
MU5 Project 

November 1974. 

UNIVERSITY OF M.ANCHESTER 
Department of Computer Science 

The MU5 CompIJter Complex 

1 The MIJlti-computer System 

2 The MU 5 Processor 

2.1 The Store Access Control Uni.t 

2.2 The InstrlJction Buffer Unit 

2.3 The Primary Operand Unit 

2.4 The B-Arithmetic Unit 

2.5 The Secondary Operand Uni.t 

2.6 The Accumulator Uni. t 

2.7 The Operating Console 

3 References 

R. N. Ibbett. 

/ 





1 • 

1 The Multi-computer System 

The MU5 complex has been designed as an integrated system in whi.ch the 

Operating System and other software is distributed in an optimum manner 

amongst sever'al computers. Communications between different parts of 

software is via a formalised message-switching system and may involve the 

transfer of short control messages or pages of data between the computers in 

the complex. These transfers are implemented in the hardware by means of" 

an Exchange "OR" Gate which allows single 64-bit parallel word transfers 

between up to a dozen Units!) at a rate of one per 110 nanoseconds, i. e. at a 

rate of 80 megabytes per second. The devices currently linked via the 

Exchange are shown i.n Fig. 1. Transfers are initi.ated by a sending Unit~ 

which sends to Exchange an address (consisting of the destinati.on Unit Number 

and the address within the Unit)'control information (read/write, etc.) and 

data where appropriate. Fixed priorities are assigned to Units attached to the 

Exchange so that if two or more requests arrive together from different Uni.ts Jl 

the request to or from the Unit with the highest priority is dealt with first. 

Having decided which request to service; Exchange checks that the 

destination Unit is able to accept the request, and if or when it is, routes the 

request to that Unit. In the case of a processor making a read access to a 

store, a further Exchange request will occur when the store has accessed the 

required data internally and is ready to send it back to the processor, which 

now becomes a destination Unit. 

The MU5 Processor and its own Local Store are both connected as Units to the 

Exchange, as well as being linked directly. The Local Store consists of four 

stacks of Plessey Series 250 plated-wire storage having a cycle time of 260 

nanose.conds. 

Each stack contqins 4K words of 8 bytes (plus an additional parity digi.t for each . 
byte), and has its own access and read/write electronics. Under normal 

running conditions the stacks are interleaved to give a net access rate of one 

word per 65 nanoseconds or 1 28 megabytes per second. In the event of a 
. , 

hardware failure in one or more stacks, a fail-soft capability allows the store 

to be reconfigured, so that the best use can be !/lade of the remaining stacks. 



. j 

I 
1 

2 . 

All peripheral handling in the MU5 complex is carried out by processors separate 

from the MU5 Processor" thus allowing t he performance of the latter to be fl.,.I11y 

utilised in program executi.on. Communication of inpl..lt and outpl..lt betWeen the 

MU5Processor and the pe'ripheral processors takes place mainly through the 

Mass Store, which acts as buFfer area For d~ta transfers between processors 

and also as a first level of backing store for the MU5 Local Store. The Mass 

Store Interface Logic allows up to four stacks to be connected (two are currently 

connected), with a, fail-soft capability similar to that provided for the Local 

Store. Each stack consls,ts of 128K words of 4 bytes (plus one parity digit for 

each byte) of Ferroxcl..lbe 2.5 J-Isecond cycle-time core store> giving a maxi.mum 

transfer rate of 6.4 megabytes per second. Transfers of blocks of data between 

the Mass and Local Stores require appropriate requests to be made to alternate 

stores for each word in the block. Anyone of the processors connect~d to the 

Exchange cOl..lld generate the necessary sequences of requests, but this relatively 

simple task is better delegated to a dedicated Block Transfer Unit, so that the 

processors are free to operate on previously transferred data. 

The Block Transfer Unit (BTU) connected to the MU5 Exchange contai.ns four 

independent channels, each consisting of a number of registers and counters 

which can be addressed as store locations i.n "Vx" Store. Vx Store Locations 

are used in most of the Units attached to the Exchange to contain control 

information and are distinguished from actual store locati.ons in a Unit by means 

of a digit in the real address sent through Exchange. When the MU5 Processor 

requi.res a block of data to be transferred from the Mass Store to the Local 

Store, for example, it sends the starting addresses for the transfer in each 

store to the BTU, together with the block size and the start command .. The 

processor is then free to continue computation whilst the BTU channel generates 

the necessary requests, via Exchange, to the Mass and Local Stores to carry out 

the transfer. At the completion of a block trans.Fer, a signal is returned to the 

Processor to i.nform i.t that the reql..lired data is now in its Local Store. 

