
Project:
1HE ALOHA SYSTEM BCC 500 CSG/G-1 104 pages
Title: General Document

FAST MEMORY THEORY OF OPERATION May 16, 1973
f:hecked:

D. Dodge
A. B. Goodrich

fApproved:
~ W. Lichtenberger
F. F. Kuo

Author(s):
Stephen K. Kuba

'

I

I

CSG/G-1

- 2 -·

PREFACE

The purpose of this document is to introduce and

familiarize (somewhat intimately), one with the theory of

operation of the Fast Memory (FM). This is written to be a

self contained funtional description of the Fast Memory

logic diagrams (and an an aid in trouble shooting logic

failures that may occur).

In some cases the explanations may seem· awkward, this

is due in fact to the a posteriori nature· of this writing.

The initial Fast Memory designed by Steve TUlloh ('70) to

BCC 500 specifications has undergone significant control

card modifications to clearly define the FM core module

timing synchronization (designed in Hawaii by A. B.

C"..oodrich and D. DOdge '72) which are described in this

document.

In many cases,

yield an inadequate

a single person's point of view can

description;

added comments and corrections to

fortunately others have

produce a document which

makes the reader's task more enjoyable.

- 3 -

Fast Memory Theory of Operation

1 • Introduction

2. FM Memory constructs

3. Processor communication with FM

3 .1 Request Fermat and control Bi ts

3.2 Request Responses

4. Hardware FUnctions

4.1 Preliminaries

4.1.1 Data Registers

4 .1 .2 Hardware State Description Matrix

4.2 Request Response Signals

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

Request Response cards

GO card

Request Latch

Input Oltput switch

Address Register card

Accepted Response card

Satisfied Response card

4 .3 control cards

4.3.1 Request status

4.3.2 Register Assignment

4.3.3 core cycle Assignemnts

CSG/G-1

- 4 -

4.3.4 Port Register Data Transfers

4.4 core cycle Synchronization

4.5 core MOdule Failures

4.5.1 Error Detection

4.5.2 Memory Resets and Error Recoveries

4.6 FM Hardware Timing

4 .6.1

4.6.2

Appendix I

A.ppendix II

Appendix III

Appendix IV

Request Responses and POrt Data Strobes

core cycle

Signal Glossary

.Ampex core Module Notes

Hardware Trouble Shooting Notes

components

CSG/G-1

CSG/G-1

- 5 -/

INTRODUCTION

The virtual memory of any large computer is composed of

several physical constituents e.g., data registers ,core

modules ,drums,disks,each with its peculiar characteristics

hidden from the user by the memory management system • At

the system level however careful considerations have been

given to each of the individual components. Generally the

higher the percentage of firmware and hardware control the

more efficient a system becomes. This philosophy has been

incorperated in the BCC 500 memory system resulting in the

Fast Memory and the dedicated rotating memory microprocessor

controller (AMC).

The Fast Memory(FM) has been designed to be an

effective multiport core module buff er in the BCC 500

operating system enviroment • The distinguishing features of

the FM compared to a slave co.re buffer (ala cache) are its

multiport accessibility,variable buff er serviceing, and

dynamic control of the core modules. The power of the FM

enables other system microprocessors to reduce core to FM

thrashing and the cost of drum to core page swapping.

Through its four 24 bit wide ports the FM provides a total

of 13m Hertz memory bandwith("'with a little help from its

friends").

The local environment of the F~ illustrated in figure 1

CPU CPU

AMIU

discs drums

T U V W
ports

Fast Man.cry

CPU = Central Processing Unit

.AMTIJ = Auxiliary !iemory Transfer Unit
MPMBM = MicroProcessor Memory Bus Multiplexer
MSCH = Micro SCHeduler - -
CHIO - CHaracter Input/Output
.AMC = Auxiliary Memory Control

Figure 1

Fast Memory Environment

CSG/G-1

MSCH

CHIO

control
processors

CSG/G-1

- 6 -

shows that there are three types of processors serviced by

the FM. Two of these, the MPMBM, and AMTU, are the

interfaces for the system microprocessors and the rest of

memory respectively; as a consequence , the FM provides

service to a variety of processors. The general problem of

supporting various processors from a central facility such

as the FM is difficult, however several things are apparent:

since some processes are not making purely . random requests

such as a cpu, i.e., some are sequential in nature such as

drum requests it would be advantageous to use these types of

differences in creating catagories for the scheduling and

resource allocation of the memory facilities; in addition

since the memory is multiport it should provide the

capability for each request to specify its own level of

access and memory usage (,such as port and core access

priority). In addition, although one may be forced by

economics or space, to limit data busses to single word

widths, this does not preclude taking advantage of known

double word memory requests elsewh~re in the memory system.

Since double word operations occur frequently, e.g., drum

transfers, it would be advantageous to expedite double word

memory requests without the expense of double word width

data busses and double core cycles • Although all of these

features are obviously rlesirable, the problem is to devise a

CSG/G-1

- 7 -

clean implementation during a given state of the art (68).

·Each of these features has been incorporated in the FM

design. For example, in order to regulate port access

conflicts, the FM uses a hybrid port priority scheme. Part

of this priority is determined by preassignment (during port

cable assignments plugged into the FM), the other portion is

a port priority bit accrnnpanying each request. Another

feature which minimizes the effects of unsuccessful port

conflicts is that requests can be easily issued at 100 n sec

intervals (note this is one half the nominal access time for

data from or into the FM). The remaining proc~ssor to FM

communication occurs within a request format which contains

the processor•s request requirements ,as a consequence, the

appearance of each port processor to the FM is almost

identical (to the extent that port to processor assignments

can be easily rearranged by simply unplugging port cable

cards to the FM and replugging them into different port

slots).

A staridard technique which enhances average data

transfer rates in slow sequential devices such as drums and

disks is to transfer blocks of data at a time. In a similar

fashion one can reduce the average access time to core

memory by transferring double words during a core cyle,

instead of a single word per core cycle. The ccre memory of

CSG/G-1

- 8 -

the BCC 500 uses Ampex units which transfer a double word

per core cycle over a single word data bus into a FM double

word reqister •

Although the bulK of the FM consits of core modules,

the effective port access times are not at core cycle speeds

(althouqh the worst case access .times are limited to the 1

microsecond core cycl~ time). The FM services port memory

requests using fast (semiconductor) data registers to either

accept or furnish data to the requested ports. Hence as

long as a FM register is available, store requests are

accepted in the normal 200 n sec access time. In order to

reduce fetch tirnes (which require a core cycle to retrive

core data) pref etch requests are issued to forewarn the FM

control logic that a certain double word of data will be

needed from core. In keeping with this approach, there is

also ·a prestore request used to acquire or reserve a data

reqister for a subsequent store to FM • BY having a large

number of data registers (buffering requests for a core

module) more store requests can be accommodated before

saturation occurs (when the registers are all allocated).

At the same time, a large number of registers also requires

more register to core accesses as the core access que

lengthens and data is awaiting to be transferred to core or

being fetched from core. Hence although a large number of

CSG/G-1

- 9 -

registers are desirable there is a limit to the number of

registers which can be accommodated by the core modules.

Dile to the physical size and propagation delay problems, the

preliminary FM design (which proposed six double word

registers per module) has been reduced to two per module for

a total of sixteen double word registers (after some

simulation

number).

testing two

In addition,

registers seemed an acceptable

although it would be ideal to have

independent port bussing to each module (actually the data

registers of that module), the FM port bussing is shared by

a pair of core modules.

An important aspect in the operation of the FM is the

communication between processors and the FM. This

communication is more interactive than normal, enabling both

the FM and processors to react quickly and adaptively to

changes that occur. For example, if a request is being made

while another higher priority port is also requesting the

same area of memory, as a lower priority request, the

rejected port is sent a rejected signal during the same 100

ns as its request. This enables all rejected requests to

reissue their requests (possibly at a higher port priority)

during the next 100 ns. ooring the second 100 ns interval

(unrejected requests which were sent a NREJ signal by the

FM) await an accepted response (ACC). Being Accepted by the

CSG/G-1

- 10 -

FM tells the processor that a register is available to

aeeept data. However if the request is fetching data from

the FM an additional response is required to signify if the

current contents of the data register ts a current copy (of

the desired location normally residing in core SAT is sent

back).

Since there can be several (as many as sixteen)

resident requests in the FM, and four port requests to the

FM each 100 ns, it's fortunate (by planning) that there is a

relatively simple description vector'assoeiated with each

request being made or being serviced by the FM during any

100ns interval. A portion of this vector is specified in

the port request format the remainder by the FM control

logic. Resident requests have their description vectors

latched in the FM control logic as a state vector for each

double word register.

From an engineering viewpoint there are several

interesting latching techniques and gate arrangements used

in the FM. However , the most significant feature of the FM

is the control logic which coordinates the basically

asynchronous core cycles with the synchronous FM requesters

so that common data busses into and out of the double word

registers used by lx>th the processors and the core module

are well controlled. Because this involves a moderate

CSG/G-1

- 11 -

deqree of familiarization with the FM siqnals the topic of

synchronization timing is delayed until an adequate

backqround has been laid.

Hence to summarize some of the distinguishinq features

of the FM :

1) Althouqh the port data paths are sinqle word busses

of 24 bits, the FM is internally double word

oriented. As a consequence, double word stores or

fetches are executed somewhat easier than two

independent sinqle word requests.

2) FM port and core access priorities are dynamically

assignable each 100 ns

3) Core module failures detected by the FM control

logic are sent to the system's warninq registers,

and local error recovery procedures are

automatically exeouted •.

CSG/G-1

- 12 -

2. FM constructs

the FM contains a total of eight .Ampex 16k core modules

for a total of 128k words or 64 pages divided into four

quadrants. Hence, the entire 18 bit address space provided

for in the FM is not implemented as memory (address bit A1

is unused though there is a potential 256k word address

space available in the FM by using it). Each core module is

assigned a pair of double word registers labeled A, B, (with

upper and lower halves denoted by u, L respectively) which

function as data buffers. (It wi 11 become convenient later

to refer to the combination of data registers and core

module as a) module • Figure 2 illustrates the

interleaving implemented in the address decoding levels to

the quadrant, module, and double word address. The intent

of this scheme is to physically distribute successive double

words amoung the eight core modules, reducing the likelihood

of a high priority process dominating a single core module

by requesting sequentially addressed data located in one

module.

Ideally, the port to module bussing should enable

independent data paths to each module this would mean one

I/O bus per core modulP. ·and a 4 x 8 switch ; however, due to

size considerations, (a 4 x 8 switch would require too much

space), the Fl\1 employs a quadrant structure connecting two

address:

Core Module

J.0

Jl

LJ1
11

K,0

Kl

~

Ml

CSG/G-1

1 2 ---------- 14

double word
address

Address Bits
15 16 17

fJ J1 J1
1 J1 J1

J1 fJ 1

1 .0 1

J1 1 J1

1 1 .0
fJ 1 1

1 1 1

~uactra~t upper or lower half of
double word

core module of quadrant

Double words # (total at present 64K)
(in octal)

.0,8,16, .•• 8184 0,10,20, ... 36710

4,12,2.0, ... 8188 4,14,24, ..• 36714

1,9,17' .•• 8185 1,11,21, ... 36711
5,13,21, .•. 8189 5,15,25, ••• 36715

2,10,18, •.• 8186 2,12,22, .•• 36712

6,14,22, •.• 8190 6,16, 26, ..• 26716

3,11,19, ... 8187 3,13,23, .•• 36713

7 ,15, 23' .•• 8191 7,17,27, .•• 36717

NOTE: each core module is SK double words so only 13 address bits are
needed, actually address bit 1 (the most significant) is not used
in the present memory which uses 8 core modules (total of 128K
word core).

.Address Decoding

Figure 2

Incoming address

As used in FM
during HALFMOD
mode

A17 0 1

J L
K M

HALFMOD address mapping

I 1 I z I
/_--~

I 1 I 2 I · .. · · · ·

CSG/G-1

I
unused quadrant

core module

In this scheme Al7 determines, e.g., the quadrant
Al7=0 refers to either quadrant J or K, the correct
one is clear since one is eliminated by either the
JOFF or KOFF signal which accompanies the HALFMOD
mode.

Note: See discussion in Section 4.2.

Figure 2a

CSG/G-1

- 13 -

modules to a common I/O port bus • Hence, if two processors

are requesting data located in the same quadrant of memory,

one will be rejected because there is only a single output

bus from the quadrant although they might be referencing

different modules of the quadrant. At worst, this reduces

the port access to memory by a half • (An accurate estimate

of multiple references to the same quadrant can be acquired

from monitoring the RFJected responses.)

Although figure 3 is only a block diagram it closely

resembles the actual data register and core module bussing

arrangement of a quadrant •. Although port bus access to a

module is restrictive, each of the t1110 core modules is

capable of simultaneously executing core cycles. This is

because the data paths from register to core and core to

register for each module are independent. Figure 3 also

shows that only one port refe.rence can be serviced by a

quadrant. Bath double word registers A and B have upper (U)

and lower (L) halves each containing a single 24 bit word.

N::>tice that simultaneous core and port use of the same data

paths are resolved by inhibiting port store and fetch

requests {by NOSTORE and NOFETCH signals). The details of

figure 3 notation are explained in section 4.

The organization of the FM quadrant

immediately implies the necessity of

bussing scheme

several control

Port T
I .

