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1 The Multi-computer System

The MUS complex has been designed as an integrated system in which the

Operating System and other software is distributed in an optimum manner
amongst several computers. Communications between different parts of
software is via a formalised message-switching system and may involve the
transfer of short control messages or pages of data between the computers in
the complex. These transfers are implemented in the hardware by means of”
an Exchange ""OR'' Gate which allows single 64~-bit parallel word transfers
between up to a dozen Units, at a rate of one per 110 nanoseconds, i.e, at a
rate of 80 megabytes per second. The devices currently linked via the
Exchange are shown in Fig. 1. Transfers are initiated by a sending Unit,
which sends to Exchange an address (consisting of ‘the destination Unit Number
and the address within the Unit) control information (read/write, etc.) and
data where appropriate. Fixed priorities are assigned to Units attached to the
Exchange so that if two or more requests arrive together from different Units,
the request to or from the Unit with the highest priority is dealt with first,
Having decided which request to service, Exchange checks that the
destination Unit is able to accept the request, and if or when it is, routes the
request to that Unit. In the case of a processor making a read access to a
store, a further Exchange request will occur when the store has accessed the
required data internally and is ready to send it back to the processor, wh:Lch

now becomes a destination Unit.

The MUS Processor and its own L.ocal Store are both connected as Units to the
Exchange, as well as being linked directly. The LLocal Store consists of four
stacks of Plessey Series 250 plated-wire storage having a cycle time of 260
nanoseconds.

Each stack contains 4K words of 8 bytes (plus an additional parity digit for each
byte), and has its own access and read/write electronics. Un.den normal
running conditions the stacks are interleaved to give a net access rate of one
word per 65 nanoseconds or 128 megabytes per second’. In the event of a
hardware failure in one or more stacks, a fail-soft cépability allows the store

to be reconfigured, so that the best use can be made QF the remaining stacks.



20

All peripheral handling in the MUS5 complex is carried out by processors separate
from the MUS Processor, thus allowing the performance of the latter to be fully
utilised in program execution. Communication of input and output between the
MUS5 Processor and the peripheral processors'takes place mainly through the
Mass Store, which acts as buffer area for data transfers between processors
and also as a first level of backing store for the MUS L.ocal Store. The Mass
Store Interface LLogic allows up to four stacks to be connected (two are currently
connected), with a fail-soft capability similar to that provided for the local
Store. Each stack consists of 128K words of 4 bytes (plus one parity digit for
each byte) of Ferroxcube 2.5 pysecond cycle~time core store, giving a maximum
transfer rate of 6.4 megabytes per second. Transfers of blocks of data between
the Mass and Local Stores require appropriate requests to be made to alternate
stores for each word in the block. Any one of the processors connected to the
Exchange could generate the necessary sequences of requests, but this relatively
simple task is better delegated to a dedicated Block Transfer Unit, so that the

processors are free to operate on previously transferred data.

The Block Transfer Unit (BTU) connected to the MU5 Exchange contains four
independent channels, each consisting of a number of registers and counters
which can be addressed as store locations in '""Vx'' Store,Vx Store Locations

are used in most of the Units attached to the Exchange to contain control
information and are distinguished from actual store locations in a Unit by means
of a digit in the real address sent through Exchange. When the MU5 Processor
requi‘res a block of data to be transferred from the Mass Store to the Local
Store, for example, it sends the starting addresses for the transfer in: each
store to the BTU, together with the block size and the start command. The
pl"oces.sor‘ is then free to continue computation whilst the BTU channel generates
the necessary r-e'quests, via Exchange, to the Mass and L.ocal Stores to carry out'
the transfer. At the completion of a block trangfer*, 'a signal is returned to the
Processor to inform it that the required data is now in its L.ocal Store.

A second level of backing store is provided by the fixed head Disc Store which
has its own block transfer unit capable of accommodating up to four devices. The
two existing devices each have a capacity of 0.6 million 4-byte words contained
on 64 bénds . v : ‘

Each band consists of 37 blocks of 256 4~-byte words recorded at 1500 bits per
inch. Transfers through the Exchange take the form of 8-byte words at a rate

of one transfer per. psecond i.e. at 2 megabytes per second.



