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Abstract

PLATINUM is an experimental operating system kernel designed to facilitate research on
memory management systems for Non-Uniform Memory Access (NUMA) Multiprocessor
Architectures. It exports to user programs a simple abstraction of a shared memory mul-
tiprocessor in which all memory appears to be uniformly and rapidly accessible from all
processors in the machine. The perceived uniformity on top of a non-uniform physical
memory architecture is supported by an abstraction called coherent memory. Implemented
in software as an extension of a directory-based caching mechanism using invalidation, co-
herent memory attempts to transparently migrate and replicate data to locations that are
physically close to the processors that use it. A fundamental property of PLATINUM co-
herent memory is that it automatically reverts to the use of remote memory access for
data that is not amenable to caching. PLATINUM,currently runs on BBN Butterfly Plus
Computers.

This report is an overview of PLATINUM. In addition to motivating the project and
presenting our research plans, we describe the interface that the kernel provides to its uscrs.

This work is supported in part by U. S. Army Engineering Topographic Laboratories research contract
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1 Introduction.

PLATINUM is an experimeital operating system kernel designed to facilitate resealch on
memory management systems for Non-Uniform Memory Access (NUMA) multiprocessor
architectures. The name "PLATINUM" is an acronym for "Platform for Investigating Non-
Uniform Memory". Specifically, it provides a platform for evaluation implementations in
software of coherent memory abstractions on top of non-uniform physical memory architec-
tures. The distributed, shareable memory of a NUMA machine can be referenced by any
processor on the machine, but the cost of accessing a particular physical location varies
with the distance between the processor and the memory module. An implementation of
coherent memory within PLATINUM can replicate and migrate data to locations close to
the processors using that data, thus creating the appearance that memory is uniformly and
rapidly accessible. The protocol for controlling this data movement is an extension of a
directory-based caching algorithm using selective invalidation to maintain coherency [1. 4".
Because PLATINUM runs on a NUMA machine, a coherent memory protocol always has the
option of choosing not to replicate or migrate data, but to use the underlying remote acces
mechanism instead, in effect dynamically disabling caching on a block-by-block basis. This
is crucial because the modification of shared data at fine temporal and spatial granulariti,..-
can cause interference that costs more than not having caching at all. This effect can be
especially expensive with the large block sizes associated with software-assisted caching.

Trace-driven simulation is a standard technique for evaluating multiprocessor memory
management protocols. We considered simulating coherent memory protocols prior to im-
plementing them in PLATINUM, but we rejected this approach because we believe that
simulations would be able to produce unequivocal results only with a level of effort and
computer time considerably greater than the straightforward strategy of implementing a
small, instrumented multiprocessor kernel, writing (or converting) a test suite of applica-
tion programs to run on that kernel, and observing the instrumented system in operation.
Factors that influenced our decision to implement rather than simulate included:

Obtaining reference traces can be a major effort. Existing traces recorded by computer
manufacturers are not in the public domain and can be difficult to obtain. Recording
accurate multiprocessor traces is especially expensive and slow because it entails the
creation of a serialized recording of the memory references of all of the processors
in the computation. In a set of traces that has obtained recent prominence in the
literature [1, 2, 12, 26] each run is able to record only a few seconds of references for
four processors before consuming the available buffer space. In contrast, the execution
of an instrumented kernel can be observed for long periods of time on larger numbers
of processors. Furthermore, the relative ease of actually running programs means that
many more experiments can be performed.

T'rarc drivern sirmualations are uscf- I for answering qu-stions about how an evi,:ting
program would run on the simulated system. Our experience has been that because
performance 1 is the driving force behind parallel computation. programmers and com-
pilers optimize parallel programs for the architectures on which the progranis are run.

1We are not considering fault-tolerant systems.
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Running and tuning applications on an instrumented kernel has the potential to yield
insights not obtainable by simulation with traces generated by a "dusty deck" opti-
rnized for some other parallel architecture.

9 The acid test of any idea is its implementation. Running an implementation on real
hardware forced us to address all the details of building a memory manager.