Transfer from

Re ister A
Upper A

Lower A

store core pulses
SUH, SLH

register to
core TCR,0

Quadrant J

Re ister B
Upper B

Lower B

Core Module KV)

read data
RDU, RDL

Port U Port V

Quadrant L

DO Data Out

Quadrant K
Data Registers and

Core Modules

Figure 3

Port W

Quadrant·M

Re ister A
Upper A

Lower A

CSG/G-1

Transfer from
register to
core TCRl

Re ister B
Upper B

Lower B

store core pulses
Slm, SLH

Core Module Kl

read data
RDU, RDL

CSG/G-1

- 14 -

functions: the primary one is basically to coordinate the

port response and data ·transfers with independently

executing core cycles, and the other, of course, is to

schedule core cycles of each module (once a request is

latched core cycle scheduling and execution proceed

automatically).

CSG/G-1

- 15 -

3. Processor communication with the FM

In order to make intelligent control decisions, the FM

must know the requirements and characteristics of each

processor request. This information is succinctly conveyed

to the FM with each reque~t following the format shown in

figure 4.

3 .1 Request Format and control Bits

Each requestor provides the FM control logic with

several bits of information,which in turn enables the FM to

provide the appropriate level of service to each of its

users.the information bits contained in each request are:

F,s bits-Nature of request.(F,B)specify this request is a

prestore(0,0),store(0,1),fetch(1,0)or prefetch(1,1).

H bit-FM register holding b!t.~etting the hold bit does two

thing :

1)h:>lds the requested register and

2)1n some cases prevents a pending register to core

until both halves of the register have been

loaded by the processor making the request to store.

Until the hold hit timmer runs out it can be reset

by another request.

Address

Request Format (26 bits)

f ~ F I s I Q I PP I H lpx I PY I

Request Format (26 bits)

A = address bit (18)

APAR = address parity bit (1)

F = fetch bit (1)

S = store bit (1)

H = hold bit (1)

Q = sequential device type bit (1)

CSG/G-:J.

CAP = (PX,PY) = core access priority bits (2)

PP = port high/low priority bit (1)

Figure 4

. CSG/G-1

- 16 -

Q bit-Sequential device delimiter.the Q bit effects two

functions differently because a sequential

device is requesting.

1)Influences the the cb:>ice of register assignments.

2)Determiines the long or short H bit timmer setting.

PP bit-Port priority specifies if the processor is

requesting high or low port access into the FM.

PX,PY bits-core access priority.THis priority is only

effective if the request has gained access into the FM.

The FM control logic then uses it to determine :

1)the selection of data register assignments and

2)the scheduling of core cycles amoung registers.

The description of the processors requirements has been

limited to seven (of eight) bits; the bulk of the request

consists of the 18 bit address. This information is used in

both register allocations and core cycle assignments (amoung

registers). FOr example under equal conditions a resident

request with the Q bit set (and the other request without

its associated Q set) will be more likely to be replaced

(see CHOOSE signal discussion in section 4.3.2)if no data

will be lost because it would be simpler for the sequential

CSG/G-1

- 17 -

request to be reissued. In order to control this selection

more directly, setting the hold bit inhibits a register from

being chosen for replacement. In addition ,using the hold

bit prevents confusion between single and double word stores

by the processors. Since only a single word at a time can

be sent to the FM the core cycle should be inhibited during

a double word store sequence by setting H until the second

word is stored into the data register.

The core access priority s.pecified by (PX, PY)

influences both register and core cycle allocation functions

of the FM. For instance, if a request is being made at high

core access priority the register choosing function enables

a special condition that takes a register although it is not

considered free, e.g., if its hold bit is set or it has not

yet fetched from core (and no data will be lost). Besides

this ,the core access priority (PX,PY) along with an age

pointer (P denoting the register in use the longest) are

used to decide which of the two registers of a module will

execute the next core cycle.

Actually the port priority bit denoted in Figure 4 is

only a conceptual representation. There is one of two

signal lines Request High, Request Low (RQH,RQL) which a

request enables. These signals are logically (and more

aesthetically) described as a single bit PP since they are

CSG/G-1

- 18 -

logical complements. If all requests have their PP bits set

to 0 or ROL, the hardwired port priority highest to lowest

is T, u, v, w. If, however, one port specifies PP {or

Request High ROH) it preempts the normal hardware priority

in the following way: suppose a U-port request specifies a

high port priority, and all other ports do not. N:>rmally

with no pp's set, port T has precedence over all other

ports. HOwever, in this case port u has the highest port

access to any quadrant of memory• Hence by using the high

port priority mode the normal priority can be overridden.

N:>te: If each port requests high port priority ROH the

hierarchy is identical to the normal hardwired priority

scheme of T, u, v, W from highest to lowest. This simple,

flexible, hybrid port priority enables processors to

dynamically vary their access to memory. Probably the best

way to formulate a strategem for port priority assignments

is through tests under normal operating conditions;

obviously liberal use of high port priority by all

processors will defeat the purpose of this priority scheme.

The following are two examples of processor requests to the

FM.

1) Drum and disc requests issued to the FM by the AMTU

are normally double word operations.

request procedure is to set the H

Hence the AMTU

bit during the

CSG/G-1

- 19 -

first half of the store (or fetch) to reserve the

double word register long enough for the remaining

data to be transferred to the other half of the data

register. In addition, by setting the Q bit the H

bit timer should run for a 91 instead of 43

intervals. {N:>te: There are hardware provisions for

changing the initial counter state; hence allowing

different timings as the need arises).

2) once a request has been assigned to a register it

normally competes for core access. core access is

decided using several criterion; however, the most

obvious one is a comparison of core access

priorities. Since priority comparisons can result

in deadlocks the register residing the longest

specified by a pointer bit(l~beled ?) is favored.

Figure 5 illustrates that the core access ~riority

comparisons done by FM hardware, favors the register

with longer residence. once specified by a port

request U:>w, Medium and High core access priorities

(PX' .PY', PX.~Y', PX.PY respectively) do not change.

This prevents a port frorn illegally reducing the

port priorities of other processes. A fourth

priority PX'.PY the warning priority will remain the

same until the other . module's regist~r has been

CSG/G-1

Core Access Priority Register Chosen

Register A Register B If A resident longer If B resident longer

PX[A] PY[A] PX[B] PY[B] p = f1 p = 1

¢ ¢ ~ 0 A B

¢ ¢ ¢ 1 A B

¢ /J 1 ¢ B B

¢ ¢ 1 1 B B

(J 1 fJ ¢ A s·

¢ 1 ¢ 1 A B

(J 1 1 /J B B

¢ 1 1 1 B B

1 f/ f/ ¢ A A

1 0 ¢ 1 A A

1 ¢ 1 ¢ A B

1 ¢ 1 1 B B

1 1 f1 f/ A A

1 1 fl 1 A A

1 1 1 fl A A

1 1 1 1 A B

Core Access Priority Decision Table

Figure 5

CSG/G-1

- 20 -

reassigned to a new request or is being referenced

by a port. For example if the other register is

active, the PX' bit of the warning priority becomes

automatically set changing the warning priority to

high priority. This prevents resident warning

requests from being "pushed aside" by an incoming

request with equal or higher core access priority.

3.2 Request Responses

Since processors can issue memory requests each

interval (100 ns), they are immediately notified in the same

interval if they have port access (by the ~"REJ signal). If,

however, a higher priority port also is requesting the same

quadr~nt of FM the rejected signal is sent back (RE,1) during

the request interval (this enables the processor to reissue

its request the next interval). Since processor port

priorities can also be changed by port assignments, it would

be interesting to change the present port priority structure

and measure system port conflicts by monitoring REJ signals.

once a port processor receives a NR~J (Not REJected)

signal from the FM it awaits a second set of responses

during the next interval. A store request (F" • S) is

successful if the ACC response is received ; fetch requests

CSG/G-1

- 21 -

(F • s,) receive a SAT (SATisfied) in addition the ACC

response. Prestore (F" • and pref etch (F •

requests which are basically used to acquire a FM register,

receive an ACC response if a register is being assigned to

the request or has been assigned by a previous request.

Prefetch requests also receive a SAT response, in addition

to the ACC response if the current contents of the data .

register are good. Note that a prestore cannot be used as a

store request (see Sec. 4.2.6). Similarly, a prefetch

request cannot fetch data from the FM even if the register

data is valid. (Although the FM response may seem adequate,

prefetch and prestore requests cannot be used as fetch and

stores because the data registers could be executing a core

cycle using a portion of the port to register path. This

facet is discussed in more detail in section 4.1.1)

CSG/G-1

- 22 -

4. Hardware FUnctions

There are five major hardware functions which can be

simultaneously performed each 100 ns:

I) Request Response

!!)Register Assignments

III)Core cycle Allocation

IV)core Cycle Synchronization

V)Memory Failure Routines

The primary objective of . the hardware signal

description is to imbue the reader with enough understanding

of the terminology and functions of the major FM control

signals in order to understand the control cycle timming

occuring each 100ns • The control logic timming is

presented in section 5.

The first thing to be described will be the

architecture FM data registers.

4.1 Preliminaries

4.1.1 Data Register

The double word registers represented in figure 3,

represent an array o.f Sylvania SM63 data registers in the

FM. A bit slice of a quadrant of the array is shown in

CSG/G-1

- 23 -

figure 6 • The upper half of the register are used by core

module 0 and the lower half for module 1. The notation used

in figures 3,6 are similar to the FM notation. They are

listed in two groups data and control as follows:

Data Signals

DO-Data output to port

DI-Data Input from port

DRC-Data from Register to core

DCR-:oata from core to Register

Register control Signals

TCR-Transrer from core· to Regiseer

MODSEI- core MOJ)lle SELect

SCP-start core Plllse

SLH-Store tower Half of register into

SUH-store Upper Half of r~gister into

core

core

RDL-Read Data from LOwer half of double word

RDU-Read :oata from Upper half of double word

DIS-Data Input Strobe

DOS-Data Oltput Strobe

register

register

In addition ,each signal label contains a suffix which

identifies the specific core module,register and word. For

example DISUA1 is the nata Input Strobe for the Upper half

of the A register in module 1. Brackets will be later used

DISLA

OOSLA
DISLB

OOSLB
DISUA

OOSUA
DI SUB

OOSUB

DCR

TCR

DI

TCR

DCR
DISLA

DOSLA

DIS

DOS LB

DISUA:

DOSUA
DISU

OOSUB

Clock
In Out

enable

Clock
In Out

enable

Clock
In Out

enable

Clock
In . Out

enable

MODSEL y}

MODSEL 1

Clock
In Out

enable

Clock
In Out

Out
enable

Clock
In Out

enable

Figure 6 Data Register

CSG/G-1

Core Module ~

FM Data
Registers

Core Module 1
FM Data
Registers

00

CSG/G-1

- 24 -

to set off the identification e.g.,DIS[UA1] • (Note: some

liberties have been taken in the notation used in figure 3

e.g., DISC represents the group of signals which control the

inputs to the FM data registers.)

Although the two core modules are sharing a quadrant

bus to the ports, their individual core to register bussing

are seperated;as a consequence,each module of the quadrant

can be independently and symultaneously be executing a core

cycle. Clearly a port requesting an inactive module causes

no problem,since in this case the port to register path in

free for use. complications arise when a request is made to

a register which is also in process of a core cycle and

making a register to (or from) core transfer using the bus

also desired by the port. Preventing conflicts over bus

usage is an important FM function. FOr instance during a

store into the core module, a port request to output data

from either the A or B register of this module is inhibited

by the NOFETCH signal condition being true so that the core

cycle can use the bus without port conflict. During a core

to register data transfer ,port store requests are inhibited

by the NOSTORE condition. B:>th the NOFETCH and NOSTORE

signals generated in the above cases seem adequate however,

there are two situations in which a more efficient strategy

can be employed., obviously because of register bussing of a

-· -·.

CSG/G-1

- 25 ...

module both registers of a module cannot be simultaneously

used • B:>wever if a port requests the address of a register

executing a core cycle the port request should not always be

inhibited consider the following :

case 1. !).lring a core to register data transfer a port

store request (which is normally not accepted

because of the NOSTORE condition) should be accepted

if it is addressed to the data being fetched by the

register executing the core cycle. In this case the

incomming core copy of data is obsoleted by the port

data which should be accepted as the most valid data

for that address.

case 2. l)lring a register to core transfer, data being

outputted to the core module for storage should also

be available to a port fetch request requesting the

same address (instead of being not satisfied by the

NO FETCH inhibit) •

These two anomalies unaccounted for in the present FM

control logic can be remedied simply be detecting if the

request is referencing to a specific upper or lower half of

the data register and if the present contents are valid (for

fetch case). However, due to the high integrated circuit

packing densities of the present FM printed circuit cards,

these changes cannot be simply added on the present

CSG/G-1

- 26 -

cards,ancl are not done •

Ebrtunately, these two (of a possible eight) cases

arise only if the address of a request matches one of the

registers. {Perhaps at worst this increases the effective

response in these special cases by an additional two

intervals {200ns); however, this depends upon port access

competition and the state of the core cycle transfer).

other details of the quadrant control such as core

module control logic are discussed in the following section.

4.2 Request Response Signals

4.1.2 Hardware State Description Matrix

Since there are 16 (double word) registers and 16

corresponding double word address registers in the FM there

can be as many as 16 resident requests, each involved in a

different phase of request servicing. The state of each of

these requests is concisely described by a 10 bit state

vector latched in the FM control cards. The collection of

all the register state vectors is shown in Figure 7 as a FM

state description matrix. Each entry is either a binary 0

or 1, and the columns represent a register's state vector.

There are three subfields indicating: the status of the

data, the register, and core cycle process for a register.

