I ist-directed READ 

C 
C 
C 

READ *, K,J 
I F (K . EO . 1) GO TO 1 4 
IF (K .EO. 0) GO TO 15 
GO TO 1 

14 SUM = SUM + J 
GO TO 1 

15 SUM = SUM - J 
1 CONTI NUE 

PRINT *, SUM 
STOP 
END 

This sample program uses the unconditional GO TO 
statement to either add or subtract from a summation 
of 10 numbers. 

4.2.2. Computed GO TO 

Purpose: 

I 4-' PAGE 

A computed GO TO statement transfers control to an indexed member of a statement label list. 

Form: 

GO TO (x [ ,x] . . . ) [ , ] e 

or: 

where: 

each x is the number (statement label) of an executable statement in the program unit 
containing the GO TO statement or a variable containing such a number (see 3.5), ~r 
i~:p,"b~~~l 

e is an integer expression which is used to index a member of the statement label list. 
The value of e should not exceed the number of x's appearing in the statement. 

Description: 

This statement causes control to be transferred to the statement numbered x indexed bye. 

x is chosen from the statement label list according to the value of e. If e = 1, the first statement 
label is used; if e = 2, the second is used; etc. If e is less than 1 or greater than the number of 
elements (~~~i~~~~9.;~~p~pg~ij~n~~ in the list,Qrif~h~:$~i~qj~~::~:I~:p,"~~~~ the execution sequence 
continues as though a CONTINUE statement were executed. 



8244.2 
UP-MIMIER 

Examples: 

SPERRY UNIVAC Seri .. 1100 
FORTRAN (ASCII) Programmer Reference 

INTEGER CHOICE, SALARY, UPCLAS, WEALTH, RICH 
GO TO (10,15,20,25), CHOICE 

C Transfer control. to statement 10, 15, 20, or 25 

4-4 
PAGE 

C depending on the value of CHOICE. For example, if the value 
C of CHOICE is 2, control is transferred to statement 15. 

C SALARY is: 
C 1 if income is 8,000 or less 
C 2 i f g rea t e r t han 8, 000 but I e sst han 0 r e qua Ito 1 2 , 000 
C 3 if greater than 12,000 but less than or equal to 20,000 
C 4 if greater than 20,000 but less than or equal to 80,000 
C 5 if greater than 80,000 

GO TO (100,200,300,400,500) , SALARY 
100 LOW = LOW + 1 

200 MIDDLE = MIDDLE + 1 

300 UPCLAS = UPCLAS + 1 

400 WEAL TH = WEALTH + 1 

500 RICH = RICH + 1 

C 
C 

C 
C 
C 

. C 

6 

7 

8 

9 
1 

Control is transferred to the proper addition depending 
on the value of SALARY. 

SUM = 0 
READ *, N, KNODE 
DO 1 I = 1, N 

READ *, X 
GO TO (6, 7, 8, 9) , KNODE 
SUM = SUM + X 
GO TO 1 
SUM = SUM + ALOG(X) 
GO TO 1 
SUM = SUM + ALOG10(X) 
GO TO 1 
SUM = SUM + 1. / X 

CONTI NUE 
PRINT *, N, KNODE, SUM 
STOP 
END 

This program uses the computed GO TO statement to 
arrange a selection of one of four summation types 
(sum of the actual values, sum of base e logarithms, 
sum of base 10 logarithms, and sum of reciprocals). 



8244.2 
UP-NUMIIBI 

(-

I 4~ 
PAGE 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

4.2.3. Assigned GO TO 

Purpose: 

An assigned GO TO statement transfers control to the statement whose label is equal to the current 
value of a specified variable. 

Form: 

GO TO m [[ .] (x[ • x] . . . )] 

where: 

x is the statement label of an executable statement in the program unit containing the 
GO TO statement. 

m is a scalar integer variable (not an array element). Its value must be equal to one of 
the values of x. unless the statement label list is omitted. 

Description: 

At the time of execution of an assigned GO TO statement. the current value of m must have been 
defined to be one of the statements x by the previous execution of an ASSIGN statement ~~~y 
irib~a.i~~~~pm.'ma.nplA:tAipr~p~.p~pi'i~~~~~fu::$~~~m~rit" The ASSIGN statement is explained in 3.5. 
The DATA statement is discussed in 6.8. The value of m must identify a statement in the same main 
program. subroutine. or function as the GO TO statement. No diagnostic will be issued for failure 
to do so. 

Any executable statement immediately following this statement should have a statement label. 
Otherwise. control can never reach it. 

Logically. the assigned GO TO statement can be used whenever a computed GO TO is used (see 4.2.2). 
The formats differ and the assigned GO TO requires at least one previous ASSIGN statement. 

If the statement label list is omitted. the assumed list contains every statement label which has been 
associated with the variable m in an ASSIGN ~rQlA:tAiJolj~O~a.ji~ristatement. The result of executing 
the GO TO statement when m does not identify a statement in the list depends on the degree of 
program optimization being performed. and is not generally predictable. 



8244.2 
IJP..NUM8EIt 1 .... 4-6 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Examples: 

INTEGER CHOICE 
GO TO CHOICE, (10,15,20,25) 

C Control is transferred to statement in I ist whose 
C value matches that of CHOICE. For example, if the 
C last value assigned to CHOICE was 25, control is 
C passed to statement 25. 

SUM = 0 
READ *, N, KNODE 
IF (KNODE .EO. 6) ASSIGN 6 to KSWTCH 
IF (KNODE .EO. 7) ASSIGN 7 to KSWTCH 
IF (KNODE .EO. 8) ASSIGN 8 to KSWTCH 
IF (KNODE .EO. 9) ASSIGN 9 to KSWTCH 
DO 1 I = 1, N 

READ *, X 
GO TO KSWTCH, (6, 7, 8, 9) 
GO TO 1 

6 SUM = SUM + X 
GO TO 1 

7 SUM = SUM + ALOG(X) 
GO TO 1 

8 SUM = SUM + ALOG10(X) 
GO TO 1 

9 SUM = SUM + 1. / X 
1 CONTINUE 

PRINT *, N, KNODE, SUM 
STOP 
END 

C This sample program uses the assigned GO TO statement 
C to arrange a selection from one of four types of 
C summation (sum of the actual values, sum of base e 
C logarithms, sum of base 10 logarithms. and sum 
C of reciprocals). 

INTEGER GOTO(3), GOT01, GOT02, GOT03 
EOUIVALENCE (GOTO( 1). GOT01). (GOTO(2), GOT02), (GOTO(3). GOT03) 
ASSIGN 10 TO GOTOl 

C 
C 
C 
C 

ASSIGN 20 TO GOT02 
ASSIGN 30 TO GOT03 
READ *, I 
J = GOTO( I ) 
GO TO J 

This example is incorrect because the statement 
number assigned to J is not associated with J in 
an ASSIGN. The example would be correct 
if the GO TO statement were: GO TO J. (10,20.30). 

, 
"" 7' 



8244.2 
.. UI4WMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

4.3. IF Statements 

UPDATE LEVEL 
4-7 

PAGE 

IF statements are the decision-making elements in FORTRAN. They test relationships stated within 
the statement and may modify the normal sequence of execution based on the result of this test. 

There are three types of IF statements in FORTRAN: the arithmetic IF, the logical IF, and the block 
IF. The block IF statement is described along with the rest of the blocking statements in 4.4. 

The three types of IF statements have the different forms: 

• Arithmetic IF 

where a is any expression of type integer, real, double precision, qr:jm~~~~ 

• Block IF 

IF (e) THEN 

where e is a logical expression. 

• Logical IF 

( IF(e)s 

where e is a logical expression and s is an executable statement. 

4.3.1. Arithmetic IF 

Purpose: 

The arithmetic IF statement acts as a multidestination branch depending on the condition which is 
satisfied. 

Form: 

or: 

where: 

a is an arithmetic expression of any type except complex (that is, a is type integer, real, 
or double precision). 

each x is the number (statement label) of an executable statement in the program unit 

(;~f1t~if1if1Qt~e.I~~tate.rl1e.f1t~9r~~~~t~~~tH~~I~r¥~r!~~~~·~~~~ffl~~~·~~~m·~~~~~~~~, 
~~~~~~m~mF~a.p~~~S.~~9.~~~A,]$$'GI\I$~a.~~m~ij*(~~~.!?)H~~m~v~1s.P~~¥P~~'t.~a.~i$! 
l&m.~

8244.2
UP-HUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Description:

UPOATELML
4-8

PAGE

The arithmetic IF statement causes transfer of control to the statement numbered x l' x 2' or x 3 when
the value of the arithmetic expression (a) is less than. equal to. or greater than zero. respectively.

Any two. or all three. statement labels may be the same. If all three are the same. the statement has
the same effect as an unconditional GO TO.

An executable statement immediately following this statement should have a statement label.
Otherwise. control can never reach it. ~«.~rri~.~lY~::~:v~I<t::pp$~j~P~:Jri:j~~::'~$.~:~~~~i~:~~il:$~~~::.~::

Example:

1
2

C
C
C

SUM = 0
DO 2 1=1.50

READ *. B
IF (B) 2.2.1
SUM=SUMtB

CONTINUE
PRINT *. SUM
STOP
END

The basic use of the arithmetic IF statement is to
discriminate between negative. zero. and positive
values for variables or expressions.

4.3.2. Logical IF

Purpose:

The logical IF statement evaluates a logical expression and executes or skips a specified statement
depending on whether the value of the expression is true or false. respectively.

Form:

IF (/) 5

where:

/ is any logical expression.

5 is any executable statement except a DO. block IF. ELSE IF. ELSE. END IF. END. or another
logical IF statement.

/~~
\.

8244.2
UP.-JUBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Description:

UPDATE LEVEL
4-9

PAGE

Statement 5 is executed if alld only if expression I is true. If I is false. the execution sequence
continues as though a CONTINUE statement were executed. Although 5 itself is syntactically a
complete statement, it must appear in the same line or set of continuation lines as the clause. IF (I).

Examples:

C
C
C

IF (RENT .LE. HIGH) OCCUpy = OCCUpy t 1
TOTAL = OCCUpy * RENT

SUM = 0

I f RENT is I ess than or equa I to the des ired
HIGH. the number of new occupants is increased
by 1 before the new rent total is computed.

DO 2 1=1.50
READ * B
IF (B.LE.O.) GO TO 2
SUM = SUMtB

2 CONTINUE

C
C

PRINT *. SUM
STOP
END

SUM = 0

The above program sums positive values of Busing
a log i ca I IF s tat emen t .

DO 2 1=1.50
READ *. B

2 IF (B.GT.O.) SUM=SUMtB

C
C

PRINT *. SUM
STOP
END

This accomplishes the same thing using the greater than
(. GT .) ope rat or.

4.4. Blocking Statements

The block IF. ELSE IF. ELSE. and .END IF statements define an IF-THEN-ELSE blocking structure. These
blocking statements allow the FORTRAN programmer to conditionally execute a block of statements.
With the proper use of this feature. the GO TO statement will seldom be necessary. This will allow
more structure in FORTRAN programs. thus making them more reliable and understandable.

Indentation of lines in the source code will make programs with blocking statements more readable
(see examples in 4.4.5).

A block begins with a block IF statement and ends with an END IF statement. Between the two
statements may appear zero or more ELSE IF statements and zero or one ELSE statements. The ELSE
statement (if it appears) must follow all ELSE IF statements (if any) in the block. Executable statements
may appear in the blocks between the blocking statements. Blocks may be nested.

Subsection 4.4.5 contains examples which show the FORTRAN IF-THEN-ELSE blocking statements.
The examples use all of the blocking statements (block IF. ELSE IF. ELSE. and END IF). and also show
the different types of blocks (IF'-block. ELSE IF-block. ELSE-block) and IF-level nesting.

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

4.4.1. Block IF Statement

Purpose:

UPDATE LEVEL
4-10

PAGE

The block IF statement is used with the END IF statement and. optionally. the ELSE IF and ELSE
statements. to control the execution sequence.

Form:

IF (e) THEN

where e is a logical expression.

4.4.1.1. IF-level

The IF-level of a statement 5 is:

where n 1 is the number of block IF statements from the beginning of the program unit up to and
including s. and n 2 is the number of END IF statements in the program unit up to but not including
s.

The IF-level of every statement must be zero or positive. The IF-level of each block IF. ELSE IF. ELSE.
and END IF statement must be positive. The IF-level of the END statement of each program unit (or j

the last statement in the program unit, unless the last statement is END IF) must be zero.

The maximum IF-level allowed at any point in a program unit is 25.

4.4.1.2. IF-Block

An IF-block consists of all the executable statements after the block IF statement up to. but not
including. the next ELSE IF. ELSE. or END IF statement that has the same IF-level as the block IF
statement. An IF-block may be empty.

4.4.1.3. Execution of a Block IF Statement

Execution of a block IF statement causes evaluation of the expression e. If the value of e is true.
normal execution continues with the first statement of the IF-block. If the value of e is true. and the
IF-block is empty. control is transferred to the next END IF statement that has the same IF-level as
the block IF statement. If the value of e is false. control is transferred to the next ELSE IF. ELSE. or
END IF statement that has the same IF-level as the block IF statement.

Transfer of control into an IF-block should not be made from outside the IF-block.

If the execution of the last statement in the IF-block does not result in a transfer of control. then
control is transferred to the next END IF statement that has the same IF-level as the block IF statement
that immediately precedes the IF-block.)

(

8244.2
UP-NUMBER

(-.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

4.4.2. ELSE IF Statement

Form:

ELSE IF (e) THEN

where e is a logical expression.

4.4.2.1. ELSE IF-Block

UPDATE LEVEL
4-11

PAGE

An ELSE IF-block consists of all the executable statements after the ELSE IF statement up to, but not
including, the next ELSE IF, ELSE, or END IF statement that has the same IF-level as the ELSE IF
statement. An ELSE IF-block may be empty.

4.4.2.2. Execution of an ELSE IF Statement

Execution of an ELSE IF statement causes evaluation of the expression e. If the value of e is true,
normal execution sequence continues with the first statement of the ELSE IF-block. If the value of
e is true and the ELSE IF-block is empty, control is transferred to the next END IF statement that has
the same IF-level as the ELSE IF statement. If the value of e is false, control is transferred to the
next ELSE IF, ELSE, or END IF statement that has the same IF-level as the ELSE IF statement.

Transfer of control into an ELSE IF-block should not be made from outside the ELSE IF-block. The
.s.~~.~e.~.e.nt label, if any, of the ELSE IF statement must not be referred to by any statement ~~p'~p~
Pfl!~~~;

If execution of the last statement in the ELSE IF-block does not result in a transfer of control, then
control is transferred to the next END IF statement that has the same IF-level as the ELSE IF statement
that immediately precedes the ELSE IF-block.

4.4.3. ELSE Statement

Form:

ELSE

4.4.3.1. ELSE-Block

An ELSE-block consists of all the executable statements after the ELSE statement up to, but not
including, the next END IF statement that has the same IF-level as the ELSE statement. An ELSE-block
may be empty.

An END IF statement of the same IF-level as the ELSE statement must appear before the appearance
of an ELSE IF or ELSE statement of the same IF-Ieve/.

8244.2
lJP..MUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

4.4.3.2. Execution of an ELSE Statement

Execution of an ELSE statement has no effect. Normal execution sequence continues.

4-12
PAGE

Transfer of control into an ELSE-block should not be made from outside the ELSE-block. The
statement label, if any, of an ELSE statement must not be referred to by any statement, ~~~~ptp~~~T~;:

4.4.4. END IF Statement

Form:

END IF

Description:

Execution of an END IF statement has no effect. Normal execution sequence continues.

For each block IF statement, there must be a corresponding END IF statement in the same program
unit. A corresponding END IF statement is the next END IF statement that has the same IF-level as
the block IF statement.

4.4.5. Examples Using the Blocking Statements

Example 1:

C In this example, if A and B are equal, then
C the three statements in the IF-block (that is, the
C statements between the block IF and END IF statements)
C are executed, and then the statement after the END IF is
C executed. If A and B are not equal, then the
C statement after the END IF is executed.
C

IF (A .EO. B) THEN
I = It 1
A = BtC
CALL SUB1 (I ,A)

END IF

The following three sequences of statements (Examples 2 through 4) are equivalent. L 1 and L2 are
logical scalar variables in the examples which follow. The examples cause I and J to be set depending
on the values of L 1 and L2. If L 1 is .TRUE., then I and J are set to 1 and 2, respectively. If L 1 is
.FALSE. and L2 is .TRUE., then I and J are set to 2 and 3, respectively. If L 1 and L2 are both .FALSE.,
then I and J are set to 3 and 4, respectively.

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Example 2:

C This example uses al I of the
C blocking statements:
C BLOCK IF, ELSE IF, ELSE, and END IF.
C The maximum IF-level is one.
C

IF (L1) THEN
1=1 } IF-block
J = 2

ELSE IF (L2) THEN
1=2 } ELSE IF-block
J = 3

ELSE
1=3
J = 4

} ELSE-block

END IF

Example 3:

C - This example uses al I of the
C - blocking statements except ELSE IF.
C - The maximum IF-level is two.
C

I F (L 1) THEN
1=1
J = 2

ELSE

END IF

IF (L2) THEN
1=2
J = 3

ELSE
1=3
J = 4

END IF

Example 4:

C - This example uses none of the
C - blocking statements
C

10

20

30

IF (.NOT. L1) GO TO 10
1=1
J = 2
GO TO 30

IF (.NOT. L2) GO TO 20
1=2
J = 3
GO TO 30

1=3
J = 4
CONTINUE

UPDATE LEVEL
4-13

PAGE

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100 .
FORTRAN (ASCII) Programmer Reference

4.5. DO Statement

Purpose:

UPDATE lEVEL
4-14

PAGE

A DO statement is used to specify a loop, called a DO-loop. This loop controls repeated execution
of a set of executable statements.

Form:

DO 5 [,] i = e" ~ [, e3]

where:

5 is the statement label of an executable ~:::FQ~~t statement. The statement identified
by 5, called the terminal statement of the DO-loop, shall follow the DO statement in the
sequence of statements within the same program unit as the DO statement. The terminal
statement of a DO-loop shall not be an unconditional GO TO, assigned GO TO, arithmetic
IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO statement.

i is the name of an integer, real, or double precision variable, called the DO-variable.

e 1 is an expression indicating the initial value for the DO-variable i.

e 2 is an expression indicating the terminal test value for the DO-variable i.

e 3 is an expression indicating the increment value for the DO-variable i. e 3 must not be zero.
If e 3 is omitted, it is assumed to have a value of one.

e l' e 2' and e 3 are each an integer, real. or double precision expression.

4.5.1. Range of a DO-Loop

The range of a DO-loop consists of all of the executable statements that appear following the DO
statement that specifies the 00-100 to and i the terminal statement of the DO-loop. :!f: , lh&~:DOis:Mt::e~teridedt(i

...

If a DO statement appears within an IF-block, ELSE IF-block, or ELSE-block, the range of that DO-loop
shall be contained entirely within that IF-block, ELSE IF-block, or ELSE-block, respectively.

If a block IF statement appears within the range of a DO-loop, the corresponding END IF statement
shall also appear within the range of that DO-loop.

4.5.2. Nested DO-Loops

DO statements are permitted within the range of DO-loops. Whenever a DO statement is placed
within the range of a DO-loop, the following rules must be observed:

• If a DO-loop contains another DO-loop, the range of the second DO-loop must be entirely within
the range of the first.

• The range of an inner DO-loop may, however, contain the last statement in the range of the next
outer DO-loop. Note that when DO-loops are nested in this manner only iterations of the inner
DO-loop may be terminated by a transfer of control to the last statement of the loop.

./

(

8244.2
Ul'-MlMBER

(" 0'

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

4-15
PAGE

Such a set of DO-loops is called a DO-nest. DO-loops and implied DO-loops may be nested to a
maximum depth of 25 loops.

A nest of DO-loops is considered completely nested if no loop in the nest terminates before the last
loop begins. For example, the following two nests are completely nested:

DO 50 I = 1 , 4

50

A (I) = B (I) **2
DO 50 J=1, 5 } Range

C (I ,J) = A (I) inner
DO 10 I = L, M

N = I + K
DO 15 J = 1, 100, 2 Range

15
10

TABLE (J, I) = SUM(J,N)-1 } inner
B(N) = A(N)

The following DO-loops are not completely nested:

DO 1 00 , I = 1, 1 0
DO 200, J = 2,12

inner loop

200 CONTINUE
DO 300, K = 1,10

inner loop

300 CONTINUE
100 CONTI NUE

The following is not properly nested, and is thus in error:

DO 100, I = 1,10

} M = I + N
DO 200, J = 10, 1, -1 } Range of 100 INDEX(I ,J) = TABLE(M,J)

200 A(J) = Z(N-J) second DO

4.5.3. Active and Inactive DO-Loops

of
DO

of
loop

outer DO

Range of
first DO

Range of
outer DO

Range of
outer DO

A DO-loop is either active or inactive. Initially inactive, a DO-loop becomes active only when its DO
statement is executed.

Once active, the DO-loop becomes inactive only when:

•
•
•
•

its iteration count is tested (4.5.4.2) and determined to be zero;

a RETURN statement is executed within its range;

control is transferred to a statement that is in the same program unit and is outside the range
of the DO-loop; or

any STOP statement in the executable program is executed, or execution is terminated for any
other reason (for example, error or end-of-file conditions on I/O statements).

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

4-16
PAGE

Execution of a function reference or CALL statement that appears in the range of a DO-loop does
not cause the DO-loop to become inactive. except when control is returned by means of an alternate
return specifier (that is. RETURN i) to a statement that is not in the range of the DO-loop.

When a DO-loop becomes inactive. the DO-variable of the DO-loop retains its last defined value.

4.5.4. DO-Loop Execution

Execution of a DO-loop involves the following steps:

• executing the DO statement

• loop control processing

• execution of the range

• terminal statement execution

• incrementation processing

These steps are described in the paragraphs which follow.

4.5.4.1. Executing a DO Statement

The effect of executing a DO statement is to perform the following steps in sequence:

1. The initial parameter m 1. the terminal parameter m 2' and the incrementation parameter m 3
are established by evaluating e l' e 2' and e 3' respectively. including. if necessary. conversion
to the type of the DO-variable according to the rules for arithmetic conversion. Note that if e 3
is not specified. m 3 is assumed to be one.

2. The DO-variable becomes defined with the value of the initial parameter m 1.

3. The iteration count is established and is the value of the expression:

Note that the iteration count is zero (that is. the DO-loop range will be executed zero times)
whenever:

or:

m 1 < m 2 and m 3 < o.

Note that since the iteration count is calculated only once (before entry into the loop). variables
appearing in the expressions e 1- e 2- and e 3 may be changed during execution of the loop with
no effect on the iteration count.

The user is cautioned that if noninteger expressions for e 1- e 2- and e 3 are used. the iteration
count may be different than expected due to the approximate nature of rea Is and the integer
conversion operation.

/ ",

8244.2
UP~UM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEYEL

At the completion of execution of the DO statement, loop control processing begins.

4.5.4.2. Loop Control Processing

4-17
PAGE

Loop control processing determines if further execution of the range of the DO-loop is required. The
iteration count is tested. If it is not zero, execution of the first statement in the range of the DO-loop
begins.

If the iteration count is zero, the DO-loop becomes inactive. If, as a result, all of the DO-loops sharing
the terminal statement of this DO-loop are inactive, normal execution continues with execution of the
next executable statement following the terminal statement. However, if some of the DO-loops
sharing the terminal statement are active, execution continues with incrementation processing (see
4.5.4.5).

4.5.4.3. Execution of the Range

Statements in the range of a DO-loop are executed until the terminal statement is reached. Except
by incrementation (see 4.5.4.5), the DO-variable of the DO-loop may neither be redefined nor become
undefined during execution of the range of the DO-loop. It is the user's responsibility to ensure that
such redefinitions do not occur.

4.5.4.4. Terminal Statement Execution

Execution of the terminal statement occurs as a result of the normal execution sequence or as a result
of transfer of control. Unless execution of the terminal statement results in a transfer of control,
execution then continues with incrementation processing.

4.5.4.5. Incrementation Processing

Incrementation processing has the effect of the following steps performed in sequence:

1. The DO-variable, the iteration count, and the incrementation parameter of the active DO-loop
whose DO statement was most recently executed, are selected for processing.

2. The value of the DO-variable is increased by the value of the incrementation parameter m 3'

3. The iteration count is decreased by one.

4. Execution continues with loop control processing (see 4.5.4.2) of the same DO-loop whose
iteration count was decreased.

8244.2
UP...fIIUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

4-18
PAGE

8244.2
UP-MIMBER

SPERRY/UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

4.5.6. Availability of the DO-Variable Value

UPOATELML
4-19

PAGE

If optimization is not selected. the memory location associated with the DO-variable of a DO-loop
will always contain the current value of the DO-variable.

If optimization is selected. the DO-variable of a DO-loop (as well as other variables) may be maintained
in a machine register. Consequently. the storage location associated with the variable may not always
contain the current value of the variable. This will not be noticeable to the user unless the storage
location associated with the variable is dumped. The variable will be in storage if a reference requiring
the variable to be used from storage has been performed.

The following types of references require that the variable be used from storage.

• The variable appears in an input/output list within the loop other than as part of a subscript.

• The variable is used as an argument of a subprogram referenced within the loop.

• The variable is used outside the loop before being redefined and there is a branch to a statement
outside the range of the DO-loop.

4.5.7. DO-Loop Examples

DO 100 I = 1.50
100 CURRENT(I)=CURRENT(I) - OUT(I)

X=Y*Z
C In this example. execution of the DO statement causes the
C initialization of (1) the DO-variable I to 1. and (2) the
C iteration count to 50. After statement 100 is
C executed each time through the loop. incrementation
C processing causes (1) I to be incremented by 1. and
C (2) the iteration count to be reduced by 1. After
C 50 executions of the DO-loop. incrementation processing
C causes (1) I to be set to 51. and (2) the i terat ion
C count to be set to O. Loop control processing then
C causes the DO-loop to become inactive. thus causing
C execution of the third statement. I contains the value 51.

DO 200. J = 10.1.-2
I = J + K

200 ROW (I) = COL(I)

C
C
C
C
C
C
C
C
C
C

X=Y*Z
In this example. execution of the DO statement causes the
i nit i a liz a t ion 0 f (1) the DO - v a ria b I e J t 0 1 O. and (2) the
iteration count to 5. Incrementation processing
(after statement 200) causes (1) J to be incremented by
-2. and (2) the iteration count to be reduced by 1.
After five executions of the DO-loop. incrementation
processing causes (1) J to be set to O. and (2) the
iteration count to be set to O. Loop control processing
then causes the DO-loop to be inactive. thus causing
execution of the fourth statement. J contains the value O.

8244.2
uP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

N=O
DO 1 00 I = 1 , 10

J=I
DO 100 K=1,5

L=K

UPDATE lEVEL
4-20

PAGE

100 N=N+1
101 CONTINUE
C After execution of these statements and at the execution of
C the CONTINUE statement, 1=11, J=10, K=6, L=5, and N=50.

200
201
C
C
C
C
C
C
C
C
C
C
C
C
C
C

100

200

N=O
DO 200 I = 1 , 10

J=I
DO 200 K=5, 1

L=K
N=N+1

CONTINUE
After execution of these statements and at the execution of
the CONTINUE statement, 1=11, J=10, K=5, and N=O. The value
of L is not changed by these statements, since the
iteration count for
the innermost loop is 0
(that is, the innermost loop is traversed zero times,
since the increment value is not specified and
is assumed to be one. See 4.5.4.1).

This example demonstrates some of the effects of real-valued
DO loops and subscripts.
Note the effects of using a rounding factor.

DIMENSION 1(12)
DATA 1/1,2,3,4,5,6,7,8,9,10,11,121
A = 2.4
B = 4.0
C = 3.0
DO 100 R

PRINT
DO 200 R

PRINT
END

= A/2.0,
*, I (R) ,
= A/2.0,
*, I (R),

B*C, 1.2
I (R+. 0001), R
B*C+.0001,1.2
I (R+ . 0001), R

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVa

Wi thout Wi th
Rounding Rounding

Factor Factor R

1 1 1.2000000
2 2 2.4000000
3 3 3.6000000
4 4 4.8000000
5 6 5.9999999 9 iterations
7 7 7.1999999
8 8 8.3999999
9 9 9.5999998

10 10 10.800000
1 1 1.2000000
2 2 2.4000000
3 3 3.6000000
4 4 4.8000000
5 6 5.9999999 10 iterations
7 7
8 8

7.1999999
8.3999999

(rounding factor added
to terminal parameter)

9 9 9.5999998
10 10 10.800000
11 12 12.000000

4.6. CONTINUE Statement

Purpose:

The CONTINUE statement acts as a dummy executable statement.

Form:

CONTINUE

Description:

The CONTINUE statement does not perform any executable function.

4-21
PAGE

This statement may be placed anywhere in the source program where an executable statement may
appear. It does not affect the sequence of program execution.

A statement label is usually used with the CONTINUE statement. In this manner, it provides a point
to which control can be transferred without implying any executable action.

CONTINUE is primarily used as the terminal statement of a DO-loop range. A transfer of control from
any point within the loop to the CONTINUE statement allows the completion of an iteration of the
loop without specifying an additional action to be taken. Use of the CONTINUE statement in this way
can facilitate program updating.

8244.2
UNUIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Example:

16 DO 29 1=1,10

IF (A) 29,38,34
29 CONTINUE
C This example illustrates the use of CONTINUE as the
C terminal statement ·for a DO-loop.

4.7. PAUSE Statement

Purpose:

4-22
PAGE

The PAUSE statement temporarily suspends execution of a demand (that is, interactive) program.

Form:

PAUSE

where:

[{ n
message

n is a string of decimal digits. FORTRAN 77 allows a string of one to five decimal
digits. ~$~~~:::FQR~~::"~~i$.::":::$.ttiJ,g::g,::p~~::m::$.J,*::~q~j,m .. ~:::qi91~;:

message is a literal constant enclosed in apostrophes and containing alphanumeric or
special characters. Within the literal, an apostrophe can be indicated by two
successive apostrophes. The maximum length of message is 124 characters.

Description:

A PAUSE of either form temporarily halts execution of the program.

The program waits until the user transmits a carriage return which causes the program to resume
execution, starting with the next statement after the PAUSE statement.

PAUSE n, PAUSE message, or PAUSE 00000 is displayed upon the demand terminal, depending
upon whether n, message, or no parameter was specified, respectively. Program execution is
suspended until input is received from the terminal.

If the program is not in demand mode, the PAUSE n, the PAUSE message, or PAUSE 00000 will
be displayed on the system print file, and program execution will continue.

8244.2
UP-NUMIIER

(

(/

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Example:

60 I F (A) 80, 90, 110
70 CONTINUE
80 STOP 'A IS NEGATIVE'
90 PAUSE 'A ISO'
100 GO TO 180
110 A=B**2tC**3
120 GO TO 60

UPDATE lEVEL
4-23

PAGE

C This example wi I I cause execution to pause at statement 90
C if A=O. When the user causes the program to resume
C execut ion, the next statement executed wi II be the
C statement at statement I abe I 100.

4.8. STOP Statement

Purpose:

STOP terminates the execution of the program.

Form:

STOP { :essage} 1

where:

n is a string of decimal digits. FORTRAN 77 allows a string of one to five decimal
digits. ~$~O·:FQRTMN·.~'J,~W$ •• ~~$~d~9pfpn~~p$~*~~~m~~~i9:1~;

message is a literal constant enclosed in apostrophes and containing alphanumeric or
special characters. Within the literal, an apostrophe is indicated by two successive
apostrophes. The maximum length of message is 124 characters.

Description:

Execution of the STOP statement will terminate the execution of the program.

If n or message is specified, STOP n or STOP message will be displayed on the system print file.
Otherwise, nothing will be displayed.

Note that al/ open files are closed as part of program termination.

Example:

60
70
80
90
100
110
120
C
C

I F (A) 80, 90 , 110
CONTINUE
STOP 'A IS NEGATIVE'
PAUSE 'A IS O'
GO TO 180
A=B**2-C**3
GO TO 60

Execut ion of this program wi II cease at statement label 80
if A is negative.

8244.2
UNWM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

4.9. END Statement

Purpose:

UPDATE LEVEL
4-24

PAGE

!..~~.~~r:>.~~'.'~f3..~~.'.l~Jrl~ic=.~t.~!) ... ~~~ .. ~".~ .. I:)t..~P.r.~~.r.<t.'!.l .. ':I.rli~.~ .. J!!i.:~§~!"mfflgB:t~N~:~h~:::~NP~.~~~~~
1~~~~~~~::.~~·:~~4::~f;'~~~~ .. ~n:::~r;:.::j.~~~".rjgr~~P::~f;:p~gr.m.j.~~I~;j

Form:

END

Description:

The.
%~rO

;:;~fii~r~g~miQ~~~i~~~$~$~~g:ipf:~~i~~ •• ri1!~~:prPgt~mQ~~i.fu~
An END statement must appear at the end of:

• an external program unit (main program. or external function or subroutine) ~~.~h.:~$i~Q
~$~i,~~~~·::~Mi~.:I:::$~~p~g'~m~

• ~h.ii;~~~ii~~~.ri1!~~jj$~Jili!pg~m::~$~~~~~:::W~~::: •• ::g~.~::.~*-~r~.~::prPgr.m:::~:fui~

• a BLOCK DATA program

If present. the END statement must physically be the last statement in a program unit.l~i~~~i~~te$
*-~.~h~::~:' ···'J;~.::Pr~.' n . ;:~pmpi~.~.~$:~~ ;rPQP.ptpr~:r~:rm~~~~~;: :~~

~I.$~j::!~~ ··.~.j:'PI.~Wt;.n,,::.~~r~~"ip..:~rmjQ6!~;

The execution of an END statement implies a RETURN in a subprogram or a STOP in a main program.

8244.2
UP-MIMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-1
PAGE

5. Input/Output Statements

5.1. General

Input statements obtain data for program use from input files. Output statements store results
produced in the program in output files. These files may be information storage files within the
computer system (internal storage) or they may be devices such as keyboards, printers, display
terminals, or other peripheral devices. Therefore, input/output statements can be used to transfer
data:

• from internal storage to an output device,

• from an input device to internal storage, or

• from internal storage to internal storage.

Data on an input/output device composes a file. Files are composed of one or more records. A
sequential input/output device may contain one or more files.

Depending on the file being manipulated, an input/output statement is one of the three types:

• Sequential

• Direct

• Internal

The sequential input/output statements are READ, WRITE, PRINT,P:~~~H~ BACKSPACE, ENDFILE,
REWIND, OPEN, CLOSE, INaUIRE,~n:Cii:P~FO;~~~~4e~ They are used for accessing files sequentially.
Using sequential input/output statements, it is not possible to read, for example, the seventh record
of a file directly; it is necessary to indicate that the preceding six records have been passed over. Once
the seventh record is read, it may be impossible (as in the case of a card reader) to go back and reread
the fourth record. However, this can be done where the BACKSPACE or REWIND statement is
effective (as on magnetic tape).

Direct input/output statements are READ, WRITE,F~N~~ OPEN, CLOSE, INaUIRE,~n:Cii:p~ffi~~~~i:~~H
They are used for referring to random access files in any order based on the record number.

The internal input/output statements are READ, WRITE,~fi,I~~p:~~.~6~np~~pp~; They are used for
internal storage-to-internal storage transfers.

8244.2
UP-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

Four types of records may be read or written depending on the I/O statement type used:

Record Types I/O Statement Types Allowed

Formatted Sequential, direct. internal

Unformatted Sequential, direct

:NameJisl $gp. .. ~~ .. i:

List-directed Sequential, ~~~'ii~(~N¢QP~:~~~::p~~P:~:::~~,y)

5-2
PAGE

The type of record that is to be read or written is determined from the form of the READ or WRITE
statement.

Formatted records are read or written under the control of a FORMAT statement which describes the
characteristics of the data being transferred. On output, data is transformed from machine
representation to coded form. On input, data is transformed from coded form to machine
representation. See 5.3 for a description of the FORMAT statement.

Unforn.atted records are read or written without format control. The data is read or written in machine
representation form. No transformation is done on input or output.

:~~m·· .$::~,.::~~:pr:¥#'~~~:~~~~r~~::~qrittpi::p'~~~:~~~~i$T:~.~~'"~ri~~:::$.~~:~:;~:f~':~~~i~~
q~~ ur:$~~m~n~;:

List-directed records are read or written with an implied format control. No FORMAT statement is
required. See 5.5 for a description of list-directed input/output.

Each execution of an input/output statement causes a new record to be processed.

All character data is assumed to be in the ASCII character code.

The default record sizes are:

APRINT -APRNTA-AREADA symbionts 132 characters

AREAD symbionts 80 characters

APUNCH-APNCHA symbionts 80 characters

System Data Format (SDF) files 33 words (132 characters)

ANSI files 132 characters

If the default record sizes are to be exceeded, an OPEN q,:p~~i:~~'F~~~ statement must be used.

In addition to the information in this section, more detailed information on input/output is contained
in Appendix G.

8244.2
UP-IWMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.2. Elements of Input/Output Statements

UPDATE LEVEL
5-3

PAGE

Input/output statements are composed of FORTRAN key words (READ. WRITE. etc.) and a control list
which contains control specifications. The control specifications allowed on an input/output
statement are dependent on the type of input/output statement being used. the type of file access.
and the type of record desired. The various control specifications are:

• file reference number specification

• record number specification

• input/output list specification

• format specification

• ERR clause specification

• END clause specification

• IOSTAT clause specification

The complete input/output statements are described in 5.6. 5.7. 5.9. and 5.10.

5.2.1. File Reference Number Specification

The FORTRAN programmer refers to a file by its file reference number. The file reference number
is specified in the input/output statement to indicate to which file the statement refers. The form
of a file reference number specification is:

[UNIT =] u

The UNIT = clause is optional. If that clause is missing. the unit number u must be the first item in
a list of specifiers.

The file reference number for an external file may be specified as an unsigned integer constant or
an integer expression whose value shall be greater than or equal to zero. An asterisk may be used
to designate the symbiont units 5 and 6 (the symbionts AREAD$ and APRINT$. see G.6) when doing
formatted sequential READ and WRITE statements. The asterisk may not be used for the unit number
in auxiliary input/output statements.

The file reference for an internal file may be a character variable. character array. character array
element. or character substring.

The file reference number is sometimes referred to as the file reference number.

Once a file reference number is associated with a file and that file is opened. the file reference number
may not be associated with another file until the first file is closed via either the CLOSE statement
or the CLOSE service subroutine.

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-4
PAGE

There is no standard convention for numbering of system files. A particular site may establish its
own convention for assignment of file numbers to input/output media (that is. card readers. printers.
etc.). However. unless changed by the site. the default assignment of standard reference units is:

Number

5
6
1
o

Unit

Standard Input (AREAD$)
Standard Print (APRINT$)
Standard Punch (APUNCH$)
Reteadi

Information on other units and the assignment of reference numbers is contained in Appendix G.

Note that the external file may not be word-addressable mass storage.

5.2.2. Record Number Specification

The direct access input/output statements READ. WRITE. and ~~~~ require the programmer to specify
the relative position (index) of the record in the file. The relative position of the record is specified
as an integer expression.

The forms of the record number specification are:

REC = rn

or:

If the second form of the record number specification is used. the UNIT = optional clause must not
appear before the file reference specification.

5.2.3. Input/Output List Specifications

An input/output list is composed of list items separated by commas. A list item may be a variable
name. an array name. an array element. a character substring name. an expression (output list only).
or an implied-DO list. The name of an assumed size dummy array must not appear as an input/output
list item. If a function reference is used in an output list. the function and any subprogram which
it invokes must not perform input/output. An attempt to perform recursive I/O will result in a fatal
error message. A character expression involving concatenation of an operand whose length
specification is an asterisk in parentheses is not allowed in an output list according to the FORTRAN
77 standard. ~h~P~9h:~$q~~i~PRjtR~tii::~JI9W$:~I~.

An output list determines which variables (storage locations) are to be written to the output record
when a WRITE statement is executed. An input list determines which variables (storage locations)
are to be filled from the input record when a READ statement is executed. The positioning of the
names in the input/output list specifies the order in which the data will be transferred between the
record and the variables (storage locations).

If a variable name or array element appears in the list. one item is transmitted between the storage
location and a record. If an array name appears in the list. the entire array is transmitted in the order
in which it is stored (column-major order). If the array has more than one dimension. it is stored in
ascending storage locations with the value of the first subscript increasing most rapidly and the value
of the last subscript increasing least rapidly. This ordering is described in 2.2.2.4.5.

\ \ :

/

8244.2
UP-NUMBER

r-

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-5
PAGE

Parts of arrays can be read or written using an implied-DO clause in the input/output list specification.

On output, if numeric values fail to fit in the specified output field, the field will be filled with asterisks
and no error or warning message will be given.

The implied-DO clause enables selected array elements to be referenced for input/output operations
without putting each value on a separate record (for example, if the statement were in a DO-loop)
or listing each element individually.

An input/output list specification containing the implied-DO clause has the form:

(input/output list, i = e 1 ' e 2 [, e 3])

The elements i, e l' e 2' and e 3 are as specified for the DO statement (see 4.5). The range of an
implied-DO specification is the input/output list of the implied-DO. For input lists, i or elements of
e l' e 2' and e 3 may not appear as input list items within the range of the implied-DO.

An example of an input/output list without an implied-DO clause is:

VAR 1, ARRAY 1, ARRAY2(5)

This list refers to input/output of the contents of variable VAR 1, array ARRAY 1 and element five of
array ARRAY2.

The list:

(ARRAY2(J), J = 1,3)

refers to the first, second and third elements of ARRAY2 without having to specify each element
separately.

The list:

((ARRAY4(J,K), J = 1,9,4), K = 2,3)

refers to elements ARRAY4(1,2), ARRAY4(5,2), ARRAY4(9,2), ARRAY4(1,3), ARRAY4(5,3), and
ARRAY4(9,3) in that order.

The list:

VAR1, VAR2, (VAR3, ARRAY5(J), J = 3,6)

refers sequentially to VAR1, VAR2, VAR3, ARRAY5(3), VAR3, ARRAY5(4), VAR3, ARRAY5(5), VAR3,
and ARRAY5(6).

5.2.4. Format Statement Specification

In order to read or write formatted records, one of the following format specifiers must be present
in the READ or WRITE statement:

• Statement label of a FORMAT statement

• Name of an integer variable containing the statement label (assigned with the ASSIGN
statement) of a FORMAT statement

8244.2
UP-NUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl.

5-6
PAGE

• Name of a character array (except assumed-size array) or scalar character variable containing
a format specification

• Character expression containing the format

• Asterisk specifying list-directed formatting

The form of the format statement specifier is:

[FMT =] f

If the optional FMT = clause is omitted from the format statement specifier, the format specifier f
must be the second item in the list of specifiers, and the unit specifier must be the first item without
the optional UNIT = clause. If the UNIT = and FMT = clauses are present, the specifiers in the control
list may be in any order.

The format specifications are described in 5.3. If the format specifier identifies a FORMAT statement,
it must be in the same program unit as the input/output statement.

5.2.6. ERR Clause Specification

Certain input/output statements allow the programmer to specify an error clause. The error clause
specifies a statement label (in the same program unit as the input/output statement) to which transfer
is made if an error or warning occurs during execution of the input/output statement. If an error
occurs while executing an input/output statement and neither an error clause nor an IOSTAT clause
is specified, the program will be terminated.

The error clause has the form:

ERR = 5

where 5 is the statement label to which control is to be transferred when an error or warning
condition is detected.

... /

8244.2
UP~UMIIEJI

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.2.7. END Clause Specification

Uf'OAlE l£VEl
5-7

PAGE

An END clause is allowed in certain inputZp~p~~ statements. The END clause specifies a statement
label (in the same program unit as the inputZp~p~~ statement) to which transfer is made if an
end-of-file condition is encountered during execution of the inpu~p~p~*:statement. If an end-of-file
condition is encountered while executing an inputtP~p~~ statement and neither an END clause nor
an IOSTAT clause is specified, the program will be terminated.

The END clause has the form:

END = sn

where sn is the statement label to which control is to be transferred.

5.2.8. Input/Output Status Clause Specification

An input/output status specifier is an integer variable or integer array element which, if specified in
an input/output statement, will receive a value determined by the success of the execution of the
statement. The value returned will be one of the following:

• a zero will be returned if neither an error condition nor an end-of-file condition is encountered.

• the value of the I/O status word, PTIOE, from the storage control table will be returned if an error
or warning condition is encountered. The value returned has the format:

01 02 H2

substatus unit number error clause number

See G.g for a further discussion of PTIOE.

• a negative one is returned if no error condition is encountered but an end-of-file condition is
encountered.

The input/output status clause has the form:

IOSTAT = ios

where ios is an integer variable or integer array element.

If the 10STAT clause is present, control will be returned to the user after an error or warning condition
is encountered regardless of the presence or absence of an ERR or END clause. Control will return
inline if only the IOSTAT clause is present.

8244.2
UI4WMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.3. FORMAT Statement

Purpose:

UPOAl£ LEVEL
5-8

PAGE

The FORMAT statement specifies the external form of the values of the input/output list elements and
the arrangement of the data within the records to be transmitted.

Form:

f FORMAT ([forma t-spec iii ca t ions]

where f is a statement label
are detailed in 5.3.1 .•

. If no input/output list is present and
the format specification is empty, one input record is skipped or one blank output record is written.

Description:

This is a nonexecutable statement that may be placed anywhere in the source program. Since
statement labels are local to the routine in which they appear, FORMAT statements are local to the
routine by implication.

Format specifications describe fields to be input or output. A field is a string of adjacent character
positions. The width of a field is the number of character positions in the string. A formatted record'
is a character string. On output, a record is constructed, essentially, by concatenating the output
fields. On input, the record is divided into fields according to the format specification. A field may
contain the character representation of the value of a simple list item, it may contain literal characters,
or it may be skipped (filled with the character blank).

For any field, the format specification must define its width and the type of conversion between the
internal and the external forms, or the literal characters desired, or it must indicate that the field is
to be skipped.

Format specifications may include the following:

• Editing codes and repetition factors

• Sign options

• Grouping delimiters

• Scale factors

• Carriage controls

• Line delimiters.

FORMAT statements are examined by the compiler for correctness and converted to a more efficient
internal form which is used during the execution of the FORTRAN program.

As stated in 5.2.4, a character array, scalar character variable name, character expression, pr
m~~~fi~:r~Pt~t~t~y may be used in place of a statement label of a FORMAT statement in a formatted
input/output statement. The contents are format specifications which may be modified during the
execution of the object program. Such formats are not converted to an internal form by the compiler
and are not examined by the compiler for correctness. The rules governing the contents of such
formats are presented in 5.3.9.

,I

8244.2
UP4IUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Examples:

See 5.3.1.

UPDATE LEVEl
5-9

PAGE

5.3.1. Editing Codes

An editing code is used to specify the characteristics of a field. It can specify the type of conversion
and field width, the explanatory literal characters, or the number of characters to be skipped. If two
or more editing codes are used in a format, they must be separated from each other by a comma,
a colon, or a slash except as noted in the following. The size of the integer constants w, d, p, and
e must be less than 512. The editing codes are:

Code Usage

I w Integer. The field is to occupy w positions, the type of list item is integer, and
the value of the list item is to appear as an integer constant right justified in the
field. If the field width specified for output is not large enough to contain the entire
integer including a sign if it is required, the field is asterisk filled to indicate
overflow. If the field width specified is larger than that required for the constant,
it is blank-filled on the left. In an input field, leading blanks are ignored while
embedded blanks are interpreted as zeros unless the BN format has been
encountered or BLANK=NULL occurred on the OPEN statement (see 5.10.1).

Iw.d Integer. This code is ignored on input. The w is the same as for I w. The d
indicates that at least d digits will be written. This will include any zeros needed
to equal d digits. The difference between wand d will be space filled on the
left of the field. If a sign is required, w must be greater than d.

• Jw •••............•.••...•• :lnt.~g'r~'[Q+fiO'q.Hr:lji$jjiQd.'ii~:.
;:..::::i~:dg~;;;~dlU~~:~~in.·~~fwQ~·

.n··:~m~~~:~~~:~~~~;i~:·~~~~.r~'·i~~~~:,

···.rQ~.p~.~.lj,::int~g'r •
··:~~:·~~tQ;tf~l:j~d.l·:~t·

Fw.d External fixed-point. The field is to occupy w positions on output. The list item
is real. one part of a complex value, or double precision. The integer portion of
the corresponding value appears as a right-adjusted real constant in the leftmost
w-d -1 positions in the field. This integer part may not have an exponent. A
decimal point character occupies position d + 1 from the right-hand end of the
field (d? 0). The fractional part of the number is to occupy d digits written to the
right of the decimal point. If the number is negative, the field width must permit
a minus sign to be written immediately to the left of the most significant digit of
the number. If the field width specified is larger than that necessary to contain
the number, it is space filled on the left. If the width specified is not large enough
to contain the number including any necessary sign, the field is asterisk-filled. If
a sign is required. the minimum field width necessary for an F editing code is w
= 2 + d + s where s = MAX(p + i, 0), p is the scale factor, and i is defined
by 10i-1 $; IMI < 10 i where M is the quantity to be written.

On input, F w.d designates a field of w characters, of which d characters follow
the assumed decimal point. The assumed decimal point is ignored if a decimal
point appears in the input. An exponent may follow the number. It must be a
signed integer constant or begin with an E or 0 followed by an optionally signed
integer constant. Blanks embedded in the input field are treated as zeros unless
the BN format has occurred or the OPEN statement for the file contained a
BLANK=NULL. Embedded and trailing blanks will then be ignored. Leading
blanks are ignored.

8244.2
UI'-NUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-10
PAGE

E w.d Floating point. The field is to occupy w positions. The list item is real, one part
of a complex value or double precision. The value of the list item is to appear as
a decimal number, right-justified in the field in the form:

Ew.dEe
~~j~:P.::

Dw.d

pP

BN
BZ

5
SP
SS

Lw

- . xxxxxxseee

in which xxxxxx are the d most significant digits of the mantissa, s is a plus or
minus sign, and eee is the corresponding 3-digit exponent. If the exponent is
positive, a plus will precede eee. If it is negative, a minus will be written. If the
value of the list item is positive, the minus sign in front of the decimal point is
omitted or replaced by a plus sign if the SP format has occurred. The minimum
field width necessary to contain a number of this type, including the sign of the
fraction, is w = 6 + d + sf; with sf = max(p ,0) where p is the scale factor.
If the field width specified is larger than necessary to contain the number, it is
blank filled on the left. If the field width is too small to express the value to be
written, the field is filled with asterisks.

On input, E w.d is equivalent to F w.d

Specific floating point. This is a special E w.d format used for output only. The
output format is:

where e specifies the number of exponent digits. If the exponent will exceed the
number of exponent digits specified, the field is filled with asterisks.

Double precision floating point. This is the same as E w.d except that the list item
is regarded as double precision. The exponent is generally a 3-digit number.
Thus, w ~ 6+d+sf.

Scale factor (see 5.3.6).

Blank. This code \.:ontrols the interpretation of embedded or trailing blanks in
numeric input fields. The BN code indicates that embedded blanks will be ignored
in numeric input fields. The BZ code indicates embedded blanks will be treated
as zeros in numeric input fields. Embedded blanks in numeric input fields are
normally treated as zeros during format control. If a BN is encountered in the
format, embedded blanks will be ignored in numeric input fields until the end of
that format or until a BZ format is encountered.

Sign. This code controls the writing of optional plus signs in numeric output fields.
If SP or +:$: is used, all optional plus signs will be written. The field width must
be large enough to handle the sign or the field will be filled with asterisks. An
SS, S, or 8l$! turns the option off, and then only the minus signs will be written.

Logical. This code is used only with input and output of logical variables. If L w
is specified for output and the value of the logical list item is .TRUE., the rightmost
position of the field with length w contains the letter T with w-1 blanks on the
left. If the value is .FALSE., the letter F is written, instead. On input. the field width
is scanned from left to right for optional blanks, optionally followed by a decimal
point, followed by a T or F, and the value of the corresponding logical list item
is set to .TRUE. or .FALSE., resp.ectively. All other characters following the T or
F in the external input field are ignored. In the absence of T or F in the input field,
no value will be stored and a warning message will be issued.

8244.2
UP-NUMBER

A[w]

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-11
PAGE

Alphanumeric. The field is to occupy w POSitions. Let 5 be the length of the
character list item. This is the length of the variable for type character. fp~rfpr
~rl~g~r.J:,~~~:pr:~i~~i~!:~~g~~fpr::~U~~::p.'~~$.~p6l On output, if w is less than
or equal to s. the leftmost w characters of the list item are placed in the field.
If w is greater than s. then the 5 characters of the list item are placed
right-justified in the field and the field is blank filled on the left. On input, if w
is less than s. the w characters of the field are placed in the leftmost w
characters of the list item and the rightmost s-w characters are blank filled. If
w is greater than or equal to s. the rightmost 5 characters are placed in the list
item. If w equals zero. no characters will be transferred. If w is missing. the
number of characters transferred will be the character length of a list item of type
character only. The w is optional for list items of the type character only.

w H h 1'" h w Hollerith. The field is to occupy w positions. The field consists of literal
characters and is to be filled with the w characters (including blanks) which follow
H. The field desigl.ation is independent of the list items. The length w is limited
only by the external medium and by the maximum of 511 significant characters

if~jj~i~I~~illii:j~.'flf~IL'IF~'~~r~
. h 1 h 2'" h w' Literal. This is the same as the Hollerith specification. The only difference involves

apostrophes within the literal. If an apostrophe is to be included in the literal. two
apostrophes must be used to indicate its position.

w X Skip. A field whose length is w is to be skipped. The field designation is
independent of the list items. Skipping forward over a character position which
has not yet been set in the record causes the character position to be set to blank.

'~~~i~~~~~'~~I~~~WI~~~I~'II~~liab.~ffirlr~~~~e~l$t~~r~~~im~~Iw.~~1~~~
~~j~~:~~g nlngpt:~~~r~~pr~~:NQ:~ •............. 69:~~·~p6~·i'!:~·::~~n~9~iv~.

8244.2
UI4IUM8ER

Gw.d

Gw.dEe

Tw

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE I..EVEL

5-12
PAGE

General. If the output item (M) is real, an E or F editing code is used depending
on the absolute value of M. If 10;"1 siMI < 10; and d~ i~O, the output field is
formatted by F(w-4).(d-i),4X. If either of the above conditions is not satisfied,
the output field is formatted by E w.d. If the scale factor p (see 5.3.6) is to be
applied, the editing code p PE w.d is used. Note that the G editing code does not
change the value of the item. Values are strictly numeric or logical. No conversion
is done for character type for output. A scale factor of 0 is assumed when the
F editing code is used. On input, the G editing code is the same as an F editing
code without a scale factor. Thus, F w.d is used on input when p PG w.d is
specified. The G editing code also provides for;. . .. double precision, and
~pg~~'::~P"~,.~n: as though it were ::,:~:~ p PO w.d, • ::: respectively.

General. This is a special G w.d format used for output only. The output format
is:

+. xxxxxx E seee

where e specifies the number of exponent digits. This format will be used if the
absolute value of the output item requires an E editing code. If the F format is
used, the output field is formatted by F(w-(e +2)).(d-i),(e +2)X.

Character position. This code causes the input or output operation to begin at the
w th position of the record. Therefore:

FORMAT(1 OX,F 1 0.3)

is equivalent to:

FORMAT(T11,F10.3)

On output, if w is greater than any character position written up to that time, the
T editing code will blank the character positions between wand the highest
character position written. The order of the associated list does not need to be
the same as that of the record input. For example:

FORMAT(T50,F 1 0.3,T5,F 1 0.2)

is valid for writing the first list item in positions 50-59 and the second in positions
5-14. The first character position of a record is number one.

TL w Character position Left. This code causes the character position in the record to
be moved w positions to the left or backward from the current position. If the
current position is less than or equal to w, the new character position will be the
first character position in the record.

TR w Character position Right. This code causes the character position in the record
to be moved w positions to the right or forward from the current position. The
TR w cannot write beyond the end of the record.

If numeric output values fail to fit in the specified field length, the field will be filled with asterisks
and no error will be given.

8244.2
UI4iIUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Examples of the uses of these editing codes follow:

C Integer codes:
K=76
M=3333
WRITE (6,10) K

10 FORMAT(lX, 110)
WRITE(6,20) K

20 FORMAT (lX, 110.7)
WRITE(6,30) K

30 FORMAT (lX,~;~~)
WRITE (6,40) M

40 FORMAT (lX, 13)

UPDATt LEVEl
5-13

PAGE

C With format 10, integer K wi II be written as 66666M::.676
C With format 20, K wi I I be written as 6660000076
C ~~\.~::1grm •. ~ \ .. ~Q~::m~:\.:W1i.~n:;b~::W1r:~t:~~~:~:$:::::P~P~7~;
C With format 40, M wi II be written as *** since M does not
C fit in t he 3-d i g it fie I d.

C Real value codes:

40

44

46

48
C
C
C
C
C

50

55

C
C
C
C
C
C
C
C
C
C
C
C
C

R=76.8
WRITE(6,40) R
FORMAT (lX, F7. 2)
WRITE(6,44) R
FORMAT(lX,El0.2)
WRITE(6,46) R
FORMAT (lX, 011.2)
WRITE(6,48) R
FORMAT(lX,SP,Gl0.4)

Format 40 writes R as 6676.80.
Format 44 writes R as 666.77+002.
Format 46 writes R as 6666.77+002.
Format 48 writes R as +76.806666
Alphanumeric editing codes:

CHARACTER*4 X,Y
CHARACTER*8 A,B
FORMAT (A3 ,A5 ,R~~:;R~\)
READ(5,50)A,X,Y,B
FORMAT (1 X, A6, A3 ,R$~.R~)
WRITE(6,55)X,X,Y,Y
END

If the string 'ABCDEFGH I JKLMNOP , was provided for
input, the READ statement would produce
the f 0 I I ow i n g val u e s :
A= ' ABC66666 '
B=' •• KLMNOP'
X='EFGH'
Y=' •• 'J'
The WRITE statement wi I I produce the record:
66 EFGHEFG6 •• I J. I J
Note that in these examples, 6 represents the
nonprinting graphic for code 040 (the ASCI I space
code) and. represents the nonprinting graphic
for code 000 (the ASCI I NUL).

8244.2
IJP..ftUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.3.2. Editing Code Repetition

UPDATE LEVEL
5-14

PAGE

Whenever two or more successive editing codes (except w H, w X, T w, TL w, TR w, /, S, SP, SS, BN,
BZ, p P, :, and literals) are identical in every respect. a shorthand notation may be used. This is
accomplished by writing the editing code only once and prefixing it with an unsigned integer constant
less than512 which indicates the number of repetitions of the field. For example, FORMAT(15,15,15)
could be written as FORMAT(315).

5.3.3. Repetition of Groups of Editing Codes

If two or more successive groups of editing codes occur and are such that each element of one group
is identical to the corresponding element of the other groups, then a further shorthand notation may
be used. This is accomplished by specifying the group only once, enclosing it in parentheses, and
prefixing the resulting parenthesized group with an unsigned integer constant less than 512 which
indicates the desired number of repetitions of the group. If none is specified, a repeat count of one
is assumed.

For example, FORMAT(IS,F9.4,ES.2,IS,F9.4,ES.2) could be written as FORMAT(2(IS,F9.4,ES.2)). Only
4-deep nesting of parentheses is permitted (see 5.3.S). For example:

FORMAT(,O' ,5(F9.3,S(E 12.6,2(IS,2(11 O,IS)))))

is legal. However, if it had another nested group, that group would be executed as if it had a group
count of one. The outside parentheses of the FORMAT statement are called the zero level
parentheses. .~

If the list is longer than the number of items in the format. the format scan returns to the first level
of parentheses (unless the format contains an indefinite repetition group). In the example, the scan
would return to F9.3 and continue until the input/output list was exhausted. Reversion of format
control has no effect on scale factor, sign control, or blank control.

5.3.4. Carriage Control

In an output record to be printed, the first character of the record controls line spacing and is not
printed. The line will start in the first character position with what would normally be the second
character of the record. An appropriate first character is normally provided by the user with a Hollerith
literal, literal, or an w X (which provides a blank) format. The effect of these carriage control
characters is as follows:

Character

blank
o (zero)
1

+

Effect

Single space before printing
Double space before printing
Skip to top of next page
Suppress spacing

If a Hollerith constant, literal, or w X format is not provided, the first character of whatever field comes
first is used for carriage control. If it is an illegal character, the default blank character is used.

If an empty format is used without an input/output list. one record will be skipped on input or one
blank record would be written on output.

8244.2
IJIl.MIM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.3.5. Complex Variables

UPDATE LEVEl
5-15

PAGE

One complex variable requires two D, E, F, or G editing codes. They need not be the same. Both
the real and imaginary parts of the variable must be written in the same record.

When read or written under control of a FORMAT statement, a complex value appears as a pair of
real values. They are not enclosed in parentheses or separated by a comma unless the format
specification provides them explicitly.

5.3.6. Scale Factor

Input and output using the F, E, G, and D editing codes may be modified by a power of 10 by using
a scale factor of the form p P, where p is a signed integer.

The separating comma may be omitted between a scale factor and an F, E, D, or G editing code which
immediately follows.

When format control is initiated, a scale factor of zero (that is, OP) is established. Once established,
a scale factor applies to all subsequent F, E, G, and D editing codes within its FORMAT statement or
until another scale factor is encountered within the statement. The scale factor does not affect any
of the other editing codes.

For input, a scale factor, P, has the following effect:

• The scale factor has no effect on input with F, E, G, and D conversions that contain an exponent
in the external field.

• For F, E, G, and D conversions with no exponent in the external field, the internal value is the
external value divided by 1 Op.

For output, a scale factor, P, has the following effect:

• For F conversions, the external value is the internal value multiplied by 1 Op.

• For values using E or D conversions, the mantissa is multiplied by 10P and the exponent is
decreased by p. In other words, the field is changed in form but not in value on printed output.

• For G conversions, the effect of the scale factor depends on the magnitude of the value. If its
size requires an E conversion, the scale factor effect is that of an E conversion. If an F conversion
is required, the scale factor has no effect.

For instance, assume that variable A has the value -12764.316. If A were printed according to
the specification E 13.6, then the field printed would be -. 127643 +005. If A were printed according
to the specification 2PE14.6, then the field printed would be -12.764316+003. If A were printed
according to the specification -3PF7.2, then the field printed would be -12.76.

5.3.7. Control of Record Handling and List Fulfillment

The colon and slash delimiters allow the user to halt unnecessary output and to begin processing of
a new record, respectively.

8244.2
tJII...NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.3.7.1. Multiple Line Formats

5-16
PAGE

A slash following an editing code terminates the record being input/output. Format interpretation
of a new record continues with the editing code following the slash for the next list item. If n slashes
are written in sequence before the first editing code in the format. n blank records are written or
n records would be skipped before reading a record. If n slashes are written after the last editing
code in the format. n blank records are written or n records are skipped on input. If editing codes
are used before and after n sequential slashes. n -1 blank records are written or n -1 records are
skipped on input.

Separating commas may be omitted immediately before or after a slash.

The following examples would produce three blank lines if the output goes to the printer:

(1//12)
(12/ / /)
(1X///12)
(12///1X)
(12////FS.2)

The third and fourth examples place one blank in a record or line which is then printed to get three
blank lines.

If the file is a direct access file. the record number will be increased by the number of records skipped
on input or by the number of blank records written on output.

Slashes may also be used in list-directed input/output (see 5.5).

If a single slash is used as the format. that is. (/). without an input/output list. two records would
be skipped on input or two blank records would be written on output. An empty format. that is.
(). without an input/output list will cause one record to be skipped on input or one blank record
to be written on output.

5.3.7.2. End of Input/Output List Test

A colon in the format item list indicates that when a record is being read/written and the colon is
encountered. the operation is ended if the last item in the list has already been processed. A single
colon may appear at the beginning or end of the FORMAT statement or between pairs of format items.

Separating commas may be omitted immediately before or after a colon.

An example of the use of the colon for output is:

FORMAT ('IlA ll=' .F10.3:. 'll Bll = , .F10.3: 'IlCll=' .F10.3)
I F (I. EO. 1) PR I NT 1, A
IF (I .EO.2) PRINT 1.A.B
IF (I .GT.2) PRINT 1.A.B.C

If the values supplied are 1= 2. A= 17 .• and B=3.1416. the output will be:

II A II =llllllll 1 7 .0001l Bll =1l1l1l1l1l3. 142

8244.2
UI'-fIIUMBER

1/.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDAT£ LEVEl

5-17
PAGE

If commas had been used in place of the colons, the output would have printed C= before discovering
the list is empty, resulting in:

II A II =llllllll 1 7 .000ll Bll =llllllllll3. 1 4 2ll Cll =

An example of the use of the colon on input is:

2 FORMAT (F10.3 /)
1 FORMAT (F10.3, : /)

READ (5,2) E

If the input is:

READ (5,1) E1

M.llllllllll 1.2
llllllllll104.2
llllllllllllllllll2
lllllllllllllllll

The first READ statement sets Eta 1.2. The second READ statement sets E 1 to .002. If the first READ
statement had used a colon before the slash, E 1 would be set to 104.2.

5.3.8. Relationships of a Format to an I/O list

\t During the execution of an input/output statement, the format specification is scanned from left to
right. Editing codes of the form w H, W X, p P, BN, BZ, S, SP, SS, TL w, TR w, and Twas well as
slashes and literals are interpreted, and the appropriate action is taken without reference to the
input/output list. When an editing code of any other form occurs, either there is at least one list
element remaining to be transmitted or there is not. If one remains, the next list element is converted
according to the specification and transmitted. The format scan then continues. If no values remain,
the transmission is terminated. (See 5.3.7.2 for the effect of a colon in the input/output list.)

There may be up to five levels of parentheses in a FORMAT statement. The outermost pair is called
the O-Ievel parentheses and the innermost pair is called the 4-level parentheses. If, during the course
of the format scan, the end of the FORMAT statement is reached while there is at least one more list
element to be transmitted, a new record (for example a line, a card, or a tape record) is started, and
the scan is resumed with the group repeat specifications preceding the rightmost 1-level left-hand
parenthesis. In the example shown in 5.3.3, the second (and every following) record is started with
a F9.3 editing code. If there are no nested parentheses, scan control reverts to the beginning of the
format specifications. It is illegal to specify more than 80 characters for one record of symbiont input
or more than 132 characters for a symbiont output record unless an OPEN statement specified a
different record size for the symbiont. If the scale factor has been modified by an p P specification,
it is not reset to zero when control reverts to the appropriate left parenthesis. Each p P specification
remains in effect until the end of the FORMAT input/output list or until another p P specification is
encountered (see 5.3.6).

if.jl'i~f~rm~~~p~pif:i~~~i:HiI··f,~~mp*Y~m~~nIZQI~$~~$pr~$~m*~,i~~~r~~~~ZQ~~~I~~~$~~; If the
I/O list is not present and the format specification is empty, one record will be skipped on input or
one blank record will be written on output.

8244.2
UP-NUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.3.9. Variable Formats

UPDATE LEVEL
5-18

PAGE

Any of the input/output statements which specify formats may contain an array or scalar character
variable name or a character expression in place of the reference to a format.

Let the symbolic name V be an array. The contents of the array may be initialized and modified like
any array. Array V must contain legal format specifications in ASCII form at the time it is used as
a format. The format specifications in V must be of the form:

(format-specification)

that is, the form of this specification is exactly as described in 5.3 except that the word FORMAT must
be omitted. Blanks may appear before the first left parenthesis (O-Ievel), indicating the beginning
of the format. Characters following the right parenthesis, which indicates the end of the format
(O-Ievel right parenthesis), are ignored. For example:

CHARACTER*4 V
DIMENSION V(5),K(8)
DATA (V(I),1=1,5)/4H(1H1,2H,8,1HI,2H10,1H) I
READ(5,60)K
WRITE(6,V)K

60 FORMAT(8110)
END

This will generate (1H1,8tofdtototo10toto)tototo. The blanks (to) will be ignored when the array is used
as a format. The use of V as a format is equivalent to using:

FORMAT(1H1,8110)

Hollerith specifications inside variable formats must be of the form n H. The variable format is
converted by the library to a coded format and stored in a library storage area. The variable format
is not chan by the library., The variable fO,~mat be ~han the p.

A character expression in the control list as the format could be:

WRITE (6:(1 X,811 O)'} K

5.3.10. Representation of Input/Output Data

The format of data in an input field can be the same as that generated by the same format editing
code for output. Several relaxations in format rules are, however, permitted:

• Unless positioning is achieved by the X, T, or TR editing codes, column 1 is the first column read.
There is no carriage control.

• Plus signs may be omitted, or may be indicated by +. Minus signs are indicated by -.

• Embedded or trailing blanks in a numeric input field are equivalent to zeros unless the BN format
is used or BLANK=NULL on the OPEN statement is used (see 5.10.1).

• Only the high order eight digits are retained for E, F, and G conversions, and the high order 18
digits are retained for 0 conversion.

8244.2
UP-MIII8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-19
PAGE

• For E and 0 conversions. the exponent can be indicated by an E or a 0 (interchangeable). or.
if E or 0 is omitted. by + or-(not a blank). Thus. E2. E+2. E+02. +2. and 02 are all permissible.
equivalent exponents. Lowercase e and d are recognized as E and D.

• For E and D. if the exponent is omitted altogether. it is taken to be either zero or the value of
the P specification (see 5.3.6).

• Numbers for E. O. F. and G conversions need not have the decimal point; the d field of the editing
code implies it. When a decimal point appears in the field. it overrides the d specification.

The exponent is right-justified in the subfield defined by the E or D. or +. or -. at the
right-hand limit of the field. The subfield may be empty. The mantissa is right-justified
in the remaining field. to the left of the E. D. -: • or -.

If the decimal point is omitted. it is assumed to be located between the d and d + 1
positions (from the editing code) to the left of the exponent. If no exponent is present. the
decimal point is assumed to be located between the d and d + 1 rightmost positions in
the field.

8244.2
UP-MIM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5-20
PAGE

8244.2
~UMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOATE lEVEL

5-21
PAGE

8244.2
UP-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDAT£ LEVEl

5-22
PAGE

8244.2
UP-MIMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

....•..•••..• ,
.. ::::::=:::=:::;::;;::::::;;;;: ;::;:;;:::;;::::::::::: " :: : :

::~Q9~:.~~9~.'~~~:.f~~~~"~9::~'V~·'~~~r~~.::~Q:~.',~r'~~"!:!~~~r~:·"

5.5. List-Directed Input/Output

UPOATELML
5-23

PAGE

List-directed input/output statements are used to read and write free-field records. A list-directed
write will output records consisting of sequences of values composed of characters which can be
represented internally. The order of the values is the order in which they are listed.

A list-directed read will input as many records as necessary to provide a value for each item in the
input list. unless a slash appears in the input. In this case. the slash serves as an
end-of-record-transmission signal. Any list items remaining after the slash has been encountered
undergo no change in value (see 5.5.1).

The output from a list-directed write (except for a write to a print or punch unit) can be used as input
to a list-directed read unless the input variable is character.

f .~. 5.5.1. List-Directed Input

The list-directed input consists of a sequence of values separated by commas. blanks. slashes. or end
of the line. Numeric. logical. and character data may be read. Hollerith and octal data may not be
used.

If a value is to be repeated for several list items. it can be written as:

where r is an unsigned. nonzero. integer constant and c is a value that may be blank. Blanks may
not be embedded in either r or c. except within character constants and complex constants.
Examples of this form are:

Each constant must be of the same type as its corresponding list item. An error occurs if the types
do not match. Blanks are never used as zeros and embedded blanks are not permitted except within
character constants and complex constants. For example. 5. t. 0.2.0 represents three values (5.0. 0.0.
and 2.0) and 5.0. t. 2.0 represents two values. The end of a line may be considered a blank except
when it appears in a character constant.

8244.2
UP-NUMIIEII

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

A null value is specified by:

• no characters between two commas (••)

• no characters before the first comma in the list-directed input record

• only blanks between two commas (;AA .)

• only blanks before the first comma in the list-directed input record

• a blank following the asterisk in the r*c form (r* A)

• a comma following the asterisk in the r*c form (r * .)

5-24
PAGE

A null value has no effect on the corresponding list item. If the list item has no value. it will still have
no value. A null value may not be used as the real or imaginary part of a complex constant. but it
may represent an entire complex constant. The end of a line before or after a comma does not
generate a null item.

A slash causes the end of the list-directed read after the assignment of the previous value. If there
are more items in the list. the effect is as though null values are supplied for them.

The parts of a complex constant must be separated by a comma and enclosed in parentheses. The
comma may be preceded or followed by spaces or the end of a line. For example:

and:

(25.2.
2.0)

(25.2. AAA 2.0)

are legal forms of a complex constant.

Hollerith constants are not allowed in free-field input records. but character constants in apostrophes
are legal if the type of the list item is character. Each apostrophe within a literal must be represented
by two apostrophes with no intervening spaces or end of line. Character constants may be continued
from one line to the next with no blank inserted for the end of the line. Character constants may
contain blanks. commas. or slashes.

8244.2
UP~UMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.5.2. List-Directed Output

Uf'DATE LEVEl
5-25

PAGE

A free-field output record consists of a sequence of values that have the same form as constants,
except as noted. The values are separated by one or more blanks. New lines are started as necessary.
The constants are formatted with set lengths. The end of a line and blanks do not occur within a
constant except for complex constants and literals.

Logical constants are written as T or F.

Real and double precision values are written using an E or F field depending on the value of the
constant.

Complex constants are enclosed in parentheses with a comma separating the real and imaginary
parts.

Hollerith constants are not written for free-field output records. Character constants or literals
produced for print records and other files are not delimited by apostrophes or blanks nor are double
apostrophes written for internal apostrophes.

Null values, commas, slashes, and the repeat form of r * c are not produced in free-field output
records.

An example using list-directed input/output is:

DIMENSION L(3)
COMPLEX C
DOUBLE PRECISION 0
READ (3,*)D,R,C, (L(J) ,J=1 ,3)
WRITE (8,*)D,R,C, (L(J) ,J=1 ,3)

These statements could read the following data image:

3.001,4.0, (3.0,2.0),5,6,7

Setting 0=3.001, R=4.0, C=(3.0,2.0), L(1)=5, L(2)=6, and L(3)=7. The output record would be:
2.00oo0004A4A)AAAAAA44AA54AAAAAAAAA6A4AA4AAA4A7A.300000000000000000+0026A4.oo00ooo4A666(3.oo000006466.

8244.2
Ul'-MJllIIER

SPERRY UNIVAC S.ri •• 1100
FORTRAN (ASCII) Programmer Reference

5.S. Sequential Access Input/Output Statements

There are five sequential access input/output statements:

• READ (reads records from a sequential file)

• WRITE (writes records to a sequential file)

• BACKSPACE (positions file for input/output by backspacing one record)

• ENDFILE (defines the end of a sequential file)

• REWIND (positions a unit at its beginning)

UPDATE LEVEl
5-26

PAGE

The OPEN statement ~~~::~.::P~F~N~::~~~:$.~~.~~~ are used in conjunction with these statements.
They allow the programmer to describe the format of a file.

Using these statements, a file may be processed in sequential order. Each record is manipulated or
passed over, as desired, one after another. Unlike direct access input/output statements which refer
to random access files, sequential access input/output statements cannot directly address a specific
record.

5.S.1. READ Statements

READ statements obtain values for data elements from files. The form of each READ statement
depends upon the type of record (formatted, unformatted, namellsf. or list-directed) being read

5.S.1.1. Formatted READ

Purpose:

A formatted READ statement reads values into items specified in an input list according to a specified
format.

Form:

READ ([UNIT=] u, [FMT=] f [,ERR=s] [,END=sn] [,IOSTAT=ios]) [iolist]

or:

READ f [, i 0 I i Sf]

where:

[UNIT =] U

[FMT =] f

ERR = 5

is a file reference number specification which must be present (see 5.2.1); U

is a file reference number. The UNIT = clause is an optional part of the
specification.

is a format specification (see 5.2.4); f must be present but the FMT = clause
is an optional part of the specification.

is an optional error clause specification (see 5.2.6); 5 is a statement label.

8244.2
IJP.-IIUMBER

('

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-27
PAGE

END = sn is an optional end clause specification (see 5.2.7); sn is a statement label.

IOSTAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an input list (see 5.2.3).

Description:

The formatted READ statement causes one or more formatted records to be read from the file
specified by u. The information in the records is scanned and converted as specified by the format
specification f. The resulting values are assigned to the variables specified in the iolist. If the
optional UNIT = and FMT = clauses are used, the specifications may appear in any order. If the UNIT =
clause is used, the FMT = clause must be used.

The second form which does not have a file reference number specification implies that the symbiont
file AREAD$ is to be used. This is equivalent to specifying unit number 5 (the AREAD$ symbiont, see
G.6) in the first form.

Examples:

10
e
e
e

READ 10, IVAR1, ARRAY2
FORMAT(18,10E9.2)

This formatted READ statement reads (from the
program input unit) an integer value into variable
IVARl and 10 real values into array ARRAY2.

READ (3, 20,ERR = 140) IVAR1, ARRAY2
20 FORMAT (18, 10E9.2)
e This formatted READ statement obtains values from input
e unit number 3 and assigns them to members of the input
e I ist according to the format specified in statement 20.
e If an error occurs during processing of this statement,
e program control is transferred to statement 140.

READ (FMT = 30, UNIT = 3, 10STAT = IVAL) VAR1, ARRAY3
30 FORMAT(F8.2,8E9.2)
e This formatted READ statement obtains values
e from input unit 3 and assigns them to members of the input
e I ist according to the format specified in statement 30.
e The order of the clauses is optional when the UNIT =
e and FMT= clauses are used. If an error or end-of-fi Ie
e condition occurs during the processing of this statement,
e a nonzero value (see 5.2.8) wi II be stored in IVAL and
e control wi II be returned to the user after the READ
e statement. If the statement is successful, a zero
e wi II be stored in IVAL.

8244.2
IJP..fIIUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-28
PAGE

5.6.1.2. Unformatted READ

Purpose:

The unformatted READ statement reads values into items specified in an input list. with no conversion
or reformatting of the !nput values.

Form:

READ ([UNIT=] u [.ERR=s] [.END=sn] [.IOSTAT=ios]) [iolist]

where:

[UNIT =] u

ERR = s

END = sn

is a file reference number specification which must be present (see 5.2.1); u
is a file reference number. The UNIT = clause is an optional part of the
specification.

is an optional error clause specification (see 5.2.6); s is a statement label.

is an optional end clause specification (see 5.2.7); sn is a statement label.

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an input list (see 5.2.3).

Description:

The unformatted READ statement causes the next record to be read from the file specified by u. The
record values are assigned to the variables specified by the iolist with no conversion. The number
of values required by the iolist must be less than or equal to the number of values in the unformatted
record. If the optional UNIT = clause is used. the specifications in the control list may appear in any
order.

Examples:

READ
C
C
C

READ
C
C
C
C
C
C

READ
C
C
C

(3) VAR2. VAR3. ARRAY3
This statement obtains values from input unit 3 and.
without changing their forms. assigns values to variables
VAR2 and VAR3 and to the elements of array ARRAY3.

(3. ERR = 150. END = 280) VAR2. VAR3. ARRAY3
This statement is executed in the same way as the first
example. However. if an error is detected during
statement execution. control is transferred to the
statement labeled 150 rather than stopping execution.
If the input file is currently positioned at end-of-file.
program control wi I I be passed to the statement labeled 280.

(END = 280. ERR = 150. UNIT = 3) VAR2. VAR3. ARRAY3
This statement is equivalent to the previous statement.
The optional UNIT= clause was used so that the parameters
within the control list may appear in any order.

8244.2
U UUBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.6.1.4. List-Directed READ

Purpose:

UI'OATE l£YEl
5-29

PAGE

The list-directed READ statement reads in specially formatted records without the user having to
specify an associated FORMAT statement.

8244.2
UP-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-30
PAGE

Form:

READ ([UNIT=] u. [FMT=] * [.ERR= 5] [.END= sn] [.IOSTAT= ios])[iolist]

or:

READ * [. i 0 lis t]

where:

[UNIT =] u

[FMT =] *

ERR = 5

END = sn

is a file reference number specification which must be present (see 5.2.1); u
is a file reference number. The UNIT= clause is an optional part of the
specification.

is a format specification clause; * indicates a list-directed statement and must
be present. The FMT = clause is an optional part of the specification.

is an optional error clause specification (see 5.2.6); 5 is a statement label.

is an optional end clause specification (see 5.2.7); sn is a statement label.

10STAT = ios is an oPtional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an input list (see 5.2.3).

Description:

Execution of the list-directed READ statement causes data to be read from the file specified by u.
These data values are assigned to the variables specified by iolist.

The second form implies use of the symbiont file AREAD$.

A record containing list-directed input data consists of constants. null values. and value separators.

The ERR. END. and 10STAT clauses may appear in any order.

If the UNIT= and FMT= clauses are present. the specifiers may appear in any order in the control
list. If the UNIT = clause is used. the FMT = clause must be used.

See 5.5 for additional details.

Examples:

c
c

c
c
c
c
c
c

c
c
c

READ *. VAR3. VAR4. ARR5. ARR6
Reads in formatted values for the specified variables
and arrays.

READ (7. *. END = 260. ERR = 140) VAR1. VAR2
Reads formatted values from records of unit 7. If an
error is detected during execution of this READ
statement. control is passed to statement 140. If
fewer records exist in the input file than required
to fill the elements in the list. control transfers
to the statement labeled 260.

READ (ERR = 140. FMT = *. END = 260. UNIT = 7) VAR1. VAR2
This statement is the same as the previous READ except that
the UNIT= and FMT= clauses allow the control list items
to appear in any order.

8244.2
lJP..MJMBER

f

c

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-31
PAGE

8244.2
IJP..NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATElMl

5-32
PAGE

5.6.2. Output Statements

WRITE statements transfer data from variables into files. For each type of READ statement. there is
a corresponding output statement. Likewise. the various WRITE statement forms depend on the type
of record (formatted. unformatted. :name.t.l$1~ or list-directed) being written.

5.6.2.1. Formatted WRITE

Purpose:

The formatted WRITE statement writes specified data into a specific file according to a given format.

Form:

WRITE ([UNIT=] u. [FMT=] f [.ERR=s] :[::~~~P.~:~"j [.IOSTAT=ios]) [iolist]

or:

PRINT f [. iol ist]

or:

where:

[UNIT =] u

[FMT =] f

ERR = s

is a file reference number specification which must be present (see 5.2.1); u
is a file reference number. The UNIT = clause is an optional part of this
specification.

is a format specification (see 5.2.4); f must be present but the FMT = clause
is an optional part of the specification.

is an optional error clause specification (see 5.2.6); s is a statement label.

IOSTAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an output list (see 5.2.3).

Description:

The formatted WRITE statement causes one or more formatted records to be written to the file
specified by u. The variables specified by the io/ist are edited according to the format specification
f and written to file u. If the optional UNIT = and FMT = clause are used. the order of the various
specifications is optional. If the UNIT = clause is used. the FMT = clause must appear.

The PRINT form implies that the symbiont file APRINT$ is to be used as the output file. This is
equivalent to the WRITE form with a file number of 6 (the APRINT$ symbiont. see G.6).

8244.2
Ul4tUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-33
PAGE

f·· Examples:
, ,,'

WRITE(8. 40. ERR = 160) VAR1. VAR2. ARRl
C The contents of variables VARl and VAR2 and of array
C ARRl are to be written into file unit 8 using the
C format specified in the statement labeled 40. If an
C error occurs during processing of this statement.
C control is to be transferred to the statement labeled 160.

WRITE (FMT = 40. UNIT = 8. ERR = 160) VAR1. VAR2. ARRl
C Th i sis the same as the first WRITE except that wi th the
C presence of the UNIT= and FMT= clauses. the clauses in the
C control list may be in any order.

PRINT 40. VAR1. VAR2. ARRl
C Prints the same values on system printer.

'p···'U·'··N··'·C···'H·'··""'4···0····,,"""'v:··'·A·'·"R····,,··,,"'''''V··''·A···'R····'Z···'''''''''A;·'·''R····R····', .. " , ..
:.::~:~.:. ,:.:. ~:!.:.:H: L:.::.: ::¥: ~ j 1i:.::::::.::.~:. i~ ~i: i;:1:.: ~:::.:.:.;: .. : i ~1: i:;:::.:.:: .. :;. iL n

C Punches the same values on cards.

5.6.2.2. Unformatted WRITE

Purpose:

The unformatted WRITE statement writes a record consisting of the specified data to a given file.

Form:

WRITE ([UNIT=] u [.ERR=s] [~~~P~~n] [.IOSTAT=ios])[iolist]

where:

[UNIT =] u

ERR = s

is a file reference number specification which must be present (see 5.2.1); u
is a file reference number. The UNIT = clause is an optional part of the
specification.

is an optional error clause specification (see 5.2.6); s is a statement label.

IOSTAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an output list (see 5.2.3).

8244.2
UP-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

Description:

The unformatted WRITE statement causes one record to be written to the file specified by u.
record contains the sequence of values specified by the iolist.

Examples:

c
c

WRITE VAR1, VAR2 (8) ARR3,
Writes
da t a in

a record to
the output

f i Ie 8 wit hou t
lis t .

WRITE (ERR=180,UNIT=8) ARR3, VAR1, VAR2

reformatting of

5-34
PAGE

The

c
c
c
c
c

Same as the previous example except that control is passed
to the statement labeled 180 if an error is
encountered whi Ie executing this statement With the
presence of the UNIT= clause, the clauses in the
control list may be in any order.

8244.2
UP-lilUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-35
PAGE

5.6.2.4. List-Directed WRITE

Purpose:

The list-directed WRITE statements write out specially formatted records without specifying an
associated FORMAT statement.

Form:

WRITE ([UNIT =]u,[FMT =] * [,ERR = 5] [,IOSTAT = ios])[iolist]

or:

PR I NT *[, iol ist]

or:

where:

[UNIT =] u

[FMT =] *

ERR = 5

is a file reference number specification which must be present (see 5.2.1); u
is a file reference number. The UNIT = clause is an optional part of the
specification.

is a format specification; * indicates the statement is list-directed and must be
present. The FMT = clause is an optional part of the specification.

is an optional error clause specification (see 5.2.6); 5 is a statement label.

8244.2
IJP..NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-36
PAGE

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an output list (see 5.2.3).

Description:

Execution of a list-directed WRITE statement causes data to be written to the file specified by u (or
to the assumed print or p~~~: file).

The PRINT form implies that the symbiont file APRINT$ is to be used. This is equivalent to specifying
unit number 6 (the APRINT$ symbiont. see G.6) in the WRITE form.

If the UNIT = and the FMT = clauses are present. the specifiers in the control list may be in any order.

If the UNIT = cl.ause is used. the FMT = clause must be used.

See 5.5 for more information on list-directed input/output statements.

Examples:

C
C
C

WRITE (8. *. ERR = 180) VAR3. VAR4. ARR5. ARR6
Writes out formatted data values to output fi Ie 8.
If an error occurs during processing. program control
is transferred to the statement labeled 180.

WRITE (ERR = 180. UNIT = 8. FMT = *) VAR3. VAR4. ARR5. ARR6
C This is the same as the previous WRITE except that
C the UNIT= and FMT= clauses are present and the clauses
C in the control list maybe in any order.

PRINT *. VAR3. VAR4. ARR5. ARR6
C Wr i tes format ted data va lues f rom list to the output
Cpr i n t f i I e APR I NT$.

C
C

:PQ~¢a:~:~~:~~~:~V~R4::;:ARR~:~:~RR~
Punches these same values on cards via the output
punch fi Ie APUNCH$.

8244.2
UI40IUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.6.3. BACKSPACE Statement

Purpose:

UPDATtLMl
5-37

PAGE

The BACKSPACE statement repositions the file pointer for files such as magnetic tape. disk and drum
units by backspacing one record. System files (for example. AREAD$. APRINT$. and APUNCH$) and
files not created by PCIOS cannot be backspaced (see G.2.3). Backspacing over a list-directed record
is also prohibited.

Form:

BACKSPACE ([UNIT =] u [.ERR = 5] [. IOSTAT = ios])

or:

BACKSPACE u

where:

UNIT = is an optional clause (see 5.2.1).

u is a file reference number (see 5.2.1).

ERR = 5 is an optional error clause specification (see 5.2.6); 5 is a statement label.

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

Description:

The file specified by u is backspaced one record.

If the unit identified by u is already at its initial point, the BACKSPACE statement has no effect.

An endfile record is counted as one record.

If the UNIT = clause is present. the specifiers in the control list may be in any order.

Example:

45 FORMAT (...)

READ (IOSTAT=IVAL.FMT=45.UNIT=MTAPE) iolist

READ (MTAPE. 45) iolist

BACKSPACE MTAPE

8244.2
UP-MIMIEII

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

READ (FMT=45, UN I T=MTAPE) ioli s t
The first READ refers to the first record on MTAPE,

5-38
PAGE

c
c
c
c

the second READ refers to the second record, and the
third READ also refers to the second record on MTAPE
because the fi Ie pointer has been backspaced one record.

5.6.4. ENDFILEStatement

Purpose:

The ENDFILE statement marks the end of a file.

Form:

ENDFILE ([UNIT=] u[,ERR=s] [,IOSTAT= ;os])

or:

ENDF I LE u

where:

UNIT = is an optional clause (see 5.2.1).

u is a file reference number specifying the file to be demarcated (see 5.2.1).

ERR = s is an optional error clause specification (see 5.2.6); s is a statement label.

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ;os is an integer
variable or integer array element.

Description:

An end-of-file record is written to the file specified by u.

System files (for example, AREAD$ and APRINT$) cannot have an end-of-file record written on them
using this statement.

If the UNIT= clause is present, the specifiers in the control list may appear in any order.

Example:

c
c

ENDFILE MTAPE
This statement causes an endfi Ie record to be
written on MTAPE to mark the end of a fi Ie.

(

8244.2
UP UMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5.6.5. REWIND Statement

Purpose:

The REWIND statement repositions the file pointer for a file to its starting point.

Form:

REWIND ([UNIT =] U [,ERR = 5] [,IOSTAT = ;05])

or:

REWI NO u

where:

UNIT = is an optional clause (see 5.2.1).

u is a file reference number (see 5.2.1).

5-39
PAGE

ERR = 5 is an optional error clause specification (see 5.2.5); 5 is a statement label.

10STAT = ;05 is an optional I/O status clause specification (see 5.2.8); ;05 is an integer
variable or integer array element.

Description:

Execution of this statement causes the file pointer for u to be positioned at the file's initial point.
Tapes are rewound to the load point and mass storage files are positioned at logical address zero.

System files (for example, AREAD$, APRINT$ and APUNCH$) cannot be rewound.

If the UNIT = clause is present, the specifiers in the control list may appear in any order.

Example:

55 FORMAT (...)

DO 65 I = 1, 20
READ (MTAPE,55)

65 CONTINUE

c
c
c
c
c

REWIND MTAPE
During execution of the DO loop, 20 records are read
from MTAPE. MTAPE is therefore positioned at the
start of its twenty-first record when the REWIND
statement is encountered. MTAPE is then repositioned
to its initial address.

8244.2
Ul4llUMIIBI

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-40
PAGE

8244.2
UP-NUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-41
PAGE

8244.2
Ul4lUMIBl

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-42
PAGE

/'

8244.2
UP-NUM8ER

('

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-43
PAGE

8244.2
Uf'-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.7. Direct Access Input/Output Statements

UPDATE LEVEL
5-44

PAGE

The direct access statements permit a programmer to read and write records randomly from any
defined location within a direct file.

There are three direct access input/output statements:

• READ (reads records from a direct file)

• WRITE (writes records to a direct file)

•

Using these statements, a programmer can go directly to any point in a direct file, process a record,
and go directly to any other point without having to process all the records in between. This is done
using the relative record number. The relative record number is unique and is the record's relative
position within the file.

Direct files may contain formatted records, unformatted records, Q.r';~~*-hl When formatted records
are used, a FORMAT statement must specify the form in which data is to be transmitted.

8244.2
UP UMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-45
PAGE

8244.2
UI4IUM8iR

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOATllEVEL

5-46
PAGE

5.7.2. Direct Access READ Statement

Purpose:

The direct access READ statement causes records to be transferred from a file to internal storage.
The file being read must have been previously defined with an OPEN Qt:Q~fii:N~::F~~~: as a direct access
file.

Form:

READ ([UNIT=] u[.[FMT=]f] .REC= r[.ERR= s] [.IOSTAT= ios]) [iolist]

or:

where:

UNIT =

u

r

FMT =

f

ERR = s

is an optional clause (see 5.2.1).

is the same file reference number (see 5.2.1) as for an associated OPEN ~r
P~fiiN~:::F~~~ statement. The file number must be followed by an apostrophe
for the second form.

is an integer expression that represents the relative position of a record within
the file (see 5.2.2). The REC= clause must be present for the first form. The
REC=. UNIT=. and FMT= clauses must not be present for the second form of
the READ.

is an optional clause (see 5.2.4).

is a format specification (see 5.2.4).

is an optional clause that will cause control to be transferred to statement label
s if an error is detected in the execution of the READ statement (see 5.2.6).

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an ordered input list of variables that are to receive the record read (see 5.2.3).

8244.2
UP-fIIUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Description:

UPDATE LEVEL
5-47

PAGE

A record is read from position r of file u (which has been previously described by an OPEN 9.,p$~~~~
f'~~ statement).

If the UNIT = clause is present for unformatted 110 statements, the specifiers may appear in any order.
If the UNIT = clause is present for formatted 110 statements, the FMT = clause must be used.

The relative record number of the first record in a direct access file is one.

Example:

REAO(FMT=222,REC=43,UNIT=3,ERR=140)VAR1,ARR1

or:

R~AP::I~!~~U?~~):~R~!ffi'4p]::VAaj~:~RRl
C These direct access reads transfer the contents of the
C 43rd record on unit 3 to VAR1 and array ARR1 according
C to the format specified at the statement labeled 222.

5.7.3. Direct Access WRITE Statement

Purpose:

The direct access WRITE statement transfers records to mass storage from internal storage. The file
being written must have been previously defined with an OPEN ~'P$ffiIN~F'~~ statement as a direct
access file.

Form:

WRITE ([UNIT=] u[.[FMT=]f] ,REC= r[.ERR= s][,IOSTAT= ios]) [iolist]

or:

where:

UNIT =

u

r

is an optional clause (see 5.2.1).

is the same file reference number (see 5.2.1) as for an associated OPEN pr
:P~F;iNl~~ffi~~~ statement. The file number must be followed by an apostrophe
for the second form.

is an integer expression that represents the relative position of a record within
the file (see 5.2.2). The REC= clause must be present for the first form. The
REC=, UNIT =, and FMT = clauses must not be present in the second form of
the WRITE.

8244.2
UP-NUMIIIR

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

FMT = is an optional clause (see 5.2.4).

f is a format specification (see 5.2.4).

UPDATE LEVEL
5-48

PAGE

ERR = s is an optional clause that will cause control to be transferred to statement label
s if an error is detected in the execution of the WRITE statement (see 5.2.6).

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an ordered list of variables that are to be written (see 5.2.3).

Description:

A record is written to position r of file u. File u must have been previously described by an OPEN
~rP~~i:~~~:F~~~ statement. If the iolist of an unformatted direct access WRITE does not fill the record,
the remainder of the record is undefined. If the iolist and the format of a formatted direct access
WRITE do not fill a record, blank characters are added to fill the record.

If the UNIT = clause is present for unformatted I/O statements, the specifiers may appear in any order.
If the UNIT = clause is present for formatted I/O statements, the FMT = clause must be used.

Example:

WRITE(REC=53,ERR=140,UNIT=9)VAR1,ARR2

or:

'R:~:jt~:::(:$.~:j~~~:;::~R~::~:~:::j:~g:):::VA~j::~::~i~O:,~
C These WRITE statements direct the contents of variable
C VARl and array ARR2 to be written into record 53
C of unit 9 without format control.

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-49
PAGE

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.8. Input/Output Contingencies

UPDATE LEVEL
5-50

PAGE

When an error occurs during ASCII FORTRAN I/O processing, the standard action is to print an error
message, possibly call the ASCII FORTRAN Interactive Postmortem Dump (see 10.7), and terminate
the program. To prevent program termination and to allow the use of files which contain multiple
logical subfiles (for example, multiple file reels), the ERR, END, and 10STAT contingency clauses can
be used in certain input/output statements. When the ERR or END clause is used, the error message
is not printed and control is passed to the statement specified by the particular contingency clause.
In addition, the error status is encoded in an input/output status word which may be referenced using
the functions 10C, lOS, and IOU. If the 10STAT clause is present. control will be returned inline
(without the error message being printed) unless an END or ERR clause is present. The input/output
status is also returned via the lOST AT clause.

5.8.1. Input/Output Contingency Clauses

The contingency clauses are written as optional parts of a particular input/output statement. The
order of the clauses (if any are used) is immaterial. They are used to transfer control to the statement
indicated if the specified contingency condition is encountered while executing the input/output
statement. The forms of the contingency clauses are:

ERR = s (described in 5.2.6)

END = sn (described in 5.2.7)

10STAT = ios (described in 5.2.8)

When transfer is made to the statement specified by the ERR clause, the input/output status word
will have been set to indicate the cause of the error or warning, the file reference number for the file
in error, and, in certain cases, a substatus. See Appendix G for a detailed description of the
input/output status word.

The three fields (cause, unit, substatus) of the I/O status word are all coded integers and may be tested
or retrieved using the functions:

Function

10C()

10U()

10S()

Field Reference

cause

unit

substatus

The particular field referred to is set to zero following the reference. The I/O status word is set when
an I/O error occurs; it remains set until the next I/O error occurs or until it is referred to through the
functions 10C, IOU, and lOS, in which case only the field referred to is set to zero.

8244.2
UP UM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5.8.2. Input/Output Error Messages

There are two types of input/output errors:

• Those causing a SPERRY UNIVAC Series 1100 Executive contingency interrupt

• Those detected by the ASCII FORTRAN input/output modules

5-51
PAGE

When a contingency interrupt occurs, control is given to the ASCII FORTRAN contingency routine.
This routine prints the contingency error message, may call the the ASCII FORTRAN Interactive
Postmortem Dump (see 10.7), closes all open files, and terminates the program. The ERR clause is
not valid for this type of error.

When the error is detected by the I/O handler and no ERR or 10STAT clause is specified, an error
message is printed, all open files are closed, the FORTRAN Post Mortem Dump routine (FTNPMD) may
be called, and the program is terminated. If the 10STAT clause is present. the message is not printed
and the program will continue inline. If the ERR clause is specified, the message is not printed but
the I/O status word is set and transfer is made to the statement specified by the ERR clause.

Some error conditions are detected which are not considered serious enough to cause program
termination. This less serious class of error conditions is referred to as warnings. If neither an ERR
nor an 10STAT clause is present when one of these conditions is detected, the I/O status word is set,
a warning message is printed and execution of the current statement is continued. The presence of
only an ERR clause results in the I/O status word being set, and transfer is made to the statement
specified by the ERR clause without completing execution of the current statement.

The warning and error messages are itemized in Appendix G.

8244.2
UP"-UMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.9. Internal Files

UPDATE LEVEL
5-52

PAGE

Internal files provide a means of transferring and conver1ing data from internal storage to internal
storage. The internal file READ and WRITE "6~:'~.::~N~QP~i~~'ip~~QP~ statements are similar to
sequential access formatted READ and WRITE of external files. However, rather than transferring data
between a peripheral file and mass storage, data is transferred between areas of main storage.
Therefore, it is possible to move information from a storage block to a data list while manipulating
it with format specifications without a physical peripheral device.

5.9.1. Internal File Formatted READ

Purpose:

The internal file formatted READ statement reads values into items specified in an input list according
to a specified format.

Form:

READ ([UNIT =] u, [FMT =] f LERR = s] LEND = sn] LIOSTAT = ios]) [io/ist]

where:

[UNIT =] u is a file reference specification. The variable u may be a character variable,
character array, character array element or character substring. The UNIT =
clause is an optional par1 of the specification.

[FMT =] f

ERR = s

END = sn

is a format specification (see 5.2.4); f must be present but the FMT = clause
is an optional par1 of the specification.

is an optional error clause specification (see 5.2.6); s is a statement label.

is an optional end clause specification (see 5.2.7); sn is a statement label.

10STAT = ios is an optional I/O status clause specification (see 5.2.8.); ios is an integer
variable or integer array element.

iolist is an input list (see 5.2.3).

Description:

The internal file formatted READ statement causes one or more formatted records to be read from
the internal file specified. The file may be a character variable, character array, character array
element or character substring.

A record of an internal file is a character variable, a character array element or a character substring.
If the file is a character variable, character array element or a character substring, it consists of a single
record whose length is the length of the character variable, array element or substring. If the file is
a character array, each array element is a record of the file. The ordering of the records of the file
is the ordering of the array elements in the array. The length of the record is the length of the array
element.

The information in the record is scanned and conver1ed as specified by the format specification f.
The resulting values are assigned to variables specified in iolist. An empty FORMAT and an asterisk
for f are not allowed for an internal file READ statement which contains iolist.

8244.2
UP-NUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl

5-53
PAGE

If the optional UNIT = and FMT = clauses appear, the control list specifications may appear in any
order. If the UNIT = clause is present, the FMT = clause must appear.

An internal file is always positioned at the beginning of the first record before the READ.

The end-of-file condition will be raised if an attempt is made to read beyond the end of the internal
file.

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

5-54
PAGE

8244.2
:' UP-NUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.9.3. Internal File Formatted WRITE

Purpose:

UPOATE LEVEl
5-55

PAGE

The internal file formatted WRITE statement writes specified data into a specific internal file according
to a given format.

Form:

WRITE ([UNIT =] u, [FMT =] f [,ERR = 5] [,IOSTAT = ios]) [iolist]

where:

[UNIT =] U is a file reference specification (see 5.2.1). The variable u may be a character
variable, character array, character array element or character substring. The
UNIT = clause is an optional part of the specification.

[FMT =] f is a format specification (see 5.2.4); f must be present but the FMT = clause
is an optional part of the specification.

ERR = 5 is an optional error clause specification (see 5.2.6); 5 is a statement label.

10STAT = ios is an optional I/O status clause specification (see 5.2.8); ios is an integer
variable or integer array element.

iolist is an output list (see 5.2.3).

Description:

The internal file formatted WRITE statement causes one or more formatted records to be written to
the internal file specified. The file may be a character variable, character array, character array
element or character substring.

A record of an internal file is a character variable, character array element or a character substring.
If the file is a character variable, array element or substring, it consists of a single record whose length
is the length of the character variable, array element or substring. If the file is a character array, each
array element is a record of the file. The ordering of the records in the file is the order of the array
elements in the array. The length of the record in a character array is the length of the character
array element.

The information in the list items are converted and stored as specified by the format specifications
to the internal file. An empty format is not allowed. The asterisk may not be used for f.

If the optional UNIT = and FMT = clauses appear in the control list, the control list specifications may
appear in any order. If the UNIT = clause is used, the FMT = clause must also be used.

An internal file is always positioned at the beginning of the first record before the WRITE.

8244.2
UP-MJMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-56
PAGE

8244.2
UP-NUMBER

('

(-

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-57
PAGE

8244.2
UP-NUIItIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.10. Auxiliary Input/Output Statements

There are three auxiliary input/output statements:

• OPEN (defines the characteristics of a particular external file)

UPDATE LEVEL
5-58

PAGE

• CLOSE (terminates the association of a particular external file to a particular unit and closes the
file or changes the status of a unit from reread to closed)

• INQUIRE (returns information about the properties of a particular external file or the association
to a particular unit)

The auxiliary input/output statements may be used with either sequential or direct access files.
However. auxiliary input/output statements must not specify an internal file.

5.10.1. OPEN

Purpose:

An OPEN statement defines the characteristics of a particular file which may be used during a
sequential or direct access input/output operation or which may be referenced by an auxiliary
input/output (I/O) statement. The basic file types which can be defined are symbiont. ANSI. and
sequential or direct SDF. In addition. the execution of the OPEN statement may:

• associate an existing file with a unit;

• create a file and associate it with a unit;

• change certain characteristics of an association between a file and a unit;

• create a file that is initially associated with a unit such as the symbionts or alternate symbionts;

• open the unit if the unit has not previously been opened with its associated file;

• ~.~,g~::~:~6i~::~~m~~r:~prr~r~~~~6!lJ:th~:::i~$.t::(qtiifu~~~~:::r~p~r~:r~~~~~r::~

• ~~~r~~~::~~~~:iifu~~~fY:~~$.Yiifu~p~~:::Q~~~::f~~~~U:n:j~~:~RT:fpr!~:::~~i~;

A unit may be opened by the execution of an OPEN statement in any program unit of an executable
program and. once opened. may be referenced in any program unit of the executable program.

In the form which follows. the unit specifier is required to appear. The remaining clauses are optional.
except the record length (RECL = rl). which must be provided if the file is being opened for direct
access. The optional clauses are unordered. The unit specified must exist. Restrictions involving
the combinations of clauses allowed are specified under the discussions of the individual clauses.

8244.2
UI41UMBER

'(-. '.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Form:

UPDATE LEVEl
5-59

PAGE

OPEN ([UNIT=]u [,IOSTAT=ios] [,ERR=s] [,FllE=fname] [,STATUS=sta]

[,ACCESS= aee] [, FORM= fm] [, BlANK= b / nk] [, RECl= r /]

£~·Rf1QRt.t~:~';;'l:t,MRe¢~~~r~'j.[-~:JTI¥ee~fyp~j·:t~IJ~QC~~~~l:~~j

:::::::::~:::~: ~~:!!!!? ::<: ~:::!! ::::~::::::: -. T H ;[~\: ~~;: ;~~:: n] ~~~j: \\ ~jj < ~ ~:\j j1\: ~]1 [~]]]~:::~: ~ IT \1<: [j: l]] [([:~] j H~ ~ ~: ~~ ~ :::::::.::,
·.t.~·~R~e~p~'~~j[:~ijQfR~.~~~$(~~]·.···)···

where the clauses are:

[UNIT=] u u is an integer expression specifying a file reference number (see 5.2.1). If
UNIT = is present, this clause need not be the first. If UNIT is absent. u must
precede all other optional clauses. An asterisk may not be used for u.

IOSTAT = ios is an optional input/output status clause specification (see 5.2.8); ios is an
integer variable or integer array element.

ERR= 5 is an optional error clause specification (see 5.2.5); 5 is a statement label.

FilE = fname fname is a character expression whose value is the name of the external file
to be associated with the specified unit. Trailing blanks are ignored. The file
name must be of the form [qualifier*]file name[.] Note that keys and
F-cycles are not allowed. When this clause is present, a @USE
unit-num ,qualifier * file name. control statement will be executed if the unit
number does not match the file name. This clause may not be present if a
status of SCRATCH is specified. If this clause is omitted and the unit is not
opened, the unit number will be used as the file name.

STATUS = sta sta is a character expression whose value is OLD, NEW, SCRATCH,~:)I("'~Np
or UNKNOWN. Trailing blanks are ignored. If UNKNOWN is specified, a FllE=
clause is optional.lf.Q~~,NmJQr~*t~NP is specified, a FllE= clause is
optional.

If OLD is specified, the file must exist.

if~~VV~~~p~(:lfl~q~~q~fu~f~I~~~~.~~1~~~p.r:~~~~i91"1~~~~~~$~r~~~~~~1~
f~i~~~,~~~qr~~t~q(Vi~~~~~~p~q~ .• ~~~m~I"I~)~~~gr~i~9~gr4~~$~~~~~
giV~n:t:ing~r:t~~g~~~t:i~~IQnqnUJiJ~~QWN..JiJgtQlb~tn~wA$CIt~lt~r:n~t~
~Ytn~i~#~.fil~~~'~6Qt.~~~~g6~~~Y~$~IIFQRTRANJtM~~~wiIJ~~~$ig/"l~~
·~¥·~~~ •• ~*~~Ht,iy~ •• ~y~t,~m .• iD.~~t,c:~·mc:J~~nc:Jr1.IY··.···· ...•...••.•.•....•.•...

If SCRATCH is specified, a file is created (via an @ASG,T statement) with a file
name equal to the unit number. This file will be deleted at the execution of
a CLOSE statement referring to the same unit or at the termination of the
executable program.

8244.2
UP-MIMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

If UNKNOWN is specified:

UPDATE LEVEL
5-60

PAGE

1. A check is made to see if the file is assigned to the run. If it is assigned,
processing continues.

2. If the file is not assigned, an assignment via an @ASG,A statement is
performed. If the file was cataloged and not rolled out, processing
continues.

3. If the file is not cataloged and the access mode is direct, an assignment
via a @ASG,T file name, III fsize statement (ASG,CP if its status is NEW)
is performed, before processing continues. The fsize parameter is
determined by:

mnum *(rl + nbr-control-words)+ label-size + eof-word
track-size

8244.2
Ul'-NUMBER

(

ACCESS= acc

FORM=fm

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

where:

nbr-control-words = (ri +2046)12047

label-size = 11 2 words

eof-word = 1 word

track-size = 1792 words/track

mnum = see RCDS= mnum clause

rI = record length in words, see RECL= rI clause

5-61
PAGE

If mnum has not been provided, fsize will be given a value of 128 tracks.

4. If the file is not cataloged and the access mode is sequential, and an
assignment via an @ASG,T file-name statement (@ASG,CP if the status
is NEW) is performed before processing continues.

This discussion of UNKNOWN does not apply to ASCII symbiont files. Refer
to Appendix G for a discussion on the handling of ASCII symbiont files .

.• ~~¢~.iQn.gf •••. p~FINe.ffil~e·$."1'm~6ti$~ql.iiv~h~n1.tQiitj('¢~.i[J.ngf·.n •• pp~1SI
.~~t~m~q~~i~~~~t~~~~q~~~~~q~~'~m~i·~qrr~pq~iq~·9P~9~~I~I~~.~.
·~~~C::i~~~ .• i.·."·.· '···"·"'·'·········· ,.,",.,""' .. ' ' ... "',

If this clause is omitted, the default value is UNKNOWN.

acc is a character expression whose value is one of the following:

SEQUENTIAL

DIRECT

SEQ}

OrR>

Trailing blanks are ignored. This clause is used to specify the access method
to be used with the file being opened.

If this clause is omitted. the default value is SEQUENTIAL.

fm is a character expression whose value is FORMATIED or UNFORMATIED.
Trailing blanks are ignored. It specifies that the file is being opened for
formatted or unformatted input/output, respectively.

~@~~:~H~~~~~~~@w+:~l)~~~~~~ffi~~T~I~~~i~~l~~~~~~~~i~f~R~1~~'~1
lJNffiQRM~TJ'~pirripn~.a'~qQ,.c:I'9rmat(jft)(fQrfil~~qgn.~ii1ing~f1fg,.m~u4:1~f
.r~~p~~~~··~.~~··~~e •• ~i~PIJ~igm •• ~~· •• ~iJ1.~.··.···,···' "'.' .. "" .. .

82~4.2

UNtUMIIR

RECL=rI

BLANK=blnk

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-62
PAGE

If this optional clause is omitted ~6~:jh~:R~QRM~~!~~~~I,.~~::~:~b~q:~~$.~~~
a value of UNFORMATTED is assumed if the file is being opened for direct
access (":V~~~.:p.~:~~U~:"~~~~~::fpr: .. :r~p~fP.rg~:s.~~:t6.~~~~~$.~q~ ~:~i1:
;"m:~ A value of FORMATTED is the default value if the file is being opened
for sequential access with a file type other than ANSI. For ANSI files. the
default value is UNKNOWN.

rI is an integer expression whose value must be positive. It specifies the
length of each record in the file being opened for direct access. If the file is
being opened for formatted input/output. the length is the number of
characters. If the file is being opened for unformatted input/output. the length
is measured in words.

This clause must appear if. and only if. a file is being opened for direct access.

blnk is a character expression whose value is NULL or ZERO. Trailing blanks
are ignored.

If NULL is specified. all blank characters in numeric formatted input fields on
the specified unit are ignored except that a field of all blanks has a value of
zero.

If ZERO is specified. all blanks other than leading blanks are treated as zeros.

This clause is only permitted for a file being connected for formatted
input/output.

If this clause is omitted. the default value is NULL.

f

8244.2
U~BER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-63
PAGE

8244.2
UI'-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOATELML

5-64
PAGE

8244.2
UP UM8ER

-. (
~.

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-65
PAGE

8244.2
IJP..MJM8P

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOATElML

5-66
PAGE

8244.2
UP-NUllBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Description:

UPDATE LEVEL
5-67

PAGE

Multiple OPEN statements involving the same file and unit number are permitted. Only the BLANK
~n(,t:M~~C~~~Ym~~~rit$.~n:iY) clauses may specify a value different from the one in effect.

If the file to be associated with the unit is not the same as the file which is currently associated with
the unit. an implicit CLOSE statement will be executed for the unit. The default value for the
STATUS= clause of the CLOSE statement is used when doing the implicit CLOSE. The unit will then
be associated with the new file and the new file opened.

Examples:

INTEGER OUTKOM
OPEN (10, IOSTAT=OUTKOM, ERR=50, STATUS='OLO')

This OPEN statement opens a file for sequential access.

If a file has not been associated with 10 via a @USE control statement. 10 will be used as the file
name.

The status of OLO requires that the file must already exist. otherwise, an error condition will result.

Should an error condition be encountered while executing the OPEN statement. the variable OUTKOM
will receive the contents of the I/O status word, PTIOE, contained in the storage control table, and
control will be transferred to the statement with label 50.

8244.2
uP.ffUMIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

The remaining applicable clauses and their default values are:

FORM :;; 'FORMATIEO'

BLANK :;; 'NULL'

The next example is:

CHARACTER*20 FSTAT
FSTAT:;; 'UNKNOWN'

5-68
PAGE

OPEN (12. FILE :0: 'DATA 1'. STATUS:;; FSTAT, ACCESS = 'DIRECT'. RECL:o: 25, RCoSHijii:':,ioOO;: ..
1 ASSOC = NREC)

This OPEN statement opens a file for direct access.

A @USE 12.DATA1 control statement will be executed. Since the status is UNKNOWN. an attempt
will be made to assign the file if it is not yet assigned. If the file does not exist. a temporary file will
be assigned.

Since neither the FORM m~:~~.'~FQg: clause is present. the default record format applied specifies
that the file will contain unformatted records. The file may contain up to 1000 records of 25 words
each.

Should an error condition be encounte, ed while executing the OPEN. an error message will be printed
and the program will be terminated. Control will not be returned to the user as both the ERR and
lOST AT clauses are absent.

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.10.2. CLOSE

Purpose:

UPOAl£ LEVEL
5-69

PAGE

A CLOSE statement terminates the association of a particular external file with the specified unit and
closes the file tit~6.J1g~~j6~$~~~~p.:.~~i~:frpmr~tli~~tp~~~l

Execution of a CLOSE statement for a particular unit may occur in any program unit of an executable
program and need not occur in the same program unit as the execution of an OPEN statement
referring to the unit.

In the form that follows. the UNIT clause is required to appear. The remaining clauses are optional
and (if present) are unordered.

Form:

CLOSE ([UNIT=]u [.IOSTAT=ios] [.ERR=s] [.STATUS=sta][~RgRe~p~rr~)

where:

[LJNIT=]u

IOSTAT=ios

u is an integer expression specifying a file reference number (see 5.2.1). If
UNIT = is present, this clause need not be the first. If absent, u must precede
all other optional clauses. An asterisk must not appear for u.

is an optional input/output status clause specification (see 5.2.8); ios is an
integer variable Oi integer array element.

ERR= 5 is an optional error clause specification (see 5.2.6); s is a statement label.

STATUS= sta sta is a character expression whose va:ue is one of the following:

KEEP

DELETE

Trailing blanks are ignored. These values determine the disposition of the file
that is being closed.

If KEEP is specified. the file continues to exist after execution of the CLOSE
statement. KEEP must not be specified for a file whose OPEN status was
specified as SCRATCH. A @FREE control statement is not executed if KEEP is
specified unless the OPEN status was SCRATCH.

If DELETE is specified. the file ceases to exist after execution of the CLOSE
statement. If the file was assigned with the C or U options. a @FREE.I control
statement will be executed; otherwise. a @FREE.D control statement will be
executed.

8244.2
UI'-NUM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVa

5-70
PAGE

The default value is KEEP, unless the file's OPEN status was specified as
SCRATCH, in which case the default value is DELETE.

Description:

Specifiers which may be character expressions can be uppercase, ~pW~r9~$~~~r:~:~~m:iiI\l~~d~":ipt
:~~~;:

Execution of a CLOSE statement specifying a unit that does not exist or has not been opened, affects
no file and is permitted. Execution continues with the next statement.

After a unit is no longer associated with a file due to the execution of a CLOSE statement, it may be
reassociated within the same executable program to the same file or a different file p":I~m~Y~~:Q~.~
3s::a:::rtrtad::iu:Hlt "

After a file has been closed, it may be associated within the same executable program to the same
unit or a different unit and opened again.

A CLOSE statement results in the file control buffers being freed for the file being closed. Thus, no
position information on the file is available.

Example:

CLOSE (12,IOSTAT=MSTAT,ERR= 100,STATUS='DELETE')

This CLOSE statement closes the file associated with unit 12.

Since DELETE was specified, the file will no longer exist after execution of the CLOSE statement.

Should an error condition be encountered while executing the CLOSE statement, the variable MSTAT
will receive the contents of the I/O status word, PTIOE, contained in the storage control table, and
control will be transferred to the statement with label 100.

After successful completion of this CLOSE, unit 12 will not be associated with any file.

8244.2
UP-MIMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

5.10.3. INQUIRE

Purpose:

UPDATE lEVEl
5-71

PAGE

An INQUIRE statement returns information about the properties of a particular file or the association
to a particular unit. There are two forms of the INQUIRE statement:

• INQUIRE by file

• INQUIRE by unit

The list of optional clauses must contain exactly one FilE clause and may
not contain a UNIT clause 9f:~R~R~P~~~iJ~~·

The list of optional clauses must contain exactly one external UNIT clause
and may not contain a FilE clause. The unit specified need not exist or be
associated with a file.

The INQUIRE statement may be executed before, while, or after a file is opened. All values assigned
by the INQUIRE statement are those that are current at the time the statement is executed.

The optional clauses of the INQUIRE statement which follows are unordered.

Form:

INQUIRE ([UNIT=]u [.FllE=fin] [.IOSTAT=ios] [,ERR=s] [.EXIST=ex]

[,OPENED=od] [,NUMBER=num] [,NAMED=nmd] [,NAME= fn] [,ACCESS=acc]

[. SEQUENT I Al= seq] [. D I RECT= d i r] [. FORM= fm] [. FORMATTED= fmt]

where:

[,UNFORMATTED= un f] [, RECl= rc I] [, NEXTREC= n r] [, BlANK= b Ink]

•. [·~.aFPR~~r·'i!rj···[·;MR~~~~"hrp·!l····t.~umyp~~rypj[;:~~~~~.~.~.~.~~] ..••..•

•• t.~·QfFF"'c?f'l· .•.• [·~.~·E1~i#~·~r~e]··. [!·fI~REAp#.rrP'-J.·· [.)eRE1P#·p~·!~~l ..
[~~QF'R#py~$i(~~l)

[UNIT=]u u is an integer expression specifying a file reference number (see 5.2.1).
If UNIT = is present, this clause need not be the first. If absent, u must
precede all other optional clauses. An asterisk must not appear for u.

FllE= fin

This clause must not be present if an INQUIRE by file is to be performed.
The unit specified need not exist nor be associated with a file.

fin is a character expression whose value when any trailing blanks are
removed is the name of the external file being inquired about. The file
name must be of the form:

[qualifier *] file-name [.]

Keys and F-cycles may not be part of fin and will not be returned by the
INQUIRE statement on fin.

This clause must not appear if an INQUIRE by unit is to be performed.

The named file need not exist nor be opened.

8244.2
UP-NUMIER

IOSTAT=;as

ERR=s

EXIST=ex

OPENED=ad

NUMBER=num

NAMED=nmd

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl

5-72
PAGE

is an optional input/output status clause specification (see 5.2.8); ias is
an integer variable or integer array element.

is an optional error clause specification (see 5.2.6); s is a statement label.

ex is a logical variable or logical array element. Execution of an INQUIRE
by file statement causes ex to be assigned the value .TRUE. if there exists
a file with the specified name; otherwise ex is assigned the value .FALSE.

A file is said to exist if it meets at least one of the following conditions:

1. The file is associated with an opened unit.

2; The file is assigned to the run.

3. The file is already cataloged and can be assigned to the run.

Execution of an INQUIRE by unit statement causes ex to be assigned the
value .TRUE. if the specified unit exists; otherwise, ex is assigned the value
.FALSE.

A unit is said to exist if:

Os unit number S FRT length

where FRT is the file reference table (see G.5).

ad is a logical variable or logical array element. Execution of an INQUIRE
by file statement causes ad to be assigned the value .TRUE. if the file
specified is opened; otherwise, ad is assigned the value .FALSE.

Execution of an INQUIRE by unit statement causes ad to be assigned the
value .TRUE. if the specified unit is open; otherwise, ad is assigned the
value .FALSE.

num is an integer variable or integer array element that is to receive the
value of the external unit identifier if the unit is open. For an INQUIRE by
file, the unit in question is the unit associated with the file. If no unit is
associated with the file, num becomes undefined.

nmd is a logical variable or logical array element that is assigned a .TRUE.
or .FALSE. value which indicates the existence of an external file name
based on the following conditions.

For an INQUIRE by file, nmd is assigned a value of .TRUE. if the file exists;
it need not be opened.

For an INQUIRE by unit, nmd is assigned a value of .TRUE. if the unit is
opened and not associated with a symbiont. A value of .FALSE. is returned
if the unit is opened and associated with a symbiont.

8244.2
UI4tUMBER

NAME=fn

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-73
PAGE

fn is a character variable or character array element that is assigned the
value of the external name of the file if the file has a external name;
otherwise. it becomes undefined.

The value returned by this optional clause is of the form:

qualifier*file-name.

ACCESS= aee aee is a character variable or character array element that is assigned the
value SEQUENTIAL if the file is opened for sequential access. and DIRECT
if the file is opened for direct access. If the file is not opened. aee
becomes undefined.

SEQUENTIAL= seq seq is a character variable or character array element that is assigned the
value YES if the file is opened for sequential access and a value of NO if
the file is not opened for sequential access. A value of UNKNOWN is
returned if the access method for the file cannot be determined.

DIRECT=dir

If the file is not open (INQUIRE by unit) or if the file does not exist (INQUIRE
by file). seq becomes undefined.

dir is a character variable or character array element that is assigned the
value YES if the file is opened for direct access and a value of NO if the
file is not opened for direct access. A value of UNKNOWN is returned if
the access method for the file cannot be determined.

If the file is not open (INQUIRE by unit) or if the file does not exist (INQUIRE
by file). dir becomes undefined.

FORM= fm fm is a character variable or character array element that is assigned the
value FORMATIED if the file is opened for formatted I/O. UNFORMATIED
if the file is opened for unformatted I/O. ~~~QQTH~r*~~~VQnwp~~$ml~~~~
If the file is not open. fm becomes undefined. List-directed and namelist
I/O are cOilsidered formatted.

FORMATIED= fmt fmt is a character variable or character array element that is assigned the
value YES if the I/O type for the file is formatted. and NO if the I/O type
for the file is not formatted. A value of UNKNOWN is returned if the I/O
type of the file cannot be determined.

UNFORMATTED
=unf

If the file is not open (INQUIRE by unit) or if the file does not exist (INQUIRE
by file). fmt becomes undefined.

unf is a character variable or character array element that is assigned the
value YES if the I/O type for the file is unformatted. and NO if the I/O type
for the-file is not unformatted. A value of UNKNOWN is returned if the
I/O type of the file cannot be determined.

If the file is not open (INQUIRE by unit) or if the file does not exist (INQUIRE
by file). unf becomes undefined.

8244.2
UP-NUM8ER

RECl=rel

NEXTREC=nr

BlANK=blnk

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

5-74
PAGE

reI is an integer variable or integer array element that is assigned the
value of the record length of the file if it is opened for SDF direct access.

If the file is opened for formatted input/output or can contain both
formatted and unformatted records. the length is in characters. The length
is measured in words if the file is opened for unformatted input/output.

If the file is not opened or if the file is not opened for direct access. reI
becomes undefined.

nr is an integer variable or integer array element which receives the next
relative record number for the file if it is opened for SDF direct access. If
the file is opened but no records have been read or written since the
opening. nr is assigned the value one.

It the file is not opened for direct access or if the position of the file is
indeterminate due to a previous error condition. nr becomes undefined.

blnk is a character variable or character array element. A value of NULL
is returned if the file is opened for formatted input/output and null blank
control is in effect. A value of ZERO is returned if the file is opened for
formatted input/output and if zero blank control is in effect.

If the file is not opened or if it is not opened for formatted input/output.
blnk becomes undefined.

8244.2
UP-NUM8ER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

5-75
PAGE

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UI'OATE LEVEL

5-76
PAGE

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Description:

UPDATE lEVEL
5-77

PAGE

A variable or array element that receives a value in an INQUIRE statement may not be referred to by
more than one of the clauses in the same INQUIRE statement.

For the execution of an INQUIRE by file statement:

• The variables nmd, fn, seq, dir, fmt, and unf are assigned values only if the value of fin is
acceptable and if a file by that name exists; otherwise, they become undefined.

• The variable num becomes defined if and only if od becomes defined with a value of .TRUE ..

• The variables acc, fm, rei, nr, blnk ,rfm~mf¢t~ijtp;I?$I~~~~'I:~p~I.t~~~i!j"~l!it;~~~~~~
may become defined only if od becomes defined with a value of .TRUE ..

Execution of an INQUIRE by unit statement causes num, nmd, fn, ace, seq, dir, fm, fmt, unf, reI,
nr, blnk ,i:f.m~mr4n"p~f:i$l~~~~~ft~p$I~~.~i!j"~~it.: and ssize to be assigned values only if the
specified unit exists and is opened; otherwise, they become undefined.

If an error condition occurs during execution of an INQUIRE statement, all of the optional clause
variables and array elements except ios become undefined.

Variables ex and od always become defined unless an error condition occurs.

If the receiving area for a returned literal value is too small, a warning will be issued and the literal
will be truncated on the right. Character literal values returned by INQUIRE will be uppercase.

Example:

CHARACTER*20 FN1,ACC1,SEQ1,DIR1, FORM1,FMT1,UNF1,RFORM1,
lBLANK1,TYPEl

INTEGER OUTKOM,UNIT1,RECL1,ASSOC,BLOCK1,BOFF1,SEGl
LOGICAL EXIST1,OPEN1,NAMEDl
INQUIRE
(10, IOSTAT=OUTKOM,ERR=50,EXIST=EXIST1,OPENED=OPEN1,NUMBER=UNIT1,

lNAMED=NAMED1,NAME=FN1,ACCESS=ACC1,SEQUENTIAL=SEQ1,DIRECT=DIRl,FORM=FORM1,
2FORMATTED=FMT1,UNFORMATTED=UNF1,RECL=RECL1,NEXTREC=ASSOC , BLANK=BLANKl ,
3R~(jRM.~RFQRMj~MR~¢~~"'R~¢R~~~P~ffi1jTIxP~j~~~Q¢K~~~Q~~'~Qf~#~()ffiFj~$~G~$E(H)

Should an error condition be encountered while executing the INQUIRE, the variable OUTKOM will
receive the contents of the 1/0 status word, PTIOE, contained in the storage control table, and control
will be transferred to the statement with label 50.

Assuming this INQUIRE statement was executed prior to the OPEN statement in the first example in
5.10.1 and that unit 10 had not been opened otherwise, the following values would be returned:

OUTKOM = 0
EXISTl = .TRUE.
OPEN 1 = .FALSE.

Since that unit is not open, all other variables would be undefined.

8244.2
UP-"UMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference Ul'DA1E LEVEL

5-78
PAGE

Assuming the INQUIRE statement was executed immediately after the OPEN statement referred to
previously, the following values would be returned:

OUTKOM = 0
EXIST1 = .TRUE.
OPEN 1 = .TRUE.
UNIT1 = 10
NAMEO 1 = .TRUE.
FNl = 'TESTING*10:
ACC 1 = 'SEQUENTIAL'
SEQl = 'YES'
OIRl = 'NO'
FORM 1 = 'FORMA TTEO'
FMT1 = 'YES'
UNFl = 'NO'
RECL 1 = undefined
ASSOC = undefined

not applicable for SDF sequential
not applicable for SDF sequential

BLANK 1 = 'NULL'
:R~:~M:~::ffi#:::p~~~t~"~",;:::::::::::::~qt~pp{i~.,~l~f9r$J;?~~,q~~~~'::::
MaECU1U;;;;;;:::33::n:::::Y::::::::::::;::H:i::::;:::;: """"'.'.;.'."';;;';';;;;
TYPE:I/:::· . " .. '.:: , : ::
BLOCK1;:;·..:.";.. :: .. :: :..;":;:;;
QQF~~::~:::~Qd~f:r:;::::.!.@i:I·:I:.:i.ii~~t:~p.p'i¢~~i·:f~t·$Q~~~it.~~,,~,:
5EG1::iillit'::1<:::::

:,.:::':::::::::::: ... : ::::::':.:::::::::::::':':::::'::":::'::::':::::':::''::::':'::::::::::::;;::::::::::.: :::':::::::::::=::::::::::::::::::;; ::.:::;.::.:: .. :::::::::::::

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

6-1
PAGE

6. Specification and Data Assignment Statements

6.1. Overview of Specification Statements

Specification statements describe the data used in a program unit. The description may specify the
following information:

• Data type (which in turn specifies the storage required for the data and its internal
representation)

• Initial value

• Array declaration

• Data which is to share storage within a program unit

• Data which is to share storage among several program units

The specification statements are: DIMENSION, IMPLICIT, Explicit Typing, EOUIVALENCE, COMMON,
I3~N~~ PARAMETER, EXTERNAL, INTRINSIC, and SAVE. The EXTERNAL, INTRINSIC, and SAVE
statements are explained in Section 7 .

•• IQ.·.#~.i~~~rij~I·.9~p~9gr~m;:~~tTI~~ •• ·9.~~: •• im~~p~~~~~·.Xyp~~9.i ••• ~~· ·.n:~~~~.~i.:·~~M~k~~l1; •
• ·P~aAMET~fr;·~TERN~U~:.~NTRlN$~~,:.$AVE~~mQ.pe~lN~ •• :~t~...... ··· ••• ~QC~~ •• tQ·t~iit,:J.nt'r~~t:
•• ~~~p[~Qr~m~.~y~n.~~:.~~.ry~m~~~r~~~~pl~~~~in~~~:~~~~rry~~:p~.. ·:.7~j:~:fQr·~~.~~rip.~!q~ •
• qf~lp~~I~i}9~p¢~~~~m~~l:::··: ••• :...:......... .. ::..m..::/.:::..
Specification statements are nonexecutable.

f1iri~o~r~t~o~t~h~e~fmir~smt~emx~eicu~t~a~b~lei~s~tamtjeimiiemn~tm'm··K··M··~·i~~~wi~~iil~~~~
Y If a variable appears in a DATA
statement, any specification statements which describe the variable must precede the DATA
statement. To conform to FORTRAN 77, DATA statements should follow all specification statements.
DATA statements and statement ordering are discussed further in 6.8.1.

The EXTERNAL and INTRINSIC statements are discussed in 7.2:3 and 7.2.4, respectively. The SAVE
statement is discussed in 7.12. The DATA statement is discussed in6.8.1. BLOCK DATA is discussed
in 7.8.

8244.2
UI'-MIM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOA1£ I.Ml.

6.2. DIMENSION Statement

Purpose:

The DIMENSION statement declares arrays and specifies dimension information.

Form:

o I MENS I ON a(d [. d] .. ,) :[Z;~~:j; [. a(d [. d] ...) iif;Zi~7iJi;i]

where:

a is a symbolic name.

6-2
PAGE

d is a dimension declarator and specifies the extent of a; d must satisfy the requirements
for dimension declarators (see 2.2.2.4.1). .

Uri/i/isi·
imm;;ii;ii;,iii,t:i:'

Description:

:~::91i~:Hi:~~~m~:~~~i!i~~~·~~~~~~m~nt,~i9f;~:~9~~~~~~i,
........................... ::::::::::::::::::::: :::::::::::::::;;::::::::::::::::::::::::: ::::::::::::::::::::::::::::.::'

The appearance of a symbolic name in a DIMENSION statement declares that name as an array name.
A symbolic name may also be declared as an array name in a COMMON statement or an explicit type
statement. However. only one array declaration for a symbolic name is permitted in a program unit.
The maximum number of elements an array can have is 262.143. An array element whose relative
address under its location counter in the relocatable element is over 65536 cannot be initialized via
a ~P~"~.~~:i~~.~ or DATA statement.

If an array a has adjustable or assumed-size dimensions. it can be declared only in a subprogram
and must be a dummy argument.

For a description of local-global rules for names in DIMENSION statements in ij~~~~~.i: subprograms.
see 7.11.

,r ""

8244.2
UI4IIUMBER

(./

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

Examples:

DIMENSION ARR1(5.5.2)
C Symbol ic name ARRl is declared as a three-dimensional
C array name. The maximum values that the three
C subscripts may assume are 5. 5. and 2
C respect ively. The lower bounds for the three
C subscripts are assumed to be one.

DIMENSION FACTOR (0: 4)11~ .. ,~~;~~~4.~l~H/
C Symbol ic name FACTOR is declared as a one-dimensional
C array with five elements. A lower dimension bound
C of zero and an upper dimension bound of four are
C specified. The five elements are assigned initial
C values 1 through 5 respectively.

C
C
C
C

SUBROUTINE ADJUST(ONE.THIRD.YES.ARR4)
INTEGER ONE.THIRD
DIMENSION ARR4(ONE.2.THIRD)

Symbol ic name ARR4 is an adjustable dummy array.
The addresses of its contents wi I I be calculated
using the variable values. No storage is actually
assigned to the array since it is a dummy array.

SUBROUTINE DETER(ARR5.ARR6. 101M)
DIMENSION ARR5(-IDIM:2+IDIM. -IDIM:*). ARR6(*)

C ARR5 and ARR6 are assumed-size dummy arrays.
C ARR5 is a double-dimensioned array and ARR6 is
C a single-dimensioned array. The value of a
C subscript expression in a dummy element reference

6-3
PAGE

C must be in th~ range determined by the lower bound and
C upper bound expressions specified for that dimension.

8244.2
UP-NUMBER

SPERRY UNIVAC Serie. 1100
FORTRAN (ASCII) Programmer Reference

6.3. Type Statements

UPDATE LEVEl
6-4

PAGE

The type statements are used to specifically declare the characteristics of items. Otherwise, the
normal convention specifies REAL type for any data item whose symbolic name begins with any of
the letters A through H or 0 through Z, and INTEGER type for any data item whose symbolic name
begins with any of the letters I through N.

Any data type from Table 6-1 may be used in a type statement.

Type

INTEGER

REAL

COMPLEX

lOGICAL

CHARACTER

DOUBLE
PRECISION

Table 6-1. Valid Data Type and Length

Permitted length Specification

Default Alternate

Type statements may be either implicit or explicit.

Typical type and length specifications wnich could be used in type statements are INTEGER. lOGICAL,
REAL (9f:::R~~~4) for type single precision real, DOUBLE PRECISION IQr~~Ai~~Ql. for type double
p~~~.isit>.rl~e.a.I~~9~~~E~J9.t:q~MP:~~~~~) for type single precision complex,CQM~~~~~~~::(Qr:jy~
i:J,pU.liil~p~¢i~ip~¢~:t,"p'~~*~ and CHARACTER* n (where n is a positive unsigned integer constant) for
type character.

6.3.1. IMPLICIT Statement

Purpose:

The IMPLICIT statement assigns a specific data type to a symbolic name based on the initial alphabetic
character of its name.

/' "'-,

I·

8'244.2
MBY

t·;:
'"
~--

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl

6-5
PAGE

Form:

I MPLI CIT t[* i] (a [,a] ...) [,t[* i] (a[, a] ...)] ...

where:

t is a data type chosen from Table 6-1.

i is an unsigned integer constant (or positive integer constant expression enclosed in
parenthesis if the type is character) and is a permitted length specification for the given
type. If the length is omitted, the standard length for the given type is assumed (see Table
6-1). Note that FORTRAN 77 allows * i for type character only. AS:CIIFORTRANHlinOW$
~ffCil'~II~~~typ~.: .. .

a is a single alphabetic letter or a range of alphabetic letters. A range is specified by the
first and last letters of the range separated by a hyphen. For example, the notation B-F
specifies letters B, C, D, E, and F and has the same effect as If all letters were listed
separately.

Description:

The IMPLICIT statement affects the letter association used to assign data types by the name rule (see
2.2.2.2.1).

All letters, a, included in a parenthesized list are associated with the data type t and length i
preceding that list. Within the program unit. all variables, arrays, parameter constants, function
subprograms, and statement functions whose symbolic name begins with the letter a is given the
associated data type if the name is not explicitly typed. IMPLICIT statements do not change the type
of any intrinsic functions.

In a subprogram, IMPLICIT statements must appear after the SUBROUTINE, FUNCTION, or BLOCK
DATA statement.

A program unit may contain any num~er of IMPLICIT statements, but IMPLICIT statements should
precede all other specification statements, except PARAMETER statements. ASCO'FORTRANiJOOW$
pAtA:~j~t~rn~~~:t.Cil.·pr~~~~~iMgklqlT'$t~j~m~~~.

A letter may neither appear in, nor be included in, a range specification of more than one IMPLICIT
statement. Furthermore, a letter may appear only once in any IMPLICIT statement.

Examples:

C
C

IMPLICIT LOGICAL (B)
Variables whose names begin with the letter 'B' are given
the LOGICAL type unless expl icitly typed otherwise.

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

I MPll CIT CHARACTER*4 (C-E, Z), ~pM~~~~~j:~:j:,\tQ~t~:

UPDATE lEVEL
6-6

PAGE

C Variables whose names begin with the letters 'C', '0' 'E'
C or 'z' are given the CHARACTER type and a length of 4.
C Data whose names begin wi th letters 'M', 'N', or '0' are
C given the COMPLEX type and their real and imaginary
C parts are double precision.

6.3.2. Explicit Type Statements

Purpose:

Explicit type statements assign a particular data type to a data item based on its name rather than
its initial letter. In addition to data type, the following can be specified: dimension information, (ja~~
:i~"'#6~::~6d·;~~~I~.:t:.¥.~U~$.~

A function name, parameter constant name, statement function name, or dummy function name may
appear in an explicit type statement but may not be assigned an initial value.

If any intrinsic function name appears in an explicit type statement and the statement type is not the
same as the predefined intrinsic type, the name becomes a user-defined name. If the types are the
same, the definition is not changed.

8244.2
UP-NUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOATE LEVEL

6-7
PAGE

6.3.2.1. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL Type Statements

Form:

t yp t~I:~lil name[JI~Xl [, nametl~7j] ...

where:

typ is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.

.1~"· ..• · .• ···.··•······ .. ·.·.· .. ·· ••. ·.· ••• ···~$.~6.~M~iijM~~~ryt~9~r~q~~t~lit.~~~.·~~.qM~pf·tft~.·p~rm~~~~.~p~~i~i~~t~91"1~.~qr •
...••..••...•..•••...•..••••.••.•.•..•••.••.••.•.••••• ·.th~.givl!JnWIlf1J.tYp •• ($~~l'Qbl~a""l}J.l'l1~.I~I'l9tIl·~~~tfll!J~·Wit,fi.ty~tYP.·Qppli~~ .
......•....••••••••.••••.••.•••••.•••.•.•.••.••••...••• ·.t~~tI·~ro~g~i~fj~m~·i6.th~$t~.,~fi~,~~~pti~Q$~·n~ro~whi~~·~[~fQllqW~~ ············>··.·<) •••• /l)y~j~~~t~~~~9fflC:~tiq~:········ .. .

name is one of the forms:

v t~l:~nl
a r y t~/~rill (d)]

where:

v is a variable name, parameter constant name, function name,
statement-function name, or dummy function name.

ary is an array name.

d is dimension information which must satisfy the requirements of
2.2.2.4 .

.. -* •..•• ·······•·•····· •• · ..•• •··.··•·••··•···· •• ·• •• ~~ •• if1iti~Ji~~tiof'l·i6fQ .. rri~tion.wlli~h·mlJ~t.~~ti~fyth~ ... lilqlJir~mlilr1t~ •• Qf.~·¢Ql1star1t·
!~~t~~~~Ciifi~~ih~.~.1~/.... .. .

Examples:

I NTEGER SUM, ITEM (10)
* SUM is specified as type integer and length 4.
* ITEM is a one-dimensional array with 10 elements.
* Each element of the array is type integer with length 4.

COMPLEX C 1, ~?"lq, C3
* C1, C2 and C3 are specified as type complex.
* Cl and C3 have a length of 8, ("2 has length 16.

DOUBLE PRECISION ARR(2))f~.t~QP+Q0
* ARR is specified as a type real, single
* dimensional array wFth two elements. Each
* element is type real with length 8 or double
* precISion. Both elements of the array are
* initialized with the double precision constant 1.00+0.

8244.2
UI'-MIM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPOATELMl

6-8
PAGE

6.3.2.2. CHARACTER Type Statement

Form:

CHARACTER [* I en[,]] name[:~:#'71 [, name :1~~7]:] ...

where: .

len

name

Description:

is an unsigned integer constant or integer constant expression enclosed in
parenthesis with a positive value in the range 1 to 511. It may also be an
asterisk in parenthesis, (*). The length specified with CHARACTER applies to
all symbolic names which are followed by a length specification.

is one of the forms:

v[* len]
ary[(d)] [* len]
!i:rY[~i:,~~j;i[~:~:j:

where:

v is a variable name, parameter constant name, function name, statement
function name, or dummy function name.

ary is an array name.

d is dimension information which must satisfy the requirements of
2.2.2.4.

An entity declared in a CHARACTER statement may have an asterisk as its length specification if the
entity is a function subprogram, a dummy argument. a parameter constant name, pr:~i~a.~.m~~~
f:~H~~p~H~m~;:

• If a dummy argument has an asterisk for i, the dummy argument assumes the length of the
associated actual argument. If the associated actual argument is an array name, the length
assumed by the dummy argument is the length of an array element in the associated actual
argument array.

• If a function subprogram has an asterisk for i, the function name must appear in a FUNCTION
or ENTRY statement in the same subprogram. When a reference to such a function is executed,
the function assumes the length specified in the referencing program unit. The length specified
for a character function in a program unit that refers to the function must be an integer constant
expression and must agree with the length specified in the subprogram that specifies the
function. Note that there is always agreement of length if an asterisk for i is specified in the
subprogram that specifies the function.

8244.2
UP-NUMBER

(~--

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

6-9
PAGE

• If a parameter constant name has an asterisk for i, the constant assumes the length of its
corresponding constant expression in a PARAMETER statement.

.i~·~.$,t~*~~~t,~~p~lq~·~am~.H~$.• ~~.~$I~ri~~·1pr~r~.*H~~.~~~.~~p~Et~$ip~.g~~~r~~~.~Y.~·$j~.~m~~~
f4p~tiprir~f~r~r)~~Y!~~I:l)~'~~~J$~W!*~~~I~~glfj~q~~~~pH.I$~'t~4H'H~I;

Examples:

CHARACTER*4 CHARA, CHARB(10)*l, CHARC
* Variables CHARA and CHARC are specified with
* type character and length 4. CHARB is a 1-
* dimension array with 10 elements. Each element
* of the array has type character and a length of 1.

CHARACTER TILE (2) * 121:'paQ~R~"'MeR~~~AN.A~¥$T~0
* TITLE is specified as a type character, 1-
* dimensional array with two elements. Each
* character type element has length 12. The
* first element is initialized with the character
* constant 'PROGRAMMER' and the second is
* initial ized with the character constant 'ANALYST'.

8244.2
lJf'-ftUM8ER

SPERRY UNIVAC Series 1100
FORTRAN· (ASCII) Programmer Reference

6.4. EQUIVALENCE Statement

Purpose:

UPDATE LEVEL
6-10

PAGE

The EQUIVALENCE statement specifies sharing of storage by two or more data entities within a
program unit.

Form:

EQU I VALENCE (n, n[,n] ...) [,(n, n[,n] ...)] ...

where n is a variable name, an array element name, an array name. or a character substring name;
n may not be a dummy argument name or function name. At least two names must appear in each
parenthesized list.

Description:

All entities in a given parenthesized list share some or all of the same storage locations. The order
of items in the list is not important.

Although variables of different types may be equivalenced. neither mathematical equality nor type
conversion of these entities is implied. Equivalencing entities of different classes (an array and a
scalar, for example) does not cause the entities to assume the same class. Rather the EQUIVALENCE
statement permits the user to reduce the storage requirements of a program unit by causing two or
more data entities to share the same storage locations. However. it is the user's responsibility to
ensure that the logic of a program unit permits such storage sharing and that sharing does not destroy
needed information.

A substring expression in an EQUIVALENCE list must be an integer constant expression.

Character entities may be equivalenced to one another. The length of the equivalenced entities are
not required to be the same.

If an array name appears in an EQUIVALENCE statement, it may be followed by a parenthesized list
of subscripts. Each subscript must be an integer constant expression and when evaluated may be
positive, negative or zero. Such a list specifies a particular array element.

Use of an array name without a subscript list in an EQUIVALENCE list has the same meaning as using
a subscript list which specifies the first array element. A subscript list may contain ~it~~tpp~
~~:~~~r~p~:~t d subscripts, where d is the number of dimensions in the array declaration for that
particular array. If the list has d subscripts, it refers to the array element in the usual way.if~~Et.

't;~'~lt~~I~~;;::::li~·~I~~l~·~lr~:;it";I~111
......•.. ~~;:~~~ •• ~ ····· .. ····.p~r~f~t~.~~~~~~rr~y~l~ffl~~'m~~~.·~~~~lm~~m~t·r~t~~r.~~~~·~~~ •

................• ~*~rnp.J~k.......·R~:fi~~.~h~·c;llm~~$ip~$·:p.~R~,~ .•• ~,··~.~~V~J~i'lq'·.~fe,r~Jl¢~.,ARR~{~)
•......•. h·'I~m~nt~~~.Ij~l~h~.·'~~l;

8244.2
UP-NUMBER

(

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

6-11
PAGE

Equivalencing elements in two different arrays may implicitly equivalence other elements of these
arrays.

If an entity appears in more than one list. the implication is that all elements of both lists share the
same storage and these lists are combined into one single list.

Sharing is accomplished on the basis of storage words. The number of words needed for internal
representation of the various data types is listed in Table 6-2.

Examples:

C
C

C
C
C
C
C

Table 6-2. Storage Units Required for Data Storage

Data Type Words

INTEGER

REAL

DOUBLE PRECISION 2

COMPLEX 2

LOGICAL

CHARACTER* n

REAL AX(10,10), BX, T, Z
INTEGER L
EQUIVALENCE (AX,Z), (BX,L,T)

(see
6.9.1)

Variables AX and Z share the same storage locations,
as do entities BX, Land T.

REAL AA(10,10), BB, Z, CC(10)
INTEGER M(20)
EQUIVALENCE (AA(3,3) ,BB,CC(1)), (BB,Z,M(1))

Array element AA(3,3), variable BB, and array element CC(1)
share the same storage location. BB, Z, and M(1)
share the same locat ion. Because entity BB appears in both
lists, the lists are combined so that AA(3,3), BB, CC(1),
Z, and M(1) all share the same storage location.

DIMENSION ARR1(8), KARR(3,2)
COMPLEX COMPA(1 ,2,2) ,CA
DOUBLE PRECISION DOUBA(2,2)
LOGICAL L(10)
EQU I VALENCE (~QMp*{l)·, ARR1 (1)) ,

8244.2
UP-NUM8ER

C
C

CA

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

EQUIVALENCE(COMPA(l), ARR1(1))

UPDATE LEVEL
6-12

PAGE

Based on storage word requirements, the EQUIVALENCE
statement causes the fol lowing locations to be shared:

COMPA(l,l,l)

COMPA(l,2,l)

COMPA(l,l,2)

COMPA(1,2,2)

DOUBA/1,l)

DOUBA(2,l)

DOUBA(l,2)

DOUBA(2,2)

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(1)), (B,C(2))

ARR1(1)
ARR1(2)
ARR1(3)
ARR1(4)
ARR1(5)
ARR1(6)
ARR1(7)
ARR1(8)

KARR(l,l) L(1)
KARR(2,1) L(2)
KARR(3,l) L(3)
KARR(1,2) l(4)
KARR(2,2) L(5)
KARR(3,2) L(6)

L(7)
L(8)
L(9)

L(10)

C Character variables whose names appear in equivalence have
C have the same fi rst character storage unit. The EQUIVALENCE
C statement in this example causes the following locations
C to be shared:

word 1 word 2~ I I I
~A >1

1< B >1

~C(l) >1< C(2)--7I

C Note the fourth character position of A, the fi rst
C character of B, and the first character position
C of C(2) all occupy the same storage location.
C The cross-hatched area is unal located.

*
*
*
*

I NTEGER I, J
CHARACTER*3 CX
~QUivALl:~Nq~(J;·q~(~~~fJ~'~;¢X)

Once the equivalence of I is made to the thi rd storage
byte of CX, the equivalence of J to the fi rst storage
position of CX would require J to begin on a nonword
boundary which is in error.

8244.2
Uf4IIUMaER

(,

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

6.5. COMMON Statement

Purpose:

UPDATE LEVEL
6-13

PAGE

The COMMON statement provides a means of sharing storage among various program units.

Form:

COMMON [I [C) I] n [. n] ... [[.] I [C) I n [. n] ...] ...

where:

c is a common block name. The variable c must satisfy the definition of a symbolic name
(see 2.2.2). If the first c is omitted. the first two slashes are optional.

n is a variable name. an array name. or an array declaration.

Description:

The COMMON statement allows the user to name a storage area (a common block) to be shared by
program units and to specify the names of variables and arrays which are to occupy this area. This
permits:

• Different program units to refer to the same data without using arguments.

• Unrelated data from different program units to share the same storage.

• A single allocation of storage for variables and arrays. used by several program units.

The variables and arrays which appear in the list following a common block specification are declared
to be in that common block.

If a common name. c. is omitted. blank common is assumed. Otherwise. the common block is a
labeled common identified by the name c. There may be only one blank common block in an
executable program. However. there may be many labeled common blocks.

A labeled or blank common specification may appear more than once in a COMMON statement or
may appear in more than one COMMON statement. The list of variables and arrays following such
successive appearances of a common block name in a program unit is treated as a continuation of
the list for that block name.

Within a program unit, variables and arrays in a common block are allocated consecutive storage
locations in the same order as they appear in the list. Therefore. the order in which they are entered
is significant when items in the common block are referenced in other program units.

Equivalencing of two quantities that appear in COMMON statements is not possible since. by their
appearance in a COMMON statement, storage is allocated for each.

8244.2
UP-MJM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl

6-14
PAGE

Dimensions of an array to be placed in a common block may be declared in a type statement, in a
DIMENSION statement, or simply by appending the dimension information to the array name in the
COMMON statement itself. However, the array must not be dimensioned more than once.

For a description of storage allocation on common variables, see 6.9.1.

:~:o.:N::.t~t.,m~n'.~o.· ""'t .. m.!fQd~fl.~'.~.~"l·i~;.~ ••• oQ1~" •• ~pnt.I.i1~.~gri.Qf}.t~~:.~~ITI!li'
q;........... "p..bJQ¢~,g~¢!.r~d::jn ,,:t~rMt .Jn~ri~;.q;;Qr:~d~iI.~Qn·9f.~'-iH9i9.~~I..rQil~ .. f,9r.n.m.9. ...
~~~.~~:~Q.MMPiiii:~~~~~~L.j:!~.~~~r~~I~~~~r~Qr~m~j'~~mZHi: r:':··'::::::::::::::::::·;:: 

