
TEMPORARY COVER SHEET

DOCUMENT NUMBER: 00000105

DOC~lliNT TITLE: The I11iac IV Processing Element VOL II

AUTHOR: Theofanis Economidis

DATE" ISSUED: April 1974

INSTITUTE FOR ADVANCED COMPUTATION

lAC DOC NO. PO-IllOO-VOL II-A

THE ILLIAC IV PROCESSING ELEMENT

VOLUME II

THEOFANIS ECONOMIDIS

OCTOBER 1973

REVISED: FEBRUARY, 1974

VOLUME II

TABLE OF CONTENTS

SECTION C: THEORY OF OPERATION 110

I • INTRODUCTION 110

A. Addition 110
B. Subtraction 179
c. Multiplication 180
D. Division 228

ACKNOWLEDGMENT 277

BIBLIOGRAPHY 278

FIGURE

32

33

34

35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69

VOLUME II

LIST OF FIGURES

Exponent Part of B Register in 64-Bit Mode for
Exponent Correction

Exponent Part of B Register in 32-Bit Mode for
Exponent Correction

Diagrammatic Representation of Rounding Procedure
(Case 114)

Flow Chart of Actions at Time Tl
Flow Chart of Actions at Time T2
Flow Chart of Actions at Time T3
Flow Chart of Actions at Time T4
Flow Chart of Actions at Time T5
Flow Chart of Actions at Time T6 (PART A)
Flow Chart of Actions at Time T6 (PART B)
Flow Chart of Actions at Time T7
Flow Chart of Actions at Time Tl
Diagrammatic Representation of Shifting Operation

at Time T2
Flow Chart of Actions at Time T2
Flow Chart of Actions at Time T3 (PART A)
Flow Chart of Actions at Time T3 (PART B)
Flow Chart of Actions at Time T4
Flow Chart of Actions at Time T5 (PART A)
Flow Chart of Actions at Time T5 (PART B)
Flow Chart of Actions at Time T6
Flow Chart of Actions at Time T7 (PART A)
Flow Chart of Actions at Time T7 (PART B)
Flow Chart of Actions at Time T8
Flow Cha"rt of Actions at Time T9
Block Functional Diagram of the Registers

Participating in Mantissa Manipulation
Multiplication Process (Mantissa)
Correction Bits for Mantissa Multiplication
Clock ,Time TI
Clock Time T2
Clock Time T3
Clock Time T4
Clock Time T5
Clock Time T6
Clock Time T7
Clock Time T8
Input Gating of the CPA, Bit Slice Diagram
Clock Time T9
Chart Showing the Area in which the Quotient is Valid

PAGE

116

117

132
139
141
143
145
147
149
150
152
154

155
156
159
160
162
165
166
168
171
172
174
177

193
195
197
209
211
213
215
217
219
221
224
225
227
235

TABLE

33
34
35
36
37
38

39

40

41

42

VOLUME II

LIST OF TABLES

Shifting in Normalization and Exponent Adjustment
Truth Table of Conditions in Subtraction (4)
Multiplier Bits to be Recoded
Recoding Multiplier Scheme
Definition of Signals Applied to PAT
Steps of Mantissa Manipulation in 64-Bit Mode

Division
Steps of Exponent Manipulation in 64-Bit Mode

Division
Procedure for Interchanging INNER & OUTER Mantissas

of RGB
Procedure for Interchanging INNER & OUTER Mantissas

of RGR
Procedure for Interchanging INNER & OUTER

Remainder (RGB)

PAGE

120
179
183
184
190

239

248

274

275.

276

FIGURE

32

33

34

35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69

VOLUME II

LIST OF FIGURES

Exponent Part of B Register in 64-Bit Mode for
Exponent Correction

Exponent Part of B Register in 32-Bit Mode for
Exponent Correction

Diagrammatic Representation of Rounding Procedure
(Case /14)

Flow Chart of Actions at Time TI
Flow Chart of Actions at Time T2
Flow Chart of Actions at Time T3
Flow Chart of Actions at Time T4
Flow Chart of Actions at Time T5
Flow Chart of Actions at Time T6 (PART A)
Flow Chart of Actions at Time T6 (PART B)
Flow Chart of Actions at Time T7
Flow Chart of Actions at Time TI
Diagrammatic Representation of Shifting Operation

at Time T2
Flow Chart of Actions at Time T2
Flow Chart of Actions at Time T3 (PART A)
Flow Chart of Actions at Time T3 (PART B)
Flm·l Chart of Actions at Time T4
Flow Chart of Actions at Time T5 (PART A)
Flow Chart of Actions at Time T5 (PART B)
Flow Chart of Actions at Time T6
Flow Chart of Actions at Time T7 (PART A)
Flow Chart of Actions at Time T7 (PART B)
Flow Chart of Actions at Time T8
Flow Chart of Actions at Time T9
Block Functional Diagram of the Registers

Participating in Mantissa Manipulation
Multiplication Process (Mantissa)
Correction Bits for Nantissa Hultiplication
Clock Time TI
Clock Time T2
Clock Time T3
Clock Time T4
Clock Time T5
Clock Time T6
Clock Time T7
Clock Til':f' TS
Input Gating of the CPA, Bit Slice Diagram
Clock Til::e T9
CIn rt 51-.('\.' i.i:g the Are;). in ,,~hich the Quotient is Valid

PAGE

116

117

132
139
141
143
145
147
149
150
152
154

.155
156
159
160
162
165
166
168
171
172
174
177

193
195
197
209
211
213
215
217
219
221
224
225
227
235

SECTION C: THEORY OF OPERATION

I • I NTRODUCT I ON

A. Addition

1. Introduction. In order to present all phases of how addition of

two numbers is performed by ILLIAC IV, the process and the details of float

ing point addition with the op~ions of rounding and normalization will be

described, since this is the longest and most complicated form of addition

performed by the PEe

In floating point arithmetic, addition rules require that the numbers

to be added have equal exponents. If the exponents are different, the dif

ference of the exponents is found and the number (mantissa portion) with

the smaller exponent is first shifted, as many places to the right as the

difference of the exponents (bits shifted off are lost). This procedure

is called alignment.

After the addition of two mantissas is completed, the leading ONE

might not be in the most significant bit (MSB) position of the mantissa

and the exponent· must then be adjusted by subtracting from it the number

of places the mantissa was shifted to the left. This procedure is called

normalization.

2. Alignment. The Barrel Switch has been designed in such a way

that it can shift words in 64-bit mode or words in 32-bit mode. For align

ment the shifting is always to the right, which means that the shift counter

receives the six least signifcant bits from the Carry Propagating Adder

(CPA) as the result of the difference of the exponents of the two operands

to be added and applies them to the leading one detector and Barrel Switch

controls to be decoded and then applied to the proper levels of the

Barrel Switch.

_ 110 _

a) Implementation. The two operands, being 64 bits long,

are brought into CPA as follows:

The True output of the exponent part of B register is

enabled into CPA (bits 65 - 79) while the Complement output of the

exponent part of A register is allowed into CPA (bits 65 - 79). The

two quantities are addeod together and the result is sent to LOD 1/4 and

LOD #6 (the six least significant bits go to LOD#4 while the nine most

significant bits arOe sent to LOD 116). The output of LOD If6 goes to

LOD #15 to determine whether the exponent difference is greater than 47

(PEXD1-L48L).

The output of LOD #4 (Shift Count Register) is sent to

LOD #1, 2, 3, and 5 which control the levels of the Barrel Switch, which,

in turn, shifts the mantissa of the operand with the smaller exponent to

the right as many places as indicated by the difference of the exponents.

If the exponent of A register is greater than the exponent

of B register there is no carry (indicates adder output is complement of

ture difference) and therefore the Complement output of LOD #4 is sent to

LOD #1, 2, 3, and 5. If the exponent of A register is less than the exponent

of B register there is a carry (indicates adder output is true difference) and

therefore the True output of LOD #4 is allowed into LOD #1, 2, 3, and 5.

b) Examples.

Example 111

If the exponent of A register, which holds the Augend is

Aexp = 100000000000001 and the exponent of B register, which holds the

Addend is Bexp = 100000000000010, find the exponent difference.

Solution

Aexp 100 0 0 0 000 0 0 0 0 0 1

Bexp 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 = + 2)10

The difference is ONE and, because Bexp> Aexp, there is a

carry and the True output of the Shift Count Register (SCR) (LCD 114) must

be ONE.
-111-

Register{A
Content

B

Gated ~
Output 0

R2gister B
to CPA

CPA

Par
S
tial
urn

/~

1 0

1 0

0 1

t1 0
~ ~

to 0

CARRY

SUM 0 0

t
1 0 0

i
This 1 selects
RGA MANTISSA to
be put into BS

Example 112

If

0

0

1

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

1 ...
0 0 0 0 0 010 0 0 0 0 1

., r , .
0 0 0 0 0 0 0 0 0 1
Lonil6 01 0

LOD#4

I i--"~,, ~--~~'" .. -... ~--
LoD=ll15

Aexp = 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Bexp 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

END AROUND
CARRY

TRUE OUTPUT TO
LOD 111,2,3 & 5

Find the exponent difference.

Solution

Since Aexp = Bexp there is no 'carry ~nd· the

Complement output of Lon II 4 is enabled into

LODlIl, 2, 3 and 5.

Because the exponents are equal, their

difference is ZERO.

-112-

Example 113

Solution

A 1 000 0 0 0 0 0 1 1 1 1 1 1 I

B 100000000 1 111 1 1 I

A o 1 1 1 111 1 1 0 0 0 0 0 01

CARRY 01

CPA SIMI 1 1 1 1 1 1 1 1 1 1 1 111 1 I

CARRY OUT

LoD:ffo6 1 1 1 1 1 1

COMPLEMENT
~ 0 0 000

LODtfo4

This "0" selects
RGB mantissa to be

put into BS

LoDtfo1,2,3 and 5

If Aexp 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Bexp = 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

Find the exponent difference.

Since Aexp > Bexp by 3 there is no carry and the

complement output of Lonll4 is enabled into

LOD 111, 2, 3 and 5.

:-113,,:,

A

B

A

CARRY

CPA

LoD4fo4

This
RGB man

"
0

1

"0 "

10000000001111111

10000000001111001

11111111110000001

1

1 111 1 1 1 1 1 1 1 1 1 0
01

CARRY OUT

1 1 1 1 111 1 1 1 1 100

r COMPLEMENT

TO LOD4J:15 0 000 1 1

selects
tissa to be l

put 1nto BS

... ,

If the exponent difference (EXPDIF) is less than 48
10

.. ..
LOl):ffol, 2,3
and 5

then PEDSl-L48L (see LOD #15) is true and allows the register with the

smaller exponent to receive the output of the barrel switch; otherwise

the register mantissa is cleared. If rounding is desired, a pseudo

alignment is performed prior to actual alignment, wherein the most

significant of the bits to be shifted off is saved in the INNER most

significant bit latch (IMSB) for later use. The signal PEXDl-L65H is used

during this pseudo-alignment cycle and, when true, allows the INNER most

significant bit (IMSB) latch to hold the "shifted off" most significant

bit for rounding. Operation of LOD #15 signals PEXDI-L48L and PEXDI-L65H

is displayed below.

-114-

EXPDIF PEDI-L48L PEXDI-L65H* REMARKS

o -+ 47 TRUE (allows TRUE (allows If rounding is
register with shifted off preferred
smaller expo- MSB into IMSB
nent to latch)
receive out-
put of BSW)

48 FALSE (regis- TRUE (allows If rounding is
ter with shifted off preferred
smaller expo- MSB into IMSB
nent will be latch)
cleared)

48 - 63 FALSE (same TRUE (allows If rounding is
as above) ZERO into preferred

IMSB since
bits 0-15 are
not enabled
into BS)

64 or FALSE (same FALSE (input If rounding is
greater as above) t·o IMSB is preferred

forced to
ZERO)

* Signal is misnamed; should be 64 instead of 65.

3. Normalization. For Normalization only, the leading ONE Detectors

(LOD #1, 2, 3) are used to detect where the leading ONE is in the mantissa.

When one of these LOD's detects a leading ONE it generates the proper

controls (shift count) for selection of the proper level of the Barrel

Switch for shifting the mantissa to the left as many places as required to

place the lec;lding ONE in bit position 16 (for 64-bit mode and Inner Word

in 32-bit mode) or bit position 40 (for the Outer Word in 32-bit mode).

If the leading one is in bit position 16 (in 64-bit mode or in 32-bit model

inner mantissa) it is already normalized and the LOD is not enabled. The BS

is then set up for a zero shift. Normalization of the. outer mantissa in

32-bit mode is handled differently. In this case the LOD sees the outer

-115-

mantissa with 24 leading zeros (inner mantissa is not gated out). The

LOD will generate a left shift (of at least 24 which is compensated for by

using the first level of the BSW (Byte Swapping Level». This level moves

the outer mantissa 24 bits right.

The correction of the exponent of the final sum as a result of

the option of normalization takes place as follows:

The output of LOD #1, 2, 3 being enabled by LOD #5 is placed

into bit positions 10 to 15 of the B register in case of 64-bit mode or

32-bit mode Inner word or into bit :position 2 to 7 of B register in case of

32-bit mode Outer word.

Bit No: 0 1

a) [0 0

Bit No: 0

1

0

1

o

234

111

2

1

3

1

4

1

5

1

5

1

6

1

6

1

7 8

1 . 0

7

1

8

o

9 10 11 12 13 14 15 63

o 0 0 0 0 0 i~::~~~~~~~~~]

Figure 32. Exponent Part of B Register in 64-Bit Mode
for Exponent Correction

The mechanization of Exponent Correction, as indicated in

Figure 32 (a) and (b), takes place as follows:

A fixed input of 0 0 1 1 1 1 1 1 is placed in bit positions

o through 7 of the B register. The LOD #5 generates bits 8, 9 as zeros

in case of overflow (OVl) or the Leading ONE is at bit position 16 and as

ONE's in any other case. The LOD 1/5 also enables LOD #1, 2, 3 to generate

the amount by which the exponent is to be reduced by placing it at bit

positions 10 through 15 of the B register as follows:

-116-

a a
a a

a a
a a

a a
a 1

if leading ONE is at bit position 16

if overflow (OVl) has occurred.

The output of B register is brought into CPA which receives, at the

same time, the exponent from A register and adds the two quantities to form

the final exponent.

The main criterion for selecting the output of B register to be

enabled into CPA is the state of bits 8 and 9 (as a result of an overflow

or when bit 16 contains a ONE). If these bits are zero then the complement

of bits 1 to 7 of B register is brought into the CPA which means that the

output of B register is:

01000000

01000000

00000000

00000001

if the leading ONE is at bit 16

if overflow (OVl) has occurred.

If bits 8 and 9 are ONE's, overflow has not occurred (OVl) and

the leading ONE is not at bit 16. Therefore, the mantissa has to be shifted

to the left a certain number of places, which implies that a number must be

subtracted from the exponent of the final sum. The correction bits from the

LOD 111, 2, 3 are placed in bit positions 10 through 15 of B register, but

the TRUE output of B register is brought into the CPA. Bit 1 is then a

ZERO which means that this exponent is negative. For a better understanding

of the exponent manipulation see the discussion on page 19 concerned with

the exponent.

In 32-bit mode the mechanization of exponent correction, as

indicated in Figure 32 (a) and (b), takes place as follows:

(
1 2

012

3 4

3 4
a 0
a 05

5

5

°
°

67 8 9 10 11 12 13 14 15 16

: 1: ° a dt ° ° ° 1-
,1,00 ° ° 01
I

g ~ ,8 9 10 11 12 13 14 15 r
Figure 33. Exponent Part of B Register in 32-Bit Mode for Exponent Correction

-117~

LOD #5 generates bit 9 as a ONE in 32-bit mode for the Inner

word if OVI or bit 16 is a ONE and LOD #1, 2, 3 are not enabled. Bits

10-15 of the B register will contain all zeros or zeros and a low order

one as follows:

o 0

o 0

o 0

00

o 0

o 1

if the leading ONE is at bit position 16

if overflow (OV1) has occurred.

In this case the TRUE output of B register is brought into the

CPA since the correction bits comprise a positive exponent.

If bit 1 is ONE, the TRUE output of B register is enabled into

CPA; if bit 1 is a zero the TRUE output of B register indicates a negative

exponent as explained in the description of the 32-bit mode for Inner word.

From the discussion so far it is evident that, for normalization and

exponent correction, the shift coanter (LOD #4) does not participate at all

but instead LOD #1, 2, 3 and 5 control the shifting operation.

At this point a very interesting question arises. What happens

if the program calls for normalization and the mantissa of the result is

ZERO? It is apparent that in this case the LOD #1, 2, 3 will not detect any

leading ONE and therefore the Barrel Switch will not perform any shifting of

the mantissa. Also, the correction bits in B register will be all zeros

which implies that the exponent should not be expected to be affected at all.

Therefore, exponent Underflow will not occur if the above method was used

when attempting to normalize a ZERO mantissa.

As discussed previously, when representing a ZERO number in float

ing point arithmetic the mantissa must be ZERO and the exponent must have the

least value that the machine can hold. To accomplish this, when a mantissa

is ZERO there is a signal called ZERO MANTISSA LEVEL which becomes true when

this condition is detected and inhibits the load clocks to the exponent

field of the A register, while at the same time the clear clocks are enabled

into the exponent field of A register, thus forcing the exponent field to

be filled with ZEROS (see the description of LOD #5).

Since the exponent is represented in excess code, ZEROS in the

exponent field means that the number has the smallest possible exponent,

-118-

which combined with the ZERO mantissa represents a ZERO result. In this

way it is assured that the ZERO number is represented by "Clean Zeros".

Table 33 indicates the amount of shifting of the mantissa ~o

the left required to bring the leading ONE to bit 16 for 64-bit mode or

32-bit mode for the Inner word or to bit 40 for the 32-bit mode Outer word.

It also indicates the amount the exponent of the final sum has to be

reduced when the option of normalization is used.

In the discussion of Alignment and Normalization it was said

that in case of an overflow or underflow the sum is properly adjusted in

order to represent a correct number. Before proceeding into the rounding

procedure, a few explanatory remarks about overflow (OV) and underflow may

help the reader not only to understand the mechanization of the entire

procedure, but also to appreciate the importance of the logic involved for

such an operation.

4. Overflow. If two numbers of the same sign are added, the magnitude

of the result might be greater than what the register that is to contain the

result can hold. This condition is called overflow.

In floating point arithmetic the difference between mantissa

overflow and exponent overflow must be distinguished.

a) Mantissa Overflow can occur -

1) when the mantissas are added and the signs of

addend and augend are the same. The overflow

is indicated by a carry out of the most

significant bit of the sum.

2) when rounding and the signs of addend and augend

are equal, the most significant shifted off bit

is added to the least significant bit of the sum.

If while adding this shifted off bit, the sum contains

all ONES and this bit is a ONE, the result is mantissa

overflow.

-119-

I
......
N
o
f

Bit Position
of Leading

One

OV1
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

33

34

35

36
37
38
39

Table 33. Shifting in Normalization and Exponent Adjustment

BARREL SWITCH LEVELS EXPONENT ADJUSTMENT
FIRST LEVEL

64-Bit Mode 32-Bit Mode SECOND THIRD FOURTH 64-BIT MODE 32;..BIT MODE
32 Inner Outer LEVEL LEVEL LEVEL

0 - 0 0 1 0100000000000001 01000001
0 - 0 0 0 0100000000000000 01000000
0 - 48 12 3 0011111111111111 00111111
0 - 48 12 2 0011111111111 110 00111110
0 - 48 12 1 0011111111111101 00111101
0 - 48 12 0 001111111l!111100 00111100
0 - 48 8 3 0011111111111011 00111011
0 - 48 8 2 0011111111111010 00111010
0 - 48 8 1 0011111111111001 00111001
0 - 48 8 0 0011111111111000 00111000
0 - 48 4 3 0011111111110111 00110111
0 - 48 4 2 0011111111110110 00110110
0 - 48 4 1 0011111111110101 00110101

0 - 48 4 0 0011111111110100 00110100
0 - 48 0 3 0011111111110011 00110011

0 - 48 0 2 0011111111110010 00110010

0 - 48 0 1 0011111111110001 00110001

0 - 48 0 0 0011111111110000 00110000

0 - 32 12 3.: 0011111111101111 00101111

0 - 32 12 2 0011111111101110 00101110

0 - 32 12 1 0011111111101101 00101101

0 - 32 12 0 0011111111101100 00101100
0 - 32 8 3 0011111111101011 00101011

0 - 32 8 2 0011111111101010 00101010
0 - 32 ',:8 1 0011111111101001 00101001

Table 33. (Continued) Shifting in Normalization and Exponent Adjustment

Bit Position BARREL SwmTCH LEVELS I EXPONENT ADJUSTMENT
of Leading FIRST L!'VEL !

One p4-Bit Mo~e 32-Bit Mode SECOND THIRD FOURTII I 64-BIT MODE 32-BIT MODE
32 Inner Outer LEVEL LEVEL LEVEL I

OV2 - 0 0 0 1 - - - - - - - - - - - - - - - - 01000001
40 0 24 Right 32 8 0 o 0 1 1 1 1 1 1 1 1 1 0 1 0·0 0 01000000
41 0 24 32 4 3 o 0 1 11 11 11 11 00 1 11 00111111

42 0 24 32 4 2 0011111111100110 00111110
43 0 24 32 4 1 0011111111100101 00111101
44 0 24 32 4 0 0011111111100100 00111100
45 0

,
24 32 0 3 0011111111100011 00111011

46 0 , 24 32 0 2 0011111111100010 00111010
47 0 24 32 0 1 0011111111100001 00111001
48 0 24 32 0 0 0011111111100000 00111000
49 0 24 l' 12 3 0011111111011111 00110111
50 0 24 16 12 2 0011111111011110 00110110
51 0 24 16 12 1 0011111111011101 00110101
52 0 24 16 12 0 0011111111011100 00110100
53 0 24 16 8 3 0011111111011011 00110011
54 0 24 16 8 2 0011111111011010 00110010
55 0 24 16 8 1 0011111111011001 00110001

56 0 24 16 8 0 0011111111011000 00110000

57 0 24 16 4 3 0011111111000111 00101111

58 0 24 16 4 2 0011111111000110 00101110
59 0 24 16 4 1 0011111111000101 00101101
60 0 24 16 4 0 0011111111000100 00101100
61 0 24 16 0 3 0011111111000011 00101011
62 0 24 16 0 2 0011111111000010 00101010
63 0 24 ,II 16 0 1 0011111111000001 00101001

In the first case the overflow is cleared and loaded;

in the second case the latch is simply loaded.

b) Exponent Overflow can occur -

1) when adding exponents in multiplication or sub

tracting exponents in division.

2) when mantissa overflow in floating point occurs

and the exponent happens to contain all ONES.

5. Exponent Underflow. If the value of the exponent is reduced

beyond the minimum value that the proper register can hold, it is said

that an "underflow" has occurred. In Addition exponent underflow will

occur only when normalization is performed. In this case, the number

equal to the amount of places the mantissa is shifted to the left until

the leading ONE is at bit position 16 for 64- or 32-bit mode for Inner

word or bit 40 for 32-bit mode for the Outer word is effectively subtracted

from the exponent.

There are two cases in which a fault may occur, in which,

therefore, the F, Fl bits of mode register are set because of exponent

underflow.

In one case the following conditions would exist:

a) The operand or result is any number other than zero.

b) Normalization takes place.

c) Exponent underflow occurs.

d) Set F bit in case of exponent underflow.

In the other case the following conditions would exist:

a) Exponent arithmetic only (operations involving the

exponents only).

b) Exponent underflow occurs.

c) Set F bit in case of exponent underflow.

In both cases the resulting word is zero.

-122-

6. Rounding. In the description of the word formats in the 64-bit

mode (subsection III B b) of Section A, a number in floating point arithmetic

is described by

X 48
X = (-1) 0 2T[~

i=l

In operation of addition there are two operands involved and

they may be described by

where

X 48
X = (-1) 0 2s [~ 2- i X.]

i=l 1

X = Augend

Y = Addend

X Sign
0

Y = Sign
0

of mantissa

of mantissa

2s = Exponent value of
2t Exponent value of

of Augend

of Addend

Augend

Addend

Mantissa part of Augend

= Mantissa part of Addend

(64-bit mode)

Because the mantissa part of the word in ILLIAC IV occupies bit

positions 16 to 63 the above notations would be absolutely consistent with

the word formats only if the subscripts i and j were considered as varying

from 16 to 63 instead of 1 to 48. But since in this section the changes

that the mantissas undergo when the option of rounding is used are being

-123-

discussed, and because the mantissa field has 48 bits, the above notation

setting the limits of the mantissa field between land 48 is felt to be

acceptable if only because of its convenience.

