
• UNISYS ALLY®
Software
Development
Environment
C·ISAM Developer
Notes
Copyright © 1987 Unisys Corporation.
All rights reserved.
Unisys is a trademark of Unisys Corporation.
ALLY is a registered trademark of
Foundation Computer Systems, Inc.
Foundation Computer Systems is
a wholly owned subsidiary of Unisys Corporation~

Priced Item

June 1988

Printed in U S America
UP-12970 Rev. 1

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT.
Any product and related material disclosed herein are only furnished pursuant
and subject to the terms and conditions of a duly executed Program Product
License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document
are set forth in such License or Agreement. Unisys cannot accept any financial
or other responsibility that may be the result of your use of the information in
this document or software material, including direct, indirect, special or
consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

Foundation Computer Systems (Foundation) has written this
manual for use by Foundation customers. The information con
tained in this manual shall not be reproduced in whole or in part
without Foundation's prior written approval.

Foundation reserves the right to make changes in specifications
and other information contained in this manual without prior
notice. The reader should, in all cases, consult Foundation to
determine whether any such changes have been made.

ALLY is a registered trademark of Foundation Computer Systems, Inc.

C-ISAM is a trademark of Informix Corporation.

(0 Copyright 1988 by Foundation Computer Systems, Inc.
All rights reserved

Preface

This manual describes ALLY release 2.0.

The ALLY Software Development Environment can run on
many computers, operating systems, and data access methods.
Therefore, the ALLY manuals are generic-they describe the
system-independent features of ALLY.

These developer notes tell you how to build applications that use
the C-ISAM indexed sequential access method. These notes are
a supplement to the standard set of manuals provided with
ALLY.

These notes include information about:

• using ALLY with C-ISAM

• building a C-ISAM Base Data Source Definition
(Base DSD)

• creating and using C-[SAM indexes

• modifying a C-[SAM Base DSD

• concurrency issues

At the end of these notes is a description of a sample C-ISAM
application.

The section titled '"Building a C-[SAM Base DSD" is designed as
a supplement to the ""Data Source Definitions" chapter of the
Dialog User's Guide (UP-12505).

We assume that you are familiar with C-ISAM as well as with
ALL Y and the Dialog. Before reading the developer notes, you
should read the documentation conventions that are provided in
the preface of the Dialog User's Guide.

End of Preface

UP-12970 p-1

Contents

C-ISAM Developer Notes

Using ALLY with C-ISAM ... 2
Comparison of Terms ... 2
File Names ... 3
Data Types ... 3
Record Length .. 5
Record Layout .. 6

Building a C-ISAM Base DSD 7
Creating the Base DSD ... 7
Optional Steps for Base DSD Fields 10
File Open Options .. 13
Options Inheritable by Forms/Reports 16

Creating a Character/Date Field 17
Modifying a Base DSD for an Existing C-ISAM File 20
Indexes ... 20

Base DSD Keys ... 21
Reading Records in Sorted Order 23
Optimizing Record-Selection Searches 25
Removing or Modifying a C-ISAM Index 27

ALLY Development Language (ADL) and C-ISAM 28
Concurrency .. 28
Sample C-ISAM Application 31

Appendix A. Dialog Structure for C-ISAM DSDs

UP-12970 -1-

Contents

Figures

C-ISAM Data File and Index File 1
2 C-ISAM Base Data Source Definition Path 7
3 Create a Base Data Source Definition Form 8
4 List of DSD Fields Subform 9
5 C-ISAM DSD Characteristics Subform 10
6 File Open Options Subform 14
7 Options Inheritable by a Form/Report Subform 16
8 C-ISAM Base DSD Path: Character/Date Field 18
9 C-ISAM Key Characteristics Subform 21
10 Fields Assigned to Key Subform 22
11 Ascending and Descending Sort Order 24
12 Degrees of Match in C-ISAM Indexes 26
13 Sample Application .. 34

-2- UP-12970

Contents

Tables

1 Calculation of Field Storage Length 6
2 Default DSD Field Values and Formats 11
3 Compatibility of File Open Modes............................. 30

U P-12970 -3-

C-ISAM Developer Notes

C-ISAM, a product of Relational Database Systems, Inc., is an
indexed sequential access method. A C-ISAM file consists of two
physical files. One holds the data, and the other holds the
indexes. By definition, the data file name has the extension
··.dat," and the index file name has the extension ··.idx."
Although there are two files, they are always used together as a
single unit. Figure 1 shows a sample data file and index file.

Data File - ".nv.dat"
rust id item id quartity price - - date-Field descriptions

Record
number -

Key -

1 6540 0002 25 22.46 01/01188

2 4122 0781 10 12.19 01/05/88

3 3840 0056 5 35.35 01/12/88

·4 7173 0069 18 19.95 01/09/88

Index File - "Inv.ldx"
Index #1 - cust id

3840

4122

6540

~7173

3

2

1

4 .
I

Record
number

Index #2 - item id

0002 1

0056 3

0069 4

0781 2 -~
I

Key

Record
number

}-Field

}-Record

F002-0895-00

Figure 1. C-ISAM Data File and Index File

A C-ISAM data file is a collection of fixed-length records. Each
record contains at least one field.

A C-ISAM index is composed of record numbers and values
extracted from one or more fields of the corresponding records.
A value extracted from a record for inclusion in an index is called
a key.

UP-12970 -1-

C-ISAM Developer Notes

C-ISAM allows you to define an unlimited number of indexes for
each data file. All indexes related to a data file are saved in the
same index file. As a data file is updated, C-ISAM automatically
updates all of the indexes. Creating or removing indexes does not
affect the records in the data file.

