AUXILIARY
LIBRARY ROUTINE V10-290

TITLE:
NUMBER OF WORDS:

DURATION:
ENVIRY:

MEIHOD:

Generate a Random Normal Deviate (SADOI Only)
26 plus 10 words of permanent storage at S 3 . Routine V 9 must be located at symbolic address (V9). Routine S 5 must be located at symbolic address (S5)
About 45 milliseconds

p	$\mathrm{F5} \mathrm{pF}$
$\mathrm{p}+1$	26 qF

Control is returned to the right hand side of $p+1$ with $X / 4$ in the accumulator. X is the random normal deviate, i.e. $P[x \leq a]=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$.

It is suggested that the user enter routine (V9) about 100 times before entering this routine for the first time, so as to discard the first 500 numbers generated by (V9). On the average, 6 random numbers generated by (V9) are used to get one random normal deviate. At the end of a given run using this routine the user can print out as sexadecimal characters (with 8240 F orders) the last numbers generated by V9. These are in S 3 to 4 S 3 . When this routine is next used these numbers can be input into S 3 to 4 S 3 (with 81 40F orders) and used as starting numbers. In this way adfferent sequence of numbers can be obtained on each rum.
Let y be a random variable which is uniformly distributed on the interval $(-4,4)$. Let Z be a random variable which is uniformly distributed on (0,1). The random variable $X=\left(y \mid e^{-y^{2} / 2}>z\right)$ is approximately normally distributed for,

$$
\begin{aligned}
& P[x<t]=P\left[y<t \mid e^{-y^{2} / 2}>z\right]=\frac{P\left[y<t, e^{-y^{2} / 2}>z\right]}{P\left[e^{-y^{2} / 2}>z\right]} \\
& =\frac{\int_{-4}^{t} 1 / 8 \int_{0}^{e^{-y^{2} / 2}} d z d y}{\int_{-4}^{t} 1 / 8 \int_{0}^{e^{-y^{2} / 2}} 1 / 8 e^{-y^{2} / 2} d y}=\frac{\int_{-4}^{t} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y}{\int_{-4}^{4} 1 / 8 e^{-y^{2} / 2} d y} \int_{-4}^{4} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y \\
& \cong \int_{-4}^{t} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
\end{aligned}
$$

Hence X is approximately normally distributed. The approximation being due to the truncation of the normal distribution to $(-4,4)$. In the machine a random number (y) is generated on $(-4,4)$ and a random number (Z) is generated on (0,1). If $e^{-y^{2} / 2}>Z$, y is accepted as a random normal deviate; otherwise y is rejected, a new y and Z are generated, and the comparison tried again. Actually y is accepted if $\mathrm{y}^{2}+2 \ln \mathrm{z}<0$. The probability of acceptance is $\int_{-4}^{4} 1 / 8 \mathrm{e}^{-\mathrm{y}^{2} / 2} \mathrm{dy} \cong \frac{\sqrt{2 \pi}}{8} \cong .3125$.

REFERENCE: von Neumann, "Monte Carlo Methods".

