
201

Selling television time: an optimisation problem

By A. R. Brown*

This paper presents the continuing effort by the author and his colleagues to solve a problem
inherent in the selling activities of their Company. The problem is optimisation of spare capacity:
in this case of saleable advertising time, but similar problems often arise in stockholding operations
where the stock can be reduced by part of a whole item.

The first solution, now superseded, is presented at length because of its interesting recursive
programming technique.

(Received December 1968)

The problem

Industry background

Commercial television in the United Kingdom finances
itself from the transmission of advertising material
between programmes. The commercial television com
panies transmitted over 507,500 individual advertise
ments in 1967, which will give some idea of the size of
the business.

Thames Television transmits about 110 individual
'commercials' to the London area each weekday.
Generally, time for each advertisement is reserved three
to four months before transmission. This clearly
represents quite a reservation problem administratively.
The problem becomes more involved when it is realised
that there is a large amount of 'chopping and changing'
of future bookings by the advertising agencies.

The mammoth reservation problem has obvious
similarities with the airlines' seat-reservation activities.
The unit-cost of the item being sold is high in both cases.
In this kind of environment, even a small increase in
efficiency in the reservation system can significantly
affect revenue. Maximum efficiency can only be
achieved if the reservation files can be kept up-to-date
and immediately accessible. The answer is clearly a
real-time computer system.

System background

In August 1966 a UNIV AC 1050 real-time system
came into operation for Rediffusion Television. This
remained the case until 30 July 1968 when Thames
Television took over the London weekday ITV contract
from Rediffusion. During its first year of operation for
Rediffusion, the system greatly increased the selling
efficiency of the Company culminating in a substantial
addition to the annual revenue figure.

The selling operation and its use of the computer has
been described briefly elsewhere (Tatham, 1967). The
basic system consists of a number of on-line teleprinters
located in the sales offices; these feed into the computer
system, in real-time mode, all details of bookings and
changes. The terminals are obviously also given facili
ties for interrogation of the computer-held files. New
bookings are, if space is still available, slotted into a
matrix of future commercial breaks held within the

system. The number of transactions (i.e. bookings,
cancellations, enquiries, etc.) entered through the tele
printers each day averages around 1200.

Need for optimisation

The process of slotting new advertisements into the
previously set-up pattern of future commercial breaks is
straightforward-an exercise in efficient data storage and
retrieval. There are, however, a number of constraints
imposed on the process (described later) which are fairly
complex.

The most troublesome complications arise over opti
misation of the usage of available space. Small amounts
of time may be left unsold in several advertising breaks,
which are usually of a predefined duration. Conse
quently, if this could be collected together, it may be
possible to create space for other commercials. This is
a very common problem (which has parallels in other
industries) and its solution, in the television environment,
is the concern of this paper.

Some definitions

Adjacent advertising breaks in an evening are grouped
together into price segments. Advertisements are gen
erally priced according to the expected audience, and,
for example, advertisements transmitted early or late in
the evening are much cheaper than during 'peak viewing'
hours. The difference in price between late-afternoon
segment (say 5 p.m.) and 'peak' segment (usually 6.30-
10.30 p.m.) is roughly a fivefold increase, as is the size
of the audience.

The number of breaks in a price-segment varies from
less than five for most of the early or late evening to
about 12 breaks in 'peak' segment. The duration of
breaks is usually a multiple of 15 seconds and varies
between one minute and 3t minutes. There is a maxi
mum allowed limit of advertising which is seven minutes
in any one hour.

Incidentally, it should be made clear that, except in
the rare case of 'live' or videotaped commercials, the
provision of advertising material in the form of film is
the responsibility of the advertiser. All he buys from

• Thames Television Ltd., Television House, Kingsway, London WC2: 110111 with Jeffreys & Hill Ltd., 4 Half Moon St., London WI

202 A. R. Brown

the television company are the facilities to show his film
to their audience, plus associated services.

The usual term for a length of advertising time is a
spot. Besides the obvious details of who reserved them
and for when, spots have only a few characteristics that
can vary and are of interest during the reservation
process. These factors are:

(a) Duration: which may be 7 seconds or any multiple
of 15 seconds. The most common durations are
7, 15 and 30 seconds.

(b) Product Type: a manufacturer of, say, dog food
would not be pleased if his product and other dog
foods were advertised in the same break. Such a
situation is called product clash and its avoidance
is a rigid requirement of the reservation system.