Module
Re gister

er
ts

Data
Regist
Cont en

Re gist

Status

Core

Cycle

er

RU

RL

cu

CL

H

Q

p

IP

PX

PY

J¢ Jl

A B A B

Kj1 . Kl L~ 11 M¢ Ml

A B A B A B A B A B A B

1

<I

1

1

1

¢

1

~

t1

1

'\
sample of state vector for register B
of module K{il

Figure 7

Illustration of FM State
Description Matrix

CSG/G-1

CSG/G-1

- 27 -

Since the FM has both a core (c) and register (R)

storage location for an addressed word, the problems

encountered with multiple data copies are resolved by the

use of the R and c bits to denote valid register or core

data (followed by a u, or L letter denoting the upper or

lower half word of the register, e.g., RU, RL, cu, CL). A

one bit is used in these entries to denote that the copy is

current. The example state vector in Figure 7 for core

module 0 of quadrant K (K0) indicates the core copies of

data are current and the upper half of register B are also

valid (current). totice that obviously this implies the

need for a fetch of the lower half contents of core into the

lower half register.

The register status is partially described by the hold

bit H, Q bit and pointer P. The roles of FM versions of H

and Q (which can be different from those specified in the

request format) are similar to the ones discussed

previously. The difference is that • the H bit can also be

set by the FM control logic in certain circumstances (see

Section 4.3.1). Since both A and B double word registers

share a core module the pointer bit P denotes which register

has been assigned to a request longer. Along with other

information, the pointer is used to decide register and core

cycle allocations.

CSG/G-1

- 28 -

The remaining three bits denote the core access

priority (PX,PY) and the core cycle in process status (IP)

of a register executing a core cycle. (The IP bit is

cleared as soon as the fetch or store has been executed, in

some cases, earlier, see section 4.3.3).

Although the state vectors are conceptually collected

in Figure B, they are physically distributed at various

locations in the FM logic, (since their primary function is

to provide a convenient means for the various hardware

processes to communicate and synchronize their

functions,this is natural).

4.2 Request Response Signals

The request response process discussed in previous

sections consists basically of two sets of signals REJ, NREJ

and ACC, NACC, SAT, NSAT generated by a collection of

printed circuit cards labeled: Request Response, GO, Input

output switch, Request Latch, Accepted Response, Satisfied

Response and Address Register cards.

E'ach card represents a physical partition of the

various phases of the FM request and response processes.

The general configuration of the intercard connections and

arrangement of the cards is shown in Figure a. However, the

CSG/G-1

Address
Register J0

Address
Register Jl

+T ----+U 1--- --
- -----! I-- - - ----+V ACCEPTED 1-- - -- ---- K(ZJ - _ ____, 1-- - --

1-- --w 1-- - -- ----1-- -- ---- Kl

----1----..J +T ---- 10 ----+U 1-----
---- 1-- --- ----+v SATISFIED 1----- ---- 11 ---- !-----

1-----
w I- ---

1-----
-------- M(ZJ

I I I ----
I I I ---- Ml I I I

1TJ1 J

(GOT W)
I-- -
I-- -

GO 1--
--

I-- GO ---1
f-- ~ REQUEST pr

LATCH

t.... T
ACC REQUEST re

---- RESPONSE T ~ ---SAT M------- f-4---

u
ACC REQUEST

f-i.------- RESPONSE U SAT_ __ f-+ - --i-;.---

v
ACC lia-

I..

REQUEST ...-
---- RESPONSE V 1--t>---

SA_'L_ ~ ---
i-.---

w L.!_

ACC ~ REQUEST ~ (MlliJ, WNREJ) --}
SAT RESPONSE W f-+ (ACCW ,NACCW) -- Port W Response

~ H (SATW,NSATW)--

Figure 8

CSG/G-1

- 29 -

logical sequence of intercard connection and functions can

be simply described using a card to card description, as

follows. In order to reduce redundency {and the tedious

details of each signal) only major signals will be discussed

in this text; however, the boolean expression and a brief

discussion of each signal is contained in Appendix I.

The portion of signal labels in brackets [] represent

the variable fields of a signal label. This notation will

reappear frequently in the following description of signals

to emphasize the options taken in examples. Beware, this

convention is not followed in the FM logic prints.

Under normal conditions the full 4 quadrant mode uses

the address decoding showed in figure 2. When the quality

of data coming from a core module is poor the quadrant

containing that module can be shut off automatically. For

example if the Microschedular detects excessive parity

errors coming from a quadrant it can turn off that quadrant

in the FM. Unfortunately, because of the interleaved

address mapping and we can not shut off only one quadrant

without requiring an entirely different address mapping ,so

setting the HALFMOD signal reduces the FM by one half.

Unfortunately in the present design we can only disable four

of the six possible quadrant combinations {of 2 quadrants).

At worst this requires that we shut down entir~ly if there

CSG/G-1

- 30 -

are two quadrant failures symultaneously occurring in two

special cases (Land M ,or J and K).

In the HALFMOD mode four address bits are remapped.

Since only two quadrants are used, only one bit is necessary

to denote which quadrant is being requested. This done by

A17. The A16 bit is used to set the value of the module

indicator. The A15 bit of the incoming address becomes the

value of the high order address bit A2 and the A2 bit

becomes the value of the A1 bit {since A1 is not presently

used this is done for esthetics . and uniformity). The

allowable combinations of quadrants are either one of L or

M, and one of J or K e.g. (L,J), (L, K), (M,K) , (M,J) are the

allowable HALFMOD combinations. The remaining quadrants

shuttting off is accomplished by the quadrant OFF signals

(e.g. Ebr L,and Jon we need KOFF and M OFF). Figure 2a

summarizes the address mapping done in HALFMOD mode

discussed above.

IJ::>gically one could easily include the "forbidden·•

combinations of either JOFF and KOFF, or LOFF and MOFF as

special cases using the A17 bit differently, however the

present timing constraints in the present REQUEST RESPONSE

card can not allow these

without slowing down the

specifiP.d 100ns.

additional functions to be made

request responses outside the

CSG/G-1

- 31 -

4 .2 .1 Request Response cards

There are four request response cards, one per port.

In order to resolve port access conflicts to the memory

quadrants, the port pr :tority and low order address bits A1 6,

A17 of each request are encoded into one of eight signals

which are labeled:

[port) REQ (quadrant] (port port priority], e.g.,

(T]REQ[W] [H] is generated if the T port is requesting

the W quadrant at high port priority.

Although the REJ, NREJ responses (labeled (port] RE'J,

(port] NREJ) originate on these cards, they are essentially

generated on the GO cards where the port priority comparif=lon

is done.

'AS their acronyms imply, the NREJ, RF'~ port responses

are logically complements, e.g.:

() NREJ = (GO (] J + GO (] K + GO [] L + GO (] M) • TJ

(] REJ = (GO (] J + GO () K + GO(.] L + GO [) Yi) # • TJ

If port (] has the highest port access priority to a

quadrant of memory, the corresponding GO signal is enabled,

e.g., if port T has the highest port access to quadrant 3

the GO[TJ] signal is generated and the [T]NR"8J response is

sent to port T at time TJ.

CSG/G-1

- 32 -

caveat:

The boolean expressions discussed in this document were

derived from the hardware logic diagr~ms, however for

purposes of discussion and illustration it has been

convenient to rewrite them into another logically equlivant

form. In addition to this, there are an apparent difference

between this document and the logic prints, for instance

signals are normally sent low true between cards so that the

above []NREJ response would leave the request response card

as [] NREJ' in the low true sense. This is also true for

clock signals eg. so that TJ is really an inhibit term if

it is received at the (TJ)' pin of the request response

card.

4.2.2 GO card

The GO card compares the encoded [] REQ [] signals

generated on the Request Response cards for port priority

and produce a GO (port quadrant] signal for the request with

the highest port priority • For example, consider the

expression for the GO(WJ]X signal.

GO(WJ) X= ((T] REQ [JH] + (U] REQ (JH) + [V) REQ (JL])'.

[W)REQ(JH].T~ + (I)

CSG/G-1

- 33 -

([T) REQ [JL] + (U] REQ [JL) + [V] REQ (JL]) '.

(W] REQ [JL] • TG (II)

the suffix X denotes that this the X copy of the signal GO[

] (there is also a Y copy)G!n addition to these , there

are also the suffices FX ,FY are used to denote

versions of the signals e.g.,GO[JW]FX is

equilivant to the signal Go[JW]X.

the fast

logically

Since port w has the (relatively) lowest preassigned

port access priority it can only be given access to a

contested quadrant in the high priority request mode. Hence

port W is given access in term (I) if no other port is

symultaneously requesting the same quadr~nt at high port

access priority while w is making a high priority request.

In term (II) port W is the only one requesting the quadrant

at normal port access priority (the only requestor for

quadrant J).

In contrast to this GO is the port T signal which has a

different port access priority than w.

GO(T] X = (T) REQ (JH] .TG + (r)

((U]REQ(JH] + (V]REQ(JH] + (W]REQ(JH))' •

(T] REQ [JL] .. TG (II)

in the high port access mode port T has the highest access

CSG/G-1

- 34 -

and gains access via term (I) ,however in the low request

mode any other port making a high access request will have

higher priority as shown in term (II) •

At most four GO signals can be produced during a 100

ns. Interval • These GO signals are then latched and

duplicated on the Go card, more copies are needed since the

Accepted Response Satisfied Response , Request Response

,Request Latch ,and Input output cards also use the GO

signals. In addition to these copies a module delimited

version of GO is produced for the. Address Register card

e.g., the module J1 GO signal :

GO(J1 J = GO[TJ). (T) A15' + GO(UJ] • (U) A15 '+

GO(VJ).[V)A15' + GO(JW].(W)A15'

two of the three functions of these signals are to enable

the Accepted and SATisf ied responses sent to the ports and

to generate the MODSEL (MOI)lle SELected) signal of the Data

Register (shown in figures 3 ,6). The third is to enable

the CHOOSE signal • N:>te that in the HALFMOD mode , the

incomming (]A16 address bit is used for the value of the [

]A15 bit shown above see figure 2a.

4.2.4 Input ().ltput SWitch

CSG/G-1

- 35 -

the Input and ()ltput switches are seperate cards which

accept data from the ports at time TS and output data to the

ports at time To. The GO port signals are recieved and

latched at time TS and TO in SM 73ps to control the input

output data flows. This cross bar switch is depicted in

figure 3.

4.2.5 Address Register

The Address Register card performs two functions :

storing the current double word address of the data

register•s contents and comparing the currently stored

address (14 bits) to the requested address sent by the port.

Depending upon the type of request a successful address

comparison generates either an AOM (Accepted on Address

comparsion) or a SAT signal. The AOM response to a store

signal is enabled when the stored address bits MR match the

A bits of the requested address • The SAT signal is more

involved, since in addition to an address match both the

output bus and validity of data must be satisfied

symultaneously. Since the outputs of the the Address

Register are also used by other FM functions several other

signals are created in slight variations e.g., DOSP ,MATCH.

These will be discussed in sections 4.3.3 and 4.3.2.

CSG/G-1

- 36 -

4.2.6 Accepted Response

'fh~ FM response to either a port store or prestore

req~t is either an ACC (Accepted) or a NACC (!il::>t

Accepted) signal. The expanded boolean expression for the

ACC signal is impressively long because of the redundency

used to speed up the logic. Both the ACC and the NACC

signals are expanded in the appendix I. Notice that the ACC

signal is inhibited if the core module is using the input

bus while the port is also requesting its use to store data.

HOwever since prestores are used only for reserving a

register ,the ACC response can be sent to a port prestore

request,while a store request would have been sent an NACC

response by the FM because of the bus condition •

4.2.7 Satisfied Response

although the satisfied responses originate on the

Satisfied Response card their major constituents are created

on the Address Register card ,similarly for the previous ACC

response signal. In addition to this similarity prefetch

requests do not check for output bus conditions so that a

SAT can be sent to a prefetch requester. The topic of bus

control is discussed further in section 4.3.3 in conjunction

CSG/G-1

- 37 -

with the NOSTORE and NOFETCH inhibiting signals.

Example :the A register's AOA,AOM and SAT signals

Available On Assignment:

AOA-[J0) = TO.STCON[J0)'.GO(J0)

(F[A) + F(B] + RULE3[A] + RULE3(B])

Available On Match:

AOM(A)-(J0) = TO.STCON-(J0] '.(RA(16].MR(16A] + RA[16]'.

Satisfied:

MR(16A] '). (R.~(2] • MR(2A] + RA(2J •. MR(2A] •).

(RA[3] .MR[3A] + RA(3) • .MR(3A] ') •

••••••• (RA(14] .t.tR(14A) + RA(14) '.MR[14A) ')

SAT-(J0] = TO.RF.(RS'.NOFETCH)'.

(R[LA] .RA(18]' + R(UA) .RA(18]).

(RA (1 6] • MR (1 6 A) + RA (1 6] ' • ftfR (1 6 A] ') •

(RA[2) .MR(2A) + RA(2] '.MR(2A] •) •

••• (RA[13) .MR[13A) + RA[13] '.MR[13A] ').

(RA[14] .MR[14A] + RA[14] '.MR[14A] ')

notice that AOA and AOM are only the components for the ACC

response • The AOA signal is introduced here prematurely

for sake of completeness. The AOA signal is used to

signifiy that a register can be assigned to a new request.

J:ibtice that if the request is a store and the NOSTORE

CSG/G-1

- 38 -

condition is valid during the request the AOA signal is

inhibited by STCON = NOSTORE.RS.RF" which inhibits both AOA

and AOM • The AOM and SAT signals which are generated on

the address registter card are just address comparasions

between the current FM addresses and the requested port

address. The common TO term is a clock enable. Notice that

the RF term in SAT limits the SAT response to

prefetch requests. This is different than the

fetch and

AOA,and AOM.

signals the (R[LA].RA[18)* + R[UA].R.;(18]) term verifies

that the current data register contents are good and

availablA to the port for all requests.