Rounding is an option that may be selected by the programmer.

If the exponents of the two operands differ, the mantissa of the operand

with the smaller exponent is shifted off the number of places indicated by

the amount of the exponent difference. If the exponents are equal there is

no need to shift any of the mantissas.

There are many factors that affect rounding operations; some of

these factors are:

a) The value (lor 0) of the saved bit.

b) Whether the arithmetic operation that requires rounding

involves addition or subtraction.

c) If addition, whether or not there is overflow.

d) If subtraction, which operand is larger and which

operand the saved bit came from.

e) If subtraction, whether or not the mantissa

difference is zero.

Since the exponent difference constitutes the starting point of the

rounding process, the following cases are examined.

a) s > t and X = Y
0 0

b) s > t and X ~ y
0 0

c) s < t and X = Y
0 0

d) s < t and X ~ Y
0 0

-124-

i. Case where s > t and X = Y :
o 0

The number with the smaller exponent is the Y operand and must be

shifted right s-t places. It must have as exponent the exponent of X.

Therefore,

Y shifted
Y 48

= (-1) 0 2s [L 2- j y
j=(s-t)+l j-(s-t)

+
48+(s-t) .
L 2-Jy.]
j=49 J-(s-t)

The mantissas of the two operands are then added as follows:

X 48. 48 .
X + Y shifted = (-1) 0 2s [L 2-1 X. + L -Jy

i=l 1 j-(s-t)
j=(s-t)+l

48+(s-t) .
+ L . 2-J y.]

j=49 J-(s-t)

In reality since the adder is not extended to take care of the

shifted off bits given by

48+(s-t) .
L 2-Jy.
j=49 J-(s-t)

the most significant shifted off bit is added to the least significant

bit of the adder and therefore

(X + Y shifted) d d roun·e

48
[E 2- i X . +

i i=l

2-48y]
+ 49-(s-t)

-125-

48
E 2- j y

j-(s-t)
j=(s-t)+l

(1)

(2)

(3)

If the programmer wishes to truncate instead of rounding, then

the result will be

(x + Y shifted) t d trunca e

48
+

-j
L 2 Y. ()
j=(s-t)+l]- s-t

The procedure, therefore, for rounding in case #1 is as follows:

a. Determine which operand has the smaller exponent.

(4)

b. Determine the difference of the exponents of the two operands

to be added.

c. Shift off the mantissa of the operand with the smaller exponent

as many places as the difference of the two exponents (1).

d. Perform the summation of the mantissas of the two operands (2).

e. Check for overflow.

If there is no overflow, then add the most significant shifted off bit

to the least significant bit of the sum (4).

NOTE: In order to add the 2-49 bit all zeros are forced into B register
(Yoperand).

ii. Case where s > t and X + Y :
o 0

The operands are represented as in case #1. Because X is the largest

operand, Y must be shifted s-t places end off. Therefore

-126-

Y shifted

48+(s-t) .
+ I: 2-Jy.]

j=49 J-(s-t)
(5)

Since the signs are different the addend (Y
sh

) is l's complemented

y

y shifted = (-1) °2s

+ I: 2-Jy.]
48+(s-t) . }

j=49 J-(s-t)
(6)

but only the most significant bit shifted off is saved to be subtracted

from the sum later. The addend then becomes

+

48
I: 2- j y.
j=(i-t)+l J-(s-t)

2-48y
49-(s-t)

Addition of the mantissas of X and Ysh (complement) gives

X {48. 48 .
(x + Y shifted) = (-1) °2s I: 2- 1 X. + I-I: 2-Jy.

1 J-(s-t) i=l j=(s-t)+l

)

-127-:-

(7)

(8)

The term 2-48 is the end around carry:which exists only when the

augend (X) is greater than the addend (Y) and then the sign of the sum

is the sign of the augend.

The procedure for rounding in case #2 is as follows:

a. Determine which operand has the smaller exponent.

b. Determine the difference of the exponents of the two operands.

c. Save only the most significant shifted off bit.

d. Shift off the mantissa of the operand with the smaller

exponent as many places as the difference of the exponents (5).

e. Take the l's complement of the addend.

f. Perform the addition of the two mantissas as follows:

Example

1. Since s > t, the augend is greater than the addend and

a carry (for normalized operands only) is to be expected.

2. The sum is not complemented and it has the sign of

augend.

3. The most significant shifted off bit is subtracted

from the least significant bit of the sum by adding

all l's to the sum--see equation (8).

Given: X (_1)0 x 23 x 1 1 1 0

(_1)1 x 21 x 1 1 1 0

(Augend)

Y (Addend)

Show the mechanization of rounding procedure (case #2).

Solution

a. The addend has the smaller exponent.

b. The difference of the exponents is two (s-t 3-1 2) •

-128-

c. The addend after it has been shifted two places end off

to the right 100ks like

Y = (_1)1 x 23 x 0 0 1 1 1 0 I
(end of register

It __ _ most significant
shifted off bit

d. Take the l's complement of the mantissa of Y

1 3 Y = (-1) x 2 xlI 0 0 1 0
It remains unchanged

e. The most significant shifted bit which is ONE is saved in

the latch.

f. The two operands are added as follows:

o 3 SUM = (-1) x 2

i/

111 0

110 0

1 0 1 1

1 1 1 1 ~Add all ONES in order to

101 1

subtract the most significant
shifted off bit from the sum

1 ~This ONE is ignored (Carry)

The resulting carry that is produced when adding all ONES to

the sum is. igno·red and therefore the final rounded sum is:

SUM = (_1)0 x 23 x 1 0 1 0

-129-

NOTE: In order to subtract the 2-49 bit, alII's are forced into
the mantissa part of B input of the CPA (Y operand) and the
contents of the A register are added to it. If there is any
carry it is ignored.

To check the results:

The X mantissa = 1410

The Y shifted mantissa = -3.510

Then 14 + (-3.~) = 10.510

After rounding, and therefore subtracting .5 from the sum we get 1010 =

(1 0 1 0)2 which is the same as the rounded mantissa part of the final

sum above.

iii. Case where s <t and X Y
o 0

The X operand has the smaller exponent and must be shifted end off

t-s places to the right. This gives the X operand the same exponent as

the Y operand.

X shifted
X 48

(-1) °2t [E 2- i X
i=(t-s)+l i-(t-s)

+ 2-49X !

49-(t-s)] (9)

The term 2 x 2-49 X is the most significant bit shifted off
49-(t-s)

and is saved to be added into the least significant bit of the sum. The

mantissas of the two operands are then added.

-130-

(X shifted + Y)
Y 48

(-1) °2 t
[L 2-

i
X.

i=(t-s)+l l-(t-S)

48
+ L 2-j y] + 2-48X

j=l j 49- (t-s)
(10)

If the most significant bit [2-49X
49

_(t_S)] shifted off and which

has been saved for rounding is Zero, the sum is:

(X shifted + Y)

48
+ L 2-j y.]

j=l J

iv. Case where s < t and X ~ Y (see Figure 30)
o 0

(11)

Since the addend (Y) is the largest operand for normalized operands:

a. There is no overflow because the signs are different.

b. There is an end around carry.

c. The sum must be complemented.

d. The sign of the sum is the sign of Y.

e. The sum has as exponent the exponent of Y.

The mantissa of X must be shifted by t-s places to the right end off.

X shifted
X 48

= (~l) °2 t
[L 2- i X.

i=(t-s)+l l-(t-S)

48 .
+ 2: 2-1 X.

i=49 1-(t-s)
] (12)

-131-

A H~GISTER (AUCP:'~1TD X
,

B REGISTER J

X SHIFTED
Y

I' +
C P A

I
SUM
j

A REGISTER

I
SUM

CPA

SUM ROUNDED

,r

A REGISTER

(ADDEND v)

FORCE ONES FROl-1

B REGISTER

}i'IGURE 34 - DIAGHAJ.F,ATIC REPHESENTArrION OF

ROUNDING PHOCEDURE (CA,3E # 4)

-132-

Because the signs are different the l's complement of the

Addend (Y) is needed:

y 48.
Y = (-1) °2 t [1_l: 2-Jy.

j=l J

Addition of the two operands gives

(X shifted + Y)

+
48

(1- l: 2- j y.)]
j=1 J

where the term

48+(t-s) .
l: 2- 1 X.
i=49 l-(t-S)

(13)

(14)

is ignored except that, for rounding only, the most significant shifted off

bit is saved to be subtracted from the least significant bit of the sum.
-49

This bit is represented by 2 x 2 Y49-(t-s).

The sum is now complemented and the most significant shifted off bit

is subtracted from the least significant bit of the sum.

(X shifted + Y)
48
~ 2~iX.
i=(t-s)+l l-(t-S)

(15)

-133-

Example

Suppose the two operands to be added are

x = (_1)0 x 21 xlII 0

Y = (_1)1 x 23 xlIII

Show the rounding procedure.

Solution

a. The augend has the smaller exponent.

b. The difference of the exponents is TWO (t-s = 3-1 = 2).

c. The augend is shifted end off to the right by TWO.

x shifted =(_1)0 x 23 x 0 0 1 1 1 0
fit Most significant

shifted off bit

End of register

d. '- The mali"tissa of the addend is l' s complemented because the

signs are different.

1 3 Y (comp.) = (-1) x 2 x 0 0 0 0

e. Form the sum

S X + -- '(_1)1 x 23 x 0 0 1 1 um = Y compo

f. Complement the sum

1 3 Sum (comp.) = (-1) x 2 xlI 0 0

g. Insert all ONES to subtract the most significant shifted off

bit from the mantissa part of the Sum (comp.).

Sum (comp-)

Final rounded sum

(_1)1 x 23 x 1 1 0 0
1 1 1 1

(_1)1 x 23 x 1 0 1 1

-134-

~ .,~___ This ONE is ignored
) (carry)

7. Summary of the Procedure for Addition of Two Operands in

Floating Point Arithmetic.

a) Find the magnitude of the difference of the two exponents.

b) Shift the mantissa of the operand with the smaller expon

ent to the right end off as many places as the exponent

difference (alignment).

c) Save the most significant shifted off bit of the operand

with the smaller exponent (if rounding is used).

d) The exponent of the operand with the larger exponent

becomes common for both operands and therefore remains the

same for the final sum unless normalization takes place

later.

e) Add the mantissas of both operands.

1) Mantissa of augend is added to the mantissa of

addend (both in true form) if the signs of the

two operands are the same.

2) Tr~e form of mantissa of augend is added to the

complement of the mantissa of the addend, if the

signs are different.

f) The resultant sum is taken in true form if the signs of the

two operands are different and there is a carry out of the

most significant bit as a result of the addition of the

mantissas of the two operands. The sum is taken in complement

form if the signs are different but there is no carry out of

the most significant bit.

h) The resultant sum has as sign:

1) The sign which is the same for both operands or

-135-

i)

2) The sign of the augend if there is a carry out of

the most significant bit position (augend > addend)

and the signs disagree or

3) The sign of the addend if there is no carry out of

the most significant bit position (addend > augend)

and the signs disagree.

Add the most significant shift off bit to the resultant sum

as follows:

1) If the signs are the same, add most significant shifted

off bit to the least significant bit of the un

normalized sum.

2) If the signs are different and Aexp > Bexp and the

magnitude of mantissa of A > magnitude of mantissa of

B after the alignment takes place or if "the signs are

different and Bexp > Aexp and the magnitude of mantissa

of B > magnitude of mantissa of A after the alignment

takes place, subtract the most significant shifted off

bit from the least significant bit of the mantissa of

the unnormalized sum.

3) If the signs are different and Aexp > Bexp and the

magnitude of mantissa of B > magnitude of A after the

alignment takes place or if the signs are different and

Bexp > Aexp and the magnitude of mantissa of A > magni

tude of the mantissa of B after the alignment takes

place, add the most significant shifted off bit to the

least significant bit of the mantissa of the unnorma1ized

sum. In the special case where IAI = IBI after align

ment (no rounding) the result is 000 •.• O.

-136-

j) Detect the position of the leading ONE in the mantissa

of the sum, shift to left the mantissa until a ONE is at

bit position 16 in 64-bit mode and 32-bit mode for the

Inner word or bit position 40 in 32-bit mode for the Outer

word or shift to the right by one if mantissa overflow

has occurred. (If the option of normalization is used).

Mantissa overflow is corrected for even if not normalizing.

k) Adjust the exponent of the sum as follows:

1) Add one to the exponent of the final sum if overflow

has occurred.

2) Subtract from the exponent of the final sum the

number of bit positions the leading ONE was shifted

to be placed at bit 16 for 64-bit mode or 32-bit

mode for the Inner word or at bit position 40 in 32-

bit mode for the Outer word.

3) If the mantissa is all zeros, the result (if

normalizing) is zero for the whole word (sign,

exponent and mantissa).

-137-

ADDITION IN 64-BIT MODE

CLOCK TIME Tl--Figure 35 (This clock time is skipped if fixed point
arithmetic is used.)

Exponent Difference (Bexp-Aexp) Bexp+Aexp ~ SCR and LOD #6

1. Enable true form of exponent of B (bits 1 through 15) out of B.

2. Enable complement form of exponent of A (bits 1 through 15) out

3. Enable complement of exponent of A into CPA (bits 1 through 15) .

4. Enable true form of exponent of B into CPA (bits 1 through 15).

5. Enable the sign of B mantissa into CPA (actually zero, since B

sign is not gated out of B register; bit 0).

6. Enable the bit carries because of the addition of exponents of

B and A into CPA.

7. Force zeros into the mantissa part of CPA (this transmits end

around carry into exponent field).

8. Clear and load clocks into SCR.

of

* 9. Put exponent part of CPA into SCR (8-15) (CPA bits 74 through 79).

10. Clear and load clocks into LOD (CPA bits 64 through 73 and store

carry-out).

11. Clear and load the latch for OSEQ (stores operation, add or

subtract).

*In reality bits 10-15 are put into SCRbecause only
6 bits are needed for a count number 0 - 63.

-138-

A.

r~ G A

R G B

LaD

C.P.A.

1 0 D if

011 1 S p'6 /.-' .-' /" , , / , / "/ "6
3

.-'
L/ ././ ././ /./ L ./ ./ ./ L 'L

-
A

011 15 6/ / / ,/ ,/./

1LL'///~
/.-'.-' //(;1
/L ///.,3

B
..L

LOD.lf 5 LOD # 1 LOD II 2 LOD II 3
O,L~,8,12 0,16,32,48 0,1,2,3 .

4~ .!~, -- -' • ~ j ~

, r -: / .-' / / ,/ ,/ /' ,/ /' ,/ ,/.-' ~i 1
~6././ ./ ./ / L L L ., ,/ L L L

61 64 65

t
SOR SCR

UNT llEGISTER (LOD #4) 10 15

6

CARRY = 0 CARRY OUT
CAHRY = 1

~ •
0 617

.4~

~
Ira LaD # 15

fi'IGUHE 35. Ij1LOW CHART OF Ac:rrONS
AT! IIIHE Ir 1

-i39-

15
~~

,t U

79

CLOCK TIME T2--Figure 36 (This clock time is skipped if rounding is
not used or if fixed point arithmetic is used.)

Rounding (Optional)

1.

2.

Enable true output sign and mantissa of A)
Enable true output sign and mantissa of B

These enables are un
necessary in this
clock time.

3. a. Enable A into LOG if there is (from expo difference) a

carry (expon~nt of B > exponent of A).

b. Enable B into LOG if there is no carry

(exponent A ~ exponent of B).

4. Transfer LOG into BSW (bits 16-63).

5. Enable the 64-bit shift counter from SCR (true value if carry;

complement if no carry).

6. Enable "force" shift left (control for end off; allows data in

bit zero position).

7. Load most significant shifted off bit (appears in BSW bit zero

position) into IMSB latch if exponent difference is less than 64.

-140-

it G A

R G B

LOG

B. S.W.

L 0 D

S. C. R.

(LOD # 4)

0 1'" /' / /15' 16 63
.////

1 CARIrf=1

0
V///
.. 1/ ./ ./].5 16 63

I..

CARRY=O -
T !r 1 , I ' ,

0 ///~ I].., ./ ./ /1.5 1 6 63

~r

~ 16 63

~~ ~~ ~~

0, 4, 8, 12 0,16,32,48. 0" 1 , 2,
LOD if: .5 LOD .# 1 LOD # .2 LOD # 3

4~ ,
.~ -4 h

- -- - -~ - - -~ - - - - - -

~~H
10

",

+
SCH EXP DIFF< 64

1.5 LOD # 1.5~

FROM C.P. A.

FIGURE 36. ~'LOW CHART OF A.CTIONS
AT TIME T 2

-141-

3 : to- 1MSB
LATCH

- ~-l;- --

INFOru-1A!fION BJL o\.
DASH~D LI1TE '"lAS
GIVEN AT TIME T 1

CLOCK TIME T3--Figure 37

Align Mantissa with Smaller Exponent

1. Enable (select) complement of signs of A and B if unsigned and fixed

point (when used with 2, forces signs to be equal--both ones),

2. Enable (select) true form of signs of A and B.

3. Clear and load the batch for OSEQ is signed or fixed point.

4. Enable (select) true form of mantissas of A and B.

5. Enable sign and mantissa of A into LOG if there was a carry.

6. Enable sign and mantissa of B into LOG if there was no carry.

7. Enable 64 shift counter from SCR

a. True out of SCR if there was a carry

b. Complement of SCR if there was no carry.

8. Transfer LOG intd BSW (16-63 bits).

9. a. Transfer the BSW into A (16-64 bits) if there was a carry

b. Transfer the BSW into B (0-15, 16-63 bits) if there was no carry

*10. a. Load A mantissa if there is a carry and exponent difference

11.

12.

13.

14.

is less than 48

b. Load B mantissa if there is no carry and exponent difference

is less than 48.

Enable exponent of B (1-15 bits) out of B.

Enable original sign of A (0 bit) into sign bit position of A.

Enable B exponent into the exponent part of A.

Clear and load the sign and exponent part of A if there was a

carry (Bexp > A~xp).

* Floating point only

-142-

i
CARRY = 1

V/'./ /' ,
RGA 0 ~1/ / ~ 1~ 16

RGE O~
/ / /15 16

/ / ,/

J

r ~,
V"///

LOG 0 1 15-
~ ./ ./ ./"/

16

B.S.W. 0 1 15 16

!
L 0 D LCD # 5

0,4,8,12

LOD # 1

~~ 4. . ~,
- -- - - - -

-seR SOR
S.C.R.

10 15
LOD # 4

CARRY = 0

FIGURE 37.

. ,-

~

,t
"

J'

4
0,16,32,48

IJJD II 2

-' j~

- - - -

LCD II 15

FROM C.p·!.

CARRY = 1

CLEAR
63

LOAD

CARRY = ~
ClEAR

63
LOtlD

.~

0

63

I

63

~
0,1,2,3 \

I LOD 1/ 3

t ~~

- - I- - - - - -t-

~.

EXP DIFF 48

--- CARRY = 1

INFORMlTION BELOW DASHED LINE
GIVEN AT T 1

FLOW CHART OF ACTI{)LiS AT 'lIMB l' 3

-143-

CLOCK TIME T4--Figure 38

Addition of Mantissa

1. Enable true form of mantissa out of B if mantissa signs are equal

(OSEQ true) .

2. Enable complement of mantissa out of B if mantissa signs are unequal

(OSEQ false) .

3. Enable true form of sign and mantissa out of A.

4. Transfer mantissa of A into CPA.

5. Transfer mantissa of B into CPA.

6. Inhibit EAC from exponent if signs are equal.

7. Enable bit carries into CPA (resulting from the addition of the

mantissas).

8. Transfer sign of mantissa of B into CPA (actually zero») This puts
transmits in

9. Transfer the exponent of A into CPA (actually zero) bits 0 through
15 of CPA.

10. Transfer the mantissa of CPA into A

11. Set WCMP latch if there is no carry and signs are unequal.

12. Set overflow if the signs are equal and there is a carry (most

significant bit of mantissa of CPA).

13. Clear and load clocks into OVI.

14. Transfer CPA equal signal (all transmits) to RGC (can only occur if

signs are unequal) used for rounding.

15. Clear and load RGC.

-144-

R G A

R G B

C .P A

NA
S
E

o 1

o 1

NTISSA
IGNS
QUAL

1.5 16

oj .5 16
B

EAC

L ~,

r-- 16

CARRY OUT

OVI
LATCH

ii1IGURE 38.

~,

63

1 A

63
B

~. ~,

631 641 65
~~

li1LOW CHART OF AC'PIONS
AT 'rIHE T 4

-145-

MANTISSA 31 GNS
EQUAL

11ANTIS3A SI GNS
AL

79

...
~

NOT EQU

.. I -r-

1
\:JCNP
L.lVrCH

N 0-
ARRY C

OP A
UAL EQ RGO (A

TR
LL
ANS!1IrrS~

I

CLOCK TIME TS--Figure 39 (This clock time is skipped when not rounding
or in fixed point.)

Complement t RoundtStore Overflow

1. Enable the true form of mantissa out of A if WCMP latch is false.

2. Enable the complement of mantissa out of A if WCMP latch is true,

3. Transfer mantissa of A (lor 2 above) into CPA.

4. Enable bit carries into CPA (O - IS) and CPA (16 - 63).

S. Enable the exponent of A into CPA (6S-79) (actually all zeros).

6. Clear and then load clocks into mantissa of A.

7. Force zeros into the mantissa part of CPA (from B).

8. a. Force SGE = 1 If ROUNDING and ADD 1 to MSB of mantissa and

if WCMP latch is.low

b. Force SGE = 0 and STE = 0 If ROUNDING and subtract 1 from

the MSB of mantissa if WCMP latch is low.

9. Set overflow OVI using load clock only and if OSEQ is true.

10. Enable the mantissa sign of B into CPA.

11. Enable the mantissa part of CPA into A.

-l46-

R G A o 1 15 16

o 1 15 16

c. P. A. 16

FIGURE 39·

~,

I
A

"
1, ,
I

FLOW CHART OF ACTIONS
AT TIME T 5

-147-

63

A

63

WON P LATCH=O

~ HOM P LATCH=1

63 64 65 79

~~ ~.

CLOCK TIME T6--Figures 40 and 41

(PART A) Complement 2 Normalize 2 Adjust Exponent, Determine Sign

1. Enable RGA (16-63) if WCMP latch 0 or round variant is used.

2. Enable complement of RGA (16-63) if WCMP latch = 1 and rounding

3. Enable RGA (16-63) into LaD when normalizing.

4. Enable RGA (16-63) into LOG.

5. Enable LOG (16-63) into BSW.

is not used.

6. Enable exponent correction bits into RGB (8-15) when normalizing.

7. Enable clear and load clocks into RGB (0-7).

8. Enable 00 111 111 into RGB (0-7) for exponent correction.

9. Enable clear clock for OVI.

(PART B) If Not Normalizing

1. Enable clear and load clocks for RGA (16-63).

2. Enable RGA (0-15).

3. Enable RGA (1-63) into CPA (65-79 2 16-63).

4. Enable RGB (16-63) into CPA (16-63) •

5. Enable bit carries into CPA (16-63) but disable CPA (65-79).

6. Compute correct sign of RGA.

7. Restore sign of RGA.

8. Enable CPA (1-15) into RGA (1-15).

9. Enable clear clock for OVI.

-148-

R (J ' A

R G B

0111111

L U G

B.S , w.

L 0 D

~ ~0 8_15 16 63 ~ "Lh
A

A

0 1-7 8_15 16 63

~ t
! •

o 1 15 16 63

• • ~~ ~,

16 63

• I I

• • • • •
17 32 33- 48' '49 63

LaD # 5 LaD -# 1 LOD # 2 LOD # 3

I f f f

FIGURE40. FLOW CHART OF ACTIONS
AT TIME T 6 (PART A)

-149~

WCMP LArrCH = 0
WCHP LATCH = 1

R G A

R G B

C.P. A.

,t

o 1 15 16

~l

~

~
~ ~ 1 0~ 16

"
~ r

16

SIGN COMPUTATION

B'IGURE 41. }IL014 CHART OJ? ACTIONS
AT TIME T 6 (PART B)

-150-

63

63

~,

63 64 65 79

CLOCK TIME T7--Figure 42 (This clock time is skipped if in fixed point.)

Correct Resultant Exponent

1. Enable true out of RGA (1-15).

2. Enable true out of RGB (B-ls).

3. Enable true out of RGB (1-7) if normalize and there is:

a. No overflow or

b. Bit 16 of RGA was not a ONE prior to normalization.