(c) Spot Mobility: a spot is normally booked into a
specific segment on a specified day and it is then
left up to the television company in which actual
break within that segment the spot is transmitted.
This is termed a broad spot. However, for a
surcharge, the advertiser may specify precisely in
which break he wishes his spot to appear. This is
known as a.fixed spot.

Precise definition of problems

The program which performs the booking process
within the computer system may come across several
specific problems. If it could solve these problems
automatically, a great saving in time would result. This
paper discusses several automatic solutions.

Problem I-Booking fixed spot
In handling a fixed-spot booking the program is only

interested in the break requested. Assuming time is
available for the spot in the segment as a whole, it may
find several conditions in the break examined:

(a) Time available and no 'clash' with products already
booked for that break, in which case the time can
be reserved as requested.

(b) Time available but the spot clashes with a similar
product fixed into that break. Jn this case,
nothing can be done. The spot already booked
fixed cannot be moved, so a new booking is
impossible.

(c) Time available but the spot clashes with a broad
spot already booked. The broad spot could
possibly be moved to another break.

(d) Time is not available in the break but there are
sufficient broad spots in the break such that, if
some or all of them were moved to other breaks,
time could be created.

(e) Time is not available in the break and there are
not sufficient broad spots so that, even if they
were all moved to other breaks, there would still
not be enough time to book the new spot.

Condition (a) is clearly not problematical. States
(b) and (e) are impossible to handle. The cases in which
some useful effect might be felt from a process of moving
broad spots are (c) and (d).

Problem 2-Booking broad spot
When attempting to book a broad spot the program

examines all breaks in the segment concerned. Assuming
there is available time in the segment to accept the spot,
several conditions may be found:

(a) There is a break with sufficient time available for
the spot and no clashing spot already booked. In
this case the spot can be reserved as requested.

(b) The break or breaks in which there is time for the
spot already have a fixed spot which clashes.

(c) The break or breaks with time available have a
clashing broad spot already booked.

(d) Combination of (b) and (c) over several breaks.
(e) 'Time spread': small amounts of time (not suffi

cient for the new spot) are available in several
breaks. In total they offer enough time for the
new spot; thus the available time needs optimising
into one break.

There is no problem in case (a) but all the other
conditions could benefit from a re-distribution of spots
over the breaks in the segment.

Manual solution
The Terminal Operator discovers that one of the

problems defined above is present from the computer's
response to her booking request. In the absence of any
automatic problem-solving facilities, the sequence of
events would then be:

1. Obtain through the teleprinter a printout of all
spots (and their break by break disposition) in the
segment.

2. By examining the printout, decide if a reorganisa
tion of spots to fit in the new one is possible.

3. If so, perform a series of transactions through the
terminal to change the position of spots as required.

4. Again attempt the booking, which should now be
successful.

The above sequence of events can be highly time
consuming. A peak-viewing segment can easily contain
50 or 60 spots spread over 12 or so breaks; an off-peak
segment may only have 15 spots in, say, 4 breaks.
Typical times for the procedure above might be:

I. Discover problem
2. Take segment printout
3. Decide what to be done, say
4. Perform reorganisation
5. Retry booking

Total time spent on booking one spot

PEAK, OFF-PEAK,
MINS. MINS.

1
6
5

10
1

23

1
2
1
5
1

10

This kind of problem is extremely common and can
easily arise twenty times a day. Clearly the 'manual'
solution uses a very large amount of terminal time and
the introduction of an automatic solution when the
problem is discovered (i.e. in the booking program)
provides an enormous benefit.

TV time optimisation 203

Our first automatic solution

Technique
The first automatic re-scheduling algorithm is a

complex piece of logic added to the spot booking
transactions. Its basic technique has been named
recursive broad spot dispersal. At the heart of the logic
is a routine called Broad Spot Dispersal (described in
detail below), the purpose of which is to move as many
broad spots as possible from a given break. If it is
unsuccessful in moving a broad spot into another break
it can call itse(f to disperse the broad spots in that other
break.

The logic (which will be called auto-rescheduling in
the fodowing) was inserted into the spot booking
transaction at the point where one of the problem
conditions described above has been found to exist. If
the auto-rescheduling algorithm succeeds in improving
the situation enough to book the spot, this is done and
the user is almost unaware that the segment has been
rescheduled for him. If it is unsuccessful, an appro
priate message is sent to the terminal.

