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Designer's Difficulties 

Struggling with the design and construction of the world's most power-

f'ul co~puter has never been easy. And in many ways the nature of the struggle 

has been constant through time. It has taken at least four or five years to get 

every major new machine going. Typically, financial crises arise~ regard.less of 

whether the unde~taking is in a university or industria+ setting. And the 

speedup over the fastest previous machine has never been much more than factor 

of ten, often much less. Still the cumulative results from the mid 1940's to 

1970 have resulted in an impressive speedup factor of 106. 

Just as impressive, but more bewildering is the growth in complexity 

of computer organization. Early machines contained a few thousand relays or 

vacuum tubes, but modern ones a.re approaching 106 trartsistors. One of the de-

signer's main trade-off problems has always been between the number of parts 

he uses and the speed of each individual part. Since for a fixed cost he always 

wants as fast a machine as·possible, he can choose a simple organization with 

very fast parts or a more ·complex organization with slower parts. The fewer the 

parts the higher the reliability, but faster parts cost more than slow ones and 

producing them may be very difficult. The designers of the most powerful.. 

machines have always pushed both reliability and cost to their limits. One 

reason for this is that from the early 1950's on, there have usually been two or 

more groups in competition to build the next big machine. 

For the moment we can leave the definition of "most powerful machine" 

at the intuitive level of "fastest and biggest." But modern machines have several 

goals in addition to these traditional ones. From the standpoint of operating 

cost, mo.ximum 11 throughout" is desired. In other words, a computing center manager 

would like to collect fees for as much of his machine time as possible. This be-

comes a difficult matter when complex operating systems and input/output equip-

ment are used, since these may consume a good deal of overhead time. Another 

goal which is becoming more difficult to achieve is low "turnaround time" for users. 
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When ~a.~y individuals are attempting to use a common central facility, the system 

respo~se time may get very long. To a large extent these newer problems are 

related to the sof'tware provided for big machines. Thus the modern design of super 

:na.chines must really be the design of a hardWa.re-software system. 

Earlier we remarked that certain machine design .difficulties have not 

chaneed in time •. The overall design of systems has in fact became more complex due 

to the introduction of software design questions on top of hardware or logical 

design. No large machines has been a one man show. Thus the designer-builde~ inter-

face has verJ often been the source of ~ch difficulty. These difficulties include 

personality clashes, technical disagreements, failures to communicate, etc. Inter-

f~ci"g the designers and implementers of so~ware is n9 easier than with hardware 

people and indeed seems to be very much harder. Furthermore, now the hardware and 

software designers must talk to each other. Currently, large machine projects may 

involve literally hundreds of professional people. Usually, the more, the worse. 

Finally, in our ·jeremiad of big system design,. :the bitterest pill of all 

for imaginative designers 'is the "design freeze." Having kept open all options as 

long as possible, the designers must make their fi~al decisions and stop designing. 

The several year construction period which follows is similar to a gestat.~1:~n period 
". 

in that changes in the design are virtually impossible and i~ attempted may prove 

fatal. In reality, of course, there are always some mistakes in the design and as 

many of ~hese as possible are removed. These changes of'ten cause major expenditures 

of woney and so~etimes degrade the machines' performance. 

In this introduction we shall quickly sketch the history leading to modern 

digital co~puters. We do this for several reasons. First, in spite of their great 

number of parts, computers are quite simple in :f\lnctional terms and it is int~resting 

to learn "";,·:ien various ideas were first proposed or implemented. It is also revealing 

to note how few really big innovations have occurred. Finally, we cannot resist 

telling the story of Charles Babbn.,se. 
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The World's Fir5t Co~puter Designer 

Althoueh pr~scnt machines are direct'descendents of ideas or the mid- · 

l930's, Babbage designed his Analytical Engine, the world's first general purpos~ 

dieital computer, near.ly 150 years ago'!- He also built a prototype or the world's 

first special purpose digital computer) his Difference Engine, which he evident-

ly first though~ about in 1812 -- ten years a:f'ter the invention of the 

steamboat~ The ideas that he and a few colleagues had about computers and pro-

grru:ming over some 30 years are overwhelming. They touched on a great many of 

the ideas used in modern computers. Nor were his thoughts limited to computers, 

as we shall see later. 

Not surprisingly, Babbage had to face many of the above mentioned 

difficulties that present day designers encounter. Several of these proved 

so overwhelming that he never finished anything but a prototype of the Difference 

Eneine. His major problem seems to have been a too ambitious plan •- a b~ock 

over which every designer must stumble at least once •. This led to financial 

problems and difficulties with his chief engineer. 

Babbage himself wrote dovm few details about his machines and it was 

said that his lectures abo·:t machines were pretty much incomprehensible~ 

Fortunately, an Italian army officer named Menabrea, who sat through a series of 

lectures Babbage gave in Turin in 1840,.published a good account of the Analy-

tical Engin~. This was later translated into English and, at Babbage's suggestion~ .. 

annotated by :"!i.s colleague Ada Augusta, Countess of Lovelace. On reading this 

:paper as well as several by Babbage one is depressed by the relatively small 

:proGress made by thousands of modern computer scientists. Or, to be more correct, 

one is annoyed by how often the same problem is discovered, worked on, solved, 

and btcnthlessly discussed in the current literature. 

Babbage had been motivated as eorly as 1812 to consider a machine 

which could evaluate :polynomial::; by the method of differences. He was annoyed 

by the. fact thut htmlan computers of ~s~ronomical and other tables were usually 



people of so~c intellectual accomplishment but that such computations real1y 
. . 

required only mechanical skills. · He was also bothered by the large nwnbers of 

errors occurring in published tables as well as errata in errata sheets. So 

between 1820 and 1822 he built a six decimal digit Difference EnBine capable of 

evaluating any second degree polynomial. Initial conditions were placed on 

wheels by hand. Spurred by his success with this project he obtained Gd'1erru:ient 

funds for a 26 digit, sixt~ degree Difference Engine. This was a very- much 

more cor::plcx machine. It was to have automatic rounding, provision for double 

precision arithmetic, various alarm (interrupt and ccrr.pletion) bells, as well 

as a rnet~od for eneraving copper plates for pr~nting the computed results. The 

latter ~r~uld preclude transcription errors. Concerned about inherent .mechanical 

errors~ BabbaGe arraneed various roller and conical bearings that would jam if' 

certain rnech~nical tolerances were exceeded.· If completed, the Dffference Engine 

would certainly have revolutionized the tabulation of ~atheoatical functions. 

It must also be noted that Babbage was developing a complex design notation for 

corr:municating his ideas to his engineering and construction people. 

This project dr~gged on for 10 years until 1833 consun:ing 17,PDO ~ounds 

of English goverw.ent money and perhaps as much of Babbage's mm fortune. During 

this period Babbage engaged in a series of :f\lnd raising activities and becrur.e in-

creasingly at odds with his chief engineer Clement. Evidently he proposed rnru1y 

design chnnges but the exact details of the collapse of the project do not see~ 

to have been recorded. In any case, by the early 1830's he was only interested 

in obtaining funds for the construction of his newest idea, the Analyticol Ei;t;ine. 

'.:Defore discussing its details, we shall set these events in historical pers:;>ective 

by not;ing the follo't:ring. The chronometer of Harrison, which was the fi~st or.c 

adequate for precise longitudinal. trai.~soceanic navigation, was produced in·tte l760's 

after a very long and trying eA"Perience. It took Harrison 3 years to produce n 

copy of his first successful ~wdcl. Intcrc~ongablc ~arts were not to come for sc~e 
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ti.n:e. In fact W'nitworth, who later introduced standard screw threads amonB 

other things, lost his job 11ith Clement when the Difference Engine project 

collapsed. Babbage worked at a time which 4was sparked with.great inventions 

the stea~ locomotive in 1$25, tpe electric gene:ator in 1831, the reaper in 

1834, the electr.om~gnetic relay in 1835, Daguerreotype ·1~.1839 and telegraphy. 

in 1844. .Of course, no thought of an electrical machine was :possible then. 

But one is :Unpressed by Babbage's courage to attempt so complex a mechanical 
. i 

device given.the state of the art at the time. 

Babbaee's machines were all designed to be driven by a hand crank, 

but in one of his accounts of his first inspiration he quotes an early con-

versation with John Herschel. They were checking some tables and Babbage said 

"I wish to God these ca~culations had been executed by steam," to which Herschel 

replied "It is quite possible." Herschel, Babbage, and George Peacock haa. been 

friends as Cambridge underernduates, where they formed the Analytical Society. 

Later Herschel became a famous astronomer and Peacock a leading algebraist at 

Ce.mbridgc. Babbage later had many discussions of his machines with these men 

and many of the ;Leading .scientists of the day. LaPlace, Bess~l and Jac·O.oi (not 

to mention the Duke of Wellington) all had extensive di~cussions w:ith. him. 

It is fascinating to note that Boole and Del·~organ were both con-

temporaries of Babbage, but no· interaction bet";·Teen them has been noted concern-

ing r.iachine design. However, Ada Augusta Byron -- the poet's daughter -- studied 

rnathcr.1atics under DeMorgan for many years. Mrs. DeMorgan notes than on an early 

occasion, she took Ada to visit Babbage and that Ada quickly understood what 

was goinG on. Sor.:e years later as Lady Lovelace,· she translated Menabre~'s 
paper on the Analytical Ensine and collaborated with Babbage. 

The AnalJrtical Engine that Babbage designed in the 1820's and 1830's 

was spectacular, even ~y the standords of the 1950's. His design metho~s and 
. 

his ideLJ.s for the machine's oq;ani"=ution and use demonstrate Bs.'Qbage' s genius. 
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The ~enze complexity of what he ho~ed to bui~d demonstrates his kinship with 
. . 

many of todays desi(;l1ers. E:( l'Ushing funds and technolo.gy to the limit ,.~ and 

often too far l'ast t~e.limit -- he faced a 4 long series of frustrations. 

: The Analytical Engine·was to be a fifty decimal digit machine. Its 
f • • -

"store" tZ" TJe-:n.or-,i was to hold 1000 of these ytords {about 165, 000 bits) in "decimal 

i'orr.i. These words cot&ld be written from or read to the ''mill'', or ari th- . 

metic and loe;ical unit;· via some mechanical linkages. The whole system was under 
. I 

the control of a process which was described on two sets of punched cards. One 

set, the "operation cards" contained the series of operations to be performed. 

The otre r set, call_ed "variable cards" indicated wh~ch store locations were 

to be operated on by the operation cards. Babbaee was quite familiar with .. the 

Jacquard loom which lras~controlled by a sequence of .punched cards. In fact, 

the punched card idea dated back to the early 1700's, although Jacquard's famous 

loom was not developed until 1804. 

Wh~le the Analytical Engine did not have a stored program, it was 

able to perform various kinds of condition tests. and ·then branch on the out-

come. In particular it could move its card sequence forward o"F backward'a 

fixed distance .. Furthermore, there was an index register and index adder 

available for loop control; to. quote Menabrea, "vfuen the number n ha's been in-

traduced. into the machine, a card will order a certain registering apparatus 

to mark (n-1), and will at the same time execute the multiplication of b by 

b." This is in a discussion of evaluting bn. Note that the indexing arith-. 

metic ~2s ap~arently carried out in parall~l with the multiplication. The 

index register was evidently not used to index through memory, however. 

The aritr.zcetic unit was designed to perform fixed point, fifty digit 

calculations at the follmfing speeds: add or subtract in one second, multiply 

or divide in one minute. To achieve such speeds Babbage devised, after years 

of work, a parallel addition algo;itfun with anticipatory cnrry logic! He was 
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very proud of that accomplishment. As in the Difference·Engine, Babbage provided 

for multiple precision operations, automatic mechanical fault prevention and 

detection, and automatic rounding and overflew detection. 

· Babbage was bot~ered for' some time about the provision of standard 

.function values e.g. log x, sin x, to the machine. Finall~ he concluded;that 

either th~ recor.1putation of such numbers, essentially via a subroutine, each 

ti.me they were needed or their provision from external cards would work. He 

was 'Willing to let the decisiod rest on operating experiepce. His table look

up procedure was arrane~d as follows. The machine's operator would be provided 

with drawers full of such cards :punched with both x and f(x). When a bell 

rang the operator would read a .dial and pick out the corresponding card. 

The machine would check to see that the correct card had been supplied by testing. 

the argument and if an operator error had occurred a louder bell would ring. 

He was quit~ proud of this idea because the problem as· well as his solution had 

evidently perplexed Bessel, Jacobi and others for some time. 

When reading BabbaGe, Menabrea, and Lovelace one is amazed and de

lighted to see how far the questions of mechanical computing ~ere explo:ed. 
. . 