Using ALLY with C-ISAM

You can build ALLY applications that use existing C-ISAM files.
You can also use ALLY to create new C-[SAM files and to add
indexes to existing files.

This section compares the meaning of the terms key and primary
key in C-ISAM documents with the meaning of these terms in
ALL Y documents. It also describes the following characteristics
of C-ISAM files used in ALLY applications:

• file names

• data types

• record length

• record layout

Comparison of Terms

The terms key and primary key are used in descriptions of
C-ISAM and in descriptions of ALLY. However, the C-ISAM
terms and the ALLY terms do not have the same meaning.

In C-ISAM descriptions, the term key refers to a component of an
index. A C-ISAM key is used to define the order in which the
records in a file are to be processed. A primary key is a key in
the first index that is created as the C-ISAM file is created.
Within ALLY, the distinction between the first index to be
created and indexes that are added later is not significant.

-2- UP-12970

C-ISAM Developer Notes

In ALLY descriptions, the term key is used to describe an item
that references one or more Base DSD fields. [n ALLY applica
tions that use C-[SAM files, Base DSD keys enable you to create
C-ISAM indexes and to sort records. In ALLY, a primary key
uniquely identifies a record. When you create a C-ISAM index
from a primary key, you prevent the application user from enter
ing duplicate values in the field(s) that the key references.

When a key in a Base DSD is assigned the characteristic ""defines
a C-ISAM index," the key is referred to in this document as an
indexed key.

File Names

A C-ISAM file name can be up to ten characters long. However,
ALL Y does not validate the name length, because this restriction
is imposed by UNIX.

[f the data file is located in a directory different from the
application's directory, the name of the data file can include a
path name.

C-ISAM adds the extensions ... dat" and "". idx" to the name you
specify when you create a C-ISAM Base DSD. When you enter a
C-ISAM file name in a Dialog form, do not type the extension as
part of the name.

The characters in the path name and the three-letter extension do
not apply to the file name's character count.

Data Types

ALLY supports all data types supported by C-ISAM. The ALLY
data types CHAR, DATE, and NUMBER are mapped to
C-ISAM data types as described below.

UP-12970 -3-

C-ISAM Developer Notes

Character Values

Character values are stored in fixed-length segments within a
record. However, the data stored in character fields is typically
variable in length. By default, ALLY uses space characters to fill
any unused positions in a character field when data is written to
the file. These ··pad characters" are removed when the data is
read.

When you create a character field in a C-ISAM Base DSD, use
the value CHAR for both the ALLY data type and the storage
data type.

Date Values

ALL Y supports two formats for the external storage of dates in
C-ISAM files: DATE and CHAR DATE. Both of these external
data storage types are compatible with the ALLY (internal) data
type DATE.

If you use DATE for the storage (external) data type, the date
will be stored in ALLY's internal, binary format.

If you create a Base DSD to describe a C-ISAM file in which date
values are stored as characters, use the CHAR DA TE format for
the character/date fields. You cannot specify this data type when
you create a Base DSD, but you can change a Base DSD field's
external data type to CHAR DA TE after the field has been
created. See the section titled "Creating a Character/Date Field"
for additional information.

Dates stored with the CHAR DATE format may not be sorted in
the same order as dates stored with the DATE format. For
example, if the format of the date in the C-ISAM file is
yyyy/mm/dd, sorting will be chronological. If the format is
mm/dd/yyyy, sorting will not be chronological.

-4- UP-12970

C-ISAM Developer Notes

Number Values

ALL Y supports all the numeric formats defined by C-ISAM
(integer, long integer, float, double, and decimal). The Dialog
calls integer "SINT16" and calls long integer "SINT32."

All numeric data can be stored in the data file in ALLY's internal
format called NUMBER. Although other formats may be more
compact, using the NUMBER format for the storage type is usu
ally most efficient in terms of processing time because ALLY does
not have to convert the number to a different format when read
ing or writing data.

When you select the storage type NUMBER or DECfMAL, the
Dialog computes a default field length (in bytes) based on the
ALLY data type of the field (NUMBER). You can change the
field length if necessary, but we do not recommend it. If you
increase the length above the default, no data will be lost; how
ever, the number of significant digits will not be increased. If you
reduce the length below the default, the number of significant
digits stored will be lower than the number specified by ALLY,
and the Dialog will report an integrity error.

Record Length

A C-ISAM file contains fixed-length records with a maximum
length of 65,535 characters per record.

When you create a C-ISAM Base DSD, ALLY calculates field
storage length, offsets, and record length based on the storage
type and width you specify. Table 1 shows how ALLY calculates
the field storage length (in bytes) of each type of field.

UP-12970 -5-

C-ISAM Developer Notes

Table 1. Calculation of Field Storage Length

If the Storage
Type Is

CHAR

DATE

SINT16

SINT32

FLOAT

DOUBLE

DECIMAL

NUMBER

The ield Storage
Length Equals

the number of characters specified
in the "Width" field

14

2

4

4

8

(width - precision + 1)/2 +
(precision + 1)/2 + 1

(width - precision + 1)/2 +
(precision + 1)/2 + 3

When ALLY calculates the width of DEClMAL and NUMBER
fields, nonintegers are rounded down.

Record Layout

Fields cannot overlap in a data file, and they cannot extend
beyond the end of a record.

A field's offset indicates the number of bytes into a data record
that the field begins. ALLY automatically calculates the offset
for a field of a C-ISAM Base DSD based on the offset and length
of the preceding field in the record.