FORTRAN 77 lists the following differences between labeled common and blank common: 

• Execution of a RETURN or END statement sometimes causes entities in labeled common blocks 
to become undefined, but never causes entities in blank common to become undefined. For 
ASCII FORTRAN, entities in labeled common blocks do not become undefined with the execution 
of a RETURN or END statement. 

• Labeled common blocks of the same name must be of the same size in all program units of an 
executable program in which they appear, but blank common blocks may be of different sizes. 
lA$¢,,:.:FQRT~N:,~p.~$ •• ri~t.:.p.~t.·~~~$·~~~.~~$tr~*-1p.6'.~m'.I.~~~:·~~mmp.~.~~I~~! 

• Entities in labeled common blocks may be initially defined by means of a DATA statement in 
a BLOCK DATA subprogram, but entities in blank common must not be initially defined. ASCII 
FORTRAN allows entities in both labeled common and blank common blocks to be initialized in 
any program unit. 

Examples: 

COMMON A,B,C(5,5) ICOM1/0,M,V,S 
C Variables A, B and array C are placed in the blank 
C common block. Variables D, M, V, and 5 are placed in 
C the common block named COM1. 

COMMON L/C1/X,Y,Z IIM,N 
C Variables L, M, and N are placed in the blank common 
C block. Variables X, Y, and Z are placed in the 
C common block named C1. 



8244.2 
UP-fIIUMBER 

( 

(
~"" 

\ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

6-15 
PAGE 



8244.2 
Ul'-fWMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATElML 

6-16 
PAGE 

I~ 



8244.2 
·~P-NUMBER 

(-

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

6.7. PARAMETER Statement 

Purpose: 

UPOATELML 
6-17 

PAGE 

The PARAMETER statement allows constants to be referred to by symbolic names. This facilitates 
the updating of programs in which the only changes between compilations are in the values of certain 
constants. The PARAMETER statement can be revised instead of changing the constants throughout 
the program. 

Form: 

PARAMETER (n = e [, n = e] ... ) 

or 

where: 

n is any symbolic name (identifier). It is called a parameter constant or the symbolic name 
of a constant. 

e is a constant expression. 

Description: 

The PARAMETER statement is nonexecutable. FORTRAN 77 requires a PARAMETER statement to 
appear before any DATA statements. statement function statements. and executable statements. 
A$q~~·.~QRTR~N·:~i19~·tH~.·p~R~M~eR·$t~t~m~ri~ •• ~9··.pp~~r.~yw:~~r~.~~ .• ~:.prpg~m; However. a 
PARAMETER statement defining a parameter constant must appear physically before that parameter 
constant is referenced. 

If the symbolic name n is of type integer. real. double precision. complex. or d9~~~~pr~~i~ip.ri 
~pmp,,~~,· the corresponding expression e must be an arithmetic constant expression. If the symbolic 
name n is of type character or logical. the corresponding expression e must be a character constant 
expression or a logical constant expression. respectively. 

If a symbolic name of a constant is not of default implied type. its type must be specified by a type 
statement or IMPLICIT statement prior to its first appearance in a PARAMETER statement. If the length 
specified for n is not the standard length as specified in Table 6-1. its length must be specified in 
a type statement or IMPLICIT statement prior to the first appearance of the symbolic name of the 
constant. Its length must not be changed by subsequent statements. including IMPLICIT statements. 

""H~.~~pr~$$ip~ .• ~.·p~~··~.~~y~*prEt~~ipri·~hi~~.Yi~~~$.p9~~t$~~r~~q~~.t~piTIpil~tim~i The operands 
used in e can be any literal constants. parameter constants which have been previously defined by 
other PARAMETER statements. (;r~rty~QRl'R~N+$~ppJi~d,~li~~priil)r~rYf~~~~pn~i A parameter 
constant must not be redefined within the same program unit. The definition of parameter constants 
occurs from left to right within a PARAMETER statement. 

FORTRAN 77 restricts e to a constant expression. Intrinsic function calls are not allowed. (=' Exponentiation is allowed only if the exponent is type integer. 

Note that the compiler may use the common-banked Common Mathematical Library (CML) to do 
compile-time arithmetic. Therefore, a PARAMETER statement requiring a CML call is not allowed at 
a site if the compiler is generated with the clause "USING NO MATH BANKS" on the "COMPILER" 
System Generation Statement (SGS) supplied to the ASCII FORTRAN compiler build. , 



8244.2 
UI'-NUM8ER 

i . 

SPERRY UNIVAC Serie. 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

6-18 
PAGE 

PARAMETER statements requiring compile-time calls to the common mathematical routines are: 

Upon reference to a parameter constant in a FORTRAN source program. the constant value of that 
parameter constant is used by the compiler. No storage is assigned to parameter constants whose 
values can be represented in 18 bits or less . 

•• ~9r:':~.:::~~.~r~p~i~~:: •• 9f.::~qp~~~~~~~~.:,.r~~~.:::~9r: •• ~~~~::.~.~~~:::ifl: :p~aAi~:~1TI~~::'$.t~~~~~~.~i·!~O:.~~~t.~,o~:,. 
~~~~[PQr!l.~~;:~~::.~~.~.:~~: ••• ::': ••••• ::....'"'''''''''' H:::U::H::::U: ,,;;':::, ",,';; ....:. . .. :::. .. .......... .'~""",', 

Examples:

INTEGER A.B
PARAMETER (A=3)
PARAMETER (B=4*A)
C=A+I*B

C A and B have values 3 and 12 respectively at compi Ie
C time. The third statement is interpreted as though
C the statement C=3+1*12 was written there.

C
C

PA~~~r:.§~Rm:g~:':$l~:'~:H:}·+~:):
SIN(5.) wi I I be evaluated at compi Ie time. and 0 is assigned
this value plus 4. yielding 3.0410757.

A parameter constant cannot be used as a constant in a FORMAT statement, or as a length
specification in a typing statement (except for the CHARACTER type statement. where a constant
expression is allowed in parentheses).

/ '

8244.2
UP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

6.S. Initial Value Assignment

UPDATE lEVEL
6-19

PAGE

Initial values may be assigned to variables. arrays. or array elements in the main program or any
subprogram. Initial values are loaded with the executable program. Only variables to which init;al
values are assigned are defined at the start of execution; all other variables are undefined until values
are assigned to them. Initial values may not be specified for the formal arguments of a subprogram.

Initial value assignment is accomplished through the use of DATA statements a~~pf.iril~l~fv~~~~~~$~~
i6pIM~N$IQ,.,~ry~tY~~i~l'I'i~rl~~ For variables and arrays in common blocks. initial values may
be assigned in a BLOCK DATA subprogram (see 7.8).

A data item whose relative address under its location counter in the relocatable element is over 65535
cannot be initialized via a DATA.P'M~N$~QN~prWpliilg statement initialization. All local variables
go under location counter zero or eight. and each common block gets its own location counter.
Attempting to initialize an entity whose relative address is over 65535 (0177777 in octal) results in
an ERROR 010 (see Appendix D).

6.S.1. DATA Statement

Purpose:

The DATA statement initializes variables. arrays. array elements. and character substrings at compile
time.

(-~ Form:

DATA variable-list /const-list / [[.]variable-list /const-list /] ...

Description:

The variable-list is a list of variables. arrays. array elements. substring names. and implied-DO
groups. separated by commas. The format of an implied-DO group is:

(d-list , index = start, stop [. inc])

The d-list is a list of array element names and implied-DO groups.

The index is a scalar integer variable, called the implied-DO-variable. Start, stop, and inc are
integer constant expressions. If implied-DO groups are nested. the start, stop, and inc expressions
of an inner group may include references to the index of an outer group.

An iteration count and the values of the implied-DO-variable are established from start. stop. and
inc exactly as for a DO-loop. except that the iteration count must be positive (see 4.5.4.2). The list
items in d-list are specified once for each iteration of the implied-DO list with the appropriate
substitution of values for any occurrence of the implied-DO-variable index.

Subscript expressions in a d-list must be integer expressions involving only constants. parameter
constants. and implied-DO index variables. However. subscript expressions within a variable-list but
not within a d-list are limited to integer expressions involving only constants and parameter

(~~ constants. Substring expressions must be integer constant expressions.

8244.2
UP-NUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL

6-20
PAGE

The canst-list is a list of constants separated by commas. Each constant in the list may optionally
be preceded by" n*", where n is an unsigned positive integer constant or a positive integer-valued
parameter constant. This notation denotes repetition of the immediately following constant n times.

6.8.5. Other Constants

Table 6-3 indicates the requirements for type matching between a variable-list item and the
matching constant-list item. In general, except for character, statement label, oCtaL and Fleldatii
constants, the types must match. If the types do not match but can be converted, a warning is issued -
and the constant is converted to the type of the variable. If no conversion is possible, the initialization
is not done.

8244.2
IUP-NUMBER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

Table 6-3. Data Initializations

Constant Variable Size Error or Initialization
Type Type Warning Done

INTEGER yes
REAL warning yes

INTEGER COMPLEX same warning yes
LOGICAL size error no

CHARACTER error no
INTEGER warning yes

same yes
size

REAL REAL diff warning yes
size

COMPLEX warning yes
LOGICAL same error no

CHARACTER size error no
INTEGER warning yes

REAL warning yes
same yes
size

COMPLEX COMPLEX diff warning yes
size

LOGICAL error no
CHARACTER error no

LOGICAL LOGICAL yes
nonlogical error no

CHARACTER •.••• ~~y.~~~~ •..••••. yes

H~t~~~m~h1. INTEGER same yes

•·• ••• m~mb.~" ... •··• noninteger size error no

••••••••••••••••••••••••••••••••••••••

CHARACTER error no
noncharacter

r--

•...... ~ •...•.. yes

ii!iiill!iTI~]~iiillilllli
INTEGER yes
REAL*4 yes

···········~~<rmJ ••••• · ••••
REAL*8 error no

lili 1I;!ii;!IIII!"

COMPLEX error no
LOGICAL yes

••••••••••••••••••••••••••••••••

CHARACTER yes

UPOAT£ LEVEl
6-21

PAGE

Conversion Done

no
yes
yes

yes
no

yes

yes

yes
yes
no

yes

no

truncation or
blank fill

no

truncation or
blank fill

no
no

no
truncation or

blank fill

*~.s'q!!Fq~~~p~tPi~~r~q~~~trP~!9~!ITffj#r~~~~i~~~~~~p~~###~ FORTRAN 77 permits only character
variables to be initialized by character constants.

DATA statements are nonexecutable. FORTRAN 77 requires DATA statements to follow all
specification statements.

8244.2
UP-MIM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDA'nLEVEL

6-22
PAGE

:FP~P~~~::~i~~:'~~~:::~:~~~~Q·:ITi~~ij~::~~~n~¥~r::~::Q~!~::~~~~ITi~~~::. ····9::~::.~::~P~F~~~~~i9~::
$.~'''~tF:::.:::: ... :.:.....:;;;;;;:: ... :::::::: .. :.... ;:::••..•• ·h.......h .. :::.';:"

FORTRAN 77 does not permit blank common entities to be initialized and further restricts the
initialization of ~ntities il1 .label.ed c()mmon t()only appe~rwithina. ~L?CKDAT f1.s

A variable, array element, or substring must not be initially defined more than once in an executable
program. Note that storage association from the use of EQUIVALENCE could also result in incorrect
multiple initialization. Care must be taken when initializing character type entities in the same
common block from more than one program unit. If the program units are compiled as separate
relocatable elements and both initialize different character type items, the initialization of some items
may be destroyed during the collection process if the initialized items share the same word of storage.
Character items in common are packed in storage and it is possible to have more than one item
occupying the same word of storage. For this reason, initialization of character type items in common
blocks should be limited to one program unit in the FORTRAN program.

Within a program unit care must be taken when initializing character type entities. Multiple
initializations of the same item or parts of the same item may result in some of the initialization
information being lost. Substring initializations only initialize the character positions specified. Other
character positions within the same word and part of the same variable or array element will have
a value of binary zero unless initialized by other substring initializations.

Examples:

DIMENSION C(10)
DATA A, B/1.2,O.5/, C/10*1.0/

C The constants 1.2 and 0.5 are assigned to A and B,
C respectively, at compile time. Each element in array C
C is assigned a value of 1.0.

DIMENSION IARY(10), LARY(10)
DATA (IARY(I) ,1=1,10) /1,2,3,7*4/, (LARY(I) ,1=1,9,2) /5*0.0/

C The array IARY is initial ized by an impl ied-DO.
C The first three elements in the array have values
C 1, 2, and 3 respectively. The remaining seven elements in
C that array have 4 as their value. The elements LARY(1).
C LARY(3), LARY(5), LARY(7), and LARY(9) are initial ized
C to 0.0. The other elements of LARY are not initialized.

C
C
C
C
C

PARAMETER (02 = 5)
DATA 1/02/

02 is a parameter constant which has 5 as its value.
02 in the DATA statement is interpreted as the
parameter constant and the integer constant 5 is assigned
to the variable I, rather than the octal constant 02 (see
2.2.1.6).

8244.2
UP~UMIIEII

,(,

- ,/'

C
C

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

DIMEN510N A(10)
oA"'~···A7···.!\"·~··· .. ·~qp~~:~·.·:~(if;tilli:.~·~.

UPDATE LEVEL

The first three elements in array A have values
'ABllll', 'CDEll', and 'FGHI' , respectively.

REAL C2(10)/10*98.6/

6-23
PAGE

C This example shows init ial ization in a type statement. AI I
C elements of array C2 are assigned the value 98.6.

[)J\TA.·.·.~·· .• I.:A~~p~Fr·f7·;·· •• ·~·.·lQQ~QZ1Qjl1~j.~.{
C The integer variables J and K receive
C the same initial value, J as a Fieldata constant
C and K as an octa I constant.

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

CHARACTER*1 51
DATA 51(1:1) /'*'/
CHARACTER*2 52
DATA 52 (1 : 1), 52 (2: 2) /' ',' *' /
CHARACTER*3 53
DATA 53(1 :2), 53(3:3) /' ','*' /
CHARACTER*4 54
DATA 54(1:3),54(4:4) /' ','*'/

This example shows character
variables of length n being
initialized to n-1 blanks followed
by an asterisk.

.ql1~RAdtER~j·· .• $1 .• · •• I.·~ ••• ···T·7·· .••.•.•.••
• p""F~ •• ·.$j·(·.'·~·.j.·~·.·.·/~.~·~.I.···· ••••• ·•·•· ••.•.
·CJiAaAC*f,tR*4 •• ·.S2 ..•• I·~ ••• ·· •• ~./·.· •• · ••• ·••
·()AT~· •• ·S~(.~·1Z ••••••• !.'·~.~·I •• •• ••• • ••• · ••.••• ··
CHARACTER*3.···S3 •• ··/·~ •• ······/.···.······.
·OATA.·.$j(.~.~·~·~.····/· .• ~.~./· .. · .. ···•· •. ·.···'·
.CHA.RA¢j"~~~4.·.$4 .,,·· •• ·•· •• ·.1 ••••• ••·•·•·
·[)Aj"A •••• S4'.4·~·.~.·~·· ... ~'·~·~.I·· •• · •••.. · •.. · ••••.
.... ~ ~ .. Thii~ii~~l~i~~ears to show

character variables of length n
being initialized to n-1 blanks
followed by an astf:risk. However,
since there are multiple initializations
involving parts of the same variable
(which is not allowed by the standard),
some initialization information is
lost. The results are unpredictable and may
result in some character positions being
i nit i a liz edt 0 null c h a r act e r s (A5 Clio c t a I
code 000). Note, on some output devices
nulls are dropped giving the appearance
of characters having been placed in
the wrong position.

8244.2
UP-HUMIIER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference

6.9. Storage Assignment

UPDATE LEVEl
6-24

PAGE

The FORTRAN compiler automatically allocates storage for program data and compiler-generated
instructions.

The ordinary operation of the compiler assumes that data and program addresses in the generated
object program will be less than 65536. This, of course, implies that the size of data storage for any
FORTRAN program should be less than 65,536 words. However, with the 0 option on the processor
call statement, the compiler will assume that all data addresses in the program may extend to
262,143 words. This permits the creation of much larger FORTRAN programs (see 10.5).

This facility may be used without restriction regarding the type (scalar or array, common or
noncommon) of data involved. Several points should be considered when using this facility:

• It is only necessary if the last address of the program is greater than 65535 (0177777 octal)
words after collection. Note that if automatic storage is used and an ER MCORE$ is done by
storage management creating addresses greater than 65,535, the 0 option is not needed.

• If the total collected program size will exceed 65,535 words, all FORTRAN program units present
within the program should be compiled with the 0 option.

• This facility should be used only if required since more instructions may be necessary to access
arguments and arrays when the 0 option is used.

• If truncation messages naming the FORTRAN run-time routines are emitted during collection of ""
the user absolute, IN statements may be necessary in the Collector symbolic, naming the user's
own elements and common block names. This should result in the run-time routines being
collected at addresses under 65,536.

If large programs (including those using a total of more than 262,143 words) are required, they may
be structured into smaller components using the BANK statement (see 6.6), and a multibanked
Collector symbolic (see Appendix H).

6.9.1. Data Storage Assignment

The ASCII FORTRAN system assigns storage to user noncharacter type variables in word increments.
Table 6-4 details the amount of storage allocated by variable type in bytes and the alignment of the
variable within that storage.

The first item in a common block list is allocated storage on a word boundary. Subsequent character
items in common are allocated storage in a packed form on byte boundaries which mayor may not
begin on word boundaries. Packed form means there are no unallocated character storage positions
or bytes between two entities in common. The common block structure determines the alignment
of its members.~q~i¥~I~~~lrH~(;I't~r~~~ri~msI69Pmm~ht9rip~~h~r~~t~rl~~m~ is only permitted
when the item in common is word-aligned.ifa~p6cl't~r~Ct~rit~mfpllQWS~Eq~~r~~t~rl~~mlri
(;qrnmql!i~there may be one or more unallocated bytes between the two items since noncharacter data
items must begin on a word boundary.

8244.2
UP-NUMHR

Type
INTEGER

REAL

COMPLEX

LOGICAL

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference I UPOAlt LEVEL

Table 6-4. Storage Alignment and Requirement

Length Storage
4 1 word

single (4) 1 word
double (8) 2 words

single (8) 2 words

Alignment
word boundary
word boundary
word boundary

real part in first word
imaginary part in second

word

·.••· •• '~~~~tJi~J~~Z.····
· •• jm~gr:~rYpi:t"·ih~¢ · ••...• •··•
...... •· · .. • ... ·.··•••••· •• ····WOrd~.·.· •• •·•··•·•·····

word boundary (only least
significant bit is used)

I p";-25

Character items not equivalenced and not in common are allocated storage on word boundaries
except for the following cases:

• Character items of length 2 are allocated storage on word and half-word boundaries.

• Character items of length 1 are allocated storage on byte boundaries.

Character arrays, in common or not, are allocated storage such that there are no unallocated bytes
between the elements of the array.

Storage order and alignment for items not in common is not determined by their appearance in the
program. Storage is allocated by traversing a chain of variables whose order is determined by a hash
function. The FORTRAN programmer should not try to predict storage order or alignment.

~9~~~h~~~~~~PMPI~~~~~~~~~~~@p~iq~$j'p~§.~~~M~~.~lf~~~r~¢~~rh~m$,~n¢~9~img~·fr~Y
~~~rn~J)~!·.p··~g~J)·.ql:l·WQf:g •• .,QtlJ)~~ri!lt~. 

Examples: 

REAL E(5) 

1 E( 1) 
2 f----=E"'=(2,.;-) -~ 

Array E occupies five words. 

3 E(3) 
4 f----=E,;-;(4,.;-) -~ 

5 E(5) 
'-----'-!..-_---' 



8244.2 
UP-NUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

DOUBLE PRECISION D 

~II------~ 

1 Z real 
2 part 
3 Z imaginary 
4 part 

CHARACTER*2 A, B*3,C 
COMMON IC 1 I A, B, C 

word 1 
I 

~ A * B 

Variable D occupies two words. 

Variable Z occupies four words. 

word :z id I I 
~IE C ~ 

UPOATELML 
6-26 

PAGE 

Since A, B, and C are scalars in common, they are allocated storage in a packed form. The 
cross-hatched area is unallocated. 

CHARACTER*6 F(3) 

word word 2 word 3 word 4 word 5 ;J 
I I I I E/X 

IE-IE ---F(1) ---~~I~E --~ F(2) ---~~If--( ---F(3) ---41~1 

Assuming array F begins on a word boundary, F is allocated five words of storage in a 
packed form. The cross-hatched area could be allocated to character items of length 1 
or 2 or the area could be allocated to items in common or equivalenced to F. 

"'-." .""7' 



8244.2 
UP-NUMBER 

(~ 

(./ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

6.9.2. Location Counter Usage 

UPDATE LEVEl 
6-27 

PAGE 

The instructions and data generated by the ASCII FORTRAN compiler are allocated by function to 
several location counters. The location counters used and their function are described in Table 6-5. 
For a description of the automatic storage feature. see 8.5. 1 (CQMf'~~~R$~~~~m~ritppIi9ri$ 
[)~'J'A.::UAQIO~rii:lPAtAII!IlFl~I.J$~ . 

Table 6-5. Location Counter Usage 

Compiler Options 

Location No Automatic Storage or o Option Without Automatic Storage 
Counter o Option Automatic Storage 

0 local (noncommon) local variables not used 
variables 

1 all program instructions instructions instructions 
not resulting from I/O 
lists 

2 blank common blank common blank common 

3 INFO-O 1 0 diagnostic diagnostic tables diagnostic tables 
tables (see 10.7.2) 

4 I/O packets. I/O list I/O packets and list not used 
instructions. FORMAT instructions. FORMAT 
statement text. and NAMELIST text. 
NAMELIST statement parameter lists. 
text constants 

5 not used not used automatic-storage 
initialization literals 

6 parameter lists not used not used 

7 not used not used automatic-storage 
initialization code 

8 not used not used local variables appearing 
in SAVE statement 

9 not used not used not used 

10 constants not used not used 

11 and labeled common labeled common labeled common 
greater 





8244.2 
UI4IUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

7-1 
PAGE 

7. Function and Subroutine Procedures 

7.1. Procedures 

The term procedure refers to a code mechanism which performs a particular computation. FORTRAN 
supports three general types of procedures: 

• A function procedure which is invoked by the appearance of the function name followed by its 
parameter list in an expression. A function returns a value which replaces the name in the 
evaluation of the expression. 

• A subroutine procedure which is invoked by the appearance of its name in a CALL statement. 
A subroutine does not return a value, although it may modify the values of variables. 

• A main program procedure which is invoked by action of the operating system, usually as a result 
of the @XaT Executive control statement. 

Subroutines and functions are referred to collectively as subprograms. 

A program consists of a main program and zero or more subprograms. 

Subprograms may be external 9fi~~~r~~~; One or more program unit groups may be compiled under 
one processor call card (@FTN). A program unit group is composed of the external program unit and 
any internal subprograms contained in the external program unit. For example: 

@FTN, I S NAME 

@EOF 

PROGRAM MAIN 

END 
SUBROUTINE IN 

END 
FUNCTION SOLVE 

END 



8244.2 
UP-ftUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I UPDATE lEVEL 

I 7-2 
PAGE 

The source input to the ASCII FORTRAN compiler may consist of one or more program units (see 
10.2.1). If a main program is present in the source input, then it must physically be the first program 
unit in the input. 

The relocatable binary elements produced by the ASCII FORTRAN compiler (or any other SPERRY 
UNIVAC Series 1100 Operating System language processor) are combined into an executable 
absolute element by the Collector. 

In addition to subroutines and functions, FORTRAN supports a third type of subprogram, the BLOCK 
DATA subprogram. Such a subprogram contains no executable code and is used solely for the 
assignment of initial values to variables in COMMON blocks. A BLOCK DATA subprogram cannot be 
called. BLOCK DATA subprograms are described in 7.8. 

7.2. Procedure References 

The code represented by a procedure name is executed when the name of the procedure is 
encountered. This name is followed by an actual parameter list. If a function has no parameters, 
it is referred to with a void parameter list. that is, (). Subroutine references must follow the keyword 
CALL in a CALL statement. If the subprogram is used as an argument for another subprogram, it must 
appear previously with an explicit actual argument list or be identified in an EXTERNAL statement 
(see 7.2.3). When a subprogram is used as an argument. it is never followed by a parameter list and 
the code associated with the procedure is not executed at this point. If an intrinsic function is used 
as an argument for another subprogram, it must be identified in an INTRINSIC statement (see 7.2.4). 

The following paragraphs describe function references (except statement functions, which are 
described in 7.4.1.2), subroutine references, and the EXTERNAL and INTRINSIC statements. 

7.2.1. Function References 

A function is referenced by the appearance of its name with an explicit actual parameter list. The 
form of a function reference is: 

f ( [a[ ,a] ... ] ) 

where f is the name of the function. (The name f must not appear both as the name of a function 
and as the name of a subroutine in the same program unit.) Each a is an actual argument and must 
match the corresponding formal parameter of f in type and usage (see 7.5). The arguments can be 
FORTRAN expressions, array names, function (intrinsic function, external procedure, or dummy 
procedure) names, qt:~~~~~m~~*'~~~J~ The number of arguments may not exceed 150. 

A reference to a function causes the computation indicated by the function definition to be performed. 
The value returned by the function is used to determine the value of the expression in which the 
reference occurs. The value returned is assumed to be of the type indicated by the first character 
of the name f, unless f has appeared in a type statement. or unless the first character of f has 
appeared in an IMPLICIT statement. 



8244.2 
UI4tUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-3 
PAGE 

If an external procedure name appears in an actual argument list without an explicit actual argument 
list, the procedure name is passed to the called function. If an external procedure name appears 
without an explicit actual parameter list. it must have appeared previously with an explicit actual 
argument list or in an EXTERNAL statement (see 7.2.3). 

7.2.2. Subroutine References 

A subroutine is referred to by the appearance of its name following the keyword CALL in a CALL 
statement. The form of a CALL statement is: 

CALL 5 [ ( [a[ ,a] ... ] ) ] 

where 5 is the name of the subroutine. (The name 5 may not appear both as the name of a subroutine 
and as the name of a function in the same program unit.) Each a is an actual argument and must 
match the corresponding formal parameter of 5 in type and usage (see 7.5). The arguments can be 
FORTRAN expressions, array names, function (intrinsic function, external procedure, or dummy 
procedures) names, or statement labels. The number of arguments may not exceed 150. 

When ;t statement label appears as an actual argument. it is written as * n , [$h.;pr$6.~ where n 
is the statement label. The corresponding formal parameter must be an asterisk (*) Qrpqrt~~qy 
~vm~p~{$~ (See 7.6.) External procedure names are used in the same manner as function references 
(see 7.2.1). 

A reference to a subroutine results in execution of the body of the subroutine. When execution of 
the subroutine is complete, the calling routine is resumed at the statement following the call, or at 
one of the statement labels appearing in the parameter list of the CALL statement. 

7.2.3. EXTERNAL Statement 

Purpose: 

The EXTERNAL statement informs the compiler that a programmer-written subprogram exists 
external to the program unit. 

Form: 

EXTERNAL a[,a] ... 

or: 

where: 

a is a symbolic name. 



8244.2 
UP-MJM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Description: 

UPDATE lEVEL 
7-4 

PAGE 

The EXTERNAL statement establishes that each a is a subprogram (that is, function or subroutine) 
name, and is not a FORTRAN-supplied function or a variable. This statement is required if the first 
reference to a (excluding the appearance of a in other specification statements) is without an explicit 
actual argument list. Thus a subroutine or function name which is not called, but only passed as an 
actual argument, must appear in an EXTERNAL statement. This holds for internal subprogram names 
also. 

The FORTRAN 77 standard specifies that any user-supplied function or subroutine name passed as 
an argument must appear in an EXTERNAL statement. 

If a name a in an EXTERNAL statement is the same as a FORTRAN-supplied intrinsic function name, 
the name a will be treated as a user-supplied subprogram name. The name a loses all properties 
which are associated with the FORTRAN-supplied function: type, automatic typing, required type and 
number of parameters. If a is referenced as a function, its type will be determined from the first 
letter of the name, unless a appears in an explicit type statement, or unless the first character of 
a appears in an IMPLICIT statement. 

The EXTERNAL statement is a specification statement and must precede any executable statements. 
In addition, any reference to a name a in a statement function definition, other than as a formal 
parameter of the statement function, must follow the EXTERNAL statement. 

·FQrH.:d~"~fNi)'l~Q~.·QfJQq~~rtQ!Q~".1 :fQI~~.fp[n~~m~~::Q~~d·Hi ·:~~T~~~~JJ:~~~1~m~~t~::~nf:Qt~fn"!. 
~~qp[qQr~m~~·~~::~M~J.~ .,........ . ........ ; ..................................................... : ..• : .. : .......... ·• ••• • •••• ···· ••• : •• ·· •• n.··· ... : .. · ...... ······· ........................... " ... , ...... . 

Example: 

C 
C 
C 

EXTERNAL COMP1, COMP2 

CALL PROG(COMP1, VAR1) 

CALL PROG(COMP2, VAR2) 

END 
The first ca II passes the name of subprogram COMPl 
as an argument of subroutine PROG. The second cal I 
passes the name of subprogram COMP2. 

,~, 



8244.2 
UP-NUMBER 

(' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.2.4. INTRINSIC Statement 

Purpose: 

UPDATE LEVEl 
7-5 

PAGE 

An INTRINSIC statement is used to identify a symbolic name as representing an intrinsic function (see 
7.3.1). It also permits a name that represents a specific intrinsic function to be used as an actual 
argument. 

Form: 

I NTR I NS I C f [, f] ... 

where f is an intrinsic function name. 

Description: 

Appearance of a name in an INTRINSIC statement declares that name to be an intrinsic function name. 

If a specific name of an intrinsic function is used as an actual argument in a program unit, it must 
appear in an INTRINSIC statement in that program unit. The names of intrinsic functions for type 
conversion (INT, IFIX,H~"X~ IDINT,JPFJ~~ FLOAT, REAL, DBLE,PF~QAiTJP~~~4~ CMPLX,p¢~p~X~ 
ICHAR, CHAR, .UPPERC;LQWERC, and for choosing the largest or smallest value (MAX, MAXO, ........................................................... 

AMAX 1, DMAX 1, AMAXO, MAX 1, MIN, MINO, AMIN 1, DMIN 1, AMINO, MIN 1) must not be used as 
actual arguments. 

Only one appearance of a symbolic name in all of the INTRINSIC statements of a program unit is 
permitted. Note that a symbolic name must not appear in both an EXTERNAL and an INTRINSIC 
statement in a program unit. 

Example: 

INTRINSIC SIN 
CALL SUB(SIN,COS) 

C The intrinsic function name, SIN, is passed as the first argument 
to subroutine 

C SUB. The real scalar variable COS is passed as the second 
argument. 



8244.2 
UI4tUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3. FORTRAN-Supplied Procedures 

UPDATELML 
7-6 

PAGE 

The ASCII FORTRAN system provides a set of precoded procedures. called intrinsic procedures. for 
the convenience of the programmer. These procedures are broken down into three groups: 

• Intrinsic functions 

These groups are described in detail in the subsections which follow. 

References to certain intrinsic procedures cause code to be generated which performs the requested 
action at the point of the reference. Such procedures are called inline procedures. References to 
the other intrinsic procedures result in calls to library subprograms; these procedures are called library 
procedures. The inline or library nature of each intrinsic procedure is specified in its respective 
description. 

7.3.1. Intrinsic Functions 

Numerous intrinsic functions (sometimes called built-in functions) are provided with the processor. 
These are not written or modified by the programmer. However. their actual form and manner of 
referencing corresponds to that of a subprogram defined by a FUNCTION statement in a source 
module. These functions always return one value (function value) to the calling statement and perform 
computations frequently needed in FORTRAN programs. 



8244.2 
Ul4IUMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE L£VEL 

7-7 
PAGE 

The mathematical and character intrinsic functions are described in Table 7-2. The column entitled 
Proc Type in Table 7-2 indicates whether the associated reference causes code to be generated 
which performs the necessary computation (inline) or results in a call to a library element. In the 
function descriptions, the notation pvexpression denotes the principal value of the multiple-valued 
complex expression. 

An intrinsic function is referred to in an expression as if it were a single value or user function. 

All trigonometric angles are expressed in radians. 

The type of an intrinsic function may be declared in the program unit that contains a reference to 
it. However, the declared type must match the type specified for the function in Table 7-2. The 
intrinsic function name retains its automatic typing attribute. 

If an intrinsic function name appears in an EXTERNAL statement, the name becomes an external 
procedure name. If an intrinsic function name appears in an explicit typing statement which differs 
from the type associated with the name, the name loses its intrinsic properties. The name could be 
a user-supplied function or a variable name, depending on the use of the name. Other names for 
the same function retain their automatic typing attribute. 

If an intrinsic function name first appears in the program unit in an executable statement with no 
following parentheses or arguments, the name is assumed to be a scalar variable name. 

When an intrinsic function is being used as an actual argument, only a specific intrinsic function name 
may be used. In addition, the specific intrinsic function name must have appeared in an INTRINSIC 
statement. See 7.2.4 for a list of intrinsic function names that cannot be used as actual arguments. 

An IMPLICIT statement does not change the type of an intrinsic function. 

AMOD, MOD, and DMOD are not defined when the value of the second argument is zero. 



8244.2 
lJf'...NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Function Description 

rc ne 
y = Arcos x 

(y in radians) 
-1sxs1 

rc tangent 
y = Arctan x 
y = Arctan (x, / x2) 

(y in radians) 
Ine 
y = sin x 

(x in radians) 

ne 
y = cos x 

(x in radians) 

y = tan x 
(x in radians) 

Table 7-2. Intrinsic Functions 

UPDATE lEVEL 

Generic Name 

7-8 
PAGE 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Function Description 

va ue 
y = largest value from 

Ix, ..... xnl 
y ~ xi' 1 ~ i ~ n 

Table 7-2. Intrinsic Functions (continued) 

Minimum ue 
y = smallest value from 

Ix, ..... xnl 
y ~ xi' 1 ~ i ~ n 

AMOD 
DMOD Double 

UPDATE LEVEL 

Generic Name 

7-9 
PAGE 



8244.2 
~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Table 7-2. Intrinsic Functions (continued) 

Function Description 

TYPE CONVERSION 
Conversion to integer 

int(a) (see note 2) 

Conversion to real 
(see note 3) 

Conversion to double 
(see note 4) 

Conversion to complex 
(see note 5) 

Conversion to 
integer (see note 6) 

Conversion to character 
(see note 6) 
Truncation - int(a) 

(see note 2) 
Nearest whole number 

int(a+.5) if a ~O 
int(a-.5) if a<O 

Nearest integer 
int(a+.5) if a~O 
int(a-.5) if a<O 

Transfer of sign 
y = IXtl if x2 ~ 0 

= -Ix I if x < 0 
Positive difference 

y = x, - min(x"x2) 

Arguments 
Function No. Type 

Name 

INT 
IFIX 
·H .. FIX ............ .. ... . .............. . 

IbINt:·U,. 
·ID·FIX .. · .. · ...... ;,: .. ~ ;;.::,.:.: .:i ~;H: ~L ~~ 

SNGL 

CHAR 

AINT 
DINT 
ANINT 
DNINT 

NINT 
IDNINT 

ISIGN 
SIGN 
DSIGN 
101M 
DIM 
DDIM 

Integer 
Real 
Real 
Real:.···················· 

Complex 
P±¢qmp~~*. 
Integer 
Real 
Double 
Complex 
P+¢qmp~~* 
l~1f9.r· •. ··:··.··.:.: 
R~~~···.· .... ·.· .. :.· 
PQy~~~·.·:: 
·c.qmp~~~:· 
~qmp~~~ 
Character 

Integer 

Real 
Double 
Real 
Double 

Real 
Double 

2 Integer 
Real 
Double 

2 Integer 
Real 
Double 

Function 
Value 

Integer 

Character 

Real 
Double 
Real 
Double 

Integer 

Integer 
Real 
Double 
Integer 
Real 
Double 

Proc. 
Type 

Inline 

Inline 

Inline 

Library 

Inline 

Inline 

Inline 

UPOATELMl 

Generic Name 

INT 

AINT 

ANINT 

NINT 

SIGN 

DIM 

7-10 
PAGE 



8244.2 
UP-NUMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Table 7-2. Intrinsic Functions (continued) 

Arguments 
Function Description Function No. Type 

DPROD 2 Real Double Inline 

LEN Character Integer Inline 

INDEX 2 Character Integer Library 

LGE 2 Character Logical Inline 

LGT 2 Character Logical Inline 

LLE 2 Character Logical Inline 

LLT 2 Character Logical Inline 

UPDATE LEVEL 

Generic Name 

7-11 
PAGE 



8244.2 
UI'-MJM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATtlEVEl 

7-12 
PAGE 

NOTES: ,. A complex value is expressed as an ordered pair of reals, (xr,xi), where xr is the real part and 
xi is the imaginary part. 

2. For x of type integer, int(x)=x. For x of type real or double precision, there are two cases: if 
/ x / < " int(x)=O; if / x /~ " int(x) is the integer whose magnitude is the largest integer that does 
not exceed the magnitude of x and whose sign is the same as the sign of x. For example: 

int (-3. 7) = -3 

For x of type complex, int(x) is the value obtained by applying the above rule to the real part 
of x. For x of type real, IFIX(x) is the same as INT(x). 

3. For x of type real, REAL(x) is x. For x of type integer or double precision, REAL(x) is as much 
precision of the significant part of x as a real datum can contain. For x of type complex, REAL 
(x) is the real part of x. 

For x of type integer, FLOA T(x) is the same as REAL(x). 

4. For x of type double precision, OBLE(x) is x. For x of type integer or real, OBLE(x) is as much 
precision of the significant part of x as a double precision datum can contain. For x of type 
complex, OBLE(x) is as much precision of the significant part of the real part of x as a double 
precision datum can contain. 

5. CMPLX may have one or two arguments. 

For x of type integer, real, or double precision, CMPLX(x) is the complex value whose real part "'-
is REAL(x) and whose imaginary part is zero. 

For x of type complex, CMPLX(x) is x. 

For x of type complex* 16, CMPLX(x) is the complex value whose real part is REAL(x) and whose 
imaginary part is REAL(OlMAG(x)). 

CMPLX(x"xi is the coniplex value whose real part is REAL(x,) and whose imaginary part is 
REAL(xi· 

OCMPLX may have one or two arguments. 

For x of type integer, real, or double-precision, OCMPLX(x) is the complex* 16 value whose real 
part is OBLE(x) and whose imaginary part is zero. 

For x of type complex* 16, OCMPLX(x) is x. 

For x of type complex, OCMPLX(x) is the complex* 16 value whose real part is OBLE(x) and 
whose imaginary part is OBLE(AIMAG(x)). 

OCMPLX( x "x 2) is the complex* 16 value whose real part is OBLE(x ,) and whose imaginary part 
is OBLE( x2). 



8244.2 
UP-HUMIIBI 

( 

( / 

6. 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

7-13 
PAGE 

ICHAR provides a means of converting from a character to an integer. based on the position 
of the character in the ASCII collating sequence. The first character in the collating sequence 
corresponds to position 0 (the ASCII control character NUL, which has octal representation 000), 
and the last one corresponds to position 255 (octal representation 0377). 

The value of ICHAR(x) is an integer in the range: O~ ICHAR(x)!. 255, where x is an argument 
of type character of length one. The position of that character in the ASCII collating sequence 
is the value of ICHAR. 

For any ASCII characters c, and c2' (c, .LE c2) is true if and only if (ICHAR(c,) .LE ICHAR(c2) 
is true, and (c, .EO. c2) is true if and only if (ICHAR(c, .EO. ICHAR(c2)) is true. 

CHAR( i) returns the character in the ;th position of the ASCII collating sequence. The value is 
of type character of length one. The parameter i must be an integer expression whose value 
must be in the range O!. i!. 255. 

ICHAR(CHAR(i)) = i for O!. i!. 255. 

CHAR(ICHAR(c)) = c for any ASCII character c. 

7. All angles are expressed in radians. 

8. The result of a function of type complex is the principal value. 

9. All arguments in an intrinsic function reference must be of the same type. 

10. INDEX(x "x 2) returns an integer value indicating the starting position within the character string 
x" of a substring identical to string x 2" If x 2 occurs more than once in x" the starting position 
of the first occurrence is returned. 

If x 2 does not occur in x" the value zero is returned. Note that zero is returned if LEN(x ,) < 
LEN (x2). 

11. The value (that is, the contents) of the argument of the LEN function need not be defined at the 
time the function reference is executed. 

12. Using the intrinsic functions LGE, LGT, LLE, or LL T with arguments op 1 and op2 (both character 
expressions) performs the same comparisons and returns the same result (. TRUE or . FALSE) as 
the character relational expression op 1 relop op2, where relop is .GE, .GT., .LE, or .L T., 
respectively. 



8244.2 
UP-MJMIIEII 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOAl£ lEVEl 

7-14 
PAGE 



8244.2 
UI41UMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

7-15 
PAGE 



/ 
8244.2 I 

UI4IU 

, , 
, ' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-16 
PAGE 





8244.2 
UP-NUMaER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The format. f, may be any of the following: 

Code Format Indicated 

o Octal 
1 Not used 
2 LOGICAL 
3 Not used 
4 INTEGER 
5 REAL 
6 DOUBLE PRECISION 
7 COMPLEX 
8 COMPLEX * 16 
9 CHARACTER 

Example: 

CALL DUMP (LOWER, UPPER, 0) 

UPDATE LEVEL 
7-18 

PAGE 

C This statement indicates that storage should be dumped 
C in octal format starting at location LOWER and ending 
C with location UPPER. Execution is then terminated. 

7.3.3.2. PDUMP 

Purpose: 

The PDUMP subroutine dumps the contents of specified storage to the system output file and 
continues execution. 

Form: 

CALL PDUMP (a,b,n 

where: 

a and b 

f 

Description: 

are variables, array elements, or arrays that indicate the limits of storage to be 
dumped. 

indicates the dump format. The format possibilities are the same as for the DUMP 
subroutine (see 7.3.3.1). 

A dump of storage contents between a and b, inclusive, is made according to format f and program 
execution is resumed. 

Either a or b may be the upper or lower limit of storage. Both must be in the same program unit 
or the same common block. 



8244.2 
UP-MJMIIER 

( 

(-' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

Example: 

CALL PDUMP (LOWER, UPPER, 5) 
C A dump is made of information between locations 
C UPPER and LOWER. This data is output in single 
C precision real format to the system output fi Ie and 
C normal program execution is then resumed. 

7.3.3.3. DVCHK 

Purpose: 

The DVCHK subroutine tests for a previous divide-check exception. 

Form: 

CALL DVCHK (i) 

7-19 
PAGE 

where i is an integer variable or array element which will indicate if the divide-check indicator is 
turned on or off. 

Description: 

DVCHK tests the divide-check indicator to see if either a fixed- or floating-point divide-check has 
occurred. 

The variable i is then set to 1 if the divide-check indicator was on, or it is set to 2 if the indicator 
was off. 

After testing, the divide-check indicator is turned off. 

See DIVSET (7.3.3.9). 

Example: 

C An example of a divide exception is a Fixed Point Divide 
C Exception. This is recognized when the division of a 
C fixed-point number by zero is attempted. Such an 
C exception would occur during execution of the fol lowing 
C statements: 

C 
C 

C 
C 

INTEGER DIVISR,DIVDND,TROUBL 
DIVISR = 0 
DIVDND = 8 
QUOTNT = DIVDND/DIVISR 

CALL 

This would turn the divide-check indicator on, so the 
subsequent statement: 

DVCHK(TROUBL) 
would set variable TROUBL to 1 and turn the indicator 
off. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.4. OVERFL 

Purpose: 

The OVERFl subroutine tests for a previous exponent overflow. 

Form: 

CAll OVERFl (i) 

where i is an integer variable or array element. 

Description: 

UPOATELML 
7-20 

PAGE 

OVERFl determines whether or not an exponent overflow has occurred since the last call to 
OVERFl/OVUNFl (or the start of the program. if OVERFUOVUNFL has not been previously called). 
The parameter i is assigned a value which corresponds to the current overflow status of the program. 

If an overflow condition has occurred. the value returned in i is 1. An exponent overflow occurs 
whenew~r the absolute value of the result of a floating-point addition. subtraction. multiplication. or 
division is greater than or equal to 2127 (approximately 1038) for single precision or 2 1023 
(approximately 10307) for double precision. 

If no overflow has occurred. the value returned in i is 2. 

After the value of i has been set. the overflow indicator is cleared. 

See OVFSET (7.3.3.8). 

Example: 

A = 1. OE20 

B = A*A 
CAll OVERFl (LAST1) 

C Assuming that A has not been changed. the value returned 
C in lAST1 is 1. indicating exponent overflow has occurred. 

./ '", 



8244.2 
I 

UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.5. UNDRFL 

Purpose: 

The UNDRFL subroutine tests for a previous exponent underflow. 

Form: 

CALL UNDRFL (i) 

where i is an integer variable or array element. 

Description: 

UPDATE LEVEL 
7-21 

PAGE 

UNDRFL determines whether or not an exponent underflow has occurred since the last call to 
UNDRFL/OVUNFL (or the start of the program, if UNDRFL/OVUNFL has not been previously called). 
The parameter i is assigned a value which corresponds to the current underflow status of the 
program. 

If an underflow has occurred, the value returned in i is 3. An underflow occurs whenever the absolute 
value of the result of a floating-point addition, subtraction, multiplication, or division is not equal to 
zero and is less than 2-128 (approximately 10-38) for single precision or 2-1024 (approximately 
10-308) for double precision. 

If no underflow has occurred, the value returned in i is 2. 

After the value of i has been set, the underflow indicator is cleared. 

See UNDSET (7.3.3.7). 

Example: 

A = 1.0E-20 

B = A*A 
CALL UNDRFL (LAST1) 

C Assuming that A has not been changed, the value returned 
C i n LAST 1 i s 3. 



8244.2 
UI4UoI8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.6. OVUNFL 

Purpose: 

The OVUNFL subroutine tests for a previous exponent overflow or underflow. 

Form: 

CALL OVUNFL (i) 

where ; is an integer variable or array element. 

Description: 

UPDATE LEVEL 
7-22 

PAGE 

QVUNFL determines whether or not an exponent overflow or underflow has occurred since the last 
call to OVUNFL/QVERFL/UNDRFL (or the start of the program, if QVUNFL/QVERFL/UNDRFL have not 
been previously called). The parameter ; is assigned a value which corresponds to the current 
overflow/underflow status of the program. 

If only an overflow condition has occurred, the value returned in i is 1. An exponent overflow occurs 
whenever the absolute value of the result of a floating-point addition, subtraction, multiplication, or 
division is greater than or equal to 2127 (approximately 1037) for single precision or 2 1023 
(approximately 10307) for double precision. 

If only an underflow condition has occurred, the value in i is 3. An underflow occurs whenever the 
absolute value of the result of a floating-point addition, subtraction, multiplication or division is not 
equal to zero and is less than 2- 128 (approximately 10-38) for single precision or 2-1024 
(approximately 10-308) for double precision. 

If both overflow and underflow have occurred, the value returned in i is 4. 

If no overflow or underflow has occurred, the value returned in ; is 2. 

After the value of ; has been set. the overflow/underflow indicators are cleared. 

Example: 

A = 1.0E20 

B = A*A 
CALL OVUNFL (LAST1) 

C Assuming that A has not been changed, the value returned 
C in LAST1 is 1, indicating only overflow has occurred. 



8244.2 
UP-NUMBER 

{ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.7. UNDSET 

Purpose: 

UPDATE LEVEL 
7-23 

PAGE 

The UNDSET subroutine causes subsequent floating-point underflow exceptions to be flagged. 

Form: 

CALL UNDSET (i) 

where i is an integer expression. 

Description: 

A call to this subroutine allows the next i floating-point underflow exceptions to be captured and 
diagnosed. The following message is generated: 

WARNING: UNDERFLOW FAULT 

In addition. if the program had been compiled with the F or C option. the line number and program 
unit name of the offending statement are printed. After i messages. no more will be printed unless 
another call to UNDSET is made. An i of zero will stop the capture of these faults. 

Checkout debug mode (CZ options) receive an initial automatic default call to UNDSET with a count 
of 20. 

Example: 

@FTN.SIC 
FTN lORl 

1 . 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11 . 

UNO 
04/01/81-12:44( .0) 

COMMON A.B 
PRINT *. 'TEST THE UNDSET ROUTINE' 
A = 1.OE-20 
CALL UNDSET(2) 
B = A*A 
PR I NT *.' ONCE' 
B = A*A 
PR I NT *.' TW ICE' 
B = A*A 
PRINT *. 'THREE TIMES' 
END 

END FTN 28 IBANK 45 DBANK 2 COMMON 

ENTERING USER PROGRAM 
TEST THE UNDSET ROUTINE 

WARNING: UNDERFLOW FAULT 
AT LN. 5 OF MAIN PROGRAM 
ONCE 

WARNING: UNDERFLOW FAULT 
AT LN. 7 OF MAIN PROGRAM 
TWICE 
THREE TIMES 
END PROGRAM EXECUTION 



8244.2 
UI4IUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

I 1-2' 
PAGE 

7.3.3.8. OVFSET 

Purpose: 

The OVFSET subroutine causes subsequent floating-point overflow exceptions to be flagged. 

Form: 

CALL OVFSET ( i) 

where i is an integer expression. 

Description: 

A call to this subroutine causes the next i floating-point overflows to be captured. The message: 

WARNING: OVERFLOW FAULT 

is printed. In addition. if the program had been compiled with the F or C option. the line number and 
program unit name of the offending statement are printed. 

After i messages. the next overflow fault will cause the program to abort. unless another call to 
OVFSET is done first. 

A negative i will cause an abort on the first occurrence. 

An i of zero will stop the capture of these faults. Checkout debug runs (CZ options) automatically 
get an initial default call to OVFSET with a count of 20. 

Example: 

@FTN.SIC OVF 
FTN 10Rl 04/01/81-13:24( .0; 

1 . COMMON A. B 
2. PRINT *. 'TEST THE OVFSET ROUTINE' 
3. A = 1. OE20 
4. CALL OVFSET(2) 
5. B = A*A 
6 . PR I NT *.' ONCE' 
7. B = A*A 
8. PRINT *. 'TWICE' 
9. B = A*A 

10. PRINT *. 'THREE TIMES' 
11 . END 

END FTN 28 IBANK 45 DBANK 2 COMMON 

ENTERING USER PROGRAM 
TEST THE OVFSET ROUTINE 

WARNING: OVERFLOW. FAULT 
AT LN. 5 OF MAIN PROGRAM 
ONCE 



( 

8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

WARNING: OVERFLOW FAULT 
AT LN. 7 OF MAIN PROGRAM 
TWICE 

WARNING: OVERFLOW FAULT 
ARITHMETIC EXCEPTION COUNT EXPIRED - PROGRAM ABORTED 
AT LN. 9 OF MAIN PROGRAM 
ERR MODE ERR-TYPE: 00 ERR-CODE:OO 
ERROR ADDRESS: 032073 BDI: 300017 

7.3.3.9. DIVSET 

Purpose: 

The DIVSET subroutine causes subsequent divide fault exceptions to be flagged. 

Form: 

CALL 0 I VSET ( i) 

where i is an integer expression. 

Description: 

7-25 
PAGE 

( A call to this subroutine causes the next i divide checks to be captured. The message: 

WARNING: DIVIDE FAULT 

is printed. In addition, if the program had been compiled with the For C option, the line number and 
program unit name of the offending statement are printed. 

After i messages, the next divide fault will cause the program to abort, unless another call to DIVSET 
is done first. 

A negative i will cause an abort on the first occurrence. 

An i of zero will stop the capture of these faults. 

Checkout debug runs (CZ options) automatically get an initial default call to DIVSET with a count of 
20. 

Example: 

@FTN,SIC 
FTN 10Rl 

1 . 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

DIV 
04/01/81-13:58(,0) 

COMMON 0, DO, DR 
PRINT *, 'TEST THE DIVSET ROUTINE' 
DR = o. 
DO = 8. 
CALL DIVSET(2) ° = DO/DR 
PR I NT *,' ONCE' ° = DO/DR 
PRINT *, 'TWICE' 



8244.2 
UP-NUMBER 

10. 
11. 
12. 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

a = DOlOR 
PRINT *, 'THREE TIMES' 
END 

END FTN 29 IBANK 45 DBANK 3 COMMON 

ENTERING USER PROGRAM 
TEST THE DIVSET ROUTINE 

WARNING: DIVIDE FAULT 
AT LN. 6 OF MAIN PROGRAM 
ONCE 

WARNING: DIVIDE FAULT 
AT LN. 8 OF MAIN PROGRAM 
TWICE 

WARNING: DIVIDE FAULT 
ARITHMETIC EXCEPTION COUNT EXPIRED - PROGRAM ABORTED 
AT LN. 10 OF MAIN PROGRAM 
ERR MODE ERR-TYPE: 00 ERR-CODE: 00 
ERROR ADDRESS: 032074 BDI: 300017 

7.3.3.10. CMLSET 

Purpose: 

UPDATE LEVEL 
7-26 

PAGE 

The CMLSET subroutine causes subsequent errors occurring in the Common Mathematical Library 
(CML) to be flagged. This includes the mathematical intrinsic functions described in Table 7-2, all 
exponentiation functions, and complex division. 

Form: 

CALL CMLSET ( i) 

where i is an integer expression. 

Description: 

A call to this subroutine causes the next ; CML errors to be diagnosed and control returned back 
to the point following the CML function call. A function result of zero is returned from the intrinsic 
function for the error case. 

After; messages, the next CML error will cause the program to abort, unless another call to CMLSET 
is done first. 

A negative or zero ; will cause an abort on the first CML error. 



8244.2 
U ...... UMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Example: 

@FTN,SC CML 
FTN 10Rl 10/21/80-12:50(6,) 

1 . * 

UPDATE LEVEL 
7-27 

PAGE 

2. * 
3. * 
4. * 

THIS PROGRAM ALLOWS 2 COMMON MATHEMATICAL LIBRARY 
ERRORS TO OCCUR WITHOUT THE PROGRAM BEING ABORTED. 
ON THE 3RD MATH ERROR, THE PROGRAM IS ABORTED. 

5. * 
6. * 
7. 
8. 
9. 
10. * 
11 . 
12. 
13. 
14. 10 
15. * 
16. 901 
17. 

REAL A(5) 
DATA A/25., -25., -16., -4., 4./ 
CALL CMLSET(2) @ALLOW 2 CML ERRORS BEFORE ABORT 

DO 10 I = 1,5 
R = SORT ( A ( I ) ) 
WRITE (6,901) A( I), R 

CONTINUE 

FORMAT ('SORT OF', F5.1, 'IS', F12.3) 
END 

END FTN 23 IBANK 37 DBANK 

ENTERING USER PROGRAM 
SORT OF 25.0 IS 5.000 

ERROR CONDITION IN SORT ROUTINE CAUSED BY 
ARGUMENT UNNORMALIZED OR OUTSIDE ALLOWABLE RANGE 
ARGl = -25.000000 
ARGl OCTAL 572157777777 
SORT REFERENCED AT ABSOLUTE ADDRESS 120304 BDI 300020 
AT LN. 12 OF MAIN PROGRAM 
SORT OF -25.0 IS .000 

ERROR CONDITION IN SORT ROUTINE CAUSED BY 
ARGUMENT UNNORMALIZED OR OUTSIDE ALLOWABLE RANGE 
ARG1 = -16.000000 
ARG1 OCTAL 572377777777 
SORT REFERENCED AT ABSOLUTE ADDRESS 120304 BDI 300020 
AT LN. 12 OF MAIN PROGRAM 
SORT OF -16.0 IS .000 

ERROR CONDITION IN SORT ROUTINE CAUSED BY 
ARGUMENT UNNORMALIZED OR OUTSIDE ALLOWABLE RANGE 
ARG1 = -4.0000000 
ARGl OCTAL 574377777777 
SORT REFERENCED AT ABSOLUTE ADDRESS 120304 BDI 300020 
THIS ADDRESS IS AT LN. 12 OF MAIN PROGRAM 
ER EABT$ ABORT ADR: 104754 BDI: 200020 
PROGRAM INITIATED INTERRUPT: EABT$ 



8244.2 
UP ..... UUBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.11. CHKSV$ and CHKRS$ 

Purpose: 

UPDATE LEVEl 
7-28 

PAGE 

The CHKSV$ and CHKRS$ subroutines perform the SAVE and RESTORE checkout debug commands. 

Form: 

CALL CHKSV$ [( i)] 

CALL CHKRS$ [J i) ] 

@ does a SAVE command 

@ does a RESTORE command 

where i is an integer expression whose value is > O. 

Description: 

These subroutines are available in checkout mode to do a SAVE or RESTORE command (see 10.6.3.12 
and 10.6.3.11). The optional integer argument i would be the version number. 

These subroutines would be useful in making up instructional programs. or games for demonstration. 
The user does not then need to use the full-debug mode of the checkout feature in order to be able 
to do a SAVE command for FTNR to work on. Also. in games or instructional programs. the interactive 
debug facilities get in the way. and a full compilation to execute the program is wasteful and 
unnecessary. With these two subroutines. it would be possible to have whole libraries of programs 
which could easily switch back and forth among themselves. 

NOTE· In any use of FTNR in restoring a previously run program to execution, the user should not 
have opened any nonsymbiont files before processing the corresponding SA VE command. 

7.3.3.12. SSWTCH 

Purpose: 

The SSWTCH subroutine tests one of 12 run condition switches to determine if it is set or not. 

Form: 

CALL SSWTCH (i , j) 

where: 

i is an integer expression indicating which of the 12 switches is to be tested. 

j is the integer variable or array element set equal to 1 or 2 if the tested switch was set or 
not set. respectively. 

Description: 

SSWTCH regards the middle 12 bits (13-24) of the run condition word as 12 sense switches. Bit 
24 corresponds to sense switch 1. bit 23 to sense switch 2. etc. The sense switches can be altered 
by means of the @SETC Executive control statement (see the EXEC Programmer Reference. 
UP-4144.2 (see Preface) ). 



( 

8244.2 
UP-HUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATElMl 

7-29 
PAGE 

If i is 1 through 12 the ith sense switch is tested. If the jth sense switch is set (one), then j is set 
equal to 1. If it is not set, then j is set equal to 2. 

If i <0 or i> 12, an error message is printed and program execution is terminated. 

Examples: 

CALL SSWTCH(3,JFLAG) 
C Assuming the control statement @SETC 0004 is issued 
C be for e ex e cut ion, the va ria b I e J FLAG wi I I be set to 
C 1 indicating sense switch 3 (bit 22 in the run condition 
C wo r d ) iss e t . 