A second level of backing store is provided by the fixed head Disc Store which 

has its own block transfer uni.t capable of accommodating up to four devices. The 

two existing devices each have a capacity of 0.6 million 4-byte words contained 

on 64 bands. 

Each band consists of 37 blocks of 256 4-byte words recorded at 1500 bits per 

inch. Transfers through the Exchange take the form of 8-byte words at a rate 

of one transfer pe'r, I-Isecond t. e. at 2. megabytes per second. 



8. 

The ICL 1905E computer attached to the Exchange has served a number of purposes 

during the MU5 project. Initially it was used to simulate both the hardware and 

software of the MU5 Proces'sor. Hardware simulation was carri.ed OIJt, at logic 

gate level, for separate groups of MU5 logic, using a suite of pl.lrpose-designed 

programs. Software simulation of MU5 was facilitated by the provision of a 

paging system which itself acted as a test bed for the associative circuits to be 

used in the MU5 Processor. The 1905E also acts as a peripheral handling 

processor and is fitted with standard peripheral devices such as a line printer, 

tape reader and punch, and exchangeable disc dri.ves. 

2 The MU5 Processor 

The MU5 Processor is designed arolJnd an order code which reflects the structure 

of high-level languages, e.g. the use of named and array quantities, and the 

structuring of programs into routines or proceedures. Instructions are basically 

of the single address format FIN, where F is the' function and N represents the 

name of an operand associated with a specific routine within a program, the 

address of the operand being obtained by adding the name to a Name Base. (The 

value held in the Name Base register is unique to the data storage area associated 

with each routine, and is altered at each routine change). The operand <?btained 

as a r:-esult of this "primary" acc~ss may be used directly as a variable or 

indirectly as a data descriptor which contains the type, origin (base add~ess) and 

bound (1imi.t address) of an array or string. The array element itself is obtained by 

a "secondary" access using an address generated by the addition of a moaifier 

(held in a B register) to the origin address. 

This distinction between primary and secondary operands is reflected in the hard­

ware of the MU5 Processor by the provision of separate Primary and Secondary 

Operand Units (PROP and SEOP in Fig. 2). Instructions are accessed from store~ 

via the Store Access Control Unit (SAC), by the Instruction BufFer Unit (IBU). 

PROP interprets each instruction and accesses, the pri.mary operand, and the result­

ant function and operand are then sent across a highway to the B-Arithmetic Uni.t 

(B-ARITH) to SEOP, or back to PROP. Instructions destined for the Accumulator 

Unit (ACC) all travel via SEOP. 



4. 

All these sub-units operate independently, and each is divided into a number of 

stages ":'fhich carry out pa,"'ts of the total task of the sub-unit. Since each stage is 

designed to operate independently of its neighbol..lrs, the system as a whole operates 

as a pipeline i.n which many partially completed instructions are in progress 

concl.Jrrently. Although the time required to complete anyone instruction is still 

limited by the sum of the times for the various activities.? the rate at which 

instructions progress through the pipeline is only limited by the time for an 

individual activity, and is therefore increased by the overlapping of successive 

instructions. 

2.1 The Stor'e Access Control Unit 

SAC co-ordinates interactions between the Processor, the Local Store and Units 

accessed by Exchange. It recei.ves requests from IBU, PROP and SEOP, routes 

them to the appropri.ate store, and, for read requests, returns a 64-bit double ... 

word or' 128 bit quad-word to the appropriate sl..lb-unit. The addresses recei.ved 

by SAC are normally virtual addresses containing a 4-bit Process NIJmber 

(allowi.ng up to 16 currently active processes to be resident in the virttJal store 

at anyone time), a 14-bit segment Number (allowing up to 161< segments per 

process) and 15 bits a~dressing a 64-bit word within a segment. (Although MU5 is 

nominally defi.ned as a 82-bit machine, with 64K words per segment, data highways 

within the Processor are normally 64 bits wi.de to allow convenient handling of 

descriptors and fl.oating-point numbers). These addresses are translated into real 

addresses by a set of 82 associatively (i. e. content) addressed Current Page 

Registers (CPRs). These have been developed from the page Address Registers (PARs) 

lJsed in the Atlas COmpI..lter, b\Jt differ from the latter in that the size (and hence the 