4. Enable complement out of RGB (1-7) if there is:

a. Overflow or

b. Bit 16 was a ONE prior to normalization.

5. Enable RGA (1-63) into CPA (65-79, 16-63) (mantissa part is all zeros) ·

6. Enable RGB (1-63) into CPA (65-79, 16-63) (mantissa part is all zeros) .

7. Enable bit carries into CPA (16-63, 65-79).

B. Clear mantissa of RGA if there is exponent underflow (conditionally) .

9. Load clocks to RGA (0-15) or FYEASNOW-T and P-EX-UF--L and P-ZML--H-L.

10. Enable exponent overflow to mode REGISTER on FYEEXOFM-T and

P----E----l.

11. Enable exponent. underflow on FYENUF-M-T and P-ZML--H-L.

12. Clear and load clocks to F.

13. Set F on underflow or NO zero mantissa.

14. Clear clocks to OV1.

15. Restore the sign of RGA after computation.

16. Enable CPA (65-79) into RGA (1-15) .

R G A 0

H
,...

R G B . 10

c: P. A.

,
1 15 16 63

I
11-718-15116 63

I
TRUE
COHPLEMENT

16

IilIGUHE L:2.

• , t

63

FLOW CHART OF ACTIONS
AT TIME T 7

-152-

1~ t ~.
"

64 65 79

I I

ADDITION IN 32-BIT MODE

CLOCK TIME Tl--Figure 43

Exponent Difference of Inner Word

1. Enable true out of RGB (9-15).

2. Enable complement out of RGA (9-15).

3. Enable RGA (0,1-7, 9-15) into CPA (64,65-71, 73-79).

4. Enable RGB (8,9~15) into CPA (72,73-79).

5. Enable WD4 inner and outer mantissa into CPA (16-63) *.

6. Enable bit carries into CPA (72,73-79).

7. Enable CPA sum of inner sign and exponent (72,73-79) into the BSW.

8. Enable clear and load clocks into the SCR.

9. Enable clear and load clocks into LOD.

10. Clear and load clocks into ISEQ and 0SEQ latch.

11. Enable signal to speed up path around the latch of stored carry.

*Since the part of LOG corresponding to the OUTER and INNER
mantissa has not been enabled, the input to the CPA (16-63)
looks like all zeros have been forced into it.

-153-

R G A

R G B

------------.-.-.-- ------

L.O.D.

B.S.W.

~--------------~--------------~--~
10_15'SCR

LOD # 5
16_ 31 32 _47 48 __ 63

LOD # 1 LOD # 2 LOD # 3

FI GU HE 43. IllLOW CHART OF ACTIONS
AT TIME T 1

-154-

INFORMATION BELOW
D AS FED LINES '/·TILL
BE GIVEN AT CLOCK
TIME T.

CLOCK TIME T2--Figures 44 and 45

Save MSB to be Shifted Off for Rounding in Inner Word

1. Enable true out of inner sign and inner mantissa of A (8,16-39) •

2. Enable true out of inner sign and inner mantissa of B (8,16-39).

3. Enable RGA into LOG if there is a carry (Aexp < Bexp) .

4. Enable RGB into LOG if there is no carry (Aexp ~ Bexp).

5. Enable LOG (0-39) into BSW (24-63)*.

6. Enable CPA into shift count

a. SCR true out if there is a carry

b. SCR complement out if there is no carry.

7. Enable force shift left**.

8. Enable clear and load clocks into IMSB latch.

* Because of restrictions arising from signal controls LOG bits (0-39)
are enabled into BSW, but bits (0-39) of LOG are effectively placed in
the BSW (24-63 bits) by simply shifting each byte by 24 places to the
right in order to be able to save the MSB in position 64.

** This is required in the case where there is no carry to complement the
content of SCR into LOD and for shift to right to have the same result
as left shift.

~·.~?.,t·118 : .. ~~. -~.)..~ e·116··----·;~i ,241----l'pz----·--·i91I.{p ------ 1.17/'18"

_ .. __ ._-- _._ _._---£

/il/ro .zsV! (32) ,",,0-6:;,) ~

________________ ~I~;~~~<-:-·--~ $11~_l ________ J_1·+I-~/_~ ______ ~9~71-'1-6------~r-1~~~6------~~~
. . ,/. -:-yr ~ <.r / 0 ~:; f 2 V v~1 ::; 2. ..., ~

Figure 44. Diagranunatic Representation of Shifting
Operation at Time T2

-155-

R G B

LOG

B. S. W.

0 1--7 8 9 15 16 39 40 63

- -- ~ CARRY = 1 - CARR Y = 1

0 1--7 8 9 15 16 39 40 63

- ~ CARRY - -
·t I ~ , i
I
8 0 1 7 9 15 16 39 40 63

I
1

- SHIFTED BY 24 - PLACES
~, ~,

- IMSB
~ 0 1 15 16 32 39 40 63 - LATCH

~ THE CON'fHOLS TO BSW COME F1ROM LaD tmICH RECEIVES THE ANOUNT OF'
SHIFTING FROM THE SHIFT COUNT REGISTER AS A RESULT OF THE OUTPUT
OF CPA (SEE FLOW CHART OF TIME T1 -- FIGURE 39)

FLOW CHART OF ACTIONS
Arr rrIME T 2

-156-

= 0

CLOCK TIME T3--Figures 46 and 47

(PART A) Difference of Exponents of Outer Word

1. Enable true out of RGB (1-7).

2. Enable complement out of RGA (0,1-7).

3. Enable RGA (1-7) into CPA (65-71).

4. Enable 01 111 111 into CPA (72-79).

5. Enable RGA (8-15) into CPA (72-79).

6. Enable RGB (0,1-7) into CPA (64,65-71).

7 . Enable WD4 inner mantissa into CPA (16-39)*.

B. Enable bit carries into CPA (64,65-71).

9. Enable CPA sum of outer sign and exponent (64,65-71) into

Barrel Switch (through the SCR).

10. Enable clear and load clocks into SCR.

11. Enable clear and load clocks into LOD.

(PART B) Align Mantissas of Inner Word with Smaller Exponent

1. Enable true out of RGA (B, 16-39).

2. Enable true out of RGB (8, 16-39) •

3. Enable RGA (B,16-39) into LOG (B,16-39) if there is a carry.

4. Enable RGB (B,16-39) into LOG (8,16-39) if there is no carry.

* The WD4 inner mantissa is brought into CPA (16-39) to insert
zeros to CPA (16-39) because since the part of MSG corresponding
to WD4 has not been enabled, its output looks like a zero.

-15~-

5. Enable CPA into SC from SCR depending upon the end around

carry. Also enable SC > 48 detection for inner exponent

a. SCR true out if there is a carry

b. SCR complement out if there is no carry.

6. Enable LOG (16-39) into BSW (16-39).

7. Enable BSW (16-39) into RGA (16-39) •

8. Enable BSW exponent into RGB exponent.

9. Enable BSW (16-39) into RGB (16-39).

10. Enable clear and load clocks into RGA (16-39) if there is

11. Enable clear and load clocks into RGB (16-39) if there is

12. Clear and load clocks to the ISEQ latch.

13. Enable true out of RGB (9-15).

14. Enable RGB exponent into RGA exponent.

15. Enable clear and load clocks into RGA (8-15) if there is

and El = 1.

16. Restore sign of RGA (8).

-158-

a carry.

no carry.

a carry

R G A

R G B

LOD

CPA 16--

16- 31 32-47 48-63
LOD # 5 LOD # 1 . LOD # 2 LOD # 3

~s.w. 0 ---------

FIGURE 46. FLOW eH A.R'r OF ACTIONS
AT TIME T 3 (PART A)

-159-

1
THR INFO ffi-' A TI ON
BEL01iv DA~)HED LINES
IS GOI1~G TO BE
GIVEN BY A FUTURE
CLOCK TIME.

R G A

R G B

LOG

.8.S.\'/.

L 0 D

10---------___ - CARRY=1

SPECIAL CIRCUIT CARRY=O

0-------

C. P. A. --71 --79

LOD # 5
16-31 32-47 48- 63
LOD # 1 LOD # 2 LOD # 3

10 15
LOD # 4

B'IGURE 47 o. l~LOW CHART OF ACTIONS
AT TIr1E T 3 (PART B

-160-

THIS INFORHATION BELOW
DASHED LINES WAS GIVElT
AT PREVIOlTS CLOCK 'J.IIME.

CLOCK TIME T4--Figure 48·

Save MSB of Bits to be Shifted Off of Outer Word

1. Enable true out of outer sign and mantissa of A (0,40-63).

2. Enable true out of outer sign and mantissa of B (0,40-63).

3. Enable A into LOG if there is a carry (Aexp < Bexp) •

4. Enable B into LOG if there is no carry (Aexp > Bexp).

5. Enable LOG (40-63) into BSW (40-63).

6. Enable CPA out into SC from

a. SCR true out if there is a carry

b. SCR complement out if there is no carry.

7. Enable force shift left.

8. Enable clear and load clocks into OMSR latch.

-161-

R G A 0 1-7 8 9 15

........
] -

R G B 0 1-7 8 9 15

....... -

CPA

l~.
LOG 0 1 15

B. S. w; 01 1 15

FIGURE 48.

16 39 40

16 39 40

1
T

~

16

,r
16

~l

FLOW CI-IAHlrOF ACTIONS
AT TIME T 4

-162-

1
1

........

,

63

-.......
CARRY=1

63

CARRY=O

63

63

LaD CONTROLS ~m:ICH ARE
THE RESULT a F THE
EXPONENT 1)1 FFw.RF.l\T CE
FOUND IN A PREVIOUS
CLOCK TIME

CLOCK TIME T5--Figures 49 and 50

(PART A) Align Mantissas of Outer Word with Smaller Exponent

1. Enable true out of outer sign and mantissa of A (0,40-63).

2. Enable true out of inner sign and mantissa of B (0,40-63).

3. Enable A into LOG (0,40-63) if there is a carry.

4. Enable B into LOG (0-,40-63) if there is no carry.

5. Enable CPA into shift counter and then

a. SCR true out if there is a carry

b. SCR complement if there is no carry.

6. Enable LOG into BSW (40-63).

7. Enable BSW (40-63) into A (40-63).

8. Enable BSW (0-15,40-63) into B (0-15,40-63).

9. Enable load clocks to OUTER mantissa of A if there is a carry

and PEXDI-L48H is true.

10. Clear and load clocks to outer mantissa of B if there is no carry.

11. Enable outer exponent of B (1-7).

12. Clear and load clocks into outer sign and exponent of A (0-7).

13. Enable exponent of B into exponent of A (0-15).-

14. Restore outer sign of A (0:1).

(PART B) Add Mantissas of Inner Word Store Overflow (OVl) (if there is any)

1. Enable clear and load clocks to outer sign and exponent of

RGA if E = 1 and there is a carry.

2. For addition FYE-K----T is 0 from cu.

3. Enable true out of inner mantissa of RGB if P--ISEQ--H.

4. Enable complement out of inner mantissa of RGB if P--ISEQ--L.

5. Clear and load clocks to outer sign equal latch.

6. Enable true out of inner mantissa of RGA.

7. E~ab1e the complement out of SCR.

8. Enable RGA.(1-7,9-15,16-39) into CPA.

9. Enable RGB (8,16-39).

10. Force zeros into CPA (WD4 outer mantissa to CPA outer mantissa).

11. Enable the bit carries into CPA.

12. Inhibit end around carry through exponent if ISEQ high.

13. Enable CPA (16-39) into RGA (16-39).

14. Clear and load clocks into inner CMP latch.

15. Clear and load clocks into inner mantissa of RGA (16-39).

16. Enable to set OV1 (for inner word).

17. Enable true output of RGA inner sign.

-164-

R G A

a G B

LOG

B.S. w.

L 0 D

CPA

3. C. H •

" 8
V/"/ ~ I' "//' //*,

40 63 0 1-7 9 15 16 39
V/// ./////.,;

~; 1
- ~p CARRY = 1 --w - T -

RESTORE

" 8
///

0 1-7 ~ ./ ..,,15~
V ///~
~1~ ./ / /3) 40 63

~ CARRY = 0- I - - ~ ~ , ,
0 1-7 8 9 15

v/////_~

J6/./.." .." 3~ 40 63

I ~r

0 63

~~ .. H

16- 31 32 47 48----- 63
LOD # 5 LOD # 1 LOD # 2 LOD # 3
4~ j • • , , U

~ARRY
14- 16 39J40 631641 65 -71172173 -7S(

SCR
10

=,1 ~CARRY = 0

•
SOR

15

}t'IGURE 49. FLOW CHART OF ACTIONS
AT TIME T 5 (PART A)

-165-

J

R G A

R G B

C. P. A.

o 1_7 8 9 ___ 15 16 __

o 1_7 8 9, ___ 15 16 __

FIGURE _;0.

16--

FLOW CHART OF ACTIONS
AT TIHE T5 (PART B)

-166-

CLOCK TIME T6--Figure 51

Complement (if necessary), Round, Store Overflow (if there is any)
of Inner Word

1. Enable true out of inner mantissa of RGA (16-39) if inner CMP

latch output is low.

2. Enable complement of inner mantissa of RGA (16-39) if inner CMP

latch output is high.

3. Enable RGA (16-39) into CPA (16-39).

4. Enable bit carries into CPA inner sign and exponent (72, 73-79).

5. Enable bit carries into CPA mantissa.

6. Enable zeros into CPA (enable RGA (40-63) into CPA (40-63»).

7. Enable to set OVI (for inner word).

8. Enable RGB inner mantissa (16-39) into CPA (16-39).

9. Enable adder to round properly.

10. Enable RGB outer sign (0) to CPA outer sign (64).

11. Enable RGB outer exponent (1-7) to CPA (65-71).

12. Enable inner sign of RGB into CPA (72).

13. Enable RGA (9-15) into CPA (73-79).

14. Enable CPA (16-39) into RGA (16-39).

R G A

R G B

CPA

-"-7 8 9-15 16--39 40

IF INNER CMP LAll'CH
IS LOW

63

9)

FIGURE 51. FLOW CHART OF ACTIONS
AT 'rIME T 6

-168-

IF INNER CNP LATCH
IS HIGH

CLOCK TIME T7 --Figures 52· and 53

(PART A) Add Mantissas of Outer Word, Store Overflow (if there is any)

1. Enable true out of RGB (40-63) if outer sign equal latch output is

high.

2. Enable complement out of RGB (40-63) if outer sign equal latch output

is low.

3. Enable true out-of RGA (40-63).

4. Enable RGA (0) to CPA (64).

5. Enable RGA (1-7,8) into CPA (65-71, 72).

6. Enable RGB ·(9-15) into CPA (73-79).

7. Enable RGA (40-63) into CPA (40-63).

8. Enable RGB (40-63) into CPA (40-63).

9. Enable zeros into CPA (16-39) (because the signal calls for WD4 inner

mantissa into CPA inner mantissa).

10. Enable bit carries into CPA.

11. Inhibit end around carries through exponent if outer sign equal latch

is high.

12. Enable CPA (40-63) to RGA (40-63).

13. Clear and load clocks to outer CMP latch.

(PART B) Complement (if needed); Normalize, Adjust Exponent of Inner Word

1. Clear and load clocks into RGA (40-63).

2. Enable true out of RGA (16-39) if inner sign equal latch output is low.

3. Enable complement out of RGA (16-39) if inner sign equal latch output

is high.

4. Enable RGA·(16-39) into LOG (16-39).

-169-

5. Enable LOG (16-39) into barrel switch (16-39).

6. Enable exponent adjustment into Inner exponent of RGB.

7. Enable clear and load clocks into LOD.

8. Clear OV2 if no overflow exists.

9. Load OV2 if there is overflow.

10. Clear and load RGA (16-39) and RGB (8-l5).

11. Enable LOD (8,9-15) to RGB (8,9-15).

12. Shift right by ONE if overflow exists.

13. Enable (conditionally) to set F bit if F bit has been set and

there is OVI.

14. Inhibit the clear clocks to RGD.

15. Enable barrel switch (16-39) into RGA (16-39).

16. Clear overflow (OVl).

-170-

R G A 0 1

I

it G B o 1

C.P.A.

t
7 8 9-15 16-39 40-63

7 8 9-1$ 16_39 40 63

1- ~B --
IF OSE ~ LATCH -H1Gi B

11 t
V " .,

~O_63 ~16_39·
L/LL

If1IC}URB 52. }:4'LOW CHART OF ACTIONS
AT 'rIME T 7 (PART A)

-171-

IF OSE'LATCH LOW

64 65_71 72 73_79

•• ~ 4 h

H G A

LOG

B.S.W.

L 0 D

.\ G B

---39 40----63

II-il l3~~Q LATCH=1

SHIFT RIGHT ONE

---63

---39 40 ---63

B B

IF BIT 9=1 =0

16--39 40--

TH~ 1) AHlr Bl~;LO~v i)ASTn~D LINE
DOES NOT ~:n~LONG ~10 IfIHE T7 BU'f IS
SHO~;JlJ le'O.~ THE St\Kl~ OF CLA RITY OF
l' HESEJ.~·rr AIEl ON.

"IGURE 53. li"'LOvJ CHAH'r OF AG'rlONS
AIr TIHE T 7 (PART B)

-172-

CLOCK TIME T8--Figure 54

Complement (if needed), Round, Adjust Exponent of Outer Word

1. Enable true out of RGA (40-63) if outer CMP is low.

2. Enable complement out of RGA (40-63) if outer eMP is high.

3. Enable RGA (40-63) into CPA (40-63).

4. Enable bit carries into CPA (64-71).

5. Enable RGB (0) into CPA (64).

6. Enable RGB (40-63) into CPA (40-63).

7. Enable RGA (1-39) into CPA (65-79; 16-39).

8. Clear and load clocks to RGA (40-63).

9. Round properly.

10. Enable to set OV2 (for outer word).

11. Enable CPA (40~63) to RGA (40-63).

-173-

R G A

R G B

C.P.A.

t
0 1_7 8 9_15 16_39 40_63

o 1

IF(D CMP= 0--1 A_ I+-IF G)CMP=1

1.

7 8 9_15 16_39 40 63 -
l,J ,. .

I
I ~'/~; 40-63 64 65-71. 12 73-79
I ~///.,;;~
I

~ J , ,
I

I &.---4
I

'-- - - --- - -. 1----------"'

FIGURE SLr• FLOW CHART OF ACTIONS

AT TIME T 8

-174··

CLOCK TIME T9--Figure 55

Complement (if needed), Normalize, Adjust Exponent of Outer Word or
Correct Exponent and Sign of Inner Word

1. Clear and load clocks into RGA (40-63).

2. Enable true out of RGA (40-63) if OCMP latch output is low.

3. Enable complement out of RGA (40-63) if OCMP latch output is high.

4. Enable RGA (40-63) into LOG (40-63).

5. Enable LOG (40-63) into barrel switch (40-63).

6. Enable load clocks to RGA (40-63).

7. Enab1e LOD (0-7) to RGB (0-7).

8. Enable (conditionally) underflow if mantissa is not ZERO.

9. Inhibit clear clocks to RGD.

10. Enable exponent adjustment RGB (8-15).

11. Clear and load RGB (0-15).

12. Enable RGA (9-15) into CPA (73-79).

13. Enable RGA (16-39) into CPA (16-39).

14. Enable RGB (16-39) into CPA (16-39).

15. Enable carries into CPA (16-39).

16. Enable CPA sum (72-79) to RGA (8-15).

17. Enable clear clocks to RGA (8-15) if El = 1.

18. Enable clear clock to RGA (16-39) if there is exponent overflow

during normalization.

19. Enable exponent overflow into mode register.

20. Enable load clocks into RGA (8-15) in case of overflow or under

flow of exponent.

21. Enable clears and loads to Fl.

-175-

22. Restore sign of RGA (8).

23. Enable set of F1 if F1 bit has been set and there is OV2.

24. Compute correct sign of RGA (8).

25. Enable RGB (9-15) to CPA (73-79).

26. Enable bit carries into CPA (n, 73-79).

27. Enable CPA sum (72, 73-79) into RGA (8, 9-15).

28. Force a shift right ONE if overflow occurs.

29. Inhibit Section carries.

-176-

R G A 0 1 1S 16

1 -

R G B a 1 15 16

--
A --- B

, "
LaG o 1 15 16

~,

,~

13. S. vi. o 1 15 16

LOD # 5 16

.. ~ b I I
- '--

SCR SOH
LOD 1,:' 4 (3.Cn)

jjlIGURE 55.

+
~ -'I ~

i

-

B A

~. ~,

I
"

I

J~ Jl

LaD # 1 31 32 LOD # 2

• j

FL01rl CHAixT OF ACTI ONS
AT 'l'IfvIE T 9

-177-

39

CARRY = 1

63
..J

"'CARRY = 0

63

63

t

47 48 LaD # 3 65

T

CLOCK TIME TIO

Correct Resultant Exponent and Sign of Outer Word

1. Enable RGA (0-7).

2. Enable true out of RGB (1-7) (for exponent adjustment).

3. Enable RGA (1-15) into CPA (65-79).

4. Enable RGB (1-15) into CPA (65-79).

5. Enable bit carries into CPA (72-79).

6. Enable CPA sum (64-71) to RGB (8-15).

7. Enable bit carries into CPA (64-71).

8. Enable clear clocks to RGA (0-7) if E = 1.

9. Enable clear clocks to RGA (40-63) if E = 1 and expo UFo

10. Enable load clocks to RGA (1-7) if FYEASNOO-T is true which

conditionally clears OUTER word of RGA in exponent overflow or

underflow or if there is underflow and P-ZML--H-L is true.

11. Enable CPA sum (64-71) to RGA (0-7).

12. Clear the OV2 latch.

13. Enable (conditionally) underflow into RGD on E = 1 and when

mantissa is not ZERO.

14. Enable exponent underflow or overflow if any of them occurs.

15. Enable clear and load clocks to F.

16. Inhibit clear clocks to RGD.

17. Restore the sign of RGA (0).

18. Compute correct of RGA (0).

-178-

B. Subtraction

This instruction is executed in a manner similar to that used for

addition. The minuend is held in A register and the subtrahend specified

by the content of the ADR field is held in B register. Before the

process begins the sign of the subtrahend changes and the two operands

are added exactly as in the implementation of the addition previously

described.

Table 34 provides a complete summary of the actions during sub

traction, but it is suggested that the information given in the latter

part of addition (summary of actions) be thoroughly considered before

attempting to analyze the contents of this table. It is felt that the

following remarks might be of help in analyzing this table. They are

consistent with the procedure of implementation of the addition instructions.

Table 34. Truth Table of Conditions in Subtraction (4)

COMPLE- DOES
CARRY MENT COMPLE- MAN-
OUT OF SIGN SUBTRA- MENT TISSA
MSB OF OF SIGN OF END REND MAN- OVER- SIGN
MAN- MAN- SUBTRA- AROUND MAN- TISSA FLOW OF
TISSA TISSA REND CARRY TISSA OF SUM OCCUR'? SUM REMARKS

0 0 0 0 1 1 0 1 '0" denotes

0 0 1 0 0 0 0 0 ~ALSE, "1"

0 1 0 0 0 0 0 1 denotes TRUE

0 1 1 0 1 1 0 0 In all cases

1 0 0 1 1 0 0 0 except for

1 0 1 0 0 0 1 0 sign where

1 1 0 0 0 0 1 1 "0" = +

1 1 1 1 1 0 0 1 "1 " = -

-179-

1. End Around Carry is used when the signs of the original

operands (prior to changing the sign of subtrahend) do

not disagree and there is a Carry out of the most

significant bit of the sum when these two operands are added.

2. When the two operands are added the mantissa of the sub

trahend is complemented (l's complement) only if the

signs of both operands are the same.

3. The sum (mantissa) is complemented (l's complement) only

if the signs of the original operands are the same and

there i~ no Carry out of the most significant bit of
I

the mantissa sum.

4. Mantiss.J overflow (sum) is expected to occur only when

the sigris of the original operands disagree and there

is a Carry out of the most significant bit of the

mantissa sum.

5. The sign of the sum is a function of the sign of the

minuend and the complement of the sum (sign of minuend $

complement mantissa of sum).

Since subtraction follows the same procedure as addition it is

proper to say that it needs the same number of clock times to be imple

mented in both the 64- and 32-bit modes of operation. It is apparent,

therefore, that if the option of Rounding is not used, clock times T2 and

T5 in 64-bit mode and T2, T4, T6 and T8 in 32-bit mode are not used and

thus the execution of addition and subtraction can be accomplished

in 5 clock times in 64-bit mode and 6 clock times in 32-bit modes.

