
(Assembly
Language .
Reference GUide

Ultimate
THE ULTIMATE CORP.

(

The Ultimate Corp.
East Hanover, NJ

Version 1

Ultimate Assembly Language Reference Guide
Version 1

© 1989,1990 The Ultimate Corp., East Hanover, NJ
All Rights Reserved.
Printed in the United States of America.

How to order this guide:

The Ultimate Assembly Reference Guide is a restricted document. For
information on ordering, call the Ultimate Administration Department.

Publication Information

This work is the property of and embodies trade secrets and confidential
information proprietary to Ultimate, and may not be reproduced, copied,
used, disclosed, transferred, adapted, or modified without the express
written approval of Ultimate.

Operating System Release 10, Revision 210
© 1989, 1990 The Ultimate Corp., East Hanover, NJ

Document No. 6973

Contents

How to Use this Manual ... xvii
How the Manual is Organized .. xviii
Conventions ... xx

1 Overview of Assembly Language 1-1
The Ultimate Virtual System Architecture 1-3
User Processes in a Multi-User System 1-5

Process Workspaces ... 1 -6
The Kernel Software ... 1-8

Process Scheduling .. 1-1 0
Frame Faults ... 1-11
Automatic Disk Writes ... 1-13
Calls (MCALs) from Processes 1-13
Main Memory Management , 1-13

2 The Assembler ... 2-1
The Components of an Assembly Program 2-2

Displaying the Program .. 2-3
Creating an Assembly Language Program 2-4
Assembly Structures ... 2-5

Mode Structure ... 2-5
Mode-ids - External Program References 2-7
Program Line Structure .. 2-9
Displaying Assembly Programs in the Editor 2-12

The Assembler Program ... 2-1 5
Executing Assembled Programs ... 2-17
The AS Command - Firmware Assemblies 2-18
The OPT Command - S/370 Assemblies 2-21
The ASM Command - 1400 Assemblies 2-23

The Optimizer ... 2-26
Assembler Error Messages .. 2-27

OSYM Errors ... 2-28
Generating Object Code ... 2-29

Directives and Object Code ... 2-29
Instructions and Object Code .. 2-29
Generating Object Code ... 2-30

Symbol Files ... 2-31
The PSYM File Layout.. .. 2-32
The TSYM File Layout .. 2-34

6973-1 Assembly Manual iii
Confidential and Proprietary to The Ultimate Corp.

Contents

The OSYM File Layout. ... 2-35
Symbols and Literals .. 2-44

Locally Defined Symbols ... 2-44
Literals ... 2-45
Shared Symbols (INCLUDE Directive) 2-48
Immediate Symbols ... 2-48

Assembler System Commands ... 2-50
CROSS-INDEX .. 2-51
MLIST ... 2-53
MLOAD .. 2-55
MVERIFY ... 2-56
X-REF ... 2-59
XREF .. 2-61

3 Addressing and Representing Data 3-1
Frame Formats ... 3-2

Frame Size .. 3-2
Link Fields ... 3-5
ASS Frames .. 3-7

Data Formats in a Frame .. 3-8
Virtual Addresses - Addressing Data in a Frame 3-1 0
Understanding Address Registers .. 3-13

Attaching an Address Register .. 3-15
Loading an Address Register .. 3-16
Conventional Usage of Address Registers 3-16

Understanding Storage Registers .. 3-19
Addressing Modes in an Instruction 3-21

Immediate Addressing .. 3-21
Relative Addressing .. 3-21
Indirect Addressing .. 3-22
Direct Register Addressing .. 3-23

Symbol Types ... 3-24
Computing Relative Addresses by Symbol Type 3-26
Limits in Offsets .. 3-27

Addressing the PCB Fields .. 3-29
The Accumulator .. 3-29
Scan Characters .. 3-33
File Control Block Pointers ... 3-35
Subroutine Return Stack Fields 3-36
XMODE Field .. 3-37
RMODE Field .. 3-37
WMODE Field ... 3-37

iv Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

-'---"~--

r". ,

("\

\'c"j

Contents

(... OVRFLCTR Field .. 3-37
INHIBIT and INHIBITH Fields ... 3-38

Addressing the SCB Fields .. 3-39
Addressing Conventional Buffer Workspaces 3-39
Programming Conventions .. 3-44

Global Symbolic Elements - PSYM File 3-45
Sharing Object Code Among Processes 3-46
Defining Additional Workspace 3-48
Ensuring Compatibility .. 3-48

4 Assembler Instruction Set and Dlrectives 4-1
Summary of the Instructions and Directives4-2
Operand Types ... 4-5

Virtual Addresses ... 4-6
System Delimiters .. 4-6

ADD .. 4-7
ADDX ... 4-7
ADDR ... 4-9
ALIGN ... 4-11
AND .. 4-12

(B .. 4-13
BBS .. 4-14
BBZ ... 4-14
BCA .. 4-15
BCNA ... 4-15
BCE .. 4-16
BCU .. 4-16
BCH .. 4-18
BCHE ... 4-18
BCL .. 4-18
BCN .. 4-21
BCNN ... 4-21
BCNA ... 4-22
BCNN ... 4-22
BCNX ... 4-22
BCU .. 4-22
BCX .. 4-23
BCNX ... 4-23
BDHZ .. 4-24
BDHEZ ... 4-24

(:
BDLZ .. 4-24
BDLEZ .. 4-24

6973-1 Assembly Manual v
Confidential and Proprietary to The Ultimate Corp.

Contents

BDZ ... 4-26
BDNZ .. 4-26
BE ... 4-28
BU ... 4-28
BH ... 4-31
BHE .. 4-31
BL ... 4-31
BLE ... 4-31
BHZ ... 4-34
BHEZ .. 4-34
BLl ... 4-34
BLEZ ... 4-34
BL .. 4-36
BLE ... 4-36
BLl ... 4-36
BLEZ ... 4-36
BNZ ... 4-36
BSL ... 4-37
BSL * ... 4-40
BSLI. ... 4-41
BSTE .. 4-42
BU ... 4-44
BZ .. 4-45
BNZ ... 4-45
CHR .. 4-46
CMNT ... 4-47
DEC (Data) .. 4-48
INC (Data) ... 4-48
DEC (Register) ... 4-50
INC (Register) ... 4-50
DEFx ... 4-52
DEFM ... 4-60
DEFN .. 4-61
DEFNEP .. 4-63
DEFNEPA .. 4-63
DIV .. 4-68
DIVX ... 4-68
DTLY .. 4-70
FTLY ... 4-70
HTLY .. 4-70
TLY ... 4-70
EJECT .. 4-72

vi Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Contents

END .. 4-73
ENT ... 4-74
ENT* ... 4-75
ENTI. ... 4-76
EP ... 4-77
EP.ADDR ... 4-78
EQU .. 4-80
FAR ... 4-82
FRAME ... 4-87
FTLY ... 4-88
HALT .. 4-89
HTLY .. 4-90
ID.B ... 4-91
ID.RSA ... 4-92
INC .. 4-93
INCLUDE ... 4-94
INP1B ... 4-95
INP1BX .. 4-95
LAD ... 4-97
LOAD .. 4-99
LOADX ... 4-99
MBD .. 4-101
MBX .. 4-1 05
MBXN ... 4-1 05
MCC ... 4-1 08
MCI ... 4-1 09
MDB .. 4-111
MXB .. 4-111
MFD .. 4-113
MFE .. 4-113
MFX .. 4-113
MIC ... 4-118
MII ... 4-119
MilD .. 4-121
MIIDC ... 4-121
MIIR ... 4-124
MIIT ... 4-126
MIITD .. 4-126
MOV (Operand) .. ~ ... 4-1 29
MOV (Register) ... 4-131
MSDB ... 4-133
MSXB ... 4-133

6973-1 Assembly Manual vii
Confidential and Proprietary to The Ultimate Corp.

Contents

MTL Y .. 4-1 34 ~,,,j;>J

MTLYU ... 4-134
MUL .. 4-135
MULX ... 4-135
MXB .. 4-137
NEG .. 4-138
NEP .. 4-139
NOP .. 4-140
ONE .. 4-141
OR ... 4-142
ORG .. 4-143
OUT1 B ... 4-146
OUT1 BX ... 4-1 46
RQM .. 4-147
RTN ... 4-148
SB ... 4-149
SET.TIME .. 4-150
SETDSP ~ .. 4-151
SETR .. 4-153
SHIFT ... 4-155
SICD ... 4-156
SiD .. 4-161
SIDC ... 4-161
SIT .. 4-164
SITD ... 4-164
SLEEP ... 4-167
SR ... 4-168
SRA .. 4-170
STORE ... 4-172
SUB .. 4-173
SUBX ... 4-173
TEXT ... 4-174
TIME ... 4-175
TLY ... 4-176
XCC .. 4-177
XOR .. 4-178
XRR ... 4-179
ZB .. 4-180
ZERO .. 4-181

5 System Subroutines .. 5-1
Summary of the System Subroutines 5-2

viii Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Contents

Conventions Used to Describe System Subroutines 5-6
File Control Block Symbols .. 5-7

ACONV .. 5-9
AND IOFLGS ... 5-1 0
ATIOVF ... 5-11
CONV ... 5-12
CRLFPRINT ... 5-12
CVD .. 5-13
CVX .. 5-13
DATE .. 5-15
DECINHIB ... 5-16
ECONV .. 5-18
GETACBMS .. 5-19
GETSUF ... 5-20
GETFILE .. 5-21
GETIOFLGS .. 5-23
GETITM .. 5-24
GETOVF ... 5-27
GETBLK ... 5-27

(
GLOCK ... 5-28
GUNLOCK ... 5-28
GUNLOCK. LINE ... 5-28
HASH ... 5-29
HSISOS ... 5-30
INITRTN ... 5-31
LINESUB ... 5-32
LINK .. 5-33
MARKRTN ... 5-34
MBDSUB ... 5-35
MBDNSUB .. 5-35
MBDSUBX .. 5-35
MBDNSUBX ... 5-35
NEWPAGE .. 5-37
NEXTIR .. 5-39
NEXTOVF .. 5-39
OPENDD ... 5-41
ORIOFLGS .. 5-44
PCRLF .. 5-45
PERIPHREAD1 ... 5-46
PERIPHREAD2 ... 5-46
PERIPHWRITE .. 5-48
POPRTN .. 5-49

6973-1 Assembly Manual ix
Confidential and Proprietary to The Ultimate Corp.

Contents

PRINT ... 5-50
CRLFPRINT ... 5-50
PRNTHDR ... 5-52
RDLINK .. 5-54
WTLINK .. 5-54
RDREC ... 5-55
READ@IB .. 5-56
READX@IB ... 5-56
READLIN ... 5-57
READLINX ... 5-57
READIB .. 5-57
RELBLK ... 5-60
RELCHN .. 5-60
RELOVF ... 5-60
RESETTERM .. 5-61
RETIX ... 5-63
RETIXU .. 5-63
RTNMARK ... 5-65
SETLPTR ... 5-66
SETTERM .. 5-66
SLEEP ... 5-68
SLEEPSUB ... 5-68
SORT .. 5-69
SYSTEM-CU RSOR ... 5-72
TERM-INFO ... 5-85
TIME ... 5-87
DATE .. 5-87
TIMDATE ... 5-87
TPBCK ... 5-88
TPREAD ... 5-89
TPWRITE ... 5-89
TPRDBLK .. 5-89
TPREW ... 5-92
TPWEOF .. 5-93
UPDITM ... 5-94
WRITE@OB ... 5-96
WRITEX@OB .. 5-96
WRTLIN .. 5-97
WRITOB ... 5-97
WSINIT ... 5-1 00
WTLINK .. 5-102

x Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Contents

(
6 System Software Interfaces .. 6-1

Interfaces Between TCl and User Programs 6-3
The Initial Conditions of a Process at TCL. 6-3

CONV Interface .. 6-5
Calling Conversion Program as a Subroutine 6-5
Calling a User-Written Subroutine 6-8

PROC Interface ... 6-10
RECAll Interface .. 6-13

Gaining Control After Selection 6-14
Gaining Control After Processing Codes 6-15
Element Usage ... 6-18

TCl-1 and TCl-1I Interfaces .. 6-24
TCl-1 Interface Requirements .. 6-27
TCl-1I Interface Requirements ... 6-30

WRAPUP Interface ... 6-33
WRAPUP Entry Points ... 6-34

XMODE Interface ... 6-36

7 Programmer's Reference .. 7-1
Hints ... 7-2

(Guidelines for Data Moves and String Conversions 7-4
Guidelines for Defining Symbols .. 7-7
Two's Complement Arithmetic Concepts 7-8
Examples ... 7 -1 0

TCl-1 Verb and BASIC Program 7-11
TCl-1I Verb and BASIC Program 7-13
Conversion Subroutine .. 7-15
Setting Up Heading and Footing Area 7-17
PROC User Exit .. 7-18
Cursor and Printer Control ... 7-19
Returning a Port's logon PCB Frame 7 -22
Returning Time in Milliseconds 7-23
Handling BREAK Key Activity .. 7-24
Changing Width on Wyse Terminals 7-25

8 The System (Assembly Language) Oebugger 8-1
Entering the Debugger ... 8-2

System Privileges .. 8-3
Inhibiting the BREAK Key ... 8-3
Program Aborts .. 8-3

Summary of Debugger Commands 8-7
Address Specification and Representation 8-1 0

6973-1 Assembly Manual xi
Confidential and Proprietary to The Ultimate Corp.

Contents

Displaying Data in the Debugger ... 8-11
Changing Data in the Debugger ... 8-14
A Command - Display Address ... 8-16
Arithmetic Commands ... 8-17
B Command - Breakpoint Specification 8-18
Bye Command - Exiting the Debugger 8-19
D Command - Display Tables ... 8-20
DI Command - Disabling the Debugger 8-21
E Command - Execution Step ... 8-22
END Command - Exiting the Debugger 8-23
F Command - Changing Frame Assignments 8-24
G Command - Resume Execution .. 8-25
K Command - Clear Breakpoints .. 8-26
l Command - Display Link Fields ... 8-27
M Command - Modal Execution Trace 8-28
N Command - Delay Entry to Debugger 8-29
P Command - Toggle Terminal Display 8-30
T Command - Trace Data ... 8-31
U Command - Delete Traces ... 8-32
Y Command - Data Breakpoint ... 8-33
», «, >, < Commands - Changing TCl levels 8-34

9 Monitor Calls (MCAls) ... 9-1
How to Use MCAl Information .. 9-4
ALARM.ClOCK - MCAl 1 C ... 9-6
ClEAR.INP _ MCAl 33 ... 9-7
ClOCK.CANCEl - MCAl 1 D .. 9-8
ClR.OUT - MCAl 36 ... 9-9
DB.ENT - MCAl 10 .. 9-10
DB.lV - MCAl 11 ... 9-11
DISK.ERR - MCAl 24 .. 9-12
DISK.STAT - MCAl 38 ... 9-13
DSABL.DSK - MCAl 2C .. 9-14
FAKE.RD - MCAl 14 ... 9-15
FAKE.READ - MCAl 49 .. 9-17
FAKE.WT - MCAl 15 ... 9-18
FORCE.WRITE - MCAl 25 ... 9-19
FRM.lOCK - MCAl 21 .. 9-20
FRM.UNlOCK - MCAl 20 .. 9-21
GET.ID - MCAl 9 .. 9-22
INT.CANCEl - MCAl 1 E .. 9-23
lINK.CNT - MCAl 3 .. 9-24

xii Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Contents

(LOCK - MCAL 29 ... 9-25
LOCK - MCAL 2A ... 9-27
MTS - MCAL 4 .. 9-29
MTSF - MCAL 2 .. 9-30
N.GET.ID - MCAL 1 A ... 9-31
PANEL - MCAL 0 ... 9-32
PC.MSG - MCAL 48 .. 9-33
PERIPH.RD - MCAL 40 ... 9-34
PERIPH.RD.ONE - MCAL 35 ... 9-35
PERIPH.WRT - MCAL 41 .. 9-36
PERIPH.WRT.ONE - MCAL 34 .. 9-37
PIS.AND - MCAL 12 .. 9-38
PIS.ATL - MCAL 2S ... 9-39
PIB.OR - MCAL 13 ... 9-40
PIB.PEEK - MCAL 18 .. 9-41
PIB.POKE - MCAL 19 .. 9-42
PIB.XPCB _ MCAL 37 .. 9-43
QUERY - MCAL 17 .. 9-44
QUEUE.READ - MCAL 20 ... 9-46
RCV.LEN - MCAL 3A ... 9-47

(RFLAGS.CLR - MCAL 4A ... 9-48
RFLAGS.SET - MCAL 4B ... 9-49
RQM - MCAL 28 ... 9-50
RTC.CALIB - MCAL 2F .. 9-51
SET.BATCH.TM - MCAL 3F ... 9-52
SET.FL.DEN - MCAL 3D .. 9-53
SET.TIME - MCAL 26 .. 9-54
SLEEP - MCAL 22 ... 9-55
START.IO.PIS - MCAL E ... 9-56
TEST.INP - MCAL 30 .. 9-57
TIME - MCAL 27 ... 9-58
TL.READ - MCAL C ... 9-59
VMCAL - MCAL 1 F .. 9-60
VMS.MSG - MCAL 47 ... 9-61
VMS. OFF - MCAL 46 ... 9-63
VMS. SPOOL - MCAL 44 .. 9-64
VMS.TAPE - MCAL 45 .. 9-65
VOPT.AND - MCAL 32 .. 9-66
VOPT.OR - MCAL 31 ... 9-67
WAIT - MCAL 16 ... 9-68
WARM.DUMP _ MCAL F ... 9-70
WRITEWAIT - MCAL 39 ... 9-71

6973-1 Assembly Manual xiii
Confidential and Proprietary to The Ultimate Corp.

Contents

XFER.ClOCK - MCAl 3E ... 9-72

1 0 Instruction Set for Internal Use•........... 1 0-1
Summary of the Instructions and Directives 10-2
:0 .. 1 0-4
:F .. 1 0-4
:Q .. 1 0-4
:T .. 1 0-4
:INIT ... 10-5
SISYNC.IO ... 1 0-6

Sequence for Data Transmission 1 0-9
Processing Interrupts ... 10-10

SNREAON .. 10-11
REAON .. 1 0-11
REAOT .. 10-11
CRC ... 10-14

Mask Byte ... 10-15
OCD ... 10-17
FRM: .. 10-19
HlT .. 10-20
ISM.OS.TRAP ... 10-21
lOCK ... 10-22
MCAl .. 10-23
MCOOE ; ... 10-23
MODEM .. 10-24
MP .. 10-25
MSG .. 10-26
MTEXT .. 10-26
MV .. 10-32
MVER.OFF .. 1 0-33
MVER.ON 0 ... 10-33
POPN .. 10-36
POPS .. 10-36
PUSH x .. 10-39
R1 EQU .. 10-42
REV .. 10-45
RPlOCO ... 10-46
RTNX ... 10-47
SCHR .. 10-48
SETAR .. 1 0-49
SETDO .. 10-50
SETDO .. 1 0-50

xiv Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

Contents

SHTl Y .. 10-52
SlEEPX .. 1 0-53
SMOD ... 10-54
TIIDC ... 10-55

Mask Byte ... 1 0-56
VIO ... 10-58
VIOlD .. 1 0-58
VM .. 10-61
XBCA ... 10-62
XBCNA .. 1 0-62

Figures
1-1. Virtual Memory System .. 1-4
1-2. Processes ... 1-5
1-3. Process Work Space .. 1-7
1-4. Main Memory layout .. 1-9
1-5. Frame Fault ... 1 -12

3-1. Frame Formats ... 3-4
3-2. Data Formats and Bit Numberings 3-9
3-3. Register Displacement Involving Linked Set of 3-13
3-4. Address Register Format. ... 3-14
3-5. Relative Addressing of Symbols 3-26
3-6 Primary Accumulator Area ... 3-30
3-7. Mask Byte Format.. .. 3-34

4-1. SICD Mask Byte Format.. ... 4-157

6-1. Processing Codes ... 6-7
6-2. TCl-1 Verb Definition Item Format 6-24
6-3. TCl-1I Verb Definition Item Format.. 6-25

Tables
2-1.
2-2.
2-3.
2-4.

Symbol Files ... 2-31
Symbol Type Codes and Storage Allocation 2-32
Format of Symbol File Item .. 2-33
Expressions to Generate Object Code 2-38

3-1. Resolution Table of Displacements and Addresses
(for a 512-Byte Frame) .. 3-12

3-2. PSYM Symbol Type Codes 3-25
3-3. Registers and Pointers ... 3-41

4-1 . Operand and Symbol Types 4-5
4-2. Bits in H7 used by MFD, MFE, and MFX 4-114

Assembly Manual xv
Confidential and Proprietary to The Ultimate Corp.

Contents

5-1. Cursor Control Values .. 5-76
5-2. Letter-Quality Printer Control Values 5-84

7-1. Data Conversion Instructions 7-5
7-2. Data Move Instructions ... 7-6

8-1. Traps (Aborts) ... 8-5
8-2. Kernel Traps ... 8-6

10-1. CHAR.TABLE ... 1 0-65

xvi Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

How to Use this Manual

This manual is intended as a reference for programmers using the
Ultimate Assembly language. Although not a tutorial, it covers all
aspects of using Assembly language with the Ultimate system file
structure and operating system. The material is presented in a structured
format, with text and figures integrated into single-topic units.

The Ultimate operating system is written mainly in the Ultimate
assembly language. Users may also write their own programs in this
language. This manual assumes that the reader has some familiarity
with the Ultimate computer system and with programming concepts in
general. For an overview of the system hardware and software
components, see the Ultimate System Overview manual. For a
description of the various programming languages and Ultimate
supplied system and application programs, see the appropriate user
reference manuals.

Assembly Manual xvii
Confidential and Proprietary to The Ultimate Corp.

Preface

How the Manual is Organized

xviii

This manual contains nine chapters, five appendices, a glossary, and an
index. The following describes each of these components.

Chapter 1, Introduction to the Assembler, gives an overview of
programming with Ultimate Assembly language. It covers the virtual
system architecture, kernel software, and management of virtual
memory.

Chapter 2, The Assembler, explains how the assemblers operate,
including use of the symbol files, the format and editing of instructions
in source items, assembler options and directives, and the assembly
process itself. It also summarizes programming conventions

Chapter 3, Addressing and Representing Data, describes how data can
be represented, addressed, and manipulated in an assembly language
program. It covers the topics needed to write an assembly language
program for the Ultimate operating system. This includes the formats of
linked and unlinked frames, data formats and the use of registers to
address data. It also discusses the Ultimate system conventions for
writing assembly language programs, such use of global variables,
control blocks, and workspace buffers, re-entrancy, PCB fields, and
SCB fields.

Chapter 4, The Instruction Set and Directives, details each instruction
and assembler directive in the assembly language set in alphabetical
order.

Chapter 5, System Subroutines, lists, in alphabetical order, the system
subroutines that users may call, with one listing for each root routine.
The root entry contains its associated routine names (different suffixes).
These subroutines perform specific functions such as reading command
lines or taking care of file management tasks. The standard system
elements used as inputs and outputs are listed, and subroutine
operations are explained.

Chapter 6, System Software Interfaces, discusses the Ultimate system
flow of control, and conventions for interfacing between the system and
a user-written assembly program. When a program is ready to run, it
must be integrated to work within the system control flow. This chapter

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(J
6973-1

Preface

discusses the various ways a program can be executed; for example, as
a type of system command o'r as a subroutine called from an appropriate
system indicator or flag.

Chapter 7, References for Programmers, gives some guidelines on
recommended methods for using the instruction set. It also contains
examples of programs and their interfaces with the system. This chapter
is intended as a transition for programmers who are new to the Ultimate
system.

Chapter 8, The Assembly Language (System) Debugger, explains the
tools available for program testing and debugging in the Assembly
(System) Debugger. The Debugger messages are also included.

Chapter 9, MCALs contains a list of the system monitor calls.

Chapter 10 contains details about internal instructions. This chapter will
eventually be merged into chapter 4.

Assembly Manual xix
Confidential and Proprietary to The Ultimate Corp.

Preface

Conventions

xx

This manual presents the general syntax for each BASIC statement and
function. In presenting and explaining the syntax, the following
conventions apply:

Convention

UPPER CASE

lower case

{ }

bold

RETURN

<key>

enter

X'nn'

Enter option

Assembly Manual

Description

Characters printed in upper case are required and
must appear exactly as shown.

Characters or words printed in lower case are
parameters to be supplied by the user (for
example, line number, data, etc.).

Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user's option.

Boldface type is used for section and unit
headings. It is also used in examples to indicate
user input as opposed to system displayed data.

The RETURN symbol indicates a physical carriage
return pressed at the keyboard. A RETURN is
required to complete a command line, and signals
the system to begin processing the command.

Angle brackets are used to indicate a key other
than letters or numbers; for example <ESC>.

The word enter is used to mean "type in the
required text, then press RETURN."

This form is used to defme a hexadecimal
number where Inn' is the hex value; for example,
X'QB', X'41', X'FF'.

This typeface is used for messages and prompts
displayed by the system.

6973-1
Confidential and Proprietary to The Ultimate Corp.

(~ / 1

(

(~'

6973-1

Overview of Assembly Language

Ultimate assembly language is a generalized language that is not tied to
any specific CPU type. The assembly language program source code is
the same on any Ultimate system, regardless of the underlying
hardware. After the source program is written, an assembler process,
provided by Ultimate, compiles it into object code for specific hardware.
A different assembler process is needed for each type of hardware.

Assembly language programming on any computer requires greater
attention to detail than programming in higher-level languages, but it
also provides more control over the machine. Also, assembly programs
tend to be much longer in source form than equivalent programs written
in a high-level language such as BASIC, but the generated object code is
often shorter and more efficient.

The Ultimate operating system is written mainly in assembly language.

The main features of the assembly language are

• symbolic addressing, which allows locations to be addressed by a
symbolic name as well as by an absolute number

• bit, byte, word, double-word, and triple-word operations

• memory to memory operation using relative addressing on bytes,
words, double-words, and triple-words

• bit operations permitting the setting, resetting, and branching on
condition of a specific bit

• branch instructions which permit the comparison of two relative
memory operands and branching as a result of the comparison

• addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers

• byte string operations for the moving of arbitrarily long byte strings
from one place to another

• byte string search instructions

• buffered terminal Input/Output instructions, with selectable type
ahead

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

1-1

Overview

1-2

• all data and program address references handled by vinual memory

• operations for the conversion of binary numbers to printable ASCII
characters and vice versa

• arithmetic instructions for loading, storing, adding, subtracting,
multiplying, and dividing the extended accumulator and a memory
operand

• control instructions for branching, subroutine calls, and program
linkage

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Overview

The Ultimate Virtual System Architecture

6973-1

The concept of virtual memory used by Ultimate is that all data on disk,
including files, is addressable by any assembly program. Any process
on the system can address the entire disk in exactly the same manner.
Software conventions are used to control and limit a particular process
from using space that belongs to some other process, but there is no
hardware enforced "memory exception" type of error.

This concept of virtual memory differs from that used by other systems
where each process has its own process area and cannot address any
other area and where files are not part of the addressable area.

Figure 1-1 shows a typical layout of an Ultimate virtual memory
system.

Virtual memory is organized into blocks called frames. A frame is a
fixed block of data resident on the disk, which can be transferred
between disk and main memory. The size of a frame may vary from
one hardware implementation to another, on firmware machines it is 512
bytes.

All frames are uniquely identified by a frame number, or frame-identifier
(called the FID). Frame numbers start at one and continue to the last
available frame in the disk set. The physical limit on the frame number
is (2**24)-1, or 16,777,215. The frame numbers map directly into disk
addresses.

For additional information on the Ultimate virtual memory system, see
Chapter 3.

Caution! This ability to address any data in virtual memory, which
gives assembly programming its power, can also be
dangerous. Unlike BASIC, which tends to affect only the
account or terminal on which it is run, assembly programs
can affect several terminals or even destroy data
throughout the system (including most of the operating
system itself).

Assembly Language 1-3
Confidential and Proprietary to The Ultimate Corp.

Overview

1-4

ABS SPACE
Executable Code
Frames 1 to 2047

INITIAL PROCESS
WORKSPACES

Frames 2048
to SYSBASE

AVAILABLE SPACE,
INCLUDING FILE
SPACE

Frames SYSBASE
to MAXFID

Figure 1-1. Virtual Memory System

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Overview

User Processes in a Multi-User System

6973-1

A process is an operating entity within the system that has its own
functional elements and workspace. A virtual process is typically
attached to a line on one of the asynchronous communication channels
available on the system, and is therefore often called a channel or, more
commonly in Ultimate, a port or line.

Each user interacts with the system via an assigned process line. A
peripheral device connected to the line, usually a terminal, is the user's
means for interaction with the system. All Ultimate systems can support
one or more users at a time; the maximum number of users and/or
processes that can be running at one time is a function of the system's
configuration.

Note: In addition to processes that are assigned to physical lines, the
print spooler and network processes are always assigned to
"phantom lines".

Figure 1-2 illustrates an Ultimate system with many processes.

Line 0

: WHO
OSYSPROG

Process 1
WorkSpace

Line 1

••••

Spooler Process
Work Space

Warmstart Process
Work Space

Ultinet Work
Space (2
processes)

Figure 1-2. Processes

Assembly Language 1-5
Confidential and Proprietary to The Ultimate Corp.

Overview

Process
Works paces

1-6

Each process has a dedicated area of virtual memory called the process
workspace (see Figure 1-3). Approximately 256K bytes of workspace
are reserved for each process.

The first frame of each process work space is called the Primary Control
Block (PCB). The PCB is used for assembly program "housekeeping"
requirements such as registers for manipulating data, stacks for program
loops, and an accumulator for arithmetic functions. When a process
executes an assembly instruction that references an element in this
housekeeping area, the reference is always relative to the beginning of
the workspace assigned to that process. This allows several processes
to execute the same program simultaneously.

The format of a PCB is shown in Appendix B.

In addition to the workspace in virtual memory,each process has a
dedicated block of space in main memory called the Process
Identification Block (PIB). The PIB is a fixed block of main memory that
serves to define the status of a virtual process. It is used by the Kernel
for process scheduling and input/output operations associated with a
process, and contains all information necessary for process activation.

The PIB and its extensions constitute the only elements of a process that
are always in main memory. All other information associated with a
process is in virtual memory, and can remain on disk if the process is
not active.

For more information about PIBs, see Appendix C.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

4 unlinked
frames

32 frames
(Reserved)

PCB+1

PCB+2
PCB+3

PCB+4

PCB+S

PCB+6

PCB+10

PCB+16

PCB+22

PCB+28

PCB+32

Overview

64 primary frames

64K bytes of
additional
linked frames
of OS workspace

3 x
64K
bytes

Figure 1-3. Process Work Space

Assembly Language 1-7
Confidential and Proprietary to The Ultimate Corp.

Overview

The Kernel Software

1-8

The Kernel is the executive program of an Ultimate system. It is
responsible for virtual process scheduling, all I/O, monitor calls, and
management of memory tables.

The Kernel software differs from other assembly language software in
the following respects:

• it is resident in main memory

• it is usually written in the "native" language of the machine
(Honeywell Level 6, DEC LSI-ll, Motorola 68000, etc.), unlike
virtual software which is written in Ultimate assembly language

• it can address any location in memory directly

All input and output (I/O) from an Ultimate system to the disk is under
control of the Kernel. No other process can explicitly perform any I/O
to the disk. For example, when a user process issues a write command,
a flag is set in main memory to indicate that a disk write is required.
The actual writing of data to disk happens at some time later as
determined by the state of the memory buffer and the Kernel (and is
transparent to both user and process).

At system startup, the Kernel process is used to colds tart the system.
This involves loading all system software and starting up the processes
that make up a multi-user computer system.

When the system is running, the Kernel is called whenever the
following tasks are needed:

• process scheduling

• frame faults

• automatic disk writes

• special functions that are requested by a user process via an assembly
language Monitor Call (MCAL) instruction

• terminal input/output

Figure 1-4 shows the main memory portion of an Ultimate computer
system. Note that the fixed portion contains the Kernel software and a
few other control tables (which are discussed later in this section). The

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(

6973-1

Overview

virtual portion is simply storage space to be used as needed by user
processes.

Fixed
Portion

Virtual
Portion
divided
into
buffers

Kernel

PIBS

Buffer
Table

Terminal
I/O Buffers

Buffers
(frame-size)

Figure 1-4. Main Memory Layout

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

1-9

Overview

Process
Scheduling

1-10

A process may be active or inactive. The Kernel maintains a schedule
of available processes, their current statuses (active or inactive), and
their relative priority to be activated.

When the Kernel turns over control by selecting the virtual process that
is next in line, with no roadblocks to prevent activation, that process is
said to be active .

A process is inactive, but eligible to be activated, if it has returned
control to the Kernel due to one of the following events:

• The process has executed a Monitor Call instruction. Normally,
when the Kernel has completed the function that it was called upon to
perform, it reactivates the virtual process immediately.

• The process was terminated by some external interrupt such as a
timeslice runout.

A process is inactive and roadblocked if it has returned control to the
Kernel due to one of the following events; the process will not be
eligible to be activated until the roadblock is resolved:

• The process has made reference to data which is not in main memory.
This causes a frame fault trap to the Kernel.

• The process has executed a READ (asynchronous channel byte)
instruction when the terminal input buffer is empty.

• The process has executed a WRITE (asynchronous channel byte)
instruction when the terminal output buffer is full.

• The process has executed a SLEEP and the time has not elapsed.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

;J ..

Overview

(/ Frame Faults The Kernel handles disk scheduling, which involves bringing data from

6973-1

the disk into main memory for processing. This mechanism is called a
"frame fault".

Data is transferred between disk and the main memory, frame by frame
(one frame at a time). Each frame is stored in memory in a block of the
same size; the memory block is called a "buffer".

The FID of each frame that has been brought into memory from the disk
is kept in the buffer table. Each time a frame is referenced, the system
checks for its FID in the buffer table; if the FID is not there, the frame
must be retrieved from disk (a "frame fault" occurs). After the frame is
brought into memory, its FID is put into the buffer table.

Before the system brings the frame into memory, it checks to see if the
buffer table is full. If it is full, the least recently used frame is written to
disk if necessary, its FlD removed from the table, and the new FlD is
added.

Figure 1-5 illustrates the retrieval of frames. The first figure shows the
case of a frame already in memory. The second figure shows the case
of a frame fault.

Assembly Language 1-11
Confidential and Proprietary to The Ultimate Corp.

OveNiew

1-12

Request for
Frame 1212

Main Memory

Request for . lOC P 2000 2122
Frame 1000 444

1000
~

FlO in buffer table - no frame fault

Main Memory

1000 2000 2122
4444

1000
~

Buffer Table

Buffer Table

Main Memory

1000 2000 2122
4444 1

1000
~

1212

FlO not in buffer table - frame fault

Figure 1-5. Frame Fault

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(-

Automatic
Disk Writes

Calls (MCAls)
from
Processes

Main Memory
Management

6973-1

Overview

Periodically, such as whenever the system is idle, the Kernel attempts to
"flush" memory by writing buffers to disk which have their write
required flags set This ensures that updated data is safely on disk in
case of a power failure, which could destroy the contents of main
memory.

If uninterrupted, the Kernel writes one or more write-required buffers at
a time to disk and resets the write-required flags, until memory is
flushed. Various types of interrupts, however, such as frame faults
from virtual processes, can suspend the automatic-write mechanism.
During this time, the disk is kept busy reading in requested frames, and
writing other frames out as needed on a least-recently-used basis. When
the system again becomes idle, the automatic-write mechanism is
restarted.

The precise criteria for detennining when the system is idle is subject to
variation according to configuration and operating system release.

User processes communicate with the Kernel via assembly language
instructions called Monitor Calls (MCALS). Each Ultimate
implementation has its own set of MCALs that allow assembly language
programmers to call the Kernel whenever any I/O functions are needed.

All I/O operations initiated at the virtual level, except those to or from
the asynchronous communication channel, are accomplished through the
MCALs.

The format and meaning of these Monitor calls depend on the particular
Ultimate implementation being used; no details are given here.
However, standard system subroutines are provided in Section 6 for
programmers to use with common devices such as tape drives and line
printers (e.g., TPREAD, SETLPTR, WRTLIN, etc.).

In main memory, several kilobytes are reserved for use by the Kernel
for its resident software, tables, etc. Other areas of memory contain the
variable-size memory mapping table, the extent of which is dependent
on the size of main memory. All remaining main memory is available as
buffers for disk frames.

Assembly Language 1-13
Confidential and Proprietary to The Ultimate Corp.

Overview

1-14

In order to manage the main memory, the Kernel uses several tables that
contain information regarding the buffers. These tables may be
accessed by memory management fIrmware as well as by the Kernel
software. They are not accessible to the virtual processes.

The protection afforded to the tables is set up by the initial condition of
the tables themselves. Since the memory map indicates the relationship
between a disk address and a main memory location, the protected areas
of memory do not have corresponding disk addresses, and therefore
cannot be addressed by a virtual process.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

2

6973-1

The Assembler

The Ultimate operating system is configured on a wide variety of
computers. On some computers, such as the Honeywell Bull DPS-6 and
various Digital Equipment Corporation (DEC) models, a ftrmware
implementation is used. On others, such as the IBM 4300 or 9370, a
software implementation is used. The assembly language program
source code is the same for all implementations.

A ftrmware implementation is one in which the virtual machine language
is directly executed by underlying fIrmware. In addition to instruction
decoding, the ftrmware also aids in virtual memory management.

A software implementation is one in which the virtual machine language
is translated to the native machine language of the computer by the
assembly process.

The assembly language program is assembled at the TCL level using the
process referred to as the assembler. The assembler generates the
machine-speciftc object code that is needed to execute the program on a
given implementation. There is one assembler for ftrmware
implementations and a different assembler for each software
implementation.

At this time, there is no assembler for Ultimate PLUS implementations.

Assembly Language 2-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Components of an Assembly Program

2-2

Assembly language programs are stored as items in disk flIes. A
program is made up of assembly language instructions, as well as
directives that are interpreted and used by the assembler.

An assembly instruction tells the system to perform a specific program
operation, for example, move an element. An assembly directive tells
the assembler to perform a specific function about the way the program
is assembled (for example,. define and reserve space for symbols).

An instruction or directive must contain an operation code mnemonic
(opcode), and may also contain a label, operands, and comments. Only
one instruction or directive can appear on a program line. The general
format is:

{label} opcode {operand{,operand ... } {comments}}

Only the opcode is required; operands may be required, depending on
the instruction. Labels and comment fields are optional. One or more
blanks are needed to separate label from opcode, opcode from first
operand, and last operand from comments.

If a program line has a label, the label must start at the first character
position in the line. If a line does not have a label, there must be at least
one blank space before the opcode. A label may be composed of either
alphabetic or numeric characters.

The comment field can be used to explain or document the program
operation. It allows the programmer to keep a running commentary on
the meaning or purpose of each line of code.

In a program item, extra blank spaces surrounding the opcode or
operands in a line are ignored; however, all-blank lines or null lines are
illegal.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

{

Displaying the
Program

6973-1

The Assembler

The MLIST command and the line editor AS command can be used to
produce a formatted listing of the program. Figure 2-1 shows a sample
excerpt from an assembly program's source code, formatted using
MLIST. (For more information on MLIST, see the section, Assembler
System Commands.)

! START EQU

BSL

BBZ

MCI

*
LOGHDR

RMBIT,RTN

SM,R15

BSL INITTAPE

BZ

BNZ

INC

TCTLBSRF,RTN

REJCTR,RTN

INHIBITH

MOV OSBEG,OS

rtn if error

mark header end in CS

tape problem

tape problem

INC OS,l+ID.PWS.SZ and stay here until wrapup

FAR OS,4

MOV XPFID,D8 save until wrapup

MOV OSFID,RECORD

INC RECORD,-l+ID.WS.FRAMES [abt0387]

MOV RECORD,XPFID

BSL RDLINK

MOV OSFID,XNFID

MOV SHED, MAP

LOAD PRECL

STORE BLOCKSIZE

LOAD PROCESS#

STORE CAMP#

MOV OS,DECKBEG

link first to last

link last to first

get my PIB#

Figure 2-1. Sample Assembly Program
Source Code Lines

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

2-3

The Assembler

Creating an Assembly Language Program

2-4

An assembly language program, also called a mode, is created using
either the line editor or the screen editor. However, only the line editor
provides assembly formatting.

The line editor can be set to display the lines of code in assembly listing
format, using the following commands:

AS assembly listing format on/off switch; default OFF.

M macro expansion display on/off switch; default OFF.

S suppress object code on/off switch; default OFF.

In addition, the following command can be used to locate a line of object
code in a previously assembled mode:

QIloc#/ locates the line that contains object code location 'loc#', which
is specified as a hexadecimal byte offset in the current mode
(for example: 005D). Differs from Ustring/ in that only object
code is searched, and the match is on a location, not a string
value.

For more information on the editors, see the Guide to the U Inmate
Editors.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp .

. ~--.. --~.----.

[\

~"~

(

(

(

The Assembler

Assembly Structures

Mode
Structure

6973-1

An assembler mode item has a specific overall structure and each
program line within the mode has a specific structure. The assembler
program checks for this structure. In addition, the line editor uses this
structure to display assembly source code lines in a standard assembly
listing format, including object code, if any is present.

The assembler expects an assembly source mode to begin with comment
lines. The comments may use as many lines as needed. Following the
initial comments, the assembler looks for the beginning of the Entry
Point Branch Table, followed by the directives that are used to define
symbols and registers in the program. This section of the program is
then followed by the main program instruction routines. This structure
is similar to the following:

001 FRAME directive.

002 * Comment line.

003 * Comment line.

004 * Comment line.

005 * Comment line.

006 * Comment line.

Onn entry point 1

By convention, program type/purpose.

assembler places current system date

By convention, these lines contain

revision level, author, and other

explanatory comments.

nnn final entry point

xxx symbol definitions

yyy main program

zzz END

Each of these elements is discussed on the following pages.

The end of the program can be indicated by an END directive, but this is
not actually required by the assembler.

Assembly Language 2-5
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-6

FRAME Directive

The FRAME directive specifies the frame in which this program mode is
to be loaded. FRAME also sets the assembler's location counter to I or
2, depending on the implementation. You may use an ORG directive to
reset the location to ORG 0 if you wish to use the first 1 or 2 bytes.

The frame number must be within the limits for ABS frames. For release
200, the limits are frame 0 to frame 2047. In general, user-written code
should be loaded into frames 400-599; Ultimate reserves these frames
for user modes. It is possible that other user modes and applications
already have used some of these frames, so be sure to check that the
frame is free before using it.

No Ie: The USER-MODES file in the SYSPROG account contains user
modes that are loaded by the COW-START PROC. This is a
good starting point in detecting used program/rames.

Comment lines

A comment line is defined by an asterisk (*) in column 1 or by the
CMNT directive. The * comment line has no tabbing performed; it is one
long line of text comments. The CMNT directive must be in column 2 or
beyond; everything else on that line is considered to be comments. A
CMNT directive may be preceded by a labeL

N ole: The assembler puts the system date in line 3 only if it is a
comment line that begins with an *.

Entry Point Branch Table

This is a sequence of up to 16 Entry Point (EP) instructions that defines
the entry points (numbered 0-15) into the mode. The entry points may
be given sequential labels such as 0, 1, 2, etc., or alpha labels. (For
information on using the entry points to execute the program, see
Chapter 6.)

The entry points must be the first instructions that generate object code.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

c

Mode-ids -
External
Program
References

6973-1

The Assembler

By setting the entry points up as a series of branches, you can later
change the program and reassemble it without affecting the entry points.

Note: Although no entry points are required to be defined after the
last used entry point, it is usually safer to put NEP instructions
in place of all unused entry points.

All assembly language programs to be executed must be identified by a
mode-id in order for the system to access the correct frame (Fill) and
entry point in memory where the program is located.

A mode-id is a 16-bit field (that is, it fits in a tally), and is composed of
one hex digit for the entry point and three hex digits for the frame
number (Fill). Together these make up an address to which execution
control can be transferred in a program.

Every program needs to have a defined mode-id; however, the mode-id
is actually stored in different places, depending on the system interface
being used to initiate the program:

• If the program is to be executed as a verb (system command) from
TCL, the mode-id is stored (in ASCII character format) in the verb
definition item in the Master Dictionary (MD) of each account that
runs the program.

• If the program is to be executed via the CONY (Conversion) interface,
the mode-id is given as part of the 'Unxxx' conversion code in the
BASIC ICONV or OCONV function that calls it. If the program is
associated with Recall attributes, the mode-id is given in the 'Unxxx'
(User Exit) Correlative or Conversion code (line 7 or 8) in a
dictionary attribute definition item.

• If the program is to be executed from PROC, the mode-id is given as
part of the 'Unxxx' or 'Pnxxx' PROC command that calls it.

In all 'Unxxx' specifications, the 'nxxx' is four hexadecimal digits of
mode-id, which immediately follow the 'V' conversion code letter.
'Unxxx' means entry point 'n' (O-F) of frame 'xxx' (I-FFF, which
is 1-4095 in decimal). For more information on BASIC, Recall, and
PROC, please see the appropriate reference manual.

Due to the mode-id format, assembly programs must be loaded into
frames 1-4095, with up to 16 entry points. The actual number of
frames may be less, depending on the operating system release. Frames

Assembly Language 2-7
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-8

above 1023, especially, are typically used for purposes other than
assembly programming.

In assembly language programming, when a program needs to branch to
an entry point in another frame, a symbol should be predefined as a
mode-id that points to the desired entry point in the desired frame. If a
symbol already exists in the PSYM file which defmes this mode-id, then
that symbol may be used. Otherwise, both the entry point and FID of
the mode-id should be explicitly specified in the calling program.

A mode-id may be defined in two ways:

• DEFM directive (defines a symbol; no object code)

• M1L Y or M1L YU directive (defines a symbol and reserves storage,
word-aligned only if MTL Y)

The DEFM method may be used to simply define a synonym for a
location already allocated storage (or that will be allocated storage before
the program calls it). For example, the following defines the symbol
EXT.SUB as a mode-id whose value is entry point 4 in frame 500:

EXT. SUB DEFM 4,500

EXT.SUB may then be used as an operand in instructions such as the
following:

BSL EXT. SUB

ENT EXT. SUB

Call external subroutine

Branch with no return

The M1L Y directive should be used when storage needs to be reserved.
M1LY and M1LYU are less frequently used, except when constructing
tables of mode-ids. For example:

EXT. SUB MTLY 4,500

LOAD EXT. SUB

BSLI *
CMNT *

Assembly Language

Get mode-id in accumulator

Call subroutine referenced

by accumulator

6973-1
Confidential and Proprietary to The Ultimate Corp.

Program Line
Structure

6973-1

The Assembler

A source line may contain up to five fields of infonnation:

• label field

• source code operation field (opcode mnemonic)

• source code operand field

• comment field

• object code generated by assembler

Label field

The optional label, if present, must begin in column 1 of an input line
and must begin with an alphanumeric character. Labels may be up to 50
characters in length, although only 10 columns are reserved for the
format on an assembly listing.

Labels should not contain an asterisk (*), a slash (/), or a plus sign (+).
A label is separated from the opcode mnemonic by a space.

Labels are locally defined symbols used to address locations in the
program, or to defme other symbol types. A label must be used as the
target of all branch instructions (conditional or unconditional).
Examples are:

LOOP

!STARTIT

TOTAL-X

TEST123

Opcode field

The opcode is separated from the label and the operands by at least one
space. If there is no label, at least one space must precede the opcode.

Opcodes may be primitive or macro instructions, or directives. They
consist of the opcode mnemonic and usually one or more operands.
Examples of mnemonics are:

MOV

Assembly Language 2-9
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-10

INC

BSL

The valid opcodes are described in Chapter 4.

Operand field

The operands are separated from the ope ode by at least one space.
Multiple operands are separated by commas, and no spaces are allowed
within the field (except in quoted character literals). Operands may be
literals, symbols, or the current location counter, using the forms shown
below:

Assembly Language 6973-1
ConfidentiaJ and Proprietary to The Ultimate Corp.

The Assembler

Form Description

C'xxxx' Text string; example:

e'NOT AGAIN'

If a single quote (') is needed as a literal, two
adjacent single quotes must be used; example:
for JOE'S, use the operand

e'JOE" s'

For just a single quote, use

e""

n Decimal integer; examples: 120 or -42

X'xxxx' Hexadecimal constant; example: x' FE' or
X'8100FF'

If an odd number of hex characters is used, a
leading zero is assumed to fill the leftmost
nibble

symbol Symbol name predefined in the PSYM file or
defined in the label field of the source program

* Current byte location in frame; uses the
assembler program location counter to return
the first byte of the current location or address
being assembled

*n Current location in units of 'n' bits; examples:
*1 = loco in bits; *8 = *; *16 = loco in words
This location counter advances as instructions
are assembled; the counter can be altered only
via an Origin (ORG) directive.

literals +/- loc Literals or * locations combined with a plus (+)
or minus (-). Symbols cannot be used here;
examples:

*+2

*-1

-l+ID.ABSFRM.SIZE

6973-1 Assembly Language 2-11
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Displaying
Assembly
Programs in
the Editor

2-12

Comments field

The optional comments field follows the last operand, separated by at
least one space, and may be of any length.

Object Code field

The first four columns of the object code field contain the byte offset
(displacement) in the frame, followed by a space, followed by the actual
object code. The object code is separated from the source code by a
subvalue mark, placed there by the assembler.

The line editor has three commands that can be used to display assembly
language programs:

AS displays source code in pre-sized fields

M displays macro expansions

S suppresses object code (if any) in object field

Source code lines may be displayed on the screen with all fields shown
when the Editor is used with the assembly listing switches AS and M

turned on and S turned off.

If both the AS switch and the s switch are off, each line is displayed as
entered. Macro expansions and error messages, if any, follow the
source code and are separated from it by value marks. Object code, if
any, follows the source code and any macro expansion code; it is
separated by sub-value marks. For example,

013 SAVE MCC R4,R5 MOVE THE TERMINATOR\0056 645D

014 MCC R4,R16 SAVE IT ALSO]*ERR: REF:UDEF, REF:UDEF

015 B OK] B: OK\0058 lE45

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(~
""/'

6973-1

The Assembler

When AS is on, the assembly listing fonnat is as follows:

Col

1-15

16

17-25

26

27-31

32

33-49

50

51-75

Field description

object code

blank

label field; contains one of the following:
label
* (comment line)
(null) neither label nor comment

blank

opcode field

blank

operand field

blank

comment field

The following example shows a program in the editor with AS on, but
with S and M off (the editor item line numbers are shown to the left of
the program line itself).

column: 1 2 3 4 5
1234567890123456789012345678901234567890123456789012_.

001 0001 7FF001D7 FRAME 471
002 * SAVE/RESTORE
003 *24 APR 1990

013 0000 ORG 0
014 0000 FE CHR AM

015 AM EQU R1
016 *
017 0001 1E27 0 EP !LOG
018 0003 1E38 1 EP !CMDLOOP

073 0028 !LOG EQU *
074 0028 A00200 ZERO PRMPCH

085 0049 1172B2 B CMD200

243 01CC 0309 END

Assembly Language 2-13
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-14

If S is on (suppress object code), lines 13-18 would list as:

12345
1234567890123456789012345678901234567890123456789012_

013 ORG 0
014 CHR AM
015 AM EQU R1
016 *
017 0 EP !LOG
018 1 EP !CMDLOOP

If M is also on (display macro expansions), line 85 would list as:

085 B CMD200
+B: CMD200

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

The Assembler

The Assembler Program

6973-1

The assembler translates source code statements into object code. The
source mode may be stored as an item in any fIle. In firmware
implementions, the object code is assembled in place; that is, at the
conclusion of the assembly process, the item contains both the original
source code and the generated object code. In software implementations
the destination of the object code must be specified; it can be a separate
fIle or it can be in the current file.

The assembled object code must be less than or equal to one ABS frame
in size. On all machines the operative frame size is stored in the PSYM

file as the symbol ID.ABSFRM.SIZE; on firmware machines, this is 512
bytes.

Each implementation has its own version of the assembler and is
invoked as follows:

fmnware systems use the AS verb

s/370 systems

1400 systems

use the OPT verb.

use the ASM verb

When a program is assembled, the generated object code is stored along
with the source statement and system delimiters are used to separate the
components on each line. On fmnware machines, the object code is
stored back into the source file. On 1400 and s/370 systems, it is stored
a separate fIle. On a fmnware system, while you are editing an already
assembled program, you can ignore any data beyond the source
statement, because the assembler examines only the source data on each
line as it performs the assembly; any existing object code and other
characters are discarded.

Object code and associated addresses are stored as hexadecimal digits in
ASCII character format. These are converted to binary values when the
program is loaded.

Assembly Language 2-15
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Listing
Assembled
Programs

2-16

The following system commands can be used to generate listings using
an assembled program item:

MLIST generates a fonnatted listing

MLOAD

MVERIFY

loads the program for execution

verifies the loaded code

CROSS-INDEX generates concordance listings

X-REF generates a cross reference by symbol name

XREF enhanced version of X-REF

These system commands are described in in this chapter in the section,
Assembly Program Listings.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Executing Assembled Programs

6973-1

An assembled program is not automatically ready to execute. In order to
run an assembled program, you must create a verb definition item in the
account's Master Dictionary (MD), or call the program from BASIC,
PROC, Recall, or another assembly language program.

The following interfaces can be used between user-written programs
and the Ultimate operating system. Each interface is designed for a
particular function or type of program.

Interface Function

CONY For subroutine calls from BASIC or Recall. Used
when a conversion needs to be perfonned.

PROC For routines called from PROC.

RECALL For verbs that use Recall's data base reponing
capabilities.

TCL-I For verbs that use the TCL-I fonn (no filename)

TCL-II For verbs that use TCL-II fonn (filename).

WRAPUP For exiting verbs, or anywhere if a program may
exit on an error condition.

XMODE For handling Forward Link Zero register
conditions (that is, to add frames to a linked set
during program operation).

When an assembled program is ready for production, the appropriate
interface must be selected and programmed. Most user-written
programs use the TCL-I, TCL-II, or the CONY interfaces. The TCL
interfaces involve defining the program as a verb in the MD. Once the
verb defmition is stored, the program can be executed by entering the
verb name at the TCLor specifying the name anywhere a system
command is valid.

All interfaces are described in Chapter 6, System Software Interfaces.

Assembly Language 2-17
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The AS Command - Firmware Assemblies

Syntax

Description

2-18

The AS command is used to assemble programs for a fmnware machine.

AS filename {itemlist} {(options)}

filename name of fIle that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

(options the following options are available:

E when used in conjunction with the L option, lists only
errors

L generates a listing equivalent to the MLIST command during
assembly

N inhibits waiting at end-of-page during listing to terminal;
useful in conjunction with z option

P routes output to print spooler

Q specifies that messages are not to be displayed nor the editor
entered if assembly errors are found; normally, this is used
when multiple items are being assembled

Z specifies that, if assembly errors are found, the editor is not
to be entered; normally, this is used when multiple items are
being assembled

The AS command requires three files to be defined on the user's
account:

OSYM opcode symbol fIle; contains all the opcodes and valid symbol
types for each opcode

PSYM permanent symbol file; contains the global symbols available to
all assembly language programs

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled

OSYM and PSYM are typically Q-pointers to the Ultimate-supplied OSYM

and PSYM fIles, but TSYM must be created for each account. For more
information on the symbol flies, see the section, Symbol Files.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

('

6973-1

The Assembler

Only one user at a time in an account can use the AS command.

The AS command is table driven and performs two passes over the
source code. During the first pass, all instructions that have undefmed
and forward references are flagged as requiring re-assembly. Local
labels are stored in the temporary symbol flle (TSYM) during this first
pass, along with the literal definitions that need to be created.

As the assembler processes items, it outputs an asterisk (*) after every
ten source statements are assembled. At the end of the first pass, the
literals are generated and added to the end of the current object code.

On pass two, a new line is started and an asterisk is printed for each ten
statements reassembled.

If there are any assembly errors, the assembler enters the editor so that
the program may be conveniently corrected for reassembly (unless
suppressed by the Q or Z option).

If there are no errors, the following message is displayed (unless the Q
or Z option is used):

[236] No errors

The AS command is table driven and performs two source code passes:

I . In the first pass, all instructions haveing undefined and forward
references are flagged as requiring re-assembly. Local labels are

stored in the temporary symbol file (TSYM), along with the literal
definitions that need to be created. At the end of the first pass, the
literals are generated and added to the end of the current object
code. As the Assembler processes items, it outputs an asterisk (*)
after every 10 source statements assembled.

2. In pass two, a new line is started and an asterisk is printed for each
10 statements reassembled.

Assembly errors cause the Editor to be entered for program correcttion
for reassembly (unless suppressed by the Q or Z option). If no errors,
the following message displays (unless the Q or Z option is used):

[236] No errors

Assembly Language 2-19
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-20

Assembler error messages are stored as part of the source line in error.
Undefined symbols are stored as a message list in the last line of
source. Assembler error messages are explained below.

Message

OPCD?

OPRNDREQD

ILGL opeD: xxxx

LBLREQD

MUL-DEF

OPRND DEF

OPRNDRNGE

REF:UDEF

TRUNe

UNDEF: xxx {,xxx .. }

:AS SM PROGl

[236] No errors

Assembly Language

Description

opcode mnemonic is missing

instruction is missing at least one operand

either the opcode mnemonic, or operands
specified are not valid for this opcode

an Equate (EQU) directive does not contain a
symbol in the label field, so there is nothing to
equate the value to

label is defined more than once

either the operand is defined improperly or is
not valid for this instruction

operand's numeric value is not within the valid
range for this instruction

instruction references an undefined symbol

an operand is out of range. Typically this error
occurs when a program exceeds the size of a
frame and an instruction tries to reference an
Assembler-generated literal beyond the last
location of an ABS frame

list of undefined symbols found

(pass 1 output from assembler)
(pass 2 output from assembler)

6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

(The OPT Command - S/370 Assemblies

Syntax

Description

(

('~

6973-1

The OPr command is used to be assemble a program for s/370
implementations of the Ultimate Operating System. The command itself
is a cataloged BASIC program and is included in the SYSPROG account.

OPT filename {itemlist} {(L}

filename name of file that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDS, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

(L generates an instruction that allows a BREAK at each label.

Note: Once a program has been debugged, it should be assembled
without the L option in order to run more efficiently.

OPT requires the following symbol files to be defined on the account
doing the assembly:

Il.PSYM pennanent symbol file used in pass I of the assembly

Il.OSYM opcode symbol file used in pass 1 of the assembly

IPSYM pennanent symbol file used in pass 2 of the assembly

IOSYM opcode symbol file used in pass 2 of the assembly

ISM file used by the assembler to store assembled object code;
must be created by user

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled. This
file must be created with a data section modulo of 31.

The Il.PSYM, Il.OSYM, IPSYM and IOSYM files are delivered on the
SYSPROG account. To assemble from another account, Q-pointers
should be set to the file in the SYSPROG account.

The OPT command uses the following two verbs, which must be
defined on the account doing the assembly:

AS.IBM

XP

Assembly Language 2-21
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-22

The OPT version of the assembler makes two passes. Pass I converts
the Ultimate source code to s/370 source code. Pass 2 assembles the
s/370 source code into s/370 object code.

When the assembly is complete, the following message is displayed:

[206] 'itemname' assembled

The object code is stored in the ISM file under the item name used in the
assembly. If there were errors or undefined references, these are also
stored in the item in the ISM file.

Each assembled item should be edited to determine if errors exist. The
following shows an assembled item with errors:

*ERR MOV BMS, 15

*ERR: ILGL opeD: MOV:RN

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

("

('~'

The Assembler

The ASM Command - 1400 Assemblies

Syntax

6973-1

ASM is used to assemble a program for 1400 implementations of the
Ultimate Operating System. The command itself is a cataloged BASIC

program.

ASM fIlename {item-ist} {(options)}

filename name of fIle that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the fIle;
may be omitted if a select-list is active

(options the following options are available:

C retains comment lines from the source code instead of
suppressing them from the assembled program. By default,
ASM deletes comment lines in the source, and converts
source code into comment lines; the assembled code is
indented beneath the source code that generated it. With the
c option, a comment line is converted as a comment with a
greater-than sign (that is, It*> comment-textlt

).

E when used in conjunction with the L option, lists only
errors

L generates a listing equivalent to the MLIST command during
assembly.

N inhibits waiting at end-of-page during listing to tenninal;
useful in conjunction with Z option.

p routes output to print spooler.

Q specifies that messages are not to be displayed nor the editor
entered if assembly errors are found; nonnally, this is used
when multiple items are being assembled

V inserts a V.TRAP instruction into the native code before each
source instruction instead of just at labels. By default, ASM

inserts a V.1RAP only at a label, to enable single-step
debugging with the debugger El command. With the V

option, the single-step is from the source's instruction to
instruction instead of label to label.

Assembly Language 2-23
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Description

2-24

N ole: Once a program has been debugged, it slwuld be assembled
witlwut the V option in order to run efficiently.

Z specifies that the editor is not to be entered if assembly
errors are found; normally, this is used when multiple items
are being assembled

ASM requires the following symbol files to be defmed on the user's
account:

M1.0SYM

Ml.PSYM

M2.0SYM

M2.PSYM

opcode symbol file; used by pass 1 of the assembler
program to convert Ultimate assembler code to 1400
assembler code

permanent symbol file; contains all predefined symbols
available to the assembly language programmer

opcode symbol file; used by pass 3 of the assembler
program to convert 1400 assembler code to object code

permanent symbol file; used by the assembler program

OPT.ERRORS optimizer errors; used by optimizer to store errors
encountered during pass 2

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled

The symbol files are described in the section, Symbol Files.

The OPT command uses the following two verbs, which must be
defined on the account doing the assembly:

ASMI

ASM2

When ASM is invoked, it first prompts for a destination file name:

To: {(filename) {item-list}

The response to the To: prompt may be a filename or item-IDS or both;
pressing RETURN with no response cancels the ASM command. All
destination filelitem name forms that are valid for a COpy command may
be used. For example:

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(,
ASM BP *
TO: (BD

The Assembler

assembles all items in the BP source fIle to the BD fIle using the same
item-IDS as in BP. Another example:

ASM SSM T

To:T.OBJ

assembles one item in SSM to the same file as item 'T.OBJ'.

After a valid destination fIle has been specified, the ASM command starts
the assembly.

ASM uses three passes:

I. Executes the ASMI verb, which assembles virtual code into native
machine source code, using M1.0SYM and M1.PSYM.

2. Executes a BASIC program in the SYSPROG-PL file called OPT. The
symbol fIles are used to construct the destination file items. Any
errors encountered are logged in the OPT.ERRORS fIle, described
below. The optimized items are output to the specified destination
file.

3 . Executes the AsM2 verb, which assembles the object code, using
the output of the optimizer and the M2.PSYM and M2.0SYM symbol
fIles. The items are updated in the destination file.