I = 12 
CALL SSWTCH( I ,JFLAG) 

C Assuming the control statement @SETC 0717 is issued 
C before execution, the variable JFLAG will be set to 2 
C indicating sense switch 12 (bit 13 in the run condition 
C wo r d ) i s not set. 

7.3.3.13. SLiTE 

Purpose: 

The SLITE subroutine sets one, or resets all, of the six sense lights which are the sixths of the word 
labeled F2SL T$. 

Form: 

CALL SLITE( i) 

where i is an integer expression indicating which of the six sense lights is to be set. 

Description: 

The word F2SL T$ can be used by the programmer to set flags for conditions of his invention. These 
flags can then be tested with the SLITET function (see 7.3.3.14). 

If i is 0, all sense lights are reset to zero. If i is 1 through 6, the ith sense light will be set to one. 

If i <0 or i > 6, an error message is printed and program execution is terminated. 

Examples: 

CALL SLITE(O) 
C All six sense I ights are reset to zero. 

CALL SLITE(3) 
C The third sense light (S3 of F2SLT$) is set to 1. 



8244.2 
UI4IIUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.14. SliTET 

Purpose: 

UPOATt LEVEL 
7-30 

PAGE 

The SLITET subroutine tests and resets one of the six sense lights which are the sixths of the word 
labeled F2SLT$. 

Form: 

CALL SLI TET (i , j) 

where: 

i is an integer expression indicating which of the six sense lights is to be tested. 

j is an integer variable or array element set equal to 1 or 2 if the tested light is set or reset 
respectively. 

Description: 

If the value of i is from 1 through 6. the ith sense light is tested. If the i th sense light is set (value 
of one). then j is set to 1 and the sense light is reset to O. If the ith sense light is not set (zero). then 
j is set equal to 2. 

If i <0 or i > 6, an error message is printed and program execution is terminated. 

Example: 

CALL SLITET(3,JFLAG) 
C Assuming sense light 3 is set, JFLAG would be set to 
C and sense light 3 would be reset to O. Assuming 
C sense light 3 is not set, JFLAG would be set to 2. 

7.3.3.15. EXIT 

Purpose: 

EXIT terminates execution. 

Form: 

CALL EXIT 

Description: 

The EXIT service subroutine allows programmers to terminate the execution of their programs. 

The EXIT subroutine serves the same purpose as the STOP statement (see 4.8). It is provided primarily 
for compatibility with previous FORTRAN systems. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.16. ERTRAN 

UPDATE LEVEL 
7-31 

PAGE 

The ERTRAN subroutines provide access to several Executive Request (ER) functions. (For details on 
ER functions. see the EXEC Programmer Reference. UP-4144.2 (see Preface).) 

7.3.3.16.1. Input/Output Executive Requests 

Purpose: 

ERTRAN allows the FORTRAN programmer to use some of the input/output Executive Request 
functions. These are: 10$ (requests an operation on an input/output device and returns immediately). 
10W$ (requests an operation on an input/output device and returns upon completion of the 
operation). 101$ (identical to 10$ except that when the operation has completed. an interrupt activity 
is initiated). 10WI$ (combines the features of 101$ and 10W$ - control is returned upon completion 
of input/output and a specified interrupt activity is initiated). 10XI$ (identical to 101$ except that the 
activity making the request exits). WAIT$ (delays execution until the input/output operation controlled 
by a specified I/O packet has been completed). WANY$ (delays execution until any current 
input/output operation is completed). TSWAP$ (closes the current reel for a tape file and requests 
loading of the next reel of the file). UNLCK$ (enables an input/output interrupt activity to reduce its 
switching priority to the priority of the activity which initiated the input/output request). and SYMB$ 
(is a packet-driven ER providing a means to request certain symbiont ER functions. character transfer. 
and some expanded READ$ capability). 

Form: 

CALL { 

sub 

} sub, (pk t) 
sub2 ( pk t [. I abe /] ) 
sub3 ( pk t • I abe I " I abe 12) 

where: 

sub is FWANY or FUNLCK. 

is FlO. FIOI. FIOWI. FIOXI. FTSWAP. or FSYMB. 

is FlOW or FWST. 

is FSTAT. 

pkt is an 8-word or 1 O-word table filled by the user. with input/output packet information. 

label is an optional error return. 

label, identifies the return to be used if the input/output operation is still pending. 

identifies the return to be used if an input/output operation terminated abnormally. 



8244.2 
U ........ UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Description: 

Two basic steps are necessary when using these routines: 

UPDATE lEVEL 
7-32 

PAGE 

• Construct an Executive input/output packet (pkt) exactly as described in the EXEC Programmer 
Reference, UP-4144.2 (see Preface). There must be one 8-word table declared for each file to 
be used simultaneously. For FSYMB the table may be 8 or 10 words. 

• Call the required FlO routine, passing the I/O packet as the first argument of the call. 

The Executive Request is done with register AO pointing to the program-constructed input/output 
packet. This provides the user with full control over the input/output operation and complete error 
analysis capability. 

There are no buffers external to these routines. They are all reentrant at both the program and the 
activity level. 

In order to facilitate creation and manipulation of the input/output packet, a FORTRAN procedure is 
included in the ASCII FORTRAN library file. This procedure contains statement function and 
PARAMETER declarations as detailed after the description of the functions which follow. The 
procedure is made available by the statement: 

INCLUDE libfile. FlOP 

where lib file is the file name of the FORTRAN run-time library file. The file name is site-dependent. / 

Note that this input/output mechanism is entirely independent of standard FORTRAN file control. 
Therefore, no file control tables are built by the FORTRAN system for FlO files. 

If FlO is called, the parameter pkt which points to the input/output packet is picked up, the Executive 
Request function 10$ is referenced, and control is returned immediately to the caller. 

If FlOW is called, the parameter pkt which points to the input/output packet is picked up, the 
Executive Request function 10W$ is referenced and it waits for completion before returning to the 
caller. If the calling syntax did not include the optional error return, the user should check the status 
area of the input/output packet by using the ISTAT statement function as provided in FlOP. If the 
calling syntax did include the error return option, then all abnormal statuses will cause transfer to 
that label. 

If FIOI is called, the parameter pkt which points to the input/output packet is picked up, the Executive 
Request function 101$ is referenced, and control is returned immediately to the caller. Upon 
completion of the input/output operation, the interrupt activity specified in the packet is initiated. 

If FIOWI is called, the parameter pkt which points to the input/output packet is picked up and the 
Executive Request function 10WI$ is referenced. Upon completion of the operation, control is 
returned to the caller and a specified interrupt activity is initiated. 

If FIOXI is called, the parameter pkt which points to the input/output packet is picked up, the 
Executive Request function 10XI$ is referenced, and the calling activity is terminated. Upon 
completion of the input/output operation, a specified interrupt activity is initiated. 



8244.2 
UP-NUMBER 

(,- \ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCIJ) Programmer Reference UPDATE LEVEL 

7-33 
PAGE 

If FWST is called. the parameter pkt which points to the input/output packet is picked uP. the 
Executive Request function WAIT$ is referenced. and a wait is done if input/output is outstanding 
on the packet. Upon completion. a status check is made. In the case of an abnormal completion 
status. a return is done to label. if present. If the calling syntax did not include the error return option. 
control is returned to the instruction following the CALL. 

If FWANY is called. the Executive Request function WANY$ is referenced and a wait is done for 
completion of any input/output. Upon completion. control is returned to the caller. 

If FTSWAP is called. the parameter pkt which points to the input/output packet is picked up and the 
Executive Request function TSWAP$ is referenced. 

If FUNLCK is called. the Executive Request function UNLCK$ is referenced to enable an input/output 
interrupt activity which reduces its switching priority to the priority of the activity which initiated the 
input/output request. Control is then returned to the caller. 

If FSYMB is called. the parameter pkt pointing to an B- or 10-word packet is picked uP. the Executive 
Request function SYMB$ is referenced and control is returned to the caller. 

An adcitional routine. which does not refer to an Executive Request. is FSTAT. If FSTAT is called. 
the parameter pkt which points to the input/output packet is picked up and a check is done on the 
status of the input/output operation. If the input/output operation is still pending. a return is made 
to label ,. If the input/output operation terminated abnormally. a return is made to label 2. If the 
input/output operation terminated normally. a normal return is taken. 

The information required in the Executive Request packet is placed in the various fields by use of 
statement function and PARAMETER statements in the FORTRAN procedure FlOP. This FORTRAN 
procedure must be included with the FORTRAN source program (see B. 1). There are statement 
function names for all of the fields in the Executive Request packet except the first two words. which 
contain the Fieldata internal file name or file reference number left-justified and space-filled. These 
two words can be initialized with the DATA statement using the Fieldata representation of either the 
internal file name or the file reference number. This is most efficient since it is done at compile time. 
However. an alternate method would be the usage of the FASCFD run-time conversion routine (see 
7.3.3.19). 

The following list of statement function names represents the various fields of the Executive Request 
packet. as described in the EXEC Programmer Reference. UP-4144.2 (see Preface). Each is contained 
in FlOP. Each statement function reference requires one argument which is the input/output packet 
name. 

Field Description 

ACTIO int-act-id (numeric identity used to identify the interrupt activity) 

ACTADDR interrupt-activity-addrs (interrupt activity address) 

ISTAT status (status of the last function performed) 

FUNCT function (denotes function to be performed) 

AFC AFC (abnorma.1 frame count for tape I/O) 

SUBST final-word-count-returned-by-I/O 

GINC G (incrementation flag) 



8244.2 
UP-MJMBER 

NWRDS 

BUFAD 

TRKAD 

SRCHS 

SFDA 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

word-count (number of words to be transferred) 

buffer-addr (memory address for transfer - use LOC intrinsic function) 

mass-storage-addr (relative track/sector address for start of I/O) 

search-sentinel 

search-find-drum-addr (search find address) 

7-34_ 
PAGE 

The following list of statement function names represents the various fields of the Executive Request 
packet for SYMB$. Each statement function reference requires one argument which is the 
input/output packet name. 

Field Description 

IFUNC function (describes the action to be performed on the specified file) 

IMODE mode (provides further description of the function) 

ISTAT status (status of last function performed) 

IERCD I/O-status (I/O error code if SYMB$ was terminated becau!oe of an I/O error) 

ICCIN control-card-index (CLIST index for an image read) 

ISUBST sub-status returned (further information status) 

ICHCT character-count (number of characters to transfer) 

IIMGAD image-address (address to put/get an image) 

ITTNF TT-number-field (which translate table to use) 

ICHSZ character-size-field (6-bit or 9-bit byte) 

IFCHCT final-character-count-transferred (number of words or characters transferred) 

ISPCE spacing (number of lines to space before an image is written) 

IEOFS EOF-sentinel (Fieldata or ASCII character returned in column 6) 

IWRCC character-count (number of characters to transfer) 

IWRADD image-address (address of an image) 

IWRFC final-character-count-transferred (number of characters or words transferred) 



8244.2 
UP-NUMBER 

{ 

(' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATELMl 

7-35 
PAGE 

The following is a list of names from PARAMETER statements declared in FlOP that define the values 
for the I/O functions for the FUNCT field. For more information, see the EXEC Programmer Reference, 
UP-4144.2 (see Preface). 

Parameter Octal Function 

FW 10 Write 
FWEF 11 Write end of file 
FCW 12 Contingency write 
FSW 13 Skip write 
FABW 14 TIP recoverable write 
FGW 15 Gather write 
FACQ 16 Acquire 
FABSW 17 Absolute write whole unit/extended acquire 
FR 20 Read 
FRB 21 Read backward 
FRR 22 Read and release 
FREL 23 Release 
FBRD 24 Block read drum 
FRDL 25 Read and lock 
FUNL 26 Unlock 
FABR 27 Absolute read, TIP recoverable read 
FTSA 30 Track search all words 
FTSF 31 Track search first word 
FPSA 32 Position search all words 
FPSF 33 Position search first word 
FSD 34 Search drum 
FBSD 35 Block search drum 
FSRD 36 Search read drum 
FBSRD 37 Block search read drum 
FREW 40 Rewind 
FREWI 41 Rewind with interlock 
FSM 42 Set mode 
FSCR 43 Scatter read 
FSCRB 44 Scatter read backward 
FWR 45 Write, then read 
FABSR 47 Absolute read whole unit 
FMF 50 Move forward 
FMB 51 Move backward 
FFSF 52 Forward space file 
FBSF 53 Backspace file 
FCN 55 Mode set 

The following is a list of names from PARAMETER statements declared in FlOP defining the values 
for the mode field for SYMB$: 

Parameter Octal Description 

IASC 1 ASCII request 
ITRUN 2 Truncate an image 
IUNTR 4 Untranslate request 
IPUALT 10 Punch alternate file 
ISPEC 20 Special translation index 



8244.2 
UP-fCUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

7-36 
PAGE 

The following is a list of the names declared by statement function statements in FlOP of the fields 
for the set mode function (FORTRAN PARAMETER - FSM): 

Field Name 

FSMF1 
FSMF2 
FSMF3 
FSMF4 
FSMF5 
FSMF6 
FSMF7 
FSMF8 
FSMF9 

Bits 

34 - 35 
32 - 33 
30 - 31 
28 -29 
26 - 27 
22 - 25 
20 - 21 
18 - 19 
0-17 

The fields of the set mode function are set as described in the EXEC Programmer Reference, 
UP-4144.2 (see Preface). 

Examples: 

SUBROUTINE FASTIO(BUF,NADDR) 
C This subroutine wi I I read 112 words from track NADDR 
C into the array BUF. 

LOGICAL INIT/.FALSE./ 
C Declare 8-word table for packet. 

INTEGER IOT(8) 
Clnclude the FORTRAN procedure in the program. 
C File name may have to be changed depending on 
C site conventions. 

INCLUDE SYS$*FTNRLIB$.FIOP 
C Initialize first two words with file name in Fieldata, 
C words three through eight to zero. 
C A unit reference number could have been used. 

DATA lOT ( 1 ), lOT (2), (lOT ( I ), I = 3, 8) /' MYF I LE' F , ' , F ,6*0/ 
IF (INIT) GO TO 110 
INIT = .TRUE. 

C Assign the fi Ie. 
STAT=FACSF( '@ASG,A MYFILE ') 

C Check that the file assignment is OK. 
IF (STAT.LT.O) CALL FABORT 
NWRDS(IOT) = 112 

C 112 words to be read. 
FUNCT ( lOT) = FR 

110 CONTINUE 
BUFAD(IOT) = LOC(BUF) 

C Set file track address for input. 
TRKAD( lOT) = NADDR 

C Call to do input/output 

C 
500 

CALL FIOW( IOT,.$500) 
RETURN 

Fol lowing is error handler 
CONTINUE 
PRINT *, 'DID NOT WORK' 
CALL FEXI T 
RETURN 
END 



8244.2 
UP-NUMBER 

(: 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The following program shows one way to use FSYMB. 

PROGRAM AWRITE 

UPDATE lEVEL 
7-37 

PAGE 

* 
* 

This program wi I I write 132 characters from BUFFER through 
SYMB$ if the printer allows 132 characters 

* 
* 

* 

* 

* 

* 

* 
10 
* 

* 

CHARACTER*204 BUFFER 
INTEGER PACKET(10) 

Include the statement funct ions and parameters to use SYMB$ 
INCLUDE FlOP 

Set the fi Ie name to the PRINT$ ER code 
PACKET(1)=14 
PACKET(2)=0 

Set the function code to PRINT$ 
INFUNC(PACKET)=FW 

Set the mode to ASCI I 
IMODE(PACKET)=IASC 

Set the number-of-characters transferred 
ICHCT(PACKET)=132 

Set the image address 
IIMGAD(PACKET)=LOC(BUFFER) 

Clear the remainder of the SYMB$ packet 
DO 10 I - 6 , 10, 1 

PACKET ( I ) =0 
Initialize the 132-character BUFFER 

BUFFER='TEST BUFFER LENGTH OF 132 CHARACTERS' 
BUFFER(111:132)='END OF 132 CHARACTERS· 
BUFFER(194:204)='END OF LINE' 

Ca II SYMB$ 
CALL FSYMB(PACKET) 
STOP 
END 

7.3.3.16.2. Miscellaneous Executive Requests 

Purpose: 

These Executive Requests allow the FORTRAN programmer to refer to each of the Executive Request 
functions: ABORT$ (abort run), ACSF$ (generate control statement), ERR$ (error exit), EXIT$ (program 
exit), SETC$ (set condition word), COND$ (retrieve condition word), and DATE$ (request date and 
time). 

Form: 

{ 
r1 

CALL r2 (arg) 
r3 (arg 1, arg2) 

where: 

is FABORT, FERR, or FEXIT. 

r 2 is FACSF, FACSF2, FSETC, or FCOND. 



8244.2 
Ul'-NUMIIEJI 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

r 3 is FDATE or ADATE. 

UPDATE LEVEl 
7-38 

PAGE 

arg is a character array or a character expression for FACSF and FACSF2. an integer 
expression for FSETC. or an integer variable or array element for FCOND. 

arg 1. arg2 are variables or array elements. 

Description: 

If FABORT is called. the Executive Request function ABORT$ is referred to. All current activities are 
terminated and the run is terminated in an abort condition immediately; files are not closed. 

If FERR is called. the Executive Request function ERR$ is referred to. Only the activity in error is 
terminated. 

If FEXIT is called. the Executive Request function EXIT$ is referred to. The routine provides program 
termination. No file-closing actions are performed if FEXIT is called. 

If FACSF is called. the Executive Request function ACSF$ is referred to. The routine submits an 
Executive control statement image (arg) for interpretation and processing. The image submitted must 
be a character array or a character expression containing one of the control statements in the list 
which follows. The control statement must not be longer than 80 characters and must be terminated 
by the character sequence: blank. period. blank. or a word of blanks. If FASCF is called as a function. 
FASCF must be typed as integer and then the status resulting from the ACSF$ call is returned as the 
value of the function. (See the EXEC Programmer Reference. UP-4144.2 (see Preface).) A subprogram 
name (for example. FASCF) can only be used in one way in a given program. Thus. FACSF may not 
be used in a CALL statement and also be used as a function name in the same program. 

Statement 

@ADD 
@ASG 
@BRKPT 
@CAT 
@CKPT 
@FREE 
@LOG 
@MODE 
@QUAL 
@RSTRT 
@START 
@SYM 
@USE 

Use 

Add to runstream 
Assign a file 
Breakpoint symbiont output files 
Catalog a tile 
Produce checkpoint dump of this run 
Deassign a file 
Message to the Master Log File. 
Set mode and/or noise constant for tape file 
File qualification 
Restart run whose checkpoint dump was saved by @CKPT 
Schedule an independent run 
Queue files for symbiont processing 
Associate internal to external file name 

FACSF2 is the same as FACSF. except that no ERTRAN error message will be printed if an error status 
is returned from the ACSF$ Executive Request. Users must perform their own error checking (using 
the status returned as the FACSF2 function value) and processing. 

If FSETC is called. the Executive Request function SETC$ is referred to. The subroutine places (sets) 
the contents of the lower third (bits 25-36) of arg in the corresponding third of the run condition 
word. The lower two thirds of the run condition word are used as a flag which can be either tested 
by the control statement @TEST or retrieved by the FORTRAN call CALL FCOND(a) and then tested. 

If FCOND is called. the Executive Request function COND$ is referred to. The subroutine retrieves 
the condition word and makes it available to the user in arg. 

/ 



8244.2 
UP-NUMBER 

(~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-39 
PAGE 

If FDATE is called, the Executive Request function DATE$ is referred to. The subroutine supplies the 
user with the current date and time in arg 1 and arg2, respectively. The data in arg 1 is the Fieldata 
character form MMDDYY where MM represents the month (01-12), DO the day (01-31), and YY the 
last two digits of the year (00-99). The time in arg2 is in the Fieldata character form HHMMSS where 
HH represents the hours (00-24), MM the minutes (00-60), and SS the seconds (00-60). The first 
words of arg 1 and arg2 (which are both variables or array elements) will be filled with the 6-bit 
Fieldata characters described previously. 

If ADATE is called, the Executive Request function DATE$ is also referred to as in FDATE, but the date 
and time are returned in ASCII character form. Variables arg 1 and arg2 must be character variables 
or character array elements of eight characters in length. The first six character positions of each 
variable will be filled with the ASCII character form of the data and time in the format described for 
FDATE above. The remaining two characters will be space-filled. 

Examples: 

INTEGER FACSF2 
CHARACTER ASG*20, DATE*8, TIME*8 
DATA ASG I·@ASG,A FILENAM . ·1 
CALL FACSF(ASG) 

C This call would attempt to assign the file FILENAM by 
C referring to the Execut ive Request funct ion ACSF$. 

ISTAT = FACSF2(ASG) 
C This function reference attempts the assignment and 
C puts the result status in I STAT. 

IF( I STAT .LT. 0) CALL FERR @ terminate on error 
CALL ADATE(DATE, TIME) 

C This call suppl ies the user with the date ('MMDDYY .) in DATE 
C and the time ('HHMMSS .) in TIME. 

PRINT *, DATE, TIME 
END 

7.3.3.17. NTRAN$ 

Purpose: 

NTRAN$ provides a tool for reading or writing binary information on tape or mass storage, and also 
provides for 110 buffering. NTRAN$ 1/0 processing is completely separated from normal FORTRAN 
1/0 processing. NTRAN$I/O is only accessible by calls to the NTRAN$ service subroutine, and normal 
FORTRAN 1/0 is accessible only by FORTRAN 1/0 statements such as READ, WRITE, BACKSPACE, 
ENDFILE, OPEN, CLOSE, and INQUIRE. AN NTRAN$-created file cannot be referred to by normal 
FORTRAN 110 statements. 

The ASCII FORTRAN NTRAN$ subroutine has exactly the same syntax as the FORTRAN V NTRAN 
subroutine (see the FORTRAN V Library Programmer Reference, UP-7876 (see Preface)). The only 
difference is that NTRAN in the FORTRAN V call is replaced by NTRAN$ in the ASCII FORTRAN call. 

Form: 

('-~- CALL NTRAN$( uni t, sequence-oF-operat ions) 

where unit is an integer expression designating the logical unit. and the sequence-oF-operations 
is any list of 1/0 operations (as specified in 7.3.3.17.1) to be performed in order on the specified unit. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Description: 

UI'OATELML 
7-40 

PAGE 

If the unit is not busy, NTRAN$ initiates the first operation, stacks the rest in a waiting list, and then 
returns to the calling program. If the unit is already busy, then the entire sequence is stacked in a 
waiting list and chained to any previously stacked operations. The exceptions are operations 16 to 
22; when they are encountered, NTRAN$ waits for the completion of all previous operations for that 
unit before returning to the calling program. When an interrupt occurs, NTRAN$ records the 
transmission status, initiates the next operation in the chain, and returns control to the interrupted 
calling program. Priority tasks are not supported. 

The I/O operations provided by NTRAN$ are as follows: 

1. Write (tape or mass storage) 
2. Read (tape or mass storage) 
3. Block Read (tape or mass storage) 
4. Search Read (tape or mass storage) 
5. Search Mass Storage 
6. Position Mass Storage 
7. Position Tape by Block (tape) 
8. Position Tape by Files (tape) 
9. Write End of File (tape) 

10. Rewind (tape or mass storage) 
11. Rewind/Interlock (same as Rewind for mass storage) 
12. Set Tape Density Medium (tape) 
13. Set Tape Density low (tape) 
14. Set Tape Parity Odd (tape) 
15. Set Tape Parity Even (tape) 
16. Initialize Multireel File (tape) 
17. Swap Reels for Multireel File (tape) 
18. Reassign Unit (tape or mass storage) 
19. Assign Unit to External File Name (tape or mass storage) 
20. NOP (tape or mass storage) 
2 1. Get Device 
22. Wait and Unstack then Release Unit (tape or mass storage) 
23. Set Tape Density High (tape) 

In order to use NTRAN$, a FORTRAN program must have some way to check the status of the 
transmission. For this reason, every block of main storage which is used for I/O operations has a 
block status word (an integer variable) associated with it; the name of the status word is specified 
in the argument list of the CALl. 

When NTRAN$ is called, the list of arguments is searched for status words, and these are all set to 
a value (-1) which indicates transmission is not complete. When an interrupt occurs, the 
corresponding status word is set by NTRAN$ to a value which indicates the nature of completion, 
whether normal (a positive value indicating the number of words transmitted), abnormal (value = -2) 
or in error (value = -3 or -4). The status words for each operation are defined in 7.3.3.17.1. 

When NTRAN$ generates -2 or -3, it releases all operations stacked for the unit which have not been 
started. The offending operation i~ marked to abort and is left stacked. Any further calls of NTRAN$, 
requesting the above described unit (except operation 22) will not be performed or stacked, but will 
generate a particular status code (-4). Operation 22 may be used to release the abort condition for 
a unit. This allows the programmer to regain control after trying to read or write past an end-of-file, 
end-of-drum, or end-of-tape. 

An attempt to read or write zero words (n =0) will result in the function being ignored. 



( 

( 

8244.2 
UI40IUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The following errors will generate a status word of -3: 

• Hardware errors 

• Parity and character count errors 

• Illegal unit specified 

NOTE' Legal units are all tapes and mass storage files. 

UPDATE LEVEL 
7-41 

PAGE 

The user should also note that at compilation time, the ASCII FORTRAN compiler will print out a 
warning each time NTRAN$ is called from the same program unit with a different number of 
arguments than was specified on the first call (in the program unit). These warnings can be ignored 
by the user. 

7.3.3.17.1. Operations 

An operation is defined in the argument list by a group of arguments. The first argument for an 
operation identifies the type of operation. It is followed by the parameters for the operation; these 
are fixed in number and order of occurrence by the type of operation. Several operations may be 
grouped in a single call to NTRAN$. 

When a mass storage file is referred to, the current mass storage address for that file is the starting 
address for the file only if the mass storage file was never referred to in the current run. If the mass 
storage file was referred to before, the current mass storage address is the current address before 
the last CALL statement using the file plus the number of words transmitted or positioned in that CALL 
statement. In order to reach the starting address of the file, operation 10 and 22 can be used. 

For example, in CALL NTRAN$ (3, 9, 10, 22): 

3 = unit number 

9 = end-of-file when operation is completed 

1 ° = rewind unit 

22 = all operations on unit must be completed before another function is issued. 

The cited example is a stacked operation. 

NOTE' For sector-formatted mass storage I/O, the specified mass storage address is a sector 
count and not a word count as for word-addressable mass storage I/O. However, with 
normal termination, the status variable associated with a main storage transfer will indicate 
actual number of words transmitted It is then up to the user to perform the covered divide 
with the sector size in order to retrieve the corresponding sector count. 

For search operations on sector-formatted mass storage, if a find is made, the mass storage address 
will point to the sector containing the matching item; a following read function will therefore not 
necessarily start reading the matched item. 



8244.2 
UP-HUMaER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

• Write 

The argument group is: 1, n ,b ,/ 

Uf'OATE lEVEL 
7-42 

PAGE 

in which n is an integer constant or variable which specifies the block length; b is a variable 
name from which data is to be written; and / is an integer variable, the status word, which is 
set by NTRAN $ as follows: 

-1 = transmission not complete 

-2 = end of the tape or mass storage file 

-3 = device error 

-4 = transmission aborted (previous operation had -2 or -3 status). 

If the transmission is completed normally, / receives the number of words transmitted (n). 

• Read 

The argument group is: 2,n ,b.l 

in which n is an integer constant or variable which specifies the length of the main storage block 
which will receive the data (for tape, n is the maximum number of words which will be 
transmitted from the tape block; for mass storage, n words will be transmitted), b is a variable 
which is the name of a main storage area into which the data is to be read, and I is an integer 
variable (the status word), which is to be set as follows: 

-1 = transmission not complete 

-2 = end of file (no words read from mass storage) 

-3 = device error 

-4 = transmission aborted (previous operation had -2 or -3 status). 

If the transmission is completed normally, / receives the number of words transmitted (n). 

• Block Read 

The argument group is: 3,n ,b.l 

A block read for tape and sector-formatted mass storage is the same as an ordinary read. For 
word-addressable mass storage, transmission is terminated by reading a word of all 1 bits 
(called end-of-block word). n is the maximum number of words which can be transmitted. I 
(the status variable) receives the actual number of words transmitted if the operation is 
completed normally; otherwise L is set as in READ. b has the same definition as in read. 

• Search Read 

The argument group is: 4,5 ,n ,b.l 

in which 5 (a sentinel word) is a constant or a variable which is used in searching tape or mass 
storage. 



( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

7-43 
PAGE 

For tape, the first word of each block is compared to the sentinel and, when a match is found, 
that block (including the sentinel word) is read. For mass storage, starting at the current mass 
storage address, each word is compared to the sentinel until a match is found or until all 
remaining words of the granule (track or position) are tested. An unsuccessful search results 
in status (-2) for I. If no find was made, the user may request additional searches by setting 
the mass storage address of a different granule (track or position). For sector-formatted mass 
storage, a track search is employed; if no find is made, the user may request additional searches. 

When a match is found on word-addressable mass storage, the block (n words) is read into b. 
When a match is found on a sector-formatted mass storage, the entire sector containing the 
matched sentinel will be read into b. 

• Search Mass Storage 

• 

The argument group is: 5,5 

in which 5 is a constant or variable sentinel word. Starting at the current mass storage address, 
each word is compared to the sentinel until a match is found or until all remaining words of the 
granule (track or position) are tested. The mass storage address of the match becomes the new 
c1urent mass storage address (the first mass storage address to be read or written is that of the 
matched mass storage address). When a match is found on a sector-formatted mass storage 
device, the mass storage address will point to the sector containing the matched sentinel. If 
a match has not been made, the address does not change. 

Position Mass Storage 

The argument group is: 6,n 

in which n is an integer constant or variable, positive or negative, which is added to the current 
mass storage address to form a new current mass storage address. If n is negative and the 
current mass storage address plus n is less than the starting address of the mass storage file, 
the current mass storage address is set to the starting address of the mass storage file. N is 
the word count for word-addressable mass storage, and the sector count for sector-formatted 
mass storage. 

• Position Tape By Blocks 

The argument group is: 7,n 

in which n is an integer constant or variable which specifies the number of blocks to space over 
on tape. Positive n for forward spacing; negative n for backspacing. 

• Position Tape By Files 

The argument group is: B,n 

in which n is an integer constant or variable which specified the number of file marks to space 
over. Positive n for forward spacing; negative n for backspacing. The operation is terminated 
by moving over the nth file mark, by reaching the load point (back spacing), or by reaching the 
end of tape (forward spacing). 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

• End File 

The argument group is: 9 

For tape, an end-of-file mark is written. 

• Rewind 

The argument group is: 10 

• Rewind/Interlock 

The argument group is: 11 

UPDATE lEVEL 
7-44 

PAGE 

For tape, a rewind/interlock is given. For word-addressable mass storage and sector-formatted 
mass storage, the operation is the same as a rewind. 

NOTE· The following four operations pertain to magnetic tape density and parity setting (available 
only on UNISERVO 7-track tape units). If not specified, the setting will be system standard 

• Set Tape Density Medium (556 bpi) 

The argument group is: 12 

• Set Tape Density Low (200 bpi) 

The argument group is: 13 

• Set Tape Parity Odd (binary standard) 

The argument group is: 14 

• Set Tape Parity Even (BCD standard) 

The argument group is: 15 

NOTE- Density and parity setting routines set density and parity for all tape units tied to a logical 
unit when doing multireel processing. 

• Initialize Multireel File 

The argument group is: 16 

The operation is used to reinitialize the cycle of tape swapping when more than one pass is made 
over a multi reel file. 

• Swap Reels 

The argument group is: 17 

This operation is used to access the next physical unit in a multi reel file. The old physical unit 
is not rewound. Any number of physical units may be assigned to a given unit, by using a 
sequence of operation l1's. 

... ,/ 



( 

8244.2 
UP~UMBER 

• 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Deassign Unit 

The argument group is: 18 

UPDATE LEVEL 
7-45 

PAGE 

This operation releases a unit, without rewinding the physical units (frees internal file name, unit, 
from external file name). 

• Assign Unit to External File Name 

The argument group is: 19,x,I 

This operation assigns a unit to an external file name, or links an internal name to an already 
assigned file, where x is an array containing a two-word file name in Fieldata and 1 is an integer 
variable which is set to a value which indicates the following: 

o = assignment made 

1 = error in call statement, no assignment made. 

• NCP For Compatibility (old function dropped) 

The argument group is: 20,1 

• Retrieve Device 

( The argument group is: 21,x 

This operation retrieves the device code for the specified unit, in which x is the variable which 
receives the device code upon return. 

• Wait and Unstack 

The argument group is: 22 

This operation causes a wait in NTRAN$ until all previous operations, for the specified logical 
unit, are complete before stacking any further operations or returning to the user's program. It 
also removes any operation which has caused an abnormal or error status which is still stacked 
against the unit specified. 

• Set Tape Density High (800 bpi - not compatible) 

The argument group is: 23 

7.3.3.17.2. NTRAN$ Error Messages 

NTRAN$ will, under certain error conditions, produce an error message. The unit number will be 
identified within the message. The FORTRAN program and the line number where the call to NTRAN$ 
was made will be identified under the error message. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The eight possible error messages produced by NTRAN$ are: 

• **NTRAN ERROR* UNIT n: NO PACKET SPACE AVAILABLE 

UPDATE L£YEl 
7-46 

PAGE 

This message indicates that all available NTRAN$ packets are in use and that another packet 
is requested. 

Suggested Action: Reassemble the ASCII FORTRAN library element F2NTRAN$ and increase 
by the number-of-packets parameter NPKTS. 

• **NTRAN ERROR* UNIT n IS NOT AVAILABLE FOR NTRAN. 

A reference to a unit was made that is already in use by normal FORTRAN I/O processing. 

Suggested Action: Change unit number. 

• **NTRAN ERROR* UNIT n NOT ASSIGNED. 

A reference to an unassigned unit was made with a function other than write function 1 (see 
7.3.3.17) or assign function 19. 

Suggested Action: If a write function 1 had been used as the first reference, a dynamic assign 
of a mass storage file (scratch) would have been made. If a scratch file was not intended, an 
assignment has to be made either by assign function 19 or by an assign card. 

• **NTRAN ERROR* UNIT n HAS IMPROPER DEVICE 

Requested function is not available for the device assigned to this unit. The requested function 
will be ignored. 

Suggested Action: If action is wanted for the requested function, a unit with another device 
assigned has to be used. 

• **NTRAN ERROR* UNIT n HAS ILLEGAL FUNCTION CODE 

• **NTRAN ERROR* UNIT n: NUMBER OF ARGUMENTS IN STACK EXCEEDS TABLE LENGTH. 

This message indicates that the number of arguments in call is greater than the maximum calling 
sequence table length. 

Suggested Action: Reassemble ASCII FORTRAN library element F2NTRAN$ and increase the 
NCT length (NCTL T). 

• **NTRAN ERROR* UNIT n: SYNTAX ERROR FOR FILE NAME 

This message indicates an illegal character used in the file name for NTRAN$ function 19 (see 
7.3.3.17). 

• **NTRAN WARNING* BANKED ARGUMENTS ARE NOT ALLOWED 

Suggested Action: Do not pass banked data items to NTRAN$. 

NOTE The user must not change any argument of an argument group before the function is 
completed, that is, before the status word (if any) has been changed from -1 to another 
value. All NTRAN$ functions are executed in sequence; the completion of one function 
implies completion, successful or unsuccessful, of all preceding functions. 



8244.2 
UP-NUMBER 

( 

i(·. 
/ 

I 7-47 
PAGE 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.18. CLOSE 

Purpose: 

The CLOSE subroutine closes a FORTRAN data file and frees all main storage associated with the file 
such as the file control table and buffer areas. 

Form: 

CALL CLOSE (;, j) 

where ; and j are integer expressions. 

Description: 

This subroutine will close the file associated with the unit reference number designated by the first 
parameter. 

The file will be rewound if the second argument is nonzero (for tape only). 

Examples: 

C 
C 

= 3 
J = 0 
CALL CLOSE (I ,J) 

The file associated with unit number 3 will be closed 
and no rewind of the tape file wi II occur. 

7.3.3.19. FASCFD and FFDASC 

Purpose: 

The FASCFD and FFDASC subroutines provide FORTRAN interface to the FDASC conversion routine. 
FDASC allows for conversion from ASCII to Fieldata and from Fieldata to ASCII. 

Form: 

CALL r ( ;, a, b) 

where: 

r is FASCFD or FFDASC. 

; is a positive integer variable or array element specifying the number of words to be 
converted. Upon return from the FASCFD/FFDASC call, ; will contain the length in words 
of the converted string. 

a is the source (an expression) that is to be converted. 

b is the target (variable or array element) for the converted characters. 



8244.2 
Ul'-ftUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Description: 

UPDATE LEVEl 
7-48 

PAGE 

In the following descriptions, ASCII characters are assumed to be packed four characters per word 
and Fieldata characters are assumed to be packed six characters per word. 

If FASCFD is called, the 4; ASCII characters in a are converted to Fieldata characters and stored 
in b. If 4;/6 has a remainder R other than zero, then 6-R Fieldata spaces will follow the last 
character in b, space-filling the last word. In addition, if the last word of b is all spaces, the word 
count returned in ; will not reflect this word. ASCII characters are converted as described in the 
SYSLIB Programmer Reference, UP-8728 (see Preface). 

If FFDASC is called, the 6; Fieldata characters in a are converted to ASCII characters and stored 
in b. If 6;/4 has a remainder of R other than zero, then 4-R ASCII spaces will follow the last 
character in b, space-filling the last word. If the last word of b is all spaces, the word count returned 
in ; will not reflect this word. In this case, a conversion from Fieldata to ASCII will not be performed 
correctly. 

For either call, if a and b are the same character variable then the source characters will be 
destroyed. 

The a and b variables must be in the same data bank (D-bank). 

Example: 

C 
C 
C 
C 

IWC = 13 
CALL FASCFO (IWC,ASC,FO) 

The fi rst 52 ASCI I characters in ASC are converted to 
Fieldata and stored in FO. Upon return, IWC equals 9. 
If the last four characters (49-52) of ASC were spaces, 
then IWC would be set to 8 upon return. 

The following call to FASCFD could result in a serious error: 

CALL FASCFD(2,ASC,FD) 

Even though a constant was passed, the value of the constant will be changed upon return from 
FASCFD. Since the compiler assumes that the values of constants never change and reuses them 
throughout a compilation, logic errors could easily result. Note that this situation can happen any 
time a constant is passed as an argument to a routine which changes the value of the corresponding 
formal argument. 

/ 



8244.2 
" UP-liIUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.20. MAXAD$ 

Purpose: 

UPDATE LEVEL 
7-49 

PAGE 

The MAXAD$ subroutine changes one or more items in the Common Storage Management System 
(CSMS) packet. and returns a status. CSMS is used mainly for I/O buffers. 

Form: 

CALL MAXAD$ (max, mcore, Icore) 

where: 

max is the maximum address that the program can reach (that is, CSMS will never request 
main storage past this address). If max is -lor 0, the default 0777777 (decimal value 
262143) is assumed. 

mcore is the request main storage increment size (that is, the minimum amount of main storage 
obtained each time an ER MCORE$ is done). If mcore is -1, the default 010000 
(decimal value 4096) is assumed. If mcore is 0, no requests for main storage will be 
made. 

Icore is the minimum amount of freed storage that will remain in the allocated area after an 
ER LCORE$ is performed by the CSMS (to release storage that has been freed). If Icore 
is -1, the default 020000 (decimal value 8192) is assumed. If Icore is 0, no release 
of main storage will be done. It is recommended that if Icore is specified and is 
nonzero, it should be at least twice as large as the request for main storage increment 
size mcore. 

Description: 

This service subroutine may not be called from checkout mode, as checkout does not use the CSMS 
feature. 

If any of the three parameters is passed as -2, this subroutine will not change the corresponding 
packet location. 

This function returns 0 or -1, which indicates good or bad status, respectively. This return status may 
be tested by the user, if MAXAD$ was referenced as a function (rather than as a subroutine). A zero 
status indicates no errors. A bad status (-1) indicates that one of the following has occurred: 

• One of the parameters was greater than 0777777 (decimal value 262143). The parameter is 
ignored. 

• The current maximum address in the packet (that is, the current end of the control bank) was 
greater than max (first parameter). In this case, the absolute maximum address in the packet 
(that is, the address that the program will never exceed) is set to the current maximum address. 

If the request for main storage increment size in the packet is already zero when this routine is entered, 
then no action is performed by this routine. This is because an initial reserve was probably specified 
in F2FCA (see G.7), and the CSMS routines use that main storage with no ER MCORE$ or ER LCORE$. 
Note that a good status (zero) will be returned in this case. 

Note that caution must be used when specifying mcore = 0, or when specifying max as anything 
but the default. CSMS will error terminate in certain cases. 



8244.2 
UI4IIUMaER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7.3.3.21. LOC 

Purpose: 

The LOC integer function returns the address of its argument. 

Form: 

LOC( name) 

where name is the argument whose address is returned as the function value. 

Description: 

7-50 
PAGE 

Note that LOC should be typed as integer in the calling routine. if an IMPLICIT statement types the 
letter L as non-integer. since LOC is in the service subroutine class and does not have an inherent 
type. 

7.3.3.22. MCORF$ and LCORF$ 

Purpose: 

The MCORF$ and LCORF$ service routines give a primitive entry into the ASCII FORTRAN storage 
allocator. so that dynamic pseudo-arrays may be allocated and released. 

Form: 

iadr=MCORF$( isize) @ Func t ion ca I I 

CALL LCORF$ ( i adr) 

where: 

iadr 

isize 

Description: 

is the address of the buffer to be freed (iadr was returned as the corresponding 
MCORF$ function result). 

is the number of words desired in the dynamic pseudo-array (passed to function 
MCORF$. which returns an address iadr). 

Since it is difficult to use an address in the FORTRAN language. base-offset type referencing must 
be performed in order to use the address returned by MCORF$. 

The pseudo-arrays created by this process do not have all of the attributes of a normal FORTRAN 
array. For example. the pseudo-array names (Oland 02 in the first example below) with no following 
subscripts cannot be passed to a subprogram or to I/O (since they are actually statement functions 
which require an argument). However. individual array elements of the pseudo-arrays can appear 
anywhere. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Examples: 

UPDATE LEVEL 
7-51 

PAGE 

The following example uses a dummy array, DUMMY, and statement functions to create two dynamic 
pseudo-arrays, Oland 02 (which are both single precision real). 

C 

DIMENSION DUMMY(l) 
DEFINE D1( I ) = DUMMY ( 1+ ID10FF 
DEFINE D2( I ) = DUMMY ( I + ID20FF ) 
ID10FF = 2000 @ MAKE 01 2000 ELEMENTS 
ID20FF = 3000 @ MAKE 02 3000 ELEMENTS 
CALL GET( DUMMY, ID10FF ) 
CALL GET( DUMMY, ID20FF ) 

C - INITIALIZE ARRAYS 
C 

DO 10 J = 1, 2000 
10 D1(J)=0. 

DO 20 J = 1, 3000 
20 D2( J ) = o. 
C 
C - NOW USE 01 AND 02 ARRAYS 
C 

{ C 
C - NOW FREE 01 AND 02. 
C - NOTE THAT ID10FF AND ID20FF WERE NEVER CHANGED 
C 

CALL FREE 
CALL FREE 
END 

DUMMY, I 0 1 0 F F 
DUMMY, ID20FF 

SUBROUTINE GET ( DUM, ISZ ) 
ISZ = MCORF$ ( ISZ ) - LOC DUM) 
END 

SUBROUTINE FREE ( 
CALL LCORF$ ( ISZ 
ISZ = 0 
END 

DUM, I SZ ) 
+ LOC ( DUM )) 
@ PREVENTIVE MEDICINE 



8244.2 
UI4ftJM8ER 

\ ' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOAl£LMl 

7-52 
PAGE 

The following example is similar to the preceding example. except that it creates a pseudo-array. 
ADU( 1000). with two words per element (for example. double precision real). 

* 

PARAMETER (IMAXX = 1000) 
DOUBLE PRECISION AD(l). ADU 
INTEGER ADI 
DEFINE ADU(IX) = AD(IX+ADI) 
ADI = IMAXX 
CALL GET2(AD.ADI) 

USE ARRAY ADU 

CALL FREE2(AD. ADI) 
END 

SUBROUTINE GET2(D. 101M) 

@ Dimension of pseudo-array 

@ Cleared by free routine 
@ Get storage for array ADU 

@ Free storage for ADU 

DOUBLE PRECISION 0 
* FOR 2 WORDS/ELEMENT ARRAY 

* 

* 

COMMON /STRG2$/INUMD. ISVDA(40). ISVDX(40) 
DATA INUMD/O/ 
I A=MCORF$ ( IDIM*2+3) 
IDIM=( IA-LOC(D))/2 + 1 
IX = IDIM*2tLOC(D) @ APPROX ADDR 
IF (INUMD.GE.40) STOP 'GET2 MAX' 
INUMD = INUMDtl 
ISVDA( INUMD)=IA @ ACTUAL ADDR OBTAINED 
ISVDX(INUMD)=IX @ APPROX ADDR 
END 

SUBROUTINE FREE2(D.IDIM) 
DOUBLE PRECISION 0 
COMMON /STRG2$/INUMD. ISVDA(40).ISVDX(40) 

* FIRST CALC THE APPROX. ADDRESS. THEN SEARCH FOR THE ACTUAL ADDRESS 
IX=IDIM*2t LOC(D) 
DO 10 I = 1 . I NUMD 
I F ( I SVDX ( I ) . EO. I X) THEN 

CALL LCORF$( ISVDA(I)) 
101M = 0 
INUMD=INUMD-1 
IF( I .EO. INUMDt1)RETURN 
IF( INUMD.EO.O)RETURN 
ISVDA( I )=ISVDA(INUMDt1) 
ISVDX( I )=ISVDX(INUMDt1) 
RETURN 

ENDIF 
10 CONTINUE 

STOP 'FREE2 NO-FIND' 
END 

'. 
\'-. ,7 



( 

8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The following example creates a CHARACTER*3 pseudo-array, A3U (1000). 

PARAMETER (IMAXX = 1000) 
CHARACTER*3 A3(1), A3U 
INTEGER A31 

UPDATE LEVEL 

DEFINE A3U(IX) = A3(IX+A31) 
ADI=IMAXX @ Cleared by free routine 

7-53 
PAGE 

CALL GETC3 (A3,A31) @ Get storage for array A3U 

USE A3U 

CALL FREEC3(A3,A31) 
END 

SUBROUTINE GETC3(D, 101M) 
CHARACTER*4 0 

@ Free storage for A3U 

* GET STORAGE FOR A THREE CHAR/ELT ARRAY. 

10 

COMMON /STRG$/INUM3, ISV3A(40), ISV3X(40) 
DATA INUM3/0/ 
IN=MCORF$( IDIM*3/4t2) 
IDIM=(IA-LOC(D))*4/3 t 1 @ ELEMENT SEPARATION 
IX = 3*IDIM/4 t LOC(D) @ APPROX ADDR 
IF (INUM3.GE.40) STOP 'GETC3 MAX' 
INUM3=INUM3tl 
ISV3A(INUM3)=IA 
ISV3X(INUM3)=IX @ APPROX ADDR 
END 

SUBROUTINE FREEC3(D,IDIM) 
CHARACTER*4 0 
COMMON /STRG$/INUM3, ISV3Ai40), ISV3X(40) 
IX=3*IDIM/4t LOC(D) @ APPROX ADDR 
DO 10 1=1,40 
IF (ISV3X( I) .EO. IX) THEN 

CALL LCORF$( ISV3A( I)) 
101M = 0 
INUM3=INUM3-1 
IF (I .EO. INUM3tl.0R. INUM3.EO.0)RETURN 
ISV3A( I )=ISV3A(~NUM3tl) 
ISV3X( I )=ISV3X(INUM3t1) 
RETURN 

ENDIF 
CONTINUE 
STOP 'FREEC3 NO-FIND' 
END 



8244.2 
UI'-fWM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.3.3.23. F2DYN$ 

Purpose: 

UPOAl£ LEVEL 
7-54 

PAGE 

This service routine allows the user to have a measure of dynamic storage allocation for dummy 
arrays. 

Form: 

5 F2DYN$ t 
CALL 1 FFDYN$ f (sub. isize, ..... isizen_1) 

where: 

sub subprogram name 

isize i integer expression denoting array size in words (1 S; i S; n -1) 

Description: 

In the ASCII FORTRAN I/O complex. the storage management routines may be accessed via routine 
F2DYN$. It has n arguments. The first argument is the name of an ASCII FORTRAN subprogram 
to call. The second through nth arguments are the sizes (in words) of n -1 arrays which are to be 
passed to this subprogram. The service subroutine will acquire core via the I/O complex. create n-1 
dynamic arrays. and pass them on to the subprogram. The subprogram can dimension them 
dynamically on entry. The acquired storage is released upon the return. The F2DYN$ subroutine can 
be called recursively. 

In a program system with several subprograms (such as in the following example). the D-bank savings 
could be substantial because there is much less dead static storage. as a result of a smaller amount 
of dynamic storage being allocated at anyone time. 

An alternate entry point FFDYN$ is provided. so the allocation mechanism can be used for calling 
both subroutines and functions from the same program unit. Note that the compiler will issue 
warnings (which can be ignored for this case) if either F2DYN$ or FFDYN$ is called from the same 
program unit with a differing number of arguments. 



8244.2 
UP-HUMBER 

( 

SPERRY UNIVAC Series 1100 , .! 

FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

Example: 

Subprogram REDUCE needs some local temporary arrays to do its computations: 

SUBROUTINE REDUCE(M,MD) 
REAL M(MD) @ MD RANGE IS 10 to 1000 
DIMENSION M2(1000) ,M3(1000),M4(1000) 
REAL M2 
DOUBLE PRECISION M3 
COMPLEX*16 M4 

END 

It can be changed to: 

SUBROUTINE REDUCE(M,MD) 
REAL M(MD) @ MD RANGE IS 10 to 1000 
COMMON /SIZES/I 
EXTERNAL REDINT 
I=MD 
CALL F2DYN$(REDINT,MD,MD*2,MD*4) 

C THE INTERNAL SUB DOES THE PROCESSING NOW. 
SUBROUTINE REDINT(M2,M3,M4) 
D I MENS I ON M2 ( I ) ,M3 ( I ) ,M4 ( I ) 
REAL M2 
DOUBLE PRECISION M3 
COMPLEX*16 M4 

END 

7.4. Programmer-Defined Procedures 

7-55 
PAGE 

Because of the wide variety of FORTRAN applications, the programmer may desire to use procedures 
which are not supplied by FORTRAN. Such procedures may be defined using one of the following: 

• Statement function 

• Function subprogram 

• Subroutine subprogram 

7.4.1. Statement Functions 

A statement function definition specifies an expression to be evaluated whenever that stetement 
function name appears as a function reference in another statement in the same program unit. The 
expression may involve any appropriate combination of arithmetic, character, and logical operators. 

The statement function generates inline code when it is referenced. This allows efficient references 
to the defining expression without writing the expression each time. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-56 
PAGE 

--------------~-------------------------

Statement functions are defined using the statement function definition statement. 

7 .4.1.1. Statement Function Definition Statement 

Purpose: 

A statement function definition statement associates a statement function name with an expression. 

Form: 

n ( [a [ ,a ] ... ] ) = exp 

or: 

p~,~.~ .• ~~ ·,.h,,·[:(··: •• t·~"':['·.·~·,jf.·l,·,.,· .•• ~,,~··',',j •• ·.,)· ••• j, •• ,~·.·.~~P 

where: 

n 

each a 

exp 

Description: 

is the name of the statement function. 

is a dummy argument used in exp. (The maximum number of dummy arguments 
allowed is 150.) 

is any FORTRAN expression which references the statement function dummy 
arguments a. 

All statement function definition statements must appear before any executable statements in the 
program unit. and they should appear after all other specification statements. 

The names of each n and a take the forms of variable names (see 2.2.2.3). An argument. a, is a 
dummy name and is totally independent of any uses of the same name elsewhere in the program unit. 
except for typing statements. The statement function dummy argument list serves only to indicate 
order, number, and type of arguments for the statement function. 

A type is associated with the name of the statement function and each of its arguments. The type 
of each name is determined by the normal typing conventions (IMPLICIT and typing statements, and 
the I-N integer rule). If the type of a statement function is character, its length may be specified as 
a positive integer constant or as * (see 6.3.2). 

Each argument of the statement function should be referred to in exp; exp may also contain 
references to other statement functions. However, statement functions may not be referred to before 
they are defined, and a statement function definition may not refer to itself. In addition, a statement 
function definition in a function subprogram must not contain a function reference to the name of 
the function subprogram or an entry name in the function subprogram. 

ffipr·a·.d~~C:riptipl'i.()f.·lcJi;~I+9lol)al.r~les.f()r·ri~m~$.I.l~~(If.I~.~till~~m~l'itf~~Pti&n.(lf~fio.t.ql'i.$t~t~me~~·im 
io(ern~t.$Obpr()9~al'ri~,,$~e··7~'1·~. 

, ' 
"". ..•. <,,' 



( 

8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

Examples: 

BRIEF(VAR1,VAR2) = (VAR1 t VAR2)/4. 
C Defines a REAL statement function named BRIEF which 
C calculates the sum of its two arguments and divides 
C thei r sum by four. 

INTEGER FLD 
F L D ( I ,J , A ) =$IT$fA!.+l~~) 

C Defines an integer statement function named FLD whose 

7-57 
PAGE 

C arguments I, J, and A are used in its expression. The 
C ex pre s s ion i s are fer en c e tot h eEJI'T$ P$~u.~o+f~n~~ip~. 

STAFUN( ) = 2*3-At482**B-200 
C Defines a REAL statement function with no dummy 
C arguments. 

C 
C 
C 

CHARACTER A*4,B*2 
D~~·I~E·.$I··I.j~A(·I •• ~ •• (~.:4.~ •. 

Defines a CHARACTER*2 statement function which takes 
character positions 3 through 4 of character array 
element A(I). 

7.4.1.2. Statement Function References 

The reference to a statement function takes the form: 

n [ ( [e, [ ,e2 ] ... ] ) ] 

where: 

n is the name of the statement function. 

e i is an actual argument of the statement function. It must be an expression or an array 
name. 

The order, number, and type of the actual arguments in the statement function reference must be 
the same as the order, number, and type of the dummy arguments in the statement function definition. 
If the type of an actual argument does not match the type of the corresponding dummy argument. 
no conversion wi" be performed-instead, the actual argument's type wi" be used in the expression. 
Note, however, that the type of an actual argument e i should be consistent with the usage of the 
corresponding dummy argument a i in the expression exp in the statement function definition 
statement. For example, if .NOT. a i appears in exp, the corresponding actual argument e i must be 
a logical expression. 

In effect. each reference to a statement function is replaced by a copy of expression exp in which 
each occurrence of a dummy argument a is replaced by the corresponding actual argument e. The 
type of the resulting expression is determined from the types of the actual arguments and the 
nonargument components of exp according to the rules for expression evaluation (see 2.2.3). When 
a statement function is referred to, it must generate a legal FORTRAN expression. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference ____________ -L ______________________ _ 

II 7-5' 
PAGE 

Note that when an actual argument is an expression, it is evaluated only once and its value is 
substituted for the dummy argument. 

Following its declaration, a statement function may be referenced wherever a reference to a function 
is permitted. 

Example 1: 

I (A,J,K,L) = A+J/K**L-A 
C Defines integer statement function I with dummy 
C arguments of type real (A) and integer (J,K,L). 

NEWVAL = 1(14.3,-5,2,4) 
C The statement function reference I is evaluated 
C as 14.3+(-5)/2**4-14.3. This expression has a 
C result which is type real. This result is then 
C converted to type integer (since I is type 
C integer). The result of that conversion is stored 
C into NEWVAL (which is type integer). 

I , 

~J 



8244.2 
UP-NUMtIER 

f 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.4.2. Function Subprograms 

Example: 

C Main program 

(block 1) 

........ ·ENO··· 

C Externa I funct ion C 
FUNCTION C 

(block 4) 

·ENb"· 

UPDATE LEVEL 
7-59 

PAGE 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

C External subroutine E 
SUBROUTINE E 

(block 6) 

END 

UPDATE LEVEl 
7-60 

PAGE 

This compilation unit contains a main program wit6jwp;~~~m~,·~u.~prqgr~m~(~~~~$), an external 
function (C)wb~pn~!m~m.~F~~~pr9gt~tI'i(PJ~ and an external subroutine (E) with no internal 
subprograms. Each block in the program is a group of statements containing no END. SUBROUTINE. 
FUNCTION. PROGRAM. or BLOCK DATA statements. See 7.4.3 for a description of subroutines. 

7.4.2.1. Structure 

The function subprogram may contain any FORTRAN statement other than a BLOCK DATA. 

SlJB ~()lJ,.INE •. ~r.PR09R,6.~ .. state~.l3llt· ... ~~q~~~rf¢l~~"i"lq~Rr~1.J~~QQOO,~§~t~~~m~m~~~~9HI'I~~~~ 
(V\(~t~~~.in.~rv~t'lil'lg~~Q~~a~¢I'h~t'lt)c:al.is~$i~~f,qllqWil'lg~p~tc~~PI>¢~~~p~r~.~.int~rry~;! 
~l.ibprpg~mi If an IMPLICIT statement is used in a function subprogram. it should immediately follow 
the FUNCTION statement. 

A function subprogram may not call itself. either directly or indirectly. 

7.4.2.2. FUNCTION Statement 

Purpose: 

The FUNCTION statement informs the compiler that the definition of a programmer-written function 
is being specified. 

Form: 

[type] FUNCTION n ([a [.a] ... ]) 

or: 

(.·tYPIl1] •• ·FIJNdfION ••• ·h··.t.~·~j •..• [· •.• ·.(.· •.• t.~ .•• ·[ ••• · •. ~.·ilj.· •• ·J· ...•... ·.j.·.·).· .. ··l. 
where: 

type is INTEGER. REAL. DOUBLE PRECISION. COMPLEX. CHARACTER. or LOGICAl. This 
optional field specifies the type of value returned by the function. CHARACTER* 5 

is also allowed. in which case * 5 is not allowed after n. 

n is the symbolic name by which the function is known to other program units. In 
general. it is not advisable to use ~i'I~q~rr~ripy~ym~pi($} in function names. This 
avoids conflicts with entry names in the ASCII FORTRAN library and the Series 1100 
Operating System relocatable library. 

··s .•••••.•• ••••·••· .. ·· •••• i~·p~~·qf:.~fu~.I~~9.~.~P~~~J~~~~19~~.~~Jq~~g.~()ft.¥P~.~~~~ .• ~~@)~mnfu~~·1~~lq.· 
...•.•.••.•.••••••. ·•· ••• · ••• ··· ••• ·.g~ ••• ~P~Fi~i«il~·it •• ·typ~ ••. ·~~·.·~P~Fi~i~~~··.·~f ••. '*p~ •.• i~ .. q~~~~~f~~;· •• ~m~¥9··· ·: •• :: ..• ·.·pt·~~·~. 
•··•···•· •• ·· •• ·· •••• ··· ••••• ··.·.·fqllli>~i~~~.··(1)~n .• 9~s,i~f'I~q~·.i'1gi'1~~I'~; ••• ~~~~~~rp~~s,~~il~i .• ~~~ •• ·~~ •.• if'l~~~~r~q~~~~~. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

7-61 
PAGE 

•· ••.• ·•·•·.·•·• •• · •• • .. ·•·• ••• ·.·.·.~~priJ~sipJ,lwnJ~l:tq~~tlQt·.~f)qlijq~· ••• ~t.m~iJl'".qpJ,l~~~in~i1q~Q~~q·Jtl.p~I"l'ltl:t~~e~, 
T~~q~~~~~i~i~~¥~I~~~~~I~~~~~ .. i~~~~p~r~~~~~~~~ .................... . 

each a 

Description: 

is a dummy argument. which may be a variable name. array name. dummy procedure 
name •• ~·.9t$~ ••• ·if~~t~.~t$(l~~~lijmY.~r,9~m~~'$~ .. ~~ .• p~r~~t~~$~$U~r~·~p~.r~q~~r~(J. 
A~y~~mmY~r9~me~~m~yl)~~ri~I~~~iri$~~H~$(t~~~i~~I~l:). The number of 
arguments may not exceed 150. The maximum number of character arguments 
allowed is 63. 

The FUNCTION statement must be the initial statement of a function subprogram (e*q~ptP&~$il;)lyf()r 
~¢QNlPI~ER9rEQI'J'st~~~m~r.t~ It identifies the name of a function. its arguments. and possibly its 
type and length. 

The type of the function (which is the type of the value returned by the function) is determined by 
the type field of the function. an explicit type specification statement within the function subprogram. 
or using the implicit typing convention described in 2.2.2.2.1. The function must be assigned the 
same type in all program units which refer to it. If a reference to the function is made from a program 
unit in which it has a type other than that assigned to the function in the function subprogram. the 
returned value will not be converted to the type expected by the calling routine. The results of such 
a call are unpredictable. 

The name of the function and each of its ENTRY names (see 7.7) are available throughout the 
subprogram for use as a variable of the same type as that of the function (or ENTRY name). The 
function and entry names are effectively equivalenced (see 6.4). If a function is type CHARACTER. 
then all of its ENTRY names must also be type character. 

The function name or an ENTRY name must be assigned a value by appearing on the left-hand side 
of an assignment statement, as an element of a READ statement list. or as an argument to a subroutine 
or function which assigns a value to the corresponding formal parameter. The value of the function 
and ENTRY name may be subsequently referenced or changed. When execution reaches a RETURN 
or END statement in the FUNCTION subprogram. the value returned is that most recently assigned 
to any of the associated function or ENTRY names. If the type of the name to which the value was 
assigned differs from the type of the entry point by which the function is called. no conversion is done. 
The returned value is then undefined. 

The function subprogram may also use one or more of its formal parameters to return values to the 
calling program unit. See 7.5 for a complete discussion of actual and formal parameters. 

For·~ •• d~$f;rJPti9r.·~f·~lter~~t~ •• (et~r/'i.$p~tifi~ts.(t~~tj$.·(J~ml't'ly.argurn~~.~.~$.~~~~tj~~~)1·~¢~·?j~~.·A$¢" 
FORtR*NaIlQW$~Jtefhater~t~r/'i~fromflJ/'iction$i6I.1t the FORTRAN 77 standard does not. 

7.4.3. Subroutines 

A subroutine is a separate program unit. It begins with a SUBROUTINE statement and ends with the 
next END. SUBROUTINE. or FUNCTION statement. There arei~t~r/'i~t~h~ external subroutines in 
exactly the same manner asiht~r~~(a~(Jexternal functions (see 7.4.2). A subroutine is external if 
it appears as the first program unit in the source input. or if its SUBROUTINE statement is immediately 
preceded by an END statement.(jth~~w.s~~hi$inte(nal. 

f9r·~.·d~s9rjpti()ry.pf •• 19c:;~1;;9Idba'·.t~I~$·f(j~.$yh'1~dlic·har#e$ •. u$ed.ih·ili~~t~~t.~I.I~tQI.I~jn~.·~~t)ptQgr~I't'I$. 
~~~'i;11. 


8244.2
Ul4WM8ER

SPERRY UNIVAC Series 1100
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL

7-62
PAGE

7.4.3.1. Structure

If the subroutine contains an IMPLICIT statement. the IMPLICIT statement should immediately follow
the SUBROUTINE statement. The subroutine may contain any FORTRAN statements except a BLOCK
DATA, FUNCTION, or PROGRAM statement. A~p~l1~rF~~~T~QN.pr::$QQRiQYT~N.~:$t~~~m~~~
~~~C)~rit~r.~:·~it6·l'Ip •• 6j,rv~6irig:;e~Q.~taij~m~~Q·t~rm.i~~~.~6~:~Qt)rp~~6~.~fu~.~~~~e.~·~~·1pJi~Wlmg 
$O~f:c~·.~p •• ~·:a6·.·im~r6~1.·prQgf:~"'.·.~f)~i 

A subroutine may not invoke itself, either directly or indirectly. 

7.4.3.2. SUBROUTINE Statement 

Purpose: 

The SUBROUTINE statement notifies the compiler that a subroutine is being defined. 

Form: 

SUBROUT I NE n [ ([ a [ ,a] ... ]) ] 

where: 

n 

each a 

Description: 

is the symbolic name by which the subroutine is known to other program units. In 
general, it is not advisable to use ~~~~f:~~~~$YI'I'it)()t($) in subroutine names. This 
avoids conflicts with entry names in the ASCII FORTRAN library and the Series 
1100 Operating System relocatable library. 

is a dummy argument, which may be a variable name, array name, dummy 
procedure name, * ()f$. A name a may only appear once in the list of arguments. 
The number of arguments may not exceed 150. The maximum number of character 
arguments allowed is 63. If there are no dummy arguments, the parentheses may 
be omitted. 

The SUBROUTINE statement must be the first statement in a subroutine subprogram (~)(~~ptpds~i~ly 
for~¢QMpl~~R(se&:8~5rorEDI'T$tatemeI'W(see$.4~)! It specifies the name and arguments of the 
subroutine identified. 

A dummy argument of a subroutine may be a symbolic name, an asterisk, 9racurf:~I'I~Y~Ym~pl. Use 
of an asteriskor~curr~n¢ysYI'rib()'indicates that the actual argument corresponding to this dummy 
argument is a statement label. Such labels may be referenced by the. RETURN .. i. statement (see 7.6). 
OUWf\my .tlr9un'lentS.·wHlcl1·are.~y~bpJic.·name$ .m~Y •• be··~r)(:IO$~d.·II'I·sl~~be$:(./ii.I •• ). 

The subroutine name may not appear in any other statement of the subroutine subprogram. 

Example: 

SUBROUTINE SAMP(CONS, ARR, *) 
C Defines subroutine SAMP with three arguments. The 
C asterisk indicates the actual argument is a statement label. 



8244.2 
UP .... M8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.5. Function and Subroutine Arguments 

UPDATE LEVEL 
7-63 

PAGE 

On each call to a subprogram, the actual arguments are matched to the formal arguments based on 
their order in the respective list. 

The actual arguments must match the formal arguments in number, type, and usage. ASCII FORTRAN 
will automatically check the types and number of actual arguments against those expected on 
subprogram entry, except for certain exceptions listed in 8.5.6 (A.R~¢ffl<pp~IP6$9ft~eqQMrJ4ER 
~~teme~d. If a dummy argument is an array, the corresponding actual argument must be either an 
array or an array element. In the first case, the size of the dummy array should not exceed the size 
of the actual array. In the second case, the effect is as if the first element of the dummy array were 
equivalenced to the indicated element of the actual array. The size of the dummy argument should 
not exceed the size of that portion of the actual array which follows and includes the indicated 
element. 

A dummy argument is an array if it appears in a DIMENSION statement, or with dimensions in an 
explicit type statement in the subprogram. None of the dummy arguments may appear in an 
EQUIVALENCE, COMMON, DATA, PARAMETER, SAVE. or INTRINSIC statement. 

If a dum'llY argument is assigned a value in the subprogram, the corresponding actual argument must 
be a variable, a character substring, an array element, or an array. A constant or an expression should 
never be used as an actual argument if the corresponding formal argument is assigned a value. Such 
an error is not detected by the ASCII FORTRAN system and the results are unpredictable. If an actual 
argument is in COMMON, or appears more than once in the argument list. undesirable side effects 
may occur. Consider the following example: 

SUBROUTINE MULT(A,B,C,LI ,LJ,LK) 
o I MENS I ON A ( L I , LJ ) ,B ( LJ , LK) ,C ( L I , LK) 
DO 1 I = 1, L I 

DO 1 K = 1, LK 
C(I,K) = 0.0 
DO 1 J = 1, LJ 

C ( I , K) = A ( I ,J ) *B ( J , K ) tC ( I ,K) 
RETURN 
END 

If this subroutine is called by: 

CALL MULT(X,Y,X,5,5,5) 

then the result of the call will be incorrect since X is modified before the multiplication is complete. 
Another type of problem is illustrated in the following: 

SUBROUTINE FC3(A,B,C) 
A = B t C 
C = SQRT(A**2tB**2tC**2) 
A = A - B 
END 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

If the call is: 

CALL FC3(X,Y,X) 

UPDATE lEVEL 
7-64 

PAGE 

then the result will depend on whether or not optimization is requested. If there is no optimization, 
the code executed is: 

x '"' Y + X 
X '"' SORT(X**2 + Y**2 + X**2) 
X '"' X - Y 

If optimization is requested, the code executed is: 

T1 '"' Y + X 
X '"' SORT(T1*T1 + Y*Y + X*X) 
X '"' T1 - Y 

Similar results can happen if the dummy argument to which a value is assigned is associated via a 
call with a variable in a COMMON block. 

The compiler generates code for a subprogram, assuming that its arguments change their values only 
through explicit statements in the subprogram. If an argument is actually in a common block, and 
another subprogram is called which changes its value, the execution of the first subprogram mayor 
may not reflect this change in the argument value. rn~'$..m~$h~~~PI1~~I~~$pn~~.~~~~QI1Qf~P,,~~t 
AcC$$s·170.$tatement.whei'l·~he.aS$ociated.·varia6Je:.is··unknownfor.the.statem~nt.~ither •• beca····:·::···:::··:f 
~·:y~rl~~I~.·b~lnQ.iJ~~~.fpr •••• ~Il~·~~m~~r~·~r.~~~~~~ •• q~Qp~~~r •• ~~P:~N~ffl~~··············~m~~j •• ~~ •• ~~~. t 
.1'Il.iml),t.~xl~$·i,,·.th~·~i.iI).l>rogt~m,.·.T~Et·.::pmpi~~(·m~Y·~$ .. ~m~tl1~·~h~ •• ~"~O~ .........• :¥.ti~1:)1~~9~$ 
¢~sl'lge·its·v~lo~~·.~n~e·it·d.oes··,.Pt .• rei!lfi~~·.~i·'$··t~ •. i!I~$9~1.~~~·.*i!I'JiI~~~; 



( 

8244.2 
UP-NUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.6. RETURN Statement 

Purpose: 

UPDATE LEVEL 
7-65 

PAGE 

The RETURN statement provides a mechanism for returning control to the calling routine from a point 
in the subprogram other than the END statement. 

Form: 

RETURN [i] 

where i is an optional integer expression whose value, for example n, denotes the nth statement 
label in the argument list. 

Description: 

When the RETURN statement is executed in a function subprogram, evaluation of the referencing 
expres~ion is resumed with the function name replaced by its returned value.H()w~v~rrff}i~ 
~pl!I~ifi~~~~e.¢~~p~¢Qn~I"~~$aj~"~~j~~I'h~~i~~p$~lf.I~liS$~I~~~~Y!,J'lli$t&$~I~$i6~J()$~ 
(jf •• ~"~·.V~I~~.·~~fm.J'Y··rjt~rh~~··,rcrm •. a.f:~~~tipri··tI!If.r~6~~; 

Execution of a RETURN statement in a subroutine subprogram ordinarily causes execution to continue 
following the CALL statement. However, if i is specified, execution continues at the statement whose 
label is selected by i. The value of i must be positive and no greater than the number of statement 
labels passed as arguments. 

If the value of i is outside of the correct range, a warning message will be printed at run time: 

RETURN ARGUMENT i OUT OF RANGE 

A return will then be executed as if i had not been specified. 

Examples: 

C 
C 
C 
C 
C 

SUBROUTINE SCALAR( I ,K,A,B, IMAX,KMAX,N,TEST,*,*) 

RETURN 

RETURN 
The first return passes control to the statement identified 
by the first label in the argument list, which is the 
ninth argument of subroutine SCALAR (see 7.4.3.2). The 
second return passes program control to the point 
where the subroutine was invoked. 



8244.2 
UP-filUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.7. ENTRY Statement 

Purpose: 

UPDATE LEVEL 
7-66 

PAGE 

The ENTRY statement defines an alternate point to begin execution of a subroutine or function 
subprogram, and an alternate name by which the subprogram may be referenced. The ENTRY 
statement can also be used to allow a function subprogram to return values of different types. 

Form: 

ENTRY n [ ([ a [ ,a] ... ]) ] 

Description: 

The entry name n is a symbolic name which may be referenced subject to the same rules as the 
corresponding subroutine or function name. ,A$WI~t\~UI:I:r:9~~~~~~*O~Q~iQ~r\iilm~$~~~~~rt'~I'l~Y 
$yml)()U$I~fjQ~·~~~ypi~~~i"~i'ljrYn~m.~;iti$696$.~r\~Ili~~, 

Each formal argument a is a symbolic name, which must be unique in the formal argument list. The 
formal arguments need not agree with those of the SUBROUTINE or FUNCTION statement, or any 
other ENTRY statement. in order, number, type, or usage. A formal argument which appears in more 
than one formal argument list need not occupy the same position in each list. tfu~i!I~e~d$~iiI~h~~ 
(l~~}i.p~rmljt~~~h~sf()ra$VQRQ\.J'tIN~prfI.JNqIt~QN$tiil(~m~l'lj. A maximum of 150 formal 
argument names may appear in a program unit (SUBROUTINE, FUNCTION, and all ENTRY statements). 
The maximum number of type character formal arguments allowed in a single ENTRY statement is 
63. 

Any formal argument may be an asterisk Qr~¢~rr~l'li::y~ym~pl to denote that the corresponding actual 
argument is a statement label. (The FORTRAN 77 standard limits the use of asterisks for formal 
arguments to subroutines, though A$CIIFQR'tR~NaJIQW$~~~mil'lr\l~~~Qn~~'~p; ) 

All references to a formal argument name, or an entry name, in executable statements must follow 
the first appearance of the name in a formal argument list. or the ENTRY statement which defines 
the entry name. 

A program unit may contain multiple ENTRY statements. Each defines an alternate entry point to the 
subroutine or function and defines the name by which the entry point can be referenced. An entry 
point in a subroutine must be referenced as a subroutine; an entry point in a function must be 
referenced as a function. A total of no more than 511 entry points may be specified for all program 
units in a compilation. 

ENTRY statements are not themselves executable. If the normal sequence of statement execution 
would cause an ENTRY statement to be executed, it would be skipped and the next executable 
statement would be executed. When an ENTRY-defined name is referenced (in a CALL statement 
or function reference), execution of the subprogram begins with the first executable statement 
following the ENTRY statement. An ENTRY statement must not appear in the range of a DO-loop or 
in a block IF structure (that is, between a block IF statement and its corresponding END IF statement, 
where the IF-level is greater than zero). 

If the ENTRY statement appears in a function subprogram, the entry name is available for use as a 
variable in the same manner as the function name; the entry names and function name are effectively 
equivalenced. The type of each function entry name is determined from explicit typing, the IMPLICIT 
statement, or the I-N integer rule, whichever applies to the name. At the time of return, if the last 
function/entry name variable assigned is of a different type than that required for the entry name 
referenced, the function value is undefined .. If a fu.~ction is type character, then. all of its entry names 
1'ii~$~~typ~:¢~~r~¢t¢.r.·~4j~11··Q1·.~$.~i'ltry·l'lam~$~r~.npt·r~qili~f~~.t~·~e.pf.~qu~I.I~i'l9tt\, •• ·,A.reter$.#;El 



8244.2 
UP-NUMBER 

(' . 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-67 
PAGE 

~c?.~ .•• ~~~~pt~ •. !Yri#~i,gn~~m~· .•. ~~ .•.. £fj~~.~~r.~J1ttY.·n~m~·.~lW~$··~~es •• ~~·.9~ata~t~r.·I~J1g~···~$$.)(;.ated 
w~~.·~h~.,.~m~·.l!I'Iq~··t~~~J~v.·~m:~r~<I; 

FORTRAN 77 requires that if a function is of type character with a length of *. all ENTRY names must 
also be type character and of length *; otherwise. the character length must be the same integer value 
for each ENTRY name. 

A subprogram may not reference itself. by the subprogram name or any of its entry names. either 
directly or indirectly. Doing so cannot always be detected by the compiler and will result in an infinite 
loop at execution time. 

If information for the object-time dimensioning of an array is passed in a reference to an ENTRY 
statement, the array name and all of its dimension parameters (except any that are in a common block) 
must appear in the argument list of the ENTRY statement. 

yv~~~·.~~mmv~tg~m~6~.·.~~ ••• tiQ~ .• in •. ~h~ .• 4ummY.~rg~mlllnt •• n~t.·~f·.·~~ ••. I'i~m~.·~hr~~g~ ••• w.~,~~·.~~e. 
$u.~prpg~m·~.$r~'~"ijI~o~.~~Vg~ti~raIIY.r:~f~'.JP.J~~~(;~~~l·a,g~l'I'Iiiri~.~~~.W~JI::~·t~~y·w-~re.m9$t 
r~¢~~dv.m~~¢~~c.. The compiler cannot detect this situation; do not attempt to use it. Problems which 
can occur include: 

• If an actual argument is an expression. its value is passed in a temporary area. Since this area 
is reused for following statements. its value may change even though the expression would have 
the same value if it were reevaluated. 

• 
• 
• 

If the segmentation facility of the Collector is in use. the storage occupied by the actual argument 
may contain part of a different program unit when the subprogram is next called. 

If automatic storage is used. the dummy argument may find different contents on the stack the 
next time the subprogram is called. 

If the actual argument is a variable. the dummy argument remains associated with that variable. 
and reflects any changes to the value of that variable. As a result, the dummy argument may 
not retain the value that it had at the last execution of the subprogram. 

• A dummy argument may not be used unless an entry point has previously been entered where 
it exists in the argument list. 

• Optimization generally cannot know that this side effect is taking place. and will produce code 
as if it had not taken place. 



8244.2 
Uf4WMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.8. BLOCK DATA Subprograms 

UPDATE LEVEL 
7-68 

PAGE 

A BLOCK DATA procedure allows the initializations of variables in blank or labeled common blocks 
t()be combined in a single program unit. ,A$~llfQar~~llq~jlj~i~i~~tl%.~t.~pri!:)f~~.~~~qmmpri; 
t:)~t the FORTRAN 77 standard does not. 

7.8.1. Structure 

A BLOCK DATA procedure is a separate program unit. It mustbegin with a BLOCK DATA statement 
(see 7.8.2). The only other statements which are permitted in a BLOCK DATA subprogram are 
IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE, DATA, END, typing 
statements, ~~~ •• t~~.~)(T~RNA~·.6~.IN"I'1~IN$I¢.$t.~~~m~~~, 

Since the association between COMMON variables of different program units is by position in a 
COMMON block, rather than by name, all elements of a COMMON block should be listed in the 
COMMON statement. even though they are not all initialized. 

FORTRAN 77 allows named common blocks to be initialized only in BLOCK DATA subprograms. A$~II 

FQ~OO~A~.·~~~q~~.~~y.pt~~r~m.··.~~.~.Cln~~~qlnQ·.~bQ~~.Q~I~pr~p.~~~r~~) .. ~q·~~~~~~i~~~.~I~m~n~~ •• ~~.·Pry~ 
dt.m~r~··~9mmq~··~19P~~,.·~~~.·~.·¢pmm9;i. .. ~I(j~~rti~y~!i~.~.~.~.I~~~p·.~v·.·.m~r~·.""'~m •. ~t:i~ ..•. pr~t~m·l.ln~~,.·.·~f 
~~·~~~m~q~9f~~pmm9mJ)~p~~I~I~~t~~I~~~~~Yrti9t~~~~~~ii~.Pr,9Qt.t:I'I~~~~prm9r~~~~~~n~!~I~~'1'\ 
~·.Ptf:)~t~rry·.·.l.liil~·.9~~.·.·.9f •. ~h~·.I~i~i~J •... y~I~~$~il~ .• J)~~~~~!~~~~.rt .•. ~h~.·~rpQt~m .•• ~.·.FPII~Ft,~ •. • •. ·.IHII'\~~.~.~~~. 
l~i~~~IV~I~~~·~s~lgrt~~jp~~~·e~emem~r~.~~I.ig~t)ti(i~I,~h~~¢.~~I."a.J~~·~$~lg.,~d·.p·~~e·~~~h'i~t)t·~~.~~~· 
~g~~~~l'Ig.·c)f.·~*~¢~t~q~.I~··~ijp~~i~~tA~I~; 

A BLOCK DATA procedure requires no local storage. Any variable which appears in specification 
statements, but not in a COMMON statement, will be noted in a warning message. No storage will 
be reserved for variables which do not appear in a COMMON statement. 

Since a BLOCK DATA procedure defines no entry points, the automatic element inclusion facilities 
of the Collector will never cause inclusion of the relocatable generated for a BLOCK DATA procedure. 
As a result. the use of a BLOCK DATA procedure requires that the collection include an IN directive 
for the corresponding relocatable element. 

7.8.2. BLOCK DATA Statement 

Purpose: 

A BLOCK DATA statement identifies a program unit as a BLOCK DATA subprogram. 

Form: 

BLOCK DATA [sub] 

where sub is an optional name for the BLOCK DATA subprogram. 

Description: 

The BLOCK DATA statement is the initial statement in all BLOCK DATA subprograms. 

The name sub is a global name and must not be the same as the name of an external procedure, 
main program, common block, or other BLOCK DATA subprogram in the same executable program. 
In addition, sub must not be the same as any local name in the subprogram. 



8244.2 
lJP..ftUMlER 

(~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-69 
PAGE 

There must not be more than one unnamed BLOCK DATA subprogram in an executable program. 

The name of a BLOCK DATA subprogram has no explicit use within the FORTRAN language. It is 
available mainly for documentation. 

The same common block should not be specified in more than one BLOCK DATA subprogram in the 
same executable program. 

Examples: 

C 
C 
C 

C 
C 
C 
C 

BLOCK DATA BLKA 
DIMENSION K(10) 
COMMON IB/K 
DATA K/1,2,3,4,5,6,7,8,9,101 
END 

This exempl ifies a BLOCK DATA subprogram named BLKA. 
The COMMON block named B is initial ized by the 
DATA statement. 

BLOCK DATA 
DIMENSION A(10),M(10) 
COMMON IXI A,B,C INAME1/M 
DATA M/2*1, 2*3, 2*5, 2*2, 2*4/,B,C/1.0,2.01 
END 

The elements of Mare ini t ial ized to the sequence of 
values (1,1,3,3,5,5,2,2,4,4). The variables Band C 
are set to 1.0 and 2.0, respectively. No initial value 
is assigned to any element of A. 

7.9. PROGRAM Statement 

Purpose: 

A PROGRAM statement is optional and is used to associate a name with the main program. 

Form: 

PROGRAM pgm 

where pgm is the symbolic name of the main program in which the PROGRAM statement appears. 

Description: 

A PROGRAM statement is not required to appear in an executable program. However, if it does 
appear, it must be the first statement of the main program. 

The symbolic name pgm is global to the executable program. It must be unique relative to external 
procedure names, BLOCK DATA subprogram names, and common block names in the same 
executable program. In addition, pgm must not duplicate any local name in the main program. 

The name of a main program has no explicit use within the FORTRAN language. It is available mainly 
for documentation. 



8244.2 
UP~UM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

7.10. Non-FORTRAN Procedures 

UPDATE LEVEL 
7-70 

PAGE 

Because FORTRAN is a high-level language oriented to the solution of certain types of problems, it 
is sometimes expedient to code some parts of a program in FORTRAN and other parts in another 
language. 

These non-FORTRAN parts can be included in the FORTRAN program unit when the program is 
collected. Program parts written in assembly language (that is, MASM) must be prepared to accept 
the calling sequences generated by the ASCII FORTRAN compiler. Parts written in SPERRY UNIVAC 
FORTRAN V, ASCII COBOL, or PL/I may be called directly (see EXTERNAL statement (7.2.3)). 

See Appendix K, Interlanguage Communication, for details on the interfaces with FORTRAN V, ASCII 
COBOL, PL/I. and MASM. 



8244.2 
UP-JlUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

I 7-71 
PAGE 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

7-72 
PAGE ~ ____________ L-____________________ ___ 

7.12. SAVE Statement 

Purpose: 

A SAVE statement is used to retain the values of entities as they were defined after the execution 
of a RETURN or END statement in a subprogram. Upon reentry of the subprogram. an entity specified 
by a SAVE statement will contain the value as last defined by the execution of the subprogram. 

Form: 

SAVE [ n [. n] ... ] 

where n is a named common block preceded and followed by a slash. a variable name. or an array 
name. 

Description: 

A SAVE statement is nonexecutable. Within a function or subroutine. an entity specified in a SAVE 
statement does not become undefined as a result of the execution of a RETURN or END statement 
in the subprogram. However. an entity in a common block Qr~91~~~f~~lijY~~.~·lfut~~~I~~~pr~gt~m 
may become redefined in another program unit. 

Dummy argument names and names of entities in a common block must not appear in a SAVE 
statement. 

A SAVE statement without a list is treated as though it contained the names of all allowable items 
in that program unit. A SAVE statement is optional in a main program and has no effect. 

The appearance of a common block name preceded and followed by a slash in a SAVE statement 
has the effect of specifying all of the entities in that common block. 

The SAVE statement operates by ensuring static storage for the named or implied entities. ASCII 
FORTRAN normally has static storage for common blocks. However.lf:~h~·¢Q~PJ~~R$j~~m~~~~i~fu 
p~TA#ffiA(.rrQi~pr~~~~t local variables are not saved upon execution of a RETURN or END statement. 
since storage is dynamically acquired. The SAVE statement will cause local variables to be placed 
under location counter 8. which is static storage in a program t.h~~~g:fut.~~ri~~~~p~iA;ffi#~P%Q~pj~~ril 
If the Collector segmentation facilities are used to collect a program. the SAVE statement does not 
ensure that these entities will be preserved. since ASCII FORTRAN has no control over the collection. 
Overlays of storage by any means. including Collector segmentation. may cause the loss of values 
of the entities named in SAVE statements in the overlaid programs. 

/. , 

\, ,/ 



8244.2 
UP-NUMBER 

8.1. General 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

8-1 
PAGE 

8. Program Control Statements 

The program control statements are used for the temporary modification of the source program being 
compiled. for modifying the code generated. and for controlling the compilation listing produced. 'th~ 
~at~m~~t~·.I~il··I'I~I'I$t~n~~r~)··~r~: 

The first two statements are used. respectively. to insert additional statements into the compilation. 
and to delete source statements from the compilation. The next statement dynamically controls the 
compilation listing. The fourth statement is used to alter the compilation process. 

8.2. INCL.UDEStatement ............................................................... 

Purpose: 

The INCLUDE statement inserts an externally defined set of ASCII FORTRAN statements into the 
program being compiled. 

Form: 

where: 

f if specified. is a file name specifying the file to be searched for the procedure (PROC) 
n 

n is the name of a FORTRAN procedure (PROC) created by the Procedure Definition 
Processor (PDP). See the EXEC System Utilities Programmer Reference. UP-4144.3 
(see Preface). for details on PDP. The name n contains from 1 to 12 characters from 
the same character set as a FORTRAN symbolic name. 

LIST when entered. will cause the included statements to be listed whenever the source 
program is listed. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 ..; 
FORTRAN (ASCII) Programmer Reference 

Description: 

UPDATE LEVEL 
8-2 

PAGE 

The included statements do not become part of the updated source program produced. Therefore. 
the physical line numbers of the source program are not changed. 

INCLUDE statements may not be nested; that is. an INCLUDE statement must not be among a group 
of statements to be included (any other FORTRAN statement may be included). 

A normal application of the INCLUDE statement is the representation of a block of FORTRAN source 
statements by a single INCLUDE statement. For example. the inclusion of a set of statement functions 
which are frequently used at a particular installation is such an application. 

A useful application for INCLUDE procedures is one or more INCLUDE elements containing a set of 
data declarations shared between different portions of a larger user program system. These data 
declarations could be. for example. many of the COMMON. DIMENSION. EQUIVALENCE. and 
PARAMETER statements as well as statement function definitions. Caution is urged. however. to the 
extent to which these FORTRAN procedures are used. All of the statements must be processed. 
slowing down the compilation. An example of poor usage is a small subroutine including a procedure 
(PROC) which defines several hundred variables. but uses only one of these definitions. 

The Procedure Definition Processor (PDP) is used to create a FORTRAN procedure (PROC) (see Figure 
8-1). This is a set of FORTRAN statements which can be inserted into source language with an 
INCLUDE statement. The PDP accepts source language statements defining FORTRAN procedures 
and builds an element in the user-defined program file. Using INCLUDE. these procedures may be 
referenced subsequently in a compilation without redefinition. 

A FORTRAN procedure has the following format: 

1. The PROC line is the first line of a FORTRAN procedure. It contains the procedure name (1 to 
12 characters). starting in column 1. and "PROC" starting in column 7 or after. 

2. The procedure images follow the PROC line. These images are the FORTRAN statements which 
are to be included. 

3. The final line must be the word END appearing in columns 2 through 4. 

A PDP source element may contain more than one FORTRAN procedure. as in Figure 8-1. 

A FORTRAN procedure is not analogous to an Assembler procedure. For a FORTRAN procedure. the 
F option must be in the @PDP command. 

The sample procedures in Figure 8-1 (SPECS 1, SPECS2. anci SPECS3) could be included (via the 
INCLUDE statement) in a FORTRAN program. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

@PDP,FIL STUFF 
PDP12Rl R72-l6 02/09/77 09:18:37 (,0) 

SPECSl PROC 
IMPLICIT INTEGER (0-0) 
PARAMETER (IN=5, OUT=6) 
PARAMETER (Pl=1,P2=2,P3=3) 

UPDATE lEVEL 

RI 

PEOOOl 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 

PARAMETER (M=MAX(MOD(P3,P2) ,DIM(P3,Pl))) 
COMPLEX C(10) ,0(5)/5*(1,0,-1 .0)1 
DIMENSION 0(5),P(4) 

PE0013 
0014 
0015 
0016 

PE0017 
0018 
0019 
0020 

Example: 

COMMON ICB1/C,K,C IIA(5),0 

9999 FORMAT ( ) 
EXTERNAL FUNEX 

END 
SPECS2 PROC 

COMPLEX X(5) 
COMMON E,F,G 

END 
SPECS3 PROC 

COMPLEX C 
COMMON ICBll C(5),K,0 

END 

Figure 8-1. Sample PROC 

INCLUDE SPECS 1 

INCLUDE SPECS3,LlST 

8-3 
PAGE 

In order for PDP to add the procedure names to the FORTRAN Procedure Table of the specified 
program file, one of three conditions must be satisfied: 

• The I option must be specified and an element name given in the spec 1 field of the PDP control 
card; or 

• The U option must be specified and an element name given in the spec 1 field of the PDP control 
card; or 

• Neither the I nor the U option is specified and element names are given in the spec 1 and spec2 
fields of the PDP control card. 



8244.2 
UI4IUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

8-4 
PAGE 

If a file name is specified in the INCLUDE statement, the FORTRAN Procedure Table of that file is 
searched for the PROC n. The file name is not checked for syntax before it is passed to the Executive, 
so errors in specifying the file name may result in immediate termination of the compilation by the 
Executive. The file name may be a fully specified name (qualifier, file, cycle, keys) or a @USE attached 
name. The usual Executive file name dropout rules apply. 

If no file name is given in the INCLUDE statement, the PDP element that contains the procedure (PROC) 
to be included must be in a file that is assigned to the run in which the compilation is being performed. 
The files that are searched and the rules for determining the order in which the search is performed 
are defined as follows: 

• If the source input is coming from a program file on mass storage, that file is searched. 

• If the source input is coming from a program file on tape, the relocatable binary output file is 
searched. 

• If the source input is coming from cards, the source output file is searched, if one exists. 
Otherwise, the relocatable binary output file is searched. 

• If the PROC is not found in any of the files previously listed, the system library file (SYS$*RLlB$) 
is searched. 

• If the PROC is not found in any of the files previously listed, an error is printed. Compilation 
continues as if the INCLUDE statement had not been present. 

A file may be provided which would be searched first to find a PROC to be included. The optional 
search is achieved by assigning the mass storage file with the @USE attached name FTN$PF in the 
run and by specifying the M option on the @FTN statement for the compilations in which the optional 
file search is desired. 

If the file FTN$PF is assigned to the run and the M option is specified, FTN$PF will be the first file 
searched for the PROC to be included. If FTN$PF is not assigned to the run, or the M option is not 
specified, or the PROC is not found in FTN$PF, the PROC is searched for as previously specified. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

8.3.DEL.ETtStatement .......................................................... 

Purpose: 

UPDATE LEVEl 
8-5 

PAGE 

The DELETE statement prevents compilation of a set of source lines contained in the input source 
program. 

Form: 

where: 

n is a statement label in the same program unit as the DELETE statement. 

d is the delete parameter. It must be an integer constant or integer PARAMETER constant. 

/ is the list parameter. It must be an integer constant or integer PARAMETER constant. 

Description: 

The DELETE statement causes the compiler to ignore all source lines following the DELETE statement 
up to, but not including, the statement labeled n. However, if the value of the delete parameter, d, 
is zero, the DELETE statement is ignored. 

If the value of the list parameter, /, is nonzero, the deleted source lines are listed in the compilation 
listing. If the value of / is zero, the deleted lines are not listed. 

The lines deleted are made transparent to the compiier, but they are not actually removed from the 
updated source program. 

Several simplifications of the form of the DELETE statement are allowable when the 
compiler-specified values of the delete and/or list parameters are desired. The compiler-specified 
values are d = 1 and / =0. If both of these values are desired for a particular DELETE statement, the 
following reduced form may be used: 

DELETE n 

If the deleted lines are never to be listed (/ =0), the following form may be used: 

DELETE n,d 

If the images are always to be deleted (d = 1), and the list option is to be specified, the following form 
may be used: 

DELETE n, .I 

Note that any statement (including a specification statement) may have a label (see 10.3.1), so DELETE 
n may refer to any statement in the program unit. 



8244.2 
lII'-MIM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Purpose: 

UPDATE LEVEl. 
8-6 

PAGE 

The EDIT statement controls the type of compilation listing produced for any portion of the source 
program. 

Forms: 

Description: 

The word PAGE causes a page eject in the source listing. the word SOURCE controls the listing of 
the source program statements. and the word CODE controls the listing of the generated object code. 

The START forms cause the compiler to initiate the type of listing specified (SOURCE or CODE). if it 
has been suppressed by a preceding EDIT statement or by a processor call option. A START EDIT 
CODE statement initiates both source and code listings. 

The STOP forms cause the compiler to terminate the type of listing specified. if it has been initiated 
by a preceding EDIT statement or by a processor call option. A STOP EDIT SOURCE statement 
terminates both source and code listings. 

The START EDIT PAGE form causes the current page of the compilation listing to be ejected before 
listing the next statement of the source program. This has the effect of placing the next statement 
following this command at the top of a new page. If the source is currently not being printed. this 
statement has no effect on the output. 



8244.2 
lJP..fiIUMBER 

(:: 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Purpose: 

UPDATE LEVEL 
8-7 

PAGE 

The COMPILER statement provides options to the compiler which are intrinsic to the program. 

Form: 

C()M·PI·~ER··· (.ppJ ••••. [ .••.•• ~ .••.•• (.qpj ..•.• ] .••..•.•.• ; •• ~ .. 

where op is a compilation option. 

Description: 

A programmer may choose any of the following options for the compilation process of a program 
unit by using the COMPILER statement. All options are of the form a = b, where a is the option 
name and b is the option type. 

The allowable options are: 

• DATA = AUTO 

• DATA = REUSE 

• PARMINIT = INLINE 

• BANKED = RETURN 

• BANKED = DUMARG 

• BANKED = ACT ARG 

• BANKED = ALL 

• LINK = IBJ$ 

• STD = 66 

• U 1110 = OPT 

• ARGCHK = ON 

• ARGCHK = OFF 

• PROGRAM = BIG 

If the COMPILER statement is used, it affects the code generated for the entire program unit (or 
compilation), and it must be the first statement of the unit (or compilation). 

The BANKED = RETURN option is local to the program unit in which it appears. All other options 
are global to the compilation, and should appear at the top of the first program unit in the source. 



8244.2 
UP ..... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

8.5.1. DATA and PARMINIT Options 

UPDATE LEVEL 
8-8 

PAGE 

The DATA=AUTO and DATA=REUSE options cause the ASCII FORTRAN compiler to generate code 
which has no local D-bank (other than COMMON blocks), to acquire and release space for local use 
via calls to run-time routines, and to dynamically initialize this space on entry, thus giving ASCII 
FORTRAN an automatic storage facility. 

These two options also cause the LlNK=IBJ$ option to be turned on. The DATA=REUSE option is 
identical to the DATA=AUTO option, except that a run-time Prolog entry point is used which does 
not initially push the stack before allocating local storage. This means that the stack storage of the 
previous routine is reused. This conserves stack space, but also means that a RETURN can never be 
done from a subprogram with a DATA=REUSE option, since the stack of its caller is destroyed. The 
user would have to somehow handle program termination himself. Since arguments are passed in 
the stack, arguments cannot be passed to routines which have the DATA=REUSE option; that is, they 
must not have parameters. 

The PARMINIT=INLINE option has effect only when used with the DATA=AUTO or DATA=REUSE 
option. When the DATA=AUTO or DATA=REUSE option is specified, a considerable amount of 
initialization code is required for the automatic storage stack. Items such as I/O packets, format lists, 
parameter lists, and data lists require instructions to initialize the list information onto the automatic 
storage stack. This initialization code is normally executed for the entire program unit upon entry 
to the main program or subprogram. That is, all of the. stack initialization for the entire program unit 
is executed at program initialization before executing any of the statements of the program. This is 
inefficient if only a small part of the program is executed each time. The PARMINIT=INLINE option 
can be used to make certain FORTRAN programs execute more efficiently. This option causes the 
initialization of parameter lists to take place at their reference, rather than at program initialization 
time. This is more efficient for programs that execute only a portion of their statements each time 
called and do not loop heavily around subprogram calls. However, if the program has many loops, 
with subprogram calls within the loops, the use of this option could result in more execution time 
instead of less. 

Because of the highly volatile nature of this automatic storage, some useful side effects of static 
storage allocation are not available when using automatic storage: 

• Local variables not initialized by DATA statements will not have the value of zero on entry. 

• Local variables will not have their last value on reentry to a subprogram, unless they appear in 
a SAVE statement. 

• Arguments set by entering at one entry point are not available when the subprogram is entered 
at another. 

• If one reads into a Hollerith or literal field of a FORMAT statement it will hold that value only 
as long as the subprogram containing it is active. 

• Names of internal subprograms cannot be passed to other external subprograms and have the 
external call the internal. 

Full-debug checkout and FTNPMD (see 10.6 and 10.7) use is severely restricted when using 
automatic storage: 

• Walkback will terminate when a subprogram using automatic storage is encountered. 

• No local variables or arguments can be set or dumped for subprograms which use automatic 
storage. 



8244.2 
UP-JIUMBER 

(-: 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

8.5.2. BANKtu uptlons 

The ASCII FORTRAN banking mechanism is described in H.2. 

• BANKED=ALL 

UPDATE LEVEL 
8-9 

PAGE 

BANKED=ALL is a general banking option used to indicate that banking of some form will 
appear in the user program. 

The option indicates that all labeled common blocks may be in paged data banks or in the control 
bank. In addition. BANKED=ALL turns on the following COMPILER statement banking options: 

UNK=IBJ$ (subprograms may be banked) 
BANKED=DUMARG (input arguments may be banked) 

If BANKED=ALL appears. the specific subprogram (I-bonk) and common block (D-bank) bank 
structure of the user program need not be known at compile time. This makes the process of 
generating a multi-bank user program more flexible. since changes in the bank structure can 
be made entirely at collection time. with no ASCII FORTRAN recompilations required. 

If the user has paged data banks and BANKED=ALL is specified. BANK statements (see 6.6) 
naming common blocks may be completely omitted from ASCII FORTRAN source programs. 
although they may appear for reasons of efficiency. See H.2.3 for a description of banking 
efficiency. 

• BANKED=DUMARG 

The BANKED=DUMARG option applies to dummy arguments in subprograms. (A dummy 
argument is an item appearing in argument lists in SUBROUTINE. FUNCTION. or ENTRY 
statements.) When this option appears. dummy arguments which are data items may be in 
paged data banks or in the control bank. and dummy arguments which are subprograms may 
be in any I-bank or in the control bank. 

On every reference to a dummy argument in a subprogram. the compiler must generate code 
to base the item's bank. if it is not already based. 

The BANKED=DUMARG feature is automatically turned on if BANKED=ALL is specified. 

• BANKED=RETURN 

When this option appears in a subprogram. the subprogram returns to its calling program via 
one of two instructions: LlJ or a jump. The decision is made in generated code with a test 
sequence: an LlJ is executed if the subprogram was entered via ah LlJ. and a jump is executed 
if the subprogram was entered via an LMJ. 

This feature should be used if the subprogram's I-bank may be different from the I-bank of any 
calling program. 

The BANKED= RETURN feature is automatically turned on if LlNK=IBJ$ or BANKED=ALL is 
specified. 

• BANKED=ACTARG 

BANKED=ACTARG is an obsolete option that is supplied for compatibility with previous levels 
of ASCII FORTRAN. It previously was used to pass banking information for arguments on 
subprogram calls. but this information is automatically passed now (if the user specifies any form 
of banking. for example. BANKED=ALL). 



8244.2 
UP~MIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

8.5.3. LlNK=IBJ$ Option 

UPOATE lEVEL 
8-10 

PAGE 

The LlNK=IBJ$ option is provided for the purpose of making it easier to construct multi-I-bank 
programs without the use of the COMPILER (BANKED=RETURN) or BANK statements. This option 
is meaningful for banked subprograms, although it may also be used on nonbanked programs. The 
LlNK=IBJ$ option has no effect on paged data banks. 

See H.2 for a description of the ASCII FORTRAN banking mechanism. Note that the LlNK=IBJ$ 
feature is automatically turned on if BANKED=ALL is specified. 

The LlNK=IBJ$ option causes the compiler to generate the following reference to user subprograms: 

LXI,U X11, BDICALL$+subprg 
IBJ$ X11,5ubprg 

BDICALL$ and IBJ$ are special external reference items which are resolved at collection time; subprg 
represents the name of a FORTRAN external subprogram. The Collector determines if subprg is 
contained in a different instruction bank than the one from which the call is made. If it is, then 
BDICALL$+ subprg is the BDI of the bank in which subprg is located, and IBJ$ is an LlJ. If subprg 
is in the same instruction bank, BDICALL$+ subprg is zero, and IBJ$ is an LMJ. The LlNK=IBJ$ 
option also causes the compiler to generate the following instructions to return from subprograms: 

LA,H1 
JZ 
LXI 
LlJ 

A4, X11-save-location 
A4,0,X 11 
X 11 ,A4 
X11,0,X11 

Use of the LlNK=IBJ$ option, as opposed to the BANKED=RETURN option and BANK statement, also 
allows for modification of bank structure collections without change to the source program, and thus 
without recompilation. An IBJ$ reference will do an LMJ or LlJ to the correct bank, and the 
subprogram will return correctly regardless of the bank structure. 

8.5.4. U 111 0 = OPT Option 

The U 111 O=OPT option invokes a code reordering algorithm during the code generation phase of 
the compiler. This option is meaningful only on hardware which incurs register conflicts, such as the 
SPERRY UNIVAC 1100/40, 1100/60, and 1100/80 Systems. It involves shuffling generated code, 
which minimizes the hardware register conflicts in order to obtain faster execution speeds. It is also 
available on older machines, such as the 1106 System, so that absolutes and relocatables created 
on the older machines will execute faster if moved to a newer machine. 

Example of code reordering: 

Source: 

J = I 
N=K+M 

P = ° 



8244.2 
UP-NUM8ER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Generated code: 

1 ) L A4,I 
2) S A4,J 
3) L A6,K 
4) A A6,M 
5) S A6,N 
6) S2 P 

UPDATE LEVEL 
8-11 

PAGE 

There would be a major register conflict between lines 1 and 2, and between lines 4 and 5. A large 
delay would occur at each of the two points. After code reordering, the sequence would be: 

1) L A4,I 
2) L A6,K 
3) A A6,M 
4) S2 P 
5) S A4,J 
6) S A6,N 

Here there would remain a small delay between lines 5 and 6, but this sequence is much faster than 
the unordered code. 

The algorithm used is a simple look-ahead that stops when labels, calls, etc. are encountered. In 
general, a decrease of 3% to 8% in Central Arithmetic Unit (CAUl time can be expected for execution 
of the generated code. (However, I/O-bound programs may see no change and a heavily looping 
program may execute up to 30% faster.) The effect is most pronounced on programs that also are 
compiled with global optimization (the 2 option). 

This code-reordering algorithm is also invoked by the use of the E option on the ASCII FORTRAN 
processor call statement (@FTN,E). 

8.5.5. STO=66 Option 

The STO= 66 option is provided to allow relocatables created with level 8R 1 and relocatables created 
with level 9R 1 and higher to coexist. 

ASCII FORTRAN levels 9R 1 and higher conform to the latest FORTRAN standard, FORTRAN 77 
(formally known as ANSI X3.9-19781. ASCII FORTRAN levels lower than 9R 1 conformed to ANSI 
X3.9-1966. 

Compatibility problems arise because conforming with FORTRAN 77 requires certain features that 
conflict with the implementation of previous ASCII FORTRAN levels. 