The ICL 1905E computer attached to the Exchange has served a number of purposes
during the MUS project. Initially it was used to simulate both the hardware and
software of the MUS Processor., Hardware simulation was carried out, at logic
‘gate level, for separate groups of MUS logic, using a suite of purpose-designed
programs. Software simulation of MU5 was facilitated by the provision of a

paging system which itself acted as a test bed for the associative circuits to be
used in the MUS Processor. The 1905E also acts as a peripheral handling
processor and is fitted with standard peripheral devices such as a line printer,

tape reader and punch, and exchangeable disc drives.

2 The MUS Processor

The MUS Processor is designed around an order code which reflects the structure
of high-level languages, e.g. the use of named and array quantities, and the
structuring of programs into routines or proceedures. Instructions are basically
of the single address format F/N, where F is the function and N represents the
name of an operand associated with a specific routine within a program, the
address of the operand being obtained by adding the name to a Name Base. (The
value held in the Name Base register is unique to the data storage area associated .
with each routine, and is altered at each routine change). The operand c?btained

as a result of this "prlimary” access may be used directly as a variable or
indirectly as a data descriptor which contains the type, origin (base address) and
bound (limit address) of an array or string. The array element itself is obtained by
a ''secondary'' access using an address generated by the addition of a modifier

(held in a B register) to the origin address.

This dis&inction between primary and secondary operands is reflected in the hard-
ware of the MU5 Processor by the provision of separate Primary and Secondary
Operand Units (PROP and SEOP in Fig. 2). Instr‘uctiéns are accessed from store,
via the Store Access Control Unit (SAC), by the Instruction Buffer Unit (IBU).
PROP interprets each instr*ucfition and accesses. the primary operand, and the result-
ant function and operand are then sent across a highway to the E%-Ar*ithmetic Unit ‘
(B-ARITH) to SEOP, or back to PROP. Instructions destined for the Accumulator
Unit (ACC) all travel via SEOP. ’
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All these sub-units operate independently, and each is divided into a number of
stages which carry out parts of the total task of the sub-unit. Since each stage is
designed to operate independently of its neighbours, the system as a wkhole operates
as a pipeline in which many partially compieted instructions are in progress
concurrently . Although the time required to complete any oné instruction is still
limited by the sum of the timesfor the various activities, the rate at which
instructions progress through the pipeline is only limited by the time for an
individual activity, and is therefore increased by the over‘lapping‘of successive

instructions.

2.1 The Store Access Control Unit

SAC co-ordinates interactions between the Processor, the L.ocal Store and Units
accessed by Exchange. It receives requests from IBU, PROP and SEOP, routes
them to the appropriate store, and, for read requests, returns a 64-bit double-
word or 1728 hit quad-—word to the appropriate sub-unit. The addresses received

by SAC are normally virtual addresses containing a 4-bit Process Number

(allowing up to 16 currently active processes to be resident in the virtual store

at any one time), a 14-bit segment Number (@llowing up to 16K segments per
process) and 15 bits addressing a 64-bit word within a segment. (Although MUS5 is
nominally defined as a 32-bit machine, with 64K words per segment, data highways
within the Processor are normally 64 bits wide to allow convenient handling of
descriptors and floating-point numbers), These addresses are translated into real
addresses by a set of 32 associatively (i.e. content) addressed Current Page
Registers (CPRs). These have been developed from the Page Address Registers (PARS)
‘used in the Atlas computer, but differ from the latter in that the size (and hence the
number c;F pages in store) is variable, and the appropriate real addresses cannot be
obtained as a result of a one-to-one correspondence between each associative
register and a physical page in the store. Instead, eaéh Current Page Register has
a convehtional, value, field as well as an associative field, so that when an
equivalence occurs between the requested virtual block and the contents of one of the
associatiye registers, the corresponding real page address is read from’ the value field
Furthermore, since an Exchange Unit Number is included in the real address field,
blocks of sparsely used data may be retained in the Mass Store and accessed |

directly without the need for a block transfer, . | K



2.2 The Instruction Buffer Unit

The IBU performs two main functions. Firstly, it pre-fetches instruction
quadwords (128 bits) from store and passes on half word instructions (16 bits)

in their correct sequence to PROP; the Local Store can supply instructions at a
sufficiently high rate to match the rate at which they are executed, but because
the store access time as seen by the processor is much longer than the
instruction execution time, instructions are actually requested far in advance of
their being obeyed and are bQFFer*ed in a number of stages in the IBU. Secondly,
the IBU predicts the result o? an impending control transfer instruction in order
to make the correct early call even if the required instructions are not in
sequential addresses,