~umber of pages in store) is variable, and the appropriate real addresses cannot be 

obtained as a result of a one-to-one correspondence between each associative 

regi.ster and a physi.cal page in the store. Instead, each Current Page Register has 

a conventional, value, field as well as an associa~ive field, so that when an 

equivalence occurs between the requested virtual block and the contents of one of the 

associative registers, the corresponding real page address is read from' the Vali...l9 fi.eld 

Furthermore, si.nce an Exchange Unit Number is l.ncluded in the real address field, 

blocks of sparsely used data may be retained in the Mass Store and accessed 

directly without th~ ne{3d for a block transfer. 



5. 

2.2 The Instruction Buffet'" Unit 

The IBU performs two main functions. Firstly, it pre-fetches instruction 

quadwords (128 bits) from ,store and passes on half word instructions (16 bits) 

in their correct sequence to PROP; the Local Store can supply instn.lctions at a 

suffiCiently high rate to match the rate at which they are executed, but because 

the store access time as seeri by the processor is much longer than the 

instruction execution time, instructions are actually requested far in advance of 

their being obeyed and are buffered in a number of stages in the IBU. Secondly II 

the IBU predicts the result of an impending control transfer tnptructton in order 

to make the correct early call even if the reql..Jired inst ructions are not in 

sequential addresses. 

The predicti.on mechanism makes use of an eight-line associati.vely addressed 

'Jump Trace' store. VI/henever an instruction address is generated within the 

IBU it i.s presented to the associative store before being sent out to SAC; if an 

equi valence is found, the content of the corresponding vall..le register is used i.n 

place of the ori.gi.nal address and subsequent requests are for instructions 

followi.ng those at the predicted address. The Jump Trace i.s only loaded for 

control transfer instructions and when an instruction which finds address 

equivalence in the Jump Trace is sent to PROP for execution, it is marked as 

being followed by instructions which are 'out of sequence i. Thus; when a control 

transfer instruction is executed by PROP, the 'out of sequence I digit is examined . 

If the following instructions have been correctly ~predicted, e><ecution of 

inst ructions continue uninterrupted. If the instl'luctions are not out of seql..lence, 

but should have been, a r'equest is made to SAC for the instruction at the 'Jumped­

To' address, and at the same time, a line in the Jump Trace is loaded with the 

'Jumped-From' addr;-ess on the associative side and the 'Jumped-To' address on the 

value side. When the Jumped-From address re-appears within the IBU, the 

instructions at the Jumped-To address are automatically pre-fetched. ' 

2.3 The PrimaryOperand Unit 

PROP is concerned with accessing the operand specifi.ed directly by the instruction 

and routing the i.nstruction, together with its operand, to the appropri.ate 

following sub-unit fot" execution or further processi.ng .. If the primary operand is 

a named vari.able or a literal .. for example .. instructi.ons can be executed immediately)'l 



6, 

whereas an instruction specifying a data strucbJre must be sent to SEOP, where 

the primary opel"'and is itself interpreted as a descriptor speci.fying the data 

structure element. 

The distinction between nam.ed operands and other classes of operands is made 

because most store accesses made i.n high-level language programs ar.e for the 

named variables, and a comparatively small high-speed buffer store dedicated 

to holding named variables can trap arolJnd 99% of such accesses and thereby 

avoid the long access tin")s to the Local Store. ThlJS PROP contains a Name Store 

made up of 32 associati.ve regi.sters containi.ng addresses of names in curr'ent use 

and 32 conventional registers containing the corresponding values. Associative 

addressing i.s used since this relieves the programmer of the onlJS of allocating 

registers to operands, and therefore allows code generated by compilers to ,"un 

as efficiently as directly written code. 

