UNIVAC DATA PROCESSING DIVISION

CENTRAL PROCESSOR

REFERENCE MANUAL

This manual is published by the UNIVAC[®] Division in loose leaf format as a rapid and complete means of keeping recipients apprised of UNIVAC Systems developments. The UNIVAC Division will issue updating packages, utilizing primarily a page-for-page or unit replacement technique. Such issuance will provide notification of hardware and/or software changes and refinements. The UNIVAC Division reserves the right to make such additions, corrections, and/or deletions as, in the judgment of the UNIVAC Division, are required by the development of its respective Systems. CONTENTS

C

C

C

PAGE:

CONTENTS

1 to 3

1. INTROI	DUCTION	1-1 to 1-13
1.1.	SCOPE	1-1
1.2. 1.2.1. 1.2.2. 1.2.3.	GENERAL DESCRIPTION Control Function Arithmetic Function Storage Function	1-1 1-1 1-1 1-1
1.3. 1.3.1.	INFORMATION REPRESENTATION Type of Notation	1-1 1-1
1.4. 1.4.1. 1.4.2.	DATA AND INSTRUCTION FORMATS General Description General Instruction Format	1-9 1-9 1-9
1.5. 1.5.1. 1.5.2. 1.5.3. 1.5.4.	Fixed Interrupt Locations	$ \begin{array}{r} 1-10 \\ 1-10 \\ 1-11 \\ 1-12 \\ 1-13 \end{array} $
2. CODING	G IN ASSEMBLY LANGUAGE	2-1 to 2-11
2.1. 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. 2.2. 2.3. 2.4.	CODING FORM Program ID Sequence Label Operation Operands Comments SYMBOLS AND CONVENTIONS DATA GENERATION PAL JR ASSEMBLY SYSTEM	2-1 2-1 2-3 2-4 2-5 2-5 2-6 2-6 2-9 2-11

CENTRAL PROCESSOR

2

 \bigcirc

PAGE:

3.	INSTRU	CTION REPERTOIRE	3-1 to 3-73	•
	3.1. 3.1.1.	TETRAD INSTRUCTIONS Bring to Tetrad	3-6 3-7	
	3.1.2.	Store Tetrad	3-7	
	3.1.3. 3.1.4.	Add to Tetrad	3-8	
	3.1.4. 3.1.5.	Compare Tetrad Fix Tetrad	3-9 3-10	
	3.2.			
	3.2. 3.2.1.	DATA TRANSFER INSTRUCTIONS Bring Decimal	3-12 3-14	
	3.2.2.	Bring Alphanumeric	3-14 3-16	
	3.2.3.	Store Arithmetic Register	3-17	
	3.2.4.	Store Both Arithmetic Registers	3-17	
	3.2.5.	Store Character	3-18	
	3.2.6.	Transfer Block from Store	3-20	
	3.2.7.	Transfer Block to Store	3-22	
	3.3.	ARITHMETIC INSTRUCTIONS	3-24	
	3.3.1.	Add Decimal	3-26	
	3.3.2.	Subtract Decimal	3-28	
	3.3.3.	Add to Memory	3-29	
	3.3.4. 3.3.5.	Subtract from Memory Multiply Noncumulative	3-31 3-32	
	3.3.6.	Multiply Cumulative	3-34	
	3.3.7.	Divide	3-36	
	3.3.8.	Add Binary	3-38	
	3.3.9.	Subtract Binary	3-39	
	3.3.10.	Add Character	3-40	
	3.4.	COMPARISON INSTRUCTIONS	3-42	
	3.4.1.	Compare Decimal	3-44	
	3.4.2.	Compare Binary	3-46	
	3.4.3. 3.4.4.	Compare Character Logical Compare	3-47 3-48	
	3.5. 3.5.1.	SEQUENCE CONTROL INSTRUCTIONS Jump	3-50 3-51	
	3.5.2.	Jump Jump if Greater	3-51	
	3.5.3.	Jump if Equal	3-51	
	3.5.4.	Jump if Unequal	3-51	
	3.5.5.	Jump if Smaller	3-51	
	3.5.6.	Halt then Jump	3-53	
	3.5.7.	Jump Display	3-53	8 - .
	3.5.8.	Jump Conditional	3-54	
	3.5.9. 3.5.10.	Jump Return Jump Loop	3-56 3-59	
	3.6.		3-60	
	3.6.1.	Translate Edit	3-61	
	3.6.2. 3.6.3.	Zero Suppress	3-63 3-66	
	3.6.4.	Pad Blanks	3-68	
	3.6.5.	Pad Zeros	3-68	
	3.6.6.	Logical Sum	3-69	
	3.6.7.	Logical Product	3-70	
	3.6.8.	Bit Shift	3-71	
	3.6.9.	Bit Circulate	3-72	

C

 \mathbf{C}

C

Contents

3
-

PAGE:

4.	AUTOM	ATIC PROGRAM INTERRUPT	4-1 to 4-5
	4.1.	GENERAL DESCRIPTION	4-1
	4.2.	PROGRAMMING CONSIDERATIONS	4-1
	4.2.1.	Classes of Interrupt	4-1
	4.2.2.	Programmed Interrupt Inhibit	4-3
	4.2.3.	•	4-3
	4.2.4.	Fixed Interrupt Locations	4-3
5.	CENTR	AL PROCESSOR CONSOLE OPERATION	5-1 to 5-12
	5.1.	NORMAL OPERATION	5-1
	5.1.1.	Start Up and Shut Down	5-1
	5.1.2.	Program Start and Program Stop	5 - 1
	5.1.3.	Operating Mode	5-1
	5.2.	PANEL CONTROLS AND INDICATORS	5-2
	5.3.	PROGRAM DEBUGGING AND TESTING	5-7
	5.3.1.	Use of Display Lights and Switches	5-7
	5.3.2.	Error Indicators	5-10
	5.3.3.	Sense Switches and Operator Request	5-11
A	PPENDIX	K	
	A.	Octal – Decimal Conversion Table	1 to 4

TABLES AND FIGURES

TABLES

1-1	UNIVAC 1050 Character Set	1-6
1-2	Tetrad Location Chart	1-11
3-1	Suggested Standard Equality Statements	3-2
3-2	Instruction Repertoire	3-3
3-3a	Mnemonic Operations, Ordered by Operation Code	3-5
3—3b	Mnemonic Operations, Ordered Alphabetically	3-5
3-4	Instruction Execution Times	3-73
4-1	Indicator List	4-4
5-1	Control Console Switch and Indicator Descriptions	5-2
GURES		

FI

1 - 1	Layout of The First Six Rows of Store	1-10
2-1	PAL Assembler Coding Form	2-2
2-2	PAL 80-Column Source Card	2-3
2-3	PAL 90-Column Source Card	2-3
3-1	Layout of First Six Rows of Store	3-4
5-1	Central Processor Console	5-12

PAGE:

1. INTRODUCTION

1.1. SCOPE

The primary purpose of this manual is to provide the basic knowledge necessary for programming the UNIVAC 1050 Central Processor, and serve as a reference for the programmer. Background information is provided on the internal operation of the Central Processor and the different types of information representation, as well as information on data and instruction formats, specialized areas of storage (registers, I/O control tetrads, etc.), coding, the instruction repertoire, and automatic program interrupt.

A second purpose of this manual is to describe the Central Processor Console and its operation, and serve as a reference for the operator. A detailed description of all the console controls and indicators is provided along with a description of their use to communicate with the program and control various normal and abnormal conditions.

1.2. GENERAL DESCRIPTION

The Central Processor is the control center of the UNIVAC 1050 System. It contains the circuitry for logic and arithmetic operations, the core storage and the power supply.

The Central Processor performs three main functions:

- Control
- Storage
- Arithmetic Computation

1.2.1. Control Function

The control circuitry of the Central Processor accesses and executes instructions from storage. It also maintains control over the operation of all peripheral devices. External control is facilitated by the lights and buttons on the Central Processor Console.

1.2.2. Arithmetic Function

The arithmetic function instructions employ the arithmetic registers to perform binary and decimal addition and subtraction, as well as decimal multiplication and division. Overflow is indicated and decimal sign control is provided.

1.2.3. Storage Function

The storage function of the UNIVAC 1050 Central Processor is provided by one to eight modules of core storage, each containing 4096 characters.

1.3. INFORMATION REPRESENTATION*

1.3.1. Type of Notation

Digital computers employ a system of notation called the *binary* system. Unlike the decimal system which uses ten symbols (0 through 9) and is based on a radix (root) of 10, the binary system employs only two symbols (0 and 1) and is based on a radix of 2.

The reader familiar with numbering systems may wish to skip to Section 1.4, DATA AND INSTRUCTION FORMATS.

The two symbols of the binary system represent the two possible states of an information conveying electronic device. The 1 symbol indicates a registered pulse while the 0 symbol indicates a no pulse registration. Information is represented in the computer by pulse-no-pulse combinations with a specific pattern for each alphabetic, numeric, and special character.

1.3.1.1. Decimal and Binary

Numbering systems are based on positional notation. That is, each digit in a quantity is weighted with a specific value. The value of a digit is determined by its position within the quantity and the radix of the numbering system. For example, using decimal notation, the number seven thousand four hundred sixty nine would be represented as 7469 which is equivalent to

 $(7x10^{3}) + (4x10^{2}) + (6x10^{1}) + (9x10^{0}) = 7,000 + 400 + 60 + 9$

Note that each digit, from right to left, is considered to be multiplied by a successively higher power of 10.

The binary system is also based on a system of positional notation, but, as was stated previously, it uses a radix of 2 and employs only two symbols to represent quantities. For example, the number nine expressed in *pure binary* would be

1001

which is equivalent to

$$(1x2^{3}) + (0x2^{2}) + (0x2^{1}) + (1x2^{0}) = 8 + 0 + 0 + 1$$

Note that each binary digit (bit), from right to left, is multiplied by successively higher powers of 2.

1.3.1.2. Fixed Length Notation

Instead of specifying information with a variable series of binary digits (the length of the series dependent upon the quantity to be specified) representing successively higher powers of 2, a system of notation is used that specifies information by smaller, fixed length groupings of binary digits. Each grouping, fixed in format as well as length, is used to represent a digit, an alphabetic character, or a special symbol. Assuming a system of notation that employs a fixed length format, a single digit would be represented by a single group of bits, a two digit polynomial by two bit groupings, a three digit polynomial by three bit-groupings, and so forth. For example, in *pure binary* the number 27 would be

11011

which is equivalent to

$$(1x2^{4}) + (1x2^{3}) + (0x2^{2}) + (1x2^{1}) + (1x2^{0}) = 16 + 8 + 0 + 2 + 1$$

PAGE

2

and similarly, the number 369 as

1

PAGE

However, by employing a fixed format of 4 bit notation, known as binary coded decimal, the number 27 would be represented as

0010	0111	
2	7	
0011	0110	
3	6	

Note that within each 4 bit grouping, the bit positions are weighted with a value of 8, 4, 2, and 1 or 2^3 , 2^2 , 2^1 , and 2^0 . The decimal digits 0 through 9 then are represented in the following manner:

1001

9

DECIMAL	BINARY 4 BIT NOTATION
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

With 4 bit positional notation, only 16 unique permutations can be created. This is obviously insufficient to specify all numeric, alphabetic, and special characters generally employed in a computing system. By adding two more bit positions and using them as a qualifying factor to a 4 bit combination, a total of 64 unique permutations can be represented. The four bit positions on the right are called the *numeric portion*. Two additional positions on the left, which represent no actual numeric quantity, are called the *zone portion*.

Qualification of a numeric quantity is unnecessary, therefore, the zone portion is always 00. When representing alphabetic characters or special symbols, however, a 1 bit is entered in either or both zone positions. The letters A through I, therefore, may be represented with the numeric portion specifying a value from 1 to 9 (0001 to 1001) and the zone portion containing a 01 qualifier; the letters J through R with the same numeric specifications but with a zone qualification of 10; and finally, the letters S through Z with a numeric specification of from 2 to 9 and a zone qualification of 11. So, for example, the letters A, J, and S would be represented as

ZONE	NUMERIC	CHARACTER
01	0001	Α
10	0001	ل د
11	0010	S

CENTRAL PROCESSOR

SECTION:

1

4

This is not the same as UNIVAC 1050 code however.

The zone and numeric specifications for special symbols such as the comma, apostrophe, asterisk, and so forth are dependent upon computer design. That is, computers are wired to accept a unique bit combination for a particular special symbol. Since there is no natural sequence relationship between special symbols, as with numerics or alphabetics, the bit configuration for special symbols must be arbitrary. The sequence for UNIVAC 1050 special symbols is shown in Table 1-1.

1.3.1.3. Excess Three (XS 3)

Excess three (XS 3) is a method of notation that is used by the UNIVAC 1050 System. It establishes some measure of compatibility with the data formats of the other UNIVAC Computing Systems. The zone position is specified in the standard manner previously described for fixed length binary coded decimal notation. The difference exists in the numeric portion where each binary specification is a value that is three greater than its decimal equivalent. For example, the number 8 is represented in XS 3 as

ZONE	NUMERIC
00	1011

Note that the numeric portion, weighted with positional values of 8, 4, 2, and 1 from left to right, is actually equal to 11. Similarly, the number 6 is represented as

ZONE	NUMERIC
00	1001

Here the numeric portion is specified as 9 or three greater than the decimal digit it represents.

There are several reasons for utilizing this method of notation in certain UNIVAC Systems; some of these reasons are

- It allows three quantities to test less than 0.
- It facilitates complementation.
- It permits the carry to occur as in decimal notation.

An involved discussion of these and other reasons for the utilization of XS 3 notation is beyond the scope of this manual. It is sufficient that the programmer is aware of the basic format and that this provides in the UNIVAC 1050 Computer a factor of data compatibility with other UNIVAC Systems. Table 1-1 gives a listing of the XS 3 code configurations for all the alphabetic, numeric, and special characters utilized in the UNIVAC 1050 System.

PAGE

1.3.1.4. Parity

A parity check is used by the computer to ensure that accurate transmission of data occurs. The parity position is an extra bit position added to ensure that there will always be an odd number of 1 bits in any character representation. In this way, if a bit is either dropped or added in transmission, the odd parity check will indicate an improper registration. For example, the alphabetic S contains an even number of 1 bits:

ZONE	NUMERIC
11	0101

To pass the odd parity check, a 1 bit is added to the parity position, thereby creating an odd number of 1 bits in the representation:

PARITY	ZONE	NUMERIC
1	11	0101

If the number of 1 bits in the configuration is already odd, the parity position will be 0.

1.3.1.5. Octal Numbers and Complements

Octal notation is used in source language and program testing diagnostic printouts. The octal or base 8, number system expresses values as multiples of powers of 8.

Octal notation is a fixed length system of binary notation. The binary number is interpreted octally by grouping the bits into bytes of three, starting from the right, and interpreting each byte into its octal equivalent. Within each byte the bit positions are weighted with the value of 4, 2, and 1, or 2^2 , 2^1 , and 2° . If, after grouping the bits in the fashion described, the most significant byte contains less than three bits, as many binary zeros are implied to the left as are required to bring the number of bits in that group to three. For example, the binary number 10011101101 is interpreted octally as follows:

An octal number such as the one derived from the binary number described is noted with the subscript 8 following it, e.g., 2355_8 , to distinguish it from the decimal number 2355_{10} . In the PAL assembly language employed in programming the UNIVAC 1050 System, however, an octal number is noted by preceding it with a zero; thus, 02355 means 2355_8 , while 2355 means 2355_{10} .

7

CENTRAL PROCESSOR

SECTION:

1

PAGE:

				· · ·		
CARD (CODES	BINARY CODE	HIGH-S Prin Chara	TER		
80 COLUMN	90 COLUMN	(Machine Collating Sequence)	STANDARD	OPTIONAL	OCTAL	NUMBER
NO PUNCH 11-5-8	NO PUNCH 1-3-5-7	000000 000001	Space (Non-Printing)]		00 01	0 1
11 0	0-3-5-7 0	000010 000011	— (minus or hyphen) O		02 03	2 3
1	1	000100	1		04	4
2 3	1-9 3	000101	2		05	5
3 4	3-9	000110 000111	3 4		06 07	6 7
5	5	001000	5		10	8
6	5-9	001001	6		11	9
7 8 9	7 7-9 9	001010 001011 001100	7 8 9		12 13 14	10 11 12
0-6-8	0-1-3-7-9	001101	~		14	12
11-6-8	1-3-5-7-9	001110	;		16	14
12-5-8- 12	0-5-7-9 0-1-3-5-7	001111 010000	E		17	15
5-8	1-3-7-9	010001	+ : (colon)	&	20 21	16 17
12-3-8 12-0	1-3-5-9 0-1-3	010010 010011	. (period) ?		22 23	18 19
12-1 12-2	1-5-9 1-5	010100 010101	A B		24	20
12-3	0-7	010101	Б С		25 26	21 22
12-4	0-3-5	010111	D		27	23
12-5 12-6	0-3	011000	E		30	24
12-6	1-7-9 5-7	011001 011010	FG		31 32	25
12-8	3-7	011011	н		32	26 27
12-9	3-5	011100	I		34	28
3-8	0-1-5-7	011101		#	35	29
12-6-8 12-7-8	0-1-5-9 0-1-3-5-7-9	011110 011111	< #		36	30
7-8	0-1-5-7-9	100000	# @	' (apostrophe)	37 40	31 32
11-4-8	0-1	100001	*	(up con optio)	41	33
11-3-8 11-0	0-1-3-5-9 0-3-7-9	100010 100011	\$!		42	34
11-1	1-3-5	100100	J		43 44	35 36
11-2	3-5-9	100101	ĸ		44	30
11-3 11-4	0-9 0-5	100110 100111	L		46	38
11-4	0-5-9	101000	M		47	39
11-6	1-3	101000	O		50 51	40 41
11-7	1-3-7	101010	Р		52	41
11-8 11-9	3-5-7 1-7	101011 101100	Q		53	43
0-5-8	0-1-9	101100	R %	(54 55	44 45
4-8	0-1-3-7	101110	' (apostrophe)	@	56	45
11-7-8 0-2-8	0-1-7	101111	Δ	_	57	47
0-2-8	0-1-7-9 0-1-5	110000 110001	≠ (%	60 61	48 49
0-3-8	0-3-5-9	110010	, (comma)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	62	49 50
2-8	1-5-7-9	110011	&	+	62 63	50 51
0-1 0-2	3-5-7-9 1-5-7	110100	1		64	52
0-2	3-7-9	110101 110110	S T		65 66	53
0-4	0-5-7	110111	Ů		66 67	54 55
0-5 0-6	0-3-9	111000	v		70	56
0-6 0-7	0-3-7 0-7-9	111001 111010	w		71	57
0-8	1-3-9	111010	X Y		72 73	58 59
0-9	5-7-9	111100	z		74	60
12-4-8 6-8	0-1-3-9 0-3-5-7-9	111101 111110)	д	75	61
0-7-8	0-1-3-5	111110	> म)	76 77	62 63
*NOTE: Only the	charactors that			· · ·	//	63

*NOTE: Only the characters that differ from the standard are listed for the optional print drum.

Table 1-1. UNIVAC 1050 Character Set.

6

SECTION:

1

PAGE:

The binary number 10011101101 is the sum of

 $1 \times 2^{10} = 1024$ 0×2^{9} 0 = 0×2^8 = 0 1×2^{7} 128 = 1×2^{6} = 64 1×2^{5} 32 = 0×2^4 0 = 1×2^{3} 8 = 1×2^{2} 4 = 0×2^{1} = 0 1 x 2⁰ 1 1261

Therefore, $2355_8 = 1261_{10}$.

2 x 8

Appendix A provides a two-way octal to decimal and decimal to octal conversion table. For the convenience of the programmer who wishes to do his own conversions, the following paragraphs present an octal to decimal and a decimal to octal conversion procedure.

To convert an octal representation to its decimal equivalent, multiply the most significant digit by 8, and add the next most significant digit to the product. Multiply this sum by 8 and add the third most significant digit to the product. Repeat the multiplication and addition process until the least significant digit has been added, whereupon this final sum will be the decimal equivalent of the octal number.

The following example illustrates how this method converts 2355_a into its decimal equivalent:

$$= 16$$

$$+ \frac{3}{19 \times 8} = 152$$

$$+ \frac{5}{157 \times 8} = 1256$$

$$+ \frac{5}{1261}$$

To convert a decimal number into its octal equivalent, divide 8 into the number and record the remainder (0 through 7) as the last significant digit of the octal equivalent. Divide 8 into the quotient, and record the remainder as the next least significant digit. Repeat the division of the quotient recording the remainder until a quotient less than eight is realized, whereupon the final quotient is the most significant digit of the octal equivalent and the final remainder is the next most significant digit of the octal equivalent.

CENTRAL PROCESSOR

1

PAGE:

The following example illustrates how this method converts 1261₁₀ into its octal equivalent:

No signs are involved in binary operations in the UNIVAC 1050 System; however, negative binary values – or, effectively, their equivalent – can be developed and represented within the computer. These negative binary values are represented as the two's complement of the binary representation of the absolute value of the numbers. The two's complement is formed by adding 1 to the one's complement of the value, ignoring any carry beyond the most significant bit position; and the one's complement, in turn, is formed by converting every 1 bit in the binary representation to 0, and converting every 0 bit to 1.

For example, the binary representation of $+1261_{10}$ is

010011101101

the one's complement of this binary number is

101100010010

and the two's complement of the number is

101100010010

+ 1

 $101100010011 = 5423_{8}$

Whenever the binary integer 101100010011 is employed as an operand in a binary add or subtract operation, the effective value of this operand is -1261_{10} .

9

PAGE

1.4. DATA AND INSTRUCTION FORMATS

1.4.1. General Description

Instructions are contained in storage. They are always five characters in length whereas data fields may be any number of characters in length. Instructions are executed in sequence except where a programmed instruction initiates a break in the sequence.

The arithmetic unit of the Central Processor performs the calculations and data manipulation called for by the instructions. It contains an adder for decimal and binary arithmetic operations, and additional circuitry which provides a wide range of data handling abilities.

The control unit of the Central Processor selects, interprets, and initiates the execution of instructions in the stored programs which govern the operation of the system.

1.4.2. General Instruction Format

	1st CHARACT	ER	2nd C	на	RACTER	3rd CHARACTER	4th CHARACTER	5th CHARACTE	ER
	OPERATION CODE		NDEX GISTER	RES.		STORAGE ADDRES	S	DETAIL	
зітѕ	30 26	25	23	22	21		7	6	1

BIT POSITIONS	NAME	
30 - 26	OPERATION CODE	The operation code specifies the function which the Central Processor is to execute.
25 - 23	INDEX REGISTER	The index register modifies the address specified in the instruction.
22	RESERVED	This bit is reserved.
21 – 7	STORAGE ADDRESS	This is the (M) portion of the instruction. It specifies the store address of the operand. If an operand is greater than one character in length, (M) refers to the least significant character of the operand (rightmost). There are two exceptions: Zero Suppress and Block Transfer instructions in which (M) specifies the most significant character of the operand.
6 – 1	DETAIL FIELD	Depending on the instruction, the detail field may specify operand length, tetrad number, a comparison indicator, an arithmetic register, or number of bits.

1.5. STORAGE

1.5.1. General

The basic unit of storage in the UNIVAC 1050 store is the character which consists of six information bits and one parity bit. The parity bit is of no concern to the programmer. It is used only by the circuitry and is not accessible to him.

The UNIVAC 1050 Central Processor may have from 1 to 8 sections of storage, each section comprising 4096 character positions or locations. Each position has its own address and each position is directly addressable.

Each section of main store is divided into rows. There are 64 rows in each section. A row consists of 64 consecutive characters. The address of the most significant character (leftmost) is either zero or some integral multiple of 64.

Program instructions and data are contained in storage. Each instruction occupies five consecutive locations. Data fields are variable in length. The sign, if any, of a data field is in the most significant bit of the least significant character.

The first six rows of storage, portions of which perform unique functions, are illustrated in Figure 1-1.

TETRAD	00 00	01/01	02 02	03 '03	04/04	05/05	06/06	07/07	08/10	09/11	10/12	11/13	12/14	13/15	14/16	15 17
CHAR.	0 1 2 3	4 5 6 7	8 9 10 11	12 13 14 15	16 17 18 19	20 21 22 23	24 26 27	28 29 30 31	32 33 34 35	36 37 38 39	40 41 42 43	44 45 46 47	48 49 50 51	52 53 54 55	56 57 58 59	60 61 62 63
ROW									K2 K1							
0		AR	1			AR	2			(R1	1R2	IR3	IR4	IR5	IR6	IR7
		0004	0010	0014	0020	0024		0034	0040	0044	0050	0054	0060	0064	0070	0074
OCTAL	0000	0004	0010	0014	0020	0024	0030	0034	0040	0044	0050	0054	0060	0054	0070	0074
TETRAD	16 20	17 21	18 22	19 23	20/24	21/25	22/26	23/27	24/30	25/31	26/32	27/33	28/34	29/35	30 36	31 37
CHAR.	64 65 66 67	68 69 70 71	72 73 74 75	76 77 78 79	80 81 82 83	84 85 86 87	88 89 90 91	92 93 94 95	96 97 98 99	100 101 102 103	104 105 106 107	108 109 110 111	112 113 114 115	116 117 118 119	120 121 122 123	124 125 126 127
ROW	DESTI-			CONTROL	MULTI											
1	ADDRESS		ba c	COUNTER	QUOT											
			<u> </u>													
OCTAL	0100	0104	0110	0114	0120	0124	0130	0134	0140	0144	0150	0154	0160	0164	0170	0174
TETRAD	32 40	33 41	34 42	35 43	36.'44	37/45	38/46	39/47	40/50	41/51	42/52	43/53	44/54	45/55	46 56	47 57
CHAR.	128 129 130 131	132 133 134 135	136 137 138 139	140 141 142 143	144 145 146 147	148 149 150 151	152 153 154 155	156 157 158 159	160 161 162 163	164 165 166 167	168 169 170 171	172 173 174 175	176 177 178 179	180 181 182 183	184 185 186 187	188 189 190 191
ROW					READER BASE	STANDBY BASE	f f f k		PUNCH BASE		ghij		CL,T SEL &			
2	ADORESS				ADDRESS	ADDRESS			ADDRESS				FUNCT. CODES			
	<		NEL 0		←	CHANN			←		NEL 2	· · · · · ·		CHANN		
OCTAL	0200	0204	0210	0214	0220	0224	0230	0234	0240	0244	0250	0254	0260	0264	0270	0274
TETRAD	48 60	49 61	50 62	51 63	52 64	53/65	54/66	55/67	56/70	57.71	58/72	59 73	60 74	61 75	62 76	63 77
CHAR.	192 193 194 195	1% 197 198 199	200 201 202 203	204 205 206 207	208 209 210 211	212 213 214 215	216 217 218 219	220 221 222 223	224 225 226 227	228 229 230 231	232 233 234 235	236 237 238 239	240 241 242 243	244 245 246 247	248 249 250 251	252 253 254 255
ROW	T APE READ	READ	READ ADORESS		WRITE	WRITE CHAR. COUNT	WRITE		BASE MEM ADD	DRUM	MEMORY ADDRESS	DRUM ADDRESS	10.04 B ASE			
3	BASE ADDRESS	COUNT			BASE ADDRESS		RECORD		AND SECTOR COUNT	ADDRESS	RECORD	RECORDED	ADDRESS			
	•		NEL 4		•	CHANN			•		NEL 6	>	•		VEL 7	
OCTAL	0300	0304	0310	0314	0320	0324	0330	0334	0340	0344	0350	0354	0360	0364	0370	0374
CHAR.			264 265 266 267	268 269 270 271	272 273 274 275	276 277 278 279	280 281 282 283	284 285 286 287	288 289 290 291	292 293 294 295	296 297 298 299	300 301 302 303	304 305 306 307	308 309 310 311	312 313 314 315	316 317 318 319
ROW		NTER PT ENTRY	CARD P		CARD		COMMUNIC		TAPE		TAPE			FORAGE	AVAIL FOR EXP	
4		INEL 0		INEL 1		E. NEL 2	CHAN		CHAN	E. NEL 4	L. CHAN	E. NEL 5	LI CHAN	E NEL 6	14	
	JC M	з м													CHANN	
OCTAL	0400	0404	0410	0414	0420	0424	0430	0434	0440	0444	0450	0454	0460	0464	0470	0474
CHAR.	320 321 322 323	324 325 326 327	328 329 330 331	332 333 334 335	5 336											
ROW	CL/			A\$\$ 2	1											
5	INTER	RUPT	INTER	RUPT												
OCTAL	0500	0504	0510	0514	0520											
	-								a ZERO COUN	т	*e L	ME ADVANCE CO	UNT	· ·	ROW COUNT (punch:
		Reserved							*b · TRANSLATI *c · BLOCK TRA	ON TABLE ADDR		OLUMN COUNT F			ROW COUNT	
									*d · CHARACTE			OLE COUNT (wait		*F	2 PARITY ODD	LOCATION
														۰,	1 PARITY EVE	LOCATION
											† I	USED ONLY BY	ONTROL UNITS			

Figure 1-1. Layout of First Six Rows of Store.