The prediction mechanism makes use of an eight-line associatively addressed
'Jump Trace' store, Whenever an instruction address is generated within the
IBU it is presented to the associative store before being sent out to SAC; if an
eguivalence is found, the content of the corresponding value register is used in
place of the original address and subsequent requests are for instructions
following those at the predicted address. The Jump Trace is only loaded for
control transfer instructions and when an instruction which finds address
equivalence in the Jump Trace is sent to PROP for execution, it is marked as
being followed by instructions which are 'out of sequence'. Thus, when a control
transfer instruction is executed by PROP, the 'out of sequence’ digit is examined.
If the following instructions have been correctly predicted, execution of

inst ructions continue uninterrupted, If the instructions are not out of sequence,
but should have been, a request is made to SAC for the instruction at the 'Jumped-
To' address , and at the same time, a line in the Jump Trace is loaded with the
'Jumped—-From' address on the associative side and the 'Jumped-To' address on the
value side. When the Jumped-From address re-appears within the IBU, the

instructions at the Jumped-=To address are automatically pre-fetched. -

2.3 The PrimaryOperand Unit

PROP is concerned with accessing the operand specified directly by the instruction
and routing the instruction, together with its operand, to the appropriate
following sub-unit for execution or further pr*océssing .. If the primary operand is

a named variable or a literal, for example, instructions can be executed immediately,
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whereas an instruction specifying a data structure must be sent to SEOP, where
the primary operand is itself interpreted as a descriptor specifying the data

structure element.

The distinction between named operands and other classes of operands is made
because most store accesses made in high-level language programs are for the
named variables, and a comparatively small high-speed buFFer- store dedicated

to holding named variables can trap around 99% of such accesses and thereby
avoid the long access time to the L.ocal Store. Thus PROP contains a Name Store
made up of 32 associative registers containing addresses of names in current use
and 32 conventional registers containing the corresponding values, Associative
addressing is used since this relieves the programmer of the onus of allocating
registers to operands, and therefore allows code generated by compilers to run

as efficiently as directly written code,

The Name Store is accessed by presenting the required operand address as an
input to its associative field, If the address is identical to an address in one of

the associative registers, an equivalence occurs and the value of the operand is
read out of the conventional field of the store. If the required address is not in

the associative store, i.e. a non-equivalence occurs, an access is made to the
L.ocal Store, and the value obtained, together with the address, is wr-it?en into an

- Tempty' line of the Name Store. Any subsequent access for the same oper*al(ﬁd does
not then require an access to the L.ocal Store., The 'empty' line for over*wﬁiting is
selected by a cyclic replacement algorithm, the _previous contents of this line bheing
written back to the Local Store only if they have been altered by the action of a

write~-to~store order., |

PROP is split up into five independent stages, each of which carries out part of
the instruction processing. The first stage receives instmctipns from the IBU and
carries out the decoding and interpretation of the instruction r‘equ’ir‘ed to deal with
multi—-leng‘th orders and to select the appropriate base register to which the name
part of the instruction is added in the second stage., The resulting address is
presented in the third stage to the associative field of the Name Store, and the

value contained in the value field of the Name Store is read out in the fourth stage.,



In the final stage the operand is assembled in its correct format ready to be sent
the appropriate following sub-unit. Each of these sub~units sends a control signal
to PROP indicating whether or not it can acceptaninstruction. Gnce accepted by
the sub-unit, the instruction is guaranteed to go to completion, so that the Cpntr‘ol-'.
‘Register can be incremented for the instruction, and instructions in earlier stages
of the PROP pipeline can each move on to the next stage. Instructions therefore
proceed through PROP in a series of beats, the minimum time between beats

being 50 nseconds.

2.4 The B-Arithmetic Unit

The B-ARITH carrigs out logical and signed arithmetic functions between an
incoming operand and the contents of the 32-bit B Register. Instructions sent to

the B-ARITH are received on an input buffer and proceed to the arithmetic unit
proper if or when the latter has completed any previously accepted function. Most
functions are actually completed in 45 nseconds, the main exc@ptions being multiply
and shift which take a -varviable time according to the value of the operands

involved.