4 .3 Control cards

The remaining functions which include register

assignments ,core cycle synchronization and the associated

house keeping duties are done in the FM control cards 1,2,3.

There is little logical signif;i.cance for the 1-2-3

partioning for the control cards only a physical constraint

of card size. o:ily the major signals will be discussed

,grouped according to the processes below :

Process : Signals :

1)Request Response Status RL,RU,CU,CL,PX.PY,H,Q.IP,P

CSG/G-1

- 39 -

2)Register Assignment

3)core cycle

CHOOSE,ASGN,P,AOA

STCR,NOSTORE

STCR,NOFETCH

4}POrt Register Data Transfers

4.3.1 Request Status

IP, SIPA, ST PB

STPR,DIS,DOS

The major house keeping duties of the control card

logic are associated with maintaining the correct request

status vector for each latched request. The ten status bits

are latched on control card 1. A set prefix is used to

denote the input version of each bit. FOr example SETH is

the input to the H bit latch.

H Bit

Generated on control card .2 can be set by either the FM

or request. The expression for the SETH(A] of module J0 is

shown below :

SETH(A]-JQJ = RH.MATCH[A] + (I)

RH.MATCH[A]'.MATCH[B]'.CHOOSE(A] + (II)

RF.MATCH(A] '. "!ATCH(B) '.CHOOSE(A] + (III)

RF.NOFETCH.MATCH(A] + (IV)

RF.(R(LA]' + RA(1 B)).

(R(UA)' + RA(18] '}. MATCH(A) + (V)

CSG/G-1

- 40 -

H[A].M..~TCH[A]'.ASGN' .RESETH[A]' (VI)

the RH signal is the port request to initalize the hold

bit , in the cases that the register has already been

assigned (I),or is being assigned (II). Notice that a MATCH

occurs only if a register has been assigned see the appendix

for the MATCH signal.

l)lring certain circumstances denoted by the RF

bit,fetch and prefetch requests,the hold bit is

automatically set if the register has just been reassigned

denoted by a CHOOSE signal. In addition fetch or prefetch

requests which address MATCH while the output bus is being

used are given more time since the H bit is set by term

(IV). In another case the H bit is set by term (V) when the

data is not yet available to the port. once the Hold bit

has been set it remains set via (VI) until the H timer runs

out (while the register has not been referenced by request

,or if the register has been stolen by an ASGN).

N::>tice that register A's hold bit can be cleared in

several cases :the normal timer run out ,a store ,or a

successful fetch from the register (if that request does not

request H). These procedures allow the FM to clear the H

bit as soon as possible freeing the register quickly.

N::>tice that the H bit timer value depends also on the Q bit

for the preset counter starting value giving more time to

CSG/G-1

- 41 -

sequential requests • The timer is either 45 or 90 ,100ns

intervals determined by Q.

Q Bit

The SETQ bit signal is set explictily by request RQ.

This can be done either of two times ,when the register is

being assigned (I) ,or later by another request (II). once

set the Q bit remains set until either the register is

referenced or reassigned (III). Hence by requesting the

register and not setting Q a port can clear Q. The boolean

expression for the Q bit SETQ for register B of module J0:

SETQ(B]-J0 = RQ.MATCH(B].CHOOSE(B] + (I)

MATCH(B].RQ + (II)

Q(B].ASGN(B]'.MATCH(B]' (III)

Core Access Priority Bits PX , PY

The setting of the core access priority is simple •

:a:>wever in some cases either the port or the FM can change

the latched core access priority to a higher one. The FM

will automatically change a warning priority to a high

priority in some cases to insure the status of this latched

request from incomming requests (this a form of residence

preference).

(PX,PY):low

There are

(0,0),medium

four core access priorities

(1,0) ,warning {0,1),and high

CSG/G-1

- 42 -

(1,1).once a priority has been latched it cannot be lowered

by subsequent requests this prevents a processor from

changing the access of other processors in the FM at will.

The boolean expression for the input term for the core

access priority of register A is shown below :

SETPX(A] = MATCH[B]'.CHOOSE[A].RPX + (I)

MATCH(A].(PX[A] + RPX + (RPX'.RPY.PY[A])') + (II)

PX(A].ASGN[A]'.~.ATCH[A]' + (III)

(MATCH(B] + CHOOSE(B).MATCH(A)').

(RPX'.RPY.PY(A)) (IV)

SETPY[A) = MATCH[A)'.MATCH(B]'.CHOOSE[A).RPY + (I*)

MATCH(A].(RPX.PY(A] + PY(A].PX(A].

RPX.RPY + RPY.PX(A]') +

PY[A).ASGN(A]'.MATCH(A]'

(II*)

(III*)

terms I,I* initalize the core access priority bits

PX,PY • A succeeding reference to the register can change

the priority via II,II* ,but while no references are being

made to the register or reassignments, the priority remains

the same. The term IV of SETPX(A] is responsible for

changing the warning priority to high if the other register

B is also specifying a warning priority during assignment or

request. Figure 9 illustrates the core access priorities

before a request is made to the register and after the

CSG/G-1

Core Access Priority

Initial Requested Special Case
Value Priority (Final Value)

p RPX PX PY

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 1 1

0 1 0 0 0 1 1

ll~ 0 1 0 1 1 1 1 1 priority

0 1 1 0 1 0 1
requested

1 by the
0 1 1 1 1 1 1 1 other register

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 1

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1
-- -· .

1 1 1 1 1 1

Note: special case due to
term (iv) in SETPX[]

Core access Priority
(PX,PY)

0 0 low

1 0 medium
0 1 warning
1 1 high

Figure 9

,...

CSG/G-1

- 43 -

request has occured • N::>te that rerequesting a warning

priority also has the effect of changing the priority to

high priority.

R, C Bits

The R and c bits for each half of a double word

register

action.

are set by request or an internal

1).lring a 100ns interval the R and c

core cycle

bits can be

changed at time TS if the situation warrents it. consider

the R and C bits for· the lower half. of register B shown

below :

SETR[LB] = STLH.CHOOSE(B].MATCH(A]• + (I)

ST(L] H.MATCH(B] + (II)

ASGN(B)'.R(LB] + (III)

ASGN(B]'.STCR[LB) (IV)

SETC(LB) = (CLEARC.R(LB])•.F[L]H.MATCH(A]•

•

MATCH(B] • .CHOOSE(B] + (I*)

F(L]H.MATCH~B] .R(LB) + (II*)

(STCR(LB] + C (LB)) •

(MATCH[B] • .ASGN[B] • + ST[L)H •• MATCH(B]) +

STRC(LBl.(MATCH(B] • .ASGN(B]' +

ST(L] H• .MATCH(B]) (IV*)

the inital value. of the R and c bits are determined by

(III*)

..

CSG/G-1

- 44 -

the type of request via terms I,I* as shown below :

STORE PRESTO RE FETCH PREFETCH

R[LB]

C[LB]

1 0 0 0

1 1

Notice that aside from getting a register prefetches

initalize the R and c bits so that the FM control logic will

initate a core fetch as soon as feasible. subsequent stores

ST(L]H and fetches F[L]H can change the Rand c bits. For

examples : from a prestore state a store request sets the R

bit via term II;' the prefetch and fetch both set c via term

II*. once set, the R bit remains set by term III as long as

the register is not reassigned. nata comming from core to a

register (controled by STCR) sets the R bit as in term IV

(of course as long as the register has not been reassigned).

The c bit also remains set via term III* if the register is

not reassigned or changed by request.similarly when a new

version of core•s contents have been updated by a core cycle

the c bit is set via term IV*. Notice the (CL?ARC.R[LB])•

term prevents the setting of c in the event of a detected

core failure see section 4.5. R~member that each port

request is only a sinqle word transfer so t'ha.t only the R

CSG/G-1

- 45 -

and C bits corresponding to it are effected. For example a

store into the lower half of register B sets R[LB]=1,C[LB]=0

and the other R[UB] and c[UB] remain the same as before.

IP,P

the indicators IP for a core cycle !n Process and the

POinter bit P are discussed in a following section for a

better presentation see section 4.3.3.

4.3.2 Register Assignment

CHOOSE

The CHOOSE

control card 2 •

signals used frequently are created on

Tne CHOOSE[A] or CHOOSE(B] denote if the

register is to be used for serviceing a request by using

either register A or B • consider the CHOOSEing register A

in module J0 :

CHOOSE[A)-J0 = GO[J0] .(NOSTORE.RS.RF')'.

(RULE1 2 (A] + RULE3 (A] .RTJL~3X (BJ ')

this simple looking expression is too concise to describe it

many components. It is rewritten in expanded form below :

CHOOSE (A] = J'0=GO (J0]. (NOSTORE.RS.RF') '.

({G(A)X' .H(A] '.(IP[B] + (1)

R[LB]~C[LR]' + R(LB)' .C(LB) +

CSG/G-1

- 46 -

R[UB].c(UB]" + R[UB]".c[UB] + (2)

H[B] + (3)

(Q(B] ".P" + Q[A) .Q[B)" +

Q (A] • P")) } + (4)

{RPX.RPY.IP(A]".SIP[A]X'.

SIP (A) Y" .O [A]" .F [B)".

SCF[A]".(P" + (5)

IP[B] + (6)

SIP[B]X + SIP[B)Y + (7)

Q(B) + (8)

SCF(B])}) (9)

There are two major criteria, shown in the braces, { }

for choosing a register.

signal generated by the

inhibit term to prevent

The common term for both is a GO

request to this module and an

freeing a register to a store

request while the core module is concurrently storing data .

into a register of this module.

A requisite for the first case is a (G[A]X'

prefix which checks if the register A is ·not

• H(A] ")

being held

H[A]" and the core and register versions of data are current

(G[A)X)". If this prerequisite is satisfied register A will

be chosen instead of B in one of the four following cases

corresponding to the numbered constituents of CHOOSE :

CSG/G-1

- 47 -

1) register B is enacting in a core cycle (IP(B])

2) register B is being used.

3) Register B is being held (H[B])

4) register A is a more likely choice on the basis of Q

bit and residence time (P). The boolean expression

(Q(B), • p' + Q(A] • Q[B)' + Q(A] • P') is the

hardware analogue to a decision table in figure l~

The asterisk * entries in the table of figure 10 denote

which term is choosen. consider the case Q[A]=0,Q[B]=0 for

P=0. This entry corresponds to the case when both registers

are serving nonsequential processes and the A register has

been in service longer (denoted by the value of the pointer

P=0). In this case register A is the most likely candidate

to be chosen for replacement by term 4.

The second group of criteria in { } requires that the

need for the register is urgent (RPX. RPY signifies a

requested high core access priority); the register is and

will not shortly be starting a core cycle, (IP[A] ',

SIP[A] X' • SIP[A]Y') ; does not need to start a store

(SCF(A]' = (RL(A] • Cl (A]' + RU(A] • CU[A]')') and is

presently being used by a nonsequential device Q[A]' while

register Bis not free F[B]'. If these prerequisites are

true then register A can be chosen if one of the following

conditions is satisfied at the other register B:

CSG/G-1

p = ~ p = 1
Register A Register B

Q bits of registers resident longer resident longer

Q[A] Q[B] A B A B

0 0 * *
0 1 * *
1 0 * *
1 1 * *

* denotes the register is choosen by tenn 4 of CHOOSE.

Figure 10

CSG/G-1

- 48 -

5) register B has been in service a shorter period of

time P'.

6) Register Bis in process of a core cycle (IP[B]),

7) register B is scheduled for a cycle (SIP[B]X +

SIP[B]Y) this interval,

8) register B is serving a sequential device request

(Q[B]), or

9) register B should schedule a core data fetch

(SCF(B]).

one of the consequences of these choosing criteria are

that, while the register is accessing its core module it

will not be choosen. The CHOOSE signals are also inhibited

in cases when the hold and Q bits are.set. This prevents a

register from being stolen from a sequential device which

has not had an opportunity to use the register. In these

cases, it is simpler and more efficient to have the port

reissue its request than to interrupt a drum or disc

servicing. Most importantly is says that if a register can

not be stolen if a store since data will be lost.

once the CHOOSE signal is generated on control card #2

it is used to latch the request status bits of the incomming

request and enable the data input strobe for the data

register requested (all of which are localized to control

card P.2).

CSG/G-1

- 49 -

ASGN, P

once a register is selected, the CHOOSE signal is used

as a component to generate the assigned (ASGN) signal.

Register A's assigned signal:

ASGN[A] = MATCH[A]' • MATCH[B)' .CHOOSE[A)

which is generated register is initially

reassigned to a new address

either register).

when a

(hence the no address match in

In addition to enabling the initialization of other

register status bits

register pointer

assignment:

SETP = ASGN[A)

the assigned signal generates the set

term along with the new register

Hence if A is assigned SETP=1 indicates that register B has

been in service longer (and SETP=0 means register A has been

used longer) •

AOA

The Available on Assignment signal (AOA) is a simpler

version of both CHOOSE[A] and CHOOSE[B] signals. While it

is necessary to make a decision as to which register to

choose as done by CHOOSE[A] or CHOOSE[B], the AOA signal

CSG/G-1

- 50 -

usage as a component of the Accepted response requires only

that a register can be ch:>osen in this module. Hence the

signal for module J0:

AOA-(J0] = TO • GO(J0] • STCON-(J0] '{F[A] +

F (B] + RULE3 (A) + RULE3 [BJ)

is a simplification of the choose signals of both CHOOSE[A]

and CHOOSE[B], components F[A] for RULE12 [A], RULE3 [A] for

RULE3 [A) • RULE3 (B) X', etc.). (N:>te: The STCON- [J0] signal

is equivalent to the NOSTORE-J0. RF' .Rs condition and F[A]

means that register A is free for assignment).