This paper is an overview of PLATINUM. It presents a rationale for the project, describes
the interface that the kernel exports to user programs, enumerates some of the experiments
we anticipate performing, and points to future directions. A companion paper [13] describes
the details of the design and implementation of the memory management subsystem.

PLATINUM currently runs on BBN Butterfly Plus Computers [9]. We are in the process
of implementing the first real application: a neural network simulator for experimenting
with asynchronous recurrent back-propagation [25].

2 NUMA shared memory and its management.

Any large computing system must have an internal structure that is both physically and
logically distributed, composed of modules that communicate through some form of in-
terconnection network. This network introduces limitations on the speed of the system:
physical propagation delay, switching delay, arbitration protocols that must be executed
if there is potential contention, and the serialization that occurs when contention actually
exists. These factors make large memories slower than small ones and make memory sys-
tems that can be shared among multiple processors and DMA channels slower than those
accessible from only one device. The design of the memory systems of all large fast com-
puters must address these factors in order to keep average access times small enough to
allow the central processor to run at close to full speed. The universal approach to this
problem is to construct a memory hierarchy that contains fast local memories at strategic
points in the system. In some cases, such as general-purpose scalar and vector register sets,
these memories are explicitly managed by user programs. The architecture can also provide
implicit management, as in the cases of data, instruction, and address translation caches.

The problem of memory speed in a complex system is exacerbated when multiple proces-
sors share some of the memory system. Because parts of the memory system are necessarily
far from some of the processors, if physical memory speed is to be uniform (as in the case of
so-called "dance hall architectures" [27]) then it must be uniformly slow. As in the unipro-
cessor case, the most common method of increasing average memory speed is to add fast
local memories, ranging from hardware caches to user-managed general-purpose registers
and private memories. The design of the IBM RP3 [21] multiprocessor contains provisions
for all of these.

Adopting the terminology of [30] we refer to multiprocessors in which all local memory
(except for processor registers) is implicitly managed by the architecture as uniform memory
access (UMA) machines. Memory locality is transparent to user programs. Although it may
be possible to detect and induce some variability of access times due to the behavior of the
cache, the architecture is designed to maintain the illusion of a single fast global memory.
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The cache controller executes a coherency protocol [10]. ensuring that all processors have
a consistent view of memory when multiple caches share a data item. The economy of
implementing coherency protocols by "snooping" on a shared memory bus has enabled
a whole generation of modestly sized multiprocessors. These protocols increase effective
mPmory speed seen by the processors and reduce the rate at which each processor uses the

bus to access main memory, thereby allowing more processors to be added to the system.
Although these protocols are effective with a modest amount of parallelism, the scaleabilitv

of these strategies is limited by bus bandwidth, which is consumed by memory traffic and
by a rapidly increasing number of bus cycles used to maintain coherency [3, 4]. Directory-
based caching schemes are more scaleable than bus-based schemes [2] and are amenabie
to multi-stage memory-switch architectures. Implemented in hardware, they could be the
basis for the design of more scaleable UMA machines.

An alternative to building uniformity into the architecture is to build the multiproces.or
so that the physical location of data in memory is both apparent and controllable by the
user program. Locality remains transparent in the sense that a single mechanism suffices
to access local memory, shared global memory, or the local memory of another processor:

however, the time for a processor to access physical memory does vary with its location. We
refer to these as non-uniform memory access (NUMA) architectures. NUMA architectures
were among the earliest large multiprocessors [29, 15] and they continue to be prominent
[7, 9, 21]. NUMA architectures are more scaleable than UMA architectures because they do
not depend on coherent hardware caches, instead displacing the management of the memory

hierarchy from the architecture and forcing it into higher layers of the system.

The physical placement of code and data is critical to performance on NUMA computers.
For example, on the BBN Butterfly no program can afford to fetch its instructions from
remote memory. Therefore, shared code must be replicated among all the local memories
of processors that use it. Furthermore, considerable effort can be expended on situating
concurrently accessed data to reduce both access time and contention. Methods include
locating data at the processor that accesses it and scattering the data among the memory
modules. Even when a programming system manages location automatically, slow memory
access is still apparent to programmers. For example, the Uniform System [8] package
on the Butterfly transparently scatters arrays of globally shared data among the memory

modules of the machine. This has the effect of statistically reducing contention and making
access times more uniform but noticeably longer than those for local memory. In reaction to
this, application programmers concerned with performance adopt the programming idiom

of locking a piece of the shared data, using a fast block transfer to copy the data to a
memory location known to be local, operating on it there, and then block-copying it back

to its original location [8, 17].