The Name Stor'e is accessed by presenting the requi.red operand addr'ess as an 

i.nput to its a.ssociati.ve field. If the address is i.dentical to an address in one of 

the associati.ve I'"'egtster's, an equivalence occurs and the value of the operand is 

read out of thE"~ conventional field of the store. If the required address is not in 

the associative store, i. e. a non-eqtJivalence occurs, an access is made to the 

Local Store, a.nd the value obtained, together wi.th the address, is written into an 
( 

'empty' line of the Name Stor'e. Any subsequent access for the same operand cloes 

not then requi.re an access to the Local Store. The 'empty' line for overwriting is 

selected by a cycli.c replacement algorithm, the pt"'evious contents of this line bei.ng 

written ba.ck to the Local Store only if they have,been altered by the action of a 

write-to-st or'e order .. 

PROP 'is split up into five independent stages", each of which carries out part of 

the i.nstruction processi.ng. The first stage receives instrlJctions from the IBU and 

carries Ol.lt the decoding and interpretation of the instrlJction required ~o deal with 

mlJlti-length orders and to select the appropriate base register to which the name 

part of the instruction is added in the s~cond stage. The resulting addr.es~ is 

presented in the third stage to the .associative field of the Name Store, and the 

value contained in the value field of the Name Store is rea9 out in the fourth stage. 



7. 

In the final stage the operand is assembled in its correct format ready to be sent 

the appropriate following sub-unit. Each of these sl.lb-units sends a control signal 

to PROP indicating whethElr or not it can accept an i.nstructi.on .. Once accepted by 

the sub-unit, the inst rl...Iction i.s guaranteed to go to completion, so that the Control .. 

Register can be incremented for' the i.nstruction, and instructions in earlier stages 

of the PROP pipel ine can each move on to the next stage. Instructions therefore 

proceed through PROP in a series of beats, the mi.nimum time between beats 

being 50 nseconds. 

2.4 The B-Arithmetic Unit 

The B-ARITH carries out logi.cal and signed arithmeti.c functions between an 

incoming operand and the contents of the 32-bit B Register. Instructions sent to 

the B-ARITH are received on an input buffer and proceed to the arithmetic unit 

proper if or when the latter has completed any previously accepted function. Most 

functions are actually completed in 45 nseconds, the main exc~ptions being multiply 

and shift which take a variable time according to the value of the operands 

involved. 

One of the principle uses of the content of the B Regi.ster i.s as the modifier in a 

data structure access. When an instruction is sent from PROP to SEOP as a 

result of a modified data str'ucture operand speci.ficati.on, a modifier request is 

sent, i.n parallel, to the 8-ARITH. No function is executed as a result of this 
I 

request~ bl.Jt the value in the B Register is sent, via a separate dedicat'ed highway, . 
to SEOP, as soon as the request is accepted by the arithmetic unit within the 

8-ARITH. SEOP always waits for the signal from B-ARITH before commencing, 

the modification, since any previously r'eceived modifi.er value may have been 

invalidated by the execlJtion ofa B function. 

2.5 The Secondary Operand Unit 

SEOP is divided into three major sections. The first and last sections (Dr and Dop) 

constitute the Descriptor System and contain the essential hardware for carrying 

out the requirements of the order code. The accessing facilities in the Descriptor 

System can be invoked directly by the use of store-to-store orders which implement 

data processing facilities in languages such as COBOL, or i.ndirectly by the 



8. 

specification of a data structure element as the operand to be used by a 

computational or organisational fl.Jnction. In either case Dr generates operand 

addresses, whilst Dop selects the operand from the appropriate part of the store 

word received as a result of the cm"responding store access, and either routes 

the operand to the appropriate execution unit for a computational or organi.sa­

tional order, or processes it internally in the case of a store-to-store function. 

Interposed between Dr and Dop is the Operand Buffering System (OBS) which, 

like the Name Store in PROP, is invisible to the programmer and is 

incorporated for the purpose of improving the instruction execution rate. 

For accesses to array or vector elements the required address is formed in Dr 

by adding the content of the B Register to the content of the Origin Field of the 

descriptor. The resulting address is sent to OSS and the adder is then used to . ' 

carry out a bOI.lnd check in which the modifier value is subtracted from the 

value i.n the Bound Field of the descri.ptor. An interrupt is generated if the result 

of this sl.lbtr'action is less than Ot .... equal to zero, or if the modifier is itself 

negative. 

The Dop section contains masking facilities which permit the selection of left or 

right hand masks to any bit posi.ti.on over the full 4-bit width, and a shifting 

mechanism which allows for any shift from 0 to 63 bits i.n si.ngle bit increments. 