In order that the 'reshuffling' attempts of auto
rescheduling should be as fast as possible, rather than
working on the actual drum-held spot records themselves,
the algorithm first of all extracts all relevant details and
stores them in memory as a 'spot map'. All work, up
to the point just after deciding if the attempt has been
successful, is done on this memory-held 'spot map'. If
the operation is a success, the drum records are then set

Enter
1P 1 is problem spot
wailing to be booked

r---------------------------.
I 'Time A\·allable but Clash' I
f (TABC) ~reaks are ones In J
I which lherc Is tlme available I
: for P and lt must therefore I
I clash with a spot already tn I
L~~~-~~~~~·-----------------J

st'CCESS

PART·
SUCCESS

l'AILL'RE

Fig. l.

c

Appropriate·
Failure
AcUon

Action 1

Appropriate
FaJlure
Action

j "' - ------------------------------
Broad Spot Dlaperul llOUtine operates I

1 on a break to attempt to move broad I
: apots from the break to ehevben iD. I
1 tbe•Hgpe.nt. It un be aucceHful or I
: !;l!o!~t!!~ •tte::pt. See description i . ' .I.- - ____________________________________ J

ACTIONS Oll EXl'r

1. Attempt has been successful In creating time for p - book P.
(2. Time has been created but P wo.u1d c\uh wl\h broad spot \C booked.
(3. Time has been created but P would clash with rtxed spot Ir booked.
(4.. U some half-rate 1pot(s) are cancelled, p could bo booked.
(5. Fixed Diode: {ocly IC P Is £Jxed spot) there Is not enough un-fJxcd
(time to accommodate P.
(G. Auempt comp!ctel~· unsucceHful.

Flowchart of central auto-rescheduling logic

.------------------------------.
I On entry, routh1e ls gh·en I
i address or break lo be 1
: 'dispersed' and detalls or :
: problem spot (P) whlcb, on l
l first entry will be new spot I
! to be bookedbutonrecursh·e !
: entrr 11111 be some other spot. 1 l.-----------------------------·

.----------------------------------! Spot Rebooking Prlorlt\'

I 1. Spots clashing with P,)
! longest Clrst.)

! 2. Half-rate spots, ~ Broad
! longest nrst.) Spots

: 3. Norma I broads,) ! longest first.)

: 4. Fixed spots
·- ·----------------------·--------.J

,-----------------------------,
: Exits : :- :
: Exits aro on samo conditions I
I as 'Actions' described on : ! Flowchart 1. !
l All exits cause return address :
: to be reset. Exits 1 to 4i lea\•e :
: new Spot Map (I. e, arter :
! rearrangement). Exits 5 and 6 !
I (failure) reset Spot Map to I
l condition as on entry, I
'------------------------------.!

Ex:lt 5

Appropriate
Failure

Exit

(on next bronkJ

Fig. 2. Flowchart of broad spot dispersal routine

to match the disposition of spots in the 'map'. It
should be pointed out that, during the rescheduling
process, the relevant main-file records are locked out
from all other terminals.

Main logic
The flowchart of Fig. 1 outlines the central part of the

algorithm. This central part is preceded by an initial
detail-extraction phase (to make up the spot map in
memory) and followed, in the case of Actions l to 4
(success or partial-success), by logic to reorganise the
drum-held spot records to match the 'spot map'.

The process when we are solving a fixed spot problem
is fairly straightforward. The dispersal routine is
simply called to attempt to move broad spots from the
break concerned.

For the broad spot case, the attack is on two levels.
First of all the most likely breaks in the segment are
examined: these are the ones that have time available
for our problem spot but have a clashing spot already
booked. If no successful conclusion is reached after
trying to move these clashing spots, a more general
attempt is made to reorganise the segment by examining
each break in turn. As soon as a suitable reorganisation
is found, the attempt terminates. If one or more
partially-successful states have been found, the most
suitable is chosen. If the attempt is a complete failure,
the algorithm exits accordingly. See the terminal
conditions on the flowchart of Fig. 1.

