TIITE
TYPE
NUMBER OF WORDS
TEMPORARY STORAGE
DURATION
ACCURACY
ENITY

PRESET PARAMETERS

DESCRIPTION

Chi-Squared
Closed with two program parameters
23
0,1 , and 2
($2.4 \mathrm{~m}+3$) milliseconds
$\pm 2^{-40}$
When this routine is located at q, entry is made by

p	-mF
	50 pF
$\mathrm{p}+1$	26 qF
$\mathrm{p}+2$	00 nF

At the end of this routine control is transferred to the left hand order at location $p+2$.
When this routine is read in the following preset parameters must have been stored in locations 3, 4 and 5, respectively.

S3 $00 \mathrm{~F} \quad \mathrm{~s}$ is a scaling factor and is normally 00 sF chosen to be $1,10,100$, or 1000 depending on whether none, one, two, or three decimal places of accuracy are desired after the decimal point.

S4 $00 \mathrm{~F} \quad$ a is the location at which the quantities
$00 \mathrm{aF} \quad p_{i}, i=0,1, \ldots, m-1$, are stored prior to entering this routine.
S5 $00 \mathrm{~F} \quad \mathrm{~b}$ is the location at which the quantities
$00 \mathrm{bF} \quad \mathrm{f}_{\mathrm{i}}$, $i=0,1, \ldots, m-1$, are stored prior to entering this routine.
In its most frequent application chi-squared is given by the formula

$$
X^{2}=\sum_{i=0}^{m-1} \frac{\left(E_{i}-\theta_{i}\right)^{2}}{E_{i}}
$$

where each E_{i} is the expected number of members in the $i^{\text {th }}$ of m classes for a given sample size and the θ_{i} are the observed values. If we let

$$
\left.p_{i}=\frac{E_{i}}{n} ; \quad f_{i}=\frac{\theta_{i}}{n} \quad 2 a, b\right)
$$

and multiply both sides of equation l) by a number s, the resulting equation is

$$
s \chi^{2}=\operatorname{sn} \sum_{i=0}^{m-1} \frac{\left(p_{i}-f_{i}\right)^{2}}{p_{i}}
$$

This last equation corresponds to the quantity computed by this routine. $s \chi^{2}$ is computed as an integer and is placed in the A register at the end of the routine. The quantities p_{i} and f_{i} are fractions and must be in the ranges

$$
\begin{aligned}
& 0<p_{i}<1 \\
& 0 \leq f_{i}<I
\end{aligned}
$$

A value of 1 for one of the f_{i} may be represented in the machine as -1. Each value p_{i} is stored at location $a+i$ before this routine is entered, the first address a being given by preset parameter S4. Similarly the f_{i} are stored at $b+i, b$ being specified by preset parameter $S 5$. The number of values m of the p_{i} or f_{i} is specified by a program parameter (See Entry). The number s is a positive integer specified by preset parameter S3 and serves as a scaling factor for χ^{2}. Normally s will be chosen to be 1, 10, 100
or 1000 depending upon the number of decimal places of accuracy required in the value of χ^{2}. For example if \mathcal{Z}^{2} is $2.531 \ldots$ and s is 100 , the number in the A register at the end of this routine will be 253×2^{-39}.*

The program parameter n is also a positive integer and is chosen so as to put the p_{i} and f_{i} in the required range given by $4 \mathrm{a}, \mathrm{b}$) as determined by equations $2 \mathrm{a}, \mathrm{b}$). A logical choice for n is the sample size. The p_{i} are then the predicted probabilities and the f_{i} are the corresponding observed values. The requirements $4 a, b$) will then be satisfied automatically. If the values E_{i} and θ_{i} are known directly it may be more convenient to chose n to be the smallest power of 10 which is greater than or equal to the sample size. In some applications a power of 2 may be more convenient. In any case the values p_{i} and f_{i} are determined by equations $\left.2 a, b\right)$, and n must be specified upon entering the routine (See Entry).

If it is much more convenient to produce the values p_{i} and f_{i} one at a time, it is possible to enter this routine m times with the new values of p_{i} and f_{i} in locations a and b, respectively, each time. If this procedure is used the program parameter m must always be 1 , and the necessary summation must be carried on outside this routine. Other things being equal, this method will be slower and less accurate.

In addition to $4 \mathrm{a}, \mathrm{b}$) there are certain other moderate requirements on the quantities involved. The first of these is that the following inequality must hold:

$$
\frac{\chi^{2}}{n}=\sum_{i=0}^{m-1} \frac{\left(p_{i}-f_{i}\right)^{2}}{p_{i}}<256=2^{8}
$$

* If Library Routine P 1 is used the results may be printed in such a way that the position of the decimal point is specified.

Since each term in this summation is non-negative, each term must also be less than 256. If the latter does not hold a division hang-up will occur. If the summation is too large the answer will be in error by a negative integral multiple of 5l2s. Any danger that the requirement 5) might be violated can usually be avoided by using a larger value of n and making the appropriate changes in the p_{i} and f_{i} as determined by 2a, b). Secondly, in order to obtain the stated accuracy of $\pm 2^{-40}$ the product mns should be small compared to $2^{30} \approx 10^{9}$. Although this generally means that values of χ^{2} accurate to a large number of decimal places are obtainable, printing out results to greater accuracy than actually required or justified by the data should be assiduously avoided.

Rt: $7 / 22 / 59$ RETYPED DATE 6/2/55: $5 / 31 / 56$
PROGRAMMED BY C.Farrington APPROVED BY

LOCATION	ORDER		NOTES PAGE 1
0	41 F		
1	K5 F		
	425 L		Plant address of n
	46 F		Store m
2	L5 19L		Set addresses
	408 L		
3	$4611 L$		
	L4 F		Set test constant
4	46.20 L		
	F5 5L		Plant link
5	42 18L		
	50 F		Extract and store n
6	001043 F		
	01.20 F		
7	40 F		
	41 F		Clear Σ
8	L5 S4	from 15	$p_{i}-f_{i}$
	L0. 55		
9	402 F		$\left(p_{i}-f_{i}\right)^{2} \times 2-8$
	502 F		$\frac{1}{p_{i}} \times 2$
10	752 F		
	1085		
11	66.54		
	S5 F		Summation
12	L4 1 F		
	$401 F$		
13	I.5 8L		Step addresses
	$\text { F4 } 211$		
14	408 L		
	46112		
15	L0 20L		Test for end
	368 L		
16	50 F		ns $\times 2^{\text {m }} 39$ in Q^{4}
	7522.4		