Explicit management of the physical location of code and data by users is a burden
on the programmer and can be difficult even in scientific applications that use very regu-

lar patterns of sharing. Because the choice of data structures and algorithms affects the
viability of each location strategy, this management of location is often done ad hoe for

each application, consuming a significant amount of programmer effort. A premise of this
project is that a programmer should be able to concentrate on the application and spend
less time programming the architecture. The implicit management of memory hierarchies
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on uniprocessors makes the programmer's task for most applications much easier at the cost
of acceptable sacrifices in performance. The implicit memory management of PLATINUM
is intended to achieve a similar state of affairs on NUMA multiprocessors.

There are, however, some programs whose behavior defeats the purpose of implicitly
managed memory hierarchies. For example, programs exhibiting poor locality of reference
can induce thrashing in paging systems. A critical advantage of implicit NUMA memory
management in PLATINUM over schemes such as the software caching of Li's Distributed
Virtual Memory [19] and the software-controlled caching of the VMP Multiprocessor [11, 12]
is the option of using remote memory references. Interference causes poor cache performance
when memory is shared at a very fine temporal grain by multiple processors. The effects
of this interference are magnified when several shared data items are packed into a single
cache block. This effect can be severe for implementations of caching in software because
they have a relatively high fixed cost per operation that is amortized by using a relatively
large block size. With the option of performing remote references, in effect dynamically dis-
abling caching when interference is detected, PLATINUM has the potential to accommodate
fine-grained sharing without suffering the overhead of cache interference. Although remote
memory access is more expensive than local access, it is still much cheaper than communi-
cating through message passing for fine-grain communication and synchronization.

We are not alone in the investigation of NUMA memory management. Recent work in
the area includes the analytic studies of optimal NUMA memory management by Black et
al. [5], Sheurich and Dubois' study of the benefits of data migration in mesh-connected
NUMA machines [24), and Bolosky's addition of NUMA memory management to Mach on
the IBM ACE Multiprocessor Workstation [6].

Section 3, below, discusses the abstract machine model implemented by PLATINUM.
Sections 4 through 7 are a detailed exposition of the implementation of the model by the
interface the kernel exports to its users. Sections 8 and 9 present our plan for future
research using PLATINUM and review the current status of the project. For more detail on
the motivation, design, and implementation of PLATINUM, and especially of the coherent
memory layer, see [13].

3 The PLATINUM Model.

The model of computation that PLATINUM exports to user programs is a virtual UMA
multiprocessor architecture in which all primary memory accessible to user programs ap-
pears to be in an abstraction of a fast (on average) shared physical memory module that
is uniformly accessible from all of the processors in the system. The physical location of
data in primary memory is hidden from the user. As stated above, the kernel implements
this abstraction on top of the underlying NUMA architecture through the use of software

caching techniques built into its memory management system.

The fundamental abstractions supported by PLATINUM are the thread, the memory
object, the port, and the address space. These objects all appear in a single flat global name
space.
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A mnemory object is an abstraction of an ordered list of memory pags. A rainge of
pages within a memory object may be bound to any contiguous virtual address range of ihe
same size, subject to hardware alignment restrictions. Neither the virtual address range jor
the access rights need be the same in every address space. Since they have global names.
memory objects serve as the unit of data- or code-sharing between address spaces.

A thread is a kernel-schedulable thread of control. At any time it is bound to a single
processor. An explicit migration operation can move it to another location. It is, however.
constrained to execute within a single address space.

An address space is a list of bindings of memory objects and access rights to virtual
address ranges. It defines the environment in which one or more threads may execute. The
threads in a single address space may be spread among multiple processors.