If the "'row identifier" file open option is on, the first usable field
offset is 4. If this option is off, the first usable field offset is O.
(Refer to the section titled "File Open Options" for additional
information on this option.)

-6- UP-12970

C-ISAM Developer Notes

Building a C-ISAM Base DSD

When you build an ALLY application that creates C-ISAM files
or uses data from existing C-ISAM files, you must build C-ISAM
Base Data Source Definitions (Base DSDs) to descrihe the
application's data. .

Before you build a Base DSD to describe a C-ISAM file, you
should know the following information about each field in the file:

• name
• ALLY data type
• storage data type
• width
• precision of number fields

The following section describes the process of building a C-ISAM
Base DSD.

Creating the Base DSD

When you work on an application's Base DSDs, you are in the
"Data Definitions" branch of the Dialog---choice 3 from the
Dialog's main menu.

Figure 2 shows the location of the Dialog form you will use.

Base Data
Source

Definition
Operations

I I 1 1 I
~at.aBas. Edit a Base Delete a Base Rename a Base Copy a Base

Data Source Data Source Data Source Data Source Data Source
Definition Definition Definition Definition Definition

1

F002-0648-01

Figure 2. C-ISAM Base Data Source Definition Path

UP-12970 -7-

C-ISAM Developer Notes

Name the C-ISAM Base Data Source Definition and
define the fields.

Menu path: 3 I I from the Dialog's main menu
Form name: Create a Base Data Source Definition

Figure 3 shows this form.

Create a Base ~ Scurc:e Def:initian

IB) name:

IB) type:

Creat.e frcm: aFA1E B'f HAND

Table ar file name:

Display opt.iaoal. infar:ma.t.:i.an far tirl.s lB> type? (yIN) N

Creat.e fields far tirl.s lB>? (yIN) Y

-8-

Figure 3. Create a Base Data Source Definition Form

Name the C-ISAM Base DSD and choose "CI" as the type of
Base DSD you are defining. The cursor skips the "Create
from" field and moves to the "Table or file name" field.

In the ""Table or file name" field, the Dialog places the name
you entered in the "DSD name" field. You can change this
name; however, do not add the ".dat" extension to the name.
C-ISAM adds the file name extensions"" .dat" and ".idx" to
the appropriate file names automatically. Remember that a
C-ISAM file name cannot exceed ten characters.

The "Display optional information for this DSD type?" field
accesses the C-/SAM DSD Characteristics subform. We dis
cuss the subform later in the "Optional information" section.

Type < Return> in the "Create fields for this DSD?" field to
access the List of DSD Fields subform (Figure 4).

UP-12970

C-ISAM Developer Notes

Field name

I...ist. of IE) Fields
AILY St:arage
type type Width Prec::isian

o 0

Figure 4. List of DSD Fields Subform

In this subform, name the field and specify the ALLY (inter
nal) data type and the storage (external) data type.

If you define a character data type, you must specify the
width of the field.

Date data types require 14 bytes of storage space in the data
source record. If you define a date data type, the Dialog
automatically places the number 14 in the "Width" field.

If you plan to create a character/date field (a date field in
which the values are stored as characters), define the data
type as CHAR when you create the Base DSD. See the sec
tion titled "Creating a Character/Date Field" for additional
information.

If you define a number data type, select the appropriate exter
nal storage type from the list of values. Then specify the
width of the number. You can also specify the precision of
the number.

I Optional information I
To edit the optional information, you must move to the
""Display optional information for this DSD type?" field and
type "Y < Return>.~' The C-/SAM DSD Characteristics sub
form appears (Figure 5). If the cursor is in the List of DSD
Fields subform, you must use the 'up' command, usually
assigned to the up arrow key « t>), to move to this sub
form.

UP-12970 -9-

C-ISAM Developer Notes

I~~=~' Record length:
Ccmnent:

Figure 5. C-ISAM esc Characteristics Subform

On this subform, you can specify the record's length.
Remember that the Dialog will calculate the record's length
according to the fields that you define on this form. If the
data file does not already exist, you do not have to specify the
record's length. However, the Dialog does not leave extra
space in a record. If you want to pad a record, you must
specify the record's length. If the data file already exists, you
can enter the record length.

You can also use this subform to enter a comment about the
Base DSD.

Optional Steps for Base DSD Fields

The Base DSD Field Characteristics menu (menu path
3 1 2 < > 2 2 < > from the Dialog's main menu) provides
access to six Dialog forms that allow you to edit a Base DSD
field's:

• offset in the data source record

• initial and null values and data formats

• minimum and maximum values

• options inheritable by a form/report field

• ALLY (internal) data type

• storage (external) data type

-10- UP-12970

C-ISAM Developer Notes

Define Field Offset

Menu path: 3 I 2 < > 2 2 < > I from the Dialog's main menu
Form name: C-ISAM DSD Field-Characteristics

This form allows you to edit a field's offset in the record.

Be aware that if you change a field's offset, you may have to
change:

• the record length

• the offsets of other fields in the record

Define Field Initial and Null Values and Data Formats

Menu path: 3 I 2 < > 2 2 < > 2 from the Dialog's main menu
Form name: Field-Initial altd Null Values, Data Formats

This form allows you to specify the initial and null values of a
Base DSD field and the data format of the field (if applicable).

Chapter 4 of the Dialog User's Guide discusses ALLY formats.
By default, ALLY provides the following initial and null values
and input and output formats for character, number, and date
fields.

Table 2. Default DSD Field Values and Formats

Data Initial Null Input Output
Type Value Value Format Format

Character none none none none
Number 0 0 free format* free format*
Date none none MMlDD/YY* MMlDO/YY*

* These formats are the Dialog's global defaults and are used when
no format is specified for a DSD field.