One of the principle uses of the contént of the B Register is as the modifier in a
data structure access. When an instruction is sent from PROP to SEOP as a
result of a modified data structure operand Spediﬁcation, a modifier request is
sent, in parallel,to the B-ARITH. No function is executed as a result of this
request, but the value in thel' B Register is sent, via a separate dedicated highway,
to SEOP, as soon as the request is accepted by the ar‘ithmetic: unit witﬁin the
B-ARITH. SEOPR always waits for the signal from B-ARITH before commencing‘
the modification, smce any previously received modifier value may have been

'

invalidated by the execution of a B function,

2.5 The Secondary Operand Unit

SEOP is divided into three major sections. The first and last sections (Dr and Dop)
constitute the Descriptor System and contain the essential hardware for carrying
out the requirements of the order code, The accessing facilities in the Descriptor
System can be invoked directly by the use of store-to-store orders which implement

data processihg facilities in languages such as COBOL., or indirectly by the



specification of a data structure element as the operand to be used by a
computational or organisational function. In either case Dr generates operand
addresses, whilst Dop selects the operand from the appropriate part of the store
word received as a result of the corresponding store access, and either routes
the operand to the appropriate execution unit for a computational or organisa-
tional order, or processes it internally in the case of a store~to-store function,
Interposed between Dr and Dop is the Operand Buffering System (OBS) which,
like the Name Store in PROP, is invisible to the programmer and is

incorporated for the purpose of improving the instruction execution rate.

For accesses to array or vector elements the required address is formed in Dr

by adding the content of the B Register to the content of the Origin Field of the
descriptor. The resulting address is sent to OBS and the adder is then used to
carry out a bound check in which the modifier value is subtracted from the |
value in the Bound Field of the descriptor. An interrupt is generated if the result |
of this subtraction is less than or equal to zero, or if the modifier is itself

negative.

The Dop section contains masking facilities which permit the selection of left or
right hand masks to any bit position over the full 4-bit width, and a shifting |
mechanism which allows for any shif’t from O to 63 bits in single bit increments.
Thus operands down to a single bit size cian be selected from any position in the
64~bit store word; Dop is controlled by a combination of a control field generated
by Dnr (at' the same time as the address) and the original function code which

accompanies the instruction as it passes through the system.

The OBS, although'serving the same end as thé Name Store in PROP, i.e.
overcoming the speed limitation of fhe Local Store, acts in a very different

manner. This difference reflects the essential difference between the usages of
named variables and data structure elements in a process — named variables are
generally used randomly from amongst a small group, whilst data structure elements
are generally selected sequentially from a large group. OBS does not, therefore, |
attempt to buffer large amounts of data; instead it effectively incorporates the SACA

and L.ocal Store into the Processor pipeline. SAC and the LLocal Store cannot be



used alone as a pipeline since, due to the interleaveq addressing of the L.ocal
Store stacks, operands may be returned to \OBS out of sequence. Thus, in order
to maintain the correct sequence, OBS sends tag information with each request

to SAC, and also enters the same tag information, together with the corresponding
function, into a six—entry function queue when a request is made. An operand
returning from SAC is copied into one of a set of buffer registers, as selected by
its tag information, and the buffer is marked as being full. When the correspond-
ing function reaches the end of the queue, and is ready to be sent to Dop, the tag
information selects the appropriate buffer, and the operand is read cut. If the
buffer is not marked as full, then the function must wait for the reply from SAC

before being sent to DOP.

Since OBS must contain at least as many operand buffer registers as there are
positions in the function queue, it may frequently contain some of the operands
for which Dr makes requests. This possibility is enhanced by the fact that data
structure elements tend to be accessed sequentially, and also that although the
size of data structure elements varies from 64 bits down to 1 bit, the buffers

are actually 128 bits wide. Thus the total number of store accesses is
considerably reduced by only a small amount oF; buffering, with a consequent
improvement in store availability for the remaihing requests, not only from OBS,

but also from PROP, IBU and Exchange.

Two other forms of buffering are also contained in OBS. The first is for

literal operands ~ since all Accumulator functions must pass through the OBS
function gueue (in order to maintain the correct éequencing of instructions)

literal operands supplied by PROP must be buffered with the corresponding
function. T‘He second form of buffering consists of an extension of the Name Store,
This additional Na.me Store, consisting of 24 1ir’:1es, is needed for two reasons,
Firstly, since the PROP Name Store is separated from the Accumulator Unit by the
instruction stages in Dr, OBS and Dop, then if a named variable held in the PROP
Name Store were used to accumulate a total.calculated by a program loop using
Accumulator orders, up to a dozen or‘defs would have to separate the order

storing the total and the order re—accessing it if the overlapping of inst ructions



10.

was not to be held up. Secondly, in languages such as Fortran, where the
programmer is not obliged to declare names at the start of a routine, many more
names are created (and rapidly discarded) than in a language such as Algol where
declarations are mandatory. Most of these additional names are used with
Accumulator functions, so by incorporating a Name Store in OBS for holding
Accumulator names, and thereby relieving the PROP Name Store of this task, the

efficiency of the latter can be maintained.

