l INTERCOMMUNICATION

nnnnnnnnnnnnnnnnnnnnnnnn omavion

ro. Branch Managers rrom (NamE: W. G. Crowell
Area Managers
Regional Managers ocationsoate: Whitpain - August 12, 1964
International Division
Washington Office oerarTMenT: UNIVAC 1050 Marketing
CARBONS: sussec: PRELIMINARY DOCUMENTATION

FOR UNIVAC 1050
FREESTAND ING SYSTEM.

Enclosed is a manual which represents the software package that
currently exists on the UNIVAC 1050.

This is not the official documentation of the UNIVAC 1050 Soft-
ware package and it doesn't represent the total scope of UNIVAC
1050 software. The information contained within this manual is
preliminary and is subject to changes by Systems Programming as
other items and features are added.

This software is being used by early Customers and UNIVAC Field
Personnel at Whitpain today. It has been very effective in the
construction of Bench Mark Demonstrations.

It is suggested that any person programming the UNIVAC 1050 to-
day study this manual.

Two (2) copies of this manual have been sent to each Branch and
Area Office. There are no more copies available and additional
copies cannot be ordered.

This information and any possible revisions to this information
will eventually be published in New York by Systems Programming
Library Services as part of the official UNIVAC 1050 documenta-
tion.

Sl

W. 6. CROWELL'

Enclosure
WGC/gmd

TABLE OF CONTENTS

This Manual consists of excerpts from other documentation and
therefore, there is no consistency or sequence in the page
numbering.

The sections contained in this manual are in the following
order:

1. Calls for Routines on Systems Tape
Block Print Routine (TPOX)
PAL Tape Assembler Notes and Operating Instructions

. Additional REGENT Instructions and REGENT Memory Requirements

2

3. UNIVAC 1050 Operating System (OPS)

4. Tape Maintenance System for UNIVAC 1050 (AJAX)

5. Object Code Maintenance System for UNIVAC 1050 (0OPUS)
6. I/0 Routines for the UNIVAC 1050 Tape System

7. Operating Instructions for the UNIVAC 1050 Zard System
8. 4K Card I/O Routines including software Multiply and Divide
. Data Tape Conventions and Magnetic Tape File Control Routines
10, System and Library Tape Conventions

11. TDUMP Operating Instructions

12, UNIVAC 1050 Tape Sort Routine

13. Procedure for Estimating UNIVAC 1050 Tape Sort Times
14, UNIVAC 1050 Sort Timing Tables

CALL
$ATAX
§aus1
$0Us4
$ TDMP
$TPOX
$0001
$0101

§1001

CALLS FOR ROUTINES ON SYSTEMS TAPE

Tape Utility

Object Utility Service

Object Utility Service

Prints OPS Tape Dump(s) from Servo 1
Prints Data Tapes from Servo 1

PAL Assembler

PAL Assembler

PAL Assembler

80
80

90

80
80

90

or 90 column row or serial
Column row or serial

Column row or serial

or 90 column row
column serial

column serial

PAL TAPE ASSEMBLER NOTES

1. There is no limitation on the number of labels used in a PAL
assembly,

2, The size of the combined PROC and NAME table and FORM table is
800 locations for 8K of memory. For each module of memory over 31S/4h
8K add 4096 to this table capacity. A PROC or NAME entry requlres;
13 locations.

If an assembler tape has more PROCS or NAMFS than the table can
hold, the PROCS that are not stored in the table will be m1551ng
when a call is made for those PROCS; however, if an asterisk is
placed in column 18 of a call line the PROC will be found regard-
less of whether it is in the table.

3. An additional directive has been added to the PAL Tape Assembler,
SEGJP

It is often necessary to divide a program into segments which may

operate at different times in store. The SEGJP directive provides
this facility. The SEGJP is similar to the END directive in that

it causes a "T" block to be produced containing a jump instruction
to the label or address contained in the operands field.

In addition ar "S" block also produced similar to the "R" block
of the first segment but without the high address, starting
location and number of characters fields.

The assembler will create a segment ID field for the next segment

by adding a decimal "O1" to the program or last segment ID obtained .
from columns 7-10 of the BEGIN directive. If column 9 of the

BEGIN directive is greater than 9, a decimal "1" will be added.

See OPS Instructions to load a segment.

4. The PAI, Tape Assembler produces output object code on tape 1 only.
See documentation on "OPUS" to produce cards from tape output.

5. UNIVAC software uses labels that start with the letters X, Y and Z.
The letters U, V and W are also reserved for future expansion,

APPENDIX 3

Operating Instructions for 1050 Two or Three Tape Assembler

Console Sense Switches:

Te

Sense Switch 1 controls source code location,
Off - Assembler expects source program or call card (See console)
in reader.

On - Assembler will stop to allow key in via the trace switches
of the 4 character program ID, appearing on the BEGIN line
of the program to be assembled from tape. (See console),

2, Sense Switch 2 controls printing of assembly listing,
Off - Entire listing will be printed.
On - Procedure generated lines will not be printed,
PRINTER:

Te
24
3

Depress off-line button until light is on,
Set paper 3 holes above sprocket,

Depress off-line button until light is off.,

READER:

1.

2.
3.
L.
D

Place assembler call card ($0001 in columns 1 to 5) in front of
BEGIN card., Place program to be assembled in input magazine
followed by about 1/2 1lb, blank cards,

Place cards in reader face down, 9 edge leading.

Depress power-on button until light is on.

Depress magazine-load button,

Depress clear button after magazine-load light is off.

UNISERVOS:

1. Mount PAL assembler on servo @ with write enable ring in.
2. Mount blank tape on servo 1 with write enable ring in.

3. If source program is to be assembled from tape, mount source code
library on servo 2 with write enable ring removed.

4, Bring all tapes to load point.
CONSOLE:

1. Depress clear button.

. Depress load tape MODE button.
. Depress program start,.

Depress continuous MODE button.

. Depress program start button (loads OPS). STOP (30 070001 60)
Operating System ready to load.

vt Fw [\
L]

6. If Assembler call card and source program cards are in the reader
depress program start to assemble,

STOP (30 070001) End of Assembly, Operating System ready to load.
7. If program to be assembled is from tape and card reader is available.
a. Place source program call card in reader after $0001 card. This
card contains $RRRR in columns 1 to 5 and RRRR wust be identical
to columns 7 to 10 appearing on the BEGIN line of the program
to be assembled.
b. Depress program start to assemble.

8. If program to be assembled is on tape and card reader is not
available,

a. At STOP (30 070001 60) depress Operator Request button.
b. Set trace mode to PROC.
c. Set trace switches to (000303g) depress program start.

d. Program stops (30 077000 60) to allow key in of next two
characters of program ID. Set trace switches to (OOO3O¥8).

e. Depress Sense Switch 1,

f. Depres= r~rogram start,

g. STOP (30 017001 60) assembler ready for key in of program ID.

h. Set up binary value of first 2 characters of program ID in trace
switches, Depress program start,

i, STOP (30 077000 60) Set up binary value of next 2 characters of
program ID in trace switches., Depress program start (assemble).

OUTPUT
Object Code - output servo 1.

Listing - printer.

APPENDIX 6 - PAL STOPS

Display Pass Description Recovery
017771 1 No BEGIN card or Reload p »per BEGIN card or

improper call card. Call card. Depress start
to continue assembly.

017771 2 Bad tape Label not on tape. Restart,

11000X 1 Reader error Replace 'X' cards in the
input magazine. Depress
clear on the reader.
Depress program start.

NOTE: 'X' does not always
match number of cards in
error stacker. Remove excess
cards from normal stacker.

100000 3& L Printer error Turn printer off-line., Return
printer to normal condition.
Depress clear on printer.
Turn printer on-line assembly
will continue.

070001 OPS Operating System Read to load.

077000 1 ID KEY IN Set up 2nd 2 characters of
ID KEY IN trace switches,
Depress program start.

017001 1 ID KEY IN Set up 1st 2 characters of
PID of program to be
assembled from tape.

oL oultl ALL Tape error Tape block count wrong,
restart.,

140U55 ALL Tape error Restart.

140U66 ALL Tape parity - Assembler has rocked tape

5 times. To continue depress
program start. Assembler
will attempt to recover.

SGEEZE ROUTING

This routine provides a method for making corrections to absolute object code
decks produced by the PAL assembler.

Input
All input corrections are punched in octal starting in column 20 as followss

1 19| 20 25| 26-27| 28 , ‘ 7 80

BLANK AAAAAA LL ccce ;} cccce BLANK

Columns 20-25 contain the six digit octal address of the first character to
be corrected. Columns 26-27 contain the octal number of characters to be
changed. Columns 28-79 contain the data in octal to be converted to PAL
format. Up to 26 characters located in contiguous memory may be altered
by one change card.

Qutput

The output is punched in PAL format. Input cards will be compressed as much
as possible until a change to a non-contiguous location is encountered or
until the output card is filled.

The squeezed output is placed immediately preceding the last card of the
object deck.

The following flelds on the output card will be blank:

1. Card Sequence Number
2. Relocation Mask

3. Check Sum Field

4. Utility

5. Program Identification

2_CARD LOAD ROUTTNE

The source card deck for the 2 card loader is supplied for an 8K configuration.
This may be adjusted for any configuration by altering the second card of the
gource deck as follows:

CARD LABEL ‘ ‘ OP!N OPERAND

|
(2nd card) | camoa |a| mquassa | ox7200

X 1s 1 for 8K store (017200)
X is 2 for 12K store (027200)
X is 6 for 32K store (077200)

After altering the source deck, assemble the source deck for the desired 2
card loader. After assembly remove the R and T cards (first and last cards
respectively) of object deck. The resultant 2 cards will load any program
within the designated store configuration.

Operating Instructions

1. Place 2 card loader ahead of program to be loaded in the input hopper of
the High Speed Reader.

2. Depress 'load card! - program start.

3. Depress 'CONT! - program start.

4. Program will be loaded and executed.

MEMORY PRINT OUTINE (CARD SYSTEM)

The Source Card Deck for the Memory Print 1s supplied for an 8K configuration.
This may be adjusted to any other size store by the alteration of two cards
as follows:

first card:
Card ' label l t op'n l operands

00010 | DuMPa)} & | EEGINAA | 0X5200

X {8 1 for 8K store 5015200)
X is 2 for 12K store (025200)
X is ? for 16K store (035200)

X 18 7 for 32K store (075200)

second card (seventh card from end of deck):
card label op'n operands

018104 PARAA a ¥+BALLNA 00bbbbbb00seee 00

OObbbbbb is the octal address where printing is to begin,
usually 00000520 (see note).

00eees00 is the octal address of the last row of memory to
be printed. (for 8K this would be 00017700,
for 12K - 00027700, etc.)

After altering the source deck, assemble the memory print to obtain the
desired object card deck.

Operating Instructlons:

1. Place the appropriate 2 card load routine ahead of the memory print
object deck in the input hopper of the High Speed Reader.

2. Depress "LOAD CARD" - program start.

3. Depress "CONT" - program start.

4. To execute immediately, place printer “on line” and depress "“Program
Start", :

" 5. To manually execute at any other time, set up octal address 015400 (8K)
in M switches, depress "INST", “"CLEAR", "DISPLAY", "CC", "M", and
"Program Start®.

6. To print all of memory as indicated on the PAR card (source deck) Sense
Switch 1 should be set on, otherwise the print will start from the
address in Tetrad 30 and end with the address in Tetrad 31. If limits
are desired when operating the durp manually, Tetrads 30 and 31 pust be

t from the console using the alteration procedure.
7. To 01;1 ratemt‘ne °due::np under px?oggram control, ﬁ:‘: Tetrads 30 and 31 to the

desired parameters and execute a JR to octal 015412 (8K). Control will
be returned to the running program after the dump has been exscuted.

NOTE: Regardless of the parametere in Tetrads 30 and 31, location O through
0517g will always be printed in 4 character groups. The locations
specified by the parameters are printed in 5 character groups., If
Tetrad 30 contains 0, location O through 0517g will be repeated in
5 character format.

OPERATING INSTRUCTIONS FOR THE UNIVAC 1050 CARD SYSTEM

1.1
Page 24
1/31/63

FPEND

OFERATING INSTRUCTIONS FOR 1050 CARD ASSEMBLER.

CONSOLF. SENSE SWTICHES,

1, Sense switch 1 controls punching of object deck.

CFF - Object deck will be punched.
ON - Object deck will not be punched.

2, Sense switch 2 controls printing of assembly listing.

OFF - Listing will be printed.
CN - No printing.

3. Sense switch 3 controls punching of label table,

CFF - Label table will not be punched.
CN - Label table will be punched.

1, Turn punch on (depress power-on button until light is on),

2, Turn punch off-line (depress on-line switch until light is off),

3. Depress clear-manual feed card(s) until card appears in output
stacker (remove card(s) from output stacker),

4. Turn punch on-line (depress on-line button),

ERINTER,

1. Depress off-line button until light is on.
2. Set paper 3 holes above sprocket,
3. Depress off-line button until light is off.

READER,

1. Place program to be assembled behind 1st pass assembler deck
followed by about l21b, blank cards,

Flace cards in reader face down, 9 edge leading.

Depress power-on button until light is on.

Depress magazine-load button,

Depress clear button after magazine-load light is off,

bW
. e e

1.1
Page 25
131/64

CONSOQLE,
1. Depress clear button,
2. Depress load card mode button.
3. Depress program-start button,
4, Depress con. mode button,
5. Depress program-start button (assemble lst pass),

STOP (30 017777 60)8'

READ UNIT,
1. Remove cards from output stacker, separating source code from
l1st pass assembler deck,
2, Place souwrce code behind 2nd pass assembler deck, followed by

> W

S

1

Q

blank cards and weight, in the input magazine, 9 edge leading,
Depress magazine-load button,
Depress clear button after magazine-load light is off,

Depress program-start button (assemble 2nd pass),
Program-Stop (30 017777 60)8.
End of Assembly,

QUTPUT,

Object code - output punch stacker,
Listing - printer,

DISFLAY
30 017771 60

30 010077 60

30 110000 60

30 11000x 60

30 120002 60

l1& 2

Label
Table
Print &
Punch

ERROR STOES
DESCRIPTION
No BEGIN Card

Label Table
Exceeded

Reader Error

Reader Error

Punch Error

a) No card in
error stacker,

b) 1 card in error
stacker,

1.1

Page 26
1/31/64
RECOVERY

Refeed source deck with
valid BEGIN card, Depress
program start to continue
assembly.

Depress program start to
continue assembly, All
labels that exceed the label
will appear on the output
listing with '"L" errors,
After assembly is finished
use $ option to reduce
number of labels,

Refeed cards in error
stacker, Depress clear on
READER, Depress program
start,

Replace 'X'"cards in the
input magazine, Depress
clear on READER, De-
press program start,

NOTE: "X" does not al-
ways match number of cards
in error stacker. Remove
excess cards from normal
stacker,

a) Remove last card in
normal stacker, '

b) Last card in normal
stacker will be follawed
by the next proper card,

NOTE: All cards selected
into error stacker may be
discarded.

RISPLAY

Channel 2
Abnormal on
Console will
be lit,

Channel 0
Abnormal on
Console will
be lit,

30 017777 60

1.1
I age 27
1/31/64

PASS ~ DESCRIFTION ~ RECOVERY

2 Punch Error

Label Printer Error
Table
Funch &
Frint,
2

1&2 Completion

Clean all cards out of
punch, Turn punch off-
line, manual feed cards
uritil blank card appears
in output stacker, De-
press program start,
F.emove any blank cards
from output stacker,

NOTE: Read check is an
unrecoverable error,

Turn printer off-line.
Return printer to nor-
mal condition, Depress
clear on PRINTER,
Turn PRINTER on-line.
Assembly will continue,

Pass in operation is
completed.

2,1
Page 24
5/13/64

ADDRITIONAL INSTRUCTIONS

Name of source field, Name of destination field,

SEND
Number of characters to be transferred.

This operation causes a block transfer of up to 1024 characters,

Example:

'SEND IN, OUT, 80

The 80 characters of information beginning at IN is transferred
to OUT and successively higher positions,

' ALTER Label of GOTO instruction, Name of operation

This operation permanently replaces the operand specified in the
GOTO instruction with the name of a new operand.

2.1
Page 25
5/13/64

A, Tape Regent

REGENT source cards are used as direct input to the PAL Tape
Assembler, and the operating instructions for the assembler should
be followed. No further processing of the output object programs
is required.

B. Card Fegent

The Card REGENT program produces a PAL source deck which is
subsequently assembled using the PAL Card Assemnbler, after the
desired 1-O control routines are added., The steps required to
produce an object programn are as follows:

1. The Card REGENT object program is loaded from the card
reader, followed by the source cards.

The intermediate source output is punched and the input cards
are listed on the printer, (This listing may be eliminated by
setting Sense Switch 2.)

2. The intermediate output cards are removed from the punch,
The I-O control routines required for the programs are
selected from those supplied with Card RESGENT, These
are inserted after the first (BEGIN) card of the intermediate
deck. The deck is then ready to be used as direct input to.
the PAL Tard Assembler,

Output cards will have been sequenced by Card REGENT be-
ginning with 05000 (the I-O routines will have sequence numbers
lower than 5000,) for the purpose of future reference or in

case the need for sorting arises, Input statements will be
punched in the output as comment cards containing a (,) in
column 7, and blanks in the sequence number field. The
original sequence number will appear in the I, D, field,

3. The operating instructions for the PAL Card Assembler
should be followed. After both passes of the assembly have
been completed, the I-O control cards should be removed
and stored for future use,

2.1

Page 26
5/13/64
CARDR REGENT QBIECT-SPACE ESTIMATES (Approximate)
LOW ORDER MEMORY 400
USE | 200
PAGE 250
INPUT 400
OUTPUT DTAIL 275
OUTPUT CARD 400
OUTPUT NONDT 150
READER CONTROL 650
PUNCH CONTROL 650
PRINTER CONTROL 650
READ 5
PUNCH 5
PRINT 10»*
CLOS *
ADD *
SUB »
MPY 50
DI1v : 80
ROLL 5%
RESET *
ROUND 100
SHIFT 40

MOVE 50

SEND
CLEAR
IFDEC
IFALP
IFCHR
IFDIG
IFZON
IFNEG
LEV
RTN
EXIT
XCUTE
GOTO
STOP

ALTER

*Add 5 for each operand present,

20
20

80

130

10

2,1
Page 27
5/13/64

3.10
Page 1
7/8/64

A% D P

The operating system is divided into three major functions:

A, Input-Output Coordination, Program Switching
B. Tape I/O Order Handling
C. DProgram loading and Memory Allocation

For the free standing system the Coordination and Tape Handler functions
are substantially the same as for satellite systems, This description is
primarily concerned with (1) the various parameters which may be used to
assemble different versions of OPS for specific purposes and configurations;
(2) description of loading and locating function; (3) program communication
with OPS, and (4) console operating instructions,

I. Ass jons

OPS is available in source code in the standard library and may be assembled
by the user to fit his needs. From 3 to 5 parameters may be written as
follows:

OPS pl p2 p3 p4 p5
Card Type, Tape Type, No, of Program, Memory Dump, Translation
Following is a description of each pararneter:
A. Parameter 1, card type,
1. 80
Provides for 80 column card loading from row or serial
readers, Loader will accept 80 column ""Call" cards for
tape locating,

2. 90

Provides reading of 90 column call cards from row or serial
readers, with translation,

3. 90LS

Same as (2) above but includes ability to load 90 column
object cards from a serial reader.

3.10
Page 2
7/8/64

4, OLR

Same as (3) for row reader,

Note: One of the above must appear as parameter 1. If one of the 90
column parameters is used a translate table is generated for

90 column card code beginning in location 01500g.

B. Parameter 2, Tape Type.
1. A

Provides tape order handling and error recovery for Uniservo
IIIA tapes; up to 6 units,

2. C

Same as (1) for IIIC tapes.

C. Parameter 3, No, of Programs,

1. CONC

Frovides for loading and running of 2 relocatable programs
concurrently, or a single absolute program,

2, SING

Eliminates the portion of OPS which provide for concurrent
processing lapprox, 1000 char,),

D, Parameter 4, Memory Dump Option,

1, PDMD

Provides for inclusion of a mefnory print routine which can
be executed by the operator, (Aprox. 1100 char,).

2. IDMP

Provides the ability to write all of memozry on servo 1 for
future printing. (65 char.),

Note: Parameter 4 is not required.

3.10
Page 3
7/8/64

E. Parameter 5, Translation.

Since translate tables must be located in the first 4096 characters
of memory, absolute locations must be set aside by the operating
system for use by relocatable programs, The parameter TRNSn
(where n is 1, 2, or 3) provides up to 3 open rows beginning in
location 015008 into which translate tables may be transferred
and used. In 90 column versions of OPS an input translate table
is automatically generated in 015005 which may be used by the
worker program, but not disturbed. In these cases, areas pro-
vided by the TRNSn parameter begin in 01600g.

I, P ram Loadi u

All versions of OPS contain the ability to locate and load programs from
a master instruction tape. Card loading ability is dependent on para-

meter 1, described above,

A, Program Call,

The Program ID may be provided by reading a ''Call" card, or by
trace switch settings (see Operating Instructions). j segment ID
may be provided by these methods or by the worker program (see
Section III), A call card must contain '$! in column 1 and the PID

in columns 2-5, A blank PID from any source indicates that the

next program is to be loaded from the card reader, A PID of
(077777777) indicates that a load is not to be performed; the loader
will release control to the Coordinator to continue a program already
running, if there is one,

If a program ID other than blank orasigss received, the locator
searches forward on servo 0 for a label block (R) containing a
matching ID, If a match is not found the MIT is rewound and the
system stops to await further instructions. The MIT is not re-
wound when a program has been located and loaded,

B, Program Memory Allocation,

Information in the R block (or card) enables the loader to determine
whether or not the program will fit into available memory, Ina
concurrent system, the first relocatable program is assigned the
lowest memory available, and the second is assigned the highest,
except where the load key is 5, in which case it is always assigned
the lowest,

3.10
Page 4
7/8/64

The memory rernains allocated until the program is released or
jettisoned,

Absolute programs may be loaded only if all of the memory is
available, If an absolute program has been loaded and not released
or jettisoned, no other program may be loaded.

A list of the stop displays and procedures to be followed if the load
being attempted is unacceptable is contained in Section IV, Operating
Instructions.

epement 1,0oadin

Segments of either relocatable or absolute programs may be loaded
from time to time using the methods described above, or a running
program may access OPS for the purpose of loading its segment
without operator intervention or knowledge. Relocatable segments
are always assigned the same base address and memory allocation
originally assigned the run,

I1I. Program Communication with OPS.

A,

Class II Interrupt,

A program using decimal arithmetic instructions where the
possibility of decimal overflow exists must load the address of

the overflow routine into location 0775-0777, 1If a class II interrupt
occurs which is not an operator request, control will be trans-
ferred to that address.

The actual class II interrupt entry channel must not be altered at
any time,

Program Release,

When a program is completed, a JR to the Release Entry of OPS
(0700) must be executed. OPS releases the memory allocated
to the finished program and stops, Control is not thereafter
returned to the program which has released.

The release entry should not be accessed unless all processing
has been completed.

D.

3.10
Page 5
7/8/64

Program Stop.

In order to bring the computer to an orderly halt, all IO orders
currently being executed must be completed and their interrupts
processed. This is accomplished by a JR to the Stop routine (0736).
OPS retains control until all pending IO interrupts have been pro-
cessed.

The Stop routine must be accessed before executing a JD or JHJ
instruction,

Segment Loading.

A running program may access OPS for the purpose of loading a
segment by performing the following steps in order shown:

1. Execute the Stop Routine (JR 0736),

2, Set locations 0541 and 0542 to non-blank, This prevents
OPS from stopping (0541) and reading a call card (0542),
If it is intended that the segment ID be obtained from a
call card, or trace setting, this step and following step 3
are not performed.

3. Store the Segment ID (4 characters) in AR2.

4, If the servo number on which the segment appears is other
than 0, store the appropriate unit number in 0540,

5. Execute JR 0612, The segment will be located, loaded and
executed. Locations 0540 thru 0542 will be reset to blank
at completion of the load,

E,

3.10
Page 6
7/8/64

Trace Routine,

Information may be entered into memory from the operator console
by using the console trace switches, when trace mode is set on
PROC. The routine used by OPS for this purpose is a closed
subroutine and is available to worker programs as follows:

1, Execute a display stop (JD) informing the operator of the need
for a trace key in of 2 characters.

2. Execute JR 01245,

3. When control is returned, the two characters which have been
set in the console trace switches will be in the least signif-
icant characters of AR2,

Translate Tables,

If translate table areas are included in the Operating System being
used, they will begin in location 01500, Translate tables should
be transferred into the areas as they are used, since they are not

preserved when switching programs in concurrent operations,
(See Section I, E),

3.10
Page 7
7/8/¢64

Following is a summary of absolute locations in OPS which are
available for program communication or information:

0540 Servo # of MIT

0541 OPS stop switch, (0 = stop, 1 = bypass
stop 070001)

0542 OPS call card switch, (0 = read call card,

1 = bypass call card
read)

0612 Load entry. Access by JR.

0700 Release entry, Access by JR,

0736 STOP entry, Access by JR,

01000-01244 Loader read image area,

01245 Trace switch routine, Access by JR,

01302-01355 Temporary storage of T16, T17, T18, T8,

¥1 through X7 Program A (low order),
Concurrent systems only,

01356-01431 Same for Program B (high order).

01432-01435 FID of last program or segment loaded
from tape,

01437-01441 Highest location of Program A, Do
not alter,

01443-01445 Lowest Location of Program B. Do
not alter,

01447-01451 Highest location in OPS + 1. Do not
alter, (Lowest loc. PROG A).

01453-01455 Highest location in memory., Do not alter,

01500-01577 80 column system: 1lst translate table

area generated by parameter TRNS1,

90 column system: Input card code trans-
late table, Subsequent translate tables
generated by TRNS in parameter follow
beginning in 01600,

3.10
Page 8

IV, S ti tions.