A Port is a protected message queue that can have any number of senders and receivers.
Messages are variable-length arrays of zero or more bytes. Globally named. ports provide a
communication medium usable by threads that do not share access to a common memory
object. Receive operations on ports can block in the kernel, thus providing a blockiic
synchronization mechanism.

Parallelism is realized through the use of multiple threads to implement a single appli-
cation. Many different styles of communication and synchronization can be utilized by a
collection of cooperating threads under PLATINUM. Communication between threads can
use either shared memory or message-passing via ports. Threads that coexist within a single
address space share all of the memory objects mapped into that address space. This implies.
in addition to data coherency. that these threads share a coherent view of the mapping" of
memory objects into the shared space. Alternatively. a memory object can be mapped into
multiple address spaces and thus be shared by all of the threads in those spaces. A shared
memory object need not be mapped at the same virtual address range in every address
space referencing it, nor do the access rights have to be uniform.

All PLATINUM kernel primitives are synchronous. They do not return until the re-
quested operation is completed.

3.1 Rationale for the PLATINUM Model

The success or failure of NUMA architectures will rest on their ability to compete with
supercomputers and multicomputers on the bases of performance and programmability in
the execution of such computation-intensive programs as occur in scientific and artificial
intelligence applications. PLATINUM is therefore aimed at user programs of this sort. As
such, it provides a small set of very efficient communication and synchronization primitives
with an emphasis on shared memory. Although the model is general-purpose, the current
implementation of PLATINUM does not include support for protection and persistent storage
required of an operating system for machines used by competing and perhaps hostile user
programs.

We repeat our intention that PLATINUM be a simple platform for developing and exper-
imenting with that part of the memory management system which deals specifically with
NUMA. The PLATINUM project intends neither to design and implement a radically dif-
ferent general-purpose operating system nor to present users with a new conceptual model
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of virtual memory. The goal is, rather, to concentrate our efforts on research issues directly
related to the design, implementation, and evaluation of the memory management aspects
of operating systems for NUMA multiprocessors. A secondary goal is to ensure tl~at if
our implementations of NUMA memory management prove successful, they can also be of
widespread utility. One way o. ensuring this is to anticipate the integration of the NI'MA
memory management subsystem of PLATINUM with an existing general-purpose operating
system. Mach [22] is the logical target for this exercise. The model of virtual memory that
PLATINUM presents to user programs is therefore derived from Mach. PLATINUM's virtual
memory interface is a subset of the Mach virtual memory interface, and much of the code
that implements the interface is derived from Mach sources.

4 Data Types

PLATINUM and all current applications are written in C++. From user programs all PLAT-
INUM objects (threads, memory objects, address spaces. and ports) are referenced with
unique 32-bit identifiers created by the kernel. Names can be compared. copied, placed in
shared memory and passed in messages. The only protection on names is provided biy C--
type checking.

typedef object-id-t thread-t;
typedef object-id-t port-t;
typedef object-id-t address-space-t;
typedef object.id-t memory-object-t;

In addition to object names, the following data types appear in the argument lists to
kernel operations.

typedef short priority-t;
typedef int vm-offset_t;
typedef unsigned vm-size-t;
const min-size-t v'm.page.size;

enum vm.prott {
vm.prot-read Z 1,
vmprot.write = 2,
vm.prot.execute = 4}

const vmprot.t vm-prot-default = vm.prot.read I vmprotwrite;

A vm-offst.et-t is an address in virtual memory and is represented as a signed offset
with respect to an address space. The actual range of meaningful addresses is machine-
dependent. The type vmsize-t is used to express the sizes of memory objects. The ratio
of the size of a virtual memory page (vm-page.size) to the size of the machine page must
be a non-negative power of two. All addresses and sizes are expressed in terms of bytes.
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The access rights to a memory object within an address space are encoded by Oi{'i1g
together the appropriate set of protection bits as defined by vm.prot...t.

The codes returned by kernel operations indicate success or failure.

enum return-t {
failure = 0,
success = 1,
warning = 2

5 Threads

PLATINUM threads are bound to a single processor at any given time. This hinditi, is
under the complete control of the application. The initial binding is set at thread cration
time. but the application can change it later. A change in binding results in tit', iread'
migration to another processor. The kernel, however, never migrates a thread v:tlout a
directive from the application.

