R80-4

B6700/7700 PASCAL

Gompiler Version 111-0-00I

1980 April

: Department of Information Science

The University of Tasmania

G.PO.Box 252C Hobart
_”'f'asmania 7001




o

c Copyright 1977, by A.H.J. Sale

All rights reserved.

No part of this document may be reproduced by any means, nor
transmitted, nor translated into a machine-readable form without the
written permission of the author.

Professor A.H.J. Sale

Department of Information Science
University of Tasmania

Box 252C, G.P.O.,

Hobart, Tasmania 7001



CONTENTS

CONTENTS

1. INTRODUCTION
COMPLIANCE STATEMENT
INTRODUCTION TO THE MANUAL

2. LEXICAL TOKENS
LEXICAL TOKENS
CHAR CONSTANT
COMMENT
DOUBLET SYMBOLS
INTEGER CONSTANT
ONE-CHARACTER SYMBOLS
REAL CONSTANT
RESERVED WORDS
STRING CONSTANT
NAMES

3. SUBCOMPONENTS
SUBCOMPONENTS
ASSIGNMENT COMPATIBILITY
EXPRESSION
LABELS
NAME LIST
OPERATORS (ARITHMETIC)
OPERATORS (BOOLEAN)
OPERATORS (SET AND RELATIONAL)
PARAMETER LIST
SCALAR RANGE
SCOPE
SET CONSTRUCTOR
SIGNED INTEGER
SUBRANGE
TYPE COMPATIBILITY
TYPE IDENTITY
VARIABLE

4, DECLARATIONS
ARRAY TYPE
ATTRIBUTES
BOOLEAN TYPE
CHAR TYPE
CONST DECLARATION
FIELD LIST
FILE TYPE
FORMAT DECLARATION
INTEGER TYPE
LABEL DECLARATION
PACKED :
POINTER TYPE
REAL TYPE
RECORD TYPE




Y

CONTENTS

SCALAR TYPE

SET TYPE
SUBRANGE TYPE
TEXT TYPE

TYPE DECLARATION

5. STATEMENTS
STATEMENTS
ASSIGNMENT
BODY
CASE STATEMENT
COMPOUND STATEMENT
EMPTY STATEMENT
FOR STATEMENT
GOTO STATEMENT
IF STATEMENT
PROCEDURE INVOCATION.
REPEAT STATEMENT
WHILE STATEMENT
WITH STATEMENT

6. PROGRAM UNIT
PROGRAM UNIT
EXTERNAL DECLARATIONS
FORWARD DECLARATIONS
FUNCTION
PROCEDURE
PROGRAM

7. PRE~-DEFINED PROCEDURES
ARITHMETIC FUNCTIONS
MARK AND RELEASE
MIN. AND MAX
MIXED-TYPE FUNCTIONS
NEW
OPERATING SYSTEM PROCEDURES
PACK AND UNPACK
PASCAL GENERIC FUNCTIONS
RANDOM
TIME PROCEDURES

8. INPUT AND OUTPUT
INPUT AND OUTPUT
CLOSE :

EOLN, EOF AND ENDOFFILE
GET AND PUT

PAGE

PRE-DEFINED FILES
READREC

READ

RESET AND REWRITE

SEEK




CONTENTS

SPACE
WRITEREC
WRITE

9. COMPILER OPTIONS
COMPILER OPTIONS
$
ASCII
AUTOBIND
BIND
BINDER
BINDINFO
BOUNDSCHECK
CHECK
CODE
ERRLIST
ERRORLIMIT
HEAP
HEXCODE
INCLNEW
INCLUDE
LINEINFO
LIST
LISTINCL
MERGE
NAMES
NEW
OMIT
PAGE
SEQ
SETSIZE
STANDARD
STATISTICS
STRIPBLANKS
TRUSTWORTHY
WARNINGS
USER-OPTIONS

10. COMPILER FILES
COMPILER FILES
FILE DEFINITIONS
FILE EQUATION

11. ERRORS
ERRORS
COMPILE-TIME ERRORS
INV-OPERATOR
PASCAL READ ERROKS
PASCAL WRITE ERRORS
RUN-TIME PASCAL ERRORS
RUN-TIME SYSTEM ERRORS
STACK HISTORY



L1}

12. SAMPLE PROGRAMS

13. GENERAL

CHARACTER SETS
"WRAP UP INFO
"COMPILER ‘NOTES

'CONTENTS



INTRODUCTION

1. INTRODUCTION

The B6700/B7700 Pascal language is a dialect of the programming
language Pascal, designed by Niklaus Wirth (see References) and first
implemented for CDC 6000 computer systems. The implementation for
the B6700 and B7700 computer #systems was undertaken by the Department
of Information Science at the University of Tasmania, and has a
number of extensions from standard Pascal to adapt it to the new
environment. Nevertheless, it is capable of handling programs
written in Pascal and compiled on other machines, though its
searching tests for 'undefined features' may cause the rejection of
programs that compile successfully elsewhere,

The Pascal language 1is primarily intended for teaching programming,
and in this aim it is unexcelled. An Algol-like language, it has a
few clean executable statement kinds built on the Algol model and
incorporating the improvements of knowledge of the 1970s. Its major
advantage is its good facilities for data-typing and
data-structuring, which are far superior to any other language on the
B6700 or B7700 systems.

Pascal has also been touted as the long-awaited replacement for
FORTRAN, as it has very similar capabilities and would permit
FORTRAN-like constructs to be embedded in a Pascal program by
binding. There are however two major problems with this suggestion
which must be solved if the prediction is to come true. The first
relates to the deviance of the Pascal i/o0 system from the
record-oriented system most programmers are used to; to minimize the
relearning process B6700/B7700 Pascal incorporates the
record-oriented i/o0 system with formats from B6700/B7700 Algol
(derived from FORTRAN itself with tidying). The second relates to
the lack of adjustable arrays in Pascal: this problem is not tackled
in this compiler as it requires some fundamental changes 1in the
language.

The other major function envisaged for Pascal is that of a suitable
vehicle for writing system software, for example compilers. With a
minor addition of a routine it could be so used at its present level,
and could certainly be used for all purposes short of generating code
without change. Pascal is relatively suceessful in this area (though
not perfect) mainly due to its good data structuring facilities.

The compiler was written with three major targets: that of providing
a standard-compatible Pascal compiler for these Burroughs machines:
that of providing an efficient implementation of Pascal; and that of
making the compiler as compatible as possible with the rest of
Burroughs' standard software. Very few additions or changes were
necessary for this last purpose.

INTRODUCTION 1=-1



INTRODUCTION (COMPLIANCE STATEMENT)

COMPLIANCE STATEMENT

This Statement is made in conformance with the requirements of
Section 5.1 of the draft IS0 Standard for Pascal 1979 (N462). The
compiler described in this manual purports to support Standard Pascal
as described in Section 6 of the Standard with the following
differences, extensions, observations, and implementation-dependent
features.

The following sections are declarations made in accordance with the
requirements of the Standard. All section numbers following refer to
the Standard, not to this manual.

1-2 INTRODUCTION

o)



INTRODUCTION (COMPLIANCE STATEMENT)

Implementation-defined features
(See 3 and 5.1.1(b))

The handling of these features may differ from processor to
processor. Use of the features is permitted to Standard-conforming
programs, but they must not rely on these specific interpretations
nor any others. : '

Value of maxint (6.4.2.2 and 6.7.2.2)
549755813887 = 2%%¥39 - 1

Real values (6.1.5)
See manual for details of precision, range, etc.

Char values (6.1.5 and 6.6.6.4)
The char values are represented according to the EBCDIC code or
the ASCII code, depending on the setting of the compiler option
ASCII.

Component type of a set (6.4.3.4, 6.7.1 and 6.7.2.5)
The number of elements in a set must be less than 65536.

Div operator (6.7.2.2)
The following axiom is obeyed:

abs(a div b) = abs(a) div abs(b)

INTRODUCTION | 1-3



INTRODUCTION (COMPLIANCE STATEMENT)

Implementation-dependent features
(See 3, 5.1 and 5.2)

These features are similar to implementation-defined but need not
have an interpretation at all (in other words, be prohibited) on a
particular processor. Standard-conforming programs should not use
them according to 5.2.

Directives (6.6.1 and 6.6.2)
Only the directives forward and external are permitted. (Note:
it is thought that forward should be standard, and only other
directives are implementation dependent.)
Put procedure (6.6.5.2)
The put procedure will fail in execution if applied to a file in
readstate. An error will be reported.
Standard procedures (6.6.5 and 6.6.6) :
Some standard procedures and functions are permitted as
procedural or functional parameters. See the manual for details.
Evaluation order of operands (6.7.2)
The operands of binary operators are always evaluated in
left-to-right order.
Boolean expressions (6.7.2.3)
All components of a boolean expression are always evaluated.
Binding of parameters (6.7.3 and 6.8.2.3)
Binding (the identification of the object involved) takes place
in striet left-to-right order. Scalar, real, pointer, and set
expressions corresponding to value parameters are copied
immediately after they are bound. Array and record parameter
copying corresponding to value parameters are deferred, and the
copying takes place after the call is initiated in left-to-right
order of the deferred values.
Assignment statements (6.8.2.2)
Binding of the variable on the left-hand-side of an assignment
always precedes evaluation of the right-hand-side expression.
Reset and rewrite (6.10)
Reset and rewrite are permitted on the standard files input and
output.

1-4 INTRODUCTION



INTRODUCTION (COMPLIANCE STATEMENT)

Error handling
(See 5.1.1(e))

Access to variant with wrong real or virtual tagfield (6. 4 3.3)
Not detected.

Subrange errors in assignment compatibility (6.4.6)
Detected during compilation if a constant, otherwise detected
during execution.