C. Multiplication

1. Introduction. Multiplication in general is the addition of

partial sums which are the partial product of the mUltiplicand. and one or

more digits of the multiplier.

180-

Since speed is important and since the multiplication time in the

PE's is limited by the fact that the control unit proceeds into the next

operation only when all PE's in the quadrant have completed the multi

plication, acceleration of the process of multiplication is greatly

dependent upon the reduction of the number of the partial sums, the speed

with which these sums are formed and the speed with which these sums are

added in order to give the final product of multiplicand and multiplier.

2. Implementation

a) Mantissa: In ILLIAC IV the bits of the multiplier are used

in pairs to control the addition of the multiplicand as required by these

pairs. These pair bits may also require subtraction or a left shift of

the multiplicand.

When the pair of bits is 00 the multiplicand must be

multiplied by zero; i.e., no addition is required.

When the pair of bits is 01 the multiplicand is to be

multiplied by ONE (addition of the multiplicand to the partial product

is required).

When the pair of bits is 10 multiplication of the multiplicand

by TWO is required, which is in actuality the multiplicand itself shifted

to the left one position.

When the pair of bits is 11 the multiplicand must be

multiplied by THREE, which cannot be accomplished by either shifting or

complementing the multiplicand. Shifting the multiplicand one position

to the left has the effect of multiplying the multiplicand by TWO;

shifting it two positions to the left has the effect of multiplying by four.

Multiplication by three can be (and is) effected by multiplying by four in

this way and then subtracting the multiplicand from this partial product.

The bits of the multiplier are recoded as XO, Xl, X2,

X-I corresponding to 00, 01, 10, 11, respectively. When the recoded stage

happens to be X-I the multiplicand is just complemented and then added to

-181-

the partial product. This is the same as subtracting the multiplicand

once from the partial product. At a later time (in a manner that will

be described subsequently), the multiplication by four is accomplished.

Suppose the selected mode is the 64-bit mode, which means

that the mantissa has 48 bits. The mantissa can then be represented as

Y Y(l+1) Y(2+i) Y(3+i)············y(48+i) (1)

where i = 15.

Assuming the mantissa is in fractional form (floating point

arithmetic), and therefore the binary point is just left of the most

significant bit position (Y(l+i», the weight of each position is 2-
k

,

where 1+i<k<48.

The mantissa of an operand in floating point can be

represented in a simpler form, as follows:

where =

=

weight of the vector Yi+15

the vector Y in the (i+15)th
position of the register which
can take on the binary values
"0" or "1"

Bit 63 of RGB does not participate at all in the recoding

process of the multiplier, but is used as a flag that determines whether

the multiplicand is to be left in register A (if it happens to be a ONE)

or that register is to be cleared (if it is a ZERO). The remaining 47

bits of the RGB (multiplier) mantissa are grouped by two from right to

left and segregated into six sections (iterations), each section

containing eight bits and therefore four bit pairs. Each bit pair controls

a word (multiplicand times recoding of bit pair). Word 1 contains the two

least significant bits of that particular section, while word 4 contains

the two most significant bits of that particular section. Table 35 shows

-182-

the multiplier bits that are to be recoded, with respect to word and

iteration number, wherein:

wRDlJI WRDli2 WRDl/3 WRDl/4

i = 0 1 2 3 for ·Iteration 41
t- - - - - - - - - - - - - - _.

i = 4 5 6 7 for Iteration 112
t- - --- - - --- - ---- - --- - -

i = 8 9 10 11 for Iteration 413
~- - -- a ... ____

- - - ... ~.-----
i = 12 13 14 15 for Iteration 1/4

r- - ~-- f------ -- ---- -------
i = 1~ . 17 18 19 for Iteration f/S

... - - -' --' - ---- - - --- - -- ---
i = 20 21 22 23 for Iterat ion i/6

Table 35. Multiplier Bits to be Recoded

ITERATION WORD fF4 WORD ffo3 WORD 1F2 WORD fil
I Y61-2i Y62-2i Y61-2i Y62-?· ~ -~ 'Y61-2i Y62- 2i Y61- 2i Y62- 2i

1 55 56 57 58 59 60 61 62

2 47 48 49 50 51 52 53 54

3 ;39 40 41 42 43 44 45 46 -
4 31 ·32 33 34 35 36 37 38

5 23 24 25 26 27 28 29 30

6 16 17 18 19 20 21 22
-

(For those who like closed expressions for variables, it is evident from

the above that i=41+J-5, when I = iteration number and J = word number.

Thus:

WORD IIJ = (Y71-81-2J, Y72-81-2J)

where I = 1,2,3,4,5,6 and J = 1,2,3,4.)

-183-

By taking out of the recoding scheme the 48th bit and by grouping

the rest of the mantissa in groups of two bits, word 4 of the last

section has bit 1 (with a value of either 0 or 1) and a zero (in bit 2).

This zero is essential to handle a carry into word 4 from the previous

word; if then bit Y 2 2. of this word happens to be a ONE, word 4 will y - l.

be 10 which means that there will be a request for addition two times

of the mUltiplicand to the partial product. In this way there will be

no way to have a carry out of the word 4 of the last section (remember

bit Y62-2i of last word corresponds to bit 16 of the register). Since

bit numbers are assigned to each word and not bit location it can be

said that the general recoding stage (four such stages'per section) is

a function of the pair of bits of each word and the carry into the stage.

In this notation the output of recoding stage RS
47

_
21

can be

0, Xl, X2, X-I.

Consider the pair of bits Y6l- 2i and Y62- 2i with carry coming

into the stage in the first step at a particular section (Table 36).

In the second step not only that particular word, but any carry into the

stage must be considered.

Table 36. Recoding Multiplier Scheme

CARRY CARRY
STEP Y 6l-2i Y6~-2i IN RS

47
_
2i OUT

0 0 0 0 0

1 0 1 0 Xl 0

1 0 0 :X2 0

1 1 0 X-l 1

1-- -' - • -
0 0 1 Xl 0

0 1 1 X2 0

2 1 0 1 X-I 1

1 1 1 0 1

-184-

The recoding stage specifies how much the multiplicand must

be multiplied (how many times the multiplicand must be added or sub-

tracted from the partial product)_ From Table 36, the equations for the

carry out from a particular stage and the equations for the (47-2i)th recod

ing stage corresponding to each of the four values (XO, Xl, X2, X-I) that

this stage can take can be derived_

RS47- 2i = XO = Y6l_2i-Y62_2i-Carry In + Y6l_2i-Y62_2i-Carry In

(2)
= Xl = Y6l_2i-Y62_2ieCarry In + Y6l_2ieY62_2ieCarry In RS

47
_
2i

RS
47

_
2i X2 = Y6l_2i-Y62_2ieCarry In + Y6l_2i-Y62_2i-Carry In

RS
47

_
2i =X-l = Y6l_2i-Y62_2ieCarry In + Y6l_2ieY62_2i-Carry In

Carry Out = Y6l_2ieY62_2ieCarry In + Y6l_2i-Y62_2i-Carry In

= Y6l- 2i Y62- 2i (Carry In + Carry In) + y 6l_2i (carry In)Y62_2i

Y6l-2i(Y62-2i + Y62- 2i Carry In) (3)

(because of the Boolean Identity A + A = 1)_ From the Boolean Identity

A + AB =A + B:

Carry Out Y6l-2ieY62-2i + Y6l- 2i e Carry In (4)

Further study of Table 35 reveals that in the initial step

there will be no case where a carry can come into the first recoding stage

and also no carry can come out of the last stage of the last step_

-185-

The carry into a recoding stage is interpreted as a

request for an addition of four times the multiplicand to the partial

product in the next step, because at the current step, when the carry

out is generated, the multiplicand is subtracted once from the partial

product. Therefore any time the stage (or word) comes out to be 11 the

multiplicand is subtracted from the partial product and a request is

made for the multiplicand to be added four times in the next step

(Iterative Cycle).

Every time the word is recoded the multiplicand is shifted

a number of positions to the left but, at that point, it is necessary to

determine which recoding stage is in effect (i.e., which multiple is used).

If it is at Xl or X2 and word 1 of the first iteration (steps) is being

dealt with, the multiplicand is placed into the pseudo adder tree (PAT)

but shifted left one or two positions, respectively. Of course if it is

XO there is no problem, because that means that there is no request for

addition of the multiplicand. If it is X-I then the mUltiplicand is sub

tracted. from the partial product. In the next step things are different

because there may be a carry into the stage. If the stage is XO which

means no request for addition of the multiplicand, the carry in forces

the multiplicand to be added one time to the partial product because

carry into the stage is equivalent to a request for addition of the multi

plicand four times. This is accomplished by shifting the multiplicand

two positions relative to where the multiplicand was placed in the

previous word. If the stage is Xl, the appearance of the carry forces

the multiplicand to be added two times. This is done by shifting the

multiplicand two positions to the left compared to where the multiplicand

was placed in the previous word. If the stage happens to be X2 which

normally requires addition of the multiplicand two times, now the appear

ance of the carry forces it to look like X-I which means subtraction of

the multiplicand once from the partial product and a request to the next

step for an addition of the multiplicand four times.

If the stage is X-I, which normally requires the addition

of the multiplicand three times, the carry into the stage forces no

operation at this time, but a request for the addition of the multiplicand

four times to the partial product in the next step is made.

-186-

Table 35 shows that there are six sections (iterations)

each of which contains four words. Each section requires one clock

time for the formation of the partial product. Since there are eight

bits in each section or four words of two bits each, the multiplier

can be represented in terms of recoding stages as follows:

Y = Y
63

• 2-48 + !=o (RS
47

_
8i

· 2-(47-8i) + RS
45

-
8i

• 2-(45-8i)

2-(43-8i) + RS 2-(4l-8i)) + RS43_8i • 41-8i •

Therefore the final product of the multiplicand X and multiplier Y is

given by [4]:

(5)

5
XY = X [Y63 • 2-48 + ~

i=o
2-(47-8i) + RS -(45-8i)

(RS47_8i • 45-8i • 2

+ RS 2-(43-8i) . 2-(4l-8i))]
43-8i • + RS41_8i (6)

Dealing with positive numbers there are some cases which must be thoroughly

investigated. What happens if the two bits of word 1 of the first section

of the multiplier are II? In this case the mUltiplicand is subtracted

once from the partial product and a request is sent to the next step to add

the multiplicand four times to the partial product. This subtraction

should normally force the partial product to decrease more and more. If

the multiplier happens to be such that the next pairs of bits are 10 the

carry from the first pair will force the partial product to decrease more

and more until it may become negative and also an extra clock time would

be required to perform the request of adding the multiplicand four times

to the negative partial product. This extra clock time is not desirable

at all because of its costs in terms of speed. In order to cure this

problem a ZERO is forced in front of bit position 16 so that if bit

-187-

position 16 has a ONE and there is a carry from the previous pair,

this carry will force the last pair to look like 10 which indicates

addition of the multiplicand two times to the negative partial

product. At this point, being in the last step of the last section,

the multiplicand is shifted two places to the left compared to where

the multiplicand was placed in the immediately previous level of the

pseudo adder and, therefore, this number has a greater weight than

the negative partial product, which makes the final product a positive

number.

Since multiplication has been defined as successive additions

of multiplicand, it is evident that the use of a very fast adder is

critically essential. However, instead of using the old scheme of

addition of two numbers in order to produce the sum, a new adder has

been designed which adds three numbers and produces, instead of a single

sum, two numbers (sum and carry) which are equivalent to the three numbers

being added. This ~dder is called PSEUDOADDER (or Carry Save Adder) .

The pseudoadder has three levels and can accommodate S6 bits.

Its high speed is due to the fact that there is no carry propagation but

instead, the carry constitutes one of the three inputs to each level of

the pseudoadder, every level having as output the sum and a carry, which

along with the multiple of the multiplicand, constitutes the three inputs

to the next level.

The output of the third level of the pseudoadder is applied

to the Carry Propagating Adder (used, in this case, as a Carry Save Adder)

which along with the multiple of the multiplicand as a result of the

recode stage (word 4) produces the final sum and carries of a particular

iteration. The first 48 bits of the sum are stored in A register which

holds the partial product, while the other 8 least significant bits

are placed into B register. The B register is shifted through the BSW

in every clock time 8 bits to the right end off. The carries from the

carry propagating adder are stored in C register to be used as one of the

inputs into the first level of the pseudoadder in the next iteration.

-188- .

The correction bits (Table 37) are necessary in all levels of the PAT

and for WORD #4 in the CPA, because, if any of the words happen to require

the multiplicand to be multiplied by three, then instead of multiplication

a subtraction of the multiplicand from the current partial product is

performed. Since the sum is taken in 2's complement form the multiplicand

is complemented (l's complement) and added to the partial sum. Also an

extra bit is added to the least significant bit (bit 71). This extra bit

is forced into bit position 71 of the PAT or CPA depending on which word

requires such an addition, by the signal:

PWl-C----l for WORD #1
PW2E-X-l-l for WORD #2
PW3E-X-l-l for WORD #3
PW4-C---l for WORD #4

Details concerning the use of the correction bits are given later in

Example #2.

In the process of multiplication it may happen that the

multiplicand is ZERO and the multiplier is such that, in one of the

iterations, one or more of its words calls for a multiplication by three.

The expected result is ZERO but in this case it is necess.ary to get rid

of the carry which resulted from the extra bit inserted in bit location 71

in order to obtain the result in 2's complement. There is a signal called

PWl-K----l which inserts eight ONES in the most significant bit locations

of the PAT thus insuring that the final product will contain all ZEROS.

This signal requires special logic, in order to cover all the possible

cases and depends mainly on whether or not the multiplicand is normalized.

The equation for this signal (K function) is as follows (i = 1,2,---,6):

PWl-K----l Ti = R16 [WORD #4x-l + WORD #4x2 (WORD #lx-l+

+WORD #2x-l + WORD #3x-l) + PWl-K----l)]
To

+R16 [WORD #4x-l + (WORD #lx-l+ WORD #2x-l

+WORD #3x-l) + PWl-K----l)] To

-189-

(7)

*

**

Table 37. Definition of Signals Applied to PAT

SIGNAL NAME DESCRIPrION

PWl -WXX--l

PW2 -WXX--l

PW2 -WXX--l

PWlEXII
Xl¢
X-l
X2

PW2EXII
Xl~J'
X-l
X~

PW3EXII
Xl¢
X-l
X2

PW4EXII
Xl¢
X-l
X2

PW1-C----l
PW2ECX..;1-1
P~ECX-l-l
PW -C----l

PPW-WXX--l

WORD¥l bit XX from MSG into the first
level of PAT

WORD #2 bit XX from MSG into the second
level of PAT

WORD #3 bit XX from MSG into the third
level of PAT

These signals come from the MDG and are
applied into the MSG through the CTLrs.
They represent the recoding scheme i.e.
the amount of multiplication of multiplicand;

Correction bits ena1.le when WORD #1= -1
Correction bits enable when WORD #2= -1
Correction bits enable when WORD #3= -1
Correction bits enable when WORD #4= -1

PAT SUM for bit XX of the 3rd level of PAT

* PWl-C----l is us~d also to insert an extra bit (H1rr) at bit location
71 when WORD #l=X-l

** P\~4-C----l is used to insert an extra bit (rrl,,) at bit location 71
when WORD lila =X-1

-190-

Table 37. (Continued) Definition of Signals Applied to PAT

P5l-WXX--l Carry out of 1st Level of PAT for bit XX

P52-WXX--l Carry out of 2nd Level of PAT for bit XX

P5W-WXX--l Carry out of 3rd Level of PAT for bit XX

P3R-WXX--l RGC bit XX into the first Level of PAT

PAW-WXX-- RGA bit XX into the first Level of PAT

PW2E-l---- Enable of an extra bit at bit location 71
in the Second Level of PAT when WORD #2= -1

PW3E Enable of an extra bit at bit location 71
in the third level of PAT when WORD #3= -1

PWI-K----l A special enable of eight ONES to insure
that when the multiplicand is ZERO, the
result as U be ZERO too. See more details
below.

-191-

It is evident that in the first iteration, if the multiplicand is not

normalized and bit 16 happens to be ZERO, this signal is true and there

fore will insert eight ONES (only if anyone of the words calls for

multiplication by three).

During the multiplication process, in addition to the

registers shown on Figure 56, there are two more units used. These units

are the logic unit (LOG) which feeds the barrel switch and the barrel

switch and its associated controls which perform the shifting of 40 bits,

8 bits at a time, thus returning to B register only 32 bits. The reason

for this is the fact that at the conclusion of every iteration, a space

of 8 bits is needed (bits 16-23) to hold the extra least significant bits

of the 56-bit partial product. However, at the beginning of each iteration

the 8 least significant bits of B register are recoded and thus are not

needed any more. Thus, from the end of clock time T2 until the end of

clock time T6 the barrel switch receives 40 bits (once in every clock time)

and returns to B register 32 bits (Figure 4 in Volume 1).

For an illustration of the multiplication process consider

two operands of 13 bits each. In order to understand the process better

assume that the two operands have filled in the registers A and B in such

a way that the least significant bit of the 13 bit operands is at bit

location 63 (Example #1 - page 187).

At the start the multiplicand is in register A and during Tl

it is transferred into R. Bits 55 through 62 of the multiplier, which are

in B register, have been recoded and since bit location 63 of the multiplier

is a ONE the multiplicand in A register remains unchanged.

The multiplicand being in R register is applied to multipli

cand select gates (MSG) and being ANDed with the selection controls leaves

the MSG shifted to the left in the following manner. The multiplicand

from A register occupies 48 bit positions, (in 64-bit mode), the output of

MSG is shifted to the left one position because word 1 is recoded as Xl

and since this is the first word of the first section there is no carry

to be added to them.

-192-

,
l'1UL11IPLICAND MAN'rISSA !1ULTIPLI~R

H G R R G B

I 1 ,
MUVrIPLIER DECODING GATES

(M D G)

SELECTION CONTROL
~ ~,

MULTIPLICAND SELECT GATES
(M S G)

49 BITS CLEAR CLOCK
(\vORD 1 •

CARRY REGISTER ltJORD 2 MULTIPLICAND

~.

R G C WORD 3) (R G A)

-
" "

l'
PSEUDO ADDER TREE

(PAT)

49 BITS (t'lORD 4)

• CARRY
t ~,

PROPAGATING ADDER
(C PA)

I I

FIGURE 56. BLOCK FUNCfI'IONAL DIAGRA!v1 OF
THE R~GISTERS P~RTICIP~TING
IN l1.A.NTISSA NULTIPLICATION

-193-

~ .

63

,~

C T L

The sum and carries out of the first level of the pseudo

adder are placed into the second level of the pseudoadder. There, the

output of the MSG corresponding to word 2 is also applied, but shifted

just two positions to the left as compared to the output of MSG correspond

ing to word 1. The output of the second level (and therefore input to the

third level of the pseudoadder) is the sum and carry which are added to

the output of the MSG corresponding to word 3, which is shifted two

positions to the left compared to that corresponding to word 2 of the

second level of thepseudoadder. The output of the third level of the

pseudoadder (sum and carry) is supplied to the carry propagating adder

(CPA) along with the output of the MSG corresponding to word 4.

In this first iteration the sum, consisting of 56 bits, is

placed into registers A and B in the following manner. The 48 most

significant bits of the sum from the CPA are placed into A register (bits

16-63). The remaining 8 least significant bits of the sum are placed into

bit positions 16 to 23 of B register (Figure 57). This space (16 to 23 bit

positions of B register) is available because in the clock time 1 the

mantissa of B register is shifted end off to the right. The shifted off

8 bits of the multiplier are not needed any more because they have already

been recoded for the first iteration. At this time the carries of bit

locations 65 to 72 are held 'in C register until the next clock time. At

that time they are forced into the CPA at bit positions 72 to 79 to be

added with the 8 bits of the sum being stored temporarily in bit positions

16 to 23 of B register. This new sum is brought back to B register, but

in bit locations 24 to 31 because the bit locations 16 to 23 are needed

for the 8 bit partial sum of the next iteration. At this point, if there

is a carry because of the addition of the 8 bits of partial sum and carries,

the carry is placed in bit position 72 of register C to be added to the

partial sum of the next iteration in CPA bit positions 72 to 79 along with

the rest of the 8 bit carries of this iteration. If there is a carry in

bit position 64 of register C, this carry is kept in a special latch and

placed in bit position 79 of CPA to be added to the sum of the next iteration

in CPA bit positions 72 to 79 along with the rest of the 8 bit carries of

this iteration. The reason for doing this is that the carry at bit position

-194-

~ BITS

~ ~ ,~~ 8~~_T ""-

15 16 ,r 63 ,L I.: 0 0 ~ JK .J,...- .., 7 /J) 47 48 ~~ "'
I I RGA: J r I I I I I r I J ,

~8 -~

16

"
63 -------------I RGR 1

16 63 71 55 '62
r l*SG T ~ • MOO 1

WD IL. L.9 BITS
WD 13 49 BITS

WD #249 BI'l'S

WD 11
/,B BITS 49 BITS
L.7 BITS

~ 16 22 2'3. ,. 69 'b 71

I
I ...

~ J l'S ~, I r J_ -.
16 63 ~ 1 1 LEVEL 0 \0

SUM CARRIE PAT [~~~ I WG]
V1
I

16 20 21
" 'r • 62 6) 71

r
~ -.;:r

J) 2nd

"
I .. ,..:..:: --.,

16 63 .- I F'I IEVBL
SUM CARRDS PAT I OOW (SHIFI' B! 8)

19 • 16 18 ,
"

65 66 71 I

r
L 1 J J 3rd r I- "1 _

7l~ LEVEL 17 63 64 65 I 1 ~

SUM CARRm
,. PAT ,~ I RGC I 16 17 t ,~ " 63 64 65 7l~73 ~~

--r-l- I
-.r JCH' I I 1 I r I. ~ I -.,.

I
JSUM I :;;UM 8 BIns 'T - 8 BI'lS I CARRY L-

CARRDS I IATCH J-
1

56 BITS

FIGURE 57. MULTIFLICATIOt-4 PIn;l!SS (MANTISSA)

64 is the least significant bit of the carries of the next iteration

and the most significant bit of the carries (8) which are added to the

partial sum of the present iteration.

It is evident that in every clock time the mantissa of B

register is shifted off 8 bits so that it will provide, by the end of

the last iteration, the space for the 48 least significant bits of the

final product.

It was previously stated that every time one iteration is

completed the partial product is 56 bits long. This is due to the follow

ing reasons. The multiplicand (Figure 58), due to the least significant

bit of the multiplier (bit 63), will occupy bits 24 to 71 of pseudoadder.

If then, word I is Xl the multiplicand will occupy bits 23 to 70 of 22

to 69 if word I is X2.

If word 2 is Xl the multiplicand will occupy bits 21 to 68;

if word 2 is X2 it will occupy bits 20 to 67. If word 3 is Xl the

multiplicand will occupy bits 19 to 66 or, if it is X2, 18 to 65. If

word 4 is Xl the multiplicand will occupy bits 17 to 64 or 16 to 63 if

word 4 is X2 in the CPA.

Therefore the multiplicand related to word 1, 2, 3 or 4

can be 49 bits long because, if word 1, 2, 3 or 4 is X2, the multiplicand

is shifted one position to the left more than if the word is an Xl. So

wiring for 49 bits from the MSG to the pseudoadder (word 1, 2, 3) and to

the CPA (word 4) is provided. In case any of the words (word 1, 2, 3, 4)

is recoded to be Xl the most significant bit (the extra one provided) is

brought into PAT and CPA as a ZERO.

Example 111

Given the multiplicand X = 1 0 1 0 1 0 1 0 1 0 1 Oland

the multiplier Y 0 0 0 0 0 1 0 1 0 1 0 1 1

Find the final product of the first iteration.

-196-

liS COlvdJLEMENT OF WD # 1 FROM M3G

16 17 18 19 20 21 22 2~
j

71

. IF WORD #1 = X -1 1 1 1 1 1 1 1 1st LEVEL OF PAT 1
1 FORL.;ED 11 111

l'S CO}.1PLE~T OF WD # 2 FROM M3G

16 I? 18 19 20 2.L----
i ----28 69 70 7l.

IF WORD· # 2 = A - 1 1 1 1 1 1 2nd LEVEL OF PAT 1 1 1
1 -:: FORCED "1"

1'S COMPLEMENT OF WD # 3 FROM l£G

16 I? 18 19 • r 66 6? 68 69 70 71 - ---IFWORD#3=X-l 1 1 1 3rd LEVEL OF PAT 1 1 1 1 1
1-= FO~ED "I"

1 'S COMPIEJ.1ENT OF WD /I A. FROM l-5G

16 17 i 64 65 66 67 68 69 'iO 71 72 79

------ ----1 C.P.A. 1 1 1 1 1 1 1
1-11 FORCED n 1 "

NOTE: SEE EXAMPLE #2 ON A SUBSEQUENT PAGE FOR AN EXPlANATION £)F THE ItFORCED ONES".