Some multiprocessor operating systems such as Mach perform dvnamic load-balarncilLQ
among the processors through automatic thread migration. Automatic thread migration.
however, makes it more difficult to study the effects of sharing on the memory managmeft
system. When a thread migrates the numbers of both cache misses and invalidations arO
likely to increase. This increase corresponds, respectively, to the replication of pages already
at the previous location and to writes to pages still replicated there. For experimental
purposes we want to be able to separate cache interference due to thread migration front
cache interference due to sharing. Thus. PLATINUM does not provide automatic thread
migration.

5.1 create-thread

return-t create-thread(
address-space.t address-space,
vm.offset.t program-counter,
vmoffsett stack-poiiter,
priorityt priority,
unsigned char *node, // IN/OUT
thread-t *thread) // OUT

This primitive creates a new thread and returns its name. The thread will execute
in the address space specified by address-pace and starts in the initial state specified
by program-counter, stack.pointer, and priority. The new thread is created in the
suspended state and must be explicitly started using the resume-thread primitive in order
to execute. If node is specified, the thread is created on the specified processor. Otherwise.
the kernel uses a static load-balancing heuristic to select the processor on which to create
the thread. The new thread's priority can be no higher than that of the creating thread.
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Threads are scheduled strictly by priority. On each processor the highest priority
runnable threads are scheduled in a round-robin fashion. If a thread of highEr priority
becomes ready on a processor, the running thread is immediately preempted. This call
occur both when a high priority thread is unblocked by another processor or device aid
when a thread's priority is increased by a thread running on another processor.

5.2 destroy-thread

return-t destroy-thread(
thread-t thread)

The specified thread is destroyed.

5.3 migrate-thread

return-t migratethread(
thread-t thread,
unsigned char *node) // IN/CUT

This primitive binds the thread to a new location. If node is specified, the thread i5
moved to the specified processor. Otherwise. the kernel uses a static load-balancing heuri ic
to choose a destination processor. In the latter case it is possible that the thread will not
move.

5.4 set.prioritythread

return-t set._priority-thread(
thread-t thread,
priority.t priority)

A thread's priority can be set no higher than that of the thread changing its prioritv.

5.5 suspend-thread

return-t suspend.thread(
threadt thread)

The specified thread is placed in- a suspended state. It cannot run in user state until it is
resumed. Kernel primitives called by the thread are allowed to complete. Thus, a suspended
thread that is blocked because it is executing a receive on a port retains its position in the
queue and can become unblocked if it reaches the head of the queue and a message arrives.
The thread remains suspended. Suspend-thread returns failure if the specified thread is
already suspended.



5.6 resume-thread

returnt resumethread(
thread-t thread)

The thread is taken out of the suspended state. If the thread is not blocked it is made
runnable. Otherwise, it continues to wait. Resume-thread returns failure if the specified
thread is not in a suspended state.

Suspend and resume are intended to be used by user-level process management.

6 Messages and Ports

PLATINUM ports are simple, fast message queues. Any number of threads may send to or
receive messages from a port. Network operating systems such as Mach, however, restrict
the set of receiving threads to those within a single task (address space). This can be at-
tributed to the difficulty of implementation when receiving threads are running on different
machines in the network. Because they do not have this restriction. PLATINUM ports can
be used as a blocking synchronization mechanism for data in memory objects shared by
multiple address spaces.

A message is a variable-length array of zero or more bytes. The maximum size of a
message is vmpage.size. The kernel does not interpret the message data. In particular.
it performs no type checking. All PLATINUM object identifiers can be transmitted fre,, y
through messages or shared memory. Although the message-passing mechanism does not
itself implement the automatic transmission of out-of-band data, an application can include
the identifier for a memory object in a message and map it in the receiving address space.

In addition to ports allocated by user programs the kernel provides a set of "well-kn1own"
ports. These serve as the interface to the system's input/output services.