This sequence is looped through for all items in the list.

The Optimizer Object code for an assembled item must fit into one ABS frame. If the
object code generated by the optimizer in pass 2 does not fit in an ABS

frame in the first try, the optimizer reassembles the code using a
compression algorithm. Level 0 is "no compression"; level 9 is
"maximum compression". The higher the compression level, the
smaller but less efficient the resultant code. The optimizer tries up to ten
levels of compression; if it reaches level 10 without fitting the object
code into a frame, it gives up and goes on to pass 3.

6973-1 Assembly Language 2-25
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-26

Each level of compression specifies which instructions are to be
compressed by the optimizer. An instruction is compressed by moving
most of its code to the Kernel, leaving only code to set up a call to the
Kernel in the assembled object code.

The level of compression for a program is stored in attribute 2.of the
destination item in the following format:

002 * compression level = n

n number of iterations used by the Optimizer to get the object code to
fit into an ABS frame

If the destination item already exists, the value in attribute 2 is used as
the compression level for the program being assembled. The Optimizer
does not reduce the compression level value previously stored. This
means that even if code has been removed to make the program smaller,
the optimizer starts the assembly at the previous level of compression.
To overcome this restriction, you should either delete the old destination
item, or edit the old item and set the compression level back to 0 before
reassembling the program.

The OPT.ERRORS File

This file contains an item for each source file item that has been
assembled. OPT. ERRORS stores the time and date of the assembly in the
item, as well as any errors that the optimizer found while processing the
source file item.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

(~' Assembler Error Messages

(

6973-1

Assembly error messages are stored as part of the source line in error.
If undefined symbols exist, a list of these symbols is stored as a
message in the last line of source. If any assembly errors are found, the
Editor is called as a convenient way to edit the source item, unless the Q
or z option was specified with the assembler command.

Message Description

OPCD? The opcode mnemonic is missing.

OPRNDREQD The instruction is missing at least one
operand.

ILGL OPCD: xxxx Either the opcode mnemonic is not valid, or
the operands specified are not valid for this
opcode.

LBLREQD An Equate (EQU) directive does not contain a
symbol in the label field, so there is nothing
to equate the value to.

MUL-DEF The label is defined more than once.

OPRNDDEF Either the operand is defmed improperly or
is of an invalid type for this instruction.

OPRNDRNGE The operand's numeric value is not within
the valid range for this instruction.

REF: UDEF The instruction references an undefined
symbol.

TRONC An operand is out of range; typically this
occurs when a program exceeds the size of a
frame and an instruction tries to reference an
assembler-generated literal beyond the last
location of an abs frame.

UNDEF:xxx List of undefined symbols found.
{,xxx .. }

Assembly Language 2-27
Confidential and Proprietary to The Ultimate Corp.

The Assembler

OSYM Errors

2-28

The following error messages are issued when the assembler detects
errors in the OSYM file defmitions:

FRMT. A-FIELD

FRMT. B-FIELD

OPCD TYP

MACRO DEF

MOD WORDSIZE > 32 BITS

EXIT DEFN

To correct the OSYM file, perform a selective restore (SEL-RESTORE

command) of the OSYM file using the latest SYSGEN tape.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(

The Assembler

Generating Object Code

Directives and
Object Code

Instructions
and Object
Code

6973-1

The output of the assembly procedure is object code that the Ultimate
machine can direcdy execute. The actual object code on Ultimate
software implementations depends on the native code of the system;
however, all firmware machines generate the same object code.

The assembly procedure performs two distinct tasks on source code,
determined by the type of operation:

• directives are processed to set up the program structure and
generate object code where needed

• instructions are assembled into object code

Directives do not generate executable code. They may, however,
generate object code in the sense that symbol defmitions may reserve
space in the program frame and may also assign a value which is in
"object" format.

The following directives do generate object in that sense:

ADDR
ALIGN

DTI.Y
FrLY

H1LY

MTI..Y

MTI..YU

SR
TEXT

TI.Y

generates a 6-byte storage register'"
may generate 1 byte (0)
generates a 4-byte double tally"
generates a 6-byte full tally"
generates a I-byte half tally
generates a 2-byte tally with even-byte alignment"
generates a 2-byte tally without alignment
generates a 6-byte storage register"
generates the number of bytes in specified string
generates a 2-byte tally"

Instructions normally generate executable code. Each source code
instruction is assembled into 1-6 bytes of object code that can be directly
executed by the operating system.

" may fIrst generate a byte of 0 to align the operand on a word (tally) boundary

Assembly Language 2-29
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Generating
Object Code

2-30

The fIrst byte of the object code for all instructions is the primary
opcode (1 byte). In addition, depending on whatever is necessary to
access the specified data and perfonn the specified operation, the object
code may have up to 5 more bytes for secondary opcodes, address
registers, byte addresses of relative operands, a code for the type of
symbol used as an operand, immediate data, and/or the offset of a local
label.

The primary opcode is the only byte that is generated for all instructions.
The other parameters mayor may not be applicable to a particular
instruction. Chapter 4 discusses each instruction in alphabetical order.

In order to generate directive object where needed, the assembler
interprets the directive and converts the value to hexadecimal for storage
in the frame. The object is stored at the current program counter
location. If a symbol is locally defIned (that is, it is not in the PSYM

fIle), it is added to the TSYM fIle during the assembly procedure.

To generate instruction object, the assembler searches the OSYM fIle for
the particular instruction fonn and uses the primitive layout(s) to convert, /
the source to object code in the frame. The object is stored at the current
program counter location in the frame.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(-' Symbol Files

6973-1

The Assembler

The Ultimate system assemblers use several symbol files in assembling
a source program. The file types and names for each of the
implementations are given in Table 2-1.

Each file performs a different function during program assembly.

The permanent and opcode symbol files must be defmed in the master
dictionary (MD) of the user account. These may be actual files in the
account, but usually they are Q-pointers to the files supplied in the
SYSPROG account. TSYM, however, must be an actual file defined in
the MD of any user account that uses the assembler.

Table 2-1. Symbol Flies

File Type Firmware 1400 5/370

permanent symbols PSYM Ml.PSYM Il.PSYM

M2.PSYM IPSYM

temporary symbols TSYM TSYM TSYM

opcode symbols OSYM M1.0SYM Il.OSYM

M2.0SYM IOSYM

Assembly Language 2-31
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The PSYM
File Layout

2-32

The pennanent symbol files contain the set of permanent or global
symbols available to all assembly programs. While symbols in these
fIles may be redefmed locally in a program, it is best to treat them all as
reserved.

The item-ID of a permanent symbol fIle entry is the symbol name.
Attribute 1 of each symbol item has a symbol type code, which the
assembler uses to determine the amount of space to assign for the
symbol. Table 2-2 lists the symbol type codes and storage allocation.
The specific format of each symbol type is shown in the Table 2-3.
Values are in hexadecimal.

Table 2-2. Symbol Type Codes and
Storage Allocation

Symbol Type Name Storage

B bit 1 bit

c character 1 byte

D double tally 4 bytes

F triple tally 6 bytes

H half tally 1 byte

L label (none)

M mode entry point (none)

N literal number variable

R address register (none)

S storage register 6 bytes

T tally 2 bytes

X external address 8 bytes
register

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

Allocation

6973-1

The Assembler

(
Table 2-3. Format of Symbol File Item

Attribute Description

item-ID symbol name symbol name symbol name symbol name

001 M N R all other
(symbol) symbols

002 entry point literal value register offset
number number

003 frame not used not used base register
number

(

6973-1 Assembly Language 2-33
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The TSYM
File Layout

2-34

The TSYM file is used by the assembler to hold the set of symbols in the
program currently being assembled. It is always cleared by the
assembler before the start of each assembly.

As the assembler finds labels and symbols in the source program, it
stores the label in the TSYM file for future use. If a reference is made to
an undefined symbol, it is also stored in the TSYM file. Undefined
symbols are converted to defmed symbols if they are later found in the
label field of a source statement. If not used, an undefined symbol is
reported as an assembly error.

The format of the entries in the TSYM file is identical to that of entries in
the PSYM file.

A symbol in the TSYM file overrides a corresponding symbol in the
PSYM file; that is, local definitions override global ones.

The TSYM me cannot be shared. Therefore, only one user at a time can
use the assembler on an account. Each account should have its own
TSYM file, and not a Q-pointer to another account's TSYM.

The modulo of the data section of the TSYM file must be 31, due to the
method the assembler uses in generating literals. If a program is loaded
and then reassembled with a different TSYM modulo it will not
MVERIFY, even though the source statements are identical.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(The OSYM
File Layout

6973-1

The Assembler

The opcode flIes contain the set of Ultimate opcode mnemonics.

The item-ID of an entry in one of these fIles has one of two forms:

• the opcode mnemonic itself; for example, B for branch.

• the opcode mnemonic concatenated with the symbol type of each
operand. For example, MOV:RR (move register to register) and
MOV:SR (move storage register to register)

The second form is used to distinguish different opcode-operand
combinations, which may generate completely different machine
instructions, as well as to validate the operands used in the instruction.
For example, the MOV opcode with operands of types Band H would
result in an OSYM file lookup of MOV:BH, which is nonexistent and
therefore invalid.

An item in the opcode files has two or more attributes:

Attribute Description

001 type of instruction; valid codes are

P primitive; the following lines in the item
are used to generate object code or
perform other symbol manipulation
functions.

M macro; each succeeding line in the item is
used to generate a new source line that is
in turn assembled just as any source line.

Q synonym; the following line in the item is
used as an item-ill to continue processing.
This is used to "link" from one item to
another to save duplicate definitions.

002 and on assembly operation appropriate for type; may be

• primitive instruction layout (attribute I = P)

• list of component instructions (attribute 1 = M)

• synonym item-ID (attribute 1 = Q)

Assembly Language 2-35
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-36

Primitive Instructions

Each primitive entry in an opcode file contains a definition for
generating object code from the source statement. The definition is
divided into argument fields, where each argument defines the object
code for that particular component of the insttuction.

The term "argument field" (AF) refers to the fields in the original source
statement being assembled as follows:

label AF(O)

opcode AF(1)

operands AF(2) through AF(9), if they exist.

For example, in the following source statement:

LOOP BCE Rll,C'A',STOPIT

the AF values are:

AF(O) LOOP

AF(1) BCE

AF(2) R11

AF(3) C'A'

AF(4) STOPIT

Each line in a primitive OSYM definition has one of the following
formats:

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

(
Entry Description

G,aI,a2, ... bI,b2, ... generates object code. There is a one-to-one
correspondence between the aI, a2, etc.,
and the bl, b2, etc. There is one blank
space between the 'a' and 'b' fields. The
'a's are bit counts, and refer to the size in
bits of the object code to be generated by the
corresponding 'b' expressions. The sum of
the 'a' fields must be a multiple of 8, and
must be in the range 8-32. Valid b field
expressions are given in Table 2-4.

R,al bI,b2 ... redefines a TSYM file entry. The TSYM file
item is referenced using AF(aI) (normally,
al is zero, to reference the label field of the
source statement). Successive lines in the
TSYM file entry are replaced with the data
generated by the expressions b I, b2, ...

(E:xxxx specifies an exit to an assembly subroutine
whose mode-id is xxxx.

Qopcode transfers control to OSYM entry specified by
opcode. There is one blank space between
the Q and the opcode name.

o text generates the specified text as source code,
in the macro expansion portion of the
statement. This is used in assembling
programs on 1400 systems (ASM

command).

* comment used to include comments in OSYM entries.

6973-1 Assembly Language 2-37
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-38

Table 2-4. Expressions to Generate Object Code
('b' Field Expressions)

Code Description

n decimal constant.

X'nn' hexadecimal constant.

=c single byte character constant.

*{n} current location counter, where the optional n is 1
for location in bits, 8 in bytes, 16 in words

An;m references AF(n); if a symbol, returns the value
from the 'm'th line of the PSYM/TSYM file
definition; if a literal constant, returns the value of
the literal.

B Current base register (see literals below).

E:xxxx Exit to assembly subroutine whose mode-id is
xxxx.

In Returns branch (or jump) address of local label
referenced by AF(n).

The 'b' field expressions may be composed of sub-expressions joined
with the following operators:

+ addition

*
/

&

subtraction

multiplication

division (integer)

logical AND

logical OR

Rn-n lower-upper range limit on previous expression

Uxxxx assembly subroutine call (mode-id: xxxx) after evaluating
previous expression

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

The Assembler

c ...) enclose expression in parentheses to alter expression
evaluation

The precedence of the operators is as follows:

1 expressions within parentheses are evaluated

2 R and u operators

3 & and ! operators

4 * and / operators

5 + and - operators.

Operators with the same precedence in an expression are applied left to
right; for example:

A2;2-*

A4;2RO-3

(A2;2+1)/2

difference between value of AF(2) and current
location

value of AF(4) or assembly error if this is not 0,
1,2, or 3

half of one more than the value of AF(2);

remainder from division is discarded

Assembly Language 2-39
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-40

Macro Definitions

A macro definition has the code M in attribute 1 of the OSYM file item.
Each succeeding line generates a new line of source. All text in the
macro defmition is literal and copied without change, except for the
following:

Text Description

(n) references AF(n), which is copied to the source line.

(*) references all AF entries, starting with AF(2); this may be
used to copy all references to the macro-generated source
line.

(L), If present in the label field of the macro-generated
(L+n) or statement, this creates a unique label by incrementing the
(L-n) macro's internal label count, and storing that as the

generated label. The +n and -n forms are not allowed
here.

If not in the label field, the current internal label count,
modified by the +n or -n, is used to generate a label.

The following example explains how a macro is created. Suppose a
new instruction which tests a signed integer to see if it is in a specified
range is to be created, using the following syntax:

RANGE x,low,high,label

x signed integer
low minimum value
high maximum value
label label to branch to if x is in range

An example of this instruction, its OSYM macro definition, and the
generated code would be:

RANGE CTRO,CTR1,CTR2,INRANGE

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

OSYM file fonnat

RANGE:TTTL

001 M

002 8L (2), (3), (L+1)

003 8LE (2) , (4) , (5)

004 (L) EQU *

The Assembler

Generated source code (assume
macro label count = 14 at start)

8L CTRO,CTR1,=L1S

8LE CTRO,CTR2,INRANGE

=L1S EQU *

Note that (L) is in the label field because no space precedes the "(".

MCI SCO, Rll

sco
001 C

002 3

003 0

MCICR

001 M

Rll

001 R

002 008

003 8

002 INC (3)

003 MCC (2), (3)

+INCR Rll

+MCCCR SCO,Rll

Assembly Language

Original source line

PSYM file entries

OSYM file entry

Resulting macro source statements

2-41
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-42

MCC SCO,Rl1

SCO

001 C

002 3

003 0

MCCCR

001 P

Rll

001 R

002 OOB

003 B

Source line

PSYM file entries

OSYM file entry

002 G,4,4,8,4,4 13,A2i3,A2i2,1,A3i2

Object code generation:
a-field b-field expression symbol ref result
4 13 D

4 A2i3 seo 0

8 A2;2 seo 03

4 1 1

4 A3;2 Rll B

D0031B Final result

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

(:

6973-1

NEW

R15

001 R

002 OOF

003 F

DEFHRN

001 P

DEFH R15,5

002 R,O =H,A3;2,A2;2

003 E:5019

NEW

001 L

002 xxxxxxxx

003 1

NEW

001 H

002 5

003 4

Assembly Language

The Assembler

Source line

PSYM file entries

OSYM file entry

TSYM file entry after Pass 1
symbol NEW is stored as type L

offset equal to the current location
base register of 1

TSYM file entry after Pass 2

2-43
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Symbols and Literals

Locally
Defined
Symbols

2-44

A symbol is a named reference to one of the fields that can be addressed
by the system. Symbols can be defined in the following ways:

• a globally defmed symbol, stored in PSYM

• a locally defmed symbol; one that appears in the label field of the
current program

• a shared symbol; one that appears in the label field of a program that
is named in an INCLUDE assembler directive in the current program.

• an immediate symbol; one that is explicitly stated in the instruction.

The symbol name is of the same format and has the same restrictions as
a label field.

A symbol name should not begin with one of the following characters:

$ dollar sign
pound or number sign
, , double exclamation mark

Certain symbols that start with these characters are used by the kernel on
some systems. To avoid possible conflict, select symbol names that do
not begin with these characters.

If you attempt to assemble a program whose code includes a definition
of a symbol used by the kernel on 1400 systems, the ASM command
displays the following message as a warning to change the specified
symbol name to a different "safe" name:

Redefinition of symbol used by kernel: symbol

To define a symbol in the program for local usage, use one of the DEF

directives. To reserve storage in the object code, use one of the TL Y

type directives.

For example, the following instruction defines CN1ER as a symbol of
type T, with a specific base register of 4 and an offset of 5:

eNTER DEFT R4, 5

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Literals

(

6973-1

The Assembler

However, the following instruction defines it implicitly at the current
location in the object code, and stores a value of 1234 at that location in
the object code:

eNTER TLY 1234

This symbol is now a literal or constant in the program.

The assembler automatically assembles certain types of literals. Such
literals are fields that can be addressed using a base register and an
offset displacement. When a program is executing, address register 1
(R 1) points to byte zero (0) of the frame. Therefore, this may be used

by the assembler as the default base register to address literal fields that
it creates and stores in the frame.

Symbols of types T and D can be automatically generated as part of an
instruction, but types Hand F cannot. This is because half tallies (H)
can only be offset up to 255 bytes from the base register's address, and
literals are only generated at the end of the object code. If the object
code is greater than 255 bytes, half tally literals would cause a truncation
error. F-type (triple) tallies cannot be generated automatically due to an
assembler limitation. If a program needs to use half or F-type tally
literals, they must be defined explicitly with the HTL Y or FIL Y

instructions.

In addition, in order for the assembler to generate a literal, the
instruction must be a macro. The instruction itself should simply
specify the literal value (for example., ADD 3); the macro uses the
following form to generate the symbol:

=x(AFn)

where

x DorT

AFn number of argument field in the instruction that contains
the literal value

For example, to generate a tally of the value in argument field 2, the
assemble sets up the following:

=T(2)

Assembly Language 2-45
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-46

The assembler stores this symbol (if not already present) as an
undefmed type in the TSYM file. At the end of pass one, the TSYM is
searched sequentially for undefined symbols that match the above
pattern, and the literals are assembled. This is done by internally
generating source statements using special opcodes of the form ":x" (:D,
:T, etc.), which actually generate the literal and redefine the symbol to
the correct type and location.

The literal thus generated at the end of the program has the following
form:

=xvalue :x value

For example, the following generates a tally with the literal value 3:

=T3 :T 3

The following is step-by-step example of literal generation on a
fIrmware implementation:

Step 1

MOV 100,COUNTER

PSYM file entry:
item-ID COUNTER

001 D
002 IF
003 0

OSYM file entry
item-ID MOVND

001 M

002 MOV =0(2),(3)

Step 2

Source line

MOV =01 OO,COUNTER

TSYM fIle entry

Resulting macro source statements

item-ID =0100
001 U

002 0
003 1

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

--- ~~-~ ~--- ~-~~~~

/'

('~"

C:
6973-1

The Assembler

OSYM file entry
item-ID MOVDO

001 p

002 G,4,4,8,4,4,8 15,A3;3,A3;2,8,A2;3,A2;2

Step 3
At the end of pass one, an internal source statement is assembled:

=0100:0100 Source line

OSYM file entry
item-ID :0

001 E:101B
002 IF Forces word alignment in object

code
003 R,O =0,*16,B
004 G,32 A2;2 Generates double tally object code

00000064

TSYM file entry:
Before instruction

item-ID =0100
001 U

002 0
003 1

Resulting object code

After instruction
item-ID =0100

001 0
002 xxx
003 1

xxx offset appropriate to the current location.

Step 4

The MOV 100,COUNfER instruction is reassembled on pass two.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

2-47

The Assembler

Shared
Symbols
(INCLUDE
Directive)

Immediate
Symbols

2-48

The main reason for the INCLUDE directive is to be able to place a set of
shared definitions in one item and then use the definitions in any other
program. Typically, variables and mode-ids that are local to a set of
programs are placed in a single program for inclusion during assembly.
The advantage of this method is that the defmitions are not duplicated in
every program that uses them. Such duplicate defmitions can lead to
errors and are in general more difficult to maintain than if they were all
in one program.

The format of the INCLUDEd program is identical to that of any other
program, though typically it consists of only DEFx (definition)
assembler directives.

Normally, a symbol must be in PSYM or must appear as an entry in the
label field of the program or in an included program.

In some instructions, however, an immediate symbol may be defined as
an operand. This may be useful when a symbol is only used once; it
may be simpler than having to define the symbol in a separate line.
However, because these symbols have a quirk in their syntax that makes
them different from the PSYM/TSYM equivalents, they are not
recommended except to reference bits. They are documented here for
compatibility only.

The general form of an immediate symbol is:

Rn;xd

Rn address register RO-R15

x symbol type (B, C, D, F, H, S,or T)

m decimal value that generates the offset displacement

The offset displacement is equal to m * field.length

In other words, m is the displacement in units of immediate symbols.
For example, the immediate symbol RO;B32 addresses bit 32 displaced
from RO; and R2;TlO addresses the tally displaced from R2 at bytes 20
and 21 (same as PSYM/TSYM entries). However, R2;DlO addresses the
double tally displaced from R2 at bytes 40 through 43 (not 20 through
23, as generated by PSYM/TSYM entries).

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

(~~.
Following are examples of immediate symbols and their equivalent DEF

instructions (see the DEFx directive in Chapter 4 for a full discussion).

Immediate Displacement from Equivalent DEF
Symbol Base Register Instruction

RO;BO 0 HIBIT DEFB RO,O

R15;B7 7 LOBIT DEFB R15,7

R2;C100 100 CHARACTER DEFC R2,100

R15;TlO 20-21 TAllY DEFT R15,10

RO;D10 40-43 DTALLY DEFD RO,20

RO;SlO 60-65 STORAGE DEFS RO,30

RO;F15 90-95 F-TAllY DEFF RO,45

(~'
. .../

6973-1 Assembly Language 2-49
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Assembler System Commands

2-50

After an assembly language program has been assembled, a number of
system (TeL) commands are available to bring the program up to a
production mode of operation.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

(-' CROSS-INDEX

Syntax

Description

6973-1

The CROSS-INDEX command creates a cross-reference of all symbols
used in an assembly language program or set of programs.

CROSS-INDEX filename {itemlist} {(F)}

filename name of file that contains items to be indexed

i temlist names of items to index; may be one or more explicit item
IDs, or an asterisk (*) to specify all items in the file; may be
omitted if a select-list is active

(F prompts for the name of a symbol file to use instead of
PSYM; if not specified, the symbols are searched for in
PSYM

CROSS-INDEX checks each program in the specified file and builds an
item in the CSYM file. (The CSYM file must already exist).

The name of the program is used as the item-ID in the corresponding
item in the CSYM file. Each attribute in the item contains information
about one type of symbol. The item has the following format:

AMC symbol type
1 B bits
2 C characters
3 H half tallies
4 T tallies
5 D double tallies
6 F f-type tallies
7 S storage registers
8 R address registers
9 M mode-ids

10 N literals or constants

The name of each symbol and the number of times it occurs in the
program are kept together as a value in the corresponding attribute.

Symbol references are only checked in the PSYM file, or if the F option
was used, in the specified file. To cross-reference local definitions

Assembly Language 2-51
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-52

(such as from an INCLUDEd program) as well as the standard global
definitions, a temporary symbol me containing both the global and local
defmitions must be created, as follows:

1. Copy all items from the regular PSYM me into the temporary
symbol file.

2. Assemble program that contains the local symbols, for example, the
INCLUDEd program

3. Copy all items from the TSYM me copied into the temporary
symbol file.

4. Use the F option when invoking the command, and specify the
name of the temporary symbol file at the prompt.

: CROSS-INDEX MODES DLOAD Cross-indexes the item DLOAD in
the MODES file.

: CT MODES DLOAD

DLOAD

001 LISTFLAG OOl]RMBIT 002

002 CHB 001

003 NNCF 002

004 CTRl 002]MODULO 007]OBS1ZE OOl]RSCWA OOl]SEPAR 010]

005 BASE 008]DO 001]OVFLW 001]R15F1D 001]RECORD 005

006 FPl 001

007 BMSBEG 001]CSBEG 001]1SBEG 002]OBBEG 001]S2 002

008 CS 006]1S 02l]OB 00S]R14 003]R1S 006]TS 001

009 CRLFPR1NT 001]CVDR15 003]CVTN1S 002]GETBLK 001

010 AM 002

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

(MLIST

Syntax

(

Description

6973-1

The Assembler

The MLIST command lists an assembly language program.

MLIST filename {itemlist} {(options)}

filename name of file that contains items to be listed

itemlist one or more explicit item-IDs, or an asterisk (*) to specify
all items in the file; may be omitted if a select-list is active

(options

n-m lists only line numbers n through m, inclusive

E prints error lines only

J enables page eject if EJECf directive is in program being
listed

M prints macro expansions of source statements

N inhibits waiting at end-of-page when listing to the terminal

P routes output to print spooler

s suppresses the display of object ccxie

The MLIST command generates a program listing with one instruction
per line. Each line shows a statement number, location counter, object
code, and source code, with the label, opcode, operand and comment
fields aligned. A page heading is output at the top of each new page.

Errors, if any, are displayed on the line following the line that contains
the code. Macro expansions, if requested, are displayed as source code,
but with the opcodes prefixed by a plus sign (+).

Assembly Language 2-53
Confidential and Proprietary to The Ultimate Corp.

The Assembler

:MLIST MODES LIST4

PAGE 1 LIST4 FRAME 511 14:40:16 29 JAN 1991

001 0001 7FF301FF FRAME 511

0001

002 *
003 T SF a HSENDDSP DEFTU HSEND DISP FIELD OF HSEND

004

005 0001 70BE ZB SB30 INTERNAL FLAG

006 0003 90A1040F BBS SB1,NOTF NOT FIRST TIME

007 * FIRST TIME SETUP

OOB 0007 F21A412B MOV 4,CTR32

009 0008 117009 BSL PRNTHDR INITIALIZE AND PRINT HEADING

010 OOOE BOA1 SB SB1

011

012 0010 909EOA1B NOTF BBZ RMBIT,OP LAST ENTRY

013 0014 A21A644E BDNZ CTR32,RETURN NOT YET 4 ITEMS OBTAINED

014 001B F21A412B MOV 4,CTR32 RESET

015 OOlC E05CEE OP MOV HSBEG,R14

2-54 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(MLOAD

Syntax

(Description

6973-1

The Assembler

The MLOAD command loads an assembly language program mode
(item) into the frame specified in the mode's FRAME opcode.

MLOAD filename {itemlist} {(options}

filename name of fIle that contains items to be loaded

itemIist names of items to load; may be one or more explicit item
IDs, or an asterisk (*) to specify all items in the fIle; may be
omitted if a select-list is active

(options

E prints only messages relating to errors

I prints item-IDs if more than one is MLOADed

N inhibits load but prints message

P routes output to print spooler

The mode to be loaded must contain no more bytes of object code than
are in an ABS frame (ID.DATFRM.SIZE in PSYM). The first statement
assembled in the mode must be a FRAME statement.

If the load is successful, a message is displayed:

[216) Mode 'item-ID' loaded; Frame =nnn Size =sss Cksum =cccc

nnn frame number into which the mode has been loaded; nnn is
decimal.

sss number of bytes of object code loaded into the frame, expressed
in hexadecimal

ecce byte checksum for the object code in the loaded mode.

The program then becomes part of the ABS software.

Assembly Language 2-55
Confidential and Proprietary to The Ultimate Corp.

The Assembler

MVERIFY

Syntax

Description

2-56

The MVERIFY command checks previously loaded object code against
the assembled source item.

MVERIFY filename {itemlist} {(options}

filename name of fIle that contains items to be verified

i tern list names of items to verify; may be one or more explicit item
IDS, or an asterisk (*) to specify all items in the fIle. May
be omitted if a select-list is active.

(options

A displays all error bytes

E prints only messages relating to errors

prints item-ID if more than one item is MVERIFYed

P routes output to the print spooler

MVERIFY is used to verify assembly language object code in a program
item, or mode, against the actual code loaded in the ABS frame specified
by the FRAME opcode in the mode.

If the item verifies, a message similar to the following is displayed:

[217] Mode 'item-rD' verified; Frame =nnn Size sss Cksum=cccc

nnn frame number into which the mode has been loaded; nnn is
decimal.

sss number of bytes of object code loaded into the frame, expressed
in hexadecimal

ecce byte checksum for the object code in the loaded mode.

If the process finds mismatches, they are displayed along with an error
status message:

aaa bb cc

[218] MODE 'item-ID' Fram e= nnn has xx mismatches

aaa location of first error

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

bb value that should be in the ftrst byte of that location

cc value that is currently there

nnn frame number into which the mode has been loaded; nnn is
decimal.

xx total number of errors

:MVERIFY SM EXAMPLl

[217] Mode 'EXAMPL1" verified; Frame=511 5ize=lFB Cksum=A03C

:MVERIFY SM EXAMPL2

014 OC 18

[218J Mode 'EXAMPL2' Frame=511 has 78 mismatches

MVERIFY 5M EXAMPL2 (A list all mismatches

LOC SB AB LOC SB AB LOC 5B AB LOC 5B AB

014 OC 18 015 13 17 016 OE OD 017 3A 3C

[218J Mode 'EXAMPL2' Frame=511 has 78 mismatches

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

2-57

The Assembler

SET-SYM

Syntax

Description

2-58

The SET-SYSM command is used to specify symbol names for display
and data change.

SET-SYM filename {(T)}

filename name of file that contains symbols

(T indicates that filename is secondary file and that previously
specified symbol file is also to be used

Nonnally, PSYM is used as the symbol file so that all the global PSYM
symbols can be referenced. The Coldstart procedure supplied by
Ultimate on the SYS-GEN tape initially sets up the symbolic debugging
capability for all symbols in the PSYM file. (The command :DEBUG
PSYM is used by the Colds tart procedure to set up PSYM as the symbol
file for the debugger.)

Users are therefore not required to use the SET-SYM command before
referencing PSYM elements symbolically in the debugger. However, the
SET-SYM command is required if a user wishes to specify the T option,
or when using a symbol file other than PSYM.

Local references can be made to another file by using the SET-SYM verb
with the (T) option. This is useful when working with numerous local
symbols, such as those defined in INCLUDEd programs. For example,
immediately after an assembly, the TSYM file has all the local symbols in
it and it can be specified in the SET-SYM command. However, the
contents of the TSYM change after an assembly. To preserve the local
symbols, copy them to a more permanent file, then that file can be used
with the SET-SYM with the T option.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

r(-"
~j

(~ X-REF

Syntax

Description

(::

6973-1

The Assembler

The X-REF command creates a cross-reference listing of symbols and
stores it in an XSYM fIle.

X-REF filename {itemlist}

filename name of fIle that contains items to be cross-referenced; this
is usually the CSYM fIle, but can be any file in same format
asCSYMfIle

i temlist names of items to cross-referemce; may be one or more
explicit item-IDs, or an asterisk (*) to specify all items in the
fIle; may be omitted if a select-list is active.

The X-REF command uses the CSYM file created by the CROSS-INDEX
command, or another similarly formatted file, for input. It creates a
cross-reference listing by symbol name; the listing includes all symbol
names and stores the result in a file called XSYM. (The XSYM file must
already exist).

The symbol name is used as the item-ID. Each program that uses that
symbol name is stored as a value in attribute 1 of the file. Each item has
only one attribute.

Note: The CSYMfile is composed o/program name items that have
symbol names as data. The XSYM file is composed 0/ symbol
name items that have program names as data.

To list the file, you should create an attribute definition item similar to
the following:

REFERENCES
001
002
003
004
005
006
007
008

item-ID
A

1
References

009 L
010 70

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

2-59

The Assembler

2-60

: SORT XSYM

PAGE 1

XSYM : CTR32

References

XSYM : CTR9

References

XSYM : CVDR1S

References

XSYM : DO

References

XSYM : D1

References

XSYM : D2

References

XSYM : D3

References

LIST4

CHARGES

CHARGES

CHARGES

CHARGES

CHARGES

CHARGES

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

17:39:08 29 JAN 1991

6973-1

(XREF

Syntax

Description

(...

6973-1

The Assembler

The XREF command is a PROC which clears the XSYM file, executes an
X-REF command, then produces a sorted listing of the XSYM file.

XREF {filename {itemlist {options}}}

filename name offtle that contains items to be cross-referenced; this
is usually the CSYM file, but can be any ftle in same format
as CSYM file; if not specified, it is prompted for

itemlist names of items to cross reference; may be one or more
explicit item-IDs, or an asterisk (*) to specify all items in the
file; if not specified, it is prompted for

options any option that is valid for the SORT command

Before using XREF, an attribute called REFERENCES must be defined in
the file dictionary. (REFERENCES is described in the description of X

REF)

:XREF CSYM *
PAGE 1 17:43:08 29 JAN 1991

XSYM CTR32

References LIST4

XSYM : CTR9

References CHARGES

XSYM : CVDR15

References CHARGES

XSYM : DO

References CHARGES

XSYM : D1

References CHARGES

XSYM : D2

References CHARGES

Assembly Language 2-61
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Notes

2-62 Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

f-',
(..,

''-./'

(

.If'
0/

3

6973-1

Addressing and Representing
Data

This chapter discusses the general concepts of how data is addressed
and the symbol types used to describe data. The following topics are
covered:

• frame formats

• data fonnats in a frame

• virtual addresses

• understanding address registers

• understanding storage registers

• addressing modes in an instructionO

• symbol types

• addressing the PCB fields

• addressing the SCB fields

• addressing conventional buffer workspaces

• programming conventions

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-1

Addressing Data

Frame Formats

Frame Size

3-2

As a virtual system, Ultimate programs and data reside on disk. Each
addressable section of disk memory is called a frame. By convention,
there are two logical types of frame fonnats: linked and unlinked.

A linked frame is part of a chained set. The fIrst few bytes of a linked
frame contain fIelds for two links: a forward link to the next frame of
data, and a backward link to the previous frame of data. Linked frames
are used primarily for flles of data (which are variable in size) and for
the larger workspaces.

An unlinked frame stands alone; that is, it has no forward or backward
links to other frames. The entire frame is used for data; there are no link
fIelds. Unlinked frames are used primarily for programs, short
workspaces and control blocks.

Physically, there is no difference between a linked frame and an
unlinked frame-nothing in the frame itself indicates whether it should
be viewed as linked or unlinked. The distinction is made by software,
when a program attaches an address register to point within a frame.
(For infonnation on attaching registers, refer to the section, Attaching an
Address Register.) If a frame is attached in linked mode, the register
can be incremented or decremented to point to any byte within the set of
linked frames, as if the frames were a single area of contiguous storage.
The operating system automatically points the register into the correct
frame at all times, by reading the link fIelds. If a frame is attached in
unlinked mode, an address register can only reference data in the current
frame, although this includes all bytes in the frame.

Originally, in the Ultimate operating system, all frames contained 512
bytes. Linked frames had an addressable size of 500 bytes and a 12-
byte link fIeld; unlinked frames had an addressable size of 512 bytes.
Now, however, frame sizes and the link fIeld sizes in linked frames are
variable, depending on the system implementation.

The frame and link fIeld sizes for a particular implementation are stored
in special ID.symbols in the Pennanent Symbol (PSYM) flle, as follows:

specifIes the length of ABS frames (for example,
512)

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

C:
6973-1

ID.DA 1FRM.SIZE

ID.DATA.SIZE

ID.LINK.SIZE

Addressing Data

specifies the length of an unlinked data frame

specifies the length of the data portion of a linked
frame (for example, 500)

specifies size of link area (difference between
unlinked and linked sizes)

Note: The value 0/ ID.ABSFRM.SIZE and ID.DATFRM.SlZE is always a
power 0/2.

Figure 3-1 illustrates the layouts of linked and unlinked fonnats.

Assembly Language 3-3
Confidential and Proprietary to The Ultimate Corp.

----.--~-

Addressing Data

3-4

32-bttFID Address Register

laoxxx... ~I I
1 ~--.-------l

. ,> ..• , .. , .• ,. , ...
Unlinked frame bit (high bit)
is set Data. Bytes

(ID.DATA.FRAMESIZE)

Unlinked Frame

32-bit FlO Address Register

...

.'••

••

~lo~ox_xx_··· ________ ~I~I~ __________ ~II--~
1

Unlinked frame bit (high bit)
iSllQ1 set

Unk Reid (ID.LlNK.SIZE)

x ~ Forward Link I Backward Link .121 X J

Data Bytes

(ID.DATA.SIZE)

Linked Frame

~ NNCF byte (Number of Next Contiguous Frames)

[2l NPCF byte (Number of Previous Contiguous Frames)

Figure 3·1. Frame Formats

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Link Fields

6973-1

Addressing Data

In a linked frame, the fIrst ID.LINK.SIZE bytes (12 on a fIrmware system)
make up the link fIeld, which contains link information. Following the
link fIeld are ID.DATA.SIZE bytes (500 on a fmnware system) of data.
The link fIelds contain a count of the number of sequential forward and
backward linked frames, and the next and previous frame numbers
(FIOS) in this linked set.

The following describes the format of a linked fIeld (assuming 12 bytes
in the link fIeld):

o 23456789 A Be 0 ...
rese Forward link Backward link rese
rved I t-.J\CF frame number frame number NPCF rved data bytes

Byte Descri ption

0 reserved

I NNCF (number of next contiguous frames); count of
the number of sequential frames linked after this
one.

2-5 forward link frame number (FRMN); contains the
frame number of the next frame in this logical set.
(These bytes are zero if this is the last frame in the
set.)

6-9 backward link frame number (FRMP); contains the
frame number of the previous frame in this logical
set. (These bytes are zero if this is the fIrst frame in
the set.)

X'A' NPCF (number of previous contiguous frames);
count of the number of sequential frames linked
previous to this one.

X'B' reserved; sometimes referred to as a dummy data
byte.

Assembly Language 3-5
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-6

The Purpose of NNCF and NPCF

When a frame boundary is reached, the link infonnation is examined to
determine which frame is to be addressed next. Depending on the
direction of movement in the logical chain, either the forward link or the
backward link is used to continue in the chain.

If the required address is more than ID.DATA.SIZE bytes ahead or behind
the boundary of the current frame, the contiguous count plays a role. If
the contiguous count is non-zero, it may be used to compute the next
frame to be addressed since it is known that the frame numbers are
contiguous or sequential; that is, one or more intervening frames may be
skipped over.

This scheme obviously results in considerable savings in frame faulting
when indexing into large contiguous blocks of frames, or skipping over
large segments of data in such frames.

It is possible that a frame links to a sequential frame, but that the NNCF

or NPCF is zero. While this reduces efficiency, it is not an error.

: DUMP 6520 L

+ FID: 6520 7 6521 6519 120 (1978 7 1979 1977 78)

+ FID: 6521 6 6522 6520 121 (1979 6 197A 1978 79)

+ FID: 6522 5 6523 6521 122 (197A 5 197B 1979 7A)

+ FID: 6523 4 6524 6522 123 (197B : 4 197C 197A 7B)

+ FID: 6524 3 6525 6523 124 (197C 3 197D 197B 7C)

+ FID: 6525 2 6526 6524 125 (197D 2 197E 197C 7D)

+ FID: 6526 1 6527 6525 126 (197E 1 197F 197D 7E)

+ FID: 6527 0 0 6526 127 (197F 0 0 197E 7F)

This is an example of the end of a set of 128 contiguously linked
frames. The fIrst number in each line is the FlO; the second is the NNCF;

the third is the forward link FlO; the fourth is the backward link FlO; and
the fifth is the NPCF. The numbers in parentheses are the equivalent
values in hexadecimal.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

ABS Frames

6973-1

Addressing Data

: DUMP 12568 L

FID: 12568 : 0 o o o (3118 o o o 0)

This frame has no forward or backward links.

The Ultimate operating system has designated a group of frames as ABS

frames; usually these are frames 1-2047 (up to a maximum of 4095).
All frames that are not ABS frames are called data frames and are used
for files, work-spaces, etc. (Frame 0 is unused and is considered an
"illegal frame.")

ABS frames are normally used to hold assembly language programs. All
programs must be located in the fIrst 4095 frames of virtual storage
since instructions are referenced via a 12-bit frame number (three
hexadecimal digits). (The maximum three-digit hexadecimal value
(X'FFF') is equivalent to decimal 4095.)

As a rule, ABS frames are in unlinked format. Conversely, most data
frames, except for small workspace areas, such as process control
blocks, are in linked format.

Assembly Language 3-7
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Data Formats in a Frame

3-8

The data in a frame may be addressed in one of the following formats:
bit, byte, tally (word), double tally, triple tally, or string data type.

bit binary digit; can contain one of two values: 0 or 1. Bits
are often used as switches or flags: OFF or UNSET for 0
value, and ON or SET for 1 value.

byte eight bits, and is also known as a half tally or character.
Bytes can store values in the range of -128 through +128.

tally two bytes with a range of -32,768 through +32,767.
Tallies are the basic word size in an Ultimate system and
are the most frequently used format.

double tally four bytes with a range of -2**31 through +2**31-l.
Double tallies are typically used to store FIDs (base FID of a
file, for instance), and to count items in a file.

triple tally six bytes (also known as an F-tally) with a range of -2**47
through +2**47-1. Triple tallies are used for any
arithmetic that requires the full 48-bit precision of the
system.

string data a sequence of characters of arbitrary length; may be
delimited by any system delimiters, such as an attribute
mark, value mark. A string is the only data type that may
cross a frame boundary.

Figure 3-2 is an illustration of the layout of these data types, except
string data. Using binary notation (base 2), each bit (that is, binary
digit) may have only a 0 or 1 value. However, by defining byte and
tally formats, very large values may be represented as single entities.

At the assembly program level, these information entities are called
elements or fields, and are given symbolic names just as variables are
named in higher level languages.

In Ultimate, the following conventions apply:

• All numbering starts at 0 and is incremented from left to right. So,
bit 0 is the high order bit in a byte, and bit 7 is the low order bit.

• Decimal notation is normally used, although offsets within frames are
usually expressed in hexadecimal (base 16). (In hexadecimal

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

Addressing Data

notation, a single digit may be: 0 1 2 3 4 5 6 7 8 9 ABC DE or F,

where A-F represent the decimal values 10 through 15.) When a
hexadecimal value is used, the hexadecimal number is enclosed in
single quotes and preceded by an X; for example x'lF' is 31 in
decimal.

Bit

u
o

Byte

II I III I II
01234567

Tally (word)

11111111111111111
0123456789111111

012345

Double tally

II II , I , , I, , , , , 'I I, , I I I , , I, I , II , I I
01234567891111111111222222222233

0123456789012345678901

Triple tally

1111111111111111111111" 1111111,11111111111" 1111
012345678911111111112222222222333333333344444444

01234567890123456789012345678901234567

Figure 3-2. Data Formats and Bit
Numberlngs

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-9

Addressing Data

Virtual Addresses - Addressing Data in a Frame

3-10

All program references to data and instructions in a frame use virtual
addresses. Fields in virtual storage are referenced via a frame number
(FID) and a displacement of the fIrst byte of the fIeld within the frame.
The FlO and displacement together are known as the virtual address.

All references to data and instructions are done through address
registers. Each such register contains a virtual address, which may be
in either unlinked or linked format.

The number of addressable bytes in a frame depends on whether the
register used is in unlinked or linked fonnat and also on the Ultimate
system implementation. (The physical number of bytes in an ABS frame
is the value of the ID.symbol in PSYM called ID.ABSFRM.SIZE. The
physical number of bytes in a data frame is the value of the ID.symbol in
PSYM called ID.OATFRM.SIZE.)

If the register is in unlinked fonnat, physical byte 0 of the frame is
addressed by a displacement of O. The last physical byte is addressed
by a displacement of (n-l), where n is ID.ABSFRM.SIZE or
ID.DATFRM.SIZE as specifIed above. In unlinked addressing mode, the
boundaries of the frame cannot be crossed, and all bytes of the frame are
addressable.

If the register is in linked fonnat, physical byte ID.LINK.SIZE of the
frame (for example, 12 on fIrmware systems) is addressed as byte 1.
The last physical byte is addressed by a displacement of ID.OAT A. SIZE
(500 on fIrmware systems). Addresses in data frames with
displacements in the range 1 to ID.OAT A.SIZE are referred as
normalized.

Displacements outside this range refer to either previous or forward
frames in the logical chain (assuming that such frames exist), and such
addresses are referred to as unnormalized. Unnormalized addresses
are automatically resolved and normalized when the address register is
used. Normalization consists of following the links in the appropriate
direction until the displacement is reduced to the range 1 to
ID.OA T A.SIZE.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

If the end of the linked set is reached during the nonnalization process,
the assembly debugger is entered with a trap condition indicating either
Forward Link Zero or Backward Link Zero. See the section on the
debugger relating to system traps for further details.

Table 3-1 summarizes how the system resolves virtual addresses,
assuming a frame size of 512 bytes. Figure 3-3 shows how virtual
addresses are resolved in a linked set of frames. Virtual addresses are
normally kept in address registers or storage register fields. The next
topics explain more about registers.

Assembly Language 3-11
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-12

Table 3-1. Resolution Table of
Displacements and Addresses (for a

512-Byte Frame)

Displacement Linked Mode Unlinked Mode
Address Address

less than 0 refers to previous frames invalid
in logical chain

0 If a backward link physical byte 0 of frame
exists, a displacement of
o is nonnalized to access
the last byte of previous
frame in chain. Also,
displacement may be set
to 0 temporarily in
advance of using
instructions that
increment the register
before accessing data.
Data at displacement of 0
should never be
accessed.

1-500 physical bytes 12-511 physical bytes 1-500

501-511 refers to forward frames physical bytes 501-511
in logical chain

512 or greater refers to forward frames invalid
in logical chain

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Physical

bytes
Logical

bytes

R14 - 500 points

to loqical byte 50

in previous frame

R14 points to

physical byte 61

Addressing Data

in next frame

Figure 3-3. Register Displacement
Involving Linked Set of Frames

Understanding Address Registers

6973-1

Data within a frame is always referenced via address registers. There
are no assembly language instructions that allow you to access data
directly by virtual address. Instead, the location of each data element
must be specified in terms of an address register and offset. A register
can be thought of as pointing to a location in virtual storage. Data

elements in a program are defined in terms of offsets from this location.

Every process has 16 address registers. An address register is
composed of 8 bytes (see Figure 3-4) and contains a virtual address.

Assembly Language 3-13
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

o I 1 I 2 I 3 I 4 5 I 6 I 7
'----..r---' '----..r---' i --..... _-...... "",----"

reserved displacement flags frame number (FID)

Byte Description

o and 1 reserved (used in some implementations along with
bytes 2 and possibly 3 to store the main memory
address when the register is attached. In other
implementations, the main memory address is stored
in a register that is not accessible to the programmer.)

2 and 3 displacement field, can be in range -32768 to 32767

4 flag field; contains specific bits as follows:

bit 0 link mode flag for address in register
o = linked; 1 = unlinked

bit 1 special attachment flag; for internal use
only (allows register to have displacement
of zero when a pre-incrementing data
movement instruction reaches a frame
boundary. It pre-increments to the first
data byte in the frame as instruction
execution continues.)

o -causes normalization and attachment
to ID.DA1FRM.SIZE of previously
linked frame

1 - allows temporary displacement of 0

bit 2-7 reserved

5-7 frame number (FID) of address in register; can be in
range 1 to (2**24)-1

Figure 3-4. Address Register Format

3-14 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

c

Attaching an
Address
Register

6973-1

Addressing Data

In order to use an address register, it must be attached. This means
that the frame pointed to by the register has been copied into a main
memory buffer. References to data within the frame then become
references to data within this buffer. When any data in the buffer is
changed, the buffer is marked write-required, and the Kernel schedules
a disk write to copy the new version of the frame back to disk.

Address register attachment is automatic; you can use a register at any
time without knowing if the frame it points to is currently in main
memory. If it is, the correct memory buffer is accessed. If it is not, a
frame fault occurs, and the kernel schedules a disk read to bring a
copy of the frame into main memory.

Only one copy of a frame is ever in main memory at one time. If several
address registers point into the same frame, they will point into the same
memory buffer when they are attached.

In some Ultimate implementations, all 16 address registers are attached
when a process is activated. In other implementations, a register may
not be attached until the fIrst instruction which tries to use the register is
executed.

When a process is not active, all its address registers are detached. The
contents of the registers are stored in reserved locations in the Primary
Control Block (PCB) of the process. When the process is activated
again, the contents of these locations are used to reattach the registers.

The PCB fields reserved for address registers are not normally
referenced by assembly language programs (other than the FID fIeld).
One reason for this is that the format of these fields is not the same on
all Ultimate implementations. Another reason is that the fIelds may not
reflect or affect the true contents of an address register: some
implementations maintain information about attached registers in
hardware or other locations outside the PCB, and update the PCB

locations only when detaching the address register.

Assembly Language 3-15
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Loading an
Address
Register

Conventional
Usage of
Address
Registers

3-16

The standard method of loading a vinual address into an address register
is to fIrst load the virtual address into a storage register, then to move
the storage register into the address register. Conversely, the standard
method of obtaining the contents of an address register is to move the
address register into a storage register, and then to inspect the storage
register contents. (For more information on storage registers, see the
section, Understanding Storage Registers.)

When a register is referenced directly by its register number (RO-RI5),

the reference is to the register's contents, that is, to the virtual address
(FID and displacement) of the data being pointed to. For example, the
following instruction causes the virtual address in R5 to be saved in
storage register SR5:

MOV RS,SRS

Remember: The term "address in a register" means the AD and
displacement (virtual address) of the byte that the register is referencing,
not the data being pointed to or the location of the register itself.

Most of the 16 address registers have a certain conventional usage
associated with them. However, only RO, Rl, and R2 are system
controlled pointers; the rest are simply conventions and may be used for
other purposes (at your own risk). The address registers are predefIned
for each user process.

Address register RO addresses a special frame called the Primary Control
Block (PCB) of the process. Rl addresses the current ABS frame being
executed by the process. R2 addresses the Secondary Control Block
(SCB). R3-R15 have associated conventional uses, but no predefIned
meanings.

The following sections describe the conventional uses of address
registers. A summary is given in Table 3-2.

RD - Primary Control Block (PCB)

RO always addresses the Primary Control Block (PCB), which is a single
frame unique to a particular process. The PCB contains address registers

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

RO-R15, the subroutine return stack, the accumulator, and various other
data variables. The PCB of a process is the basis for every data
reference that the process can make.

The PCB for each process is assigned a FlD at system initialization.
When the Kernel decides to tum control over to a particular process, it
uses the Process Identification Block (pm) to find the FlO of the PCB for
that process. It then searches the virtual memory table for that FlO. If
that frame is not in main memory, the process cannot be activated. An
instruction to read the frame into memory is executed and the Kernel
continues on to other tasks

When the PCB frame is in main memory, RO is attached to byte zero
(unlinked format) of the frame, and this main memory address is saved
in a register that is inaccessible to the programmer. That register is then
used to reference all other PCB elements, including the other address
registers for attachment. R 1 is attached first, followed by the other
registers (R2-R15).

Note: Although RO is stored in the process's PCB, it is not used/or
all PCB accesses. Some internal Junctions use a direct memory
address.

The PCB is described in the section, Addressing the PCB Fields.

R1 - Program Counter

Rl has two distinct formats, depending on whether the process is active
or inactive. In the inactive state, Rl is a true program counter in the
sense that it addresses the location (less one byte) of the next instruction
that the process will execute when it is reactivated.

In the active state, it is set pointing to byte zero of the ABS frame that the
process is currently executing. This means that since Rl always
addresses byte zero of the current program frame, data in that frame may
be referenced relatively using Rl as a base (see the topic on Addressing
Modes below). Relative addressing is the primary mode used to
address literal text, symbols and other data in a program frame.

Assembly Language 3-17
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-18

The real program counter, which actually addresses the next instruction
that the process will execute, is stored in a special register and is
inaccessible to the programmer.

R2 - Secondary Control Block

R2 points to another control block, called the Secondary Control Block
(SCB) whose frame number is ftxed as the PCB FlO plus one. This block
contains numerous additional elements that have both system-defined
and variable uses. (The SCB layout is given in Appendix C.)

R3 through R15

Address registers 3-15 (R3-R15) are general purpose registers.
However, the Ultimate system software conventions initialize R3
through R13 to specific locations (see the section Buffer Workspaces).

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

(~" Understanding Storage Registers

c'
6973-1

A storage register is a 6-byte field which contains a virtual address.
Unlike address registers, which are fixed in number and are associated
with specific locations in a process's PCB, storage registers may be
defined in any frame, to store as many virtual addresses as a program
needs.

A storage register may be specifically defined via an assembly language
program directive (ADDR, DEFS, or SR), or it can be allocated without a
symbol, as in the following:

MOV R6;SO,R4

In this example, R6;SO defines a storage register at the virtual address
pointed to by address register R6.

The format of a storage register is as follows:

o I 1 I 2 I 3 I 4 I 5

~
Displacement

t
Flags

....... --..... W".,..--~'
Frame number (FlO)

Byte Description

o and 1 displacement field.

2 flag field; contains specific bits as follows:

bit 0 link mode flag for address in register
o = linked; 1 = unlinked

bit 1-7 reserved

3 to 5 frame number (FlO) of address in register

Remember: The term "address in a register" means the FID and
displacement (disk address) of the byte that the register is referencing,
not the data being pointed to or the location of the register itself.

Assembly Language 3-19
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-20

Storage registers reside in the frame in which they are defined.
Standard storage register fields in the PCB and SCB are defmed in PSYM.

There is no attachment associated with storage registers. In order to
reference data pointed to by a storage register, the storage register must
be moved into an address register, and the data referenced via the
address register.

Following is an example of an instruction (MOV) that moves the virtual
address from a storage register (srI) into an address register (ar2).
After the instruction is executed, both srI and ar2 point to the same
byte.

sr1 SR offset,fid virtual address

arrf--_---I ___ ---.

MOV sr1,ar2 virtual address

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

(cannot directlv address)
- - - l..-: 1

6973-1

(

(

Addressing Data

Addressing Modes in an Instruction

Immediate
Addressing

Relative
Addressing

6973-1

The Ultimate operating system supports four addressing modes. All
four modes use the address registers RO-R15.

The four addressing modes are as follows:

• immediate addressing

• relative addressing

• indirect addressing

• direct register addressing

In the immediate addressing mode, the data is stored in the instruction
itself. The candidates for immediate addressing are literal values used as
operands, such as numbers or characters.

Examples of the use of immediately-addressed data are as follows:

• The source operand in character moves of a single byte (MCC, MCI

instruction) where the character is immediate data.
MCC X'FE,' R15

• The mask operand in string scans and moves (MIlD, SID instructions,
for example) where the mask is immediate data.

MIlD R14,R15,X'AO'

• For some implementations, other literal values used as operands.

MOV 4,CTRl

N ole: Not all literal value operands are immediately addressed; it
depends on the implementation of Ultimate for which the
instruction is being assembled. Although, as a rule, one-byte
literals are always assembled as immediate data, larger values
may become immediate data in some implementations (jor
software machines) but relatively addressed data (at the end of
the program) in others.

The relative mode of addressing is used to address data defined as a bit,
half tally, tally, double tally, triple tally, local label, storage register, or
external address register.

Assembly Language 3-21
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Indirect
Addressing

3-22

Relatively addressed operands are addressed via a base address register
and an offset (displacement) to get the actual address. All relative
addresses are computed from the virtual address pointed to by the base
register. In the case of local symbols, Rl is the base register,
referencing byte zero of the program frame, and the offset is simply the
offset from the beginning of this frame.

To resolve the relative address, a function of the offset is added to the
virtual address in the base register. The function used is dependent on
the actual symbol type being addressed (which is described in the next
section). Only forward addressing is allowed, and the entire element
must be in the frame being addressed. (Note: some implementations
check to see if the element crosses the boundary of the frame for any of
the referenced field. If it does, a Crossing Frame Limit error message
and an abort conditions are generated. In other implementations, no
checking is done; in this case, if the element crosses the boundary of the
frame, the results are unpredictable.)

The indirect mode of addressing data is used in instructions where an
address register is an operand, but the reference is to the data m ::-:e
virtual address in the register. Several types of instructions use indirect
addressing:

• Single-byte character moves where the destination is an
un incremented register (MCC instruction).

MCC x' FE ' , R15

• Single-byte character moves where the destination is a pre
incremented register (MCl instruction). The destination addressed
byte is located indirectly by first adding one to the virtual address in
the register. The register remains altered.

MCI X'FE',R15

• String moves where the destination register is pre-incremented until a
test condition is met (MIlD, SID instruction, for example). The
destination addressed byte is located as described for single-byte
character moves above and moved, then the register is successively
incremented by one and another character in the string is moved until
the terminating conditions are met. The register is left addressing the
last moved byte in the string.

MIlD R14,R1S,X'AO'

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Direct
Register
Addressing

6973-1

Addressing Data

• Other instructions where an addressed byte is located indirectly by
using the virtual address in the register (for example, a branch
instruction where the register points to a byte whose value is being
tested).

BCE R14,R15,LABEL

The direct mode of addressing a register (RO-R 15) is confined to a group
of register instructions (MOV, INC, DEC, SETR, SETDSP, etc.). In these
instructions, the reference is to the contents of the register itself and the
operation is on the register content, not the data at the address in the
register. For example, in the following instruction, R14 is moved to
replace the contents ofR15, so that the two registers are then identical
(that is, they contain the same virtual address):

MOV R14,R15

Assembly Language 3-23
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Symbol Types

3-24

Symbols can be either defmed by a program, or predefined by the
system. The predefmed symbol names and criteria are stored in the
PSYM file.

In assembly language programs, each symbol has an associated symbol
type code. This code defines the nature of the symbol. Table 3-2 lists
the symbol type codes.

As shown in the table, all symbol types, except A, M, N, and R, use the
relative addressing mode. Type M symbols (mode identifiers) are used
to define branches to external program subroutines, which are defined
as entry points in a mode (that is, the mode-id). Addresses of this type
are discussed in Chapter 2 in the section, External Program References:
Mode-ids. Type N symbols (literals) are treated as immediate data.
Type R symbols (address registers), which are treated directly or
indirectly, have addressing modes that are discussed in the section,
Addressing Modes in an Instruction.

The effects of symbol types in computing relative addresses are
discussed in the next section.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

(~ ...

6973-1

Addressing Data

Table 3-2. PSYM Symbol Type Codes

Symbol Unit of Maximum
Type Description Offset Dlsplace-
Code ment

A virtual address (both FlO N/A N/A
and displacement)

B relatively addressed bit bits 255 bits - 31
bytes+ 7 bits

C relatively addressed bytes 255 bytes
character or byte (8 bits)

D relatively addressed double words 255 words-
tally (32 bits) 510 bytes

E system message N/A N/A

F relatively addressed triple words 255 words-
tally (48 bits) 510 bytes

H relatively addressed half bytes 255 bytes
tally (8 bits)

L locally defmed label bytes 255 bytes l

M mode-id (16 bits); external N/A N/A
FlO and entry point

N constant or literal value N/A N/A

R address register N/A N/A

S storage register words 255 words-
510 bytes

T relatively addressed tally words 255 words-
(16 bits) 510 bytes

1 Local labels are subject to the 256-byte limitation only in the SRA instruction. In a
branch instruction, it is an absolute location in the object code.

Assembly Language 3-25
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Computing
Relative
Addresses by
Symbol Type

3-26

Symbols referenced in a relative addressing mode specify a base register
and an offset displacement. The resulting address may be offset up to
the maximum displacement as given in Table 3-2, although it may not
cross the boundary of the frame that the register is addressing.

Offsets are in the range 0-255. The offset value is taken from the
defmition of the symbol in the symbol file. The column "Unit of
Offset" indicates the function used to convert the offset to the effective
address.

The following are examples of symbol definitions:

815 DEFB Rl,IS

HIS DEFH Rl,IS

TlS DEFT Rl,IS

DIS DEFD Rl,IS

SIS DEFS Rl,IS

The relative address computed for each of these symbol definitions is
different, as illustrated in Figure 3-5.

R1

+ Bytes 0 1

111111111111111 "

15 16

1"""11",,,,11 ...
Bits 0123456701234567 o 1 2 3 4 5 6 70 1 2 3 4 5 6 7

t t
815 H15

30 31 32 33
I, , , , , , rI, , , , , , rI, , , , , , rI, , , , I , rI ... f 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 7

T15 (bytes 30 and 31)

D15 (bytes 30 thru 33)
I

I

S 15 (bytes 30 thru 35)

Figure 3-5. Relative Addressing of
Symbols

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

C:

Limits in
Offsets

6973-1

Addressing Data

Rl points to byte 0 of the frame. Each symbol is also shown with the
effective address of that symbol:

• if the symbol being addressed is a bit (type B), the offset is also in
bits, so that an offset of 15 would address the seventh bit in byte 1
displaced from the address in the register

• if the symbol is a half tally (type H), the offset is in bytes, so an
offset of 15 would address byte 15 displaced from the address in the
register

• if the symbol is a tally (type T), the offset is in words, so an offset of
15 would address bytes 30 and 31 displaced from the address in the
register

• if the symbol is a double tally (type D), the offset is also in words, so
an offset of 15 would address bytes 30 through 33 displaced from the
address in the register.

• if the symbol is a storage register (type S), the offset is again in
words, so an offset of 15 would address bytes 30 through 35
displaced from the address in the register.

The reason for limits in offsets used in relative addressing is so that any
relatively addressed operand can be specified by a 12-bit number. This
number includes four bits for specifying an address register (0-15),
leaving eight bits for an offset (0-255). In fact, this is how relatively
addressed operands are coded in the object code for firmware machines.

When the maximum of 255 is applied to the three different units of
offset shown in the table, you can see that the actual addressable bytes,
offset from the address in the register, are different:

256 addressable bits you can address a bit in the range of byte x'OO'
to x'IF' (32 bytes)

256 addressable bytes you can address a byte in the range of byte
x'OO' to x'7F' (256 bytes)

256 addressable words you can address a word in the range of byte
x'OO' to x'FF' (512 bytes)

Assembly Language 3-27
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-28

--~-----.---

A limitation of this scheme is not being able to address words (tallies,
double tallies, etc.) at odd (byte) boundaries off a register, however, this
scheme does allow an entire 512-byte frame to be referenced at word
boundaries. In practice, the restrictions on relative addresses are not a
problem.

Note that a relatively addressed character or half tally (byte operand),
when the offset is zero, is the same as an indirectly addressed byte. For
example, the code sequence:

CHRiS DEFC RiS,O

MCC R14,CHRiS

produces the same effect as:

MCC R14,R15

C at RiS, offset 0

Move to relatively

addressed byte

Move to indirectly

addressed byte

The object code generated by the assembler may be different for the two
cases, however.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

£-'\
I

~ ... ;/

Addressing Data

(~~ Addressing the PCB Fields

The
Accumulator

6973-1

The primary control block (PCB) of each process contains indicators and
flags for that process, including the following:

• accumulator

• scan characters

• file control block pointers

• address register fields

• subroutine return stack

All elements in the PCB are accessed via address register zero (RO),
which always addresses byte zero of the PCB in unlinked mode.