CSG/G-1

- 51 -

4.3 .3 core cycle Assignments

Since each memory module contains two double-word

registers, there is normally competition to access the core

module. one of the In Process bits, IP[A] or IP[B] is set

whenever a register has started the core module cycle or is

waiting until the core access times for read or store to the

module (for A~pex core module timings, see Appendix II).

The potential problem of differentiating single word stores

(into core from a register) from double-word stores arises

because FM requests are single word transfers. This is

resolved by setting the hold bit during the first half of

the double word store. This prevents the choosing logic

from reassigning the register and inhibits the setting of

the IP bit (or core cycle)of the register until the second

word is available. The fin3.l store clears the hold bit

enabling the IP bit to be set. (A side benefit of this

double word feature is that a combination of single word

fetch and store transfers to core can be made during the

same core cycle.

The in process bit associated with each double word

register is contained on control card 1. The set and clear

terms for the IP latch of register A are sh:>wn below:

SET IP(A) = TS.UAS.IP[B]'.(C[UA].R(UA]' +

CSG/G-1

- 52 -

C(LA).R(LA]' + H(A]'.

(C [UA] '•R ruA} + C [LA]' .R [LA])).

{IP[A] + (1)

(C (UB] .R [UB] • + C [LB] • R [LB] ') ' • { H (13) +

(C (OB) • • R (UB) + C [LB] ' • R [LBJ) ') + (2)

(PY[B].PX(B].(P + PY[A)') + PX[B].PX(A)' +

PX(A] '.P + PX(B] .P.PY(A] ') '} (3)

CLEAR IP (A) = TS • UAS + TS. (TIME1 + TIME4 + TIMF5) •

SETR[UA).SETR(LA)

The In Process bit is latched at time TS while the core

module is available (UAS) and the other register is not in

process of a core transfer. The prequsites necessary for

setting the IP[A] bit :the register needs to fetch data or

else if the register is not being held it needs to store

data into core. If these conitions are valid then the IP[A]

bit is set if (1) it has been set previously ,(2) the other

register (B) does not need to execute a core cycle ,or (3)

the core access priority of A is higher. N:>tice that the

register's hold bit must be clear to enable a single or

double word store into core H[A]' • (C (UA] ' • R(UA) +

C[LA]' • R[LA]). Hence if a fetch into one half and store

into the other half is desired the hold· bit has no effect in

CSG/G-1

- 53 -

inhibiting the setting of IP since the fetch term is

uneffectived by the H bit value.

The IP[A] term (1) resets the !P[A) bit once it has

been set

remains).

(of course as long as the need for a core cycle

Assumming that register A needs a core cycle to

either store or fetch data, it will have precedence over the

other register (B) if register B does not require a core

fetch (C[UB) • R(UB]' + C(LB) • R(LB] ')' while either its

h:>ld bit is set H[B) or it does not need to store new data

into core (c [UB] ' • R [UB] + c [LB] ' . • R [LB]) • as shown by

term (2). If a conflict arises between registers A and Ba

priority comparsion is done by term (3) as illustrated in

figure 5, to determine which register starts a core cycle

first. (Term 3 can be thought of as a not pick A.)

Although the core module cycle always takes 900 ns to

complete (TIME 0 to TIME 8) the IP bits are cleared as soon

as possible. This enables the logic to schedule the next

core cycle beforehand (i.e.,a form of control overlapping

before the core module is physically able to execute another

cycle). The IP[A] bit clears at TS time in TIME 0 if the

core module is available otherwise the earliest the IP

· clears is TIME 1 • This is after the core module has been

started and accepted store requests to core. If both halves

of the double word register are then the current values the

CSG/G-1

- 54 -

IP[A] will be cleared at TIME 1. However, if one register

is not currentthe IP will not be cleared, until after the

remaining core fetch has been done at T~ME 3 (setting the

remaining R bit). Since fetches are not done until TIMES 3

or 4 of the core cycle, the IP bit is cleared one interval

later during times 4 or 5. Recall that, as, the core fetch

is executed the corresponding R bits are set. Hence when

both R bits are set the in process bit can be cleared during

any one of the three times (TIME 1, TIME 4, TIME 5) since

the register to core stores are completed by TIME 1.

4.3.4 Port Register Data Transfers

Port and register data transfers are initiated by

gating terms DIS and DOSP created at Control card 2 and the

Address Register respectively. The Data Input Strobe (DIS)

is a clock input enable to the SM 63 data registers and also

contains a component of the core to register transfer signal

STCR. For example the Data Input Strobe for the upper half

of register A is:

DIS[UA] = TI • (STPR[UAJN +

STPR[UA]M + STCR[UA))

NOTE: TI = clock signal

There are two versions of the Start Port to Register

CSG/G-1

- 55 -

signals (STPR[]N , STPR[]M) described below. A New store

(STPR[]N) can start a data transfer if register A has been

choosen e.g.:

STPR[UA]N = (~.ATCH(B]X' • CHOOSE[A]Y • ST(U]H

and the requested address is not already assigned to

register B (MATCH[B]X'). In the other case the requested

store matches the existing address assigned to register A

STPR (] M e • g. :

STPR(UA]M = MATCH(A]X • ST[U]H

In either case the DIS[UA] is enabled by the TI clock so

that data is sampled only at time TI.

4.4 ())re cycle Synchronization

The core cycle process is inherently asynchronous with

respect to the 100 ns intervals of the FM requests from

processors. Since it uses the same facilities as port

requests, bus conflicts between core and port data transfers

are resolved by synchronizing the core cycle by quantizing

the core cycle into 100 ns intervals, labeled TIME 0 thru

TIME 9(to the FM control logic these intervals are

quantized core cycle times from a counter driven at the

CSG/G-1

- 56 -

100ns request rate of the global clock). Dlring the core

data transfer intervals TIME 0, TIME 1, and TIME 3, TIME 4

the output and input busses of the data registers are

preempted for core use by the NOFETCH (or NOSTORE) inhibit

conditions, which also inhibit the Accepted (or SATisfied)

responses to store (or fetch) requests sent to the ports.

'rhe NOFETCH and NOSTORE mean that a processor can not do a

fetch (and store respectively). An example of these terms

are given below for module J0:

NOSTORE J0 = STCR[UA] + STCR(LA] + STRC(UB] + STRC(LB]

NOFETCH Jr2l = STRC(UA]Y + STRC(UA)X + STRC[LA]Y +

STRC(LA]X + STRC[UB]Y + STRC(UB)X +

STRC[LB]Y + STRC(LB)X

The STart core to Register (STCR) and STart Register to

core (STRC) components of the NOSTORE, NOFETCH signals are

similar to the components of the in process bits of register

A and B, with the addition of some timing and are explained

further in the Appendix I. (Note the STRC[]X, STRC[]Y

signals are components of the STRC signal which includes a R

and c bit condition and core access priority comparison

represented by the X and Y components above). ~tice that

since the normal request response is 200 ns long, a NOSTORE

CSG/G-1

- 57 -

or NOFETCH during the first 100ns interval is not

significant. Hence the request can be accepted or satisfied

during the next interval after a NOSTORE or NOFETCH is

raised by the FM. (Recall that the prefetch and prestore

are unaffected by these signals).

Because of the latency between the start of the core

cycle to the readable times TIME 3 or TIME 4) it is possible

for a processor to store data into a register which is .

awaiting the read time of the core cycle before it occurs.

As the incomrning port data is latched into the data

registers the R and c bits are concurrently changed making

note that the copy of corresponding core data is no longer

current clearing the corresponding c bit. Since the STCR

signal is enabled only if the core copy is current the

originally scheduled core read is inibited. It can then be

possible to use this core cycle instead to store the

register data if it's not too late.

4.5 core Module Failures

core module failures concern both the FM control logic

and the Microscheduler •

module errors detected by

modules.

There are three types of core

the FM, and others by the Ampex

CSG/G-1

- 58 -

4.5.1 Error Detection

The Ampex core modules have an odd parity (detection

scheme) on both the data and address bits. Address parity

errors (APE), data parity errors during the write portion of

the core cycle (WPE), and read time parity errors (RPE)

which have been detected by the Ampex core modules are sent

to the Bcc•s system warning registers. These warning

registers are accessible to the ~tlcroscheduler which

initiates interrupts.

In addition to these errors, the FM control logic

detects failures in a portion of the Ampex core timing

logic. The Start Core cycle FUlse (SCP by /\rnpex

terminology, START by FM) is used to create the Read Data

Available RDA and Unit unAvailable signals UA • (respectively

45 and 62 ns after the SCP pulse to the core). In the event

that there is a core module circuit failure in a flip-flop

or delay line, resulting in not receiving these signals as

expected, error latches are set in the FM control card #3.

The RDAE, UAE, and MUATO signals generated by the FM

are error conditions associated with the Read Data Available

RDA, Unit Available UA corA signals. If the core module

does not go unavailable (as it should) after the start

pulse, the Unit Available Error (UAE) latch is set by the

term UA • TIME0 • TS (and later cleared at the normal end

CSG/G-1

- 59 -

of the core cycle, TIMES). There is an additional UA error

which is detected. Normally the UA signal resets at the end

of the core cycle; if it does not, a Memory UA Timer

overflow sets MUATO • Notice that the condition UAL •

COREFREE is equivalent to end of the cycle TIME8. The third

type of error involves the read data available signal coming

from the core module which should be received by TIME1. If

it is not, the Read Data Available Error (RDAE) latch is set

by the (RDA • TIME1 • TS)term and cleared at TIME8. F.ach

of these core module error conditions generates a memory

reset signal on CC#3.

4.5.2 M.emory Resets and Error Recoveries

Under normal circumstances each core cycle is synchronized

with the basic 100 ns intervals. of the global clock.

Provisions have been incorporated to synchronize manual and

automatic memory resets and error recovery for detected

RDAE, UAE, and MtJATO core module failures. Manual resets

(RESETS signal) and detected core module errors are used to

generate a core module signal MEMRES (MEMory RESet) which

resets the Ampex core modules. For example:

MEMRES - J0 = (RDAE + UAE) •

(TIME3 + TIME4) + (1)

CSG/G-1

- 60 -

RESCYC-[J0) (TIME6 + TIME7 +

TIMES + TIME9) (2)

Either a manual reset (RESETS) which are latched as the

signal RESETL or else a detected core module error will

automatically generate a core module reset signal which is

set to the Ampex core modules as MEMRES. Since a manual

reset ~an be requested during any interval, the reset signal

is latched and saved until all data transfers have been

completed at TIMES +TIME 9 (or COREFREE) and core cycle is

not being started (START'). The memory reset signal for

core module J0 above shows that an error detected early in

the core cycle (TIME3 + TIME4) can reset the core module(1).

If this (1) happens the core cycle counter continues

TIME5,TIME6, • • • As usual, unless a RESCYC-J0 is

requested at TIMES + TIME9. The RESCYC-J0 term occurs only

at COREFREE times TIMES + 9 if there is a RESETL or a MUATO

condition as shown below in the· RECYC term:

RESCYC-J0 = COREFREE(START 1
• RESETL + MUATO)

If the RESCYC-J0 is generated, another MEMRES-J0 can be sent

to the core module repeating the recycling. Since recycling

the memory requires that the core cycle time be extended,

the RESCYC-J0 also resets the core cycle timmer by loading

TIME6 as the new counter state {i.e. RESCYC-J0 is the load

CSG/G-1

- 61 -

enables for the SN74162 counter on control card #3.. Hence

the TIME6 + TIME7 + TIMES + TIME9 in term (2) of MEMRES is

in the extended core cycle. l).lring this sequence (TIME 6 +

TIME7 + TIMES + TIME9) the RESCYC-J0 can be reenabled at

TIME 8 and another {third) MEMRES-J0 is sent to the core

module. one sample sequence of memory resets (as discussed

above) is shown in figure 11 • In this example three

MEMRES-J0 signals are sent to the J0 core module and the ·

core cycle is extended by four intervals.

In addition to memory resets, the FM can clear the c

bit of a register if UAE or RDAE is detected and data has

been stored into core(or attempted). The CLEARC signal is

enabled at TIME1 of the core cycle if a UAE or RDAE has been

latched to prevent the FM from assuming that the core

contents are correct. This means another core cycle will be

immediately started at the end of the one that caused the

Error.

4.6 FM Hardware Timing

Unlike a simple hardware system which is performing a

single logical function, the FM is concurrently performing

port request service and executing core cycles. FOrtunately

each of these functions is subdivlded into its various

..... EXTENDED CORE CYCLE---------------..

• MFMRES-J¢

1 2 3 4 5 6

• MEMRES-J0

• MEMRES-J 0

7 I 8/6 I 7 I 8/6 I 7 8 9

Events causing the above MEMRES-J0 tenns.

0 1 2 3 I 4 I 5 6 7 8 I

+ MEMRES-J¢ RESCYC-J0:MEMRES-J0

i
u I z I 8 I

t
RESCYC-J0:MEMRES-J0

t
6 7 8 9

= 100 ns interval

Example of MEMRES-J0 sequence

Figure 11

CSG/G-1

0 I

CORE CYCLE TIME

0

CSG/G-1

- 62 -

phases within each 100ns interval. The timing between these

functions is synchronized by the use of three clock signals

TO,TS,TI. Although the FM timing description is limited to

describing the relative signal timings from FM clocks (as

references) a more detailed discussion of some critical

timing margins is discussed in Appendix III.

Because the FM clock signals are distributed amoung

various printed circuit cards from the clock cards (1 ,2,3)

shown in Figure 12 , the variablility of gate propagation

delays dictates a simplified description of the timing.