204 A. R. Brown

Broad spot dispersal algorithm

The :flowchart shown in Fig. 2 describes this sub
routine. The essential technique is to attempt to
rebook, according to a predefined priority, all broad
spots in the break concerned. The power of the algo
rithm stems from its recursive nature (i.e. it can call
itself). For each broad spot in turn, it first of all tries
a simple rebooking procedure by searching for a suitable
block of available time elsewhere. If this is not found,
it tries to create it by calling itself to operate on another
break in the segment. For example (see Fig. 3), the
routine could be successful in creating time in, say,
break 2 of the segment illustrated by moving a spot from
break 5 to break 6 so that it could move a spot from
2 to 5. The maximum allowable number of breaks that
may be being dispersed at the same time (i.e. levels of
recursion) is one Jess than the number of breaks in the
segment. Thus it can be seen that the example just
described is fairly simple; considerably more complex
situations involving multiple consequential moves are
possible.

Object: to create 30 seconds available time in Break 2

(shading is available time)

D
Break 1 2 3 4

Time Before 0 0 0 0
Available
(seconds) After 0 30 0 0

Order of Movement

1. 15 sec. spot from 5 to 6
(giving 30 secs. available in 5)

2. 30 sec. spot from 2 to 5

5

15

0

Fig. 3. A typical recursion-level 1 move

D
6 7

15 0

0 0

The programming techniques involved in a recursive
routine are not necessarily complicated. All information
in respect of the 'current state' has to be stored on entry,
as it has to be reset on exit. This status data is stored
on a push-down list: a sequence of items where the last
on the list will be the first to be removed. The data
stored in this way by Broad Spot Dispersal is:

(a) Routine Return Address.
(b) State of 'spot map' on entry.
(c) Location of break/spot being processed.

The last set of data stored is kept in memory and
earlier stored data on backing drum, purely because of
size problems: ideally all stored data should be in
memory.

MEMORY

Current Data

Last Data
placed on list

DRUM

6

5

,..__1 __ .__ _____a __ ...__4 __ ,,__,-~ ~ ~ ~J

Next available _J
drum space

Numbers refer to (and represent) sets of "current data" (return addresses,
etc.) stored on successive recursive calls of routine.

Fig. 4. State of push-down list on a 5-level recursion

Fig. 4 represents the situation of the push-down list
during a 5-level recursion. A further recursion would
cause status 5 data to be written to the next space on
drum and status 6 copied to the 'last' (i.e. top of list)
position. A failure of recursion 5 would cause status 5
to be reset into the 'current' position and status 4 data
copied (from drum) to the 'last' position.

A wholly- or partially-successful entry of the routine
causes the spot map in the current position to be left
where it is (the situation has been improved) and the
only information reset is return address. An unsuccess
ful entry causes all information to be reset as on entry.

Implementation difficulties

The main problematical area in the writing of a
recursive routine is testing. In the early stages of
'debugging', recursion has to be limited or deciphering
what actually happened when an error occurs quickly
becomes impossible. The program described above
was only proved beyond two levels of recursion by
its 'statistical' success: providing it did not actually
stop, its success was measured as the number of cases it
solved expressed as a percentage of the number of cases
it was given that did have tractable solutions. This
figure was around 70 %.

A difficulty in the early stages of testing was finding
various addresses, indicators and other factors which
unexpectedly contributed to the 'current state of things'
and should have been stored on recursion. This was
obviously soon rectified but caused some extremely
involved debugging at first.

In action

When the automatic rescheduling logic was added into
the various spot booking transactions available, a
significant difference was noted by the users. About

TV time optimisation 205

5 or 6 optimisation problems a day were being solved by
the machine automatically. Each time this was done a
marked time saving was effected.

However, the processor time taken to attempt the
problems soon showed itself to be a major drawback.
With an average transaction processing time (without
auto-rescheduling) of around 2 seconds, a delay in
system response is very rarely noticeable. The time
taken for the above algorithm to function to a certain
extent depends on the reorganisation problem to be
solved, but is mainly affected by the number of breaks in
the segment (and thus the number of levels of recursion
possible). As the number of breaks in a segment
increased, the auto-rescheduling time increased signifi
cantly.

For example, in a 4-break off-peak segment, the
process might take 5 or 6 seconds-a very acceptable
delay to the user. Working on a IO-break peak segment
it can easily take 20 minutes of central processor time,
which is obviously unacceptable.

In practice, a limit of one minute's processor time was
put on transactions and any transaction, including one
using auto-rescheduling, taking longer was rejected when
the time-limit was up. This limit caused the success
rate on peak segment problems to be seriously cut:
somewhere around 10 % of tractable cases were solved
within the limit, whereas the success rate on off-peak
segments was still over 70 %.