PAGE:

PAGE:

1.5.2. Tetrads

The first four rows of storage in the UNIVAC 1050 System are subdivided into 64 fields of four characters each and are called tetrads. Tetrads are addressable either by tetrad number or the actual storage location. The method of addressing tetrads is dependent upon the instruction being used. Certain tetrads are designed for specific functions. A description of what these tetrads do is given in the following table.

TETRADS		PURPOSE
0-3	0-15	*Arithmetic Register 1 (AR1)
4-7	16-31	*Arithmetic Register 2 (AR2)
8	32,33	Character bit sum storage.
9-15	36-63	*Index Registers 1-7
16	64-67	Destination address for Block Transfer
17	68-71	Origin address for Block Transfer
18	72	Address of table for translation
18	73	Count of zeros suppressed after Zero Suppress.
18	74,75	Controls number of characters in Block Transfer
19	77—79	Control Counter Storage
20–21	80-87	Multiplier - Quotient
22–31	88-127	Unassigned
32-35	128-143	Printer I/O, Channel 0
36-39	144-159	Reader I/O, Channel 1
40-43	160-175	Punch I/O, Channel 2
44-47	176-191	Communications I/O, Channel.3
48-51	192-207	Tape Read, Channel 4
52-55	208–223	Tape Write, Channel 5
56-59	224–239	FASTRAND I/O, Channel 6
60–63	240-255	Channel 7, available for expansion

* The arithmetic registers and index registers can be addressed in three different ways: as arithmetic or index registers, as tetrads, and as store locations.

Table 1-2. Tetrad Location Chart

1.5.2.1. Arithmetic Registers

Tetrads 0 through 7 function as arithmetic registers. Arithmetic Register 1 (AR 1) comprises tetrads 0 through 3 (store locations 16 through 31). The arithmetic registers are addressed either by AR 1 or AR 2, tetrad number, or actual storage location.

12

PAGE:

1.5.2.2. Index Registers

Tetrads 9 through 15 function as index registers 1 through 7. Since only the 15 least significant bits (contained in the three least significant characters) of each index register are used in an indexed operation, the most significant character of each index register tetrad is available to be used for other purposes.

There are no signs in the index registers. The value in the index register is treated as an absolute binary value in an indexed operation. Negative indexing may be accomplished by placing the two's complement of the decrement number in the index register.

The index registers may be addressed by index register number, tetrad number, or actual storage location number.

1.5.2.3. Input/Output Control Tetrads

A fixed storage area consisting of four consecutive tetrads is associated with each input/output channel. Information placed in this area controls the operation of the peripheral device. The input/output control tetrads, that are located in storage rows two and three, are shown in Figure 1-1.

1.5.3. Fixed Interrupt Locations

Store locations 256 through 335 are fixed locations associated with the interrupt circuitry of the system. These eighty locations are divided into ten groups of eight consecutive characters each, which are known as interrupt entries. These interrupt entries are assigned as follows:

OCTAL	DECIMAL	INTERRUPT ENTRY ASSIGNMENTS
0400 - 0407	256 - 263	Channel 0: Printer
0410 - 0417	264 – 271	Channel 1: Reader
0420 - 0427	272 – 279	Channel 2: Card Punch Unit
0430 - 0437	280 – 287	Channel 3: Communications
0440 - 0447	288 – 295	Channel 4: Magnetic Tape Read
0450 - 0457	296 - 303	Channel 5: Magnetic Tape Write
0460 - 0467	304 – 311	Channel 6: Mass Storage
0470 - 0477	312 - 319	Channel 7: Unassigned
0500 - 0507	320 – 327	Class Interrupt Entry
0510 - 0517	328 – 335	Class II Interrupt Entry

The format of these interrupt entries, and their functions, are discussed fully in the section on Automatic Program Interrupt (Section 4).

1

PAGE:

1.5.4. Addressing

Instructions and data in storage are accessed by other instructions through the 15 bit memory address designated the M portion of the instruction.

Whenever an instruction references a multicharacter field, the M portion usually designates the address of the rightmost or least significant character. (The exceptions will be explained in the description of the instructions involved.)

PAGE:

2. CODING IN ASSEMBLY LANGUAGE

2.1. CODING FORM

Most programs for a UNIVAC 1050 System with 8192 character storage or larger are written in the language of the PAL Assembly System. Programs for a system with 4096 character storage are written in PAL Jr. See Section 2.4. The PAL assembler is a UNIVAC 1050 program which accepts mnemonic and symbolic input, a form meaningful to the programmer, and generates instructions in absolute binary form, the only form meaningful to the computer. Any action based on attempts to employ instruction forms not described in this reference manual deviates from UNIVAC recommendations and must be the user's responsibility.

Figure 2-1 shows the symbolic coding form for the UNIVAC 1050 Pal Assembly System.

In the description of this form, which follows, certain terms are used with specific definitions:

- Alphabetic character means a character of the English alphabet set (A through Z).
- Numeric character means a character of the Arabic numeral set (0 through 9).
- Alphanumeric character means an alphabetic character, a numeric character, or a special symbol.

The symbolic coding format is composed of fixed format fields for program identification, page, line, insert, label, operation, and variable format fields for operands and comments.

It will be noted that numbers are associated with each subdivision of the coding form. These indicate the card columns into which the characters written by the programmer are to be punched. These column numbers hold true for both 80 and 90 column cards. The 80 column source card is shown in Figure 2-2; the 90 column source card, in Figure 2-3 In 90 column systems, columns 81 through 90 are also available to the Program-ID field, but their contents will not be printed on the output listing; their use, therefore, is not recommended.

2.1.1. Program-ID

The program name is written in this field. It is composed of from one to six alphanumeric characters, and is written starting at column 75. An example of an entry in this field is

PROGRAM-I	D
75	80
P A Y 0 1	

	PA	GE	
•	1	3	

PROGRAM.

SEQUENCE LABEL 1^{PAGE} LINE INS 1 3 4 5 6 7

UNIVAC

OPERATION

11 13

For BEGIN only.

18 19

UNIVAC® 1050 PAL ASSEMBLER CODING FORM

40

OPERANDS

30

PROGRAM-ID 75

DATE_

70

-

60

PROGRAMMER_

COMMENTS -

50

45 46

80

PAGE_

80

PROGRAM-ID

75

OF_____PAGES

90

CENTRAL PROCESSOR

UP-3912 Rev. 1

SECTION:

PAGE:

Ν

N

(80-90 COLUMN FORM)

				1 1	 ; 	
			4		 ·	<u></u>
	\downarrow					<u></u>
	+		4	<u> </u>	 	
<u>.</u>	++	+	4	<u> </u>	 	
<u> </u>	┼╍┼			<u></u>		
<u>.</u>	┝╍┝	+	4		 	
	++		4		 	
	╇╍╇		$+ \cdots$		 	
<u> </u>	┟╻┟		$+ \cdots$	11.	 	
	┟╍┠		╉╍╍	I.I., I.,		
	┥┽┼	+	+		 	
<u></u>	┝╍┠		+	<u> </u>		
	┼╌┼╴		+		 	
<u> </u>	+ $+$	+++++++++++++++++++++++++++++++++++++++	+++	1.1.1.		
ll	╇┶╋		╺╂╌┶	<u></u>		
	+		+			
- <u>L</u> _L_		<u></u>		I. I.		
		+	+	الم الم		<u> </u>
	┝╹╟		╉┸┸	1		<u> </u>
		<mark>┿╌┶╌┵╶┖┈</mark> ┨		<u> </u>		
<u></u>	+ + +-			1.1-1		
<u> </u>			1-1-1-	<u> </u>		

UD1-802 13/12 56 125M 7/65

UNIVAC 1050 SYSTEMS

2

PAGE:

PAGE	LI	NE		A.	BI	EL		U)P	E	ĸ.	•																	JP	ER	A	NC	12																	F	R		
			r				H																								[C	0	11	AE	N	٢S							1		10	JE	N
001	0 0	0) ()	0	0 () (0	0	0 0) (0	0 0) (0 () (0	0 () (0	0 0	0	0	0 0	0	0 0	0 (0 0	0 (0 0	0 () į O	0 0	0	0 0	0	0 0	0 (0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0
1 2		- I	- -	-		• • •	1.1											6 27	28 :	29 3	31	32	33 34	1 35	36 3	7 38	39 4	0 41 4	2 43	44 4	5 46	47 4	8 49	50 51	52	53 54	4 55	56 5	7 58	59 B	D 61	62 63	64	65 GI	67	68 69	9 70	71 7	2 73 :	74 7:	5 76 1	77 70	8 79
111	1	1	1	1	1	1	1	1	11	1	1	1 1	1	11	1	1	11	1	1	11	1	1	11	1	11	1	11	1	1	11	1	11	1	11	1	11	1	11	1	11	1	11	1	11	1	11	1	11	1	1 1	1	11	1
2 2 2	2 2	2	2 2	2	2 2	2 2	2	2	2 2	2 2	2	2 2	2 2	2 2	2 2	2	2 2	2 2	2	22	2	2	22	2	22	2	2 2	2 2	2 2	2 2	2	22	2	22	2	22	2	22	2	22	2	22	2	22	2	22	2	22	2	2 2	2	22	2
3 3 3	3 3	3	3 3	3	3 :	33	3	3	33	3	3	3 3	3 3	3 3	33	3	3 3	3 3	3	33	3	3	33	3	33	3	33	3	33	3 3	3	33	3	33	3	33	3	33	3	33	3	33	3	33	3	33	3	33	3	3 3	3	33	3
444	4	4	1 4	4	4 4	14	4	4	4 4	4	4	4 4	4	4 4	14	4	4 4	4	4	4 4	4	4	44	4	44	4	4 4	4	4 4	4 4	4	4 4	4	44	4	44	4	44	4	44	4	44	4	44	4	44	4	44	4	4 4	4	44	4
5 5 1	5 5	5	5 5	5	5 !	55	5	5	55	i 5	5	5 5	55	5 5	55	5	5 5	i 5	5	55	5	5	55	5	55	5	55	i 5	55	5 5	i 5	55	5	55	5	55	5	55	5	55	5	55	5	55	5	55	5	55	5	5 5	5	55	5
6 6 6	6 6	6	5 6	6	6 (6 6	6	6	6 6	6	6	6 8	66	6 (66	6	6 (66	6	66	6	6	66	6	6 6	6	6 6	6	66	6 6	6 6	6 6	6	66	6	66	6	66	6	66	6	66	6	66	6	66	6	66	6	6 6	6	66	6
111	7	7	1	7	7	17	7	7	77	17	7	7	17	11	, ,	7	11	17	7	77	7	7	11	1	11	7	11	7	, ,	11	17	11	7	11	7	11	7	77	7	11	7	11	7	11	7	11	7	11	7	, ,	7	77	7
888	8	8	8	8	B 1	8 8	8	8	88	8 8	8	8 8	8 8	88	38	8	88	8 8	8	88	8	8	88	8	88	8	88	8	88	88	8	88	8	88	8	88	8	88	8	88	8	88	8	88	8	88	8	88	8	8 8	8	88	8

Figure 2-2. PAL 80-Column Source Card.

P	A	GE	1	IN	IE	NSER		L	AB	EL			0	PE	RA	TIC	N												0	PE	RA	ND	S												
12	12	12	2	2	12	12	12	12	12	12	12		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	-ī2	12	ī
34	34	. 34	13	4	34	34	34	34	34	34	34		34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	3 ₄	34	34	34	34	34	34	34	34	34	3
⁵ 6	56	56	5	6	56	56	56	56	56	56	56		56	56	56	56	⁵ 6	56	56	56	56	56	⁵ 6	56	56	56	56	⁵ 6	56	56	56	56	56	⁵ 6	⁵ 6	56	56	56	56	56	56	56	⁵ 6	56	5
78	78	78	3	8	78	78	78	7 <mark>8</mark>	78	7 ₈	78		7 ₈	7 ₈	7 8	78	7 ₈	78	78	78	7 ₈	7 ₈	78	7 ₈	78	7 <mark>8</mark>	78	7 ₈	78	7 ₈	7 ₈	78	7 ₈	7 ₈	7 8	7 <mark>8</mark>	7 ₈	78	7 <mark>8</mark>	78	7 ₈	7 ₈	7 ₈	7 ₈	7
1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	4
									ł	OP	ER	٨NI)S	/(COI	MM	IEN	ITS	5												PR En				ON										
12	¹ 2	12	1	2	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12			12	12	12	12	12	12										
34	34	34	, 3	4	34	34	34	34	34	34	34	34	3 4	34	34	34	3 4	34	34	34	34	34	34	34	34	34	34			34	34	34	34	34	34										
56	56	56	, 5	6	⁵ 6	56	56	56	56	56	⁵ 6	⁵ 6	56	⁵ 6	⁵ 6	56	⁵ 6	⁵ 6	⁵ 6	56	56	56	56	56	⁵ 6	56	56			56	56	⁵ 6	56	⁵ 6	56										
78	78	78	7	8	78	7 <mark>8</mark>	78	7 8	7 ₈	7 <mark>8</mark>	78	7 8	7 <mark>8</mark>	7 <mark>8</mark>	7 ₈	7 <mark>8</mark>	7 8	7 ₈	7 8	78	7 ₈	7 8	7 8	78	7 ₈	7 ₈	78			78	7 ₈	7 <mark>8</mark>	7 8	7 ₈	7 ₈										
9	9	9	ı	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9			9	9	9	9	9	9										
																												73									82	83							

Figure 2-3. • PAL 90-Column Source Card.

2.1.2. Sequence

This field is a six character numeric field composed of a three digit page field, a two digit line field, and a one digit insert field. There may be a page field entry and a line field entry on each card.

While processing input lines, the assembler performs a sequence check on this field to make sure that page and line entries are in ascending sequence. An out of sequence line is flagged on the output listing as an "S" error.

PAGE:

4

The insert field is provided to permit the insertion of additional coding lines when correcting a source program. The insert field entry consists of one numeric digit. This field is used when a line of coding is to be inserted on a particular page following a particular line. To insert a line of coding between lines 23 and 24 of page 10, the coding used could be

SEQU	\square			
1 ^{PAGE} 3	LI 4	NE 5	INS 6	7
010	2	3	7	7
-1-1-		Ľ		7
				$ \rightarrow $

There is one restriction on the digit used for INS. If more than one instruction is to follow a particular page and line, each insertion line must have a sequentially higher INS number than any preceding it.

If inserts are made, the cards punched from the insert lines must be physically placed in their proper places in the source deck, prior to assembly.

2.1.3. Label

A label is an alphanumeric symbol associated with the line on which it appears. It consists of five characters or less, the first character of which must be an alphabetic character other than the letter X. A label must begin in column 7, and is terminated either by column 12 or by the first blank appearing in the field. The entire field may be blank. (Column 12 can be used only by a six character label, if any, of the assembler directive BEGIN or by a comments line. Otherwise it is always left blank.)

The label of an instruction line names the leftmost character of the instruction, while the label of a data field or a constant names the rightmost character of the field or constant.

Some examples of labels are

F	E	LABEL		0
Į	6	7 11	Ż	13
l		START		
		G 1 2		
		E_N_D_R_N		
Л				

PAGE

2

C

If column 7 contains a period, the entire line is a comment. It produces no coding, but the line is printed on the output listing.

Y	E	LABEL			OPERATION	O P E R A N D S	C
Q	6	7 1	1	Z	13 18	19 30 40 45	46
		. , т ,н , і ,	s		S _ A N	E,XA,MPLE, OF, A, COMMENTS, LINE	$\overline{\left\lfloor \cdot \right\rfloor}$
I							

2.1.4. Operation

The operation field is a six character field beginning in column 13. This field may not be blank. The field usually contains a mnemonic operation code, which the assembler converts into a five bit operation code. The operation field may also contain an assembler directive or a data generating code.

An entry in this field must begin in column 13 and is terminated by the first blank appearing in the field or by the end of the field.

The following are examples of operation field entries:

E	LABEL	71	ſ	OPERATIO	N								0	ΡI	ER	A	N D	S										1
1NS 6	7	11	71	3 1	8	19									30							4	0				45	46
				B ₁ A11			,	1			1	,	,	,	,	1						,			1	,		İ
			(СТ			1			 1	_ 1		. 1							1		 1	1		1	1	1	
				+ 6			1	1	1	1		,		1	1	1	1 1				1	 1	1			1	1	
			2	\sim			_				~	_			_	\sim	_		\sim	 				~				

2.1.5. Operands

The operands field usually contains symbolic or absolute descriptions of the Index Register, Storage Address, and Detail portions of an instruction. These descriptions are called expressions.

Each expression except the last one on a line must be terminated by a comma immediately following the last character of the expression. The last expression on a line is terminated by a blank. The first blank following a character which is neither a blank nor a comma indicates that no more expressions follow. Column 72 also terminates the operands field.

The assembler processes the operands field from left to right, a character at a time. Whenever a comma is encountered, the assembler recognizes the end of an expression and expects at least one other expression to follow; but whenever a blank appears following a non blank character which is not a comma, the assembler expects no more expressions to follow on the same line. Two successive commas within a string of expressions indicate a blank expression. An expression may have any number of preceding blanks.

PAGE

6

The maximum number of expressions that may be written on one line and the interpretation of each expression is determined by the contents of the operation field. Any line may have less than the maximum number of expressions. For example, a symbol written as the M expression on an instruction line might also define the length of the field addressed. In this case, the L portion of the instruction line may be omitted.

E	LABEL		OP	ERATION	O P E R A N D S
1NS 6	7	11	13	18	19 30
X					M,, L,, X, , , , , , , , , , , , , , , ,
		1			M,,,,X,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					M, ,L, , , , , , , , , , , , , , , , , ,
		1			M
					, L , , , , , , , , , , , , , , , , , , ,
					M,,,I,,,X,,,,,,,,,,,,,,,,,,,
				1 1 1 1	M, , I, , , , , , , , , , , , , , , , ,
	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			\checkmark	

Some possible forms for the OPERANDS field are

- M is an expression designating the operand address.
- L is a decimal or octal number or defined label specifying the operand length in terms of characters.
- X is an expression naming an index register.
- I is an expression identifying an indicator.

Note that if the last expression which might appear on a line is omitted, the comma which would have preceded it is omitted. Also, if the M expression is to be specified as zero, it may not be represented by a comma, but must be written as zero (0).

2.1.6. Comments

Significant comments may be written anywhere on the line beyond the blank which terminates the last expression. It is recommended, however, that comments be indented at column 46, for the sake of obtaining an output listing which is easier to read. For example,

ΣE	LABEL		OPERATION	OPER	COMM	COMMENTS -		
	7 11	H	13 18	19 3	0	40 45	46	_50
\square	INITL		J'C'	0, , , , , , , , , , , , , , , , , , ,	1		E,X,I,1	
					\sim	\sim		

2.2. SYMBOLS AND CONVENTIONS

There are three general types of expressions:

- Symbolic value is assigned by the assembler
- Constant value is assigned by programmer
- Combined value may be wholly or partially assigned by either the assembler or programmer

PAGE

C

A symbolic expression is one whose first character is an alphabetic character and is not preceded by an apostrophe. An example of a symbolic expression is

E	LABEL		OPERATION	O P E R A N D S	
6	7 11	Y	13 18	3 19 30 40	45 46
				Τ, Α, Β, L, Ε,	
Ц					

A constant expression is one whose first character is either an apostrophe or a number. A constant expression may be alphanumeric, decimal, or octal.

An alphanumeric constant is represented by enclosing it in apostrophes. From the expression, the assembler generates the UNIVAC 1050 six bit code for every character appearing within the apostrophes. For example, the expression

E	LABEL		OPERATION	O P E R A N D S	
1NS 6	7 11	¥	13 18	<u>19</u> <u>30</u> <u>40</u>	45 46
				• , 1 , 7 , • ,	

produces the bit configurations 00 0100 and 00 1010, which are the UNIVAC 1050 six bit codes for the characters 1 and 7, respectively.

A constant is decimal if its first character is a number other than zero. The assembler generates the binary equivalent of the decimal number. For example, the expression

E		LABEL		OPERATION		O P E R A N D S		ľ	l
6	15	7 11	¥	13 18	19	30	40	45	46
					1,7		!	!	
上								- <u>-</u>	

produces the bit configuration 010001, which is the number seventeen expressed in binary.

If the first character of a constant expression is zero, the number is taken to be an octal number and is converted from octal to binary. For example, the expression

E		LABEL		OPERATION		O P E R A N D S			Γ
<u>5</u>	IS	7 11	¥	13 18	19	30	40	45	46
E					0,1	.7		1	

is converted into 001111.

A special constant expression is the dollar sign (\$), which means the current value of the location counter. Its value is one greater than the address of the last location which the assembler has assigned.

The following chart summarizes the interpretation given to each type expression.

TYPE OF EXPRESSION	ABBREVIA- TION	FORM	VALUE	EXAMPLE
Symbol	S	one to five alphanumeric characters beginning with an alphabetic character other than the letter X.	value assigned to the sym- bol as a result of an EQU directive or of appearance in the LABEL field.	L TAP02 COST
Location	L	\$	current value of location counter, namely the address of the most significant character of the line in which the item \$ appears.	\$ + 15
Octal	0	zero followed by octal (0-7) digits.	value interpreted as base 8 and converted to binary.	017 has the value 001111
Decimal to Binary	D	non zero digit followed by decimal (0-9) digits.	value interpreted as base 10 and converted to binary.	17 has the value 010001
Alpha- numeric	A	any characters (excluding apostrophes) enclosed in apostrophes (').	value of each character in corresponding position right justified (6-bit repre- sentation).	'ABC' has the value, 010100 010101 010110; '17' has the value 000100 001010

A combined expression is one that has two or three symbolic or constant expressions connected by a plus (+) or a minus (-) sign.

An expression may have a leading plus or minus sign to denote a positive or a negative quantity. If an expression does not have a sign, it is assumed to be positive.

Since all expressions are converted into binary, a negative expression is converted into the two's complement of the value.

PAGE:

PAGE:

2.3. DATA GENERATION

The PAL assembly system provides means of generating data other than instructions from a coding line.

A constant of up to 16 characters is generated by writing +n or -n in the operation field of a line. The n is a decimal number ranging from 1 through 16 specifying the number of characters in the constant. An alphanumeric constant can range in length from 1 to 16 characters. This constant must be written within apostrophes. A decimal constant can range in length from 1 to 7 characters. An octal constant which can occupy from 1 to 8 characters is written with 1 to 16 digits plus a preceding zero.

The label of such a line names the least significant character generated from the entry in the operands field of that line.

The operands field must contain a single expression, which may be alphanumeric, decimal, octal, or a label. If the value of the expression is an integer of less than n characters, the assembler generates as many binary zeros to the left of the integer as are needed to fill out the rest of the field. For example, from the line

E	LABEL		OPERATION		O P E R A N D S		ļ	٦
K 5	7 1	1	13 18	19	30	40	45	46
\mathbf{n}	К,5,,,		+ 3	5, , , , ,				
\square						\sim	~	_

the assembler generates 000000 000000 000101. K5 names the least significant character.

If the operands field expression is alphanumeric and the sign in the operation field is negative, the sign bit of the constant is reversed. For example, from the line

Æ	LABEL		OPERATION		OPERANDS		T I	7
6	7 11	H	13 18	19	30	40	45 4	46
			+,2,,,,,	' _{_2} ,	4, ', , , , , , , , , , , , , , , , , ,			
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$		$\Box$

the assembler generates 000101 000111, while from the line

E	LABEL		OPERATION		OPERANDS			ΓJ
6	7 11	Y	13 18	19	30	40	45	46
			-, 2, , , , ,	' ₁ 2	, 4, ' , , , , , , , , , , , , , , , , ,			
L					$\sim$	$\sim$		$\Box$

the assembler generates 000101 100111.

When the operands field expression is decimal or octal, and the sign in the operation field is negative, the two's complement of the expression value is generated. For example,

E	LABEL		OPERATION	O P E R A N D S		7
6	7	11	13 18	19 <u>30</u> 40	45	46
			+,2, , , ,	0,2,3,4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1
C	$\sim$	ノ			$\sim$	5

produces 000010 011100, while

E	LABEL	1	OPERATION	OPERANDS		5
Ĩ	s 7 11	ł	13 18	30 40	45	46
			- 2	0,2,3,4		$\Box$
	$\sim$					

produces 111101 100100.

When the expression in the operands field is a label, unmodified, or with a constant modifier, and the operation field contains:

- +1 the length (in number of characters) of the field named by that label is supplied.
- +3 the 15 bit address which the assembler assigns to the label will be supplied, preceded by three binary zeros.
- +4 or higher the 15 bit address assigned to the label occupies the 15 least significant bit positions of the n character field. The rest of the field contains binary zeros.

PAGE:

#### 2.4. PAL JR ASSEMBLY SYSTEM

The PAL JR card assembler is used with a Central Processor that has a storage capacity of 4096 characters. The features of PAL JR are the same as those of the PAL assembler with certain limitations:

- Label size is limited to three characters.
- There are no implied field lengths. Field lengths and index registers must be specified in the instructions.
- The EQU directive may not be employed to specify the field length or the index register. AREA directives may not be employed to specify index registers or fill characters and cannot define subfields.
- The second expression in the operands field of the Tetrad instructions must be a Tetrad number.
- The I/O areas have fixed labels and index registers and cannot exceed two backup areas for each unit.
- The Comparison Jumps (JG, JE, JU, JS) are eliminated in this system. The Jump Conditional (JC) instruction is employed to perform their function.
- The maximum value of a decimal or octal constant that can be described by the EQU directive is 4095 (07777).



PAGE:

### 3. INSTRUCTION REPERTOIRE

The instruction repertoire of the UNIVAC 1050 System is arranged in the following pages by functional category. Each category is introduced by a brief description of the general coding rules for the instructions in that category.

Each instruction is described in the following manner:

## OPERATION Format: PAL Mnemonic Required Expressions Function: (Concise description of what the instruction accomplishes) Notes: (Programming considerations and further description of the instruction) Example(s): (Programming examples and description of the operands in verbal and graphic form, showing the operands before and after the execution of the instruction, if necessary)

In describing the operation of the various instructions, the abbreviation  $M_x$  specifies the *effective* character or field position in main store. By effective character is meant M as modified by the contents of index register X (if it is called for).

Any expression of the instruction other than M and X is the detail field. The detail field may have subfields, some of which are extensions of the operation code. This accounts for the fact that the octal operation codes for two or more instructions may be identical.

Preferably, the more commonly used special purpose tetrads should be addressed by means of a label rather than a tetrad number. The ability to do so is provided by the EQU directive, which is fully discussed later in this section. Table 3-1 presents a list of the labels used in the coding examples.

In the Univac 1050 System there are 64 indicators addressed as decimal numbers 0 through 63 (octal 0 through 077). These indicators fall within three functional groups; indicators that are testable, indicators that cause an unconditional jump and specific function to be performed, and indicators that cause a certain function to be performed but do not break the sequence of instructions. The function performed depends upon the indicator involved.

Among the testable indicators are those which test the settings of the three Sense Switches and the three Sense Indicators. Sense Indicators are internal devices which are set and reset under program control. Sense Switches are on the console and are set and reset manually. Unlike comparison indicators which are set and reset as a result of a comparison, the Sense Indicators may be set and reset arbitrarily to provide programmable switches.