A, Initial Load,

The Master Instruction Tape is mounted on servo 0. Using the tape
load facility, OPS is loaded and stopped (30 070001 60), Following
is a description of the display stops which may be encountered, their
causes and the action to be taken,

B. Display Stops.
070001 Ready to Load.

1, To load using call card, or preset PID, depress
start, (Call card contains '$! in col. 1, PID in
cols, 2-5,)

2, To load using trace switch setting; set first 2
characters in trace switches, depress Opr. Request,
then Start, After stop 077000, set second 2 char-
acters in trace switches, demress Start,

3. To return to program already running without
performing load, setID of '0DZ 7' (077777777)
in trace switches, as in (2) above,

070002 No R card. Depress start to repeat load, Stop 070001
will be accessed. Correct input,

070003 Not enough memory available. Procedure same as
070002,

070004 Trying to load 3 programs. Procedure same as 070002,
070005 Card read is not call card, Procedure same as 070002,

070007 Program stopped by Operator Request. To attempt error
recovery and/or continue running, depress start,

3.10
Page 9
7/8/64

To exercise the following options at this time; depress Operator
Request, set trace mode on PROC, and enter the appropriate key
into the trace switches as follows: then depress Start,

077 Load program, Stop 070001 will be accessed.

076 Print memory.

075 Dump all of memory on servo 1 (see C below).

00 Jettison program using Fastrand.

01 Jettison program using Fastrand.

02 Jettison program using Servo 0,

03 Jettison program using Servo 1,

04 Jettison program using Servo 2,

05 Jettison program using Servo 3,

06 Jettison program using Servo 4,

07 Jettison program using Servo 5,

012 Jettison program using Reader,

013 Jettison program using Punch.

014 Jettison program using Printer, CHO

015 Jettison program using Printer, CH?7
Note: Great care should be exercised in making the above settings.

Incorrect key ins which are less than 017 may cause un-

recoverable problems,

070010 Absolute program load is unacceptable (See Section IIB),
Procedure same as 070002,

- 070104 Check sum error, Key 1 into loc, O to ignore. (Not
recommended unless cause is positively known,)
Otherwise, procedure same as 070002,

3.10
Page 10
7/8/64

070105 Card or Block count error, Procedure same as 070104,

070106 Read Error during load, Depress clear, then Start.
Loader will return to stop 070001,

Note: If a segment is being loaded from tape, the loader may
attempt to restart the load while the MIT is rewinding in
which case the error stop will be repeated. Wait for rewind
to be completed, then repeat procedure.

070707 PID not found on tape, MIT rewinding, Wait for rewind,
then depress start to try again.

077000 Tirst half of trace switch ID acknowledged. Key in other
half, depress start,) :

070013 Card load being attempted in 90 column system, This
version of OPS does not contain a card loader,

077776 Tape abnormal during tape memory dump. Rewind
Servo 1 and depress start to try again,

077777 Tape memory dump completed, Depress start to access
stop 070007, Program (S) may be continued from this
point,

C. Tape Memory Dump,

If the OPS in use contains the tape memory dump feature, it may

be accessed by a trace switch key in of 075 at the appropriate time,
following an operator request stop (070007), A blank tape should

be on Servo 1 at load point, All of memory is written in maximum
size blocks and the computer is stopped (077777). The tape is not
rewound, Depress Start to return to normal operation. The standard
library contains the routine TDMP which may be loaded using the
normal call procedure for the purpose of printing the memory as
written on Servo 1, The printout oltained is in the same format as
the Print Dump routine,

D. Print Memory Dump.

The Print Memory, if provided in the system, produces an octal
printout directly from memory and returns to stop 070007 when
completed., It is accessed by a trace key in of 076 following the
operator request stop. In view of its high memory requirement,
the use of the print dump option is not recommended except for the
initial stages of debugging.

3.10
Page 11
7/8/64

Peripheral Error Recovery.

FEach of the IO control routines used with OPS contains its own
error display stops indicating the nature of the error which has
occurred and identifying the channel unit, etc. Following is the
procedure to be followed to attempt error recovery following a
peripheral error stop. (Note exception tape single program).

1. Depress Start.

If a second program is in memory and is not affected by the
error, it will continue processing, If there is no second
program OPS will loop until the operator intervenes. The
program in which the error occurred will be by-passed until
the condition is corrected.

2. Correct the error condition, if possible,

3. . Depress Operator Request, The operator request stop
(070007) will be accessed.

4, Depress Start,

If the error condition has been properly corrected, the pro-
gram (S) will be resumed from the point of error. If not,
the error stop will reappear, and the procedure must be
repeated,

It should be noted here, that a retry will be attempted on each
peripheral which has an error condition existing at this time
whether or not an attempt has been made to correct it,

Zxception; If the single program version of OPS is being used,
the above procedure does nct apply to tape errors, If a tape
error occurs, recovery is attempted immediately, when
Start is depressed after the error display stop. Control
remains in the tapre error recovery routine until the
situation is corrected,

Proeram Jettison (Concurrent Processing Only)

The jettison procedure enables the operator to release the memory
allocation of a program which is unable to continue; and to replace

it with another program and/or continue a program which has been
running concurrently,

3.10
Page 12
7/8/64

Normally, this will be done when an unrecoverable peripheral error
has occurred and the program is unable to proceed to its normal
conclusion and release,

Following is the procedure to be followed:
1. Depress operator request to access stop 070007,

2. While the éomputer is stopped, set the jettison code (see
above, Section B) of any one of the peripherals being used
by the program being jettisoned into the trace switches,

2
3. Set trace mode to PROC,

4, Depress Operator Request,

5. Depress Start, The program will be released and Stop 070001
will appear, and any of the options listed in Section B may be
exercised,

There is not a jettison procedure in the single program versions of
OPS. If a program cannot run to normal completion, OPS must be
reloaded in order to substitute another program.

Operator Request,

The varied reasons for using the Operator Request button are
described above., Following are some general remarks regarding
its operation:

1. The button must be lit when it is depressed in order to take
effect, There are times when, during the running of OPS
and the peripheral control routines, it must be inhibited
(light out). Sometimes this is obvious when looking at the
console, but usually the inhibit periods are so brief that the
light seems to be lit continuously or may be flickering., If
depressing the button has no effect, it was probably inhibited
at the instant it was depressed. Hesitate, then try again,

2, If a program contains an error which causes it to enter a
loop which does not involve IO processing, OPS will never
be able to secure control in order to process an Operator
Request, This condition will usually be apparent in that the
processor will be running (looping) and no 1.0 peripherals
will be running., In order to obtain a memory dump and
jettison the program:

3.10
Page 13
7/8/64

a, Depress Program Stop.

b, Set top row of console switches to 1(')00()7’27008

c. Set Display-Alter section to INST.

d. Depress ONE INT

e, Depress CLEAR

f, Depress ALTER

g. Depress START

h. Depress CONT

i. Depress START

If the computer does not now stop at display 070007, depress
Operator Request, Follow memory dump and/or jettison procedure.

If a second program had been running before the problem
developed, it may now be continued,

When programs are running normally with OPS, operator request
is the only safe way to stop the computer without risking the loss
of I0 images., Use of the Program Stop button is not recommended,

3.10
Page 14
7/8/64

Assembly Instructions,

OPS source code is a part of the standard library and may be assembled using
the parameters in Section I, by preparing three cards as follows:

7 13 19
PID BEGIN 0520
OoPSs pl, p2, p3, p4, p5
END START

Any 4 character PID may be used in the BEGIN card. However, Systems
Programming has assigned names to 10 versions for future reference
accordingly. They are:

Name Parameter Combination_
0S01 * 80, A, SING, TDMP

0S02* 80, A, CONC, TDMP

0S03* 90, A, SING, TDMP, TRNS1
0504 90, A, CONC, TDMP, TRNS1
0S05 80, A, SING, PDMP

0S06 90, A, SING, PDMP, TRNS1
0507 80, C, SING, TDMP

0508 80, C, CONC, TDMP

0509 90, A, CONC, PDMP, TRNS1
0510 80, A, CONC, PDMP

* These three versions are in the standard system tape,

o3sve

o6®0

07260

Joeo

1100

1200

1300

1400

XchLl.) Enve sFI&ND 0 ﬁ
Ell [gxl ((3' Nl_l_l, |g;l)g_gl 1R1 P A| pros floPs + | | NEMRY

ROSTR

K'. e 132 l‘” 12 1E T”
* oM IT STATVE &I13T _ LINK RETVRN B DORGSSES
TE cte T.E cra féiﬂ
. o . ~ic -
, LB khlolehle SIS IR | 47 Te|Ti|Ta|Ta|Te|Te Ro
4 Y v T 1 ¥ !
o5a BrTay T-0 15508 ADORESSES Mey L TEMP STOG
Gu [PeT8PT7] vosv | I N I O A A L i
¥ v 1) ¥ ! Ll
PROC RELERSE |/NTERRUPT EeeY | L/WR GNTRY STOF ERTEY JTAFF 1556 B, oy lcre ot lees
h g
XRELS |} Xewr | ek | Top 1 TRw_ | Proc- A | procf |::'Qg !
; v N 1 T Y T
LORD JMAG RE
j000 - |24 §
LoAD IPAGE ARER ' ! ! T 1 T
\J v] [I B ¥
-0 ¢E RRE4 .
b_1/MBCE RR RN E AT]
|
Y — T T T)] 1
PRoG A TEMP STARG TETs ¥-1% PRoé B
ol ro | rigl Te Lo | 1ol il see] seel i) szl T) riz |l el T
v I T 1 I T I
i L TERR STRG TE CRAN

_Lnokw7 394yols LAgNshY3Id sdo

4ol
Page 1
1/31/64

1/0 SPECIALIZER FOR UNIVAC 1050 CARD SYSTEM

The UNIVAC 1050 Card System I/O Speciaslizer produces source decks (for PAL) of
the reader, punch and printer routines as specified in directive cards. The
I/0 routines produced by the Specializer do not require the 1050 coordination
function.

The directive card is in the following form. The label field is left blank.
The '‘Operation field has RDR written for the reader routine, PCH" for the
punch and ‘PRNT for the printer. The Operands" field contains a series

of parameters separated by commas. The number, nature and interpretation

of these expressions is determined by the particular routine being specified
as follows:

Parame - RDR ___PCH ' _PRNT
P1 LABEL of AREA associated with routine.
Number of reserve areas associated with routine.
P2 3<P2<.12% 3« P2 £ 32 . 2« P2 £32
P3 Index register to contain the relative area address.|
TRNSL(e) or TRNSL(z) or | FULL () or
Ph " UNTRN UNTRN HALF

Example: A reader routine is desired to read cards with the translated card
images read into one of three reserve areas. The label of the first character
of the area is CRDIN. The area relative address of the current card image area
is to be supplied in index register 5. The directive card will contain the
following information.

’_m;u | OPERATION OPERANDS
(blank) 3 RDR CRDIN,3,5

The deck produced by the Specializer will contain the proper PAL coding for
the reader routine requested for assembly with the worker program source deck.

Card input for Specialization is in three parts.

- ”""""‘:"‘!1‘."":2
ATt WL T 4

fﬂ "

A

' Source Library;.
BDB-:..EQH, PRNT T

l — -
A — _,..,_".’.;:"ﬁs
H

4{}0 Specializer

e e >

4.1
Page 2
1/31/64

The first part is the I/0 Specializer program deck. This is followed by
the directive cards to specify any one or all of the I/O routines. The
third part is the source library deck containing the reader, punch and
printer routines. A blank card must follow the third part.

When loading of the first part (Specializer) is completed the computer will
stop with the display 30 01 0000 60. Before hitting Program Start" the
operator may select any of the following options.

Depress Sense Switch 1 - No process of Zjecialization -
punches and prints part three
input cards.

Depress Sense Switch 2 - No punching.

Depress Sense Switch 3 - No printing.

These sense switch options may be combined if required.
Successful Completion - 30 010077 60

Error Stop - 30 01 0001 60 - Incorrect expression on directive card.

4,2
Page 1
1/31/64

1/0 RQUTINES FR UNIVAC 1050 TAPE SYSTEM

The card reader, pungh and printer routines for the tape system
are essentially the same as those for the card system. Worker program commu-
nication is exactly as stated for the card system. The difference between
the card and tape systems lies in the communication that takes place between
these routines and the coordination function.

Error recovery is effected by the operator through the
coordinator operator request. (See Coordinator Uperating Instructions.)

For use of the I/0 Library, specifications are included in
the worker program in the following form for assembly. The latel field is
left tlank. ‘'RDR' is written in the 'Operation' field for the reader routine,
PCH for the punch and PRNT for the printer. The 'Operands' field contains a
series of parameters separated by commas. The number, nature and interpre-
tation of these expressions is determined Ly the particular routine teing
specified, as follows:

In.a two printer system the call 'PRNT7' is availakle for a

channel 7. print routine. The parameters are identical as those for the
first printer routine.

We | .
Parameter™—-._ gDR PCH PRNT

i

Pl IALEL of AKEA associated with routine.
Number of reserve areas associated with routine.

P2 3<p2<32| 3<p2<32 | 2<p2<32

P3 Index register to conEain the relative area address
TRNSL(=) or | TRNSL(®) or FULL(®) or

P4 UNTRN UTKN HALF

Example: A reader routine is desired to read cards with the translated card
images read into one of three reserve areas. The label of the first character
of the ares is 'CRDIN'., The area relative address of the current card image
area is to be supplied in index register 5. The worker program will contain

- the following line of coding.

LABEL OPEKAT ION UPERANDS

(blank) RDR ChDIN, 3, 5

The object program will contain the proper coding for the reader routine
requested.

CARD PROC PARAMETERS

4,2
Page 2
Rev. 7/10/64

Routine RDR, RDR9, RDS PCH, PCH9, PCHS9 PRNT, PRNT7, PRPL
RDS9, *REA *REA9 *PUN, *PUN9, *PUNS9 PRPL7, *PRT, *PRPL
Parameter *RES *RES9

Pl LABEL NAME OF AREA ASSOCIATED WITH ROUTINE

P2 NUMBER OF RESERVE AREAS
3 to 21 3 to 21 2 to 21

P3 INDEX REGISTER TO CONTAIN RELATIVE AREA ADDRESS
TRNSL (4) or TRNSL (A) or Full (4), Half

P4 UNTRN or 132 (buffered only)

UNTRN

Appendix I 4,2

Page 3

7/10/64
TAPE SYSTEM 1050

1/0 CARD PROCS
TOTAL SIZE MINIMUM
1/0 CALL LINE coL ROUTINE INCLUDING MIN, NO, OF
NO, OF AREAS AREAS

RDR 80 Row Reader Routine - 80 989 3
RDR9 90 Row Reader Routine - 90 989 3
RDS 80 Serial Reader Routine - 80 637 2
RDS9 90 Serial Reader Routine - 90 672 2
PCH 80 Row Punch Routine - 80 - 928 3
PCH9 90 Row Punch Routine - 90 928 3
PCHS9 90 Row Punch(Serial)Routine - 90| 968 3
PRNT --- Channel @ PRINT 908 2
PRNT7? --- Channel 7 PRINT 908 2
PRPL --- Channel @ W/Paper Low ability| 983 2
PRPL7 --- Channel 7 W/Paper Low ability| 983 2
CARD SYSTEM
*REA 80 Row Reader - 80 794 3
*REA9 90 Row Reader - 90 794 3
*RES 80 Serial Reader - 80 546 2
*RES9 90 Serial Reader - 90 576 2
*PUN 80 Row Punch - 80 748 3
*P UN9 90 Row Punch - 90 748 3
*PUNS9 90 Row Punch(Serial) - 90 788 3
*PRT --- Channel @ PRINT 763 2
*PRPL --- Channel @ W/Paper Low ability]| 823 2

4.2,1
Page 1
1/31/64

1. RON _READER ROUTINE,
1.1 Subroutines. Referenced by Worker Program.

Initialize (XINRD). XINKD must be entered before there is any

attempt to get a card image. Lase address tetrad (tetrad 36), standby
address tetrad (tetrad 37) and the channel interrupt entry are set to
their approepriate values. All the indicators, counters and variable
connectors are reset to their initial conditions. No feed card order
is issued., Re-initialization takes place automatically on error
recovery,

Execute (XCTRD). XCIRD must be entered when the worker program wants
a new card image. The present reserve area is assumed to be released
by the worker program. Thus RAC is increased by 1. A feed card
instruction will be issued if there is no card in the track. The
base address of the next reserve area available to the worker program
is given in the IR specified by p3. If an error condition exists

and there is neither a card image ready for processing nor an actual
card in the track, the computer will be brought to an orderly stop
with the following in the instruction register:

30 11000X 60 where X equals 1 ot 2,

the number of cards to be reloaded. When no images are available

to the worker program, this routine will set the 8 and 4 bits of

the unit u3atus list and transfer control to the coordinator. Control
will be returned to the worker program (when an image becomes available)
at X622, the link entry of XCTRD.

1.2 Subroutines Internally Referenced.

Feed Card (XEFCD). XEFCD is entered from the coordinator, interrupt

or the execute subroutine when a feed card instruction can be issued.
This section must not be entered directly from the worker program.

A feed card instruction will be issued if there is no error condition
in the reader, punch or printer and if its MAY I switch is on. This

routine will immediately exit if operating under an error condition.

It also turns on the 2-bit (operating bit) of the unit status list

if a feed card instruction is executed.

Interrupt (XETTR). XEIIR is automatically entered at each cycle
point 18 or when a feed card instruction is issued while an error
condition exists. In case of an error interrupt, the error sub-
routine is entered setting the l-bit (error) of the unit status list,
(Control is returned to the worker program without stopping the
computer after an appropriate treatment for the error situation,)

In case of a normal interrupt, the 2nd bit of PHI is tested against

1 and if equal, RAC is decreased by 1, XBFCD will be entered, if
possible®*, Further cyclical interrupts will be inhibited if there

is no card in the track and if there is no error condition. If and

*The possibility is determined by testing RAC against PHI,

4.2'1
Page 2
1/31/64

only if RAC > PHI, there is at least one reserve area available
to the card reader, the 1 and 4 bits at the unit status list are
reset after a successful read, The tape MAY I switch is turned
on if the punch is not operating. If there are no cards in the
track during interrupt, the 2-bit (operating bit) is also turned
off, Coordinator interrupt is executed during the routine.

Error (XEERR). XEERR is entered from the interrupt subroutine

when an error condition is deteceted. The correct number of error
cards is inserted in the error card counter which is the 3rd l.s.d.
of the reader error stop instruction. The l1-bit (error) of the unit
status list is set. Feed card (XEFCD) is set to exit. The error
switch in XCTRD is set to stop when all remaining good images are
exhausted.

Indicators and Counters.

Phase Indicator (PHI). PHI consists of the two least significant
bits of a character to which the tag XLPHI is assigned. A 1l-bit

is inserted in the 1,s.b. of PHI when a feed card instruction is
issued. At each cyclical interrupt, successful or not, PHI is
shifted left one bit position and a O-bit is inserted in the 1l.s.b.
if there is no reserve area released by the worker program. The
number of 1l-bits in PHI shows the number of cards in the track.
This number together with the number of reserve areas filled with
data, not.yet processed or under processing, determines the numter
of reserve areas unavailable to the card reader. At each successful
interrupt, the 2rnd l.s.b., of PHI is tested against 1 and if equal,
a card image was read into memory during the previous card cycle.

Read Area Indicator (RAI). RAI consists of a character to which the
tag XbRAI is assigned. RAI is initially set to the total number of
reserve areas. Each time the feed card subroutine is entered, RAI
is decreased by 1. A feed card instruction without memory advance
is issued. In the latter case, RAI is reset to the initial value.

workable Area Indicator (WAI). WAI consists of a character to which
the tag XbWAI is assigned, WAI is initially set to 1. Prior to
giving the base address of the next reserve area ready for processing
to the worker program, WAI is decreased by 1 and tested against O.
If equal, the base address is reset to the initial value and WAI
is set to the total number of reserve areas. OUtherwise, the base
address is advanced by 128 or 192.

Readable Area Counter (RAC), RAC consists of a character to which
the tag XLRAC is assigned. RAC is initially set to the total number
of reserve areas minus 1, RAC is increased by 1 each time the
execute subroutine is entered and is decreased by 1 each time a card
image is successfully read into memory. Prior to giving the base
address to the worker program, a test is made to determine if RAC is
equal to the total number of reserve areas. If equal, the execute
subroutine will wait until a card image is read into memory. Other-
wise the next working area is available to the worker program.

1A,

4.2'1
Page 3
1/31/64

Serial Reader Routine

In the gerial read routine the communication with the
worker program is exactly the same as it is with the Row Reader,

All the information stated concerning the Row Reader,
Its subroutines and construction apply directly to the Serial
Reader with the following exception:

The Phase Indicator (PHI) is non-existent in the serial
reader routine. Only one card at a time may be in the track.
Therefore, the error stop will contain a reload at p or 1 card
as compared to 1 or 2 cards in the row reader routine.

There is no cyclical interrupt with the serial read
routine, Card feeds are issued during interrupt approximately
0.5 ms after the interrupt is received.

The routines will recover from all errors with the
exception of an output jam.

Appendix 1
Section 4.2,1

FOR ROUTINES *REA, RDR, *REA9, RDR9,

*RES, RDS, *RES9, RDS9

7/10/64 Page 4

ROW & SERIAL

U 1050 READER

REASON FOR RESULTING RECOVERY PROCEDURE
STOP CONDITION

STKR full Recoverable Clear problem at reader, reload number of cards as
Hopper empty indicated by stop display even if this does not agree
Registration with the number in the error stacker. Reload hopper,
Marginal check : depress ready and start buttons,

All others Non-recoverable Any error that causes the reader drive motor to be

stopped is non-recoverable.

NOTE: The recovery procedure for the tape system using the coordinator is exactly the same as stated above
with one exception., That being that after start button is depressed, the operator request button
must be depressed to signal the coordinator that an error recovery attempt is being made. Depressing
the start button after this will cause the program to attempt recovery.

4.2.2
Page 1
1/31/64

2. PUNCH ROUTINE.
2.1 Subroutines. Referenced by the Worker Program.

Initjalize (XINPH)., XINPH must be entered before there is any
attempt to edit data to be punched. All the reserve areas are
cleared to spaces. Those areas between two punch areas are not
altered. The channel interrupt entry is set to its appropriate
value. All the indicators, ccunters and variable connectors are
reset to their initial conditions. The base address of the first
working area is given fo IR2. Issue and link addresses are stored
in coordinator.

Execute (XCTPH). XCTPH must be entered when the worker program
finished the editing of data and wants it to be punched. PAC is
increased by 1. A punch instruction will be issued if the previous
one has been completed, The base address of the next reserve area
available to the worker program is given to Ik specified by p3. If
none exists the 8 and 4 bits of the unit status list are set and
control is transferred to the coordinator. when an area becomes
available, control is returned to the worker program through-the
link entry XC22.

Close Out (XCLPH). XCLPH must be entered when the worker program

wants all the remaining images to be punched and the punch unit to
be cleared of data cards. After all the data cards are punched,

a feed instruction is issued to send the last valid card into the

output stacker.

2.2 Subroutines Internally Referenced.

Error (XCERR). XCERR is entered from the interrupt subroutine when
an error condition is detected. The computer is brought to an
orderly stop with the following in the instruction register:

30 120000 60

when recovery is attempted through the coordinator, the follow-up
punches for the two last cards will be done. One or two cards will
be selected into the error stacker. The l1-bit (error) is set in the
unit status.list. The recovery switch is set in XCPCH. The
coordinator stop routine is executed and after the stop display when
the run depressed control is transferred to the coordinator.

Punch (XCPCH). XCPCH is entered from the coordinator, interrupt

or the execute subroutine when a punch instruction can be issued.

The punch instruction is always issued without memory advance. The
base address (tetrad 40) is updated (advanced or reset) prior to
issuing the punch instruction. This section must not be entered
directly from the worker program, Error recovery is effected through
this routine. The tape MAY I is turned off upon the issuance of a
punch order. The 2-bit (operating bit) is turned on.

4.2.2
Page 2
1/31/64

Interrupt (XCITR)., XCITR is automatically entered when a punch
instruction is completed successfully or not. In case of a
successful interrupt, the contents of tetrad 40 is stored to a
temporary storage so that it can be used for a follow-up punch
when an error condition is caused by the next punch instruction.
PAC is decreased by 1 and tested against 0. If PAC is not O,
XCPCH will be entered. In case of an error interrupt, the error
subroutine is entered and the computer is brought to an orderly
stop. The unit status list 2 and 4 bits of the punch are turned
off upon successful interrupt. If the reader is not operating the
tape MAY I is turned on, The coordinator interrupt entry is
executed to enable other I/0 units a chance to operate.

Indicators and Counters.

Punch Area Indicator (PAI), PAI consists of a character to which

the tag XCPAI is assigned. PAI is initially set to 1, Each time the
punch subroutine is entered. PAI is decreased by 1 and tested against
0. If equal, the base address of the reserve area next to be punched
(tetrad 40) is reset to the initial value and PAI is set to the total
number of reserve areas. Otherwise, the base address is advarced

by 128 or 192,

workable Area Indicator (WAI). WAI consists of a character to which
the tag XCWAI is assigned. WAI is initially set to:the total rumber
of reserve areas, Prior to giving the base address of the next
reserve area ready for processing to the worker program, WAI is
decreased by 1 and tested against O. If equal, the base address

and WAI are reset to their initial values.

Punchable Area Counter (PAC). PAC consists of character to which

the tag XCPAC is assigned. PAC is initially set to O. PAC is in-
creased by 1 each time the execute subroutine is entered 'and decreased
by 1 each time a card image is successfully punched (but not yet

check read). Prior to giving the base address to the worker program,
a test is made to determine if PAC is larger than the total number of
reserve areas minus 2, If larger, the execute subroutine will wait
until a punch instruction is completed and a reserve area is released
to the worker program., Otherwise, the next working area is available
to the worker program,

Appendix 1
Section 4,2,2
7/10/64 Page 3

FOR ROUTINES PCH, PCH9, PCHS9, *PUN, *PUN9, *PUNS9

PUNCH
REASON FOR INTERNAL PANEL RESULTING RECOVERY No. of cards that should
STOP INDICATOR LIGHT CONDITION PROCEDURE be in error STKR at stop
Read check Hole Ct error Read check Recoverable Depress ready and
start buttons,
Stacker full Non-ready STKR full Recoverable Depress ready and start
after emptying stacker o
Hopper empty Non-ready Hopper empty Recoverable Load hopper with cards
depress ready and start]
Off-line Non-ready Off-line Recoverable Depress off-line, ready ® - initially
and start buttons 1 - if it occurs
while punching
All others Non-ready SKEW A & B *Non-
ENTRY A & B recoverable lor®
EXIT A & B (See Below)
JAM
POWER LOSS

*It is possible to recover from these errors at the risk of duplicating or losing a maximum of 2 images depending

upon conditions,

However, the recovery attempt will be successful in most cases.