If the option STO=66 is not specified in a compilation, ASCII FORTRAN will conform to the standard 
(FORTRAN 77). If the option is specified, ASCII FORTRAN will implement the features in Table 8-1 
as they were done in previous levels (that is, in a nonstandard manner). 

If any pre-level 9R 1 ASCII FORTRAN relocatables are lIsed in a collection, the ASCII FORTRAN level 
9R1 or 10R1 compilations must be done with the COMPILER (STO=66) compatibility option. Also, 
all relocatables in a collected program must have matching compatibility options. If one program 
is compiled with STO=66, all FORTRAN programs to be collected with that program must have 
5TO=66. 



8244.2 
UP-NUMBER 

Feature 

Character 
data 

DO-loops 

Typing 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Table 8-1. Use of the STO=66 COMPILER Statement Option 

Implementation With STD=66 
Option 

Unpacked character data - all 
character items (including array 
elements) begin on word 
boundaries. 

A DO-loop (with DO statement DO 
n i = e ,.e2.e3) must be 
traversed at least once. even if e 1 

> e 2 and e 3 > o. 

-1 is assumed as the increment 
value if e 3 is not specified. and 
e,and e 2 are both constant 
expressions. where e 1 > e 2· 

Parameter constants and 
statement functions have no 
associated types. Types are 
determined by usage in 
expressions. 

Implementation Without STD=66 
Option 

Packed character data for arrays. 
common blocks. etc. - character 
items need not begin on word 
boundaries (see 6.9.1). 

If either a dummy or actual 
argument is type character. then 
the other must also be type 
character (see 7.5). 
A DO-loop is traversed zero times 
if e 1 > e 2 and e 3>0. or if 
e 1 <e2 and e 3<0 (see 4.5.4.1). 

1 is assumed as the increment 
value if e 3 is not specified. 

Parameter constants (see 6.7) and 
statement functions (see 7.4.1) 
have associated types. based on 
normal typing conventions. and 
previous IMPLICIT and typing 
statements. 

8.5.6. ARGCHK Options 

I 8-12 
PAGE 

ASCII FORTRAN will automatically check the types and number of actual arguments against those 
expected on subprogram entry. However. if the Z or V options are specified on the @FTN processor 
call (optimization options). type checking will not be done. If type checking is desired when 
optimization is used. the ARGCHK=ON option must be used. 

If type checking is not desired. the ARGCHK=OFF option can be used. Note that if either the calling 
routine or the routine being called has disabled type checking by using the ARGCHK=OFF option or 
by compiling with optimization (without the ARGCHK=ON option). type checking will not be done. 

8.5.7. PROGRAM=BIG Option 

If the PROGRAM = BIG option appears. the 0 option (see processor call options, 10.5.1) is turned on. 
The compiler will generate code that allows D-bank addresses to exceed octal 0200000 (decimal 
65535). The use of this option will eliminate problems that result when a program that needs the 
o option is mistakenly compiled without it. 



8244.2 
UI40IUMBER 

9.1. General 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

9-1 
PAGE 

9. Debug Facility Statements 

The debug facility is used during the debugging phase in the creation of a FORTRAN program, and 
ordinarily would not be a part of the final program unit. 

Five different options provide the debugging aids: subscript checking, label tracing. tracing of 
changes in values, tracing of entry and exit for subprograms, and simple output. 

The DEBUG statement sets the conditions for operation of the debug facility and designates 
debugging operations that apply to the entire program unit (such as subscript checking). The debug 
packet identification statement (AT) identifies the beginning of the debug packet. and the point in the 
program unit at which the statements in the debug packet are to be executed. The three executable 
statements (TRACE ON, TRACE OFF, and DISPLAY) designate actions to be taken at specific points 
in the program unit. 

At most one DEBUG statement may appear in a program unit; if a DEBUG statement appears, then 
any number (including zero) of debug packets may appear (in the program unit). The AT, TRACE ON, 
TRACE OFF, and DISPLAY statements may not appear before the DEBUG statement. Within the 
program unit. debug packets must be located after all regular code of the FORTRAN main program 
or subprogram, but preceding the END statement (or the last statement in the program unit. if the 
program unit has no END statement). Any normal FORTRAN executable, data, or format statement 
may also occur in a debug packet. The debug packet may be terminated only by another AT statement 
or the END statement for that FORTRAN main program or subprogram (or by the FUNCTION or 
SUBROUTINE statement that signifies the start of an internal subprogram). 

The debug facility and compiler optimization (V or Z option on the ASCII FORTRAN processor call 
statement) are incompatible. If used together, bad code may be generated. 

Jh~i6~hfiClJJ~t~~~~9$tat~ment~(~6iq6~~~~llngn~~rn~a.r~~~~~~~Pi~~~~~.i~~~t~~~irinj~~fp~lpwirig 
$U~~~¢tlol'l~. 



8244.2 
UP-NUIIIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Purpose: 

UPOATELML 
9-2 

PAGE 

The DeBUG command indicates the existence of a debug facility for the given FORTRAN program unit 
and specifies the debugging environment. 

Form: 

where option is any of the five debugging environment specifications. 

Description: 

The five debugging environment options are: 

• UNIT (See 9.2.1.) 

• SUBCHK (See 9.2.2.) 

• TRACe (See 9.2.3.) 

• INIT (See 9.2.4.) 

• SUBTRACe (See 9.2.5.) 

Any combination of these five options may appear in the option list following the DeBUG keyword. 
They may be given in any order. 

There must be a single DeBUG statement for each program unit to be debugged and it must 
immediately precede the first debug packet (if one exists). 

If the UNIT option is not specified. any debugging output will be put in the standard program output 
file. 

If the TRACe option is omitted from the DeBUG option list. there can be no display of program flow 
by statement labels within the program unit. 

Examples: 

DeBUG 
C 
C 
C 

DeBUG 
C 
C 
C 

DeBUG 
C 
C 
C 
C 
C 

Indicates debugging is enabled. Debug action is specified 
in an associated AT statement. Output is put in 
the standard system output file. 

SUBTRACe.UNIT(4) .SUBCHK(ARRAY1.BUNCH2.GROUP3). INIT 
Subscripts are checked for arrays ARRAY1. BUNCH2. 
and GROUP3. Changes in values of al I variables are 
noted. Debug output is put on unit number 4. 

TRACe. INIT(C.LIST1.e) .SUBCHK 
Debugging wi II include subscript checking on all arrays. 
I ist of program flow by statement label passage (assuming a 
TRACe ON statement appears in an AT packet fol lowing the 
DeBUG statement). and notation of changes in value of C. 
LlST1. and e. 



8244.2 
UP-NUUBER 

( 

f 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

9.2.1. UNIT 

Purpose: 

The UNIT option designates a particular output file for debug information. 

Form: 

UNIT(c) 

where c is an integer constant representing a file reference number. 

Description: 

All debugging output will go to the designated file. 

UPDATE LEVEL 
9-3 

PAGE 

The file number may not change within an executable program; for example, if the FORTRAN main 
program specifies UNIT(S), a subprogram called by this main program must specify UNIT(S) if it has 
a DEBUG statement. 

If this option is not present, all debugging output will be put in the standard output file. No DEBUG 
UNIT message will be printed in this case. 

Example: 

DEBUG UNIT (25) 
C Sends a II debug output to the f i Ie assoc i ated wi th un it 25. 

9.2.2. SUBCHK 

Purpose: 

The SUBCHK option checks the validity of subscripts of array elements referenced in the program 
unit. 

Form: 

SUBCHK [( n [, n] ... ) ] 

where each n is an array name. 

Description: 

If the list of array names is not given following the SUBCHK option, subscript checking is done for 
all arrays in the program unit. 

The check is made by comparing the size of the array with the product of the subscripts. A message 
(listing the source code line number and array name) will be placed in the debug output fi!e if an 
out-of-range subscript expression is encountered. The incorrect subscript will still be used in the 
continued program execution. 

If this option is omitted, no subscript checking will be performed. 

Subscript checking cannot be done for assumed-size arrays (see 2.2.2.4.1)." 



8244.2 
Ul4lUMIER 

SPERRY UNIVAC Series 1100 . 
FORTRAN (ASCII) Programmer Reference 

Examples: 

DEBUG SUBCHK 

DEBUG SUBCHK(ARRAY1. LIST2) 

9.2.3. TRACE 

Purpose: 

UPDATE lEVEL 
9-4 

PAGE 

The TRACE option indicates that statement label tracing is desired in the FORTRAN program unit in 
which the DEBUG statement appears. 

Form: 

TRACE 

Description: 

This option only enables label tracing. 

Tracing will not actually be performed until a TRACE ON statement is encountered in the program 
flow. It is terminated upon encountering a TRACE OFF statement (see 9.4 and 9.5). 

TRACE ON and TRACE OFF statements have no effect on a program unit in which the TRACE option " / 
has not been specified. 

Example: 

C 
C 

DEBUG TRACE 
The trace debug faci I ity is enabled. 
It can be activated with a TRACE ON statement. 



8244.2 
UP-NUMaER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

9.2.4. INIT 

Purpose: 

The INIT option traces the changes in values of variables and arrays during execution. 

Form: 

I NIT [( m [, m] ... ) ] 

9-5 
PAGE 

where m is the name of a variable or array in the program unit for which a value trace is to be 
performed. 

Description: 

If no list is given after the INIT option, a value trace is done on every variable or array in the program 
unit. This includes changes in value of any particular element of an array. 

The value trace consists of placing, in the debug output file, a display of the variable name or array 
element name along with its new value each time it is assigned a value in an assignment statement, 
a READ statement (except a namelist READ), a DECODE statement, or an ASSIGN statement. The 
source code line number where the variable is set is also listed. 

Example: 

DEBUG INIT (A,VAR1) 
C 
C 

9.2.5. SUBTRACE 

Purpose: 

Starts debug faci I ity and initiates trace of array 
A and variable VAR1. 

The SUBTRACE option indicates entrance and exit of a subprogram during program execution. 

Form: 

SUBTRACE 

Description: 

When the SUBTRACE option is included in the DEBUG statement within a function or subroutine, a 
trace on entrance to and exit from that subprogram is enabled. 

The message 'ENTER SUBPROGRAM 5' (where 5 is the subprogram entry point name) will be placed 
in the debug output file each time 5 is entered, and 'RETURN FROM SUBPROGRAM 5' will be 
inserted in the file each time 5 completes execution. 

Example: 

DEBUG SUBTRACE 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

9.3. ~I 

Purpose: 

UPOAT£LMl 
9-6 

PAGE 

The AT statement identifies the beginning of a debug packet and indicates the point in the program 
unit at which the packet is to be activated (that is, the point at which the statements in the debug 
packet are to be executed). 

Form: 

where s is a statement label of an executable statement in the program unit to be debugged. 

Description: 

There must be one AT statement for each debug packet. Each AT statement indicates the beginning 
of a new debug packet. The end of the debug packet is indicated by an END statement (or by the 
FUNCTION or SUBROUTINE statement that signifies the start of an internal subprogram) or another 
AT statement. 

The statements in the debug packet are executed whenever the statement associated with statement 
label s is executed in the program flow. Note that they are executed immediately prior to the 
execution of s. 

Example: 

C 
C 

DEBUG 
AT 100 
DISPLAY 
END 

X,Y,A } debug packet 

The DISPLAY statement is executed each time the statement 
with label 100 is executed. 



8244.2 
UP .... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

Purpose: 

The TRACE ON statement initiates display of the flow of execution by statement label. 

Form: 

Description: 

9-7 
PAGE 

After TRACE ON has been encountered and until the next TRACE OFF is encountered. a record of the 
associated statement label is placed in the debug output file each time a labeled statement is executed 
in the program. 

TRACE ON remains in effect through any level of subprogram call or return. If the TRACE option has 
not been used on a DEBUG statement in a particular program unit, label trace will not occur during 
execution of that program unit. 

TRACE ON may occur anywhere within a debug packet. 

There can be no display of program flow by statement label within this program unit if the TRACE 
option was omitted from the DEBUG option list. 

(. Example: 

(~' 

c 
C 

DEBUG TRACE. INIT(A.B) 

AT 104 
TRACE ON 

The f low of execut ion wi II be displayed start ing at 
statement 104. 



8244.2 
IJP..NUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

9 5 T· ···R····'A···'C·····E·····"O······F····F···· ... ... .... .. .. 
. . ~ ~L.:. ~.;; .. , ~~~:" .. t:. ~~.;.:: ~.;: ~ 

Purpose: 

The TRACE OFF statement terminates statement label tracing. 

Form: 

Description: 

9-8 
PAGE 

TRACE OFF may occur anywhere within a debug packet. This statement terminates tracing of program 
flow by statement label in the program. 

Example: 

DEBUG TRACE, INIT(A,B) 

AT 104 
TRACE ON 

AT 950 
TRACE OFF 

C The flow of execution wi I I be displayed from the point 
C where statement 104 is executed to the point where statement 
C 950 is executed. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Purpose: 

The DISPLAY statement provides a simple debug output mechanism. 

Form: 

UPDATE LEVEl 
9-9 

PAGE 

where list is a series of variables, array element names with constant subscripts, or array names 
separated by commas. A formal parameter name of a function or subroutine is not permitted in list. 

Description: 

The DISPLAY statement is equivalent to the following FORTRAN statements: 

NAMELIST / name / list 
WRITE (n,name) 

where list is as defined above, name is a name generated for DISPLAY which is not a legal symbolic 
name, and n is the debug file reference number (from the UNIT option). DISPLAY provides a simple 
means of putting results of debugging operations for the program unit in the debug output file without 
needing FORMAT, NAMELlST, or WRITE statements. The output to the debug output file is in 
NAMELIST format. The DISPLAY statement may appear anywhere in a debug packet. 

Example: 

AT 100 
DISPLAY A,B,C,D(l,2) ,E 

C The values of variables A, B, C, and E and array 
C element 0(1,2) are listed each time before 
C statement 100 is executed. 



8244.2 
~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I 9-10 

PAGE 

9.7. Debug Facility Example 

The following example uses all of the debug facility statements (including all of the DEBUG statement 
options). It includes a main program with no DEBUG statement. and an external subroutine (A) with 
a DEBUG statement and three AT packets. 

FORTRAN source: 

1. CALL A 
2. END 

3. SUBROUTINE A 
4. DIMENSION B(4) 
5. DATA I, K /2, 5/ 
6.5 B(I)=2. 
7. 10 J = B(2) 
8. 15 L = B(K) 
9. 20 RETURN 
10. DEBUG UNIT(6), SUBCHK, TRACE, INIT, SUBTRACE 
11 . AT 5 
12. TRACE ON 
13. DISPLAY I, K 
14. AT 15 
15. TRACE OFF 
16. AT 20 
17. DISPLAY J, B 
18. END 

Program Execution: 

a) DEBUG UNIT 6 
b) ENTER SUBPROGRAM A 
c) TRACE ON 
d) $0001 
e) I = 2,K = 5 
f) $END 
g) TRACE 
h) AT LINE 
i) TRACE 

5 
6:ELEMENT 

10 
j) AT LINE 7:J = 

2 OF B = 2.0000000 

2 
k) TRACE OFF 
I) AT LINE 8:SUBSCRIPT IS OUT OF RANGE FOR ARRAY B 
m) AT LINE 
n) $0002 

8:L = 0 

0) J = 2, 
p) B = .00000000 , .20000000+001, .00000000 
q) $END ' 
r) RETURN FROM SUBPROGRAM A 

.00000000 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

9-11 
PAGE 

The lines printed out during the preceding execution are a result of the following options and 
statements: 

UNIT option - line a. 

SUBCHK option - line I. 

TRACE option and TRACE ON. TRACE OFF. and AT statements - lines c. g. i. k. 

INIT option - lines h. j. m. 

SUBTRACE option - lines b. r. 

DISPLAY and AT statements - lines d - f. n - q. 



/ 



8244.2 
UP-MIMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-1 
PAGE 

10. Writing a FORTRAN Program 

10.1. General 

This section discusses the organization of FORTRAN programs and the rules for writing them. 

10.2. FORTRAN Program Organization 

A FORTRAN program is made up of one. and only one. main program and as many subprograms and 
external procedures as required. The main program contains the primary steps required to solve a 
given problem. The subprograms are subordinate units used by the main program. Both are referred 
to as program units. 

10.2.1. Program Unit 

A program unit is either a main program. a subprogram. or a BLOCK DATA (specification) program. 
Bothi~~erri~i and external subprograms are program units. If the source input to the ASCII FORTRAN 
compiler consists of a main program and one or more subprograms or specification programs. then 
the main program must physically be the first program unit. 

A program unit consists of statements and optional comment lines. 

A statement is written on one or more lines. The first line is called an initial line. Succeeding lines. 
if any. are called continuation lines. 

A comment line is not a statement. It merely provides information for documentary purposes. 

10.2.2. Types of Program Units 

Function subprograms and subroutine subprograms are executable subprograms and are called 
procedure subprograms. A subprogram headed by a BLOCK DATA statement is a nonexecutable 
subprogram and is called a specification subprogram. 



8244.2 
UNlUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The various types of program units, illustrated in Figure 10-1, are: 

UPDATE LEVEL 
10-2 

PAGE 

• A main program is a series of comments and statements which may begin with a PROGRAM 
statement, does not contain a BLOCK DATA statement, and is terminated by an END, FUNCTION, 
or SUBROUTINE statement. 

• A function subprogram is a series of comments and statements (which does not contain a BLOCK 
DATA or PROGRAM statement) starting with a FUNCTION statement and terminated by an END, 
FUNCTION, or SUBROUTINE statement. 

• A subroutine subprogram is a series of comments and statements (which does not contain a 
BLOCK DATA or PROGRAM statement) starting with a SUBROUTINE statement and terminated 
by an END, FUNCTION, or SUBROUTINE statement. 

• A specification (BLOCK DATA) subprogram is a series of comments and specification statements 
starting with a BLOCK DATA statement and terminated by an END statement 

• ~·:~qj~~m;:~~~:.~~ •• ~~·.·im~~~~~~,.,~~~p#~Qr~m •.•• i~, .•. ~~.~:pr~~~~ •. ·.p.r9Q!~tn.,~n!~)i~~~~r.m~~~t.~~.~y:;~~~ 
j~(~rrn~~r.:~l.INCT~Q~p.rJ~Y.QRQQT~~~:$~~m~i1t~~$~~i:"p.f~~~~p$~~m~i1'; 

• A program unit is external if it is a main program or a BLOCK DATA subprogram, if it is the first 
program unit in the compilation, or if the previous program unit was terminated by an END 
statement. 

See 7.4.2 and 7.4.3 for descriptions and examples of functions and subroutines (both external and 
internal). 

MAIN PROGRAM 

END 

SPECIFICATION PROGRAM 
BLOCK DATA 

END 

EXTERNAL SUBROUTINE 
SUBPROGRAM 

SUBROUTINE 

RETURN 
END 

EXTERNAL FUNCTION 
SUBPROGRAM 

... FUNCTION 

RETURN 
END 

EXTERNAL PROCEDURES 

External procedures 
written in languages 
other than FORTRAN. 

Figure 10-1. Program Units Within a FORTRAN Program 



8244.2 
UP .... UUBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATt LEVEL 

10-3 
PAGE 

A specification program (with a BLOCK DATA header) consists entirely of nonexecutable statements 
and therefore never assumes control during execution. 

Subprograms are useful because they eliminate repetitive coding of procedures used many times in 
a program. In addition. a library of mathematical external procedures. called intrinsic functions (see 
7.3.1). is present which contains debugged procedures for computation of mathematical functions 
such as square root. sine. etc. The main program of a large FORTRAN program can be coded as a 
logical skeleton consisting primarily of references to subprograms; these subprograms can be 
independently coded and mayor may not be compiled with the main program. 

All compiled program units are linked together by the Series 1100 Collector to form an executable 
program starting with the main program unit. Program units may be written in languages other than 
FORTRAN but must conform to the rules for FORTRAN subprograms. (See Appendix K. Interlanguage 
Communication.) Such program units and procedure subprograms (function and subroutine 
subprograms) are termed external procedures. 

10.2.3. Program Unit Organization 

A program unit consists of comments and statements. A FORTRAN statement falls into one of two 
categories: an executable statement or nonexecutable statement. An executable statement specifies 
an action. A nonexecutable statement describes the characteristics and arrangement of data. editing 
information. statement function definitions. and classification of program units. Nonexecutable 
statements are generally intended as instructions to the compiler; in most cases. no executable 
machine language instructions are generated. Executable statements result in executable machine 
language instructions (object program). 

Statement classification and ordering are described in 10.3. The actual formats of the lines of a 
FORTRAN source program are outlined in 10.4. 

Note that many program units may be put together into one source element and compiled into one 
relocatable element. 

10.2.4. Execution Sequence 

Execution of a FORTRAN program begins with the performance of the first executable statement of 
the main program. The difference between an executable statement and a nonexecutable statement 
is outlined in 10.2.3. 

A subprogram. when referenced by the name of the subprogram. starts execution with the first 
executable statement of that subprogram. When a subprogram is referenced by an entry name. 
execution starts with the first executable statement following the proper. ENTRY statement. When 
subprogram activity is complete. execution of the calling program is resumed at the statement 
following the call. or at one of the statement labels appearing in the parameter list of the CALL 
statement. 

The execution sequence is not affected by the appearance of nonexecutable statements or comment 
lines between executable statements. 

Every program unit except a block data subprogram should contain at least one executable statement. 
A program unit should not contain a statement that can never be executed (for example. an unlabeled 
statement following an unconditional GO TO). 

If the execution sequence attempts to proceed beyond the last executable statement of a main 
program. the effect is the same as the execution of a STOP statement. If the execution sequence 
attempts to proceed beyond the last executable statement of a procedure subprogram. the effect is 
the same as the execution of a RETURN statement. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

10-4 
PAGE 

In the execution of a program, a subprogram may not be referenced twice without the execution of \,;1 

a RETURN statement in that !;ubprogram having intervened (that is, no recursion is allowed). 

In the first example shown in Figure 10-2, the main program proceeds until it encounters a reference 
(CALL) to the external procedure. The external procedure assumes control until it encounters a 
RETURN statement, which sends control back to the calling program unit (in this case, the main 
program). The main program then continues processing until another reference transfers control to 
the external procedure. The external procedure assumes processing until it encounters a RETURN 
statement (not necessarily the same one as the first RETURN statement) and transfers control back 
to the main program. The main program then resumes processing until it encounters the STOP 
statement, which transfers job control to the operating system. 

The second example in Figure 10-2 shows how a procedure subprogram can call upon another 
procedure subprogram during execution. 

Example 1: 

MAIN PROGRAM PROCEDURE 
SUBPROGRAM 
A 

first-executable-statement SUBROUTINE A 

I 
CALL A first-execulable-statement 

" next-statement " L-
RETURN 

CALL A 

next-statement / ... 
RETURN 

STOP 
END 

END 

Example 2: 

MAIN PROGRAM PROCEDURE PROCEDURE 
SUBPROGRAM SUBPROGRAM 
A B 

first-executable-statement FUNCTION A SUBROUTINE B 

CALL A "4 first-executable-statement r first-executable-statement 
next-statement 

r STOP 
CALL B RETURN 

/ 

END 
next-statement " 

END 

RETURN 

END 

. Figure 10-2. Sample Control Paths During Execution 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

10-5 
PAGE 

10.3. Statement Categories 

A given FORTRAN statement performs one of three functions: 

• It causes certain operations to be performed (for example. addition. multiplication. branching) 

• It specifies the nature of the data being handled 

• It defines the characteristics of the source program 

FORTRAN statements usually are composed of certain FORTRAN keywords used in conjunction with 
the basic elements of the language: constants. variables. and expressions. The nine categories of 
FORTRAN statements are: 

• 
• 
• 
• 
• 

Assignment statements: These statements usually cause calculations to be performed. The 
result replaces the current value of a designated variable. array element. or substring. 

Control statements: These statements enable the user to govern the order of execution for the 
object program and to terminate its execution. 

Input/output statements: These statements. in addition to controlling input/output devices. 
enable the user to transfer data between internal storage and an input/output medium. 

FORMAT statement: This statement is used in conjunction with certain input/output statements 
to specify the form in which data appears in a FORTRAN record or an input/output device. 

NAM~~IS1H~~t~m~ijj~j;:hi~~~t~m~ijri$H~$~~~~~9ij,~~~tl9.Hwij~~~tj~~~iijp~~p~tP~t 
~~t&ii'ieij.~t~$P~~~fY~~.~~PP~.t'rigiij~$p~~i~l~in~9tr~~()r~i 

• DATA initialization statement: This statement is used to assign initial values to variables and 
array elements. 

• Specification statements: These statements are used to declare the properties of variables. 
arrays. and functions (such as type and amount of storage reserved). 

• Statement function definition statement: This statement specifies operations to be performed 
whenever the statement function name appears in an executable statement. 

• Subprogram statements: These statements enable the user to name and to specify arguments 
for functions and subroutines. 

10.3.1. Statement Classification 

Each statement is classified as executable or nonexecutable. 

Executable statements specify actions and form an execution sequence in an executable program. 
All assignment. control and input/output statements are executable statements. 

Nonexecutable statements describe characteristics. arrangement. and initial values of data. contain 
editing information. define statement functions. specify the class of subprograms. and specify entry 
points within subprograms. Nonexecutable statements are not a part of the execution sequence. 

Statement labels are allowed on any statement (except continuation lines of a statement). However. 
only labeled executable statements (except ELSE IF. ELSE. andP~~'~~~~~~) and FORMAT statements 
l11ay~erElferred to by the use of statement labels. There is one exception to this rule: thep~tl~:t~ 
$t~t~m~l1t may refer to any statement label. 



8244.2 
UNiIUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-6 
PAGE 

A label on a FORMAT statement cannot be used as a transfer label by another statement in the 
program unit (that is, it cannot be used to control the execution sequence). 

See Appendix F for a breakdown of executable and nonexecutable statements. 

10.3.2. Ordering of Statements and Lines 

The order of a FORTRAN program unit (other than a BLOCK DATA subprogram) is: 

Placement 

1 

2 

3 

4 

5 

6 

7 

Statements 

Subprogram (FUNCTION or SUBROUTINE) statement, if subprogram, or 
PROGRAM statement, if main program (optional). 

IMPLICIT statements, if any. 

Explicit specification statements, if any. Generally, the order is as follows: 
Explicit type statements, PARAMETER statements, DIMENSION statements, 
$~N~~~~d~m.~~~$.~ COMMON statements, EQUIVALENCE statements, 
EXTERNAL statements, INTRINSIC statements, SAVE statements, DATA 
statements,II4~M~~$T$1;~~.m~6t~, FORMAT statements. 

Statement function definitions, if any. 

Executable statements, at least one of which should be present. 

END statement (see 4.9). 

Within a program unit, FORMAT,P~~IN~r'~$~~6~~pim: statements and comment lines may appear 
anywhere. ENTRY statements may appear anywhere except within ranges of DO-loops and block IF 
structures or within main programs or BLOCK DATA subprograms. 

PARAMETER statements may occur before and among other specification statements. DATA 
statements should occur after all specification statements. 

Figure 10-3 is a pictorial representation of the required order of statements for a program unit. 
Vertical lines delineate varieties of statements which may be interspersed. For example, FORMAT 
statements may be interspersed with specification statements and executable statements. Horizontal 
lines delineate varieties of statements which may not be interspersed. For example, specification 
statements may not be interspersed with statement function definitions, and statement function 
definitions may not be interspersed with executable statements. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

PROGRAM, FUNCTION, SUBROUTINE, or 
BLOCK DATA Statement 

Comment Lines, 
EDltS~t~m.enj$ 

D~FIN~FI~E, 
FORMAT, and 

ENTRY 
Statements 

PARAMETER 
Statements 

DATA 
Statements 

END Statement 

IMPLICIT Statements 

Other Specification 
Statements 

Statement Function 
Definitions 

Executable Statements 
............. :"'::"::.:.:". ":":.::::":::::.:'::"::: .. :::::"::"; ": 

•• · •• ····•• ••••• ~etJiJ~.·~~¢~~t~·· •••••• · •• ·•·.• 

Figure 10-3. Order of Statements and Lines 

10.4. Source Program Representation and Control 

10.4.1. Source Program Format 

10-7 
PAGE 

A FORTRAN program consists of a series of lines. A line in a program unit is a string of 72 characters. 
The character positions in a line are called columns and are consecutively numbered 1, 2, 3, ... , 72. 
The number indicates the sequential position of a character in the line starting at the left and 
proceeding to the right. Lines are ordered by the sequence in which they are presented to the 
processor. Thus a FORTRAN program consists of an ordered set of characters. 

The following is an illustration of the two basic forms of a source program line. The first form is used 
for all FORTRAN statements. The appearance of a character in column 6 is used to indicate a 
continuation line. The second form is used for comment lines. 

1 5 6 7 73 80 
nllmber or statement nonprocessed 
blank documentation 

1 2 73 80 
C non processed 
or comment documentation 

* 



8244.2 
UP .... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer ReferenCe UPDATE LEVEL 

10-8 
PAGE 

A FORTRAN line uses only columns 1 through 72. The information in columns 73 through 80. shown 
only in the program listing. may be used for documentation. For statements. columns 1 through 5 
are used for labels. Column 6 is used to indicate the continuation of a statement. Columns 7 through 
72 contain the statement or its continuation. If the line is a comment line. columns 2 through 72 
contain the comment information. 

10.4.1.1. Comment Line 

An asterisk (*) or the letter "C" in column 1 of a line designates that line as a comment line. Any 
character capable of being represented in the processor may appear in a comment line. occupying 
columns 2 through 72. A comment line does not affect the program in any way and is available as 
a convenience for the user as a documentation/information device. 

A comment line should be immediately followed by an initial line or another comment line. A 
comment line may precede the initial line of the first statement of any program unit. 

Any line with columns 1-72 entirely blank is also considered to be a comment line. 

10.4.1.2. Statements 

A statement consists of an initial line and. if required. continuation lines which follow in sequence. 
Each line of the statement is written in columns 7 through 72. An initial line must have either the 
digit 0 or a blank character in column 6 and must not have the character C or * in column 1. Each 
continuation line must have a character other than the digit 0 or blank character in column 6. and 
must have blanks in columns 1 through 5. Each continuation line should be immediately preceded 
by an initial line or another continuation line. 

Except as part of a logical IF statement. no statement can begin on a line that contains any part of 
the previous statement. For example. 

IF (LOG) THEN 1=1+1 

is i"egal. because a block IF statement and an assignment statement appear on the same line. 

Blank characters within a statement do not change the interpretation of a statement except when they 
appear within the data strings of~pO~ri.thcp~$t~rit~, character constants. or the Ho"erith or character 
field descriptors in FORMAT and I/O statements. Nonsignificant blank characters do not count as 
characters in the limit of 1320 characters in anyone statement. 

Blank lines. like blank columns. have no effect on the code generated. Blank lines may be used 
wherever desired to insert spaces in the listing of the source program. A line which is blank in 
columns 1 through 72 is not regarded as an initial line. 

For example: 

40 FORMAT(17H AVERAGE VALUE = • Fl0.5) 

could be written as: 

40 FORMAT ( 
A17H AVERAGE VALUE = 
B,F10.5) 



( 

8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

However, it cannot be written as: 

40 FORMAT ( 17H 
AAVERAGE VALUE = 
B,F10.5) 

UPDATE LEVEL 
10-9 

PAGE 

because the 17H of the FORMAT statement means that the 17 characters immediately following the 
H are Hollerith data. Since blank characters are significant in Hollerith data, the next 17 blanks are 
interpreted to be the data value rather than the intended characters. 

10.4.1.3. Statement Labels 

A statement label is an unsigned integer (1 through 99999) that identifies a FORTRAN statement and 
is written in columns 1 through 5 of the initial line of a statement. Only the digits 0-9 and blank 
characters may be used in a statement label. The same statement label cannot be used more than 
once in a program unit, but the same statement label can appear in more than one program unit. The 
value of a statement label does not affect the order in which statements are executed, it merely 
identifies the statement it is associated with. This enables other statements of the program unit to 
reference it. See 10.3.1 for rules stating which statement labels may be referenced. 

A maximum of five digits may be used in a statement label. All blanks and leading zeros are ignored. 

For example, in the sequence: 

157 F = (A + B - C) / 0 

GO TO 157 

the statement label of the arithmetic assignment statement could have been written as: 

1 t::. 5t::. 7 F = (A + B - C) / D 

or: 

o 1 t::. 57 F = (A + B - C) / D 

or: 

1 5M 7 F = (A + B - C) / D 

but not as: 

1 57 t::. 0 F = (A + B - C) / D 

because this label is 1570 rather than 157. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-10 
PAGE 

10.4.2. Compilation Listing 

For every program compiled, a compilation listing is produced. The composition of the information 
listed is a function of the listing options specified by the user. 

10.4.2.1. Listing Options 

The options available to control the composition of the compiler listing are specified in the @FTN 
processor call command (see 10.5) and in EDIT statements. The processor options are used to specify 
the initial setting for the type of listing desired. They may be overridden at any point in the source 
program by the EDIT statement (see 8.4). 

All compiler options, including nonlisting options, are listed in 10.5.1. The options that may be 
specified on the @FTN processor call to control the compiler listing are: 

Option 

o 

K 

L 

N 

R 

S 

T 

W 

y 

Meaning 

A listing of the storage map, common blocks, entry points, and external references 
is generated in addition to the identification line and terminal message line. 

If the source lines are being printed (S or L option), then both the update and input 
(base) line numbers will appear in front of the source images. In addition, SIR 
correction lines will be interspersed within the source code listing. 

In addition to the information listed for the S option, the cross reference listing, 
storage map, common block list. entry point list. external reference list. and octal and 
mnemonic representation of the generated object code are also to be printed. 

If used with no other listing options, a minimum of printout is produced. This output 
consists of a single compiler identificativn line with time and date, and a single line 
indicating the end of compilation with the number of errors and warnings, and the 
amount of storage for I-bank, O-bank, and common blocks. If any errors are detected 
during the compilation, error messages are printed. Warnings are not printed. See 
10.10 for information on the format of error messages. If used with other listing 
options, the N option causes warnings to be suppressed. 

A cross-reference listing is to be generated in addition to the identification line and 
terminal message line. 

A listing of the source program statements is to be produced in addition to the 
specifications provided by the N option. All warnings detected throughout the 
compilation are printed in addition to any error messages. Errors or warnings 
detected during syntax analysis may be interspersed within the source program listing 
and are usually printed immediately following the offending statement. See 10.10 
for further details on diagnostics. 

Print diagnostics for nonstandard FORTRAN usage (see 10.5.1). 

The correction lines used by the source input routine (SIR) are to be printed at the top 
of the listing (before the source code listing, if any). 

A listing containing the storage map, common blocks, entry points, external 
references, and a mnemonic representation of the object code is generated. 



8244.2 
UP-ftUMBER 

( 

(/ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-11 
PAGE 

10.4.2.2. Composition of a Compilation Listing 

The composition of a listing generated under control of the L option is described in this subsection. 
Refer to 10.4.2.1 to determine which parts of the listing described are not generated under control 
of the other listing options. 

See Figure 10-4 for an example of an L option listing. 

10.4.2.2.1. Identification Line 

The identification line printed at the beginning of each compilation listing has the following format: 

FTN 55 R ii - mm/dd/yy - hh:mm - (i,o) 

where: 

FTN 

55 Rii 

is the ASCII FORTRAN compiler used to perform the compilation. 

is the level number of the compiler; 55 denotes the symbolic update number; ii 
denotes the incremental update number. Following ii, a letter may be used to 
indicate minor modifications, such as emergency fixes, recollections to include 
modified RLlB$ elements, etc. (for example, 9R 1 A). Release levels begin with 1 R 1. 

mm/dd/yy indicates the month, day, and year on which the compilation was performed. 

hh:mm is the hour and minute at which the compilation began. 

indicates the input cycle number and the output cycle number, respectively. If i 
is blank, the input was from the runstream. If 0 is blank, there is no symbolic 
output element. 

10.4.2.2.2. Source Code Listing 

The source code listing contains all source language input lines processed by the compiler. The errors 
detected during the production of this listing are printed on the first available line following the 
offending source line. 

The example in Figure 10-4 shows a sample source code listing with a main program, an internal 
subroutine in the main program, an external subroutine subprogram, and an internal subroutine in 
that external subroutine. 

The first (leftmost) field of the listing contains the level number of the statement (if greater than zero). 
The "wei number is a counter containing the DO-level plus the IF-level of the statement. The DO-level 
is a counter containing the number of nested DO-loops; the IF-level is a counter containing the 
number of nested block IF structures. 

The level number column will contain blanks, if the level number is zero, and the letter D if the source 
line being printed has been deleted by the DELETE statement. 

(~' Note that since the example contains no block IF or DO statements or deleted lines, the level number 
column is always left blank. 



@FTN.L A.TEST.B. 
FTN 10Rl 04/21/81-08:11(1.) 

1. I = 1 
2 . PR I NT *. @MA IN: I = @ . I 
3. CALL I NTMN 
4. CALL SUB1 
5. C 
6. C *** INTERNAL SUBPROGRAM (INTMN) IN MAIN PROGRAM *** 
7. C 
8. SUBROUTINE INTMN 
9. I = 2 

10. PRINT *.fINTMN: = f . I 
11. RETURN 
12. END 

13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 

C 

SUBROUTINE SUB1 
COMMON I 
1=3 
PRINT *.@SUB1: I = f . I 
CALL INTSUB 
RETURN 

C *** INTERNAL SUBPROGRAM (INTSUB) IN EXTERNAL SUBPROGRAM (SUB1) *** 
C 

SUBROUTINE INTSUB 
INTEGER I 
COMMON ICI 
1=4 
PRINT *.@INTSUB: = @ . I 
RETURN 
END 

FOR T RAN C R 0 S S REF ERE N C ELI S TIN G 

MAIN PROGRAM 

NAME 

SET 
USED 

INTMN USED 
SUBl USED 

USE LINE NUMBER 

1 
2 
3 
4 

Figure 10-4. L Option Listing (Part 1 of 5) 

\, ) 

~~ 
I ~ 
g 

."cn 
O~ :am 
-I:lD 
:a~ 
>C 
ZZ 
>~ 
(1)(') 

ncn =. j! 
(Q-
;8 
3 
3 
CD ... 
:a 
;. 
; 
g 
CD 

! 
~ 

~ 
"'-? -N 



!~ , ....... ~ I c: 00 Ii : ~ 
c: ... 
I N 
on 
::II 

I 
SUBROUTINE INTMN MAIN PROGRAM 

NAME USE LINE NUMBER 

SET 9 
USED 10 

INTMN SPEC 8 

SUBROUTINE SUBl 

I "en NAME USE LINE NUMBER O~ 
::tim 
-Ii COMMON 14 ::tI-< 

SET 15 »c: 
ZZ USED 16 
~~ INTSUB USED 17 
(f)n 

SUBl SPEC 13 (')en 
-III 
-=:1. 

SUBROUTINE INTSUB SUBl 1,,1 ... 
NAME USE LINE NUMBER 

0'" 

1~8 
3 

C SPEC 24 3 
COMMON 24 CD ... 
SPEC 23 ::tI 
SET 25 CD -USED 26 CD ... 

INTSUB SPEC 22 CD 
~ 
n 
CD 

FOR T RAN o B J E C T COD E LIS TIN G 

MAIN PROGRAM 

RELATIVE INSTRUCTION SUBFIELDS U FLO LABEL SYMBOLIC INSTRUCTION LINE 
ADDRESS F J A X HI U LC F,J A,U,X NUMBER 

$( 1 ) AXR$ 
ASCII c: 

000000 OOOOOOOOOOOOOX 2 $(6) + 0000000000000 0 I 000000 74 13 13 00 0 OOOOOOX 4 $( 1 ) LMJ Xll,FINT2$ 0 
000001 10 16 04 00 000001 LA,U A4,l 1 § 000002 01 00 04 00 0 OOOOOOR 0 SA A4,I 1 r-
000000 0777777777776 $(4) + 0777777777776 2 
000001 0030400000000 + 0030400000000 2 
000002 0000000000000 + 0000000000000 2 
000003 0000000000000 + 0000000000000 2 I~-000004 OOOOOOOOOOOOOR 10 + 0000000000000 2 

? 
w 

Figure 10-4. L Option Listing (Part 2 of 5) 



i~ 
I 

000005 0060012000000 + 0060012000000 2 
000006 OOOOOOOOOOOOOR 0 + 0000000000000 2 
000007 0010000000000 + 0010000000000 2 
000010 74 13 13 00 0 OOOOOOX 5 LMJ X",FMTE$$ 2 
000003 26 16 14 00 000000 R 4 $( 1 ) LXM,U AO,FTEMP$ 2 
000004 46 17 13 00 000000 X 1 LXI ,XU X",BOICALL$+F2SE$$ 2 
000005 00 00 13 00 0 OOOOOOX 6 IBJ$ X", F2SE$$ 2 
000006 10 16 00 00 000000 LA,U AO,O 3 
000007 46 17 13 00 000000 LXI ,XU X",O 3 
000010 74 13 13 00 0 000017R LMJ X",INTMN 3 
000011 10 16 00 00 000000 LA,U AO,O 4 

'TI(I) 
0" 

000012 46 17 13 00 000000 LXI ,XU X11.0 4 :gm 
-.i 

000013 74 13 13 00 0 OOOOOOX 7 LMJ X",SUB' 4 ::0< 
000014 74 13 13 00 0 OOOOOOX 8 LMJ X", FEXIT$ 8 »c: 

ZZ 
000000 0115101111116 $( 10) + 0115101111116 8 -< 
000001 0072040111040 + 0072040111040 8 »> 
000002 0075040040040 + 0075040040040 8 

(1)(") 
0(1) 
-CD 
=~. 

SUBROUTINE INTMN : MAIN PROGRAM I "VI ... 
0-

RELATIVE INSTRUCTION SUBFIELOS U FLO LABEL SYMBOLIC INSTRUCTION LINE 
cc-
;8 

ADDRESS F J A X HI U LC F,J A,U,X NUMBER 3 
$( 1) AXR$ 3 

ASCII CD ... 
000015 27 00 13 00 0 000011R 4 LX X",HEMP$+9 8 :g 
000016 74 04 00 13 0 000000 J O,X11 8 CD -000017 06 00 13 00 0 000011R 4 INTMN SX X 11 , FTEMP$+9 8 CD ... 
000020 10 16 04 00 000002 OG LA,U A4,2 9 CD 

:::J 
000021 01 00 04 00 0 OOOOOOR 0 SA A4,I 9 t') 

CD 
000012 0777777777776 $(4) + 0777777777776 10 
000013 0030400000000 + 0030400000000 10 
000014 0000000000000 + 0000000000000 10 
000015 0000000000000 + 0000000000000 10 
000016 0000000000003R 10 + 0000000000003 10 
000017 0060013000000 + 0060013000000 10 
000020 OOOOOOOOOOOOOR 0 + 0000000000000 10 
000021 0010000000000 + 0010000000000 10 c: 
000022 74 13 13 00 0 OOOOOOX 5 LMJ X", FMTE$$ 10 

~ 000022 26 16 14 00 000012 R 4 $ ( 1 ) LXM,U AO,FTEMP$+10 10 
000023 46 17 13 00 000000 X 1 LXI ,XU X",BDICALL$+F2SE$$ 10 § 000024 00 00 13 00 0 OOOOOOX 6 IBJ$ X",F2SE$$ 10 ,.. 
000025 74 04 00 00 0 000015R J $-8 11 
000003 0111116124115 $( 10) + 0111116124115 12 
000004 0116072040111 + 0116072040111 12 
000005 0040075040040 + 0040075040040 12 I~ 

m-

er 
Figure 10-4. L Option Listing (Part 3 of 5) A 

[ 

\". 



~~ ~ .~ Ie Q) 

~ ~ 
i ~ . ~ 
!Ill 

I 
SUBROUTI NE SUB 1 

RELATIVE INSTRUCTION SUBFIELDS U FLD LABEL SYMBOLIC INSTRUCTION LINE 
ADDRESS F J A X HI U LC F,J A,U,X NUMBER 

$( 1 ) AXR$ 
ASCII 

000026 27 00 13 00 0 000023R 4 LX X",FTEMP$+'9 12 
000027 74 04 00 13 0 000000 J O,Xll 12 
000030 06 00 13 00 0 000023R 4 SUBl SX X",FTEMP$+19 12 
000031 10 16 04 00 000003 lG LA,U A4,3 15 
000032 01 00 04 00 0 OOOOOOR 2 SA A4, I 15 

on(/) 

0'" 
000024 0777777777776 $(4) + 0777777777776 16 :am 

-I~ 
000025 0030400000000 + 0030400000000 16 :a< 
000026 0000000000000 + 0000000000000 16 >c 

ZZ 
000027 0000000000000 + 0000000000000 16 

>~ 000030 0000000000006R 10 + 0000000000006 16 (1)(") 

000031 0060012000000 + 0060012000000 16 O(/) 
000032 OOOOOOOOOOOOOR 2 + 0000000000000 16 -==~. 
000033 0010000000000 + 0010000000000 16 "'lJi 
000034 74 13 13 00 0 OOOOOOX 5 LMJ X", FMTE$$ 16 

~ 

0-cc-
000033 26 16 14 00 000024 R 4 $( 1) LXM,U AO,FTEMP$+20 16 a;8 
000034 46 17 13 00 000000 X 1 LXI,XU X",BDICALL$+F2SE$$ 16 3 
000035 00 00 13 00 0 OOOOOOX 6 IBJ$ X",F2SE$$ 16 3 
000036 10 16 00 00 000000 LA,U AO,O 17 CD 

~ 

000037 46 17 13 00 000000 LXI,XU X",O 17 :a 
000040 74 13 13 00 0 000044R LMJ X",INTSUB 17 CD -000041 74 04 00 00 0 000026R J $-11 18 CD 

~ 

000006 0123125102061 $( 10) + 0123125102061 22 CD 
;:, 

000007 0072040111040 + 0072040111040 22 n 
CD 

000010 0075040040040 + 0075040040040 22 

SUBROUTINE INTSUB : SUBl 

RELATIVE INSTRUCTION SUBFIELDS U FLD LABEL SYMBOLIC INSTRUCTION LINE 
ADDRESS F J A X HI U LC F,J A,U,X NUMBER 

$ ( 1 ) AXR$ 
ASCII C 

000042 27 00 13 00 0 000035R 4 LX X",FTEMP$+29 22 i! 
000043 74 04 00 13 0 000000 J O,Xll 22 ~ 
000044 06 00 13 00 0 000035R 4 INTSUB SX X",FTEMP$+29 22 § 
000045 10 16 04 00 000004 2G LA,U A4,4 25 .... 
000046 01 00 04 00 0 OOOOOOR 11 SA A4, I 25 

~ m_ 
0 
I 

Figure 10-4. L Option Listing (Part 4 of 5) U1 



000036 0777777777776 $(4) + 0777777777776 
000037 0030400000000 + 0030400000000 
000040 0000000000000 + 0000000000000 
000041 0000000000000 + 0000000000000 
000042 0000000000011R 10 + 0000000000011 
000043 0060014000000 + 0060014000000 
000044 OOOOOOOOOOOOOR 11 + 0000000000000 
000045 0010000000000 + 0010000000000 
000046 74 13 13 00 0 OOOOOOX 5 LMJ Xl1,FMTE$$ 
000047 26 16 14 00 000036 R 4 $( 1 ) LXM,U AO,FTEMP$+30 
000050 46 17 13 00 000000 X 1 LXI ,XU X11,BDICALL$+F2SE$$ 
000051 00 00 13 00 0 OOooOOX 6 IBJ$ X11,F2SE$$ 
000052 74 04 00 00 0 000042R 1 J $-8 
000011 0111116124123 $( 10) + 0111116124123 
000012 0125102072040 + 0125102072040 
000013 0111040075040 + 0111040075040 

END 
FO R T RAN S TOR AGE MAP 

NAME TYPE MODE RELATIVE LOC ELEMENT NUMBER OF COMMON PROGRAM 
ADDRESS COUNT LENGTH ELEMENTS SIZE UNIT 

INTEGER SCALAR 000000 0 4 MA I N PROGRAM 
INTEGER SCALAR 000000 2 4 SUBROUTI NE SUB 1 
INTEGER SCALAR 000000 11 4 SUBROUTINE INTSUB 

COMMON BLOCKS 
C COMMON 000000 11 

BLANK COMMON 000000 2 

ENTRY POINTS 
FMAIN$ ENTRY 000000 
SUB1 ENTRY 000030 

EXTERNAL REFERENCES 
IBJ$ BDICALL$ BDIREF$ FMAIN$ FINIT$ FMTE$$ F2SE$$ SUBl 

END FTN 43 IBANK 53 DBANK 2 COMMON 

Figure 10-4. L Option Listing (Part 5 of 5) 

j 

26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
27 
28 
28 
28 

SUB1 

FEXIT$ 

f 

c CO . ~ 
C .. 
K' • N 
!II 

"run 
0'" ::am 
~::D 
::a~ »c: 
ZZ 

>~ 
(1)(") 
(")UI 
=!. 
"US 
~ 
0-ce-;8 
3 
3 
CD 
~ 

::a 
CD 
;' 
; 
:::J 
n 
CD 

c 

~ 
i ,.. 

~ m_ 

er -01 



( 

( 

8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 10-17 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

The second field of this listing is the source line sequence number. The line sequence numbers are 
consecutive integers. one per line. followed by a period. There is one exception: if the source element 
was created by CTS (see CTS Programmer Reference. UP-7940 (see Preface)). then the CTS line 
number will appear in the second field. 

If the K option is specified. then the update line number will be followed by the input (base) line 
number. This option may be useful if SIR correction lines are used. 

The final field is the FORTRAN source line. 

If the source input to the compiler consists of more than one external program unit. then spacing is 
inserted before the source code listing of the next external program unit. 

10.4.2.2.3. Cross Reference Listing 

The cross reference listing contains all references to statement labels. subprograms. and variables 
which appear in the source program. Statement numbers appear first in the listing and are in 
numerical order. Symbolic names (variables. arrays. etc.) appear second and are in alphabetical order. 

A separate cross reference listing is generated for each program unit. A heading appears before each 
cross reference listing. identifying the program unit. The heading has one of the following formats: 

MAIN PROGRAM [p] 

SUBROUTINE n [: e] 

FUNCTION n [:e] 

BLOCK DATA b 

BLOCK DATA (DEFINED AT LINE m) 

In these formats. p indicates the optional program name. n indicates the subprogram name. e 
(specified only if n is an internal subprogram) indicates the name of the external program unit (MAIN 
PROGRAM or external subprogram name). b indicates the BLOCK DATA program name. and m 
indicates the source line number where the unnamed BLOCK DATA program unit begins. 

Column headings printed at the top of each page of the listing are: 

Column Heading 

NAME 

USE 

LINE NUMBER 

Significance 

Entity named in the program. 

Indication as to whether the entity was set. defined. 
specified. equivalenced. or used in a COMMON statement. 

The line numbers of the source statements where the 
entity was referenced. If an item appears in a specification 
statement within a FORTRAN procedure (named in an 
INCLUDE statement). then the line number is printed as 
proc-name . proc-line-number . 



8244.2 
UI'-NUMIJER 

SPERRY UNIVAC Series 1100 10-18 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

10.4.2.2.4. Object Code Listing 

The L-option listing produces an object program listing containing all instructions, data and constants 
generated by the compiler for the program. 

A heading appears before the object code listing of each program unit. identifying the unit. This 
heading is the same as that generated for the cross reference listing. 

At the top of each page of this listing, column headings are printed which refer to the fields under 
them: 

Column Heading 

RELATIVE ADDRESS 

INSTRUCTION SUBFIELDS 

U FLO LC 

LABEL 

SYMBOLIC INSTRUCTION 

LINE NUMBER 

Significance 

The relative address, in octal, of the memory location. 

Machine representation for F, J, A, X, H, I, and U instruction 
subfields. Letters R and X are also printed for the 
relocation information and the external reference 
information, respectively. This portion is suppressed, 
except the R and X, when the Y option is specified. For a 
detailed explanation of each subfield, see the AIM 
Supplementary Reference, UP-9047 (see Preface). 

The location counter number to be applied to the U-field 
for relocation purposes (if R appears under INSTRUCTION 
SUBFIELDS), or the index to the external reference table to 
be applied to the U-field for external reference purposes 
(if X appears under INSTRUCTION SUBFIELDS). 

Shows the label associated with the storage location, if 
any. This label is composed of a decimal number and the 
letter L or G following the number. The letter L is used for 
a user-defined label, while the letter G is used for a 
compiler-generated label. 

Contains the symbolic representation of the object code 
shown under INSTRUCTION SUBFIELDS. It follows 
assembly language code conventions as closely as 
possible, with the F and J fields followed by the A, U, and 
Xfie!ds. 

Contains the source code line number that causes the 
instruction to be generated. Instructions moved by 
optimization may be associated with a previous statement 
label. 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 10-19 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

10.4.2.2.5. Storage Assignment Map 

A storage map of entities defined in the source program is produced after the object code listings. 
Statement labels appear first in the listing and are in numerical order. Symbolic names (variables, 
arrays, etc.) appear next and are in alphabetical order. 

A single storage map is generated for all program units. 

At the top of each listing, a heading line identifying the fields of each line in the listing is printed: 

Column Heading 

NAME 

TYPE 

MODE 

RELATIVE ADDRESS 

OFFSET 

LOC COUNT 

ELEMENT LENGTH 

NUMBER OF ELEMENTS 

COMMON SIZE 

PROGRAM UNIT 

Significance 

Name used for the entity defined in the source program. 

An indication of what the entity identifies. Data entities 
are: integer, real. character, logical. etc. 

An indication of the way the entity is used (that is, scalar, 
array, etc.). 

Relative address (within the location counter) of the identifier. 
'DUMMY' if the item is a dummy argument or character 
function entry point name. 

Byte number where a character item begins (in the word 
defined by the relative address field). 0-01, 1-02, 2-03, 
3-04. 

Location counter under which the symbol is allocated. (Not 
used for dummy arguments.) 

Element length of the entity in bytes. 

Number of elements that an array entity contains. 

Size of the common block in words. (Used only for the 
common block listing, see 10.4.2.2.6). 

Program unit the name is defined in. 

10.4.2.2.6. Common Block Listing 

Following the storage map, the heading COMMON BLOCKS is printed. A list of all common blocks 
refenmced in the source program is then printed. 

The storage map column headings are used for the common block listing. TYPE is BLANK for blank 
common. Otherwise, NAME identifies the name of the common block. 

Only one common block listing is generated, even if the source program contains more than one 
program unit. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.4.2.2.7. Entry Point listing 

UPOATE LEVEL 
10-20 

PAGE 

Following the common block listing. a heading ENTRY POINTS is printed. The list of entry points to 
the source program is then printed in the format NAME. MODE (always ENTRY). RELATIVE ADDRESS. 
and LOC COUNT. These are similar to the entities of the storage map listing. 

Only one entry point listing is generated. even if the source program contains more than one program 
unit. 

10.4.2.2.8. External References 

The external reference listing follows the entry point listing. Under the printed heading EXTERNAL 
REFERENCES. the names of all external entry points referenced in the source program are listed. 
These include the names of FORTRAN subprograms and all the library and miscellaneous routines 
referenced. 

Only one external reference listing is generated. even if the source program contains more than one 
program unit. 

10.4.2.2.9. Termination Message 

At the conclusion of the listing. a termination line is printed. On this line. the total number of errors 
and warnings detected in the program and the amount of storage for I-bank. D-bank. and common 
blocks are printed. All fields are optional. If any field is zero. it is not printed. The format is: 

END FTN [n ERRORS] [m WARNINGS] [i NON-STD USAGES] [x IBANK] [y DBANK] [z COMMON] 

where: 

n is the number of errors detected. 

m is the number of warnings detected. 

i is the number of nonstandard usage messages printed (T option only). 

x indicates the number of words of storage used in the instruction bank. 

y indicates the number of words of storage used in the data bank. except for common 
blocks. 

z indicates the number of words of storage used in common blocks. 



8244.2 
UP~UM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

10-21 
PAGE 

10.5. Calling the ASCII FORTRAN Processor 

The processor call used to initiate the ASCII FORTRAN compiler is: 

@FTN [ ,option [option] ... ] [si] [ , [ ro] [ , so]] 

where: 

option is a processor call option letter. These are described in Table 10-1. Options identified 
as SIR options control the Source Input Routine. The listing options are discussed in 
more detail in 10.4.2.1. 

si is the program file symbolic element which contains the program to be compiled if the 
I option is not specified. If si is not specified, the FORTRAN source program must 
follow the processor call in the runstream. If the I option is specified, the FORTRAN 
source program must follow the processor call in the runstream. If si is present with 
I, it designates the program file symbolic element in which the source program will be 
saved. 

po is the program file relocatable element which will receive the compiled program. If ro 
is omitted, the file name and element name of si are used. If si is also omitted, the 
temporary file TPF$.NAME$ is used. 

so is the program file symbolic element in which the updated source program will be 
placed. so is not used if the I or U option is specified or if si is not specified. If neither 
so nor U is specified and there are corrections, the corrected source is compiled but 
not saved. 

Additional control over the compilation process can be obtained by using the COMPILER statement. 
(See 8.5.) 

10.5.1. Processor Call Options 

ASCII FORTRAN processor call options are listed in Table 10-1. The listing options are described 
in detail in 10.4.2.1. 



8244.2 
UP-HUMBBI 

Letter 

A 

B 

C 

0 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 

P 

Q 

R 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Table 10-1. Processor Option Leners 

\ 

Action \ 

UPDATE LEVEL 
10-22 

PAGE 

Do not enter ERR mode on serious errors (that is. always perform ER EXIT$ to 
terminate the compilation). Without the A option. certain errors (such as I/O 
errors) result in ~RR$ termination. 

\ 

In checkout moder this option inhibits clearing of core before loading the user 
program. \ 

\ 

Invokes FORTRAN checkout mode. generating code in core and executing it. 
(See 10.6.) 

Print the storage map. common block listing. entry point listing. and external 
reference listing. 

1110 code reordering. See 8.5.4 on the COMPILER (U 111 O=OPT) statement. 

Generate diagnostic tables under location counter 3 for use by walkback and 
the interactive PMD (see 10.7). 

SIR option; input is compressed symbolic in columns 1-80. (Presently 
inactive.) 

SIR option; source input lines may not be scanned past column 72. This 
option is not significant for ASCII FORTRAN. (Presently inactive.) 

SIR option; source input is from the runstream. The source element specified 
in the si field of the processor call statement will be ASCII. unless the P option 
is also specified. 

SIR option; input is compressed symbolic in columns 1-72. (Presently 
inactive.) 

List update and input (base) line numbers (if source lines are being printed). and 
print SIR correction lines. 

Generate all available listing output. 

Search file FTN$PF first for INCLUDE statements. 

If used with no other listing options. then list only source program error 
messages. If used with other listing options. then suppress printing of warning 
messages. 

Generate code which allows D-bank addresses to exceed octal 0200000 
(decimal 65536). 

SIR option; output symbolic in Fieldata. 

SIR option; output symbolic in ASCII. 

Print the cross-reference listing. 



8244.2 
UP-NUMBER 

( 

Letter 

S 

T 

U 

V 

W 

X 

y 

Z 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

Table 10-1. Processor Option Letters (continued) 

Action 

List only the source program and error and warning messages. 

Flag items that are nonstandard (that is, not compatible with the American 

10-23 
PAGE 

National Standard Programming Language FORTRAN .. ANSI X3.9-1978) with a 
diagnostic. N option does not turn off these nonstandard usage messages. 

SIR option; generate an updated cycle of the source input element. 

Perform local code optimization. This option is ignored during checkout mode. 

SIR option; list all SIR correction lines at the head of the printer listing. 

Perform an ER EABT$ at the end of the compilation if the FORTRAN program 
had any errors or if any serious errors (such as I/O errors) occurred. 

List the generated code in pseudo-assembler format. without the octal 
representation of each word. Also print the listings generated by the D option. 
The L option overrides the Y option. 

Perform full optimization (when not in checkout mode). This includes the 
operations controlled by the V option. In checkout mode, this option turns on 
interactive debugging (see 10.6). 



8244.2 
Uf4iIUMBER 

SpeRRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.5.2. Execution of the Object Program 

10.5.2.1. Execution Using Checkout 

UPOATELMl 
10-24 

PAGE 

If a program or a portion of it is in one source element, it may be executed in checkout mode by putting 
the C or CZ options on the compiler call (see Table 10-1). If only a subprogram is to be tested, use 
the CZ options. Then, upon entering checkout debug mode, test the subprogram via the CALL and 
DUMP commands (see 10.6). 

Note the extensive debugging facilities which are available in interactive checkout debug mode. 

10.5.2.2. Collection and Execution 

If there are multiple source elements, or if the absolute is to be executed more than once, collect an 
absolute with the Collector (@MAP processor). First the FORTRAN programs must be compiled. 

Next. the user must collect his program. If the local site has the FORTRAN run-time library in the 
SYS$*RLlB$ file, the user may do the following: 

@MAP,SI MAPSOURCE,MYABSOLUTE 
IN TALLEY 
@ XQT MY ABSOLUTE 

This assumes that all of the user's programs are in the standard temporary file TPF$. 

Note that a simple @XQT will force a collection before execution. 

If the local site does not have the FORTRAN run-time elements in SYS$*RLlB$, the user must specify 
the appropriate file in the Collector symbolic vi.a a LIB statement. 

@MAPiFSI MAPSOURCE,TALLEY 
LIB FTN*LlB. 
IN TALLEY 
@XQT TALLEY 

Note that a site may have a type 1 or type2 library for ASCII FORTRAN. A type 1 library contains I/O 
routines which are accessed by an LMJ linkage from the ASCII FORTRAN-generated code. A type2 
library contains no I/O routines; the 110 routines are in system common banks which are accessed 
by an LlJ linkage from compiler-generated code. The ASCII FORTRAN compiler generates an IBJ$ 
instruction linkage to all 110 routines; when this IBJ$ instruction mechanism is used, the Collector 
decides whether to resolve the IBJ$ to an LMJ or LlJ linkage, depending on the type of library that 
is specified in the LIB statement in the collection. 

If the Collector generates truncation error messages during the collection, the program is too large 
to fit into the standard 65K addressing space. In this case, use the 0 option on all ASCII FORTRAN 
compilations. See Appendix H for a description of large programs and multibanking. 

For collected absolutes, the debugging features of the debug facility statements (see Section 9) and 
the run-time interactive PMD and walkback are available (see 10.7). 



( 

8244.2 
UP .... UM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6. FORTRAN Checkout Mode 

UPDATE lEVEL 
10-25 

PAGE 

The ASCII FORTRAN compiler also can be used as a compile-and-go processor by invoking the 
checkout mode of operation. Adding the C option to the processor call command directs the compiler 
to generate code into main storage and immediately execute it when compilation is complete. This 
mode results in increased throughput in cases where the object program is to be executed only once 
and when execution is relatively short. No relocatable element is produced. 

FORTRAN checkout mode also provides a powerful interactive debugging system which is enabled 
through the use of the Z option in addition to the C option. This combined usage of options allows 
the user to trace the execution, halt the execution, dump variable values, and perform other debugging 
activities. 

Since optimization is not practical for programs that are executed only once and since it interferes 
with interactive debugging, the optimization features of ASCII FORTRAN are disabled in checkout 
mode. 

Although no relocatable element is produced, a write-enabled RO file (or SI file if no RO is specified) 
must be available, since an omnibus element is produced under certain circumstances when in 
checkout mode. 

10.6.1. Calling Checkout Mode 

The user enters a checkout run in much the same manner as a normal compilation. However, special 
procedures must be followed to enter data for the executing program or to invoke the debugging 
features provided. A simple execution would be entered as follows: 

@FTN,NCI file . element 
user program 
@EOF 
user data images 

The user program consists of a main program (which must physically be first) and any necessary 
subprograms (internal and external subroutines, internal and external functions, or block data 
programs). An END statement (see 4.9) must terminate each program unit group. As in noncheckout 
mode, the only variables shared between external program units are arguments passed between 
program units and variables defined in common blocks. 

On encountering the @EOF, all program units would be processed as one program, and execution 
would be initiated following compilation. The data images following the @EOF would be read and 
used, as necessary. The user program may, of course, be read in from a file by omitting the I option. 
The @EOF is still required, however, preceding the data images in order to indicate that no corrections 
are to be applied to the file. 

If the Z option is used to enable debugging, the following commands should be entered: 

@FTN,NCIZ file. element 
user program 
@EOF 
GO 
user data images 

The GO is required since the debugging routine allows entry of debugging commands immediately 
preceding the execution of the program. These commands are entered before the GO command. 



8244.2 
IJP..NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.2. Interactive Debug Mode in the Checkout Compiler 

10.6.2.1. Entering Interactive Debug Mode 

UPDATE LEVEL 
10-26 

PAGE 

Interactive debug mode in the checkout compiler may be entered only when the Z option is specified 
on the checkout call card (that is, @ FTN,CZ). It is entered: 

• Before the first executable statement in the FORTRAN program. Debug mode is automatically 
entered at this point. 

• When a contingency interrupt occurs during execution of the FORTRAN program (see 10.6.4). 

• When the FORTRAN program executes the statement CALL PAUSE. PAUSE has no parameters. 

• When execution of the FORTRAN program has reached the END statement of the main program 
(that is, just before termination of the program). 

Entry into debug mode at this point allows the user to execute debug commands to do the 
following: dump the final values of variables (see DUMP command, 10.6.3.4), restore execution 
to a previous state (see RESTORE command, 10.6.3.11), or dump the final contents of the 
program (see SNAP command, 10.6.3.15). 

The message: 

END PROGRAM EXECUTION 

is printed before debug mode is entered. 

• When the special RESTART processor (FTNR, see 10.6.6) is invoked to reenter a previous 
debugging session. For example: 

@FTNR ROFILE.MYPROG 

• When a breakpoint interrupt occurred in the previous FORTRAN statement. The SETBP 
command (see 10.6.3.14) is used to set the breakpoint register, which causes hardware 
breakpoint interrupts. The message: 

SETBP BREAK AT LINE n 

is printed on entry to debug mode, where n is the current source line number. 

• When a step break has been set at the current statement using the STEP command (see 
10.6.3.16). The message: 

STEP BREAK AT LINE n 

is printed on entry to debug mode, where n is the current source line number. 

• When a line number break has been set at the current statement using the BREAK command 
(see 10.6.3.1). The message: 

BREAK AT LINE n 

is printed on entry to debug mode, where n is the current source line number. 



8244.2 
UP-4tUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOA TE lEVEL 

10-27 
PAGE 

• When a statement label break has been set at the current statement using the BREAK command 
(see 10.6.3.1). The message: 

LABEL BREAK AT n L 

is printed on entry to debug mode, where n is the statement label associated with the current 
statement. Another line follows the above message, stating which program unit in the FORTRAN 
program contains the label. 

• When the subprogram called by the CALL command (see 10.6.3.2) returns. The message: 

ENTER DEBUG MODE (RETURN FROM CALL COMMAND) 

is printed on entry to debug mode. 

For the first five cases, the message: 

ENTER DEBUG MODE AT LINE n 

is printed on entry to debug mode. In the message, n is the source line number of the statement 
where execution in the FORTRAN program was interrupted. 

10.6.2.2. Soliciting Input 

C, When the checkout compiler is in interactive debug mode, commands are solicited with ER ATREAD$. 
The solicitation message is: 

C: 

If the command is read from an @ADD stream, if the @FTN program began execution in @BRKPT 
mode, or if the program is executing in batch mode, then the command image will b~ printed. 

To leave debug mode, the GO, EXIT, and CALL commands are used. The debug commands are 
discussed individually in 10.6.3. 

10.6.3. Debug Commands 

All debug command names may be abbreviated to one letter (the initial one), except for the following 
(with their abbreviations in parentheses): CALL (CA), LINE (LIN), SAVE (SA), SETBP (SETB), SNAP (SN), 
and STEP (ST). 

The following syntax rules apply for the debug commands: 

• No blank characters are allowed inside a field of a debug command. 

The only exception to this rule occurs when a character variable is specified in the v subfield 
of the first field of the SET command. In this case, blanks may appear inside quotes in the 
character constant in the c field. 

This rule applies when a command contains a p subfield. This subfield, if specified in a 
command, is part of the first field of the command. Therefore, no blanks should appear before 
or after the slash ( I ) which separates the p subfield from the previous subfield, or before or 
after the colon (: ) separator in the p subfield. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

• Any number of blank characters (including zero) may appear between fields. 

10-28 
PAGE 

The only command with more than one field is the SET command, which has three. All other 
commands have either one field or none. 

• The v (variable name) subfield in the DUMP, SET, and SETBP commands must be one of the 
following: 

scalar variable name (including a function subprogram entry point name) 

array element name (with constant subscripts) 

array name (DUMP command only) 

Note that a scalar or array subprogram parameter may be specified using one of these forms. 

The variable v must appear in an executable statement in the designated program unit p, unless 
p is the main program or a block data program. If the COMPILER statement option DATA=AUTO 
or DATA=REUSE appeared in the program, then v must be a variable appearing in a COMMON 
block or a SAVE statement. 

• The p (program unit) field in the PROG command and the p subfield in the DUMP, SET, SETBP, 
BREAK, CLEAR, and GO commands has the following format: 

progname [: extname ] 

where: 

progname represents the desired program unit in the ASCII FORTRAN program. It may 
be specified as (1) * (to represent the main program), (2) a FORTRAN program 
unit (main program, subroutine, function, or block data program) name, or (3) 
an unsigned positive integer n (to represent the nth unnamed block data 
program in the FORTRAN source program). 

extname represents the program unit name of the external program unit corresponding 
to the internal subprogram progname. Therefore, extname may be specified 
only if progname is specified as a subprogram name which represents a 
FORTRAN internal subprogram. The variable extname may be specified as: 
(1) asterisk (*) (if the external program unit is the main program); or (2) a 
FORTRAN program unit (main program, subroutine, or function) name. 

If progname is specified as a program unit name and extname is not specified, then the external 
program unit with name progname is taken. If no such external program unit exists, then the 
first internal subprogram with name progname is taken. 

Examples of the p format: 

* 
3 

SUBl 

main program 

third unnamed block data program in the source 

external program unit SUB 1 (or, if no external program unit SUB 1 exists in the 
program, the first internal subprogram in the source with name SUB 1) 

INTl :SUB2 internal subprogram INTl, whose external program unit is SUB2 

'I ; 

internal subprogram INT2, whose external program unit is the main program 
\ 
! 



8244.2 
UP .... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

The checkout debug commands are described individually in the following subsections. 

10.6.3.1. BREAK 

Purpose: 

10-29 
PAGE 

The BREAK command (abbreviated B) sets break points at statement labels or source line numbers. 

Form: 

BREAK n [L [/ p ]] [, n [ L [ / p ] ] ] ... 

where: 

n is an unsigned positive integer. 

p represents a program unit in the FORTRAN source program. The p subfield is described 
under syntax rules (see 10.6.3). 

Description: 

The BREAK command specifies labels or a line number as points at which execution (\f the FORTRAN 
program is to be interrupted and interactive debug mode entered. These points are referred to as 
break points. 

If the n L [ / p] format is used, then the break point is the beginning of the FORTRAN statement with 
statement label n, where p designates the program unit in which n resides. If p is not specified, 
then the break point is label n in the default program unit. (See PROG command, 10.6.3.10.) 

If the n format is used, then the break point is the beginning of the FORTRAN statement at source 
line number n. 

A maximum of eight label breaks and eight line number breaks may be set at anyone time. 

Two other debug commands are used in connection with the BREAK command. The CLEAR command 
is used to clear one or more break points. The LIST command is used to list all break points. 

Example: 

BREAK 10L/SUB1, 9 
Set break points at (1) statement label lOin program unit SUB 1, and (2) source line 9. 
Debug mode will be reentered at these points. The command GO should follow so that 
the program resumes execution. 



8244.2 
UP .... UUBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.2. CALL 

Purpose: 

The CALL command (abbreviated CAl calls a FORTRAN subprogram. 

Form: 

CALL 5 [ (a [. a] ... ) ] 

where: 

5 is a subprogram entry point name. 

a is an actual argument that is passed to the subprogram. 

Description: 

UPDATE LEVEL 
10-30 

PAGE 

The CALL command calls a FORTRAN subprogram with the given arguments. This allows the user 
to test only a given subprogram without having to execute the entire FORTRAN program. For example, 
a subprogram could be repeatedly called with different sets of arguments. 

5 has the following format: 

ent[:extname] 

where: 

ent is the entry point to be called; ent may be any entry point in any subprogram in the 
FORTRAN program, except for an alternate entry point (that is, an entry point 
specified in an ENTRY statement) in an internal subprogram. 

extname represents the program unit name of the external program unit corresponding to the 
internal subprogram ent. Therefore, extname may be specified only if ent is 
specified as an internal subprogram name. The variable extname may be specified 
as: (1) asterisk (*) (if the external program unit is the main program); or (2) a 
FORTRAN program unit (main program, subroutine, or function) name. 

If extname is not specified, then the external subprogram entry point with name ent is taken. If no 
such external subprogram entry point exists, then the first internal subprogram with name ent is 
taken. 

Each a is an actual argument and must match the corresponding formal argument of 5 in type and 
usage. (In this way, the CALL command closely resembles a subprogram reference in a FORTRAN 
program.) 

a must be specified in one of the following forms: 

• a FORTRAN constant. 

• a variable in program unit p, where p is the default program unit (set by the PROG command). 
It must be specified as either a scalar variable name, an array name, or an array element name 
(with constant subscripts). 



8244.2 
UP-NUM8EII 

(/ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-31 
PAGE 

• a subprogram entry point name. immediately preceded by an asterisk (*). The name a may be 
any entry point in any subprogram in the FORTRAN program. except for an alternate entry point 
(that is. an entry point specified in an ENTRY statement) in an internal subprogram. If the entry 
point specified exists as an external subprogram entry point, then that one is taken. If no such 
external entry point exists. then the first internal subprogram with the specified name is taken. 

Note that a statement label may not be passed as an actual argument via the CALL command. 
Therefore. a subprogram with any RETURN i statements (that is. a subprogram with * as any formal 
argument) may not be called with this command. 

A maximum of 20 arguments is allowed. 

When the subprogram returns (via the RETURN statement). control is transferred back to interactive 
debug mode. The message: 

ENTER DEBUG MODE (RETURN FROM CALL COMMAND) 

is printed. In addition. if the subprogram called was a function. the message: 

FUNCTION VALUE RETURNED: 

is printed. followed by the actual value. 

Examples: 

CALL FUNC1( A(1.1). 1.6E4. V) 
Refer to function FUNC 1. passing as arguments array element A(1. 1) (from the default 
program unit). the real constant 1.6E4. and variable V (also from the default program unit). 
After FUNC 1 returns control. the function value will be printed. and debug mode will be 
reentered. 

CALL SUB1( 5. *SUB2) 
Call subroutine SUB 1. passing as arguments the integer constant 5 and subprogram entry 
point SUB2. After SUB 1 returns control. debug mode will be reentered. 

When debug mode is reentered on return from the CALL command. the user may not resume normal 
execution of the program (at the line where the CALL command was executed) using the GO 
command. Instead. the SAVE and RESTORE commands must be used for this purpose. since the CALL 
command interrupts normal execution. 

For example. if the user wishes to execute a portion of the program. interrupt execution to test 
subprogram SUB (using the CALL command). and then resume normal execution of the program. the 
following commands could be entered: 

SAVE 
CALL SUB 
RESTORE 



8244.2 
UP-NUUBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.3. CLEAR 

Purpose: 

UPOATELMl 
10-32 

PAGE 

The CLEAR command (abbreviated C) clears break points set by the BREAK and SETBP commands. 

Form: 

CLEAR [ { ; [ L [ / p ]] [. n [ L [ / p ]]]. . . } ] 

where: 

n is an unsigned positive integer. 

p represents a program unit in the FORTRAN source program. The p subfield is described 
under syntax rules (see 10.6.3). 

k is one of the following keywords: LABEL. LINE. BRKPT. or ALL. 

Description: 

The CLEAR command clears one or more break points established by the BREAK or SETBP commands. 

The n [ L [/ p ]] field has the same format as the field in the BREAK command. The format n L [/ p ] 
clears the break point set at statement lab~1 n in program unit p. The format n clears the break 
point at line n. 

The rest of the formats are used to clear one or both break lists or the SETBP break. CLEAR LABEL 
clears all label break points. CLEAR LINE clears all line number break points. CLEAR BRKPT clears 
the breakpoint register set by the SETBP command. CLEAR and CLEAR ALL clear all IClbel and line 
number breaks and the SETBP break. 

LABEL. LINE. BRKPT. and ALL may be abbreviated to LA. LI. B, and A, respectively. 

Example: 

CLEAR 10L/SUB1, 9 
Clear the break points (previously set by the BREAK command) at (1) statement label 10 
in program unit SUB 1, and (2) source line 9. 



( 

8244.2 
UP ..... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10.6.3.4. DUMP 

Purpose: 

The DUMP command (abbreviated D) prints the values of FORTRAN variables. 

Form: 

DUMP [ , opt] 

where: 

{
V [ / p] [, v [/ p ]] . . . 
/p 

opt is an option letter; A or 0 is allowed. 

10-33 
PAGE 

v is a variable in program unit p. The v subfield is described under syntax rules (see 10.6.3). 

p represents a program unit in the FORTRAN source program. The p subfield is described 
under syntax rules (see 10.6.3). 

Description: 

The DUMP command prints the current values of one or more FORTRAN variables. 

If the 0 option is specified on the DUMP command, the values are printed in octal format. If the A 
option is specified, they are printed in ASCII character format. If neither 0 nor A is specified, they 
are printed in a format corresponding to the variable's data type (INTEGER, REAL, COMPLEX, etc.). 

Whenever the value of a variable is printed, it is preceded by a heading line in the format: 

v /p 

where v is the variable name and p is the program unit name. (See the description of the p subfield 
in 10.6.3.) 

If an entire array is dumped, the values of all elements in the array are printed in column-major order. 

The formats are described as follows: 

• DUMP [,opt] v[/p] [. v [/p ]] ... 

The v [/ p] format prints the value of variable v in program unit p. 

If v is a scalar, array element, or function entry point, then one value is printed. If v is an array 
name, then the values of all elements in the array are printed. 

If p is not specified, then variable v is taken from the default program unit (set by the PROG 
command). 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

• DUMP [,opt] / p 

This format prints the values of all variables in program. unit p. 

• DUMP [ ,opt] 

UPDATE LEVEL 
10-34 

PAGE 

This format prints the values of all variables in all program units in the FORTRAN program. 

If the second or third formats are used, then the order that the variables appear in the output is as 
follows: 

• In a program unit, the variables are listed in alphabetical order. 

• In the FORTRAN program (format 3), the program units are listed in the order that they appear 
in the source input. 

Example: 

DUMP 
Print the values of all variables in all program units. 

DUMP /SUB2 
Print the values of all variables in program unit SUB2. 

DUMP,O A/*, B(l,l), C/SUB3 
Print the values of variables A (from the main program), B( 1,1) (from the default program 
unit), and C (from program unit SUB3), all in octal format. 

10.6.3.5. EXIT 

Purpose: 

The EXIT command (abbreviated E) terminates the ASCII FORTRAN processor. 

Form: 

EXIT 

Description: 

The EXIT command terminates the processor with a call to the FEXIT$ system routine. This routine 
terminates all input/output and does an ER EXIT$. 

Note that a "@" image (control statement) read in checkout debug mode is treated like an EXIT 
command (that is, the processor is terminated). 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference PAGE 

------------~--------------------------

I 1<>-35 

( 

( 

10.6.3.6. GO 

Purpose: 

The GO command (abbreviated G) resumes execution of an ASCII FORTRAN program. 

Form: 

GO [n L [/ p] ] 

where: 

n is an unsigned positive integer. 

p represents a program unit in the FORTRAN source program. The p subfield is described 
under syntax rules (see 10.6.3). 

Description: 

The GO command causes an exit from interactive debug mode; execution of the FORTRAN program 
is then resumed. 

If "GO" is specified (that is, no command fields), then execution of the program continues at the point 
at which it was interrupted to go into debug mode. 

If the n L [/ p] field is specified, execution of the program continues at statement label n in program 
unit p. If p is not specified, the default program unit (set by the PROG command) is assumed. 

The user should be cautious when specifying the n L [/ p] format, since registers may not be set up 
correctly when jumping to a statement label. For instance, jumping to a label inside a DO-loop or 
jumping to a label in another program unit (that is, not the one currently being executed) could cause 
execution problems. 

Examples: 

GO 
Resume execution of the FORTRAN program at the point at which it was interrupted to go 
into debug mode. 

GO 15L/S1 
Resume execution of the program at statement label 15 in program unit S 1. 



8244.2 
UNWMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10.6.3.7. HELP 

Purpose: 

The HELP command (abbreviated H) prints information about debug commands. 

Form: 

where: 

opt is an option letter; F or D is allowed. 

cmd is one of the checkout debug command names. No abbreviations are allowed. 

Description: 

10-36 
PAGE 

The HELP command prints information about debug commands. thereby allowing the user to continue 
debugging without having to consult a manual about command descriptions or formats. 

The format HELP lists all of the debug command names. 

The format HELP cmd prints all available information about the designated debug command cmd. 
including a list of all formats. a description of the individual items specified in the formats. and a 
general description of the command. 

The format HELP ALL lists all available information for all debug commands. Note that a large amount 
of output is generated. 

If the F option is specified. then only command formats will be printed. 

If the D option is specified. then only command descriptions will be printed. 

Examples: 

HELP 
List all of the debug command names. 

HELP ALL 
List all information for all debug commands. 

HELP.F DUMP 
List all formats for the DUMP command. 



( 

8244.2 
UP-ItUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.8. LINE 

Purpose: 

The LINE command (abbreviated LIN) prints the current source line number. 

Form: 

LINE 

Description: 

UPDATE LEVa. 
10-37 

PAGE 

The LINE command prints the source line number of the statement in the FORTRAN program where 
execution was interrupted to go into debug mode. 

10.6.3.9. LIST 

Purpose: 

The LIST command (abbreviated L) lists all break points set by the BREAK command and the default 
program unit. 

Form: 

LIST 

Description: 

The LIST command lists all break points set by the BREAK command. This includes all line number 
breaks and all statement label breaks. 

The default program unit (set by the PROG command) is also listed. 



8244.2 
UI'-HUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.10. PROG 

Purpose: 

UPDATE lEVEL 
10-38 

PAGE 

The PROG command (abbreviated P) sets the default program unit for variables and statement labels. 

Form: 

PROG p 

where p represents a program unit in the FORTRAN source program. The p field is described under 
syntax rules (see 10.6.3). 

Description: 

The PROG command sets the default program unit in the FORTRAN symbolic element that is implied 
for variables (in the DUMP, SET, SETBP, and CALL commands) and statement labels (in the BREAK, 
CLEAR, and GO commands) to p. 

If no PROG command has been entered in debug mode during execution of the FORTRAN program, 
then the first program unit in the FORTRAN symbolic element is set as the default. 

The default program unit set by this command may be overridden in an individual command (DUMP, 
SET, SETBP, GO, BREAK, or CLEAR) by specifying a program unit subfield p in that command. 

The LIST command will print the default program unit. 

Examples: 

Assume the following commands are entered sequentially. 

PROG SUB1 
Set program unit SUB 1 as t~e default program unit. 

DUMP X 
Print the value of variable X in the program unit SUB 1. 

DUMP X/2 
Print the value of variable X in the element's second unnamed block data program. 

BREAK 10L 
Set a break at statement label lOin program unit SUB 1. 

BREAK 10L/* 
Set a break at statement label 10 in the main program. 



8244.2 
UP-JIUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.11. RESTORE 

Purpose: 

I UPDATE LEVEL 
10-39 

PAGE 

The RESTORE command (abbreviated R) restores the user's program to a previous point of execution. 

Form: 

RESTORE en] 

where n is an integer consisting of 1 to 12 digits. 

Description: 

The RESTORE command restores the state of the user's program which a previous corresponding 
SAVE command preserved (see 10.6.3.12), essentially restarting his program at the state it was in 
at the SAVE point. The optional version number n can be used to keep several stages of execution 
around when debugging. 

When ;eentering the user program, the following message is printed out: 

ENTERING USER PROGRAM: prog-name [VERSION: version-no ] 

NOTE· The user is responsible for the assignment of files and their positioning. File contents, 
assignments, and positioning (tapes) are not saved or restored Only the users variables 
and point of execution are saved and restored, along with several debug mode parameters: 
break points set by the BREAK and STEP commands, the default program unit set by the 
PROG command, and the trace mode value set by the TRACE command Also, the same 
level of ASCII FORTRAN must have been used to do the corresponding SA VE command 

The user can reenter a checkout debugging run at a later date by use of the special Restart processor 
(FTNR) released with ASCII FORTRAN. All that is necessary is that the relocatable output file from 
the previous session still be available. (This is where the SAVE information is saved; see 10.6.6.) 

A RESTORE command can also be done by use of the run-time routine CHKRS$ (see 7.3.3.10). 

Examples: 

@FTN,SCZ IN.ELT 
@EOF 

State is automatically saved in omnibus element IN.EL T before entry to debug mode. 
BREAK 7 
GO 

ASCII FORTRAN responds with BREAK AT LINE 7 
SAVE 2 

State saved in omnibus element IN.EL T /2 
RESTORE 

State restored from omnibus element IN.ELT. 
ASCII FORTRAN responds with ENTERING USER PROGRAM: EL T 

BREAK 3 
GO 

User program now restarts execution from the original save point. 
ASCII FORTRAN responds with BREAK AT LINE 3. 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

RESTORE 2 
State restored from omnibus element IN.EL T /2. 
ASCII FORTRAN responds with ENTERING USER PROGRAM: EL T VERSION: 2. 

GO 
User program resumes execution at line number 7. where the save was done. 

@FTN.NCZ IN.GAMES.SAVE.GAMES 

@EOF 
The state is automatically saved in SAVE.GAMES before entry to debug mode. 

GO 

User program executes 

@FIN 

Next day the user wants to do more testing on GAMES. 
@RUN SMITH. 123456.TRNG 
@FTNR SAVE.GAMES 

10-40 
PAGE 

FTNR responds with a sign-on line and the state of GAM~S is restored from yesterday's 
SAVE. 

GO 

User GAMES program now executes again. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.12. SAVE 

Purpose: 

UPDATE LEVEL 
10-41 

PAGE 

The SAVE command (abbreviated SA) saves the present state of the user's program for later 
resumption. 

Form: 

SAVE[n] 

where n is an integer consisting of 1 to 12 digits. 

Description: 

The SAVE command saves the present state of the user's program by writing it out to an omnibus 
element in a Relocatable Output (RO) file. The element name used is the RO element name. The 
version name used is either the user's RO version, if any, or the up to 12-digit field on the SAVE 
command. 

Only an all-digit field may be used on the SAVE command. Since the element created is typed as 
omnibus, this command does not destroy the user's symbolic, relocatable, or absolute elements of 
the same name in his RO file. 

The RESTORE (see 10.6.3.11) command may be used to restore the FORTRAN program to the state 
of execution of a corresponding SAVE command. 

An automatic SAVE command is done for the user just before initially entering debug mode (after 
the END FTN message). 

A SAVE command can also be done by use of the run-time routine CHKSV$ (see 7.3.3.10). 

Examples: 

@FTN,SCl IN.ELT 
@EOF 
SAVE 

This will save state in omnibus element IN.ELT. The RESTORE command can be used to 
restore the current state. 

@FTN,NCl IN.ELT,OUT.ELT/TEST 
@EOF 
SAVE 

This will save state in omnibus element OUT.EL T /TEST. The RESTORE command can be 
used to restore the current state. 

@FTN,NCl IN.ELT,OUT.ELT/TEST 
@EOF 
SAVE 99 

This will save state in omnibus element OUT.EL T 199. The RESTORE command 99 can be 
used to restore the current state. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference Ul'DAT£ lEVEL 

10.6.3.13. SET 

Purpose: 

The SET command (abbreviated S) changes the value of a FORTRAN variable. 

Form: 

SET v [/p] = c 

where: 

10-42 
PAGE 

v is a variable in program unit p. The v subfield is described under syntax rules (see 10.6.3). 

p represents a program unit in the FORTRAN source program. The p subfield is described 
under syntax rules (see 10.6.3). 

c is a FORTRAN constant. 

Oescrip~ion: 

The SET command sets the value of variable v in program unit p to the constant c. If p is not 
specified, then v is from the default program unit (set by the PROG command). 

The variable c must be the same data type as v. There are no conversions between data types for 
the SET command. For example, if v is declared as type COMPLEX* 16 in program p, then c must 
be a double precision complex constant. 

If v is a character variable, then c must be a character constant. Hollerith constants are not allowed. 

Examples: 

SET 1=5 
Set the value of variable I (in the default program unit) to 5. I must be type integer. 

SET CO(2,3)/S2 = (1.402, 2.303) 
Set the value of array element CO(2,3) in program unit 52 to the COMPLEX* 16 constant 
(1.402,2.303). Array CO must be type COMPLEX* 16. 



8244.2 
UP-NUMBER 

( 

("', 

,,--' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.14. SETBP 

Purpose: 

UPDATE LEVEL 
10-43 

PAGE 

The SETBP command (abbreviated SETB) sets a break point so that debug mode is reentered when 
a specific variable is set or referred to. 

Form: 

SETBP L opt] v[/ p] 

where: 

opt is an option letter; R or W is allowed. 

v is a variable in program unit p. The v subfield is described under syntax rules (see 10.6.3). 

p represents a program unit in the FORTRAN source program. The p subfield is described 
under syntax rules (see 10.6.3). 

Description: 

The SETBP command sets a break point so that debug mode is reentered whenevel" the designated 
FORTRAN variable, v, in program unit. p, is set or referenced during execution of a FORTRAN 
program. If p is not specified, v is taken from the default program unit (set by the PROG command). 

The SETBP command may be used only if execution is on a machine where the ER SETBP$ mechanism 
is available. This Executive Request sets the programmable breakpoint register, which causes a 
breakpoint interrupt whenever the specified condition is met. Checkout debug mode is reentered at 
the beginning of the next executable FORTRAN statement after the specified variable has been set 
or referenced. 

If the R option is specified on the SETBP command, then debug mode is reentered whenever the 
designated variable v is referenced from storage. This occurs when the variable is referenced in an 
assignment statement (on the right side of the assignment "=" operator) or an I/O write statement. 

If the W option is specified, then debug mode is reentered whenever the variable v is stored into. 
This occurs when the variable is set in an assignment statement (on the left side of the assignment 
"=" operator) or an I/O read statement. 

If neither the R nor the W option is specified, then both are assumed; that is, debug mode is reentered 
whenever the variable is set or referenced. 

Note that a breakpoint interrupt will occur whenever the storage that the variable occupies is involved 
in a load (R option) or store (W option) instruction. Therefore, the FORTRAN statement where the 
breakpoint interrupt occurs (that is, the executable statement immediately preceding the statement 
where debug mode is reentered) may not actually reference the variable name specified in the SETBP 
command; the interrupt may have been caused by the setting or referencing of a variable that 
occupies the same storage as the variable designated in the command. Variables which may be 
overlapped in storage in a FORTRAN program include those used in EQUIVALENCE or COMMON 
statements or those passed as subprogram parameters. 

The break point set by the SETBP command will remain in effect during execution until it is cleared 
by the CLEAR command (either CLEAR or CLEAR BRKPT format), or until another break point is set 
with the SETBP command. Note that only one SETBP break point may be set at anyone time. 



8244.2 
UP-NUMIER 

SPERRY UNIVAC Serie. 1100 
FORTRAN (ASCII) Programmer Reference 

Examples: 

SETBP,W C(6)/* 

UPDATELMl 
10-44 

PAGE 

Set a break point so that debug mode is reentered whenever array element C(6) in the main 
program is set. The command GO should follow so that the program resumes execution. 

SETBP,R V 
Set a break point so that debug mode is reentered whenever variable V (in the default 
program unit) is referred to. 

SETBP A/S2 
Set a break point so that debug mode is reentered whenever variable A in program unit 
S2 is set or referred to. 

10.6.3.15. SNAP 

Purpose: 

The SNAP command (abbreviated SN) produces a dump of the FORTRAN program or registers. 

Form: 

SNAP [I] 

where / is one of the following letters: I, D, or R. 

Description: 

The SNAP command dumps all or part of the FORTRAN program. The Executive Request ER SNAP$ 
is used to dump the contents of one location counter at a time. The user program's registers may 
also be dumped. 

The SNAP format dumps the entire FORTRAN program and all registers. 

The SNAP I format dumps the contents of location counter 1 of the program. $( 1) contains all 
program instructions not resulting from input/output lists. 

The SNAP 0 format dumps the contents of all location counters except 1. 

The SNAP R format causes all registers to be dumped. 

Since ER SNAP$ lists absolute addresses only, an L option checkout compiler listing of the FORTRAN 
program may be helpful if the user wishes to decode the location counter information that is dumped. 
This listing includes the location counters and relative addresses for variables and code in the 
program. 



8244.2 
UP-IfUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.16. STEP 

Purpose: 

UPDATE lEVEL 
10-45 

PAGE 

The STEP command (abbreviated ST) sets a break point at a certain point ahead in the program. 

Form: 

STEP [n] 

where n is an unsigned positive integer. 

Description: 

The STEP command specifies a break point at which execution of the FORTRAN program is to be 
interrupted and interactive debug mode reentered. 

After the GO command is entered, n FORTRAN statements are executed and then debug mode is 
reentered. 

If n is omitted, one is assumed. 

Example: 

STEP 3 
Set a break point so that debug mode will be reentered after three FORTRAN statements 
have been executed. The command GO should follow so that the program resumes 
execution. 

10.6.3.17. TRACE 

Purpose: 

The TRACE command (abbreviated T) turns trace mode on or off. 

Form: 

TRACE [m ] 

where m is one of the following keywords: ON or OFF. 

Description: 

Either TRACE or TRACE ON turns trace mode on. TRACE OFF turns trace mode off. 

If trace mode is on, then a message in the form: 

LINE n 

is printed at the start of execution of each FORTRAN statement. where n is the source line number 
of the statement. Trace mode is initially off. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.3.18. WALKBACK 

Purpose: 

UPOATE LEVEL 
10-46 

PAGE 

The WALKBACK command (abbreviated W) traces the general flow of program execution through 
FORTRAN subprograms. 

Form: 

WALKBACK 

Description: 

The WALKBACK command gives a step-by-step trace of FORTRAN subprogram references that have 
occurred during program execution. The trace begins at the current statement in the subprogram 
which is executing (that is. the point in the user program at which execution was interrupted to go 
into debug mode) and ends at the main program. 

During execution of the walkback trace. one line is printed at each step indicating which FORTRAN 
subpropram (subroutine or function) was referenced at a certain line number of another subprogram 
(or the main program). Walkback may occur over any number of subprograms. 

Any FORTRAN subprogram named in a walkback message wi" be a main entry poir:t. regardless of 
which entry point in that subprogram was actually referenced. 

One or more of the following messages may be printed during the checkout walkback process: 

WALKBACK INITIATED AT ADDRESS absadr IN USER PROGRAM 

TH I S ADDRESS I S AT LN. line OF prog2 

prog 1 REFERENCED AT LN. line OF prog2 

THIS ADDRESS IS AT elt $( Ic) reladr 

progl REFERENCED AT elt $( Ic) reladr 

progl REFERENCED AT ADDRESS absadr BDI bdi 

THIS ADDRESS IS IN THE I/O COMPLEX 

X11 LINK ADDRESS DESTROYED - WALKBACK TERMINATED 

WALKBACK TERMINATED BECAUSE OF AUTO. STORAGE 

progl REFERENCED BY CALL COMMAND 



8244.2 
UP~M8ER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Example: 

1. I = 5 
2. CALL S ( I ) 
3. END 

4. SUBROUTINE S( 11) 
5. J = F(11) 
6. PRI NT * ,J 
7. RETURN 
8. END 

9. FUNCTION F( 12) 
10. F = 12**3 
11 . RETURN 
12. END 

Execution of the following three checkout debug commands: 

BREAK 11 
GO 
WALKBACK 

causes the following lines to be printed: 

UPDATE LEVEL 
10-47 

PAGE 

(/ WALKBACK I NI T I ATED AT ADDRESS 031470 I N US ER PROGRAM 
TH I S ADDRESS I S AT LN. 11 OF F 
F REFERENCED AT LN. 5 OF S 
S REFERENCED AT LN. 2 OF MAIN PROGRAM 

See 10.7.4 for more walkback examples and a more complete description of the walkback 
mechanism. That subsection describes FTNWB, the run-time walkback routine, which is very similar 
to the checkout walkback process. 



8244.2 
UP~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.4. Contingencies in Checkout Mode 

UPDATE LEVEL 
10-48 

PAGE 

When an illegal operation (IOPR), guard mode (IGOM), or error mode (EMOOE, including a math or 
I/O library error) contingency interrupt occurs during checkout execution of the user program, the 
following action will be taken (after a contingency message is printed), depending on the options 
specified on the @FTN control statement: 

• C option (but no F or Z option) 

A walkback trace will be performed (from the point of the error back to the main program). See 
10.6.3.18 for a description of the walkback mechanism. 

• CF options (but no Z option) 

(1) A walkback trace will be performed, and (2) the current values of all variables in the user 
program will be printed (that is, the automatic 'DUMP!' command). 

• CZ options 

(~) A walkback trace will be performed, and (2) interactive debug mode will be entered (so that 
the user may attempt to find the problem). Execution of the user program may not be resumed 
after a contingency of this type. 

When a break keyin (@ @X C) occurs during checkout execution of the user program, the following 
action will be taken (depending on the @FTN options): 

• C option (but no Z option) 

No action will be taken. 

• CZ options 

(1) The message "BREAK KEYIN" will be printed; (2) the current FORTRAN statement will 
complete execution (so that debug mode is not entered in the middle of a statement); and (3) 
debug mode will be entered. Execution of the user program may be resumed with the GO 
checkout command. 

When a divide fault (IOOF), floating-point overflow (IFOF), or floating-point underflow (IFUF) 
contingency interrupt occurs during checkout execution of the user program, the following will be 
performed (if the appropriate run-time counter is positive): (1) a contingency message will be printed, 
(2) the line number and program unit where the contingency occurred will be listed, and (3) execution 
of the user program will be resumed. See subsections on service routines OIVSET (7.3.3.9), OVFSET 
(7.3.3.8), and UNOSET (7.3.3.7) for a description of how the run-time counters are set. Note that all 
three counters are initialized to 20 on CZ options, and to zero otherwise. 



8244.2 
UI4tUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.6.5. Checkout Mode Restrictions 

UPDATE LEVEL 
10-49 

PAGE 

Due to the generation of code in main storage, only simple program structure can be provided in 
checkout mode. Links cannot be generated to subprograms that are not physically in the source 
program. In addition, multibanking and segmentation are not provided (that is, the BANK statement 
and the COMPILER statement with options BANKED=DUMARG, BANKED=ACTARG, 
BANKED=RETURN. or BANKED=ALL present cannot be used). The maximum size for a user program 
in checkout mode is somewhat smaller than the maximum size for a user program in noncheckout 
mode, due to the addressing space used by checkout execution-time requirements. A warning 
message will be printed if this maximum size is exceeded. 

The error diagnostics associated with the checkout mode are given in Appendix I. 

10.6.6. Restart Processor (FTNR) 

FTNR is a small, separate processor, released with ASCII FORTRAN, which restarts previous checkout 
debugging sessions. It is called with the SI field holding a file-element name that is an omnibus-type 
element holding one of the user's runs saved from a previous session. (See SAVE command, 
10.6.3,12.) The processor signs on in a standard manner and goes interactive after reloading the 
program. 

Example: 

~ @FTNR SAVEF I L E . MYPROG 
ENTERING USER PROGRAM: MYPROG 

If a version name is given on the FTNR call statement, this element/version is the base level which 
is restored by a parameterless RESTORE command. 

Example: 

~@FTNR F.GAME/A 
sign-on line 
ENTERING USER PROGRAM: GAME VERSION: A 
~RESTORE 

The RESTORE command in this example restores GAME/A again. Note that FTNR can be used to 
reenter nonfull debug checkout runs if the CHKSV$ run-time routine is used. See the CHKSV$ and 
CHKRS$ descriptions (7.3.3.11). 

All checkout debugging commands are available in the FTNR (Restart) processor. The same level of 
FTN and FTNR must be used, or the restart will not work. This is true of the RESTORE command also 
(see 10.6.3.11); the same level of FTN and FTNR must have done the corresponding SAVE. 



8244.2 
UP-NUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.7. Walkback and the Interactive FTNPMD 

10.7.1. Introduction 

UPDATE lEVEL 
10-50 

PAGE 

When a contingency interrupt occurs during execution of an ASCII FORTRAN program, the following 
debugging aids will automatically be executed: 

• the ASCII FORTRAN walkback process (FTNWB) 

• the ASCII FORTRAN interactive postmortem dump (FTNPMD) 

The walkback mechanism gives a step-by-step trace of FORTRAN subprogram references that have 
occurred during program execution, from the point of the error condition back to the main program. 
Only subprograms in relocatable elements generated by ASCII FORTRAN compilations or in MASM 
elements using the walk back procedures (see 10.7.4.3) can be traced by the walkback process. 

FTNPMD allows the user to interactively dump the current values of FORTRAN variables in the 
executing program. The variables which may be dumped are those which exist in elements which 
were generated with F-option ASCII FORTRAN compilations. If optimization is used, the values 
provided for the variables may not be the same as the value expected. This difference is the result 
of the elimination of unneeded stores. If the program is running in batch mode (see 10.7.5.1), 
FTNPMD will be executed only if the F option was specified on the @XQT control statement. 

In addition to being called by the contingency routine, both FTNWB and FTNPMD may be initiated 
by calls from the user program. '" .. 

If the walkback and interactive PMD debugging aids are to execute correctly, neither the Z nor R 
option should be specified on the @MAP control statement used for collection of the program. The 
@MAP,Z statement suppresses generation of diagnostic tables in the absolute element. The @MAP,R 
statement generates a Collector relocatable element; no @MAP,R relocatables should appear in the 
user program. 

In addition, the Collector directive TYPE EXTDIAG should be used if any FORTRAN subprogram main 
entry points are unreferenced in the program. This statement will cause all entry points (referenced 
or not) to be inserted in the Collector's diagnostic tables. 

If the program is multi banked, it must follow the specifications listed in Appendix H, since both 
FTNWB and FTNPMD make assumptions about the program's banking structure. 

FTNPMD and FTNWB will not execute correctly if the name of a relocatable element produced by 
ASCII FORTRAN is changed with the @CHG or @COPY control statement. 

10.7.2. Diagnostic Tables Generated by ASCII FORTRAN 

If the F option is specified on the ASCII FORTRAN processor control statement (@FTN,F), the compiler 
produces a large set of diagnostic tables (also known as INFO-01O text) under location counter 3 of 
the generated relocatable element. These tables contain information about variables, arrays, 
statement labels, and line numbers in the program units of the FORTRAN element. 

If the F option is not specified on the @FTN control statement, a smaller set of diagnostic tables 
(containing only the program unit information) is generated. These tables will only allow walkback 
through the program units in the element, with no line numbers appearing in the walkback messages. 



8244.2 
Ul4lUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-51 
PAGE 

When the relocatable element is mapped into an absolute element, the Collector handles the 
INFO-O 1 0 location counter (3) in a special manner. The contents of $(3) are inserted in the absolute 
element, but are never part of the executing program. Therefore, the size of the diagnostic tables 
does not affect the size of the loaded program. FTNWB and FTNPMD read necessary INFO-O 1 0 tables 
from the absolute element into local buffers. 

In order for the FTNPMD and FTNWB routines to get mapped into an absolute element, at least one 
@FTN,F relocatable must be mapped in. 

10.7.3. Initiating FTNWB and FTNPMD 

Both walkback and the interactive PMD are automatically executed (in that order) if any of the 
following contingency interrupts occur: 

• error detected by the math library 

• error detected by the I/O library (see G.8) 

• illegal operation (IOPR) 

• guard mode (IGDM) 

• error mode (EMODE) 

(_/ No registers are destroyed in FTNWB or FTNPMD. Therefore, when the registers are dumped by the 
ER EABT$ (which is perfOrmed by the contingency routine after walkback and the interactive PMD 
have completed), the contents of all registers will be the same as when the error occurred. 

The interactive PMD (but not walkback) is executed: 

• When a break keyin (@ @X C) contingency occurs during execution of the program 

• When the program executes the FORTRAN statement CALL FTNPMD (the routine has no 
parameters) 

Walkback (but not the interactive PMD) occurs when the program executes the FORTRAN statement 
CALL FTNWB (the routine has no parameters). In this case, the walkback process begins at the point 
of the call and traces back to the main program. Program execution then continues at the statement 
after the call. 

If the program is executing in checkout mode (see 10.6), then neither FTNWB nor FTNPMD can be 
executed by any of the methods mentioned previously. 

In orner for FTNPMD to execute in batch mode in the above cases, an F option must be specified on 
the @XaT control statement. Note, however, that walkback does not require a special @XaT option 
for batch mode operation. 

If the F option is specified on ASCII FORTRAN compilations (@FTN,F), normal line numbers will appear 
in the walkback messages; otherwise, all line numbers will be printed as zero (the subprograms' 

('.' names will be correct, however). 



