
• UNISYS ALLY®
Software
Development
Environment
Application Migration
Developer Notes
Copyright © 1987 Unisys Corporation.
All rights reserved.
Unisys is a trademark of Unisys Corporation.
ALLY is a registered trademark of
Foundation Computer Systems, Inc.
Foundation Computer Systems is
a wholly owned subsidiary of Unisys Corporation.

Priced Item

June 1988

Printed in U S America
UP-14220

Notice

Foundation Computer Systems (Foundation) has written this
manual for use by Foundation customers. The information con
tained in this manual shall not be reproduced in whole or in part
without Foundation's prior written approval.

Foundation reserves the right to make changes in specifications
and other information contained in this manual without prior
notice. The reader should, in all cases, consult Foundation to
determine whether any such changes have been made.

ALLY is a registered trademark of Foundation Computer Systems, Inc.

C-ISAM is a trademark of Informix Corporation.

dBASE m is a registered trademark of Ashton-Tate.

MS-DOS is a trademark of Microsoft Corporation.

ORACLE is a registered trademark of Oracle Corporation.

PC/IT is a trademark of Unisys Corporation.

UNIFY is a trademark of Unify Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Foundation Computer Systems is a wholly-owned subsidiary of
Unisys Corporation.

'" Copyright 1988 by Foundation Computer Systems. Inc.
All rights reserved

Preface

This manual describes ALLY release 2.0.

The ALLY Software Development Environment can run on
many computer systems, operating systems, and data access
methods. Therefore, the ALLY manuals are generic-they
describe the system-independent features of ALLY.

These developer notes tell you how to move an ALLY applica
tion among different data access methods, operating systems, or
computer systems. These notes are a supplement to the standard
set of manuals provided with ALLY.

These notes include information about:

• the AFILE Migrator and the Data Migrator

• differences among operating systems on which ALLY runs

• differences among access methods on which ALLY runs

• the general steps that you take to transport an application

• an example of how an application was moved from one
environment to another

We assume that you are familiar with the ALLY Software
Development Environment and the documentation conventions
that are provided in the preface of the Dialog User's Guide
(FCSO02-3007). We also assume that you have read the Utilities
User's Guide (FCSO02-3014) and the developer notes that
describe the access methods that you are using with your ALLY
application. The developer notes include:

• C-ISAM Developer Notes (UP-12970)
• ALLYpc Developer Notes (UP-12639), which describe~

how ALLY works with dBASE III-compatible files
• ORACLE Developer Notes (UP-12640)
• UNIFY Developer Notes (UP-12969)

End of Preface

UP-14220 p-1

Contents

Application Migration Developer Notes

Using These Developer Notes 2
The Application Migration Utilities 2
Steps for Migrating an Application 4

Before You Start .. 5
On the Host System .. 6
On the Target System ... 6

Differences Among ALLY Systems 7
Operating System Differences 7
Access Method Issues . 9

General Design Considerations 10
Differences in Sorting Techniques 11
C-ISAM Considerations 12
dBASE III Considerations 13
FX Considerations .. 13
ORACLE Considerations 14
UNIFY Considerations ... 15

ALLY Revision Differences 16
Migrating an Application-An Example 17

Getting Started .. 17
On the Host System .. 18

Creating a Transportable AFILE 18
Creating Transportable Data Files 20
Moving the Transportable Files 21

On the Unisys PC/IT Target System 22
Reconstructing the AFILE 22
Changing the Base DSD Types 23
Reconstructing the Data Files 24
Changing Path Names of External Files 25
Testing the Application ;................................... 27

Summary .. 29

UP-14220 1

Contents

Figures

1 Transporting ALLY Applications 1
2 The AFll.E Migrator ... 3
3 The Data Migrator .. 3
4 The Macro Utility .. 4
5 Invoking the AFILE Migrator 19
6 Invoking the Data Migrator 20
7 Changing a Base DSD Type 24
8 Library AFILE Information-Help AFILE 26
9 Library AFILE Information-Error AFILE 26
10 Global Information-Printer 27
11 Weekly Hours Report ... 2H
12 Total Hours Report .. 28

Tables

1 Operating System Differences 8
2 Access Method Differences 11

2 UP-14220

Application Migration
Developer Notes

The ALLY Software Development Environment allows you to
transport an application, its data, and its macro-command files
among machines that use the UNIX operating system and the
MS-DOS operating system.

You can also transport an application and its data among different
access methods. The access methods ALLY applications can use
are:

• C-ISAM
• dBASE III
• FX (fixed sequential)
• ORACLE
• UNIFY

Figure Migration-l shows how you transport an ALLY applica
tion by moving its three basic parts: AFILEs, data files or data
tables, and macro-command files. The utilities that you use to
transport these parts are the AFILE Migrator, the Data Migrator,
and the Macro Utility.

Host System Target System

FOO2-0788-00

Figure 1. Transporting ALLY Applications

UP-14220 1

Application Migration Developer Notes

Using These Developer Notes

In these developer notes, we tell you how to move an ALLY
application among data access methods, operating systems. or
computer systems. We assume that you are familiar with ALLY.
the Dialog. and the access methods that your application uses.
We also assume that you have read the Dialog User's Guide, the
Utilities User's Guide, and the developer notes for your
application's access methods.