Dereferencing nil pointer (6.5.4)
Detected in execution by INVALID INDEX interrupt.

Dereferencing undefined pointer (6.5.4)

Detected in .execution if pointer has tagsix Qaiue by INVALID
OPERAND interrupt.

Using put while eof false (6.6.5.2)
Detected in execution.

Using get while eof true (6.6.5.2)
Detected in execution.

Aliasing with file and file-buffer (6.6.5.2)
Aliasing errors arising from binding of the file buffer are not
detected.

Dispose with nil parameter (6.6.5.3)
Dispose implemented but always returns a nil pointer.

Dispose with bound pointer (6.6.5.3)
Dispose implemented but always returns a nil pointer.

Assignment of dynamic variable created with tags (6.6.5.3)
Not detected except in unusual eircumstances.

Error in 1n(x) (6.6.6.2)
Detected in execution by Burroughs intrinsic procedure.

Error in sqrt(x) (6.6.6.2)
Detected in execution by Burroughs intrinsic procedure.

Trunc and round with non-integer result (6.6.6.3)
Detected in execution by INTEGER OVERFLOW interrupt.

Error in chr (6.6.6.4)
Detected in execution.

INTRODUCTION 1-5



INTRODUCTION (COMPLIANCE STATEMENT)

Error in succ and pred (6.6.6.4)
Detected in execution.

Undefined values (6.7.1)
The attempted use of any undefined value which has acquired the
tagsix value is detected by the INVALID OPERAND interrupt. See
later for an analysis of undefinition.

Set value outside limits (6.7.1)
Detected during compilation if a constant, otherwise detected
during execution.

Divide by zero (6.7.2.2)
Detected in execution by the DIVIDE BY ZERO interrupt.

Integer range trespass (6.7.2.2)
If the result of an integer operation exceeds the integer range,
the value automatically becomes real. However, at assignment
compatibility points, a check is applied which gives rise to the
INTEGER OVERFLOW interrupt if the value is non-integer.

Goto into structured statement (6.8.2.4)
Not detected.

Case expression without label (6.8.3.5)
Detected in execution.

Altering for-index (6.8.3.9)
Blatant attempts detected in compilation and treated as errors.
Possible attempts (use as actual variable parameter) cause
compile-time warnings. Sneaky attempts will be detected in
execution if the loop is optimized.

Syntax of real and integer on input file (6.9.2)
Detected in execution.

1-6 R INTRODUCTION

]

L]



W

INTRODUCTION (COMPLIANCE STATEMENT)

Undefinition

Many errors. are traceable to undefined values: this section
explains. the treatment of undefinition by this compiler.

Local variables (6.2) :
Scalar, real, pointer, and set variables are set to a special
undefined value (tagsix) at the beginning of the statement part.
Records and arrays acquire all-zero binary values. Files acquire
a value or not depending on their attributes (extension).

Change of variant (6.4.3.3)
No changes are made when variants are selected. The fields
retain their original binary values.

Function values (6.6.2)
The function value is initialized to a special undefined value
(tagsix) at the beginning of the statement part. If the value is
not overwritten by a function assignment, an interrupt occurs at
exit.

File buffer (6.6.5.2)
The file buffer is not altered from its current value under
these conditions of undefinition.

Dispose (6.6.5.3)
Dispose implemented but always returns a nil pointer.

For index (6.8.3.9)
Always acquires a special undefined value (tagsix) at exit.

INTRODUCTION . 1-7



INTRODUCTION (COMPLIANCE STATEMENT)

Extensions to Standard Pascal

(See 5.1)

These are more fully described in the manual. The compiler option
STANDARD enables a checking which flags use of these extensions in

general,

1. The provision of file attribute declarations.

2. The provision of type transfers from integer to scalar type
(inverse of ord).

3. The provision of a format declaration and record-oriented read
and write statements.

4. The provision of random-access (relative-indexed) reading and
writing.

5. The provision of extra pre-defined procedures and functions.

6. Allowing external files to be attached to inner procedures or
functions without attachment to the main program.

7. Allowing strings to use the double quote as an alternative to the
single quote for Algol compatibility.

8. The lexical alternatives @, (*, *) gre permitted for use on
devices which do not support °* *

9. Allowing a % to end-of-line comment form.

10. The permitting of an otherwise clause in case statements.

11. Allowing external procedures or functions to be declared within a
program.

1-8 INTRODUCTION



ax

INTRODUCTION (COMPLIANCE STATEMENT)

Deviations from Standard Pascal

These are more 'fully described in the manual, and ‘represent
places where the processor does not conform to the requlrements
of section 6 of the Standard.

1. Files may not be components of any structured type.
2. Program parameters are permitted, but have no effect.

INTRODUCTION 1-9



INTRODUCTION

INTRODUCTION TO THE MANUAL

Burroughs Algol programmers should find little difficulty in writing
Pascal programs which are almost isomorphic to the Algol ones they
presently write; experience will allow transition to Dbetter
structured code as the concepts of data-structures become more
understood. FORTRAN programmers will find more difficulty as the
control structures are also less familiar; PL/I programmers will be
amazed at the simplicity and power of the Pascal language compared to
PL/I.

The rest of this document discusses the components and structures of
the B6700/B7700 Pascal 1language, categorized into categories that
seem appropriate. These categories, by section, are:

Lexical tokens
(the words of Pascal)

Subcomponents
(bits and pieces otherwise unclassifiable)
Declarations
(the objects and concepts of Pascal and stating them)
~ Statements

(the executable commands of Pascal)
Program units

(constructing wholly executable programs)
Pre-defined procedures

(procedures available without declaration)
I/0

(the input/output system of B6700/B7700 Pascal)
Options

(how to manipulate the compiler options and their effects)
Compiler files .

(the definitions of the compiler's file attachments)
Errors

(the interpretation of error situations)
Sample programs

(to illustrate the language and the listings produced)
General

(which cannot be classified elsewhere)

This manual was produced using the RUNOFF text editing system and
printed on a Diablo 1620 terminal.

1-10 "~ INTRODUCTION

a

»



INTRODUCTION

References

Addyman, A: The BSI/ISO Working Draft of Standard Pascal by
the BSI DPS/13/4 Working Group, Pascal News, Number 14,
pp 9-54; see also Draft Proposal TSO/TC97/SC5 DP7185

Jensen, K and Wirth, N (1974): "PASCAL User Manual :and Report",
Notes in Computer Science Series, No.18, Springer-Verlag.

Wirth, N (1973): "Systematic Programming", Prentice-Hall.

Welsh, J. (1978): "Economic Range Checks in Pascal™,
Software - Practice and Experience, vol. 8, p 85-97.

INTRODUCTION | 1-11



'LEXICAL TOKENS

LEXICAL TOKENS
Syntax

lexical token

> reserved word g

X

————> name

——> integer constant

»real constant

———— char constant

——> string constant

————> comment

L———> doublet symbols

L———> one-character symbols

Semantics

The formation of the lexical tokens is explained in the succeeding
pages. Lexical tokens in B6T700/B7700 Pascal are formed from
characters in the EBCDIC character set. All lexical tokens must be
contained wholly on a single 1line of the source text and may not
contain any embedded space characters., Except within string and char
constants, and within comments, the space character serves to delimit
adjacent tokens but has no other meaning.

LEXICAL TOKENS 2-1



CHAR CONSTANT

CHAR CONSTANT

Syntax

char constant

Semantics v

A char constant defines a constant of the pre-defined Pascal type
char. In each case above, the enclosed character may be any legal
character except the quote symbol used to delimit the token.

The internal representation of the graphic used in a char constant is
normally an 8-bit EBCDIC value. However, if the ASCII compiler
option is set when a char constant is compiled, the value is
represented internally in the ASCII code. This will affect the
internal collating sequence and the result returned by the ORD and
CHR functions.” If a string delimiter is to appear as a char constant
then that character is written twice. Thus '''' contains the
character '.

2-2 LEXICAL TOKENS

> ' — character — ' }ll

®

L]



Q)

(1]

COMMENT

COMMENT
Syntax
comment
—— charactere—
»>{— >}
— .
.J:——-charactere——
;(*' —l %)
Semantics

A comment has no effect on the compilation or execution of a Pascal
program except for a role in delimiting other tokens. The two forms
of comment are equivalent to a space character. Comments may
therefore be used wherever a space may be used, except within string
constants or format lists.

The purpose of a comment is to introduce information for human
readers of the program; therefore any character may be used in the
body of the comment except for the symbol that terminates it.

If a closing marker is omitted by mistake, following text will not be
compiled and is treated as commentary until another comment is
reached. To detect this situation in a large number of cases, a
warning message is 1issued if a semicolon is encoéuntered in these
comment forms. The message may be suppressed by resetting the
WARNINGS compiler option.

LEXICAL TOKENS 2-3



DOUBLET SYMBOLS

DOUBLET SYMBOLS

Syntax
doublet symbol token-name

HE becomes~token

.o subrange-token

O not-equal-to

<= less-or-equal

>= greater-or-equal
Semantics

Tokens composed of two adjacent characters are used in Pascal to
augment the basic character set and to construct extra tokens. The
use of these tokens in the language will be described in later
sections. Note that the pair of characters must be immediately
adjacent to be recognized as a doublet symbol; if a space separates
them the characters are recognized as separate tokens.

2-1 - LEXICAL TOKENS

L7



<)

INTEGER CONSTANT

INTEGER CONSTANT

Syntax

integer constant

mantic

An integer constant is represented internally in a B6700/B7700 Pascal
program by a value of type integer. The external form is written as
a sequence of decimal digits (0123456789) and converted according to
the usual rules, A valid integer must have no more than 12 digits
(including any 1leading zeros), and must be less than 549755813887
since this is the largest representable integer in the B6700/B7700
computers. The predefined constant, MAXINT, represents the largest
representable integer in the B6700/B7700 computers.