8244.2 
lJP..NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.7.4. Walkback (FTNWB) 

10.7.4.1. Description of the Walkback Process 

-_.-- -~ --- ,----

UPDATE LEVEl 
10-52 

PAGE 

During execution of the walkback process, one line is printed at each step indicating which FORTRAN 
subprogram (subroutine or function) was referenced at a certain line number of another subprogram 
or the main program. Walkback may occur over any number of subprograms. 

The walkback process will terminate when the trace has reached (1) the main program or (2) a routine 
which is in an element which was not generated by an ASCII FORTRAN compilation. The latter case 
includes ASCII FORTRAN service routines (see 7.3.3) and routines in MASM elements. 

If the F option is specified on ASCII FORTRAN compilations (@FTN,F), normal line numbers will appear 
in the walkback messages; otherwise, all line numbers will be printed as zero (the subprograms' 
names will be correct. however). 

In the examples listed in the following subsections, it is assumed that all ASCII FORTRAN compilations 
are performed with the F option, and that a type2 (banked 1/0) library file is used as a LIB file during 
collection. 

10.7.4.1.1. Errors Detected by the Math Library (CML) 

The math library (common bank or relocatable) detects the following errors: 

• unnormalized argument 

• argument value out of range 

• function value out of range 

If any of these errors are detected during execution, messages will be printed, listing the following: 

• the math routine which detected the error 

• the nature of the error 

• the decimal and octal representations of the argument which caused the error 

• a walkback trace of the user subprogram references, from the call that referenced the math 
library, back to the main program (if possible). If the CMLSET service routine (see 7.3.3.10) has 
been called (and the CMLSET run-time counter is positive), a one-step walkback will be 
performed (listing the line number and program unit where math was called), and program 
execution will resume. 



( 

( 

8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Example: 

ASCII FORTRAN source input: 

1 . 
2. 

3. 
4. 
5. 
6. 

7. 
8. 
9. 

10. 

Program execution: 

CALL S1 
END 

SUBROUTINE S1 
CALL S2(-4.) 
RETURN 
END 

SUBROUTINE S2(X) 
Y=SORT(X) 
RETURN 
END 

ERROR TERMINATION IN SORT ROUTINE CAUSED BY 
ARGUMENT UNORMALIZED OR OUTSIDE ALLOWABLE RANGE 
ARG1= -4.0000000 
ARG1 OCTAL 574377777777 

UPDATE lEVEL 

SORT REFERENCED AT ABSOLUTE ADDRESS 007740 BDI 000004 
THIS ADDRESS IS AT LN. 8 OF S2 
S2 REFERENCED AT LN. 4 OF S 1 
S1 REFERENCED AT LN. 1 OF MAIN PROGRAM 

***** ENTER FTN PMD ***** 

-) (enter FTNPMD commands) 

10.7.4.1.2. Errors Detected by the liD Library 

10-53 
PAGE 

If a fatal error is detected during execution of any I/O library (common bank or relocatable) routine. 
then messages will be printed. listing the following: 

• the nature and address of the error 

• the I/O common bank or I/O relocatable element where the address resides 

• a walkback trace of user subprogram references. from the call that referenced the I/O library. 
back to the main program (if possible) 



8244.2 
UP-ftUIIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Example: 

ASCII FORTRAN source input: 

1. 
2. 

3. 
4. 
5. 
6. 

7. 
8. 
9. 

10. 
11 . 

Program execution: 

CAll S1 
END 

SUBROUTINE S1 
CAll S2 
RETURN 
END 

SUBROUTINE S2 
DIMENSION A(2) 
PRINT *,A(100000) 
RETURN 
END 

GUARD MODE ERR-CODE: 02 
ERROR ADDRESS: 007603 BDI: 500025 
THIS ADDRESS IS IN COMMON I/O BANK C2F$ 
I/O REFERENCED AT IN. 9 OF S2 
S2 REFERENCED AT IN. 4 OF S 1 
S 1 REFERENCED AT IN. 1 OF MA I N PROGRAM 

***** ENTER FTN PMD ***** 

-) (enter FTNPMO commands) 

UPOATElMl 

If a nonfatal I/O error is detected, then messages will be printed, listing the following: 

• the nature of the error 

• the line number and program unit where the error occurred 

Program execution will then continue. 

Example: 

ASCII FORTRAN source input: 
1. CALL S1 
2. END 

3. 
4. 
5. 10 
6. 
7. 

SUBROUTINE S1 
READ (5, 10) I 
FORMAT (112) 
RETURN 
END 

Program execution (assuming the character string 'A' is read by I/O): 

FTN ERR ON UNIT-5 INPUT DATA DOES NOT CORRESPOND TO TYPE 
I/O REFERENCED AT LN. 4 OF S1 

10-54 
PAGE 

, 
"" .. ,7' 



8244.2 
lII4IUM8ER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.7.4.1.3. Errors Detected in the User Program 

UPDATE lEVEL 
10-55 

PAGE 

If an error (illegal operation, guard mode, or error mode) is detected during execution of a user routine, 
then messages will be printed, listing the following: 

• the nature and address of the error 

• a walkback trace of user subprogram references, from the subprogram where the error occurred, 
back to the main program (if possible) 

Example: 

ASCII FORTRAN source input: 

1 . 
2. 

3. 
4. 
5. 
6. 

7. 
8. 
9. 

10. 
11. 

Program execution: 

CALL 51 
E'~D 

SUBROUTINE 51 
CALL 52 
RETURN 
END 

SUBROUTINE 52 
DIMENSION A(2) 
A ( 100000) = 2. 
RETURN 
END 

GUARD MODE ERR-CODE: 02 
ERROR ADDRESS: 003120 
THIS ADDRESS IS AT LN. 
52 REFERENCED AT LN. 
51 REFERENCED AT LN. 

***** ENTER FTN PMD ***** 

-) (enter FTNPMD commands) 

BDI: 
9 
4 
1 

000004 
OF 52 
OF 51 
OF MAIN PROGRAM 

If a divide fault, floating-point overflow, or floating-point underflow contingency interrupt occurs 
during execution, and the appropriate run-time counter is positive, then messages will be printed, 
listing the following: 

• the nature of the error 

• the line number and program unit where the error occurred 

Program execution will then resume. 

See subsections on service routines DIVSET (7.3.3;9), OVFSET (7.3.3.8), and UNDSET (7.3.3.7) for a 
description of how the run-time counters are set. 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Example: 

ASCII FORTRAN source input: 

1. CALL S1 
2. END 

3. SUBROUTINE S1 
4. CALL DIVSET( 5 
5. A = O. 
6. B=1./A 
7. RETURN 
8. END 

Program execution: 

WARNING: DIVIDE FAULT 
AT LN. 6 OF S1 

10.7.4.1.4. FTNWB Routine Call 

UPDATE LEVEL 
10-56 

PAGE 

If routine FTNWB is called during the execution of a user program, messages will bE'! printed, listing 
the following: 

• the address from which FTNWB was called 

• a walkback trace of user subprogram references, from the subprogram which called FTNWB, 
back to the main program (if possible) 

Example: 

ASCII FORTRAN source input: 

1 . CALL S1 
2. END 

3. SUBROUTI NE S1 
4. CALL S2 
5. RETURN 
6. END 

7. SUBROUTINE S2 
8. CALL FTNWB 
9. RETURN 

10. END 

Program execution: 

FTNWB CALLED AT ADDRESS 003116 BDI 000004 
THIS ADDRESS IS AT LN. 8 OF S2 
S2 REFERENCED AT LN. 4 OF S 1 
S1 REFERENCED AT LN. 1 OF MAIN PROGRAM 



8244.2 
Ul'-lllUMIER 

f 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10.7.4.2. Walkback Messages 

One or more of the following messages may be printed during the walkback process: 

FTNWB CALLED AT ADDRESS absadr BDI bd; 

THIS ADDRESS IS AT LN. line OF prog2 

prog T REFERENCED AT LN. line OF prog2 

THIS ADDRESS IS IN THE 1/0 COMPLEX 

THIS ADDRESS IS AT elt $( Ie) reladr 

prog T REFERENCED AT elt $( Ie) reladr 

prog T REFERENCED AT ADDRESS absadr BDI bd; 

X 11 LINK ADDRESS DESTROYED - WALKBACK TERMINATED 

AUTO. STORAGE ELEMENT ENCOUNTERED - WALKBACK TERMINATED 

The values inserted in these messages are described as follows: 

absadr absolute address (octal) 

bd; index of the bank that absadr resides in (octal) 

line source line number of a designated FORTRAN statement (decimal) 

prog2 one of the following: 

10-57 
PAGE 

• MAIN PROGRAM (if the walkback process has reached the last step of a 
successful trace) 

progT 

• an external subprogram name 

• ;: e. where ; is an internal subprogram name and e represents i's external 
program unit. The variable e may be either MAIN PROGRAM or an external 
subprogram name. 

one of the following: 

• 1/0 (to represent the I/O library complex) 

• an external subprogram name 

• ;:e (see prog2) 

elt an element name 

Ie a location counter in element elt (decimal) 

reladr a relative address under location counter Ie (octal) 



8244.2 
UP-MJMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATtLMl 

10-58 
PAGE 

Any FORTRAN subprogram named in a walk back message will be a main entry point, regardless of 
which entry point in that subprogram was actually referenced. 

The last five walkback messages listed above are printed only when the trace has reached a 
termination point that is not in the main program. 

10.7.4.3. Walkback Procedures for MASM Subprograms 

There are two MASM procedures in the ASCII FORTRAN library, F$EP and F$INFO. These procedures 
can be referenced in a user's MASM element which is generating a subprogram to be used in an ASCII 
FORTRAN system. If these procedures are used correctly, ASCII FORTRAN·s run-time walkback 
mechanism will properly handle the MASM subprogram. 

10.7.4.3.1. F$EP 

The form of the F$EP call line is as follows: 

F$EP sub 

where sub is a field of six Fieldata characters (left-justified, blank-filled) denoting the subprogram 
name that is to be externalized by the procedure. 

F$EP generates some epilog and prolog code in the MASM subprogram, namely: 

• Epilog: restore registers and return to the caller of the subprogram. The return is done via the 
IBJ$ return mechanism (see 8.5.3); that is, a jump or LlJ is performed, depending on the contents 
of H1 of X 11. 

• The subprogram entry point sub (note that F$EP externalizes the entry point. so sub should not 
appear as a label in the user's MASM code). 

• Prolog: save registers (including X 11). 

The prolog-epilog code is the same as that generated by a @FTN,O compilation (that is, over-65K 
D-bank code). Volatile registers A2 (prolog) and A4 (epilog) are destroyed in the generated code. 

10.7.4.3.2. F$INFO 

The form of the F$INFO call line is as follows: 

F$INFO elt 

where elt is a field of 12 Fieldata characters (left-justified, blank-filled) denoting the relocatable 
element name from the MASM control statement. 

F$INFO generates the following: 

• the jump back up to the epilog code (which was generated by F$EP) 

• the INFO-O 1 0 diagnostic text (readable by the walkback routines in the ASCII FORTRAN library) 



8244.2 
UI'-fMI8ER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

10-59 
PAGE 

The INFO-O 1 0 tables are never loaded at run time along with the user program's I-bank and D-bank. 
Instead they are in the absolute element's diagnostic tables, which are read in by ASCII FORTRAN's 
run-time walkback routines. The tables contain information which allows these routines to determine 
the program unit and line number for walkback messages. 

10.7.4.3.3. Description 

If procedures F$EP and F$INFO are used, only one subprogram may appear in an element (that is, 
each of the two procedures should be referenced only once per MASM assembly). 

A user's MASM element which references the two procedures and which contains the externalized 
subprogram SUB 1 will appear as follows: 

@MASM, IS ELT1,ELT2 
AXR$ 

$ ( 1 ) 
F$EP 'SUB1 

F$INFO 
END 

$(1) subprogram code except for epilog 
(restore registers and return to caller), 
prolog (save registers), and jump to epi log. 
Note that subprogram label (SUB1 in this 
case) is external ized by procedure F$EP. 
It should not appear as a label in the 
user's $(1) code. 

'ELT2 

The epilog and prolog code generated by these two procedures does not handle arguments (passed 
to the subprogram) or functions (that is, the MASM subprogram as a function). The user may process 
these items in the $( 1) subprogram code, if applicable. Arguments should be handled after the F$EP 
reference. If the subprogram is a function, then AO (and possibly A 1, A2, and A3, depending on the 
function type) should be loaded with the function result before the F$INFO call. 

The user should not use $(3) or $(4) in a MASM element referencing procedures F$EP and F$INFO, 
as these location counters are used by the two procedures. 

A MASM error (E-flag) will result if the user has an incorrect reference to one of the two procedures. 
Possible errors include: 

• one of the procedures referred to more than once 

(' • F$INFO referred to without a previous reference to F$EP 

• $(3) or $(4) used in the user's code 

• more than one field with one subfield passed to either procedure 



8244.2 
UI'-fUIIIIR 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

• parameter passed to either procedure is not a Fieldata string 

• the length of the Fieldata string passed to one of the procedures is not correct (six for F$EP. 
1 2 for F$INFO) 

Note that if the element containing the two procedures (ASCII FORTRAN library element INFO-PROC. 
marked as type ASMP) has a PDP performed on it by the user. an M option must appear on the PDP 
call statement. 

Example: 

@MASM. I S TEST 
AXR$ 
F$EP 'SUB1 

$ ( 1 ) 
LX.U 
LXI.U 
LMJ 
F$INFO 
END 

@FTN. ISF MAIN 

1. CALL SUB1 
2. END 

AO.O 
X11.0 
X11. SUB2 
'TEST 

3. SUBROUTINE SUB2 
4. CALL FTNWB 
5. END 

If these two relocatable elements are collected into an absolute element. then the resulting program 
will execute as follows: 

FTNWB CALLED AT ADDRESS 066431 
THIS ADDRESS IS AT LN. 4 
SUB2 REFERENCED AT LN. 0 
SUB1 REFERENCED AT LN. 1 

BDI 000004 
OF SUB2 
OF SUB1 
OF MAIN PROGRAM 

Note that the line number in a MASM subprogram will always be zero in a walkback message. 



( 

( 

8244.2 
UP-MUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.7.5. Interactive Postmortem Dump (FTNPMD) 

10.7.5.1. Soliciting Input 

UPDATE LEVEL 
10-61 

PAGE 

When execution is in interactive PMD mode. commands are solicited with ER TREAD$. The 
solicitation message is "-". 

If the command is read from an add stream (@ADD). or if the program began execution in breakpoint 
mode (@BRKPT). the command image will be printed. 

The message: 

***** ENTER FTN PMD ***** 
is printed on entry to interactive PMD mode. 

To leave interactive PMD mode. the EXIT command (see 10.7.5.2.2) is used. 

If the program is executing in batch mode. then PMD mode does not go interactive. Instead. if the 
F option was specified on the @XQT control statement. the two commands DUMP! and EXIT are 
automatically executed. FTNPMD will not be executed in batch mode if the F option was not specified. 

10.7.5.2. PMD Mode Commands 

Both of the interactive PMD commands described below may be abbreviated to one letter (the initial 
one). 

10.7.5.2.1. DUMP 

Purpose: 

The DUMP command (abbreviated D) prints the values of FORTRAN variables. 

Form: 

DUMP[.opt] {[V]/[p]/e} 

where: 

opt is an option letter; A or 0 is allowed. 

v is the name of a FORTRAN variable in program unit p in element e. It must be one of the 
following: 

• scalar variable name (including a function subprogram entry point name) 

• array name 

• array element name (with constant subscripts) 

Note that a scalar or array subprogram argument may be specified using one of the these 
forms. 



8244.2 
UI'-NUIIIEII 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOAT£ LEVEL 

10-62 
PAGE 

The variable v must appear in an executable statement in p, unless p is the main program 
or a block data program. If the ASCII FORTRAN compilation for e had a COMPILER 
statement option DATA=AUTO or DATA=REUSE, then v must be a variable in a COMMON 
block or a SAVE statement. 

p represents a program unit in element e. It has the format: 

progname [ : extname] 

where: 

progname represents the desired program unit in the ASCII FORTRAN program. It 
may be specified as: (1) * (to represent the main program); (2) a 
FORTRAN program unit (main program, subroutine, function, or block 
data program) name; or (3) an unsigned positive integer n (to represent 
the nth unnamed block data program in the FORTRAN source program). 

extname represents the program unit name of the external program unit 
corresponding to the internal subprogram progname. Therefore, 
extname may be specified only if progname is specified as a 
subprogram name which represents a FORTRAN internal subprogram. 
The variable extname may be specified as: (1) * (if the external program 
unit is the main program); or (2) a FORTRAN program unit (main program, 
subroutine, or function) name. 

If progname is specified as a program unit name and extname is not specified, then the ",_ 
external program unit with name progname is taken. If no such external program unit 
exists, then the first internal subprogram with name progname is taken. 

e is the name of a relocatable element that is mapped into the executing program and that 
was produced by an F option ASCII FORTRAN compilation. 

General Description: 

The DUMP command prints the current values of one or more FORTRAN variables. 

If the 0 option is specified on the DUMP command, the values are printed in octal format. If the A 
option is specified, they are printed in ASCII character format. If neither 0 nor A is specified, they 
are printed in a format corresponding to the variable's data type (INTEGER, REAL, COMPLEX, etc.) 

Whenever the value of a variable is printed, it is preceded by a heading line in the format: 

v Ip Ie 

where v is the variable name, p is the program unit name (see the description of the p subfield 
above), and e is the relocatable element name. 

If the v subfield is specified and is a scalar, array element, or function entry point, then one value 
is printed. If v is specified and is an array, then all elements of the array are printed in column-major 
order. 



8244.2 
UI4ruM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The following syntax rules apply for the DUMP command: 

UPDATE LEVEL 
10-63 

PAGE 

• One or more blanks must appear between the command name (or command name with option) 
and the command's only field. 

• No blank characters are allowed inside the command's only field. A blank character in the field 
terminates the syntax scan. 

Form Descriptions: 

1. DUMP [,opt] vlple 

This format prints the value of variable v in program unit p in element e. 

2. DUMP [,opt] vile 

This format prints the value of variable v in the first program unit in element e. 

3. DUMP [,opt] Iple 

4. 

5. 

This format prints the values of all variables in program unit p in element e. 

DUMP [,opt] lie 

This format prints the values of all variables in all program units in element e. 

DUMP [ ,opt] 

This format prints the values of all variables in all program units in all relocatable elements 
produced by F option ASCII FORTRAN compilations that were mapped into the executing 
program. Before the variables in a given element 9 are dumped, a heading line is printed: 

> > > ELEMENT e «< 

If formats 3 through 5 are used, the variables appear in the dump in the following order: 

• In a program unit, the variables are listed in alphabetical order. 

• In an element, the program units are listed in the order that they appear in the FORTRAN element. 

• If format 5 is used, the elements are listed in the order that their diagnostic text appears in the 
absolute element's diagnostic tables. 

Formats 1 through 4 may be appended with two subfields after the e subfield. The format is: 

DUMP [,opt] [v] I [p] le[ I [5]li] 

where 5 and i represent the segment name and bank name, respectively, under which $(3) of the 
relocatable element e is mapped. If i is specified and 5 is not, then the segment in bank i with 
segment index 0 is assumed. 

The two extra subfields may be specified when the executing program is multibanked, although they 
are never required. If specified, they will cause the interactive PMD to search more efficiently through 
the absolute element's diagnostic tables for the diagnostic text corresponding to relocatable element 
e. The search is more efficient because the absolute element's pointer tables for the diagnostic text 
are organized by segment and bank, and not by element. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

10-64 
PAGE 

If the fourth and fifth subfields are not specified, FTNPMD will search sequentially through the 
absolute element's diagnostic tables when looking for the diagnostic text of relocatable element e. 
The diagnostic pointer tables in the absolute element are not used in this case. 

Examples: 

DUMP 
Print the values of all variables in all program units in all elements. 

DUMP I IEL T1 
Print the values of all variables in all program units in element EL T 1. 

DUMP,O ISUB1/E2 
Print the values of all variables in subprogram SUB 1 in element E2 (in octal format). 

DUMP,A AIIE3 
Print the value of variable A in the first program unit of element E3 (in ASCII character 
format). 

DUMP B(6,3,l)/*/E4 
Print the value of array element B(6,3,l) in the main program (in element E4). 

10.7.5.2.2. EXIT 

Purpose: 

The EXIT command (abbreviated E) terminates the interactive PMD mode. 

Form: 

EXIT 

Description: 

The EXIT command causes program execution to leave the interactive PMD mode. 

• If walkback and the PMD mode were initiated by a call from the contingency routine because 
of one of the five possible error conditions (math library error, 1/0 library error, illegal operation, 
guard mode, or error mode), control is returned to the contingency routine, where an ER EABT$ 
is performed. 

• If the PMD mode was initiated by a break keyin (@@X C) contingency, control is returned to 
the point of interrupt in the executing program. 

• If the PMD mode was initiated by execution of the FORTRAN statement CALL FTNPMD, normal 
execution of the program is resumed. 



( 

8244.2 
UP-NUMBfR 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The message: 

***** EXIT FTN PMD ***** 
is printed when the interactive PMD mode is terminated. 

UPDATE LEVEl 
10-65 

PAGE 

Note that execution of the program is immediately terminated if a "@" image (control statement) is 
read in PMD mode. The FEXIT$ termination routine is called. 

10.7.5.3. FTNPMD Diagnostics 

The diagnostics printed by the interactive PMD are explained in the following list. 

BANK NOT FOUND 

The bank specified in the i subfield of the DUMP command does not exist in the executing 
program, or no entry exists in the absolute element's diagnostic pointer tables corresponding 
to segment 5 (specified in the 5 subfield) in bank i. 

ELEMENT MUST BE SPECIFIED 

The e subfield in the DUMP command is required (unless the format DUMP Lopt] ! is used). 

ELEMENT NOT FOUND 

The element specified in the e subfield of the DUMP command was not mapped into the 
executing program, or no diagnostic text was generated for the element. 

ENTIRE ASSUMED-SIZE ARRAY CANNOT BE DUMPED 

The range of an assumed-size array is not known. Only individual elements of an assumed-size 
array can be dumped. 

FTEMP$ STORAGE DESTROYED 

A subprogram's temporary storage area (for saving registers and the argument list) has been 
destroyed because of an error in the user program. The specified variable cannot be dumped. 

FUNCTION HAS NOT BEEN CALLED 

An attempt has been made to dump a character function value (that is, the v subfield of the 
DUMP command was specified as a character function s.ubprogram entry point), but the function 
has not yet been called during execution. 

I MUST BE SPECIFIED 

The 5 subfield (segment name) was specified in the DUMP command, but the i subfield (bank 
name) was not. 

ILLEGAL COMMAND 

An illegal PMD command name was specified when interactive PMD mode solicited input. 



8244.2 
UI'-MUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

ILLEGAL SYNTAX 

UPDATE LEYEL 
10-66 

PAGE 

A general syntax error was found in the command image. This includes specifying a field for 
a command when none is allowed, or not specifying a field when one is required. 

INCORRECT NUMBER OF SUBSCRIPTS 

The number of subscripts specified for the array element in the v subfield of the DUMP 
command does not equal the number of dimensions declared for the array in the specified 
program unit (p subfield) and element (e subfield). 

NO DIAGNOSTIC TABLES - WALK BACK & FTN PMD TERMINATED 
USE F OPTION ON @FTN CARDS TO ENABLE THESE FEATURES 

In the collection process for the executing program, there were no elements with INFO-O 1 0 text 
mapped in (that is, no relocatable elements produced by ASCII FORTRAN compilations). 
Therefore, neither walkback nor the interactive PMD can execute, since they both require the 
use of the INFO-O 1 0 diagnostic tables. 

PARAMETER'S SUBPROGRAM HAS NOT BEEN CALLED 

An attempt has been made to dump a subroutine or function parameter (that is, the v subfield 
of the DUMP command was specified as a subprogram parameter), but the subprogram has not 
yet been called during program execution. 

PROGRAM UNIT NOT FOUND 

The program unit specified in the p subfield of the DUMP command does not exist in the 
specified element (e subfield). 

SEGMENT NOT FOUND 

The segment specified in the 5 subfield of the DUMP command does not exist in any bank of 
the executing program. 

SUBSCRIPT OUT OF RANGE FOR ARRAY 

The constant subscripts specified for the array in subfield v of the DUMP command is too large 
or too small. 

VARIABLE IS NOT AN ARRAY 

The variable in subfield v of the DUMP command is appended with a subscript list. but the 
variable is not declared asan array in the specified program unit (p subfield) and element (e 
subfield). 

VARIABLE NOT FOUND 

The variable in subfield v of the DUMP command does not exist in the specified program unit 
(p subfield) and element (e subfield), or e was not compiled with @FTN,F (thereby producing 
no diagnostic information about user variables). 

WARNING: BAD DIAGNOSTIC TEXT FOUND; SEARCH TERMINATED 

It is not possible to continue reading diagnostic (INFO-O 10) text from the absolute element's 
diagnostic tables, because bad text has been encountered. The bad text could be from (1) a 



8244.2 
UI'-NUMIIER 

( 

( 

(' 

I 10-67 
PAGE 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

processor other than ASCII FORTRAN or FORTRAN V (which has generated a relocatable element 
with INFO-O 1 0 text) or (2) an old level of ASCII FORTRAN (which has generated a format of 
INFO-01O text that cannot be interpreted by the current FTNPMD and walkback run-time 
routines). 

10.8. Compiler Optimization 

The compiler always performs the following computational optimizations in addition to its other 
functions (see 1.3.1): 

• The reduction of expressions involving constants to a single constant (for example, 3.14159**2 
is replaced by the single constant 9.8695877). 

• The reordering of logical expressions to reduce the amount of time spent evaluating the 
expression (for example, IF(A.OR.B) GO TO 10 is replaced by IF(A) GO TO 10, and IF(B) GO TO 
10). 

• All available registers are used to hold intermediate results of calculations and reduce the 
number of references to slower storage. 

Using processor options, the compiler may be directed to devote additional time to optimizing the 
FORTRAN statements before generating the relocatable binary object program from the object code. 
This is done at the expense of compilation speed, but the resulting output will usually execute 
significantly faster than without this additional optimization. 

10.8.1. Local Optimization 

At the user's option, the compiler will partition the FORTRAN program into basic blocks, that is, a 
sequence of statements with no entry or exit points interior to the sequence. Within each of these 
blocks it will perform the following additional optimizations: 

• The evaluation of most expressions which are constant at compilation time, 

• The elimination of a computation, which at execution time will have already been computed in 
a previous statement, and replacement of the second computation by a reference to the 
temporary storage location or arithmetic register saving the result of the first computation. For 
example, the calculations of the following statement sequence would be done at compile time 
rather than at execution time: 

0=2 
A = SORT(D) 
B=A 

• The elimination of unneeded references to storage, within a basic block. 

• The replacement of an operation with a faster, equivalent one (for example, J*2 is replaced by 
a shift operation). 

• Simplification of more complex expressions. For example, the expression A**2 is replaced 
by A*A. 

Local optimization is specified by the letter V in the options list of the @FTN control card. 



8244.2 
UI4tUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.8.2. Global Optimization 

UPDATELMl 
1~8 

PAGE 

At the user's option, the compiler will perform an analysis of the interconnection patterns between 
basic blocks and perform the following additional optimizations: 

• The elimination of redundant computations between basic blocks and the replacement of the 
second computation by a reference to the temporary storage location or arithmetic register 
which at execution time will hold the result of the first computation. 

• The elimination of unneeded stores to variables across the whole program unit. 

• Movement of computations which are constant relative to a loop to a point outside the loop, and 
the replacement of the computation within the loop by references to the temporary storage 
location or arithmetic register which will hold the result of the computation. 

• Replacement of loop control variables, and expressions involving loop control variables by 
temporaries which are incremented on each pass through the loop. 

• The maintenance of the result of computations and frequently used values in registers when 
execution crosses between blocks. 

Global optimization is effected by specifying the letter Z in the options list of the @FTN control card. 
See code reordering in 8.5.4. 

10.8.3. Optimization Pitfalls 

The optimizer cannot fully optimize expressions involving local variables shared between an internal 
subprogram and its external program unit. Therefore, the programmer who wishes complete 
optimization of an element is cautioned to be careful of which data and how much data is shared 
by internal and external program units. The same situation exists with common blocks and arguments 
to subprograms. The optimizer operates only on one program unit at a time and can optimize 
operations on data local to the program unit most efficiently. 

For example: 

X=22. 
CALL VIZ) 
X=X+ 1. 

In this situation, if X is a local variable, the optimizer can keep the value in a register across the CALL 
to V, since no other program unit can access purely local variables not passed as arguments. 

If X were in common or shared between the external program unit and any internal subprograms, 
this optimization could not be done since the procedure V could conceivably change the value of X. 



8244.2 
UP ..... UMBER 

(-

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

10.9. Hints for Efficient Program,!,ing 

UPDATE lEVEL 
10-69 

PAGE 

The following list of suggestions should be followed to obtain the most efficient object programs from 
the ASCII FORTRAN compiler. 

1. Simplify program structure as much as possible. 

Efforts in debugging and maintaining a FORTRAN program will be greatly reduced and, in 
general, more optimal code will be produced by the compiler if unnecessary complexity is 
avoided. Individual statements should be simple enough to be easily understood. Loop nesting 
should be simple and straightforward with little inside branching. Program flow should be 
simple enough to minimize the number of paths through the program and make the purpose and 
method of the program easily understandable. Structured programming practices should be 
adhered to. Use the blocking statements (see 4.4) instead of GO TO statements whenever 
possible. Unstructured methods such as extended range of DO-loops should be avoided. 

2. A number of limitations have been built into the optimizing portion of the compiler. The user 
may find it beneficial to break a program into additional subroutines if compiler messages 
indicate that the number of program variables or basic blocks which can be handled by 
optimization has been exceeded. When these limits are reached, the compiler will undertake 
a degraded form of optimization and continue the compilation, producing correct, although 
possibly less than optimal, code. 

3. Although the compiler has been designed to handle variables in COMMON or EQUIVALENCE 
statements in the most optimal way, the compiler must assume the worst possible cases when 
references are made to user subroutines or functions. Avoid any unnecessary use of COMMON 
or EQUIVALENCE statements in order to aid optimization. 

4. Because of the additional complexity involved in addressing variables with over 65K addresses, 
this alternative should only be used for programs which actually exceed 65K. This particularly 
applies to arrays in very tight loops. 

5. Since references to dummy arguments (which are not arrays) require indirect references to 
storage, it is best to assign such variables to local variables for use within the subprogram, 
especially within loops. 

6. Excessive nesting of loops may require the loading and unloading of registers, adding to the 
execution time of the program, and should be avoided. 

7. Because of the way logical statements are optimized, the FORTRAN programmer should try to 
order the logical statements so that the most frequently satisfied comparison is performed first 
in a left to right sequence. 

8. The initialization portion of a loop is assumed to be executed less frequently than the loop. When 
this assumption is violated, a FORTRAN program could take longer to execute with optimization 
than without. 

9. The use of lists with ASSIGNED GO TO statements will help optimization by reducing the worst 
case assumptions that must be made without the lists. However, the list must include all labels 
which can be branched to at execution time or the compiler may produce incorrect code, and 
therefore, the execution of the program may produce incorrect results. 

10. One portion of global optimization involves attempting to take advantage of the linear allocation 
of storage for multi-dimensional arrays. This involves the attempt to convert a data transfer 
operation within a simple loop into a single, linear operation referred to as a block transfer. A 
simple loop is defined as involving only the transfer of one array to another, or a constant into 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

10-70 
PAGE 

an array. To take advantage of this form of optimization each array should be initialized or 
redefined within its own loop. Character arrays which start on word boundaries and whose 
element lengths are a multiple of 4 can also be optimized in this way. 

10.10. Diagnostic System 

The compiler contains a large number of self-explanatory diagnostic messages, some of which 
contain symbolic names from the source code. Diagnostic messages are printed adjacent to the 
source program statements that contain the errors or they are printed following the source statement 
listing if they pertain to the entire program unit. 

Some messages are merely reminders to the programmer and do not affect the generated code. This 
type of message is prefaced with the word WARNING when it is printed. 

Other messages indicate that more serious errors have been detected. A message prefaced by the 
word ERROR indicates that the code generated is possibly incorrect due to ambiguous or nonstandard 
usage of the source language. The programmer should check the generated code to ascertain 
whether it will correctly perform the operations intended. When an error is detected during a 
compilation, the relocatable binary element produced is marked as being in error. If the program is 
being run in batch mode, this will allow some execution where execution would normally be stopped, 
as in the case of detection of an I/O error. 

Nonstandard usage messages occur only when the T option has been specified. See 10.5.1 
(Processor Call Options). 

The format of an error/warning/nonstandard usage message is: 

* {~:~:ING . t x [at line 
NON-STD USAGE r y] description 

where x is a code number indicating the type of error or warning. See Appendix 0 for details on 
these codes. y indicates a source line number or a line number within an included procedure. If 
it is the latter, the line is given in the form: 

proc . proc-line-number 

where proc is the name of a procedure. (See 8.2.) 

All diagnostic message descriptions are listed in Appendix D. 

Regardless of the type of errors detected in the program, all statement are scanned to detect 
syntactical errors. At the end of the compilation listing (in the END FTN message), the numbers of 
warnings, errors, and nonstandard usages detected (if any) are printed. 



8244.2 
UI'-fIIUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATl LEVEL 

A-l 
PAGE 

Appendix A. Differences Between SPERRY UNIVAC FORTRAN 
Processors 

A.1. General 

The differences in language capabilities and equivalent syntax for ASCII FORTRAN and its 
predecessor, FORTRAN V, are discussed in this appendix. 

A.2. Extensions to SPERRY UNIVAC FORTRAN V 

f 1. An expanded character set (which handles exclusively ASCII data sets) is available. 

2. Double precision complex data type (COMPLEX* 16) is permitted. 

3. A character data type is allowed. 

4. The "$" is allowed in symbolic names, except for the first character of a name. 

5. General expressions for subscripts are allowed. 

6. Concatenation of character strings is allowed. 

7. Multiple assignments are implemented. 

8. Character assignments and comparisons are permitted. 

9. An integer expression for the index of a COMPUTED GO TO is permitted. 

10. An optional comma in a DO statement is permitted. 

11. Integer expressions for DO parameters are allowed. 

12. The last statement of a DO range may be any statement which permits execution of the following 
statement. 

13. The PAUSE statement is extended to allow longer messages. FORTRAN V STOP and PAUSE 
arguments should be enclosed in apostrophes to conform with ASCII FORTRAN. 

14. The STOP statement is extended. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Seri .. 1100 
FORTRAN (ASCII) Programmer Reference 

15. Expressions are permitted in an output I/O list. 

16. Expressions are permitted in an implied-DO. 

17. List-directed I/O statements are permitted. 

UPDATE lEVEl 
A-2 

PAGE 

1S. ASCII FORTRAN enhances the use of storage greater than 65K words. ASCII FORTRAN programs 
which are larger than 65,535 words are made possible by the 0 option on the @FTN control 
command (see 6.9 and 10.5). Programs larger than 262,143 words are possible by also using 
the BANK statement (see 6.6 and 6.9). Accessing of arrays greater than 65K words was possible 
in FORTRAN V using the XM = 1 compiler option. 

19. Initialization of ASSIGN variables in a DATA statement is permitted. 

20. The BANK statement permitting utilization of banks is implemented. 

21. An extension to the EXTERNAL statement (&, *) is implemented. 

22. An expanded set of mathematical library functions is allowed. 

23. New service subroutines are provided. 

24. The SUBSTR and BITS pseudo-functions are implemented. 

25. A new DEBUG facility is implemented. 

26. An extended form of the FORTRAN V PARAMETER statement is implemented. 

27. A statement label variable may be used for the format number in an input/output statement. 

2S. Exponentiation between variables of all arithmetic types and lengths is permitted. 

29. In data initialization statements, ASCII FORTRAN requires that the variables or array elements 
match the type of the corresponding constants if the type is real, complex, double precision, 
integer, or logical. When such a mismatch occurs, the compiler prints a diagnostic and converts 
the constant to match the type of the variable. FORTRAN V does not require element type to 
match the value type but does not convert the constant regardless of its type, possibly causing 
problems later in the FORTRAN program. 

30. Checkout mode is available. 

31. INCLUDE statements may specify a file name as well as an element name. 

32. ASCII FORTRAN levels higher than SR 1 conform to FORTRAN 77 (ANSI X3.9-197S), and 
FORTRAN V conforms to FORTRAN 66 (ANSI X3.9-1966). Therefore, all features in FORTRAN 
77 which were not in FORTRAN 66 are implemented in ASCII FORTRAN. 



8244.2 
UP...fIIUMIIEII 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

A.3. Exceptions to SPERRY UNIVAC FORTRAN V 

1. Character data is represented in the ASCII code set rather than the Fieldata code set. 

A-3 
PAGE 

Although most Fieldata characters have corresponding representations in ASCII, characters are 
four to a word rather than six and will have different internal representations. 

The three Fieldata graphic characters IJ., tl , and "* have no equivalents in the ASCII graphic set. 
They are converted to caret (AI, quotation mark (" I, and underscore( _ I, respectively, on an 
ASCII printer. 

2. ASCII FORTRAN does not allow transfer of control to labels on nonexecutable statements. 
However, FORMAT statements are allowed as targets of DO-loops. 

3. The interpretation of RETURN k is a branch to the k th statement label, and not to the k th 

argument. 

To obtain the effect of the FORTRAN V statement RETURN k, the programmer should: 

• Create an explicit typing statement for an integer array ARR with as many elements as there 
are arguments in the subroutine argument list. 

• Initialize the array such that when the k th argument of the list is a statement label, the k th 

element of the array is the sequential position of that statement label among all the 
statement labels in the list. Note that if there are ENTRY points in the subprogram, the array 
may need to be set separately in the flow of control after each ENTRY. 

• Set all other array elements to zero. 

• Change RETURN k to RETURN ARR (k). 

For example, the subroutine: 

SUBROUTINE SAM (Y,*,*,X) 

1=2 
RETURN I 

RETURN 3 
END 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

should be changed to: 

SUBROUTINE SAM (Y.*.*.X) 
INTEGER IA (4)/0.1.2.0/ 

1=2 
RETURN IA(I) 

RETURN IA(3) 
END 

UPDATE LEVEL 
A-4 

PAGE 

4. The ABNORMAL statement is not implemented. (The compiler assumes that all FORTRAN 
mathematical functions are normal and all external procedures are abnormal. It will generate 
an error message and ignore all ABNORMAL statements.) 

5. No FORTRAN V "hardware" IF statements are allowed (subroutine calls are available). 

6. FORTRAN V permits a dummy argument to appear in an EQUIVALENCE statement. ASCII 
FORTRAN does not. 

7. The FORTRAN V function INSTAT is not available in ASCII FORTRAN. It has been replaced by 
the functions 10C. 105. and IOU (see 5.8.1). 

8. Exponents have been standardized. ASCII FORTRAN exponents contain three digits rather than 
two digits used by FORTRAN V. 

9. ASCII FORTRAN does not support any of the FORTRAN V options for the COMPILER statement. 
The ramifications of this and possible programmer actions are listed by option and variation in 
the following discussion: 

• FLO Option: 

Although there is no counterpart for the FORTRAN V FLO option in ASCII FORTRAN. the 
FLO function is equivalent to the BITS pseudo-function. It may also be simulated via a 
statement function. 

The effect of the FLO option is to alter the compiler interpretation of the FLO function. 
These alterations can be carried over to the BITS function as follows: 

FLO = L 

The programmer should: 

Cl. change FLO to BITS; 

b. reorder the arguments; and 

c. change I to I + 1 

.. "" 



8244.2 
UP-NUMIIER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

For example: 

FLO(5,6,A) 

should be translated to: 

BITS(A,6,6) 

Or, the programmer could insert the statements: 

INTEGER FLO 
FLO(I,J,A)=BITS(A,I+ 1,J) 

at the beginning of the program unit. 

FLO = R 

UPDATE LEVEL 

This results in the same action as the L option except for the third step: 

a. change FLO to BITS 

b. reorder the arguments 

c. change I to 36-1 

For example: 

FLO(5,6,Z) 

should be translated to: 

BITS(Z,31,6) 

or: 

INTEGER FLO 
FLO(I,J.A)= BITS(A,36-I,J) 

could be inserted at the beginning of the program unit. 

FLO = T Used only for optimization and should be deleted. 

FLO = Q Used only for optimization and should be deleted. 

A-5 
PAGE 

FLO = ABS Causes all nonconstants in the bit location and length fields to be 
passed as absolutes. These nonconstants should be made absolute. 

For example: 

FLO ( I ,5, C) 

should be translated to: 

BITS(C,ABS(I) + 1,5) 



8244.2 
UI4UIIIR 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

• DATA Option: 

DATA=SHORT 
DATA=IBM 

UPDATE LEVEl. 
A-6 

PAGE 

These options are used in FORTRAN V to permit partial initialization of arrays. To 
accomplish the same effect in ASCII FORTRAN, an implied DO-loop is required or else a 
warning message will be issued. 

For example: 

COMPILER (DATA=SHORn 
DIMENSION A(10) 
DATA A/1.,2.,3./ 

should be translated to: 

DIMENSION A(10) 
DATA (A(I),I= 1,3)/1.,2.,3./ 

• 1110=OPT Option: 

This invokes a code reordering algorithm. The corresponding ASCII FORTRAN option is 
U1110=OPT. 

• Other Options: 

ADR=IND 

LlST=DEF 

DIAG=N 

EQUIV=CMN 

MATH=A 

PROP=DPON 

PROP=DPOF 

PROP=RLON 

PROP=RLOF 

PROP=NONE 

XM=1 

CONT=RFOR 

These options can be deleted but the programmer should check the ramifications for the 
processing of each program. Special coding may be required. 

~-/ 



( 

8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

A-7 
PAGE 

10. Execution of FORTRAN V formatted WRITE statements may indicate the presence of the control 
character by printing a blank character, so that printing will start with position 2 of a print line. 
ASCII FORTRAN makes no such indication, and printing will start in position 1 of a print line. 

11. FORTRAN V allows the programmer to initialize a whole array with one Hollerith literal in a DATA 
statement, whereas ASCII FORTRAN requires each element of the array to have a Hollerith literal. 

12. FORTRAN V allows the programmer to ENCODE/DECODE beyond the area he has given to the 
ENCODE/DECODE statement. ASCII FORTRAN may give a warning diagnostic and may not 
ENCODE/DECODE beyond the actual area given or assumed. 

13. FORTRAN V allows the unit-number field, the maximum-number-of-records field, and the 
maximum-record-size field in the DEFINE FILE statement to be an integer constant, an 
unsubscripted integer variable, or an integer parameter constant. ASCII FORTRAN does not 
allow it to be an unsubscripted integer variable. 

14. FORTRAN V does not rewind an SDF tape file at termination time if a CALL CLOSE has not been 
done on that file. ASCII FORTRAN does a rewind of the SDF or ANSI tape file if CALL CLOSE 
or CLOSE has not been done for the file. 

15. FORTRAN V checks via an ER FACIT$ to determine if a unit has been assigned prior to the 
program execution. If not assigned to the run, it will do an @ASG,T on the unit. ASCII FORTRAN 
does the ER FACIT$ but will do an @ASG,A on the unit to determine if a cataloged file already 
exists for the unit. If it does not exist, an @ASG,T is done on the unit. 

16. A FORTRAN V direct access DEFINE FILE statement can be used to extend a direct access file. 
However, an ASCII FORTRAN direct access DEFINE FILE statement cannot be used to extend a 
direct access file. In ASCII FORTRAN level 1 OR 1 or higher, the OPEN statement may be used 
to extend a direct access file. 



8244.2 
UI4IIUMIIR 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

A.4. Differences in Syntax 

UPDATE LML 
A-a 

PAGE 

1. The FLO function is replaced by the BITS pseudo-function. To change a FORTRAN V reference 
to the FLO function, to an ASCII FORTRAN reference, the programmer should: 

a. change FLO to BITS; 

b. reorder the arguments; and 

c. change I to 1+ 1 

or insert statements such as: 

INTEGER FLO 
FLD(I,J,A)=BITS(A,I+ 1,J) 

To illustrate the first method, the reference: 

FLD(5,6,A) 

could be changed to: 

BITS(A,6,6) 

2. Four input/output statements in FORTRAN V are expressed differently in ASCII FORTRAN. They 
are: 

• READ INPUT TAPE unit,f,!ist 

• WRITE OUTPUT TAPE unit,f,/ist 

• READ TAPE unitJist 

• WRITE TAPE unitJist 

To change them to their ASCII FORTRAN equivalents, the programmer should: 

• eliminate the words INPUT, OUTPUT and TAPE 

• enclose unit and f (if present) in parentheses and remove the comma before list. 

For example: 

READ INPUT TAPE 5,6, A 

should be changed to: 

READ (5,6) A 

and: 

WRITE TAPE 6, 0 

should be translated to: 

WRITE (6) 0 

" 



8244.2 
~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

3. A Hollerith constant may be specified in FORTRAN V in the following ways: 

• 7HEXAMPLE 

• 7REXAMPLE 

• 7LEXAMPLE 

• 'EXAMPLE' 

Of these. only the first and last are permitted in ASCII FORTRAN. 

A-9 
PAGE 

The Rand L forms should be changed to the H form. Left and right space fill and shifts may 
not be significant. Note that ASCII FORTRAN uses four characters per word rather than the six 
used by FORTRAN V. 

4. FORTRAN V considers Hollerith constants to be type less. whereas ASCII FORTRAN considers 
them to be of type character. This can cause conflicts in which legal statements in FORTRAN 
V become illegal in ASCII FORTRAN. 

For example. the statement IF (AFLG .NE. 3HEND) GO TO 10 is not allowed in ASCII FORTRAN 
unless AFLG is declared to be of type character. This could invalidate AFLG in other uses. 

5. FORTRAN V permits the concatenation of two arithmetic operators if one of them is unary and 
it follows **. /. or *. However. this syntax is not allowed in ASCII FORTRAN. 

For example. the following are permitted in FORTRAN V but not in ASCII FORTRAN: 

A=4.0/+B 
A=4.0*-B 
A=4.0*+B 
A=4.0**-1 
A=4.0**+1 

To make them acceptable. the programmer should separate the two consecutive operators by 
enclosing the unary operator and its operand in parentheses. 

For example: 

A=4.0/-B 

should be translated to: 

A=4.0/(-B) 

6. Complex variables in list-directed input/output statements are not enclosed by parentheses in 
FORTRAN V. 



8244.2 
UI4ftJIIItER 

SPERRY UNIVAC S.ri •• 1100 
FORTRAN (ASCII) Programmer Reference 

7. In FORTRAN V: 

DATA A 11.1B/2.1 

is legal. In ASCII FORTRAN. a comma may precede the B: 

DATA A 11.1.B/2.1 

UPOATElML 
A-10 

PAGE 

8. In ASCII FORTRAN. the first parameter in a direct access DEFINE FILE statement must be an 
integer constant. 

9. Expressions of the form A**B**C are somewhat ambiguous in interpretation in FORTRAN V. 
ASCII FORTRAN evaluates the expression as A**(B**C). 

~, --! 



( 

( 

8244.2 
UP-NUMBER 

(' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEYEL 

/ 

8-1 
PAGE 

Appendix B. ASCII Symbols and Codes 

The ASCII symbols and codes are given in Tables B-1 and B-2. 

Octal Code 
00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

Table 8-1. ASCII Control Characters 

Symbol 
NUL 
SOH 
STX 
ETX 
EaT 
ENO 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
so 
SI 

OLE 
DCl 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 

SUB 
ESC 
FS 
GS 
RS 
US 

Meaning 
Null - may be used as time-fill 
Start of heading 
Start of text 
End of text 
End of transmission 
Inquiry. Who are you? 
Acknowledgment. Yes. 
Bell. Human attention is required. 
Backspace. 
Horizontal tabulation. 
Line feed. 
Vertical tabulation. 
Form feed. 
Carriage return. 
Shift out. Nonstandard code follows. 
Shift in. Return to standard code. 
Data link escape. 
Device control for turning on auxiliary device. 
Device control for turning on auxiliary device. 
Device control for turning on auxiliary device. 
Device control for turning on auxiliary device. 
Negative acknowledgment. No. 
Synchronous idle. 
End of transmission block. 
Cancel previous data. 
End of medium. 
Substitute character for one in error. 
Escape. For code extension. 
File separator. 
Group separator. 
Record separator. 
Unit separator. 



8244.2 
UI'-MJM8ER 

Octal Code 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 
56 
57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 
100 
101 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 
114 
115 
116 
117 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Table B-2. Graphic ASCII Characters 

Symbol Octal Code 
Space 120 

! 121 
" 122 
# 123 
$ 124 
% 125 
& 126 

Apostrophe 127 
( 130 
) 131 

* 132 
+ 133 

Comma 134 
Hyphen 135 
Period 136 

/ 137 
0 140 
1 141 
2 142 
3 143 
4 144 
5 145 
6 146 
7 147 
8 150 
9 151 

152 
, 153 
< 154 
= 155 
> 156 
? 157 
@ 160 
A 161 
B 162 
C 163 
D 164 
E 165 
F 166 
G 167 
H 170 
I 171 
J 172 
K 173 
L 174 
M 175 
N 176 
0 177 

UPDAl£ LEVEl 

Symbol 
P 
a 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 
\ 
] 

Circumflex 
Underscore 

Grave Accent 
a 
h 
c 
d 
e 
f 

9 
h 
i 
j 
k 
I 

m 
n 
0 

P 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
I 
I 
! 

Tilde 
Delete 

B-2 
PAGE 



8244.2 
UP~ 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

C-1 
PAGE 

Appendix C. Programmer Check List 

C.1. General 

This list is not exhaustive. Its purpose is to point out the more commonly encountered programming 
errors for the novice programmer and. therefore. help avoid unnecessary bugs. 

C.2. Language Errors 

The simplest bugs are straightforward language use errors. These are discovered by the compiler 
during compilation and are flagged in the listing. The programmer could let the compiler do the 
checking for this type of error and continually change the program until no more errors are flagged. 
Alternatively. machine time and money could be saved by manually doing a quick check of the 
program for the following common errors: 

1. Do the main program and subprograms contain statements in the following order? 

• COMPILER statement 

• Program declaration statements 

In a main program. a PROGRAM pgm statement is optional. 

In a subprogram. one of the three program declaration statements must be the first 
statement of the program unit: 

a. type FUNCTION f(a 1.a 2.···. a n) 

b. SUBROUTINE s(a 1.a2 •.... an) 

c. BLOCK DATA [sub] 

• IMPLICIT statements 

(C • Explicit Type statements 

• PARAMETER statements 

• DIMENSION statements 



8244.2 
UP-NUMBER 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

COMMON statements 

BANK statements 

EOUIVALENCE statements 

EXTERNAL statements 

INTRINSIC statements 

SAVE statements 

DATA statements 

NAMELIST statements 

FORMAT statements 

Statement functions 

Executable statements 

The END statement 

UPDATE lEVEL 
C-2 

PAGE 

Observance of this ordering will prevent the omission or misplacement of necessary program 
statements. 

Some deviation from this order will be accepted. Before changing the order, the user should 
refer to the section of this manual that specifically discusses the statement in question. 

2. Are bodies of source statements contained in positions 7 through 72? 

• Do comment lines contain a "C" or "*" in column 1? 

• Do continuation lines contain a continuation character in position 6 and blanks in columns 
1 through 5? 

• Are statement labels contained in positions 1 through 5? 

3. Are all arrays dimensioned? 

If not, the program may attempt to treat references to the array as function calls. Such errors 
may show up as undefined references when the program is collected. If an array is not 
dimensioned and considered as a function by the compiler, its name will appear in the 
EXTERNAL REFERENCES listing produced by the compiler. 

4. Do any array references contain subscripts which are out of bounds? 

5. Do all statement labels referenced in GO TO statements exist in the same program unit as the 
reference? 

6. Do function subprograms contain a statement assigning a value to the function? 

Since a function reference is used as a value, a value must be assigned to it somewhere in the 
subprogram. 

"-". 



( 

8244.2 
UP-ftUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

C-3 
PAGE 

7. Are DO-loop termination statements placed properly so that only the desired statements are 
encompassed? 

8. Does the number of right parentheses match the number of left parentheses in FORMAT 
statements, etc? 

C.3. Techniques 

In addition to language errors, execution errors can be avoided by employing certain coding 
techniques. Some guidelines for this follow. 

1. Are there any repeated sets of code which could be converted to subroutine references? 

2. Can the program be broken down into a series of smaller subprograms? If so, does the number 
warrant the use of COMMON storage? 

3. What corrective or diagnostic actions are taken if: 

• incorrect data is read in? 

• numeric overflow, underflow, or divide fault occurs? 

A good echo check (to verify that the data read in is what is wanted) is to insert a list-directed 
output statement immediately following the READ statement (to write the input values with some 
explanatory text). What programmers think they are reading in may not have any resemblance 
to what they are actually reading. 

For example: 

PRINT *, 'READ X,Y, I AS: X,Y, I 

4. Insert abundant comments into the code. They help the user to remember what is actually done 
in a particular coding section and what else is needed by this code. Comments may be 
particularly helpful at the beginning of a program unit which is used often. Such comments 
might contain the following information: 

• What is the program designed to do? 

• What input data does it need, if any? In what format and from what device? 

• What subprograms, if any, does the subprogram use? What do these subprograms do? 

• What tapes, files, discs, etc., are used by the program? What are their unit numbers? 

• What forms of data failure can occur during execution of this program? What action is 
taken in each such case? 

5. Use the blocking statements (block IF, ELSE IF, ELSE, and END IF) instead of GO TO statements 
whenever possible, to make the code more understandable. 



/ 

\",/ 



8244.2 
UP-NUMtER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATELML 

0-1 
PAGE 

Appendix D. Diagnostic Messages 

This appendix lists the diagnostic messages (errors, warnings, and nonstandard usages) that may be 
issued during compilations of ASCII FORTRAN programs. The notation xx indicates that 
situation-dependent data will be filled into the message when the error occurs. The reader should 
also note that Appendix I contains messages which may be issued during Checkout (C option) runs, 
and Appendix G has messages at the end which may be issued at run time by the 1/0 handler. 

Number 

0001 

Message and Brief Description 

COMPILER CANNOT ASSIGN SPILL FILE 

The compiler assigns the temporary file PSF$ to be used to hold various pieces of 
information needed during the compilation which will not all fit into main storage. For 
some reason the compiler cannot assign this file. 

0002 1/0 ERROR ON COMPILER SPILL FILE xx 

Some kind of I/O error has occurred on the compiler spill file. 

0003 COMPILER SPILL FILE LIMIT EXCEEDED 

The user program is so large that the compiler has run out of spill file space. The program 
either has too many variables and equivalences, or, it has too many executable 
statements. 

0004 COMPILER LIMIT OR ERROR xx ENCOUNTERED 

0005 

An unrecoverable internal error has occurred within the compiler. Either some internal 
limit such as the number of data names is exceeded, or there is an internal error. This 
event should be reported to the user's local Systems Analyst who may fill out a SUR 
(Software User Report) to send to Sperry Univac for analysis. 

TOO MANY EXTERNAL REFERENCES 

The external reference table is full. All references to additional external names will be 
deleted. 



8244.2 
UI'-MIIoI8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

0006 DATA SIZE EXCEEDED xx LOCATION LIMIT 

UPDATE lEVEL 
0-2 

PAGE 

The total D-bank size allowed for a program is 65,535 decimal words if the 0 option 
was not used on the compilations. This message will come out with 65,535 if the user's 
local declarations or anyone of the user's common blocks goes over 65,535 words in 
size without the 0 option on the compilation. No program can exceed 262,143 words 
of address space at anyone time. This message will come out with 262,143 if the local 
declarations or anyone of the common blocks goes over 262,143 words in size. 
Programs can go over these sizes if the multi-banking features of ASCII FORTRAN are 
used. See the BANK and COMPILER statements, and Appendix H. 

0007 TOO MANY PROGRAM BLOCKS FOR OPTIMIZATION 

The complexity of the program exceeds the ability of the optimization phase to 
completely analyze it. As much of the program as possible will receive global 
optimization. The rest of the program will receive only limited local optimization. The 
programmer should consider simplifying the program by reducing the number of 
branches (IF, GO TO, DO statements) or by breaking the program into several 
subprograms. 

0008 TOO MANY PROGRAM VARIABLES FOR OPTIMIZATION 

There are more variables in the program than can be handled by the optimization phase 
of ASCII FORTRAN. It is assumed that the most frequently used variables are in the most 
deeply nested loops, and usage of these will be optimized on a global basis. Expressions 
involving other variables will only be optimized on a local basis. 

0009 TOO MANY USER ENTRY POINTS 

The Entry Point Table is full. This entry point and all subsequent user entry points are 
not inserted. The user should drop some entry points by eliminating some subroutines 
or ENTRY statements in his source element. 

0010 INITIALIZATION OF xx IS NOT POSSIBLE 

Initialization is not possible for variables or array elements which have addresses over 
65K decimal. This occurs on local variables once their accumulated size adds up to this 
much, or on individual COMMON groups adding up to this much. For example: 

DIMENSION A(2,33000), B(2,33000) 
DATA A(1,1), B(1,1) 11.,2,/ 

One of the above initializations would be bad. However, the following would work: 

DIMENSION A(2,33000), B(2,33000) 
COMMON A 
DATA A(1,1), B(1,1) 11.,2,/ 

Therefore, the solution to this problem is to make smaller COMMON groups. 

,4' " 

\',--.7 



8244.2 
UI4IUMBEII 

if' I 

0011 

0012 

0015 

0016 

0017 

0018 

0019 

0020 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

0-3 
PAGE 

There are more intervals in the program than can be handled by the information 
gathering portion of the optimization phase. 

USED NUM LEVELS GE MAX_NUM_LEVELS 

The number of levels resulting from the interval analysis algorithm has exceeded the 
maximum number of levels that can be handled by the optimization phase. 

During the information gathering portion of the optimization phase, the newest 
initialization block created was assigned an interval number greater than the maximum 
number of intervals. Global optimization is unable to continue. Local optimization will 
be attempted. 

MISSING END STATEMENT, NEXT PROGRAM UNIT ASSUMED EXTERNAL 

1. A BLOCK DATA program is missing an END statement. (BLOCK DATA programs 
cannot have internal subprograms.) 

2. An END was missing from an external program unit and a BLOCK DATA program 
followed. (BLOCK DATA programs cannot be internal subprograms.) 

COMPILER ERROR - TEXT CHAIN ENDS PREMATURELY 

A text entry with a zero forward link was encountered before an END text entry was 
found. This most likely occurred during code generation. 

MCORE FAILURE - COMPILER TERMINATED 

Optimization (V or Z option) required extra table space. An ER to MCORE$ was attempted 
but failed, since the user's system did not have enough available storage. The compiler 
is terminated. This message may also appear if table space for storage map (D, L, or Y 
options) or INFO-O 1 0 table generation (F or C options) is not available. 

PROGRAM UNIT HAS NO EXECUTABLE STATEMENTS 

The program unit (main program, external subprogram, or internal subprogram) that just 
terminated has no executable statements. If the program unit was a subprogram, then 
the code generated will simply cause it to return control to the caller. If the program 
unit was a main program, then the code generated will simply consist of calls to FINIT$ 
(initialization routine) and FEXIT$ (termination routine). 

MCORE FAILURE - LOCAL OPTIMIZATION ATIEMPTED 

If an MCORE failure occurs while attempting to obtain the initial storage for global 
optimization tables, local optimization will be attempted. 



8244.2 
UP-NUMIIBI 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

0-4 
PAGE 

0021 SOURCE LINE CONTAINS MORE THAN 80 COLUMNS 

0022 

0023 

0024 

0025 

If columns 81-132 appear in the source line, the line is truncated to 80 columns, and 
is then accepted by the compiler. If more than 132 columns appear in the source line, 
the line is rejected. In either case, the user should edit the source line so that it is 80 
columns or less. 

ROR$ CALL ERROR, BAD ROR PACKET ENCOUNTERED 

ROR detected bad contents in a ROR packet. The compilation is terminated. 

I/O ERROR DURING ROR$ CALL, I/O STATUS = xx 

An I/O error occurred during a ROR call. The I/O status is printed out as a decimal 
integer. The compilation is terminated. 

ROR ERROR, xx STATUS = xx 

1. ROR error, ER-PFWL$ status = xx 

A start ROR call received a bad status from an ER PFWL$ request. The status xx 
is printed out as a decimal integer. The compilation is terminated. 

2. ROR error, I/O status = xx 

An end ROR call received an I/O error. The status xx is printed out as a decimal 
integer. The compilation is terminated. 

ROR TABLE WRITE ERROR, xx STATUS = xx 

1. ROR Table Write error, I/O status = xx 

An ROR Table Write request resulted in an I/O error. The status xx is printed out 
as a decimal integer. The compilation is terminated. 

2. ROR Table Write error, ER-PFI$ status = xx 

An ROR Table Write request resulted in a bad status from an ER PFI$ request. The 
status xx is printed out as a decimal integer. The compilation is terminated. 

0101 DELIMITER IS MISSING BEFORE xx 

0102 

A required delimiter is missing at the indicated point in the statement. In some cases, 
the delimiter is inserted (for example, a missing comma after a DATA value list). In other 
cases, the statement is deleted. 

DELIMITER xx IS USED INCORRECTLY 

The indicated character appeared in a position where it is not permitted. The character 
may be ignored (for example, an excess comma in a FORMAT statement), or it may cause 
the statement to be deleted. 



8244.2 
UI4IIUM8ER 

( 

0103 

0104 

0105 

0106 

0107 

0108 

0109 

0110 

0111 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

xx IS INCORRECT OUTSIDE LITERAL CONSTANT 

UPDATE LEVEL 
0-5 

PAGE 

The character printed occurs outside a literal constant, but is not a letter, digit, currency 
symbol, or FORTRAN delimiter. The character is deleted from the statement; the effect 
is as if the character were a blank. 

NUMERIC CONSTANT xx IS OUT OF RANGE 

This message indicates that a constant is outside the limits for its type. This can indicate 
an octal constant which exceeds 12 digits; the last 12 digits are used. For an integer, 
this message indicates that the value cannot be represented in 35 bits; the last 35 bits 
of the value are used. For a real constant, this message indicates that the exponent is 
too large (positive or negative); the value is replaced by zero in the statement. 

LONG NAME TRUNCATED TO xx 

The indicated name is more than six characters long. The first six characters of the name 
are used. 

CONSTANT xx IS INCORRECT 

The indicated constant is incorrectly formatted. For example, 3.0E-1 would receive this 
message because the exponent is not an integer constant. In this example, 3.0E-1 would 
be interpreted as ((3.0EO) - I). This message also applies to character constants which 
exceed 511 characters in length; for such constants, the last 510 characters are used. 

CONSTANT xx IS USED INCORRECTLY 

The indicated symbol is used where a particular type of constant is required. The error 
may cause the statement to be deleted, or it may cause just the affected part of the 
statement to be ignored. 

STATEMENT ENDS PREMATURELY 

The end of the statement was encountered while the syntax of the statement was 
incomplete. The statement may be completed in an arbitrary manner, or the statement 
may be deleted. 

STATEMENT CONTAINS EXCESS RIGHT PARENTHESES 

The statement contains at least one right parenthesis for which there is no matching left 
parenthesis. The statement is deleted. 

STATEMENT CONTAINS EXCESS LEFT PARENTHESES 

The statement contains at least one left parenthesis for which there is no matching right 
parenthesis. The statement is deleted. 

STATEMENT IS TOO LONG 

There are more than 1320 significant characters in the statement, excluding the 
statement label, if any, and the continuation markers in column 6. This error can only 
occur for statements having more than 19 continuation lines. The statement is ignored. 



8244.2 
UI'-IIUMIER. 

0112 

0113 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

UNRECOGNIZABLE STATEMENT 

UPDATE LEYEl 
0-6 

PAGE 

The statement cannot be identified as any FORTRAN statement. The statement is 
ignored. 

STATEMENT CONTAINS UNCLOSED LITERAL CONSTANT 

A literal constant had not been closed at the end of the last continuation line of this 
statement. This can be caused by unbalanced apostrophes, missing delimiters (which 
can result in apostrophes not being treated as quote characters), a Hollerith field with 
an incorrect character count, or a missing continuation card. The statement is ignored. 

0114 END STATEMENT IS MISSING 

The end of the source input was encountered without finding an END statement. This 
can be caused by failure to place an END statement in the program, or by an error in 
the terminal statement label of a DELETE statement. The second case will also cause 
error message 0404. In either case, an END statement is assumed by the compiler. 

0115 CHARACTERS xx FOLLOW LOGICAL END OF STATEMENT 

0116 

0117 

0118 

0119 

0120 

When the syntax scan detected the end of the statement, the source line had not been 
completely scanned. The statement is compiled as if it had ended where the syntax scan 
indicated that the statement was complete. 

TARGET STATEMENT OF LOGICAL IF IS OF WRONG TYPE 

The statement to be conditionally executed as part of a logical IF statement is not 
executable, or is a DO, block IF, ELSE IF, ELSE, END IF, END, or another logical IF 
statement. The logical IF and its target statement are ignored. 

STATEMENT ILLEGAL IN DEBUG PACKET 

A second DEBUG statement appears in the program unit. Since only one DEBUG 
statement is allowed per program unit, the second is deleted. 

NAME xx IS USED INCORRECTLY 

The name is previously defined or used incorrectly. If this is a warning message, the 
error is ignored. If it is an error message, the statement is deleted. 

STATEMENT ILLEGAL OUTSIDE DEBUG PACKET 

TRACE ON, TRACE OFF, AT, or DISPLAY statement appears without a preceding DEBUG 
statement. This statement is deleted. 

SPECIFICATION FOLLOWS DEFINE OR DATA STATEMENT 

This specification statement (type, DIMENSION, etc.) follows a statement function 
definition or a DATA statement. The specification statement is processed as if no error 
had occurred. 



8244.2 
UP-HUMBER 

( 

( 

0121 

0122 

0123 

0124 

0125 

0126 

0127 

0128 

0129 

0130 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

SPECIFICATION FOLLOWS EXECUTABLE STATEMENT 

UPDATE lEVEL 
0-7 

P~E 

This specification statement follows an executable statement. Specification statements 
following an ENTRY statement will be flagged with a warning message indicating 
nonstandard usage. In all other cases, an error will be issued and the erroneous 
specification statement will be deleted. 

PROGRAM TRUNCATED AT END STATEMENT 

The only lines that may follow an END statement are comments, START and STOP EDIT 
statements, FUNCTION, SUBROUTINE, and BLOCK DATA statements, which also signal 
the start of the source of another program unit. If these rules are not followed, an error 
122 is issued and all remaining source is ignored. 

AT STATEMENT MISSING IN DEBUG PACKET 

An AT statement is required if executable statements follow the DEBUG statement. The 
executable statements after a DEBUG statement and before any AT statement are 
processed but can never be executed. 

xx FIELD IS REPEATED 

STATEMENT ILLEGAL IN BLOCK DATA SUBPROGRAM 

An executable statement or other statement not permitted in a BLOCK DATA subprogram 
has been encountered. The statement is deleted. 

STATEMENT ILLEGAL IN FUNCTION SUBPROGRAM 

CONTINUED STATEMENT HAS NO INITIAL LINE 

The indicated statement begins with a continuation line. The initial line is assumed to 
be blank. If a label appears in columns 1 through 5 of the continuation line which begins 
the statement. it is taken to be the statement label. This is the ollly situation in which 
the label field of a continuation line will be interpreted by the compiler. 

COMPILER STATEMENT OPTION xx CONFLICTS WITH PREVIOUS OPTIONS 

Certain options of the COMPILER statement are incompatible; for example, 
ARGCHK=ON is not compatible with ARGCHK=OFF. This error may also be received 
if the DATA=AUTO, DATA=REUSE, or PROGRAM=BIG options are misplaced in the 
source. Each of the three options should appear at the beginning of the source for the 
compilation. 

EMPTY STRING INTERPRETED AS STRING OF ONE BLANK 

Null strings are not permitted. They are changed internally to a string of one blank. 

SYNTAX ERROR IN CALL STATEMENT 

There is a syntax error in the argument list to the subprogram being called in a CALL 
statement. or, there are non blank characters following the argument list. 



8244.2 
UP-MJMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

0-8 
PAGE 

0131 SYNTAX ERROR IN CALL STATEMENT AT xx 

Something other than a left parenthesis followed the subprogram name in a CALL 
statement. 

0201 IMPLICIT STATEMENT IS OUT OF CORRECT ORDER 

The IMPLICIT statement must precede any specification or executable statements. The 
IMPLICIT statement is accepted, but will affect only variables which have not yet 
appeared in any statement. 

0202 LENGTH SPECIFICATION xx IS INCORRECT 

0203 

0204 

The length specification is not a positive integer constant or is not permitted for the 
requested type. The optional length for the requested type is used. The length used 
for type CHARACTER is 1. 

TYPE SPECIFICATION xx IS INCORRECT 

The type keyword in the IMPLICIT statement is not a recognized FORTRAN data type. 
The incorrect type specification is ignored. 

LETTER SPECIFICATION xx IS INCORRECT 

The indicated character is not a valid IMPLICIT range limit. The character is ignored. 
Thus REAL(I-*) is the same as REAL(I). 

0205 LETTER SPECIFICATION xx OCCURS PREVIOUSLY IN IMPLICIT 

0206 

An IMPLICIT type was previously specified for the indicated letter. The new type 
specification for the indicated letter is ignored. 

STMT. ORDER PROBLEM FOR xx 

A DATA statement intervenes between the type specification for the variable and its 
preceding dimension specification. The DATA statement does not necessarily refer to 
the constant. The type specification for this variable is ignored. See Appendix A for a 
statement ordering description. 

0301 PARAMETER NAME xx IS PREVIOUSLY DEFINED 

0302 

The statement redefines the indicated parameter constant. The attempted redefinition 
is ignored. 

PARAMETER NAME xx IS INCORRECT 

The symbol following the PARAMETER keyword is not a simple variable name. The 
PARAMETER definition is ignored. This message is also produced when a formal 
parameter name in a FUNCTION, ENTRY, or SUBROUTINE statement is incorrect (for 
example, a constant). The incorrect formal parameter is deleted. 



8244.2 
Ul'-ftUMBER 

( 
0303 

0304 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

PARAMETER EXPRESSION IS NOT CONSTANT VALUED 

UPDATE LEVEL 
0-9 

PAGE 

A PARAMETER expression can only contain constants, previously defined parameter 
constants, and references to certain intrinsic functions. The PARAMETER definition does 
not satisfy this constraint and is ignored. 

PARAMETER EXPRESSION MAY GIVE QUESTIONABLE RESULTS 

Since parameter constants have a type associated with them (FORTRAN 77), assigning 
a parameter constant a typeless constant can produce unpredictable results when the 
parameter constant is used in an expression. This comes about because the internal 
representation of the typeless constant (a 1-word string) may not conform to the internal 
representation expected by the operator. 

0401 INCLUDE PROCEDURE CANNOT BE FOUND 

0402 

0403 

0404 

0405 

0406 

The procedure name specified in the INCLUDE statement could not be found. The 
INCLUDE statement is ignored. This message will also occur if an I/O error is 
encountered while searching for an INCLUDE procedure. 

NESTED INCLUDE IS ILLEGAL 

An INCLUDE statement has been encountered within the text copied by an INCLUDE 
statement. This is not allowed. The nested INCLUDE is ignored. 

INPUT ERROR xx ON INCLUDE FILE 

The indicated I/O status was received on an ER 10W$ while reading or opening an 
INCLUDE procedure. If the error occurs while opening the procedure, the INCLUDE is 
ignored and error 0401 is also generated. If the error occurs while reading the body 
of the procedure, the INCLUDE procedure is immediately terminated, as if the end-of-file 
sentinel had been encountered. If, instead of an 1/0 status, the error read "NOT -PF", then 
the file is not a program file. 

TERMINAL LABEL FOR DELETE CANNOT BE FOUND 

The end of the source input was reached without finding the statement label which 
terminates the active DELETE statement. The DELETE is automatically terminated at the 
end of the source input. 

CORRECTION IMAGE SEQUENCE ERROR 

A source correction line is out of sequence or is incorrect. The correction line was just 
printed in a previous message, for example, 'OUT OF SEQ -15'. 

PROCEDURE NAME xx IS INCORRECT 

The indicated INCLUDE procedure name is invalid. The INCLUDE statement is ignored. 



8244.2 
UP-N\JM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATELML 

0-10 
PAGE 

0407 INCLUDE OPTION xx IS INCORRECT 

0408 

0409 

0410 

The indicated characters were encountered where the LIST option was expected. The 
LIST option is assumed. 

EDIT OPTION xx IS INCORRECT 

The indicated option for a START EDIT or STOP EDIT statement should be either 
SOURCE, CODE, or PAGE. If the statement is START EDIT, the SOURCE option is 
assumed. If the statement is STOP EDIT, CODE is assumed. 

ERROR TYPE xx ON INPUT 

The indicated I/O status was received from an ER 10W$ on input from the source input 
stream. The compilation is terminated without producing an updated source element. 

INPUT ERROR IN OPEN 

An I/O error has occurred in opening the source input stream. The compilation is 
discontinued immediately. 

0411 PFI$ ERROR IN CLOSE 

0412 INCLUDE FILE CANNOT BE ASSIGNED 

The explicitly named INCLUDE file could not be assigned. The INCLUDE statement is 
deleted. 

0501 VARIABLE xx HAS BEEN PREVIOUSLY DEFINED 

0502 

0503 

The indicated variable has already had a type specified in a type statement. The new 
specification for this variable is ignored. This message also occurs in other cases where 
a name is doubly defined. 

LENGTH SPEC. xx IS INCONSISTENT OR INCORRECT 

The specified type does not permit a length specification or does not permit the length 
that is specified. The length specification is ignored. 

CHARACTER *(*) NOT ALLOWED FOR xx 

Dynamic character string arguments are not allowed for programs with old mode on 
(COMPILER(STD=66)), or on names which are not function names, argument names, or 
parameter constants. 

0504 CHARACTER *(*) NOT ALLOWED WITH STD=66 

0601 

See the explanation for 0503. 

DIMENSION OR SUBSTRING xx IS NOT TYPE INTEGER 

The constant specified for the array's dimensions or the character item's substring start 
or end position is not type integer. 



8244.2 
UP .... UU8ER 

( 

( 

(' 

0602 

0604 

0605 

0606 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

ARRAY xx HAS MORE THAN SEVEN DIMENSIONS 

DIMENSION xx IS NOT A SCALAR, ARGUMENT, OR IN COMMON 

ARRAY xx IS PREVIOUSLY DEFINED 

VARIABLE DIMENSION IS NOT PERMITTED FOR xx 

0-11 
PAGE 

The indicated variable has been specified with variable dimensions, but is not an 
argument of the subroutine. 

0607 ASTERISK NOT PERMITTED AS DIMENSION BOUND FOR xx 

An asterisk has been specified as a dimension in which the array is not a dummy array 
or the asterisk is not the upper dimension of the last dimension. 

0608 ARRAY xx IS TOO LARGE 

0609 

0610 

0612 

0613 

0614 

The number of array elements or the total word size of the array exceeds 262,143. The 
array bounds must be reduced. 

DIMENSION BOUND EXPRESSION IS NOT TYPE INTEGER FOR xx 

After calling the expression routine to evaluate a dimension the result type was not 
integer. 

LOWER DIMENSION BOUND GREATER THAN UPPER DIMENSION BOUND FOR xx 

SUBSCRIPT OR SUBSTRING NOT INTEGER CONSTANT EXPRESSION FOR xx 

The array name specified in the DIMENSION or EQUIVALENCE statement contains 
subscript references that must be integer constant expressions or the character item 
contains substring references that must be integer constant expressions. 

DIMENSION VALUE INDETERMINABLE AT COMPILE TIME FOR xx 

A program contains an array with a dimension expression that cannot be calculated at 
compile time because the ASCII FORTRAN compiler has been configured without the 
mathematical common banks (for example, 3**3 cannot be computed) or else the 
expression is out of range (for example, 200,000,000 ** 200,000,000). 

DIMENSION BOUND xx IS NOT DUMMY ARGUMENT OR IN COMMON 

The indicated name appears in a dimension bound or in a dimension bound expression 
for an adjustable array declaration. The name cannot be a local variable. It must be a 
dummy argument, a variable appearing in a common block, or a parameter constant 
name. 

0701 VARIABLE xx APPEARS IN PREVIOUS COMMON STATEMENT 



8244.2 
UP~ 

0702 

0703 

0704 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVa 

ARGUMENT xx APPEARS IN COMMON OR EQUIVALENCE STATEMENT 

0-12 
PAGE 

The indicated name is not permitted in a COMMON block or in equivalence. The name 
is ignored. 

xx MAKES COMMON TOO LARGE 

Inclusion of the indicated variable causes a COMMON block to exceed 262,143 words. 
The assignment of addresses to this variable and those following it in the COMMON 
block will be incorrect. 

MAXIMUM NUMBER OF COMMON BLOCKS EXCEEDED 

A maximum of 247 common blocks were specified in all program units of a FORTRAN 
compilation. 

0801 EQUIVALENCE MEMBER xx LINKS COMMON BLOCKS 

0802 

0803 

0804 

0805 

0806 

0807 

0808 

The indicated item is in a COMMON block and is equivalenced to an item in another 
COMMON block. The equivalence for the item is ignored. 

EQUIVALENCE MEMBER xx IS THE ONLY MEMBER OF A SET 

EQUIVALENCE MEMBER xx IS INCONSISTENT 

This item is equivalenced in a way incompatible with prior equivalences. The 
inconsistent equivalence is ignored. 

EQUIVALENCE MEMBER xx REORDERS A COMMON BLOCK 

The indicated item is equivalenced in a way which conflicts with prior EQUIVALENCE 
and COMMON statements. The incorrect equivalence relationship is ignored. 

EQUIVALENCE MEMBER xx EXTENDS COMMON INCORRECTLY 

The indicated item causes a COMMON block to be extended backward. The equivalence 
is ignored. 

xx SUBSCRIPT OUT OF RANGE IN EQUIVALENCE 

A subscript for the indicated array is out of range. The variable is treated as a scalar. 

xx WRONG NUMBER OF SUBSCRIPTS IN EQUIVALENCE 

The indicated array appears with more or fewer subscripts than it should have. Missing 
subscripts are assumed to be one; excess subscripts are ignored. 

EQUIVALENCE MEMBER xx MUST BEGIN ON WORD BOUNDARY 

The item indicated is equivalenced to a character item that begins on a nonword 
boundary. The item is assigned storage on the previous word border. 



8244.2 
UP4IIUMBER 

(-

0809 

0810 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

xx MAKES EQUIVALENCE GROUP TOO LARGE 

UPDATE LEVEL 
0-13 

PAGE 

The item makes an equivalence group exceed 262.143 words. Storage assignment for 
variables in the group will be incorrect. 

UNDIMENSIONED NAME xx USED IN EQUIVALENCE 

The indicated name appears with subscripts in an EQUIVALENCE statement, but is not 
dimensioned. The subscripts are ignored. 

0901 EXTERNAL NAME xx IS NOT A SUBPROGRAM NAME 

1001 BANK MEMBER xx IS PREVIOUSLY DEFINED 

1002 BANK MEMBER xx IS NOT COMMON OR EXTERNAL NAME 

The indicated name appears in a BANK statement, but is neither a COMMON block name 
nor an external subprogram name. The BANK specification is ignored for this item. 

1003 GENERIC FUNCTION xx DEINTRINSIFIED VIA BANK STATEMENT 

1004 

The user has named a generic function in a BANK statement. It is treated as if he had 
also named it in an EXTERNAL statement. All automatic argument and result typing is 
lost because it is not considered an intrinsic function. 

THE BANK STATEMENT ON xx IS MISPLACED 

The user has named a function/subroutine in a BANK statement in an internal subroutine, 
but the function/subroutine was first used in the outer external procedure. If he wants 
to "bank" the function, he must put the statement in the outer external procedure. 

1005 INTERNAL SUBPROGRAMS CANNOT BE BANKED 

The user has tried to name an internal subroutine in a BANK statement. This is illegal. 

1101 NAMELIST NAME xx IS PREVIOUSLY DEFINED 

The NAMELIST name has already occurred as a variable. array, or NAMELIST name. The 
NAMELIST statement is deleted. 

1102 NAMELIST LIST REF. xx IS INCORRECT 

1201 

An item in the NAMELIST list is not a variable, array, or array element with constant 
subscripts. or is a formal parameter of the subprogram. The NAMELIST statement is 
deleted. 

xx MAY NOT BE INITIALIZED 

The indicated identifier is an argument of the subprogram. Since initial value assignment 
is not permitted for formal arguments, the DATA statement or initial value specification 
is ignored. 



8244.2 
UP-NUMIIER 

1202 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

CONSTANT DOES NOT MATCH TYPE OF VARIABLE xx 

UPDATELMl 
0-14 

PAGE 

The initial value is of a type not permitted for the indicated variable. If the message is 
an error, the assignment is not done. If the message is a warning, the constant is 
converted to the type of the variable and the assignment is done. 

1203 NUMBER OF CONSTANTS EXCEEDS NUMBER OF VARIABLES 

The initial value list contains more elements than the list of variables to be initialized. 
The excess constants are ignored. 

1204 NUMBER OF VARIABLES EXCEEDS NUMBER OF CONSTANTS 

The list of variables is longer 'han the initial value list. The excess variables do not 
receive any initialization. 

1205 IMPLIED DO IS TOO COMPLEX - SIMPLIFY 

The implied-DO in a DATA statement is too complex, causing the interpreter stack to 
overflow. The rest of the current variable list is deleted. 

1206 REPEAT COUNT ERROR AT xx 

1207 

There is some kind of syntax error on a repeat count in the DATA statement. 

OPERAND xx INCORRECT FOR DATA STATEMENT 

This message means one of two things has occurred: 

1. The indicated operand appears in an implied-DO in a DATA statement and is not 
permitted there. Only constants, parameter constants, and DO-loop index variables 
are permitted in expressions in an implied-DO in a DATA statement. 

2. The operand is an argument to the subprogram and cannot be initialized in a DATA 
statement. 

1208 CHARACTER STRING(S) TRUNCATED IN DATA CONSTANT LIST 

The length of one or more character strings in a DATA statement constant list exceeds 
the storage limits for the variable in the corresponding data list. The character constant 
is truncated on the right. 

1209 SUBSTRING EXPRESSION MUST BE AN INTEGER CONSTANT EXPRESSION 

Substring expressions must be integer constant expressions. 

1210 OBJECT OF SUBSTRING MUST BE A VARIABLE OR ARRAY ELEMENT 

The object of a substring reference when used in a DATA statement must be a scalar 
character variable or character array element. 



8244.2 
UP-HUMBER . lu .... " ...... 1 ~15 PAGE 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

1211 SUBSTRING REFERENCE xx NOT PERMITIED HERE 

1212 MORE THAN ONE INITIALIZATION FOR xx 

A variable, array element or substring must not be initially defined more than once in 
an executable program. If two entities are associated, only one may be initially defined 
in a DATA statement in the same executable program. The initial value received by the 
entity is unpredictable. 

1301 BLOCK DATA STATEMENT IS OUT OF CORRECT ORDER 

1302 xx IS LOCAL TO BLOCK DATA - IGNORED 

The indicated variable appears in a type, DIMENSION, or DATA statement in the BLOCK 
DATA subprogram, but is not in a common block. No storage is allocated for the variable, 
and any initial value assigned to it is ignored. 

1401 ARGUMENT xx IS REPEATED IN ARGUMENT LIST 

1402 

1403 

A format parameter name appears more than once in the parameter list. Only the first 
appearance is processed. 

INTERNAL SUBPROGRAM xx SHOULD NOT BE USED AS ARGUMENT 

This diagnostic is issued whenever an internal subprogram is passed as an argument to 
an external subprogram and the DATA=AUTO or DATA=REUSE COMPILER statement 
options are present. Because of automatic storage stack conventions, an internal 
subprogram can only be called from the external program unit it is contained in or from 
another internal contained in the same external as itself. 

STATEMENT IS USED IN MAIN PROGRAM 

An ENTRY statement is not permitted in a main program. The ENTRY statement is 
deleted. 

1404 ENTRY STATEMENT IS WITHIN RANGE OF DO-LOOP OR BLOCK IF STRUCTURE 

An ENTRY statement is not allowed in the range of a DO-loop or in the range of a block 
IF structure (that is, from an IF (e) THEN statement to the corresponding END IF 
statement). The ENTRY statement is deleted. 

1405 CHARACTER AND NON-CHARACTER ENTRY NAMES NOT ALLOWED 

1406 

A function subprogram contains a combination of character and noncharacter entry or 
function names. If the function name is type character all entry names must be type 
character. If an entry name is type character, the function name must be type character. 

SUBPROGRAM OR SUBPROGRAM REF. HAS TOO MANY ARGUMENTS 

There is a compiler limit of 150 subprogram arguments allowed, in either a subprogram 
reference (that is, calling a subroutine, or referencing a function in an expression) or a 
subprogram itself (total number or arguments in all SUBROUTINE, FUNCTION, or ENTRY 
statements in the subprogram). There is also a limit of 63 character subprogram 
arguments allowed. 



8244.2 
lIP-NUM8EII 

1407 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

ENTRY, FUNCTION, OR SUBROUTINE REQUIRES A NAME 

UPOATE LEVEL 
0-16 

PAGE 

The statement requires a name and none was found. The statement is analyzed for 
further errors, then deleted. The routine is typed as a subroutine or function if the error 
is in a SUBROUTINE or FUNCTION statement. 

1408 FUNCTION NAME MAY NOT BE ASSIGNED A VALUE 

1410 A PREVIOUS RECURSIVE CALL IS IN ERROR 

1411 FUNCTIONS AND ARGUMENTS ARE INCONSISTENT WITH COMPILER OPTION 
DATA=REUSE 

The COMPILER statement option DATA=REUSE means that the routine when entered 
will reuse the automatic storage space of the calling program. This means that the 
program can never be returned to, since all register save areas are destroyed, so a 
function makes no sense. Also, arguments are passed in the automatic storage stack, 
and so passing arguments is not possible. 

1412 SUBSTRING EXPRESSION MUST BE TYPE INTEGER 

The expressions e 1 and e 2 in a substring reference (e ,: e 2) must both be type integer. 

1413 INCORRECT SUBSTRING REFERENCE 

A substring reference must have the format (e ,: e 2) immediately following a character 
scalar variable name or a character array element name, where e 1 and e 2 are integer 
expressions. 

1414 CONSTANT USED AS SUBSTRING EXPRESSION OUT OF RANGE 

The values e 1 and e 2 in a substring reference (e ,: e 2) must satisfy the following 
relational: 1 ~ e 1 ~ e 2 ~ len, where e 1 and e 2 are integer expressions, and len is 
the number of characters in the character scalar variable or character array element 
immediately preceding the format (e ,: e 2)· If either e 1 or e 2 is a constant expression, 
then checks are made at compilation time to see that the preceding relational expression 
is true. 

1415 SUBSTRING VALUE OUT OF RANGE FOR EQUIVALENCE ITEM xx 

The substring start and substring end values must satisfy the following relational 
expression: 1 ~ start ~ end ~ len, where len is the declared character length of the 
item. 

1416 CHARACTER SUBSTRING REFERENCE INVALID FOR EQUIVALENCE ITEM xx 

The substring reference for the item in equivalence must be on a character scalar or 
character array element. 

1502 STMT. FUNCTION DEF. HAS TOO MANY ARGUMENTS 

The statement function definition has more than the compiler limit of 150 arguments. 
The statement is deleted. 



8244.2 
UP-NUMBER 

1503 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

STMT. FUNCTION DEF. ARGUMENT xx IS INCORRECT 

UPDATE LEVEL 
0-17 

PAGE 

The indicated item appears where a formal argument is expected, and either is not a 
name or is the statement function name. The statement is deleted. 

1504 STMT. FUNCTION NAME xx IS PREVIOUSLY DEFINED 

The statement function name has been previously used in a way which precludes its use 
as a statement function name. The statement is deleted. 

1505 STMT. FUNCTION PARAM. xx IS NOT USED IN DEF. 

1601 STATEMENT LABEL IS INCORRECT 

Columns 1-5 of the following source line contain at least one character other than a 
space or a digit, and the line is not a comment line. The contents of columns 1-5 are 
ignored. 

1602 STATEMENT LABEL xx IS PREVIOUSLY DEFINED 

Statement label already identifies a previous statement. This label is deleted. 

1603 LABELLED BLANK LINE TREATED AS CONTINUE STATEMENT 

1604 COLUMNS 1-5 OF CONTINUATION LINE SHOULD BE BLANK 

Nonblank characters appear in columns 1-5 of a continuation line. They are ignored. 

1605 STATEMENT SHOULD HAVE A LABEL 

FORMAT statements and statements following a GO TO statement should be labeled. 
The statement is processed, but cannot be referenced or executed. This error may be 
caused by error 1602. 

1606 LABEL xx REFERENCED OUTSIDE DEBUG PACKET 

1608 FORMAT LABEL xx IS USED INCORRECTLY AS A BRANCH POINT 

The label on the FORMAT statement was previously used incorrectly as the target of an 
IF or GO TO. Bad code may be generated for the statement. 

1609 LABEL ON THIS NON-EXECUTABLE STMT. WAS PREVIOUSLY REFERENCED 

1610 

Previous references to this label are in error. Note that any statement may be labeled, 
but only labeled executable statements (except for DEFINE FILE, ELSE, and ELSE IF) and 
FORMAT statements may be referenced by the use of statement labels. There is one 
exception: the DELETE statement may refer to any statement label. 

STMT. REFERENCES NON-EXECUTABLE STMT. LABEL xx 

This statement is in error, since it refers to a label which may not be referenced. Note 
that any statement may be labeled, but only labeled executable statements (except for 
DEFINE FILE, ELSE, and ELSE IF) and FORMAT statements may be referenced by the use 
of statement labels. There is one exception: th~ DELETE statement may refer to any 
statement label. 



8244.2 
UP-MIMBER 

1701 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

WRONG NUMBER OF SUBSCRIPTS FOR ARRAY REFERENCE xx 

UPDATE LEVEL 
0-18 

PAGE 

A reference to the indicated array has the wrong number of subscripts. The statement 
is deleted. 

1702 SUBSCRIPTS REOUIRED FOR ARRAY REFERENCE xx 

The indicated array name appears in a context which requires a scalar reference. The 
statement is deleted. 

1703 SUBSCRIPT EXPRESSION IS NOT CONSTANT 

Subscripted references in DISPLAY and NAMELIST statements must have constant 
subscripts. The statement is deleted. 

1704 ARRAY xx IS NOT DIMENSIONED 

1705 SUBSCRIPT IS OUT OF RANGE OF ARRAY xx 

The constant subscript is out of range. The subscript is accepted as written except for 
subscript errors occurring in data initialization. In this case the data initialization is not 
done. 

1706 SUBSCRIPTED REFERENCE xx NOT PERMITIED HERE 

1707 SUBSCRIPT xx IS OF THE WRONG TYPE 

A logical, complex, or character expression has been used as a subscript. The statement 
is deleted. 

1708 REF. TO VARIABLE DIMENSIONED ARRAY xx BEFORE ENTRY STMT 

A reference has been made to an array which has been declared with variable 
dimensions but has not yet been described in a SUBROUTINE or ENTRY statement. This 
may result from omitting declarations for parameter constants, then using these omitted 
constants as dimension specifications in a DIMENSION statement. Arrays so 
dimensioned appear to be variable-dimensioned. 

1709 DIMENSION BOUNDS FOR xx CAUSE COMPILER LIMIT OVERFLOW 

When calculating the virtual ongln value (Iocation_counter_offset 
sum_of_multipliers + byte_offset) for an array, the value exceeded the limit allowed 
by the compiler. The dimensions for the array must be changed. 

1710 RELATIVE ADDRESS FOR xx EXCEEDS LIMIT 

This message is usually the result of an array reference such as ARR(70000) where the 
constant subscript value exceeds 65,535 words, the array is dimensioned less than 
65,536 words, and the 0 option is not present on the @FTN control card. This message 
actually will appear whenever an instruction is built by code generation and the address 
portion is truncated when filled into the 16- or 18-bit u-field of an instruction requiring 
relocation. \'-J 



( 

8244.2 
UP-HUMBER 

1801 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

EXPRESSION IS TOO COMPLEX - SIMPLIFY 

UPDATE LEVEL 
0-19 

PAGE 

The current expression is too complex for the expression scanner. It should be broken 
into two or more statements. This error can be caused by nesting array, function, and 
statement function references too deeply. 

1802 COMPLEX CONSTANT PARTS ARE NOT THE SAME LENGTH 

One of the components of a COMPLEX constant is REAL and the other is double 
precision. The shorter component is converted to double precision and the resulting 
constant is COMPLEX* 16. 

1803 COMPLEX CONSTANT PARTS ARE NOT BOTH REAL 

1804 CONSTANT EXP. EVALUATION PRODUCES xx ERROR 

1806 

1807 

The combination of two constants has resulted in an arithmetic fault. The type of fault 
is indicated in the message. If the fault is "UNDRFLOW", the result is set to zero. 
Otherwise, the constant valued expression is not evaluated. 

SUBPROGRAM REF. xx HAS WRONG NUMBER OF ARGUMENTS 

The indicated function or subroutine was first referenced with a different number of 
arguments. This statement is processed normally, unless the function is a MAX or MIN 
function, in which case the call is ignored. If the function was a FORTRAN-supplied 
function and referenced with no arguments, it will be treated subsequently as a scalar. 
(See 7.2.1.) 

STMT. FUNCTION REF. xx HAS WRONG NUMBER OF ARGUMENTS 

The number of arguments in the statement function reference does not match the 
number in the definition. The statement is deleted. 

1808 SUBROUTINE NAME xx IS USED INCORRECTLY 

A subroutine is being referenced as a function. The statement is deleted. 

1809 ARGUMENT xx IS OF THE WRONG TYPE 

1810 LOGICAL OPERAND xx IS OF THE WRONG TYPE 

The expression contains a logical operator (.AND., .OR., .NOT.) with a nonlogical operand. 
The statement is deleted. 

1811 ARITHMETIC OPERAND xx IS OF THE WRONG TYPE 

1812 

The expression contains an arithmetic operator (+, -, *, I, **) with a nonarithmetic 
operand. The statement is deleted. 

RELATIONAL OPERAND xx IS OF THE WRONG TYPE 

The expression contains a relational operator (.L T., .LE., .NE., .EO., .GE., .GT.) with a logical 
or complex operand. The statement is deleted. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

0-20 
PAGE 

1813 TYPELESS OPERAND xx IS OF THE WRONG TYPE 

A type less operand has been used in an expression with a complex or double precision 
operand. The statement is deleted. 

1814 CHARACTER OPERAND xx IS OF THE WRONG TYPE 

The expression contains a concatenation operator with a. noncharacter operand. The 
statement is deleted. 

1815 UNARY OPERATOR xx IS USED INCORRECTLY 

The indicated unary operator appears in a context which requires a binary operator, or 
it follows another unary operator. The statement is deleted. 

1816 BINARY OPERATOR xx IS USED AS A UNARY OPERATOR 

The indicated operator appears where an operand is required. The statement is deleted. 

1817 xx IS NOT A SUBROUTINE NAME 

1818 

The name following the keyword "CALL" has been previously used in a way which 
precludes it being a subroutine name. The CALL statement is deleted. 

TYPE CONVERSION IS INCORRECT 

The expression in a RETURN statement is not type integer. It is converted to an integer, 
if possible. This message also occurs if the target and expression in an assignment 
statement are of incompatible types (for example, character and integer). The 
assignment statement is deleted. 

1819 FUNCTION REF. xx IS INCONSISTENT WITH COMPILER DEF. 

1. A FORTRAN-supplied function name is referred to with the wrong number of 
arguments or with arguments of the wrong type. The function is assumed to be 
a user-supplied external function if this is its first occurrence. Error 1826 will also 
be printed to inform the user of this change. 

2. This message may also be emitted if the user uses a generic function name without 
a local specification statement on the name. 

1820 CHARACTER EXPRESSION EXCEEDS ALLOWABLE LENGTH 

A character string expression exceeds the compiler limit of 511 characters. The 
statement is deleted. 

1821 xx ARGUMENT IS OUTSIDE PERMITTED RANGE 

An argument to the indicated FORTRAN-supplied function was incorrect. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

1822 xx ARGUMENT IS NOT NORMALIZED 

An argument to the indicated FORTRAN-supplied function was incorrect. 

0-21 
PAGE 

1823 REF. TO GENERIC NAME xx MAY BE INCONSISTENT 

This message sometimes will be emitted when the user uses a generic function name 
as a local variable with no specification statement on the name. The name is treated 
as a local scalar with default typing. 

1825 DIVISION BY ZERO DETECTED IN THIS STATEMENT 

Division by constant zero or a parameter constant whose value is zero has been detected 
in an expression 

1826 FUNCTION xx IS NOW A USER-SUPPLIED FUNCTION 

1827 

The first occurrence of a compiler-defined function had the wrong number or type of 
arguments. The function is assumed to be user-supplied and loses any intrinsic 
properties. 

UNARY OPERATOR '(' FOLLOWS CONSTANT IN EXPRESSION 

A left parenthesis cannot follow a constant in any expression syntax. This message could 
come out in a statement-function expansion. For example: 

character*(*) sf 
sf(arg) = arg(l :2) 
print *, sf('1234') 

This results in the expanded expression: '1234'(1 :2) which is not allowed (since only 
scalars and array elements may precede the (e 1 : e2) substring syntax). 

1828 INTRINSIC NAME xx CANNOT BE USED AS ARGUMENT 

Certain intrinsic functions cannot be passed as an argument to another routine because: 

1. They are generated as inline functions and have no external entry point to pass and 
thus cannot possibly be called. 

2. They have a calling sequence that is unique to their name, such as LOWERC and 
UPPERC, and thus cannot be called by a dummy subprogram name. 

1901 ASSIGNMENT RESULT xx IS INCORRECT 

1902 

The item on the left-hand side of the assignment is not permitted as the target of an 
assignment. The statement is deleted. 

ASSIGNMENT RESULT xx IS AN ACTIVE DO VARIABLE 

The indicated item is the index variable of an active DO-loop. The statement is deleted. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

1903 ASSIGNMENT RESULT xx DOES NOT MATCH EXPRESSION 

1904 ASSIGNMENT RESULT xx EXCEEDS COMPILER TABLE LIMIT 

UPDATE lMl. 
0-22 

PAGE 

More than the compiler limit tA 128 items appear in the left-hand side of a multiple 
assignment statement. The statement is deleted. 

2001 LABEL REFERENCE xx IS INCORRECT 

The statement label in an AT statement is missing, or it does not refer to a previous 
executable statement. The AT statement is deleted. This message can also occur if an 
*, $, or & in the actual argument list of a subroutine call is not followed by a statement 
label, or if a statement label is passed as an actual parameter in a function reference. 
In this case, the statement is deleted. This message is also generated if the statement 
label following END= or ERR= clause of an input/output statement has appeared 
previously on a nonexecutable statement, in which case the statement is deleted. 

2002 LABEL REFERENCE EXPRESSION IS INCORRECT 

This message can occur for two reasons: 

1. A statement of the form RETURN ; has been encountered in a subprogram which 
has no asterisks in its parameter list. 

2. The; specified in a RETURN; statement is either negative or too large for the 
asterisk list. 

2003 ASSIGN VARIABLE xx IS INCORRECT 

2004 LABEL REFERENCE xx EXCEEDS COMPILER TABLE LIMIT 

2005 STATEMENT LABEL xx IS NOT DEFINED 

The indicated statement label is referenced, but never appears as the label of a 
statement. The reference may be deleted or it may be generated as a jump to an 
undefined address. 

2006 KEYWORD xx USED AS LABEL REFERENCE IN ARITHMETIC IF STMT. 

The IF statement is recognized by the compiler as an arithmetic IF consisting of only the 
negative branch which is a FORTRAN keyword. The warning is issued because the 
programmer probably wanted a logical IF. For example: 

IMPLICIT INTEGER (A-Z) 
IF (LOGFCT) RETURN 

2104 DEBUG FACILITY AND OPTIMIZATION ARE INCOMPATIBLE 

The combination of a DEBUG statement and an optimization option (V or Z) is not 
allowed, since bad code could be generated. Optimization is not equipped to handle fc~,-

debug code. r '. 



8244.2 
UI4WM8ER 

( 

( 

2105 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

DEBUG SUBCHK NOT PERMITTED FOR ASSUMED-SIZE ARRAY xx 

0-23 
PAGE 

An assumed-size array (such as DIMENSION A(*)) cannot be specified for subscript 
checking since the size of the array cannot be calculated. 

2201 DO VARIABLE IS USED IN AN OUTER DO 

The index variable of this DO statement is also the index variable of an earlier unclosed 
DO-loop. The statement is accepted. The result of executing the DO-loops is 
unpredictable. 

2202 RANGE OF DO CONTAINS NO EXECUTABLE STATEMENTS 

There are no executable statements in the indicated DO-loop. The DO statement is 
ignored. 

2203 DO LOOPS ARE INCORRECTLY NESTED 

2204 

2205 

The terminal statement of a DO statement has been encountered, and the terminating 
statement for a later DO statement has not yet been encountered. All unclosed DO-loops 
encountered since the closing DO are also closed at this statement. 

DO TERMINAL STATEMENT NUMBER IS INCORRECT 

The statement label which follows the keyword DO is incorrect. The DO statement is 
ignored. 

DO TERMINAL STMT. NUMBER IS PREVIOUSLY DEFINED 

The DO terminal statement label must appear physically after the DO statement in the 
same compilation unit. The DO statement is ignored. 

2207 DO INCREMENT VALUE IS INCORRECT OR INCONSISTENT 

The increment value is not an integer, real, or double precision expression or has 
constant value zero. This message can also occur if the initial, increment, and terminal 
values are all constants and the sign of the increment value is not consistent with the 
sign of the difference of the terminal and initial values. The DO statement is ignored. 

2208 DO TERMINAL VALUE IS INCORRECT 

The DO terminal value is not an integer, real, or double precision expression. The DO 
statement is ignored. 

2209 DO VARIABLE IS SUBSCRIPTED 

2210 

The DO index variable may not be an array element. It must be a simple integer or real 
vari(lble. The DO statement is ignored. 

DO VARIABLE IS OF THE WRONG TYPE 

The DO index is not an integer or real variable. The DO statement is ignored. 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Serie. 1100 
FORTRAN (ASCII) Programmer Reference Uf'OATE LEVEL 

0-24 
PAGE 

2211 DO VARIABLE IS INCORRECT 

There is an error in the DO index variable. The DO statement is ignored. 

2212 DO INITIAL VALUE IS OF THE WRONG TYPE 

The initial value is not integer, real, or double precision. The DO statement is ignored. 

2213 DO INCREMENT VALUE IS OF THE WRONG TYPE 

The increment value is not integer, real, or double precision. The DO statement is 
ignored. 

2214 DO TERMINAL VALUE IS OF THE WRONG TYPE 

The terminal value is not integer, real, or double precision. The DO statement is ignored. 

2215 DO TERMINAL STMT. TYPE PREVENTS LOOP COMPLETION 

The terminal statement of the DO-loop does not permit execution of the following 
statement. As a result. the increment and test pans of the DO-loop will never be 
executed. 

2216 I/O LIST CONTAINS REDUNDANT PARENTHESES 

An element or sublist in an implied-DO is enclosed in parentheses. The redundant ' 
parentheses are ignored. 

2217 IMPLIED DO LIST CONTAINS NO MEMBERS 

The implied-DO list is empty. The implied-DO is ignored. 

2218 IMPLIED DO LIST CONTAINS EXPRESSION OR CONSTANT 

The elements of an implied-DO list should be variables, arrays, and array elements. For 
an input list, the implied-DO is ignored. For an output list, the error is ignored. 

2219 IMPLIED DO ELEMENT MUST BE SUBSCRIPTED ARRAY 

An element of an implied-DO list used in data initialization is not an array element. The 
implied-DO is ignored. 

2220 SYNTAX ERROR IN IMPLIED DO 

2221 DO NESTING EXCEEDS COMPILER LIMIT 

2222 

The level of DO and implied-DO nesting exceeds the compiler limit of 25. The DO or 
implied-DO is ignored. 

DATA LIST CONTAINS EXPRESSION OR CONSTANT 

An element of a DATA statement variable list is not a variable, array element, or array. 
The list element is ignored. 



8244.2 
UP-NUMIIER 

( 

( 

2223 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

BLOCK IF NESTING EXCEEDS COMPILER LIMIT 

UPDATE lEVEL 
0-25 

PAGE 

The level of block IF statements exceeds the compiler limit of 25. The block IF statement 
is ignored. Note that an END IF statement is required to terminate a block IF nesting 
level (which is started with a block IF statement. that is. IF (e) THEN). 

2224 END IF. ELSE. OR ELSE IF STMT. IS NOT IN BLOCK IF STRUCTURE 

The END IF. ELSE. or ELSE IF statement must have a matching block IF statement (that 
is. an IF (e) THEN statement at the same IF-level) preceding it in the program unit. The 
END IF. ELSE. or ELSE IF statement is ignored. Note that each block IF statement must 
have exactly one corresponding END IF statement following it in the program unit (that 
is. one at the same IF-level). Each block IF statement may also have zero or one 
corresponding ELSE statement and any number of corresponding ELSE IF statements 
following it in the program unit (at the same IF-level). 