6.1 create-port

return-t create-port (
port.t *port) // OUT

This primitive creates a new port and returns its name.

6.2 destroy-port

return-t destroy-port(
port.t port)

The specified port is destroyed. All threads waiting on the port when it is destroyed
will be unblocked with a status code of failure.
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6.3 receive-message

return-t receivemessage(
port-t port,
vmoffset.t buffer,
vm-size-t *size) // IN/OUT

This primitive removes the message at the head of port's queue. If no message is
available, the thread blocks. Blocked threads are served in first-come, first-served order. If
the message at the head of the queue is larger than the buffer, the message remains on the
queue and a warning status code is returned.

6.4 send-message

return-t send-message(
port-t port,
vm-offset-t buffer,
vm-sizet size)

The sending of a message is non-blocking.

6.5 send..receive.message

return-t send-receive-message(
portt send-port,
vmoffsett send-buffer,

vm-size-t send-size,
port t receive-port,
vm-offset-t receive-buffer,

vmsize.t *receive-size) /I IN/OUT

This operation combines a send and a receive. It is intended for use in implementing
remote procedure call and other synchronous message-passing protocols. If the message at
the head of the queue is larger than the buffer, the message remains on the queue and a
warning status code is returned.

7 Memory Objects and Address Spaces

PLATINUM has two types of memory object. Named memory objects are created explicitly
by user programs. Anonymous memory objects are created by the kernel when a virtual
address range is allocated but not mapped to a named memory object. Anonymous memory
objects are zero-fill memory that is private to a single address space.
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The process of mapping a virtual address range to a contiguous range of pages in a

memory object creates a reference to that object. A memory object persists as long as

there is at least one reference to it. A name counts as an additional reference, so a named

memory object can survive even though it is not currently mapped into any address space.
Destroying an address space or deallocating a virtual address range can remove a reference
to a memory object. If an entire virtual address range mapping a memory object in an

address space is deallocated, then a reference to the memory object is removed. If only

a subrange of a virtual address range mapping a memory object is deallocated, then the
range is either clipped at the appropriate end or split into two ranges. A split creates an

additional reference to the memory object.

7.1 create.memory-obj ect

return-t create-memory-obj ect (

vxn_ size-t size,
memoryobject-t *memory-object) // OUT

This primitive creates a new memory object and returns its name. The newly created

object is not in any address space. It is filled with zeros.

7.2 destroy.memory-obj ect

return-t destroy-memory-object(

memory-objectt memory-object)

This primitive removes the binding between a name and the memory object to which it

refers. The object can no longer be accessed through the name. The resources associated
with the now anonymous memory object can be reclaimed when the last reference to it is

removed.

A named object will be retained even if no mapping to it exists.

7.3 createaddress-space

return-t create-address.space(

addressspacet *address-space) // OUT

This creates a new address space and returns its name.

7.4 destroy.address-space

return-t destroy-address-space(

address.space-t address-space)
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Destroying an address space destroys all threads running within it. This implicitlv
removes the mappings to its memory objects, thus potentially allowing them to be destroyed
or reclaimed.

7.5 all ocate-range-with-memory-obj ect

returnt allocate-range-with-memory-object(
address-spacet address-space,
vmoffset.t *vadr, // IN/OUT
vmsize-t size,
boolean anywhere,
memory-obj ect.t memory-object
vmoffset-t memory-object-offset)

This binds a window of pages beginning at memory-object.offset within a memory
object to a range of addresses in the specified address space. If vadr is provided, it will be
truncated to the nearest virtual page boundary, as will memory-object-offset. Size will
be rounded upward to the next virtual page boundary. If anywhere is true, the kernel will
allocate the first available region of sufficient size. Otherwise, it will return failure if vadr
is not the start of a sufficiently large region. Access to the range is set to vm.protdefault.