(No images lost of duplicated)

for jam type errors (i.e., SKEW, ENTRY, EXIT and JAM panel lights). The punch track must be cleared and blank

cards manually fed through all stations.
the procedure for recovering from read-checks should then be followed.

read-check procedure.

NOTE:

exception,

After this is done depress ready and start.

A read check will occur and
For other than jam type errors follow

The recovery procedure for the tape system using the coordinator is exactly the same as stated above with one
That being that after start button is depressed the operator REQUEST button must be depressed to
signal the coordinator that an error recovery attempt is being made.

Depressing the start button after this
will cause the program to attempt recovery.

3.

3.1

3.2

4,2.3
Page 1
1/31/64

PRINTER RCUTINE,
Subroutines. Referenced by Worker Program,

Initialize (XINPR or (XINP7), XINPR must be entered before there is

any attempt to edit data to be printed. All the reserve areas are
cleared to spaces. The channel interrupt entry is set to its approp-
riate value. All the indicators, counters and variable connectors are
reset to their initial conditions. The base address of the first
working area is given to IR3. The link and issue addresses are stored
in the coordinator,

Execute (XCTPR) or (XCTP7). XCTFR must be entered when the worker
program finished the editing of data and wants it to be printed.
XADVC must be supplied with the number of lines to be advanced by the
worker program before entering XCTPR, (XADVC) is transferred to one
of the temporary storages, P/C is increased by 1. A print instruc-
tion will be issued if the previous one has been completed. The base
address of the next reserve area available to the worker program is
given in the IR specified by P3 if one exists, otherwise the 4 and

8 bits of the unit status list are set and control is transferred to
the coordinator link, When an image area becomes available control
will be transferred to the worker program from the coordinator
through the printer link entry X:22,

Close Out (XCLPR) or (XCLP7), XCLPR must be entered when the worker
program wants all the remaining images to be printed. This section
is entered each time the remote print or the advance paper subroutine
is entered.

Subroutines Internally Referenced.

Print (XAPRT) or (XAPR7). XAIRT is entered from the coordinator,
interrupt or the execute subroutine when a print instruction can be
issued., The print instruction is always issued without memory
advance., Prior to issuing the print instruction the base address
(tetrad 32) is updated (advanced or reset) and the line advance count
(tetrad 33) is supplied with the appropriate number of lines to be
advanced, if MAY I is off no print instruction is issued. Error
recovery is effected through this routine, This section must not be
entered directly from the wcrker program. The 2-bit (operating bit)
is turned on when XF is issued.

Interrupt (XAITR), XAITR is automatically entered when a print ine:
struction is completed successfully or not, In case of a successful
interrupt, PAC is decreased by 1 and tested against O, If PAC is

not O, XAPRT will be entered. In case of an error interrupt, the
error subroutine is entered and the computer is brought to an orderly
stop., The coordinator interrupt routine is executed during this

time to enable other peripherals to operate, The 2 and 4 bits of the
unit status list are reset upon successful interrupt,

3.3

4'2.3
Page 2
1/31/64

Advance Paper (XCTAD) or (XCTA7). XCTAD must be entered when the
worker program wants the paper to be advanced the number of lines
specified, This number must be supplied to XADVC before entering
XCTAD, XCLPR is executed before issuing the advance paper instruction.

Call (XCTOL) or (XCTO7). XCTOL must be entered when the worker pro-
gram wants a 'remote area' to be printed. A 'remote area' means a
print area which is not included in the reserve areas. The worker
program can place any number of 'remote areas' anywhere he wants as
far as the memory capacity permits, XCTCL can be used to print such
things as heading lines, page numbers and so on from these 'remote
areas' saving the worker program the trouble of transferring constants
to reserve areas., Prior to entering XCTOL, the owrker program must
supply the location XRMAR (3 characters) with the base address of the
remote area and XADVC with the number of lines to be advanced. The
size of a remote area must be the same as for a reserve area, that is,
128 characters in the full line mode or 64 characters in the half line
mode. XCLPR is executed before issuing the print instruction.

Error (XAERR)., XAERR is entered from the interrupt subroutine when
an error condition is detected. Unit status list 1l-bit is set. The
computer is brought to an orderly stop with the following in the
instruction register, after the XCCRD stop routine is executed:

30100000 60

Yhen recovery is attempted through the coordinator, the previous print
or paper advance instruction will be reissued. Then control is
returned to the worker program,

Communication hetween the worker program and the print routine is
effected as previously noted through JR's to various tags. In the cass
of the channel 7 print routine, the tags involved in the JR's have the
least significant digit changed to seven (7),

Indicators and Counters.

Print Area Indicator (PAI). PAI consiz.s of a character to which the
tag XAPAI is assigned. PAI is initially set to 1. Each time the
print subroutine is entered, PAI is decreased by 1 and tested against
C. If equal, the base address of the next reserve area to be printed
(tetrad32) is reset to the initial value and PAI is set to the total
number of reserve areas. Otherwise the base address is advanced by
64 or 123,

"lorkable Area Indicator (UWAI), UWAI consists of a character to which
the tag XaWAI is assigned. 'AI is initially set to the total number
of reserve areas. Prior to giving the base address of the next
reserve area ready for processing to the worker program, WAI is de-
creased by 1 and tested against O, If equal, the base address and
WAI are reset to their initial values,

.

4,2.3
Page 3
1/31/64

Printahle Area Counter (PAC), PAC consists of a character to which
the tag XAFAC is assigned. P/C is initially set to O. PAC is in-
creases by 1 each time the execute subroutine is entered and decreased
by 1 each time a line is successfully printed., Prior to giving the
base address to the worker program, a test is made to determine if
PAC is equal to the total number of reserve areas. If equal, the
execute subroutine will wait until a print instruction is completed
and a reserve area is released to the worker program, Otherwise the
next working area is available to the worker program.

Storage Inidcators (XADVC). There are two 3-character indicators
which control the transferring the number of lines to be advanced
(XADVC) to temporary storages and to tetrad 33, One of them appears
in the execute subroutine and is used to store (XADVC) to one of the
temporary storages. The other appears in the print subroutine and is
used to bring the contents of the proper temporary storage into
tetrad 33.

Appendix I
Section 4,2,3
7/10/64 Page 4

FOR ROUTINES PRNT, PRNT7, PRPL,

PRPL7, *PRT, *PRPL

U 1050 PRINTER

"CARD SYSTEM"

PRINTER
REASON FOR INTERNAL PANEL RESULTING RECOVERY
STOP INDICATOR LIGHT CONDITION PROCEDURE

Off-Line Non-ready Off-line Recoverable Depress off-line, ready and start buttons

Carriage out Non-ready Carriage out Recoverable Depress carriage in until carriage is completely

in, then ready and start buttons.

Ribbon out Non-ready Ribbon out Recoverable Call technician,

When ribbon restored depress ready and start buttons,

Paper low Paper low Forms out Recoverable Depress manual print button and start. This will

1f paper low cause one line to be printed. Continue this procedure

option has until all printing is finished for that page or until

been called line advance between pages is executed, then reload
in the print new paper stock. Depress manual print and start, and

PROC, the program will continue.

All others Non-ready Overheat Non-recoverable If recovery attempt is desired at risk of a lost or
D.C. fault duplicated line, clear problem, depress ready and
forms runaway start buttons,
etc.

NOTE: The recovery procedure for the tape system using the coordinator is exactly the same

as stated above with one exception.

That being that after start button is depressed

the operator REQUEST button must be depressed to signal the coordinator that an
Depressing the start button after this will

error recovery attempt is being made.
cause the program to attempt recovery.

Appendix 11
Section 4,2,3

7/10/64 Page S

PAPER LOW MANUAL PRINT OPTION FOR ROUTINES PRNT, PRNT7, PRPL, PRPL7, *PRT, *PRPL

A, This option allows the worker program at the additional cost of 80
characters to print to end of a page (i.e., fixed forms, etc.,) when the
printer stops in a paper low condition,

The stops are different from normal error stops and are as follows:

Channel @ Printer (PRNT) 30 010700 60
Channel 7 Printer (PRNT?7) 30 017700 60

To include this option in the print routine change the PROC call line as follows:

1, USE PRPL in place of PRNT
2, USE PRPL7 in place of PRNT7

B, The following procedure must be used when the paper low stop is reached:

Depress the manual print button, then the start button. This will cause
one line to be printed and the program will return to the paper low
stop. Continue this procedure until the last line for that page is
printed or until page advance is executed (paper now past hammers).

At this point reload paper stock depress the manual print and start
buttons and the program will continue,

UNIVAC 1050
SYSTEM AND LIBRARY TAPE CONVENTIONS

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13,0
14.0
15.0
16.0

te:

TABLE OF CONTENTS

Toad Block o o ¢ ¢ s o o ¢ s o » 2 ¢ o 0 o @ o

Program Header Block = Object Code ¢« « ¢ « o »

R~BloCK es¢ ¢ ¢ o ¢ s ¢ ¢ ¢ o o o

S =DBlocKk « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o

W « Instruction Block ¢« « o &

T~DBlock « ¢« ¢ ¢ ¢ ¢ 0 ¢ o o

L]

[]

Loadkey BloCk « « « o o » o o @

Program Sentinel Block - Object Code

Tape Sentinel « ¢ ¢ o o o ¢ o o

Source Header « + « »
Source Sentinel , , .
Source Instruction .,
Tape Layouts «+ « o o
System Tapes o« « o o

Library Tapes . «

3C Systems Tapes . .

3C tapes will be in compatible

[

e 5 0 0 o0

e ¢ o o o o

® @ 9 & o 6 o o

mode at

556 BPI.

[

5.6
Page 1
7/17/64

3
G

0 | 3 (< NN TG Y TR T - - T VLR W W) N N N

1.0

2.0

3.0

5.6
Page 2
7/17/64

SYSTEM TAPE CONVENTIONS

LOAD BLOCK (165 Characters in Length)

The first two (2) blocks of the master tape are tape load blocks
occupying memory location 17000g to 17600g.

Position O L (Block Type)

Position 1-3 Binary block count

Position 4-25 Not used

Position 26-29 Starting address

Position 30-31 Numbers of characters to be loaded this block
Position 32-143 Data to be 1loaded

Position 144-164 Not used
These blocks are generated only by the AJAX tape utility routine

as the first two blocks on tape (see Figure 1) when called for
by parameter 3 of the Inout card of AJAX.

PROGRAM HEADER BLOCK (165 Characters in Length)

Position O n (053) Block Type
Position 1-3 Block number (binary)
Position 4-7 Run ID

Position 8-164 Not used

This block must precede all object programs on tape. It is auto-
matically generated by the PAL Freestanding Tape Assembler.

'R! BLOCK (165 Characters in Length)

Position O R(054) Block Type

Position 1-3 Block number (binary)

Position 4-5 Not used

Position 6-9 Relative address of assembly

Position 10-12 Total number of locations assigned to program

Position 13-15 Number 1 higher than highest location into
which information will be loaded

Position 16-135 Not used

Position 136~139 o777

Position 140-143 Run ID

Position 144-145 Load Key

Position 146-147 2001 (R in col. 74)
Position 148-16/4 Not used

4.0

5.0

6.0

Position O
Position 1-3
Position 4-135
Position 136-139
Position 140-143
Position 144-145
Position 146-147
Position 148-164

5.6
Page 3
7/17/64

'3!' BLOCK (1€5 Characters in Length)

S (065) Block Type
Block number (binary)
Not used

077777777

Segment ID

Load Key

01200 (S in col. 74)
Not used

Segment ID is Run ID (or last segment ID) plus decimal Ol.

Position O
Position 1-3
Position 4~-5
Position 6-25
Position 26-29
Position 30-31

Position 32-143

Position 144-145
Position 146~147
Position 148-164

'INSTRUCTION' BLOCK (165 Character Block in Length)

W (071) Block Type
Block number (binary)
Not used

Relocation mask
Starting address
Number of characters to be loaded from this
block

Data to be loaded
Check sum

Blank

Not used

'T! BLOCK (165 Characters in Length)

Position O
Position 1-3
Position 32-36
Position 32-36
Position 37-38

Position 39-143

Position 144=145
Position 146~147
Position 148-164

T (066) Block Type

Block number (binary)

Not used

Jump instruction to start of program

Program (excluding routine header) or segment
card count

Not used

Check sum

01100 (T in col. 74)

Not used

7.0

8.0

9.0

5.6
Page 4

7/17/64,

YLDKEY! BLOCK (165 Character Block in Length)

Position O Any allowable key supplied by the use of the
'LDKEY! assembler directive

Position 1-3 Block number (binary)

Position 4=5 Not used

Position 6-25 Relocation mask

Position 26-29 Starting address

Position 30-31 Number of characters to be loaded from this
block

Position 32-143 Data to be loaded

Position 144-145 Check sum
Position 146-147 Blank
Position 148-164 Not used

PROGRAM SENTINEL BIOCK (165 Characters in Length)

Position O Y (073) Block Type
Position 1-3 Block number (binary)
Position 4-164 Not used

This block must follow all object programs on tape. It is auto-
matically generated by the PAL tape assembler.

TAPE_SENTINEL BLOCK (165 Characters in Length)

Position O 2 (074) Block Type
Position 1-3 Block number (binary)
Position 4=-164 Not used

This block is the last block on tape. There are always two (2)
present.

10.0

11.1

11.2

12.0

12.1

5.6
Page 5
7/17/64

SOURCE PROGRAM or PROC HEADER BLOCK (165 Characters in Length)

Position O D (027) Block Type

Position 1-3 Block number (binary)

Position 4~7 Run ID

Position 8-164 Not used

SOURCE _PROGRAM or PROC SENTINEL BLOCK (165 Characters in Length)
Position O F (031) Block Type

Position 1-3 Block number (binary)

Position 4-164 Not used

Block types 10 and 11 are produced on tape from 80 or 90 column
cards through use of AJAX (which see). The tape block positioning
of information corresponds with column positioning on cards.

Type 10 must precede all source programs or PROCS and type 11 must
follow all source programs or PROCS that are being filed on tape
from cards.

SOURCE CODE BLOCK (87 Characters in Length)

Position O E (030) Block Type

Position 1-3 Block number (binary)

Position 4=5 Unused

Position 6~-79 Characters 7-80 of source code
Position 80-86 Page~Line-Insert number

NOTE:

Object header and sentinel cards correspond character for character
with object header and sentinel blocks when filing cards on tape.

APE

TER TAPE

Tape Load
Block 1

Tape Load

|_Block 2
Program Header Block

|_Operating System |

Operating
System
Instruction
‘ Blocks

Program Sentinel
Block

Program Header Block
Tape Utility

Tape Utility
Instruction
_Blocks

Program Sentinel
Block

Program Header Block
|L_PAL Pass 1

PAL Instruction
Blocks

Program Sentinel
lock

Program Header Block
Source PROC

Source
Coding

Program Sentinel

Block e ——
-
~——— e
e e

~ Pt

Tape Sentinel
1st Block
Tape Sentinel

2nd Block

oUTS - FI1

1

5.6
Page 6
7/17/64,

LIBRARY TAPE

Program Header Block

ource ()

Source
Program
#l

Program Sentinel
Block

Program Header Block
| Source Program #2

Source
Program
#2

Program Sentinel
Block

e

-

\..,_.,....——" "/

\-_,.,~*”//""_—~

Tape Sentinel
Block
Tape Sentinel

Block #2

14.0

14.1

14.2

14.3

5.6
Page 7
7/17/64,

Systems tapes and libraries are constructed through the use of AJAX
and OPUS utility programs. (See Figure 1).

SYSTEM TAPES

Each system tape contains, immediately following the load blocks,
three (3) operating systems. They are:

a. 80 col., 3A, single program
b. 80 col., 3A, concurrent operation
c. 90 col., 3A, single program

The operating system desired by the user must immediately follow

the load blocks on tape. Therefore, if the 80 col., 3A, single
program version is not desired, the operating systems not desired
must be deleted from the tape (use AJAX) in order to have the
operating system desired immediately follow the loader. Through

the use of AJAX a user may create as many different operating system
master tapes as required. If none of the above operating systems is
desired, a user may delete them all and file one of the various
operating systems available through use of the OPS source code
PROC. (See UNIVAC 1050 Operating System documents.)

EXAMPLE 1.

To create a 90 col., 3A, single program operating system master tape.

MASTER TAPE MASTER TAPE
As_Received As Required
Load Blocks Load Blocks
80 Col. 3A ' 90 Col. 3A
Single Program ! Single Program
| Operating System . \ Delete these Operating System
80 Col. 3A f Resulting in —— Remainder of
Concurrent i i Tape
Operating System |
90 Col. 3A
Single Program
| Operating System ‘“-\\\\‘~_““"//,
Remainder of
Tape
\

N——

4.4

14.5

15.0

5.6
Page 8
7/17/64,

EXAMPLE 2.

If none of these operating systems are desired a user may simply
assemble the particular operating system desired and replace the
80 col., 3A, single program operating system with his assembled
version or by filing it as the first routine on tape.

TAPE AS TAPE AS
RECEIVED DESIRED
Load Blocks | Load Blocks |

g Replace this
80 Col., 3A : (by AJAX) with 90 Col., 3A
Single Program| - #newly assembled Concurrent
Operating : desired operating Operating
| System 1’ system or System |
' File as 1st pro-
80 Col., 3A gram on tape 80 Col., 3A
Concurrent (see AJAX). Concurrent
Operating Operating
System System
90 Col., 3A TN
Single Programj —
Operating |

#See operating system documents for information on how to assemble
the desired operating system.

LIBRARY TAPES

Library tapes may be created as desired (see Figure 1) in order

to maintain source programs on tape. They may be directly
assembled from this library. (See PAL Tape Assembler instructions).
Library tapes may consist of either or both object and source code
and must follow the tape conventions herein described. All programs
either source or object must be preceded by a program header card
and followed by a program sentinel card when being filed on tape.

5.6
Page 9
7/17/64

16,0 3C_SYSTEM TAPES

16.1

Each 3C system tape will contain immediately following the tape load
blocks two operating systems. They are:

a. 80 col., 3C, single program
be 80 eol., 3C, concurrent operation

This tape varies from the standard 3A systems tape in this respect
(See 14.0).

NOTE: 3C tapes will be in compatible mode at 556 BPI.

AJAX

TAPE MAINTENANCE SYSTEM

FOR THE UNIVAC 1050

8.5
Page 1
7/10/64

AJAX

AJAX is an integrated set of service routines providing the functions
necessary to create and maintain Tape Libraries, Systems Libraries and
Master Instruction Tapes.

AJAX is essentially a tape to tape utility program with command cards

from the Reader directing its services. Programs (object and source)
may be filed, replaced, deleted, printed, copied, listed, altered eand

punched.

AJAX will not accept object cards to be filed or replaced from the
Reader nor will it punch object cards from tape, These functions are
provided by the Object Pal Utility Service, OFUS (which see).

Tape formats are those described under 1050 System Tape formats,

Card formats are those of the Fal 1050 Assembly System,

There are four types of Command Cards:

Type 1 1/0 Command - INOUT describes the major input and output
peripherals,

Type 2, Program Correction Commands - DELE, FILE, REFL, COFY & ALTER;
Type 3, Service Commands - FRINT, LIST, PUNCH,

Type 4, Misc, Commands - STOF, SORS, HDRs

8.5
Page 2
7/10/64

INOUT_COMMAND,
FORM: OP ;! OPERANDS

INOUT | pl, p2, p3

where: pl = specifies the Input device
C = Reader
O thru 9 = Tape Unit

p2 = specifies the Output device
C = Punch
F = Printer
O thru 9 = Tape Unit

p3 = blank or L
If L, AJAX will produce a two block 17000
Tape Loader as the first two blocks on the

Output Tape. This function performed only
if p2 names a Tape Unit,

NOTE:

The following parameter combinations on the INOUT card are not
acceptable:

c,C T,T (if both name same unit),

An INOUT card must precede all other Command cards.

8,5
Page 3
7/10764

PROGRAM CORRECTION COMMANDS

DELE COMMAND,

FORM: OoP ! OFERANDS

DELE ' pl, p2

where: pl = program to be deleted (Max. 4 char, I,D.)

]

blank or SKIP, if SKIP, all programs from
present position of Input Tape to pl will be
deleted, otherwise, they will be copied.

p2

NOTE:
The SKIP parameter is discussed at the end of this doéument,

COFY COMMANDy%

FORM: ofF | OPERANDS

COPY l pl, p2

where: pl = program to be copied (Max, &4 char, I.D,)

blank or SKIP, if SKIP, all programs from
present position of Input Tape to pl will be
deleted, otherwise, they will be copied.

p2

REFL COMMAND,

FORM: or___| opEraNDs

REFL or| pl, p2 (source only)
REPL(T)| pl, p2 (source or object from tape)

where: pl = program to be replaced (Max, 4 char, I.D,)

]

blank or SKIF, if SKIP, all programs from
present position of input tape to pl will
be deleted, otherwise, they will be copied.

p2

(T) = Names Tape Unit (0-9) containing replacement
program,

8.5

Page 4

7/10/64
FILE COMMAND,

FORM: or____| oprranDs

FILE or | pl, p2 (source only)
FILE(T) | pl, p2 (source or object from tape)

where: pl = program after which the filed program is to be
placed, unless it is to be the first program

on tape or if it is to be filed immediately after
a program just operated on, in which case pl must

equal "HERE"
p2 = blank or SKIF as in REPLs

(T) = Names Tape Unit (0-9) containing program to

be filed,
ALTER COMMAND,
FORM: OP ' OFERAND

ALTER | pl, p2

where: pl = program to be altered (Max. &4 char. I.D,)
p2 = blank or SKIP as in REFL,

This card must precede a SORS or HDR correction command (which see)
and is used only in conjunction with them,

8.5

Page S
7/10/64
) *SERVICE COMMANDS - (No Output Tape)
ERINT COMMAND,
FORM: op__| opERaND
PRINT pl, p2
where: pl = program to be printed (Max, r char. I,D.)

p2 = A or SKIP, 1f A AJAX will print from present
position of Tape to pl inclusive.

p2 of INOUT card must = p,

PUNCH_COMMAND,
FORM: OF OPERAND
PUNCH | pl, p2

where: pl = program to be punched,

p2 = A or SKIP, {f A AJAX will punch from present
position of Tape to pl inclusive,

p2 of INOUT card must = C,

LIST COMMAND,
FORM: OF OFERAND
LIST

This command has no parameters and will LIST each program header
w/sentinel that is contained on the Input Tape,

p2 of INOUT card must = p,

NOTE:

The SKIP PARAMETER should not be used on the STOI CARD following
service commands,

*Not to be used with Frogram Correction Commands, or intermixed with
each other since INOUT Command prohibits use of Irinter and Punch
simultaneously,

present,

1f

1f

1f

8.5

Page 6
7710464
MISC, COMMANDS
STOP COMMAND.,
FORM:
This command is always the last command to AJAX and must always be

pl 1is blank, AJAX will copy the remainder of the input
to the output as preset by the INOUT card except in
the case of PRINT and PUNCH,

pl 1is "SKIP", AJAX will terminate the output at its
present location,

p2 may be blank or “END",

p2 1is "END", AJAX will reload the operating system from
Tape Unit O when its functions are complete after
depressing the start button at the successful com-
pletion STOPy If p2 is A AJAX will re-initialize,
upon depressing start,

8.5
Page 7
7/10/764

The following two commands must be preceded by an ALTER card,

SORS COMMAND,

FORM: ob___| orEraNp
SORS nl, n2, n3

This command is used to make individual source card corrections by the
deleting, adding or replacing of individual lines of code,

where: nl = page-line-insert no. where correction is to
starte If n2 = O, source cards which follow
will be inserted after nl,
n2 = page-line-insert no. of last card of deletion.
AJAX will delete from nl to n2 inclusive when
nZ#O.

n3 = numbexr of source card corrections to be added
which immediately follow this card, (O to 9),

NOTE:
1, nl = n2 if replacing one card,
2. If more than 9 consecutive source cards are being inserted
a second SORS command is required for each additional set of

9 insertions, where nl must equal "HERE", n2 must be @ and
n3 the number of cards,

HDR_COMMAND,

FORM: op OPERAND
HDR

This command is used to replace a source or object header cerd, It
must be immediately followed by the new header card.

8,5
Page 8
7/10/64

(T) = Variable Tape Unit

*RRRR = 4 char, Prog. I.D.

EXAMPLES
SERVICE FUNCTION Co D _NEEDED
PRINTING Print Entire Tape 1. INOUT
2., STOF
Print One Program 1, INOUT
2, PRINT
3. STOE
Print Several Programs 1, INOUT
2, EFRINT
3. PERINT
4, STOP
List Programs from 1, INOUT
Tape 2, LIST
3. STOP
PUNCHING Punch Entire Tape 1, 1NOUT
(Source only) (Will SKIP Obj, Prog,) 2. STOP
Punch One Frogram 1. INOUT
- 2. Pumﬂ
3., STOFP
Punch Several Programs 1, INOUT
2. PUNCH
3, PUNCH
4, STOP
CARD TO TAPE Card to Tape 1, 1INOUT
(Source only) 2, STOP
Card to Tape, Tape ‘l. INOUT
LdR to be add.d. 2. STOF
3.

99.

