
UNIVAC
ro: Branch Managers

CARBONS:

Area Managers
Regional Managers
International Division
Washington Office

_________ INTERCOMMUNICATION

FRoM <NAME>= W. G. Cr owell

LocAT10N&oATE: Whitpain - August 12, 1964

oEPARTMENT: UNIVAC 1050 Marketing

SUBJECT: PR EL IM IN AR y D oc UMENT AT ION
FOR UNIV AC 1050
FREESTANDING SYSTEM.

Enclosed is a manual which represents the software package that
currently exists on the UNIVAC 1050.

This is not the off icial documentation of the UNIVAC 1050 Soft­
ware package and it doesn't represent the total scope of UNIVAC
1050 softwnre. The information contained within this manual is
preliminary and is subject to changes by Systems Programming as
other items and features are added.

This software is being used by early Customers and UNIVAC Field
Personnel at Whitpain today. It has been very effective in the
construction of Ben9h Mark Demonstrations.

It is suggested that any person programming the UNIVAC 1050 to­
day study this manual.

Two (2) copies of this manual have been sent to each Branch and
Area Office. There are QQ more copies available and additional
copies cannot be ordered.

This information and any possible revisions to this information
will eventually be published in New York by Systems Programming
Library Services as part of the official UNIVAC 1050 documenta­
tion.

Enc.losure
WGC/gmd

/1 !" /
.. / ':· v., :. ''-c
'w ~ G. CROWELL

\

i. 1 '

TABLE OF CONTENTS

This Manual consists of excerpts from other documentation and
therefore, there is no consistency or sequence in the page
numbering.

The sections contained in this manual are in the following
order:

1. Calls for Routines on Systems Tape
Block Print Routine (TPOX)
PAL Tape Assembler Notes and Operating Instructions

2. Additional REGENT Instructions and REGENT Memory Requirements

3. UNIVAC 1050 Operating System (OPS)

4. Tape Maintenance System for UNIVAC 1050 (AJAX)

). Object Code Maintenance System for UNIVAC 1050 (OPUS)

6. I/O Routines for the UNIVAC 1050 Tape System

7. Operating Instructions for the UNIVAC 1050 ~ard System

8. 4K Card I/O Routines including Software Multiply and Divide

9. Data Tape Conventionsand Magnetic Tape File Control Routines

10. System and Library Tape Conventions

11. TDUMP Operating Instructions

12. UNIVAC 1050 Tape Sort Routine

13. Procedure for Estimating UNIVAC 1050 Tape Sort Times ·

14. UNIVAC 1050 Sort Timing Tables

CALLS FOR ROUTINES ON SYSTEMS 'IAPE

CALL

$AJAX Tape Utility 80 or 90 colwnn row or serial

tous1 Object Utility Service 80 Colwnn row or serial

$ÖUS4 Object Utility Service 90 Colwnn row or serial

$TDMP Prints OPS Tape Dwnp(s) f rom Servo 1

$TPÜX Prints Data Tapes from Servo 1

$0001 PAL Assembler 80 or 90 colwnn row

$0101 PAL Assembler 80 column serial

t1001 PAL Assembler 90 colwnn serial

PAL TAPE ASSEMBLER NOTES

1. There is no limitation on the number of labels used in a PAL
assembly.

2. The size of the combined PROC and NAME table and FORM table is
800 locations for 8K of memory. For each module of memory over ; 3 l 'S" k
8K add 4096 to this table capacity. A PROC or NAME entry requires 14
13 locations.

If an assembler tape has more PROCS or NAMF'S than the table can
hold, the PROCS that are not stored in the t~ble will be missing
when a call is made for those PROCS; however, if an asterisk is
placed in column 18 of a call line the PROC will be found regard­
less of whether lt is in the table.

3. An additional directive has been added to the PAL Tape Assembler.

SEGJP

It is of ten necessary to divide a program into segments which may
operate at different times in store. The SEGJP directive provides
this facility. The SEGJP is similar to the END directive in that
it causes a "T" block to be produced containing a jump instruction
to the label or address contained in the operands f ield.

In addition ar; "S" b],.ock also produced similar to the "R" block
of the first segment but without the high address, starting
location and number of characters fields.

The assembler will create a segment ID f ield for the next segment
by adding a decimal "01" to the program or last segment ID obtained
from columns 7-10 of the BEGIN directive. If column 9 of the
BEGIN directive is greater than 9, a decimal "1" will be added.
See OPS Instructions to load a segment.

4. The PAL Tape Assembler produces output object code on tape 1 only.
See documentation on "OPUS" to produce cards from tape output.

5. UNIVAC software uses labels that start with the letters X, Y and z.
The letters U, V and W are also reserved for future expansion.

APPENDIX 3

Operating Instructions for 1050 Two or Three Tape Assembler

Console Sense Switches:

1. Sense Switch 1 controls source code location.
Off - Assembler expects source program or call card (See console)

in reader.

On - Assembler will stop to allow key in via the trace swttches
of the 4 character program ID, appearing on the BEGIN line
of the program to be assembled from tape. (See console).

2. Sense Switch 2 controls printing of assembly listing.
Off - Entire listing will be printed.
On - Procedure generated lines will not be printed.

PRINTER:

1. Depress off-line button until light is on.

2. Set paper 3 holes above sprocket.

3. Depress off-line button until light is off.

READER:

1. Place assembler call card ($0001 in columns 1 to 5) in front of
BEGIN card. Place program to be assembled in input magazine
followed by about 1/2 lb. blank cards.

2. Place cards in reader face down, 9 edge leading.

3. Depress power-on button until light is on.

4. Depress magazine-load button.

5. Depress clear button after magazine-load light is off.

UNISERVOS:

1. Mount PAL assembler on servo 0 with write enable ring in.

2. Mount blank tape on servo 1 with write enable ring in.

3. If source program is to be assembled from tape, mount source code
library on servo 2 with write enable ring removed.

4. Bring all tapes to load point.

CONSOLE:

1. Depress clear button.

2. Depress load tape MODE button.

3. Depress program start.

4. Depress continuous MODE button.

5. Depress program start button (loads OPS). STOP (30 070001 60)
Operating System ready to load.

6. If Assembler call. card and source program cards are in the reader
depress program start. to assemble.

STOP (30 070001) End of Assembly, Operating System ready to load.

7. If program to be assembled is from tape and card reader is available.

a. Place source program call card in reader after $0001 card. This
card contains $RRRR in columns 1 to 5 and RRRR rüust be identical
to columns 7 to 10 appearing on the BEGIN line of the program
to be assembled.

b. Depress program start to assemble.

8. If program to be assembled is on tape and card reader is not
available.

a. At STOP (30 070001 60) depress Operator Request button.

b. Set trace mode to PROC.

c. Set trace switches to (000303g) depress program start.

d. Program stops (30 077000 60) to allow key in of next two
characters of program ID. Set trace switches to (000304g).

e. Depress Sense Switch 1.

f. Depres~ ~ro~ram start.

g. STOP (30 017001 60) assembler ready for key in of program ID.

h. Set up binary value of f irst 2 characters of program ID in trace
switches. Depress program start.

i. STOP (30 077000 60) Set up binary value of next 2 characters of
program ID in trace switches. Depress program start (assemble).

OUTPUT

Object Code - output servo 1.

Listing - printer.

Display

01 7771

017771

11 ooox

100000

070001

077000

01 7001

o4ou44

140U55

140U66

2

3 & 4

OPS

ALL

ALL

ALL

APPENDIX 6 - PAL STOPS

Description

No BEGIN card or
improper call card.

Bad tape

Reader error

Printer error

Operating System

ID KEY IN

ID KEY IN

Tape error

Tape error

Tape parity

Recovery

Reload p iper BEGIN card or
Call card. Depress start
to continue assembly.

Label not on tape. Restart.

Replace 'X' cards in the
input magazine. Depress
clear on the reader.
Depress program start.

NOTE: 'X' does not always
match number of cards in
error stacker. Remove excess
cards from normal stacker.

Turn printer off-line. Return
printer to normal condition.
Depress clear on printer.
Turn printer on-line assembly
will continue.

Read to load.

Set up 2nd 2 characters of
ID KEY IN trace switches.
Depress program start.

Setup 1st 2 characters of
PID of program to be
assembled from tape.

Tape block count wrang,
restart.

Restart.

Assembler has rocked tape
5 times. To continue depress
program start. Assembler
will attempt to recover.

sgmm; BOQTINE

Th1s routine prov1des a method tor making corrections to absolute object code
decks produced by the PAL asaembler.

In;ut

All input correctiona are punched in octal starting in column 20 aa tollov11

1 19 20 25 26-27 28 r ' 79 80

BLANK AAAAAA LL cccc 1
""'

1. ccccc BLANK

Columns 20-25 contain the six digit octal addreaa ot the tirst character to
be corrected. Columns 26-27 contain the octal number ot characters to be
changed. Columns 28-79 contain the data i.n octal to be converted to PAL
tormat. Up to 26 charactera located in contiguous mamo!'1 may be altered
by one change card.

Output

The output is punched in PAL rormat. Input carda will be compreased aa mucb
as possible unt11 a change to a non-contiguoua location ia encountered or
until the output card is tilled.

The squeezed output ia placed immediately preceding the last card ot the
object deck.

The tollowing tielda on the output card will be blank:

1. Card Sequence Number
2. Relocation Mask
3. Check Sum Field
J.. Utility
5. Program Identitication

i CARD LOAQ ROPTINE

The source card deck tor the 2 card loader is suppl1ed tor an SK contiguration.
Thia may be adjusted for any configuration by altering the second card or the
source deck as follows:

C.ARD l LABEL LI OP1N J OPERAND

(2nd card) , CARlll1 EQUAMA OX7200

X is 1 tor SK store (017200)
X is 2 ror 12K atore (027200)

• • •
X is 7 for 32K store (r177200)

After altering the source deck, assemble the source deck tor the desired 2
card loader. After assembly remove the R and T cards (first and last cards
respectively) ot object deck. The reaultant 2 cards will load any program
within the designated store eontiguration.

Q;e[ltipg Instruction1

l. Place 2 card loader ahead ot program to be loaded in tha input hopper ot
the High Speed Reader.

2. Depress 'load card' - program start.
3. Depre ss 'CONT' - pro gram start.
4. Program will be loaded and executed.

MEMORt PRINT ftOttl'INE (CAßD SISTEHl

The Source Card Deck tor the Memory Print 11 eupplied for an SK configuration.
Thie may be adjuated to any other aize etore by the alteration ot two card1
a1 tollowss

tirst card:
__ ca_rd, 1 label op•n

000106 DUMP.6 6 BEGINM

X is l for SK etore (015200)
X 11 2 tor l2K etore (025200)
X is 3 for 16K atore (035200)

•
• •

X ia 7 tor 32K store (075200)

second card (aeventh card trom end ot deck):

operands

OX5200

card label op'n operanda

0181M OObbbbbbOOeeeeOO

OObbbbbb ia the octal addresa where printing ia to begin,
usually 00000520 (see note).

OOeeeeOO is the octal addreae ot the last row ot memo1'1 to
be printed. (for SK thia would be 00017700,
tor 12K - 00027700, etc.)

After altering the eource deck, aasemble the memory print to obtain the
desired object card deck.

9Rerat1ng Instructionss

1. Place the appropriate 2 card load routine ahead ot tbe memory print
object deck in the input hopper ot the High Speed Reader.

2. Depress t1tOAD CARD" - program start.
3. Depreas "CONT" - program atart.
4. To execute immediately, place printer •on line• and depress •Program

Start".
· 5. To manually execute at any other time, aet up oetal address 015400 (SK)

in M switchea, depresa •INST", ncLEAR•, "DISPLAY", •ccn, "M", and
"Program Start".

6. To print all of memory as indicated on the PAR card (aource deck) Sense
Switch 1 should be set on, otherwise tbe print will start from the
address in Tetrad 30 and-end w1th the addre1s in Tetrad 31. If limits
are &aired when operat1ng the duq> manually, Tetrad~ 30 end· ll' ~ust be
...set ul) trom ·the eonaole using the al teration procedure.

7. To operate the dump under program control, fix Tetrads 30 and 31 to the
desired parametera and execute a JR to octal 015412 (SK). Control will
be returned to the running program atter the dump has been executed.

NOTEs Regardless ot the parametera in Tetrade 30 and 31, location 0 through
0517g will always be printed in 4 character groupa. The locations
speci.f'ied by the parametera are printed in 5 character groupa. It
Tetrad 30 containa O, location 0 through 05179 will be repeated in
5 character tormat.

OPERATING INSTRUCTIONS FOR THE UlUVAC 1050 CARD SYSTEM

AFPENDIX 3

1. 1
Page Z4
1/31/63

QPERATING INSTR UCTIONS F<'f. 1050 CAßD ASSEMBl&B,.

CONSOLE SENSE SWTICH~S.

1. Sense switch 1 controls punch!ng of object deck.

OFF - C"bject deck will be punched.
ON - Object deck will not be punched.

z. Sense switch 2 controls printing of assembly Usting.

OFF - Listing will be printed.
ON - No printing.

3. Sense switch 3 controls punching of label table.

OFF - Label table will not be punched.
ON „ Label table will be punched.

PUNCH.

1. Turn punch on (depress power-on button until light is on).
z. Turn punch off-line (depress on-line switch until light is off).
3. Depress clear-manual feed card(s) until card appears in output

stacker (remove card(s) from output stacker).
4. Turn punch on-line (depress on-line button).

PRINTER.

1. Depress off-line button until light is on.
2. Set paper 3 holes above sprocket.
3. Depress off-line button until light is off.

READER.

1. Place program to be assembled behind lst pass assembler deck
followed by about lfelb. blank cards.

z. Flace cards in reader face down, 9 edge leading.
3. Depress power-on button until light is on.
4. Depress magazine-load button.
S. Depress clear button after magazine-load light is off.

CONSOLE.

1. Depress clear button.
2. Depres s load card mode button.
3. Depress program-start button.
4. Depress con. mode button.
5. Depreas program-start button (a1semble lst pass).

STOP (30 017777 60) 8•

READ QNIT,

1. 1
Page 25
1{31/64

1. Remove cards from output stacker, separating source code from
lst pass assembler deck.

2. Place source code behind Znd pass assembler deck, followed by
blank cards and weight, in the input magazine, 9 edge leading.

3. Depress magazine-load button.
4. Depress clear b,1tton after magazine-load light is off.

CONSOlsE,.

1. Depress program-start button (assemble Znd pass).
Program-Stop (30 017777 60) 8•
End of Assembly.

OUTPUT.

Object code - output punch stacker.
Listing - printer.

DISPLAY

30 017771 60

30 010077 60

30 110000 60

30 llOOOx 60

30 lZOOOZ 60

PAS~

l & z

l

1

Label
Table
Print &
Punch

E:r.tn.OR STOFS

D:-:dSCRIPTION

No B E".:iIN Card

Label Table
Exceeded

Reader Error

Reader Error

Punch Error
a) No card in

error stacker.
b) 1 card in error

stacker.

1. l
Page Z6
1/31/64

BECOYERY

Refeed source deck with
valid BEGIN card. Depress
program start to conttnue
assembly.

Depress program start to
contlnue assembly. All
labels that exceed the label
will appear on the output
Usting with "L" errors.
After assembly is finllhed
use $ option to reduce
number of labels.

Refeed cards in error
stacker. Depress clear on
READER. .::>epress program
start.

Replace 'X"cards ln the
tnput magazine. Depress
clear on REA~ER. De­
press program start.

NOTE: "X" does not al­
ways match number of cards
in error atacker. Remove
excese cards from normal
stacker.

a) Remove last eard In
normal stacker.

b) Last card in normal
stacker will be follqwed
by the next proper card.

NOTE: All cards selected
lnto error stacker may be
discarded.

pISPLAY PASS ;)ESCBIFIION

Channel 2 z Punch Error
Abnormal on
Console will
be Ut.

Channel 0 Label Printer Error
Abnormal on Table
Console will Funch &
be lit. Frint,

z

30 017777 60 1 & z Completion

1. 1
I age Z7
1/31/64

RECOVERY

Clean all cards out of
punch, Turn punch off-
Une, manual f eed cards
uritil blank card appear1
in output stacker, .!:>e-
press program start,
P.emove any blank card1
from output stacker.

tiOT;r,;: Read check is an
unrecoverable error.

Turn printer off-line.
Return printer to nor-
mal condition. Depress
clear on PRINTER,
Turn PRINTER on-line.
As sembly will continue.

Pass in operation is
completed.

•'

SEND

ADDITIONAL INSTR UC T_LQm.

z. 1
Page 24

5 /13/64

Name of source field, Name of destination field,
Number of characters tobe transferred.

This operation causes a block transfer of up to 1024 character1.

Example:

1 SEND 1 IN, OUT, 80

The 80 characters of information beginning at IN is transferred
to OUT and successively higher positions.

1 ALTER 1 Label of GOTO lnstruction, Name of operation

This operation permanently replaces the operand specified in th•
GOTO instruction with the name of a new operand.

X. REGE:NT OPEB/,TING INSTRUCTIONS

A. Tape Reient

2.. 1
Page 25
5/13/64

REGENT source cards are used as direct input to the PAL Tape
Assembler, and the operating instructions for the assembler should
be followed. No further processing of the output object programs
is required.

The Card REGENT program produces a PAL source deck which is
subsequently assembled using the PAL Card Assembler, after the
desired I-0 control routines are added. The steps required to
produce an object prograrn are as follows:

1. The Card REGENT object program is loaded from the card
reader, followed by the source cards.

The intermediate source output is punched and the input cards
are listed on the printer. (This listing may be eliminated by
setting Sense Switch 2..)

z. The intermediate output cards are removed from the punch.
The I-0 control rou'tines required for the programs are
selected from those supplied with Card RE'}ENT. These
are inserted after the first (BEGIN) card of the intermediate
deck. The deck is then ready tobe used as direct input to.
the PAL Card Assembler.

Output cards will have been sequenced by Card REGENT be­
ginning with 05000 (the I-0 routines will have sequence numbers
lower than 5000.) for the purpose of future reference or in
case the need for sorting arises. Input statements will be
punched in the output as comment cards containing a (.) in
column 7, and blanks in the sequence number field. The
original sequence number will appear in the I. D. field.

3. The operating instructions for the PAL Card Assembler
should be followed. After both passes of the assembly have
been completed, the I-0 control cards should be removed
and stored for future use.

z. 1
Page Z6
5/13/64

CABQ REi°iENT OBJECT-SFACE ESTIMATES lAmzrorlmat1)

LOW ORDER MEMORY 400

USE 200

PAGE Z50

INPUT 400

OUTPUT DT AIL Z7S

OUTPUT CARD 400

OUTPUT NONDT 150

READER CONTROL 650

PUNCH CONTROL 650

PRINTER CONTROL 650

READ 5

PUNCH 5

PRINT 10•

CLOS •
ADD •
SUB •
MPY 50

DIV 80

ROLL S*

RESET •
ROUND 100

SHIFT 40

MOVE 50

SEND

CLEAR

IFDEC

IFALP

IFCHR

IFDIG

IFZON

IFNEG

LEV

RTN

EXIT

XC UTE

GOTO

STOP

ALTER

*Add 5 for each operand pre1ent.

20

20

*
*
•
*
80

*
130

5

5

5

5

s

10

2. 1
Pa1e 27
5/13/64

UNIVAC 1050 OPERATING SYSTEM (QPS)

The operating system is divided into three major functions:

A. Input-Output Coordination, Program Switching
B. Tape 1/0 Order Handling
C. Program Loading and J:>v:emory Allocation

3. 10
Page 1
7 /8/64

For the free standing system the Coordination and Tape Handler functions
are substantially the same as for satellite systems. This description is
primarily concerned with (1) the various parameters which may be used to
assemble different versions of OPS for specific purposes and configurationsi
(2) description of loading and locating functioni (3) program comm11nication
with OPS, and (4) console operating instructions.

I. Assembly Options.

OPS is available in source code in the standard library and may be assembled
by the user to fit his needs. From 3 to 5 parameters may be written as
follows:

OPS pl pZ p3 p4 pS
Card Type, Tape Type, No. of Program, Memory Dump, Translation

Following is a description of each parameter:

A. Parameter 1, card type.

1. 80

Provides for 80 column card loading from row or serial
readers. Loader will accept 80 column "Call" cards for
tape locating.

2. 90

Provides reading of 90 column call cards from row or serial
readers, ·with translation.

3. 1Q.1tS

Same as (Z) above but includes ability to load 90 column
object cards from a serial reader.

3. 10
Page Z
7/8/64

4. 90LR

t:i.21it:

B.

Same as (3) for row reader,

One of the above must appear as parameter 1. If one of the 90
column parameters is used a translate table is generated for
90 colunm card code beginning in location OlSOOa.

Parameter 2., Tape Type.

1. .A..

Provides tape order handling and error recovery for Uniservo
IIIA tape s; up to 6 units.

2. ~

Same as (1) for IIIC tapes.

C. Parameter 3, No. of Programs,

1. CONC

Provides for loading and running of 2 relocatable programs
concurrently, or a single absolute program,

2. SING

Eliminates the portion of OPS which provide for concurrent
processing {approx, 1000 char.).

D. Parameter 4, Memory Dump Option.

1. PDr...1P

Provides for inclusion of a memory print routine which can
be executed by the operator. (Aprox. 1100 char.).

2. TDMP

Provides the ability to write all of memo:ry on servo 1 for
future printing. (65 char.) •

~: Parameter 4 is not required,

E. Parameter 5, Translation.

3. 10
Page 3
7/8/64

Since translate tables must be located in the first 4096 characters
of memory, absolute locations must be set aside by the operating
system for use by relocatable programs. The parameter TRNSn
(where n is 1, 2, or 3) provides up to 3 open rows beginning in
location O lSOOa into which translate tables may be transferred
and used. In 90 column versions of OPS an input translate table
is automatically generated in 01500 8 which may be used by the
worker program, but not disturbed. In these cases, areas pro­
vided by the TRNSn parameter begin in 016008.

II. Proiram Loadinll Function.

All versions of OPS contain the ability to locate and load programs from
a master instruction tape. Card loading ability is dependent on para­
meter 1, described above.

A. Program Call.

The Program ID may be provided by reading a "Call'r card, or by
trace switch settings (see Operating Instructions). A segmen t ID
may be provided by these methods or by the worker program (see
Section III). A call card must contain '$ 1 in column 1 and the PID
in columns Z.-5. A blank PID from any source indicates that the
next program is tobe loaded from the card reader. A PID of
(077777777) indicates that a load is not to be performed; the loader
will release control to the Coordinator to continue a program already
running, if there is one.

If a program ID other than blank ora11nuis received, the locator
searches forward on servo 0 for a label block (R) containing a
matching ID. If a match is not found the MIT is rewound and the
system stops to await further instructions. The MIT is not re­
wound when a program has been located and loaded.

B. Program Memory Allocation.

Information in the R block (or card) enables the loader to determine
whether or not the program will fit into available memory. In a
concurrent system, the first relocatable program is assigned the
lowest memory available, and the second is assigned the highest,
except where the load key is S, in which case it is always assigned
the lowest.

3. 10
Page 4
7/8/64

The memory remains allocated until the program is released or
jettisoned.

Absolute programs may be loaded only if all of the memory is
available. If an absolute program has been loaded and not released
or jettisoned, no other program may be loaded.

A list of the stop displays and procedures to be followed if the load
being attempted is unacceptable is contained in Section IV, Operating
Instructions.

C. SeQ"ment Loadine-.

Segments of elther relocatable or absolute programs may be loaded
from time to time using the methods described above, or a running
program may access OPS for the purpose of loading its segment
without operator intervention or knowledge. Relocatable segments
are always assigned the same base address and memory allocation
originally assigned the run.

III. Proiram Communication with OPS.

A. Class II Interrupt.

A program using decimal arithmetlc instructions where the
possibility of decimal overfiow exists must l2!si.the address of
the overflow routine into location 0775-0777. If a class II interrupt
occurs which is not an operator request, control will be trans­
ferred to that address.

The actual class II interrupt entry channel must not be altered at
any time.

B. Program Release.

When a program is completed, a JR to the Release Entry of QPS
(0700) must be executed. OPS releases the memory allocated
to the finished program and stops. Control is not thereafter
returned to the program which has released.

The release entry should not be accessed unless all processing
has been completed.

C. Program Stop.

3. 10
Page 5
7/8/64

In order to bring the com?uter to an orderly halt, all IO orders
currently being executed must be completed and their interrupts
processed. This is accomplished by a JR to the Stop routine (07 36).
OPS retains control until all pending 10 interrupts have been pro­
cessed.

The Stop routine must be accessed before executing a JD or JHJ
instruction.

D. Segment Loading.

A running program may access OPS for the purpose of loading a
segment by performing the following steps in order shown:

1. Execute the Stop Routine (JR 07 36).

z. Set locations 0541 and 0542 to non-blank. This prevents
OPS from stopping (0541) and reading a call card (0542).
If it is intended that the segment ID be ootained from a
call card, or trace setting, this step and following step 3
are not performed.

3. Store the Segment ID (4 characters) in AR2.

4. If the servo number on which the segment appears is other
than O, store the appropriate unit number in 0540.

5. Execute JR 0612. The segment will be located, loaded and
executed. Locations 0540 thru 0542 will be reset to blank
at completion of the load.

E. Trace Routine.

3. 10
Page 6
7/8/64

Information may be entered into memory from the operator console
by using the console trace switches, when trace mode is set on
PROC. The routine used by OPS for this purpose is a closed
subroutine and is available to worker programs as follows:

1. Exec11te a display stop (JD) informing the operator of the need
for a trace key in of Z characters.

z. Execute JR 01245.

3. When control is returned, the two characters which have been
set in the console trace switches will be in the least signif­
icant characters of ARZ.

F. Translate Tables.

If translate table areas are included in the Operating System being
used, they will begin in location 01500. Translate tables should
be transferred into the areas as they are used, since they are not
preserved when switching programs in concurrent operations.
(See Section 1, E).

3. 10
Page 7
7/8/64

G. Following is a summary of absolute locations in OPS which are
available for program communication or information:

0540

0541

0542

0612

0700

0736

01000-01244

01245

01302-01355

01356-01431

01432-01435

01437-01441

01443-01445

01447-01451

01453-01455

01500-01577

Servo ff of MIT

OPS stop switch. (O = stop, 1 = bypass
stop 070001)

OPS call card switch. (0 = read call card,
1 = bypass call card

read)

Load entry. Access by JR.