These developer notes include:

• an introduction to the utilities that you use to transport
applications

• a summary of the steps that you must take to transport an
application

• a discussion of how differences among computer systems,
operating systems, and access methods affect the way that
you transport applications

• an example of how to transport an application that was
built on a UNIX system (with the ALLY FX access
method) to a Unisys PC/IT (or compatible, with the
MS-DOS operating system and the dBASE HI access
method)

The Application Migration Utilities

In this section, we introduce the three utilities that you use to
transport applications.

The AFILE Migrator

The AFILE Migrator allows you to transport an application's
AFILEs among different systems. You can use the AFILE
Migrator, shown in Figure 2, to make a transportahle \er~ion of
an AFILE. Then, you can rebuild the AFILE from the tran
sportable file-on the same system or a different system.

2 UP-14220

Application Migration Developer Notes

EJFILE
.... 1---

----1.~1 Hexadecimal
Transportable

''''~- File

Symbol Table

F002-0819-01

Figure 2. The AFILE Migrator

The Data Migrator

The Data Migrator (Figure 3) allows you to transport your
application's data files from one ALLY system to another and
among different access methods.

~""41---
AFILE

Containing
DSD

---II.~J ASCII
Text File

F002-0267 -02

Figure 3. The Data Migrator

When the Data Migrator translates a data file to a tran~portable
text file, it takes information about the data from a Base Data
Source Definition (Base DSD) in the application's AFILE.

UP-14220 3

Application Migration Developer Notes

Macro Utility

While you are using an ALLY application, including the Dialog,
you can store macro commands in files. A macro command con
tains a sequence of keystrokes and ALLY commands. The
Macro Utility (Figure 4) allows you to transport macro-command
files to different computers or operating systems. The Macro
Utility allows you to construct a text version of a macro-command
file on your host system. With the same utility, you can read a
macro text file and construct an executable macro-command file
on your target system.

Executable
Macro
File t---

Figure 4. The Macro Utility

ASCII
Text File

Steps for Migrating an Application

F002-0580-00

In this section, we provide the general steps you must follow to
transport an application from a host system to a target system.

The terms '-host" and '"target" do not imply that you are trans
porting an application to another computer system-you may just
be transporting it to a different access method on the same sys
tem. In that case, you can migrate just the application's data
files.

4 UP-14220

Application Migration Developer Notes

Before You Start

When you transport an application, the number of steps that are
required and the way that you perform the steps can be different,
depending on which operating system and access methods your
host and target systems are using.

Therefore, before you transport an application, you must answer
the following questions:

• Is the operating system on the target system different from
the operating system on the host machine? If it is, you
should read the ""Operating System Differences" section of
these developer notes.

• Will the application use a different access method after you
transport it? If it will, you should read the "Access
Method Issues" section, which tells you about the way that
ALL Y applications interact with different access methods.
You should also read the developer notes that describe your
target system's access methods.

• What are the names of your application's AFILEs, Base
DSDs, and macro-command files? You will need these
names when you construct transportable files with the
ALLY utilities.

• Are you updating your application to run with a newer ver
sion of ALLY? If you are, you should read the .. ALL Y
Revision Differences" section, which tells you how to trans
port an application from an older version of ALLY to a
more recent version.

• Does your application use any external programs? If it
does, you must transport the code for these programs to the
target system and recompile the programs.

When you have answered these questions, you can transport your
application. The next two sections describe the steps· that you
take on the host system and on the target system.

. UP-14220 5

Application Migration Developer Notes

On the Host System

The general steps that you take on the host system to transport an
application are summarized in the following list.

1) Use the AFILE Migrator to construct a transportable
yersion of the application's AFILE. If the AFILE has
an external symbol table, the AFILE Migrator will place
it into the tran~portable version of the AFILE. You can
not migrate a symbol table by itself.

2) Use the Data Migrator to construct a transportable text
. file for each data file or table that the application uses.

3) If your application has macro commands, use the Macro
Utility to construct a transportable text file for the
application's macro-command files.

4) Move the transportable files to the target system. If your
application uses external programs, move the source code
for the programs. Make sure that you do not write over
any files on the target system that have the same names
as the files that you are transporting.

On the Target System

On the target system, take the following general steps to recon
struct an application.

1) Use the AFlLE Migrator to reconstruct the application's
AFILE. You must perform this step first because some
of the other steps require information from this recon
structed AFlLE.

2) [f the application is using a different access method, use
the Dialog to change the type of each Base DSD. You
must perform this step before you use the Data Migrator
to reconstruct the application's data files or data tables.

3) If the application is running on an operating ~~"tem that
is different from the host's operating system, use the
Dialog to change the paths to the application's help and
error message AFlLEs and to the default printer.

6 UP-14220

Application Migration Developer Notes

4) Use the Data Migrator to reconstruct the application's
data files or data tables.

5) If the application uses macro commands, use the Macro
Utility to reconstruct the application's macro-command
files.

6) If the computer systems or operating systems are dif
ferent, you must change any operating-system-dependent
calls in your external programs and recompile the pro
grams.

Differences Among ALLY Systems

If you are transporting your application to a system that uses the
same operating system and access methods as your host system,
you can follow the general steps that we listed in the previous sec
tion, skipping the operating-system-dependent and access
method-dependent steps (steps 2, 3, and 6 on the target system).