#### UP-3912 Rev. 1

## CENTRAL PROCESSOR

SECTION:

3

F	2	1	GI	Ε:	

2

,		I		1
LABEL	OPERATION	OPE	RAND	
LADEL	OFERATION	OCTAL	DECIMAL	
AR1	EQU	017	15	Arithmetic Register 1
AR2	EQU	037	31	Arithmetic Register 2
X1	EQU	047	39	indeX register 1
X2	EQU	053	43	indeX register 2
X3	EQU	057	47	indeX register 3
X4	EQU	063	51	indeX register 4
X 5	EQU	067	55	indeX register 5
X6	EQU	073	59	indeX register 6
X7	EQU	077	63	indeX register 7
DST	EQU	0103	67	DeSTination address for
			-	Transfer From (TFR, TFI)
ORG	EQU	01 07	71	ORIGIN address from
				Transfer To (TTR, TTI)
TRO	EQU	0110	72	Translate table ROw address
ZCT	EQU	0111	73	Number of characters
				suppressed
тст	EQU	0113	75	Number of characters to be
				transferred
MLR	EQU	0127	87	MuLtiplieR
QTN	EQU	0127	87	QuoTieNt
	IND		-NOT IN ST	DRE
KNO	EQU	040	32	No operation
КНІ	EQU	041	33	High indicator
KEQ	EQU	042	34	Equal indicator
KUQ	EQU	043	35	Unequal indicator
KLO	EQU	044	36	Low indicator
KZR	EQU	045	37	Indicator of arithmetic
	LQU	040		result zero
км	EQU	046	38	Indicator of decimal
17.141	220			arithmetic result minus
KNB	EQU	047	39	Indicates overflow occured in
	-20			last binary subtract or didn't
				occur in last binary add
KDF	EOU	050	40	Decimal overflow indicator
NUF	EQU			

Table 3-1. Suggested Standard Equality Statements.

The use of these indicators is discussed in detail with the instructions involved. Normally the indicators will be addressed using a label which is equated to the indicator number. The EQU operation is defined in the Card Assembly System Manual. Table 3-1 lists the more commonly used indicators and their suggested labels.

Tables 3-2 and 3-3, respectively, summarize the instruction repertoire and the mnemonic operation codes of the UNIVAC 1050 System. The instruction execution times appear in Table 3-4 on page 3-73.

### UP-3912

#### Rev. 1

# UNIVAC 1050 SYSTEMS

SECTION:

3

3

Р	A	G	E	:	

E MN B B B S S S S S S S S S S S S S S S S	NEM ODE BDa BDa BDa BDa BDa BDa BDa BDa BDa BDa	26 OPERANDS M. L. X M. L. X M. T. X M. T. X M. T. X M. T. X M. T. X M. T. X M X	INDEX 0 REGISTER 0 25 24 23 22 21 WRITTE INSTRUCTION BRING DECIMAL BRING ALPHANUMERIC BRING BALPHANUMERIC BRING BALPHAN	N FORM DESCRIPTION $(M)_{L} \rightarrow AR, DECIMAL + &$ $(M)_{L} \rightarrow AR, BINARY$ $(M) \rightarrow T$ $(AR)_{L} \rightarrow M_{L}$	1311 IND. NO. Dec.		25-23 X 0 - 7	INT	ERM 21	- 7 V	DETAIL 6 1 FORM (OCTAL) 6 5 4 3 2 1 DETAIL 1 0/1* 017** 0 0/1* 017** 0 0/1* 017** 0 0/1* 0 0 1 077 0 0/1* 0 0 0 1 077 0 0 0 0 0 0 0 0 0 0 0 0		
E CO E CO E CO E C E C E C E C E C E C E C E C E C E C	ODE           BDa           BDa           BAa           BT           BAa           BT           SAA           ST           SSAR           ST           ST           ST           ST           ST           TT           TTR           ADa           ABa           AMa           AMa           AT           AC           SDa	OPERANDS M, L, X M, L, X M, L, X M, T, X M, T, X M, T, X M, T, X M, T, X M, T, X M, L, X	WRITTE INSTRUCTION BRING DECIMAL BRING ALPHANUMERIC BRING TETRAD STORE ARITHMETIC REG. STORE ARITHMETIC REG. STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	N FORM DESCRIPTION $(M)_{-} \rightarrow AR, DECIMAL + &$ $(M)_{-} \rightarrow AR, BINARY$ $(M) \rightarrow T$ $(AR)_{-} \rightarrow M_{-}$ $(AR1, AR2) \rightarrow M \rightarrow M_{-}$ $(T) \rightarrow M$ $C_{1} \rightarrow M$ $C_{1} \rightarrow M$ $(M, M+1, M + \dots)$ DST (TET 16) $(M, M+1, M + \dots)$ DST (TET 16) $(ORIGIN) \rightarrow M, M + 1, M + \dots$ $(AR) + (M)_{-} \rightarrow AR$ $(AR)_{+} + (M)_{-} \rightarrow M_{-}$ $(AR)_{+} + (M)_{-} \rightarrow M_{-}$	IND. NO. Dec.	30-26 OP CODE 56 56 46 52 52 42 42 44 20 24 24 24 24	x	T	21	IAL   - 7 M	FORM (OC TAL)         6       5       4       3       2       1         DETAIL         1 $0/1^*$ $0-_$		
E CO E CO E CO E C E C E C E C E C E C E C E C E C E C	ODE           BDa           BDa           BAa           BT           BAa           BT           SAA           ST           SSAR           ST           ST           ST           ST           ST           TT           TTR           ADa           ABa           AMa           AMa           AT           AC           SDa	M. L. X M. L. X M. L. X M. T. X M. T. X M. T. X M. T. X M. T. X M. T. X M	INSTRUCTION BRING DECIMAL BRING ALPHANUMERIC BRING TETRAD STORE ARITHMETIC REG. STORE BOTH ARITHMETIC REGISTERS STORE CHARACTER FIX TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	$\begin{array}{c} \textbf{DESCRIPTION} \\ (M)_{L} \rightarrow AR, DECIMAL + & \\ (M)_{L} \rightarrow AR, BINARY \\ (M) \rightarrow T \\ (AR)_{L} \rightarrow M_{L} \\ (AR1, AR2) \rightarrow M \rightarrow T \\ (AR1, AR2) \rightarrow M \rightarrow T \\ (C_{1} \rightarrow M \rightarrow M \rightarrow T \\ (M, M+1, M+ \cdots)  DST (TET 16) \\ (M, M+1, M + \cdots)  DST (TET 16) \\ (M, M+1, M + \cdots)  DST (TET 16) \\ (ORIGIN) \rightarrow M, M + 1, M + \cdots \\ (ORIGIN) \rightarrow M, M + 1, M + \cdots \\ (AR)_{L} + (M)_{L} \rightarrow AR \\ (AR)_{L} + (M)_{L} \rightarrow M_{L} \\ (AR)_{L} + (M)_{L} \rightarrow M_{L} \\ DECIMAL \\ \end{array}$	NO. Dec. 37: 38	OP 56 56 46 52 52 42 44 20 24 24 24	x	T	21	- 7 V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
E CO E CO E CO E C E C E C E C E C E C E C E C E C E C	ODE           BDa           BDa           BAa           BT           BAa           BT           SAA           ST           SSAR           ST           ST           ST           ST           ST           TT           TTR           ADa           ABa           AMa           AMa           AT           AC           SDa	M. L. X M. L. X M. L. X M. T. X M. T. X M. T. X M. T. X M. T. X M. T. X M	BRING DECIMAL BRING ALPHANUMERIC BRING TETRAD STORE ARITHMETIC REG. STORE BOTH ARITHMETIC REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD		NO. Dec. 37: 38	OP 56 56 46 52 52 42 44 20 24 24 24	x	22		M	DETAIL           1         0/1*         0         17**           0         0/1*         0         17**           0         0/1*         0         17**           1         1         0         0         1           0		
E CO E CO E CO E C E C E C E C E C E C E C E C E C E C	ODE           BDa           BDa           BAa           BT           BAa           BT           SAA           ST           SSAR           ST           ST           ST           ST           ST           TT           TTR           ADa           ABa           AMa           AMa           AT           AC           SDa	M. L. X M. L. X M. L. X M. T. X M. T. X M. T. X M. T. X M. T. X M. T. X M	BRING DECIMAL BRING ALPHANUMERIC BRING TETRAD STORE ARITHMETIC REG. STORE BOTH ARITHMETIC REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD		37. 38 37,	CODE           56           56           46           52           52           42           44           20           24           24           24					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
B B S S S S S S S S S S S S S S S S S S	BAa BT SAa SAA SAA ST SC ST SC ST TFI TFR TTI TTR ADa ABa AMa AT AC SDa SBa	M. L. X M. T. X M. T. X M. T. X M. T. X M. C. X M. T. X M X M X M X M X M. L. X M. L. X M. L. X M. C. X M. L. X	BRING ALPHANUMERIC BRING TETRAD STORE ARITHMETIC REG. STORE BOTH ARITHMETIC REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRÄNSFER BLOCK FROM STORE, INCREMENT TRÄNSFER BLOCK FROM STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	$ \begin{array}{c} (M) _ & \rightarrow AR, BINARY \\ (M) _ & \rightarrow T \\ (AR)_{_} _ & M_{_} \\ (AR1, AR2) _ & M \rightarrow M - 31 \\ (T) _ & \rightarrow M \\ C_{\uparrow} _ & M \\ \hline \\ M_{\uparrow} _ & T \\ (M, M + 1, M + ) DST (TET 16) \\ (M, M + 1, M + ) DST (TET 16) \\ (M, M + 1, M + ) DST (TET 16) \\ (ORIGIN) = M, M + 1, M + \\ (ORIGIN) = M, M + 1, M + \\ (ORIGIN) = M, M + 1, M + \\ (AR)_{\bot} + (M)_{_} _ AR \\ (AR)_{\bot} + (M)_{_} _ M_{\bot} DECIMAL \\ \hline \end{array} $	37,	56           56           46           52           52           42           44           20           24           24           24	0 - 7		10 – 7	77777	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
B SA SA SA SA SA SA SA SA SA SA SA SA SA	BT SAG SAR ST SC FT TFI TFR TTI TTR ADG ABG AMG AT AC SDG SBG	M. T. X M. L. X M. T. X M. T. X M. C. X M. T. X M X M X M X M X M. L. X M. L. X M. L. X M. T. X M. C. X M. L. X	BRING TETRAD STORE ARITHMETIC REG. STORE BOTH ARITHMETIC REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRÄNSFER BLOCK FROM STORE, INCREMENT TRÄNSFER BLOCK FROM TRÄNSFER BLOCK FROM TRÄNSFER BLOCK TO STORE, BLOCK TO STORE, RESET ADD DECIMAL ADD DEIMARY ADD TO MEMORY ADD TO TETRAD	$\begin{array}{c} (M) & \longrightarrow T \\ (AR)_{-} & \longrightarrow M_{-} \\ (AR1, AR2) & \longrightarrow M-31 \\ (AR1, AR2) & \longrightarrow M-31 \\ (T) & \longrightarrow M \\ C_{1} & \longrightarrow M \\ C_{1} & \longrightarrow M \\ M & \rightarrow T \\ (M, M+1, M+) DST (TET 16) \\ (M, M+1, M+) DST (TET 16) \\ (M, M+1, M+) DST (TET 16) \\ (ORIGIN) & \longrightarrow M + 1, M + \\ (ORIGIN) & \longrightarrow M + 1, M + \\ (ORIGIN) & \longrightarrow M + 1, M + \\ (AR) + (M)_{-} & \rightarrow M \\ (AR)_{L} + (M)_{-} & \rightarrow M \\ \end{array}$	37,	46 52 52 42 44 20 24 24 24					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
SA SA SS SS SS SS SS SS T T T T T T T T	SAG SAR ST SC FT TFI TFR TTI TTR ADG ABG ABG AMG AT AC SDG SBG	M, L, X M, T, X M, C, X M, C, X M, T, X M, X M, X M, X M, X M, L, X M, L, X M, L, X M, L, X M, C, X M, L, X	STORE ARITHMETIC REG. STORE BOTH ARITHMETIC REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	$\begin{array}{c} (M) & \longrightarrow T \\ (AR)_{-} & \longrightarrow M_{-} \\ (AR1, AR2) & \longrightarrow M-31 \\ (AR1, AR2) & \longrightarrow M-31 \\ (T) & \longrightarrow M \\ C_{1} & \longrightarrow M \\ C_{1} & \longrightarrow M \\ M & \rightarrow T \\ (M, M+1, M+) DST (TET 16) \\ (M, M+1, M+) DST (TET 16) \\ (M, M+1, M+) DST (TET 16) \\ (ORIGIN) & \longrightarrow M + 1, M + \\ (ORIGIN) & \longrightarrow M + 1, M + \\ (ORIGIN) & \longrightarrow M + 1, M + \\ (AR) + (M)_{-} & \rightarrow M \\ (AR)_{L} + (M)_{-} & \rightarrow M \\ \end{array}$	37,	52 52 42 44 20 24 24 24 24					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
S S S S S S S S S S S S S S S S S S S	SAR ST SC FT TFI TTR ADa ADa ADa ADa ADa SDa SDa	M X M, T, X M, C, X M, T, X M, X M, X M, X M, X M, X M, L, X M, L, X M, L, X M, L, X M, C, X M, C, X M, L, X	STORE BOTH ARITHMETIC REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, RESET ANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	$\begin{array}{c} (AR)_{} M_{} \\ (AR1, AR2)_{} M_{} \\ (T)_{} M_{$	37,	52 42 44 20 24 24 24 24					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
S S S F F T T T T T T T T T T T T T T T	ST SC FT TFI TTR ADa ABa ABa AMa AT AC SDa SBa	M, T, X M, C, X M, T, X M, , X M, , X M, , X M, , X M, L, X M, L, X M, L, X M, L, X M, L, X M, C, X M, L, X	REGISTERS STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK TO STORE, INCREMENT (RANSFER BLOCK TO STORE, INCREMENT (RANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	$(T) \rightarrow M$ $(T) \rightarrow M$ $C_{1} \rightarrow M$ $M_{1} \rightarrow T$ $(M, M+1, M + \dots)$ DST (TET 16) $(M, M+1, M + \dots)$ DST (TET 16) $(ORIGIN) \rightarrow M, M + 1, M + \dots$ $(ORIGIN) \rightarrow M, M + 1, M + \dots$ $(AR) + (M)_{L} \rightarrow AR$ $(AR)_{L} + (M)_{L} \rightarrow M_{L}$ $(AR)_{L} + (M)_{L} \rightarrow M_{L}$ , DECIMAL	37,	42 44 20 24 24 24 24					$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
S F F T T T T T T T T T T T T T T T T T	SC FT TFI TFR TTI TTR ADa ABa ABa AMa AT AC SDa SBa	M, C, X M, T, X M, , X M, , X M, , X M, L, X M, L, X M, L, X M, L, X M, L, X M, C, X M, L, X	STORE TETRAD STORE CHARACTER FIX TETRAD TRANSFER BLOCK FROM STORE, BLOCK FROM STORE, BLOCK FROM TRANSFER BLOCK TO STORE, INCREMENT TRANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	C → M M → T (M, M + 1, M +) DST (TET 16) (M, M + 1, M +) DST (TET 16) (ORIGIN) → M, M + 1, M + (ORIGIN) → M, M + 1, M + (AR) + (M) → AR (AR) + (M) → AR (AR) + (M) → ML (AR) L + (M) → ML	37,	44 20 24 24 24					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
F T T T T T T T T T T T T T T T T T T T	FT TFI TFR TTI ADa ABa AMa AT AC SDa SBa	M, T, X M, , X ‡ M, , X ‡ M, , X ‡ M, , X ‡ M, L, X M, L, X M, L, X M, C, X M, L, X	FIX TETRAD TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, RESET TRANSFER BLOCK TO STORE, INCREMENT (RANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD DINARY ADD TO MEMORY ADD TO TETRAD	$\begin{array}{c} M_{1} \rightarrow T \\ (M, M+1, M+ \cdots)  DST (TET 16) \\ (M, M+1, M+ \cdots)  DST (TET 16) \\ (ORIGIN) \rightarrow M, M+1, M+ \cdots \\ (ORIGIN) \rightarrow M, M+1, M+ \cdots \\ (AR) + (M)_{L} \rightarrow AR \\ (AR)_{L} + (M)_{L} \rightarrow M_{L} \\ (AR)_{L} + (M)_{L} \rightarrow M_{L} , DECIMAL \\ \end{array}$	37,	20 24 24 24 24					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
TI T T T T T T T T T T T T T T T T T T	TFI TFR TTI TTR ADa ABa AMa AMa AT AC SDa SBa	M,, X + M, X + M, X + M, X + M, L, X + M, L, X + M, L, X + M, C, X + M, L, X + M	TRANSFER BLOCK FROM STORE, INCREMENT TRANSFER BLOCK FROM STORE, RESET TRANSFER BLOCK TO STORE, INCREMENT (RANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD BINARY ADD TO MEMORY ADD TO TETRAD	(M, M+1, M +) DST (TET 16) (M, M+1, M +) DST (TET 16) (ORIGIN)→M, M + 1, M + (ORIGIN)→M, M + 1, M + (AR) + (M)_→AR (AR)_ + (M)_→M_ (AR)_ + (M)_→M_	37,	24 24 24 24							
T T T T T A A A A A A A A A A A C S S S S S S S S	TFR TTI TTR ADa ABa AMa AT AC SDa SBa	M,, X M, , X M, . , X M, L, X M, L, X M, L, X M, L, X M, C, X M, L, X	STORE, INCREMENT TRANSFER BLOCK FROM STORE, RESET TRANSFER BLOCK TO STORE, INCREMENT (RANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD DECIMAL ADD BINARY ADD TO MEMORY ADD TO TETRAD	(M, M+1, M+) DST (TET 16) (ORIGIN) $\rightarrow M, M+1, M+$ (ORIGIN) $\rightarrow M, M+1, M+$ (AR) + (M) $\rightarrow AR$ (AR) + (M) $\rightarrow M$ (AR) L + (M) $\rightarrow M$ , DECIMAL	37,	24 24							
T T A A A A A A Sil S S S S S S S S C C C C C C C C C C C	TTI TTR ADa ABa AMa AT AC SDa SBa	M , , X‡ M , , X‡ M, L, X M, L, X M, L, X M, T, X M, C, X M, L, X	STORE, RESET TRANSFER BLOCK TO STORE, INCREMENT (RANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD BINARY ADD TO MEMORY ADD TO TETRAD	$(ORIGIN) \rightarrow M, M + 1, M + \dots$ $(ORIGIN) \rightarrow M, M + 1, M + \dots$ $(AR) + (M) \rightarrow AR$ $(AR)_{L} + (M) \rightarrow M_{L}$ $(AR)_{L} + (M) \rightarrow M_{L}$ $(AR)_{L} + (M) \rightarrow M_{L}$	37,	24							
T A A A A A A A S S S S S S S S S S S C C C C	T T R A Da A Ba A Ma A T A C S Da S Ba	M,, X‡ M, L, X M, L, X M, L, X M, T, X M, C, X M, L, X	STORE, INCREMENT IRANSFER BLOCK TO STORE, RESET ADD DECIMAL ADD BINARY ADD TO MEMORY ADD TO TETRAD	$(ORLGIN) \rightarrow M, M + 1, M + \cdots$ $(AR) + (M) \rightarrow AR$ $(AR)_{L} + (M) \rightarrow M_{L}$ $(AR)_{L} + (M) \rightarrow M_{L}$ $(AR)_{L} + (M) \rightarrow M_{L}$	37,				1				
A A A A A A A A A A A A A A A A A A A	A Da A Ba AMa A T A C SDa SBa	M. L. X M. L. X M. L. X M. T. X M. C. X M. L. X	STORE, RESET ADD DECIMAL ADD BINARY ADD TO MEMORY ADD TO TETRAD	$(AR) + (M)_{L} \rightarrow AR$ $(AR)_{L} + (M)_{L} \rightarrow M_{L}$ $(AR)_{L} + (M)_{L} \rightarrow M_{L} DECIMAL$	37,	24				1	1 1 0 0 0 0		
	A Ba AMa A T A C SDa SBa	M, L, X M, L, X M, T, X M, C, X M, L, X	ADD BINARY ADD TO MEMORY ADD TO TETRAD	(AR) _L + (M) _L → M _L (AR) _L + (M) _L → M _L ,DECIMAL	37,						1 0 0 0 0 0		
	AMa AT AC SDa SBa	M, L, X M, T, X M, C, X M, L, X	ADD TO MEMORY ADD TO TETRAD	(AR) _L + (M) _L →M _L ,DECIMAL		66				ł	0 0/1* 0 <u> </u>		
A SI S S S S C C C C C C C C C C C C C C	AT AC SDa SBa	M, T, X M, C, X M, L, X	ADD TO TETRAD		39	72					0 0/1* 0 <u> </u>		
	AC SDa SBa	M, C, X M, L, X		$(M) + (T) \rightarrow T$	37. 38	62					0 0/1* 0 <u> </u>		
	SDa SBa	M, L, X	ADD CHARACTER		39	76					0 <u> </u>		
	SBa			C, + (M)→M, CARRIES	39	60		1			0 <u> </u>		
			SUBTRACT DECIMAL	$(AR) \sim (M)_{L} \rightarrow AR$	37, 38	66					1 0/1* 0 <u> </u>		
	SMa	M, L, X	SUBTRACT BINARY		37. 39	72					1 0/1* 0 <u> </u>		
		M, L, X	SUBTRACT FROM MEMORY	(M) - (AR) - ML, DECIMAL	37, 38	62					1 0/1* 0 17**		
	MPN	, L	MULTIPLY NON-CUMULAT	(AR2) x (T20,21)-AR1	37.	50	9			0	0 0 0 07§		
	мрс	. L	MULTIPLY CUMULATIVE	(AR2) X (T20, 21)-AR1 CUM.	40	50					0 1 0 0 <u> </u>		
د د د	DV	, L	DIVIDE	(AR1) ÷ (AR2) → QTN (TET 20, 21); REMAIN.→AR1	40	50	V				1 0 0 0 <del>L</del> 7§		
ء ۱ ۱	CDa	M, L, X	COMPARE DECIMAL	(AR) : (M)	33-	26	0 - 7		0 -	77777 <b>1</b>	7 1 0/1* 0 17**		
ء ۱ ۱	СВа	M, L, X	COMPARE BINARY	(AR) _L : (M) _L 36 7 C ₁ : M 3					1		1 0/1* 0 - 17**		
L L	cc	м, с, х	COMPARE CHARACTER										
L L		м. т. х	COMPARE TETRAD	(T):(M) IF M _X HAS A T BIT FOR EVERY 1 BIT IN C THEN =		14				$\begin{array}{c} 0 & & 77 \\ \hline 0 & & 77 \\ \hline \end{array}$			
5	LC	м, с, х	LOGICAL COMPARE			30	11		1				
L J	JE	м, х	JUMP EQUAL	IF 1 34 IS SET, M-CC	34 33	30	11						
L L	JG	м, х	JUMP GREATER	IF I 33 IS SET, M→CC IF I 36 IS SET, M→CC	36	30	{		1				
۲.	JS	м, х	JUMP SMALLER		35	30	11						
	UL UL	<u>м, х</u> м, х	JUMP UNEQUAL	IF I 35 IS SET, M-+CC	<u> </u>	30	1						
	JC	M. I. X	JUMP CONDITIONAL	IF I = 1. M+CC (SEE INDICATOR	ALL	30	1						
	JL	M. N. X	JUMP LOOP	II LIST) IF (N) - 1≠ 0, M +CC		32					0 77		
	JR	M, I, X	JUMP RETURN	1F I _n = 1, CC→M; M + 5→CC	ALL	10	1		1		0 77		
	JD	м, х	JUMP DISPLAY	STOP, DISPLAY M , NEXT INSTR.		30					1 1 0 0 0 0		
	ΓНΓ	м, х	HALT, THEN JUMP	STOP, M-CC ON RESTART	1	30			1	1	0 1 0 0 0 0		
E	BCn	M, S, X	BIT CIRCULATE	CIRCULATE n CHAR., S BIT POS, LEFT MAX. 7 BIT POS.	1	16				1	$1  0^{n} - 3^{\dagger}  0 = \frac{s}{7}$		
	BSn	M. S. X	BIT SHIFT	SHIFT N CHAR, S. BIT POS. LEFT MAX. 4 CHAR, AND 7 POS.	1	16	1	1	1		$0  0^{-3^{\dagger}}  0  -\frac{s}{7}$		
	LS	м, с, х	LOGICAL SUM		1	64	1		1	í	0 C 77		
	LP	M. C. X	LOGICAL PRODUCT	(M) ∧ C→ M	1	54	1	1			0 C 77		
	PD	M, L, X	PAD BLANKS	BINARY ZEROS-ML	1	26				L			
	PD0	M, L, X	PAD ZEROS	XS-3 ZEROS≁ML	1	26			1	1	0 1 0		
	zs	M, L, X‡	ZERO SUPPRESS	FROM MSD CHANGE PRECEDING O'S, P'S AND BLANKS TO BLANKS	1	22	1		1		1 0 017**		
	ZS\$	M. L.X‡	ZERO SUPPRESS AND FLOATING \$ SIGN	TO \$'s	1	22	1		1		0 0 0 <u> </u>		
	ZS*	M, L,X ‡	ZERO SUPPRESS WITH	то *'s	1	22		l	1				
	ED	M. L. X	EDIT	(AR1) → ML CONTROLLED BY (AR2)	1	52			1	1	1 0 0 <u> </u>		
		M. L. X	TRANSLATE	(M)-TRANSLATE ROW-M (T18 = ROW ADD.)	1	12					0 77		
= LOGI	TR		= SENTINEL + (	0 IS INTERPRETED BY THE CIR				* 1	Fa=	:1,В	NT 5 = 0: IF a = 2, BIT 5 = 1.		
= LOGI	GICAL		-MOST SIGNIFICANT	000 IS INTERPRETED BY THE CI	RCUI	TRY AS	010.				•		



Table 3-2. Instruction Repertoire.