Using the leading edge of a clock as reference (or a signal

enabled by a clock) the propagation delay of a signal will

be represented in the following timing diagrams by the

symbolism: Xf--- M--->fYwhich should be read as, signal y

is derived from x after a delay of m nsec. (Usually the

length of the line will be used instead of a numerical value

m). A table summarizing the FM clock locations, loading and

uses is in Table 1 of Appendix III.

4.6.1 Request Responses and Port Data Strobes

Figure 13 illustrates when the port request responses

and data strobes can be expected. A request receives its

first response after the TJ clock, followed (if appropriate)

UKl

Clock Card # 2

Clock Card # 1

TJA'

TQ'

I
I
I
I
I
I
I
I
I
I iqins iilay TOlOO I

- - --- --- ___ J
T060

T030

TOSA

where:

i ____ ___,~ _ variable pulse width, delay (SOns tap) circuit

TSl [~] 1

TSZC [~]'

TIC[~] 1

1RDc[~]'

1MC [~]I

Clock Card # 3

Figure 12

TI

TJ TJ TJ TJ
J---------1---------1----------1------- - - -

TO

TS

TI

TO

t-----:1:....,..I ACC (NACC)
SAT(NSAT)

t---1)11111..il DOSP

TI

i---tnis

TS

·I J11111f NOSTORE

1-------11-...cl NOFETCB

TO TO

TI

TS

Figure 13 Request Response and Data Strobes (Port)

CSG/G-1

- 63 -

by the second responses enabled by T0 clock. N:>tice that

the data input strobe (DIS) is available within a 100 n sec.

Of the first FM response, while the data output strobe

(DOSP) occurs about the time of the accepted satisfied

responses. The bottom half of this figure shows that the

NOSTORE, NOFETCH conditions preempt both the responses and

data strobes after the initial FM response. (Since a core

cycle can be started from an arbitrary interval the NOSTORE

and NOFETCH conditions can occur within any interval)

4 .6 .2 Core cycle

Figure 14

cycle timing.

is a simplistic representation of the core

The TS clock is used as a reference because

it clocks the core cycle counter. The upper half of Figure

14 illustrates the events that occur during each core cycle

interval. For instance the core address bits CA are

available during the beginning of the core cycle before the

START core module signal. The core module is sent the START

pulse during TIME0. IJ.lring TIME0 and TIME1 the store

commands (STUH, STLH) are sent to the core modules in

sequence depending on whether a single or double word store

is desired. Notice that in TIME0 either the upper or lower

half of a register can be stored into ·core. With each store

CA START
SWH

(STLI-I)
STlli

~ UAS (unit unavailable)

TS UAS . TIME 0 TIME 1 TIME 2

DOSC
t

STlli
(STIJH)

DOSC

' STlli

CORE illDULE CONTROL SIGNALS

RDUL RDUL

FM DATA REGISTER AND CORE illDULE SIGNALS

TIME 3 TIME 4 TIME 5 TIME 6 TIME 7 TIME 8

TI STCR STCR
- --li---D-I_S _ _._ __ D_IS----1!--- -

~ ~
TRD RDUL RDUL --- , ___ ___, ____ ,., __ - -

Figure 14

UAS

TIME 9

CSG/G-1

- 64 -

Into core from a data register, the NOFETCH condition is

enabled by the control logic. Hence if a port fetch request

is attempting to access a register in a quadrant which has a

core module executing a store during the same

port request will not be satisfied (NSAT).

read intervals TIME4 and TIMES of the core

NOSTORE condition during each read interval.

interval, the

The remaining

cycle raise a

After TIMES no

other

until

interaction between the core module and

TIMES + TIME9; when the unit available

FM occurs

signal is

received by the FM control logic from the Ampex core module.

In order to provide the relative timing shown in the

upper half of Figure 14 there are other signals which must

be first available as shown in the lower half of Figure 14 •

Ft>r example, the origin of the store command (STUH, STLH)

occurs during the UAS (Unit Available Synchronized) interval

before the START core module signal.

The derived start register to core signal (STRC)

enables a data output strobe to the core module (DOSC) at

time TO and finally a store command to the core module

(STUH, STLH). Similarly the read data command (RDUL) is

started in anticipation of the core cycle read data times.

With this general (although simplistic) conception of

the core cycle in mind,

details of the core

it becomes easier to understand the

cycle timing during each core cycle

CSG/G-1

- 65 -

interval. (Note that the actual time interval TIME0 is

slightly longer than the rest because it is latched

separately in a flip flop while the counter is being cleared

corresponding to TIME0. This is done to anticipate the

counter output slightly after the TS clock). Figures 15,

16, 17 represent the core cycle in more detail. The core

cycle signals start at the latching of the register status

bits (e.g., R, C bits shown specifically) at time TS (during

this time the core module is still available UAS). once the

R, and c bits are latched (in SM73's) the process and core

address bits are enabled by the Set In Process terms

(SIP[]X, SIP[]Y). The Rand c bits also generate the start

register to core signals which in turn raise the NOFETCH

condition. In addition to enabling the NOFETCH, the STRC

signals are sampled at T0 and a delayed T0 time to create

the data output strobe (Dose) also a delayed T0 time (STROBE

on CC#3) to create the core module store command. (Notice

that there are an upper or lower half store command while

the read command uses a single RDUL bit to denote the upper

or lower half word of core to be read).

lJ.lring the second Ts interval the second register word

store can be initiated. The TIME0 signal is latched by the

TS clock (while the counter clears) along with disabling the

COREFRE~ and unit availaole state (UAS). The start register

TS

SET R
SET C R

1-----1 c
1--i!lllll>I SIPX

SIPY
START

IP

1-----1111+S1RC

NO FETCH

rose
TO

~TIME 0

TS

COREFREE
1----1~ UAS

1-----:1;..1 R
c

1-----11J!Tialll!lll TIME 1

TS

S1RC
NO FETCH

DOSC

TO TO
----i---t-----------+--+----------.f.- - - -

1-------..ar.i SUH
(SLH)

1---------!DISlJH

Figure 15

a------~!Dll TIME 2

TS

TIME 3 TIME 4 l ..,, TIME 5 I ... !TIME 6
TS TS TS TS

RDT RDT

STCR
NO STORE

TRD TRD TRD

.,._--11...i RDUL .,._--1...i RDUL

TI TI TI TI

~DIS

Figure 16

""---~TIME 7 I 1-----tl)liollllolf TIME 8

TS TS

1-----11Jlailllol TIME 9

TS

~ COREFREE

i---1..,. ... IUA

Figure 17

CSG/G-1

- 66 -

to core signal is again produced from the latching of the

latest version of the R and c bits. In turn the STRC

produces the NOFETCH, Dose, and SLR signals as done in the

first writing interval.

])lring TIME1 and TIME2, no new signals are generated.

This gives the ports access to the FM data registers. At

TIME3 and TIME4 the core module furnishes data to the FM.

Nee the TIME3 signal is decoded from the cycle counter, the

read data time signals {RDT as shown in Figure 16) are

available to enable the start core to register signal {STCR)

and consequently the NOSTORE condition. 'nle read data core

command is then enabled by the TRD clock (if the read data

-- ~ · time has been set). The corresponding data input strobe to

the data registers is not enabled until time TI (in the next

TS interval).

In the next intervals, port access is unrestricted.

HOwever, the core module is unuseable until the unit

available state is set during TIME9 (along with the COREFREE

signal). once the UA is set, the next in process bit can be

enabled starting another core cycle during this TIME9

interval if the conditions warrant it.

Appendix I: FAST MEMORY SIGNALS

CSG/G-1
A-1

This appendix contains a complete listing describing all the FM signals.

The signal descriptions will follow the format:

Signal acronym [signal origin]

(neumonic)

Boolean expression

Connnents, description

Notes: 1) Unfortunately the original meaning for the acronyms have been

deduced. For example the name FAST can be thought of as the

acronym for Funky Access Storage Trip, hopefully the ones presented

here are closer to the original intent.

2) In some cases the core module designation is omitted, this is done

since the physical location of the signal suffices.

3) The braces [] contain optional fields used for further identifica-

tion in the text; however, in the Appendix underlining has also been

used instead to improve readability.

4) 1be suffices X, Y denote copies of a signal.

port A g_ Request Response Card

(port address bit n)

e.g. I.A -2_ =port T's 6th address bit

port ACC Accepted Response Card

(ACCepted port response)

e.g.

L. '=>u I l..r .L

A-2

T ACC =· (AOMA-J0+AOMB-J0+ACTl1A-Jl +AOMB-Jl +AOAJ0+AOAJ1 +G01MX+GOTLX+GOTKX).

(ACM\-K0+AOMB-K0+AOMA-Kl+AOMB-Kl+AOAK0+AOAKl+G01MX+GOTLX+GOTJX).
(AOMA-L0+AOMB-L0+AOMA-Ll+A™8-Ll+AOAL0+AOALl+GOTJX+GOTMX+GOTKX).
(AOMA-M0+AOMB-M0+ACTl1A-Ml +AOMB-Ml +AOAM0+AO.AM1 +GOTJX +GOTLX +GOTKX) .

The accepted response for port T is latched at time TO if there is an
available register for request assignment (AOA) or there is already an
assigned register (AOM) to the requested quaCITant and module for port T.
The complex fonn of the-accepted response is a consequence of the faster
response of this logical fonn. Notice that the first GOTMX+GOTLX+GOTKX
group accounts for a request made to another quadrant other than J, Ir the
request is not directed to the J quadrant the A0.\1, AOA signals are not
significant. Hence if there is an ACCepted response to the port T request,
TACC=()·()·()·()there were three GO tenns one in each ()and either an
AOA or AOM in the remaining (). For instance if port T requested a
wordin module Kl the ACCT response would be the result of ACCT= (GOTKX) ·
(AOMA-Kl+AOA-Kl) · (GOTKX) · (GOTKX). - -

CSG/G-1
A-3

AOA - module [Control Card #2]

(Available only if Allocatable = Available on Assignment)
e.g. AOA-Jr/J = TO· GOJ0 • STCON-J0· (FA+FB+RULE3A+RULE3B)

1bere is a port request to module Jr/J (while the input busses to
module J0 are available) and either of the A or B register are free
for assignment, or else can be assigned to this request (store or
pre-store).

AQ~ register-module [Address Register]

(Accepted On basis of address Match)

e.g. A~-Jr/J = (RA16·MR16~+RAib·MR16~ • (RA2·MR2A+RA2•MR?A) •

(RA3·MR3~+RA3·MR3~ • (RA4·MR4A+RA4·MR46) •

(RA13 ·MR13~+AAI3·MR13~ • (RA14 ·MR14A+RA14 •MR14~

·TO·NOSTORE-J0·RS·RF

Double word
address
match

The port requested address (RA) to module J0 matches the double word
address (MR-./i) of the A register at time TO and there is no input bus

conflict (NOSTORE-J.e2.·RS·RF).

port APAR [Request/Response Card]
(Address Parity)

1be address parity bit accompanying the port address.

ASGN register-module [CC#2]

(Assigned register)

e.g. ASG~-Jr/J = MATCHAX-J¢·MATCHBX-J¢·CHOOSEAX-Jr/J
Module Jr/J's, A register is assigned by the FM to the present port
requesting this module.

CA n module n=l,14

(Core Address bit)

CAPAR module

(Core Address Parity bit)

C half register (SETC half register)

(C bit, Set C bit)

[Address Register]

[Memory Address and
Control Cable Card]

[CC# 1, CC# 2]

e.g. CUA at time TS the upper half of register A
C bit is set if the input, SETCUA is set.

SETCUA = {FUH·MATCHAX·MATCHBX·CHOOSEAY+FUH•MATCHAX·RUA+

MATO-IAX•ASGNAX·(CUA+STCRUA+STRCUA)+

STIJH·MATCHAX·(CUA+STCRUA+STRCUA)}·RUA·CLEARC

(discussed in text in an expanded fonn)

CSG/G-1
A-4

CACN quadrant [Address Register]

(Conflict during Accepted On address Match process)

e.g. CACN-K0 = TO·NOSTORE-K0·RS·RF

While the K0 module is using the input to the registers, port store
requests (RS·RF) generate the conflict signal.

CHOOSE register ~ module

(Choosing a register)

e.g. as discussed in text:

[CC#Z]

CHOOSE AX-J0 = (RULE3A+RULE12A) • (RULE12A+RULE3XJi) •

GOJ0·NOSTORE-J0·RS·'RF'"

CLOOS module

(Clear Data Out Strobe) [Data Register]

'Ihe Clear Data Output Strobe is no longer necessary with the control
card modifications, hence it is grounded on control card 3.

CLEARC - module [CC#3]
(Clear C bits)

e.g. CLEARC-J0 = UAE-J0·TI:tv!El-J0+TIME1-J0·RDAL-J0 - -- -- -- --
When there has been a Unit Available Error or a Read Data Available
~rro~, the.C~EARC signal.inhibits the setting of the C bits of a register
if (in addition) the R bits are already set. 'Ihis prevents the FM from
assuming that the previous core cycle has stored data into core.
NOTE: both registers use the same CLEARC sigiial, and this could also
cause an extra core cycle for the other register if R=C=l before CLEARC
would make R=l, C=O.

COREFREE - module [CC#3]
COREFREE is a core module status which signals that the module should be free for
use. The COREFREE signal is latched at tjJl1e TS if START· (TIME8+TIME9) is true.
Nonnally COREFREE is cleared when the n~xt c?re cycle is started (START·TSA)
but is also cleared if the core module is belllg recycled (RESCYC).