FIGURE 58. CORRECTION BITS FOR ~ANtlSSA MULTIPLI~TIO~

I

Solution

63

RGA 1010101010101

RGC o 0 000 0 0 0 0 0 000
WORD2 ~ Xl Recoding Stage
WORD1 = Xl)
WORD3 = Xl

·wORD4 = Xl'
RGB o 0 0 0 0 1 0 1 0 1 011

RGR 1010101010101

~.

RGA · B63 (T1 only) 10101 0 101 0 1 0 1

RGC fZERO
Y)

00000 0 0 000 0 0 0
NITIALI

RGR.WORD1 1 o 1 0 1 0 1 0 1 0 1 0 1

SUM 1 1 1 1 1 1 1 1 111 1 1 1

CARRY o 0 0 0 0 0 0 000 0 000

RGR·WORD2 1 o 1 0 1 0 1 0 1 0 1 0 1

SUM 100 1 o 1 0 1 0 1 o 1 o 1 1 1

CARRY o 1 0 1 o 1 0 1 0 1 o 1 o 0 0 0

RGR.WORD3 1 o 1 0 1 0 1 0 1 0 1 0 1

SUM 1 001 1 o 1 0 1 o 1 o 1 001 1 1

CARRY 100 1 0 1 0 101 o 1 0 0 000

RGR· (WORD 4) 101 o 1 0 1 0 1 o 1 0 1 000 0 0 0 0

.
PARTIAL SUM 1 001 1 1 101 0 1 0;1 0 0 001 1 1

I

CARRY 1 000 1 o 1 o 1 0 1 0 1 000 000

1617 18 192)21~23 ~
RGA I 100 1 1 1 101 0 1 01 I 1000011 1

RGC 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0

-198-

CSAl

CSA2

CSA3

~

RGB

Jm}uts
to

P
S
E
U
D.
0
A
D
D
E
R

C (Used
P as
A eSA)

f

To see the result at this point, it is necessary to (carry propagate)

add the carry to the partial sum; which gives:

RGA & RGB

+ RGC

FINAL SUM

1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1

o 1 000 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1

524288

262 1 4 4

1 3 1 072

o 0 000 0

000 0 0 0

008 1 9 2

o 0 409 6

002048

001024

000 5 1 2

000256

00012 8

o 0 006 4

o 0 0 0 0 0

o 0 0 0 0 0

o 0 0 0 0 0

o 0 0 0 0 4

o 0 0 0 0 2

o 0 0 0 0 1

9 338 3 1
10

-199-

To check the result the equivalent decimal,ilumbers of multipLicand

and multiplier are found and multiplied to see if the result is the

same as that found by the process of iteration through the computer.

MULTIPLICAND = 10101 0 1 0 1 0 1 0 1

MULTIPLIER = 0 0 0 0 0 1 0 1 0 1 0 1 1

409 6

o 000

102 4

o 0 0 0

o 2 5 6
1 2 8 000 0

000 o 0,6 4
032 000 0
000 001 6
008 000 0

000 o 0 0 4
002 000 0

001 000 1

1 7 110 5 4 6 110

546110 x 17110 = 933831
10

-200-

Example 112

Given the operands:

x = 110000001

'Y = 010111101

Find the product (XY).

Solution

a. The operands are placed in the proper registers:

b.

x ~ RGA and RGB

y ~ RGB

Recode the multiplier

1. 63 bit position of

2. Wnll1 = X2

(Multiplicand)

(Multiplier)

multiplier = 1

3. wnl12 = X-I (forces a carry into Wn#3)

4. WDI13 = X2

5. WDII4 = Xl

c. wnll2 = -1 means that the multiplicand has to be subtracted

from the partial product as follows:

1. Place the l's complement of the multiplicand in the

second level of the pseudoadder tree starting at bit

position 68 towards the left up to bit position 21.

2. Insert l's from bit position 71 through 69 and from

59 through 55*.

3. Force a one into bit position 71 of the pseudoadder tree

to form the 2's complement of the multiplicand**.

* See page 203
** See page 204

-201-

d. In the final product (sum and carry) neglect the end around

carry because the product is in 2's complement.

Bit Position 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

RGA 1 1 0 0 0 0 0 0 1

CARRY 0 0 0 0 0 0 0 0 0 a 0

RGR(WDlIl) (X2) I 1 0 0 0 ·0 0 0 I

P. SUM (1) 1 1 1 1 0 0 0 0 1 0 1

CARRY 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 1

RGR(WD#2) (X-l 1 1 1 1 I 0 0 1 I I I 1 I 0 1 I 1

P. SUM(2) 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1

CARRY 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0

RGR(WD#3) (X2) 1 1 0 0 0 0 0 0 1

P. SUM(3) 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1

CARRY 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0

RGR(WD#4) (Xl) 1 1 0 0 0 0 0 0 1

P. SUM(4) 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1

CARRY 1 1 0 0 0 0 0 0 1

FINAL PRODUCT 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1

I
1 (neglected)

-202-

PA'~
/'

!
~

l
l CPA

e. To check the result

1. Final product = 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 12

= o 0 0 0 1
00004
o 0 0 0 8
o 0 016
o 0 032
o 1 024
o 2 048
o 4 096
6 5 536

7 2 7 6 5
10

2. Multiplicand 1 1 0 0 0 0 0 0 12

= 3 8 510

3. Multiplier = o 1 0 1 1 1 1 0 12

= 1 8 910

4. 385 x 189 = 7 2 7 6 5
10

In general, whenever the bit pair is 11 (recoding stage) the l's

complement of the multiplicand is placed in the proper level of the PAT

and at the bit position which normally corr~sponds to WOlfl = Xl (i=1,2,3,4).

Since the partial product is 56 bits long, ~s previously explained, 8

ones are inserted into the same level as follows:

If wn# 1 = X-I (a) Place l's complement of multiplicand at bit

positions 70 through 23.

(b) Insert a ONE at bit position 71 and 7 ONES

in bit position 22 through 16.

If wolf 2 = X-I (a) Place l's complement of multiplicand in bit

positions 68 through 21.

(b) Insert 3 ONES at bit position 71 through 69

and 5 ONES in bit position 20 through 16.

-203-

If wol! 3 = X-I (a) Place l' s complement of mUltiplicand in bit

positions 66 through 19.

(b) Insert 5 ONES at bit positions 71 through 67

and 3 ONES in bit positions 18 through 16.

If wnll 4 = X-I (a) Place l's complement of multiplicand in bit

positions 64 through 17.

(b) Insert 7 ONES in bit positions 71 through 65

and a ONE in bit position 16.

The reason for doing the above is that out of the 56 bits of the PAT, only

the 48 bits of the multiplicand have been put in the l's complement form

but from bit 71 through 16 there are 8 bits (unoccupied) which look like

zeros. Taking the l's complement of the whole 56 bits, forces these 8

bits to become ONES.

By forcing a carry into the least significant bit of PAT (71) the

partial sum in that particular level of PAT takes the form of the 2's

complement. This is done so that in case there is an end around carry

in the partial product, which is in 2's complement, the end around carry

can be neglected.

b) Exponent: In multiplication, the exponents of the operands

are added. There are a few points which should be brought up before

attempting to compute the exponent.

The input to the CPA that is not enabled appears as all ONES.

For this reason, any carries from Section 111 (Bit 16-31) into Section #4

(Bits 64-79) should be inhibited. The exponents of both operands are

added, but the sign bit of the exponent is determined by the appearance

or absence of a carry. This carry is placed in a special circuit and is

brought back to the sign bit position as a 1 or 0 as illustrated by the

following examples.

-204- .

A

RGA 1

RGB 1

B
RGA 1

RGB 0

SUM

F INAL SUM 0 •
leNo Carry)

Spec1.a1
Circuit

00000 000 0 0 0 0 1 0

o 0 0 0 0 0 000 0 0 001

o 0 0 0 0 0 000 000 1 1

o 0 000 0 0 000 0 0 1 1

o 0 0 000 0 000 0 001

1 1 1 1 1 1 1 1 1 1 1 100

1 1 1 1 1 1 1 1 1 1 1 1 o 1

1 1 1 1 1 1 1 1 1 1 1 1 0.1
f

l2'

Aexp +2

Bexp +1

CPA

Sum +3

Aexp +1

Bexp

CPA

-4

Sum = -3

s complement form

Sum

Sum

In this way, the carry from the most sign~ficant bit of the exponent

(Bit 65) does not affect the sign of the mantissa. The mantissa sign

being a function of A ~ B and the inverse of the enable for computation
o 0 0

of the mantissa sign (FYEMDOSGNT = 1) depends on the sign of both operands

as the following examples illustrate.

1) if A = 0 = +
o

if B
o

0=+

(0 • 1 +01 · 0) . 1 = 0 = +

The mantissa sign must = +.

-205-

+3

-3

2) if A 1 A = 0=+
0 0

OR The mantissa sign must
if B 0=+ B = 1 = -

0 0

(1 . 1 + 0 . 0) . 1 = 1 =

3) if A 1 = -
0

The mantissa sign must = +.
if B = 1 = -

0

(1 0+0 1) 1 = 0=+ . . .

-206-

MULTIPLICATION IN 64-BIT MODE

CLOCK TIME Tl--Figure 59

Add Exponents - Recode 8 Bits of Multiplier Mantissa for First Iteration .

1. Enable Registers A & B (bits 0-63).

2. Enable Register A into R (bits 16-63).

3. Enable Register R (bits 16-63).

4. Enable clear and load clocks into inner and outer word of register R.

5. Enable clear and load clocks in Register C.

6. Enable clear and load clocks to underflow latch.

7. Enable exponent underflow into mode register (D) if not normalizing

and ACAR(9).

8. Enable overflow into Register D.

9. Inhibit clear clocks into Register D.

10. Enable clear and load clocks into F if floating point.

11. Enable clear clocks into Outer sign and exponent of register A (0-7)

if E=l.

12. Enable clear clocks into Inner sign and exponent of register A (8-15)

if El=l.

13. Enable clear clocks into inner mantissa of Register A (16-39) if E1=1

and B63=0.

14. Enable clear clocks into outer mantissa of Register A (40-63) if

E=l and B63=0.

15. Enable load clocks into outer sign and exponent of Register A (0-7)

if E=l.

16. Enable load clocks into inner sign and exponent of Register A (8-15)

if El=l.

-207-

17. Enable clear clocks into inner and outer mantissa of Register B

(16-63).

18. Enable load clocks into Inner and outer mantissa of Register B

(16-63) .

19. Enable the content of Register B into LOG.

20. Enable LOG (16-63) into barrel switch.

21. Enable a shift to the right by 8 into the barrel switch controls.

22. Enable Barrel Switch (16-63) into Register B (16-63).
,----1

23. Enable the complement output of the outer exponent of Register B (1-7) (For
Fixed

24. Enable the complement output of the inner exponent of Register B (9-15) Point
Operand

25. Enable Registers A and B (1-15) into CPA (65-79). B only if floating

point.

26. Enable the bit carries into CPA (64-79) if floating point.

27. Inhibit section carries from Section 1.

28. Enable the outer sign and exponent of CPA into Register A (0-7).

29. Enable the inner sign and exponent of CPA into Register A (8-15).

30. Restore the sign of Register A (0) if unsigned.

-208-

16

END OF T 1

63

16 63

RGR

65

C PA

16 17 72

ria 00---

RGC

o 15

I

BXPONENT
: SUM

17

I MULTIPLICAND IF
RGB 63 = 1,
OTHERWISE ZIRQ

RGA

72

81" 00--00

RGC
FIGURE 59.

63

I
o

DON'T
CARE

55

MDG

LOG

16

BSW (SHIFf RIGHT
BND OFF 8)

63

63

48 BITS

16 23 .63

00-00 MULTIPLIER
8 PlACES RIGHT

RGB

62

RECODED BITS OF
R G B (55-62)

M D G
CLOCK TIME T 1

CLOCK TIME T2--Figure 60

First Iteration - Recode 8 Bits of Multiplier Mantissa for Second
Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63) •

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) to LOG (16-63).

5. Enable LOG (16-63) into BSW (16-63).

6. Force a shift right end off 8 places into the BSW controls.

7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable CPA sum (16-63) to RGA (16-63).

9. Enable CPA sum (64-7l) to RGB (16-23).

10. Enable CPA sum (72-79) to RGB (24-31).

11. Enable BSW (32-63) into RGB (32-63) .

12. Enable WD4 (16-63) into CPA (16-63).

13. Enable WD4 (64-7l) into CPA (64-7l).

14. Enable RGB (16-23) into CPA (72-79).

15. Enable RGC (65-72) into CPA (72-79).

16. Enable bit carries into CPA (72-79).

17. Inhibit section carries.

18. Enable clear clocks to RGA (16-63) if E=El=l.

19. Enable load clocks to RGA (16-63) if E=El=l.

20. Enable load clocks to RGB (16-63).

21. Enable clear and load clocks to RCC (CPA carries are the input).

22. Select K function.

-210-

I
tv
t-I
t-I
I

-

BGB l' i

16

"
6.3 16 ' r 23 ?J~"_~.n ~'5''''''~'-IU

I RGl MULTIPLICAND IF RGB 63=1 I I 00 - 00 I M U LIT I P L I E R
I OTHERWISE ZERCE

~ -~

~~ ... ~~ 62 16 63
r RGR l-1ULTIPLICAND I MDG I

T F _ ?

16 "

"
63

I
M3G COr.'TROLLED BY RE<.;ODED [.

OF RGB (55 - 62)
[

BITS r::-

M! BITS WDi1 I WDl4 49 BITS' 16 ~r 63 49 BITS
WDl/3 WD#2 49 BITS roo I 49 BITS • 16 "

,
J71 I 1st IlWEL OF PAT

" . ~ S
C 16 6"-,

16 71 BSW (SHIFT ~D OFF RIGH'f '8) 1
r 2nd LEVEL OF PAT I

• s c
f 16 71 32 BITS r I 3rd LlVEL OF PAT IS C 17 ,

61 f 16 63 61.- 71 72'. '79 r::.::::l ROO AU ZERCS I CPA I I I

JSUM I --- -48 BITS ~ BITS
T

Ef.4D OF T 2 :
CA~ SUM 8 BITS 47 BITS

16 63
~I B.~R!!!"'III'i'---np--L-p~B-OD~U---C'.r-· -r(1""'T)----,1
_ NOT FINAL .

RGA

REConm BITS ORIGntALLY
AT ReiB 7-5

.~1~7 __________________ ~~1 Ia CARRmI (1) _

RGC

FIGURE 60. C LOCK TIME T ?

72

I
.... ---

CLOCK TIME T3--Figure 61

Second Iteration - Record 8 Bits of Multiplier Mantissa for Third Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) to LOG (16-63)*.

5. Enable LOG (16-63) into BSW (16-63).

6. Force a shift to right 8 positions end off to the BSW controls.

7 • Enable PAT sum and carry bits (16-71) to CPA.

8. Enable WD4 (16-63) into CPA (16-63).

9. Enable CPA sum (16-63) into RGA (16-63).

10. Enable BSW (32~63) into RGB (32-63).

11. Enable PAT sum and carry bits (16-71) to CPA.

12. Enable RGB (16-23) into CPA (72-79).

13. Enable RGC (65-72) into CPA (72-79).

14. Enable bit carries into CPA (72-79) .

15. Inhibit section carries.

16. Enable load clocks to RGA (16-63) if E=El =l.

17. Enable clear clocks to RGB (16-63).

18. Enable load clocks to RGB (16-63).

19. Enable clear and load clocks to CPA carries.

20. Enable clear clocks to RGA (16-63) if E=E1=l.

21. Select K func~ion.

*Effectively RGB (0-63) is sent to LOG (0-63) but RGB (0-15) has no
significance for the mantissa; there is one control signal allowing
RGB (0-63) into LOG (0-63).

-212-

16
"

63 16";~23 24. 3131.~~62 63

I RGA PARTI! L PRODUCT (PPl) I ~rJ 00-00 MUL TIP L IER
NOT FINAL

48 BITS J FINAL

~~
~ -

16 63
I RGR MULTIPUCAND J

J 55 '.
63

l ~r
MOO

16 64
J I leG ICONTttOLtElf~BY RECODED BITS ~

[=
. OF RGB (·47 - ~) r=

49 BITS WDl3 J WDII1 111J..9 BITS WIIk 16 ~ I 63
1 49 BITS 49 BITS WDl2 I Loo

16
,

'. • 71
I 1st LEVEL OF PAT I

s fC 16 , 63 i 16 71 I mw (S!lIFT HIGHT KrlD OFF 8) I l 2nd lEVEL OF PAT I "

s i C
132 BI'lS 16 i_ 7l

I 3rd LEVEL OF PAT I [s ~C 17 t 6.3_' 65 72
16 63 64 i?9 71 72, ~ 1

~RGC CAR R IJE sl (1) I I CPA I 1 I 1 • --..---T-8 --,,--- i IATCH I J.J3 BITS ~ITS 47 BITS
56 BI1S

. ~D OF T .3 •
16 6.l 16 . SJ 24

l132 1 6.l
I aRTIAL PRODUCT (2) I PP~ rP1 MULTIPLIER 24 I NOT FIML NOT INlL I~ PLACm RIGHT END OFF

lIlA ROB
16 72

t2d CARRIES (2 , I &mODED BITS ORIGlNALa
IN RGB (39 - 46) ·RGC

MOO

FIGURE 61. CLOCK TIME T .3

CLOCK TIME T4--Figure 62

Third Iteration - Recode 8 Bits of Multiplier Mantissa for
Fourth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) to LOG (16-63)--see footnote for clock

5. Enable LOG (16-63) into the BSW (16-63).

6. Force shift right end off 8 positions to the BSW controls.

7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable WD4 (16-64) into CPA (16-63).

9. Enable CPA sum (16-63) into RGA (16-63).

10. Enable BSW (32-63) into RGB (32-63).

11. Select K function.

time T3.

12. Enable the stored carry in the latch to be placed in CPA bit 79.

13. Enable PAT sum and carry bits (16-71) into CPA.

14. Enable RGB (16-23) into CPA (72-79).

15. Enable RGC (65-72) into CPA (72-79) .

16. Enable bit carries into CPA (72-79).

17. Inhibit section carries.

18. Enable clear clocks to RGA (16-63).

19. Enable load clocks to RGA (16-63).

20. Enable clear clocks to RGB (16-63).

21. Enable load clocks to RGB (16-63).

22. Enable clear and load clocks to CPA carries.

-214-

END

I
N
t-'
Ln
I

16

"
63

I BaA PARTIAL PRODUCT (2) NOT FINAL I
48 BITSJ

16 63
I RGR MULTIPLICAND J

J

"
16 1>3 I M3G CONTR()J.,DJ) E Y REDODBD BITS OF-,:

RaB (39 - 46) -

49 BITS WDl31 WIllI 149 BITS WD//4
49 BI'lS 7lJ BITS WDfI2 , 16

" . '. 71

I let lEVEL OF PAT J
16

.S, to i 71
l 2nd LEVEL OF PAT J

s tC
16 i 171 [)rd lEVEL OF PAT S to ~63 61. 16 71 72 ,
I CPA I I

48 BITS
56BX

- i
~J' ~ 24 "31 3~7 48~2 63

pp
N~ PFI 00-00 MU IL TIP L I E R

FINAL --------~ ~

55 " 62
I MDG j

I

16
"

63
l roo J

.,
16 ~3

[RSW (SHIFT RIGHT OFF END 8)

32 BITS
~

17 i 63 * 65 n ~, 79
~ HUG CAR RIlE SI(2) J I -- I J ~~

-y

•
47 BITS I IATCH J

OF T 4 :
16 63 " 16 23 24 31 32 39 IIJ 47 Its 63

I 1~~lpP2 LPFI I ~ I MULTIPLIER 32
I PARTIAL PRODUCT (3) NOT FItlAL

: : rums RIG1ft' E!iD OU BOA
17 172 * CARRY OUT FROM S5 62 fZ3 CARRDS ~ J l ' IATCH I Rl'X:OOED imS ORIGIlfAIJ.Y J RGC

IN ROB (31 - .38)
'-P3 RW 73 * I MOO

FIGURE bl. CLOCK TIME T 4

I

CLOCK TIME T5--Figure 6'3,

Fourth Iteration - Recode 8 Bits of Multiplier Mantissa for
Fifth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) into LOG (16-63)--see footnote for clock time T3.

5. Enable LOG {16-63} into BSW {16-63}.

6. Force shift right end off 8 positions to the BSW controls.

7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable BSW (32-63) into RGB (32-63).

~. Enable the stored carry in the latch to be placed in CPA bit 79.

10. Enable CPA sum (16-63) into RGA (16-63).

11. Enable PAT sum and carry bits (16-71) to CPA.

12. Enable WD4 (16-63) into CPA (16-63).

13. Enable RGB (16-23) into CPA (72-79).

14. Enable RGC (65-72) into CPA (72-79).

15. Enable bit carries into CPA (72-79).

16. Inhibit section carries.

17. Select K function.

18. Enable clear clocks to RGA (16-63).

19. Enable load clocks to RGA (16-63).

20. Enable clear clocks to RGB (16-63).

21. Enable load clocks to RGB (16-63).

22. Enable clear and load clocks to CPA carries.

-216-

~, 63

RGA PARTIAL PRODUCT (3) NOT FINAL

48 BIm I

16 63
[RnR MULTIPLICAND I

j

16 f 63
}tSG VUR1.nOLIZD BY RECODED BITS OF-

RGB (31 - 38) I"-

49 BITS WD#3 I WD#1 149 BITS WD#4
49 BI'lS 49 BI'lS WD#2 --. 16 ,~ ~ ,71 I 1st IJ:VEL OF PAT

S C
16 • 171 I 2nd lEVEL OF PAT

S C
16 -.

171 [.3rd LEVEL OF PAT
S C

16 '.
,. 63 6J,. 71721'

[CPA I I I
I - --- T 48 BITS

56 BITS

END OF T 5 • .
16 6; I PARTIAL PRODUCT (4) ~OT FIML:

RGA
17 72

-~~----~&~mmm~~(~4-)~--------~1

FIGURE 63. CLOCK TIME T 5

~

~ 24131 ~;;S---S;~ -62 63

~~ PP2 FPl 00-00 MUL TIP L I E R

F~~~C:::--
55 ,r 62

!,q
I

I MOO I
I J I

~r 16 63
r LOG

" 16
1
63

IffiW (SHIFT RIGHT END OFF 8)

1.32 BI'l5

17 t 63 i 65 72

t3 ROO CAR R I E S I (31) J ---- ~ t - ---T
~7 BITS J

-"'"

lIATCHI

62
ODED BITS ORIGINALU

IN ROB (22 - 30)

CLOCK TIME T6--Figure64

Fifth Iteration - Recode 8 Bits of Multiplier Mantissa for
Sixth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16...;63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) into LOG {16-63)--see footnote for clock time T3.

5. Enable LOG (16-63) into BSW (16-63) .

6. Force shift right end off 8 positions to the BSW controls.

7. Enable PAT sum and carry bits (16-7l) to CPA.

8. Enable BSW (32-63) into RGB (32-63).

9. Enable the stored carry in the latch to be placed in bit 79 of CPA.

10. Enable CPA sum (16-63) into RGA (16-63).

11. Enable PAT sum and carry bits (16-7l).

12. Enable WD4 (16-63) into CPA (16-63).

13. Enable RGB (16-23).

14. Enable RGC (65-72) into CPA (72-79) •

15. Enable bit carries into CPA (72-79) .

16. Inhibit section carries.

17. Select K function.

18. Enable clear clocks to RGA (16-63).

19. Enable load clocks to RGA (16-63).

20. Enable clear clocks to RGB (16-63).

21. Enable load clocks to RGB (16-63).

22. Enable clear and load clocks to CPA carries.

-218-

I
N
I-'
\0
I

16
"

63
RGA PARTIA L PRODUCT (4 } NOT FINAL

~ BITS I
16 6.3

I RGR l-mLTIFLlCAND I
J

16 , 63
..

)f3G CONTROLlED BY RECODED BITS iL

OF ROB (23 - 30 I:

49 BITS WDil3 I WIlIl Il49 BI'l'S
49 BITS 49 BITS

16 ~ t ~"
I let IEVEL OF a~ ,

tS C
16 ..