It is teffipting to read things into their statements from time to time.. On 

rome cccasions they are exasperatingly brief and sometimes they are ambiguous 

or they mildly contradict each other. Such matters as the self checking 

mechanis~s which would jam when too much mechanical error accumulated are hard 

to undcrstund and the writers said they would not attempt a complete explnnation. 

On the matter. of parallel arithmetic operations they make several passing re-

marks. We quoted Nenab:rea above about index calculations. At another point, 

in his·sl.lf.7;1ary, whi~h seems to indicate the importance of the idea, he is 

discussine the speed of the machine and says, "Likewise, when a long series 
-

of identical co~putations is to be p~rformcd, such ~s those required for the 

formation of nu.~erical tables, ·the machine .can be brought into play so as to 
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give several results at the same t·ime, which will greatly abridge the whole 

amount of the processes." This seems to be a clear statement of parallelism 

between arith~etic operations? 

. Babbage and Lady Lovelace both discuss programming questions, but 

she exhibits her.own great insight in her notes on.the Menabrea paper. S)le 

vas quite concerned about languages for expressing programs. One was a kind 

of asse~bly lan~age no~ati9n on large charts. These were translated from 

another r.otation very much like compiler assis~~ent statements. All variables 

were der.oted by V. where i indicates the storage location from l to 1000. To 
l. 

avoid the confusion of writing v
1
= v

1
+v

2 
she introduced another index and wrote 

m+l m rt. v
1
= v

1
+ v

2 
to indicate that the rieht hand side values were the mth and nth 

values to occupy their respective storage locations. Her machine level language 

-was a kind of zero addrcsz operator language, although a separate operand stream 

was specified to the m:..chine. Thus, to evaluate 

d'm-drr.' 
X= ----

~n'-m'n 

· dn' -d 'n 
y= mn 1 -u'n 

she would use these three operation cards 6(x ), 3(-), 2(.:-) where .commas 

separate the cards. Note that the common subexpression in the denominator 

is evaluated just once. Locations were supplied by a three address scheme 

usinB three variable cards, two for the arguments and one for the result. 

She finally suggests a loop notation using the.Z sign to denote 

loop cont~ol. She also allows for an index variable and nested loops! Her 

notes contain several quite complex programs but she and Babbage were not 

bothered by long pr9grams. In fact they were both heartened by the fact tho.t 

:Babbai:;e o·.med a Jacquard· tapestry · which had required over 20, 000 cards for 

its production. She does remark that from the standpoints of time required 

and ultk.3te accuracy, "some numerical r~sults would be impossible to attain 

in any ~racticol sense. 
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. , 
We noted above that duri.ng the course of the D~fference Eneine 

project, Babbaae had received 17,000 pounds from the Government. He had 

spent perhaps as much of his personal inheritance from his banker father. 

Thus, by. the ti.me he.was deeply involved with the Analytical Engine, sources 

of fu.""lds were sca=ce. Evidently Lady lcw-.elace and her husband were fair~y 

well heeled and were both interested in horse racing as was Babbage. So at 

one point they devised bettin6 procedures, evaluated them on the prototype 

Difference Engine, and lost a good deal of the Lovelace fortune. 

On another occasion Babbage studied geme playing (in~luding chess) 

on the Analytical Encine and designed a tic-tac-toe machine. He proposed to 

put several of them on the road with admission charges. Perhaps he had heard 

of lt.alzel' s' "au~omatic chessplayer" which was reveale~ to contain a man. One 
.. 

is also reminded of ?~alzel' s collaboration with Beethoven which resulted in 

'Wellineton's Victory" but no machine. In any case, Babbage dropped this plan. 

Viewed on the whole, Babbage's life was a very interesting and creative 

one; his com:Puting activities farmed only one facet of his career. We conclude 

with a short discussion of some of his other interests. He carried on ·~~life-... 
long battle with street musicians - hauling them into court on several occasionn. 

As a result) his home was the scene of frequent retaliatory concerts. Being 

much interested in the heart beat and respiratory rates of all animals, he 

took every opportunity in his travels to measure these. On one occasion he 

had himself sealed inside a 265° F oven for about five minutes to study the 

effects o:-i himself. Railroads, a new invention, were a great interest and · 
• 

he is credited with rr.nny ideas including the invention of the first recording 

speedor..eter as well.as the first cowcatcher. A contribution of which he was 

very proud was a notation for describing the motion and "logic" of his- mechanical 

drawings for his Entiines. Earlier in his life he and his Ai.""lo.lytical Society friends 

had been instrmnental in gettinc EnG~i sh mathematicians to drop Newtonian notation 

for the calculus in favor of thut of . 
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Leibniz. We shall end this discussion with an abbreviated list of other writings 

and work: .an operations research type ~tud.y of the post office system; meteoro-

logical and tree ring obse:rvations, electricity and magnetism, a light house 

occulting system widely adopted, various other signaling schemes and a study 

which convinced him that the Analytical Engine could play chess with a "3 or more" 

move lookahead.' In short, while ~abbage may occasionally have been in e~ror pe was 

seldom at a loss for ideas ~bout a subject. -·. 
He was Lucasian Professor of ?I.a.thematics at Cambridge for nine years, 

but bitterly remarked that that was the only honor conferred on him by his own 

country. Babbage's entire life was filled wit~ the frustration of having few 

of his iacas appreciated and even fewer adopted. Toward the end of hi~ life 

a frierid noted, "He spoke as if he hated mankind in general,· Englishmen in 

particular, and the Engl"'ish Government and Organ Grinders most of all." In 

his boo}: "The Exposition of 185111 h~ expressed his fe~lings quite clearly when 

he wrotc,"Pr~pose to any Englishrnan any principle or any instrument, however 

ad.mj.rable, and you will observe that the whole effort of the English mind is 

directed to find a difficult~, a defect, or an impossibility in it. If _y.~u 

spea.~ to him of a machine for peeling a potato, he will.pronounce i~ impossible; 

if you peel a potato with it before his eyes, he will declare it useless because 

. it vd.11 not slice a pineapple. ·Impart the same principle or show the same ::ia.chine 

to an American or to one of our Colonists and you will. observe that the whole · 

effort of his mind is to find sone neu application of the principle, some new 

" use for the instru.~ent. In 1871 .. the London Times noted in his obituary that 

he lived to be akost 80,"in spite of organ grinding persecutions." 

Actually Babbat;e lived to see some small success.es for his ideas. In-

spired by a p~blished account of his Difference Engin~, a Swedish printer, 

Geor~c Schcutz, and his son, Edward, built a machine. Scheutz spent a good 
. 

den.l of his o·wn money and had some government support. In 1854 he exhibi tcd 
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in Englar.~ his fourth order, eight.digit difference machine with a printing 

output ~echanism. Babbage and his son received Scheutz warmly and after a 

good deal of publicity the machine was sold 4 tO the Dudley Obse.rvatory in Albany, 

New York. Whether or not it was much used seems.to be in question. In any 

case, a copy was.ma.de in 1863 and the British Government used it to compute 

actuarial tables for the newly emerging life insurance business - a topic on 

which Babbage had disc~~rsed in earlier times. 

Babbage's son, H. ·p. Babbage continued to work on the Analytical Engine 

and after his father's death managed to construct some working parts of the mill. 

between 1~80 and 1910.· At a demonstration this machine computed ~,d printed a 

table of twenty digit multiples of rr. 

In the 1880's ano~her interesting forerunner of modern computer equip

ment wa~ under-development. Working at the u. s. Patent Office, Herman Hollerith, 

an engineering graduate: of Columbia, constructed a puncned card tabulating machine. 

By 1890, Hollerith machines were in use at the u. s. Census Bureau for processing 

returns of the 1890 census. Hollerith later' went into business for himself, 

manufacturing a variety of card processing equipment. He was quite success.f'u.l 

and as we shall see below, his company became a basic building block in the 

modern. co~puter industry. 
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C-T-R et seq. 

In 1892, young Thomas 'J~ Watson launched his sales career on a horse 

drawn wagon, peddling·sewing machines, ~ianos, organs and caskets out of 

Painted Post, New York~ Before long he had moved to Buffalo, and Rochester 

and becaI:le a star, salesman ~or the National Cash Register ·company of Dayton, 

Ohio. His record having been observed by J. H. Patterson, the head of NCR, 

Watson was elevated to various ~ositions and by 1914 was IOC>re or less the nu:m.- . 

ber two man.at.NCR, which by then was the largest cash register company in the 

.U. s. His position in the company and the company's position with respect to 

competition c~used Watson some difficulty. 

First, Patterson was a manager who ruled with an iron, if somewhat 

bizarre, hand. His executives had to engage in various Patterson designed 

regimens (e.g. prework group horseback riding and special foods) and were fired 

for various kinds of real or imagined insubordination •. Occasionally inctead of 

firing someone Patterson "h~ould provide him with a ''fresh start" by moving the 

entire contents of his office out on the front. lawn, dousing it with kerosene 

and touching a match to it. So, after almost twenty years with NCR.and the 

survivor of many earlier purges, Watson was fired by Patterson in 193:4· 

The foremost market position of NCR was due in large part to Watson's 

efforts, but this was his second difficulty. Some months before his firing, 

a nurr.ber of top mo.na8ement NCR people including Patterson and Watson had 

been taken to court for a number of illegal business practices. They had 

essentially eliminated all competition in the new and used cash register business 

by stro~g selling, price cutting, industrial espionage, personal harrassment and 

their ultinate we2.po~ the "knockout machine." This was a flimsy copy of a 

competitior's machine which would be sold cheaply as the real thing and soon 
. . 

break down. Watson was a.t the time of h:ls firing appes.lii1g a fine and one year 

jail sentence. In spite of this, Wets.on asked Cho.rles R. Flint for a. job. 
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Flint was a New York tycoon.who had invested in practically everything, 

and in 1911 had formed one of the early conglomerates of diverse product 

manufacturers -- the Computer-· Tabulator -Recording Company, otherwise known as 

C-T-R. T~is included a number of companies ma.king equipment that could be 
. . 

called business ~chines, ~d included Herman Hollerith's · ~abulating ?~chine 

Company. When Flint proposed Watson to the Board as manager of C-T-R, there 

were some raised eyebrows, b~t Flint pravailed. Later the jail sentence and 

other litiGation disappeared. Watson moved rather slowly at first, but became 

C-T-R president and by 1924 was solidly in command. In 1924 he changed the name 

of the co:r.pu.ny to International Business Machines. 

In many ways, Watson ran IBM as Patterson ran NCR. He was once re-
. . 

ferred to as a "benevolent despot", but he was more rational and if not intellect-

ually inclined, he did enjoy and have good lntuition about ma.king money. IBM 

flourished and by the mid 1930's vlatson was the highest paid person in the U. S. 

Watson's interest in developing new products as a way to higher profit-

ibility cau~ed him to support various new machine development activities within 

the coffipan:r. He also enjoyed talking with people inside and outside IBM about 

possible uses of his equipment. Thus, when he was telephoned by a yoling edu-

cation professor at Columbia, Benjamin D. Wood, in 1928, Watson said he could 

spare a.~ hour for a lunch meetine. The meeting went well and Watson stayed 

until 5:30 listening to the problems and ideas Wood presented. In short, Wood 

had been developing intelligence tests for college students and had .35,000 

to process. W'ith a room full of girls and SC(:ne equipment he had ~esigned, the 

processinb of these tests was costing at least $5.00 each. He explained how 

these tests and similar material could be processed for perhaps 10 or 20 cents 

using Im: equip:1ent -- perhaps with soJ'.e modification. Two days later Wood had 

a room full of IBM equipment at his disposal, free of .charge. His predictions 

were correct a..i.'1.d he continued to offer ,sug'gestions to Watson including one that 
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the mechanical parts should be eliminated in favor of all electrical equipment. 

This association led to a line of IBM equipment for edu~ation, and Wood remained 

an IBM consulta..'1t for many years. l'l.Ore important, the equipment attracted the 

attention of other Columbia faculty and students. An astronomy graduate student, 

Wallace Eckert, talked to Wood and Watson. This later led to another gif;; to 

Columbia, the T. J. Watson Astronomical Computing Bureau. One of Watson's top 

engineers, Clair D. Lake, built a special machine for the Bureau. It was the 

first mac...~ine which could multiply and it also had a sequencing mechanism. ·rt 

was used for the computat~on of astronomical and navigational tables ... - the latter 

were very important in antisubmariLe warfare in· the North Atlantic in the late 

1930's. Later, Eckert joined IBM as the first ·director of the T. J. vTatson 

Laboratory which was located near the Columbia campus. 

Eckert's earlier astronomy calculations had attracted a good deal of 

attention and among ~~is visitors were Harlow Shapley, astronomy professor at 

Harvard University and James B. Conant, the president of Harvard. Shapley dis

cussed the Columbia work with Howard Aiken who was teaching mathematics in 

Harvard·s Graduate School of Engineering. Aiken had known about the state of 

the art in computing and had been thinking about building a more complex machine. 