One particular class of problem was found not to be
solvable by this method of auto-rescheduling. This is
the kind of situation shown in Fig. 5 that can only be
solved by 'swapping' two spots. Any process that
involves moving one spot then another (as does the
algorithm described above) cannot accomplish the swap
which implies the 'simultaneous' moving of two spots.
The swap situation is moderately common and un
doubtedly accounts for a proportion of the 30 % of
problems not solved by the algorithm.

Conclusions

As a first automatic solution to the problem, this logic
was a distinct success. It has saved a considerable
amount of terminal time during its life. It was never
conceived as a permanent and final solution: rather as a
first experiment to gain experience and try out the
techniques involved.

The optimisation problem is most common (and takes
longest to solve 'manually') on peak segments and auto
rescheduling, because of its time-consuming nature, was
of limited use in just that situation.

The other principal drawback of the program is its
lack of flexibility in terms of the type of spot it expects
to find and how it treats them. It has been rendered
useless, at least without extensive alteration, by the
introducti.on of a new class of spot called fixed periods.
For a moderate surcharge an advertiser may specify
during what period (i.e. range of breaks) he wants his
spot transmitted. On the 'mobility' scale these spots
are therefore between fixed spots (must stay in same
break) and broad spots (may be transmitted in any break
in segment) and clearly need special treatment in any
organisation algorithm.

Object: to create 15 seconds in Break 5

45

2 minutes

30

15

Break 4

Available
Time

Before swap 15

After swap 0

60

30

5

0

15

Fig. 5. The 'swap' situation

Special purpose automatic solution
Purpose

Figures are
spot durations
in seconds.

From time to time the Company has on hand large
numbers of advertisement bookings of a fairly similar
nature. For example, every six months a further six
months' advertising time is thrown open to the advertisers
and, usually within a few days, bookings for hundreds
of spots have been received. This obviously puts a
heavy and rather humdrum load on the real-time
terminals, which could be occupied for days on end
simply entering details of spots. The amount of
terminal time required to feed in each spot, assuming
the spot does not fall into some multiple pattern, is
around 30 seconds. As the booking files are empty (at
the beginning anyway) and few complications ensue, this
operation is rather wasteful of real-time capabilities.

In this situation it is relatively easy to transfer the
appropriate information to punched cards and insert the
bookings by means of a batch program. Such a program
has been written and has proved remarkably effective.
The average time for each spot is about 1 second.

As the reservations file begins to fill up, the first
optimisation problem that arises is the fixed spot block:
an incoming fixed spot cannot be accepted because the
break concerned is full of other spots, many of which are
probably broad and could be moved elsewhere. This
is Problem 1 as described in The Problem. Problem 2,
the more general broad spot condition, does not usually
occur until the files are much fuller.

A simple 'automatic moving' section was added to the
booking logic of the batch program. Its specification
is: to come into operation only when a fixed spot is being
blocked by broad spots in the break concerned. It
moves as many broads as necessary to other breaks in
the segment, providing this is possible.

Technique

The programming logic and techniques employed in
this special-purpose solution to one of the optimisation
problems are very straightforward. The routine simply
takes each broad spot in the break in tum and tries to
find space for it elsewhere in the segment. However,

206 A. R. Brown

the logic has proved extremely effective in its rather
special environment.

Latest automatic solution
Purpose

It was decided recently to attempt to find a radically
different method of automatic solution of the time
optimisation problems for inclusion in the real-time
spot booking transactions, in place of the obsolete first
method. The deliberate intent was that this new method
should solve more tractable cases than the old logic and
yet be more flexible. At the same time, the program
ming techniques involved were to be straightforward as
it was required to write and test the logic fairly quickly.

Heuristic approach

Rather than sitting down and theorising, it was
decided to try a highly practical, empirical method of
finding a solution to the problem, examining in depth
the human mental processes involved when someone
performs a segment reorganisation.

A model of an actual, fairly complex rescheduling
problem was set up, using a table marked with break
details and small pieces of card to represent spots. From
this model it was possible to see the problem as a whole
and to attempt solutions with ease.

Several individuals were invited to solve the problem
and to try to describe their mental processes as they did
so. It soon became apparent that at the root of all the
manual solutions were a few basic techniques:

(a) 'Swapping': pairs of spots were found that, if
swapped, would improve the situation in some
way. It was essential to be able to see the segment
as a whole to do this: allowing someone to see
only half the segment at one time very effectively
prevented them from using this method.