2225 EXPRESSION IN ELSE IF STMT. IS NOT TYPE LOGICAL 

2226 

2227 

The expression e in the ELSE IF (e) THEN statement must be a logical expression. The 
ELSE IF statement is ignored. 

A DO-LOOP AND AN IF-BLOCK ARE INCORRECTLY NESTED 

If a DO statement appears within an IF-block. ELSE IF-block. or ELSE-block. the range 
of the DO-loop must be contained entirely within that block. Similarly. if a block IF 
statement (that is. IF (e) THEN) appears within the range of a DO-loop. the corresponding 
END IF statement must also appear within the range of that DO-loop. 

ELSE OR ELSE IF STATEMENT MAY NOT FOLLOW ELSE STATEMENT 

Once an ELSE statement has appeared at a given IF-level. an END IF statement must 
appear before the next ELSE or ELSE IF statement at the same IF-level. The ELSE or ELSE 
IF statement is ignored. 

2228 BLOCK IF STATEMENT REQUIRES MATCHING END IF STATEMENT 

Each block IF statement (that is. IF (e) THEN) must have exactly one corresponding END 
IF statement following it in the program unit. An implied END IF statement is inserted 
at the end of the program unit to match the block IF. 

2229 STATEMENT CANNOT TERMINATE A DO-LOOP 

2301 

The terminal statement of a DO-loop must not be a nonexecutable statement (except 
FORMAT) or one of the following executable statements: an unconditional GO TO. 
assigned GO TO. arithmetic IF. block IF. ELSE IF. ELSE. END IF. RETURN. STOP. END. or 
DO statement. 

FORMAT CODE xx IS INCORRECT 

The indicated letter is not a valid format field identifier. The letter and a" following 
characters are deleted up to the first following delimiter other than a period. 



8244.2 
UNIIUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

2302 FORMAT CODE IS NOT FOLLOWED BY AN INTEGER 

UPDATE lEVEl 
0-26 

PAGE 

The indicated format code letter is not followed by a field width designator. The format 
code letter is deleted. 

2303 FORMAT CODE INTEGER COMPONENT IS TOO LARGE 

The indicated integer is greater than 255. The value 255 is used instead of the large 
number. 

2304 FORMAT CODE xx FRACTIONAL PART IS MISSING 

Either a format code which requires a "d" subfield (such as E w.d or F w.d) does not have 
the "d" subfield, or a format code for which the "d" subfield is optional (such as I w [. d]) 
has the period delimiter, but no value is specified for d. The value 0 is used for the 
missing subfield. 

2305 FORMAT CODE xx HAS ZERO FIELD WIDTH 

The field width for the indicated format code has been specified as zero. The format 
code is deleted. 

2306 FORMAT HAS EMPTY LITERAL FIELD 

The format statement contains a literal field containing zero characters. The empty literal 
field is deleted. 

2307 REPEAT COUNT IS ZERO FOR xx 

The repeat count for the indicated format code or parenthesis is zero. The format is 
processed as though the zero repeat count had not been specified. 

2308 SCALE FACTOR IS NOT PRECEDED BY AN INTEGER 

A "pH field is not preceded by an integer. The value 0 is used. 

2309 FORMAT PARENTHESIS NESTING IS TOO DEEP 

Parentheses are nested more than five deep, including the outermost pair which begin 
and end the statement. The format is translated as though no error had occurred, but 
group repetition will not be done properly by the execution time format scanner for 
groups which are too deep in the parenthesis nest. 

2310 HOLLERITH FIELD AMBIGUITY - FORMAT DELETED 

Because of the nature of its lexical analysis algorithm/ ASCII FORTRAN is sometimes 
unable to correctly identify a literal field which is not preceded by the required delimiter 
(comma, slash, or left parenthesis). A preceding message has identified the point at 
which the delimiter is required. The FORMAT statement is replaced by an empty 
FORMAT, which forces list-directed input and output. / 

\, ,;I' 



8244.2 
UP~U"BER 

( 

( 

2401 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

ARITHMETIC IF EXPRESSION IS OF WRONG TYPE 

UPDATE LEVEL 
0-27 

PAGE 

The parenthesized expression in the IF statement is not logical, so the IF is assumed to 
be arithmetic. However, the expression is not INTEGER, REAL, or DOUBLE PRECISION, 
which are the only types for which the required relations to zero are defined. The 
statement is ignored. 

2501 FILE REFERENCE NUMBER xx IS INCORRECT 

In a DEFINE FILE statement. the file reference number is not an integer, or has already 
appeared as the file reference number of a previous DEFINE FILE statement. The second 
DEFINE FILE statement is deleted. This message is also generated if the file reference 
number.of a BACKSPACE, REWIND, ENDFILE, FIND, READ, or WRITE statement is not an 
integer expression or a character variable, character array name, or character array 
element where these are permitted. The statement is deleted. 

2502 RELATIVE RECORD NUMBER xx IS INCORRECT 

The record number specification of a direct access 1/0 statement is not an integer 
expression. The statement is deleted. 

2503 INPUT LIST MEMBER xx IS AN ACTIVE DO VARIABLE 

2504 

The indicated variable appears in an input list. It is the index variable of an active DO 
or implied-DO. The input list is ignored. 

NAMELIST REFERENCE xx IS INCORRECT 

The item encountered where the NAMELIST name was expected is not a valid name. The 
NAMELIST statement is deleted. 

2505 ASSOCIATED VARIABLE xx IS INCORRECT 

The associated variable of this DEFINE FILE or OPEN either is not an integer scalar or 
was used as the associated variable of a prior DEFINE FILE or OPEN statement. This 
DEFINE FILE or OPEN statement is deleted. 

2506 FILE FORMAT SPECIFICATION xx IS INCORRECT 

The DEFINE FILE format specification is not one of the letters L, E, U, M, F, or V. The 
statement is deleted. 

2507 NUMBER OF RECORDS FIELD xx IS INCORRECT 

2508 

The number-oF-records field of the DEFINE FILE statement is not an integer constant. 
The statement is deleted. 

SIZE OF RECORD FIELD xx IS INCORRECT 

The size-oF-records field of the DEFINE FILE statement requires a poSItIve integer 
constant less than 262,144, which was not found. The statement is deleted. 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

2509 CHARACTER NUMBER xx IS INCORRECT 

UPDATE LEVEl 
0-28 

PAGE 

The record size specification of the ENCODE or DECODE statement is not an integer 
constant. variable. or array element. or is negative. The statement is deleted. 

2510 STARTING LOCATION xx IS INCORRECT 

The location to which the ENCODE or DECODE data transfer is to be made is incorrectly 
specified. It should be an array. array element. or variable. The statement is deleted. 

2511 CHARACTERS PROCESSED NAME xx IS INCORRECT 

The entity specified to receive the number of characters processed by the ENCODE or 
DECODE is not an integer variable or array element. The statement is deleted. 

2512 FORMAT REFERENCE xx IS INCORRECT 

The FORMAT specification must be a FORMAT statement number. an integer variable 
containing a FORMAT statement label. or an array or character expression containing 
a run-time FORMAT. This message is generated if the FORMAT specification is a 
statement label but not a FORMAT statement label or is a variable but not of type integer 
or character. This message is generated during the optimization process if it is 
determined that specified integer variable will not have been assigned a FORMAT 
statement label in an ASSIGN statement when the referencing statement is executed. 
In any case. the statement is deleted. 

2513 DIRECT ACCESS OR INTERNAL FILE I/O IS LIST OR NAMELIST DIRECTED 

The FORMAT specification in this direct access or internal file I/O statement is a 
NAMELIST name or an asterisk. Only formatted and unformatted I/O are permitted for 
direct access files. and only formatted sequential I/O is permitted for internal files. 

2514 REDUNDANT 'ERR=' OR 'END=' 

A second "ERR=" or "END=" clause has been encountered within the same statement. 
The repeated clause is ignored. 

2515 'END=' RETURN IS USED INCORRECTLY 

An "END=" clause has been specified in a direct access READ or WRITE statement. The 
"END=" clause is ignored. 

2516 INPUT LIST MEMBER xx IS AN EXPRESSION OR CONSTANT 

The members of an input list must be variables. elements. or arrays. The input list is 
ignored. 

2517 I/O LIST PRESENT WITH NAMELIST DIRECTED I/O 

An I/O list has been specified on a READ. WRITE. PRINT. or PUNCH statement which has 
a NAMELIST name instead of a FORMAT specification. The list is ignored. 



8244.2 
UP-NUMIIER 

( 
2520 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

I/O LIST MEMBER xx IS INCORRECT 

UPDATE LEVEL 
0-29 

PAGE 

The indicated item is not permitted to appear in an I/O list. The I/O list is ignored. 

2521 DEFINE FILE OPTION xx IS INCORRECT 

The indicated option is not valid for a sequential DEFINE FILE. The statement is deleted. 

2522 FILE REFERENCE NUMBER IS OUT OF RANGE 

The file reference number is negative or zero or greater than 262,143. The statement 
is deleted. 

2523 INTERNAL FILE REQUEST IS INCORRECT 

Internal file I/O may be formatted and sequential only. 

2524 IOSTAT FIELD IS INCORRECT 

An lOST AT = specification may only be an integer variable or an integer array element. 

2525 KEYWORD xx IS USED INCORRECTLY 

2526 

A keyword used in an OPEN, CLOSE, or INQUIRE statement conflicts with another 
keyword, or is not permitted in this statement. 

SPECIFICATION FOR xx IS INCORRECT 

The specification for this keyword is of the wrong type or is an expression where this 
is not permitted. 

2527 ONLY UNIT, IOSTAT, AND ERR MAYBE PRESENT WITH REREAD 

2528 KEYWORD xx NOT PERMITTED IN CLOSE STATEMENT 

2529 KEYWORD xx PERMITTED ONLY IN INQUIRE STATEMENT 

2531 KEYWORD xx NOT PERMITTED IN THIS STATEMENT 

2532 UNIT OR FILE SPECIFICATION MUST BE PRESENT 

2533 UNIT SPECIFICATION MUST BE PRESENT 

2602 VARIABLE xx MAY BE USED BEFORE SET TO A VALUE 

The analysis of program flow has determined that there exist possible paths in the 
routine along which the value of the indicated variable may be referenced before any 
value has been assigned. It is the programmer's responsibility to ensure that the variable 
is, in fact. initialized on all possible paths, or that the paths along which the incorrect 
reference occurs cannot be executed. 

This warning message will also be given when a character variable is only partially (that 
is, a substring of the character variable) defined by an assignment statement before a 
use of all byte positions, of the character variable. It is the programmer's responsibility 
to ensure that all byte positions of the character variable have been defined before the 
use of the entire character variable. 



8244.2 
UP-NUU8EJI 

2603 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

ARITHMETIC ERROR IN DO LOOP CALCULATION 

This error may be issued in either of two cases: 

UPDATE lEVEl 
0-30 

PAGE 

1. The evaluation of a constant-valued expression while calculating the iteration count 
has caused an arithmetic fault; or 

2. The evaluation of a constant-valued expression, while performing the strength 
reduction phase of global optimization, has caused an arithmetic fault. 

2604 TRANSFER OF CONTROL INTO DO LOOP INHIBITS OPTIMIZATION 

The branching structure of a DO-loop is too complex to be analyzed by the optimization 
phase. The code will be correct. but not optimal. The complexity results from branches 
out of and into the DO-loop; most probably the branches are from the extended range 
of the DO-loop. The user should consider simplifying the branching structure of the 
DO-loop in order to obtain optimal code from this compiler. 

2605 MAXIMUM NUMBER OF REDUCIBLE EXPRESSIONS IN DO LOOP 

The maximum number of reducible expressions for a DO-loop has been encountered. 
Any further expressions in the loop will not be considered for optimization. 

2606 VARIABLE xx IS REFERENCED BUT IS NEVER ASSIGNED A VALUE 

A variable name is referred to in the program but nowhere in the program is the variable 
ever assigned any value. A variable may be assigned a value in a number of ways 
including an assignment statement, a DATA statement, use of the variable as a 
subprogram argument and many others. Ordinarily, reference to such a variable with 
no assigned value will refer to a zero value. However, the value referred to may be 
unknown depending upon the options used on the compilation and collection of the 
program. 

2607 VARIABLE xx APPEARS IN A DECLARATION BUT IS NEVER REFERENCED 

The variable is specified in a type or DIMENSION statement but neither it nor any overlays 
is ever used in an executable statement. The program should be checked for 
misspellings, and elimination of the unnecessary variable should be considered. 

2608 DUMMY ARGUMENT xx IS NEVER REFERENCED 

3100 

The dummy argument appears in the argument list of a FUNCTION, SUBROUTINE or 
ENTRY statement but is never used in an executable statement. The program should be 
checked for misspellings, and elimination of the unnecessary argument should be 
considered. 

STMT FUNCTION xx TYPED AS CHARACTER*(*) 

The FORTRAN 77 standard requires a character statement function to have a length 
specification that is a constant integer expression. CHARACTER*(*) is not allowed. 



8244.2 
UP-MJM8ER 

3101 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

STMT FUNCTION xx USED AS TARGET OF ASSIGN. STMT 

UPDATE LEVEL 
0-31 

PAGE 

The FORTRAN 77 standard requires a statement function reference to appear in an 
expression. It does not allow a statement function reference to appear on the left-hand 
side of an assignment statement (at the outer level). ASCII FORTRAN allows this, and 
does not perform any type conversion (to convert the expanded statement function 
expression to the type of the statement function). 

3102 xx USED AS STMT FUNCTION ACTUAL ARG 

The FORTRAN 77 standard requires a statement function actual argument to be an 
expression. It cannot be a statement label, an array name, or a function name. 

3103 CHAR. FUNCTION ENTRY POINTS HAVE DIFF. LENGTHS 

3104 

3105 

The FORTRAN 77 standard states that in a character function, all entry points must be 
typed with the same length specification; that is, all entry point names must have the 
same constant length (for example, CHARACTER*2), or all entry point names must be 
typed CHARACTER*(*). 

MULTIPLE ASSIGNMENT STATEMENT 

The FORTRAN 77 standard allows only one target variable in an assignment statement. 
ASCII FORTRAN allows the source item (on the right-hand side of the equal sign) to be 
stored to more than one target item (on the left-hand side of the equal sign, separated 
by commas). 

NON-CHARACTER ITEM SET TO CHAR. CONSTANT 

The FORTRAN 77 standard does not allow a noncharacter item to be the target (left-hand 
side of the equal sign) of an assignment slatement, where the source item (right-hand 
side of the equal sign) is a character constant, since there is no character te noncharacter 
conversion allowed. The standard has arithmetic assignment statements and character 
assignment statements, with no mixing allowed. ASCII FORTRAN allows this, with no 
conversion performed on the character constant (that is, it is simply stored to the target 
variable). 

3106 DIMENSION FOLLOWS LENGTH FOR ARRAY xx 

The FORTRAN 77 standard states that the local length specification (if any) for a 
character type statement must follow the dimension information (if any). For example, 
the standard requires CHARACTER A(2)*3, while ASCII FORTRAN allows that syntax or 
CHARACTER A*3(2). 

3107 DATA INIT. IN SPEC. STMT. FOR xx 

3108 

The FORTRAN 77 standard allows data initialization only in the DATA statement. ASCII 
FORTRAN also allows it in explicit type and DIMENSION statements. 

LENGTH SPEC. *n APPEARS FOR NON-CHAR. ITEM 

The FORTRAN 77 standard allows a length specification of * n (where n is an integer 
constant) or *( e) (where e is an integer constant expression) only for type character, 
in the explicit type, FUNCTION, and IMPLICIT statements. For example, the forms 
REAL*4, REAL*8, and COMPLEX*8 are not allowed in the standard, but 
CHARACTER*2, CHARACTER*(2+3), and CHARACTER*(*) are allowed. 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

3109 COMPLEX*16 DATA TYPE IS UNDEFINED 

UPDATE lEVEl . 
0-32 

PAGE 

The FORTRAN 77 standard defines the complex data type to be single precision (that 
is. composed of real and imaginary parts that are both single precision real). ASCII 
FORTRAN allows single precision complex (COMPLEX*8) and double precision complex 
(COMPLEX * 16). 

3110 COMPLEX*16 CONSTANT ENCOUNTERED 

The FORTRAN 77 standard has no double precision complex data type (only single 
precision complex). Therefore. a COMPLEX* 16 constant is not allowed. 

3111 FORMAT EDIT DESCRIPTOR xx IS UNDEFINED 

The repeatable edit descriptors J w. 0 w. R w. and E w.d D e are not defined in the 
FORTRAN 77 standard. The nonrepeatable edit descriptors +S. -So and -wX are not 
defined in the standard. These edit codes are allowed in ASCII FORTRAN formats. 

3112 xx CLAUSE ON I/O STATEMENT IS UNDEFINED 

The listed clause is not allowed on the current input/output statement (OPEN. CLOSE. 
or INQUIRE) in the FORTRAN 77 standard. 

3113 END CLAUSE IN WRITE STATEMENT 

The FORTRAN 77 standard does not allow an END= 5 clause on a WRITE statement. 

3114 u'r SYNTAX USED FOR DIRECT ACCESS READ OR WRITE 

The FORTRAN 77 standard does not allow an apostrophe (.) to designate direct access 
I/O. as does ASCII FORTRAN. The standard has separate UNIT= u and REC= r clauses 
for the direct access READ and WRITE statements. 

3115 NON-CHAR. ARRAY xx USED AS FORMAT SPECIFIER 

The FORTRAN 77 standard allows the following for a format specifier in I/O statements: 
statement label. integer variable. character expression. asterisk. or character array name. 
ASCII FORTRAN allows noncharacter array names. in addition to the standard list. 

3116 NAMELIST NAME xx USED IN I/O STATEMENT 

The FORTRAN 77 standard does not allow namelist I/O. The current statement is an I/O 
statement with one of the following formats: 

READ(u.n .... ) 
READ n 
WRITE( u.n .... ) 
PRINT n 
PUNCH n 

where n is a namelist name (declared in a NAMELIST statement). 



8244.2 
UP~UMBER 

( 
3117 

I D-JJ 
PAGE 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

NON-INTEGER SUBSCRIPT USED FOR ARRAY xx 

The FORTRAN 77 standard requires a subscript in an array reference to be an integer 
expression. ASCII FORTRAN allows real or double precision expressions, as well as 
integer expressions. 

3118 CHARACTER*(*) ITEM xx APPEARS IN CONCAT. 

The FORTRAN 77 standard allows a CHARACTER*(*) item (dummy scalar, dummy array 
element, or character function entry point) to appear as a concatenation operand only 
in a character assignment statement, and even then the concatenation may not appear 
in an argument (to either a function or statement function). ASCII FORTRAN allows a 
CHARACTER*(*) item to appear anywhere a character expression is allowed. 

3121 CHARACTER LENGTH SPEC FOLLOWS FUNCTION NAME 

3122 

The FORTRAN 77 standard allows the syntax in the following example for a character 
function specification: 

CHARACTER*5 FUNCTION C(arg) 

ASCII FORTRAN also allows: 

CHARACTER FUNCTION C*5(arg) 

PARAMETER STATEMENT OCCURS AMONG EXF.CUTABLE STMTS 

In the FORTRAN 77 standard, PARAMETER statements are only allowed to be mixed with 
IMPLICIT statements and specification statements. They can not occur after any DATA 
statements, statement function definitions, or executable statements. 

3123 SPEC. STMT OCCURS AFTER DATA OR STMT FUNCTION 

The FORTRAN 77 standard forces all specification statements to occur before any DATA 
statements or statement function definitions are encountered. 

3124 INTERNAL SUBPROGRAMS ARE NON-STANDARD 

The FORTRAN 77 standard does not have the ASCII FORTRAN concept of internal 
subprograms, where a SUBROUTINE or FUNCTION statement occurring inside of another 
program unit with no intervening END statement causes the subprogram to be local to 
the containing external subprogram and to share its declarations. 

3125 STATEMENT NOT ALLOWED IN BLOCKDATA SUBPROGRAM 

3126 

The FORTRAN 77 standard does not allow the INTRINSIC or EXTERNAL statements to 
occur within a blockdata subprogram. 

STATEMENT IS NON-STANDARD 

ASCII FORTRAN has the following statements which are not in the FORTRAN 77 
standard: FIND, PUNCH, ENCODE, DECODE, BANK, DEFINE, NAMELlST, DEBUG, AT, 
DEFINE FILE, START EDIT, STOP EDIT, DELETE, INCLUDE, DISPLAY, TRACE, COMPILER. 



8244.2 
UP-MIMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

3127 OVER 19 CONTINUATION LINES ENCOUNTERED 

UPDATE LEVEl. 
0-34 

PAGE 

The FORTRAN 77 standard allows up to 19 continuation lines. ASCII FORTRAN allows 
as many as necessary as long as the number of significant characters is under 
approximately 1320. 

3128 xx EQUIVALENCED TO A xx ITEM 

The FORTRAN 77 standard does not allow character type items to be equivalenced to 
non character type items. 

3129 xx COMMON BLOCK CONTAINS CHARACTER AND NONCHARACTER ITEMS 

The FORTRAN 77 standard does not allow character type items to be in the same 
common block as noncharacter type items. 

3130 ARRAY xx EQUIVALENCED WITH WRONG NUMBER OF SUBSCRIPTS 

The FORTRAN 77 standard does not allow an array to appear in equivalence with a 
number of subscripts that differs from the number of dimensions specified for the array. 
ASCII FORTRAN allows one subscript to appear on arrays in equivalence even if the array 
was dimensioned with more than one dimension. 

3131 PARENTHESIS MISSING ON FUNCTION STATEMENT 

ASCII FORTRAN allows a FUNCTION statement without parenthesis if the function has 
no arguments. The FORTRAN 77 standard requires them. 

3132 SLASHES xx BRACKET DUMMY ARGUMENT 

For compatibility reasons. ASCII FORTRAN allows the user to bracket a dummy argument 
with slashes: 

SUBROUTINE SUBX(a.lb/) 

The FORTRAN 77 standard does not allow this. 

3133 xx USED INSTEAD OF ASTERISK TO INDICATE A LABEL 

ASCII FORTRAN allows a currency symbol ($) to indicate a label in a dummy argument 
list. and a currency symbol or ampersand (&) to precede a label when passing a label 
to a subprogram. The FORTRAN 77 standard uses an asterisk (*) only. 

3134 FUNCTION SUBPROGRAMS SHOULD NOT HAVE LABEL ARGUMENTS 

The FORTRAN 77 standard only allows label arguments to be passed to and accepted 
by SUBROUTINES. ASCII FORTRAN also allows them with FUNCTION subprograms. 

3135 xx USED IN EXTERNAL STATEMENT 

The FORTRAN 77 standard only allows a list of routine names on an EXTERNAL 
statement. ASCII FORTRAN allows the names to be preceded by & or * (& is ignored; 
* means it is a FORTRAN V subprogram). Also. ASCII FORTRAN allows the routine name 
to be followed by (opt). where opt is ACOB. PL 1. or FOR to indicate the language of 
the routine (FOR is FORTRAN V). 



8244.2 
UI'-NUM8ER 

3136 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

FUNCTION SUBPROGRAM HAS AN ALTERNATE RETURN 

UPDATE LEVEL 
0-35 

PAGE 

The FORTRAN 77 standard does not allow labels to be passed to functions and therefore 
does not allow alternate returns. ASCII FORTRAN allows both. 

3137 MAIN PROGRAM HAS A RETURN STATEMENT 

ASCII FORTRAN treats a RETURN statement in a main program as a STOP statement. The 
FORTRAN 77 standard does not allow a RETURN statement in a main program. 

3138 PARAMETER STATEMENT HAS MISSING PARENTHESIS 

3139 

3140 

According to the FORTRAN 77 standard, a PARAMETER statement needs opening and 
closing parentheses: 

PARAMETER (1=2,j=3,char2='2') 

ASCII FORTRAN also allows the form: 

PARAMETER 1=2,j=3,char2='2' 

INTRINSIC FUNCTION xx USED IN CONSTANT-EXPRESSION 

The FORTRAN 77 standard states that only constant-valued expressions can be used in 
certain places such as the length specification in a PARAMETER statement. The standard 
defines constant-valued expressions as only having constants, other parameter 
constants, and simple operators. No intrinsic functions such as SIN, REAL, and CHAR 
may be used, and only simple integer exponentiation may be used. ASCII FORTRAN 
allows the intrinsic functions and general exponentiation to be used in any place where 
constant expressions are required (except for DIMENSION declarators). However, these 
are not available for use in constant-valued expressions if the compiler was generated 
such that the intrinsic functions are not available at compile time. This is rarely done, 
since the compiler as rel~ased is not generated in this manner. ASCII FORTRAN allows: 

PARAMETER (sinpi 1 = 1.0+sin(3. 1416)) 

LABEL xx ENCOUNTERED IN INITIALIZATION LIST 

The FORTRAN 77 standard does not allow items to be initialized to label values in DATA 
statements, but ASCII FORTRAN does: 

DATA i/&101 

3141 DATA or FORMAT STATEMENT USED TO TERMINATE DO-LOOP 

3142 

ASCII FORTRAN allows a DATA or FORMAT statement to be the terminator of a DO-loop; 
the FORTRAN 77 standard does not. 

OCTAL CONSTANT ENCOUNTERED IN INITIALIZATION LIST 

ASCII FORTRAN allows octal values to be put into variables in DATA statements, and the 
FORTRAN 77 standard does not recognize the letter "0" for octal. For example: 

DATA i/o0400401 



8244.2 
UP-MJMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

0-36 
PAGE 

3143 FIELDATA CONSTANT ENCOUNTERED IN INITIALIZATION LIST 

ASCII FORTRAN allows Fieldata values to be put into variables in DATA statements; the 
FORTRAN 77 standard has no Fieldata data type. For example: 

DATA i/'abcdef'F/ 

3144 BLANK COMMON VARIABLE xx INITIALIZED 

The FORTRAN 77 standard prohibits blank COMMON from being initialized with DATA 
statements. ASCII FORTRAN allows it. 

3145 COMMON VARIABLE xx INITIALIZED IN NON-BLOCKDATA SUBPROGRAM 

The FORTRAN 77 standard allows COMMON to be initialized only inside of a BLOCK 
DATA subprogram. ASCII FORTRAN allows DATA statements on COMMON in any kind 
of program unit. 

3146 NON-CHARACTER ITEM INITIALIZED TO A CHARACTER VALUE 

The FORTRAN 77 standard does not allow noncharacter items to be initialized to 
character values in DATA statements. ASCII FORTRAN does allow this. 

3147 DIGIT STRING xx OVER 5 DIGITS LONG 

The FORTRAN 77 standard only allows up to a 5-digit ostring on a PAUSE or STOP 
statement. ASC" FORTRAN allows more. 

3148 HOLLERITH LITERALS ARE ONLY ALLOWED IN FORMAT STATEMENTS 

The FORTRAN 77 standard does not recognize Hollerith anywhere but in a FORMAT 
statement. ASC" FORTRAN allows Hollerith wherever a character constant may occur. 
Note, however, that when passed as arguments to a subprogram, Hollerith should not 
be passed if the dummy argument in the receiving program is type CHARACTER. If 
Hollerith is passed as an argument, the dummy argument should be anything but type 
character. (This seemingly strange situation is spelled out in the FORTRAN 77 standard, 
Appendix C, paragraph C7. It is done this way to allow existing programs using no 
character data type to continue to operate correctly under the new standard.) 

3149 PARAMETER CONSTANT xx USED AS PART OF COMPLEX CONSTANT 

3150 

The FORTRAN 77 standard does not allow the use of PARAMETER constants as the REAL 
or IMAGINARY portions of a complex constant. ASCII FORTRAN does allow this. For 
example: 

COMPLEX c 
PARAMETER (p 1 =2.,p2=3.) 
c = (p1,p2) 

'$' USED AS A CHARACTER IN THE NAME xx 

Only the letters A-Z and the digits may be used in a name under the FORTRAN 77 
standard. ASCII FORTRAN also allows "$" to be used, though it is discouraged since 
accidental conflicts with the run-time library entry points may occur if subprograms have 
$ in their names. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOAT£ LEVEL 

0-37 
PAGE 

3151 '&' USED AS CONCATENATION OPERATOR 

The concatenation operator is the double slash (II). ASCII FORTRAN also allows the use 
of the ampersand (&). 

CHARACTER*80 c80,c22*22,c2*2 
c80 = c22! /c2 
c80 = c22&c2 

3152 COMPUTED GOTO HAS EMPTY LABEL POSITION(S) 

FORTRAN 77 does not allow missing positions in a computed GOTO. ASCII FORTRAN 
does allow void positions. If a void position is selected, the next statement in sequence 
is executed. 

GO TO (10,20,,40) 1+2 

3153 INTEGER VARIABLE xx USED FOR A LABEL 

3154 

FORTRAN 77 requires labels in the lists that arithmetic IFs and computed GOTOs have. 
ASCII FORTRAN also allows integer variables, which must have received the value of 
some label via an ASSIGN or DATA statement. 

ASSIGN 10 TO ILAB 
GOTO (20,30,ILAB,40) 1+3 

20 IF(J+2) 30,ILAB,40 

ARITHMETIC IF HAS EMPTY OR MISSING LABEL POSITIONS 

FORTRAN 77 does not allow empty or missing positions in an arithmetic IF. ASCII 
FORTRAN allows this, and if that position is selected, the next statement is executed. 

1=2 
IF(I) 10,20 

In this case, the next statement is executed. 

3155 xx SHOULD BE IN AN xx STATEMENT 

The FORTRAN 77 standard says that any subprogram name which is passed as an 
argument must be either in an EXTERNAL statement (jf it is a user-supplied subprogram), 
or in an INTRINSIC statement (if it is a FORTRAN intrinsic function). ASCII FORTRAN also 
allows the names to be passed if they were used previously in source as a valid 
subprogram reference. 

X = SIN(A) 
Y = MYPROG(B) 
CALL SUB2(SIN,MYPROG) 

The previous example is nonstandard, though ASCII FORTRAN allows it to go through 
with no error. 



8244.2 
UP-NUMIIIR 

SPERRY UNIVAC S.ries 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

3156 xx INLINE COMMENTS ENCOUNTERED IN xx 

Inline comments are nonstandard in FORTRAN 77. For example: 

x = 1.5 @ comments here 

3157 FUNCTION xx IS NOT A STANDARD INTRINSIC 

0-38 
PAGE 

The function referred to is an intrinsic function in ASCII FORTRAN. but is not included 
in FORTRAN 77. 

3158 ARGUMENT TYPE IS INCORRECT FOR FUNCTION xx 

ASCII FORTRAN allows any intrinsic function to be used as a generic name of a function; 
for example. DSIN(real) will call SIN automatically. This capability is limited to a small 
number of generic functions in FORTRAN 77. 

6301 'BANK' STATEMENT IGNORED IN 'CHECKOUT' MODE 

A user module compiled and executed with the checkout option (@FTN.C) must be 
self-contained. Since it is not collected into an absolute. the BANK statement has no 
meaning and is ignored. 

6302 'COMPILER' STATEMENT IGNORED IN 'CHECKOUT' MODE 

The BANKED= options of the COMPILER statement are not allowed in checkout mode 
since the user's program cannot be banked by the user. Note that the LlNK=IBJ$ and 
the DATA= options are allowed. however. 

/"--"", 



8244.2 
UP-NUMBER 

(:' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

E-1 
PAGE 

Appendix E. Conversion Table 

Table E-l (on the next page) shows if a specific data type can be converted to another desired data 
type. If conversion is possible. a brief description of the method of conversion is given. 

\ .~ 
\ 



8244.2 
UI4tUM8ER 

Desired 
Type 

INTEGER 

REAL 

DOUBLE 
PRECISION 

COMPLEX 

or Logical 

INTEGER 

Store. 

Float. 
Store. 

Double 
float. 
Store. 

Float. 
Store to 
real part. 
Store 0 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Table £-1. Conversion Methods for Arithmetic Data 

Present Type of Expression 

REAL DOUBLE 
PRECISION 

Fix. Fix. Store. Fix. Store 
Store. real part. 

Ignore 
imaginary 

part. 
Store. Contract to Store real 

single. part. 
Store. Ignore 

imaginary 
part. 

Extend Store. Extend real 
to part to 

double. double. 
Store. Store. 

Ignore 
imaginary 

part. 
Store Contract to Store. 

to real single. 
part. Store to 

Store 0 real part. 
as Store 0 as 

UPDATE lEVEL 
E-2 

PAGE 

Store. 

Not 

Not 

'I'-
., 



8244.2 
UP-MJMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

F-1 
PAGE 

Appendix F. Tables of FORTRAN Statements 

Tables F-1 and F-2 specify whether a FORTRAN statement is executable or nonexecutable. 

Table F-1. Nonexecutable Statements 

General Category 
Specification statements 

Data initialization statement 
Format statement 
Function defining statement 
Program unit headings 

DIMENSION 
COMMON 
EQUIVALENCE 

Statement 

.·.····SANK;······.·.······ ... ·.· ........ ·················· ..... . ·······EXTERNAC········· 
~~M~~~~ji' 
PARAMETER 
INTRINSIC 
IMPLICIT 
Explicit Type statements: INTEGER. REAL. 

DOUBLE PRECISION. COMPLEX. LOGICAL. 
CHARACTER 

SAVE 
DATA 
FORMAT 
Statement function definition (PF;F~~F;)' 
PROGRAM 
FUNCTION 
SUBROUTINE 
ENTRY 
BLOCK DATA 
fN~L;t)P~..:.····.· 



8244.2 
lJP..NUMIIEII 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

statements 

Table F-2. Executable Statements 

ass nment statement 
logical assignment statement 
Character assignment statement 
ASSIGN 

GO TO statements 
Arithmetic and logical IF statements 
Blocking statements (block IF. ELSE IF. 
ELSE. and END IF) 
CAll 
CONTINUE 
RETURN 
STOP 
PAUSE 
DO 
END 

WRITE 
PRINT 
'p···'U·'·N·'···C····'H''' .. 
L~ L::::. : .. :. ~ :;. :;.~ 
REWIND 
BACKSPACE 
ENDFllE 

OPEN 
CLOSE 
INQUIRE 

-~~--~~~~~~ 

F-2 
PAGE 



8244.2 
UP-NUMIER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE I..E\IEl 

G-1 
PAGE 

Appendix G. ASCII FORTRAN Input/Output Guide 
L_, 

G.1. General 

ASCII FORTRAN performs run-time input/output using the Processor Common I/O Modules. 
Processor Common I/O consists of a number of common bank modules which access the various file 
types and a number of processor interface common bank modules for the various ASCII processors 
such as COBOL, FORTRAN, and PUI. 

Code compiled by ASCII FORTRAN references the ASCII FORTRAN I/O processor interface module 
which references the required Processor I/O Common Bank Modules. The Processor Common I/O 
System (PCIOS) is used by the ASCII FORTRAN run-time system for I/O compatibility between the 
various language processors (see the Processor Common Input/Output System (PCIOS) Interface 
Description, UP-8478 (see Preface)). All ASCII FORTRAN SDF and ANSI files are accessed via PCIOS. 
The specialized ASCII FORTRAN interface module handles all formatting and conversions, with the 
actual I/O being done in PCIOS modules. However, because of a PCIOS restriction, I/O processing 
cannot be done to word-addressable mass storage. The ASCII FORTRAN interface module also 
handles all symbiont I/O (PRINT, PUNCH, READ). 

The ASCII FORTRAN programmer may access the following file formats: 

• SDF (System Data Format) 

• ANSI (American National Standard Institute Magnetic Tape Interchange Format) 

• ASCII symbiont 



8244.2 
UNMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

G-2 
PAGE 

G.2. System Data Format (SDF) File 

An SDF file produced by ASCII FORTRAN is explained in this subsection. 

G.2.1. SDF File Description 

An SDF file produced by ASCII FORTRAN contains a label record, data records or record segments, 
an end-of-file record, and possibly bypass records. 

Each record or record segment has a control word in front of it. This control word has the form: 

T1 T2 55 56 

I p f 5 

where: 

I is the length of the data record or record segment if bit 35 is set to zero. A data record 
or record segment length must be in the range zero to 2,047 words. If bit 35 is not zero, 
the value of I may be: 

Value 

05400 

05033 

05100 

07700 

040x 

Meaning 

End-of-reel 

Label image 

Continuation 

End-of-file image 

Bypass images where x is the length of the bypass image with a range 
o SxS63 

p is the I field from the previous record or record segment. This field is used in backspacing. 

f is: 

n For unformatted records this field contains a count n of the number of bits 
used in the last word of the record. 

077 Dummy record. Dummy records are produced when a direct access file is 
skeletonized. 

5 is the record segment indicator: 

Value 

00 
01 
02 
03 

Meaning 

Record not segmented 
First segment of record 
Last segment of record 
Not first or last segment of the record 



8244.2 
UI4tUMBER 

("" 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

G-3 
PAGE 

SDF records are segmented to conserve main storage space when processing large unformatted 
records. 

The direct access SDF has the same format as a sequential SDF file except all records in the file are 
the same length. When a direct access file is skeletonized, dummy records are written in the file. 

G.2.1.1. SDF Labels 

The SDF label contains the file's maximum record size, the block size the file was written with, the 
record segment size, file type, and other information pertinent to processing this file. The label record 
is the first record of the file. 

The format of a PCIOS SDF label record is: 

o 050 I 033 I 035 ASCII flag 

file 

2 name 

3 type I orig I level recovery offset 

4 block size record size 

5 date 

6 address of next file 

7 largest record key allowed 

8 largest record key written 

9 rcd\ 1 \offset segment size 

10 ffc I skel flag I 0 record size in characters 

11 address of previous file 

12 0 

13 0 

14 

(Words 14 through 27 are written as they 
appear in the label area at open time.) 

26 

27 



8244.2 
UP-fNMBER 

SPERRY UNIVAC Seri .. 1100 
FORTRAN (ASCII) Programmer Reference UPOATELML 

G-4 
PAGE 

Word 0 is the label control word in which a Fieldata X (035) identifies this SDF file as having been 
made by the Processor Common Input/Output System (PCIOS). The ASCII flag has a value of 1 for 
ASCII files. 

Words 1 and 2 contain the internal file name used when the file was created. 

In Word 3: 

type 

orig 

level 

recovery offset 

In Word 4: 

block size 

record size 

indicates the type of SDF file: 

01 = sequential 

02 = direct 

indicates the originator: 

01 = ASCII FORTRAN pre-level 9R 1 

02 = ASCII PUI 

03 = ASCII FORTRAN 

04 = ASCII COBOL 

indicates that the C2DSDF/C2SSDF file was created or extended by PC lOS 
level 4R 1 or higher. 

is valid only if level is set; it is set by C2DSDF/C2SSDF and holds the word 
offset of record n + 1 in the last file block. C2SSDF uses this for output 
extend recovery in the event of system failure during an extend operation. 

specifies the block size (in words) of the file. 

specifies the record size (in words) of the file. 

Word 5 contains the date when the file was created. 

Word 6 contains the mass storage address of the next file for sequential stacked files on mass storage. 
This field will be zero for SDF direct files. 

Word 7 indicates the maximum relative record number which is allowed for a direct SDF file. This 
word is zero for sequential files. 

Word 8 specifies the highest record number actually written in this direct SDF file. This word is zero 
for sequential files. 

In Word 9: 

rcd\ 1 \ offset indicates the word offset for relative record number 1. 

segment size indicates the segment size (in words) used when creating this file. 



8244.2 
UP-NUMBER 

( 

( 

( 

In Word 10: 

ffc 

skel flag 

record size 
in characters 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

is the FORTRAN record format control code. 

is a skeletonization flag for direct SDF files. 

is the record size in characters of the file. 

UPDATE LEYEl 
G-5 

PAGE 

Word 11 contains the address of the previous file if files are stacked on mass storage. For the first 
file. this word is -0 since there is no previous file. 

Presently. words 12 and 13 are not used. 

Words 14 through 27 will be written as they appear in the label area (PTLFMA) when the open output 
was called. 

G.2.1.2. SDF Data Records/Record Segments 

SDF data records can be character data or word oriented. The length of an SDF data record is 
maintained in the file as words. An SDF record can be any length but they will be automatically 
segmented when the record is written if they exceed the segment size for that particular file. 

The segment size for a particular file is specified in the File Control Table (FCT) for that file. The 
segment size for an SDF file is specified by the user in the SEG clause of the OPEN statement or in 
the ss field of the sequential DEFINE FILE statement. If no OPEN or DEFINE FILE statement is specified 
and the file is an input file. the segment size field of the SDF label is used. 

If the file is an output file and no OPEN or DEFINE FILE statement was specified. the default segment 
size specified in the Storage Control Table (SCT) is used (see G.7). 

In order to minimize I/O overhead w,",en processing sequential files. a segment size greater than or 
equal to the record size should be specified in the OPEN or DEFINE FILE statement. 

The maximum record size for the SDF file pertains to records other than unformatted records. since 
these other records are not processed by segments (although they are segmented when they are 
written in the file) like unformatted records are. Records other than unformatted records are 
processed by the FORTRAN editing routines as complete records. To ensure there is space for the 
complete record in the intermediate record area. the maximum size that may be encountered must 
be known. The maximum record size for a particular file is maintained in the FCT for that file. The 
maximum record size for an SDF sequential file is specified by the user with the MRECL clause of 
the OPEN statement or in the rs field of the DEFINE FILE statement. If no OPEN or DEFINE FILE 
statement is specified and file is an input file. the maximum record size field of the SDF label is used. 
The default maximum record size specified in the SCT is used for output files if no OPEN or DEFINE 
FILE statement was specified (see G.7). 



8244.2 
UP-NUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.2.1.3. SDF Block Size 

UPDATE LEVEL 
G-6 

PAGE 

The block size for an SDF sequential data file is specified by the BLOCK clause of the OPEN statement 
or by the bs field of the sequential DEFINE FILE statement. If not specified. the default size is 224 
words. The block size is independent of record size since records span the block when necessary. 
Record size can be larger than block size. When choosing a block size. the user should be aware 
of the following: 

• The block size field bs (or bsize) specifies the number of words in the block. In order to minimize 
I/O overhead. block size should be larger than segment size. 

• Tape files must be processed with a block size at least as large as the block size they were 
created with. 

• Mass storage files must be processed with the exact size they were created with if they were 
created with a block size that is not an increment of 28 words. 

• For disk mass storage files. block size should be a multiple of the prep factor (28. 56. or 112) 
to eliminate the Executive read-before-write. 

• A number of systems processors (such as ED and DATA) and symbionts require a block size of 
224 words. 

• Mass storage files that were created with a block size that is an increment of 28 words may be 
read with a different block size. However. this block size must be an increment of 28 words. 

• I/O overhead can be reduced by choosing a block size which is greater than or equal to the 
record size (or a multiple of it). and which is a multiple of the prep factor. 

G.2.1.4. SDF End-of-File Record 

The SDF end-of-file record is written in the last word of the last block. It has the form: 

T1 T2 55 56 

07700 P' o o 

where P is T 1 from the previous image control word. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.2.1.5. SDF File Layout 

The SDF file layout may have one of two forms: 

Sector 0 

a 

16 

Sequential SDF File on 
Mass Storage* 

label record 
data record # 1 
data record #2 
data record #3 
data record #4 
data record #5 
data record #6 
data record # 7 
bypass record 
bypass record 

EOF record 

Sector 0 

4 

UPDATE LEVEL 
G-7 

PAGE 

Direct SDF File on Mass 
Storage 

label record 
bypass record 
b'tpass record 
bypass record 

record #1 
record #2 
record #3 
record #4 
record #5 
record #6 
record #7 
EOF record 

* For SDF sequential tape files, the file may be blocked as shown with eight sectors per block. 

( G.2.2. SDF File Processing 

When the FORTRAN compiler encounters an I/O statement, it generates an I/O packe.t and a call to 
the FORTRAN I/O processor interface module (in C2F$ or in a relocatable library). The interface 
module does a lookup in the File Reference Table (FRT) using the unit reference number as an index. 
The FRT entry has a pointer to the FCT if that unit has already been opened. This pointer is zero if 
the file is not open. If the pointer is zero. the interface module gets space from the free core area 
for the FCT and the buffers. The interface module generates the FCT using the information given on 
the OPEN or DEFINE FILE statement, the input label. or default information. The interface module calls 
on PCIOS to open the file for input or output when required. The processor interface module also 
calls on PCIOS to actually read, write, backspace and close (endfile) when specified. Record editing 
is done in the ASCII FORTRAN library. 

G.2.2.1. Sequential Access 

Records are input/output using a double buffering process. Records are generated in an intermediate 
record area on output and then buffered to the file device. On input, records are processed within 
the input buffer if they are contained within the buffer or moved to the intermediate record area if 
they are not. When records are buffered out to the file they are automatically segmented at the 
segment size specified in the FCT. 

The intermediate record area must be large enough to handle the largest formatted, list-directed or 
namelist record it may encounter or the largest segment it may encounter for unformatted records. 
Initially this area is set to the default maximum record size or default segment size specified in the 
SCT (see G.a), whichever is larger. When an OPEN or DEFINE FILE statement is encountered with a 
larger maximum record size specification or a larger segment size specification. this area is freed and 
another area is obtained from the free main storage area. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

G-8 
PAGE 

Unformatted records are processed by segments. Therefore, the maximum record size field of the 
OPEN or DEFINE FILE statement does not apply. The segment size specified in the FCT determines 
the size of the segments. 

The programmer must specify the maximum record field on the OPEN or DEFINE FILE statement to 
be able to write formatted records larger than the default record size specified in the SCT. 

The ENDFILE statement will write the SDF end-of-file record in the file and write the last block on 
the file device. Each block in an SDF file is the uniform block size specified for that particular file. 
This uniformity is accomplished by filling the last block with bypass records and writing the 
end-of-file record as the last word in the last block. After an ENDFILE statement, the file is positioned 
so that a WRITE statement will begin another SDF file on the device. WRITE, REWIND, BACKSPACE, 
and ENDFILE (creates an empty file) are allowed after an END FILE. 

The BACKSPACE statement backspaces over all segments of a record if the record is segmented. 

G.2.2.2. Direct Access 

Direct 3ccess processing uses the record number to compute the location of the record within the 
file. The record is then read into a buffer unless the record already resides in the buffer due to a 
previous read. 

The buffer size specified by the BUFR clause of the OPEN statement is used to determine the number 
of records read/written on an EXEC I/O request. A larger buffer size will reduce the number of I/O 
requests needed in cases where record access tends to be localized. 

If skeletonization is specified when a direct access file is initially created, dummy records will be 
written to the file resulting in all necessary storage being acquired if not already acquired. The dummy 
records, if not written over by subsequent WRITE statements, will be recognized as nonexistent 
records on subsequent read statements. Detection of a dummy record on a direct access read is 
indicated by error code 1053. 

If skeletonization is not specified when a direct access file is initially created, no dummy records are 
written to the file. Nonexistent records are not recognized on a direct access read of a 
nonskeletonized file. In fact, if only a maximum file size is provided when assigning the file, storage 
for areas of the file not yet written to will not actually be acquired until a write to that area takes place. 

If nonexistent records must be recognized on a r~ad of a direct access file, the file must be 
skeletonized when initially created and when extended. 

Reading areas of a nonskeletonized direct access file before they have been written to may result in 
an I/O error with a status of 5 if the area meant to hold the requested record has not yet been acquired. 

Direct access records are only segmented when the records are longer than 2,047 words. 

Direct access SDF files may be read using sequential I/O statements. Records will be read in 
ascending record number order. Only records previously written (that is, bypass and dummy records 
are ignored) will be returned. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I G-" 

PAGE 

G.2.3. SDF Files Not Written by Processor Common I/O 

SDF files not produced by the Processor Common I/O System such as FORTRAN V SDF files may be 
read sequentially with ASCII FORTRAN if the data within the record is compatible with ASCII 
FORTRAN. These files may only be read. Backspacing is not allowed. 

No attempt is made to determine what type of record is being used. If an unformatted read is 
specified, the record is treated as an unformatted record. If a formatted read is specified, the record 
is treated as a formatted record. 

Formatted records are read into the intermediate record area and if the SDF label specifies Fieldata 
(bit 0 of the label control word = 0), the complete record is translated to ASCII before the record 
is edited. If the file has formatted records larger than the default maximum record size, an OPEN or 
DEFINE FILE statement must be used. 

If the file has segmented records, it is assumed that they are segmented using the SDF continuation 
control image (051). For formatted reads, all segments of the record are read into the record area 
before the record is edited. For unformatted reads, the record will be processed by segments. If 
unformatted records are to be read which are larger than the default segment size specified in the 
SCT, the OPEN or DEFINE FILE statement must be used to indicate this. 

The files may reside on tape or mass storage. If mass storage contains stacked files (WRITE, ENDFILE, 
WRITE), only the first file can be read. These files can be copied to tape with the B option and then 
processed as tape files. 



8244.2 
UI4tUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.3. ANSI Magnetic Tape Interchange Format 

UPDATE LEVEL 
G-10 

PAGE 

The ANSI file formats produced by ASCII FORTRAN comply with the American National Standards 
Institute (ANSI) magnetic tape interchange format as described in the American National Standards 
proposal X3L5/365T, dated September 27, 1973, and titled "Magnetic Tape Labels and File Structure 
for Information Interchange". 

G.3.1. ANSI File Description 

An ANSI file may be labeled or unlabeled. If the J option is present on the assign of the tape, an 
unlabeled ANSI file will be read or written. If the J option is not present, a labeled ANSI file will be 
read or written. 

A labeled ANSI file produced by ASCII FORTRAN contains a header label group, data blocks and a 
trailer label group. Data blocks are separated from the header and trailer labels by a tape mark. Files 
on a tape are separated by a tape mark. 

The header label group consists of the VOL 1 Label, HDR 1 label and the HDR2 label. The trailer label 
group consists of the EOF 1 label and the EOF2 label. If a file spans tape reels, the EOV 1 and EOV2 
labels terminate all file sections except the last file which is terminated by the EOF 1 and EOF2 labels. 

Labels are written using the Executive tape labeling facilities (TLS). The volume labels are only present 
in the first header label group of each tape and are automatically processed by TLS. 

Labeled ANSI magnetic tapes have the following structures. Asterisks (*) indicate tape marks. 

• For a single file, single volume: 

VOl1 HOR1 HOR2*IOata Block 1110ata Block 2110ata Block 31* EOF1 EOF2** 

• For a single file, multivolume: 

VOl1 HOR1 HOR2*IOata Block 1110ata Block 2110ata Block 31* EOV1 EOV2** 

VOl1 HOR1 HOR2*IOata Block 41* EOF1 EOF2** 

• For a multifile, single volume: 

VOl1 HOR1 HOR2*IOata Block 11110ata Block 121* EOF1 EOF2** 

HOR1 HOR2*IOata Block 21110ata Block 221* EOF1 EOF2** 

• For a multifile, multivolume: 

VOl1 HOR 1 HOR2* 10ata Block 1111 Data Block 121 

10ata Block 131 * EOF1 EOF2 * HOR1 HOR2*1 Data Block 211* EOV1 EOV2** 

VOl1 HOR1 HOR2* 10ata Block 22110ata Block 231* EOV1 EOV2** 

VOl1 HOR1 HOR2*IOata Block 241* EOF1 EOF2* HOR1 HOR2*IOata Block 311* EOF1 EOF2** 

An unlabeled ANSI file produced by ASCII FORTRAN allows the use of the ANSI record formats by 
sites which do not have TLS. 



8244.2 
Ul4lUM8ER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

G-11 
PAGE 

All of the ANSI record formats are available on output when creating an unlabeled ANSI tape with 
ASCII FORTRAN. Creation of a null or empty unlabeled ANSI tape file will not be permitted. 

On input. all ANSI record formats may be read provided the unlabeled ANSI tape was created by ASCII 
FORTRAN or the data on on the unlabeled ANSI tape meets the requirements of the ANSI standards. 
Reading data blocks from unlabeled foreign tapes is only possible when using the U, F, or FB record 
formats. 

Since there are no labels, PCIOS is unable to compare record size, block size, buffer offset. and record 
format. It is the user's responsibility to ensure that the values passed to PCIOS (via the OPEN and 
DEFINE FILE statements) are correct for the file to be read. 

The structure of an unlabeled ANSI magnetic tape is: 

• For a single file, single volume: 

10ata Block 1110ata Block 2110ata Block 31** 

• For a single file, multivolume: 

• 

• 

10ata Block 1110ata Block 2110ata Block 31* Iswap Blockl** 10ata Block 41** 

For a multifile, single volume: 

10ata Block 11110ata Block 121* 10ata Block 21 II Data Block 221** 

For a multifile, multivolume: 

10ata Block 11110ata Block 12110ata Block 131* 10ata Block 211*ISwap Blockl** 

10ata Block 221 1 Data Block 231*ISwap Blockl** 10ata Block 241*IOata Block 311** 

The user may specify the following record formats using the OPEN statement described in 5.10.1 or 
the sequential DEFINE FILE statement described in 5.6.6. The data block format is dependent on the 
record format and blocking factor chosen. 

Format 

Undefined 

Fixed-unblocked 

Fixed-blocked 

Variable-unblocked 

Description 

The record is written with no control information appended to 
it. The records may be variable in length. Each data block 
contains only one record. 

The record is written with no control information appended to 
it. All records are of the same length. Each data block contains 
only one record. 

Basically the same as fixed-unblocked; however, each block 
contains one or more records. Each data block has the same 
number of records except possibly the last block. The last 
block is truncated if it does not contain the full number of 
records. 

The record is written with four characters of control 
information indicating the record length in ASCII characters 
appended to it. The records may be variable in length. The 
data bloc-k contains only one record. 



8244.2 
Uf'~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

G-12 
PAGE 

Variable-blocked The same as variable-unblocked except that the block will 
contain as many complete records as possible. 

Variable-unblocked-segmented The record is segmented at the block boundary. Appended to 
each record segment are five characters of control 
information. The first character is the record segment 
indicator and the remaining four are the segment length. The 
data block contains only one segment of the record. 

Variable-blocked-segmented Similar to variable-unblocked-segmented; however, each 
block may contain more than one record segment but never 
more than one segment of the same record. 

The segment indicator character has the following meaning: 

Value 

o 
1 
2 
3 

Meaning 

Record begins and ends in this segment 
Record begins but does not end in this segment 
Record neither begins nor ends in this segment 
Record ends but does not begin in this segment. 

ASCII FORTRAN I/O does not produce any control information on the front of the oatablock; hence 
the buffer offset field of the HDR2 label is set to zero. Files with such information can be read with 
ASCII FORTRAN but the OFF clause of the OPEN statement or the buffer offset field of the DEFINE 
FILE statement must indicate the size in characters of this control information. No attempt is made 
to interpret this control information. It is skipped over when reading the file. 

ANSI files are treated as character data files and are processed internally in Quarter-word mode. The 
actual format of the data written on the tape depends upon whether or not the tape is being written 
through an MSA or not. 

To produce an ANSI file that is to be interchanged, an MSA must be available and the Quarter-word 
(MSA A) format must be specified in the format field of the ASG control command. The programmer 
may specify the 6-bit packed (MSA B) format or the a-bit packed (MSA C) format but the tapes will 
not be interchangeable because of the way the data is written to the tape. The programmer specifies 
which format he desires in the format field of the ASG control command. The format specified when 
the tape is written must also be specified when the tape is read. If an MSA is not available, the default 
formats are a-bit packed for 9-track tapes and 6-bit packed for 7-track tape. 

Block padding may be done on output depending upon the format with which the tape is being 
written. The pad character is the ASCII circumflex. 

Format 

Quarter-word 

a-bit packed 

6-bit packed 

Result 

No padding is done since the block is truncated at the last data 
character of the data block. 

The block may contain 0, 1, 2, or 3 pad characters since an increment 
of words must be written. 

Blocks may contain 0, 1, 2, or 3 pad characters since an increment 
of words must be written. 



8244.2 
UP-NUMBER 

( 

(' 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

G.3.2. ANSI File Processing 

ANSI files are processed much the same as SDF files with the following exceptions: 

G-13 
PAGE 

• ANSI records are always moved to the intermediate record area on input and generated in the 
intermediate record area on output. This means that unformatted records are not processed by 
segments so the maximum record field of the OPEN or DEFINE FILE statement must reflect the 
largest record being read or written whether it is formatted or unformatted. 

• ANSI records are moved to and from the buffers character by character rather than by words. 

• The BACKSPACE request must not be specified if the records are blocked. 

• Unformatted records must not be written to a file using quarter-word (MSA A) format unless all 
the variables are character type, since this format strips the ninth bit of each quarter word. 
Therefore, if this bit is not zero, the block is truncated. 

G.3.3. ANSI Interchange Tapes from Other Systems 

ANSI Interchange tapes written on other systems must be read through an MSA in quarter-word 
mode. If read with the other formats (S-bit or 6-bit) the data would not be aligned in the read buffer 
correctly. 

These ANSI files may have control information in the front of the data block. If so, this must be 
specified in the OFF clause of the OPEN statement or the buffer offset field of the DEFINE FILE 
statement. This control information is ignored and can be from 1 to 99 characters long. 

These files may contain pad characters (ASCII circumflex) after the data in the data block, but the 
last character of a data record must not be an ASCII circumflex pad character. 

Labels other than HDR 1, HDR2, EOF 1, EOF2, EOV 1, or EOV2 are ignored. 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.4. ASCII Symbiont Files 

UPDATE LEVEL 
G-14 

PAGE 

In order to read symbiont input files or write symbiont output files. the user must dedicate certain 
unit reference numbers to these files. This is done by generating the file reference table (FRT) (see 
G.6) or by using an OPEN or DEFINE FILE statement. The unit reference number dedicated to the 
particular type of symbiont file desired is referenced in input/output statements. 

OPEN. READ. INQUIRE. and CLOSE are the only I/O statements allowed for an input symbiont file. 

OPEN. WRITE. ENDFILE. INQUIRE. and CLOSE are the only I/O statements allowed for output symbiont 
files. ENDFILE is allowed only for the APUNCH$ and APNCHA$ files and causes an @EOF card to 
be punched. 

Queuing of alternate print (APRNTA$) and punch (APNCHA$) files for symbiont processing is done 
as follows: 

• If the alternate file is assigned to the run as a new file prior to execution of the FORTRAN program 
with an @ASG.C statement, the FORTRAN I/O will do a @BRKPT when the file is closed. It is 
up to the user to do the @FREE and @SYM to have it printed or punched. 

• If the alternate file is assigned to the run with the @ASG.A statement prior to the execution of 
the FORTRAN program. the FORTRAN I/O will do a @BRKPT when the file is closed. It is up 
to the user to do the @SYM to have it printed or punched. 

• If the alternate file is not assigned to the run when a batch FORTRAN program is executed. the 
FORTRAN I/O will not do an assignment but will allow the Executive to assign the file when the 
first ER APRNTA$ or ER APNCHA$ is done. (See the EXEC Programmer Reference. UP-4144.3 
(see Preface).) The FORTRAN I/O will direct output to an alternate print file via @BRKPT when 
the file is closed. The Executive will automatically queue the file for printing or punching when 
the breakpoint is done. Note that in demand the user must assign the alternate file. 

The default symbiont record sizes are as follows: 

• APRINT -APRNTA-AREADA - 132 characters 

• APUNCH-APNCHA - 80 characters 

• AREAD - 80 characters 

These defaults may be changed by the OPEN or DEFINE FILE statement. 



8244.2 
UP-MJMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.5. Unit Reference Number and File Assignment 

UPDATE LEVEL 
G-15 

PAGE 

The FORTRAN language refers to files through a unit reference number. The Series 1100 Operating 
System maintains files under an external file name of the form: 

[[qualifier] *]file-name[ (F-cycle)] [I [read-key] [I [write-key]] 

See the current EXEC Programmer Reference, UP-4144.3 (see Preface) for a description of the 
external file name. 

The unit reference number must be linked to the external file name before the file can be referenced. 
Note that the external file may not be word-addressable mass storage (equipment types 020-027) 
because of a PCIOS restriction. The unit reference number may be linked to the external file name 
in one of three ways: 

• If the FILE clause is present in the OPEN statement, a @USE unit reference number, file-name 
will be performed at execution time. The file name in the FILE clause is restricted to the form: 

[qualifier *] file-name [.] 

• Use the unit reference number as the file-name when the file is assigned: 

@ASG,T 4,U,BLANK 

• Use the unit reference number as an alternate or internal file name by linking it with the external 
file name using the USE command: 

@ASG.A FILEX 
@USE 4,FILEX 

When a FORTRAN program that refers to a file is executed, that file may already be assigned to the 
run, cataloged, or nonexistent. 

If the file is already assigned, the unit reference number must be linked as described previously. 

If the file is cataloged and not assigned to the run, it will automatically be assigned by the FORTRAN 
1/0 Module if the file is not rolled out. The file must be cataloged with the unit reference number 
as the file-name or, if the FILE clause of the OPEN statement is not used, a USE command must have 
been performed prior to execution linking the unit reference number with the cataloged file name. 

If the file is neither assigned nor cataloged, a temporary mass storage file of 128 tracks will be 
assigned for sequential files by the FORTRAN 1/0 Module. For direct access files, the track size is 
determined from the OPEN statement clauses or DEFINE FILE statement parameters, and may be less 
than 128 tracks. If the location in the file reference table designates this as a symbiont APRINT$, 
APUNCH$, or AREAD$ file, then no file assign is attempted since file space for these symbionts is 
handled by the Executive. 

Once a file refere'1ce number is associated with a file and that file is opened, the file reference number 
may not be associated with another file until the first file is closed via either the CLOSE statement 
or the CLOSE service subroutine. 



8244.2 
UI4IIUM8ER 

." 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.6. File Reference Table Element - F2FRT 

UPOATEUVEl 
G-16 

PAGE 

The element F2FRT is the file reference table (FRT). The FRT is a variable length table of one-word 
entries which is used to link the unit reference number with the file control table for the physical file 
being processed. The unit reference number is used as an index into the FRT. 

The entries in the FRT contain a pointer to the file control table if the file has been opened or zero 
if the file is not open. In the latter case, an automatic open will occur when that particular unit is 
referenced with an I/O statement. The FRT entry may also contain a code in S2 designating the unit 
as a symbiont file as follows: 

Code File Indicated 

051 APRINT$ symbiont 
052 APUNCH$ symbiont 
053 AREAD$ symbiont 
054 APRNTA$ alternate symbiont 
055 APNCHA$ alternate symbiont 
056 AREADA$ alternate symbiont 

The format of the file reference table is: 

-3 
-2 
-1 

F2FRT$+0 
1 
2 
3 
4 

n 

where: 

Sl 

U 
0 
0 
0 
0 
0 
0 
0 

0 

S2 

U5~ 

052 
051 

s 
s 
s 
s 
s 

s 

S3 

a 
a 
a 
a 
a 
a 
a 
a 

a 

H2 

f 
f 
f 
f 
f 
f 
f 
f 

f 

f is set to zero until a reference is made to the unit. Then it contains the address of the file 
control table. 

a indicates the file status. 

Value 

o 
1 
2 
3 

Status 

Never referenced 
Open 
Closed 
Reread unit 

s is a symbiont code or zero. 



8244.2 
UP-NUMIIER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

G-17 
PAGE 

F2FRT -1, -2, -3 are used for those I/O statements that do not have a unit designated, implying one 
of the symbionts APRINT$, APUNCH$, or AREAD$. 

An installation may generate a new file reference table by remaking the F2FRT element as follows: 

@PDP FTNPROC,FTNPROC 
@MASM,SI F2FRT,F2FRT 

F$FRT f . Procedure call 
PR I 
PU I 
CR I 
APR I 
APU I 
ACR I 
RR I 
END 

where: 

f is the largest unit reference number to be accessed; PR, PU, CR, APR, APU and ACR specify 
the symbionts APRINT$, APUNCH$, AREAD$, APRNTA$, APNCHA$, and AREADA$, 
respectively. RR specifies that the unit is to be a reread unit. 

I is a unit reference number list of the form U l' U 2' ... ,U n. Each U must be in the following 
range: 0 ~ U~ f. The units specified will be designated as symbiont files of the type 
specified in the operation field (PR, PU, etc.) or as a REREAD unit. If a unit is specified in 
more than one operation it will get the designation of the last operation field. 

The operation fields PR, PU, etc. may be given in any order, but F$FRT must always be the 
first operation. 

When an entry in the file reference table is designated as one of the symbiont types above, it must 
be used for that type of symbiont file u"less an OPEN statement is used to specify another file type. 

F2FRT is released with the following designation: 

@PDP FTNPROC, FTNPROC 
@MASM,SI F2FRT,F2FRT 

F$FRT 30 
PR 6 
PU 1 
CR 5 
RR 0 
END 

The OPEN statement may be used to override and modify the symbiont code field specified when the 
file reference table was built provided the unit had never been opened before or had a file status of 
closed before the OPEN statement. The new code (or zero for SDF and ANSI) will remain in effect 
for the duration of the run or until reset by another OPEN statement. 



8244.2 
UP-HUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

G-18 
PAGE 

------------~~-----------------------

G.7. Free Core Area Element - F2FCA 

Storage for record areas, buffers, file control tables and floating-point conversion is obtained from 
the free core area when required. A scratch area must added when using the Sort/Merge interface 
(see L.3.3 and the CORE= clause in L.4.1). The free core area is generated as follows: 

@PDP FTNPROC,FTNPROC 
@MASM,SI F2FCA,F2FCA 

F$FCA 5 . procedure call 
END 

where 5 is a number indicating the amount of storage required. It may be 0 or void. The amount 
of space required can be calculated from the following formula: 

Variables 

a 

b 

c 

Determination 

1 +2* m 1 + (m 2+ m 3)*(default-segment-size) 

where: 

m 1 = default-segmen.t-size or largest record size, whichever is larger. 

m 2 = 2, if any DEBUG statements are present in the FORTRAN program; 
otherwise, m 2 = o. 

m 3 = 2, if any calls to PDUMP or FTNPMD or any F-option FTN 
compilations are present in the FORTRAN program; otherwise, m 3 = o. 

There will be a b for every file active and the size of b depends upon the type 
of file (SDF, ANSI or symbiont). 

For symbiont files: 

b = 64 + 1 

For SDF direct files: 

b = 64 + 2*(record-size + 1) + 2* prep-factor 

For SDF sequential files: 

b = 64 + (2*(block-size-in-words) + 1) + 

For ANSI files: 

b = 64 + ((2*(block-size-in-chars + 3) ) /4) + 1 

Miscellaneous core requirements: 

c = 25 if no scratch area is needed for the Sort/Merge interface 

Otherwise: 

c = 25 + the amount of scratch area needed for the Sort/Merge 
interface 



8244.2 
UP~UMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

G-19 
PAGE 

If s is void or zero, no space will be reserved. Instead, ER MCORE$ will be performed to add space 
to the end of the control D-bank as required. 

The default record size, block size, and segment size are given by parameter to the F2SCT element 
(see G.8). 

The standard F2FCA, as distributed by Sperry Univac, is released with no space reserved, so the 
MCORE$ method is used. 

When s is coded other than zero, or is void, the space reserved must be sufficient to fill a core request 
or the program will terminate in error. 

If any subroutines which are not written in ASCII FORTRAN are called by an ASCII FORTRAN program, 
these subroutines should not allocate and deallocate storage. If any MCORE$ or LCORE$ is to be 
executed by any of these subroutines, element F2FCA should be generated with the size of storage 
needed by the ASCII FORTRAN program. 

G.B. Storage Control Table Element - F2SCT 

The element F2SCT is the storage control table which contains register save areas, working storage 
and pointers to the file reference table and the free core area header. In addition, F2SCT contains 
a location that contains the default record size, the default segment size, and the default block size 
for SDF sequential files. These default fields may be changed at an installation by remaking the 
F2SCT element as follows: 

@PDP FTNPROC,FTNPROC 
@MASM,SI F2SCT,F2SCT 

where: 

F$SCT x ,y ,z . procedure call 
END 

x is the default SDF record size desired in words. The range is 1:s; x:s; 262,000 but it must 
be remembered that a core area of size 2*x is reserved for the processing of records. 

y is the default SDF sequential segment size desired in words. The range is 1:s; y:S;2,047. 

z is the default SDF sequential block size desired in words. 

F2SCT is shipped with the following default sizes: 

x = 33 
y = 111 
z = 224 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G.g. Input/Output Errors 

UPOATEUVB. 
G-20 

PAGE 

When an input/output error is detected by the ASCII FORTRAN I/O handler. the action taken depends 
upon whether or not an ERR clause (see 5.2;6) contingency was specified and whether or not an I/O 
status clause specification (see 5.2.8) was present. 

G.9.1. ERR Clause Specified 

If an ERR clause is specified and an error or warning condition is encountered. the I/O status word 
PTIOE in the storage control table is set and transfer is made to the statement specified by the ERR 
clause. In addition. if the I/O status clause is present. the 10STAT variable receives the contents of 
PTIOE prior to the transfer. An error message is not printed. 

The I/O status word is set as follows: 

01 02 H2 

s u c 

where: 

c indicates the cause of the error. Its value is the integer clause number specified on the 
error clauses listed in G.9.3. / 

s indicates the substatus of the error if any. 

If c is 1 then s is the I/O status coded from the I/O packet. 

For ANSI files. if the error involves an ER to TlBl$. the ER TlBl$ error code will be returned 
in the substatus field. 

For those errors that have no substatus. s is O. 

u is the integer file reference number of the file in error: 

u File 

0:5 u:5 f 
-1 

The unit number. where f is the largest file reference number allowed (see G.5) 
The APRINT$ symbiont 

-2 The APUNCH$ symbiont 
-3 The AREAD$ symbiont 
-0 The unit is undetermined 

The particular fields of the I/O status word may be tested using the functions: 

laC( ) 
10S( ) 
10U( ) 

cause 
substatus 
unit 

In addition. if the I/O status clause was present. the particular fields are available via the 10STAT 
variable. 



8244.2 
UI4IUMBER 

SI1ERRV UNIVAC Series 1100 I 

FqRTRAN (ASCII) Programmer Reference 
\ \ 

G.9.2. ERR Clause Not Specified 

If an ERR clause is not specified, but an I/O status clause is specified: 

• the I/O status word PTIOE is set; 

• the 10STAT variable receives the contents of PTIOE; and 

UPDATE lEVEL 
G-21 

PAGE 

• control is immediately transferred back to the program if an error is detected. If a warning 
condition is detected, execution of the current statement is continued. 

If an ERR clause and an I/O status clause are both not specified: 

• an error or warning message is printed; and 

• for errors, all opened files are closed, and the program is terminated; 

• for warnings, execution of the current statement is continued. 

The error message has the form: 

FTN ERR ON UNIT u c 

where: 

u may be a positive unit number, PRINT, PUNCH, READ, or ILLEGAL. 

c is one of the error clauses listed in G.9.3. For some error clauses, a second line is printed 
to provide additional information regarding the error. 

G.9.3. Error Clause Listing 

When the Common Storage Management System detects error conditions, it prints one of the 
following error messages: 

STORAGE FULL 
BAD FREEADR 
BAD FREE LEN 
BAD CHAIN 

Note that these error messages have no effect on PTIOE or the 10STAT variable. 

The following two lists are of the warning and error clauses applicable to the ASCII FORTRAN I/O 
error messages. The number listed is the number set in the clause field of the I/O status word PTIOE. 
The first list gives the errors detected by PCIOS; the second list gives the errors and warnings detected 
by FORTRAN library routines. 



8244.2 
UI'-fiIWIER 

Number 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Message 

I/O STATUS CODE xx 

UPDATE LEVEL 
G-22 

PAGE 

An ER in PCIOS received the nonzero I/O status code upon completing an I/O 
request (see the EXEC Programmer Reference, UP-4144.2 (see Preface)). 

6 MAX REC SIZE NOT CONSISTENT WITH FILE 

The C2DSDF module returned a bad status while trying to open a file for direct 
input. 

9 INVALID FILE STRUCTURE 

The C2SSDF module returned a bad status while trying to backspace a file 
opened for sequential access. The file originator was not PCIOS. 

10 INVALID DATA BLOCK STRUCTURE 

The C2SSDF module returned a bad status while trying to backspace a file 
opened for sequential access. 

12 FILE NOT SDF DIRECT 

The C2DSDF module returned a bad status while trying to open a file for direct .. , 
input. 

13 FILE NOT CONSISTENT WITH DEFINE FILE 

The C2ANSI module returned the error while trying to open the file for input. 

16 FILE NOT SDF 

The C2SSDF module returned the error while trying to open the file. 

37 BLOCKSIZE NOT MULTIPLE OF FIXED RECSIZE 

The C2ANSI module returned the error while trying to read (write) from (to) the 
file. 

39 INCORRECT DATA BLOCK COUNT 

The C2ANSI module returned this error while executing a tape swap or a close 
on the file. 

50 ERROR ON TBL$ REQUEST 

The C2ANSI module returned this error while attempting an open, close, or tape 
swap on this file 

65 MASS STORAGE FILE OVERFLOWED 

The C2SSDF module returned this error while attempting a write to the file. 



8244.2 
UP-IIIUMBER 

( 

( 

66 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

BLOCKSIZE INCONSISTENT WITH FILE 

UPDATE LEVEL 
G-23 

PAGE 

The C2SSDF module returned this error while attempting to open the file for 
sequential access. 

67 INCORRECT VARIABLE FORMAT CONTENTS 

68 FILE LABEL LACKS EXTENDED PARAMETERS 

69 FILE STRUCTURE LACKS AN END-OF-FILE 

70 MAXIMUM INTERCHANGE RECORD SIZE EXCEEDED 

71 TAPE LABELING SYSTEM NOT AVAILABLE 

72 LOSS OF POSITION ON THE TAPE UNIT 

73 SKELETONIZATION INCONSISTENT WITH FILE 

74 EXTENDED FILE SMALLER THAN ORIGINAL FILE 

C2DSDF returned the error when the size of the file to be extended is specified 
to be smaller than the size of the original file. 

The following errors and warnings are detected by FORTRAN library routines. Asterisks (*) indicate 
warnings. The double asterisk (**) preceding clause 1015 indicates the mistake is fatal for 
nonformatted records and list-directed DECODE records, and is a warning for other formatted 
records. 

Number 

1001 

Message 

INVALID RECORD NUMBER 

The record number specified in a direct access READ, WRITE, or FIND statement 
is not in the range 1 $ record number $ max/rcd/num, where max/rcd/num was 
specified in a direct access OPEN or DEFINE FILE statement. 

1002 INAPPROPRIATE UNIT 

The unit number specified in the 1/0 statement is bad for one of the following 
reasons: 

The unit number specified was not in the range 0 $ unit number $ largest 
unit number to be referenced. Refer to G.6 for a discussion on the largest 
unit number to be referenced. 

An attempt was made to read from a printer, write or punch to a card reader, 
etc. 

The file reference table has been overwritten. 



8244.2 
UNIUM8ER 

1003 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

FILE ASSIGNMENT FAILED 

One of the following file assignments failed: 

'-." 

UI'OATlLMl 
G-24 

PAGE 

ASG,A of a file whose status was specified as O~D in an OPEN statement. 

ASG,T of a file whose status was specified as NEW, SCRATCH or 
UNKNOWN in an OPEN statement or the file was being opened by a 
statement other than the OPEN statement. 

A temporary file could not be obtained in an HVTS environment. 

The requested cataloged file is rolled out. 

1004 ATTEMPTED OPEN RANDOM ON TAPE FILE 

*1005 

An attempt was made to open a tape file as a direct access file. 

ILLEGAL FORMAT CHARS - TREATED AS BLANKS 

The warning message is given only once per statement. It is given for one of 
the following reasons: 

The format given to the run-time library routines in an array or character 
expression contains an unknown format type or an illegal combination of 
values. The illegal combination could be Aw.d since .d cannot be used -, 
with an Aw format. The unknown format type would be any alphabetic 
character not used as a format type now or it could mean a missing 
alphabetic character when one should occur, such as w.d. The scanning 
of the format array or expression will continue following the warning unless 
too many errors have been found. 

The values in a FORMAT statement may have been encoded badly by the 
compiler. The encoded FORMAT contains an illegal code. The scanning 
of the FORMAT will continue after the warning is given. 

1006 UNIT NOT OPEN FOR RANDOM INPUT/OUTPUT 

A direct access READ, WRITE, or FIND statement specified a unit (other than one 
attached to a symbiont) that had been opened for sequential access. 

1007 UNIT NOT AVAILABLE FOR BUFFERED I/O 

One of the following statements attempted to access a symbiont: 

Unformatted READ or WRITE 

REWIND 

BACKSPACE 

Direct access READ, WRITE, or FIND 



8244.2 
UP ..... UUBER 

( 

1008 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

FILE ASG'D CAN'T HOLD ALL DIRECT RECORDS 

UPDATE LEVEL 
G-25 

PAGE 

A user-assigned file is not large enough to hold all of the records requested in 
the direct access OPEN or DEFINE FILE statement. 

1009 UNIT NOT AVAILABLE FOR SEQUENTIAL I/O 

One of the following statements attempted to manipulate a file opened for direct 
access. 

A sequential DEFINE FILE, READ, or WRITE 

ENDFILE 

REWIND 

BACKSPACE 

1010 READ TYPE AND RECORD TYPE DO NOT CONFORM 

1011 

1012 

The type (formatted. unformatted. list-directed. namelist) of a sequential or direct 
access read differs from that of the record to be read. 

ATTEMPTED READ AFTER WRITE 

An attempt was made to read a record from a sequential file which is currently 
open for output. 

ENDFILE ONLY LEGAL FOR PUNCH SYMBIONTS 

The only symbionts for which an ENDFILE can be executed are PUNCH$ and 
APUNCH$. 

1013 READ/WRITE TYPE INHIBITED FOR THIS FILE 

1014 

**1015 

An attempt was made to execute a formatted (unformatted) read or write on a 
direct access file which contains only unformatted (formatted) records. 

ATTEMPTED TO READ PAST AN END-OF-FILE 

RECORDS EXCEEDING MAX LENGTH ARE FAULTY 

During a formatted read or write. the format cannot read or write more than the 
record length. This warning message is given if the format requires a length 
greater than the given record length. 

During an unformatted read or write of direct access files. the read or write 
attempts to require more length than the record contains. The message is given 
for this fatal error. 

During an unformatted write of ANSI files. the write attempts to require more 
length than the record contains. The message is given for this fatal error. 

During list-directed DECODE statements. the size of the DECODE block or 
internal storage area is exceeded. 



8244.2 
UP-NUMIIER 

*1016 

I ~2. 
PAGE 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

FORMAT TYPE NOT SAME AS INTERNAL TYPE 

The type of the input/output list item is the internal type. The format type given 
would require a conversion to store the value to the list item on input or to write 
the list item value on output. A conversion is not done if the types do not match. 
that is. E w.d format with an integer list item. The run-time routine will give a 
warning message and assume that it can try and use the given value with that 
particular format code. . 

1017 ABSOLUTE VALUE OF I/O ITEM TOO LARGE 

*1018 

The absolute value of the exponent of a floating-point number is too large. The 
number of input digits for an integer exceeds the amount that may be used to 
hold the number internally. The fatal error message is given to prevent an 
overflow during conversion of the number during input or output routines. 

INPUT DATA DOES NOT CORRESPOND TO TYPE 

The warning message is given when the data being read is not consistent with 
the type of the input list item. Up to 132 characters of the record in error will 
be printed. 

Floating-point 

Octal 

Integer 

any characters other than numerals. plus. minus. and blank. or 
an incorrect form of a value. 

any characters other than numerals or blanks. 

any characters other than numerals or blanks. 

1019 NAMELIST NAME HAS MORE THAN SIX CHARS 

The namelist name in the input data is longer than the legal six characters. 

The variable name in the input data in the present namelist is longer than 
six characters. 

1020 INCORRECT CHARACTER IN NAMELIST INPUT 

The error is given when: 

the first non blank character following the namelist name in the input is not 
an alphabetic character for a variable name; 

the subscript of the variable name is not followed by an equal sign; 

the length for a Hollerith input field is negative; 

the input data is Hollerith but the namelist variable is not real or integer; 

the input data is literal but the namelist variable is not of type character; 

the variable name is missing before the equal sign in the input data; 

the input data is octal but the list item is logical; or 

the input subscript contains something other than numerals. plus. minus (if 
lower bounds are pf~sent). left and right parentheses. commas. and blanks. 

" to.'; 



8244.2 
UP-MIMBER 

( 
1021 

*1022 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

NAMELIST INPUT HAS TOO MANY SUBSCRIPTS 

UPDATE lEVEL 
G-27 

PAGE 

The subscript of the input variable name contains more than seven dimensions. 

NAMELISTS DO NOT CONTAIN VARIABLE NAME 

The variable name in the input data is not part of the present namelist. This is 
a warning message. The namelist read will skip this name and continue reading 
at the next variable name. 

1023 UNIT NOT CONSISTENT WITH FILE FORMAT 

1024 

1025 

The inconsistent file format arises in one of the following situations: 

A sequential ANSI OPEN or DEFINE FILE is attempted and the associated 
file is not a tape file. 

A sequential DEFINE FILE is attempted and either the DEFINE FILE statement 
or the Define File Block, if present, attempts to override a predefined (within 
the FAT) symbiont file format. 

LIST NOT SATISFIED BY LAST FORMAT GROUP 

The FORMAT is not an empty format but does not contain any repeatable editing 
codes to handle the items in the input/output list. This is a fatal error message. 

UNABLE TO FILL SPACE REO FROM FREE CORE 

Insufficient free storage area exists to satisfy the dynamic storage requirements 
of a run-time routine. Refer to G. 7. 

1026 INCORRECT VARIABLE FORMAT CONTENTS 

During ENCODE/DECODE before ASCII FORTRAN level 8R 1, the message was 
produced for list-directed ENCODE/DECODE statements, which were not 
allowed. 

If a format in an array or character expression gets more than ten errors, the fatal 
diagnostic is given. If the size of w, d, e. or p is too large for the field width, 
this fatal diagnostic occurs. 

1027 FILE ALREADY OPEN WITH ANOTHER UNIT # 

An attempt has been made to open a file which is already associated with an 
opened unit different from the one specified in the OPEN statement. A file may 
not be associated with two opened units at the same time. A second line to the 
error message will indicate the file involved. 



8244.2 
UP-MJMIIER 

1028 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

INVALID LITERAL IN OPEN/CLOSE CLAUSE 

UPOATELMl 
G-28 

PAGE 

A literal argument appearing in one of the clauses of an OPEN or CLOSE 
statement is either misspelled or invalid. 

1029 NEGATIVE RECORD lENGTH SPECIFIED ON OPEN 

The record length specified in the RECl or MRECl clauses of the OPEN statement 
is negative. 

1030 OPEN/ClOSE/INQ OPTION MISSING OR IllEGAL 

One of the errors listed below was encountered in an OPEN, CLOSE, or INQUIRE 
statement. A second line to the error message will indicate which error condition 
occurred. 

In an OPEN statement, if a file is being opened for unformatted 110, the 
BLANK clause may not be present. For this case, the second line to the error 
will be: 

ClAUSE(S) IN ERROR - BLANK 

The RECl clause is missing on an open of a direct access fIle. For this case, 
the second line to the error message will be: 

CLAUSE(S) IN ERROR - RECl 

Clauses which pertain only to a direct (sequential) open were present on a 
sequential (direct) open. See 5.10.1. For this case, the second line to the 
error message will be: 

ClAUSE(S) IN ERROR - DIRECT 

If sequential clauses were present on a direct open, the following message 
will appear: 

ClAUSE(S) IN ERROR - SEQUENTIAL 

The FORM and RFORM were both present in an OPEN statement. For this 
case, the second line to the error message will be: 

ClAUSE(S) IN ERROR - FORM & RFORM 

An open status of SCRATCH may not be present if the file clause is present. 
For this case, the second line to the error message will be: 

ClAUSE(S) IN ERROR - STATUS 

A zero length literal was used as an argument in an OPEN, CLOSE, or 
INQUIRE statement. 

" 



8244.2 
UP-NUMBER 

( 

1031 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

OPEN STATUS OLD, FILE DOES NOT EXIST 

UPDATELML 
G-29 

PAGE 

An open status of OLD or EXTEND was specified in an OPEN statement; however, 
the file could not be assigned to the run. 

1032 ASG,CP ASSIGNMENT FAILED ON OPEN 

An open status of NEW was specified in an OPEN statement; however, the file 
was not preassigned by the user and one could not be assigned. 

1033 FILE INCONSISTENT WITH DEFINE FILE/OPEN 

The file format specified in an OPEN or DEFINE FILE of a file already opened did 
not match the file format of the cpened file. 

1034 SPECIFIED INPUT BEYOND END OF RECORD 

1035 

1036 

1037 

The unformatted read requires more length from the record than was actually 
present. The record mayor may not have been segmented. All segments would 
have been read if the record was segmented. 

SCRATCH FILE NAME CONFLICT 

An open status of SCRATCH was specified in an OPEN statement. In attempting 
to assign a scratch file, it was determined that a file with file name equal to unit 
number already existed. 

INFO$ REQUEST FAILED 

STMT OPTION INVALID FOR HVTS ENVIRONMENT 

One of the following occurred while processing an OPEN statement: 

The OFF clause was present. 

TYPE=ANSI, AREADA, APRNTA, APUNCH or APNCHA 

The record size specified in a Define File Block was greater than the default 
size. 

1038 NOT ENOUGH TDFA SPACE OR FCT TOC FULL 

*1039 

1040 

In an HVTS environment, there is no room for another file in the TDFA or the 
maximum number of files are currently in use (the file control table of contents 
is full). 

INQUIRE LITERAL TRUNCATED ON THE RIGHT 

The literal being returned by the INQUIRE statement is longer than the receiving 
area and has been truncated on the right. 

INCORRECT NAMELIST SUBSCRIPT 



8244.2 
UI'-NUMIER 

1041 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

SIZE OF INTERNAL FILE EXCEEDED 

UPOAl1: LEVEL 
G-30 

PAGE 

The formatted read of an internal file that is a character variable, character array 
element or character substring tried to read beyond the end of that file (see 
5.9.1). 

1042 INVALID STMT TYPE FIELD IN 10 PACKET 

1043 REREAD ILLEGAL FOR STMT TYPE OR SUBTYPE 

A reread unit may only be referenced by a formatted or list-directed READ 
statement. 

1044 ATTEMPTED TO REREAD BEYOND END OF BUFFER 

The format used to reread the record tried to read beyond the reread record. 
The REREAD format may not contain slashes and cannot be shorter than the 
input/output list. 

The list-directed reread tried to read more than one record. 

1045 OPENED UNIT MAY NOT BECOME A REREAD UNIT 

If a unit is opened, it must first be closed before attempting to open it as a reread 
unit. ~~, 

1 046 INPUT BUFFER OVERWRITTEN 

The size of the record just read in exceeds the input buffer size. To create a larger 
input buffer use an OPEN or DEFINE FILE statement specifying the largest record 
size to be read. 

1 047 ERROR ON CLOSE, UNIT NOT OPEN FOR REREAD 

Execution of a CLOSE statement with the REREAD clause present has been 
attempted for a file opened for regular input/output. 

1048 ERROR ON CLOSE, UNIT OPEN FOR REREAD 

Execution of a CLOSE statement without the REREAD clause present has been 
attempted for a unit opened for reread. 

1049 TARGET ADDR USED IN MORE THAN ONE CLAUSE 

A variable or array element that receives a value in an INQUIRE statement may 
not be referenced by more than one of the clauses in the same INQUIRE 
statement. 

1050 INVALID FILENAME FOR OPEN/INQUIRE 

Either an F-cycle, read/write keys, or an invalid character was encountered in 

c". -;1 

a FILE clause of an OPEN or INQUIRE statement. '" " 



8244.2 
UP-NUMBER 

( 

( 

1051 

*1052 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

A SCRATCH FILE MAY NOT BE KEPT 

RCD LARGER THAN MAX RCD SIZE TRUNCATED 

UPDATE LEVEl 
G-31 

PAGE 

The size of the record just read via a symbiont read exceeds the maximum record 
size (default size if no OPEN or DEFINE FILE statement) for the file. The record 
will be truncated to the maximum record size. 

1053 ATIEMPT TO READ A DUMMY RECORD 

A direct access read attempted to read a dummy record. The direct access 
record has not been written to yet and does not contain useful information. 
Dummy records are only detected in skeletonized files. 

1057 ERROR ON TLBL$ REQUEST 

1058 

1059 

*1060 

An error was encountered when doing an ER TLBL$. The substatus field of the 
I/O status word PTIOE will be set to the ER TLBL$ error code. In addition, the 
ER TLBL$ error code will be provided by a second line to the error message. The 
second line has the format: 

'ER TLBL$ ERROR CODE IS xxx' 

EQUIPMENT TYPE NOT ALLOWED 

Because of a PCIOS restriction, I/O operations are prohibited for 
word-addressable mass storage with equipment codes 020-027. 

INTERNAL FILE I/O IS INCORRECT 

An attempt was made to read an internal file using an empty FORMAT statement 
(FORMAT( )) when the iolist was not empty. 

RECORD FORMAT ON OPEN IS INCONSISTENT 

At the opening of an existing direct access file, the record format specified in 
the OPEN or DEFINE FILE does not agree with the record format with which the 
direct access file was created. 

1061 ERROR MSG NOT DEFINED 

1062 RECURSIVE I/O CALLS NOT ALLOWED 

1063 

A function reference used in an input/output list attempted to perform I/O 
operations or referred to a subprogram which attempted to perform I/O 
operations. Note that this is a fatal error and control will not be returned to the 
program. 

DIRECT ACCESS BUFR TOO SMALL 

A larger buffer size for a direct access file must be specified in the OPEN 
statement. Refer to 5.10.1 for a discussion on the minimum buffer size. 



8244.2 
UP-MJM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

G. 10. FORTRAN DEFINE FILE Block Usage 

UPDATE LEVEL 
G-32 

PAGE 

The file description parameters given in the sequential OPEN or DEFINE FILE statements may also be 
specified in a Define File Block (DFB) which is external to the FORTRAN program. A DFB which is 
to be used by FORTRAN must exist in the file DFP$. Prior to execution of the FORTRAN program, 
a DFB may be produced by the Define File Processor (DFP) as follows: 

@DFP,E fname .,DFP$. unit 

where the E option indicates that DFB is to be produced. The variable (name specifies the external 
file name to which the DFB applies and is inserted in the DFB. DFP$. unit is the file name and element 
name into which the DFB is inserted. For FORTRAN, this must be the file DFP$ and the element name 
must be equivalent to a FORTRAN file reference number. The variable fname must be followed by 
a period or the default file TPF$ will be associated with the unit number. 

When the FORTRAN input/output routines attempt to retrieve a DFB, the file reference number from 
the sequential OPEN or DEFINE FILE statement is used as the element name of the DFB. The file DFP$ 
must be assigned to the run by the user prior to execution of the FORTRAN program. 

If a DFC is found in DFP$, the input/output routines will perform the following @USE statement on 
the file, providing it is not a standard symbiont file: 

@USE x,q*f 

where x is the unit number of the file and q*f is the qualifier and file name from the DFB. This q*f 
is the same as fname which was used by the DFP when the DFB was created. If the file is a buffered 
input/output file, the following assignment statement is also performed by the input/output routines: 

@ASG x. 

If the file type from the OPEN or DEFINE FILE statement matches the file type from the DFB, the 
parameters which exist in OPEN or DEFINE FILE statements and DFB override the file default 
parameters respectively. If the file type from the OPEN or DEFINE FILE statement does not match 
the file type from the DFB, just the DFB parameters override the file default parameters. 

The only DEFINE FILE statement or DFB parameter, other than ft (file type), which applies to symbiont 
files is rs (record size). Symbiont file unit members may be predefined in the file reference table 
(FRT). If a DEFINE FILE statement is executed for a predefined symbiont unit, the file type from the 
DEFINE FILE statement and the file type from the DFB (if a DFB exists) must match the file type in 
the FRT for the unit. If an OPEN or DEFINE FILE statement is executed for a symbiont unit which was 
not predefined in the FRT, the file type from the OPEN or DEFINE FILE statement, if not overridden 
by the DFB, is placed in the FRT and remains there for the duration of the run or until the unit is closed 
via the CLOSE statement and opened via the OPEN statement with a different file type. 

Note that the Define File Processor may not be used to modify the parameters given in a direct access 
OPEN or DEFINE FILE statement, only sequential file parameters may be adjusted. 

The following examples illustrate the DFP call and the keyword parameter lists applicable to the 
various FORTRAN file types. 



(~ 

8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

• If fname is a sequential SDF file: 

@ DFP ,E fname .,DFP$. unit 

where: 

FILE = SDF 
RECORD = rs (record size) 
BLOCK = bs (block size) 
LlNESIZE = 55 (segment size) 

unit is the unit number 
rs is a positive integer (optional) 
bs is an integer greater than 224 (optional) 
55 is a positive integer (optional) 

• If fname is an ANSI file: 

@DFP,E fname .,DFP$. unit 

where: 

FILE = ANSI 
RECORD = rs / rf (record size/record format) 
BLOCK = bs / bo (block size/buffer offset) 

unit is the unit number 
rs is a positive integer (optional) 
rf is U, F, V, FB, VB, VS or VBS (optional) 
bs is a positive integer (optional) 
bo is a positive integer less than bs (optional) 

• If fname is a print symbiont file: 

@DFP,E fname .,DFP$. unit 
FILE = ft (file type) 
RECORD = rs (record size) 

where: 

unit is the unit number 

UPDATE LEVEL 

ft is one of the following: APRINT, APRINT$, APRNTA, APRNTA$ 
rs is a positive integer less than or equal to 160 

G-33 
PAGE 

NOTE: The fname parameter is required by the DFP but is not used by the input/output 
routines for file assignment when the file type is for a standard symbiont file. 

Default Allowable 
Record Size Range with 

Symbiont in Chars DFP 

051 APRINT 132 0< rs :S; 160 
052 APUNCH 80 0< rs :S; 80 
053 AREAD 80 0< rs :S; 132 

054 APRNTA 132 0< rs :S; 160 
055 APNCHA 80 0< rs :S; 80 
056 AREADA 132 0< rs :S; 160 



8244.2 
UI4tUIIIER 

SPERRY UNIVAC S.ri8$1100 
FORTRAN (ASCII) Programmer Reference 

For example, consider the following program called TEST: 

COMMON I,DATA(90) 
DEFINE FILE 11(SDF,,10,224,l12) 
CALL SUB 
DO 90 J = 1, I 

90 WRITE(11,20) (DATA(K),K=l,J) 
20 FORMAT (90(A1» 

END 

UPDATE L£VEl 
G-34 

PAGE 

Assume that something is going wrong with writing unit number 11. The following DFP-modified 
execution would cause unit 11 output togo to the printer rather than to an SDF file: 

@ASG,T DFP$. 
@DFP,E DUM. ,DFP$.11 

FILE = APRINT 
RECORD = 40 

@XQT TEST 

Note that this use of DFP will change the maximum record size of all print units for this execution 
to 40 characters also. 

G.11. Storage-Allocation Packet (Element M$PKT$) 

A set of common storage allocation routines (which reside in the libraries of the ASCII FORTRAN, 
ASCII COBOL, and PL/I compilers) is used to control storage used by the I/O routines at run time 
(except in ASCII FORTRAN checkout mode). The packet used by the common routines is generated 
in the ASCII FORTRAN library as follows: 

@PDP FTNPROC,FTNPROC 
@MASM,SI M$PKT$,M$PKT$ 

SMS$PKT$PROC max 
END 

where max is the maximum address that the program can reach (that is, common storage allocation 
will never request storage past this address). If max is -lor 0, the default 0777777 (decimal value 
262,143) is assumed. 

The standard M$PKT$ is shipped with a default value for max (0777777). 

The address specified for max must be sufficient to handle all I/O storage requests, or else error 
termination will occur. 

The service routine MAXAD$ (see 7.3.3.20.) may be called to change values in the common 
storage-allocation packet at run time. 



8244.2 
UP...fIIUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

H-1 
PAGE 

Appendix H. Large Programs and the Multibanking Features of ASCII 
FORTRAN 

H.1. Large Programs 

The Series 1100 hardware architecture has a default 65,535 decimal word address range for the 
instructions of a collected program, including all user subprograms and all referenced run-time library 
routines. If the size of the collected program is larger than this 65K word range, the Collector will 
produce truncation errors because it is trying to place an address which is greater than 65K into a 
16-bit instruction u-field. Index registers can hold an 18-bit address. Therefore, ASCII FORTRAN 
will generate code using index registers to hold addresses if the 0 option (the over-65K-address 
option) is used on the ASCII FORTRAN processor calls when the programs are compiled. This raises 
the boundary to a 262K word address range for a collected user program before truncation problems 
again appear. 

If use of the 0 option results in no truncation errors during collection, the user's problem is solved. 
(Note that having the statement COMPILER(PROGRAM=BIG) in source programs is equivalent to using 
the 0 option when compiling them.) 

However, if a program still gets truncation errors during collection, it is necessary to construct a 
multi banked program. 

H.2. Banking 

Banking is a Series 1100 mechanism for sharing the address space between different pieces of code 
or data. For example, the user can use the Collector IBANK directive to direct the Collector to 
construct a bank (an I-bank) holding subprogram X, and to construct another I-bank to hold 
subprogram Y. These two I-banks can be created with overlapping addresses. The same thing can 
be done with data. The user can use the Collector DBANK directive to place common block CB 1 into 
one hank (a D-bank) and common block CB2 into another parallel D-bank using the same address 
space. These are called paged data banks. In this general manner, one creates a banked program 
which needs less address space than the unbanked program. Almost any number of I-banks and 
D-banks may he defined by the user, though the Collector documentation should be referenced for 
the exact limit (it is about 250). The user must construct a Collector symbolic (sometimes called a 
MAP symbolic) containing a sequence of Collector directives which define the banking structure of 

(' the user's program. 



8244.:Z' 
UP-NUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

H-2 
PAGE 

For this mechanism to work, generated code must be able to move an address window from bank 
to bank. A Processor State Register (PSR) is a hardware register which defines two address windows 
for an executing program, an I-bank window and a O-bank window. An LlJ (Load I-Bank Base and 
Jump) instruction moves the I-bank window, and an LOJ (Load O-Bank Base and Jump) instruction 
moves the O-bank window from one bank to another. Series 1100 hardware has two basic types, 
older single-PSR systems and newer dual-PSR systems. Single-PSR systems include the 1106, 
1108, 1100/10, and 1100/20; dual-PSR systems include the 1110, 1100/40, 1100/60, and 
1100/80. On dual-PSR systems the two PSRs are referred to as the Main PSR (PSRM) and the Utility 
PSR (PSRU). The 1100/60 and 1100/80 have the concept of four basing registers called Bank 
Descriptor Registers (BOAs). There is a one-for-one association between these four BORs and the 
four windows as defined by the Main and Utility PSRs: 

BOR 

BORO 
BOR1 
BOR2 
BOR3 

PSR Window 

I-bank PSRM 
I-bank PSRU 
O-bank PSRM 
O-bank PSRU 

This appendix will refer to PSRs only since there is a one-for-one equivalent to BORs. 

Besides the LlJ and LOJ instructions to switch banks, the 1100/80 and 1100/60 have a generalized 
LBJ instruction which can be used to switch both I-banks and O-banks. 

When constructing a Collector symbolic to create a multi banking structure for ASCII FORTRAN 
programs, certain conventions must be followed: (1) no address overlap should ever occur between 
I-banks and O-banks since results are unpredictable; (2) when multiple O-banks containing paged 
data are defined, they must start at the same address (FORTRAN's mechanism to switch O-bank 
basing depends upon this); (3) in any multibanked collection, one bank is defined as the control bank. 
The control bank is assumed to be always available and based since it will contain any unbanked 
programs and data and also the unbanked portions of the run-time library routines. 

H.2.1. General Banking Example (Oual-PSR System) 

The following example consists of three separately compiled elements. MAIN 1 is the main program 
and SUB 1 and SUB2 are subroutines. The first statement in each sample routine is a directive to 
the compiler to indicate that the final collected program will be banked, and appropriate linkages (e.g. 
UJ, LOJ, LBJ instructions) must be used to ensure that the correct banks are visible when necessary. 
Note that the sizes of the code and data in the examples do not warrant the use of banking since 
these are simple examples for instruction only. 



8244.2 
UP-HUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Example of a Main Program (MAIN 1): 

COMPILER (BANKED=ALL) 
COMMON Icbl1 a,x Icb21 b,y 
CHARACTER*l a,b 
DATA a/'a'l, b/'b'l 
WR I T E ( 6 , 100) 'r e fer en c e to:', a 
WR I T E ( 6, 1 00 ) 'r e fer en c e to:', b 
a = c 
b = 'd' 
WRITE(6,100) 'reference to:', a 
WR I T E ( 6 , 100) 'r e fer en c e to:', b 

100 FORMAT (lX, A13, lX, Al) 
x = 2. 
y = sqrt(x) 
z = x + y 
WRITE(6,200) x, y 

200 FORMAT (lX, 'sqrt of', F10.5, is', Fl0.5) 
CA L L sub 1 (a, b, x, y, z) 
END 

Example 1 of a Subprogram (SUB 1): 

100 

200 

COMPILER(BANKED=ALL) 
SUBROUTINE subl (a, b, x, y, z) 
CHARACTER*l a, b 
WRITE(6,100) 'in subroutine subl' 
FORMAT ( lX, AlB) 
WRITE(6,200) a, b, x, y, z 
FORMAT(lX, 'a=', Al, ' b = ',Al, 

lFl0.5, ' z = " Fl0.5) 
CALL sub2(b, 2.0) 
END 

x = 

Example 2 of a Subprogram (SUB2): 

COMPILER (BANKED=ALL) 
SUBROUTINE sub2(a, x) 
CHARACTER*(*) a 
CHARACTER*19 b3cel I I'common block cb3'1 
COMMON Icb31 b3cel I 
CHARACTER*19 b4cel I I'common block cb4'1 
COMMON Icb41 b4cel I 
PRINT * a, len(a), x:', a, len(a), x 
PRINT *, common block cb3:', b3cel I 
PRINT *, 'common block cb4:', b4cel I 
END 

I ~3 
PAGE 

F10.5, ' y = 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

H.2. 1. 1. Collection of the General Banking Example 

UPDA'TE LEVEL 
H-4 

PAGE 

The following Collector symbolic could be used to collect the three sample program elements into 
a banked program. The LIB directive could be dropped if the ASCII FORTRAN library is in the system 
relocatable library, SYS$*RLlB$. This is the general form which should be followed for multibanking 
of ASCII FORTRAN programs on dual-PSR Series 1100 Systems. 

LIB FTN*RLlB. 
IBANK,MRD IBANKM" . INITIALLY BASED, MAIN PSR 

IN MAINl 
IBANK,RD IBANK l,lBANKM 

IN SUBl 
IBANK,RD IBANK2,IBANKM 

IN SUB2 
DBANK,UD DBANK l,(040000,IBANKM,IBANK l,IBANK2) 

. INITIALLY BASED, UTILITY PSR 
IN F2ACTIV$($1) 
IN CBl 

DBANK,D DBANK2,DBANK 1 
IN(MAIND) F2ACTIV$($3) 
IN CB2 

DBANK,D DBANK3,DBANK 1 
IN(MAIND) F2ACTIV$($3) 
IN CB3 

DBANK,CM MAIND,(DBANK l,DBANK2,DBANK3) 

END 

. MAINO IS THE CONTROL BANK, ALWAYS BASED, ON MAIN PSR 
IN MAINl 
IN SUBl 
IN SUB2 

The collection of the sample program using this Collector symbolic would result in the banking 
structure shown in Figure H-l. The Iin9s under the bank names are similar to the lines in a Collector 
S-option listing in that they indicate length. 

If the three FORTRAN relocatables are copied to file lPF$, and if the above Collector symbolic is in 
element TPF$.BMAP, the user can collect this program into a banked absolute and execute it with 
the following control images. (This assumes that there are no other relocatables in file TPF$.) 

@MAP BMAP , BABS 
@XQT BABS 

The following control images will do a default nonbanked collection of the program and will give the 
same results when executed. 

@MAP, I MAP,ABS 
IN MAIN1 
LIB FTN*RLIB. 
@XQT ABS 



8244.2 
UP-MUMBER 

( 

(~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

I-Banks Based on D-Banks Based on 
Main I-Bank PSR (PSRM) Utility D-Bank PSR (PSRU) 
(start at 01000) (start at 040000 or over) 

IBANKM DBANKl 
MAINl CBl 

IBANK1 DBANK2 
SUB1 CB2 

IBANK2 DBANK3 
SUB2 CB3 

C2F$ 
I/O common bank 

NOTES: ,. Program code goes into I-banks. 

2. Named common blocks go into O-banks (paged data banks). 

UPDATE LEVEL 

Control D-Bank Based on 
Main D-Bank PSR (PSRM) 
(starts after largest of 
D-banks based on utility 
D-bank PSR and may 
reach 262K limit) 

Local data, 
library-MCORE$ area 

H-5 
PAGE 

3. Data local to subprograms, Blank Common, any programs or named common not placed into other banks 

and the run-time library routines, all go into the control bank. 

4. The C2FS I/O common bank is not mentioned in the collection, though it is referenced at run time for all 

I/O activities. 

5. The paged data banks must start at or after address 040000 to avoid address overlap with t!'Ie hidden C2FS 

I/O common bank. 

6. The area after the Control bank is open for the I/O complex to acquire buffer space. Executive Requests 

(ERs) to MCORES will be made at run time to expand this area. 

