
C'.·"
, ;'

C",
. /

Ct

REPORT PROGRAM
GENERATOR EXTRACT

UP·4072.2

Programming Information Exchange

RELEASE

This UNIVAC 1005 System Programming Information Exchange Bulletin 2, UP.4072.2,
announces the release and availability of "UNIVAC 1005 REPORT PROGRAM GENERATOR
EXTRAcr, " covers and 76 pages.

The UNIVAC 1005 Report Program Generator is a problem oriented programming
system designed to reduce substantially the time and effort necessary to
translate general data processing and reporting requirements into detailed
computer instructions. The 1005 Report Program Generator, on the basis of
a series of statements provided by the user, produces a computer program
which will prepare the desired reports. The UNIVAC 1005 Report Program
Generator provides a printed listing of both the user's input statements
and the generated assembly language code. After the assembly phase, this
generated code is an efficient ready-to-run object program. "UNIVAC 1005
REPORT PROGRAM GENERATOR EXTRACT" is a provisional document and will be
replaced by a more permanent one.

This P.I.E. bulletin is the second of a series to be issued concerning the
UNIVAC 1005 System. All P.I.E. bulletins have form numbers and may be
ordered with accompanying attachment by their "UP" number, as this one,
UP-4072.2.

Automatic distribution of UP-4072.2 has been made in quantity to Area and
Territory locations and to internal lists as indicated below. Additional
copies of "UNIVAC 1005 REPORT PROGRAM GENERATOR EXTRACT" may be requisi
tioned from Holyoke, Massachusetts, via a Sales Help Requisition through
your local UNIVAC Manager.

MANAGER,
Systems Programming Library Services

.............. IB~ EI EI RlRI .. II' ~!I~
~

TO LISTS.

211 (less 217),692 and
153, P.I.E. bulletin
only.

ATT ACHMENTS.

"UNIVAC 1005 REPORT PROGRAM GENERATOR

IEXTRACT,,, UP-4072.2, plus P.LE.
bulletin to 10 U, 217, 630 and 650.

