
• UNISYS System V Operating
System
Programmer's
Guide

Volume 2
Unisys is a trademark of Unisys Corporation.

Priced Item

January 1988

Printed in U S America
UP-13690

This document is intended for software releases based on AT&T Release 3 of
UNIX System V or a subsequent release of the System unless otherwise
indicated.

The names, places, and/or events used in this publication are not intended to
correspond to any individual, group, or association existing, living, or otherwise.
Any similarity or likeness of the names, places and/or events with the names
of any individual living or otherwise, or that of any group or association is purely
coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT.
Any product and related material disclosed herein are only furnished pursuant
and subject to the terms and conditions of a duly executed Program Product
License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document
are set forth in such License or Agreement. Unisys cannot accept any financial
or other responsibility that may be the result of your use of the information in
this document or software material, including direct, indirect, special or
consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

PDP and VT100 are trademarks of Digital Equipment Corporation.
Teletype is a registered trademark of AT&T. UNIX is a registered trademark of
AT&T in the USA and other countries.

Portlons of this material are copyrighted C by
AT&T Technologies

and are reprinted With their permission.

Chapter 9: Interprocess Communi­
cation

Introduction 9-1

Messages 9-2

Getting Message Queues 9-8

Using msgget 9-8
Example Program 9-13

Controlling Message Queues 9-17

Using msgctl 9-17

Example Program 9-19

Operations for Messages 9-26

Using msgop 9-26
Example Program 9-28

Semaphores 9-41

Using Semaphores 9-43
Getting Semaphores 9-47

Using semget 9-47
Example Program 9-52

Controlltng Semaphores 9-56
Using semctl 9-57

Example Program 9-59

Operations on Semaphores 9-72

Using semop 9-72

Example Program 9-74

Shared Memory 9-81

Using Shared Memory 9-82

Getting Shared Memory Segments 9-86

Using shmget 9-86

UP·13690 TABLE OF CONTENTS

Table of Contents -----------------

Example Program
Controlling Shared Memory

Using shmctl
Example Program

Operations for Shared Memory

Using shmop
Example Program

ii PROGRAMMER'S GUIDE

9-81

9-95

9-95

9-97

9-107

9-107

9-109

UP·13690

I ntrod uction
The UNIX system supports three types of Inter-Process Com­

munication (IPC):

• messages

• semaphores

• shared memory

This chapter describes the system calls for each type of IPC.

Included in the chapter are several example programs that
show the use of the IPC system calls. All of the example pro­
grams have been compiled and run on an AT&T 382 Computer.

Since there are many ways in the C Programming Language
to accomplish the same task or requirement, keep in mind that the
example programs were written for clarity and not for program
efficiency. Usually, system calls are embedded within a larger
user-written program that makes use of a particular function that
the calls provide.

UP-13690 INTERPROCESS COMMUNICATION 9-1

Messages
The message type of IPC allows processes (executing pro­

grams) to communicate through the exchange of data stored in
buffers. This data is transmitted between processes in discrete
portions called messages. Processes using this type of IPC can
perform two operations:

• sending

• receiving

Before a message can be sent or received by a process, a pro­
cess must have the UNIX operating system generate the neces­
sary software mechanisms to handle these operations. A process
does this by using the msgget(2) system call. While doing this,
the process becomes the owner/creator of the message facility
and specifies the initial operation permissions for all other
processes, including itself. Subsequently, the owner/creator can
relinquish ownership or change the operation permissions using
the msgctl(2) system call. However, the creator remains the crea­
tor as long as the facility exists. Other processes with permission
can use msgctlO to perform various other control functions.

Processes which have permission and are attempting to send
or receive a message can suspend execution if they are unsuc­
cessful at performing their operation. That is, a process which is
attempting to send a message can wait until the process which is
to receive the message is ready and vice versa. A process which
specifies that execution is to be suspended is performing a "block­
ing message operation." A process which does not allow its execu­
tion to be suspended is performing a "nonblocking message
operation."

A process performing a blocking message operation can be
suspended until one of three conditions occurs:

• It is successful.

• It receives a signal.

• The facility is removed.

9·2 PROGRAMMER'S GUIDE UP·13690

Messages

System calls make these message capabilities available to
processes. The calling process passes arguments to a system call,
and the system call either successfully or unsuccessfully performs
its function. If the system call is successful, it performs its func­
tion and returns applicable information. Otherwise, a known error
code (-1) is returned to the process, and an external error number
variable errno is set accordingly.

Before a message can be sent or received, a uniquely identi­
fied message queue and data structure must be created. The
unique identifier created is called the message queue identifier
(msqid); it is used to identify or reference the associated message
queue and data structure.

The message queue is used to store (header) information
about each message that is being sent or received. This informa­
tion includes the following for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identi­
fied message queue. This data structure contains the following
information related to the message queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

UP-13690 INTERPROCESS COMMUNICATION 9-3

Messages

• last message send time

• last message receive time

• last change time

NOTE: All include files discussed in this chapter are
located in the /usr/include or /usr/include/sys
directories.

The C Programming Language data structure definition for the
message information contained in the message queue is as fol­
lows:

struct msg
I

J ;

struct msg

long
short
short

msg_type;
msg_ts;
msg_spot;

/* ptr to next message
on q */

/* message type */
/* message text size */
/* message text map

address oft/

It is located in the /usr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data struc­
ture is as follows:

9-4 PROGRAMMER'S GUIDE UP-13690

struct msqid_ds
1

struct ipc_perm

struct msg

struct msg

ushort

ushort

ushort

ushort

ushort
time_t
time_t
time_t

J j

msg_permj

*msg_firstj

*msg_lastj

msg_cbytesj

msg_qnumj

msg_qbytesj

msg_lspidj

msg_lrpidj
msg_stimej
msg_rtimej
msg_ctimej

Messages

/* operation permission
struct */
/* ptr to first message
on q */
/* ptr to last message
on q */
/* current # bytes
on q */
/* # of messages
on q */
/* max # of bytes
on q */
/* pid of last
msgsnd */
/* pid of last msgrcv*/
/* last msgsnd time */
/* last msgrcv time */
/* last change time */

It is located in the #Include < sys/msg.h > header file also. Note
that the msg_perm member of this structure uses ipc _perm as a
template. The breakout for the operation permissions data struc­
ture is shown in Figure 9-1.

The definition of the ipc_perm data structure is as follows:

UP-13690 INTERPROCESS COMMUNICATION 9-5

Messages

struct ipc_perm
1

ushort uid; /* owner's user id */
ushort gid; /* owner's group id */
ushort cuidj /* creator's user id */
ushort cgid; /* creator's group id */
ushort mode; /* access modes */
ushort seq; /* slot usage sequence number */
key_t key; /* key */

I;

Figure 9-1: ipc_perm Data Structure

It is located in the #include < sys/ipc.h > header file; it is com­
mon for all IPG facilities.

The msgget(2) system call is used to perform two tasks when
only the lPG_GREAT flag is set in the msgflg argument that it
receives:

• to get a new msqid and create an associated message
queue and data structure for it

• to return an existing msqid that already has an associated
message queue and data structure

The task performed is determined by the value of the key
argument passed to the msggetO system call. For the first task, if
the key is not already in use for an existing msqid, a new msqid is
returned with an associated message queue and data structure
created for the key. This occurs provided no system tunable
parameters would be exceeded.

There is also a provision for specifying a key of value zero
which is known as the private key (lPG_PRIVATE = 0); when
specified, a new msqid is always returned with an associated mes­
sage queue and data structure created for it unless a system tun­
able parameter would be exceeded. When the ipcs command is

9-6 PROGRAMMER'S GUIDE Up·13690

Messages

performed, for security reasons the KEY field for the msqid is all
zeros.

For the second task, if a msqid exists for the key specified,
the value of the existing msqid is returned. If you do not desire to
have an existing msqid returned, a control command (IPC_EXCL)
can be specified (set) in the msgflg argument passed to the sys­
tem call. The details of using this system call are discussed in the
"Using msgget" section of this chapter.

When performing the first task, the process which calls
msgget becomes the owner/creator, and the associated data
structure is initialized accordingly. Remember, ownership can be
changed but the creating process always remains the creator; see
the "Controlling Message Queues" section in this chapter. The
creator of the message queue also determines the initial operation
permissions for it.

Once a uniquely identified message queue and data structure
are created, message operations [msgopO] and message control
[msgctIO] can be used.

Message operations, as mentioned previously, consist of send­
ing and receiving messages. System calls are provided for each of
these operations; they are msgsndO and msgrcvO. Refer to the
"Operations for Messages" section in this chapter for details of
these system calls.

Message control is done by using the msgctl(2) system call. It
permits you to control the message facility in the following ways:

• to determine the associated data structure status for a mes­
sage queue identifier (msqid)

• to change operation permissions for a message queue

• to change the size (msg_ qbytes) of the message queue for
a particular msqid

• to remove a particular msqid from the UNIX operating sys­
tem along with its associated message queue and data
structure

UP·13690 INTERPROCESS COMMUNICATION 9·7

Messages

Refer to the "Controlling Message Queues" section in this
chapter for details of the msgctlO system call.

Getting Message Queues

This section gives a detailed description of using the
msgget(2) system call along with an example program illustrating
its use.

Using msgget

The synopsis found in the msgget(2) entry in the
Programmer's Reference Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

All of these include files are located in the /usr/include/sys
directory of the UNIX operating system.

The following line in the synopsis:

9-8 PROGRAMMER'S GUIDE UP-13690

Messages

int msgget (key, msgflg)

informs you that msggetO is a function with two formal arguments
that returns an integer type value, upon successful completion
(msqid). The next two lines:

key_t key;

~_S9_f_l_9_; __________________________________ ~
declare the types of the formal arguments. key _tis declared by a
typedef in the types.h header file to be an integer.

The integer returned from this function upon successful com­
pletion is the message queue identifier (msqid) that was discussed
earlier.

As declared, the process calling the msggetO system call must
supply two arguments to be passed to the formal key and msgflg
arguments.

A new msqid with an associated message queue and data
structure is provided if either

• key is equal to IPC _PRIVATE,

or

UP·13690 INTERPROCESS COMMUNICATION 9-9

Messages

• key is passed a unique hexadecimal integer, and msgflg
ANDed with lPG_GREAT is TRUE.

The value passed to the msgflg argument must be an integer
type octal value and it will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and
execution modes determine the user/group/other attributes of the
msgflg argument. They are collectively referred to as "operation
permissions." Figure 9-2 reflects the numeric values (expressed in
octal notation) for the valid operation permissions codes.

Operation Permissions

Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value

00400
00200
00040
00020
00004
00002

Figure 9-2: Operation Permissions Codes

A specific octal value is derived by adding the octal values for the
operation permissions desired. That is, if read by user and
read/write by others is desired, the code value would be 00406
(00400 plus 00006). There are constants located in the msg.h
header file which can be used for the user (OWNER).

Gontrol commands are predefined constants (represented by
all uppercase letters). Figure 9-3 contains the names of the con­
stants which apply to the msggetO system call along with their
values. They are also referred to as flags and are defined in the
ipc.h header file.

9·10 PROGRAMMER'S GUIDE UP·13690

Control Command

IPC CREAT
IPC_EXCL

Value

0001000
0002000

Messages

Figure 9-3: Control Commands (Flags)

The value for msgflg is therefore a combination of operation
permissions and control commands. After determining the value
for the operation permissions as previously described, the desired
flag (s) can be specified. This is accomplished by bitwise GRing
(:) them with the operation permissions; the bit positions and
values for the control commands in relation to those of the opera­
tion permissions make this possible. It is illustrated as follows:

IPC CREAT =
: ORed by User

msgflg =

Octal Value

01000
00400

01400

Binary Value

o 000 001 000 000 000
a 000 000 100 000 000

a 000 001 100 000 000

The msgflg value can be easily set by using the names of the
flags in conjunction with the octal operation permissions value:

r= = ~gget (key, (IPC_CREAT 0400)) ;

msqid = msgget (key, (IPC_CREAT 0400));

UP-13690 INTERPROCESS COMMUNICATION 9-11

Messages

As specified by the msgget(2) page in the Programmer's
Reference Manual, success or failure of this system call depends
upon the argument values for key and msgflg or system tunable
parameters. The system call will attempt to return a new msqid if
one of the following conditions is true:

• Key is equal to IPC_PRIVATE (0)

• Key does not already have a msqid associated with it, and
(msgflg & IPC _ CREA T) is "true" (not zero).

The key argument can be set to IPC _PRIVATE in the following
ways:

msqid = msgget (IPC_PRIVATE, msgflg);

or

msqid = msgget (0 I msgflg);

This alone will cause the system call to be attempted because it
satisfies the first condition specified. Exceeding the MSGMNI sys­
tem tunable parameter always causes a failure. The MSGMNI sys­
tem tunable parameter determines the maximum number of
unique message queues (msqid's) in the UNIX operating system.

The second condition is satisfied if the value for key is not
already associated with a msqid and the bitwise ANDing of msgflg
and IPC _ CREAT is "true" (not zero). This means that the key is
unique (not in use) within the UNIX operating system for this facil­
ity type and that the IPC_CREAT flag is set (msgflg :
IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

9·12 PROGRAMMER'S GUIDE UP-13690

Messages

msgflg x 1 x x x (x = immaterial)
&IPC CREAT 01000

result 01000 (not zero)

Since the result is not zero, the flag is set or "true."

IPC_EXCL is another control command used in conjunction
with IPC _ CREAT to exclusively have the system call fail if, and only
if, a msqid exists for the specified key provided. This is necessary
to prevent the process from thinking that it has received a new
(unique) msqid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a new msqid is returned
if the system call is successful.

Refer to the msgget(2) page in the Programmer's Reference
Manual for specific associated data structure initialization for suc­
cessful completion. The specific failure conditions with error
names are contained there also.

Example Program

The example program in this section (Figure 9-4) is a menu
driven program which allows all possible combinations of using the
msgget(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 4-8) by including the required
header files as specified by the msgget(2) entry in the
Programmer's Reference Manual. Note that the errno.h header
file is included as opposed to declaring errno as an external vari­
able; either method will work.

Variable names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are
self-explanatory. These names make the program more readable,
and it is perfectly legal since they are local to the program. The
variables declared for this program and their purposes are as fol­
lows:

UP·13690 INTER PROCESS COMMUNICATION 9·13

Messages

• key - used to pass the value for the desired key

• opperm - used to store the desired operation permissions

• flags - used to store the desired control commands (flags)

• opperm_flags - used to store the combination from the logi­
cal DRing of the opperm and flags variables; it is then used
in the system call to pass the msgflg argument

• msqid - used for returning the message queue identification
number for a successful system call or the error code (-1)
for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an
octal operation permissions code, and finally for the control com­
mand combinations (flags) which are selected from a menu (lines
15-32). All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the
operation permissions, and the result is stored at the address of
the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored at the
address of the msqid variable (line 53).

Since the msqid variable now contains a valid message queue
identifier or the error code (-1), it is tested to see if an error
occurred (line 55). If msqid equals -1, a message indicates that an
error resulted, and the external errno variable is displayed (lines
57,58).

If no error occurred, the returned message queue identifier is
displayed (line 62).

The example program for the msgget(2) system call follows. It
is suggested that the source program file be named msgget.c and
that the executable file be named msgget. When compiling C pro­
grams that use floating point operations, the -f option should be
used on the cc command line. If this option is not used, the pro­
gram will compile successfully, but when the program is executed
it will fail.

9-14 PROGRAMMER'S GUIDE UP-13690

1 /*This is a program to illustrate
2 **the message get, msgget(),
3 **system call capabilities.*/

4
5
6
7
8

#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/msg.h>
<errno.h>

9 /*Start of main C language program*/
10 main()
11 1

Messages

12 key_t key; /*declare as long integer*/
13 int opperm, flags;
14 int msqid, opperm_flags;
15 /*Enter the desired key*/
16 printf("Enter the desired key in hex = H);
17 scanf("%x", &key);

18 /*Enter the desired octal operation
19 permissions.*/
20 printf("\nEnter the operation\n");
21 printf("permissions in octal = H);
22 scanf("%o", &opperm);

Figure 9-4: msggetO System Call Example (Sheet 1 of 3)

UP-13690 INTERPROCESS·COMMUNICATION 9-15

Messages

23 /*Set the desired f1ags.*/
24 printf("\nEnter corresponding number to\n");
25 printf("set the desired flags:\n");
26 printf("No flags = O\n");
27 printf("IPC_CREAl = 1\n");
28 printf("IPC_EXCL = 2\n");
29 printf("IPC_CREAl and IPC_EXCL = 3\n");
30 printf(" Flags = ");

31 /*Get the flag(s) to be set.*/
32 scanf("%d", &flags);

33 /*Check the values.*/
34 printf ("\nkey =Ox%x, opperm = 0%0,
35 flags = O%o\n", key, opperm, flags);

36 /*Incorporate the control fields (flags) with
37 the operation permissions*/
38 switch (flags)
39 1
40 case 0: /*No flags are to be set.*/
41 opperm_flags = (opperm : 0);
42 break;
43 case 1: /*Set the IPC_CREAl flag.*/
44 opperm_flags = (opperm : IPC_CREAl);
45 break;
46 case 2: /*Set the IPC_EXCL flag.*/
47 opperm_flags = (opperm : IPC_EXCL);
48 break;
49 case 3: /*Set IPC_CREAl & IPC_EXCL flags.*/
50 opperm_flags = (opperm I PC_CREAl
51 IPC_EXCL)j
52

Figure 9-4: msggetO System Call Example (Sheet 2 of 3)

9-16 PROGRAMMER'S GUIDE UP-13690

Messages

52 /*Call the msgget system call.*/
53 msqid = msgget (key, opperm_flags)j

54 /*Perform following if call unsuccessful.*/
55 if(msqid == -1)
56 I
57 printf ("\nThe msgget system call failed!\n");
58 printf ("The error number = %d\n", errno);
59 I

60 /*Return msqid upon successful completion*/
61 else
62 printf ("\nThe msqid = %d\n", msqid);
63 exit(O);
64

Figure 9-4: msggetO System Call Example (Sheet 3 of 3)

Controlling Message Queues

This section gives a detailed description of using the msgctl
system call along with an example program which allows all of its
capabilities to be exercised.

Using msgctl

The synopsis found in the msgctl(2) entry in the Programmer's
Reference Manual is as follows:

UP-13690 INTER PROCESS COMMUNICATION 9-17

Messages

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid~ cmd~ buf)
int msqid~ cmd;
struct msqid_ds *buf;

The msgctlO system call requires three arguments to be passed to
it, and it returns an integer value.

Upon successful completion, a zero value is returned; and
when unsuccessful, it returns a -1.

The msqid variable must be a valid, non-negative, integer
value. In other words, it must have already been created by using
the msggetO system call.

The cmd argument can be replaced by one of the following
control commands (flags):

IPC _STAT return the status information contained in the asso­
ciated data structure for the specified msqid, and
place it in the data structure pointed to by the
*buf pointer in the user memory area.

IPC SET for the specified msqid, set the effective user and
group identification, operation permissions, and
the number of bytes for the message queue.

IPC RMID remove the specified msqid along with its associ­
ated messa~e queue and data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or
IPC_RMID control command. Read permission is required to per­
form the IPC STAT control command.

9-18 PROGRAMMER'S GUIDE UP-13690

Messages

The details of this system call are discussed in the example
program for it. If you have problems understanding the logic
manipulations in this program, read the "Using msgget" section of
this chapter; it goes into more detail than what would be practical
to do for every system call.

Example Program

The example program in this section (Figure 9-5) is a menu
driven program which allows all possible combinations of using the
msgctl(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 5-9) by including the required
header files as specified by the msgctl(2) entry in the
Programmer's Reference Manual. Note in this program that errno
is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close
as possible to those in the synopsis for the system call. Their
declarations are self-explanatory. These names make the program
more readable, and it is perfectly legal since they are local to the
program. The variables declared for this program and their pur­
pose are as follows:

uid used to store the IPC _SET value for the effective
user identification

gid

mode

bytes

rtrn

UP-13690

used to store the IPC SET value for the effective
group identification

used to store the IPC _ SET value for the operation
permissions

used to store the IPC SET value for the number of
bytes in the message queue (msg_ qbytes)

used to store the return integer value from the sys­
tem call

INTERPROCESS COMMUNICATION 9-19

Messages

msqid used to store and pass the message queue identif­
ier to the system call

command used to store the code for the desired control com­
mand so that subsequent processing can be per­
formed on it

choice used to determine which member is to be changed
for the lPG_SET control command

msqid _ ds used to receive the specified message queue
indentifier's data structure when an IPG STAT con­
trol command is performed

*buf a pointer passed to the system call which locates
the data structure in the user memory area where
the lPG_STAT control command is to place its
return values or where the lPG_SET command gets
the values to set

Note that the msqid_ds data structure in this program (line 16)
uses the data structure located in the msg.h header file of the
same name as a template for its declaration. This is a perfect
example of the advantage of local variables.

The next important thing to observe is that although the *buf
pointer is declared to be a pointer to a data structure of the
msqid _ ds type, it must also be initialized to contain the address of
the user memory area data structure (line 17). Now that all of the
required declarations have been explained for this program, this is
how it works.

First, the program prompts for a valid message queue identif­
ier which is stored at the address of the msqid variable (lines 19,
20). This is required for every msgctl system call.

Then the code for the desired control command must be
entered (lines 21-27), and it is stored at the address of the com­
mand variable. The code is tested to determine the control com­
mand for subsequent processing.

9-20 PROGRAMMER'S GUIDE UP-13690

Messages

If the IPC STAT control command is selected (code 1), the
system call is performed (lines 37,38) and the status information
returned is printed out (lines 39-46); only the members that can be
set are printed out in this program. Note that if the system call is
unsuccessful (line 106), the status information of the last success­
ful call is printed out. In addition, an error message is displayed
and the errno variable is printed out (lines 108, 109). If the system
call is successful, a message indicates this along with the message
queue identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first
thing done is to get the current status information for the message
queue identifier specified (lines 50-52). This is necessary because
this example program provides for changing only one member at
a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of
these members, it would cause repetitive failures for this control
command until corrected. The next thing the program does is to
prompt for a code corresponding to the member to be changed
(lines 53-59). This code is stored at the address of the choice vari­
able (line 60). Now, depending upon the member picked, the pro­
gram prompts for the new value (lines 66-95). The value is placed
at the address of the appropriate member in the user memory
area data structure, and the system call is made (lines 96-98).
Depending upon success or failure, the program returns the same
messages as for IPC _ STAT above.

If the IPC_RMID control command (code 3) is selected, the
system call is performed (lines 100-103), and the msqid along with
its associated message queue and data structure are removed
from the UNIX operating system. Note that the *buf pOinter is not
required as an argument to perform this control command, and its
value can be zero or NULL. Depending upon the success or
failure, the program returns the same messages as for the other
control commands.

The example program for the msgctlO system call follows. It
is suggested that the source program file be named msgctl.c and
that the executable file be named msgctl. When compiling C pro­
grams that use floating pOint operations, the ·f option should be
used on the cc command line. If this option is not used, the pro­
gram will compile successfully, but when the program is executed

UP·13690 INTERPROCESS COMMUNICATION 9·21

Messages

it will fail.

1 /*This is a program to illustrate
2 **the message control, msgctl(),
3 **system call capabilities.
4 */

5
6
7
8
9

/*Include
#include
#include
#include
#include

necessary header
<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/msg.h>

files.*/

10 /*Start of main C language program*/
11 main()
12 1
13 extern int errno;
14 int uid, gid, mode, bytes;
15 int rtrn, msqid, command, choicej
16 struct msqid_ds msqid_ds, *bufj
17 buf = &msqid_ds;

18 /*Get the msqid, and command.*/
19 printf("Enter the msqid = H);
20 scanf("%d", &msqid);
21 printf("\nEnter the number for\n");
22 printf("the desired command:\n");
23 printf(" I PC_STAT 1\n")j
24 printf("IPC_SET 2\n")j
25 printf("IPC_RMID = 3\n");
26 printf("Entry = H);
27 scanf("%d", &command);

Figure 9-5: msgctlO System Call Example (Sheet 1 of 4)

9-22 PROGRAMMER'S GUIDE UP·13690

Messages

28 /*Check the values.*/
29 printf (tI\nmsqid =%d, cOlTlTland = %d\n tl ,
30 msqid, command);

31 switch (command)
32 1
33 case 1: /*Use msgctl() to duplicate
34 the data structure for
35 rnsqid in the msqid_ds area pointed
36 to by buf and then print it out.*/
37 rtrn = msgctl(msqid, I PC_STAT,
38 buf);
39 printf (tI\nThe USER 10 = %d\n tl ,
40 buf->msg_perm.uid);
41 printf (liThe GROUP 10 = %d\n",
42 buf->ms9_perm.gid)j
43 printf ("Operation permissions O%o\n",
44 buf->msg_perm.mode)j
45 printf (liThe msg_qbytes = %d\n",
46 buf->msg_qbytes);
47 breakj
48 case 2: /*Select and change the desired
49 member(s) of the data structure.*/
50 /*Get the original data for this msqid
51 data structure first.*/
52 rtrn = rnsgctl (msq i d, I PC_STAT, buf);
53 printf(tI\nEnter the number for the\n");
54 printf("member to be changed:\n")j
55 printf(tlmsg_perm.uid 1\n")j
56 printf("msg_perm.gid 2\n")j
57 printf(tlmsg_perm.mode 3\n")j
58 printf(tlmsg_qbytes 4\n")j
59 printf("Entry ");

Figure 9-5: rnsgctlO System Call Example (Sheet 2 of 4)

UP-13690 INTER PROCESS COMMUNICATION 9-23

Messages

60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

scanf("%d"~ &choice);
/*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

msqid_ds is updated with
IPC_STAT.*/

switch(choice H
case 1:

printf("\nEnter USER 10 = ");
scanf ("%d"~ &uid);
buf->msg_perm.uid = uid;
printf("\nUSER 10 = %d\n"~

buf->msg_perm.uid);
break;

case 2:
prfntf("\nEnter GROUP 10 = ");
scanf("%d"~ &gid);
buf->msg_perm.gid = gid;
printf("\nGROUP 10 = %d\n"~

buf->msg_perm.gid);
break;

case 3:
printf("\nEnter MODE = ");
scanf("%o"~ &mode);
buf->msg_perm.mode = mode;
printf("\nMODE = O%o\n"~

buf->msg_perm.mode);
break;

Figure 9-5: msgctlO System Call Example (Sheet 3 of 4)

9·24 PROGRAMMER'S GUIDE UP·13690

Messages

88 case 4:
89 printf(lt\nEnter msq_bytes = It);
90 scanf(lt%d"~ &bytes);
91 buf->msg_qbytes = bytes;
92 printf("\nmsg_qbytes = %d\nlt~
93 buf->msg_qbytes);
94 break;
95

96 /*00 the change.*/
97 rtrn = msgctl(msqid~ IPC_SET~

98 buf);
99 break;

100 case 3: /*Remove the msqid along with its
101 associated message queue
102 and data structure.*/
103 rtrn = msgctl(msqid~ IPC_RMIO~ NULL);
104 I
105 /*Perform following if call unsuccessful.*/
106 if(rtrn == -1)
107 1
108 printf ("\nThe msgctl system call failed!\n");
109 printf ("The error number = %d\n"~ errno);
110 J
111 /*Return msqid upon successful completion*/
112 else
113 printf ("\nMsgctl successful for
114 msqid = %d\n"~ msqid);
115 ex i t (0);
116

Figure 9-5: msgctlO System Call Example (Sheet 4 of 4)

UP·13690 INTERPROCESS COMMUNICATION 9·25

Messages

Operations for Messages

This section gives a detailed description of using the
msgsnd(2) and msgrcv(2) system calls, along with an example
program which allows all of their capabilities to be exercised.

Using msgop

The synopsis found in the msgop(2) entry in the Programmer's
Reference Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;

~._S_9f_l_9_; __________________________________ ___

Sending a Message

The msgsnd system call requires four arguments to be passed
to it. It returns an integer value.

Upon successful completion, a zero value is returned; and
when unsuccessful, msgsndO returns a -1.

9-26 PROGRAMMER'S GUIDE UP-13690

Messages

The msqid argument must be a valid, non-negative, integer
value. In other words, it must have already been created by using
the msggetO system call. .

The msgp argument is a pointer to a structure in the user
memory area that contains the type of the message and the mes­
sage to be sent.

The msgsz argument specifies the length of the character
array in the data structure pOinted to by the msgp argument. This
is the length of the message. The maximum size of this array is
determined by the MSGMAX system tunable parameter.

The msg_ qbytes data structure member can be lowered from
MSGMNB by using the msgctlO IPC SET control command, but
only the super-user can raise it afterwards.

The msgflg argument allows the "blocking message operation"
to be performed if the IPC_NOWAIT flag is not set (msgflg &
IPC_NOWAIT = 0); this would occur if the total number of bytes
allowed on the specified message queue are in use (msg_ qbytes
or MSGMNB). or the total system-wide number of messages on all
queues is equal to the system imposed limit (MSGTQL). If the
IPC_NOWAIT flag is set, the system call will fail and return a -1.

Further details of this system call are discussed in the example
program for it. If you have problems understanding the logic
manipulations in this program, read the "Using msgget" section of
this chapter; it goes into more detail than what would be practical
to do for every system call.

Receiving Messages
The msgrcvO system call requires five arguments to be

passed to it, and it returns an integer value.

Upon successful completion, a value equal to the number of
bytes received is returned and when unsuccessful it returns a -1.

The msqid argument must be a valid, non-negative, integer
value. In other words, it must have already been created by using
the msggetO system call.

UP-13690 INTERPROCESS COMMUNICATION 9-27

Messages

The msgp argument is a pointer to a structure in the user
memory area that will receive the message type and the message
text.

The msgsz argument specifies the length of the message to
be received. If its value is less than the message in the array, an
error can be returned if desired; see the msgflg argument.

The msgtyp argument is used to pick the first message on the
message queue of the particular type specified. If it is equal to
zero, the first message on the queue is received; if it is greater
than zero, the first message of the same type is received; if it is
less than zero, the lowest type that is less than or equal to its
absolute value is received.

The msgflg argument allows the "blocking message operation"
to be performed if the IPC_NOWAIT flag is not set (msgflg &
IPC_NOWAIT = 0); this would occur if there is not a message on
the message queue of the desired type (msgtyp) to be received.
If the IPC_NOWAIT flag is set, the system call will fail immediately
when there is not a message of the desired type on the queue.
Msgflg can also specify that the system call fail if the message is
longer than the size to be received; this is done by not setting the
MSG _ NO ERROR flag in the msgflg argument (msgflg &
MSG _ NOERROR = 0). If the MSG _ NOERROR flag is set, the
message is truncated to the length specified by the msgsz argu­
ment of msgrcvO.

Further details of this system call are discussed in the example
program for it. If you have problems understanding the logic
manipulations in this program, read the "Using msgget" section of
this chapter; it goes into more detail than what would be practical
to do for every system call.

Example Program

The example program in this section (Figure 9-6) is a menu
driven program which allows all possible combinations of using the
msgsndO and msgrcv(2) system calls to be exercised.

9-28 PROGRAMMER'S GUIDE UP-13690

Messages

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 5-9) by including the required
header files as specified by the msgop(2) entry in the
Programmer's Reference Manual. Note that in this program errno
is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close
as possible to those in the synopsis. Their declarations are self­
explanatory. These names make the program more readable, and
this is perfectly' legal since they are local to the program. The vari­
ables declared for this program and their purposes are as follows:

sndbuf used as a buffer to contain a message to be sent
(line 13); it uses the msgbuf1 data structure as a
template (lines 10-13) The msgbuf1 structure (lines
10-13) is almost an exact duplicate of the msgbuf
structure contained in the msg.h header file. The
only difference is that the character array for
msgbuf1 contains the maximum message size
(MSGMAX) for the 382 Computer where in msgbuf
it is set to one (1) to satisfy the compiler. For this
reason msgbuf cannot be used directly as a tem­
plate for the user-written program. It is there so
you can determine its members.

rcvbuf

*msgp

UP-13690

used as a buffer to receive a message (line 13); it
uses the msgbuf1 data structure as a template
(lines 10-13)

used as a pointer (line 13) to both the sndbuf and
rcvbuf buffers

used as a counter for inputting characters from the
keyboard, storing them in the array, and keeping
track of the message length for the msgsnd 0 sys­
tem call; it is also used as a counter to output the
received message for the msgrcvO system call

INTER PROCESS COMMUNICATION 9·29

Messages

c

flag

flags

choice

rtrn

msqid

msgsz

msgflg

msgtyp

used to receive the input character from the
getcharO function (line 50)

used to store the code of IPC NOWAIl for the
msgsndO system call (line 61)

used to store the code of the IPC NOWAIl or
MSG_NOERROR flags for the msgrcvO system call
(line 117)

used to store the code for sending or receiving
(line 30)

used to store the return values from all system
calls

used to store and pass the desired message queue
identifier for both system calls

used to store and pass the size of the message to
be sent or received

used to pass the value of flag for sending or the
value of flags for receiving

used for specifying the message type for sending,
or used to pick a message type for receiving.

Note that a msqid_ds data structure is set up in the program
(line 21) with a pointer which is initialized to point to it (line 22); this
will allow the data structure members that are affected by mes­
sage operations to be observed. They are observed by using the
msgctlO (I PC_STAT) system call to get them for the program to
print them out (lines 80-92 and lines 161-168).

The first thing the program prompts for is whether to send or
receive a message. A corresponding code must be entered for
the desired operation, and it is stored at the address of the choice
variable (lines 23-30). Depending upon the code, the program
proceeds as in the following msgsnd or msgrcv sections.

9-30 PROGRAMMER'5 GUIDE UP-13690

Messages

msgsnd
When the code is to send a message, the msgp pointer is ini­

tialized (line 33) to the address of the send data structure, sndbuf.
Next, a message type must be entered for the message; it is
stored at the address of the variable msgtyp (line 42), and then
(line 43) it is put into the mtype member of the data structure
pointed to by msgp.

The program now prompts for a message to be entered from
the keyboard and enters a loop of getting and storing into the
mtext array of the data structure (lines 48-51). This will continue
until an end of file is recognized which for the getcharO function is
a control-d (GTRL-D) immediately following a carriage return
(< GR >). When this happens, the size of the message is deter­
mined by adding one to the i counter (lines 52, 53) as it stored the
message beginning in the zero array element of mtext. Keep in
mind that the message also contains the terminating characters,
and the message will therefore appear to be three characters short
of msgsz.

The message is immediately echoed from the mtext array of
the sndbuf data structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set
the IPG_NOWAIT flag. The program does this by requesting that a
code of a 1 be entered for yes or anything else for no (lines 57-
65). It is stored at the address of the flag variable. If a 1 is
entered, IPG_NOWAIl is logically ORed with msgflg; otherwise,
msgflg is set to zero.

The msgsndO system call is performed (line 69). If it is unsuc­
cessful, a failure message is displayed along with the error number
(lines 70-72). If it is successful, the returned value is printed which
should be zero (lines 73-.76).

Every time a message is successfully sent, there are three
members of the associated data structure which are updated.
They are described as follows:

msg_ qnum represents the total number of messages on the
message queue; it is incremented by one.

UP-13690 INTERPROCESS COMMUNICATION 9-31

Messages

msgJspid contains the Process Identification (PID) number of
the last process sending a message; it is set
accordingly.

msg_ stime contains the time in seconds since January 1,
1970, Greenwich Mean Time (GMT) of the last mes­
sage sent; it is set accordingly.

These members are displayed after every successful message
send operation (lines 79-92).

msgrcv
If the code specifies that a message is to be received, the pro­

gram continues execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure
(line 99).

Next, the message queue identifier of the message queue
from which to receive the message is requested, and it is stored at
the address of msqid (lines 100-103).

The message type is requested, and it is stored at the address
of msgtyp (lines 104-107).

The code for the desired combination of control flags is
requested next, and it is stored at the address of flags (lines 108-
117). Depending upon the selected combination, msgflg is set
accordingly (lines 118-133).

Finally, the number of bytes to be received is requested, and it
is stored at the address of msgsz (lines 134-137).

The msgrcvO system call is performed (line 144). If it is
unsuccessful, a message and error number is displayed (lines
145-148). If successful, a message indicates so, and the number
of bytes returned is displayed followed by the received message
(lines 153-159).

When a message is successfully received, there are three
members of the associated data structure which are updated; they
are described as follows:

msg_ qnum contains the number of messages on the message
queue; it is decremented by one.

9-32 PROGRAMMER'S GUIDE UP-13690

Messages

msgJrpid contains the process identification (PID) of the last
process receiving a message; it is set accordingly.

msg_rtime contains the time in seconds since January 1,
1970. Greenwich Mean Time (GMT) that the last
process received a message; it is set accordingly.

The example program for the msgopO system calls follows. It
is suggested that the program be put into a source file called
msgop.c and then into an executable file called msgop.

When compiling C programs that use floating point operations,
the -f option should be used on the cc command line. If this
option is not used. the program will compile successfully. but when
the program is executed it will fail.