Shapley promptea Aiken to visit Eckert at Columbia and later to discuss his 

ideas with James w. Bryce of IBM. Bryce had been one of IB!;f' s key inventors 

for thirty years and as a result of these discussions Watson put up a million 

dollars to build a machine for Aiken. 

Although., Watson had a reputation for occasionally trampling on every

one close to him -- including the Colu.rnbia professors -- Aiken had shopped around 

and four .. d no one but IBM capable of building his machine (whose details will 

be discussed later). Aiken also had a· strong personality. Watson apparently 

did not involve himself much with the.project until .the·machine was finished. 
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At that point he decided it should be enclosed in a special glass and stain-

less steel case; Aiken strongly disagreed. Watson won that round as he always 

had within the company. Watson had been honored by many organizations and nations 

a.~d expected that his gift of a million do~ar machine plus another $200,000 for 

operating it would bring out the· best in Harvard·. When Watson arrived at Harvard 

for the dedicat~on he found that it was Aiken and not Watson who was to get the 

credit for the machine. After raising a ruckus which included a threat to take 

the rr.achine away, Watson was ca.lrned down by President Conant who then made a 

speecn at tne dedication. 

Watson died in the mid-1950's and was succeeded by his son as president 

of IB!ii. The company has continued to build punched card equipment and other 

machines. 
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Modern ::::?.chine Ber:innines 

Three men ushered in the modern digital computer era in the·l930's. 

They were Ho·.·rard H. Aiken of F.a.rvard University, George R. Stibitz of Bell 

Telephone Laboratories and Koru.~ad Zuse of t~e Technische Hochschule in Berlin. 

CoJJ.ectively they ~esiGned a~~ bµilt a number of relay machines and by the 
. . 

1940 1 s, each had co~pleted a 3eneral purpose prograrr:nable digital computer • . 
They all apparently wor~:ed ir.dependently of one another, although Aiken used 

the engineering talent _9.f IB~!. to ·build his machine, in .particular three men were his 

coinventor·s: B. M. Durfee, F. E. Hamilton and c. D. Lake, who had designed a good 

deal of earlier IB~fi equipment. By 1946, J. P. Eckert (no relation to Wallace Eckert) 

c..:ld J. W. !fauchly of the !~core School of E1-ectrical Engineering at the University 

of Per.nsylvania had zuccezs:'u.lly CO..""Ipleted E11IAC, the 'first electronic digito.l 

co:r.puter. '.i'his attracte.d the attention of John von Neu:umn who, as a consultant, 

with Ec~ert and Nauchly y;roposeci EDVAC, the first stored program corr.:puter. This 

design was rr.o?-ified and er.,bel2.:.zhed by a .number of people and by 1950 there 

were rr.ore th~n a dozen biG ~:c.c~ine projects under way. By 1950, so many of the 

ideas used in current rr.acLi:--.e.s ~ad been propqsed and e}..-perioented with, that it 
,._,,._ 

wlll take us a good deal of :;p:ce to outline some of the details. It is, uf course, 

impossible to pin do".>m who ::ad. each idea first but we shall attempt a rough 

chronclobical ordering based G~ various published documents. 

Zus; evidently bc:;.::n first (he had his first ideas in 193!~) but his 

influence outside Ger:::any- was !-i.'Obably the smallest of the pioneers. Unfortunatr.:ly, 

most of his early worlc was d.es:.royed during the war. His special purpose relay 

n:achines Zl and Z2 were built octween 1936•and 1940. Z3 was a general purpose 

machine which operated under e:·:ternal program cont.rol. It had a 64 word data . 
• 

rocmo1·y and the nur.1bers were of binary floating point format: 22 bits with 14 

mantissn, 7 eA-:ponent and one ~i~n bit. The machine contained 2600 relays and 

"-Tas· built between 1934 and l·"'li~l. During the war Zuse developed two special 

purpose .co~trol co~putcrs, or.e -:·rhich continously sampled 100 points for process 
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. 
control. Following the war, Zuse blP.lt Z4 and then went into business, commercially 

manufacturinG Z5 and subsequent machines. "As we shall see,·Stibi~z ~as almost an 

exact American parallel of Zuse, although a few years behind him. 

At B~ll Labs) Stibitz 'Quilt his Model I or "complex computer" between 

1938 and 1940~ I~ was not a prograrr~able machine, it simply performed con;:>lex 

aritrJT,etic on nt:.mbers presented via.a teletype keyboard. Its main claim to fame 

is that Stibitz demonstated the first remote terminal system (keyboard and printer) 

to an Arr.erican 11.athernatical Society meeting at Dartmouth in 1940, usine the machine 

which was in New York City. 

Subsequently Bell Labs built several other relay machines, including 

an interpQlator and a ballistic computer each of which had a few internal registers 

for data storage. Between 1944 and .1947 Stibitz and s. B. Williams built the 
. . 

Model V system which was a general purpose two processor machine. This machine 

contained 9000 telephone relays and 50 pieces of telet~e equipment occupying 

1000 square feet of floor space. The speeds of each proc~ssor were: 300 milli-

second for addition, 1 second for mul.tiplicatipn, about 5 seconds for divide or 

square root, and .07 second!3 for a register to register tronsfer. Earli~.K Stibitz 
". 

machines had used an excess three binnry number system, but for-this machine Stibitz 

invented and used biquinary decimal numbers for several reasons. It made self 

checking, conversion to decimal, and implementationin relay circuits relatively 

easy. The numbers were floating point with seven decimal digits and an exponent: 

of magnitude less than 20. Each processor's internal memory was 15 relay registers. 

Tne entire syst~~ consisted of two such processors and three I/O positions, all 

intercor..nected. Each I/O position could handle a number of I/O devices. Thus 

one job, could use both processors or two separate jobs could be run together. 

Furthermore, the machines could, ·on completing one job, switch to another I/O 
'· 

position. Thus, set up time by a human operator could be masked. Also the tape . . 

motion time to access a new job could be masked and by preparing a number of jobs 
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on several paper tapes the machine could be run overnight, unattended. 

The machine was programme~ using a simple three address sympolic 

language, taking advantage of the fact that the 15 registers were:named by 

letters of the alphabet. Loops could be progrrur.rned by making paper tape loops 

With typica.l Bell System concern for reliability, the machine had various self 

checking feature~ and high reliability was achieved. The chief cause of diffi

culty was dirty relay contacts. Various lamps would indicate to an operator where 

the difficulty was if the machine stopped. On an unattended run, the machine could 

p.bo::-t one job and proceed to try the next one if a fault occurred. Two of these 

lJ'.lachir.es were built, one for the National .PJhrisory Committee for Aeronauti·cs 

(Lar1e~ey Field, Va.) and one for the Ordnance Department of the Army (Aberdeen 

?roving · Grou.."1.d, Maryland). 

Bell Telephone Labs constructed a Model VI system in the late 1940's 

which was in~talled at their Murray Hill, N. J. Laboratory. This machine wat:; in 

zevcral ways an irilproved version of the Model v. First, it had a number of re

mote .ter;;-;inals· from which j obn could be subrni ~ted to the mo.chine via telephone 

lines. Second, when a job failed for some reason, the machine would automatically 

restart it and try once more. A sticky relay mieht work the second time. If 

not it would. go on to the next job as did Model v. These two features mo.de the 

system appear to.be very much like a modern machine with a remote entry batch 

processing operating system. 

Another interesting feature of Model VI we.s the ability to wire in 

subroutines. Provisions we1"e made for up to 200 such subrOl.~tines. They could 

call each other and be nested dmm to four levels. Since the program was other

wise on-external pnper tape, this speeded up the operation of the machine and 

made the Fro5rar.:mer's life easier. 

Models V and VI were both "ns~chronous" machines. That is, they hnd 

no controlling clock; when one. step of an operation was over it caused the next 

- 18 -



step to becin. ~his design philosophy has been tried with varying success in so~e 

modern high speed machines. 

In contrast to the Bell Labs approach, Aiken and the IBM group 

desi[;I1ed a synchronous computer which was ~perated at a 300 milli?econd cycle? 

This machine was designed and built between 1937. and 1944. IBM became involved 

in 1939 and the vork from then until tCompletion was carried ou}; in their facilities 

at Endicott, N. Y. The machine was operated at Harvard University, and was known 

either as the Automatic Sequenc~ Controlled Calculstor or the Harvard MCJrk I. 

Mark I was 8 feet high, 51 feet long and 6 feet deep. It was a decimal, _fixed 

.~oint macpine usine a 23 c.igit plus sign, word. It could store 72 such words in 

10 po~ition counter wheels and had an additional 60 number· storage facility in 

manually set dial :positions (what would now be called a read only .memory}. Its 

s:peeds were add or subtract in 300 m~., multiply in 6 seconds, di vi d2 in 11. 4 

seconds, and it could evaluate several special functions in about one minute. 

·These latter ·were so slow that faster, lower accuracy subroutines were often used. 

The machine could also perform double precision or half word operations. 

Instructions were externally stored on 24 hole paper tape and were 

in two address format. Initially it could conditionally jump to one of two ex

ternal tape routines based on the range of en argument. This was later changed 

to a branch to one of several tapes based on a more genernl transfer on minus 

instruction. 

Progr~~ing for maximum speed could present interesting challenges. 

All operations shared a main bus and during the exection of a long operation 

the proerar.-~16r could initiate shorter ccmmnnds such as addition or certain I/O 

01>crations. A hardware interlock prevented these "interposed operations" from 

conflicting with the lenser ongoing operation. Evidently this technique mis used 

a great deal. Mark I was the· first large scale machine to be completed and was 

first used to corr.pute various tables and.later used to solve systems of algebri~ic 

and diffcrcntiol equations. Af'tcr it !'ns broken :1.n, Mnrk I was quite relinblc, 
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reportedly available 95% of the time in 1950, and it was·in use for 15 years. 

While we have gone over the period of early development in a very 

quick way, it is clear that spectacular progress was made. Zuse, Stibitz and 
~ . 

Aiken had broken grou.,.~d for events that in the subsequent five years would yield 

the "modern" digito.l co=.puter. W.nile their mechanical re~lize.tions were great 

feats of enginet£'ing, their ideas.were ma.inly rediscoveries of·things that were 

well kn9'Wl1 to Babbage exactly 100 years earlier. For their implementation5 alon~, 

however, they would have earned Babbage's respect, as he wrote in "The Life of a 

Philosopher" in 1864, "If,unwarned by my example, a:ny man shall undertake and 

shall succeed in really constructing an engine ~mbodying in itself the whole of 

the executive department of mathematical analys~s upon different principles or 

by simpler mechanical means, I have no fear of leaving my reputation in his 

charce, for he alone wili be fully able to appreciate the nature of my efforts 

and the value of their results." 
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The Second Wo.ve 

The improve::-.cnts introduced in the next wave of mach'ines inclucled electronic 

parts, large internal.memories, stored procrams, index registers,. and magnetic 

tape and dru.111 secondary storage. "f?Y' the early 1950"s the typical t~J.chine could multipl. 

in a "!'ew :.~.lli~~ccnds and he.d 1024 ¥!ords of primary memory. We shall a~.tempt to 

point out the most important steps in terms of the people who made them a~d the 

rnach~nes they bul.lt. 

In 1943, Mauchly and Eckert \ll1dertook the design of what turned out to be 
6 

one of the physically largest computers made before or after that time. ENI.AC 

was sponsored by the ArrrrJ .Ordnance Department and was intended to integrate 

ordir.ary differential equations for the generation of ballistics tables. It 

was finished at the Moore School in February, 1946. The machine was configured 

in a U-sh5pe but overall it was about 100 fee~ long and 8 l/~ feet high. It 

contained 18,000 vacuum tubes and 1500 relays and consumed 150 kw of power. Each 

ree;istcr in the machine used 550 tubes and was about 2 feet wide and 8 1/2 feet. 

h
. . ,. 
1£!1· In spite of its gargantuan dimensions the machine ~as very fast and quite 

reliable. 

ENIAC wos a ~ digi~ fixed point decimal machine with a parallel a~ith-

metic unit which performed at the following speeds: add iri·; 200 µs, multiply. in 

2.8 ms., and divide in 6 ms. It also had a square root unit and was capable of 

double precision operations. Its internal me.n1ory consisted of 20 rec;isters, each 

of ten digits. It was able to do I/O and arithmetic simultaneously and had an 

800 card per minute reader. Nevertheless, co:nputations were often I/O bound and 

while its raw speed was a factor of 1000 over 1-1ark I its overnli'performance may 

have been closer to a speedup of two or three hundred. The machine 'i-ras externally 

prograrr.t·:~d by attaching various portable "function table~" which would be arrang.ed 

by the progrru=ner. These external tables could also be used as a read-on..ly data 

raemory. The machine vas cnpable of cqnditional jump~ although this feature 

evolved in time. The time to set up the machine for o. partic~lar calculation 
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ranged from a. half hour to a. day. In 1947 its "up time" was estimated to be 20% 

but by 1950, measured over a one month pcr~od, the hardware was available 85% of 

the time; when set up time and program.hangups were included, 673 utilization was 

measured. A:fter completion, the machine wa& moved to the Aberdeen Proving Ground 

and various improvements were m~~e. John von Neumann was instrumental in· making 

the progra111.'°tlng e'asier and faster via external boards, wires; and switches. 