i
UNIVAC DIVISIOr--J CJF- SPERRY RANO CORPORATI':]r"J

THIS SH:C.ET IS

1005 System P.I.E.
~~~~i~n_~P~4Q1~ 
DATE , 

february 11, 1966 
~ 

UP··4050 





c 

c 

UNIVAC 1005 

REPORT PROGRAM GEN ERATOR 
EXTRACT 

U P-4072.2 



This document is provisional in nature and is intended as a vehicle for 
meeting immediate needs with regard to system familiarization and orienta
tion. UNIVAC ® Division of Sperry Rand Corporation reserves the right to 
change and/or modify such information contained herein as may be required 
by subsequent system developments. 

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A. 

o 

o 

o 



A. 
B. 
C. 

D. 

E. 

F. 

G. 
H. 
I • 
J. 

TAB L E o F CONTENTS 

Page 
Introduction. • • • • • .. • .. • • • • • 1 
General Description • • • • • • • • • • • • • • • • .. 1 
Specification of Fields and Data. • • • • .. • • 3 
1. Internal 5 • • • • • • • • • • • • • • • • •• 3 

2. 
3 .. 

a. Constants (DC, " *, DI) • • • • .. • • • • 3 
b. Work Areas (Temp. Storage) • • • 5 
c. Accumulators..... • • • • • • • • • • • • 6 
d. EditMasks •••• ............. 8 
Input (Cards). • • • • • • .. • • • • • • • • • • • 9 
Output. • • • • • • • • • • • • • • • • • • • •• 11 
a. Printing... • • • • • • • • • • • • • • •• 11 
b. Punching .... .. • • • • • • • • .. • • •• 14 

Processing Data • • • • • • • • • • • • • • • • • •• 17 
1. Arithmetic Operations. • .. • • • • • • • • • .. •• 17 

a. Addition.. • • • .. • •• 17 
b. Subtraction...... .. • • • • • • • • • •• 18 
c. Multiplication (Normal and Long) ........ 19-20 
d. Division..... • • • .. • • • • • • • • • •• 21 
Internal Data Transfers and Editing. • • • • • •• 22 
a. Data Transfers (Alphanumeric and Numeric). •• 22 

2. 

b. Data Transfer with Edit Feature. • • • • • •• 24 
c. Filling - Work Areas. • • • • • • • .. • • 25 
d. Clearing - Work Areas. • • • • • • • • • • •• 26 
e. Moving a Single Character. • • • • • • • • ... 27 
f. Rounding Arithmetic Results. • • • • • • • •• 28 
g. Shifting Arithmetic Results. .. • .. • • • • •• 29 
h. Transfer of Sign. • .. • • • • • • • • • • •• 30 
1. General Logical Command. .. • • • • • • • • •• 31 

Input/Output. • • • • • • • • • • • • • • • •• 33 
1. Reading Cards. • • • .. • • • • • • .. • • • • • •• 33 
2. Printing. • • • • • • • • • • • • •• 34 
3. Space.... . • • • • .. . • • • • • • . •• 35 
4. Skip. • • • • • • • • • • • • • • • • • • • • •. 36 
5. Punching Cards. • • • • • • • • .. • • ... 37 
6. General Command. • • • • • • • • • • • • • •• 38 
Program Control. • • • • • • • • • • • • • • • • • •• 39 
1. Program Start. • • • • • • • • • • • • • • • • •• 39 
2. Program Halt. • • • • • • • • • • • • • • • • •• 40 
3. Setting Conditions. • • • • • • • • • • • •• 41 
4. Sequence Control • • • • • • • • • • • • • •• 42 

a. Testing for Conditions. • • • • • • • • • ... 42 
b. Comparing for Conditions ......... « •• 45 
c. Explicit Sequence Change. • • • • • • • • 53 
d. I mpl i cit Sequence Change (Level breaks). • •• 54 

5. Loop Control • • • • • • • • • • • • • • • • • •• 58 
6. Subrout i nes • • • • • • • • • • • • • • • • •• 59 
Comments • • • • • • • 
Copy Source Deck •• • • • 
Program Organization ••••• 
Operating Procedures ••••• 

· . . . . . . . . . · . . • • • • • • • 
• • • . . . . • • · . . · . . . . . . . . · . . 

62 
63 
64 
65 

U P-4072.2 



U P·4072.2 

Appendices 

TAB LEO F CON TEN T S 
(Continued) 

I System Labels 
I I System Switches 

I I I Level Breaks (sample) 
IV Use and Definition of Edit Masks 

Page 

66 
67 
68 
73 



UN IVAC 1005 

(, REPORT PROGRAM GENERATOR EXTRACT 

c' 

A. INTRODUCTION 

B. 

The UNIVAC 1005 Report Program Generator is a problem oriented program
ming system designed to reduce substantially the time and effort neces
sary to translate general data processing and reporting requirements 
into detailed computer instructions. No knowledge of computer program
ming is required other than the basic rules for writing programs in the 
UNIVAC 1005 Assembly Language. The 1005 Report Program Generator, on 
the basis of a series of statements provided by the user, produces a 
computer program which will prepare the desired reports. The user's 
statements, punched into cards, provide: 

(1) The formats of the input (card) files--these files contain 
the information from which the report is to be prepared. 

(2) The formats of the desired output-reports--printed documents, 
punched summary cards, or both. 

(3) The sequence of operations to be performed on the input files-
arithmetic operations, input/output, data movement, controls. 

The UNIVAC 1005 Report Program Generator provides a printed listing of 
both the user's input statements and the generated assembly language 
code. After the assembly phase, this generated code is an efficient 
ready-to-run object program. 

GENERAL DESCR I PT ION 

The UNIVAC 1005 Report Program Generator translates a user1s source 
input statements into 1005 assembly language. Each input statement 
consists of one operation mnemonic, one or more operands, optionally 
one label, and optional comments. One or more assembly language 
statements are generated for each source input line, and the printed 
output of the Report Program Generator alternates between the source 
code and its generated code. In addition, assembly language instruc
tions may be included with Report Program Generator statements. 
These instructions will be copies into the assembly deck generated; 
a "no macro" message will be pr i nted. 

Source input code for the Report Program Generator is prepared using 
1005 Assembly Language coding forms. The information on the forms is 
then punched into cards. 

The operation mnemonic (referred to as lithe macro" below) is coded in 
columns 6 thru 10 of the source input; the first character of the macro 
is coded in column 6, and the remaining characters must follow with no 
intervening blanks. As an example, of the eight configurations shown 
below, only the first and fifth are correct. 

1 
UP-4072.2 



U P·4072.2 

LABEL ~~~N OPERAND ONE 

12345 67896 

READ 
READ 

REA D 
READ 
SET 
sa 

SET 
SET 

correct 
incorrect 
incorrect 
incorrect 

correct 
incorrect 
incorrect 
incorrect 

When a source input statement is found to contain an invalid operation 
mnemonic, the statement is punched without alteration into the output 
deck and is printed with the message !!NO MACRO!! appended at the right 
of the printed line (in columns 82 through 89). 

Labels A, B (when required), and C (when required) are coded in columns 
11 thru 20, 21 thru 30, and 31 thru 40, respectively, of the source in
put code. Columns 11, 21, and 31 are reserved for indirect addressing 
designations (excepting comments and constants) and are otherwise unused. 
Indirect addressing is permitted in only those operands where specifically 
so stated in the macro descriptions of sections D and F. Except in cer
tain obvious cases, it is expected that labels will be coded in each 
operand field of the source input code. 

If a label is present on a source input statement, it will be present 
in the label field of the first assembly language statement generated 
by that macro; its value is then determined in the normal fashion by 
the Assembler. This ensures that when transferring program control 
within a report program, a user need only specify (as the operand of 
his "jump!!) the label of the desired transfer point. 

The label field is five characters, of which only the first three are 
used--the fourth and fifth are ignored. Thus AGE and AGENT are both 
interpreted as AGE; COL 7 and COL 8 are both interpreted as COL. Rules 
for construction of labels are the same as those for the 1005 Assembly 
System. 

Comments are normally specified by uSing a comment source input card, 
but alternatively may be coded in columns 62 thru 80 of any source 
input card. Comment source cards are retained throughout the assembly 
process; comments !!beyond" column 61 are lost dur i ng Pass I of the 
Assembly. If a label is present on a comment source card, its value 
will be the address of the next available location of memory, as 
determined by the 1005 Assembly Language processor. This feature 
allows the definition of more than one label at any processing step. 

o 

The increment fields (columns 17-20, 27-30, and 37-40) should be coded 
with great care. Incrementation is always counted with respect to the 
!!left-hand'! value(MSL) of a label, and is not normally required in an 0.· 
operand, except for the TEST CHARACTER and MOV E CHARACTER macros. In 
the macro descriptions of sections D, E, and F, whether or not an 
operand may be incremented is indicated for each operand. 

2 



System references, as used in this manual, are source input operands In 
any of the following six forms: 

(1) ):{ nnn 
(2) #aabb 
(3) $RRCCBk 
(4) RC 
(5) #;y 
(6) +LABEL 

decimal address 
octal representation of any pair of characters 
row/column/bank (decimal) 
row/column/bank (internal machine format) 
system swi tch 
IT r ight-hand lT value of LABEL (the LSL) 

Each of these is fully described in the UNIVAC 1005 Assembly Language 
manual. Listings of System Labels and Switches appear in Appendices I 
and I I to this manual. System References are permitted as operands only 
where specifically so stated in the macro descriptions of sections D, E, 
and F. When System References are not permitted, an operand must be 
either a Programmer-defined label or a System Label. 

With each macro description in sections D, E, and F, is a summary table 
of operand characteristics for each required operand. The three columns 
In the table refer respectively to: 

(1) IA: 

(2) SR: 

indirect addressing to define the operand 

system references in addition to labels coded as the 
operand 

(3) INC: YES meb.ns the increment feature IS permitted and NO means 
it is not. 

The normal application of a macro requires neither the use nor the know
ledge of the table's contents; the information is useful for advanced 
applications. 

C. SPECIFICATION OF FIELDS AND DATA 

1. Internal 

a. Constants 

Constants are specified by furnishing the name, the length, and 
the content of each, on a source statement with operation 
mnemon ic tlDC. II 

The name of the constant must satisfy the rules for constructing 
labels, and is coded in the line label field. The length of the 
constant does not include the character, if any, used to furnish 
a sign for the constant. If the sign character is not furnished, 
it is assumed to be a plus. The length of a negative constant 
must not exceed 25 characters. 

If a constant of more than 44 characters is desired, the excess 
of 44 is coded on the next sequential source statement with an 
operation mnemonic of "comma" (,). Additional characters beyond 
88 are coded on additional "comma-cards" to a maximum of 961 
characters (22 cards including the DC). The !!comma-cards!! may 
have a name of their own coded in their label fields, whether or 

3 U P-4072.2 



I 
LABEL Opt 

I 

1 3 6 7l 
I I 

SLE)V!E,N D C' 
i , 

M. T,EIN D CI 
i . 

M,E,SiA,G D. cf 
U P-4072.2 

not the entire constant has a name; the name on a "comma-card" 
refers to the characters on that card only, but the name on a 
l!DC-card lt refers to the entire constant. 

Constants may be defined anywhere within a program without 
interfering with program sequence control; they are not loaded 
into the instruction area. Each constant may consist of any 
characters in the character set including blanks and algebraic 
signs (the algebraic sign of the constant is not considered as 
one of its characters). 

DEFINE CONSTANT (DC) 

. 
•• 

Function: 

Enter a constant into U1005 storage. 

Where: 

Operation = a two character mnemonic operation code (DC) 

Operand 1 

Label A = the number of characters In the constant, 
excluding sign. 

IA = the sign of the constant 

INC = the characters of the constant 

Operand 2 - additional constant characters extending to 
column 61. Negative constants extend only 
to column 42. 

Operand Characteristics: 

l.8. 

Operand 1 - Label A NO 
Operand 2 - Label B NO 

Label C NO 

Examples: 

(1) Enter the constant + 7 
(2) Enter the constant - 10 

SR INC 

NO NO 
NO NO 
NO NO 

(3) Enter an alphabetic constant. 

OPERAND 1 OPERAND 2 
~A LABEL A + ITA LABEL LABEL e l~t9 B + ~ 

12 14 18 ." tl2 1.t. -, 20 ";1 1 22 2,d - 28 30 

I I , 
1 , + 7. , • , I , 

2 I - 1 01 
I . I I • • t 
~ T 

2.9 I I M,OtV E T H! I S T 01 $; P R IA N D 

4 

40 

, 
, 

PtR 

o 

o 

. -, o 
I N T I -.I 



C·.' 
..' 

LABEL 
1 3 

LON '8 
I 

. I 
I 

T.H dR D 

c 

I 
OP I 

I 

6 7: 

CONTINUE CONSTANT (comma - ,) 

Function: 

Continue a constant that overflows from a previous 
Define Constant or Continue Constant instruction. 

Where: 

Operation = a one character operation code (,) 

Operands 1 and 2 = consecutive character positions, 
beginning at column 18, and ending at 
column 61. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

J.A 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

(1) Enter the first 44 characters of a 132 character 
constant. 

(2) Enter the next 44 characters of the constant. 
(3) Enter the last 44 characters of the constant. 

OPERAND 1 OPERAND 2 

C I±ta ~~ LABEL A + ITA LABEL B + LABEL 
~ 

12 18 20 '" 22 24 - 28 30 132 34 ., 14 :.,1 

I I t 

40 

I 
D ,C I I 1,3 2! • T HI I S , C. 0: NJ S T A NIl I, Nt CI L, U D E,SI T, H E -

I I L M. N SI A T E 
I 

T '. i , C 0, L TIH ·R JIG H 
i i INclLU cod U M , 
i , i A NID D J N,G N 

b. Work Areas 

Work areas are specified by furnishing the name and length of 
each, on a source statement with operation mnemonic ItDA.1t 

The name of the area is coded in the label field and must 
satisfy the rules for constructing labels. Maximum area size 
is 961 characters. 

Work areas may be defined anywhere within a program without 
interfering with program sequence control; they are not re
served in the instruction area. 

Work areas are not automatically cleared when the object pro
gram is loaded. 

5 

U,P ,T ° 
611 

UP·4072.2 



LABEL 

1 3 

I 
T. E. MI P 

I 
T. 2 I 

• 
C,A RID 

UP·4072.2 