UP-13690 INTERPROCESS COMMUNICATION 9-33

Messages

1 /*This is a program to illustrate
2 **the message operations, msgop(),
3 **system call capabilities.
4 */

5
6
7
8
9

/*Include
#include
#include
#include
#include

necessary header
<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/msg.h>

10 struct msgbuf1 I
11 long mtypej
12 char mtext(8192)j
13 I sndbuf, rcvbuf, *msgpj

files.*/

14 /*Start of main C language program*/
15 main()
16 I
17 extern int errnoj
18 int i, c, flag, flags, choicej
19 int rtrn, msqid, msgsz, msgflgj
20 long mtype, msgtypj
21 struct msqid_ds msqid_ds, *bufj
22 buf = &msqid_dsj

Figure 9-6: msgopO System Call Example (Sheet 1 of 7)

9·34 PROGRAMMER'S GUIDE UP·13690

Messages

23 /*Select the desired operation.*/
24 printf("Enter the corresponding\n");
25 printf("code to send or\n");
26 printf("receive a message:\n");
27 printf("Send 1\n");
28 printf("Receive = 2\n");
29 printf("Entry H);
30 scanf("%d", &choice);

31 if(choice == 1) /*Send a message.*/
32 1
33 msgp = &sndbuf; /*Point to user send

structure.*/

34 printf("\nEnter the msqid of\n");
35 printf("the message queue to\n");
36 printf("handle the message = H);
37 scanf("%d", &msqid);

38 /*Set the message type.*/
39 printf("\nEnter a positive integer\n");
40 printf("message type (long) for the\n");
41 printf("message = H);
42 scanf("%d", &msgtyp);
43 msgp->mtype = msgtyp;

44 /*Enter the message to send.*/
45 printf("\nEnter a message: \n");

46 /*A control-d (Ad) terminates as
47 EOF.*/

Figure 9-6: msgopO System Call Example (Sheet 2 of 7)

UP-13690 INTER PROCESS COMMUNICATION 9-35

Messages

48
49
50
51

52
53

54
55
56

57
58
59
60
61
62
63
64
65

66
67

68
69
70
71
72
73
74
75
76
77

/*Get each character of the message
and put it in the mtext array.*/

for(i = 0; «c = getchar() != EOF); i++)
sndbuf.mtext[i) = c;

/*Oetermine the message size.*/
msgsz = i + 1;

/*Echo the message to send.*/
for(i = 0; i < msgsz; i++)

putchar(sndbuf.mtext[i);

/*Set the IPC_NOWAIT flag if
desired.*/

printf("\nEnter a 1 if you want the\n");
printf("the IPC_NOWAIT flag set: H);
scanf("%d", &flag);
if (fl ag == 1)

msgflg 1= IPC_NOWAIT;
else

msgflg = 0;

/*Check the msgflg.*/
printf("\nmsgflg = O%o\n", msgflg);

/*Send the message.*/
rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if(rtrn == -1)
printf("\nMsgsnd failed. Error = %d\n",

errno);
else I

/*Print the value of test which
should be zero for successful.*/

printf("\nValue returned = %d\n",
rtrn);

Figure 9-6: msgopO System Call Example (Sheet 3 of 7)

9·36 PROGRAMMER'5 GUIDE UP·13690

77
78
79

80
81

82

83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99

100
101
102
103

Messages

/*Print the size of the message
sent.*/

printf("\nMsgsz = %d\n", msgsz);

/*Check the data structure update.*/
msgctl(msqid, I PC_STAT, buf);

/*Print out the affected members.*/

/*Print the incremented number of
messages on the queue.*/

'printf("\nThe msg_qnum = %d\n",
buf - >msg_qnum);

/*Print process id of last sender.*/
printf("The msg_lspid = %d\n",

buf->msg_lspid);
/*Print the last send time.*/
printf("The msg_stime = %d\n",

buf->msg_stime);

if(choice == 2) /*Receive a message.*/
1

/*Initialize the message pointer
to the receive buffer.*/

msgp = &rcvbuf;

/*Specify the message queue which contains
the desired message.*/

printf("\nEnter the msqid = ");
scanf("%d", &msqid);

~----~
Figure 9-6: msgopO System Call Example (Sheet 4 of 7)

UP-13690 INTERPROCESS COMMUNICATION 9-37

Messages

104 /*Specify the specific message on the queue
105 by using its type.*/
106 printf("\nEnter the msgtyp = H);
107 scanf("%d", &msgtyp);

108 /*Configure the control flags for the
109 desired actions.*/
110 printf("\nEnter the corresponding code\n");
111 printf("to select the desired flags: \n");
112 printf("No flags O\n");
113 printf("MSG_NOERROR l\n");
114 printf("IPC_NOWAIT 2\n");
115 printf("MSG_NOERROR and IPC_NOWAIT 3\n");
116 printf(" Flags H);
1 17 scan f ("%d", &f1 ags) ;

118 switch(flags) 1
119 /*Set msgflg by ORing it with the
120 apropriate flags (constants).*/
121
122
123
124
125
126
127
128
129
130
131
132
133

case 0:
msgflg = 0;
break;

case 1:
msgflg := MSG_NOERROR;
break;

case 2:
msgflg := I PC_NOWAI T;
break;

case 3:
msgflg := MSG_NOERROR I PC_NOWAI T;
break;

~.-----
Figure 9-6: msgopO System Call Example (Sheet 5 of 7)

9·38 PROGRAMMER'5 GUIDE UP·13690

134
135
136
137

138
139
140
141
142

143
144

145
146
147
148
149
150
151
152

153
154
155
156

Messages

/*Specify the number of bytes to receive.*/
printf("\nEnter the number of bytes\n");
printf("to receive (msgsz) = It);
scanf("%d", &msgsz);

/*Check the values for the arguments.*/
printf("\nmsqid =%d\n", msqid);
printf("\nmsgtyp = %d\n", msgtyp);
printf("\nmsgsz = %d\n", msgsz);
printf("\nmsgflg = O%o\n", msgflg);

/*Call msgrcv to receive the message.*/
rtrn = msgrcv(msqid, msgp, msgsz, msgtyp,

msgfl g);

if(rtrn == -1) I

J

printf("\nMsgrcv failed. It);
printf("Error = %d\n", errno);

else I
printf ("\nMsgctl was successful\n");
printf("for msqid = %d\n",

msqid);

/*Print the number of bytes received,
it is equal to the return
value.*/

printf("Bytes received = %d\n", rtrn);

~.----
Figure 9-6: msgopO System Call Example (Sheet 6 of 7)

UP-13690 INTERPROCESS COMMUNICATION 9-39

Messages

157
158
159
160
161
162
163
164
165
166
167
168
169
170

}

/*Print the received message.*/
for(i = 0; i<=rtrn; i++)

putchar(rcvbuf.mtext[i);

/*Check the associated data structure.*/
msgctl(msqid, I PC_STAT, buf)j
/*Print the decremented number of messages.*/
printf("\nThe msg_qnum = %d\n", buf->msg_qnum);
/*Print the process id of the last receiver.*/
printf("The msg_lrpid = %d\n", buf->msg_lrpid)j
/*Print the last message receive time*/
printf("The msg_rtime = %d\n", buf->msg_rtime);

~,----
Figure 9-6: msgopO System Call Example (Sheet 7 of 7)

9-40 PROGRAMMER'S GUIDE UP-13690

Semaphores
The semaphore type of IPC allows processes to communicate

through the exchange of semaphore values. A semaphore is a
positive integer (0 through 32,767). Since many applications
require the use of more than one semaphore, the UNIX operating
system has the ability to create sets or arrays of semaphores. A
semaphore set can contain one or more semaphores up to a limit
set by the system administrator. The tunable parameter, SEMMSL
has a default value of 25. Semaphore sets are created by using
the semget(2) system call.

The process performing the semget(2) system call becomes
the owner/creator, determines how many semaphores are in the
set, and sets the operation permissions for the set, including itself.
This process can subsequently relinquish ownership of the set or
change the operation permissions using the semetlO, semaphore
control, system call. The creating process always remains the
creator as long as the facility exists. Other processes with permis­
sion can use semetlO to perform other control functions.

Provided a process has alter permission, it can manipulate the
semaphore(s). Each semaphore within a set can be manipulated
in two ways with the semop(2) system call (which is documented
in the Programmer's Reference Manua~:

• incremented

• decremented

To increment a semaphore, an integer value of the desired
magnitude is passed to the semop(2) system call. To decrement a
semaphore, a minus (-) value of the desired magnitude is passed.

The UNIX operating system ensures that only one process can
manipulate a semaphore set at any given time. Simultaneous
requests are performed sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a
certain value by attempting to decrement the semaphore by one
more than that value. If the process is successful, then the sema­
phore value is greater than that certain value. Otherwise, the
semaphore value is not. While doing this, the process can have its
execution suspended (IPC_NOWAIT flag not set) until the

UP·13690 INTERPROCESS COMMUNICATION 9·41

Semaphores

semaphore value would permit the operation (other processes
increment the semaphore), or the semaphore facility is removed.

The ability to suspend execution is called a "blocking sema­
phore operation." This ability is also available for a process which
is testing for a semaphore to become zero or equal to zero; only
read permission is required for this test, and it is accomplished by
passing a value of zero to the semop(2) system call.

On the other hand, if the process is not successful and the
process does not request to have its execution suspended, it is
called a "nonblocking semaphore operation." In this case, the pro­
cess is returned a known error code (-1), and the external errno
variable is set accordingly.

The blocking semaphore operation allows processes to com­
municate based on the values of semaphores at different points in
time. Remember also that IPC facilities remain in the UNIX operat­
ing system until removed by a permitted process or until the sys­
tem is reinitialized.

Operating on a semaphore set is done by using the semop(2) ,
semaphore operation, system call.

When a set of semaphores is created, the first semaphore in
the set is semaphore number zero. The last semaphore number in
the set is one less than the total in the set.

An array of these "blocking/nonblocking operations" can be
performed on a set containing more than one semaphore. When
performing an array of operations, the "blocking/nonblocking
operations" can be applied to any or all of the semaphores in the
set. Also, the operations can be applied in any order of sema­
phore number. However, no operations are done until they can all
be done successfully. This requirement means that preceding
changes made to semaphore values in the set must be undone
when a "blocking semaphore operation" on a semaphore in the set
cannot be completed successfully; no changes are made until they
can all be made. For example, if a process has successfully com­
pleted three of six operations on a set of ten semaphores but is
IIblockedll from performing the fourth operation, no changes are
made to the set until the fourth and remaining operations are suc­
cessfully performed. Additionally, any operation preceding or
succeeding the "blockedll operation, including the blocked

9-42 PROGRAMMER'S GUIDE UP-13690

Semaphores

operation, can specify that at such time that all operations can be
performed successfully, that the operation be undone. Otherwise,
the operations are performed and the semaphores are changed or
one "nonblocking operation" is unsuccessful and none are
changed. All of this is commonly referred to as being "atomically
performed."

The ability to undo operations requires the UNIX operating sys­
tem to maintain an array of "undo structures" corresponding to the
array of semaphore operations to be performed. Each semaphore
operation which is to be undone has an associated adjust variable
used for undoing the operation, if necessary.

Remember, any unsuccessful"nonblocking operation" for a
single semaphore or a set of semaphores causes immediate return
with no operations performed at all. When this occurs, a known
error code (-1) is returned to the process, and the external variable
errno is set accordingly.

System calls make these semaphore capabilities available to
processes. The calling process passes arguments to a system call,
and the system call either successfully or unsuccessfully performs
its function. If the system call is successful, it performs its func­
tion and returns the appropriate information. Otherwise, a known
error code (-1) is returned to the process, and the external variable
errno is set accordingly.

Using Semaphores
Before semaphores can be used (operated on or controlled) a

uniquely identified data structure and semaphore set (array)
must be created. The unique identifier is called the semaphore
identifier (semid); it is used to identify or reference a particular
data structure and semaphore set.

The semaphore set contains a predefined number of struc­
tures in an array, one structure for each semaphore in the set.
The number of semaphores (nsems) in a semaphore set is user
selectable. The following members are in each structure within a
semaphore set:

UP-13690 INTER PROCESS COMMUNICATION 9-43

Semaphores

• semaphore text map address

• process identification (PID) performing last operation

• number of processes awaiting the semaphore value to
become greater than its current value

• number of processes awaiting the semaphore value to equal
zero

There is one associated data structure for the uniquely identi­
fied semaphore set. This data structure contains information
related to the semaphore set as follows:

• operation permissions data (operation permissions struc-
ture)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The C Programming Language data structure definition for the
semaphore set (array member) is as follows:

struct sem
1

J;

ushort semvalj
short sempidj
ushort semncnt;
ushort semzcnt;

/* semaphore text map address */
/* pid of last operation */
/* # awaiting semval > cval */
/* # awaiting semval = 0 */

9-44 PROGRAMMER'S GUIDE UP-13690

Semaphores

It is located in the #include < sys/sem.h > header file.

Likewise, the structure definition for the associated semaphore
data structure is as follows:

struct semid_ds
1
struct ipc_perm sem_permj
struct sem *sem_basej

'ushort sem_nsemsj

/*operation permission struct*/
/*ptr to 1st semaphore in set*/
/*# of semaphores in set*/
/*last semop time*/ time_t sem_otime;

time_t sem_ctime; /*last change time*/
J j

, It is also located in the #include < sys/sem.h > header file.
Note that the sem_perm member of this structure uses ipc_perm
as a template. The breakout for the operation permissions data
structure is shown in Figure 9-1.

The ipc _perm data structure is the same for all IPC facilities,
and it is located in the #include < sys/ipc.h > header file. It is
shown in the "Messages" section.

The semget(2) system call is used to perform two tasks when
only the IPC _ CREAT flag is set in the semflg argument that it
receives:

• to get a new semid and create an associated data structure
and semaphore set for it

• to return an existing semid that already has an associated
data structure and semaphore set

The task performed is determined by the value of the key argu­
ment passed to the semget(2} system call. For the first task, if the
key is not already in use for an existing semid, a new semid is
returned with an associated data structure and semaphore set
created for it provided no system tunable parameter would be

Up·13690 INTERPROCESS COM MUNICATION 9·45

Semaphores

exceeded.

There is also a provision for specifying a key of value zero (0)
which is known as the private key (IPC _PRIVATE = 0); when
specified, a new semid is always returned with an associated data
structure and semaphore set created for it unless a system tun­
able parameter would be exceeded. When the ipes command is
performed, the KEY field for the semid is all zeros.

When performing the first task, the process which calls
semgetO becomes the owner/creator, and the associated data
structure is initialized accordingly. Remember, ownership can be
changed, but the creating process always remains the creator;
see the- "ContrOlling Semaphores" section in this chapter. The
creator of the semaphore set also determines the initial operation
permissions for the facility.

For the second task, if a semid exists for the key specified,
the value of the existing semid is returned. If it is not desired to
have an existing semid returned, a control command (IPC _ EXCL)
can be specified (set) in the semflg argument passed to the sys­
tem call. The system call will fail if it is passed a value for the
number of semaphores (nsems) that is greater than the number
actually in the set; if you do not know how many semaphores are
in the set. use 0 for nsems. The details of using this system call
are discussed in the "Using semget" section of this chapter.

Once a uniquely identified semaphore set and data structure
are created. semaphore operations [semop(2)] and semaphore
control [semetIO] can be used.

Semaphore operations consist of incrementing. decrementing.
and testing for zero. A single system call is used to perform these
operations. It is called semopO. Refer to the "Operations on
Semaphores" section in this chapter for details of this system call.

Semaphore control is done by using the semetl (2) system call.
These control operations permit you to control the semaphore
facility in the following ways:

• to return the value of a semaphore

• to set the value of a semaphore

9-46 PROGRAMMER'S GUIDE Up·13690

Semaphores

• to return the process identification (PID) of the last process
performing an operation on a semaphore set

• to return the number of processes waiting for a semaphore
value to become greater than its current value

• to return the number of processes waiting for a semaphore
value to equal zero

• to get all semaphore values in a set and place them in an
array in user memory

• to set all semaphore values in a semaphore set from an
array of values in user memory

• to place all data structure member values. status. of a sema­
phore set into user memory area

• to change operation permissions for a semaphore set

• to remove a particular semid from the UNIX operating sys­
tem along with its associated data structure and semaphore
set

Refer to the "Controlling Semaphores" section in this chapter
for details of the semctl (2) system call.

Getting Semaphores

This section contains a detailed description of using the
semget(2) system call along with an example program illustrating
its use.

Using semget

The synopsis found in the semget(2) entry in the
Programmer's Reference Manual is as follows:

UP-13690 INTER PROCESS COMMUNICATION 9-47

Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semg)
key_t key;
int nsems, semg;

The following line in the synopsis:

int semget (key, nsems, semflg)

informs you that semgetO is a function with three formal argu­
ments that returns an integer type value, upon successful comple­
tion (semid). The next two lines:

key_t key;
int nsems, semflg;

declare the types of the formal arguments. key _tis declared by
a typedef in the types.h header file to be an integer.

The integer returned from this system call upon successful
completion is the semaphore set identifier (semid) that was dis­
cussed above.

As declared, the process calling the semgetO system call
must supply three actual arguments to be passed to the formal
key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data
structure is provided if either

• key is equal to lPG_PRIVATE,

or

• key is passed a unique hexadecimal integer I and semflg
ANDed with lPG_GREAT is TRUE.

9-48 PROGRAMMER'S GUIDE UP-13690

Semaphores

The value passed to the semflg argument must be an integer
type octal value and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/alter attributes and
execution modes determine the user/group/other attributes of the
semflg argument. They are collectively referred to as "operation
permissions." Figure 9-7 reflects the numeric values (expressed in
octal notation) for the valid operation permissions codes.

Operation Permissions
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

Octal Value
00400
00200
00040
00020
00004
00002

Figure 9-7: Operation Permissions Codes

A specific octal value is derived by adding the octal values for
the operation permissions desired. That is, if read by user and
read/alter by others is desired, the code value would be 00406
(00400 plus 00006). There are constants #define'd in the sem.h
header file which can be used for the user (OWNER). They are as
follows:

0200

0400

/* alter permission by owner */
/* read permission by owner */

Control commands are predefined constants (represented by
all uppercase letters). Figure 9-8 contains the names of the con­
stants which apply to the semget(2) system call along with their
values. They are also referred to as flags and are defined in the
ipc.h header file.

UP-13690 INTERPROCESS COM MUNICATION 9-49

Semaphores

Control Command
IPC CREAT
IPC_EXCL

Figure 9-8: Control Commands (Flags)

Value
0001000
0002000

The value for semflg is, therefore, a combination of operation
permissions and control commands. After determining the value
for the operation permissions as previously described, the desired
flag(s} can be specified. This specification is accomplished by bit­
wise ORing (:) them with the operation permissions; the bit posi­
tions and values for the control commands in relation to those of
the operation permissions make this possible. It is illustrated as
follows:

IPC CREAT
CW: ORed by User

semflg

Octal Value

01000
00400

01400

Binary Value

o 000 001 000 000 000
o 000 000 100 000 000

0000001 100000000

The semflg value can be easily set by using the names of the
flags in conjunction with the octal operation permissions value:

semid = semget (key, nsems, (IPC_CREAT 0400));

semid = semget (key, nsems, (IPC_CREAT
IPC_EXCL : 0400));

As specified by the semget(2} entry in the Programmer's
Reference Manual, success or failure of this system call depends
upon the actual argument values for key, nsems, semflg or sys­
tem tunable parameters. The system call will attempt to return a
new semid if one of the following conditions is true:

9-50 PROGRAMMER'S GUIDE UP-13690

Semaphores

• Key is equal to IPC_PRIVATE (0)

• Key does not already have a semid associated with it. and
(semflg & IPC _ CREA T) is "true" (not zero).

The key argument can be set to IPC _PRIVATE in the following
ways:

semid = semget (IPC_PRIVATE, nsems, semflg);

or

semid = semget (0, nsems, semflg);

This alone will cause the system call to be attempted because it
satisfies the first condition specified.

Exceeding the SEMMNI. SEMMNS. or SEMMSL system tun­
able parameters will always cause a failure. The SEMMNI system
tunable parameter determines the maximum number of unique
semaphore sets (semid's) in the UNIX operating system. The
SEMMNS system tunable parameter determines the maximum
number of semaphores in all semaphore sets system wide. The
SEMMSL system tunable parameter determines the maximum
number of semaphores in each semaphore set.

The second condition is satisfied if the value for key is not
already associated with a semid, and the bitwise ANDing of
semflg and IPC _ CREA T is "true" (not zero). This means that the
key is unique (not in use) within the UNIX operating system for
this facility type and that the IPC _ CREAT flag is set (semflg :
IPC_CREAT). The bitwise ANDing (&). which is the logical way of
testing if a flag is set, is illustrated as follows:

semflg = x 1 x x x (x = immaterial)
& IPC_CREAT = 0 1 0 0 0

result = 0 1 0 0 0 (not zero)

Since the result is not zero. the flag is set or "true ," SEMMNI,
SEMMNS, and SEMMSL apply here also. just as for condition one.

UP·13690 INTERPROCESS COMMUNICATION 9·51

Semaphores

IPG _ EXGL is another control command used in conjunction
with lPG_GREAT to exclusively have the system call fail if, and only
if, a semid exists for the specified key provided. This is necessary
to prevent the process from thinking that it has received a new
(unique) semid when it has not. In other words, when both
IPG _ CREAT and IPC _ EXCL are specified, a new semid is returned
if the system call is successful. Any value for semflg returns a
new semid if the key equals zero (IPC _PRIVATE) and no system
tunable parameters are exceeded.

Refer to the semget(2) manual page for specific associated
data structure initialization for successful completion.

Example Program
The example program in this section (Figure 9-9) is a menu

driven program which allows all possible combinations of using the
semget(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 4-8) by including the required
header files as specified by the semget(2) entry in the
Programmer's Reference Manual. Note that the errno.h header
file is included as opposed to declaring errno as an external vari­
able; either method will work.

Variable names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is per­
fectly legal since they are local to the program. The variables
declared for this program and their purpose are as follows:

• key - used to pass the value for the desired key

• opperm - used to store the desired operation permissions

• flags - used to store the desired control commands (flags)

• opperm_flags- used to store the combination from the logi­
cal ORing of the opperm and flags variables; it is then used
in the system call to pass the semflg argument

9-52 PROGRAMMER'S GUIDE UP-13690

Semaphores

• semid - used for returning the semaphore set identification
number for a successful system call or the error code (-1)
for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an
octal operation permissions code, and the control command com­
binations (flags) which are selected from a menu (lines 15-32). All
possible combinations are allowed even though they might not be
viable. This allows observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the
operation permissions, and the result is stored at the address of
the opperm_flags variable (lines 36-52).

Then, the number of semaphores for the set is requested
(lines 53-57), and its value is stored at the address of nsems.

The system call is made next, and the result is stored at the
address of the semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set
identifier or the error code (-1), it is tested to see if an error
occurred (line 63). If semid equals -1, a message indicates that an
error resulted and the external errno variable is displayed (lines 65,
66). Remember that the external errno variable is only set when a
system call fails; it should only be tested immediately following
system calls.

If no error occurred, the returned semaphore set identifier is
displayed (line 70).

The example program for the semget(2) system call follows. It
is suggested that the source program file be named semget.c and
that the executable file be named semget.

UP-13690 INTERPROCESS COMMUNICATION 9-53

Semaphores

1 /*This is a program to illustrate
2 **the semaphore get, semget(),
3 **system call capabilities.*/

4
5
6
7
8

#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>
<errno.h>

9 /*Start of main C language program*/
10 main()
11 1
12 key_t key; /*dec1are as long integer*/
13 int opperm, flags, nsems;
14 int semid, opperm_f1ags;

15 /*Enter the desired key*/
16 printf("\nEnter the desired key in hex = H);
17 scanf("%x", &key);

18 /*Enter the desired octal operation
19 permissions.*/
20 printf("\nEnter the operation\n");
21 printf("permissions in octal = ");
22 scanf("%o", &opperm);

Figure 9-9: semgetO System Call Example (Sheet 1 of 3)

9-54 PROGRAMMER'S GUIDE UP-13690

Semaphores

23 /*Set the desired flags.*/
24 printf("\nEnter corresponding number to\n");
25 printf("set the desired flags:\n");
26 printf("No flags = O\n");
27 printf("IPC_CREAT = 1\n");
28 printf("IPC_EXCL = 2\n");
29 printf("IPC_CREAT and IPC_EXCL = 3\n");
30 printf(" Flags = H);
31 /*Get the flags to be set.*/
32 scanf("%d", &flags);

33 /*Error checking (debuggfng)*/
34 printf ("\nkey =Ox%x, opperm = 0%0, flags = O%o\n",
35 key, opperm, flags);
36 /*Incorporate the control fields (flags) with
37 the operation permissions.*/
38 switch (flags)
39 1
40 case 0: /*No flags are to be set.*/
41 opperm_flags = (opperm : 0);
42 break;
43 case 1: /*Set the IPC_CREAT flag.*/
44 opperm_flags = (opperm : IPC_CREAT);
45 break;
46 case 2: /*Set the IPC_EXCL flag.*/
47 opperm_flags = (opperm : IPC_EXCL);
48 break;
49 case 3: /*Set the IPC_CREAT and IPC_EXCL
50 flags.*/
51 opperm_flags = (opperm : IPC_CREAT IPC_EXCL);
52

Figure 9-9: semgetO System Call Example (Sheet 2 of 3)

UP·13690 INTERPROCESS COMMUNICATION 9·55

Semaphores

53 /*Get the number of semaphores for this set.*/
54 printf("\nEnter the number of\n");
55 printf("desired semaphores for\n");
56 printf("this set (25 max) = H);
57 scanf("%d", &nsems);

58 /*Check the entry.*/
59 printf("\nNsems = %d\n", nsems);

60 /*Call the semget system call.*/
61 semid = semget(key, nsems, opperm_flags);

62 /*Perform the following if call is unsuccessful.*/
63 if(semid == -1)
64 1
65 printf("The semget system call failed!\n");
66 printf("The error number = %d\n", errno);
67 I
68 /*Return the semid upon successful completion.*/
69 else
70 printf("\nThe semid = %d\n", semid);
71 exit(O);
72

Figure 9-9: semgetO System Call Example (Sheet 3 of 3)

Controlling Semaphores

This section contains a detailed description of using the
semctl(2) system call along with an example program which allows
all of its capabilities to be exercised.

9-56 PROGRAMMER'S GUIDE UP-13690

Semaphores

Using semetl
The synopsis found in the semetl(2) entry in the Programmer's

Reference Manual is as follows: .

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semetl (semid, semnum, emd, arg)
int semid, emd;
int semnum;
union semun
1

I arg;

int val;
struet semid_ds *bu;
ushort array[];

The semetl(2) system call requires four arguments to be passed to
it, and it returns an integer value.

The semid argument must be a valid, non-negative, integer
value that has already been created by using the semget(2) sys­
tem call.

The semnum argument is used to select a semaphore by its
number. This relates to array (atomically performed) operations
on the set. When a set of semaphores is created, the first sema­
phore is number A, and the last semaphore has the number of one
less than the total in the set.

The emd argument can be replaced by one of the following
control commands (flags):

• GETVAL - return the value of a single semaphore within a
semaphore set

UP-13690 INTERPROCESS COM MUNICATION 9-57

Semaphores

• SETV AL - set the value of a single semaphore within a
semaphore set

• G ETPID - retu rn the Process Identifier (PID) of the process
that performed the last operation on the semaphore within a
semaphore set

• GETNCNT - return the number of processes waiting for the
value of a particular semaphore to become greater than its
current value

• GETZCNT - return the number of processes waiting for the
value of a particular semaphore to be equal to zero

• GETALL - return the values for all semaphores in a sema­
phore set

• SET ALL - set all semaphore values in a semaphore set

• IPC STAT - return the status information contained in the
associated data structure for the specified semid, and place
it in the data structure pointed to by the *buf pointer in the
user memory area; arg.buf is the union member that con­
tains the value of buf

• IPC _SET - for the specified semaphore set (semid), set the
effective user/group identification and operation permissions

• IPC _ RMID - remove the specified (semid) semaphore set
along with its associated data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or
IPC _ RMID control command. Read/alter permission is required as
applicable for the other control commands.

The arg argument is used to pass the system call the
appropriate union member for the control command to be per­
formed:

• arg.val

• arg.buf

9-58 PROGRAMMER'S GUIDE UP-13690

Semaphores

• arg.array

The details of this system call are discussed in the example
program for it. If you have problems understanding the logic
manipulations in this program, read the "Using semget" section of
this chapter; it goes into more detail than what would be practical
to do for every system call.

Example Program

The example program in this section (Figure 9-10) is a menu
driven program which allows all possible combinations of using the
semctl(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 5-9) by including the required
header files as specified by the semetl (2) entry in the
Programmer's Reference Manual Note that in this program errno
is declared as an external variable, and therefore the errno.h
header file does not have to be included.

Variable, structure, and union names have been chosen to be
as close as possible to those in the synopsis. Their declarations
are self-explanatory. These names make the program more read­
able, and this is perfectly legal since they are local to the program.
Those declared for this program and their purpose are as follows:

• semid _ ds - used to receive the specified semaphore set
identifier's data structure when an IPC_STAT control com­
mand is performed

• e - used to receive the input values from the scanf(3S) func­
tion, (line 117) when performing a SETALL control command

• i-used as a counter to increment through the union
arg.array when displaying the semaphore values for a
GETALL (lines 97-99) control command, and when initializing
the arg.array when performing a SETALL (lines 115-119)
control command

UP-13690 INTERPROCESS COMMUNICATION 9-59

Semaphores

• length - used as a variable to test for the number of sema­
phores in a set against the i counter variable (lines 97, 115)

• uid - used to store the IPC _SET value for the effective user
identification

• gid - used to store the IPC _SET value for the effective
group identification

• mode - used to store the IPC _ SET value for the operation
permissions

• rtrn - used to store the return integer from the system call
which depends upon the control command or a -1 when
unsuccessful

• semid - used to store and pass the semaphore set identifier
to the system call

• semnum - used to store and pass the semaphore number
to the system call

• cmd - used to store the code for the desired control com­
mand so that subsequent processing can be performed on
it

• choice - used to determine which member (uid, gld, mode)
for the IPC _SET control command that is to be changed

• arg.val- used to pass the system call a value to set (SET­
VAL) or to store (GETVAL) a value returned from the system
call for a single semaphore (union member)

• arg.buf - a pointer passed to the system call which locates
the data structure in the user memory area where the
IPC _STAT control command is to place its return values, or
where the IPC _SET command gets the values to set (union
member)

• arg.array - used to store the set of semaphore values when
getting (GETALL) or initializing (SET ALL) (union member).

Note that the semid_ds data structure in this program (line 14)
uses the data structure located in the sem.h header file of the
same name as a template for its declaration. This is a perfect
example of the advantage of local variables.

9-60 PROGRAMMER'S GUIDE UP-13690

Semaphores

The arg union (lines 18-22) serves three purposes in one. The
compiler allocates enough storage to hold its largest member. The
program can then use the union as any member by referencing
union members as if they were regular structure members. Note
that the array is declared to have 25 elements (0 through 24) .This
number corresponds to the maximum number of semaphores
allowed per set (SEMMSL), a system tunable parameter.

The next important program aspect to observe is that although
the *buf pOinter member (arg.buf) of the union is declared to be a
pointer to a data structure of the semid _ ds type, it must also be
initialized to contain the address of the user memory area data
structure (line 24). Because of the way this program is written, the
pointer does not need to be reinitialized later. If it was used to
increment through the array", it would need to be reinitialized just
before calling the system call.

Now that all of the required declarations have been presented
for this program, this is how it works.

First, the program prompts for a valid semaphore set identifier,
which is stored at the address of the semid variable (lines 25-27).
This is required for all semctl(2) system calls.

Then, the code for the desired control command must be
entered (lines 28-42), and the code is stored at the address of the
cmd variable. The code is tested to determine the control com­
mand for subsequent processing.

If the GETVAL control command is selected (code 1), a mes­
sage prompting for a semaphore number is displayed (lines 49,
50). When it is entered, it is stored at the address of the semnum
variable (line 51). Then, the system call is performed, and the
semaphore value is displayed (lines 52-55). If the system call is
successful, a message indicates this along with the semaphore set
identifier used (lines 195, 196); if the system call is unsuccessful,
an error message is displayed along with the value of the external
errno variable (lines 191-193).

If the SETV AL control command is selected (code 2), a mes­
sage prompting for a semaphore number is displayed (lines 56,
57). When it is entered, it is stored at the address of the semnum
variable (line 58). Next, a message prompts for the value to which
the semaphore is to be set, and it is stored as the arg.val member

UP-13690 INTERPROCESS COMMUNICATION 9-61

Semaphores

of the union (lines 59, 60). Then, the system call is performed
(lines 61, 63). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the GETPID control command is selected (code 3), the sys­
tem call is made immediately since all required arguments are
known (lines 64-67), and the PID of the process performing the last
operation is displayed. Depending upon success or failure, the
program returns the same messages as for GETVAL above.

If the GETNCNT control command is selected (code 4), a mes­
sage prompting for a semaphore number is displayed (lines 68-
72). When entered, it is stored at the address of the semnum vari­
able (line 73). Then, the system call is performed, and the number
of processes waiting for the semaphore to become greater than its
current value is displayed (lines 74-77). Depending upon success
or failure, the program returns the same messages as for GETVAL
above.

If the GETZCNT control command is selected (code 5), a mes­
sage prompting for a semaphore number is displayed (lines 78-
81). When it is entered, it is stored at the address of the semnum
variable (line 82). Then the system call is performed, and the
number of processes waiting for the semaphore value to become
equal to zero is displayed (lines 83, 86). Depending upon success
or failure, the program returns the same messages as for GETVAL
above.

If the GETALL control command is selected (code 6), the pro­
gram first performs an IPC_STAT control command to determine
the number of semaphores in the set (lines 88-93). The length
variable is set to the number of semaphores in the set (line 91).
Next, the system call is made and, upon success, the arg.array
union member contains the values of the semaphore set (line 96).
Now, a loop is entered which displays each element of the
arg.array from zero to one less than the value of length (lines 97-
103). The semaphores in the set are displayed on a single line,
separated by a space. Depending upon success or failure, the
program returns the same messages as for GETV AL above.

9-62 PROGRAMMER'S GUIDE UP-13690

Semaphores

If the SETALL control command is selected (code 7), the pro­
gram first performs an IPC_STAT control command to determine
the number of semaphores in the set (lines 106-108). The length
variable is set to the number of semaphores in the set (line 109).
Next, the program prompts for the values to be set and enters a
loop which takes values from the keyboard and initializes the
arg.array union member to contain the desired values of the
semaphore set (lines 113-119). The loop puts the first entry into
the array position for semaphore number zero and ends when the
semaphore number that is filled in the array equals one less than
the value of length. The system call is then made (lines 120-122).
Depending upon success or failure, the program returns the same
messages as for GETV AL above.

If the IPC _STAT control command is selected (code 8), the
system call is performed (line 127), and the status information
returned is printed out (lines 128-139); only the members that can
be set are printed out in this program. Note that if the system call
is unsuccessful, the status information of the last successful one is
printed out. In addition, an error message is displayed, and the
errno variable is printed out (lines 191, 192).

If the IPC _ SET control command is selected (code 9), the pro­
gram gets the current status information for the semaphore set
identifier specified (lines 143-146). This is necessary because this
example program provides for changing only one member at a
time, and the semctl(2) system call changes all of them. Also, if
an invalid value happened to be stored in the user memory area
for one of these members, it would cause repetitive failures for this
control command until corrected. The next thing the program
does is to prompt for a code corresponding to the member to be
changed (lines 147-153). This code is stored at the address of the
choice variable (line 154). Now, depending upon the member
picked, the program prompts for the new value (lines 155-178).
The value is placed at the address of the appropriate member in
the user memory area data structure, and the system call is made
(line 181). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

UP-13690 INTERPROCESS COMMUNICATION 9-63

Semaphores

If the IPC_RMID control command (code 10) is selected, the
system call is performed (lines 183-185). The semid along with its
associated data structure and semaphore set is removed from the
UNIX operating system. Depending upon success or failure, the
program returns the same messages as for the other control com­
mands.

The example program for the semetl(2) system call follows. It
is suggested that the source program file be named semetl.e and
that the executable file be named semetl.