When you transport an ALLY application to a different operating
system or access method, you must be aware of the effect of these
differences on the way that you use the ALLY utilities. In the
n~xt two sections, we tell you about these differences.

Operating System Differences

The UNIX operating system and the MS-DOS operating system
handle file names differently. These differences affect the path
names that an application uses to access its external files. Table 1
lists the operating system differences between UNIX and
MS-DOS.

UP-14220 7

Application Migriltion Developer Notes

Table 1. Operating System Differences

UNIX MS-DOS

File name 14 characters, including 12 characters with a maximum of
length periods and extensions (e.g., 8 characters in the name and a

filename. one. a) 3-character extension, separated
by a single period (e.g ..
filename. txt)

Path Slashes (/) (e.g., Back slashes (\) with a colon (:)
separators usr/app/afile.a) after the drive specifier (e.g.,

c:\app\afile.a)

Paths ALL Y files are stored in a ALLY files are stored in a single
tree structure (e. g., the path directory {e.g., the path to
to ALL Y's errors.e file is ALLY's errors.e file is
{ally}/afileslerrors/errors. e) {ally}\errors. e)

Case in file File names are case sensitive File names are not case sensitive
names (e.g., EMPLOYEE and (e.g., EMPLOYEE and

employee are different) employee are the same)

Number of N/A Allows a maximum of 20 open
open files files per process

Because of the differences listed in Table 1, you must change the
path name to any external files that your application uses. These
path names include those to your application's:

Help message AFILE Use the Library AFILE Informatioll
Help AFILE form (menu path 5 3 1
from the Dialog's main menu) to
change this path name.

Error message AFILE

Default printer

8

Use the Library AFILE Illformatiol1-
Error AFILE form (menu path 5 3 2
from the Dialog's main menu) to
change this path name.

Use the Global Illformation-Printer
form (menu path 5 2 1 from the
Dialog's main menu) to change this
path name.

UP-14220

Application Migration Developer Notes

When you change these path names. be sure they are compatible
with your operating system. The Dialog does not validate these
path names. If they are wrong. you will receive an error message
when you run the application.

The ALLY environment variable names are the same for both
operating systems.· For example, the ALLY environment variable
({ally}) tells ALLY where to find its files. When you transport an
application to a different access method, you may have to define
new values for the environment variables that allow ALLY to find
the access method's files. Refer to the access method's developer
notes to find more information about environment variables.

Access Method Issues

You should read this section if you are transporting an ALLY
application from one access method to another.

In this section, we describe some of the access-method difference~
that affect the way that you build and transport ALLY applica
tions. We do not discuss specific differences. such as differences
in data types and ranges within data types. For specific informa
tion, refer to each access method's documentation and developer
notes.

You can transport ALLY applications among the access method~
that ALLY supports. These access methods are:

• C-ISAM

• dBASE III

• FX (fixed sequential)

• ORACLE

• lJ1'IFY
As a developer. you must consider the differences among the
access methods when you are developing applications that you
want to transport.

UP-14220 9

Application Migration Developer Notes

The access methods that ALLY supports provide a wide range of
data management features. Some access methods. such as ORA
CLE and UNIFY, are relational. C-ISAM uses indexed sequen
tial files. dBASE III is a file-oriented relational svstem. The
ALL Y implementation of dBASE III files supports a single index
(sort key) per file. The ALLY FX access method is a simple file
management system for prototyping applications. It has no sort
ing facility.

General Design Considerations

When you are designing an application that will run on different
access methods, you must examine the features of each access
method to determine if one access method is more restrictive than
another. Then, you can design the application so that it can be
transported easily to the more restrictive access method. In some
cases, this requires that you not take full advantage of the features
of a less restrictive access method.

If you design your application to take advantage of a less restric
tive access method's features, you may have to modify the appli
cation extensively when you transport it to a more restrictive
access method-or one that does not provide the same set of
features. And, it is possible that you will not be able to provide
the same user-visible functions because of the differences in access
methods. .

Table 2 provides a summary of the access method differences that
are important to you as an application developer. In the next sec
tions, we talk more about these differences.

10 UP-14220

Application Migration Developer Notes

Table 2. Access Method Differences

Characteristic C-ISAM dBASE '" FX ORACLE UNIFY

Support for Yes-with Yes-with No Yes-with Yes-with
sorting? sort keys an index "Order By" sort keys

implemented defined at Sal implemented
by View the Base statement. by View
Definitions. DSD level. Definitions.

Fields per sort 8 1 N/A N/A 8
key.

Default file or Tables have Files have Files have N/A-you N/A-you
table naming a ".dat" a ".dbf" an ".fx" cannot cannot
conventions. extension; extension; extension. create tables create tables

indexes indexes from the from the
have an have an Dialog. Dialog.
".idx" ".ndx"
extension. extension.

Build DSDs Yes Yes Yes Yes No
manually?

Build DSDs No Yes No Yes Yes
from an existing
table?

Automatically Yes Yes Yes Yes No-you
change Base roost build
DSDs with the new Base
Dialog's Change DSDs.
BaseDSD·
Characteristics-
DSD Type form?