(T), P

(T), P
*RRRR, SKIP

(T, B
*RRRR, SKIP
*RRRR, SKIP

(T), E

(M, ¢

(M, €
*RRRR, SKIP

(M, C
*RRRR, SKIP
*RRRR, SKIP
SKIP

c, (1)

c, (T), L

Cards follow in reader,

3 Tape Sentinel

8.5

Page 9
7/10/64
SERVICE FUNCTION COMMAND NEEDED
COPYING Copy Tape w/Loader 1, INOUT (T, (), L
2. STOP
Copy Tape w/o Loader 1. INOUT (T), (T)
2. STOP
Copy One Program w/o l, INOUT (T), (T)
Loader 2. COPY *RRRR, SKIP
3, STOP SK1P
Copy all Programs from l. INOUT (T), (T), L
Card #2 to Card #3 in- 2, COPY *RRRR, SKIP
clusive with Tape Loader 3, COPY *RRRR
4, STOP SKIP
FILING File Cne Program from 1. INOUT (T), (T)

Cards (Source Only) and 2.
copy remainder of Input

3,

99.
File One Program from 1.
Tape Unit &4 (Source or 2.
Object) at the present 3.
position of the Tape and
copy remainder of Input,
File One Program from 1.

Tape Unit 3 and terminate 2,
Output at that poin on
Tape,

3.

FILE *RRRR (Program
before the one
filed)

Procgram ta be FILED

STOP
INOUT (T), (T)
FILE4 HERE
STOP

INOUT (T), (T)

FILE3 *RRRR (Program
before the one
filed)

STOP SKIP

SERVICE

FUNCTION

REPLACING

DELETING

SOURCE
CORRECTIONS
WHILE
COEYING

REPL one Program from 1.
Cards (Source only) and 2,
copy remainder of Tape, 3.

99,

REPL one Program from 1.
Tape Unit 4 (Source or 2.
Object) and copy all of 3,
Input,

REEL one Program from 1,
Tape Unit 6 and another 2,
from Tape Unit 5 and 3.
copy all of Input, 4,

REPL two programs from 1,
Tape Unit 7 and copy all 2,
of Input. Write Loader 3,

on front of Tape, 4,
DELETE one program, LdR 1,
to Output Tape. 2,

3.

DELETE programs CCCC 1.
thru TITT from a Tape 2,
consisting of routines 3,

AAAA thru 2222 w/o 4,
Tape Loader,

Insert 5 Source Cards in 1,
program BBBB, after 2.
page-line-insert 3.

700600 and copy re-
mainder of Tape.

9.

Same as above but de- 1.
lete lines 00600 to 2.
00605 while making 3.
additions. (

9.

8.5

Page 10
7/10/64
COMMAND_NEEDED
INOUT (T), (T)
REFL *RRRR

Program Replacement

STOP

INOUT
REEL4
STOF

INoUT
REPL6
REPLS
STOP

INOUT
REEL?
REFL?
STOP

INOUT
DELE
STOF

INOUT
DELE
DELE
STOP

INOUT
ALTER
SORS
-5
STOP
INOUT

ALTER
SORS

STOP

(T, ()
*RRRR

(T), (T)
*RRRR
*RRRR

(M, M, L
*RRRR
*RRRR

(M, (M, L
*RRRR

(T), (T)
ccec
TTTT, SKIP

(T, (T)
BBBB
00600, O, §

Source
Additions

(T), (T)
BBBB

00600, 00605,
5

Source
Additions

8.5

Page 11
7/10/64
SERVICE FUNCTION COMMAND NEEDED
SOURCE Delete lines 00600 to 1, INOUT (T), (T)
CORRECTIONS 006510 in program BBBB 2, ALTER BBBB, SKIP
WHILE while skipping from 3. SORS 00600,00610,0
COPYING beginning of the Input &4, STOP
to BBB and copying re-
mainder to Output,
HdR CHANGE Replace header program 1, INOUT ™, (T, L
BBBB Output Tape to 2. ALTER BBBB
have a Tape Loader and 3, HdR
copy entire Tape, 4, New HdR Card
5, STOP

IMEORTANT NOTES ON AJAX

l, The output tape will never have a tape loader on the front
unless the p3 parameter of the INOUT card is "L",

2, OBJECT CARD handling is not performed by AJAX, use OPUS (Object
Pal Utility Service,)

3., Service Commands (PRINT, PUNCH, LIST) perform one service at a
time and may not be intermixed,

4, On FILE(T) and REPL(T) commands the tape unit is variable
(0-9), Programs to be filed or replaced may be stacked on
the same tape unit or not, as desired, but must be in
positional filing sequence,

5. FRINT, PUNCH and LIST do not produce an output tape, therefore
they cannot be intermixed with program commands, Program and
misc, commands, however, may be intermixed as desired,

6, FPrograms are operated on in tape sequence only,

7. The examples, although extensive, are not complete, Use of the
p2 (SKIP) parameter can be very useful in automatic deletion,
while performing other functions, (See discussion SKIP
parameter at end of document),

8. The Prog-1D may be 4 characters or less,

8.5

Page 12
7/10/64
AJAX_COMMAND LIST

COMMAND PARAMETER 1 PARAMETER 2 PARAMETER 3
INOUT Input Unit Output Unit Tape Loader
REPL(T) Prog, Replaced SKIP or A N A,
FILE(T) Prog, before SKIP or A N, A,

Filed one,
DELE Prog. Deleted SKIF or A N. A,
COFrY Prog. Copied SKIP or A N, A, -~
ALTER Prog, Altered SKIP or A N. A,
SORS First line of Last line of No. of added

Dele, or if Deletion or O cards

pZ0 line before if no deletion,

insertion,
HDR N. A, N. A, N. A,
PRINT Prog. Printed SKIP or A N, A,
PUNCH Prog, Punched SKIP or A N. A,
LIST N, A, N, A, N, A,
STOF A.= Copy A = Do Nothing

SKIP = Terminate END = Load 0SO Ne &,

when AJAX
functions, completed.

NOTE ¢

SKIP always effects the programs from the present position of the
tape to pl (See discussion of SKIP next page).

8.5
Page 13
7/10/64

SK1P

The SKIP parameter may be used with all commands except the following:
LIST, SORS and HDRy

Its presence or absence has a large effect on the command which
contains it,

—

Example:

Assume a tape library consisting of programs numbered COOl to 0400, -
The following two commands,

DELE 0010
DELE 0040

would result in the deletion of the two routines only, however,

DELE 0010
DELE 0040, SKIP

would result in the deletion of all routines from 0010 through 0040
inclusive, and

DELE 0010
STOP SKIP

would result in the deletion of the entire tape past 0009, The
same pattern follows with REPL, FILE, ALTER and COFY,

A, SKIP (p2) when used with program correction commands (DELE,
REPL, FILE, COPY and ALTER), performs automatic deletion from
the present position of the tape to pl,

B. SKIP (p2) when used with program service commands (PRINT and
PUNCH) will delete the function of PRINT or EUNCH from the
present position of tape to pl, In other words, its absence
allows Punching or Printing from present position of tape
to pl inclusive,

8.5

Page 14
7/10/64
AJAX STOES
M_ADDRESS REASON AND ACTION
021110 AJAX ready - depress start,
.
040x44 Block-ct, error x-tape, restart,
020772 Tape unit in FILE or REPLACE already in use

from INOUT card, Move tape, reload new
command card,

024141 Card to tape command not followed by a stop
card, load stop card and depress start,

024142 Tape to print command not followed by stop,
list, or print card, load proper command,
depress start,

024143 Tape to card command not followed by stop
or punch command, Reload proper command,
depress start,

022220 Cannot locate pl (maybe tape positioning)
restart,

022222 Object programs not acceptable from reader
(use OPUS).

022223 Object punch requested - not provided,

restart (use OPUS),

020700 Command not recognized, reload proper command,
depress start,

027777 Successful completion, depress start to
re-initialize, or load Ops as designated
by stop card.

020510 Header missing REPL or FILE, reload HdR card
or new tape and hit start,

024222 No stop card after LIST, load stop card and
depress start,

020100 Page-line-insert number cannot be located
restart,

020300 N3 = O on source insertion, reload SORS

command, depress stgrt,

8.5

Page 15
7/10/64
M_ADDRESS REASON AND ACTION
020550 Parameter size error - reload proper
command card and depress start,
010000 Printer off normal, clear problem,
depress start,
012000 Punch off normal, clear problem, depress
start,
011000 RdR error, reload 1 card unless the reader

motor is off, depress start (serial reader
always reload one), (except for off-line).

027272 No INOUT card, Load one and hit start,

140x66 Where x equals tape unit, Tape parity,
depress start for recovery attempt,

140x55 Unrecoverable tape error. Restart,

OPUS
OBJECT CODE MAINTENANCE SYSTEM

FOR_THE UNIVAC 1050

8.6
Page 1
7/10/64

OPUS

OPUS is a service routine designed to provide the functions necessary to
maintain PAL object code on Tape Libraries, Systems Libraries and Master
Instruction Tapes. The PUNCH command also makes it possible to obtain a
program deck of cards.

OPUS allows object programs to be filed and replaced from cards and by
use of the ALTER and SQZE commands makes it possible to correct object
code on tape.

OPUS does not provide any source program facilities. These services are
provided by AJAX (see AJAX, June 1964).

Tape formats are those described under 1050 System Tape Formats.
Card formats are those of the PAL 1050 Assembly System.

The following commands pertaining to object code are accepted by OPUS:

l. FILE
2. REPL
3. PUNCH
4. ALTER
5. SQZE

6. STOP

8 [] 6
Page 2
7/10/64

Input_and Output Libraries.

With the exception of the PUNCH command the input library is assumed
to be on tape unit O and the output library will be produced on tape unit 1.

The PUNCH command does not produce a tape output library and assumes the
input library to be on tape unit 1.

Octal Mumbers.
An octal number must be preceded by a decimal zero.

Headers and Sentinels.

All programs being filed or replaced from the card reader must have
proper headers and sentinels as described in the 1050 System Tape Formats.

FILE COMMAND

FORM:

where:

or where:

REPL_COMMAND
FORM:

where:

ALTER _COMMAND
FORM:

where:

806

Page 3
7/10/64

oP OPERANDS

FILE p1

p! = the 4 character program I.D. after which the

program in the card reader is to be placed,
unless it is the first program on tape or if it
is to be filed immediately after the program
Just operated on in which case p1 must equal
"HERE" .

pl = "ALL" in which case all the object programs in

the reader will be written on tape unit 1 until
the first 'Z' sentinel in the reader is
encountered (2 in column 1).

Oop OPERANDS
REPL | p1

p! = the four character program I.D. of the object

program to be replaced.

OP___ | OPERANDS
ALTERtp1,p2

pl = the four character program I.D. of the object

program to be altered.

p2 = an octal number indicating the number of

characters that have been added to a program
by use of the SQZE command.

Thie increment will be added to the total number
of characters and high address fields contained
in the program 'R' block.

SQZE _COMMAND
FORM:
where: p1
p2
p3
18
p5,p6,pn
U [010)
FORM:
vhere: pl
or pl
NOTE:

8.6
Page 4
7/10/64

SQZE p1,p2,p3,p4,p5,p6,pn

the name of the program or segment to be corrected.

the starting address in octal of the characters to
be corrected or added to the program.

the correction in octal. A maximum of 16 characters
(S store locations) may be corrected with one SQZE
card.

"R" if the starting address of the correction
requires base address modification at load time.
If not, p5 becomes p4, etc.

octal numbers pointing to the least significant
characters within the correction that may require

base address modification at load time. If no
modification 1s required, no parameters are needed.

oP 0 S
PUNCH | p1
the four character program I.D. of the object
program to be punched.

"ALL" in which case all of the object code contained
on the input library will be punched.

1. No program headers or sentinels will be punched.

2. The input library for the PUNCH command is assumed to be
on tape unit 1.

8.6

Page 5
7/10/64
STOP_COMMAND
FORM: (0)% OPERANDS

STOP pl

This command is always the last command to OPUS and must always be
present.

If p1 is blank, OPUS will copy the remainder of the
input library on tape unit O to the output library
on tape unit 1 except in the case of PUNCH and
FILE "ALL". OPUS will re-initialize if program
start is depressed.

If pt is "END", OPUS will proceed as above. If program
start is depressed, the operating sysytem will be
reloaded from tape unit O.

ERVICE

PUNCHING
(Object only)

FILING
(object only)

REPLACING
(Object only)

OBJECT CODE
CORRECTIONS

EXAMPLES

FUNCTION
Punch one program,

Punch all object code
on tape.

File one object pro-
gram from cards.

File one program from
the card reader at the
present position of the
output library on tape.

File all the object pro-
grams in the reader on
tape unit 1.

Replace one program
from cards and copy
remainder of tape.

Correct 2 characters
in program AAA which
is absolute, The 2
characters start in
location 04000.

Add a jump instruction in

relative program B. The
starting address and the
instruction address need

base address modification

at load time. The ins~
truction is to be loaded
into program relative
location 05000,

2.
99.

1.

2.
99.

2.
3.

2.

99.

99.

1.
2.

8.6 ¢
Page
7/10/64

NDS DED

PUNCH *RRRR
STOP

PUNCH ALL
STOP

FILE *RRRR (program
before the one filed.

Program to be filed.
STOP

FILE HERE
Program to be filed.
STOP

FILE ALL

Programs to be filed.
STOP (Must be pre-
ceded by a 'Z! senti-
ne% card, Z in col.
1,

REPL *RRRR

Object program to be
replaced.

STOP

SQZE AAA,04000,07777

ALTER B, 05

SQZE B, 0500
03000051000, \ Same
R, 04 line

*RRRR is program I.D. consisting of from 1 to 4 characters.

1.
2,

3.

8.6
Page 7
7/10/64

T N_OPU.

Source card handling is not performed by OPUS, use AJAX.

The PUNCH command may not be used in conjunction with any other
command except PUNCH and STOP.

Programs are operated on in tape sequence only,

8.6

Page 8
7/10/64,
P TOP,
M__ADDRESS REASON AND ACTION
027777 OPUS ready - depress start., If STOP "END"

command has been used the operating system
will be reloaded,

020700 Improper :command - reload proper command
and depress start.

020400 Routine header missing while filing or
replacing. Reload proper header card and
depress program start.

020300 Error SQZE command., Restart.

022220 Cannot locate program on tape. Restart,

110000 Reader error, reload 1 card if present in
error stacker, depress start.

040uss4 Block count error on tape unit u, restart.

140u55 Tape error on tape unit u, restart.

140uéé Tape error on tape unit u, program has

rocked tape 5 times. To continue, depress
start, Program will attempt to recover.

120000 1. Punch error, for read check, stacker full,
hopper empty and off line, depress ready
and program start.

2, In most cases, it 1s possible to recover
from other punch errors. The punch track
must be cleared and blank cards manually
fed through all stations. After this is
done depress ready and start, A read check
will occur, proceed as in 1, above.

9,0
Page 1
1/31/64

BRISPLAY THE CONTENTS OF MEMORY,

Any storage position can be displayed when the processor has been
brought to an orderly stop, The following can be employed:

Display First Character,
" 1, Depress the CC-Display/Alter Selection.
2. Record the value of CC.
3. Depress the MEM-Display/Alter Selection button,

4, Set up the desired address in the M portion of the Alteration
switches,

5. Depress the Display button,
The contents of the desired storage position will be displayed in
the C portion of the Display lights, The address+1l set up in the M portion

of the Alteration Switches will be displayed in the M display lights. This
new address will be available for additional sequential displays,

Display the Second and Subsequent Sequential Characters.
6. Depress SEM Display/Alter Selection button,
7. Depress Display button,
Repeat the last step for each new character in sequence to be

displayed, The storage address is automatically incremented after each
storage character has been displayed.

9.0
Page 2
1/31/64

Any storage position can be altered when the processor has been
brought to an orderly stop. The following procedure can be employed:

lter har
1, Depress the CC-Display/Alter Selection button.
2, Record the value of CC,
3. Depress MEM-Display/Alter Selection button.

4, Set up desired Address in the M portion of the Alteration
Switch.,

5. Set up the bit value of the character to be inserted in C
portion of the Alteration Switches,

6. Depress the Alter button,
The contents of the desired storage position will be filled with
the character represented in the C Alteration Switches. The address+1
set up in the M portion of the Alteration Switches will be displayed in the
M display lights. This new address will be available for additional sequen-
tial alterations,
t a t b o

7. Depress the SE™ Display/Alter Selection button,

8. Set up the desired character in C portion of the Alteration
Switches,

9. Depress the Alter button,
Repeat Steps 8 and 9 for each new character in sequence to be

altered. The storage address is automatically incremented after each
insertion,

2.0
Page 3
1/31/64

TIRACE FOR ZERQ QPERATION CODE.

It may be desirable to trace program execution for a zero
Op-code, if so, use following procedure.

Load program normally to base address display stop.
Depress Op (a Trace Mode button),

Set Op portion (upper 5 bits) of instruction display register
to all zeros,

PROGRAM START,

If an instruction with a zero Op code is referenced; Trace
Stop (a Trace Mode button! will light with a computer STOP,

Depress CC to display location +5 of zero Op code.

2.0
Page 4
1/31/64

The Processor Control Panel can be used to perform operator-
created instructions for all instructions with the exception of the Jump Loop
and the indexing functions.

1. Depress the One Instruction-Mode button.
2. Depress the CC-Display/Alter Selection button.

3. Record the value of CC displaved in the M portion of the
Display Lights,

4, Depress the Inst, -Display/Alter Selection button,

5. Record the value of the thirty display lights if required for
a later operation.

6. Set up the new instruction in thirty Alteration Switches.
7. Depress the Alter button,
8. Depress the Program Start button,

The new instruction will be performed instead of the instruction
previously staticized in the instruction register, The processor, after
completing this new instruction, will bring the next instruction stored at
the address specified by the control counter at the end of executing the
operator generated instruction, and stop.

The reason for the special handling of a Jump Loop instruction
is that when this instruction is staticized, the control counter has only been
incremented four times rather than the usual five times,

Steps 1 thru 4 and Step 8 above could be used to step through
instruction execution of any desired address area.

9.0
Page 5
1/31/64

1050 REPRODUCER - OPERATING INSTRUCTIONS

The Reproducer will reproduce source and object cards, It is
a I.LOAD and GO Routine, The cards to be reproduced are loaded immed-
fately behind it in the Reader. A blank card terminates the cards to be
reproduced,

PRQCEDURE: Object Cards,
1. Load the Reproducer and the cards to be reproduced into the
Reader input hopper,.
2, Follow the '""Load Card Procedure',

The Reproducer need not be reloaded between reproductions.
To continue, depress start,

: So ds.

1. Follow the same procedure as for object cards., If it is desired
to reproduce the Program I. D, taken from the label of the 'BEGIN' card,
depress sense switch #2, and this I, D, will be produced on each card., If
it is desired to re-sequence the card numbers, depress sense switch #1.

9.1
Page 1
7/21/764

TDMP_OPERATING INSTP'ICTIONS

TDMP is a relocatable program which may be loaded from the systems tape
when it is desired to print one or more memory dumps written onto tape
by the OPS., (Refer to OPS write-up, section IVC,)

1.0 Mount memory dump tape on logical servo 1,
2,0 Set printer as desired,
3.0 Load TDME using normal call procedure,

4,0 Stop ?22?2@1: TLMP initialized. FPress PROGRAM START to commence
printing.

5.0 Stop 20007 : memory dump has been printed,

a., To print another memory dump: set trace-address switches to
71, trace mode to FROC, and press 1ROGRAMN START, Program
wil! come to stop ®2¢7¢1,

b. To release TOMP; set trace-address switches to other than
¢l, trace mode to PRCC, and press PROGRAM START. The OES
will come to stop @72¢071.

6.0 ERROR STOES:

Use the normal error-recovery procedure for the following
peripheral-error stops,

a. @120¢@: printer error

b, @14P155: memory parity error

C. @140166: tape parity error

d. @148177: servo off-line or nonready

7.0 FORMAT :
The memory dump is printed in octal format

a. Tetrad Area: Each line displays the contents of 8 tetrads
as follows: address of MSC of Tn, (Tn), (Tn+l), address of
MSC of Tn+2, &c,

b. Non-Tetrad Memory: Each line displays the contents of 40
character positions as follows: address n, (n through
nt4), (n+5 through nt?11), address n+@12, &c.

c. Duzlficate Lines; If the 40 characters of a non-tetrad
line are equal to the last 5 characters of the previous line,
printing of the line is supressed, and the next 40 characters
are examined, This process is continued until an inequality
is detected or until the end of the dump is reached, A line
of asterisks on the print-out indicates that one or more lines
have been suppressed.

8.0

Since the memory dump was written while the OES had program control,
some information will appear in OPS working storages rather than in
the memory positions it occupies when the worker program has control,
This varies according to whether a single-program or concurrent OPS

9.1
Fage 2
7/21/64

is being used.,

a. Single-Frogram OFS

(1)
(2)
(3)
(4)

8 LSC of AR2 are destroyed

Channel 5 interrupt entry appears in 8 LSC of AR2
4 MSC of AR2 are destroyed

Contents of X1 appear in 4 NSC of AR2

b. Concurrent OrS

(1)
(2)
(3
(4)

(5)

8 LSC of AR2 are destroyed

Channel 5 interrupt entry appears in 8 LSC of AR2

3 LSC of ARl are destroyed

Contents of tetrads 16, 17, 18, 8, and index registers
1 through 7, for low order prozram appear in memory
positions @13¢2 through #1355

The corresponding information for the high order
program appears in memory positions #1356 through
?1432

8.0

9.0

TABLE OF CONTENTS

Introduction

Data

Hardware

Program Structure
Logical Design
Environment
Generation Procedure
Glossary

Sort Stops Displays

Rev.

Page

1-2

7-10
11-23
23

24-26

1

10,1
8/17/64

10.1
Page 1
4/27/64

1.0 INTRODUCTION,
1.1 The function of sorting on the UNIVAC 1050 is to:

1. Accept a file of data, one record at a time,
2. Rearrange the file,

3. Produce the file, on r'equest, one record at a time, for
further processing.

1.2 The file is rearranged according to a transitive relationship
between pairs of records so that for any ordered pair (A, B),
the relationship is true wherever record A is produced for further
processing before (in time) record B,

2.0 DATA,
2.1 Size of Items or Records to be Sorted

The record size of any given sort must be fixed, i.e.,, record
size is equal for all records to be sorted.

Minimum: 1 character
Maximum: 1024 characters

2.2 Volume of Data

Minimum: No data

Maximum: The maximum volume of data which can be sorted in
a single sort run is determined by the amount of data which can
be contained on any single reel of a collation phase tape. This
varies according to the length of tape on servos available to the
sort and the block size calculated by the sort,

If the data to be sorted exceeds this maximum, merges of the
sorted data must be performed to produce an ordered file,

2,3 Key

The ordering relationship between records is define for portions
of those records called the key. Each record must have the following
properties:

2.3.1 Each key occupies the same character positions in every record
where each key consists of one to ten fields.

2.3.2 Each field consists of contiguous character positions, where each
field consists of one to sixteen characters.

2.3.3

2,3.4

2.3.4.1

2.3.4.2

2,3.4.3

Zo 30 404

2.4

2. 4. 1

2.4.2

2.4.3

10.1
Page 2
4/27 /64

Each field may be absolute binary or algebraic decimal, where the
selected option holds for every record,

Each field within a record may be of a different type than other
fields within the same record, and may be of the following types:

Ascending Binary,

As a result of a binary comparison, the field which is smaller is
considered the chosen field and the record to which it belongs will
be selected first,

Descending Binary.

As a result of a binary comparison, the field which is larger is
considered the chosen field and the record to which it belongs will
be selected first,

Ascending Decimal,

As a result of a decimal comparison, the field which is smaller is
considered the chosen field and its record will be selected first,

Descending Decimal.

As a result of a decimal comparison, the field which is larger is
considered the chosen field and its record will be selected first.

Selection of a Record

A comparison is performed upon field #1 of record A vs, field #1
of record B, A record is considered chosen according to the type
of field previously defined.

If the first fields within the keys of two records are equal, the
ordering relationship between the two records will be determined
by the comparison upon field i of record A vs. field i of record B,
where field i is the first case of inequality,

If all fields within the keys of two records being compared are
equal, either one of the two records may be selected.

3.0

3.1

3.2

3.3

10.1
Page 3
Rev. 1 8/17 /64

HARDWARE
Uniservo Tape Units Available to the Sort.
Type: IIIA, IIIC, IVC, VIC

Minimum: 3 servos
Maximum: 6 servos

All servos must be of same type.

Memory

Minimum: 8K characters

Maximurﬁ: 32K characters

Card Reader, Card Punch, Printer

None of the above mentioned peripheral units are required to run

a sort program; however, the own code sections may use these
devices as input or output media,

4.0

5.0

5.1

10.1
Page 4
4/27/54

PROGRAM STRUCTURE

Each sort program is written by the programmer as he writes
any other program. The sorting function is provided by a library
subroutine. The use of the sort subroutine implies certain mini-
mum characteristics of the calling program. In particular, there
must be a section of the program which forms the first pass own
code (FPOC) of the sort, and another section which forms the last
pass own code (LPOC)., Each section is very similar in form to
any typical data processing program.

As such, the programmer has almost complete freedom to include
data processing other than sorting in either or both sections, If
there is an input tape file in the first pass, it would be controlled
by a different subroutine called separately. The same would hold
true if input data is read from cards, if output data of the last
pass is written on tape, etc. The program communicates with
the sort through the use of a jump return instruction. In the first
pass, an item is sent to be sorted in the same way that it could

be sent to be written in an output file. Control is not returned
when the sort file is closed. In the last pass, the programmer
asks for an item from the sort in the same way that he could ask
for an item from an input file, This mechanism is intended to
supply a maximum of first pass own code and last pass own code
flexibility, with a minimum of extra learning., On the other hand,
if the sort program is to do nothing but read an input tape, sort the
data, and write the data on an output tape, the calling program is
very short and completely formalized.

LOGICAL DESIGN

The general method used is sorting by merging. 1

Dispersion Pass Method.

The Dispersion Pass will employ replacement selection.] Each
record will be moved from an area in the user's FPOC to the sort
tournament?2 area; each record will also be moved from the tourna-
ment area to an output area. The tournament size will be determined
at object time from the amount of memory available to the dispersio=
pass after the amount of space used by:

Operating System, and
Dispersion Pass, and
Output areas, and

FPOC (include input routine and input areas) has been
determined.