The format of the PCB may vary depending on the system implemen
tation. The actual location of most PCB elements is irrelevant to
programmers since they are referenced via their PSYM name. A sample
PCB format is shown in Appendix B.

The accumulator consists of an 8-byte accumulator area and a 6-byte
extension (14 bytes). The accumulator is used in the following
instructions:

• LOAD and STORE instructions.

• arithmetic instructions.

• LAD instruction.

• Cenain string scanning and moving instructions to count the number
of bytes scanned or moved.

• Cenain string-to-binary and binary-to-string conversion instructions.

The primary accumulator area consists of two double tallies, labeled D 1
and 00. This area is used for most arithmetic operations, except for the
extended arithmetic instructions. Extended arithmetic addresses a 6-byte
area (triple tally) of the accumulator, labelled FPD. Another triple tally,
FPY, is a 6-byte extension which is used for extended precision division
instructions only (DIVX instruction).

Assembly Language 3-29
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-30

The primary accumulator area occupies bytes 8 through 15 of the PCB.
This area may be addressed symbolically with the following units:

bits (BO-B63)

half tallies (RO-H7)

tallies (TO-T3)

double tallies (])()..Dl)

triple tally (FPO).

See Figure 3-6.

The accumulator retains its last resultant value until other data is moved
or loaded into it.

The 6-byte accumulator extension is called FPY and is located at bytes
498-503 (X'lF2'-'1F7') of the PCB.

The symbols in Figure 3-6 are all global variables in the PSYM file and

PCB
byte 8

BBB

9 A B C D E F

666 BBB
321 21 0

IIIII i '1 i III IIII1 I11I1 III " IIII1 II III 1111I1111I I1I11I1 III [! i 111I II

H7 H6 H5 H4 H3 H2 H1 HO

T3 T2 T1 TO

01 DO

FPO

Figure 3-6. Primary Accumulator Area

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(-'

c::

C',
"

6973-1

Addressing Data

may be used to address sections of the accumulator. Some instructions,
such as LOAD and ADD, address the accumulator implicitly; the portion
depends on the operand.

The Accumulator and Arithmetic

All arithmetic is performed in the PCB accumulator. Each arithmetic
instruction operates on specific prenamed portions of the accumulator,
as determined by the type of arithmetic and the operands used. For any
particular instruction, only a certain portion of the whole 8 bytes is
addressed. When performing arithmetic, the following symbol types
used as operands cause the accumulator to be addressed in a
corresponding way.

Operand Symbol Type Accumulator
Portion Addressed

H half tally DO

T tally DO

D double tally DO

F triple tally FPO

The accumulator does all arithmetic in binary, and expects that file
values have been converted to binary, if necessary. (That is, they may
have been stored on disk as ASCII values.) The following examples
show the value of the accumulator using hexadecimal equivalents.

For example, if the accumulator contains a value of zero:

100 1 0 0 1 0 0 1 0 0 1 001 001 0 0 1 001

the ADD instructions below would return these results from the
accumulator:

ADD H8 H8 = 64 (X '40 I)

1001001001001001001001401

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-31

Addressing Data

3-32

ADD T4 T4 = 42000 (X'A410')

1001001001001001001 A4 1 101

ADD D6 D6 1234567890

(X'499602D2')

1001001001001491961021D2

ADDX FP1 FP1 123456789012345

(X'7048860DDF79')

10010017014818610DIDFI791

Numbers are stored in two's complement fonn. The high-order bit of a
positive number is O. The high-order bit of a negative number is 1.
This high order bit is propagated to the left when necessary to sign
extend a number within the section of the accumulator (DO or FPO) being
used. The sign is extended initially when the accumulator is loaded with
a value. For example:

LOAD N N = a half tally of X'7F'

100 1 001 001 001 001 001 001 7 F 1

Because the high order bit is a 0, the number is positive, and the 0 sign
bit is extended throughout the accumulator DO. The 01 portion is not
affected.

If the same half tally were to have a value of x'80', the high order bit
would be 1, which would also be sign-extended throughout the
accumulator 00. For example:

LOAD N N = a half tally of X'80'

1001001001001 FF 1 FF 1 FF 180

Note that the sign is extended within the accumulator 00, but the 01
portion is not affected by this instruction. However, a LOADX N

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

c'

C

Scan
Characters

6973-1

Addressing Data

instruction would extend the sign through FPO, leaving only T3
unaffected.

In Chapter 7, Reference for Programmers, there is additional
information about two's complement arithmetic.

Accumulator Usage

The following are some general guidelines for accumulator usage:

• Extended precision arithmetic instructions such as ADDX affect FPO;
DIVX also affects FPY.

• Normal precision arithmetic instructions such as ADD affect DO; MUL
and DIY also affect D 1.

• Instructions that count string lengths, as well as the LAD instruction,
use TO only.

• Conversion instructions use FPO for data and T3 as a parameter.

Scan characters are programmer-specified characters used in string
scanning and moving instructions. Three one-byte fields called SCO,

SCI, and SC2 contain the characters. The fields are referenced through
mask bytes.

Mask bytes are used by the following instructions:

MIlD

MIIDC

MIITD

SICD

SID

SIDC

srrD

The mask bytes used by MIID, MIIDC, MIITD, SID, SIDC and srrD

instructions can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM x'pp'

attribute mark AM X'PE'

value mark VM X'PD'

sub-value mark SVM X'PC'·

Assembly Language 3-33
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-34

The other three characters are taken from the scan characters seo, SCI,
and se2. The contents of these scan characters are specified by the
programmer.

Note: The mask byte used by the SleD instruction is unique and is
discussed as part of the instruction description in Chapter 4.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the mask byte is set (1), it indicates that
the string terminates on the first occurrence of a delimiter as specified
by the setting of bits 1-7. If it is zero (0), it indicates that the string
terminates on the first non-occurrence of a delimiter as specified by
the setting of bits 1-7.

See Figure 3-7. (The parentheses around seO, se 1 and se2 are to
indicate that it is the contents of these locations that are compared.)

The following are some examples of mask bytes:

Mask byte Bit pattern Meaning

x'eO' 11000000 Stop on first occurrence of a SM.

X'AO' 1010 0000 Stop on first occurrence of an AM.

x'e3' 11000011 Stop on first occurrence of an SM, or
the contents of se 1 or of se2.

0 2 3 4 5 6 7

match! SM AM VM SVM (SCO) (SC1) (SC2)
non match

Figure 3-7. Mask Byte Format

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

,~

'\

c

File Control
Block Pointers

6973-1

Mask byte Bit pattern

x'F8' 11111000

X'01' 00000001

Addressing Data

Meaning

Stop on fIrst occurrence of any
system delimiter - SM, AM, VM, or
SVM.

Stop on the fIrst non-occurrence of
the contents of SC2. For example, if
SC2 contains a blank, this mask
causes the instruction to terminate
when the fIrst non-blank character is
encountered.

For information on the use of these fIelds, see the MIlD, MIIDC, MIlTO,
SICD, SID, Sloe and SITO instructions.

Each file in the system has a File Control Block (FCB) that stores file
access information, such as the fIle's base, modulo, separation, and
other status information. The PCB contains the FIDs of the FCBs
typically associated with the following fIles:

Symbols Associated File Information

FCBl,FCB2 current fIle

DFCB1, DFCB2 fIle dictionary section (typically)

MFCB 1, MFCB2 master dictionary (user's MD)

EFCBl,EFCB2 ERRMSGfIle

FFCB 1, FFCB2 fIle data section (typically)

See the GE1FILE and OPENDD subroutine descriptions for more
information on these fIelds.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-35

Addressing Data

Subroutine
Return Stack
Fields

3-36

The assembly subroutine return stack in the PCB can handle up to 11
entries. An extended stack, which resides in a workspace frame defined
in the item WORKSPC-OEFS in the SM file, can hold up to 125 entries.

Each stack entry is four bytes, where bytes 0 and 1 contain the FlO and
bytes 2 and 3 contain the displacement. The first two return stack
entries in the PCB are used to handle return stack full and return stack
empty processes.

When the process executes a subroutine call, the address of the last byte
of the call is stored in the return stack and the stack pointer is
incremented by four bytes. When the stack in the PCB is full, the
routine in the first stack entry is called to move the oldest five entries to
the extended workspace; the remaining entries are moved down, freeing
up room for five more entries.

On executing a subroutine return instruction, the stack pointer is
decremented by four bytes, then used to get the return address. If the
stack in the PCB is empty, the routine in the second stack entry is called
to move entries back from the extended stack.

If desired, the extended stack can be logically divided into multiple
stacks. When the stack is divided into logical stacks, the entire logical
stack can be moved to the PCB stack.

The following instructions can be used to access the return stack:

INITR1N initializes return stack; can be useful in conditions where a
process is to be re-initialized and all current entries in the
stack are to be deleted or ignored

POPR1N pops one entry off the return stack; this is mandatory if a
subroutine is to be exited without using a R1N instruction

MARKR1N copies all the active entries in the PCB to the extended
stack, then marks them as one logical stack

RTNMRK pops all entries in the PCB and the extended stack, up to
and including the marker. Any remaining entries in the
extended stack are moved back to the PCB if the return
stack is empty.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

XMODE Field

Addressing Data

The XMODE tally field can be used to branch to a specified mode-id
(subroutine) when a Forward Link Zero error condition occurs. This
error indicates that the program has reached the end of a set of linked
frames without completing the current instruction. See Chapter 6 for
more information about using XMODE.

RMODE Field When the WRAPUP software is entered to store or print messages, a
return may be requested by placing a mode-id in the tally field RMODE.

When WRAPUP completes the requested processing, an ENT* RMODE

instruction transfers control to the program whose mode-id has been
stored in RMODE. See Chapter 6 for more information about using
RMODE.

W MOD E Fi e I d When WRAPUP finishes processing, just before it returns to TCL or
PROC, the tally field WMODE is checked. If WMODE is non-zero,
control is transferred via a BSL * WMODE instruction to the subroutine
whose mode-id has been stored in WMODE.

OVRFLCTR
Field

6973-1

Assembly programs that require special handling before completing may
gain control in this way. The control transfer via WMODE occurs even if
the process has been terminated via the debugger END command.

An example of WMODE usage is when writing to magnetic tape. If the
process is stopped for any reason, an EOF mark should be written on the
tape. Setting WMODE to the mode-id of the subroutine that writes an
EOF mark (TPWEOF) automatically ensures this.

When the system software gets space from the system's overflow space
pool, the RD of the first frame so obtained is placed in the special
double tally field OVRFLCTR. This is typically done by a sorting or
selecting function such as SORT or SELECT. The extra space needed by
the program is built up as a chain of frames obtained as needed.

Just before WRAPUP returns control to TCL, OVRFLCTR is checked, and
if it is non-zero, the subroutine RELCHN is called to return the chain of
frames to the overflow pool. To maintain this convention of releasing
space, OYRFLCTR should not be changed by any program other than the
first one that gets space and initializes it.

Assembly Language 3-37
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

INHIBIT and
INHIBITH
Fields

3-38

User code written as a TCL-I or TCL-II verb may initialize OVRFLCIR if it
uses overflow space that is to be released when the process terminates
by returning to WRAPUP. However, TCL-II initializes OVRFLCIR for
update-class commands (that is, attribute 5 of the verb definition item
contains a u) used with more than one item. In this case, user code
must use another means of returning space, perhaps via WMODE.

Normally, the terminal's BREAK key causes the process to enter the
appropriate debugger (either assembly or BASIC). For sensitive
processing that should not be interrupted, the bit INHffiIT (available to
the user) and the half tally INHmITH are used to prevent debug entry. If
either are non-zero, such entry is prevented.

For example, INHIBITII is used by the system during overflow
management. It is incremented by one during the sensitive processing,
and decremented on exit. The increment is performed with an INC

INHIBITII instruction. The decrement is performed by calling the
subroutine DECINHffi.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

(:~', Addressing the sce Fields

c

The Secondary Control Block (SCB) contains additional elements that
can be used by assembly language programs. All elements in the SCB
are accessed via address register 2 (R2), which always addresses byte
zero of the SCB in unlinked mode.

The format of the SCB may vary depending on system implementation.
A sample SCB format is shown in Appendix C.

Addressing Conventional Buffer Workspaces

6973-1

By convention, the system preassigns buffer workspaces such as HS,
IS, and as to a process via address registers R3-R15.

In Ultimate assembly programs, unlike other systems, program space is
rarely used to store variables (other than text strings). All programs
should be re-entrant and contain only code.

There are several preassigned buffer workspaces available to a process .
.. Three linked workspaces, called the IS, as, and HS, contain 64000

bytes each (128 frames on systems having 5OO-byte logical data
frames). Five other workspaces, called the BMS, AF, IB, OB, and CS,
vary between 50 and 140 bytes in length and are all in one frame. The
TS workspace is one unlinked frame. These standard workspaces
normally give ample room to store and manipulate smng data.
Counters, bits, and pointers are stored in PSYM-defined PCB and SCB
elements, as mentioned in previous topics.

Each workspace is defined by a beginning pointer and an ending pointer
(both are storage registers). The pointer to the beginning of the buffer is
conventionally called xxBEG, and the pointer to the end of the buffer is
called xxEND, where xx is the workspace name.

When the process is at the TCL level, these pointers are all set to an
initial condition. At other levels of processing, the beginning pointers
should normally be maintained; the ending pointers may be moved by
system or user routines.

Assembly Language 3-39
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Notes to
Table 3-3

3-40

The xxBEG pointer (such as ISBEG) is set to point one byte before the
actual data. This is to ensure correct operation of the string scanning
and string moving instructions, which always increment an address
register before testing or moving the next data byte.

For example, a typical sequence that initializes and moves data into the
HS workspace is:

MOV HSBEG,HS

MIID R15,HS,X'CO'

Set HS register to start of

buffer; copy a string until

an SM.

Note that the byte at HSBEG is not affected, since the MIlD instruction
pre-increments and then stores the first byte.

The subroutine WSINIT may be used to reset the BMS, AF, CS, IB and OB
registers and buffer pointers to their initial conditions. The subroutine
ISINIT does the same for the IS, as and HS buffers, and also calls
WSINIT.

The buffer pointers are sometimes changed by system software, but
reference is always made to a symbol, so this is mostly transparent.
TSBEG, for example, always defines the beginning of the TS buffer,
regardless of which frames are actually being used for this buffer at any
given time.

The address registers associated with these workspaces (for example,
R3 or HS) need not necessarily be maintained within their workspaces;
however, system routines may reset the specific registers to their
associated workspaces.

Table 3-3 shows the various workspace pointers, along with the size
and location of the buffers (using the FID of the PCB as the reference
point).

"Not a buffer" indicates that there is no permanently assigned space
associated with those address registers.

The Description column indicates the conventional usage of the buffer.
"Freely usable" does not apply to a program entered from the

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

conversion interface of BASIC or Recall, both of which tend to be very
possessive of all available registers, except R14 and R15.

The frames at PCB+6 to PCB+9 are reserved for the PROC software for
working storage.

Table 3-3. Registers and Pointers (1 of 3)

Reg PSYM Beginning and Size, Description

Num Name Ending Location of
Pointers (SRs) Buffer

RO - - - points to byte 0 of
user's PCB

Rl - - - points to FID of
currently executing
ABS frame

R2 - - - points to user's SCB

R3 HS HSBEG fixed, 64K bytes history string; stores
HSEND floating; PCB+I0 messages to be
must point to printed at end of
current end of processingl
data in the HS

buffer

R4 IS ISBEG fixed, 64K bytes input string; stores
ISEND floating; PCB+16 compiled string for
end of current Recall; data for
data pointer Editor, no

conventions

1 area past HSEND may be used as scratch if needed to save data; conventions are:
strings separated by SMs
character after SM is an X
string terminated by a SM and a Z
HSEND points to the SM before the Z

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-41

Addressing Data

Table 3-3. Registers and POinters (2 of 3)

Reg PSYM Beginning and Size, Description
Num Name Ending Location of

Pointers (SRs) Buffer

R5 as OSBEG fixed, 64K bytes output string; stores
OSEND floating; PCB+22 compiled string for
end of current Recall; data for
data pointer Editor; in Recall,

area past OSEND is
scratch; no
conventions

R6 IR none not a buffer points to beginning
of current file item if
using standard
system file I/O
subroutines

R7 UPD UPDBEG not not a buffer used as tape buffer
used; UPDEND pointer for tape I/O;
not used otherwise, register

R7 is freely usable

R8 BMS BMSBEG fIxed, 50 bytes stores item-ID when
BMSEND floating PCB+4.00 interfacing with
on last byte of system file I/O
item-ID

R9 AF AFBEG fixed, 50 bytes scratch buffer in
AFENDfIxed PCB+4.5I same frame as BMS;

register R9 is freely
usable

RIO ill IBBEG fixed, 465 bytes terminal input buffer
IBEND floating; PCB+46.33 used by tenrunal
end of current (linked) input routines to
data pointer read data; not to be

used for other
purposes

3-42 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Table 3-3. Registers and Pointers (3 of 3)

Reg PSYM Beginning and Size, Description
Num Name Ending Location of

Pointers (SRs) Buffer

Rll DB OBBEG fixed, 465 bytes tenninal output
OBENDfixed PCB+47.1 buffer used by

(linked) tenninal output
routines to write
data; not to be used
for other purposes

R12 CS CSBEG fixed, 100 bytes scratch buffer in
CSEND fixed PCB+4.102 same frame as BMS;

register R 12 is freely
usable as a scratch
register

R13 TS TSBEG fixed, 512 bytes scratch area used by
TSEND floating; PCB+5 various processors;
points to current the area from TSBEG
end of data on may be treated as

scratch space in the
conversion interface;
register R13 is freely
usable as a scratch
register

R14 R14 - scratch register

R15 R15 - scratch register

()
6973-1 Assembly Language 3-43

Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Programming Conventions

3-44

Programming in the Ultimate assembly language requires understanding
and adhering to the conventions of the operating system. The primary
areas where conventions apply are the use of

• global elements (variables) defined in the permanent symbol (PSYM)

file

• predefined buffer workspaces, typically associated with address
registers R3-R13.

Ultimate assembly language programming makes extensive use of
global data areas. This reduces overhead in allocating and deallocating
storage for programs when they are run, but requires the programmer to
choose very carefully the data areas used by a program. Otherwise, data
in use by other programs, including the operating system, can be
destroyed.

Global elements such as bits, counters, and storage registers are defined
as fields in the PCB or the SCB. The field definitions are in the PSYM

file, and give the offset relative to RO (if in the PCB) or R2 (if in the
SCB). For more information on the PCB, see the section, Addressing the
PCB Fields. For more information on the SCB, see the section,
Addressing the SCB Fields.

In addition to the global elements, the system defines several buffers to
use as workspaces. These workspace areas are used by system
software such as BASIC, PROC, Recall, and the system debugger. For
more information, see the section, Addressing Conventional Buffer
W orkspaces.

When a process is at the system (TCL) level, its process workspace
pointers are in an initialized state, although the data in the workspace
frames is whatever was left over from the last program. Also, most bit
flags are cleared. These points are important to remember when first
writing assembly programs, since they define initial conditions that the
programmer must take into account. These initial conditions are
discussed in more detail in Chapter 6, System Software Interfaces.

An active process always has access to the current account's Master
Dictionary eMD) and to the ERRMSG file; that is, these files are open to

the process.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~~'

c

Global
Symbolic
Elements -
PSYM File

6973-1

Addressing Data

A process can nonnally run any re-entrant assembly program to which it
has access simultaneously with other users. (A re-entrant program is
one which has no storage internal to the program. The section, Sharing
Object Code Among Processes, discusses this concept. It also
discusses how to lock a byte to prevent simultaneous access if a
program requires internal storage, and cannot be re-entrant.)

All PSYM elements (variables) are global and can be used by all
routines. Some PSYM elements are used by the operating system, as
well as system subroutines, and their values cannot be expected to be
preserved when calling a system subroutine. Other PSYM elements are
not used by the operating system or any subroutines, and are reserved
for user assembly language programs.

The following PSYM elements in the SCB are unused by the system
software and can be safely used by user-written assembly programs:

bits SB24 - SB35

characters none
double tallies none
half tallies none
storage registers SR20 - SR29

tallies cm30 - C1R42

Note that no PCB elements, including address registers, are freely
available; availability depends on the interface with the system software.

Additional elements may be stored by setting up an additional control
block (see the section, Defining Additional Workspaces).

Elements used for temporary storage are known as scratch elements.
Information that needs to be preserved should not be kept in a scratch
element, since any subroutine that is called may use these elements.

The following scratch elements located in the PCB might be used by
nearly any subroutine:

bits
tallies
double tallies

SB60,SB61

T4,T5

accumulator (DO, 01), 02

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-45

Addressing Data

Sharing
Object Code
Among
Processes

3-46

triple tallies FPX (overlays SYSRO)
FPY (overlays SYSR 1)

registers R14, R15
storage registers SYSRO (overlays FPX)

SYSRI (overlays FPY)

The following scratch element is located in the SCB:

storage register SYSR2

These scratch elements are so widely used that their use is not covered
in the documentation for most system subroutines in Chapter 5.
However, each subroutine in Chapter 5 does specify all other system
and user-defined inputs and outputs to that routine.

In practically all cases, the system software is re-entrant; that is, the
same copy of object code may be used simultaneously by more than one
process. For this reason, programs normally do not store variable data
within the program itself. Instead, each process uses its own process
workspace for data storage.

The system has predefined several control blocks (frames) per process
that are reserved for that process, such as:

• primary control block (PCB)

• secondary control block (SCB)

• tertiary or debug control block (DCB)

• quaternary control block

The storage space most commonly used by a process is that in its PCB

and SCB. The system automatically sets up an address register to allow
direct, indirect, and relative addressing of these blocks:

RO points to the PCB, byte 0

R2 points to the SCB, byte 0

The two other control blocks, the teniary (debug) and quaternary control
blocks, have no registers pointing to them. The debug control block is
used solely by the assembly debugger, and should not be used by any
other programs. The quaternary control block is used by some system

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

software (magnetic tape routines, for example) which temporarily set a
register pointing to it; its use is reserved for future software extensions.

If a program must modify fields internal to itself, the program must be
made non-re-entrant in order to prevent several processes from
modifying data at the same time. A common method of accomplishing
this is with a lock byte, illustrated below. The first process to execute
the code locks it with an XCc instruction. Any other process attempting
to execute the code must then wait until the first process unlocks the
program after execution is completed:

byte

ORG 0

TEXT X' 00 I

CMNT *
CMNT *

LOCKED MCC X' 01 I, R2

XCC R2,R1

BCE R2, X I 00 ' , OK

RQM *
B LOCKED

OK EQU *

UNLOCK MCC X'OO',R2

R2,R1 XCC

Initial condition for lock

(Note usage of storage

internal to program)

Move "lock" flag to scratch

location;

Exchange old lock; store

"lock" flag;

If old flag was X'OO', ok

to continue.

Else wait a while ...

and try again.

Start of non-shared code

Unlock the "lock" flag

Set R1 to unlocked

Note: The instruction MCC x'OO',R2 followed by XCC R2,Rl is
equivalent to the single instruction MCC x'OO',Rl. The reason
the first form is better than the second is that the XCC

instruction guarantees that the memory location of the byte is
not accessed by more than one processor at a time. The MCC

X'OO',Rl instruction would be adequate on a single-processor
system, but not on a dual-processor system.

Assembly Language 3-47
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Defining
Additional
Workspace

Ensuring
Compatibility

3-48

If a program needs more workspace than is available in the system
defmed areas, the system allows the program to define storage elements
or buffer areas. The unused frames PCB+30 and PCB +3 1 may be used
as additional control blocks.

The following sequence of instructions is one way of setting up an
address register to a scratch buffer:

MOV RO,R3

SETRO+ R3,30

CMNT *
Set R3 with FID of PCB+30

and displacement of zero

R3 can now be used to reference areas in the additional workspace, or
functional elements that are addressed relative to R3. None of the
system subroutines use R3, so that a program has to set up R3 only
once in the above manner. However, an exit to TCL via the WRAPUP

software resets R3 to PCB + 10.

In order to ensure that assembly programs are compatible on all Ultimate
platforms, the following rules and conventions should be applied to all
assembly language programs:

• Do not use the following characters in symbols (anything that may
cause a PSYM file lookup):

A () _ ? * I < > &

• Symbols defmed in INCLUDE items should not be used prior to the
INCLUDE statement.

• Only the following subroutines should be used to modify the return
stack:

INITR1N POPRTN MARKR1N RTNMARK

• In Ultimate PLUS implementations, items in the SM file become files.
Because of the restrictions on filename size imposed on some UNIX
implementations, it is necessary that the item-ID of any new mode be
less than or equal to 12 characters.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

Item-IDs for items in the OSYM and PSYM files can be up to 14
characters.

Scan character definitions (such as <SM> or <SM!AM» that exceed
14 characters have been put into an SM INCLUDE item called SCAN

DEFS.

• The Ultimate PLUS implementation on HP systems requires that all 2-,
4-, and 6-byte data fields be aligned:

2-byte (lL Y) fields must be word aligned;
4-byte (DlL Y) fields must be on a double word boundary;
6-byte (FlL Y or SR) fields must be word aligned but not double
word aligned. It is the low order two words (FID in case of an
SR) that need to be double word aligned.

Use the directives ALIGND and ALIGNS to align data definitions as
follows:

ALIGND * Align for Double tally

LABl DTLY X'12345'

*
ALIGNS * Align for Storage register

LAB2 ADDR T%CONFIG

*
ALIGNS *

LAB 3 FTLY X'12',x'3456'

On the traditional systems, ALIGNS and ALIGND are synonyms of
ALIGN.

• Access on word and double boundaries are not mandatory but highly
desirable, given the impact on performance.

• In cases where the defmition cannot be aligned (for example, the
double tallies XNFID and XPFID which reference the forward and
backward links), use the special instructions in the OSYM starting
with UA_ (for UnAligned) followed by the normal OSYM entry.
These instructions function as a flag to the 'virtual to C' translator,
indicating the non-aligned nature of this data access. Such entries can
be added freely to the OSYM file when needed. For example, the
following statement

MOV XNFID,OVRFLW

should be changed to the following:

UA_MOV XNFID,OVRFLW

Assembly Language 3-49
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-50

On all platforms except Ultimate PLUS on the HP, the UA_MOY
instruction is equivalent to MOY.

• The following instruction should be used to clear the PCB:

MII RI4,RI5,-I+ID.DATFRM.SIZE

This ensures that all the bytes in the PCB are cleared, regardless of the
implementation or frame size.

• If you need to copy an unknown number of bytes then set a pointer to
the data, use the ID.DSP.ADJ command to align the register, as
follows:

MIID RI4,RI5,<SM>

ID.DSP.ADJ R15

MOV RI5,SR2

• When allocating space for an array of SRs, either reserve eight bytes
for each one, leaving the fIrst two bytes of every defInition unused,
or use the PSYM entries ID.SRDEF.SIZE (word size of an SR
defInition) and ID.SRDEF.OFFS (word offset from the start of an
aligned register to the start of a storage register defIned from it). On
an Ultimate PLUS implementation, these reserve eight bytes; on all
other implementations, where the size of the SR can remain at six
bytes, these reserve six bytes. The following is an example of the
use of these instructions:

SR.BYT.SIZ DEFN 2*ID.SRDEF.SIZE Byte size of

SR definition

SR.BYT.OFS DEFN 2*ID.SRDEF.OFFS Byte size of

SR offset

*

* Allocate size for array of 10 storage registers

MOV RI5,SR2 Save ptr to array

LOAD 10

MUL SR.BYT.SIZ

SIT R15

* Initialize array to zero

MOV SR2,RI5

LOAD 10

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

Numb of SRs defined

Byte size (6 or 8)

Skip array area

At array start

Count of SRs

6973-1

c\
6973-1

Addressing Data

EQU * LOOP

INC

ZERO

R15,SR.BYT.OFS Skip 0 or 2 bytes

R15;FO Clear SR

BDNZ TO, LOOP

• No assumptions should be made regarding the physical location of
PCB or SCB elements. For example, many of the PSYM entries
referring to the PCB or SCB were recently redefined.

• The BASIC runtime contains string instructions of the type NO_MU.

On both the HP and the RS6000, data copies using the 'memcpy'
library function are not guaranteed to occur in a 'left to right' motion.
This means that this function can not be used for overlapping moves.
The NO_ ... (No Overlap) is a flag to the C translator indicating that
this particular string copy involves no data overlap, therefore
allowing the use of 'memcpy'. Otherwise, data is copied in a slower
way, byte by byte.

Assembly Language 3-51
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Notes

3-52 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

4

6973-1

Assembler Instruction Set and
Directives

An assembly instruction perfonns one operation. Each instruction
assembles to one or more machine-executable object code instructions.

An assembly directive reserves program space, defines symbols for use
as operands, or generates literal data within a program. Directives are
different from instructions in that directives do not generate executable
object code.

A program is a sequence of instructions and directives that perform a
complete job or task. For information on the structure of programs and
program lines, see Chapter 2, The Assembler.

In the following topics, each instruction and directive is described in
detail in its own separate topic. The topics are presented in alphabetical
order, according to the root mnemonic name of the instruction or
directive.

The general syntax, operands, usage, and examples are given for each
instruction.

Assembly Manual 4-1
Confidential and Proprietary to The Ultimate Corp.

Instructions

Summary of the Instructions and Directives

4-2

The following summary lists the Ultimate Assembly Language
Instruction set, divided into functional groups.

Arithmetic
Instructions

Bit
Instructions

Character Scans
and Moves

Character
Tests

Assembly Manual

ADD
ADDX
DEC
DIY
DIVX
INC

BBS
BBZ
MOV

MCC
MCI
MIC
MIl

MIlD

MIIDC

MIIR

MIlT

BCA
BCE
BCH
BCllE
BCL
BCLE
BCN

Confidential and Proprietary to The Ultimate Corp.

MUL
MULX
NEG

SUB
SUBX

SB
ZB

MlITD

SICD
SID
SIDC
SIT
SITD
XCC

BCNA
BCNN
BCNX
BCU
BCX
BSTE

-"", J'

6973-1

(-

6973-1

Conversions

Data
Comparisons

Data Movement

Directives

Terminal 1/0

Assembly Manual

MBD

MBX

MBXN

MDB

MFD

BDLEZ
BDHZ
BDHEZ
BDLZ
BDNZ
BDZ
BE
BH
BHE

LOAD
LOADX
MOV

*
ADDR
ALIGN

CHR
CMNT
DEFx
DEFM
DEFN
DEFNEP
DEFNEPA
DTLY
EJECT
END

INPIB
INPIBX

Confidential and Proprietary to The Ultimate Corp.

Summary of Instructions

MFX
MSDB
MSXB
MXB

BHEZ
BHZ
BL
BLE
BLEZ
BLZ
BNZ
BU

BZ

ONE
STORE
ZERO

EP.ADDR
EQU
FRAME
FILY
H1LY
INCLUDE
MTLY
MTLYU
ORG
SR
TEXT
TLY

OUTIB
OUTIBX

4-3

Instructions

logical Operators AND SHIFf
OR XOR

Register BE MOV
Operators BU SETDSP

DEC SETR
FAR SRA
INC XRR
LAD

Transfer B EP
BSL HALT
BSL* ID.B
BSLI ID.RSA
ENT NEP
ENT* NOP
ENTI R1N

System RQM SLEEP
MeAls SET.TIME TIME

4-4 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Operand Types

(Operand Types

6973-1

Table 4-1 summarizes the operand types; for more information, see
Chapter 3.

Table 4-1. Operand and Symbol Types

Symbol
Code Description

A address (both FlD and displacement)

B relatively addressed bit

C relatively addressed character or byte (8 bits)

D relatively addressed double tally (32 bits)

F relatively addressed triple tally (48 bits)

H relatively addressed half tally (8 bits)

L locally defmed label in this program

M mcxie-id (16 bits); FlD and entry point

Nl constant or literal value

R address register

S storage register

T relatively addressed tally (16 bits)

x address register in an external PCB

1 An operand of type 'N' may be any of the following:

• An actual literal such as 3, X'82', or C'A'.

• '*'; the symbol for program location counter

• A symbol defined as having a literal value (symbol code=N), such as
ID.DATA.SJZE; literal symbols may be predefined in the PSYM file (such as
ID.DATA.SIZE or SM), or may be defmed locally with the DEFN directive.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-5

Instructions

Virtual
Addresses

System
Delimiters

4-6

An operand that resolves to a virtual address can be expressed in one of
the following ways

• as a symbol name defined in PSYM or locally via a DEFx directive

• as an asterisk (*); specifies the current location of the program
counter in this frame

• as a special operand of the form:

Rn;Sd

Rn address register RO-R15

Sd displacement from the virtual address of Rn. S specifies the
symbol type units (B,C,H,T,D,F) and d specifies the relative
displacement

The following example shows several special operands:

R4;B12

R14;D4

R2; T7

R8;H8

12th bit off R4

4th double tally off R14

7th tally off R2

8th half tally off R8

For more information on special operands, see the section, Immediate
Symbols, in Chapter 2.

The following symbols are used to denote the system delimiters:

SM segment mark (X'FF')
AM attribute mark (X'FE')
VM value mark (X'FD')
SVM subvalue mark (X'FC')
SB start buffer (X'FB')

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

ADD
ADDX

Syntax

Description

6973-1

A DDIADDX

The ADD and ADDX instructions add the contents (value) of the operand
to the accumulator. The ADD fonn adds to a 4-byte field (00); the ADDX
fonn adds to a 6-byte field (FPO).

ADDd ADDxd
ADDxf

ADDh ADDxh
ADDn ADDXn
ADDt ADDXt

d double tally

f triple tally (for ADDX only)

h half tally

n numeric literal; if used, a 2-byte field is assumed (a range of -32,768
through +32,767). If a I-byte literal (half tally) is being referenced,
it should be defmed separately using the HlL Y directive. If the
literal is outside the range of -32,768 through +32,767, a 4-byte
literal must be separately defined using the DlL Y directive, or a 6-
byte literal via the FIL Y directive.

The n fonn may generate a 2-byte literal at the end of the program
when assembled for certain machines.

t tally

The ADD instruction adds the operand value to the 4-byte field in the
accumulator called 00. If the operand is a half tally (1 byte) or tally (2
bytes), it is internally sign-extended to fonn a 4-byte field before the add
operation takes place.

The ADDX instruction adds the operand value to the 6-byte field in the
accumulator called FPO. If the operand is a half tally (1 byte), tally (2
bytes), or double tally (4 bytes), it is internally sign-extended to fonn a
6-byte field before the add operation takes place.

The ADD and ADDX instruction cannot detect arithmetic overflow or
underflow.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-7

Instructions

4-8

The addition does not affect the original operand or the other sections of
the accumulator.

ADD D4

ADD H8

ADD T4

ADDX D4

ADDX FPl

ADDX H8

ADDX T4

ADD 11

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

c Description

(~
6973-1

ADDR

The ADDR (defme address) assembler directive defines a program
address and creates a storage register containing that address. The
storage register (symbol type S) is in unlinked fonnat.

label ADDR a
label ADDR n,m
label ADDR n,n

label specifies the symbol being defmed

a defmes both FID and displacement to specify the virtual address.
If used, the address must have been previously defined via a
DEFRA directive.

n,n virtual address to reserve for the symbol. The fIrst operand is a
n,m literal (n) value that specifies the displacement of the generated

virtual address. The second operand may be a literal (n) or a
mode-id (m) that specifies the frame number (FlO).

The ADDR instruction sets up a symbol as a storage register pointing to
data in an unlinked frame. (To defme storage registers in linked frame
fonnat, use the SR directive.)

Six bytes of storage for the address are reserved at the current location
counter, or the current location + 1 if necessary to align on a word (even
byte) boundary.

The ADDR instruction can be used to refer to data in other ABS frames.
However, care needs to be taken if the ABS frames contains code. Data
within such a frame may be in different locations on different
implementations. This is because the object code for one implemen
tation may be of a different size from that generated for another
implementation. Accordingly, it is important to know whether the
location of data referred to by an ADDR may vary by implementation.

If the ABS frame contains only data (for example, it contains tables), the
data within the frame will be in the same locations on all implemen
tations. In this case, the ADDR directive can be used to specify the
location of data within the frame.

Assembly Manual 4-9
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-10

However, if a frame contains both code and data, more care is needed.
To refer directly to an entry point of the frame, the EP.ADDR directive
can be used (the ADDR directive should never be used to refer directly to
entry points). To refer to data which is not an entry point, one of two
techniques can be used:

• Place the data far enough after the last entry point of the frame (but
before the next executable instruction) so that it is not overlaid by
object code no matter what machine the frame is assembled for. The
lowest "safe" address can be calculated by assuming four bytes of
object code for each entry point (EP instruction), and an initial
location (set by the FRAME directive) of 2.

Once this is done, the data can be referred to by a simple ADDR

directive as in the case of the data only frame above.

• Place the data immediately after the last entry point of the frame, and
refer to it in terms of entry points, using the ADDR directive in
conjunction with the DEFNEP or DEFNEPA directive. DEFNEP defines
a byte offset to an entry point and DEFNEPA defines a (word-aligned)
word offset.

FIELD ADDR X ' 1FO ' ,223

MOV FIELD,R15 point R15 to above addr

%SYSTYP DEFRA XI 6C 1,127 define as address, type A

SYSTYP ADDR %SYSTYP

MOV SYSTYP,R14 point R14 to above addr

DATA2 DEFNEPA 3 word-aligned entry point 3

LABL1 ADDR DATA2,511

DATA8 DEFNEP 3 7 or E (machine-dependent)

LABL8 ADDR DATA8,511

MOV LABL8,R15 point R15 to above addr

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

r'\
~J

,~/

ALIGN
ALIGND
ALIGNS

Syntax

Description

6973-1

ALIGN

The ALIGN directive aligns the assembler's location counter on an even
byte (word) boundary. On Ultimate PLUS implementations, the ALIGND

directive aligns the assembler's location counter on a double word
boundary. On Ultimate PLUS implementations, the ALIGNS directive
aligns the assembler's location counter on a word boundary, but not
double word boundary.

ALIGN

If the location counter is currently pointing to an odd byte, the ALIGN

directive creates one byte of object code (X'OO') in the program in order
to move the counter down to the next even byte.

The ALIGN directive is typically used before a section of definitions
(DEFx directives) to ensure even byte (word) alignment.

Note: The assembler automatically word-aligns literals that it creates
itself (at the end of a program). It also word-aligns storage
created by TLY, DTLY, FTLY, MTLY, SR. ADDR. and EP.ADDR

directives.

The ALIGND and ALIGNS directives are used to that fields align correctly
on Ultimate PLUS implementations. On all other implementations, these
directives are identical to the ALIGN directive.

For more information on data alignment, see the section, Ensuring
Compatibility, in Chapter 3.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-11

Instructions

AND

Syntax

Description

4-12

The AND instruction logically ANDs two bytes, and stores the result in
the byte referenced by the fIrst operand. The byte referenced by the
second operand is unchanged.

AND r,n
AND r,r

r address register

n numeric literal

The logical AND instruction tests two bytes, one bit at a time, for a true
(1) condition. If both bits are true (1), the result is true (1). If either is
false, the result is false (0). For example,

Byte 1:
Byte 2:

Result

0000 0101

1111 0011

0000 0001

The result is stored in the byte referenced by the first operand. The byte
referenced by the second operand is unchanged.

AND R14,X'EF'

AND R14, R15

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

6973-1

B (Branch)

The B (branch) instruction transfers control unconditionally to a local
label in the program.

BI

local label; must be defined in the same frame as the B instruction

The B instruction immediately resolves the effective address of the local
label and transfers program control to that address. To set up branches
for other situations, use one of the following:

• To transfer control to an external label, use the ENT instruction.

• To define entry points at the start of the frame, use the EP instruction.

• To defme branch tables (branch on a number used as an index) within
a frame, use the ID.B instruction.

The EP instruction is used to indicate an entry point because the object
code may differ from a simple B instruction when assembled for certain
implementations. The ID.B instruction is used in branch tables to
guarantee that the object code for each branch instruction has the same
length; otherwise, the assembly process for some implementations may
produce shorter code for some of the branches than for others, thereby
destroying the table.

B LOW

B HIGH

LOW EQU *
ORG X'lOl'

HIGH EQU *

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-13

Instructions

BBS
BBZ

Syntax

Description

4-14

The BBS (branch bit set) instruction tests a specified bit and transfers
control to a local label if the bit is set (1). The BBZ (branch bit zero)
instruction tests and transfers control if the bit is not set (0).

BBS b,l BBZ b,l

b specifies the bit to be tested; it may be a symbol or a special operand
in the form Rn;Bd. (Special operands are described in the beginning
of this chapter in the section, Virtual Addresses.)

specifies the label in the current frame of the branch destination if the
result of the test is "true".

For BBS instructions, the referenced bit is tested, and if its value is I
(set), program control transfers to the specified local label. If the value
is 0, execution continues with the next instruction.

For BBZ instructions, the referenced bit is tested, and if its value is °
(off), program control transfers. If the value is 1, execution continues
with the next instruction.

TEST DEFB RO, 10

BBS TEST,LABLl

BBZ R15iB3,LABLl

BBS R15iB3,LABLl

LABLl EQU *

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c

BCA
BCNA

Syntax

Description

6973-1

BCAlBCNA

The BCA (branch character alphabetic) instruction tests a specified
character and branches to a local label if the character is an alphabetic
letter. The BCNA (Branch Character Not Alphabetic) instruction tests
and branches if the character is not an alphabetic letter.

BCA r,l BCNAr,1

r address register (RO-R15) that contains the vinual address of the
character to be tested

the label (in the current frame) of the branch destination if the result
of the test is true

For BCA instructions, the referenced character is tested, and if its value
is in the ASCII character range of upper case letters A-Z (X'41' through
X'5A') or lower case letters a-z (X'61' through X'7A'), the program
branches to the specified local label. If the value is not in the range of
alphabetic characters, execution continues with the next sequential
instruction.

For BCNA instructions, the referenced character is tested, and if its value
is not in the range of alphabetic characters (X'41' to x'SA' or x'61' to
X'7 A'), the program branches to the specified local label. If the value is
within this range, execution continues with the next instruction.

BCA R15,LABLl

BCNA R15,LABLl

LABLI EQU *

Assembly Manual 4-15
Confidential and Proprietary to The Ultimate Corp.

Instructions

BCE
BCU

Syntax

Description

4-16

The BCE (branch character equal) instruction compares one specified
character against another and branches to a local label if the characters
are equal. The BCU (branch character unequal) instruction compares and
branches if the characters are not equal.

BCE c,c,l BCU c,c,l
BCE c,r,l BCU c,r,l
BCE n,r,l BCU n,r,l
BCE r,c,l BCU r,c,l
BCE r,n,l BCU r,n,l
BCE r,r,l BCU r,r,l

c relatively addressed characters.

the label (in the current frame) of the branch destination if the result
of the test is true

n constant or literal

r address register (RO-R15) whose virtual address points to the
character to be tested

BCE and BCU compare two characters and use the results to determine
program action.

For BCE instructions, the first referenced character is compared to the
second referenced character, and if their ASCII values are equal, the
program branches to the specified local label. If the values are not
equal, execution continues with the next sequential instruction.

For BCU instructions, the referenced characters are compared, and if the
values are not equal, the program branches to the specified local label.
If the values are equal, then execution continues with the next
instruction.

Note that a symbol of type c can be tested directly against another
symbol of type c , but not against type n. To handle comparisons
between c and n symbol types, you can use one of the following
techniques:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

{~ '\
~/

6973-1

BCEIBCU

• Use an SRA instruction to set an address register to point to the c type
symbol; for example:

SRA RlS,SCl set RlS pointing to c symbol

BCE RlS,C' $ I ,OK

• Use DEFH or HTLY to defme the c symbol as a half tally (symbol type
h), then use a BE or BU instruction;for example:

HSCl DEFH SCl

HLIT$ HTLY C I $ I

define SCl as a half tally

define $ as half tally literal

BE HSCl,HLIT$,OK

If the c,c,l form is used, a signed arithmetic comparison is made instead
of an ASCII comparison. However, the result is correct since two
different bit patterns are never evaluated as equal by the machine.

BCE Rl4,RlS,LABLl

BCU Rl4,RlS,LABLl

BCE x, 20 I , RlS, LABLl

BCU X I 20 I , RlS , LABLl

BCE PRMPC,RlS,LABLl

BCU PRMPC, RlS, LABLl

BCU CHO,CH9,LABLl

BCE CHO,CH9,LABLl

LABLl EQU *

Assembly Manual 4-17
Confidential and Proprietary to The Ultimate Corp.

Instructions

BCH
BCHE
BCl

Syntax

Description

4-18

The BCH (branch character higher) instruction compares one specified
character against another and branches to a local label if the value of the
first character is greater than the second. BCHE (branch character higher
or equal) compares and branches if the f11'st value is greater than or equal
to the second.

The BCL (branch character lower) instruction compares one specified
character against another and branches to a local label if the value of the
fll'St character is less than the second. BCLE (branch character lower or
equal) compares and branches if the fll'St value is less than or equal to
the second.

BCL c,c,l BCLE c,c,l
BCH c,r,l BCHE c,r,l BCL c,r,l BCLE c.r,l
BCH n,r,1 BCHE n,r,1 BCL n,r,1 BCLE n,r,1
BCH r,c,1 BCHE r,c,l BCL r,c,l BCLE r,c,l
BCH r,n,1 BCHE r,n,l BCL r,n,1 BCLE r,n,l
BCH r,r,l BCHE r,r,l BCL r,r,l BCLE r,r,1

c relatively addressed character

label (in current frame) of the branch destination if the result of the
test is true

n constant or literal

r address register (RO-R15) whose virtual address points to the
character to be tested.

BCH, BCHE, BCL, and BCLE compare two characters and use the results
to determine program action.

For these instructions, the character addressed by the first operand is
compared as an 8-bit logical field to the character addressed by the
second operand. In a logical comparison, the lowest character is
decimal 0 (X'OO') and the highest character is decimal 255 (X'FF').

If the fll'St character is higher than (BCH), higher than or equal to
(BCHE), less than (BCL), or less than or equal to (BCLE) the second, then
program control transfers to the third operand, which is a local label.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

f~\

~j

(

('

6973-1

BCHIBCHEIBCUBCLE

There are basically four cases, each with two ways of coding:

BCH A,B

BCHE A,B

BCL A,B

BCLE A,b

or
or
or
or

BCL B,A

BCLE B,A

BCH B,A

BCHE B,A

Note that a symbol of type c cannot be tested directly against another
symbol of type c or type n. To handle comparisons between c and n
symbol types, you can use one of the following techniques:

• Use an SRA instruction to set an address register to point to the c type
symbol; for example:

SRA RIS,SCI set RIS pointing to c symbol

BCH RIS,C'$',OK

• Use DEFH or HTL Y to define the c symbol as a half tally (symbol type
h), then use a BH{E} or BL{E} instruction;for example:

HSCI DEFH SCI define SCI as a half tally

HLIT$ HTLY C'$' define $ as half tally literal

BH HSCI,HLIT$,OK

Note: This coding performs an arithmetic comparison. In an
arithmetic comparison, the lowest half tally is -128 (X'80')
and the highest half tally is 127 (X'7F'). This means that
the Ultimate system delimiters SM, AM, VM, and SVM

(decimal 255-252, hexadecimal X'FF'-X'FB') are logically
higher than all other ASCII characters but are arithmetically
lower (as "negative" numbers).

Assembly Manual 4-19
Confidential and Proprietary to The Ultimate Corp.

Instructions

BCH R14,R15,LABLl

BCL R14,R15,LABLl

BCHE R14,R15,LABLl

BCLE R14,R15,LABLl

BCH x' 20 I, R15, LABLl

BCL R15,X ' 20 ' ,LABLl

BCL X ' 20 ' ,R15,LABLl

BCH R15,X' 20 I, LABLl

BCLE X, 20 I, R15, LABLl

BCLE R15,X' 20 I, LABLl

BCH PRMPC,R15,LABLl

BCL R15,PRMPC,LABLl

BCL PRMPC,R15,LABLl

BCH R15,PRMPC,LABLl

BCLE PRMPC,R15,LABLl

BCLE R15,PRMPC,LABLl

LABLl EQU *

4-20 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(

BCN
BCNN

Syntax

Description

6973-1

BCNIBCNN

The BCN (branch character numeric) instruction tests a specified
character and branches to a local label if the character is a number. The
BCNN (branch character not numeric) instruction tests and branches if
the character is not a number.

BeN r,l BCNN r,l

r address register (RO-R 15) that contains the virtual address of the
character to be tested

the label (in the current frame) of the branch destination if the result
of the test is true

The BCN instruction tests the specified character, and if its value is in the
ASCII character range of numbers 0-9 (x'31' through x'39'), program
control transfers to the specified local label. If the value is not numeric,
execution continues with the next sequential instruction.

The BCNN instructions tests the specified character, and if its value is not
in the ASCII character range of numbers 0-9 (x'31' to x'39'), program
control transfers. If the value is numeric (within this range), execution
continues with the next instruction.

BCN R15,LABLl

BCNN R15,LABLl

LABLl EQU *

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-21

Instructions

BCNA

BCNN

BCNX

BCU

4-22

The BCNA instruction branches if a character if not alphabetic. See the
BCA instruction for details.

The BCNN instruction branches if a character is not numeric. See the
BCN instruction for details.

The BCNX instruction branches if a character is not hexadecimal. See
the BCX instruction for details.

The BCU instruction branches if a character is not equal to another. See
the BCE instruction for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(-"
'\

...,~--~/

BCX
BCNX

Syntax

Description

6973-1

BCXIBCNX

The BCX (branch character hexadecimal) instruction tests a specified
character and branches to a local label if the character is in the hexa
decimal number range (O-F). The BCNX (branch character not
hexadecimal) instruction tests and branches if the character is not in the
hexadecimal range.

BCX r,l BCNX r,l

r address register (RO-R15) that contains the virtual address of the
character to be tested

the label (in the current frame) of the branch destination if the result
of the test is true

The BCX instruction tests the specified character, and if its value is in the
ASCII character range of numbers 0-9 (x'31' through X'39') or upper
case letters A-F (X'41' through X'46'), program control transfers to the
specified local label. If the value is not a hexadecimal number,
execution continues with the next sequential instruction .

The BCNX instruction tests the specified character, and if its value is not
in the ASCII character range of 0-9 or A-F (x'31' to x'39' or x'41' to
X'46'), program control transfers. If the value is hexadecimale (within
this range), execution continues with the next instruction.

BCX R15,LABLl

BCNX R15,LABLl

LABLl EQU *

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-23

Instructions

BOHZ
BOHEZ
BOLZ
BOLEZ

Syntax

Description

4-24

The BDHZ, BDHEZ, BDU, and BDLEZ instructions decrement a relatively
addressed operand and then compare it to zero. BDHZ (branch
decrementing higher than zero) transfers control to a local label if the
resultant value is higher than zero. BDHEZ (branch decrementing
higher/equal zero) transfers control if the value is higher than or equal to
zero. BDU (branch decrementing less than zero) transfers control if the
value is less than zero. BDLEZ (branch decrementing less/equal zero)
transfers control if the value is less than or equal to zero.

BDHZ d,l BDHEZd,1 BDLZ d,l BDLEZd,1
BDHZ d,d,l BDHEzd,d,1 BDLZ d,d,l BDLEZ d,d,1
BDHZ d,n,l BDHEZd,n,1 BDLZ d,n,l BDLEZ d,n,l
BDHZ f,1 BDHEZf,l BDLZ f,1 BDLEZ f,1
BDHZ f,f,l BDHEZ f,f,l BDLZ f,f,l BDLEZ f,f,l
BDHZ h,1 BDHEZh,1 BDLZ h,l BDLEZ h,1
BDHZ h,h,l BDHEZh,h,l BDLZ h,h,l BDLEZ h,h,1
BDHZ t,l BDHEZ t,1 BDLZ t,1 BDLEZ t,1
BDHZ t,t,l BDHEZ t,t,l BDLZ t,t,l BDLEZ t,t,1
BDHZ t,n,l BDHEZ t,n,l BDLZ t,n,1 BDLEZ t,n,l

d double tallies

f triple tallies

h half tallies

n numeric literal

t tallies

the label (in the current frame) of the branch destination if the result
of the test is true

If operand 1 is a tally or double tally, operand 2 may be a numeric literal
(n); the literal assembles as the same symbol type as operand 1.

These instructions take the place of a DECrement followed by a
conditional branch instruction, and are usually used in loop controls.

If only one operand is specified, the value at the effective address is
decremented by one (1). If two operands are specified, the value at the
effective address of operand 2 is subtracted from the value at the address

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c
6973-1

BDH~BDHE~BD~BDLEZ

of operand 1. Then the specified condition is tested and, if true, the
specified branch is taken.

Note: If the second operand in a BDHEZ instruction is negative,
decrementing the first operand by the second operand will not
detect a sign change if a positive first operand overflows,
producing a negative number.

To loop through a section of code, the following can be used:

MOV COUNT,CTRl Set loop counter for iterations

REPEAT BDLZ CTR1,QUITLP

B REPEAT

QUITLP EQU *
Repeat the cycle

Termination of loop

This example does not execute the loop body if the loop count is
initially zero or negative. Compare this to the following example:

MOV COUNT,CTRl

XLOOP EQU *

BDLEZ CTR1,XLOOP

This also loops for the count in CTR I, but always executes at least
once.

Assembly Manual 4-25
Confidential and Proprietary to The Ultimate Corp.

Instructions

BOZ
BDNZ

Syntax

Description

4-26

The BDZ (branch decrementing if zero) and BDNZ (branch decrementing
if not zero) instructions decrement a relatively addressed operand and
then compare it to zero. BDZ decrements, then tests and transfers
control if the resultant value is zero. BDNZ decrements, then tests and
transfers control if the value is not zero.

BDZd,1 BDNZ d,l
BDZ d,d,l BDNZ d,d,l
BDZ d,n,l BDNZ d,n,l
BDZ f,l BDNZ f,l
BDZ f,f,l BDNZ f,f,l
BDZh,l BDNZ h,l
BDZ h,h,l BDNZ h,h,l
BDZ t,l BDNZ t,l
BDZ t,t,l BDNZ t,t,l
BDZ t,n,1 BDNZ t,n,l

d double tallies

f triple tallies

h half tallies

n numeric literal

t tallies

the label (in the current frame) of the branch destination if the result
of the test is true

If operand 1 is a tally or double tally, operand 2 may be a numeric literal
(n); the literal assembles as the same symbol type as operand 1.

These instructions take the place of a DECrement followed by a
conditional branch instruction, and are usually used in loop controls.

If only one operand is specified, the value at the effective address is
decremented by one (1). If two operands are specified, the value at the
effective address of operand 2 is subtracted from the value at the address
of operand 1. Then the specified condition is tested and, if true, the
branch is taken.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

BDZlBDNZ

MOV 100,CTRl Set loop counter for 100

iterations

REPEAT EQU * Start of loop

BDNZ CTRl,REPEAT

Note that the body of the loop executes at least once with this logic.
Compare this to the example shown for BDHZ.

Assembly Manual 4-27
Confidential and Proprietary to The Ultimate Corp.

Instructions

BE
BU

Syntax

Description

4-28

The BE (branch equal) instruction compares two relatively addressed
operands or virtual addresses and branches to a local label if the operand
values are equal. The BU (branch unequal) instruction compares and
branches if the values are not equal.

BE d,d,1 BU d,d,1
BE d,n,1 BU d,n,1
BE f,f,1 BU f,f,1
BE h,h,1 BU h,h,1
BE n,d,1 BU n,d,1
BE n,t,1 BU n,t,l
BE r,r,l BU r,r,l
BE r,s,l BU r,s,l
BE s,r,l BU s,r,l
BE t,n,l BU t,n,l
BE t,t,l BU t,t,l

d double tally

f triple tally

h half tally

n numeric literal

t tally

the label (in the current frame) of the branch destination if the result
of the test is true

If the operands are tally-types, they must be of the same length, that is,
one byte (type H), two bytes (type T), four bytes (type D) or six bytes
(type F).

If one operand is a tally or double tally, the other operand may be a
literal (n); the literal assembles as the same symbol type as the relatively
addressed operand.

BE and BU compare two values of the same length or symbol type and
use the to determine program action. If a 1-byte or 6-byte literal or
constant value needs to be compared, it must be defined as a symbol

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

' .
1/'

,

" .J

6973-1

BE/BU

using an HTLY or DEFH directive (I-byte value), or an FfL Y or DEFF

directive (6-byte value).

If the register fonnat is used, the virtual address in any storage register
operands must be nonnalized prior to executing the BE/BU instruction;
see the FAR instruction for more infonnation.

For BE instructions, the fIrst referenced operand is compared to the
second referenced operand, and if their arithmetic values are equal, then
program control transfers to the specifIed local label. If the values are
not equal, then execution continues with the next sequential instruction.

For BU instructions, the referenced operands are compared, and if the
values are not equal, then program control transfers. If the values are
equal, then execution continues with the next instruction.

Note: When testing registers, this test/or "equal or unequal" is the
only option. There is no way to test which register is "less
than" or "higher than" the other. When testing tally-type
operands, however, alternative tests are possible; see the BH,

BHE, BL, and BLE instructions.

If a tally-type operand is to be compared with a literal or constant (n)
value of zero, it is more effIcient and clearer to use another instruction
that is designed for comparisons with zero (such as BZ, BNZ, or BHZ);

for example, use

BZ CTR1,QUIT

rather than

BE CTR1,O,QUIT

Note that half tally and triple tally symbols (types hand f) cannot be
tested directly against a constant or literal (type n). There are two ways
to handle this condition:

• Use an SRA instruction to set an address register to point to the h or f
type symbol; for example:

SRA R15,H7

BCE R15,lO,OK

Assembly Manual

set R15 pointing to h symbol

4-29
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-30

• Define the constant or literal as a half tally or triple tally in the
program; for example:

FLIT FTLY O,X'F23AB3FC' Define a constant of type F

BE FPO,FLIT,OK

BE R14,R15,LABLl

BU R14,R15,LABLl

BU SR5,R15,LABLl

BE R15,SR5,LABLl

BU DO,Dl,LABLl

BE DO,Dl,LABLl

BU FPO,FP1,LABLl

BE FPO,FP1,LABLl

BU H8,H9,LABLl

BE H8,H9,LABLl

BU TO,T4,LABLl

BE TO,T4,LABLl

LABLl EQU *

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

,/~\

\ .
" ,/-1

/'

'~o;,~ "",I

/1'
~j

(

(

BH
BHE
Bl
BlE

Syntax

Description

6973-1

BHIBHEIBUBLE

The BH (branch higher) instruction compares one specified tally-type
operand against another and branches to a local label if the value of the
first operand is greater than the second. BHE (branch higher/equal)
compares and branches if the first value is greater than or equal to the
second.

The BL (branch lower) instruction compares one specified operand
against another and branches to a local label if the value of the first
character is less than that of the second. BLE (branch lower/equal)
compares and branches if the value is less than or equal to the second.

BH d,d,l BHE d,d,I BL d,d,l BLE d,d,I
BH d,n,1 BHE d,n,I BL d,n,I BLE d,n,I
BH f,f,1 BHE f,f,l BL f,f,I BLE f,f,I
BH h,h,I BHE h,h,I BL h,h,I BLE h,h,I
BH n,d,I BHE n,d,l BL n,d,I BLE n,d,l
BH n,t,l BHE n,t,l BL n,t,I BLE n,t,I
BH t,n,I BHE t,n,l BL t,n,I BLE t,n,I
BH t,t,I BHE t,t,I BL t,t,l BLE t,t,I

d double tallies

f triple tallies

h half tallies

n numeric literal

t tallies

the label (in the current frame) of the branch destination if the result
of the test is true

The operands must be of the same length, that is, one byte (type H), two
bytes (type T), four bytes (type D) or six bytes (type F).

If one operand is a tally or double tally, the other operand may be a
literal (n); the literal assembles as the same symbol type as the relatively
addressed operand.

These instructions compare two values of the same length or symbol
type and use the results to determine program action.

Assembly Manual 4-31
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-32

The first referenced operand is compared to the second referenced
operand. The operands are compared as two's-complement (signed)
integers. If the fIrst operand is arithmetically higher than (BH), higher
than or equal to (BHE), less than (BL), or less than or equal to (BLE) the
second, program control transfers to the specifIed local label. If the
result of the comparison is "false", execution continues with the next
sequential instruction.

If a I-byte or 6-byte literal or constant value needs to be compared, it
must be defIned as a symbol using an H1L Y or DEFH directive (I-byte
value), or an FrL Y or DEFF directive (6-byte value).

If an operand is to be compared with a literal or constant (n) value of
zero, it is more effIcient and clearer to use another instruction that is
designed for comparisons with zero (such as BHZ or BLZ); for example,
use

BHZ CTR1,QUIT

rather than

BH CTR1,O,QUIT

Note that half tally and triple tally symbols (types hand f) cannot be
tested directly against a constant or literal (type n). Since this is an
arithmetic comparison, there is only one way to handle this condition:

• Defme the constant or literal as a half tally or triple tally in the
program; for example:

FLIT FTLY O,X'F23AB3FC' Define a constant of type F

BL FPO,FLIT,OK

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

BHIBHEIBUBLE

(~

BLE DO,Dl,LABLl

BHE DO,Dl,LABLl

BH DO,Dl,LABLl

BL DO,Dl,LABLl

BLE FPO,FP1,LABLl

BL FPO,FP1,LABLl

BLE H8,H9,LABLl

BHE H8,H9,LABLl

BH H8,H9,LABLl

BLE TO,T4,LABLl

BL TO,T4,LABLl

LABLl EQU *

6973-1 Assembly Manual 4-33
Confidential and Proprietary to The Ultimate Corp.

Instructions

BHZ
BHEZ
BlZ
BlEZ

Syntax

Description

4-34

The BHZ (branch higher than zero) instruction compares one specified
operand against zero and branches to a local label if the operand value is
higher than zero. BHEZ (branch higher/equal zero) compares and
branches if the value is higher than or equal to zero.

The BLZ (branch lower than zero) instruction compares one specified
operand against zero and branches to a local label if the operand value is
less than zero. BLEZ (branch lower/equal zero) compares and branches
if the value is lower than or equal to zero.

BHZ d,l BHEZ d,l BLZ d,1 BLEZ d,1
BHZ f,l BHEZ f,l BLZ f,l BLEZ f,l
BHZ h,1 BHEZ h,1 BLZ h,1 BLEZ h,1
BHZ t,1 BHEZ t,1 BLZ t,1 BLEZt,l

d double tallies

f triple tallies

h half tallies

tallies

the label (in the current frame) of the branch destination if the result
of the test is true

The BHZ, BHEZ, BLZ, and BLEZ instructions compare a tally-type symbol
against zero to determine program action. These instructions are faster
and clearer than the equivalent BH, BHE, BL, and BLE instructions used
with a literal of zero as one of the operands.