FOO2-05S6-00

Differences in Sorting Techniques

The most important question that you must answer when you are
designing an application that will be transported among access
methods is, "How do the access methods sort data?"

UP-14220 11

Application Migration Developer Notes

As shown in Table 2, ALLY applications that use C-ISAM and
UNIFY sort data by implementing Base DSD sort keys from View
Definitions. Applications that use dBASE III sort data by imple
menting an index defined in a Base DSD. An application that
runs on ORACLE sorts data by implementing an ORDER BY
clause in a select statement. The FX prototyping access method
does not support sorting.

These different sorting techniques affect the way that you design
and build applications that you are going to transport. Let's
assume that you are building an ORACLE application that you
will transport to one of the other access methods that ALLY sup
ports. ORACLE allows you to sort data by specifying SQL state
ments when you build the application's Base DSDs. The other
access methods do not support this technique.

You should consider building View Definitions into your ORA
CLE application so that you do not have to build the View Defini
tions when you transport the application. Instead, you need only
add sort keys at the View Definition level after you have trans
ported the application. This is generally much easier than build
ing View Definitions and connecting forms/reports to them after
you have transported an application.

Let's look more closely at some of the issues you must consider
when you are transporting applications to and from an access
method.

C-ISAM Considerations

C-ISAM is a file management system that uses indexed-sequential
files. Access to C- ISAM files from ALLY applications is sup
ported on computers that use the UNIX operating system. The
ALL Y execution system includes a runtime version of the
C-ISAM file management system.

The ALLY interface to C-ISAM supports sorting by using View
Definitions that implement sort keys. When you transport an
application to C-ISAM from an access method that uses this same
sorting technique (e.g., UNIFY), you need only change the Base
DSD types. The existing View Definitions will implement the sort
keys properly.

12 UP-14220

Application Migration Developer Notes

dBASE III Considerations

ALLY allows you to build applications that work with dBASE III
files. You need not have dBASE III running on your system.
With ALLY, access to dBASE III files is available on computers
that use the MS-DOS operating system. The ALLY interface to
dBASE III files supports a single index (sort key) for each file.

The ALLY interface to dBASE III supports sorting by imple
menting an index that you define for a Base DSD field. When
you transport to dBASE III an application that sorts data, you
must consider the following issues:

• The ALLY implementation of dBASE III files does not
support descending sorts.

• If you are transporting your application from C-ISAM or
UNIFY, you can define the index by using the same key
that was used as the sort key in the host application. How
ever, you must edit the Base DSD to specify the name of
the index file.

• If you are transporting your application from ORACLE,
you will probably have to create a dBASE III key, because
ORACLE applications use the ORDER BY clause in select
statements instead of keys.

• If the host application requires multiple sorts, you should
select the most important sort key to use as a dBASE III
file's index.

FX Considerations

The ALLY Fixed Sequential (FX) access method is available on
any system that supports ALLY. However, it is the most restric
tive of the access methods and should be used only to prototype
and test applications.

The FX access method does not support sorting. Therefore, you
will not be able to maintain the same user-visible interface if the
application you transport to the FX access method provides sorted
data in reports.

UP-14220 13

Application Migration Developer Notes

ORACLE Considerations

ORACLE is a fully relational access method that accepts SQL
statements from an ALLY application with its Host Language
Interface (HLI). ALLY allows you to sort data and generate
queries by passing SQL statements to ORACLE, through the
HLI. This feature is not supported by the other access methods
that ALLY uses.

Sorting

When you build an ALLY application that uses the ORACLE
access method, you sort data by using an ORDER BY clause in
an SQL select statement. The select statement is contained in the
application's Base DSD.

Let's assume that your application uses the ORDER BY clause in
a select statement to sort data in an ORACLE application. Then
suppose that you want to transport this application to a different
access method. To maintain the application's sorting functions
with a different access method, you must change the application's
Base DSD types and add the appropriate sort keys. In some
cases, you will have to build View Definitions to implement these
sort keys.

You should consider connecting your forms/reports to View Defin
itions in your ORACLE application, even though the View Defin
itions are not used when you run the application with ORACLE.
This will make moving the application to another access method
easier, because the View Definitions and form/report connections
to the View Definitions will already be in place.

[f an application that you are transporting to ORACLE was
designed for an access method that uses sort keys (e.g .. C-ISAM.
dBASE III, or UNIFY), you must implement the sort operations
with an ORDER BY clause. You must create multiple ORACLE
Base DSDs to support the situation in which your incoming appli
cation uses View Definitions to sort data from a single Base DSD
in different ways. This is because each sorting operation requires
a different select statement, and each ORACLE Base DSD sup
ports only one select statement.

14 UP-14220

Application Migration Developer Notes

Interactive Queries

In an ALLY application that uses ORACLE, you can allow users
to invoke the "query by where' command from an ALLY
form/report. By using this command, users can make ad-hoc
queries. You may not want to use this feature in an application
that you are going to transport to another access method. Access
methods other than ORACLE support only the ALLY "query by
example' command, with equality-matching only.

Committing Data

The Dialog's default for the Base DSD option "Record commits
not automatic" is on for ORACLE applications. In the other
access methods that ALLY supports, the option's default is off.
This can cause an application to behave differently when you tran
sport it to ORACLE from another access method.