A?)NH

The smallest possible tournament size is two.

5.2

5.3

10.1
Page 5
4/27 /64

Collation (Merge) Phase Method

The collation phase employs a version of the forward read poly-
phase3 method. Each time a record is read and written, it is
moved within memory only once.

The method used to dispose of dummy strings is one that was
derived from methods proposed by Mendoza4 and Malcolm5,

The combined method contains the simplicity claimed by Malcolm
and the efficiency demonstrated by Mendoza. This method adds
theoretical dummy strings to the actual string distribution to
advance all string counters to the next highest '"ideal level.*
Hence, it is not necessary to write any data on tape to illustrate
the presence of dummy strings; only internal processing is
required to eliminate them., The theoretical dummy strings will
be collated in the first two cycles of the polyphase merge. Dummy
strings will be merged prior to actual strings.

A positive sequence check on the output of every pass except the
last is generated by inserting a parameter in the SORT3 call.
(See 7.1).

Rerun

After the distribution of strings is completed onto k tapes,
collation is ready to begin. The sort will proceed thru as many
polyphase cycles as necessary to begin last pass. After each
of these cycles is completed, two tapes are rewound.

1. The tape just exhausted of input.
2. The output tape.

The programmer has the option to establish rerun points by
inserting a parameter in the SORT3 call (see Section VII), If

the programmer has decided to establish rerun points, the tape
exhausted of input will be rewound with interlock after the second
cycle and must be replaced with a blank, The same procedure will
be followed after the succeeding 3rd, 4th,..., (k+1)th cycles.
Now, k tapes will have been removed and these tapes will contain
all the data and sufficient information for rerun purposes, When
the next cycle is completed, the tape that rewinds with interlock
and the most recently rewound (k-1) tapes comprise the latest
rerun point. The operator may keep the most recent rerun point
by removing the tape just rewound with interlock and mounting

a blank on that servo or ignore the most up-to-date rerun point,
thus saving the time required to mount a blank tape.

5.3

5.4

10.1
Page 6
4/27/64

(continued)

After each tape is dismounted it should be labeled by the operator,
This label should identify the servo from which the tape was
removed and a number which indicates the most recent k tapes,

If the programmer has not exercised the option of establishing
rerun points, no tapes will be rewound with interlock. If a
malfunction occurs which will not allow the sort to continue, the
operator may continue the sort from the latest rerun point,

References

1.

Friend, E. H., Sorting on Electronic Computer Systems,
Journal of the Association for Computing Machinery,
Vol, 3-July 1956, p. 134-168,

Goetz, M. A., Internal and Tape Sorting Using the
Replacement-Selection Technique, Communication of
the ACM, Vol, 6 - p. 202-205.

Gilstad, R. 1.., FPolyphase Merge Sorting - An Advanced
Technique, Froceedings of the EJCC, Dec., p. 144-147,

Mendoza, A, G., A Dispersion Pass Algorithm for the
Polyphase Merge, Communications of the ACM, Vol. 5,
October, 1962, p. 502-504.

Malcolm, D. M., String Distribution for the Polyphase
Sort, Communications of the ACM, Vol. 6 - May 1963,
po 217'220.

6.0

6.1

6.2

10,1
Page 7
4/27/64

ENVIRONMENT
Software Support

All sort generated programs will function with an Operating
System.,

ratio haracter
The sort object program consists of an instruction tape generated
by the sort generation run. In order to run the sort program it
must be mounted on servo 0. After the program is initially
loaded by the operator, the remaining phases are located auto-
matically by the sort program. Seven separate phases exist:

1, Parameter Load

2. Dispersion Pass (including FPOC)

3. Interpass Control (#1)

4. Collation Phase

5. Interpass Control (#2)

6. Last Pass (including LFOC)

7. Rerun

Figure 1 shows the contents of each of the above phases and their
relative positions in memory at object time.

FIGIRE I

Sort Phases & Memory Layout Sort Calls
Parameter Load I OP \ { |
‘sys | TABLE PARAMETER LCAD 5 i Sortl
. \
P
Dispersion Pass ; ? FPOC - TOURNAMENT
' " ;" . “ITH |DISTERSICN !AREA AND Sort5S
¢] INPUT | CCDING | OUTPUT
\ & AREA AREA
/ :
l‘
N\
Interpass Control (#1) / (
" / ») INTERPASS CONTROL (#1) 5 Sort2
Collation Phase 7) COLLATION & POLY-! A h
" " PHASE CONIROL 1/0 AREAS
\. | Y
/ > - \ Sort3
Interpass Control (#2) \ ; { (
" j " \ INTERPASS CONTROL (#2) g
v
Last Pass (COLLATION | LPOC $§I/0 AREAS |
" " CONTROL | WITH ~ Sortd , ..
LAST OUTPUT ¢ NI
PASS AREAS lj =0 -
Rerun ! g
/ | RERUN .
C

6.3

6.3.1

6.3.1,1

6.3.1.2

6.3.1.3

6.3.1.4

6.3.1.5

6.3.2

6.3.2.1

6.3.2.2

6.3.3

6.3.3.1

6.3.3.2

10,1
Page 9
4/27/64

Description of Sort Phases.

Par te o
Some of the functions performed in this phase are:

Loads a key comparison subroutine based on the key definition
which is used at object time for all key comparisons.

Analyzes the statements referring to block size, memory size,
servos and item size to build a table of information at object time
which is used by subsequent phases of the sort.

Calculates a block size for this particular sort at object time,

Allows the operator to eliminate a servo from the sort if the servo
allocation is such that this can be done (e.g. A servo can not be
eliminated from a 3 servo sort). This may become necessary if

a servo is inoperable at object time,

Copies the other sort phases as required onto collation servos,
This allows the instruction tape to be removed and allows servo 0
to be used by the sort,

Dispersion Pass_

Requires own code section,

Accepts records from the own code section one at a time, and
disperses them in ordered sequences (strings) to the servos
assigned to the sort and not used by first pass own code,

terpas ol

There are two conditions which may require a redistribution of
strings prior to the collation phase:

Certain levels of distribution when one LIPOC servo is used,
However, if this is the case, copying of strings in this phase
will not normally occur,

When more than one of the servos assigned to the collation phase
is reserved for FPOC use. The Dispersion pass will use only

the servos not reserved for FPOC for the initial dispersion of data,
If this condition exists, this phase will copy strings to all but one
of the servos that were reserved for FPOC and also assigned to
the collation phase.

6. 3.4

6.3.5

6.3.6
6.3.6.1
6.3.6.2

6.3.7

10.1
Page 10
4/27 /64

Collation Phase

This phase uses the information left in memory (e.g. string
counts, servo allocation, etc.) and the strings on several tapes,
This phase then cycles until the strings are reduced to a number
required by the last pass.

Interpass Control (#2)

If more than one of the servos assigned to the collation phase is
reserved for LPOC use, a copy of string(s) may take place in
order to release the servo(s) assigned to LPOC. However, this
copy of data will not take place if only one servo is reserved for
LPOC.

Last Pass

Requires an own code section,
Delivers all sorted records to the own code section one at a time.

Rerun

This phase of the sort is used only if a malfunction occurs which
prevents the sort from continuing (e. g. unreadable tape, memory
parity error, etc.). After rerun is loaded, all tapes will be
validated before proceeding to insure that the proper tapes are
mounted. .\fter all tapes have been validated, they will be read
forward the proper number of strings, Rerun will locate and
read in the collation phase and the sort will continue.

10.1
Page 11
Rev. 1 8/17/64

7.0 GENERATIO CEDURE

Specifications for the Sort, FPOC and LPOC are written on the
standard PAL coding form. The first card must be a BEGIN

card. The second card must be an *STD card to call the standard
library definitions. The label field of the BEGIN card must contain
a four character label in the form XXYY, where XX are unrestricted
and 00 € YY & 90,

7.1 The SORT is generated in five specific phases and these are refer-
enced as follows:

Parameter l.oad SORT1 rl,p2,p3,......,Pn
Interpass Control SORT2

Collation Phase SORT3 pl, p2, p3

Last Pass SORT4

Dispersion Pass SORTS5

SORT2, SORT4, and SORTS5 contain no operands field entries.
SORTI1 contains operands field entries as follows:

pl is the number of fields in the key,.
p2 is the type and sequence desired for field 1 and may be

B - for ascending binary

D - for ascending decimal
DB - for descending binary
DD - for descending decimal

p3, etc., is the type and sequence desired for fields 2, etc., and
may be entries as above.

SORT3 contains operands field entries as follows:

pl is the number of servos available to the SORT.

RERUN if it is desired to have RERUN coding generated.
SEOCK if it is desired to have a positive sequence check
during each collation phase.

o
)
non

This phase may be called in one of four ways:

SORT3 | pl, p2, p3
SORT3 | pl,,p3
SORT3 | pl, p2
SORT3 | pl

7.2.2

10.1
Page 12
Rev. 1 8/17/64

In addition to the specific references to the various phases of the
sort, the following parameter cards must also be supplied
immediately after the SORT1 parameter, and must appear in the
order illustrated.

Minimum Block Size,
Written in one of the two following ways:

1. | MINBS| pl

where pl represents the minimum block size (number of items
per block) the Sort should use.

2. ‘ MINBS | NONE

A minimum block size of fifty=six characters will be assumed, or
if the record size is greater than fifty, the minimum block size
will be one record length plus six,

Memory Size,

This parameter is written in one of three ways. It determines the
amount of memory to be used by the Sort, which includes FPPOC,
LPOC, Sort coding and input-output areas, but which does not
include memory used by the operating system. The three ways

of writing this parameter are:

1. | MEMRY | pl
2. | MEMRY | pl, p2
3, | MEMRY | NONE

where pl minimum amount of memory to be reserved at

assembly time, expressed decimally,

p2 = maximum amount of memory to be used at object
time expressed decimally,

NONE = neither pl nor p2 is desired to be specified.

10.1
Pagel3
7/10/64,

The BEGIN card of the Sort program being assembled can be written in one
of three logical ways?

1. |BEGIN (1
| BEGIN | 3
These are logically equivalent, and cause a relative program to be assembled

which will be loaded at the beginning of an even row, i.e., a base address
mod 128 will be assigned at load time.

2. ‘ BEGIN | 5

This is essentially the same as above, but will be loaded slightly differently
during concurrent running. (See below).

3. ‘BEGIN‘ absolute address
This causes an absolute program to be assembled.

The Operating System in use at time of running the Sort may be one of two
basic types, i.e., it allows for single or concurrent running of programs.
If the single type Operating System is in use, memory will be assigned as
follows:

| MEMRY | Pl - pl characters will be used

" MEMRY I pl,p2 - all of memory will be used, regardless of
the value of p2

| MEMRY | NONE - all of memory will be used.

10.1
Pagel 4
7/10/64,

If the concurrent type Onerating System is used, two relative programs
may be run. However, only one absolute program may be run, i.e., the
Operating System will not load a second program of either the absolute
or relative type. When two relative programs are run, the first to be
loaded will be called A, and the second to be loaded will be called B.
Program A will always be loaded following the Operating System. Program
B will be loaded following program A, if

|BEGIN| 5
was used. Program B will be loeded at the high end of memory if

|BEGIN| 1 or BEGIN 3 was used.

Graphically
0 Mod 128 Mod 128 m. End
0s L A = I——-B _Unuged
- .
j)l |BEGIN | 1,3 or 5 :,EBEGIN' 5
Mpd 228 Mod 128 Mem. End
0s = A Unused B
— | |BEGIN| 1,3 or5 | |BEGIN| 1 or 3
X 1 Y ‘ n

The values X, X1, Y and Y1 are stored in fixed memory locations withi

n
the operating system. After the Sort is loaded, it examines these values
gzgoggpetimes changes X1 as necessary to reflect the usage of additional

Rev.

10.1
Page 15
1 8/17/64

The following table shows the limiting value of the amount of memory ¥,
or the last location number in memory used by the Sort#,

PROG A PROG B PROG B PROG
BEGIN 1,3 or 5| BEGIN 1 or 3| BEGIN 5 | ABSOLUTE
* * # %*
'MEMRY pl pl pl n pl
* * # #
|MEMRY pl, p2 p2, but not ex-
ceeding Y or Y1 pl Y1 Y1
¥ # ¥
|MEMRY NONE Y or Y1 Will not Y1 Y1
Work

To obtain maximum utilization of memory, sorts which are to be run non-
concurrently should use

| MEMRY | NONE

For Sorts to be run concurrently, they should use

| |BEGIN ' 5 and lMEMRYl NONE,

10.1
Page 16
Rev. 1 8/17/64

7.2.3 Type of Servo,
|TAPES| pl
pl = 3A for IIIA tapes
3C for IIIC tapes
4C for IVC tapes
6C for VIC tapes
7.2.4 Servo Allocati
'sr-mvo' pl,P2,.eue..,pn

pl, p2, etc., are the logical servo numbers (0-5) of the tape units
available for sorting. At least 3 servos must be stated.

7.2.5 Last Pass Servos,
,LPSER' pl,...pn

pl,...pn are the logical servo numbers of the tape units available
for use by LPOC.

7.2.5.1 If it is desired to use one or more servos for LPOC which have
been specified in the SERVO statement, pl must equal pl of the
SERVO statement,

7.2.5.2 The LPSER statement must have pl = NONE if no servo is needed
for LPOC.

7.2.6

10.1
Page 17
Rev. 1 8/17/64

First Pass Servos,
FPSER l pl,...pn

pl,...pn are the logical servo numbers of the tape units available

7.2.6.1

7.2.6.2

7.2.7

7.3

for use by FPOC.

If it is desired to use one or more servos for FPOC which have
been specified in the SERVO statement, they must be specified
in FPSER statement. If servo zero (0) has been specified in the
SERVO statement, it must also be specified in the FPSER state-
ment. (See para. 7.2.6.2 for the only exception).

1f the SERVO statement contains a reference to servo 0, the Sort

will rewind servo 0 with interlock after the load of the Dispersion
Pass: otherwise, servo 0 will be left in a forward position.

The FPSER statement must have pl = NONE if no servo is needed
for FPOC,

Key Definition.
| KEYn] pl, p2

n - is the field number (1-10) for an n field key, the consecutive
numbers 1 through n must be used for definition,

pl is the length of the field and may be from 1 to 16 characters.

p2 is the position number of the rightmost character of the field
in the record. p2 is defined relative to the number one.

Item Size.

‘ ITEMl pl
pl is the number of characters in the record to be sorted.

FPOC including macros preceeds the SORTS call. LPOC including
macros preceeds the SORT4 call. An END card follows SORTS,
andthe operands field must contain ZENT,

10.1
Page 18
Rev. 1 8/17/64

7.4 Writing Own Code.

7.4.1 Geperal.

FPOC and LPOC should not use labels with a first letter of X,
Y, or Z. The sort coding uses labels that begin with Y and Z
and the standard 1/O calls will produce labels that begin with

X.

If FPOC or LPOC uses labels that begin with X, Y, or Z,

it is possible that an error of duplicate labels may occur at
generation time.

7.4.2 First Pass Own Code.

7.4.2.1

7.4.2.2

7.4.2.3

7.4.2.4

BEGIN .

The first instruction to be executed by FPOC must be labelled
ZBEGN. Control will be transferred to this location before
First Pass is initialized. FPOC executes a JR ZSTRT.
Deliver a tem.

FPOC executes a JR ZPUT, Index register five must contain
the absolute address (MSD) of theé input item to be sorted.

r tems.

FPQOC executes a J ZEND,

Index isters.

a. Index registers one and four are used by First Pass and must
not be altered.

b. Index register two and three are used by the First Pass but
may be altered by FPOC.

c. Index register six and seven are not used by the First Pass
and are free for FPOC.

d. Index register five will be used by the First Pass but will
not be altered.

10.1
Page 19
Rev, 1 8/17 /64

7.4.3 Last Pass Own Code.
7.4.3.1 BEGIN

The Last Pass will execute a J YSTRT. This label will appear
on the first instruction of LPOC initialize path, Control will be
transferred to this location (YSTRT) before any iterns are de-
livered to LPOC and after all input tapes to Last Pass have been
opened.

7.4.3.2 Obtaining an Item.

LPOC executes a JR YGET, Index register one will contain the
absolute address (MSD) of the selected item,

7.4.3.3 No More Items.
Last Pass will execute a J YEND., This label will appear on the

first instruction of the LPOC terminate section. Control will be
transferred to this location (YEND) when no more items remain.

7.4.3.4 Index Registers.

a. Index registers one, two, and three are used by Last Pass
but may be altered by LPOC.

b. Index registers four, five, six, and seven are not used by the
Last Pass and are free for LPOC.

7.5 A typical input to Sort generation would appear as follows:

B

Remington Rand UNIVAC UN'VAC 1050

Program _ Sox T Taamssescms PAL ASSEMBLER CODING FORM

1Pag% Programmer J. Globule Date 8// s /fl{’ - 7l;rogram-lgo
oo For BEGIN only S1R
Sequence l Label Operation Operands Comments >

Page |Line Jng|

1 3]4 5/6]7 1jw13 18{19 30 40 50 60 70
9,06)/]0,1} 1SR P £E.GI S s ks AaTIVE PRREGRAM 1+ 1 1 L v s v g gl a i vl
11 1032 - @zﬁ: S G = 1z.8

paodogsl by | ISielRiTi/y 31)131,\161)LD1 L 13 KEYIS b s 4 1Digle L Sis

11 }014 L1l JIWIBIS A 1o LT 1E £ Li3)c x v s byl
1 1 1045 L1 EMRY WewiE 1 Isskin sy sl wisiEr it alvidx L ABILE MEMSIRY L a1 L

1 1]046 L1 TALES 1318 111t o3l asiERVIs st Lot a s raa o by vt aa b g r v a

L1 1037 L1t 1E1RIVIo | /1.1¢|u&_,12_u_|_&u&£&1é@_ﬂd&£@_@lh THE SERT o a b a e gl

11 10,8 L1 LS\ ER Y v 1 i ~ £ 1S V18 3 AN EEEEY EN
[LIE] I S MQM_MJMMJ#_&LE ISIEIR VIS | 1 TiS) l‘zlE]_rklolllllllll
L1 j10 L1l KIEIYI/II3l}lll7llllIllllFlIlRlSlanIEIYIIIlIlJllllllllllllllllllllllllll
AT I 11 maln4|;1é\|4-1|1111111$1E10|5’|IV|D||K|EnY||||||||1|||1111|1|1|111LL41|1]1

BN ARV 1111 K[él!ﬂ||I|a|}|i|2||||||||T|d|LK|Q||K|ELY1IllllllllllllllllJllllllllllllll
[AN L1 LiTEM bﬁlhlln1111AIRQMMMLMMMMQCnTlEMNIlAA111111111

N ANL R R A NN NN SRR NN NN
[AN L1 SIDIRIT 13 4‘1.1\1.515 S\E 218 vis LiL -3 EjRWW oLy

[AN B N L1 114111|x||1|P101$1ZnTlIlV|F|15151@2_LE|M|_LE_|_¢_|,H_LE|C|K|1nllnnlnnnlnnxnlln
1 7] ey (LiMSIT] 1PIRISIS) |5 e £ 51V) Rvigr 3MEL 4y vy by a
[R 118 RiEA L1888 1 v ety AREIAL ¢ i nzErus] faR itk 1 i il
o quel e el sempvln KewmzmE - ITACES v v by v v b v v b v by
o dzof e el inaeE 3 ' sw il Ly k1 e 1 NI A i

Form. 275 20

i i .
Remington Rand UN'VAC UNlVAC 1050
Program Sop T TR A ;?"f.iw‘!.s’ - PAL ASSEMBLER CODING FORM
1Pag<§ Programmer I, Globole Date ,.__.E//q/é‘f 7grogram-lgo
01013 For BEGIN only K
Sequence | Label Operation Operands Comments >
Page [Line fnof .
1 3}4 5{6]7 11[¥]13 18j19 30 40 50 60 70
aelo | 1Y\ $\TRT] [oweiEwi3 Lpo Tl o 1 SilEwM STt BEGE 0 L v ber s b
Lo doi2l WePieily | USIAL 1o DS s g Sy v N,
L1 J0138] ey 4 4y bt ot bEmsmawaTizeW GETRAD L raaa g aaa b i i a sl
L1 054 L1 gﬂ Laa s YieET v eEn SwE onaM - IoTEM ADDIREISS v EBM 1 Xily 11110 L
11 0% 111 MWMJJWM_@M.WTIFW:T:11:11]111111_11111
T LT 5 A W&ﬂ]ln|xlx]WMnﬁ%T@”@ijllllllulllltlllljn;:]:
11 1017 111 lll‘llelPICI/l.lllllljlllllllllllllll‘llllillllll]lllll,l"'llljlllll
Lo Josl [YiEmD | |ewisi$3, [l e Mi3| M5 IR\E £ &e35.8 Bedip T L& |
p o Joyel Joy gy b IREwWMIWD Wl gwTERbEell a4]
L1 j10 L1 N AN Y X A I I A K1 T 2] 15159_15@241 jo1F1 (G0 RIDINMATIS R | 11 e vt e gl
s A 114 Tn_@i/llxwlﬁlslrﬁlﬂn||1J|111||||:||ll|llllnnlllnl|
L2 it Wi leizielen a0 1ARGIGRAM REIEASE i i s b i s el
L 1§13 L1l 198 T14h |||||||||||||&|L|||L|A]S|Z|l£|ﬁé|$lllljlllllllllll]l]lllllllll
L1 Juel ley VAL 1 1PAiSS| 16 €15,D\Ej 3 ‘ NI IS BN AN A A AU SN AN AN ST S A AN A AN WU SN AN AN AN O
L1 J15 f!P@QJ_.T AL 1 1110018 1+ v IT Ej EL £, Lo Li ittt el
' AL ‘llclAl‘_-_L‘;_MM o £ - EQ v v v ba v v e by s v v v s b v e s gl
Ll LIV | ITAPERA - ‘ » o yif1010,,2iy0i0l0,8 144yl
||’|8F|§|E|Gw MWIRIﬂllnnllll:;lilllllllll:tlln‘
N ABL) P11 OPENA IFPIN 1 1 11 BeEN WINPT FTLE g Lo g aaaa b s s i el
11120 IFPL SAl RS 1 BITeRE RDWDRIEIS S BF ETRIST LDEM 1 L il
% 7 . Form. 275 20

oy

éemington Rand UN'VAC UN'VAC 1050 :

Program S T TRANSACT Low PAL ASSEMBLER CODING FORM

Page

1 3 Programmer T Globele Date ‘?/f/‘ 7 , 7grogram-lgo
21213 For BEGIN only S
Sequence | Label Operation Operands Comments —»>
Page |[Line Jns
1 3|4 5|6|7 1{w}13 18{19 30 40 50 60 70
N (I L1 TR 1+ 1 1 BPUT v 1 v DB niviER (SME LTEM (TS \THE SSRT b v L
;4 1042 L1 GETQ | |[FPIM |\ v 16ET SWNE (ITIEM FREM (IWME VT BT L E |y a1 L
L1 {0;3 L1 NIRRT NN N NS TN N
ool lEMD LG s a (BEMDL M SRE nTAEMS L L v vy e bl
) 1 1045 sl lseRnSE i i 1GALL, DTS\ PEIRSTOM PASS] v v b by
11 1016 i llEMD VL BEMT v v v v b vy v by be v by
1 1037 L1l AT IS S A SN AR AN SN S A AN N SRR I SN AN AT NSNS AN A A AN S A AN AN S SN AN SN SN SN SN A BN N S A S A A A
I (L] L1l PN I I A I AT ST AN A N AN SN S SR AN SN S AN A S AN AN SN A AN AN S AT SN SN SN SN ST ON SN AN SN SN AR AR SN A A
11 1999 L1111 RSN NN BN I I IS A S A
SRR ANT] B BT NN NN N AN A I IS AN Sl AT S A A S AN S AN TN AN SN SN AN SN A SN A AT
' ANL L 11 PSS S AN S U Y T T U T Y S U U U U 0 W MU U U 0 N S SN N A M U A0 N Y Y AT 0 A6 W A A O A AN SN N A A
[AT R NN NN NN NN NN SN N N
I AR L1l N NN S N A A A I S A I A A A A S A SN S N AN SN AN A AT AT SR S SR |
B AN L1 I N N N I A I A A N A AN S SN SN S AR AN SN AN S AN AT SN N AN AT AN BN AN A A A SN AN A A
[ENE AL L1 NN NN NN NN N A A i I I A A A A I S
N AN L1l SN AR A I AN SN N NN AN AN S O AN AN SN SN N S N AN A AN AN AN A AN AN S AN AN N A SN AT S SR S SN N AT SN SN A AN AN S A AN A
' AR 111 vovv ot bev v v b v v bra v s v s b v s v by
L 18 Ll Lo v e v be s v v by gy v v brvr v by
11 119 111 L1111 NN NN TN TSN N N N N
|1 12,0 L1 I AN i AR S A AN NN U N N AN S A N A N S A S A A N A S A S S AU A N A N SN AN AN A A SN N AN A AN AN AN A A

Form. 275 20

8.0

Glossary

Block Size

Field

First Pass
FPOC
Item

LPOC

Key

Operating System

Record

String

Tournament Size

10.1
Page 23
4/27/64

Number of characters per tape block.
A section within a key which is used

as a sub-ordering relationship between
records.

Dispersion Pass.

First Pass Own Code,

See record,

Last Pass Own Code,

"An area within a record or item which

is used as the ordering relationship between
records.

Performs program locating and loading
functions, unit coordination, program
switching (when desired), and tape
instruction issues.,

All the information regarding one individual
or item pertinent to a given problem or
set of problems. Sometimes called an item,

An ordered sequence of data.

Number of items or records contained in
the tournament area,

1. Parameter Load,

STOP
031200

031201

031202

031203

031204

031205

031300

031301

031400

031401

031402

T STOPS DISP S

REASON

Cannot find a servo to delete.

Less than 3 servos de-
fined in |SERVO| call.

Too many FPOC servos de-
fined.

Too many LPOC servos de-
fined.