7. If any collected addresses go over 65K, the 0 option or the COMPILER (PROGRAM=BIG) statement should 

be used with all of the ASCII FORTRAN compilations. 

Figure H-I. Dual-PSR Banking Structure 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The execution of the banked or nonbanked absolute will result in the following output: 

reference to: a 
reference to: b 
reference to: c 
reference to: d 
sqrt of 2.00000 is 
in subroutine sub1 
a= c b = d x = 2.00000 
a, len(a), x:d 
common block cb3:common 
common block cb4:common 

1.41421 

y = 1.41421 z = 
2.0000000 

block cb3 
block cb4 

H.2.1.2. Analysis of the Collector Symbolic 

3.41421 

This subsection describes the Collector symbolic listed in H.2.1. 

The main program MAIN 1 is placed in an I-bank with the M option which makes it initially based on 
the main PSR. (The main program must be in an initially based bank.) 

The other two routines, SUB 1 and SUB2, are placed into two other I-banks, each starting at the same 
address as the I-bank containing MAIN 1. (They could also be put into the same I-bank as MAIN 1 
since they are so small.) 

All I-banks have the R option on the IBANK directive to indicate they are read-only I-banks. As a 
read-only bank, there will be less Executive swap file activity. 

All D-banks have the 0 option on the DBANK directive to indicate that they are dynamic banks. This 
means that they may be swapped out by the Executive if they are not currently based, saving on main 
storage usage (though possibly causing more Executive swap file activity). 

The bank names given on the IBANK and DBANK directives (for example, IBANKM) are called Bank 
Descriptor Indexes, or BOis. The Collector gives them integer values which are used by the L1J and 
LDJ bank-switching instructions. 

The paged data banks contain named common blocks and must be based on the Utility D-bank PSR. 
The paged data bank DBANK 1 was chosen to be the one initially based. The U option on the DBANK 
directive for DBANK 1 indicates it is initially based on the Utility PSR. The other paged data banks 
holding named common are put at the same address as DBANK 1. 

The location counter one code ($1 code) of the run-time "activate" element F2ACTIV$ is put at the 
beginning of initially based paged data bank DBANK 1. The same is done with $3 code of F2ACTIV$ 
for each of the other paged data banks. The F2ACTIV$ $1 code has the run-time code to do the 
hardware LDJ instruction to switch the paged data bank which is currently based. The $3 code of 
F2ACTIV$ is an exact copy of the $1 code. They must be collected at the same address since this 
code is in control when the LDJ instruction switches address windows between paged data banks. 
The IN directive of F2ACTIV$ ($3) has MAINO in parenthesis. This is called local element inclusion 
and bypasses possible "LOCAL-GLOBAL CONFLICT" messages from the Collector. 

The control bank MAINO is the D-bank named in the DBANKdirective with the C option, and the M 
option on it means it is also initially based on the main D-bank PSR. Only the main program MAIN 1 
is included through use of an IN statement in this bank since the Collector will put anything not 
specifically included in another bank into the control bank. The control bank MAINO is placed after 
the largest of the three paged data banks so that no address overlap occurs. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

H-7 
PAGE 

The area after the end of the control bank is used by the storage management complex to obtain 
buffer space for the ASCII FORTRAN run-time system. Executive Requests (ERs) to MCORE$ are made 
to acquire this space. 

Note that the three paged data banks must not be defined at less than an 040000 (octal) address 
and the paged data banks must start at an address higher than the highest I-bank address. This is 
because their address space would then overlap the C2F$ I/O common bank and unpredictable 
results would occur. 

Note that named common block CB4 was not given a home in any paged data bank. If the main 
program and any subprograms are explicitly included in an I-bank and a D-bank by an IN statement, 
CB4 will fall into the control bank and, since the control bank is always based, it is not being 
dynamically banked. This does not result in any problems; in fact. any subprograms not specifically 
included in a bank by an IN statement will fall harmlessly into the control bank. As long as the control 
bank does not get so large as to cause Collector truncation errors again, this is harmless. Any number 
of subprograms may be included in an I-bank, and any number of named common blocks may be 
included in a paged data bank. (Blank common and data local to subprograms must be in the control 
bank.) The criteria for the contents of a bank should be a function of the final collected size of the 
bank, and alsd a function of the locality of reference to the bank to try to minimize thrashing between 
banks. (Any problem caused by excessive Executive swap file activity can be minimized by carefully 
making selected banks static by not putting the D option on their I-bank or D-bank statements.) A 
reasonable size for an I-bank or paged data bank would be approximately 16,000 decimal words. 
This means that the control bank could be up to about 32,000 words in size before truncation 
problems again would occur. 

H.2.1.3. Large Banks 

If reasonable I-bank and paged data bank sizes still result in truncation errors at collection time, or, 
if large paged data banks (greater than approximately 30,000 words) are to be defined, the 0 option 
is needed on the ASCII FORTRAN processor calls to allow a 262K address range. In addition, the 
ordering of the paged data banks and the control bank must be inverted to prevent Collector 
truncation errors on the run-time librClry routines in the control bank. This means that the control 
bank must be placed after the I-banks in the address space, and before the paged data banks in the 
address space. Since the ASCII FORTRAN run-time system will make the control bank larger via ER 
MCORE$ to obtain buffer space, the user must leave enough room between the control bank and the 
paged data banks for I/O main storage requirements. (Appendix G contains formulas for estimating 
I/O main storage requirements for a program.) Allowing 10,000 decimal words is usually a sufficient 
amount. However, if an ER MCORE$ results in an address overlap of the control bank and paged data 
banks, error termination or a "hang" is ensured. The F2FCA library element may also be reassembled 
with a sufficiently large local area in it (see G.7). 

To collect a user program with large D-banks, the Collector symbolic (from H.2.1.1) must be changed 
as follows. The DBANK directive for D-bank MAIND and the IN directive on MAIN 1 are moved back 
to juc;t before the DBANK 1 definition. Then these statements are changed as follows: 

OBANK,CM MAINO 
IN MAIN1 

OBANK,UO OBANK1,(MAINO+10000) 



8244.2 
UP-MJM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

The rest of the Collector symbolic remains unchanged. 

The resulting Collector symbolic is: 

II B FTN*RlI B 
IBANK,MR IBANKM . INITIALLY BASED, MAIN PSR 

IN MAINl 
IBANK,R IBANK1,IBANKM 

IN SUBl 
IBANK,R I BANK2 , IBANKM 

IN SUB2 
DBANK,CM MAINO, (040000, IBANKM, IBANK1, IBANK2) 

.MAIND IS THE CONTROL BANK, ALWAYS BASED, ON MAIN PSR 
IN MAINl 
IN SUBl 
IN SUB2 

DBANK,UD DBANK1,(MAIND+l0000) . INITIALLY BASED, UTILITY PSR 
IN F2ACTIV$($1) 
IN CBl 

DBANK,D DBANK2,DBANKl 
IN(MAIND) F2ACTIV$($3) 
IN CB2 

DBANK,D DBANK3,DBANKl 

END 

IN(MAIND) F2ACTIV$($3) 
IN CB3 

H-8 
PAGE 

The collection would then result in the banking structure of Figure H-2. The lines under the bank 
names are similar to the lines in a Collector S-option listing in that they indicate length. 

H.2.1.4. Variations on the Dual-PSR Structure 

The generalized example shows multiple I-banks and multiple O-banks being used at the same time. 
If the user's program is large only in the amount of I-bank code, the user can simply omit the definition 
of the paged data banks and only define I-banks and the control bank. If the program has large 
common blocks causing the size problem, then the Collector symbolic can be cut back to defining 
only one I-bank, the control bank, and multiple paged data banks. 

The LIB directive tells the Collector where to obtain the ASCII FORTRAN run-time library. The simple 
form of the LIB directive causes all run-time library routines, both code and data, to fall into the control 
bank MAINO since they are not explicitly included in any bank. The following form of the LIB directive 
directs the Collector to put anything taken from FTN*RLlB into I-bank IBANKM, and O-bank MAINO, 
in a normal $OOO/$EVEN I-bank/O-bank split: 

LIB FTN*RLlB.(IBANKM/$OOO,MAINO/$EVEN) 

This can minimize the size of the MAINO control bank. 

"'-. .. 



8244.2 
Uf'-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATElMl 

H-9 
PAGE 

I-Banks Based on Main Control Bank Based on Main D-Banks Based on Utility 
I-Bank PSR (PSRM) (starts at D-Bank PSR (PSRM) (starts at D-Bank PSR (PSRU) (starts 
01000) 040000) after the control bank and goes 

up to a 262K limit) 
IBANKM MAIND DBANKl 

MAINl Local data. CBl 
library-MCORE$ area 

IBANKl DBANK2 
SUBl CB2 

IBANK2 DBANK3 
SUB2 CB3 

C2F$ 
I/O common bank 

NOTES: 1. The paged data banks may extend out to the 262K address limit 

2. The 10K area between MAINO and the paged data banks is used by the I/O complex for buffers. "it is 

not sufficient. the separation must be increased or the library element F2FCA reassembled with a nonzero 

reserve. 

3. I/O acquires storage in increments of eight storage blocks (4096 decimal words). 

Figure H-2. Oual-PSR Banking Structure, Over 65K 



8244.2 
U ...... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

H.2.2. Banking for Single-PSR 1100 Systems 

UPDATE lEVEL 
H-10 

PAGE 

The Collector symbolics described in H.2.1 through H.2.1.4 use the Utility PSR of dual-PSR systems 
to hold an address window for paged data. This Utility PSR does not exist on single-PSR systems 
such as the 1106, 1108, 1100/10, and 1100/20. If the user program needs only multiple I-banks 
and not multiple D-banks, the previously described Collector symbolics may be used with the 
definitions of the paged data banks removed. If the user program needs both multiple I-banks and 
multiple D-banks, it simply cannot be done on single-PSR hardware. However, the user can define 
a banking structure for multiple D-banks for single-PSR systems. A single I-bank is defined, and it 
is also made the control bank to hold all unbanked code and data. The paged data banks are defined 
to come after the control bank, but enough room must be left between them for I/O buffers (which 
are dynamically acquired by ER MCORE$ at run-time). 

However, this type of collection has a problem resulting from the I-bank holding all unpaged data. 
Because of this, no common banks can be referred to at run-time to do I/O, calls to the Common 
Math Library (CMl), etc. The run-time library used must be a very special one which has all run-time 
routines in relocatable form. (The ASCII FORTRAN library must be built as a type 1 library, with the 
relocatable form of the PCIOS common I/O modules, and also the relocatable form of the CML 
modules.) 

Another problem results from ASCII FORTRAN putting a SETMIN on all relocatables it generates which 
ensures that code to refer to array elements is correct. The Collector will emit a warning on each 
FORTRAN element. For example: 

MAIN 1 MINIMUM ADDRESS IGNORED-LCO NOT IN DBANK 

These Collector warnings can be ignored, but the I-bank must be started at address 040000 or after 
to ensure that the FORTRAN generated code works correctly. 

This special multiple D-bank banking structure should only be used on single-PSR systems. Its use, 
for example, on an 1100/80 could possibly result in incorrect results since the generated code 
assumes a different structure on the 1100/80, and LBJ instructions may be generated. 

The example in H.2.1 using MAIN 1, SUB 1, and SUB2 could be collected using mUltiple D-banks for 
single-PSR systems with the following Collector symbolic: 

LIB FTN*RLIBX. . VERY SPECIAL LIBRARY 
IBANK,MC IBANKM,040000 . CONTROL BANK NOW 

IN MAIN1,SUB1,SUB2 
DBANK,MD DBANK1, (IBANKM+l0000) 

IN F2ACTIV$($1) 
IN CBl 

DBANK,D DBANK2,DBANKl 
IN( IBANKM) F2ACTIV$($3) 
IN CB2 

DBANK,D DBANK3,DBANKl 

END 

IN( IBANKM) F2ACTIV$($3) 
IN CB3 

i"" "" 

',,-._/ 



8244.2 
UNWMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I ~11 

PAGE 

Collection would result in the following Collector diagnostics: 

MAIN1 
SUB1 
SUB2 
CB4 

MINIMUM ADDRESS IGNORED - LC 0 NOT IN DBANK 
MINIMUM ADDRESS IGNORED - LC 0 NOT IN DBANK 
MINIMUM ADDRESS IGNORED - LC 0 NOT IN DBANK 
MINIMUM ADDRESS IGNORED - LC 0 NOT IN DBANK 

The collection would result in the banking structure given in Figure H-3 for the single-PSR multiple 
D-bank problem. The lines under the bank names in Figure H-3 are similar to the lines in a Collector 
S-option listing in that they indicate length. 

One I-Bank (the Control Bank) Based on the D-Banks Based on the Main D-Bank PSR (PSRM) 
Main I-Bank PSR (PSRM) (starts at 040000) (starts after the control bank and may go up to 

262K) 
IBANKM DBANK1 
Code, library, unbanked data-MCORE$ CB1 

NOTES: 

DBANK2 
CB2 

DBANK3 
CB3 

t. There will be unavoidable Collector diagnostics. 

2. A totally local library must be used; no run-time common banks may be referenced. 

3. The 10K separation between IBANKM and the D-banks must be able to satisfy all buffer requests from the 

ASCII FORTRAN run-time system, or it must be increased, or the library element F2FCA must be 

reassembled with a nonzero reserve large enough to satisfy the buffer requests. 

4. The I-bank must start at or after address 040000. 

5. This setup should only be used on single-PSR systems requiring multiple D-banks. (It may possibly not 

operate on a SPERRY UNIVAC 1100/BO or an 1100/60 System.) 

6. If the paged data banks extend beyond 65K, the 0 option must be used on all of the ASCII FORTRAN 

compilations. 

7. IBANKM cannot extend beyond 65K in addressing. 

Figure H-3. Single-PSR Banking Structure 



8244.2 
UP-MJMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

H.2.3. Banking, Efficiency, and Source Program Directives 

UPDATE LEVEl 
H-12 

PAGE 

The examples in H.2.1 through H.2.2 use a simple generalized directive to the ASCII FORTRAN 
compiler to indicate that banking will be used in the final absolute program. In fact, this generalized 
statement, COMPILER(BANKED=ALL), means: 

• Each subprogram referenced may be in a different I-bank, in the same I-bank, or the control 
bank. 

• Input arguments may be in paged data banks, or in the control bank. 

• Named common blocks may be in paged data banks, or in the control bank. 

Therefore, the actual banking structure is virtually unknown to the compiler, and yet it must create 
linkages to ensure that items are visible or based when they are referenced. 

H.2.3.1. I-Bank Linkages 

The ASCII FORTRAN compiler uses the LlJ instruction to link between I-banks. This linkage is fairly 
efficient since the bank switch is done and then the called subprogram is entered, usually for some 
period of time. The compiler actually generates a pseudo-linkage called the IBJ$ linkage. The 
Collector replaces this linkage with an LMJ instruction if the destination is in the control bank, or the 
same I-bank, and with an LlJ instruction if the d~stination is in a different I-bank. 

H.2.3.2. D-Bank Linkages 

Each time the compiler generates code to reference data in a (possibly) paged data bank (which may 
be currently based), it must also generate an "activate" sequence. This "activate" code has several 
variations, but a typical sequence is three instructions long. 

Example: 

Variables A, B, and C are in named common blocks CB 1, CB2, and CB3. 

The FORTRAN statement A = B+C is to be compiled. 

If the programmer has not given any directives to the ASCII FORTRAN compiler indicating that 
multiple D-banks are being used, three machine instructions will be generated for this statement: a 
LOAD, an ADD, and a STORE. If the programmer did indicate to the ASCII FORTRAN compiler that 
multiple D-banks are being used, there would also be three "activate" sequences generated. This 
results in 12 instructions instead of three for the unbanked program. In addition, each activate 
sequence links to the F2ACTIV$ run-time routine which may execute up to 18 instructions if the 
desired bank is not currently based. One of these 18 instructions is an LDJ instruction. The LDJ 
instruction is simulated in the Executive for older single-PSR systems and may cause a presence-bit 
interrupt if the bank is swapped out on any Series 1100 System. Program efficiency is therefore 
extremely dependent upon the contents of the paged data banks and in the organization of the ASCII 
FORTRAN code. 

Because performance can be so dramatically affected, several directives, including the BANK 
statement (see 6.6) and several COMPILER statement options (see 8.5), may be supplied to the ASCII 
FORTRAN compiler to help program efficiency. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

H.2.3.3. Multiple I-Banks Only 

UPDATE LEVEL 
H-13 

PAGE. 

If your collected program is constructed using multiple I-banks for code and does not define multiple 
paged data banks, then the LINK = IBJ$ option of the COMPILER statement should be used rather 
than the more general BANKED=ALL option. The compiler will then generate the efficient IBJ$ 
linkage for subprogram references and will generate code assuming that data is not banked. The 
resulting program should be as efficient as an unbanked program. 

H.2.3.4. Multiple Paged Data Banks 

Once the user has the multiple D-bank program debugged and running, the user might notice many 
"activate" code sequences in the generated code which are not necessary, since a given paged 
program bank may contain several named common blocks. Also, if the user is actually hopping 
between paged data banks a lot in the generated code, the user may wish for a much faster "activate" 
sequence. 

H.2.3.4.1. The BANK Statement 

The BANK statement associates a paged data bank BDI name with one or more named common 
blocks. Therefore, the user may tell the compiler that common blocks CB 1, CB2, and CB3 are actually 
in the same paged D-bank and then the compiler will not generate activate sequt)nces when the 
program references them.· Also, since the BANK statement tells the compiler that these items are 
definitely banked and the BDI is supplied, a more efficient bank switch may be done. If the ASCII 
FORTRAN compilations are done on an 1100/60 or 1100/80, the compiler will generate a direct LBJ 
instruction to change which D-bank is currently based rather than calling the F2ACTIV$ run-time 
routine. This is only generated on the 1100/60 and 1100/80 Systems since the LBJ instruction is 
simulated in the Executive on other Series 1100 Systems, and its operation is incompatible with the 
banking structure on single-PSR systems. 

The BANK statement may be used alone, or in conjunction with the BANKED=ALL option of the 
COMPILER statement. However, if it is used alone, the compiler will assume that arguments are not 
banked, and that named common blocks not in BANK statements are not banked. If these items do 
happen to be banked, results will then be incorrect. So, it is safest to use the 
COMPILER(BANKED=ALL) statement in the FORTRAN programs and then supply some BANK 
statements after they are debugged to enhance efficiency. 

If the single-PSR banking structure is to be used to collect the program, and it is compiled and 
executed on an 1100/60 or 1100/80, BANK statements cannot be used in the FORTRAN source. This 
is because the compiler generates code assuming the dual-PSR banking structure exists if the 
compilations are done on an 1100/60 or 1100/80 System and BANK statements are used. To 
develop a multi-D-banked program on the 1100/60 or 1100/80 to be run on any Series 1100 
hardware, simply use the COMPILER (BANKED=ALL) statement in each program and do not use any 
BANK statements. Then it can be collected following the single-PSR method and be executed on 
any Series 1100 System. 

Note that since BANK statements associate specific BDI names with common blocks, if a user changes 
the banking structure, the user must also change all the programs and recompile them. 

The BANK statement and various COMPILER statement directives are described in 6.6 and 8.5. 



8244.2 
UP-IIIUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

H.2.3.4.2. Optimization and Program Organization 

H-14 
PAGE 

The ASCII FORTRAN compiler is only effective at remembering which bank is currently based and 
does not generate unnecessary activate sequences if global optimization is used during program 
compilation. (Global optimization is invoked with the Z option on the ASCII FORTRAN processor call.) 
Also, programmers should attempt to organize their code so that references to a given D-bank are 
grouped in areas of code. This is especially true for the inner loop of DO-loops. Users should try 
to have any inner loops refer to items in one paged data bank. (Un banked ~ata items can be referred 
to indiscriminately.) 

Example: 

SUBROUTINE SUBX (A,IA) 
COMPILER(BANKED=ALL) 
DIMENSION A( IA) 
COMMON/C1/A1(1000),B1(1000) 
COMMON/C2/A2(1000),B2(1000) 
BANK/BNK1/C1,C2 
COMMON WORK(1000) @BLANK COMMON 
IL = IA-1 
DO 10 1=1, I L 

10 WORK ( I ) =A ( I ) I A ( I + 1 )+ . 03 
DO 20 l=l,IL 

A 1 ( I ) =WORK ( I ) *B2 ( I ) IB 1 ( I ) -A2 ( I ) 
I F (A 1 ( I ) . NE .0.0) A2 ( I ) = 1/ A 1 ( I ) 

20 CONTINUE 
END 

The user has (possibly) banked arguments A and IA and two named common blocks which are known 
to be in D-bank BNK 1. 

Blank Common can never be banked, so the program does some initial processing on the input array 
A and moves it to WORK in Blank Common. (A local array could also have been used.) Since only 
one bank is being referenced inside trle first loop, the "activate" code sequence will be moved out 
of the loop (if global optimization is used). The same thing is true for the second loop, and no activate 
sequences will be done inside the loop. Note that a single reference to an external routine inside 
either loop will cause at least one set of activate code to be generated inside the loop since the 
external routine could possibly change which paged data bank is currently based. 

If the user had not supplied the BANK statement, the generated code would be loaded with activate 
sequences since the compiler must assume the worst case. 

~ .. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

'H.2.4. Banking Summary 

UPDATE LEVEL 
H-15 

PAGE 

• Programs constructed using multiple I-banks and no multiple D-banks should use the 
COMPILER(LlNK=IBJ$) statement to indicate banking to the ASCII FORTRAN compiler. 

• Programs which have multiple D-banks should use the COMPILER(BANKED=ALL) statement to 
indicate banking. 

• Programs with multiple D-banks can cut the number of activate code sequences generated, and 
can cause the direct generation of LBJ instructions (1100/80 and 1100/60 only) by the selected 
use of BANK statements to associate named common blocks with specific paged data bank BDls. 

• If BANK statements are used in a FORTRAN program to enhance efficiency, no error diagnostics 
will occur if they are incorrect. and bad program results are ensured. 

• The use of global optimization can cut the number of generated activate sequences dramatically. 

• Judicious organization of program logic and careful definition of the contents of paged data 
banks can have a very beneficial influence on performance. 

• There must never be an address overlap between any I-bank and any D-bank, or between the 
control D-bank and any paged data banks. If the run-time library used is a normal common bank, 
the C2F$ I/O common bank can extend to address 037777 (octal). Therefore, no D-bank should 
start lower than address 040000. 

• The control bank holds all unbanked user data and routines, all run-time library D-bank and any 
unbanked library routines. The control bank must be initially based and must never be unbased 
by an LlJ, LDJ, or LBJ instruction. 

• If any addresses go beyond 65K in the collection, the 0 option (or the statement COMPILER 
(PROGRAM=BIG)) is needed on all ASCII FORTRAN compilations. 

• Any element containing only Block Data Subprograms must be included via an IN directive in 
the control bank in the collection, since the Collector may otherwise ignore it. (This is true for 
non banked collections as well.) 

• Control bank size can be somewhat minimized by supplying a LIB statement to the Collector that 
causes the code or I-bank portions of the run-time library to go into one of the user I-banks, 
for example, LIB FTN*RLlB.(IBANKM/$ODD,MAIND/$EVEN). 

• Multiple D-bank operation depends upon copies of the "activate" code existing in each paged 
data bank at exactly the same relative address. The $1 and $3 F2ACTIV$ code segments are 
identical. and the only reason for the location counter split is to avoid local-global conflict 
messages during collection. The easiest way to ensure the same address for ACTIV$ code is 
to make each paged data bank start at the same address and to have the ACTIV$ code first in 
each D-bank. 

• The local element inclusion of F2ACTIV$ code is also important. The $3 code (an exact copy 
of $1 code) has no tags, but refers to data in the control bank; therefore, it must be visible only 
to the control bank. 

• Single-PSR 1100 systems cannot have both multiple I-banks and multiple D-banks in the same 
(,;Qllection. 

• The single-PSR multiple D-bank setup needs a special library and cannot be used on an 
1100/80 or 1100/60 if BANK statements are used in the ASCII FORTRAN source program. 
However, the setup may be used on any Series 1100 hardware if the COMPILER(BANKED=ALL) 
statement is used in the FORTRAN program and no BANK statements are used in that FORTRAN 
program, because LB~I instructions will not be generated. 





8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVU 

1-1 
PAGE 

Appendix I. Error Diagnostics In Checkout Mode 

The diagnostics explained in Tables 1-1 and 1-2 are associated with the checkout mode of the 
FORTRAN (ASCII) compiler (see 10.6). 

Table 1-1. Messages Occurring During Program Load 

Message 

**** CHECKOUT RELOCATION ERRORS **** 

WARNING: NAME IS UNDEFINED: name 

ERROR: USER PROGRAM TOO LARGE 

Explanation 

If any errors are encountered while loading 
the user program, this message will be issued 
and the error messages then printed. 

The user has referenced a subprogram that is 
not defined in his compilation unit or the FTN 
library. The offending name is printed on the 
line following the message. 

An address generated while loading the user 
program will not fit in an address field. The 
user program is too large. It may fit if the 0 
option is used, or if the Z option is omitted on 
the processor call card 

NO MAIN ENTRY POINT, NO EXECUTION POSSIBLE This message is produced if the user program 
does not contain a main program. Instead the 
program contains only subroutines, functions 
and BLOCK DATA subprograms. Interactive 
debug mode is entered. 

BAD LINE NUMBER n 

BLOCK DATA PROGRAM NOT FOUND 

The line number, n (specified in the BREAK 
command), is either out of range for the user 
program or is on a nonexecutable statement. 

The block data program specified in the p 
field of the PROG command or the p subfield 
of a command does not exist in the FORTRAN 
symbolic element. 



8244.2 
UP-HUMIISI 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE L£VEl 

1-2 
PAGE 

Table 1-2. Messages Generated by Interactive Debugging 

Message 

COMMAND NOT ALLOWED 

COMMAND NOT ALLOWED BECAUSE OF 
CONTINGENCY 

CONSTANT MUST BE TYPE data-type 

ELEMENT HAS NO MAIN PROGRAM 

ENTIRE ASSUMED-SIZE ARRAY CANNOT BE 
DUMPED 

ENTRY POINT NOT FOUND 

ERROR: NO USER PROGRAM FOUND 

FTEMP$ STORAGE DESTROYED 

Explanation 

The GO command (no fields) or the 
WALK BACK command cannot be executed 
because normal execution of the FORTRAN 
program is not possible; that is, there is no 
main program in the element, or the CALL 
command has executed a subprogram and 
returned. 

The GO command (no fields) cannot be 
executed because a contingency has been 
captured by the compiler. For example, if 
the FORTRAN program encounters a guard 
mode (IGDM) contingency, then normal 
execution of the program cannot resume. 
Note that a RESTORE command may be 
used to bring back an original version of the 
program. 

The constant in the third field of the SET 
command is not the same data type as the 
variable in the first field. The SET command 
does not perform conversions between data 
types. 

The main program is specified in the p field 
of the PROG command or in the p subfield 
of a command, but the FORTRAN symbolic 
element does not contain Ci main program. 

The range of an assumed-size array is not 
known. Only individual elements of an 
assumed-size array can be dumped. 

The entry point specified in the s field of the 
CALL command or in the parameter list of 
the CALL command does not exist in the 
FORTRAN source. 

The user is doing a RESTORE command but 
has not previously done a SAVE on the 
desired version. 

A subprogram's temporary storage area (for 
saving registers and the parameter list) has 
been destroyed because of an error in the 
user program. The specified variable cannot /r'''

be dumped. '''_.j 
(continued) 



8244.2 
UP-NUMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVB. 

1-3 
PAGE 

, aOle hL. Messages Cienerated by Interactive Debugging (continued) 

Message 

FUNCTION HAS NOT BEEN CALLED 

ILLEGAL COMMAND 

ILLEGAL SYMBOLIC NAME 

ILLEGAL SYNTAX 

INCORRECT NUMBER OF SUBSCRIPTS FOR 
ARRAY * 

10 ERROR ON LOADING USER PROGRAM, 
. LOAD ABORTED 

10 ERROR ON USER OUTPUT FILE, 'SAVE' 
COMMAND ABORTED 

LABEL BREAK LIST IS FULL 

LABEL UNDEFINED * 

LINE NUMBER BREAK LIST IS FULL 

Explanation 

A reference was made to a variable that is 
a character function entry point, but the 
function has not yet been called during 
execution of the FORTRAN program. 

An illegal debug command name was 
specified when input was solicited with ER 
ATREAD$, or the name specified in the cmd 
field of the HELP command is not a debug 
command name. 

An illegal FORTRAN variable name was 
specified in the v subfield of a command, or 
an illegal subroutine or function name was 
specified in the p field of the PROG 
command or the p subfield of a command. 

A general syntax error was found. This 
includes specifying a field for a command 
when none is required, or not specifying a 
field when one is required. 

The number of subscripts specified for the 
array in the v subfield of a command does 
not equal the number of dimensions 
declared for the array in the specified 
FORTRAN program unit. 

An I/O error occurred while accessing the 
user's program file during execution of the 
RESTORE command. The command is 
aborted. This may result in error termination 
also. 

An I/O error occurred while accessing the 
user's program file during execution of the 
SAVE command. The command is aborted. 

An attempt was made to add an entry to the 
statement label break list with the command 
BREAK n L [/ p]. but the list already has 
eight entries. 

The statement label n in the BREAK n L 
[I p] command is not declared if"! the 
specified FORTRAN program unit. 

An attempt was made to add an entry to the 
line number break list with the command 
BREAK n, but the list already has eight 
entries. 

(continued) 



8244.2 
UI'-ItUMIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATELMl 

1-4 
PAGE 

Table 1-2. Messages Generated by Interactive Oebugging (continued) 

Message 

NO BREAK SET FOR LABEL * 

NO BREAK SET FOR LINE NUMBER 

PARAMETER'S SUBPROGRAM HAS NOT BEEN 
CALLED 

PROGRAM UNIT NOT FOUND 

SETBP NOT ALLOWED ON COMPILER 
GENERATED FOR SINGLE-PSR MACHINE 

SUBSCRIPT OUT OF RANGE FOR ARRAY 

****UNDEFINED SUBROUTINE ENTRY**** 

USER FILE REJECTED, NOT FASTRAND 
FORMATTED 

USER INPUT FILE CANNOT BE ASSIGNED 

USER OUTPUT FILE CANNOT BE ASSIGNED 

Explanation 

The statement label n (in the specified 
program unit) in the command CLEAR n L 
[/ p] is not in the statement label break list. 

The line number n in the command CLEAR 
n is not in the line number break list. 

An attempt was made to reference a 
subroutine or function parameter, but the 
subprogram has not yet been called during 
execution of the FORTRAN program. 

The symbolic name specified in the p field 
of the PROG command or the p subfield of 
a command does not exist in the FORTRAN 
symbolic element as a named program unit. 

The SETBP command may only be executed 
on an ASCII FORTRAN compiler generated 
for a dual-PSR machine. The non reentrant 
ASCII FORTRAN absolute taken off the test 
file (file 2) of the ASCII FORTRAN release 
tape is a compiler generated for 1108 
(single-PSR). 

The constant subscripts specified for the 
array in subfield v of a command are too big 
or too small. 

During execution, the user program has 
called a function or subroutine which is 
undefined. The name of the subprogram 
was previously printed out with the 
Checkout relocation errors. 

A SAVE or RESTORE command is being 
attempted by the user, but the file is not a 
program file. Something has happened, 
making it unusable. The file affected is the 
relocatable output (RO) file specified on the 
@FTN processor call command. 

The user's program file cannot be assigned 
to do the RESTORE command. Some other 
run must be using it. 

The user's program file cannot be assigned 
to do the SAVE command. Some other run 
must be using it. 

(continued) 



8244.2 
UP-NUMBER 

( 

( 

{ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATI: LEVEL 

1-5 
PAGE 

Table 1-2. Messages Generated by Interactive Debugging (continued) 

Message 

VARIABLE IS AN ARRAY * 

VARIABLE IS NOT AN ARRAY * 

VARIABLE NOT DEFINED * 

WARNING: CHARACTER CONSTANT 
TRUNCATED 

Explanation 

The variable in subfield v of a command has 
no subscripts. but the variable is declared as 
an array in the specified program unit. An 
array element is required. 

The variable in subfield v of a command has 
subscripts. but the variable is not declared 
as an array in the specified program unit. 

The variable in subfield v of a command is 
not declared in the specified FORTRAN 
program unit. 

The character constant in the third field of 
the SET command has too many characters 
to fit in the character variable. It has been 
truncated to the declared length of the 
variable. 

* This error message is followed by a second printed line. This line specifies the program unit (in the FORTRAN element) 

from which the variable or statement label (in the command image) came. One of the following formats is used: 

IN MAIN PROGRAM 

IN MAIN PROG n 

IN BLOCK DATA n 

IN BLOCK DATA PROGRAM m 

IN SUBROUTINE n [:e ] 

IN FUNCTION n [:e ] 

where: 

n is a program unit name. 

e is an external program unit name. 

m is an unnamed block data prag/ am sequence number. 

The specified program unit is taken from the p subfield of the command, or from the PROG command default 

program unit, if p is not specified in the command. 





8244.2 
UI'-MJMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference I ~1 PAGE 

Appendix J. Comparison of ASCII FORTRAN Level 8R 1 to Level 9R 1 
and Higher 

J.1. General 

ASCII FORTRAN levels 9R 1 and lOR 1 contain all the features of the FORTRAN standard, X3.9-197B 
(called FORTRAN 77). ASCII FORTRAN level 8R 1 does not have all these features. This appendix 
compares ASCII FORTRAN level 9R 1 and higher to level BR 1. ASCII FORTRAN level BR 1 is missing 
the following six statements: PROGRAM (see 7.9), INTRINSIC (see 7.2.4), SAVE (see 7.12), OPEN (see 
5.10.1), CLOSE (see 5.10.2), and INQUIRE (see 5.10.3). It is incompatible with ASCII FORTRAN level 
9R 1 and higher in the storage allocation of character data, DO-loops, the typing of parameter 
constants and statement functions, and list-directed input/output. It does not contain the 13 new 
intrinsic functions: ICHAR, CHAR, LEN, INDEX, ANINT, DNINT, NINT, IDNINT, DPROD, LGE, LGT, LLE, 
and LL T (see 7.3.1), nor the new logical operators, .EQV. and .NEQV. 

A new option, STD=66, has been added to the COMPILER statement (see B.5 and B.5.5). This new 
option forces the ASCII FORTRAN compiler and library routines for level 9R 1 and higher to execute 
as previous levels of ASCII FORTRAN did in the areas of storage of character data, DO-loops, typing 
of statement functions and parameter constants, and list-directed input and output. 

This appendix is organized into subsections corresponding to the sections of the standard document, 
X3.9-197B. Each subsection of this appendix contains extensions in level9Rl and higher over ASCII 
FORTRAN level BR 1 and conflicts between ASCII FORTRAN levels 9R 1 and higher and level BR 1. 
ASCII FORTRAN extensions to level BR 1 in levels 9R 1 and higher are features that have been 
implemented to make ASCII FORTRAN conform to the standard completely. Conflicts occur where 
the same construct can have different meanings in the two levels. Thus, conflicts imply that a change 
was made to a feature in ASCII FORTRAN level BR 1 to achieve compatibility with the standard. 

J.2. FORTRAN Terms and Concepts 

Extensions: 

A main program may have a PROGRAM statement as its first statement. Level BR 1 has no PROGRAM 
statement (see 7.9). 



8244.2 
UI4WM8EJI 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Conflicts: 

UPDATE LEVEL 
J-2 

PAGE 

Character storage units for a datum are logically consecutive. Level 8R 1 starts each character datum 
on a word boundary. The COMPILER statement provides an option, STD=66, to allow compatibility 
with previous levels on character data (see 8.5 and 8.5.5). 

J.3. Chara~ters, Lines, and Execution Sequence 

Extensions: 

PARAMETER statements may occur before and among IMPLICIT statements. Any specification 
statement that designates the type of a symbolic name of a constant must precede the PARAMETER 
statement that defines that particular symbolic name; the PARAMETER statement must precede all 
other statements containing the symbolic name of constants that are defined in the PARAMETER 
statement. Level 8R 1 does not allow typing of PARAMETER constants (see 6.3 and 6.7). The 
COMPILER statement provides an option, STD=66, to allow compatibility with previous untyped 
PARAMETER constants. 

Conflicts: 

None. 

J.4. Data Types and Constants 

Extensions: 

A complex constant may be written as a pair of integer constants or real constants. Level SR 1 allows 
only real constants (see 2.2.1.3). 

Conflicts: 

None. 

J.5. Arrays and Substrings 

Extensions: 

Array names may be used in a SAVE statement. Level 8R1 does not have a SAVE statement (see 
7.12). 

Conflicts: 

None. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

J.6. Expressions 

Extensions: 

UPOATE LEVEL 
J-3 

PAGE 

• Complex operands are allowed in relational expressions with the .EQ. and .NE. operators unless 
one operand is double precision. The comparison of a double precision value and a complex 
value is not permitted. Level 8R 1 does not allow complex operands in relational expressions 
(see 2.2.3.3.1). 

• The logical operators .NEQV. and .EQV. with lowest precedence are allowed. These operators 
are not in level 8R 1 (see 2.2.3.3.1). 

Conflicts: 

None. 

J. 7. Executable and Nonexecutable Statement Classification 

Extensions: 

None. 

Conflicts: 

None. 

J.B. Specification Statements 

Extensions: 

• EQUIVALENCE statements may cor'tain character substring names. Level 8R 1 does not allow 
character substring names in EQUIVALENCE statement lists (see 6.4). 

• Integer constant expressions are allowed for subscript and substring expressions in 
EQUIVALENCE statements. Level 8R 1 does not allow substring expressions in EQUIVALENCE 
statements (see 6.4). 

• In the COMMON statement, an optional comma is allowed before the slash that comes before 
the common block name, that is, [ [,] / [ cb ] / nlist ] . . .. No comma is allowed for level 
SRl (an error occurs) (see 6.5). 

• A parameter constant may be typed via in an IMPLICIT statement or in an explicit type statement 
(see 6.3 and 6.7). Level SR 1 does not allow typing of parameter constants. The COMPILER 
statement provides an option, STO= 66, to allow compatibility between levels 9R 1 and higher 
and lower levels of ASCII FORTRAN for typing of parameter constants (see S.5 and S.5.5). 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

J-4 
PAGE 

• The name of a statement function may appear in an explicit type statement. The name of a 
statement function may be typed by an IMPLICIT statement. Level 8R1 does not type statement 
functions (see 6.3 and 7.4.1). The COMPILER statement provides the option, STD=66, to allow 
compatibility between level 9R 1 and lower levels of ASCII FORTRAN for typing of statement 
functions (see 8.5 and 8.5.5). 

• The length in a CHARACTER type statement may be an asterisk or an integer constant expression 
in parentheses as well as just an unparenthesized constant (that is, (*) or (exp) or const). An 
entity in a CHARACTER statement must have an integer constant expression as a length 
specification unless that entity is an external function, a dummy argument of an external 
procedure, or a character constant that has a symbolic name. These exceptions may have a 
length specification of asterisk. The length specified for a character statement function or 
statement function dummy argument of type character must be an integer constant expression. 
Neither an asterisk nor an expression is allowed in the length specification in level 8R 1 (see 
6.3.2). 

• The length for a CHARACTER array element may occur before and after the element (that is, 
a (d)* length). In level 8R 1, the length may come before the subscript but an error is issued 
if it appears after the subscript (see 6.3.2). 

• The comma is optional in the character type statement in the form: 

CHARACTER[ * len [.]] nam [. nam] ... 

Level 8R 1 issues an error message for the comma following len (see 6.3.2). 

• In the IMPLICIT statement, the length for character entities may be an unsigned, nonzero integer 
constant or an integer constant expression enclosed in parentheses that has a positive value. 
An unsigned, nonzero integer constant is allowed in level 8R 1 but not an expression (see 6.3.1). 

• A BLOCK DATA subprogram name may occur in an EXTERNAL statement. Level 8R1 does not 
allow the optional name for a BLOCK DATA subprogram (see 7.2.3 and 7.8.2). 

.-The INTRINSIC statement is used to identify a symbolic name as representing an intrinsic 
function. Level 8R 1 does not have the INTRINSIC statement (see 7.2.4). 

• The SAVE statement is used to retain the definition status of an entity after execution of a 
RETURN or an END statement in a subprogram. Level 8R 1 does not have a SAVE statement (see 
7.12). 

Conflicts: 

• Character equivalencing is based on character storage units in level 9R 1 and higher and on 
words in level 8R 1. This can give different results. This applies to both explicit EQUIVALENCE 
statements and to argument association and COMMON association. For example: 

CHARACTER A*4,B*4,C(2)*3 
EQUIVALENCE (A,C(l) ),(B,C(2)) 



( 

( 

8244.2 
UP-NUMBER 

• 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Level 9R1: 

1 I 2 I 3 4 5 I 6 I 
A 

B 

C(1) C(2) I 

Level 8R1: 

1 I 2 I 3 I 4 5 I 6 I 
A B 

C( 1) C(2) 

7 I 

I 

7 I 

B 

B 

UPDATE LEVEL 
J-5 

PAGE 

The COMPILER statement provides an option, STD=66, to provide for compatibility with lower 
levels of ASCII FORTRAN (see 8.5 and 8.5.5). 

The PARAMETER statement is used to give a constant a symbolic name. If the type of the name 
is not default implied, the type must be specified by an explicit type statement or by an IMPLICIT 
statement prior to the appearance of the name in a PARAMETER statement. PARAMETER 
symbolic names have no type in level 8R 1. Assignment of the value of the expression is done 
in level 9R 1 and higher as in an assignment statement (that is, with type conversion, jf necessary). 
The syntax of the PARAMETER statement is different in level 8R 1 in that no parentheses may 
be used. Both forms of the PARAMETER statement syntax are allowed in level 9R 1 and higher 
(see 6.7). The STD=66 option in the COMPILER statement provides for compatibility on previous 
levels of ASCII FORTRAN for typing of parameter constants (see 8.5 and 8.5.5). 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

J.9. DATA Statement 

Extensions: 

• The comma before the variable list is optional, that is, [[,]n/ist I c/ist I] .... The comma is not 
optional in level SR 1. A warning is given if the comma is omitted (see 6.S. 1). 

• Substring names are allowed in the variable list. Level SR 1 does not allow substring names in 
a DATA statement variable list (see 6.S.1). 

Conflicts: 

A PARAMETER constant beginning with the letter "0" in the constant list of a DATA statement will 
be interpreted by level SR 1 as an octal constant and by level 9R 1 and higher as the PARAMETER 
constant (see 6.S. 1). 

For example: 

PARAMETER (02 = 5.) 
DATA A/02/ 

J. 1 O. Assignment Statements 

Extensions: 

None. 

Conflicts: 

None. 

J.11. Control Statements 

Extensions: 

The DO-variable and the DO-statement parameters may be real or double precision as well as integer. 
Level SR1 generates an error for noninteger DO-variables (see 4.5). 

Conflicts: 

In the standard, a DO-loop need not be executed. The iteration count is given by 
MAX(INT(( m2 -m 1 + m3)1 m3 ),0). The DO-loop is not executed if m 1 > m2 and m3 > 0 or if m 1 
< m2 and m3 < O. In level SR 1, a DO-loop is always executed. The iteration count is given by 
MAX( (( e2 -e 1 )1 e3 + 1),1). If e 1 > e2 and e3 is omitted, level SR 1 assumes e3 =-1, and level 
9R1 assumes e3 =+ 1 (see 4.5.4.1). The STD=66 option of the COMPILER statement provides for 
compatibility with previous levels of ASCII FORTRAN for DO-loops (see S.5 and S.5.5). 



8244.2 
UP-NUMBER 

(~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

J.12. Input/Output Statements 

Extensions: 

UPDATE lEVEL 
J-7 

PAGE 

• The internal unit identifier is a character variable or character array or character array element 
or character substring which specifies an internal file. Level SRl does not allow a character 
substring for an internal unit identifier (see 5.9.1 and 5.9.3). 

• An empty I/O list is allowed on reads or writes to skip a record or to write an empty record. Level 
SR 1 compiler requires a nonempty I/O list on list-directed reads, unformatted sequential-access 
writes, list-directed write or print, and unformatted direct-access writes. Errors are issued when 
the list is missing (see 5.6.1.4, 5.6.2.2, 5.6.2.4, and 5.7.3). 

• Character substring names are allowed in I/O lists. Level SR 1 only allows them in output lists 
(see 5.2.3). 

• Character constants produced by list-directed output are not delimited by apostrophes, are not 
preceded or followed by a blank or comma, and do not have internal apostrophes represented 
by two apostrophes. 

• The implied-DO list parameters are the same as the new DO-loop parameters (that is, more 
types, zero iterations possible). Level SR 1 does not allow the new parameters (see 4.5 and 5.2.3). 

• The OPEN statement is not in level SR 1 (see 5.10.1). 

• The CLOSE statement is not in level SR 1 (see 5.10.2). 

• The INQUIRE statement is not in level SR 1 (see 5.10.3). 

Conflicts: 

None. 

J.13. Format Specification 

Extensions: 

If the output format is G w. dEe and the value of the variable fits an F format. the format used will 
be F( w-(e +2) }d-i ,Ie +2)(' b ') where b is a blank. The format is F( w-4). d-i,4(' b ') in level SR 1 
(see 5.3.1). / 

Conflicts: 
/ 

/- During list-directed input, if the first record read in a read operation has no characters preceding 
the first value separator, this indicates a null field. In level SR 1 it does not indicate a null field 
but is handled the same as any other record. If the STD=66 option is used in the COMPILER 
statement, execution will choose level SR 1 and earlier methods of input. 

• During list-directed output, character constants always have the PRINT format (that is, no 
apostrophes around character output). In level SR 1, PRINT and WRITE have different formatting 
in that apostrophes are used during the write. Also on list-directed output in level 9R 1 and 
higher, a complex constant must be written on one record if it fits, by itself, on a record. Level 
SRl will break it up without checking to see if it fits on one line. If the STD=66 option of the 
COMPILER statement is used, execution will proceed with level SR 1 and earlier types of output. 



8244.2 
"UP-WMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

J.14. Main Program 

Extensions: 

UPDATE lEVEL 
J-8 

PAGE 

The PROGRAM statement to name a main program must be the first statement in the main program 
if it occurs. The PROGRAM statement is not implemented in level SR 1 (see 7.9). 

Conflicts: 

None. 

J.15. Functions and Subroutines 

Extensions: 

• The following intrinsic functions are not in level SR 1: ICHAR, CHAR, lEN, INDEX, ANINT, DNINT, 
NINT, IDNINT, DPROD, lGE, lGT, llE, llT, UPPERC, lOWERC, and TRMlEN (see 7.3.1). 

• Ext9nded conversion intrinsic functions are the following: INT, REAL, DBlE, and CMPlX for all 
argument types. level SR 1 gives warnings for use of complex with INT and proceeds to flag 
further uses of INT as a user function. FORTRAN 77 allows integer, real, complex, and double 
precision arguments for INT. level SR 1 gives warnings for any use of REAL with variables other 
than complex and proceeds to flag further uses of REAL as a user function. FORTRAN 77 allows 
integer, real, and complex as arguments for REAL. level SR 1 gives warnings for any use of DBlE 
with complex variables, and sets further calls of DBlE to a user function. FORTRAN 77 allows 
integer, real, double precision, and complex arguments for DBlE. level SR 1 gives warnings for 
any complex variables used as arguments of CMPlX; it makes further uses of CMPlX become 
calls to a user function. FORTRAN 77 allows integer, real, double precision, and complex 
arguments for CMPlX (see 7.3.1). 

• The FUNCTION statement has the length for a character function as CHARACTER[ -II length ]C(A) 
while level SR 1 allows it after the function name, that is, CHARACTER FUNCTION C*3(A) (see 
7.4.2.2). Both forms are allowed in level 9R 1 and higher. 

• Empty parentheses are allowed on the SUBROUTINE statement. The FORTRAN 77 form is 
SUBROUTINE sub [([d[.d]. .. ])] while the level SRl form is SUBROUTINE sub [(d[.d] . .. )]. 
The forms sub and sub () are equivalent (see 7.4.3.2). 

• An actual argument for a subroutine call may be * s, where s is a statement number. level 
SRl uses currency signs ($) or ampersands (&) for the statement number (see 7.2.1 and 7.2.2). 

• A dummy argument array name may be associated with an actual argument which is an array 
element substring as well as an array or array element. level SR 1 passes a temporary for an 
array element substring. 

• A dummy argument which becomes defined may be associated with a substring as an actual 
argument. level SR 1 associates it with a variable, an array element, or an expression. 

• Empty parentheses are allowed in the ENTRY statement. The FORTRAN 77 form is ENTRY 
en[([d[.d] . .. ])] while the level SRl form is ENTRY en[(d[.d] ... )]. FORTRAN 77 requires 
that the function must be specified with the form en () even if the entry statement did not have 
the empty set of parentheses (see 7.7). 



8244.2 
UP-NUMIER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Conflicts: 

UPDATE LEVEl 
J-9 

PAGE 

• Statement functions are typeless in level SR 1, but are typed (just like other functions) in level 
9R 1 and higher. This can cause different results on account of implied type conversions (see 
6.3 and 7.4.1). The STD=66 option of the COMPILER statement provides for compatibility of 
level 9R 1 and higher with previous levels of ASCII FORTRAN for typing of statement functions 
(see 8.5 and S.S.S). 

• Register A 1 contains a function packet address for ~haracter function references (see K.4.6). For 
level SR 1 ASCII FORTRAN, register A 1 contains a result address for character function 
references. This is an incompatibility between level 8R 1 and all higher levels. If a program 
compiled with level 9R 1 or higher refers to a character function program compiled by level SR 1, 
the STD=66 option of the COMPILER statement must be present in the level 9R 1 or higher 
program. 

• If the value of e in RETURN[e] is less than one or greater than the number of asterisks in the 
subroutine entry, in level 9R 1 control returns to the CALL statement that initiates the subprogram 
reference. In level 8R 1, an error will be issued and the program will continue with unknown 
results (see 7.6). 

J.16. Block Data Subprogram 

Extensions: 

An optional global name may be specified for a block data subprogram, that is, BLOCK DATA [name]. 
Level 8R 1 does not allow the optional name. 

Conflicts: 

None. 





8244.2 
U,,"""UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

K-1 
PAGE 

Appendix K. Interlanguage Communication 

K.1. ASCII FORTRAN (FTN) to SPERRY UNIVAC FORTRAN V 

The FORTRAN V subprogram must be declared as: 

EXTERNAL a (FOR) 

or: 

EXTERNAL *a 

where a represents the FORTRAN V subprogram name. 

The call to the FORTRAN V subprogram appears syntactically exactly as though it were a call to an 
ASCII FORTRAN subprogram. 

Restrictions and Considerations: 

• If both the ASCII FORTRAN and FORTRAN V programs perform 1/0 operations, the ASCII 
FORTRAN library element F2FCA must be reassembled. The allocation and releasing of buffer 
areas is not common between the two FORTRANs and 1/0 operations may fail. This problem 
is resolved by reassembling element F2FCA with the required amount of main storage. Refer 
to G.7 for determining the required amount. 

• FORTRAN V Series E subprograms are restricted to symbiont types of 1/0 and the tag, CLOST$, 
will be undefined at collection time. This can be ignored since CLOST$ is defined in FORTRAN 
V Series T. 

• Any files opened by FORTRAN V Series T must be explicitly closed via a CALL CLOSE statement 
in a FORTRAN V subprogram if they are tc be usable after program termination. 

• The FORTRAN V subprogram cannot call the EXIT service routine. 

• The FORTRAN V subprogram name should not appear in a BANK statement. 

• FORTRAN V subprogram arguments and function names should not be type character or double 
precision complex as FORTRAN V supports neither data type. 

• The walkback mechanism will not work if a walkback is attempted from a FORTRAN V 
subprogram to an ASCII FORTRAN program. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.2. ASCII FORTRAN to PL/I 

The PL/I external procedure must be declared as: 

EXTERNAL a (PL 1) 

where a represents the PL/I procedure name. 

UPDATE LEVEL 
K-2 

PAGE 

The call to the PL/I procedure appears syntactically exactly as though it is a call to a ASCII FORTRAN 
subprogram. 

K.2.1. Restrictions and Considerations 

• Level 8R 1 PL/I, or later, must be used. 

• Any file opened by a PL/I procedure must be closed by a PL/I procedure. Files may be shared 
between ASCII FORTRAN and PL/I, but they must be closed by the language which opened them 
before they can be accessed by the other language. A file that was opened by a given language 
dCles not have to be closed before switching to another language as long as the called language 
routine does not access the file. 

• The PL/I procedure name cannot be a dummy argument name. 

• An argument to a PL/I procedure cannot be a label, subprogram name or array name. An array 
element may be passed from ASCII FORTRAN to PL/l, but PL/I must declare its counterpart as 
a single data item, structures or cross-sections of arrays are not allowed. 

• Passing an array name from ASCII FORTRAN to PL/I can be accomplished through common 
blocks. The PL/I procedure must use the EXTERNAL attribute on the declaration and the ASCII 
FORTRAN program must specify the array in a named common block. The PL/I common block 
name is the variable name with the EXTERNAL attribute. Note, however, ASCII FORTRAN stores 
arrays in column major order while PL/I stores them in row major order. This means that either 
the ASCII FORTRAN program must transpose the array so that it will be effectively in row major 
order when the PL/I procedure is called or the PL/I procedure must refer to the array with the 
subscripts in reverse order and the array dimensioned in reverse order. 

For example: 

ASCII FORTRAN 

EXTERNAL PL 1 SUB(PL 1) 
INTEGER ARR(2,4,6) 
COMMON/BLK l/ARR 
ARR(2,3,4) = 234 
CALL PL 1 SUB 
END 

PUI 

PL 1 SUB: PROC; 
DCL 1 BLK 1 EXTERNAL ALIGNED, 

2 ARR(6,4,2) FIXED DECIMAL(10,O); 
PUT SKIP ('WANT 234 :', ARR(4,3,2)); 
PUT SKIP; 
END; 

• IF execution is stopped by the PLII procedure via the STOP statement, any files opened by ASCII 
FORTRAN will not be properly closed unless the ASCII FORTRAN program explicitly closes them l' 

via the CLOSE statement. \~" .. .7 



( 

8244.2 
UP-MJMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.2.2. PL/I Argument Counterparts 

UPDATE LEVEL 
K-3 

PAGE 

PL/I has the following argument counterparts to ASCII FORTRAN. 

ASCII FORTRAN PL/I Comment 

INTEGER FIXED BINARY (p,q) p can range 1-35, q must be O. 
FIXED DECIMAL (p,q) p can range 1-10, q must be O. 

REAL FLOAT BINARY (p) p can range 1-27. 
FLOAT DECIMAL (p) p can range 1-8. 

DOUBLE FLOAT BINARY (p) p can range 28-60. 
PRECISION FLOAT DECIMAL (p) p can range 9-18. 

COMPLEX FLOAT BINARY COMPLEX (p) p can range 1-27. 
FLOAT DECIMAL COMPLEX (p) p can range 1-8. 

COMPLEX* 16 FLOAT BINARY COMPLEX (p) p can range 28-60. 
FLOAT DECIMAL COMPLEX (p) p can range 9-18. 

LOGICAL BIT (36) ALIGNED Only the rightmost bit is used by 
ASCII FORTRAN. The PL/I string 
may not be of varying length. 

CHARACTER* n CHARACTER(n) The PL/I string may not be of 
varying length. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.3. ASCII FORTRAN to ASCII COBOL (ACOB) 

The ASCII COBOL (ACOB) subprogram must be declared as: 

EXTERNAL a (ACOB) 

where a represents the ACOB subprogram name. 

UPDATE LEVEL 
K-4 

PAGE 

The call to the ACOB subprogram appears syntactically exactly as though it were a call to an ASCII 
FORTRAN subprogram. 

Restrictions and Considerations: 

• ACOB level 4R2, or higher, must be used. 

• Any file opened by an ACOB subprogram must be closed by an ACOB subprogram. Files may 
be shared between ASCII FORTRAN and ACOB, but they must be closed by the language which 
opened them before they can be accessed by the other language. A file that was opened by 
a given language does not have to be closed before switching to another language as long as 
tha called language routine does not access the file. 

• The ACOB subprogram name cannot be a dummy argument name. 

• It is the user's responsibility to ensure the data alignment is the same for an ASCII FORTRAN 
argument and its ACOB counterpart. Special care must be taken when passing character type 
data to ACOB. If the ASCII FORTRAN argument is not word-aligned, the ACOB argument 
declaration must reflect the offset via the use of a structure. To ensure that an ASCII FORTRAN ">., 

character scalar or array is word-aligned, place it as the first item in COMMON or equivalence 
the character item to an integer variable. 

• The ACOB subprogram name should not be a function name since ACOB does not support 
functions. 

• An argument to an ACOB subprogram should not be a label or subprogram name since ACOB 
has no argument counterpart. 

• An array name can be passed from ASCII FORTRAN to ACOB as an argument. However, ASCII 
FORTRAN stores arrays in column major order while ACOB stores them in row major order. This 
means either the ASCII FORTRAN program must transpose the array so that it will be effectively 
in row major order when the ACOB subprogram is called, or the ACOB procedure must reference 
the array with the subscripts in reverse order and the array dimensioned in reverse order. 
Beware of ASCII FORTRAN and ACOB alignment conventions. 

Example: 

ASCII FORTRAN 

EXTERNAL C(ACOB) 
CHARACTER*5 ARR(2.4,6) 
EQUIVALENCE (ARR(1,1,1),IDUM) 
ARR(2,3,4) = 'ABCD' 
CALL C(ARR) 
PRINT *, 'WANT EFG:', ARR(2,3.4) 
END 

ACOB 

LINKAGE SECTION. 
01 BUFF. 

02 BUFA OCCURS 6 TIMES, 
03 BUFB OCCURS 4 TIMES. 
04 BUFC PIC X(5) OCCURS 2 TIMES. 

PROCEDURE DIVISION USING BUFF. 
C. 

DISPLAY 'WANT ABDC:', 
BUFC (4, 3, 2). 

MOVE 'EFG' TO BUFC (4, 3, 2). 
EXIT PROGRAM. 



8244.2 
UP-IIUMIIER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LiVEl 

K-5 
PAGE 

• If execution is stopped by the ACOB subprogram, any files opened by ASCII FORTRAN will not 
be properly closed unless the ASCII FORTRAN program explicitly closes them via the CLOSE 
statement. 

• If ASCII COBOL passes a group item with no explicit type to an ASCII FORTRAN program, the 
corresponding ASCII FORTRAN argument can be type INTEGER, REAL, DOUBLE PRECISION or 
LOGICAL. CHARACTER type is not allowed. ASCII FORTRAN can only access that portion of 
a COBOL group item that is declared, either explicitly or implicitly, by the ASCII FORTRAN 
program. 

K.3.1. ASCII COBOL Argument Counterparts 

ASCII COBOL (ACOB) has the following argument counterparts to ASCII FORTRAN. 

ASCII FORTRAN ACOB Comment 

INTEGER PIC S9( 1 0) COMP SYNC Ensure that the ACOB item is 
word-aligned. 

REAL COMP-l 

DOUBLE PRECISION COMP-2 

COMPLEX No ACOB counterpart 

LOGICAL PIC 1 (36) SYNC Only the rightmost bit is used by 
ASCII FORTRAN. Ensure that the 
ACOB item is word-aligned. 

~\ 

CHARACTER*(n) PIC X(n I Ensure that the alignment is the 
same for ASCII FORTRAN and 
ACOB. 

TYPELESS t PIC 1 (36) SYNC Ensure that the ACOB item is 
word-aligned. 

t Note that a typeless argument results from a typeless function, see 2.2.3.4. 1. 



8244.2 
UP-ftUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.4. ASCII FORTRAN and MASM Interlaces 

UPDATE LEVEL 
K-6 

PAGE 

This section provides information needed when writing Assembler routines which call or are called 
by ASCII FORTRAN routines. 

K.4.1. Arguments 

For procedure calls with one or more arguments, ASCII FORTRAN requires an argument list. The 
address of the argument list is in H2 of register AO. AO also contains the number of character 
arguments in S 1 and the total number of arguments in 02. Bit number 9 of AO (leftmost bit is bit 
1) specifies when argument type checking is desired by the caller. The following is the format of 
register AO for calling an ASCII FORTRAN program. 

51 02 H2 

A C o 

where: 

A (51 of AO) is the number of character arguments (maximum of 63). . .. " 

B (Bit 9 of AO, assume bits are numbered 1-36 and the leftmost bit is 1) is the argument .", 
type checking bit. If set to 1 by the caller, argument type checking will not be done. 
If set to 0, argument type checking will be done unless the called subprogram has 
disabled type checking. The called subprogram can disable type checking by using 
the COMPILER statement option ARGCHK=OFF or by compiling the called 
subprogram with optimization (Z or V option). 

C (02 of AO) is the total number of arguments (maximum is 150,. 

o (H2 of AO) is the address of the argument list descriptor words that are explained in 
the following discussion. 

H1 

BOI of argument 

01 02 

offset length 

51 52 53 54 

type type type type 

H2 

Address of argument 

H2 

0 

55 56 

type type 

Addressing 
Words 

Character 
Descriptor 
Words 

Argument 
Type 
Words 

/-(~"''''-



(0 

" .,' 

8244.2 
Ul'-ffUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

K-7 
PAGE 

The addressing words follow one another consecutively in storage. There is one addressing word 
for each argument. The bank descriptor index (BDI) is required if the ASCII FORTRAN subprogram 
being called expects banked arguments and the argument is not in the control D-bank. It is also 
required if the argument is an external subprogram name and the ASCII FORTRAN subprogram being 
called has the LlNK=IBJ$ or BANKED=ALL compiler statement options present. Otherwise, the BDI 
is zero. If an ASCII FORTRAN program calls a MASM routine with arguments that have a BDI 
associated with them, (that is, the actual data passed resides in a banked common block) the MASM 
routine is responsible for basing the argument's data bank. All D-bank basing must be done by an 
ASCII FORTRAN library routine (F2ACTIV$). In other words, no LDJ or LBJ instructions should appear 
in user assembly code to switch the utility D-bank basing. The reason for this restriction is that the 
BDI of the currently based utility D-bank must always be contained in CURBDI$ (a D-bank cell). The 
interface to the activate routine is: 

LXI,H1 
LMJ 

X 11,O,AO . place BDI in H 1 of X 11 
X 11,ACTIV$. base D-bank 

See Appendix H for details on ASCII FORTRAN and banked programs. 

The character descriptor words follow one another consecutively in storage and follow the addressing 
words. A character function name or a Hollerith string passed as an argument does not have a 
character descriptor word. All other character types of arguments have a character descriptor word. 
The offset is the byte offset of the start of the character item within the word and has the value 0, 
1, 2 or 3. If the character item begins on a word boundary, the offset is O. A character item beginning 
on 02 of the word has an offset of 1, an item beginning on 03 has an offset of 2, and an item 
beginning on 04 has an offset of 3. The character length, represented in number of characters, is 
in 02 of the character descriptor word. If a character array is passed as an argument. the length 
passed is the size of an array element. If a character substring is passed as an argument. the length 
passed is the length of the substring. 

If argument type checking is desired, bit 9 of AO (assume bits numbered from 1 to 36 and the leftmost 
bit is 1) must be zero and the argument type words must be present. The argument type words follow 
one another consecutively in storage and follow the character descriptor words. There is one type 
word for each six arguments. The following is a list of allowable types: 

o Subprogram 
1 Integer 
2 Real 
3 Double Precision Real 
4 Complex 
5 Double Precision Complex 
6 Character 
7 Logical 
8 Label 
9 Hollerith 

Note that type 0, subprogram, will match any other type. Type 9, Hollerith, matches all types except 
character and label. All other types must match exactly or else a run-time diagnostic message is 
issued when type checking is enabled. Note the argument type words are optional. If they are not 
present, either the caller must specify so by setting bit 9 of AO to 1 or the callee must disable type 
checking by using the COMPILER statement option ARGCHK=OFF or compiling with optimization. 

If an Assembler routine is referring to an ASCII FORTRAN subprogram that has the COMPILER 
statement option STD=66 present or was compiled by an ASCII FORTRAN compiler lower than level 
9R 1, the contents of AO and the packet format differ. 0 S 1 and bit 9 of AO must be O. The character 
descriptor words and the argument type words are not required. In addition, any character item 
passed to the ASCII FORTRAN subprogram must begin on a word boundary. 



8244.2 
UP-HUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.4.2. ASCII FORTRAN Register Usage 

UPDATt LEVEL 
K-8 

PAGE 

An ASCII FORTRAN subprogram saves and restores all registers that it uses except for the volatile 
set X 11, AO-A5 and R 1-R3. An ASCII FORTRAN subprogram requires register R 15 to contain the 
address of a storage control table (F2SCT) which is used on I/O operations and by several of the ASCII 
FORTRAN library routines. Register R 15 is loaded with the F2SCT address as part of the initialization 
performed by an ASCII FORTRAN main program. Once R 15 has been initialized. it is the responsibility 
of any routine outside the ASCII FORTRAN environment to preserve its contents upon reentry to an 
ASCII FORTRAN subprogram. 

K.4.3. Initializing the ASCII FORTRAN Environment 

Under normal ASCII FORTRAN conditions. the ASCII FORTRAN environment is initialized by a call from 
the ASCII FORTRAN main program to the ASCII FORTRAN initialization routine. If an ASCII FORTRAN 
subprogram is called from an Assembler routine and there is not an ASCII FORTRAN main program. 
it is the responsibility of the Assembler routine to call the ASCII FORTRAN initialization routine. One 
of two ASCII FORTRAN initialization routines must be called by the Assembler routine before the ASCII 
FORTRAN subprogram is called. Note that the ASCII FORTRAN initialization need only be called once 
during the program execution. The initialization routines use only the volatile set of registers. Both 
initialization routines acquire buffer space and initialize tables that are used by I/O and ASCII 
FORTRAN library routines. This space is acquired by the Common Storage Management System. If 
the Assembler routine or controlling program has its own storage management system, the ASCII 
FORTRAN library element F2FCA can be modified a,nd reassembled to avoid any ER MCORE$. See 
Appendix G for details. 

One of the initialization routines also registers a contingency routine for capturing contingency 
interrupts which is required for the proper execution of some ASCII FORTRAN programs. However. 
since some applications prefer to capture their own contingencies. a second routine which does not 
register contingencies is provided. Note that the ASCII FORTRAN service routines UNDSET. OVFSET 
and DIVSET will reregister contingencies and should not be called if an application depends on 
another contingency registration. 

The following call will initialize the ASCII FORTRAN environment but will not register the ASCII 
FORTRAN contingency routine. 

LMJ A2,FINT$ 

The following call will initialize the ASCII FORTRAN environment and register the ASCII FORTRAN 
contingency routine. 

LMJ X 11 ,FINT2$ 

Upon return from either of the initialization routines, register R 15 contains the address of the ASCII 
FORTRAN Storage Control Table (F2SCT). It is the responsibility of the Assembler routine to ensure 
that R 15 contains the F2 SeT address when calling an ASCII FORTRAN subprogram. 



8244.2 
UP-NUMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.4.4. Terminating the ASCII FORTRAN Environment 

UPDATE LEVEl 
K-9 

PAGE 

Under normal conditions, the ASCII FORTRAN environment is terminated by a call from the main 
program to the ASCII FORTRAN termination routine. The function of the termination routine is to 
output buffered I/O to the appropriate files and close all opened files. An ER EXIT$ is then performed 
which terminates the program. If an Assembler routine calls an ASCII FORTRAN subprogram and 
control never reaches an ASCII FORTRAN main program for normal program termination, it is the 
responsibility of the Assembler routine to close all opened I/O files. The closing of files can best be 
accomplished by having the ASCII FORTRAN subprogram close them via the CLOSE statement. Note 
that if the ASCII FORTRAN termination routine is called, files will be closed but control is not returned 
to the caller. The following is the Assembler call to the ASCII FORTRAN termination routine. 

LMJ X 11,FEXIT$ 

K.4.5. Calling an ASCII FORTRAN Subprogram 

A call to an ASCII FORTRAN subprogram takes one of several forms depending upon whether the 
subprogram is banked or not. For a non banked ASCII FORTRAN subprogram call the following 
Assembler linkage can be used. 

LXI,U X 11,0 
LMJ X 11, entry-point 

ASCII FORTRAN will return to the caller via: 

J O,X 11 

For a banked ASCII FORTRAN subprogram call (that is, the ASCII FORTRAN subprogram has the 
compiler statement options BANKED=ALL, BANKED=RETURN, or LlNK=IBJ$), one of two calling 
sequences can be used: 

LX I, U X 11 , bdi-of-the-subpro91 ams-bank 
LlJ X 11, entry-point 

or: 

LXI,U X 11,BDICALL$+entry-point 
I BJ $ X 11, entry-point 

For a description of IBJ$ and BDICALL$, see the Collector (MAP Processor) Programmer Reference, 
UP-8721.1 (see Preface). 

An ASCII FORTRAN banked subprogram will return via: 

LA,H1 
JZ 
LlJ 

A4, X "-save-Iocation 
A4,O,X11 
X 11,O,X 11 



8244.2 
UP~UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

K.4.6. ASCII FORTRAN Function References 

UPDATE LEVEL 
K-10 

PAGE 

If an ASCII FORTRAN (level 9R 1 or higher) character function is referred to. register A 1 must contain: 

H1 H2 

o fctn-pkt-addr 

where fctn-pkt has the form: 

H1 H2 

o result-addr 

o char-length o 

The result-addr field in H2 of the first word points to the callers storage area where the result of 
the function will be stored. This storage area must be in the control bank or be visible to the function. 
It is the caller's responsibility to ensure that the function result area is large enough to hold the 
function result. 

The char-length field in 02 of the second word of the packet is the length of the function result 
expressed in number of characters. 

For ASCII FORTRAN levels 8R 1 and lower. and whenever the compiler statement option STD= 66 is 
used in the function being called. register A 1 must contain: 

H1 H2 

o result-addr 

The result-addr field description is the same as for levels 9R 1 and higher. Note that a fctn-pkt is 
not required for levels lower than 9R 1. 

An ASCII FORTRAN character function will place the function result into the caller's storage area 
pointed to by result-addr. If the value of a function is not a character string. it is returned in registers 
AO. AO through A 1. or AO through A3 depending on the function type. 



8244.2 
UP .... UUBER 

( 

(: 

SPERRY UNIVAC Series 1100 K-11 
FORTRAN (ASC!!) Programmer Reference UPDATE lEVEL PAGE 

K.4.7. Example 

The following is an example of an Assembler routine that passes three arguments to the ASCII 
FORTRAN subroutine FTEST. 

1. AXR$ 
2. $( 1) 
3. MATH* LMJ A2,FINT$ · initialize FTN 
4. 
5. L,U R4,4 · loop initialization count 
6. FTNREF LA AO,(020003,ARGS) · list pointer 
7. LXI,U X11,O 
8. LMJ X11,FTEST · call nonbanked FTN rtn 
9. LA A4,REALNO · bump 2nd arg by 1.0 

10. FA A4,(1.0) 
11. SA A4,REALNO 
12. JGD R4,FTNREF · repeat call to FTN rtn 
13. 
14. LMJ X11,FEXIT$ · terminate program 
15. 
16. $(0) 
17. CHARD FORM 9,9,18 
18. 
19. ARGS + STRING · address of 1 st arg 
20. + REALNO · address of 2nd arg 
21. + STRING · address of 3rd arg 
22. CHARD 0,3,0 · 'ASM' offset=O len=3 
23. CHARD 3,3,0 · 'B 17' offset=3 len=3 
24. + 6,2,6,0,0,0 · char real char type 
25. 
26. ASCII 
27. STRING 'ASMB 17' 
28. REALNO + 2.5 
29. END MATH 

The following is the ASCII FORTRAN subroutine FTEST that is called from the preceding Assembler 
routine: 

1. 
2. 

3 * 
4. 
5. 
6. 
7. 
8. 

SUBROUTINE FTEST (CAL TYP, X, CALI D) 
CHARACTER CALTYP*(*), CAlID*3 

PRINT *, 'CALLER 10 " CAlID, ' TYPE " CAL TYP 
PRINT *, 'SIN OF', X, ' = " SIN(X) 
PRINT *, 'COS OF', X, ' = " COS(X) 
RETURN 
END 



8244.2 
UI'-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

The execution of the program will be: 

CALLER 10 B 17 TYPE ASM 
SIN OF 2.5000000 = .59847214 
COS OF 2.5000000 = -.80114362 
CALLER 10 B 17 TYPE ASM 
SIN OF 3.5000000 = -.35078323 
COS OF 3.5000000 = -.93645669 
CALLER 10 B 17 TYPE ASM 
SIN OF 4.5000000 = -.97753011 
COS OF 4.5000000 = -.21079580 
CALLER 10 B 17 TYPE ASM 
SIN OF 5.5000000 = -.70554033 
COS OF 5.5000000 = .70866977 
CALLER 10 B 17 TYPE ASM 
SIN OF 6.5000000 = .21511999 
COS OF 6.5000000 = .97658762 

UPDATtLEVEL 
K-12 

PAGE 

At line 3 of the Assembler routine a call is made to initialize the ASCII FORTRAN environment. The 
ASCII FORTRAN initialization routine will acquire I/O buffer storage via the Common Storage 
Management System. If the Assembler routine has its own storage management system, the ASCII 
FORTRAN library element F2FCA would need modifications and reassembling. See Appendix G for 
details. 

At line 6 register AO is loaded with a literal that specifies two character arguments (S 1), perform 
argument type checking (bit 9 of the literal is 0), and three total arguments (Q2). The second half 
of AO contains the address of the argument list. 

lines 19 through 21 contain the argument addressing words. lines 22 through 23 contain the 
character descriptor words for the first and third arguments, respectively, which are character types. 
The first argument passed is the character string "ASM", the second argument passed is the real 
number 2.5 (which is modified after each call by the Assembler routine) and the third argument is 
the character string 'B 17'. 

line 24 contains the argument type word which the ASCII FORTRAN subprogram requires for 
argument type checking. The first and third arguments are character types as indicated by the 6 and 
the second argument is a real type as indicated by the 2. 

At line 14 the ASCII FORTRAN termination routine is called which closes any opened I/O file and then 
terminates program execution via an ER EXIT$. 



8244.2 
UP-NUMBER 

( 

L. 1. General 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEl 

L-l 
PAGE 

Appendix L. ASCII FORTRAN Sort/Merge Interface 

A Sort/Merge interface is available from ASCII FORTRAN to the Sort/Merge package. The Sort/Merge 
package is described in the Sort/Merge Programmer Reference, UP-7621 (see Preface). 

L.2. Sort/Merge Features Available Through ASCII FORTRAN 

The Sort/Merge interface is entered via the CALL statement in ASCII FORTRAN. The Sort/Merge 
interface provides the following functions: 

• CALL FSORT 

• CALL FMERGE 

• CALL FSCOPY 

• CALL FSSEQ 

• CALL FSGIVE 

• CALL FSTAKE 

Perform a sort. 

Perform a merge. 

Specify an Assembler sort parameter table to be copied. This table may 
be used in subsequent sorts or merges. The use of such a table may also 
be inhibited. 

Specify a user-specified collating sequence to be used in subsequent sorts 
or merges. The use of such a collating sequence may also be inhibited. 

Deliver an input record to sort without leaving the user's input subroutine. 

Receive an output record from sort without leaving the user's output 
subroutine. 

L.3. Restrictions with Sort/Merge Interface 

L.3.1. Banked Arguments Not Allowed 

The data given to any area of the Sort/Merge interface must not be banked. The scratch area used 
by the Sort/Merge interface must not be banked. 

L.3.2. Sort/Merge Interface Contains Only Formatted I/O 

The Sort/Merge interface attempts only formatted I/O on all logical unit numbers used in the calls 
to do a sort or a merge. The ASCII FORTRAN level lOR 1 I/O complex will not test the file to determine 
if the user does indeed have a formatted file. This could result in errors from the Sort/Merge interface. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE \.£VEl. 

l-2 
PAGE 

L.3.3. Use of ASCII FORTRAN Free Core Area Element (F2FCA) 

When the file R$CORE is not assigned to the run (for FSORT only). the Sort/Merge interface will 
attempt to get storage space from the ASCII FORTRAN Library Common Storage Management System 
(CSMS). If the user has supplied a version of ASCII FORTRAN library element F2FCA so that the CSMS 
routines are not used. the user must make element F2FCA large enough to accommodate the storage 
area needed by the Sort/Merge interface routines. the Sort/Merge package. and the area needed for 
the FORTRAN library (see G.7). 

L.4. The CALL Statement to FSORT 

L.4.1. The CALL Statement for a Sort 

The form of the CALL statement for a sort is: 

CALL FSORT (infost ,inpt. outpt[. comprt] [. datrd] ) 

where: 

infost is the information string. a character string that describes various parameters to the 
Sort/Merge interface. such as record sizes. key fields. and scratch facilities for FSORT. 
A key field (or a user's comparison routine) and a record size must be specified in 
infost. 

Infost contains items of information separated by commas. Blanks in infost will be 
ignored. No distinction will be made between uppercase and lowercase alphabetic 
characters. Infost will be scanned from left to right and must be terminated by some 
character which is an illegal ASCII FORTRAN character. such as an exclamation point 
( !). An asterisk (*) must not be used to terminate infost. 

Infost may contain several clauses. The mnemonics used will be truncated by the 
Sort/Merge interface to the first four characters. The following items may be used 
in infost for the call to FSORT: 

1. RSZ= rIch 

RIch is the record length in ASCII characters. This record size must be specified 
when a sort is to be done. The RSZ clause may appear only once in infost. A 
record size clause may appear only once in infost; that is. the RSZ and VRSZ 
clauses may not appear in the same infost. 

2. VRSZ= mrlch /Inkszch 

Mrlch is the maximum record size in ASCII characters for variable length 
records. Lnkszch is an optional parameter indicating link size in ASCII 
characters. If Inkszch is omitted. the slash (/) may also be omitted. Lnkszch 
must be large enough to accommodate all keys. For example. if the keys are 
specified by: 

KEY=(11115.1/10/d/s) 



8244.2 
UP-NUMIIEJI 

(.--

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATE LEVEL. 

l-3 
PAGE 

the last character in any key field for this KEY specification is the 25th character. 
Therefore, the link size must be at least 25 characters long. The link size should 
be specified only when a comparison routine has been specified. The VRSZ 
clause may appear only once in infost. A record size clause may appear only 
once in infost; that is, the RSZ clause and the VRSZ clause may not both be used 
in the same infost. 

When sorting variable length records, the records are separated into smaller 
parts (links) of equal size that are joined by pointers. As an example, consider 
a record of nine words with the link size four words. Schematically, the record 
would be stored as in the following figure: 

~ __ w_o_r_d __ 1 __ ~ ___ w_o_r_d_2 __ ~~ __ w_o_r_d_3 __ ~~ __ w_o_r_d_4 __ ~ ___ p_o_in_t_e_r __ ~~ A 

word 5 word 6 word 7 word 8 pointer 2 ~ B 

B ~~ ___ w_o_r_d_9 ____ ~ _____________ g_a_r_b_a_g_e ______________ ~_n_u_II __ PO __ in_te_r~ 

3. 

When the link size is given in the VRSZ clause, the following rules should be 
considered: 

1. The link size should not be too small. For example, if the link size is given 
as one word, the core (main storage) required for each record is exactly 
twice the record size. This means that the sort uses many more resources 
(main storage, mass storage, and tapes) than necessary. 

2. The link size should not be too large, since this may mean that much of the 
area remains unused in the last link. This will cause problems because of 
poor use of main storage. 

NOTE· The two rules are in conflict. The choice of a link size requires a 
compromise between these two rules. 

It is frequently advantageous to sort short variable length records as if these 
records were fixed length records because of the resources used by the 
Sort/Merge package. If these records are treated as fixed length, the user must 
keep track of the record length. 

CONS 

CONS indicates that the closing messages from the Sort/Merge package are to 
be sent to the system console. If CONS is not present, the opening and closing 
messages from the Sort/Merge package are sent to the system log. 1 he opening 
messages give the block sizes on mass storage and may be used to check the 
efficiency of the Sort/Merge usage of the scratch area. The closing messages 
give the input and output record counts and the bias of the data. The CONS 
specification may appear only once in infost. 



8244.2 
IJP..MJM8ER 

SPERRY UNIVAC Series 1100 . L-4 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

4. DELL 

DELL is used to indicate that the opening and closing messages from the 
Sort/Merge package should not be sent to the system log. This clause may 
appear only once in infost. 

5. KEY = keysp 

or: 

KEY=keyspn 

Keysp is a single key specification; keyspn is a multiple key specification of the 
form (keysp" keysp 2' ... ). The single key specification form, KEY= keysp, may 
occur a maximum of 40 times in infost. There may be a maximum of 40 keysp 
specifications within the keyspn. More than one KEY = keyspn clause may 
occur in infost but only 40 keys are allowed for each call to FSORT. Note that 
the limit of 40 keys includes any keys given in the sort parameter tables copied 
through the COpy clause (see L. 7.1). The key specification may indicate a 
character key, that is, a key that begins and ends on a character boundary, or 
a bit key that either starts or ends outside a character boundary. The form of 
the character key is: 

charpos / length / seq / type 

where: 

charpos is the position within the record of the most significant character 
of the key. Character positions are counted from left to right 
beginning with position 1. 

length is an optional field that specifies the length of the key in 
chardcters. The default for length is one. 

seq is an optional field that specifies the sequencing order of the key. 
The value A may be used for ascending order; D may be used for 
descending. The default value is A. 

type is an optional field that specifies the type of the key. The value 
of this field may be B, Q, R, S, T, U, or V; U is the default value. 
The values for this field indicate: 

B The key field contains a signed number in a Series 1100 
System internal representation. 

Q The key field contains a signed decimal number in 9-bit ISO 
character representation with a sign "overpunched" on the 
last digit. 

R The key field contains 9-bit ISO characters with a leading 
sign, that is, a plus, minus, or blank. Any character in the 
sign position that is not a plus, a minus, or a blank will be 
set to a blank. 

S The key field coritains 9-bit characters. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 L-5 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

T The key field contains 9-bit ISO characters with a sign in the 
last character position, that is, a plus, minus, or blank. Any 
character in the sign position that is neither a plus, minus, 
nor blank will be set to a blank. 

U The key field contains an unsigned number in the Series 
1100 System internal representation. 

V The key field contains a signed decimal in 9-bit ISO 
characters with a sign "overpunched" on the first character. 

The form of the bit key is: 

BIT / wordpos / bitpos / length / seq / type 

where: 

wordpos is the position within the record of the word that contains the 
most significant bit of the record. Words within the record are 
numbered from 1. 

bitpos 

seq 

type 

is the position of the first bit of the key in the first word of that 
key. Bits are numbered from left to right beginning at 1. 

is an optional field that specifiesthe sequencing order of the key: 
A for ascending or 0 for dejendin g. The default is A. 

is an optional field that specifies the type of the key. The values 
for type may be A, B, 0, G, L, M, P, or U; the default is U. The 
values for type indicate: 

A The key field contains 6-bit characters. All A key fields must 
start and end on 6-bit byte boundaries. 

B The key field contains a signed number in the Series 1100 
System internal representation. 

o The key field contains 6-bit Fieldata characters with a 
leading sign, that is, a plus, minus, or blank. Any character 
in the sign position that is not a plus, minus, or blank will 
be set to a blank. All 0 key fields must start and end on 6-bit 
byte boundaries. 

G The key field contains 6-bit Fieldata characters with a sign 
in the last character, that is, a plus, minus, or blank. Any 
character in the sign position that is not a plus, minus, or 
blank will be set to a blank. The key field must begin and 
end on a 6-bit byte boundary. 

L The key field contains a number in 6-bit Fieldata characters 
with a sign "overpunched" on the first digit. The key field 
must start and end on a 6-bit byte boundary. 

M The key field contains a number in signed magnitude 
representation. This means that the first bit is the sign (that 
is, a 1 for negative and a 0 for positive), and the rest of the 

, I 

field is the absolute value of the number. : 



8244.2 
uP-MJM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L-6 
PAGE 

6. COMP 

UPOAT£. LEV£L 

P The key field contains a signed decimal number in 6-bit 
Fieldata characters with a sign "overpunched" on the last 
digit. The key field must begin and end on a 6-bit byte 
boundary. 

U The key field contains an unsigned number in Series 1100 
System internal representation. 

COMP is used to indicate the use of a user comparison routine. This indicates 
the presence of comprt in the call to FSORT. The COMP clause may appear only 
once in infost. 

7. COpy 

COpy is used to indicate that an Assembler sort parameter table is to be copied. 
The COpy clause may appear only once in infost. See L.6.1. 

8. DATA 

DATA is used to indicate that a user data reduction routine is present. This 
indicates the presence of datrd in the call to FSORT. This option may only be 
specified when fixed length records are to be sorted. The DATA clause may 
appear only once in infost. 

9. SELE= recno 1 

or: 

SELE= recno 1 / recno2 

or: 

S E LE = (recno 1 [/ recno2] ,recno3 [/ recno4] , . . . ) 

Recno 1 through recno4 are record numbers. The SELE, or select, clause is used 
to indicate which records are to be given to the Sort/Merge package. If the first 
form is used, only the record specified by recno 1 will be given to the sort. If 
the second form is used with recno2, all records from recno 1 through recno2 
will be given to the sort. If the third form of the SELE clause is used, the records 
between each pair of record numbers will be given to the sort and single records 
will be given to the sort. All records will be read, but only those records specified 
in the SELE clause will be given to the sort. Only 10 record number pairs can 
be used in the third form. For each pair, recno 1 must be less than or equal to 
recno2, and the last number of each pair must be less than the first number of 
the next pair. If recno 1 appears without recno2, or recno3 appears without 
recno4, only recno 1 or recno3, respectively, will be given to the sort. This 
clause may appear only once in infost. 

10. CORE = corsz 

Corsz is the size in words of the scratch area to be used by the sort. At least 
3000 words must be used. In general, the sort runs faster if the scratch area 
given to sort is expanded. This clause may appear only once in infost. See L.9.2. 



(/ 

( 

8244.2 
UP-HUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

11. FILE= file-name 

or: 

FILE=( file-name, file-name, ... ) 

UPDATE LEVEL 
L-7 

PAGE 

File-name is a Series 1100 System internal file name. The second form of the 
FILE clause permits the specification of more than one file name within the 
clause. See L.9.3.1. The following restrictions apply to scratch files: 

1. All scratch files must be assigned when the sort starts executing. 

2. A maximum of 26 scratch files may be specified. 

3. At least three tape scratch files must be used if any tape scratch files are 
used. 

4. If tape scratch files are used, a maximum of two mass storage scratch files 
may be used for the sort. 

12. NOCH= chksm 

Chksm is any combination of the letters 0, F, K, and T. The letter T refers to 
tape and 0, F, and K refer to mass storage. The nocheck clause is used to omit 
a checksum. If the sort uses one or two mass storage scratch files, 0 refers to 
the smaller of the two (one must be at least twice the size of the other) and F 
refers to the larger of the two, if both files are present. 

If the sort uses three or more mass storage scratch files, K refers to the checksum 
on all the files. 

If K is specified for a sort with fewer than three mass storage files, 0 and Fare 
assumed. If 0 or F is specified for a sort with more than two mass storage scratch 
files, K is assumed. This clause may appear only once in infost. See L.9.3.2. 

13. MESH= meshsz / device 

Meshsz is the mesh size and device is any combination of the letters 0, F, K, 
and T. If meshsz is not given, the value 5 is assumed. If device is not present, 
the mesh size is assumed to apply to all device types. The letter T indicates the 
use of tape scratch files; 0, F, and K indicate the use of mass storage scratch 
files. 0 and F are used if one or two mass storage scratch files are used. 0 refers 
to the smaller of the two mass storage scratch files and F refers to the larger of 
these two files. The letter K indicates the checksum of three or more mass 
storage scratch files. The MESH = specification may appear only once in infost. 
The letters 0, F, K, and T may be used only once each in the MESH specification. 
See L.9.3.2. 

14. BIAS= biasno 

Biasno is the average number of records in sorted subsequences present in the 
input file. For example, biasno will be 1 if the input is in exactly reverse order. 
For random data, biasno is 2. If the input file is in an almost sorted order, the 
bias value will be higher. The BIAS clause may appear only once in infost, 
Giving the bias value, if known, may improve the performance of the sort 
substantially. See L.9.1. 



8244.2 
UP ..... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

L-8 
PAGE 

An example of an information string infost to sort variable length records with a 
maximum length of 200 characters with four key fields would be the following: 

'VRSZ= 200,KEY =( 1 I 1 Oils, 11 I 1 0/d/q,21 I 1 0,31 I 1 O/d),CONS!' 

The key fields in the record are defined as follows: 

1. The first key starts in the first character position of the record, is 10 characters 
long, and is to be sorted in ascending order with a user-specified collating 
sequence (if that sequence is present). 

2. The second key starts in character position 11, is 10 characters long, and is to 
be sorted in descending order with an overpunch in the last character position. 

3. The third key starts in character position 21, has a length of 10 characters, and 
is to be sorted in ascending order. 

4. The fourth key starts in character position 31, has a length of 10 characters, and 
is to be sorted in descending order. 

The CONS clause is present so that all messages will be sent from the SortlMerge 
package to the console. 

If one must sort record images of SO characters with a key that starts in character 
position 1, that has a length of 5 characters, and that is sorted in ascending order, 
the information string infost may be: 

'RSZ=SO,KEY= liS!' 

Infost must be the first parameter in the call to FSORT. The other parameters follow 
infost. 

inpt is either a logical unit number or the name of an input subroutine. If inpt is the name 
of an input subroutine, the subroutine must be declared in an EXTERNAL statement 
in the program unit containing the call to FSORT. See L.S.l. 

outpt is either a logical unit number or the name of an output subroutine. If outpt is the 
name of an output subroutine, the subroutine must be declared in an EXTERNAL 
statement in the program unit containing the call to FSORT. See L.S.4. 

comprt is the name of a comparison subroutine supplied by the user. The subroutine is called 
whenever two records are to be compared. The name of the comparison subroutine 
must be declared in an EXTERNAL statement. This parameter must not be present 
if the user has not provided a comparison subroutine. This parameter must be present 
if the COMP clause occurs in infost. See L.S.2. 

datred is the name of a data reduction subroutine. The name of datred must be declared 
in an EXTERNAL statement. This subroutine will be called whenever two records with 
equal keys have been found. It will decide whether the two records are to be merged 
into one record or not merged. This feature is used for sorting fixed length records 
only. Datred must not be present if the user has not specified the DATA clause in 
infost; it must be present if the DATA clause occurs in infost. See L.S.3. 



8244.2 
UP-NUMBER 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L.4.2. Examples of Sort with Logical Unit Numbers 

UPDATE LEVEL 
L-9 

PAGE 

The following runstream contains a call to FsORT with a simple information string infost which 
contains a KEY clause and a RsZ clause. The RsZ clause gives a record size of 80 characters. The 
KEY clause states that the key begins in the first character position of the record, has a length of five 
characters, and will be sorted in ascending order. Infost ends with an exclamation point ( !). The 
input and output parameters are simply unit numbers 5 and 6. The Sort/Merge interface does 
formatted reads on unit 5 until all the input data has been read. The interface then calls the 
Sort/Merge package to sort the data, and does formatted writes on unit 6 of the data from the 
Sort/Merge package. 

@RUN 
@FTN,sl 

CALL FsORT('key= 1/5,RsZ=80!',5,6) 
END 

@MAP,SIF 
LIB ASCII*FTNLlB. 
<EXQT 
... data images to be sorted ... 
@FIN 

Another example of a simple sort is given in the following runstream. This program assumes that 
the source input from file IN*PUT will be written to the file OUT*PUT. The records are 80 characters 
long with keys starting in character positions 1 and 6. Each key is 5 characters long. The first key 
is sorted in ascending order, and the second key in descending order. 

@RUN 
@FTN,SI 

CALL FSORT('rsz= 80,key=( 1 /5,6/5/d)!',9,l 0) 
END 

@MAP,SIF 
LIB ASCII*FTNLlB. 
@ASG,A IN*PUT 
@ASG,C OUT*PUT 
@USE 9,IN*PUT 
@USE 10,OUT*PUT 
@XQT 
@FIN 



8244.2 
UI4IUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L.4.3. Examples of Sort with User Subroutines 

UPDATE LEVEL 
l-10 

PAGE 

The following example is a simple variation of the first example in L4.2. The RSZclause declares 
the record size to be 80 characters. The KEY clause indicates that the key starts in the first character 
position of the record, has a length of 5 characters, and will be sorted in ascending ordei. The inpt 
and outpt parameters are user-supplied input and output subroutines which are declared in an 
EXTERNAL statement in the program. The subroutines contain formatted I/O statements to read from 
unit 5 and write to unit 6. 

@RUN 
@FTN,SI 

EXTERNAL IN,OUT 
CALL FSORT(key= 1/5,rsz=80!',IN,OUT) 
END 

@FTN,SI IN 

1 
2 

SUBROUTINE IN(RECORD,LENGTH,IEOF) 
CHARACTER*4 RECORD(20) 
READ(5,l,END=2) RECORD 
LENGTH=80 
IEOF=O 
RETURN 
FORMAT(20A4) 
IEOF= 1 
RETURN 
END 

@FTN,SI OUT 

SUBROUTINE OUT(RECORD,LENGTH) 
CHARACTER*4 RECORD(20) 
IF (LENGTH.GE.O) WRITE(6, 1) RECORD 
FORMAT( 1 X,20A4) 
RETURN 
END 

@MAP,SIF 
LIB ASCII*FTNLlB. 
@XQT 
... data images to be sorted ... 
@FIN 



8244.2 
UP-NUMBER 

( 

( '.-

... 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

Another example of a sort with user I/O routines is given in the following runstream. 

@RUN 
@FTN,SI 

EXTERNAL IN,OUT 
CAll FSORTj'rsz= 80,key=( 1 /5,6/5/d),core= 20000!',IN,OUT) 
END 

@FTN,SI IN 

SUBROUTINE IN(RECORD,lENGTH,IEOF) 
CHARACTER*4 RECORD(20) 
READ(9,1,END= 2) RECORD 
FORMAT(20A4) 
LENGTH=80 
IEOF=O 
RETURN 

2 IEOF= 1 
RETURN 
END 

@FTN,SI OUT 

2 

SUBROUTINE OUT(RECORD,lENGTH) 
CHARACTER*4 RECORD(20) 
IF (lENGTH.l T.O) GO TO 2 
WRITE( 10,1) RECORD 
FORMAT(20A4) 
RETURN 
ENDFllE 10 
RETURN 
END 

@MAP,SIF 
LIB ASCII*FTNlIB. 
@ASG,A IN*PUT 
@ASG,C OUT*PUT 
@USE 9,IN*PUT 
@USE 10,OUT*PUT 
@XQT 
@FIN 

L-11 
PAGE 



8244.2 
UP-ftUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

l-12 
PAGE 

lo5. The CALL Statement toFMERGE 

lo5.1. The CALL Statement for a Merge 

The form of the CALL statement for a merge is: 

CALL FMERGE (infost. inpts. outpt L comprt] ) 

where: 

infost is the information string. a character string that describes various parameters to the 
Sort/Merge interface. such as record sizes. key fields. and scratch facilities for 
FMERGE. A key field (or a user's comparison r()utine) must be specified in infost. 

Infost contains items of information separated by commas. Blanks in infost will be 
ignored. No distinction will be made between uppercase and lowercase alphabetic 
characters. Infost will be scanned from left to right and infost must be terminated 
by some character which is an illegal ASCII FORTRAN character. such as an 
exclamation point ( !). An asterisk (*) must not be used to terminate infost. 

Infost may contain several clauses. The mnemonics used will be truncated by the 
Sort/Merge interface to the first four characters. The following items may be used 
in infost for the call to FMERGE: 

1. RSZ=rlch 

Rich is the record length in ASCII characters. This record is not required. If the 
RSZ clause is not given. the Sort/Merge interface will assume that the maximum 
record length is 1000 words. This will waste some main storage. If the RSZ 
clause is present. the interface will check that the records from each input source 
are in sequence. The RSZ clause may appear only once in infost. Only one 
record size clause may appear in infost at a time. Thus. the VRSZ clause may 
not be used if the RSZ clause is used in infost. 

2. VRSZ= mrlch /Inkszch 

Mrlch is the maximum record size in ASCII characters for variable length 
records. Lnkszch is an optional parameter indicating link size in ASCII 
characters. If Inkszch is omitted. the slash (I) is also omitted. Lnkszch must 
be large enough to accommodate all keys. For example. if the keys are specified 
by: 

KEY=(11/15.1/10/d/s) 

the Inst character in any key field for this KEY specification is the 25th character. 
Therefore. the link size must be at least 25 characters long. The link size should 
be specified only when a comparison routine has been specified. The 
Sort/Merge will check to see if the keys fit in the link size but will otherwise 
ignore the link size for a merge. The VRSZ clause may appear only once in infost 
and only one record size clause may be specified in· infost at a time. Thus. the 
RSZ clause may not be used if the VRSZ clause appears in infost. 



8244.2 
UP .... UMSER 

( 

SPERRY UNIVAC Series 1100 l-13 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

3. KEY= keysp 

or: 

KEY =( keyspn ) 

Keysp is a single key specification and keyspn is a multiple key specification 
of the form keysp l' keysP2' etc. . . .. The single key specification form 
KEY = keysp may occur a maximum of 40 times in infost. There may be a 
maximum of 40 keysp specifications within keyspn. More than one 
KEY = keyspn clause may occur in infost, but only 40 keys are allowed for each 
call to FMERGE, including any keys copied through the COpy clause (see L. 7.1). 
The key specification may indicate a character key, that is, a key that begins and 
ends on a character boundary, or a bit key that either starts or ends outside a 
character boundary. The form of the character key is: 

charpos / length / seq / type 

where: 

charpos is the position within the record of the most significant character 
of the key. Character positions are counted from left to right 
beginning with position 1. 

length is an optional field that specifies the length of the key in 
characters. The default for the length is one. 

seq is an optional field that specifies the sequencing order of this key: 
A for ascending and 0 for descending. The default value is A. 

type is an optional field that specifies the type of the key. The value 
of this field may be B, Q, R, 5, T, U, or V; the default is U. The 
vaiues for this field indicate: 

B The key field contains a signed number in a Series 1100 
System internal representation. 

Q The key field contains a signed decimal number in 9-bit ISO 
character representation with a sign "overpunched" on the 
last digit. 

R The key field contains 9-bit ISO characters with a leading 
sign, that is, a plus, minus, or blank. Any character in the 
sign position that is not a plus, minus, or blank will be set 
to a blank. 

5 The key field contains 9-bit characters. 

T The key field contains 9-bit ISO characters with a sign in the 
last character position, that is, a plus, minus, or blank. Any 
character in the sign position that is not a plus, minus, or 
blank will be set to a blank. 

U The key field contains (In unsigned number in a Saries 1100 
System internal representation. 

V The key field contains a signed decimal in .9-bit I~O 
characters with a sign "overpunched" on the first characler. 



8244.2 
Ul4ftJMBER 

SPERRY UNIVAC Series 1100 l-14 
PAGE FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

The form of the bit key is: 

BIT / wordpos / bitpos I length / seq / type 

where: 

wordpos is the position within the record of the word that contains the 
most significant bit of the record. Words within the record are 
numbered from 1. 

bitpos is the position of the first bit of the key in the first word of that 
key. Bits are numbered from left to right beginning at 1. 

seq is an optional field that specifies the sequencing order of the key: 
A for ascending or 0 for descending. The default is A. 

type is an optional field that specifies the type of the key. The values 
for type may be A, B, 0, G, L, M, P, or U; the default is U. The 
values for type have the following meanings: 

A The key field contains 6-bit characters. All A key fields must 
start and end on 6-bit byte boundaries. 

B The key field contains a signed number in a Series 1100 
System internal representation. 

o The key field contains 6-bit Fieldata characters with a 
leading sign, that is, a plus, minus, or blank. Any character 
in the sign position that is neither a plus, minus, nor blank 
is set to a blank. All 0 key fields must start and end on 6-bit 
byte boundaries. 

G The key field contains 6-bit Fieldata characters with a sign 
in the last character, that is, a plus, minus, or blank. Any 
character in the sign position that is not a plus, minus, or 
blank is set to a blank. The key field must begin and end 
on a 6-bit byte boundary. 

L The key field contains a number in 6-bit Fieldata characters 
with a sign "overpunched" on the first digit. The key field 
must start and end on a 6-bit byte boundary. 

M The key field contains a number in signed magnitude 
representation. This means that the first bit is the sign, that 
is, a 1 for negative and a 0 for positive, and the rest of the 
field is the absolute value of the number. 

p The key field contains a signed decimal number in 6-bit 
Fieldata characters with a sign "overpunched" on the last 
digit. The key field must begin and end on a 6-bit byte 
boundary. 

U The key field contains an unsigned number in Series 1100 
System internal representation. 



( 

8244.2 
UP..fIIUM8ER 

inpts 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

4. COMP 

UPDATE LEVEL 
L-15 

PAGE 

COMP is used to indicate the use of a user comparison routine. This requires 
the presence of comprt in the call to FMERGE. The COMP clause may appear 
only once in infost. 

5. COpy 

COpy is used to indicate that an Assembler sort parameter table is to be copied. 
This clause may appear only once in infost. See L.6.1. 

6. INPU = inptsor 

Inptsor is an integer constant from 2 through 24 that indicates how many input 
sources are given in the parameter inpts. The INPU clause must appear only 
once in infost. 

An example of an information string infost that merges two files containing variable 
length records with a maximum length of 200 characters with four key fields is: 

'VRSZ=200,KEY=(1/101Is,11/10/d/q,21/10,31/10/d), INPUT=2!' 

The key fields in the record are defined as follows: 

1. The first key starts in the first character position of the record, is 10 characters 
long, and is sorted in ascending order with a user-specified collating sequence 
if that sequence is present. 

2. The second key starts in character position 11, is 10 characters long, and is 
sorted in descending order with an "overpunched" sign in the last character 
position. 

3. The third key starts in character position 21, has a length of 1 0 characters, and 
is sorted in ascending order. 

4. The fourth key starts in character position 31, has a length of 1 0 characters, and 
is sorted in descending order. 

To merge three files containing records of 80 characters with a key that starts in 
character position 1, that has a length of 5 characters, and is sorted in ascending 
order, the information string infost may be: 

'RSZ=80, INPUT=3, KEY= 1/5!' 

Infost must be the first parameter in the call to FMERGE. The other parameters follow 
infost. 

is two or more logical unit numbers, the names of two or more input subroutines, or 
a combination of logical unit numbers and input subroutines. The parameter inpts 
may contain from 2 through 24 input sources. If inpts contains the names of input 
subroutines, the subroutine names must be declared in an EXTERNAL statement in the 
program unit containing the call to FMERGE. See L.8.1. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATELML 

L-16 
PAGE 

outpt is either a logical unit number or the name of an output subroutine. If outpt is the 
name of an output subroutine, the subroutine must be. declared in an EXTERNAL 
statement in the program unit containing the call to FMERGE. See L.S.4. 

comprt is the name of a comparison subroutine supplied by the user~ The subroutine is called 
whenever two records are to be compared. The name of the comparison subroutine 
must be declared in an EXTERNAL statement. This parameter must not be present 
if the user has not provided a comparison subroutine. This parameter must be present 
if the COMP clause is used in infost. See L.S.2. 

L.5.2. Examples of CALL Statements to Merge 

The following runstream contains a call to FMERGE with a simple information string infost which 
contains a KEY clause and a RSZ clause. The RSZ clause declares a record size of SO characters. 
The KEY clause indicates that the key starts in the first character position of the record, has a length 
of 5 characters, and wi" be sorted in ascending order. Infost contains the clause INPUT = 2 to 
indicate that there are two input sources contained in the input parameter inpts. The inpts 
parameters are the logical unit number S and the user-supplied input subroutine name IN. The output 
parameter outpt is the logical unit number 9. Infost ends with an exclamation point ( ! ). 

@RUN 
@FTN,SI MAIN 

EXTERNAL IN 
CALL FMERGE('rsz=SO,key= 1/5,input=2!',S,IN,9) 
END 

@FTN,SI IN 

SUBROUTINE IN(RECORD,LENGTH,IEOF) 
CHARACTER*4 RECORD(20) 
READ(5,l,END=2) RECORD 
LENGTH=SO 
IEOF=O 
RETURN 

1 FORMAT(20A4) 
2 IEOF= 1 

RETURN 
END 

@MAP,SIF 
LIB ASC"*FTNLlB. 
@ASG,A IN 
@ASG,C OUT 
@USE a,IN 
@USE 9,OUT 
@XOT 
... the second input file on data images ... 
@FIN 



8244.2 
UP .... UM8ER 

(0-

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

L-17 
P~1i 

The example that follows will merge two input image files (IN+ 1 and IN+2) that have been sorted 
in ascending order on columns 1 through 10 and the merged data will be written to file OUT+PUT. 
The input subroutine will ignore all records in the input file IN+2 that have a 1 in column 11. 