7.6 allocaterange

return-t allocate.range(
addressspace.t address-space,
vm-offsett *vadr, // IN/OUT
vmsize.t size,
boolean anywhere)

This allocates a region of virtual address space and creates an anonymous memory object
which is mapped into that region. Since the memory object is unnamed there is no way that
it can be mapped into any other address space. If vadr is provided, it is truncated to the
nearest virtual page boundary. Size is rounded upward to the next virtual page boundary.
If anywhere is true, the kernel allocates an available region of sufficient size. Otherwise, it
returns failure if vadr is not the start of a sufficiently large region. Access to the range
is set to vm-prot-default. The virtual memory region allocated is filled with zeros.

7.7 deallocate..range

return-t deallocate.range(
address.space.t addressspace,
vm-offset-t vadr,
vm-size-t size)
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This primitive deallocates the specified address range. Vadr is truncated to the ii(-ale.t
virtual page boundary. Size is rounded upward to the next multiple of the virtual page siz'.
The deallocation of the range can remove references to one or more objects and poteitially
cause them to be destroyed. Deallocating an address range in the middle of a range to
which an object is mapped splits the existing reference to the object into two.

7.8 protect-range

return-t protect-range(
address-space-t address-space,

vm-offsett vadr,

vmtsizet size,

vm-prot-t prot)

Vadr is truncated to the nearest virtual page boundary. Size is rounded upward to the
next multiple of the virtual page size. Access rights to the specified range of pages in the
address space are set to the requested value.

8 Experiments with NUMA Memory Management.

As stated in section 2, the problem of providing a form of uniform shared memory model
on a physically distributed shared memory machine can be attacked at several levels:

* Memory coherence can be implemented in the machine architecture level using hard-
ware caching, as in UMA multiprocessors.

* It can be implemented transparently in the operating system kernel level as part of
the memory management system.

* It can be implemented in user programs, either explicitly by the programmer or im-
plicitly as part of the programming language model.

* The implementation can span two or more levels.

While PLATINUM primarily addresses the feasibility of a software implementation in the
kernel, it also interacts with the layers above and below it. Experiments with PLATINUIM
cannot test the kernel in isolation; they must also shed light on these interactions.

The version of PLATINUM described in this paper is an experiment in providing uni-
formity by maintaining a coherent memory abstraction entirely and transparently in the
operating system kernel on an existing NUMA architecture. The user program is not able
to direct the execution of the coherency mechanism, nor is it able to affect the policies
directing the mechanism. We intend to explore this approach thoroughly before examining
other strategies for providing uniformity. This will include the tuning of the implementation
of coherent memory as well as analyzing in detail the performance of the system running
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user programs with widely varying patterns of shared memory usage. At one extreme, ap-
plications performing fine-grain modification on very large amounts of shared data will not
benefit from the potential of migrating and replicating that data. At best we can hope to
reduce the overhead incurred in recognizing this situation. At the other extreme, programs
that perform relatively few modifications on shared data will place few demands on the
coherency protocol. By characterizing the behavior of the memory manager on a variety of
programs that lie between these two poles, we intend to define the domain for which this
approach is effective.

PLATINUM is being instrumented to record the kind of detailed information we will
need to analyze these experiments. Internally, the kernel uses simple locking protocols to
synchronize access to its data structures. Fine-grain synchronization traces can be recorded
using instrumented versions of the locking operations [181. These can then be analyzed
off-line using a suite of debugging and performance analysis tools that we have developed
over the last two years at the University of Rochester [14]. The traces will be useful for
tuning the kernel as well as recording the interleaving of kernel operations for the purpose
of evaluating the performance of tbe memory management system.

Programmers and compiler writers concerned with performance try to tune their code fol
the architecture on which it is run. Although the implementation of PLATINUM coherent
memory is entirely within the kernel, one effective mechanism for tuning user programs
running on top of PLATINUM will be the careful placement of data within memory objects
to reduce inter-processor interference. Performance can be adversely affected by co-locating
in one page of coherent memory data items that have radically different properties with
respect to sharing. Co-locating the private data of threads on distinct processors induces
spurious sharing. Co-locating data items that are shared at different temporal granularities
can lead to location choices inappropriate for each. For example, processors busy waiting
on a lock will attempt to modify it using test-and-set at a much finer granularity than
the data it protects. If the lock and the data are both on the same page, the contention for
the lock will make it appear that there is a finer granularity of sharing for the data than is
the case. This can prevent the data from being moved to the processor accessing it. These
effects will have to be considered in the evaluation of PLATINUM.