Illegal servo combination,
Less servos defined in
|SORT3|call than defined in
|SERVO| call.

Initial Sort Stop.

Stop enables user to reset
trace switches.

FPOC too large.

Designatedl MINBS l is too
large.

LPOC too large.

10.1
Page 24
Rev. 1 8/17/64

ACTION

Press run to continue.
Will return to 031300
Stop.

Reassemble

Reassemble

Reassemble

Reassemble

Reassemble

a. Set trance mode to
PROC. Set trace switch
equal 01 to continue
Sort, press run.

b. Set trace mode to
PROC. Set trace switch
equal 02 to delete one
servo from Sort run,
press run,

Press run to continue

Reassemble

a, Check MINBS Call
and MEMRY Call and
reassemble.

b. If running concurrently,
check BEGIN card, or

run as single program,

Reassemble

20

3.

STOP
0315SS

031601

031602
031700

031702

First ass
0321SS

0326SS

0327SS

Collation Phase.
033044

0336SS

0332SS

0337SS

REASON

Sort has deleted one servo-

servo S.

Segment missing from in-
struction tape,

Instruction tape I.D, no good.

Invalid MINBS statement.

Sort I.D. from BEGIN card

is too large,

EOT window on servo SS.

Segment missing on servo
S-

Block count error.

Data sequence error,

End of tape detected on
servo 'SS',

Label block missing on
servo 'SS’',

Block count error on
servo 'SS'.

10.1

Page 26
Rev. 1 8/17/64
ACTION

Press run to continue,
Reload or reassemble,

Reassemble
Reassemble

Correct I. D. on BEGIN
card must be in formt
AABB where 00< BB £
90. Reassemble,

Restart with longer blanks,

Try restarting, other-
wise reassemble,.

_ Restart

Restart (remn will be
available at a later date).

Reduce volume of data
and restart or mount
longer tapes and restart
(rerun will be available
at a later date.)

Restart (rerun will be
availabe at a later date)

Restart (rerun will be
available at a later date).

10,1
. Page 26
Rev. 1 8/17/64

Last Pass.

STOP REASON ACTION

0332SS See above,

0337SS See above.

Dispersion Pass.

035001 Item count limit reached. Press run to continue,

will only stop once.

0356SS End of tape window on Get longer tape and re-
serw S, start,

General.

Upon depressing the run button at any unrecoverable stop, control
will be transferred to the Operating System. This will allow a
second program to continue if running concurrently, or will allow
operator request button to be depressed for purposes of obtaining
a memory dump. See Ovperating System for details.

4K Load Routine (With memory fill)
1.0 - ‘Introduction.

The load routine for the column serial reader fills memory with a
specified character ([J) and loads the program which follows it in
the card reader. It performs its functions in the following order:

a. Establish the interrupt entries for the Class I, Class II and
card reader interrupts. The other interrupt entries are des-

troyed when loading the load routine and if used, must be
initialized by the program being loaded.

b. Fill memory except the tetrad area with the character [1 (077),
c. Fill the entire tetrad area with the character[] (077).

d. Load the load routine itself into consecutive locations starting
immediately after the read area (see E. below).

e. Load the program itself, reading the cafds into the area starting
at 0600 (octal).

The only locations which cannot be loaded using the load routine are:
a. Tetrads 7, 8, 16, 18, 19 and 36.
b. The read intérrupt entry.

c. The area occupied by the routine 1tself (108 characters for 90
~column, 103 for 80 column.

d. The area used by the loader to read cards (109 characters for
90 column cards, 160 characters for 80 column cards.)

2,0 QOperating Instructions.
2.1 To load a program using this routine

a. Place the six cards of the load routine in the reader
followed by the program to be loaded. The first card
of the program to be loaded has an R in column 74.
(84 for 90 column cards).

b. Press "Clear", "Load Card®, "Start", "Oontinuous", and
*Start®". The load routine will fill memory, load the
program, and transfer control to the program loaded.

3.0

2:2

2.3

2.4

Page 2
8/4/64

c¢. - If an error occurs during the reading of the load routine,
the computer will stop, with 30 OXX XXX 60 in the instruc-
tion register where XXXXX is an address in the area used
for reading by the load routine. Begin the load operation
over again at step a.

d. If an error occurs during the loading of object cards, .the
computer will stop with 30 1100000 60 in the instruction
register., This is caused either by an error condition
in the reader or by a failure of the check sum. Ready
the reader to refeed the last card fed and the one in the
read station. Depress Ready (at the reader) and Start.

The load routine may be operated with neither memory fill nor
tetrad clear. To do so, remove the second and third cards from
the deck. Operating instructions for the resulting 3-card deck
are the same as above.

The load routine may be operated with tetrad clear but no memory
fill. To do so remove the second card from the deck. Operating
instructions for the resulting 4-card deck are the same as above.

The load routine may be operated without the check sum feature.

To do so remove the fifth card from the deck. This reduces the

program space required for the load routine by 30 characters for
90 column routine, 35 characters for the 80 column routina.

Options pAvailable Through Reassembly:

At the beginning of the source code deck for the loaders are six 'EQU'

cards.

These cards define the labels PGM, REA, LMT, CHR. By altering

definitions for these labels the routine may be changed as follows:

3.1

3.2

To change the locations in which the load routine is stored, de-
fine the label PGM to be the address of the first location the
load routine is to occupy. Thus, if it were desired to have the
load routine occupy locations 4000 to 4063, the card defining PGM
would be replaced with the card:

PM EQU 4000

To change the area into which the load routine reads cards while
loading, replace the card defining REA with a new definition of
REA. The address supplied in this definition must be a multiple
of 128 (or 200 if it is expressed in octal notation).

3.3

3.4

15.2
Page 3
8/4/6

To change the character with which memory is filled, replace
the definition of CHR. If the character itself is written,

it must be surrounded with quotes. Thus the present definition
of CHR might be written in any one of the following three ways:

CHR EQU '[T"
CHR EQU 63
CHR EQU 077

The tetrad area may be cleared to blanks by changing line 00310
to read

PD 7,8

:

'. s
8/5/64

tput Routi .
General.

These routines are in the form of source code. Each routine begins
with a comment card containing the name of the routine in columns

13 to 18. Since there are variations possible to severla of the
input-output routines, it is recommended that a master copy be main-
tained of each of these routines and a copy reproduced from the
master for inclusion with each program. '

The routines provided are:

*RDIL Read 90-column cards with lockout.

*RDTL Read 80-column cards translated with lockout.

*RD9 - - Read 90-column cards with overlapped processing.

*RDT - Read 80-column cards, translate, and overlap processing.
*PHOL - - Punch 90-column cards with lockout.

*PHTL Punch 80-column cards, translated, with lockout.

*PH9 Punch 90-column cards with overlapped processing.

¥PHT - - Punch 80-column cards, translatoa, with overlapped processing.
*PR ~ Print a 128~character line (for buffered or unbuffered systems).
*PRX . Print a 132-character line (for buffered printer only).

*PRL Print a 128-character line without overlapped processing

(primarily for unbuffered printer).

Each routine has at least the three entrances for the functions initial-
ize, execute, and close. Each routine addresses an area whose name is
standard and entrance to the execute section causes the routine to place

in a fixed index register the relative address of the next available area.
This address is relative to the beginning of the standard area. Thus *RDT:
whioch reads into the area labelled XAR will deliver the card image to the
calling routine in the 80 locations starting at XAR + 80¢

It will place 80 in index register 1.

15.3
Page 2
8/5/64

The following table summarizes certain characteristics of these

routines.

tines see sections 3.0 to 5.0.

For a more detailed discussion of the use of these rou-

Routine Index Name of Entrance to Area Total
Name - Register Initialize| Execute|Close | Size | Name|Size Space
Used
RD9L 1 XIR XXR | XCR | 100 | XAR | 109 209
RDTL 1 " " " 85 . 80 160
RD9 1 " . . 148 - 199 347
RDT 1 " v . 143 " 160 " 303
PHIL 2 XIH XXH XCH 190 | XAH | 237 427
PHTL 2 . " " 155 . 208 363
PH9 2 w . " 215 " 327 542
PHT 2 " " . 200 " 288 488
PR 3 XIP XXP XCP 160%| XAP | 256 416
PRX 3 . . - 160%| * 264 424
PRL 3 " . . 135% * 128 263

*Does not include the space required by XOP and XRP.

15.3
Page 3
8/5/64

Programs are to address the image area for each routine using the
appropriate index register as shown in the table above. Thus to bring
columns 3 to 5 of an image read by *RDT to ARl, the instruction would
be written

BAl XAR + 4, 3, 1

The input to the assembler for a program using these routines must
include

1. The reservation of the area(s) for the routine(s) used.

2. A copy of the source code for the routines used.

3. The source code for the program itself.

The reservation of the area for one of these routines must precede
the source code for the routine IN THE INPUT TO THE ASSEMBLY. The

address of the first location of the area must be a multiple of 64
for

a. XAP if the printer is not buffered.
b. XAR for use with *RDT and *RDTL
c. XAH for use with *PHT and *PHTL
The address must be a multiple of 128 for
a. XAR used with ¥RD9 and *RDIL
b. XAH used with #PH9 and *PH9L
One easy way to ensure this is to use an appropriate origin statement:
ORIG $,128

XAR AREA 199 -
The standard loader and memory dump for the 4K systems assume that
the print area will start in memory location 384 (0600 octal) and be
followed by the read or punch area. Each program should have at
least 245 locations (199 for 90-col. systems) reserved for input-
output areas starting at this location if the standard loader and
memory dump are to be used.
In emach case when one of the functions performed by these routines is
desired, it is obtained by executing a 'JR' instruction addressing the
tag associated with the section performing that function. For example,
to initialize the card reader routine one would write the instruction

JR - XIR

2.0 Compatibility.

These routines are designed to be used in a manner analogous to the
corresponding routines for UNIVAC 1050 Systems with a larger memory,
including those routines designated for use with the Coordinator.
They are constructed in such a manner as to allow programs written
using them to be reassembled with a minimum of alteration and run in
the environment of an expanded system.

To convert a program using these routines to one using routines written
for a larger configuration the following steps are required:

a. Replace the area reservation for each routine to be replaced
with one that i1s appropriate to the new routine that is to
replace it.

b. Remove from the deck the source code for the routine(s) being
replaced.

c. Insert into the deck (input to the assembly)

1) The appropriate call to the PAL library if the tape
assembler is to be used,

or 2) The appropriate output of the I/0 Specializer if the card
assembler is to be used.

In either case, the call for the routine must specify the same index
register used by the routine being replaced. Thus, P3 must be 1 for a
reader routine, 2 for a punch routine, and 3 for a printer routine.

d. Insert into the deck a standard set of 'EQU' cards equating the
tags of the 4K routines to the corresponding tags of the replace-
ment routines. For example, in moving to a larger system and
replacing the reader routine, the following cards would be included
in the input to the assembly:

XIR EQU XINRD
IXR EQU XCTRD

XCR EQU XCLRD

3.0

15.3

P 5
8/5764

Use of Card Reader Routine.

3.1

3.2

3.3

3.4

Initialize (XIR) "

The initialize section must be entered before there is any attempt
to get a card image. Base address tetrad (tetrad 36) and the
channel interrupt entry are set to their appropriate values.

A feed card order is issued except in the case of the routines
with lockout (*RDIL and *RDTL).

Execute (XXR)

This section is entered when the worker program wants a new card
image. A feed card instruction will be issued and the base add-
ress of the area available to the worker program is placed in
index register 1. The card image in the case of 90-column
reader will appear in 90 consecutive locations in untranslated
form.

Close OQut (XCR)

For compatibility with the routines in large systems a close out
section is provided.

Interrupt.

The interrupt section is automatically entered by the hardware
in the case of an error condition. The computer will be brought
to a stop with the following in the instruction register:

30 110000 60

If there is a card in the error stacker, it must be replaced

in the input hopper, followed by the card in the read station
and the remaining cards in the input hopper. Then to resume
processing from the point of the error, depress Ready and Start.

15.3
Page 6
8/5/64

4.0 Use of the Punch Routine.

4.1

42

4.3

bed

Initialize (XIH)

XIH must be entered before there is any attempt to edit data
to be punched. The area available to the worker program is
cleared to spaces. The base address (relative to the address
of XAH) of the area available to the worker program is placed
in index register 2. All counters and variable connectors are
set to their initial conditions. The channel entry is not
affected at this time, having been established correctly in
loading the progranm.

Execute (XXH)

XXH must be entered when the worker program has finished the
editing of data and wants it to be punched. The punch instruct-
ion is issued and the base address of the area available to the
worker program is placed in index register 2. The arithmetic
registers and tetrads 16 to 19 are destroyed.

Close Qut (XCH)

XCH is entered after the last output data card has been delivered
to the punch through entry to XXH. A feed card is issued to send
the last valid card into the output stacker.

If the last valid card punched before closing causes a read check
error, it will be properly repunched. However, in this case, the
card remaining in the punch unit will not be a blank card as ia
customary. Unless this card is cleared from the punch unit it
may cause a punch error when the punch is next used.

Interrupt.

The interrupt section is automatically entered upon completion
of a punch instruction. It returns control to the point of
interruption after its work has been completed. In the case of
an error the computer will be brought to a stop with the follow-
ing in the instruction register:

30 120000 60

Depress Ready and Start buttons. The computer will repunch the
error card(s) and continue with the normal processing.

15.3
Page 7
8/5/64

5.0 Use of the Printer Routine.

5.1

5.2

5.3

5.4

5.5

Initialize (XIP)

XIP must be entered before there is any attempt to edit data to

be printed. All areas are cleared to spaces. Counters and var-
iable connectors are set to their initial value. The base addresh
of the first working area is placed in index register 3. The print
interrupt entry is established while loading the program and is not
affected by XIP. .

Execute (XXP)

XXP is entered when the worker program has finished the editing of
data and the data is to be printed. XVP, a single character, must
be supplied with the number of lines to be advanced by the worker
program before entering XXP. ‘A print instruction will be issued
and the base address of the next area available to the worker
program is placed in index register 3.

Close Qut (XCP)

XCR must be entered when the worker program wants to be sure that
the last print line given to XXP has been printed.

Interrupt

The interrupt section is entered automatically by the hardware in
case of an error. The ocomputer will stop with

30 100000 60

in the instruction register. When the difficulty is corrected,
depress the Ready and then the Start button to reprint the line
causing the difficulty and resume normal processing.

Call (XQP)

X7P is entered when the worker program wants a "remote area® to

be printed. A “"remote area™ means a print area which is not in-
cluded in the print area, XAP. The worker program can place any
number of such areas anywhere he wants as far as memory capacity
permits, subject to the limitation that, if the printer is not
buffered, each such area must begin in an address which is a mul-
tiple of 64. X3P can be used to print such things as heading lines,
page numbers, and so on from these “remote areas" saving the program
the trouble of transferring comstants to print areas. Prior to
entering XQP, the worker program must supply the location XRP '

(3 characters) with the base address of the remote area and XVP
with the number of lines to be advanced. The size of a remote

area must be the same as that of a print area in XAP, that is, 128
characters for use with *PR and *PRL and 132 characters for use
with #*PRX. XQP transfers control to XCP before issuing the print

instruction.

Al

5.6

5.7

15.3 o
Page
8/5/64

Advance Paper (XUP) -

XUP 18 entered when the worker program wants the paper to be
advanced without printing. The number of lines of advance must
be placed in the single location at XVP before entering XUP. -
XUP transfers control to XCP before issuing the advance instruct-
ion.

Special Notes

a. XQP and XUP need not be included unless their functions
are desired. They require 35 and 45 locations respectively.
XQP constitutes the cards for page 3 (i.e., card sequence
numbers in the range 00300 to 00399) and XUP the cards for
page 4. Either may be included in or excluded from the
routine independently of the other.

b. The number of tag definitions required in replacing the
print routine is greater ‘than either of the others. The
following definitions are needed:

Xxp EQU XCTPR
XVP EQU XADVC
XIP EQU XINPR
XCP EQU XCLPR
XQP EQU XCTQL
XRP EQU XRMAR

Xup EQU XCTAD

15.3
Page 9
8/5/64

C. Areas available within the defined areas.

Use of these areas is not recommended since it complicates
the problem of upward compatibility. 'ORIG' cards included
in the assembly for a 4K system to define constants or
storage at these positions would have to be removed, allow-
ing the locations so defined to follow in the sequence of
locations assigned to the worker program.

The locations not used are as follows:

Routine Ioti. Avail, #Avail. in one seq, Address of First Loc. -

*RD9 - - 19 19 XAR + 45
*PHIL ' 38 19 XAH + 109
19 XAH + 173
*PHTL 48 48 XAH + 80 -
*PHI - - 57 19 XM + 45 -
19 . XAH + 109
19 XAH + 173

PHT 48 48 XAH + 80 -

15.4
Page 1
8/3/64

4K _SMALL Dump Routine (SDUMP)

1.0 General.

SDUMP is a routine to print the contents of memory in octal. It
operates in a minimum amount of space, and at the same time restores
everything it uses except the print area. The routine will be dis-
tributed in the form of source code which can be assembled to produce
a routine which occupies memory locations 3698 to 4095 and uses the
area starting at 38, (octal 0600) from which to print. Since it is
assumed that this area is being used by the worker program to contain
a print image, the contents of the area are printed before the routine
begins printing the rest of memory. Each line of the printout contains
(at the left) the 5 digit octal address of the lowest order memory
location printed on that line, followed by the octal representation of
32 memory locations in 8 groups of 4 locations each. (Each group of 4
locations being represented by 8 octal digits).

Since various options exist which can be exercised by altering the
source code, it is recommended that a master copy of the source code
be maintained at each installation. This can then be reproduced to
provide a working copy for anyone who desires to produce a modified
routine. Any such routine should be clearly labelled to indicate the
deviations from the standard.

2.1 Manual Entrance to ngMP'

To enter SDUMP, manually, execute a transfer of control to location
07167 (octal). (Start of the routine's program area plus 5).

The routine will print the contents of memory, and stop with

the instruction 30 007174 60 in the instruction register. The M
portion, however, will be different if the print routine has al-~
ready been entered by program as described in section 2.2. Man-
ually execute a jump to the desired point in the program to continue
running.

2.2 Programmed Entrance to SDUMP -

To enter SDUMP automatically in the program, one writes the
instruction JR 3698 (the m portion of this instruction addresses
the start of the program area for SDUMP). The oontents of memory
will be printed and the computer will stop with the instruction
30 Ommmmm 60 in the instruction register, where mmemm is the
address of the instruction to which control is to be returned
after the SDUMP is finished. To continue with the program from
the point at which it was interrupted, depress M and Start.

3.0

2.3

2.4

15.4
Page 2
8/3/64

Error Recovery

If an abnormal condition occurs in the printer the program will
stall in a loop. To continue with the dump, depress Stop,
correct the condition in the printer, and depress Ready on the
printer and Start.

Alphanumeric Printing

Depression of Semnse Switch 1 prior to entering SDUMP will cause
it té print in alphanumeric rather than ocatl format.

Reassembly Options

3.1

3.2

3.3

3.4

The upper limit of memory printed is defined by the tag LMT:
LMT EQU Q7777
The lower limit is always zero. To change the upper limit, re-
place the above definition (card 00110). The location used as an
upper limit must always be one less than a multiple of 32.
The area from which printing is done is defined by the tag XDA:
XDA EQU 0600
This area may be made a separate area if there is room in memory.
In this way the print image will not be destroyed in the process
of obtaining a printout of memory. To do so the above definition
must be replaced (card 00115).

The area occupied by the print routine may be altered This is-

done by changing the definition of XDP:

XDP - EQU 3698
This definition is found on card 00120.

Space -Reduction

The program for the memory print can occupy fewer locations if
some of the tetrad and interrupt entry area can be destroyed at
the time that SDUMP operates. The following table summarizes
the various limitations that can be imposed, the space reduction
that results, and the cards to remove from the source deck to
achieve each such reduction:

15.4
8/3/64

Restriction Positions Saved Card to Remove
AR2 will be destroyed 31 —-—y—y=y=
AR2 not printed properly

5 loc. -

Some extraneous characters

appear at right of listing 5 -

No alphanumeric dumping 10 -
Tetrads 32, 33 will be

destroyed 10 --
Print interrupt entry

is destroyed 10 -
Tetrad 19 is destroyed 10 -
Total 76

5.4
Page 1
7/21/64
Rev, 1

U1050 DATA TAFE CONVENTIONS.

1,0
101
1.2

1.3

2.0
2.1

2.2

3.0

3.1

3.2

4.0

4,1

4.2

5.0

5.1

6.0

6,1

6.2

Label Blocks,

The First block of each file will be a Label Block,

A file must start at the beginning of a tape.

If a file exceeds one tape, each succeeding tape will contain a Label
Block as the first block, Contained within the Label Block will be a
number of the tape within the file,

End-of-File Blocks.

The last data block of a file will be followed by two end-of-file blocks,
Where rerun is allowed for, rerun information, bracketed by bypass
blocks, may appear between the last data block and the end-of-file
blocks,

End-of-Tape Blocks,

When a file exceeds one tape, each tape except the last will have the
last data block followed by two end-of-tape blocks,

Where rerun is allowed for, rerun information, bracketed by bypass
blocks, may appear between the last data block and the end-of-tape
blocks.

Bypass Blocks,

When a file includes information required for rerun, the information
(block or blocks) will be preceded by a bypass block and followed by
a bypass block.

Two bypass blocks and the rerun information contained between them
cannot overlap tapes of a multi-tape file,

Data Blocks,

All blocks, excluding those described in 4,0, which appear after a
Label Block and before an end-of-reel or en-of-file block are termed
data blocks,

Blocks Modes,

UNISERVO IITA: All blocks will be written and read in the four
character mode,

UNISERVO IIIC, IVC, and VIC: All blocks will be written and read in
the binary mode,

7.0

7.1

7.2

7.3

7.4

7.5

8,0

8.1

8.2

8.3

5.4
Fage 2
7/21/64
Rev, 1

Block Sizes,

All blocks in a file, excluding those contained between bypass blocks
will be fixed in size,

The maximum block size will be 4092 characters,

The minimum block size for any output file contained in a run when
rerun is to be allowed for will be 400 characters,

The minimum block size will otherwise be limited only by the size of
the label block (20 character minimum). Refer to 8.3)

UNISERVO 111IA: The block size for any file must be a multiple of 4
characters.

Block Formats,

All blocks will contain an indication of the block type in the first
character,

All blocks will be counted, All blocks, with the exception of those
contained between bypass blocks, will contain a binary block count
in the second through fourth characters,

Label! Blocks,

Character
0 Octal 3
1-3 Block Number
4-16 Tape Label
17-19 Reel Number
20-n Unused

Character O will contain an octal 3 which identifies this as a label
blOCk.

Characters 1 through 3 will contain the binary block number of this
block, :

Characters 4 through 16 will contain the tape label,

Characters 17 through 19 will contain the reel number expressed deci-

mally in tihree characters, Each reel of a multi-reel file must contain

the number of the reel within the file,

Characters 20 through n are unused,

8.4

8.5

8.6

S.4
Page 3
7/21/64
Rev, 1

Data Blocks,

Character
0 Octal 4
1-3 Block Number
4-5 True Data Character Count
6-n Data (and Fill, if necessary)

Character O will contain an octal 4 which identifies this as a data
blOCko

Characters 1 through 3 will contain the binary block number of this
block relative to the first block on the tape.

Characters 4 through 5 will contain a binary count of the number of
data characters in the block.

Characters 6 through n will contain data and fill, For UNISERVO 11lA
tapes, one to three characters of fill may be required to make the block
size a multiple of 4, More fill may be present in the occasional blocks
of data when it is desired to write a block which is not yet full,

Bypass Blocks.

Character
0 Octal 5
1-3 Block Number
4-n Rerun Information

Character O will contain an octal 5 which identifies this as a bypass
block,

Characters 1 through 3 will contain the binary block number of this
block relative to the first block on the tape.

Characters 4 through n will contain rerun information.

End- >f-Tape Blocks,

Character
0 Octal 6
1-3 Block Number
4-n Unused

8.6

8.7

Seb
Page &4
7/21/64
Rev. 1

(continued)

Character O wil! contain an octal 6 which identifies this block as an
end-of-tape block,

Characters 1 through 3 will contain the binary block number of this
block relative to the first block on the tape,

Characters 4 through n are unused,

End-of-File Blocks,

Character
0 Octal 7
1-3 Block Number
4en Unused

Character O will contain an octal 7 which identifies this block as
an end-of-file block,

Characters 1 through 3 will contain the binary block number of this
block relative to the first bloek on the tape,

Characters 4 through n are unused,

15.5
Page 1
8/3/64

PROGRAMMED MULTIPLY AND DIVIDE

1.0

2.0

3.0

General

The routines are known as MPN, MPC, and DV and will be provided in
PAL JR source code. The routines are entered by means of a JR to
N, L, where N represents the name of the routine (MPN, MPC, or DV)
and L represents the number of characters of the multiplier or
quotient.

With the exception of the following notes (2.0 and 3.0) the pro-
grammed multiply and divide routines parallel the hardware with
respect to entrance requirements and exit conditionms.

It is strongly fecommended that a master copy of this source code
be maintained at each installation and reproduced to provide a copy
for inclusion in each program using multiply or divide.

Multiply-Considerations

a. MPN and MPC are inseparable.
b. The space requirement for MPN and MPC is 256 characters.

c. Multiplication involving blanks, alphabetics~or special
characters behaves differently from the hardware.

d. MPN and MPC affect indicators in the same manner as hardware
for all legitimate multiplications except in the case of MPC,
the KZR indicator (37) will reflect the condition of the com-
bined accumulation in ARl.

Divide-Considerations
a. The space requirement for DV is 301 characters.

b. Blanks, alphabetics, and special characters cause results
different from those produced by hardware. .

c. DV may produce settings different from the hardware of KZR
indicator (37) and KM indicator (38) if decimal overflow occurs
during the operation of the divide subroutine.

d. The DV assumes the presence of the MPN and MPC coding at assembly
time in order to share 22 characters of constants. If DV is
to be used without MPN and MPC, the space requirement for DV
is 323 characters.