LEXICAL TOKENS 2=5



ONE-CHARACTER SYMBOLS

ONF-CHARACTER SYMBOLS
Syntax
symbol token-name equivalent
+ plus
- minus
* times
/ divide
= equalto
< less-than
> greater-than
( left-parenthesis
) right-parenthesis
[ left-bracket
] right-bracket
. point
, comma
: colon
3 semicolon
1 -at (see note) @ or °

LEXICAL TOKENS



o)

ONE-CHARACTER SYMBOLS

nti :
The use of these tokens will be explained in later sections. If the
B6700/B7700 Pascal compiler encounters. a character outside the
context of the other tokens which is not one of these characters (for
example the &-character), a lexical error is reported.

Note:
The T-character may not be awvailable on all devices on a
B6700/BT7700 system (as it is not a common graphic) and the use of
the @-character is provided as an alternative. On some devices
the T-character masquerades as the — -character, or prints as
a .

LEXICAL TOKENS 2-7



REAL CONSTANT

REAL CONSTANT

Syntax

real constant

———>integer constant ——l—>fraction —T—r exponent J 3|
fraction
> . > digit )
exponent
l:; |
>E . digit 3|

L _se j +

Semantics
A real constant is represented internally in a B6700/B7700 Pascal
program as a read-only value of type real. The value of the real

constant must lie in the representable range of the B6700/B7700
computers:

between 8.75811540203E-47 (8%#%_.51)
and 4.313591466TUE+68 (8#%76 ~ B¥##H3)

or may be exactly zero. The fraction part may have any number of
digits, up to the limit imposed by the 1line length, but only the
first 23 are used in the conversion. A fraction written with a large
number of fractional leading zeros may therefore be inaccurately
converted. The exponent part is a scale factor expressed as a power
of 10, and may have one or two digits.

Note: :
An integer constant is a valid real constant. If a real constant is

in fact an integer, it may lead to more efficient code if it is
written as such without a fraction or exponent.

2-8 o LEXICAL TOKENS

»



a)

RESERVED WORDS-

Syntax

SYMBOL

IF CASE DOWNTO

IN ELSE FORMAT

DO GOTO PACKED

OF FILE RECORD
OR THEN REPEAT

TO TYPE PROGRAM
AND WITH FORWARD
DIV ARRAY EXTERNAL
END BEGIN FUNCTION
FOR CONST OTHERWISE
MOD LABEL PROCEDURE
NEQ UNTIL

NIL WHILE

NOT

SET

VAR

LEXICAL TOKENS

RESERVED WORDS

2-9



RESERVED WORDS

Semantics

The wuse of reserved words is described in later sections. The
reserved words are absolutely reserved: they may not be wused as
names elsewhere in a B6700/B7700 program since they will always be
recognized as reserved words. The reserved words are recognized
according to the rules for names: they may appear in the source text
in upper-case letters, or lower-case letters, or a mixture of both.
BEGIN, Begin and begin are all recognized as the reserved word BEGIN.

The reserved word FORMAT has no counterpart in standard Pascal; the
word NEQ is provided as an Algol-compatible equivalent for <>
(not-equal-to). The word PROGRAM is treated as fully synonymous with
the word PROCEDURE.

Standards

In B6700/B7700 Pascal, FORWARD and EXTERNAL are a reserved words, and
may not be redefined by a programmer. This, however, is not standard
Pascal, although forward declarations are permitted.

NIL is included here as a reserved word as specified by the Pascal
Standard. However, in B6700/B7700 Pascal, NIL is not a reserved word,
but a predefined name (as are TRUE and FALSE). Programmers may
redefine these names if they wish, however, this is not recommended.

2-10 ' LEXICAL TOKENS

9



STRING CONSTANT

STRING CONSTANT

Syntax

string constant

' l > character > ! N

v

Semantics
A string constant defines an object which can be used in Pascal as a
read-only packed array of char. Any legal characters may appear in

the internal part of the string constant except the character used to
delimit the token.

The maximum length of a string constant is 70 characters, and is
possible only if the string constant occupies the whole of a source
line. The minimum length is 2 characters, as a 1-character string is
regarded as a char constant.

The internal representation of the graphics used in a string constant
is normally in 8-bit EBCDIC values. However, if the ASCII compiler
option is set when a string constant is compiled, the graphics are
represented internally in the ASCII code. This will affect the
internal collating sequence and the result returned by the ORD and
CHR functions. If ‘a string delimiter is to appear within a string
with that delimiter then the character is written twice. Thus the
string constant 'DON''T' contains the characters DON'T.

LEXICAL TOKENS 2-11



NAMES

NAMES

Syntax

name —— letter <«

—— digit <

——underline-character «—

— > letter

XY

Semantics

Names are used. to identify Pascal objects, apart from labels, In the
above syntax, a letter means any alphabetical character in either
uppercase (A to Z) or lower-case (a to z); a digit means a decimal
digit (0 to 9); and the underline-character means an underlined
space, Any length name is permitted up to the limit imposed by the
line 1length and all characters of names are significant in
distinguishing names. However, for the purposes of naming, a
lower-case letter and an upper-case 1letter are regarded as
equivalent. Thus the name FRED is the same as the name Fred. Names
are held internally in the compiler in upper-case form and any
compiler-produced name-tables, etc.,, use this canonical form for
printing. For compatibility with other Pascal compilers, programmers
should consistently use either upper-case or lower-case.

A programmer-defined name may not be the same as any reserved word.

2=-12 : LEXICAL TOKENS

)

"



a)

NAMES
Examples

J
THING
temperatureofkiln

PAINT_MIXTURE_FOR_PAINTING_THE_KITCHEN_WITH_ON_SUNDAY

disaster_point

WITH2PARAMETERS

PartNod536Z

CourseSIS102H
Note

Some other compilers for Pascal only treat the first 8 characters of
a name as ‘significant. This should be Dborne in mind if
compatibility with other compilers is important. The use of two
cases of letters, and of the underline .character, should also be

avoided in these circumstances. ‘See the use of ‘the -compiler option
'STANDARD'.

LEXICAL TOKENS 2-13



SUBCOMPONENTS

SUBCOMPONENTS

Explanation :
Some constructs appear in the B6TD0/B7700 Pascal language in several
contexts, Rather than define the constructs in the main part of the
manual, they are defined here as subcomponents of the language:
comprised of lexical tokens but not major components of the language
such as statements or declarations.
The subcomponents described are:

signed integer

expression

name list

parameter list

subrange

scalar range

set constructor

labels

variables

Also discussed are:
operators
type identity
type compatibility
assignment compatibility

scope

SUBCOMPONENTS ' 3-1



ASSIGNMENT COMPATIBILITY

ASST NT T
Semantics

Compatibility is not expressed in the B6700/B7700 Pascal language,
but is a notion used to test whether an assignment or type
association is semantically meaningful.

An expression E of type T2 is assignment-compatible with a type T1 if
any of the four statements which follow is true.

1,

2.

3.

h,

T1 and T2 are identical and neither is a file-type nor a
structured-type with a file component,

T1 is a real-type and T2 is integer.

T1 and T2 are compatible ordinal-types and the value of E is
in the closed interval specified by the type T1.

T1 and T2 are string types with the same number of
components.

SUBCOMPONENTS

<)

b



EXPRESSION

Syntax

expression

simple e _
expression he

relational simple
operator expression

simple expression

: term ¢ adding e——
I operator

X

term

factor e multiplying «——
| operator
—> factor R — - : >l

SUBCOMPONENTS ' | 3-3



EXPRESSION

factor

——> integer constant
I——> real constant
————> char constant

> > string constant —M——

———> scalar constant —

——— constant name

> NIL

———> set constructor

> variable v

Y.

—————> function call

——> type —> ( —> expression — ) —

> NOT » factor

> ( > expression : > )

Semantics

An expression is a construct denoting a computation for deriving a
value from variables and constants by the application of operators.
Expressions consist of operands (objects having value such as
variables and constants), operators (rules for computation), and some
structuring tokens (parentheses). An error occurs if ‘any variable,

or function used as an operand in an expression has an undefined
value at the time of its use.

The operators are applied according to rules of precedence, according
to four classes of operators. The operator NOT has the highest
precedence, followed by the 'multiplying' operators, then the
'adding' operators and signs, and finally the relational operators.

3-4 SUBCOMPONENTS

*



EXPRESSION

PRECEDENCE ORDER OF OPERATORS

NOT

% / DIV MOD AND (multiplying operators)
+ - OR : (adding operators)

> = < >z &= O (relational operators)

The higher precedence operators are applied before any of lower
precedence. These notions are implicit in the syntax charts given.
Sequences of operators of the same precedence are executed from
left-to-right. In all expressions, including boolean expressions,
all terms and factors are evaluated. '

Expressions which are members of a set are of identical type. (1
denotes the empty set which belongs to every set type. The set [x..y]
denotes the set of all values of the base type in the closed interval
x to y. If x is greater than y then [x..y] denotes the empty set.

The type of an expression may be altered by specifying the type name
followed by the expression enclosed ir parentheses. The bounds of
the type are checked and an error results if the bounds are exceeded.
The types INTEGER and REAL may not be used in this manner.