TETRAD	00/0	0	01/01		02/02	03/03	04/04	05/05	06/06	07/07	08/10	09/11	10/12	11/13	12/14	13/15	14/16	15/17
CHAR.	0 1		4 5 6 7	7 8		12 13 14 15			24 26 27				40 41 42 43	44 45 46 47				60 61 62 63
ROW 0				RI	-11			AR			* K2 K1	IRI	IR2	IR3	IR4	IR5	IR6	IR7
OCTAL	0000		0004	001	10	0014	0020	0024	0030	0034	0040	0044	0050	0054	0060	0064	0070	0074
TETRAD	16/2	0	17/21		18/22	19/23	20/24	21/25	22/26	23/27	24/30	25/31	26/32	27/33	28/34	29/35	30/36	31/37
CHAR.				1 72										108 109 110 111				
ROW 1	NAT ADD	RESS		b *	* *	CONTROL COUNTER STORAGE	QUOT	PLIER										
OCTAL	0100		0104	013	10	0114	0120	0124	0130 .	0134	0140	0144	0150	0154	0160	0164	0170	0174
TETRAD	32/4		33/41		34/42	35/43	36/44	37/45	38/46	39/47	40/50	41/51	42/52	43/53	44/54	45/55	46/56	47/57
CHAR.	128 129 1	30 131	132 133 134 13	136	6 137 138 139	140 141 142 143	144 145 146 147	148 149 150 151	152 153 154 155	156 157 158 159		164 165 166 167	168 169 170 171	172 173 174 175	176 177 178 179 CLT	180 181 182 183	184 185 186 187	188 189 190 191
ROW 2	d PRIN BA * ADD	ITER SE RESS	e *				READER BASE ADDRESS	STANDBY BASE ADDRESS	f f f k * * *		PUNCH BASE ADDRESS	CILLAN	g h i j * * * * *		SEL & FUNCT. CODES			
OCTAL	0200		0204 CHAN			0214	0220	CHANN 0224	0230	0234	0240	CHANI 0244	NEL 2	0254	0260	0264	NEL 3	0274
OCTAL	0200		0204	1021		ULI I	0220				0210	0211	0200	0234	0200	0204	0270	0274
TETRAD	48/6		49/61		50/62	51/63	52/64	53/65	54/66	55/67	56/70	57/71	58/72	59/73 236 237 238 239	60/74	61/75	62/76	63/77
CHAR. ROW 3	192 193 1 TA RE BA ADDI	PE AD SE	RE AD CHAR COUN	р а. Т	READ ADDRESS RECORD	204120512061207	ZUB ZUB ZID ZID TAPE WRITE MEMORY BASE ADDRESS	WRITE CHAR. COUNT	WRITE ADDRESS RECORD	220 221 222 223	BASE MEM, ADD AND SECTOR COUNT	DRUM ADDRESS	MEMORY ADDRESS RECORD	DRUM ADDRESS RECORDED	1004 ADDRESS			252 253 254 25
	•		CHAN 0304	1N E		0314	0320	0324 CHANN	0330	0334	0340	CHANI 0344	NEL 6	0354	<b>1</b>	CHAN		0374
OCTAL	0300		0304	031		0314	0320	0324	0330	0334	0340	0344	0350	0354	0360	0364	0370	0374
				_	1-1-1-1-1	- L - L - L					2							
CHAR.	256 257 2	58 259		3 264									1	300 301 302 303				316 317 318 31
ROW			T ENTRY		CARD RI			PUNCH	COMMUNI		TAPE I.	READ E.	TAPE	WRITE	1	TORAGE E.	1	PANSION
4				-	CHANN	NEL 1	CHAN	NEL 2	CHAN	NEL 3	CHAN	INEL 4	CHAN	NEL 5	CHAN	NEL 6	L.E CHANN	
OCTAL	0400		0404	041	10	0414	0420	0424	0430	0434	0440	0444	0450	0454	0460	0464	0470	0474
		T																
CHAR.	320 321 32	2 323 3	324 325 326 327	7 328	329 330 331	332 333 334 335	336											
ROW		CLAS	s		CLA 2													
5	. 1	1 NTERR ENTF			INTER6 ENTE	UPT												
OCTAL	0500		0504	051		0514	0520											
			Reserved								*a = ZERO COUN *b = TRANSLATI *c = BLOCK TRA *d = CHARACTEI	ON TABLE ADDR	ESS *f = C *g = H	INE ADVANCE CO OLUMN COUNT F OLE COUNT (post OLE COUNT (wait	OR COLUMN REA -punch read and p	.DER *j unch)† *µ *∤	= ROW COUNT ( = ROW COUNT ( = ROW COUNT ) (2 = PARITY ODD (1 = PARITY FVF)	pre-read) † FOR ROW READEF LOCATION

Figure 3—1. Layout of First Six Rows of Store

**†USED ONLY BY CONTROL UNITS** 

*k = ROW COUNT FOR ROW READER *K2 = PARITY ODD LOCATION *K1 = PARITY EVEN LOCATION

CENTRAL PROCESSOR

ω

4

SECTION:

PAGE:

## UP-3912

Rev. 1

## UNIVAC 1050 SYSTEMS CENTRAL PROCESSOR

MNEMONIC

OCTAL

SECTION:

3

5

PAGE:

SEE

C	OCTAL OP CODE	MNEMONIC	DESCRIPTION
	00	_	(Unassigned)
	02	-	
	04	-	
	06	-	
	10	JR	Jump Return
	12	TR	TRanslate
	14	LC	Logical Comparison
	16	BCn	Bit Circulate
	16	BSn	Bit Shift
	20	FT	Fix Tetrad
	22	ZS*	Zero Suppress with asterisk fill
	22	ZS\$	Zero Suppress with floating
			dollar sign
	22	ZS	Zero Suppress with no float-
			ing dollar sign
	24	TFI	Transfer From memory, In-
			crement destination address
	24	TFR	Transfer From memory, Re-
			set destination address
	24	TTI	Transfer To Memory, Incre-
			ment origin address
	24	TTR	Transfer To memory, Reset
			origin address
	26	PD	PaD blanks
	26	PD0	PaD decimal zeros
	26	CDa	Compare Decimal
	30	J	Jump
	30	JC	Jump Conditionally
<u>_</u>	30	JD	Jump Display

JE

JG

JS

JU

JL

СС

XF

SΤ

SC

ΒT

DV

MPC

MPN

ED

SAa

SAR

LΡ

BAa

BDa

AC

AMa

SMa

ADa

SDa

СВа

ABa SBa

СТ

AT

LS

JHJ

Jump if Equal

Jump if Greater

Halt, then Jump

Jump if Smaller

Jump if Unequal Jump Loop

Compare Character (Unassigned)

eXternal Function

Store Tetrad

DiVide

EDit

Store Character

Bring to Tetrad

Logical Product

Bring Decimal Add Character

Add to Memory

Add Decimal Subtract Decimal

Compare Binary Add Binary

Subtract Binary

Compare Tetrad

Add to Tetrad

Bring Alphanumeric

Subtract from Memory Logical Sum

MultiPly Cumulative

MultiPly Noncumulative

Store Arithmetic register

Store both Arithmetic Registers

30

30

30 30

30

32

34

36 40

42

44

46

50

50

50

52

52

52

54

56

56

60

62

62

64 66

66 70

72

72 74

76

MNEMONIC	OCTAL OP CODE	DESCRIPTION	PAGE
ABa	72	Add Binary	3–38
AC	60	Add Character	40
ADa	66	Add Decimal	26
AMa	62	Add to Memory	29
AT	76	Add to Tetrad	7
BAa	56	Bring Alphanumeric	16
BCn	16	Bit Circulate	72
BDa	56	Bring Decimal	14
BSn	16	Binary Shift	71
BT			6
CBa	70	Compare Binary	46
cc	34	Compare Character	47
CDa	26	Compare Decimal	44
СТ	74	Compare Tetrad	9
DV	50	DiVide	36
ED	52	EDit	63
FT	20	Fix Tetrad	10
J	30	Jump	51
JC	30	Jump Conditionally	54
]D		Jump Display	53_
JE	30	Jump if Equal	51
JG	30	Jump if Greater	51
THT	30	Halt, then Jump	53
JL	32	Jump Loop	59
<u>JR</u>	$-\frac{10}{10}$	Jump Return	56
JS	30	Jump_if Smaller	51
JU	30	Jump if Unequal	51
LC	14	Logical Comparison	48
LP	54	Logical Product	70
	64	Logical Sum	<u>69</u>
MPC	50	MultiPly Cumulative	34
MPN	50	MultiPly Noncumulative	32
PD	26 26	PaD blanks	68
PD0 SAa	26 52	PaD decimal zeros	68 17
SAR	52	Store Arithmetic register Store both Arithmetic Registers	$\frac{1}{17}$
SBa	72	Subtract Binary	39
SC	44	Store Character	18
SDa	66	Subtract Decimal	28
SMa	62	Subtract from Memory	31
ST ST	42	Store Tetrad	6
TFI	24	Transfer From memory, In-	, s
		crement destination address	20
TFR	24	Transfer From memory, Reset	
		destination address	20
TR	12	TRanslate	61
TTI	24	Transfer To memory, Incre-	
		ment origin address	22
TTR	24	Transfer To memory, Reset	
		origin address	22
ZS*	22	Zero Suppress with asterisk	
		fill	66
<b>Z S \$</b> 22		Zero Suppress with floating	
		dollar sign	66
<b>ZS</b> 22		Zero Suppress with no floating	
		dollar sign	66
XF	40	eXternal Function	*
	·	1	la

Table 3-3a. Mnemonic Operations Ordered by Operation Code.

Table 3-3b. Mnemonic Operations Ordered Alphabetically.

The XF instruction is explained in the peripheral hardware manual for the unit to which it pertains. *

PAGE:

### 3.1 TETRAD INSTRUCTIONS

The format of a tetrad instruction is

E		LABEL			OPERATION	O P E R A N D S	· ·	Ţ	δ
6	s	7	11	ł	13 18	9 30 40	) 45	5 40	5(
					0, P,	Α, , ,Τ, , ,Χ, , , , , , , , , , , , , ,			
L	I						~~~~		7

where

**OP** is the mnemonic operation code,

M is an expression designating the operand address,

**T** is an expression naming a *tetrad*,

X is an expression naming an index register modifier.

If index register modification is not desired, X may be omitted, and an instruction may be written as follows:

E	LABEL OPERATION		OPERATION	O P E R A N D S		β	
ANS 6	7 1	1	13 18	19 30	40	45 46	/ 
[			0,P	м,, т, , , , , , , , , , , , , , , , , ,			
L		L			$\sim$		7

The assembler will, in this case, supply binary zeros in the index register portion of the instruction.

### 3.1.1. BRING TO TETRAD

Format: **BT** M, T, X

Function: Bring the four characters at  $M_x$ -3,  $M_x$ -2,  $M_x$ -1, and  $M_x$  into the specified tetrad T.

Note:

The contents of  $M_x$ -3,  $M_x$ -2,  $M_x$ -1, and  $M_x$  are not changed.

Example:

Bring the contents of the four character field labeled START into tetrad 9 (IR1).

E	LABEL	71	OPERATION		OPERANDS			6
	7 1		13 18	19	30	40	45	46
$\sum$			BT	S , T , A , R , T , ,	, <b> 9</b> ,			7
Γ		L	$\searrow$	$\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

3

### '

PAGE

### 3.1.2. STORE TETRAD

Format: **ST** M, T, X

Function: Store the contents of the specified tetrad T into  $M_x$ -3,  $M_x$ -2,  $M_x$ -1, and  $M_x$ .

Note:

The contents of the tetrad are not altered.

Example:

Store the contents of tetrad 9 into the four character field labeled TEMP.

E	E LABEL OPERATIO		OPERATION	OPERANDS		5
( <b>6</b>	7 11	Ł	13 18	19 30 40	45	46
$\sum$	. , , , , , , , , , , , , , , , , , , ,		S,T,	T,E,M,P,,,,9,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
L						$\Box$

### 3.1.3. ADD TO TETRAD

Format: **AT** M, T, X

Function: Perform a binary addition of the four character field at  $M_x$ -3,  $M_x$ -2,  $M_x$ -1, and  $M_x$  to the specified tetrad T.

Notes:

- a. The addition is a binary add. No signs are involved.
- b. Both operands are always 24 bits in length.
- c. If overflow occurs beyond the most significant character position of the tetrad, KNB (the Binary Overflow Indicator) is set to 0. If overflow does not occur, KNB is set to 1.
- d. If overflow occurs, the carry beyond the most significant character position of the tetrad is lost.

e. The field at  $\rm M_{x}\text{-}3,~M_{x}\text{-}2,~M_{x}\text{-}1,$  and  $\rm M_{x}$  is not altered.

SECTION:

3

8

PAGE:

Examples:

■ Add the 24-bit field INCR to tetrad 15.

E	LABEL		OPERATION		O P E R A N D S			δ
6	7 11	ł	13 18	19	30	40	45	46
Γ			AT	1	N, C, R, , , , 1, 5, , , , , , , , , , , , , ,			$\Box$
		L				$\sim$		$\square$

Tetrad 15 (before) = 000000 010110 101101 110111

INCR (before) = 000000 000000 000000 000001

Tetrad 15 (after) = 000000 010110 101101 111000

INCR (after) = 000000 000000 000000 000001

Overflow has not occurred; KNB = 1.

• Add the 24 bit field INCR to tetrad 14.

E	LABEL OPERATION		O P E R A N D S				P		
6	7 1	1	13	18	19	30	40	45	46
$\left[ \right]$			AT		INCR	<b>1</b> , <b>1</b> , <b>4</b> , <b>1</b>		5	
L		L			$\sim$				

Tetrad 14 (before) = 111111 111111 111111 111111

INCR (before) = 000000 000000 000000 000001

Tetrad 14 (after) = 000000 000000 000000 000000

INCR (after) = 000000 000000 000000 000001

Overflow has occurred; KNB = 0.

3

PAGE:

#### 3.1.4. COMPARE TETRAD

Format: **СТ** М, Т, Х

Function: Compare the contents of the specified tetrad T against the contents of  $M_x$ -3,  $M_x$ -2,  $M_x$ -1, and  $M_x$ .

Notes:

- a. The comparison is a 24 bit binary comparison. No signs are involved.
- b. The result of the comparison is stored in testable indicators as follows:

Result of Comparison [*]	Status of Indic	ators after	Comparison	
Indicator Number (octal)	0 41	042	043	044
Indicator Number (decimal	) 33	34	35	36
Suggested Mnemonic	KHI (High)	KEQ (Equal)	KUQ (Unequal)	KLO (Low)

	(High)	(Equal)	(Unequal)	(Low)
$(T) = (M_x)$	0	1	0	0
$(T) < (M_x)$	0	0	1	1
$(T) > (M_{x})$	1	0	1	0

Neither operand is altered. c.

Example:

Compare the contents of tetrad 9 against the four character field labeled LIMIT.

E	LABEL OPERATION			OPERANDS				
841 6	7 11	Ł	13 18	19	30	40	45	46
			С,Т,,,,,	L, I	,M,I,T,,,,9,,,,,		1 1	$\Box$
		L						$\Box$

If tetrad 9 contains 001000 101011 100011 010101

and LIMIT contains 000100 101011 100011 010101

the contents of tetrad 9 are greater than the contents of the field LIMIT. After this comparison is made, KHI and KUQ are set to 1, and KLO and KEQ are set to 0.

* (T) means "the contents of tetrad T";  $(M_{y})$  means "the contents of M_x".

PAGE

### 3.1.5. FIX TETRAD

Format: **FT** M, T, X

Function: Place the 15 bit M portion of the instruction into the 15 least significant bit positions of the specified tetrad T.

Notes:

- a. The value of M is placed in the tetrad specified: not the value at the address specified by M; but the 15 bit value of M itself. In this instruction, M is a constant. After the instruction is executed, the 15 least significant bits of the tetrad will equal the M portion of the FT instruction.
- b. Binary zeros are inserted in the most significant bits of the second most significant character of the tetrad.
- c. The most significant character of the tetrad is not affected by the instruction.
- d. The interpretation of indexing is unique for this instruction. If the index register is used, the value which is stored in the tetrad is the binary sum of the M portion and the contents of the index register specified. Carries beyond the fifteenth bit are ignored.

Examples:

- Place the binary equivalent of a decimal 128 in tetrad 9 (index register 1).
- This replaces the contents , if any , of IR1.

E	LABEL		OPERATION	0 P	6	
6	7 11	¥	13 18	19	30	40 45 46
			F, T, , , , ,	1,2,8,,,X,1 [*]		
			X1 (be	fore) = 010100	111111 111111 11111	1
		S	AME FT Ins	struction: $\begin{bmatrix} 0P \\ 01000 \end{bmatrix} \begin{bmatrix} X \\ 000 \end{bmatrix}$		0 001001
			X1 (af	ter) = $\underbrace{010100}$	000000 000010 00000	0

Note that the most significant character is not altered, and that binary zeros are inserted into the three most significant bit positions of the second character.

This form cannot be used in the processor with 4096 storage locations. PAL Jr. does not have the facility to compute a tetrad number from an index register designation. The tetrad number must be used in the T expression position.

PAGE:

Add the binary equivalent of a decimal 128 to the contents of index register 1.





• Subtract the binary equivalent of a decimal 128 from the contents of index register 1.

F	LABEL	]	01	ERATION		OPERANDS			
INS 6	7 11	H	13	18	19	30	40	45	46
Γ			F	Τ	-,1	2,8,,,X,1,,,X,1,,,			
							$\sim$		$\Box$

or

E	LABEL	71	OPERATION	Γ	OPERANDS		P
6	^s 71	1	13 18	19	30	40	45 46
		Ι	F.T.	0	7,7,6,0,0,,,X,1,,,X,1		
C		L				$\sim$	

X1 (before) = 010100 000000 000100 000000

X1 (after) = 010100 000000 000010 000000

Note that the value to be subtracted is expressed either as a decimal integer with a a leading minus sign, or octally as the fifteen bit two's complement of the value.

N.B. Although the examples show values in the most significant character position of an index register tetrad, it is not advisable to have anything in that character but binary zeros. An index register tetrad should not contain anything other than an index register value.

### 3.2. DATA TRANSFER INSTRUCTIONS

The UNIVAC 1050 System has two types of data transfer instructions: instructions involving the arithmetic registers, and instructions which do not involve arithmetic registers. Under the first category, data is transferred into and out of arithmetic registers. In the second category, data are transferred either from one area of store to another, or from the instruction itself into store.

a. The format of data transfer instructions using the arithmetic registers is

E	LABEL		OPERATION	O P E R A N D S		βŢ
6	<b>7</b>	1	13 18	19 30	40 45	5 46
			0, P, a, , , ,	M,,,,L,,,X,,,,,,,,,,,,,,,,,		
L		T			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\Box$

where

**OP** is the mnemonic operation code,

- **a** is 1 or 2, indicating arithmetic register 1 or arithmetic register 2,
- M is an expression naming the operand address,
- L is a decimal or octal number or a defined label specifying the operand length in terms of characters,
- X is an expression naming an index register.

If index register modification is not desired, the X expression is omitted. The assembler will insert binary zeros in the index register portion of the instruction.

The format of data transfer instructions using the arithmetic registers is

E	LABEL	]	OPERATION		OPERANDS			5
6	7 11	ł	13 18	19	30	40	45	46
			0, P, , , , ,	м,	, <b>, C, , , X</b> , , , , , , , , , , , , , , , ,			
	$\sim$				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~		$\Box$

(See Store Character)



(See Transfer Block)

3

PAGE:

where

- **OP** is the mnemonic operation code,
- M is an expression naming an operand address,
- **C** is the actual character that is to be transferred,
- X is an index register expression.

Note: In all data transfer instructions, the sending field is never altered except when sending and receiving fields overlap.

3

PAGE

## 3.2.1. BRING DECIMAL

Format: **BDa** M, L, X

Function: Bring the L consecutive characters whose least significant character is at M_x into the least significant characters of AR1 or 2. All zone bits except the sign bit are changed to binary zeros.

Notes:

- a. L is a decimal number ranging from 1 to 16, or an equivalent expression.
- b. If less than sixteen characters are transferred, a *sentinel* is inserted in that character position of the arithmetic register which is immediately to the left of the Lth character copied. This sentinel is the character &, which, in the UNIVAC 1050 character set, is 110011. Insertion of the sentinel is an automatic hardware function. Characters to the left of the sentinel are not affected.
- c. The zone bits of each character with the exception of sign the bit (most significant bit of the LSD) are changed to binary zeros.

Examples:

 Bring the four character constant K1 into the four least significant character positions of AR1.

E	LABEL		OPERATION	O P E R A N D S	,	
6	7	11	13 18	19 30	40	45 46
			B, D, 1,	K,1,,,,4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		J				



•

3

15

 If a field containing information other than numeric information is brought to an arithmetic register by a BDa instruction, all zone bits are deleted in the transfer, with the exception of the sign bit. For example,

E	LABEL		Γ	OPERATION		O P E R A N D S			2
6	7	11	1	3 18	19	30	40	45	46
Γ				B, D, 1, , , ,	N, A, M, E	., 1.0		1 1	$\Box$
	$\square$	ノ	T	$\langle$		$\sim$	$\sim$	$\sim$	$\Box$

results in		·	r	r			r		r		r		r				
AR1 (before)	=	7	w	1	2	4	5	5	2	7	3	8	6	0	8	2	+ 4
NAME	=							J		w	I	L	L	1	A	м	s
AR1 (after)	=	7	w	1	2	4	&	1		6	9	3	3	9	1	4	к

The least significant character of NAME is an S(110101). When it is transferred to AR1, only the sign bit appears in AR1; the least significant zone bit is deleted, changing the S to K(100101).

Format:	<b>BA</b> a M, L, X		na daga kang bilang sa
Function:	0	ve characters whose least significant character pos	8

Notes:

a. L is a decimal number ranging from 1 to 16, or an equivalent expression.

b. The zone bits of all characters are transferred, and no sentinel is inserted.

Example:

Bring the 10 character field NAME into the 10 least significant positions of AR1.

E	LABEL	1	OPERATION	O P E R A N D S		À
6	7 1		13 18	19 <b>30</b>	<b>40</b> 45 40	6
T		Τ	B, A, 1, , ,	N, A, M, E, , , 1, 0, , , , , , , , , , , , ,		
L						Γ



PAGE:

PAGE:

## 3.2.3. STORE ARITHMETIC REGISTER

Format: SAc M, L, X

Function: Store the L least significant characters of AR1 or 2 in the L consecutive character positions whose least significant character is at M_x.

Note:

L is a decimal number ranging from 1 to 16, or an equivalent expression.

Example:

Store 8 characters from AR2 into TOTAL.

E	LABEL		0	PERATION		O P E R A N D S		I	P
6	7		13	3 18	19	30	40	45 4	46
Γ		T	s	A.2.	Т,				
レ		J	F	$\sim$				$\sim$	

### 3.2.4. STORE BOTH ARITHMETIC REGISTERS

Format: SAR M,,X

Function: Store the contents of arithmetic registers 1 and 2 in the 32 consecutive store positions whose least significant character is at M_x.

Note:

This instruction stores every position of both arithmetic registers, making the L portion of the instruction superfluous.

#### Example:

Store the contents of both arithmetic registers in TEMP.

E LABEL		OPERATION		OPERANDS			٦
6 7 11	ł	13 18	19	30	40	45	46
		S_A_R	T, E, M, P,				

3

PAGE:

### 3.2.5. STORE CHARACTER

Format:	<b>SC</b> М, С, Х	MVI fm(ax), 5C
rormat:	<b>3C</b> M, C, A	111 T du (de 1, 10

Function:

Store the six bit character C in location  $M_x$ 

Notes:

- a. This instruction stores the six bit character C in  $M_x$ . The arithmetic registers are not involved in the operation, unless  $M_x$  refers to some position in an arithmetic register.
- b. C is either
  - a decimal number ranging from 0 through 63, or
  - an octal number ranging from 0 through 077, or
  - a single character bounded by apostrophes.

Examples:

■ Store a binary 1 in COUNT.

E	LABEL		OPERATION		O P E R A N D S			2	2
6	7 1	1	13 18	19	30	40	45	46	(
Γ			sc	C,	Ο, U, N, T, , , , , , , , , , , , , , , , ,		1 1 1		$\rangle$
C		L			~~~~~	$\sim$			]

• Store the UNIVAC 1050 six bit code for the digit 1 in COUNT.

F	LABEL	OPERATION		OPERANDS			3
6	7 1	13 18	19	30	40	45	46
Σ		S_C	C, C	), U, N, T, , , , ', 1, ', , , , , , , , , , , , ,			$\Box$
					$\sim$	$\sim$	$\Box$

PAGE:

Store the six bit configuration 010100 in INDIC. This may be written in any one of three ways:

E	LABEL		OPERATION		O P E R A N D S		- A
6	7 11	ł	13 18	19	30	40	45 46
			\$_C	I . N.	D ₁ I ₁ C ₁ , <u>2</u> 10, <u>1</u>		
L			$\sim$				

because 010100 is the binary representation of 20;

F	LABEL		OPERATIO	1	O P E R A N D S			5
6	<b>7</b> 1	1	13 1	8 19	30	40	45	46
			S ₁ C ₁	1.1	I, D, I, C, , , 0, 2, 4, ,   , , , , , , , ,			$\Box$
						$\sim$		

because the binary number 010100 is noted octally as 024; or

Æ	LABEL	11	OPERATION		O P E R A N D S			3
6	7 11	H	13 18	19	30	40	45	46
Γ			s_c_	1 . N .D . I	,C,,,',A,',,   , , , , , ,			$\Box$
		L		$\frown$		$\sim$	$\sim$	

because 010100 is the UNIVAC 1050 six bit code for the letter A.

PAGE:

### 3.2.6. TRANSFER BLOCK FROM STORE

Format:

TFR (reset) TFI (increment) M,, X

Function: Transfer a block of consecutive characters beginning with the most significant character at  $M_x$  to that area in store whose most significant character position is stored in DST (tetrad 16).

### Notes:

- a. In the transfer block instructions, M_x addresses the most significant character position of the sending field.
- b. Prior to the execution of the TFR or TFI instruction, the binary count of characters to be transferred must be program set in the ten least significant bits of TCT (tetrad 18). The maximum number of characters that may be transferred is 1024. If the ten least significant bits of TCT are binary zeros, 1024 characters will be transferred.

The difference between the TFR and TFI instructions is that the address in DST is reset to its original value after the TFR (Transfer From, Reset) instruction is executed. After a TFI instruction the address in DST is incremented by the number of characters specified by TCT. If TCT contains zeros, DST is incremented by 1024. The original content of TCT is not disturbed by execution of this instruction.

- c. Prior to the execution of the TFR or TFI instruction, the address of the most significant position of the receiving field must be program set in DST (tetrad 16).
- d. After the TFR instruction has been executed, the address in DST is reset to its original value.
- e. After the TFI instruction is executed, the address in tetrad 16 is set to a value one greater than the address of the latest character of the sending field.

3

PAGE:

Example:

Transfer a block of eighty consecutive characters from the area whose most significant character position is labeled WSTOR, to the area whose most significant character position is labeled PUNCH. The sequence of instructions required to effect this transfer, using the TFR instruction, is as follows:

E	LABEL	11	OPERATION	O P E R A N D S		3
1N5	7 11	ł	13 18	19 30 40	45	46
5			F,T, , , ,	8,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$\Box$
			F.T	P.U.N.C.H., D.S.T., I., I., I., I., I., I., I., I., I., I	-	$\Box$
L			<b>T</b> , F, R.	W, S, T, O, R, , , , , , , , , , , , , , , , ,		
L					$\sim$	

PAGE

### 3.2.7. TRANSFER BLOCK TO STORE

Format:

TTR (reset) TTI (increment) M,,X

Function: Transfer a specified number of characters, the address of whose most significant character is stored in ORG (tetrad 17), to that area in store whose most significant character is M_x.

### Notes:

- a. In the transfer block instructions, M_x addresses the *most significant* character position of the receiving field.
- b. Prior to the execution of the TTR or TTI instruction, the binary count of characters to be transferred must be program set in TCT (Tetrad 18). The maximum number of characters that may be transferred is 1024. If the ten least significant bits of TCT are binary zeros, 1024 characters are transferred.

The difference between the TTR and TTI instructions is that the address in ORG is reset to its original value after the TTR (Transfer To, Reset) instruction is executed; after the TTI (Transfer To, Increment) instruction is executed, the address in ORG is incremented by the number of characters specified by TCT. If TCT contains zeros, ORG is incremented by 1024. On completion of the instruction TCT contains its original value.

- c. Prior to the execution of the TTR or TTI instruction, the address of the most significant position of the sending field must be program set in ORG (tetrad 17).
- d. After the TTR instruction has been executed, the address in ORG (tetrad 17) is reset to its original value.
- e. After the TTI instruction is executed, the address in tetrad 17 is set to a value one greater than the address of the latest character of the sending field.

# UNIVAC 1050 SYSTEMS

3

PAGE:

 $\bigcirc$ 

Example:

Using the TTI instruction, transfer a block of 80 consecutive characters from the area whose most significant character position is labeled WSTOR, to the area whose most significant character position is labeled PUNCH. After the transfer, leave ORG set to refer to WSTOR + 80.

*i**

E	LABEL		OPERATION	O P E R A N D S		Þ
6	7 11	ł	13 18	19 <u>30</u> 40	45	46
Γ			F, T,	8,0,,,,T,C,T,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$\Box$
			F,T,	W,S,T,O,R,,,,O,R,G,,,,,,,,,,,,,,,,,,,,,,,,,	1	
			T, T, I, , , ,	P,U,N,C,H, , , , , , , , , , , , , , , , , ,		
L					~	$\square$

PAGE:

### 3.3. ARITHMETIC INSTRUCTIONS

The UNIVAC 1050 System adds and subtracts in both the decimal mode and the binary mode, and performs multiplication and division in the decimal mode. Decimal arithmetic operations are governed by the following general rules:

- a. The length of an operand in an arithmetic register is specified by the sentinel character & (110011) immediately to the left of the most significant character of the operand.
- b. The length of an operand in store is specified by the instruction.
- c. Operands in the arithmetic registers must always occupy the least significant character positions of the register.
- d. Except for the sign bit and the zone bits of the sentinel character, the zone bits of operands are ignored and do not appear in the result.
- e. If the result of a decimal arithmetic operation generates a carry beyond the most significant character position of the result field, decimal overflow occurs. This terminates the instruction, sets a testable indicator, and initiates a Class II interrupt.

In decimal add and subtract operations, the four characters (blank, +,  $(0, \neq)$ ) having the internal form xx0000 will be converted to XS 3 zeros (000011) before the operation. Decimal operations should not be performed with any of the following invalid numeric digits:

BINARY VALUE

SOURCE CHARACTERS

xx0001		]	:	*	(	
xx0010		-	•	\$	,	
xx1101			=	%	)	
xx1110		;	<	,	>	
xx1111	-	[	#	Δ	μ	

Binary arithmetic operations are governed by the following general rules:

- a. No algebraic signs are associated with an operand.
- b. If the result of a binary arithmetic operation generates a carry beyond the most significant bit position of the result field, binary overflow occurs, which terminates the instruction and sets a testable indicator. Unlike decimal overflow, binary overflow does not initiate any interrupt.