I _2nd LEVEL OF FAT

tS c
16 t

I .3rd LEVEL OF FAT
C

Jl
,~'. ?3 24" 31~? ~48 ~62 63 ~ I PP.NOT

F1: L
P] 3 I PP2 1 PP1 I OO-OOIMIJl:nWUER /IJ J

PIAC$ RIGHT

----/ ------
~

~

55 ,. 62

MDG

I I J
WDIIL. 16 ~, 63
v1D1l2 I LOG I 71

J
16 ,r 63

71 I BSW (SHIFT RIGHT END OFF 8) J J

132 BI'lS 71
I

17 72 ~S t 63 ~ 65 . ,?9 16 ,~ , 63 64 71 72,
V;1RGC CAR R I E S (14 b J CPA I I I I I ----- ---- l~ ~ T I 48 BITS 47 BITS lATCH

56 BITS

ElID OF T 6:
16 63 16 23 24 31 32 39 40 4748 55 56 63

I PARTIA L PRODUCT (5) NOT FIN! L 100-00 I
RGB

17 72 55 62

~ CA.RRIBS (5)

ROC

FIGURE 64. CLOCK TIt-IF. T 6

CLOCK TIME T7--Figure 65

Sixth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) into LOG (16-63)--see footnote for clock time T3.

5. Enable LOG (16-63) into BSW (16-63).

6. Force shift right end off 8 positions to the BSW controls.

7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable BSW (32-63) into RGB (32-63).

9. Enable the stored carry to be placed in bit 79 of CPA.

10. Enable CPA sum (16-63) into RGA (16-63).

11. Enable PAT sum and carry bits (16-71) to CPA.

12. Enable WD4 (16-63) into CPA (16-63).

13. Enable RGB (16~23) into CPA (72-79).

14. Enable RGC (65-72) into CPA (72-79).

15. Enable bit carries into CPA (72-79).

16. Inhibit section carries.

17. Select K function.

18. Round (optional).

19. Enable clear clocks to RGA (16-63).

20. Enable load clocks to RGA (16-63).

21. Enable clear clocks to RGB (16-63).

22. Enable load clocks to RGB (16-63).

23. Enable clear and load clocks to CPA carries.

-220-

I
N
N
t-'
I

16 ,t 63

RGA PARTIAL PRODUCT (5) NOT FINAL

48 BITS
16

lRGR MULTIPLICAND

I
16 63

M>G CONTROLIED BY RECODED BITS
::-

OF RGB (16 _ ??) ..
49 BITS WDff3 I WD#1 III 49 BITS

49 BITS 49 BITS ,
16 ,

I 1st" '.R"tml 0] PA.T
S ,. C

16
~ .-

I 2nd LEVEL OF PAT
s C

16 • I 3rd LEVEL OF PAT
S C

16 U
'. t 63 6L.

I CiI. I

.. .-l

~2324.31~4B~
pp
No1 FINAL

PP4 PP3 PP2 PP1 00 - 00

-.....;.:::~
........- RGB

63

I
55 62

[KKl I
I I I

I
I

WDIIL. I 16 ,- 63
WD#2

I ~. 71 roo
I

63
171 1.6 • t

ffiW (SHIFT RIGHT END OFF 9) I
I 71 32 BITS

)
'-I I

17 f 631 65 7Z
71721 ~ , '7Q ~ ROO CAR R I E IS (5) J I ----- ---- ---,........... I ""'T"

48 BITS 1
56 BI:--i r--f1 /,.7 BITS I I IATCH j

I
~D OF T 7 : El I

I

16 63 16 23 24 31 32 39 40 63

\aRTIAL PRODUCT (6) NOT FINAL I I pp 6 NOT FIIIlL I PPS I FP4 I PP3 PP2 PP1 I
RGa\ ROB 5S 62 17 72

I ta I NO FURTHER RECODING CARRIES (6)
MDG

ROC
FIGURE 6S. CLOCK TINE T 7

CLOCK TIME T8--Figures 66 and 67

Form the Final Product

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable the group carries within the CPA.

4. Enable RGA (16-63) into CPA (16-63)--see footnote for clock time T3.

5. Enable bit carries into CPA (64-79).

6. Enable bit carries into CPA (16-63).

7. Enable RGB (16-23) into CPA (72-79).

8. Enable RGB (0-7) into CPA (64-71)*.

9. Enable RGC (65-72) into CPA (72-79).

10. Inhibit section carries.

11. Enable stored carry in latch to be placed in bit 79 of CPA.

12. Enable CPA (16-63) into RGA (16-63).

13. Enable RGB (16-63) into LOG (16-63).

14. Enable LOG (16-63) into BSW (16-63).

15. Enable CPA (72-79) into RGB (16-23).

16. Enable BSW (24-63) into RGB (24-63).

17. Enable 001 1 1 1 1 1 into RGB (0-7) for exponent correction in

case of normalization.

18. Enable clear clocks to RGB (16-63).

*The gates in CPA (64-71) which receive RGB (0-7) are enabled, but RGB
(0-7) are not enabled out of the B register. Thus all zeros are placed
on one input to each of the corresponding CPA input gates that receive
RGB (0-7). At the same time those gates are not enabled (S=l, see
Figure 67) so that CPA (64-71) receives all ones.

-222-

19. gnablc load clocks to RGB (16-63) if not rounding.

20. Clear RGA (0-15) on EXP UF and not normalized.

21. Clear RGA (16-63) on EXP UF and not norma1i~ed.

22. Load RGA (16-63) when normalizing and E=El=l.

23. Enable load and clear clocks to LCD latches.

-223-

END OF T 8:

16 "

RGA PARTIAL PRODUCT (6)
NOT FINAL

63 16 "
PP

. NOT6

FINAL

R G B

23 2!!:.-~"'l"'"

PP5 PP4

i
39 /J) 47 4I5 -".

/,
_t+. 63

PP
3

PP2 PF1

17 63 65 72

~ R G C CAR R E IS (6 >, ·1

16

48 BITS

.~ .. 62 t 64

CPA CONTAINS
TRANSMITS

FOR rosSIBIE
CARRY

48 BITS

o 15 16

EXPONENT PARTIAL PRODUCT
SUM (48 M.S.B.)

~/

71 72 t?9

8 BITS

63 0 1 ~
+ 011-11 - (-1

10
)

7

16

--1

16 ,.

24

100

ssw (NO SHIFT IS
PERFORl11ill)

FORCE - 110 IF NORllALIZE

8 15 16

DON'T PARTIAL PRODUCT
CAS (4B L.S.B.)

RGA RGB

FIGURE 66. CLOCK TIME T 8

63

63

63

BSW

CPA

CPA(L)

PA'r(L)
1

- - -
(-1) RGA.

~

S

(2) PAirs.

s

(3) RGB.
~

s

(4) 'wD/14
s

(5) HGC.

S

(6) BC.
~

D

TR. COMP. A· ~,
a 0 0

0 1 Ai
1 0 Ai

'fRUE 1 1 1

D 1

C

o

COIv1PLEIv1ENT

- - -
S=SELECT

CARRY PROPAGATING ADDER (CPA)

OUT

Y.
~

Y.

-i ~--------t ~.
~

).

IN IvIULff (T
2
-T7) use (2), (4), (7),

(T
8

) use (1), <'5), (6)

C.=X.YiZi+X.Z.Yi+Y.Z.X.
). ~ ~ ~). ~ ~

A. S OUT

101

o 1 1

J:,IGUHE 67. IlJPUT GATING OF THE CPA, B IT SLICE DIAGRAM
-225-

CLOCK TIME T9--Figure 68

Normalize Final Product

1. Enable true out of RGA (0-63).

2. Enable true out of RGB (1-7, 16-63).

3. Enable CPA sum (64-79) to RGA (0-15).

4. Enable CPA sum (16-63) to RGA (16-63).

5. Clear RGA (0-63) on UFL or·bit 16 is ZERO (UFL + A16).

6. Load RGA (0-63) on UFL; UF; A16; A17.

7. Enable clear and load clocks to F bit mode register.

8. Enable exponent underflow into mode register.

9. Inhibit clear clocks to RGD.

10. Enable RGA (1-63) into CPA (65-79, 16-63).

11. Enable RGB (1-7) into CPA (65-71).

12. Inhibit section carries.

13. Restore the sign of RGA (0).

-226-

GA

o
+

OR I EXPONENT
SUM

CPA

IF RGA 17 = 1

IF RGA 17 = 1

I END OF T 9:
~
~
""'-J
!

o 1

SIGN FINAL
EX POW T

SUM

16

15 16

PARTIAL PRODUCT
(48 M.S.B.)

NORMALIZlCD
PARTIAL PRODUCT

(48 ILS.B.)

63

63

RGB

o

o 1 7 8 15 16 17 63 . ,

0111111 I DON IT PARTIAL PRODUCT

15 16

CARE (48 L.S.B.)

I - IF NOTHING IS ENABLED

63

INTO CPA (71 - 79) FROM
RGIi (8 - 15) THEN
CPA nsEES" l'S FROM
BOB (8 - 15).

- DON IT PARTIAL PRODUli'l'
CARE (48 L.S.B.)

RG~ RGR

FIGURE 68. CLOCK TIME T 9

D. Division

1. Introduction. In ordinary d'ivision, given two integers X and Y

called dividend and divisor, respectively, two other integers are found;

namely, the quotient Q and remainder R which satisfy the following

conditions:

a. R = X - YQ

<

Division is always performed by comparing the divisor with the

dividend or the partial remainder and forming the quotient by guess. The

correctness of the guess is determined by subtracting the product of

the newly guessed digit of the quotient and the divisor from the dividend

in the initial step and from the partial remainder in the consecutive

steps. From the above relations it is concluded that if the signs of

dividend and divisor are the same (+ or -), then the sign of the quotient

is positive, otherwise it is negative. The sign of the remainder is

always the same as the sign of the dividend. The factor that determines

whether or not the newly selected digit of the quotient is valid is the

sign of the result of the subtraction. If the sign of the result is the

same as the sign of the dividend or partial remainder, then the selected

quotient, is considered to be correct. If a sign change takes place,

then the newlY,chosen digit (of the quotient) is not correct. In that

case new guesses are made until the sign of the result of the subtraction

is the same as the sign of dividend or partial remainder. In binary

arithmetic the product of the quotient and the divisor is never greater

than the divisor and thus only the divisor is subtracted from the dividend

or partial remainders. Only one guess is required each time, because

if the result has a different sign than that of the dividend or partial

remainder, the guessed quotient bit had to be "1" and the proper choice

is o.

-228-

2. Methods of Division. There are several kinds of division;

among them the common ones are: restoring, nonrestoring, and nonperforming.

In restoring division, the divisor is successively subtracted

from the dividend or partial remainder to generate at least one quotient

bit at a time. In single bit division which generates one quotient bit in

each clock period, the quotient bit becomes ONE any time the result of the

subtraction is positive and ZERO otherwise. The partial remainder or the

dividend in the initial subtraction and the quotient are shifted to the

left by I when the quotient becomes ZERO and the dividend or current

partial remainder is restored.

In nonrestoring division, the cycle has two subcycles. The first

one takes care of the subtraction of the divisor from the dividend or

partial remainder, the second subcycle forms the quotient bit and shifts

the quotient and partial remainder to the left by 1. In this method there

is no restoration required due to a negative result in ~he cycle where the

negative result was detected, but in the next cycle the divisor is added

to instead of being subtracted from the new partial remainder. This, however,

requires extra logic gates to pick up (locally) the TRUE or COMPLEMENT

output of the register containing the divisor, which, from the hardware

point of view, results in an increase in cost and complexity of the machine.

Nonperforming division is the sort used in the PEe As described

above in the restoring division method if the sign of the quotient is

positive and the result of the subtraction is positive a ONE is entered

into the quotient; if the result is negative a ZERO is entered. If the

sign of the quotient is negative, a ZERO is entered in the quotient bit

if the result of the subtraction is positive, or a ONE otherwise. Non

performing division is similar to restoring division, but if the sign

of the result is the same as that of the current partial remainder

then a ONE is entered in the quotient bit if the sign of the quotient is

positive and a ZERO if the sign of the quotient is negative. If the sign

of the result and that of the current partial remainder disagree, the

result of the subtraction is ignored, the old partial remainder is shifted

to the left by one place and if the quotient sign is positive a ZERO is

inserted in the quotient register; a ONE otherwise.

-229-

3. Implementation.

a) Mantissa: The PE of ILLIAC IV has adopted the nonperforming

division method because, from the hardware point of view, it is simpler

and more economical to implement. The division can be characterized as

a "long" operation because it requires a recursive process for the generation

of the quotient field one bit at a time. This process can be described by

the following general equation:

where:

x.
1.

x
o

y

r

1,2, . . .,48

= Partial remainder after the (i+l)th step of
the division

th = Partial remainder after the i step of the
division

= Dividend

= The (i+l)th bit of the quotient to the right
of the binary point

= Divisor

= Radix

The remainder of the first step is given by:

(1)

(2)

because at the start of the recursive process the dividend is not shifted

to the left and, therefore, the first step of the division cannot be

described by (1). Further study of (1) leads us to the mechanization of

the recursive process as follows:

Since the remainder from the first step is given by:

230-

for i 1,

for i 2,

(1) becomes:

X2 = 2Xl - Q2Y

= 2XO - 2Q1Y - Q2Y

(1) becomes:

. X
3 2X2 - Q3Y

= 22xO - (22Q1y + 2Q2Y + Q3Y)

for i = 47, (1) becomes:

for i = 48, (1) becomes:

(3)

(4)

(5)

(6)

The dividend being 96 bits long occupies the A and B registers

with the most significant bits placed in A register. The dividend need not

be normalized. The divisor, which is 48 bits, must be normalized before

the division starts; it is placed in R register. Since the recursive

process requires subtraction of the divisor from the dividend, the l's

complement of the divisor is taken into the CPA where an extra ONE is added

to the least significant bit in order to form the 2's complement of the

divisor and the result is added to the dividend. If the subtraction is

"successful," in other words the result is positive, then the quotient

bit is a ONE; if the result is negative the quotient bit is a ZERO. This

is determined by Group Carry 16 only for the first execution because the

"R sign" latch at the beginning contains a ZERO. In the remaining steps

of the recursive process the quotient bit is determined by the content

-231-

of "R sign" latch (ONE), or Group Carry 16 which is a result of an

end-around carry from the subtraction of the divisor from the dividend

or partial remainder. An overflow can also force the Group Carry 16

to be a ONE.

Since the state of the quotient bit Q2 depends on the

state of the Group Carry 16 (G.C. 16) and "R sign" latch, it is important

to know what the variables are what set the "R sign" latch. At the

beginning, the "R sign" latch is cleared and therefore

R sign(O) = 0

From the logic diagram (card B06) the equation for setting

the new "R sign" latch is given by:

R sign(i+l) A16 (RsigU(i)· G.C.16) + A16 . CPA16

+ A16 . CPA16 . (Rsign(i) + G.C.16)

+ A16 . CPA16 · (Rsign(i) . G.C.16)

+ CPA16 . (Rsign(i) + G.C.16)

I

After minimization (7) is reduced to:

(7)

Rsign(i+l) A16 . (Rsign(i)· G.C.16) + CPA16 . (Rsign(i) + G.C.16)

(8)

-232-

where 0, 1, , 48

A16 Bit position 16 of "A" register

CPA16 = Bit position 16 of Carry Propagating Adder

It can be said that Rsign(i+1) is set when

A16 • Q. or CPA16 • Q. are true
~ ~

where Q Rsign(i+l)+ G.C.16

This means that when Q. = 0 the content of A register is
1

shifted to the left by 1 through the PAT because the subtraction was un-

successful. If A16 is a ONE, this sets the R sign latch. If Ql = 1, the

result in CPA is shifted through the CPA to the left by 1 and it is

brought back to A register. If CPA16 then happens to be a ONE, that sets

the Rsign latch. In general, the Rsign latch looks like an extension of

A register to the left by 1 position.

The status of quotient bit Q
l

determines the procedure

in the second step of the recursive process. If Q
l

= 1, the subtraction

was "successful" and, therefore, the result is positive. This result,

which is the remainder, is taken through the CPA back to A register, but

shifted to the left by one place. If Ql = 0, the subtraction was "un

successful," in which case the result of the subtraction is ignored and

the dividend from A register is passed through the PAT and, after being

shifted by one to the left, is placed back into A register. At the time

that the shifting of the remainder or of the dividend takes place, the

mantissa of B register is shifted to the left by one place directly to

A register, thus bringing bit 16 of B register into bit 63 of A register.

At the same time bit position 63 of B register receives the first quotient

bit (Ql). After the end of the second iteration, quotient bit Q
2

will

be either ONE or ZERO, depending on the sign of the result of the

subtraction of the divisor in 2's complement form from the first partial

remainder shifted by one place to the left if Q
l

= 1 or from the dividend

also being shifted by one to the left if Q
1

= O.

-233-

For the third, fourth, etc., steps the process is repeated

and performed in the same way as in the second step, but it should not

be forgotten that if Qi = 0, then Xi+l = 2Xi , which means that if the

previous quotient bit was a ZERO, the new remainder for the next execution

will be the remainder from which the divisor was subtracted to give

Q. = 0, but shifted through the PAT by one place to the left (which is
1

the same as multiplying it by 2).

At the end of the 48th step, equation (5) indicates that

the original dividend has been shifted 47 times to the left and the

quotient bit Q48 has been formed and, therefore, inserted into bit location

63 of B register. The weight of this bit is 2-48 • Rewriting (5):

(9)

In this step an additional operation takes place when a certain

condition exists. This condition is a function of the magnitude of the

dividend and divisor. It has been said that the dividend need not be

normalized while the divisor must be normalized before the division begings.

This means that:

and ~ ~ Y < 1

This condition will force the quotient to be:

o ~ Q < I

because, as shown on the chart in Figure 69 (due to R. Davis), the quotient

varies from 0 to I only when the divisor takes on values greater than or

equal to ~ but less than 1.

-234-

X =1
i

~ ~----------------~-----------------I

Quotient

Range

1

Q.=l
1

Figure 69. Chart Showing the Area in which the Quotient is Valid

When the dividend is greater than or equal to the divisor

the quotient in this case would be 1 ~ 0 < 2. To circumvent this the

quotient is forced to take the value ~ ~ 0 < 1 by shifting it one place

to the right and adding a ONE to the final exponent. The actual

mechanization to take care of this case is performed in the following way.

At the beginning of the recursive process (Clock Time T4)

when the divisor is subtracted from the dividend, the quotient bit Ql will

be

ONE if the dividend is greater than or equal to
the divisor,

ZERO if the dividend is less than the divisor.

At the end of the 48th step of the recursive process (Clock

Time T5l) the quotient bit Q
l

will be at bit position 16 of the B register

because in every clock time there is a shift of the quotient bit Q
l

to the

left by one place. The result of the subtraction has already determined

the quotient bit Q48 and if Q48=1, then the result is shifted one position

to the left and is placed back into A register to become the partial

remainder for the 49th execution of the recursive process. If Q4S=O the

-235-

previous remainder is shifted one place to the left and placed into A

register through the PAT.

In the next clock time no "execution step" takes place, but

a test is made to adjust the quotient field and force it to be in the

range of ~ ~ Q < 1 in the case in which the dividend is greater than, or

equal to, the divisor. If bit position 16 of B register contains a ONE,

which means Ql=l, the exponent which has already been formed (end of Clock

Time T3) is increased by ONE. If bit position 16 of B register contains

a ZERO, the exponent remains unchanged. In this clock time also, if an

exponent overflow occurs or might occur because of the increase of the

exponent by ONE, the mode register is armed to set the F bit for a fault

indication.

At the end of the 49th step (Clock Time T53) , if the bit in bit

position 16 of the B register is a ONE, this register is blocked to prevent

insertion of the final quotient bit into bit position 63 and no shifting

of the quotient field is performed. If bit position 16 of B register is

a ZERO, the final quotient bit is allowed to be inserted into bit

position 63 of Bregister, while at the same time the quotient field is

shifted to the left one place.

Rearrangement of equation (6) gives:

This equation indicates that Q
l

has a weight of 20 and, therefore, this

bit in floating point arithmetic is to the left of the binary point. If

Ql=O it is allowed to be, shifted off the most significant position of the
-1 quotient field and, since Q

2
has a weight of 2 ,this guarantees the

range of the quotient field to be:

o ~ Q < 1

because QZ can be either a ZERO or ONE. This matches the requirements set

up by the chart of Figure 1 for a valid quotient. If Q =1 this implies
1

that Xo ~ Y and, therefore, the remainder will be invalid. In this case

it was said that the exponent must be increased by one and the quotient

236-

(10)

should be shifted by one to the right. The exponent indeed is increased

in Clock Time T52, but in the 49th step B register was blocked and even

though the divisor was subtracted from the partial remainder (X48) the

quotient bit Q49 was neither inserted into B register nor was the

quotient field shifted and Ql=l was forced to remain in the bit position
-1 of weight 2 ,thus guaranteeing a valid quotient field:

~ ~ Q < 1

The remainder in this case is not valid. The programmer has an option to

force the dividend Xo to be less than the divisor by shifting Xo right one

end off when Xo ~ Y assuming that the divisor has already been normalized.

In this case he will guarantee Ql=O, a quotient field ° ~ Q < 1 and a valid

remainder. This shifting should be made prior to the beginning of the

recursive process. If Q49=1, the .final remainder will be equal to the

result of the subtraction of the divisor from the partial remainder of the

49th step, which is put into A register; if Q49=O it is equal to the

remainder (X
48

) of the 48th step which was placed into A register as

previously described.

Therefore, the final remainder of the recursive process

which has been shifted to the left 48 times may be described by:

-48
2 X49

if

-48
2 X

48

48 .+1
X - Y L. 2-1 Q. o i=1 1+1

if

(11)

(12)

Remember that when Q49 is not allowed to be gated into the

least significant bit of B register the state of Q49 determines the

remainder. If Ql=O and Q49=1, then equation (12) becomes:

-48 ') X
- 49 (13)

-237-

In the next clock Time (T54) the final remainder which

is in the mantissa part of A register is transferred into B register

while, at the same time, the quotient which was placed one bit at a

time into the mantissa part of B register is transferred into A register.

Table 38 summarizes the steps for the development of the

quotient field. If the result of the subtraction of the divisor from

the dividend or partial remainder is equal to or greater than ZERO, in

which case the quotient bit is ONE, the new partial remainder is the

result of the subtraction being shifted through the CPA by one place to

the left and placed into A register. If the result of the subtraction is

less than ZERO, in which case the quotient bit is ZERO, then the new partial

remainder is the previous partial remainder, which after being shifted

through the PAT to the left by one is placed in A register. The latter

case can be interpreted as avoiding restoration of the remainder, a character

istic of restoring'division, thus saving the considerable amount of time

required for the restoration of the remainder. In this way the result of

the subtraction is ignored because the subtraction is said to be

"unsuccessful."

Because all PEs are subject to a lock-step synchronous

operation, if the method of restoring division was used in ILLIAC IV, it

would require an extra 49 clock times to perform the restoration, even

though some of the PEs would not have to restore. This, in conjunction

with the requirements of the nonrestoring division which has been previously

explained, was the dominating factor for the adoption of the nonperforming

method of division in ILLIAC IV.

An example of division in the ILLIAC IV PE is to be found

on the next six pages.

-238-

Table 3R. Steps of Mantissa Manipulation in 64-Bit Mode Division

CLOCK
TIME

TI

T3

T4

.. ~

~,

T51

T52

T53

T54

T55

T56

ACTION TAKING PLACE

Clear "C" register for future use of PAT

Shift mantissa of OR register through barrel
~witch right end off one place and place it
into mantissa part of B register.

Set signs of A and B register equal. Clear
R sign latch. Set controls for shift left by
one into shift count register.

Check bit 16 of R register and set F bit if
bit 16 is zero.

If result of subtraction <0, shift mantissa of
A register through PAT left by one end off. If

result df subtraction> 0, then shift it through
CPA by one to the left~ Shift the most signifi
cant bit of B register into the least signifi
cant bit of 'A register. Bring Q. into the
least significant bit of A regisfer.

BringQ. into the least significant bit of B
. 1 reg1ster.

No action concerned with the mantissa occurs
during this clock time.

If result of subtraction> 0, bring it through
CPA back to A register. - If Q. = 0, then
shift mantissa of B to the lett by one and
place Q49 into bit position 63 of B register.

Interchange mantissa of A and B registers.

Shift mantissa of A to the left through barrel
switch until leading one is at bit 16 of A
register.

Clear mantiss~ and insert zeros into sign and
exponent part of A register if exponent
underflow occurred.

-239-

-1'\

REMARKS

Only for
rounding

Only when
normalized

I
N

EXAMPLE

GIVEN:
The dividend Xo of 96 bits long, the 48 most significant of which are placed in

A register and the rest, 48 bits, in B register and the divisor Y is placed in R register.