Thus operands down to a single bit size can be selected from any position in the 

64-bit store word. Dop is controlled by a combination of a control field generated 

by Dr' (at the same time as the address) and the original function code which 

accompanies the instruction as it passes through the system. 

The OE3S, although'serving the same end as the Name Store in PROP, i. e. 

overcoming the speed limitation of the l:-ocal Store" acts in a very different 

manner. This difference reflects the essential difference between the usages of 

named variables and data structure elements, i.n a process - named va'dables are 

generally used randomly from amongst a small group, whilst data strl"wture elements 

are generally selected seqlJentially from a Jarge grol.lp. OBS does not, therefore, 

attempt to buffer large amounts of data; instead it effectively incorporates the SAC 

and Local Stor'e into the Processor pipeline. SAC and the Local Store cannot be 



9. 

used alone as a pipeline since, due to the interleaved addressi.ng of the Local 
I 

Store stacks, oper'ands may be returned to OSS out of sequence. Thus, in order 

to maintain the correct sequence, 08S sends tag i.nformation with each request 

to SAC, and also enters the sarne tag information, together with the corresponding 

function, into a six-entry function queue when a request is made. An operand 

returning from SAC is copied into one of a set of buffer regi.sters, as selected by 

its tag information, and the buffer is marked as being full. When the correspond­

ing function reaches the end of the queue, and is ready to be sent to Dop, the tag 

information selects the appropriate buffer, and the operand i.s read out. If the 

buffer is not marked as full, then the function must wait for the reply from SAC 

before being sent to DOP. 

Since 08S must contai.n at least as many operand blJffer registers as there are 

posi.tions in the function queue, it may frequently contain some of the operands 

for whi.ch Dr r-nakes requests. This possibility is enhanced by the fact that data 

structure elements tend to be accessed sequentially, and also that although the 

size of data structure elements varies from 64 bits down to 1 bi.t, the buffers 

are actually 128 bits wide. Thus the total number of store accesses i.s 

consi.derably reduced by only a small amount of: buffering, with a consequent 

improvement in stOl"e availability for the remaining requests, not only from OSS, 

but also from PF-~OP, I8U and Exchange. 

Two othel~ fOI'"'ms of buffering are also contai.ned in OSS. The fi.rst i.s for 

literal operands .- since all Accumulator functi.ons must pass through the OSS 

function queue (in order to maintain the correct 'sequencing of instructions) 

literal operands suppl.ied by PROP must be buffered with the correspondi.ng 

function. The second for"m of buffering consi.sts of an extension of the Name Store. 

This additional Name Store, conSisting of 24 li.hes, is needed for two reasons. 

Firstly, since the PROP Name Store i.s separa~ed from the Accumulator Uni.t by the 

instrl.lction stages in Dr, ass and Dop, then tf a named vari.able held i.n the PROP 

Name Store were used to accumulate a total calculated by a program loop using 

Accumulator orders, up to a dozen orders would have to separate the order 

storing the total and the order' re-accessing i.t if the overlapping of inst ructions 



i , 
I 

.J 

J 

10. 

was not to be held up. Secondly, in langl..lages such as Fortran, where the 

programmer is not obliged to declare names at the start of a routine, many more 

names ar'e cr'eated (and r~pidly di.scarded) than in a language such as Algol where 

declarati.ons ar'e l'Y'lciriclatory, Most of these additional names are used with 

Accumulator' functi.ons:l' so by incorporating a Name Store i.n OBS for holding 

Accumulator' names, and thel"eby relieving the PROP Name Store of this task, the 

efficiency of the latter can be mai.ntained, 

The action to be taken in the event of a non-eql..livalence in either the PROP Name 

Store 01" the OBS Name Store now becomes dependent on whether the order i.s 

destined for the Accumulator Unit or not" and whether the required operand is 

already in the "wrong" Name S.tore. For an Accumulator order the normal 

situati.on is for a nor'l-eql..llvalence to occur in the PROP Name Store and 

equivalence to occur in the OBS Name Store. If equivalence occurs in the PROP 

Name Stor'8, however', then for a "load' I (i. e. non-store) order, the operand is 

cal"rit7d t:hrClugh OBS as a Hter'al.ll whilst for a store order it is returned from the 

PROP Name Store to the Local Store and is then treated as a normal non­

equivalence by the aBS Name Store. When a PROP Name Store non-eql..llvalence 
, 

occur's for a non-·,6.ccurnulator order J the OBS Name Store is checked before the 

operand is accessed fron-I the Local Store, and OBS actually makes this access 

on behalf of the PROP Name S tore if it does not itself contai.n the required 

oper·and. If aBS does contain the operand it returns the value to PROP via the 

normal internal highway. 