DEF INE WORK AREA (DA) 

I 
OPI 

I 

Function: 

Define a work area. 

Where: 

Operation = a two character mnemonic operation code (DA). 

Operand 1 

Label A = the number of character pos i ti ons requi red In 
the work area. 

Operand 2 = not used. 

Operand Characteristics: 

JA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1) Define an eight character work area named TEMP. 
(2) Define a 12-character work area named T2. 
(3) Define an 80 character work area named CARD. 

OPERAND 1 
~; LABEL A ITt LABEL B LABEL C + + 6 n ~. 

12 14 18 20 -,. ,,~ 

=,1 22 2.4 

OPERAHD 2· I 
It 28 30 132 34 -13J 04( 

I I I I 
D. AI , , 8. I , , I I 

I , 
I I 

I 
I I I 

I I I I 
D, Ai 1 2 I I I I I I I I 

! 

I I 1 I D, AI 8.0 . I . I 

c. Accumulators. 

Accumulators are specified by furnishing the name and length of 
each, on a source statement with operation mnemonic "DA." 

The name of the accumulator is coded in the label field and 
must satisfy the rules for constructing labels. The accumu
lator may not exceed 31 characters in lengt.h. Accumulators 
may be defined anywhere within a program without int.erfering 
wit.h program sequence cont.rol; they are not reserved in the 
instruction area. 

Accumulators are not automatically set to zero when t.he object 
program is loaded. 

6 

I 

I 

c 

o 

o 



c 

LABEL 
1 3 

I 
A 1.9' 

i 
A 2, I 

• 
, r 

DEFINE ACCUMULATOR (DA) 

Funct.ion: 

Define an accumulat.or. 

Where: 

Operat.ion = a t.wo charact.er mnemonic operat.ion code (DA) 

I 
OP I 

I 

6 7: 
I 

D. A' 
i 

D AI 

Operand 1 

Label A = the number of positions required in t.he 
accumulator. 

Operand 2 = not used. 

Operand Characteristics: 

JA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1) Define a 19 digit. accumulator named A19. 
(2) Define a 6 digit accumulator named A2. 

OPERAND 1 OPERAND 2· 
IA LABEL A + ~ LABEL + LABEL C B 
'" "' 12 14 - 18 20 '" -:',1 22 24 - 28 30 32 34 

I I ! 

1. 9. • I • I I , I 
I 

Ei I I I I ; 
--. i i i • , • I I , i I l 

7 

+ - :u 4£l 

, I 

I 

I 

UP-4072.2 

-------------- ----------



LABEL 
i 1 3 

I 
T H O!U, 

i 
T,H,O,U 

UP.4072.2 

I 

I 
OPI 

1 
6 7; 

I 
D CI 

d. Ed it Masks 

, 

Edit masks are specified by furnishing the name, the length, 
and the content of each, on a source statement with opera
tion mnemonic "DC". 

The name of the mask is coded in the label field and must 
satisfy the rules for constructing labels. A mask must not 
exceed 31 characters in length. If a field to be edited is 
larger than 31 characters; it must be edited in segments not 
exceeding 31 characters. 

Edit masks may be defined anywhere within a program without 
interfering with program sequence control; they are not 
loaded into the i nstructi on area. 

For rules governing the use and definition of edit masks, 
see Appendix IV. 

DEF INE ED IT MASK (DC) 

Function: 

Define an Edit Maks. 

Where: 

Operation = a two character mnemonic operation code 
(DC) 

Operation 1 

Label A = number of positions in the mask. 

Operand 2 

Label B = The characters of the mask beginning in 
column 18. 

Label C = Consecutive positions containing the overflow 
characters from Label B. 

Examples: 

~.ol 
Y' 
... "..: 

(1) Edit a 7-digit field into a 16-character dollars 
and cents field suppressing leading zeros and 
commas. 

(2) Same as above but insert asterisks for suppressed 
characters • 

OPERAND l OPERAND 2· 

C 1~'38 LABEL A + IrA LABEL B + LABEL 
12 14 18 20 ~ 22 24 - 28 30 132 34 

I 
$ :\,n ,t:{~~ • ):t,t:{ 

I 
, I T .0jT A L 1 1 6 I 

I ~ 

I 

4( 

I 
I $Iil )1 , ):O:i,J:! <)::0:( , I D Ci , , 116 T,OIT A L I 

8 

o 

o 

o 



2. I nput (Card) 

An input card file is described by a set of source statements 
which must be supplied to the Report Program Generator in a 
group. Each distinct card file requires its own group, and any 
number of card files is permitted. 

The first card of each group is a "DA" whose first ~nd only) 
operand is "$R1. lt (See next example.) A line label is not 
permitted; references to the entire card input area are made 
through use of the label "$R1" which is the system label of the 
card input area. 

The remaining cards of the group are field definitions. A 
field definition is a\source statement with~) operation 
mnemonic "dash" (-) (b) the name of the field coded in the 
label field, and (c~ decimal numbers coded in Labels A and B. 
Operand two is the length (number of characters) of the field 
being defined; Operand one is the column number of the "right
mosf'character of the field as it appears in the card. Every 
field of the input card illY§i have a name. A field name may 
appear in the descriptions of more than one input file if the 
respective fields agree in position and length. 

Every column of the input card file need not appear In a de
fined field. 

DEF INE INPUT FIELD (-) 

Function: 

Define a field in the input file. 

Where: 

Opera t i on = a one character opera t i on code (-). 

Operand 1 

Label A = The number of the last card column in the 
field. The number entered must not exceed 80. 

Operand 2 

Label B = The number of card columns in the field. 
This number must not be higher than the 
number entered In Label A. 

Label C = Not used. 

9 U P-4072.2 



LABEL 
1 3 

I 
I I ! t 

i 
T,Y,P,E 

I 

D~TE ~ 
i 

A,G,EjN ,T 
I 

A M T: 

I 
I 

N.F jO I 

I 
I 

T ,E,M I 
I 

X Y ,Z, I 

U P-4072.2 

Operand Characteristics: 

lA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

I 
OP I 

\ 

6 7: 
I 

DIAl I I 
I 

-, I 
I 

- ~ 
I - I , I 
: - i 
I 

-, j I I 
I 

- I i I 
i 

-, i I . 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

TYPE 
DATE 
AGENT 
AMT 
INFO 
ITEM 
XYl:: 

in column 1 
in columns 2 to 6 
in columns 7 to 10 
in columns 11 to 18 
in columns 1 to 18 
in columns 51 to 80 
in columns 1 to 80 

(length 1) 
(length 5) 
(length 4) 
(length 8) 
(length 18) 
(length 30) 
(length 80) 

NOTE: IXYl::" may be used as the "namefl of the card 
image area, as an alternative to using "$R1". 

OPERAND 1 OPERAND 2· 
~A LABEL A + :fA LABEL + LABEL C + ~, B 

12 14 18 w l12 ~4. '0' 2D ~Il 22 24 - 28 30 -
I I I 

at R 11 I , , I . I I 

I : , 
1. I I 1 I I 

6, I , I ~ : I I . 
I 

1 0, I : I 
I I 4 I I 

: : : 
1 8, i , I 8. I I , 

I 
1 S. : 

I 
1 8, I I , I I I _, 

R.O 
I 

3. 0. : , 
i , I t 

I I , , , 
i 

8, 0 : 
i 

8 0 I I I I , 

10 

o 

3B 4.0 

, , 
, o 
I 

_, I 

J_ , 

, , 
J I 

I I 

o 



c 

3. Output 

LABEL 
1 3 

I 
opUo~al) 

I 
opU oflal) 

a. Printing 

I 
OPt 

I 

6 7: 
I 

(1) Detail Lines 

Each card of the input file(s) may be printed as a 
Ildetail linell by transferring the contents of the 
card input area, 1l$R1,1l to the leftmost 80 positions 
of the print output area, 1l$8,0,1l and specifying a 
print operation. The MVALF and PRINT macros, which 
accomplish this action, are described in sections 
D, 2, a and E, 2. To print a detail line requires 
the following coding: 

OPERAND 1 OPERAND 2· 
~A LABEL A + ITA LABEL B + LABEL 
Y' 

12 U 18 20 '" - 30 32 ". :,1 22 24 23 34 
I I 

C 

M, V!A, L, F jt R3 11 , I , $Sd I 
, I 

I 

I I 

P,~, I N_1 L 

, . , , , , 
In general, programmed clearing of the print output 
area prior to using is not necessary, the PRINT 
operation automatically clears all 132 positions to 
spaces. 

(2) Nondetail Lines 

A nondetail line is described by a set of source 
statemenks which must be supplied to the Report Pro
gram Generator in a 'group. Each distinct nondetail 
line requires its own group, and any number of non
detail lines is permitted. 

The first card of each group is a IlDAIl whose first 
(and on 1 y) operand is "$PR." (S ee next examp 1 e. ) 
A line label is not permitted; references to the 
entire print area are made through use of the label 
Il$PR,!1 which is the system label of the print output 
area. 

+ - 38 

The remaining cards of the group are field definitions. 
A field definition is a source statement with: 
(a) operation mnemonic Ildash" (-_, (b) the name of 
the field coded in the label field, and (c) decimal 
numbers coded in operands one and two. Operand two 
is the length (number of characters) of the field 
being defined; operand one is the print position 
number (from 1 to 132) of the '!rightmost" character 
of the field. Every field must have a name. A field 
name may appear in the descriptions of more than one 
nondetail line if the respective fields agree in 
position and length. 

4C 

I , 

I 

When a line has been printed, the entire contents of 
the print output area, "$PR," will automatically be 

11 U P·4072.2 



U P·4072.2 

cleared to blanks; information required following the 
printing must be specifically "saved" by moving it to 
other areas. 

Constants that are to appear in the printed line must 
be transferred to the appropriate field each instance of 
printing, and must be defined as constants through use 
of the "DC" macro. 

The sum of the lengths of the fields specified in the 
field definitions of anyone group (excluding field 
overlapping) must not exceed 132, but may be any smaller 
number. I n general, only the fi rst line pr inted during 
execution need specify the contents of all 132 positions; 
automatic clearing of the print output area forces all 
otherwise unspecified print positions to be blank there
after. 

DEF INE PR INT FIELD (-) 

Fund ion: 

Define a field In the print area. 

Where: 

Opera t ion = a one character opera t i on code (-). 

Operand 1 

Label A = The "rightmost" position of the 
field. The number entered must not 
exceed 132. 

Operand 2 

Label B = The number of characters in the 
field. This number must not be 
higher than the number entered in 
Label A. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

12 

lA 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

o 

o 

o 



~, c Examples: 

(1) 15 positions for HEADR constant In 1 to 15 
(2) 5 positions for DATE field in 16 to 20 
(3) 20 pos i ti ons for blanks (automatic if printing 

(4) 
occurred previously) 

25 positions for PROD field in 41 to 65 
(5) 20 positions for blanks (automatic if printing 

(6) 
occurred previously) 

6 positions for CODER fi eld in 86 to 91 
(7) 41 positions for blanks (automatic if printing 

occurred previously) 

I OPERAND 1 OPERAND 2· 
LABEL OP I ~A LABEL A 17- :fA LABEL B + LABEL C + I 

1 7: ~: 18 "- 3D 32 - 4( 3 6 12 14 - 20 ,;.1 22 24 - 28 34 38 

I I I I I 
I I I I D, A! ! I ali R ~ • I I I , I , . , 

I i I I I , H E,AID R -, I 1,5 , I 1 5 , , I 
~ I 

I i l I I 2 0 . I 5 I I D,A.TiE - i , , i 
i i : , 

I 
~15, , I I 

I 
, I P R,OjJ, I I , I I , 2,5. i I 

c 
: : : I : C.O,DiE R I 9L 1, I , , I 6 , : , , I , 

c 
13 UP·4072.2 



LABEL 
1 3 

(op\ic!,a.l 
i 

( ~pt.i(j)~l 

LABEL 
1 3. 

I 
~_"t ~ o~a 1) 

i 
~pt i orta~) 

U P·4072.2 

I 
OP· 

I 

(3) Printing Summary Cards 

Each summary card may be printed by transferring the 
contents of the punch output area, "$P1,! to the left
most 80 positions of the print output area, "$8,0," and 
specifying a print operation. Printing must occur 
before punching for this case, due to the automatic 
clearing of the punch output prea following the actual 
punching. To print a summary card requires the fol
lowing code: 

OPERAND 1 OPERAND 2· 
IA ITA LABEL B + LABEL C + ~, 

'" 6 7: '.' 
LABEL AI~ 
12 14 -- 18 20 :.,. 22 24 - 28 30 32 34 - 38 4( 

I 
$ 

I I I 
M V'A,L,F P, l' , $,8 ,0' J _L 

, 
I I I I 

PJ RJ I N T I. . , I I I I I 

b. Punching 

(1) Detail Reproducing 

I 
OP' 

I 

6 7: 
I . 

M,V'A,L,F 

P U,N C H 

Each card of the input file(s) may be punched as part 
of the output file by transferring the contents of the 
card input a,rea, "$R1, II to the card output area, "$P1, IA 

and specifying a punch operation. The MVALF and PUNCH 
macros, which accomplish this action, are described in 
sections (D2a) and (E5). To punch a detail line re
quires the following coding: 

OPERAND 1 OPERAND 2· 
IJ 

LABEL AI~ ITA LABEL LABEL B + C ~, 

'.' 12 14 - 18 20 '" 22 24 - 28 30 32 ~II 34-
I I I 

:ltR1' I I :ltR1' I , 
I 

I I I 
I I , I 1 .• I I 

In general, programmed clearing of the punch output 
area prior to using is not necessary, as the PUNCH 
operation automatically clears all 80 positions to 
spaces .. 

+ - 38 

(2) Nondetail (Summary) Punching 

A nondetail (summary) card is described by a set of 
source statements which must be supplied to the Report 
Program Generator in a group_ Each distinct nondetail 
card requires its own group, and any number of non
detail cards is permitted. 

The first card of each group is a "DA" whose first ~nd 
only) operand is "$Pl." (See next example.) A label 
is not permitted; references to the entire card output 
area are made through use of the label "$P1," which is 
the system label of the card output area. 

14 

J I 

I 

4( 

, 
.1 

~--~-~--- ~--~ ~ ------- -----------~--------------

o 

o 

o 



c 

C 

The remaInIng cards of the group are field definitions. 
A field definition is a source statement with (a) operation 
mnemonic fldash" (-), (b) the name of the field coded in 
the label field, and (c) decimal numbers coded in Labels 
A and B. Label B is the length (number of characters) of 
the field being defined; Label A is the column number of 
the flrightmostfl character of the field as it will appear 
in the punched card. Every field must have a name, but 
not every column of the output card need appear in a 
defined field. A field name may appear in the descrip
tions of more than one output file if the respective 
fields agree in position and length. 

DEFINE PUNCH FIELD C-) 

Function: 

Define a field in an output card. 

Where: 

Operation = A one character operation code (-). 

Operand 1 

Label A = The "rightmostfl column of the field. 
The number entered must not exceed 80. 

Operand 2 

Label B = The number of characters in the field. 
This number must not be higher than 
the number entered in Label A. 

Label C = Not used. 

Operand Characteristics: 

1.6. SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1) 18 positions for SLSMN field in positions 
1 to 18 

(2) 3 positions for BRNCH field In positions 