9-64 PROGRAMMER'5 GUIDE UP-13690

1 /*This is a program to illustrate
2 **the semaphore control, semctl(),
3 **system call capabilities.
4 */

5
6
7
8
9

/*Include
#include
#include
#include
#include

necessary header
<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

files.*/

10 /*Start of main C language program*/
11 main()
12 1
13 extern int errno;
14 struct semid_ds semid_ds;
15 i nt c, i, 1 ength;
16 int uid, gid, mode;

Semaphores

17 int retrn, semid, semnum, cmd, choice;
18 union semun 1
19 int val;
20 struct semid_ds *buf;
21 ushort array[25];
22 argj

23 /*Initfalize the data structure pOinter.*/
24 arg.buf = &semfd_ds;

Figure 9-10: semctlO System Call Example (Sheet 1 of 7)

UP-13690 INTERPROCESS COMMUNICATION 9-65

Semaphores

25 /*Enter the semaphore 10.*/
26 printf("Enter the semid = H);
27 scanf("%d", &semid);

28 /*Choose the desired command.*/
29 printf("\nEnter the number for\n");
30 printf("the desired cmd:\n");
31 printf("GETVAL = 1\n");
32 printf("SETVAL = 2\n");
33 printf("GETPIO 3\n");
34 printf("GETNCNT 4\n");
35 printf("GETZCNT 5\n");
36 printf("GETALL 6\n");
37 printf("SETALL = 7\n");
38 printf("IPC_STAT = 8\n");
39 printf("IPC_SET = 9\n");
40 printf("IPC_RMIO = 10\n");
41 printf("Entry ") ;
42 scanf("%d", &cmd);

43 /*Check entries.*/
44 printf ("\nsemid =%d, cmd = %d\n\n",
45 semid, cmd);

46 /*Set the command and do the call.*/
47 switch (cmd)
48 I

Figure 9-10: semctlO System Call Example (Sheet 2 of 7)

9·66 PROGRAMMER'S GUIDE UP·13690

Semaphores

49 case 1: /*Get a specified value.*/
50 printf("\nEnter the semnum = H);
51 scanf("%d", &semnum);
52 /*00 the system call.*/
53 retrn = semctl(semid, semnum, GETVAL, 0);
54 printf("\nThe semval = %d\n", retrn);
55 break;
56 case 2: /*Set a specified value.*/
57 printf("\nEnter the semnum = ");
58 scanf("%d", &semnum);
59 printf("\nEnter the value = ");
60 scanf("%d", &arg.val);
61 /*00 the system call.*/
62 retrn = semctl(semid, semnum, SETVAL, arg.val);
63 break;
64 case 3: /*Get the process 10.*/
65 retrn = semctl(semid, 0, GETPIO, 0);
66 printf("\nThe sempid = %d\n", retrn);
67 break;
68 case 4: /*Get the number of processes
69 waiting for the semaphore to
70 become greater than its current
71 value.*/
72 printf("\nEnter the semnum = ");
73 scanf("%d", &semnum);
74 /*00 the system call.*/
75 retrn = semctl(semid, semnum, GETNCNT, 0);
76 pr i ntf('''nThe semncnt = %d", retrn);
77 break;

Figure 9-10: semctlO System Call Example (Sheet 3 of 7)

UP-13690 INTERPROCESS COMMUNICATION 9-67

Semaphores

78 case 5: /*Get the number of processes
79 waiting for the semaphore
80 value to become zero.*/
81 printf("\nEnter the semnum = H);
82 scanf("%d", &semnum);
83 /*00 the system cal1.*/
84 retrn = semctl(semid, semnum, GETZCNT, 0);
85 printf("\nThe semzcnt = %d", retrn);
86 break;

87 case 6: /*Get all of the semaphores.*/
88 /*Get the number of semaphores in
89 the semaphore set.*/
90 retrn = semctl(semid, 0, I PC_STAT, arg.buf);
91 length = arg.buf->sem_nsems;
92 if(retrn == -1)
93 goto ERROR;
94 /*Get and print all semaphores in the
95 specified set.*/
96 retrn = semctl(semid, 0, GETALL, arg.array);
91 for (i = 0; i < length; i++)
98 I
99 printf("%d", arg.array[i);
100 /*Seperate each
101 semaphore.*/
102 prfntf("%c", , ');
103 I
104 break;

Figure 9-10: semet.O System Call Example (Sheet 4 of 7)

9-68 PROGRAMMER'S GUIDE UP-13690

Semaphores

105 case 7: /*Set all semaphores in the set.*/
106 /*Get the number of semaphores in
107 the set.*/
108 retrn = semctl(semid, 0, I PC_STAT, arg.buf);
109 length = arg.buf->sem_nsems;
110 printf("Length = %d\n", length);
111 if(retrn == -1)
112 goto ERROR;
113 /*Set the semaphore set values.*/
114 printf("\nEnter each value:\n");
115 for(i = 0; i < length; i++)
116 {
117 scanf("%d", &c);
118 arg.array[i] = c;
119 I
120 /*00 the system call.*/
121 retrn = semctl(semid, 0, SETALL, arg.array);
122 break;

123 case 8: /*Get the status for the semaphore set.*/
125 /*Get and print the current status values.*/
127 retrn = semctl(semid, 0, I PC_STAT, arg.buf);
128 printf (',\nThe USER 10 = %d\n",
129 arg.buf->sem_perm.uid);
130 printf ("The GROUP 10 = %d\n",
131 arg.buf->sem_perm.gid);
132 printf ("The operation permissions O%o\n",
133 arg.buf->sem_perm.mode)j
134 printf ("The number of semaphores in
135 set = %d\n", arg.buf->sem_nsems)j
136 printf ("The last semop time = %d\n",
137 arg.buf->sem_otime)j

Figure 9-10: semctlO System Call Example (Sheet 5 of 7)

UP-13690 INTER PROCESS COMMUNICATION 9-69

Semaphores

138
139
140

printf ("The last change time
arg.buf->sem_ctime);

break;

%d\n",

141 case 9: /*Select and change the desired
142 member of the data structure.*/
143 /*Get the current status values.*/
144 retrn = semctl(semid, 0, 1 PC_STAT, arg.buf);
145 if(retrn == -1)
146 go to ERROR;
147 /*Select the member to change.*/
148 printf("\nEnter the number for the\n");
149 printf("member to be changed:\n");
150 printf("sem_perm.uid 1\n");
151 printf("sem_perm.gid 2\n");
152 printf("sem_perm.mode 3\n");
153 printf("Entry ");
154 scanf("%d", &choice);
155 switch(choice)I

156 case 1: /*Change the user 10.*/
157 printf("\nEnter USER 10 = ");
158 scanf ("%d", &uid);
159 arg.buf->sem_perm.uid = uid;
160 printf("\nUSER 10 = %d\n",
161 arg.buf->sem_perm.uid);
162 break;

163 case 2: /*Change the group 10.*/
164 printf("\nEnter GROUP 10 = ");
165 scanf("%d", &gid);
166 arg.buf->sem_perm.gid = gid;
167 printf("\nGROUP 10 = %d\n",
168 arg.buf->sem_perm.gid);
169 break;

Figure 9-10: semctlO System Call Example (Sheet 6 of 7)

9-70 PROGRAMMER'S GUIDE UP-13690

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Semaphores

case 3: /*Change the mode portion of
the operation

I

permissions.*/
printf("\nEnter MODE = It);
scanf("%o", &mode);
arg.buf->sem_perm.mode = mode;
printf("\nMODE = O%o\n",

arg.buf->sem_perm.mode);
break;

/*00 the change.*/
retrn = semctl(semid, 0, I PC_SET, arg. buf) ;
break;

case 10: /*Remove the semid along with its
data structure.*/

retrn semctl(semid, 0, IPC_RMID, 0);
1
/*Perform following if call unsuccessful.*/
if(retrn == -1)
1

ERROR:

I

printf ("\n\nsemctl system call failedI\n");
printf ("The error number = %d\n", errno);
exit(O);

printf ("\n\nsemctl system call successful\n");
printf ("for semid = %d\n", semid);
exit (0);

~.----
Figure 9-10: semctlO System Call Example (Sheet 7 of 7)

UP-13690 INTERPROCESS COMMUNICATION 9-71

Semaphores

Operations on Semaphores

This section contains a detailed description of using the
semop(2) system call along with an example program which allows
all of its capabilities to be exercised.

Using semop

The synopsis found in the semop(2) entry in the Programmer's
Reference Manual is as follows:

,include <sys/types.h>
,include <sys/ipc.h>
,include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **sops;
unsigned nsops;

The semop(2) system call requires three arguments to be
passed to it, and it returns an integer value.

Upon successful completion, a zero value is returned and
when unsuccessful it returns a -1.

The semid argument must be a valid, non-negative, integer
value. In other words, it must have already been created by using
the semget(2) system call.

The sops argument is a pointer to an array of structures in the
user memory area that contains the following for each semaphore
to be changed:

9-72 PROGRAMMER'S GUIDE UP-13690

Semaphores

• the semaphore number

• the operation to be performed

• the control command (flags)

The **sops declaration means that a pointer can be initialized
to the address of the array. or the array name can be used since it
is the address of the first element of the array. Sembuf is the tag
name of the data structure used as the template for the structure
members in the array; it is located in the #include < sys/sem.h >
header file.

The nsops argument specifies the length of the array (the
number of structures in the array). The maximum size of this
array is determined by the SEMOPM system tunable parameter.
Therefore. a maximum of SEMOPM operations can be performed
for each semop(2) system call.

The semaphore number determines the particular semaphore
within the set on which the operation is to be performed.

The operation to be performed is determined by the following:

• a positive integer value means to increment the semaphore
value by its value

• a negative integer value means to decrement the sema­
phore value by its value

• a value of zero means to test if the semaphore is equal to
zero

The following operation commands (flags) can be used:

• IPC_NOWAIT - this operation command can be set for any
operations in the array. The system call will return unsuc­
cessfully without changing any semaphore values at all if
any operation for which IPC_NOWAIT is set cannot be per­
formed successfully. The system call will be unsuccessful
when trying to decrement a semaphore more than its
current value. or when testing for a semaphore to be equal
to zero when it is not.

UP-13690 INTER PROCESS COMMUNICATION 9-73

Semaphores

• SEM _ UNDO - this operation command allows any opera­
tions in the array to be undone when any operation in the
array is unsuccessful and does not have the IPC _ NOWAIT
flag set. That is, the blocked operation waits until it can per­
form its operation; and when it and all succeeding opera­
tions are successful, all operations with the SEM_UNDO flag
set are undone. Remember, no operations are performed
on any semaphores in a set until all operations are success­
ful. Undoing is accomplished by using an array of adjust
values for the operations that are to be undone when the
blocked operation and all subsequent operations are suc­
cessful.

Example Program

The example program in this section (Figure 9-11) is a menu
driven program which allows all possible combinations of using the
semop(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 5-9) by including the required
header files as specified by the shmop(2) entry in the
Programmer's Reference Manual Note that in this program errno
is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close
as possible to those in the synopsis. Their declarations are self­
explanatory. These names make the program more readable, and
this is perfectly legal since the declarations are local to the pro­
gram. The variables declared for this program and their purpose
are as follows:

• sembuf[10] - used as an array buffer (line 14) to contain a
maximum of ten sembuf type structures; ten equals
SEMOPM, the maximum number of operations on a sema­
phore set for each semop(2) system call

9-74 PROGRAMMER'S GUIDE UP-13690

Semaphores

• *sops - used as a pointer (line 14) to sembuf[10] for the
system call and for accessing the structure members within
the array

• rtrn - used to store the return values from the system call

• flags - used to store the code of the IPC _ NOWAIl or
SEM _ UNDO flags for the semop(2) system call (line 60)

• i-used as a counter (line 32) for initializing the structure
members in the array, and used to print out each structure
in the array (line 79)

• nsops - used to specify the number of semaphore opera­
tions for the system call - must be less than or equal to
SEMOPM

• semid - used to store the desired semaphore set identifier
for the system call

First, the program prompts for a semaphore set identifier that
the system call is to perform operations on (lines 19-22). Semid is
stored at the address of the semid variable (line 23).

A message is displayed requesting the number of operations
to be performed on this set (lines 25-27). The number of opera­
tions is stored at the address of the nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines
30-77). The semaphore number, operation, and operation com­
mand (flags) are entered for each structure in the array. The
number of structures equals the number of semaphore operations
(nsops) to be performed for the system call, so nsops is tested
against the i counter for loop control. Note that sops is used as a
pointer to each element (structure) in the array, and sops is incre­
mented just like i. sops is then used to point to each member in
the structure for setting them.

After the array is initialized, all of its elements are printed out
for feedback (lines 78-85).

The sops pointer is set to the address of the array (lines 86,
87). Sembuf could be used directly, if desired, instead of sops in
the system call.

UP-13690 INTERPROCESS COMMUNICATION 9-75

Semaphores

The system call is made (line 89), and depending upon suc­
cess or failure, a corresponding message is displayed. The results
of the operation(s) can be viewed by using the semctlO GETALL
control command.

The example program for the semop(2) system call follows. It
is suggested that the source program file be named semop.c and
that the executable file be named semop.

9-76 PROGRAMMER'5 GUIDE UP-13690

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24

/*This is a program to illustrate
**the semaphore operations, semop(),
**system call capabilities.
*/

/*Include
#include
#include
#include
#include
/*Start of
main()
I

necessary header
<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

main C language

extern int errnoj

files.*/

program*/

struct sembuf sembuf[10], *soPSj
char string[]j

Semaphores

int retrn, flags, sem_num, i, semidj
unsigned nsops;
sops = sembufj /*Pointer to array sembuf.*/

/*Enter the semaphore 10.*/
printf("\nEnter the semid of\n");
printf("the semaphore set to\n");
printf("be operated on = ")j
scanf("%d", &semid)j
printf("\nsemid = %d", semid);

Figure 9-11: semop(2) System Call Example (Sheet 1 of 4)

UP-13690 INTER PROCESS COMMUNICATION 9-77

Semaphores

25 /*Enter the number of operations.*/
26 printf("\nEnter the number of semaphore\n");
27 printf("operations for this set = ");
28 scanf("%d", &nsops);
29 printf("\nnosops = %d", nsops);

30 /*Initialize the array for the
31 number of operations to be performed.*/
32 for(i = 0; i < nsops; i++, sops++)
33 I

34 /*This determines the semaphore in
35 the semaphore set.*/
36 printf("\nEnter the semaphore\n");
37 printf("number (sem_num) = ");
38 scanf("%d", &sem_num)j
39 sops->sem_num = sem_numj
40 printf("\nThe sem_num = %d", sops->sem_num)j

41 /*Enter a (-)number to decrement,
42 an unsigned number (no +) to increment,
43 or zero to test for zero. These values
44 are entered into a string and converted
45 to integer values.*/
46 printf("\nEnter the operation for\n")j
47 printf("the semaphore (sem_op) = ");
48 scanf("%s", string)j
49 sops->sem_op = atoi(string);
50 printf("\nsem_op = %d\n", sops->sem_op);

Figure 9-11: semop(2) System Call Example (Sheet 2 of 4)

9-78 PROGRAMMER'S GUIDE UP-13690

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Semaphores

/*Specify the desired flags.*/
printf("\nEnter the corresponding\n");
printf("number for the desired\n");
printf("flags:\n");
printf("No flags
printf("IPC_NOWAIT
printf("SEM_UNDO
printf("IPC_NOWAIT and SEM_UNDO
printf(" Flags
scanf ("%d", &f1 ags) ;

swi tch (f1 ags)
I
case 0:

sops->sem_flg 0;
break;

case 1:
sops->sem_flg IPC_NOWAIT;
break;

case 2:
sops->sem_flg = SEM_UNDO;
break;

case 3:

O\n");
= 1\n");
= 2\n");

3\n");
= ");

sops->sem_flg IPC_NOWAIT: SEM_UNDOj
break;

J
printf("\nFlags O%o\n", sops->sem_flg)j

Figure 9-11: semop(2) System Call Example (Sheet 3 of 4)

UP-13690 INTERPROCESS COMMUNICATION 9-79

Semaphores

78 /*Print out each structure in the array.*/
79 for(i = OJ i < nsopsj i++)
80 I
81 printf{"\nsem_num = %d\n", sembuf[iI.sem_num);
82 pr i ntf ("sem_op = %d\n", sembuf[i I. sem_op);
83 printf("sem_flg = %o\n", sembuf[iI.sem_flg)j
84 printf("%c", , ');
85

86 sops = sembuf; /*Reset the pointer to
87 sembuf[OI.*/

88 /*00 the semop system cal1.*/
89 retrn = semop(semid, sops, nsops);
90 if(retrn == -1) I
91 printf{"\nSemop failed. H);
92 printf("Error = %d\n", errno);
93 J
94 else I
95 printf ("\nSemop was successful\n");
96 printf("for semid = %d\n", semid);

97 printf{"Value returned = %d\n", retrn);
98
99

Figure 9-11: semop(2) System Call Example (Sheet 4 of 4)

9-80 PROGRAMMER'S GUIDE UP-13690

Shared Memory
The shared memory type of IPC allows two or more processes

(executing programs) to share memory and consequently the data
contained there. This is done by allowing processes to set up
access to a common virtual memory address space. This sharing
occurs on a segment basis, which is memory management
hardware dependent.

This sharing of memory provides the fastest means of
exchanging data between processes.

A process initially creates a shared memory segment facility
using the shmget(2) system call. Upon creation, this process sets
the overall operation permissions for the shared memory segment
facility, sets its size in bytes, and can specify that the shared
memory segment is for reference only (read-only) upon attach­
ment. If the memory segment is not specified to be for reference
only, all other processes with appropriate operation permissions
can read from or write to the memory segment.

There are two operations that can be performed on a shared
memory segment:

• shmat(2) - shared memory attach

• shmdt(2) - shared memory detach

Shared memory attach allows processes to associate them­
selves with the shared memory segment if they have permission.
They can then read or write as allowed.

Shared memory detach allows processes to disassociate them­
selves from a shared memory segment. Therefore, they lose the
ability to read from or write to the shared memory segment.

The original owner/creator of a shared memory segment can
relinquish ownership to another process using the shmctl(2) sys­
tem call. However, the creating process remains the creator until
the facility is removed or the system is reinitialized. Other
processes with permission can perform other functions on the
shared memory segment using the shmctl (2) system call.

UP-13690 INTERPROCESS COM MUNICATION 9-81

Shared Memory

System calls, which are documented in the Programmer's
Reference Manual, make these shared memory capabilities avail­
able to processes. The calling process passes arguments to a sys­
tem call, and the system call either successfully or unsuccessfully
performs its function. If the system call is successful, it performs
its function and returns the appropriate information. Otherwise, a
known error code (-1) is returned to the process, and the external
variable errno is set accordingly.

Using Shared Memory

The sharing of memory between processes occurs on a virtual
segment basis. There is one and only one instance of an indivi­
dual shared memory segment existing in the UNIX operating sys­
tem at any point in time.

Before sharing of memory can be realized, a uniquely identi­
fied shared memory segment and data structure must be created.
The unique identifier created is called the shared memory identifier
(shmid); it is used to identify or reference the associated data
structure. The data structure includes the following for each
shared memory segment:

• operation permissions

• segment size

• segment descriptor

• process identification performing last operation

• process identification of creator

• current number of processes attached

• in memory number of processes attached

• last attach time

• last detach time

• last change time

9-82 PROGRAMMER'S GUIDE UP-13690

Shared Memory

The C Programming Language data structure definition for the
shared memory segment data structure is located in the
/usr/include/sys/shm.h header file. It is as follows:

I'll

**
**
*1

There is a shared mem id data structure for
each segment in the system.

struct shmid_ds 1
struct ipc_perm

int
struct region

char

ushort
ushort
ushort

ushort

time_t
time_t
time_t

shm_segsz;
*shm_reg;

pad[4];

shm_lpid;
shm_cpid;
shm_nattch;

shm_atimej
shm_dtimej
shm_ctimej

1* operation
permission struct 'III

I'll segment size 'III
I'll ptr to region
structure *1

1* for swap
compatibility *1

1* pid of last shmop *1
1* pid of creator *1
1* used only for

shminfo 'III
1* used only for

shminfo *1
I'll last shmat time 'III
1* last shmdt time *1
1* last change time 'III

Note that the shm_perm member of this structure uses
ipc_perm as a template. The breakout for the operation permis­
sions data structure is shown in Figure 9-1.

The ipc _perm data structure is the same for all IPC facilities,
and it is located in the #include < sys/ipc.h > header file. It is
shown in the introduction section of "Messages."

UP-13690 INTERPROCESS COM MUNICATION 9-83

Shared Memory

Figure 9-12 is a table that shows the shared memory state
information.

Shared Memory States

Lock Bit Swap Bit Allocated Bit Implied State

0 0 0 Unallocated Segment

0 0 1 Incore

0 1 0 Unused

0 1 1 On Disk

1 0 1 Locked Incore

1 1 0 Unused

1 0 0 Unused

1 1 1 Unused

Figure 9-12: Shared Memory State Information

The implied states of Figure 9-12 are,as follows:

• Unallocated Segment - the segment associated with this
segment descriptor has not been allocated for use,

• Incore - the shared segment associated with this descriptor
has been allocated for use. Therefore. the segment does
exist and is currently resident in memory.

• On Disk - the shared segment associated with this segment
descriptor is currently resident on the swap device.

• Locked Incore - the shared segment associated with this
segment descriptor is currently locked in memory and will
not be a candidate for swapping until the segment is
unlocked. Only the super-user may lock and unlock a
shared segment.

9-84 PROGRAMMER'S GUIDE UP-13690

Shared Memory

• Unused - this state is currently unused and should never be
encountered by the normal user in shared memory han­
dling.

The shmget(2) system call is used to perform two tasks when
only the IPC _ CREAT flag is set in the shmflg argument that it
receives:

• to get a new shmid and create an associated shared
memory segment data structure for it

• to return an existing shmid that already has an associated
shared memory segment data structure

The task performed is determined by the value of the key
argument passed to the shmget(2) system call. For the first task.
if the key is not already in use for an existing shmid. a new shmid
is returned with an associated shared memory segment data struc­
ture created for it provided no system tunable parameters would
be exceeded.

There is also a provision for specifying a key of value zero
which is known as the private key (IPC_PRIVATE = 0); when
specified. a new shmid is always returned with an associated
shared memory segment data structure created for it unless a sys­
tem tunable parameter would be exceeded. When the ipcs com­
mand is performed. the KEY field for the shmid is all zeros.

For the second task. if a shmid exists for the key specified.
the value of the existing shmid is returned. If it is not desired to
have an existing shmid returned. a control command (IPC_EXCL)
can be specified (set) in the shmflg argument passed to the sys­
tem call. The details of using this system call are discussed in the
"Using shmget" section of this chapter.

When performing the first task. the process that calls shmget
becomes the owner/creator, and the associated data structure is
initialized accordingly. Remember. ownership can be changed. but
the creating process always remains the creator; see the "Control­
ling Shared Memory" section in this chapter. The creator of the
shared memory segment also determines the initial operation per­
missions for it.

UP-13690 INTERPROCESS COMMUNICATION 9-85

Shared Memory

Once a uniquely identified shared memory segment data
structure is created, shared memory segment operations
[shmopOl and control [shmctl(2)] can be used.

Shared memory segment operations consist of attaching and
detaching shared memory segments. System calls are provided
for each of these operations; they are shmat(2) and shmdt(2).
Refer to the "Operations for Shared Memory" section in this
chapter for details of these system calls.

Shared memory segment control is done by using the
shmctl(2) system call. It permits you to control the shared
memory facility in the following ways:

• to determine the associated data structure status for a
shared memory segment (shmid)

• to change operation permissions for a shared memory seg­
ment

• to remove a particular shmid from the UNIX operating sys­
tem along with its associated shared memory segment data
structure

• to lock a shared memory segment in memory

• to unlock a shared memory segment

Refer to the "Controlling Shared Memory" section in this
chapter for details of the shmctl(2) system call.

Getting Shared Memory Segments

This section gives a detailed description of using the
shmget(2) system call along with an example program illustrating
its use.

Using shmget

The synopsis found in the shmget(2) entry in the
Programmer's Reference Manual is as follows:

9-86 PROGRAMMER'S GUIDE UP-13690

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

Shared Memory

All of these include files are located in the /usr/include/sys
directory of the UNIX operating system. The following line in the
synopsis:

int shmget (key, size, shmflg)

informs you that shmget(2) is a function with three formal argu­
ments that returns an integer type value, upon successful comple­
tion (shmid). The next two lines:

key_t key;
int size, shmflg;

declare the types of the formal arguments. The variable key _tis
declared by a typedef in the types.h header file to be an integer.

The integer returned from this function upon successful com­
pletion is the shared memory identifier (shmid) that was discussed
earlier.

As declared, the process calling the shmget(2) system call
must supply three arguments to be passed to the formal key,
size, and shmflg arguments.

A new shmid with an associated shared memory data struc­
ture is provided if either

• key is equal to IPC _PRIVATE,

or

UP·13690 INTERPROCESS COMMUNICATION. 9·87

Shared Memory

• key is passed a unique hexadecimal integer, and shmflg
ANDed with IPC CREAT is TRUE.

The value passed to the shmflg argument must be an integer
type octal value and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and
execution modes determine the user/group/other attributes of the
shmflg argument. They are collectively referred to as "operation
permissions." Figure 9-13 reflects the numeric values (expressed
in octal notation) for the valid operation permissions codes.

Operation Permissions

Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value

00400
00200
00040
00020
00004
00002

Figure 9-13: Operation Permissions Codes

A specific octal value is derived by adding the octal values for the
operation permissions desired. That is, if read by user and
read/write by others is desired, the code value would be 00406
(00400 plus 00006). There are constants Iqcated in the shm.h
header file which can be used for the user (OWNER). They are as
follows:

0400

0200

Shared Memory

Control commands are predefined constants (represented by
all uppercase letters). Figure 9-14 contains the names of the con­
stants that apply to the shmgetO system call along with their
values. They are also referred to as flags and are defined in the
ipc.h header file.

Control Command
IPC_CREAT
IPC_EXCL

Figure 9-14: Control Commands (Flags)

Value

0001000
0002000

The value for shmflg is, therefore, a combination of operation
permissions and control commands. After determining the value
for the operation permissions as previously described, the desired
flag(s) can be specified. This is accomplished by bitwise DRing
(:) them with the operation permissions; the bit positions and
values for the control commands in relation to those of the opera­
tion permissions make this possible. It is illustrated as follows:

IPC CREAT
: ORed by User

shmflg

Octal Value

a 1 a a a
00400

01400

Binary Value

a 000 001 000 000 000
a 000 000 100 000 000

a 000 001 100 000 000

The shmflg value can be easily set by using the names of the
flags in conjunction with the octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT 0400));

shmid = shmget (key, size, (IPC_CREAT IPC_EXCL: 0400));

As specified by the shmget(2) entry in the Programmer's
Reference Manual, success or failure of this system call depends
upon the argument values for key, size, and shmflg or system
tunable parameters. The system call will attempt to return a new
shmid if one of the following conditions is true:

UP-13690 INTER PROCESS COMMUNICATION 9-89

Shared Memory

• Key is equal to IPC _PRIVATE (0).

• Key does not already have a shmid associated with it, and
(shmflg & IPC _ CREA T) is "true" (not zero).

The key argument can be set to IPC _PRIVATE in the following
ways:

shmid = shmget (IPC_PRIVATE, size, shmflg)j

or

shmid = shmget (0 , size, shmflg)j

This alone will cause the system call to be attempted because it
satisfies the first condition specified. Exceeding the SHMMNI sys­
tem tunable parameter always causes a failure. The SHMMNI sys­
tem tunable parameter determines the maximum number of
unique shared memory segments (shmids) in the UNIX operating
system.

The second condition is satisfied if the value for key is not
already associated with a shmid and the bitwise ANDing of shmflg
and IPC _ CREAT is "true" (not zero). This means that the key is
unique (not in use) within the UNIX operating system for this facil­
ity type and that the IPC _ CREAT flag is set (shmflg :
IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

shmflg = x , x x x (x = immaterial)
& IPC_CREAT = 0 , 0 0 0

result = 0 , 0 0 0 (not zero)

Because the result is not zero, the flag is set or "true." SHMMNI

9-90 PROGRAMMER'S GUIDE UP-13690

Shared Memory

applies here also, just as for condition one.

IPC _ EXCL is another control command used in conjunction
with IPC_CREAT to exclusively have the system call fail if, and only
if, a shmid exists for the specified key provided. This is necessary
to prevent the process from thinking that it has received a new
(unique) shmid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a unique shmid is
returned if the system call is successful. Any value for shmflg
returns a new shmid if the key equals zero (lPC_PRIVATE).

The system call will fail if the value for the size argument is
less than SHMMIN or greater than SHMMAX. These tunable
parameters specify the minimum and maximum shared memory
segment sizes.

Refer to the shmget(2) manual page for specific associated
data structure initialization for successful completion. The specific
failure conditions with error names are contained there also.

Example Program

The example program in this section (Figure 9-15) is a menu
driven program which allows all possible combinations of using the
shmget(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 4-7) by including the required
header files as specified by the shmget(2) entry in the
Programmer's Reference Manual. Note that the errno.h header
file is included as opposed to declaring errno as an external vari­
able; either method will work.

Variable names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are
self-explanatory. These names make the program more readable,
and this is perfectly legal since they are local to the program. The
variables declared for this program and their purposes are as fol­
lows:

UP-13690 INTERPROCESS COMMUNICATION 9-91

Shared Memory

• key - used to pass the value for the desired key

• opperm - used to store the desired operation permissions

• flags - used to store the desired control commands (flags)

• opperm _flags - used to store the combination from the logi­
cal DRing of the opperm and flags variables; it is then used
in the system call to pass the shmflg argument

• shmid - used for returning the message queue identification
number for a successful system call or the error code (-1)
for an unsuccessful one

• size - used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an
octal operation permissions code, and finally for the control com­
mand 'combinations (flags) which are selected from a menu (lines
14-31). All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the
operation permissions, and the result is stored at the address of
the opperm_flags variable (lines 35-50).

A display then prompts for the size of the shared memory
segment, and it is stored at the address of the size variable (lines
51-54) .

The system call is made next, and the result is stored at the
address of the shmid variable (line 56).

Since the shmid variable now contains a valid message queue
identifier or the error code (-1), it is tested to see if an error
occurred (line 58). If shmid equals -1, a message indicates that an
error resulted and the external errno variable is displayed (lines 60,
61).

If no error occurred, the returned shared memory segment
identifier is displayed (line 65).

9-92 PROGRAMMER'S GUIDE UP-13690

Shared Memory

The example program for the shmget(2) system call follows. It
is suggested that the source program file be named shmget.c and
that the executable file be named shmget.

When compiling C programs that use floating point operations,
the ·f option should be used on the cc command line. If this
option is not used, the program will compile successfully, but when
the program is executed it will fail.

1 /*This is a program to illustrate
2 **the shared memory get, shmget(),
3 **system call capabi1ities.*/

4
5
6
7

8
9
10
11
12
13
14
15
16

17
18
19
20
21

#inc1ude
#inc1ude
#inc1ude
#inc1ude

<sys/types.h>
<sys/ipc.h>
<sys/shm.h>
<errno.h>

/*Start of main C language program*/
main()
I

key_t keYj /*dec1are as long integer*/
int opperm, f1agsj
int shmid, size, opperm_f1agsj
/*Enter the desired key*/
printf("Enter the desired key in hex = ")j
scanf("%x", &key);

/*Enter the desired octal operation
permissions.*/

printf("\nEnter the operation\n");
printf("permissions in octal = H);
scanf("%o", &opperm)j

~------
Figure 9-15: shmget(2) System Call Example (Sheet 1 of 3)

UP·13690 INTERPROCESS COMMUNICATION 9·93

Shared Memory

22 /*Set the desired flags.*/
23 printf("\nEnter corresponding number to\n");
24 printf("set the desired flags:\n");
25 printf("No flags O\n");
26 printf("IPC_CREAT 1\n");
27 printf("IPC_EXCL 2\n");
28 printf("IPC_CREAT and IPC_EXCL 3\n");
29 printf(" Flags ");
30 /*Get the flag(s) to be set.*/
31 scanf ("%d", &f1 ags);

32 /*Check the values.*/
33 printf ("\nkey =Ox%x, opperm = 0%0, flags O%o\n",
34 key, opperrn, flags);

/*Incorporate the control fields (flags) with
the operation permissions*/
switch (flags)

I
case 0: /*No flags are to be set.*/

opperm_flags = (opperm : 0);
break;

case 1: /*Set the IPC_CREAT flag.*/
opperm_flags = (opperm : IPC_CREAT);
breakj

case 2: /*Set the IPC_EXCL flag.*/
opperm_flags = (opperm : IPC_EXCL)j
breakj

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
opperrn_flags = (opperm : IPC_CREAT : IPC_EXCL);

~--------
Figure 9-15: shmget(2) System Call Example (Sheet 2 of 3)

9-94 PROGRAMMER'8 GUIDE UP-13690

Shared Memory

51 I*Get the size of the segment in bytes.*1
52 printf ("\nEnter the segment");
53 printf ("\nsize in bytes = H);
54 scanf ("%d", &size);

55 I*Call the shmget system call.*1
56 shmid = shmget (key, size, opperm_flags);

57 I*Perform the following if the call is unsuccessful.*1
58 if(shmid == -1)
59 1
60 printf ("\nThe shmget system call failed!\n");
61 printf ("The error number = %d\n", errno);
62 J
63 I*Return the shmid upon successful completion.*1
64 else
65 printf ("\nThe shmid = %d\n", shmid);
66 exit(O);
67

Figure 9-15: shmget(2) System Call Example (Sheet 3 of 3)

Controlling Shared Memory

This section gives a detailed description of using the shmctl (2)
system call along with an example program which allows all of its
capabilities to be exercised.

Using shmctl

The synopsis found in the shmctl(2) entry in the Programmer's
Reference Manual is as follows:

UP-13690 INTERPROCESS COMMUNICATION 9-95

Shared Memory

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
~t shmld_ds *buf;

The shmctl(2) system call requires three arguments to be passed
to it, and shmctl(2) returns an integer value.

Upon successful completion, a zero value is returned; and
when unsuccessful, shmctlO returns a -1.

The shmid variable must be a valid, non-negative, integer
value. In other words, it must have already been created by using
the shmget(2) system call.

The cmd argument can be replaced by one of following con­
trol commands (flags):

• IPC_STAT - return the status information contained in the
associated data structure for the specified shmid and place
it in the data structure pointed to by the *buf pointer in the
user memory area

• IPC _SET - for the specified shmid, set the effective user
and group identification, and operation permissions

• IPC _ RMID - remove the specified shmid along with its asso­
ciated shared memory segment data structure

• SHM_LOCK -lock the specified shared memory segment in
memory, must be super-user

• SHM _ UNLOCK - unlock the shared memory segment from
memory, must be super-user.

9-96 PROGRAMMER'S GUIDE UP-13690

Shared Memory

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or
IPC_RMID control command. Only the super-user can perform a
SHM_LOCK or SHM_UNLOCK control command. A process must
have read permission to perform the IPC_STAT control command.

The details of this system call are discussed in the example
program for it. If you have problems understanding the logic
manipulations in this program, read the "Using shmget" section of
this chapter; it goes into more detail than what would be practical
to do for every system call.

"0
Example Program

The example program in this section (Figure 9-16) is a menu
driven program which allows all possible combinations of using the
shmctl(2) system call to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 5-9) by including the required
header files as specified by the shmctl(2) entry in the
Programmer's Reference Manual. Note in this program that errno
is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close
as possible to those in the synopsis for the system call. Their
declarations are self-explanatory. These names make the program
more readable, and it is perfectly legal since they are local to the
program. The variables declared for this program and their pur­
poses are as follows:

• uid - used to store the IPC SET value for the effective user
identification

• gid - used to store the IPC _SET value for the effective
group identification

• mode - used to store the IPC _SET value for the operation
permissions

UP-13690 INTERPROCESS COMMUNICATION 9-97

Shared Memory

• rtrn - used to store the return integer value from the system
call

II shmid - used to store and pass the shared memory seg­
ment identifier to the system call

• command - used to store the code for the desired control
command so that subsequent processing can be performed
on it

• choice - used to determine which member for the IPG SET
control command that is to be changed

• shmid _ ds - used to receive the specified shared memory
segment identifier's data structure when an lPG_STAT con­
trol command is performed

• *buf - a pointer passed to the system call which locates the
data structure in the user memory area where the lPG_STAT
control command is to place its return values or where the
lPG_SET command gets the values to set.

Note that the shmid_ds data structure in this program (line 16)
uses the data structure located in the shm.h header file of the
same name as a template for its declaration. This is a perfect
example of the advantage of local variables.

The next important thing to observe is that although the *buf
pointer is declared to be a pointer to a data structure of the
shmid _ ds type, it must also be initialized to contain the address of
the user memory area data structure (line 17).

Now that all of the required declarations have been explained
for this program, this is how it works.

First, the program prompts for a valid shared memory seg­
ment identifier which is stored at the address of the shmid variable
(lines 18-20). This is required for every shmctl(2) system call.

Then. the code for the desired control command must be
entered (lines 21-29). and it is stored at the address of the com­
mand variable. The code is tested to determine the control com­
mand for subsequent processing.

9-98 PROGRAMMER'S GUIDE UP-13690

Shared Memory

If the IPC _STAT control command is selected (code 1), the
system call is performed (lines 39, 40) and the status information
returned is printed out (lines 41-71). Note that if the system call is
unsuccessful (line 146), the status information of the last success­
ful call is printed out. In addition, an error message is displayed
and the err no variable is printed out (lines 148, 149). If the system
call is successful, a message indicates this along with the shared
memory segment identifier used (lines 151-154).

If the IPC _SET control command is selected (code 2), the first
thing done is to get the current status information for the message
queue identifier specified (lines 90-92). This is necessary because
this example program provides for changing only one member at
a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of
these members, it would cause repetitive failures for this control
command until corrected. The next thing the program does is to
prompt for a code corresponding to the member to be changed
(lines 93-98). This code is stored at the address of the choice vari­
able (line 99). Now, depending upon the member picked, the pro­
gram prompts for the new value (lines 105-127). The value is
placed at the address of the appropriate member in the user
memory area data structure, and the system call is made (lines
128-130). Depending upon success or failure, the program returns
the same messages as for IPC _STAT above.

If the IPC_RMID control command (code 3) is selected, the
system call is performed (lines 132-135), and the shmid along with
its associated message queue and data structure are removed
from the UNIX operating system. Note that the *buf pointer is not
required as an argument to perform this control command and its
value can be zero or NULL. Depending upon the success or
failure, the program returns the same messages as for the other
control commands.

If the SHM_LOCK control command (code 4) is selected, the
system call is performed (lines 137,138). Depending upon the suc­
cess or failure, the program returns the same messages as for the
other control commands.