4.0

15.5
Page 2
8/3/64

Using the Routines

Each routine is entered using a JR of the form: JR N,L where N is
MPN, MPC, or DV and L is the number of characters of the multiplier
or quotient; each of the routines is entered using a JR instruction
of the form; JR N,L. N

4.1 Multiply

4.1.1 Entrance Requirements - MPN and MPC

a.

b.

Multiplicand in AR2 with sentinel immediately to the left
of the MsSD.

Multiplier in tetrads 20 and 21 with length specified by
the L character of the JR.

MPC will use the contents of ARl as a value to be increased
by the product of the multiplication.

4.1.2 Exit Conditions - MPN and MPC

8.

Ce

d.

The product will occupy all characters of ARl, with zeroes
to the left of significant characters. In the case of MPC,
the product will be increased by the contents of all ARl
at entrance to the routine.

The contents of tetrads 20 and 21 are destroyed for only
the L characters of the multiplier.

The contents of ARZ2 are left unchanged.

Indicators

(1) Indicators HI (33), LO (36), En (34), and NBOF (39)
are unchanged from their entrance conditions.

(2) The KZR indicator reflects the condition of ARl. The
indicator will be set only if the product or, for MPC,
the product plus the initial content of ARl is zero.
This represents a variation from the hardware multipli-
cation result in which KZR is uanchanged by MPC.

(3) The KM indicator (38) reflects the condition of ARl. The
indicator will be set only if the product is negative.

¢4) The KDF indicator (40) will be set if the product, or for
MPC, the product plus the initial content of ARl exceeds
16 characters. The resulting decimal overflow will be
inhibited until control is returned to the user program.

15.5
Page 3
8/3/64

4.1.3 To assemble the multiply routine without the divide routine use
the cards containing page numbers 1 and 2.

4.2 Divide

4.2.1 Entrance Requirements - DV

a.

b.

Ce.

Divisor in AR2 with sentinel immediately to the left of
the MSD.

Dividend in AR1.

Wotient length specified in L character of JR.

4.2.2 Exit Conditions - DV

8.

The quotient will be developed in the L least significant
characters of tetrads 20 and 21. Other characters of those
tetrads are destroyed.

The least significant characters of ARl will contain the
remainder. The number of characters allowed for this pur-
pose is the sum of the number of characters of the divisor
and the quotient. Other characters of' ARl are unchanged.
The sign of the remainder is the sign of the dividend.

The contents of AR2 are unchanged.

Indicators

(1) Indicators HI (33), LO (36), EQ (34) and NBOF (39)
are unchanged from their entrance conditionas.

(2) The XM indicator (38) reflects the condition of the
quotient. The indicator will be set if the quotient
is negative.

(3) The KZR indicator (37) reflects the condition of the
remainder. The indicator will be set if the remainder
is zero. ’

(4) The KDF indicator (40) will be set if the dividend is
more than nine (9) times the value of the divisor for
any quotient position.

The resulting decimal overflow will be inhibited until
control is returned to the user program.

15.5

Page 4
8/3/64
4.2.3 To assemble the divide routine without the multiply routine
use the cards containing page numbers 2 and 3.
4L.3 Warning
a. None of the operands may include blanks or other special
characters.
b. AR2 must contain a sentinel for division else the divide
subroutine, like the hardware, will loop.
4.4, Reserved Tags

These routines use the labels MPC, MPN, DV, and MDS. None of
these labels may be defined in a program assembled with these
subroutines.

5.5
Page 1
Rev. 1= 7/21/64

MAGNETIC TAPE CONTROL ROUTINES:s UNIVAC 1050 CONVENTIONS.

1.0

2.0

2.1

INTRODUCTION

There are 3 tape-control routines for tapes conforming to the
UNIVAC 1050 data-tape conventions: TAPEl, TAPEZ2, and TAPE3. TAPEl
is a general-purpose tape input-output routine and can be used to
control any number of input and output files. TAPE2 can be used

to control a single input file and TAPE3 can be used to control a
single output file. TAPE2 and TAPE3 offer certain economies in
store requirements and execution times for programs, or program
segments, which process a single tape file (for example, a card-
to-tape, tape-to-print, or the first and last passes of a sort
program).

In general, the 3 routines perform the following functions: check
or produce label blocks, advance items, determine when blocks
should be read or written, maintain block counts, servo swap,
submit XF orders to the tape-handler portion of the Operating
System, and relinquish control to the Operating System when
necessary.

A1l three routines may be present in the same program if desired.
TAPEl CONTROL ROUTINE
Introduction

There are three program components involved in the use of the TAPEl
routine: a TAPEl call, a number of FILEl calls, and the macro-
instructions.

The TAPEl call directs the assembler to incorporate tape input-
output coding into the program. The configuration of the incor-
porated coding depends upon the input-output requirements of the
worker program, which are specified by the values of the para-
meters in the TAPEl calling statement. In general, the coding
generated will perform the following functions: check or produce
label blocks, advance items, determine when blocks should be read
or written, maintain block couats, servo swap, submit the necessary
XF orders to the tape~handler portion of the Operating System,

and relinquish control to the Operating System when necessary.

The FILEl caddis describe the files to be controlled, directing the
assembler to generate a number of constants and working storages
which will be used by the TAPEl coding. A FILEl calling statement
contains such information as label, input-output method to be
applied, servos, block size, record size, and file area(s).

2.2

5.5
Page 2
Reve 1 - 7/21.64

The macro-instructions furnish linkages with the subroutines of the
TAPEl coding. They are used by the worker program to initiate and
terminate the processing of files, to establish rerun points, and
to obtain and release individual data items.

TAPEL Call

The TAPEl call specifies a number of parameters which describe the
tape input-output requirements of the worker program. These parame
eters are used to generate the input-output subroutines which will
perform the required file- anditem~handling functions. The TAPEl
calling statement has the following format:

LABEL | OP'N | OPERANDS

TAPEl | plyese,pn

The label field must be blank and the operation field as shown above.

pl Number of input files to be controlled by TAPEl. This param=
eter is g or blank if there are no input files.

P2 Input method to be applied: DMND, STDBY, or BOTH. In the
standby method, a file has 2 input areas; therefore, the next
block can be read from tape while the current block, in the
other area, is being processed. In the demand method, a file
has only 1 input area; therefore, a block can be read only
when the previous block has been completely processed. Param-
eter 9 of the FILEl call determines which method is to be
applied to a particular file.

This parameter is blank if there are no input files.

pP3 Form of the item-advance macro-instructions that will be used:
AR, TRF, or BOTH. (Refer to Section2.4.2for a description of
these forms.) Parameter 12 of the FILEl call, and the macro-
instructions actually used, determine which form applies to
a particular file.

This parameter is blank if there are no input files.

jJA Number of output files to be controlled by TAPEl. This
parameter is @ or blank if there are no output files.

p5

pb

p7

p8

P9

pl10

5.5
Page 3
Rev. 1- 7/21/64

Output method to be applied: DMND, STDBY, or BOTH. In the
standby method, a file has 2 output areas; therefore, a block
can be written from one area while the next block is being
processed in the other area. In the demand method, a file

has only 1 output area; therefore, a block cannot be processed
until the write order for the previous block has been com-
pleted. Parameter 9 of the FILEl call determines which method
is to be applied to a particular file.

This parameter is blank if there are no output files.

Form of the item-advance macro-instructions that will be used:
AR, TRF, or BQTH. (Refer to Section 2,4,2 for a description of
these forms.) Parameter 12 of the FILEl call, and the macro-
instructions actually used, determine which form applies to a
particular file.

This parameter is blank if there are no output files.

Primary control index register: 1 through 7. The index
register designated will be used for communication between
the TAPElcoding and the macro-instructions. It may be used
by the worker program for other purposes, but its contents
will be altered whenever a macro-instruction is executed.

Secondary control index register: 1 through 7. The index
register designated will be used by the TAPEl. coding. It may
be used by the worker program for other purposes, but its
contents will be altered whenever a macro-instruction is
executed.

The allocation of this index register to the TAPEl coding will
result in a saving of storage locations and execution time,
but may be omitted if the user wishes. In this case, param=-
eter 8 is g or blank.

If rerun is to be allowed for, this parameter designates the
output file on which rerun points are to be established;
otherwise, it is blank. Rerun points are established by
use of the RERN1 macro-instruction .

Sentinel option: OPSEN if sentinel option is desired, blank
otherwise. If the sentinel option is chosen, the program
will stop whenever an end-of-file or end-of-reel sentinel is
read. By means of a trace-switch setting, the operator will
direct the TAPEl coding to perform either end-of-file or end-
of-reel processing for the file being read.

pll...To be assigned.

2.3

5.5
Page 4
Rev. 1 -=7/21/64

FILEl Call

Immediately preceding the TAPEl call, there is a FILEL call for each
file to be controlled by TAPEl. It specifies 15 parsmeters which
describe the file and which are used to generate constants and work-
ing storages required by the TAPEl coding. A FILEl calling statement
has the following format:

LaseL | op'N_ | OPERANDS

file ID I FILEl l Pl,ese,p1l5

The label field contains a unique 1- to 5-character label which will

be used to identify the file ir the macro-instructions.

The operation field must be as shown above.

pl File type: IN for an input, or QUT for an output.

P2 Tape label: 13 or less characters bounded by apostrophes.

p3 Reel number base: 3 decimal digits bounded by apostrophes.
This value plus decimal 1 will be the reel number of the first
reel.

P4 Tape type and recording density1: A, for UNISERVO IIIA tapes;
B, for compatible tapes at 200 BPI; C, for compatible tapes
at 556 BPI; or D, for compatible tapes at 800 BPI.

pP5 Channel: normally 4 for an input file, or 5 for an output file.

pb First servo number.

p7 Second servo number, if gervo swap for alternate reels is
desired; otherwise, this parameter is equal to pé.

p8 Label of an area large enough to contain one block of the
file. (Refer to pl5.) An AREA directive for this area must
appear in the worker program.

P2 If the standby method is to be applied to the file, this
parameter specifies a second area large enough to contain one
block of the file; otherwise, this parameter is blank.

1., Translation mode is not specified for compatible tapes because they

are always read or written in the binary mode. Refer to UNIVAC 1050
SYSTEM DATA TAPE CONVENTIONS, section 6.2.

plo

pll

5.5
Page 5
Rev. 1- 7/21/64

Label of a closed subroutine which is to be executed in addition
to the standard label processing. For an input file, the sub-
routine is executed after the label block is read, but before

it is checked. For an output file, the subroutine is executed
after the label block is assembled in an output area, but

before it is written onto tape. For toth input and output
files, the 4 LSC of ARl contain the absolute address of the
lapel block when the subroutine is entered.

If there is no label subroutine to be executed for the file,
this parameter is blank.

For an input file, this parameter specifies a label in the
worker program to which control will be transferred when an
end-of-file block is read (subject to the sentinel option
described under pl0O of the TAPEl call).

For an output file, this parameter determines what the TAPEl
coding will do if an end-of-tape condition is detected while
a PUT1 macro-instruction is being executed.

If this parameter is blank, the TAPE1l coding will close the
current reel and open the next, returning control from the
PUT1 in the normal fashion. (Refer to Exit Conditions in
Close Output Reel, which constitutes a detailed description
of the end-of-tape actions performed by the TAPEl coding.)

If this parameter is not blank, the TAPEl coding will trans-
fer control to the specified label#*, The worker program
may then perform any desired end-of-reel processing, such

as putting out summary items or hash totals, or establishing
a rerun point. This processing must be followed by a close
reel macro-instruction, after which normal processing may

be resumed.

If there is more than one PUT1 macro-instruction which
addresses the file, control may be returned to the proper
point by a jump to the exit line of the appropriate PUT1
subroutine, If the AR form of the macro-instructions is
used, the exit line is labelled XTPé@; if the TRF form is
used, the exit line is labelled XTP62. It should be noted,
however, that the execution of one or more PUT1 macro-
instructions in the end-of-reel processing will alter the
exit line. In this case, the worker program must save
XTP6A+1 through XTP66+3, or XTP62+1 through XTP62+3, before
the macro-instructions are executed.

% This transfer of control will take place only once per reel.

pl2

pl3

pls
pl5

5.5
Page 6
Rev. 1- 7/21/64

Form of the macro-instructions: AR, if the arithmetic-register
form will be used; IRF, if the transfer form will be used.

Item size. If pl2 is TRF, this parameter cannot be greater

than 1024,
Number of fill characters {refer to pl5).

Physical block size, which equals: (pl3) times (number of
items per block) plus (pl4) plus (6).

For UNISERVO IIIA tapes, this parameter must be a multiple of 4.

2.4
20&-1

R.4.2

5.5
Page 7
Rev. 1= 7/21/64

MACRO _INSTRUCTIONS
General

The worker program communicates with the TAPEl coding by means of
the macro-instructions described below. Format, entrance require-
ments, exit conditions, and memory requirements are given for each
macro-instruction.

In addition to the specific exit conditions given for each macro-
instruction, it should be noted that all macro instructions alter
the contents of arithmetic registers 1 and 2, the primary control
index register, and the secondary control index register, if any.

An entry in the LABEL field of a macro-instruction applies to the
first ingtruction generated.

Item Handling Macro-Instructions

There are two forms of the item handling macro-instructions: an
arithmetic register (AR) form, and a transfer (TRF) form. The AR
form supplies the worker program with the absolute address of the
first character of the current item (or item area, if the file is
an output). The worker program places this value in an index reg-
ister. All subsequent references to the item use the index register
and are item-relative (that is, the first character is addressed as
@, the second as 1, and so on). Thus an instruction to bring the
teath through the fifteenth characters of the item to ARl could

be written BAL 14, 6, x; where x is the index register which will
contain the item address.

If the programmer wants to assign labels to the item and its con-
stituent fields, he may do so by defining the structure of the item
with a dummy AREA statement. The AREA statement and its associated
field definitions are written in the normael fashion (refer to the
Reference Manual, Section 4-C, Pages 103 through 105). They are
bracketed by statements which manipulate the location counter
(refer to the Reference Manual, Section 4-¢, Page 15), preventing
the allocation of memory to the item. The following example shows
how an item might be defined.

5.5
Page 8
Rev., 1 - 7/21/64

_LINE | LABEL OP'N__| OPFRANDS
1 label-a EQU $
2 ORIG g
3 label-b AREA item size, type,,index register
4 FLD1 - 6, 15
J field-n - length, address
j+1 ORIG label-a

Line 1 establishes a reference point to which the location counter
may be reset after the item has been defined. Line 2 sets the
location counter to @ so that the item and field addresses will be
@-relative. Lines 3 through j define the item and its constituent
fields. (Note that the AREA statement cannot specify a fill char-
acter.) Line j+l resets the location counter to the value it con-
tained prior to the item definition.

Using such an item definition, the tenth through the fifteenth
characters of the item could be brought to ARl by the instruction
BAl FLD1l, which would be equivalent to the instruction BAl 14, 6, x,
where x is the index register which will contain the item address.

The transfer (TRF) form transfers items between the file area and
some other area in the program. If this other area is a working
storage, it and its constituent fields are mapped by a normal AREA
statement. The other area may also be one which is associated with
a file using the AR form of the macro-instructions. In this case,
the macro-instructions address the current item area of the second
file by referencing the label assigned to the item in the dummy AREA
statement. For example, an item common to both input file A and
output file B, and using index register 3 (X3) might be labelled
ITMAB. It could then be processed as outlined below.

5.5
Page 9
Rev. 1 = 7/21/6/

OPEN1 A Checks A label. Places 1lst item address in AR1.
BT AR1,X3 Places 1st item address in X3.

OPENl1 B Writes B label

Process item. Item and component fields addressed through X3
PUT1 ITMAB,B Transfer item from A area to B area

GET1 A Places next item address in ARl

BT AR1,X3 Places next item address in X3

Return to item-processing. At end of file A, close file B

CLOS1 B, RWD Write out any remaining items. Write 2 EOF
blocks. Rewind current reel of B.

As part of this processing, items could also be transferred from
working storage to file B, This would be accomplished by a line
of the form:

PUT1 ws,B

where ws is a label assigned to the first character of a working
storage area.

It should be noted that the AREA statements described in the pre-
ceding paragraphs pertain only to items, and should be distinguished
from the AREA statement or statements which allocate the input or
output area(s) required by a file. (Refer to parameters & and 9

of the FILEl call.)

5.5
Page 10
Rev. 1 - 7/21/64

2.4.3 File-Hendling Mscro-Instructions

The file-handling macro-instructions, with the exception of RERN1,
reduce to 3 basic macro-instructions: open file, close file, and
close reel. There is no open reel macro-instruction because the
functions of such a macro-instruction are implied in, and performed
by, the close reel macro-instruction.

The open file macro-instruction initiates the processing of a file.

It sets the constants and working storages pertaining to the file

to their initial conditions. It also checks or writes a label

block and, except in the case of an output file using the TRF form

of the item sdvance, presents the first data item, or its address,

to the worker program. The open file macro-instruction may be

executed when: (1) no previous macro-instructions have been executed
for the file, or (2) the file has been previously opened and was
automaticelly closed at end of file, or (3) the file has been preve
iously opened and was closed by means of a close file macro-instruction.

The close file macro-instruction terminates the processing of a file.
In the case of an output file, it writes any remaining items onto
tape, together with 2 end-of-file blocks. It also rewinds the tape
as indicated in the macro-instruciion. In the case of an input file,
the macro-instruction simply rewinds the tape as indicated. 1In both
cases, control returns to the worker program when all orders for

the file have been successfully completed. A close file macro-
instruction should not be executed for an input file if the file has
been closed automatically, since the tape has already been rewound.

The close reel macro-instruction initiates, at the worker program's
request, the actions which are usually performed automatically at
the end of a reel. It is used when the worker program wishes to
close a reel prior to the detection of an end-of-tape condition
(output)? or an end-of-reel sentinel (input). The macro-instruction
terminates the processing of the current reel and initiates the
processing of the next reel. In the case of an output file, it
writes any remaining items onto tape, together with 2 end-of-reel
blocks, rewinds the current reel as indicated in the macro~-instruction,
and writes a label block on the next reel. In the case of an input
file, the macro-instruction simply rewinds the current reel and
checks the label block of the next reel. In all cases, except

that of an output file using the TRF form of the item advance, the
macro-instruction presents the first data item, or its address, to
the worker program.

1. Refer to parameter 11 of the FILEl call for an exception to this.,

5.5
Page 11
Rev. 1 - 7/21/64

Rebedy Open Input File

LABEL OP!'N OPERANDS

label OPEN1 file ID
label OPEN1 file ID, destination

Format

1. Destination is specified if TRF macro-instructions were called
for in the FILEl line. It is either the label of a working
storage area, or the label of an output item.

Entrance Requirements

1. This is the first macro-instruction executed for the file,
or the file has been closed.

2. If destination is the label of an item, the output file
concerned is open and the index register assigned to destin-
ation contains the address of the first character of the
current item area.

Exit Conditions

1. The label block has been read from the servo specified by
parameter 6 of the FILE1l call and has been checked.

2. If specified in parameter 10 of the FILEl call, a special
label subroutine has been executed.

3. If the AR form is used, the 4 LSC of ARl contain the absolute
address of the first item.

Lo If the transfer form is used, the first item has been trans-
ferred to the area specified by the label destination.

P

5.5
Page 12
Rev. 1 - 7/21/64

2.4.5 Input Item Advance (AR)

LABEL l OP'N

! OPERANDS
label GET1 | file ID

Entrance Requirements

1.

The file is open.

Exit Conditions

1.

2.

3.

The absolute address of the first character of the next item
is in the 4 LSC of arithmetic register 1.

If an end -of-reel was detected, the current reel has been
rewound with interlock and the next reel opened. The label
has been checked and the worker program's special label pro-
cessing, if any, has been verformed. The absolute address
of the first character of the next item is in the 4 LSC of
arithmetic register 1.

If an end-of-file block is detected, the current reel has been
rewound with interlock and control transferred to the label
specified in parameter 11 of the FILEl line. The address of
the end of file block is not supplied, and no further mscro-
instructions may be executed for the file until it is re-
opened.

5.5
Page 13
Rev. 1 - 7/21/6&4

2.4.6 Input Ttem Advance (Transfer)

_LABEL ! OP'N l OPERANDS
label l GET1 file ID, destination
]

Format

1.

Destination is either the label of a working storage area, or
the label of an output item.

Entrance Requirements

1. The file is open.

2. If destination is the label of an item, the output file with
which it is associated is open and its index register contains
the address of the first character of the current item area.

Exit Conditions

1. The next item has been transferred to the area specified by
desgtination.

2. If an end-of-reel block was detected, the current reel has been
rewound with interlock and the next reel opened. The label
has been checked and the worker program'!s special label pro-
cessing, if any, has been performed. The next item is in the
area specified by destination.

3. If an end-of-file block was detected, the current reel has been

rewound with interlock and control transferred to the label
specified in parameter 11 of the FILEl line. The end-of-file
block was not transferred, and no further macro-instructions
may be executed for the file until it is re-opened.

5.5
Page 14
Rev. 1 = 7/21/64

2.4.7 Close Input File

LABEL l OP'N ' OPERANDS
label CLOS1 file ID, rewind option

Format

1. Rewind option is RWD, for a rewind without interlock, LOCK, for
a rewind with interlock, or NORWD, if the current reel is not to
be rewound.

Entrance Requirements

1. The file is open.

Exit Conditions

1. The current reel has been rewound as specified.

2. Control is not transferred to the worker program's end-of-file
section (parameter 11 of the FILEl line), but passes to the
worker program at a point immediately following the macro-
instruction.

3. No further macro-instructions may be executed for the file
until it has been re-opened.

5¢5
Page 15
Rev. 1 - 7/21/64

2.4.8 Close Input Reel

LABEL OP'N OPERANDS

label CLosl | file ID, rewind option, REEL

label CLOsl | file ID, destination, rewind option,REEL

Format

1.

Destination is specified if TRF macro-instructions were called
for in the FILEl line. It is the label of either a working
storage @area, or theitem af an output file.

Rewind option is Ri/D, for a rewind without interlock, LOCK, for

a rewind with interlock, or NORWD, if the current reel is not
to be rewound.

Entrance Recguirements

1.

2.

The file is open.

If destination is the label of an item, the output file with
which it is associated is open and its index register contains
the address of the first character of the current item area.

Exit Conditions

l.

2.

The current reel has been rewound as specified and the next!
reel opened. The label has been checked and the worker program's
special label subroutine, if any, has been executed.

If destination was specified, the first item of the new reel is
in the area specified by destimtion; otherwise, the absolute
address of the first item is in the 4 LSC of ARl.

5.5
Page 16
Rev. 1 - 7/21/64

2.4.9 Open Qutput File

LaREL | oP'N | OPERANDS

label OPEN1 file ID

Entrance Reguirements

1. This must be the first macro-instruction executed for the file,
or the file has been closed.

Exit Conditions

1. The label block has been written on the servo specified by
parameter 6 of the FILEl call.

2. If specified in parameter 10 of the FILE call, a special label
subroutine has been executed.

3. If the AR form of the PUT1 macro-instruction is used, the
absolute address of the first character of the first item area
will be in the 4 LSC of arithmetic register 1.

2.4.10

5.5
Page 17
Rev. 1 = 7/21/64

Qutput Item Advance(AR)

LABEL | OP'N ' OPERANDS
label | PUTL ’ file ID

Entrance Requirements

1.

The file is open.

Exit Conditions

1.

2.

3.

The absolute address of the first character of the next item
area will be in the 4 LSC of arithmetic register 1. The
previous item is not available to the worker program.

If an end-of-tape condition was detected, and parameter 11 of
the FILEl call was blank, 2 end-of-reel blocks were written
on the current reel. The current reel has been rewound with
interlock and a label block was written on the next reel.

If specified in parameter 10 of the FILEl call, a special
label subroutine has been executed. The absolute address of
the first character of the next item area is in the 4 LSC

of arithmetic register 1.

If an end-of-tape condition was detected, and parameter 11

of the FILEl call was not blank, control has been transferred
to the specified label. The absolute address of the first
character of the next item area is in the 4 LSC of ARl.

5.5
Page 18
Rev. 1- 7/21/64

2.4.11 Qutput Item Advance (Transfer)

LABE_ILQ OP!'N l OPERANDS _

label ‘ PUT1 origin, file ID

Format

1. Origin is either the label of a working storage area, or the
label of an input item.

Entrance Reguirements

1. The file is open.

2. If origin is an input item, the input file with which it is
associated is open and its index register contains the address
of the first character of the current item area.

Exit Conditions
1. The item has been transferred to the output area.

2, If an end-of-tape condition was detected, and parameter 11
of the FILEl call was blank, 2 end-of-reel blocks were written
onto the current reel, which has been rewound with interlock.
A label block was written on the next reel. If specified in
parameter 10 of the FILEl call, a spescial label subroutine has
been executed.

3. If an end-of-tape condition was detected, and parameter 11 of
the FILEl call was not blank, control has been transferred to
the specified label.

5.5
Page 19
Rev. 1 = 7/21/64

2.4.12 Close Qutput File

LABFL | OP'N | OPERANDS
label CLOS1 file ID, rewind option

Format
1. Rewind option is RWD, for a rewind without interlock, LOCK, for

a rewind with interlock, or NORWD, if the current reel is not
to be rewound.

Entrance Reguirements
1. The file is open.

Exit Conditions.

1. All items committed to output have been written onto tape.
Two end-of-file blocks have also been written.

2. The current reel has been rewound as specified.

3. No further macro-instructions may be executed for the file
until it has been re-opened.

5.5
Page 20
Rev. 1 - 7/21/64

2.4.13 Close Output Reel

Crosl | file 1D, rewind option, REEL

Format
1. Rewind option is RWD, for a rewind without interlock, LOCK, for

a rewind with interlock, or NORWD, if the current reel is not to
be rewound.

Entrance Requirements
1. The file is open.

Exit Conditions

1. All items committed to output have been written onto tape. Two
end-of-reel blocks have also been written.

2. The current reel has been rewound as specified, and the label
block has been written on the next reel.

3. If specified in parameter 10 of the FILEL call, a special label
subroutine has been executed.

be If the AR form of the PUT1 macro-instruction is used, the
absolute address of the first character of the first item area
will be in the 4 L3C of ARl.