PAGE:

### The formats of arithmetic instructions are



and

E	LABEL	11	OPERATION		O P E R A N D S		Þ i
6	s 7 1		13 18	319	30	40	45 46
			0, P, , , ,	м,	, , , C , , , , X, , , , , , , , , , , ,		
L	$\downarrow \frown$	L				$\sim$	

where.

- **OP** is the mnemonic operation code,
- a is 1 or 2, specifying the arithmetic register to be used,
- M is an operand address,
- L is usually a decimal or an octal number specifying the length of one of the operands,

C may be

- a single character enclosed in apostrophes,
- a decimal number ranging from 0 through 63,
- an octal number ranging from 0 through 077, or
- a symbolic expression.
- X is an index register expression.

PAGE:

### 3.3.1. ADD DECIMAL

Format: ADa M, L, X

Function:

Perform a decimal algebraic addition of the L character field whose least significant character is in  $M_x$  to the contents of AR1 or 2 and store the result in AR1 or 2

### Notes:

- a. If no sentinel character appears in ARa, the working length of ARa is sixteen characters. Otherwise, the sentinel character specifies the working length of ARa.
- b. Blanks (00 0000) in either operand are treated as decimal zeros (00 0011).
- c. Zone bits other than the sign bit of the operand and the zone bits of the sentinel are ignored and do not appear in the result.
- d. If the length of ARa is equal to or greater than L, the instruction is terminated when L characters have been added to ARa.
- e. If the length of ARa is less than L, decimal zeros are substituted for the first sentinel encountered in ARa and for all higher order positions of ARa, up to and including the Lth position. A sentinel is then inserted into the position immediately to the left of the Lth position of ARa, and addition proceeds.
- f. Carries are propagated up to the sentinel position. A carry into the sentinel does not alter the sentinel, but causes decimal overflow.
- g. When decimal overflow occurs, the AD instruction is terminated, and an interrupt is initiated which causes a transfer of control to the decimal overflow interrupt entry, a fixed hardware location.
- h. Decimal overflow interrupt can be inhibited either manually on the system console, or by programmed instruction. If interrupt has been inhibited, a testable indicator is set when overflow occurs.
- i. The result of an AD instruction is recorded in testable indicators as follows:

If sum = 0, KZR (Indicator 37) is set to 1

If sum  $\neq$  0, KZR (Indicator 37) is set to 0

If sum is +, KM (Indicator 38) is set to 0

If sum is -, KM (Indicator 38) is set to 1

If overflow, KDF (Indicator 40) is set to 1

If no overflow, KDF (Indicator 40) is set to 0

3

j. A decimal zero result is always positive, with the following exceptions:

$$(1) \quad -0 + (-0) = -0$$

(2) a false zero result (such as that obtained by adding 99 and 1, which should yield 100 but, on account of the sentinel, results in &00) will carry the sign of the full result.

Examples:

• Add the five digit field labeled FLDA to arithmetic register 1.

E	LABEL	71	OPERATION		OPERANDS			3
6	<mark>7 </mark> 1	₩	13 18	19	30	40	45	46
Γ			A, D, 1	F_L_D_A	A,,,,5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		L	5		$\sim$	$\sim$		$\Box$



Add the five digit field labeled FLDA to arithmetic register 2.

E	LABEL		OPE	RATION		OPERANDS		À
6	5 <mark>7 1</mark>	1	13	18	19	30	40	45 46
Γ			A D	2	F,L,D,A,,	5		
		ノ		$ \longrightarrow  $			$\sim$	



27

PAGE:

PAGE:

### 3.3.2. SUBTRACT DECIMAL

Format: **SDa** M, L, X

Function: Perform a decimal algebraic subtraction of the L character field whose least significant character is in  $M_x$  from the contents of AR1 or 2. and store the result in AR1 or 2.

Note:

This instruction operates identically to the ADa instruction, with the sole exception that the operation is a subtraction. Otherwise, the notes under the ADa instruction apply.

Examples:

• Subtract the five digit field labeled FLDA from arithmetic register 1.

E	LABEL		Γ	OPERATION		O P E R A N D S			2
6	7	11	21	3 18	19	30	40	45	46
			5	5,D,1,,,	F,L,D,A	5, , , , , , , , , , , , , , , , , , ,			
L		$\Box$	L		$\sim$		$\sim$		$\Box$



### • Subtract the five digit field labeled FLDA from arithmetic register 2.

LABEL		OPERATION						0	ΡE	R A	NC	) S									$\Box$
7 11	Ł	13 18	19							30							40			45	46
		S, D, 2, , ,	F,	L , D , /		_، 5	<u> </u>									+			L_L_		$\square$
		AR2 (before)	=	3 2	6	9	8	` <b>&amp;</b>	1	2	&	0	0	9	5	0	0	+ 6			
		FLDA	=											9	2	3	0	+ 4			
		AR2 (after)	=	3 2	6	9	8	&	1	2	&	0	0	0	2	7	0	+ 2			

PAGE:

## 3.3.3. ADD TO MEMORY

Format: **AMa** M, L, X

Function: Perform a decimal algebraic addition of the L least significant characters of AR1 or 2 to the L consecutive characters in store whose least significant character is M_x, and place the sum in the field at M_x.

### Notes:

- a. Addition is terminated when L characters have been added from the arithmetic register.
- b. If a sentinel is encountered in the arithmetic register before the Lth character is added, addition proceeds as though the sentinel and all characters to the left of the sentinel, up to the Lth position, were decimal zeros. The contents of the arithmetic register, however, are unchanged.
- c. Carries are allowed to propagate up to the Lth character in store. A carry occurring when the Lth character is added terminates the addition, and decimal overflow occurs, causing an interrupt and setting KDF (Indicator 40) to 1. The carry is lost.
- d. Except for the sign bit, zone bits are ignored, and they do not appear in the result.
- e. A zero result is always positive, except for the following cases:

(1) -0 + (-0) = -0

- (2) A false zero result occurring when a carry is lost carries the sign of the full true result.
- f. The results of the AM instruction are recorded in testable indicators as follows:

If the sum = 0, KZR (Indicator 37) is set to 1 If the sum  $\neq$  0, KZR (Indicator 37) is set to 0 If the sum is +, KM (Indicator 38) is set to 0 If the sum is -, KM (Indicator 38) is set to 1 If overflow, KDF (Indicator 40) is set to 1 If no overflow, KDF (Indicator 40) is set to 0

30

PAGE:

Examples:

 Add the 5 least significant characters of arithmetic register 1 to the field labeled FLDA.

E	LABEL		0	PERATION		O P E R A N D S			$\Box$
	7 1	1	13	18	19	30	40	45	46
			A,	M, 1, , ,	F,L,D	Ρ.Α.,			$\Box$
L		L	L		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\sim$	$\Box$



• Add the 5 least significant characters of arithmetic register 2 to the field labeled FLDA.

E	LABEL	71	OPERATION		O P E R A N D S		d
6	7 1	₩	13 18	19	30	40	45 46
Γ			A, M, 2	F,L,D	A,, ,5, , , , , , , , , , , , , , , , ,		
L		L			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	



PAGE:

## 3.3.4. SUBTRACT FROM MEMORY

Format: SMa M, L, X

Function: Perform a decimal algebraic subtraction of the L least significant characters of AR1 or 2 from the L characters whose least significant character is at  $M_x$ , and store the difference in the field at  $M_x$ .

Note:

This instruction operates identically to the AMa instruction, except that the operation is a subtraction. Otherwise, the notes under the AMa instruction apply.

Example:

Subtract the 5 least significant characters of AR2 from the 5 characters at BLNCE.

E	LABEL		OPERATION		O P E R A N D S			
6 7	11	¥	13 18	19	30	40	45	46
	+ + + + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$_M_2	B L N	Ν_C_E,, 5,			



PAGE:

### 3.3.5. MULTIPLY NON-CUMULATIVE

Format: MPN ,L

Function: Clear arithmetic register 1 to decimal zeros; multiply the multiplicand in arithmetic register 2 by the L least significant characters of MLR (tetrads 20 and 21); store the product, without sentinel, in arithmetic register 1.

Notes:

- a. Both the multiplicand and the multiplier must be positioned by previous instructions. The multiplier must be stored in the least significant character positions of tetrads 20 and 21 (MLR) and must be preceded by decimal zeros if less than eight characters. This field is eight characters long and is treated as one field. The L specifies the L least significant characters of the field.
- b. The length of the multiplicand is determined by the sentinel in AR2. This implies that the multiplicand must be loaded in AR2 by means of a BD2 instruction, rather than a BA2 instruction. No blanks should appear in the multiplicand field.
- c. The number of characters in the multiplicand plus the number of characters in the multiplier must not exceed 16. The product is limited to the sixteen character positions of AR1. If the number of characters in the product exceeds 16, undetected overflow may occur. A carry from the 16th position of AR1 will cause a detected decimal overflow which will set indicator 40 and cause a class II interrupt unless interrupt is inhibited.

The following are permissible combinations in multiplication.

Allowable length of multiplicand in AR2
1-15
1-14
1-13
1-12
1-11
1-10
1-9
1-8

- d. The sign of the product is governed by normal algebraic rules. Like signs yield a positive product, and unlike signs yield a negative product.
- e. If a sentinel appears in the least significant character position of AR2, the multiplicand is considered to be -0 and, depending on the sign of the multiplier, AR1 is cleared to either minus zeros or plus zeros.
- f. Multiplication destroys the contents of MLR (tetrads 20 and 21) but leaves the multiplicand in AR2 unaltered.

3

PAGE:

g. The result of the MPN instruction is recorded in the testable indicators as follows:

If product = 0, KZR (Indicator 37) is set to 1

If product  $\neq$  0, KZR (Indicator 37) is set to 0

If product is +, KM (Indicator 38) is set to 0

If product is -, KM (Indicator 38) is set to 1

- If overflow occurs, KDF (Indicator 40) is set to 1.
- h. The index register and M portions of the instruction are ignored. When an MPN instruction is coded, a blank expression must be written for the M portion.

Example:

Multiply a five digit multiplicand by a one digit multiplier. The first two instructions position the multiplicand and the multiplier.

E	LABEL	,		OPERATION	O P E R A N D S		
6	7	11	ł	13 18	19 <u>30</u> 40	45	46
		1		<b>B</b> , <b>T</b> , , , , ,	K.5,,,M,L,R,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	
				B,D,2, , ,	R,A,T,E,, ,5, , , , , , , , , , , , , , , , ,		i I
		1		M, P, N, , , ,	·		İ
J						$\sim$	-

(Note: In the illustrations below, the x's represent characters the values of which are immaterial to the MPN instruction.)

Before the MPN instruction is executed:

AR1	=	x	x	×	×	x	x	x	x	×	x	x	x	x	x	x	x
AR2	=	x	x	x	x	x	x	x	x	x	x	&	6	6	3	7	+ 7
MLR	=									0	0	0	0	0	0	0	+ 5

The multiplicand is 66377, and the multiplier is 5.

After the MPN instruction is executed:



3

### 3.3.6. MULTIPLY CUMULATIVE

Format: MPC ,L

Function: Multiply the multiplicand in arithmetic register 2 by the L least significant characters of MLR (tetrads 20 to 21), and add the product to the contents of arithmetic register 1.

Notes:

This instruction operates identically to the MPN instruction, with the following differences:

- a. AR1 is not cleared to zero.
- b. Any sentinel in AR1 is treated as a decimal zero.
- c. When the product is added to the contents of AR1, the absolute values of the products and of AR1 are added, and AR1 takes the sign of the product.
- d. KZR is not affected if the cumulative product is 0.
- e. If a carry occurs beyond the most significant character position of AR1, KDF (Indicator 40) is set to 1 and decimal overflow occurs. The carry is lost.
- f. Blanks in either AR1 or AR2 will result in an erroneous product.

Example:

Multiply a five digit multiplicand by a one digit multiplier. AR1 contains the value 7163398238.

E	LABEL		OPERATION	OPERANDS		Ţ	7
6	7 11	Y	13 18	19 <b>30 4</b> 0		45	46
			B, T, , , , ,	K.5,,,M.L.R.			$\Box$
	4 1 5 1		B, D, 2,	R,A,T,E,,,,5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1 1		$\Box$
7			M, P, C	, <u>1, , , , , , , , , , , , , , , , , , </u>		$\Box$	
L					$\checkmark$		$\Box$

ſ

3

PAGE:

(Note: In the illustrations below, the x's represent characters the values of which are immaterial to the MPC instruction.)

Before the MPC instruction is executed:



The multiplicand is 66377, and the multiplier is 5.

After the MPC instruction is executed:



 $(66377 \times 5 = 331885)$ 

DV ,L

3

PAGE:

### 3.3.7. **DIVIDE**

Function: Divide the dividend in arithmetic register 1 by the divisor in arithmetic register 2 and store an L character quotient in the L least significant character positions of QTN (tetrads 20 and 21).

### Notes:

Format:

- a. The sign of the quotient is determined by normal algebraic rules.
- b. The maximum size of the quotient is eight characters.
- c. The length of the divisor is specified by the sentinel in AR2.
- d. The length of the dividend must be equal to the length of the divisor plus the quotient, L. If the length of the dividend is less, AR1 must be extended by padding decimal zeros.
- e. The absolute value of the divisor shifted L positions to the left must be greater than the absolute value of the dividend. If it isn't, an Improper Divide (Class II) interrupt occurs and KDF (Indicator 40) is set to one.
- f. The length of the quotient plus the length of the divisor cannot be greater than 16; otherwise the quotient will be incorrect.
- g. If no sentinel is present in AR2, the computer stalls on the DV instruction.
- h. If a sentinel is present in the least significant position of AR2, the computer stalls on the DV instruction.
- i. The remainder, if any, is stored in AR1, and carries the sign of the original dividend.
- j. The M and X portions of the instruction are ignored. However, a blank expression must be coded for the M expression.
- k. Blanks cannot be substituted for decimal zeros in this instruction.

Example:

Divide a five digit field in AR1 by a two digit field in AR2, and store a four digit quotient in QTN (tetrads 20 and 21).

E	LABEL			OPERATION		OPERANDS			Þ
6	7	11	ł	13 18	19	30	40	45	46/
				D, V, , , , ,	, ,	⁴ , , , , , , , , , , , , , , , , , , ,			
Ľ							$\sim$		

(Note: The x's in the illustrations represent characters which are immaterial in the operation of the divide instruction.)

3

37

PAGE:

Before the DV instruction is executed,*



after the DV instruction is executed,



* If the quotinet 042529 were desired, it could be obtained by specifying L as 6 and using a dividend of 723000.

38

PAGE

### 3.3.8. ADD BINARY

Format:	ABa	M. 1	L. X

Function: Perform a

Perform a binary addition of the L least significant characters of AR1 or 2 to the L characters in store whose least significant character is in  $M_x$  and place the sum in the field at  $M_x$ .

Notes:

- a. The ABa instruction adds from ARa into memory, i.e., the sum appears in  $M_x$ .
- b. The contents of the arithmetic register are not changed, unless  $M_x$  addresses either arithmetic register in which case the contents of the two registers could be added or the content of one arithmetic register could be added to itself.
- c. The instruction specifies L characters; therefore the number of bits involved is always 6L.
- d. No algebraic signs are associated with the operands.
- e. A carry beyond the most significant bit of the operand in store is lost, but KNB (Indicator 39) is set to 0.
- f. If there is no carry beyond the most significant bit of the operand in store, KNB (Indicator 39) is set to 1.
- g. If the contents of the L store positions are binary zeros after the addition, KZR (Indicator 37) is set to 1; otherwise, it is set to 0.

Example:

Add, in binary, three characters from AR2 to TOTAL.



PAGE

### 3.3.9. SUBTRACT BINARY

Format: **SBa** M, L, X

Function: Perform a binary subtraction of the L least significant characters of AR1 or 2 from the L characters in store (whose least significant character is in M_x), and place the binary difference in the field at M_x.

Notes:

- a. The SBa instruction subtracts the contents of ARa from M_x placing the difference in M_x.
- b. The contents of the arithmetic register are not changed, unless  $M_x$  addresses either arithmetic register.
- c. The instruction specifies L characters; therefore the number of bits involved is always 6L.
- d. No algebraic signs are associated with the operands.
- e. This instruction adds the 2's complement of the value in the arithmetic register to the value in store.
- f. Carries propagate up to, but not beyond, the most significant bit of the field in store. A carry beyond the most significant bit is lost, but sets Indicator 39 to 1. If there is no carry KNB (Indicator 39) is set to 0. This differs from the setting described under the ABa instruction, because a carry beyond the most significant bit indicates that the result in M_x is the true difference. If there is no carry, the result is the complement of the true difference.
- g. If the contents of the L character positions are binary zeros after the subtraction, KZR (Indicator 37) is set to 1; otherwise it is set to 0.

Example:

Subtract, in binary, the 3 least significant characters of AR2 from QNTY.

E	LABEL	11	OPERATION					0 P	ER	AN	D	5						
6	<u>ງ</u> 11	Y	13 18	19					30	)						4	0	45 46
E			S, B, 2, , ,	Q, N, 1	Γ,Υ,,	, <u>,</u> 3,	-								-		_	
		A	R2 (before = & after)	x	x x	x x	×	x	x	x	x	x	x	x	6	5	3	(octal 111006)
		Q	NTY (before) =												8	6	к	(octal 131145)
		Q	NTY(after) =												-	]	#	(octal 020137)

3

PAGE:

### 3.3.10. ADD CHARACTER

Format: AC M, C, X

Function:

Add, in binary, the character C to the contents of  $M_x$ , and store the sum in  $M_x$ .

Notes:

- a. The binary value contained in the last six bit positions of the instruction is the increment.
- b. The binary sum is stored at  $M_x$ .
- c. Carries are allowed to propagate into  $M_x 1$  and as far as necessary.
- d. A carry beyond the most significant bit of M_x sets KNB (Indicator 39) to 0; if there is no carry beyond this position, KNB is set to 1.
- e. The arithmetic registers are not affected by this instruction, unless M_x addresses a character in AR1 or AR2.

Example:

Add the binary equivalent of a decimal 25 (011001) to the character labeled COUNT.

E	LABEL	11	OPERATION	I	OPERANDS			
6	7 11	H	13 18	19	30	40	45	44
$\sum$			A C	C_O_U_N_1	Γ, 2,5, , , , , , , , , , ,			$\Box$
					~~~~~	$\sim$		$\Box$

COUNT (before) = decimal 25

COUNT (after) = decimal 50

This instruction may also be written as

E	LABEL		OPERATION	O P E R A N D S				2
6	7 1	1	13 18	19	30	40	45	46
			A C	C'O'	U,N,T,, ,',F,', , , , , , , , , , ,			\Box
Γ		L			~~~~~			\Box

Since 011001 is the UNIVAC 1050 character code for the letter F, it may also be written as

3

PAGE:

\bigcirc	E	LABEL		[OPERATION		O P E R A N D S			\Box
	N SZ	7	11		13 18	19	30	40	45	5 46
					A, C, , , , ,	с, с	D,U,N,T,,,,0,3,1,,,,,,,,,,,,,,,,,,,			
		\sim		L	\sim				\sim	

In all three cases, the assembler produces the bit configuration 011001.

PAGE:

3.4. COMPARISON INSTRUCTIONS

.

These instructions compare two values, and the result of the comparison is recorded in the following indicators:

INDICATOR NAME	NUMBER
KHI (High Indicator)	33
KEQ (Equal Indicator)	34
KUQ (Unequal Indicator)	35
KLO (Low Indicator)	36

The settings of these indicators can be tested by the program and appropriate action can be taken.

Neither of the two fields involved in the comparison is changed as a result of the comparison.

The formats of the comparison instructions are

E	LABEL		OPERATION		O P E R A N D S			7
6	7 1	1	13 18	19	30	40	45 4	16
$\mathbf{\Gamma}$			0, P, a, , , ,	M _. , L	, X , , , , , , , , , , , , , , , , , ,			
								L

and

Σ	E	LABEL		OPERATION		O P E R A N D S			5
	6	7 11	Y	13 18	19	30	40	45	46
				0, P, , , ,	м,	, , , , , , , , , , , , , , , , , , ,			\Box
V		\langle	12			$\sim \sim \sim \sim$	~	$\langle \rangle$	\Box

where

OP is the mnemonic operation code,

a is 1 or 2, specifying the arithmetic register to be used,

PAGE:

M is an operand address,

L is an expression specifying operand length,

 $\boldsymbol{\mathsf{C}}$ may be

- a single alphanumeric character enclosed in apostrophes,
- a decimal number ranging from 0 through 63,
- an octal number ranging from 0 through 077,
- a symbolic expression,

X is an index register expression.

3.4.1. COMPARE DECIMAL

Format:	CDa I	M, L, X
---------	-------	---------

Function: Compare algebraically a signed number comprising all digits to the right of the rightmost sentinel in AR1 or 2 to a signed numeric field of L (maximum of L is 16) decimal digits, starting with the least significant digit location at M_x. Except for the sign bit zone portions are ignored; all characters are treated as decimal digits.*

Notes:

- a. If the signs of the two fields are unlike, the comparison is terminated immediately.
- b. If no sentinel is present in the specified arithmetic register, all sixteen characters of the register are used in the comparison.
- c. If there is a difference in the field lengths of the two operands, decimal zeros are assumed in the implied high order positions of the shorter field, i.e., if one field is five characters long and the other is eight characters long, the CD instruction assumes that the five character field is preceded by three decimal zeros.
- d. Comparison stops upon locating a sign difference or when the most significant character of the longer field has been compared algebraically.
- e. The result of the algebraic comparison is stored in testable indicators as follows:

Result of Comparison**	Status o	of Indicators	s after Compa	arison
Indicator Number (octal)	041	042	043	044
Indicator Number (decimal)	33	34	35	36
Suggested Mnemonic	KHI (High)	KEQ (Equal)	KUQ (Unequal)	KLO (Low)
$(ARa) = (M_x)$	0	1	0	0
$(ARa) < (M_x)$	0	0	1	1
$(ARa) > (M_{X})$	1	0	1	0

* Compare Binary should be employed for comparisons involving alphabetics.

** (ARa) means "the contents of ARa", and (M_) means "the contents of M_".

UNIVAC 1050 SYSTEMS CENTRAL PROCESSOR

3

PAGE:

Example:

Compare decimally the five character field at CONST with the seven character field in AR2.

The CD instruction assumes that CONST is a seven character field and treats it as if it were 0013582. Since the contents of AR2 are greater than the contents of CONST, the KHI and KUQ indicators are set.

3

46

3.4.2. COMPARE BINARY

Format:	СВа	Μ,	L,	Х	
Format:	CBa	Μ,	L,	Х	

Function: Perform an absolute binary comparison of the L least significant character positions of AR1 or 2 to the L characters whose least significant location is at M_x.

Notes:

- a. The comparison is an absolute binary comparison; therefore the operation continues until L characters have been compared.
- b. Since L specifies a length in terms of characters, the number of bits involved in the comparison is 6 L.
- c. The result of the comparison is recorded in the testable indicators as follows:

Result of Comparison	Status o	f Indicator	s after Compa	arison
Indicator Number (octal)	041	042	043	044
Indicator Number (decimal)	33	34	35	36
Suggested Mnemonic	KHI (High)	KEQ (Equal)	KUQ (Unequal)	KLO (Low)
$(ARa) = (M_x)$	0	1	0	0
$(ARa) < (M_{x})$	0	0	1	1
$(ARa) > (M_{x})$	1	0	1	0

Example:

Compare the two characters at CODEX against the two least significant characters of AR1.

Since the absolute binary value in AR1 is less than that in M_x , the KUQ (35) and KLO (36) Indicators are set to 1.

3-B

PAGE:

COMPARE CHARACTER - CC M, C, X

Function: Perform an absolute binary comparison of the character represented by C to the character in M_v.

Notes:

- a. C may be
 - a single alphanumeric character enclosed in apostrophes,
 - a decimal number ranging from 0 through 63,
 - an octal number ranging from 0 through 77, or
 - a symbolic expression.
- b. The result of the comparison is stored in the testable indicators as follows:

Result of Comparison	Status of Indicators after Comparison						
Indicator Number (octal)	041	042	043	044			
Indicator Number (decimal)	33	34	35	36			
Suggested Mnemonic	KHI (High)	KEQ (Equal)	KUQ (Unequal)	KLO (Low)			
$C = (M_x)$	†	1	0	†			
$C < (M_x)$	0	0	1	1			
$C > (M_{\chi})$	1	0	1	0			

Example:

Compare the character at KEY1 against the character D.

E	LABEL	OPERATION	O P E R A N D S		- A
1NS	7 11	13 18	19 30	40	45 46
T		С.С	K,E,Y,1,,,,',D,',,,,,,,,,,,,,,,,,,,		
				\sim	

If KEY1 contains the character G (011010), the character D (010111) is less than KEY1, the Unequal (35) and Low (36) Indicators are set to 1.

[†]Unchanged.

UP-3912

CENTRAL PROCESSOR

LOGICAL COMPARE - LC M, C, X

Function: Test the character at M_x for the presence of 1 bit in every bit position that corresponds to those bit positions of C which contain 1 bits.

Notes:

48

PAGE

3-B

SECTION:

- a. Only those corresponding bit positions in M_x and C containing 1 bits are compared. All other bits are ignored.
- b. If all bit positions in M_x that correspond to the 1 bits in C are also 1 bits, M_x and C are considered to be equal, and KEQ is set. Otherwise, C is considered to be higher in value.
- c. If C is binary zeros, M_x and C are considered to be equal, regardless of the contents of M_x.
- d. The result of the comparison is recorded in the testable indicators as follows:

Result of Comparison	Status o	fIndicators	s after Compa	rison
comparison	Status 0	I Indicators	s after compa	
Indicator Number (octal)	041	042	043	044
Indicator Number (decimal)	33	34	35	36
Suggested Mnemonic	KHI (High)	KEQ (Equal)	KUQ (Unequal)	KLO (Low)
	\$	(1 ,	(()
$C = (M_x)$	†	1	0	t
$C \neq (M_{x})$	1	0	1	0

Example:

Compare the 1 bits of the character '8' with the 1 bits of the character at CODE.

E	LABEL		OPERATION	O P E R A N D S	3
	7 11	V	13 18	19 30 40 45	46
			L C	C,O,D,E,,,,,8,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\Box
					\Box

3

* * * * * * * *

PAGE:

Since the UNIVAC 1050 bit configuration for the character '8' is 001011, CODE will be considered equal to 8 if the first, second, and fourth bits (counting from the rightmost bit) of CODE are 1 bits. Therefore the following bit configurations will set the Equal Indicator:

001011	(8)
011011	(H)
101011	(Q)
111011	(Y)
001111	([)
011111	(#)
101111	(Δ)
111111	(Ħ)

Any other bit configurations will set the KUQ and KHI Indicators.

3.5. SEQUENCE CONTROL INSTRUCTIONS

Normally the instructions in a UNIVAC 1050 program are accessed and executed sequentially, i.e., in the order that they appear in main store. Whenever the conditions of the program require a break in this normal sequence, the sequence control instructions are used.

In the normal, sequential execution of instructions, the control counter is automatically incremented by five whenever an instruction is executed. This provides the control unit with the address of the next instruction to be accessed by the control register.

Sequence control instructions override this normal incrementation by changing the contents of the control counter. This transfers program control to some instruction which is not in sequence.

The format of a sequence control instruction is

E	LABEL OPERATION		N	O P E R A N D S		I		
6	7 1		13	18 19	30	40	45	46
\sum			0 P	M	, , I , , , X , , , , , , , , , , , , , , , , , , ,			\Box
L								7

or

where

OP is the mnemonic operation code,

M is the *label* of an instruction,

is an expression identifying an *indicator*,

N is an expression giving a *number*,

X is an index register expression.

In some special forms of sequence control instructions, the I expression is implied by the operation code, in which case the instruction is written as follows:

PAGE:

3.5.1. JUMP

Format: J M, X

Function: Transfer program control unconditionally to the instruction labeled M_x .

Example:

Transfer program control unconditionally to the instruction labeled ENDRN.