Release entry. Access by JR.

STOP entry. Access by J:rl.

Loader read image area.

Trace switch routine. Access by JR.

Temporary storage of Tl6, T17, T18, T8,
Xl through X7 Program A (low order).
Concurrent systems only.

Same for Program B (high order).

PID of last program or segment lC8ded
from tape.

P.ighest location of Program A. Do
not alter.

Lowest Location of Program B, Do
not alter.

Highest location in OPS + 1. Do not
alter. (Lowest loc. PROG A).

Highest location in memory. Do not alter.

80 column system: lst translate table
area generated by parameter TRNS 1.

90 column system: Input card code trans­
late table. Subsequent translate table s
generated by TRNS in parameter follow
beginning in 01600.

3. 10
Page 8

IV. OPS Operatine- Instructions.

A. Initial Load.

The ?-:taster Instruction Tape is mounted on servo O. Using the tape
load facility, OPS is loaded and stopped (30 070001 60). Following
is a description of the display stops which may be encountered, their
causes and the action tobe taken.

B. Display Stops.

070001

070002

070003

070004

070005

070007

Ready to Load.

1. To loaq using call card, or preset PID, depress
start. (Call card contains '$ 1 in col. 1, PID in
cols. 2-5.)

2. To load using trace switch setting; set first 2
characters in trace switches, depress Opr. Request,
then Start. After stop 077000, set second 2 char­
acters in trace switches, de}l'ess Start.

3. To return to program already running without
performing load, set ID of 1C10D::.! 1 (077777777)
in trace switches, as in (2) above.

No R card. Depress start to repeat load. Stop 070001
will be accessed. Correct input.

Not enough memory available. Procedure same as
070002.

Trying to load 3 programs. Procedure same as 070002.

Card read is not call card. Procedure same as 070002.

Program stopped by Operator P.equest. To attempt error
recovery and/or continue running, depress start.

3.10
Page 9
7/8/64

To exercise the following options at this time; depress Operator
Request, set trace mode on PROC, and enter the appropriate key
into the trace switches as follows: then depress Start.

077 Load program. Stop 070001 will be accessed.

07 6 Print memory.

07 5 Dump all of memory on servo 1 (see C below).

00 Jettison program using Fastrand.

01 J ettison program using Fa strand.

02 Jettison program using Servo o.

03 Jettison program using Servo 1.

04 J ettison program using Servo z.

05 J ettison program using Servo 3.

06 J ettison pro gram using Servo 4.

07 J ettison pro gram using Servo 5.

012 J ettison program using Reader.

013 J ettison program using Punch.

014 Jettison program using Printer. CHO

015 Jettison program using Printer. CH7

~ Great care should be exercised in making the above settings.
lncorrect key ins which are less than 017 may cause un­
recoverable problems.

070010

070104

Absolute program load is unacceptable (See Section llB).
Procedure same as 070002.

Check sum error. Key 1 into loc. 0 to ignore. (Not
recommended unless cause is positively known.)
Otherwise, procedure same as 070002.

070105

070106

3. 10
Page 1.0
7/8/64

Card or Block count error. Procedure same as 070104.

Read Error during load. Depress clear, then Start.
Loader will return to stop 070001.

~: If a segment is being loaded from tape, the loader may
attempt to restart the load while the MIT is rewinding in
which case the error stop will be repeated. Wait for rewind
to be. completed, then repeat procedure.

070707

077000

070013

077776

077777

PID not found on tape. MIT rewinding. V/ait for rewind,
then depress start to try again.

First half of trace switch ID ack.nowledged. Key in other
half, depress start.

Card load being attempted in 90 col11mn system. This
version of OPS does not contain a card loader.

Tape abnormal during tape memory dump. Rewind
Servo 1 and depress start to try again.

Tape memory dump completed. Depress start to access
stop 070007. Program (S) may be continued from this
point.

C. Tape Memory Dump.

lf the OPS in use contains the tape memory dump feature, it may
be accessed by a trace switch key in of 07 5 at the appropriate time,
following an operator request stop (070007). A blank tape should
be on Servo 1 at load point. All of memory is written in maximum
size blocks and the computer is stopped (077777). The tape is not
rewound. Depress Start to return to n1>rmal operation. The standard
library contains the routine TDMP which may be loaded using the
normal call procedure for the purpose of printing the memory as
written on Servo 1. The printout ol:tained is in the same format as
the Print Dump routine.

D. Print Memory Dump.

The Print Memory, if provided in the system 1 produces an octal
printout directly from memory and returns to stop 07 0007 when
completed. lt is accessed by a trace key in of 07 6 following the
operator request stop. In view of its high memory requirement,
the use of the print dump option is not recommended except for the
initial Stages of debugging.

E. Peripheral Error Recovery.

3. 10
Page 11
7/8/64

Each of the IO control routines used with OPS contains its own
error display stops indicating the nature of the error w~ich has
occurred and iden·tifying the channel unit, etc. Followmg is the
procedure to be followed to attempt error recovery following a
peripheral error stop. (Note exception tape single pro gram).

1. Depress Start.

If a second program is in memory and is not affected by the
error, it will continue processing. If there is no second
program OPS will loop until the operator intervenes. The
prog1·am in which the error occurred will be by-passed until
the condition is corrected.

2. Correct the error condition, if possible.

3. Depress Operator Request. The operator request stop
(070007) will be accessed.

4. Depress Start.

If the error condition has been properly corrected, the pro­
gram (S) will be resumed from the point of error. If not,
the error stop will reappear, and the procedure must be
repeated.

It should be noted here, that a retry will be attempted on each
peripheral which has an error condition existing at this time
whether or not an attempt has been made to correct it.

:Sxception: If the single program version of OPS is being used,
the above procedure does not apply to tape errors. If a tape
error occ11rs, recovery is attempted immediately, when
Start is depressed after the error display stop. Control
remains in the tape error recovery routine until the
situation is corrected.

F. Program .Tettison (Concurrent Processing Only)

The jettison procedure enables the operator to rele~se the memory
allocation of a program which is unable to continue; and to replace
it with another program and/or continue a program which has been
running concurrently.

3. 10
Page 12
7/8/64

Normally, this will be do11e when an unrecoverable peripheral error
has occurred and the program is unable to proceed to its normal
conclusion a11d release.

Following is the procedure to be followed:

1. Depress operator request to access stop 070007.

z. While the computer is stopped, set the jettison code (see
above, Section B) of any one of the peripherals being used
by the program being jettisoned into the trace switches •

• 3. Set trace mode to PROC.

4. Depress Operator Request.

5. Depres s Start. The prograrn will be released and Stop 070001
will appear, and any of the options listed in Section B may be
exercised.

There is not a jettison procedure in the single program versions of
OPS. If a program cannot run to normal completion, OPS must be
reloaded in order to substitute another program.

G. Operator :Request.

The varied reasons for using the Operator Request button are
described above. .Following are some general remarks regarding
its operation:

1. The button must be lit when it is depressed in order to take
effect. There are times when, during the running of OPS
and the peripheral control routines, it must be inhibited
{light out). Sometimes this is obvious when looking at the
console, but usually the inhibit periods are so brief that the
light seems to be lit continuously or may be tlickering. If
depressing the button has no effect~ it was probably inhibited
at the instant it was depressed. Hesitate, then try again.

2. If a prograrn contains an error which causes it to enter a
loop which does not involve IO processing, OPS will never
be able to secure control in order to process an Operator
Reque st. This condition will usually be apparent in that the
processor will be running (looping) and no 1.0 peripherals
will be running. In order to obrain a memory dump and
jettison the program:

a. Depress Program Stop.

b. Set top row of console switches to 100007 2700 8

c. Set Display-Alter section to INST.

d. Depress ONE I1'6T

e. Depress CLEAR

f. Depress ALTE~

g. Depress START

h. Depress CONT

i. Depress START

3. 10
Page 13
7/8/64

If the computer does not now stop at display 070007, depress
Operator Request. Follow memory dump and/or jettison procedure.
If a second program bad been running before the problem
developed, it may now be continued.

3. When programs are running normally with OPS, operator reque st
is the only safe way to stop the computer without risking the loss
of 10 images. Use of the Program Stop button is not recommended.

Assembly Instructions.

3. 10
Page 14
7 /8/64

OPS source code is a part of the standard library and may be assembled using
the parameters in Section I, by preparing three cards as follows:

7
PID

13
BE GIN

OPS

END

19
0520

pl, pZ, p3, p4, p5

START

Any 4 character PI:> may be used in the BEGIN card. However, Systems
Programming has assigned names to 10 versions for future reference
accordingly. They are:

Name Parameter Combination

0501 * 80, A, SING, TDMP

0502* 80, A, CONC, .TDMP

0503• 90, A, SING, TDMP, TRNSl

0$04 90, A, CONC, TDMP, TRNSl

0505 80, A, SING, PDMP

0506 90, A, SING, PDMP, TRNSl

0507 80, c, SING, TDMP

0508 80, C, CONC, TDMP

0509 90, A, CONC, PDMP, TRNSl

0510 80, A, CONC, PDMP

* These three versions are in the standard system tape.

/Of/D

110tl

IMJO

I iOO

, .,,.

••

o~a 16Nrlt.y

Pu Mfa ~T7 ros,

~ofr ~n.E•6E' /NntttUf"r ~'f

1'RE'-•

I '"'o - I J. 'I *
] ~•40

T1t, T'1? Tt

r „ •. ·--

1(1 .~

C&. L lllT ,,_„ A

1
J

"""b

"' ~
..::? „
~
10
~

-i
(;-,

~
~ ...
~

"' t­„
~
'lb
~

i

I/O SPECIALIZER FOR UNIV AC 1050 CARD SYSTEM

4.1
Page 1
1/31/64

The UNIVAC 1050 Card System I/O Specializer produces source decks (for PAL) ot
the reader, punch and printer routines as specified in directive cards. The
I/O routines produced by the Specializer do not require the 1050 coordination
fUnction.

The directive card is in the following form. The label field is left blank.
The ''Operation field has RDR written for the reader routine, · PCH" for the
punch and .:pRNT for the printer. The · Operands'' field contains a series
of parameters separated by commas. The number, nature and interpretation
of these expressions is determined by the particular routine being specified
as follows:

RDR PCH PRNT

P1 LABEL of AREA associated with routine.
Nwnber of reserve areas associated with routine.

P2 < P2 < 2 .A. P2 <. 2 ; 2 <. P2 <. 2

p Index re ster to contain the relative area address.
TRNSL TRNSL(A or FULL (6) or

P4 . UNTRN UNT H

Example: A reader routine is desired to read cards with the translated card
im.ages read into one of three reserve areas. The label of the first character
of the area is CRDIN. The area relative address of the current card image area
is to be supplied in index register 5. The directive card will contain the
following information.

lum 1 OPERATION 1 OPERl.NDS

The deck produced by the Specializer will contain the proper PAL coding for
the reader routine requested for assembly with the worker program source deck.

Card input for Specialization ls in three parts •

.; .
1Di.rective Card~:
1 -:--··-- .•. ~
/~ -- ·--~-=··..:: :~. !'."x.;

fT.4 ·!q
,I/O Specii.lize~i:.' j
' li-
' - . ·-·-·--';/'

4.,
Page 2
1/31/64

The first part is the I/O Specializer program deck. This is folloYed by
the directive cards to speci.fy any one or all of the I/O routines. The
third part is the source library deck containing the reader, punch and
printer routines. A blank card must follow the third part.

When loading of the first part (Specializer) is completed the computer will
stop with the display JO 01 0000 60. Before hitting "Program Start11 the
Operator may select an1 of the following options.

Depress Sense Switch 1 - No process of !!,E.ecialization -
punches and prints part three
input oards.

Depress Sense Switoh 2 - No punching.
Depress Sense Switch 3 - No printing.

These sense switch options may be combined if required.

SUccessful. Completion - 30 010077 60

Error Stop - 30 01 0001 60 - Incorreot expression on directive card.

4.2
Page l
1/31/64

I/O ROUI INF.s FlH UNIVAC 1050 TAPE SYSTEM

The card reader, pun~h·and printer routines for the tape 1y1tem
are essentially the same as those for the card system. Worker program commu­
nication is exactly as 1tated for the card system. The difference between
the card and tape systems lies in the communication that takes plaee between
these routines and the coordination fanction.

Error recovery is effected by the operator through the
coordinator operator request. (See Coordinator Operating lnstruetions.)

For use of the 1/0 Library, speeifications are included in
the worker program in the following form for assembly. The label field is
left blank. 'RDR' 11 written in the 'Operation' field for the reader routine,
PCH for the puneh and PfiNT for the printer. The 'Operands' field contains a
1eries of parameters separated by commas. The number, nature and interpre­
tation of these expressions is determined by the particular routine being
1pecified, as follows:

In :a two pr inter system the eall 'PRNT7' is availat:le for a
channel 7. print routine. The parameters are identieal aa those for the
first printer routine.

~e -==-~- dOR 1 PCH 1 PRNT

Pl lAlEL of ~h&\ assoeiated with routine.
Nwnber of reserve areas assoeiated with routine.

P2 3 < P2 < 32 l 3 < P2 < 32 l 2 < P2 < 32

P3 Index reJii&ter to conlain the relative area addre_.1_s
TRNSL(~) or TRNSL(a) or FULL(~) or

P4 UNTHN Ul'kN HAlF

lxample: A reader routine is desired to read eards with the translated card
images read into one of three reserve areas. The label of the first eharacter
of the are• is 'CRDIN'. The area relative address of the current card image
area is to be suppli•d in Index register 5. The workor program will contain
the following line of eoding.

LABEL OPERATI~ üPERANDS
(blank) RDR ChOIN, 3, 5

The object program will contain the proper coding for the reader routine
requested.

Routine

Parameter

Pl

P2

P3

P4

CARD PROC PARAMETERS

RDR, RDR9, RDS
RDS9, *REA *REA9
*RES *RES9

PCH, PCH9, PCHS9
*PUN, *PUN9, *PUNS9

LABEL NAME OF AREA ASSOCIATED WITH ROUl'INE

NUMBER OF RESERVE AREAS
3 to 21 3 to 21

4.2
Page 2
Rev. 7/10/64

PRNT, PRNT7, PRPL
PRPL 7, *PRT, *PRPL

2 to 21

INDEX REGISTER TO C~NTAIN RELATIVE AREA ADDRESS

TRNSL (6) or
UNTRN

TRNSL CA) or
UNTRN

Full (6), Half
or 132 (buffered only)

TAPE SYSTEM

1/0 CALL LINE COL

RDR 80

RDR9 90

RDS 80

RDS9 90

PCH 80

PCH9 90

PCHS9 90

PRNT -- -

PRNT7 ---
i PRPL -- -

PRPL7 ---

CARD SYSTEM

*REA 80

*REA9 90

*RES 80

*RES9 90

*PUN 00

*PUN9 90

*PUNS9 90

*PRT

*PRPL

Appendix I

1050

I /0 CARD PROCS

ROlJl'INE

Row Reader Routine - 80

Row Reader Routine - 90

Serial Reader Routine - 80

Serial Reader Routine - 90

Row Punch Routine - 80

Row Punch Routine - 90

Row Punch(Serial)Routine - 90

Channel ~ PRINT

Channel 7 PRINT

Channel 0 W/Paper Low ability

Channel 7 W/Paper Low ability

Row Reader - 80

Row Reader - 90

Serial Reader - 80

Serial Reader - 90

Row Punch - PO

Row Punch - 90

Row Punch(Serial) - 90

Channel '1 PRINT

Channel '1 W/Paper Low ability

TOTAL SIZE

4.2
Page 3
7/10/64

MINIMUM
INCLUDING HIN. 00. OF
NO--'- OF AREAS AREAS

989 3

989 3

637 2

672 2

928 3

928 3

968 3

908 2

908 2

983 2

983 2

794 3

794 3

546 2

576 2

748 3

748 3

78P 3

763 2

823 2

l, RCW RFADER ROUl'INE,

1.1 Subroutines. Referenced by Worker Program.

4.2.1
Page 1
1/31/64

Initialize ~XINRQl. XINRD must be entered before there is any
attempt to get a eard image. base address tetrad (tetrad 36), standby
address tetrad (tetrad 37) and the channel interrupt entry are set to
their apprapriate values. All the indicators, counters and variable
connectors are reset to their initial conditions. No feed card order
is issued. ke-initialization takes place automatically on error
recover7,

Execute (XCTRD). XCTRD must be entered when the worker p~ogram wants
a new card image. The present reserve area is assumed to be released
by the worker program. Thus RAC is increased by l. A feed card
instruction will be issued if there is no card in the track. The
base addre&s of the next reserve area available to the worker program
is given in the IH specif ied by p3. If an error condition exists
and there is neither a card image ready for processing nor an actual
card in the track, the computer will be brought to an orderly stop
with the following in the instruction register:

30 llOOOX 60 where X equals l ot 2,

the number of cards to be reloaded. When no images a?e available
to the worker program, this routine will set the 8 and 4 bits of
the unit 1.1\atus list and transfer control to the coordinator. Control
will be returned to the worker program (when an image becomes available)
at Xb22, the link entry of XCTRD.

1.2 Subroutines Internally Referenced.

Feed Card (xtFCD). XEFCD is entered from the coordinator, interrupt
or the execute subroutine when a feed card instruction can be issued.
This section must not be entered directly from the worker program.
A feed card instruction will be issued if there is no error condition
in the reader, punch or printer and if its &iÄY I switch is on. This
routine will immediately exit if operating under an error condition.
lt also turns on the 2-bit (Operating bit) of the unit status list
if a feed card instruction is executed.

Interrupt (Xl:.ITR). XLITR is automatically entered at each cycle
point 18 or when a feed card instruction is issued while an error
condition exists. In case of an error interrupt, the error sub­
routine is entered setting the 1-bit (error) of the unit status list.
(Control is returned to the worker program without stopping the
computer after an appropriate treatment for the error situation.)
In case of a normal interrupt, the 2nd bit of PHI is tested against
1 and if equal, R~C is decreased by 1. XBFCD will be entered, if
possible•. Further cyclical interrupts will be inhibited if there
is no card in the track and if the~e is no error condition. lf and

*Tbe po1sibilit7 is determined b7 testing RAC against PHI.

4.2.l
Page 2
1/31/64

only if RAC > PHI, there is at least one reserve area available
to the card reader, the 1 and 4 bits at the unit status list are
reset alter a successful read. The tape ~Y I switch is turned
on if the punch is not operating. If there are no cards in the
track during !nterrupt, the 2-bit (operating bit) is also turned
off. Coordinator interrupt is executed during the routine.

Error (XLERR). XLERR is entered from the Interrupt subroutine
when an error condition i& det~eted. The correct number of error
cards is inserted in the error card counter which is the 3rd l.s.d.
of the reader error stop instruction. The 1-bit (error) of the unit
status liat is set. Feed card CXE.FCD) is set to exit. The error
switch in XCTRD is set to stop when all remaining good images are
exhausted.

1.3 Indicators and Counters.

Phase Indieator (PHI). PHI consists of the two least significant
bits of a char.acter to which the tag XI.PHI is assigned. A 1-bit
is inserted in the l.s.b. of PHI when a feed card instruction is
issued. At each cyclical interrupt, successful or not, PHI is
shifted left one bit position and a 0-bit is inserted in the l.s.b.
if there is no reserve area released by the worker program. The
number of 1-bits in PHI shows the number of cards in the track.
This nwnber together with the number of reserve areas filled with
data, not.yet processed or under processing, determines the numter
of reserve areas unavailable to the card reader. At each suecessful
interrupt, the 2nd l.s.b. of PHI is tested against 1 and if equal,
a card image was read into memory during the previous card cycle.

Rea9 Area Indicator (RAI). RAI consists of a character to which the
tag XhffAI is assigned. RAI is initially set to the total number of
reserve areas. Each time the feed card subroutine is entered, RAi
is deereased by 1. A feed card instruction without memor7 advance
is istued. In the latter case, RAi is reset to the initial value.

~orkable Area Indicator (~AI). ~AI consists of a character to which
the tag XbWAI is assigned. WAi is initially set to 1. Prior to
giving the base address of the next reserve area ready for processing
to the worker program, WAI is decreased by 1 and tested against O.
If equal, the base address is reset to the initial value and WAI
is set to the total number of reserve areas. Otherwise, the base
address is advanced by 128 or 192.

Readable Area Counter (RAC), RAC consists of a character to which
the tag XLRAC is assigned. RAC is initially set to the total number
of reserve areas minus 1. RAC is increased by 1 each time the
execute subroutine is entered and is decreased by 1 each time a card
image is successfully read into memory. Prior to giving the base
address to the worker program, a test is made to determine if RAC is
equal to the total number of reserve areas. If equal, the execute
subroutine will wait until a card image is read into memory. Other­
wise the next working area is available to the worker program.

lA. Serial Reader Routine

4.2.l
Page 3
1/31/64

In the ~&rial read routine the communication witb the
worker program is exactly the same as it is with the Row Reader.

All the Information stated concerning tbe Row Reader,
Its subroutines and construction apply directly to tbe Serial
Reader with the following exception:

The Phase Indicator (PHI) is non-existent in tbe aerial
reader routine. Only one card at a time may be in the track.
Tberefore, the error stop will contain a reload at ~ or 1 card
as compared to l or 2 cards in tbe row reader routine.

Tbere is no cyclical Interrupt witb tbe serial read
routine. Card feeds are iasued during interrupt approximately
0.5 ms after the Interrupt is received.

The routines will recover from all errors with the
exception of an output jam.

FOR ROUTINES *REA, RDR, *REA9, RDR9,

*RES, RDS, *RES9, RDS9

ROW & SERIAL

U 1050 READER

REASON FOR RESULTING RECOVERY PROCEDURE
STOP CONDITI~

STKR full Recoverable Clear problem at reader, reload number of cards as
Hopper empty indicated by stop display even if this does not agree
Registration with the number in the error stacker. Reload hopper,
Marginal check depress ready and start buttons.

All others Non-recoverable Any error that causes the reader drive motor to be
stopped is non-recoverable.

K>TE: The recovery procedure for the tape system using the coordinator is exactly the same as stated above
with one exception. That being that after start button is depressed, the operator request button
must be depressed to signal the coordinator that an error recovery attempt is being made. Depressing
the start button after this will cause the program to attempt recovery.

1
1

2. PUNCH R OUI INE •

2.1 Subroutines. Referenced by the Worker Program.

4.2.2
Page 1
1/31/64

Initialize (XINPHl. XINPH must be entered before there is any
attempt to edit data to be punched. All the reserye areas are
cleared to spaces. Those areas between two punch areas are not
altered. The channel interrupt entry is set to its appropriate
value. All the indicators, caanters and variable connectors are
reset to their initial conditions. The base address of the first
working area is given to IR2. Issue and link addresses are stored
in coordinator.

Execute CXCTPH). XCTPH must be entered when the worker program
finished the editing of data and wants !t to be punched. PAC is
increased by 1. A punch instruction will be issued if the previous
one has been completed. The base address of the next reserve area
available to the worker program is given to IR specified by p3. If
none exists tbe 8 and 4 bits of the unit status list are set and
control is transferred to the coordinator. ~hen an area becomes
available, control is returned to the worker program through~the
link entry XC22.

Close Out (XCLPH). XCLPH must be entered when the worker program
wants all the remaining Images to be punched and the punch unit to
be cleared of data cards. After all the data cards are punched,
a feed instruction is issued to send the last valid card into the
output stacker.

2.2 Subroutines Internallx Referenced.

Error CXCERR). XCERK is entered from the interrupt subroutine when
an error condition is detected. The computer is brought to an
orderly stop with the following in the instruction register:

30 120000 60

~hen recovery is attempted through the coordinator, the follow-up
punches for the two last cards will be done. One or two cards will
be selected into the error stacker. The 1-bit (error) is set in the
unit status.list. The recovery switch 11 set in XCPCH. The
coordinator stop routine is executed and after the stop display when
the run depre11ed control 11 transferred to the coordinator •

. „ Punch CXCPCH). XCPCH is entered from the coordinator, Interrupt
or the execute subroutlne when a punch instruction can be issued.
The punch lnstruction is always issued without mcmory advance. The
base address Ctetrad 40) is updated (advanced or reset) prior to
issuing the puncb 1nstruction. This 1ectlon must not be entered
dlrectly from the worker program. Error recovery is effected tbrougb
this routine. The tape llAY I ls turned off upon the tssuance ot a
punch order. The 2-bit (operatlng bit) 11 turned on.

4.2.2
Page 2
1/31/64

Inter~upt (XCITR). XCITR is automatically entered when a punch
instruction is completed successfully or not. In case of a
successful·interrupt, the contents of tetrad 40 is stored to a
temporary storage so that it can be used for a follow-up punch
when an error condition is caused by the next punch instruction.
PAC is decreased by 1 and tested against O. lf PAC is not O,
XCPCH will be entered. In case of an error interrupt, the error
subroutine is entered and the computer is brought to an orderly
stop. The unit status list 2 and 4 bits of the punch are turned
off upon successful interrupt. lf the reader is not operating the
tape &~Y I is turned on. The coordinator interrupt entry is
executed to enable other 1/0 units a chance to operate.

2.3 Indicators and Counters.

Punch Area Indicator (PAI). PAI consists of a cbaracter to which
the tag XCPAI is assigned. PAI is initially set to l, Each time the
punch subroutine is entered. PAI is decreased by l and tested against
o. If equal, the base address of the reserve area next to be punched
(tetrad 40) is reset to the ini tia 1 va lue and PA I is set to the tota 1
number of reserve areas. Otherwise, the base address is advanced
by 128 or 192.

11/orkable Area Indicator (WAI). ~Al consists of a character to which
the tag XCWAI is assigned. WAI is initially sat to•UJe total number
of reserve areas. Prior to giving the base address of the next
reserve area ready for processing to the workar program, WAI is
decreased by l and tested against O. If equal, the base addre~s
and WAI are reset to their initial values.

Punchalle Area Counter (PAC). PAC consists of character to which
the tag XCPAC is assigned. PAC is initially set to o. PAC is in­
creased by l each time the execute subroutine is entered ·and decreased
by 1 each time a card image is saccessfully punched (but not yet
check read). Prior to giving the base address to the worker program,
a test is made to determine if rt\C is larger than the total number of
reserve areas minus 2. If !arger, the execute subroutine will wait
until a punch instruction is completed and a reserve area is released
to the worker program. Otherwise, the next working area is available
to the worker program.