Having been attracted by ENIAC, von Neumann became a consultant to the Moore 

School group and began_to study the question of machine design. In 1944, Eckert 

~ad written a memo suggesting the use of a magnetic drum or disk as the primary 

memory of a machine. The use o~ a vari~ty of memories for ra~ar systems had 

developed during World War II. Crawford had written a thesis at MIT in 1942 

~uggestir.g a magnetic disk or drum in this context, and a variety of acoustic 

delay lir.e ~e~ories were-in use by radar people at the time. 

In 1945; von Neumann wrote a memo as an ENIAC consultant discussing a 

stored progra;n machine. This important idea, due perhaps to Eckert, Mauchly and 

von Neur.1ann, led to a new project to build EDVAC. This wo.s to be a machine of 

much ~ore ~odest size than·ENIAC, but with a larger internal memory and slightly 

slower arithmetic. While it spawned a great many other machines and ideas;, EDVAC 

was not the first· stored program machine to become operational. The 'project was 

begun in 1946 a..~~ the machine was not operational until 1952· During this period, 

Mauchly and Eckert left the Moore School to form their mm computer compa..11y and 

von !\emcann launched his own project at Princeton taking with him zeveral other 

Moore School people. 

In a:ny case, EDVAC "·~s a pinacy, 44 bit, fixed point machine with a bit 

serial arith.~etic unit. This required only 3500 tubes to achieve average sp~~ds 

of 850 µs for add, ruid 2.8 ms for multiply. It had a mercury delay line memory 

·which ccn tained 10211- words of data and program. This was organized as 128 delay 
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lines each containing 8 words. This memory led the designers to choose a four 

address instruction format, two for ar~ents, one for result. and one for next 

instruction, since any of these could b~e anywhere in the 1024 word circulating 

mezory. The machine had two arithmetic units; the second used for checking the 

first. 

England Pulls A:head 

Following a visit to the Moore School, Maurice Wilkes of Cambridge 

University started a project. at Cnmbridge at the end of 1946. This led to 

EDSAC, the first stored program machine to be completed, in 1949! EDSAC was 

quite similar in design tq EDVAC although somewhat slower. It had a 1.5 ms add 

time, an avcra,ee 6 ms multiply time and required a few hundred ms for division. 

Its memory characteristics were much like those· of EDVAC described abov·e. The 

overall machine had about 3000 tubes and dissipated 15 kw. Wilkes was quite 

interested in questions concerning the programming and use of the machine. 

Among other things, he developed a large subroutine library for EDSAC users. 

Others had preceded Wilkes in England with thoughts about automatic 

computers. Alan M. Turing had published his famous paper in 1936 eJ1d J. R. 

Womersley at the National P?ysical Laboratory had begun to thi~k about r.eal 

machines in 1945. By 1947, Turing and others had joined him to begi~ a project 

which led to the construction of ACE,.the pilot model being completed in 1950. 

The Ace pilot had only about 1000.tubes but nchicved an add time of 32 µs .on 

32 bit words. Its small component count made it very reliable. Shortly after· 

the KPL activity began, the Telecommunication Research Establishment began to 

study the :problem. This led to the development of MADM at ~~chester Univc1·sity, 

the p~oject being moved there in early 1947 with continuing support from the 

Telecorrtuanications R~scarch Establishment~ 
Delay lines had a rather' long latency; since they operated at a few 

megacycles and contained several hundred bits, it could take a millisecond to 

access a word. Thus a. random acces:S, large, chea.p memory device we.s sought. At 
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l·:anchester, F. c. Williams developed the "Williams tube41 which filled this bill. 

His first tube worked in i91q and was used in a prototype machine by June of 

1948. This was a cathode ray tube with bits stored on its face. ~hey could be 

capacitively sensed and access time was a function of electron beam s~itchine 

and sensin~ times only. Thus, the first large random access memory was avail

able. · In 191~8, the Manchester group, which nlso included T. Kilb~n, demonstrated 

a 2000 rp~, head per track, magnetic drum and used this ns backup to vlilliams tube 

:prir.1ar~r z:::emories in i9i~9. 

Using this r.,emory hierarchy, they issued I/O instruction for bloc!{s 

of data from the dru.~ and stole processor cycles to access the main memory. They 

built another prototype in 1949 that had an interestins new feature which they 

called the B-tube. Using the B-tube, they- said," ••• instructions, and in particular 

their address section, could be modified in their effect vrithout being modified 

in their ·stored form." Thus appeared the world's first .index register •. With 

these ir:iportant innovations as background, they designed MADM in 1949 and it 

was finished in 1951. This was a one address, binary machine with 40 bit, 

fixed point operations. Its arithmetic speeds were: addition in 1.2 ms ar.d multi

plication in 2.16 ms. 1600.pcntodes and 2,000 diodes were used. The Williw~s 

tube mer.1ory consisted of 512 words stored in 8 tubes, together with a 150, 000 

bit d:rJm. 

We remarked earlier t~tat mognetic recording on disks or drums had been 

sugGested at least as early as 1942. The first successful mnchine to use a 

masr.etic drum was built in 1947 by A. D. Booth at the Univer~ity of London. 

It was called: SEC and hnd 256 words of 21 bi ts. The arithmetic unit emplo~red 

or~y 2)0 tubes and had a 1.6 ms add time. 
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Meanwhile, Back .at Princeton 

Just a year after his EDVAC report, von NeUmann and two co-workers, 

Arthur W. Burks and Her:ilan H. Goldstine, published another report? This was 

June, 1946 and they were ail at the Institute for Advanced Study (IAS) at 

' Princeton Univer~ity; Burks and Goldstinc had both been at the.Moore School 

for some time and had been involved uith ENIAC. Their new report was entitled 

"Preliminary Discussion··of the Logical Design of an Electronic Computing 

Instrument," and it was a detailed, clearly argued discussion of many details 

of oachine design. In 1947 Goldstine and von N~um.ann wrote an accompanying 

docUI:"lc:nt'on the analysis ~~d coding of problems for the machine. These 

docur:ents led to the construction of the IAS machine which was completed in 

1952. Julian H. Bigelow waz the chief engineer in charge of the IAS machine. 

This project b~ca~e the foeal point o1 computins activities in the U. s. The 

project was lu.ndcd by the A:rrriY Ordnance Department, with contributions frotl 

the .. Air Force,, the Office of Naval Research and the Atomic Energy Commission. 

The IAS n:achine was completed in June, 1952· and was a rather compapt 

unit; excluding the I/O gear its dimensions were 8XSX2 feet. It contained 

2300 tubes (many. double triodes) and 40 Williams tubes each containing l024 bits. 

Thus the memory contained 1024, 40 bit words each being interpreted as one 

fixed point number or two instructions. The machine had a one address order 

code with 10 bits of addTess per instruction. The me~ory access time was about 

25 µs a..."'ld cxcludir.g this, the average arithmetic times were: 15 µ.s for addition, 

400 µ.s for multiplication and 1 ms for division. Many engineering inrtovations were 

included; among them a word parallel memory access feature not included in the 

11.ianchester machines. The arithr.letic unit also operated in parallel ~"1d the machine 

was asynchronous. 
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This machine and project were quite important from several standpoints. 

First, the· excellent engineers who· built the machine had a number of tather good 

recent inventions to use. Second, von Neumann and his staff thought very 

imaginatively and broadly about how to use the machine. Finally, their reports 

and visitors caused this machine's reputation to be widely known. A number of 

copies of the machine were built. 
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In parallel with the IAS activity; the Servomechanisms Laboratory of ~·~IT 

~eean to build a machine. One original motivation was the problem of real time 

aircraft simulation. The Whirlwind I project began in 1947 under Office of Naval 

Research sponsorship and· was directed by Jay w. Forrester·. Very high speeds were 

achieved in the 15 bit (plus sign) parallel,~fixed point arithmetic unit: add in 

8 us, multiply in 24 µs. When memory fetch time was included, both operations 

averaged 180 µs. Whirlwind was a synchronous machine with a. 2 megacycle cl.eek for 

the arithmetic unit. It was also a stored prosram machine. The machine was 

operational in 1951. 

One important outcome of· the MIT activity ".-ras in the primary memory area. 

Initially, Whirlwin"d had a 1024 word, 16 bit, modified Williams tube memory. 

Under Forrester's direction, alternative memory devices were being studied. The 

MIT group was in close competition with an RCA team headed by Jan Rajchman. At 

least by virtue of conGent decrees some ten years later, :r.ITT won the race. 

(The settlement fncluded royalty-free rights to RCA and a $13 million license. 

from MIT to IB:•t.) In 1953 they had installed in Whirlwind a 2048 word coincident. 

current magnetic core memory. This memory had a 1 µs read time and an 8 µs write 

and cycle time and the cores were abo~t 80 mils OD. The machine also had a 

cathode ray tube for output display with a computer controlled camera attaiched. 

Thus by 1~53, Whirlwind I with its core memory, and the IAS machine were 

both in operation. These two machines are regarded by many people as the first 

of the "modern" digital computers. Th~y had combined some ten years of engineering 

development by a number of other groups together with their own inventions and 

excellent engineering. The influence of these machines was widely felt in both 

university pro~ects and the newly emereing electronic computing industry. 

A New Industry Be.r;ins 

We mentioned earlier that one of the reasons that EDVAC was not completed 

earlier may have been the departures _of von Nemnann and his people to the IAS 

project as well as Eckert nnd ~·rauchly 'to form their own compr.ny. In December, 1947 
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the Eckert-Hauchly Computer Corporation was founded with financial backing 

from a multi.~illionaire. The firm designed and built BINAC for Northrop Air

craft under an Air Force contract. It was D.J1 EDVAC-like machine With a delay 

lirie memory and about a on~ millisecond arithmetic speed. BINAC was demonstrated 

in August, 1949. 

At the time, their only commercial competition was from IBM which was 

selling ·various co:nbin0:tion .. electronic and electromechanical devices. These 

included the Selective Sequence Elec~ronic Calculator (SSEC), the 604 

·~lectronic Calculat"ing Punch, and the Card Programmed Calculator ( c·PC) all 

introduced in 1948. The CPC actually grew out of an experiment in which a 604 

and an accounting machine were joined by people at Northrop. None of these was 

a stored pro~ram machine, and it looked as if the Eckert-Mauchly Corporation had 

a clear field. Based on their BINAC experience they designed a new machine, 

UNIVAC, and be~an taking orders at ¢250,0?0 per system. 

At that point their fortune changed. Their financial backer was killed 

in an airplane'cra~h at about the time they realize~ that the $250,000 UNIVAC 

price tag was too low to make a profit. Seeking funds they talked vri th p·Qople 

at the T. J. Watso.n Laboratory in New York. The technical people there were 

enthusiastic about UNIVAC but evidently on Watson's decision, the Eckert-V.i.a.uchly 

talks were terminated. James Rand of Remington Rand then discussed the matter 

with Eckert and Mauchly and subsequently took over their company. 

At the time, Remington Rand had a line of desk calculators as well as 

various punch~d co.~d equipment. Unlike IID1, Remington Rand used a 6 row, 90 

colui:u1 card. While IE-1 equipment had been primarily designed for "business 

applications" it had 'found its wey into many "scientific" uses. Remington 

Rand eq_uip::ent scer:lS to have retained the flavor of "business equipment" only, 

at that time. 
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The first UNIVAC was delivered to :the Bureau of the Census in June of 

1951. UNIVAC was a synchronous .machine ~"'ld had a delay line memory of 1000 

(not 1024) words of 12 decimal digits. The se:?ial arithmetic unit operated at 

about 1 millisecond and the numbers were binary coded decimal in excess ~hree 

:format. Magn~tic tapes were used as secondary memory and special buffer registers 

were provided for data entry to primary memory. UNIVAC was quite successful. and 

48 systems were built (sale price was $750K,although they were aiso leased). 

In 1952 Remington Rand bought out Engineering Research Associates of 

Minneapolis. ERA had been a pione~r in commercial magnetic drum manufacture and 

had designed their 1101 and 1102 computers around their drum. The UNIVAC name 

had nlli:lbers attached to it for later Remington Rand machines and still later the 

1100 numbering scheme was ~esurrccted. 