E	J LADEL		OPERATION	OPERANDS	$\overline{\ }$
6	7 11	ł	13 18	19 <u>30</u> 40 45	46
Γ			J		\Box
			\sim		\Box

3.5.2. JUMP IF GREATER

Format: **JG** M, X

3.5.3. JUMP IF EQUAL

Format: JE M, X

3.5.4. JUMP IF UNEQUAL

Format: JU M, X

3.5.5. JUMP IF SMALLER

Format: JS M, X

Function: Test the comparison indicator specified by the operation code. If the indicator is set to 1, transfer control to the instruction labeled M_x ; if it is set to 0, execute the next instruction in sequence.

Notes:

- a. These four conditional jump instructions are not available with the PAL Jr. System which is employed on the 4096 character storage capacity Central Processor. The PAL Jr. System uses the Jump Conditional instruction with indicator 33 for Jump if Greater, 34 for Jump if Equal, 35 for Jump if Unequal, and 36 for Jump if Smaller.
- b. These instructions are used in conjunction with the comparison instructions (CT, CDa, CBa, CC, and LC). After a comparison instruction has been executed, one or more of the comparison indicators (KHI, KEQ, KUQ, KLO) is set. The comparison jumps test these indicators.
- c. If a second expression appears on a line, it is interpreted as an index register expression.

PAGE:

Example:

A comparison instruction has just been executed. If the Equal Indicator was set as a result of the comparison, transfer control to the instruction labeled HEADR.

E	LABEL		OPERATION		OPERANDS	• • •		3
6	7 11	ł	13 18	19	30	40	45	46
\sum			JE	H,E,A,	D,R,,,,,,,,,,,,,,,,,,,,			
						\sim		

3-B

PAGE:

HALT, THEN JUMP - JHJ M, X

Function: Stop the computer. When the Program Start button on the console is depressed, transfer program control to the instruction labeled M_x.

Notes:

- a. This instruction is provided to allow the program to stop the computer and await some action on the part of the operator before processing is resumed.
- b. When the computer stops, the control counter already contains the address of the instruction to be executed when the Program Start button is depressed.

JUMP DISPLAY - JD M, X

Function:

Stop the computer and display the binary value at M_x on the console display lights. When the Program Start button on the console is depressed, execute the next instruction in sequence.

Note:

The notes under the JHJ instruction apply, except that M_x is ignored and is used for display purposes only. When the Program Start button is depressed, control is transferred to the next instruction in sequence.

JUMP CONDITIONAL* - JC M, I, X

Function:

Transfer control according to the specification I.

Notes:

54

PAGE:

- Conditional
 - 1. The following indicators are associated with arithmetic operations.

Indicator Control is transferred to M, if:

- The result of the last arithmetic operation was zero. 37 (KZR)
- The result of the last decimal arithmetic operation was negative. 38 (KM)
- 39 (KNB) No overflow occurred in the last binary add operation or overflow did occur in last binary subtract operation.
- Decimal overflow occurred since the last test for this condition.** 40 (KDF)
- 2. The following values of I test the Sense Indicators. The Sense Indicators are devices which are set and reset by program instructions (See Unconditional, Note 1). The Sense Indicators exist as a convenience for the programmer; while the comparison indicators are set and reset as a result of a comparison, the Sense Indicators may be set and reset arbitrarily.

Indicator	Control is transferred to M_{χ} if:
53	Sense Indicator 1 is set to 1.
54	Sense Indicator 2 is set to 1.
55	Sense Indicator 3 is set to 1.

3. The following indicators test the setting of the Sense Switches, which are set and reset manually. These Sense Switches are on the console.

Indicator	Control is transferred to M_x if:
50	Sense Switch 1 is ON
51	Sense Switch 2 is ON
52	Sense Switch 3 is ON

* A listing of the various values of I and of their significance is provided on page 3-E-4.

** KDF is reset to zero when tested. All other indicators are unaffected by testing.

SECTION:

3

PAGE

- Unconditional
 - a. The following indicators set and reset the testable Sense Indicators (See Conditional, Note b). The Sense Indicators are not tested. After they are set or reset, the instruction causes an unconditional transfer of control to M_v.

Indicator	Function
18	Set Sense Indicator 1 to 1 and jump to M_x .
19	Set Sense Indicator 2 to 1 and jump to M_x .
20	Set Sense Indicator 3 to 1 and jump to M_x .
21	Reset Sense Indicator 1 to 0 and jump to M_{χ} .
22	Reset Sense Indicator 2 to 0 and jump to M_{χ} .
23	Reset Sense Indicator 3 to 0 and jump to M_{χ} .

- b. The indicators 00 and 24 cause an unconditional transfer of control to M_x , i.e., they cause the JC instruction to operate identically to the J instruction. The J instruction is actually a JC instruction which the assembler automatically supplies with the indicator 00.
- c. The indicators 32 and 56 do not test any of the hardware indicators. Control is always transferred to the next instruction in sequence; in other words, a JC instruction with an I expression of either 32 or 56 is a skip, or a No-Operation instruction.
- d. Indicator 41 stores the settings of comparison indicators 33 and 34 and the arithmetic indicators 37-40 in M_x. It is unnecessary to store indicators 35 and 36 (unequal and low) with indicators 33 and 34 (high and equal) stored. These indicators are stored in character M_x in the following order: 40, 39, 38, 37, 34, 33.

Indicator 42 sets indicators 33-40 from M_x . Be careful that indicator 40 (decimal overflow) is set properly. If by setting indicator 42 indicator 40 is set, a Class II interrupt will be caused.

Example:

If the result of the last arithmetic operation was zero, transfer control to ZRBAL.

E	LABEL		OPERATION		OPERANDS			3
6	7 11	ł	13 18	19	30	40	45	46
\sum			J_C	Z,R	, R, B, A, L, , , 3, 7, , , , , , , , , , , , , , ,			
	\sim			\langle	\sim	\sim		\Box

PAGE:

3.5.9. JUMP RETURN

Format: JR	М,	, I,	Х	
------------	----	------	---	--

Function: Test the indicator specified by I*. If it is set to 1, store the address of the next instruction in sequence in the *address portion* of the instruction at M_x. Program control is then transferred to the instruction immediately following the one at M_x.

Notes:

- a. This instruction provides the programmer with the facility of breaking program sequence and executing a subroutine; then it returns program control to the instruction immediately following the JR instruction.
- b. In order that control be returned to the instruction immediately following the JR, the last line of the subroutine must be a J to the same label (M_x) as the label to which the JR was executed.
- c. The instruction at M_x must be a J instruction with no index register expression. The address portion of this J instruction is usually zero, although any value may be placed in it. This portion is destroyed when the JR to that line is executed.
- d. The JR instruction tests the same indicators as those which the JC instruction does. The only difference between a JR and a JC instruction, other than in timing, is that a JR stores the address of the instruction immediately following it in the address portion of the instruction labeled M_x and transfers control to M_x + 5, while the JC merely transfers control to M_x.
- e. Additional values of I are as follows:

Indicator	Function
16	Stop the computer. When the Program Start button on the console is depressed, store the address of the instruction immediately following in the address portion of the instruction at M_x , and transfer control to $M_x + 5$.
33 (KHI)	If the High Indicator is set, store the address of the instruction immediately following in the address portion of the instruction at M_x , and transfer control to M_x + 5.
34 (KEQ)	If the Equal Indicator is set, store the address of the instruction immediately following in the address portion of the instruction at M_x , and transfer control to $M_x + 5$.

A listing of the various values of I and of their significance is provided in Table 4-1, Page 4-4.

UP-3912

CENTRAL PROCESSOR

 $M_{x} + 5.$

3-B

57

PAGE:

35 (KUQ) If the Unequal Indicator is set, store the address of the instruction immediately following in the address portion of the instruction at M_x, and transfer control to M_x + 5.
 36 (KLO) If the Low Indicator is set, store the address of the instruction immediately following in the address por-

Example:

A binary subtract instruction has just been executed. If no overflow has occurred, the result is the complement of the true result, and must be recomplemented. The subroutine whose first instruction is RCMPL must be performed. In either case, processing must continue whether or not the recomplementation subroutine has been executed.

tion of the instruction at M_x , and transfer control to

Test for binary overflow; if none has occurred, perform the subroutine whose first line is labeled RCMPL; otherwise, continue processing.

E	E LABEL		OPERATION		OPERANDS		- I d
6	7	11	13 18	19	30	40	45 46
	T,E,S,T,		J R	R _, C _, M _, P _, L _,	, K , N , B		
		T					

The line labeled RCMPL might be

7	Ε	LABEL	7	OPERATION		O P E R A N D S			P
	1NS 6	7 1		13 18	19	30	40	45	46
		R _C MPL		J	\$_		'l		\Box
									\Box

If the JR instruction above effects a transfer of control, this line will become, effectively,

E	LABEL		OPERATION		OPERANDS	1999 - Carlon Barrison, 1997 - Carlon Barrison, 1997		Γ
AS 6	7 11	ł	13 18	19	30	40	45	46
	R _, C _, M _, P _, L		J	T_E_S_T_+	5		· · · ·	\Box
		L	\sim			\sim	\sim	\Box

PAGE:

UNIVAC 1050 SYSTEMS

UP-3912

C

Q

and the last line of the subroutine must be

E	LABEL	1	OPERATION	O P E R A N D S		
	7 11	ł	13 18	3 19 30 40	45	46
			J	R,C,M,P,L,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
						7

which will transfer control to TEST + 5.

3-B

59

PAGE:

JUMP LOOP - JL M, N, X

Function: Test the N portion of the instruction against binary zeros (000000). If equal, execute the next instruction in sequence. If unequal, decrement the N portion by a binary 1 (000001) and restore the new value of N in the N portion of the instruction in main store. If the new value of N is still unequal to 000000, transfer program control to the instruction at M_x; otherwise, execute the next instruction in sequence.

Notes:

- a. The N portion of the instruction is never decremented past 000000.
- b. The N portion serves as the working counter for the instruction. It is decremented by 000001 every time that the JL instruction is executed.
- c. The maximum value of N is 63.
- d. After N has been decremented to 000000, N must be reset by a program instruction (usually an SC instruction) to its original value. Otherwise, N will remain at 000000 the next time that the JL instruction is executed.

Example:

Execute the subroutine, the first line of which is labeled BINAD, 9 times. The line of the subroutine may be coded as follows:

V	Ε	LABEL		OPERATION	O P E R A N D S	
Ĺ	5 5	7 11	Y	13 18	19 <u>30</u> 40 4	45 46
J		R,P,T,A,D		J . L	B, I, N, A, D, , , 9, , , , , , , , , , , , , , ,	

It is recommended that the next line be

l	E	LABEL		OPERATION	OPERANDS		7
ſ	1NS 6	7 11	ł	13 18	19 <u>30</u> 40	45	46
		A A À I É		s _, c	R P T A D + 4 , , 9 		\Box
Q	1	$\langle \rangle$					

so that, when the N portion of the line labeled RPTAD is decremented to 000000, it is reset to its original value of 9.

6 EDITING INSTRUCTIONS

The editing instructions in the UNIVAC 1050 instruction repertoire are used to alter the form of information in store by means other than arithmetic instructions. The formats of editing instructions are:

E	LABEL		OPERATION	O P E R A N D S		
6	5711	Y	13 18	19 30	40	45 46
			、 O, P, a, , , ,	Μ., ΙΔ., ΙΧ. Ι Ι Ι Ι Ι Ι Ι Ι		
			0, P, , , , ,	M,,,,L,,,X,,,,,,,,,,,,,,,,,		
			0, P, n, , ,	M,,,,S,,,X,,,,,,		
L			O ₁ P ₁ <u>1</u> <u>1</u>	M, , , C, , , X, , , , , , , , , , , , ,		
L						

where

- OP is a mnemonic operation code,
- a is 1 or 2, specifying an arithmetic register,
- n is the number of characters involved in a bit shift,
- M is an expression specifying an operand address,
- L is an expression specifying operand length,
- S is an expression specifying the number of bit positions that an operand is to be shifted,
- C is a six bit editing pattern, and
- X is an index register expression.

TRANSLATE - TR M, L, X

Function: Replace the L characters whose least significant character is in M_x using a translation table.

Notes:

- a. The maximum value of L is 64.
- b. A translation table may consist of a maximum of 64 characters stored in any row of store from 0-63. The row number must be program set in absolute location 72 (TRO).
- c. The M_x expression specifies the location of the least significant character to be translated. Translation works from the least significant to the most significant character, until the number of characters specified by L have been translated.
- d. The TR instruction replaces each character in the field to be translated with a character selected from the row specified by TRO. The basis for selecting the replacement character is the binary value of the character to be replaced. The binary value of any six bit character ranges from zero (000000) through 63 (11111). This binary value provides the character address of the particular six bit configuration within the specified row which is to replace the character. In other words, a character with a binary value of zero (000000) is replaced by whatever character is prestored in position 0 of the translate row; a character with a binary value of 1 (000001) is replaced by whatever character is prestored in position 1 of the translate row; and so on.
- e. The contents of the translate row are not altered by the instruction, unless the translate row itself is translated.
- f. If L is greater than 15, L may not be implied by means of a previous definition (cf. AREA Directive).

61

PAGE:

PAGE: 62

UNIVAC 1050 SYSTEMS

Example:

A three character field containing the bit configurations 010101 010100 100010 is labeled FLD1. These bit configurations are the 90 column card codes for the characters A B C. FLD1 is to be printed and must be translated from 90 column card code to UNIVAC 1050 XS 3 code. The translation table is in Row 10 (locations 640-703). The first instruction places the row number in TRO.

E	LABEL		OPERATION	O P E R A N D S	
6	7 11	Y	13 18	19 30 40 45	46
Σ			S,C,	T, R, O, , , , , , , , , , , , , , , , ,	
			T.R.	F_L_D_1, 3	
L					Ľ

FLD1 (before)	= 0	10101	010100	100010		
90 column equivalen	t =	Α	В	С		
Decimal value	=	21	20	34		
Character position Row 10			20 (010101	21) (010100	34 0)(010110)	
1050 equivalent	_		В	A	С	
FLD1 (after)	= 0	10100	010101	010110		
1050 equivalent	=	Α	В	С		

PAGE:

3.6.2. EDIT

Format: **ED** M, L, X

Function: Edit the L least significant characters of arithmetic register 1 into the store positions whose least significant character is M_x under control of the pattern in AR2.

Notes:

a. The maximum value of L plus E is 16.*

b. The edit instruction facilitates the following operations on a data field

- elimination of the sign bit
- translation of the sign to a form suitable for printing
- insertion of punctuation (any alphanumeric character except ^(a)) in the data field:
- c. Data in AR1 is placed in the designated storage, in character positions that correspond to the location of the @ and \blacksquare characters in AR2.
- d. If the least significant character in AR2 is

- a minus sign (000010), two functions will be performed:

- if the field in AR1 is negative, a minus sign is placed in M_x; if the field is positive, a blank is placed in M_x.
- the least significant character in AR1 is transferred to M_x-1 and binary, zeros are placed in the zone bits.
- **¤** a lozenge (111111), the numeric bits of the least significant character of AR1 are copied into location M_w, and binary zeros are placed in the zone bits of M_w.
- [0] an "at" character (100000), the least significant character of AR1 is copied into M_x without alteration.

Any other character appearing in the least significant character position of AR2 is transferred to location M_x unaltered.

- e. Except as noted in note d, any character in AR 2, other than an @, is transferred unaltered to a corresponding position in the designated storage area; an @ causes the corresponding character in AR1 to be transferred to the designated storage area unaltered.
- f. The number of @ characters in AR2 must be at least equal to the number of characters specified by L.

^{*}E = number of characters inserted into the edited field.

PAGE:

Examples:

Edit the 10 least significant characters of AR1 according to the pattern contained in AR2, placing the edited field in the locations whose least significant character is labeled TOTAL.

E	LABEL		OPERATION		OPERANDS			2
1NS 6	7 11	ł	13 18	19	30	40	45	46
			E ,D , , , , , ,	A, T, O, T	L,,,,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 1	

After the instruction is executed, the field labeled TOTAL contains

Character position TOTAL is blank because the field is positive. If it were negative, TOTAL would contain

							_							F	TOTAL
x	1	2	,	3	4	5	,	6	7	8	•	9	0	-	

Edit the 8 least significant characters of AR1 according to the pattern in AR2 and store the edited field in the field labeled TOTAL.

E LABEL AIS 6 7 11	ОР 13	ERA		N 181	9				, e	. (ΟP	E R 30		DS					40	45 4	6
	E,D	<u> </u>		Ţ	r 'o	T , A	L	<u> </u>	8			-			<u> </u>		-	<u> </u>			
	ARI	. =	0	0	0	0	0	0	0	0	3	4	5	6	7	8	9	ō			
	AR2	2 =	0	0	0	@	@	,	@	@	@	,	@	@	0		@	@			
	Afte	er the	e ins	stru	ctio	n is	ex	ecu	ted,	. тс	OTA	Lw	vill	con	tair F		ота	L			
			x	x	x	3	4	5	,	6	7	8		9	!						

3-B

65

PAGE:

because the minus sign appears in the zone bits of the least significant character in AR1, the least significant @ character in AR2 acts as a \blacksquare and the zone bits are not transferred. (If the zone bits were to be transferred the result would be the 1050 character for the exclamation point.)

Edit the 8 least significant characters of AR1 according to the pattern in AR2 and store the edited field in the field labeled TOTAL.

E	LABEL	71	OPERATION	OPERANDS		JG
6	7 1		13 18	19 30	40	45 46
ſ			ED	T O T A L , 8		
		L				

After the instruction is executed, TOTAL will contain

3 4 5 , 6 7 8 . 9 0	*	т	0.	т	A	L	
---------------------	---	---	----	---	---	---	--

ZERO SUPPRESS - ZS M, L, X ZS\$ M, L, X ZS* M, L, X

Function: Beginning at location M_x and working to the right on a maximum of L characters, replace blanks, zeros, and commas until a character which is neither a blank, a zero, nor a comma is encountered.

Notes:

66

- a. In this instruction, M_x specifies the most significant character position of the field, as the instruction operates on the field from left to right.
- b. The maximum value of L is 16.
- c. A ZS instruction replaces all leading blanks, zeros, and commas with blanks.
- d. A ZS\$ instruction replaces all leading blanks, zeros, and commas with blanks, and inserts a dollar sign (\$) in the position immediately to the left of the first character encountered which is neither a blank, a zero, nor a comma.
- e. A ZS* instruction replaces all leading blanks, zeros, and commas with asterisks (*).
- f. A count (from 0 to 16), expressed in binary, of the number of characters suppressed is stored by the circuitry in ZCT (absolute location 73).
- g. If M_x is not a blank, a zero, or a comma, and a ZS\$ instruction is executed, a dollar sign is inserted into M_x-1.

Example:

Suppress leading zeros, commas, and blanks in the field whose most significant character is labeled TOTAL - 15.

TOTAL-15 through TOTAL =	0	,	0	1	2	,	3	4	5	,	ő	7	8	9	0

If the instruction is

E		ABEL	71	0	PERATION		O P E R A N D S	······································		9
61	7	1		13	18	9	30	40	45	46
\Box				z	S	т,о,т	A, L, -, 1, 5, , , 1, 3			
L					$\langle \rangle$	~	\sim			

67

PAGE:

after the instruction is executed, the field TOTAL -15 through TOTAL would contain 1 2 3 5 6 7 8 9 0 4 **TOTAL - 15** TOTAL If the instruction is OPERANDS OPERATION LABEL 6 7 18 19 30 11 13 40 45!46 ZS T, 0, T, A, L, -, 1, 5, 7, 1,3 the field would contain 5 7 8 \$ 2 3 Δ 6 9 0 TOTAL TOTAL - 15 -If the instruction is OPERANDS LABEL OPERATION 18 19 30 11 3 40 45 TIOITIAIL 1.3 -1.5.7 the field would contain 2 5 7 8 9 0 3 4 6 TOTAL-15 L TOTAL

In all three cases, ZCT would contain a 3 expressed in binary (000011).

PAGE:

	 — •	-	÷.,			
3.6.4.	ΡΔ	D	B	Ι. Δ	N	KS

3.6.5.

Format:	PD	M, L, X
PAD ZEROS		

Format: **PDO** M, L, X

Function: Place decimal zeros (000011) or blanks (000000), as indicated by the operation code, in the L locations whose least significant character is at M_x.

Notes:

- a. The arithmetic registers are not involved in the operation of this instruction, unless M_x is the address of a location in either arithmetic register.
- b. The maximum value of L is 16.

Example:

Place blanks in the 16 character field whose least significant character position is labeled TOTAL.

3-B

PAGE:

LOGICAL SUM - LS M, C, X

Function: Solution For every bit position in C containing a one, place a one in the corresponding bit position in M_x .

Notes:

- a. The bit positions of M_x which correspond to those bit positions of C containing 0 bits are unchanged.
- b. C is not altered after the instruction is executed.

Example:

Superimpose the character 110000 on the characters IND1, IND2, and IND3.

E	LABEL		OPERATION	O P E R A N D S		
6	7 1	1	13 18	19 30	40 4	5 46
		T	L.S.	I ND11, 10,6,0, 1, 1, 1, 1, 1, 1, 1		1
			L.S	I.N.D.2., .0.6.0.		
			LJS	I . N . D . 3 0 . 6 . 0		_ i

IND1 (before) = 001111 IND1 (after) = 111111 IND2 (before) = 000011 IND2 (after) = 110011 IND3 (before) = 100011 IND3 (after) = 110011 70 PAGE:

CENTRAL PROCESSOR

UP-3912

.

LOGICAL PRODUCT - LP M, C, X

Function: For every bit position in C containing a zero, place a zero in the corresponding bit position in M_x.

Notes:

- a. The bit positions of M_x which correspond to those bit positions of C containing 1 bits are unchanged.
- b. C is not altered after the instruction is executed.

Example:

Extract the three least significant bit positions of the characters IND4, IND5, and IND6. (C must be 111000.)

E	LABEL		OPERATION	O P E R A N D S		7
6	7	Ł	13 18 18	19 30 40	45	46
			L, P, , , ,	I, N, D, 4, , , , 0, 7, 0, , , , , , , , , , , , ,		
	I I I		L.P.	I,N,D,5,,,,0,7,0,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	na ana at		L.P	I, N, D, 6, , 0, 7, 0,		
L						

IND4 (before) = 111111 IND4 (after) = 111000 IND5 (before) = 101101 IND5 (after) = 101000 IND6 (before) = 001011 IND6 (after) = 001000

S

PAGE

3.6.8. **BIT SHIFT**

Format: **BSn** M, S, X

Function: Shift the n characters whose least significant location is M_x , S bit positions left, replacing the S least significant bit positions of M_x with binary zeros. Note that this instruction is a bit shift involving an integral number of characters.

Notes:

- a. n may be 1, 2, 3, or 4, specifying the number of six bit characters involved in the shift.
- b. S specifies the number of bit positions that the field is to be shifted left. A maximum shift of 7 is possible.
- c. Bits shifted beyond the most significant bit position of the most significant character are lost.
- d. Zeros replace the bits shifted out of the least significant bit positions of the least significant character(s).

Example:

Shift the two character field, DATA3, 3 bit positions left.

E	LABEL		OPERATION		O P E R A N D S		P
6	7		13 1	3 1 9	30	40	45 46
\sum			B, S, 2, , ,	D,A	T A 3		
		J	\sim			\sim	

DATA3-1 through DATA3 (before) = 110101 001111 DATA3-1 through DATA3 (after) = 101001 111000

PAGE:

3.6.9. BIT CIRCULATE

Format: BCn M, S, X

Function:

Shift the n characters whose least significant location is M_x , S bit positions left. The S most significant bits are moved into the S least significant bit positions of M_x . Note that this instruction is a bit shift involving an integral number of characters.

Notes:

- a. n may be 1, 2, 3, or 4, specifying the number of six bit characters involved in the shift.
- b. S specifies the number of bit positions that the field is to be shifted left. A maximum shift of 7 is possible.
- c. Bits shifted beyond the most significant bit position of the most significant character are entered into the least significant bit positions of the least significant character(s).

Example:

Shift the three character field, DATA4, 5 bit positions left, circularly.

E	LABEL		OPERATION		O P E R A N D S			7
6	7 11	ł	<u>13 18</u>	19	30	40	45	46
			B,C,3,	D ,/	X,T,A,4 ,,,,5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			$\left \right\rangle$
C			$\square \longrightarrow$			\sim		\Box

DATA4-2 through DATA4 (before) = 100110 110101 001111 DATA4-2 through DATA4 (after) = 011010 100111 110011

UP-3912 Rev. 1

PAGE

NO'S.

-61

UNIVAC 1050 SYSTEMS **CENTRAL PROCESSOR**

3

73

PAGE:

AGE					APPROXIMATE INSTRUCTION EXECUTION
	ļ				
10'S.	TYPE	MNEM CODE	OPERANDS	INSTRUCTION	TIMES IN MICROSECONDS
3-14		BDa	M, L, X	BRING DECIMAL	36 + 9 L
-16		BAa	M, L, X	BRING ALPHANUMERIC	27 + 9 L
-6		вт	м, т, х	BRING TETRAD	63
-17	~	SAa	M, L, X	STORE ARITHMETIC REG.	27+9L
-17	E.	SAR	м,, х	STORE BOTH ARITHMETIC REGISTERS	324
-6	RANS	sт	м, т, х	STORE TETRAD	63
-18	ТR	sc	м, с, х	STORE CHARACTER	40.5
-10	₹	FT	м, т, х	FIX TETRAD	,81
-20	►	TFI	м,,х‡	TRANSFER BLOCK FROM STORE, INCREMENT	103.5+9B
-20		TFR	мх‡	TRANSFER BLOCK FROM STORE, RESET	90+9B
-22		тτι	мх‡	TRANSFER BLOCK TO STORE, INCREMENT	103.5+9B
-22		TTR	м,, х‡	TRANSFER BLOCK TO STORE, RESET	90+9B
3 -26		ADa	M, L, X	ADD DECIMAL	49.5+13.5(L+Lc); if $ M_X > ARa $ and signs \neq , 49.5+27L
-38		ABa	м, ∟, х	ADD BINARY	27+13.5L
-29		AMa	м, L, X	ADD TO MEMORY	49.5+13.5; if A Ra > Mx and signs ≠, 49.5+31L
-7	<u> </u>	AT	м, т, х	ADD TO TETRAD	81
- 40	ET	AC	м, с, х	ADD CHARACTER	45+13.5Lc
-28	HH H	SDa	M, L, X	SUBTRACT DECIMAL	49.5+13.5 (L+Lc); if $ M_X > ARa $ and signs =, 49.5+27L
-39	≃	SBa	м. L. Х	SUBTRACT BINARY	27+13.5L
-31] <	SMa	M, L, X	SUBTRACT FROM MEMORY	49.5+13.5L; if ARa > Mx and signs =, 49.5+31L
-32	1	MPN	. L	MULTIPLY NON-CUMULAT.	L (33.75K + 63.5) + 99
-34		мрс	, L	MULTIPLY CUMULATIVE	L (33.75K+63.5) +27
-36		DV	, L	DIVIDE	L (74.25K+128.25) + 13.5K + 49.5
3-44	z	CDa	M, L, X	COMPARE DECIMAL	36+13.5Ľ'; if ≠, 36
-46	RISOI	сва	м, L, X	COMPARE BINARY	27+13.5L
- 47	PAR	cc	м, с, х	COMPARE CHARACTER	40.5
- 9	U NO	ст	м, т, х	COMPARE TETRAD	81
-48	Ŭ	LC	м, с, х	LOGICAL COMPARE	40.5
3-51		JE	м, х	JUMP EQUAL	31.5
- 51	Ļ	JG	м, х	JUMP GREATER	.31.5
- 51] 8	JS	м, х	JUMP SMALLER	31,5
51	N	JU	м, х	JUMP UNEQUAL	31.5
-51	ļυ	J	м, х	JUMP	31.5
- 54	U U	JC	м, I, Х	JUMP CONDITIONAL	31.5
- 59	NEN NEN	JL	M. N. X	JUMP LOOP	40.5
- 56	o	JR	м, і, х	JUMP RETURN	45
- 53	Š	DL	м, х	JUMP DISPLAY	31.5
- 53		ГНГ	м, х	HALT, THEN JUMP	31.5
3 - 72	E T	BCn	м, s, x	BIT CIRCULATE	40.5+S (9+18n)
-71	HS	BSn	M, S, X	BIT SHIFT	40.5+5 (9+18n)
3-69	1	LS	м, с, х	LOGICAL SUM	40.5
-70]	LP	м, с, х	LOGICAL PRODUCT	40.5
-68	1	PD	M, L, X	PAD BLANKS	27+4.5L
-68	Ι.	PD0	M, L, X	PAD ZEROS	27+4.5L
-66] =	zs	M, L, X‡	ZERO SUPPRESS	45 + 9Z
-66] ^w	ZS\$	M, L,X‡	ZERO SUPPRESS AND FLOATING \$ SIGN	49.5 + 9Z
-66	1	zs*	M, L,X‡	ZERO SUPPRESS WITH	45+9Z
-63	1	ED	M, L, X		36+13.5L+9E
<i>c</i> •	1				

TR

B = NUMBER OF CHARACTERS TRANSFERRED

E = NUMBER OF CHARACTERS INSERTED INTO EDITED FIELD

M. L. X TRANSLATE

K = DIVISOR OR MULTIPLICAND LENGTH

L = OPERAND LENGTH OR LENGTH OF QUOTIENT

L = LENGTH OF THE LONGER OF TWO FIELDS

 $|M_X|$ = ABSOLUTE VALUE OF M_X N = NUMBER OF CHARACTERS SHIFTED

s = BIT POSITIONS SHIFTED

LC = CARRIES BEYOND L TH DIGIT

z = NUMBER OF CHARACTERS SUPPRESSED

Table 3-4. Instruction Execution Times

36+13.5∟

PAGE:

4. AUTOMATIC PROGRAM INTERRUPT

4.1. General Description

Automatic program interrupt is a concept incorporated into the control circuitry of the UNIVAC 1050 System which enables the system to operate at optimum overall efficiency. The automatic program interrupt feature permits the efficient utilization of all input/output devices operating under control of the Central Processor without sacrificing any processing time within the program cycle – an essential consideration in the maintenance of maximum input/output speeds.