...,
N GI
• ao

N 'IS
.... • Po<
~

>C c::~

"C 0 '° c::
GI "-'O
p. u
p. GI_
< Cl)

FOR ROtrrINES PCH, PCH9, PCHS9, *PUN, *PUN9, *PUNS9

PUNCH
REASON FOR INTERNAL PANEL RESULTING RECOVERY No. of cards that should

STOP INDICATOR LIGHT OONDITION PROCEDURE be in error STKR at stop

Read check Hole Ct error Read check Recoverable Depress ready and
start buttons.

Stacker ful l Non-ready STI<R full Recoverable Depress ready and start
after emptying stacker 0

Hopper empty Non-ready Hopper empty Recoverable Load hopper with cards
depress ready and start (J

Off-line Non-ready Off-line Recoverable Depress off-line, ready 0 - initially
and start buttons 1 - if it occurs

while punching

All others Non-ready SKEW A & B *Non-
ENTRY A & B recoverable 1 or 0
EXIT A & B (See Below)
JAM
POWER LOSS

*lt is possible to recover from these errors at the risk of duplicating or losing a maximum of 2 images depending
upon conditions. However, the recovery attempt will be successful in most cases. (No images lost of duplicated)
for jam type errors (i.e., SKEW, ENTRY, EXIT and JAM panel lights). The punch track must be cleared and blank
cards manually fed through all stations. After this is done depress ready and start. A read check will occur and
the procedure for recovering from read-checks should then be followed. For other than jam type errors follow
read-check procedure.

NOTE: The recovery procedure for the tape system using the coordinator is exactly the same as stated above with one
exception. That being that after start button is depressed the operator REQUEST button must be depressed to
signal the coordinator that an error recovery attempt is being made. Depressing the start button after this
will cause the program to attempt recovery.

3, PRINI'ER RCUIINE.

3.1 Subroutines. Referenced by Worker Program.

4.2.3
Page 1
1/31/64

Initialize (XI~PR or (XINP7), XINPR must be entered before there is
any attempt to edit data to be printed. All the reserve areas are
cleared to spaces. The channel interrupt entry is setto its approp­
riate value. All the indicators, counters and variable connectors are
reset to their initial conditions. The base address of the first
working area is given to IR3. The link and issue addresses are stored
in the coordinator.

Execute (XCTPR) or CXCTP7). XCTPR must be entered when the worker
program finished the editing of data and wants it to be printed,
XADVC must be supplied with the number of lines to be advanced by the
worker program before entering XCTPR. (X.L\DVC) is transferred to one
of the temporary storages. PfC is increased by 1. A print instruc­
tion will be issued if the previous one has been completed. The base
address of the next reserve area available to the worker program is
given in the IR specified by p3, if one exists, otherwise the 4 and
8 bits of the unit status list are set and control is transferred to
the coordinator link. When an image area becomes available control
will be transferred to the worker program from the coordinator
through the printer link entry X.L~22.

Close Out (XCLPR) or CXCLP7). XCLPR must be entered when the worker
program wants all the remaining images to be printed. This section
is entered each time the remote print or the advance paper subroutine
is entered.

3.2 Subroutines Internally Referenced.

Print (XAPRT) or (XAPR7), XAf'RT is entered from the coordinator,
interrupt or the execute subroutine when a print instruction can be
issued. The print instruction is always issued without memory
advance. Prior to issuing the print instruction the base address
Ctetrad 32) is updated (advanced or reset) and the line advance count
(tetrad 33) is supplied with the appropriate number of lines to be
advanced, if MAY I is off no print instruction is issued. Error
recovery is effected through this routine. This section must not be
entered directly from the wcrker program. The 2-bit (operating bit)
is turned on when XF is issued.

Interrupt (X.UTR). XAITR is automatically entered when a print in ... ;
struction is completed successfully or not. In case of a successful
interrupt, PAC is decreased by 1 and tested against O. If PkC is
not O, XAPRT will be entered. In case of an error interrupt, the
error subroutine is entered and the computer is brought to an orderly
stop. The coordinator interrupt routine is executed during this
time to enable other peripherals to operate. The 2 and 4 bits of the
unit status list are reset upon successful interrupt.

3.3

4.2.3
Page 2
1/31/64

Advance Paper CXCT~D) or CXCTA7). XCTAO must be entered when the
worker program wants the paper to be advanced the number of lines
specified. This number must be supplied to XADVC before entering
XCTAD. XCLPR is executed before issuing the advance paper instruction.

Call (XCTOL) or (XCT07). XCTOL must be entered when the worker pro­
gram wants a 1remote area' tobe printed. A 'remote area' means a
print area which is not included in the reserve areas. The worker
program can place any number of 'remote areas' anywhere he wants as
far as the memory capacity permits. XCTOL can be used to print such
things as heading lines, page numbers and so on from these 'remote
areas' saving the worker program the trouble of t1.·,msferring constants
to reserve areas. Prior to entering XCTOL, the owrker program must
supply the location XRMAR (3 characters) with the base address of the
remote area end XADVC with the number of lines to be advanced. The
size of a remote area must be the same as for a reserve area, that is,
128 characters in the full line mode or 64 characters in the half line
mode. XCLPR is executed before issuing the print instruction.

Error (XJ.\ERR). XAERR is entered from the interrupt subroutine when
an error condition is detected. Unit status list 1-bit is set. The
computer is brought to an orderly stop with the following in the
instruction register, after the XCCRD stop routine is executed:

30100000 60

Nhen recovery is attempted through the coordinator, the previous print
or paper advance instruction will be reissued. Then control is
returned to the worker program.

Communication between the worker program and the print routine is
effected as previously noted through JR's to various tags. In the cas9
of the channel 7 print routine, the tags involved in the JR's have the
least significant digit changed to seven (7).

Indicators and Counters.

Print Area Indicator (PAI). PAI consibs of a character to which the
tag XAP.ll.I is assigned. PAI is initially set to 1. Each time the
print subroutine is entered, PAI is decreased by 1 and tested against
o. If equal, the base address of the next reserve area to be printed
(tetrad32) is reset to the initial value and PAI is set to the total
number of reserve areas. Otherwise the base address is advanced by
64 or 129,

''Jorkable Area lndicator Cl'JAI). \'JAI consists of a character to which
the tag XA!~AI is assigned. 'VAI is initially set to the total number
of reserve areas. Prior to giving the base address of the next
reserve area ready for processing to the worker program, WAi is de­
creased by 1 and tested against o. If equal, the base address and
WAI are reset to their initial values,

4.2.3
Page 3
1/31/64

Printahle Area Counter (PAC). PAC consists of a character to which
the tag x~rAC is assigned. Prc is initially set to o. PAC is in­
creases by 1 each time the execute subroutine is entered and decreased
by l each time a line is successfully printed. Prior to giving the
base address to the worker program, a test is made to determine if
PAC is equal to the total number of reserve areas. If equal, the
execute subroutine will wait until a print instruction is completed
and a reserve area is released to the worker program. Otherwise the
next working area is available to the worker program.

Storage Inidcators (XADVC). There are two 3-character indicators
which control the transferring the number of lines to be advanced
(XADVC) to temporary storages and to tetrad 33. One of them appears
in the execute subroutine and is used to store (XADVC) to one of the
temporary storages. The other appears in the print subroutine and is
used to bring the contents of the proper temporary storage into
tetrad 33.

..;;t

(") GI
• 00

N „
1-4 • Po

..;;t
~
'" c ..;;t
"O 0 '° c "" GI „ 0
c. u
C. GI...._ < cn,.....

REASON FOR INTERNAL
STCP INDICATOR

Off-Line Non-ready

Carriage out Non-ready

Ribbon out Non-ready

Paper low Paper low
If paper low
option has
been called
in the print
PROC.

All others Non-ready -

FOR ROUTINES PRNT, PRNT7;, PRPL, PRPL7, *PRT, *PRPL

U 1050 PRINTER "CARD SYSTEM"

PRINTER
PANEL RESULTING RECOVERY
LIGHT CONDITION PROCEDURE

Off-line Recoverable Depress off-line, ready and start buttons

Carriage out Recoverable Depress carriage in until carriage is completely
in, then ready and start buttons.

Ribbon out Recoverable Call technician.
When ribbon restored depress ready and start buttons.

Forms out Recoverable Depress manual print button and start. This will
cause one line to be printed. Continue this procedure
until all printing is f inished for that page or until
line advance between pages is executed, then reload
new paper stock. Depress manual print and start, and
the program wil 1 continue.

Overheat Non-recoverable lf recovery attempt is desired at risk of a lost or
o.c. fault duplicated line, clear problem, depress ready and
forms runaway start buttons.
etc.

N<YI'E: The recovery procedure for the tape system using the coordinator is exactly the same
as stated above with one exception. That being that after start button is depressed
the operator REQUEST button must be depressed to signal the coordinator that an
error recovery attempt is being made. Depressing the start button after this will
cause the Jrogram to attempt recovery.

Appendix II
Section 4.2.3
7/10/64 Page 5

PAPER LOW MANUAL PRINT OPTION FOR ROt.rrINES PRNT, PRNT7, PRPL, PRPL7, *PRT, *PRPL

A. Titis option allows the worker program at the additional cost of ~O
characters to print to end of a page (i,e., fixed forms, etc,,) when the
printer stops in a paper low condition,

The stops are different from normal error stops and are as follows:

Channel 0 Printer <PRNT) 30 010700 60
Channel 7 Printer (PRNT7) 30 017700 60

To include this option in the print routine change the PROC call line as follows:

1. USE PRPL in place of PRNT
2. USE PRPL7 in place of PRNT7

B, The following procedure must be used when the paper low stop is reached:

Depress the manual print button, then the start button, This will cause
one line to be printed and the program will return to the paper low
stop. Continue this procedure until the last line for that page is
printed or until page advance is executed (paper now past hammers).
At this point reload paper stock depress the manual print and start
buttons and the program will continue.

UNIVAC 1050

~YSTEM AND LIBRARY TAPE CONVENIION$

TABLE OF CONTENTS

5.6
Page 1
7/17/64

1.0 Load Block , •

Page

2

2.0 Program Header Block - Object Code • • • • • , • , ••• 2

).0 R Block ••• • • • • • • • • • • • • • • • • ••• • • 2

s Block • • • • • • • • • • • • • • • • • • ••• • • • 3

5.0 w Instruction Block • • • • • • • • • • • • • • • • • • 3

6,0 T - Block •• • • • • •• • • • • • • • • • • • • • • • •

7.0 Loadkey Block • 4

s.o Program Sentinel Block - Object Code • • • • • • • • • • 4

9.0 Tape Sentinel • • • • ••• • • • • • • • • • • • • • • • 4

10.0 Source Header •

u.o Source Sentinel • • • • • • • • • • • • • • • • • • •••

12.0 Source Instruction • • • • • • • • • • • • • • • • • • • 5

1.3.0 Tape Layouts • • • , • • • • • • • • • • • • • • • • • • 6

14.0 System Tapes • 7

15~0 Library Tapes • 8

16.0 3C Systems Tapes • 9

lfgll: .3C tapes will be in compatible mode at 556 BPI.

SYSTEM TAPE CONVENTIONS

5.6
Page 2
7/17/64

1.0 LOAD BLOCK (165 Characters in Length)

The first two (2) blocks of the master tape are tape load blocke
occupying memory location 170008 to 17600g.

Position 0
Position 1-3
Position 4-25
Position 26-29
Position 30-31
Position 32-143
Position 144-164

L (Block Type)
Binary block count
Not used
Starting address
Numbers of characters to be loaded this block
Data to be loaded
Not used

These blocks are generated only by the AJP:X. tape utility routine
as the first two blocks on tape (see Figura 1) when called for
by parameter 3 of the Inout card of AJAX.

2.0 PROGR!lM HEADER BLOCK (165 Characters in Length)

Position 0
Position 1-3
Position 4-7
Position 8-164

q (053) Block Type
Block number (binary)
Run ID
Not used

This block must precede all object programs on tape. It is auto­
matically generated by the PAL Freestanding Tape Assembler.

3.0 'R' BLOCK (165 Characters in Length)

Position 0
Position 1-3
Position 4-5
Position 6-9
Position 10-12
Position 13-15

Position 16-135
Position 136-139
Position 140-143
Position 144-145
Position 146-147
Position 148-164

R(054) Block Type
Block number (binary)
Not used
Relative address of assembly
Total number of locations assigned to program
Number 1 higher than highest location into
which information will be loaded
Not used
077777777
Run ID
Load Key
02001 (R in col. 74)
Not used

5.6
Page 3
7/17/64

4.0 'S' BLOCK (165 Characters in Length)

Position 0
Position 1-.3
Position 4-135
Position 136-139
Position 140-143
Position 144-145
Position 146-147
Position 148-164

S (065) Block Type
Block number (binary)
Not used
077777777
Segment ID
Load Key
01200 (S in col. 74)
Not used

Segment ID is Run ID (or last segment ID) plus decimal 01.

5.0 1 INSTRUCTION1 BLOCK (165 Cha.racter Block in Length)

Position 0
Position 1-3
Position 4-5
Position 6-25
Position 26-29
Position J0-31

Position 32-143
Position 144-145
Position 146-147
Position 148-164

W (071) Block Type
Block number (binary)
Not used
Reloca.tion mask
3tarting address
Number of characters to be loaded from this
block
Data to be loaded
Check sum
Blank
Not used

6.0 'T' BLOCK (165 Characters in Length)

Position 0
Position 1-3
Position 32-36
Position 32-36
Position 37-38

Position 39-143
Position 144-145
Position 146-147
Position 148-164

T (066) Block Type
Block number (binary)
Not used
Jump instruction to start of program
Program (excluding routine header) or segment
card oount
Not used
Check sum
01100 (T in col. 74)
Not used

7.0 'LDKEY' BLOCK (165 Character Block in Length)

5.6
Page 4
7/17/64

Position 0 Any allowable key supplied by the use of the
1LDKEY 1 assembler directive

Position 1-3
Position 4-5
Position 6-25
Position 26-29
Position 30-.31

Position 32-143
Position 144-145
Position 146-147
Position 148-164

Block number (binary)
Not used
Relocation mask
Starting address
Number of characters to be loaded from this
block
Data to be loaded
Check sum
Blank
Not used

8.0 PROGR.AM 3ENfINEI, BLOCK (165 Characters in Length)

Position 0
Position 1-3
Position 4-164

Y (073) Block T,ype
Block number (binary)
Not used

This block must follow all object programs on tape. It is auto•
matically generated by the PAL tape assembler.

9.0 TAPE SENTINEL BLOCK (165 Characters in Length)

Position 0
Position 1-3
Position 4-164

Z (074) Block Type
Block number (binary)
Not used

This block is the last block on tape. There are always two (2)
present.

10.0 SOURCE PROGR.AM or PROC HEADER BLOCK (165 Characters in Length)

Position 0
Position 1-3
Position 4-7
Position 8-164

D (027) Block Type
Block number (binary)
Run ID
Not used

5.6
Page 5
7/17/64

11.0 SOURCE PROGRAM or PRQC SENTINEL BT.DCK (165 Characters in Length)

Position 0
Position 1-3
Position 4-164

F (031) Block Type
Block number (binary)
Not used

11.1 Block types 10 and 11 are produced on tape from 80 or 90 column
cards through use of AJAX (which see). The tape block positioning
of information corresponds with column positioning on cards.

11.2 Type 10 must precede all source programs or PROCS and type 11 must
follow all source programs or PROCS that are being filed on tape
from cards.

12.0 SOURCE CODE atOCK (87 Characters in Length)

Position O
Position 1-3
Position 4-5
Position 6-79
Position 80-86

12.1 BQn:

E (030) Block Type
Block number (binary)
Unused
Characters 7-80 of source code
Page-Lina-Insert number

Object header and sentinel cards correspond character for character
with object header and sentinel blocks when filing cards on tape.

TAPE LAYOUTS - FIGURE 1

MA$TER TAPE

Tape Load
_B_lock 1
Tape Load

_B_lock 2
Program Header Block

_0-Q_era tina S:vstem

Operating
System
Instruction

_B_l...Q.cks
Program Sentinel
Block
Program Header Block
Ta3)~ Utili tr

Tape Utility
Instruction
Blocks

lTogram Sentinel
Block
Program Header Block
PAL Pass 1

PAL Instruction
Blocks

Program Sentinal
_B_lock
Program Header Block

...S.ource PROC

Source
Coding

Program Sen·tinel
Block ,.,......-

~­.....
.. ---- ..

Tape Sentinel
lst lock
Tape Sentinel

d ock

1

LIBRARY TAPE

Source
Pro gram

111

1 Program Sentinel
Block

5.6
Page 6
7/17/64

Program Header Bloc
Source Pro am · 2

Source
Pro gram

2
Program Sentinel
lock

5.6
Page 7
7/17/64

Systems tapes and libraries are constructed through the use of AJAX
and OPUS utility programs. (See Figure 1).

14.0 SYSTEM TAPES

F.ach system tape contains, immediately following the load blocks,
three (3) operating systems. They a.re:

14.1 a.
b.
c.

80 col., JA, single program
80 col., JA, concurrent operation
90 col., JA, single program

14.2 The operating system desired by the user must immediately follow
the load block~ on tape. Therefore, if the 80 col., JA, single
program version ~ not desired, the operating systems ~ desired
must be deleted from the tape (use AJAX) in order to have the
operating system desired immediately follow the loader. Through
the use of AJA:I.. a user may create as many different operating system
master tapes as required. If none cf the above operating systems is
desired, a user may delete them all and file one of the various
operating systems available through use of the OPS source code
PROC. (See UNIVAC 1050 Operating System documents.)

14.J EXAMPLE 1.

To create a 90 col., JA, single program operating system master tape.

MASTER TAPE MASTER TAPE

As Received As Reguired

Load Blocks Load Blocks

stem

Remainder of
. Tape

---"-------

\ Delete these

Resulting in--) Remainder of
'fäpe

14.4 EXAMPLE 2.

5.6
Page 8
7/17/64

If none of these operating systems are desired a user may simply
assemble the particular operating system desired and replace the
80 col., JA, single program operating system with his assembled
version or by filing it as the first routine on tape.

TAPE AS
RECEIYED

Load Block,..L_

80 Col., JA
Single Progr
Operating
S stem

80 Col., 3A
Concurrent
Operating

stem

90 Col., 3A
Single Progr
Operating 1
System „,,.--·

· ..

Replace this
(by AJAX) with
*newly assembled
desired operating
system or
File as lst pro­
gram on tape

(see AJAX).

TAPE AS
DESißED

Load Blocks

90 Col., 3A
Concurrent
Operating
Svstem

80 Col., JA
Concurrent
Operating
System

~-1

14.5 *See operating system documents for information on how to assemble
the desired operating system.

15.0 LIBRAßY TAPES
Library tapes may be created as desired (see Figura 1) in order
to maintain source programs on tape. They may be directly
assembled from this library. (See PAL Tape Assembler instructions).
Library ta.pes may consist of either or both object and source code
and must follow the tape conventions herein desoribed. All programs
either source or object must be preceded by a program header card
and followed by a program sentinel card when being filed on tape.

16.0 3C SYSTEM TAfES

5.6
Page 9
7/17/64

Eaoh 3C system tape will contain immediately following the tape load
blocks two operating systems. They are:

16.l a.
b.

SO col., JC, single program
SO col., 30, concurrent operation

This tape varies from the standard 3! systems tape in this respect
(See 14.0).

BQll;: JC tapes will be in compatible mode at 556 BPI.

(

AJAX

TAPE MAINTENANCE SYSTEM

POR THE UNIVAC 1050

AJAX -

8.5
Page l
7110/64

AJAX ia an integrated aet of aervice routinea providing the function1
necessary to create and maintain Tape Librariea, Systems Librariea and
Master lnstruction Tapes.

AJAX ia eaaentially a tape to tape utility program with command carda
from the Reader directing its servicea. frograma (object and aource)
may be filed, replaced, deleted, printed, copied, liated, altered and
punched.

AJAX will ~ accept object carda to be filed or replaced from the
Reader nor will it punch object carda from tape. Theae functiona are
provided by the Object Pal Utility Service, Q!:l§ (which aee>.

Tape fonnata are thoae de1cribed under 1050 System Tape formats.

Card formats are those of the Pal 1050 Asaembly Syatem.

There are four typet of Coanand Cards:

Type 1. 1/0 Co111111and INOtn' describea the major input and output
peripherale.

Type 2. Program Correction Commanda • DELE, FILE, REFL, COPY & ALTER;

Type 3. Service Commanda • PRINT, LIST, PUNCH.

Type 4. Miac. Commanda • STOF 1 SORS, HDR9·

lNOtrr COMMAND.

FORM:

where:

OP ;I OPERANDS

INOUf pl, p2, p3

pl = specifies the Input device
C = Reader
0 thru 9 = Tape Unit

p2 = specif ies the Output device
C = Punch
F = Printer
O thru 9 = Tape Unit

p3 = blank or L

a.s
Page 2
7/10/64

lf L, AJAX will produce a two block 170008
Tape Loader as the first two blocks on the
Output Tape. This function performed only
if p2 names a Tape Unit.

The following parameter combinations on the INOUf card are ~
acceptable:

c,c: T,T (if both name same unit).

An INOur card !m!!! precede all other Command cards.

DELE COMMAND,

FORM:

where:

l!Qll:

PROGRAM CORRECTlON COMMANDS

OP OFERANDS

OELE pl, p2

8.5
Page 3
7/10/64

pl = program to be deleted (Max. 4 char. 1,0,)

p2 = blank or SKIP, if SKIP, all programs from
present position of Input Tape to pl will be
deleted, otherwise, they will be copied.

The SKIP parameter is discussed at the end of this dotument.

COFY COMMANDe;

FORM:

where:

REIL COMMAND,

FORM:

where:

OF OPERANDS

COPY pl 1 p2

pl = program to be copied <Max. 4 char, 1.0.)

p2 =blank or SKIP, if SKIP, all programs from
present position of Input Tape to pl will be
deleted, otherwise, they will be copied.

OF OPERANDS

REPL or pi, p2 (source only)
REPL(T) pi, p2 (1ource or object from tape)

pl = program tobe replaced (Max, 4 char. 1.D.)

p2 = blank or SKIF, if SKIP, all programs from
present position of input tape to pl will
be deleted, otherwise, they will be copied.

(T) = Name1 Tape Unit (0·9) containing replacement
program.

F1 LE COMMAND,

FORM:

where:

ALTER COMMAND.

FORM:

where:

OP 1 OPERAND$

FILE or pl, p2 (1o.urce only)

a.s
Page 4
7/10/64

FILE(T) pl, p2 (source or object from tape)

pl = program after which the filed program ia to be
placed, unlesa it ia to be the firat program
on tape or if it is to be filed immediately after
a program just operated on, in which case pl muat
equa l "HERE" •

p2 = blank or SKir as in REPLi

(T) = Name• Tape Unit (0·9) containing program to
be filed.

OP OFERAND

ALTER pl, p2

pl = program tobe altered (Max, 4 char. 1.D.)

p2 = blank or SKIP as in REPL.

This card must precede a SORS or HDR correction command (which see)
and is used enly in conjunction with them,

s.s
Fage .5
7110/64

*SERVICE COMMANDS • (No Outpyt Tape)

FRINT COMMAND.

FORM:

where:

PUN(;H COMMAND.

FORM:

where:

LIST COMMAND.

FORM:

OP OPERAND

PRINT pl, p2

pl = program to be printed (Max. r char. I.D.)

p2 = ~ or SKIP, if 6 AJAX will print from preeent
position of Tape to pl inclusive.

p2 of lNOtTr card mu1t = P•

OI OPERAND

PUNCH pl, p2

pl = program to be punched.

p2 = 6 or SKIP, if 6 AJAX will punch from preeent
position of Tape to pl inclusive.

p2 of INOur card must = c.

OP OFERA D

LIST

Thie co11111and ha1 no parameters and will LIST each program header
w/sentinel that 11 contained on the Input Tape,

p2 of INOur card must = P•

J!?!!:

The SKIP PARAHEl'ER 1hould not be used on the STOI CARD following
service command1,

*Not to be used with Program Correction Command1, or intermixed with
each other lince INOU? Command prohibit1 uae of r·rtnter and Punch
simultaneouely,

STOP COHMAND,

FORM:

MJSC, COMMANDS

OP OPERAND

STOP pl, p2

8,5
Page 6
7/10/64

Thi1 command 11 alway1 the la1t cammand to AJAX and mu1t alwaya be
pre1ent,

lf pl ia blank, AJAX will copy tha ramaindar of the :lnput
to the output a• preeet by the lNOUl' card ucept in
tha caee of PRINT and PUHCHe

lf pl 1• "SKIP", AJAX will terminate the output at it•
preaent locat:lon,

p2 may be blank or "END",

lf p2 11 "BND", AJAX will reload the operatins ayatem fr•
Tape Unit O when it1 function1 are complete after
depra11ing the 1tart button at the 1ucce11ful com•
pletion STOP"e If p2 11 A AJAX will re•initializa,
upon dapre11ing 1tart.

8.5
Page 7
7/10/64

The following two commands must be preceded by an ALTER card.

SORS COMMAND,

FORM: OP orERAND

SORS nl, n2, n3

Thia COlllD&nd 11 u1ed to make individual 1ource card correction1 by the
deleting, adding or replacing of individual linea of code,

NOTE· -·

where: nl = page•line•in1ert no. where correction 11 to
1tart. lf n2 = o, 1ource carda which follow
will be in1erted after nl.

n2 = page•line•in1ert no. of la1t card of deletion.
AJAX will delete from nl to n2 inclu1ive when
n2 • o.

n3 = number of source card correction1 to be added
which inaediately follow thi1 card. (0 to 9).

1. nl = n2 if replacing one card.

2. lf more than 9 con1ecutive 1ource carda are being in1erted
a 1econd ~ COlmll&nd i• required for each additional 1et of
9 in1ertion1, where nl mu1t equal 11REU11 , n2 muet be IJ and
n3 the number of carde,

HDR COMMAND,

FORM: OP OPERAND

HDR

Thi1 command i1 u1ed to replace a 1ource or object header card, lt
mu1t be inaediately followed by the new header card.

a.s
Page 8
7/10/64

(T) = Variable Tape Unit
*RRRR : 4 ehar. Prog. t.D.