IPl-1 finally saw the light and in 1950 began a project which led to the 

IBM 701 by the end of 1952. · The 701 was a ·36 bit fixed point, synchronous, parallel 

machine with a 2048 word Williams tube memory. Its speed was about 40 µ.s for 

addition and 400 µs for multiplication or division. This was the beginning of 

a long series of 700 and 7000 ·series machines. It also signalle'd the end of 

the open field for Remington Rand. With Watson's aggressive sales background 

and widely established sales network, IBM quickly moved in. Eventually nineteen 

701 systems were sold and many other machines followed. 

Thus by 1953--just nine years after the completion of II.ark I-

Whirlwind I and the L\S machine were leading the research :front and UNIVAC I 

and the IBM 701 r:ere both commercially available. In 1970 there are some 70 

cor:ip3.11ies in the business of computer manufacturing. IBM has about 7ocj, of the 

market and its nearest competitor, Honeywell with its newly.purchased GE division, 

has about 8~. 
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SUMYP.RY 

We will close this Chapter.with a synopsis of the history of machine 

organization up to 1953 and a few re~ks about what followed. At this point 

the reader has surely noticed that a large fraction of the "big ideas" of modern 

machines were in use by 1953· In fact a good many of them were thought aboµt 

by Babbage,. 100 years earlier. Babbage had proposed a machi~e organizati911 

with a me~ory, arithmetic unit, control unit and I/O facilities. He invented 

a parallel arit~.=.etic unit ~th anticipatori/ carry logic and an overflow alarm. 

He also u~ed. an index register for loop counting and it worked in parallel with 

the arithmetic unit-. Between them, Babbage and Lady Lovelace proposed a good 

m.a~y proer~{ing ideas which were similar to those in current use. Unfortunately, 

they were a hundred years ahead of the technology. 

In fact the vac~um tube and Eccles-Jordan flip-flop circuit were both 

invented in the first quarter of the 20th century but were not employed until 

25 years later in ENI.AC. flu.~er the feasibility of larg~ general purpos~ com

puters had been de~onztrated using electric relay and mechanical technology, 

the events of ·World War II caused the US and British governments to provide 

·the f\lnds for a good deal of computer research and development. The earlier 

radar efforts. certainly provided many engineering and tech.~ology ideas. 

By 1953, ·most of what Babbar;e had proposed was imple!:j,ented. Machine 

speed was the main thing that would hnve surpriseQ Babbage •. He proposed a o~c 

second add fuJ.d a one minute multiply. In fact several tens of microseconds 

were all that addition required and multiplication was about ~~ order of 

magnitude slower. The clever memory hierarchy ideas of the ~~chestel'" group 

as well as the notion of a stored program would have impressed, if not surprised, 

Babbage·~ 

The computer scientist of 1970 should give pause to notice the wealth 

of innovations which ha.d been demonstrated by 1953. The multiprocessor with 

rer.ote job entry at B~ll Labs,·the 8 µscore ~emory at MIT, the proposal of 
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micropro~rarr.r.iing by Wilkes. in 1951 -- any of these soWld !~ke current subjects. 

~.any topics had been sharply debated in the 1940's! including synchronous 

vs. asynchronous operation, bit serial vs.word parallel arithmetic,_decimal vs. 

binary and fixed vs. floating poi~t number repre~entation." Several of these 

subjects are still debated -- or "settled" by :providing both. It should b~ 
~ 

noted that asynch~onous operation as pioneered by Stibitz and followed through 

the IAS machine, has largely disappeared. The extra control hardware ew.~d ti~e 

required ro"r "reply backs" between elementary operations be ca-me unreasonable as 

i:iachine speeds increased. It" is also interesting to note that while early machines 

(Zuse and Stibitz) had floating point hardware, it had largely disappeared by 

1953 -- not to return for several yea:rs. von Neumann had been instrumental in 

this, ar~uing that propez:. scaling was easy if one sufficiently understood his 

:problcn; otherwise he shouldn't be computing in the fir5t place. His argument 

contained one.genuinely unfortunate flaw:- few users since have understood 

their calculations as von Neumann understood his. In any case, the "philosophy_ 

of machine design" papers w,d tten in the 1940 • s often rea:d in po.rt as if they 

had been written last year. 

Not that all ideas had b~en proposed by 1953. Some inventions big and ~mall 

that ca.:ie after 1953 will close this chapter. The transistor and j.ntegrated cir-

cuit certainly provided the biggest technology charlges and with them came re-

Inarkable system speedups. Memories with extra tag bits, indirect addressing, 

and p'hc..sed or interleaved banks were to follow as was modern pa,.c;ing ha.rd ware. 

This led to co;r:plex multiprogram."TI.ipg and time she.ring systems. Fancy terminals 

have greatly aided some users. Faster arithmetic algorithms and pipelined 

arithrr.ctic uni ts as well as program look ahead have contributed to faster CO!i'i-

putation. Stack mR.chines have led to a vnria.tion in addressing as well a.s fast 

co~pilation. As we said at the beginniUG 1 things have become much more com-

plicatcd a.'1d hardware and software orgeniz:l.tion have become deeply intertwined. 
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In 19531 software w~s in a. rather s?.mple end :pure state. 'symbolic asscinblcrs were 

co!;..r:on o.nd hich level l~rrungcs were be:i.ng discussed. I•'ortuno.tely no one had 

thouc:;ht about software operating systems. 
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FOOTNOTES 

1. [11] contains reost of the available Babbage references. A1so [5] conta~ns 
a fair a:nount about Babbo.ge. 

2. Much of this :caterial was obtained from [14 J • • 
3. ·[ l], pages 359 a.~d 367, contai:ns accounts of the work of Zuse. In [9] on 

· :pages 508 and 650 one can res.d further details including an article 
by Zuse h"irn~el;E. 

4.. [ 2], :pages 1 and 69, contains articles about the activities a.t Bell Labs. 
[12], paee 41, is a verJ good d.iscus~ion of the Bell Labs ~.a.chine. On page 91 
of [12] there is an interesting philosophical paper by Stibitz. 

5. (12] is a complete description of the machine. 

6. ENI.AC is discussed in [12] page 31 and [l] page 97. 

7. ED SAC is discussed in {3], also in [18] by Wilkes who was the designer of 
EDSAC. 

8. MADM ar~d its preceding developments are discussed by .the designers in. (5] 
pace 117 .. 

9. A complete discussion of the IAS machine. design is contained in [7]. 

10. See (16] for a. discussion of Whirlr.r:i.nd. 
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Chapter 2 

Processor Design 

2.1.1 Overall Design Questions 

A computer system designer must solve one problem jn many forms 

and at many levels: What is the least expensive way to provide a given 

function to the user of the ma.chine? ~be :f'unction may be a low level 

detail or.it may be an ove~all system characteristic. The function may 

be of an entirely logical nature or it may involve the speed with which 

something is accomplished. The function ~y be stai;ed in terms of a 

user's problem or in terms of the computer i~self. The possible functional 

specifications are endless so let us turn to t~e question of coot. Except 

in rare cases the designer must do things as cheaply as possible, subject 

to the :ru_~ctional'constraints specified for the system. Cost savings may 

be made by usine less expensive parts and by reducing the nun:ber of parts, 

This often involves a number of trade offs, I>a.rticularly because :::heaper 

parts are usually slower and judiciously adding more parts generally speedz 

things up. Since overall costs are u~mally all that !!'.latter, cost and speed. 

trade offs may be made between various units of the overo.11 system. In 

any case, it is usually b~d practice to include features merely because they 

are exotic (although some machines may appear to cont!'a.dict t:iis). Fu..i.J.c·~ions 

f;hould be of justifiable use to the customer and the overall cost should be 

as low as possible. 

Given these rather obvio1.is remarks, the question remains: how does 

one go about designing a computer system? We shall attempt to ans.wer thn.t 

questi.on in a fairly general way hy discussing a m.unbe::c of computer :functions 
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and how they are interrelated. We shall attempt to discuss general . 
principles and then relate t~em to some real machjnes. Our overall 

approach will be from the inside out; we shall start with the arith-

metic unit, primary memory and the qontrol w'lait. These will be followed 

by overall system discussions. 

2.1.2 Arithmetic ond Lor,ical Unit 

If we reeard conzideration of the arithmetic and logical unit 
. . 

as the first design problem, then a number of decisions at this level will 

be reflected throuehout the_ system. In practice the various parts of the 

machine affected would be considered simultaneously~ Here we shall 

restrict our attention to one part at a tim·e. 

In te:nns of cost and speed we must concern ourselves with the 

kind of circuits used as well ·_as how many parts are required. Circuit 

p~rameters of interest are switching speed, fan-in and fan-out limitatiops, 

power dissipation, noise i1rununity, reliability and cost. Interrelations 

between pa!'ts required by the :functions clesired nmst be compatible with 

such things as layout on boardr> with renpect to number of wiring levels, 

cross talk, cooling, ~d repairability. 

The user requirements specified may be rather vaLrue. Problems 

in different contexts tend to place a variety of demands on the arithmetic 

unit--some problems requiring one thing and others something else. In any 

case, large n~'llerical computation tends to be the moot severe burden for the 

arithmetjc unit so we shall discuss some details of this. 

First, one must decide which operations are to be performed. 

Addition. subtraction, multiplication and divi~ion are typical, although 

there.are many variations 011 these. In the future, more complicated f\mctions 
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may be built into machines e.g. tr.igonometric functions, log, exp,· or 

n-ary summation. Initially w~ shall restrict our attention to addition. 

First 1-ie must decide if we are going to actually add or just 

do a table iookup to get the result. This latter strategy has sometimes 

been employed (cf. IBM l620)in slow, small machines; large, high speed 

machines usually have the ability to compute the sum of· two numbers 

using some ~ind of sequential logic. The form of the nwnbers turns out 

to be quite important in a number of respects. By form we mean the 

number of digits, the number system and whether or not some kind of 

explicit exponent is used. 

The number of digits dictates the word length of memory as well 

as the arithmetic unit and its registers. This can be quite important in 

terms of overall.system cost.· Users can often give estimates of the 

required word length in terms of the maxi.mum round-off error tolerable for 

certain calculations. It is usually desirable to make the word length a 

multiple of the character size (byte) used in the computer system and this 

has usually been either 6 or 8 bits in binary machines. In the early days 

some internal decimal machines were built (e.g. IBM 650) although 

these are quite rare now and we· shall restrict our attention to internal 

binary machines. Fo:;- numerical calculating the range of 32 to 6lt- bi ts has 

beeh common. 'l'he possibility exists of choosinG a standard word length and 

then providing arithmetic operations on double or half words. This has 

often been done to try to satisfy a wider class of users. 

Choosing a word length typically requires choosing both an exponent 

and fraction size in most modern machines used for numerical computation. 

von N~umann n.rgued aga:inst floating point hardware and built a 40-bi t fixed 
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~oint machine. Later, most companies built floating point machines with 

40 or fewer total. bits to the chagrin of many numerical uses, Typieally, 

.. from 6 to 16 bi ts of' exponent are prarlded. •As more complex numerical 

computations a.re performed, users are less happy with normalized 

arithmetic. Several unnormalized or significance arithmetic schemes have 

been proposed and implemented. 

F~ally, the number system chosen can greatly influence the speed 

and gate count of the ari~hmetic unit. The well-known polynomial representation 

is commonly used, although a redundant form of this .has quite desirable 

properties. Also the residue number system has interesting properties which 

are usef'ul in a theoretical way as well as for some applications. 

We shall attempt to discuss several of these issues and to contrast 

some of them with others. The reader should be forwarned that no pat answers 

are forthcoming. Some fairly detailed results are available but the choices 

between alternatives must be dictated by individual design requirements. 

2.3 Number Systems 

2.3.1 Polynomial Numbers 

number 

Numbers may be coded in a variety of ways. For example, the polynomial 

p(r, k) = 
k-1 . 

1 
£ d.r , 

. 0 1 1= 

represents a k digit integer with radix r. If r = 10 we have a 

decimal number, e.g. 

p(l0,4) = 3 x io3 + 7 x 10
2 

+ 1 x 10
1 

+ 9 x 10° = (3719)10· 

We shall use the radix subscript notation when necessary to avoid ambiguity. 

·As another example if r ~ 2 we have a binary number, e.g. 
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) 2 1 0 ( p(2,3 = 1 x 2 + 0 x 2 + l x 2 = 101)2 = (?)10· 

Finally, if r = 16 we have a hexadecimal number, _e.g. 

p(l6,3)· = l X 162 + 9 X 161 + 1510 .x 160 
,. 