2.6 The I~,ccumulatol"" Unit 

The ACC is the main arithmetic unit of the MU5: Prooessor) capable of performing 

fixed-point and floati.ng-point arithmetic, logic and shifting. Functions and operands 
'! 

are recei.ved from Dop into buffer registers, and when any previous fuhction is 

complete the new function is performed between the incoming operand and the 

content of whichever register i.s specifi.ed. ACe contains a number of 'registers, 

the pri'nciple ones being a 32-bit fixed-point accumulator, a 64-bit fl.oa'ting-point 

accuml..llator and a 64-bit accumulator extension register. The order code also 

allows fOI" decimal arithmetiC, though this has not been implemented in the current 

version. 



11 • 

Two's complement representation is used for fixed-point numbers and for the 

floating-point mantissa. This gives a unique representation of zero and allows 

multiplication to be implemented in a straight forward manner. The 11-bit 

floating-point exponent is represented in excess 1024 and is to a hexadecimal 

base. Since the operands are of a comparable order of magnibJde in very many 

calculations, the use of a large base means that pre-arithmetic and normalising 

shifts are required relatively infrequently and addition/slJbtractton can be 

started immediately on the assumption that no alignment is necessary. The check 

for alignment proceeds in parallel" and where a pre-arithmetic shift is found to be 

necessary the first addition is abandoned and a new one begun. 

The adder is a parallel sequential state adder based on the ECL circuits IJsed 

throughout most of the fv\U5 design, and involves no more than 5 gate delays for.an 

addition over the flJll width of the mantissa. fv\IJltiplicatton ~s carried out using two 

carry-save adders acti.vated alternately. The inputs to each carry-save adder ?re :, 

the output of the other carry-save adder and a multiple (in the range -4 to +4) of 

the multiplicand selected by taking a group of three multiplier digits at a time 

and the most significant digit of the previous group. Negative multiplier values are 

dealt with automatically by this technique and only one pre-addition (to form three 

times the multiplicand) is needed before the multiplication is started. 

2.7 The Operating Console 

The Console provides for direct 'control of the MU5 Processor and for communication 

between an operator and the hardware/software of the system by means of control 

switches, indicator lamps, program readable handkeys and a teletype. The Console 

also allows the executi.Qn rate of instructions" normally limited only by the 

processing rate of th~ Processor itself, to be limited to the rate of a vai"iable 

frequency clock for test and dicgncstic purposes, and the instructions themselves 

to be taken from a set of handkeys or the Console teletype instead of from the IBU. 

Thus the teletype can be used in ON-LINE or OFF-LINE mode; in ON-LINE mode 

it acts as a conventional 1900-type operators· teletype, whereas in OFF-LINE mode 

it acts as an instruction source in which successive characters on the tape are 

treated as octal or hexadecimal characters, as appropriate, to build up 16-bit 

instruction half-words for presentation to PROP: The Console also contains a 
\ i f 

real-time digi'tal clock which provides one second and one-tenth second interrupts 

to the Processor and which can be read by the Operating System for accounting 

urposes. 



, 

" 

..i.' "....: ~~ .... .....:.....~ ..... ....-_c.-..:: __ ~. ,-~-,--,--~"", ",:' -~~~--..-....:.............,,;.,,:......-..--

5501\ 
x 

36 bIts 
_1 _IDisc 

Store; 

2 

MU5 

~x 

~ 
'\L: 

'\ 

1905 E 
321\ x 
25 bits 

.~ 

128 1\ 
x 

36 bits 
1 ' , IMass I BTU 
--iStore ! 