UP-13690 INTERPROCESS COMMUNICATION 9-99

Shared Memory

If the SHM_UNLOCK control command (code 5) is selected,
the system call is performed (lines 140-142). Depending upon the
success or failure, the program returns the same messages as for
the other control commands.

The example program for the shmctl(2) system call follows. It
is suggested that the source program file be named shmctl.c and
that the executable file be named shmctl.

When compiling C programs that use floating point operations,
the ·f option should be used on the cc command line. If this
option is not used, the program will compile successfully, but when
the program is executed it will fail.

9-100 PROGRAMMER'S GUIDE UP·13690

Shared Memory

1 /*This is a program to illustrate
2 **the shared memory control, shmctl(),
3 **system call capabilities.
4 */

5
6
7
8
9

/*Include
Hinclude
Hinclude
Hinclude
Hinclude

necessary header
<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/shm.h>

files. */

10 /*Start of main C language program*/
11 main()
12 I
13 extern int errno;
14 int uid, gid, mode;
15 int rtrn, shmid, command, choice;
16 struct shmid_ds shmid_ds, *buf;
11 buf = &shmid_ds;

18 /*Get the shmid, and command.*/
19 printf("Enter the shmid = H);
20 scanf("%d", &shmid);
21 printf("\nEnter the number for\n");
22 printf("the desired command:\n");

Figure 9-16: shmctl(2) System Call Example (Sheet 1 of 6)

UP·13690 INTERPROCESS COM MUNICATION 9·101

Shared Memory

23
24
25
26
27
28
29

printf(tlIPC_STAT
printf(tlIPC_SET
printf(tlIPC_RMIO
printf(tlSHM_LOCK
printf("SHM_UNLOCK
printf("Entry =
scanf("%d", &command);

30 /*Check the values.*/

1\n");
2\n");
3\n");
4\n");
5\n") ;
");

31 printf ("\nshmid =%d, command = %d\n",
32 shmid, command);

33 switch (command)
34 {
35 case 1: /*Use shmctl() to duplicate
36 the data structure for
37 shmid in the shmid_ds area pointed
38 to by buf and then print it out.*/
39 rtrn = shmctl(shmid, 1 PC_STAT,
40 buf);
41 printf ("\nThe USER 10 = %d\n",
42 buf->shm_perm.uid);
43 printf (tiThe GROUP 10 = %d\n",
44 buf->shm_perm.gid);
45 printf ("The creator's 10 = %d\n",
46 buf->shm_perm.cuid)j
47 printf ("The creator's group 10 = %d\n",
48 buf->shm_perm.cgid);
49 printf ("The operation permissions = O%o\n",
50 buf->shm_perm.mode);
51 printf ("The slot usage sequence\n");

Figure 9-16: shmctl(2) System Call Example (Sheet 2 of 6)

9-102 PROGRAMMER'S GUIDE UP-13690

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

printf ("number = O%x\n",
buf->shm_perm.seq);

printf ("The key= O%x\n",
buf->shm_perm.key);

Shared Memory

printf ("The segment size = %d\n",
buf->shm_segsz);

printf ("The pid of last shmop = %d\n",
buf->shm_lpid);

printf ("The pid of creator = %d\n",
buf->shm_cpid);

printf ("The current # attached = %d\n",
buf->shm_nattch);

printf("The in memory # attached = %d\n",
buf->shm_cnattach);

printf("The last shmat time = %d\n",
buf->shm_atime);

printf("The last shmdt time = %d\n",
buf->shm_dtime);

printf("The last change time = %d\n",
buf->shm_ctime);

break;

/* Lines 73 - 87 deleted */

~----~
Figure 9-16: shmctl(2) System Call Example (Sheet 3 of 6)

UP-13690 INTERPROCESS COMMUNICATION 9-103

Shared Memory

88
89

case 2: /*Select and change the desired
member(s) of the data structure.*/

90
91
92

93
94
95
96
97
98
99
100
101
102
103
104

/*Get the original data for this shmid
data structure first.*/

rtrn = shmctl(shmid, IPC_STAT, buf);

printf("\nEnter the number for the\n");
printf("member to be changed:\n");
printf("shm_perm.uid = l\n");
printf("shm_perm.gid = 2\n");
printf("shm_perm.mode = 3\n");
printf("Entry = H);
scanf("%d", &choice);
/*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

shmid_ds is updated with
IPC_STAT.*/

Figure 9-16: shmctl(2) System Call Example (Sheet 4 of 6)

9-104 PROGRAMMER'S GUIDE UP-13690

105
106
107
108
109
110
111
112

113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131

Shared Memory

swi tch (cho i ce >I
case 1:

printf("\nEnter USER 10 = H);
scanf ("%d", &uid);
buf->shm_perm.uid = uid;
printf("\nUSER 10 = %d\n",

buf->shm_perm.uid);
break;

case 2:
printf("\nEnter GROUP 10 = H);
scanf("%d", &gid);
buf->shm_perm.gid = gid;
printf("\nGROUP 10 = %d\n",

buf->shm_perm.gid);
break;

case 3:

J

printf("\nEnter MODE = H);
scanf("%o", &mode);
buf->shm_perm.mode = mode;
printf("\nMOOE = O%o\n",

buf->shm_perm.mode);
break;

/*00 the change.*/
rtrn = shmctl(shmid, IPC_SET,

buf) ;
break;

Figure 9-16: shmctlO System Call Example (Sheet 5 of 6)

UP-13690 INTERPROCESS COMMUNICATION 9-105

Shared Memory

132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

case 3: /*Remove the shmid along with its
associated
data structure.*/

rtrn = shmctl(shmid, IPC_RMID, NULL);
break;

case 4: /*Lock the shared memory segment*/
rtrn = shmctl(shmid, SHM_LOCK, NULL);
break;

case 5: /*Unlock the shared memory
segment.*/

J

rtrn = shmctl(shmid, SHM_UNLOCK, NULL);
break;

/*Perform the following if call is unsuccessful.*/
if (rtrn == - 1)
!

J

printf ("\nThe shmctl system call failed!\n");
printf ("The error number = %d\n", errno);

/*Return the shmid upon successful completion.*/
else

printf ("\nShmctl was successful for
shmid = %d\n", shmid);

ex i t (0);

~----------------------------~
Figure 9-16: shmctl(2) System Call Example (Sheet 6 of 6)

9-106 PROGRAMMER'S GUIDE UP-13690

Shared Memory

Operations for Shared Memory

This section gives a detailed description of using the shmat(2)
and shmdt(2) system calls, along with an example program which
allows all of their capabilities to be exercised.

Using shmop

The synopsis found in the shmop(2) entry in the Programmer's
Reference Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
i nt shmfl g;

int shmdt (shmaddr)
~ 'shmaddr;

Attaching a Shared Memory Segment

The shmat(2) system call requires three arguments to be
passed to it, and it returns a character pointer value.

The system call can be cast to return an integer value. Upon
successful completion, this value will be the address in core
memory where the process is attached to the shared memory seg­
ment and when unsuccessful it will be a -1.

UP-13690 INTER PROCESS COMMUNICATION 9-107

Shared Memory

The shmid argument must be a valid, non-negative, integer
value. In other words, it must have already been created by using
the shmget(2) system call.

The shmaddr argument can be zero or user supplied when
passed to the shmat(2) system call. If it is zero, the UNIX operat­
ing system picks the address of where the shared memory seg­
ment will be attached. If it is user supplied, the address must be a
valid address that the UNIX operating system would pick. The fol­
lowing illustrates some typical address ranges; these are for the
382 Computer:

OxcOocOOOO
OxcOOeOOOO
Oxc0100000
Oxc0120000

Note that these addresses are in chunks of 20,000 hexade­
cimal. It would be wise to let the operating system pick addresses
so as to improve portability.

The shmflg argument is used to pass the SHM _AND and
SHM _ ADONL Y flags to the shmatO system call.

Further details are discussed in the example program for
shmopO. If you have problems understanding the logic manipula­
tions in this program, read the "Using shmget" section of this
chapter; it goes into more detail than what would be practical to
do for every system call.

Detaching Shared Memory Segments

The shmdt(2) system call requires one argument to be passed
to it, and shmdt(2) returns an integer value.

Upon successful completion, zero is returned; and when
unsuccessful, shmdt(2) returns a -1.

Further details of this system call are discussed in the example
program. If you have problems understanding the logic manipula­
tions in this program, read the "Using shmget" section of this
chapter; it goes into more detail than what would be practical to
do for every system call.

9-108 PROGRAMMER'S GUIDE UP-13690

Shared Memory

Example Program
The example program in this section (Figure 9-17) is a menu

driven program which allows all possible combinations of using the
shmat(2) and shmdt(2) system calls to be exercised.

From studying this program, you can observe the method of
passing arguments and receiving return values. The user-written
program requirements are pointed out.

This program begins (lines 5-9) by including the required
header files as specified by the shmop(2) entry in the
Programmer's Reference Manual. Note that in this program that
errno is declared as an external variable, and therefore, the
errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close
as possible to those in the synopsis. Their declarations are self­
explanatory. These names make the program more readable, and
this is perfectly legal since they are local to the program. The vari­
ables declared for this program and their purposes are as follows:

• flags - used to store the codes of SHM_RND or
SHM RDONLY for the shmat(2) system call

• addr - used to store the address of the shared memory seg­
ment for the shmat(2) and shmdt(2) system calls

• i-used as a loop counter for attaching and detaching

• attach - used to store the desired number of attach opera­
tions

• shmid - used to store and pass the desired shared memory
segment identifier

• shmflg - used to pass the value of flags to the shmat(2)
system call

• retrn - used to store the return values from both system
calls

• detach - used to store the desired number of detach opera­
tions

UP·13690 INTERPROCESS COM MUNICATION 9·109

Shared Memory

This example program combines both the shmat(2) and
shmdt(2) system calls. The program prompts for the number of
attachments and enters a loop until they are done for the specified
shared memory identifiers. Then, the program prompts for the
number of detachments to be performed and enters a loop until
they are done for the specified shared memory segment
addresses.

shmat
The program prompts for the number of attachments to be

performed, and the value is stored at the address of the attach
variable (lines 17-21).

A loop is entered using the attach variable and the i counter
(lines 23-70) to perform the specified number of attachments.

In this loop, the program prompts for a shared memory seg­
ment identifier (lines 24-27) and it is stored at the address of the
shmid variable (line 28). Next, the program prompts for the
address where the segment is to be attached (lines 30-34), and it
is stored at the address of the addr variable (line 35). Then, the
program prompts for the desired flags to be used for the attach­
ment (lines 37-44), and the code representing the flags is stored at
the address of the flags variable (line 45). The flags variable is
tested to determine the code to be stored for the shmflg variable
used to pass them to the shmat(2) system call (lines 46-57). The
system call is made (line 60). If successful, a message stating so
is displayed along with the attach address (lines 66-68). If unsuc­
cessful, a message stating so is displayed and the error code is
displayed (lines 62, 63). The loop then continues until it finishes.

shmdt
After the attach loop completes, the program prompts for the

number of detach operations to be performed (lines 71-75), and
the value is stored at the address of the detach variable (line 76).

A loop is entered using the detach variable and the i counter
(lines 78-95) to perform the specified number of detachments.

In this loop, the program prompts for the address of the
shared memory segment to be detached (lines 79-83), and it is
stored at the address of the addr variable (line 84). Then, the
shmdt(2) system call is performed (line 87). If successful, a mes­
sage stating so is displayed along with the address that the

9-110 PROGRAMMER'S GUIDE UP-13690

Shared Memory

segment was detached from (lines 92,93). If unsuccessful, the
error number is displayed (line 89). The loop continues until it fin­
ishes.

The example program for the shmop(2) system calls follows.
It is suggested that the program be put into a source file called
shmop.c and then into an executable file called shmop.

When compiling C programs that use floating point operations,
the -f option should be used on the cc command line. If this
option is not used, the program will compile successfully, but when
the program is executed it will fail.

UP-13690 INTERPROCESS COMMUNICATION 9-111

Shared Memory

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20

21
22

/*This is a program to illustrate
**the shared memory operations, shmop(),
**system call capabilities.
*/

/*Include
#include
#include
#include
#include
/*Start of
maine)

necessary header
<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/shm.h>

main C language

files.*/

program*/

{
extern int errno;
int flags, addr, i, attach;
int shmid, shmflg, retrn, detach;

/*Loop for attachments by this process.*/
printf("Enter the number of\n");
printf("attachments for this\n");
printf("process (1-4).\n");
printf(" AttaGhments = ");

scanf("%d", &attach);
printf("Number of attaches = %d\n", attach);

Figure 9-17: shmopO System Call Example (Sheet 1 of 4)

9-112 PROGRAMMER'5 GUIDE UP-13690

Shared Memory

23 for(i = 1; i <= attach; i++) {
24 /*Enter the shared memory 10.*/
25 printf("\nEnter the shmid of\n");
26 printf("the shared memory segment to\n");
27 printf("be operated on = H);
28 scanf("%d", &shmid);
29 printf("\nshmid = %d\n", shmid);

30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45

/*Enter the value for shmaddr.*/
printf("\nEnter the value for\n");
printf("the shared memory address\n");
printf("in hexadecimal:\n");
printf(" Shmaddr = H);
scanf("%x", &addr);
printf("The desired address = Ox%x\n", addr);

/*Specify the desired flags.*/
printf("\nEnter the corresponding\n");
printf("number for the desired\n");
printf("flags:\n");
printf("SHM_RNO 1\n");
printf("SHM_RDONLY 2\n");
printf("SHM_RNO and SHM_RDONLY = 3\n");
printf(" Flags ");
scanf("%d", &flags);

Figure 9-17: shmopO System Call Example (Sheet 2 of 4)

UP-13690 INTERPROCESS COMMUNICATION 9-113

Shared Memory

46 switch(flags)
47 I
48 case 1:
49 shmflg SHM_RND;
50 break;
51 case 2:
52 shmflg SHM_RDONLY;
53 break;
54 case 3:
55 shmflg = SHM_RND : SHM_RDONLY;
56 break;
57 J
58 printf("\nFlags = O%o\n", shmflg);

59 /*00 the shmat system call.*/
60 retrn = (int)shmat(shmid, addr, shmflg);
61 if(retrn == -1) {
62 printf("\nShmat failed. ");
63 printf("Error = %d\n", errno);
64 J
65 else {
66 printf ("\nShmat was successful\n");
67 printf("for shmid = %d\n", shmid);
68 printf("The address = Ox%x\n", retrn);
69
70

71 /*Loop for detachments by this process.*/
72 printf("Enter the number of\n");
73 printf("detachments for this\n");
74 printf("process (1-4).\n");
75 printf(" Detachments = ");

Figure 9-17: shmopO System Call Example (Sheet 3 of 4)

9-114 PROGRAMMER'S GUIDE UP-13690

Shared Memory

76 scanf("%d", &detach);
77 printf("Number of attaches = %d\n", detach);
78 for(i = 1; i <= detach; i++) 1

79 /*Enter the value for shmaddr.*/
80 printf("\nEnter the value for\n");
81 printf("the shared memory address\n");
82 printf("in hexadecimal:\n");
83 printf(" Shmaddr It);
84 scanf("%x", &addr);
85 printf("The desired address Ox%x\n", addr);

86 /*00 the shmdt system call.*/
87 retrn = (int)shmdt(addr);
88 if(retrn == -1) 1
89 printf("Error = %d\n", errno);
90 J
91 else 1
92 printf ("\nShmdt was successful\n");
93 printf("for address = O%x\n", addr);

94
95
96

Figure 9-17: shmopO System Call Example (Sheet 4 of 4)

UP-13690 INTERPROCESS COMMUNICATION 9-115

Chapter 10: curses/terminfo

Introduction 10-1

Overview 10-3

What is curses? 10-3

What is terminfo? 10-5

How curses and terminfo Work Together 10-6

Other Components of the Terminal Information Utilities 10-7

Working with curses Routines 10-9

What Every curses Program Needs 10-9

The Header File < curses.h > 10-9

The Routines initscrO, refresh 0 , endwinO 10-11

Compiling a curses Program 10-12
Running a curses Program 10-13

More about initscrO and Lines and Columns 10-14
More about refreshO and Windows 10-14

Getting Simple Output and Input 10-19

Output 10-19

Input 10-31

Controlling Output and Input 10-39

Output Attributes 10-39

Bells, Whistles, and Flashing Lights 10-44

Input Options 10-45

Building Windows and Pads 10-50

Output and In put 10-50

The Routines wnoutrefreshO and doupdateO 10-51

New Windows 10-56

UP·13690 TABLE OF CONTENTS

Table of Contents

Using Advanced curses Features 10-59

Routines for Drawing Lines and Other Graphics 10-59

Routines for Using Soft Labels 10-61

Working with More than One Terminal 10-62

Working with terminfo Routines 10-65

What Every terminfo Program Needs 10-65

Compiling and Running a terminfo Program 10-67
An Example terminfo Program 10-67

Working with the terminfo Database 10-71

Writing Terminal Descriptions 10-71

Name the Terminal 10-72
Learn About the Capabilities 10-72

Specify Capabilities 10-73

Compile the Description 10-80

Test the Description 10-81

Comparing or Printing terminfo Descriptions 10-82

Converting termcap Description to a terminfo Description 10-82

curses Program Examples

The editor Program
The highlight Program

The scatter Program
The show Program

The two Program

The window Program

ii PROGRAMMER'S GUIDE

10-84

10-84
10-91

10-93
10-96

10-98
10-101

UP-13690

Introduction
Screen management programs are a common component of

many commercial computer applications. These programs handle
input and output at a video display terminal. A screen program
might move a cursor, print a menu, divide a terminal screen into
windows, or draw a display on the screen to help users enter and
retrieve information from a database.

This tutorial explains how to use the Terminal Information Utili­
ties package, commonly called curses/terminfo, to write screen
management programs on a UNIX system. This package includes
a library of C routines, a database, and a set of UNIX system sup­
port tools. To start you writing screen management programs as
soon as possible, the tutorial does not attempt to cover every part
of the package. For instance, it covers only the most frequently
used routines and then points you to curses(3X) and terminfo(4)
in the Programmer's Reference Manual for more information.
Keep the manual close at hand; you'll find it invaluable when you
want to know more about one of these routines or about other
routines not discussed here.

Because the routines are compiled C functions, you should be
familiar with the C programming language before using
curses/terminfo. You should also be familiar with the UNIX
systemIC language standard I/O package (see "System Calls and
Subroutines" and "Input/Output" in Chapter 2 and stdio(3S)). With
that knowledge and an appreciation for the UNIX philosophy of
building on the work of others, you can design screen manage­
ment programs for many purposes.

This chapter has five sections:

• Overview

This section briefly describes curses, terminfo, and the
other components of the Terminal Information Utilities pack­
age.

• Working with curses Routines

This section describes the basic routines making up the
curses(3X) library. It covers the routines for writing to a
screen, reading from a screen, and building windows. It
also covers routines for more advanced screen

UP-13690 curses/terminfo 10-1

Introduction

management programs that draw line graphics, use a
terminal's soft labels, and work with more than one terminal
at the same time. Many examples are included to show the
effect of using these routines.

• Working with terminfo Routines

This section describes the routines in the curses library that
deal directly with the terminfo database to handle certain
terminal capabilities, such as programming function keys.

• Working with the terminfo Database

This section describes the terminfo database, related sup­
port tools, and their relationship to the curses library.

• curses Program Examples

This section includes six programs that illustrate uses of
curses routines.

10-2 PROGRAMMER'S GUIDE UP-13690

Overview

What is curses?

curses(3X) is the library of routines that you use to write
screen management programs on the UNIX system. The routines
are C functions and macros; many of them resemble routines in
the standard C library. For example, there's a routine printwO
that behaves much like printf(3S) and another routine getchO that
behaves like getc(3S). The automatic teller program at your bank
might use printwO to print its menus and getchO to accept your
requests for withdrawals (or, better yet, deposits). A visual screen
editor like the UNIX system screen editor vi(1) might also use
these and other curses routines.

The curses routines are usually located in /usr/lib/libcurses.a.
To compile a program using these routines, you must use the
cc(1) command and include -Icurses on the command line so
that the link editor can locate and load them:

cc file.c -Icurses -0 file

The name curses comes from the cursor optimization that this
library of routines provides. Cursor optimization minimizes the
amount a cursor has to move around a screen to update it. For
example, if you designed a screen editor program with curses rou­
tines and edited the sentence

curses/terminfo is a great package for creating screens.

to read

curses/terminfo is the best package for creating screens.

the program would output only the best in place of a great. The
other characters would be preserved. Because the amount of
data transmitted - the output - is minimized, cursor optimization is
also referred to as output optimization.

Cursor optimization takes care of updating the screen in a
manner appropriate for the terminal on which a curses program is
run. This means that the curses library can do whatever is
required to update many different terminal types. It searches the

UP-13690 curses/term info 10-3

Overview

terminfo database (described below) to find the correct descrip­
tion for a terminal.

How does cursor optimization help you and those who use
your programs? First, it saves you time in describing in a program
how you want to update screens. Second, it saves a user's time
when the screen is updated. Third, it reduces the load on your
UNIX system's communication lines when the updating takes
place. Fourth, you don't have to worry about the myriad of termi­
nals on which your program might be run.

Here's a simple curses program. It uses some of the basic
curses routines to move a cursor to the middle of a terminal
screen and print the character string BullsEye. Each of these rou­
tines is described in the following section "Working with curses
Routines" in this chapter. For now, just look at their names and
you will get an idea of what each of them does:

#include <curses.h>

main()
I

initscr();

move(lINES/2 - 1, COlS/2 - 4);
addstr("Bulls");
refresh() ;
addstr(ltEyelt);
refresh() ;
endwin();

Figure 10-1: A Simple curses Program

10-4 PROGRAMMER'S GUIDE UP-13690

Overview

What Is terminfo?

terminfo refers to both of the following:

• It is a group of routines within the curses library that han­
dles certain terminal capabilities. You can use these rou­
tines to program function keys, if your terminal has pro­
grammable keys, or write filters, for example. Shell pro­
grammers, as well as C programmers, can use the terminfo
routines in their programs.

• It is a database containing the descriptions of many termi­
nals that can be used with curses programs. These
descriptions specify the capabilities of a terminal and the
way it performs various operations - for example, how many
lines and columns it has and how its control characters are
interpreted.

Each terminal description in the database is a separate,
compiled file. You use the source code that terminfo(4)
describes to create these files and the command tic(1 M) to
compile them.

The compiled files are normally located in the directories
/usr/lib/terminfo/? These directories have single character
names, each of which is the first character in the name of a
terminal. For example, an entry for the AT&T Teletype 5425
is normally located in the file /usr/lib/terminfo/a/att5425.

Here's a Simple shell script that uses the terminfo database.

UP-13690 curses/terminfo 10-5

Overview

. # Clear the screen and show the 0,0 position.

tput clear
tput cup 0 0 # or tput home
echo "<- this is 0 0"

Show the 5,10 position.

tput cup 5 10
echo "<- this is 5 10"

Figure 10-2: A Shell Script Using terminfo Routines

How curses and terminfo Work Together

A screen management program with curses routines refers to
the term info database at run time to obtain the information it
needs about the terminal being used - what we'll call the current
terminal from here on.

For example, suppose you are using an AT&T Teletype 5425
terminal to run the simple curses program shown in Figure 10-1.
To execute properly, the program needs to know how many lines
and columns the terminal screen has to print the Bu 11 sEye in the
middle of it. The description of the AT&T Teletype 5425 in the ter­
minfo database has this information. All the curses program
needs to know before it goes looking for the information is the
name of your terminal. You tell the program the name by putting
it in the environment variable $TERM when you log in or by set­
ting and exporting $TERM in your .profile file (see profile (4)) .
Knowing $TERM, a curses program run on the current terminal
can search the terminfo database to find the correct terminal
description.

10-6 PROGRAMMER'S GUIDE UP-13690

Overview

For example, assume that the following example lines are in a
.profile:

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line
exports it. (See profile(4) in the Programmer's Reference Manual.)
The third line of the example tells the UNIX system to initialize the
current terminal. That is, it makes sure that the terminal is set up
according to its description in the terminfo database. (The order
of these lines is important. $TERM must be defined and exported
first, so that when tput is called the proper initialization for the
current terminal takes place.) If you had these lines in your .pro­
file and you ran a curses program, the program would get the
information that it needs about your terminal from the file
/usr/lib/terminfo/a/att5425, which provides a match for $TERM.

Other Components of the Terminal Information
Utilities

We said earlier that the Terminal Information Utilities is com­
monly referred to as curses/terminfo. The package, however, has
other components. We've mentioned some of them, for instance
tic(1 M). Here's a complete list of the components discussed in
this tutorial:

captoinfo(1 M)

curses (3X)

infocmp(1 M)

tabs(1)

UP-13690

a tool for converting terminal descrip­
tions developed on earlier releases of
the UNIX system to terminfo descrip­
tions

a tool for printing and comparing com­
piled terminal descriptions

a tool for setting non-standard tab
stops

curses/terminfo 10-7

Overview

terminfo(4)

tic(1 M)

tput(1)

a tool for compiling terminal descrip­
tions for the terminfo database

a tool for initializing the tab stops on a
terminal and for outputting the value of
a terminal capability

We also refer to profile(4), scr_dump(4) , term(4), and term(S).
For more information about any of these components, see the
Programmer's Reference Manual and the User's Reference
Manual.

10-8 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines
This section describes the basic curses routines for creating

interactive screen management programs. It begins by describing
the routines and other program components that every curses
program needs to work properly. Then it tells you how to compile
and run a curses program. Finally, it describes the most fre­
quently used curses routines that

• write output to and read input from a terminal screen

• control the data output and input - for example, to print
output in bold type or prevent it from echoing (printing back
on a screen)

• manipulate multiple screen images (windows)

• draw simple graphics

• manipulate soft labels on a terminal screen

• send output to and accept input from more than one termi­
nal.

To illustrate the effect of using these routines, we include sim­
ple example programs as the routines are introduced. We also
refer to a group of larger examples located in the section "curses
Program Examples" in this chapter. These larger examples are
more challenging; they sometimes make use of routines not dis­
cussed here. Keep the curses(3X) manual page handy.

What Every curses Program Needs

All curses programs need to include the header file
< curses.h > and call the routines initscrO, refresh 0 or similar
related routines, and endwin O.

The Header File < curses.h >
The header file < curses.h > defines several global variables

and data structures and defines several curses routines as mac­
ros.

UP-13690 curses/terminfo 10-9

Working with curses Routines

To begin. let's consider the variables and data structures
defined. < curses.h > defines all the parameters used by curses
routines. It also defines the integer variables lIN ES and COlS;
when a curses program is run on a particular terminal. these vari­
ables are assigned the vertical and horizontal dimensions of the
terminal screen. respectively. by the routine initscrO described
below. The header file defines the constants OK and ERR. too.
Most curses routines have return values; the OK value is returned
if a routine is properly completed. and the ERR value if some error
occurs.

NOTE: lINES and COlS are external (global) variables
that represent the size of a terminal screen. Two
similar variables. $lINES and $COlUMNS. may
be set in a user's shell environment; a curses pro­
gram uses the environment variables to determine
the size of a screen. Whenever we refer to the
environment variables in this chapter. we will use
the $ to distinguish them from the C declarations
in the < curses.h > header file.

For more information about these variables. see
the following sections "The Routines initscr(),
refreshO. and endwinO" and "More about initscrO
and Lines and Columns."

Now let's consider the macro definitions. < curses.h > defines
many curses routines as macros that call other macros or curses
routines. For instance. the simple routine refreshO is a macro.
The line

Hdefine refresh() wrefresh(stdscr)

shows when refresh is called. it is expanded to call the curses
routine wrefreshO. The latter routine in turn calls the two curses
routines wnoutrefreshO and doupdateO. Many other routines
also group two or three routines together to achieve a particular
result.

10·10 PROGRAMMER'S GUIDE UP·13690

CAUTION:

Working with curses Routines

Macro expansion in curses programs may cause
problems with certain sophisticated C features,
such as the use of automatic incrementing vari­
ables.

One final point about < curses.h >: it automatically includes
< stdio.h > and the < termio.h > tty driver interface file. Including
either file again in a program is harmless but wasteful.

The Routines initscr(), refresh(), endwin()
The routines initscrO, refreshO, and endwinO initialize a termi­

nal screen to an "in curses state," update the contents of the
screen, and restore the terminal to an "out of curses state,"
respectively. Use the simple program that we introduced earlier to
learn about each of these routines:

Hinclude <curses.h>

main()
I

initscr()j /*initialize terminal settings & <curses.h>
data structures and variables */

move (lINES/2 - 1, COlS/2 - 4)j
addstr("Bulls")j
refresh()j /* send output to (update) screen */
addstr("Eye")j
refresh();
endwin()j

/* send more output to terminal screen */
/* restore all terminal settings */

Figure 10-3: The Purposes of initscrO, refreshO, and endwinO in a
Program

UP-13690 curses/terminfo 10-11

Working with curses Routines

A curses program usually starts by calling initscrO; the pro­
gram should call initscrO only once. Using the environment vari­
able $TERM as the section "How curses and terminfo Work
Together" describes, this routine determines what terminal is being
used. It then initializes all the declared data structures and other
variables from < curses.h >. For example, initscrO would initialize
lINES and COlS for the sample program on whatever terminal it
was run. If the Teletype 5425 were used, this routine would initial­
ize lINES to 24 and COlS to 80. Finally, this routine writes error
messages to stderr and exits if errors occur.

During the execution of the program, output and input is han­
dled by routines like moveO and addstrO in the sample program.
For example,

move(LINES/2 - 1, COLS/2 - 4);

says to move the cursor to the left of the middle of the screen.
Then the line

addstr("Bulls");

says to write the character string Bull s. For example, if the Tele­
type 5425 were used, these routinp.s would position the cursor and
write the character string at (11,36).

NOTE: All curses routines that move the cursor move it
from its home position in the upper left corner of a
screen. The (lIN ES,COlS) coordinate at this posi­
tion is (0,0) not (1,1). Notice that the vertical coor­
dinate is given first and the horizontal second,
which is the opposite of the more common 'x,y'
order of screen (or graph) coordinates. The -1 in
the sample program takes the (0,0) position into
account to place the cursor on the center line of
the terminal screen.

Routines like moveO and addstrO do not actually change a
physical terminal screen when they are called. The screen is
updated only when refreshO is called. Before this, an internal
representation of the screen called a window is updated. This is a
very important concept, which we discuss below under "More

10-12 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

about refresh 0 and Windows."

Finally, a curses program ends by calling endwinO. This rou­
tine restores all terminal settings and positions the cursor at the
lower left corner of the screen.

Compiling a curses Program

You compile programs that include curses routines as C
language programs using the cc(1) command (documented in the
Programmer's Reference Manual), which invokes the C compiler
(see Chapter 2 in this guide for details).

The routines are usually stored in the library
/usr/lib/libcurses.a. To direct the link editor to search this library,
you must use the -I option with the cc command.

The general command line for compiling a curses program fol­
lows:

cc file.c -Icurses -0 file

file.c is the name of the source program; and file is the executable
object module.

Running a curses Program

curses programs count on certain information being in a
user's environment to run properly. Specifically, users of a curses
program should usually include the following three lines in their
.profile files:

TERM=current terminal type
export TERM

tput init

For an explanation of these lines, see the section "How curses
and terminfo Work Together" in this chapter. Users of a curses
program could also define the environment variables $LIN ES,
$COLUMNS, and $TERMINFO in their .profile files. However,
unlike $TERM, these variables do not have to be defined.

UP-13690 curses/terminfo 10-13

Working with curses Routines

If a curses program does not run as expected, you might
want to debug it with sdb(1), which is documented in the
Programmer's Reference Manua~. When using sdb, you have to
keep a few pOints in mind. First, a curses program is interactive
and always has knowledge of where the cursor is located. An
interactive debugger like sdb, however, may cause changes to the
contents of the screen of which the curses program is not aware.

Second, a curses program outputs to a window until refreshO
or a similar routine is called. Because output from the program
may be delayed, debugging the output for consistency may be
difficult.

Third, setting break points on curses routines that are macros,
such as refreshO, does not work. You have to use the routines
defined for these macros, instead; for example, you have to use
wrefresh 0 instead of refresh O. See the above section, liThe
Header File < curses.h > /' for more information about macros.

More about initscr() and Lines and Columns

After determining a terminal's screen dimensions, initscrO sets
the variables LIN ES and COLS. These variables are set from the
terminfo variables lines and columns. These, in turn, are set from
the values in the terminfo database, unless these values are over­
ridden by the values of the environment $LINES and $COLUMNS.

More about refresh() and Windows

As mentioned above, curses routines do not update a terminal
until refreshO is called. Instead, they write to an internal represen­
tation of the screen called a window. When refreshO is called, all
the accumulated output is sent from the window to the current ter­
minal screen.

A window acts a lot like a buffer does when you use a UNIX
system editor. When you invoke vi(1L for instance, to edit a file,
the changes you make to the contents of the file are reflected in
the buffer. The changes become part of the permanent file only
when you use the w or ZZ command. Similarly, when you invoke
a screen program made up of curses routines, they change the

10-14 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

contents of a window. The changes become part of the current
terminal screen only when refreshO is called.

< curses.h > supplies a default window named stdscr (stan­
dard screen), which is the size of the current terminal's screen, for
all programs using curses routines. The header file defines stdscr
to be of the type WINDOW*, a pointer to a C structure which you
might think of as a two-dimensional array of characters represent­
ing a terminal screen. The program always keeps track of what is
on the physical screen, as well as what is in stdscr. When
refreshO is called, it compares the two screen images and sends a
stream of characters to the terminal that make the current screen
look like stdscr. A curses program considers many different ways
to do this, taking into account the various capabilities of the termi­
nal and similarities between what is on the screen and what is on
the window. It optimizes output by printing as few characters as is
possible. Figure 10-4 illustrates what happens when you execute
the sample curses program that prints Bull sEye at the center of a
terminal screen (see Figure 10-1). Notice in the figure that the ter­
minal screen retains whatever garbage is on it until the first
refresh 0 is called. This refresh 0 clears the screen and updates it
with the current contents of stdscr.

UP-13690 curses/terminfo 10-15

Working with curses Routines

initscr()

move(LlNES / 2 - 1,
eOlS/1 - 4)

[2,3]

addstr(" Bu 115")

refresh()

o
stdscr

stdscr

o

stdscr

BulisO

stdscr

BulisO

physical screen

(garbage)

physical screen

(garbage)

physical screen

(garbage)

physical screen

BulisD

Figure 10-4: The Relationship between stdscr and a Terminal
Screen (Sheet 1 of 2)

10-16 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

stdscr physical screen
pddstr(" Eye")

BulisEyeO BullsO

stdscr physical screen
refresh()

BullsEyeO BullsEyeO

stdscr physical screen
endwin()

BullsEyeO . BullsEye

[]

Figure 10-4: The Relationship Between stdscr and a Terminal
Screen (Sheet 2 of 2)

UP-13690 curses/terminfo 10-17

Working with curses Routines

You can create other windows and use them instead of
stdscr. Windows are useful for maintaining several different
screen images. For example, many data entry and retrieval appli­
cations use two windows: one to control input and output and one
to print error messages that don't mess up the other window.

It's possible to subdivide a screen into many windows, refresh­
ing each one of them as desired. When windows overlap, the con­
tents of the current screen show the most recently refreshed win­
dow. It's also possible to create a window within a window; the
smaller window is called a subwindow. Assume that you are
designing an application that uses forms, for example, an expense
voucher, as a user Interface. You could use subwindows to control
access to certain fields on the form.

Some curses routines are designed to work with a special
type of window called a pad. A pad is a window whose size is not
restricted by the size of a screen or associated with a particular
part of a screen. You can use a pad when you have a particularly
large window or only need part of the window on the screen at
anyone time. For example, you might use a pad for an applica­
tion with a spread sheet.

Figure 10-5 represents what a pad, a subwindow, and some
other windows could look like in comparison to a terminal screen.

terminal screen

window window

0
pad

,--

I-I pad

"window

I window I

'----

Figure 10-5: Multiple Windows and Pads Mapped to a Terminal
Screen

10-18 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

The section "Building Windows and Pads" in this chapter
describes the routines you use to create and use them. If you'd
like to see a curses program with windows now, you can turn to
the window program under the section "curses Program Exam­
ples" in this chapter.

Getting Simple Output and Input

Output

The routines that curses provides for writing to stdscr are
similar to those provided by the stdio(3S) library for writing to a
file. They let you

• write a character at a time - addch 0

• write a string - addstrO

• format a string from a variety of input arguments -
printwO

• move a cursor or move a cursor and print character(s) -
moveO, mvaddchO, mvaddstrO, mvprintwO

• clear a screen or a part of it - clearO, eraseO, clrtoeolO,
clrtobotO

Following are descriptions and examples of these routines.

CAUTION:

UP·13690

The curses library provides its own set of output
and input functions. You should not use other I/O
routines or system calls, like read(2) and write(2),
in a curses program. They may cause undesirable
results when you run the program.

curses/terminfo 10·19

Working with curses Routines

addch()

SYNOPSIS

#include < curses.h >

int addch(ch)
chtype ch;

NOTES

• addch 0 writes a single character to stdscr.

• The character is of the type chtype, which is defined in
< curses.h >. chtype contains data and attributes (see
"Output Attributes" in this chapter for information about
attributes) .