The quotient field and the remainder.

SOLUTION

~ 1 1 1 1 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 000 0 000 0 0 0 0 000 "A" Register
I

D
I
V
I
D
E
N

1 0 0 0 0 0 0 0 0 000 000 000 0 1 "B" Regis ter D

D

1 0 0 0 0 0 0 0 0 000 0 0 000 0 0 0 0 0 0 000 "R" Register .}
v.~II
R

Q1= Rs

100 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 Y

o 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 111 Y

1
Clock Time

100 0 000 0 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y + 1

1 1 1 100 000 000 0 0 0 0 0 000 000 0 0 0 0 0 0 Xo
Q11 1 o 1 11000 0 0 0 0 000 0 0 000 000 0 0 0 000 XO+Y+l T4

1 1 1 00 1 2 x 1

Q21 1 0 1 1 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 1 2xl+Y+1 TS

1 1 0 0 0 0 0 0 0 0 0 0 0 0 000 1 0 2 x 2

Q31 1 o 10 1 0 2x2+Y+1 T6

1 0 000 100 2 x 3
I

2 x 3 + Y + 1 N
Q41 1 000 0 0 0 000 000 0 0 000 0 0 0 0 0 0 100 T7 .p.

~
I 00000 000 0 0 0 0 0 0 0 0 000 000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 000 0 0 1 0 0 0 2 x 4

QSO 0 1 00 1 0 0 0 2x4+Y+1 TS

000 0 0 0 0-0 0 0 0 0 0 0 0 0 0 0 000 000 1 0 0 0 0 2 x 2 x 4

Q60 0 1 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2x2x4+Y+l T9

00000 0 0 0 0 0 0 0 0 0 0 0 0 000 000 1 0 0 0 0 0 23x 4

Q70 0 1000000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 100 000 23x 4 + Y + 1 TIO

o 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 000 24x 4

QSO 0 1 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 24x 4 + Y + 1 T1l

o 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 000 0 0 1 0 0 0 0 0 0 0 2Sx 4

Q90 0 100 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 000 000 0 0 0 0 0 0 000 0 0 0 1 0 0 0 0 0 0 0 2Sx 4 + Y + 1 T12

o 000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 000 26x 4

100 000 0 0 1 0 0 0 0 0 0 0 0
6 - T13 QlOO 0 2 x 4 + Y + 1

000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 1 0 000 0 0 0 0 0 27x 4

QlIO 0 1 0 0 0 0 0 0 0 0 0 000 0 0 000 0 0 0 0 000 000 0 0 000 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 27x4+Y+l Tl4

Rs = "R" Sign Late h

Qi= Rs Clock Time

o 000 0 0 0 000 I 0 0 0 0 0 0 0 000 28x 4

Ql20 0 I 0 0 0 0 0 000 0 000 000 000 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 000 000 0 28x 4 + Y + I T16

o 0 0 0 0 0 0 0 0 0 000 100 0 0 0 0 0 0 0 0 0 29x 4

Q130 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 29x 4 + Y + 1 T17

! o 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 210x 4
I I Q14

0 0 I 0 1 0 0 0 0 0 0 0 0 00 0 0 210x 4 + Y + 1 T18

000 0 000 0 000 000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 000 10000 0 0 0 0 0 0 000 21lx 4

! Q150 0 I 000 0 0 0 0 1000000 0 0 0 0 0 0 0 211x 4 + Y + 1 T19

I Q160

0000000 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 212x 4

0 I 0 1 0 0 0 0 0 0 0 0 0 0 0 000 212x 4 + Y + 1 T20
I I 000 0 000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213x 4 N .po

213x 4 + Y + 1 N
Q170 0 100 0 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 000 0 0 0 0 0 0 0 0 0 0 0 T21 ,

000 0 0 000 000 1 0 0 0 0 000 000 0 0 0 0 0 0 214x 4

Q180 0 10000 000 0 0 0 000 0 0 0 000 0 0 0 000 000 0 0 1 0 0 0 0 000 0 0 0 0 0 0 0 0 0 214x 4 + Y + I T22

0000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 215x 4

Q19 0 0 I 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 215x 4 + Y + 1 T23

000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 000 000 0 0 216x 4

Q200 0 1 0 0 0 0 000 1 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 216x 4 + Y + I T24

o 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 217x 4
I

217x 4 + Y + I Q210 <. 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 000 000 0 0 100 0 0 0 000 0 0 0 0 0 000 0 0 0 T25

o 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 218x 4

Q220 0 1 0 0 0 0 00 0 000 0 0 000 0 0 0 0 0 0 000 0 0 100 000 000 000 000 0 0 0 0 0 0 218x 4 + Y + 1 T26

o 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 1 0 0 0 0 000 000 0 0 000 0 0 0 0 0 0 219x 4

Q230 0 100 0 0 0 0 000 0 0 0 0 0 0 0 0 0 000 0 000 1 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 219x 4 + Y + I T27

0000000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 000 0 0 220x 4

Q240 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 100 220x 4 + Y + 1 T28

Rs = "R" Sign Latch

Q.=
~

Rs Clock Time

o 0 1 0 22lx 4

Q250 0 1 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 22lx 4 + Y + 1 T29

o 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 i 0 0 0 0 000 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 222x 4

Q260 0 10000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 222x 4 + Y + 1 T30

000 000 0 0 0 0 0 0 0 0 000 000 0 0 1 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 000 223x 4

Q270 0 1 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 000 000 000 0 0 000 223x 4 + Y + 1 T3l

o 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 000 1 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 224x 4

Q280 0 1 0 100 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 224x 4 + Y + 1 T32

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 225x 4

Q290 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 1 000 0 0 000 225x 4 + Y + 1 T33

o 0 0 0 0 0 000 000 0 0 0 0 000 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 000 226x 4

Q300 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 226x 4 + Y + 1 T34
I

227x 4 N 00000 000 000 0 0 0 0 0 0 0 1 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 ~
IJJ

227x 4 + Y + 1 I Q3l0 0 10000 0 000 000 0 0 0 0 0 0 100 0 0 0 000 000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 T35

o 0 0 0 0 0 0 0 000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 228x 4
Q320 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 000 0 0 0 0 0 0 000 000 000 0 0 0 0 0 0 0 0 0 0 0 228x 4 + Y + 1 T36

o 000 0 0 0 0 0 0 0 000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 229x 4

Q330 0 1 0 000 0 0 0 0 0 0 0 0 0 0 0 1 000 0 0 0 0 0 229x 4 + Y + 1 T37

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 000 2
30

x 4

Q340 0 1 0 0 0 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230x 4 + Y + 1 T38

o 0 0 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 23lx 4

Q350 0 10000 0 0 0 0 0 0 0 0 0 1 000 0 0 0 23lx 4 + Y + 1 T39

o 000 0 0 0 0 0 0 0 0 0 1 0 000 0 0 0 000 000 232x 4

Q360 0 1 0 0 0 0 0 0 0 0 0 000 1 0 232x 4 + Y + 1 T40

000 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 000 233x 4

Q370 0 1 0 0 0 000 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 233x 4 + Y + 1 T4l

00000 000 000 1 0 0 0 000 0 0 0 0 0 0 0 0 0 000 0 000 000 0 0 0 0 0 0 0 0 0 0 0 234x 4

Q380 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234x 4 + Y + 1 T42
Rs = "R" Sign Latch

Qi= Rs Clock Time

000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 235x 4

Q390 0 1 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 235x 4 + Y + 1 T43

o 0 000 0 0 0 0 1 000 0 000 0 0 0 0 236x 4

Q400 0 1 0 0 000 000 1 000 0 0 0 0 0 0 0 0 0 0 0 0 0 236x 4 + Y + 1 T44

o 0 000 000 1 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 000 0 0 000 0 0 237x 4

Q410 0 10000 0 0 0 1 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 237x 4 + Y + 1 T45

o 0 000 0 0 1 0 0 0 000 000 0 000 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 238x 4

~20 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 000 0 0 0 0 0 0 0 000 0 0 0 0 238x 4 + Y + 1 T46

00000 0 1 0 0 000 0 0 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 239x 4

Q430 0 1 0 0 000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 000 239x 4 + Y + 1 T47

o 0 0 0 0 1 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 000 0 000 0 0 0 0 0 0 0 0 0 0 2
40

x 4

Q440 0 1 0 000 1 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 40 - T48 I 2 x 4 + Y + 1
N 24lx 4 ~ 000 0 1 0 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 000 000 0 0 000 0 0 0 0 0 000 +'-
I 241x 4 + Y + 1 Q450 0 1 0 0 0 1 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T49

000 100 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 242x 4

~60 0 1 0 0 1 0 0 0 0 0 0 0 0 000 0 0 000 000 000 0 0 242x 4 + Y + 1 T50

o 0 100 000 0 0 000 0 0 0 0 0 0 0 0 0 000 0 243x 4

Q470 0 1 0 1 00 243x 4 + Y + 1 T5l

o 1 0 0 0 0 0 0 0 0 00 244x 4

Q48() 0 11000000000 000 0 0 0 000 0 0 244x 4 + Y + 1 T52

1 0 000 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 000 1 245x 4

Q49 1 1 0000000 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 245x 4 + Y + 1 T53

Rs = "R" Sign Latch

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o· 0 0 0'· 0
Ql Q2 Q3 <4 QS ~ Q7 QS Q9 QlO QllQ12 Q13 Ql4 Q15 Q16 Ql7 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q2S Q26 Q27 Q28 Q29 Q30 Q3l Q32 Q33 Q34 Q3S Q36 Q37 Q38 Q39 Q4(),<41 <42 ~3- Q44 ~S Q46 ~7Q48 "A" Register

TS4

o 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 000 000 0 0 1
Bl6 Bl7 BlS Bl9 B20 B2l B22 B23 B24 B2S B26 B27 B28 B29 B30 B3l B32 B33 B34 B3S B36 B37 B3S B39 B40 B4l B42 B43 B44 B4S B46 B47 B48 B49 BSO Bn BS2 BS3 BS4 BSS BS6 BS7 BSS BS9 B60 B6l B62 B63

"B" Register
I

~

~ 1 -- ~I ~ R E H A I N D E R ____________________ ~----------------------------------~r

Let us now check our answer:

The dividend

15
= 16 (base 10)

The divisor
...

1 = 2" (base 10)

The expected 15 quotient =
16 15 7 --= 8 (base 10) = 1 8" (base 10) = 1.1112 1
"2

The quotient is greater than 1. Since Q1=1 the 49th quotient

bit is ignored, but at the same time the exponent is increased by one and

Q1=1 remains in position 16 of B register. Increasing the exponent by one

is equivalent to mUltiplying the mantissa.by 2.

The quotient obtained is:

1 1 1 1
quotient = .11112 = 2" + 4 + 8+ 16

15
= 16 (base 10)

but with the exponent increased by one, the result is:

quotient 15
= 16 x 2

which is that expected.

15 = 8" (base 10) = 1 Z. (base 10)
8

b) Exponent: In division the exponent of the divisor is sub

tracted from the exponent of the dividend and the result is placed in the

exponent part of A register. As stated previously, the dividend is placed

in A and B registers and the divisor in R register. At the beginning of

the division process (Clock Time T1) the exponent of the divisor, through

the operand select gates (OSG) , is gated into the exponent part of B

-246-

register which has just been cleared and allowed to be loaded with the

exponent of R register. In Clock Time T2, the exponent remains un-

changed because this time is used only to adjust the mantissa of B

register when the option of rounding is used. In Clock Time T3 the

TRUE output of the exponent part of A regist~r is taken into CPA, while

at the same time the COMPLEMENT output of the exponent part of B register

is brought into CPA. The result of the addition (difference of two

exponents) is brought into the exponent part of A register. If the option

of normalization is not used this exponent is the final exponent of the

quotient, unless the first bit of the quotient happens to be a one, in which

case this exponent has to be increased by one. If normalization is to

take place in Clock Time T3, the binary number 0 111 111 is placed in the

OUTER exponent part of B register for exponent adjustment as was explained

in the description of addition.· In Clock Time TS6 the exponent of A

register is adjusted by the amount· of·cQr~ection bits from the exponent

part of B register, which is directly related tp the amount of places

the leading ONE of the quotient filed was moved to the left in order

to occupy bit position 16 of A register. The leading ONE detection and

the insertion of the correction bits into the exponent part of B register

is done at Clock Time TSS.

Since the exponent is formed and subject to changes in

different clock times of the division process, Table 39 summarizes

the steps for the formation of the exponent.

It was said that the divisor must be normalized before the

recursive process begins while the dividend need not be normalized. The

need for normalization of the divisor stems from the need to establish a

fixed reference point for the alignment of divisor and dividend or partial

remainder and to allow determination of the difference in their magnitudes.

This reference point corresponds to the binary point of the A and R

registers.

The way the machine has been ~p1emented if the leading one

of the divisor is not placed at least one place to the left of the leading

one of the dividend the result of the division will not be correct. But

-:-247-

Table 39. Steps of Exponent Manipulation in 64-Bit MOde Division

CLOCK
TIME

Tl

T2

T3

T4-T5l

T53-T54

T52

T55

T56

ACTION TAKING PLACE

Exponent of R register is transferred to
the exponent part of B register.

This clock time does not concern the exponent.

Exponent of A and B registers is brought
into CPA. The result of addition is brought
back to exponent 0 fA.

The binary number 0 111 111 is inserted into
OUTER exponent of "B" register. Tests for ex
ponent overflow,lI underflow are made.

No action concerned with the exponent occurs
during th~se clock times.

Increase exponent of A by 1 ·if Qi = land
set F bit if exponent overflow occurred.

The leading one detector determines amount
exponent is to be adjusted. This amount is inserted
into the exponent of B.

The exponent of A and B registers is brought
into CPA. The result is transferred back to the
exponent part of A·register.

-248-

REMARKS

Only if

normal

ized

when the comparison and the proper shifting of the divisor (so that its

leading one, compared to the leading one of the dividend, would be one

place to the left) are attempted it is much simpler to normalize the

divisor, because the magnitude of the divisor does not change. This is

true because, when we normalize the mantissa, the exponent of the divisor

is reduced as much as the leading one was shifted to the left in order

to be at bit position 16 of the R register. Another advantage obtained

by normalizing the divisor is that, when bit position 16 of R register

and is found to be a ZERO, it indicates that the divisor is ZERO because

the divisor is assumed to be normalized. In this case the F bit is set

to indicate that there is an exponent and mantissa overflow and therefore

the result of the division is not correct. Another approach to the

assurance of a correct result that could be implemented is, instead of

shifting the leading one of the divisor at least one place to the left of

the leading one of the dividend; the leading one of the dividend could be

shifted one place to the right of the leading one of the divisor, but such

would require extra programming time. When the divisor is normalized the

dividend does not have to be less than the divisor but in some cases it

must be less than twice the divisor.

There will be a case, however, when the programmer may decide

not to normalize the divisor, even though he is aware that the F bit will

be set anyway, because the machine has been implemented in such a way that

if bit 16 of R register (divisor) is ZERO, the F bit is set. The process

may continue and the result can be considered as correct if Xo < 2Y. Since

the F bit is set also when the divisor is ZERO, the programmer can check

his result. In this case the quotient field will contain all ONES, because

the divisor in 2'scomplement will produce a carry which will result in

setting the quotient bit to ONE in every execution of· the recursive

process. The same result will be obtained even if the dividend contains

all ZEROS provided the divisor is a ZERO number also.

It was also said that the dividend being 96 bits long is

placed in A and B registers and the divisor, which is 48 bits long, is

placed in R register. The reader may wonder why the dividend must be twice

-249-

as long as the divisor and also what happens if the dividend is restricted

into a 48 bit long register.

The dividend represents a number which can be used either

in floating point or fixed point arithmetic, and therefore, it is best to

examine each case separately.

1) Floating point: In multiplication, the final product

of two operands 48 bits long comes out to be 96 bits

long. When a program calls for division, this

operation is executed after the operation calling for

multiplication, if there is any, the result of which

is 96 bits long, with its most significant bits

placed in A register and the least significant bits

in B register. Recalling that by definition the

accuracy of a number is the number of bits ~hich have

significance, the dividend being 96 bits long allows

accuracy in the division process consistent with that

of other arithmetic operations performed by the PEe

We can arrive at the same conclusion through the

argument that, since it is desired that the quotient

field be a 48 bit number as a result of division of

·a dividend. X by a divisor Y 48 bits long and since

the dividend can be obtained by mUltiplying the

quotient by the divisor, provided the remainder is

ZERO, the dividend X must be a 96 bit number. If

accuracy is not of great concern, the dividend can be

a 96 bit number with the most significant bits in A

register and all ZEROS in B register (case of rounding).

In this case

dividend Xo < I 2 x divisor yl

-250-

2) Fixed Point Arithmetic:

• Fractional number: In this case the A register

can be filled with ZEROS, while B register will

contain the number representing the dividend.

The binary point may be considered to be between

A and B registers. In this case

IdiVidend Xo I < I divisor Y J

Also, B register might contain all ZEROS in which

case the binary point will be considered to be at

the left of bit 16 of A register.

• Integer: In this case proper scaling of the

dividend must be performed in order to be able to

execute the recursive process. Since the

/diVidend Xo I > divisor I

the number, after being scaled, .will Oc.cupy both

registers (A and B). It is evident that the

quotient will be an integer which cannot be held

in the proper register. By appropriate scaling, the

dividend is shifted to the right as many places as

the programmer feels is needed, so that the result

will be a number that will not impose an overflow

condition. Of cou~se, it will be the programmer's

responsibility to adjust the quotient by shifting

to the left the quotient field as many places as

were imposed by the scaling factor. The binary

point in this case is considered to be at the left

of bit position 16,of A register.

-251-

Throughout this subsection shifting the dividend or

partial remainder one place to the left, either through the PAT or CPA,

has been mentioned often. But so far there has been no reference to PAT

or CPA in regards to their possession of the capability for shifting

their contents. The reader should recall the function of both CPA and

PAT during the multiplication process~ The PAT has three levels, each

level receiving three inputs; namely, the partial sum, carry and word HI,

2, 3 depending on the level of the PAT. In division and precisely in the

first clock time (Tl) the content of C register is cleared and therefore,

there is no carry coming into the first level of PAT. In division also

the register for the recoding scheme (MDG) is not accessed and therefore

only the content of A register is allowed to come into the first level of

PAT. The PAT is designed in such a way that the input of the first level

of the PAT, which is hard wire connected directly to A register, on the

absence of carry and word #1, 2, 3 is directed to the third level of the

PAT; the output of PAT is hard wire connected back to A register, but one

place to the left compared to the output of A register connected to the

first level of PAT. In other words bit position 63 of A register comes

into bit position 71 of the first level of PAT and gets out of bit

position 71 of the third level of PAT to go back to bit 62 of A register.

The interconnection of CPA and A register is similar. A-register is wired

to the CPA, the output of which goes back to A register, but one place to

the left.

252-

DIVISION IN 64-BIT MODE

CLOCK TIME Tl

Transfer Exponent of "Rn into "B" - Prepare SCR for Shifting

1. Clear RGC (0-63).

2. Enable COMPLEMENT OUT OF RGR EXP (0-15)*.

3. Enable TRUE AND COMPLEMENT OUT OF RGR mantissa (16-63)*.

4. Enable RGR (0-63) into OSG.

5. Clear RGB exponent and sign (0-15).

6. Enable load clocks into RGB exponent and sign (0-15).

7. Enable OSG into RGB (0-15).

IF ROUNDING

8. Clear shift count register (SCR).

9. Enable load clocks into SCR.

10. Enable shift right one from Common Data Bus into OSGO}
11. Enable OSG into Address Adder (ADA) (Outer Exponent

12. Enable ADA into Barrel Switch.

**
L.J

* Since the contents of RGR pass through OSG which is an inverter,
in order to have the TRUE form of RGR out of OSG the COMPLEMENT
of RGR is gated into OSG.

** Steps 10, 11, 12 are necessary, because "shift right one enable"
into the shift count register is a CU decision and this is the
correct route.

-253-

CLOCK TIME T 2

If Rounding Transfer Mantissa of RGR into RGB Shifted to the Right
End Off by One

1. Enable COMPLEMENT of RGR (16-63).

2. Enable RGR (16-63) into OSG.*

3. Enable OSG into LOG.

4. Enable LOG into Barrel Switch (16-63).

5. Enable OUT from shift count register.

6. Clear mantissa of RGB (16-63).

7. Enable load clocks into mantissa of RGB (16-63).

8. Enable Barrel Switch into RGB (16-63).

* The whole word of RGR is enabled into OSG, but since only the
mantissa of RGB is enabled, the exponent part of RGR is already
in RGB from the previous clock time and need not be inserted
again. Therefore the mantissa of RGR shifted to the right by
one is allowed to come into RGB.

-254-

CLOCK TIME T3

Computation of the Exponent

1. Enable COMPLEMENT of RGR (16-63).

2. Enable the WORD # 4 x 2 path through MSG.

3. Enable TRUE out of sign and exponent of RGA (0-15).

4. Enable TRUE out of sign of RGB (0).

5. Enable COMPLEMENT out of exponent of RGB (1-15).

6. Enable exponent of RGA into CPA (65-79).

7. Enable exponent of RGB into CPA (65-79).

8. Enable bit carries into CPA (0 -15).

9. Compute sign of RGA.

10. Clear exponent and sign of RGA (0-15).

11. Enable load clocks into RGA (0··15).

12. Restore sign of RGA.

13. Enable CPA (64-79) into RGA (90-15).

14. Clear R sign latch.

15. Clear Barrel Switch (shift counter register).

16. Enable load clocks into Barrel Switch (shift count register).

17. Enable shift left end around from CDB into OSG.

18. Enable OSG into ADA.

19. Enable ADA into Barrel Switch (shift count register).

20. Inhibit clear clocks into mode register.

21. Enable exponent underflow depending on values of E, El.

22. Enable exponent underflow into mode register (decision of CU).

-255-

23. Enable exponent overflow into mode register.

24. Enable clear and load clocks to F bit.

25. Enable clear and load clocks into the INNER and OUTER underflow

latches.

26. Clear OUTER exponent and sign of RGB (0-7).

27. Enable load clocks to OUTER exponent and sign of RGB (0-7).

28. Enable 00111111 into OUTER exponent and sign of RGB (0-7) for

exponent correction during normalization.

29. Initialize iteration counter 47 times.

-256-

CLOCK TIME T4 - T51

Form the Quotient Field

1. Enable TRUE out of mantissa of RGA (16-63).

2. Enable COMPLEMENT out of mantissa of RGR (16-63).

3. Enable the .WORD #4 x 2 path through MSG.*

4. Enable mantis.sa of RGA (16-63) into CPA (16-63).

5. Enable WORD # 4 x 2 into CPA (16-63).

6. Enable exponent of RGA (1-15) into CPA (65-79).

7. Enable bit carries into CPA (64-79).

8. Enable bit carries into the mantissa of CPA (16-63).

9. Enable TRUE out of shift count register (SCR).

10. Enable TRUE out of mantissa of RGB (16-63).

11. Enable RGB (16-63) into LOG (16-63).

12. Enable LOG (16-63) into Barrel Switch.**

13. Clear mantissa of RGB (16-63).

14. Enable load clocks into mantissa of RGB (16-63).

15. Enable Barrel Switch into RGB(shifted left one).

16. Enable quotient bit into least significant bit of RGB (63).

17. Clear mantissa of RGA (16-63).

18. Enable load clocks into mantissa of RGA (16-63).

* In step 3 WORD # 4 x 2 path through MSG must be enabled because
this is the only way to get RGR (16-63) into CPA.

** In step 16 the whole word of LOG is enabled into Barrel Switch
but since the load clocks of mantissa of RGB must be enabled,
in reality the mantissa part of RGB will pass through the Barrel
Switch and will go back to RGB shifted left one.

-257-

19. Enable PAT sum [RGA (16-63) shifted left one] into mantissa

of RGA (16-63) if difference < O.

20. Enable CPA sum into RGA (16-63) shifted left one if difference> O.

21. Enable clear clock to R sign latch.

22. Enable load clock to R sign latch.

23. Test iteration and if the iteration counter has not counted 47

iterations repeat all steps T4 - T5l • If the counter has counted

47 interactions then go to T52 •

24. Increment iteration counter after the above testing.

-258-

CLOCK TIME T 52

Increase Exponent of RGA by One if Q1 = 1

1. Enable COMPLEMENT out of RGR mantissa (16-63).

2. Enable the WORn # 4 x 2 path through the MSG.

3. Enable TRUE out of sign and exponent of RGA (0-15).

4. Enable COMPELEMENT out of sign and OUTER exponent of RGR (0-15).

5. Enable TRUE out of INNER mantissa of RGB (16-39) in order to see

if bit 16 of RGB is a ONE.