(b) Removing and holding in suspense certain
'troublesome' spots while the rest of the segment
was reorganised using straight transfer or swapping
methods. This would be done bearing in mind
the 'suspended' spots and space would be left to
reslot them back into the segment later.

It soon became apparent that most reorganisation
difficulties were caused by long spots (say longer than
45 seconds), which were difficult to 'fit in', and the spots
of common product-types.

It is difficult, if not impossible, to program efficiently
a machine to attempt the 'swapping' method of reorgani
sation described above; it implies being able to see the
whole problem-picture and the thought processes
involved are subtle and of a high order. The idea of
removing spots and holding them in suspense pending
reslotting was considered worthy of further investigation
and soon suggested a most interesting thought: should
it not be possible, if the problem has a solution at all, to
remove all the spots from the segment and then rebook
them in the most efficient manner? Discovering the
'rules' to cause the most efficient rebooking was the only
difficulty.

Taking this idea as a starting point, the author and
several colleagues sat down round the segment model
and had a protracted 'brainstorming' session to attempt
to find these 'efficient booking rules'. Having formu
lated a set of rules, they were tried out on the model (and
on others), the criterion for the best set being success in
every case. The main difficulty came in reconciling the
relative importance of different kinds of problem spot:
fixed periods, common product-types, long spots, short
7 second spots. However, a set of reslotting rules
eventually emerged that solved every problem encoun
tered and it was decided that this procedure, essentially
fast in computer terms (although tedious manually),
should be adopted as the basis for a new automatic
method.

Method
The technique which emerged from the simulation

exercises has been named priority reslotting. Through
out the reslotting, as all breaks are in fact multiples of
30 seconds, an 'odd' 7 or 15 seconds is never left in a
break unless absolutely necessary. The sequence of
events is as follows:

I. All spots are extracted, details of the spot desired
to be booked added to them and the whole lot sorted
into a rebooking priority order. Certain 'classes' of
spots are distinguished: fixed spots, fixed period spots,
long broad spots (45 seconds or longer), normal broad
spots. It is recognised that it is important to book spots
of a frequent product-type early: if, say, there are
8 sweet advertisements in an 8-break segment, you
cannot afford to let one of the breaks become full
without including a sweet advertisement. Within each
spot class, the spots are therefore sorted in order of
product-type frequency.

2. Fixed spots are booked into their specified breaks
there is no room for selection. Then:

3. Fixed period spots are slotted. All breaks within
the specified period for a spot are examined in relation
to the spot and listed under six headings:

(a) spot will fit with no complications;
(b) spot will fit but will exactly fill break;
(c) spot will fit but leave an odd 15 seconds of time

(i.e. 45 seconds, etc.);
(d) spot will fit but leave an odd 8 seconds of time;
(e) spot clashes with a spot already in the break;
(f) no time for spot in break.

If all the breaks are in categories (e) and(/), then it is
impossible to book the spot and the reorganisation
attempt has failed. If any breaks are in category (a),
the one with most available time is chosen. If there are
no breaks in (a), any in (b) are examined to check the
advisability of filling a break at this stage. Category (c)
is examined if no suitable break in (a) or (b), and so on.

Then:
4. Long broad spots (45 seconds or longer) are

rebooked using exactly the same procedure as for fixed
periods but considering the whole segment as the period.

5. Each break in turn, starting with the first one,
is then filled up using each time the next most suitable
spot from the priority-ordered remaining broad spots.

TV time optimisation 207

Any 'odd' available times are made into multiples of
30 seconds as soon as possible. If any time has to be
left in a break (e.g. 8 seconds left in a break and there are
no 7 second spots available) a factor known as 'Leeway
Time' is examined. This is calculated at the beginning
of the reslotting process and is the amount of time you
can 'afford' to leave unoccupied. If the Leeway Time is
nil, then all breaks must be filled.

6a. If the attempt at reorganisation fails to reslot all
spots into the segment, an appropriate response will be
sent to the terminal.

6b. If Priority Reslotting has been successful, the
actual drum-held spot records are set to match the

Reference

reorganised disposition worked out m memory. The
spot is then booked.

Current state
At the time of writing, the reslotting algorithm has

been proved highly workable by simulation. Plans are
being made for its implementation.

Acknowledgement

The author would like to thank Thames Television
Limited for permission to present this paper.

TATHAM, L. (1967). Computers in Television, Data and Control Systems, May 1967.