Basically, automatic program interrupt consists of the generation of a signal to the Central Processor upon the recognition of a condition that requires immediate attention from the program. These interrupt signals are assigned a priority within a hierarchy of interrupts in order to facilitate their processing.

Associated with automatic program interrupt is interrupt inhibit, which prevents the acceptance of an interrupt signal when it is generated. However, the interrupt signal is stored in an indicator that can be tested subsequently by a program instruction.

Interrupt results from one of two general classes of occurrences: first, an error, fault, or emergency condition occurring either in the Central Processor or in an input/output device; and, second, successful completion of an input/output function or, in some cases, when an input/output device is ready to accept an input/output command.

Upon the occurrence of an interrupt, and if interrupt has not been inhibited, control is transferred to one of ten fixed store locations which must contain the starting address of a routine that processes the interrupt.

Programs that use the PAL Assembler library of input/output routines supplied by UNIVAC are relieved from the burden of controlling and coordinating interrupts since comprehensive interrupt coding is included in these routines.

For the benefit of the programmer who wishes to write his own input/output and interrupt coordinating routines, the following subsection presents the considerations attendant upon interrupt programming.

4.2. Programming Considerations

4.2.1. Classes of Interrupt

There are three classes of interrupt which are named in the order of their priority: Class I, Class II, and Class III.

When a Class I interrupt occurs, a Class I Interrupt Inhibit bit is set automatically. While this bit is set, the processing (but not the storage) of all subsequent interrupts is prohibited. If a Class I interrupt occurs while the Class I Interrupt Inhibit bit is set, the Central Processor stalls.

When a Class II interrupt occurs, a Class II Interrupt Inhibit bit is set automatically. While this bit is set, the processing (but not the storage) of subsequent Class II and Class III interrupts is prohibited. A Class I interrupt, however, will be processed in spite of the inhibition of Class II interrupts.

2

PAGE

When a Class III interrupt occurs, a Class III Interrupt Inhibit bit is set automatically. While this bit is set, the processing (but not the storage) of subsequent Class III interrupts is prohibited. Class I and Class II interrupts, however, will be processed in spite of the inhibition of Class III interrupts.

4.2.1.1. Class I Interrupt

A Class I interrupt occurs upon the recognition of a main store parity error when the control circuits of the Central Processor obtain and execute instructions. Such an error is known as an internal parity error. Parity errors occurring while input/output devices are accessing main store are excluded from this definition.

4.2.1.2. Class II Interrupt

A Class II interrupt is caused by either

- decimal overflow or improper division, both of which set the Decimal Overflow Indicator (Indicator 40), or
- the depression of the Operator Request Switch on the console, which sets the Operator Interrupt Indicator (Indicator 44).

4.2.1.3. Class III Interrupt

A Class III interrupt is generated by the Synchronizers associated with the input/output devices of the UNIVAC 1050 System upon the occurrence of any of the following:

- Successful completion of an input/output function, which may result from
 - the normal termination of a requested input/output function without detected errors, or
 - an interrupt request from a demand device without detected errors. A demand device is one that is expected to generate an interrupt request at fixed time intervals whether or not an instruction has been issued to it.
- Error conditions when
 - normal termination of a requested input/output function is accompanied by the detection of an error or errors; or
 - an error occurs while an input/output function is in progress which will prevent normal termination.
- Off normal conditions resulting from
 - the issuance of an input/output instruction to a device that has not completed a previously requested operation;
 - the detection of an error or fault condition in a device that is not in use; or
 - the existence of a condition whereby the acceptance of the instruction would violate the rules governing the simultaneous use of input/output channels - a condition known as Storage Overload. The purpose of these rules is to prevent the occurrence of an input/output data transfer rate that exceeds the main store data transfer rate.

PAGE:

When an instruction requests an off normal device, an interrupt request is generated and the instruction is disregarded.

4.2.2. Programmed Interrupt Inhibit

Class II and Class III interrupts may be inhibited by program instruction. The following rules govern programmed interrupt inhibit.

- Operator Interrupt may be inhibited by instruction. Such inhibit can only be released by instruction or by the depression of the CLEAR button on the console.
- Decimal Overflow Interrupt may be inhibited by instruction. Such inhibit can only be released by instruction.
- Setting of a programmed Decimal Overflow Interrupt Inhibit sets an indicator (Indicator 47), which may be tested by a program instruction.
- Class III Interrupt from all input/output channels may be inhibited by instruction. Such inhibit can only be released by program instruction. Setting the Class III Interrupt Inhibit sets Indicator 45, which may be tested by a program instruction. This inhibits all Class III Interrupts.

This general Class III interrupt inhibit is distinct from the channel interrupt inhibit specifiable in an XF instruction which inhibits further interrupts only from the specified channel and which is released by a subsequent XF instruction to that channel.*

The setting and resetting of programmed interrupt inhibit does not affect, nor is affected by, any other class of interrupt.

4.2.3. Instructions Associated with Interrupt Control

The Jump Conditional and Jump Return instructions are used to control the processing of interrupts of all classes. Table 4-1 lists all the indicators; those associated with interrupts and used by the Jump Conditional and Jump Return instructions are marked with a dagger.

4.2.4. Fixed Interrupt Locations

Associated with each class of interrupt, and with each input/output channel on the UNIVAC 1050 System, is a group of eight consecutive character positions through which communication with the interrupt routines is maintained. The foldout Figure 3-1 on page 3-2 shows the location of these fixed interrupt addresses.

* The XF instruction will be fully explained in the applicable 1050 peripheral subsystem manual.

4

The indicators in the table below are divided into two groups: testable and nontestable. The nontestable indicators (00-31) cause a certain function to be performed and an unconditional jump. The conditional jump indicators (32-63) are tested and cause a jump only if the indicator has been set.

00-31 Ur	nconditional Jump to M Address	32-63 Conditional Jump					
00 § 14	Unconditional Jump Release Operator Interrupt Inhibit and jump	The status	to conditional jump are 32, 41, 42, 48, and 56. of the indicators is unaltered by the JC and JR s except as shown.				
§ 15	Set Operator Interrupt Inhibit and jump	motraotron					
16	Stop, Jump when Console Restart	32 (KNO)	NOOP				
	Button is depressed	33 (KHI)	High				
17	Set Tracing Stall and Jump	34 (KEQ)					
18	Set Sense Indicator 1 to 1 and jump	35 (KUQ)					
19	Set Sense Indicator 2 to 1 and jump	36 (KLO)					
20	Set Sense Indicator 3 to 1 and jump	37 (KZR)					
21	Set Sense Indicator 1 to 0 and jump	38 (KM)	Result of last decimal arithmetic operation				
22	Set Sense Indicator 2 to 0 and jump		was negative.				
23 24	Set Sense Indicator 3 to 0 and jump	39 (KNB)	No overflow in last add binary operation or				
t*25	Unconditional Jump Release Class 3 Interrupt Inhibit and jump	. ,	overflow did occur in the last binary subtract				
†26	Set I/O Interrupt Inhibit and jump (Class 3)		operation.				
† 27	Release I/O Interrupt Inhibit and jump	†40 (KDF)	Decimal Overflow occurred since last test.				
127	(Class 3) (Resets Programmed Inhibit Only)		If the indicator is set to 1, reset it to 0 and				
†28	Set Decimal Overflow Interrupt Inhibit and		jump.				
120	jump (Class 2)	† 41	Store Indicators 33-40 in M_x memory position				
* † * 29	Release Class 2 Interrupt Inhibit and jump		and proceed to next instruction				
†*30	Release Processor Parity or Abnormal	† 42	Set Indicators 33-40 from M _x memory position				
	Interrupt Inhibit and jump (Class 1)		and proceed to next instruction				
† 31	Release Decimal Overflow Interrupt Inhibit	43	Input-Output status test found indicator(s)				
	and jump (Class 2), (Resets Programmed		set to 1				
	Inhibit Only)	† 44	Test and reset operator interrupt request				
		† 45	Input-Output Interrupt is inhibited (Class 3)				
		46	Test and reset inquiry typewriter request				
		† 47	Decimal Overflow Interrupt is inhibited (Class 2)				
		48	Stop/Go to control counter when console				
			start is depressed, ignore M used for display.				
		49	Processor Parity and Abnormal Interrupt is				
			inhibited (Class 1) (Manual Switch Only)				
		50	Sense Switch 1 on console is ON				
		51	Sense Switch 2 on console is ON				
		52	Sense Switch 3 on console is ON				
		53	Sense Indicator 1 is set (to 1)				
	anna ann an ann a shara ann ann ann ann ann ann ann ann ann	54	Sense Indicator 2 is set (to 1)				
1	ΓS the inhibit automatically generated when the	55	Sense Indicator 3 is set (to 1)				
interru	pt occurred.	56	Skip (no operation)				
tsee Se	action 4.2.3.	57	If Trace Indicator is set to 1, reset Trace				
	nquiry typewriter, if preset.	† 58	Indicator and Trace Stall to 0 and jump Operator Interrupt is inhibited				
AISUI	nyuny iypewinien, in pieset.	1.00					

Table 4-1. Indicator List

PAGE:

The format of each eight character group is as follows:

When an interrupt occurs, the contents of the control counter are stored in the 15 least significant bits of characters 2, 3, and 4; zeros are placed in the three most significant bit positions of character 2. The 15 least significant bits of characters 6, 7, and 8 are then read into the control counter. These characters should contain the starting address of the interrupt routine associated with the particular fixed interrupt locations.

The following sequence of events takes place when an interrupt request is accepted:

- a. The instruction currently being executed by the Central Processor is completed. Exception: When a Class I interrupt occurs, an ending pulse is immediately generated for the instruction currently being executed.
- b. The address of the next instruction in the program being interrupted (contents of the control counter) is stored in characters 2, 3, and 4 of the fixed locations associated with the channel which initiated the request.
- c. The 15 least significant bits of characters 6, 7, and 8 (starting address of the interrupt routine) are read into the control counter. In addition, a signal is generated which prevents the Central Processor from accepting additional interrupt requests from channels of the same or lower classes. This signal persists until an Automatic Interrupt Inhibit Release instruction for this class is executed.
- d. The Central Processor does not recognize additional interrupt requests of any kind during the time required to execute steps 2 and 3. Beginning with the completion of step 3, interrupt requests from higher classes will be accepted.

Control is returned to the interrupted program by means of the address stored in characters 2, 3, and 4. Character 1 should contain the operation code for a JC instruction, and character 5 should contain the indicator releasing the automatic class interrupt inhibit for the class with which this channel is associated.

With the exception of characters 2, 3, and 4 of the area, the area must be preset by the initializing subroutine of each program.

It should be noted that Class I and Class II interrupts each have a single fixed interrupt area. It is a function of the Class II interrupt routine to determine whether the interrupt was caused by decimal overflow or by an operator interrupt request.

Class III interrupts have eight fixed interrupt areas, one for each input/output channel. Fixed priorities within the class are assigned to each channel to avoid conflict by simultaneous interrupt requests. Once an interrupt request has been accepted, however, it cannot be interrupted by another request from a channel of higher priority within the same class until an instruction releasing the Automatic Class III Interrupt Inhibit has been executed.

PAGE:

5. CENTRAL PROCESSOR CONSOLE OPERATION

The Central Processor Console provides a communication link between the Central Processor and the operator. The console contains display indicators that allow the operator to determine normal and abnormal conditions, and to access registers and selected positions in main storage. In addition, the console contains switches that allow the operator to correct or override error conditions, debug programs online, and manually set sense switches for program use.

5.1. NORMAL OPERATION

5.1.1. Start Up and Shut Down

The first operation necessary is that of turning the UNIVAC 1050 System on and shutting the system off. Two buttons are used for system start-up and close-down, SYSTEM ON and SYSTEM OFF.

- Depressing the SYSTEM ON button turns power on, the SYSTEM ON button will light. When the system is at full operating power, the SYSTEM OFF button will be extinguished.
- Depressing the SYSTEM OFF button removes power from the peripheral units and the Central Processor in an orderly fashion. While this power removal sequence is being completed, both the SYSTEM ON and SYSTEM OFF buttons will be lit. After completion, the SYSTEM ON button will be extinguished.

5.1.2. Program Start and Program Stop

Depression of the PROGRAM START button will illuminate the PROGRAM START button, extinguish the PARITY error indicator, and PROGRAM STOP button; and will permit the processor to proceed under control of the mode buttons.

Depression of the PROGRAM STOP button, or a programmed halt, will illuminate the PROGRAM STOP button and extinguish the PROGRAM START button. The processor will halt after completing the instruction in progress. Input/Output orders in progress will be completed; interrupt requests will be stored, unless inhibited.

If neither the PROGRAM START button nor the PROGRAM STOP button is lit, the processor is in a stall condition.

5.1.3. Operating Mode

The six mutually exclusive mode control switches are used to control the operation of the processor in conjunction with the PROGRAM START button.

UNIVAC 1050 SYSTEMS

SECTION:

5

2

5.2. PANEL CONTROLS AND INDICATORS

a. Switch/Indicators

All Switch/Indicators Are Momentary Action Switches.

DESIGNATION	DESCRIPTION
SYSTEM ON (Green)	Turns system on. Lights when depressed; extinguishes when SYSTEM OFF indicator is depressed.
SYSTEM OFF (Red)	Turns system off. Lights when depressed; extinguishes when SYSTEM ON switch is depressed.
CLEAR (White)	General clear of testable indicators, counters, and stored interrupts; and initiates a console lamp test. Lights when depressed; extinguishes when released.
PROC ABNORMAL (Red)	Lights when a second parity error is recognized and a previous parity error has not been cleared. Depressing this button when illuminated turns it off, but does not clear the parity error. May also be on due to maintenance operations.
PARITY (Yellow)	Indicator only. Lights when a parity error is detected in a character read from storage. Parity errors cause an immediate processor halt. (See Section 5.3.4 on how to clear a parity error).
CLASS III INHIBITED (Yellow)	Indicator only. Lights when a Class III Interrupt Inhibit is stored;extinguishes when the inhibit is released by the program.
OVERFLOW INHIBITED (Yellow)	Indicator only. Lights when a Decimal Overflow Interrupt Inhibit is set. Extinguishes when the inhibit is cleared by the program.
CHANNEL ABNORMAL 0-7 (8 Red)	Lights when fault develops in corresponding 1/0 channel. Extinguish by clearing error at peripheral unit and then depressing switch.
SENSE 1 2 3 (3 White)	Lights when depressed; extinguishes when depressed again. Used in conjunction with programmed tests and program operating instructions.
OPERATOR REQUEST (White)	Lights under program control. Can be depressed when illuminated to stop program by causing a Class II interrupt. Depressing the OPERATOR REQUEST button when extinguished has no effect.

Table 5-1. Control Console Switch and Indicator Description

UNIVAC 1050 SYSTEMS CENTRAL PROCESSOR

5

3

PAGE:

Acres 1			
	×		
r -	125		

0

C

DESIGNATION	DESCRIPTION
NEXT INSTRUCTION	
M (White)	Directs processor to M portion of the current instruction. Lights when depressed or under program control; control is transferred to the M portion of the current instruction. Extinguishes when CC switch is depressed or under program control.
CC (White)	 Forces the processor to obtain the next instruction from the address in the control counter; that is, it overrides a jump instruction. Lights when depressed or under program control. Extinguishes when M switch is depressed or under program control. Either the M or the CC button will always be illuminated. Note: During operation in the continuous mode, the Next Instruction switch/indicator will light according to the instruction sequence and depending on the result of programmed tests and comparisons. Consequently, these buttons should not be depressed during continuous operations. Doing so could force an incorrect instruction sequence.
PROGRAM START (Green)	Lights when depressed. Depressing when extinguished initiates execution of program under control of Mode switches. This indicator may flash on and off rapidly during the execution of a long instruction, but this should be ignored unless light stays off for longer than a few seconds.
PROGRAM STOP (Red)	Lights when depressed or when program stops. Extinguishes when PROGRAM START switch is depressed. When both PROGRAM START and PROGRAM STOP buttons extinguish and will not illuminate, processor is stalled. Depress ONE INST Mode and PROGRAM START buttons.
DISPLAY (White)	When depressed causes the contents of the storage location represented in the M portion of the Display/Alter switches to be displayed in lights in the C portion. Lights when depressed. Extinguishes when released.
ALTER (White)	When depressed causes the character represented by the setting of the C alter switches to be stored into the address specified in the M portion of the Display/ Alter switches. Lights when depressed. Extinguishes when released.

Table 5-1. Control Console Switch and Indicator Descriptions (continued)

· ·

b. Illuminating Pushbuttons

Depress To Set; Depress To Release; Lights When Depressed.

DESIGNATION	DESCRIPTION
MODE	The MODE pushbuttons operate one at a time. One of these buttons must be illumi- nated at all times.
LOAD CARD	When depressed and illuminated, depressing the PROGRAM START button causes one card to be read from the reader into octal location 400. Depressing PROGRAM START again, with the CONTinuous mode button depressed, causes control to be transferred to octal location 400, when UNIVAC standard code cards are used.
LOAD TAPE	When depressed and illuminated, depressing the PROGRAM START button will cause one block of tape to be read from logical tape unit 0 into storage starting at octal lo- cation 400. Changing to the continuous mode and depressing PROGRAM START im- mediately after, will transfer control to this location.
ONE Cycle	When depressed and illuminated, depressing the PROGRAM START button will cause instructions to be executed one instruction cycle at a time. This mode is generally used by UNIVAC Field Engineering personnel only.
ONE INSTR.	When depressed and illuminated, depressing the PROGRAM START button will cause one instruction to be executed and the next instruction accessed.
CONT	When set and the PROGRAM START switch is depressed, a program will run in the normally used continuous mode.
DISPLAY/ALTER SELECTION	In order to display or alter the contents of storage the Display/Alter Selection buttons are used in conjunction with the display lights and alter switches. The functions of the Display/Alter Selection buttons are as follows:
Q1 Q2	When set, these buttons display internal registers and indicators on the control con- sole. They are primarily for UNIVAC Field Engineering use.
cc	When set, the contents of the control counter are displayed in the M portion of the dis- play lights.
INST.	When set, the contents of the instruction register (the next instruction to be executed) are displayed in the 30 display lights.
OP/CH	When set, the entire instruction is displayed but only the operation code and the chan- nel (index register) designation portions of the instruction register are alterable.
м	When set, the entire instruction is displayed but only the operand address (M portion) of the instruction register is alterable.
с	When set, the entire instruction register is displayed but only the C portion (detail field) of the instruction register is alterable.
MEM	When set, it causes the contents of the storage location specified by the M alter switches to be displayed when the DISPLAY switch is depressed, and altered when the ALTER switch is depressed.
SEQ	When set, it is used in conjunction with the ALTER or DISPLAY switch to display or alter the contents of sequential memory locations.

4

UNIVAC 1050 SYSTEMS

SECTION:

5

 \bigcirc

C

C

DESIGNATION	DESCRIPTION								
TRACE MODE	Switches OP, CC, PROC, WRITE, and I/O operate one at a time; TRACE STOP may be used with any one of the five Trace Mode switches. If TRACE STOP is not used, a program testable indicator is set.								
OP	When set with TRACE STOP, the computer will stop when the program operation code matches the settings of the five most-significant-digit alter switches (OP portion of the top row of indicators).								
cc	When set with TRACE STOP, the computer will stop when the contents of the control counter match the settings of the Trace Address switches.								
PROC	When set with TRACE STOP, the computer stops when an operand address matches the settings of the Trace Address switches.								
WRITE	When set with TRACE STOP, the computer stops when a character is to be written into an address location which matches the settings of the Trace Address switches.								
1/0	When set with TRACE STOP, the computer will stop when a control unit reference to a storage address matches the settings of the Trace Address switches.								
TRACE STOP	When set, the program stops at a specified location if one of Trace Mode switches is also set.								

c. Toggle Switches

ALTER SWITCHES	Not labeled as such; they are the row of 30 switches immediately below the control indicators in groups labeled OP, CH, M, and C. They are two-position toggle switches with up and center positions only: a switch in the up position represents a binary 1; in the center position, a binary 0. A binary pattern can be stored in these switches; this pattern can then be used to alter the area of the processor that is designated by the Display/Alter election pushbuttons. Alteration occurs only when the DISPLAY or ALTER switches are depressed.
TRACE ADDRESS	Sixteen three-position toggle switches which correspond to the M portion of the in- struction: up represents a binary 1; down represents a binary 0; the center position is either a 1 or a 0 and will compare with both. For example, a switch pattern of up down middle will trace either 101 or 100. The trace address positions correspond to parts of the instruction and are repeatedly compared to the instruction for equality. If equality is detected and one of the Trace Mode pushbuttons is depressed, an indicator is set; if the TRACE STOP button is also depressed the program stops.

Table 5-1. Control Console Switch and Indicator Descriptions (continued)

PAGE:

CENTRAL PROCESSOR

5

6

PAGE:

d. Rotary Switches

DESIGNATION	DESCRIPTION
CLASS I	Three-position rotary switch; used for manual control of Class I interrupts. Positions are: S — STALL N — NORMAL I — INHIBIT
	In the STALL position the processor stops each time a parity error is detected. It is restarted by depressing PROGRAM START. In the NORMAL position interrupt re- quests are processed through the interrupt entry channel. The processor will not stall unless another Class I interrupt occurs while in the interrupt mode. In the INHIBIT position Class I interrupts are ignored. However, it is recommended that the program stop on a Class I interrupt since recovery without operator interven- tion is not specified.
	Operates same as above but for Class II interrupts: Overflow (OF), improper division, operator request.
	Operates same as above but for Class III interrupts.*

* See Section 4 for a complete description of Class I, II, and III interrupts.

Table 5-1. Control Console Switch and Indicator Descriptions (continued)

5.3. PROGRAM DEBUGGING AND TESTING

5.3.1. Use of Display Lights and Switches

The 30 display lights and corresponding toggle switches at the top of the console are a primary means of communication between the operator and a running program. These lights and switches must be read as octal numbers. To do this they are interpreted in groups of three binary digits. A binary digit, or bit, can have a value of either 0 or 1; in this case, an illuminated (on) display light represents a 1, while an extinguished (off) display light represents a 0. Similarly, an octal digit can have a value from 0 to 7, and any octal digit can be represented by three binary bits. The bit patterns, or groups of display lights, representing all the octal digits are as follows:

Octal Number 0 1 2 3 4 5 6	Bit Pattern
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

By interpreting the 30 display lights as 10 groups of three each, any display can be read as 10 octal digits.

The setting of the Display/Alter Select buttons at the middle of the console determines what will be displayed in the 30 lights. Normally, the INST Display/Alter Select button remains depressed so an entire 30-bit instruction will be displayed. Various portions of the instruction are delimited by the labels on the console between the display lights and their corresponding switches. The first five bits on the left comprise the operation code;* the next three bits are the channel number or index register used, if any; the next sixteen bits specify the storage address referred to; and the final six bits on the right comprise the detail field of the instruction.

When the computer comes to a programmed display stop, the instruction OP code will always be 30, and the detail field will always be 60 or 20; when the detail is 20 a blank is displayed. The configuration displayed in the M portion of the instruction is the "message" for that stop, and should be explained in the operating instructions for the run being executed. Display stops are usually defined only in terms of this M portion; the OP code of 30 and detail of 60 being understood. Consequently, a stop of 3007000160 would probably be written as stop 070001.

5.3.1.1. Display Contents of a Storage Location

- a. Set the address of the location to be displayed in the M portion of the alter switches.
- b. Depress the MEM Display/Alter Selection button.
- c. Depress the DISPLAY button.
- d. The contents of the selected storage location will be displayed in the six rightmost display lights (above the C notation on the console), and the address of the location displayed +1 will appear in the M display lights.

^{*} When reading the OP code, a sixth least significant bit, which is always zero, is implied. As a result all octal OP codes are even numbers.

8

If sequential storage locations are to be displayed, the above procedure should be followed to display the first character. Then, to display subsequent locations

- (1) Depress the SEQ Display/Alter Selection button.
- (2) Depress the DISPLAY button to display the next location.

Every time the DISPLAY button is now depressed, the M address will be increased by one, and the contents of Location M-1 will be displayed in the C lights.

- 5.3.1.2. Altering the Contents of Storage
 - a. Depress the MEM Display/Alter Selection button.
 - b. Set the address of the memory location to be altered in the M alter switches.
 - c. Set the bit configuration of the character to be stored into this location in the six C alter switches.
 - d. Depress the ALTER button.

The procedure for altering sequential locations is analogous to that for displaying them

- a. Alter the first location as outlined above.
- b. Depress the SEQ Display/Alter Selection button.
- c. Set the new bit configuration to be stored in the next character location in the six C alter switches.
- d. Depress the ALTER button.
- e. Steps 3 and 4 should be repeated until all sequential character locations have been altered.

5.3.1.3. Altering the Next Instruction

To alter the instruction register (as displayed in the lights) the procedure is the same as that for altering the contents of storage except that the INST, OP/CH, M, or C Display/Alter Selection buttons may be used in place of the MEM and SEQ buttons.

5.3.1.4. Manual Instruction Execution

Although the CONTinuous Mode is the normal operating mode, during program testing it may occasionally be more desirable to execute one instruction at a time in order to follow the exact path taken in a particular phase of processing. This is accomplished by using the ONE INSTruction Mode button. When operating in this mode, the INST Display/Alter Selection button usually remains depressed, but the CC button may also be used to display the contents of the control counter, thereby determining the location within the program of the instruction following the one about to be executed.

PAGE:

With the INST Display/Alter Select button depressed, operation in the one instruction mode will cause a single instruction to be executed each time the PROGRAM START button is depressed. The instruction displayed is always the next instruction to be executed; a subsequent push of the PROGRAM START button will cause this instruction to be executed and display the next one in the 30 display lights. If the CC Display/Alter Select button is depressed, the address of the next instruction in sequence, following the one displayed by pushing the INST button, will appear in the 16 lights of the M portion of the display. Note that the instruction specified by the address in the control counter is not always the next instruction to be executed. A jump or conditional jump instruction may cause a different path to be taken.

5.3.1.5. Next Instruction Switches

Depression of the M button inserts binary zeros in the C portion of the instruction register. Depression of the CC button, when the processor is stopped, will force a Jump Conditional instruction into the instruction register. The following parts of the instruction word are affected:

- a. The operation code is staticized to Jump Conditional.
- b. The C portion is changed to a value that initiates the unconditional skip associated with the Jump Conditional operation code.

When the processor is restarted, the new instruction will be performed. In this manner, any instruction may be skipped.

If a Jump Conditional or Jump Return instruction is staticized, and the processor is stopped, depressing the M button will force the processor to take its next instruction from the address in the M portion. In this manner, any jump instruction may be forced to follow the M path.