UP-12970 -11-

C-ISAM Developer Notes

Define Field Minimum and Maximum Values

Menu path: 3 1 2 < > 2 2 < > 3 from the Dialog's main menu
Form name: Field-Field Validation

This form allows you to specify a minimum and maximum value
for the field you are defining. By default, ALLY does not assign
a minimum or maximum value to DSD fields.

Define Inheritable Form/Report Options

Menu path: 3 12< > 22< > 4 from the Dialog's main menu
Form name: Options Inheritable by a F orm/ Re port Field

This form allows you to specify the options of a Base DSD field
that will be inherited by all form/report fields that reference the
Base DSD field. These options allow the field to require a valid
value, be addable only, be enterable only, or accept no blank
characters.

Define a Field's Internal Data Type

Menu path: 3 1 2 < > 2 2 < > 5 from the Dialog's main menu
Form name: Base DSD Field-Internal Data Information

This form allows you to edit a Base DSD field's ALLY (internal)
data type and specifications.

Use this form to indicate whether or not the value of a number
field is a floating point number.

Be aware that if you change a field's data type after you add data
to the database, your data will be invalid when you run the appli
cation.

If you change a field's internal data type, you must change its
external data type to correspond.

-12- UP-12970

C-ISAM Developer Notes

If you change the width of a field, you may need to change:

• the record's length

• the offsets of other fields in the record

Define a Field's External Data Type

Menu path: 3 1 2 < > 2 2 < > 6 from the Dialog's main menu
Form name: C-/SAM External Storage

This form allows you to edit a Base DSD field's external (storage)
data type and specifications.

Be aware that if you change a field's data type after you add data
to the database, your data will be invalid when you run the appli
cation.

See the section titled "Creating a Character/Date Field" for addi
tional information about this form.

File Open Options

Menu path: 3 1 2 < > 1 from the Dialog's main menu
Form name: C-/SAM Base DSD-Characteristics

ALL Y offers several options for the opening of C- ISAM data
files. The default settings of these options:

• allow users to read from and write to files

• cause a C-ISAM data file and index file to be created at
runtime if they do not exist

• cause ALLY to add a row identifier to each record of the
data file

Figure 6 shows the subform that allows you to change these
options.

UP-12970 -13-

C-ISAM Developer Notes

Name of data source file: invoice

Data source recard length: 82

File open opt.ians

Read cru.y
Create :iDdelc if not there
Create file if not there
Exclusive open
Exclusive write, public read

X
X

Row :identifier X

-

I-Subform

-

Figure 6. File Open Options Subform

Read only (default off)

F002-0896-00

This option determines whether changes can be made to
the data file. When this option is on, any attempt to
insert, update, or delete records generates an error mes
sage.

Create index if not there (default on)
This option determines whether ALLY will verify at run
time that the indexes defined by the Base DSD are
present. When this option is on, ALLY will build any
indexes that are missing. ALL Y is unable to build
indexes if other users are accessing the file at the same
time. After all index changes are completed in an appli
cation, you may want to turn off this option to avoid the
overhead of verifying indexes.

Create file if not there (default on)
This option determi nes whether ALLY will create the
C-ISAM data file if it does not already exist. If it creates
the file, ALLY opens it for exclusive access until the
DSD referencing it is closed.

Exclusive open (default off)

-14-

This option determines whether ALLY will open the
C-ISAM data file for exclusive access. When this option
is on, no other user can open the data file while the Base
DSD referencing it is active. Individual records are not
locked during an update transaction. This makes updates
more efficient and avoids problems associated with the

UP-12970

C-ISAM Developer Notes

upper limit on the number of records that can be locked
at one time. (See the section titled "Concurrency" for
additional information on record locking.)

Exclusive write, public read (default off)
This option determines whether ALLY will lock the file
whenever it is opened so that no other user can modify
the file until it is closed. This option is provided for
situations in which only one user at a time should have
write access to a file. It is similar to the "'exclusive open"
option, but it allows other users to have read access to the
file when it is being modified. (See the section titled
"Concurrency" for additional information on record lock
ing.)

Row identifier (default on)
This option determines whether ALLY will put a unique
identifier into the first four bytes of each record of the
application's data source. The purpose of this identifier is
to allow ALLY to manage correctly certain concurrent
update situations. (See the section titled
"Concurrency. ")

This option should normally be on. The ability to turn it
off is provided primarily to allow ALLY applications to
access C-ISAM data files created outside of ALLY. It
should be off only in an application in which one of the
following situations is true:

• Users make no updates or deletions.

• Only one user makes updates or deletions at any
given time.

• Records cannot be deleted, but only inserted
and/or updated.

UP-12970 -15-

C-ISAM Developer Notes

Options Inheritable by Forms/Reports

Menu path: 3 12< > 1 from the Dialog's main menu
Form name: C-/SAM Base DSD-Characteristics

ALL Y provides several options that are inheritable by a
form/report that references a C-ISAM Base DSD. Figure 7 shows
the subform that allows you to select these options.

Opt.ials :lnherltable by a. fmm/repart

Delete dependent. rec:crds
Ignore mill. rec:crds
Reoard. c:x:muita net:. aut.aDa.t.ic
ltILy does net:. log transact:.i..c: X

Figure 7. Options Inheritable by a Form/Report Subform

Delete dependent records (default off)
This option refers to subordinate records in a form/report.
It determines whether ALLY will delete dependent
records from a Base DSD when an application user
deletes the records' parent record.

Ignore null records (default off)
This option determines whether ALLY will ignore a
record when all of the fields of the record contain null
values.