The value at the effective address is tested against zero to determine
program action. If the result is "true", program control transfers to the
specified local label. If the result is "false", then execution continues
with the next sequential instruction.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c

BHZlBHEZIBUZBLEZ

("
BHEZ D4,LABLl

BHEZ FP1,LABLl

BHEZ H8,LABLl

BHEZ T4,LABLl

BHZ D4,LABLl

BHZ FP1,LABLl

BHZ H8,LABLl

BHZ T4,LABLl

BLEZ D4,LABLl

BLEZ FP1,LABLl

BLEZ H9,LABLl

BLEZ T4,LABLl

BLZ D4,LABLl

BLZ FP1,LABLl

BLZ H8,LABLl

BLZ T4,LABLl

LABLl EQU *

(~:,
_.~r

c
6973-1 Assembly Manual 4-35

Confidential and Proprietary to The Ultimate Corp.

Instructions

Bl
BlE

BlZ
BLEZ

BNZ

4-36

The BL instruction branches if an operand value is lower than another.
The BLE instruction branches if an operand value is lower than or equal
to another. See the BH instruction for details.

The BIZ instruction branches if an operand value is less than zero. The
BLEZ instruction branches if an operand value is less than or equal to
zero. See the BHZ instruction for details.

The BNZ instruction branches if an operand value is not zero. See the BZ

instruction for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

6973-1

BSL

The BSL (branch subroutine location) instruction stores the address of
the next sequential instruction in the return stack and branches
unconditionally to a specified subroutine location.

BSL I
BSL m
BSL n,m

the label (in the current frame) of the subroutine

m mode-id (external entry point), which defines a frame number and
offset for a subroutine located outside the current program frame

n,m n specifies the entry point (O-F) and the m is a mode-id

The BSL instruction is used to branch to an internal or external
subroutine when a return to the main program after the conclusion of the
subroutine is desired.

If a mode-id format is used, the m operand may be a globally defmed
symbol of type M in the PSYM file, or it may be defined with a DEFM

assembler directive (either within the local program or in an INCLUDEd
program).

The BSL instruction first stores the return address where program
execution will continue after returning from the subroutine. The address
is stored in the next available return stack entry, which is always pointed
to by the return stack pointer (RSCW A). Then RSCW A is incremented by
four, to point to the next available entry. (This return address is the
location, less one, of the instruction following the BSL.)

Next, the BSL instruction resolves the effective address of the label or
mode-id by modifying the runtime program counter (RI). Program
control is then transferred to that address.

Note that the same subroutine can be called either locally from within the
frame or externally by establishing an entry point. When calling a
subroutine in the same frame that happens to have an externally
established entry point, the BSL executes slightly faster if the local label
is used instead.

Assembly Manual 4-37
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-38

Note: Because of the word alignment requirement on software
machines, if data follows the BSL instruction, it must fill out a
full word or the called subroutine must account for the
possible extra filler byte. For example:

BSL CRLFPRINT

TEXT C'1234',X'FF'

LOAD 5

In the above case, there are an odd number of bytes in the text
string, but the LOAD code will begin on the next even address,
leaving a I-byte hole which the subroutine must deal with.
(CRLFPRINJ, an Ultimate system subroutine, guarantees
execution at the next even address after text on software
machines, by use of the IDRSA instruction; see IDRSA, listed
in this section,for details.)

If the instruction causes more than eleven entries in the return stack, the
Debugger is entered with a Return Stack Full trap condition. In this
case, the fIrst entry in the stack is overwritten with the location of the
instruction causing the abon.

See also the RTN instruction to return from a subroutine.

Note: The subroutine return stack is part of the PCB and is described
in Chapter 3.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

('

(~;

6973-1

BSL

Example of defining an external mode-id:
EXTS DEFM 10,500

CMNT *

BSL EXTS

CMNT *
CMNT *
CMNT *

Define a constant of type M as

entry point #10 in frame 500.

Transfers control to FlD 500,

e.p. 10, at offset 21 (X'ls')

on firmware machines. Returns

when subroutine executes RTN.

Example of a locaVexternal subroutine:
FRAME 500

EP EXT.S

CMNT *
CMNT *

BSL EXT.S

EXT. S EQU *

RTN

Assembly Manual

Entry point f.or external call

in branch table at start of

prog

Local call of same subroutine

Subroutine local label

(body of subroutine)

4-39
Confidential and Proprietary to The Ultimate Corp.

Instructions

BSL*

Syntax

Description

4-40

The BSL * (branch subroutine location indirect) instruction
stores the address of the next sequential instruction in the return stack
and branches unconditionally to the location referenced by the specified
operand.

BSL* t

t tally symbol, which contains the branch destination address
(subroutine's mode-id)

The BSL * instruction performs the same function as a LOAD t instruction
followed by a BSLI instruction.

On firmware machines, BSL * is a macro that loads the accumulator (TO)
with the current content of the t operand, and then executes the BSLI

instruction. Tl is also destroyed because of sign-extension in loading
the accumulator. On software machines, the same operation may occur
without affecting TO or TI. Therefore, the contents of the accumulator
are not guaranteed to be in a predictable state after execution of a BSL *
instruction.

See BSLI and BSL for more details about how subroutine branches
operate.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

BSLI

Syntax

Description

6973-1

BSLI

The BSLI (branch subroutine location, indirect) instruction stores the
address of the next sequential instruction in the return stack and
branches unconditionally to the location specified in TO of the PCB.

BSLI

The BSU instruction operates identically to the BSL instruction, except
that the subroutine address is variable and is obtained from the low
order two bytes of the accumulator, TO, instead of from an operand.

TO must contain the branch destination mode-id (entry point in the high
order 4 bits and AD in the lower-order 12 bits), which can be loaded
into it from a local label, an external label or by convening an ASCII

string.

See the BSL instruction for details on calling subroutines.

ALIGN *
TABLE EQU *

MTLY O,SUBl

MTLY 7,SUB4

SRA R15,TABLE

INC R15,CTRl

LOAD R15;TO

BSLI *
CMNT *
CMNT *

Assembly Manual

Ensure TABLE is word-aligned

Start of table

Define subroutine exits

Set to start of table

Index into table

Load Tally from table

Call subroutine

Return here when subroutine

executes RTN

4-41
Confidential and Proprietary to The Ultimate Corp.

Instructions

BSTE

Syntax

Description

4-42

The BS1E (branch string test equal) instruction compares one string to
another (character by character) until a specified delimiter is reached,
then branches to a local label if the strings are equal.

BSTE r,r,n,l

r address registers (RO-RI5) that contain the virtual address of the two
strings to be compared

n constant or literal (symbol type n) that specifies the delimiting value
(usually a system delimiter)

the label (in the current frame) of the branch destination if the result
of the test is true

The BS1E instruction compares two strings and uses the result to
determine program action.

Two different registers should be used to reference the strings, since
unpredictable results may occur if both register operands refer to the
same register.

The two address register operands are incremented by one before the
initial comparison is made.

The character addressed by the first operand is tested as a I-byte logical
field against that addressed by the second operand. In a logical
comparison, the lowest character is decimal 0 (X'OO') and the highest
character is decimal 255 (X'FF').

This operation is repeated until one of the following conditions is met:

• One character is logically higher than or equal to the third operand,
but the other is not. BS1E terminates with the strings considered
unequal.

• Both characters are logically higher than or equal to the third operand.
BSTE terminates with the strings considered equal.

Note: The terminating characters need not be the same, as long as
they are both higher than the third operand.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

BSTE

• The two characters are both less than the third operand, and are not
equal. BSTE terminates with the strings considered unequal.

• BSTE R4,R5,X'FE',LABEL

Before instruction: R4 RS

t t
ABC X'FE' 2 B C X'FP

Compare starts __1+ ;
Strings are considered equal, and a branch is taken to LABEL.

• BSTE R4,R5,X'FC',LABEL

Before instruction: R4 RS

t t
ABC X'FE' 2BCDS6

Compare starts __ + ;
Strings are considered unequal, and no branch is taken.

• BSTE R4,R5,X'FC',LABEL

Before instruction: R4 RS

t t
ABC X'FE' 2 B D S 6

Compare starts __ -1+ +
Strings are considered unequal, and no branch is taken.

Assembly Manual 4-43
Confidential and Proprietary to The Ultimate Corp.

Instructions

BU

4-44

The BU instruction branches if an operand value is not equal to another
operand value. See the BE instruction for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

~'"
l~

BZ
BNZ

Syntax

Description

6973-1

BZlBNZ

The BZ (branch on zero) instruction compares a relatively addressed
operand to zero, and transfers control if the value is zero. The BNZ

(branch on not zero) compares and transfers control if the value is not
zero.

BZ d,l BNZ d,l
BZ f,l BNZ f,l
BZ h,l BNZ h,l
BZ t,l BNZ t,l

d double tallies

f triple tallies

h half tallies

t tallies

the label (in the current frame) of the branch destination if the result
of the test is true

The BZ and BNZ instructions compare a symbol value against zero and
use the result to determine program action. These instructions are faster
and clearer than the equivalent BE and BU instructions used with a literal
of zero as one of the operands.

The referenced operand is compared to zero, and if the value is zero (BZ)

or not zero (BNZ), program control transfers to the specified local label.
Otherwise, execution continues with the next sequential instruction.

BNZ D4,LABLl

BNZ FP1,LABLl

BNZ H8,LABLl

BNZ T4,LABLl

BZ D4,LABLl

BZ FP1,LABLl

BZ H8,LABLl

BZ T4,LABLl

LABLl EQU *

Assembly Manual 4-45
Confidential and Proprietary to The Ultimate Corp.

Instructions

CHR

Syntax

Description

4-46

The CHR directive reseIVes one byte of storage and sets up the symbol
in the label field to be of type c (Character).

{symbol} CHR n

symbol if present, appears in the label field of the instruction and
specifies the symbol name of the character; if not present, CHR

simply stores the value of the operand at the current program
location counter as a single byte

n specifies the constant or literal value to be assigned to the
character symbol.

The CHR assembler directive sets up a symbol of type c (character).

One byte of storage is reseIVed for the symbol value.

CRR AM

STAR CRR C' * ,

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(CMNT

Syntax

Description

6973-1

CMNT

The CMNT (Comment) directive places a comment line in the source
program.

CMNTtext

text any characters up to a maximum that fit on one program line

The CMNT assembler directive is an alternative to the use of an asterisk
(*) in the label field; both specify that the source line is a comment and
is to be ignored by the assembler.

The first word in the text is treated as an operand by MLIST or the Editor
AS format. It may be desirable to put a dummy operand (such as "*")

after CMNT to force the real comment to be entirely in the comment field
of the listing.

This directive can be used to align comments in the MLISTing. It can
also be used to define a label as an alternative to the "label EQU *,. form.

LABELl CMNT THI S

LABEL2 CMNT *
CMNT *
CMNT *

Assembly Manual

LINE HAS NO DUMMY OPERAND

However, this and following

lines of comments are

aligned.

4-47
Confidential and Proprietary to The Ultimate Corp.

Instructions

DEC (Data)
INC (Data)

Syntax

Description

4-48

The DEC (decrement) instruction used with a symbol operand
decrements the relatively addressed operand value. The INC (increment)
instruction used with a symbol operand increments the relatively
addressed operand value. (For infonnation on decrementing and
incrementing a register, see the next topic.)

DEC d INC d
DEC d,d INC d,d
DEC d,n INC d,n
DEC f INC f
DEC f,f INC f,f
DEC h INC h
DEC h,h INC h,h
DEC t INCt
DEC t,n INC t,n
DEC t,t INC t,t

d double tally

f triple tally

h half talliy

t tally

n numeric literal

If operand 1 is a tally or double tally, operand 2 may be a numeric
literal; the literal assembles as the same symbol type as operand 1.

If only one operand is specified, the value at the effective address is
decremented or incremented by one. The DEC and INC instructions with
one symbol operand are always preferable to the logically equivalent
fonns "DEC operand,!", or "INC operand, 1 ", which are slower
instructions that also use more object code.

If two operands are specified, the value at the effective address of
operand 1 is decremented or incremented by the value at the effective
address of operand 2. The two operands must be of the same length.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

DECIINC (Data)

The DEC and INC instructions with two operands are used whenever a
value needs to be decremented or incremented by a value other than 1.

Symbols of type F and H cannot be directly decremented or incremented
by a constant or literal (type N). The FIL Y or HlL Y directive should be
used to defme a local constant to use as the second operand.

Caution PCB fields associated with address registers (RnDSP,
RnFID, RnDSPFID) should not be modified with these
instructions. Instead, use the INC or DEC register
instructions (see next topic), or the SETR, SETDSP, or MOV
instructions to change the register's virtual address.

Arithmetic overflow or underflow cannot be detected. For example, if a
DEC instruction is used with a two-byte tally, the value -32768
(X'8000') wraps around to 32767 (X'7FFF).

DEC D4

DEC FPl

DEC H8

DEC T4

INC DO

INC FPl

INC HO

INC TO

DEC D4,DO

DEC FP1,FPO

DEC H8,HO

DEC Tl,TO

INC RECORD, DO

INC FP1,FPO

INC H8,HO

INC Tl,TO

Assembly Manual 4-49
Confidential and Proprietary to The Ultimate Corp.

Instructions

DEC (Register)
INC (Register)

Syntax

Description

4-50

The DEC (decrement) instruction used with a register operand
decrements the virtual address in the register. The INC (increment)
instruction used with a register operand increments the virtual address in
a register.

DEC r
DEC r,n
DEC r,t

r address register

n constant or literal

tally

INC r
INC r,n
INC r,t

The fIrst operand must be a register. If a second operand is present, it
may be a tally (type t) or a constant or literal (type n).

If only a register operand is specifIed, the virtual address in the address
register is decremented (DEC) or incremented (INC) by one. These
instructions are always preferable to the logically equivalent forms "DEC

r,l ", or "INC r, 1", which are slower instructions that also use more
object code.

If two operands are specifIed, the virtual address in the address register
is decremented (DEC) or incremented (INC) by the second operand
value.

If the resultant address crosses a frame boundary, and the register is in
unlinked mode, the debugger is entered with a trap condition
indicating CROSSING FRAME LIMIT.

If the resultant address crosses a frame boundary, and the register is in
linked mode, the system may attempt to normalize the address,
depending on instruction type and machine type. (Normalization of an
address means to resolve the address to an offset (up to the size of a
frame) within a particular frame. This may require traversing several
frames in a linked set, reading the link fIelds to determine subsequent

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

DECIINC (Register)

frames in the chain, until the required number of bytes have been
skipped over.)

For the single-operand INC and DEC register instructions, the system
always attempts to normalize the resultant address if it crosses a frame
boundary.

For the double-operand instructions, the address may be left
unnormalized on ftrmware machines. In this case, normalization does
not take place until the next instruction is executed which references data
via the address register. In order to guarantee attachment and
normalization after incrementing or decrementing an address register by
the value of another operand, a FAR instruction can be used after the INC

or DEC instruction. This may be useful when an XMODE routine has
been set up to handle end-of-linked-chain conditions.

If the beginning of a linked set of frames is reached during the
normalization process, the assembly debugger is entered with a trap
condition indicating Backward Link Zero.

If the end of a linked set is reached during the normalization process, the
XMODE (exception mode identifter) tally is tested to determine the
program action:

• If XMODE is non-zero, a subroutine call is executed to that address, to
allow special handling of this condition (usually linking additional
frames).

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Incrementing an address register by a negative value has the same effect
as decrementing it by a positive value, and decrementing a register by a
negative value has the same effect as incrementing it by a positive value.

DEC R15

INC R15

DEC R15,TO

INC R15,TO

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-51

Instructions

DEFx

Syntax

4-52

The DEFx (define symbol) assembler directives are used to define a local
symbol for a program or to associate additional symbol names and types
with previously defmed symbols or their locations.

The following set of formats (Set 1) are used to define symbols in terms
of literal base register and offset values:

symbol DEFB r ,n
symbol DEFC r ,n
symbol DEFD r ,n
symbol DEFF r ,n
symbol DEFH r ,n
symbol DEFS r ,n
symbol DEFT r,n
symbol DEFX r,n
symbol DEFRA n,n (n,n = byte offset,FlD)

The following set of formats (Set 2) are used to define symbols in terms
of previously-defined symbols:

symbol DEFC r,c r,h
symbol DEFD r,d r,s r,t
symbol DEFF r,d r,f r,s r ,t
symbol DEFH r ,c r,h
symbol DEFS r,d r,f r,s r,t
symbol DEFT r,d r,S r,t
symbol DEFX r,d r,S r,t

symbol DEFC h
symbol DEFD t
symbol DEFF d s
symbol DEFH c
symbol DEFS f
symbol DEFS d t
symbol DEFT d f s

The tally (t) and double tally (d) forms overlay the existing ??

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Description

C'

c'
6973-1

DEF

The following special fonnats (Set 3) are used to define one symbol as a
subfield of another:

symbol DEFDL s
symbol DEFHL t
symbol DEFHU t
symbol DEFrL d
symbol DEFrL s
symbol DEFrM s
symbol DEFTU d
symbol DEFTU s

(overlays lower DTLY of storage reg.)
(overlays lower HTL Y of a TL Y)

(overlays upper HTL Y of a TL Y)

(overlays lower TL Y of a DTL Y)

(overlays lower TLY of storage reg.)
(overlays middle TL Y of storage reg.)
(overlays upper TL Y of a DTL Y)

(overlays upper TL Y of storage reg.)

The symbol type being defined is the last character of the instruction
mnemonic (such as Bin DEFB) or the next to last character (such as T in
DEFn..).

The DEFx directives define a local symbol as one of the following
symbol types:

a address
b bit
c character
d double tally
f triple tally
h half tally
s storage register
t tally
x external register

upper half-tally of tally (HU)
lower half-tally of tally (HL)

upper tally of double tally or storage register (TU)
lower tally of double tally or storage register (TL)
middle tally of storage register (TM)
lower double tally of storage register (DL)

To defme a mode-id. see the separate topic DEFM. To define literals.
see the separate topic DEFN.

Assembly Manual 4-53
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-54

The fIrst set offonnats (Set 1) is used to defIne a symbol for the fIrst
time in a program. These formats have two operands:

r an address register (RO-RI5 or synonym such as IS, IR, or TS)

n the offset; may be a symbol or expression that resolves to an offset.

The second set of formats (Set 2) is used to associate additional symbol
names with previously-defined symbols. These formats may have one
or two operands:

r an address register (RO-R15 or synonym such as IS, IR, or TS)

c character

d double tally

f triple tally

h half tally

s storage register

tally

The third set of formats (Set 3) is used to associate additional symbol
names to subfIelds of previously-defined symbols. These formats have
one operand that identiftes the symbol type of the original symbol:

d double tally

s storage register

t tally

In essence, a symbol may be defined in terms of:

• a base register and offset:
DEFT R2,11

• a previously defined symbol having a register and offset:

DEFT CTR17

• a previously defmed symbol having a register and offset, with a
different register:

DEFT R13,CTR17

This is useful when accessing a table via different registers.

The symbol in the label field of the DEFx directive is created with the
specifIed type.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Initial Symbol
Definition vs.
Additional
Symbol
Definitions

Eval uation of
Operands

6973-1

DEF

The initial defmition of a symbol is used to generate a symbol in TSYM

to define a location that was previously unknown and assign a symbol
name to it.

Additional definitions are used to create new symbols based on an
existing symbol in PSYM or TSYM. Either the symbol type, the
displacement, or base register of the new symbol is different from that
of the original symbol, and a new symbol name is assigned as well.

All initial symbol definitions require two operands: register and
displacement.

For additional definitions, the symbol used as the operand provides the
displacement and base register. The register can be overridden by
specifying the optional register operand.

If only one operand is present, it must be a previously-defined symbol.
In this case, both the base register and the offset of the new symbol are
taken from those of the previously-defined symbol. This form is used
to refer to a symbol by a different type ccxle; for instance, to refer to a
half tally as a character.

If two operands are present, the first indicates the base register. The
second operand indicates the offset of the symbol's address, where the
unit of offset depends on the symbol type.

Type Offset Unit

bit (type B) bits

character (type C) bytes
half tally (type H)

tally (type T) words (16 bits each).
double tally (type D)

triple tally (type F)

storage register (type S)
external register (type X)

Assembly Manual 4-55
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-56

The second operand may be viewed as an expression which is evaluated
on the basis of the following rules:

• If the first character is the '*' character, it is assumed to refer to the
location counter.

• If the fIrst character is a number or the character 'X' followed by a
single quote, it is assumed to be a literal or literal expression (e.g.,
79, or X'A' or 3+2).

• If the fIrst character is any other legal character, it is assumed to be a
symbol name.

2*LOC

LOC*2

*

Assembly Manual

evaluated as 2 times the offset in
symbol LOC

evaluated as the label 'LOC*2'

evaluated as the current location
counter (bytes)

6973-1
Confidential and Proprietary to The Ultimate Corp.

Using
Location
Counter as
Second
Operand

6973-1

DEF

Whenever the second operand begins with the "*" character, the
expression is evaluated using the following fonnula:

*
n

*{n}{+/-m}

the current location counter as maintained by the assembler.

measurement of units, in bits, with which to express the
location; valid values are 1, 4, 8, 16, or 32. If omitted, it's
assumed to be 8 (in bytes). Thus, a location counter value of
x' 10' equates as follows:

*1 X'BO' (bits)

*8 X, 10 I (bytes)

*16 X, 8 I (TLY or tally units)

* 32 X '4 I (DTLY or double tally units)

+/-m value by which to increment or decrement the resultant value of
* {n}; 'm' must be preceded by a plus (+) or minus (-) sign. For
example:

ORG x' 10 I

LABL1 DEFT *16

LABL2 DEFT *16+1

would define one TL Y at byte offset x'lO' (word X'8') and
another at byte offset x'12' (word x'9').

The 'n' value must be preset for certain DEF directives:

DEFB *1

DEFH * *B is assumed for *)
DEFT *16 } all require TLY offsets
DEFD *16 all instructions
DEFF *16

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

in

4-57

Instructions

LOWBIT DEFB R15,7 Defmes a bit with register 15 as the base
register, and an offset of 7 (low order bit
in the byte addressed by the register)

XCURS DEFT R15,7 Defines a tally with register 15 as the base
register, and an offset of7,which
references bytes 14 and 15 (a tally)
displaced from the virtual address in R15.

NXTFID DEFD R15,7 Defines a double tally with register 15 as
the base register, and an offset of 7,
which references bytes 14-17 displaced
from the virtual address in the AR; note
this is not the same as a displacement of 7
double tallies, as used for immediate
symbols; see the Immediate Symbols
topic in Section 2 on the Assembler.

T2Tl DEFD RO,T2 Defines T2T1 as a four-byte field that
overlays the fields T2 and Tl (both tallies) "/

in the accumulator

FPOS DEFS FPO Redefines the six-byte accumulator FPO
as a storage register FPOS

RIXR.15 DEFX R15,RIDSP Defines a 6-byte external register located
X'10A' bytes off of R15.

SR20FID DEFDL SR20 Defines a symbol that references the FID
field of storage register SR20

SR20DSP DEFTU SR20 Defines a symbol that references the
displacement field of SR20

4-58 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

SVLOC ORG X' 90'

*

*
CTR.A

CTR.B

CTR.C

CTR.E

DEFT Rl,X'48'

DEFT Rl,72

DEFT Rl,CTRO

DEFT Rl,*16

*
CTR.EUA DEFH Rl,2*CTR.E

CTR.EUB DEFH Rl,**l

CTR.EUC DEFH Rl,*8

*

CTR.ELA DEFH Rl,l+CTR.EUA

CTR.ELB DEFH Rl,*+l

CTR.ELC DEFH Rl,*8+1

* SET LaC CTR FOR DEFS

* TLY DSP=HTLY DSP

* X'90' / 2

* CTRO DEF'D ASSUMING

* X'48' TALLY DSP--

*

*

*

*

*

*

NOT VALID IF CTRO

IS MOVED IN A

LATER RELEASE l

UPPER HTLY OF

CTR.E

LOWER HTLY CTR.E

FORM: *{+m}

FORM: * in} (+m)

DEF

*

SRX

SRXN

DEFS FPO

DEFS RO,FPO

*

* REG OPERAND INFERRED

* FROM FPO SYMBOL

* REG OPERAND EXPLICITLY

DEFINED

1 Ultimate recommends not hard-coding assumptions such as the CTRO location; if
CfRO were redefined, the program may not work properly after assembly with the
new PSYM definition

Assembly Manual 4-59
Confidential and Proprietary to The Ultimate Corp.

Instructions

DEFM

Syntax

Description

4-60

The DEFM (Defme Mode-id Symbol) directive defines a local symbol as
a modal entry point, or mode-id.

symbol DEFM n 1 ,n2
symbol DEFM n I ,m

nl entry point number; must be in the range 0-15 (O-x'F')

n2 frame number

m previously defined mode-id

A mode-id consists of a four-bit entry point number and a twelve-bit
frame number (FlD). The DEFM directive is used whenever a mode-id

symbol is needed in a program.

A symbol defined by the DEFM directive can be used in the BSL and ENT
instructions to transfer control to the specified location. It can also be
used in the MOV and LOAD instructions, when it acts as a literal value.
Depending on implementation, the assembler may actually generate a, f

literal at the end of the object code with the value defined in the DEFM
instruction.

EXT.SYM DEFM 3,133

MYFRAME DEFM 0,510

Defines EXT.SYM as entry point 3 in
frame (decimal) 133 (for firmware
machines, this is location 7 in frame).

Defines MYFRAME as entry point
o in frame 510

ENTRY 0 DEFM 0, MYFRAME Defines ENTRYO as entry point O.

ENTRY1 DEFM 1, MYFRAME Defines ENTRYI as entry point l.

ENTRY15 DEFM 15,MYFRAME Defines ENTRYl5 as entry point
15.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

DEFN

Syntax

Description

6973-1

DEFN

The DEFN (define constant symbol) directive defines a local symbol as a
constant.

symbol DEFN n

n constant value which may be generated in one or two bytes (a byte
or tally).

The DEFN directive defmes the value as a constant symbol (type n). A
constant can be used in exactly the same manner as a literal value. With
many instructions (on certain implementations), reference to a constant
or literal causes a literal field to be generate at the end of the object code.

Constants have a maximum length of four bytes, giving a numeric range
of -2,147,483,648 to 2,147,483,647 (X'80000000' to X'7FFFFFFF').
Constants more than two bytes long, however, must be explicitly
defined as double tallies via the DlL Y directive.

For more information about literal values, see the section on Literals in
Chapter 2.

Notes: If the value is to be used to define the location of a variable (an
offset) within an ABS frame, the DEFN directive should not be
used. The DEFNEP or DEFNEPA directives should be used
instead, to define the word or byte offset relative to an entry
point rather than an explicit offset.

Due to an assembler requirement in software machines, a
symbol of type n defined via DEFN, DEFNEP, or DEFNEPA (but
not other symbol types) when used as an offset must be
preceded by "0+" or the appropriate "n+ ". The symbol offset
may not be used alone. For example,

TEN DEFN 10

CTR DEFT R7,O+TEN (0+ required)

CTRl DEFT R7,CTR (0+ not required)

Assembly Manual 4-61
ConfidentiaJ and Proprietary to The Ultimate Corp.

Instructions

4-62

Using DEFN to refer to a constant value by a symbolic name rather than
its actual value tends to make programs easier to read, easier to modify,
and less prone to errors.

MAXNUM DEFN 20

XCONST DEFN X'8010'

DELIM DEFN C'.'

CCONST DEFN C'ABCD'

DCCONST DTLY C'ABCDEF'

BH TO,MAXNUM,ERR

MOV XCONST,CTR30

MOV DCCONST,Dl

MCC DELIM,R15

Assembly Manual

References 2-byte literal

References 2-byte literal

DTLY must be defined

Immediate value

6973-1
Confidential and Proprietary to The Ultimate Corp.

DEFNEP
DEFNEPA

Syntax

Description

6973-1

OEFNEPIOEFNEPA

The DEFNEP (defme entry point) and DEFNEPA (define entry point
aligned) directives defme the offset of a program entry point that is
machine independent. DEFNEP defines the byte offset to the designated
entry point. DEFNEPA defmes the word offset (word-aligned) to the
designated entry point (that is, rounded up if necessary to the next even
address if entry points begin on odd bytes, as they do on finnware
machines).

label DEFNEP ep#
label DEFNEPA ep#

label local label to assign to the entry point
ep# entry point number relative to the beginning of the framw

The DEFNEP and DEFNEPA directives are used to define machine
independent address displacement (offset) values, which can then be
referenced in ADDR or DEFx directives.

These directives are necessary to ensure that an assembly language
program operates correctly on any Ultimate implementation, since data
in ABS frames may wind up in different locations on different
implementations. This is because the object code for a tinnware
machine, for instance, may be smaller than that generated by assembling
the frame for a software machine. If a frame contains both code and
data, then, the locations of entry points and data may vary between
machines.

The EP ADDR directive can be used to refer directly to the entry point of
the frame. To refer to data which is not an entry point, however, it must
be placed either (1) at a "safe" location via an ORG directive, or (2)
immediately after the last entry point of the frame, which has been
defined by a DEFNEP or DEFNEPA directive. An ADDR or DEFx directive
may then be used after DEFNEP or DEFNEP A to reference the data.

The specified label is defined in the program's TSYM file as a symbol of
type n. The value of the symbol is derived from the entry point number,

Assembly Manual 4-63
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-64

(\
\ ;'

as the correct offset for that entry point based on the implementation for ,,~/

which the program is assembled.

For example, the following directive sets up a literal or constant (n)
symbol at the next available location following entry point 2:

DATAl DEFNEP 3

This defmes DATAl as symbol type n with a value of7 (offset to byte 7)
on a fIrmware machine. On a software machine, this same directive
could result in DATAl having a value of X'E' (offset to byte 14) if the
FRAME directive ORGs to byte 2 and four bytes are reserved for each EP
instruction.

The above DEFNEP-defmed symbol may be used with an ADDR directive
to define a location immediately following entry point 2. For example,
given the following program with data:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~

6973-1

*
*
*
o
1

2

FRAME 511

EP

EP

EP

!LABELO

!LABEL1

!LABEL2

DEFNEPIDEFNEPA

CMNT

CMNT
*
*

The next available location is 007

on firmware machines

MYTXT TEXT C'External1y referenced string'

The following lines could be placed in another program to address the
label MYTXT:

TXTDSP DEFNEP 3

HERTXT ADDR TXTDSP,511

which references the same data as:

HERTXT ADDR

or
7,511

HERTXT ADDR x' E' , 511

Define byte offset to EP 3

(on a fmnware machine)

(on a 1400 machine)

When both programs are assembled for the same machine, they execute
properly. No source code has to be changed to assemble the two frames
for another machine.

If the data following the last entry point must be word aligned (a tally or
greater), the above technique does not work since it produces an ADDR

pointing to the fIrst byte at or beyond the specifIed entry point. In this
case, the DEFNEPA directive must be used instead to point to a word
aligned variable following the last entry point. For example:

DATA2 DEFNEPA 3

defInes DATA2 as a symbol of type n with a value of 4 on firmware
machines (the first even address at or following entry point 3 is x'OO8'

Assembly Manual 4-65
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-66

which is word offset x'OO4'). On a software machine, however,
DATA2 could have a value of 7.

The above DEFNEPA could be used with an ADDR directive to defme a
tally immediately following entry point 2. For example, given the
following frame with a tally MYWORD defined at the next word offset:

*
*
*
o
1

2

FRAME 511

EP

EP

EP

!LABELO

!LABEL1

!LABEL2

CMNT

CMNT

ALIGN

* The next available location is 007

* on firmware machines

MYWORD DEFT R1, * 16

The following lines could be placed in another frame to address the
label MYWORD:

WRDDSP DEFNEPA 3 Define word offset to EP 3

HISWRD ADDR 2*WRDDSP,511

which references the same data as:

HISWRD ADDR 8,511 (on a firmware machine)

since WRDDSP has the value of the 4th word (2*4 = 8).

On a software machine where the first entry point starts at location 2
and each EP instruction generates 4 bytes of object code, DEFNEPA

would give WRDDSP a value of X'E' (14), and the ADDR directive
would be equivalent to:

HISWRD ADDR x' E' , 511

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

/

;'"""

(",-j

('
Lv, -~

(

6973-1

DEFNEPIDEFNEPA

SYMBl DEFNEPA 11 word offset X'C' to entry point 11
ADDR.NW DEFS R6,O+SYMBl defines 3 words of storage at loco
ADDRS.NW DEFT R6,3+SYMBl defines a tally immediately after

ADDR.NW, or 3 words past entry
point

TBL DEFNEPA 11 word offset x'C' to entry point 11
TLYl DEFT R6,O+TBL tally at x'18' (2 * X'C')1
TLY2 DEFT R6,1+TBL tally at X'IA' (2+2 * X'C')1

TBL DEFNEP 11 byte offset to entry point 11
HTLYl DEFH R6,TBL half tally at x' 17' 1
HTLY2 DEFH R6,2+TBL half tally at x'19'1

1 Note that the explicit locations in hex apply only to fmnware machines
and are included merely as examples. By using DEFNEPS, the
appropriate offset is automatically assembled on all Ultimate
implementations.

Assembly Manual 4-67
Confidential and Proprietary to The Ultimate Corp.

Instructions

DIV
DIVX

Syntax

Description

4-68

The DN and ONX (divide) instructions are used to divide the contents of
the accumulator by the value of the operand. The DIV form addresses
the accumulator field DO); the DIVX form addresses it the field FPO.

DIvd

OIvh
DIVn
DNt

d double tally

f triple tally (for DNX only)

h half tally

DNXd
DNXf
DNXh
DIVXn
DIYXt

n numeric literal); if used, a 2-byte field is assumed (a range of -
32,768 through +32,767). If a I-byte literal (half tally) is being
referenced, it should be defined separately using the HTI.. Y directive.
If the literal is outside the range of -32,768 through +32,767, a 4-
byte literal must be separately defined using the DTI.. Y directive, or a
6-byte literal via the FIT.. Y directive.

The n form may generate a 2-byte literal at the end of the program
when assembled for certain machines.

tally

If the value of the operand is zero, the results of the division are
unpredictable.

The DN instruction divides the operand value into the 4-byte field in the
accumulator called DO. If the operand is a half tally (1 byte) or tally (2
bytes), it is internally sign-extended to form a 4-byte field before the
divide operation takes place. The integer result is stored in DO, and the
integer remainder in D 1. The division does not affect the original
operand or the other sections of the accumulator.

The DNX form divides the operand value into the 6-byte field called
FPO. If the operand is a half tally (1 byte), tally (2 bytes), or double

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~
/

6973-1

01 VIOl VX

tally (4 bytes), it is internally sign-extended to fonn a 6-byte field before
the divide operation takes place. The 6-byte integer result is stored in
FPO, and the 6-byte integer remainder is stored in the 6-byte field called
FPY. The division does not affect the original operand, or the other
sections of the accumulator.

In division involving negative numbers, the sign of the remainder
follows that of the dividend, so that multiplying the quotient by the
divisor and adding the remainder yields the original dividend.

These instructions cannot detect arithmetic overflow or underflow.

3/2 = 1 remainder 1
-3/2 = -1 remainder -1
3/-2 = -1 remainder 1
-3/-2 = 1 remainder -1

DIV D4

DIV H8

DIV T4

DIVX D4

DIVX FPl

DIVX H8

DIVX TO

DIV 11

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-69

Instructions

DTLY
FTLY
HTLY
TLY

Syntax

Description

4-70

The OTLY (double tally), FrLY (full (triple) tally), HTLY (half tally), and
TL Y (tally) directives reserve storage and set up the symbol in the label
field to be of a specific symbol type. They can also be used to only
reserve storage if there is no entry in the label field.

{ symbol} OTL Y n
{ symbol} FfL Y n,n
{ symbol} HTL Y n
{symbol} TLY n

symbol optional label name; if present, it stores the symbol name as
an item in the TSYM file with the specified value.

n value of the symbol as an alphabetic, numeric, or
alphanumeric value. In FrL Y instructions, the first n gives
the value of the upper two bytes; the second n gives the value
of the lower four bytes.

The OTL Y directive is used to define a double tally (four bytes), and to
store a 4-byte value.

The FrL Y directive is used to define a triple tally (six bytes), and to store
a 6-byte value.

The HTLY directive is used to define a half tally (one byte), and to store
a one-byte value.

The TL Y directive is used to defme a tally (two bytes, which also make
up one "word"), and to store a 2-byte value.

The 1LY, 01LY, and FrLY directives force the location counter to be
aligned on an even-byte boundary (word alignment).

The HTL Y directive can only be used when the program's location
counter is less than X'100'; otherwise it will generate a 1RUNCation
error message. This is because the generated symbol would have an

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

DTL YIFTL YIHTL YITL Y

offset of more than x'FF'. The lL Y, OlL Y, and FTL Y directives can
appear anywhere in the source program.

Due to an assembler requirement, the value stored by the FIL Y directive
must be specified as two values: an upper 2-byte value and a lower 4-
byte value. The programmer must be especially careful with negative
values. For example:

Equivalent value
Instruction Hex Decimal

X.IO FTLY 0,1 000000000001 1

FTLY 0,12345 000000003039 12345

ABCD FTLY 0,10000000 000000989680 100000000

FTLY 2,X'540BE400' 0OO2540BE400 10000000000

FTLY X'FFFF',X'FFFFFFFC' FFFFFFFFFFFC -3

For information on defining a storage register, see the SR directive.

The specified symbol label, if any, is added to the TSYM file. The value
of the symbol is stored at the current program counter location, word
aligned if necessary, as described above.

Assembly Manual 4-71
Confidential and Proprietary to The Ultimate Corp.

Instructions

EJECT

Syntax

Description

4-72

The EJECT' (eject page) directive ejects the current page and begins a new
page in an MLISTing of the program in which the EJECT' directive
appears. This directive is put into effect only if the MLIST command has
the J option.

EJECT

The EJECT' directive is used to start a new page of an w...rST for a
program, where the MLIST command specifies (he J option.

If the w...IST command does not contain (he J option, the directive has no
effect.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(' END

Syntax

Description

6973-1

END

The END (end program) directive indicates the end of a source program.

END

The END directive has no effect on assembly, and is treated as a
comment line (see CMNT directive).

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-73

Instructions

ENT

Syntax

Description

4-74

The ENT (external branch) instruction transfers program control
unconditionally to a specified location external to the current program
frame.

ENTm
ENTn,m

m mode-id (external entry point), which defines a frame number and
offset for a routine located outside the current program frame

n entry point (O-F or symbol); offset specified by m is replaced by the
value of n.

The ENT instruction is used to unconditionally branch to an external
routine when no subroutine return is needed to the current program
frame. The ENT instruction resolves the effective address of the mode
id and transfers program control to that address.

The external mode-id must be defined as a globally defined symbol of
type M in the PSYM file, or it can be defined with a DEFM or MTI.. Y

Assembler directive (either within the local program or in an INCLUDEd
program).

If the n operand is specified, the mode-id is used only to define the
frame. Conventionally, mode-ids used only to define a frame are given
entry point values of zero; for example,

MYSUBS DEFM 0,511

For information on internal branches, see the B instruction. For
information on transferring to subroutines, see the BSL instruction.

EXTM DEFM 10,500

CMNT *

ENT EXTM

CMNT *

Assembly Manual

Define mode-id (type m symbol)

at entry point 10 in frame 500.

Transfers control to FID 500,

entry point 10.

6973-1
Confidential and Proprietary to The Ultimate Corp.

(" ENT*

Syntax

Description

6973-1

ENT*

The ENT* (external branch indirect) instruction branches unconditionally
to the location referenced by the specified operand.

ENT* t

tally symbol, which contains the branch destination address.

The ENT* instruction performs the same function as a LOAD t instruction
followed by an ENTI instruction.

The contents of the accumulator are not guaranteed to be in a predictable
state after execution of an ENT* instruction. On firmware machines,
ENT* is a macro that loads the accumulator (TO) with the current content
of the t operand, and then executes the ENTI instruction. Tl is also
destroyed because of sign-extension in loading the accumulator.
However, on software machines, the same operation may occur without
affecting TO or Tl.

For more information about how external branches operate, see ENTI

and ENT.

Assembly Manual 4-75
Confidential and Proprietary to The Ultimate Corp.

Instructions

ENTI

Syntax

Description

4-76

The ENTI (external branch indirect) instruction branches unconditionally
to the location specified in TO of the PCB.

ENTI

TO must contain the branch destination mode-id (the high 4 bits are the
entry point and the low 12 bits are the FID), which may be loaded into it
from a local label, an external label, or by converting an ASCII string.

The ENTI instruction operates identically to the ENT instruction, except
that the address is variable and is obtained from the low-order two bytes
of the accumulator, TO, instead of from an operand.

R15 points to a hexadecimal ASCII string

v

Ix 17 11 IF IE IAMI

BSL CVXR15

CMNT *
CMNT *
CMNT *
ENTI *
CMNT *

Assembly Manual

CVXR15 is a subroutine that

converts the ASCII string

value to a binary value in the

accumulator FPO (that is, TO)

External branch to TO location

(frame 510, entry point 7).

6973-1
Confidential and Proprietary to The Ultimate Corp.

(~' EP

Syntax

Description

6973-1

The EP (entry point) instruction defines an entry point at the start of a
program frame.

EPI

I local label.

EP

The EP instruction is used to define an entry point at the start of a
program frame. Up to 16 entry points can be defined. Although the
assembler may not flag an error if more than 16 entry points are defined,
there is no way to specify the 16th (number 15) in either the ENT or BSL

instruction.

Although typically EP generates the same object code as B (branch), EP
guarantees branch code of a fixed length on each Ultimate implemen
tation and, moreover, is required by some Assemblers in order to
identify program entry points.

The EP instruction immediately resolves the effective address of the local
label and defines the entry point as a symbol of type L (label).

FRAME 471

*
*
ORG 0

0 EP FIRSTEP

1 EP SECONDEP

2 EP THIRD EP

3 EP FOURTHEP

4 EP FIFTHEP

Assembly Manual 4-77
Confidential and Proprietary to The Ultimate Corp.

Instructions

EP.ADDR

Syntax

Description

4-78

The EP.ADDR (entry point address) directive specifies an entry point
address and creates a storage register containing that address.

label EP.ADDR n,n
label EP.ADDR m
label EP.ADDR n,m

label name of symbol to use in referring to storage register

n,n virtual address to reserve for the symbol. The first operand
specifies the entry point number (0-15) in the frame. The
second operand specifies the frame number (FlD)

m mode-id symbol which contains the virtual address

n,m entry point to be used with the FlO from the mode-id m .

The EP.ADDR creates a storage register in unlinked format. containing
the specified entry point address. It also creates a symbol (type S) that
referss to the storage register. Six bytes of storage for the address are
reserved at the current location counter (word-aligned).

An EP.ADDR directive. instead of an ADDR directive. should be used to
point directly to entry points. The reason is that entry :-,oints cannot be
assumed to be of the same length on all machines. The EP.ADDR

directive, which uses entry point numbers rather than actual
displacements. generates the correct byte offset based on the machine
for which the program is being assembled.

For example. on some systems, two bytes of object code are generated
for each entry point. On other systems, four bytes of object code are
generated for each entry point. If an ADDR directive is used to point to
entry point 9 in frame 278 on one system, the instruction would be

ADDR 19,278

On other systems, the equivalent ADDR instruction would be:

ADDR 38,278

However, The EP.ADDR directive is the same on all system types.

EP.ADDR 9,278

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

()

6973-1

MD999

001 M

002 1

003 aOA

LAB 1

LAB 2

LAB 3

EP.ADDR 1,10

EP.ADDR MD999

EP.ADDR 1,MD99

Assembly Manual

EP.ADDR

PSYM entry

specifies entry point 1 in frame 10
these directives are equivalent

4-79
Confidential and Proprietary to The Ultimate Corp.

Instructions

EQU

Syntax

Description

4-80

The EQU (equate) directive sets up an equivalence between the symbol in
the label field of the statement and the operand.

label EQU n
label EQU symbol

label symbol name being equated to an operand

n constant or literal value

symbol redefined symbol name;current program location counter (*) is
often specified as the operand.

The EQU directive is normally used for two purposes:

• To define a new name for an existing symbol (already defined in
PSYM or via DEFx, DEFN, or DEFM

• To give a label to a location within the program.

If the operand is a literal or constant or the current location counter
symbol (*), the label symbol is stored as a symbol of type L. If the
operand is another symbol, the label symbol is created as an exact
duplicate of the operand symbol.

Note: It is recommended that DEFN directive be used to define
constant values, and to give names to numeric or character
values:

OFFSET DEFN 3

MAXNUM DEFN X'40'

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

EQU

(~C

LOOP EQU * creates a symbol LABEL, with the
current location as its value. This is a
useful way of defining labels, since
the label is on a line by itself, and is
therefore clearer.

TITLE EQU *-1 creates a symbol TEXTS, with the
current location less one as its value.
This is useful when an SRA

instruction is to address a text string,
and it is necessary to address the
location one less than the start of the
string.

COUNT EQU CTR21 creates a symbol COUNT which is
equivalent to CTR21.

PTR EQU SR20 creates a symbol PTR which is

(~
equivalent to storage register 20.

~"

x EQU AM creates a symbol X which is
equivalent to the value of the attribute
mark, X'FE'. The symbol AM is
predefined in PSYM as a constant
(type N). X is also made a type N

symbol, since its definition is copied
directly from that of AM.

6973-1 Assembly Manual 4-81
Confidential and Proprietary to The Ultimate Corp.

Instructions

FAR

Syntax

Description

4-82

The FAR (force attachment of register) instruction attaches an address
register (if not already attached), and thereby normalizes its virtual
address.

FAR r,n

r address register RO-R15 or synonym such as IS, IR, or TS

n constant or literal value of of 0 or 4

o guarantees attachment and normalization

4 guarantees attachment and normalization, and sets R15
(unlinked) to the link field of the frame to which r points after
normalization (r=R15 is permissible).

other values of n are undefined.

The FAR instruction has the following uses:

• for compatibility between implementations

• to normalize the virtual address in a register

• to set R 15 to the link field of the frame

• with XMODE for exception processing

On firmware machines, address registers are typically attached only
when data is referenced through the register (via indirect or relative
operands) or when either an INC/DEC Rn or a FAR is executed. The FAR

is therefore necessary for correct program operation on firmware
machines whenever the program may not execute properly if the register
is not attached.

On software machines, however, all address registers for a process are
typically automatically attached and remain attached as long as the
process is running.

Consequently, the FAR instruction should be coded where needed for
compatibility between fmnware and software machine implementations.
The "FAR r,O" instruction generates no object code when assembled for
systems that keep all registers attached.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

FAR

The FAR instruction is typically used to ensure that the virtual address in
a register is nonnalized before using it in a comparison with another
virtual address (without regard to the data actually addressed) or
MOVing it to a storage register.

Virtual addresses in storage registers must be nonnalized before
comparison, since the same location within a set of linked frames may
be addressed in tenns of several different frame-displacement
combinations. If a virtual address is unnonnalized, perhaps due to an
"INC r,t" instruction, it may fail a "BE r,s" or "BE s,s" comparison with
another (nonnalized) virtual address even though it logically addresses
the same location.

For example, on a system having 512-byte frames, if a register such as
R14 is incremented by X'200', the displacement is inaccessible until the
address is nonnalized (if a linked frame; otherwise, it is a Crossing
Frame Limit error).

Note: As an alternative, you can always move a storage register into
an address register before comparing addresses:

See also Section 3, Addressing and Representing Data, and the topic on
Understanding Registers.

Another use of the FAR instruction is to set Address Register 15 to the
link field of a frame; that is, to byte 0, unlinked. R15 is set up in this
manner if the "mask" byte (the second operand) has a value of X'04'.
Other mask byte values are reserved for future use.

INC R14, ID. DATA. SI ZE INCs R14 by the size of one data
frame, forcing a chase of the
forward link

FAR R14 , X I 04 I ensures nonnalization of R 14, and
setup of R 15 in the unlinked
fonnat to byte 0 of the frame
referenced by R 14

Assembly Manual 4-83
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-84

Finally, the FAR instruction can be used in conjunction with the XMODE

field of the PCB to perform exception processing. For example, you
may want to build a table in a set of linked frames and need to ensure
that enough frames are available. To avoid an abort to the debugger,
you can set up XMODE with the mode-id of a subroutine that links
another frame onto the set, and execute another FAR instruction each
time another entry is added to the table.

Note however, that (1) when an XMODE routine is entered because of a
Forward Link Zero condition, the address register involved is not
guaranteed to be pointing to the same location in all implementations,
and (2) no XMODE routine is guaranteed to work when the register is
incremented by more than one frame past the end of a linked set of
frames.

MOV ADDIT,XMODE

INC R14,ENTRYSIZE
FAR R14,0

ZERO XMODE

forces attachment of R14
automatically calls ADDIT if a
forward link zero condition would
occur while normalizing the
virtual address in R 14

The above example works in cases such as when R14 starts out pointing
to (logical) byte 1 of the first frame, ENTRYSIZE is an integral divisor of
ID.DATA.SIZE (such as 10,20,50, etc.), and ADDIT always sets R14 to
(logical) byte 1 of the new frame it attaches before exiting. Also note
that any reference to data off R 14, not just a FAR instruction, may cause
the XMODE routine to be entered; the FAR is then not needed unless it is
the last instruction in the table building routine.

MOV ISBEG,IS Set IS to data start
INC IS,CTR30 Increment by length
FAR IS,O Ensure normalized SR for future
MOV IS,ISEND tests.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973·1

MOV SR20,R14

FAR R14, X ' 04 '

LOAD R1S;Hl

MOV OSBEG,OS

INC OS,4000

MOV OS,OSEND

Get data pointer
Attach R14, set R15 to links
Loadnncf

FAR

example of comparison of virtual
addresses
skip forward at least one frame
this may leave an un normalized
address in OSEND if executed on a
machine that does not normalize
os when the "INC OS,4000"
instruction is executed.

FAR OS, 0 ensure normalization
MOV OS,OSEND save normalized address
BE OS, OSEND, SUCCESS OS and OSEND are equal; if the

FAR instruction had not been
included, the compare would have
found the values unequal

MOV OSEND, R1S An alternative way to normalize

OSEND.

BE OS,R1S,SUCCESS

Assembly Manual

R 15 normalized and the compare
is equal.

4-85
Confidential and Proprietary to The Ultimate Corp.

Instructions

FILLCHR

Syntax

Description

4-86

The FILLCHR (fill character) instruction initializes a data segment with a
particular character (typically to clear frames).

FILLCHR r1, r2, fill.character.

r2 must be one byte past r 1. The byte pointed to by r2 at the start of the
instruction is initialized with the fill character, which is then propagated
for the number of bytes specified in TO.

This instruction expects that TO (the accumulator low order two bytes)
has been set up for the maximum string length to move.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(FRAME

Syntax

Description

6973-1

FRAME

The FRAME (defme frame) directive defines the frame number into
which the object code from the program is to be loaded.

FRAMEn

n frame number (in decimal, unless explicitly specified as a
hexadecimal number).

The FRAME directive is normally the first statement in the program, but
always must precede any statements that generate object code. For more
information about how the Assembler assembles the program object
code, see Section 2, The Assembler.

The FRAME directive also sets the assembler's location counter to the
first byte for code to be assembled into via an ORG directive. On
firmware machines, this zero'th entry point is byte X'OO}', but on
software machines, it may be X'002' for word alignment.

If it is necessary to use byte zero of the object code, the FRAME directive
must be followed by an appropriate ORG, then the value of byte zero,
and then the entry points, as usual. Note that EP is word-aligned when
assembled for systems that require it.

FRAME 511

ORG 0

CHR C'*'

STAR EQU Rl

EP !ENTRYO

EP !ENTRYl

Assembly Manual 4-87
Confidential and Proprietary to The Ultimate Corp.

Instructions

FTLY

4-88

The FIT.. Y directive defines a triple tally (48 bits, or 6 bytes). See the
DTL Y directive for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

6973-1

HALT

The HALT (halt program) instruction interrupts execution of the program
and unconditionally branches to the assembly debugger.

HALT

The HALT instruction is primarily used as a debugging tool. Due to
software machine requirements, the HALT instruction may not be used in
a branch table at the beginning of a program. HALT can be used
anywhere else in a program frame, but should not be used to take the
place of an EP instruction. The NEP instruction should be used to
indicate an invalid entry point; this creates the same effect as HALT, but
guarantees that the object code is the same length as that for EP on each
system type.

The HALT instruction affects only the current process; it does not halt the
entire multi-user system.

HALT interrupts execution of the current program and transfers control
to the assembly debugger at entry point 11 (HALT). Program execution
can be resumed only by specifying an address with the debugger "G"
command. Alternatively, the program execution can be terminated with
the "BYE", "END", or "OFF" commands.

See Section 6, The Assembly Language System Debugger, for more
information about using the debugger.

HALT

Assembly Manual 4-89
Confidential and Proprietary to The Ultimate Corp.

Instructions

HTLY

4-90

The HlLY directive defmes a half tally (8 bits, or one byte character).
See the DlL Y directive for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

10.8

Syntax

Description

6973-1

ID.B

The ID.B (table branch) instruction defines the unconditional branches in
an internal branch table.

ID.B I

I the label (in the current frame) of the branch destination

The ID.B instruction is used instead of a B instruction to define branch
tables (branch on a number used as an index) within a frame. It
guarantees that the object code for each branch instruction has the same
length. Otherwise, some assemblers may produce shoner code for
some branch instructions than for others. The length of an m.B
instruction's object code in bytes, for any given implementation, is the
value of the symbol ID.B.SIZE in the PSYM file.

The ID.B instruction immediately resolves the effective address of the
local label and transfers program control to that address.

MUL ID.B.SIZE ADJUST TO BRANCH TABLE

BSL !GOTO (* INDEXED BY TO)

* GOTO WILL RETURN TO ONE OF THE FOLLOWING BRANCHES

ID.B BLNK , ,

ID.B BLNK '6 '
ID.B BSPACE '4 '

Assembly Manual 4-91
Confidential and Proprietary to The Ultimate Corp.

Instructions

ID.RSA

Syntax

Description

4-92

The ID.RSA (return stack adjust) instruction ensures that the return stack
contains a valid address for subroutine returns.

ID.RSA r

r address register that points to the top stack entry.

The ID.RSA instruction should be inserted in subroutines that modify a
return address to ensure correct operation on both fIrmware and
software machines. This allows for instruction alignment (on a word)
for software machines, which require word alignment. Any subroutine
that modifIes the return address of the stack must ensure that the
modifIed address points to an even byte for these machines.

On firmware machines, the ID.RSA instruction assembles as a null.
However, on software machines, ID.RSA assembles as a macro which
ensures that the return address on the stack is word-aligned. It is
important to insert this instruction in the appropriate spots even though it
appears as a null on firmware machines.

ID.RSA assumes that an address register has been set up pointing to the
top stack entry.

For example, assume that R14 is pointing to the fIrst byte of the top
return stack entry (the first byte of the FID portion). The following
instruction should be inserted before returning from the subroutine:

ID.RSA R14

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

()
6973-1

INC

The INC instruction increments a data value or a register operand. See
the DEC/INC (Data) or DEC/INC (Register) instruction for details.

Assembly Manual 4-93
Confidential and Proprietary to The Ultimate Corp.

Instructions

INCLUDE

Syntax

Description

4-94

The INCLUDE (include program) directive causes the specified program
to be "included" in the program being assembled.

INCLUDE program-name

program-name name of an assembled program in the current user
account and file

The main reason for the INCLUDE directive is to be able to place a set of
shared definitions in one item, and then use the definitions in any other
program. Typically, variables and mode-id's that are common to a set
of programs are placed in a single program for inclusion during
assembly. The advantage of this method is that the definitions are not
duplicated in every program that uses them. Such duplicate definitions
can lead to errors and are in general more difficult to maintain than if
they were all in one program.

The format of the INCLUDEd program is identical to that of any other
program, though typically it consists of only DEFx (definition)
directives.

If the INCLUDEd program does generate code, it may be necessary to
save and restore the location counter of the current program around the
INCLUDE statement, as shown in the example below:

SAVELOC EQU *
INCLUDE TABLEl

INCLUDE TABLE2

ORG SAVELOC

Assembly Manual

Reset location counter

6973-1
ConfidentiaJ and Proprietary to The Ultimate Corp.

(" INP1B
INP1 BX

Syntax

Description

()
6973-1

INP1 BIINP1 BX

The INPIB and INPIBX instructions replace the character addressed by
the register operand with the next character (byte) from the
asynchronous channel input buffer.

INPIB r INPIBXr

r address register (RO-RI5) whose vinual address is the destination of
the byte being read.

The INPIB and INPIBX instructions are used to input data from the
asynchronous channel input buffer into buffers in memory. These
instructions read the next character from the asynchronous channel input
buffer and place it in the location addressed by the register. The byte
previously in that location is overlaid. If the input buffer is empty, the
process is suspended until a character is received from the asynchronous
channel.

Characters transmitted by the channel are automatically queued in the
terminal input buffer for the process, until some configuration
dependent maximum number of characters is received. If this condition
occurs, no further data characters are accepted from the channel; if an
attempt is made to enter more characters, a bell character (X'07') is
output for each attempted input character until the condition is cleared.

The INPIB instruction also tests to determine if the character should be
echoed to the terminal. The INPIB instruction does not echo control
characters (X'OO' through X'IF'); it echoes non-control characters
unless the bit NOECHO is set.

On most machines, the INPIBX instruction never echoes characters on
the asynchronous channel. However, some types of terminals on some
systems perform local echoing. Because of this, it is impottant to use
the OUTIBX instruction when attempting to echo characters read via
INPIBX. Otherwise, characters may be echoed twice.

The INPIB instruction actually consists of several instructions that test
whether a character should be echoed, and execute an OUTIB instruction

Assembly Manual 4-95
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-96

if so. The following example shows an INPIB instruction and its macro
expansion on a fmnware system:

INP1B R13

+INP1BX R13

+BCL R13,X'20',=L002

+BC: R13,X'20',=L002,3

+BBS NOECHO,=L002

+OUT1B R2

=L002 +EQUX *

Caution: The /NP1B and INP1BX instructions are not compatible with
the TERM-VIEW and character translation features of the
Ultimate operating system. To ensure that your programs
are compatible with these features, use the system
subroutines READ@IB or READX@IB. These subroutines are
described in Chapter 5, System Subroutines.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

i~
'_--;/

(... \ LAD

Syntax

Description

6973-1

LAD

The LAD (load absolute difference) instruction loads the difference
between a specified address register and a specified storage register into
the accumulator (TO).

LAD r,s
LAD s,r

r address register (symbol type r for RO-R15)

s storage register (symbol type s).

The LAD instruction computes the difference between the virtual
addresses of the two register operands, and stores the absolute
(unsigned) value in the low-order two bytes of the accumulator, TO.
The result is unsigned, and may be in the range 0-65,535. The other
sections of the accumulator are unchanged .

The LAD instruction can be used to compare virtual addresses of data
only when the addresses can be guaranteed to be one of the following:

• in the same frame, or

• in contiguously linked frames no more than 65,535 bytes apart.

The following actions are taken:

1 . If the virtual addresses are in the same frame when normalized,
they can be compared directly.

2. If the frame numbers of the virtual addresses of the registers are
unequal, the instruction compares correctly if the addresses are:

• in a set of contiguously linked frames, and

• the addresses differ by no more than 65,535.

3. If the vinual addresses are in different unlinked or non
contiguously linked frames, or more than 65,535 bytes apart in a
contiguously linked set, the results of the instruction are undefmed.

It is therefore strongly recommended that the LAD instruction be used
with registers in the same unlinked frame. In order to determine

Assembly Manual 4-97
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-98

address differences (or string lengths) under other conditions, use either
the SIDC or MllDC type of instruction.

LAD BMS,BMSBEG

LAD BMSBEG,BMS

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

("" LOAD
LOADX

Syntax

Description

6973-1

LOADILOADX

The LOAD (load accumulator) instruction loads a relatively addressed
operand value into the accumulator. The LOAD fonn loads into a 4-byte
field (DO); the LOADX fonn loads into a 6-byte field (FPO).

LOADd LOADXd
LOADX f

LOADh LOADXh
LOADm LOADXm
LOADn LOADX n
LOADt LOADX t

d double tally

f triple tally (for LOADX only)

h half tally

m mode-id

n numeric literal); if used, a 2-byte field is assumed (a range of -
32,768 through +32,767). If a I-byte literal (half tally) is being
referenced, it should be defmed separately using the H11.. Y directive.
If the literal is outside the range of -32,768 through +32,767, a 4-
byte literal must be separately defined using the D11.. Y directive, or a
6-byte literal via the FfL Y directive.

The m and n fonn may generate a 2-byte literal at the end of the
program when assembled for certain machines.

t tally

The LOAD instruction loads the operand value into the 4-byte field in the
accumulator called 00. If the operand is a half tally (1 byte) or tally (2
bytes), it is internally sign-extended to fonn a 4-byte field before the
load takes place.

The LOADX fonn loads the operand value into the 6-byte field in the
accumulator called FPO. If the operand is a half tally (1 byte), tally (2
bytes), or double tally (4 bytes), it is internally sign-extended to fonn a
6-byte field before the load takes place.

Assembly Manual 4-99
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-100

The load operation does not affect the other sections of the accumulator.

LOAD D4

LOAD H8

LOAD RETIX

LOAD T4

LOADX D4

LOADX HO

LOADX TO

LOADX FPl

ORG X'lOO'

=QRETIX +:Q RETIX

Assembly Manual

(sign-extend HO into FPO)

(sign-extend TO into FPO)

what is this??

(macro expansion showing

literal generation of RETIX

mode-id, X'l007')

6973-1
Confidential and Proprietary to The Ultimate Corp.

(:' MBD

Syntax

Description

6973-1

MBD

The MBD (move binary number to decimal) instruction converts a binary
value into its equivalent decimal ASCII stting value, and stores the
resulting stting, starting at the address + 1 of the register operand.

MBD d,r MBD n,d,r
MBD for MBD n,f,r
MBD h,r MBD n,h,r
MBD t,r MBD n,t,r

d double tally

f triple tally

h half tally

tally

r address register (RO-R 13) whose virtual address + 1 is the starting
location at which the converted value is to be stored; neither RI4 nor
R 15 should be used.

n integer that specifies the minimum number of characters that the
output string will contain

Note: No section of the accwnulator should be used as the binary
field operand (the d, t, h, or f symbol operand).

The register operand is pre-incremented by one before storing the first
byte (character) of the converted string. After the first character is
stored, the register operand is incremented by one, and the next
converted character is stored at that location. This operation is repeated
until the entire string has been stored.