6. Restore sign of RGA (0).

7. Enable exponent of RGA into CPA (65-79).

8. Enable sign and exponent of RGB into CPA (65-79).

9. Enable bit carries into CPA exponent (64-79).

10. Clear exponent of RGA if Q1 = 1 (RBG bit 16 must be ONE in this case).

11. Enable load clocks to RGA if Q
l

= 1.

12. Enable CPA sum (64-79) into RGA (0-15).

13. Inhibit clear clocks to mode register.

14. Enable clear and load clocks to F bit.

15. Enable exponent overflow into mode register.

-259-

CLOCK TIME 1'53

Test Ql in Order to Determine Use of Q49

1. Enable TRUE out of mantissa of RGA (16-63).

2. Enable COMPLEMENT out of mantissa of RGA (16-63).

3. Enable the WORD # 4 x 2 path through MSG.

4. Enable TRUE AND COMPLEMENT out of sign of RGB (0).

5. Force ONE from RGB (8) conditionally on R sign if FYEDITER-T or

P----7I--l have been enabled.

6. Force ONE from RGB (8) conditionally on R sign if FYEDITER-T or

P----7I--l have been enabled.

7. Enable mantissa of RGA into CPA (16-63).

8. Enable WORD # 4 maritissa into CPA (16-63).

9. Enable exponent of RGB into CPA (65-79).

10. Enable bit carries into CPA (16-79).

11. Enable output of shift count register.

12. Enable TRUE out of mantissa of RGB (16-63).

13. Enable RGB (16-63) into LOG (16-63).

14. Enable LOG (16-63) into Barrel Switch (16-63).

15. Enable clear clqcks to mantissa of RGB (16-63) if bit 16 of RGB

is ZERO (Ql = 0).

16. Enable load clocks to mantissa of RGB (16-63) if bit 16 or RGB

is ZERO (Ql = 0).

17. Enable Barrel Switch into mantissa of RGB (16-63).

18. Enable Quotient bit into least significant bit (bit 63) of RGB.

19. Enable clear clocks to mantissa of RGA (16-63) if the difference> O.

-260-

20. Enable load clocks to mantissa of RGA (16-63) if the difference > o.

21. Enable CPA sum directly to RGA mantissa (16-63).

22. Inhibit clear clocks to mode register.

23. Enable clear and load clocks to F bit.

24. Enable clear and load clocks into mantissa of B register if bit 16

of B register is a ZERO (Q1 = 0).

-261-

CLOCK TIME T 54

Interchange Mantissas of RGA and RGB

1. Enable TRUE from mantissa of RGA (16-63).

2. Enable RGA into LOG (16-63).*

3. Enable LOG into the Barrel Switch.

4. Enable TRUE from mantissa of RGB (16-63).

5. Enable RGB into CPA (16-63).

6. Enable clear clocks into RGB mantissa (16-63).

7. Enable load clocks into RGB mantissa {16-63}.

8. Enable Barrel Switch (which contains RGA mantissa) into RGB mantissa

(16-63).

9. Enable clear clocks to RGA mantissa {16-63}.

10. Enable load clocks into RGA mantissa {16-63}.**

11. Enable CPA sum {which contains RGB mantissa} into RGA mantissa {16-63}.

12. Enable clear clocks into RGA mantissa {16-63).**

13. Enable load clocks into RGA mantissa {16-63}.**

14. Enable COMPLEMENT out of RGR INNER mantissa {16-39} in order to test

whether bit 16 is ZERO or 1 and therefore to detect if the divisor

is normalized or not.

15. Enable RGR (COMPLEMENT) into mode register for unnormalized divisor.

16. Inhibit clear clocks into mode register.

17. Enable clear and load clocks into F bit.

* In actuality the whole word of RGA is enabled into LOG but, since
only the mantissa of RGA was enabled, only the mantissa part of LOG
is effectively used.

** From steps 10 and 13 above it can be seen that: The mantissa of RGB
is allowed to be transferred into the mantissa of RGA only if normaliz
ation is performed or the exponent underflow latch is low (contains
ZERO) and normalization is not performed. However, step 12 clears the
mantissa of RGA and therefore the mantissa of RGA contains ZEROS only
if the exponent underflow latch is HIGH (contains ONE) and normaliz
ation is not performed.

-262-

CLOCK TIME T55

If Normalize, Adjust Exponent in Two Clock Times (TS5 ' T56) Detect

the Leading ONE of Mantissa of RGA and Shift Accordingly

1. Enable the leading one detector (LOD) for divide-64.

2. Enable TRUE out of RGA mantissa (16-63).

3. Enable RGA into LOG (16-63).

4. Enable LOG into Barrel Switch (16-63).

5. Clear LOD.

6. Enable load clocks into LOD.

7. Clear sign and exponent of RGB (0-15).

B. Enable load clocks into sign and exponent of RGB (0-15).

9. Enable 001111111 corrections bits into OUTER sign and exponent

of RGB (0-7).

10. Enable LOD into INNER sign and exponent of RGB (B-15).

11. Clear mantissa of RGA (16-63).

12. Enable load clocks into RGA (16-63).

13. Enable Barrel Switch into mantissa of RGA (16-63). At this time

the leading one of mantissa is at bit position 16 of RGA.

-263-

CLOCK TIME T56

Adjust Exponent of RGA, Check for Exponent Underflow

1. Enable TRUE out of RGA sign and exponent (0-15).

2. Enable COMPLEMENT of corrections bits of RGB (1-7) if there is

OVERFLOW and bit 16 is ONE.

3. Enable TRUE of correction bits of RGB (1-7) if there is no

OVERFLOW and bit 16 = O.

4. Enable the INNER sign and exponent of RGB (8-15).

5. Enable RGA into CPA (64-79).

6. Enable RGB into CPA (64-79).

7. Enable bit carries into CPA (64-79).

8. Restore sign of RGA (0).

9. Clear sign and exponent of RGA (0-15).

10. Enable load clocks into sign and exponent of RGA (O-lS) if there is

no exponent underflow and mantissa is not ZERO or exponent underflow

latch is low.

11. Enable CPA (64-79) into RGB (O-lS).

12. Clear mantissa of RGA (16-63) if there is an overflow or the latch

for exponent underflow is HIGH.

13. Failure to mode register conditional upon whether there is exponent

underflow or the exponent underflow latch is HIGH and the mantissa :I O.

14. Enable exponent underflow into mode register (decision of CU).

15. Inhibit clear clocks into mode register.

16. Enable clear and load clocks into F bit.

-264-

4. Division in 32-Bit Mode. In this mode E = EI = land

therefore both OUTER and INNER words are enabled. This means that the

A register contents are not protected, which is something that the

programmer should always have in mind.

Since the recursive process was fully explained in 64-bit

mode, and because essentially the same steps are used for the 32-bit

mode, with the exception that more clock times are required for the

completion of the division, only a summary of the actions being taken in

each clock time is provided and the reader is urged to refer to the

POSFILE for more detailed information.

CLOCK

TIME
DESCRIPTION OF ACTIONS BEING TAKEN REMARKS

Tl Clear RGC to allow proper use of PAT

T2

Transfer OUTER sign and exponent of RGR into
RGB

Transfer INNER sign and exponent of RGR into
RGB

Prepare the SCR for shifting right by 1 end
off

Shifted to the right by 1 end off, OUTER
mantissa of RGR is transfered through
the Barrel Switch into RGB

If
rounding

Only if
rounding

T3 Shifted to the right by 1 end off, INNER Only if
mantissa of RGR is transfered through the rounding
Barrel Switch into RGB

Subtract INNER exponent of RGB from the INNER If do not
exponent of RGA and put the result into RGA ignore

Subtract OUTER exponent of RGB from the OUTER exponent
exponent of RGA and put the Result into RGA J

Enable INNER and OUTER signs into sign logic) If do not
and restore the sign into the sign of RGA) ignore

Clear R sign latch
Check exponent overflm'l and underflow and set

F, Fl bits

... 265-

signs

If do not
ignore
exponent

T4

T5

T6

T7 -T30

T3l

Inse~t 0111111 into OUTER exponent of RGB for
exponent correction during normalization

Shift left by 8 end around enable into SCR

Enable shift right 16 end around into the
shift count register from COB through OSG
and ADA

Set F bit if bit 16 of R register is a ZERO
INNER mantissa of RGB is placed into the

OUTER mantis8a of RGB

OUTER mantissa of RGB is placed into the
INNER mantissa of RGB

The OUTER mantissa of RGA is transfered into
the OUTER mantissa of RGB

The OUTER mantissa of RGB is transfered into
the OUTER mantissa of RGA

Insert 0111111 (077)8) into the INNER expo
nent of RGB (whicli contains the INNER
exponent of R register)

Initialize iteration counter to count up to
25

Enable shift right 63 end around into the
shift coul1t register from Common D.ata
Bus. (CnB)' through

OSGand Address Adder (This is like shift
ing left by 1 end around)

If the result of subtraction of INNER mantis
sa ofR register from the INNER mantissa
of A register is ~ 0 then this result is
transferred through the CPA shifted left by
1 into RGA.. If the result is < 0 then the
.mantissa of RGA is transferred through
the PAT shifted left by 1 back to RGA.

Shift mantissa of RGB through the Barrel
Switch left by 1 end around to provide
space for the quotient bit.

Transfer the most significant bit of RGB into
the least significant bit of RGA

Transfer the quotient bit into bit 63 of RGB
(if the difference is ~ 0 Q. == 1, if the
difference is < 0 then Q. == O~

1.

Check bit 40 of RGB which contains Q,. . If
~ = 1 then increase the INNER exPonent of
R{JA by 1

Enable Fl bit if an exponent overflow
occurred.

-266-

This is
CU
decision

See Table
40 for
Inter
changing
INNER &
OUTER
mantissas
or RGB

This is
CU
decision

If do not
ignore
exponent

T33

o

Check ~ quotient bit. If ~ = 0 shift
OUTEn mantissa of RGB thrOugh the Barrel
Switch left by 1 end around to provide
space for ~ into bit 63 of RGB.

If the result of the subtraction of INNER
mantissa ofR' register from the INNER
mantissa of A register is ~,O then this
result is brought back to RGA through the
CPA but not shifted at all and ~5 is
equal to 1.

If the result < 0 then Q25 = 0 and the remaind
er is the mantissa of RGA used for the 25th
execution of the recursive process.

Check bit 40 of RGB. If it is a ONE enable Fl
to indicate fault, because in this case the
remainder is invalid.

Transfer INNER mantissa of RGA into INNER man
tissa of RGB through Barrel Switch.

Transfer INNER mantissa of RGB into INNER man
tissa of RGA through CPA.

Enable shift left by 8 end around into the
shift count register from CDB through OSG
and ADA.

At this time the contents of A and B re
gisters are as follows'~

A REGISTER
7 8 15 16 39 40

OUTER INNER

63

EXP.of EXP. of A7
A REG. A REG.

B B 'B
7 8· 9

o
B REGISTER

7 8 15 16 39 40
REMAINDER QUOTIENT

077 8

PREPARE FOR DIVISION OF OUTER MANTISSA OF
A & B REGISTERS BY THE OUTER MANTISSA
OF R REGISTER

-267-

63

If
ignore
exponent

This is
CU
decision

T34 Transfer the INNER mantissa ofR into the
OUTER mantissa of R register

T35 Enable shift right 16 end around into shift

T36

T37

T38-T61

count register from COB through OSG and
MJA

Transfer the OUTER word of R register into
the INNER word of R register

Enable shift right 63 end around into shift
count register from CDB through OSG and
ADA.

Initialize iteration counter to count up to
23.

Set F bit if bit 16 of R· register is a
ZERO because the divisor is assumed to
be normalized before the division begins.

If the result of subtraction ~f INNER man
tissa of R register from the INNER
mantissa of A register ~O then this
result is transferred through the CPA
(WD # 4 x 2) shifted by one to the left
into A register.

If this result < 0 then the mantissa of A·
register through the PAT, but shifted by
one to the left.

Shift mantissa of B register through the
Barrel Switch left by one end around to
provide space for the quotient bit.

Transfer the most Significant bit ofB
register into the least significant bit
of A register.

Transfer the quotient bit into bit 63 of B
register which will beQ2 = I if the re
sult of subtration ~ 0 or Q I = 0 if the
result is < O.

At the end of clock time T61 the contents of
A and B registers are as follows:

-268-

See
Table 41

This is
CU
decision

Remember
that the
mantissas
have been
inter
changed

T62

T63

A REGISTER

A A REMAINDER
OUTER INNER

Rr I RS I R9 1 R4 I R5 1 EXPONENT EXPONENT R6

B REGISTER

QUOTIENT
0778 0778

Q4 1 ~l %1 ~I %1 Q
9

Check bit 40 of B register. If it is a ONE
Q

1
of the OUTER quotient is

equal to ONE in which case increase the
OUTER exponent of A register by 1.

Enable F bit if an exponent overflow occurred.

Check ~ of OUTER quotient field. If Q1 = 0
shift the OUTER mantissa (~, ~, Q) of
B register through the Bat-rel Swi~ch left
by 1 end around to provide space for Q

25 of OUTER quotient field. In this case
transfer Q

2
into bit 63 of B register.

If the result 6f the subtraction of the OUTER
mantissa of R register from the OUTER
mantissa of A register is ~O then this
result is brought back to A register
through the CPA (WORD # 4 x 2) but not
shifted to the left as in the previQus
clock times. In this case ~5 = 1. If
the result is < 0 then Q 2S = 0 and the
remainder is the mantiss~ 6f A register
used for the 25th ,step of the recur-
sive process.

If bit 40 of B register (Q = 1) is a ONE
then set F bit to indicat~ fault because
since the exponent is ignored the remaind
er will be invalid as h~s been previously
expJa:ined (X ~ Y case).

o

-269-

If do not
,ignore
exponent

~ is
located

, at bit
position
40 of B
register

If
ignore
exponent

'1'64 'I'ransfer mnntissa of A register into mantis-

T65

T66

sa of B register through the Barrel
Switch.

Transfer mantissa of B register into man
tissa of A regi'r:ter through the CPA.

Enable shift left by 8 end around from CDB in
to shift count register through OSG and
ADA.

Enable clear and load clocks to F bit. At
this time the contents of A & B reg
isters are as follows:

A REGISTER

A A QUOTIENT
OUTER INNER

EXPONENT EXPONEN'l Q4[~I Q6 1 ~I Qsl

B REGISTER

Q9

Transfer INNER mantissa of B register into
OUTER mantissa of B register.

Enable shift right 16 end around into shift
count register from CDB through OSG and
ADA.

Complete the transfer of INNER mantissa of
B register into the OUTER mantissa of
'B register.

Clear OUTER exponent and mantissa of A
register if do not normalize and the ex
ponent underflow latch for the OUTER word
is high (ONE).

Clear INNER exponent and mantissa of A re-.
gister if do not NORMALIZE and the expo
nent underflow latch for the INNER word
is high (ONE).

-270-

1'his is
CU
decision

See
Table 40
This is
CU
decision

See
Table 40

T67

T68

Enable TRUE of INNER mantissa of A register
into Barrel Switch through LOG.

Enable LOD to detect the leading ONE.
Enable exponent adjustment into INNER expo

na7tof B register.
Enable Barrel Switch back to A register.

At this time the contents of A & B
registers are as follows:

A REGISTER

A A NORMALIZED UNNORMALIZED
OUTER INNER

EXPONENT EXPONENT Q4 1 %! Q6 ~J%'~

B REGISTER

EXpONENT REMAINDER
077 8 ADJUSTED

R4 I R5 I R61 R7 I R81

Enable OUTER mantissa of A register into
Barrel Switch through LOG.

Enable LOD to detect the leading ONE.
Enable exponent adjustment into the OUTER

exponent of B register.
Enable Barrel Switch back to A register.
Enable TRUE out of INNER exponent of A

register and bring it into CPA.

R9

Enable adusted exponent out of INNER exponent
of B register and bring it into CPA.

Enable CPA into INNER exponent of A re
gister if:
There is no exponent underflow, the ex~
ponent underflow latch for the INNER
exponent is low, the INNER mantissa of
A register is not ZERO and normaliza

tion takes place.
If exponent underflow of INNER exponent (Exp.

UFl) has occurred and the INNER mantissa is
not ZERO then the mode register indicates
failure provided that Fl has been set on

-271-

Only if
normalize

-11-
-11-

-11-

Only if
normaliz

-11-
-11-

-11-
Only if
norma1iz

-11-

-11-

-11-

T69

underflow and normalization takes place.
At this time the contents of A' and B

registers are as follows:

A REGISTER

A A· INNER NORMALIZED
OUTER AD JUSTEDI---op---....--....---s----,---t

EXPONENT EXPONENT Q4

'13 REGISTER

XPONENT EXPONENT~-op---...,...REMA-_I..,...ND_ER___r-___,-__t
JUSTED ADJUSTED R

Enable TRUE out of OUTER exponent of A
register and the adjusted exponent out
of OUTER exponent of B register, and
bring both into CPA.

Enable CPA into OUTER exponent of 'A re
gister if:
There is no exponent underflow, the ex
ponent underflow latch for the OUTER ex
ponent is low, the OUTER mantissa of A
register is not ZERO and normalization
takes place.

If exponent underflow of OUTER exponent
(Exp. UF) has occurred and the OUTER
mantissa of A register is not ZERO
then the mode register indicates failure
provided F bit has been set on underflow

. aad normalization takes place.
The final contents of A and 'B registers

, are as follows:

-272-

Only if
normalize

-11-

Only if
normalize

-11-

___ ...,...... ___ " __ ' ___ ~" __ ~_'R'_'. __ '_'_.' __ '

A OUTER A INNER NORMALIZED
AJJ,JUS'I'Fm ADJlJSrPED t---,...---yo--

EXPONENT EXPONENT Q4

ADJUSTED
EXPONENT

13 REGISTER

-273-

B REGISTER

LOG

BARREL SWITCH

SHIFT BY 8
LEF'r END
AROUND

B REGISTER

LOG

BARREL SWITCH

SHIFT RIGHT
BY 16 END
AROUND

B REGISTER

B REGISTER

Table 40. Procedure for Interchanging INNER &
OUTER Mantissas of RGB

BYTES

A B C D

9""1 ¥3 4 5 6 7 8 9
IN. EXP.

0778 of R B4 BS B6 ~ B8 B9
REGISTER
IN. EXP'fI

0778(df R B4 Br:: B6 B7 BS B9
REGISTER :J

,.I:N'I EEP.
B6 of R B8 B9

REGISTER
0778 ~ B4 BS

IN. EXP.
pf R B8 B9 077 B7 B4 BS B6
REGIS.
IN. EXP.
of R
REGIS.

B8 B9 ' 0778 B7 B4 BS B6

Will B8 B9 0778 B7 Vll/; VII/; II~
B7 B8 B9 0778 B7 B8 B9 0778

B9 0778 B7 B8 B9 0778 B7 Bg

~IIIII CLEAR CLEAR CLEAR CLEAR illill rill II ~/IIII & LOAD ~ LOAD & LOAD ~ LOAD

IN. EXPo
of R 0778 B7 BS B9 B4 BS B6
REGIS. I

C
L
0
C
K

T3

T4

T5

NOTES: 1) The shaded area indicates bytes which have not been enabled
out of RGB and therefore at the end of Clock Time T5 they
are found unchanged in their location in RGB.

2) B stands for B register and the subscripts 4, S, 6, etc.,
indicate 8 bit bytes as they have been defined in the
description of the organization of the word format.

-274-

T
I
M
E

R
REGISTER

OSG

LOG

BARREL
SWITCH

SHIFT LEF
by 8 EA

R
REGISTER

OSG

LOG

BARREL
SWITCH

SHIFT
HIGHT
6, 16 EA

R
REGISTER

A

R OUT.
EXP. *

ROUT.
EXP. *

R OUT
EXP.

R6

T R IN.
EXP.

R IN.
EXP.

Table 41. Procedure for Interchanging INNER &
OUTER Mantissas of RGR

BYTES

B 4 5 6 7 8 9

R IN
R4 * R * R6 * R7 * RS *1 R EXP. * 5 I 9

f

R IN.
R4 * R * R * R7 * R8 *, R

EXP. * 5 6 - I 9

R IN~ I
R4 RS R6 R7 RS I R9 EXP. I

R I~
R8 R9

R a.r:r
R7 R4 RS EXP. EXP.

RS R9
R -OUT.

R7 R4 RS R6 EXP.

RS R9 I R OUT.
EXP. R7 R4 RS R6

*

*

ENABLE SHIFT RIGHT 16 END AROUND INTO SHIFT
COUNT REGISTER FROM CDB THROUGH OSG & MJA

R IN.
RS R ROUT.

R7 ~ W&, ~ EXP. 9 EXP.

R IN.
RS R9

R OUIJ!
R7 RS R9

ROUT
EXP. EXP. EXP.

R7 RS Rg
R OUT

R7 RS R9
R OUT.

EXP. EXP.

R OUT. R OU':C
R 9 EXP. R7 RS R9 EXP. 17 RS

~ CLEAR CLEAR CLEAR CLEAR WI/; W& ~ ~ LOAD ~ LOMJ & LOMJ &: LOMJ

R IN. R OUr:E
R7 Rn R9 R{} * RS- * R6 * EXP. EXP.

* The complement OUT of RGR is enabled because the OSGgates use
negative logic and therefore in order to get a TRUE ouput from
the OSG gates they must receive an input in COMPLEMENT form.

-275-

CLOCK

TIME

T34

T35

T36

Table 42. Procedure for Interchanging INNER & OUTER
Remainder (RGB)

C T
BYTES L I

o M

A B 4 5 6 7 S 9
C E
K

B REGISTER 0778
0778

LOG 0778 0778 , R7 RS R9 R4 R5 R6

BARREL SWITCH R9 0778 ' R5 R6 0778 R4 ~ RS T65

SHIFT LEFT 0778 R5 R6 0778 ' R4 RS R9 by 8 EA

B REGISTER 0778 R5 R6 0778

LOG R5 R6 0778

BARREL SWITCH R4 R5 R6 0778 ' R4 R5 R6 0778

SHIFT RIGHT
R6 0778 R4 R5 R6 0778 R4 R5 T66

by 16 EA

B
REMAINDER

0778 077 8--~---.,---....------r---..----I
R

-276-

ACKNOWLEDGMENT

The author wishes to express his thanks to Terry Gore and George Marmarou

of Burroughs Corporation for their explanatory remarks on the operation of

the PE Logic elements. The cooperation of Carl Semme1haack of Burroughs

in clarifying the implementation of certain PE Instructions is greatly

appreciated. The author also wishes to express his gratitude to Morris

Knapp of the University of Illinois and Theodo~e Edlin of NASA/AMES

Research Center for their administrative assistance which helped to bring

this manuscript into existence. Special thanks are extended to Mrs.

Cynthia Economidis of the University of Wisconsin in Milwaukee for her

constructive suggestions regarding the development of this document and

to Mrs. Mildred Pape and Mrs. JoAnn Kuehl for their invaluable help during

the typing of the manuscript.

-277-

BIBLIOGRAPHY

[1] D. L .. Slotnick, "The Fastest Computer," IEEE Transactions on
Computers, V.C-17, No.8, August 1968, pp 746-757

[2] "ILLIAC IV Systems Characteristics and Programming Manual,"
Burroughs Corporation, 66000D, IL4-PM1, Revised May 16, 1972

[3] I. Flores, "The Logic of Computer Arithmetic," Englewood
Cliffs~ N.J.: Prentice-Hall, 1963

[4] R. L. Davis, "The ILLIAC IV Processing Elements," IEEE
Transactions on Computers, V-C-18, No.9, September 1969,
pp 800-816

[5] T. Economidis, "Principles of Operation of The ILLIAC IV
Memory Logic Unit," NASA/AMES Research Center, December 1,
1971

[6] T. Economidis, "The ILLIAC IV Processing Element Memory,"
NASA/AMES Research Center, March 7, 1972

[7] C. S. Wallace, "A Suggestion for a,Fast Multiplier," IEEE
Transactions on Electronic Computers, Vol. EL-13, pp 14-17,
February 1964

[8] J. E. Robertson, "A New Class of Digital Division Methods,"
IEEE Transactions on Electronic Computers, Vol. EC-7,
pp 218-222

[9] T. Economidis, "Power Distribution to Illiac IV Computer"
NASA/AMES Research Center, November 29, 1973

-278-

	001
	002
	003
	004
	005
	006
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278