Thus, if the M Next Instruction button is illuminated when a Jump Conditional instruction is being displayed, the condition tested for has been met. The next instruction to be executed is at the address specified in the M portion of the display lights. If the CC Next Instruction button is illuminated, the next instruction to be executed is the one following the jump instruction. Its address may be displayed by pushing the CC Display/Alter Select button.

5.3.1.6. Altering Instruction Sequence

The sequence of program instructions may be altered by using the Next Instruction switch/indicators. If a programmed comparison has been made, and the M button light is lit along with the Jump Conditional instruction display, it may be desirable to see what would happen if the program would take the other path. This may be done by depressing the CC button to illuminate it, and depressing the PROGRAM START button to execute the next instruction (which is now the one specified by the control counter). This procedure does not in any way alter the contents of storage; the next time these instructions are executed, they will be unchanged. Any instruction (with the exception of Jump Loop, in which the control counter is only incremented by four instead of five) may be executed manually while the computer is in the one instruction mode. The following procedure must be followed:

- a. Depress the CC Display/Alter Selection button to obtain the value of the control counter, if this value must be recorded for later use.
- b. Depress the INST Display/Alter Select button.

- 10 Page:
- c. Set the bit configuration of the instruction to be executed in the 30 alter switches.
- d. Depress the ALTER button. The new instruction will be displayed.
- e. Depress the PROGRAM START button.
- f. The computer will execute the new instruction and stop, displaying the next instruction to be executed. The new contents of the control counter may be displayed by depressing the CC Display/Alter Selection button. Storage has not been altered; the next time this sequence of instructions is to be executed, the original instructions will be performed.

5.3.1.7. Tracing

Frequently during program execution, and especially during program testing, it is desirable to search (Trace) through the running program for a particular instruction, location or operation. This is accomplished through the Trace Mode buttons and Trace Address switches. The Trace Mode buttons are used to specify the type of trace being performed. The TRACE STOP button must be depressed in order to stop the computer if the traced value sought is found. However, whether or not the TRACE STOP button is depressed, a program-testable indicator is set when the trace conditions are met. If the trace is on a particular address, the value of that address must be set in the Trace Address toggle switches. These are three-position switches in which the down position indicates a 0, the up position indicates a 1, and the middle position can stand for either one. This latter feature enables tracing on several addresses at once. The five Trace Mode buttons and their uses are described in section b. of Table 5-1.

5.3.2. Error Indicators

There are two types of Central Processor errors that will cause an interrupt: a Class I interrupt, which is a parity error in a character read from storage, and a Class II interrupt (decimal overflow), caused by improper division or too great a carry in decimal addition.

A Class III interrupt is a normal interrupt of central processor operation that allows for the completion of input/output functions in the peripheral units. This class of interrupt, as well as Class II decimal overflow interrupt, may be permitted or inhibited by program instructions. If either type of interrupt is inhibited during a running program, the associated indicator will light. (During the operation of most programs, these lights may be seen flickering on and off.) All three classes of interrupt may be inhibited manually by setting the rotary switches at the bottom of the console to I (inhibit), however this setting is not recommended to anyone except UNIVAC Field Engineering personnel.

Errors that occur in the peripheral units will be indicated by a red light on the appropriate Channel Abnormal switch/indicator. Each input/output device is assigned one of the Central Processor's eight I/O channels.

11

PAGE:

The following are the standard channel assignments:

Channel 0 - Printer Channel 1 - Card Reader Channel 2 - Card Punch Channel 3 - Communications Channel 4 - Tape Read Channel 5 - Tape Write Channel 6 - FASTRAND Channel 7 - Unassigned

If a red Channel Abnormal light goes on, the operator should check the unit(s) associated with that channel for error conditions and clear them before attempting to continue the run. Clearing the error at the peripheral location will usually cause the error light on the console to go out, and program operation can be resumed.

All standard UNIVAC 1050 software routines have display stops in them which will occur simultaneously with a channel abnormal error stop to indicate the nature of the problem in the peripheral unit. (For detailed descriptions of these stops, refer to the software routine's operating instructions.)

5.3.3. Sense Switches and Operator Request

Immediately above the five Mode buttons in the lower right-hand portion of the console is a row of four switch/indicators. The leftmost three are Sense switches, which may be used by programs to determine one among alternative courses of action (for example, to produce out put in punched card format rather than a printed listing). The use of Sense switches for any given program should be outlined in the operating instructions for that program. If no mention is made of Sense switches in the operating instructions, it is understood that they should all be off (light extinguished).

The OPERATOR REQUEST button can be depressed when illuminated to interrupt a running program. Operator request is another form of Class II program interrupt. For tape systems running under the Executive Routine, depressing this button causes a unique display stop at which one of several courses of action may be selected. (For a detailed discussion of these alternatives, see the tape system software operating instructions.)

Figure 5-1. Central Processor Console.

000000 000000 CHANNEL ABNORMAL OVERFLOW INHUBITED CLASS III NHIBITED - 53 CLASS I PARITY TRACE 1 00000 1 SYSTEM ON CLEAR

UNIVAC 1050 SYSTEMS

SECTION:

5

 \mathbb{O}

 \bigcirc

C

C

UNIVAC 1050 SYSTEMS

Appendix A section:

PAGE:

APPENDIX A. OCTAL-DECIMAL CONVERSION TABLE

OCTAL 0000 to 0777	DECIMAL 0000 to 0511	OCTAL 1000 to 1777	DECIMAL 0512 to 1023
0 1 2	3 4 5 6 7	0 1 2	3 4 5 6 7
0010 0008 0009 0010 0020 0016 0017 0018 0030 0024 0025 0026 0040 0032 0033 0034 0050 0040 0041 0042 0060 0048 0049 0050	0003 0004 0005 0006 0007 0011 0012 0013 0014 0015 0019 0020 0021 0022 0023 0027 0028 0029 0030 0031 0035 0036 0037 0038 0039 0043 0044 0045 0046 0047 0051 0052 0053 0054 0055 0059 0060 0061 0062 0063	1010 0520 0521 0522 1020 0528 0529 0530 1030 0536 0537 0538 1040 0544 0545 0546 1050 0552 0553 0554 1060 0560 0561 0562	0515051605170518051905230524052505260527053105320533053405350539054005410542054305470548054905500551055505560557055805590563056405650566056705710572057305740575
0110 0072 0073 0074 0120 0080 0081 0082 0130 0088 0089 0090 0140 0096 0097 0098 0150 0104 0105 0106 0160 0112 0113 0114	0067006800690070007100750076007700780079008300840085008600870091009200930094009500990100010101020103010701080199011001110115011601170118011901230124012501260127	1110 0584 0585 0586 1120 0592 0593 0594 1130 0600 0601 0602 1140 0608 0609 0610 1150 0616 0617 0618 1160 0624 0625 0626	0579058005810582058305870588058905900591059505960597059805990603060406050606060706110612061306140615061906200621062206230627062806290630063106350636063706380639
0210 0136 0137 0138 0220 0144 0145 0146 0230 0152 0153 0154 0240 0160 0161 0162 0250 0168 0169 0170 0260 0176 0177 0178	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1210 0648 0649 0650 1220 0656 0657 0658 1230 0664 0665 0666 1240 0672 0673 0674 1250 0680 0681 0682 1260 0688 0689 0690	064306440645064606470651065206530654065506590660066106620630677067806770678067106730676067706780687068306840685068606870691069206930694069506990700070107020703
0310 0200 0201 0202 0320 0208 0209 0210 0330 0216 0217 0218 0340 0224 0225 0226 0350 0233 0234 0242 0360 0240 0241 0242	0195019601970198019902030204020502060207021102120213021402150219022002210222022302270228022902300231023502360237023802390243024402450246024702510252025302540255	1310 0712 0713 0714 1320 0720 0721 0722 1330 0728 0729 0730 1340 0736 0737 0738 1350 0744 0745 0746 1360 0752 0753 0754	0707070807090710071107150716071707180719072307240725072607270731073207330734073507390740074107420743074707480749075007510753075607570758075907630764076507660767
0410 0264 0265 0266 0420 0272 0273 0274 0430 0280 0281 0282 0440 0288 0289 0290 0450 0296 0297 0298	0259026002610262026302670268026902700271027502760277027802790283028402850286028702910292029302940295029903000301030203030307030803090310031103150316031703180319	1410 0776 0777 0778 1420 0784 0785 0786 1430 0792 0793 0794 1440 0800 0801 0802 1450 0808 0809 0810 1460 0816 0817 0818	0771077207730774077507790780078107820783078707880789079007910795079607970798079908030804080508060807081108120813081408150819082008210822082308270828082908300831
0510 0328 0329 0330 0520 0336 0337 0338 0530 0344 0345 0346 0540 0352 0353 0354 0550 0360 0361 0362 0560 0368 0369 0370	0323 0324 0325 0326 0327 0331 0332 0333 0334 0335 0339 0340 0341 0342 0343 0347 0348 0349 0350 0351 0355 0356 0357 0358 0359 0363 0364 0365 0366 0367 0371 0372 0373 0374 0375 0379 0380 0381 0382 0383	1530 0856 0857 0858 1540 0864 0865 0866 1550 0872 0873 0874 1560 0880 0881 0882	
0600 0384 0385 0386 0610 0392 0393 0394 0620 0400 0401 0402 0630 0408 0409 0410 0640 0416 0417 0418 0650 0424 0425 0426 0660 0432 0433 0434	0387038803890390039103950396039703980399040304040405040604070411041204130414041504190420042104220423042704280429043004310435043604370438043904430444044504460447	1600089608970898161009040905090616200912091309141630092009210922164009280929093016500936093709381660094409450946	0899090009010902090309070908090909100911091509160917091809190923092409250926092709310932093309340935093909400941094209430947094809490950095109550956095709580959
0700 0448 0449 0450 0710 0456 0457 0458 0720 0464 0465 0466 0730 0472 0473 0474 0740 0480 0481 0482 0750 0488 0489 0490 0760 0496 0497 0498	0451045204530454045504590460046104620463046704680469047004710475047604770478047904830484048504860487049104920493049404950499050005010502050305070508050905100511	1700096009610962171009680969097017200976097709781730098409850986174009920993099417501000100110021760100810091010	0963096409650966096709710972097309740975097909800981098209830987098809890990099109950996099709980999100310041005100610071011101210131014101510191020102110221023

C

Ô

UP-3912 Rev. 1

UNIVAC 1050 SYSTEMS

Appendix A section:

PAGE:

OCTAL 2000 to 2777	DECIMAL 10	24 to 1535 OCT	AL 3000 to 3777	DECIMAL	1536 to 2047
0 1 2	3 4 5	6 7	0 1 2	3 4	5 6 7
20001024102510262010103210331034202010401041104220301048104910502040105610571058205010641065106620601072107310742070108010811082	1035 1036 1037 1043 1044 1045 1051 1052 1053 1059 1060 1061 1067 1068 1069 1075 1076 1077	1038 1039 3010 1046 1047 3020 1054 1055 3030 1062 1063 3040 1078 1079 3060	1544 1545 1546 1552 1553 1554 1560 1561 1562 1568 1569 1570 1576 1577 1578	1547 1548 1555 1556 1563 1564 1571 1572 1579 1580 1587 1588	1549 1550 1551 1557 1558 1559 1565 1566 1567 1573 1574 1575 1581 1582 1583 1589 1590 1591
21001088108910902110109610971098212011041105110621301112111311142140112011211122215011281129113021601136113711382170114411451146	1099 1100 1101 1107 1108 1109 1115 1116 1117 1123 1124 1125 1131 1132 1133 1139 1140 1141	1102 1103 3110 1110 1111 3120 1118 1119 3130 1126 1127 3140 1134 1135 3150 1142 1143 3160		1611 1612 1619 1620 1627 1628 1635 1636 1643 1644 1651 1652	1613 1614 1615 1621 1622 1623 1629 1630 1631 1637 1638 1639 1645 1646 1647 1653 1654 1655
22001152115311542210116011611162222011681169117022301176117711782240118411851186225011921193119422601200120112022270120812091210	1163 1164 1165 1171 1172 1173 1179 1180 1181 1187 1188 1189 1195 1196 1197 1203 1204 1205	1166 1167 3210 1174 1175 3220 1182 1183 3230 1190 1191 3240 1198 1199 3250 1206 1207 3260	1672 1673 1674 1680 1681 1682	1675 1676 1683 1684 1691 1692 1699 1700 1707 1708 1715 1716	1677 1678 1679 1685 1686 1687 1693 1694 1695 1701 1702 1703 1709 1710 1711 1717 1718 1719
23001216121712182310122412251226232012321233123423301240124112422340124812491250235012561257125823601264126512662370127212731274	1227 1228 1229 1235 1236 1237 1243 1244 1245 1251 1252 1253 1259 1260 1261 1267 1268 1269	1230 1231 3310 1238 1239 3320 1246 1247 3330 1254 1255 3340 1262 1263 3350 1270 1271 3360	1736 1737 1738 1744 1745 1746 1752 1753 1754 1760 1761 1762 1768 1769 1770 1776 1777 1778	1739 1740 1747 1748 1755 1756 1763 1764 1771 1772 1779 1780	1741 1742 1743 1749 1750 1751 1757 1758 1759 1765 1766 1767 1773 1774 1775 1781 1782 1783
24001280128112822410128812891290242012961297129824301304130513062440131213131314245013201321132224601328132913302470133613371338	1291 1292 1293 1299 1300 1301 1307 1308 1309 1315 1316 1317 1323 1324 1325 1331 1332 1333	1294 1295 3410 1302 1303 3420 1310 1311 3430 1318 1319 3440 1326 1327 3450 1334 1335 3460	1800 1801 1802 1808 1809 1810 1816 1817 1818 1824 1825 1826 1832 1833 1834 1840 1841 1842	1803 1804 1811 1812 1819 1820 1827 1828 1835 1836 1843 1844	1805 1806 1807 1813 1814 1815 1821 1822 1823 1829 1830 1831 1837 1838 1839 1845 1846 1847
25001344134513462510135213531354252013601361136225301368136913702540137613771378255013841385138625601392139313942570140014011402	1355 1356 1357 1363 1364 1365 1371 1372 1373 1379 1380 1381 1387 1388 1389 1395 1396 1397	1358 1359 3510 1366 1367 3520 1374 1375 3530 1382 1383 3540 1390 1391 3550 1398 1399 3560	1864 1865 1866 1872 1873 1874 1880 1881 1882 1888 1889 1890 1896 1897 1898 1904 1905 1898	1867 1868 1875 1876 1883 1884 1891 1892 1899 1900 1907 1908	1869 1870 1871 1877 1878 1879 1885 1886 1887 1893 1894 1895 1901 1902 1903 1909 1910 1911
26001408140914102610141614171418262014241425142626301432143314342640144014411442265014481449145026601456145714582670146414651466	1419 1420 1421 1427 1428 1429 1435 1436 1437 1443 1444 1445 1451 1452 1453 1459 1460 1461	1422 1423 3610 1430 1431 3620 1438 1439 3630 1446 1447 3640 1455 3650 3650 1452 1463 3660	1936 1937 1938 1944 1945 1946 1952 1953 1954 1960 1961 1962 1968 1969 1970	1931 1932 1939 1940 1947 1948 1955 1956 1963 1964 1971 1972	1933 1934 1935 1941 1942 1943 1949 1950 1951 1957 1958 1959 1965 1966 1967 1973 1974 1975
27001472147314742710148014811482272014881489149027301496149714982740150415051506275015121513151427601520152115222770152815291530	1475 1476 1477 1483 1484 1485 1491 1492 1493 1499 1500 1501 1507 1508 1509 1515 1516 1517 1523 1524 1525	7 1478 1479 3700 5 1486 1487 3710 5 1494 1495 3720 1502 1503 3730 1510 1511 3740 1513 1519 3750 1514 1519 3750 1515 3740 3760	198419851986199219931994200020012002200820092010201620172018202420252026203220332034	1987 1988 1995 1996 2003 2004 2011 2012 2019 2020 2027 2028 2035 2036	1989 1990 1991 1997 1998 1999 2005 2006 2007 2013 2014 2015 2021 2022 2023 2029 2030 2031 2037 2038 2039

2

C

UP-3912 Rev. 1

C

C

Ô

UNIVAC 1050 SYSTEMS

Appendix A section:

PAGE:

OCTA	L 40	000 to	4777	DE	CIMAL	. 20	48 to 2	2559	OCTA	L 50	00 to	5777	DE	CIMAL	. 25	60 to 3	0
	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	
4000 4010 4020 4030 4040 4050 4060 4070	2056 2064 2072 2080 2088 2096	2057 2065 2073 2081 2089 2097	2050 2058 2066 2074 2082 2090 2098 2106	2059 2067 2075 2083 2091 2099	2060 2068 2076 2084 2092 2100	2061 2069 2077 2085 2093 2101	2062 2070 2078 2086 2094 2102	2063 2071 2079 2087 2095 2103	5000 5010 5020 5030 5040 5050 5060 5070	2568 2576 2584 2592 2600 2608	2561 2569 2577 2585 2593 2601 2609 2617	2570 2578 2586 2594 2602 2610	2571 2579 2587 2595 2603 2611	2572 2580 2588 2596 2604 2612	2573 2581 2589 2597 2605 2613	2574 2582 2590 2598 2606 2614	22222
4100 4110 4120 4130 4140 4150 4160 4170	2120 2128 2136 2144 2152 2160	2121 2129 2137 2145 2153 2161	2114 2122 2130 2138 2146 2154 2162 2170	2123 2131 2139 2147 2155 2163	2124 2132 2140 2148 2156 2164	2125 2133 2141 2149 2157 2165	2126 2134 2142 2150 2158 2166	2127 2135 2143 2151 2159 2167	5100 5110 5120 5130 5140 5150 5160 5170	2632 2640 2648 2656 2664 2672	2625 2633 2641 2649 2657 2665 2673 2681	2634 2642 2650 2658 2666 2674	2635 2643 2651 2659 2667 2675	2636 2644 2652 2660 2668 2676	2637 2645 2653 2661 2669 2677	2638 2646 2654 2662 2670 2678	20 20 20 20 20 20
4200 4210 4220 4230 4240 4250 4260 4270	2184 2192 2200 2208 2216 2224	2185 2193 2201 2209 2217 2225	2178 2186 2194 2202 2210 2218 2226 2234	2187 2195 2203 2211 2219 2227	2188 2196 2204 2212 2220 2228	2189 2197 2205 2213	2190 2198 2206 2214 2222 2230	2191 2199 2207 2215 2223 2231	5200 5210 5220 5230 5240 5250 5260 5270	2696 2704 2712 2720 2728 2736	2689 2697 2705 2713 2721 2729 2737 2745	2698 2706 2714 2722 2730 2738	2699 2707 2715 2723 2731 2739	2700 2708 2716 2724 2732 2740	2701 2709 2717 2725 2733 2741	2702 2710 2718 2726 2734 2742	2222222
4300 4310 4320 4330 4340 4350 4360 4370	2248 2256 2264 2272 2280 2288	2249 2257 2265 2273 2281 2289	2242 2250 2258 2266 2274 2282 2290 2298	2251 2259 2267 2275 2283 2291	2252 2260 2268 2276 2284 2292	2253 2261 2269 2277 2285 2293	2254 2262 2270 2278 2286 2294	2255 2263 2271 2279 2287 2295	5300 5310 5320 5330 5340 5350 5350 5360 5370	2760 2768 2776 2784 2792 2800	2753 2761 2769 2777 2785 2793 2801 2809	2762 2770 2778 2786 2794 2802	2763 2771 2779 2787 2795 2803	2764 2772 2780 2788 2796 2804	2765 2773 2781 2789 2797 2805	2766 2774 2782 2790 2798 2806	22222222
4400 4410 4420 4430 4440 4450 4460 4470	2312 2320 2328 2336 2344 2352	2313 2321 2329 2337 2345 2353	2306 2314 2322 2330 2338 2346 2354 2362	2315 2323 2331 2339 2347 2355	2316 2324 2332 2340 2348 2356	2317 2325 2333 2341 2349 2357	2318 2326 2334 2342 2350 2358	2319 2327 2335 2343 2351 2359	5400 5410 5420 5430 5440 5450 5450 5460 5470	2824 2832 2840 2848 2856 2864	2817 2825 2833 2841 2849 2857 2865 2873	2826 2834 2842 2850 2858 2866	2827 2835 2843 2851 2859 2867	2828 2836 2844 2852 2860 2868	2837 2845 2853 2861 2869	2830 2838 2846 2854 2862 2862 2870	222222222222222222222222222222222222222
4500 4510 4520 4530 4540 4550 4550 4560 4570	2368 2376 2384 2392 2400 2408 2416	2369 2377 2385 2393 2401 2409 2417	2370	2371 2379 2387 2395 2403 2411 2419	2372 2380 2388 2396 2404 2412 2420	2373 2381 2389 2397 2405 2413 2421	2374 2382 2390 2398 2406 2414 2422	2375 2383 2391 2399 2407 2415 2423	5500	2880 2888 2896 2904 2912 2920 2928	2881 2889 2897 2905 2913 2921 2929 2937	2882 2890 2898 2906 2914 2922 2930	2883 2891 2899 2907 2915 2923 2931	2884 2892 2900 2908 2916 2924 2932	2885 2893 2901 2909 2917 2925 2933	2886 2894 2902 2910 2918 2926	222222222
4600 4610 4620 4630 4640 4650 4660 4660 4670	2432 2440 2448 2456 2464 2472 2480	2433 2441 2449 2457 2465 2473 2481	2434 2442 2450 2458 2466 2474 2482 2490	2435 2443 2451 2459 2467 2475 2483	2436 2444 2452 2460 2468 2476 2484	2437 2445 2453 2461 2469 2477 2485	2438 2446 2454 2462 2470 2478 2486	2439 2447 2455 2463 2471 2479 2487	5600 5610 5620 5630 5640 5650 5660 5660	2944 2952 2960 2968 2976 2984 2992	2945 2953 2961	2946 2954 2962 2970 2978 2986 2994	2947 2955 2963 2971 2979 2987 2985	2948 2956 2964 2972 2980 2988 2996	2949 2957 2965 2973 2981 2989 2997	2950 2958 2966 2974 2982 2990 2998	22222222
4700 4710 4720 4730 4740 4750 4760	2496 2504 2512 2520 2528 2536	2497 2505 2513 2521 2529	2498 2506 2514 2522 2530 2538	2499 2507 2515 2523 2531 2539	2500 2508 2516 2524 2532 2540	2501 2509 2517 2525 2533 2541	2502 2510 2518 2526 2534 2542	2503 2511 2519 2527 2535 2543	5700 5710 5720 5730 5740 5750 5760	3008 3016 3024 3032 3040 3048	3009 3017 3025 3033 3041 3049	3010 3018 3026 3034 3042 3050	3011 3019 3027 3035 3043 3051	3012 3020 3028 3036 3044	3013 3021 3029 3037 3045 3053	3014 3022 3030 3038 3046 3054	333333

UP-3912 Rev. 1

UNIVAC 1050 SYSTEMS

Appendix A

SECTION:

PAGE:

		·····	
OCTAL 6000 to 6777	DECIMAL 3072 to 3583	OCTAL 7000 to 7777	DECIMAL 3584 to 4095
0 1 2	3 4 5 6 7	0 1 2	3 4 5 6 7
6000 3072 3073 3074 6010 3080 3081 3082 6020 3088 3089 3090 6030 3096 3097 3098 6040 3104 3105 3106 6050 3112 3113 3114 6060 3120 3121 3122 6070 3128 3129 3130 6100 3136 3137 3138 6110 3144 3145 3146 6120 3152 3153 3154 6130 3160 3161 3162 6140 3168 3169 3170	3075 3076 3077 3078 3079 3083 3084 3085 3086 3087 3091 3092 3093 3094 3095 3099 3100 3101 3102 3103 3107 3108 3109 3110 3111 3115 3116 3117 3118 3119 3123 3124 3125 3126 3127 3131 3132 3133 3134 3135 3139 3140 3141 3142 3143 3147 3148 3149 3150 3151 3155 3156 3157 3158 3159 3163 3164 3165 3166 3167 3171 3172 3173 3174 3175	7000 3584 3585 3586 7010 3592 3593 3594 7020 3600 3601 3602 7030 3608 3609 3610 7040 3616 3617 3618 7050 3624 3625 3626 7060 3632 3633 3634 7070 3640 3641 3642 7100 3648 3649 3650 7110 3656 3657 3658 7120 3644 3665 3666 7130 3672 3673 3674 7140 3680 3681 3682	3587 3588 3589 3590 3591 3595 3596 3597 3598 3599 3603 3604 3605 3606 3607 3611 3612 3613 3614 3615 3619 3620 3621 3622 3623 3627 3628 3629 3630 3631 3635 3636 3637 3638 3639 3643 3644 3645 3646 3647 3651 3652 3653 3654 3655 3659 3660 3661 3662 3663 3667 3668 3667 3663 3671 3675 3676 3677 3678 3679 3683 3684 3685 3686 3687
61603184318531866170319231933194620032003201320262103208320932106220321632173218623032243225322662403232323332346250324032413242	3251 3252 3253 3254 3255 3259 3260 3261 3262 3263	7160 3696 3697 3698 7170 3704 3705 3706 7200 3712 3713 3714 7210 3720 3721 3722 7220 3728 3729 3730 7230 3736 3737 3738 7240 3744 3745 3746	3715371637173718371937233724372537263727373137323733373437353739374037413742374337473748374937503751375537563757375837593763376437653766376737713772377337743775
6310 3272 3273 3274 6320 3280 3281 3282 6330 3288 3289 3290 6340 3296 3297 3298 6350 3304 3305 3306 6360 3312 3313 3314 6370 3320 3321 3322 6400 3328 3329 3330	3275327632773278327932833284328532863287329132923293329432953299330033013302330333073308330933103311331533163317331833193323332433253326332733313332333333343335	7310 3784 3785 3786 7320 3792 3793 3794 7330 3800 3801 3802 7340 3808 3809 3810 7350 3816 3817 3818 7360 3824 3825 3826 7370 3832 3833 3834 7400 3840 3841 3842	37873788378937903791379537963797379837993803380438053806380738113812381338143815381938203821382238233827382838293830383138353836383738383839
643033523353335464403360336133626450336833693370646033763377337864703384338533866500339233933394	3347 3348 3349 3350 3351 3355 3356 3357 3358 3359 3363 3364 3365 3364 3367 3371 3372 3373 3374 3375 3379 3380 3381 3382 3383 3387 3388 3389 3390 3391 3395 3396 3397 3398 3399	7410 3848 3849 3850 7420 3856 3857 3858 7430 3864 3865 3866 7440 3872 3873 3874 7450 3880 3881 3882 7460 3888 3899 3890 7470 3896 3897 3898	38513852385338543855385938603861386238633867386838693870387138753876387738783879388338843885388638873891389239033901390239073908390939103911
6510 3400 3401 3402	34033404340534063407341134123413341434153419342034213422342334273428342934303431343534363437343834393443344434453446344734513452345334543455	7510391239133914752039203921392275303928392939307540393639373938755039443945394675603952395339547570396039613962	391539163917391839193923392439253926392739313932393339343935393939403941394239433947394839493950395139553956395739583959
6610 3464 3465 3466 6620 3472 3473 3474 6630 3480 3481 3482 6640 3488 3489 3490 6650 3496 3497 3498 6660 3504 3505 3506 6670 3512 3513 3514 6700 3520 3521 3522	34673468346934703471347534763477347834793483348434853484349534913492349334943495349935003501350235033507350835093510351135153516351735183519	7610 3976 3977 3978 7620 3984 3985 3986 7630 3992 3993 3994 7640 4000 4001 4002 7650 4008 4009 4010 7660 4016 4017 4018 7670 4024 4025 4026	39793980398139823983398739883989399039913995399639973998399940034004400540064007401140124013401440154019402040214022402340274028402940304031
6710 3528 3529 3530 6720 3536 3537 3538 6730 3544 3545 3546 6740 3552 3554 3554 6750 3560 3561 3562 6760 3568 3569 3570	3531 3532 3533 3534 3535 3539 3540 3541 3542 3543 3547 3548 3549 3550 3551 3555 3556 3557 3558 3559 3563 3564 3565 3566 3567	7710 4040 4041 4042 7720 4048 4049 4050 7730 4056 4057 4058 7740 4064 4065 4066 7750 4072 4073 4074 7760 4080 4081 4082	4059 4060 4061 4062 4063 4067 4068 4069 4070 4071

4

C

DIVISION OF SPERRY RAND CORPORATION

UP-3912 Rev. 1