• When working with variables of this type, make sure you
declare them as chtype and not as the basic type (for
example, short) that chtype is declared to be in
< curses.h >. This will ensure future compatibility.

• addchO does some translations. For example, it converts

the < NL > character to a clear to end of line and a
move to the next line

the tab character to an appropriate number of blanks

other control characters to their "X notation

• addchO normally returns OK. The only time addchO returns
ERR is after adding a character to the lower right-hand
corner of a window that does not scroll.

• addch 0 is a macro.

10-20 PROGRAMMER'S GUIDE UP-13690

EXAMPLE

#include <curses.h>

rna i n()

1
initscr()j
addch (, a');
refresh();
endwin();

Working with curses Routines

The output from this program will appear as follows:

a

$

Also see the show program under "curses Example Programs"
in this chapter.

UP-13690 curses/terminfo 10-21

Working with curses Routines

addstr()

SYNOPSIS

#include < curses.h >

int addstr(str)
char *str;

NOTES

• addstrO writes a string of characters to stdscr.

• addstrO calls addchO to write each character .

• addstrO follows the same translation rules as addchO.

• addstrO returns OK on success and ERR on error.

• addstrO is a macro.

EXAMPLE

Recall the sample program that prints the character string
BullsEye. See Figures 10-1, 10-2, and 10-4.

10·22 PROGRAMMER'S GUIDE UP·13690

printw()

SYNOPSIS

#include < curses.h >

int printw(fmt [,arg •••])
char *fmt

NOTES

Working with curses Routines

• printwO handles formatted printing on stdscr.

• Like printf, printwO takes a format string and a variable
number of arguments.

• Like addstrO, printwO calls addchO to write the string.

• printwO returns OK on success and ERR on error.

UP-13690 curses/terminfo 10-23

Working with curses Routines

EXAMPLE

#include <curses.h>

main()
1

char* title = "Not specified";
tnt no = 0;

/* Missing code. */

initscr();

/* Missing code. */

printw("%s is not in stock.\n", title);
printw("Please ask the cashier to order %d for you.\n", no);

refresh() ;
endwin();

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$

10-24 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

move()

SYNOPSIS

#include < curses.h >

int move(y, x);
int y, x;

NOTES

• moveO positions the cursor for stdscr at the given row y
and the given column x.

• Notice that moveO takes the y coordinate before the x coor­
dinate. The upper left-hand coordinates for stdscr are (0,0),
the lower right-hand (lIN ES - 1, eOlS - 1). See the section
"The Routines initscrO, refreshO, and endwinO" for more
information .

• moveO may be combined with the write functions to form

mvaddch (y, x, ch), which moves to a given position
and prints a character

mvaddstr(y, x, str), which moves to a given position
and prints a string of characters

mvprintw(y, x, fmt [,arg ...]),
which moves to a given position and prints a formatted

string.

• moveO returns OK on success and ERR on error. Trying to
move to a screen position of less than (0,0) or more than
(lINES - 1, eOlS - 1) causes an error.

• moveO is a macro.

UP·13690 curses/terminfo 10·25

Working with curses Routines

EXAMPLE

#include <curses.h>

maine)
1

initscr()j
addstr("Cursor should be here --> if move() works.")j
printw("\n\n\nPress <CR> to end test.")j
move(O,,25);
refresh() ;
getch()j /* Gets <CR>j discussed below. */
endwin()j

Here's the output generated by running this program:

Cursor should be here -->if move() works.

Press <CR> to end test.

After you press < CR >, the screen looks like this:

Cursor should be here -->

to end test.

See the scatter program under "curses Program Examples" in this
chapter for another example of using moveO.

10-26 PROGRAMMER'S GUIDE UP-13690

clear() and erase()

SYNOPSIS

#include < curses.h >

int clearO
int eraseO

NOTES

Working with curses Routines

• Both routines change stdscr to all blanks.

• clearO also assumes that the screen may have garbage that
it doesn't know about; this routine first calls eraseO and
then clearokO which clears the physical screen completely
on the next call to refreshO for stdscr. See the curses(3X)
manual page for more information about clearok O.

• initscrO automatically calls clearO.

• clearO always returns OK; eraseO returns no useful value.

• Both routines are macros.

UP-13690 curses/terminfo 10-27

Working with curses Routines

clrtoeol() and clrtobot()

SYNOPSIS

#include < curses.h >

int clrtoeolO
int clrtobotO

NOTES

• clrtoeolO changes the remainder of a line to all blanks.

• clrtobotO changes the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

10-28 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

EXAMPLE

The following sample program uses clrtobotO.

#include <curses.h>

main()
1

initscr();
addstr("Press <CR> to delete to end of the line and on.");
addstr("\nDelete this too.\nAnd this.");
move(O,,30)j
refresh() j
getch() j
clrtobot()j
refresh() ;
endwin()j

Here's the output generated by running this program:

Press <CR> to delete from hereto the end of the line and on.
Delete this too.
And this.

Notice the two calls to refresh 0: one to send the full screen
of text to a terminal, the other to clear from the position indicated
to the bottom of a screen.

Here's what the screen looks like when you press < CR > :

UP·13690 curses/term info 10·29

Working with curses Routines

Press <CR> to delete from here

See the show and two programs under "curses Example Pro­
grams" for examples of uses for clrtoeolO.

10·30 PROGRAMMER'S GUIDE UP·13690

Working with curses Routines

Input
curses routines for reading from the current terminal are simi­

lar to those provided by the stdio(3S) library for reading from a
file. They let you

• read a character at a time - getch 0
• read a < NL > -terminated string - getstrO

• parse input, converting and assigning selected data to an
argument list - scanwO

The primary routine is getchO, which processes a single input
character and then returns that character. This routine is like the
C library routine getcharO (3S) except that it makes several
terminal- or system-dependent options available that are not possi­
ble with getcharO. For example, you can use getchO with the
curses routine keypadO, which allows a curses program to inter­
pret extra keys on a user's terminal, such as arrow keys, function
keys, and other special keys that transmit escape sequences, and
treat them as just another key. See the descriptions of getchO
and keypadO on the curses(3X) manual page for more informa­
tion about keypad O.

The following pages describe and give examples of the basic
routines for getting input in a screen program.

UP-13690 curses/terminfo 10-31

Working with curses Routines

getch()
SYNOPSIS

#include < curses.h >

int getchO

NOTES

• getch 0 reads a single character from the current terminal.

• getchO returns the value of the character or ERR on 'end of
file,' receipt of signals, or non-blocking read with no input.

• getch 0 is a macro.

• See the discussions about echo(), noecho(), cbreak(), noc·
break(), rawO, noraw(), halfdelay(), nodelay(), and
keypadO below and in curses(3X).

10·32 PROGRAMMER'S GUIDE UP-13690

EXAMPLE

#include <curses.h>

main()
I

int chj

initscr();

Working with curses Routines

cbreak()j /* Explained in the section "Input Options" */
addstr("Press any character: ")j
refresh();
ch = getch();
printw("\n\n\nThe character entered was a '%c' .\n", ch);
refresh() ;
endwin();

The output from this program follows. The first refreshO
sends the addstrQ character string from stdscr to the terminal:

. Press any character:

Then assume that a w is typed at the keyboard. getchO
accepts the character and assigns it to ch. Finally, the second
refreshQ is called and the screen appears as follows:

UP-13690 curses/terminfo 10-33

Working with curses Routines

. Press any character: w

The character entered was a 'w'.

$

For another example of getchO, see the show program under
"curses Example Programs" in this chapter.

10-34 PROGRAMMER'S GUIDE UP·13690

getstr()

SYNOPSIS

#include < curses.h >

int getstr(str)
char *str;

NOTES

Working with curses Routines

• getstrQ reads characters and stores them in a buffer until a
< CR >, < NL >, or < ENTER> is received from stdscr.
getstrQ does not check for buffer overflow.

• The characters read and stored are in a character string.

• getstrQ is a macro; it calls getchQ to read each character.

• getstrQ returns ERR if getchQ returns ERR to it. Otherwise
it returns OK.

• See the discussions about echoO, noechoQ, cbreakQ, noe­
breakQ, rawQ, norawQ, halfdelayQ, nodelayQ, and
keypadQ below and in curses(3X).

UP-13690 curses/term info 10-35

Working with curses Routines

EXAMPLE

#include <curses.h>

maine)
I
char str[256];

initscr();
cbreak(); /* Explained in the section "Input Options" */
addstr("Enter a character string terminated by <CR>:\n\n");
refresh()
getstr(str);
printw("\n\n\nThe string entered was \n'%s'\n", str);
refresh();
endwin();

Assume you entered the string 'I enjoy learning about the
UNIX system.' The final screen (after entering < CR » would
appear as follows:

Enter a character string terminated by <CR>:

I enjoy learning about the UNIX system.

The string entered was
'1 enjoy learning about the UNIX system.'

10·36 PROGRAMMER'S GUIDE UP·13690

scanw()

SYNOPSIS

#include < curses.h >

int scanw(fmt [, arg ...])
char *fmt;

NOTES

Working with curses Routines

• scanwO calls getstrO and parses an input line.

• Like scanf(3S), scanwO uses a format string to convert and
assign to a variable number of arguments.

• scanwO returns the same values as scanfO.

• See scanf(3S) for more information.

UP-13690 curses/terminfo 10-37

Working with curses Routines

EXAMPLE

#include <curses.h>

maine)
I

char string[100):
float number:

initscr():
cbreak(): /* Explained later in the */
echo(): /* section "Input Options" */
addstr("Enter number and string separated by a comma: "):
refresh ():
scanw("%f,%s",&number,string);
clear();
printw("String was \"%s\" and number was %f.",string,number);
refresh ();
endwin();

Notice the two calls to refreshO. The first call updates the
screen with the character string passed to addstrO, the second
with the string returned from scanwO. Also notice the call to
clearO. Assume you entered the following when prompted:
2,twin. After running this program, your terminal screen would
appear t as follows:

The string was "twin" and the number was 2.000000.

10-38 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

Controlling Output and Input

Output Attributes
When we talked about addchO, we said that it writes a single

character of the type chtype to stdscr. chtype has two parts: a
part with information about the character itself and another part
with information about a set of attributes associated with the char­
acter. The attributes allow a character to be printed in reverse
video, bold, underlined, and so on.

stdscr always has a set of current attributes that it associates
with each character as it is written. However, using the routine
attrsetO and related curses routines described below, you can
change the current attributes. Below is a list of the attributes and
what they mean:

• A_BLINK - blinking

• A_BOLD - extra bright or bold

• A_DIM - half bright

• A REVERSE - reverse video

• A_STANDOUT - a terminal's best highlighting mode

• A_UNDERLINE - underlining

• A _ AL TCHARSET - alternate character set (see the section
"Drawing Lines and Other Graphics" in this chapter)

To use these attributes, you must pass them as arguments to
attrsetO and related routines; they can also be ORed with the bit­
wise OR (:) to addchO.

NOTE:

UP-13690

Not all terminals are capable of displaying all attri­
butes. If a particular terminal cannot display a
requested attribute, a curses program attempts to
find a substitute attribute. If none is possible, the
attribute is ignored.

curses/terminfo 10-39

Working with curses Routines

Let's consider a use of one of these attributes. To display a
word in bold, you would use the following code:

printw("A word in H);
attrset(A_BOlD);
printw("boldface");
attrset(O);
printw(" really stands out.\n");

refresh();

Attributes can be turned on singly, such as attrset(A_BOLD) in
the example, or in combination. To turn on blinking bold text, for
example, you would use attrset(A_BLINK: A_BOLD). Individual
attributes can be turned on and off with the curses routines
attron 0 and attroffO without affecting other attributes. attrset(O)
turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to
make text attract the attention of a user. The particular hardware
attribute used for standout is the most visually pleasing attribute a
terminal has. Standout is typically implemented as reverse video
or bold. Many programs don't really need a specific attribute,
such as bold or reverse video, but instead just need to highlight
some text. For such applications, the A_STANDOUT attribute is
recommended. Two convenient functions, standoutO and stan­
dendO can be used to turn on and off this attribute. standendO,
in fact, turns of all attributes.

In addition to the attributes listed above, there are two bit
masks called A_CHARTEXT and A_ATIRIBUTES. You can use
these bit masks with the curses function inch 0 and the C logical
AND (&) operator to extract the character or attributes of a posi­
tion on a terminal screen. See the discussion of inchO on the
curses(3X) manual page.

10-40 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

Following are descriptions of attrsetO and the other curses
routines that you can use to manipulate attributes.

UP-13690 curses/terminfo 10-41

Working with curses Routines

attron(), attrset(), and attroff()

SYNOPSIS

#include < curses.h >

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

• attronO turns on the requested attribute attrs in addition to
any that are currently on. attrs is of the type chtype and is
defined in < curses.h > .

• attrsetO turns on the requested attributes attrs instead of
any that are currently turned on.

• attroffO turns off the requested attributes attrs if they are
on.

• The attributes may be combined using the bitwise OR (:).

• All return OK.

EXAMPLE

See the highlight program under "curses Example Programs"
in this chapter.

10-42 PROGRAMMER'S GUIDE UP-13690

standout() and standend()

SYNOPSIS

#include < curses.h >

int standout()
int standend 0
NOTES

Working with curses Routines

• standoutO turns on the preferred highlighting attribute,
A_STANDOUT, for the current terminal. This routine is
equivalent to attron(A_STANDOUT).

• standend 0 turns off all attributes. This routine is equivalent
to attrset(O}.

• Both always return OK.

EXAMPLE

See the highlight program under "curses Example Programs"
in this chapter.

UP-13690 curses/terminfo 10-43

Working with curses Routines

Bells, Whistles, and Flashing Lights
Occasionally, you may want to get a user's attention. Two

curses routines were designed to help you do this. They let you
ring the terminal's chimes and flash its screen.

flashO flashes the screen if possible, and otherwise rings the
bell. Flashing the screen is intended as a bell replacement, and is
particularly useful if the bell bothers someone within ear shot of
the user. The routine beepO can be called when a real beep is
desired. (If for some reason the terminal is unable to beep, but
able to flash, a call to beepO will flash the screen.)

beep() and flash()

SYNOPSIS

#include < curses.h >

int flashO
int beepO

NOTES

• flashO tries to flash the terminals screen, if possible, and, if
not, tries to ring the terminal bell.

• beepO tries to ring the terminal bell, if possible, and, if not,
tries to flash the terminal screen.

• Neither returns any useful value.

10-44 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

Input Options
The UNIX system does a considerable amount of processing

on input before an application ever sees a character. For example,
it does the following:

• echoes (prints back) characters to a terminal as they are
typed

• interprets an erase character (typically #) and a line kill
character (typically @)

• interprets a CTRL-D (control d) as end of file (EOF)

• interprets interrupt and quit characters

• strips the character's parity bit

• translates < CR > to < NL >

Because a curses program maintains total control over the
screen, curses turns off echoing on the UNIX system and does
echoing itself. At times, you may not want the UNIX system to
process other characters in the standard way in an interactive
screen management program. Some curses routines, noechoO
and cbreakO, for example, have been designed so that y.ou can
change the standard character processing. Using these routines
in an application controls how input is interpreted. Figure 10-6
shows some of the major routines for controlling input.

Every curses program accepting input should set some input
options. This is because when the program starts running, the ter­
minal on which it runs may be in cbreakO, rawO, nocbreakO, or
norawO mode. Although the curses program starts up in echoO
mode, as Figure 10-6 shows, none of the other modes are
guaranteed.

The combination of noechoO and cbreakO is most common in
interactive screen management programs. Suppose, for in~tance,
that you don't want the characters sent to your application pro­
gram to be echoed wherever the cursor currently happens to be;
instead, you want them echoed at the bottom of the screen. The
curses routine noechoO is designed for this purpose. However,
when noechoO turns off echoing, normal erase and kill processing
is still on. Using the routine cbreakO causes these characters to

UP-13690 curses/terminfo 10-45

Working with curses Routines

be uninterpreted.

Input Characters
Options Interpreted Uninterpreted

Normal interrupt, quit
'out of curses stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Normal echoing All else
curses 'start up (simulated) undefined.
state'

cbreakO interrupt, quit erase, kill
and echoO stripping EOF

echoing

cbreakO interrupt, quit echoing
and noechoO stripping erase, kill

EOF

nocbreakO break, quit echoing
and noechoO stripping

erase, kill
EOF

nocbreakO See caution below.
and echoO

nlO <CR> to <NL>

nonlO <CR> to <NL>

rawO break, quit
(instead of stripping
cbreakO)

Figure 10-6: Input Option Settings for curses Programs

10-46 PROGRAMMER'S GUIDE UP-13690

CAUTION:

Working with curses Routines

Do not use the combination nocbreakO and noe­
choO. If you use it in a program and also use
getchO, the program will go in and out of cbreakO
mode to get each character. Depending on the
state of the tty driver when each character is
typed, the program may produce undesirable out­
put.

In addition to the routines noted in Figure 10-6, you can use
the curses routines noraw(), halfdelayO, and nodelayO to control
input. See the curses(3X) manual page for discussions of these
routines.

The next few pages describe noechoO, cbreakO and the
related routines echoO and nocbreakO in more detail.

UP-13690 curses/terminfo 10-47

Working with curses Routines

echo() and noecho()

SYNOPSIS

#include < curses.h >

int echo()
int noechoO

NOTES

• echoO turns on echoing of characters by curses as they
are read in. This is the initial setting.

• noechoO turns off the echoing.

• Neither returns any useful value.

• curses programs may not run properly if you turn on echo­
ing with nocbreakO. See Figure 10-6 and accompanying
caution. After you turn echoing off, you can still echo char­
acters with addchO.

EXAMPLE

See the editor and show programs under "curses Program
Examples" in this chapter.

10·48 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

cbreak() and nocbreak()

SYNOPSIS

#include < curses.h >
int cbreakO
int nocbreakO

NOTES

• cbreakO turns on 'break for each character' processing. A
program gets each character as soon as it is typed, but the
erase, line kill, and CTRL-O characters are not interpreted.

• nocbreakO returns to normal 'line at a time' processing.
This is typically the initial setting.

• Neither returns any useful value.

• A curses program may not run properly if cbreakO is
turned on and off within the same program or if the combi­
nation nocbreakO and echoO is used.

• See Figure 10-6 and accompanying caution.

EXAMPLE

See the editor and show programs under "curses Program
Examples" in this chapter.

UP·13690 curses/terminfo 10·49

Working with curses Routines

Building Windows and Pads

An earlier section in this chapter, "More about refreshO and
Windows" explained what windows and pads are and why you
might want to use them. This section describes the curses rou­
tines you use to manipulate and create windows and pads.

Output and Input
The routines that you use to send output to and get input

from windows and pads are similar to those you use with stdscr.
The only difference is that you have to give the name of the win­
dow to receive the action. Generally, these functions have names
formed by putting the letter w at the beginning of the name of a
stdscr routine and adding the window name as the first parame­
ter. For example, addch('c') would become waddch(mywin, ' c')
if you wanted to write the character c to the window my win.
Here's a list of the window (or w) versions of the output routines
discussed in "Getting Simple Output and Input."

• waddch(win, ch)

• mvwaddch(win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, Y, X, sfr)

• wprintw(win, fmt (, arg ...])

• mvwprintw(win, Y, X, fmt (, arg ...])

• wmove(win, Y, x)

• wclear(win) and werase(win)

• wclrtoeol(win) and wclrtobot(win)

• wrefreshO

You can see from their declarations that these routines differ
from the versions that manipulate stdscr only in their names and
the addition of a win argument. Notice that the routines whose
names begin with mvw take the win argument before the Y, X

coordinates, which is contrary to what the names imply. See
curses(3X) for more information about these routines or the ver­
sions of the input routines getch, getstrO, and so on that you

10-50 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

should use with windows.

All w routines can be used with pads except for wrefreshO
and wnoutrefreshO (see below). In place of these two routines,
you have to use prefreshO and pnoutrefreshO with pads.

The Routines wnoutrefresh() and doupdate()

If you recall from the earlier discussion about refresh 0, we
said that it sends the output from stdscr to the terminal screen.
We also said that it was a macro that expands to wrefresh(stdscr)
(see IIWhat Every curses Program Needs" and "More about
refresh 0 and Windows").

The wrefresh 0 routine is used to send the contents of a win­
dow (stdscr or one that you create) to a screen; it calls the rou­
tines wnoutrefreshO and doupdateO. Similarly, prefreshO sends
the contents of a pad to a screen by calling pnoutrefresh 0 and
doupdateO·

Using wnoutrefreshO - or pnoutrefreshO (this discussion will
be limited to the former routine for simplicity) - and doupdateO,
you can update terminal screens with more efficiency than using
wrefreshO by itself. wrefreshO works by first calling
wnoutrefreshO, which copies the named window to a data struc­
ture referred to as the virtual screen. The virtual screen contains
what a program intends to display at a terminal. After calling
wnoutrefreshO, wrefreshO then calls doupdateO, which compares
the virtual screen to the physical screen and does the actual
update. If you want to output several windows at once, calling
wrefresh 0 will result .n alternating calls to wnoutrefresh 0 and
doupdateO, causing several bursts of output to a screen. How­
ever, by calling wnoutrefreshO for each window and then doup­
dateO only once, you can minimize the total number of characters
transmitted and the processor time used. The following sample
program uses only one doupdateO:

UP-13690 curses/terminfo 10-51

Working with curses Routines

#include <curses.h>

main()
I

WINDOW *w1, *w2;

initscr();
w1 = newwin(2,6,O,3);
w2 = newwin(1,4,5,4);
waddstr(w1, "Bulls");
wnoutrefresh(w1);
waddstr(w2, "Eye");
wnoutrefresh(w2);
doupdate ();
endwin();

Notice from the sample that you declare a new window at the
beginning of a curses program. The lines

w1 = newwin(2,6,O,3);
w2 = newwin(1,4,5,4);

declare two windows named w1 and w2 with the routine newwinO
according to certain specifications. newwin 0 is discussed in more
detail below.

Figure 10-7 illustrates the effect of wnoutrefreshO and doup­
dateO on these two windows, the virtual screen, and the physical
screen:

10-52 PROGRAMMER'S GUIDE UP-13690

initscr ()

w1 = newwin
(2,6,0,3,)

w2 = newwin
(1,4,5,4)

stdscr@ (0,0)

o

stdscr@ (0,0)

Working with curses Routines

virtual screen physical screen

o

(garbage)

virtual screen physical screen

o
o

(garbage)

w1@ (0,.3)

~
stdscr@ (0,0) virtual screen physical screen

00 (garbage)

w1@ (0,3) w2@ (5,4)

~ ~

Figure 10-7: The Relationship Between a Window and a Terminal
Screen (Sheet 1 of 3)

UP-13690 curses/terminfo 10-53

Working with curses Routines

stdscr@ (0,0) virtual screen physical screen
waddstr (w1,

"Bulls")

wnoutrefresh (w1)

DO
w1@ (0,3) w2@ (5,4)

I Bulls 0 I ~
stdscr@ (0,0) virtual screen

DD
w1 @ (0,3) w2@ (5,4)

I Bulls 0 I EJ

(garbage)

physical screen

(garbage)

stdscr@ (0,0) virtual screen physical screen
waddstr (w2,

"Eye")

DD
UIiSO

w1@ (0,3)

I BuM I
w2@ (5,4)

I Eyeol

(garbage)

Figure 10-7: The Relationship Between a Window and a Terminal
Screen (Sheet 2 of 3)

10-54 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

stdscr@ (0,0) virtual screen physical screen
wnoutrefresh (w2)

D
Bulls

(garbage)

EyeD

w1@ (0,3) w2@ (5,4)

I BUlisol I EyeDI

stdscr@ (0,0) virtual screen physical screen
doupdate ()

D
Bulls Bulls

EyeD EyeD

w1@ (0,3) w2@ (5,4)

I Bulls 01 I EyeD I
stdscr@ (0,0) virtual screen physical screen

endwin ()

D
Bulls Bulls

Eye 0 D Eye

w1@ (0,3) w2@ (5,4) I BulisO I I EyeD I

Figure 10-7: The Relationship Between a Window and a Terminal
Screen (Sheet 3 of 3)

UP-13690 curses/terminfo 10-55

Working with curses Routines

New Windows
Following are descriptions of the routines newwinO and

subwinO, which you use to create new windows. For information
about creating new pads with newpadO and subpadO, see the
curses(3X) manual page.

newwin()

SYNOPSIS

#include < curses.h >

WINDOW *newwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin_v, begin_x;

NOTES

• newwinO returns a pointer to a new window with a new
data area.

• The variables nlines and ncols give the size of the new win­
dow.

• begin_y and begin_x give the screen coordinates from (0,0)
of the upper left corner of the window as it is refreshed to
the current screen.

EXAMPLE

Recall the sample program using two windows; see Figure 10-
7. Also see the window program under "curses Program Exam­
ples" in this chapter.

10-56 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

subwin()

SYNOPSIS

#inelude < curses.h >

WINDOW *subwin(orig, nlines, neols, begln_y, begin_x)
WINDOW *orig;
int nlines, neols, begin_y, begin_x;

NOTES

• subwinO returns a new window that points to a section of
another window, orig.

• nlines and neols give the size of the new window.

• begin_y and begin_x give the screen coordinates of the
upper left corner of the window as it is refreshed to the
current screen.

• Subwindows and original windows can accidentally overwrite
one another.

CAUTION:

UP-13690

Subwindows of subwindows do not work (as of the
copyright date of this Programmer's Guide).

curses/terminfo 10-57

Working with curses Routines

EXAMPLE

#include <curses.h>

main()
1

WINDOW *sub;

initscr();
box(stdscr,'w' ,'w'); /*See box() on curses(3X) manual pg.*/
mvwaddstr(stdscr,7,10,"------- this is 10,10");
mvwaddch(stdscr,8,10,' :')j
mvwaddch(stdscr,9,10,'v');
sub = subwin(stdscr,10,20,10,10);
box(sub,'s' ,'s');
wnoutrefresh(stdscr);
wrefresh(sub);
endwin();

This program prints a border of ws around the stdscr (the
sides of your terminal screen) and a border of s's around the
subwindow sub when it is run. For another example, see the win­
dow program under "curses Program Examples" in this chapter.

10-58 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

Using Advanced curses Features
Knowing how to use the basic curses routines to get output

and input and to work with windows, you can design screen
management programs that meet the needs of many users. The
curses library, however, has routines that let you do more in a
program than handle I/O and multiple windows. The following few
pages briefly describe some of these routines and what they can
help you do - namely, draw simple graphics, use a terminal's soft
labels, and work with more than one terminal in a single curses
program.

You should be comfortable using the routines previously dis­
cussed in this chapter and the other routines for I/O and window
manipulation discussed on the curses(3X) manual page before
you try to use the advanced curses features.

CAUTION: The routines described under "Routines for Draw­
ing Lines and Other Graphics" and "Routines for
Using Soft Labels" are features that are new for
UNIX System V Release 3.0. If a program uses
any of these routines, it may not run on earlier
releases of the UNIX system. You must use the
Release 3.0 version of the curses library on UNIX
System V Release 3.0 to work with these routines.

Routines for Drawing Lines and Other Graphics
Many terminals have an alternate character set for drawing

simple graphics (or glyphs or graphic symbols). You can use this
character set in curses programs. curses use the same names
for glyphs as the VT100 line drawing character set.

To use the alternate character set in a curses program, you
pass a set of variables whose names begin with ACS _ to the
curses routine waddchO or a related routine. For example,
ACS _ ULCORNER is the variable for the upper left corner glyph. If
a terminal has a line drawing character for this glyph,
ACS _ ULCORNER's value is the terminal's character for that glyph
OR'd (:) with the bit-mask A_ALTCHARSET. If no line drawing
character is available for that glyph, a standard ASCII character

UP-13690 curses/terminfo 10-59

Working with curses Routines

that approximates the glyph is stored in its place. For example,
the default character for ACS_HLINE, a horizontal line, is a -
(minus sign). When a close approximation is not available, a +
(plus sign) is used. All the standard ACS names and their
defaults are listed on the curses(3X) manual page~

Part of an example program that uses line drawing characters
follows. The example uses the curses routine boxO to draw a box
around a menu on a screen. boxO uses the line drawing charac­
ters by default or when : (the pipe) and· are chosen. (See
curses(3X).) Up and down more indicators are drawn on the box
border (using ACS_UARROW and ACS_DARROW) if the menu
contained within the box continues above or below the screen:

. box(menuwin, ACS_VLINE, ACS_HLINE)j

/* output the up/down arrows */
wmove(menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (more above)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS_HLINE);

/*output down arrow or horizontal line */
if (morebelow)

waddch(menuwin, ACS_DARROW);
else

waddch(menuwin, ACS_HLINE);

Here's another example. Because a default down arrow (like
the lowercase letter v) isn't very discernible on a screen with many
lowercase characters on it, you can change it to an uppercase V.

10-60 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

if (! (ACS_DARROW & A_ALTCHARSET»
ACS_DARROW = 'V';

For more information, see curses(3X) in the Programmer's
Reference Manual.

Routines for Using Soft Labels
Another feature available on most terminals is a set of soft

labels across the bottom of their screens. A terminal's soft labels
are usually matched with a set of hard function keys on the key­
board. There are usually eight of these labels, each of which is
usually eight characters wide and one or two lines high.

The curses library has routines that provide a uniform model
of eight soft labels on the screen. If a terminal does not have soft
labels, the bottom line of its screen is converted into a soft label
area. It is not necessary for the keyboard to have hard function
keys to match the soft labels for a curses program to make use of
them.

Let's briefly discuss most of the curses routines needed to
use soft labels: slkJnitO, slk_setO, slk_refreshO and
slk_noutrefreshO, slk_clear, and slk_restore.

When you use soft labels in a curses program, you have to
call the routine slkJntO before initscrO. This sets an internal flag
for initscrO to look at that says to use the soft labels. If initscrO
discovers that there are fewer than eight soft labels on the screen,
that they are smaller than eight characters in size, or that there is
no way to program them, then it will remove a line from the bot­
tom of stdscr to use for the soft labels. The size of stdscr and
the LIN ES variable will be reduced by 1 to reflect this change. A
properly written program, one that is written to use the lINES and
eOlS variables, will continue to run as if the line had never existed
on the screen.

UP-13690 curses/terminfo 10-61

Working with curses Routines

slkJnitO takes a single argument. It determines how the
labels are grouped on the screen should a line get removed from
stdscr. The choices are between a 3-2-3 arrangement as appears
on AT&T terminals, or a 4-4 arrangement as appears on Hewlett­
Packard terminals. The curses routines adjust the width and
placement of the labels to maintain the pattern. The widest label
generated is eight characters.

The routine slk_setO takes three arguments, the label number
(1-8), the string to go on the label (up to eight characters), and the
justification within the label (0 = left justified, 1 = centered, and 2
= right justified).

The routine slk_noutrefreshO is comparable to wnoutrefreshO
in that it copies the label information onto the internal screen
image, but it does not cause the screen to be updated. Since a
wrefresh 0 commonly follows, slk _ noutrefresh 0 is the function
that is most commonly used to output the labels.

Just as wrefreshO is equivalent to a wnoutrefreshO followed
by a doupdateO, so too the function slk_refreshO is equivalent to
a slk_noutrefreshO followed by a doupdateO.

To prevent the soft labels from getting in the way of a shell
escape, slk_clearO may be called before doing the endwinO. This
clears the soft labels off the screen and does a doupdateO. The
function slk_restoreO may be used to restore them to the screen.
See the curses(3X) manual page for more information about the
routines for using soft labels.

Working with More than One Terminal
A curses program can produce output on more than one ter­

minal at the same time. This is useful for single process programs
that access a common database, such as multi-player games.

Writing programs that output to multiple terminals is a difficult
business, and the curses library does not solve all the problems
you might encounter. For instance, the programs - not the library
routines - must determine the file name of each terminal line, and
what kind of terminal is on each of those lines. The standard
method, checking $TERM in the environment, does not work,
because each process can only examine its own environment.

10-62 PROGRAMMER'S GUIDE UP-13690

Working with curses Routines

Another problem you might face is that of multiple programs
reading from one line. This situation produces a race condition
and should be avoided. However, a program trying to take over
another terminal cannot just shut off whatever program is
currently running on that line. (Usually, security reasons would
also make this inappropriate. But, for some applications, such as
an inter-terminal communication program, or a program that takes
over unused terminal lines, it would be appropriate.) A typical
solution to this problem requires each user logged in on a line to
run a program that notifies a master program that the user is
interested in joining the master program and tells it the notification
program's process ID, the name of the tty line, and the type of ter­
minal being used. Then the program goes to sleep until the mas­
ter program finishes. When done, the master program wakes up
the notification program and all programs exit.

A curses program handles multiple terminals by always having
a current terminal. All function calls always affect the current ter­
minal. The master program should set up each terminal, saving a
reference to the terminals in its own variables. When it wishes to
affect a terminal, it should set the current terminal as desired, and
then call ordinary curses routines.

References to terminals in a curses program have the type
SCREEN*. A new terminal is initialized by calling newterm(type,
outfd, infd). newterm returns a screen reference to the terminal
being set up. type is a character string, naming the kind of termi­
nal being used. outfd is a stdio(3S) file pointer (FILE*) used for
output to the terminal and infd a file pointer for input from the ter­
minal. This call replaces the normal call to initscrO, which calls
newterm(getenv("TERM"), stdout, stdin).

To change the current terminal, call set_term(sp) where sp is
the screen reference to be made current. set_term 0 returns a
reference to the previous terminal.

It is important to realize that each terminal has its own set of
windows and options. Each terminal must be initialized separately
with newtermO. Options such as cbreakO and noechoO must be
set separately for each terminal. The functions endwinO and
refreshO must be called separately for each terminal. Figure 10-8
shows a typical scenario to output a message to several terminals.

UP-13690 curses/terminfo 10-63

Working with curses Routines

for (i=O; i<nterm; i++)
I

set_term(terms[i));
mvaddstr(O, 0, "Important message");
refresh();

Figure 10-8: Sending a Message to Several Terminals

See the two program under "curses Program Examples" in
this chapter for a more complete example.

10-64 PROGRAMMER'S GUIDE UP-13690

Working with terminfo Routines
Some programs need to use low.er level routines (Le., primi­

tives) than those offered by the curses routines. For such pro­
grams, the terminfo routines are offered. They do not manage
your terminal screen, but rather give you access to strings and
capabilities which you can use yourself to manipulate the terminal.

There are three circumstances when it is proper to use ter­
minfo routines. The first is when you need only some screen
management capabilities, for example, making text standout on a
screen. The second is when writing a filter. A typical filter does
one transformation on an input stream without clearing the screen
or addressing the cursor. If this transformation is terminal depen­
dent and clearing the screen is inappropriate, use of the term info
routines is worthwhile. The third is when you are writing a special
purpose tool that sends a special purpose string to the terminal,
such as programming a function key, setting tab stops, sending
output to a printer port, or dealing with the status line. Otherwise,
you are discouraged from using these routines: the higher level
curses routines make your program more portable to other UNIX
systems and to a wider class of terminals.

NOTE: You are discouraged from using terminfo routines
except for the purposes noted, because curses
routines take care of all the glitches present in
physical terminals. When you use the terminfo
routines, you must deal with the glitches yourself.
Also, these routines may change and be incompati­
ble with previous releases.

What Every terminfo Program Needs

A terminfo program typically includes the header files and rou­
tines shown in Figure 10-9.

UP-13690 curses/terminfo 10-65

Working with terminfo Routines

#include <curses.h>
#include <term.h>

setupterm((char*)O, 1, (int*)O);

putp(clear_screen);

reset_shell_mode();
exit(O);

Figure 10-9: Typical Framework of a terminfo Program

The header files <curses.h> and <term.h> are required
because they contain the definitions of the strings, numbers, and
flags used by the terminfo routines. setupterm 0 takes care of ini­
tialization. Passing this routine the values (char*)O, 1, and (int*)O
invokes reasonable defaults. If setuptermO can't figure out what
kind of terminal you are on, it prints an error message and exits.
reset_shell_modeO performs functions similar to endwinO and
should be called before a terminfo program exits.

A global variable like clear_screen is defined by the call to
setuptermO. It can be output using the terminfo routines putpO
or tputsO, which gives a user more control. This string should not
be directly output to the terminal using the C library routine
printf(3S), because it contains padding information. A program
that directly outputs strings will fail on terminals that require pad­
ding or that use the xon/xoff flow control protocol.

At the terminfo level, the higher level routines like addchO and
getchO are not available. It is up to you to output whatever is
needed. For a list of capabilities and a description of what they
do, see terminfo(4); see curses(3X) for a list of all the terminfo
routines.

10-66 PROGRAMMER'S GUIDE UP-13690

Working with terminfo Routines

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for
running a program with terminfo routines are the same as those
for compiling any other curses program. See the sections "Com­
piling a curses Program" and "Running a curses Program" in this
chapter for more information.

An Example terminfo Program
The example program termhl shows a simple use of terminfo

routines. It is a version of the highlight program (see "curses Pro­
gram Examples") that does not use the higher level curses rou­
tines. termhl can be used as a filter. It includes the strings to
enter bold and underline mode and to turn off all attributes.

