## UNIVERSITY OF ILLINOIS

## DIGITAL COMPUTER

LIBRARY ROUTINE 8 5 - 231

By D. B. Gillies

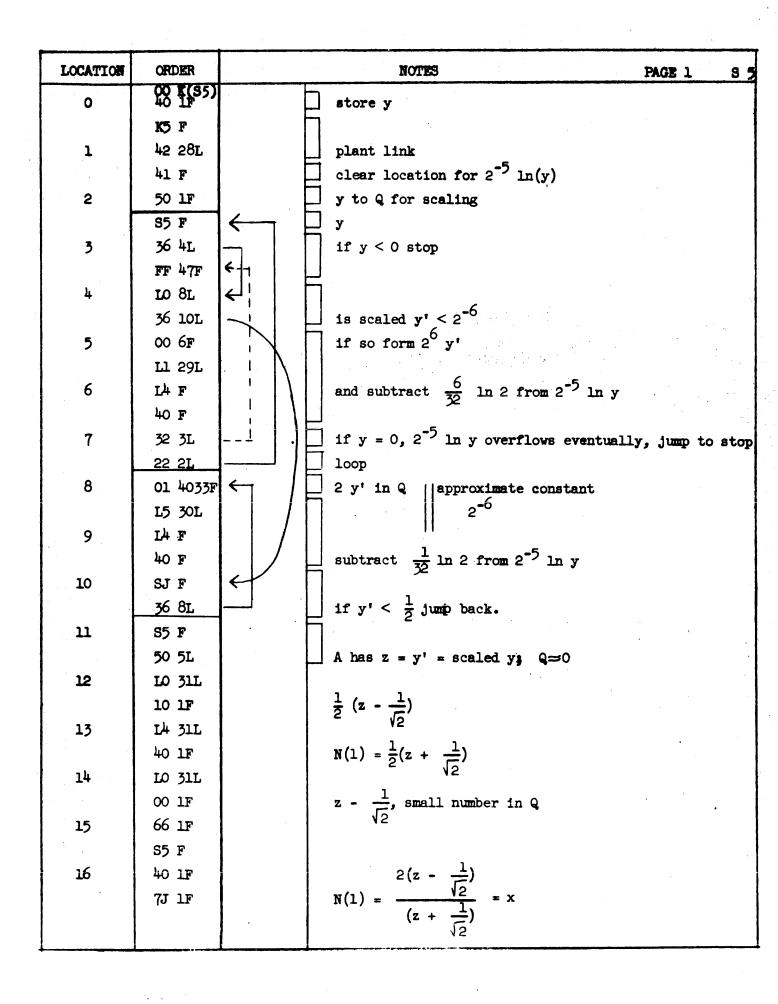
1 Natural Logarithm (D.O.I. or SADOI) Closed functional subroutine 36 0,1,2,3+  $2^{-38}$  if y > 0TEMPORARY STORAGE 8.3 to 14.3 Millisec, depending on how much scaling is required. Enter with y > 0 in A, link in Q. When link is obeyed, A has 1 75 ln y If  $y \leq 0$ , the machine will stop at 3'L on FF O2L (sexadecimal). with Q = y. Define  $z = 2^n y$ , where  $\frac{1}{2} \le z \le 1$ , and  $x = 2 \left( \frac{z - \frac{1}{\sqrt{2}}}{z + \frac{1}{2}} \right)$ Then  $\frac{1+\frac{1}{2}x}{1-\frac{1}{2}x} = \sqrt{2} z$  is an algebraic identity.  $\ln \sqrt{2} z = 2(\frac{x}{2} + \frac{1}{3}(\frac{x}{2})^3 + \frac{1}{5}(\frac{x}{2})^5 + \dots)$ This expression is replaced by an abbreviated power series  $P(x) = x + C_3 x^3 + C_5 x^5 + C_7 x^7 + C_9 x^9$  with a maximum error of less than  $10^{-11}$  for  $\frac{1}{2} \le z \le 1$ . Then  $\frac{1}{32} \ln y = \frac{1}{32} (-n \ln 2 - \frac{1}{2} \ln 2 + P(x))$ 

CHECKED BY

USE

TITLE

TYPE


ACCURACY

DURATION

NUMBER OF WORDS

METHOD

lgr



| LOCATION   | ORDER        | NOTES                                               | PAGE 2 | 85 |
|------------|--------------|-----------------------------------------------------|--------|----|
| 17         | 40 2F        | $N(2) = x^2$                                        |        |    |
|            | 50 2F        |                                                     |        |    |
| 18         | 7J 32L       | $c_9 x^2$                                           |        |    |
|            | L4 33L       |                                                     |        |    |
| 19         | 40 3F        | $c_{9} x^{2} + c_{7}$                               |        |    |
|            | 50 2F        | 9 (                                                 |        |    |
| 20         | 7J 3F        |                                                     |        |    |
|            | L4 34L       |                                                     |        |    |
| 21         | 40 3F        | $c_9 x^4 + c_7 x^2 + c_5$                           |        |    |
|            | 50 2F        | . 9 7 5                                             |        |    |
| 22         | 7J 3F        |                                                     |        |    |
|            | L4 35L       |                                                     |        |    |
| 23         | 40 3F        | $c_9 x^6 + c_7 x^4 + c_5 x^2 + c_3$                 |        |    |
|            | 50 lf        | 9 7 5 7 3                                           |        |    |
| 24         | 7J 3F        |                                                     |        |    |
|            | 40 3F        | $c_{9} x^{7} + c_{7} x^{5} + c_{5} x^{3} + c_{3} x$ | · ·    |    |
| 25         | 50 2F        | 9 7 5 7 3                                           |        |    |
|            | 75 3F        |                                                     |        |    |
| 26         | L4 LF        | $P(x) = x + c_3 x^3 + c_5 x^5 + c_7 x^7 + c_9 x^9$  |        |    |
|            | 10 4F        |                                                     |        |    |
| 27         | F4 30L       | $\frac{1}{32}$ (-ln $\sqrt{2}$ + P(x))              |        |    |
|            | 10 LF        |                                                     |        |    |
| 28         | L4 F         | $ = \frac{\pi}{32} \ln 2 \ (= \frac{1}{32} \ln y) $ |        |    |
|            | 22 (link)F   | by 1 Obey link                                      |        |    |
| 29         | 00 F         |                                                     | -      |    |
|            | 00 71,449,0  | $67,324 F = \frac{6}{32} \ln 2$                     |        |    |
| 30         | 00 F         |                                                     |        |    |
|            | 00 1,087,60  | $\frac{1}{32} \ln 2$                                |        |    |
| 31         | 00 F         |                                                     |        |    |
|            | 00 388,736,  | $\frac{1}{\sqrt{2}}$                                |        |    |
| <u>3</u> 2 | 00 F         |                                                     |        |    |
|            | 00 255,111,  | $L_{38 F} = .0004 6404 4457$                        |        |    |
| 33         | 00 F         |                                                     |        |    |
|            | 00 1,225,16  | $C_7 = .0022 \ 2855 \ 8603$                         |        |    |
| <u>3</u> 4 | 00 F         |                                                     |        |    |
|            | 00 6,872,04  | $c_5 = .0125  0018  5911$                           |        |    |
| 35         | 00 7         |                                                     |        |    |
|            | 00 45,812,98 | $c_3 = .0833 3332 9444$                             | 1      |    |