Record commits not automatic (default off)
This option determines whether record changes will be
made to a data file automatically or only when the user
invokes the 'commit' command. If this option is off, a
commit is done automatically when the cursor moves
from a changed record. If this option is on, no changes
will be made to the data file until a user invokes the
'commit' command. When this option is off, the "ALLY
does not log transactions" option should be on. This is
the default condition.

ALL Y does not log transactions (default on)

-16-

This option determines whether ALLY will maintain a
file to log transactions for a form/report that references a

UP-12970

C-ISAM Developer Notes

C-ISAM Base DSD. ALLY uses this log to return
rolled-back records to their previous internal values in a
form/report. ALLY maintains this transaction file when
this option is off; it does not maintain the file when the
option is on. When this option is on, the "'record com
mits not automatic" option should be off.

Update not allowed (default off)
This option determines whether ALLY will prevent
records from being updated in a C-ISAM file.

Insert not allowed (default off)
This option determines whether ALLY will prevent
records from being inserted into a C-ISAM file.

Delete not allowed (default off)
This option determines whether ALLY will prevent
records from being deleted from a C-ISAM file.

Creating a Character/Date Field

You can create a C-ISAM Base DSD to describe a C- ISAM file in
which date values are stored as characters. In the C-ISAM Base
DSD, you must create a field with the external storage type
CHAR, and then modify the field.

First, follow the instructions in the section titled "" Building a
C-ISAM Base DSD" to create the Base DSD and all of its fields.
In the List of DSD Fields subform, name the character/date field.
Assign it the ALLY data type CHAR, and specify a width that
will accommodate the output of the date format.

The steps required to modify the Base DSD field to change its
data type follow. When you modify this Base DSD field, you will
be in the ""Data Definitions" branch of the Dialog-choice 3 from
the Dialog's main menu.

Figure 8 shows the location of the Dialog forms you will use.

UP-12970 -17-

C-ISAM Developer Notes

View Definition
Opera lions

F002-0809-00

Figure 8. C-ISAM Base DSD Path: Character/Date Field

-18- UP-12970

C-ISAM Developer Notes

CD Name the data format item.

Menu path: 3 5 3 1 from the Dialog's main menu
Form name: Create a Date Format

Name the data format item and exit from the form to move
to the Date Format-Characteristics form.

® Define the date format.

Form name: Date Format-Characteristics

Type a combination of date picture symbols, literal charac
ters, and literal strings to create the date format you need.
For example, if the format of the dates in your C-ISAM file
is yyyymmdd, type yyyymmdd on this form. Once you create
a date format, you can use it for more than one field.
Chapter 4 of the Dialog User's Guide describes the process of
creating date formats.

® Change the character/date field's internal data type.

Menu path: up up 1 2 < > 2 2 < > 5
Form name: Base DSD Field-Internal Data Illformation

Change the internal data type from CHAR to DATE, and
exit from the form to display the Base DSD Field Characteris
tics menu.

o Change the character/date field's external data type.

Menu path: 6
Form name: C-ISAM External Storage

Change the external C- [SAM data type from CHAR to
CHAR DATE.

Type < Return> in the '"Length of storage container" field to
display a subform containing the'" Date format" field. Then
select from the list of values the date format you created in
steps 1 and 2.

UP-12970 -19-

C-ISAM Developer Notes

If the width you specified when you created the Base DSD is
too short for the date format, the Dialog will report an
integrity error when you exit from this form.

Modifying a Base DSD
for an Existing C-ISAM File

The Dialog provides no restrictions on making changes to a Base
DSD that describes a C-ISAM file. However, once ALLY creates
a C-ISAM file from a Base DSD, you cannot change the record
length specified in the Base DSD without deleting the file and re
creating it.

Once you have added data to a C-ISAM file, you should not
define additional fields even if there is room for them within the
record length. If you define additional fields, their contents will
be unpredictable in the existing records.

If you modify the data type of a field after data has been added to
the data file, the change will make the existing records unread
able.

Indexes

ALL Y allows you to define an index by creating a key within a
Base DSD. You must use the form called Base Definition Key
(menu path 3 1 2 < > 3 2 < > 1 from the Dialog's main menu)
to assign the characteristic Hdefines a C-ISAM index" to the key.
When this characteristic is set, ALLY will create a C-ISAM index
for the key at runtime if the index does not already exist. When
a key has this characteristic, we refer to it as an indexed key.

An indexed key can be used to:

-20-

• read records in sorted order
• ensure that index entries are unique
• optimize the record-selection searches that implement

foreign key links or that satisfy user queries

UP-12970

C-ISAM Developer Notes

An indexed key can contain a maximum of eight fields. The sum
of the lengths of the fields in an indexed key cannot exceed 120
bytes.

Base DSD Keys

Menu path: 3 1 2 < > 3 2 1 from the Dialog's main menu
Form name: Base Definition Key

When you define a key in a C-ISAM Base DSD, ALLY allows
you to assign various characteristics to the key. Figure 9 shows
the subform that allows you to assign these characteristics to a
key.

o-!SAM Key Olaracter:ist;ics

Defines a o-!SAM index::
Pr.imazy }my:
~s duplicate keys:
Cbnpress duplicate leading c:baracters:
~s tra.i..ling space:

Figu re 9. C-ISAM Key Characteristics Subform

Defines a C-ISAM index (default off)
This option determines whether ALLY will create a
C-ISAM index for this key, if one does not already exist.

If you want to select any of the remaining options, you
must select this one.