/*
* A terminfo level version of the highlight program.
*/

#include <curses.h>
#include <term.h>

int ulmode = 0;

main(argc_ argv)
int argc;
char **argv;

FILE *fd;
int c_ c2;
int outch();

if (argc > 2)
1

UP-13690

/* Currently underlining */

curses/terminfo 10-67

Working with terminfo Routines

- CONT I NUED -

fprintf(stderrl "Usage: termhl [file]\n");
exit(1);

if (argc == 2)
1

fd = fopen(argv[1]1 "r");
if (fd == NULL)
1

perror(argv[1]);
exit(2);

else
1

fd = stdinj
J
setupterm((char*)OI 11 (int*)O)j

for (;;)
1

c = getc(fd);
if (c == EOF)
break;
if (c == '\')
1

c2 = getc(fd);
switch (c2)
1

case 'B':
tputs(enter_bold_mode l 11 outch);
continue;
case 'U':
tputs(enter_underline_mode l 11 outch)j
ulmode = 1j

10-68 PROGRAMMER'S GUIDE UP-13690

continue;
case 'N':

Working with terminfo Routines

- CONT I NUED -

tputs(exit_attribute_mode, 1, outch);
ulmode = 0;

J
I'll

J

continue;
J
putch(c);
putch(c2);

else
putch(c);

fclose(fd);
fflush(stdout);
resetterm();
ex it(O) j

* Function is like putchar, but checks for underlining.
'Ill

putch(c)
int c;

outch(c);
if (ulmode && underline_char)
I

outch ('\b');
tputs(underline_char, 1, outch);

}
I'll
* Out char is a function version of putchar that can be
* passed to tputs as a routine to call.
'Ill

outch(c)
int c;

putchar(c);

UP-13690 curses/terminfo 10-69

Working with terminfo Routines

tputsO applies padding information. Some terminals have the
capability to delay output. Their terminal descriptions in the ter­
minfo database probably contain strings like $ < 20 >, which
means to pad for 20 milliseconds (see the following section
"Specify Capabilities" in this chapter). tputs generates enough
pad characters to delay for the appropriate time.

tputO has three parameters. The first parameter is the string
capability to be output. The second is the number of lines
affected by the capability. (Some capabilities may require padding
that depends on the number of lines affected. For example,
insert_line may have to copy all lines below the current line, and
may require time proportional to the number of lines copied. By
convention affcnt is 1 if no lines are affected. The value 1 is used,
rather than 0, for safety, since affcnt is multiplied by the amount of
time per item, and anything multiplied by a is 0.) The third param­
eter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always
calls putchar. For these programs, the routine putp(cap) is a con­
venient abbreviation. termhl could be simplified by using putpO.

Now to understand why you should use the curses level rou­
tines instead of term info level routines whenever possible, note the
special check for the underline_char capability in this sample pro­
gram. Some terminals, rather than having a code to start underlin­
ing and a code to stop underlining, have a code to underline the
current character. termhl keeps track of the current mode, and if
the current character is supposed to be underlined, outputs
underline_char, if necessary. Low level details such as this are
precisely why the curses level is recommended over the terminfo
level. curses takes care of terminals with different methods of
underlining and other terminal functions. Programs at the ter­
minfo level must handle such details themselves.

termhl was written to illustrate a typical use of the term info
routines. It is more complex than it need be in order to illustrate
some properties of terminfo programs. The routine vidattr (see
curses(3X)) could have been used instead of directly outputting
enter_bold_mode, enter_underline _mode, and
exit_attribute _mode. The program would be more robust if it did,
since there are several ways to change video attribute modes.

10-70 PROGRAMMER'S GUIDE UP-13690

Working with the terminfo Database
The terminfo database describes the many terminals with

which curses programs, as well as some UNIX system tools, like
vi(1), can be used. Each terminal descriptior is a compiled file
containing the names that the terminal is known by and a group of
comma-separated fields describing the actions and capabilities of
the terminal. This section describes the terminfo database, related
support tools, and their relationship to the curses library.

Writing Terminal Descriptions

Descriptions of many popular terminals are already described
in the terminfo database. However, it is possible that you'll want
to run a curses program on a terminal for which there is not
currently a description. In that case, you'll have to build the
description.

The general procedure for building a terminal description is as
follows:

1 . Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

5. Go back to step 2, add more capabilities, and repeat, as
necessary.

Building a terminal description is sometimes easier when you
build small parts of the description and test them as you go along.
These tests can expose deficiencies in the ability to describe the
terminal. Also, modifying an existing description of a similar termi­
nal can make the building task easier. (Lest we forget the UNIX
motto: Build on the work of others.)

In the next few pages, we follow each step required to build a
terminal description for the fictitious terminal named "my term."

UP-13690 curses/terminfo 10-71

Working with the terminfo Database

Name the Terminal

The name of a terminal is the first information given in a ter­
minfo terminal description. This string of names, assuming there
is more than one name, is separated by pipe symbols (:). The
first name given should be the most common abbreviation for the
terminal. The last name given should be a long name that fully
identifies the terminal. The long name is usually the
manufacturer's formal name for the terminal. All names between
the first and last entries should be known synonyms for the termi­
nal name. All names but the formal name should be typed in
lowercase letters and contain no blanks. Naturally, the formal
name is entered as closely as possible to the manufacturer's
name.

Here is the name string from the description of the AT&T Tele­
type 5420 Buffered Display Terminal:

5420:att5420:AT&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation
and the last is the long name. Also notice the comma at the end
of the name string.

Here's the name string for our fictitious terminal, my term:

myterm:mytm:mine:fancy:terminal :My FANCY Terminal,

Terminal names should follow common naming conventions.
These conventions start with a root name, like 5425 or my term,
for example. The root name should not contain odd characters,
like hyphens, that may not be recognized as a synonym for the
terminal name. Possible hardware modes or user preferences
should be shown by adding a hyphen and a 'mode indicator' at
the end of the name. For example, the 'wide mode' (which is
shown by a -w) version of our fictitious terminal would be described
as myterm-w. term(5) describes mode indicators in greater detail.

Learn About the Capabilities

After you complete the string of terminal names for your
description, you have to learn about the terminal's capabilities so
that you can properly describe them. To learn about the capabili­
ties your terminal has, you should do the following:

10-72 PROGRAMMER'S GUIDE UP-13690

Working with the terminfo Database

• See the owner's manual for your terminal. It should have
information about the capabilities available and the charac­
ter strings that make up the sequence transmitted from the
keyboard for each capability.

• Test the keys on your terminal to see what they transmit, if
this information is not available in the manual. You can test
the keys in one of the following ways - type:

or

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow () transmits.
<CR>
<CTRL-D>
stty echo

cat > dev/null
Type in the escape sequences you want to test;
for example, see what \E[H transmits.
<CTRL-D>

• The first line in each of these testing methods sets up the
terminal to carry out the tests. The < CTRL-D > helps
return the terminal to its normal settings.

• See the terminfo(4) manual page. It lists all the capability
names you have to use in a terminal description. The fol­
lowing section, "Specify Capabilities," gives details.

Specify Capabilities

Once you know the capabilities of your terminal, you have to
describe them in your terminal description. You describe them
with a string of comma-separated fields that contain the abbrevi­
ated terminfo name and, in some cases, the terminal's value for
each capability. For example, bel is the abbreviated name for the
beeping or ringing capability. On most terminals, a CTRL-G is the
instruction that produces a beeping sound. Therefore, the beep­
ing capability would be shown in the terminal description as
bel="G,.

UP-13690 curses/terminfo 10-73

Working with the terminfo Database

The list of capabilities may continue onto multiple lines as long
as white space (that is, tabs and spaces) begins every line but the
first of the description. Comments can be included in the descrip­
tion by putting a # at the beginning of the line.

The terminfo(4) manual page has a complete list of the capa­
bilities you can use in a terminal description. This list contains the
name of the capability, the abbreviated name used in the data­
base, the two-letter code that corresponds to the old termcap
database name, and a short description of the capability. The
abbreviated name that you will use in your database descriptions
is shown in the column titled "Capname."

NOTE: For a curses program to run on any given termi­
nal, its description in the terminfo database must
include, at least, the capabilities to move a cursor
in all four directions and to clear the screen.

A terminal's character sequence (value) for a capability can be
a keyed operation (like CTRL-G), a numeric value, or a parameter
string containing the sequence of operations required to achieve
the particular capability. In a terminal description, certain charac­
ters are used after the capability name to show what type of char­
acter sequence is required. Explanations of these characters fol­
low:

This shows a numeric value is to follow. This character
follows a capability that needs a number as a value. For
example, the number of columns is defined as cols#80,.

= This shows that the capability value is the character
string that follows. This string instructs the terminal how
to act and may actually be a sequence of commands.
There are certain characters used in the instruction
strings that have special meanings. These special char­
acters follow:

This shows a control character is to be used. For
example, the beeping sound is produced by a
CTRL-G. This would be shown as "G.

10-74 PROGRAMMER'S GUIDE UP-13690'

Working with the terminfo Database

\E or \e These characters followed by another character
show an escape instruction. An entry of \EC would
transmit to the terminal as ESCAPE-C.

\n These characters provide a < NL > character
sequence.

\1 These characters provide a Iinefeed character
sequence.

\r These characters provide a return character
sequence.

\t These characters provide a tab character sequence.

\b These characters provide a backspace character
sequence.

\f These characters provide a formfeed character
sequence.

\s These characters provide a space character
sequence.

\nnn This is a character whose three-digit octal is nnn,
where nnn can be one to three digits.

$ < > These symbols are used to show a delay in mil­
liseconds. The desired length of delay is enclosed
inside the "less than/greater than" symbols « ».
The amount of delay may be a whole number, a
numeric value to one decimal place (tenths), or
either form followed by an asterisk (*). The * shows
that the delay will be proportional to the number of
lines affected by the operation. For example, a 20-
millisecond delay per line would appear as $ < 2'0* > .
See the terminfo(4) manual page for more informa­
tion about delays and padding.

Sometimes, it may be necessary to comment out a capability
so that the terminal ignores this particular field. This is done by
placing a period (.) in front of the abbreviated name for the capa­
bility. For example, if you would like to comment out the beeping
capability, the description entry would appear as

UP-13690 curses/terminfo 10-75

Working with the terminfo Database

.bel = AG,

With this background information about specifying capabilities,
let's add the capability string to our description of my term. We'll
consider basic, screen-oriented, keyboard-entered, and parameter
string capabilities.

Basic Capabilities

Some capabilities common to most terminals are bells,
columns, lines on the screen, and overstriking of characters, if
necessary. Suppose our fictitious terminal has these and a few
other capabilities, as listed below. Note that the list gives the
abbreviated terminfo name for each capability in the parentheses
following the capability description:

• An automatic wrap around to the beginning of the next line
whenever the cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction
required to produce the beeping sound is "G (bel).

• An aO-column wide screen (cols).

• A 30-line long screen (lines).

• Use of xon/xoff protocol (xon).

By combining the name string (see the section "Name the Ter­
minal") and the capability descriptions that we now have, we get
the following general terminfo database entry:

myterm:mytm:mine:fancy:terminal :My FANCY terminal,
am, bel=~G, cols#80, lines#30, xon,

Screen-Oriented Capabilities
Screen-oriented capabilities manipulate the contents of a

screen. Our example terminal my term has the following screen­
oriented capabilities. Again, the abbreviated command associated
with the given capability is shown in parentheses.

• A < CR > is a CTRL-M (cr).

10-76 PROGRAMMER'S GUIDE UP-13690

Working with the terminfo Database

• A cursor up one line motion is a CTRL-K (cuu1).

• A cursor down one line motion is a CTRL-J (cud1).

• Moving the cursor to the left one space is a CTRL-H (cub1).

• Moving the cursor to the right one space is a CTRL-L (cuf1).

• Entering reverse video mode is an ESCAPE-D (smso).

• Exiting reverse video mode is an ESCAPE-Z (rmso).

• A clear to the end of a line sequence is an ESCAPE-K and
should have a 3-millisecond delay (el).

• A terminal scrolls when receiving a < NL > at the bottom of
a page (ind).

The revised terminal description for my term including these
screen-oriented capabilities follows:

myterm:mytm:mine:fancy:terminal:My FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, cuul=AK, cudl=AJ , cubl=AH, cufl=A L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities
Keyboard-entered capabilities are sequences generated when

a key is typed on a terminal keyboard. Most terminals have, at
least, a few special keys on their keyboard, such as arrow keys
and the backspace key. Our example terminal has several of
these keys whose sequences are, as follows:

• The backspace key generates a CTRL-H (kbs).

• The up arrow key generates an ESCAPE-[A (kcuu1).

UP-13690 curses/terminfo 10-77

Working with the terminfo Database

• The down arrow key generates an ESCAPE-[B (kcud1).

• The right arrow key generates an ESCAPE-[C (kcuf1).

• The left arrow key generates an ESCAPE-[D (kcub1).

• The home key generates an ESCAPE-[H (khome).

Adding this new information to our database entry for my term
produces:

myterm:mytm:mine:fancy:terminal:My FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, cuul=AK, cudl=AJ , cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=A H, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,

\ kcubl=\E[D, khome=\E[H,

~---~

Parameter String Capabilities
Parameter string capabilities are capabilities that can take

parameters - for example, those used to position a cursor on a
screen or turn on a combination of video modes. To address a
cursor, the cup capability is used and is passed two parameters:
the row and column to address. String capabilities, such as cup
and set attributes (sgr) capabilities, are passed arguments in a ter­
minfo program by the tparm() routine.

The arguments to string capabilities are manipulated with spe­
cial'OJo' sequences similar to those found in a printf(3S) statement.
In addition, many of the features found on a simple stack-based
RPN calculator are available. cup, as noted above, takes two argu­
ments: the row and column. sgr, takes nine arguments, one for
each of the nine video attributes. See terminfo(4) for the list and
order of the attributes and further examples of sgr.

10-78 PROGRAMMER'S GUIDE UP-13690

Working with the terminfo Database

Our fancy terminal's cursor position sequence requires a row
and column to be output as numbers separated by a semicolon.
preceded by ESCAPE-[and followed with H. The coordinate
numbers are 1-based rather than O-based. Thus. to move to row
5. column 18. from (0,0). the sequence

Integer arguments are pushed onto the stack with a '%p'
sequence followed by the argument number, such as '%p2' to
push the second argument. A shorthand sequence to increment
the first two arguments is '%i'. To output the top number on the
stack as a decimal. a '%d' sequence is used, exactly as in printf.
Our terminal's cup sequence is built up as follows:

or

cup=

\E[
%i

%p1
%d

%p2
%d
H

Meaning

output ESCAPE-[
increment the two arguments
push the 1 st argument (the row) onto the stack
output the row as a decimal
output a semi-colon
push the 2nd argument (the column) onto the stack
output the column as a decimal
output the trailing letter

cup=\E[%i%p1%d;%p2%dH,

Adding this new information to our database entry for my term
produces:

UP-13690 curses/terminfo 10-79

Working with the terminfo Database. ----------

myterm:mytm:mine:fancy:terminal:My FANCY Terminal,
am, bel=~G, cols#80, lines#30, xon,
cr=AM, cuul=~K, cudl=AJ , cubl=~H, cufl=~L,

smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=~H, kcUU1=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,
cup=\E[%i%pl%d;%p2%dH,

See terminfo(4) for more information about parameter string capa­
bilities.

Compile the Description
The terminfo database entries are compiled using the tic com­

piler. This compiler translates terminfo database entries from the
source format into the compiled format.

The source file for the description is usually in a file suffixed
with .ti. For example, the description of my term would be in a
source file named myterm.ti. The compiled description of my term
would usually be placed in /usr/lib/terminfo/m/myterm, since the
first letter in the description entry is m. Links would also be made
to synonyms of myterm, for example, to If/fancy. If the environ­
ment variable $TERMINFO were set to a directory and exported
before the entry was compiled, the compiled entry would be
placed in the $TERMINFO directory. All programs using the entry
would then look in the new directory for the description file if
$TERMINFO were set, before looking in the default
/usr/lib/terminfo. The general format for the tic compiler is as fol­
lows:

tic [-v] [-c] file

The -v option causes the compiler to trace its actions and out­
put information about its progress. The -c option causes a check
for errors; it may be combined with the -v option. file shows what
file is to be compiled. If you want to compile more than one file at
the same time, you have to first use cat(1) to join them together.

10-80 PROGRAMMER'S GUIDE UP-13690

Working with the terminfo Database

The following command line shows how to compile the terminfo
source file for our fictitious terminal:

tic -v myterm.ti < CR >
(The trace information appears as the compilation
proceeds.)

Refer to the tic(1 M) manual page in the System Administrator's
Reference Manual for more information about the compiler.

Test the Description
Let's consider three ways to test a terminal description. First,

you can test it by setting the environment variable $TERMINFO to
the path name of the directory containing the description. If pro­
grams run the same on the new terminal as they did on the older
known terminals, then the new description is functional.

Second, you can test for correct insert line padding by com­
menting out xon in the description and then editing (using vi(1)) a
large file (over 100 lines) at 9600 baud (if possible), and deleting
about 15 lines from the middle of the screen. Type u (undo)
several times quickly. If the terminal messes up, then more pad­
ding is usually required. A similar test can be used for inserting a
character.

Third, you can use the tput(1) command. This command out­
puts a string or an integer according to the type of capability
being described. If the capability is a Boolean expression, then
tput sets the exit code (0 for TRUE, 1 for FALSE) and produces no
output. The general format for the tput command is as follows:

tput [-Ttype] capname

The type of terminal you are requesting information about is identi­
fied with the -Ttype option. Usually, this option is not necessary
because the default terminal name is taken from the environment
variable $TERM. The capname field is used to show what capabil­
ity to output from the terminfo database.

The following command line shows how to output the "clear
screenll character sequence for the terminal being used:

tput clear
(The screen is cleared.)

UP-13690 curses/terminfo 10-81

Working with the terminfo Database

The following command line shows how to output the number
of columns for the terminal being used:

tput cols
(The number of columns used by the terminal appears here.)

The tput(1) manual page found in the User's Reference
Manual contains more information on the usage and possible mes­
sages associated with this command.

Comparing or Printing terminfo Descriptions

Sometime you may want to compare two terminal descriptions
or quickly look at a description without going to the terminfo
source directory. The infocmp(1 M) command was designed to
help you with both of these tasks. Compare two descriptions of
the same terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO = /tmp/old tic old5420.ti
TERMINFO = /tmp/new tic new5420.ti
infocmp ·A /tmp/old ·B /tmp/new ·d 5420 5420

compares the old and new 5420 entries.

To print out the terminfo source for the 5420, type

infocmp ·1 5420

Converting a termcap Description to a terminfo

Description

CAUTION: The terminfo database is designed to take the
place of the termcap database. Because of the
many programs and processes that have been
written with and for the termcap database, it is not
feasible to do a complete cutover at one time. Any
conversion from termcap to terminfo requires
some experience with both databases. All entries
into the databases should be handled with extreme

10·82 PROGRAMMER'S GUIDE UP·13690

Working with the terminfo Database

caution. These files are important to the operation
of your terminal.

The captoinfo(1 M) command converts termcap(4) descriptions
to terminfo(4) descriptions. When a file is passed to captoinfo, it
looks for termcap descriptions and writes the equivalent terminfo
descriptions on the standard output. For example,

captoinfo /etc/termcap

converts the file /etc/termcap to terminfo source, preserving com­
ments and other extraneous information within the file. The com­
mand line

captoinfo

looks up the current terminal in the termcap database, as speci­
fied by the $TERM and $TERMCAP environment variables and
converts it to terminfo.

If you must have both termcap and terminfo terminal descrip­
tions, keep the terminfo description only and use infocmp -C to
get the termcap descriptions.

If you have been using cursor optimization programs with the
-Itermcap or -Itermlib option in the cc command line, those pro­
grams will still be functional. However, these options should be
replaced with the -Icurses option.

UP-13690 curses/terminfo 10-83

curses Program Examples
The following examples demonstrate uses of curses routines.

The editor Program
This program illustrates how to use curses routines to write a

screen editor. For simplicity, editor keeps the buffer in stdscr;
obviously, a real screen editor would have a separate data struc­
ture for the buffer. This program has many other simplifications:
no provision is made for files of any length other than the size of
the screen, for lines longer than the width of the screen, or for
control characters in the file.

Several points about this program are worth making. First, it
uses the moveO, mvaddstrO, flashO, wnoutrefreshO and
clrtoeolO routines. These routines are all discussed in this chapter
under "Working with curses Routines."

Second, it also uses some curses routines that we have not
discussed. For example, the function to write out a file uses the
mvinchO routine, which returns a character in a window at a given
position. The data structure used to write out a file does not keep
track of the number of characters in a line or the number of lines
in the file, so trailing blanks are eliminated when the file is written.
The program also uses the inschO, delchO, insertlnO, and
deletelnO routines. These functions insert and delete a character
or line. See curses(3X) for more information about these routines.

Third, the editor command interpreter accepts special keys, as
well as ASCII characters. On one hand, new users find an editor
that handles special keys easier to learn about. For example, it's
easier for new users to use the arrow keys to move a cursor than
it is to memorize that the letter h means left, j means down, k
means up, and I means right. On the other hand, experienced
users usually like having the ASCII characters to avoid moving their
hands from the home row position to use special keys.

10-84 PROGRAMMER'S GUIDE UP-13690

NOTE:

Examples

Because not all terminals have arrow keys. your
curses programs will work on more terminals if
there is an ASCII character associated with each
special key.

Fourth. the CTRL-L command illustrates a feature most pro­
grams using curses routines should have. Often some program
beyond the control of the routines writes something to the screen
(for instance. a broadcast message) or some line noise affects the
screen so much that the routines cannot keep track of it. A user
invoking editor can type CTRL-L. causing the screen to be cleared
and redrawn with a call to wrefresh(curscr).

Finally. another important point is that the input command is
terminated by CTRL-D. not the escape key. It is very tempting to
use escape as a command. since escape is one of the few special
keys available on every keyboard. (Return and break are the only
others.) However. using escape as a separate key introduces an
ambiguity. Most terminals use sequences of characters beginning
with escape (Le .• escape sequences) to control the terminal and
have special keys that send escape sequences to the computer. If
a computer receives an escape from a terminal. it cannot tell
whether the user depressed the escape key or whether a special
key was pressed.

editor and other curses programs handle the ambiguity by
setting a timer. If another character is received during this time.
and if that character might be the beginning of a special key. the
program reads more input until either a full special key is read. the
time out is reached. or a character is received that could not have
been generated by a special key. While this strategy works most
of the time. it is not foolproof. It is possible for the user to press
escape. then to type another key quickly. which causes the curses
program to think a special key has been pressed. Also. a pause
occurs until the escape can be passed to the user program. result­
ing in a slower response to the escape key.

Many existing programs use escape as a fundamental com­
mand. which cannot be changed without infuriating a large class of
users. These programs cannot make use of special keys without
dealing with this ambiguity. and at best must resort to a time-out
solution. The moral is clear: when designing your curses

UP-13690 curses/terminfo 10-85

Examples

programs, avoid the escape key.

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.
*/

Hinclude <stdio.h>
Hinclude <curses.h>

Hdefine CTRL(c) «c) & 037)

main(argc, argv)
int argc;
char **argv;
I

extern void perror(), exit();
int i, n, 1;
int c;
int line = 0;
FILE *fd;

if (argc ! = 2)
1

fprintf(stderr, "Usage: %s file\n", argv[O]);
exit(l);

fd = fopen(argv[l], "r");
if (fd == NULL)
1

perror(argv[l]);
exit(2);

in i tscr ();
cbreak();
nonl ();
noecho();
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

10-86 PROGRAMMER'S GUIDE UP-13690

- CONTI NUED -
/* Read in the file */
while «c = getc(fd)) != EOF)
1

if (c == ' \n ')
1 ine++;

if (line> LINES - 2)
break;

addch(c);
1
fc10se(fd);

move(O,O) ;
refresh();
edit();

/* Write out the file */
fd = fopen(argv[1], "w");
for (1 = 0; 1 < LINES - 1; 1++)
1

n = 1en(1);
for (i = 0; i < n; i ++)

Examples

putc(mvinch(l, i) & A_CHARTEXT, fd);
putc (, \n', fd);

1
fc10se(fd);

endwin()j
exit(O);

1en(lineno)
int 1ineno;
1

UP-13690

int 1ine1en = COLS - 1;

while (line1en >= 0 && mvinch(lineno,
1 i ne 1 en) == ' ') 1 i ne 1 en- - ;

return 1ine1en + 1;

curses/terminfo 10-87

Examples

- CONT I NUED -

/* Global value of current cursor position */
int row" col;

edit()
1

int c;

for (;;)
1

move(row" col);
refresh();
c = getch();

/* Editor commands */
switch (c)
1

/* hjkl and arrow keys: move cursor
* in direction indicated */

case 'h' :
case KEY_LEFT:

if (col > 0)
co 1- - ;

else
flash();

break;

case ' j' :
case KEY_DOWN:

if (row < LINES - 1)
row++;

else
f1 ash ();

break;

10-88 PROGRAMMER'S GUIDE UP-13690

UP-13690

- CONTINUED -
case 'k':
case KEY_UP:

if (row> 0)
row--;

else
f1ash();

break;

case '1':
case KEY_RIGHT:

if (col < COlS - 1)
co1++;

else
f1ash();

break;
/* i: enter input mode */
case KEY IC:
case ' i'7

input();
break;

/* x: delete current character */
case KEY_DC:
case 'x':

de1ch();
break;

Examples

/* 0: open new line and enter input mode */
case KEY_ll:
case ' 0' :

move (++row, colO);
insert1n();
input();
break;

curses/terminfo 10-89

Examples

/*

- CONTINUED -

/* d: delete current line */
case KEY_DL:
case ' d' :

deleteln();
break;

/* AL: redraw screen */
case KEY_CLEAR:
case CTRL(' L') :

wrefresh(curscr);
break;

/* w: write and quit */
case 'w':

return;
/* q: quit without writing */
case ' q' :

endwin();
exit(2);

defat..ilt:
flash();
break;

* Insert mode: accept characters and insert them.
* End with AD or EIC
*/

input()
I

int c;

10-90 PROGRAMMER'S GUIDE UP-13690

Examples

- CONTINUED -

standout();
mvaddstr(LINES - 1, COLS - 20, "INPUT MODE");
standend();
move(row, col);
refresh ();
for (;;)
I

J

c = getch();
if (c == CTRL('D') :: c == KEY_EIC)

break;
insch(c);
move(row, ++col);
refresh ();

move(LINES - 1, COLS - 20);
clrtoeol();
move(row, col);
refresh();

The highlight Program

This program illustrates a use of the routine attrsetO.
highlight reads a text file and uses embedded escape sequences
to control attributes. \U turns on underlining. \B turns on bold.
and \N restores the default output attributes.

Note the first call to scroliokO. a routine that we have not pre­
viously discussed (see curses(3X)). This routine allows the termi­
nal to scroll if the file is longer than one screen. When an attempt
is made to draw past the bottom of the screen. scroliokO
automatically scrolls the terminal up a line and calls refresh O.

UP-13690 curses/terminfo 10-91

Examples

/*
* highlight: a program to turn \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <stdio.h>
#include <curses.h>

main(argc, argyl
int argc;
char **argv;
I

FILE *fd;
int c, c2;
void exit(), perror();

if (argc ! = 2)
I

fprintf(stderr, "Usage: highlight file\n");
exit(1);

fd = fopen(argv[1], "r");

if (fd == NULL)
I

perror(argv[1]);
exit(2);

initscr();
scrollok(stdscr, TRUE);
nonl();
while «c = getc(fd» != EOF)

10-92 PROGRAMMER'S GUIDE UP-13690

Examples

- CONT I NUED -

if (c == '\\')
I

else

J
fclose(fd);
refresh() ;
endwin();
exit(O);

The scatter Program

c2 = getc(fd);
switch (c2)
I
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(O);
continue;

J
addch(c);
addch(c2);

addch(c);

This program takes the first LINES - 1 lines of characters from
the standard input and displays the characters on a terminal
screen in a random order. For this program to work properly, the
input file should not contain tabs or non-printing characters.

UP-13690 curses/terminfo 10-93

Examples

/*
*
*/

The scatter program.

#include
#include

<curses.h>
<sys/types.h>

extern time_t time();

#define MAXLINES 120
#define MAXCOLS 160

/* Screen Array */ char s[MAXLINES)[MAXCOLS);
int T[MAXLINES) [MAXCOLS); /* Tag Array - Keeps track of*

* the number of characters *

main()
I

* printed & their positions.*/

register int row = O,col
register int c;
int char_count = 0;
time_t t;
void exit(), srand();

initscr();

O· ,

for(row = O;row < MAXLINES;row++)
for(col = O;col < MAXCOLS;col++)

s[row][col)=' ';

col = row = 0;
/* Read screen in */
wh i 1 e « c=getchar (» != EOF ,&& row < LINES) 1

if(c != '\n')
I

/* Place char in screen array */
s[row)[col++) = c;
if(c !=' ')

char_count++;

10-94 PROGRAMMER'S GUIDE UP-13690

UP-13690

else
I

- CONT I NUED -

col = 0;
row++;

Examples

time(&t); /* Seed the random number generator *
srand«unsigned)t);

while (char_count)
I

row = rand() % LINES;
col = (rand() » 2) % COLS;
if (T[row][col] != 1 && s[row][col] != ' ')
I

move(row, col);
addch(s[row][col]);
T[row][col] = 1;
char_count--;
refresh();

endwin();
exit(O);

curses/terminfo 10-95

Examples

The show Program
show pages through a file, showing one screen of its contents

each time you depress the space bar. The program calls cbreakO
so that you can depress the space bar without having to hit return;
it calls noechoO to prevent the space from echoing on the screen.
The nonlO routine, which we have not previously discussed, is
called to enable more cursor optimization. The idlokO routine,
which we also have not discussed, is called to allow insert and
delete line. (See curses(3X) for more information about these rou­
tines). Also notice that clrtoeolO and clrtobotO are called.

By creating an input file for show made up of screen-sized
(about 24 lines) pages, each varying slightly from the previous
page, nearly any exercise for a cursesO program can be created.
This type of input file is called a show script.

#include <curses.h>
#include <signal.h>

main(argc, argyl
int argc;
char *argv[];
I

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if (argc != 2)
1

fprintf(stderr, "usage: %s file\n", argv[O));
exit(1);

if ((fd=fopen(argv[1), "r")) == NULL)
I

10-96 PROGRAMMER'S GUIDE UP-13690

- CONT I NUED -

perror(argv[1)j
exit(2);

I
signal(SIGINT, done);

initscr()j
noecho();
cbreak()j
nonl();
idlok(stdscr, TRUE);

while(1)
1

move(O,O) ;
for (line = 0; line < LINES; 1ine++)
I

Examples

if (!fgets(linebuf, sizeof linebuf,
fd»

I

clrtobot();
donee);

move (1 i ne , 0) j
printw("%s", linebuf);

refresh() j
if (getch() == 'q')

donee);

void donee)
1

UP-13690

move(LINES - 1, 0);
clrtoeol();
refresh ();
endwi n ();
exit(O);

curses/terminfo 10-97

Examples

The two Program

This program pages through a file, writing one page to the ter­
minal from which the program is invoked and the next page to the
terminal named on the command line. It then waits for a space to
be typed on either terminal and writes the next page to the termi­
nal at which the space is typed.

two is just a simple example of a two-terminal curses pro­
gram. It does not handle notification; instead, it requires the name
and type of the second terminal on the command line. As written,
the command "sleep 100000" must be typed at the second termi­
nal to put it to sleep while the program runs, and the user of the
first terminal must have both read and write permission on the
second terminal.

Hinclude <curses.h>
Hinclude <signal.h>

SCREEN *me, *you;
SCREEN *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)
int argc;
char **argv;
I

void done(), exit();
unsigned sleep();
char *getenv();

\ int c;

~----~

10-98 PROGRAMMER'S GUIDE UP-13690

if (argc != 4)
I

- CONTINUED -

fprintf(stderr, "Usage: two other tty
otherttytype inputfile\n");

ex i t (1);

fd fopen(argv[3], "r");
fdyou = fopen(argv[1], "w+");
signal(SIGINT, done); /* die gracefully */

me = newterm(getenv("TERM"), stdout, stdin);
/* initialize my tty */

you = newterm(argv[2], fdyou, fdyou);

Examples

/* Initialize other terminal */

set_term(me); /* Set modes for my terminal */
noecho(); /* turn off tty echo */
cbreak(); /* enter cbreak mode */
nonl(); /* Allow linefeed */
nodelay(stdscr, TRUE); /* No hang on input */

set_term(you); /* Set modes for other terminal */
noecho ();
cbreak();
non 1 ();
nodelay(stdscr,TRUE);

/* Dump first screen full on my terminal */
dump_page(me);

/* Dump second screen full on the other terminal */
dump_page(you);

for (;;)
I

/* for each screen full */

set_term(me);
c = getch();

\ if (c == 'q') /* wait for user to read it */

~----

UP-13690 curses/term info 10-99

Examples

- CONTINUED -
done ();
if (c == ' ')
dump_page(me);
set_term(you);
c = getch();
if (c == 'q') /* wait for user to read it */
done ();
if(c==' ')
dump_page(you);
sleep(1);

J
dump_page(term)

I
/*

SCREEN *term;

int line;

set_term(term);
move(O, 0);
for (line = 0; line < LINES - 1; 1ine++) I

if (fgets(linebuf, sizeof 1inebuf, fd)

I

I
c1rtobot();
done();
I
mvaddstr(line, 0, 1inebuf);

standout () ;
mvprintw(LlNES - 1,0, "--More--");
s tandend () ;
refresh()j /* sync screen */

* Clean up and exit.
*/

void done()
I

/* Clean up first terminal */
set_term(you);

NULL)

move(LINES - 1,0)j /* to lower left corner */

10-100 PROGRAMMER'S GUIDE UP-13690

clrtoeol()j
refresh () j
endwin()j

- CONTINUED -

/* clear bottom line */
/* flush out everything */
/* curses cleanup */

/* Clean up second terminal */
set_term(me)j

Examples

move(LINES - 1,0)j /* to lower left corner */
clrtoeol()j /* clear bottom line */
refresh()j /* flush out everything */
endwin()j /* curses cleanup */
exit(O);

The window Program

This example program demonstrates the use of multiple win­
dows. The main display is kept in stdscr. When you want to put
something other than what is in stdscr on the physical terminal
screen temporarily, a new window is created covering part of the
screen. A call to wrefreshO for that window causes it to be written
over the stdscr image on the terminal screen. Calling refreshO on
stdscr results in the original window being redrawn on the screen.
Note the calls to the touchwin 0 routine (which we have not dis­
cussed - see curses(3X)) that occur before writing out a window
over an existing window on the terminal screen. This routine
prevents screen optimization in a curses program. If you have
trouble refreshing a new window that overlaps an old window, it
may be necessary to call touchwin 0 for the new window to get it
completely written out.

UP-13690 curses/terminfo 10-101

Examples

#include <curses.h>

WINDOW *cmdwin;

main()

int i, c;
char buf[120);
void exit();

in i tscr ();
nonl ();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines */
for (i = 0; i < LINES; i++)

mvprintw(i, 0, "Line %d of stdscr", i);

for (;;)

refresh();
c = getch ();
switch (c)

case 'c': /*Enter command on keyboard*/
werase(cmdwin);
wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, 0);
for (i = 0; i < COLS; i++)

waddch (cmdw in, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf);

\ touchwin(stdscr);

~-----

10-102 PROGRAMMER'S GUIDE UP-13690

UP-13690

Examples

- CONT I NUED -
/*
* The command is now in buf.
* It should be processed here.
*/

case ' q' :
endwin();
exit(O)j

curses/terminfo 10-103

Chapter 11: The Common Object
File Format (COFF)

The Common Object File Format (COFF)

Definitions and Conventions

Sections
Physical and Virtual Addresses
Target Machine

File Header
Magic Numbers
Flags
File Header Declaration

Optional Header Information
Standard UNIX System a.out Header

Optional Header Declaration

Section Headers
Flags

Section Header Declaration

.bss Section Header

Sections
Relocation Information

Relocation Entry Declaration
Line Numbers

Line Number Declaration
Symbol Table

Special Symbols
Inner Blocks

Symbols and Functions

Symbol Table Entries

Auxiliary Table Entries

String Table

Access Routines

11-1

11-3

11-3

11-3

11-4

11-4

11-5

11-5

11-5

11-6

11-7

11-8

11-9

11-10

11-11

11-12

11-13

11-13

11-14

11-15

11-16

11-17

11-19

11-20

11-22

11-23

11-37

11-45

11-46

UP-13690 TABLE OF CONTENTS

The Common Object File Format
(COFF)

This section describes the Common Object File Format (COFF)
used on AT&T computers with the UNIX operating system. COFF
is the format of the output file produced by the assembler, as, and
the link editor, Id.

Some key features of COFF are

• applications can add system-dependent information to the
object file without causing access utilities to become
obsolete

• space is provided for symbolic information used by
debuggers and other applications

• programmers can modify the way the object file is con­
structed by providing directives at compile time

The object file supports user-defined sections and contains
extensive information for symbolic software testing. An object file
contains

• a file header

• optional header information

• a table of section headers

• data corresponding to the section headers

• relocation information

• line numbers

• a symbol table

• a string table

Figure 11-1 shows the overall structure.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-1

The Common Object File Format (COFF)

FILE HEADER
Optional Information

Section 1 Header
...

Section n Header
Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1
...

Relocation Info for Sect. n
Line Numbers for Sect. 1

...
Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

Figure 11-1: Object File Format

The last four sections (relocation, line numbers, symbol table, and
the string table) may be missing if the program is linked with the
-s option of the Id command, or if the line number information,
symbol table, and string table are removed by the strip command.
The line number information does not appear unless the program
is compiled with the -g option of the cc command. Also, if there
are no unresolved external references after linking, the relocation
information is no longer needed and is absent. The string table is
also absent if the source file does not contain any symbols with
names longer than eight characters.