DCR n module

(Data from Core to Register)

n = O, 1, 2, ••• , 25

[Memory Data Cable]

DI n port
(Data In from port)

n = O, 1, 2, •.• , 25

DIA module

DIB module

DIC module

DID module
(Data in to Synchronous Counters)

t., ::>Li I l.:i- l

A-5

[Port Data Cable Card)

!CC#3]

1hese bits have been preset (as shown on Control Card 3) to all on~s.
By relatively simple changes these values can be changed to load dif
ferent starting bits into the H bit timer, to give different H times.

DIS half register
(Data Input Strobe)
e.g. DISUA = TI· (STPRUAN+STPRUAM+STCRUA)

= TI· (STUH (MATCHAX +

MATCHBX·CHOOS~Y)+

RUA·RDTA· (CUA+CLA+RLA))

[CC#Z]

(i)

(ii)

(iii)

1he data input strobe is synchronized with either port or core transfers
to the data registers. If a store port requests the upper half of a
register (STUH) and either (i) there is an address match with the A
register or (ii) the A register has been choosen to service this
request, the port request enables the data register inputs (via DIS).
However if the core module is inputting data to the A register the (i),
(ii) conditions are inhibited (by the NOSTORE term in MATCH) and the
core Read D.ata Transfer sets the data input str~be t_o the upper ha~f
of register A (iii). (If the port were addressing ti1e B register instead,
the B register data input strobes would still be inhibited.)

00 n port

(Data Output to port)

n = 0, 1, 2, ... , 25

[Port Data Cable Card]

DOSC - half register module
(Data Output Strobe for Core to register)

e.g. module J¢:

DOSCLA-J¢ = TO STRCLA-J¢

[CC#3]

This is a TO sample of the Start Register to Core signal

DOSP half register module [Address Register]
(Data Output Strobe for Port)

A-6

e.g. DOSPUB-K¢ = (RA16·MR10B+RA16·MR16B) • (RA2•MR2B+RA2·MR2B) • }
• • Double word
: : address

(RA13·MR13B+RAIT•MR13B) • (RA14·MR14B+RA14•MR14A) • match

TO•RF•NOFETCH-K¢·RA18·RUB

The data register output enabling strobe created by port request is
created at TO time if the current address of register B (of core
module K0) matches, the request is a fetch or prefetch (RF), the module
outputs are both available (NOFETCH), and the requested copy of data
in the data register is valid (RUB), and matches the half word desired
(half word of.double word).

'' .

DRC n module
(Data from Register to Core)

n = O, 1, 2, .•• , 25

port F

(F request status bit)

~ = port W's Fetch request bit.

[Memory Data Cable)

[Port Address Cable Card]

F register [CC#l]
(Free register)

~~--~~~~--------~~~--,== e.g. FB = HB (IPB+RUB·CUB+RUB·CUB+RLB·CLB+RLB·C!&)

The hold bit is not set and the register is not involved in a core
cycle and its upper and lower half reigsters or core locations are
quiescent.

Ct>G/G-1
A-7

FLl-I module, (FUH module) [Address Register]

(port fetch or prefetch request to the lower (upper) half of module)
e.g. FLl-I-J¢ = RF·RA18

FUH-J0 = RF·RA18

G register X
(Go ahead for register)

e.g. GAX = IPJi·HA(RLA·CLA+RUA~"C!JK)+
lPJI· (CLA·R!A+CUA·RJJA)

[CC#l]

(1)

(2)

Register A wants to go ahead and execute a core cycle to store its
contents into core if the hold bit is not set and register B is not
in process of executing a core cycle in the module (1), or else to
fetch data from the core module if its unoccupied by register B.

GO module [Go Card]
(Going to module)

e.g. GOJ¢ = TAlS•GOT~+UAlS·GOUJ+VAlS·GOVJ+WAlS·GOWJ - - -
Some port is requesting to the J0 module of quadrant J.

GO port quadrant [Go Card]

(GO from port to quadrant)

e.g. GOTJ = TG· [TRE~I+TREQ{L• (!:!_RE~+yiIBQ!!-:I+~~)]
GOUJ = TG· [URE~· TRE~ +!:!_REQ{L· (TREQ;!_L+~~+~~)]
GOVJ = TG • [VREQJH • (!:_RE~+!:!_RE~) +yiIBQ{L· (TREQ;!_L+UREQ{L+WRE~)]
GOWJ = TG • [WRE~ • (!_RE~+!:!_RE~+VRE~) +

WREQ{L· (TREQ{L+UREQ{L+VREQ{L)]
Since a component of port priority is hardwired, the GO signals vary
depending upon the port. These signals resolve any multiple references
to a quadrant by enabling only the highest port priority request's
GO signal. There are copies X, Y of each GO signal -since they are used
on other FM cards, and copies which are driven by Schottky gates.
e.g. GOTJX, GOTJY, GOTJFX, GOTJFY (F denotes fast)

G register X module {CC#l]
(Going to reference core module)
e.g. @ = RU~/ClJJ\+RLA·CT:A+RUA·CU&+RLA·CLA+IPA

NOTE: GAX = IPA· (CUA· RUA)· (CLA:RLPJ

H register-module (SETI-I reg-module)
(Hold bit)

[CC#l, CC#Z]

e.g. HA is a latched version of SE1HA at time TS
Register A's hold bit is set as-follows:

SEIBA-J0 = RH·MATCI-f6.X+RIFMATCHAX.•J\1t\'fCRBX·CHOOSEAY+

CSG/G-1
A-8

HA· MATCHAX • ASGNAX • RESE11JA+ RF· MATCRAX ;MATCHBX • CHOOSEAY +
RF•NOFETCH-J0·MATCHAY+RF• (RLA+RA.18) • (RUA+RA.18) ·MATCHAY - - - -
discussed in text)

HALFM1D [Core Module Control]
(using half memory 4 core modules)
The HALF.MJD signal is used to tell the FM to use 2 quadeants
(4 core modules).

IP register-module
(In Process)

[CC#l]

The in process bit is latched at time TS by either setting condition
SIPAX-J0+SIPAY-J0

and cleared at time TS of the succeeding intervals:
(TIMEl +TIJ.\1E4+TIMES) •SETRUA•SETRLA or UAS

if the transfer is-completed (i.e. the register's R bits are set)
or when the unit becomes available (UAL•COREFREE•TSA = SETUAS)

MATCH register ~module [Address Register]
(address Match)

e.g. MATCHAX-Jl = STCON-Jl· (RA.16•MR16~·RA.16·MR16~ •
(RA.2•MR2A+RA.2·MR~ • (RA.3•MR3A+RA.3·MR3~ •

(RA.12•MR12A+RA.12·MR1~ • (RA.13·MR13A+RA.13·MR1~ •
(RA.14 • MR14~ +RA.14 • MR14A)

The address of register A, module Jl matches the requested address
(double word address portion) and the input bus to this module is
free (STCON-Jl). NOTE: X,Y are used to denote copies of the same signal.

MEMRES - module [CC#3]

(Memory Reset)
e.g. MEMRES-J0 = RESCYC-J0· (TIME6+TIME7+TUv1E8)+

UAE-J0· (Til'1E3+TIME4) +RDAE-J0· (TIJ.\1E3+TIJ.\1E4) .
The memory modules will be reset if requested (manually or microscheduler),or
Unit Available Error. or Read Data Available Error occur.

MJDE 1 [CC#l]
unknown filllction, no longer used in FM
could be useful as a debugging tool to inhibit the
STRC term.

CSG/G-1
A-9

MODSEL - module [Address Register]

(Module Selected)

e.g. MODSEL-J0 = TO·GOJ0 = a TO time copy of the GO signal used to set a
flip flop on the da--"ta register.

~IR n register n=l6,2, ... ,14

(Memory Registers address bits

1he currently assigned register address.

MUATO - module

(Memory Unit Available Timer Overflow)

MUAT0-10 = UAL-L0·COREFREE-L0

[Address Register]

[CC#3]

If the core module does not become available by the anticipated COREFREE
time (i.e. Tllv1E8), the signal MUATO is generated during Til.ffi8 interval
indicating that the core module has taken an excessive amount of time
to reset the unit available signal latch on CC#3. MUATO then causes
a memory reset to occur (MEl\'IRES).

Port NACC
(Not Accepted response)

*NACC = TOS· (GO*MX+GO*LX+GO*VX+GO*JX) ·ACC*

e.g. port W's

[Accepted Response Card]

WNACC = TOS • (GOWMX +GOWLX +GOWVX +GOWJX) • ACCW

Note: 1'0S" is included to keep swtiching noises off the
ACC and NACC lines during the srunpling of the GO*-lines
by TQ. TI1e GO*-X terms are sampled by TO and stored
in a flip flop called GO*, where * is the port
receiving the go ahead.

NOFETCH - module [CC#l]

(inhibit port fetch requests)

e.g. NOFETCH-10 = STRC1J_@: -L0+STRCLAI -L0+STR~I -L0+STRCLBI -10+

STRCU.6f I -L,0+STRC~I I -L~+STRUCUBI I -L,0+STRCL~I I -L.0
During a register store into core the output bus from the registers
is unavailable to port fetch requests to this module (10).

NOSTORE - module
(inhibit port store requests)

[CC#l]

CSG/G-1
A-10

e.g. NOSTORE-Kl = STCRUA-Kl+STCRLA-Kl+STCRUB-Kl+STCRLB-Kl.

During a core to register store in module K~ the no store condition
is raised preventing port stores to the registers of the Kl module.

port NREJ [Request Response Card]

(Port request considered)

*NREJ = iJ·[GO*J+GO*K+GO*L+GO*M]
e.g. TNREJ = 'I'J'· [GOTJ+GOTK+GOTL+G01M]

Not rejected port requests receive a NREJ response from the FM. It
can indicate only that the port's request is being considered. TJ'
is used to keep the NREJ line free of noise while its inputs are changing.

port NSAT

(Not Satisfied response)
*NSAT = TOS· (GO*MX+GO*LX+GO*KX+GO*JX) ·*SAT.

e.g. port T's not satisfied response

[Satisfied Response Card]

TNSAT = TOS·(G01MX+GOTLX.+GOTKX+GOTJX)·TSAT
See Note on NACC

_ P module (SETP module)

(register Pointer)
1he P bit is latched on CC#3 at time TS:

e.g. SETP-K0 = ASGNA-K0+ASGNB-K0·P-K0

[CC#3]

If register A is assigned to service a port request the pointer is set
to register B. Otherwise, if register B has been pointed to and it is
not assigned, the pointer remains set to it.

" PAM n

P=l indicates register B has been servicing its request longer.
P=O register A has been servicing its request longer.

[.Memory Data Cable]

(Parity of Addressed Memory module in error)
n = 1 - 17B depending upon the assembly. Each core module generates
two address parity bits. If this does not compare with the address
parity bit from the Rf PAM goes true until the core cycle finishes.

PRM n {Memory Data Cable]
(Parity error during Read 0f Memory)

n = 1 - 17B depending upon the assembly. Each core module generates
two data parity bits during the core reading time, and compares them
with the parity bits read. If they do not compare, PRM goes true until
the core cycle is finished.

PWM n

(Parity error during Write from Memory)

CSG/G-1
A-11

[Memory Data Cable]

n = 1 - 17 depending upon the assembly. Each core module generates two
data parity bit during the core writing time, and compares them with
the data parity bits to be stored. If they do not co~are, PWM goes
true lil1til the core cycle is finished.

port PX, port PY [Request Latch]

(Requested Port Core Access Priority)

PX PY

0 0
1 0
0 1
1 1

Priorit

low
medium·
warning
high

NUTE: TI1e requested and register core access priority can be different,
since if conditions warrant the FM increases the registers core access
priority.

PX register, PY register (SETPX register, SETPY register)

(Register's core access Priority)

[CC# l ,CC# 2]

e.g. PXA, PYA At time TS the core access priority of register A
is latched; the input values are:

SETPXA = MATO-~· (PX6_+RPX +RPX • RPY • PYA) +CHOOSEAY •MATOIBX • RPX +

PXA • ASGN@C • MATCHAX +:MATCHBX • (RPX • RPY ·PY~ +CHOOSEBX
MATCHAX•RPX•RPY·PYA

SETPYA = MATCI-Jh)C· (PY6:RPX+PX6_·PYA_+RPX·RPY +RPY ·PX6)+
CHOOSEAY • MATCHAX • MATCHBX ·RP¥ + PYA • ASGNAX ·MA--T~C~HAX~

TI1e set tenns of the core access priority are discussed in the text.

Q register (SETQ register) [CC#2]
(Q bit from the word seg_uential)

The register's Q bit is a latched version of SETO at time TS.

SET~ == Q6: ASGNAX:O MATCH.AX +MATCH@> RQ+RQ • MATOIBX • CHOOSEAY

QA module (Control Card #3]

QB module

QC module

QD module

(output bits of synchronous counter)

These output bits are encoded to give TIME n signals.

port QQ (Request Latch]

The Q port request bit entering the request latch.

R half register (SETR half register)

(R bit, Set R bit)

(CC#l, CC#2]

CSG/G-1
A-12

e.g. RLB is the R bit for the lower half of register B which is latched
attime TS on CC#l by the· input tenn SETRLB

(discussed in text):

SETRLB == MATCHBY · STlli+STlli •0-IOOSEBY •MATCHAY+ASGNB· (STCRLB+R!&)

R port request bits - quadrant

(latched Request bits)

[Request Latch]

As the port request bits are latched at the request latch the output
copies are denoted by an R prefix to the proper quadrant.

e.g. RA18-J the 18th address bit of port identified by the GO signals
-- is switched to quadrant J.