To avoid con:f'usion, the substitutions A = 1010, B = 1110~ C = 1210, D = 13
10

, 

E = i4
10

, F = 1510 are often used. Thus for our example, (19F)16 = (415)10 = 

(0001,1001,1111)
2

. Since four bits (binary digits) can be used to represent 

the 16 possible coefficie~ts required in a hexadecimal number, an easy 

conversion from binary to hexadecimal may be made. In the last example 

this can be seen by simply reading off groups of four bits in the binary 

fonn and rewritine them as hexadecimal coefficients of appropriate :POWers 

of 16. 

Because of the ease of building :Physical devices with two stable 

internal states, . a radix of some :Power of hro is often chosen for com:Puter 

number representation. Binary, octal, and hexadecimal are common choices. 

The above numbers were all integers, but real numbers are easy to 

writ~ as polynomials by letting the summation range over negative as well 

as non-negative values. Thus 

p(r,k,j) 
k-1 

r: d. ri~ 0 < d. < r 
• . 1 - J. 
J.=-J 

is a j + k digit real nmnber, base r. 

Examples of decimal and binary real numbers are 

p(l0,3,2) 9 x io2 + o x io1 + h x lo 0 + 1 x lo -l + 3 x io-2 

= 9011-. 73 

and 

p(2,2,3) = 1 x 21 + 0 x 2° + 1 x 2-1 + 0 x 2-2 + 1 x 2-3 = (10.101)2 

Note that they have j digits after the clec:imo.l and binary point, respectively. 
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2.3.2 Signed Diait Numbers 

The polynomial numbers of the last.section used non-~egative 

digits, only. '1.1l.1ere are good reasons to allow each digit to have its own 

sign, as we shall see in a later di~cussion of arith.~etic operations. ~1any 

possible defini tionn of sj gned cligi t nmnbers could be given, but we choose 

the following • 

A signed digit polynomial number is given by 

k.:.1 • 
sp(r, j, k,max jd. I) = E d.r1, -max Id. I < d. <max jd. ! 

1 1 1-1- 1 
i=-j 

where r > 2, 

and 

r
2
+1 <maxtd.t <r 

- 1 
1, if r is odd, 

_
2
r + 1 < max Id. I < r ·- i, if: r is even. For example, if we choose r = 10 and 

- 1 -

let maxtd. I 
1 

= !. + 1 = 6, we have sp(lo,2,3,6) = 
2 I, 

2 i 
Z d.10 , -6 < d. < 6 = 

. 2 1 - 1 -
1=-

3xlo2 + (-6)x101 + (-3)x10° + 6x10-1 + 2x10-2 = 300 - 60 - 3 + .6 + .2 = 237.62. 

The sign of such a number is the sign of the highest power nonzero 

digit, and negative numbers a~e formed by changing the sie;n of each digit. 

Thus no explicit·sign is.required. Note that the algebraic value of a signed 

digit polynomial number is zero if and only if all d. = O. 
1 

2.3.3 Residue Numbers 

The residue number system uses an implicit definition for each 

number rathe1· than the explicit polynontlals of the previous sections. Before 

discusdng this s:,rstem we will review a few definitions. 

We say that a is congruent to r, modulo m, and write 

a:: r(mod m) 
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if for integers a, m and r there +s an integer k such that 

a = r + mk. 

In this congruence relation, r is called the residue and m the modulus of 

the number a. We shall concern ourselves only with the least positive 

residue r , defined by 0 < r < m. Thus if m = 2 and a = 5 we have 
lP - lP 

5 = 5 (mod 2), k = 0 

5 = 3 (mod 2), k = 1 

5 = 1 (mod 2), k = 2 

5 = -1 (mod 2), k = 3 

and r = 1. Clearly r is unique for any a and m. Finally we recall that 
lP lP 

two integers are relatively prime if their greatest common divisor is 1. 

The residue number system represent~ an integer as a concatenation 

of the least positive residues of that integer with respect to a set of re-

latively prime moduli. For example, let 2 and 3 be the moduli, then we can 

represent the integers O, .•• ,5 as follows: 

N r (mod 2) 
.f P 

r (mod ·3) 
lP 

0 0 0 
1 1 1 
2 0 2 
3 1 0 
4 0 .l 

5 1 2 

Residue number N 

00 
11 
02 
10 
01 
12 

k 
In general, if we are using·k moduli II\, ... ,~, then we can represent 7r m. 

i=l l. 

distinct numbers in the residue number system. If we had chosen moduli that 

were not relatively prime this would not be true. 
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2. 4 Machine Re;presentation of Numb.era 

2.4.1 Precision nnd Machine Radix 

A great variety of formats have been pro;posed and used to store 

and o;perate on numbers :i.nside com;puters. If machin~ numbers have a word 

length of w digits (excluding sign), we say that integers may be re;presented 

with w digits of precision. It is important to distingui~h "precision" in 

this sense from the meanings of such words as "accuracy" or "significance". 

Thus numbers may be represented to 20 digits of precision. But if the 

measuring device from which they were obtained was only accurate to 3 digits, 

only 3 digits of the 20 are accurate. The other 1 T may have been "extrapolated" 

by a meter reader. 

We now consider the meaning of the word "radix" in computer terms. 

A machine is built of elements,_ each having a number of different internal 

states. Let us say.that each element can represent v values. Almost all 

current machines are built using physical devices with two stable states. These 

may be assembled into v value elements 1·ri th v = 2 or with some other value of 

v, say v = 10. Thus, while most machines are made from two state physical devices, 

a number of current ma~hines have binary (v=2) as well as decil:nal (v=lO) 

arithmetic capabilities. When we wish to clearly denote a machine rad.ix in terms 

of v value elf!ments we shall write rv instead of r. 

2. 4. 2 Fixed and F'lo:i.ting Point rT11P1be1~s · 

Integers are stored in roost binary machines as a sign bit and w 

digits of integer. Thus, the range of w digit integers in a radix r machine v 

is 

-r w < i(r ,w) < r w 
v v v 

·with both plus and minus zero included. 

Numbers in tM s form need not _be re~n.rdcd as integers. Obviously the 

radix poj nt may be nsswned to be anywhere in the number. Or it may be asaumcJ 
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to be a fixed number of zeros to the right or left of the lrord. Wherever it 

is assumed to be, it is fixed by the p1·ogro.mmer (as in slide rule computation). 

This number representation in computers is thus called either integer or fixed 

point form. A fixed point number which is not •an integer clearly has the range 

w+s . ( ) w+s -r < fi r , w, s < r v v v 
where s (a signed integer) is a sea.le factor assumed by the user. 

Since the late 1950's most big machines have provided arithmetic 

uni ts ·which operate on integer as well as floating point or real number forms. 

Such forms usually repre~ent a signed fraction and a signed exponent. Assume 

two signs plus w = e + f dir;its are used, where e i~.the number of digits 

of the exponent and f is the number of digit~ of the fraction. Suppose we have 

a machine with radix rv. An exponent e1 of e ~igits and a fraction f
1 

of f 

digits may take the forms 

In most machines s
1 

= 0 so exponents are regarded as integers and s2 = -f since 

the radix point is assumed to be at the le~ end of each word. 

Thus e1 = i(rv,e) 

are assumpt:ions that we shall.make unless otherwise noted in our subsequent 

discussion. 

Up to this point we have d:i.scussed forms of the fraction and e:A"Ponent 

but we have not mentioned the oase to lihich the exponent :t.s raised. This is 

oft.en ref'eri·e.d to as the radix of machine m:unbers by users and we shall. denote it 

by rb. · In rOD.ny machines rb = rv = v, but this is not al.ways so. It i~ also po1ml:u-

to Choo- e r rk for "Orne rmall 1· ntcvnr k For e'".rOm'plc 1· n the rn·v 7160 floatir,,: point • '-i b = V >.> o.l ~ '-; • • .IV-WU DJ, J. .,,, -..._, 
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l} 
operations v = rv = 2, but rb = ~ = 16, a.nd it is referred to as a hexa-

decimal floating point machine. k If rb = rv then our distinction between 

radicies may seem pedantic because collections· of k digits in r may be • v 

regarded_ as digits in rb (recall our earlier discussion of conversion from 

binary to hexadecimal). 

Now w~ can express floating point machine numbers (with s1 = 0 

and s2 = f as above) as 

or 

or 

f J. ( r , r.. , e, f) v L) 
+ 0 

(re-1) -(r e-1) 
v ( ) -f v -1 x rb <fl r ,rb,e,f < -r x rb 

. .V - V 

Note that the intervals represented contain only a finite number of reals .• 

We shall adopt the notg.tion that if r = rb; both will be denoted by r. For 
. v 

example if r = 2 we have 

or 

or 

2(1-f-2e) ~ ~~(2,e,f) < 2(2e-l) 

fl(2,e,f) = + 0 

We say that the precision of a floating point number is determined 

by f and its ran~e is determined by rb and e. 

2.4.3 Normalized and U:pnormalized Numbers 

The computer stored form of a floating point number is not necessarily 

·unique. Thus we ·have 
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B.+el -a 
• 2 fl x 2 

= f .t (2, e, f') 

For example, if e = 3 and f = 5 

f.t(10,3,5) =.03210 x 10°03 

002 = .32100 x 10 

004 =.00321.x 10 • 

To make the stored form of floating point numbers unique, some standard form 

may be chosen. Very often this is the normalized form of a number which we 

sha.11 denote by nf!(r,e,f). Th~s_ means that if the number being represented 

is non zero, the first digit to the right of the radix point is non zero. 

By properly adjusting the exponent, e:n:y non-zero floating point number can be 

normalized as we did above using an adjustment factor a. If the radix ~oint is 

assumed to be at the left end of the fraction, then clearly we obtain maJdmum 

precision for fractions using normalized forms. 

It is not always the.case that users want to do normalized floating 

point calculations. Hardware and software aids· for performing unnormalized or 

significance arithmetic are o~en provided. In this case some adjustment a 

is used so that the normalized number is shifted a digits to the right. 

Roughly speaking·such a number may be said to have a significance off-a 

digits. The point of providing significance arithmetic is that often the user 

starts out with numbers of less significance than the f available on his 

machine. Also the significance of alJ. his numbers is usually not the same. 

In such cases it may be very misleading to compute using the full f digits 

of the machine and to deliver an f digit result. Rather, the significance of 
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the result should be expressed as a. function of the significance of the input 

data. Machines with significance arithmetic ·features provide proper adjustment 

for each operation. 

2.4.4 Multiple Precision Representation 

Whatever word length is provided by machine designers will prove 
I 

inadequate for some users. Thus multiple precision hardware or software is 

often built. If n word-precision is provided, then n memory locations must be 

fetched per operand. In multiple precision floating point operations it may 

seem desirable to use an exponent of the same size as that used for single 

precision. However it is often the case that only .an f digit arithmetic unit 

is available. Thus, each word in the multi~le precision representation is 

used as an f, e pair. The exponents are then adjusted to reflect the position 

of each component in the longer number. 
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2.5.1 Floating Point Arithmetic Definitions 

The following definitions should be intuitively clear. 

,. e2 
f 2 x r , then 

-(el-e2) ~l 
r ) x r , 

A number of difficulties may arise in terms of machine representation of the results 

of these arithmetic operations. In the case of add or subtract the exponent of the 

result is the same as one of the original exponents but one of arguments must be 

shifted (adjusted) a distance equal to the magnitude of the difference of.the 

exponents. This can cause digits to flow off the right end of a number or machine 

register and we shall call it fraction underflow. In case both fractions have a 

high order 1, 1 is progagated off the le~ end of the number or machine register 

and we shall call this fraction overflow. 

In the case of multiplication and division the exponents a-re added and 

substracted, respectively. In case a positive exponent gets too large we shaJ.l 

refer to it exponent overflow, and exponent underflow ·will mean that a negative 

exponent exceeds the e digits in magnitude. 

These various kinds of exceptions should always be used to trigger an 

aJ.arm to the user. Provisions should be provided to allow him to take appropriate 

action. With most modern compilers and operating systems, the actions can be 

taken automatically. For example, certain values should be saved for the user to 

study and the job r.aay or may not be continued. 
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2. 5.2 Machine Additj_or1 

First let us restrict.our attention to addition of nonnegative 

integers. For example 

k-1 . i k-l. . 
• "t"' l. E dl.r + ~ d_.r 

i=O. 1 i=0~1 

k-1 I 

i = I: ( d1 • +d
2 

• ) r . 
• 0 l. l. 
l.= 

Since each a.iGit is required to be less than r, d
1

. + d
2

. must be recarded as 
. 1 l. 

a pair of digits, commonly co.lied a sum and carry digit, so dli + d
2

i = 

re. 
1 

+ s. where c.+l ~ 1 i:r a_. + d
2

. > r, otherwise c. 1 = O. 
l. + 1 1 -ii l. - . . l. + 

It will become importnnt below to decide precisely what we mean by "the addition 

of two numbcrn". Is it sufficient to generate only the ci+l and si digits for 

all i? Or must we worry about_propagating the carry across the result? Note that 

316 

+ 253 

can be evaluated with all zero carry bits whereas 

316 

1010 

requires a carry to propn.cate across all positions. Apparently the lo.ttcr 

process i~ much slo1·:er than the former. 0.n the other hand, the generation of 

ci+l and si in each position would seem to take the same time for each position 

and if these could be saved for the next addition perhaps an overall time saving 

would be possible. We 3hall return to these questions later. 
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Note that the second sum above overflowed in t~e sense that two three 

digit numbers led to a four-digit one. With a fixed word length machine this 

would require the raising of some kind of alarm to cause appropriate action to 

be taken. 