A legal expression in B6700/B7700 Pascal must comply with the type
and compatibility rules as well as the syntax given. The operators
are defired only over certain types and return values of particular
types; these are detailed in the sheets on operators. The

requirements for further compatibility are given in the sheets under
that title. :

SUBCOMPONENTS ' 3-5



EXPRESSION

Examples
FACTORS: X
15
X +Y+2)
SIN(X + Y)
[RED,C,GREEN]
(1,5,10..19,23]
NOT P
TERMS: X*y
I *J+2
(X <= Y) AND (Y < Z)
SIMPLE EXPRESSION: X+Y
=X
P OR Q
HUE1 + HUE2
I *J4+1
EXPRESSIONS: X =1.5
P <=Q
P = Q AND R
(I<J)=(J<K)
CR IN [RED,GREEN]
Standards
Some other Pascal compilers implement boolean expressions by
selective evaluation (sequential conjunction or disjunction); this
may pose some problems for programs imported into-a B6700/B7700

environment but will not be 1likely to affect the portability of

exported programs except for rare cases. All programs affected are
non-standard.

3-6 ' SUBCOMPONENTS

i)



EXPRESSION

The precedence rules for boolean expressions give the effect that:
‘a> 0and b < 10

is illegal since it is parsed:

a> (0 and b) < 10
the correct expression is of course:

(a > 0) and (b < 10)
Since a few compilers do not conform to the standard Pascal
precedence rules, it is recommended that expressions involving
boolean operands be fully parenthesized, #eéspecially if relational
operators are used between booleans; for example:

azband ¢

Changing type by using the type-name in a function-<like usage is not

standard Pascal. Only the ORD, TRUNC and ROUND funetiéns (see
functions) are allowed in standard Pascal.

SUBCOMPONENTS 3-7



LABELS

Syntax

label

—> integer constant

X

Semantics '

Labels are used to mark places in the executable body of a program,
procedure or function, so that the goto statement can wutilize them.
Further references will be found under goto statement, label
declaration, and statement.

A valid B6700/B7700 Pascal label has a corresponding numeric value

from 0 to 9999 inclusive. The numeric value is not important, except
for establishing correspondence between usages of labels.

Examples

1

7876

3-8 ' SUBCOMPONENTS



NAME LIST

NAME LIST

Syntax

name list

> name

k3

Semantics

A name list consists of one or more names, separated by commas. It
occurs in several forms -of declaration.

Examples
REDCOLOUR

RED, BLUE, YELLOW ,GREEN, PURPLE
X,Y,Z

SUBCOMPONENTS



OPERATORS (ARITHMETIC)

ARITH P 0

Binary

operator operation type of operands | type of result
+ addition integer or real integer or real
- subtraction integer or real integer or real
b multiplication integer or real integer or real
/ division integer or real | real
DIV division with integer integer

truncation

MOD modulo integer integer

Unary

operator operation type of operands | type of result
+ identity integer or real integer or real
- ‘ sign-inversion integer or real integer or real

Semantics

If both the operands of the addition, subtraction or multiplication
operators are of the type

integer, then the
integer otherwise the result is of the type real.

the identity or sign-inversion operators is of the type
the result is of the type integer otherwise the result is of the type

real.

3-10

result is of the type
If the

operand of
integer then

SUBCOMPONENTS

aty

a



OPERATORS (ARITHMETIC)

The value of i div j is such that:

abs(i div j) = (abs(i)) div (abs(j))

Clearly, if j = 0 then an error occurs.

The value of i mod j is such that:

iz (j ® quotient) + remainder

where 0 <= abs(remainder) < abs(j)

and sign(i) = sign(remainder)

{See Standards below}

The predefined constant maxint is of type integer and has an
implementation defined value of 549755813887, This value satisfies
the following conditions:

1.

2.

3.

All integral values in the closed interval from -maxint to
+maxint are representable in the integer type.

Any unary operation performed on an integer value in the
above interval 1is correctly performed according to the
mathematical rules for integer arithmetic.

Any binary integer operation on two integer values in the
above interval is correctly performed according to the
mathematical rules for integer arithmetic. The result of an
intermediate calculation in an expression may temporarily
exceed the interval above (when it is converted to a real
value, with consequent 1loss of exactness). If the final
result, however, is outside the interval, the B6700/B7700
will interrupt and terminate the program's execution.

Any relational operation on two integer values in the above
interval is correctly performed according to the
mathematical rules for integers.

SUBCOMPONENTS 3-11



OPERATORS (ARITHMETIC)

Standards

The Pascal standard defines the value of i div j to be such that
i-j < (i div j)*j <= i

where i >= 0 and j > 0; an error occurs if j = O. Other Pascal
compilers may produce different results for i < 0 and/or j < 0.

Also the value of i mod j is defined to be the value of

i-(idiv j) * j
The result for negative operands is dependent on the method of
implementation of the div operator, and care should be taken if

compatability with other Pascal compilers is required. The
B6700/B7700 Pascal system satisfies this constraint,

3-12 SUBCOMPONENTS

a)



OPERATORS (BOOLEAN)

BOOL OPERATORS

operator | operation type of operands | type of result
OR logical 'or' boolean boolean
AND logical 'and' boolean boolean
NOT logical negation boolean boolean
Semantics

Boolean expressions are completely evaluated in B6700/B7700 Pascal.

The sheets on expressions give a fuller discussion of boolean
expressions.,

SUBCOMPONENTS 3-13



OPERATORS (SET AND RELATIONAL)

SET QPERATQORS
operator|operation type of operands | type of result
+ set union any set type T T
- set difference any set type T [ T
* set intersection | any set type T T

RELATIONAL OPERATORS

operator type of operands type of result

= <O any set, simple, pointer or boolean
string type

<> lany simple or string type boolean

<=z >= any set, simple or string type boolean

IN left operand any ordinal type T boolean
right operand SET OF T

Semantics

Except when applied to sets, the operators <> , <=, stand for
not equal, less +than or equal, and greater than or -equal
respectively.

v
"

The operands of = , <> , < , >, >= and <= are either of compatible
type or one operand is real and the other integer.

If u and v are set operands, u <=z v denotes the inclusion of u in v
and u >= v denotes the inclusion of v in u.

Since type Boolean is an ordinal type with false <vtrue, then if p
and q are Boolean operands, p = q denotes their equivalence and p <=
q denotes the implicatinn of q by p.

When the relational operators + , <> , <, > , <=, >= are used to

compare strings, they denote lexicographic ordering according to the
ordering of the character set.

3-14 ~ SUBCOMPONENTS



OPERATORS (SET AND RELATIONAL)

The operator IN yields the value true if the value of the operand of
ordinal-type is a member of the set, otherwise it yields the value
false. In particular , if the value of the operand of ordinal-type is
outside the bounds of the set, the operator IN will yield the value
false. o

SUBCOMPONENTS 3-15



PARAMETER LIST

PARAMETER LIST

Syntax

parameter list

. &
y <

_T > name list ——> : —> type
|~>VAR

\ ]
~
Yy

Semantics

A parameterlist defines objects which are accessible within the body
of the procedure or function to which they are attached, and which
have some attributes which are imported from outside the procedure or

function when it is invoked. The form of the parameterlist serves
to:

* jdentify the names of the objects,
*® their types, and
® whether they are VAR or 'value' parameters.

If a parameter is not preceded by the reserved word VAR, it is
regarded as the default parameter type: a value parameter. The
object is then identical to a locally declared object of the same
type, except that it is initialized at the time of procedure or
function invocation to the value given by the corresponding actual
parameter, Any changes to the value of this object will therefore
not have any effect on objects declared outside the procedure. A
file may not be a 'value' parameter; neither may a procedure or
function passed in to another procedure.

If a parameter is preceded by the reserved word VAR, the object
accessible within the procedure or function is the actual outside
object referenced in the invocation of the procedure or function,
viewed through the window of the parameter list specification. The
parameter attachment is implemented by a mechanism which is
equivalent to a "reference parameter". Any Pascal object may be a
VAR parameter, including a file.

3-16 SUBCOMPONENTS



PARAMETER LIST

Examples
(X,Y: REAL)
(VAR I: INTEGER; BFLAG: BOOLEAN)

(VAR FILEX: FILE_OF_SECTOR;
INDEX: INTEGER;
VAR MASK,NEWSECTOR: SECTOR)

Efficiency
It 1is marginally more efficient to access a Paseal object which
occupies a single B6700/B7700 word by the value mechanism. Since
this also protects exterior objects from alteration inadvertently,
he default valu r eche m u used for all such
objects unless it is explicitly desired to alter the external object
passed through the parameter list. This advice applies to all scalar
types including integer, char and boolean, to type real, to all
pointer types, and to all set types restricted to fewer than 49
members,

Using the value parameter mechanism to pass objects of type record or
array will cause the compiler to request the allocation of extra
memory to hold a duplicate copy of the entire record or array, and to
initialize that array to be such a copy at procedure entry time.
This is expensive in space and may be expensive in time if few
accesses are made to the parameter within the procedure  or function.

it is therefore recommended that such parameters normally be passed
by the VAR mechanism, except in two cases:

(1) When a local copy of the record or array is explicitly
needed, and no external modification is required. The
default value mechanism will provide this,

(2) When the efficiency of access to the object is critical,
and yet external changes are necessary. In this case, make
a call by reference (VAR), but insert declarations and code
to make a local copy and restore the copy to the external
world. In general this will only be faster if the number
of references to the object exceeds (4 x the number of
words in the object), supposing that single-word references
are made.

SUBCOMPONENTS - ‘ 3-17



PARAMETER LIST

Standards _ :

Both parameter mechanisms comply with the requirements of standard
Pascal. Programmers writing programs that may be used with other
Pascal compilers, or which are derived from installations with other
Pascal compilers, should be aware that the VAR parameter passing
mechanism is not always implemented by a 'reference' mechanism as in
B6700/B7700 Pascal, but sometimes by a mechanism called
'value/recopy'. In this mechanism, a local object is created in the
procedure or function just as for the value call, but at the
termination of the procedure the copy is recopied back into the
external objiect. The difference between this and the reference
mechanism cannot be detected if the external object is not referenced
(other than through the parameter) between the invocation of the
procedure/function and its termination, and provided no gotos across
procedure levels are executed.