@RUN 
@FTN,SI 

EXTERNAL IN 
CALL FMERGE('rsz=80,key=1/10, input=2!' ,8. IN.l0) 
END 

@FTN.SI IN 

1 
2 
3 

4 

SUBROUTINE IN(RECORD.LENGTH.IEOF) 
CHARACTER RECORD*80, I.ONEI '1'1 
FORMAT(A) 
FORMAT ( lOX, A 1 ) 
READ(9,l.END=4) RECORD 
DECODE(2.RECORD) I 
IF (I .EO.ONE) GO TO 3 
LENGTH=80 
I EOF=O 
RETURN 
IEOF=l 
END 

@MAP,SIF 
LIB ASCII*FTNLIB. 
@ASG.A IN*l 
@ASG,A IN*2 
@ASG.C OUT*PUT 
@USE 8. I N*l 
@USE 9.IN*2 
@USE 10,OUT*PUT 
@XOT 
@FIN 

L.6. The CALL Statement to FSCOPY 

L.6.1. The CALL Statement to Copy an External Sort Parameter Table 

This facility is provided primarily to provide access to the Assembler procedure R$FILE. 

The form of the CALL statement to copy an external Assembler sort parameter table is: 

CALL FSCOPY( table ) 

where table is the name of an externalized entry point. Table must be declared in an EXTERNAL 
statement. The CALL statement to FSCOPY with one external argument must occur before a call to 
FSORT or FMERGE with the COpy clause in its information string infost. (See L.4.1 and L.5.1.) The 
call of FSCOPY establishes which sort parameter table is to be copied. The subroutine argument is 
the first word of the sort parameter table to be copied. The subroutine argument is not an ASCII 
FORTRAN subroutine but is an Assembler entry point. 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

L-18 
PAGE 

Only one sort parameter table may be copied at anyone time. Each call on FSCOPY deletes the 
previous tal;>le that was copied. If FSCOPY is called without any arguments, a new table will not be 
copied and the previous table will be deleted. 

L.6.2. Record Size When FSCOPY Is Used 

Key positions, record lengths, and link sizes in Assembler sort parameters must be given as if there 
were an extra word in front of the record. (See L.4.1 and L.5.1.) 

L.6.3. An Example of CALL Statement to FSCOPY 

The following runstream contains an Assembler sort parameter table and program which calls FSORT 
and FSCOPY. The program will sort the source input from character positions 1 through 6 in 
ascending order, from character positions 7 through 12 in descending order, and from character 
positions 13 through 16 in ascending Fieldata order with a special collating sequence such that all 
B's precede all A·s. Note that the information for character positions 13 through 16 came from the 
Assembler sort parameter table. The source input is on logical unit 5 and the output is placed on 
logical unit number 6. Note the extra word or six characters in the starting character position (19 + 6). 
This is described in L.6.2. 

@RUN 
@MASM,SI COPIED 

R$F I LE 'KEY', 19+6,6, ' A' , 'A' ; Ex t r a wo rd! 
COPIED* , SEQ' , '@' , 'UPTO' " " 

'B', 'A', 'ALL' 
END 

@FTN,SI 

INTEGER CORE(21000) 
EXTERNAL COPIED 
CALL FSCOPY(COPIED) 
CAll FSORT( 'key=(1/6,7/6/d),copy,rsz=80,core=20000!', 

1 5,6,CORE) 
END 

@MAP, I FS 
LIB ASCII*FTNLIB. 
@XQT 

data images . 
@FIN 



( 

8244.2 
UP-HUMIIER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCJJ) Programmer Reference I l-19 

PAGE 

L. 7. The CALL Statement to FSSEO 

L. 7.1. The CALL Statement to Provide a User-Specified Collating Sequence 

A user-specified collating sequence may not be explicitly declared in the information string infost 
of a call to FSORT or FMERGE. The use of a nonstandard collating sequence is specified only in the 
KEY clause field type in a character key with the value S. fSee L.4.1 and L.5. 1.) The user-specified 
collating sequence will be set up through a call to FSSEO with a single argument. 

The form of a CALL statement to FSSEO is: 

CALL FSSEO ( seqtbl ) 

where seqtbl is an argument containing a character string that is 256 characters long. Seqtbl 
contains the user-defined collating sequence of the ISO character set. If seqtbl is not present, the 
previous user-defined collating sequence is deleted. Only one user-defined ISO collating sequence 
will be in use at anyone time. A second CALL statement to FSSEO will Cause the previous collating 
sequence to be replaced with the new user-defined collating sequence. 

L.7.2. An Example of the CALL Statement to FSSEO 

The following runstream contains two calls to FSORT and two calls to FSSEO. The first call to FSSEO 
contains a user-defined collating sequence in array SEOTAB. The collating sequence is the same 
as the standard ISO collating sequence except that the letters A and B (uppercase and lowercase) 
are interchanged. The first call to FSORT uses the user-defined collating sequence. The input is read 
from unit 5. The input is sorted according to: . 

1. The first key that starts in character position 1 of the record. that has a length of 10 characters. 
and that is sorted in ascending order. 

2. The second key that starts in character POSition 11 of the record. that has a length of 5 
characters. and that is sorted in descending order according to the user-defined collating 
sequence specified in the call to FSSEO. 

3. The third key that starts in character position 16 of the record. has a length of 5 characters. and 
is sorted in ascending order. 

The result is written by the user output routine OUT. 

The second call to FSSEO deletes the previous user-defined collating sequence and does not set up 
another sequence. This means that the normal ISO collating sequence will be used when sorting. 
Note the use of the CORE= clause in infost in both calls to FSORT. 



8244.2 
UI4IUM8ER 

SPERRY UNIVAC Serie. 1100 
FORTRAN (ASCII) Programmer Reference 

@RUN 
@FTN,SI 

EXTERNAL OUT 
INTEGER SEOTAB(64) ,CHAR 

* set up col fating sequence 
CHAR(I )=BITS(SEOTAB(1+'/4),l+9*MOD(1 ,4),9) 

DO 1 1=0,255 
CHAR( I )= I 

CHAR(65)=CHAR(65)+1 
CHAR(66)=CHAR(66)-1 
CHAR(97)=CHAR(97)+1 
CHAR(98)=CHAR(98)-1 

* give collating sequence to sort 
CALL FSSEO(SEOTAB) 

* do the first sort 
CALL FSORT('key=(1/10,l1/5/d/s,16/5),rsz=80, 

1 core=20000!' ,5,OUT) 
* remove co I I at 1 ng sequence 

CALL FSSEO 
* do the second sort 

CALL FSORT( ~key=(1/10,11/5/d/s,16/5),rsz=aO, 
1 core=20000!' ,10,6) 

END 

@FTN,SI OUT 

SUBROUTINE OUT(RECORD,LENGTH) 
CHARACTER*80 RECORD 
IF (LENGTH.LT.O) RETURN 
WRITE(10,l) RECORD 
PRINT 2,RECORD 
RETURN 

1 FORMAT(A) 
2 FORMAT(lX,A) 

END 

@MAP,SIF 
LIB ASCI1*FTNLIB. 
@ASG,T TEMP 
@USE 10,TEMP 
@XOT 

data images 
@FIN 

Ul'DATlLMl 
L-20 

PAGE 



8244.2 
UJ4WMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference Uf'DATE LEVEl 

L.B. User-Specified Subroutines 

The Sort/Merge interface allows the user to provide subroutines to do the following: 

• Read records 

• Compare records 

• Examine fixed length records with equal keys and optionally merge the records 

• Write records 

L-21 
PAGE 

The user is not required to supply any of these subroutines. The Sort/Merge interface and package 
will handle all these areas if the user does not wish to supply any subroutines. 

L.B.1. User-Specified Input Subroutine 

An input subroutine may be supplied to be called by the Sort/Merge package to read the records. 
(See L.4. 1 and L.5.1.) The input subroutine will be called with three arguments. The first argument 
is an array which will contain the input record to be returned to the Sort/Merge package. The second 
argument is an integer that contains the length of the input record in characters. The third argument 
is an integer that indicates when the last record has been delivered. 

(' The input subroutine may do the following: 

1. Read a record and return the record to the sort. 

2. Return the null string with a record length of zero and the third argument set to a one to indicate 
the end of the input file. 

3. Read a record and call FSGIVE with that record as an argument. The input subroutine may enter 
FSGIVE several times before returning an input record or an end-of-file mark to the Sort/Merge 
package. 

The end of the file can be signaled through FSGIVE. Control will not be returned to the instruction 
following the call to FSGIVE in the input subroutine. Control will be returned to the Sort/Merge 
package. 

L.B. 1. 1. An Example of a User-Specified Input Subroutine 

The following input subroutine will read the source input from unit 5 and return a record length of 
80 characters. The third argument is set to zero if the end of the file is not reached and set to one 
if the end of the file is reached in the input file. 

1 
2 

SUBROUTINE IN(RECORD,LENGTH,IEOF) 
CHARACTER*4 RECORD(20) 
READ(5,l,END=2) RECORD 
LENGTH=80 
IEOF=O 
RETURN 
FORMAT(20A4) 
IEOF=l 
RETURN 
END 



8244.2 
UP-NUMIIER 

SPERRY UNIVAC Series 11.QO 
FORTRAN (ASCII) Programmer Reference 

L.S.1.2. The CALL Statement to FSGIVE 

UPOAl£ LEVEL 
L-22 

PAGE 

The call to FSGIVE provides the capability of giving a record to the sort without leaving the 
user-specified input subroutine. FSGIVE will be called with three arguments. These arguments are 
similar to the arguments for the input subroutine. The first argument is the input record for sort. The 
second argument is the length of the record given to the sort. The third argument is the flag given 
to sort to indicate that the end of the file has been reached. If the flag is zero, the end of the file 
has not been reached, while a nonzero flag indicates that the end of the file has been found. 

L.S.1.3. An Example of User-Specified Input Subroutine with FSGIVE 

The following input subroutine will read characters separated into words by blanks or the end of the 
line from input unit 5. Any character except a space may be part of a word. 
, 

The input subroutine will read from unit 5 when first entered. The subroutine will move each word 
that it has found to the record area and then call FSGIVE for each word that is not the last word on 
a data image. The input subroutine IN will be reentered each time a new data image is needed from 
the input file. Theend'of the input file is signaled by the input subroutine IN. The end of the input 
file could also have been indicated by setting the third argument to FSGIVE to a nonzero value. The 
calls to FSGIVE will be intermixed with calls to the input subroutine IN. 

1 
2 

* 
3 

* 
4 

SUBROUTINE IN(RECORD, LENGTH, rEOF) 
CHARACTER RECORD*80,CARD(80),BLANKj , 'j 

READ(5,2,END=99) CARD 
FORMAT (80A 1 ) 
find last nonblank character 
DO 3 IMAX=80, 1 ,-1 

IF (CARD( tMAX) .NE.BLANK) GO TO 4 
The input record was blank, so read a new record 
GO TO 1 
1=1 

* find first blank separator 
5 DO 6 J = I , I MAX 
6 IF (CARD(J) .EQ.BLANK) GO TO 8 
* record has no more blanks - del iver 

ENCODE(80,2,RECORD) (CARD(J),J=I, IMAX) 
7 LENGTH=80 

IEOF=O 
RETURN 

* At least one blank was found 
8 IF (J.NE. I) GO TO 9 
* It was a leading blank - ignore it 

1=1+1 
GO TO 5 

* A word was found - del iver 
9 ENCODE(80,2,RECORD) (CARD(K),K=I,J-1) 

CALL FSGIVE(RECORD,80,O) 

* 
99 

GO TO 5 
This is end of input - tell the sort 
IEOF=1 
RETURN 
END 



( 

( 

8244.2 
Ul'-NUMIER 

!. 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L.8.2. A User Comparison Routine 

.. ' ....• 
UPDATE LEVEl 

L-23 
PAGE 

If a user comparison routine is present. it will be called whenever the Sort/Merge package must 
compare two records. The COMP clause must be present in the information string of the call to FSORT 
or FMERGE. The parameter comprt must also be specified in the call to FSORT or FMERGE. (See 
L.4.1 and L.5.1.) 

The compare subroutine will be called with three arguments. The first two arguments are the two 
records to be compared when the records are fixed length records or the first links of the two records 
to be compared when the records are variable length. The third argument is an integer whose value 
informs the sort of the result of the comparison done by the comparison subroutine. The result may 
be: 

1. The value 1 if the first record precedes the second record. 

2. The value 2 if the order of the records is immaterial. 

3. The value 3 if the second record precedes the first record. 

Care is necessary when using a comparison subroutine together with keys specified in the information 
string because the Sort/Merge package translates the key fields according to certain rules. The 
Sort/Merge Programmer Reference, UP-7621 (see Preface) contains a description (If the translation 
rules. 

L.8.2.1. An Example of a User Comparison Subroutine 

For the following example, assume the first five characters of each record contains a signed, nonzero 
number between -49999 and 49999. A negative number X is represented by 50000-X. If key 
translation is not used, the following comparison subroutine could be used: 

SUBROUTINE COMP(FIRST,SECOND,CODE) 
INTEGER FIRST(2) ,SECOND(2),CODE,F,S 
DECODE(1,FIRST) F 
DECODE(1,SECOND) S 
FORMAT ( 15) 
IF (F.GE.50000) F=50000-F 
IF (S.GE.50000) 5=50000-S 
IF (F-S) 2,3,4 

2 CODE=1 
RETURN 

3 CODE=2 
RETURN 

4 CODE=3 
RETURN 
END 



8244.2 
UI4ft.I..a 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCIn Programmer Reference 

l.B.2.2. An Example of a Runstream with a Comparison Subroutine 

UPDATE LEVEL 
L-24 

PAGE 

In the following example of a comparison subroutine, the first two characters of the records given 
to the comparison subroutine contain an integer that indicates the starting position of the key within 
the record. The key is five characters long and contains a right-justified integer value. A complete 
runstream for using this comparison subroutine is: 

@RUN 
@FTN,SI 

EXTERNAL COMP 
CALL FSORT('comp,rsz=80,core=20000!' ,9,10,COMP) 
END 

@FTN,SI COMP 

SUBROUTINE COMP(R1,R2,CODE) 
INTEGER CODE 
CHARACTER R1*80,R2*80,F1*8,F2*8 
compute the key values 
DECODE ( 4 , R 1) I 1 
DECODE ( 4 , R2 ) I 2 
ENCODE ( 8 , 5 , F 1) I 1 
ENCODE ( 8 , 5 , F2 ) I 2 
DECODE(F1,R1) 11 
DECODE(F2,R2) 12 

* do the comparisons 
IF (11-12) 1,2,3 
CODE=1 
RETURN 

2 CODE=2 
RETURN 

3 CODE=3 
RETURN 

4 FORMAT ( 12) 
5 FORMAT ( , ( , , 12, 'X, 15) , ) 

END 

@MAP,SIF 
LIB 
@ASG,A 
@ASG,C 
@USE 
@USE 
@XQT 
@FIN 

ASCII*FTNLIB. 
IN*PUT 
OUT*PUT 
9,1 N*PUT 
10,OUT*PUT 



8244.2 
UP ..... UMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L.8.3. User Data Reduction Subroutine 

UPDATE LEVEl. 
l-25 

PAGE 

The data reduction subroutine will be called by the Sort/Merge package whenever the Sort/Merge 
package has found two records whose order is immaterial. The data reduction subroutine mayor 
may not merge the two records into the first record. The data reduction subroutine may only be 
specified when sorting fixed length records. The DATA clause must be specified in the information 
string in the call to FSORT. The datred parameter must be present in the call to FSORT. Two 
restrictions must be remembered: 

1. The records, if merged, must always be merged into the first record (that is, the first argument). 

2. The data reduction routine may not change any key fields. 

The data reduction subroutine will be called with three arguments. The first two arguments are the 
two records. The third argument is an integer result assigned by the data reduction subroutine with 
the following possible values: 

• The value 1 indicates that the two records have been merged. 

• The value 2 indicates that the two records have not been merged. 

The Sort/Merge subroutines translate the key fields according to certain rules. The user must exercise 
care when using a data reduction subroutine together with keys specified in the information string 
in the call to FSORT. The translation rules are described in the Sort/Merge Programmer Reference, 

( UP-7621 (see Preface). 

L.8.3.1. A Simple Example of a Data Reduction Subroutine 

The following data reduction subroutine assumes that any input record that contains a 1 in character 
position 6 will be chosen over any other record. If both records contain a 1 in character position 
6, the first record will be chosen over the second record. 

SUBROUTINE DATA(FIRST,SECOND,CODE) 
INTEGER CODE 
CHARACTER FIRST*80,SECOND*80,TEST,ONE/1H1/ 
DECODE(l,FIRST) TEST 
FORMAT(5X,A1 ) 
IF (TEST.NE.ONE) GO TO 2 
CODE=l 
RETURN 

2 DECODE(l,SECOND) TEST 
IF (TEST.EO.ONE) GO TO 3 
CODE=2 
RETURN 

3 FIRST=SECOND 
CODE=l 
END 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

L.8.3.2. An Example of a Runstream with a Data Reduction Subroutine 

l-26 
PAGE 

This example with a data reduction subroutine assumes that two records with equal keys will be 
merged if character position 11 of at least one of the records is blank. The record with the blank 
in character position 11 will be retained. If both records have character position 11 blank, the first 
record will be retained. 

This runstream has chosen the decision field outside the key fields to avoid any problems with key 
field translation. 

@RUN 
@FTN,SI 

EXTERNAL DATA 
CALL FSORT('key=(1/5,6/5/d),rsz=80,data reduction 

1 user code,core=20000!' ,9,10,DATA) 
END 

@FTN,SI DATA 

2 

3 

SUBROUTINE DATA(Rl,R2,CODE) 
INTEGER CODE,BLANK/lH I 
CHARACTER*80 Rl,R2 
DECODE ( 1 ,R 1) I B 
FORMAT ( 10X,Al) 
IF (IB.NE.BLANK) GO TO 2 
CODE=l 
RETURN 
DECODE ( 1 , R2 ) I B 
IF (IB.EO.BLANK) GO TO 3 
CODE=2 
RETURN 
Rl=R2 
CODE=l 
END 

@MAP,SIF 
LIB 
@ASG,A 
@ASG,C 
@USE 
@USE 
@XOT 
@FIN 

ASC I I *FTNLI B. 
IN*PUT 
OUT*PUT 
9,IN*PUT 
10,OUT*PUT 



8244.2 
" UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

l.8.4. User-Specified Output Subroutine 

UPOATELML 
L-27 

PAGE 

The output subroutine will be called by the Sort/Merge package whenever a record is to be written. 
The output subroutine is called with two arguments. The first argument is the record to be written 
and the second argument is the length in characters of the record to be written. The second argument 
is also a flag to the user output subroutine to indicate when the sort has delivered the last record 
to be written. The length is normally a positive number indicating the size of the record in characters. 
If the length is negative or zero, the last record has been delivered to the output subroutine. 

l.8.4.1. A Simple Example of a User-Specified Output Subroutine 

The following output subroutine will output records to unit 6 through a formatted write: 

SUBROUTINE OUT(RECORD, LENGTH) 
CHARACTER*SO RECORD 
IF (LENGTH.GT.O) PRINT l,RECORD 
FORMAT(lX,A) 
RETURN 
END 

l.8.4.2. The CALL Statement to FSTAKE 

The user output routine may want to indicate to the Sort/Merge package when the output routine 
needs a new output record. This is done by a CALL statement to FSTAKE with two arguments. The 
first argument is the record to be received from the Sort/Merge package. The second argument is 
the length in characters of the new record. If the length argument is negative after returning from 
FST AKE, the last record has been delivered from the Sort/Merge package. 

l.8.4.3. An Example of FSTAKE in an Output Subroutine 

The following example will move records containing one word each into card images with exactly 
one space between the words and then write the record when the card image becomes full. The 
sorted records are assumed to contain SO characters. 

* 

* 2 
3 

* 
4 

* 
5 

* 

SUBROUTINE OUT(RECORD,LENGTH) 
INTEGER POS/l/ 
CHARACTER CARD(SO) ,CR(SO) ,BLANK/ '/,RECORD*80 
IF (LENGTH.LT.O) GO TO 99 
Blank the output record 
DO 1 1=1,80 

CARD ( I ) =BLANK 
Place each character 01 the record in a word 
DECODE(80.3,RECORD) CR 
FORMAT (80A 1 ) 
Find actual length of record 
DO 4 IL=80,l,-1 

IF (CR( IL) .NE.BLANK) GO TO 5 
This is a blank record---ignore the record 
GO TO 10 
IF (POStIL.LE.Sl) GO TO 8 
The card image to print is full--go print it 
PRINT 6,CARD 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

6 FORMAT ( 1 X , aOA 1 ) 
DO 7 1=1,80 

7 CARD( I )=BLANK 
POS=l 

a DO 9 1=1, I L 
9 CARD(POS-1+1)=CR(I) 

POS=POS+IL+1 
* get n ext r e cor d tog e t n ext wo r d 
10 CALL FSTAKE(RECORD,LENGTH) 

IF (LENGTH.GE.O) GO TO 2 
99 IF (POS.GT.1) PRINT 6,CARD 

RETURN 
END 

L.9. Optimizing Sorts 

UPDATE LEVEL 
l-28 

PAGE 

An understanding of this subsection is not required to do a sort. This information is provided for those 
who need to sort larger data sets than the standard scratch assignments (main storage and mass 
stora~e) allow. This information will also help those who need to minimize the resources used in a 
sort. The user also will need to use this information if the Sort/Merge package error B5 is given for 
a sort. 

The standard scratch file assignments are: 

1. 19,000 words of main storage 

2. Six disk files of 512 tracks each (initial reserve 0) 

This amount of storage should be sufficient to sort some 200,000 to 250,000 card images. If a very 
large sort (that is, a multiple cycle sort requiring operator intervention) is necessary, the user should 
consult the Sort/Merge Programmer Reference, UP-7621 (see Preface). The performance of a sort 
is mainly determined by the following three factors: 

1. The bias of the input data 

2. The size of the main storage scratch area 

3. The scratch files used 

The CPU time used by the sort may be be decreased slightly by inhibiting the checksum on the sorfs 
scratch files or by increasing the size of the checksum mesh. 



8244.2 
UP-NUM8ER 

( 

(-

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L.9.1. The Bias of the Input Data 

UPDATE lEVEL 
L-29 

PAGE 

The bias may be defined as the average number of records in sorted subsequences present in the 
input file. (See BIAS= biasno in L.4.1.) For example. if the input file is exactly in reverse order. the 
bias will be 1. Also. random data has a bias of 2. Generally. the bias will be greater if the input file 
is almost sorted; that is. the more nearly sorted the input file. the greater the bias. 

If a bias is specified. the sort will be able to use available resources optimally so that more data can 
be sorted using the same amount of scratch storage. The user should specify the bias whenever it 
is known and when the bias is less than 1.4 or greater than 3. 

The bias is specified by the form: 

BIAS= biasno 

L.9.2. The Size of the Main Storage Scratch Area 

The size of the main storage scratch area may be specified in the following two ways: 

1. Assign the file R$CORE with a suitable maximum granule value. 

2. Specify the size of the main storage scratch area in the information string for the sort or merge. 

If the size of the main storage scratch area is given by both methods. the R$CORE value will override 
the size of the main storage scratch area given in the information string. (See L.4.1.) 

L.9.2.1. The Use of R$CORE 

The size of the main storage scratch area in words may be specified at run time by assigning the file 
R$CORE with a suitable maximum size. For example. if 20.000 words of main storage scratch area 
is desired. the following control statenlent will guarantee that 20.000 words of storage are available 
to the Sort/Merge interface and package: 

@ASG.T R$CORE.I / /20 

L.9.2.2. The Use of the CORE Clause in the Information String 

The amount of main storage scratch area for the sort is specified by the following CORE clause in 
the information of the call to FSORT: 

CORE=corsz 

where corsz is the size of the main storage scratch area in words. The Sort/Merge interface rejects 
any size that is less than 3000 words. The sort will generally execute faster when it is given more 
main storage. 



8244.2 
UP...fWM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

L.9.3. The Scratch Files Used and Checksum 

UPDATE LEYn 
L-30 

PAGE 

The use of tape scratch files should be avoided whenever possible. Tape sorts are slower and require 
operator intervention. The Sort/Merge package distinguishes two cases for mass storage files: 

1. One or two mass storage files 

2. More than two mass storage files 

The first case is more suitable when only one or two mass storage units are available to the sort. 
However, this case requires a careful assignment of main storage and mass storage scratch resources. 
The optimal amount of main storage will depend on how much mass storage is available to the sort. 
A suitable assignment of facilities is given in Appendix E of the Sort/Merge Programmer Reference, 
UP-7621 (see Preface). Different mass storage scratch files should be kept on separate mass storage 
units if possible. 

L.9.3.1. Scratch Files Named in the Information String 

Scratch files may be specified by the FILE clause in the information string. (See L.4. 1.) The following 
restrictions apply when the FILE clause is used: 

1. All scratch files must be assigned when the sort is started. 

2. A maximum of 26 scratch files may be specified. 

3. At least three tape scratch files must be used if any tape scratch files are used. 

4. If tape scratch files are used, a maximum of two mass storage files will be used for the sort. 

L.9.3.2. Checksum and the Sort 

A checksum is normally done on all tape and mass storage files. The user may omit the checksum 
on one or more device types (mass storage or tape). The user may also specify a checksum mesh 
size for each device type. For example, if a mesh size of 5 is given, only every fifth word of each 
block written to tape or mass storage is included in the checksum. 

The user may omit the checksum by specifying the nocheck clause (NOCH) in the information string 
for the call to FSORT. The user may provide a mesh size by specifying the MESH clause in the 
information string. These clauses are described in the CALL statement to FSORT. (See L.4.1.) 



(-

8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

l. 1 O. Sorting Very Large Amounts of Data 

UPDATE LEVEL 
L-31 

PAGE 

When it is not practical to assign enough scratch storage to hold all of the data to be sorted, a 
multicycle sort must be done. For that case, the ASCII FORTRAN program must be executed with 
the P option (@XOT,P) and some Sort/Merge package parameter data images must be prepared. 
These data images are fully described in the Sort/Merge Programmer Reference, UP-7621 (see 
Preface). 

The SMRG parameter data image format is: 

'SMRG',' outptprefx', nbrrecds, nbrreel 

where: 

outptprefx 

nbrrecds 

nbrreel 

is a string two characters long that identifies the intermediate output tapes. 

specifies the number of records to be sorted in each cycle and is optional. 

specifies the number of reels to be produced in each cycle and is optional. If 
the number given in nbrrecds specifies more records than the assigned 
hardware can hold, nbrrecds will be ignored. 

The parameter data images are read after the call to FSORT but before the first input record is read 
or before the user input routine is first called. 

The following control image must be used after the last Sort/Merge parameter data image: 

@EOF A 

A user wishing to rerun interrupted multicycle sorts must refer to the Sort/Merge Programmer 
Reference, UP-7621 (see Preface). 

l. 1 0.1. An Example of a Large Single Cycle Sort 

The following runstream contains a sort which must run as efficiently as possible. The records will 
be in nearly reverse order (the bias will be about 1.2). A checksum will not be done. About 400,000 
records must be sorted, so the standard scratch assignments cannot be used. Ample amounts of main 
storage and mass storage will be available for the sort. 

The first step is to calculate the sort volume. This is the record size times the number of records times 
a safety factor: 

20 * 400000 * (1 + .1) 

which would equal about 9 million words. 

For a big sort, six equal size files should be used. This would make each file about 1.5 million words 
or about 850 tracks. 

A suitable amount of main storage scratch area would be about 50K words. 



8244.2 
Uf4tUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

L-32 
PAGE 

The scratch files must be assigned before the sort may begin. The runstream for the sort might be: 

@RUN 
@FTN,SIO 

CALL FSORT( 'rsz=80,key=(1/5,6/5/d) ,core=50000, 
1 bias=1.2,fi les=(Ml,M2),nocheck=dft, 
1 f i I e s = ( m3 , m4 , m5 , m6) ! ' ,9, 10) 

END 

@MAP,SIF 
LIB 
@ASG,A 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@USE 
@USE 
@XOT 
@FIN 

ASC I I *FTNLI B. 
IN*PUT 
OUT*PUT,T,REELNO 
Ml .I 1 /850 
M2,///850 
M3.1 1 1850 
M4.1 1 /850 
M5.1 1 1850 
MS,11/850 
9,IN*PUT 
10,OUT*PUT 

L. 10.2. An Example of a Multiple Cycle Sort 

The following runstream may be used for a multicycle sort. The information is much the same as 
the large single cycle sort except that there are about 20 million records to be sorted using the same 
amount of main storage and mass storage. In addition, four scratch tape files will be used. 

@RUN 
@FTN,SIO 

CALL FSORT( 'rsz=80,key=(1/5,6/5/d),core=50000, 
bias=1.2, f i le=(Ml,M2,n,T2,T3,T4) ,noch=dft, 

1 f i les=(m3,m4,m5,m6)!' ,9,10) 
END 

@MAP,SIF 
LIB 
@ASG,A 
@ASG,TV 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@ASG,T 
@USE 
@USE 

ASCII*FTNLIB. 
IN*PUT 
OUT*PUT,U9V/2,REELl/REEL2/REEL3 
Ml,/111117 
M2,/IPOSI715 
n, T 
T2,T 
T3,T 
T4,T 
9, I N*PUT 
10,OUT*PUT 

@XOT,P 
'SMRG' , 'EX' 
@EOF A 
@FIN 

,,~' 



8244.2 
UP-NUMBER 

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEL 

L-33 
PAGE 

L. 11. Error Messages from a Sort or a Merge 

Two different types of error messages may be produced during a sort or a merge. The first type is 
written to the console and its form is: 

xxx X ERROR CODE Y Z 

where XXXX is SORT or MERGE, Y is a letter, and Z is a digit. This message is immediately followed 
by an "ER ERR$" exit. This type of message is produced by the Sort/Merge subroutines and is 
described in the Sort/Merge Programmer Reference, UP-7621 (see Preface). 

The second type of message is produced by the Sort/Merge interface with the form: 

FTN SORT/MERGE ERROR CODE NN strg 

where NN is a 2-digit error code. The error codes and an explanation for each follows. Strg is a 
4-character string that provides further information on the error. 

01 The mnemonic in the information string whose first four characters are given in strg is not 
known to the routine called (for example, SELE is not allowed for merges and UNKNOWN 
is not allowed for sorts or for merges). 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

The routine specified in strg has been called with the wrong number of arguments. 

The character position of the most significant character of a key is negative or too large. 

A key length is negative or too large. 

An erroneous key type (such as A for a character key) is specified. 

The sorting sequence is neither A. D, nor a null string. 

The word position of the most significant bit of a bit key is negative or too large. 

The bit position of the most significant bit of a bit key is incorrect (0 or greater than 36). 

The translation table in FSSEO did not contain the full ISO set. Strg contains the octal 
code for the first character found that cannot be translated. 

The maximum record size (RSZ) given in the information string is negative or greater than 
65K. 

No record size (RSZ) is specified in the information string for a sort. 

An impossible link size (0 or greater than the maximum record size) is specified. 

No keys and no user comparison routine are given in the information string. 

An error exists in the collating sequence (FSSEO). The given string is less than 256 
characters. 

The auxiliary main storage area is full. For remedial action, please submit a Software User 
Report (SUR). 

An overflow occurred in the sort parameter table. For remedial action, please submit a 
Software User Report (SUR). 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPOATELMl 

1 7 At least one key extends beyond the record. 

18 A bit key of type A. 0, G, L, or P does not start on a 6-bit byte boundary. 

19 The length in bits of a bit key of type A, 0, G, L, or P is not divisible by 6. 

20 An erroneous return code was given on exit fro,!, a user comparison routine. 

21 An erroneous record length was given on exit from a user input routine. 

L-34 
PAGE 

22 The link size was not specified for variable length records and no key specifications were 
given. 

23 A forbidden character was found in the information string. 

24 The output routine/file or the user's comparison routine is not in the argument list. 

25 The COpy specification was given in the information string, but FSCOPY has not been 
called (or the most recent call had no arguments). 

26 For a sort, an input file/routine is not in the argument list. For a merge, either too few (less 
than two) or too many (more than 26) input files/routines have been given in the argument 
list. 

27 The bias was given as less than 1. 

28 The mnemonic whose first four characters are in strg has appeared more than once in the 
information string. If strg is RSZ, VRSZ may have appeared before (and vice versa). 

29 The size of the main storage scratch area has been given as less than 3000 words or greater 
than 262,141 words. 

30 An illegal character was given in the NOCH specification (only 0, F, K, and T are accepted 
to the right of the equals sign) in the information string. 

31 The user's data reduction routine is not in the argument list. 

32 A given scratch file is not on mass storage. The most common reason is that the file is not 
assigned to the run. 

34 More than 26 scratch files were specified in the information string. 

35 The first member of a select pair (SELE clause) is not greater than the previous pair's second 
member. 

36 The second member of a select pair is less than the first member. 

37 An erroneous return code was given on exit from a user data reduction routine. 

38 A facility reject status was generated in the attempt to assign one of the sort scratch files. 
Strg specifies which of the six standard files could not be assigned. The next line gives 
the FAC REJECT code. 

39 Some keys overlap. Strg gives the number of the major key of the pair that found to overlap 
(the most major key is number 1, the next number 2, etc.). 



8244.2 
Ul4lUMIIEIt 

( 
40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

(' 52 

53 

55 

63 

64 

65 

66 

67 

68 

(~ 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE LEVEl 

L-35 
PAGE 

An illegal sign was found in an arithmetic field. Strg gives the first four characters found 
after (and including) the one in error. 

An illegal character was found in a numeric field. Strg gives the first four significant digits. 

The field in strg was not followed by an equals sign. 

A numeric field given in strg was found when an alphabetic field was expected. 

Nonblank characters appeared between an equals sign and a left parenthesis. 

The first field of a keyspn in a KEY clause was alphabetic and was not BIT. 

An alphabetic field in strg was found when a numeric field was expected. 

An integer field contained a decimal point. 

An invalid delimiter given in strg was found. 

The name of a scratch file contained more than 12 characters. 

The first instruction of a user routine is illegal. 

Too many parameters in the call to FSORT or FMERGE exist. 

No main storage scratch parameter argument was given and an OWN clause is in the 
information string. 

The data reduction routine was specified for a sort of variable length records. 

The first word of the user-provided sort parameter table was wrong. 

The mesh size was previous:y specified for a device given in strg (strg will be a value 0, 
F, K, or T). 

An impossible mesh size was specified. 

An illegal device type in strg is used in a MESH specification. 

An illegal delimiter is used in a MESH specification. 

Banked data arguments are not allowed. 

Only the first argument to FSORT, FMERGE, FSGIVE, or FSTAKE may be of type 
CHARACTER. 



\ 

\ 



8244.2 
Ul'-NUM8ER 

(-

( 

( 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Term Reference Page Term 

ANSI, OPEN statement 
A ARCOS intrinsic function 

ARGCHK=OFF option 
ABORT$ 7.3.3.16.2 7-38 ARGCHK=ON option 
ABS intrinsic function Table 7-2 7-9 Argument 
ACOB interface K.3 K-4 function 
ACOS intrinsic function Table 7-2 7-8 
ACSF$ 7.3.3.16.2 7-38 subroutine 
Actual array 2.2.2.4.4 2-12 
ADATE 7.3.3.16.2 7-37 tyrJe checking 

7.3.3.16.2 7-39 Arithmetic 
Adjustable array 2.2.2.4.3 2-11 expression 
AI MAG intrinsic function Table 7-2 7-11 operator 
AINT intrinsic function Table 7-2 7-10 primary 
ALGAMA intrinsic function Table 7-2 7-9 term 
Alignment, storage 6.9.1 6-24 Arithmetic assignment 
ALOG intrinsic function Table 7-2 7-8 statement 
ALOG 1 0 intrinsic function Table 7-2 7-8 Array 
AMAXO intrinsic function Table 7-2 7-9 assumed size 
AMAX 1 intrinsic function Table 7-2 7-9 
AMINO intrinsic function Table 7-2 7-9 declaration 
AMIN 1 intrinsic function Table 7-2 7-9 dimension 
AMOD intrinsic function Table 7-2 7-9 element reference 
Ampersand location of elements 

EXTERNAL option 7.2.3 7-3 subscript 
for concatenation 2.2.3.2 2-18 ARSIN intrinsic function 
statement label 7.2.1 7-2 ASCII 
subprogram name 6.6 6-15 character set 
subroutine statement FORTRAN 

label 7.2.2 7-3 symbiont files 
AND intrinsic function 7.3.1 7-6 ASCII FORTRAN compiler 
ANINT intrinsic function Table 7-2 7-10 calling 
ANSI tape for,mat checkout 

file processing G.3.2 G-13 ASIN intrinsic function 
general 5.6.6 5-39 Assembler interface 
interchange tapes G.3.3 G-13 Assembly language 
usage G.3 G-l0 ASSIGN statement 

UPDATE LEVEL 

Reference 

5.10.1 
Table 7-2 
8.5 
8.5 

7.2.1 
7.5 
7.2.2 
7.5 
K.4.1 

2.2.3.1 
2.2.3.1.1 
2.2.3.1.2 
2.2.3.1.2 

3.2 

2.2.2.4.1 
2.2.2.4.3 
2.2.2.4 
6.2 
2.2.2.4.5 
2.2.2.4.6 
2.2.2.4 
Table 7-2 

Index-1 
PAGE 

Index 

Page 

5-57 
7-8 
8-7 
8-7 

7-2 
7-63 
7-3 
7-63 
K-7 

2-14 
2-14 
2-15 
2-15 

3-1 

2-11 
2-11 
2-10 
6-2 
2-12 
2-12 
2-10 
7-8 

Appendix B 
1.1 1-1 
G.4 G-14 

10.5 10-21 
10.6 10-25 
Table 7-2 7-8 
K.4 K-6 
1.2 1-2 
4.2.3 4-5 



8244.2 
UI4IUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Term Reference Page Term 

Assigned GO TO 4.2.3 4-5 BITS and SBITS 
Assignment Blank 

arithmetic 3.2 3-1 format code 
character 3.3 3-5 in I/O field 
common 6.5 6-13 in numeric input 
data storage 6.9.1 6-24 INQUIRE 
dimension 6.2 6-2 line 
equivalence 6.4 6-10 OPEN 
general 3.1 3-1 Blank common storage 
initial value 6.8 6-19 Blank fill 
logical \ 3.4 3-6 Blanks 
statement 3.1 3-1 BLOCK DATA 
statement label 3.5 3-7 procedure 
type 6.3 6-4 program unit 

Associated variables 5.7.1 5-43 statement 
Assumed-size array 2.2.2.4.1 2-11 structure 

2.2.2.4.3 2-11 Block IF statement 
Asterisk 7.4.2.2 7-60 execution of 

7.4.3.2 7-62 IF-block 
EXTERNAL option 7.2.3 7-3 IF-level 
fill 5.3.1 5-12 Block size 
statement label 7.2.1 7-2 
subroutine statement 

label 7.2.2 7-3 
AT statement 9.3 9-6 Blocking statements 
ATAN intrinsic function Table 7-2 7-8 block IF 
ATAN2 intrinsic function Table 7-2 7-8 ELSE 
Automatic storage 8.5.1 8-8 ELSE IF 
Auxiliary input/output END IF 

statements 5.10 5-57 example 
CLOSE 5.10.2 5-68 general 
INQUIRE 5.10.3 5-70 BN format 
OPEN 5.10.1 5-57 BOOL intrinsic function 

Aw format 5.3.1 5-11 BREAK checkout command 

B Break keyin 
Buffer offset 

BACKSPACE statement 5.6.3 5-36 BZ format 
BANK statement 6.6 6-15 

H.2.3.4.1 H-13 C 
BANKED options 8.5.2 8-9 
BANKED=ACTARG option 8.5.2 8-9 CABS intrinsic function 
BANKED=ALL option 8.5.2 8-9 CALL 
BANKED=DUMARG option 8.5.2 8-9 checkout command 
BANKED=RETURN option 8.5.2 8-9 
Banking H.2 H-1 control statement 
BDICALL$ 8.5.3 8-10 Calling 
BDR H.2 H-2 FORTRAN processor 
BIAS clause lo4.1 L-6 subroutine 

lo9.1 L-28 Carriage control 
Bit 1.2 1-2 
Bit key lo4.1 L-3 CCOS intrinsic function 

lo5.1 L-12 CCOSH intrinsic function 

UPOAl£ LlVEL 

Reference 

7.3.2.1 

5.3.1 
5.3.1 
5.3.10 
5.10.3 
10.4.1.1 
5.10.1 
6.5 
5.3.1 
5.3.10 

7.8 
10.2.1 
7.8.2 
7.8.1 
4.4.1 
4.4.1.3 
4.4.1.2 
4.4.1.1 
5.6.6 
5.10.1 
5.10.3 
G.2.1.3 

4.4.1 
4.4.3 
4.4.2 
4.4.4 
4.4.5 
4.4 
5.3.1 
7.3.1 
10.6.2.1 
10.6.3.1 
10.7.5.2.2 
5.6.6 
5.3.1 

Table 7-2 

10.6.2.1 
10.6.3.2 
7.2.2 

10.5 
7.2.2 
5.3.4 
5.3.10 
Table 7-2 
Table 7-2 

Index-2 
PAGE 

Page 

7-14 

5-10 
5-10 
5-18 
5-73 
10-8 

\ 

5-61 
6-13 
5-9 
5-18 

7-68 
10-1 
7-68 
7-68 
4-10 
4-10 
4-10 
4-10 
5-40 
5-64 
5-75 
G-6 

4-10 
4-11 
4-11 
4-12 
4-12 
4-9 
5-10 
7-6 
10-26 
10-29 
10-64 
5-41 
5-10 

7-9 

10-27 
10-30 
7-3 

10-21 
7-3 
5-14 
5-18 
7-8 
7-9 

'''''-.,--'. 



8244.2 SPERRY UNIVAC Series 1100 Index-3 
~UM8ER FORTRAN (ASCII) Programmer Reference UPDAltLMl PAGE 

( 
Term Reference Page Term Reference Page 

CDABS intrinsic function Table 7-2 7-9 general 1.3.1 1-3 
COCOS intrinsic function Table 7-2 7-8 10.6 10-25 
CDCOSH intrinsic function Table 7-2 7-9 restrictions 10.6.5 10-49 
CDEXP intrinsic function Table 7-2 7-8 soliciting input 10.6.2.2 10-27 
CDLOG intrinsic function Table 7-2 7-8 Checksum L.9.3.2 L-29 
CDSIN intrinsic function Table 7-2 7-8 CHKRS$ service subroutine 7.3.3.11 7-28 
CDSINH intrinsic function Table 7-2 7-8 CHKRS$ subroutine 10.6.6 10-49 
CDSQRT intrinsic function Table 7-2 7-8 CHKSV$ service subroutine 7.3.3.11 7-28 
CDTAN intrinsic function Table 7-2 7-8 CHKSV$ subroutine 10.6.3.12 10-41 
CDTANH intrinsic function Table 7-2 7-9 10.6.6 10-49 
CEXP intrinsic function Table 7-2 7-8 CLEAR checkout command 10.6.3.3 10-32 
CHAR intrinsic function Table 7-2 7-10 CLOG intrinsic function Table 7-2 7-8 
Character CLOSE service subroutine 7.3.3.18 7-47 

assignment statement 3.3 3-5 CLOSE statement 5.10.2 5-68 
constant 2.2.1.5 2-5 reread 5.10.2 5-69 
conversion 3.3 3-5 CMPLX intrinsic function Table 7-2 7-10 
expression 2.2.3.2 2-17 COBOL interface K.3 K-4 
operator 2.2.3.2 2-17 Code reordering 8.5 8-7 
storage 6.9.1 6-24 8.5.4 8-10 
substring 2.2.2.5 2-13 Collection 

CHARACTER FUNCTION and execution 10.5.2.2 10-24 
statement 7.4.2.2 7-60 banking Appendix H 

(~ 
Character key L.4.1 L-3 BLOCK DATA 7.8.1 7-68 

L.5.1 L-12 Colon in I/O list 5.3.7.2 5-16 
Character set Comment 

ASC" Appendix B convention 1.5 1-6 
FORTRAN 2.1 2-1 inline 2.2.7 2-24 

CHARACTER type statement 6.3.2.2 6-8 line 2.2.5 2-23 
Checkout commands treatment 10.4. 1.1 10-8 

BREAK 10.6.3.1 10-29 Common assignment 6.5 6-13 
CALL 10.6.3.2 10-30 Common block 
CLEAR 10.6.3.3 10-32 listing 10.4.2.2.6 10-19 
DUMP 10.6.3.4 10-33 name 6.5 6-13 
EXIT 10.6.3.5 10-34 COMMON statement 6.5 6-13 
GO 10.6.3.6 10-35 COMP clause L.4.1 L-4 
HELP 10.6.3.7 10-36 L.5.1 L-14 
LINE 10.6.3.8 10-37 Comparison subroutine 
LIST 10.6.3.9 10-37 parameter L.4.1 L-7 
PROG 10.6.3.10 10-38 L.5.1 L-15 
RESTORE 10.6.3.11 10-39 Compilation listing 
SAVE 10.6.3.12 10-41 contents 10.4.2.2 10-11 
SET 10.6.3.13 10-42 diagnostic messages 10.10 10-70 
SETBP 10.6.3.14 10-43 general 10.4.2 10-10 
SNAP 10.6.3.15 10-44 options 10.4.2.1 10-10 
STEP 10.6.3.16 10-45 with EDIT 8.4 8-6 
TRACE 10.6.3.17 10-45 Compilation process 
WALKBACK 10.6.3.18 10-46 general 1.3.1 1-3 

Checkout mode 10.6 10-25 with BANK 6.6 6-15 
(~ calling 10.6.1 10-25 with checkout 10.6 10-25 

contingencies 10.6.4 10-48 with COMPILE 8.5 8-7 
debug commands 10.6.3 10-27 with DELETE 8.3 8-5 
diagnostics Appendix I with INCLUDE 8.2 8-1 
entering 10.6.2.1 10-26 



- -- --- ~'\-.----. --" 

8244.2 SPERRY UNIVAC Series 1100 Index-4 
UP-MlMlER FORTRAN (ASCII) PrQgrammer Reference UPDATE lEVEL PAGE 

,~ 

Term Reference Page Term Reference Page "'-/ 

Compiler Control statement, 
calling 10.5 10-21 CONTINUE 4.6 4-21 
checkout 10.6 10-25 DO 4.5 4-14 
location counter usage 6.9.2 6-27 END 4.9 4-24 
optimization 10.8 10-67 general Section 4 
options 10.5.1 10-21 GO TO 4.2 4-2 

COMPILER statement 8.5 8-7 IF 4.3 4-7 
ARGCHK=OFF 8.5 8-7 4.3.2 4-8 
ARGCHK=ON 8.5 8-7 PAUSE 4.7 4-22 
BANKED=ACTARG 8.5 8-7 RETURN 7.6 7-65 
BANKED=ALL 8.5 8-7 STOP 4.8 4-23 
BANKED=DUMARG 8.5 8-7 Conventions of notation 1.5 1-6 
BANKED=RETURN 8.5 8-7 Conversion 
DATA=AUTO 8.5 8-7 arithmetic assignment 3.2 3-2 
DATA = REUSE 8.5 8-7 ASCII 7.3.3.19 7-47 
LlNK=IBJ$ 8.5 8-7 character 3.3 3-5 
PARMINIT =INLINE 8.5 8-7 E. D. F.and G editing 5.3.10 5-18 
PROGRAM=BIG 8.5 8-7 Fieldata 7.3.3.19 7-47 
STD=66 8.5 8-7 table Appendix E 
U1110=OPT 8.5 8-7 COpy clause L.4.1 L-4 

COMPL intrinsic function 7.3.1 7-6 L.5.1 L-14 
Complex L.6.1 L-16 

constant 2.2.1.3 2-5 CORE clause L.4.1 L-5 ,~' 

in format list 5.3.5 5-15 Core parameter L.4.1 L-7 ',--
storage 6.9.1 6-24 L.5.1 L-15 

COMPLEX FUNCTION COS intrinsic function Table 7-2 7-8 
statement 7.4.2.2 7-60 COSH intrinsic function Table 7-2 7-9 

COMPLEX type statement 6.3.2.1 6-7 COTAN intrinsic function Table 7-2 7-8 
Concatenation 2.2.3.2 2-17 Cross reference listing 10.4.2.2.3 10-17 
COND$ 7.3.3.16.2 7-37 CSIN intrinsic function Table 7-2 7-8 

7.3.3.16.2 7-39 CSINH intrinsic function Table 7-2 7-S 
CONJG intrinsic function Table 7-2 7-11 CSQRT intrinsic function Table 7-2 7-S 
CONS clause L.4.1 L-2 CTAN intrinsic function Table 7-2 7-S 
Constant 2.2.1 2-3 CTANH intrinsic function Table 7-2 7-9 

character 2.2.1.5 2-5 Currency symbol 
complex 2.2.1.3 2-5 entry name 7.7 7-66 
double precision 2.2.1.2.2 2-4 in a symbolic name 2.2.2 2-6 
Fieldata 2.2.1.6 2-6 statement label 7.2.1 7-2 

6.S.4 6-20 subroutine statement 
Hollerith 2.2.1.5 2-5 label 7.2.2 7-3 
integer 2.2.1.1 2-3 C2F$ H.2.1.1 H-5 
logical 2.2.1.4 2-5 
octal 2.2.1.6 2-6 D 
real 2.2.1.2 2-3 
single precision 2.2.1.2.1 2-3 D (editing code) 5.3.1 5-10 

Contingency clause DABS intrinsic function Table 7-2 7-9 
checkout 10.6.4 10-48 DACOS intrinsic function Table 7-2 7-S 
general I/O 5.8 5-49 DARCOS intrinsic function Table 7-2 7-S 
input/output 5.S.1 5-49 DARSIN intrinsic function Table 7-2 7-S '" 

Continuation line 2.2.6 2-23 DASIN intrinsic function Tabl£: 7-2 7-8 
10.4.1.2 10-8 DATA 

CONTINUE statement 4.6 4-21 clause L.4.1 L-4 
options S.5.1 8-8 
statement 6.8.1 6-19 



8244.2 SPERRY UNIVAC Series 1100 . 
UP-NUMBER FORTRAN (ASCII) Programmer Reference 

Index-5 
UPDATE LEVEL PAGE 

( 
Term Reference Page Term Reference Page 

Data implicit statement 6.3.1 6-4 

conversion Appendix E implied via names 2.2.2.2.1 2-8 

declarations. in block 7.8 7-68 implied via statement 2.2.2.2.2 2-9 

initializations 6.8 6-19 of array 2.2.2.4.1 2-10 

lengths 6.3 6-4 of dimension 6.2 6-2 

reduction subroutine l.8.3 L-24 DECODE statement 5.9.2 5-52 

reduction subroutine Define file block usage G.l0 G-32 

parameter l.4.1 L-7 DEFINE FILE statement 

storage 6.9.1 6-24 direct 5.7.1 5-43 

type statement 6.3 6-4 sequential 5.6.6 5-39 

value assignment 6.8.1 6-19 DEFINE statement 7.4.1.1 7-56 

DATAN intrinsic function Table 7-2 7-8 DELETE statement 8.3 8-5 

DATAN2 intrinsic function Table 7-2 7-8 DELL clause l.4.1 L-3 

DATA=AUTO option 8.5.1 8-8 DERF intrinsic function Table 7-2 7-9 

DATA=REUSE option 8.5.1 8-8 DERFC intrinsic function Table 7-2 7-9 

DATE$ 7.3.3.16.2 7-37 DEXP intrinsic function Table 7-2 7-8 

DBANK H.2 H-l DFLOAT intrinsic function Table 7-2 7-10 

DBLE intrinsic function Table 7-2 7-10 DGAMMA intrinsic function Table 7-2 7-9 

DCMPLX intrinsic function Table 7-2 7-10 Diagnostic 

DCONJG intrinsic function Table 7-2 7-11 checkout compiler Appendix I 

DCOS intrinsic function Table 7-2 7-8 FTNPMD 10.7.5.3 10-65 

DCOSH intrinsic function Table 7-2 7-9 general 10.10 10-70 

( DCOTAN intrinsic function Table 7-2 7-8 input/output general 5.8.2 5-50 

DDIM intrinsic function Table 7-2 7-10 messages Appendix 0 

Debug commands 10.6.3 10-27 tables 10.7.2 10-50 

Debug facility Differences between 

AT 9.3 9-6 FORTRAN processors Appendix A 

DEBUG 9.2 9-2 DIM intrinsic function Table 7-2 7-10 

DISPLAY 9.6 9-9 DIMAG intrinsic function Table 7-2 7-11 

example 9.7 9-10 Dimension 

TRACE OFF 9.5 9-8 adjustable 2.2.2.4.1 2-11 

TRACE ON 9.4 9-7 of array 2.2.2.4.1 2-11 

Debug mode 10.5.2.1 10-24 value 2.2.2.4.2 2-11 

10.S.2.1 10-26 DIMENSION statement 6.2 6-2 

DEBUG statement DINT intrinsic function Table 7-2 7-10 

general Section 9 Direct access I/O 

INIT 9.2.4 9-5 DEFINE FILE 5.7.1 5-43 

SUBCHK 9.2.2 9-3 FIND 5.7.4 5-48 

SUBTRACE 9.2.5 9-5 general 5.7 5-43 

TRACE 9.2.3 9-4 READ 5.7.2 5-45 

UNIT 9.2.1 9-3 record number 5.2.2 5-4 

Debugging SDF files G.2.2.2 G-8 

checkout 10.6 10-25 WRITE 5.7.3 5-46 

10.6.2 10-26 DISPLAY statement 9.6 9-9 

diagnostic system 10.10 10-70 Divide fault 7.3.3.9 7-25 

FTNPMD 10.7 10-50 DIVSET service subroutine 7.3.3.9 7-25 

FTNWB 10.7 10-50 DLGAMA intrinsic function Table 7-2 7-9 

nonfull 7.3.3.11 7-28 DLOG intrinsic function Table 7-2 7-8 

( see truncatron problems 9.2 9-2 DLOG 1 0 intrinsic function Table 7-2 7-8 

walkback 10.7 10-50 DMAX 1 intrinsic function Table 7-2 7-9 

Declaration DMIN 1 intrinsic function Table 7-2 7-9 

explicit 2.2.2.2.3 2-9 DMOD intrinsic function Table 7-2 7-9 

explicit statement 6.3.2 6-6 DNINT intrinsic function Table 7-2 7-10 

I" 



8244.2 SPERRY UNIVAC Series 1100 Index-6 
UP-NUMIIER FORTRAN (ASCII) Programmer Reference UPDATE lEVEl PAGE 

,;(~'-

Term Reference Page Term Reference Page 
\,----/ 

DO statement 4.5 4-14 EW.dDe 5.3.1 5-10 
active and inactive 4.5.3 4-15 EW.dEe 5.3.1 5-10 
examples 4-19 Fw.d 5.3.1 5-9 
execution 4.5.4 4-16 Gw.d 5.3.1 5-12 
extended range 4.5.5 4-18 Gw.dEe 5.3.1 5-12 
nested 4.5.2 4-14 'h 1h2 ... hw 5.3.1 5-11 
range of 4.5.1 4-14 Iw 5.3.1 5-9 

Dollar sign See Iw.d 5.3.1 5-9 
currency Jw 5.3.1 5-9 
symbol Lw 5.3.1 5-10 

Double precision Ow 5.3.1 5-11 
complex constants 2.2.1.3 2-5 pP 5.3.1 5-10 
real constants 2.2.1.2.2 2-4 Rw 5.3.1 5-11 

DOUBLE PRECISION' S 5.3.1 5-10 
FUNCTION statement 7.4.2.2 7-60 SP 5.3.1 5-10 

DOUBLE PRECISION type SS 5.3.1 5-10 
statement 6.3.2.1 6-7 TLw 5.3.1 5-12 

DO-variable availability 4.5.6 4-19 TRw 5.3.1 5-12 
DPROD intrinsic function Table 7-2 7-11 Tw 5.3.1 5-12 
OREAL intrinsic function Table 7-2 7-10 wHh 1 ... hw 5.3.1 5-11 
DSIGN intrinsic function Table 7-2 7-10 wX 5.3.1 5-11 
DSIN intrinsic function Table 7-2 7-8 Efficiency H.2.3 H-12 
DSINH intrinsic function Table 7-2 7-8 Efficient programming 10.9 10-69 
DSQRT intrinsic function Table 7-2 7-8 Element reference 2.2.2.4.5 2-12 ""-, 

DT AN intrinsic function Table 7-2 7-8 ELSE IF statement 4.4.2 4-11 
DTANH intrinsic function Table 7-2 7-9 ELSE IF-block 4.4.2.1 4-11 
Dual-PSR H.2.1 H-2 execution 4.4.2.2 4-11 
Dummy array 2.2.2.4.4 2-12 ELSE statement 
DUMP ELSE-block 4.4.3.1 4-11 

checkout command 10.6.3.4 10-33 general 4.4.3 4-11 
PMD command 10.7.5.2.1 10-61 ENCODE statement 5.9.4 5-55 
service subroutine 7.3.3.1 7-17 END IF statement 4.4.4 4-12 

DVCHK service subroutine 7.3.3.3 7-19 END statement 4.9 4-24 
Dw.d format 5.3.1 5..;.10 ENDFILE statement 5.6.4 5-37 

END= clause specification 5.2.7 5-7 
E Entry and exit tracing 9.2.5 9-5 

Entry point listing 10.4.2.2.7 10-20 
EDIT statement 8.4 8-6 ENTRY statement 7.7 7-66 

CODE 8.4 8-6 EQUIVALENCE statement 6.4 6-10 
PAGE 8.4 8-6 ERF intrinsic function Table 7-2 7-9 
SOURCE 8.4 8-6 ERFC intrinsic function Table 7-2 7-9 
START 8.4 8-6 Error message 
STOP 8.4 8-6 checkout compiler Appendix I 

Editing compiler messages Appendix 0 
codes 5.3.1 5-9 I/O general 5.8 5-49 
repetition of codes 5.3.2 5-14 5.8.2 5-50 
repetition of groups 5.3.3 5-14 I/O library 10.7.4.1.1 10-52 
variable format 5.3.9 5-18 I/O messages G.9 G-20 

Editing codes G.9.3 G-21 
\,~ ... 

Aw 5.3.1 5-11 math library 10.7.4.1.1 10-52 
BN 5.3.1 5-10 user program 10.7.4.1.3 10-55 
BZ 5.3.1 5-10 ERR$ 7.3.3.16.2 7-38 
Dw.d 5.3.1 5-10 ERR= clause specification 5.2.6 5-6 
Ew.d 5.3.1 5-10 

--------~---



8244.2 SPERRY UNIVAC Series 1100 Index-7 
UI4IIUMBER FORTRAN (ASCII) Programmer Reference UPOATELML PAGE 
't,. 

( 
Term Reference Page Term Reference Page '"' 

ERTRAN 7.3.3.16 7-31 EXIT 
Evaluation of expressions checkout command 10.6.3.5 10-34 

arithmetic 2.2.3.1.3 2-16 PMD command 10.7.5.2.2 10-64 
logical 2.2.3.3.3 2-20 service subroutine 7.3.3.15 7-30 
typeless 2.2.3.4.2 2-22 EXIT$ 7.3.3.16.2 7-38 

Ew.d format 5.3.1 5-10 EXP intrinsic function Table 7-2 7-8 
E w.d 0 e format 5.3.1 5-10 Explicit declaration 
Ew.dEe format 5.3.1 5-10 general 2.2.2.2.3 2-9 
Executable statement 10.3.1 10-5 statement 6.3.2 6-6 
Execution Exponent 

and collection 10.5.2.2 10-24 overflow 7.3.3.4 7-20 
in DO 4.5.4.1 4-16 overflow and underflow 7.3.3.6 7-22 
order 10.2.4 10-3 underflow 7.3.3.5 7-21 
system 1.3.2 1-4 Expression 
tracing 9.4 9-7 arithmetic 2.2.2.4.5 2-12 
using checkout 10.5.2.1 10-24 2.2.3.1 2-14 

Executive Request 7.3.3.16 7-31 character 2.2.3.2 2-17 
ABORT$ 7.3.3.16.2 7-38 general 2.2.3 2-14 
ACSF$ 7.3.3.16.2 7-38 logical 2.2.3.3 2-18 
ADATE 7.3.3.16.2 7-39 typeless 2.2.3.4 2-21 
COND$ 7.3.3.16.2 7-37 External function 

7.3.3.16.2 7-39 entry 7.7 7-66 

( DATE$ 7.3.3.16.2 7-37 EXTERNAL statement 7.2.3 7-3 
7.3.3.16.2 7-39 7.4.2.1 7-60 

ERR$ 7.3.3.16.2 7-38 general 7.4.2 7-60 
EXIT$ 7.3.3.16.2 7-38 non-FORTRAN 7.10 7-70 
FABORT 7.3.3.16.2 7-38 return from 7.6 7-65 
FACSF 7.3.3.16.2 7-38 External program unit 10.2.2 10-2 
FCOND 7.3.3.16.2 7-39 External reference listing 10.4.2.2.8 10-20 
FDATE 7.3.3.16.2 7-39 EXTERNAL statement 7.2.3 7-3 
FERR 7.3.3.16.2 7-38 External subprogram 7.1 7-2 
FEXIT 7.3.3.16.2 7-38 
FlO 7.3.3.16.1 7-32 F 
FIOI 7.3.3.16.1 7-32 
FlOW 7.3.3.16.1 7-32 FABORT 7.3.3.16.2 7-38 
FIOWI 7.3.3.16.1 7-32 FACSF 7.3.3.16.2 7-38 
FIOXI 7.3.3.16.1 7-32 FACSF2 7.3.3.16.2 7-37 
FSETC 7.3.3.16.2 7-39 FALSE logical 2.2.1.4 2-5 
FTSWAP 7.3.3.16.1 7-33 FASCFD subroutine 7.3.3.19 7-47 
FUNLCK 7.3.3.16.1 7-33 FCOND 7.3.3.16.2 7-37 
FWANY 7.3.3.16.1 7-33 7.3.3.16.2 7-39 
FWST 7.3.3.16.1 7-33 FDATE 7.3.3.16.2 7-37 
general 7.3.3.16.1 7-31 7.3.3.16.2 7-39 
101$ 7.3.3.16.1 7-32 FERR 7.3.3.16.2 7-38 
10WI$ 7.3.3.16.1 7-32 FEXIT 7.3.3.16.2 7-38 
IOW$ 7.3.3.16.1 7-32 FFDASC subroutine 7.3.3.19 7-47 
IOXI$ 7.3.3.16.1 7-32 Fieldata constant 2.2.1.6 2-6 
10$ 7.3.3.16.1 7-32 6.8.4 6-20 

(~ SETC$ 7.3.3.16.2 7-39 File 5.1 5-1 
TSWAP$ 7.3.3.16.1 7-33 CLOSE 5.10.2 5-68 
UNLCK$ 7.3.3.16.1 7-33 direct 5.7.1 5-43 
WAiT$ 7.3.3.16.1 7-33 OPEN 5.10.1 5-57 
WANY$ 7.3.3.16.1 7-33 



8244.2 
UP-NUMBER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer 'Reference UPDATE l£VEl 

Term Reference Page Term Reference 

reference number 5.2.1 5-3 slash 5.3.7.1 
reference table G.6 G-16 variable format 5.3.9 
sequential 5.6.6 5-39 FORMAT statement 5.3 
skeletonized 5.7.1 5-44 Format. editing codes 5.3.1 

FILE clause lo4.1 L-5 FORTRAN 
lo9.3.1 L-29 evolution 1.2 

FIND statement 5.7.4 5-48 execution time system 1.3.2 
FlO 7.3.3.16.1 7-31 I/O guide Appendix G 
FIOI 7.3.3.16.1 7-31 PROC 8.2 
FlOW 7.3.3.16.1 7-31 processor 1.3.1 
FIOWI 7.3.3.16.1 7-31 sample listing 10.4.2.2.2 
FIOXI 7.3.3.16.1 7-31 sample program 1.4 
FLO changed to BITS A.3 A-4 system 1.3 
FLOAT intrinsic function Table 7-2 7-10 FORTRAN V Appendix A 
Floating-point FORTRAN V interface K.l 

overflow 7.3.3.8 7-24 FORTRAN-supplied 
underflow 7.3.3.7 7-23 intrinsic procedure 7.3 

FMERGE lo5 L-ll procedure 7.3 
bit key lo5.1 L-12 pseudo-function 7.3.2 
Character key lo5.1 L-12 service subroutine 7.3.3 
COMP clause lo5.1 L ... 14 Free core area G.7 
comparison subroutine FSCOPY lo6 

parameter lo5.1 L-15 key position lo6.2 
lo8.2 L-22 link size lo6.2 

COPY clause L.5.1 L-14 record size L.6.2 
core parameter L.5.1 L-15 sort parameter table L.6.1 
data reduction subroutine FSETC 7.3.3.16.2 

parameter L.8.3 L-24 FSGIVE L.8.1.2 
INPU clause L.5.1 L-14 FSORT L.4 
input subroutine parameter L.5.1 L-14 BIAS clause L.4.1 

L.8.1 L-20 L.9.1 
KEY clRuse L.5.1 L-12 bit key L.4.1 
output subroutine character key L.4.1 

parameter L.5.1 L-15 COMP clause L.4.1 
L.8.4 L-26 comparison subroutine 

RSZ clause L..5.1 L-l1 parameter L.4.1 
VRSZ clause lo5.1 L-l1 L.8.2 

FMT= clause 5.2.4 5-6 CONS clause L.4.1 
Format specification COpy clause L.4.1 

carriage control 5.3.4 5-14 CORE clause L.4.1 
complex variables 5.3.5 5-15 L.9.2 
control of record 5.3.7 5-15 core parameter L.4.1 
defined specifications 5.3 5-8 DATA clause L.4.1 
editing code repetition 5.3.2 5-14 data reduction subroutine 
editing codes 5.3.1 5-9 parameter L.4.1 
end of output list test 5.3.7.2 5-16 L.8.3 
FMT= clause 5.2.4 5-6 DELL clause L.4.1 
general 5.2.4 5-5 FILE clause L.4.1 
list-directed 5.3 5-8 L.S.3.1 
multiple line formats 5.3.7.1 5-16 input subroutine parameter L.4.1 
output list fulfillment 5.3.7.2 5-16 L.8.1 
relationships to an I/O list 5.3.8 5-17 KEY clause L.4.1 
scale factor 5.3.6 5-15 large sort 1.10 

Index-8 
PAGE 

Page 

5-16 
5-18 
5-8 
5-9 

1-2 
1-4 

8-2 
1-2 
10-11 
1-4 
1-2 

K-l 

7-6 
7-6 
7-14 
7-17 
G-18 
L-16 
L-17 
L-17 
L-17 
L-16 
7-39 
L-21 
L-l 
L-6 
L-28 
L-3 
L-3 
L-4 

L-7 
L-22 
L-2 
L-4 
L-5 
L-28 
L-7 
L-4 

L-7 
L-24 
L-3 
L-5 
L-29 
L-7 
L-20 
L-3 
L-30 

"; ... , 

',-



8244.2 SPERRY UNIVAC Series 1100 Index-9 
UI4IIUMBER FORTRAN (ASCII) Programmer Reference UPDATE LEVEl PAGE 

( 
Term Reference Page Term Reference Page 

MESH clause lo4.1 L-6 statement function 7.4.1 7-56 

lo9.3.2 L-29 structure 7.4.2.1 7-60 

NOCH clause lo4.1 L-6 subprogram 7.4.2 7-60 

lo9.3.2 L-29 type less 2.2.3.4.1 2-21 

output subroutine FUNCTION statement 7.4.2.2 7-60 

parameter lo4.1 L-7 FUNLCK 7.3.3.16.1 7-33 

lo8.4 L-26 FWANY 7.3.3.16.1 7-33 

RSZ clause lo4.1 L-l FWST 7.3.3.16.1 7-31 

R$CORE lo9.2.1 L-28 7.3.3.16.1 7-33 

SELE clause lo4.1 L-5 Fw.d format 5.3.1 5-9 

VRSZ clause lo4.1 L-2 F$EP 10.7.4.3.1 10-58 

FSSEQ lo7 L-18 F$INFO 10.7.4.3.2 10-58 

user-specified collating F2ACTIV$ H.2.1.2 H-6 

sequence lo7 L-18 F2DYN$ 7.3.3.23 7-54 

FSTAKE lo8.4.2 L-26 F2FCA L.3.3 L-l 

FSTAT 7.3.3.16.1 7-31 
7.3.3.16.1 7-33 G 

FSYMB 7.3.3.16.1 7-31 
@FTN 10.5 10-21 GAMMA intrinsic function Table 7-2 7-9 

FTNPMD 10.7 10-50 Global optimization 10.8.2 10-68 

10.7.5 10-61 GO checkout command 10.6.3.6 10-35 

diagnostics 10.7.5.3 10-65 GO TO statement 

( initiating 10.7.3 10-51 assigned 4.2.3 4-5 

soliciting input 10.7.5.1 10-61 computed 4.2.2 4-3 

FTNR 7.3.3.11 7-28 general 4.2 4-2 

10.6.2.1 10-26 unconditional 4.2.1 4-2 

10.6.6 10-49 GW.d format 5.3.1 5-12 

purpose 1.3.1 1-3 Gw.dEe format 5.3.1 5-12 

FTNWB 10.7 10-50 
calling 10.7.4.1.4 10-56 H 
general 10.7.4 10-52 
initiating 10.7.3 10-51 H format 5.3.1 5-11 

messages 10.7.4.2 10-57 HELP checkout command 10.6.3.7 10-36 

procedures 10.7.4.3 10-58 HFIX intrinsic function Table 7-2 7-10 

FTN$PF 8.2 8-4 Hierarchy of operators 2.2.3.5 2-22 

FTSWAP 7.3.3.16.1 7-31 Hollerith 

7.3.3.16.1 7-33 constant 2.2.1.5 2-5 

Function format 5.3.1 5-11 

alternate entry 7.7 7-66 representation difference A.4 A-9 

argument 7.5 7-63 . h 1 h 2'" hw' format 5.3.1 5-11 

external 7.4.2 7-60 
FORTRAN-supplied 7.3 7-6 
initial statement 7.4.2.2 7-61 
internal 7.4.2 7-60 lABS intrinsic function Table 7-2 7-9 

intrinsic 7.3.1 7-6 IBANK H.2 H-l 

non-FORTRAN 7.10 7-70 IBJ$ 8.5.3 8-10 

programmer-defined 7.4.2.2 7-60 ICHAR intrinsic function Table 7-2 7-10 

('~ 
programmer-defined Identification line 10.4.2.2.1 10-11 

procedure 7.4 7-56 IDFIX intrinsic function Table 7-2 7-10 

pseudo-function 7.3.2 7-14 IDIM intrinsic function Table 7-2 7-10 

reference 7.2.1 7-2 IDINT intrinsic function Table 7-2 7-10 

return from 7.6 7-65 IDNINT intrinsic f".!netion Table 7-2 7-10 



8244.2 SPERRY UNIVAC Series 1100 Index-10 
UP-NUMBER FORTRAN (ASCII) Programmer Reference UPDATE LEVEL PAGE 

..... --._, 

\ .. _> 

Term Reference Page Term Reference Page 

IF statement Interactive postmortem dump 10.7.5 10-61 
arithmetic 4.3.1 4-7 diagnostics 10.7.5.3 10-65 
general 4.3 4-7 soliciting input 10.7.5.1 10-61 
logical 4.3.2 4-S Interlanguage communication Appendix K 

IFIX intrinsic function Table 7-2 7-10 Internal file statements 
IMAG intrinsic function Table 7-2 7-11 DECODE 5.9.2 5-52 
Implicit ENCODE 5.9.4 5-55 

name rule 2.2.2.2.2 2-9 general 5.9 5-51 
statement 6.3.1 6-4 READ 5.9.1 5-51 

Implied declaration 2.2.2.2.1 2-S WRITE 5.9.3 5-54 
Implied DO 5.2.3 5-5 Internal function 7.4.2 7-60 
INCLUDE statement S.2 S-1 Internal subprogram 6.3.1 6-5 
INDEX intrinsic function Table 7-2 7-11 6.6 6-15 
Initial value 6.B 6:-19 6.6 6-15 
In line function 7.3.1 7~7 7.1 7-2 
Inline procedure 7.3 7-6 10.2.2 10-2 
INPU clause L.5.1 L-14 Interrupt 10.6.2.1 10-26 
Input Intrinsic function 

contingency clauses 5.B.1 5-49 ABS Table 7-2 7-9 
direct READ 5.7.2 5-45 ACOS Table 7-2 7-S 
error messages 5.B.2 5-50 AIMAG Table 7-2 7-11 
format 5.3 5-S AINT Table 7-2 7-10 
list-directed 5.5.1 5-23 ALGAMA Table 7-2 7-9 
namelist 5.4.2 5-20 ALOG Table 7-2 7-B 
sequential READ 5.6.1 5-26 ALOG10 Table 7-2 7-S 

Input subroutine L.S.1 L-20 AMAXO Table 7-2 7-'9 
Input subroutine parameter L.4.1 L-7 AMAX1 Table 7-2 7-9 

L.5.1 L-14 AMINO Table 7-2 7-9 
Input/output control list AMIN1 Table 7-2 7-9 

END= clause 5.2.7 5-7 AMOD Table 7-2 7-9 
ERR= clause 5.2.6 5-6 AND 7.3.1 7-6 
file reference number 5.2.1 5-3 ANINT Table 7-2 7-10 
FMT= clause 5.2.4 5-6 ARCOS Table 7-2 7-S 
format specification 5.2.4 5-5 ARSIN Table 7-2 7-S 
input/output status clause 5.2.S 5-7 ASIN Table 7-2 7-S 
namelist specification 5.2.5 5-6 ATAN Table 7-2 7-S 
record number 5.2.2 5-4 ATAN2 Table 7-2 7-S 
REC= clause 5.2.2 5-4 BOOL 7.3.1 7-6 
UNIT= clause 5.2.1 5-3 CABS Table 7-2 7-9 

Input/output guide Appendix G CCOS Table 7-2 7-S 
Input/output list 5.2.3 5-4 CCOSH Table 7-2 7-9 

implied DO 5.2.3 5-5 COABS Table 7-2 7-9 
Input/output status clause 5.2.S 5-7 COCOS Table 7-2 7-S 
Input/output status word 5.S.1 5-49 CDCOSH Table 7-2 7-9 
INQUIRE statement 5.10.3 5-70 CDEXP Table 7-2 7-S 
INT intrinsic function Table 7-2 7-10 CDLOG Table 7-2 7-S 
Integer COSIN Table 7-2 7-S 

constant 2.2.1.1 2-3 CDSINH Table 7-2 7-S /""" 

storage 6.9.1 6-24 COSQRT Table 7-2 7-S '", Table 6-4 6-25 CDTAN Table 7-2 7-S 
INTEGER FUNCTION statement 7.4.2.2 7-60 CDTANH Table 7-2 7-9 
INTEGER type statement 6.3.2.1 6-7 CEXP Table 7-2 7-S 

CHAR Table 7-2 7-10 



8244.2 SPERRY UNIVAC Series 1100 Index-11 
UP-NUMBER FORTRAN (ASCII) Programmer Reference UPDATE LEVEl PAGE 

(--' " 
Term Reference Page Term Reference Page 

CLOG Table 7-2 7-8 GAMMA Table 7-2 7-9 
CMPLX Table 7-2 7-10 general 7.3.1 7-6 
COMPL 7.3.1 7-6 HFIX Table 7-2 7-10 
CONJG Table 7-2 7-11 lABS Table 7-2 7-9 
COS Table 7-2 7-8 ICHAR Table 7-2 7-10 
COSH Table 7-2 7-9 IDFIX Table 7-2 7-10 
COTAN Table 7-2 7-8 101M Table 7-2 7-10 
CSIN Table 7-2 7-8 IDINT Table 7-2 7-10 
CSINH Table 7-2 7-8 IDNINT Table 7-2 7-10 
CSORT Table 7-2 7-8 IFIX Table 7-2 7-10 
CTAN Table 7-2 7-8 IMAG Table 7-2 7-11 
CTANH Table 7-2 7-9 INDEX Table 7-2 7-11 
DABS Table 7-2 7-9 INT Table 7-2 7-10 
DACOS Table 7-2 7-8 ISIGN Table 7-2 7-10 
DARCOS Table 7-2 7-8 LEN Table 7-2 7-11 
DARSIN Table 7-2 7-8 LGAMMA Table 7-2 7-9 
DASIN Table 7-2 7-8 LGE Table 7-2 7-11 
DATAN Table 7-2 7-8 LGT Table 7-2 7-11 
DATAN2 Table 7-2 7-8 LLE Table 7-2 7-11 
DBLE Table 7-2 7-10 LLT Table 7-2 7-11 
DCMPLX Table 7-2 7-10 LOC 7.3.1 7-6 
DCONJG Table 7-2 7-11 LOG Table 7-2 7-8 

(' DCOS Table 7-2 7-8 LOG10 Table 7-2 7-8 
DCOSH Table 7-2 7-9 LOWERC Table 7-2 7-11 
DCOTAN Table 7-2 7-8 MAX Table 7-2 7-9 
DDIM Table 7-2 7-10 MAXO Table 7-2 7-9 
DERF Table 7-2 7-9 MAX1 Table 7-2 7-9 
DERFC Table 7-2 7-9 MIN Table 7-2 7-9 
DEXP Table 7-2 7-8 MIN1 Table 7-2 7-9 
DFLOAT Table 7-2 7-10 MOD Table 7-2 7-9 
DGAMMA Table 7-2 7-9 NINT Table 7-2 7-10 
DiM Table 7-2 7-10 OR 7.3.1 7-6 
DIMAG Table 7-2 7-11 REAL Table 7-2 7-10 
DINT Table 7-2 7-10 SIGN Table 7-2 7-10 
DLGAMA Table 7-2 7-9 SIN Table 7-2 7-8 
DLOG Table 7-2 7-8 SINH Table 7-2 7-8 
DLOG10 Table 7-2 7-8 SNGL Table 7-2 7-10 
DMAX1 Table 7-2 7-9 SORT Table 7-2 7-8 
DMIN1 Table 7-2 7-9 TAN Table 7-2 7-8 
DMOD Table 7-2 7-9 TANH Table 7-2 7-9 
DNINT Table 7-2 7-10 TRMLEN Table 7-2 7-11 
DPROD Table 7-2 7-11 UPPERC Table 7-2 7-11 
OREAL Table 7-2 7-10 XOR 7.3.1 7-6 
DSIGN Table 7-2 7-10 INTRINSIC statement 7.2.4 7-5 
DSIN Table 7-2 7-8 10C I/O error status function 5.8.1 5-49 
DSINH Table 7-2 7-8 101$ 7.3.3.16.1 7-32 
DSORT Table 7-2 7-8 105 I/O error status function 5.8.1 5-49 

C 
DTAN Table 7-2 7-8 10STAT= 5.2.8 5-7 
DTANH Table 7-2 7-9 IOU I/O error status function 5.B.1 5-49 
ERF Table 7-2 7-9 10WI$ 7.3.3.16.1 7-32 
ERFC Table 7-2 7-9 10W$ 7.3.3.16.1 7-32 
EXP Table 7-2 7-8 10XI$ 7.3.3.16.1 7-32 
FLOAT Table 7-2 7-10 10$ 7.3.3.16.1 7-32 



8244.2 SPERRY UNIVAC Series 1100 Index-12 
UP-foIUMBER FORTRAN (ASCII) Programmer Reference UPDATE LEVEl PAGE 

.,r-

',,-

Term Reference Page Term Reference Page 

ISIGN intrinsic function Table 7-2 7-10 List-directed WRITE 5.6.2.4 5-34 
Iw format 5.3.1 5-9 Literal format 5.3.1 5-11 
Iw.d format 5.3.1 5-9 LLE intrinsic function Table 7-2 7-11 

LL T intrinsic function Table 7-2 7-11 
J LOC intrinsic function 7.3.1 7-6 

Local optimization 10.8.1 10-67 
Jw format 5.3.1 5-9 Location counter 6.9.2 6-27 

LOG intrinsic function Table 7-2 7-8 
K Logical 

constant 2.2.1.4 2-5 
KEY clause lo4.1 L-3 evaluation 2.2.3.3.3 2-20 

lo5.1 L-12 expression 2.2.3.3 2-18 
lo7 L-18 expression formation 2.2.3.3.2 2-20 

factor 2.2.3.3.2 2-20 
L operator 2.2.3.3.1 2-18 

primary 2.2.3.3.2 2-20 
Label tracing storage Table 6-4 6-25 

enabling 9.2.3 9-4 term 2.2.3.3.2 2-20 
initiating 9.4 9-7 Logical assignment statement 3.4 3-6 
terminating 9.5 9-8 LOGICAL FUNCTION statement 7.4.2.2 7-60 

Labeled common storage 6.5 6-13 LOGICAL type statement 6.3.2.1 6-7 
Language elements 2.2 2-1 LOG 1 0 intrinsic function Table 7-2 7-8 

array 2.2.2.4 2-10 LOWERC intrinsic function Table 7-2 7-11 
constant 2.2.1 2-2 Lw format 5.3.1 5-10 
expression 2.2.3 2-14 
operators 2.2.3.1.1 2-14 M 
symbolic name 2.2.2 2-6 
variable 2.2.2.3 2-9 Machine language 1.2 1-2 

Large banks H.2.1.3 H-7 1.3 1-2 
Large programs Appendix H Main program 
LBJ H.2 H-2 BANKED=ACTARG option 8.5.2 8-9 
LCORF$ 7.3.3.22 7-50 banking Appendix H 
LDJ H.2 H-2 definition 7.1 7-1 
LEN intrinsic function Table 7-2 7-11 general 10.2.2 10-2 
LGAMMA intrinsic function Table 7-:-2 7-9 sample 1.4 1-4 
LGE intrinsic function Table 7-2 7-11 MASM interface K.4 K-6 
LGT intrinsic function Table 7-2 7-11 MAX intrinsic function Table 7-2 7-9 
Library procedure 7.3 7-6 MAXAD$ service subroutine 7.3.3.20 7-49 
lIJ H.2 H-2 MAXO intrinsic function Table 7-2 7-9 
LINE checkout command 10.6.3.8 10-37 MAX 1 intrinsic function Table 7-2 7-9 
lINK=IBJ$ option 8.5.3 8-10 MCORE$ H.2.1.1 H-5 
LIST checkout command 10.6.3.9 10-37 MCORF$ 7.3.3.22 7-50 
Listing option 10.4.2.1 10-10 MESH clause lo4.1 L-6 
List-directed lo9.3.2 L-29 

general 5.5 5-23 Method of storage assignment 6.9 6-24 
input 5.5.1 5-23 MIN intrinsic function Table 7-2 7-9 
output 5.5.2 5-25 MIN 1 intrinsic function Table 7-2 7-9 
output statements 5.6.2.4 5-34 MOD intrinsic function Table 7-2 7-9 ~ 
PRINT 5.6.2.4 5-35 Multibanking Appendix H '",-, 
PUNCH 5.6.2.4 5-35 BANK 6.6 6-15 
READ 5.6.1.4 5-29 FORTRAN compiler 1.3.1 1-2 
WRITE 5.6.2.4 5-35 



8244.2 SPERRY UNIVAC Series 1100 Index-13 
UP .... UMBER FORTRAN (ASCII) Programmer Reference UPOATELML PAGE 

(-
Term Reference Page Term Reference Page 

N 
Option 

format 5.2.4 5-6 
on PDP call 8.2 8-3 

Name rule 2.2.2.2.1 2-8 on processor call 10.5 10-21 
Namelist OR intrinsic function 7.3.1 7-6 

input 5.4.2 5-20 Order of statements 10.3.2 10-6 
name specification 5.2.5 5-6 Output 
output 5.4.3 5-22 contingency clauses 5.8.1 5-49 
READ 5.6.1.3 5-29 direct WRITE 5.7.3 5-46 
WRITE 5.6.2.3 5-34 error messages 5.8.2 5-50 

NAMELIST statement 5.4.1 5-19 format 5.2.4 5-6 
Nested DO-loop 4.5.2 4-14 list-directed 5.5.2 5-25 
NINT intrinsic function Table 7-2 7-10 namelist 5.4.3 5-22 
NOCH clause l.4.1 L-6 sequential WRITE 5.6.2 5-32 

l.9.3.2 L-29 Output subroutine parameter l.4.1 L-7 
Nonexecutable statement 10.3.1 10-5 l.5.1 L-15 
Non-FORTRAN argument 7.10 7-70 OVERFL service subroutine 7.3.3.4 7-20 
NTRAN$ service subroutine 7.3.3.17 7-39 OVFSET service subroutine 7.3.3.8 7-24 

OVUNFl service subroutine 7.3.3.6 7-22 
0 Ow format 5.3.1 5-11 

o option 8.5.7 8-12 P 

(~ Object code listing 10.4.2.2.4 10-18 
Object program 1.3 1-2 P format 5.3.1 5-10 

10.5.2 10-24 Paged data banks H.2 H-l 
Octal constant 2.2.1.6 2-6 PARAMETER 

6.8.3 6-20 in program 10.3.2 10-6 
OPEN statement 5.10.1 5-57 statement 6.7 6-17 

block size 5.10.1 5-64 with DELETE 8.3 8-5 
implicit CLOSE 5.10.1 5-66 PARMINIT=INLINE option 8.5.1 8-8 
record format 5.10.1 5-61 PAUSE routine 10.6.2.1 10-26 
record size 5.10.1 5-63 PAUSE statement 4.7 4-22 
reread 5.10.1 5-65 PCIOS G.l G-l 
segment size 5.10.1 5-65 PDP procedures (entry) 8.2 8-1 

Operator PDUMP service subroutine 7.3.3.2 7-18 
arithmetic 2.2.3.1.1 2-14 Pl/I interface K.2 K-2 
character 2.2.3.2 2-17 PMD 10.7.3 10-51 
concatenation 2.2.3.2 2-17 10.7.5.1 10-61 
hierarchy 2.2.3.5 2-22 PMD mode commands 
logical 2.2.3.3.1 2-18 DUMP 10.7.5.2.1 10-61 
relational 2.2.3.3.1 2-18 EXIT 10.7.5.2.2 10-64 

Optimization H.2.3.4.2 H-14 PP format 5.3.1 5-10 
code reordering 8.5.4 8-10 PRINT 
compiler 10.8 10-67 formatted 5.6.2.1 5-32 
general 1.3.1 1-3 list-directed 5.6.2.4 5-35 
global 10.8.2 10-68 namelist 5.6.2.3 5-34 
local 10.8.1 10-67 PROC 8.2 8-1 

( 
pitfalls 3.2 3-2 Procedure 

4.5.6 4-19 FORTRAN-supplied 7.3 7-6 
10.8.3 10-68 general 7.1 7-1 

10.2.2 10-2 



SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference UPDATE lEVEL 

Term Reference Page Term Reference 

non-FORTRAN 7.10 7-70 
references 7.2 7-2 R 

Procedure Definition 
Processor (PDP) Range of DO-loop 4.5.1 

general 8.2 8-1 READ 
sample reference 8.2 8-3 direct access 5.7.2 

Procedure subprogram 10.2.2 10-1 formatted 5.6.1.1 
Processor, FORTRAN 1.3.1 1-2 internal file 5.9.1 
PROG checkout command 10.6.3.10 10-38 list-directed 5.6.1.4 
Program namelist 5.6.1.3 

execution 9.2 9-2 reread 5.6.1.5 
10.2.4 10-3 unformatted 5.6.1.2 

format 10.4.1 10-7 Real 
main program 7.1 7-1 constant 2.2.1.2 
organization 10.2 10-1 storage 6.9.1 
subprogram 7.1 7-1 REAL FUNCTION statement 7.4.2.2 
unit 10.2.1 10-1 REAL intrinsic function Table 7-2 
unit organization 10.2.3 10-3 REAL type statement 6.3.2.1 

Program control statement Record 
COMPILER statement 8.5 8-7 buffer offset 5.6.6 
DELETE 8.3 8-5 direct DEFINE FILE 5.7.1 
EDIT 8.4 8-6 end-of-file 5.e.4 
general Section 8 file 5.6.6 
INCLUDE 8.2 8-1 form 5.6.6 
PARAMETER 6.7 6-17 formatted 5.6.1.1 

PROGRAM statement 7.9 7-69 5.6.2.1 
Program unit 2.2.2.1 2-7 list-directed 5.6.1.4 

function 7.4.2 7-60 5.6.2.4 
organization 10.2.3 10-3 namelist 5.6.1.3 
procedures 7.1 7-1 5.6.2.3 
subroutine 7.4.3 7-61 segment G.2.1 
types 10.2.2 10-1 sequential DEFINE FILE 5.6.6 

Programmer check list Appendix C size 5.6.6 
Programmer-defined 5.10.1 

procedure unformatted 5.6.1.2 
BLOCK DATA 7.8 7-68 5.6.2.2 
function 7.4.2 7-60 Record number specification 5.2.2 
statement function 7.4.1 7-56 REC= clause 5.2.2 
subroutine 7.4.3 7-61 Reference 

Programming techniques C.3 C-3 procedure 7.2 
PROGRAM=BIG option 8.5 8-7 subroutine 7.2.2 
Pseudo-function Register usage K.4.2 

BITS 7.3.2.1.1 7-14 Relocatable binary output 1.3.1 
general 7.3.2 7-14 Reread statement 5.6.1.5 
SUBSTR 7;3.2.2 7-16 Restart processor (FTNR) 

PSR window H.2 H-2 general 10.6.6 
PSRM H.2 H-2 purpose 1.3.1 
PSRU H.2 H-2 Restarting program 10.6.3.11 
PUNCH RESTORE checkout command 10.6.3.11 

formatted 5.6.2.1 5-32 RETURN statement 7.6 
list-directed 5.6.2.4 5-35 REWIND statement 5.6.5 
namelist 5.6.2.3 5-34 RSZ clause L.4.1 

L.5.1 

Index-14 
PAGE 

Page 

4-14 

5-45 
5-26 
5-51 
5-29 
5-29 
5-31 
5-28 

2-3 
6-24 
7-60 
7-10 
6-7 

5-41 
5-43 
5-37 
5-39 
5-41 
5-27 
5-33 
5-30 
5-34 
5-29 
5-34 
G-2 
5-39 
5-39 
5-63 
5-28 
5-33 
5-4 
5-4 

7-2 
7-3 
K-8 
1-3 
5-31 

10-49 
1-3 
10-39 
10-39 
7-65 
5-38 
L-1 
L-11 

'\~,;; 

""~- ' 

" "L / 



8244.2 SPERRY UNIVAC Series 1100 Index-15 
UP-ftUMBER FORTRAN (ASCII) Programmer Reference UPDATE lEVEL PAGE 

( 
Term Reference Page Term Reference Page 

Run condition switch 7.3.3.12 7-28 DVCHK 7.3.3.3 7-19 
Run condition word 7.3.3.12 7-28 ERTRAN 7.3.3.16 7-31 
RUN Executive command 1.4.3 1-6 EXIT 7.3.3.15 7-30 
Rw format 5.3.1 5-11 FASCFD 7.3.3.19 7-47 
R$CORE L3.3 L-1 FFDASC 7.3.3.19 7-47 

L9.2 L-28 F2DYN$ 7.3.3.23 7-54 
R$FILE LS.1 L-16 LCORF$ 7.3.3.22 7-50 

MAXAD$ 7.3.3.20 7-49 
S MCORF$ 7.3.3.22 7-50 

NTRAN$ 7.3.3.17 7-39 
S format 5.3.1 5-10 OVERFL 7.3.3.4 7-20 
Sample listing OVFSET 7.3.3.8 7-24 

common block 10.4.2.2.6 10-19 OVUNFL 7.3.3.6 7-22 
entry point 10.4.2.2.7 10-20 PDUMP 7.3.3.2 7-18 
external reference 10.4.2.2.8 10-20 SLITE 7.3.3.13 7-29 
termination message 10.4.2.2.9 10-20 SLITET 7.3.3.14 7-30 

Sample program Figure 1-2 1-5 SSWTCH 7.3.3.12 7-28 
SAVE checkout command 10.S.3.12 10-41 UNDRFL 7.3.3.5 7-21 
SAVE statement 7.12 7-72 UNDSET 7.3.3.7 7-23 
Scalars 2.2.1 2-3 SET checkout command 10.6.3.13 10-42 

2.2.2.4 2-10 SET)J:P checkout command 10.6.2.1 10-25 
Scale factor 5.3.6 5-15 10.6.3.14 10-43 

( Scope of names 7.11 7-70 SETC$ 7.3.3.16.2 7-39 
SDF Side effects of assignments 3.2 3-2 

block size G.2.1.3 G-6 SIGN intrinsic function Table 7-2 7-10 
data records G.2.1.2 G-5 Sign-on line 10.6.6 10-49 
direct access G.2.2.2 G-8 SIN intrinsic function Table 7-2 7-8 
end-of-file record G.2.1.4 G-6 Single precision 
file layout G.2.1.5 G-7 complex constants 2.2.1.3 2-5 
file processing G.2.2 G-7 real constants 2.2.1.2.1 2-3 
general G.2 G-2 Single PSR H.2.2 H-10 
labels G.2.1.1 G-3 SINH intrinsic function Table 7-2 7-8 
record segments G.2.1.2 G-5 Skeletonized file 5.7.1 5-44 
sequential access G.2.2.1 G-7 Slash (/) 

Segment size 5.6.S 5-40 end-of-record 5.5 5-23 
5.10.1 5-65 in DATA statement 6.8.1 6-19 
5.10.3 5-75 in DIMENSION 6.2 6-2 

SELE clause L.4.1 L-5 in I/O list 5.3.7.1 5-16 
Sequential access I/O in NAMELIST statement 5.4.1 5-20 

BACKSPACE 5.6.3 5-36 in type statement 6.3.2.1 6-7 
DEFINE FILE 5.6.6 5-39 6.3.2.2 6-8 
ENDFILE 5.6.4 5-37 SLITE service subroutine 7.3.3.13 7-29 
general 5.6 5-26 SLITET service subroutine 7.3.3.14 7-30 
output 5.6.2 5-32 SNAP checkout command 10.6.3.15 10-44 
READ 5.6.1 5-26 SNGL intrinsic function Table 7-2 7-10 
REWIND 5.6.5 5-38 Sort parameter table L.6.1 L-16 
SDF files G.2.2.1 G-7 Sort/Merge interface 

Service subroutine banked arguments L.3 L-1 

(' CHKRS$ 7.3.3.11 7-28 checksum L.9.3 L-29 
CHKSV$ 7.3.3.11 7-28 data reduction subroutine L.8.3 L-24 
CLOSE 7.3.3.18 7-47 error messages L.11 L-32 
DIVSET 7.3.3.9 7-25 FMERGE L.5 L-11 
DUMP 7.3.3.1 7-17 FSCOPY L.6 L-16 



8244.2 SPERRY UNIVAC Series 1100 Index-16 
Ul4lUMlER FORTRAN (ASCII) Programmer Reference UPDATE lEVEl- PAGE 

./~-

Term Reference Page Term Reference Page 

V \: FSGIVE LS.1.2 L-21 STD=66 option S.5.5 S-11 
FSORT L4 L-1 STEP checkout command 10.6.2.1 10-26 
FSSEQ L7 L-1S 10.6.3.16 10-45 
FSTAKE LS.4.2 L-26 STOP statement 4.S 4-23 
large sort L10 L-30 Storage 
optimization L9 L-27 alignment 6.4 6-11 
output subroutine LS.4 L-26 EQUIVALENCE 6.4 6-10 
scratch files L9.3 L-29 in banks 6.6 6-15 
user comparison routine LS.2 L-22 of data 6.9.1 6-24 
user-specified ·input Storage area between units 6.5 6-13 

subroutine LS.1 L-20 Storage assignment 
user-specified subroutines LS L-20 map 10.4.2.2.5 10-19 

Source program 1.3.1 1-2 method 6.9 6-24 
definition 1.3 1-2 Storage control table G.8 G-19 
format 10.4.1 10-7 K.4.3 K-8 
listing 10.4.2.2.2 10-11 StoragEraliocation packet G.11 G-35 

SP format 5.3.1 5-10 Subprogram 10.2.2 10-2 
Space fill 5.3.1 5-9 banking Appendix H 
Specification statement BLOCK DATA 7.1 7-2 

COMMON 6.5 6-13 7.8 7-68 
DATA 6.8.1 6-19 definition 7.1 7-1 
DIMENSION 6.2 6-2 external 7.1 7-2 
EQUIVALENCE 6.4 6-10 function 7.1 7-1 
explicit typing 6.3.2 6-6 internal 7.1 7-2 '. 

implicit typing 6.3.1 6-5 program unit 10.2.1 10-1 
Specification subprogram subroutine 7.1 7-1 

BLOCK DATA 7.S 7-6S Subroutine 
organization 10.2.2 10-2 argument 7.5 7-63 

10.2.3 10-3 BANKEQ=DUMARG option 8.5.2 8-9 
Specification system. data BANKED=RETURN option 8.5.2 8-9 

storage 6.9.1 6-24 CALL 7.2.2 7-3 
Specification typing. implicit 6.3.1 6-4 general 7.4.3 7-61 
SQRT intrinsic function Table 7-2 7-S return from 7.6 7-65 
SS format 5.3.1 5-10 service 7.3.3 7-17 
SSWTCH service subroutine 7.3.3.12 7-2S structure 7.4.3.1 7-61 
Statement subprogram 10.2.2 10-1 

arithmetic IF 4.3.1 4-7 SUBROUTINE statement 7.4.3.2 7-62 
categories 10.3 10-5 Subscript checking 9.2.2 9-3 
classification 10.3.1 10-5 SUBSTR 7.3.2.2 7-16 
composition 10.4.1.2 10-8 Substring expressions 2.2.2.5 2-13 
executable 10.3.1 10-5 6.4 6-10 
form 2.2.4 2-23 Substring. character 2.2.2.5 2-13 
general 10.4.1.2 10-8 Symbolic name 
label 10.4.1.3 10-9 data types 2.2.2.2 2-8 
nonexecutable 10.3.1 10-5 format 2.2.2 2-6 
ordering 10.3.2 10-6 uniqueness 2.2.2.1 2-7 
tables Appendix F variable 2.2.2.3 2-9 

Statement function Symbols 
DEFINE 7.4.1.1 7-56 $ 5.4.2 5-20 .",--

general 7.4.1 7-56 entry name 7.7 7-66 
reference 7.4.1.2 7-58 in a symbolic name 2.2.2 2-6 

Statement label 10.4.1.3 10-9 statement label 7.2.1 7-2 
assigning value 3.5 3-7 subroutine statement 
general 10.4.1.3 10-9 label 7.2.2 7-3 



8244.2 SPERRY UNIVAC S.ri •• 1100 Index-17 
UI4IUMBER FORTRAN (ASCII) Programmer Reference Ul'flATE LEVEL PAGE 

( 
Term Reference Page Term Reference Page 

& 5.4.2 5-20 Unit reference number G.5 G-15 
EXTERNAL option 7.2.3 7-3 UNIT = clause 5.2.1 5-3 
for concatenation 2.2.3.2 2-18 UNLCK$ 7.3.3.16.1 7-33 
statement label 7.2.1 7-2 UPPERC intrinsic function Table 7-2 7-11 
subprogram name 6.6 6-15 User comparison routine L.8.2 L-22 
subroutine statement User-specified collating 

label 7.2.2 7-3 sequence L.7 L-18 

* 7.4.2.2 7-60 User-specified output 
7.4.3.2 7-62 subroutine L.8.4 L-26 

EXTERNAL option 7.2.3 7-3 User-specified subroutines L.8 L-20 
statement label 7.2.1 7-2 U1110=OPT option 8.5.4 8-10 
subroutine statement 

label 7.2.2 7-3 V 
System Data Format (SDF) 

general 5.6.6 5-39 Value change tracing 9.2.4 9-5 
OPEN 5.10.1 5-57 Variable 2.2.2.3 2-9 

Variable format 5.3.9 5-18 
T Volatile register set K.4.2 K-8 

VRSZ clause L.4.1 L-2 
TAN intrinsic function Table 7-2 7-8 L.5.1 L-11 
TANH intrinsic function Table 7-2 7-9 
Termination message 10.4.2.2.9 10-20 W 

( TLw format 5.3.1 5-12 
TRACE checkout command 10.6.3.17 10-45 WAIT$ 7.3.3.16.1 7-33 
TRACE OFF 9.5 9-8 Walkback 10.7 10-50 
TRACE ON 9.4 9-7 10.7.4 10-52 
TRMLEN intrinsic function Table 7-2 7-11 messages 10.7.4.2 10-57 
TRUE logical 2.2.1.4 2-5 procedures 10.7.4.3 10-58 
Truncation errors H.1 H-1 WALKBACK checkout 
Truncation problems command 10.6.3.18 10-46 

collection and execution 10.5.2.2 10-24 messages 10.6.3.18 10-47 
DIMENSION statement 6.2 6-2 
initial value assignment 6.8 6-19 WANY$ 7.3.3.16.1 7-33 
storage assignment 6.9 6-24 wHh 1 ... hw format 5.3.1 5-11 

TRw format 5.3.1 5-12 Word 1.2 1-2 
TSWAP$ 7.3.3.16.1 7-33 WRITE 
Tw format 5.3.1 5-12 direct access 5.7.3 5-46 
Type rules, arithmetic 2.2.3.1.4 2-16 formatted 5.6.2.1 5-32 
Type statement list-directed 5.6.2.4 5-35 

explicit 6.3.2 6-6 namelist 5.6.2.3 5-34 
general 6.3 6-4 unformatted 5.6.2.2 5-33 
implicit 6.3.1 6-4 WX format 5.3.1 5-11 

Typeless 
evaluation 2.2.3.4.2 2-22 X 
expression 2.2.3.4 2-21 
function 2.2.3.4.1 2-21 X format 5.3.1 5-11 

XOR intrinsic function 7.3.1 7-6 

( 
U 

Z 
Unary operator 2.2.3.1.1 2-14 
UNDRFL service subroutine 7.3.3.5 7-21 Zero-fill 5.3.1 5-9 
UNDSET service subroutine 7.3.3.7 7-23 



8244.2 
UP-NUM8ER 

SPERRY UNIVAC Series 1100 
FORTRAN (ASCII) Programmer Reference 

Term Reference Page 

$ 5.4.2 5-20 
entry name 7.7 7-66 
in a symbolic name 2.2.2 2-6 
statement label 7.2.1 7-2 
subroutine statement 

label 7.2.2 7-3 
& 5.4.2 5-20 

EXTERNAL option 7.2.3 7-3 
for concatenation 2.2.3.2 2-18 
statement label 7.2.1 7-2 
subprogramllame 6.6 6-15 
subroutine statement 

label 7.2.2 7-3 

* 7.4.2.2 7-60 
7.4.3.2 7-62 

EXTERNAL option 7.2.3 7-3 
statement label 7.2.1 7-2 
subroutine statement 

label 7.2.2 7-3 

UPOATt LEVEL 
Index-1S 

PAGE 



(, 

USER COMMENT SHEET 

Comments concerning the content, style, and usefulness of this manual may be made in the space provided below. Please 
fill in the requested.information. 

This User Comment Sheet will not normally lead to a reply to the originator. Requests for copies of manuals, lists of manuals, 
pricing information, etc. must be made through your Series 1100 site manager, to your Sperry Univac representative, or to 
the Sperry Univac office serving your locality. Software problems should be submitted on a Software User Report (SUR) 
form UD1-745. Questions of a technical nature regarding either the manual or the software should be submitted on a 
Technical Question (question/answer! form UD1-1195. These forms are available through your Sperry Univac representative. 

Customer Name: ______________________ System Type: _____________ _ 

Title of Manual: _________________________________________ _ 

UP No.: ____________ Revision No.: _______ Update: _______________ _ 

Name of User: ______________________________ Date: __________ _ 

Address of User: ________________________________________ __ 

Comments: . Give page and paragraph reference where appropriate. 

Please rate this manual. Good 

Organization of the text - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

Clarity of the text - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Adequacy of coverage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---

Examples - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' --

Cross references - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---

Tables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --' -

Illustrations - - - - - - - - - - - - - - - - - -' - - - - - - - - - - - - - - - - - - - - - - - -__ _ 

Index - - - - - - - - - - - - - - - - - - - - - - - - - -.- - - - - • - - - - - - - - - - - - ---

Appearance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ----

Adequate 
Not 

Adequate 



YOUR COMMENTS, PLEASE· •.• 

This manual is part of a library that serves as a source of information for personnel using SPERRY UNIVAC@ 
systems. Space is provided on the opposite sideal this form for your comments concerning the usefulness of 
the information presented. Each comment will be'carefully reviewed by the persons responsible for writing 
and publishing this manual. All comments andsugge.stions become the property of Sperry Univac. 

1 
I 
I 
I 
I 
I 
I{" '1)1 
I 

I 
I 
I 
I 
I • I 
I 
I 
I 
I 
I 
I 

ffiW I 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY 

SPERRY UNIVAC 

ATTN: Systems Support 
1100 Systems Publications 
M.S. 4533 

P.O. Box 43942 
St. Paul, Minnesota 55164 

111111 NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
II-I::) 
I'~..r 
I" ; 
I '...-: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

·1 ••••••••••••••••••••••••••••••• ••••••••••••••••••••• ••••• 
FOLD I 

I 
I 

I 
I 
I 
I • I 
I 
I 
I 
I 
I 
I 
I 
I 

if) 
I 
I 
I 
I 
I 
I 