When this option is off, an application's access method is updated
whenever a user moves the cursor from a changed record. When
the option is on (the default for ORACLE), the access method is
updated only when it receives a "comm if command from the
application. If a user makes several changes to a form/report,
then invokes the "abort action' command, none of the changes will
be written to the access method.

You can change this option's setting from the ORACLE Base
DSD-Characteristics form's Options Inheritable by a Form/Report
subform (menu path 3 1 2 < > 1 from the Dialog's main menu).

UNIFY Considerations

UNIFY is a relational access method that stores data in tables.
You can create UNIFY Base DSDs only by reading an existing
UNIFY table.

UP-14220 15

Application Migration Developer Notes

When you transport an application to the UNIFY access method,
you cannot use the Dialog's Base DSD Characteristics-DSD Type
form to change from another access method's Base DSD type to
the UNIFY Base DSD type. Instead, you must rebuild the
application's Base DSDs and copy them over the existing Base
DSDs. When you rebuild the Base DSDs. you must also create
any associated sort keys and foreign key links.

ALLY Revision Differences

Applications built with the 2. + version of ALLY are upward and
downward compatible within the 2. + product line.

You can upgrade and transport an application developed on a
1.2+ version of ALLY to run on a 2. + version of ALLY. To do
that, you must have both versions of ALLY running on either the
host machine or the target machine. If you create a transportable
1.2 + AFILE on the host machine, you must reconstruct it with a
1.2+ ALLY system on the target machine before you can
upgrade the old AFILE to a newer version. Or, you can upgrade
the old AFILE on the host machine and then create a transport
able 2. + AFILE. When you upgrade a 1.2 + AFILE, you will
not be able to execute it on a 1.2+ ALLY system.

The 1.2+ version of ALLY stored a copy of the ALLY Com
mand Menus in an application's AFILEs. The 2. + version of
ALL Y stores Command Menus in the ALLY system's error
AFILE (errors.e). You must have the proper path name to the
error AFILE to allow the application to find the ALLY Com
mand Menus.

Error AFILEs can be chained so that one error AFILE points to
another. Your application's error AFILE can be anywhere in a
chain. See the System Manager's Guide (UP-13765) for more
information about chaining error AFILEs.

16 UP-14220

Application Migration Developer Notes

Migrating an Application-An Example

In this example, we show you how to transport the application
that is described in the Trackillg Employee Hours Application
Storybook (UP-12502). This application, which is provided with
the ALLY release software, uses the ALLY fixed-sequential (FX)
access method. This is the access method that allows you to pro
totype applications on any system that runs ALLY.

We assume that you are transporting the application AFILE and
its data files from a UNIX system (the h.ost system) to a Unisys
PC/IT (or compatible) MS-DOS system with the dBASE III access
method (the target system).

Getting Started

Before you transport this application, you must answer the ques
tions that we provide in the .. Before You Start" section.

Are you transporting the appli
cation to a different operating
system?

Are you transporting the appli
cation to a different access
method?

What are the names of the
application's AFILEs, Base
DSDs, and macro-command
files?

UP-14220

Yes-from UNIX to MS-DOS.
You will change the path names
of the application's external help
AFILE, error AFILE, and
default printer.

Yes-from FX to dBASE III.
You will change the type of the
application's Base DSDs.

The application's AFILE is
"HOURS.A." There are two
Base DSDs, "HOURS" and
"EMPLOYEE." There are no
macro-command files.

17

Application Migration Developer Notes

Are you updating the applica
tion to run on a newer version
of ALLY?

No. You will move the applica
tion from ALLY 2.0 on the
UNIX system to ALLY 2.0 on
the MS-DOS system.

Does the application use any
external programs?

No.

After you have answered these questions, you are ready to trans
port the application. We suggest that you actually follow these
steps to transport the application.

On the Host System

Here is a summary of the steps that you will use to prepare the
application's AFlLE and data files on the host system. You will
invoke both utilities from the Dialog, though you could invoke
them from the operating system if you wanted to.

• Use the AFILE Migrator to construct a transportable ver
sion of the "HOURS.A" AFlLE.

• Use the Data Migrator to construct transportable text files
for the "HOURS" and "EMPLOYEE" data files.

• Move the transportable files to the target system, making
sure that you do not overwrite any existing files.

Let's look at these steps in more detail.

Creating a Transportable AFI LE

Menu path: 5 5 1 4 from the Dialog's main menu
Form name: AFILE Migrator

The first step is to construct a transportable version of the
"HOURS.A" AFILE. To do that, invoke the Dialog on the
"HOURS.A" AFILE and go to the AFILE Migrator form.
Figure 5 shows you how the AFILE A1igrator form \\i11look after
you have filled it out.

18 UP-14220

Application Migration Developer Notes

AFIIE Migrator .

Fanzat. File: {a.Uy}/fcmData/a.Uyfmt. 8
AFIIE: ID.R3.A 0
1ranspartable file: tBVIIlES.P 0
O::uvert. ocpy of AFIIE to tzanspart.able file: X 0

AFIIE pasncrd:
Uae v:lrbJal mapa: 0
~ AFIIE fran tzanspart.able file:

SJmbal table file:

Figure 5. Invoking the AFILE Migrator

Let's look more closely at what you enter into these fields:

1) The name of the current Format File is filled in for you.
Type < Return> to use this file, or change the name to
use a different Format File.