:Now let us consider the addition of nonnegative .floating point 

numbers. For ex~.unpl~ 

= 101. x 2
10 + 001.1 x 2

10 

This addition procens required an extra step bef~re the addition to equaJJ.ze 

the exponents and alien the binary points of the two areurnents. In particular, 

·the smaller exponent was set equal to the larger one and the fractional part 

was properly shifted to compensate. ~~otice that the process underflowed the three 

digits allowed for the fraction part of t:~e floating point numbers. 
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2.5.3 Normalized Floating Point Addition 
J 

We will now consider the process of floating point addition assuming 

normalized arguments. Let 

The addition process requires e·qual exponents so we must first align the 

fractions and adjust the smaller exponent. Thus we have 

nf L1 + nfL2 = 10100 x 2°1l + 00101 x 2°1l 

Oil . = 11001 x 2 = nf£3 ~ 

In general we may overflow the le~t end (by at most one digit) and thin requires 

a post addition adjustment or renormalization step. This may cause a digit to drop 

off the right end of the word. If we have the choice of losing a digit at the 

right or left ends, clearly we must choose to drOi:> the low order digit 

(otherwise the result would be nonsense). There is a choice of simply dropping 

the 19st digit called truncation, or adding 1/2 to the highest order digit 

about to be dropped called rounding, and generally rounding is preferable. The 

errors introduced by these processes are called truncation error and round 

off error, respectively. 

While we have discussed the error introduced by post addition 

normalization, the preaddition alignment.may also introduce error. For example, 

let 

. Then 

nf21 (2,3,5) = 11100 x 2°11 

nfL
2

(2,3,5) = 10111 x 200l 
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11100 x 2°
11 = nf li 

011 + 0010111 x 2 = nf l 2 
011 ,. 

!_0000111 x 2 . = nf t
3 

The fraction underflow digits underlined at the right ~e. somewhat in doubt, 

being ·the sum of the low order digits given for nf !
2 

and assumed low order 

zeros for nf 1
1

. · The underlined digit at the le~ is the· fraction overflow 

discussed above. To finish the addition we must shi~ right to renormalize 

the fraction and subtract one from the exponent to adjust it. Finally we 

shall round by adding an appropriate 1. Thus we obtain 

+ 

1000011 x 2°11 

1000011 x 2100 shift and adjust 

l 

10001 ~ 2100 

round 

result 

In decimal notation 

nft1 = 7, nf12 = 1.4375, and nf£3 = 8.5 

and our machine addition process has introduced a round-off error of + .0625. 

Note that if we had truncated iristead of rounding, nf 1
3 

= 8 and the truncation error 

would be - . 4375. 

Generally e~ror may be expressed ~n absolute or relative terms. Both 

of our above examples were absolute error, E , the actual value of the error. a . 

Perhaps of more interest is the relative error, €r' expressed as the ratio of 

absolute error to the correct value (or approximately to the computed value). 

Thus for the above example, the relative error due to round off is 

€ a 
€ = = rr nf .£

1 
+ nf £2 

.0625 
8.4375 = .0074 

while the relative error due to truncation is 

.4375 
= 8.4375 = . 052. 
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2.5.4 Floating Point Multiplication 

We shall briefly consider floating point multiplication, emphasizing 

the steps before and after the actual multiplication. Assuming normalized 

numbers, let 

Normalized fractions may be multiplied with no possibility of overflow. At tbe 

same time the exponents ma~ be added and this process overflows if "le1+e2 j > e. 

In this case the user should be notified that he h~s.exceeded the machine's 

capacity. The product of two f digit fractions will generally be of length 2f 

and this means that extra-register length should be provided in the arithmetic 

unit. The user may want to save both the high and low order bits of the product. 

More likely he will simply want to save a rounded single length result. Note 

that the rounding process must be followed by a renormalization and exponent 

adjustment step. 

The time consuming process of multiplying the fractions may be 

done in various ways. Typically some kind of repeated addition loop is 

executed. Thus one operand is shifted and added to itself under the control 

of the other operand. 



2.6 Bit Level Design Qptions 

To this point we have discussed a number of elementary ideas 

about computer numbers and arithmetic. With this as background we shall 

turn our attention to some overall questions about computer arithmetic. 

To make the discussion tractable we shall limit ourselyes mainly to 

floating point addition. As we mentioned earlier the design of a 

machine must be regarded· from the user's point of view as well as the 

designer's. The designer wants an "inexpensive" unit. Users have a 

great variety of performance desires. We shall discuss performance and 

cost in terms of a number of parameters. Our objective is to give the 

reader some ideas of an overall nature rather than to discuss specific 

designs. Thus we shall present analyses of: shi~ing as a f'unction of 

radix; precision and accuracy as functions of radix; roundoff as a f'unction 

of word length and number of arguments; overall speed as a :runction of 

number representation, hardware characteristics, and word lengths. 

2.6.1 Optimal Choice of r v 

We shall consider several aspects of the choice of radix. First 

is the optimization. of rv in machine structure terms. 

Assume that a variety of physical devices ~re available at 

various costs. Their speeds may be assumed to be equal O! cost may be 

written as a f'unction of speed. In any case, assume that an entire machine 

is made of various "black boxes" which are radix r devices. Also assume 

that the cost per bit of such devices can be expressed as (here r = r) v 
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We must qualify this assumption because memory and processor costs per bit 

are usually quite different due to different technologies. This could be 

reflected in a. Furthermore, it is probably true that if we simulated rad.ix 

r "black boxes" using radix 2 hardware, the cost per bit of memory and processor 

would have quite different f3 values. If the assumption ·is valid for some part 

of a machine, we proceed as follows. Let some number N = rn be represented 

by n bits in various radices. Then 

log N = n log r e e 

and the cost of N (storage, processing, etc.) may be expressed as 

A log N 
. I-' e 

= a r • ·1og r 
e 

To minimize this cost with respect to r 

Thus 

or 

f3 log r = 1 
e 

l/f3 r = e . 

Since the second derivative is positive we have an expression 

for a minimum cost radix. For example, f3 = 1 implies t~at the bit cost 

is proportional to the radix value in a linear way. In this case r = e 

and binary or ternary arithmetic are nearly optimal. In fact a binary 

radix is optimal in case f3 = 1 
-lo_g_e_2 = l. 44. 
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2.6.2 Choice of rb 

Next we consider the choice of radix in determining the range 

of floating point numbers. Given some fixed hardware representation for 

munbers, the e digit exponent and radix rb allow f digit fractions to be 

scaled up and down. rb is built into the logic of the a.ri thmetic unit, 

while e and f determine the machine's wor·l length.. The choice of rb 

affects the precision and range of normalized floatin$ point numbers. 

The following table contains some illustrative examples (assuming r = 2). 
v 

Number 
2 rb = rb = 16 

f e f e 

1/16 .1 -Qll .0001 000 

1/8 .1 -010 .0010 000 

1/4 .1 -001 .0100 000 

1/2 .1 000 .1000 000 

1 .1 001 .0001 001 

2 .1 010 .0010 001 

4 .1 011 .0100 001 

It is j_mmediately cle_ar that fractional parts of hexadecimal numbers may 

Lave leading ~_;eros and still be normalized. On the other hand, when a 

shift is necessary, four binary digits are lost per hexadecimal digit. 

Thus, we incur a larger loss of precision per shift with hexadecimal. 

TL should also be clear that fewer different values of exponent are required 

for the same range using larger rb. Thus another question is, what rb is 

most effj cient of total word length use? Another obvious question ·given 
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N digits is, what sizes of e and f shoul.d be used? We shall deal with 

each of these matters below. 

2.6.2.1 Addition Shift Distances in Practice 

First we consider the loss of precision due to shifting using 

higher rb values. Specifically we shall discuss hexadecimal and binary. 

n. w. Sweeney [ ] has analyzed floating point addition in a number of 

scientific codes. By tracing about 10 million.instruction executions, he 

observed that an overall average of about 10% of the, instructions executed 

were floating point additions. We shall reproduce .only a few of his 

findings. In particular we are interested in preaddition alignment shifts 

and post addition normalization shifts. The values in the table represent 

the number of shifts of a particular distance expressed as a percentage of 

all cases measured. · The numbers added were not necessarily of like sign 

and a few unnormalized operations were jncluded. 

Shi~ 2 Shi~ 16 Distance ~ = Distance rb = 

Rligrunent 0 32.64 0 47.32 
1-4 34.61 1 26.02 

overflow 19.65 overflow 5.5 
normalization 0 59.38 0 82.35 

1-4 v~.51 1 7.24 

As expected, we observe more zero shift cases with higher rb. 

In fact, normalization shifts for hexadecimal numbers only occur about 18% 

of the time. Comparing the sum of the aligrnn.ent shifts from O to 4 for binary 

and from 0 to 1 for hexadecimal, slightly favors hexadecimal. Of course the 

binary shifts occur in increments of one bit of precision loss. Similar 

·sums for normalization are almost equal.· 
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Viewed another way, we can observe that the sum of alignment 

percentage for distance 0 and 1 with base 2 are slightly less than the 

percentage of distance O shi~s for base 16. Similarly the distance O 

and 1 normalization shift percentages in binary are slightly more than the 

distance 0 shifts for base 16. 

2.6.2.2 Distribution and Number of Values as a :f'unction of rb 

We first study the number of different values representable 

using various bases and the distribution of these values. Notice that 

when floating point numbers with rb = ? ~r~ required to be in normalized 

form, only half of the possible values representable with f bits are 

used (just those with a leading 1). When one leading zero is allowed 

(rb = 4) then 50% more values are representable and so on. 

Given e and f bits of exponent and fraction, respectively, there 

are 2e different exponents and 2f-l different normalized fractions 

representable. (We are assuming here that rb = rv = 2.) Thus the total 

number of representable values is 2e+f-l. Since the largest fraction 

representable is approximately 1, the largest binary number representable 

2e 
is approximately 2 

el 
Now if rb = ~ = 2P, numbers have the form r1 x ~ . To estimate 

the number of values less than the maximum binary number (rb = 2) we observe 

that for some k (assuming f 1 ~ 1) 
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Thus k lo&:,t.3 ~ 2e. Now the number of values less than t3k is approximately 
l-

Thus we can write 

number. of rb 13 values less 
2e 

= than 2 
= representation ratio 

2e 
number of rb = 2 values less than 2 

-(log f3-l) 
+ ... + 2 2 )(k+l) 

-(log f3-l) 
2f-l(l + 2-1 + 2-2 + .•• + 2 2 )(k+l) 

f 1 . = 
2 - ( log

2
!3 )k 

-1 -2 -(log2!3-l) 
(k+l)(l + 2 + 2 + .•• + ? ) . 

k log2~ 

If t3 = 16 and e 28 6 
= 8, then we have k = - 2 log

2
16 -

l+!+l+l 
and representation ratio ~ 2 4 4 g ~ .47 

By a similar analysis it may be shown that there are about 1. 88 times as 

many hexadecimal values. as binary values representable using fixed e and 

f. Thus we conclude that about half of the hexadecimal values a.re in the 

range of the binary values and about ~ are outside the binary range. 

2.6.2.3 rb, f, and accuracy 

The accuracy with which some form of floating point numbers 

represe~ts the real m1lllbers may be studied by examining the inter\rals 
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between the float:i.ng point numbers. Thus, if f.li and f.ti+l denote a pair 

of' adjacent representable floating point numbers, then 

f£i+l - f£j 

f£. 
l 

is a relative interval mea~uxe of accuracy. It turns out that this has 

rL-f as Lts maximum value. In [9], for this as well as other accuracy 

measures, the question of floating point number representations is studied. 

It is shown that for fixed N = e + f, the choice of rb = rv always provides 

k as !Tmch accuracy and m9re exponent range than some rb = rv In other 

words, while f may be made larger at the expense of e with rb = rvk' the 

. trade off with accuracy is not a good one. 

That this is true is not hard to see by studying the exponent 

range, E, as a function of f and i, where i = log t3, f £ = ft3e, and 
r v 

N = e + f. Thus we have 

E(f,i) = i(rN-f_l). 