Since programmers and compilers will attempt to be clever about the placement of data
in memory, we will evaluate the effect of adding a mechanism for declaring the sharing
properties of pages in coherent memory. A declaration will be used to parameterize the
policy for migrating and replicating those pages. In the extreme, it will be used to disable
data movement.

Implicit memory hierarchy management schemes are all based on the locality of memory
references. When a program is in equilibrium, access patterns in the near future will be
similar to those of the recent past. If a program executes in phases and access patterns
change between phases, there will be transient decrease in the performance of the memory
hierarchy at each change [28]. If phase changes are frequent and the mechanism to detect
them reacts comparatively slowly, the system will never achieve equilibrium. Because co-
herent memory relies heavily on software, we expect that this will be one of the limitations
of PLATINUM. A possible method of improving the response to transients without special
architectural support is to provide a mechanism by which directives from the user program
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can mark its phase changes for the kernel. For example, the act of releasing a lock usually
marks the end of a phase of intense access to a block of data by one processor. By executing
an approp:iate directive the user program can inform the memory manager that the recent
activity should be ignored when deciding whether to migrate or replicate the data. Direc-
tives to the memory manager can be inserted explicitly by the programmer or implicitly
by compilers and/or run-time libraries. A similar strategy is advocated by McNiven and
Davidson for providing information to the block replacement policy of a hardware cache
[20]. Extensions to the PLATINUM interface in this direction will improve its ability to sup-
port languages such as Emerald [16], which includes a form of language-directed migration
of shared data.

The viability of kernel-supported coherent memory will depend upon the architecture
on which it is implemented. Although PLATINUM does not require architectural support
beyond that available on a Butterfly Plus, it does take advantage of the facilities available
to it. For example, the processor-memory switch in the Butterfly Plus provides a block
transfer primitive that moves data between memories at an incremental cost comparable to
reading a local memory. Given an approximately fifteen-to-one ratio between the costs of
remote and local access, replication and migration are usually desirable even if only a small
fraction of the data moved is actually accessed at the destination. PLATINUM also makes
extensive use of the flexibility of the Motorola MC68851 memory management unit.

We anticipate porting PLATINUM to a very different NUMA machine. The IBM ACE
Multiprocessor Workstation has a global memory whose access cost is between that of
accessing local memory and that of accessing another processor's memory remotely, a very
different memory management unit, and no special block transfer mechanism. On this
architecture the high relative cost of data movement will make it less attractive than on
a Butterfly Plus. On the other hand, placing data in the common global memory is a
useful alternative. These properties will affect the policies used within PLATINUM. The
architectural decisions made for each machine can then be evaluated with respect to kernel-
supported memory coherency 4L- comparing the PLATINUM implementations.

Comparative architectural studies will also help predict the value in practice of other
forms of architectural support. For example, analytic studies [5, 24] have assumed the
existence of reference counters that are sensitive to the relative locality of the processor
generating each reference. Such counters are not part of any existing machine. Before
actually designing shared memory management and caching hardware that includes coherent
reference counts it is worth while to attempt to understand the performance of systems
without them.

9 Status and Conclusions.

At this time PLATINUM is running on BBN Butterfly Plus Multiprocessors. Since all
kernel data structures that are not a part of the coherent memory system are stored in
coherent memory, memory management had to be functional before we could finish the
kernel. Consequently, it is the most thoroughly tested part of the kernel. Furthermore.
building the remainder of the kernel on the coherent memory made the kernel's design and
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development an easier task than the construction of Osiris. a similar experimental NUMA
kernel implemented as a pedagogical exercise.

PLATINUM is a small kernel. We are now in the process of designing and implementing
a more complete operating system interface that will provide basic services such as file
and terminal I/O. These services will be provided by a set of servers communicating with
applications through message-passing and shared memory.

We have begun work on the development of applications to run on PLATINUM. A sim-
ulator for recurrent backpropagation networks [25] is the first real application to be ported.
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