The length of the string is determined by the format used in the
instruction as follows:

• The first set of MBD formats does not create leading zeros; the field is
variable length. MBD, unlike MBX (which is described in the next
topic) generates one zero for an operand value of zero.

• The second set of MBD formats stores a fixed length field, padded
with leading zeros if necessary. The field is allowed to exceed the
specified length if its precision requires this.

Assembly Manual 4-101
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-102

The incrementing process could generate an address that crosses a frame
boundary. If the register is in linked mode, it is normalized and attaches
to the next frame in the linked chain. If the end of the linked set is
reached during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

If the register is in unlinked mode and the frame boundary is reached,
the assembly debugger is entered with a trap condition indicating
Crossing Frame Limit.

This instruction destroys the current contents of:

BKBIT

T4

DO

01

R14

R15

FPX ('f operand forms only; same as SYSRO)

FPY (,f operand forms only; same as SYSR 1)

SYSRO Cf operand forms only; same as FPX)

SYSRI Cf operand forms only; same as FPY)

MBD is a subroutine call, not a primitive opcode; however, it has been
included as pan of the instruction set for convenience.

For the first set of formats, the subroutine MBDSUB is called to conven
numbers of type h, t, and d (half tallies, tallies, and double tallies). The
subroutine MBOSUBX is called for numbers of type f (triple tallies).

For the second set of formats, the subroutine MBONSUB is called to
convert numbers of type h, t, and d (half tallies, tallies, and double
tallies). The subroutine MBDNSUBX is called for numbers of type f
(triple tallies).

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c

6973-1

MBD

The subroutine call can be coded directly, instead of being called with an
MBD instruction. See the macro expansions below, as well as the
chapter on System Software, which illustrate the subroutine interface.

Assume the following binary tally value is to be convened

0000 1000 1101 0010

This is equivalent to the following hexadecimal value:

X'04D2'

MBD convens that value to the following decimal ASCII string:

1234

The equivalent, character-for-character, hexadecimal ASCII string
value would be:

X'31 32 33 34'

Assuming VALUE is X'04D2', the following instructions would yield
different stored results:

Instruction
MBD VALUE,R9

MBD 8,VALUE,R9

Assembly Manual

Stored ASCII string
1234

00001234

Confidential and Proprietary to The Ultimate Corp.
4-103

Instructions

4-104

The following examples show how a program can be coded to call the
subroutines directly:

Using MBD with minimum number of characters not specified:
MBD CTR1,R9

Calling subroutine directly:
LOAD CTRl

MOV R9,R1S

BSL MBDSUB

MOV R1S,R9

Using MBD with minimum number of characters specified:
MBD 4,CTRl,R9

Calling subroutine directly:

LOAD CTRl

MOV R9,R15

MOV 4,T4

BSL MBDNSUB

MOV R1S,R9

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

(-- MBX
MBXN

Syntax

Description

6973-1

MBXlMBXN

The MBX (move binary number to hexadecimal) and MBXN instructions
each conven a binary value into its equivalent hexadecimal ASCII string
value, and stores the resulting string, statting at the address + 1 of the
register operand.

MBX d,r MBXN n,d,r
MBX for MBXN n,f,r
MBX h,r MBXN n,h,r
MBX t,r MBXN n,t,r

d double tally

f triple tally

h half tally

tally

r address register (RO-R 15) whose virtual address + 1 is the statting
location at which the convened value is to be stored.

n integer that specifies the number of characters to conven

The MBX instruction uses the first operand to locate the rightmost digit
to be convened. It then uses HO, the low-order byte of the accumulator,
to determine the number of characters to conven and whether zero
padding is to be used for output. HO must be set up prior to executing
the MBX instruction.

The MBXN instruction is similar to MBX, except it first sets up HO with
the number of characters to conven specified in the instruction and with
zero padding. MBXN then executes the MBX instruction.

The MBX instruction assumes HO has been set up as follows:

Assembly Manual 4·105
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-106

Bit Contents

0 1 (set) pad string with leading zeros
o (unset) suppress leading zeros

4-7 The number of ASCII hexadecimal digits to create. If 0, the
instruction becomes a NOP. If greater than the number of
nibbles in the fIrst operand, the results are undefIned. If less
than the number of nibbles in the operand, the most
signifIcant nibbles are skipped so that the conversion will
fInish on the rightmost nibble.

Both MBX and MBXN destroy the current contents of HO. All of DO may
be affected, depending on machine type.

The MBX instruction converts a binary number to its equivalent ASCII

string value in hexadecimal. The length of the result string is
determined by the HO as follows:

• If leading zeros are suppressed, the field is variable length. In this
case, MBX, unlike MBD, does not generate one zero for an operand
value of zero.

• If padding is specifIed, the fIeld is a fIxed length string, padded with
leading zeros if necessary. The field is truncated on the left, if the
specifIed length is exceeded.

The register operand is pre-incremented by one before storing the first
byte (character) of the converted string. After the first character is
stored, the register operand is incremented by one, and the next
converted character is stored at that location. This operation is repeated
until the entire string has been stored. When the instruction terminates,
the register points to the last byte moved. If no bytes are generated, the
register is unchanged.

The incrementing process could generate an address that crosses a frame
boundary. If the register is in the unlinked mode and the frame
boundary is reached, the assembly debugger is entered with a trap
condition indicating Crossing Frame Limit. If the register is in linked
mode, it is normalized and attached to the next frame in the linked chain.
If the end of the linked set is reached during the normalization process,
the follOwing action is taken:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

MBXIMBXN

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Assume the following binary tally value is to be converted
0000 1000 1101 0010

This is equivalent to the following hexadecimal value:
X' 0402 '

Converting this value to its equivalent value as a hexadecimal ASCII

string would result in a character-for character conversion that yields a
string value as follows:

0402 (or X' 30 34 44 32')

Assuming V ALOE is X'04D2', the following instructions would yield
different stored results:

Instruction
LOAD X' 04'

MBX VALUE,R9

MBXN 2,VALUE,R9

MBXN 4,VALUE,R9

Additional examples:
MUL 3

STORE T4

LOAD X, 84 I

MBX T4,OB

LOAD X' 04 I

MBX FP2,R14

MBXN 4,CTR1,R9

Assembly Manual

Stored ASCII string

402

02 (truncated)

0402

multiply a value
store value in T4 to free accumulator
for MBX: zero fill, convert 4 nibbles
convert value in T4 to ASCII hex

zero suppress, convert 4 nibbles

zero-fIll, convert 4 nibbles

4-107
Confidential and Proprietary to The Ultimate Corp.

Instructions

MCC

Syntax

Description

4-108

The MCC (move character to character) instruction stores the character
addressed by the fIrst operand at the location addressed by the second
operand.

MCC c,c
MCC c,r
MCC n,r
MCC r,c
MCC r,r

c relatively addressed characters

n constant or literal values

r address registers

The MCC instruction copies a data character to a specified location.

The character addressed by the first operand is stored at the location
addressed by the second operand. The contents of the register operands
are unaffected.

Not e : Half tallies (symbol type h) are not directly supported;
however, they can be equated to characters, then moved
accordingly.

MCC X I FE', Rll

MCC AM,Rll same as previous example, except
uses the PSYM name for X'FE'

MCC R14,R15

MCC PRMPC,R15

MCC R15, PRMPC

MCC R15;CO,CH8

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(Mel

Syntax

Description

6973-1

Mel

The Mel (move character to character, incrementing) instruction stores
the character addressed by the fIrst operand at the address + 1 of the
second operand. The extended Mel instruction, which uses a third
operand, repeats the move a specifIed number of times.

Mel c,r
Mel n,r

Mel n,r,n
Mel n,r,t
Mel r,r

c relatively addressed character

n constant or literal value

r register

tally

The fIrst operand references the character to be moved. The second
operand is an address register (RO-R 15) whose virtual address + 1 is the
location at which the character is to be stored.

The third operand is used with the extended form, and if present,
specifIes the number of times the move is to be repeated.

In the extended form, the same character is moved and the second
operand is incremented until the terminating condition is met as specifIed
in the third operand. If the third operand is initially zero (0), a total of
65,536 bytes (all the same character) are moved and stored.

With both forms, address register 15 (R 15) and the accumulator DO may
be used.

Note: Half tallies (symbol type h) are not directly supported;
however, they can be equated to characters, then moved
accordingly.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in

Assembly Manual 4-109
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-110

unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The extended form of the Mel instruction sets up the conditions for the
MIlT instruction, which moves a string of bytes. See the MIlT

instruction for details.

MCl AM,R10,9

+MOV R10,R1S

+MClNR AM,R10

+LOAD =T-1+9

+MllT:RR R1S,R10

Assembly Manual

move nine attribute marks
code generated on firmware
by extended form of instruction

6973-1
Confidential and Proprietary to The Ultimate Corp.

(MOB
MXB

Syntax

Description

6973-1

MDBIMXB

The MDB (move decimal number to binary) converts a decimal ASCII

character to its equivalent binary value and accumulates it into a symbol
operand. The MXB (move hexadecimal number to binary) converts a
hexadecimal ASCII character to its equivalent binary value and
accumulates it.

MDB r,d MXB r,d
MDB r,f MXB r,f

MXB r,h
MDB r,t MXB r,t

d double tally

f triple tally

h half tally (MXB only)

tally

r address register (RO-R 15) that contains the virtual address of the
character to be converted

The fIrst operand is an address register (RO-RI5) which references the
ASCII character to be converted. The second operand specifies the
location into which the converted byte is to be accumulated and should
be initialized before this instruction is executed.

The character addressed by the first operand is assumed to be ASCII

decimal number (for MDB) or ASCII hexadecimal number (for MXB). If
not, the result of the instruction is unpredictable.

The MDB and MXB instructions are normally used in a loop, with the
value of the second operand initially set to zero. The ASCII characters
are accumulated according to the following formulas:

MDB: operand2 = operand2 * 10 + binary equivalent of operandI

MXB: operand2 = operand2 * 16 + binary equivalent of operandI

That is, each execution of the MDB or MXB instruction multiplies the
previous value in the second operand by 10 (MDB) or 16 (MXB). then

Assembly Manual 4-111
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-112

adds in the binary equivalent of the character addressed by the fIrst
operand.

Note: These instructions have been largely superseded by the
equivalent string conversion instructions MSDB, MSXB, MFD,

MFE, and MFX.

ZERO FPO Clear the accumulator

LOOP INC R1S Set on next character

BCNN R1S,QUIT Done if not numeric character

MDB R1S,FPO Convert one more character

B LOOP

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(MFD
MFE
MFX

Syntax

Description

6973-1

MFOIMFElMFX

These instructions convert ASCII character strings to binary. MFD

(move decimal to binary F-tally) and MFE (move European decimal to
binary F-tally) assume a string of decimal numbers; MFX (move
hexadecimal to binary F-tally) assumes a string of hexadecimal
numbers. The European version, MFE, interprets a comma as a decimal
point.

MFDr MFEr MFXr

r address register (RO-R 15) whose byte address + 1 is the starting
location of the ASCII decimal or hexadecimal character string to
convert.

The results of these instructions are accumulated into the accumulator
FPO as scaled integers; that is, the string is multiplied by 10 raised to the
power of the scaling factor.

Before executing an MFD, MFE, or MFX instruction, the accumulator
must be initialized as follows:

Address Value

H7 scaling factor. contains the number of fractional digits
expected in the string. This must be in the range 0-15
(O-X'F')l. The converted value stored in FPO is scaled
up if there are not enough decimal places in the string.

H6 contains the maximum number of digits allowed to the
left of the decimal point; typically used with fixed
length strings. A zero is equivalent to 256.

FPO any value in FPO is multiplied by 10 (MFD and MFE) or
by 16 (MFX) before each byte is converted; the
converted byte is added to the previous value; initial
value is typically zero.

1 The high order four bits have special significance and are used by certain system
processes. See Table 4-2.

Assembly Manual 4-113
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-114

Table 4-2. Bits in H7 used by MFD, MFE,
\ and MFX

Bit In H7 If Set Before If Set After Instruction
Instruction

B63 no sign digit should occur; at least one character was
if one is found, conversion processed
stops and NUMBIT is reset
to zero

B62 previous processing at least one numeric digit
encountered a numeric digit has been found; if not,

NUMBIT is reset to zero

B61 decimal point was indicates a scaling factor
previously encountered and greater than zero and a
the scaling factor is greater decimal point has been
than zero; digits currently encountered
being processed are
considered fractions

B60 indicates a minus sign was indicates a minus sign has
found previously. If string been found; this bit is
being convened currently copied to NEGBIT in the
also contains a minus sign, ACF
results are undefined.

The bits shown in Table 4-2 are used primarily when it is necessary to
separate the processing of an input string into multiple segments. The
bits are set, but never reset, by these instructions.

The conversion terminates when one of the following conditions occurs:

• When a non-numeric character (for MFD/MFE, a character not in the
range 0-9; for MFX, a character not in the range O-F), is found. A
plus or minus character in the first position, or a decimal point in any
position, unless H7 = 0, are not terminating characters.

If the terminating character is a decimal point or is a system delimiter
(a character in the range x'FO'-x'FF'), the flag NUMBIT is set to 1;

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

MFDIMFElMFX

otherwise, NUMBIT is zeroed. The register addresses the tenninating
character. The result is scaled as specified by H7 even if the
conversion is stopped by a non-standard delimiter.

• When the number of characters specified by H6 have been converted.
NUMBIT is zeroed, and the register addresses the last character
converted. There is no scaling of fractional digits in this case.

• When the number of fractional digits specified by H7 have been
converted, and the next character is not a system delimiter or decimal
point. NUMBIT is zeroed, the result is scaled, and the register
addresses the terminating (unconverted) character.

FPO is always scaled as specified by H7 (even if no digits have been
convened) except when the number of characters specified by H6 have
already been converted (case 2, above).

After execution, H6 is decremented by one for each digit found to the
left of the decimal point. When converting fixed length strings, then,
H6 can be compared to zero to determine if an entire string was
successfully converted.

If the string is null, or if no numeric characters are found before the
tenninating character is encountered, NUMBIT is zeroed.

Not e : If more than one decimal point is encountered, the results are
undefined.

The following are examples of MFD and tv1FX usage.

msttuction: ZERO T3
ZERO FPQ
MFD R4

Before instruction: R4

t
A 18 X'FE'

Move starts: + 1
After instruction:

NUMBIT=l

Assembly Manual

1 00 1 00 1000000000000

H7 H6 FPO

I 00 1 00 1000000000012

H7 H6 FPO
FPO=18 (decimal)

4-115
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-116

Instruction: MOV X'0200',T3
ZERO FPO
MFD R4

Before instruction: R4

t
A -18.75 X'FF'

Move starts: ~ t
After instruction:

102 1 00 1000000000000

H7 H6 FPO

I FO 100 I FFFFFFFFF8AD

H7 H6 FPO
NUMBIT=l FPO=1875 (decimal)
Note integer is scaled

Instruction: MOV x' 0200' , T3
ZERO FPO
MFD R4

Before instruction: R4

t
AM + 1 775QSM

+ 1 Move starts:
After instruction: _____ .--1

102 1 00 1000000000000

H7 H6 FPO

I C21 00 100000002855C

H7 H6 FPO

NUMBIT=O
non-numeric
character
found

FPO=177500 (decimal)
Note integer is scaled even though
there were no fractional digits present

Instruction: MOV x' 0000' , T3
ONE FPO
MFX R4

Before insfruction: Rf 1 00 1 00 1000000000001

H7 H6 FPO

701 F7AM23

Move starts:'-+ t
After instruction:

I C21 00 10000000101F7

H7 H6 FPO

NUMBIT=l FPO=66039 (X'OOOOOOOlOlF7')
Note original value in FPO is included

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c
6973-1

Instruction: MOV X'0204',T3
ZERO FPO
MFX R4

Before instruction: R4

~
A701F7A23

Move starts: ! +
After instruction: =---.J

MFDIMFElMFX

102 I 04 I 000000000000

H7 H6 FPO

I C2 I 00 I 0000000001 F7

H7 H6 FPO
NUMBIT=O FPO=507 (X'OOOOOOOOOlF7')
Maximum string length reached, therefore, result not
scaled

Assembly Manual 4-117
Confidential and Proprietary to The Ultimate Corp.

Instructions

MIC

Syntax

Description

4-118

The MIC (move incrementing character) instruction copies one character
from one location to another location.

MIC r,c
MIC r,r

r address register (RO-R15)

c relatively addressed character

The first operand is incremented by one; the character addressed by the
incremented first operand is copied to the location addressed by the
second.

The MIC instruction is the same as an INcrement followed by an MCC

instruction.

Note: HalJtallies (symbol type h) are not directly supported;
however, they can be equated to characters, then moved
according ly.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

~-~"
I

\"'J

(-~.

!~~/

Mil

Syntax

Description

6973-1

Mil

The MIl (move incrementing character to incrementing character)
instruction increments two register operands, then moves the character
addressed by the first operand to the location addressed by the second
operand. The extended MIl instruction, which uses a third operand,
repeats the move a specified number of times.

MIl r,r
MIl r,r,n
MIl r,r,s
MIl r,r,t

n constant or literal value

r address register (RO-RI5)

s storage register

tally

The flrst operand references the character to be moved. The second
operand is the location at which the character is to be stored. When the
instruction is executed, both register operands are incremented by one.
The character then addressed by the flrst operand is stored at the location
addressed by the second operand.

The third operand is used with the extended form, which moves a
string. If the third operand is a symbol type t or n, it specifles the
number of times the move is to be repeated. If the third operand is a
symbol type s, it specifies the location of the last byte in the string to be
moved.

In the extended form, the assembled code sets up the conditions for the
MIIR or MIlT instruction. With the MIl r,r,s form, address register 15
(RI5) is used. The third operand is moved into R15 and an MIIR

instruction is executed (see the MIIR instruction for details). With the
MIl r,r,t and MIl r,r,n forms, the accumulator DO is used. The third
operand is moved into DO and an MIlT instruction is executed (see the
MIlT instruction for details).

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in

Assembly Manual 4-119
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-120

unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• IfxMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

MIl R4,R6,Tl

+LOADT Tl

+MIIT:RR R4,R6

Tl is operand 3

R4,R6 are operands 1 and 2

SR20 is operand 3

MII R4,R6,SR20

+MOVSR SR20,R15

+MIIR:RR R4,R6 R4,R6 are operands 1 and 2

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MilD
MIIDC

Syntax

Description

6973-1

MIIDIMIIDC

The MHO (move incrementing string to incrementing string, delimiter)
instruction increments two address register operands, then moves the
character addressed by the first operand to the location addressed by the
second operand. If the specified delimiter is not encountered, the
operation is repeated. The MIIDC instruction performs the same
operation, and also counts the number of characters moved.

MIlD r,r,n MIIDC r,r,n

r address register (RO-R15)

n constant or literal value that specifies the mask of delimiters to use as
terminators for the string being moved

The first address register's virtual address + I references the starting
character of the string to be moved. The second address register's
virtual address + I is the location at which the starting character of the
string is to be stored.

The registers referenced by the first two operand fields are incremented
by one; the character addressed by the first register is stored at the
location addressed by the second. This operation is repeated until the
condition specified by the third operand is met.

The third operand, called a "mask byte" indicates the terminating
condition for the string move. The mask byte contains flags for four
system delimiters plus three user-specified characters; it also has a
matchlnomatch flag that allows the move to terminate on either a match
or nomatch with the specified delimiters.

Each byte is tested after it has been copied, to see if it satisfies the
terminating condition.

Note: Because the delimiter test is done after the byte copy, the
virtual addresses of the registers are always incremented by at
least one.

Assembly Manual 4-121
Confidential and Proprietary to The Ultimate Corp.

Instructions

Mask Bytes

4-122

The MllDC instruction uses the accumulator field TO to store the number
of characters moved. As each byte is moved, TO is decremented by one.
If TO was set to ZERO (0), its value after the instruction tenninates is the
negative of the length of the string, including the delimiter. If TO was
set to ONE (I), its value after the instruction terminates is the negative of
the string length excluding the delimiter.

No other sections of the accumulator are affected.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark

attribute mark

value mark

sub-value mark

SM X'FF'

AM X'FE'

VM X'FD'

SVM X'FC'

The other three characters are taken from the scan character symbols
SCO, SCI, and sc2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

('~'
f, '

., J

.,-;'

6973-1

MIIDIMIIDC

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string tenninates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string tenninates
on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more infonnation on the use of the mask byte, see the description of
SCO, SCI, and SC2 in Chapter 3.

Instruction: MIIDC R4, RS , X ' co '

Before instruction: R4

• Data

After instruction: _____ ~1

Instruction: SRA R1S,SCl

MCC C' ',R1S

MIID R4,RS,X'82'

Before instruction: R4

• Data

After instruction: ______ .."t

Assembly Manual

COpy UNTIL SM

mask byte: 1 1 0 0 0 0 0 0

AS

•
-

t

COPY UNTIL BLANK

mask byte: : a a a a a 1 0

RS

• , 2 ' 3 ' 4 ' 5 ' 6'
, B ' C • , 6' _

t

4-123
Confidential and Proprietary to The Ultimate Corp.

Instructions

MIIR

Syntax

Description

4-124

The MIIR (move incrementing string to incrementing string, register)
ins01lction increments two address register operands, then copies the
characters addressed from one location to another.

MIIR r,r

r address register (R3-R14)

The fIrst address register's virtual address + 1 references the starting
character of the string to be copied. The second address register's
virtual address + 1 is the starting location where the string is to be
copied.

The address of the last byte of the string to be copied is taken from
address register 15 (RI5).

The MIIR ins01lction fIrst increments the registers referenced by the
operand fields by one; the character then addressed by the first operand
is stored at the location addressed by the second. A comparison is made
and this operation is repeated until the fIrst operand's address equals that
of R 15.

Caution: R15 should not be used as one of the llVo operands since it is
referenced as the ending location of the string. The
assembler does not checkfor this condition, and if R15 is
used as an operand, the assembled instruction will not
execute properly at runtime.

If the fIrst operand's address equals that of R 15 at the start of this
ins01lction, no action takes place.

For all three registers (operands 1 and 2, plus R15), the incrementing
process could generate an address that crosses a frame boundary. If the
register is in unlinked mode, and the frame boundary is reached, the
assembly debugger is entered with a trap condition indicating Crossing
Frame Limit. If the register is in linked mode, it is normalized and
attaches to the next frame in the linked chain. If the end of the linked set
is reached during the normalization process, the following action is
taken:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

/
C"

~/

6973-1

MIIR

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

SETR R1S,-1+ID.DATA.SIZE

MIIR R14,R13

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-125

Instructions

MilT
MIITD

Syntax

Description

4-126

The MIlT (move incrementing string to incrementing string, 1'0
termination counter) instruction copies a specified number of characters
from one location to another. The MIITD (move incrementing string to
incrementing string, TO termination counter or delimiter) instruction
performs the same operation as MIIT,but terminates the move at a
specified number of characters or when a specified delimiter is
encountered.

MIlT r,r MIITD r,r,n

r address register (RO-R15)

n constant or literal value that specifies the mask of delimiters to use as
terminators for the string being moved

The fIrst address register'S virtual address + 1 references the starting
character of the string to be moved. The second address register's
vinual address + 1 is the location at which the starting character of the
string is to be stored. These instructions also expect that TO (the
accumulator low order two bytes) has been set up for the maximum
string length to move.

The mask byte contains flags for the four system delimiters plus three
user-specified characters; it also has a matchlnomatch flag that allows
the move to terminate on either a match or nomatch with the specified
delimiters.

These instructions are useful when a program expects that a frame
boundary may be crossed, to access the XMODE facility.

If TO is zero at the start of this instruction, no action takes place .

The registers referenced by the first two operand fields are incremented
by one; the character then addressed by the first operand is copied to the
location addressed by the second. TO is decremented by one. A
comparison is made after the copy to determine if one of the terminating
conditions has occurred. If not, this operation is repeated.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Mask Bytes

6973-1

MIITIMIITD

The following are the terminating conditions:

• For the MIlT instruction, when TO reaches zero. This instruction is
typically used to move a fIxed length string.

• For the MIITD instruction, when TO reaches zero, or when one of the
delimiter tests specified by the third operand (the mask byte), is
encountered. This instruction is typically used to move a delimited
string of unknown length to a location of preset maximum length. If
the string is longer than the destination location, the instruction
terminates without overlaying subsequent data.

Note: If TO is not initially zero, the virtual addresses of the
registers are always incremented by at least one, because the
delimiter test is done after the byte copy.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark

attribute mark

value mark

sub-value mark

SM X'FP'

AM X'FE'

VM X'FD'

SVM X'PC'

The other three characters are taken from the scan character symbols
scQ, sc 1, and SC2. The contents of these symbols are specified by the
programmer.

Assembly Manual 4-127
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-128

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string tenninates
on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more infonnation on the use of the mask byte, see the description of
SCO, SCI, and SC2 in chapter 3.

LOAD 4 LOAD 4

MIlT R4,R5 MIITD R4,R5,X'CO' (Stop on SM)

8efore instructions:

-> R4 --v R5 --v TO = 4

Data: IA 18 IC ISMIZ I ... 11 12 13 14 15 16 I

I 1 I 8 I C I SM I Z I 6 I ..•

-> R4 --------------1 R5 --------------~ TO =
o

After MIlT instruction

I 1 I 8 I C I SM I 5 I 6 I ...

-> R4 ----------- R5 -----------~ TO 1

After MIITD instruction

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MOV (Operand)

(. MOV (Operand)

Syntax

(' "
_/

Description

6973-1

The MOV (operand) instruction copies the contents of the ftrst operand

to replace the contents of the second operand. For MOV register
instructions, see MOV (Register).

MOV b,b
MOV d,d
MOV f,f
MOV h,h
MOV m,t
MOV n,d
MOV n,t
MOV s,S

MOV t,t

b bits

d double tally

f aiple tally

h half tally

tally

s storage register

m mode-id

n constant or literal

In the MOV (operand) instruction, the contents of the ftrst operand
replace the contents of the second operand. The two operands must be
of the same length.

Note: A constant or literal cannot be moved directly to a ha/ftally (h)
or triple tally if) . Use the FTLY or HTLY directive to define a
local constant as a symbol, then use the appropriate MOV.

If the first operand is a literal, constant, or mode-id, a literal may be
generated at the end of the program when assembled for some
machines.

Assembly Manual 4-129
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-130

To change the virtual address of an address register, use the MOV
(Register) instruction or the DEC/INe Register instruction or the
SE1R/SETDSP instructions. MOving values to the PCB fields associated
with address registers (RnDSP, RnFID, RnDSPFID) is illegal and may
cause unpredictable results.

MOV D 1, RECORD

MOV H8,H9

MOV SR4,HSEND

MOV T4,T3

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MOV (Register)

(0'0 MOV (Register)

Syntax

Description

6973-1

The MOY (register) instruction copies the virtual address of the fIrst
register operand into the second register operand.

MOY r,r
MOY r,s
MOY r,x

r address register (RO-R15)

s storage register

MOY s,r

MOY s,X

x external address register (in another PCB)

MOY x,r
MOY x,s

In the MOY (register) instruction, the first operand contains the address
to move, and the second operand is the destination of the move.

If one of the operands is an address register that is in another PCB, use
the DEFX directive to defIne the external register symbol. This causes
the MOY instruction to be assembled with the x type operand and
guarantees that the correct object code is generated no matter which
machine type the code is assembled for. The assembler does not check
for this condition, and if the instruction is executed on a software
system, the assembled instruction will not execute properly at runtime.

When an address register is moved to a storage register, the virtual
address of the address register replaces the value in the storage register.
If the address register was attached, the address is converted to the
detached form before the move. The address register remains
unchanged.

When a storage register is copied to an address register, the address
register is first detached, then the virtual address from the storage
register replaces the value in the address register.

When moving one address register to another, the second register may
or may not be attached after the instruction is executed, depending on
the machine type.

Assembly Manual 4-131
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-132

In a multiple-processor machine, an external register is not guaranteed to
be detached. Otherwise, an external register may be regarded simply as
another storage register.

SETRO+ R14,ROFID,2

RS.14 DEFX R14,RBDSP

MOV RB.14,R15

Assembly Manual

Set R14 to DCB

Define RB in PCB that R14

points to

Point my R15 to what his R8

points to

6973-1
Confidential and Proprietary to The Ultimate Corp.

MSDB
MSXB

Syntax

Description

6973-1

MSDBIMSXB

The MSDB (move ASCII string decimal to binary) instruction converts an
ASCII decimal string into its equivalent value as a binary number, which
remains in the accumulator FPO. The MSXB (move ASCII string hexa
decimal to binary) instruction converts an ASCII hexadecimal string into
its equivalent value as a binary number, which remains in the
accumulator FPO.

MSDB r MSXB r

r address register (RO-R 15) whose vinual address + 1 is the starting
location of the ASCII decimal or hexadecimal character string to
conven.

These instructions clear the entire accumulator (T3 and FPO), then the
MSDB instruction executes an MFD, and the MSXB instruction executes
an MFX.

MSDB assumes a string of decimal numbers; MSXB assumes a string of
hexadecimal numbers. The result is an integer stored in FPO.

See the MFD/MFX instruction for details.

Assembly Manual 4-133
Confidential and Proprietary to The Ultimate Corp.

Instructions

MTLY
MTLYU

Syntax

Description

4-134

The MTI.. Y (mooe-id) and MIT.. YU (mooe-id unaligned) directives reserve
storage and set up the symbol in the label field as a symbol type M. The
directives can also be used to only reserve storage if there is no entry in
the label field.

{symbol} MTI..Y m {symbol} MTI..YUm
{symbol} MTLY n,m {symbol} MTLYU n,m
{symbol} MTLY n,n {symbol} M1LYU n,n

symbol name given to tally; the value of the symbol is the current
program counter location.

m mode-id

n literal or constant

There may be one or two operands. If only one operand is present, it
must be a symbol of type m (mode-id). A mode-id consists of a four-bit
entry point number and a twelve-bit frame number or flO.

If two operands are present, the first operand must be a constant or
literal value in the range of 0-15 (X'O'-X'F') that specifies the entry point
number. The second operand may be a literal or a previously defined
mode-id. If a mode-id is specified, only the flO portion is used.

The MIT.. Y form automatically aligns the tally at an even-byte boundary.
The MIT.. YU form does not force the tally being defined to be aligned at a
word (even-byte) boundary.

These directives are typically used when creating a table of mode-ids.
For more information about mode-ids, see Chapter 2.

Symbols of type M may be loaded into the accumulator for use in the
BSLI and ENTI instructions to transfer control indirectly to an external
program frame. See also description for the DEFM directive, which
defmes a mode-id without creating storage.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

()

MUL
MULX

Syntax

Description

6973-1

MUUMULX

The MUL and MULX (multiply) instructions multiplies the contents of the
accumulator by the value of the operand. The MUL form addresses the
accumulator as a 4-byte field (DO); the MULX form addresses it as a 6-
byte field (FPO).

MUL d

MUL h
MUL n
MUL t

d double tally

f triple tally (for MULX only)

h half tally

MULxd
MULX f
MULX h
MULX n
MULX t

n numeric literal; if used, a 2-byte field is assumed (a range of -32,768
through +32,767). If a I-byte literal (half tally) is being referenced,
it should be defined separately using the HlL Y directive. If the
literal is outside the range of -32,768 through +32,767, a 4-byte
literal must be separately defined using the DlL Y directive, or a 6-
byte literal via the FIL Y directive.

The n form may generate a 2-byte literal at the end of the program
when assembled for certain machines.

t tally

The MUL instruction multiplies the operand value by the 4-byte field in
the accumulator called DO. If the operand is a half tally (1 byte) or tally
(2 bytes), it is internally sign-extended to form a 4-byte field before the
multiply operation takes place.

The 8-byte result is stored in DI and DO.

The MULX instruction multiplies the operand value by the 6-byte field in
the accumulator called FPO. If the operand is a half tally (1 byte), tally
(2 bytes), or double tally (4 bytes), it is internally sign-extended to form
a 6-byte field before the multiply operation takes place.

The low order eight bytes of the result are stored in D I and DO.

Assembly Manual 4-135
Confidential and Proprietary to The Ultimate Corp.

Instructions

These instructions cannot detect arithmetic overflow or underflow.

The multiplication does not affect the original operand.

MUL D4

MUL H8

MUL T4

MULX D4

MULX FPl

MULX H8

MULX T4 ",

MUL 11

4-136 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MXB

6973-1

MXB

The MXB (move hexadecimal to binary) insttuction convens a
hexadecimal ASCII byte to its equivalent as a binary number and adds the
result to a location specified by a symbol operand. For details, see the
MDB/MXB instruction.

Assembly Manual 4-137
Confidential and Proprietary to The Ultimate Corp.

Instructions

NEG

Syntax

Description

4-138

The NEG (negate) instruction replaces the value of a specified operand
with its negative (two's complement).

NEGd
NEGf
NEGh
NEG t

d double tally

f triple tally

h half tally

tally

The NEG insttUction returns the negative of a value, where the value is
treated as a binary number.

The negative of a value is computed by applying the two's complement
operation to it. The two's complement of a number is the result of
invening each bit, then adding 1. The high order bit of a binary number
is always the sign bit.

Original Value: 9

Inverted Value:

Addition of 1:

Negated Value: -9

Original Value: -63

Inverted Value:

Addition of 1:

Negated Value: 63

Assembly Manual

In Bits:

In Bits:

Confidential and Proprietary to The Ultimate Corp.

0000 1001

1111 0110

+1

1111 0111

1100 0001

0011 1110

+1

0011 1111

6973-1

(NEP

Syntax

Description

C··
-</

6973-1

NEP

The NEP (not entry point) instruction defines a program location at the
start of a frame as a "non-entry point". NEP executes a HALT and
transfers control to the assembly debugger.

NEP

NEP interrupts execution of the current program and transfers control to

the assembly debugger at entry point 11 (HALT). Program execution
can be resumed only by specifying an address with the debugger G
command. Alternatively, the program execution can be terminated with
the BYE, END, or OFF commands.

The NEP instruction is primarily used as a debugging tool to indicate an
invalid entry point. Due to software machine requirements, the HALT

instruction may not be used in a branch table at the beginning of a
program; the NEP instruction is to be used instead. The NEP instruction
has the same effect as HALT, but guarantees that the object code is the
same length as that for EP (entry point) on each type of machine.

The NEP instruction affects only the current process; it does not halt the
entire multi-user system.

See Chapter 8, The System (Assembly Language) Debugger, for more
information about using the debugger.

Assembly Manual 4-139
Confidential and Proprietary to The Ultimate Corp.

Instructions

NOP

Syntax

Description

4-140

The NOP (no operation) instruction performs no action in the program; it
merely causes the program to pass on to the next instruction to be
performed.

NOP

The NOP instruction can be used as a placeholder for a future instruction
or when patching object code on a particular machine. It can also be
used to generate a small delay. However, this is all machine-dependent;
NOP is not normally useful in a general-purpose program.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

6973-1

ONE

The ONE (set to one) instruction replaces the contents of the operand
with a binary one (1) value.

ONE d
ONE f
ONE h

ONE t

d double tally

f triple tally

h half tally

tally

The operand value becomes a binary one.

half-tally: 0000 0001

tally: 0000 0000 0000 0001

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-141

Instructions

OR

Syntax

Description

4-142

The OR instruction logically ORs two bytes, and stores the result in the
byte referenced by the fIrst operand. The byte referenced by the second
operand is unchanged.

OR r,n
OR r,r

r address register

n numeric literal

The logical OR operation tests two bytes, one bit at a time, for a true
condition. If either bit is true (1), the result is true (1). Otherwise, the
result is false (0). For example,

Byte 1:
Byte 2:

Result:

0000 0101

1111 0011

1111 0111

The result is stored in the byte referenced by the first operand. The byte
referenced by the second operand is unchanged.

OR R14,X'FD'

OR R14,R1S

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

ORG

Syntax

Description

6973-1

ORG

The ORG (origin) directive resets the program's location counter to a
specified byte offset in the current program frame for use by the
assembler during program assembly.

ORG n

n number within the size of an ABS frame; may also be current
program location counter function (*). The * function can be used
alone, but is normally used with a +n or -n, meaning 'n' bytes
before or after the current location counter value.

The ABS frame size is stored in a PSYM symbol called
ID.ABS.FRAME.SIZE, and may vary among various types of
firmware and software machines.

The ORG directive resets the program location counter to a specified byte
location.

When a program is assembled, the FRAME directive sets the location
counter ORG to the address of entry point 0:

ORG 2

ORG 1

FRAME directive on many software machines
FRAME directive on firmware machines

The location counter then advances, byte by byte. as the assembler
generates object code. The current location function (*) always contains
the address (byte offset) of the next byte to be generated. The *
function can be specified in the operand field of various directives that
define data symbols in terms of the current program location.

There are several reasons to change the location counter in an explicit
manner:

• To save and restore the location counter; for example, if a program is
INCLUDEd that actually generates code:

SLOC EQU * Save location counter

INCLUDE TABLEl Include program to get table

ORG SLOC

Assembly Manual

Reset in case TABLEl has

object code

Confidential and Proprietary to The Ultimate Corp.
4-143

Instructions

4-144

• To use byte zero of the object code. The FRAME assembler directive
typically sets the location counter to 1 or 2 (not zero) because the
object code begins at one. To use byte zero for storage:

AM

FRAME xxx

ORG 0

TEXT X'FE'

CMNT *
EQU Rl

CMNT *
CMNT *

Define an attribute mark

Location counter is back to 1

Used to reference the byte at

location zero symbolically

via label AM

EP ! ENTRYO EP Forces location counter to 2

CMNT * if necessary for this machine

• To leave "space" in the object code for variables that the program
uses. This is not recommended, since this leads to non-re-entrant
(non-sharable) code, but is not prohibited. For example,

COUNT DEFT Rl,*16

ORG *+2

Since the tally COUNT occupies two bytes in the object code, the ORG

*+2 is used to "space" over these two bytes.

Programmers are advised to make sure that any absolute number is a
safe ORG before using it. An ORG instruction with an absolute offset
that is placed after code will probably be incorrect when assembled for
different machine types since the object code is of different lengths. The
only exception is when the offset is prior to any code, or beyond any
conceivable expansion of code in the frame.

One area where a safe ORG can be easily guaranteed is past the last entry
point. It can be assumed that no implementation will have entry point
zero start at a location greater than X'002'. Furthermore, it can be
assumed that an entry point will require no more than four bytes in any
implementation. For example,

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

C
-,

- -/

6973-1

ORG

FRAME 511

*
EP LABLI 0 starts no higher than X'002'

NEP * 1 starts no higher than X'006'

(2+4)

ORG 10 Safe ORG (2+4+4)

However, it cannot be assumed that the next available location that the
assembler will assign after a FRAME directive is location x'QQ 1'. If it is
necessary to assign data starting at location x'OOl' then an ORG 1
directive should be insetted. For example:

FRAME 512

(all comments)

ORG 1

TEXT C'Data not after EP',X'FF'

FRAME 513

*

ORG -11+ID.ABS.FRAME.SIZE

TEXT X'OCOCOCOC'

TEXT X'OCOCOCOC'

TEXT X'OCOCOD'

The X'QD' byte will end up in the last byte of the frame regardless of
the ABS frame size.

Assembly Manual 4-145
Confidential and Proprietary to The Ultimate Corp.

Instructions

OUT18
OUT18X

Syntax

Description

4-146

The OUTIB instruction stores the character (byte) addressed by the
register operand in the next location in the asynchronous output buffer.
The OUTIBX fonn is used anywhere when a write is needed only to
echo a character read in by a INPIBX instnIction.

OUTlB r
OUTIBXr

r address register (RO-RI5) that contains the virtual address of the
character to be output

The OUTlB instruction outputs a character to a process's asynchronous
channel (nonnally connected to a terminal). The oUTlBX instruction is
used anywhere that the write is only to echo a character read in by a
INP 1 BX instruction.

The virtual addressed by the register is stored in the next location in the
asynchronous channel output buffer. If the output buffer is full, the
process is suspended until characters are removed from the buffer by the
asynchronous channel controller.

Caution: The OUTiB and OUTiBX instructions are not compatible with
the TERM-VIEW and character rranslationfearures of the
Ultimate operating system. To ensure that your programs
are compatible with these features, use the system
subroutines WRITE@OB or WRITEX@OB. These subroutines
are described in Chapter 5, System Subroutines.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

6973-1

ROM

The RQM (release quantum) instruction releases a process's timeslice.
thereby deactivating the process.

RQM

The RQM instruction is a request to the Kernel to turn over control to the
next process in line. The process that executed the RQM is reactivated
after other active processes in the process chain have executed their
timeslices.

RQM typically causes a process to sleep (remain deactivated) for about
50 milliseconds, though this varies with machine type.

See the xcc instruction for examples of RQM usage.

Assembly Manual 4-147
Confidential and Proprietary to The Ultimate Corp.

Instructions

RTN

Syntax

Description

4-148

The R1N (return from subroutine) instruction transfers program control
to the location specified by the current entry in the return stack.

R1N

This instruction exits a subroutine that has been called via a BSL

instruction. It does not matter whether the subroutine had been called
locally or externally.

If there are no entries in the return stack, the assembly debugger is
entered with a Return Stack Empty trap condition.

The assembly subroutine return stack is in the user's PCB. Up to 125
entries can be placed in the return stack.

An entry can be deleted from the return stack by the instruction POPR1N.

This is mandatory if a subroutine is to be exited without using a RTN
instruction.

The entire return stack can be reset by the instruction INITR1N, which
may be useful in conditions where a process is to be re-initialized, and
all current entries in the stack are to be deleted or ignored.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

c

6973-1

S8

The SB (set bit) instruction sets the referenced bit to an "on" condition
(that is, 1 or true).

SB b

b specifies the bit symbol that is to be set

The SB instruction sets a bit flag or switch in a program. The referenced
bit value is set to 1.

For infonnation on a related instruction, see ZB instruction.

Assembly Manual 4-149
Confidential and Proprietary to The Ultimate Corp.

Instructions

SET.TIME

Syntax

Description

4-150

The SET.TIME insnuction resets the system's internal time and date.

SET.TIME

The SET.TIME insnuction is a monitor call (that is, it executes an external
subroutine call to the operating system kernel) that is included as part of
the instruction set.

SET.TIME assumes that the accumulator FPO has been set up as follows:

1'2 (upper two bytes of FPO) contains the date as a number of days past
December 31, 1967.

DO (lower four bytes of FPO) contains the time as a number of
milliseconds past midnight.

SET. TIME

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

Syntax

Description

6973-1

SETDSP

The SETDSP instruction sets the displacement (DSP) field of an address
register to the specified value.

SETDSP r,n
SETDSP r,t

SETDSPO r
SETDSPI r

r specifies the address register (RO-R15) to be set up.

n constant or literal value that is to be used as displacement

tally symbol that contains value to be used as displacement

The SETDSPO instruction sets the displacement to zero (0); the
SETDSPI instruction sets the displacement to one (1).

The SETDSP instruction is used to set the displacement portion of an
address register's virtual address to a specific value. This is an
alternative to setting up a virtual address in a storage register, then using
the MOV (Register) instruction to move the virtual address into the
address register.

SETDSP sets the displacement field of an address register to the specified
value (0, 1, or the n or t value). If an n value is specified, a 2-byte
literal may be generated at the end of the program when assembled for
certain machine types, and the instruction will assemble the same as if a
t symbol had been specified. The register may be detached after
execution of the instruction, depending on machine type.

The following example shows the effect of each form of the SETDSP
instruction, regardless of the implementation details on any particular
machine type (such as detaching registers):

SETDSP r,m

MOV m,RnDSP

SETDSP r,t

MOV t,RnDSP

SETDSPO r

ZERO RnDSP

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-151

Instructions

4-152

SETDSPl r

ONE RnDSP

Caution: The above merely shows the effective instruction generated
by each/orm o/the SETDSP instruction. Do not try to
substitute the descriptive code for the SETDSP instruction,
because register attachment needs to be handled correctly/or
each machine type.

The following are examples of SETDSP instructions and the
corresponding macro expansions on a firmware machine.

SETDSPO R13

+DETZERO R13*

SETDSPl R13

+DETONE R13*

SETDSP R13,5

+DETZERO R13

+MOV S,R13DSP

SETDSP R13,TS

+DETZERO R13

+MOV TS,R13DSP

* The DETONE and DETZERO instructions are for use only by the ftrmware assembler
in macros such as SETDSP. They should not be coded directly. in order to
guarantee compatibility of source code across all system types, ftrmware and
software.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SETR

Syntax

Description

6973-1

SETR

The SEm (set register) instruction sets the FlO and displacement (DSP)
fields of an address register to the specified values.

SETR r,n
SETR r,n,n
SETR r,t
SETR+ r,n,d,n
SETR+ r,t,d,n
SETR- r,n,d,n
SETR- r,t,d,n
SETR { +/-} r,n,d
SETR {+/-} r,t,d

SEmO{ +/-} r,n
SETRO { +/-} r
SETRO+ r,d.n
SEmO- r,d,n

SETRO{ +/-} r,d

r address register (RO-RI5) to be set up

d double tally

f triple tally

h half tally

n literal or constant

t tally

SEmi {+/-} r,n
SETRI (+/-) r
SETRl+ r,d,n
SETR 1- r,d,n

SETRI {+/-} r,d

The SEm instruction is used to change the virtual address of an address
register to a specified value. It is an alternative to setting up the virtual
address in a storage register, then using the MOV (Register) instruction
to move the virtual address into the address register.

There may be one, two, three or four operands; the first operand always
specifies the address register to set up.

With the first set of formats (SETR, SETR+, and SETR-), the second
operand specifies the displacement to use. If the third operand is
present, it specifies the FlO to use; if not present, the FlO value comes
from the accumulator (INCed if SETR+ or DECed if SETR-). The fourth
operand is valid only if the SETR+ or SETR- form is used; it specifies the
value by which to INC or DEC the FlO; if not present, I is used to
increment or decrement the third operand.

Assembly Manual 4-153
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-154

With the second and third $et of fonnats, SETRO specifies a
displacement of 0 and SETR 1 specifies a displacement of 1. If a second
operand is present. it specifies the FID to use; if not present, the FID
comes from the accumulator (INCed if SETRO+/SETR 1 + or DECed if
SETRO-/SETR 1-). The third operand is valid only if the SETRO+/SETR 1
or SETRO-/SETRl- is used; it specifies the value by which to INC or DEC
the FID; if not present, 1 is used to increment or decrement the third
operand.

If an n value is a FID or a FID INC/DEC value, a 4-byte literal may be
generated.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SHIFT

Syntax

Description

(~:
6973-1

SHIFT

The SHIFf (shift) instruction shifts the value of the byte addressed by a
register operand by one bit to the right, sets the leftmost (high order) bit
to zero, and stores the new byte value at the virtual address of the
second register operand.

SHIFf r,r

r address register (RO-R15)

The fIrst operand specifIes the byte to be shifted. The second operand
specifIes the storage location of the new byte value.

The value of the byte referenced by the fIrst operand is logically shifted
one bit; the vacated leftmost bit is set to zero. The result is stored at the
location addressed by the second operand. The byte referenced by the
fIrst operand is unchanged.

SHIFT R14, R1S

Assembly Manual 4-155
Confidential and Proprietary to The Ultimate Corp.

Instructions

SleD

Syntax

Description

4-156

The SICD (scan string to count of delimiters) insmIction scans a string
starting from the character addressed by a register operand until a
specified number of a delimiter has been scanned.

SlCD r,n

r address register (RO-R15) whose virtual address points to the
character where the scan begins

n constant or literal value that specifies the mask of delimiter criteria to
use for the string being scanned

The SlCD instruction scans a string until a specified count of a delimiter
has been reached. The result is to position the address register at a
specific point within a data SmIcture.

The SleD instruction expects that TO, the low-order tally of the
accumulator, has been set up to contain the count of delimiters to be
scanned over. If TO is initially zero, the results are unpredictable.

The register operand is incremented by one; the character then addressed
is examined. This operation is repeated until the terminating condition
specified by TO and the second operand (the mask byte) is met. If the
initial condition of the accumulator and the mask byte matches the
terminating condition, no operation is performed. Each byte is tested
after it has been scanned, to see if it satisfies the terminating condition.

N ole The mask byte used by SICD is different/rom the one used in
the SID, SIDC, SITD, MilD, MIlDC, and MIlTD instructions.

Only one of six possible delimiters may be specified as the test
character in the SleD insmIction.

Three of the possible scan delimiters are fixed, and are the standard
system delimiters (excluding the segment mark):

attribute mark

value mark

sub-value mark

Assembly Manual

AM X'FE'

VM X'FD'

SVM X'FC'

Confidential and Proprietary to The Ultimate Corp.
6973-1

6973-1

SleD

The other three delimiters are variable, and the programmer may set up
the desired test character in one of the scan characters seQ, se I, and
se2.

Six bits in the mask byte are used to determine which one of the six
above characters is to be compared; if a bit is set (1), the corresponding
character in the scan string is tested; if zero, it is ignored.

Bits Q and I set up additional criteria, as follows:

Q bit Q (high-order bit) of the mask, if set, indicates that the
accumulator 1'0 should be decremented by I before the scan is
started and the terminating condition tested. If zero, 1'0 is not
decremented.

1 bit 1 specifies the condition for abnormal termination of the scan. If
set, the scan terminates abnormally if a character is found that is
logically higher than the character in se2. If zero, the scan
terminates abnormally if a character is found that is logically higher
than the delimiter being scanned for. If the delimiter being scanned
for is in SC2, therefore, the state of this bit does not matter.

See Figure 4-1. (The parentheses around seQ, SCI and se2 are to
indicate that it is the contents of these locations that are compared.)

The scan can terminate either normally or abnormally. It terminates
normally if the number of delimiters specified in 1'0 (pre-decremented if
required) is encountered. In this case, 1'0 is zero, and the register points
to the fmal delimiter (or is unchanged if no scan takes place).

The scan terminates abnormally if a character higher than that in se2
(mask bit Ion) or higher than the delimiter (mask bit 10ft) is
encountered. In this case, the value remaining in 1'0 is the number of

o 2 3 4 5 6 7

decrement abnormal AM VM SVM (SCQ) (SC1) (SC2)
TO termination

Figure 4-1. SleD Mask Byte Format

Assembly Manual 4-157
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-158

delimiters that must be inserted in the data to create the required data
position, and the register points one byte before the character that caused
the scan to terminate.

A few examples should make this clear:

Mask byte Bit pattern Meaning

X'AO' 1010 0000 Stop on nth occurrence of an AM,

or on the first SM; decrement TO by
1 before starting scan.

x'20' 0010 0000 Stop on nth occurrence of an AM,
or on the first SM; do not
decrement TO before starting.

x'02' 00000010 Stop on nth occurrence of the
contents of SC 1, or on the first
character higher; do not decrement
TO before starting scan.

x'42' 0100 0010 Stop or. ;~th occurrence of the
content:; uf Sc 1, or on the first
character higher than the contents
of SC2; do not decrement TO
before starting scan.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to

the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

c

6973-1

The following are some examples of SleD usage.

Scan to attribute 3:

LOAD 3

SleD R1S,X'20'

Before instruction: R15

•

TO = 3
Scan to AM

mask byte: 0010 0000

EO A E11] E12 A E2 A E31] E321 \ E322] E33 A _

After instruction: _______ 1
TO 0

Scan to attribute 6:

LOAD 6 TO = 6

SleD

SleD R1S,X'AO' Decrement TO, scan to AM

Before instruction: R15

•
mask byte: 10100000

Data EO A E11] E12 A E2 A E31] E321 \ E322] E33 A _

After instruction: _______________ -.11

TO = 2

Note that R15 has been backed off one byte from the segment mark.

Assembly Manual 4-159
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-160

Scan to attribute 3, value 2, subvalue 2:

LOAD 3

SleD R15,X'20'

LOAD 2

SleD R15,X'90'

LOAD 2

SleD R15,X'SS'

Before instruction: R15

+

TO 3

Scan to AM

TO = 2

Decrement TO,

TO = 2

Decrement TO,

first mask byte:
second mask byte:

final mask byte:

scan to VM

scan to SVM

0010 0000
10010000

1000 1000

EO"E11]E12"E2"E31]E321 \E322] E33"_

After first scan:

After second scan:

After final scan:

TO o.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~ SID
sloe

Syntax

Description

()
6973-1

SID/SIDC

The SID (scan incrementing string to delimiter) instruction scans a string
starting from the character addressed by a register operand until a
specified delimiter has been scanned. Sloe also counts the number of
characrersscanned.

SID r,n SIDe r,n

r address register (RO-R15) whose virtual address + 1 contains the
character where the scan begins

n constant or literal value that specifies the mask of delimiter criteria to
use for the string being scanned.

The register operand is incremented by one; the character then addressed
is examined. This operation is repeated until the terminating condition
specified by the second operand (the "mask" byte) is met.

Each byte is tested after it has been scanned to see if it satisfies the
terminating condition.

N ole: The virtual address of the register is always incremented by at
least one, because the delimiter test is done after the byte scan.

The Sloe instruction expects that TO, the low-order tally of the
accumulator, has been set up (usually to ZERO or ONE) so that on
termination, it indicates the number of characters scanned. With the
SIDe instruction, as each byte is examined, TO is decremented by one.
No other sections of the accumulator are affected. If TO is set to ZERO

(0), its value after the instruction terminates is the negative of the length
of the string, including the delimiter. If TO is set to ONE (1), its value is
the negative of the string length excluding the delimiter.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to

Assembly Manual 4-161
Confidential and Proprietary to The Ultimate Corp.

Instructions

Mask Bytes

4-162

the next frame in the linked chain. If the end of the linked set is reached
during the nonnalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• IfxMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark

attribute mark

value mark

sub-value mark

SM X'FF'

AM X'FE'

VM X'FD'

SVM X'FC'

The other three characters are taken from the scan character symbols
seO, se 1, and se2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string tenninates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates
on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more information on the use of the mask byte, see the description of
seO, SCi, and SC2 in chapter 3.

The following are some examples of SID(C) usage:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

,,r-',,
0;

6973-1

Instruction:

SIDC R4,X'CO'

Before instruction: R4

~
AII8 11 CII

After instruction: ~
SRA R1S,SCl

MCC C' " R1S

SID R4,X'02'

Before instruction: R4

~
Data II II IIXII II

After instruction: ~

Assembly Manual

SID/Sloe

SCAN UNTIL SEGMENT MARK

TO = 0

mask byte: 1100 0000

TO -3

SCAN UNTIL NON-BLANK

mask byte: 0000 0010

4-163
Confidential and Proprietary to The Ultimate Corp.

Instructions

SIT
SITD

Syntax

Description

4-164

The SIT (scan incrementing string, TO tennination counter) instruction
scans the characters addressed by the ftrst operand until a specifted
number of characters has been moved. The SITD (scan incrementing
string, TO termination or delimiter) instruction performs the same
operation as SIT, but tenninates the move at a specifted number of
characters or when a specifted delimiter is encountered.

SIT r SITD r,n

n constant or literal values that specifies the "mask" of delimiters to
use as terminators for the string being scanned

r address register whose virtual address + I references the starting
character of the string to be scanned

The SIT and SlID instructions can be used whenever a data character
string needs to be scanned or counted, if the string fteld is of fixed
length or the string delimiters can be specified in a mask byte. The
mask byte contains flags for the four system delimiters plus three user
specified characters; it also has a matchlnomatch flag that allows the
move to tenninate on either a match or nomatch with the specified
delimiters.

These instructions also expect that TO, the low-order tally of the
accumulator, has been set up for the maximum string length to scan.

If TO is zero at the start of this instruction, no action takes place.

These instructions are used as an alternative to merely INCing a register
by TO when a program intends to use the XMODE facility in cases where
a frame boundary is crossed. SIT is logically equivalent to the INC r,t
instruction, except that additional frames can be linked via XMODE (see
below).

The register operand is incremented by one; the character then addressed
is scanned and compared. TO is decremented by one. This operation is
repeated until one of the following terminating conditions is met: ;4'-'-.'

I

",.,j

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Mask Bytes

(

6973-1

SITISITD

• For the SIT instruction, when TO reaches zero. This instruction is
typically used to scan over a fixed length string.

• For the SITD instruction, when TO reaches zero or when one of the
delimiter bytes specified by the mask byte is encountered. The
terminating condition is found by testing each byte after it has been
scanned. This instruction is typically used to scan over a delimited
string of preset maximum length. Additional frames can be linked on
to the end of the linked set by using XMODE (see below).

Note: If TO is not initially zero, the virtual address of the register will
always be incremented by at least one, because the delimiter
test is done after the byte scan.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM X'FF'

attribute mark AM X'FE'

value mark VM X'FD'

sub-value mark SVM X'Fe'

The other three characters are taken from the scan character symbols
seO, SCI, and se2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates
on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more information on the use of the mask byte, see the description of
seO, SCI, and Se2 in chapter 3.

Assembly Manual 4-165
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-166

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Insuuction LOAD 4

SIT R4

Before instruction: R4

• Data A ~ B ~ C ~ ~ z ~

After instruction: _______ ...It

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

SLEEP

Syntax

Description

Cc
6973-1

SLEEP

The SLEEP instruction causes the process to be deactivated and put in a
wait state until a specified time of day.

SLEEP

The SLEEP instruction is typically used when the process is waiting for
an event to occur. If the process executes instructions continuously, it
is a waste of the system's resources. The SLEEP instruction is insetted
as a means of delaying the process until a specific time of day.

This instruction expects that the accumulator DO has been loaded with
the "awakening" time of day in internal system format (number of
milliseconds past midnight). If DO contains a value higher than
86,400,000, the process will sleep "forever."

A sleeping process can be awakened from the process' own terminal by
the BREAK key. See also the RQM instruction.

Assembly Manual 4-167
Confidential and Proprietary to The Ultimate Corp.

Instructions

SR

Syntax

Description

4-168

The SR (storage register) assembler directive defines a program address
and creates a storage register containing that address. The storage
register (data type's') is in linked formaL Six bytes of storage for the
address are reserved at the current location counter.

label SR n,n
label SR a

n the virtual address to reserve for the symbol. The first operand
specifies the displacement of the generated virtual address. The
second operand specifies the frame number (FlO) as a decimal
number (linked frame) or hexadecimal number (unlinked frame).

a defines both FID and displacement to specify the virtual address

An SR directive can be used to set up a symbol as a storage register
pointing to data in a specific frame, which can be in linked or unlinked
mode.

In the first SR fonn, the second operand specifies the frame, or FID, as
a 4-byte field. If the high-order bit of the second operand's value is set,
the virtual address is assumed to be in unlinked fonnat. If the high
order bit is zero, it is assumed to be in linked fonnat.

In the second SR fonn, the address specified by a the a operand must
have been previously defined via a DEFRA directive. In this case, the
virtual address is always in linked format.

See the section in the chapter on Data Addressing for a full description
of linked and unlinked modes of addressing.

Note: The ADDR directive also creates a storage register, normally
for data stored within a program. The frame is assumed to be
in unlinked format (that is, an abs frame) and the displacement
is relative to location 0 of the frame.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(""
/

C·
"

6973-1

SR 1,100

SR

Addresses frame 100 in linked mode; the
first data byte in the frame depends on
machine type, and is equal to the value of
the PSYM symbol ID.LINK.SIZE.

SR 1,X' 80000064' Frame is in unlinked mode; the first data
byte is at location 1 in the frame.

MOV F1 a au, R1S Sets R 15 to point to the above address.

Assembly Manual 4-169
Confidential and Proprietary to The Ultimate Corp.

Instructions

SRA

Syntax

Description

4-170

The SRA (set register to address) insttuction sets up an address register
operand with the virtual address of a specified operand.

SRA r,c
SRA r,d
SRA r,f
SRA r,h
SRA r,l
SRA r,s
SRA r,t

r address register (RO-R15) that is being set up

c character

d double tally

f triple tally

h half tally

label

s storage register

tally

The second operand may also be another register and an offset (such as
R15;T9 for the 9th tally offR15).

The SRA insttuction is used to "point" an address register to a location
that is specified by the second operand. It is typically used to address
locations in the object code (text strings, for example), or to address the
first byte of a symbol so that sections of it can be manipulated in ways
not otherwise possible.

It is also another legitimate way of changing the virtual address of an
address register in addition to MOY (register), INC/DEC (register), and
SETDSP or SETR.

An SRA to a local label works only when the location of the label is less
than x'IOO' (that is, in the first pan of the frame). This is because a
label is addressed relatively via a byte offset, and the maximum offset

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

SRA

can be 255 or X'FF'. If it is necessary to address a label at or beyond
location X'lOO', one way is to make the label of type Tusing
instructions of the form:

LAB 1

ALIGN *
CMNT *

DEFT R1,*16

CMNT *

CMNT *

Need to align location on

word boundary!

Define LABEL as "here" (*16

gets offset as words, not

bytes)

Now a SRA r,LABl would work correctly.

The following are also examples of SRA usage.

FILENAME EQU *-1

TEXT C'INVN',X'FE'

SRA R15,FILENAME This sets R15 to address one

in CMNT *

CMNT *
CMNT *
CMNT *

CMNT *
CMNT *

SRA R15,DO

CMNT *
CMNT *

SRA R15,H3

CMNT *

SRA R15, R14; T2

CMNT *
CMNT *

Assembly Manual

byte before the byte 'I'

the string'INVN'. Typically,

R15 then used in a MIID

instruction to copy the

string, up to the AM, to

another location.

This sets R15 to point to

the first byte of the

accumulator DO.

Same as above (see format of

accumulator) .

This sets R15 to point to

word 2 off the virtual

address of R14.

4-171
Confidential and Proprietary to The Ultimate Corp.

Instructions

STORE

Syntax

Description

4-172

The STORE instruction stores the contents of the accumulator in a
specified operand.

STORE d
STORE f
STORE h
STORE

d double tally

f triple tally

h half tally

tally

The STORE instruction is used whenever an accumulator value needs to
be stored as the value of a symbol in a program.

The contents of the accumulator (HO, TO, DO or FPO) replace the contents
of the operand.

The accumulator is not changed.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(" SUB
SUBX

Syntax

Description

6973-1

SUBISUBX

The SUB and SUBX instructions subtract the contents of the operand
from the accumulator. The SUB fonn addresses the accumulator as a 4-
byte field (DO); the SUBX form addresses it as a 6-byte field (FPO).

SUBd SUBxd
SUBxf

SUB h SUBxh
SUB n SUBXn
SUB t SUBXt

d double tally

f triple tally (for SUBX only)

h half tally

n numeric literal; if used, a 2-byte field is assumed (a range of -32,768
through +32,767). If a I-byte literal (half tally) is being referenced,
it should be defmed separately using the HTL Y directive. If the
literal is outside the range of -32,768 through +32,767, a 4-byte
literal must be separately defined using the D11.. Y directive, or a 6-
byte literal via the FIT. Y directive.