20 to 22 

(3) 11 positions for YRVLM field In pos i tions 
30 to 40 

( 4) 10 positions for NET field in positions 
50 to 59 

(5) 7 positions 
64 to 70 

for COMM field in positions 

(6) 2 positions for CON constant in positions 
79 to 80 

15 

UP-4072.2 



, 
OPERAND 1 OPERAND 2· ,. 

LABEL OP' ~A 
LABEL Af:r iTA 

LABEL B + LABEL C + , 
>J. 

1 3 6 7: .. , 12 14 - 18 20 ~:i 22 24 - 28 30 ~2 M .- Ijg 4( 

o 
I I I I I 

I I I , ! I D A! I I $, P, ilL 1 j j 
I , J _l 

, 
• i I i I 

S L S 1M N -, , 1,8 , , 
I I 1 8 , I ., J , 

i B,R NjC,H i -, i , , 2.2 : , _L J 31 I 1 1 I 

Y,R V :L ,M I 4,0, I " , , I 
I 

I 
, I -, I I I 1,1, I , J 

I ! ! : I 5 9, : I 1 0, : I , , N E,T i , -, , , , I 
I I I 

7 
I 

I I , I C ,0 ,M iM, -, i , 7 i0, i , I , i , I 

CON: , : 
8 ° : , I 2 I 

, I 
I 

, I - I , , 

o 

o 
UP-4072.2 

---~--.. ~~ 



() 

c 

c 

D. PROCESSING DATA 

1. ARITHMETIC Operations 

Five Macro Instructions are provided for arithmetic operations. 

ADD (ADD) 

Function: 

Algebraically add a field or accumulator to a second field 
or accumulat.or. Bot.h fields are assumed t.o be sign'3d. 

Notes: (1) The maximum length of each operand is 31 10-
cat.ions. They need not be of the same length. 

Where: 

(2) The contents of Operand 1 are not affected by 
this instruction. The result is stored in 
Operand 2. 

(3) One of t.hree sign indicat.ors (#AP, #AZ, #AM) 
will be set to reflect t.he resulting condit.ion. 
The indicator set will remain set unt.il the 
next arit.hmetic or round instruction is given. 

(4) Arithmetic overflow will cause indicator #AF 
t.o be set.. 

Operation = a mnemonic operation code (ADD). 

Operand 1 

Label A = The label address of t.he first field or ac
cumulator. 

Operand 2 

Label B = The label address of t.he second field or 
accumulator. 

Label C = Not. used. 

Operand Characteristics: 

l.8. 

Operand 1 - Label A NO 
Operand 2 - Label B YES 

Label C NO 

Examples: 

(1) Add field A to accumulator 1 
(2) Add field TAX to field DEDCT 

SR 

NO 
NO 
NO 

(3) Add accumulator 3 t.o accumulator 5 

17 

INC 

YES 
YES 

NO 

UP-4072.2 



LABEL 

1 3 

I 
I 

I 

I 

I I I 
i 

I i 

U P·4072.2 

I OPERAND 1 OPERAND 2· 
OP I ~ LABEL A +:11 

IrA 
LABEL B + LABEL C + I 

6 7: -,. 12 14 --18 20 '" 22 24 - 28 30 32 34 - 38 ,;,1 

I _ I I I 
A D!D I I A I 

1 1 I AL 1 I 
I J I 

I 

A,DjD T,A 
i 

D E Dj C T 
I 

X, I I I I , I 

! 

I I A 5. I I . A DID A 3 I I • I 

SUBTRACT (SUB) 

Function: 

Algebraically subtract one field or accumulator from a second 
field or accumulator. Both fields are assumed to be signed. 

4( 

I 

I 

I 

Notes: (1) The maximum length of each operand is 31 locations. 
They need not be of the same length. 

(2) The contents of Operand 1 are not affected by 
this instruction. The result is stored in 
Operand. 2.. 

o 

(3) One of three sign indicators (#AP, #A2, #AM) will 
be set to reflect the resulting condition. The 
indicator set will remain set until the next ~ 
arithmetic or round instruction is given. 

Where: 

Operation = a mnemonic operation code (SUB). 

Operand 1 

Label A = The label address of the first field or accumu
la tor. 

Operand 2 

Label B = The label address of the second field or accumu
lator. 

Label C = Not used~ 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

18 

NO 
Y83 

NO 

SR 

NO 
NO 
NO 

INC 

YES 
YES 

NO o 



LABEL 
1 3 

I 
, , I 

; , 

I . 

c 

Examples: 

t 

(1) Subtract NET from GROSS. 
(2) Subtract accumulator 2 from PAY. 
(3) Subtract ABC from accumulator 6 • 

OPERAND 1 OPERAND 2· 
Opt IH LABEL A + ITA LABEL B + LABEL C + I 

~: 32 38 4( 7: 12 U 18 20 '" 22 24 - 28 30 34- -6 - ~ll 

I I I ~ ,R 0 ~ ,S , , S ,UIB, N,S TI , I , I , 1 , 

UIB 
1 i I 

I S A 2 I I P A.YI , I , 
i I S UIB A B c: I A,6, i , , I , , 

MULTIPLY (MPY) 

Function: 

Multiply a field or accumulator by a second field or accumula
tor by a second field or accumulator, storing the result in a 
third area. 

Notes: (1) The signs of both operands are ignored and assumed 
to be positive. 

Where: 

(2) The contents of Operands 1 and 2 (label B) will 
will not be disturbed, unless overlapped by the 
third Operand (Label C). 

Operation = a mnemonic operation code (MPY). 

Operand 1 

Label A = The label address of a four (4) digit multipli
cand. 

Operand 2 

Label B = The label address of a six (6) digit multiplier. 

Label C = The label address of a ten (10) digit product 
area. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

19 

.l.8. 

NO 
NO 
NO 

SR 

NO 
YES 

NO 

LNC 

NO 
YES 

NO 

U P·4072.2 



LABEL 

1 3 

I 
I , 

I 
., , I 

UP-4072.2 

Examples: (1) Mul tiply A 

(1) Multiply A by B and store t.he result in C. 0 
(2) Multiply PAY by RATE and store the result in accumulator 4. 

I OPERAND 1 OPERAND 2· 
Opt ~~ LABEL A + ITA'LABEL B + LABEL C + I 

6 7: y. 
12 14 18 '" In "" 20 ~"I 22 24 - 28 30 34 -

I I 
I 

I I 
M ply I A ! :8 I 

I I r, I 

M,PIY 
I 

. I R A T;E : P A YI I A 4 

MULTIPLY LONG (MPYL) 

Function: 

Multiply a field or accumulator by a second field or 
accumulator, storing the result in a third area. 

!\Iotes: (1) The signs of both operands are ignored and 
assumed to be positive. 

Where: 

(2) The contents of Operands 1 and 2 (label B) 
will not be disturbed, unless overlapped by 
the third Operand (Label C). 

Operation = a mnemonic operation code (MPYL). 

Operand 1 

Label A = The label address of a nine (9) digit multi
plicand. 

Operand 2 

Label B = The label address of an eleven (11) digit 
multiplier. 

Label C = The label address of a twenty (20) digit 
product area. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

20 

l8. 

NO 
NO 
NO 

SR 

NO 
YS 

NO 

INC 

NO 
YES 

NO 

38 4( 

I 

I 

o 



LABEL 
1 3 

I 
, • I 

I 
~ I , 

C: 

Examples: 

• 

(1) Multiply (long) CENTS by RATIO and store the result in LIRA. 
(2) Multiply (long) accumulator 2 by AMT and store the result 

in COST. 

OPERAND 1 OPERAND 2· 
OPt II", 

LABEL A +f ITA LABEL B + LABEL C for • 7: y. 
12 1.4 -- 1.8 20 '" 22 24 - 28 30 112 3~ - 38 40 6 .,. ,; .. 

I 
C E, N~ T S 

I ! 
I M,P'Y,L I R A TI 1...1. 0 I L I RIA 

M PrY L 
I I 1 

A 1 l~ ~ I A M, TI I C 0 SIT, I 
DIVIDE (DIV) 

Function: 

Divide a field or accumulator by a second field or accumulator, 
storing the result in a third area. 

Notes: (1) The signs of both operands are ignored and 
assumed to be positive. 

Where: 

(2) The contents of Operands 1 and 2 (label B) 
will not be disturbed, unless overlapped by 
the third Operand (Label C). 

Operation = a mnemonic operation code (DIV). 

Operand 1 

Label A = The label address of a SiX (6) digit divisor. 

Operand 2 

Label B = The label address of an eight (8) digit dividend. 

Label C = The label address of an eight digit area, 
to contain the eight (8) digit quotient. 

Operand Character i sti cs: 

JA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO YES YES 

Label C NO NO NO 

21 U P·4072.2 



1 

UP-4072.2 

Examples: 

(1) Divide TOTAL by WEEKS and store the result in TEMP. o 
I. OPERAND 1 OPERAND 2· 

LABEL Opt ~J LABEL A + ITA LABEL B + LABEL C + I 

6 7: y. 
12 1.4 18 20 '" 22 24 - 28 30 ~2 34 -13& 4( 3 .,. 

;~f. 

I I 
WSr.KS , I rr.oT~!- , I fr E M Ip I I I I D,IIV 

I 
I ; 

I I I 

. I . I I I . I • I I I I 

2. Internal Data Transfers and Editing 

Ten Macro instructions are provided to transfer, edit, and modify 
data. 

a. Data Transfers (alphanumeric and numeric) 

MOV E A LPHAN UMER I C (MV A LF) 

Function: 

Move an alphanumeric field or accumulator into a second 
field or accumulator. 

Where: 

Operation = a mnemonic operation code (MVALF). ~ 

Operand 1 

Label A = The label-address of the field or accumulator 
to be moved. The data stored in Operand 1 
will not be altered by the instruction. 

Operand 2 

Label B = The label address of the field or accumulator 
to receive the data moved. Operand 2 must 
not indude more than 961 storage locations, 
or more locations than are specified by 
Operand 1. 

Label C = Not used. 

Operand Characteristics: 

.LA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 Label B YES NO YES 

Label C NO NO NO 

22 

o 

--~ .. ""-----.. -~. -~. --~.-."-. ~.---.-~----~----~-------------~---- ~-- --- ------- ------ ------' ------------



LABEL 
1 3 

I 
0 

I , . 
, t 

C.' 
/ 

I 
OP I 

I 

6 7: 

Examples: 

(1) Move accumulator 1 to GROSS. 
(2) Move SALES to INCOM. 
(3) Move DAY to Accumulator 3. 

OPERAND 1 OPERAND 2· 
II~ LABEL A +118 

IV LABEL 
~. LABEL B + ." 12 14 20 ;:122 24 - 28 30 132 34 

I ! 

C + -
I 

o I 
I 

MVIA,L.F A,1 I , G R OIS S I I 
0 

M V fA L F So A J E '"' • I I N CIO M I 
;:, I I 

! 

D A vl i M vIA L,F . , A 3 i I I 
MOV E NUMER I C ( MVNUM 

Function: 

Move a field or accumulator into a second field or 
accumulator, deleting all zone and sign bits. 

Where: 

Operation = a mnemonic operation code (MVNUM). 

Operand 1 

Label A = The label address of the field or 
accumulator to be moved. The data 
stored in Operand 1 will not be altered 
by the instruction. 

Operand 2 

Label B = The label address of the field or ac
cumulator to receive the data moved. 
Operand 2 must not include more than 961 
storage locations or more locations than 
are specified by Operand 1. 

Label C = Not used 

Operand Characteristics: 

1.8. SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B YES NO YES 

Label C NO NO NO 

.38 4C 

I 
. , 

I 

UP·4072.2 



LABEL 
1 3 

I 
, I , 

I 
I 

I 

U P·4072.2 

I 
OP I 

\ 

6 7: 
I 

M V IN 

Examples: 

(1) Move the decimal field VALUE to accumulator 1. 
(2) Replace NET by the absolute value of NET. 
(3) Move the field INPUT to accumulator 2, removing 

overpunches. 
OPERAND 1 OPERAND 2· 

~A LABEL A +r 1T.cl LABEL C LABEL B + + Y' 
'" 12 14 -18 20 

.. ~ 
22 24 - 28 30 32 ~II 34 -

I I I 
U M V I A, LI U1 E I , A 11 I I , I 

I 

38 4{ 

I 
I 

M V IN ,U 1M N E TI I I N E TI , , I I , I 

M V IN U 1M I, N pI U, T I A,2 I I I I , l 
b. Data Transfer with Edit Feature 

MOV E WITH ED IT (MV EDT) 

Function: 

Move an alphanumeric field or accumulator to a second 
field or accumulator, modifying the data transferred 
by a specified mask. 

Where: 

Operation = a mnemonic operation code (MVEDT). 

Operand 1 

I 

Label A = The label address of the field or accumulator 
to be moved. The data stored in Operand 1 
will not be altered by the instruction. 

Operand 2 

Label B = The label address of the field or accumulator 
to receive the data moved. 

Label C = The label address of the edit mask. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

.l..6. 

YES 
YES 
YES 

SR 

YES 
NO 

YES 

INC 

YES 
YES 
YES 

NOTE: A description of edit masks and editing features is 
presented in Appendix IV. 

24 

.~-----.-.-- .. -- .. -

o 

c 

o 



c 

LABEL 
1 3 

I 
• I 

• 
I . , 
i 

• I j 

( "". 
. / 

c 

• 
I 

OP I 
I 

6 7: 

Examples: 

(1) Move TAX to OUTPT, editing with DOLLR. 
(2) Move accumulator 5 to SAVE, editing with bERO. 
(3) Move IN to TEMP, editing with accumulator 4 • 

OPERAND ] OPERAND 2· 
~A LABEL A +1 ITA LABEL B + LABEL C .... 
". 12 14 -18 20 ", 22 24 - 28 30 132 34 ';1-

! 

+ - 38 

I I I 
M V !E.D T T. A X! I . , 0 U. TIP T • I D 0 LIL R . 

I 
M,v IE D T A,5 I I S A VI E, I b E RIO 

i i 
I I 

I 
I AI4 I M V jE ,D ,T IJ Nt j, T, E Mi P, 

c. Filling - Work Areas 

FILL AREA (FILL) 

Function: 

Fill a field or accumulator with a specified character. 

Where: 
Operat ion = a mnemOnlC o~erati on code (F I LL) 

Operand 1 

Label A = The label address of the area to be fi !led • 
Operand 1 must not exceed 961 characters In 
length. Fill begins in the "leftmost" 
position specified. 

Operand 2 

40 

I 

I 

I 

Label B = The character with which the area specified 
by Operand 1 is to be filled. This character 
is always entered in both columns 22 and 23. 

Label C = Not used. 

Operand Charact~ristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

.!.8. 

YES 
NO 
NO 

(1) Fill TOTAL with zeroes 

SR 

NO 
NO 
NO 

(2) Fill accumulator 6 with asterisks 

INC 

YES 
NO 
NO 

(3) Fill all but the two leftmost characters of HEADR 
with dashes. 

25 U P-4072.2 



LABEL 

1 3 

I 
I 

I 

I 
, , 

i , , i 

UP -4072.2 

I OPERAND 1 OPERAND 2· 
OP I ~A 

LABEL A +1 IU LABEL B + LABEL C I 
~: 6 7; 12 14 -18 20 '" :.,1 22 24 - 28 30 132 34 

I I I I 
FilL L T. a T! AI l I I 10 .0 I I t I 

i 

I A.~. I ft: * 
i 1 

F J iL,L, I I I I J 
• 

f-(EA,DR i I F ilL L ft- 2, I -,- i I 

d. Cleari~g-Work Areas 

CLEAR AREA (CLEAR) 

Function: 

Clear one, two, or three fields or accumulators to 
spaces. 

Where: 

Operation = a mnemonic operation code (CLEAR) 

Operand 1 

+ 
o 

- 38 40 

I 

I 

I 

Label A = The label address of a field or accumulator 
to be cleared. The maximum number of 
characters in this Operand is 961. Clearing 
begins at the "leftmost" position specified. 0 

Operand 2 

Label B = The label address of a second field or 
accumulator to be cleared. The maximum 
number of characters in this Operand is 961. 
Clearing begins at the "leftmost" position 
specified. 

Label C = The label address of a third field or ac
cumulator to be cleared. The maximum number 
of characters in this 0Rerand is 961. 
Clearing begins at the !leftmostll posi tion 
specified. 

Operand Characteristics: 

l.6. SR INC 

Operand 1 - Label A YES NO YES 
Operand 2 - Label B YES NO YES 

Label C YES NO YES 

26 

o 



LABEL 
1 3 

I 
, I 

I . I , 

, : I 

c 

I 

Examples: 

(1) Clear accumulators 3 and 7 and field MM2 
(2) Clear fields SALES, NET, and MONTH 
(3) Clear field OUT and all but the four leftmost 

characters of MASK 
OPERAND 1 OPERAND 2· 

OP I ~~ LABEL A + ITA LABEL B + LABEL e I 

6 7: ~: 12 1.4 18 20 '" 22 24 - 28 30 132 34 ';1 1 

I I I ! 
C LtEA R A. 3 I I I , A,7 1 

I I M M 2' 
I 

SALlE.S 
1 I 

C LIE,A,R I N. E TI I M 0 NIT H , 
C LIE A,R qu T! I I M A S:K + 4 I I 
e. Moving a Single Character 

MOV E CHARACTER (MVCHR) 

Function: 

Move a character, contained In the instruction to a 
single storage location. 

Where: 

Operation = A mnemonic operation code (MVCHR) 

Operand 1 