§XAMPLES

SERVICE FUNCflON COMMM!D NaDED

PRlN'l'lNG Print Entire Tape l. lNOUf <T>' P
2. STOP

Print One Program l. lNOtJr (T)' p
2. PRINT *RRRR, SKIP
3. STOP

Print Several Programa 1. lNOtJr (T), P
2. PRINT *RRRR, SKIP
3. PRINT *RRRR, SKIP
4. STOP

Liat Programs f rom 1. lNOtJr (T)' l?
Tape 2. LIST

3. STOP

PUNCHING Punch Entire Tape l. lNOUf (T), C
(Source only) (Will SKIP Obj. Prog.) 2. STOP

Punch One Program l. ttllur (T) 1 C
-:- 2. PUNCH *RRRR, SKlP

3, STOP

Punch Several Program1 1. lNOUf (T), C
2. PUNCH *RRR&, SKIP
3. PUNCH *RRRR, SKlP
4. STOP SKIP

CARD TO TAPE Cant to Tape 1. INOtJr c, (T)
(Source only) 2. STOP

Cant to Tape, Tape 1. tNOur c, (T), L
LdR to be added. 2. STOP

3. Canta follow in reader.

~
99. 1 Tape Sentinel

8.5
Page 9
7110/64

SERVICE FUNCl'lON CO*AND N!EDED

COPYtNG Copy Tape w/Loader 1. lt«>Uf CT>, (T), L
2. STOP

Copy Tape w/o Loader l. tt«>ur CT>' (T)

2. STOP

Copy One Pl'08ram w/o 1. INOUf (T), CT)
Load er 2. COPY *RRRll1 SKIP

3. STOP SKIP

Copy all Programa from 1. lNOUf (T) 1 (T), L
Card #2 to Card #3 in· 2. COPY *RRRR., SKIP
clu1ive wlth Tape Loader 3. COPY *R.RRR

4. STOP SKtP

m.nc File Cne Program from 1. ur> ur (T), (T)
Carda (Source Only) and 2. nLE *RRRR CProgra
copy ramainder of Input before tha one

filed)
3, Prcar• ta be ftLBD

' 99. STOP

File One Program from 1. INOUf (T)' <T>
Tape Unit 4 (Source or 2. f.1LE4 HER!
Object) at the preaent 3. STOP
po1ition of the Tape and
copy remainder of Input.

File One Program from l. INOUl' (T) 1 CT)
Tape Unit 3 and termlnate 2. nLB3 *RRRR <Proara
Output at that poin on before the one
Tape. filed)

3. STOP SKIP

8 • .5
Page 10
7/10/64

SERVICE FUNCTION COMMAND NE!DED

REPLACING REPL one Program f rom 1. lNOUf CT>, (T)
Card1 (Source only) and 2. RBPL *RRRR
copy remainder of Tape. 3. Program Replacement

~
99. STOP

REPL one Program f rom l. INOUf CT) 1 CT>
Tape Unit 4 (Source or 2. REPL4 *RRRR
Object) and copy all of 3. STOP
Input.

REIL one Program from 1. lNOUf CT> 1 CT)
Tape Unit 6 and another 2. REPL6 *RRRR
from Tape Unit S and 3, REPL.5 *RRRR
copy all of Input. 4. STOP

REPL two programs from 1. INOUf CT), CT>, L
Tape Unit 7 and copy all 2. REPL7 *RRRR
of Input. W?'ite Loader 3. REPL7 *RRRR
on front of Tape. 4, STOP

DELEl'lNG DELEl'E one program, LclR 1. INOUf CT), (T), L
to Output Tape. 2. DELE *RRRR

3. STOP

DEL:!l'E programa CCCC 1, INOUf CT), (T)
thru T'rTT from a Tape 2. DELE cccc
conaiating of routine1 3. DELE 'n'TT, SKlP
AAAA thru zzzz W/O 4, STOP
Tape Loader.

SOUR.CE Insert S Source Carda in 1. lNOUf CT>, (T)
CORRECTIONS program BBBB, after 2. ALT.ER 8888
WHILE page•line•inaert 3. SORS 00600, o, .5
COPYING i'Oo600 and copy re•

.~ mainder of Tape.
·.5 Source

Additions
,9, STOP

Same as above but de• l. INOU? CT), CT)
lete linea 00600 to 2. ALTER BBBB
006QS while making 3. SORS 00600' 0060.5,
addttiona.

~ .5

~ •S Source
Addition•

9. STOP

1
1 . '

8.5
Page 11
7/10/64

SERVICE FUNCTION CO?+fAND NEEDED

SOURCE Delete linea 00600 to 1. INOUl' (T) 1 (T)
CORRECl'IONS 00610 in program BBBB 2. ALTER BBBB, SKlP
WHILE while akipping from 3. SORS 00600,00610,0
COPYING beginning of the Input 4. STOP

to BBB and copying re•
mainder to Output.

HdR CHANGE Replace header program 1. INOUl' (T), (T), L
BBBB Output Tape tQ 2. ALTER BBBB
have a Tape Loader and 3. HdR
copy entire Tape. 4. New HdR Card

s, STOP

IMFORTANT NOTES ON AJAX

1. The output tape will never have a tape loader on the front
unleaa ~he p3 parameter of the INOur card ia "L".

2. OBJECT CARD handling 111 not performed by AJAX, uae OPUS (Object
Pal Utility Service.)

3. Service Commanda (PRINT, PUNCH, LIST) perform one ••rvice at a
time and may not be intermixed.

4. On FILE(T) and REPL(T) commanda the tape unit ia variable
(0-9). Programs to be filed or replaced may be 1tacked on
the aame tape unit or not, as deaired, but muat be in ·
po1itional filing aequence.

s. PRINT, PUNCH and LIST do not produce an output tape, therefore
they cannot be intermixed with program commanda. Program and
misc. commands, however, may be intermixed aa deaired,

6, Program1 are operated on in tape 1equence only,

7. The example1, although extensive, are not complete, U1e of the
p2 (SKIP) parameter can be very u1eful in automatic deletion,
whlle performing other function1, (See diacu•1ion SKIP
parameter at end of document).

e. The Prog-ID may be 4 character1 or le11,

AJAX C~ND LIST

COMMAND PARAMETER 1 PARAMEl'ER 2

INOur Input Unit Oc.tput Unit

REPL(T) Prog. Replaced SKIP or tt.

FlLE(T) Prog. before SKtP or ll
Filed one.

DELE Prog„ Deleted SKIP or fl

COPY l'rog. Copied SKIP or fl

ALTER Prog. Altered SKIP or ll

SORS First Une of J,ast Une of
Dele. or if Deletion or O
p2=0 Une before if no deletion.
insartion.

HDR N. A. N. A.

PRINT Prog. Printed SKIP or fl

PUNCH Prog, Punched SKIP or fl

LIST N. A. N. A.

STOF fl.= Copy A = Do Nothing
SKIP = Terminate END = Load 050

when AJAX
functions, completed.

l!Q!li:

s.s
Page 12
7/10/64

PARAMETER 3

Tape Loader

Ni A.

N. A.

N. A.

N. A. --
N. A.

No. of added
cards

N. A.

N. A.

N. A.

N. A,

N. "-·

SJCIP always effects the programs from the preaent position of the
tape to pl (See discussion of SKIP next page).

SKlP -

e.s
Page 13
7/10/64

The SKlP parameter may be used with all commands excapt the following:
LIST, SORS and HDR9

lts preaence or absence has a large effect on the COlllll&nd which
contain1 it,

Exeple:

Aasume a tape library consisting of programs numbered 0001 to 0400. ·
The following two commands,

DBLE 0010
DELE OOltO

would result in the deletion of the two routines only, however,

DELE 0010
DELE OOltO, SKIP

would result in the deletion of all routines from 0010 through OOltO
inclusive, and

DELE 0010
STOP SKlP

would result in the deletion of the entire tape past 0009. The
eame pattern follows with REPL, FILE, ALTER. and COPY„

A. SKIP (p2) when used with program correction commancle CDELE;
R.EPL, FILE, COPY and ALTER>, performs automatic deletion fram
the present position of the tape to pl,

B, SKIP (p2) when u1ed with program 1ervice connancl1 CPRINl' and
PUNCH) will delete the function of PRINT or EUNCH from the
present poaition of tape to pl, In other words, its ab1ence
allows Punching or Printing fI2m present position of tape
~ pl inclusive,

H ADDRESS

021110

040x44

020772

024141

024142

024143

022220

022222

022223

020700

027777

020510

024222

020100

020300

AJAX STOPS

REASON AND ACl'lON

AJAX ready • depress start.
,A

Block-et. error x•tape, restart.

s.s
Page 14
7110/64

Tape unit in FILE or REPLACE already in use
from INOur card. Move tape, reload new
command card.

Card to tape command not followed by a stop
card, load atop card and depre11 start.

Tape to print command not followed by stop,
list, or print card, load proper command,
depress start.

Tape to card command not followed by stop
or punch command. Reload proper command,
depress start.

Cannot locate pl (maybe tape po1itioning)
restart.

Object programs not acceptable from reader
(use OPUS).

Object punch requested • not provided,
restart (use OPUS).

Cormnand not recognized, reload proper command,
depress start.

Succesaful completion, depresa atart to
re-initialize, or load Opa as designated
by stop card.

Header missing REPL or FILE, reload HdR card
or new tape and hit start.

No 1top card after LIST, load stop card and
depreaa start.

Page•line•in1ert number cannot be located
re1tart.

N3 = O on 1ource in1ertion, reload SORS
COllllll&nd, depre11 •tart.

M ADDltESS

020550

010000

012000

011000

027272

140x66

140x5S

REASON AND ACTION

a.s
Page 15
7/10/64

Parameter stze error - reload proper
command card and depress start.

Printer off normal, clear problem,
depress starr'.

Punch off normal, clear problem, depress
start.

RdR error, reload 1 card unless the reader
motor is off, depre11 1tart (sertal reader
always reload one). (except for off·line).

No INOtrr card, Load one and hit start.

~Jhere x equals tape unit. Tape parity,
depress start for recovery attempt.

Unrecoverable tape error. Restart.

~

OBJECT CODE MAINTENANCE SYSTEH

FOR THE UNIVAC 1050

B.6
Page 1
7/10/64

OPUS is a service routine designed to provide the functions necessary to
maintain PAL object code on Tape Libraries, Systems Libraries and Master
Instruction Tapes. Tbe PUNCH command also makes it possible to obtain a
program deck of cards.

OPUS allows object programs to be filed and replaced from oards and by
use of the ALTER and SQZE oommands makes it possible to correot object
code on tape.

OPUS does not provide a.ny source program facilities. These services are
provided by AJAX (see AJAX, June 1964).

Tape formats are those described under 1050 System Tape Formats.

Card f ormats are those of the PAL 1050 Assembly System.

The following commands pertaining to object code are acoepted by OPUS:

1. FILE

2. REPL

J. PUNCH

4. ALTER

5. SQZE

6. STOP

Input and OutpYt Libraries.

8.6
P~e2
7/10/64

With the exception ot the PlnCH c01llDllUld the input library is aesumed
to be on tape unit 0 and the output library will be produced on tape unit 1.

The PUNCH command does not produce a tape output librar;y and assumes the
input library to be on tape unit 1.

Octal Mumbers.

An octal number must be preceded by a decimal zero.

Headers and §entinel!.t.

All programs being filed or replaced from the card re•der must have
proper headers and sentinels as described in the 1050 System Tape Formats.

FILE OOMMA.ND

FORM:

where:

or where:

REPL OOMMAND

FORM:

where:

ALTER COMMAND

FORM:

where:

OP 1 OPERANDS

FILE p1

s.6
Page 3
7/10/64

p1 = the 4 character program I.D. efter which the
program in the card reader is to be placed,
unless it is the first program on tape or if it
is to be filed immediately efter the program
just operated on in whioh case p1 must equal
"HERE".

p1 = "ALL" in wbich case all the object programs in
the reader will be written on tape unit 1 until
the first 'Z' sentinel in the reader is
enoountered (Z in column 1).

OP OPERANDS

REPL p1

p1 = the four charaoter program I.D. of the object
program to be replaced.

OP 1 OPERAN!)S

ALTER 1 p1 , p2

p1 = the four charaoter program I.D. of the object
program to be altered.

p2 = an octal number indicating the number of
characters that have been added to a program
by use of the SQZE oommand.

This inorement will be added to the total number
of characters and high address fields oontained
in the program 'R' block.

8.6
Page 4
7/10/64

§!m.QOMMANP

FORM: OP 0

where:

Si~ZE p1 ,p2,p.3,p4,p5,p6,pn

p1 = the name or the program or segment to be corrected.

p2 = the starting address in octal or the charaetera to
be corrected or added to the program.

pJ = the correction in octal. 1\. maximum of 16 characters
(O store locations) may be corrected with one SQZE
card.

P4 = •:Rn if the starting address of the correction
requires base address modification at load time.
If not, p5 becomes p4, etc.

p5,p6,pn = octal numbers pointing to the least significant
characters within the correction that may require
base address modification at load time. If no
moditication 1s required, no parameters are needed.

PUR;H COMMANP

FOm..f: OP

NOTE: -

vhere:

or

PUNCH p1

p1 = the four character program 1.0. or the object
program to be punched.

p1 = "ALL" in which case all ot the object eode contained
on the input library will be punched.

1. No program headers or sentinels will be punched.

2. The input libr&l"1 for the PUNCH command is assumed to be
on tape unit 1.

STOP COMMAND

FOIDJf: OP OPERA S

STOP p1

8.6
Page 5
7/10/64

This command is always the last command to OPUS and must always be
present.

If p1 is blank, OPUS will copy the remainder of the
input library on tape unit 0 to the output library
on tape unit 1 except in the case of PUUCH and
FILE "ALL". OPUS will re-initialize if program
start is depressed.

If p1 :l s "END", OPUS will proceed as above. If program
start is depressed, the operating sysytem will be
reloaded from tape unit o.

SERVICE

PUNCH ING
(Object only)

FILING
{object only)

REPLACING
(Object only)

OBJECT CODE
CORRECTIONS

EWlf LES

FU?CTION

Punch one program.

Punch all object code
on tape.

File one object pro­
gram from cards.

File one program trom
the card reader at the
present position or the
output library on tape.

File all the object pro­
grams in the reader on
tape unit 1.

Replace one program
rrom oards and copy
remainder or tape.

Correct 2 oharacters
in program AAA which
is absolute. The 2
characters start in
location 04000.

Add a jump instruction in
relative program B. The
starting address and the
instruction address need
base address moditication
at load time. The ins­
truotion is to be loaded
into program relative
location 05000.

8.6
Page 6
7/10/64

CQltfANDS NEEDED

1. PUNCH *RRRR
2. STOP

1. PUNCH ALL
2. STOP

1. FILE *RRRR {program
bef ore the one filed.

2. Program to be f'iled.
99. STOP

1. FILE HERE
2. Program to be .filed.

99. STOP

1. FILE ALL
2. Programs to be filed •
.3. STOP {Must be pre-

ceded by a 'Z' aenti­
nel card, Z in col.
1.)

1. RIPL *RRRR
2. Obj ect pro gram to be

replaced.
99. STOP

1.. SQZE AAA,04000,07777
99.

1. ALTER B, 05
2. sQZE B, osool

0)000051000, Same
R, 04 line

*RRRR is program I.D. consisting ot .from 1 to 4 characters.

IMPORT.ANT NOT!:f? ON OPUS

l. Source oard haDclling ia not performed by OPUS, uae AJAX.

8.6
Page 7
7/10/64

2. The PUNCH oommand 1118.7 not be uaed in conjunotion with arq other
command except PUNCH and STOP.

3. Programa are opera ted on in tape sequence onl.7.•

M ADDRESS

O'Z7777

020700

020400

020.300

022220

110000

040u44

l.40u55

140u66

120000

OPUS STOPS

ßEASON AND ACTION

8.6
Page 8
7/10/64

OPUS ready - depress start. Ir STOP ''END"
command has been used the operating system
vill be reloaded.

Improper:command - reload proper command
and dapreaa start.

Routine header missing while tiling or
replacing. Reload proper header card and
depress program start.

Error SQZE command. Restart.

Cannot locate program on tape. Restart.

Reader error, reload 1 card it preaent in
error atacker, depress etart.

Block count error on tape unit u, restart.

Tape error on tape unit u, restart.

Tape error on tape unit u, program haa
rocked tape 5 times. To continue, depress
atart. Program vill attempt to recover.

1. Punch error, ror read check, atacker tull,
hopper empty and orr line, depreas ready
and program start.

2. In most caaes, it is possible to recover
trom other punch errora. The punch track
must be cleared and blank cards manually
fad through all stations. After this is
done depress ready and start. A read check
will occur, proceed .as in 1, above.

SISfLAY IHE CONTENTS QF MEMORY.

9.0
Page l
1/31/64

Any storage position can be displayed when the proces sor has been
brought to an orderly stop. The following can be employed:

I2!..l.R.lay First Cbaractu.

l. Depress tbe CC-Display/Alter Selection.

z. Record the value of CC.

3. Depress the MEM-Display/Alter Selection button.

4. Set up the desired address in the M partion of the Alteration
switches.

5. Depress the Displaybutton.

The contents of the deslred storage position will be displayed in
the C portlon of the Display lights. The address+ 1 set up in the M portion
of the Alteration Switches will be dlsplayed in the M dilplay lights. This
new address will be available for additional sequentlal displays.

Display the Second and s,1bseguent Seguential Characters.

6. Depres s SE"' Display/ Alter Selection button.

7. Depress Displaybutton.

Repeat the last step for each new character in sequence to be
dlsplayed. The storage address ls automatlcally lncremented after each
storage character has been displayed.

ALTER THE CONTENTS OF MEMQRY.

9.0
Page Z
1/31/64

Any storage position can be altered when the processor has been
brought to an orderly stop. The following procedure can be employed:

Alter First Character.

1. Oepress the CC-Display/Alter Selection button.

z. Record the value of CC.

3. Depress MEM-Display/Alter Selection button.

4. Set up desired Address in the M portion of the Alteration
Switch.

5. Set up the bit value of the character to be inserted in C
portion of the Alteration Switches.

6. Depress the Alter button.

The contents of the desired storage position will be filled with
the character represented in the C Alteration Switches. The address+ 1
set up in the M portion of the Alteration Switches will be displayed in the
M display lights. This new address will be available for additional sequen­
tial alterations.

Alter Second and Suhsegwmt Segucntlal Characters.

7. Depress the SE~ Display/Alter Selection button.

8. Set up the desired character in C portion of the Alteration
Switches.

9. Depress the Alter button.

Repeat Steps 8 and 9 for each new character in sequence to be
altered. The storage address is automatically incremented after each
insertion,

TRACE FOB ZERO QPERATION...C.QI2E;.

9.0
Page 3
1/31/64

lt may be desirable to trace program execution for a zero
Op-code, if so, use following procedure.

1. Load program normally to base address display stop.

z. Depress Op (a Trace Mode button).

3. Set Op portion (upper 5 bits) of instruction display reglster
to all zeros.

4. PROGRAM START.

5. lf an instruction with a zero Op code is referenced; Trace
Stop (a Trace Modebutton) will light with a cornputer STOP.

6. Depress CC to display location +5 of zero Op code.

MANYAL INSTBJL~QN &;XECUTION.

9.0
Page 4
1/31/64

The Processor Control Panel can be used to perform operator­
created instructions for aU instructiona with the exception of the Jump Loop
and the indexing functions.

1. Depress the One Instruction-Mode button.

2. Depress the CC-Display/Alter Selection button.

3. Record the value of CC displayed in the M portion of the
Display Lights.

4. Depress the Inst. -Display/Alter Selection button.

s. Record the value of the thirty display lights if required for
a later operation.

6. Set up the new instruction in thirty Alteration Switches.

1. Depress the Alter button.

8. Depress the Program Startbutton.

The new instruction will be performed instead of the instruction
previously staticized in the instruction register. The processor, after
completing this new instruction, will bring the next instruction stored at
the address specified by the control counter at the end of executing the
operator generated instruction, and stop.

The reason for the special handling of a Jump Loop instruction
is that when this instruction is staticized, the control counter has only been
incrernented four times rather than the usual five times.

Steps 1 thru 4 and Step 8 above could be used to step through
instruction execution of any desired address area.

1050 REI;:RODUCER - OP~RAIING INSTRUCTIONS

9.0
Page 5
1/31/64

Ihe Reproducer will reproduce 1ource and object cards. lt is
a LOAD and GO Routine. Ihe cards tobe reproduced are loaded immed­
iately behind it in the Reader. A blank card termlnate1 the cards tobe
reproduced.

PROCEDURE; Object Carsl.L

1. Load the Reproducer and the cards to be reproduced into the
Reader input hopper.

z. Follow the ''Load Card Procedure".

The Reproducer need not be· reloaded between reproductions.
Io continue, depress start.

PROCEDYP.E: Source Cards.

1. Follow the same procedure as for object cards. If it is desired
to reproduce the Program I. D. taken from the label of the 1BEGIN 1 card,
depress sense switch HZ, and this I. D. will be produced on each card. If
it is desired to re-sequence the card numbers, depress sense switch #1.

(

TDMP OPERATING INSTP''CTIONS

9.1
Page l
7 /21/64

TDMP is a relocatable program which may be loaded from the systems tape
when it is desired to print one or more memory dumps written onto tape
by the OPS. (Refer to OPS write-up, section IVC,)

1.0 Mount memory dump tape on logical servo 1.

2.0 Set printer as desired,

3,0 Load TDMF using normal call procedure.

4,0 Stop ~2~~QJ1: TDMP initialized. Press PROGW: STAKT to conunence
printing.

s.o Stop .P20007: memory dump has been printed.

a. To print another memory dump: set trace•add!'ess SHitches to
<71, trace mode to FROC, and press l ROGRAE START. Program
wil! come to stop ~20~~1.

b, To release TDMP; set trace-address switches to other than
C}l, trace mode to I'ROC, and press PROGRAf'. 3TART. The OFS
will come to stop 07~~q1.

6,0 ERROR STnFS:

Use the normal error·recovery procedure for the following
peripheral-error stops,

a.
b.
c.
d.

QJ 1 QJ'1'10 :
0140155:
014(}166:
(114'1177:

printer error
memory parity error
tape parity error
servo off-line or nonready

7.0 FORMAT:

The memory dump is printed in octal fonnat

a. Te.t:_rad Area: Each line displays the contents of 8 tetrads
as follows! · address of MSC of Tn, <Tn), (Tn+ 1), address of
MSC of Tn+2, &c.

b, N~n.-T~~rad Memo~: Each line displays the contents of 40
character positions as follows: address n, (n through
n+4), Cn+S through n+~ll), address n+-012, &c.

c, Duplfeate Lines~ . lf the 40 characters of a non-tetrad
line are equal to the last 5 characters of the previous line,
printing of the line is supressed, and the next 40 characters
are examined. This process is continued until an inequality
is detected or until the end of the dump is reached. A line
of asterisks on the print-out indicates that one or more lines
have been suppressed.

9.1
fage 2
7/21/64

a.o Since the memory dump was written while the ors had program control,
some information will appear in OPS working storages rather than in
the memory positions it occupies when the worker p~ogram has control.
This varies according to whether a single-program or concurrent Ol'S
is being used.

(l) 8 LSC of AR2 are destroyed
(2) Channel 5 inter~upt entry appears in 8 LSC of AR2
(3) 4 MSC of AR2 are destroyed
(4) Contents of Xl appear in 4 ~SC of AR2

b. Concurrent OiS

(l) 8 LSC of AR2 are destroyed
(2) Channel 5 interrupt entry appears in 8 LSC of AR2
(3) 3 LSC of ARl are destroyed
(4) Contents of tetrads 16, 17, 18, 8, and index registers

l through 7, for low order pro~ram appear in memory
positions 01302 through ~1355

(5) The corresponding information for the high order
program appears in memory positions 01356 through
(}1432

TABLF. OF CONTENTS

1. 0 Introduction

2. 0 Data

3.0 Hardware

4.0 Program Structure

5.0 Logical Design

6.0 Environment

7.0 Generation Procedure

8,0 Glossary

9,0 Sort Stops Displays

Rev. 1

Page
1

1-2

3

4

4-6

7-10

11-23

23

24-U;

1 0. 1
8/17/64

10. l
Page 1
4/27 /64

1. 0 WTROD.JJCTION

1. l The function of sorting on the UNIVAC 1050 is to:

1. Accept a file of data, one record at a time,

2. Rearrange the file,

3. Produce the file, on request, one record at a time, for
further processing.

1. z The file is rearranged according to a transitive relationship
between pairs of records so that for any ordered pair (A, B),
the relationship is true wherever record A is produced for further
processing before (in time) record B.

Z. 0 DATA

Z. 1 Size oilt&J:ns o:r Records to be Sorted

The record size of any given sort must be fixed, i. e. , record
size is equal for all records to be sorted.

Minimum: 1 character
Maximum: 1024 characters

2. 2 Yolume of Data

2. 3

z. 3. 1

z. 3. z

Minimum: No data
Maximum: The maximum volume of data which can be sorted in
a single sort run is determined by the amount of data which can
be contained on any single reel of a collation phase tape. This
varies according to the length of tape on servos available to the
sort and the block size calculated by the sort.

If the data tobe sorted exceeds this maximum, merges of the
sorted data must be performed to produce an ordered file.

The ordering relationship between records is define for portions
of those records called the key. Each record must have the following
properties:
Each key occupies the same character positions in every record
where each key consists of one to ten fields.

Each field consists of contiguous character positions, where each
field consists of one to sixteen character s.

10. 1
Page Z
4/2.7 /64

z. 3. 3 Each fleld may be absolute binary or algebraic decimal, where the
selected option holds for every record.

z. 3. 4 Each field within a record may be of a different type than other
fields within the same record, and may be of the following type•:

2. 3. 4. l Ascending Binary.

As a res11lt of a binary comparison, the field which is smaller is
considered the chosen field and the record to which it belongs will
be selected first.

Z. 3. 4. Z Descending Binary.

As a result of a binary comparison, the field which is larger is
considered the chosen field and the record to which it belongs will
be selected first.

2. 3. 4. 3 Ascending Decimal.

As a result of a decimal con1parison, the field which is smaller is
considered the chosen field and its record will be selected first.

z. 3. 4. 4 Descendin~ Decimal.

