UNIVERSITY OF ILLINOIS

DIGITAL COMPUIIER
LIBRARY ROUTINE R 2-105

TITLE
TYPE
NUMBER OF WORDS
TEMPORARY STORAGE
ACCURACY
PARAMEIER

Integral Root $A^{1 / p}$ (DOI or SADOI)
Closed with one program parameter
24
0-3
$\pm 2^{-39}$
If the "Integral Root" subroutine starts at location t, then it is entered (with A in the accumulator) by the following:

DURATION
Negligible for the special cases $A=0|A|>p \times 2^{-39}$ A table of typical times (in milliseconds) follows:

p / A	.1	.2	.3	.5	.8
2	35	30	35	25	30
3	55	45	40	40	30
4	55	60	50	50	40
10	120	105	120	105	90

For large p and small A the times are considerably greater.

DESCRIPTION

This routine computes the pth root (p, a positive integer, $2 \leq p \leq 1023$) of a 39 binary digit real argument A, $-1 \leq A<1_{0}$. If $|A|>1-p \times 2^{-39}$, then $\pm\left(1-2^{-39}\right)$ is taken as $A^{1 / p}$. Another special case is $A=0$, in which case $A^{1 / p}=0$. Otherwise $A^{1 / p}$ is foumd by Newton's iteration method, in which

$$
\begin{aligned}
& x_{0}=1-2^{-39} \\
& \left.x_{n+1}=x_{n}+1 / p\left[A / x_{n}^{p-1}\right)-x_{n}\right]
\end{aligned}
$$

Convergence of x_{n} to $A^{1 / p}$ is assumed when

$$
1 / p\left[\left(A / x_{n}^{p-1}\right)=x_{n}\right] \geq 0
$$

If p is even, of course, A must be non-negative and in this case the non-negative real pth root is found. At the end of the routine the accumulator contains the signed pth root of A.

Rt: 7/21/59
DATE 7/23/53 RT: $9 / 15 / 58$ PROGRAMMED BY R. F. King
APPROVED BY Jo Po Mash

LOCAIIION	ORDER		NOTES PAGE 1
0	$\frac{00 \mathrm{~K}}{40 \mathrm{~F}}(\mathrm{R} 2)$		$N(0)=$ Argument A
1	I4 L		
	42 19L		Set link address
2	0019 F		Set $N(21 L)=p \times 2^{-39}$
	42215		
3	L3 F		
	32194		Exit if $\mathrm{A}=0$
4	II 22L		
	$402 F$	From $17^{\text { }}$	Set $x_{0}=1-2^{-39}$
5	$401 F$		$N(1)=x_{n}$
	L7 F		
6	It 215		Exit if $\|A\| \geq 1-(\mathrm{p}-1) \times 2^{-39}$
	L0 22L		
7	36184		
	1937 F		
8	403 F	From 12	
	Io 21L		
9	3212 L		
	50 IF		$\mathbb{N}(1)=x_{n}^{p-1}$
10	752 F		
	$401 F$		
11	I5 3F		
	If 23 L		
12	26 8L		-
	L7 F	From 9	
13	5022 L		
	$661 F$		
14	S5 F		Form and test $1 / p\left(A / x_{n}{ }^{p-1}-x_{n}\right)$
	LO 2 F		
15	10 39F		
	6621.		