The n fonn may generate a 2-byte literal at the end of the program
when assembled for certain machines.

tally

The SUB instruction subtracts the operand value from the 4-byte field in
the accumulator called DO. If the operand is a half tally (1 byte) or tally
(2 bytes), it is internally sign-extended to form a 4-byte field before the
subtract operation takes place. The result is stored in DO.

The SUB instruction cannot detect arithmetic overflow or underflow.

The SUBX instruction subtracts the operand value from the 6-byte field
in the accumulator called FPO. If the operand is a half tally (1 byte),
tally (2 bytes), or double tally (4 bytes), it is internally sign-extended to
form a 6-byte field before the subtract operation takes place. The 6-byte
result is stored in FPO.

The subtraction does not affect the original operand, or the other
sections of the accumulator.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-173

Instructions

TEXT

Syntax

Description

4-174

The TEXT assembler directive stores one or more text strings in a
program.

TEXT operandI {,operand2, ... }

operand string in either ASCII (C'xxx') or hexadecimal (x'nnn')
fonnat

The TEXT instruction is typically used to store literal strings, messages,
tables of values, etc.

The specified text strings are generated at the location in which they
appear in the program. ASCII strings are stored in their equivalent ASCII
hexadecimal value; hexadecimal strings are stored exactly as specified.

See the SRA instruction for the method of addressing generated data.

TEXT C'ABCD',X'07FF'

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

rI'
\\.._,/

(.. TIME

Syntax

Description

c
6973-1

SID/SIDG

The TIME instruction retrieves the system's time and date in internal
fonnat.

TIME

The TIME instruction is a monitor call (that is, it executes an external
subroutine call to the operating system kernel) that is included as pan of
the instruction set.

Note: The internalformatfor system time is in milliseconds, not
seconds, and therefore differs from the BASIC function TlME() ,

which returns time as the number of seconds past midnight.

TIME retrieves the current system time and date and loads it into the
accumulator FPO as follows:

T2 (upper two bytes of FPO) contains the date as a number of days past
December 31, 1967.

DO (lower four bytes of FPO) contains the time as a number of
milliseconds past midnight.

This is the same format as used by SET.TlME.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-175

Instructions

TLY

4-176

The 1L Y directive defines a tally (16 bits. or one word). See the D1L Y

directive for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

C~\

6973-1

xcc

The XCC (exchange characters) instruction replaces the character
addressed by the ftrst operand with the character addressed by the
second operand, and vice versa.

XCC r,r

r address registers (RO-R 15) that contain the virtual addressess of the
two characters to be exchanged

The character addressed by the fIrst operand is exchanged with that
addressed by the second operand.

The XCC insttuction allows the "Test and Set" function to be
implemented, which can be used to prevent shared usage of sections of
code, similar to the following:

LOCKD?

OK

SRA RlS,LOCKTBL

CMNT *
CMNT *
CMNT *
MCC X' 0 1 ' , R2

CMNT *
XCC R2,RlS

BCE R2,X' 00', OK

ROM *
B LaCKO?

EOU *

MCC X' 00 ' , R2

XCC R2,RlS

Set RlS to the Lock byte,

which may contain either a

X, 00' (unlocked) or X'Ol'

(locked)

Move 'lock' flag to scratch

location

Exchange old lock and 'lock'

flag; if old flag was X, 00' ,

continue, else wait

and try again.

Start of non-shared

Set up 'unlock' flag

Store it at LOCKTBL

a while

code

Anything locked via XCC should be unlocked via XCC as well, because
on a mUlti-processor system only the XCC insttuction guarantees that

only one process can access the lock byte at a time. An MCC executed
by one processor may change the value of a byte referenced by an XCC
executed simultaneously on another processor, invalidating the lock
value. But if both processors use XCC, only one at a time will be given
access to the memory location of the byte.

Assembly Manual 4-177
Confidential and Proprietary to The Ultimate Corp.

Instructions

XOR

Syntax

Description

4-178

The XOR (exclusive OR) instruction logically exciusive-ORs two bytes,
and stores the result in the byte referenced by the first operand.

XOR r,n
XOR r,r

r address register (RO-R 15) that contains the vinual address of the
character to be tested

n numeric literal

An exclusive-OR operation tests two bytes, one bit at a time, for a true
condition. If one and only one bit is true, the result is true (1). If both
or neither are true, the result is false (0). For example:

Byte 1:
Byte 2:

Result

0000 0101

1111 0011

1111 0110

The result is stored in the byte referenced by the first operand. The byte
referenced by the second operand is unchanged.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

XRR

Syntax

Description

6973-1

The XRR (exchange registers) instruction exchanges the vinual
addresses of two address register operands.

XRR r,r

XRR

r address registers (RO-R15) that contain the virtual addresses of the
character to be exchanged

There are two address register (RO-R15) operands whose vinual
addresses are to be exchanged.

The first operand's content (vinual address) is exchanged with that of
the second operand. On fIrmware machines, the attached or detached
state of the address registers is not guaranteed after execution of this
instruction.

Assembly Manual 4-179
Confidential and Proprietary to The Ultimate Corp.

Instructions

ZB

Syntax

Description

4-180

The ZB (zero bit) instruction clears the referenced bit to an "off'
condition (that is, 0 or false).

ZBb

b bit symbol that is to be cleared

The ZB instruction can be used whenever a bit flag or switch needs to be
cleared in a program.

The referenced bit value is cleared to O.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

\"' _ ~7-."

(- ZERO

Syntax

Description

6973-1

ZERO

The ZERO (set to zero) instruction replaces the contents of the operand
with a zero value.

ZEROd
ZEROf
ZEROh
ZEROt

d double tally

f triple tally

h half tally

tally

The value of the operand is replaced by binary zero.

half-tall Y : 0000 0000

tally: 0000 0000 0000 0000

ZERO DO

ZERO FPO

ZERO HO

ZERO TO

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-181

Instructions

Notes

4-182 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(5

6973-1

System Subroutines

Assembly programming for Ultimate systems is facilitated by the system
software routines provided to handle disk fIle management, terminal I/O
and other system-wide functions.

The system software routines work with a standard set of address
registers, storage registers, tallies, character registers, bits, and buffer
pointers. These standard symbols are collectively called functional
elements. In order to use any of these routines, the calling routine must
set up the appropriate functional elements as required by the called
routine's input interface.

The standard set of functional elements is predefined in the permanent
symbol fIle (PSYM), and is therefore always available to the
programmer. Also included in PSYM are the mode-ids (program entry
points) for the standard system routines documented in this chapter.

User-written assembly programs are often written for two puposes:

• To call a system-supplied subroutine from within a user program.
This chapter describes the system- supplied subroutines available to
the user program once it has been invoked.

• To initiate a user program from the Ultimate operating system and,
after execution, to return control to the operating system. Below are
listed the user program interfaces with the operating system. Chapter
6 details the programming requirements for each interface.

CONY interfaces to conversion software

PROC interfaces to PROC (procedure) software

RECALL interfaces to Ultimate RECALL software

TCL-I interfaces to TCL with no file input

TCL-II interfaces to TCL for programs with file input

WRAPUP interfaces to TCL (messages, exiting)

XMODE interfaces to routine set up by programmer for handling of
end-of-linked frame set

Assembly Manual 5-1
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Summary of the System Subroutines

Terminal and
Printer 1/0
Routines

5-2

The following section categorizes the system subroutines according to
function.

CRLFPRINT

GETBUF

NEWPAGE

PCRLF

PERIPHREAD 1

PERIPHREAD2

PERIPHWRITE

PRINT

PRNTHDR

REA.D@IB

READIB

READLIN

READLINX

READX@IB

RESETTERM

SETLPTR

SETTERM

(see PRINT)

read data from terminal

skips to new page, print heading/footing

prints cr/lf sequence

reads asynchronous channel

reads asynchronous channel

writes asynchronous channel

print stext from object code to terminal

initializes and prints heading/footing

reads single character, echoes it

reads a line from terminal

reads a line from terminal

reads a line from terminal

reads single character, does not echo it

(see SETIERM)

sets up characteristics of printer

sets up characteristics of terminal

SYSTEM-CURSOR positions cursor/sets visual effects

gets function key definitions for terminal

outputs a single character

TERM-INFO

WRITE@OB

WRITEX@OB outputs single character, unless terminal does local
echo

WRITOB

WR1LIN

writes a line to the terminal or printer

writes a line to the terminal or printer

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

('~
~,/'

Disk File 1/0
Routines

Tape I/O
Routines

Stack
Routines

6973-1

Summary of System Subroutines

GETACBMS

GE1Fll...E

opens the ACC file

opens dictionary or data section of file

GETITM gets next sequential item from file

GLOCK locks a me group

GUNLOCK unlocks a file group

GUNLOCKLINE unlocks all group locks for a line

HASH computes record that item-id hashes to

OPENDD opens dictionary and data sections of file

RETIX reads a specific item from a file

RETIXU (see RETIX)

UPDITM writes a specific item to a file

TPBCK backspaces tape one record

TPRDBLK reads a tape record

TPRDLBLI reads tape label

TPREAD (see TPRDBLK)

TPREW rewinds the tape

TPWEOF writes end of file

TPWRlTE writes a tape record

initializes the return stack INITRlN

MARKRlN

POPRTN

RlNMARK

divides the extended return stack into logical stacks

pops the top entry off the return stack

moves a logical stack into the PCB

Assembly Manual 5-3
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Frame
Management

Character
Conversion

5-4

ArroVF

GETBLK.

GETOVF

LINK

NEXTIR

NEXTOVF

RDLINK

RDREC

RELBLK

RELCHN

RELOVF

WI1.INK

ACONV

CONY

CVDxx subs

CVXxx subs

ECONV

MBDNSUB

MBDNSUBX

MBDSUB

MBDSUBX

attaches overflow frame automatically

gets a block of overflow frames

gets a frame of overflow space

initializes link fields

obtains next forward linked frame

attaches overflow frame via register

reads link fields of frame

reads one frame

releases a block of overflow space

releases a chain of overflow frames

releases a single overflow frame

writes link fields of frame

converts Ascn character to EBCDIC

calls conversion processor

converts Ascn decimal to binary

converts Ascn hexadecimal to binary

converts EBCDIC character to Ascn

converts binary to decimal ASCII string, padded

converts binary to decimal ASCII string, padded

converts binary to decimal ASCII string

converts binary to decimal ASCII string

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~
0/

If"'" I '~ ,

",-,,/

c

Miscellaneous
Routines

6973-1

Summary of System Subroutines

ANDIOFLGS

DA'IE

DECINHIB

GETIOFLGS

HSISOS

LINESUB

ORIOFLGS

SLEEP

SLEEPSUB

SORT

TIMDATE

TIME

WSINIT

sets I/O flags

gets system tdate

decrements the INHIBITH counter

gets I/o flags

initializes IS, OS and HS buffer pointers

gets user's line number

sets I/O flags

puts terminal to sleep

puts terminal to sleep

sorts a string of keys

gets system time and date

gets system time

initializes buffer pointers

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

5-5

System Subroutines

Conventions Used to Describe System Subroutines

5-6

Each system subroutine, or related group of subroutines, is described in
detail in its own separate topic. The topics are presented in alphabetical
order, according to the subroutine's root name.

The system subroutines described here are supplied on every Ultimate
system SYS-GEN tape, and are available for use by user-written
programs. These subroutines, unless otherwise specified, are meant to
be called with a BSL instruction. The subroutine returns control to the
calling program via a RlN instruction.

A brief description is given for each subroutine, including a summary of
function, inputs, outputs, and elements used, similar to the following:

Input (user specified):

IB

Outputs:

IB

RIO points to the character to be translated

RIO points to the converted character (location
unchanged)

Elements used:

None except standard scratch elements

The Inputs:. Outputs:, and Elements used: headings describe the
functional elements (that is, the standard PSYM symbols) used by the
routine. The letter following an element name describes its symbol
type, as described in Chapter 3. If the element is a register, the register
number is also given.

The Input: elements for many routines are divided into two sections:
user specified and system specified.

User specified elements are those that the programmer sets up explicitly
before calling the routine. For example, when calling the routine to get
a number of contiguous frames (GETBLK), the programmer must
obviously specify this number as a parameter.

System specified elements are those that have been implicitly set up by
the system some time prior to the call. For example, when calling the

Assembly Manual 6973-1
ConfidentiaJ and Proprietary to The Ultimate Corp.

File Control
Block
Symbols

6973-1

Listing of System Subroutines

routine to read a line from the terminal (READLIN), the buffer location
where the data are to be stored is a system standard, and does not have
to be explicitly set up by the programmer.

The following are standard scratch elements, as described in Chapter 3:

bits SB60, SB61

tallies T4, T5

double tallies accumulator (00,01),02

triple tallies FPX (overlays SYSRO)

FPY (overlays SYSR1)

registers R 14, R 15

storage registers SYSRO (overlays FPX)

SYSRI (overlays FPY)

SYSR2

When a file is opened, the system puts the AD of the file control block
into one of several symbols, depending on the instruction:

FCBl

FCB2

FFCBl

FFCB2

OFCBl

OFCB2

Access information for a fIle consists of eight bytes (FCB 1 and FCB 1)
used by routines such as GETITM, RETIX, and UPDITM, to uniquely
identify the file and to access items within it. The exact format of the 8-
byte field may vary depending on operating system revision, and on
whether the file is local or remote (that is, accessed via UltiNet). For a
local fIle, however, access information consists mainly of a pointer to
the file's control block (FCB), which contains such things as the file's
base, modulo, and separation parameters (see subroutine HASH).

Assembly Manual 5-7
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

o I 1 I 2 I 3
i ~---..... "",..---'.1

Flags Frame number (FlO)

Byte Description

0 flag field; contains specific bits as follows:

bit 0, 1 reserved

bit 2 remote indicator for file
o = local file; 1 = remote file

bit 3 if bit 2 is set, indicates UltiNet lock
status

bit 4-7 reserved

1 to 3 if bit 2 in byte 0 is not set, these bytes contain frame
number (FID) of FeB

5-8 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(ACONV

c'
6973-1

ACONV

The ACONV subroutine translates one character from ASCII to EBCDIC.

Input (user specified):

IB

Output:

IB

RIO points to the character to be translated

RIO points to the converted character (location
unchanged)

Elements used:

None except standard scratch elements

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

5-9

System Subroutines

ANDIOFLGS

Description

5-10

The ANDIOFLGS command sets one or more I/O flag bits to false.

Input (user specified):

B15 B sets the ?? flag

B14 B sets the ?? flag

B13 B sets the ?? flag

B12 B sets the ?? flag

Output:

TO T ??

Elements used:

DO

R14

R15

The bits in TO correspond to the following flag bits (need the
meaning??):

B15 CCDEL

B14 TITFLG

B13 FRMTFLG

B12 ITABFLG

A value of 1 (one) sets the corresponding bit to true; a value of 0 (zero)
maintains the current setting.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Description

6973-1

ATTOVF

The A TTOVF routine is used to obtain a frame from the overflow space
pool and to link it to the frame specified in double tally RECORD.

Input (user specified):

RECORD

Output:

D contains the FlO of the frame to which an
overflow frame is to be linked.

OVRFLW D contains the FlD of the overflow frame if
obtained, or zero if no more frames are available.

Elements used:

None except standard scratch elements

The forward link field of the frame specified in RECORD is set to point
to the overflow frame obtained, the backward link field of the overflow
frame is set to the value of RECORD, and the other link fields of this
overflow frame are zeroed.

Assembly Manual 5-11
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

CONV

CRLFPRINT

5-12

The CONV interface is used to call the conversion software (input
conversion or output conversion) as a subroutine or to call a user
written subroutine from BASIC or Ultimate RECALL. See Chapter 6,
System Software Interfaces, for details.

The CRLFPRINT subroutine is used to execute a carriage return and line
feed, and then output a message to the terminal. See PRINT for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

CVDICVX

(' eVD
evx

The CVD (convert decimal) and Cvx (convert hexadecimal) subroutines
convert ASCII numeric character strings to equivalent binary strings.

Instruction Input (user specified):

evom IB RIO decimal number to convert

eVDIR IR R6 decimal number to convert

eVDIS IS R4 decimal number to convert

eVDOS OS R5 decimal number to convert

eVDRl5 Rl5 R decimal number to convert

evxm 18 RIO hexadecimal number to convert

eVXIR IR R6 hexadecimal number to convert

eVXIS IS R4 hexadecimal number to convert

('" evxos OS R5 hexadecimal number to convert

eVXR15 Rl5 R hexadecimal number to convert

Output:

FPO F contains the converted binary number

eTRl T contains the low-order two bytes of FPO, except
after CVDRl5 and eVXR15 instructions, which
do not use eTR 1

NUMBIT B set if string was terminated by a system delimiter
or decimal point; zero if any other character

Register R Points to the terminating character (usually system
used by delimiter)
input

Elements used:

None except standard scratch elements

(::
6973-1 Assembly Manual 5-13

Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-14

Both ASCII decimal to binary and Ascn hexadecimal to binary
conversions are available. The register used as the string pointer
depends on the exact subroutine called (see Inputs above).

The character string to be convened starts at the byte address + 1 of the
register associated with the called subroutine. The string is terminated
when any invalid decimal or hexadecimal character is encountered
(usually a system delimiter).

The convened value is stored in the accumulator FPO; the register points
to the delimiter on exit.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~, DATE

6973-1

DATE

The DA'IE subroutine is used to return the current system date. See the
TIME subroutine for details.

Assembly Manual 5-15
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

DECINHIB

Description

5-16

The DECINlllB subroutine is called to decrement the INHIBITH half tally
when the user has previously incremented it by one to prevent the
BREAK key from calling the debugger.

Input (system specified):

BREAKKEY B set if BREAK key was pressed while debugger
was inhibited

INHIBITH H greater than zero if debugger is currently
inhibited

USER T contains value 7 if debugger is currently inhibited
and DSR has gone false

Output:

BREAKKEY B see below

INHIBITH H decremented as described below

USER T see below

Elements used:

None except standard scratch elements

The debugger is inhibited as long as INHIBITH is non-zero. This
prevents the process from entering the debugger and also prevents the
process from being logged off if DSR goes false.

The protocol of incrementing and decrementing INHIBITH ensures that
several different system programs that require inhibiting of the BREAK

key may call one another without fear that INHIBITH may accidentally
reach zero.

DECINHIB decrements INHIBITH if its current value is non-zero. If
INHIBITH is still non-zero, DECINHIB returns to the calling program with
the debugger still inhibited.

If INHIBITH reaches zero, or was zero on entry to the subroutine,
DECINIDB flrst checks USER, then BREAKKEY as follows:

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

('\
j

6973-1

DECINHIB

• If USER = 7, indicating DSR has gone false, USER is changed to 11
and the process is sent to WRAPUP, where it is logged off.

• If USER is not 7 and if BREAKKEY is set, indicating BREAK was
pressed while the debugger was inhibited, BREAKKEY is zeroed and
the system debugger is entered.

• If USER is not 7 and if BREAKKEY is not set, DECINHIB returns to the
calling program with the debugger no longer inhibited.

Assembly Manual 5-17
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

ECONV

5-18

The ECONV subroutine translates one character from EBCDIC to ASCII.

Characters without Ascn equivalents are returned untranslated.

Input (user specified):

m RIO points to the character to be translated

Output:

IB RIO points to the translated character; (location
unchanged)

Elements used:

None except standard scratch elements

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

(- GETACBMS

Description

6973-1

GETACBMS

The GET ACBMS subroutine retrieves the flle access information of the
system ACC flle.

Inputs (user specified): None

Output:
FCBl

FCB2

D

D }
contain the file access information for the
ACC file, if found; if not, FCB 1 is zero

RMBIT B

Elements used:

set if ACC file access parameters were
successfully retrieved

SRI same as GETFILE

Additional elements used by RETIX

GET ACBMS sets up FCB 1 and FCB2 to allow access to the system ACC
file.

Assembly Manual 5-19
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

GETBUF

5-20

The GETBUF subroutine reads data into a buffer pointed to by R 14.

Input (user specified):
(??documentation I have says same as for READLIN, except that does not
make sense. READLIN moves the data into IB (RlO). The description
for GETBUF says the buffer pointed to by R14. Who specifies R14? It
also says that TO can be used to specify the number of characters to
read.)

Elements used:

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

GETFILE

(--
GETFILE

The GE1FILE subroutine opens a specified file.

Input (user specified):

IS R4 points at least one character (any number of
blanks) before filename; the filename cannot
contain embedded blanks, and must be followed
by a blank, a system delimiter, or character
specified in scQ

Note: The filename may be preceded by either DIeT or
DATA (or neither, which opens the DATA

section).

RTNFLG B set if GETFILE is to return to the calling program
even if the file cannot be opened

DAFI B set if file is to be opened only if update access
code test does not fail; if not set, file is opened
but if the update access code test fails, bit 16 in

(~"
FCB2 is zero

scQ c contains character used to delimit filename

Input (system specified):

BMSBEG S standard system buffer where the filename is to
be copied; if IS (R4) contains DICf or DATA, they
are ignored; only the filename is copied

Output:
FCBl D } contain the file access information for the
FCB2 D current file, if found; if not, elements are zero

RTNFLG B set if GETFILE is to return to the calling program
even if the file cannot be opened

DAFI B set if update access is required; if zero, update
access is granted unless the update access code
test fails

IS R4 points to the first character after the file name

('~ BMS R8 points to the last character of the copied file name
j

6973-1 Assembly Manual 5-21
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-22

RMBIT B set if the me parameters are successfully retrieved

SC2 C contains a blank

Elements used:

SCI C

Additional elements used by RETIX

GETFILE uses the me name to set up the access information for a file.
The name of the flle is specified in a string pointed to by register IS.

If the file cannot be successfully opened, GETFll...E exits to WRAPUP,

unless the bit RlNFLG is set, in which case the subroutine returns to the
calling program.

DICfOPEN, GETFILE, and OPENDD are the only approved methods of
opening a disk file. They perform access code checking, and flag the
file as being accessible for read-only, or for read-and-update, as
appropriate.

If an error occurs and RlNFLG is not set (it is 0), the subroutine exits to
the following entry points, depending on the error:

• MD99 with message 200 if the input string is null (blank to a SM)

• MD995 with message 201 if the string does not refer to a file (item
not found or in incorrect format)

• MD995 with message 210 if the access code test fails

• MD99 with message 13 if the data section of a file is not found (no
data pointer, or in incorrect format)

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(_" GETIOFLGS

Description

6973-1

GETIOFLGS

The GETIOFLGS command get the current I/O flag bit settings.

Input (user specified):

B 15 B sets the ?? flag

B14 B sets the ?? flag

B13 B sets the ?? flag

B12 B sets the ?? flag

Output:

TO T ??

Elements used:

DO

R14

RI5

The bits in TO correspond to the following flag bits (need the meaning):

B15 CCDEL

B14 TITFLG

B13 FRMTFLG

B12 ITABFLG

A value of 1 (one) sets the corresponding bit to true; a value of 0 (zero)
maintains the current setting.

Assembly Manual 5-23
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

GETITM

5-24

The GETITM subroutine sequentially retrieves all items in a fIle. It is
called repetitively to obtain items one at a time until all items have been
retrieved. The order in which the items are returned is the same as the
storage sequence.

Input (user specified):

DAF7

DAFl

FCBI

FCB2

B

B

D

D

initial entry flag; must be zeroed on the fIrst call
toGETITM

if set, the update option is in effect

}
contain the fIle access information for the
current file; required on fIrst entry only

Input (system specified):

BMSBEG S

OVRFLCTR D

Output:

DOCCFLG B

IR R6

R14 R

RECORD D

RMBIT B

SIZE T

SRO S

SR4 S

Assembly Manual

standard system buffer where the item-id of the
item retrieved on each call is copied

meaningful only if DAFl is set; if non-zero, the
value is used as the starting FlD of the overflow
space table where the list of item-ids is stored; if
zero, GETOVF is called to obtain space for the
table

set if catalog item type or extended item type

points to the fIrst AM of the item

points one prior to the item count fIeld

contains beginning FlD of the group to which the
item-id hashes (set by HASH)

1 if item found; a if item not found

item size, or a for extended item type

points one before the count fIeld of the retrieved
item

points to the last AM of the item

6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

GETITM

XMODE T o

Note: The outputs are the same as/or RETIX.

Elements used: (used for accessing file data)

NNCF H

FRMN D

FRMP D

NPCF H

OVRFLW D used by GETOVF if DAFl is set and OVRFLC1R is
initially zero

The following elements should not be altered by any other routine while
items are being retrieved by GETITM:

DAF! B} see Inputs:

DAM B

SFCB I

SFCB2

FFCBI

FFCB2

NXTITM

o

o

o

o

S

OVRFLC1R D

Assembly Manual

contains the access information for the RD of the
current group being processed

contains the access information for the number of
groups left to be processed

}
contain the original (saved) access
information for the file

points one before the next item-id in the pre
stored table if DAF I is set, otherwise points to the
SM after the item previously returned

contains the starting AD of the overflow space
table if OAF! is set; otherwise unchanged

5-25
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-26

If the items that are retrieved are to be updated by the calling routine
(using routine UPOITM), this should be flagged to GETITM by setting bit
OAF!. GETITM then performs a two-stage retrieval process by fIrst
storing all item-ids (per group) in a table, then using this table to actually
retrieve the items on each call. This is necessary because if the calling
routine updates an item, the data within the updated group shift around;
GETlTM cannot simply maintain a pointer to the next item in the group,
as it does if the "update" option is not flagged.

GETlTM must be called the fIrst time with the flag oAF? set to zero, so
that it can set up its internal conditions. It sets up and maintains certain
pointers which should not be altered by calling routines until all the
items in the file have been retrieved (or DAF7 is zeroed again).

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

GETOVF
GETBLK

Description

6973-1

GETOVFIGETBLK

The GETOVF and GETBLK routines obtain overflow frames from the
overflow space pool maintained by the system. GETOVF is used to
obtain a single frame. GETBLK is used to obtain a block of contiguous
space.

Input (user specified):

DO D contains the number of frames needed (block
size); for GETBLK only

Output:

OVRFLW D if the needed space is obtained, this element
contains the FID of the frame returned (for
GETOVF) or the FlD of the first frame in the block
returned (for GETBLK); if the space is
unavailable, OVRFL w=O

Elements used:

None except standard scratch elements

Note that the link fields of the frames obtained by a call to GETBLK are
not reset or initialized in any way; this should be done by the caller,
using subroutine LINK.

GETOVF zeros the link fields of the single frame it returns. These
routines cannot be interrupted until processing is complete.

For information on related commands, see the descriptions of the
following:

RELBLK

RELCHN

RELOVF

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

5-27

System Subroutines

GLOCK
GUNLOCK
GUNLOCK.LINE

Description

5-28

The GLOCK, GUNLOCK, and GUNLOCK.LINE routines are used to ensure
that disk flIes are not updated by more than one process at a time, and
are used primarily by the subroutine UPDITM.

Input (user specified):

RECORD D contains the beginning AD of the group to be
locked (typically set by RETIX or RETIXU)

Outputs: None

Elements used:

CH9 C

R2;CO C

CTRI T

Plus standard scratch elements

GLOCK sets a lock on a specified group within a file, preventing other
processes from locking the group. If GLOCK is called and the the group
is already locked by another process, the second process pauses until
the lock is unlocked.

GUNLOCK frees the lock on a group (if present, and set by the calling
process), allowing another process to lock it.

GUNLOCK.LINE frees all locks set by a process.

The subroutine UPDITM calls GLOCK at the beginning of UPDITM's
execution, before writing an item to a file. GUNLOCK is called at the end
of the UPDITM subroutine. GLOCK is also called by RETIXU, which
retrieves a disk file item and leaves the group containing the item locked.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

HASH

(.. ~

, .. -'

6973-1

HASH

The HASH routine computes the starting FID of the group in which an
item in a file would be stored. given the item-id and the access
information of the file.

Input (user specified):

BMSBEG

FCB!

FCB2

Output:

RECORD

S

D

D

Points one byte before the beginning of the item
id. which must be terminated by an attribute
mark.

} contain the access infonnation for the me

D contains the frame number to which the item-id
hashes

Elements used:

None except standard scratch elements

Assembly Manual 5-29
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

HSISOS

5-30

The HSISOS routine initializes the registers for the HS, IS, and OS

works paces. It does not link frames in the work spaces.

Inputs: None

Output:

HS R3 points to the beginning of the HS workspace
(PCB+lO)

HSBEG S

HSEND S

IS R4 points to the beginning of the IS workspace
(PCB+16)

IS BEG S

IS END

OS

S points to the last data byte in the primary IS

workspace (6*ID.DATA.SIZE bytes past ISBEG).

R5 points to the beginning of the OS workspace
(PCB+22)

OSBEG S

OS END S

Elements used:

points to the last data byte in the primary OS

work space (6*ID.DATA.SIZE bytes past OSBEG).

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

INITRTN

INITRTN
The INITR1N subroutine initializes the return stack.

Inputs:

RCSWA-4 T contains return address of the calling routine

Output:

none

Elements used:

QCBSR s used to save and restore R 15

c:,
6973-1 Assembly Manual 5-31

Confidential and Proprietary to The Ultimate Corp.

System Subroutines

LINESUB

5-32

The LINESUB subroutine returns the line number (PIB number) of the
calling process.

Inputs: None

Output:

DO D contains the line number associated with the
process

Elements used:

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

LINK

(~~i

Description

(~\

6973-1

LINK

The LINK subroutine initializes the links of a set of contiguous frames
(the set may be only one frame).

Input (user specified):

RECORD

NNCF

Output:

R14

R15

D contains the staning FlD of a set of contiguous
frames

H contains one less than the number of frames in
the set

R

R

points one byte before the first data byte of the
first frame

points to the last byte of the last frame

Elements used:

FRMN 0

FRMP 0

NPCF H

Frames are linked contiguously backwards and forwards.

The subroutine is called with RECORD containing the starting
frame number of the set, and NNCF the number of frames less one in the
set (that is, NNCF contains the number of next contiguous frames).

Assembly Manual 5-33
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

MARKRTN

Description

5-34

The MARKR1N subroutine divides the extended return stack into logical
stacks.

Inputs:

RSCWA-4 T return address of the calling routine

Output:

RSCWA T set to x'190'

Elements used:

QCBSR used to save and restore R 15

All entries in the return stack in the PCB from entry three to the entry at
RSCW A-4 are copied to the extended stack. A null address is added to
the extended stack to mark the end of the logical stack. The return
address of the routine that called MARKRTN is moved to x' 18C'.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

""" - ,/

C\

MBDSUB
MBDNSUB
MBDSUBX
MBDNSUBX

6973-1

MBDSUBIMBDNSUBIMBDSUBXIMBDNSUBX

The MBD-type subroutines conven a binary number to the equivalent
string of decimal ASCII characters.

Input (user specified):

DO 0 contains the number to be convened (used by
MBDSUB and MBDNSUB)

FPO F contains the number to be converted (used by
MBDSUBX and MBDNSUBX only)

T4 T contains the minimum string length (used by
MBDNSUB and MBDNSUBX only); string may
exceed this length; leading zeros or blanks are
added, if necessary, to ensure that the string is at
least this length

BKBIT B set if leading blanks are required as fill; not set if
zeros required as fill (used by MBDNSUB and
MBDNSUBX only)

R15 R points one prior to the area where the convened
string is to be stored; the area must be at least 18
bytes in length for MBDSUBX and MBDNSUBX;

MBDSUB and MBDNSUB require at most 11 bytes

Output:

BKBIT B =0

R15 R Points to the last convened character

Elements used:

None except standard scratch elements

Assembly Manual 5-35
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-36

MBDSUB and MBDSUBX return only as many characters as are needed to
represent the number, whereas MBDNSUB and MBDNSUBX always return
a specified minimum number of characters (padding with leading zeros
or blanks whenever necessary).

A minus precedes the numeric string if the number to be convened is
negative.

These subroutines are implicitly called by the assembler instruction MBD

(move binary to decimal).

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

NEWPAGE

6973-1

NEWPAGE

The NEWPAGE subroutine is used to skip to a new page on the terminal
or printer and print a heading.

Input (user specified):

None

Input (system specified):

OB R 11 fIrst set equal to OBBEG by this routine

OBBEO S

LISlFLAG B

LPBIT B

LFDLY T

OTABFLG B

PAGINATE B

Output:

used to store data for terminal or printer output

if set, all output to the terminal is suppressed; set
and reset by the TCL P command and by the
debug P command

if set, output is routed to the spooler (Note:
routine SETLPTR should be used to set this bit so
printer characteristics are set up correctly)

lower byte contains the number of fIll characters
to be output after a CR/LF; set by the TCL TERM

command

output tabs in effect if set (by the TCL TABS

command)

if set, pagination and page headings are invoked;
usually set by the PRNTHDR routine in
conjunction with page heading and/or footing

OB R 11 =OBBEG

Note: The output is the same as/or WRTUN.

Elements used:

BMS Used if LPBIT set

ATTOVF Used if LPBIT set

Plus standard scratch elements

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

5-37

System Subroutines

Description

5-38

No action is perfonned by this subroutine if either the bit PAGINATE or
the tally PAGSIZE is zero.

See PRNTIIDR for more infonnation on page headings and footings.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

NEXTIR
NEXTOVF

Description

6973-1

NEXTIRINEXTOVF

The NEXTIR subroutine obtains the forward linked frame of the frame to
which register IR (R6) currently points. The NEXTOVF subroutine is
used to attach additional overflow space.

Input (user specified):

IR R6 points into the frame whose forward-linked

Elements used:

frame is to be obtained (displacement
unimponant)

Same as elements used by A TTOVF if a frame is obtained from the
overflow space pool.

For NEXTIR, if the forward link is zero, the routine attempts to obtain an
available frame from the system overflow space pool and link it up
appropriately (see ATTOVF subroutine). In addition, if a frame is
obtained, the IR register is set up before return, using routine RDREC.

NEXTOVF may be used in a special way to handle end-of-linked-frame
conditions automatically when using register IR with single- or multiple-

Assembly Manual 5-39
ConfidentiaJ and Proprietary to The Ultimate Corp.

System Subroutines

5-40

byte move or scan instructions (for example, MIl, MCI, MIlD, MIITD,

SIT, and SID.). Tally XMODE should be set to the mode-id of NEXTOVF

before the instruction is executed by using the following instruction:

MOV NEXTOVF,XMODE

If the instruction causes IR to reach an end-of-linked-frame condition
(forward link zero), the system generates a subroutine call to NEXTOVF,

which anempts to obtain and link up an available frame, then resumes
execution of the interrupted instruction.

Note that the INC r,t (increment register by tally) instruction cannot be
guaranteed to work in this manner.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

OPENDD

(OPENDD
The OPENDD subroutine opens both the data and dictionary portions of
the fIle.

Input (user specified):

IS R4 points at least one character (any number of
blanks) before filename; the filename cannot
contain embedded blanks, and must be followed
by a blank, a system delimiter, or character
specified in SCQ

Note: The filename may be preceded by DlCJ, in which
case, only the dictionary portion ofthe/ile is
opened.

R1NFLG B set if OPENDD is to return to the calling program
even if the file cannot be opened

DAFl B set if file is to be opened only if update access
code test does not fail; if not set, file is opened

C~, but if the update access code test fails. bit 16 in
FCB2 is zero

SCQ C contains character used to delimit filename

Input (system specified):

BMSBEG S standard system buffer where the filename is to
be copied; if IS (R4) contains mer or DATA, they
are ignored; only the filename is copied

Output:
FCB! D } contain the file access information for the
FCB2 D current file, if found; if not, elements are zero

} contain the file access information for the data
FFCBl D section of the current file, if found; if not,
FFCB2 D elements are zeroed; FFCB 1 and FFCB2 =

FCB 1 and FCB2

(~ \
.to/

6973-1 Assembly Manual 5-41
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-42

OFCBl
OFCB2

IS

BMS

RMBIT

OAF8

CRLFBIT

NETERR

TO

sc2

D

D

R4

R8

B

B

B

B

T

C

Elements used:

SCI C

}
contain accesss information for the file
dictionary, if found; if not, elements are
zeroed; if IS specifies mer, DFCB 1 and
DFCB2 = FCB 1 and FCB2

points to the first character after the file name

points to the last character of the copied file name

set if the file parameters are successfully
retrieved; if not, it is zeroed

set if only dictionary section opened; zero if data
section, or both dictionary and data sections were
opened

set if both dictionary and data sections were
opened; zero if only data section was opened

set if network error occurred while trying to open
remote file

contains ERRMSG number if NETERR set

contains a blank

Additional elements used by RETIX

OPENDD uses the filename to set up the access information for a both the
dictionary and data sections of a file. The file name is specified in a
string pointed to by register IS.

If the file cannot be successfully opened, OPENDD exits to WRAPUP,
unless the bit RlNFLG is set, in which case the subroutine returns to the
calling program.

mCfOPEN, GETFILE, and OPENDD are the only approved methods of
opening a disk file. They perform access code checking, and flag the
file as being accessible for read-only, or for read-and-update, as
appropriate.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

OPENDD

If an error occurs and RTNFLG is not set (it is 0), the subroutine exits to
the following entry points, depending on the error:

• MD99 with message 200 if the input string is null (blank to a SM)

• MD995 with message 201 if the string does not refer to a file (item
not found or in incorrect format)

• MD995 with message 210 if the access code test fails

• MD99 with message 13 if the data section of a file is not found (no
data pointer, or in incorrect format)

Assembly Manual 5-43
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

ORIOFlGS

Description

5-44

The ORIOFLGS command sets one or more I/O flag bits to true.

Input (user specified):

B15 B sets the ?? flag

B14 B sets the ?? flag

B13 B sets the ?? flag

B12 B sets the ?? flag

Output:

TO T

Elements used:

DO

R14

R15

The bits in TO correspond to the following flag bits (need the meaning):

B15 CCDEL

B14 TITFLG

B13 FRMTFLG

B12 ITABFLG

A value of 1 (one) sets the corresponding bit to true; a value of 0 (zero)
maintains the current setting.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

("' PCRLF

Description

(~/

C:
6973-1

PCRLF

The PCRLF subroutine prints a carriage return and line feed on the
terminal only, along with the specified number of delay characters
(X'OO'), as set by the TeL TERM command.

Inputs:

None

Output:

None

Elements used:

None except standard scratch elements

PCRLF does not use the pagination, headings, footings, and other
elements of print placement, nor does it update them. If it is necessary
to ensure correct use of these elements, use the WRTLIN subroutine.

Assembly Manual 5-45
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

PERIPHREAD1
PERIPHREAD2

Description

5-46

The PERIPHREAD subroutines are used to read a string of bytes from
another line's asynchronous channel, on configurations which support
this feature. They are analogous to the READLIN subroutine, which
reads to the current line's channel only.

Input (user specified):

IBSIZE T maximum number of bytes to be input

TO T contains the number of the affected channel

SCo
SCi
SC2

C

C

C
} contains the delimiter characters on which to

stop the input (used by PERIPHREADI only)

Input (system specified):

IBBEG s standard system input buffer pointer

Output:

Same as READ LIN

Elements used:

ABIT B

CTRO T

Plus standard scratch elements

The line number of the affected channel should be loaded into TO. The
affected line must have been previously set to a trapped condition by the
TCL· : TRAP command. If the affected line is not trapped, WRAPUP is
entered with error message 540.

PERIPHREAD I inputs data until a byte matching that in sea, se I, or se2
is found. Either subroutine returns when the number of bytes specified
in IBSIZE is read. The bytes that are input are stored starting at the
location one past IBBEG (just as in READLIN).

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

PERIPHREAD11PERIPHREAD2

PERIPHREAD2 inputs data just as READLIN does; control is returned on
detecting a carriage return or line feed.

For infonnation on writing to another line's asynchronous channel, see
the PERIPHWRITE subroutine.

Assembly Manual 5-47
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

PERIPHWRITE

Description

5-48

The PERIPHWRITE subroutine is used to write a string of bytes to
another line's asynchronous channel, on configurations which support
this feature. It is analogous to the WRTI.IN SUbroutine, which writes to
the current line's channel only.

Input (user specified):

OB R 11 pPoints to the last byte to be output

TO T contains the number of the affected channel

Input (system specified):

OBBEO S standard output buffer pointer

Output:

OB Rll =OBBEG

Elements used:

ABIT B

CTRO T

Plus standard scratch elements

The line number of the affected channel should be loaded into TO. The
affected line must have been previously set to a trapped condition by the
TCL :TRAP command. If the affected line is not trapped, WRAPUP is
entered with error message 540.

PERIPHWRlTE outputs data just as WRTI.IN does; OBBEG points one byte

before the beginning of the data. and OB points to the last byte of data.

For information on reading from another line's asynchronous channel,
see the PERIPHREAD subroutines.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

POPRTN

POPRTN
The POPRlN subroutine pops the top entry off the return stack.

Inputs:

RSCWA-4 T return address of the calling routine

Output:

none

Elements used:

QCBSR used to save and restore R 15

6973-1 Assembly Manual 5-49
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

PRINT
CRLFPRINT

Description

5-50

The PRINT and CRLFPRINT subroutines send a message to the tenninal
from textual data in the calling program. CRLFPRINT precedes the text
with a carriage return and line feed.

Input (user specified):

Message text must follow BSL instruction

Output:

None

Elements used:

None except standard scratch elements

The message sent is a string of characters assembled immediately
following the subroutine call in the calling program. The string must be
terminated by one of the three delimiters SM, AM, or SVM. Control is
returned to the instruction at the location immediately following the
terminal delimiter. The delimiter VM inserts a carriage return!linefeed,
but does not terminate the message.

The system delimiters have the following meaning:

SM (X'FF')

AM (X'FE')

VM (X'FD')

SVM (X'FC')

end of message; CR/LF printed, and return to
calling program

same as SM

CR/LF printed, and message processing continues
to next character

end of message; return without printing CR/LF

Caution: These routines are not consistent with conventions regarding
pagination. They should therefore be used only for error
messages and short terminal prompts.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

BSL

TEXT

CMNT

PRINT

C'Hello',X'FDFF'

*

PRINTICRLFPRINT

Call to subroutine
Message as a literal in object code
Note terminating SM (X'FF')

The above would print the message Hello, followed by a blank line.

Assembly Manual 5-51
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

PRNTHDR

Description

5-52

The PRNTIIDR subroutine is an entry point into the system routine for
pagination and heading control of output (also used by WRTI.IN and
WRITOB when pagination is specified).

Input (user specified):

PAGHEAD S points one before the start of the page heading; if
the AD of PAGHEAD is zero (initial condition at
TeL), there is no heading defined

PAGFOOT S points one before the start of the page footing; if
the AD of PAGFOOT is zero (initial condition at
TCL), there is no footing defined

Output:

OB R 11 =OBBEG

Note: The output is the same as/or WRTUN.

Elements used:

BMS used if LPBIT set

ATTOVF used if LPBIT set

Plus standard scratch elements

PRNTHDR must be called once to initialize the bits and counters needed
to start pagination; it also prints the heading (if any) for the first page.
PRNTHDR should not be called again unless starting a new pagination
sequence; to skip to a new page at any time, NEWPAGE should be called.

A page heading or footing, if present, must be stored in a buffer defined
by storage register PAGIffiAD or PAGFOOT. The heading or footing
message is a string of data terminated by a SM; system delimiters in the
message invoke special processing as follows:

SM (X'FF') terminates the heading or footing line with a carriage
return and line feed

VM (X'FD') prints one line of the heading or footing and stans a
new line

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

PRNTHDR

SVM (X'FC') inserts data from various sources into the heading or
footing, depending on the characters following the
SVM; valid characters are as follows:

A inserts data from AFBEG+ 1 through a system
delimiter

D inserts current date

F inserts data from ISBEG+ 3 through a system
delimiter

inserts data from BMSBEG+ 1 through a system
delimiter

P inserts page number right-justified in a field of
four blanks

PN inserts page number left-justified

T inserts current time and date

Carriage returns, line feeds, and form feeds should not be included in
heading or footing messages, or the automatic pagination will not work
properly. A convenient buffer for storing headings and footings is the
HS (R3).

This subroutine uses WRTLIN to print each heading or footing line as it
is formatted; therefore the OB buffer is considered scratch and is
destroyed.

Assembly Manual 5-53
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

RDLINK
WTLINK

5-54

The RDLlNK and WIT..INK subroutines read or write the link fields from
or to a frame, to or from the tallies NNCF, FRMN, FRMP, and NPCF.

Input (user specified):

RECORD D Contains the FlD of the frame whose links are to
read or written.

Inputs (user specified for WTLINK only):

NNCF H number of next contiguous frames

FRMN D forward link

FRMP D backward link field

NPCF H number of previous contiguous frames

Outputs (from RDLINK only):

NNCF H number of next contiguous frames

FRMN D forward link

FRMP D backward link field

NPCF H number of previous contiguous frames

Elements used:

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

RDREC

Description

C::
6973-1

RDREC

The RDREC subroutine is used to set up'the IR(R6) register to the
beginning of the frame defmed by the double tally RECORD.

Input (user specified):

RECORD D Contains the FlD required

Output:

IR R6 points to one before the flrst data byte of frame
(assuming a linked frame)

R 15 R points to link portion of frame

Plus the link fleld outputs from RDLINK

Elements used:

None except standard scratch elements

The subroutine assumes the frame has the linked format, and therefore
IR is set pointing to the byte prior to the flrst data byte of the frame.

Additionally the subroutine RDLINK is entered to set up R15 pointing to
the link portion of the frame, and to set up the link elements NNCF,

NPCF, FRMN, and FRMP.

Assembly Manual 5-55
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

READ@IB
READX@IB

Description

5-56

The READ@IB subroutine inputs one character at the current position of
RIO and echoes the character. The READX@IB subroutine inputs one
character at the current position of R 1 Q and does not echo the character.

Input (user specified):

RIO R

Output:

RIO R unchanged

R14 R

Elements used:

None except standard scratch elements

The next character from the asynchronous channel input buffer replaces
the byte addressed by the register. If the input buffer is empty, the
process is suspended until a character is received from the asynchronous
channel. Characters transmitted by the channel are automatically queued
in the terminal input buffer for the process, until some configuration
dependent maximum number of characters is received. If this condition
occurs, no further data characters are accepted from the channel, which
will output a bell character (X'D?') for each attempted input character
until the condition is cleared.

For the READ@IB subroutine. control characters (X'DQ' through X'lF')

are never echoed.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

READLINIREADLlNXlREADLlB

(READLIN
READLINX
READIB

READLIN, READLINX, and READm are the standard terminal input
routines.

Input (user specified):

CCDEL B if set, control characters are deleted; this bit is
normally zero

FRMTFLG B if set, <CI'RL-X> sends a backspace instead of a
CR/LF, to preserve screen format; this bit is
normally zero

PRMPC C terminal prompt character

Input (system specified):

mBEG S standard system buffer pointer; points one before
where input is to be stored; the buffer is normally

(~\ two bytes greater than the value in IBSIZE
~/

msIZE T contains the maximum number of characters
accepted in an input line; normally fixed at 465

LFDLY T contains (in the low-order byte) the number of

idle characters to be output after a CR/LF; set by
the TCL TERM command

BSPCH C contains the character to be echoed to the terminal
when the backspace key is typed; is zero if no
character is to be echoed; set by the TCL TERM
command

STKFLG B if set, READLIN and READIB test for stacked
input; terminal input will not be requested until
stacked input is exhausted; set by the PROC
processor, or the BASIC DATA statement

STKBEG S points to the next stacked input line; lines are
delimited by AMs, with an SM indicating the end
of the stack

C ITABFLG B set for input tab stops by the TCL TABS command

6973-1 Assembly Manual 5-57
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-58

Output:

IB RIO =mBEG

mEND S points to a SM one byte past the end of input data
(overwrites the CR or LF)

STKFLG B zeroed if the end of stacked input was reached;
not changed if initially zero

STKBEG S points to the next line of stacked input (or end of
stack) if stacked input is being processed

Elements used:

None except standard scratch elements

Storage register IBBEG points to the standard buffer area where the
routine will input the data. Input continues to this area until either a
carriage return or line feed is encountered, or until the number of
characters equal to the count stored in IBSIZE have been input. The
carriage return or line feed terminating the input line is overwritten with
a segment mark (SM), and storage register IBEND points to this character
on return. If the input is terminated because the maximum number of
characters has been input, a SM is added at the end of the line.

If READLIN or READLINX is used, a trailing eR/LF sequence is
transmitted to the terminal; if READIB is used, it is not.

READLIN and READIB also provide the facility for taking input from the
stack generated by a PROC (STON command) or by BASIC (DATA

statement) instead of directly from the terminal. Such input lines are
returned to requesting processors as if they originated at the terminal.

If a stacked input line exceeds IBSIZE, the line is truncated at IBSIZE; the
remainder of the line is lost.

Terminal input resumes when the stacked input is exhausted.
READLINX does not test for stacked input.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

... ",Or'

Ci
/

6973-1

READLlNIREADLlNXlREADLlB

Note: READUN does not recognize the TCL line continuation line
character, which is entered as a <CTRL-_>, but may display as
a back-arrow (~) on some terminals. Only the TCL software
recognizes these line continuation characters.

All three routines peIform terminal editing as follows:

<CfRL-H> backspace input; echo a backspace-space
backspace unless BSPCH = O.

character in BSPCH as above.

<CfRL-W>

<CTRL-X>

CR or LF

backspace word to last non-numeric, non
alpha.

cancel line; echo CR/LF or backspaces (see
FRMTFLG).

terminate input and return control.

READLIN and READIB also peIform input tabulation as specified by the
TCL TABS command, when input is from the terminal. If a tab character
(X'09') is input, it is replaced by the appropriate number of blanks
required to space to the next tab stop.

Assembly Manual 5-59
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

RELBLK
RELCHN
RELOVF

Description

5-60

The RELBLK, RELCHN, and RELOVF subroutines are used to release
frames to the overflow space pool. RELOVF is used to release a single
frame, RELBLK is used to release a block of contiguous frames, and
RELCHN is used to release a chain of linked frames (which mayor may
not be contiguous).

Input (user specified):

OVRFLW D

DO D

Output:

none

Elements used:

contains the FID of the frame to be released (for
RELOVF), or the first FID of the block or chain to
be released (for RELBLK and RELCHN,

respectively)

contains the number of frames (block size) to be
released, for RELBLK only

None except standard scratch elements

A call to RE...CHN specifies the first FID of a linked set of frames; the
routine releases all frames in the chain until a zero forward link is
encountered.

For information on getting frames from overflow, see the GETOVF and
GETBLK subroutines

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

RESETTERM

(RESETTERM
The RESETIERM subroutine is used to initialize tenninal and printer
characteristics. RESETrERM is called from WRAPUP before reentering
TCL.

Input (system specified):

OBSIZE T contains the size of the output (OB) buffer

OBBEG S points to the start of the OB buffer

Output:

TOBSIZE T

TPAGSIZE T

POBSIZE T

PPAGSIZE T initialized to default values, as set up by the

PAGSKIP T
TCL TERM command

LFDLY T

(~'J BSPCH C

CCDEL B

FRMTFLG B

STKFLG B

PAGINATE B

NOBLNK B

LPBIT B =0
TPAGNUM T

TLINCTR T

PPAGNUM T

PLINCTR T

PAGNUM T

LINCTR T

PAGHEAD S } contain zero in the frame field
PAGFOOT S

C' "'

6973-1 Assembly Manual 5-61
Confidential and Proprietary to The Ultimate Corp.

--.--~,-,--.-~~--

System Subroutines

5-62

OB R 11 =OBBEG

OBSIZE

OBEND

T

S

=TOBSIZE

points to OBBEG + OBSIZE

The area from the address pointed to by OBBEG to that pointed to by
OBEND is filled with blanks.

Elements used:

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

./

RETlXlRETIXU

(RETIX
RETIXU

The RETIX and RETIXU subroutines are the entry points to the standard
system routine for retrieving an item from a file. The item-id is
explicitly specified to the routine, as is the file access information.

Input (user specified):

BMSBEG S points one byte before the item-id, which must be
terminated with an AM

FCBl D } contain the file access information of the flle
FCB2 D to be searched

Output:
BMS R8 } BMSEND S

point to the last character of the item-id

NNCF H

FRMN D

(~
contain the link fields of the frame specified

FRMP D in RECORD; set by RDREC

NPCF H

RECORD D contains the beginning FID of the group to which
the item-id hashes (set by HASH)

RMBIT B 1 if item found; 0 if item not found

XMODE T 0

The following have meaning only if the item was found:

SIZE T =item size, or 0 for extended item type (see DO
below)

Rl4 R points one prior to the item count field

IR R6 points to the first AM of the item

SR4 S points to the last AM of the item

DOCCFLG B =1 if D, CC, or CL pointer; otherwise = 0

(~ DO D extended item size if SIZE = 0

6973-1 Assembly Manual 5-63
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-64

Elements used:

None except standard scratch elements

The flle access infonnation in FCB! and FCB2 is set up by calling
GETFILE or OPENDD to open the file (see these subroutines for details).

The RETIX routine perfonns a hashing algorithm to determine the group
(see HASH subroutine). The group is then searched sequentially for a
matching item-id. If the routine finds a match, it returns the item size
(from the item count field) and pointers to the beginning and end of the
item.

If RETIXU is used, the group is locked to prevent other programs from
changing the data; the group is automatically unlocked when the item is
later written back to the file (see UPDITM), or the user may explicitly
unlock the group by calling the GUNLOCK or GUNLOCK.LINE routine.
The group is locked whether or not the item is found.

The item-id is specified in the system-standard buffer defined by storage
register BMSBEG; it must be tenninated with an AM.

If an error condition occurs, such as bad data in the group, or premature
end of linked frames, or non-hexadecimal character encountered in the
count field, this message is returned:

GFE handler invoked - record/GFE x/f.d

x starting FID of the group to which the item hashes

f.d approximate frame and displacement where the error was
detected.

If this happens, RETIX and RETIXU return with an item not found
condition. No data is destroyed, and the group format error remains.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(RTNMARK

Description

6973-1

RTNMARK

The R1NMARK subroutine moves a logical stack from the extended
return stack into the PCB.

Inputs:

RSCWA-4 T return address of the calling routine

Output:

RSCWA T set to x'190'

Elements used:

QCBSR used to save and restore R 15

The return address of the routine that called RTNMARK is moved to
x'18C'. All entries in the extended return stack from entry ?? to the first
null entry are copied to the stack in the PCB.

Assembly Manual 5-65
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

SETLPTR
SETTERM

5-66

The SETI.PTR and SETIERM subroutines are used to set output
characteristics such as line width and page depth to the previously
specified values for either the tenninal or the printer. In addition, the
current line number and page number are saved.

Input (user specified):

None

Input (system specified):

LINCTR T contains the current line number

PAGNUM T contains the current page number

Inputs (system specified) for SETLPTR only:

PPAGSIZE T

POBSIZE T

PLINCTR T

PPAGNUM T

contains the number of printable lines per page
for the printer

contains the size of the output (OB) buffer for the
printer

contains the current line number for the printer

contains the current page number for the printer

Inputs (system specified) for SETTERM only:

TPAGSlZE T

TOBSIZE T

TLINCTR T

TPAGNUM T

Output:

LPBIT B

Assembly Manual

contains the number of printable lines per page
for the tenninal

contains the size of the output (OB) buffer for the
terminal

contains the current line number for the terminal

contains the current page number for the tenninal

set by SETLPTR; reset by SETTERM

6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Description

6973-1

SETLPTRISETTERM

PAGSIZE T

OBSIZE T set to the appropriate characteristics for

LINC1R T
tenninal or printer output

PAGNUM T

PLINC1R T =LINCTR; set by SETTERM

TLINC1R T =LINC1R; set by SETLPTR

OBEND S =OBBEG+OBSIZE

The area from the location addressed by OBBEG to that pointed to by
OBEND is filled with blanks.

Elements used:

None except standard scratch elements

It can be useful to save the current line and page number when
switching from terminal to printer output, and then switching back.
Pagination continues automatically from the previous values.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

5-67

System Subroutines

SLEEP
SLEEPSUB

5-68

The SLEEP and SLEEPSUB subroutines cause the calling process to go
into an inactive state for a specified amount of time. If SLEEPSUB is
used, either the amount of time to sleep or the time at which to wake up
can be specified.

Input (user specified):

D

RMBIT B

Output:

None

Elements used:

for SLEEP, contains the time to wake up (number
of milliseconds past midnight); for SLEEPSUB,

contains the number of seconds to sleep or the
time to wake up, depending on RMBIT

for SLEEPSUB, set if DO contains the number of
seconds to sleep, or zero if it contains the time to
wake up (number of milliseconds past midnight)

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

"'-.

SORT

6973-1

SORT

The SORT subroutine is used to son an arbitrarily long string of keys in
ascending sequence only. The calling program must complement the
keys if a descending son is required.

Input (user specified):

SR 1 S points to the SM preceding the fIrst key

SR2 S

SR3 S

Output:

SRI s

Elements used:

SBl B

sC2 C

XMODE T

IS R4

OS R5

BMS R8

TS R13

CS Rl2

S 1 thru s9 S

points to the SM terminating the last key

points to the beginning of the second buffer

points before the first soned key (the exact offset
varies from case to case); the calling routine
should scan from one byte past this point for a
non-SB character; the end of the soned keys
(separated by SBs) is marked by a SM

Elements used by A TTOVF

BMS and AF (R9) workspaces

Assembly Manual 5-69
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-70

The sort keys are separated by SMs (X'FF') when presented to SORT;
they are returned separated by SBs (X'FB'). Any character, including
system delimiters other than the SM, SB, X'FO', and X'Fl', which have
special meanings, may be present within the keys.

For descending sort sequencing (on non-numeric data), the individual
characters of the sort key must have been one's complemented by the
calling routine.

SORT performs a left-ta-right character comparison, except when either
of the character X'FO' or X'Fl' is present:

X'FO' indicates the start of a numeric string; the string is terminated
by a SVM.

X'F l' indicates the start of a numeric string that is to be compared
negatively; the string is terminated by a SVM (for example,
this may be set up by the Ultimate RECALL BY-DSND
connective).

The purpose of this is to allow the son keys to contain mixed left
justified (non-numeric) data and numeric (right-justified comparison)
data.

For example, to son the key ABC/9Y before the key ABC/WOx, the keys
should be presented to the SORT subroutine as follows:

ABC/[FO)lOO[FC)X

ABC/[FO)9[FC]Y

This results in sequencing ABC!9Y before ABC/lOOX.

The SORT subroutine uses a six-way polyphase son-merge sorting
algorithm. The original unsorted key string may grow by a factor of
10%, and a separate buffer is required for the sorted key string, which
is about the same length as the unsorted key string. The growth space is
contiguous to the end of the original key string; the second buffer may
be specified anywhere.

SORT automatically obtains and links overflow space whenever needed.
Due to this, one can follow standard system convention and build the

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

SORT

entire unsorted string in an overflow table with OVRFLCTR containing
the beginning FID; the setup is then:

Start of End of
unsorted keys unsorted keys

Growth
space

Start of
second buffer

SM<-------/- -/---------->SM<-----------><----------/-

The user creates the unsorted key list and the 10% growth space. The
second buffer pointer then is merely set at the end of the growth space,
and SORT is allowed to obtain additional space as required.

Alternatively, the entire set of buffers may be in the IS or OS workspace
if they are large enough.

Assembly Manual 5-71
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

SYSTEM-CURSOR

5-72

The SYSTEM-CURSOR subroutine can be used for either tenninal cursor
control or printer control.

Input (user specified):

TO

CTRlO

CTRll

Rl5

T

T

T

R

if negative, contains either a tenninal control code
or a printer control code; see Table 5-1 for a list
of terminal control codes; see Table 5-2 for a list
of printer control codes. If non-negative, it must
be equal to the value of emIl (column position)

when TO is non-negative, specifies the row
number for positioning the cursor; rows are
numbered from top to bottom, starting with zero;
a value less than zero indicates no row
specification

when TO is non-negative, specifies the column
number for positioning the cursor, columns are
numbered from left to right, starting with zero; a
value less than zero indicates no column
specification

points one byte before the output area to be used

Input (system specified):

TERMTYPE C

Output:

R15 R

Elements used:

specifies terminal type

points to the last byte of data generated; or
unchanged if the specified function is not defined
for this terminal type

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(Description

(

6973-1

SYSTEM-CURSOR

The SYSTEM-CURSOR subroutine examines the code in TO to detennine
whether terminal or printer control is indicated. The codes for tenninal
control are in the range -1 to -99. The codes for printer control are in
the range -10 1 and up.

For cursor control, the SYSTEM-CURSOR subroutine generates the string
of characters necessary to position the cursor or to produce a visual
effect on a tenninal. The terminal type is specified by the code character
in TERMTYPE. TERMTYPE is initialized at logon, but may be changed
by commands such as TERM and TERMINAL. The following are valid
Ultimate-defined terminal type codes:

A ADDS Regent 40 (25 line CRn

B DEC VT241

C ADDS Viewpoint Color

D DEC VT100

E DEC VT200 8-bit mode

F IBM 3270

G IBM 3101

H Honeywell VIP-7200

L Libeny Freedom-200

P IBM Personal Computer

R ADDS Regent 25

S Wyse WY-60, Native mode

U Ultimate CRT (Volker-Craig)

V Ultimate VDT (ADDS Viewpoint)

W Wyse WY-50 or Ultimate ULT-50 Enhanced Viewpoint

X Wyse WY-50 or Ultimate ULT-50, Native mode

Y Wyse WY-85 VT220 7-bit

z HP 700/92

For printer control, the SYSTEM-CURSOR subroutine generates the string
necessary to set up special printer features. The printer type is
determined by the current PRINTER command; it is a code character
stored in byte zero of the Quaternary Control Block (QCB).

Assembly Manual 5-73
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

5-74

If TO indicates printer control rather than tenninal control, TERMTYPE is
ignored. Instead, the output of SYSTEM-CURSOR is determined by the
current printer type, as set by the PRINTER system command. The
following are valid Ultimate-defined printer types:

H Honeywell (NEC) letter quality (the default)

L Hewlett Packard LaserJet

Other printers, such as line printers, do not have any special functions
defined that can be invoked via SYSTEM-CURSOR.

When used for tenninal control, SYSTEM-CURSOR does not perfonn any
output. Typically, a calling routine would set R15 to the current
position in the terminal output buffer (OB workspace), and specify a
tenninal function in TO (and possibleCfR 10 and CTR 11). Then it
would call SYSTEM-CURSOR to generate the appropriate terminal control
string. After SYSTEM-CURSOR tenninates, R 15 would be pointing to

the new end of output data. The OB register could then be set to this
value and WRTLIN or WRITOB could be called to do the actual output.
See the following example.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

SYSTEM-CURSOR

The following tenninal and printer control functions require a second
parameter to be specified to SYSTEM-CURSOR:

(-30,c) (-31,f) (-32,b) (-101,p) (-102,h)

In these cases, the value of the parameter must be placed in erRlO. An
example is changing the background color on a terminal: TO is set to -
32, and erR 1 0 is set to the code for the desired color.

For more information on writing a cursor or printer control routine, and
loading a TERMDEF item, see Section 7.