R CA!!) - quadrant
(latched _8equested address bit)

n = 2, 3, 4, ... , 18

[Request Latch]

R(APAR) - quadrant
(latched APAR request bit)

R(F) - quadrant
(latched F request bit)

R(H) - guadrant
(latched H request bit)

R(PX) - quadrant
(latched PX request bit)

R(QQ) - quadrant
(latched QQ request bit)

R(SS) - quadrant
(latched SS bit)

RDA module

[Request Latch]

[Request Latch]

[Request Latch]

[Request Latch]

[Request Latch]

[Request Latch]

CSG/G-1
A-13

(Read Data Available) [Memory Address and Control
Cable Card]

During a core cycle this signal is returned by the module to
show that a core cycle has been initiated.

RDAE - module

(RDA Error)
The RDA error signal is latched and cleared by COREFREE.

TIME l·RDAL TSA sets RDAE. RDAL is a latched copy of RDA

During a core cycle this signal is returned by the module to
show that a core cycle has been initiated.

RDAE - module

(RDA Error)

The RDA error signal is latched and cleared by COREFREE.
TIME· l · RDAL · TSA sets RDAE. RDAL is a latched copy of RDA
and it is also cleared_by COREFREE.

RDT register - module

(Read Data Time from core)

e.g. RDTA-J0 = UAE ·RDAE· (TIME3+4-J0) · IPA-J~

During a core cycle, RDTA signals that data be read from core during
TIME3 or TIME4.

RDUL - module [CC#l]
(Read Data Upper half - Lower half)
e.g. RDUL-J0 = TRD· [(CUA+RLA+CLA) ·RUA·RDTA· (CUB+RLB+CLB) ·RUB·RDTB]

(set condition)
RDUL is a signal sent to the core module telling it which half
upper or lower of the double word to send to the FM data register.
RDUL=O ·means· read the upper ·half word of core, (RDUL=l lower half)
from core module.
RDUL is cleared by an earlier copy of TRD.

A-14

port REJ [Request Response Card]

(Rejected request response)

*REJ = TJ·GO*J•GO*K•GO*L·GO*M
A port (*) is rejected if it receives no GO signals. Port V's reject
response:

RESET
RESET is a signal used to initialize the FM
so that it is awaiting requests.

RESE1H register - module

(Reset H bit)

RESE1HA-J0 = TS~:H Count = 99

[Local Control Card]

[CC#3]

The H bit is reset whenever both stages of the register's SN74162
synchronous counters produce a carryout output count of 99 whid1
means the H bit counter time has run out. One cycle later RESEIB
is cleared.

RESCYC - module

(Recycle module)

[CC#3]

This signal is a JK flip flop output clocked with TS which
enables the memory reset signal to the core module.
J input: START·COREFREE·RESETL+UAL•COREFREE

K input: COREFREE Note llt\L·COREFREE = MUATO

clock: TS (neg triggered clock)

RESETL is a latched copy of RESETS·TS which is cleared at
(Tlf1E8+9)·RESCYC·TS.

port RQH [Request Response Card]

(port request priority high)

port RQL [Request Response Card]

(port request priority low)

-· - -1 - -

RULE12 register - module [CC#l]
(criterion 1 and 2 for ~egister reassignment)

e.g. RULE12A-J¢ = GAX•HA(GBX+HB+P•QB+P·~+~·@

.RULE12B-~ = GBX·I-IB(GAX+HA+P·~+P·~+Q~:@

A-15

Are the rules corresponding to the status of the A and B registers
with respect to reassignment to port requests.

RULE3 register [CC#2]
(criterion 3 for register reassignment)

e.g. RULE3A = (RPX • RPY) • SCFA • FB ·~·IPA· SIP~· SIPAY
The high core access request requires more consideration for register
reassignment, involking RULE3A for register A.

RULE3X register [CC#2]
(X version of rule 3)

e.g. RULE3XA = P·IPA·SCFA·~·SIPAX·SIP~Y .
RULE3XB = P•IPB•SCFB·<~:SIP~X·SIPBY

Without high priority the register pointer P can be used to determine
which register to choose. ·

port SAT [Satisfied Response]

(Satisfied response)
e.g. !!_SAT = (SATA-J¢+SATB-J¢+SATA-Jl+SAT~-Jl+TO· (GOUMX+GOULX+GOUKX)

(SATA-K¢+SATB-K¢+SATA-Kl+SATB-Kl+TO•(GOUMX+GOULX+GOUKX)
(SATA-L¢+SA'I].-L¢+SATA-Ll+SAT~-Ll+TO•(GOUMX.+GOULX+GOUKX)

(SATA-M¢+SATB-M¢+SATA-Ml+SATB-Ml+TO·(GOUMX+GOULX+GOUKX)
A satisfied condition generates a satisfied response at time TO when
the response is latched. The use of the go signals effectively
reduces the satisfied response time. See discussion on ACC.

SAT register module [Address Register]

(Satisfied condition)
e.g. SATA-~ = (RA16·~ffi.16A+RA16·MR16A) • (RA2·MR2A+RA2·MR2A) •

(RA3·MR3A+RA3·MR3~ • (RA4•MR4A+RA4·MR4&) •

(RA13•.MR13~+RAI3·MR13~ • (RA14·MR14A+RA14·.MR14&) •
TO·RF· (RS·NOFETCH) ·JRLA·RA18+RUA·RA18)

double
word address
comparison

The requested address mafches 'the dduble word address corresponding to
the A register of module J¢ while the output bus is available to a
fetch request) and the data register contents requested (RAIS) for lower
or upper (RAIS) half are current (RLA or RUA). Note: bus conditions
are unchecked if the request is a prefetch. (RF·RS).

A-l.O

SCF register [CC#2]
(Schedule a Core Fetch)
e.g. SCFA == RIA•CLA+RUA•CUA

The contents of one (or both) half of register A is current, but the core
copy is not, so if this register is stolen by RULE3 data will be lost.

SCP module

(Start Core Pulse)

e.g. SCP-J0 == START-J0•M1.:'.!~S-J0·1M

[Memory Address and Control
Cable Card]

This signal is sent from the FM through the control cable to the core
module and is used as a clock signal.

SF register [CC#l]
(Start Fetch to register)

e.g. SFB == (CUB·RUB+CLB•RLB)•IPA

Data from core is being requested at a register of B while the core module
is not being used (by the other register~·

SilI, SUH - module [CC#3]

(Store half register to core)
e.g. SI1I-J0 the store lower half signal is later version of the Datal

Output Strobe to core (DOSC) during STR. STR is timed so
that SLR or 'SUH start 65 ns after TO and lasts at least
40 ns.

Note: the STRC signals which generate the DOSC signals have a
normal lower, upper half sequence during double word register
to core transfers. Hence SilI precedes SUH for double word
stores.

SH register module [CC#2]

(Set H bit tnnmer)
e.g. SHA-J0 == RH•MATCHAX+ (RH+RF) •l\1ATCHAX•MATCHBX•CHOOSEAY+ - - - -. - .

MAT~Y •RF• (NOFETCH+~· RATIS+RUA • RA18)
The SH signal identifies when the H bit is being initiallr set, it differs
from the SE11i signal by not having a l\1ATCHAX•ASGNAX•RESETHA·HA term
which resets the H bit once it has been set. "SH-" is clockea into a
SM73 flipflop with TS, and is then called SH •

SIP register X

(Start In Process X criterion)

e.g. discussed in text:
SIPAX = (SSA+SF~ •(SSE· "SF[) •UAS

SIPBX == (SSQ+SFB)·(SSA•SFA)·UAS

[CC#l]

Note: Once the SIP's are
generated they become latched
as IP bits at the next TX SS ,
SF , time, this in turn inhibits
the SIP X, and SIP Y signals
the following lOONS interval.

SIP register Y

(Start In Process Y criterion)
e.g. discussed in text:

[CC#l]

CSG/G-1
A-17

SIPAY = (SSA+SFA) •UAS· (P~·PXE_(P+~+PX!•PXr2+P~·P+PX!•P•P'Y!)
SIPBY = (SSB+SFB) •UAS• (PYA•PXA(P+PYB)+PXB·PXA+PXB•P+PXA(P·PYB))

SRESETL - module [CC#3J
(Start Reset signal latch)
e.g. SRESETL-J0 = TSA•RESETS-J0
(where RESETS is the reset signal sent by the microscheduler, local control
or the remote ZM).

SS port [Port Address Cable Card]

(port requested S bit)

SS register [CC#l]

(Start Store into register)
e.g. SS~= ~·IPA· (CUB•RUB+CLB·RLB)
W11ile register B is not being held HB and the core module is not being
used by the A register TPA, the contents of register B should update the
data held in core. -

START - module [CC#l]
(core module START signal - SCP)

e.g. START-J\D = (SIP~I-J0+SIPAII-J0)+(SIP.1?_I-J0+SIPBII-J0)

A core module is started if one register is selected to initiate
a core cycle.

STCON module

(port Store inhibit Condition)

e.g. STCON-11 = NOSTORE-Ll·RS·RF

[Address Register]

L..'.:>lJ/\r l.

A-18

STCR half register - module [CC#l]

(Start data Transfer from Core to Register)

e.g. STCRUA-J0 = RUA· (CUA+CLA+Rl~ •RDTA

STCRLA-J0 = RLA• (CLA·CUA+R!:!A) •RDTA

The unsyrrnnetrical R, C bit portions can be understood simply by tjie
following table: (at RDTA time)

RUA CUA R1A CLA STCRUA ·sTCRLA

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 0
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 1
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 1
1 1 0 1 0 1
1 1 1 0 0 0
1 1 1 1 0 0

Hence the STCR signals perform core to register transfers in a upper,
lower half sequence (in contrast to the STRC signals which have a
lower, upper sequence).

ST half H

(port Store Lower (Upper) Half into module)

e.g. STLH-~ = RF·RS·RA18

STUH-J0 = RF·RS·RA18

STPR half register N

[Address Register]

[CC#2]

(Start data Transfer from Port to Register New criterion)

e.g. STPRLAN = MATCHBX • CHOOSEAY • STLH

STPR half register M [CC#2]

(Start data Transfer from Port to Register Match criterion)

e.g. STPRLAM = STLH • MATCHAX

STRC half register module

(Start data Transfer from Register to Core)

e.g. discussed in text

STRCUA-J = STRCUAI-J+STRCUAII-J

[CC#l]

LSG/G-1
A-19

NOTE: the register to core transfer will be done automatically in
a lower, upper half sequence.

STRC half register I [CC#l]

(Start data Transfer from Register to Core component)

e.g. STRCLAI = SSB"·"SFB"·CLA·Rg· (IPA_+HA+GAR) • (UAS+TIME0·IPA)

STRCUAI-;!_ = "S"SA·SFA•RUA·RLA·CLA· (IP6_+HA+GAR) • (UAS+TIME0· IPA)
NOTICE: The register stores to core are done in a lower, upper half

order, in contrast to STCR which are done upper, lower half
sequence. This component is used if the other register does
not need to start a core cycle CSSE·SFB).

STRC half register II quadrant [CC#l]

(Start data Transfer from Register to Core II component)

e.g. STRCLBII= CLB·RLB· (PXA· (P+PY.!?)+P·P~+PXB·PXA+PYB·PXA·PYA) •

(IP!2_+~+G!2_R) • (UAS+TIME0· IPfil

STRCUBII= RUB·RLB·CLB· (PXA· (P+P~+P·PXB+PXB•PXA+PYB·PXA_•PYA) •

(IP!2_+HB+GBR)·(UAS+TIME0·IPfil
If both registers (A,B) need to start a core cycle then the winner is
choosen using the register pointer P and core access priorities PX_,PY_
of each request.

TRC - module [Data Register]

(Transfer Register to Core)

The TCR signal is not switched since it is actually alright to enable
data to the core all the time so TJIC is grounded on the Data Register
pin.

TCR module [CC#3]

(Transfer Core to Register)
At time TS the TCR signal becomes a latched copy of NOSTORE (e.g.
TCR-J0 = NOSTORE-J0·TS). The latch is a SM73.

CSG/G-1
A-20

TIME n - module n=0,1, ... ,8 [CC#3]

The TIME signals are encodings of the core cycle timer (with the exception
e.g. for module K0 the primary functions of the signals are: of TIME0)

TIME0-K0: is a latched copy using TS of the START-K0 signal corres
- ~ ponding to the initial core cycle interval, during which

data is stored into core.
TIME1-K0: clear C bit time if an error is detected.
TIME1-I@"+TIME4-K0+TIME5-K0: IP bit clearing times.
TIM.E3-1©, TIME4-K0: readcore times.
TIME3-K0+TI~1E4:-K0+Til.ffi6-K0+TIME7-KY')+TIME8-K0: memory reset times.
TIMES-K0+TIME"9"-KV): ena of cycle. -

UA module [Memory Address and Control
Cable Card] (unit available)

The core module unit available signal is controlled by the START (or
SCP) signal.

UAE - module (Unit Available Error) [CC#3]

UAE is a latch output set by TIME0·UA·TSA during a COREFREE condition
for that module.

UAL - module [CC#3)

(Unit Available Latch)

The UAL signal is a latched copy of the core module UA signal or the
timer (core cycle) TIMES signal. Note: if the core module UA doesn't
arrive at the FM by TIME8•TSA the memory overflow timer is activated
(I\filATO generated) as soon as the core cycle timer has set the unit
available latch (UAL).

UAS - module [CC#3)

ZM

(core module Unit Available Synchronized)

e.g. UAS-~ = COREFREE-J0·RESETL-J0·UAL-J0
The core module unit available signal UA is latched on CC#3 and labled
UAL. TI1e UAS is a FM version of the core module UA signal with synchro
nization controls added.

[Local Control Card]

(Zap Memory)
The ZM signal can be set locally or remotely or automatically as during
machine start up.