11·2 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

An object file that contains no errors or unresolved references
is considered executable.

Definitions and Conventions

Before proceeding further, you should become familiar with
the following terms and conventions.

Sections
A section is the smallest portion of an object file that is relo­

cated and treated as one separate and distinct entity. In the most
common case, there are three sections named .text, .data, and
.bss. Additional sections accommodate comments, multiple text
or data segments, shared data segments, or user-specified sec­
tions. However, the UNIX operating system loads only .text, .data,
and .bss into memory when the file is executed.

NOTE: It a mistake to assume that every GOFF file will
have a certain number of sections, or to assume
characteristics of sections such as their order, their
location in the object file, or the address at which
they are to be loaded. This information is available
only after the object file has been created. Pro­
grams manipulating GOFF files should obtain it
from file and section headers in the file.

Physical and Virtual Addresses
The physical address of a section or symbol is the offset of

that section or symbol from address zero of the address space.
The term physical address as used in GOFF does not correspond
to general usage. The physical address of an object is not neces­
sarily the address at which the object is placed when the process
is executed. For example, on a system with paging, the address is
located with respect to address zero of virtual memory and the
system performs another address translation. The section header
contains two address fields, a physical address, and a virtual
address; but in all versions of GOFF on UNIX systems, the physical
address is equivalent to the virtual address.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-3

The Common Object File Format (COFF)

Target Machine
Compilers and link editors produce executable object files that

are intended to be run on a particular computer. In the case of
cross-compilers, the ~ompilation and link editing are done on one
computer with the intent of creating an object file that can be exe­
cuted on another computer. The term target machine refers to
the computer on which the object file is destined to run. In the
majority of cases, the target machine is the exact same computer
on which the object file is being created.

File Header

The file header contains the 20 bytes of information shown in
Figure 11-2. The last 2 bytes are flags that are used by Id and
object file utilities.

Bytes Declaration Name Description

0-1 unsigned short f_magic Magic number

2-3 unsigned short f nscns Number of sections

4-7 long int f_timdat Time and date stamp indicating
when the file was created,
expressed as the number of
elapsed seconds since 00:00:00
GMT, January 1, 1970

8-11 long int f_symptr File pointer containing the
starting address of the symbol
table

12-15 long int f_nsyms Number of entries in the sym-
bol table

16-17 unsigned short f_opthdr Number of bytes in the
optional header

18-19 unsigned short f_flags Flags (see Figure 11-3)

Figure 11-2: File Header Contents

11-4 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Magic Numbers

The magic number specifies the target machine on which the
object file is executable.

Flags

The last 2 bytes of the file header are flags that describe the
type of the object file. Currently defined flags are found in the
header file filehdr.h, and are shown in Figure 11-3.

Mnemonic Flag Meaning

F RELFLG 00001 Relocation information stripped
from the file

F EXEC 00002 File is executable (i.e., no
unresolved external references)

F_LNNO 00004 Line numbers stripped from
the file

F_LSYMS 00010 Local symbols stripped from
the file

F AR32W 0001000 32 bit word

F BM32B 0020000 32100 required

F 8M32MAU 0040000 MAU required

Figure 11-3: File Header Flags (382 Computer)

File Header Declaration

The C structure declaration for the file header is given in Fig­
ure 11-4. This declaration may be found in the header file
filehdr.h.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-5

The Common Object File Format (COFF)

struct f il ehdr
1

I j

unsigned short
unsigned short

long

long

long

unsigned short

unsigned short

f_magic;
f_nscnsj

f_symptr;

f_nsyms;

f_opthdr;

Hdefine FllHDR struct fflehdr
Hdefine FllHSZ sizeof(FllHDR)

Figure 11-4: File Header Declaration

Optional Header Information

/* magic number */
/* number of section */

/* time and date stamp */

/* file ptr to symbol
table */

/* number entries in the
symbol table */

/* size of optional header *

/* flags */

The template for optional information varies among different
systems that use COFF. Applications place all system-dependent
information into this record. This allows different operating sys­
tems access to information that only that operating system uses
without forcing all COFF files to save space for that information.
General utility programs (for example, the symbol table access
library functions, the disassembler, etc.) are made to work prop­
erly on any common object file. This is done by seeking past this
record using the size of optional header information in the file
header field f_opthdr.

11-6 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Standard UNIX System a.out Header

8y default, files produced by the link editor for a UNIX system
always have a standard UNIX system a.out header in the optional
header field. The UNIX system a.out header is 28 bytes. The
fields of the optional header are described in Figure 11-5.

Bytes Declaration Name Description

0-1 short magic Magic number

2-3 short vstamp Version stamp

4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized data in bytes
12-15 long int bsize Size of uninitialized data in

bytes

16-19 long int entry Entry point

20-23 long int text start 8ase address of text
24-27 long int data_start 8ase address of data

Figure 11-5: Optional Header Contents (382, 385, 3815 Comput­
ers)

Whereas, the magic number in the file header specifies the
machine on which the object file runs, the magic number in the
optional header supplies information telling the operating system
on that machine how that file should be executed. The magic
numbers recognized by the 382/385/3815 UNIX operating system
are given in Figure 11-6.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-7

The Common Object File Format (COFF)

Value

0407

0410

0413

Meaning

The text segment is not write-protected or
sharable; the data segment is contiguous with
the text segment.
The data segment starts at the next segment
following the text segment and the text seg­
ment is write protected.
Text and data segments are aligned within
a.out so it can be directly paged.

Figure 11-6: UNIX System Magic Numbers (382, 385, 3815 Com­
puters)

Optional Header Declaration

The C language structure declaration currently used for the
UNIX system a.out file header is given in Figure 11-7. This
declaration may be found in the header file aouthdr.h.

11-8 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

• typedef struct aouthdr
I

short
short
long

long

long

long

magicj
vstampj
tsizej

dsizej

bsizej

entryj

/* magic number */
/* version stamp */
/* text size in bytes, padded */

/* to full word boundary */

/* initialized data size */

/* uninitialized data size */

/* entry point */

long text_startj/* base of text for this file */

long data_start /* base of data for this file */

~UTHDR;

Figure 11-7: aouthdr Declaration

Section Headers
Every object file has a table of section headers to specify the

layout of data within the file. The section header table consists of
one entry for every section in the file. The information in the sec­
tion header is described in Figure 11-8.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-9

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-7 char s name 8-character null padded section
name

8-11 long int s paddr Physical address of section

12-15 long int s vaddr Virtual address of section

16-19 long int s size Section size in bytes
20-23 long int s scnptr File pointer to raw data
24-27 long int s_relptr File pointer to relocation entries

28-31 long int sJnnoptr File pointer to line number
entries

32-33 unsigned s_nreloc Number of relocation entries
short

34-35 unsigned s_nlnno Number of line number entries
short

36-39 long int $_flags Flags (see Figure 11-9)

Figure 11-8: Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File
pointers are byte offsets that can be used to locate the start of
data, relocation, or line number entries for the section. They can
be readily used with the UNIX system function fseek(3S).

Flags
The lower 2 bytes of the flag field indicate a section type. The

flags are described in Figure 11-9.

11-10 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Mnemonic Flag Meaning

STYP_REG OxOO Regular section (allocated, relocated,
loaded)

STYP_DSECT Ox01 Dummy section (not allocated, relo-
cated, not loaded)

STYP _NOLOAD Ox02 Noload section (allocated, relocated,
not loaded)

STYP_GROUP Ox04 Grouped section (formed from input
sections)

STYP_PAD Ox08 Padding section (not allocated, not
relocated, loaded)

STYP COpy Ox10 Copy section (for a decision function
used in updating fields; not allocated,
not relocated, loaded, relocation and
line number entries processed nor-
mally)

STYP TEXT Ox20 Section contains executable text
STYP DATA Ox40 Section contains initialized data
STYP BSS Ox80 Section contains only uninitialized data
STYP_INFO Ox200 Comment section (not allocated, not

relocated, not loaded)
STYP_OVER Ox400 Overlay section (relocated, not allo-

cated, not loaded)
STYP_LIB Ox800 For .lib section (treated like

STYPJNFO)

Figure 11-9: Section Header Flags

Section Header Declaration
The C structure declaration for the section headers is

described in Figure 11-10. This declaration may be found in the
header file scnhdr .h.

UP·13690 COMMON OBJECT FILE FORMAT (COFF) 11·11

The Common Object File Format (COFF)

struct scnhdr
!

char s_name[8]; /* section name */
long s_paddr; /* physical address */
long s_vaddr; /* virtual address */
long s_size; /* section size */
long s_scnptr; /* file ptr to section raw data */

long s_relptr; /* f i 1 e ptr to relocation */

long s_lnnoptr; /* file ptr to line number */

unsigned short s_nreloc; /*number of relocation entries*/

unsigned short s_nlnno; /*number of line number entries*/

/* flags */

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Figure 11-10: Section Header Declaration

.bss Section Header
The one deviation from the normal rule In the section header

table is the entry for uninitialized data in a .bss section. A .bss
section has a size and symbols that refer to it, and symbols that
are defined in it. At the same time, a .bss section has no reloca­
tion entries, no line number entries, and no data. Therefore, a
.bss section has an entry in the section header table but occupies
no space elsewhere in the file. In this case, the number of reloca­
tion and line number entries, as well as all file pointers in a .bss
s~ction header, are O. The same is true of the STYP _NOLOAD and
STYP DSECT sections.

11-12 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Sections

Figure 11-1 shows that section headers are followed by the
appropriate number of bytes of text or data. The raw data for
each section begins on a 4-byte boundary in the file.

Link editor SECTIONS directives (see Chapter 12) allow users
to, among other things:

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections

If no SECTIONS directives are given, each input section
appears in an output section of the same name. For example, if a
number of object files, each with a .text section, are linked
together the output object file contains a Single .text section made
up of the combined input .text sections.

Relocation Information

Object files have one relocation entry for each relocatable
reference in the text or data. The relocation information consists
of entries with the format described in Figure 11-11.

Bytes Declaration Name Description

0-3 long int r_vaddr (Virtual) address of reference

4-7 long int r_symndx Symbol table index ,

8-9 unsigned short r_type Relocation type

Figure 11-11: Relocation Section Contents

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-13

The Common Object File Format (COFF)

The first 4 bytes of the entry are the virtual address of the text
or data to which this entry applies. The next field is the index,
counted from 0, of the symbol table entry that is being referenced.
The type field indicates the type of relocation to be applied.

As the link editor reads each input section and performs relo­
cation, the relocation entries are read. They direct how references
found within the input section are treated. The currently recog­
nized relocation types are given in Figure 11-12.

Mnemonic Flag

R A8S o

R DIR32 06

R DIR32S 012

Meaning

Reference is absolute; no relocation is
necessary. The entry will be ignored.
Direct 32-bit reference to the symbol's
virtual address.
Direct 32-bit reference to the symbol's
virtual address, with the 32-bit value
stored in the reverse order in the
object file.

Figure 11-12: Relocation Types (382, 385, 3815 Computers)

Relocation Entry Declaration

The structure declaration for relocation entries is given in Fig­
ure 11-13. This declaration may be found in the header file
reloc.h.

11-14 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

struct reloc
1

long r_vaddrj /* virtual address of reference */

long r_symndxj /* index into symbol table */

unsigned short r_typej /* relocation type */
I j

#define RELOC struct reloc

#define RELSZ 10

Figure 11-13: Relocation Entry Declaration

Line Numbers

When invoked with the -g option. the cc. and f77 commands
cause an entry in the object file for every source line where a
breakpoint can be inserted. You can then reference line numbers
when using a software debugger like sdb. All line numbers in a
section are grouped by function as shown in Figure 11-14.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-15

The Common Object File Format (COFF)

symbol index 0

physical address line number

physical address line number

symbol index 0
physical address line number

physical address line number

Figure 11-14: Line Number Grouping

The first entry in a function grouping has line number 0 and
has, in place of the physical address, an index into the symbol
table for the entry containing the function name. Subsequent
entries have actual line numbers and addresses of the text
corresponding to the line numbers. The line number entries are
relative to the beginning of the function, and appear in increasing
order of address.

Line Number Declaration
The structure declaration currently used for line number

entries is given in Figure 11-15.

11-16 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

struet lineno
1

union
I

long l_symndx; /* symtbl index of fune name */

long l_paddr; /* paddr of line number */
l_addrj

unsigned short l_lnno; /* line number */

I;

#define LINENO
#define LlNESZ

struet lineno
6

Figure 11-15: Line Number Entry Declaration

Symbol Table
Because of symbolic debugging requirements, the order of

symbols in the symbol table is very important. Symbols appear in
the sequence shown in Figure 11-16.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-17

The Common Object File Format (COFF)

filename 1

function 1

local symbols
for function 1

function 2

local symbols
for function 2

· ..
statics

· ..
filename 2

function 1

local symbols
for function 1

· ..
statics

· ..
defined global

symbols
undefined global

symbols

Figure 11-16: COFF Symbol Table

The word statics in Figure 11-16 means symbols defined with
the C language storage class static outside any function. The
symbol table consists of at least one fixed-length entry per symbol
with some symbols followed by auxiliary entries of the same size.
The entry for each symbol is a structure that holds the value, the
type, and other information.

11-18 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Special Symbols

The symbol table contains some special symbols that are gen­
erated by as, and other tools. These symbols are given in Figure
11-17.

Symbol Meaning

.file filename

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or union
returned by a function

.xfake dummy tag name for structure, union,
or enumeration

.eos end of members of structure, union, or
enumeration

etext next available address after the end of
the output section . text

edata next available address after the end of
the output section .data

end next available address after the end of
the output section .bss

Figure 11-17: Special Symbols in the Symbol Table

Six of these special symbols occur in pairs. The .bb and .eb
symbols indicate the boundaries of inner blocks; a .bf and .ef pair
brackets each function. An .xfake and .eos pair names and
defines the limit of structures, unions, and enumerations that were
not named. The .eos symbol also appears after named structures,
unions, and enumerations.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-19

The Common Object File Format (COFF)

When a structure, union, or enumeration has no tag name, the
compiler invents a name to be used in the symbol table. The
name chosen for the symbol table is .xfake, where x is an integer.
If there are three unnamed structures, unions, or enumerations in
the source, their tag names are .Ofake, .1fake, and .2fake. Each
of the special symbols has different information stored in the sym­
bol table entry as well as the auxiliary entries.

Inner Blocks

The C language defines a block as a compound statement that
begins and ends with braces, {, and}. An inner block is a block
that occurs within a function (which is also a block).

For each inner block that has local symbols defined, a special
symbol, .bb, is put in the symbol table immediately before the first
local symbol of that block. Also a special symbol, .eb, is put in the
symbol table immediately after the last local symbol of that block.
The sequence is shown in Figure 11-18 .

. bb
local symbols
for that block
.eb

Figure 11-18: Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the
.bb-.eb pairs and associated symbols may also be nested. See
Figure 11-19.

11-20 PROGRAMMER'S GUIDE UP-13690

int i;
char c;

The Common Object File Format (COFF)

/* block 1 */

/* block 2 */
long 8;

/* block 3 */
int x;

/* block 3 */

/* block 2 */

/* block 4 */
long i;

/* block 4 */
/* block 1 */

Figure 11-19: Nested blocks

The symbol table would look like Figure 11-20.

UP·13690 COMMON OBJECT FILE FORMAT (COFF) 11·21

The Common Object File Format (COFF)

.bb for block 1

i

c
.bb for block 2

a
.bb for block 3

x
.eb for block 3

.eb for block 2

.bb for block 4

i
.eb for block 4
.eb for block 1

Figure 11-20: Example of the Symbol Table

Symbols and Functions
For each function, a special symbol .bf is put between the

function name and the first local symbol of the function in the
symbol table. Also, a special symbol .ef is put immediately after
the last local symbol of the function in the symbol table. The
sequence is shown in Figure 11-21.

function name
.bf

local symbol

.ef

Figure 11-21: Symbols for Functions

11-22 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Symbol Table Entries
All symbols, regardless of storage class and type, have the

same format for their entries in the symbol table. The symbol
table entries each contain 18 bytes of information. The meaning
of each of the fields in the symbol table entry is described in Fig­
ure 11-22. It should be noted that indices for symbol table entries
begin at 0 and count upward. Each auxiliary entry also counts as
one symbol.

Bytes Declaration Name Description

0-7 (see text below) _n These 8 bytes contain either a
symbol name or an index to a
symbol

8-11 long int n value Symbol value; storage class
dependent

12-13 short n scnum Section number of symbol
14-15 unsigned short n_type Basic and derived type specifi-

cation

16 char n sclass Storage class of symbol
17 char n_numaux Number of auxiliary entries

Figure 11-22: Symbol Table Entry Format

Symbol Names
The first 8 bytes in the symbol table entry are a union of a

character array and two longs. If the symbol name is eight char­
acters or less, the (null-padded) symbol name is stored there. If
the symbol name is longer than eight characters, then the entire
symbol name is stored in the string table. In this case, the 8 bytes
contain two long integers, the first is zero, and the second is the
offset (relative to the beginning of the string table) of the name in
the string table. Since there can be no symbols with a null name,
the zeroes on the first 4 bytes serve to distinguish a symbol table
entry with an offset from one with a name in the first 8 bytes as
shown in Figure 11-23.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11·23

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-7 char n name a-character null-padded symbol
name

0-3 long n zeroes Zero in this field indicates the
name is in the string table

4-7 long n offset Offset of the name in the string
table

Figure 11-23: Name Field

Special symbols generated by the C Compilation System are
discussed above in "Special Symbols."

Storage Classes
The storage class field has one of the values described in Fig­

ure 11-24. These #define's may be found in the header file
storclass.h.

11-24 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Mnemonic Value Storage Class

C EFCN -1 physical end of a function

C_NULL 0 -
C AUTO 1 automatic variable

C EXT 2 external symbol

C STAT 3 static

C REG 4 register variable

C_EXTDEF 5 external definition

C LABEL 6 label

C ULABEL 7 undefined label

CMOS 8 member of structure

C ARG 9 function argument

C STRTAG 10 structure tag

C_MOU 11 member of union

C_UNTAG 12 union tag

C TPDEF 13 type definition

C USTATIC 14 uninitialized static

C_ENTAG 15 enumeration tag

C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C_FIELD 18 bit field

Figure 11-24: Storage Classes (Sheet 1 of 2)

UP-13690 COM MON OBJECT FILE FORMAT (COFF) 11-25

The Common Object File Format (COFF)

Mnemonic Value Storage Class

C BLOCK 100 beginning and end of block

C FCN 101 beginning and end of function

C EOS 102 end of structure
C FILE 103 filename
CLINE 104 used only by utility programs
CAllAS 105 duplicated tag
C_HIDDEN 106 like static, used to avoid

name conflicts

Figure 11-24: Storage Classes (Sheet 2 of 2)

All of these storage classes except for C _ALIAS and
C_HIDDEN are generated by the cc or as commands. The
compress utility, cprs, generates the C _ALIAS mnemonic. This
utility (described in the User's Reference Manua~ removes dupli­
cated structure, union, and enumeration definitions and puts alias
entries in their places. The storage class C_HIDDEN is not used
by any UNIX system tools.

Some of these storage classes are used only internally by the
C Compilation Systems. These storage classes are C _ EFCN,
C_EXTDEF, C_ULABEL, C_USTATIC, and C_LINE.

Storage Classes for Special Symbols
Some special symbols are restricted to certain storage classes.

They are given in Figure 11-25.

11-26 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Special Symbol Storage Class

.file C FILE

.bb C BLOCK

.eb C BLOCK

.bf C FCN

.ef C FCN

.target C_AUTO

.xfake C STRTAG,C_UNTAG,C_ENTAG

.eos C EOS

.text C STAT

.data C STAT

.bss C_STAT

Figure 11-25: Storage Class by Special Symbols

Also some storage classes are used only for certain special
symbols. They are summarized in Figure 11-26.

Storage Class Special Symbol

C BLOCK .bb, .eb

C FCN .bf, .ef

C_EOS .eos
C_FILE .file

Figure 11-26: Restricted Storage Classes

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-27

The Common Object File Format (COFF)

Symbol Value Field
The meaning of the value of a symbol depends on its storage

class. This relationship is summarized in Figure 11-27.

Storage Class Meaning of Value

C AUTO stack offset in bytes

C EXT relocatable address
C STAT relocatable address

C_REG register number

C LABEL relocatable address

C_MOS offset in bytes

C ARG stack offset in bytes

C STRTAG 0
C MOU 0
C UNTAG 0
C TPDEF 0
C ENTAG 0
C MOE enumeration value

C REGPARM register number

C FIELD bit displacement

C BLOCK relocatable address

C FCN relocatable address

C EOS size

C FILE (see text below)

CAllAS tag index

CHIDDEN relocatable address

Figure 11-27: Storage Class and Value

If a symbol has storage class C _FILE, the value of that symbol
equals the symbol table entry index of the next .file symbol. That
is, the .file entries form a one-way linked list in the symbol table.
If there are no more .file entries in the symbol table, the value of
the symbol is the index of the first global symbol.

11-28 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Relocatable symbols have a value equal to the virtual address
of that symbol. When the section is relocated by the link editor,
the value of these symbols changes.

Section Number Field
Section numbers are listed in Figure 11-28.

Mnemonic Section Number Meaning

N_DEBUG -2 Special symbolic debugging
symbol

NABS -1 Absolute symbol

N UNDEF 0 Undefined external symbol

N_SCNUM 1-077777 Section number where symbol
is defined

Figure 11-28: Section Number

A special section number (-2) marks symbolic debugging sym­
bols, including structure/union/enumeration tag names, typedefs,
and the name of the file. A section number of -1 indicates that the
symbol has a value but is not relocatable. Examples of absolute­
valued symbols include automatic and register variables, function
arguments, and .eos symbols.

With one exception, a section number of 0 indicates a relocat­
able external symbol that is not defined in the current file. The
one exception is a multiply defined external symbol (Le., FORTRAN
common or an uninitialized variable defined external to a function
in C). In the symbol table of each file where the symbol is
defined, the section number of the symbol is 0 and the value of
the symbol is a positive number giving the size of the symbol.
When the files are combined to form an executable object file, the
link editor combines all the input symbols of the same name into
one symbol with the section number of the .bss section. The max­
imum size of all the input symbols with the same name is used to
allocate space for the symbol and the value becomes the address
of the symbol. This is the only case where a symbol has a section
number of 0 and a non-zero value.

UP·13690 COMMON OBJECT FILE FORMAT (COFF) 11-29

The Common Object File Format (COFF)

Section Numbers and Storage Classes
Symbols having certain storage classes are also restricted to

certain section numbers. They are summarized in Figure 11-29.

Storage Class Section Number

C AUTO NABS
C_EXT N_ABS.N_UNDEF.N_SCNUM
C STAT N SCNUM
C REG NABS
C LABEL N UNDEF. N SCNUM
C_MOS N_ABS
C ARG NABS
C STRTAG N DEBUG
C MOU NABS
C UNTAG N_DEBUG
C TPDEF N DEBUG
C ENTAG N DEBUG
C MOE NABS
C_REGPARM NABS
C FIELD N_ABS
C BLOCK N_SCNUM
C FCN N SCNUM
C EOS NABS
C FILE N_DEBUG
C_ALIAS N_DEBUG

Figure 11-29: Section Number and Storage Class

11-30 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Type Entry
The type field in the symbol table entry contains information

about the basic and derived type for the symbol. This information
is generated by the C Compilation System on~y if the -g option is
used. Each symbol has exactly one basic or fundamental type but
can have more than one derived type. The format of the 16-bit
type entry is

I d61 dsl d41 d31 d21 d 1 I typ I

Bits 0 through 3. called tyP. indicate one of the fundamental
types given in Figure 11-30.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-31

The Common Object File Format (COFF)

Mnemonic Value Type

T NULL 0 type not assigned

T VOID 1 void

T CHAR 2 character

T SHORT 3 short integer
TINT 4 integer

T LONG 5 long integer

T FLOAT 6 floating point

T DOUBLE 7 double word

T STRUCT 8 structure

T UNION 9 union

T ENUM 10 enumeration

T MOE 11 member of enumeration

T UCHAR 12 unsigned character

T USHORT 13 unsigned short

T UINT 14 unsigned integer

T ULONG 15 unsigned long

Figure 11-30: Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked d1
through d6. These d fields represent levels of the derived types
given in Figure 11-31.

Mnemonic Value Type

DT NON 0 no derived type

DT PTR 1 pointer

DT FCN 2 function

DT ARY 3 array

Figure 11-31: Derived Types

11-32 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

The following examples demonstrate the interpretation of the
symbol table entry representing type.

char *func () ;

Here func is the name of a function that returns a pOinter to a
character. The fundamental type of func is 2 (character), the d1
field is 2 (function), and the d2 field is 1 (pointer). Therefore, the
type word in the symbol table for func contains the hexadecimal
number Ox62, which is interpreted to mean a function that returns
a pointer to a character.

short *tabptr[10][25][3];

Here tabptr is a three-dimensional array of pointers to short
integers. The fundamental type of tabptr is 3 (short integer); the
d1, d2, and d3 fields each contains a 3 (array), and the d4 field is
1 (pointer). Therefore, the type entry in the symbol table contains
the hexadecimal number Ox7f3 indicating a three-dimensional array
of pointers to short integers.

Type Entries and Storage Classes
Figure 11-32 shows the type entries that are legal for each

storage class.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-33

The Common Object File Format (COFF)

d Entry
Storage typ Entry
Class Function? Array? Pointer? Basic Type

C AUTO no yes yes Any except T _MOE
C EXT yes yes yes Any except T_MOE
C STAT yes yes yes Any except T _MOE
C REG no no yes Any except T _ MOE
C LABEL no no no T NULL
CMOS no yes yes Any except T MOE
C_ARG yes no yes Any except T _MOE
C_STRTAG no no no T_STRUCT
C MOU no yes yes Any except T _ MOE
C UNTAG no no no T_UNION

C TPDEF no yes yes Any except T MOE
C ENTAG no no no T ENUM
C MOE no no no T_MOE
C REGPARM no no yes Any except T _MOE
C FIELD no no no T_ENUM,

T_UCHAR,
T_USHORT,
T_UNIT, T_ULONG

C BLOCK no no no T NULL
C FCN no no no T NULL
C EOS no no no T NULL
C FILE no no no T NULL
C_ALIAS no no no T_STRUCT,

T_UNION, T_ENUM

Figure 11-32: Type Entries by Storage Class

11-34 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Conditions for the d entries apply to d1 through d6, except
that it is impossible to have two consecutive derived types of func­
tion.

Although function arguments can be declared as arrays, they
are changed to pointers by default. Therefore, no function argu­
ment can have array as its first derived type.

Structure for Symbol Table Entries
The C language structure declaration for the symbol table

entry is given in Figure 11-33. This declaration may be found in
the header file syms.h.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-35

The Common Object File Format (COFF)

struct syment
I

union
I

char _n_name[SYMNMLEN]j /* symbol name*/
struct
I

long _n_zeroesj /* symbol name */

long
_n_nj

char

_n_offsetj /* location in string table */

_nj
unsigned long

short

unsigned short

char

char

#define
#define
#define
#define

n_name
n_zeroes
n_offset
n_nptr

#define SYMNMLEN 8

_n_nptr[2]; / allows overlaying */

n_valuej /* value of symbol */

n_scnumj /* section number */

n_typej /* type and derived */

n_sclass; /* storage class */

n_numaUXj /* number of aux entries */

_no_n_name
_no_n_no_n_zeroes
_no_n_no_n_offset
_no_n_nptr[1]

~,_n_e_S_YM_E_S_Z __ 1_8 __ /_*_S_i z_e_O_f_a_s_Y_m_b_O_l_t_ab_l_e_e_n_t.r ____ Y * /

Figure 11-33: Symbol Table Entry Declaration

11-36 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Auxiliary Table Entries
An auxiliary table entry of a symbol contains the same number

of bytes as the symbol table entry. However, unlike symbol table
entries, the format of an auxiliary table entry of a symbol depends
on its type and storage class. They are summarized in Figure 11-
34.

Type Entry
Storage Auxiliary

Name Class d1 typ Entry Format

.file C FILE DT NON T NULL filename

. text, .data, C STAT DT_NON T NULL section

.bss
tagname C_STRTAG DT_NON T NULL tag name

C UNTAG
C ENTAG

.eos C_EOS DT NON T NULL end of struc-
ture

fename C_EXT DT_FCN (Note 1) function
C STAT

arrname (Note 2) DT ARY (Note 1) array
.bb,.eb C_BLOCK DT NON T_NULL beginning and

end of block

.bf,.ef C_FCN DT NON T NULL beginning and
end of function

name (Note 2) DT_PTR, T_STRUCT, name related to
related to DT_ARR, T_UNION, structure,
structure, DT_NON T_ENUM union,
union, enumeration
enumera-
tion

Figure 11-34: Auxiliary Symbol Table Entries

Notes to Figure 11-34:
1. Any except T _MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

UP·13690 COMMON OBJECT FILE FORMAT (COFF) 11·37

The Common Object File Format (COFF)

In Figure 11-34, tagname means any symbol name including
the special symbol .xfake, and fcname and arrname represent any
symbol name for a function or an array respectively. Any symbol
that satisfies more than one condition in Figure 11-34 should have
a union format in its auxiliary entry.

NOTE:

Filenames

It is a mistake to assume how many auxiliary
entries are associated with any given symbol table
entry. This information is available, and should be
obtained from the n_numaux field in the symbol
table.

Each of the auxiliary table entries for a filename contains a 14-
character filename in bytes 0 through 13. The remaining bytes are
O.
Sections

The auxiliary table entries for sections have the format as
shown in Figure 11-35.

Bytes Declaration Name Description

0-3 long int x scnlen section length
4-5 unsigned short x nreloc number of relocation entries
6-7 unsigned short x nlinno number of line numbers
8-17 - - unused (filled with zeroes)

Figure 11-35: Format for Auxiliary Table Entries for Sections

Tag Names
The auxiliary table entries for tag names have the format

shown in Figure 11-36.

11-38 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-5 - - unused (filled with zeroes)

6-7 unsigned short x_size size of structure, union, and
enumeration

8-11 - - unused (filled with zeroes)

12-15 long int x_endndx index of next entry beyond this
structure, union, or enumera-
tion

16-17 - - unused (filled with zeroes)

Figure 11-36: Tag Names Table Entries

End of Structures
The auxiliary table entries for the end of structures have the

format shown in Figure 11-37:

Bytes Declaration Name Description

0-3 long int x_tagndx tag index
4-5 - - unused (filled with zeroes)

6-7 unsigned short x size size of structure, union, or
enumeration

8-17 - - unused (filled with zeroes)

Figure 11-37: Table Entries for End of Structures

Functions
The auxiliary table entries for functions have the format shown

in Figure 11-38:

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-39

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-3 long int x tagndx tag index
4-7 long int x_fsize size of function (in bytes)
8-11 long int xJnnoptr file pointer to line number
12-15 long int x endndx index of next entry beyond this

point
16-17 unsigned short x tvndx index of the function's address

in the transfer vector table (not
used in UNIX system)

Figure 11-38: Table Entries for Functions

Arrays
The auxiliary table entries for arrays have the format shown in

Figure 11-39. Defining arrays having more than four dimensions
produces a warning message. .

Bytes Declaration Name Description

0-3 long int x tagndx tag index
4-5 unsigned short x Inno line number of declaration

6-7 unsigned short x size size of array

8-9 unsigned short x_dimen[O] first dimension
10-11 unsigned short x dimen[1] second dimension

12-13 unsigned short x_dimen[2] third dimension
14-15 unsigned short x dimen[3] fourth dimension

16-17 - - unused (filled with zeroes)

Figure 11-39: Table Entries for Arrays

11-40 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

End of Blocks and Functions
The auxiliary table entries for the end of blocks and functions

have the format shown in Figure 11-40:

Bytes Declaration Name Description

0-3 . . unused (filled with zeroes)
4-5 unsigned short xJnno C-source line number

6-17 . . unused (filled with zeroes)

Figure 11-40: End of Block and Function Entries

Beginning of Blocks and Functions
The auxiliary table entries for the beginning of blocks and

functions have the format shown in Figure 11-41:

Bytes Declaration Name Description

0-3 . · unused (filled with zeroes)
4-5 unsigned short xJnno C-source line number
6-11 D · unused (filled with zeroes)
12-15 long int x endndx index of next entry past this

block
16-17 • · unused (filled with zeroes)

Figure 11-41: Format for Beginning of Block and Function

Names Related to Structures, Unions, and Enumerations
The auxiliary table entries for structure, union, and enumera­

tion symbols have the format shown in Figure 11-42:

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-41

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-3 long int x_tagndx tag index
4-5 - - unused (filled with zeroes)
6-7 unsigned short x_size size of the structure, union, or

enumeration
8-17 - - unused (filled with zeroes)

Figure 11-42: Entries for Structures, Unions, and Enumerations

Aggregates defined by typedef mayor may not have auxiliary
table entries. For example,

typedef struct people STUDENT;

struct people
1

I;

char name[20);
long id;

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the
symbol table but symbol STUDENT will not because it is a forward
reference to a structure.

11-42 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

Auxiliary Entry Declaration
The C language structure declaration for an auxiliary symbol

table entry is given in Figure 11-43. This declaration may be found
in the header file syms.h.

union auxent
I

struet
I

long x_tagndxj
union
I

struet
I

unsigned short x_1nnoj
unsigned short x_size;

I x_lnsz;
long x_fsizej

x_mise;
union
1

struet

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 1 of 2)

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-43

The Common Object File Format (COFF)

long
long

x_fen;
struet
I

x_1nnoptr;
x_endndx;

unsigned short
I x_ary;

x_dimen[DIMNUM);

J
#define
#define
#define

x_fenary;
unsigned short x_tvndx;

ehar x_fname[FILNMLEN);
I x_fil e;
struet
1

long x_sen1en;
unsigned short
unsigned short

I x_sen;
struet
I

long x_tvfi11;
unsigned short
unsigned short

J x_tv;

FILNMLEN 14
DIMNUM 4

x_nre10e;
x_n1inno;

x_tv1en;
x_tvran[2);

AUXENT union auxent
AUXESZ 18 \::ine

--~

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 2 of 2)

11-44 PROGRAMMER'S GUIDE UP-13690

The Common Object File Format (COFF)

String Table

Symbol table names longer than eight characters are stored
contiguously in the string table with each symbol name delimited
by a null byte. The first four bytes of the string table are the size
of the string table in bytes; offsets into the string table, therefore,
are greater than or equal to 4. For example, given a file containing
two symbols (with names longer then eight characters,
lon9_name_1 and another_one) the string table has the format as
shown in Figure 11-44:

'I' '0' 'n' 'g'

, ,
'n' 'a' 'm' -

'e'
, ,

'I' '\0'

'a' 'n' 'c;>' 't'

'h' 'e' 'r'
, ,

'0' 'n' 'e' '\0'

Figure 11-44: String Table

The index of lon9_ name _1 in the string table is 4 and the
index of another_one is 16.

UP-13690 COMMON OBJECT FILE FORMAT (COFF) 11-45

The Common Object File Format (COFF)

Access Routi nes

UNIX system releases contain a set of access routines that are
used for reading the various parts of a common object file.
Although the calling program must know the detailed structure of
the parts of the object file it processes, the routines effectively
insulate the calling program from the knowledge of the overall
structure of the object file.

The access routines can be divided into four categories:

1. functions that open or close an object file

2. functions that read header or symbol table information

3. functions that position an object file at the start of a partic­
ular section of the object file

4. a function that returns the symbol table index for a partic­
ular symbol

These routines can be found in the library libld.a and are listed
in Section 3 of the Programmer's Reference Manual. A summary
of what is available can be found in the Programmer's Reference
Manual under Idfcn(4).

11-46 PROGRAMMER'S GUIDE UP-13690

Chapter 12: The Link Editor

The Link Editor 12-1

Memory Configuration 12-1

Sections 12-2
Addresses 12-2
Binding 12-2
Object File 12-3

Link Editor Command Language 12-4

Expressions 12-4
Assignment Statements 12-5
Specifying a Memory Configuration 12-7
Section Definition Directives 12-9

File Specifications 12-10
Load a Section at a Specified Address 12-11
Aligning an Output Section 12-12

Grouping Sections Together 12-13

Creating Holes Within Output Sections 12-16
Creating and Defining Symbols at Link-Edit Time 12-18
Allocating a Section Into Named Memory 12-20
Initialized Section Holes or .bss Sections 12-20

Notes and Special Considerations 12-23

Changing the Entry Point 12-23
Use of Archive Libraries 12-23
Dealing With Holes in Physical Memory 12-26

Allocation Algorithm 12-27

Incremental Link Editing 12-28

DSECT, COPY, NOLOAD, INFO, and OVERLAY Sections 12-30

UP-13690 TABLE OF CONTENTS

Table of Contents

Output File Blocking
Nonrelocatable Input Files

Syntax Diagram for Input Directives

ii PROGRAMMER'S GUIDE

12-32

12-32

12-34

UP-13690

The Link Editor
In Chapter 2 there was a discussion of link editor command

line options (some of which may also be provided on the cc(1)
command line). This chapter contains information on the Link Edi­
tor Command Language.