MOV OBBEG,RlS SET RIS TO START OF OUTPUT BUFFER

LOAD -1 LOAD CLEAR-SCREEN CODE VALUE

BSL SYSTEM-CURSOR GENERATE ESCAPE SEQUENCE

MOV R1S,OB SET OB TO END OF DATA

BSL WRITOB CLEAR SCREEN; NO CR-LF AFTERWARDS

Assembly Manual 5-75
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Table 5-1. Cursor Control Values (1 of 8)

Code Description

@(-l) Clear the screen and positions the cursor at 'home'
(upper left corner of the screen).

@(-2) Position the cursor at 'home' (upper left corner).

@(-3) Clear from cursor position to the end of the screen.

@(-4) Clear from cursor position to the end of the line.

@(-S) Start blink.

@(-6) Stop blink.

@(-7) Start protected field.

@(-8) Stop protected field.

@(-9) Backspace the cursor one character.

@(-1O) Move the cursor up one line.

@(-ll) Move the cursor down one line.

@(-12) Move the cursor right one column.

@(-13) Enable auxiliary (slave) pon.

@(-14) Disable auxiliary (slave) pon.

@(-lS) Enable auxiliary (slave) pon in transparent mode.

@(-16) Initiate slave local print.

@(-17) Start underline.

@(-18) Stop underline.

@(-19) Start reverse video.

@(-20) Stop reverse video.

@(-21) Delete line.

@(-22) Insen line.

5-76 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SYSTEM-CURSOR

(Table 5-1. Cursor Control Values (2 of 8)

Code Description

@(-23) Scroll screen display up one line.

@(-24) Start boldface type.

@(-25) Stop boldface type.

@(-26) Delete one character.

@(-27) Insen one blank character.

@(-28) Start insen character mode.

@(-29) Stop insen character mode.

@(-30,c) Set foreground and background color:

c background foreground
1 black cyan
2 black red
3 black blue
4 black green
5 black magenta
6 black yellow
7 black white
8 blue red
9 blue green

10 blue white
11 blue yellow
12 blue red
13 blue cyan
14 blue magenta
15 white red
16 white green
17 white blue
18 white cyan
19 white magenta
20 white black
21 red white
22 red green

6973-1 Assembly Manual 5-77
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Table 5-1. Cursor Control Values (3 of 8)

Code Description

@(-31,f) Set foreground color:

f foreground
1 brown (may vary on some

tenninals)
2 white
3 red
4 magenta
5 yellow
6 green
7 cyan
8 blue

@(-32.b) Set background color:

b background
1 brown
2 white
3 black
4 red
5 blue
6 cyan
7 magenta

@(-33) Set 80 columns.

@(-34) Set 132 columns.

@(-35) Set 24 rows.

@(-36) Set 42 rows.

@(-37)- Reserved
@(-45)

5-78 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

('

"

(

',"0"
.,

,,~_J

6973-1

SYSTEM-CURSOR

Table 5-1. Cursor Control Values (4 of 8)

Code Description

@(-46) Returns function key default values as a string in the
following fonnat:

sFBfFBxlFA ... xnFBylFA ... ynFBeFB

s character sequence needed to set the overall
characteristics of the function line; typically,
this is null

FB CHAR(252)1
f lead-in sequence used to load function keys
xn value for function key n
FA CHAR(251)
yn value for shifted function key n
e terminator for key text

@(-47) Returns character sequence needed to set the overall
characteristics for the label line (bottom line of
terminal). The following information is returned:

sFBfFBxFB yFBeFBr

s character sequence needed to set the overall
characteristics of the label line

FB CHAR(252)
f lead-in sequence used for label line
x lead-in sequence for unshifted label line
y lead-in sequence for shifted label line
e terminator for text
r reset label line (turn off)

1 After the string is returned, the CONVERT function can be used to change the
delimiters to attribute marks (CHAR 254) and value marks (CHAR 253) if desired.
(Doing this converts the string to a dynamic array.)

Assembly Manual 5-79
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Table 5-1. Cursor Control Values (5 of 8)

Code Description

@(-48) Returns character sequence needed to set the overall
characteristics for the status line (top line of
terminal). The following information is returned:

sFBfFBxFByFBeFBr

s character sequence needed to set the overall
characteristics of the status line

FB CHAR(252)

f lead-in sequence used for status line
x lead-in sequence for unshifted status line
y lead-in sequence for shifted status line
e terminator for text
r reset status line (turn off)

@(-49) Returns string that defines the graphics characters
codes for the current terminal; the exact characters
that will be displayed depend on the terminal type.
Before the code is printed, the terminal's graphic
capability must be turned on by an @(-SO)
statement. After the graphics have been printed, the
graphic capability must be turned off by an @(-Sl)
statement.

The codes in @(-49) are single digits whose
meanings are determined by the position of the code
in the string. The first eleven positions in the string
define the following single line graphics characters:

5-80 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SYSTEM-CURSOR

Table 5-1. Cursor Control Values (6 of 8)

Code Description

1 r 7 T
2 - 8 1
3 I 9 1-
4 I 10 t
5 ..J 11 +
6 L

The second set of eleven positions define the
following double line graphics characters:

12 rr= 18 lr
13 - 19 =II

14 =n 20 JL -
15

"
21 IF

16 ::::!1 22IL -,r
17 lb

The 23rd through 26th positions define other
graphic characters, depending on the terminal type.

@(-SO) Start graphics.

@(-Sl) Stop graphics.

@(-S2) Start blink.

@(-S3) Stop blink.

@(-S4) Stan reverse video.

6973-1 Assembly Manual 5-81
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Table 5-1. Cursor Control Values (7 of 8)

Code Description

@(-55) Stop reverse video.

@(-56) Stan reverse video and blink.

@(-57) Stop reverse video and blink.

@(-58) Stan underline.

@(-59) Stop underline.

@(-60) Stan underline and blink.

@(-61) Stop underline and blink.

@(-62) Start underline and reverse video.

@(-63) Stop underline and reverse video.

@(-64) Stan underline, reverse video, and blink.

@(-65) Stop underline, reverse video, and blink.

@(-66) Start dim.

@(-67) Stop dim.

@(-68) Stan dim and blink.

@(-69) Stop dim and blink.

@(-70) Start dim and reverse video.

@(-71) Stop dim and reverse video.

@(-72) Stan dim, reverse video, and blink.

@(-73) Stop dim, reverse video, and blink.

@(-74) Stan dim and underline.

@(-75) Stop dim and underline.

@(-76) Stan dim, underline. and blink.

5-82 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SYSTEM-CURSOR

Table 5-1. Cursor Control Values (8 of 8)

Code Description

@(-77) Stop dim, underline, and blink.

@(-78) Start dim, reverse video, and underline.

@(-79) Stop dim, reverse video, and underline.

@(-80) Set SO columns

@(-Sl) Reserved

@(-82) Set 132 columns

6973-1 Assembly Manual 5-83
Confidential and Proprietary to The Ultimate Corp.

System Subroutines
/

Table 5-2. Letter-Quality Printer Control Values

Code Description

@(-lOl,p) Set VMI (Vertical Motion Index) to p.

@(-102,h) Set HMI (Horizontal Motion Index) to h.

@(-103) Set alternate font.

@(-104) Set standard font.

@(-105) Generate a half line-feed.

@(-106) Generate a negative half line-feed.

@(-107) Generate a negative line-feed.

@(-108) Print black ink.

@(-109) Print red ink.

@(-11O) Load cut sheet feeder.

@(-111) Select feeder 1.

@(-112) Select feeder2.

@(-113) Select standard thimble.

@(-114) Select proportional space thimble.

@(-115) Start automatic boldfacing.

@(-116) Stop automatic boldfacing.

@(-117) Start automatic underlining.

@(-118) Stop automatic underlining.

5-84 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(TERM-INFO

(

Description

6973-1

TERM-INFO

The TERM-INFO subroutine returns information about the specified
terminal type, such as the function and cursor key definitions.

Input (user specified):

R15 R points one byte before the location where the 38
flag characters are to be stored.

Input (system specified):

TERMTYPE C specifies tenninal type

Output:

R 15 R points to the SM after the last character of
generated 38-byte string (or unchanged for null
value)

DO D 32-bit flag word

Elements used:

None except standard scratch elements

The TERM-INFO subroutine returns a 32-bit flag word in DO, and 38
bytes of function and cursor control key definition characters at the byte
address of R15. Rag 0 is the high-order bit of DO (the PSYM name is
831), flag 1 is the next-to-high-order bit (830), and so on. However, if
flag bit 0 (831) is not set, indicating an undefined terminal type, no
function key or cursor key definition information is returned.

R15 is returned pointing to the SM after the 38 characters. The
characters are stored beginning one byte after the original byte address
of R15.

For more information on writing a cursor or printer control routine, and
loading a TERMDEF item see Section 7.

The flag bits are specified in the TERMDEF OPTION specification and are
returned as follows in DO:

Assembly Manual 5-85
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

5-86

Flag Description Flag Description

0 tenninal is a CRT 9 insert character

1 tenninal has Aux 10 no-roll status Line
port

2 programmable Aux 11 multi-byte function
port keys

3 transparent Aux port 12 multi-byte cursor
keys

4 discrete visual 13 RETURN follows
attribute function key

5 attri bute takes a 14 multi-byte cursor
space lead in

6 delete line 15 multi-byte function
lead in

7 insen line 16 has reverse scroll

8 delete character 17 block mode tenninal
(such as IBM 3270)

The function and cursor key definitions are returned in the following
order at R15:

Byte Description

0 function key lead in character (normally ESC; but
STX for Viewpoint)

1-16 function keys 1-16 (second byte if flag bit 11 set)

17-32 shifted function keys 1-16

33-37 cursor home, left, up, down, right (second byte if
flag bit 12 set)

Note: TERMTYPE, which specifies the terminal type, is initialized at
logon, but may be changed by commands such as TERM and
TERMINAL.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

TIME
DATE
TIMDATE

Description

6973-1

DATEITIMElTIMDATE

The TIME, DA 1E, and TIMDA 1E subroutines return the system time
and/or the system date, and store them in the buffer area specified by
register R15.

Input (user specified):

R15 R Points one prior to the buffer area

Output:

R15 R Points to the last byte of the data stored

Elements used:

D2 D U sed by TIME and TIMDA TE only

D3 D Used by TIME and TIMDATE only

The time is returned as on a 24-hour clock.

Entry Buffer size required Format
(bytes)

TIME 9 hh:mm:ss

DA1E 12 ddmmmyyyy

TIMDA1E 22 hh:mm:ss dd mmm yyyy

Assembly Manual 5-87
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

TPBCK

Description

5-88

The TPBCK subroutine backspaces the tape one physical record, or
block. The tape must be attached to the process via the TCL T-A IT

command.

Inputs:

None

Output:

None

Elements used:

None except standard scratch elements

Not all tape drives can backspace. On some Ultimate systems, calling
TPBCK causes a logical backspace, which resets a pointer into a tape data
buffer. Multiple backspaces are not guaranteed to work.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

TPREADITPWRITElTPRDBLK

(TPREAD
TPWRITE
TPRDBLK

The 1PREAD subroutine reads a specified number of bytes from tape
into a buffer area. The 1PWRITE subroutine writes a specified number
of bytes to tape. The 1PRDBLK reads one physical tape record, or
block, into an internal tape buffer, and returns a pointer to the data along
with the number of bytes read.

Input (user specified):

R15 R for 1PREAD and TPWRlTE, points to one byte
before the source or destination buffer area

DO D for TPREAD and TPWRlTE, contains the number
of bytes to be transferred to or from the tape

Output:

R15 R for TPREAD and TPWRITE, points to the last

(~~
character transferred to or from the source or
destination buffer area

R7 R for TPRDBLK, points to one byte before the
beginning of data in the internal tape buffer

DO D for TPRDBLK, contains the number of bytes read

EOFBIT B for 1PREAD and TPRDBLK, indicates end-of-file
if set

Elements used:

The tape handler stacks and restore most of the elements which it
uses. The following elements are modified, however:

YMODE T Used to save and restore XMODE; the XMODE

routine, if any, on entry to the tape routines, is
not guaranteed to work until the particular routine
is exited and XMODE has been restored

R7 R Tape buffer pointer; must be maintained between
calls to TPREAD and TPWRITE

(---
T5 T

6973-1 Assembly Manual 5-89
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

Description

5-90

T6 T

17 T

D2 D

OVRFLW D

RECORD D

FRMN D

FRMP D
Used by routine GETBLK

NNCF H

NPCF H

All three routines use a virtual tape drive. The initial execution of any
one of them causes initialization of a buffer in virtual space used for
transferring tape records between the controller and main memory. This
buffer typically consists of a set of contiguous frames obtained from the
system overflow pool, linked together to form a block large enough to
accommod<l:e the maximum block size of the tape drive. These frames
are automatically released during WRAPUP processing, just before return
to TeL.

For TPREAD and TPWRlTE, the contents of the accumulator, DO, is the
number of characters to transfer to or from the tape buffer. Also, for
these routines, Register R7 is used as the tape buffer pointer and must
be preserved from one call to the next. For TPRDBLK, R7 is reset on
each call.

Bit EOFBIT is set when the tape mark is reached on reading a tape. End
of tape conditions are automatically handled by the tape routines.

If DO is zero on a write, TPWRITE fills the rest of the tape buffer with the
character pointed to by R15, which causes the buffer to be written to
tape. This is recommended in order to send the last partial tape record to
the tape, after which TPWEOF should be called.

The tape drive must be attached before calling these routines, otherwise
they exit to WRAPUP with an error message. The TCL T-ATT command
is used to attach a tape, and also to set the block size for TPWRITE.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c

()

6973-1

TPREADITPWRITElTPRDBLK

These routines may be used with either labeled or unlabeled tapes. For
labeled tapes, the routines TPRDLBL, TPRDLBLl, TPWTI.BL, and
TPW1LBLl may be used to read and write the labels. See the
documentation on these routines for more information.

Note: Some tape drive interfaces require the number of bytes to be
specified when reading tape. This means that TPRDBLK, on
some Ultimate systems, always returns a maximum-size
logical block rather than a physical block of data. The
Ultimate 1400 system, for example, always returns the
number of characters in the block size set by the current T-AIT

command.

Assembly Manual 5-91
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

TPREW

5-92

The 1PREW subroutine is used to rewind the tape. The tape must be
attached to the process via the TCL T-ATT command.

Inputs:

None

Output:

None

Elements used:

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

. I .. . ",
I:' "

~)

(TPWEOF

(

6973-1

TPWEOF

The TPWEOF subroutine is used to write a tape mark on the tape. The
tape must be attached to the process via the TCL T-A TT command.

Inputs

None

Output:

None

Elements used:

None except standard scratch elements

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

5-93

System Subroutines

UPDITM

5-94

The UPDITM subroutine performs updates to a disk file. If the item is to
be deleted, the routine compresses the remainder of the data in the group
in which the item resides. If the item is to be added, it is added at the
end of the current data in the group. If the item is to be replaced, a
delete, then add function takes place.

Input (user specified):

BMSBEG

TS

CH8

FCBt

FCB2

Output:

None

S points one prior to the item-id of the item to be
updated; the item-id must be terminated by an AM

R 13 points one prior to the item body to be added or
replaced (no item-id or count field); not needed
for deletions; the item body must be terminated
byaSM

C contains the character D for item deletion, U for
item addition or replacement

D

D
}

contain the access information for the file being

updated

Elements used:

NNCF H

NPCF H

XMODE T

D2 D

D3 D

RECORD D Scratch

FRMN D

FRMP D

IR R6

BMS R8

UPD R7

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

;r'"
~j'

Description

6973-1

UPDITM

If the update causes the data in the group to reach the end of the linked
frames, NEXTOVF is entered to obtain another frame from the overflow
space pool and link it to the previous linked set; as many frames as
required are added.

If the deletion or replacement of an item causes an empty frame at the
end of the linked frame set, and that frame is not in the primary area of
the group, it is released to the overflow space pool. Once the item is
retrieved, processing cannot be interrupted until completed.

Note that this routine does not perfonn a merge with the data already on
file. In order to change an item, it must fIrst be read and copied to the
user's workspace, changed there, and then updated back to the file
using UPDITM.

If a group format error is encountered (premature end of linked frames,
or non-hexadecimal character found in an item count fIeld), an error
message is printed and the group is tenninated at the end of the last good
item before processing continues.

Assembly Manual 5-95
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

WRITE@OB
WRITEX@OB

Description

5-96

The WRlTE@IB subroutine stores the character at the current position of
R 11 in the next position of the asynchronous output buffer. The
WRITEX@IB subroutine stores the character at the current position of R 11
unless current tenninal performs a local echo (such as IBM 3270 types),
in which case it does nothing.

Input (user specified):

Rl1 R

Output:

R 11 R unchanged

R14 R

Elements used:

None except standard scratch elements

If the output buffer is full, the process is suspended until characters are
removed by the asynchronous channel controller.

The WRITEX@OB routine must be used whenever code is writing only to
echao a character that was read in by READX@IB. This is because some
terminals do a local echo and the systems that support those tenninals
must be able to distinguish instructions used for only echoing.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

~.~.

0'

WRTLlNIWRTLOB

(WRTLIN
WRITOS

The WRlUN and WRITOB subroutines are the standard routines for
outputting data to the tenninal or printer. WRlUN deletes trailing blanks
from the data, and increments the internal line counter LINCIR; WRITOB

does neither.

Input (user specified):

OB Rll points to the last character in the OB buffer, the
buffer must extend at least two characters beyond
this location

NOBLNK B if set, blanking of the output buffer is
suppressed; this bit is normally zero

PALE T contains the spooler print file number,
meaningful only if lPBIT is set; unless more than
one print file is being simultaneously generated,
the nonnal value of zero may be used

(PAGl·lEAD S points one byte before the beginning of the page
heading message; meaningful only if PAGINATE

is set. If the FlD field of this storage register is
zero, no heading is printed; this is the default
condition

PAGFOOT S points one byte before the beginning of the page
footing message; meaningful only if PAGINATE is
set. If the FlD field of this storage register is
zero, no footing is printed; this is the default
condition

Input (system specified):

OBBEG S standard system buffer used to store data for
terminal or printer output

LISTFLAG B if set, all output to the tenninal is suppressed; set
and reset by the Tel P command and by the
debug P command

('\

6973-1 Assembly Manual 5-97
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

5-98

LPBIT B if set, output is routed to the spooler (Note:
routine SE1LPTR should be used to set this bit so
printer characteristics are set up correctly)

LFDLY T lower byte contains the number of fill characters
to be output after a CR/LF; set by the TCL TERM

command

PAGINATE B if set, pagination and page headings are invoked;
usually set by the PRNTHDR routine in
conjunction with page heading and/or footing

OTABFLG B output tabs in effect if set (by the TCL TABS

command)

The following specifications are meaningful only if PAGINATE is set:

PAGSIZE T

PAGSKIP T

PAGNUM T

PAGFRMT B

FOOTCTR T

Output:

contains the number of printable lines per page;
set by the TCL TERM command

contains the number of lines to be skipped at the
bottom of each page; set by the TCL TERM

command

contains the current page number

if set, the process pauses at the end of each page
of terminal output, until the user enters any
character to continue; a <CT'RL-X> returns the
process directly to TCL; normally set, this bit is
zeroed by the N option at TCL for most
commands, or by the NOPAGE modifier in
Ultimate RECAll.

contains the number of lines to the point in the
page where the FOOTING is to print, if a footing
is in effect; set by the PRNTHDR routine; if the
footing is changed by the user, the subroutine
SETFOOTCT'R must be called to reset this tally

OB Rll =OBBEG

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Description

6973-1

Elements used:

BMS used if LPBIT set

A TrOVF used if LPBIT set

Plus standard scratch elements

WRTLlNIWRTLOB

OBBEG points to the beginning of the data to be output; the last byte of
data is at the address pointed to by OB. This is for convenience in
calling the subroutines; normally they are called just after data has been
transferred to the OB buffer, in which case the OB address register is on
the last byte copied. On return, the OB address register is set back to
OBBEG, again for convenience; the output buffer area is blanked unless
bit NOBLNK is set.

The data is output to the terminal if bit LPBIT is off; otherwise the data is
stored in the printer spooling area.

Pagination and page heading and page footing routines are automatically
invoked if bit PAGINATE is set. If headings or footings are also needed,
the page heading and page footing buffers must be set up by the user,
see the PRNTHDR topic.

If PAGINATE is set, the end of page is checked for, and action is taken to
automatically print the page footing (if it exists), skip to the next page,
and print a new page heading (if it exists). The end of page is triggered
when either LINCTR reaches PAGSIZE (when there is no footing), or
reaches FOOTCTR (when there is a footing). However, a value of zero
in PAGSIZE suppresses pagination, regardless of the setting of
PAGINATE.

WR1LIN and WRITOB also perform output tabulation as specified by the
TCL TABS command, when output is to the terminal. In this case, blank
sequences in the output are checked against the output tab stops; if a
sequence of blanks crosses a tab stop, a tab character (X'09') is output
instead of the blanks.

Assembly Manual 5-99
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

WSINIT

5-100

The WSINIT subroutine initializes the following process workspace
pointer triads:

AF. AFBEG. AFEND

BMS. BMSBEG. BMSEND

CS.CSBEG.CSEND

IB. mBEG. mEND

OB. OBBEG. OBEND

TS. TSBEG. TSEND

It also initializes PBUFBEG and PBUFEND.

Inputs

None

Output:

R9

R8

Rl2

RIO

Rll

Rl3

R AF workspace pointer

R BMS workspace pointer

R CS workspace pointer

R IB workspace pointer

R OB workspace pointer

R TS workspace pointer

The first byte of the AF, CS, IB, and OB workspaces is set to x'OO'. The
OB workspace is filled with blanks (X'20'). IBSIZE and OBSIZE are set
to 465 if initially greater.

Elements used:

None except standard scratch elements

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Description

6973-1

WSINIT

For each workspace, the beginning storage register (and associated
address register, if present) is set pointing one before the first byte of
the workspace, and the ending storage register is set pointing to the last
data byte.

All workspaces except the TS and PROC (PBUFBEG to PBUFEND) are
contained in the frame at PCB+4; PBUFBEG and PBUFEND define a 4-
frame linked workspace; TSBEG and TSEND define a single unlinked
frame.

For more information on workspaces, see the section in Chapter 3
entitled, "Addressing Conventional Buffer Workspaces."

Assembly Manual 5-101
Confidential and Proprietary to The Ultimate Corp.

System Subroutines

WTLINK

5-102

The wn.INK subroutine writes link field information. See RDLINK for
details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6

6973-1

System Software Interfaces

When you log on to the system, you are normally at the TCL level of
operation, which is the primary user interface with the Ultimate system.
The TCL processor is the main way the Ultimate operating system
exercises its flow of program control.

All system commands are processed by the TCL processor. At the
conclusion of the command, it goes through WRAPUP software before
returning to TCL, or if the PROC program was in control, to PROC.

(WRAPUP is described later on in this chapter.)

The following are forms of commands that can be executed from TCL:

PROC The PROC program gains control; it may call the
TCL software as a subroutine by generating any
TCL command and executing it via the PROC P

command, or it may return to TCL via the PROC

exit (x) command.

TCl-1 verb

TCl-1i verb

Ultimate
RECAll or
Ultimate
UPDATE
Command

Typically these do not require file I/O; examples
are TIME, SLEEP, and POVF.

These verbs always access a file and usually items
in that file; examples are EDIT, COpy and AS. The
TCL-II file-handler opens the file and retrieves the
item, and then transfers control to the specific
processor. The latter returns to the file-handler
after completion of processing for that item.

The: Ultimate RECALL compiler is first called to
compile the command. The compiled string is
passed to the selection program, which acts as the
file-handler for the Ultimate RECALL run-time. If
the command requires sorting (SORT, SSELECf),

the SORT program is called to sort the selected
items on the specified sort-keys. The Ultimate
RECALL run-time program is called as each item is
selected, and it returns control to the selection
program after completion of processing for that
item.

Assembly Language 6-1
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-2

Cataloged
BASIC
Program

Complle
and-Go
BASIC
Program

Cataloged BASIC programs function similar to
assembly language programs, but are written in
BASIC. Examples include CREA TE-Fll..E and
TERM-INIT.

The BASIC compiler is first called to compile the
source statements in the item. Then the generated
object code is executed, after which it is
discarded.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Interfaces Between TeL and User Programs

(- Interfaces Between Tel and User Programs

The Initial
Conditions of
a Process at
TCL

6973-1

Control can be transferred to a user-written program and then returned
to the system using any of the following interfaces:

CONV interface allows subroutines to be called from BASIC or
RECALL, and allows parameters to be passed back
and forth.

PROC interface used when an assembly program is called as a
subroutine via a PROC.

RECALL provides the full power of the Ultimate RECALL

selection, sort, and correlative or conversion
processing.

TCL-I interface used when no disk file I/O is to be done

TCL-II interface used when a file or items in a file need to be
accessed; TCL-II relieves the program of
responsibility of file opening and item retrieval.

XMODE interface used to set up a special routine that handles the
Forward Link Zero abort condition (end of current
set of frames) without terminating the program.
Instead, the user can set up XMODE to branch to a
subroutine that links additional frames to the end of
the current frame set, complete the disk write, and
then continue with the program

Please see Chapter 7 for examples of programs and their associated
interfaces.

When a process is at TCL, its process workspace pointers are at an
initialized state; however, the data in the workspace buffers is whatever
has been left over from the last program.

The initial conditions of a process at TCL are as follows:

Assembly Language 6-3
ConfidentiaJ and Proprietary to The Ultimate Corp.

System Software Interfaces

6-4

PCB Symbols Contents

MFCBl Access infonnation for the Master
MFCB2 Dictionary (MD)

EFBCl Access information for ERRMSG file
EFCB2

USER Describes current log status:
5 = logged on
3 = logging off.

Scan character
scD Contains X'FB' (SB)

sCI blank
sc2 blank

ABIT through ZBrr Zeroed
AFLG through ZFLG Zeroed
SBD through SB35 Zeroed

Workspace pointers Initialized to beginning and end of buffer
spaces.

Output Devices Contents

Terminal and Initialized by the TERM command.
printer
characteristics
(such as paper
depth and width)

Note that the initial conditions of a process mean that the process has
access to the user's MD and to the ERRMSG file.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
CONV Interface

CONV Interface

Calling
Conversion
Program as a
Subroutine

6973-1

The CONV interface may be used to call the conversion software as a
subroutine or to call a user-written subroutine from BASIC or Ultimate
RECALL.

Two distinct but closely connected interfaces are covered in this topic:

• calling conversion program as a subroutine

• calling a user-written subroutine from BASIC or Ultimate RECALL

The entire section should be read carefully for a complete understanding
of the methods involved.

Conversions can be either input or output, as follows:

input conversions: conversion of a user input to intermediate
(processing) format according to specified
code.

output conversions: conversion of data in intermediate (processing)
format to output format according to specified
code.

The CONV entry point may be used to call the entire conversion program
as a subroutine (BSL CONV) , which will perform any and all valid
conversions specified in the conversion string. It is normally used
when the user writes an assembly program that requires one of the
standard user conversions (see Figure 6-1 for conversion codes; for
details, see the Ultimate RECALL and UPDATE User Guide).

Inputs (user specified):

TSBEG S Points one before the value to be convened; the
value is convened in place, and the buffer is used
for scratch space; therefore it must be large
enough to contain the convened value; the value
to be convened must be terminated by any of the
standard system delimiters (SM, AM, VM, or
SVM)

Assembly Language 6-5
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-6

IS R4 Points to the fIrst character of the conversion
code specifIcation string for CONY. If CONVEXIT

is to be used to check for more conversion codes
(see below), IS points at least one before the next
conversion code (after a VM) or AM at the end of
the string. or to the AM; the code string must end
with an AM; initial semicolons (;) are ignored

MBIT B Set if input conversion is to be performed; zero
for output conversion

Outputs:

IS R4 Points to the AM/VM terminating the conversion
codes

TSBEG S Points one before the converted value

TS R 13 Point to the last character of the TSEND convened
value; a SM is also placed one past this location;

TSEND S =TS

If a null value is returned, TS=TSEND=TSBEG

Elements used:

SBW B

SBll B

5B12 B

SC2 C

CHO T

CTRI T

CTR20 T

CTR21 T

CTR22 T

CTR23 T

54 S

55 S

56 S

S7 S

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

CONV Interface

Code Description

D convert date to internal or external fonnat

G extract group of characters

L test string length

MC mask characters by numeric, alpha, or upper!lower case

ML mask left-justified decimal data

MP convert integer to packed decimal or vice versa

MR mask right-justified decimal data

MT convert time to internal or external fonnat

MX convert ASCII to hexadecimal or vice versa

P test pattern match

R test numeric range

T convert by table translation; the table file and translation
criteria must be given

Note: This type of conversion is inefficient if several
items or attributes will be accessed.

U convert by subroutine call to assembly routine, either
system- or user-defined. The hexadecimal mode-id
(absolute address) of the routine must be given (as
discussed above). The INPUT. V AL may be a parameter to
be passed to the subroutine or a null string if none is
needed. If two or more parameters are to be passed, they
must be compressed into a single string in INPUT. V AL and
parsed by the called routine.

Figure 6-1. Processing Codes

Assembly Language 6-7
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

Calling a
User-Written
Subroutine

6-8

The CONV enny point may also be used to call a user-written subroutine
from BASIC or Ultimate RECALL. This conversion program interface is
the single most useful interface in the system. The interface to both
these programs is identical.

• To call a user subroutine from BASIC, use the ICONV or DCONV

function as follows:

CONVERTED.VAL = OCONV(INPUT.VAL, 'Uxxxx')

CONVERTED.VAL = ICONV(INPUT.VAL, 'Uxxxx')

The value 'xxxx' in 'Uxxxx' is the hexadecimal mode-id of the user
written subroutine. The unconverted or raw value in variable
INPUT.Y AL is passed as a parameter to the user assembly code, which
perfonns such action as needed, and the result is returned to the
BASIC program as a value (in the above example) stored in the
variable CONVERTED. V AL.

ICONY or OCONV is used depending on whether the user wants input
or output conversion to be perfonned (if the distinction does exist).

• To call a user subroutine from Ultimate RECALL, a correlative or
conversion code of the following fonnat should be used:

Uxxxx

The value 'xxxx' in 'Uxxxx' is the hexadecimal mode-id of the user
written subroutine. Ultimate RECALL passes the unconverted value
(which may have previous conversions or correlatives already
applied, since these fields in the dictionary item may be multiple
valued) as a parameter to the user assembly code; the latter performs
such action as needed, and the result is returned to Ultimate RECALL.

In both cases, the unconverted value is a string stored in the buffer
defined by TSBEG. It is important to note that the actual location of the
buffer is irrelevant. The actual TS buffer, as initialized at TCL, is only
512 bytes in length. This buffer is rarely used, since TSBEG can be
freely moved around to point to any scratch space available. However,
the symbolic reference via TSBEG always locates the data, so the
physical location need be of no concern.

All conversion programs adopt the convention that the converted value
is returned in the same location, overlaying the original value. User
written conversions must follow this convention. The space available
beyond the original unconverted parameter is considered scratch, and
may be used freely.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

" (.. .. '.~.

6973-1

CONV Interface

Chapter 7 contains an example of an assembly language program called
from a conversion program.

Inputs (user specified):

IS R4 points to non-hexadecimal character following

MBIT

TSBEG

Outputs:

IS

TSBEG

TS

TSEND

B

S

the uxxxx string

set for ICONY function or from selection software
in Ultimate RECALL.; reset if OCONV function or
LIST output software in Ultimate RECALL.

points one before unconvened parameter from
BASIC or Ultimate RECALL; value is terminated
by any system delimiter

R4 Points to the AM/VM terminating the conversion
codes

S Points one before the convened value

R 13 Point to the last character of the TSEND convened
value; a SM is also placed one past this location

S =TS

If a null value is returned, TS=TSEND=TSBEG

Exit Conventions:

One of two methods of exit can be used:

• The conventional exit is to entry CONVEX IT, which will process
funher conversion codes, if any. In this case, the IS register must
point either to the delimiter terminating the Uxxxx code, which can be
a VM or an AM, or to anywhere before it.

• If it is known that no funher codes exist, or if these codes are not to
be processed, a RTN instruction may be executed. In this case, it is
irrelevant where the IS register points.

Assembly Language 6-9
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

PROC Interface

6-10

The PROC interface is used when the program is to be called during the
execution of a PROC.

When a program is called from PROC, the PROC software regains
control after the assembly subroutine terminates execution. PROC may
call the TCL software as a subroutine by generating any TCL command
and executing it via the PROC P command, or it may return to TCL via
the PROC exit (X) command.

A user-written program can gain control during execution of a PROC by
using the Pxxxx or uxxxx command in the PROC, where 'xxxx' is the
hexadecimal mode-id of the user routine (user exit). These PROC

commands operate as follows:

Pxxxx executes current primary output buffer data and performs the
normal TeL initialization, then transfers control to the specified
mode-id instead of to TCL

Uxxxx transfers control to the specified mode-id without any TCL

involvement or initialization.

The routine can perform special processing, and then return control to
the PROC software. Necessarily, cenain elements used by PROC must be
maintained by the user program; these elements are marked with an
asterisk in the table below.

Inputs (system specified):
FCB I D} contain the file access information for the MD
FCB2 D

PQBEG* s

PQEND* s

PQCUR s

IR R

points one prior to the first PROC statement

points to the terminating AM of the PROC

point to the AM following the Pxxxx or Uxxxx
statement

=PQCUR

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

PROC Interface

(•..

PBUFBEG* S points to the buffer containing the primary and
secondary input buffers; buffer format is
SB ... primary input... SM SB ... secondary
input ... SM

ISBEG* S points to the buffer containing the primary output
line

STKBEG* S points to the buffer containing "stacked input"
(secondary output)

SBIT* B set if a STON command is in effect

SC2* C contains a blank

IB RIO current input buffer pointer (may point within
either the primary or secondary input buffers)

IS R4 if SBIT is set, points to the last byte moved into
the primary output buffer;
if SBIT is not set, points to the last byte moved

(: into the secondary output buffer

UPD R7 if SBIT is set, points to the last byte moved into
the primary output buffer;
if SBIT is not set, points to the last byte moved
into the secondary output buffer

Outputs:

IR R points to the AM preceding the next PROC

statement to be executed; may be altered to
change PROC execution

IS R4 } may be altered as needed to alter data within
UPD R7 the input and output buffers, but the formats
IB RlO described above must be maintained

6973-1 Assembly Language 6-11
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-12

Exit Convention

The nonnal method of returning control to the PROC software is to
execute an external branch instruction (ENT) to 2,PROC-I. To return
control and also reset the buffers to an empty condition, entry 1,PROC-I

may be used.

If it is necessary to abort PROC control and exit to WRAPUP, bit PQFLG
should be reset before branching to any of the WRAPUP entry points (see
WRAPUP topic).

When a PROC eventually transfers control to TCL via the P operator, the
following elements are expected to be in an initial condition:

bits ABIT through ZBIT

bits AFLG through ZFLG

bits SBO through SB30

scan character Sea must contain a SB, scan characters SCI and sC2

must each contain a blank

It is best to avoid usage of these bits in PROC user exits. However, if a
user routine does use any of these elements, they should be reset before
returning to the PROC, unless the elements are deliberately set up as a
means of passing parameters to other programs.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
RECALL Interface

RECALL Interface

6973-1

The Ultimate RECALL interface may be used whenever a program needs
to use the Ultimate RECALL capabilities for output. The Ultimate
RECALL interface requires more care than the TCL-I and TCL-II interfaces
because it uses most of the available global elements, but it provides the
full power of the Ultimate RECALL selection, son, and correlative or
conversion processing.

Ultimate RECALL software uses a compiled string that is stored in the IS
work space. String elements are separated by SMs. There is one file
defming element in each string, an element for each attribute specified in
the original statement, and an element for each explicitly listed item-ID.

A file defining element has the following format:

An attribute defining element has the following format:

where c is one of the following:

A regular attribute

Q controlling attribute

B dependent attribute

Bx SORT connectSORT-BY, SORT-BY-DSND, etc; x is from attribute 1
of the connective

An explicit item-ID element has the following format:

I item-id

An end-of-string element has the following format:

z

A typical Ultimate RECALL statement passes through the compiler and
the selection programs before entering the program that produces the

Assembly Language 6-13
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

Gaining
Control After
Selection

6-14

final report. All statements must pass through the first two stages, but
control can be transferred to user-written programs from that point
onward. It is possible to interface with the Ultimate RECALL software at
following points:

• after selection and soning, if specified, but before processing codes
have been applied

• after processing ccxies have been applied

A user program can get control directly from the selection software or
from GOSORT if a sorted retrieval is required.

The selection software performs the actual retrieval of items that meet
the selection criteria, if specified. Each time an item is retrieved, the
software at the next level is entered with bit RMBIT set; a final entry with
RMBIT zero is also made after all items have been retrieved. If a sorted
retrieval is required, the selection software passes items to the GOSORT
mode, which builds up the sort-keys preparatory to sorting them. After
sorting, GOSORT retrieves the items again, in the requested sorted
sequence.

To define verbs that gain control after selection, use the following
format:

attribute number unsorted sorted
001 PB PB

002 35 35

003 xxxx 4E

004 xxxx

xxxx hexadecimal mode-ID of the user program

The mcxie-ID is loaded into the tally MODEID2 for later use.

Note: Attribute 1 must be PB.

In this methcxi of interface, only item retrieval has taken place; none of
the conversion and correlative processing has been done. For functional
element interface, the column headed "Selection Software" in the table
shown later must be used.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Gaining
Control After
Processing
Codes

6973-1

RECALL Interface

Exit Convention

On all but the last entry, the user routine should exit indirectly via
RMODE (using an ENT* RMODE instruction); on the last entry, the
routine should exit to one of the WRAPUP entry points. Processing may
be aborted at any time by setting RMODE to zero and entering WRAPUP.
Bit SBD must also be set on the first entry.

A user program also gain control in place of the nonnal LIST fonnatter,
to perform special formatting. The advantage here is that all
conversions and correlatives have been processed, and the resulting
output data has been stored in the history string (HS area).

Ultimate RECALL software obtains the data in output form (correlated
and converted), creates a dummy item in the HS buffer, then turns
control over to the user program.

To define verbs that gain control after processing codes, use the
following fonnat:

attribute number unsorted sorted
001 PA PA

002 35 35

003 4D 4E

004 xxxx xxxx

xxxx hexadecimal mode-ID of the user program

The mode-ID is loaded into the tally MODEID3 for later use.

No Ie : Attribute 1 must be P A.

Output data is stored in the HS area; data from each attribute is stored in
the string, delimited by AMS, as follows:

X item-ID~value.one~ ... ~value n ~ =

The X denotes a new item. The program must reset the history string
pointer HSEND as items are taken out of the string. HSEND must be reset
to point one byte before the next available spot in the HS work space,
normally one before the first X code found.

Assembly Language 6-15
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-16

Exit Convention

The exit convention for the LIST program is the same as for the selection
software (see previous page).

Example

The following is an example of an assembly program that gains control
from the LIST software to print item-IDs four at a time across the page.

The format of the verb is which uses the program is as follows:

item-IO

001

002

003

004

LIST4

PA

35

4E

OlFF

sorted; for unsorted, substitute 4D

MODEm3 exit to frame 511, entry point 0

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

6973-1

RECALL Interface

FRAME 511

*
HSENDDSP DEFTU HSEND

*
ZB SB30

BBS SBl,NOTF

* FIRST TIME SETUP

DISP FIELD OF HSEND

INTERNAL FLAG

NOT FIRST TIME

MOV

BSL

4,CTR32

PRNTHDR INITIALIZE AND PRINT HEADING

SB SBI

*
NOTF BBZ RMBIT,OP LAST ENTRY

OP

LOOP

SCANSM

STOR

COPYIT

ENDHS

BDNZ CTR32, RETURN NOT YET 4 ITEMS OBTAINED

MOV

MOV

INC

4,CTR32

HSBEG,R14

R14

RESET

BCE C'X',R14,STOR FOUND AN ITEM

BCE C'Z',R14,ENDHS END OF HS STRING

R14,X'CO' SCAN TO NEXT SM

LOOP

SID

B

BBS

SB

SB30, COPYIT NO FIRST ID FOUND

SB30 FLAG FIRST ID FOUND

MOV R14,SR28

CMNT *

SAVE LOCATION OF FIRST

"X"

MIID R14,OB,X'AO' COPY ITEM-ID TO OB

MCC

INC

C' " OB

OB,5

B SCANSM

OVERWRITE AM

INDEX

PRINT A LINE BSL

MOV

DEC

WRTLIN

SR28,HSEND

HSENDDSP

RESTORE HS TO FIRST X CODE

BACK UP ONE BYTE

RETURN

QUIT

BBZ RMBIT,QUIT

ENT* RMODE

CMNT *

ENT

END

MD999

Assembly Language

RETURN TO SELECTION

PROCESSOR

TERMINATE PROCESSING

Confidential and Proprietary to The Ultimate Corp.
6-17

System Software Interfaces

Element
Usage

6-18

The following table summarizes the functional element usage by the
selection and LIST software. Only the most imponant usage is
described; elements that have various usages are labeled scratch. A
blank in a column indicates that the program does not use the element.
Since the LIST program is called by the selection program, any element
that is not to be used by others in the fonner is indicated by a blank
usage in the latter column.

In general, user routines may freely use the following elements:

bits SB24 upwards

tallies CTR30 upwards

double tallies 03 thru 08

storage registers SR20 upwards

SBO and SB 1 have a special connotation: they are zeroed by the selection
program when it is fIrst entered, and not altered thereafter. They are
conventionally used as first-time switches for the next two levels of
processing. SBO is set by the LIST program when it is first entered, and
user programs that gain control directly from selection should do the
same. SBD may be used as a first-entry switch by user programs that
gain control from the LIST program.

An Ultimate RECALL verb is considered an update type of verb if the
SCP character from line one of the verb definition is B, C, 0, E, G, H, I,

or J. These SCP characters are reserved for future Ultimate RECALL

verbs.

The following should also be considered:

• If a full file retrieval is specifIed, the additional internal elements as
used by GETITM are used. If explicit item-ids are specifIed, RETIX is
used for retrieval of each item.

• Most elements used by the CONV and FUNC programs have been
shown in the table; both may be called either by the selection program
or the LIST program.

• Since the ISTAT, SUM, and STAT commands are independently driven
by the selection program, the element usage of these programs is not
shown.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

RECALL Interface

(~. Bits Selection program LIST program

ABIT scratch non-columnar list flag

BBIT first entry flag

CBIT scratch scratch

DBIT scratch dummy control-break

EBIT reserved control-break flag

FBIT reserved scratch

GBIT reserved scratch

HBIT reserved scratch

mIT explicit item-ids specified

JBIT reserved 02 attribute in process

KEIT by-exp flag by-exp flag

LBIT scratch left-justified field

(~ MBIT CONY inteIface; zero zero

NBIT scratch scratch

OBIT selection test on item-id

PBIT scratch scratch

QBIT scratch scratch

RBIT full- file-retrieval flag

SBIT selection on values (WIlli)

TBIT scratch print limiter flag

UBIT scratch reserved

VBIT reserved scratch

WBIT scratch reserved

XBIT scratch reserved

YBIT left-justified value test left-justified print limiter

(~\ ZBIT left-justified item-id

6973-1 Assembly Language 6-19
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-20

Bits

SBQ

SB!

Selection program

unavailable

unavailable

SB2 reserved; zero

SB3-SB 17 scratch or reserved

WMBIT

GMBIT

BKBIT

RMBIT

FUNC interface

FUNC interface

scratch

set on exit if an item was
retrieved; zero on final exit

VOBIT set for WRAPUP interface

LIST program

first entry flag,level one

first entry flag, level two

scratch or reserved

FUNC interface

FUNC interface

scratch

Bits Selection program and LIST program

DAFl set if SCP = B, C, D, E, G, H, I, or J

DAF8 set if accessing a dictionary

CFLG set if C option or COL-HDR-SUPP specified

DFLG set if D option or DET-SUPP specified

HFLG set if H option or HDR-SUPP specified

lFLG set if I option or ID-SUPP specified

CBBIT set if BREAK-ON or TOTAL specified

DBLSPC set if DBL-SPC specified

LPBIT set if P option or LPTR specified

PAGFRMT set unless N option or NOPAGE specified

TAPEFLG set ifT-LOAD verb (SCP = T) or TAPE specified

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

RECALL Interface

("
~J/ Tallies Selection LIST program

program

Cl; C3-C7 scratch scratch

C2 contents of MODEID2

erRl-CTR4 scratch scratch

erR5 scratch AMC of current element in IS

erR 6 reserved scratch

CTR7 reserved AMC corresponding to IR

CTR8 reserved scratch

CTR9 reserved scratch

CTRlO reserved scratch

CTRII reserved scratch

CTRl2 FUNC interface current subvalue counter

C' CTRl3 FUNC interface current value counter

CTR14 reserved scratch

erR 15 reserved item size

erR 16 reserved scratch

CTR17 reserved reserved

CTR18 reserved scratch

erR 19 reserved sequence number for BY-EXP

CTR20- CONV interface CONV interface
CTR23

CTR24 reserved scratch

CTR25 reserved scratch

erR26 reserved scratch

CTR27 reserved current max-length

CTR28 reserved scratch

0
6973-1 Assembly Language 6-21

Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

Storage Selection program LIST program
Registers

SI points to the next explicit
item-id

S2-S9 scratch scratch

SRO points one before item
count field

SRI points to the correlative current correlative
field

SR2 scratch scratch

SR3 reserved scratch

SR4 points to the last AM of
the item

SR5 reserved points to the next
segment in the IS

SR6 points to the conversion current conversion field
field

SR7 reserved scratch

SRS-SRI2 reserved reserved

SRI3 next sort-key; used by reserved
GOSORT only:

SRI4-SR19 reserved reserved

PAGHEAD heading in HS if generated heading in HS
HEADING was specified

6-22 Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

1(--"\
(!

'J

C-''',
. I

,/

RECALL Interface

('
Address Selection program LIST program
Registers

AF scratch scratch

BMS within the BMS area scratch

CS scratch

IB scratch

OB output data line

IS compiled string compiled string

OS scratch

TS within the TS area within the TS area

UPD within the HS area

IR within the item within the item

Other Selection program LIST program
(~ Storage

,_"~f

D9 count of retrieved items

D7 RJNC interface RJNC interface

FPl-FP5 RJNC interface RJNC interface

RMODE return mode-id

SIZE item-size scratch

FFCBl access information for
FFCB2 file

Workspace Selection program LIST program
Usage

BMS contains the item-id

HS heading data heading data; attribute
data for special exits

TS scratch current value in process

6973-1 Assembly Language 6-23
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

TCl-1 and TCl-1i Interfaces

6-24

To initiate a user program as a TCL-I or TCL-II verb, a verb defmition
item must be created in the user's Master Dictionary (MD). The item-ID
selected for the definition item becomes the command name to enter at
TCL. The TCL software uses the information in the verb definition item
to transfer control to the user program.

Figure 6-2 shows the structure of a TCL-I verb definition item. Figure
6-3 shows the structure of a TCL-II verb definition item.

Attribute

001

002

003

004

Content Meaning

P{x} P identifies item as a verb; x, if present, is
the SCP character

X'nnnn' Program primary mode-id.

{X'nnnn' } Optional secondary program mode-id or a
subroutine parameter.

{X'nnnn' } Optional tertiary program mode-id or a
subroutine parameter.

Figure 6-2. TCl-1 Verb Definition Item
Format

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Attribute

001

002

003

004

005

TCL-I and TCL-II Interfaces

Content Meaning

p{x} P identifies item as a verb; x, if present, is
the SCP character

2 Constant 2; mode-id of TCL-II (entry point
O,frame 2)

X'nnnn' Program primary mode-id

{X'nnnn' } Optional secondary program mode-id or a
subroutine parameter.

{options} Code characters for TCL-II options:

C copy retrieved items to the IS workspace

F file access only; file parameters are set
up, but any item-list is ignored by TCL-
II. If present, any other options are
ignored

N new item acceptable; if the item
specified is not on file, the secondary
program still gets control (the EDITOR,
for example, can process a new item)

P display item-id on a full-file or item-list
(more than one item) retrieval, or if a
select list is in effect

U updating sequence flagged; this option
is required if items are to be updated as
retrieved

Z Final entry required; the secondary
program is entered once more after all
items have been retrieved (the COpy
program, for instance, uses this option
to print a final message)

Figure 6-3. TCL-II Verb Definition Item
Format

Assembly Language 6-25
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

SCP
Character

6-26

The SCP character is an optional character that follows the P in verb
definitions. If present, it may be any character except the following,
which have special meaning:

G send input line directly to program; do not parse it
o ignore options
Q identifies command as a PROC

U update processor

The TCL software loads the SCP character into the byte in your PCB

called SCP. It can be accessed by your program as necessary. It is
generally used to allow verbs that are very similar to share mode-ids and
entry points. The SCP character can be used to distinguish between the
verbs. For examples, see the verb definitions for ADDD. DIVD. MULD,

and SUBD.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

TCL-I
Interface
Requirements

6973-1

TCL-I and TCL-lIlntertaces

MDIB is the point where TCL attempts to retrieve a verb (first set of
contiguous non-blank data in the input buffer) from a user's MD, and
validate it as such. If no errors are found, the rest of the data in the
input buffer is edited and copied into the IS work space, and control
passes to the software specified in the primary mode-id attribute of the
verb, or to the PROC software if the data defines a PROC; that is,
attribute 1 = PQ{U}.

If the TCL statement contains options (an alphabetic character string
and/or numbers enclosed in parentheses at the end of the statement), the
options are parsed as described below.

Inputs (user specified):

IB R Points one character before the input data

Outputs:
FCBI D } contain the file access information for the MD

FCB2 D

IB RIO points to the SM at the end of the input line

mEND S =m

BMS R8 points to the last character of the item-id

BMSEND S =BMS

IR R6 points to the AM following attribute 4 of the verb
item, or to the end-of-data AM in attribute I if the
item defines a PROC

SR4 S points to the AM at the end of the verb item in the
master dictionary

The following are meaningful only if the first two input characters are
not PQ (that is, the item is not a PROC). In addition, AFLG through
ISBEG are meaningful only if the first two input characters are not PG
(reserved for operating system software):

SCP C contains the character immediately following P in
the verb definition, if present; otherwise contains
a blank

Assembly Language 6-27
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-28

CTRO T

MODEID2 T

MODEID3 T

as R

AfLG thru B

ZFLG

NUMFLGI B

NUMFLG2 B

04 D

05 D

IS R

ISBEG S

contains the program mode-id specified in the
verb definition item (attribute 2)

contains the secondary mode-id from the verb
defmition item (attribute 3), if present; otherwise,
contains 0

contains the tertiary mode-id from the verb
defmition item (attribute 4), if present; otherwise,
contains 0

=OSBEG

option flags; AFLG set for A option, BFLG for B

option, etc., thru ZFLG for Z (numeric options are
stored as shown below)

set if any numeric option was present

set if second number was present

contains first number (if NUMFLG 1 is set)

contains second number (if NUMFLG2 is set)

=ISBEG

points one character before the beginning of the
edited input line; characters are copied from the
lB, subject to the following rules:

• all control characters and system delimiters
(SB, SM, AM, VM, SVM) in the input buffer
are ignored

• redundant blanks (two or more blanks in
sequence) are not copied, except in strings
enclosed by single or double quote marks

• strings enclosed in single quote marks are
copied as: SM I string SB

• strings enclosed in double quote marks are
copied as: SM v string SB

• end of data is marked as: SM Z

• If SCP is G, no input editing or parsing is
done.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

TCL-I and TCL-II Interfaces

When TCL-I has fmished parsing the statement, it exits as follows:

• if the verb is not found in the Master Dictionary, or has a bad format,
control passes to MD99 in the WRAPUP software, which prints an
error message.

Error number

2

3

30

Error type

uneven number of single or double quote
marks in the input data

verb cannot be identified in the MD

verb fonnat error (premature end of data
or a non-hexadecimal character present in
the mode-id)

• if the first verb line contains "PQ (U}, control passes to O,PROC-I

• otherwise, control passes to the entry point set up in CTRO

Assembly Language 6-29
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

Tel-II
Interface
Requirements

6-30

TCL-II should be used whenever a verb requires access to a file, or to all
or explicitly specified items within a file. It is entered from the TCL-I

software after the verb has been decoded and the primary mode-id has
been identified as that of the TCL-II software (that is, the mode-id in
attribute 2 of the verb definition is 2).

The input data string to TCL-II consists of the file-name, followed by a
list of items, or an asterisk (*) specifying retrieval of all items in the me.
If a SELECT, SSELECT, GET-LIST or QSELECT has immediately preceded
the TCL-II statement and no item list is present, item-ids are obtained
from the select-list instead of from the statement.

TCl-II exits to the software whose mode-id is specified in MODEID2.

Typically, programs such as the editor use TCL-II to feed them a set of
items which is specified in the input statement. TCL-II uses RMODE to
gain control from WRAPUP after each item is processed.

On entry, TCL-II checks the verb definition for a set of option characters
in attribute 5; verb options are single characters in any sequence and
combination, as shown in Figure 6-3.

If the C option is specified in the verb definition, TCL-II copies to the IS

workspace as follows:

ftem-id:AM:

ISBEG

... Item body ... end,

ISEND

Inputs (system specified - from TCL-I):

IR R

SR4 S

MODEID2 T

BMSBEG S

points to the AM before attribute 5 of the verb

points to the AM at the end of the verb

contains the mode-id of the program to which
TCL-II transfers control (assuming no error
conditions are encountered)

standard system buffer where the file-name is to
be copied, if the F option is present; otherwise
where item-ids are to be copied

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

TCL-I and TCL-II Interfaces

(
ISBEG S standard system buffer where items are to be

copied, if the C option is present

Outputs:

DAFl* B set if the U option is specified

DAF2* B set if the C option is specified

DAF3* B set if the P option is specified

DAF4* B set if the N option is specified

DAF5* B set if the z option is specified

DAF6* B set if the F option is specified, or if a full file
retrieval is specified (item list is * and no F

option)

DAF8 B set if a file dictionary is being accessed,
otherwise reset (from GETFILE)

DAF9 B =0

(DAFlO B set if more than one item is specified in the input
data, but not a full file retrieval

IS R points one past the end of the file name in the
input string if the "F" option is present; points to
the SM in the copied item if the "c" option is
present, otherwise to the end of the input string

RMBIT B set if the file or item is successfully retrieved

FFCBI D } contain access information for the current fIle

FFCB2 D

FCB! D } contain access information for the current fIle

FCB2 D on the first exit only

DFCBI D } contain access information for the dictionary

DFCB2 D of the current file

(',','
, *These elements must not be changed by the next level of software.

6973-1 Assembly Language 6-31
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-32

The following are meaningful only when the F option is not present:

SRO s points one prior to the count field of the retrieved
item

SIZE T contains the item size in bytes (one less than the
value of the count field)

SR4 S points to the last AM of the retrieved item

I SEND S if the c option is present, points to the SM

tenninating the item data

IR R if the C option is present, points to the last AM of
the retrieved item; otherwise, points to the AM

following the item-id on file

RMODE T ifitems are left to be processed, =MD201 (TCL-II

re-entry point); otherwise =0 (must not be
changed by the next level of software)

XMODE T =0

Flags as set up by TCL-I if the input data contains an option string.

Error Conditions

The following conditions cause an exit to the WRAPUP program with the
error number indicated:

Error number

13

199

200

201

202

203

Assembly Language

Error type

data pointer item not found, or in bad format

IS work space not big enough when the c
option is specified

no file name specified

filename illegal or incorrectly defined in the MD

item not on file; all messages of this type are
stored until all items have been processed;
items which are on file are still processed

no item list specified

6973-1
Confidential and Proprietary to The Ultimate Corp.

WRAPUP Interface

('~-' WRAPUP Interface

6973-1

All TCL-interfaced programs must exit to the WRAPUP software when
processing is completed. In addition, various entry points to the
WRAPUP software provide convenient message printing, if needed.

WRAPUP perfonns the following functions:

• prints messages and resets HS

• writes abort information, if any, into SYSTEM-ERRORS file

• re-initializes workspaces using the WSINIT subroutine

• closes open print jobs

• cancels interrupts on all virtual devices

• if tape is attached, resets tape buffers and flags

• resets stack counter, STACKPTR, STKFLG

• resets storage registers in the QCB

• resets terminal and printer fields such as page and line counters, page
width and depth, and heading and footing text

• releases space to overflow

• resets XMODE field

• resets any read locks or group locks

• resets INHIBITH

• closes remote files, if any, and if specified in the UltiNet setup

if RMODE is non-zero, it returns to the location specified in RMODE

• if WMODE is non-zero, it performs the processing specified in

RMODE

• if mode was EXECUTEd from BASIC, it releases the EXECUTE level
and returns to BASIC program at the previous level

• if BREAK and END was used to abort process and if account indicates
to do so, it executes to LOGON proc

WRAPUP has several entry points that are used to print messages under
different conditions. In all cases, the messages (and parameters) either
may be stored in the HS buffer or may be immediately printed. If bit

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6-33

System Software Interfaces

6-34

VOBrr is set, the messages are stored; if VOBIT is zero or if RMODE is
zero, they are printed.

If messages are stored in the HS buffer, HSEND points to the next
available spot in the buffer. The message string is copied to this
location with a SM (segment mark) and an 0 preceding it and AMs
(attribute marks) separating each attribute; the message is terminated
with a SM and a z.

The HS string format is:

... ,z
HSEND

Note that HSEND points to the SM, not the z. This is so that on the next
entry, the Z is overwritten with the next o.

On final entry to WRAPUP, the HS buffer is scanned for sequences of SM
followed by 0, and the messages are printed. (However, if HSEND =
HSBEG, no messages are printed.)

If WRAPUP returns via RMODE, the subroutine return stack is cleared,
and the workspace pointers and address registers AF, BMS, CS, TS, IB
and OB are reset to standard conditions.

WRAPUP Entry Points

The following entry points to WRAPUP may be called by an ENT MDxxx
instruction from the user program, depending on the message needed:

Entry point

MD999

Description

terminates processing and returns to TCL-!

Note: All entries below eventually enter MD999.

MD99 enter with REJCTR, REJD and REJ 1 containing
up to three message numbers; no parameters

MD995

Assembly Language

enter with Cl containing the message number,
string parameter is at BMSBEG thru an AM;
typically used to print a message after a me I/O

6973-1
Confidential and Proprietary to The Ultimate Corp.

MD1

6973-1

MD994

MD993

MD992

WRAPUP Interface

routine has failed, since the item-id is in the
BMSBEG buffer at this point

enter with Cl containing the message number,
string parameter is at IS thru an AM

enter with Cl containing the message number,
numeric parameter is in C2~ typically used to
print a message with a count less than 32,767

enter with Cl containing the message number,
numeric parameter is in D9; typically used to

print a message with a count that may go higher
than 32,767

When WRAPUP is finished, it goes to the entry point to the TCL software
is known as MDl.

When MD I is entered, TCL checks for PROC control, and if this is
present, enters the PROC software. If a PROC is not in control (and bit
CHAINFLG is zero), an input line is obtained from the terminal, and
control passes immediately to MD IB (see TCL Interfaces).

Inputs (user specified):

CHAINFLG B If set, tenninal input is not obtained (as when
chaining from one BASIC program to another)

PQF1...G B Set to indicate PROC control

Assembly Language 6-35
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

XMODE Interface

6-36

The XMODE interface is used for processing in the case that a Forward
Link Zero condition occurs during a program.

A subroutine mode-id can be placed in XMODE before a pre
incrementing instruction such as MIlD or MIlT is executed. This
subroutine would gain control if a Forward Link Zero condition is
reached.. It can then process the end-of-frame condition and return to
the calling routine via a RTN instruction. On return from the subroutine,
execution continues at the interrupted instruction.

The XMODE interface has two purposes:

• to allow the standard "Forward Link Zero" system abort message to
be replaced with a more formal message

• to attach frames automatically when building a table or string of
unknown length

The following is an example of the use of XMODE:

MOV NEXTOVF,XMODE NEXTOVF is a standard system

CMNT * routine that can be used to

CMNT * add frames to register 6

MIID RS,R6,X'CO' Copy a string until RS reaches

CMNT * a SM

ZERO XMODE Reset XMODE

The MIID instruction above will automatically generate a subroutine call
to NEXTOVF if either register reaches the end of the linked set of frames.
If R5 does so, the NEXTOVF subroutine will exit to the debugger to print
the Forward Link Zero abort message. However, if register 6 does so,
a new frame from the system's overflow space will be linked to the last
frame in the linked set addressed by R6. The MIlD instruction will then
continue as if nothing happened.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

('

6973-1

XMODE Interface

The following instructions can be handled by the XMODE interface:

INC register MilT SIT

MCI MllDC SITD

MIC MIITD SICD

MIl MIIRl SIDC

MIlD SID

In the cases where the accumulator is used to count characters, save the
accumulator.

If you write your own subroutine, note the following system specified
input:

ACF C contains the number of the register that caused
the Forward Link Zero trap; this should be
checked to ensure that the correct register is being
handled.

1 Take care to save R 15 in the subroutine.

Assembly Language 6-37
Confidential and Proprietary to The Ultimate Corp.

System Software Interfaces

6-38

FRAME 511

* example of user written subroutine

* NEXTOVF could have been used instead

*
EP ENTRYO Entry point is 01FF

EP !TRAPSUB Entry point is 11FF

*
TRAP SUB DEFM 1,511 Define trap subroutine mode-id

*
ENTRYO EQU *

MOV TRAPSUB,XMODE Initialize XMODE with mode-id

MIITD RS,R6,X'CO' This may reach end of frame on R6

* (end of mainline program)

'TRAPSUB EQU

SRA
*
R15,ACF

BCU R15,6,NOT6

STORE D4

Subroutine entry point IlFF

Reference ACF for test

Cannot handle if not R6!

Save accumulator because

CMNT * subsbelow will destroy it

SETDSP R6,ID.DATA.SIZE Set displacement to last

C~~T * byte of this frame, so on

CMNT * return will increment to

CMNT * first byte, next frame

MOV R6FID, RECORD Pickup FID from register

BSL ATTOVF

BZ OVRFLW,NOT6

Attach another frame from ovflw.

Abort if no more space

NOT6

LOAD D4 Restore accumulator

RTN Return to interrupted inst.

ZERO XMODE Kill XMODE; when instruction

CMNT *
CMNT *
RTN *

Assembly Language

is re-executed, Debug will

be entered to print

Forward Link Zero message

Confidential and Proprietary to The Ultimate Corp.
6973-1

7

6973-1

Programmer's Reference

This section provides some guidelines for programmers who are new to
the Ultimate system, and some examples of assembly programs. The
following topics are covered:

• hints

• guidelines for data moves and sning conversions

• guidelines for selecting directives and symbol names, and defining a
value as a symbol

• background on two's complement binary arithmetic, which is used
for all arithmetic operations

• examples of programs and interfaces with system software

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

7-1

Programmer's Reference

Hints

Setting Up
Entry Points

PSYM
Elements
Reserved
User
Programs

Making
Programs Run
Faster

7-2

The following describe useful techniques to follow when writing an
assembly program.