Primary key (default off)
This option determines whether ALLY will give the
C-ISAM index the ""duplicates not allowed" characteris
tic. When this option is on, ALLY displays an error
message if a user attempts to create a record with a dupli
cate value in the primary key's field(s).

UP-12970 -21-

C-ISAM Developer Notes

Compress duplicate keys (default off)
This option determines whether C-[SAM will compress
index values that are identical. Selecting this option (and
the other compression options shown on this subform)
may reduce the size of your index file and may increase
the efficiency of record-selection searches.

Compress duplicate leading characters (default off)
This option determines whether C-[SAM will compress
index values with the same initial sequence of bytes in the
key field(s).

Compress trailing space (default off)
This option determines whether C-[SAM will compress
the values of indexed fields when the fields of the data
file are padded with trailing space characters. To make
use of this feature, ALLY uses a space character rather
than a null character as the default pad character for
CHAR fields.

When you define a key, you must assign one or more Base DSD
fields to the key. Figure 10 shows the subform that allows you to
assign fields to a key.

Field mmiber
1
2

Fields Assigned to Key

Name of field
custJd
invoic:eJd

Descending
aart order
N
Y

Figure 10. Fields Assigned to Key Subform

The section titled "'Reading Records in Sorted Order" explains
how to use the .. Descending sort order" field of this subform.
The section titled "Optimizing Record-Selection Searches" pro
vides information to help you decide which fields to assign to a
key.

-22- UP-12970

C-ISAM Developer Notes

Reading Records in Sorted Order

ALL Y can read a C-ISAM data file in sorted order if the records
contain at least one field that is referenced by an indexed key. If
an application is to read C-ISAM records in sorted order, it must
include:

1) a Base DSD that contains an indexed key

2) a View Definition that:

• references the Base DSD
• references all the fields used in the indexed key
• uses the indexed key as its sort key

The View Definition allows ALLY to read records in order,
sorted by the field(s) of the sort key.

C-ISAM can sort records in ascending order or in descending
order. It sorts in ascending order unless you set the "descending
sort order" option. Use the Base Definition Key form (menu path
3 1 2 < > 3 2 < > from the Dialog's main menu) to set this
option for a field assigned to the sort key.

Several fields can be assigned to the same key, and you can set
the "descending sort order" option for each of those fields.
Therefore, ALLY can sort simultaneously in ascending order of
one field of the key and in descending order of another field. The
priority of the sort order within a key is determined by the order
in which the fields are assigned to the key. The first field
assigned to the key has the highest priority.

Figure 11 shows an example of this capability. In the example,
the records are sorted first in ascending order by employee ID and
then in descending order by date.

UP-12970 -23-

C-ISAM Developer Notes

/

\,.

~r

3 000101/06/88
1 000101/05/88
4 000201/06/88
2 000201/05/88

I "hours.ldx"
Record
numbers

Employee Hours Report """

EmpIoyeelD Date Hours Worked

0001 01/06188 8
0001 01/05188 8
0002 01/06188 8
0002 01/05188 8

...,j

I
"hours" View Definition

employee_id I date I hours worked t- -
I I

I id_date_key I ,
Sartkey

I
"hours" Base DSD

employee_id I date I hours worked r- ---
I I~

I id date key I Descending
I - I - order option set

Indexed key

I
employee id date hours

}K.~
1
2
3
4

I
Record
numbers

0001 01105188
0002 01105188
0001 01106188
0002 01106188

"hours.dat"

Fields

Fields

F002-0899-00

Figure 11. Ascending and Descending Sort Order

-24- UP-12970

C-ISAM Developer Notes

Optimizing Record-Selection Searches

At runtime, ALLY looks for an index to use whenever it must:

• sort records

• implement a foreign key link

• locate selected records to satisfy a query

Although a C-ISAM application can have many indexes, ALLY
can use only one index at a time. To determine which index it
will use, ALLY follows a protocol designed to make record
selection searches as efficient as possible. Understanding this pro
tocol will help you design more efficient applications.

ALL Y's Protocol for Selecting an Index

If a form/report group or ADL procedure references a View
Definition that has a sort key, ALLY always uses the index asso
ciated with the sort key. It does not attempt to find any other
index.

If there is no sort key, but there is a foreign key link associated
with the View, ALLY selects an index that implements the
foreign key link. If there is no sort key and no foreign key link,
but a query is performed, ALLY selects an index that optimizes
the record-selection search required to satisfy the query.

When ALLY is implementing a foreign key link or locating
selected records to satisfy a query, it must find only those records
that have certain values in certain fields. In other words, it must
find the records that meet certain selection criteria. In these
cases, ALLY begins by selecting an index to optimize its record
selection search.

ALLY can locate the best available index because it can recognize
varying degrees of match between the available indexes and the
fields on which the record-selection search is based. The best case
exists when the fields in the foreign key link or the fields used in
the query match exactly the fields in an index. For example, if
ALL V's search is based on fields A, B, and C, it finds an index

UP-12970 -25-

C-ISAM Developer Notes

that uses fields A, B, and C, and no others. [n this case, ALLY
reads only the records that meet the selection criteria. and it does
not have to examine any other records.

Efficiency is reduced only slightly if the fields on which the search
is based form a prefix of the fields used in an index. For exam
ple, if ALL Y's search is based on fields A, B, and C, it finds an
index that uses fields A, B. C, and D.

If ALLY does not find a "best case" among the available indexes,
it continues to search for an index to use. Figure 12 illustrates the
levels of optimization provided by varying degrees of match.