2 

r - - - - -: - - - - - 1- - - - - - - - -- - - -- - - - - - - -- - .- ..... --: -- - - - -- ~ ~ -- - - - - -, 

I ' . ":' : 
I 

. I ' .. 0 ; 

I" ' , " I 

. :_oJlL ,":".:': - JjJ_ I 
r ' .IE XC HAfIGII ~ 

1 fff111t: , 
, f , ______ ~ __________________ ..J 

I , . I. ~ ____ _ ---------I~>----------------------' ______ ~ J l ~l~ ___ _ 
I ' I 
I . I L ____ ' ___ .... :- ~ _' _ ..:..- - - - - _' . ____ ' ______________ --1 

.0' .. , 

, , Fi"g.1. THE MUS MULTI-COIAPUTER. SYSTEM 
~~_",_., '.,'"'Il'c:'1'. *< >0.<" "~'-~~"",~~"---~.~~~-~~-~~----



· .~_~=tt;!;;'r==ca:_:cu::a:::::::o ZJ - .. ~-~~"" 

I 'U[ -rTJ:=.::: i 
.. I I I 'I 

I ~ I 
' I C\ I u 

~ I I 

V) 

J: 
l-

V) < 
:J: 0-
l- V) «: V) 
0. w 
< ~ 

0 l-
< 0 
0 -< 
I I 

I 
I 
I 

W 
..J 
a 

I : 

0. 
o 
c: 
C1. 

'!'~ \!I 
r. .1 

(J') ~~.-.- .. I 

Z 
a 
u 

-~ 

r--

I 

lL.l 
cc 
o 
l­
V) 

..J 
-< 
U 
o 
col 

·0 . 
<. 
(J') 

III 

a: 
a. 
·w 

~'----rJ 

I I 
I 

", I I 
.. I 

I 
I I 

.~.' 

;... I ~ .. " " 
I I 
1 ~ 

I 
, I 

~-~ .:"'J I 

I 
I . 

C( 

0. 
(/) 
(/) 

lJJ 
U 
0 
CC 

.0.. 

-.I 
« 
CC 
:-
z 0 

w 
U 
t.{) 

::> 
~ 

lJJ 
..J.. 
1-

N 

\.:) 

{.!.o 



j 

J 

I 
I 

I 

3. References 

This is not a compLete list of publicati.ons relating to MU5 but covers 
most of the aspects described above. 

1. "A System Design Proposal": T. Kilburn, D. Morris:» 
J.S. Rohl & F.H, Sumner 

2. "Associative Memories in Large Computer Systems": 

IFIP 
Congress 
1968 

D. Aspi.nall, D. J. Kinniment & D. B. G. Edwards 

3. "Sequential-state Binary Parallel Adder": D.J. Kinniment 
& G. B. Steven - PI"'OC. I. E • E. Vol.117, No.7, July 1970 

4. IIInstruction Fetching in High Speed Computer": F. H. Sumner 
INFOTECH Conference 1970, Gi.ant Computers, 
plJblished 1971 

5. "Design of Large High-speea Binary Multiplier Units": 
J.R. Gosling -- Proc. I.E,E. 1971, Vo1.118, pp400-506 

6. "The MU5 Instruction Pipeline"; R.N. Ibbett 
Vol. 15, No.1, Computer Journal, February 1972 

7. "The Use of Logi.c Simulation in the Cesign of a Large Computer 
System" : H . J. Kahn & J. W . R. May, pp: 1 9-30 I ERE 

8. 11Comr:nunications in a Multi-Computer System T1 : D. -Morris, 
G.R. Frank & T"J. Sweeney, pp 405-414 

9. Y1Control of t:he MU5 Instruction Pipeline": R. N. Ibbett, 
E. C. Phillips & O. B.G. Edwards - pp 415-428 

10. "The MU5 Secondar'y Operand Unit 11 : ;j. Standeven.) 
S . M. B. Lanyado & D. B . G. Edwards - pp 429-440 

11. "The Implementation of Record Processing:in MU5": 

12. 

13. 

P . C. Capon ~ R of\]. Ibbett & C. R. C. B. Parker 

"The MU 5 Di.sc Sys tem" : D. B. G. Edwards, A. E. Whttehouse, 
L. E. M. Wal"burton & I. Watson 

"Operand Accessing in a Pipelined Computer-System": 
J • V. Woods & F. H. Sumner 

14. "The MU5 Exchange": S".H. Lavi.ngton~ G. Thomas, 
D. B.G. Edwards 

Conference 
on "Computer 
Systems and 
Technology" 

Octobe~ 1 972 

I.E.E. 
Conference 
on "Computer 
Systems and 
Technology" 

October 1 974 

p 