2) Enter the name of the AFILE that you want to convert
(HOURS.A).

3) Enter the name of the transportable file that you want to
construct. The name that we use in this example is
"NEWHOURS.P," where .. p" stands for ··portable
AFILE." You could use any name that you want, as
long as it is valid on the target operating system. We are
using "NEWHOURS" so that we do not overwrite any
·'HOURS" files that might be stored on the target sys
tem.

4) Place an "X" in the "Convert copy of AFILE to trans
portable file" field.

5) Leave the ,. AFILE password" and "Use virtual maps"
fields blank. The ·'HOURS.A" AFILE is not password
protected, and you are not working on a limited-memory
machine.

After you enter this information, invoke the 'exit action' com
mand to construct the ··NEWHOURS.P" file. The cursor moves
to the lower-left corner of the form while the AFILE Migrator
runs. After processing is complete, the cursor moves back to the
menu titled AFILE Utilities.

UP-14220 19

Application Migration Developer Notes

Creating Transportable Data Files

Menu path: 5 5 2 3 from the Dialog's main menu
Form name: Data Migrator Utility

Now use the Data Migrator to construct transportable versions of
the data files that are referenced by the application's '"HOURS"
and ... EMPLOYEE" Base DSDs.

Figure 6 shows you how the Data Migrator Utility form will look
after you have filled it out to migrate the "'HOURS" data file.

~ M1.grat.c:r Ut.:Uity

Fermat. File: {a.Uy}/farmatB/aJ.1yfmt. 8
AFIIE cxnta.in:ll1g the [9): IIlBS.A 0
AFIIE piSSIICrd: CD
[9) naDB: Kl.R) 0
Text:. file naIIIIt: 1IlBS.'DCf 0
Rec::cnstzu::t data frail tzanspart.ed taItt file: f::"\
Cr-eat.e transpartable data taItt file: X ~

Figure 6. Invoking the Data Migrator

Let's look more closely at what you enter into these fields:

1) The name of the current Format File is filled in for you.
Type < Return> to use this file, or change the name to
use a different Format File.

2) Enter the name of the AFlLE that contains the DSD for
the data you are migrating (HOURS.A).

3) Leave the password field blank because the HOURS.A
AFILE is not password-protected.

4) Enter the name of the DSD for the data you are migrat
ing (HOURS).

20 UP-14220

Application Migration Developer Notes

5) Enter the name of the text file that you want to construct
("HOURS.TXT," which is a valid file name on MS-DOS
systems).

6) Leave the "Reconstruct data from transported text file"
field blank, and put an .. x,. in the "Create transportable
data text file" field.

After you enter this information, invoke the 'exit action' com
mand to construct the "HOURS.TXT" file. The cursor moves to
the lower-left corner of the form while the Data Migrator runs.
After processing is completed, the cursor moves back to the menu
titled Auxiliary Utilities.

You must now repeat this step to construct a portable copy of the
data that is referenced by the "EMPLOYEE" Base DSD. Return
to the Data Migrator Utility form and enter "EMPLOYEE" for
the DSD name and ·'EMPLOYEE.TXT" for the text file name.

Moving the Transportable Files

The final step on the host system is to move the transportable files
to the target system. The transportable files contain ASCII text
and require no special communication protocol.

Note that different operating systems store files in different ways.
When you transport this application's files to the Unisys PC/IT,
you will see that the file sizes are larger. This is because MS-DOS
appends a carriage return at the end of each line in a text file.

UP-14220 21

Application Migration Developer Notes

On the Unisys PC/IT Target System

Here are the steps that you use to reconstruct the application's
AFILE and data files on the target Unisys PC/IT. You cannot
run the ALLY utilities from within the Dialog on the PC version
of ALLY. Therefore, you will run the AFILE Migrator and
Data Migrator from the operating system. The detailed steps fol
low this list.

• Place the transportable files into a directory that is different
from the one that contains the ALLY software.

• Use the AFILE Migrator to reconstruct the "HOURS.A"
AFILE and rename it "NEWHOURS.A." You must
complete this step first, because some of the other steps
require information from this AFILE.

• Invoke the Dialog to change the application 'c; Base DSD
types to dBASE III. You must do this step before you
reconstruct the application's data files.

• While you are in the Dialog, change the path names of the
application's help and error message AFILEs and default
printer.

• Exit from the Dialog and use the Data Migrator to recon
struct the application's "HOURS" and "EMPLOYEE"
data files.

The following section provides the details of these steps.

Reconstructing the AFI LE

You will use the AFILE Migrator to reconstruct the application's
"HOURS.A" AFILE and rename it "NEWHOURS.A." Use
the following command to invoke the AFILE Migrator:

amigrate NEWHOURS.P NEWHOURS.A none r<Return>

22 UP-14220

Application Migration Developer Notes

Here is an explanation of this command line's arguments:

NEWHOURS. P The name of the transportable AFILE that you
constructed on the host system.