2.4

2. 4. l

z. 4. z

z. 4. 3

As a result of a decimal comparison, the field which is larger is
considered the chosen field and its record will be selected first.

Selection of a Rccord

A comparison is performed upon field #1 of record A vs. field #l
of record B. .A record is considered chosen according to the type
of field previously defined.

If the first fields within the keys of two records are e-qual, the
ordering relationship between the two recorde will be determined
by the comparison upon field i of record A vs. fidd i of record B,
where field i is the first case of inequality.

If all fields within the keys of two recörds being compared are
equal, either one of the two records may be selected.

3. 0 HARDWARE

3. 1 Uniservo Tape Units Available to the Sort.

Type: IIIA, IIIC, IVC, VIC

Minimum: 3 servos
Maximum: 6 servos

All servos must be of same type.

3. 2 Memory

Minimum: 8K characters

Maximu~: 32K characters

3. 3 Card Reader, Card Punch, Printer

Rev. 1

10.l
Page 3
8/17 /64

None of the above mentioned peripheral units are required to run
a sort program; however, the own code sections may use these
devices as input or output rnedia.

4. 0 PROGRAM STRUCTURE

10. 1
Page 4
4/27 /54

Each sort program is written by the programmer as he writes
any other program. The sorting function is provided by a library
subroutine. The use of the sort subroutine implies certain mini­
mum characteristics of the calling program. In particular, there
must be a section o:f the program which forms the first pass own
code (FPOC} of the sort, and another section which forms the last
pass own code (LPOC). Each section is very similar in form to
any typical data processing program.

As such, the p:rogrammer has almost complete freedom to include
data processing other than sorting in either or both sections. If
there is an input tape file in the first pass, it would be controlled
by a different subroutine called separately. The same would hold
true if input data is read from cards, if output data of the last
pass is written on tape, etc. The program communicates with
the sort through the use of a jump return instruction. In the first
pass, an item is se!lt tobe sorted in the same way that it could
be sent to be written in an output file. Control is not returned
when the sort file is closed. In the last pass, the programmer
asks for an item from the sort in the same way that he could ask
for an item from an input file. This mechanism is intended to
supply a maximum of first pass own code and last pass own code
flexibility, with a minimum of extra learning. On the other hand,
if the sort program is to do nothing but read an input tape, sort the
data, and write the data on an output tape, the calling program is
very short and completely formalized.

5. 0 LOGICAL DESIGN

The general method used is sorting by merging. 1

5. 1 Dispersion Pass l'v1ethod.

The Dispersion Pass will employ replacement selection. 1 Each
record will be moved from an area in the user' s FPOC to the sort
tournament2 area; each record will also be moved from the tourna­
ment area to an output area. The tournament size will be determinerl
at object time from the amount of memory available to the dispersio-.
pass after the amount of space used by:

1. Operating System, and
2. Dispersion Pass, and
3. Output areas, and
4. FPOC (include input routine and input areas) has been

determined.

The smallest possible tournament size is two.

\
1

5. 2 Collation (Merge) Phase Method

10. 1
Page 5
4/27 /64

The collation phase employs a version of the forward read poly­
phase3 method. Each time a record is read and written, it is
moved within memory only once.

The method used to dispose of dummy strings is one that was
derived from methods proposed by Mendoza4 and MalcolmS.
The combined mrethod contains the simplicity claimed by Malcolm
and the efficiency demonstrated by Mendoza. This method adds
theoretical dummy strings to the actual string distribution to
advance all string counters to the next highest "ideal level."
Hence, it is not necessary to write any data on tape to illustrate
the presence of dummy strings; only internal processing is
required to eliminate them. The theoretical dummy strings will
be collated in the first two cycles of the polyphase merge. Dummy
strings will be merged prior to actual strings.

A positive sequence check on the output of every pass except the
last is generated by inserting a parameter in the SOR T3 call.
(See 7.1).

5. 3 Rerun

After the distribution of strings is completed onto k tapes,
collation is ready to begin. The sort will proceed thru as many
polyphase cycles as necessary to begin last pass. After each
of these cycles is completed, two tapes are rewound.

1. The tape just exhausted of input.

2. The output tape.

The programmer has the option to establish rerun points by
inserting a parameter in the SOR T3 call (see Section VII). lf
the programmer has decided to establish rerun points, the tape
exhausted of input will be rewound with interlock after the second
cycle and must be replaced with a blank. The same procedure wil1
be followed after the succeeding 3rd, 4th, ••• , (k+ l)th cycles.
Now, k tle.pes will have been removed and these tapes will contain
all the data and sufficient information for rerun purposes. When
the next cycle is completed, the tape that rewinds with interlock
and the most recently rewound (k-1) tapes comprise the latest
rerun point. The operator may keep the most recent rerun point
by removing the tape just rewound with interlock and mounting
a blank on that servo or 'ignore the most up-to-date rerun point,
thus saving the time required to mount a blank tape.

5. 3 (continued)

10. 1
Page 6
4/Z.7 / 64

After each tape is dismounted it should be labeled by the operator.
This label should identify the servo from which the tape was
removed and a number which indicates the most recent k tapes.

lf the programmer has not exercised the option of establishing
rerun points, no tapes will be rewound with interlock. lf a
malfunction occurs which will not allow the sort to continue, the
operator may continue the sort from the latest rerun point.

5.4 References

1. Friend, E. H., Sorting on Electronic Computer Systems,
Journal of the Association for Computing Machinery,
Vol. 3-July 1956, p. 134-168.

Z. Goetz, M. A., Internal and Tape Sorting Using the
Replacement-Selection Technique, Communication of
the ACM, Vol. 6 - p. ZOZ.-205.

3. Gilstad, R. L., Polyphase Merge Sorting - An Advanced
Technique, Proceedings of the EJCC, Dec., p. 144-147.

4. Mendoza, A. G., A Dispersion Pass Algorlthm for the
Polyphase Merge, Communications of the ACM, Vol. 5,
October, 1962, p. 502-504.

5. Malcolm, D. M., String Distribution for the Polyphase
Sort, Communications of the ACM, Vol. 6 - May 1963,
p. 217-220.

6. 0 ENVIRONMENT

6. l Software Support

10. 1
Page 7
4/?.7 /(,4

All sort generated programs will function with an Operating
System.

6. 2 Operational Characteristics

The sort object program consists of an instruction tape generated
by the sort generation run. In order to run the sort program it
must be mounted on servo O. After the program is initially
loaded by the operator, the remaining phases are located auto­
matically by the sort program. Seven separate phases exist:

1. Parameter Load

2. Dispersion Pass (including FPOC)

3. Interpass Control (ff l)

4. Collation Phase

5. Interpass Control (lf:2)

6. Last Pass (including LPOC)

7. Rerun

Figure 1 shows the contents of each of the above phases and their
relative positions in memory at object time.

Sort Phases & Memory Layout

Parameter Load l OP
jsys

Dispersion Pass
"

Interpass Control (#1)
"

Collation Phase
"

Interpass Control (#?.)

"

Last Pass
"

Rerun

i

„
1

~
I
\
(

I

' ;

\

I
\

FIGtllE 1

"

"

"

"

"

<
PARM1ETER LOAD I

l

'tl --,--~-------
FPOC 1 ; TOtßNAl1ENr 1
'HTH 1 .Ql§LERSI('N ! AREA AND

j INPur 1 CCDING OUI'Pur
\ AREA AREA
1
1
1

)-----t-
)_1_Nl'_Ea_r_A_s_s_c_o_Nr_R_o_L_< #_1_>_)..._ ___

~-C-OL_lA_T_I_ON_&_l_'O-LY---,-----)
/ PHASE CONI'ROL I/O.AREAS l
) 1 ~,·) INIERPASS CCNIROL ("2) ~ . /

(COLIJ\TION lJ>OC)1 1/0 AREAS

l CONIROL WITH)1
LA ST OUI'Pur

2!55 AREAS

(RERUN

Sort Calls

Sortl

Sort5

Sort2

Sort3

Sort4

6. 3

6. 3. 1

t>escription of Sort Phases.

Parameter Load

Some of the functions performed in this phase are:

10. 1
Page 9
4/27 /64

6. 3. 1. 1 Loads a key comparison subroutine based on the key definitix>n
which is used at object time for all key comparisons.

6. 3. 1. 2. Analyzes the statements referring to block size, memory size,
servos and item size to build a table of information at object time
which is used by subsequent phases of the sort.

6. 3. 1. 3 Calculates a block size for this particular sort at object time.

6. 3. 1. 4 Allows the operator to eliminate a servo from the sort if the servo
allocation is such that this can be done (e. g. A servo can not be
eliminated from a 3 servo sort). This may become necessary if
a servo is inoperable at object time.

6. 3. 1. 5 Copies the other sort phases as required onto collation servos.
This allows the instruction tape to be removed and allows servo O
to be used by the sort.

6. 3. 2. Dispersion Pass

6. 3. 2.. 1 Requires own code section.

6. 3. 2.. 2. Accepts records from the own code section one at a time, and
disperses them in ordered sequences (strings) to the servos
assigned to the sort and not used by first pass own code.

6. 3. 3 lnterpass Control (f!l)

There are two conditions which may require a redistribution of
strings prior to the collation phase:

6. 3. 3. 1 Certain levels of distribution when one LPOC servo is used.
However, if this is the case, copying of strings in this phase
will not normally occur.

6. 3. 3. 2. When more than one of the servos assigned to the collation phase
is reserved for FPOC use. The Dispersion pass will use only
the servos not reserved for FPOC for the initial dispersion of data.
lf this condition exists, this phase will copy strings to all but one
of the servos that were reserved for FPOC and also assigned to
the collation phase.

6.3.4

6.3.5

Collation Phase

10. 1
Page 10
4/27 /64

This phase uses the information left in memory (e. g. string
counts, servo allocation, etc.) and the strings on several tapes.
This phase then cycles until the strings are reduced to a number
required by the last pass.

Interpass Control (f2)

If more than one of the servos assigned to the collation phase is
reserved for LPOC use, a copy of string(s) may take place in
order to release the servo(s) assigned to LPOC. However, this
copy of data will not take place if only one servo is reserved for
LPOC.

6. 3. 6 Last Pass

6. 3. 6. l Requires an own code section.

6. 3. 6. 2 Delivers all sorted records to the own code section one at a time.

6. 3. 7 Rerun

This phase of the sort is used only if a malfunction occurs which
prevents the sort from continuing (e. g. unreadable tape, memory
parity error, etc.). After rerun is loaded, all tapes will be
validated before proceeding to insure that the proper tapes are
mounted. After all tape s have been validated, they will be read
forward the proper number of strings. Rerun will locate and
read in the collation phase and the sort will continue.

Rev. 1

7. O GENERATION PROCEDURE

10.1
Page 11
8/ 17 /64

Specifications for the Sort, FPOC and LPOC are written on the
standard PAL coding form. The first card must be a BEGIN
card. The second card must be an *STD card to call the standard
library definitions. The label field of the BEGIN card must contain
a four character label in the form XXYY, where XX are unrestricted
and 00 ~ YY '- 90.

7. 1 The SOR T is generated in five specific phases and these are refer­
enced as follows:

Parameter Load
Interpass Control
Collation Phase
Last Pass
Dispersion Pass

SORTl
SORT2
SORT3
SORT4
SORTS

pl, p2, p3, .•.... , pn

pl,p2,p3

SORT2, SOR T4, and SOR TS contain no operands field entries.
SOR T 1 contains operands field entries as follows:

pl is the number of fields in the key.

p2 is the type and sequence desired for field 1 and may be

B - for ascending binary
D - for ascending decimal

DB - for descending binary
DD - for descending decimal

p3, etc., is the type and sequence desired for fields 2, etc., and
may be entries as above.

SOR T3 contains operands field entries as follows:

pl is the number of servos available to the SOR T.
p2 = RER UN if it is desired to have RER UN coding generated.
p3 = SE(")CK if it is desired to have a positive sequence check

during each collation phase.

This phase may be called in one of four ways:

SORT3
SORT3
SORT3
SORT3

pl, p2, p3
pl, ' p3
pl, p2
pl

7.2

7. 2. 1

7. 2. 2

10. l
Page 12

Rev. 1 8/17/64

In addition to the specific references to the various phases of the
sort, the following parameter cards must also be supplied
immediately after the SORTl parameter, and must appear in the
order illustrated.

Minimum Block Size.

Written in one of the two following ways:

1. 1 MINBS 1 pl

where pl represents the minimum block size (number of items
per block) the Sort should use.

2. 1MINBS1 NONE

A minimurn block size of fifty-six characters will be as surned, or
if the record size is greater than fifty, the minimum block size
will be one record length plus six.

Memory Size.

This parameter is written in one of three ways. lt deterrnines the
amount of memory to be used by the Sort, which includes FPOC,
LPOC, Sort coding and input-output areas, but which does not
include memory used by the operating system. The three ways
of writing this parameter are:

1. i MEMRY 1 pl

2. i MEMRY 1 pl, ·p2

3. jMEMRYj NONE

where pl = minimum amount of memory to be reserved at
assembly time, expressed decimally.

p2 = maximum amount of mernory to be used at object
time expressed decimally.

NONE = neither pl nor p2 is desired to be specified.

10.1
PagelJ
7/10/64

The BEGIN card of the Sort program being assembled can be written in one
of three logical ways:

1. 1 BEGIN 1 1

j BEGIN j 3

These are logically equivalent, and cause a relative program to be assembled
which will be loaded at the begil'llling of an even row, i.e., a base address
mod 128 will be assigned at load time.

2. 1 BEGIN f 5

This is essentially the same as above, but will be loaded slightly differently
during concurrent running. (See below).

J. 1 BEGIN 1 absolute address

This causes an a.bsolute program to be assembled.

The Operating System in use at time of running the Sort may be one of two
basic types, i.e., it allows for single or concurrent running of programs.
If the single type Operating System is in use, memory will be assigned as
follows:

1 MEMRY j pl

1 MEMRY j pl,p2

' MEMRY j NONE

- pl characters will be used

- all of memory will be used, regardless of
the value of p2

- all of memory will be used.

10.l
Pagel 4
7/10/64

If the concurrent type 0.,.,arating System is used, two relative programs
may be run. However, only one absolute program may be ru..11., i.e., the
Operating System will not load a second program of either the absolute
or relative type. When two relative programs are run, the first to be
loaded will be called A, and the second to be loaded will be called B.
Program A will alwa.ys be loaded following the Operating System. Program
B will be loaded following program A, if

!BEGIN / 5

was used. Program B will be loaded at the high end of memory if

jBEGIN! 1 or BEGIN 3 was used.
'

Graphically

0

OS

OS

M:>d 128 ·-..... ---- A ·--- j BEGIN j 1,.) or5 -X Xl

Unused

Mod 128

Unused B

y
jBEGIN ! 1 or 3

M m. End

Mem. End

1
n

The values x, n, y and n are stored in fixed memory locations within
the operating system. After the Sort is loaded, it examines these valuea
and sometimes changes Xl as neoessary to retlect the usage ot additional
memory.

Rev. l

10. 1
Page 15
B/17 /64

The following table shows the limiting value of the amount of memory *•
or the last location number in memory used by the Sort.lf.

PROGA PROG B PROG B PROG
BEGIN l -1 or 5 BEGIN 1 __o_r_ 3 BE__GIN_ 5 ABSQl UTE

* * „ *
IMEMRYI pl pl pl Yl pl

* * # #
1 MEMRYI pl, p2 p2, but not ex-

ceeding Y or Yl pl Yl Yl

IMEMRYI NONE
„

* Y or Yl Will not Yl Yl
Work

To obtain maximum utilization of memory, sorts which are to be run non­
concurrently should use

1MF:MRY1 NONE

For Sorts to be run concurrently, they should use

1 BEGIN 1 5 and 1MEMRY1 NONE.

'

1

7. 2. 3 Type of Servo.

1 TAPES pl

pl = 3A for IIIA tapes
3C for IIIC tapes
4C for IVC tapes
6C for VIC tapes

7. 2. 4 Servo Allocation.

1 SERVO 1 pl, p2, ..•••• , pn

10. 1
Page 16

Rev. 1 8/17 /64

pl, p2, etc., are the logical servo numbers (0-5) of the tape units
available for sorting. At least 3 servos must be stated.

7. 2. 5 Last Pass Servos.

1 LPSER 1 pl, ... pn

pl, •.• pn are the logical servo numbers of the tape units available
for use by LPOC.

7. 2. 5. 1 If it is desired to use one or more servos for LPOC which have
been specified in the SERVO statement, pl must equal pl of the
SERVO statement.

7. 2. 5. 2 The LPSER statement must have pl = NONE if no servo is needed
for LPOC.

l
t

1. z. 6 First Pass Servos.

1 FPSER 1 pl, •. , pn

10. 1
Page 17

Rev. 1 8/ 17 /64

pl, ••• pn are the logical servo nurrbers of the tape units available
for use by FPOC.

1. Z. 6. 1 If it is desired to use one or more servos for FPOC which have
been specified in the SERVO statement, they must be specified
in FPSER statement. lf servo zero (O) has been specified in the
SERVO statement, it must also be specified in the FPSER state­
ment. (See para. 7. z. 6. Z for the only exception).

lf the SERVO statement contains a reference to servo 0, the Sort
will rewind servo 0 with interlock after the load of the Dispersion
Pass; otherwise, servo 0 will be left in a forwam position.

7. Z. 6. Z The FPSER statement must have pl = NONE if no servo is needed
for FPOC.

7.Z.7

7. z. 8

Key Definition.

1 KEYn 1 pl, pZ

n - is the field number (1-10) for an n field key, the consecutive
numbers 1 through n must be used for definition.

pl is the length of the field and may be from 1 to 16 characters.

pZ is the position number of the rightmost character of the field
in the record. pZ is defined relative to th@ number one.

ltem Size.

1ITEM1 pl

pl is the number of characters in the record to be sorted.

7. 3 FPOC including rriacros preceeds the SORTS call. LPOC including
macros preceeds the SOR T4 call. An END card follows SOR TS,
andthe operands field must contain ZENT.

'
1

i .
1 \

1

10. 1
Page 18

Rev. 1 R / 17 / 64

7. 4 Writine- Own Code.

7. 4, 1 General.

FPOC and LPOC should not use labels with a first letter of X,
Y, or z. The sort coding uses labels that begin with Y and Z
and the standard I/O calls will produce labels that begin with
X. lf FPOC or LPOC uses labels that begin with X, Y, or Z,
it is possible that an error of duplicate labels may occur at
generation time.

7, 4. Z First Pass Own Code.

7. 4. Z, 1 BEGIN.

The first instruction to be executed by FPOC must be labelled
ZBEGN. Control will be transferred to this location before
First Pass is initialized. FPOC executes a JR ZSTRT.

7. 4. Z. 2 Deliver and Item,

FPOC executes a JR ZPUT, Index register five must contain
the absolute address (MSD) of the input item to be sorted.

7. 4. 2. 3 No More ltems.

FPO:: executes a J ZEND.

7. 4. Z, 4 Index Ree-isters.

a. Index registers one and four are used by First Pass and must
not be altered,

b, Index register two and three are used by the First Pass but
may be altered by FPOC,

c, Index register six and seven are not used by the First Pass
and are free for FPOC.

d. Index register five will be used by the First Pass but will
not be altered,

7. 4. 3 Last Pass Own Code.

Rev. 1

10. 1
Page 19
8/ 17 /64

7 . 4. 3. 1 BE GIN

The Last Pass will execute a J YSTRT. This label will appear
on the first instruction of LPOC initialize path. Control will be
transferred to this location (YSTRT) before any items are de­
livered to LPOC and after all input tapes to Last Pass have been
opened.

7. 4. 3. 2 Obtainin2 an Item.

LPOC executes a JR YGET. Index register one will contain the
absolute address (MSD) of the selected item.

7. 4. 3. 3 No More Items.

Last Pass will execute a J YEND. This label will appear on the
first instruction of the LPOC terminate section. Control will be
transferred to this location (YEND) when no more items remain.

7. 4. 3. 4 Index Re2'isters.

a. Index registers one, two, and three are used by Last Pass
but may be altered by LPOC.

b. Index registers four, ftve, six, and seven are not used by the
Last Pass and are free for LPOC.

7. 5 A typical input to Sort generation would appear as follows:

Remington Rand UNIVAC UNIVAC1050

Page
1 3 w
Sequence
Page line n

1 3 4 5 6 7

0 0

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

1 1

1 2

1 3

1 4

1 5

1 6 •
1 7

1 8

1 9

2 0

Program __ S_o~lf~l __ ~U~'~ll~N~S~d-+-=4~f~/~c~·N~S~--------------
PAL ASSEMBLER CODING FORM

Programmer _ _,..T.~-=G_,/_,,o'"-''2"--', 1..J~/_._e _______________ _

For BEGIN only

Label Operation Operands

1 I

Date ---~/ f / /., 4--

Comments --------•

Program-10
75 eo
ls1RiP1e 1 1

f

((emington Rand UNIVAC

Page

11 31
lQjQßJ

Pr-0grammer ---=:;r~·---=-6_.._/,,,__o .:::.../Jt' /t:::. ___________ --·--·------

For BEGIN only

Label Operation Operands

1819 40

0 2

0 3 •

0 4

0 5

0 6

0 7

0 8

0 9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0 f p ,

UNIVAC 1050
PAL ASSEMBLER CODING FORM

Date __ f_ /J / {;, 4 ___ _

Commerits ----------1•
50

1,:"

Program-10
75 80

ls1R1f1P1 1 1

70

Form. 275 zo

Remington Rand UNIVAC UNIVAC1050

Page
1 3

1010131
Sequence
Page line ns

1 34567

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

Program __ S~o~te.-=----'l _ __,_T.~8~8LLL-/./-'.S~ltLL...CC'-'T._____,.J'--o"-'-µ-~ ________________ _
PAL ASSEMBLER CODING FORM

Programmer --~;[~· ~G_l~o~/J_v_/~e~-------------

[

For BEGIN only

Label Operation

11 3 1819

Operands

30 40

Date

Comments --------•

50 60

PA5S

Program-10
75 80

ls 1 /?1 cp1cJ>1 1 1

70

Form. 275 zo

8,0 Glossary

Block Size

Field

First Pass

FPOC

Item

LPOC

Key

Operating System

Record

St ring

Tournament Size

10. 1
Page ZI
4/2.7 /64

Number of characters per tape block.

A section within a key which is used
as a sub-ordering relationship between
records.

Dispersion Pass.

First Pass Own Code.

See record.

Last Pass Own Code.

An area within a record or item which
is used as the ordering relationship between
records.

Performs program locating and loading
functions, unit coordination, program
switching (when desired), and tape
instruction issues.

All the information regarding one individual
or item pertinent to a given problem or
set of problems. Sometimes called an item.

An ordered sequence of data.

Nurnber of items or records contained in
the tournament area.

SOR T STOPS DISPLAYS

1. Parameter Load.

STOP

031200

031201

031202

031203

031204

031205

031300

031301

031400

031401

031402

REASON

Cannot find a servo to delete.

Less than 3 servos de­
fined in 1SERVO1 call.

Too many FPOC servos de­
fined.

Too many LPOC servos de­
fined.

Illegal servo combination.

Less s~rvos defined in
jSORT3lcall than defined in
!SERVO! call.

Initial Sort Stop.

Stop enables user to reset
trace switches.

FPOC too large.

Designated 1MINBS1 is too
large.

LPOC too large.

10. 1
Page 24

R ev. 1 8 / 17 / 64

ACTION

Press run to continue,
Will return to 031300
Stop.

Reassernble

Reassernble

Reassemble

Reassemble

Reas sernble

a. Set trance mode to
PROC. Set trace switch
equal 01 to continue
Sort, press run.

h. Set trace mode to
PROC. Set trace switch
equal 0 2 to delete one
servo from Sort run,
press run.

Press run to continue

ReassPmble

a. Check MINBS Call
and MEMRY Call and
reassemble.

b. If running concurrentl y,
check nEGIN card, or
run as single program.

Reassemble

STOP

0315SS

031601

031602

031700

031702

2. First Copy Pass.

0321SS

0326SS

0327SS

3. Collation Phase.

033044

033655

033255

0337SS

RE AS ON

Scrt has deleted one servo­
servo S.

Segment missing from in­
struction tape.

Instruction tape I. D. no good.

Invalid MINBS statement.

Sort I. D. from BEGIN card
is too large.

EOT window on servo SS.

Segment missing on servo
s.

Block count error.

Data sequence error.

End of tape detected on
servo 'SS'.

Label block missing on
servo 'SS'.

Block count error on
servo 'SS'.

Rev. 1

10. 1
Page Z6
8/17 /64

ACTION

Press run to continue.

Reload or reassemble.

Reassemble

Reassemble

Correct I. D. on BEGIN
card must be in fornat
AABB where 00 f BB ~
90. Reassemble.

Restart with longer blanks.

Try restarting, other­
wise reassemble.

Restart

Restart (remn will be
available at a later date).

Reduce volume of data
and restart or mount
longer tapes and restart
(rerun will be available
at a later date.)

Restart (rerun will be
availalie at a later dateJ

Restart (rerun will be
available at a later date).

4. Last Pass.

5TOP

033255

0337S5

REASON

See above.

See above.

5. Dispersion Pass.

035001

035655

6. General.

Item count limit reached.

End of tape window on
servo 5,

Rev. 1

10. 1
Page 26
8/17 /64

ACTION

Press run to continue,
will only stop once.

Get longer tape and re­
start.

Upon depressing the run button at any unrecoverable stop, control
will be transferred to the Operating System. This will allow a
second program to continue if running concurrently, or will allow
operator. request button to be depressed for purposes of obtaining
a memory dump. See Onerating System for details.

15.2
Page l
8/4/64

IJt Iead ·Routine (With •mory fill)

1.0 · ·Introduction.

The l~ad routine for the coluan serial reader filla memory with a
specified charaoter (!1) and loads the program vhich follovs it in
the card reader. It perforas its functions in the folloving ordera

a. Establish the interrupt entries rar the Claas I, Clasa II and
card reader interrupts. The other. interrupt entries are de8-
troyed vhen loading the load routine and if used, must be
initialized by the program being loaded.

b. Fill memory except the tetrad area wi th the character 0 (077) •

c. Fill the entire tetrad area wi th the oharacter lJ (077).

d. Load the load routine itself into consecutive locationa starting
immediately after the read area (see E. belov).

e. Load the program itself, reading the oards into the area starting
at 0600 (octal).