The action to be taken in the event of a non—-equivalence in either the PROP Name .
Store or the OBS Name Store now becomes dependent on whether the order is
destined For the Accumulator Unit or not, and whether the required operand is
already in the "'wrong'' Name Store. For an Accumulator orde‘\r‘ the normal
situation is for a nom—-equivalence to occur in the PROP Name Store and
equivalence to occur in the OBS.Name Store. If equivalence occurs in the PROP
Name Store, ho(/vever‘, then for a '""load'' (i.e. non—~store) order, the operand is
carried through OBS as a literal, whilst for a store order it is returned from the
PROP Name Store to the L.ocal Store and is the;w treated as a normal non-
equivalence by the OBS Name Store. When a P:ROP Name Store non-equivalence
occurs for a non-Accumulator order, the OBS Name Store is checked before the
operand is accessed from the Local Store, and OBS actually makes this access
on behalf of the PROP Nama Store if it does not itself contain the required

operand. If OBS does contain the operand it returns the value to PROP via the

normal internal highway.

2.6 The Accumulator Unit

The ACC is the main afr*ithmetic unit of the MUS: Processor, capable of performing
fixed=point and ﬂoatmgwpomt arithmetic, logic and shlftmg Functions and operands
are received from Dop into buffer registers, and when any previous function is
complete the new function is performed between the mcommg operand and the
content of whichever register is specified. ACC contains a number of registers,

the pri‘ncipie ones being a 32-bit fixed-point accumulator, a 64-bit floating~point
accumulator and a 84-bit accumulator extension register. The order codg also
allows for decimal arithmetic, though this has not’ been implemented in the current

version.
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Two's complement representation is used for fixed-point numbers and for the
floating—point mantissa. This gives a unique representation of zero and allows
multiplication to be implemented in a straight forward manner. The 11-bit
floating—point exponent is represented in excess 1024 and is to a hexadecimal
base. Since the operands are of a comparable order of magnitude in very many
calculations, the use of a large base means that pre-arithmetic and normalising
shifts are required relatively infrequently and addition/subtr\action can be

started immediately on the assumption that no alignment is necessary. The check
for alignment proceeds in parallel, and where a pre-arithmetic shift is found to be

necessary the first addition is abandoned and a new one begun.

The adder is a parallel sequential state adder based on the ECL. circuits used
throughout most of the MUS design, and involves no more than 5 gate delays for an
addition over the full width of the mantissa. Multiplication is carried out using two
carry—-save adders activated alternately. The inputs to each carry—-save adder are:
the output of the other carry-save adder and a multiple (in the range -4 to +4) of

the multiplicand selected by taking a group of three multiplier digits at a time

and the most significant digit of the previous group. Negative multiplier values are
dealt with automatically by this technique and on-ly one pre—-addi"cion (to form three

times the multiplicand) is needed before the multiplication is started.

2.7 The Operating Console

The Console provides for direct control of the I\/\US Processor and for communication
between an operator énd the hardware/software éF the system by means of control
switches, indicator lamps, program readable handkeys and a teletype. The Console
also allows the execution rate of instructions, normally limited only by the
processing rate of the Processor itself, to be limited to the rate of a variable
frequency clock for test and diggnostic purposes, and the instructions themselves

to be taken from a set of handkeys or the Console teletype instead of from the IBU.
Thus the teletype can be used in ON=LINE or OFF-LINE mode; in ON-LINE mode

it acts as a conventional 1900-type operators' teletype, whereas in OFF-LINE mode
it acts as an instruction source in which successive characters on the tape are
treated as octal or hexadecimal characters, as éppropriate, to build up 16-bit
instruction half-words for pHesentation to PROP; The Console also contains a
real-time digital clock which provides one second and one-tenth second interrupts

to the Processor and which can be read by the Operating System for accounting

¢

purposes.
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