NEWHOURS. A The name of the AFILE that you want to
reconstruct. We are renaming the AFILE to
avoid writing over the ··HOURS.A" AFILE
that is supplied with the ALLY software.

none The argument that tells the AFILE Migrator
that you do not want ··NEWHOURS.A" to
have an external symbol table. If you wanted
to construct an external symbol table, you
would enter its name here.

r The argument that tells the AFILE Migrator
that you want it to reconstruct an AFILE from
a transported file.

When you invoke the AFILE Migrator with this command line, it
constructs ""NEWHOURS.A." The size of ""NEWHOURS.A"
will be different from the ·'HOURS.A" file on the host UNIX
system because of differences in the way that the two operating
systems store AFILEs.

Changing the Base DSD Types

Menu path: 3 1 2 < > 6 from·the Dialog's main menu
Form name: Base DSD Characteristics-DSD Type

You will use this Dialog form to change the types of the
application's two Base OSDs to "03" (dBASE III).

Figure 7 shows how the Base DSD Characteristics-DSD Type
form must look after you have filled in the fields to change the
type of the "HOURS" Base OSO. Note that the "Current type of
Base OSO" field is already filled in for you.

UP-14220 23

Application Migration Developer Notes

ClJrrent type at. Hue [9): I'X

New type at. 8aBe [9): IX3 8
Name at. dai:a acurc:e file CD:" table: HlR3.dbf 0

Figure 7. Changing a Base OSO Type

Let's look more closely at what you enter into these fields.

1) Enter the name of the new type of the Base DSD. In
this case, you will en ter .. 03" to change the type to
dBASE III.

2) Enter the name of the data file or table that contains the
data that the Base DSD describes. You must enter
.. HOURS. dbf. " The -- .dbf" extension is a dBASE III
naming convention that allows ALLY to recognize the
file as a dBASE III data file.

When you have filled in the form, invoke the -exit action' com
mand to change the ,- HOURS" Base DSD type. The Dialog will
return you to the Base Data Source Definition Characteristics
menu.

You must now change the type of the -'EMPLOYEE" Base DSD.
Return to the Base DSD Characteristics-DSD Type form (menu
path 3 1 2 < EMPLOYEE> 6) from the Dialog's main menu.

In the Base DSD Characteristics-DSD Type form, change the
--EMPLOYEE" Base DSD's type to "03" and name the file
--EMPLOYEE.dbf ...

Reconstructing the Data Files

You will use the Data Migrator to reconstruct the application's
two data files. Invoke the Data Migrator with the following com
mand line:

dmigrate NEWHOURS.A none HOURS HOURS.TXT r
<Return>

24 UP-14220

Application Migration Developer Notes

Here is an explanation of this command line's arguments:

NEWHOURS.A The name of the AFILE that contains the Base
DSD that describes the file's data.

none The AFILE's password. which is "none."
because "NEWHOURS. A" is not password
protected. By default. an AFILE is not
password-protected.

HOURS The name of the Base DSD that references the
external data file.

HOURS. TXT The name of the text description file that the
Data Migrator reads to reconstruct the data file.

r The argument that tells the Data Migrator that
you want to reconstruct data from the trans
ported "HOURS.TXT" file and place it into
the "HOURS.dbf' file.

When you invoke the Data Migrator with this command line. it
constructs the "HOURS.dbf' dBASE III data file.

You must now repeat this step, substituting "EMPLOYEE" for
the HHOURS" DSD name and "EMPLOYEE.TXT" for the
"HOURS.TXT" text file name. This will construct the
·~EMPLOYEE.dbf' dBASE III data file.

Changing Path Names of External Files

Because you are transporting this application from a UNIX system
to an MS-DOS system, you must change the path names that
ALLY uses to find the different parts of the application. You
must make these changes because of the different syntax that the
operating systems use in their path names. Also, ALLY is
installed in a single directory on the PC. instead of in a hierarchy
of directories, as on a UNIX system. (We describe these differ
ences in Table 1 of the "Operating System Differences" section.)

UP-14220 25

Application Migration Developer Notes

The path names that you will change are to the application's:

• help messages
• error messages
• default prin ter

Changing the Path Name of the Help Message File

Menu path: 5 3 I from the Dialog's main menu
Form name: Library AFILE Information-Help AFILE

Figure 8 shows how this form must look after you change the path
name of the application's help AFILE from the UNIX syntax to
the MS-DOS syntax.

Libraly .AFIIE Infmmat:.:icn-Halp AFIIE

Name of help AFIlE: {allY}\CXIIIIBl.h

Figure 8. Library AFILE Information-Help AFILE

Changing the Path Name of the Error Message File

Menu path: 5 3 2 from the Dialog's main menu
Form name: Library AFILE Information-Error AFILE

Figure 9 shows how this form must look after you change the path
name of the application's error AFILE from the UNIX syntax to
the MS-DOS syntax.

I.ibnRy .AFIIE Infc:nat.i.al.-Er.rar AFIIE

Name of atnr AFlIE: {ally}\ar.rora.e

Figure 9. Library AFILE Information-Error AFILE

26 UP-14220

Application Migration Developer Notes

Changing the Path Name of the Default Printer

Menu path: S 2 1 from the Dialog's main menu
Form name: Global Information-Printer

Figure 10 shows how the GloballlZformat;oll-Printer form must
look after you change the path name of the application's default
printer.