Programmers writing code which is intended to be portable across
Pascal compilers should therefore avoid accessing global objects
which are also referenced through parameters, and avoid referencing
the same object in two VAR parameters.

Programmers who receive programs which may contain machine
dependencies due to the use of value/recopy as a parameter mechanism
can achieve the required effect by explicity writing in the copying
required. The code thereby generated is as efficient (to about 2
instructions) as if it had been implemented by the compiler. This is
the same advice as is given for case (2) under the efficiency
subheading. An example: :

PROCEDURE Z(VAR A: ARRAYTYPE);
VAR LOCALA: ARRAYTYPE;

e

BEGIN
LOCALA:=zA; {the value copy}

e

{the body of the procedure}

A:=LOCALA; {the re-copy}

END; {of 2}

3-18 SUBCOMPONENTS



SCALAR RANGE

SCALAR RANGE

scalar range

> ( > name list > )

K2

Semantics

The scalar range construct is used to define the values of a
programmer defined scalar type. The values are externally
represented by the names listed between the parentheses, The
relational operators (less, equal, etc.) are defined between these

values assuming them mapped one-for-one with the natural numbers (0,
1y, 2, +++) in enumeration order,

The scalar range construct is used in declarations.

Examples
(RED,BLUE, YELLOW,GREEN, PURPLE)
(FALSE, TRUE)

(YES,NO,MAYBE)

SUBCOMPONENTS 3-19



SCOPE

SCOPE

Semantics

Scope is not expressed in B6700/B7700 Pascal, but is a notion used to
determine the range for which an identifier or label is defined. The
concept and meaning of scope is described in the following six
paragraphs.

1.

3-20

Each identifier or label within a Pascal program has a
defining occurrence. Associated with each defining occurrence
is a scope which is the range in the program text for which
that defining occurrence holds. Each identifier or label may
have one and only one association in each scope.

In the case of identifiers or 1labels whose defining
occurrence is within a block of a Pascal program, or
identifiers whose defining ocecurrence is in a
formal-parameter-list associated with a block, the scope
extends from the commencement of the formal-parameter-part
(if it exists) or the commencement of the block otherwise, to

the closing "end" of the block, subject to (3) and (4)
below.

When an identifier or label which has a defining occurrence
for range A has a further defining occurrence for some range
B enclosed by A, then range B and all ranges enclosed by B
are excluded from the scope of the defining occurrence for
range A.

An identifier which is a field identifier may be used as a
field identifier within a field-designator in any range in
which a variable of the corresponding record-type is
accessible.

The scope of identifiers which are field-identifiers, and
whose defining occurrence as variable-identifiers occurs as a
result of the execution of a with-statement, extends over the
internal statement of the with-statement.

The defining occurrence of an identifier or label precedes
all corresponding occurrences of that identifier or 1label in
the program text with one exception, namely that a
type-identifier T, which specifies the domain of a
pointer-type "T, is permitted to have its defining occurrence
anywhere in the type-definition-part in which °T occurs.

SUBCOMPONENTS



SCOPE

Note
The definition of a constant-identifier takes place at the end of its

constant definition; consequently a constant-identifier may not be
used in its own definition, '

Similarly, the definition of a type-identifier takes place at the end
of its type-definition, except for pointer-types (see 6 above);

consequently a type-identifier may not be used in its own definition
with this exception.

St rds
These semantics conform to those of the Pascal Standard.

SUBCOMPONENTS 3-21



SET CONSTUCTOR

SET CONSTRUCTOR

Syntax
set
> [ -:r+ ] ‘ﬂ
>element —
L,
element

——— > expression ) ﬂ
' Le..--; expression-———-——]

Semantics

The set constructor contains expressions and subranges of constants
and represents a set containing as members the values so expressed.
The types of the expressions and bounds of the subranges must be of
identical type. The empty set is represented by the construct [].
When the expressions are of type integer, the compiler option SETSIZE
determines the type of set produced by this construction. If SETSIZE
is 48 or less then a one word set is produced otherwise a set with
bounds 0 and (SETSIZE-1) is constructed.

If all the values in the set constructor are constants, and the value
of SETSIZE is less than 49, then the set functions as a set constant.
In all other cases, code is inserted in the program to construct the
set.

If a subrange construct is used and the lower bound is greater than
the upper bound the subrange functions as the empty set. A warning
is produced for this occurrence.

3-22 SUBCOMPONENTS



" .SET CONSTRUCTOR

Examples
[RED, GREEN]
[0..6, 9]
[YES, PERHAPS, MAYBE]

(]

SUBCOMPONENTS | , ' 3-23



SIGNED INTEGER

SIGNED INTEGER

Syntax

signed integer

- integer constant : 4%

—> + ———

-—_9_.__

Semantics

A signed integer value represents a Pascal value of the predefined
type integer. It is valid in several contexts, notably in defining
constant names in a CONST declaration, and in subranges. Any valid
integer constant may be signed: the representable range 1is
symmetrical about zero on the B6700/B7700 computers. Both +0 and -0
are regarded as arithmetically equal.

3-24 : SUBCOMPONENTS

o



SUBRANGE

SUBRANGE

Syntax

— signed integer r—ysigned integehé-———ﬂ—

————t1—> scalar constant —¥» .. +—> scalar constant-——ap—-————ﬂ

~—>char constant ——

——> char constant

Semantics .

The subrange defines a subset of a scalar type from the first value
given up to and including the second value given. The two bounds of
the subrange must be of identical type. A scalar constant is a name
declared as such 1in a scalar declaration occuring in a TYPE or VAR
declaration, or a name equated to such a name in a CONST declaration.

A subrange may occur in a declaration, or in a set-constructor.

Examples

-1 .. 99

RED .. GREEN

5..7

SUBCOMPONENTS 3-25



TYPE COMPATIBILITY

TYPE COMPATIBILITY

Semantics

Compatibility is not expressed in B6700/B7700 Pascal, but is a notion
which is used to determine whether an operator or parameter linkage
is semantically meaningful.

Two types are compatible if they are identical, or if one 1is a
subrange of the other, or if both are subranges of the same type, or
if they are string types with the same number of components (or in
the case of assignment, if the lefthand side has a larger number of
components, in which case the components not assigned a value are
blank filled. The assignment is left justified.), or if they are set
types of compatible base types.

Standards
Pascal compilers that conform to the standard, will only allow
compatibility between string types with the same number of

components. Programmers should be aware of this if portability is
required.

3-26 ~ SUBCOMPONENTS



"

TYPE IDENTITY

TYPE IDENTITY

Semantics

Types which are designated at two or more different places in the

program are identical if the same type identifier is used at these
places, or if different identifiers are used which have - been defined
to be equivalent to each other by type definitions of the form TYPE1
= TYPE2. oL

Standards

These semantics conform exactly with the Pascal Standard.

SUBCOMPONENTS 3-27



VARIABLE

VARIABLE
Syntax
variable
e
ly . ——— 3 field name
> [ -———vr—éscalar expression —4—> ]
name
Semantics

A variable is a rule for determining a reference to a - Pascal object.
It may be used in an expression to .determine a value, but it may be
used in other contexts where the identification of the variable is
the prime purpose, not its value. Examples are procedure invocation
parameter lists, assignment statements, and for statements.

The form with @ (or "~ ) is valid only if the preceding variable
part has evaluated to filetype (when the new form references the file
buffer), or if it has evaluated to a pointer type (when the new form
references an object of the pointer's bound type).

The form with . is valid only if the preceding variable part has
evaluated to a record type, and the field name is a field name of the
record type. It selects the nominated field of the record and gives
a corresponding type.

The form with square brackets is valid only if the preceding variable
part has evaluated to an array type. The type and number of the
scalar expressions within the brackets must correspond to declaration
of the array type. The effect is to select one component of the
array as determined by the values of the subscript expressions; the
type is of course that of the array components.

3-28 SUBCOMPONENTS

L]



"

w

Examples
X
PERSON.AGE

CLASS[MEMBER].PTR@.AGE

SUBCOMPONENTS

‘VARIABLE

3-29



Y

3]

DECLARATIONS

Explanation
Declarations serve to specify objects or concepts to be used in the
body of a program, procedure or function. The order of the various

parts of a declarationpart is required by standard Pascal, or by the
extensions.

Syntax

declarationpart

I-——>laﬂ:xeldeclar'ation-——:l\

l—-—-—:>constdeclar'ation———T

L——>typedeclaration-——:T

[
[——> f‘ormatdeclaration —T

~

'

s procedure

—> function

—>sprocedure or function heading —

L—>forward referenced declaration —J

Cross-reference
All components of declarations except procedures, functions, etec, are

DECLARATIONS ' 4-1



DECLARATIONS

described in this section. The exceptions are covered in the section
on program units (#6).

4-2 ' .~ DECLARATIONS



)

Y

ARRAY TYPE

ARRAY TYPE
m ics

An array type is a collection of objects of the component type, one
of which may be selected by nominating values for the array's index.

The component type of an array may be any type other than a file
type. The index types of an array may be any scalar or subrange type
except integer itself (as this is virtually infinite). There is no
limit to the number of index types.

An array is stored in B6700/B7700 Pascal by a single segment of
memory, described by a descriptor in the stack. Selecting a
component is carried out by computing the displacement of the
component from the start of the segment and then indexing the
descriptor. An attempt to access outside the bounds of the array
will result in the computer detecting an attempted violation and
terminating the program's execution. Accessing arrays with several
indices, or arrays of multi-word objects, is relatively slow compared
to simple scalar variable access. '

Storage is allocated for an array at the first time it is accessed
after entering the program unit in which it is entered, and
deallocated on 1leaving that program unit. Procedures or functions
which are frequently called may therefore incur less operating system
overhead if any arrays declared in them are moved to an outer program
unit that has a longer lifetime. On creation, an array will be
filled with all-zero words, This initialization will not hold for
other Pascal compilers.