Assuming that f ~ i, for the same accuracy we study the ratio of exponent 

i 
ranges of an rb = rv number to an rb = rv number: 

E(f-i+l,l) 

E(f, i) 

( N-f+i-1 ) i-1 ( N-f 1-i~ i-1 = i_r -1_ r r -r > _r ___ > 1 
. ( N-f l) = -. - N-f l 

1
. 

i r - 1 r -

2.6.3 Rounding and Truncation 

Assume we have a computed floating point number with f digits of 

fraction to be retained plus some low order digits which must be disposed of. 

The lowest order digit of the f digits represents r-f, so the digits to the 
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right represent a quantity whose value is less than r-f Regardless of 

the process used to dispose of these low order digits, the error on each 

-f step is less than r • Intuitively it seems desirable to minimize this 

error on each step. If it is necessary to introduce a pqsitive error on 

some steps and a negative error on other steps, it would also seem 

intuitively desirable to try to minimize the algebraic sum of these errors; 

that is to minimize the bias in disposing of the extra digits. 

First we consider the error due to simply dropping and forgetting 

the extra digits; this is usually called truncation-error. With an f digit 

fraction, the truncation error Et is 

-f 
0 < Et < r • 

The bias introduced by truncation is the sum of these errors over many steps. 

If the average error is one half of the maxinrum then the bias aver n additions 

is 

-f 
nr 

bt = -2-· 

An intuitively better procedure is rounding the f bits to be saved 

using the high order bit of those to be disposed of. The error so introduced 

is usually called round off error. 

0 < E < !
2 

r-f. 
r-

In this case the error E is 
r 

or at most one half that of Et. This may be seen by considering a floating 

point number 
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I 

where lliif1 II • f. To round f1 we add~ to it in the a position. If a~t3 = O 

then clearly no carry is generated and by dropping a ~' no error is introduced. 

If a < ~ and ~ is as large as possible, then no carry is propagated and ~ is 

1 -f r 
dropped, introducing an error of at most 2 r . If a~ 2-then a one carries 

-f to f
1 

thus adding r to f
1

• In this case the smallest that a ~ can be is 

-(f+l) r . Thus we introduce a maximum error equal to the amount added to f 1 

minus the least amount lost by dropping a~' i.e. 

-f 
E < r r-

-f <r 

r -(f+l) - 2 . r 

-f -f 
r r 

-2=2· 

In the case of r 2, the error introduced by this process is -~ if a = O and 

-f 
2 

-f 
2 ---2 

~ if a=· 1. If ~ = O then the bias is O + 2~f - o = 2-(f+l) If 

~ f o, then for each~- we can find a~- such that ~- - (2-(f+l) - ~.) = o. 
i J l J 

Thus, if we assume that all values of ~ are equally likely, the total bias is 

just 2-(f+l). 

Let us consider the possibility of reducing the round off bias to zero. 

Consider the following table 

Number Presented Rounded Result 2f x error 

2 -f 2-(f+l) 2-(f+2) 2 -f 

x 0 0 x 0 

x 0 1 x bias 1 
1/4 = -2 

x 1 0 X+l 1 - 1/2 = 1/2 

x 1 1 X+l 1 3/4 = 1/4 
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Here the second and fourth numbers may be paired to introduce zero 

bias (cf. discussion above) and here (as in general) the third case (10) 

introduces the bias. If it were possible to detect the case 13 = o, a = 1 and 

round this in only half of the cases a zero bias rounding procedure would 

exist. For example, some random bit could be used to take the choice in the 

a = 1, 13 = O case. 

A scheme which is easier to implement than rounding and not much 

more difficult to implement than truncation is the jamming of ~ 1 into the 

last bit position. The error and bias of this are between those of rounding 

and truncation. 
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2.7 Addition Sneed vs. Gate Count vs. Number Renresentatives 

A simple way of adding two numbers is to add two digits at a 

time, generate sum and carry digits and go on to the next pair of digits. 

Such schemes are generally referred to as serial by digit and were o~en 

used in early machines (10]. To speed up the addition process one 

naturally considers· adding several digits at once. ·In general.this 

leads to questio~s about propagating carry digits. Using the residue 

or signed digit representation> carrJ propagat:l.on is not a problem as 

we saw earLi.er, but these are both "unusual" number systems and we shall 

dea.l with them later. Another question that comes up is the possibility 

of adding n numbers together at once and considering the speed and cost 

of this process compared with adding two numbers. 

By the early 1960's a number of fast parallel addition algorith~s 

were in common u.:e. A munber of alternatives for binary addition are 

compared in [ 9] by Sklansky and summarized in Figures 11, 12, 14, 15, 

and 16 and. Table I there. SklanGky shows an n bit serial adder with 7 

gates and !m gate delay time steps. He also has a full ripple carry adder 

with 7n gates and 2(n+l) t:i.:µie steps. Several look ahead carry units are 

described including a full look ahead conditional sum adder with 

3n(2+flog
2

(n+l)l) gates ~nd 2.(l+flog2(n+l)l) time steps. It is assumed that 

all gates have a fan in of 2. Sklansky also proposes and contrasts three cri te:;j :-

for performance. 

At about the same time, Mac Sorley [ 5] surveyed various 

binary arithmetic algorithms. While he does not give functions describing 

their speed and gate count, his Table II contains numbers which co~pare 

seve.ral sch.mes for n = 50 and n = 100. J.4':rom this one can infer that his 

-full ripple algorithm requires 8n .:;aJ..;es and 2n time uni ts ·while his ±ull 

look ahead aJ...:~ori rh .. 11 reauircs 2r lot:."'n 1 ti1:1c mri.ts [Ulcl less than 2nf log"n 1 
t:. . ~ ..: 

.'b· 
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gates. MacSorley also discusses a number of multiplication and division 

ideas. Another paper appeareq in late 1961 [14] which also compares a number of 

addition schemes and proposes that several are "better" than Sklansky's 

earlier conditional sum technique. Table II of this paper compares 

several schemes. In this paper as well as [5], the nation of "gate" 

seems to be less well defined than in [9]. In (16] Lehman again compares 

a number of schemes. 

In any case, (14] led to an exchange of correspondence in April, 

1963, beginning with [15]. A number of assumptions are discussed at some 

length in this correspondence. Sklansky discusses some bounds on add 

time independently of any particular circuits but which do include fan in 

and fan out considerations. 

We can roughly sunnnarize the state of the art for binary addition 

in the early 1960s as follows 

Adder Type Gate count Time Units 

Bit Serial 7. 4n 
Full Ripple 8n 2n 

Full Look-Ahead 2nflog2nl 2flog2nl 

This leads to the obvious question: Can one demonstrate an addition 

circuit faster than 2flog2nl step~ at any cost? One should also be prepared 

to consider unusual number systems at this point. 

Winograd [11] ·studied the time required to perform 

addition under a rather general set of assumptions. We shall particularize 

things somewhat in the present discussion. Roughly speaking, Winograd's 

defi.niti.ons are wide enough to include most known number systems and addition 

algorithms, except signed digit addition. One must be concerned about the 

encoding, adding, and decoding of numbers to ensure that the addition is 

"really performed" by the addition algorithm and not by the encoding and 
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decoding process. In any case~ his Theorem 1 is proved for gates with unit 

delay and a fan in of f. 

Theorem 1 The time T to add two n digit numbers is 

T ~ flogr2nl 

From this he obtains for k arguments: 

Corollary 2 The time T to add k, n digit numbers is 

T ~ flog~nl 

Winograd also constructs a multiplication scheme which approaches 

this bound as shown in his Theorem 2. However, the technique uses residue 

numbers and so overflow is not detected in the time given. In (12] 

Winograd discusses (the time required for multiplication as well as) the 

time required to detect an overflow in the addition of two residue numbers. 

In Theorem 9 he shows that the overflow detection time is T ~ flogr2nl. 

Winograd sunnnarizes his results in a simple way in [13]. 

Comparing these results with the full lookahead scheme mentioned 

earlier it is clear that Winograd's lower bound requires about half the 

time of a full look-ahead adder. But overflow detection requires the 

same ti.me so nothing is sav~d. The question remains, however, can Winograd's 

bound be approached by some scheme with overflow detection? 

Brent [4] considers this problem and establishes that a kind 

of carry 1ook-ahead adder can be constructed which for large n approaches 

Winograd's bound. Furthermore, his Theorem 1 outlines a scheme for constructing 

the adder with order of n logfn gates, although he does not exhibit the scheme. 

This is favorable improvement on the full look-ahead numbers we tabulated 

earlier. 
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We remarked earlier that Winograd's formulation of this speed, cost 

problem did not include the signed digit numger system. It was shown by 

Avizienis in [2] and discussed in more generality in [l] that addition 

could be performed in a fixed amount of time independently of n, the number 

of digits. [l] also discusses the number of gates required for various 

schemes, but the redundancy required complicates direct comparison with the 

binary cases discussed earlier. 

Avizienis also discusses the addition of k numbers and derives a 

time T = r1ogf r~ll + 1, f > 4, as well as some gate count £'unctions. 
2 -

2 
When signed digit arithmetic is performed, it is assumed that all 

numbers are encoded before the calculation begins. Then signed digit 

arithmetic is performed. Finally the numbers are decoded, a process which 

propagates the last carries. 
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2.8 Multioperation Speedups 

We have seen that arithmetic operation speeds may be reduced to 

a f\lnction of the speed of parts from which the arithmetic units are built. 

We have also seen that lower bounds may be established on the times required 

to perform arithmetic in various number systems. Do these observations 

imply that the speedup of computers has been reduced to wa~ting for 

faster parts from which new machines may be built? Obviously not, since 

we may consider operating on·many pairs of numbers simultaneously. Recall 

that Babbage planned to do arithmetic and indexing at once and that 

Menabrea suggested performing more than one arithmetic operation at once. 

If we restrict ourselves to the addition and multiplication 

operations, we can now regard an arithmetic processor as a collection or 

combination of multiplier and adder units. Sup:pose we have an arithmetic 

processor containing two adders and a multiplier and wish to evaluate 

(a+b)*(c+d). Then the two sums can be formed simultaneously. Thus the 

arithmetic processor would appear to be able to add twice as fast as each 

adder can in fact add. In the CDC 6600 this idea is implemented, cf. Ch. V 

of [ 8]. 

It is also possible to achieve faster arithmetic by what is 

called pipeline processing. If some operation requires T time units, then 

by cutting the logic into K stages and connecting them through registers, it 

is possible to introduce a new pair of operands every ~time units. 

Similarly, results emerge from such a pipeline at the rate of one result per 

.'.!'. time units. This idea is used in the 360/195 as well as the CDC STAR and 
K 

TI ACS machines. 

Another approa~h to speedup by machine organization is to · 

sequence many simple (one of each operation at a time) arithmetic processors 
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from one program. If we have to add k pairs of numbers and we add them 

all at once then it takes T time units, but the effective speed per 

addition is ~ time units. This speedup is analogous to that in the pipe-

line case, but in practice k may be made much larger for par~llel than 

for pipeline machines. This is the approach being taken in the construction 

if Illiac IV [3]. 

Just as we studied the maximum speed of addition (and multipli-

cation) for single arithmetic· units, more complex :function's speeds can 

be studied for multiaritbmetic f'unction processors e.g.· the cases discussed 

above. As a model of the most general case of these, let us consider an 

unlimited number of adders and multipliers which operate simultaneously. 

Each operation (add or multiply) takes one time unit and the processors 

can communicate their outputs to any other processor in zero time. We 

also ignore memory times. 

How fast can such a machine multiply two matrices or evaluate 

a polynomial? Two N X N matrices may be multiplied in 1 + r1og2Nl steps, 

instead of the usual 2N3, by the following scheme. We must form If inner 

products, each of dimension N. Consider N3 multipliers each of which 

performs one multiplication on the first step. On the second step we 

start to form the sums for the inner products. After one addition using 

N3 N3 
~ adders, we have ~ results. On the second addition step we use half of 

3 
these addP.rs to obtain~ results. After flog

2
Nl such steps we have N2 

results, namely, the eleme~ts of the product matrix. 

It has been shown by Pan [7] that 2n operations are required 

to evaluate a polynomial qf degree n. Thus, for a serial machine, Horner's 

Rule is optimal. ·However, it is easy to see that the fonn 
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pn(x) = a0 + a1x + a2x2 ••• + anxn 

requires only flog2nl steps to evaluate all powers, one step to multiply 

by the coefficients, and 1 + flog2nl steps to sum the terms. Thus, by 

introducing some "redundant" operations we can obtain the result in 

2(l+flog2nl) time step~. This is a crude upper bound for a multiarithmetic 

unit machine because some additions can be performed before the final 

multiplications are performed. A lower bound for a multiarithmetic unit 

machine ~s 1 + flog2nl, following Pan, but it is not pbvious how to achieve 

this. In [6] Muraoka shows how to approach it. Improvements of Muraoka's 

result may be found in [17] and [18]. 
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