The ~nl) looations vhich cannot be loaded uaing the load routine area

a. Tetrade 7, 8, 16, 18, 19 and)6.

b. The read interrupt entry.

c. The area oocupied by the routine itself (108 eharacters for 90
colUJlll, 10) for 80 colUlln.

d. The area used by the loader to read carda (109 eharacters for
90 column oards, 160 characters for 80 column oards.)

2.0 Operating Igstructiona.

2.1 To load a program using this routine

a. Place the six cards of the load routine in the reader
folloved by the program to be loaded. The first card
of the program to be loaded has an R in -column 74.
{84 ror 90 column cards).

b. Press "Clear", "Load Card", "Start", "Oontiinuous•, and
"Start•. The load routine will till aa110ry, load the
program, and transfer oontrol to the progru loaded.

.„

15.2
Page 2
8/4/64

c. lf an error occurs during the reading of the load routine,
the computer vill stop, vith JO OXX XXX 60 in the instruc­
tion register vhere XXXXX is an address in the area used
for reading by the load routine. Begin the load operation
over again at step a.

d. If an error occurs during the loading of object cards,.the
computer will stop vith 30 1100000 60 in the instruction
register. This i~ caused either by an error· condition
in the reader or by a failure of the check sum. Ready
the reader to ref eed the last card f ed and the one in the
read station. Depress Ready (at the reader) and Start.

2.2 The load routino may be operated with neither memory fill nor
tetrad clear. To do so, remove the aecond and third cards from
the deck. Operating instructions for the resulting 3-card deck
are the same as above.

2.3 The load routine may be operated with tetrad clear but no memory
fill. To do so remove the second card from the deck. Operating
instructions for the resulting 4-card deck are the same as above.

2.4 The load routine may be operated without the check sum feature.
To do so remove the fifth card from the deck. This reduoes the
program space required f or the load routine by 30 characters tor
90 oolumn routine, 35 characters for the SO column routine.

J.O Options Available Through Reassembly:

At the beginning of the source code deck for the loaders are six 'EQU'
cards. These oards define the labels PGM, REA, LMI', CHR. By altering
dofinitions for these labels the routine ma.y be changed as follovs:

J.l To ohange the locations in vhich the load routine is stored, de­
fine the label PC>I to be the address of the first looation the
load routine is to occupy. Thus, if it vere desired to have the
load routine occupy locations 4000 to 4063, the card defining PClf
vould be replaced vith the card:

PGM EQU 4000

J.2 To cbange the area into vhich the load routine reads cards vhile
loading, replace the card defining REA vith a new definition of
REA. The address supplied in this definition must be a multiple
of 128 (or 200 if it is expressed in octal notation).

15.2
Page J
8/4/64

J.J To ohange the character vith vhioh memory is filled, replace
the definitlon of CHR. lf the character itself is witten,
it must be surrounded vith quotes. Thus the present definition
of CHR might be written in any one of the following three wayss

CHR EQU 'J]'
CHR EQU 63
CHR E~U 077

J.4 The tetrad area may be cleared to blanks by changing line 00310
to read

PD 7,8

t

'

' •

' •

15.)
Pap •l
8/5/64

1eJ Ippu!eOutwt Reutiae1.

i.o General·

These routinea are in the form of source code. lach '!"outiGe begine
with a co ... nt card containing the naae of the routine in colUllD•
lJ to 18. Since there are variationa poasible to severla ot the
input-output routinea, it ia reoomended that a •eter aow be •in­
tained of each ot these routinea and a ooPf reproduced f"raa the
master for incluaion vith each prograa.

The routines provided area

*RD9L

*RDTL

*RD9.

*RDT ·

*PH9L

*PHTL

*PH9

mtT•

*PR

*PRX

*PRL

Raad 90-oolUllD oards vi"th lookout.

Raad 80-oolUllD oarde translated vitb lockout.

Read 90-oolUllD carda vith overlapped procesaing.

Read 80-oolUllD carda, tranalate, and overlap proceaeing.

Punch 90-ooluan oarda with lookout.

Punch SO-colUllD carda, translated, vith lockout.

Punch 90-colUllD oarda vith overlappe~ prooeaaing.

Punch 80-ooluim oarda, tranalated, vith overlapped proceaaing.

Print a 128-charaoter line (tor ·buttered or unburtered qat•s)o

. Print a 1J2-charaoter line (for ·buftered printer only).

Print a 128-character line vithout overlapped proceaaing
(priarily tor unbuttered printer).

Each routine haa at least the three entranoee tor the runotione initial­
ize, execute, and oloae. Each routine addreaaea an area whoae naae ia
atandard and entranoe to the execute aeotion cauaea the routine to place
in a fixed index regiater the relative addreas of the next available area.
Thia eddreaa ia relative to tbe beginning of the atandard area. Thua •ROT ·
whioh reada into the area labelled IAR will deliver tbe card 1-p to the
oalling routin• in the 80 locationa atarting at XAR + 80.•

lt will place 80 in index regiater 1.

15.J
Page 2
8/5/64

The following table sU1111arizes oertain characteristics of these
routines. For a more detailed discussion of the use of these rou­
tines see sections J.O to 5.0.

Routi-ne Inde:xi Name of Entrance to A.rea Total
Name· Register Ini tiallze Ex:ecute Close Sizo Name Size Space

Used

RD9L 1 XIR XXR XCR 100 XAR 109 209

RDTL 1 „ „
" 85 „ 80 160

RD9 1 „ „ • 148 " 199 34?

RDT 1 • "
„ 14) " 160 30)

PH9L . 2 XIH XXH · XCH 190 XAH 237 42:7

PHTL 2 „ „ „ 155 • 208 363

PH9 2 " " • 215 " 327 542

PHT 2 • " " 200 " 288 488

PR 3 XIP XXP XCP 160* XAP 256 416

PRX .3 • • • 160• • ,264 424

PRL 3 „ • • 135* " 128 263

*DOes not include the speoe required by XOP and XRP.

15.J
Page .3
8/5/64

Programs are to address the image area for each routine using the
appropriate index register as shown in the table above. Thus to bring
coluans J to 5 of an 1118.ge read by *RDT to ARl, the instruction vould
be vritten

BAl XAR + 4, J, 1

The -input to the assembler for a program using these routines must
include

1. The reservation of the area(s) for the routine(s) used.

2. A copy of the source code for the routines used.

J. The source code for the program itself.

The reservation of the area for one of these routines must precede
the source code for the routine IN THE INPtrr TO THE ASSEMBLY. The
address of the first location of the area must be a multiple of 64
f or

a. XAP if the printer is not buffered.

b. XAR f or use 'Wi th *RDT -e.nd *RDTL

c. XAH for use vi th *PHT and *PHTL

The address must be a multiple of 1.28 for

a. XAR used 'With *RD9 and *RD9L

b. XAH used 'Wi th *PH9 and *PH9L

One easy vay to ensure this is to use an appropriate origin statement:

ORIG $,128

UR AREA 199 ·

The standard loader and memory dump for the 4K systems assume that
the print area 'Will start in memory location 384 (0600 octal) and be
folloved by the read or punch area. Each p rogram should have a t
l~ast 245 locations (199 ·for 90-col. systems) reserved for input­
output areas starting at this location if the standard loader and
aemory dump are to be used.

In each case when one of the functions performed by these routines is
desired, it is obtained by executing a 'JR' instruction addressing the
tag associated 'With the section performing thRt function. For example,
to initialize the card reader routine one would vrite the instruction

JR · XIR

2.0 Coapatibility.

15.)
Page 4
8/5/64

These routines are designed to be used in a manner analogous to the
oorresponding routines ror UlfIVAC 10~ Systems vith a larger aemory,
inoluding those routines designated for use vith the Coordinator.
They are constructed in such a aanner as to allov progr8.JDs written
using thena to be reassembled vith a Jlini.m\DD of alteration and run in
the enviromaent of an expanded system.

To oonvert a program using these routines to one using routines written
for a larger oonfiguration the folloving steps are requireda

a. Replace the area reservation for each routine to be replaced
vith one that is appropriate to the new routine that is to
replaoe it.

b. Remove froa the deck the source code for the routine(s) beiug
replaced.

c. Insert into the deck (input to the assembly)

or

1) The appropriate call to the PAL library if the tape
asseabler is to be used,

2) ·The appropriate output of the I/O Speci'lll.izer if the card
asseabler is to be used.

In either oase, the call for the routine must speoify the same index
register used by the routine being replaced. Thus, P3 must be l for a
reader routine, 2 for a punch routine, and 3 tor a printer routine.

d. Insert into the deck a stand&rd set of 1EQU 1 oirrds equating the
tags of the 4K routines to the corresponding tags of the replace­
aent routines. For example, in JDOving to a larger system and
replacing the reader routine, the folloving cards vould be included
in the input to the asseablys

IIR

llR

XCR

IQU

~u

EQU

llRRD

ICTRD

XCLRD

3.0 Use of Card Reader Routi:ne.

3.1 Initi:alize (XIR},

15.)
Page ·5

.8/5/64

The initialize section must be entered before there is any attempt
to get a card image. Base e.ddress tetrad (tetrad 36) and the
channel interrupt entry are set to their appropriate values.
A f eed. card order is issued except in the case of the routines
with lockout (*RD9L and *RDTL).

3.2 Execute (XXR)

This section is entered when the worker program we.nts a new card
image. A feed card instruction will be issued and the base add­
ress of the area available to the worker p rogram is placed in
index register 1. The card image in the case of 90-oolumn
reader will appear in 90 consecutive looations in untranslated
form.

J.J Close Out (XCR)

For compatibility with the routines in large systems a close out
section is provided.

3.4 Interrupt.

The i-nterrupt seotion is automatically entered by the hardware
in the case of an error condition. The O'Oaputer will be brought
to a stop with the folloving in the instruction registera

30 110000 60

If there is a card in the error stacker, it muat be replaced
in the input hopper, followed by the card in the read station
and the reme.ining cards in the input hopper. Then to resum.e
processing from .the point of the error, depress Ready and Start.

4. 0 Use of the Punch Routi·ne.

4.1 Initialize (XIH)

15.J
Page '6
8/5/64

XIH must be entered before there is any attempt to edit data
to be punched. The area available to the worker program is
cleared to s paces. The base address {relative to the address
of XAH) of the area available to the worker progrem is placed
in index register 2. All counters and variable connectors are
set to their initial oonditions. The ohannel entry is not
affected at this time, having been established correctly in
loading the program.

4.2 Exeoute {XXH) ·

XXH must be antered vhen the worker program has finished the
editing of data and vants it to be punohed. The punch 1nstruct-
1on is issued and the base address or the area available to the
worker prograa is placed in index register 2. The arithmetic
registers and tetrads 16 to 19 are destroyed.

4.3 Close Out (XCH)

ICH is '8ntered after the last output da.ta card has been delivered
to the punch through entry to XXH. A feed card is issued to send
the last valid card into the output stacke~.

If the last valid card punched before closing causes a read check
error, it will be properly repunched. Hovever, in this case, the
card remaining in the punch unit will not be a blank card as ia
customary. Unleea this card is cleared from the punch unit it
may cause a punch error when the punch is next used.

4.4 Interrupt.

'l'he interrupt aeotion is automatically entered upon completion
of a punch instruction. lt returns control to the point of
interruption after its vork has been coapleted. In the case of
an error th• computer will be brought to a stop vith the follov­
ing in the inatruction regiatera

30 120000 60 .

Depress Rea~ and Start buttons. The oomputer will repunch the
error oard{s) and continue vith the normal processing.

5.0 Use of the frinter Routine.

5.1 Initialize (XIP)

15.)
Page ·7
8/5/64

XIP must be entered before there is any attempt to edit data to
be printed. All. areas are cleared to spaces. Counters and var­
iable connectors are set to their initial ·value. The base addresi
of the first working area is placed in index register 3. The print
interrupt entry is established while loading the program and is not
affeeted by llP.

5.2 Execute (XXP)

XXP is -entered when the worker program has finished the editing of
data and the data is to be printed. XVP, a single character, 11ust
be supplied with the number of lines to be adva.nced by th• worker
progra11 before entering XXP. ·A print instruction will be issued
and the base address of the next area available to the worker
program is placed in index register 3.

5. 3 Close Out (.XCP}

ICR mu9t be entered when the worker prograa wants to be sure that
the last print line given to XXP has been printed.

5.4 Interrupt

The interrupt section is entered automati~ally by the hardware in
caae of an error. The ooaputer will atop with

JO 100000 60

in the instruction register •. When the difficulty is corrected,
depress the Ready and then the Start button to reprint the line
causing the difficulty and resume normal processing.

5. 5 Q!ll (XQP)

X1P 18 ·entered vhen the worker progra11 wants a •reaote area• to
be'printed. A •remote area• 11eans a print llrea vhich is not in­
cluded in the print area, IAP. ·The worker progra11 can place any
n\.Dllber of such areas anywhere he wants as far as memory capaci ty
permita, subject to the limitation that, if the printer is not
buf fered, EBCh such area must begin in an address vhioh 1s a mul­
tiple of 64. X~ can be used to print such things as head1ng lines,
page numbers, and so on rroa these •remote areas• sa•ing the prograa
the trouble of transferring oonstants to print areas. Prior to
entering XQP, tbe worker prograa must supply the location IRP
(3 charactera) wi th the base addreas of the remote area and XVP
with the nuaber of lines to be advanoed. The size of a reaote
area raust be the aaae as that of a print area in XAP, that is, 128
oharacters for use with *PR and *PRL and 132 oharaotera for use
with *PRI. ·XQJ' transfers control to ICP bef'ore issuing the print
instruction.

5.6 Advance Paper (XUP) ·

15.J
Page 8
8/5/64

XUP ·i·s entered when the 'WOrker progru wants the paper to be
advanced vithout printing. The m.uaber of lines of advance muat
be placed in the single location at XVP before entering XUP. · ·
XUP transfers control to XCP before issuing the advanoe instruct­
ion.

5.7 Special lfotes

a. XQP and XUP need not be included unless their functions
are desired. They require 35 and 45 locations respectively.
XQP oonstitutes the cards for page 3 (i.e., card sequence
numbers in the range 00300 to 00399) and IOP the cards for
page 4. Either may be included in or excluded from the
routine independently of the other.

b. The DUJ1ber of tag definitions required in replacing the
print routine is gre&ter ·than either of the others. The
folloving definitions are neededs

XIP EQU ICTPR

XVP EQU XADVC

XIP EQU .XINPR

ICP EQU ICLPR

IQP EQU XCTQL

XRP EQU XRMAR

IUP EQU XCTAD

Routine

*RD9.

*PH9L

*PHTL

*PH9 ·

PHT

c. Afea1 available vithin the defined areas.

lS.J
Page 9
8/5/64

Use of these areas is not reconaended since it complicates
the problem of upward compatibility. 'ORIG1 cards included
in the assembly for a 4K system to define oonstants or
storage at these positions would have to be removed, allow­
ing the locations so defined to follow in the sequence of
locations assigned to the worker program.

The l~cations not used are as followss

Totl. Avail.

19

.38

57

48

l&vail. in one seg,

19

19
19

19
19
19

Address of P'ifst J.oc. ·

X.AR + 45

XAH + 1Q9
IAH + 173

XAH + 80 ·

XJH + ·45'
. IAH + 109

XAH + 173

X.AR+ ao,

4X SMALL Oump Routine (SDUMP)

1.0 General.

15.4
Page 1
8/J/64

SDUMP -is a routine to print the contents of memory in octal. It
operates in a minimum amount of space, and at the sa.me time restores
everything it uses exoept the print area. The routine will be dis­
tributed in the form of source code which can be ässembled to produce
a routine which occupies memory locations 3698 to 4095 and uses the
area starting at 384 (octal 0600) from which to print. Since it is
assumed that this area is being used by the worker program to contain
a print i.mage, the contents of the area are printed before the routine
begins printing the rest of memory. Each line of the printout contains
(at the left) the 5 digit octal address of the lowest order memory
loCßtion printed on that line, followed by the octal representation of
32 aemory locetions in 8 groups of 4 locations each. (Each ·group of 4
locetions being represented by 8 octal digits).

Since various options exist which can be exercised by altering the
source code, it is recommended that a master copy of the source code
be maintained at each installation. This can then be reproduced to
provide a working oopy for anyone who desires'to produce a modified
routine. A:ny such routine should be clearly labelled to indicate the
deviations from the standard.

2.0 Use of SDUMf ·
.

2.1 M&nual Entranoe to SDUMP ·

To enter SDUMP, l'Dltnually, execute a transfer of control to locatiOll
07167 (octal). (Start of the routine 1 s program area plus 5).
The routine will print the contents of 11emory, and stop wi th ·
the instruction 30 007174 60 in the instruction register. The M
portion, however, will be different if the print routine has al­
ready been entered by program as described in section 2.2. Man­
ually execute a jump to the desired point in the program to continue
running.

2. 2 Prom•ed Jntrance to SDUMP ·

To enter SDUMP automatically in the program, one writes the
instruction JR 3698 (the m portion of this instruction addresses
the start of the program area for SDUMP). ·The oontents of memory
will be printed and the computer will stop with the instruction
30 Omama&u 60 in the instruction register, where Dmlllllllll is the
addresa of the instruction to which oontrol is to be returned
after the SDUMP is ~inished. To continue with the program from
the point at vhich it was interrupted, depress M and Start.

2.3 Error Recovery

15.4
Page ·2
8/3/64

If an abnormal condition occurs in the printer the program will
stall in a loop. To continue with the dump, depress Stop,
correct the condition in the printer, and depress Ready on the
printer and Start.

2.4 A1phanumeric Printing

Depression of Sense SWitch l prior to enterlng SDUMP vill cause
it tö print in alphanumeric rather than ocatl format.

3.0 Reassembly Options

3.1 The upper limit of memory printed is defined by the tag LMT:

LMl' EQU 07777

The lower limit is always zero. To change the upper limit, re­
place the above definition (card 00110). The location used as an
upper limit must always be one less than a multiple of 32.

3.2 The ~ from vhich printing is done is defined by the tag XDA:

XDA EQU 0600

This area may be made a separate area if there is room in memory.
In this vay the print image vi.11 not be destroyed in the process
of obtaining a printout of memory. To do so the above definition
must be replaoed (oard 00115).

3.3 'I'he area occup~ed by the print routine may be altered. This is ·
done by changing the definition of XDPs

XDP EQU 3698

This definition is found on card 00120.

3.4 Space·Reduction

The program for the memory print can occupy fever locations if
some of the tetrad and interrupt entry nrea can be destroyed at
the time that SDUMP operates. The following table sunmarizes
the various limitations that oan be imposed, the space reduction
that results, and the cards to remove from the source deck to
achieve each such reduction:

Restriction

AR2 will be destroyed

AR2 not printed prop~rly
5 loc.

Some extraneous characters
appear at right of Usting

ffo alphanumeric dumping

Tetrads 32, 33 vill be
destroyed

Print interrupt entry
is destroyed

Tetrad 19 ie destroyed

Total

Positions Saved

31

5

10

10

10

10

76

15.4
Page J
8/3/64

Card ·to Remove

„,-,-,-

-,-

-,-

-,-

-,-

Ul050 DATA TAPE CONVENI'IONS•

l.O Label Blocks.

1.1 The First block of each file will be a Label Block.

1.2 A file must start at the beginning of a tape.

5.4
Page l
7/21/64
Rev. l

1.3 lf a file exceeds one tape, each succeeding tape will contain a Label
Block as the first block. Contained within the Label Block will be a
number of the tape within the file.

2.0 End-cf-File Blocks.

2.1 The last data block of a file will be followed by two end-of·file blocks.

2.2 Where rerun is allowed for, rerun information, bracketed by bypass
blocks, may appear between the last data block and the end-of-file
blocks.

3.0 End-of-Tape Blocks.

3.1 When a file exceeds one tape, each tape except the last will have the
last data block followed by two end-of-tape blocks.

3.2 Where rerun is allowed for, rerun information, bracketed by bypass
blocks, may appear between the last data block and the end-of-tape
blocks.

4.0 Bypass Blocks.

4.1 When a file includes information required for rerun, the information
(block or blocks) will be preceded by a bypass block and followed by
a bypass block.

4.2 Two bypass blocks and the rerun information contained between them
cannot overlap tapes of a multi•tape file.

s.o Data Blocks,

5.1 All blocks, excluding those described in 4.0, which appear after a
Label Block and before an end-of-reel or en-of-file block are termed
data blocks.

6.0 Blocks Modes.

6.1 UNISERVO IIIA: All blocks will be written and read in the four
character mode.

6.2 UNISERVO IIIC, IVC, and VlC: All blocks will be written and read in
the binary mode.

7.0 Block Sizes,

5.4
Fage 2
7/21/64
Rev. l

7.1 All blocks in a file, excluding those contained between bypass blocks
will be fixed in size.

7.2 The maximum block size will be 4092 characters.

7.3 The minimum block size for any output file contained in a run when
rerun is to be allowed for will be 400 characters.

7.4 The minimum block size will otherwise be limited only by the size of
the label block (20 character minimum). Refer to 8.3)

7.5 UNISERVO lllA: The block size for any file must be a multiple of 4
characters.

B.O Block Formats.

8,1 All blocks will contain an indication of the block type in the first
character.

8.2 All blocks will be counted. All blocks, with the exception of those
contained between bypass blocks, will contain a binary block count
in the second through fourth characters.

8.3 Label Blocks.

Character

0
1-3
4-16

17-19
20-n

Octal 3
Block Number
Tape Label
Reel Number
Unused

Character 0 will contain an octal 3 which identifies this as a label
block.

Characters 1 through 3 will contain the binary block number of this
block.

Characters 4 through 16 will contain the tape label.

Characters 17 through 19 will contain the reel number expressed deci­
mally in tnree characters. Each reel of a multi-reel file must contain
the number of the reel within the file.

Characters 20 through n are unused.

' t
\

8.4 Data Blocks.

Character

0
1-3
4-5
6-n

Octal 4
Block Number
True Data Character Count
Data (and Fill, if necessary)

5.4
Page 3
7121/64
Rev. l

Character 0 will contain an octal 4 which identifies this as a data
block.

Characters 1 through 3 will contain the binary block number of this
block relative to the first block on the tape.

Characters 4 through 5 will contain a binary count of the number of
data characters in the block.

Characters 6 through n wi 11 contain data and fil 1. For UNISERVO lllA
tapes, one to three characters of fill may be required to make the block
size a multiple of 4. More fill may be present in the occasional blocks
of data when it is desired to write a block which is not yet full.

8.S Bypass Block!•

Character

0
1-3
4-n

Octal 5
Block Number
Rerun Jnformation

Character O will contain an octal 5 which identifies this as a bypass
block.

Characters 1 through 3 will contain the binary block number of this
block relative to the f irst block on the tape.

Characters 4 through n will contain rerun information.

8.6 End->f-Tape Blocks,

Character

0
1-3
4-n

Octal 6
Block Number
Unused

8.6 (continued)

5.4
Fage 4
7/21/64
Rev. 1

Character 0 wil~ contain an octal 6 which identifies this block as an
end-of-tape block.

Characters l through 3 will contain the binary block number of this
block relative to the first block on the tape.

Characters 4 through .!! ~re unused.

8.7 End-of-File Blocks.

Character

0
1-3
4-n

Octal 7
Block Number
Unused

Cha~acter 0 will contain an octal 7 which identifies this block as
an end-of-file block.

Characters 1 through 3 will contain the binary block number of this
block relative to the first block on the tape,

Characters 4 through n are unused,

PROGRAMHEiD MUL TIPLY AND DIVI DE

1. 0 General

15.5
Page 1
8/3/64

The routines are kno'W?l as MPN, MPC, a.nd DV a.nd will be provided in
PAL JR source code. The routines a.re entered by means of a JR to
N, L, where N represents the na.me of the routine (MPN, MPC, or DV)
and L represents the number of cha.racters of the multiplier or
quotient.

With the exception of the follo'Wing notes (2.0 a.nd J.O) the pro­
grammed multiply and divide routines parallel the hard"WRre with
respect to entrance requirements and exit conditions.

lt is strongly recommended that a. master copy of this source code
be maintained at each installation and reproduced to provide a copy
for inclusion in each progra.m using multiply or divide.

2.0 Multiply-Considera.tions

a. MPN and MPC are inseparable.

b. The space requirement for MPN and MPC is 256 characters.

c. Multiplication involving bla.nks, alphabetics or special
cha.racters behaves differently from the hardware.

d. MPN and MPC affect indicators in the same manner as hard'W8.re
for all legitimate multiplications except in the case of MPC,
the KZR indicator (37) 'Will reflect the condition of the com­
bined accumulation in ARl.

3.0 Divide-Considerations

a. The space requirement for DV is 301 characters.

b. Blanks, alphabetics, and special characters cause results
different from those produced by hard'W8re.

c. DV may produce settings different from the hard'W8re of KZR
indicator (37) a.nd KM indicator (38) if decimal overflow occurs
during the operation of the divide subroutine.

d. The DV assumes the presence of the MPN and MPC coding at assembly
time in order to share 22 chara.cters of constants. If fN is
to be used w1 thout MPN and MPC, the space requirement for DV
is 323 characters.

4.0 Using the Routines

15.5
Page 2
8/3/64

Each routine is entered using a JR of the form: JR N,L where N is
MPN, MPC, or DV and L is the number of characters of the multiplier
or quotient; each of the routines is entered using a JR instruction
of the form; JR N,L.

4.1 Multlply

4.1.1 Entrance Reguirements - MPN and MPC

a. Multiplicand in AR2 with santinel immediately to the left
of the MlD.

b. Multiplier in tetrads 20 and 21 'With length specified by
the L character of the JR.

c. MPC will use the contents of ARl es a value to be incrcased
by the product of the multiplication.

4.1. 2 Exi t Condi tions - MPN and MPC

a. The product will occupy all characters of ARl, 'With zeroes
to the left of significR.nt character~. In the case of MPC,
the product will be increased by the contents of all ARl
at entrance to the routine.

b. The contents of tetrads 20 and 21 are destroyed for only
the L characters of the multiplier.

c. The contents of AR2 are left unchanged.

d. IndicAtors

(1) Indicators HI (33), LO (36), EQ (34), and NBOF (39)
are unchanged from their entrance conditions.