Examples of array type declarations
TYPE
FLOORBUTTON = ARRAY[FLOOR] OF SWITCH;
BIRDDENSITY = ARRAY[GRIDINDEXTYPE,GRIDINDEXTYPE]
OF INTEGER;
CATALOGUE = ARRAY[USERCODETYPE] OF
ARRAY[AREATYPE] OF
ARRAY[0..30] OF WORD;
HASHTABLE = ARRAY[O..MAXSIZE] OF
’ RECORD
KEY:KEYTYPE;
VALUE :VALUETYPE;
VALUEKIND:VALUEKINDTYPE
END;

DECLARATIONS 4-3



ATTRIBUTES

ATTRIBUTES

Syntax

attributelist

<

» booleanattribute —— v

—snumericattribute —» = —sinteger —>

L. s>attribute ————> = —s mnemonic ——

—> titleattribute —— = —>title —

Semantics

The attribute 1list serves to define some attributes of files
declared in a Pascal program, and will determine the nature of the
file's attachment to a real file in the Burroughs operating system.
The attribute names are always the same as those used elsewhere in
the Burroughs operating system and  in Burroughs Algol, if the
attribute has been incorporated into Pascal. For full details of the
use and operation of file attributes, the reader is refered to
Burroughs documentation and especially the 'I/0 Subsystem Mapual'.

In general, an attribute name is followed by a mnemonic which defines
its value, or an integer value, as in the example:

KIND=PACK, FLEXIBLE=TRUE, MAXRECSIZE=30

However, for compatibility with other Burroughs usages, it is
possible to substitute a numeric value for the word PACK above 1if
you know the appropriate encoding. It is also possible to omit the
'=TRUE' for attributes which have boolean values. Neither of these
practices are recommended.

In the case of attributes whose values are file-titles (title and
security guard), the right-handed side part may be written in the
normal way for file-titles, but all possible syntax assumptions are
allowed., Thus quotes may be used to delimit the file-title or not,
and a stop may terminate it or not. The recommended standard
treatment is the same as WFL - with no quotes and no stop:

4y DECLARATIONS



ATTRIBUTES

TITLE=COURSE1/MARKS/DATA

(The options allow Algol, FORTRAN and COBOL programmers to use their
familiar file attribute syntax without causing an error). If a
reserved word is used in a file title, the title should be enclosed
in quotes in the attribute 1list. Attribute lists are scanned by a
modified lexical scanner, and the mnemonics that appear in it bear no
relation to any declared Pascal object. It is permissible to declare
a Pascal object to have the name kind, or private, for example, and
no confusion will result. However, if the parenthesis that opens an
attribute list is inadvertently not matched by a closing parenthesis,
some curious messages may be evoked.

The following table details the attribute subset at present built
into B6700/B7700 Pascal. All attributes may be over-ridden by file
equation statements in the Work-Flow program (job control program).
It 1is not possible, at present, to alter file-attributes during
execution, as can be done in Burroughs Algol.

ATTRIBUTES ALLOWED VALUES

AREAS numeric

AREASIZE numeric

BLOCKSIZE numeric

BUFFERS numeric

DENSITY LOW,MEDIUM,HIGH, SUPER

EXCLUSIVE TRUE,FALSE

EXTMODE SINGLE, HEX,BCL,EBCDIC,ASCII,
BINARY

FAMILYNAME file-title

FILEKIND numeric

FILETYPE numeric

FLEXIBLE TRUE,FALSE

INTMODE SINGLE,HEX,BCL,EBCDIC,ASCII

KIND READER, PRINTER, REMOTE,DISK,PACK,
TAPE7,TAPE9Q, PETAPE, TAPE

MAXRECSIZE numeric

MINRECSIZE numeric

MYUSE IN,OUT, I0,CLOSED

PACKNAME file-title

PROTECTION TEMPORARY, SAVE, PROTECTED

SAVEFACTOR numeric

SECURITYGUARD file-title

SECURITYTYPE PRIVATE,CLASSA,CLASSB,PUBLIC,GUARDED

SECURITYUSE IN,OQUT, I0,SECURED

TITLE file-title

UNITS WORDS, CHARACTERS

DECLARATIONS



ATTRIBUTES

Examples

The

following examples show file-attribute 1lists embedded

realistic declarations:

4-6

TYPE
REMOTETERMINAL=
FILE(KIND=REMOTE,UNITS=CHARACTERS,MAXRECSIZE=132,
MYUSE=I0,FILETYPE=3,EXTMODE=ASCII)
OF PACKED ARRAY[O0..131] OF CHAR;

VAR
INPUT2:
FILE(KIND=PACK,TITLE=SECONDARY/STAR/DATA,
FILETYPE=7) OF STARRECORD;

CODEF:
FILE(KIND=DISK,MAXRECSIZE=30,UNITS=WORDS,
BLOCKSIZE=300,FLEXIBLE=TRUE ,MYUSE=0UT,
SECURITYTYPE=PRIVATE) OF ARRAY[0..29] OF WORDSET;

in

DECLARATIONS

L)

&



W

BOOLEAN TYPE

B TYP
Semantics

In many ways, type boolean behaves as if it were declared:

TYPE
BOOLEAN = (FALSE,TRUE);

particularly in 1i/o. However, several operators '~ are provided
uniquely for the boolean type (AND, OR, NOT) so that its logical
calculus can be used to control the flow of the program in
execution.

Each boolean variable 1is stored in a full B6700/B7700 Pascal word.
Only the rightmost bit is significant however, and is 0 to represent

FALSE and 1 to represent TRUE. The remaining bits (1-47) are always
0.

DECLARATIONS b7



CHAR TYPE

CHAR TYPE

Semantics
The char type is a scalar type
The ordering - of the character
depends upon the setting of the
is either:
% a scalar type of 256
EBCDIC character set,
*® a scalar type of 128
ASCII character set.
The ordering between characters
to the appendix for details.

4-8

which represents character objects.
objects and the range of the scalar
compiler option ASCII. The char type

values, being the characters of the
or
values, being the characters of the

depends upon the set chosen. Refer

DECLARATIONS



CONST DECLARATION

CONST DECLARATION

Syntax

—— CONST —¥_sname —-» = ——>constant 5

o

Semantics

The CONST declaration 1is used to declare certain names as constant
names . Their employment in the program is exactly as if the
corresponding constant appeared in place of the name.

The allowable constants are integer, char, real and string. The
names of course have the appropriate types and properties, The
predefined constant  MAXINT represents the largest integer,
549755813887, available in the B6700/B7700 computers,

Example
CONST
PI = 3.1415926;
SPACE = ' ';
FIFTY = 50;

DECLARATIONS 4-9



FIELD LIST

FIELD LIST

Syntax

field 1list

- nam:j]¢:-—»type

CASE-—laname-—-b:-—lbtype name--)OF—t:]

«L;J —

.o

’<-—-—T

constant 4% : —>(—>field list ->)

Semantics

A field list serves to define the field names and properties of the
components of a record. In the simplest form of field list, the body

of the definition consists of a sequence of field names and their
types (no CASE part).

In the event of a CASE part following an initial part (if any), the
field which corresponds to the selection determines which set of
interpretations are to be placed on the remnant of the record.
Attempts to access fields of a record in fact share storage in the

B6700 implementation, and a declared record is allocated sufficient
space for the largest variant.

Field names in a field 1list are regarded as declared at a lexical
level greater than that of the program unit they are enclosed in, so
that in the event of a name clash with an already existing object or
type (even in the same program unit) the field name is allowed in its

appropriate context. The use of & WITH statement in execution is of
interest in this connection.

4-10 DECLARATIONS



LY

FILE TYPE

FILE TYPE

Semantics 4

An object of file type 1is a sequence of objects of the file's
comporenttype, whose length is not necessarily fixed as in an array,
and which 1is conceptually too 1large to be all accessible at high
speed. Associated with every file object is a file buffer: an object
of the file's componenttype which either holds a copy of the last
compornent read (if the file is in read status), or is used to contain
compornents to be written to the file (if it is in write status). The
file buffer is referenced by giving the filename followed by "@" or
"M thus:

INPUT@® or INPUT"

In B6700/B7700 Pascal, the componenttype of a file may only be a
record type, an array type, or a simple type (char, integer, etc.).
If a file is accessed through the Pascal stream-oriented READ and
WRITE procedures it is set into 'read-status' or 'write-status', and
stream-oriented operations of the wrong kind will not be permitted.
Thus to carry out input and output on a single remote terminal using
the stream oriented procedures, two Pascal files must be declared,
with MYUSE=IN and MYUSE=OUT, both attached to the same physical
device.

A check is made to ensure that the declared MAXRECSIZE is at least
capable of holding the componenttype of the file, and an error
message is generated if not. If the Work Flow alters the MAXRECSIZE
so as to cause such an error, the effects of accessing the file are
undefined when using I/0 to files of a structured type.

A file declared in B6700/B7700 Pascal has other attributes besides
its componenttype, and these relate to the actual mode of storage or
entry of the file and its physical retrieval. See the section on
Attributes.

It is also possible to carry out random-access read or write actions
orn a file in B6700/B7700 Pascal. The section on I/O describes the
necessary constructs for this purpose (READ, WRITE, SEEK).

Standards _

Attributes are not a part of standard Pascal. The file parameter
part which is allowed in CDC Pascal as part of the program heading is
similarly permitted in B6700/B7700 Pascal but is not parsed and has

no effect on the compilation other than the issuing of a warning
note. .

In standard Pascal it is possible to declare a file whose
comporenttype is a scalar, a set, a pointer, a record, or  an array.
In B6700/B7700 Pascal only records, arrays, or simple types are
permitted.