Fields on which
ALL Y's search Is

based

IAIBlcl

Indexed Fields

Second-best

Third-best

Worst case:
no optimization

F002-0907-00

Figure 12. Degrees of Match in C-ISAM Indexes

Second-Best Case The fields used in the index are a subset of
the fields on which the search is based. For
example, if ALLY's search is based on fields
A, B, and C. it finds the index that contains
fields A and Conly. ALLY uses the index
for finding records that contain fields that
match the indexed fields. However. it must
then examine these records to determine
whether the fields that are not indexed meet
the selection criteria.

-26- UP-12970

Third-Best Case

C-ISAM Developer Notes

The first field used in the index is one of the
fields on which the search is based. For
example, if ALLY's search is based on fields
A, B, and C, it finds the index in which the
first field used is field B. ALLY uses the
index to find the first record, in indexed
order, that meets the selection criteria. It
then reads the rest of the records for match
ing fields.

Worst Case The fields on which the search is based do
not match any of the fields used in indexes.
For example, if ALLY's search is based on
fields A, B, and C, it cannot locate an index
because the only fields used in indexes are 0
and E. In this case, the record-selection
search is not optimized. ALLY reads and
examines all records in the file to determine
whether they meet the selection criteria.

To take advantage of ALLY's protocol for selecting an index, you
can use the following strategies:

• Set the "defines a C-ISAM index" option for the local key
of the foreign key link.

• Create a sort key in which the first field is the field used in
the local key of the foreign key link and additional fields
are added for the purpose of sorting records at runtime.

• For a field that is often used in queries, define an ALLY
key and set the "defines a C-ISAM index" option.

Removing or Modifying a C-ISAM Index

Once ALLY creates a C-ISAM index, do not update the Base
DSD key's options or its field assignment. Changing the Base
DSD key could cause a runtime error or cause a new index to be
created. If changes are necessary, delete the key and re-create it.

UP-12970 -27-

C-ISAM Developer Notes

If you need to remove or modify a C-ISAM index, follow these
steps:

1) As a safeguard, make a backup copy of the C-ISAM
data file and index file.

2) Migrate the data to a transportable file.

3) Modify the Base DSD key definition as needed.

4) Delete the old data file and index file.

5) Migrate the transportable file back to the C-ISAM file.

For information on migrating files, refer to the Utilities User's
Guide (UP-12508).

ALLY Development Language (ADL)
and C-ISAM

You can use ADL generic Data Manipulation Language (DML)
functions to manipulate the data in a C-ISAM file through ADL
procedures. These functions are described in the ALLY Develop
ment Language (ADL) User's Guide (UP-12507).

Concurrency

When a user tries to modify or delete a record, ALLY locks the
record and verifies that the displayed values for the record's fields
are still correct. If the record has been modified or deleted by
another user, ALLY displays an error message. ALLY then
updates the user's display to reflect the record's status in the data
file and releases the lock when a successful commit or rollback
transaction is completed.

When user B attempts to lock a record that has been locked by
user A, ALLY waits up to ninety seconds for the lock to be
released. If the record is still locked at the end of this time,
user B's attempt to modify the record generates an error message.

-28- UP-12970

C-ISAM Developer Notes

The number of records that can be locked at one time is deter
mined by the operating system. IT this number is exceeded, the
error message ""No record locks available" will be displayed. This
type of error is most likely to occur when a form/report stores a
computed field in a data file or when an ADL routine updates
many records without calling DB_COMMIT. Setting either the
"exclusive open" file open option or the "exclusive write, public
read" file open option will resolve this problem because these
options cause the entire file to be locked when it is opened.
Resetting the operating system parameter that defines the number
of locks the system can handle will also resolve this problem.

The file open option ""row identifier" allows you to manage cer
tain concurrent update situations. Here is an example of a prob
lem that the "row identifier" option prevents.

Assume that user A and user B access a C-ISAM data file at the
same time.

1) User A reads record 17.

2) User B deletes record 17 and commits this change.
User B then inserts (and commits) a new record with dif
ferent values, which C-ISAM happens to assign as record
number 17.

3) User A attempts to modify data in the record 17 that was
displayed in step 1.

ALLY's response to user A will differ, depending on the state of
the ""row identifier" option.

Row identifier option on

Row identifier option off

UP-12970

An error message tells user A that
this record has been deleted.

An error message tells user A that
this record has been updated, and
ALL Y replaces the values shown on
user A's display with the values
stored in the database.

-29-

C-ISAM Developer Notes

Table 3 shows the result of attempting to open a C-ISAM file in
"'new mode" when it has already been opened by another user (a
different operating system process). [n this table, Read/Write
mode represents the default case-when no option has been
selected.

Table 3. Compatibility of File Open Modes

Previous Mode

Read! Read! Exclusive Exclusive
New Mode Write Only Read Open

Read/Write OK* OK OK** Fail
Read Only OK OK OK Fail
Exclusive Read OK*** OK Fail Fail
Exclusive Open Fail Fail Fail Fail

* Attempts to modify the same record may result in lock time-out
errors.

**

Attempts to modify, delete, or insert records will result
in lock time-out errors until the previous user closes
the file.
If the previous user has records locked at the time the open
is attempted, the open will fail. Otherwise, the previous
user will be unable to modify the file until the new user
closes the file.

When the same file is opened twice by the same operating-system
process (for example, by two tasks within the same ALLY ses
sion), all open modes are compatible.

-30- UP-12970

C-ISAM Developer Notes

Sample C-ISAM Application

Suppose you are designing a C-ISAM application that will include
a report that lists invoices, grouped by customer number. In the
report, the customers must be listed in alphabetical order, and the
invoices must be listed in numerical order.