Label A = The character to be moved. It IS coded 
into columns 12 and 13. 

Operand 2 

Label B = The label address of the location to 
receive the specified character. The 
location specified may be part of a 
larger field or accumulator. 

Label C = Not used. 

Operand Characteristics: 

l.8. SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B YES YES YES 

Label C NO NO NO 

27 

+ - lB 40 

I 

I 

I 

U P-4072.2 



LABEL 
1 3 

I I 
I , 
i 

I i 

U P·4072.2 

Examples: 

I 
OP I 

I 

6 7: 
I 

M V IC H R 

M~V JCLH~R 

M V k H R 

(1) Move a 7 to the fourth character of COST 
(2) Move a blank to the first character of field 832 
(3) Move a - to the last character of accumulator 1. 

OPERAND 1 OPERAND 2· 
lA LABEL A + !TA LABEL B + LABEL C f+ "', 18 '" .,' 12 14 - 20 ill 22 24 - 28 30 32 34 -

I I I 
7 '1 ! , , I C,O SIT + 3 I I 

I 

i I I 
, I • 1 8 3 21 I I 1 1 , 

- - I , 1 + A 11 , I I I 

38 4C 

I I 

I 

1 
f. Rounding Arithmetic Results 

ROUND (ROUND) 

Function: 

Round a decimal value by half adjusting in the "right
most!! position of the area specified. This instruction 
will cause the value five (5) to be added in the right
most position of the field. The result is then shifted one 
position to the right, dropping the rounded position 
and filling the !!leftmost" position with a space code. 

o 

NOTES: (1) The rounding of negative values shoUld be 0 
preceded by the addition of the value - 10. 

(2) The ROUND instruction affects the sign 
indicators. 

Where: 

Operation = a mnemonic operation code (ROUND) 

Operand 1 

label A = The label address of the field or accumula
tor to be rounded. 

Operand 2 

label 8 = Not used. 

label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label 8 

Label C 

28 

M. 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO o 



c 

LABEL 
1 3 

I 
I 

I 
~ 

I , , 
I 

• OPt 
I 

6 n 

Examples: 

(1) Round ~ccumulator 2 one place 
(2) Round LEVEL (known to be negative) one place 

(MTENcont.ains -10) 
OPERAND J OPERAND 2· 

H 
LABEL A ,* ITA LABEL B + LABEL C "', 18 .o. n ',. 12 14 ..... 20 :Ot l 22 24 - 28 30 34 , I I 

I 
I 

RiOIU~N D A 2 I 
I 

I I l • 
I 

M T EIN LEVIE L 
I 

A DID, I , , I 

I L,EV~EL , i , I R.O,U.N,.Jl , 
g. Shlftlng Arlthmetlc Results 

SHIFT FIELD (SHIFT) 

Function: 

Shift the contents of a field or accumulator to the 
right a specified number of positions, filling the 
opened positions to the left with spaces. 

Where: 

Operation = a mnemonic operation code (SHIFT) 

Operand 1 

Label A = The number of positions the field or 
accumulator is to be shifted. The 
maximum shift is 961 locations. 

Operand 2 

Label B = The label address of the field or ac
cumulator to be shifted. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

29 

1A 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

+ - 3B 4C 

, 
I , 

I 

U P-4072.2 



LABEL 
1 3 

I I I 
I 

I I 
i 

Ll.--L.J 

U P-4072.2 

Examples: 

(1) Shift accumulator 5 right 3 places. 
(2) Round QOTNT 7 places. 

I OPERAND 1 OPERAND 2· 
OP I ~A LABEL A + iTA LABEL B + LABEL C + I 

7; ",. 

12 14 18 20 
,,~ 

22 24 - 28 30 32 ~4 .-6 . ,' - :., . 
I I I ! 

S H II F T 3,i I 
I I J Jj.3Ll, I ..J.l, 

S H il IF T 
I i 1 

6 1 I QOTlNT • I , I 
! i I R,olu,N,D Q. 0 TIN T I I I 

h. Transfer of Sign 

TRANSFER SIGN (SIGN) 

Function: 

Transfer the algebraic sign of a field or accumulator 
to a second field or accumulator. 

NOTES: (1) The sign is located in the zone bits of 
the rightmost character of a field. 

Where: 

(2) Only the sign bits of the receiving 
field are altered. 

Operation = a mnemonic operation code (SIGN) 
Operand 1 

Label A = The label address of the field containing 
the sign to transferred. 

Label B = The label address of the field to receive 
the sign. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

30 

J..8. 

NO 
NO 
NO 

--_. --.-~---. 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

o 

38 4C 

• t 

I I 

I 

o 

o 



LABEL 
1 3 

I 
• I • 

. I . 
t 

Examples: 

(1) Move the sign of YRNET to WKNET 
(2) Move the sIgn of accumulator 2 to SIGN and make 

accumulator 2 positive. 
I OPERAND 1 OPERAND 2· 

OP I IH LABEL A I~ 1L'l LABEL B LABEL I + C + 
6 7: ~: 12 14 - 18 20 ;:122 24 - 28 30 In 34 - l:-e 

I I I I 
S I'GIN. Y R N'E.T • I W,K NIE.T I I 

I 

S IIG N A.2 I • I S I GIN • I , . 
! 

t i M vlN UN A 2 I A 2 i I • : I 

1. General LogIcal Command 

EDIT LOGICAL (El) 

Function: 

(1) Erase bits of the character specified by Operand 
2, Label B, if the corresponding bits of the 
first (XS3) character in Operand 1, Label A, are 
zeros. This is an gnQ operation, similar to 
logical multiplication without carry. 

4( 

I 

I 

I 

() Rules: 

c 

0x0=0 o x 1 = 0 
1 x 0 = 0 
1 x 1 = 1 

(2) Superimpose the bit pattern of the second (XS3) 
character in Operand 1, label A, onto the 
character specified by Operand 2, Label C. 

Where: 

This is an or operation, similar to logical 
addition without carry. 

Rules: 

0+0=0 
0+1 = 1 
1 + 0 = 1 
1 + + = 1 

Operation = a two character mnemonic operation code (EL). 

31 U P-4072.2 



I 
LABEL OPI 

I 

1 3 6 7: 
I I 

• I E.L I 

I I 
I , ELL I , 
I 

f ELI 

U P-4072.2 

Operand 1 

Label A = The two characters to be used In the edit 
operation. 

Operand 2 

NOTE: Label A does not specify a location 
in this instruction. The two 
characters represent the bit patterns 
to be used. 

Label B = The label address of the character on which 
the erasure is to be carried out. 

Label C = The label address of the character on which 
the superimpose is to be carried out. 

NOTE: Labels B & C may specify the same 
storage location. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

..L8. 

NO 
NO 
NO 

SR 

YES 
YES 
YES 

INC 

NO 
YES 
YES 

Examples: 

, 
I 

(1) AND a 4-bit into CODE and OR a Y-bit into PLUS 
(2) AND a 4-bit into CODE 
(3) OR a Y-bit into PLUS 

OPERAND J OPERAND 2· 
l~ LABEL A + IA LABEL B + LABEL C 
,,0' 

12 14 18 20 '" - 30 32 't' - ':1 1 22 2.4 28 34 

I I I 
1# 0 4!2,0 , C 0 D' E I P ,L,U 's I 

# 0 410 0 
I 1 

I C 0 DI Ei il , 
#,7 712,.0 , I 1 I J P,L UJS 

32 

+ - .3S 

o 

o 

40 

I , 
, 

o 



c 

c 

1 

c 

E. INPUT/OUTPUT 

1. Reading Cards 

READ A CARD (READ) 

Function: 

Read the next card from the input file. 

NOTE: Card images are always read into the following 
storage locations: 

80 column - positions 1 - 80 
90 column - positions 1 - 45 and 63 - 107 

Where: 

Operation = a mnemonic operation code (READ). 

Operand 1 = Not used. 

Operand 2 = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

16. 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

(1) Read the next card from the input file. 
(2) Move the 80-col card image to field CARD. 
(3) Move columns 41 thru 80 of an 80-col card image to HALF. 

I OPERAND 1 OPERAND 2· 
LABEL OP I IA LABEL A + ITA LABEL B + LABEL C + I 7: y. 

12 14 18 20 
.. , 

22 24 - 28 30 In 3.! - 38 40 3 6 .,. 
:OJl 

I I . I I I 
, I ! , , , I 1 I I R. E IA D , I • , 

I 
~ R.1' I , 

I 1 
I 

I C A.RID . I I . I M,V,A,L,F 
i I I 

~ I 1$ R 11 + 4 01 H A LIF I , , • j M VjA,L,F 

33 U P-4072.2 



1 

UP-4072.2 

2. Printing 

LABEL 
3 

-
I 

I I I 
i 
I 
I 

! 

PRINT (PRINT) 

Function: 

Print a line, space the form one line and clear Print 
Storage. Print Storage is located at positions 161~292. 

Where: 

Operation = A mnemonic operation code (PRINT). 

Operand 1 = Not used. 

Operand 2 = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

.l.A 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

Examples: 

(1) Print the contents of the print area. 
(2) Print the contents of the 132-char field HEADR. 

• 
OPERAND 1 OPERAND 2· 

OP' ~A LABEL A +r iTA LABEL C I LABEL B + .... 
6 7; ". 12 14 -18 20 '" :t l 22 24 - 28 30 In 34 

I I I , 
P R II N T I 

I , 
I 

I I I • I 

M V IA L F HI E\ AI D F 
I I 

I I $,p R I I I I 

P RII N T i 
. i I l I ! 

34 

+ -

o 

o 

l8 4( 

I I 

I 

t 

o 



c~ 

1 

3. Spacing Forms 

LABEL 
3 

I 
, I 

i , , 
i 

I' i 

SPACE (SPACE) 

F uncti on: 

Advance the form In the printer one space without printing. 

Where: 

Operation = A mnemonic operation code (SPACE). 

Operand 1 = Not used. 

Operand 2 = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

lA 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

(1) Advance the carriage three (blank) lines. 

I OPERAND J OPERAND 2· 
OP I ~.i1 LA!3EL A +1 ITA LABEL B + LABEL I y. 7: '" 6 ... 12 14 -18 20 ';i l 22 24 - 28 30 :-f2 34 

I I I I 
S,P!A C E , I I I I I I , I . 

I 
S ,P fA 

I 1 
C E , I I I , I 

S plAICIE i 
j i II I I I I , I 

35 

C + - J8 40 

I 

I 

t 

UP-4072.2 



1 

I 

I 

UP·4072.2 

4. Skipping Forms 

LABEL 
3 

I 
, I I 

i 
I 
• : 

SKIP (SKIP) 

Function: 

Skip the form in the printer to a specified line. The 
seven (7) code on the Form Control Tape is reserved as 
the l1Home Paper lt code. 

Where: 

Operation = A mnemonic operation code (SKIP). 

Operand 1 

Label A = The decimal equivalents of the bit con
figurations on the Form Control Tape. The 
number is entered into column 12. 

Operand Characteristics: 

JA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Example: 

(1) Skip to control tape configuration 5 

I OPERAND 1 OPERAND 2· 
Op. ~J LABEL A +1 IrA LABEL B + LABEL C I 

6 7: y. 
,.~ 

~2 ... 12 14 -1.8 20 _,I 22 24 - 28 30 34 

S K l/ P 5, 
I 

I 
I I 

I 
I , I • I • 

I , 
I I I I I • , I I I I I I I 

• 
I I 

i 
I : I I I i I I ~ 

36 

o 

o 

+ - 38 4C 

I 

.J 

I 

o 



1 

5. Punching Cards 

PUNCH (PUNCH) 

Function: 

Punch the contents of the punch storage area, clearing 
Punch Storage to spaces. 

NOTE: The Punch Storage area is always located 
following locations: 

80 column - posi tions 293-372 
90 column - positions 293-337 and 383-427 

Where: 

Operation = A mnemonic operation code (PUNCH). 

Operand 1 = Not used. 

Operand 2 = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Example: 

J.A 

NO 
NO 
NO 

(1) Punch a card (Line 1). 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

In the 

(2) Then punch the contents of field SUMRY. (Lines 2 and 3) 

I OPERAND 1 OPERAND 2· 
LABEL OP I IH LABEL A 1+ ITt LABEL + LABEL e + I 

:.0' S 
3 6 7: -0' 12 14 - 18 20 l;122 24 - 28 30 ~2 3~ - 38 M 

I I I 
I 

I 
I 

I 
I 

I , P,U!N,C,R • I I I , I I . 
I I I , M ,V fA L F S, U Mf R, Y , I $.P 11 . I . ; 

... L I 
• i i 1 

l r , I I P UjN,C,H j , i • I , i 1 -- I 

37 U P-4072:2 



1 

UP-4072.2 

6. General Input/Output Command 

LABEL 
3 

I 
I , 

. ; 
i , , i 

GENERAL COMMAND (GC) 

Function: 

To initiate operation and/or control all input/output 
devices under the direct control of the UNIVAC 1005. 

Where: 

Operation = A mnemonic operation code (GC) 

Operand 1 

Label A = Two of the six (XS3) characters that are 
used to produce the necessary bit patterns 
to select and operate the various Input/ 
Output devices. 

Operand 2 

Label B = Two of the six (XS3) characters that are 
used to produce the necessary bit patterns 
to select and operate the various Input/ 
Output dev ices. 

Label C = Two of the six (XS3) characters that are 
used to produce the necessary bit patterns 
to select and operate the various Input/ 
Output devices. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

JA 

NO 
NO 
NO 

SR 

YES 
YES 
YES 

INC 

NO 
NO 
NO 

(1) 

(2) 
(3) 

Print with double 
printed line) 
Read and Punch 

spacing (one blank line following a 

R d d P . t I ea an nn onLy 90 I co umns. 
I OPERAND 1 OPERAND 2· 

OP I l~ 
LABEL A +1 TA LABEL B + LABEL C + I 

:.0' 
6 7: '" 12 14 -18 20 

,,. 
22 24 - 28 30 rt2 3_{ - 38 ~.I 

I \. I I I 
G C I , ! I I I - I 1 . I 

I 
0, 

i I 
·3 

I 
G C, •. , , , I , , , 

! 

C : I J I Get , I I : I 

38 

o 

o 

40 

. , 
, o 
, 



c 

o 

F. PROGRAM CONTROL 

Twenty two macro instructions are available for controlling the flow of 
processing. They are necessary for starting and halting a program, 
for setting and testing conditions, f6r operations with subroutines, and 
for altering the execution sequence of program. 

The program is normally executed in the order in which the processing 
statements are presented to the Report Program Generator. However, 
numerous macro instructions are provided to allow the programmer to 
alter the sequence under a variety of conditions. 

A control statement is not required to indicate the end of source in
put code statements. The Report Program Generator halts when the last 
input card is read. 

1. Program Start 

END PROGRAM LOAD (END) 

Function: 

Terminate loading of the program and begin execution. This 
instruction is identical to the END directive of the 1005 
Assembler and is not part of a loaded program. It has no 
function during compiling or assembling and does not 
terminate the reading of source input cards. 

Where: 

Operation = A mnemonic operation code (END). 

Operand 1 

Label A = The label address of the first processing 
instruction to be executed. 

Operand 2 = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

39 

1.8. 

NO 
NO 
NO 

SR 

YES 
NO 
NO 

INC 

YES 
NO 
NO 

UP -4072.2 



1 

1 

UP-4072.2 

Examples: 

(1) Tenninate loading and start the program at STEP. 

I. OPERAND 1 OPERAND 2· 
LABEL OP I 11.' LABEL A +J ITA LABEL B + LABEL C \ 

6 n :t" 
12 14 -18 20 ,,-

22 24 - 28 30 In 34 3 '.' ~,' 

I I I I I , E N'n S T E'PI I I , I 1 
I , . , I I I 

. I • , . I . , • I I . 

2. Program Halt 

LABEL 
3 

I 
' I 
I 

.. I 

HALT PROCESS ING (HALT) 

Function: 

Stop program execution and light a Halt Indicator. 
This instruction becomes part of the object program. 
When the RUN key on the U1005 Console is depressed 
following a halt, processing will continue at the 
source statement immediately following the source 
HALT statement. 

Where: 

Operation = A mnemonic operation code (HALT). 

Operand 1 

Label A = The code for the desired System Switch. 
A listing of System Switches is provided 
in Appendix II. 

Operand 2 = Not used. 

Operand Characteristics: 

JA SR l~C 

Operand 1 - Label A NO YES NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1) Halt execution and turn on halt indicator 2. 