(2) The KZR indicator reflects the condition of ARl. The
indicator will be set only if the product or, for MPC,
the product plus the initial content of AR1 is zero.
This represents a variation from the hardwe.re multipli­
cation result in which KZR is unchanged by MPC.

(3) The KM indicator (38) reflects the condition of ARl. The
indicator will be set only if the product is negative.

(4) 'I'he KDF indicator (40) will be set if the product, or for
MPC, the product plus the initial content of ARl exceeds
16 characters. The resulting ciecimal overflow will be
inhibited until control is returned to the user program.

15.5
Page 3
8/3/64

4.1.3 To assemble the multiply routine without the divide routine use
the cards containing page numbers 1 and 2.

4.2 Divide

4.2.1 Entrance Reguirements - DV

a. Divisor in AR2 'With sentinel immediately to the left of
the MSD.

b. Dividend in ARl.

c. ~tient length specified in L ctiaracter of JR.

4.2.2 Exit Conditions - DV

a. The quotient will be developed in the L least Sif!llificant
characters of tetrads 20 and 21. Other characters of those
tetrads are destroye•i.

b. The least significant characters of ARl will contain the
remainder. The ~u.mbcr of charncters allowed for this pur­
pose is the sum of the number of characters of the divisor
and the quotient. Other characters of ARl are unchanged.
The sign of the rcmainder is thc sign of the dividend.

c. The contents of AR2 are unchanged.

d. Indicators

(1) Indicators HI (33), LO (36), EQ (34) and NBOF (39)
are unchanged from their entrance conditions.

(2) Tbe KM indiCfl tor (38) reflects the condi tion of the
quotient. The i!'i:iicator will be set if the quotient
is negative.

(3) The KZR indicator (J7) reflects the condition of the
remainder. Tho indicator will be set if the remainder
is zero.

(4) The KDF indicator (40) will be set if the dividend is
more than nine (9).times the value of the divisor f'or
any quotient position.

The resulting decimal overflow will be inhiblted until
control is returned to the user proeram.

4.2.3 To assemble the divide routine without the multiply routine
use the cards oontaining page numbers 2 and J.

4.j Werning

15.5
Page 4
8/3/64

a. None of the operands may include blanks or other special
characters.

b. AR2 must contain a sentinel for division else the divide
subroutine, like the hardware, will loop.

4.4 Reserved Tags

These routines use the labels MPC, MPN, DV, and MDS. None of
these labels may be defined in a program assembled \li.th these
subroutines.

MAQNETIC_TAPE CONTROL fiOUTI~: UNIVAC 1050 CONV'ENTIONS.

1,0 INTRODUCTION

5,5
Page 1

Rev. 1- 7/Zl./64

There are J tape-control routines for tapes conforming to tbe
UNIVAC 1050 data-tape conventions: TAPEl, TAPE2, and TAPEJ, TAPEl
is a general-purpose tape input-output routine and can be used to
control any number of input and output files. TAPE2 can be used
to control a single input file and TAPEJ can be used to control a
single output file. T.APE2 and TAPEJ offer certain economies in
store requirements and execution times for programs, or program
segments, which process a single tape file (for example, a card­
to-tape, tape-to-print, or the first and last passee of a sort
program).

In general, the 3 routines perform the following functions: check
or produce label blocks, advance items, determine when blocks
should be read or written, maintain block counts, servo swap,
submit XF ordere to the tape-handler portion of the Operating
System, and relinquish control to the Operating System when
necessary.

All three routines may be present in the same program if desired,

2.0 T.APEl CONTROL ROUTINE

2.1 Introduction

There are three program components involved in the use of the TAPEl
routine: a T.APEl call, a number of FILEl calls, and the macro­
instructions.

The TAPEl call directs the assembler to incorporate tape input­
output coding into the program. The configuration of the incor­
porated coding depends upon the input--output requirements of the
worker program, which are specified by the values of the para­
meters in the TAPEJ. calling statement. In general, the coding
generated will perform the following functionsa check or produce
label blocks, advance items, determine when blocks should be read
or written, maintain block counts, servo swap, submit the necessary
XF orders to the tape-handler portion of the Operating System,
and relinquish control to the Operating System when necessary.

The FILEl oacl.iJ..s describe the files to be controlled, directing the
assembler to generate a number of constants and working storages
which will be used by the TAPEl coding. A FILEl oalling statement
contains such information as labe!, input-output method to be
applied, servos, blook size, record size, and file area(s).

5.5
Page 2

Rev. 1 - 7/21.64

The macro-instructions furnish linkages with the subroutines of tbe
TAPEl coding. They are used by the worker program to initiate and
terminate the processing of files, to establish rerun points, and
to obtain and release individual data items.

2.2 TA.PEl Call

The TA.PEl call specifies a number of parameters which describe the
tape input-output requirements of the 'WOrker program. These param­
eters are used to generate the input-output subroutines which will
perform the required file- anditem-handling functions. The T.APEl
calling statement has the following format:

LABEL OP 1 N OPERANDS _ _
TAPEl pl, ••• ,pn

Tbe label field must be blank and the operation field as shown above.

pl Number of input files to be controlled by TAPEl.. This param­
eter is ~ or blank if there are no input files.

p2 Input method to be applied: DMND, STDBY, or BOTH. In the
standby method, a file has 2 input areas; therefore, the next
block can be read from tape while the current block, in the
other area, is being processed. In the demand method, a file
has only 1 input area; therefore, a block can be read only
when the previous block has been completely processed. Param­
eter 9 of the FILEl call determines which method is to be
applied to a particular file.

This parameter is blank if there are no input files.

pJ Form of the item-advance macro-instructions that will be used:

P4

AR, TRF, or BOTH. (Refer to Section 2. 4. 2 for a description of
these forms.) Parameter 12 of the FILEl call, and the macro­
instructions actually used, determine whicb form applies to
a particular file.

This parameter is blank if there are no input files.

Nlllnber of outp~t files to be controlled by TAPEl. This
parameter is ~ or blank if there are no output files.

5.5
Page .3

Rev. 1- 7/ZJ./64

p5 Output method to be applied: DMND, STDBY, or ~· In the
standby method, a file has 2 output areas; therefore, a block
can be written from one area while the next block is being
processed in the other area. In the demand method, a file

p6

has only 1 output area; therefore, a block cannot be processed
until the write order for the previous block has been com­
pleted. Parameter 9 of the FILEl call determines which method
is to be applied to a particular file.

This parameter is blank if there are no output files.

Form of the item-advance macro-instructions that will be used:
AR, lßE, or liQ.ll!• (Refer to Section 2.4.2for a description of
tbese forms.) Parameter 12 of the FILEl call, and the macro­
instructions actually used, determine which form applies to a
particular file.

This parameter is blank if there are no output files.

p7 Primary control index register: 1 tbrough 7. The index
register designated will be used for communication between
the TAPEJ..coding and the macro-instractions. It may be used
by the worker program for other purposes, but its contents
will be altered whenever a macro-instruction is executed.

p8 Secondary control index register: 1 through 7. The index
register designated will be used by tbe TAPEl, coding. It may
be used by the worker program for other purposes, but its
contents will be altered whenever a macro-instruction is
executed.

The allocation of this index register to the TAPEl coding will
result in a saving of storage locations and execution time,
but may be omitted if the user wishes. In this case, param­
eter 8 is ~ or blank.

p9 If rerun is to be allowed for, this parameter designates the
output file on which rerun points are to be established;
otherwise, it is blank. Rerun points are established by
use of the RERNl macro-instruotion.

plO Sentinel option: OPSEN if sentinel option is desired, blank
otherwise. If the sentinel option is chosen, the program
will stop whenever an end-of-file or end-of-reel sentinel is
read. By means of a trace-switch setting, the operator will
direct the T.APEl coding to perform either end-of-file or end­
of-reel processing for the file being read.

pll ••• To be assigned.

\,

2.3 FILEl Call

5.5
Page 4

Rev. 1 -7/21/64

Immediately preceding the TAPEl call, there is a FILEl call for each
file to be controlled by TAPEl. It specifies 15 paremeters which
describe the file and which are used to generate constants and work­
ing storages required by the TAPEl coding. A FILEl calling statement
has the following format:

-1.@!.L OP 1 N OPERANDS

file ID FILEl pl, ••• ,pl5

The label f ield contains a unique 1- to 5-charscter label which will
be used to identify the file il'. the ma.cro-instructions.

The operation field must be as shown above.

pl File type: IN for an input, or OUT for an output.

p2 Tape label: 13 or less characters bounded by apostrophes.

pJ Reel number base: 3 decimal digits bounded by apostrophes.
This value plus decimal 1 will be the reel number of the first
reel.

p4 Tape type and recording density1 : A1 for UNI3ERVO IIIA tapes;
~' for compatible tapes at 200 BPI; Q, for compatible tapes
at 556 BPI; or ~' for compatible tapes at 800 BPI.

p5 Channel: normally ~ for an input file, or 2 for an output file.

p6 First servo number.

p? Second servo number, if servo swap for alternate reels is
desired; otherwise, this parameter is equal to p6.

p8 Label of an area large enough to contain one block of the
file. (Refer to pl5.) An AREA directive for this area must
appear in the worker program.

p9 If the standby method is to be applied to the file, this
parameter specifies a second area large enough to contain one
block of the file; otherwise, this parameter is blank.

1. Translation mode is not specified for compatible tapes because they
are always read or written in the binary mode. Refer to UNIVAC 1050
SYSTEM DATA TAPE CONVENTIONS, section 6.2.

5.5
Page 5

Rev. 1- 7/21/64

plO Label of a closed subroutine which is to be executed in addition
to the standard label processing. For an input file, the sub­
routine is executed after the label block is read, but bef ore
it is checked. For an output file, the subroutine is executed
after the label block is assembled in an output area, but
before it is written onto tape. For toth input and output
files, the 4 LSC of ARl contain the absolute address of the
label block when the subroutine is entered.

If there is no label subroutine to be executed for the file,
this parameter is blank.

pll For an input file, this parameter specifies a label in the
worker program to which control will be transf erred when an
end-of-file block is read (subject to the sentinel option
described under plO of the TAPEl call).

For an output file, this parameter determines what the TAPEl
coding will do if an end-of-tape condition is detected while
a PUTl macro-instruction is being executed.

If this parameter is blank, the TAPEl coding will close the
current reel and open the next, returning control from the
PUTl in the normal fashion. (Refer to Exit Conditions in
Close Output Reel, which constitutes a detailed description
of the end-of-tape actions performed by the TAPEl coding.)

If this parameter is not blank, the TAPEl coding will trans­
fer control to the specified label*. The worker program
may then perf orm any desired end-of-reel processing, such
as putting out summary items or hash totals, or establishing
a rerun point. This processing must be followed by a close
reel macro-instruction, after which normal processing may
be resumed.

If there is more than one PUTl macro-instruction which
addresses the file, control may be returned to the proper
point by a jump to the exit line of the appropriate PUTl
subroutine. If the AR form of the macro-instructions is
used, the exit line is labelled XTP691; if the TRF form is
used, the exit line is labelled XTP62. lt should be noted,
however, that the execution of one or more PUTl macro­
instructions in the end-of-reel processing will alter the
exit line. In this case, the worker program must save
XTPq0+1 through XTPG6+3, or XTP62+1 through XTP62+J, before
the macro-instructions are executed.

* This transfer of control will take place only once per reel.

5.5
Page 6

Rev. 1- 7/21/64

pl2 Form of the macro-instructions: Aß, if the aritbmetic-register
form will be used; TRF, if the transfer form will be used.

pl3 Item size. If pl2 is TRF, this parameter cannot be greater
than ~.

p14 Number of fill characters (refer to pl5).

pl5 Physical block size, which equals: (pl3) times (number of
items per block} plus (p14) plus (6).

For UNISERVO IIIA tapes, this parameter must be a multiple of 4.

2.4 MACRO INSTRUCTION3

2.4.1 General

5.5
Page 7

Rev. 1- 7/21/64

The worker program communicates with the T.APEl coding by means of
the macro-instructions described below. Format, entrance require­
menta, exit conditiona, and memory requirements are given for each
macro-instruction.

In addition to the specific exit conditions given for each macro­
instruction, i t should be noted tha t all macro inatructj_ons alter
the contents of arithmetic registers 1 and 21 the primary control
index register, and the secondary control index register, if any.

An entry in the LABEL field of a macro-instruction applies to the
first instruction generated.

2.4.2 Item Handling Macro-Instructions

There are two forms of the item handling macro-instructions: an
arithmetic register (AR) form, and a transfer (TRF) form. The AR
form supplies the \.IOrker program with the absolute address of the
first character cf the current item (er item area, if the file is
an output). The \.IOrker program places this value in an index reg­
ister. All subsequent references to the item use the index register
and are item-relative (that is, the first character is addressed as
~' the second as 1, and so on). Thus an instruction to bring the
tenth through the fifteenth characters of the item to AR1 could
be written BAl 14, 61 ,1S; where ~ is the index register which will
contain the item address.

If the programmer wa.nts to assign labels to the i tem and i ts con­
sti tuent fields, he may do so by defining the structure of the item
with a dummy AREA statement. The AREA statement and its associated
field definitions are written in the normal fashion (refer to the
Reference Manual, Section 4-C, Pages 103 through 105). They are
bracketed by statements which manipulate the location counter
(refer to the Reference Manual, Section 4-c, Page 15), preventing
the allocation of memory to the item. The following example shows
how an item might be defined.

LINE LABEL

1 label-a
2
3 label-b
4 FLDl
• •
• •
• •
j f ield-n

j+l

OP'N

EQU
ORIG
AREA

•
•
•

ORIG

0

$
~
i tem size,
6, 15
•
•
•

5.5
Page 8

Rev. 1 - 7/21/64

type,,index register

length, address
label-a

Line 1 establishes a reference point to which the location counter
may be reset after the item has beeu defined. Line 2 sets the
location counter to ~ so that the item and field addresses will be
~-relative. Lines 3 through j define the item and its constituent
fields. (Note that the AREA statement cannot specity a fill char­
acter.) Line j+l resets the location counter to the value it con­
tained prior to the item definition.

Using such an item definition, the tenth through the fifteenth
characters of the item oould be brought to ARl by the instruction
BAl FLDl, which would be equivalent to the instruction BAI 14, 6, x,
where ~ is the index register which will contain the item address.

The transfer (TRF) form transfers items between the file area and
some other area in the program. If this other area is a working
storage, it and its constituent fields are mapped by a normal AREA
statement. The other area may also be one which is associated with
a file using the AR form of the macro-instructions. In this case,
the macro-instructions address the current item area of the second
file by referencing the label assigned to the item in the dummy AREA
statement. For example, an item common to both input file A and
output file B, and using index register 3 (XJ) might be labelled
~. It could then be processed as outlined below.

OPENl A
BT ARl,X.3
OPENl B

Process i tem.

PUTl ITMAB,B
GETl A
BT AR1,X3

5.5
Page 9

Rev. 1 - 7/21/64

Checks A label. Places lst item address in ARl.
Plaoes lst item address in XJ.
Writes B label

Item and component fields addressed through X.3

Transfer item from A a.rea. to B area
Pla.ces next item address in ARl
Places next item address in X3

Return to item-processing. At end of file A, close file B

CLOSl B, RWD Write out any remaining items. Write 2 EOF
blocks. Re'Wind current reel of B.

As part of this processing, items could also be transferred from
working stora.ge to file B. This would be accomplished by a line
of the form:

PUTl ws,B

where ~ is a label assigned to the first character of a working
storage a.rea..

It should be noted that the AREA statements described in the pre­
ceding pa.ragraphs pertain only to items, and should be distinguished
from the AREA statement or statements which alloca.te the input or
output area.(s) required by a file. (Refer to parameters 8 and 9
of the FILEl ca.11.)

2.4.3 File-Handling MB.cro-Instructions

5.5
Page 10

Rev. 1 - 7/21/64

The file-handling macro-instructions, with the exception of RERNl,
reduce to 3 basic macro-instructions: open file, close file, and
close reel. There is no open reel macro-instruction because the
functions of such a macro-instruction are implied in, and performed
by, the close reel macro-instruction.

The open file macro-instruction initiates the processing of a file.
It sets the constants and working storages pertaining to the file
to their initial conditions. It also checks or writes a label
block and, except in the case of an output file using the TRF form
of the item advance, presents the first data item, or its address,
to the worker program. The open file macro-instruction may be
executed when: (1) no previous macro-instructions have been executed
for the file, or (2) the file has been previously opened and was
automatically closed at end of file, or (3) the file has been prev­
iously opened and "Was closed by means of a close file macro-instruction.

The close file macro-instruction terminates the processing of a file.
In the case of an output file, it writes any remaining items onto
tape, together with 2 end-of-file blocks. It also rewinds the tape
as indicated in the macro-instruction. In the case of an input file,
the macro-instruction simply rewinds the tape as indicated. In both
cases, control returns to the worker program when all orders for
the f ile have been successfully completed. A close file macro­
instruction should not be executed for an input file if the file has
been closed automatically, since the tape has already been rewound.

The close reel macro-instruction initiates, at the worker program1s
request, the actions which are usually performed automatically at
the end of a reel. It is used when the worker program wishes to
close a reel prior to the detection of an end-of-tape condition
(output)1 or an end-of-reel sentinel (input). The macro-instruction
terminates the processing of the current reel and initiates the
processing of the next reel. In the case of an output file, it
writes any remaining items onto tape, together with 2 end-of-reel
blocks, rewinds the current reel as indicated in the macro-instruction,
and writes a label block on the next reel. In the case of an input
file, the macro-instruction simply rewinds the current reel and
checks the label block of the next reel. In all cases, except
that of an output file using the TRF form of the item advance, the
macro-instruction presents the first data item, or its address, to
the worker program.

1. Refer to parameter 11 of the FILEl call for an exception to this.

Open Input F,lli

LABEL

label

label

Format

OP 1N

OPENl

OPENl

OPgRANDS

file ID

5.5
Page 11

Rev. 1 - 7/21/64

file ID, destination

1. Destination is specified if TRF macro-instructions were called
for in the FILE.l line. lt is either the label of a working
storage area, or the label of an output item.

Entrance Reguirements

1. This is the first macro-instruction executed for the file,
or the file has been closed,

2. If _destinati~~ is the label of an item, the output file
concerned is open and the index register assigned to destin­
atio~ contains the address of the first character of the
current item area.

Exit Conditions

1. The label block has been read from the servo specified by
parameter 6 of the FILEl aall and has bsen ch~cked.

2. If specified in parameter 10 of the FILEl call, a special
label subroutine has been executed.

J. If the AR form is used, the 4 LSC of ARl contain the absolute
address of the first item.

4. If the transfer form is used, the first item has been trans­
ferred to the area specified by the label destination.

Lf\BEL

label

Entrance Reguirements

1. The file is open.

Exit Conditions

OP 1N

GE Tl

OPERANDS

file ID

5.5
Page 12

Rev. 1 - 7/21/64

1. The absolute address of the first character of the next item
is in the 4 LSC of arithmetic register 1.

2. If an end -of-~eel was detected, the current reel hns been
rewound with interlock and the next reel opened. The label
has been checked and the worker program 1 s speciallabel pro­
cessing, if auy, has been performed. The absolute a1dress
of the first character of the next item is in the 4 LSC of
arithmetic register 1.

J. If an end-of-file block is detected, the current reel has been
rewound with interlock and control transferred to the label
specified in parameter 11 of the FILEl line. The ajdress of
the end of file block is not supplied, and no further macro­
instructions may be executed for the file until it is re­
opened.

2.4.6 Input Jtem Advance (Transfer)

L OP'N

label GETl

Format

OPERANDS

5,5
Page 13

Rev. 1 - 7/21/64

file ID, destination

1. Destination is either the label of a working storage area, or
the label of an output item.

Entrance Reguirements

1. Tbe file is open.

2. If destination is the label of an item, the output file with
which it is associated is open and. its index register contains
the address of the first character of the current item area.

~t Conditions

1, The next item has been transferred to the area specified by
destination.

2. If an end-of-reel block was detected, the current real has been
re-wound with interlock and the next reel opened. Tbe label
has been checked and the worker program's special label pro­
cessing, if any, has been performed. Tbe next item is in the
area specified by destination.

J. If an end-of-file block was detected, the current reel has been
rewound with interlock and control transferred to the label
specified in parameter 11 of the FILEl line. The end-of-file
block was not transferred, and no further macro-instructions
may be executed for the file until it is re-opened.

2.4.7 Close Input File

LABEL

label

Format

OP 1N

CLOSl

OPER S

5.5
Page 14

Rev. 1 - 7/21/64

file ID, rewind option

1. Rewind option is Illi'.Q, for a rewind without interlock, !QQ.K, for
a rewind with interlock, or ~, if the current reel is not to
be rewound.

Entrance Regw.rements

1. The file is open.

Exit Conditions

1. The current real has been rewound as specified.

2. Control is not transferred to the worker program1 s end-of-file
section (parameter 11 of the FILEl line), but passes to the
worker program at a point immediately following the macro­
instruction.

3. No further macro-instructions may be exeouted for the file
until it has been re-opened.

2.4.S glose Input Reel

L

label

label

Format

OP 1N OPERANDS

5.5
Page 15

Rev. 1 - 7/21/64

CLOSl file ID, rewind option, REEL

CLOSl file ID, destination, rewind option,REEL

1. Destina~ is speoified if TRF maoro-instruotions were oalled
for in the FILE..1 line. lt is the label of either a working
storage area, or theitem <if an output file.

2. Revtind opti<2,g is R.JD, for a rewind without interlock, LOCK, for
a revtind with interlook, or NORWD, if the ourrent reel is not
to be rewound.

Entranoe Reguirements

1. The file is open.

2. If destination is the label of an item, the output file with
which it is assooiated is open and its index register oontains
the address of the first oharacter of the ourrent item area.

Exit Conditions

1. The ourrent real has been rewound as speoified and the next'
reel opened. The label has been ohecked and the worker program's
special label subroutine, if any, has been executed.

2. If destination was specified, the first item of the new reel is
in the area specified by destiIJ1.tion; otherwise, the absolute
address of the first ·1tem is in the 4 LSC of ARl.

2.4.9 Open Output File

LABl!.'L OP'N

label OPENl

Entrance Reguirements

OPERANDS

f ile ID

5.5
Page 16

Rev. 1 - 7/21/64

1. This must be the first macro-instruction executed for the file,
or the file has been closed.

Exit Conditions

1. The label block has been written on the servo specified by
parameter 6 of the FILEl call.

2. If specified in parameter 10 of the FILE call, a special label
subroutine has been executed.

J. If the AR form of the PUTl macro-instruction is used, the
absolute address of the first character of the first item area
'Will be in the 4 LSC of arithmetic register 1.

2.4.10 Output Item Advance{Aß)

LABEL ~+ OPEHANDS

label 1 PUTl file ID

Entrance Reguirements

1. The file is open.

Ex:it Conditions

5.5
Page 17

Rev. 1 - 7/Zl/64

l. The absolute address of the first character of the next item
area will be in the 4 LSC of arithmetic register 1. The
previous item is not available to the worker program.

2. If an end-of-tape condition was detected, and parameter 11 of
the FILEl call was blank, 2 end-of-reel blocks were written
on the current reel. The current reel has been rewound with
interlock and a label block was written on the next reel.
If specified in parameter 10 of the FILEl call, a special
label subroutine has been executed. The absolute address of
the firat character of the next item area is in the 4 LSC
of arithmetic register 1.

J. If an end-of-tape oondition was detected, and parameter 11
of the FILEl call was not blank, control has been transferred
to the specified label. The absolute address of the first
character of the next item area is in the 4 LSC of ARl.

2.4.11 Output Item Advance (Transfer)

OP 1N

label PUTl

Format

OP

origin, file ID

5.5
Page 18

Rev. 1- 7/21/64

1. Origin is either the label of a working storage area, or the
label of an input item.

Entrance Reguirements

1. The file is open.

2. If origin is an input item, the input file with which it is
associated is open and its index register contains the address
of the first character of the current item area.

Exit Conditions

1. The item has been transferred to the output area.

2. If an end-of-tape condition was detected, and parameter 11
of the FILEl call was blank, 2 end-of-reel blocks were written
onto the current reel, which has been rewound with interlock.
A label block was written on the next reel. If specified in
parameter 10 of the FILEl call, a special label subroutine has
been executed.

J. If an end-of-tape condition was detected, and parameter 11 of
the FILEl call was not blank, coni':rol has been transferred to
the specified label.

2.4.12 Close Output File

L Et OP'N OPER S

5.5
Page 19

Rev. 1 - 7/Zl/64

label CL031 file ID, rewind option

Format

l. Rewind option is filil2, for a rewind without interlock, If)C~, for
a rewind with interlock, or NORWD, if the current reel is not
to be rewound.

Entrance Reguirements

1. The file is open.

Exit Conditions.

1. All items committed to output have been written onto tape.
Two end-of-file blocks have also been written.

2. The current reel has been rewound as specified.

3. No further macro-instructions may be executed for the file
until it has been re-opened.

2.4.13 Close Output Reel

L EL

label

Format

Rev. 1 -

OPEN OPER

CLOSl file ID, rewind option, REEL

5.5
Page 20
7/21/64

1. Rewind opt.ion is !lli.!21 for a rewind without interlook, LOCK, for
a rewind witb interlook, or NORWD, if the ourrent reel is not to
be rewound.

~trance Reguirements

1. The file is open.

Exit Conditions

1. All items committed to output have been written onto tape. Two
end-of-reel blocks have also been written.

2. The current reel has been rewound as specified, e.nd the label
block has been written on the next reel.

3. If specified in parameter 10 of the FILEl call, a special label
subroutine has been exeouted.

4. If the AR form of the PUTl macro-instruction is used, the
absolute address of the first character of the first item area
will be in the 4 LSC of ARl.

2.4.14 Establish Rerun Point1.

LABEL OP 1N

label RERNl

Format

OP DS

return

5.5
Page 21

Rev. 1 - 7/21/64

1. Return is the label to which control will be returned when the
program is rerun .from this point.

Entrance Requirements

1. The file on which the rerun dump is to be written is open.

Exit Conditions

l. All items committed to this file have been written onto tape.

2. A rerun memory dlJDlp, bracketed by bypass blocks, has been written.

). If the AR form of the PUTl ma.cro-instruction is used, the
absolute address of the first character of the next item is in
the 4 LSC of arithmetic register 1.