P.r1ntar deacrlpt.ial file: {aily}\IH.T

Hall! of cutpIt file:

Figure 10. Global Information-Printer

Notice that the output file name (diaprintfile) is longer than the
eight characters allowed by MS-DOS. You need not change this
name because the operating system will truncate it to "diaprint."

Testing the Application

After you complete these steps, you should test the application to
be sure that the AFILE and data files were transported and
reconstructed successfully. To run the application on the Unisys
PC/IT, go to the directory that contains the application and type:

ally NEWHOURS.A

The "tracking employee hours" application's main menu will
appear on your display. The sample of this application, released
with the ALLY software, has in it several records. Display the
"Weekly Hours Report" (choice 2 from the main menu). Then
type <Return> twice to display all of the sample application's
records. The report looks like the sample in Figure 11.

UP-14220 27

Application Migration Developer Notes

01/11/EB Page 1
Weakly fbIra Repart

Weak Ehd:iDg - Id. ~fbIra Vacat.:i.cn Sick lbllday
O1/CX3/EB SInh a.:Imara a:xm 40 0 0 0
01/10/EB SInh a.:Imara a:xm 32 8 0 0
O1/CB/EB Janatnan Meyer cxxx:g 32 0 8 0
01/10/EB Janatnan Meyer cxxx:g 40 0 0 0
O1/CX3/EB Pater Wagner CXXXl) 40 0 0 0
01/10/EB Pater Wagner CXXXl) 40 0 0 0

Figure 11. Weekly Hours Report

You can also display the ""Total Hours Report" (choice 3 from
the application's main menu) and type < Return> to display its
records. Figure 12 shows that report with its sample records.

01/11/EB Page
Total fbIra Repart. - Id

SIiI:nIh ChIlmanJ a:xm

Week Ehd:iDg ~fbIra Vacatoial Sick lbllday
O1/CB/EB 40 0 0 0
01/10/EB '72 8 0 0

.Jcmatllan Meyer cxxx:g

Week Ehd:iDg ~Hcura Vacatoial Sick lbllday
O1/CB/EB 32 0 8 0
01/10/EB '72 0 8 0

Pater~ CXXXl)

Weak Ehd:iDg ~Hcura Vacatoial Sick 1bllday
O1/CX3/EB 40 0 0 0
01/10/EB Ell 0 0 0

Figure 12. Total Hours Report

1

28 UP-14220

Application Migration Developer Notes

Summary

In these developer notes we have described the differences among
operating systems and access methods that affect how you trans
port ALLY applications. We also described some of the decisions
that you should make when you design an ALLY application that
you will transport among different access methods.

End of Application Migration Developer Notes

UP-14220 29

Index

Access methods
differences in, 9
soning differences, 11

AALE Migrator, 18,22.23
invoking from the Dialog, 18
reconstructing an ABLE, 22

ALLY revision levels, 16

Base DSD types, changing, 23
Base DSDs. rebuilding for UNIFY, 16

C-ISAM,12
Changing Base DSD types, 23
Command Menus, 16
Committing data, 15

Data Migrator, 20, 24. 25
invoking from the Dialog, 20
reconstructing data from text
files, 24

dBASE m, 13
Default printer, 8
Design considerations, 10
Dialog forms

AFILE Migrator, 18, 20
Base DSD Characteristics--DSD
Type, 24

Data Migrator Utility, 20
Global Information-Printer, 8, 27
Library AFILE Information-Error
AFILE, 8, 26

Library AFILE Information-Help
AFILE, 8, 26

Differences
among ALL Y systems, 7
in access methods, 11
in operating systems, 7

Environment variables, 9
Error message AFILE, 8, 26
External programs, 5, 7
External symbol table, 6, 23

FX access method, 13

UP-14220

Global Information-Printer, 8, 27

Help message AFILE, 8, 26
Host Language Interface (HLI). 14
Host system, 4

Interactive queries, 15

Library AFILE Information-Error
AFILE, 8, 26

Library AFILE Information-Help
AFILE, 8, 26

Macro commands, 4
Macro utility, 4
Migrating applications

an example, 17
before you stall, 5
general steps, 4
steps on the host system. 6. 18
steps on the target system, 6,22

Operating systems, differences in, 7
Options

AFILE Migrator, reconstruct
AFILE,23

Data Migrator, reconstruct data
from text file, 25

Record commits not automatic, 15
ORACLE,14

Host Language Interface, 14
interactive queries, 15
soning with, 14
SQL interface, 14
transponing from, 15
transponing to. 14

ORDER BY statement, 12

Ponability, applications and data, 1
Printer information, changing default
path name, 8. 27

Printer output file name, 27

i-1

Index

Reconstruct AFlLE option,
AFlLE Migrator, 23

Reconstruct data from text file
option, Data Migrator, 25

Record commits not automatic
option, 15

Revision levels of ALLY. 16

Select statements, 14
Sorting, 11
SOL statements, 14
Symbol table, 6. 23

Target system. 4
Transportable AFlLEs, 18
Transportable files, differences
in size, 21

Transporting
applications, 1
external programs, 7

UNIFY, 12, 15
rebuilding Base DSDs, 16

Utilities
AFILE Migrator, 2
Data Migrator, 3
Macro Utility, 4
to transport applications, 1

Versions of ALLY, 16

;-2

End of Index

UP-14220