Ct· t RESTT . f RUN b H d on Inue 0 1 U on IS presse • 

1 OPERAND 1 OPERAND 2· 
OPI ~~ LABEL A +1 ITA LABEL B + LABEL C \ 

n ;~ . ., 
In 6 12 14 -1.8 20 ';i l 22 24 - 28 30 34 

I I , I I 
H A 'L ,T, I II. H 2' 1 , . , 1 

I I 
I 

I I 
G OtT 0 R, E S, T. T . I I , 

40 

o 
+ - [~ 4( 

I , 

o 

+ 
4( - 38 

I o 
. I 



1 

o 

3. Setting Conditions 

LABEL 

3 

I , 
i , , 
i 

I I i 

S ET COND I T I ON (S ET ) 

Function: 

Set or reset one, two or three System Switches. 

Where: 

Operation = A mnemonic operation code (SET). 

Operand 1 

Label A = The code for the System Switch to be set 
or reset. A listing of System Switches IS 

provided in Appendix II. 

Operand 2 

Label 8 = The code for a second System Switch to be 
set or reset. 

Label C = The code for a third System Switch to be 
set or reset. 

Operand Characteristics: 

1.8. SR INC 

Operand 1 - Label A NO YES NO 
Operand 2 - Label '8 NO YES NO 

Label C NO YES NO 

Examples: 

I 

(1) Set even parity for tape operation. 
(2) Set sense switches one and two and servo No.1. 
(3) Reset sense switch one and set servo No.2. 

OPERAND 1 OPERAND 2· 
OP I lA 

LABEL A +f ITA LABEL B + LABEL C I y. 7: ,0, 

~2 6 .. ' 12 14 -18 20 ,;,, 22 24 - 28 30 3-i 

I I I I 
S ,E'T, lAS P! I I I I I I 

I 

S EiT #. + 21 # + 11 If s 
I 

I I I 1 I 
! 

#. - 11 
~ 

I S EIT I #,S 2\ I J 

41 

+ - 38 40 

I I 

I , 

U P-4072.2 



1 

, 

UP-4072.2 

4. Sequence Control 

LABEL 

3 

I I 
I 

I , 

i 
i 

a. Testing for Conditions 

TEST COND I T ION (TEST) 

Function: 

Test a System Switch for a specified setting. 
Transfer program sequence control if the condition 
is present. 

Where: 

Operation = A mnemonic operation code (TEST). 

Operand 1 

Label A = The leHers "COND." 

Operand 2 

Label B = The code for the desired System Switch. 
A listing of System Switches is provided 
in Appendix I I. 

Label C = The label address of the next instruction 

o 

to be executed if the condition is present. 0··· 

If the condition tested is not met, control 

I 
OP I 

I 

6 7: 
T Eb I, 

T,E~ T 
I 

T E ~ T 

is transferred to the next inshuction in 
sequence. 

Operand Characteristics: 

lA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2· - Label B NO YES NO 

Label C NO YES YES 

Examples: 

~t 
y. .,. 

(1) Test for arithmetic overflow; if set go to OVER routine. 
(2) Test for and reset parity error and if set go to PARER. 
(3) Test for alteration switch No.2 set and if set go to ON2. 
OPERAND J OPERAND 2· 

LABEL AI:+1 ITA LABEL + LABEL C + B 
12 _ 14 -1_8 20 '" 22 24 - 28 30 ~2 34 - 38 40 :OJ' 

I 
#,A 

I I 
I C 0 N'D I I FI I o V E'R. 

I 
~ P E, 

I 

I 1 C,O NIDI I I I PARlE R 
! 

C,O Nln I ~ - 21 I ON 21 I I 
- -

42 

o 

-----------------------------------------------_.- - -- ------------- ---



LABEL 
1 3 

I 
I 

i 
j I 

i , , , 
i N, E,X ,T I 

TEST NEGATIVE (TEST) 

I 
Opt 

I 

6 n 
I 

Function: 

Test the contents of a single storage location for a 
negative sign. A field is identified as negative by 
the presence of an X bit in the rightmost character 
position. 

Where: 

Operation = a mnemonIC operation code (TEST) 

Operand 1 

Label A = The letters IINEGII. 

Operand 2 

Label B = The label address of the character loca
tion to be tested. 

Label C = The label address of the next instruction 
to be executed if the location tested is 
negative. If the location is not negative, 
control is transferred to the next instruc
tion in sequence. 

Operand Characteristics: 

18. SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO YES YES 

Label C NO YES YES 

Examples: 

(1) If field PRFT is negative,transfer control to BOMB. 
(2) If the third character of INPUT is positive, go to 

MAN. 

OPERAND 1 OPERAND 2, 
~" LABEL A /+1 ILl LABEL B + LABEL C + Y' ,,~ 

In '" 12 14 -18 20 ':,1 22 24 - 28 30 34 - 38 

I I I 
T ,EIS T N, E, 81 , I , +,P RIF ,T I B,O MIB I 

I I i E X IT T EIS T N, E, 8, , I I N P,U T + 2, , N , , , 
8 olT 0, ~\ A NI I I I I ~ I I 

i i , : I , 
I I , I , , i . ~ I I 

{( 

43 UP-4072.2 



LABEL 
1 3 
... ----

I , , . , 
i 
I 
! 

N, I; xl T 

UP·4072.2 

TEST CHARACTER (TEST) 

Function: 

Test a storage location for the presence of a specific 
character. 

Where: 
Operation = a mnemonic operation code (TEST) 

Operand 1 

Label A = The specific character for which the test 
is being made, not the address of the test 
character. This character is entered into 
column 13. 

Operand 2 

Label B = The label address of the storage location being 
tested. 

Label C = The label address of the next instruction 
to be executed if the location tested con
tains the character specified in Operand 1. 
If the character is not present, control is 
transferred to the next instruction in 
sequence. 

Operand Characteristics: 

I 
OPI 

I 

6 7: 
I 

T, E! S, T 
• 

G,O,TO 

T cl S, T, 

lA SR .lNQ... 

Operand 1 - Label A NO YES NO 
Operand 2 - Label B YES YES YES 

Label C NO YES YES 

Example: 

(1) I f the last character of UN IT is not a 7, go to N07. 
(2) I f the second character of UN IT is *, go to SPECL. 

OPERAND J OPERAND 2· 
ITA 

LABEL A +1 iTA LABEL LABEL C + B + ~. ", 32 "'''', 12 1.4 -18 20 ';a i 22 2.4 - 28 30 34 - 38 

I I I 
7,7, I , I I + U,N! I T I N E X IT, I 

i I , I N,O 7, , I , , I , I 
I 

I *,*, i , I U N /IT + 1 , S P E:C ,L , 

44 

40 

o 

(~ 
. / 

o 



c: 

c' 

LABEL 
1 3 

I 
I I 

I 

I I , 

c' i , i , 

b. Comparing for Conditions 

I 
OP I 

I 

6 7: 

COMPARE ALPHANUMERIC (COMPA) 

Function: 

Perform an alphanumeric comparison on two fields or 
accumulators. This comparison is made on a match/ 
non-match bas i s. Ei ther the "equal'l or 1Inot-equal" 
indicator is set as a result of this instruction. 
These indicators remain set until the next compare 
instruction. They may be tested by the IFEQ and 
IFNE instructions. 

Where: 

Operation = A mnemonic operation code (COMPA). 

Operand 1 

Label A = The label address of a field or 
accumulator. 

Operand 2 

Label B = The label address of a field or 
accumulator to be compared with Operand 1. 

Label C = Not used. 

Operand Characteristics: 

l.L SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B YES NO YES 

Label C NO NO NO 

Examples: 

Compare INPUT with NAME (1 ) 
(2) 
(3) 

Compare accumulator 1 with INPUT 
Compare the llrightmostll 6 characters 
2 (9 characters) with SCALE 

of accumulator 

OPERAND 1 OPERAND 2· 
~A 

LABEL A +1 rJJ LABEL B + LABEL C + Y' ," ~2 ". 12 14 -18 20 =,1 22 24 - 28 30 34 - :is 
I I 

A M~E I 
C O.M,P,A I N PI U, T I I N I , I 

I , 

40 

I 
C OIM P A A, 1 I I I I N P, U T I I I I I 

! 

Sf C AI L, E i J C olM P A I Al2 i I -+ 3 J l 1 

45 U P-4072.2 



LABEL 
1 3 

I I , 
I 

I I I 

U P·4072.2 

TRANSFER IF EQUAL (IFEQ) 

I 
Opt 

I 

6 7: 
I 

I FIE,Q 

I , 

F uncti on: 

If a previous comparison set the EQUAL indicator, 
transfer program control. 

NOTES: (1) The IFEQ instruction can be used in 
conjunction with any of the compare 
instructions. 

Where: 

(2) Indicator settings are not affected 
by the IFEQ instructions. 

Operation = A mnemonic operation code (IFEQ). 

Operand 1 

Label A = The label address of the next instruction 
to be executed, if the EQUAL indicator is 
set. If the EQUAL indicator is not set, 
the next instruction in sequence is exe
cuted. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

1.6. SR INC 

Operand 1 - Label A NO YES YES 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

rans er program con ro o s ep • 
(1) If the previous compare set the EQUAL indicator, 

t f t 1 t t EQU 
OPERAND 1 OPE RAN D "2. 

lA 
LABEL A +1 :fA LABEL LABEL C B + + ,,0' w .. ' 12 14 -1.8 20 '::i l 22 24 - 28 30 32 34 - )8 

I I I 
E Q UI , , I , I I I 

, I 
I I 

I , I I I 

46 

o 

o 

4{J 

, 
• I o 



c 

c 

LABEL 
1 3 

I 
I , 
i 
I 

c 

TRANSFER I F NOT EQUAL (I FNE) 

• OPt 
I 

6 7: 
I 

I ,F IN ,E 

: 

Function: 

If a previous comparison set the NOT-EQUAL indicator, 
transfer program control. 

NOTE: Indicator settings are not affected by the IFNE 
instruction. 

Where: 

Operation = A mnemonic operation code (IFNE). 

Operand 1 

Label A = The label address of the next instruction 
to be executed, if the NOT-EQUAL indicator 
is set. If the indicator is not set, the 
next instruction in sequence is executed. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

.LA 

NO 
NO 
NO 

SR 

YES 
NO 
NO 

iNC 

YES 
NO 
NO 

(1) If the previous compare set the NOT-EQUAL indicator, 
transfer program control to PHASE. 

OPERAND J OPERAND 2· 
IA 

LABEL A +1 IrA LABEL B + LABEL C + ~: ,,-
fn .w 12 14 -18 20 -i' 22 24 - 28 30 34- - 18 

I I I 
I P, H AI S, E , , I I I 

I -. 
: , 

I I I I . I 

47 U P-4072.2 



U P-4072.2 

COMPARE NUMERIC (COMPN) 

Function: 

Perform an algebraic comparison on two numeric fields 
or accumulators. This instruction always results in 
the setting of one of three indicators. These indicators 
are; (1) EQUAL, (2) LESS-THAN, and (3) GREATER-THAN. 
If either the LESS-THAN or GREATER-THAN indicator is set, 
the NOT-EQUAL indicator will also be set. All of these 
indicators will remain set until the next compare in
struction is given. They may be tested by any "IF" 
instruction. 

Where: 

Operation = A mnemonic operation code (COMPN). 

Operand 1 

Label A = The label address of a numeric field or 
accumu la to r. 

Operand 2 

Label B = The label address of the field or ac
cumulator to be compared with Operand 1. 

NOTES: (1) Operands 1 and 2 must be of 
equal length. 

(2) Resulting indicator settings 
will be made with respect to 
Operand 1; e.g., if Operand 1 
is greater, the GREATER-THAN 
indicator will be set. 

Label C = Not used. 

Operand Characteristics: 

lA SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B YES NO YES 

La.bel C NO NO NO 

48 

o 

() 



LABEL 
1 3 

I I , 
I 

I I 
i 

.~ . ....L i 

o 

Examples: 

(1) Compare SUM with TOTAL. 
(2) Compare accumulator 3 with SUM. 
(3) Compare HYTE with all but the first digit of TOP. 

, OPERAND 1 OPERAND 2· 
OP I lA 

LAI3EL A +/ ITA LABEL B + LABEL C + I 
~~ 6 7: 12 14 -18 20 ," 

22 24 - 28 30 ~2 34 - 38 It.( --,I 

I I I ! 
C OIM P N S, U M! , T o T'A L i 1 

, I , I I 

C,OIM P N A 3 I 1 S)J M, , I I 1_ 1 
! 

C olM...tp N H Y, TI E I T ,0 pI + 1 , I 
TRANSFER IF LESS THAN (IFLT) 

Function: 

If the previous comparison set the LESS-THAN indicator, 
transfer program control. 

NOTES: (1) Indicator settings are not affected by the 
IFLT instruction. 

Where: 

(2) IFLT instruction may be used only in con
junction with the COMPN and COMPM instruc
tions. 

Operation = A mnemonic operation code (IFLT). 

Operand 1 

Label A = The label address of the next instruction to 
be executed, if the LESS THAN indicator is 
set. If the indicator is not set, the next 
instruction in sequence is executed. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

JA SR INC 

Operand 1 - Label A NO YES YES 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

I 

U P-4072.2 
49 



LABEL 
1 3 

I 
I ! I 

I 

U P-4072.2 

I 

Example: 

(1) If the previous compare set the LESS-THAN indicator, 0 
transfer program control to step ENUF. 

OPERAND 1 OPERAND 2· 
OP I ~A 

LABEL A 1+/ !TA LABEL B it LABEL C + 
6 

I 

I 7: ;: ,., 
·24 30 ~2 12 14 -1.8 20 :<,1 22 28 3~ - 38 

I I 
I 

I I 
F.L ,T, E N UIF 

I • I I _L • 

I I 

I I I 

J I I I I I I 

TRANSFER I F GREATER THAN (I FGT) 

Function: 

If the previous comparison set the LESS-THAN indicator, 
transfer program control. 

NOTES: (1) Indicator settings are not affected by the 
IFGT instruction. 

(2) The IFGT instruction may be used only in 
conjunction with the COMPN and COMPM in
structions. 

4C 

I 

I 

Where: 0 
Operation = A mnemonlC operation code (IFGT). 

Operand 1 

Label A = The label address of the next instruction to 
be executed, if the GREATER-THAN indicator is 
set. If the indicator is not set, the next 
instruction in sequence is executed. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 = Label A 
Operand 2 = Label B 

Label C 

50 

.LA 

NO 
NO 
NO 

SR 

YES 
NO 
NO 

YES 
NO 
NO 

o 



c 
LABEL 

1 3 

I 
• , 
• . I 

c 

• Op. 
\ 

6 7: 

Example: 

(1) If the previous compare set the GREATER THAN 
indicator, transfer control to step PRICE. 

OPERAND 1 OPERAND 2· 
~A LABEL A + ITA LABEL B + LABEL C 
~. 

'" .,. 12 14 18 20 -;,1 22 24 - 28 30 [n 34 
+ - 13S 

I I 
E , , I I 

I F.G T I P,R I !C • .1. I • I 

• I I I 

• I . I I 1 ~ J ~ I 

COMPARE MAGNITUDE (COMPM) 

Function: 

Perform an absolute magnitude compare on two numeric 
fields or accumulators. This instruction will always 
result in the setting of one of three indicators. 
These indicators are; (1) EQUAL, (2) LESS-THAN and 
(3) GREATER-THAN. If either the LESS-THAN or the 
GREATER-THAN indicator is set, the NOT-EQUAL indicator 
will also be set. These indicator settings will not be 
altered until the next compare instruction is given. 
All of these indicators may be tested by any !!IF" 
instruction. 

Where: 

Operation = A mnemonic operation code (COMPM). 

Operand 1 

M: 

• .'-
I 

Label A = The label address of a field or accumulator. 

Operand 2 

Label B = The label address of a field or accumulator 
to be compared to Operand 1. 

NOTE: Indicator settings are made with 
respect to Operand 1; e. g., if 
Operand 1 is greater than Operand 2, 
the GREATER-THAN indicator will be 
set. 

Label C = Not used. 

51 U P-4072.2 



LABEL 
1 3 

I 
, I 

I 

I I 
i 

I j 

U P-4072.2 

------.-.. _--

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

.l8. 

NO 
YES 

NO 

SR 

NO 
NO 
NO 

INC 

NO 
YES 

NO 

Examples: 

I 
OP I 

I 

6 7: 
I 

C O'M,P M 

C,OIM P M 
i C,OjM,P,M 

(1) Compare the magnitudes of accumulator 2 and AMT. 
(2) Compare the magnitudes of TIME and accumulator 3. 
(3) Compare the magnitudes of the field FIFTY and all 

but the left three characters of AMT. 

OPERAND 1 OPERAND 2-
lA LABEL A + ITA LABEL + LABEL C + B Y' 

12 1.4 18 
,.~ 

~2 "- 20 ,;,1 22 24 - 28 30 34 .- 38 

I I I 
A. 2. ! I I I AI M l' I I 

TIM E 
i I 

I I A,3 I I . I 
• 

F, I r. T '-t 
L J AI M Tl , + 3 , I 

52 

o 

4( 

I 

.1 I 

I , 

o 