1. This ma.cro-instruction has not been implemented at the present time.

5.5
Page 22

Rev. 1 - 7/21/64

2.5 Estimated Store Reguirements

The following paragraphs give estimated store requirements for the
T.APEl coding, the FILEl calls, and the macro-instructions.

2.5.1 TAfEl Coding

1. The 3 major sections of TAPEl coding have the following store
requirements s

Common subroutines, always present •••••••••••••••••••••260
Input subroutines, present if there are input files •••• 350
Output subroutines, present if there are output files ••• 275

2. If there are input files (pl>~), the appropriate values from
the following table should be added to the total estimated
from paragraph l, above.

ot
Condition Descri_.R_tion Positions

p8 < 1 Only 1 control index register allocated 54
plO = OPSEN Sentinel option selected 35
p2 = STDBY Standby method used f or all inputs 15
p2 = BOTH Both standby & delilB.nd methods used f or inputs 25
P4 > ~ Output files present JO
pJ =AR All input macro 1 s are AR form 45
pJ = TRF All input macro 1s are TRF form 60
pJ = BOTH Input macro 1 s are both forma 105

J. If there are output files (p4> ~), the appropriate values from
the following table should be added to the total estimated.

Condition Descr~tion
of 1
Positio~

jP8 < 1 Only 1 control index register allocated 40
p6 =AR All output macro 1 s are AR form 50
p6 = TRF All output ma.cro's are TRF form 55
p6 = BOTH Output macro' s are both forme 105

4. If the standby method is to be applied to any file, add .lQ
to the total estimated.

2.5.2 FILEl. Call

5.5
Page 23

Rev. 1 - 7/21/64

The number of store positions required for each FILEl call is 78.

2. 5. J !1!2!.o-·Instruotions

The f ollowing table shows the OPERATION and OPERANDS fields for each
macro-instruotion and the number of store positions required:

No.
MACRO-INSTRUCTION OP 1N OPERANDS J'.QS....

Open input file: AR OPENl f ile ID 10
TRF OPENl file ID, destination 20

Input item-advanoe: AR GETl file ID 10
TRF GETl file ID, destination 15

Close input file CLOSl file ID, rewind option 20

Close input reel: AR CLOSl file ID, rewind option, REEL 20
TRF CLOSl file ID, destination,rewind option,

REEL 30

Open output file OPENl f ile ID 10

Output item-advancea AR PUT! file ID 10
TRF PUTl origin, file ID 15

Close output file CLOSl file ID, rewind option 20

Close output reel CLOSl file ID, rewind option, REEL 20

Establish rerun point1 RERNl return -

1. This macro-instruction has not been implemented at the present time.

5.5
page 24

Rev. 1 - 7/21/64

2.6 ~mated Execution Times - Item-Advance Ma.cro-Instructions

Note that these times assume that an end-cf-block condition is not
encountered dw·ing the execution of the macro-instruction.

GETl, AR form: 607.5 usec

TRF form: 1203.0 usec + 9 (item size) usec[+ 13.5 usec, if
destination is in­
dexed]

PUTl, AR form: 607.5 usec

TRF form: 1066. 5 usec + 9 (item size) usec [+13. 5 usec, if origin
is indexed]

5.5
Page 25

Rev. 1 - 7/21/64

2.7 Progz:am Stops & Operating Instructions

1. All stops described below are in the format 30 lc uu ss 60,
where: 2 = channel, ~ = unit, and M = stop code.

2. Stop codes 2,2, 22, and '11. pertain to hardware malfunctions,
and occur in the tape-handler portion of the OPS. Refer to
the OPS write-up, section IVE, for the appropriate recovery
procedures.

STOP I
CODE!

01 1

1

0)

06*

07*

10

66
77

MEANING OPERATOR ACTION
T
1 Label error. i a.

(ARl) = expected label•
To try a new tape:
1. Manually rew.ind erroneous tape.

& reel number
(AR2) = actual

Block count error
(T~) = expected flag

& block count
(Tl) = actual 1

End-of-reel sentinel

End-of-file sentinel

Unidentifiable block.
See stop oode OJ.

MemorY pari q error.
Ta_J)_e _I>ari ty error.
Servo off-line or
non-rea4L

J b.

2. Mount new tape on same servo.
J. Set trace-address switches to

other than 01 and trace mode
to PROC.

4. Press PROGRAM START.
To accept erroneous tape:
l. Set trace-address sw.itches to 01

and trace mode to PROC.
2. Press PROGRAM START.

Unrecoverable error.
1. Press PROGRAM START.
2. Program w.ill loop through OPS.
J. Execute prescribed manual

jettison procedure.

a. To treat sentinel as end-of-reela
1. Set trace-address switches to

06 and trace mode to PROC.
2. Press PRO GRAM START.

b. To treat sentinel as end-of-filea
1. Set trace-address ewitohes to

other than 06 and trace mode
to PROC.

2. Press PROGRAM START.

Unrecoverable error. See stop code
OJ.

Refer to OPS write-up, section IVE.

W'l'liis stop w.ill oocur only if the sentinel option was chosen in the TAPEl call.

I

\

\

J.O TAPE2 CONTROL ROUTINE

5.5
Page 26

Rev. 1 - 7/21/64

The TAPE2 routine controls a single input file, performing all
necessary label-checking, block handling, item-handling, and related
functions. It is essentially a subset of TAPEl, furnishing certain
economies in store requirements and execution time to a program or
program segment which has only one tape input file. Two program
components are involved in its use: a TAPE2 call, and a set of
macro-instructions.

J.l TAfE2 Call

The TAPE2 call specifies 15 parameters which describe the input file
and how it is to be handled. These parameters are used to generate
the input subroutines, constants, and working storages necessary to
perform the required input functions. The TAPE2 calling statement
has the following format:

LABEL OP'N OPERANDS

label TAPE2 pl, ••• ,p15

The label field contains a unique 1- to 5-character label which will
identify the file in the macro-instructions.

The operation field must be as shown above.

pl Tape labela 13, or less, characters bounded by apostrophes.

p2 Reel number base1 3 decimal digits bounded by apostrophes.
This value plus decimal 1 will be checked against the reel
number of the first reel.

p3 Tape type and recording density1: J, for UNISERVO IIIA tapes;
~, for compatible tapes at 200 BPI; Q, for compatible tapes at
556 BPI; or Q, for compatible tapes at 800 BPI.

P4 Channel: /;t•

p5 First servo number.

p6 Second servo number, if servo swap for alternate reels is
desired; otherwise, this parameter is blank.

1. Translation mode is not specified for compatible tapes because they
are always read or written. in the binary mode. Refer to UNIVAC 1050
SYSTEM DATA TAPE CONVENTIONS, Section 6.2.

p7

p8

p9

plO

pll

pl2

5.5
Page 27

Rev. l - 7/21/64

Label or an area large enough to contain ane block or the tile,
(Refer to pl4.) An AREA clirective for this area must appear
in the worker program.

It the standby method is to be applied to the file, this param­
eter specifies a second area large enough to contain one block
of the file; otherwise, it is blank. If an area is specified,
an AREA clirective for it must appear in the worker program.

Form or the macro-instructions1 Aß, if the arithmetic-register
form is to be used, or Ißl, if the transfer form is to be used.

Label of a closed subroutine which is to be performed in adclition
to the standard label processing, or blank. The subroutine is
executed after the label block is read, but before it is checked.
The 4 LSC or ARl contain the absolute address ot the label block
when the subroutine is entered.

Label in the worker program to which control will be trans­
ferred when an end-of-file block is read. (subject to pl5).

Item size. If p9 is ,m, this parameter cannot be greater
than ~·

pl) Number of fill characters. (Refer to p14.)

pl4 Physical block size, which equals: (pl2) times (number of
items per block) plus (pl3) plus (6).

For UNISERVO IIIA tapes, this parameter must be a multiple or 4,

pl5 Sentinel option: OPSEN, if sentinel option is desired, blank
otherwise. If the sentinel option is cbosen, the program will
stop whenever an end-of-file or end-ot-reel sentinel is read.
By means of a trace-swi tch setting, the operator will direct
the T.APE2 coding to perform either end-of-file or end-ot-reel
processing for the file.

J.2 TAPE2 Macro-Instructions

5.5
Page 28

Rev. 1- 7/21/64

The '110rker program communicates with the TAPE2 coding by means of
the macro-instructions described below. Format, entrance require­
ments, exit conditions, and store requirements are given for each
macro-instruction.

In addition to the specified exit conditions given for each macro­
instruction, it should be noted that all macro-instructions alter
the contents of arithmetic registers 1 and 2.

An entry in the label field of a macro-instruction applies to the
first instruction generated.

3.2.1 Open File

LABEL

label

label

Format

OP 1N

OPEN2

OPEN2

OPERANDS

f ile ID

5.5
Page 29

Rev. 1- 7/21/64

file IDJ destin.ation

1. Destination is specified if TRF macro-instructions were called
for in TAPE2. It is the label of an area large enough to con­
tain one item of the file.

Entrance Reguirements

1. This must be the first macro-instruction executed for the file.

Exit Conditions

1. The label block has been read from the servo specified by
parameter 5 of the T.APE2 call and has been checked.

2. If specified in parameter 10 of the T.APE2 call, a special
label subroutine has been performed.

J. If the AR form is used, the 4 LSC of ARl contain the absolute
address of the first data item.

4. If the TRF form is used, the first data item has been trans­
ferred to destination.

Store Reguirements

5 character positions for the AR form; 15 for the TRF form.

J.2.2 Item Advance

5.5
Page)0

Rev. 1- 7/21/64

~=--+-_o_P-'N..._,.__o_PER--.-AN___.Ds ___

label

label

Format

GET2

GET2

file ID

file ID, destination

1. Destination is specified if the TRF form was called for in
TAPE2. It is the label of an area large eLough to contain
one item of the file.

Entrance Reguirements

1. The file is open.

Exit Conditions

1. If the AR form is used, the absolute address of the first
character of the next item is in the 4 LSC of AR.l.

2. If the TRF form is used, the next item has been transferred
to destination.

). If an end-of-reel block was detected, the current reel has
been rewound with interlock and the next reel has been opened.
The label block has been checked and the worker program 1 s
special label processing, if any, has been performed.

4. If an end"of-file block was detected, the current reel has
been rewound with interlock and control transferred to the
label specified in parameter 11 of the T.APE2 call. The
end-of-file block is not available to the worker program,
and no further macro-instructions may be executed f or the
file.

Store ReguirementJ!

5 character positions for the AR form; 10 for the TRF form.

3.2.3 Close File

LABEL

label

Format

uP'N ,
CLOS2

OPEIWfDS

5.5
Page 31

Rev. 1 - 7/21/64

file ID, rewind option

1. Rewind oµtion is 1QQ.!5., for a rewind with interlock, or film,
for a rewind without interlock.

Entrance Reguirements

1. The file is o~en.

Exit Conditions

1. The current reel has been rewound as specified.

2. Control is not transferred to the worker program's end-of-file
section (parameter 11 of the TAPE2 call), but passes to the
worker program at a point immediately following the macro­
instruction.

3. No further macro-instructions may be executed for the file.

Store Reguirements: 10 character positions.

3.3 Estimated Store Reguirements - TAPE2 Coding

5.5
Page 32

Rev. 1 - 7/21/64

The following ,tJa1·agraphs give estima.ted store requirements for
the coding generated by the TAPE2 calling statement.

1. The minimum amount of coding that ca~ be turned out will
occupy !{11 character positions.

2. If the standby method is tobe applied (!-18 not blank), add
111. to the total estimated.

3. If servo swap is to be performed for alternate reels of the
file (p6 not blank), add 80 to the total estimated.

4. If the sentinel option is chosen (p15 = OPSEN), add l2 to
the total estimated.

5. If the transfer form of the macro-instructions is to be used
(p9 = TRF), add 1i to the total estimated.

6, If s.tJecial label 1Jrocessing is to be performed (p10 not blank),
add 10 to the total estimated.

3.4 Execution Time - GET2 Macro-Instruction

The times shown are calculated on the assumption that an end-of­
block condition is not detected during the execution of the macro­
instruction.

AR form: 486.0 usec

TRF form: 918.0 usec + 9 (item size) usec T 13.5 usec, if
destination is
indexed

3.5 Program Stops &.cr~ting Instruc~

5.5
Page 33

Rev. 1 - 7/21/64

1. All stops described on the following page are in the format
30 lc uu ss 60, where: ~ = channel, !!1:! = unit, and ~ = stop
code.

2. Stop codes 55, 66, and 77 pertain to hardware malfunctions.
Refer to the OPS write-up, section IVE, for the appropriate
recovery procedures.

ßTOP t
1

~ODE MEANilm

01 Label error.
(AR1) = expected label

& reel)
(AR2) = actual

03 Block count error
(Tft) = ex_!)ected flag

&. block count
(T1) = actual

06* End-of-reel sentinel.

07* End-of-file sentinel.

10 Unidentif iable block.
See stop code OJ.

55 Memory parity error.

l
l 66
!

Tape parity error.

77 Servo off-line or
n9n-ready.

1

5.5
Page 34

Rev. 1 - 7/21/64

OPERATOR ACTION

a. To try a new ta~e:
1. Manually rewind erroneous tape.
2. Mount new tape on same servo.
3. Set trace-address switches to other

than 01 and trace mode to PROC.
1 4. Press PROGRAM START.

b. To accept erroneous tape:
1. Set trace-address ewitches to 01

and trace mode to PROC.
2. Press PROGRAM START.

Unrecoverable error.
1. Press PROGRAM ST1ffiT.
2. Program will loop through OPS.
3. Execute ~rescribed manual jettison

procedure.

a. To treat sentinel as end of reel:
1. Set trace-address switches to 06

and trace mode to PRGC.
2. Press PROGRAM START.

b. To treat sentinel as end of file:
1. Set trace-address switches to other

than 06 and trace mode to PROC.
2. Press PROGRAM START.

See stop code 06.

Unrecoverable error. See stop code OJ.

Refer to OPS write-up, section IVE.

* This stop will occur only if the sentinel option was chosen in the
TAPE2 call.

4. 0 TAPE3 CONTROL ROUTINE

5.5
Page 35

Rev. 1 - 7/21/64

The TAPE3 routine controls a single output file, performing all
necessar·y block handling, 1 tem handling, and related functions.
lt is essentially a subset cf TAPE1, furnishing certain economies
in store requirements and execution time to a program or program
segment which has only one output file. Two program components
are involved in its use: a TAPEJ call, and a set of macro­
instructions.

4.1 TAPE3 Call

5.5
Page 36

Rev. 1 - 7/21/64

The TAPE3 call specifies 14 parameters which describe the output
file and how it is to be handled. These parameters are used to
generate the output subroutines, constants, and working storages
necessary to perf orm the required output functions. The TAPEJ
calling statement has the following format:

LABEL OP;N OPERANDS

label TAPE3 p1 ' ••••• , p14

The label field contains a unique 1- to 5-character label which
will identify the file in the macro-instructions.

The operation field must be as shown above.

p1 Tape label: 13 or less characters bounded by apostro~hes.

p2 Reel mlI!lber base: 3 decimal digits bounded by apostrophes.
This value plus decimal 1 will be the reel number of the
first reel.

pJ Tape ty~e and recording density1: ,a, for UNISERVG IIIA
tapes; ß, for com~atible tapes at 200 BPI; Q, for compatible
tapes at 556 BPI; or Q, for compatible tapes at 800 BPI.

P4 Channel : .2..

p5 First servo number.

p6 Second servo number, if servo swap for alternate reels is
desired; otherwise, this parameter is blank.

p? Label of an area large enough to contain one block of the
file. An iffiEA directive for this area must appear in the
worker program.

p8 If the standby method is to be applied to the file, this
pa1·ameter specifies a second area large enough to contain one
block of the file; otherwise, it is blank. If an area is
specified, an AREA directive for it must appfar in the worker
program.

1. Translation mode is not specified for compatible tapes because they
are always read or written in the binary mode. Refer to UNIVAC
1050 System DATA TAPE CONVENTIONS, Section 6.2.

5.5
Page 37

Rev. 1 - 7/21/64

p9 Form of the macro-instructions: AR, if the arithmetic­
register form is to be used, or TRF, if the transfer form
is to be used.

p10 Label of a closed subroutine which is to be executed in
addition to the standard label processing, or blank. The
subroutine is executed ätter the label block is assembled
in an output area, but before it is written onto ta~e. The
4 LSC of Jtlt1 contain the absolute address of the label block
when the subroutine is entered.

p11 This parameter determines what the TAPEJ coding will do when
an end-of-tape condition is detected while a PUTJ macro­
instruction is being executed.

If this !)arameter is blank, the TAPEJ coding will close the
current reel and open the next, returning control from the
PUTJ in the normal fashion. (Refer to ~ Conditions in
~ ~' which constitutes a detailed description of the
e~d-of-tape actions performed by the TAPEJ codin~)

If this parameter is not blank the TAPE J coding will transfer
control to the specified labeli. The worker program may then
perform any desired end-of-reel processing, such as putting
out summary items or hash totals. This processing must be
followed by a close reel macro-instruction, after which
normal processing may be resumed.

If there is more than one PUTJ macro-instruction, control may
be returned to the proper point by a jump to the exit line
of the PUTJ subroutine. . If the _l\.R form of the macro-instruc­
tions is used, the exit line is labelled 11:060; if the TRF
form is used, the exit line is labelled XTv62, It should be
noted, however, that the execution of one or more PUTJ macro­
instructions in the end-of-reel processing will alter the
ex!t line. In thi~ case, the !!Orker program myst save
XT06~t1 through XTC6~tJ, or XT062t1 through XT062fJ, before the
macro-instructions are executed.

p12 Item size. If p9 is l]E, this parameter cannot be greater
than 1024.

p1~ Number of fill characters. (Refer to p14.)

p14 Physdcal block size, which equals: (p12) times (number of
items per block) plus (p1J) plus (6).

For UNISERVO IIIA ta~es, this parameter must be a multiple
of 4.

1. This transfer of control will take place only once per real.

4.2 T.APEJ Macro-Instructions

5,5
Page .3S

Rev-. 1- 7/21/64

The worker program communicates with the TAPE.3 coding by means of
the ma.cro-instructions described below. Format, entrance require­
ments, exit conditions, and store requirements are given for each
macro-instruction.

In addition to the specified exit conditions given for each macro­
instruction, it should be noted that all macro-instructions alter
the contents of arithmetic registers 1 and 2.

An entry in the label field of a macro-instruction refers to the
first instruction generated.

4.2.1 Open File

LABEL

le.bel

Entrance Reguirements

OP'N

OPEN)

OPERANDS

file ID

5. 5
Page 39

Rev. 1 - 7/21/64

1. This must be the first macro-instruction executed for the file.

Exit Conditions

1. The label block has been written on the servo specified by
parameter 5 of the TAPE3 call.

2. If specified in parameter 10 of the TAPE3 call, a special
label subroutine has been executed.

3. If the AR form of the macro-instructions is used, the 4 LSC
of ARl contain the absolute address of the first character of
the first item area.

Store Reguirements

5 character positions.

4.2.2 Item Advance

LABEL

label

label

Format

OP'N

PUTJ

PUTJ

OPER S

file ID

origin, file ID

5.5
Page 40

Rev. 1 - 7/21/64

1. Origin is specified if the TRF form was called for in TAPEJ.
It is the label of an area large enough to contain one item
of the file.

Entrance Reguirements

1. The file is open.

Exit Conditions

1. If the AR form is used, the absolute address of the next item
area is in the 4 LSC of ARl.1

2. If the TRF form is used, the item has been transferred from
origin to an output area.

J. If an end-of-tape condition was detected, and parameter 11
of the TAPEJ call 'Was blank, 2 end-of-reel blocks were written
on the current reel, which has been rewound with interlock.
A label block was written on the next reel. If specified
in parameter 10 of the TAPEJ call, a special label subroutine
has been executed.

4. If an end-of-tape condition was detected, and parameter 11 of
the TAPEJ call was not blank, control has been transferred to
the specified label.

Store Reguirements

5 character positions for the AR form; 10 for the TRF form.

1. This also applies in cases 3 and 4, above.

4.2.3 Close File

LABEL

label

Format

OP'N

CLOS3

OPERAND

5.5
Page 41

Rev. 1 - 7/21/64

file ID, rewind option

1. Rewind option is ß!!Q, for a rewind without interlock, &QQK, for
a rewind with interlock, or NORWD, if the ourrent reel is not
to be rewound.

Entrance Reauirements

1. The file is open.

Exit Conditions

1. All items oommitted to output have been written onto tape,
together with 2 end-of-file blocks.

2. The current reel has been rewound as specified.

3. No further macro-instructions may be executed for the file.

Store Reguirements

15 character positions.

4.2.4 Close Reel

OP 1N

label CLOSJ

Format

OPERANDS

5.5
Page 42

Bev. 1- 7/21/64

file ID, rewind option, REEL

1. Rewind option is film, for a rewind without interlock, 1QQK, for
a rewind with interlock, or ~' if the current reel is not
to be rewou..'1d.

Entrance Rqg_uiremcnts

1. The file is open.

Exit Conditions

1. All items committed to output have been written onto tape,
toget~1er wi tn 2 end··of-reel blocks.

2. The current reel has been rewound as specified, and a label
block has been written on the next reel.

J. If specified in parameter 10 of the TAPEJ call, a special
label subroutine has been executed.

4. If the AR form of the macro-instructions is used, the 4 LSC
of ARl contain the absolute address of the first character of
the first item area.

Store Requirements

15 character positions.

4.3 Estimated Store Reguirements - TAPE) Coding

5.5
Page 43

Rev. 1 - 7/ZJ./64

!he following paragraphs give estimated store requirements tor the
TAPEJ ooding.

1. The minimum emount or TAPE3 ooding that is turned out will
oocupy J.2§. character positions.

2. lt the standby method is to be applied (pS not blank), add
1ltl to the total estimated.

J. It servo swap 1s to be pertormed for alternate reels of the
file (p6 not blank), add ~ to the total estimated.

4. Ir the transf er form or the macro-instructions is to be used
(p9=TRF), add !Q to the total estimated.

5. If special label processing is to be performed (plO not blank),
add !Q to the total estimated.

6. If normal end-of-tape processing is tobe performed (pll blank),
add iQ to the total estimated.

7. If special end-of-tape processing is to be performed (pll not
blank), and the AR form or the macro-instructions is to be
used (p9=AR), add 2 to the total estimated.

4.4 Ji;!cecution Time - PUTJ Hagro-Instruction

The times shown are calculated on the assumption that an end-of-block
condition is not detected during the execution of the macro-instruction.

AR form: 486.0 usec

TRF forma 949.5 usec + 9 (1tem size) usec [+13.5 usec, 1f' oririn
1s indexed)

4. 5 Prosram Stops & Operating Instructiop1

5.5
Page 44

Rev. 1 - 7/21/64

1. There are no program stops 1n the TAPE3 coding.

2. The follow.i.ng are error stops in the tape-handler portion of
the OPS. Refer to tbe OPS write-up, Section IVE, for recovery
procedures.

a. 30 lo uu 55 60 - memory pari ty
b. 30 lc uu 66 60 - tape parity
c. 30 lc uu 77 60 - servo off-line or non-ready

In tbese stops, g, = cbannel, and !!!! = unit.

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	01-01-00
	01-01-24
	01-01-25
	01-01-26
	01-01-27
	02-01-24
	02-01-25
	02-01-26
	02-01-27
	03-10-01
	03-10-02
	03-10-03
	03-10-04
	03-10-05
	03-10-06
	03-10-07
	03-10-08
	03-10-09
	03-10-10
	03-10-11
	03-10-12
	03-10-13
	03-10-14
	03-10-15
	04-01-01
	04-01-02
	04-02-00-01
	04-02-00-02
	04-02-00-03
	04-02-01-01
	04-02-01-02
	04-02-01-03
	04-02-01-04
	04-02-02-01
	04-02-02-02
	04-02-02-03
	04-02-03-01
	04-02-03-02
	04-02-03-03
	04-02-03-04
	04-02-03-05
	05-06-00
	05-06-01
	05-06-02
	05-06-03
	05-06-04
	05-06-05
	05-06-06
	05-06-07
	05-06-08
	05-06-09
	08-05-00
	08-05-01
	08-05-02
	08-05-03
	08-05-04
	08-05-05
	08-05-06
	08-05-07
	08-05-08
	08-05-09
	08-05-10
	08-05-11
	08-05-12
	08-05-13
	08-05-14
	08-05-15
	08-06-00
	08-06-01
	08-06-02
	08-06-03
	08-06-04
	08-06-05
	08-06-06
	08-06-07
	08-06-08
	09-00-01
	09-00-02
	09-00-03
	09-00-04
	09-00-05
	09-01-01
	09-01-02
	10-01-00
	10-01-01
	10-01-02
	10-01-03
	10-01-04
	10-01-05
	10-01-06
	10-01-07
	10-01-08
	10-01-09
	10-01-10
	10-01-11
	10-01-12
	10-01-13
	10-01-14
	10-01-15
	10-01-16
	10-01-17
	10-01-18
	10-01-19
	10-01-20
	10-01-21
	10-01-22
	10-01-23
	10-01-24
	10-01-25
	10-01-26
	15-02-01
	15-02-02
	15-02-03
	15-03-01
	15-03-02
	15-03-03
	15-03-04
	15-03-05
	15-03-06
	15-03-07
	15-03-08
	15-03-09
	15-04-01
	15-04-02
	15-04-03
	15-04-r01
	15-04-r02
	15-04-r03
	15-04-r04
	15-05-01
	15-05-02
	15-05-03
	15-05-04
	15-05-r01
	15-05-r02
	15-05-r03
	15-05-r04
	15-05-r05
	15-05-r06
	15-05-r07
	15-05-r08
	15-05-r09
	15-05-r10
	15-05-r11
	15-05-r12
	15-05-r13
	15-05-r14
	15-05-r15
	15-05-r16
	15-05-r17
	15-05-r18
	15-05-r19
	15-05-r20
	15-05-r21
	15-05-r22
	15-05-r23
	15-05-r24
	15-05-r25
	15-05-r26
	15-05-r27
	15-05-r28
	15-05-r29
	15-05-r30
	15-05-r31
	15-05-r32
	15-05-r33
	15-05-r34
	15-05-r35
	15-05-r36
	15-05-r37
	15-05-r38
	15-05-r39
	15-05-r40
	15-05-r41
	15-05-r42
	15-05-r43
	15-05-r44