DECLARATIONS 4=11



FILE TYPE

Implementation
Since aspects of files are dependent upon the attachment of the file
to the Burroughs operating system, the following implementation

details are given to simplify the disentangling of unexpected
effects.

Internal representation:

Each file variable is represented by three items in the local

stack activation area. These items are:

* a descriptor pointing to a File Information Block (FIB)
which is the area used by the operating system to describe
the file and its status.

# a descriptor pointing to a segment which is used as the
file-buffer.

¥ a descriptor pointing to a small segment which contains
information which is specific to Pascal stream i/o (and
particularly character i/o).

The FIB is completely determined by the operating system and

its descriptor must reside in the stack. Consequently files

cannot be subcomponents of other data structuring methods.

Parameter passing:
A file cannot be passed by value (default mechanism), but may be
passed to a program unit as a VAR parameter. Three copy-descriptors

are passed 1in the program units calling sequence, corresponding to
the items above.

External representation:

This is complex, and in accordance with the B6700 operating system
rules.

The records contain an integral number of U8-bit words if
(UNITS=WORDS), .~ and an 1integral number of 8-bit bytes if
(UNITS=CHARACTERS). On printing or display devices, the characters
corresponding to particular byte values are device-dependent. In
B6700/B7700 Pascal, programmers have access to all the types of files

that exist on the system, including READER, PRINTER, REMOTE, PACK and
TAPE files.

4-12 . DECLARATIONS



A

“)

FILE TYPE

Management : :

The FIB and associated descriptors are set wup on entry to the
program unit in which they are declared. The association of a Pascal
file variable with an actual Burroughs file is only attempted when
the first access attempt on the file is made. At block-exit (when
the program wunit returns to its caller) any stream i/o is flushed
from the buffer and the file is closed if it is not already in this
state. On re-entry to this program unit the file attachment is set
up anew, and in some cases a completely new Burroughs file may be
involved. Thus printer and temporary files are completely local to
the program unit in which they are declared.

The stream i/o procedures are implemented by calls on specially
written intrinsic procedures; the formatted i/o0 procedures are
implemented by calls on the ALGOL-FORTRAN intrinsic procedures. The
two types-of 1i/0 should not be mixed on one file, but can be,
provided that formatted i/o is only attempted when a whole input - or
output record has been processed by the stream procedures. The
stream i/o buffer is flushed before exit from the program unit, and
before selected i/o procedures such as RESET, REWRITE, REWIND, CLOSE,
and SEEK. It is not flushed if an error causes program termination
and in these circumstances an incomplete line will be 1lost on an
output file.

The following description details significant events in the lifetime
of a Pascal file.

(i) at the first access attempt

if the reference is to a file that may have a title, or an
external existence, the directory is searched for one with
the same TITLE (or STATION if REMOTE), and the attachment
made if the file title is found;
otherwise if the attribute PROTECTION=PROTECTED then a new
permanent file is created (this is rarely used);
otherwise a new temporary file is created.

(ii) at the execution of a CLOSE statement

if LOCK or CRUNCH is specified, and the file is temporary, it
is entered in the directory and made permanent;
otherwise if PURGE 1is specified; the file is destroyed
whether or not it is permanent; ,
otherwise the file is closed, but not necessarily lost.

(iii) at block exit

if the file 1is now permanent, it is simply detached from the
program;
otherwise if it is KIND=PRINTER, it is detached as a
printer-backup file, and lives on in the system until it is
completely printed;
otherwise it is destroyed.

DECLARATIONS ' 4-13



FORMAT DECLARATION

FORMAT DECLARATION

ntax

format declaration

——> FORMAT -—i»name —> ( ——>formatlist —s) ——; -—]-—>|

Semantics

A format declaration serves to associate a name with a format
layout, and to define that layout. The syntax of a formatlist is
identical to that of the Burroughs B6700/B7700 Algol language, and is
described in detail in the manual for that language. The major
exception is the use of #* in the repeat count part of a format
element, which should not be used in formats which will be associated
with read statements. Because of the use of tag-six words to detect
uninitialized variables in Pascal, the ¥*-facility used with a read
statement will act as though zero was substituted for the asterisk.

Standards
Format declarations are not part of standard Pascal.

Warning .
The use of the ¥*-facility can cause mysterious errors if the lexical
rules are not complied with. Consider the example:

FORMAT
MANYNUMBERS(#I5);

This will be parsed as though it contained a Pascal-comment with no
closing #), probably swallowing chunks of source text:

FORMAT MANYNUMBERS (¥* 15);
- - - - > on to the next ¥)

A space should appear between the parenthesis and the asterisk to
avoid this problem.

-1y DECLARATIONS



s}

&)

oy

A

FORMAT DECLARATION

Examples of format declarations

FORMAT e

HEADING ("CROSS-REFERENCE LISTING - XREF PROGRAM"
/":::::=:::=::::::::::::::::::::::::::::");

TABLELINE (X5,20I5);

COMPLEXES (" (",F18.8,"," F18.8,")");

DECLARATIONS . 4-15



INTEGER TYPE

TEGER
Semantic

The integer type in B6T00/B7700 Pascal is implemented as the
one-word integer data-type of the B6700/B7700 computers. All values
of integers from -549755813887 to +549755813887 can be represented,
and provided no intermediate result of an integer expression exceeds
these bounds the arithmetic conforms exactly to the usual arithmetic
axioms. If an attempt is made to store an out-of-bounds result into
an integer, or use it in an integer context ( as a parameter for
instance, or an index to an array), the B6700/B7700 will interrupt
and terminate the program's execution. Though the machine has both a
+0 and a -0, the Pascal programmer should not be able to detect the
difference except by printing a value in radix notation: they are
arithmetically identical.

An integer variable occupies a full B6T00/B7700 word. The maximum
integer size corresponds to a 39-bit field: 549755813887= (2%%39-1),
The sign is separately represented.

The integer type is one of the numeric types: the operators + - %
div mod are defined on it. The usual rules apply for + - # . div and
mod are defined to return quotients or remainders such that:

abs (a div b)=(abs(a)) div (abs(b))
a=(b*quotient) + remainder
where 0 <= abs(remainder) < abs(b)
and sign(a) = sign(remainder)

4-16 DECLARATIONS



)

LABEL DECLARATION

LABEL DECLARATION

Syntax

label declaration

— S LABEL _slabel —>

R

Semantics
The integer constants in the list which are labels must lie in the
range (0..9999), and are used to declare to the compiler that these

'labels' will be wused to mark places in the executable text of the
program,

The necessity to declare 1labels arises infrequently, as a
consequence of the use of a GOTO statement. Refer to LABELS in
SUBCOMPONENTS, and GOTO in STATEMENTS for other information.

Example

LABEL
1, 2, 56, 999;

DECLARATIONS 417



PACKED

PACKED

Explanation

The use of the word PACKED in a type declaration tells the compiler
to compact the type structure even if this means adding a code-space
or run-time penalty when the structure is accessed.

If PACKED is not specified then each element of a structured type
occupies a word of storage.

When PACKED is specified, the elements of a structured type occupy as

few bits as necessary to represent the simple type with the following

restrictions:

1) a structured type occupies an integral number of computer words
and always starts on a word boundary '

2) no elementary item crosses a word boundary.

In addition, the following restrictions apply to individual types:

set type: The structured type SET is always regarded as PACKED,
whether PACKED- was specified or not and each element occupies one
bit of a computer word.

scalar type: A declared scalar type occupies as many bits as are
needed to represent the type

eg.
TYPE :
COLOUR = (RED,BLUE,GREEN); occupies 2 bits

subrange type: An element of type subrange is stored as the offset
from its base value and occupies as many bits as are necessary to
represent the range of values. The base value is added or subtracted
each time the element is accessed.

eg.
TYPE
SUBR = 100 .. 110;

represents 11 values and occupies 4 bits of storage. The items are

stored as 0 .. 10 and 100 is added or subtracted each time the
element is accessed.

array types: An array type consists of elements occupying 1,4,6,8 or
48 bits of storage. Elements which require fewer bits to represent
them use the smallest number from this 1list to represent them
adequately. These element sizes were chosen because an array

4-18 DECLARATIONS



2)

“w,

PACKED

descriptor on a Burroughs B6700 uses element sizes of 4,6,8 or 48
bits.

eg.
TYPE
COLOUR = (RED,BLUE,GREEN);
ARR = PACKED ARRAY [1..10] of COLOUR;

Each element of the array requires 2 bits of storage to represent it
but it will occupy U4 bits because of the B6700 array handling
mechanism,

record types: If a record is packed then each component occupies as
many bits as the component needs. Word alignment only occurs when a
component is a SET, RECORD or ARRAY. No component may be split across
a word boundary.

Packing starts at the left hand end of a word.

eg.,
TYPE
COLOUR = (RED,BLUE,GREEN);
REC = PACKED RECORD
c1,C2,C3 : COLOUR;
SUBR : 100 .. 110

[ 2N 2

end;

The physical representation of this record will be

47 46 45 44 43 42 U1 38 37 0
C1 c2 C3 SUBR
Standards

The Pascal Standard does not specify a way to implement PACKED and so
the storage mechanism may vary amongst implementations.

In B6T00 Pascal packing applies to the level at which PACKED is
specified only.

for example:

A : PACKED RECORD
B : ARRAY [1..10] OF SUBR;

END;

In this case the record is packed, but the array within the record is

DECLARATIONS 4-19



PACKED

unpacked.

For multi-dimensioned arrays, packing applies to each dimension. ie.
PACKED ARRAY [0..5,0..7,0..9] OF THING
is equivalent to.