o 



c. Explicit Sequence Change 

C, TRANSFER CONTROL (GOTO) 

C: 

I 

• LABEL OP· 
I 

1 3 6 7: 
I I 

• • 1 • G OIT.O 
I i 
I I '-. .1----1-

c 

Function: 

Unconditionally transfer program control to the 
instruction specified by Operand 1. 

Where: 

Operation = A mnemonic operation code (GOTO). 

Operand 1 

Label A = The label address of the next instruc
tion to be executed. 

Operand 2 

Label A = Not used. 

Label B = Not used. 

Operand Characteristics: 

III 
y. 
'" 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Example: 

lA 

NO 
NO 
NO 

SR 

YES 
NO 
NO 

INC 

YES 
NO 
NO 

(1) Transfer program control to program step TAX. 

OPERAND 1 OPERAND 2· 

LABEL A + IrA LABEL + LABEL C + B 
12 14 18 20 '" 22 24 - 28 30 132 34 -: .. 1 

I 
• I 

I 
I 

I 
T.A XI • I I 

. , 
. I : I : 

53 

;l3 4( 

I 

I 

U P-4072.2 



U P-4072.2 

d. Implicit Sequence Change (Level Breaks) 

Level break operations (LEV LA, LEVLN, LEVLM) are used 
to conditionally transfer program control to a specified 
subroutine when consecutive values of a field in an in
put file differ. The !!condition!! is that the ALLOW 
sw itch is ON. 

The ALLOW switch is an internal switch set to either 
ON or OFF, and is set to ON automatically when an object 
program is loaded. Whenever a level break occurs (that 
is, consecutive values of a field differ), the ALLOW 
switch is set to OFF before program control is transferred 
to the appropriate subroutine. The only means of return
ing the switch to the ON position is the use of the 
ALLOW BREAK macro instruction. 

The first time !!thru" the level break operation, no break 
can occur; processing is limited to "saving!! the first 
value of the designated field. The second time and there
after, testing for differing consecutive values occurs and 
a break is possible. In all cases, the current value of 
the tested field is "saved!! for the next comparison. 

When a level break occurs and program control transfers to 
the specified subroutine, the EXIT operation of that sub-

o 

routine is automatically set to return program control ~ 
to the operation sequentially following the level break 10 
opera ti on (LEV LA, La' LN, or La' LM) • 

Level break operations should be coded in order of de
creasing priority of fields tested. Appendix 3 is an 
example of the normal scheme. An ALLOW BREAK operation 
precedes the first level break operation, but there may 
be intervening operations between any two level break 
operations or between any La'L operation and ALLOW BREAK. 
More than one ALLOW BREAK may appear in a program. 

LEVEL BREAK ALPHANUMERIC (LEVLA) 

Function: 

Transfer program control if a control break (level 
break) occurs on an alphanumeric field. Comparison 
is based on all six bits of each character. 

Where: 

Operation = A mnemonic operation code (LEVLA). 

Operand 1 

Label A = The label address of a field to be 
tested for a level break. 

54 

o 



c 

LABEL 
1 3 

I 
I , 

. I 

I 
OPI ~t I ",. 

6 71 .•. 
I 

L.E!'J ILIA 
i 

L IE IV ,L ,A 

Operand 2 

Label B = The label address of a BEGIN state
ment of a subroutine. 

Label C = The number of characters in the field 
specified by Operand 1. 

Operand Characteristics: 

.lA SR INC 

Operand 1 - Label A NO NO YES 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1 ) Alphanumeric level breaks in FIELD (8 charac-
ters) are to be processed by COST. 

(2) Alphanumeric level breaks in the seven 
"r ightmost" characters of FIELD are t.o be 
processed by TIME. 

OPERAND 1 OPERAND 2· 

LABEL A l~ I Til LABEL B LABEL + C + 
12 14 - 18 20 ." 22 2-4 - 28 30 In 34 -':,1 38 

I I I 
F. I ElL D I I C101 SI T I 8 I 

I I I 

F I EI L D + 1 I T I MI E I I 7 I , 

4{ 

I 

, I 

LEVEL BREAK NUMERIC (LEVLN) 

Function: 

Transfer Program Control if a cont.rol break (level 
break) occurs on a numeric field. The comparison 
of fields is algebraic. All zone bits are ignored, 
.except the sign bit in the "rightmost" position. 

Where: 

Operation = A mnemonic operation code (LEVLN). 

Operand 1 

Label A = The label address of a field to be 
test.ed for a level break. 

Operand 2 

Label B = The label address of a BEGIN state
ment of a subroutine. 

Label C = The number of characters In the field 
specified By Operand 1. 

55 
U P-4072.2 



I 
LABEL OP I 

I 

1 3 6 7: 
I I , L IE IV 
i ~ 

I I I L E IV 

U P-4072.2 

I1J 
~" ",. 

LIN 

L N 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

J.A 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

YES 
NO 
NO 

(1 ) 

(2) 

Numeric level breaks in VALUE (11 characters) 
are to be processed by WHLSL. 
Numeric level breaks in the four Ifdghtmost" 
characters of VALUE are to be processed by 
XYl:. 

OPERAND 1 OPERAND 2· 
LABEL A + ITA LABEL B + LABEL C + 
12 14 18 20 '" - 30 [2 -I~ :;~I 22 2.4 28 34 

I I I 
V A L' UI E I W H US L il 1 1 I 

I 

~ Y ~, 
I 

V,A L,U E + 7 I 1 4 I 

LEV EL BREAK MAGN ITULlE (LEVLM) 

Function: 

Transfer program control if a control break (level 
break) occurs on a numeric field. The comparison 
of fields is numeric. All signs and zone bits are 
ignored. 

Where: 

Operation = A mnemonic operation code (LEVLM). 

Operand 1 

Label A = The label address of a field to be 
tested for a level break. 

Operand 2 

Label B = The label address of a BEGIN state
ment of a subroutine. 

Label C = The number of characters in the 
field specified by Operand 1. 

56 

o 

4( 

I , 

o 



C 

, 
LABEL OP I , 

1 3 6 7: 
I I 

I 
I 

I L EIV , I , L,E,V 

lA 
:.'-
'l' 

L ~ 

L M 

Operand Characteristics: 

JA SR INC 

Operand 1 - Label A NO NO YES 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1) Magnitude level breaks in A3 (12 characters) 
are to be processed by TOTAL. 

(2) Magnitude level breaks in the two "rightmost" 
characters of A3 are to be processed by MAJOR. 

OPERAND 1 OPERAND 2· 

LABEL A +1 ITA LABEL B + LABEL C + , .. 
12 14 -1.8 20 :;~ .. 22 24 - 28 30 ~2 34 - 38 

I I ! 
A, 3 ! I I , TOT' A L I I 1 2 , 

I , I 

A 3 , + 1 01 M, A J,O R , 2 I I 

ALLOW BREAK (ALLOW) 

Function: 

Turn on the internal switch that permits the 
occurrence of level breaks. 

Where: 

Operation = A mnemonic operation code (ALLOW). 

Operand 1 

Label A = The leHers "BREAK". 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

57 

JA 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

40 

I , 

I 

u p- 4072.2 



LABEL 
1 3 

I 
I 

I 

I 
-.l 

UP-4072.2 

Example: 0 
(1) Turn on the internal switch which permits 

the occurrence of level breaks. 

I OPERAND 1 OPERAND 2· 
OP I ~A LABEL A +f ITA LABEL B + LABEL C + . I 

7: .>" '" - 28 30 [2 34 - 3A ~ 6 '.' 12 14 -la 20 ~l· 22 24 

I I I I 
A L IL .O-,W B Rl EI A K , I I I I 

I I I I , 1 • I -l I I. I J -

5. Loop Control 

LOOP (LOOP) 

Function: 

Repeat the execution of a group of instructions 
a specified number of times. 

NOTES: (1) LOOP is normally the final operation 
in the repeated group. If LOOP is 
the first operation of the group the 
value specifying the number of times 
the group is to be executed, must be 
one more than the number of execu
ti ons des ired. 

Where: 

(2) When the execution has been repeated 
the desired number of times, control 
is transferred to the next instruc
tion in sequence, and the loop opera
tion is automatically reset. 

Operation = A mnemonic operation code (LOOP). 

Operand 1 

Label A = A two digit number (01 to 99) repre
senting the number of times the loop 
is to be executed. 

Operand 2 

Label B = The label address of the first instruc
tion of the group. 

Label C = Not used. 

58 

o 

o 



c 

LABEL 
1 3 

I 
M Ii N IY, 

I 

I 
I 

L ~ JI 
i L, U, P, , 
: 

I I I 

I 
F, E, WI , 

i 
I I I 

• OPt lA 
I ,>. 

6 7: ... 
I I , , 
I 

-L-J----L..l-
L.obp, 

L_p ~p I 

! 
G.o~iJ 

I 
• I I , 

GO~.o 

Operand Characteristics: 

iii SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO YES YES 

Label C NO NO NO 

Examples: 

(1) Repeat the group of operations starting with 
MANY 5 times from below. 

(2) Repeat the group of operations starting with 
FEW 11 times (from above). 

OPERAND 1 OPERAND 2· 

LA [3 E L A 1:4- TA LABEL B + LABEL C + 
12 1.4 - 18 20 ." 22 2.4 1- 28 30 :32 34 -';,1 

. I I ! 

" I I , I I 
I I • 

I i I 

I I I I I I , I 
i ! 

10 5 I M,A Nly I J i 
i 

, I 
i I 

1)~'1 I, F, E,W, I , I I 

: : : E X, liT , , . I • 
I • • i , , , , , , , i , , , 

L UP: : I 
I 

I I 

38 40' 

I 

I 

L 

I , 

I 

I 

I 

6. Subroutines 

A subroutine, as here defined, is a group of operations 
coded sequentially< whose first operation is BEGIN (a 
labelled operation) and whose last operation is EXIT (also 
labelled). A subroutine is characterized by the rollowing 
property: When Operand 2 of any "LEVL" macro is the label 
of a BEGIN, the return exit addesss is automatically in
serted into the corresponding EXIT whenever a level break 
occurs to that BEGIN. 

In all other cases of transferring control to a BEGIN 
(by GOTO, TEST, ItIF", SBRT, and LOOP), the address in 
EX IT can and must be set by the programmer. Th i sis most 
easily accomplished through use of the SBRT operation, 
described below. "Nesting" of subroutines is not allowed 
between any pair of BEGIN's at least one EXIT must appear. 

BEG IN A S UBROUT INE (BEG I N) 

Function: 

Define the beginning of a subroutine. Begin must 
be labelled. When executed as a result of a LEVL 
instruction it sets up the return address in the 
corresponding exit. 

59 

UP-4072.2 



I 
LABEL OP I 

I 

1 3 6 7; 
I I 
I B,EIG 
I 

I ; , I 

UP-4072.2 

I·v 
~: 

I N 

Where: 

Operation = A mnemonic operation code (BEGIN). 

Operand 1 

Label A = Not used. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Example: 

(1) Begin a subroutine. 
OPERAND 1 

LABEL A +f ITA LABEL 
12 14 -18 20 

,,~ 

22 2.4 ~" 

I I 
I I I I I 

; I 

I I I 

l8. 

NO 
NO 
NO 

B 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

OPERAND 2· 
LABEL I± 28 30 ~2 34 

I 
I I 

I , I 

C 

I 

+ - 38 

EXIT FROM A SUBROUTINE (EXIT) 

Function: 

Provide a variable GOTO of which the operand is 
set by the program during execution. 

NOTE: The exit address can be specified by the 
programmer in either of two ways, each of 
which requires that the EXIT op'eration be 
labelled. They are; (n SBRT (described 
below) and, (2) the use of an alphanumeric 
move from the op'erand of a DI to the 
modified label (see Example 2) .. 

60 

o 

4C o , 
I , 

o 



c 

(~\ 

I 
LABEL OP I 

I 

1 3 6 n 
LABlE I 

L E,X.I T 
I M V,A L F , , I 
! 

N,A MIE, D II 

Where: 

Operation = A mnemonic operation code (EXIT). 

Operand 1 

Label A = Not used. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

l6. SR INC 

Operand 1 - Label A NO NO NO 
Operand 2 - Label B NO NO NO 

Label C NO NO NO 

Examples: 

(1) Set up a variable exit. 
(2) Move the address of RTRN to the EXIT of 

E 1 (1) xamp e • 
OPERAND J OPERAND 2· 

It LABEL A + 
ITA 

LABEL + LABEL C + y. B 
12 14 18 '" In '.' 20 ,;,1 22 2.4 - 28 30 34 -

I I I 
I I I I I , • I , I 

N,AMlE. I L A 
I 

BIE.L 
I 

+ 3 I I 

R,T~N, I I I I I 
EXECUTE A SUBROUT INE (SBRT) 

Function: 

Transfer program control to a subroutine and 
set an exit address. 

Where: 

Operation = A mnemonic operation code (SBRT). 

Operand 1 

Label A = The label address of the first step 
of the subroutine. 

61 

38 4( 

I I 

, I 

I 

U P-4072.2 



1 

UP·4072.2 

I 
LABEL OP I ~A 

\ 
~. 

3 6 7: ." 

I I 
I I I S,BIR T 

• S,BIR T , , -' 

Label B = The label address of an EXIT or GOTO 
operation, which is to contain the 
return address. The address of this 
operand is not incremented. 

Label C = The address to which the subroutine 
will return when it executes the EXIT 
or GOTO named in Label B. If no entry 
is made in Label C, return from the 
subroutine is made automatically to 
the next sequential step following 
the SBRT operation. 

Operand Characteristics: 

l8. SR INC 

Operand 1 - Label A NO YES YES 
Operand 2 - Label B NO NO NO 

Label C NO YES YES 

Examples: 

(1) Transfer control to TAX and set the exit to 
normal return. 

o 

(2) Transfer control to TAX and set the exit to C 
CMPUT (the EXIT corresponding to BEGIN labelled . j 
TAX is labelled EX1). 

OPERAND l OPERAND 2· 
LABEL A + TA LABEL + LABEL C + B 
12 14 18 20 ~:1 22 2.4 - 28 30 ~2 34 - 38 .. .f.( 

I I I 
T. A XI , I E X 11 , I . I I 

• . I I; X 11 1 
T A XI , I C M PIU T I 

G. COMMENTS 

.. (PERIOD) 

Function: 

Comment cards have no function. They will be printed and 
punched, however. 

Comments shoUld not extend beyond column 61. 

62 

o 



(~ 

1 

1 

E xample: 
I OPERAND 1 OPERAND 2· 

LABEL OPI lu 
LA!3EL A 1+ ITA LABEL B + LABEL C I 

6 7: ~: 12 14 - 18 20 ," 
22 2.4 - 28 30 tJ2 3~ 3 -;,1 

I I I 
AlR 

! 
I I ! I 

T ,H EIS E C,AIR D S, E M ,EIR ELY 'R ,E , , 
A N Dl P R I NIT E D. I 1 

, , I I •. I , I 
i I I I I ~ I : , i i I 

H. COpy SOURCE DECK 

COpy (COpy) 

I 
LABEL OPI 

Function: 

Begin reproducing the source deck as comments in the 
output deck to be assembled, or terminate reproducing. 

Where: 

Operation = a mnemonic operation code (COPY) 
Operand 1 

Label A = The word ON or the word OFF to turn the 
feature on or off. 

Operand 2 

Label B = Not used. 

Label C = Not used. 

Operand Characteristics: 

Operand 1 - Label A 
Operand 2 - Label B 

Label C 

Examples: 

(1) Turn COpy on. 
(2) Turn COpy off. 

OPERAND 1 

l8. 

NO 
NO 
NO 

SR 

NO 
NO 
NO 

INC 

NO 
NO 
NO 

OPERAND 2· 

+ -
P 

lIt LABEL A + ITA LABEL B + LABEL C + I 
~, ," ". 

38 40 

R .0 ID U ,C E D 

I 

, . 

3 6 7: 12 14 18 20 ~,. 22 2.4 - 28 30 ~2 3~ - 38 4( 

I I I 
I 

I ! 
I ' , ' C ,0 'P ,Y I o N , I I I I , 

C OIP Y Fl , I I 1 

. I I , 0, F I I 

f i I 
T 

I i I I ! I 
, I , 

63 UP-4072.2 



U P-4072.2 

I. PROGRAM ORGANIZATION 

Before writing a program, it is advisable to prepare a complete ~ 
description of the problem with particular attention to input and 
output layout. With this done, it is a simple task to assign 
names to the various fields and to write field definitions of the 
input and output areas. 

Having prepared all of the field descriptions required, a list of 