5.5
Page 21
Rev. 1 = 7/21/64

2.4.14 Establish Rerun Pointl.

_LABEL OP'N OPERANDS
label RERN1 return

Format

1. Return is the label to which control will be returned when the
program is rerun Irom this point.

Entrance Requirements

1. The file on which the rerun dump is to be written is open.

Exit Conditions

1. All items committed to this file have been written onto tape.

2. A rerun memory dump, bracketed by bypass blocks, has been written.
3. If the AR form of the PUT1 macro-instruction is used, the

absolute address of the first character of the next item is in
the 4 LSC of arithmetic register 1.

1. This macro-instruction has not been implemented at the present time.

5.5
Page 22
Rev. 1 - 7/21/64

2,5 Estimated Store Requirements

The following paragraphs give estimated store requirements for the
TAPEl coding, the FILEl calls, and the macro-instructions.

2.5.1 TAPEl Coding

1. The 3 major sections of TAPEl coding have the following store
requirements:

Common subroutines, always present .ceeecccvecscssscsees60
Input subroutines, present if there are input files350
Output subroutines, present if there are output files...275

2. If there are input files (pl> @), the appropriate values from
the following table should be added to the total estimated
from paragraph 1, above.

of
Condition Description Eositions_
p8 < 1 Only 1 control index register allocated 54
plO = OPSEN Sentinel option selected 35
p2 = STDBY Standby method used for all inputs 15
p2 = BOTH Both standby & demand methods used for inputsﬁ 25
4 > @ Output files present 30
p3 = AR All input macro'!'s are AR form 45
p3 = TRF A1l input macro's are TRF form 60
p3 = BOTH Input macro's are both forms 105

3. If there are output files (p4> @), the appropriate values from
the following table should be added to the total estimated.

of

Condition | Description Positions
P8 < 1 Only 1 control index register allocated 40
pé = AR All output macro's are AR form 50
p6 = TRF All output macro's are TRF form 55
pé6 = BOTH Output maero's are both forms 105

4e If the standby method is to be applied to any file, add 30
to the total estimated.

2.5.2 FILEl Call

5.5

Page 23
Rev. 1 = 7/21/64

The number of store positions required for each FILEl call is 78,

2.5.3 Macro-Instructions

The following table shows the OPERATION and OPERANDS fields for each
macro-instruction and the number of store positions required:

No.

MACRO-INSTRUCTION OP'N OPERANDS POS,
Open input file: AR OPEN1 file ID 10
TRF OPEN1 file ID, destination 20
Input item-advance: AR GET1 file ID 10
TRF GET1 file ID, destination 15
Close input file CLOS1 file ID, rewind option 20
Close input reel: AR CLOS1 file ID, rewind option, REEL 20

TRF CLos1 file ID, destination,rewind option,

REEL 30
Open output file OPEN1 file ID 10
Output item-advance: AR PUTL file ID 10
TRF PUTL origin, file ID 15
Close output file CLOS1 file ID, rewind option 20
Close output reel CLOS1 file ID, rewind option, REEL 20
Establish rerun point1 RERN1 return -

1. This macro-instruction has not been implemented at the present time.

2.6

5.5
page 24
Rev. 1 = 7/21/64,

Estimated Execution Times - Item-Advance Macro-Instructions

Note that these times assume that an end-of-block condition is not
encountered during the execution of the macro-instruction.
GETl, AR form: 607.5 usec
TRF form: 1203.0 usec + 9 (item size) usec[+ 13.5 usec, if
destination is in-
dexed]
PUT1, AR form: 607.5 usec

TRF form: 1066.5 usec + 9 {item size) usec [+13.5 usec, if origin
is indexed]

5¢5
Page 25
Rev. 1 = 7/21/6.

2.7 Program Stops & Operating Instructions

1. A1l stops described below are in the format 30 lc uu ss 60,
where: ¢ = channel, uu = unit, and gs = stop code.

2. Stop codes 55, 66, and 77 pertain to hardware malfunctions,
and occur in the tape-handler portion of the OPS. Refer to
the OPS write-up, section IVE, for the appropriate recovery

procedures.
STOP |
| CODE! MEANING OPERATOR ACTION
01 Label error. : a. To try a new tape:
(AR1) = expected label 1. Manually rewind erroneous tape.
& reel number 2. Mount new tape on same servo,
(AR2) = actual 3. Set trace-address switches to
other than Ol and trace mode
to PROC.
4+ Press PROGRAM START.
b. To aceept erroneous tape:
1. Set trace-address switches to Ol
and trace mode to PROC.,
2. Press PROGRAM START.
03 Block count error Unrecoverable error.
(T¢) = expected flag 1. Press PROGRAM START.
& block count 2, Program will loop through OPS.
(T1) = actual 3. Execute prescribed manual

jettison procedure.

06# End-of-reel sentinel a. To treat sentinel as end-of-reel:
1. Set trace-address switches to
o7 End-of-file sentinel 06 and trace mode to PROC.
2. Press PROGRAM START.
b. To treat sentinel as end-of-file:
1. Set trace-address switches to
other than 06 and trace mode
to PROC.
2. Press PROGRAM START.

10 Unidentifiable block. | Unrecoverable error. See stop code
See stop code 03, 03.

55 Memory perity error,
66 Tape parity error. | Refer to OPS write-up, section IVE,

77 Servo off-line or
non-ready,
¥This stop will occur only if the sentinel option was chosen in the TAPEl call,

5.5
Page 26
Rev. 1 = 7/21/64

3.0 TAPE2 CONTROL ROUTINE

The TAPE2 routine controls a single input file, performing all
necessary label-checking, block handling, item-handling, and related
functions. It is essentially a subset of TAPEl, furnishing certain
economies in store requirements and execution time to a program or
program segment which has only one tape input file. Two program
components are involved in its use: a TAPE2 call, and a set of
macro-instructions.

3.1 TAPEZ2 Call

The TAPE2 call specifies 15 parameters which describe the input file
and how it is to be handled. These parameters are used to generate
the input subroutines, constants, and working storages necessary to
perform the required input functions. The TAPE2 calling statement
has the following format:

LABEL l OP'N l OPERANDS

label l TAPE2 pl,...,p15

The label field contains a unique 1- to 5-character label which will

identify the file in the macro-instructions.

The operation field must be as shown above.

Pl Tape labels 13, or less, characters bounded by apostrophes.

PR Reel number base: 3 decimal digits bounded by apostrophes.
This value plus decimal 1 will be checked against the reel
number of the first reel,

p3 Tape type and recording densityl: A, for UNISERVO IIIA tapes;
B, for compatible tapes at 200 BPI; G, for compatible tapes at
556 BPI; or D, for compatible tapes at 800 BPI.

P4 Channel: 4.

p5 First servo number.

pb Second servo number, if servo swap for alternate reels is
desired; otherwise, this parameter is blank.

1. Translation mode is not specified for compatible tapes because they
are always read or written in the binary mode. Refer to UNIVAC 1050
SYSTEM DATA TAPE CONVENTIONS, Section 6.2,

p7

P9

plo

pll

P12

pl3
pli

P15

55
Page 27
Rev. 1 = 7/21/64

Label of an area large enough to contain ane block of the file,
(Refer to pli.) An AREA directive for this area must appear
in the worker program.

If the standby method is to be applied to the file, this param-
eter specifies a second area large enough to contain one block

of the file; otherwise, it is blank., If an area is specified,

an AREA directive for it must appear in the worker program.

Form of the macro-instructions: AR, if the arithmetic-register
form is to be used, or TRF, if the transfer form is to be used.

Label of a closed subroutine which is to be performed in addition
to the standard label processing, or blank., The subroutine is
executed after the label block is read, but before it is checked.
The 4 LSC of ARl contain the absolute address of the label block
vwhen the subroutine is entered.

Label in the worker program to which control will be trans-
ferred when an end-of-file block is read. (subject to pl5).

Item size. If p9 is TRF, this parameter cannot be greater

Number of f£ill characters. (Refer to pli.)

Physical block size, which equals: (pl2) times (number of
items per block) plus (pl3) plus (6).

For UNISERVO IIIA tapes, this parameter must be a multiple of 4.

Sentinel option: OPSEN, if sentinel option is desired, blank
otherwise. If the sentinel option is chosen, the program will
stop whenever an end-of-file or end-of-reel sentinel is read.
By means of a trace-switch setting, the operator will direct
the TAPE2 coding to perform either end-of-file or end-of-reel
processing for the file.

3.2

5.5
Page 28
Rev. 1- 7/21/6.

TAPE2 Macro-Instructions

The worker program communicates with the TAPE2 coding by means of

the macro-instructions described below. Format, entrance require=-
ments, exit conditions, and store requirements are given for each

macro-instruction.

In addition to the specified exit conditions given for each macro-
instruction, it should be noted that all macro-instructions alter
the contents of arithmetic registers 1 and 2.

An entry in the label field of a macro-instruction applies to the
first instruction generated.

5.5
Page 29
Rev. 1- 7/21/64

3.2.1 Open File

IABEL | OP'N | OPERANDS

-

label OPEN2 file ID

label OPENZ2 file ID, destination

Format

1. Destination is specified if TRF macro-instructions were called
for in TAPE2. It is the label of an area large enough to con=-
tain one item of the file.

Entrance Requirements

1. This must be the first macro-instruction executed for the file.,
Exit Conditions

1. The label block has been read from the servo specified by
parameter 5 of the TAPE2 call and has been checked.,

24 If specified in parameter 10 of the TAPE2 call, a special
label subroutine has been performed.

3. If the AR form is used, the 4 LSC of ARl contain the absolute
address of the first data item.

4 If the TRF form is used, the first data item has been trans-
ferred to destination.

Store Requirements
5 character positions for the AR form; 15 for the TRF form.

5.5
Page 30
Rev. 1- 7/21/64

3.2.2 Item Advance

LABFL, | OP'N| OPERANDS

label GET2 file ID

label GET2 | file ID, destination

Format
1. Destination is specified if the TRF form was called for in

TAPE2. It is the label of an area large erough to contain
one item of the file.

Entrance Requirements
1. The file is open.

Exit Conditions

1. If the AR form is used, the absolute address of the first
character of the next item is in the 4 LSC of ARl.

2. If the TRF form is used, the next item has been transferred
to destination.

3. If an end-of-reel block was detected, the current reel has
been rewound with interlock and the next reel has been opened.
The label block has been checked and the worker program's
special label processing, if any, has been performed.

be If an end-of-file block was detected, the current reel has
been rewound with interlock and control transferred to the
label specified in parameter 11 of the TAPE2 call. The
end-of-file block is not available to the worker program,
and no further macro-instructions may be executed for the
file.

Store Reguirements
5 character positions for the AR form; 10 for the TRF form.

5.5
Page 31
Rev. 1 = 7/21/64

3.2.3 Close File

LABEL : CP'N }__OPERAIIDS
i
label CLOS2 | file ID, rewind option

Format

1. Rewind option is LOCK, for a rewind with interlock, or RuD,
for a rewind without interlock.

Entrance Requirements
1. The file is open.

Exit Conditions

1. The current reel has been rewound as specified.

2., Control is not transferred to the worker program's end-of-file
section (parameter 11 of the TaPE2 call), but passes to the
worker program at a point immediately following the macro-
instruction.

3. No further macro-instructions may be executed for the file.

Store Reguirements: 10 character positions.

5.5
Page 32
Rev. 1 = 7/21/64

3.3 Estimated Store Requirements - TAPE2 Coding

3.4

The following paragraphs give estimated store requirements for
the coding generated by the TAPE2 calling statemert.

1.

2.

The minimum amount of coding that can be turned out will
occupy 493 character positions.

If the standby method is to be applied (p8 not blank), add
131 to the total estimated.

If servo swap is to be performed for alternate reels of the
file (pb not blank), add 80 to the total estimated.

If the sentinel option is chosen (p15 = OPSEN), add 35 to
the total estimated.

If the transfer form of the macro-instructions is to be used
(p9 = TRF), add 15 to the total estimated.

If special label processing is to be performed (p10 not blank),
add 10 to the total estimated.

Execution Time - GET2 Macro-Instruction

The times shown are calculated on the assumption that an end-of-
block condition is not detected during the execution of the macro=-
instruction,

AR form: 486.0 usec

TRF form: 918.0 usec + 9 (item size) usec -+ 13.5 usec, if
destination is
indexed

5.5
Page 33
Rev. 1 = 7/21/64

3.5 Program Stops & Cperating Instructions

1. All stops described on the following page are in the format
30 1c uu ss 60, where: ¢ = channel, uu = unit, and ss = stop
code.

2. Stop codes 55, 66, and 77 pertain to hardware malfunctions.
Refer to the OPS write-up, section IVE, for the appropriate
recovery procedures.

5'5
Page 34
Rev. 1 - 7/21/64

STOP
FODE MEAN ING OPERATOR ACTION
01 |{Label error.
(AR1) = expected label }a. To try a new tape:
& reel 1. Manually rewind erroneous tape.
(AR2) = actual 2. Mount new tape on same servo.
3. Set trace-address switches to other
than 01 and trace mode to PROC.
4. Press PRCGRAM ST4RT.
b. To accept erroneous tape:
1. Set trace-address ewitches to O1
and trace mode to PRCC.
2. Press PROGRAM START.
03 |Block count error Unrecoverable error.
(T¢) = expected flag 1. Press PROGRAM START.
& block count 2. Program will loop through CPS.
(T1) = actual 3. Execute prescribed manual jettison
procedure,
06%* |End-of-reel sentinel, a., To treat sentinel as end of reel:
1. Set trace-address switches to 06
and trace mode to PRCC.
2. Press PROGRAM START.
b. To treat sentinel as end of file:
1. Set trace-address switches to other
than 06 and trace mode to PROC.
2. Press PROGRAM START.
07% | End-of-file sentinel. See stop code 06.
10 | Unidentifiable block. Unrecoverable error. See stop code 03.
See stop code 03.
55 | Memory parity error.
‘66 Tape parity error. Refer to OPS write-up, section IVE,
77 | Servo off-line or
non~ready.

This stop will occur only if the sentinel option was chosen in the
TAPE2 call.

5.5
Page 35
Rev. 1 = 7/21/64

4.0 TAPE3 CONTROL ROUTINE

The TAPE3 routine controls a single output file, performing all
necessary block handling, item handling, and related functions.
It is essentially a subset of TAPE1, furnishing certaein economies
in store requirements and execution time to a program or program
segment which has only one output file, Two program components
are involved in its use: a TAPE3 call, and a set of macro-
instructions.

401

1.

5.5
Page 36
Rev. 1 - 7/21/64

TAPE3 Call

The TAPE3 call specifies 14 parameters which describe the output
file and how it is to be handled. These parameters are used to
generate the output subroutines, constants, and working storages
necessary to perform the required output functions. The TAPE3
calling statement has the following format:

L4BEL , OPiN , GPERANDS
label ' TAPE3 !p1,.....,p14

The label field contains a unique 1- to 5-character label which
will identify the file in the macro-instructions.

The operation field must be as shown above.
pl Tape label: 13 or less characters bounded by apostroghes.

PR Reel number base: 3 decimal digits bounded by apostrophes.
This value plus decimal 1 will be the reel number of the
first reel.

p3 Tape type and recording densityl: A, for UNISERVC IIIa
tapes; B, for compatible tapes at 200 BPI; C, for comgatible
tapes at 556 BPI; or D, for compatible tapes at 800 BPI.

P4 Channel: 3.
p5 First servo number.

6 Second servo number, if servo swap for alternate reels is
desired; otherwise, this parameter is blank,

7 Label of an area large enough to contain one block of the
file., An AREA directive for this area must appear in the
worker program,

8 If the standby method is to be applied to the file, this
parameter specifies a second area large enough to contain one
block of the file; otherwise, it is blank. If an area is
specified, an AREA directive for it must appear in the worker
program,

Translation mode is not specified for compatible tapes because they
are always read or written in the binary mode. Refer to UNIVAC
1050 System DATA TAPE CONVENTIONS, Section 6.2.

©9

p10

P11

p12

p13
P14

5.5
Page 37
Rev. 1 - 7/21/64

Form of the macro-instructions: AR, if the arithmetic-
register form is to be used, or TRF, if the transfer form
is to be used.

Label of a closed subroutine which is to be executed in
addition to the standard label processing, or blank., The
subroutine is executed after the label block is assembled
in an output area, but before it is written onto tape. The
4 1SC of sR1 contain the absolute address of the label block
when the subroutine is entered.

This parameter determines what the TAPE3 coding will do when
an end-of-tape condition is detected while a PUT3 macro-
instruction is being executed.

If this parameter is blank, the TAPE3 coding will close the
current reel and open the next, returning control from the
PUT3 in the normal fashion. (Refer to [xit Conditions in
Close Reel, which constitutes a detailed description of the
end-of-tape actions performed by the TAPE3 coding)

If this parameter is not blank, the TaPE 3 coding will transfer
control to the specified label{. The worker program may then
perform any desired end-of-reel processing, such as putting

out summary items or hash totals. This processing must be
followed by a close reel macro-instruction, after which

normal processing may be resumed.

If there is more than one PUT3 macro-instruction, control may
be returned to the proper point by a jump to the exit line

of the PUT3 subroutine. . If the 4R form of the macro-instruc-
tions is used, the exit line is labelled {T06@; if the TRF
form is used, the exit line is labelled XT(C62. It should be
noted, however, that the execution of one or more PUT3 macro-
instructions in the end-of-reel processing will alter the

exit line., 1In this case, the worker program must save

ATO6FA1 through XTC6@£3, or XTC6241 through XT062£3, before the
macro-instructions are executed.

Item size. If p9 is TRF, this parameter cannot be greater
than 1024.

Number of fill characters. (Refer to pl14.)

Phystcal block size, which equals: (p12) times (number of
items per block) plus (p13) plus (6).

For UNISERVO IIIA tapes, this parameter must be a multiple
of 4.

1. This transfer of control will take place only once per reel.

42

5.5
Page 38
Rev. 1- 7/21/6.

TAPE3 Macro-Instructions

The worker program communicates with the TAPE3 coding by means of

the macro-instructions described below. Format, entrance require-
ments, exit conditions, and store requirements are given for each

macro-instruction.

In addition to the specified exit conditions given for each macro-
instruction, it should be noted that all macro-instructions alter
the contents of arithmetic registers 1 and 2,

An entry in the label field of a macro-instruction refers to the
first instruction generated.

5.5
Page 39
Reve. 1 - 7/21/64

4.2.1 Open File

LABEL ' OP'N ’ OPERAND3

label OPEN3 file ID

Entrance Requirements

1. This must be the first macro-instruction executed for the file.
Exit Conditions

1. The label block has been written on the servo specified by
parameter 5 of the TAPE3 call.

2. If specified in parameter 10 of the TAPE3 call, a special
label subroutine has been executed,

3. If the AR form of the macro-instructions is used, the 4 LSC

of ARl contain the absolute address of the first character of
the first item area,

Store Reguirements

5 character positions.

5¢5
Page 40
Rev. 1 - 7/21/64

Le2.2 Item Advance

LABEL | OP'N | OPERANDS

label PUT3 file ID

label PUT3 origin, file ID

Format

1.

Origin is specified if the TRF form was called for in TAPE3,

It is the label of an area large enough to contain one item
of the file.

Entrance Reguirements

1.

The file is open.

Exit Conditions

1.

2.

3.

be

If the AR form is used, the absolute address of the next item
area is in the 4 LSC of ARl.1

If the TRF form is used, the item has been transferred from
origin to an output area.

If an end-of-tape condition was detected, and parameter 11

of the TAPE3 call was blank, 2 end-of-reel blocks were written
on the current reel, which has been rewound with interlock.

A label block was written on the next reel. If specified

in parameter 10 of the TAPE3 call, a special label subroutine
has been executed.

If an end-of-tape condition was detected, and parameter 11 of
the TAPE3 call was not blank, control has been transferred to
the specified label.

Store_Requirements
5 character positions for the AR form; 10 for the TRF form.

1. This also applies in cases 3 and 4, above.

5.5
Page 41
Reve 1 = 7/20/64

4e2.3 Close File

LABEL | oP'N | OPERANDS
label l CLOS3 file ID, rewind option

Format

1. Rewind option is RWD, for a rewind without interlock, LOCK, for
a rewind with interlock, or NORWD, if the current reel is not
to be rewound. ’

Entrance Reguirements

1. The file is open.

Exit Conditions

1. All items committed to output have been written onto tape,
together with 2 end-of-file blocks.

2. The current reel has been rewound as specified.
3. No further macro-instructions may be executed for the file.

Store Requirements
15 character positions.

5.5
Page 42
Bev. 1- 7/21/64

4e2.4 Close Reel

paser. | optw | opERaNDS

Lt

label } CLOS3 file ID, rewind option, REEL

i

Format
1. Rewind option is RWD, for a rewind without interlock, LOCK, for

a rewind with interlock, or NOEWD, if the current reel is not
to be rewound.

Entrance Roquirements
1. The file is open.,
Exit Conditions

1. All items committed to output have been written onto tape,
togetiner with 2 end-of-reel blocks,

2. The current reel has been rewound as specified, and a label
block has been written on the next reel.

3. If specified in parameter 10 of the TAPE3 call, a special
label subroutine has been executed.

be If the AR form of the macro-instructions is used, the 4 LSC

of ARl contain the absolute address of the first character of
the first item area.

Store Requirements

15 character positions.

—— et e

5.5
Page 43
Rev. 1 = 7/21/64

4e3 Estimated Store Regquirements - TAPE3 Coding

The following paragraphs give estimated store requirements for the
TAPE3 coding.

1. The mininum smount of TAPE3 coding that is turned out will
occupy 398 character positions.

2. If the standby method is to be applied (p8 not blank), add
141 to the total estimated.

3. If servo swap is to be performed for alternate reels of the
file (pb6 not blank), add 25 to the total estimated.

be If the transfer form of the macro-instructions is to be used
(p%=TRF), add 10 to the total estimated.

56 If special label processing is to be performed (plO not blank),
add 10 to the total estimated.

6. If normal end-of-tape processing is to be performed (pll blank),
add 30 to the total estimated.

7. If special end-of-tape processing is to be performed (pll not

blank), and the AR form of the macro-instructions is to be
used (p3=AR), add 5 to the total estimated.

4e4 Execution Time - PUT3 Macro-Ingtruction

The times shown are calculated on the assumption that an end-of-block
condition is not detected during the execution of the macro-instruction.
AR form: 486.0 usec

TRF form: 949.5 usec + 9 (item size) usec[+13.5 usec, if origin
is indexed]

4e5
1.
2.

to rating Instructio
There are no program stops in the TAPE3 coding.
The following are error stops in the tape-handler portion of
the OPS. Refer to the OPS write-up, Section IVE, for recovery
procedures.
a. 30 lc uu 55 60 - memory parity
b. 30 lc uu 66 60 - tape parity
¢, 30 lc uu 77 60 - servo off-line or non-ready

In these stops, ¢ = channel, and uu = unit,

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	01-01-00
	01-01-24
	01-01-25
	01-01-26
	01-01-27
	02-01-24
	02-01-25
	02-01-26
	02-01-27
	03-10-01
	03-10-02
	03-10-03
	03-10-04
	03-10-05
	03-10-06
	03-10-07
	03-10-08
	03-10-09
	03-10-10
	03-10-11
	03-10-12
	03-10-13
	03-10-14
	03-10-15
	04-01-01
	04-01-02
	04-02-00-01
	04-02-00-02
	04-02-00-03
	04-02-01-01
	04-02-01-02
	04-02-01-03
	04-02-01-04
	04-02-02-01
	04-02-02-02
	04-02-02-03
	04-02-03-01
	04-02-03-02
	04-02-03-03
	04-02-03-04
	04-02-03-05
	05-06-00
	05-06-01
	05-06-02
	05-06-03
	05-06-04
	05-06-05
	05-06-06
	05-06-07
	05-06-08
	05-06-09
	08-05-00
	08-05-01
	08-05-02
	08-05-03
	08-05-04
	08-05-05
	08-05-06
	08-05-07
	08-05-08
	08-05-09
	08-05-10
	08-05-11
	08-05-12
	08-05-13
	08-05-14
	08-05-15
	08-06-00
	08-06-01
	08-06-02
	08-06-03
	08-06-04
	08-06-05
	08-06-06
	08-06-07
	08-06-08
	09-00-01
	09-00-02
	09-00-03
	09-00-04
	09-00-05
	09-01-01
	09-01-02
	10-01-00
	10-01-01
	10-01-02
	10-01-03
	10-01-04
	10-01-05
	10-01-06
	10-01-07
	10-01-08
	10-01-09
	10-01-10
	10-01-11
	10-01-12
	10-01-13
	10-01-14
	10-01-15
	10-01-16
	10-01-17
	10-01-18
	10-01-19
	10-01-20
	10-01-21
	10-01-22
	10-01-23
	10-01-24
	10-01-25
	10-01-26
	15-02-01
	15-02-02
	15-02-03
	15-03-01
	15-03-02
	15-03-03
	15-03-04
	15-03-05
	15-03-06
	15-03-07
	15-03-08
	15-03-09
	15-04-01
	15-04-02
	15-04-03
	15-04-r01
	15-04-r02
	15-04-r03
	15-04-r04
	15-05-01
	15-05-02
	15-05-03
	15-05-04
	15-05-r01
	15-05-r02
	15-05-r03
	15-05-r04
	15-05-r05
	15-05-r06
	15-05-r07
	15-05-r08
	15-05-r09
	15-05-r10
	15-05-r11
	15-05-r12
	15-05-r13
	15-05-r14
	15-05-r15
	15-05-r16
	15-05-r17
	15-05-r18
	15-05-r19
	15-05-r20
	15-05-r21
	15-05-r22
	15-05-r23
	15-05-r24
	15-05-r25
	15-05-r26
	15-05-r27
	15-05-r28
	15-05-r29
	15-05-r30
	15-05-r31
	15-05-r32
	15-05-r33
	15-05-r34
	15-05-r35
	15-05-r36
	15-05-r37
	15-05-r38
	15-05-r39
	15-05-r40
	15-05-r41
	15-05-r42
	15-05-r43
	15-05-r44