PACKED ARRAY [0..5] OF
PACKED ARRAY [0..7] OF
PACKED ARRAY [0..9] OF
THING

4-20 ; ' ~ DECLARATIONS



POINTER TYPE

POINTER TYPE

Semantics

An object of pointer type is a reference to an object of the basetype
of the pointer type, or has the value nil (which refers to no objects
at all). Pointers are therefore bound to objects of " a particular
type, and since pointer values may only be created by the use of the
NEW procedure, They may only refer to objects created in the Pascal
run-time heap by that procedure.

Pointer values may be assigned, or may be used in a variable
reference to identify a particular object (see VARIABLE in
SUBCOMPONENTS)., The constant value nil is compatible with all
pointer types.

The declaration of a pointer type may precede the declaration of its
basetype, or .the completion of declaration of its basetype. This
permits the declaration of types which contain mutually-referent
pointers, and of types that are self referent. The full declaration
of such a type is postponed until the close of the TYPE part when any
unsatisfied declarations are reported as errors.

Standards

If a forward-declared pointer type is declared in a procedure outside
which there is a type with the same name as the forward declaration,
then the standard Pascal definition requires binding the pointer to
the inner type. Thus the following is legal in B6700/B7700 Pascal,
and in Standard Pascal. Some other compilers may be non-standard.

PROGRAM P;
TYPE THING = BOOLEAN;
PROCEDURE Q;
TYPE LOOSETHING = @THING;
THING = REAL;
VAR THINGPTR : LOOSETHING;
BEGIN
NEW(THINGPTR);
THINGPTR@:=1.,0;
END;

LR 2K K R 2N N

DECLARATIONS 4-21



POINTER TYPE

Implementation

The Pascal run-time heap is implemented as a segmented array (segment
size = 256 words) based in the outermost stack activation area with
a current-top-of-heap value in that same area. The size of the
segment is determined at compile-time by the HEAP compiler option.
Values of pointer type are represented by B6700/B7700 integer values,
the nil value being an out-of-range integer (thus causing invalid
index faults when accidentaly used for access). However, pointer
objects may only aquire values as a result of the NEW procedure, or
by association with some other type in a discriminated union (and
therefore by error). Such occurrences may cause interrupts such as
INTEGER OVERFLOW, or may result in undetected erroneous access.

4-22 DECLARATIONS



)

")

REAL TYPE

REAL TYPE

Semantics
The real type in B6700/B7700 Pascal is implemented as the one-word
real data type of the Burroughs B6700/B7700 computers. This allows
the approximate representation of values whose magnitude is either
zero (exactly represented) or lies between

8.758115L40203 # (10%%¥_47) (or 8%%#_-51) and

4,31359146674 * (10%%468) (or 8¥*4+76 - 8¥%463),
The precision of the representation is approximately 11 digits.
Accurate representation details are given below if they are needed.

A real variable occupies a full B6700/B7700 word.

The real type is one of the numeric types: the operators + - ¥ / are
defined for it. For the purposes of expressions, a variable of type
integer is regarded as being compatible with a variable of type
real. The values of type integer are all EXACTLY ' representable in
type real, and they form a subset of the real values. This may not be
true of other computers and other Pascal compilers.

Representation data
Real values are represented in a 48-bit word by

* a one-bit sign (bit 46),

¥ a 13 octal-digit mantissa (bits 0-38),

* a one-bit exponent sign (bit 45), and

¥ 3 six-bit exponent magnitude giving a power of 8

(bits 39-u44)

The mantissa is regarded as an integer, and the value represented
exactly by a real word is:

signed-mantissa * (8%#* signed-exponent)

To preserve as much accuracy as possible, the mantissa is
octal-normalized if necessary. The high octal digit 1is therefore in
the range 1 to 7 if the number is normalized. Integer values are
often not normalized, and are represented as real numbers with zero
exponent, Zero is represented by the all zero word.

Arithmetic 1is carried out in a double-length calculator, and the
result is rounded to a single-length result. Since the arithmetic is
basically octal (not binary) the relative precision of the
representation varies between 8%¥_12 to 8%%-13, depending on the
mantissa. This is normally sufficient for most numerical
computations. See JUB6700 (Journal for the Users of the Burroughs
6700), No 5, April 1975 for an article entitled "Round-off errors in
the elementary arithmetic operations of the B6700" by P. Voss giving
details of the arithmetic properties.

DECLARATIONS : 4-23



RECORD TYPE

RECORD TYPE

Semantics

A record type is a collection of objects of different (or the same)
types, one of which is selected by giving the appropriate fieldname.
The types of the objects are determined by the fieldlist in the
declaration, It is possible to have variant forms of a record type.

The component types of a record type may be any type other than a
file type. There is no limit to the number of different types, and
effectively no limit to the number of objects other than general
system constraints.

A record is stored in B6700/B7700 Pascal by a single segment of
memory, described by a descriptor in the stack. Selecting a field is
carried out by indexing up the segment by the known fixed
displacement., Accessing a field of a record is necessarily slower
than accessing a directly declared object of the same type,
especially if it is of scalar, real, set, or pointer type.

Storage is allocated for a record at the first time it is accessed
after entering the program unit in which it is declared, and
deallocated on leaving that unit. Procedures and functions which are
frequently called may therefore incur less operating system overhead
if any records declared in them (as actual declarations or default
value parameters) are moved to an outer program unit that has a
longer lifetime, On creation, a record will be filled with all-zero
words, This initialization will not hold for other Pascal compilers.
A declared record has sufficient space for the longest of its
declared variants.

Examples of record type declarations

TYPE
COMPLEX = RECORD REAL,IMAG : REAL END;
PERSON = RECORD

BIRTHDATE : DATE;
CASE PERSONSEX:SEX OF
MALE : (WORKER : BOOLEAN);
FEMALE : (ARTISTIC : BOOLEAN; _
FIRSTCHILD : PTRTOPERSON)
END;

424 DECLARATIONS



ay

al

SCALAR TYPE

SCALAR TYPE

Semantics

A scalar type declared by a programmer is regarded as an infinite
collection of values which are represented in the external world (in
the program text or in the i/o stream) by upper-cases constant
names, Mixed upper and lower case forms are permitted and are treated
as identical. The internal representation of the scalar values is the
integer B6700 words: 0, 1, 2, 3,...etc. The ORD function applied to
any scalar value will yield the appropriate numeric value.

The SUCC and PRED functions, defined on scalar types, are implemented
by in-line code. The attempt to take the PRED of the first scalar
constant, or SUCC of the 1last, is always detected and causes the
program to be terminated.

Boolean type 1is treated similarly to scalar types, but with
additional operators; the char type is a scalar type with a special
syntax for constants of the type, as is the string type. Integer
type 1is a scalar type with a very large number of values and
additional operators, and real type is hardly a scalar type except in
name,

Examples of scalar type declarations
TYPE
FLOOR = (BASEMENT,GROUND,MEZZANINE,FIRSTFLOOR,
SECONDFLOOR) ;

REMARK = (ATROCIOUS,BAD,POOR,SATISFACTORY,GOOD,EXCELLENT);
SWITCH = (ON,OFF);
REPLY = (YES,NO,MAYBE);

Standards

If, within the scope of a scalar declaration, another scalar is
declared using the same constant names, then the two types are
considered distinct, and the innermost redefines the outer definition
for purposes of parsing. If an apparent redefinition occurs at the
same lexical level then this is an error.

DECLARATIONS 4-25



SCALAR TYPE

Thus in :
TYPE SEX = (MALE,FEMALE);
VAR X : (MALE,FEMALE);
PROCEDURE Q;
VAR Y : (MALE,FEMALE);
BEGIN
IF Y = MALE THEN....

the declaration of X is in error (twice, once for each matching
identifier), while the declaration of Y is legal, but of different
type from that denoted by SEX. Within the scope of Y the identifier
MALE is a constant of Y's type, as shown in the IF statement. Some

compilers may not comply with the requirements of the Standard in
this regard.

4-26 DECLARATIONS

L)



an

h|

SET TYPE

SET TYPE

Semantics
The component type of a set type may only be a scalar or subrange,
and the set cannot have more than 65536 possible members.

The bounds of a set are not restricted to positive integers.
Negative integers may be used if necessary. However, the bounds
imposed on set constructors limit the use of negative bounds. If
more than 48 members of a set are required the compiler option
SETSIZE must be set accordingly. A set of char is permitted by the
implementation.

A set with bounds lying between 0 and 47 inclusive is implemented as
a single B6700/B7700 word. A set with bounds lying outside these
bounds is implemented as an array. Membership of sets is indicated by
the corresponding bit of the set being 1.

The set operations on short sets (ie. those with bounds between 0O and

47 inclusive) are implemented by word-wise logical operations. On
long sets a call to the intrinsies is required.

DECLARATIONS 427



SUBRANGE TYPE

SUBRANGE TYPE

Semantics

A subrange type is represented in the same way as a variable which
has a basetype (the type 1in which the subrange is defined). A
subrange type is compatible with its basetype (or indeed, other
subranges of the basetype) for most purposes. An error is produced
if an attempt is made to assign a value which is outside the defined
subrange (but which may be inside the basetype range). See the
BOUNDSCHECK compiler option,

A subrange of integer has a property not possessed by its basetype:
the number of values in it is regarded as infinite, whereas the
number of values in integer type is regarded as sensibly infinite
(though in practice this is a large finite value). This means that a
subrange of integer can be an indextype of an array, or a
componenttype of a set, but integer type cannot.

Examples of subrange type declarations

TYPE .
DIRECTION = -1..+1;
BOARDSQUARE = 0..7;
ALPHABET = "A',.'2';
LADIESWEAR = MEZZANINE..FIRSTFLOOR;
PASSREMARK = SATISFACTORY..EXCELLENT;

4-28 DECLARATIONS



a

oy

TEXT TYPE

TEXT TYPE
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>