The command language enables you to

• specify the memory configuration of the target machine

• combine the sections of an object file in arrangements other
than the default

• bind sections to specific addresses or within specific por­
tions of memory

• define or redefine global symbols

Under most normal circumstances there is no compelling need
to have such tight control over object files and where they are
located in memory. When you do need to be very precise in con­
trolling the link editor output, you do it by means of the command
language.

Link editor command language directives are passed in a file
named on the Id(1) command line. Any file named on the com­
mand line that is not identifiable as an object module or an archive
library is assumed to contain directives. The following paragraphs
define terms and describe conditions with which you need to be
familiar before you begin to use the command language.

Memory Configuration

The virtual memory of the target machine is, for purposes of
allocation, partitioned into configured and unconfigured memory.
The default condition is to treat all memory as configured. It is
common with microprocessor applications, however, to have dif­
ferent types of memory at different addresses. For example, an
application might have 3K of PROM (Programmable Read-Only
Memory) beginning at address 0, and 8K of ROM (Read-Only
Memory) starting at 20K. Addresses in the range 3K to 20K-1 are
then not configured. Unconfigured memory is treated as reserved
or unusable by Id(1). Nothing can ever be linked into

UP-13690 THE LINK EDITOR 12-1

The Link Editor

unconfigured memory. Thus, specifying a certain memory range
to be unconfigured is one way of marking the addresses (in that
range) illegal or nonexistent with respect to the linking process.
Memory configurations other than the default must be explicitly
specified by you (the user).

Unless otherwise specified, all discussion in this document of
memory, addresses, etc. are with respect to the configured sec­
tions of the address space.

Sections

A section of an object file is the smallest unit of relocation and
must be a contiguous block of memory. A section is identified by
a starting address and a size. Information describing all the sec­
tions in a file is stored in section headers at the start of the file.
Sections from input files are combined to form output sections
that contain executable text, data, or a mixture of both. Although
there may be holes or gaps between input sections and between
output sections, storage is allocated contiguously within each out­
put section and may not overlap a hole in memory.

Addresses

The physical address of a section or symbol is the relative
offset from address zero of the address space. The physical
address of an object is not necessarily the location at which it is
placed when the process is executed. For example, on a system
with paging, the address is with respect to address zero of the vir­
tual space, and the system performs another address translation.

Binding

It is often necessary to have a section begin at a specific,
predefined address in the address space. The process of specify­
ing this starting address is called binding, and the section in ques­
tion is said to be bound to or bound at the required address.
While binding is most commonly relevant to output sections, it is
also possible to bind special absolute global symbols with an
assignment statement in the Id(1) command language.

12·2 PROGRAMMER'S GUIDE UP·13690

The Link Editor

Object File

Object files are produced both by the assembler (typically as a
result of calling the compiler) and by Id(1). Id(1) accepts relocat­
able object files as input and produces an output object file that
mayor may not be relocatable. Under certain special cir­
cumstances, the input object files given to Id(1) can also be abso­
lute files.

Files produced from the compilation system may contain,
among others, sections called .text and .data. The .text section
contains the instruction text (executable instructions), .data con­
tains initialized data variables. For example, if a C program con­
tained the global (i.e., not inside a function) declaration

int i = 100;

and the assignment

i = OJ

then compiled code from the C assignment is stored in .text, and
the variable i is located in .data.

UP-13690 THE LINK EDITOR 12-3

Link Editor Command Language

Expressions

Expressions may contain global symbols, constants, and most
of the basic C language operators. (See Figure 12-2, "Syntax
Diagram for Input Directives.") Constants are as in C with a
number recognized as decimal unless preceded with 0 for octal or
Ox for hexadecimal. All numbers are treated as long integers's.
Symbol names may contain uppercase or lowercase letters, digits,
and the underscore, _. Symbols within an expression have the
value of the address of the symbol only. Id(1) does not do symbol
table lookup to find the contents of a symbol, the dimensionality of
an array, structure elements declared in a C program, etc.

Id(1) uses a lex-generated input scanner to identify symbols,
numbers, operators, etc. The current scanner design makes the
following names reserved and unavailable as symbol names or
section names:

ADDR BLOCK GROUP NEXT RANGE SPARE
ALIGN COMMON INFO NOLOAD REGIONS PHY
ASSIGN COpy LENGTH ORIGIN SECTIONS TV
BIND DSECT MEMORY OVERLAY SIZEOF

addr block length origin sizeof
align group next phy spare
assign I 0 range
bind len org s

The operators that are supported, in order of precedence from
high to low, are shown in Figure 12-1:

12-4 PROGRAMMER'S GUIDE UP-13690

Link Editor Command Language

symbol

! - - (UNARY Minus)
* / %
+ - (BINARY Minus)
> > «

!= > < <= >=
&
I
I

&&
I I
I I

= += *= /=

Figure 12-1: Operator Symbols

The above operators have the same meaning as in the C
language. Operators on the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via
the assignment statement. The syntax of the assignment state­
ment is

symbol = expression;

or

symbol op= expression;

where op is one of the operators +, ., *, or /. Assignment state­
ments must be terminated by a semicolon.

All assignment statements (with the exception of the one case
described in the following paragraph) are evaluated after allocation
has been performed. This occurs after all input-file-defined sym­
bols are appropriately relocated but before the actual relocation of
the text and data itself. Therefore, if an assignment statement
expression contains any symbol name, the address used for that
symbol in the evaluation of the expression reflects the symbol

UP-13690 THE LINK EDITOR 12-5

Link Editor Command Language

address in the output object file. References within text and data
(to symbols given a value through an assignment statement)
access this latest assigned value. Assignment statements are pro­
cessed in the same order in which they are input to Id(1).

Assignment statements are normally placed outside the scope
of section-definition directives (see "Section Definition Directives"
under "Link Editor Command Language"). However, there exists a
special symbol, called dot, ., that can occur only within a section­
definition directive. This symbol refers to the current address of
Id(1)'s location counter. Thus, assignment expressions involving.
are evaluated during the allocation phase of Id(1). Assigning a
value to the. symbol within a section-definition directive can incre­
ment (but not decrement) Id(1)'s location counter and can create
holes within the section, as described in "Section Definition Direc­
tives." Assigning the value of the . symbol to a conventional sym­
bol permits the final allocated address (of a particular point within
the link edit run) to be saved.

align is provided as a shorthand notation to allow alignment of
a symbol to an n-byte boundary within an output section, where n
is a power of 2. For example, the expression

align(n)

is equivalent to

(. + n - 1) &- (n - 1)

SIZEOF and ADDR are pseudo-functions that, given the name
of a section, return the size or address of the section respectively.
They may be used in symbol definitions outside of section direc­
tives.

Link editor expressions may have either an absolute or a relo­
catable value. When Id(1) creates a symbol through an assign­
ment statement, the symbol's value takes on that type of expres­
sion. That type depends on the following rules:

• An expression with a single relocatable symbol (and zero or
more constants or absolute symbols) is relocatable.

• The difference of two relocatable symbols from the same
section is absolute.

12-6 PROGRAMMER'S GUIDE UP-13690

Link Editor Command Language

• All other expressions are combinations of the above.

Specifying a Memory Configuration

MEMORY directives are used to specify

1 . The total size of the virtual space of the target machine.

2. The configured and unconfigured areas of the virtual
space.

If no directives are supplied, Id(1) assumes that all memory is con­
figured. The size of the default memory is dependent upon the
target machine.

By means of MEMORY directives, an arbitrary name of up to
eight characters is assigned to a virtual address range. Output
sections can then be forced to be bound to virtual addresses
within specifically named memory areas. Memory names may
contain uppercase or lowercase letters, digits, and the special
characters $, ., or _. Names of memory ranges are used by Id(1)
only and are not carried in the output file symbol table or headers.

When MEMORY directives are used, all virtual memory not
described in a MEMORY directive is considered to be unconfig­
ured. Unconfigured memory is not used in Id(1)'s allocation pro­
cess; hence nothing except DSECT sections can be link edited or
bound to an address within unconfigured memory.

As an option on the MEMORY directive, attributes may be
associated with a named memory area. In future releases this
may be used to provide error checking. Currently, error checking
of this type is not implemented.

The attributes currently accepted are

1 . R: readable memory

2. W: writable memory

3. X: executable, i.e., instructions may reside in this memory

4. I: initializable, i.e., stack areas are typically not initialized

UP-13690 THE LINK EDITOR 12-7

Link Editor Command Language

Other attributes may be added in the future if necessary. If no
attributes are specified on a MEMORY directive or if no MEMORY
directives are supplied, memory areas assume the attributes of R,
W, X, and I.

The syntax of the MEMORY directive is

MEMORY
I

name1 (attr)
name2 (attr)
etc.

origin = n1, length = n2
origin = n3, length = n4

The keyword origin (or org or 0) must precede the origin of a
memory range, and length (or len or I) must precede the length
as shown in the above prototype. The origin operand refers to
the virtual address of the memory range. origin and length are
entered as long integer constants in either decimal, octal, or hexa­
decimal (standard C syntax). origin and length specifications, as
well as individual MEMORY directives, may be separated by white
space or a comma.

By specifying MEMORY directives, Id(1) can be told that
memory is configured in some manner other than the default. For
example, if it is necessary to prevent anything from being linked to
the first Ox10000 words of memory, a MEMORY directive can
accomplish this.

MEMORY

I
valid org = Ox10000, len = OxFEOOOO

12-8 PROGRAMMER'S GUIDE UP-13690

Link Editor Command Language

Section Definition Directives
The purpose of the SECTIONS directive is to describe how

input sections are to be combined, to direct where to place output
sections (both in relation to each other and to the entire virtual
memory space), and to permit the renaming of output sections.

In the default case where no SECTIONS directives are given,
all input sections of the same name appear in an output section of
that name. If two object files are linked, one containing sections
s 1 and s2 and the other containing sections s3 and s4, the output
object file contains the four sections s 1, s2, s3, and s4. The order
of these sections would depend on the order in which the link edi­
tor sees the input files.

The basic syntax of the SECTIONS directive is

SECTIONS
{

etc.
J

secname1
{

file_specifications,
assignment_statements

secname2 :
{

file_specifications,
aSSignment_statements

The various types of section definition directives are discussed in
the remainder of this section.

UP·13690 THE LINK EDITOR 12·9

Link Editor Command Language

File Specifications
Within a section definition, the files and sections of files to be

included in the output section are listed in the order in which they
are to appear in the output section. Sections from an input file are
specified by

filename (secname)

or

filename (secnaml secnam2 ...)

Sections of an input file are separated either by white space or
commas as are the file specifications themselves.

filename [COMMON]

may be used in the same way to refer to all the uninitialized, unal­
located global symbols in a file.

If a file name appears with no sections listed, then all sections
from the file (but not the uninitialized, unallocated globals) are
linked into the current output section. For example,

SECTIONS
1

outsecl:
1

fi lel.o (secl)
file2.o
file3.o (secl, sec2)

According to this directive, the order in which the input sections
appear in the output section outsec1 would be

12-10 PROGRAMMER'S GUIDE UP-13690

Link Editor Command Language

1 . section sec1 from file file1.0

2. all sections from file2.o, in the order they appear in the file

3. section sec1 from file file3.o, and then section sec2 from
file file3.o

If there are any additional input files that contain input sections
also named outsec1, these sections are linked following the last
section named in the definition of outsec1. If there are any other
input sections in file1.o or file3.o, they will be placed in output
sections with the same names as the input sections unless they
are included in other file specifications.

The code

*(secname)

may be used to indicate all previously unallocated input sections of
the given name, regardless of what input file they are contained in.

Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is
accomplished by an Id(1) option as shown in the following SEC­
TIONS directive example:

SECTIONS

1
outsec addr:
1

J
etc.

The addr is the bonding address expressed as a C constant. If
outsec does not fit at addr (perhaps because of holes in the
memory configuration or because outsec is too large to fit without
overlapping some other output section), Id(1) issues an

UP-13690 THE LINK EDITOR 12-11

link Editor Command Language

appropriate error message. addr may also be the word BIND, fol­
lowed by a parenthesized expression. The expression may use the
pseudo-functions SIZEOF, ADDR or NEXT. NEXT accepts a con­
stant and returns the first multiple of that value that falls into con­
figured unallocated memory; SIZEOF and ADDR accept previously
defined sections.

As long as output sections do not overlap and there is enough
space, they can be bound anywhere in configured memory. The
SECTIONS directives defining output sections need not be given to
Id(1) in any particular order, unless SIZE OF or ADDR is used.

Id(1) does not ensure that each section's size consists of an
even number of bytes or that each section starts on an even byte
boundary. The assembler ensures that the size (in bytes) of a sec­
tion is evenly divisible by 4. Id(1) directives can be used to force a
section to start on an odd byte boundary although this is not
recommended. If a section starts on an odd byte boundary, the
section's contents are either accessed incorrectly or are not exe­
cuted properly. When a user specifies an odd byte boundary,
Id(1) issues a warning message.

Aligning an Output Section

It is possible to request that an output section be bound to a
virtual address that falls on an n-byte boundary, where n is a
power of 2. The ALIGN option of the SECTIONS directive per­
forms this function, so that the option

AlIGN(n)

is equivalent to specifying a bonding address of

(.+n-1)&-(n-1)

For example

12-12 PROGRAMMER'S GUIDE UP-13690

SECTIONS
1

Link Editor Command Language

outsec ALIGN(ox20000)
1

J
etc.

~----~
The output section outsec is not bound to any given address but
is placed at some virtual address that is a multiple of Ox20000
(e.g., at address OxO, Ox20000, Ox40000, Ox60000, etc.).

Grouping Sections Together

The default allocation algorithm for Id(1)

1. Links all input .init sections together, followed by .text sec­
tions, into one output section. This output section is called
.text and is bound to an address of OxO plus the size of all
headers in the output file.

2. Links all input .data sections together into one output sec­
tion. This output section is called .data and, in paging sys­
tems, is bound to an address aligned to a machine depen­
dent constant plus a number dependent on the size of
headers and text.

3. Links all input .bss sections together with all uninitialized,
unallocated global symbols, into one output section. This
output section is called .bss and is allocated so as to
immediately follow the output section .data. Note that the
output section .bss is not given any particular address
alignment.

UP-13690 THE LINK EDITOR 12-13

Link Editor Command Language

Specifying any SECTIONS directives results in this default allo­
cation not being performed. Rather than relying on the Id(1)
default algorithm, if you are manipulating COFF files, the one cer­
tain way of determining address and order information is to take it
from the file and section headers. The default allocation of Id(1) is
equivalent to supplying the following directive:

SECTIONS
{

.text sizeof_headers : { *(.init) *(.text) J
GROUP BIND(NEXT(align_value) +

«SIZEOF(.text) + ADDR(.text» % Ox2000»

.data 1 J

.bss 1 I

where align _value is a machine dependent constant. The GROUP
command ensures that the two output sections, .data and .bss,
are allocated (e.g., grouped) together. Bonding or alignment infor­
mation is supplied only for the group and not for the output sec­
tions contained within the group. The sections making up the
group are allocated in the order listed in the directive.

If .text, .data, and .bss are to be placed in the same segment,
the following SECTIONS directive is used:

12·14 PROGRAMMER'S GUIDE UP·13690

SECTIONS
1

GROUP
1

.text

.data

.bss

Link Editor Command Language

1 J
1 J
1 J

Note that there are still three output sections (.text, .data, and
.bss), but now they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a start­
ing address or aligned simply by adding a field to the GROUP
directive. To bind to OxCOOOO, use

GROUP OxCOOOO : 1

To align to Ox10000, use

GROUP ALIGN(Ox10000) : 1

With this addition, first the output section .text is bound at
OxCOOOO (or is aligned to Ox10000); then the remaining members
of the group are allocated in order of their appearance into the
next available memory locations.

When the GROUP directive is not used, each output section is
treated as an independent entity:

UP·13690 THE LINK EDITOR 12·15

Link Editor Command Language

SECTIONS

1
.text : 1 J
.data ALIGN(ox20000) 1 J
.bss : 1 J

The .text section starts at virtual address OxO (if it is in configured
memory) and the .data section at a virtual address aligned to
Ox20000. The .bss section follows immediately after the .text sec­
tion if there is enough space. If there is not, it follows the .data
section. The order in which output sections are defined to Id(1)
cannot be used to force a certain allocation order in the output
file.

Creating Holes Within Output Sections

The special symbol dot, ., appears only within section defini­
tions and assignment statements. When it appears on the left side
of an assignment statement,. causes Id(1)'s location counter to
be incremented or reset and a hole left in the output section.
Holes built into output sections in this manner take up physical
space in the output file and are initialized using a fill character
(either the default fill character (OxOO) or a supplied fill character).
See the definition of the -f option in "Using the Link Editor" and the
discussion of filling holes in "Initialized Section Holes" or .bss Sec­
tions." in this chapter.

Consider the following section definition:

12-16 PROGRAMMER'S GUIDE UP-13690

outsec:
{

• += Ox1000j
f1.o (.text)
• += Ox100j
f2.o (.text)

Link Editor Command Language

• = align (4);
f3.o (.text)

The effect of this command is as follows:

1. A Ox1000 byte hole, filled with the default fill character, is
left at the beginning of the section. Input section f1.0
(.text) is linked after this hole.

2. The .text section of input file f2.0 begins at Ox100 bytes
following the end of f1.0 (.text).

3. The .text section of f3.o is linked to start at the next full
word boundary following the .text section of f2.0 with
respect to the beginning of outsec.

For the purposes of allocating and aligning addresses within
an output section, Id(1) treats the output section as if it began at
address zero. As a result, if, in the above example, outsec ulti­
mately is linked to start at an odd address, then the part of outsec
built from f3.o (.text) also starts at an odd address - even though
f3.o (.text) is aligned to a full word boundary. This is prevented by
specifying an alignment factor for the entire output section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the
sections it generates to a full word length making explicit align­
ment specifications unnecessary. This also holds true for the com­
piler.

UP-13690 THE LINK EDITOR 12-17

Link Editor Command Language

Expressions that decrement. are illegal. For example, sub­
tracting a value from the location counter is not allowed since
overwrites are not allowed. The most common operators in
expressions that assign a value to . are + = and align.

Creating and Defining Symbols at Link-Edit Time

The assignment instruction of Id(1) can be used to give sym­
bols a value that is link-edit dependent. Typically, there are three
types of assignments:

1. Use of . to adjust Id(1)'s location counter during allocation.

2. Use of . to assign an allocation-dependent value to a sym­
bol.

3. Assigning an allocation-independent value to a symbol.

Case 1) has already been discussed in the previous section.

Case 2) provides a means to assign addresses (known only after
allocation) to symbols. For example,

SECTIONS
1

outsc1: 1 .•. 1
outsc2:
{

file1.o (s1)
s2_start = .
file2.o (s2)
s2_end = - 1;

The symbol s2_start is defined to be the address of file2.o(s2),
and s2_end is the address of the last byte of file2.o(s2).

12-18 PROGRAMMER'S GUIDE UP-13690

Link Editor Command Language

Consider the following example:

SECTIONS

1
outsc1:
1

file1.0 (.data)
mark = .;
• += 4;
f i 1 e2 .0 (. data)

In this example, the symbol mark is created and is equal to
the address of the first byte beyond the end of file1.o's .data sec­
tion. Four bytes are reserved for a future run-time initialization of
the symbol mark. The type of the symbol is a long integer (32
bits).

Assignment instructions involving . must appear within SEC­
TIONS definitions since they are evaluated during allocation.
Assignment instructions that do not involve. can appear within
SECTIONS definitions but typically do not. Such instructions are
evaluated after allocation is complete. Reassignment of a defined
symbol to a different address is dangerous. For example, if a
symbol within .data is defined, initialized, and referenced within a
set of object files being link-edited, the symbol table entry for that
symbol is changed to reflect the new, reassigned physical address.
However, the associated initialized data is not moved to the new
address, and there may be references to the old address. The
Id(1) issues warning messages for each defined symbol that is
being redefined within an ifile. However, assignments of absolute
values to new symbols are safe because there are no references
or initialized data associated with the symbol.

UP·13690 THE LINK EDITOR 12·19

Link Editor Command Language

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere)
within a specific named memory (as previously specified on a
MEMORY directive). (The > notation is borrowed from the UNIX
system concept of redirected output.) For example,

MEMORY
I

mem1: o=Oxoooooo 1=Ox1OOOO
mem2 (RW): o=Ox020000 1=Ox40000
mem3 (RW): o=Ox070000 1=Ox40000
mem1: o=Ox120000 1=Ox04000

SECTIONS
I

outsec1: f1.o(.data) > mem1
outsec2: f2.o(.data) > mem3

This directs Id(1) to place outsec1 anywhere within the memory
area named mem1 (Le., somewhere within the address range OxO­
OxFFFF or Ox120000-0x123FFF). The outsec2 is to be placed
somewhere in the address range Ox70000-0xAFFFF.

Initialized Section Holes or .bss Sections

When holes are created within a section (as in the example in
"Creating Holes within Output Sections"), Id (1) normally puts out
bytes of zero as fill. By default, .bss sections are not initialized at
all; that is, no initialized data is generated for any .bss section by
the assembler nor supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to
set such holes or output .bss sections to an arbitrary 2-byte pat­
tern. Such initialization options apply only to .bss sections or
holes. As an example, an application might want an uninitialized
data table to be initialized to a constant value without recompiling

12-20 PROGRAMMER'S GUIDE UP-13690

Link Editor Command Language

the .0 file or a hole in the text area to be filled with a transfer to an
error routine.

Either specific areas within an output section or the entire out­
put section may be specified as being initialized. However, since
no text is generated for an uninitialized .bss section, if part of such
a section is initialized, then the entire section is initialized. In other
words, if a .bss section is to be combined with a .text or .data
section (both of which are initialized) or if part of an output .bss
section is to be initialized, then one of the following will hold:

1 . Explicit initialization options must be used to initialize all
.bss sections in the output section.

2. Id(1) will use the default fill value to initialize all .bss sec­
tions in the output section.

Consider the following Id(1) ifile:

SECTIONS

1
sec1:
1

fLo
• =+ ox200;
f2.0 (.text)

= OxDFFF
sec2:
1

f1.0 (.bss)
f2.0 (.bss) = Ox1234

sec3:
1

f3.0 (.bss)

I = OxFFFF
sec4: 1 f4.0 (.bss)

~------
UP·13690 THE LINK EDITOR 12·21

Link Editor Command Language

In the example above, the Ox200 byte hole in section sec1 is
filled with the value OxDFFF. In section sec2, f1.o(.bss) is initial­
ized to the default fill value of OxOO, and f2.o(.bss) is initialized to
Ox 1234. All .bss sections within sec3 as well as all holes are initial­
ized to OxFFFF. Section sec4 is not initialized; that is, no data is
written to the object file for this section.

12-22 PROGRAMMER'S GUIDE UP-13690

Notes and Special Considerations

Changing the Entry Point

The UNIX system a.out optional header contains a field for the
(primary) entry point of the file. This field is set using one of the
following rules (listed in the order they are applied):

1. The value of the symbol specified with the -e option, if
present, is used.

2. The value of the symbol _start, if present, is used.

3. The value of the symbol main, if present, is used.

4. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header
field through the -e option or by using an assignment instruction in
an ifile of the form

_start = expression;

If Id(1) is called through cc(1), a startup routine is automati­
cally linked in. Then, when the program is executed, the routine
exit(1) is called after the main routine finishes to close file descrip­
tors and do other cleanup. The user must therefore be careful
when calling Id(1) directly or when changing the entry point. The
user must supply the startup routine or make sure that the pro­
gram always calls exit rather than falling through the end. Other­
wise, the program will dump core.

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete
object file. Archive libraries are created with the ar(1) command
from object files generated by cc or as. An archive library is
always processed using selective inclusion: only those members
that resolve existing undefined-symbol references are taken from
the library for link editing. Libraries can be placed both inside and
outside section definitions. In both cases, a member of a library is
included for linking whenever

UP-13690 THE LINK EDITOR 12-23

Notes and Special Considerations

1 . There exists a reference to a symbol defined in that
member.

2. The reference is found by Id(1) prior to the actual scanning
of the library.

When a library member is included by searching the library
inside a SECTIONS directive, all input sections from the library
member are included in the output section being defined. When a
library member is included by searching the library outside of a
SECTIONS directive, all input sections from the library member are
included into the output section with the same name. If neces­
sary, new output sections are defined to provide a place to put the
input sections. Note, however, that

1 . Specific members of a library cannot be referenced expli­
citly in an ifile.

2. The default rules for the placement of members and sec­
tions cannot be overridden when they apply to archive
library members.

The ·1 option is a shorthand notation for specifying an input file
coming from a predefined set of directories and having a prede­
fined name. By convention, such files are archive libraries. How­
ever, they need not be so. Furthermore, archive libraries can be
specified without using the ·1 option by simply giving the (full or
relative) UNIX system file path.

The ordering of archive libraries is important since for a
member to be extracted from the library it must satisfy a refer­
ence that is known to be unresolved at the time the library is
searched. Archive libraries can be specified more than once.
They are searched every time they are encountered. Archive files
have a symbol table at the beginning of the archive. Id(1) will
cycle through this symbol table until it has determined that it can­
not resolve any more references from that library.

Consider the following example:

1. The input files file1.o and file2.o each contain a reference
to the external function FCN.

12-24 PROGRAMMER'S GUIDE UP-13690

Notes and Special Considerations

2. Input file1.o contains a reference to symbol ABC.

3. Input file2.o contains a reference to symbol XYZ.

4. Library liba.a, member 0, contains a definition of XYZ.

5. Library libc.a, member 0, contains a definition of ABC.

6. Both libraries have a member 1 that defines FCN.

If the Id(1) command were entered as

Id file1.o -Ia file2.o -Ic

then the FCN references are satisfied by liba.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ remains undefined
(because the library liba.a is searched before file2.o is specified).
If the Id(1) command were entered as

Id file1.o file2.o -Ia -Ic

then the FCN references is satisfied by liba.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ is obtained from liba.a,
member 0. If the Id (1) command were entered as

Id file1.o file2.o -Ic -Ia

then the FCN references is satisfied by libc.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ is obtained from liba.a,
member O.

The -u option is used to force the linking of library members
when the link edit run does not contain an actual external refer­
ence to the members. For example,

Id -u rout1 -Ia

creates an undefined symbol called rout1 in Id(1)'s global symbol
table. If any member of library liba.a defines this symbol, it (and
perhaps other members as well) is extracted. Without the -u
option, there would have been no unresolved references or unde­
fined symbols to cause Id(1) to search the archive library.

UP-13690 THE LINK EDITOR 12-25

Notes and Special Considerations

Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfig­
ured areas exist in the virtual memory, each application or user
must assume the responsibility of forming output sections that will
fit into memory. For example, assume that memory is configured
as follows:

MEMORY
I

mem1 :
mem2:
mem3:

o = Oxooooo
o = Ox40000
o = Ox20000

= Ox02000
= ox05000
= Ox10000

Let the files f1.o, f2.o, ... fn.o each contain three sections
.text, .data, and .bss, and suppose the combined .text section is
Ox12000 bytes. There is no configured area of memory in which
this section can be placed. Appropriate directives must be sup­
plied to break up the .text output section. so Id(1) may do alloca­
tion. For example,

12-26 PROGRAMMER'S GUIDE UP-13690

Notes and Special Considerations

SECTIONS
1

txt1:
1

f1.o (. text)
f2.o (• text)
f3.o (.text)

J
txt2:
1

f4.o (.text)
f5.o (.text)
f6.o (.text)

etc.

Allocation Algorithm
An output section is formed either as a result of a SECTIONS

directive, by combining input sections of the same name, or by
combining .text and .init into .text. An output section can have
zero or more input sections comprising it. After the composition
of an output section is determined, it must then be allocated into
configured virtual memory. Id(1) uses an algorithm that attempts
to minimize fragmentation of memory, and hence increases the
possibility that a link edit run will be able to allocate all output sec­
tions within the specified virtual memory configuration. The algo­
rithm proceeds as follows:

1 . Any output sections for which explicit bonding addresses
were specified are allocated.

2. Any output sections to be included in a specific named
memory are allocated. In both this and the succeeding
step, each output section is placed into the first available
space within the (named) memory with any alignment

UP·13690 THE LINK EDITOR 12·27

Notes and Special Considerations

taken into consideration.

3. Output sections not handled by one of the above steps
are allocated.

If all memory is contiguous and configured (the default case),
and no SECTIONS directives are given, then output sections are
allocated in the order they appear to Id(1). Otherwise, output sec­
tions are allocated in the order they were defined or made known
to Id(1) into the first available space they fit.

Incremental Link Editing

As previously mentioned, the output of Id(1) can be used as
an input file to subsequent Id(1) runs providing that the relocation
information is retained (-r option). Large applications may find it
desirable to partition their C programs into subsystems, link each
subsystem independently, and then link edit the entire application.
For example,

12-28 PROGRAMMER'S GUIDE UP-13690

Step 1:

Step 2:

Step 3:

Notes and Special Considerations

Id -r -0 outfile1 ifile1 infile1.0

/* f ff 1 e1 * /
SECTIONS
I

ssl:
I

fLo
f2.0

fn.o

Id -r -0 outfile2 ifile2 infile2.0

/* fffle2 */
SECTIONS
I

ss2:
I

g1.o
g2.0

gn.o

UP-13690 THE LINK EDITOR 12-29

Notes and Special Considerations

Id -a -0 final.out outfile1 outfile2

By judiciously forming subsystems, applications may achieve a
form of incremental link editing whereby it is necessary to relink
only a portion of the total link edit when a few files are recompiled.

To apply this technique, there are two simple rules

1 . Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation of
output sections from input files and input sections. No
binding of output sections should be done in these runs.

2. All allocation and memory directives, as well as any assign­
ment statements, are included only in the finalld(1) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY
Sections

Sections may be given a type in a section definition as shown
in the following example:

SECTIONS
1

name1 ox200000 (OSECT)
name2 ox400000 (COPY)
name3 Ox600000 (NOLOAO)
name4 (INFO)
name5 Ox900000 (OVERLAY)

file1.0
file2.0
file3.0
fi le4.0
file5.0

The DSECT option creates what is called a dummy section. A
dummy section has the following properties:

12-30 PROGRAMMER'S GUIDE UP-13690

Notes and Special Considerations

1 . It does not participate in the memory allocation for output
sections. As a result. it takes up no memory and does not
show up in the memory map generated by Id(1).

2. It may overlay other output sections and even unconfig­
ured memory. DSECTs may overlay other DSECTs.

3. The global symbols defined within the dummy section are
relocated normally. That is. they appear in the output file's
symbol table with the same value they would have had if
the DSECT were actually loaded at its virtual address.
DSECT-defined symbols may be referenced by other input
sections. Undefined external symbols found within a
DSECT cause specified archive libraries to be searched
and any members which define such symbols are link
edited normally (Le .• not as a DSECT).

4. None of the section contents. relocation information. or
line number information associated with the section is writ­
ten to the output file.

In the above example. none of the sections from file1.o are allo­
cated. but all symbols are relocated as though the sections were
link edited at the specified address. Other sections could refer to
any of the global symbols and they are resolved correctly.

A copy section created by the COpy option is similar to a
dummy section. The only difference between a copy section and
a dummy section is that the contents of a copy section and all
associated information is written to the output file.

An INFO section is the same as a COpy section but its pur­
pose is to carry information about the object file whereas the
COpy section may contain valid text and data. INFO sections are
usually used to contain file version identification information.

A section with the type of NOLOAD differs in only one respect
from a normal output section: its text and/or data is not written to
the output file. A NOLOAD section is allocated virtual space.
appears in the memory map. etc.

UP-13690 THE LINK EDITOR 12-31

Notes and Special Considerations

An OVERLAY section is relocated and written to the output file.
It is different from a normal section in that it is not allocated and
may overlay other sections or unconfigured memory.

Output File Blocking

The BLOCK option (applied to any output section or GROUP
directive) is used to direct Id(1) to align a section at a specified
byte offset in the output file. It has no effect on the address at
which the section is allocated nor on any part of the link edit pro­
cess. It is used purely to adjust the physical position of the sec­
tion in the output file.

SECTIONS

1
.text BLOCK(ox200) 1 J
.data ALIGN(ox20000) BLOCK(ox200) : 1 J

With this SECTIONS directive, Id(1) assures that each section, .text
and .data, is physically written at a file offset, which is a multiple of
Ox200 (e.g., at an offset of 0, Ox200, Ox400, and so forth, in the
file).

Nonrelocatable Input Files

If a file produced by Id(1) is intended to be used in a subse­
quent Id(1) run, the first Id(1) run should have the -r option set.
This preserves relocation information and permits the sections of
the file to be relocated by the subsequent run.

If an input file to Id(1) does not have relocation or symbol
table information (perhaps from the action of a strip(1) command,
or from being link edited without a -r option or with a -s option),
the link edit run continues using the nonrelocatable input file.

For such a link edit to be successful (Le., to actually and
correctly link edit all input files, relocate all symbols, resolve
unresolved references, etc.), two conditions on the nonrelocatable
input files must be met.

12-32 PROGRAMMER'S GUIDE UP-13690

Notes and Special Considerations

1 . Each input file must have no unresolved external refer­
ences.

2. Each input file must be bound to the exact same virtual
address as it was bound to in the Id(1) run that created it.

NOTE: If these two conditions are not met for all nonrelo­
eatable input files, no error messages are issued.
Because of this fact, extreme care must be taken
when supplying such input files to Id(1).

UP·13690 THE LINK EDITOR 12·33

Syntax Diagram for Input Directives

Directives

<ifile>
<cmd>

<memory>

Expanded Directives

{<cmd>}
<memory>
<sections>
< assignment>
<filename>
<flags>
MEMORY { < memory_spec>

< memory_spec> < name> [< attributes>] :

< attributes>
< origin_spec>
< lenth _spec>
<origin>
<length>

({R:W:X:I})
< origin> = < long>
< length> = < long>
ORIGIN : 0 : org : origin
LENGTH : I : len : length

Figure 12-2: Syntax Diagram for Input Directives (Sheet 1 of 4)

NOTE: Two punctuation symbols. square brackets and
curly braces. do double duty in this diagram.

Where the actual symbols. [] and {} are used. they
are part of the syntax and must be present when
the directive is specified.

Where you see the symbols [and] (larger and in
bold). it means the material enclosed is optional.

Where you see the symbols { and } (larger and
in bold). it means multiple occurrences of the
material enclosed are permitted.

12-34 PROGRAMMER'S GUIDE UP-13690

Directives

<sections>

< sec_or _group>
<group>

< section list>

<section>

< group_options>

< sec_options>

<addr>
< align option >
<align>
< block_option>
<block>
< type_option>

<fill>
<mem_spec>

< statement>

Syntax Diagram for Input Directives

Expanded Directives

SECTIONS {{ < sec_or _group>} }

< section> : < group> : < library>
GROUP < group_options> : {
< section Jist> } [< mem _spec>]
< section> {[,] < section> }

< name> < sec_options>
{ < statement> }
[< fill >] [< mem_spec >]

[< addr >] : [< align_option>]
[< block_option>]

[< addr >] : [< align_option>]
[< block_option>] [< type_option>]
< long> : < bind> (< expr >)
< align> (< expr >)
ALIGN: align
<block> (<long>)
BLOCK : block
(DSECT) : (NOLOAD) : (COPY)
: (INFO) : (OVERLAY)

<long>
> <name>
> < attributes>
<filename>
< filename> « name Jist>) : [COMMON]
* (< name_list>) : [COMMON]
< assignment>

Figure 12-2: Syntax Diagram for Input Directives (Sheet 2 of 4)

UP·13690 THE LINK EDITOR 12·35

Syntax Diagram for Input Directives

Directives

<name list>

<library>
<bind>
< assignment>
< Iside >
< assign _ op >
<end>
<expr>

< binary _ op >

<term>

< unary_op >
<phy>
< sizeof >

Expanded Directives

< section_name> [,] { < section name> }

-I<name>
BIND: bind
< Iside > < assign _ op > < expr > < end>
<name> : .
= : + = : -= : *= :1 =
• I
I I ,

< expr > < binary _ op > < expr >
<term>
* : I : %
+ : -
» «

&
I
I

&&
II
II

!=

<long>
<name>

> <

<align> (<term>)

<=

(<expr>)
<unary_op> <term>
< phy > « Iside >)
< sizeof > (< sectionname >)
<next> «long»
< addr > (< section name >)
I I _ . ,
PHY: phy
SIZEOF : size of

>=

Figure 12-2: Syntax Diagram for Input Directives (Sheet 3 of 4)

12-36 PROGRAMMER'S GUIDE UP-13690

Directives

<next>
<addr>
<flags>

<name>
<long>
< wht_ space>
<filename>

< sectionname >

Syntax Diagram for Input Directives

Expanded Directives

NEXT: next
ADDR : addr
-e < wht_ space> < name>
-f < wht_ space> < long>
-h < wht_ space> < long>
-I<name>
-m
-0 < wht_ space> < filename>
-r
-t
-u < wht_ space> < name>
-z
-H
-L < path_name>
-M
-N
-S
-V
-VS < wht_space > < long>
-x
Any valid symbol name
Any valid long integer constant
Blanks, tabs, and newlines
Any valid UNIX operating system
filename. This may include a
full or partial path name.
Any valid section name,
up to 8 characters
Any valid UNIX operating system
path name (full or partial)

Figure 12-2: Syntax Diagram for Input Directives (Sheet 4 of 4)

UP-13690 THE LINK EDITOR 12-37