There are two C-ISAM data files from which the data for this
report can be taken. The "customers.dat" file has the following
fields:

• name
• customer identification number

The '"invoices.dat" file has the following fields:

• customer identification number
• invoice identification number
• date

Because the two data files have one field in common, you can
define a relationship between the files.

To build the application, you create two Base DSDs linked by a
foreign key link, two View Definitions, and a form/report.
Figure 13 shows the components of this application and the rela
tionships between them. These are the items that comprise the
application:

Customers Base DSD This Base DSD has two fields that
correspond to the two fields of the
'·customers.dat" file.

Name key

UP-12970

This indexed key is defined in the
"customers" Base DSD. (At run
time it will produce the C- ISAM
index ·'customers.idx.") The field
assigned to this key is the "name"
field.

-31-

C-ISAM Developer Notes

Customer 10 key This key, defined in the "custo
mers" Base DSD, will be used as
the remote key in a foreign key link
that establishes a relationship
between the two Base DSDs. The
field assigned to this key is the
"cust_id" field, which is the field
the two Base DSDs have in com
mon.

Invoices Base DSD This Base DSD has three fields that
correspond to the three fields of the
··invoices.dat" file.

Invoice key This indexed key is defined in the
··invoices" Base DSD. (At run
time, it will produce the C-ISAM
index "'invoices. idx.") The fields
assigned to this key are the
"cust_id" field and the "invoice_id"
field. They must be assigned in this
order.

Customer ID key This key, defined in the "'invoices"
Base DSD, will be used as the local
key in a foreign key link. The field
assigned to this key is the "cust_id"
field.

Customer ID link This foreign key link is defined in
the "'invoices" Base DSD, which
contains the subordinate records.

Customers View Definition This View Definition references the
··customers" Base DSD. It uses the
indexed key (name_key) as its sort
key.

Invoices View Definition This View Definition references the
··invoices" Base DSD. [t uses the
indexed key (inv_key) as its sort
key. Its foreign key link is
··cusLid_Iink. "

-32- U P-12970

Customer-Invoices Report

UP-12970

C-ISAM Developer Notes

This form/report has a parent group
containing a "customer name" field
and a subordinate group containing
an "invoice ID" field and a "date"
field. The parent group references
the "customers" View Definition,
and the subordinate group refer
ences the Hinvoices" View Defini
tion.

-33-

C-ISAM Developer Notes

Customer-Invoices Report
~--~·r.lldnlnArN~e

Invoice Number Invoice Date~""""""
Invoice Number Invoice Date

I---~Customer N~e

Invoice Number
Invoice Number

Invoice Date ~ __ --I
Invoice Date

"customers" Base DSD "Invoices" Base DSD

1----C-/SAM indexes ---~

F002-0897 -00

Figure 13. Sample Application

End of C-ISAM Developer Notes

-34- UP-12970

c:
1:J

I
I\)
(()
~ o

:b
I

.......
I

m
::s
Q.

o -l>
'C
'C
(I)
::s
Q.
X'
l>

, The exact tide of this form depends on the field's type (character, number, or date).

Application Developer's Dialog

Definitions
FOO2-Q785-00

c --
Q) -o
to
en ..
---c
c:: n» i:-c
---c-C
CD CD
..... ::s
00.
---c --
0>< .!..»
en » s:
c en
c en

Index

ALLY does not log transactions, 16

Building a C-ISAM Base DSD, 7

Character data, 4
CharacterIDates, 4, 17
C-ISAM Base DSDs, modifying, 20
C-ISAM, definition of, 1
Commit, 16
Compress duplicate keys, 22
Compress duplicate leading
characters, 22

Compress trailing space, 22
Concurrency, 28
Create file if not there, 14
Create index if not there, 14

Data file, 1
Data types, 3
Date data, 4
Defines a C-ISAM index,
key option, 21

Delete dependent records, 16
Delete not allowed, 17
Descending sort order, 23

Exclusive open, 14
Existing C-ISAM Base DSD,
modifying, 20

External data type, 13

Field offsets, 6
Field options, 10

ALLY data type, 12
C-ISAM data type, 13
edit offset, 11
external data type, 13
inheritable form/report, 12
internal data type, 12
physical field, 11
target list, 11

UP-12970

validation, 12
values and formats, 11

Field validation, 12
File names, 3
File open options, 13

create file if not there, 14
create index if not there, 14
exclusive open, 14
only one writer, 15
read only, 14
row identifier, 15

Ignore null records, 16
Index files, 1
Indexed keys, 20
Indexes, 20

optimizing record-selection
searches, 25

reading records in sorted
order, 23

Inheritable form/report options, 12
Initial and null values of DSD
fields, 11

Initial formats of DSD fields, 11
Insert not allowed, 17
Internal data type, 12

Key options, 21
compress duplicate keys, 22
compress duplicate leading
characters, 22

compress trailing space, 22
defines an index, 21
primary key, 21

Keys, 2

Locking records, 28

Minimum and maximum field
values, 12

Modifying a C-ISAM Base DSD, 20

i-1

Index

Numeric data, 5

Offsets, 6
Only one writer, 15
Optimizing record-selection
searches, 25

Options, Base DSD,
field, 10
file open, 13
form/report, 16
key, 21

Primary keys, 2,21

Read only, 14
Reading records in sorted order, 23
Record commits not automatic, 16
Record layout, 6
Record length, 5
Record locking, 28
Record selection, optimization, 25
Rollback, 16
Row identifier, 15

Sample application, 31
Sorted order,
reading records in, 23

Transaction log file, 16
Transactions,
commit and rollback, 16

Update not allowed, 17

View definitions, 23

i-2

End of Index

UP-12970