constants, edit masks, and accumulators should be prepared. The 
input/output layouts should be consulted to be certain each 
accumulator has been defined with a sufficient length to handle 
the maximum possible size. 

The sequence of operations in the object program is determined by 
the sequence in which they are written and may be altered as 
directed by program control directives. 

Below are some conventions which should be followed to assure 
correct and efficient object coding. 

(1) A page overflow routine should be executed at the very be
ginning to assure proper initial positioning of paper before 
processing begins. 

(2) Normally, the reading of an input item will be immediately fol
lowed by a test for the end of the run. 

(3) The LEVL directives normally occur before any further proces
sing is specified, since a control break indicates that the 
last card of a control group has already been processed. 
After the LEVL operations have been written in their proper 
sequence, they should be followed by the processing which is 
to be done when no control break has occurred. This will 
conserve storage and result in a more efficient program. 

(4) Sequence control directives should be preceded by those opera~ 
tions which are to be performed regardless of the result of 
the transfer. This will conserve storage and result in a 
more efficient program. 

(5) End of job processing, to which control is transferred as a 
result of the test mentioned in (2) above, should include 
execution of the highest priority level break subroutine 
(assuring execution of all lower ones) and the page overflow 
routine. 

64 

o 



J. 

c 

c 

OPERAT ING PROCEDURES 

The Report Program Generator produces a 1005 Assembly Language 
intermediate output deck from the user's source statements; the 
intermediate deck is then assembled (as it stands) and a final 
object code deck produced. 

The program is run by placing the Report Program Generator in the 
card read hopper, adding the source statements to the hopper, and 
pressing START, CLEAR, FEED, and RUN. 

Each source statement will be printed and the assembly language 
code generated, if any, will be printed directly following. 
The generated code is always punched, and the source code will or 
will not be punched according to the most recent setting of the 
COpy switch (ON is set if not otherwise specified). 

The assembly phase should be executed as described in the 1005 
Assembly Language Manual. 

65 U P-4072.2 



UP-4072.2 

A P PEN D I X 1 

SYSTEM LABELS 

$R1 80 Col Read Area 

$R2 80 Character Area 

$RC 80-Col Read Code Image 

$PR Print Area (132 Chars) 

$P1 80 Col Punch Area 

$P2 

$PC 

$b1 

$b2 

$BM 

$IR 

$XR 

$TR 

(Also 80 Col Read-Punch Read Area) 

SO-Col Read-Punch Punch Area 

80-Col Punch Code Image 

80-Col Read-Punch Code Image Read 

80-Col Read-Punch Code Image Punch 

First Character beyond I/O up to 961 

Instruction register Bank I Row 32 Col 1 - 7 

Transfer register Bank II Row 32 

Translate Table Area - Upper Bank I I 

$AR Arithmetic register Bank I Row 32 Col 1 - 31 

1 - SO 

81 - 160 

1 - 160 

161 - 292 

293 - 372 

373 - 452 

293 - 452 

293 - 452 

453 - 612 

613 - 961 (349) 

1S59 - 1922 (64) 

$CC Address Counter - Chars 8 and 9 of Row 32 Bank 1 32/8/1 to 32/9/1 

$X2 Generator 2/32/1 

$s0 FIRST (leftmost) SO Chars of Print Output Area 161 - 240 

66 

0 

o 

o 



APPENDIX 2 c-- , SYSTEM SW ITCHES 

Two Characters with a single bit (numbered 1 to 12) 

SW ITCH BIT JUMP ON CONDITION S ET COND I T I ON 

#fF 1 (X) Form Overflow 

#AF 2 (y) Arithmetic Overflow 

#+2 3 (8) Sense #2 Set Sense #2 

#+1 4 (4) Sense #1 Set Sense #1 

#-2 5 (2) Alternate #2 On Reset Sense #2 

#-1 6 (1) A 1 terna te #1 On Reset Sense #1 

#IN 7 (X) Interrupt 

#UA 8 (y) Unit Alert 

#PE 9 (8) 
Always 

Par i ty Error (Resets) 

("~-" #AP 10 (4) Arithmetic Plus 

#A"b 11 (2) Ar i thmetic "bero 

#AM 12 (1) Arithmetic Minus 

#30 1 (X) Odd Parity 

#3E 2 (y) Even Pari ty 

7 (X) Reserved by hardware 

8 (y) Reserved by hardware 

#32 9 (8) Servo #2 

#31 10 (4) Servo #1 

#H2 11 (2) Indicator #2 and Halt 

#Hi 12 (1) Indicator #1 and Halt 

#H3 both 11 (2) & 12 (1) 

C~ 

67 UP-4072.2 



U P-4072.2 

A P PEN D I X 3 

LEV EL BREAKS 0 
FLOW of Processing 

1. ALLOW BR EAK 

This statement is the first instruction of the Level Break 
series. It sets the ALLOW BREAK SWITCH to the ON position. 

2. NO BREAK 

The program will pass through the LEVEL statements in the order 
given if no change in control fields is encountered. 
Detail processing will follow. 

3. MINOR BREAKS 

When the program recognizes a change in the minor control 
field only, the following events will occur: 

a. The ALLOW BREAK SWITCH will be set to the OFF position. 

b. The address of the detail statement which sequentially 
follows the minor LEVEL statement is transferred to the 
EXIT statement of the minor total subroutine. (Flowchart: 
Ex 3 is set to D.) 

c. The program executes the minor total subroutine transfers 
control to detail processing via the EXIT statement of the 
minor subroutine. 

4. INTERM8) lATE BREAKS 

When the program recognizes a change in the intermediate con
trol field, the fOllowing events will occur: 

a. The ALLOW BREAK SWITCH will be set to the OFF position. 

b. The address of the minor LEVEL statement is transferred 
to the EXIT statement of the intermediate subroutine. 
(Flowchart: Ex 2 is set to ~) 

c. The program executes the SBRT statement of the intermediate 
total subroutine. This statement transfers the address of 
the first processing step of the intermediate total sub
routine (INT + 7 in the example) to the EXIT statement of 
the minor total subroutine. (Flowchart: Ex3 is set to 
INT + 7.) 

d. The program executes the minor total subroutine and transfers 0 .. 
control to the first processing step of the intermediate total 
su~outine via the EXIT statement of the minor total subroutine. 

68 

---------------------------------- -------------- -------------------------------------- ----------------



c 

e. The program executes the intermediate total subroutine 
and transfers control to the minor LEVEL statement via 
the EXIT statement of the intermediate total subroutine. 

f. The program will execute the minor LEVEL statement. 

g. 

No break will occur, because the intermediate break 
set the ALLOW BREAK SWITCH to the OFF position. 

The program executes the minor LEVEL statement so that the 
new minor compare field can be stored. 

The program advances to the next sequential processing 
step following the minor LEVEL statement. 

5. MAJOR BREAKS 

When the program recognizes a change in the major control field, 
the following events will occur: 

a. The ALLOW BREAK SWITCH will be set to the OFF position. 

b. The address of the intermediate LEVEL statement is transferred 
to the EXIT statement of the major total subroutine. (Flow
chart: Ex 1 is set to B.) 

c. The program executes the SBRT statement of the major total 
subroutine. This statement transfers the address of the 
first processing step of the major total subroutine 
(MAJ + 7 in the example) to the EXIT statement of the 
intermediate total subroutine. (Flowchart: Ex 2 is set to 
MAJ + 7 .) 

d. The program executes the SBRT statement of the intermediate 
total subroutine. This statement transfers the address 
of the first processing step of the intermediate total 
subroutine (INT + 7 in the example) to the EXIT statement 
of the minor total subroutine. (Flowchart: Ex3 is set to 
I NT + 7.) 

e. The program executes the minor total subroutine and trans
fers control to the first processing step of the intermediate 
total subroutine via the EXIT statement of the minor total 
subroutine. 

f. The program executes the intermediate total subroutine and 
returns to the first processing step of the major total 
subroutine. 

g. The program executes the major total subroutine and transfers 
control to the intermediate LEVEL statement via the EXIT 
statement of the major total subroutine. 

h. The program will execute the intermediate and minor LEVEL 
statements. No break will occur, because the major break 
set the ALLOW BREAK SWITCH to the OFF position. 

69 U P-4072.2 



U P-4072.2 

The program executes these LEVEL statements $0 that the 
new intermediate and minor compare fields can be stored. 

1. The program advances to the next sequential processing 
step following the minor LEVEL statement. 

70 

o 

o 

o 



--l ...... 

C 
""0 

.i.. 
o ..... 
tv 

tv 

C) 

DETA I L PROCESS ING < 

L8IELING ROUT INE 

DETA I L PROCESS I NG 

MAJOR TOTAL SUBROUTINE 

INTERMEDIATE TOTAL SUBROUTINE 

MINOR TOTAL SUBROUTINE 

LABEL 

1 3 

I , I , 

I 
A i 

i 
i 

B , , 
: C I 

N~xt .~e~u 
i 

., II 
i 

M A,J" 
I , , , 

T 9tq.ll I hiS 

T 9tC}1! I ~s 
I 

. El Xt 1! , 
: I N,T, 
: , , i , , 

T 9t1f.lll hiS 

! 
T ~tijl.ll IlilS 

: E, X,2. , 
! 

M,I,N 1 , 

I 
I i I 

I 
" , , 

! 
I , I , 

E, XI 3l -'-
I 

, , , I 

i 
1 1 I 1 

: , ... 

~ 
LEV E L\" /8 REA K S 

I OPERAND l 
OP' ~;1 LABEL A + I ",. 

6 7; '\, 12. 1.4 18 20 

I 1 
! , , , I , I 
i 

A L,L 0 W B,R8A~ I I 
! i L, Elv L A S, T Ai T, E , I 
i ! 

L,EjV,L,A CtQ~~1 , I 
: ! 

L, EIV L, A 4 I, T. Vl .t 
~nt ill, D~t 

, 
~i 1 j I r'\stjrup-t io hs. I 

i I 
ns, I 1 ,Det .ill Instiruc :i 0 

I i 
, I B EI G It N f 1 { 

i ! 

I N. T: I S,BJR.1. T . 
q.JCL9ns 

, 
, I , .J 

r~cti9np 
, 

I. 1 , , • J 

: ~ 
E. XJl[L , 1 ! 1 1 I 

: • , 
I , B, E,G, I N , 

; 
S,BtRIT, Nj II ~L 1 I 

! : n.lc~ ipn13. , , 
! ! 

n..lcbpnp , , 'I I 
: : I E, XI I. TI .1. .1 J , 
I I 

B, EI G, I, N , , !I ,J 
I t. I t I TDt~ll InE t uct iOl1s , 

T.o 4. 1 I,nE t u9t\O~S , 
Tpt~l, Ips 

! 
: r uCfl~o.rts .1 , I 

Et xi I, T, i 
, , , I , I 

i i , I J .. 1 1.1 .1 J I I 

i I 
I , l , I , , I , , 

: : , 
• t , I , I l_l 

() 

OPERAND 2· 
TA LABEL B + LABEL C + 
~'i 22 2.4 - 28 30 ~2 34 .- 33 4! 

I I 
I , I I , LJ 
I , 
I , I , I 
~ : M ,A J I L 2 , 
i , 

I ,N ,T 1 , , I 3 I , 
! : 

MIN: I 4 , , , 
, , I , I I , , I 
i : I , , , I , 1 I 

i 
.J , 

• , , , , , , 1 , 
I 

E X 2 : I I 
• , I I 

i , , I , I , . 
! , I 

I 
I Lj .1 I I , , 

j , ! , , I , , ! 1 , I , , 
I ' I 

I I 
, 

1 , 
i I 

, , E ,X ,3 I , j , I I 

: : 
I II 

, , I , I 
: I : I , I , I 

: , 
, I I , I , , , , , , I 

I I , I , , I , I I , ' , 
I 

I I 
, 

,I , , , I I , I I 

I 
, J • I 

I 
I I I 

: 
I I , , 1 j : I I 

I 

I , I ! , , I 1 I 1 
i , J I , 1 , I , I , I I , 

; 
I 

I 
I I I , II I I i I 

: , : I I , I , J. 



c: 
"1J 

l.. 
o ...., ... ... 

-.! 
I\) 

8 

o 

ALLOW 

BREAK 

EX 2 is set 

to MAJ +7 

EX ~ is set 

to INT + 7 

Minor 
total 
rout ine 

EX 1 is set 

to B 

®NT 
" +7 

"0 

Major 
total 
routine 

Intermediate 
total 
routine 

o 

EX 2 is set 

to C 

@AJ 

" + 7 
'" 

"@ 

EX ~ is set 

to 0 

E) 

Appendix .~ 

LEJ EL BREAKS 

Next sequential 
deb il 
operation 

o 



c 

A P PEN D I X 4 

Use and Definition of Edit Masks 

Edit masks are normally used to insert specified characters into, 
and/or delete certain leading characters from, numeric fields. 
Insertions may also be made into alphanumeric fields. One field 
is "edited" into a second through use of the Move-with-edit macro, 
MVEDT. An edit mask may not exceed a length of 31 characters. 

Internal counters examine the contents of successive locations of 
the "sending ll field, the "receiving" field, and the edit mask, 
beginning wi th the Illeftmost" character (the MSL) of each. The 
editing process is terminated when either the last character of 
the edit mask has been reached, or case (2) described below occurs. 
The receiving field is not automatically cleared to blanks by the 
editing process. During editing, the characters comprising the 
edit mask have the following meaning: 

(1) All characters except unequal, lozenge, left-slash, and delta: 
Send the current character of the edit mask to the current 
character of the receiving field and increment by one position 
the edit mask and receiving field counters. 

(2) Unequal (¥): Terminate the editing process and do not send a 
character to the current character of the receiving field. 

(3) Lozenge ot): Move the current character of the sending field 
to the current character of the receiving field, and advance 
all three counters by one position. 

(4) Left-slash (,): Turn on the zero-suppress feature (blank fill), 
do not increment any counters, and then continue as in case (3). 
The zero-suppress feature is turned off by the next "current 
character" of either the sending field or edit mask which is 
neither a zero nor a comma. While the feature is in effect, 
zeros and commas sent from either the sending field or edit 
mask are changed to blanks during transmission to the receiving 
field. 

(5) Delta (A): Turn on the zero-suppress feature (asterisk fill), 
do not increment any counters, and then continue as in case (3). 
The zero-suppress feature is turned off by the next Ilcurrent 
character" of either the sending field or edit mask which is 
neither a zero nor a comma. While the feature is in effect, 
zeros and commas sent from either the sending field or edit 
mask are chan-ged to asterisks during transmission to the 
receiving field. 

73 U P·4072.2 



Examples: 

A DC 17 TOTAL kS kS $ n u, :rr U l!. )! 11 0 I 

B DC 17 TOT A L kS kS $ \ i1, !! !t )1. !C n: 
C DC 17 TOTAL kS kS $ A )1, )1 l1 n. i1 J{ 

D DC 17 TOT A L kS kS $ \ )l, :n: A ):(. ):( l1 

E DC 7 1234567 

F DC 7 0000002 

G DC 7 0034567 

H DC 7 0000567 

A on E produces TOTAL $12,345.67 

B on E 11 TOTAL $12,345.67 

C on E It TOTAL $12,345.67 

D on E 11 TOTAL $12,345.67 

A on F produces TOTAL $00,000.02 0 I 

B on F " TOTAL $ .02 

C on F It TOTAL $******.02 

D on F II TOTAL $ **.02 

A on G produces TOTAL $00,345.67 

B on G " TOTAL $ 345.67 

C on G " TOTAL $***345.67 

D on G It TOTAL $ 345.67 

A on H produces TOTAL $00,005.67 

B on H " TOTAL $ 5.67 

C on H " TOTAL $*****5.67 

D on H " TOTAL $ *5.67 
0 

u P·4072.2 74 



() 

c 

o 



t 

UNIVAC 
I:I'V'B'I:IN I:IF SPERRY RANI:I CClRPClRAT'I:IN c 

UP-4072.2 