Conventionally, at the beginning of a program, the entry points are
defined via EP and NEP instructions; this sequence is called the branch
table. These unconditional branch instructions allow the program body
to be changed and reassembled without affecting the entry points.

The branch table can contain up to 16 entry points. It is recommended
that all possible entry points be defined. Use EPs for valid entry points,
and NEPs for invalid entry points.

The following PSYM elements are reserved for user-written assembly
rouunes:

• bits: sa24 to sa35

• characters: none

• tallies: crn.30 to CTR42

• double tallies: none

• triple tallies: none

• storage registers: SR20 to SR24

Note that no address registers are freely available; availability depends
on the interface with the system software.

Additional elements may be stored by setting up an additional control
block (see Section 3.13).

A program runs faster executing sequential instructions than it does
executing branches. It is, therefore, recommended that test and branch
instructions be constructed so that the most likely result of the test
causes the program to continue in sequence; the less likely result should
cause the branch.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Handling
Terminal
Input and
Output

Branching to
External
Frames

Defining
Literals

6973-1

Programmer's Reference

It is recommended that the system subroutines READUN and WR1LIN be
used for tenninal I/O instead of the subroutines READ@IB, READ@IB,

WRlTE@OB, and WRITEX@OB (which handle just one character at a
time).

If a program needs to branch to an external frame, use the ENT

instruction. To execute a subroutine call to an external frame, use a BSL

instruction.

Operands of the fonn =Dxxxx or =Txxxx should not be used without
defining them first in the program. This restriction is made because the
intended literal values may not be generated when the program is
assembled on software machines.

On a software machine, the assembler may generate literals in-line as
part of the object code, rather than at the end of the program. This
would render =D4 an undefined symbol unless it is explicitly defined
earlier via a DTL Y, that is, "=D4 D11.. Y 4".

In summary, then, no symbol should be used without defining it first.
Instead, specify the literal value and let the assembler generate the
correct code for that instruction on that particular machine, as in:

ADD 10

instead of

ADD =TIO

Assembly Language 7-3
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

Guidelines for Data Moves and String Conversions

7-4

The Ultimate assembly language provides a number of data move and
conversion instructions, each designed to be used under certain
conditions. These instructions start with the letter M for move.

Programmers need to become familiar with the spectrum of instructions
available for data moves and conversions. Once the special features of
each instruction are clear, each instance where data needs to be moved
or converted can be handled efficiently in an assembly language
program.

The source location and destination location of the data should be two
different areas. The source data value is unchanged in all cases.

Ultimate file data is stored in ASCII string format; however,the assembly
language arithmetic instructions expect binary numbers as operands.
Therefore, the appropriate conversion must take place before perrorming
the arithmetic. Conversely, after perronning the arithmetic, the resulting
binary number must be converted back to its ASCII string equivalent in
order to output the value.

All data instructions assume that the programmer knows the type of
source data and the desired resulting data type.

• a binary number

• an AScn decimal number

• an ASCII hexadecimal number

Data stored as a single character is usually retrieved at the virtual address
of a register operand RO-RlS (non-incremented address), whereas string
data is usually retrieved starting at the virtual address plus 1
(incremented address). A non-incremented address is referred to as AR,

and an incremented address as AR+ 1.

Table 7 -1 lists data conversion instructions. Table 7-2 is a similar chart
for data move instructions.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(.. ~ ..•.
'>.~,~

6973-1

MBD

MBX

MBXN

MDB

MFD

MFE

MFX

MSDB

MSXB

MXB

Programmer's Reference

Table 7-1. Data Conversion Instructions

converts binary value into its equivalent decimal ASCII

string value, and stores the resulting string, starting at
the address + 1 of the register operand

converts binary value into its equivalent hexadecimal
ASCII string value, and stores the resulting string,
staning at the address + 1 of the register operand

converts a decimal ASCII character to its equivalent
binary value and accumulates it into a symbol operand

converts decimal ASCII character string value to its
equivalent binary value

converts hexadecimal ASCII character string value to
its equivalent binary value

converts decimal ASCII string into its equivalent value
as a binary number, which remains in the accumulator
FPO

converts hexadecimal ASCII string into its equivalent
value as a binary number, which remains in the
accumulator FPO

converts hexadecimal ASCII character to its equivalent
binary value and accumulates it

Assembly Language 7-5
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

7-6

MCC

MCI

MIC

MIl

MIID

MIIDe

MIIR

MIlT

MllTD

Table 7-2. Data Move Instructions

stores the character addressed by the fIrst operand at
the location addressed by the second operand

stores the character addressed by the fIrst operand at
the address + 1 of the second operand

copies one character from one location to another
location

increments two register operands, then moves the
character addressed by the fIrst operand to the location
addressed by the second operand

increments two address register operands, then moves
the character addressed by the first operand to the
location addressed by the second operand; continues
until delimiter encountered

increments two address register operands, then moves
the character addressed by the first operand to the
location addressed by the second operand; continues
until delimiter encountered; counts the number of
characters moved

increments two address register operands, then moves
the character addressed by the first operand to the
location addressed by the second operand; continues
until address in first register = address in R15

copies a specified number of characters from one
location to another

copies characters from one location to another;
terminates the copy at a specified number of
characters or when a specified delimiter is
encountered.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Programmer's Reference

Guidelines for Defining Symbols

6973-1

The Ultimate assembly language provides two types of directives for
defming symbols: 1L Y -type directives and DEFx directives.

The 1L Y -type directive reserves the specified number of bits or bytes in
the program frame.

The DEFx directive only defines a symbol name, without reserving
storage space in the system.

If you need to reserve space for a literal value as well as defining the
symbol name, user the 1L Y -type directive. If you need to refer to an
already existing value, or define a name for a value that will exist
elsewhere, use the DEFx directive.

In selecting symbol names, keep in mind the following criteria:

• A symbol name may begin with any character or character sequence
except the following:

$ dollar sign

pound sign

! ! double exclamation point

• A symbol name should not begin with a number. The assembler
assumes that any operand that starts with a number is a literal
number, not a symbol. Consequently, the assembler does not check
the PSYM or TSYM file, and the defined symbol value would not be
found or used.

Assembly Language 7-7
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

Two's Complement Arithmetic Concepts

7-8

The Ultimate system perfonns arithmetic in binary, using the two's
complement method. The two's complement method of arithmetic
provides the most efficient arithmetic calculations.

The two's complement of a binary number is obtained by changing
every I in its binary representation to 0, and every 0 to 1, then adding 1
to the result. For example, suppose you want the two's complement of
6. As an 8-bit binary number, 6 is 00000110. Complementing this
yields 11111001. Adding 1 to the result yields 11111010.

If a binary number is added to its two's complement, the result
(ignoring carry-over) is zero:

00000110
+ 11111010

(1) 00000000

Therefore, negative numbers are stored as the two's complements of
positive numbers in computer systems such as Ultimate. Two's
complement representation allows both positive and negative numbers to
be stored in binary. The high-order bit of each negative number is 1,
and the high-order bit of each non-negative (positive or zero) number is
O. This means that in an eight-bit field, only seven bits are available to
indicate the magnitude of a number.

The range of numbers that can be represented in a field of n bits can be
determined by the following fonnula (where n is greater than 1):

For example, using n=8:

_(2 8- 1) through (2 8- 1)-1 = -128 through 127

This shows that one byte can contain numeric values that range from -
128 through +127. If a number has a value of +128, then it must be
contained in a field of at least two bytes. (The value + 128 in binary is
10000000. But as an eight-bit value, this is interpreted as a negative
number (-128), because the high-order bit is 1. As a sixteen-bit value,

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(/

c
6973-1

Programmer's Reference

however, +128 is correctly interpreted because its high-order bit is now
0: 0000000010000000.)

Programmers should make sure they use elements large enough to
contain all conceivable values of symbols in their programs. Overflow
is not detected by the system, and any element having its high-order bit
set is treated as a negative number by the arithmetic instructions.

Use these ranges as the basis for selecting the appropriate data type for
numeric symbols in a program:

B (bit)

H (half tally)

T (tally)

o to I

-128 to +127

-32,768 to +32,767

D (double tally) -2,147,483,648 to +2,147,483,647

F (triple tally) -140,737,488,355,327 to +140,737,488,355,327

Assembly Language 7-9
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

Examples

7-10

This section contains examples of the following:

• TCL-I verb and BASIC program

• TCL-II verb and BASIC program

• conversion subroutine

• setting up heading and footing area

• PROC user exit

• cursor and printer control

• returning a pon's logon PCB frame

• returning time in milliseconds

• handling BREAK key activity

• changing width on Wyse terminals

Before you can use an assembly program, you must first assemble it,
MLOAD it, and put the verb definition in your master dictionary. Then,
to invoke the program, enter the item-ID of the verb definition at TCL.

For infonnation on assembling programs, see Chapter 2.

Before you can use a BASIC program, you must first compile it. For
more infonnation on BASIC, refer to the Ultimate BASIC Language
Reference Guide.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

C'

c

TCL-I Verb
and BASIC
Program

6973-1

*

Programmer's Reference

This example shows a simple assembly language program that is run
from the system (TCL) level as a TCL-I verb. A BASIC program that
performs the equivalent functions is given following the assembly
language program.

FRAME 511

EP ENTR'fO Entry point is 01FF

ENTR'fO EQU

SRA R15,PRMPC

MCC C'+',R15

BBZ PFLG,LOOP

BSL SETLPTR

LOOP BSL READLIN

CMNT

INC IB

BCE :B,SM,STOP

DEC ;B

MI ID IB,OB,X'CO'

DEC OB

CMNT

BSL WRTLIN

CMNT

MOV IBBEG,IB

BSL CVDrB

BZ TO,LOOP

BLE TO,140,OK

LOAD 140

OK MOV OB,R15

Mcr C' +' ,OB

DEC TO

MIIT R15,OB

CMNT

CMNT

BSL WRTLIN

B LOOP

STOP ENT MD999

PROMPT '+'

"PO option not used

PRINTER ON

INPUT x

Note no initialization for above

Set on first c~aracter input

If null line entered, quit

Backup to one betore t~rst oyte

Copy string through SM

Backott SM to set up ~ntertace to

WRTLIN

PRINT

Note no initialization for above

Set back to one before first byte

Convert numeric to binary

If zero or non-numeric do nothing

This test ensures number < 140

Else setup to limit to 140 bytes

OBBEG=OB=R15 now WRTLIN reset OB

Move first +, pre-incrementing OB

Adjust for above move

Propagate + as many times as value in

TO. Note that R15 always pre-increments

to a + and OB is always 1 ahead of R15.

PRINT

REPEAT

Conventional return to TCL via WRAPUP

7-11 Assembly Language
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

7-12

This program is called by a verb defined as follows:

COPYIT

001 P

002 01FF

To invoke the program, enter the following at TCL:

COPYIT {(P)}

Use the P option if you want to send the results to the printer.

The following BASIC program is equivalent to the preceding assembly
language program.

?ROMPT '.'

LOOP

INPUT X

:";NTIL x = " DO

PRINT X

IF NUM(X) THEN IF X<=140 THEN PRINT STR('+',X) ELSE

PRINT STR('+',140)

END

REPEAT

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

,/ ",

\",,/

TCl-1i Verb
and BASIC
Program

6973-1

*

*

Programmer's Reference

This example shows an assembly language program that is run from the
system (TCL) level as a TCL-II verb. It strips comments from BASIC
source me items. The stripped source is written back to the same fIle,
with an item-ID of STRIP- concatenated with the original item-ID.

FRAME 511

* This routine is called once as each item is read.

EP ENTRYO

STRIPX SQU *-1

7EXT C'STRIP-'

UCHAR CHR

ENTRYO EQU

MOV

SRA

MIT

MOV

C'U'

BMSBEG,BMS

R15,STRIPX

R15,BMS,6

[SBEG,IS

Entry point is 01FF

For SRA instruction below

For MCC below

Interface to UPDITM start of item-ID

Set R15 one before STRIP- string above

Copy 6 bytes

Location of item copied to [S buffer

MIID is,BMS,X'AO' Concatenate original item-ID, thru AM

MOV

LOOP INC

OSBEG,OS

[S

Scratch location for copy of item

To look at first byte of next line

BCE is, SM, ITMEND .• SM found, end of item reached

SKIP IT

TMEND

BCE IS,C'·',SKIPIT

DEC

MIID

B

IS

IS,OS,X'AO'

LOOP

SID IS,X'AO'

B LOOP

EQU

MCI

MCC

MOV

BSL

ENT

CMT

SM,OS

UCHAR,CH8

OSBEG,TS

UPDITM

MD999

Assembly Language

Asterisk in column one; delete line

Backoff first byte for MIlD below

Else copy rest of line

REPEAT

Scan to end of line (AM)

End of item body reached

Interface to UPDITM; end of new item

Interface to UPDITM; update flag

Interface to UPDITM; start of new item

WRITE

Rtn via WRAPUP to TCL-II for next item,

if any

7-13
Confidential and Proprietary to The Ultimate Corp.

Programmers Reference

7-14

This program is called by a verb defined as follows:

STRIPIT

001 P

002 2

003 01FF

004 0

TCL-II verb

005 CU Copy item to IS buffer; verb may update file

To invoke the program, enter the following at TCL:

STRIP IT filename {itemlist}

The itemlist contains the names of the items to be stripped.

The following BASIC program is equivalent to the preceding assembly
language program. (It assumes that a select statement was specified at
TCL before invoking the program.

OPEN 'filename' TO FILE ELSE STOP 201, 'filename'

100 READNEXT ID ELSE PRINT 'DONE'; STOP

>0

READ I:EM FROM FILE, ID ELSE

PRINT '~OT ON FILE'; GO 100

END

LOOP I=I+1; LINE=ITEM<I> UNTIL LINE=" DO

IF LIN E [1, 1 = '*' THEN

END

REPEAT

ITEM = DELETE(ITE:M,I,O,O)

WRITE ITEM ON FILE, 'STRIP-' :ID

GO 100

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

*DELETE COMMENTS

6973-1

Conversion
Subroutine

6973-1

Programmers Reference

This example of a conversion subroutine convens a nine-digit stored
number to nnn-nn-nnnn Social Security Number format and vice-versa;
this routine assumes that the value on entry is valid. Because only R14,
R15 and TS are used, no elements are saved.

FRAME 511

* BASIC RECALL

*Input Cony: RAW.VAL=ICONV(VAL, 'U01FF')

*Output Cony: OUT. VAL=OCONV (VAL, 'U01FF')

U01FF in V/CONV field

EP

ENTRYO EQU

MOV

BBS

ENTRYO

TSBEG,TS

~BIT,INPUTC

Entry point is 01FF

~ocate start of data

?rocess input conversion

----------------Output conversion-------------------------*

MOV TS,R14 Save start

SID TS,X'F8' Scan to any delimiter

MOV ,S,TSEND Save this location (TSEND is SCRATCH)

-MAP:

nnnnnnnnnD ... scratch s~ace ... :) is Delimiter

- TSBEG & R14 .. ' , ,SEND & TS

MIl R14,TS,3 Copy 3 numbers;

MCI C' -', TS Add a dash;

MII R14.TS,2 Copy 2 numbers;

MCr C' -'. TS Add a dash;

MII R14,TS,4 Copy 4 numbers;

MCr SM,TS

nnnnnnnnnDnnn-nn-nnnnS D is Delimiter; S is SM

" TSBEG A
A ••• TSEND TS

MOV TSBEG,TS Reset to start

MOV TSEND,R14 Start of CONVERTED data

MIID R14,TS,X'CO' Copy back thru SM

QUIT DEC TS Now on last byte of data

MOV TS,TSEND Correct EXIT interface

"MAP (for output conversion only)

nnn-nn-nnnnSn-nn-nnnnS

* TSBEG ' ' ... TS & TSEND

ENT CONVEXIT Conventional exit

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

7-15

Programmer's Reference

---------------Input conversion-------------------------

INPUTC EQU * Input side; convert nnn-nn-nnnn to 9n

INC TS,3 Set one before first "-"

MOV TS,R14

NC R14 Set on first "-"

*MAP:

* nnn-nn-nnnnD D is Delimiter

* TSBEG ~ ~~

TS •••• I \ ••••• R14

MII R14,TS,2 Note 2 bytes copied back lIin place"

INC R14 Skip over second II_"

MIID R14,TS,X'F'S' Copy rest of data to any delimiter

MCC SM,TS Ensure that delimiter is a SM

B QUIT

7-16 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

C'\

Setting Up
Heading and
Footing Area

6973-1

Programmer's Reference

This example shows how to set up a heading and footing area, using the
HS buffer. It can be added to the program shown in the ftrst example.

FRAME 511

* This is an example of setting up a heading and footing

*

*
EP ENTRYO Entry OIFF

HEAD EQU *-1 Heading text

ENTRYO

*

NOTLP

LOOP

etc.

TEXT C'THIS IS AN EXAMPLE'

TEXT C' OF A HEADING

TEXT PAGE'

TEXT X'FC',C'P',X'FOFF'

CMNT FC P=pagejj; FD=newline; FF=end of data

TEXT X'FO',C'ULTIMATE ASSEMBLY MANUAL'

TEXT X'FF' To stop MI IO !

EQU

MOV HSENO,R15 Note use of HSENO, not HSBEG!

SRA R14,HEAD Set R14 one before heading data

MCI C'X',R15 Conventional X in HS area

MOV R15,PAGHEAD Initialize PAGHEAD to 1 before heading

MIID R14,R15,X'CO' Copy heading data thru SM

CMNT Note R14 is on SM in object, above

Mel C'X',R15 Conventional X in HS area

MOV R15,PAGFOOT Initialize PAGFOOT to 1 before heading

MIlD R14, R15, X'CO' Copy footing data thru SM

MOV R15,HSEND Update ending pointer

MCI C' Z', R15 Mark new HS end

SRA R15, PRMPC

MCC C'+',R15 PROMPT '+'

BBZ PFLG, NOTLP "P" option not used

PRINTER ON BSL

BSL

SETLPTR

PRNTHDR Initialize and print first heading

BSL READLIN INPUT x

Assembly Language 7-17
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

PROC User
Exit

7-18

This is an example of a PROC user exit that can be used to perfonn
simple conversions such as Date or Time. In fact, this is a general exit
that can call any Ultimate RECALL Conversion.

The PROC exit fonnat is:

Uxxxx

xconversion.code

U01FF

;D2/

U01FF

:TINV;C;;2

where

x : - for output Conversion (similar to OCONY)

; - for input Conversion (similar to ICONY)

The parameter is taken from the current Input Buffer
Pointer (IE); in this program it is assumed for simplicity to
be the last parameter in the buffer.

,RAME 511

EP ENTRYO

ENTRYO EQU

INC ~R set on : or ; on next line of PROC

SB MBIT for input converSlon

BCE C I ; , , I R, EP 1 0 yes

ZB MBIT for output conversion (shouic check

CMNT for : here!)

EPIO INC IR set on first byte of conversion coce

XRR IR, IS CONV software requ.l.res IS on coce

MOV 7SBEG,SR20 save this

DEC IB

MOV IB,TSBEG interface to CON V

BSL CONV process conversion

XRR I R, IS restore registers; CONY has kindly

CMNT scanned IS (real~y r R) ~v an AM

CMNT thanks

MOV SR20,TSBEG Restore

ZB MBIT later software may expect it zero

ENT 1,PROC-I return to PROC

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(Cursor and
Printer
Control

6973-1

Programmer's Reference

Users can write their own cursor and printer control routines in
assembly language in order to support terminals and printers that are not
standard on an Ultimate system. To interface the routine with the
Ultimate system, the user then needs to load an item into the TERMDEF

file which will defme the terminal type code and assembly program
mode-idlentry point to the Ultimate system.

To defme a cursor or printer control routine, the user may write an
assembly routine and then reference it in an item in the TERMDEF file.
This item is called a TERMDEF XY mode-id.

After loading the TERMDEF item, the specified terminal or printer code
(one character) is valid for use in the TERM and TERMINAL commands,
or in a PRINTER command.

The assembly routine will be called by SYSTEM-CURSOR whenever
cursor control is specified for that terminal type or whenever printer
control is specified for that printer type.

Cursor and printer control routines must conform to the following
system interface requirements:

Inputs (user specified):

CTRIO

CTRll

R15

T4

T

T

R

T

contains the screen row number for positioning
the cursor; rows are numbered from top to

bottom, starting with zero; a value less than zero
indicates no row specification.

contains the screen column number for
positioning the cursor; columns are numbered
from left to right, starting with zero; a value less
than zero indicates no column specification.

points one byte before the output area to be used

contains relative function number for printer
routines, equal to -(n-lOO) for@(-n); so T4=1
for@(-lOl), T4=2 for@(-102), and so on.

Assembly Language 7-19
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

7-20

Inputs (system specified):

For tenninal control routines:

TERMTYPE C specifies the tenninal type

For printer control routines:

Byte O,QCB C character that specifies the printer type

Outputs:

R15 R Points to the last byte of data generated; or
unchanged if the specified function is not defined
for this tenninal type

A user may place an XY mode-id specification, conforming to the above
interface, into any USER-MODE frame. An example of such an XY

cursor mode is the following:

'ADD-CURSOR EQU •

BLZ CTRIO,ACIOO BRANCH If NO L:NE ADDRESS SPECIfIED

Mcr

LOAD

Drv

X'OB',RI5

CTRIO

24

INC R15

SET UP 'VT' fOR ROW ADDRESS

GET LINE NUMBER

REMAINDER (T2):LINE ADDRESS, 0-23

SET UP LINE ADDRESS CODE

MAKE CHAR NON-CONTROL CODE

ACIOO

MOV

SB

LOAD

H4,RI5;HO

RI5;BI

CRII GET COLUMN NUMBER

XIT

RTN

BLZ TO,XIT

MCI

DIV

MOV

X'10',RI5

80

T2,CTRII

LOAD T2

o IV 10

MUL 6

ADD CTRII

INC R15

STORE R15; HO

MOV R15, R14

RTN

END

Assembly Language

SET UP 'OLE' fOR COLUMN ADDRESS

REMAINDER (T2):COL ADDR, 0-79

SAVE VALUE

VALUE:X/IO*6+X THIS :S CORRECT BCD CODE

SET UP COLUMN ADDRESS CODE

PRESERVE THIS fRAME

6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

Programmer's Reference

The TERMDEF item must have an item-ID and at least two attributes.
Comment lines are nonnally used to describe the tenninal or printer type
being defmed. The general item format is:

item-ID

001 *

002 * description comment lines

003 "

004 REV xx

005 "

006 TERM x (or PRINTER x)

007 XY Uxxxx

The REV number refers to the current revision number of the (Ultimate
supplied) TERMDEF definition format (starting with 1). The TERM or
PRINTER code is a I-character letter code that has not previously been
assigned. The 'Uxxxx' in the XY line specifies the mode-id of the
cursor control or printer control routine. (See the TERM and PRINTER

commands in the System Commands Guide for the standard Ultimate
terminal and printer codes).

The following example show a definition item for a terminal (TERM.H)

and a printer (PRINTER.H).

TERM.H

001 •

002 " HONEYWELL VIP-7200

003 "

004 REV 1

005 "

006 TERM H

007 XY U0187

PRINTER.H

" HONEYWELL (NEe) PRINTER

REV 1

PRINTER H

XY U6187

To load a TERMDEF item, run the LOAD-TERMDEF program on the
SYSPROG account. This makes the terminal or printer type code and its
associated control routine available to the Ultimate system and the
appropriate commands.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

7-21

Programmer's Reference

Returning a
Port's Logon
PCB Frame

7-22

The routine below may be used to return the Logon PCB frame of a
specified port.

FRAME 534

* Returns the Logon PCB Frame for a given Port

*

*

EP START

NEP

NEP

NEP

NEP

NEP

:--JEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

START MaV 7SBEG,TS Move raw value

MSDB TS Move to accumulator

MUL 64 Workspace size is 64

ADD 2048 Base FID of port 0

Mav TSBEG,R15 Reset transient R15

BSL MBDSUB Convert Binary to Decimal

Mav R15,TS R15 points to end of TSBEG

Mav TS,TSEND Conversion demands TS=TSEND

MCr SM,R15 Segment mark must end TSBEG

RTN

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(Returning
Time in

Programmer's Reference

The routine below may be used to return the current system time in
milliseconds past midnight.

Millisecondsr-______________________ --,

6973-1

FRAME 540

* Returns Time in Milliseconds

*

*

SPOT

ENTRYO

EP ENTRYO

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

DEFD CTR30

EQU ~

TIME * Put Time

DIV 1000

MOV Dl,SPOT

MOV TSBEG,R15

BSL MBDSUB

MCI C' .', R15

LOAD SPOT

BSL MBDSUB

MOV R15,TSEND

MOV R15,TS

MCI SM,R15

RTN

Assembly Language

in

Make CTR30 & CTR31 variables

DO

Divide out the milliseconds

Save the milliseconas

Setting up for MBDSUB

convert Binary Accumulator

Put in a Period

Put milliseconds in DO

Convert Binary to millisec

Marks the last character

Place at the End of Data

An End-ot-String Mark

Confidential and Proprietary to The Ultimate Corp.
7-23

Programmer's Reference

Handling
BREAK Key
Activity

7-24

The routine below may be used to take the correct action when a user
presses the BREAK key.

FRAME 524

* Deals with Break Key Activity

*

EP ENTRYO

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

E:NTRYO EQU

BBS BREAKKEY,BRK.SET Was BREAK key hit?

MOV TSBEG,TS Set up to move flag

Mer C 10 I, TS User aidn't hit BREAK

MOV TS,TSEND Set the End Point

Mer SM,TS Put on the End Point

RTN

BRK.SET EQU

MOV TSBEG,TS Set up to moVe Flag

Mer C' 1', TS User did hit BREAK

MOV TS,TSEND Set the End Point

Mer SM,TS Put on the End Point

ZB BREAKKEY Don't :"et it Break

RTN

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Changing
Width on
Wyse
Terminals

6973-1

Programmer's Reference

The routine below may be used to change the 'TERM width of a Wyse
terminal to 132 or 80 columns.

FRAME 546

* Changes Wyse terminal to 132 or 80 columns

*

EP ENTRYO

EP ENTRYl

EP ENTRY2

EP ENTRY]

:::? :::NTRY4

:JEP

NEP

:JEP

NEP

NEP

NEP

:JEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

NEP

W80 EQU

TEXT X' lS603AFF'

W132 EQU

,EXT X'lS603AFF'

ENTRYO EQU

LOAD 79 Term Width

STORE ,OSSIZE

SSL SETTERM

SRA R1S,W80

S WYSE

ENTRYl EQU *

LOAD 132 Term Width

Assembly Language 7-25
Confidential and Proprietary to The Ultimate Corp.

Programmer's Reference

STORE TOBSlZE

BSL SETTERM

SRA RlS,W132

WYSE EQU

DEC R15

MIID RlS,OB,X'FS' Move the Command

BSL WRTLlN

RTN

* Find out if Terminal is a Wyse

ENTRY2 EQU

Mel ESC,OB

MCI C' ',OB

Mcr ,T,OB

BSL '~RTLIN

RTN

. W80 E:-8m Te:..

ENTRYJ EQU

~OAD 'OJ 7erm Width

STORE TCBSIZE

aSL SETTERM

SRA R15,W80

BSL WYSE

ENT MD999

* W132 from TCL

ENTRY4 SQO

LOAD ~32 Term Width

STORE TOBSIZE

BSL SETTERM

SRA R15,W132

BSL WYSE

ENT MD999

7-26 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

8

6973-1

The System (Assembly
Language) Debugger

The system (assembly language) debugger allows the programmer to
control program execution, to display and change variables, and to set
breakpoints.

To call the system debugger, press the terminal's BREAK key. when a
process is executing an assembly language program. The debugger is
also entered when the system encounters an unrecoverable error.

Note: If the system is executing a BASIC program, [he BREAK key
calls the BASIC debugger instead of the system debugger. To
call the system debugger from [he BASIC debugger, use the
BASIC debugger command DEBUG:

The system debugger signifies its control by displaying a message of the
following form:

c f.l

c code that indicates why the debugger was entered:

B breaJqpoint

E execution step

BREAK key pressed

M modal entry .. external BSL

R modal entry - external R1N

f frame number (FID) in decimal where execution was interrupted

location; displacement (offset in the FID) in hexadecimal of the
instruction that was interrupted

debugger's prompt character

Assembly Manual 8-1
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

Entering the Debugger

8-2

When a process enters the debugger, for whatever reason, the debugger
program is called via a subroutine call to one of the entry points in frame
one (FIO= 1). At this time, if the debug state is to be entered, the system
executes a Monitor call to DB.INT. (The debug will not be entered, for
example, on a BREAK key entry if the BREAK key is inhibited.)

The kernel sets a flag in the pm to indicate that the process is in the
debug state. In the debug state, whenever the process is activated. the
frame at the original PCB FID plus two (that is, the Debug Control Block
or DCB) is used as the effective PCB. This frame is pennanently assigned
as the control block for the debug state.

The DCB has its own set of address registers and all functional elements
needed by the debugger. Register 1 (R 1. or program counter) in the
DCB is always set up to start execution at a specific location in the
debugger's software. By switching PCB context, then. the state of the
vinual machine is preserved. as the original PCB is saved.

When the debug state is to be exited, another Monitor call is executed to
reset the flag in the PIB, and the nonnal PCB is reinstated. Note that, at
this time, the DCB Register 1 (R 1) is left pointing to the instruction
immediately following the Monitor call, which is the "re-entry" point
when the debug state is next entered.

Prior to this, the debugger may have changed the last entry in the real
PCB's return stack. This has the effect of unconditionally changing the
execution address upon re-entry to regular system processing. The
return stack address is nonnally used by the following debugger
commands, which exit the debugger:

G { 0 } resumes program execution at the same point as prior
to entering the debug state

END or BYE exits to the system (TCL) level

OFF logs off the current user account

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(System
Privileges

Inhibiting the
BREAK Key

Program
Aborts

6973-1

Entering the Debugger

Users with system privilege levels 0 and 1 (SYSO and SYSl) have only
the following debugger commands available:

G p END OFF

Users with system privilege level 2 (SYS2) have access to all debugger
commands. except DI (disable). The DI (disable) debugger command is
used prevent users with SYS2 privileges from using the system
debugger commands and is invoked from the SECURITY or SYSPROG
account (if set equal to SECURITY).

Nonnally, when the BREAK key is pressed. execution of the current
program is tenninated and the process enters the debugger. However.
the BREAK key on a particular line can be inhibited by invoking the
following system command:

BREAK-KEY-OFF

When the BREAK key is inhibited, that line is prevented from entering
the debugger via the BREAK key. To enable the BREAK key, use the
following system command

BREAK-KEY-ON

For more infonnation on these commands, please refer to the Ultimate
System Commands Guide.

When a process is executing, certain conditions can cause it to enter the
debug state as a program abort, not a user request. Typically, these are
unrecoverable error conditions, although artificial calls to the debugger
can be forced by the kernel for special processing conditions. All
unrecoverable error conditions cause a message similar to the following
to be displayed on the tenninal attached to the process:

message

Abort @ f.l

f

d

frame number (FID) in decimal where trap occurred

location; displacement (offset in the FID) in hexadecimal of
the instruction where the trap occurred

Assembly Manual 8-3
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

8-4

In addition, for register-related error conditions (traps marked with an
asterisk in Table 8-1), the number of the register causing the trap is
displayed, for example:

Forward Link Zero; Reg = 4

Abort @ 511.1

On entry to the debugger, the error number associated with the abort
condition is stored in byte 0 of the user's PCB (that is, RO;HO).

In the debug state, the debugger often displays the current program
counter location as an address.

Table 8-1 lists the debugger traps (abort conditions) invoked by virtual
and their related entry points. Table 8-2 lists the debugger traps (abort
conditions) invoked by the kernel and their related entry points.

Note: In the case of a Forward Link Zero trap, if the exception
subroutine tally XMODE is non-zero, the debugger transfers
control to the subroutine whose mode-id is stored in XMODE.

The subroutine can perform such error handling as necessary,
and when it executes a RTN instruction, control returns to the
instruction which originally caused the trap condition. See
Chapter 6 for more information about the XMODE interface.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Entering the Debugger

(
Table 8-1. Traps (Aborts) (1 of 2)

Entry Message Description
Point

0 illegal Opcode An undefmed assembly
instruction has been found.

1 Rtn S tack Empty A R1N (return) instruction has
been executed when there were
no entries in the subroutine return
stack.

2 Rtn Stack Full A BSL or BSLI instruction
(subroutine call) has been
executed when there were already
ten entries in the stack.

3 Referencing Frame Zero An address register has a zero
FID.

4* Crossing Frame Limit Either an address register with a
virtual address in the unlinked
mode has been incremented or
decremented beyond the
boundaries of the frame, or a
relative address computation
(base +offset) resulted in an
address that was beyond the
boundary of the frame addressed
by the register.

5* Forward Link Zero An incrementing instruction (for
example, INC r) has caused the
register to go beyond the end of
the linked frame set.

6* Backward Link Zero A decrementing instruction (for
example, DEC r) has caused the
register to point to a frame before
the beginning of the linked set.

* the affected register number is stored in the half tally ACF for use by the debugger.

6973-1 Assembly Manual 8-5
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

Table 8-1. Traps (Aborts) (2 of 2)

Entry Message Description
Point

8 Referencing illegal A register has a frame number
Frame that is beyond the allowable limits

for this disk configuration.

11 Halt A HALT instruction has been
executed.

Table 8-2. Kernel Traps

Entry Point Description

9 A disk error has occurred when the process generated a
frame-fault. The disk error handler is invoked to log
the message in the SYSTEM-ERRORS file

10 The BREAK key is pressed on the user's terminal

13 A message has been transmitted to the process by
another process (via the TeL MSG command). The
debugger saves the context via the mechanism
described earlier, and transfers control to the message
printer

8-6 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(

Summary of Debugger Commands

Summary of Debugger Commands

6973-1

The following is a summary of the system debugger commands.

Command

{f) addr{ ;window}
{f}/symbol {;window}

(f) *addr(;window}
(f) *symbol (;window}
Rr
R.f

ADDD nl n2

ADD X xl x2

A/symbol

Baddr

BYE

D

DI

DIVD nl n2

DIVX xl x2

DTXn

Assembly Manual

Description

Direct data display, where
f format code
addr location
window number of bytes to be

displayed
symbol name of symbol from PSYM

Indirect data display, where
f format code
addr location
window number of bytes to be

displayed
symbol symbolic name of element to

display
f register number

Adds decimal numbers nl and n2.

Adds hexadecimal numbers x I and x2.

Displays the address of a symbol.

Adds the address to the execution breakpoint
table; up to four addresses can be set.

Returns to TCL; same as END but preserves
the breakpoint and trace tables. (set by B, E,
N, M, T, and F commands)

Displays the breakpoint and trace tables.

Disables debugger for all lines.

Divides decimal number n 1 by n2.

Divides hexadecimal number x 1 by x2.

Converts decimal n to hexadecimal.

8-7
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

8-8

Command

E{n}

END

Fn,m

G{ addr}

K{ addrl

line feed or escape

Lfid

M

MULD n1 n2

MULX xl x2

N{ nj

OFF

p

SUBD nl n2

SUBX xl x2

Assembly Manual

Description

Sets the execution step to n; if n is 0 or
omitted, clears execution step.

Returns to TCL; same as BYE, but clears
breakpoint and trace commands (set by B, E,

N, M, T, and F commands)

Uses frame with FlD m in place of FlD n
during execution of instructions.

Continues execution at address specified, or
at point of interruption if addr is omitted

Kills specific breakpoint entry, or all entries
if addr is omitted.

Continue execution; equivalent to G

command; included for convenience.

Displays link fields of frame specified.

Toggle to turn on and off modal execution
trace.

Multiplies decimal number nl by n2.

Multiplies hexadecimal number x 1 by x2.

Sets delay counter to n; if n is omitted, sets
counter to 0; inhibits debug entry until after n
breaks or steps have occurred

Logs user off system.

Toggle to suppress/allow terminal output.

Subtracts decimal number n2 from n1.

Subtracts hexadecimal number x2 from xl.

6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Command

T { f} addr { ; window}
T{ f} *symbol {;window}
T { f} /symbol { ; window}

u({ f} addr{ ;window} }
u {f} *symbol {;window}
u { f} /symbol {; window

XTDx

Yaddr;window
Y/symbol
Y*symbol

Y

>TCL.stmt

»

«

<

Assembly Manual

Summary of Debugger Commands

Description

Traces location specified, where
f format code
addr location
window number of bytes to be

displayed
symbol symbolic name of element to

display

Untrace; clears trace table entry, or all entries
if addr is omitted.

Converts hexadecimal x to decimal.

Sets a data breakpoint, where
addr location
window number of bytes to be

displayed
symbol symbolic name of element to

display

Executes TCL statement and returns to debug.

Invokes new TCL level.

Returns to previous TCL level.

Returns to current TCL level.

8-9
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

Address Specification and Representation

8-10

When the debugger displays an address, the frame number (FID) is
always in decimal and the location (displacement) is always in
hexadecimal. If the displayed address is from a register which is in
linked mode, a plus sign (+) precedes the frame number as an indicator.

!C*ISBEG +1200.B .TEST= ISBEGaddressesframe 1200
(decimal), displacement B (hexadec
ima1; decimal 11). The plus sign (+)

preceding 1200 indicates that ISBEG is
in linked addressing mode.

!C*TSBEG;16 1189 .. 20 JUN 1990 .. =

TSBEG addresses frame (decimal)
1189, displacement 0, in unlinked
addressing mode as indicated by the
lack of a plus sign (+) preceding
1189.

There are several ways to specify a virtual address in a debugger
command. Typically, a frame number (FID) and a displacement or
location are required. Each number may be entered either in decimal or
in hexadecimal notation for convenience.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
Displaying Data in the Debugger

Displaying Data in the Debugger

Syntax

6973-1

To display data, specify the location using one of the following fonns at
the debugger prompt (!):

{f}addr{ ;window}
{f}/sym bol{ ;window}
{f} *addr{ jwindow}
{f} *symbol{ jwindow}
Rr
R.r

f format code; may be one of the following:

c display data in ASCII character fonnat; non-printable
characters are displayed as a period (.); System
delimiters are displayed as follows:

SB [

SVM \

VM]
AM 1\

SM

x display data in hexadecimal format.

display data in integer fonnat; window must be 1, 2, 4,
or 6.

addr direct address; may be in one of the following forms:

f.l FlO f in decimal; location 1 in hexadecimal.

f,I FlO f in decimal; location I in decimal .

. f.I FlO f in hexadecimal; location 1 in hexadecimal .

. f,I FlO f in hexadecimal; location I in decimal.

A period (.) preceding a value indicates a hexadecimal (base
16) number. A comma (,) is used preceding a decimal
location, but not preceding a decimal FlO.

indirect address; may be in one of the following forms:

Rr register r, in the range RO-RlS.

R. r register r, in the range R.O-R.F (hexadecimal).

Assembly Manual 8-11
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

8-12

window number of bytes to be displayed; the window is separated
from the address by a semicolon (;); may be in one of the
following forms:

/

*

symbol

R

r

;n display n bytes in decimal.

;m,n display n bytes starting m (decimal) bytes before
specified address.

;.z,n display n bytes starting z (hexadecimal) bytes before
specified address.

;.x display x bytes; x is a hexadecimal number.

;m.x display x bytes starting m (decimal) bytes before
specified address.

;.Z.X display x bytes staning z (hexadecimal) bytes before
specified address.

;tn immediate symbol window; references immediate
data at the specified address. t is the symbol type
code; n is the offset; typically used to display bits; for
example,

;Bn

addresses the nth bit displaced off the previous
address.

specifies direct reference to the contents of the symbol
following.

specifies an indirect reference to the data addressed by the
symbol, which may be only of types R (address register) or
S (storage register).

symbolic name of element to be displayed

specifies an indirect reference to data using a register

register number, if preceded by . (period), specifies number
is in hexadecimal format

If format and window are not specified for a symbol, the defaults are
assumed by the debugger. For example, if the symbol is of type D

(double tally), the format defaults to I (integer) and window to 4.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

Displaying Data in the Debugger

If the FID is omitted, the user's PCB is assumed. For example, the
notation 100 is the virtual address of location x'lOO' in the user's PCB.

If format and window are unspecified, the last previously used values
are reused

100.66;BO

C1234.7F;100

/ABIT

/00

X/DO

/ISBEG

C*ISBEG;300

X*R15:10,20

Assembly Manual

displays the high-order bit of location
66(hexadecimal) of frame 100 (decimal).

displays 100 bytes in ASCII format, staning at
location x'7F' (127 decimal) in frame 1234
(decimal).

displays contents of ABIT (0 or 1).

displays contents of DO as an integer.

displays contents of DO in hexadecimal.

displays contents of ISBEG.

displays 300-byte indirect character string
starting at location addressed by ISBEG.

displays 20 bytes in hex, starting 10 bytes before
the location addressed by R15.

8-13
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

Changing Data in the Debugger

8-14

After the debugger displays data, it prompts with an equals sign (=)
rather than a !.

When = is displayed, you have the option of terminating the operation,
continuing the display, changing the displayed data, or a combination of
these actions.

• To terminate the display and rerum to the! prompt, press RETURN.

• To continue the display to the next forward window, press the
<CTRL-N> keys or <LINEFEED>. <CTRL-N> causes a new line and a
new address to be displayed before the data; <LINEFEED> continues
display on the same line

To continue the display to the previous window, press <CTRL-P>.

This causes a new line and a new address to be displayed before the
data.

• To change data, enter the new data. The replacement value may be
entered in bit, character, hexadecimal or integer mode, and except for
bit replacement mode, does not have to correspond to the format that
has been displayed.

The replacement value can be entered in one of the following modes:

Entry Format Mode

'data.... character

. data.... hexadecimal

Assembly Manual

Notes

A single quote mark followed
by the data; there is no trailing
quote. The character string
entered cannot contain control
characters and its length need
not correspond to the size of the
window. Up to 100 characters
may be entered .

A period followed by the data.
The hexadecimal string entered
must be an even number of hex
digits and its length need not
correspond to the size of the
window. Up to 100 digits may
be entered.

6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

n integer

Changing Data in the Debugger

A decimal number. The
displayed window must be 1,2,
4, or 6 only.

xxxxx ... bits x=O or 1, that, is a string of
bits. This form is valid only
when a bit is displayed.

The replacement mode entry is terminated by pressing one of the
following:

RETIJRN (carriage return) changes data and returns to ! prompt.

<CTRL-N> changes data and displays next window on new line.

<LINEFEED> changes data and displays next window on current line.

<CTRL-P> changes data and displays previous window.

Assembly Manual 8-15
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

A Command - Display Address

The A command displays the address of a specified symbol.

Syntax A/symbol

Description

!A/CTR24 2625.24 Displays address of symbol crn24.

8-16 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Arithmetic Commands

Arithmetic Commands

Syntax

Description

6973-1

Several arithmetic commands may be specified to perform computations
at the debugger level.

ADDD 01 n2
ADDX xl x2
DIVD 01 02

DIVX xl x2
OTX 01

MULD 01 02

MULX xl x2
suno 01 02
sunx xl x2
XTO xl

01 decimal number

n 2 decimal number

xl

x2

hexadecimal number

hexadecimal number

These commands may be used for arithmetic computation at the debug
level and are identical to their TCL verb equivalents:

ADDD adds decimal values n 1 and n2.

ADDX adds hexadecimal values x 1 and x2.

DIVD divides decimal value nl by n2.

DIVX divides hexadecimal value xl by x2.

DTX converts decimal value n 1 to hexadecimal.

MULD multiplies decimal values nl and n2.

MULX multiplies hexadecimal values x 1 and x2.

SUBD subtracts decimal value n2 from n1.

SUBX subtracts hexadecimal value x2 from xl.

XTD convens hexadecimal value xl to decimal.

For more information, refer to the Ultimate System Commands Guide.

Assembly Manual 8-17
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

B Command - Breakpoint Specification

Syntax

Description

8-18

The B command sets an execution breakpoint at a specified location. If
the process reaches the location specified as a breakpoint, the debugger
is entered.

Baddr

addr direct address; may be in one of the following fonns:

f.l FID f in decimal; location I in hexadecimal.

f,l FID f in decimal; location I in decimal .

. f.l FID f in hexadecimal; location I in hexadecimal .

. f,1 FID f in hexadecimal; location I in decimal.

A period (.) preceding a value indicates a hexadecimal (base
16) number. A comma (,) is used preceding a decimal
location, but not preceding a decimal FID.

Up to four breakpoints can be set.

If zero is specified as the location, a breakpoint is set for every location
in the specified frame. The causes a break on any entry to the frame.
This can be useful if you are not sure where in a specific frame
execution may begin.

To clear the breakpoints, see the K command.

Note: On Ultimate software implementations, the B commands may
not work except on instructions assembled with a label on the
source code line. For more information, see the section in
Chapter 2, Assembly on Software Machines.

!BSll.3

!BSll.O

Assembly Manual

causes a breakpoint to be set in frame 511,
location 3

causes a breakpoint on every location in frame
511; any entry to the frame causes a break

6973-1
Confidential and Proprietary to The Ultimate Corp.

BYE Command - Exiting the Debugger

Bye Command - Exiting the Debugger

Syntax

Description

6973-1

The BYE command is used to tenninate debugger execution and return to
the primary TeL level.

BYE

The BYE command terminates execution and returns to TCL at the lowest
(LOGON) level. If the process had been executing at a higher TCL level,
all such levels are released.

This command is equivalent to the END command.

Assembly Manual 8-19
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

D Command - Display Tables

Syntax

Description

8-20

The D command is used to display tables set by the B, F, and T

commands.

o

The tables are displayed, similar to the following:

Brk tbl n. n. n. n.

Trc tbl n. n. n. n.

*Trc tbl n. n. n. n.

F'rm tbl n. = n.

Chg tbl n.

n location

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

(

01 Command - Disabling the Debugger

01 Command - Disabling the Debugger

Syntax

Description

6973-1

The DI (disable) debugger command is used to prevent access to the
system debugger commands.

DI

The DI (disable) debugger command is invoked from the SECURITY or
SYSPROG account. It prevents users with SYS2 privileges from using
the debugger commands normally available to them.

Invoking the DI command is known as disabling the debugger, and is a
method of improving system integrity by preventing accidental or
deliberate change of data, via the debugger.

Once disabled, the debugger can be enabled via the same DI command.
An alternative is to use the SECURITY-STATUS command. For more
information on the SECURITY -ST A TIJS command, please refer to the
Ultimate System Commands Guide.

Assembly Manual 8-21
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

E Command - Execution Step.

Syntax

Description

8-22

The E command specifies the number of program lines to be executed
when the program is resumed. After the specified number of lines is
executed. an execution break occurs.

E{n}

n number of lines to execute before returning to debugger control; if
zero or not specified. execution stepping is turned off

The E command is typically used in the form EI, which single-steps
execution. The fonns E or EO turn off the execution step.

When an execution break occurs, the current location is displayed,
similar to the following:

E f.l

E indicates an execution break. has occurred

f frame number (FID) in decimal where execution was interrupted

location; displacement (offset in the FID) in hexadecimal of the
instruction that was interrupted

Note: On Ultimate software implementations, the E commands may
not work except on instructions assembled with a label on the
source code line. For more information, see the section in
Chapter 2, Assembly on Software Machines.

!El

!E10

Assembly Manual

single steps execution

Ten lines are executed before an execution break
occurs

6973-1
Confidential and Proprietary to The Ultimate Corp.

(

END Command - Exiting the Debugger

END Command - EXiting the Debugger

Syntax

Description

6973-1

The END command is used to tenninate debugger execution and return to
the primary TCL level.

END

The END command tenninates execution and returns to TCL at the lowest
(LOGON) level. If the process had been executing at a higher TCL level,
all such levels are released.

This command is equivalent to the BYE command.

Assembly Manual 8-23
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

F Command - Changing Frame Assignments

Syntax

Description

8-24

The F command is used specify to a frame that is to be temporarily
substituted for another frame.

F{n,m}

n frame number, in decimal, that is to be reassigned

m frame number, in decimal, to be used whenever frame n is
referenced

Once this command has been executed, the debugger monitors every
frame change as the process executes, and any external BSL or ENT

instruction to frame n is internally modified to go to frame m.

Only one frame reassignment at a time can be in effect for a process.

If no parameters are specified with the F command. frame reassignment
is turned off.

The F command is very useful when debugging a program because it

can be used to temporarily reassign an executable frame number for the
user's process only.

In practice, the user can modify an existing program, changing the

FRAME statement in the program before reassembly. After the program
has been reassembled, the object can be MLOADed into the temporary
frame. The F command can then be used to redirect the process to the
mcxlified frame.

For example, when debugging a program normally assigned to frame
420, the user changes the FRAME statement in the source program to
511 (a temporary location), assembles and MLOADs it. The following
debugger command then routes all execution transfers from frame 420
to frame 511:

!F420,Sll

N ole: If a frame is reassigned, breakpoints must be set using the
reassignedframe number, !Wt the original one.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

c/

G Command - Resume Execution

G Command - Resume Execution

Syntax

Description

6973-1

The G command may be used to resume execution of the process in
effect when the debugger was entered, if possible.

G{addr}

addr location of instruction

The G command with no address is used to continue execution at the
point of interruption.

The G command with an address unconditionally changes the point of
execution.

Pressing the LINEFEED (down arrow) or ESC key is equivalent to
entering G with no address.

If the debugger was entered via one of the system traps (that is, a
program abon), the G command with no address is not valid. In that
case, one of the following commands must be used:

END

OFF

BYE

Gaddr

Caution: The G command should be used with an address only if
the programmer knows a location where execution can
safely resume. The debugger is not aware of which
addresses are valid for restarting execution.

Assembly Manual 8-25
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

K Command - Clear Breakpoints

The K (kill) command is used to clear breakpoints.

Syntax K{addr}

addr address of breakpoint to be cleared

Description If no address is specified, all breakpoints are cleared.

8-26 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

L Command - Display Link Fields

L Command - Display Link Fields

Syntax

Description

6973·1

The L (link) command is used to display link fields.

Laddr
L*symbol

addr frame number (flO) whose links are to be displayed; to
specify the FlO in hexadecimal, precede the number with a
period

*symbol should be an address register or storage register only

The link fields are displayed in the following form:

nncf : forward. link backward. link : npcf

nncf number of next contiguous frames
npef number of previous contiguous frames

All four fields are displayed in decimal.

To display link fields of frame f in hexadecimal, use the display data
command with the X format code as follows:

nncf

forward link

backward link

npef

xf.l;l

xf.2;4

xf.6;4

Xf.A;l

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

8-27

The System (Assembly Language) Debugger

M Command - Modal Execution Trace.

Syntax

Description

8-28

The M command is a switch that turns modal execution tracing on or
off.

M

If the modal trace is on, the debugger is entered whenever an ENT, ENTI,
external BSL, external BSLI, or R1N from external subroutine instruction
is executed. That is, execution is interrupted whenever the program
frame changes.

Local subroutine calls and RlNs cannot be traced.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(\

N Command - Delay Entry to Debugger

N Command - Delay Entry to Debugger.

Syntax

Description

6973-1

The N command is used to delay entry to debugger for a specific number
of breakpoints or steps.

N{n}

n number of execution breaks or steps to bypass; if not specified, no
breakpoints or steps are skipped

Values that are being traced and location of execution breakpoints are
displayed at every breakpoint, although no break actually occurs.

!E10

!N9

!G

Assembly Manual

Execute ten instructions, then break.
Skip first nine breaks.
100 instructions are executed before debugger
gets control. Every ten instructions. a message is
printed (because of the ElO), but execution
continues.

8-29
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

P Command - Toggle Terminal Display

Syntax

Description

8-30

The P command is used to toggle the tenninal display on and off.

p

The P command is a toggle switch that turns the tenninal display on or
off. It is identical to the TeL P command.

For more information, refer to the Ultimate System Commands Guide.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

T Command - Trace Data

(.' T Command - Trace Data

Syntax

Description

6973-1

The T (trace) command is used to set up traces for direct and indirect
addresses.

T{f)addr{;n}
T{ f}/symbol{ ;n}
T{f}*symbol{;n}

f fonnatcode

addr location

n number of bytes to be displayed; display is limited to 127
bytes

symbol

/

symbolic name of element to display

direct address

* indirect address; if specified, symbol must be a register or
storage register

The T (trace) command can be used to specify up to four traces using a
direct address and four traces using an indirect address.

Once the trace is set, on every subsequent debugger entry (including
system traps), the traced data is displayed automatically.

The u command can be used to cancel traces.

Assembly Manual 8-31
Confidential and Proprietary to The Ultimate Corp.

•

The System (Assembly Language) Debugger

U Command - Delete Traces

Syntax

Description

8-32

The u (un trace) command is used to delete traces.

U{{f}addr{;n}}
U {f}/symbol{ ;n}
u{f}*symbol{;n}

f format code

addr location

n number of bytes to be displayed; display is limited to 127
bytes

symbol

/

symbolic name of element to display

direct address

* indirect address; if specified, symbol must be a register or
storage register

If no parameters are specified, all traces are deleted.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
Y Command - Data Breakpoint

Y Command - Data Breakpoint

Syntax

Description

6973-1

The Y command sets a data breakpoint. Up to two breakpoints can be
set.

Y{addr;n}
Y/symbol
Y*symbol

addr location

n number of bytes to be displayed; display is limited to 127
bytes

symbol

/

symbolic name of element to display

direct address

* indirect address; if specified, symbol must be a register or
storage register

If no parameters are specified, all breakpoints are deleted.

If the address is not a symbol, the number of bytes to be displayed is
required.

The Y command adds an entry to the data trace table. The address
(symbolic or direct) specified is monitored and the debugger is entered
when the value changes.

Assembly Manual 8-33
Confidential and Proprietary to The Ultimate Corp.

The System (Assembly Language) Debugger

», «, >, < Commands - Changing TCl levels

8-34

There are four commands that can be used to change TCL levels:

» suspends the current level and creates a new TCL level. If you
are using the default TCL prompt, it changes to indicate the
TCL level.

« pops one TCL level

> exits the debugger and returns to TCL at the current level.

<cmd suspends current program; executes "command" as a system
command; returns to debugger at current level

At any given time, a process executes at one of several levels of TCL.

As needed, it can change levels. For example, the EXECUTE statement
in BASIC sets up a new level (pushes a level) to process a specified
system (TCL) command, then returns to the previous level (pops a level)
where the BASIC program is executing.

Pushing and popping levels can be done from the debugger by using the
TCL level pushing features, which are described in the Ultimate System
Commands Manual, or by using the» and« commands at the
debugger prompt.

If END or BYE is typed in the debugger, all TCL levels are popped and
you are returned to the primary TCL level.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(/

c

9

Monitor calls
that affect the
PIB

Buffer
Management
Calls

Control Calls

Asynchronous
I/O Calls

6973·1

Monitor Calls (MeAls)

Monitor calls (MeALs) are used to perfonn functions that are hardware
dependent or architecture dependent. These instructions call routines in
the kernel.

The Monitor calls documented here primarily fall into the categories
below.

pm.AND

pm.An.

PIB.OR

FAKE.RD
FAKE.WT
FORCE.WT

ALARM.CLOCK
CLOCK.CANCEL
INT. CANCEL
LOCK

PERIPH.READ
PERIPH.WRITE

pm.PEEK

pm.POKE

LOCK.FRAME
UNLOCK.FRAME

RQM
SLEEP
WAIT

CLEAR.INP
TEST.INP

Nonnally asynchronous channel I/o to the process' own channel is
handled by the READ and WRITE instructions, which handle single byte
transfers. PERIPH.READ and PERIPH.WRITE may also be used to
transfer data via the process' own channel or via a different one, and
give a greater degree of control than READ and WRITE. (See READ and
WRITE in the external Assembly manual; see READN in Section 1).

Assembly Language 9-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

MCAL 1 COM.CTL MCAL2F RTC.CALIB
MCAL2 MTBF MCAL30 TEST.INP
MCAL3 LINK.CNT MCAL 31 VOPT.OR
MCAL4 MIB MCAL32 VOPT.AND
MCAL5 CMD.STAT MCAL33 CLEAR.lNP
MCAL6 CMD.MAXFID MCAL34 PERIPH.WRT.ONE
MCAL 7 CMD.FAKE.WT MCAL 35 PERIPH.RD.ONE
MCAL8 CLEAR.REDUN MCAL36 CLR.OUT
MCAL9 GET.ID MCAL 37 PIB.xPCB

MCALC TL.READ MCAL 38 DISK.STAT

MCALD PANEL MCAL39 WRITE.WAIT

MCALE ST ART.IO.PIB MCAL3A RCV.LEN

MCALF WARM.DUMP MCAL 3D SET.FL.DEN
MCAL 10 DB.ENT MCAL 3E XFER.CLOCK
MCAL 11 DB.LV MCAL3F SET.BA TCH.TM
MCAL 12 PIB.AND MCAL40 PERIPH.RD
MCAL 13 PIB.OR MCAL 41 PERIPH.WRT
MCAL 14 FAKE.RD MCAL44 VMS.SPOOL
MCAL 15 FAKE.WT MCAL45 VMS.TAPE
MCAL 16 WAIT MCAL46 VMS.OFF
MCAL 17 QUERY MCAL47 VMS.MSG
MCAL 18 PIB.PEEK MCAL 48 PC.MSG
MCAL 19 PIB.POKE MCAL49 FAKE.READ
MCAL 1A N.GET.ID MCAL4A RFLAGS.CLR
MCALIC ALARM.CLOCK MCAL 4B FLAGS.SET
MCAL ID CLOCK.CANCEL MCAL4C PIBNO.POKE
MCAL IE INT. CANCEL MCAL4D PIBNO.PEEK
MCAL IF VMCAL MCAL4E SYSTEM
MCAL 20 FRM.UNLOCK MCAL4F TIME.OUT
MCAL 21 FRM.LOCK MCAL50 VT.KILL
MCAL22 SLEEP or SLEEP: MCAL53 BREAK.PORT
MCAL 24 DISK.ERR MCAL54 MCK.STAT
MCAL 25 FORCE.WRITE

MCAL 26 SET.TIME

MCAL 27 TIME or
GET.TIME

MCAL 28 RQM

MCAL 29 LOCK

MCAL2A LOCK

MCAL2B PIB.ATL

MCAL2C DSABL.DSK

9-2 6973 1

MeALs

(
VTERM.CTL:R x'Ol' VOPT.OR x'3l'

MTBF x'02' VOPT.AND x'32'

LINK.CNT x'03' CLEAR.INP x'33'

MTB x'04' PERIPH.WRT1:R x'34'

CLEAR.REDUN x'08' PERIPH.RDl:R x'35'

GET.ID x'09' CLR.OUT x'36'

BISYNC.lOR x'OA' PIBJ(PCB.DWN:R x'37'

TL.READR X'OC' PIB.xPCB.UP:R x'37'

PANEL x'OD' PIB.xPCBR x'37'

ST ART.IO.PIB x'OE DISK.STATR x'38'

WARM.DUMP x'OF' WRITE.WAIT x'39'

DB.ENr x'IO' RCV.LEN x'3A'

DB.LVR x' 11' SET.FL.DEN x'3D'

PIB.AND x'12' XFER.CLOCKR x'3E'

PIB.OR x'13' SET.BA TCH.TM x'3F'
FAKE.WT x'15' PERIPH.RDR x'40'

WAIT X'16' PERIPH.WRTR X'41'

QUERY x'l7' NDISK.ST A TR x'42'

(~
PIB.PEEK X'18' VMS.SPOOL x'44'

PIB.POKE X'19' VMS.TAPE x'4S'
N.GET.ID x'lA' VMS.OFF x'46'

ALARM.CLOCK X'IC' KERNEL.MSGR x'47'

CLOCK.CANCEL x'ID VMS.MSGR x'47'

INr.CANCEL x'lE' PC.MSG x'48'

VMCALR X'lF' FAKE.READ x'49'

FRM.VNLOCKR x'20' RFLAGS.CLR X'4A'

FRM.LOCKR x'21' RFLAGS.SET X'4B'

SLEEPXR x'22' PIBNO.POKE x'4C'

DISK.ERRR x'24' PIBNO.PEEK x'4D'

FORCE. WRITE x'25' SYSTEMR x'4E'

SET.TIME x'26' TIME.OUT x'4F'
GET.TIME x'27' VT.KILL X'SO'
TIME X'27' BREAK.PORT x'S3'
RQM x'28' INIT.TR x'S6'
PIB.ATL x'2B' INIT.FKR x'SB'
DSABL.DSK x'2C' INIT.RESYNC X'SC'
QUEUE.READ x'2D' MCK.STAT X'S4'
MB.INPUTR x'2E' TD.READR X'SS'
RTC.CALIB x'2F' DISKETTE:R X'SA'

(~~ TEST.INP x'30'

6973-1 Assembly Language 9-3
Confidential and Proprietary to The Ultimate Corp.

MeALs

How to Use MeAL Information

Syntax

9-4

This section contains infonnation which is strictly confidential to the
Ultimate Corp. It should be read only by Ultimate Research and
Development personnel who will be working with the Assembler and/or
an Ultimate Kernel, and should not be divulged outside the R&D
Department.

An MeAL source statement has the following general syntax:

MeAL Rr,nn,m

Rr register number (for example, RO, R8). In many MeALs this
parameter is not used, but still must be specified. May be
expressed in decimal (2, 15, etc.) or hex (X'2', x'F', etc.).

nn sequential number of this MeAL (for example, 2, 14,26). May be
expressed in decimal (4, 26, etc.) or hex (X'4', X'lA', etc.).

m class number, which must be 11 (X'B'). The 'm' value is
assembled into the opcode's third byte, second nibble (e.g., AB);
the first nibble is the sub-opcode identifier, which is typically 'A',
but may also be 8 or 9. *

Note: All MeALs have been assigned names. Writers a/virtual code
are hereby requested to use the named/orm. The nwnbered
form may be used in the interim, while you are developing a
name.

What is syntax if I use name, not number??

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

MeALs

Where did the following come from?? I found it in the document on the
page with RFLAGS.SET.

A new monitor call was introduced in TERMI07 to do fast multibyte
terminal output. The format is:

OUTSTR Reg, StorReg, ByteCount

Reg points one byte before the fIrst character to print

StorReg points to the last character to print

ByteCount contains the number of bytes output by the routine
(output interface only).

Hopefully other implementations will be able to make use of this
monitor call.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

9-5

MeALs

AlARM.ClOCK - MCAl 1 C

Description

9-6

The ALARMCLOCK monitor call enables alarm clock request for
specified time.

Input:

DO amount of time until expiration, in milliseconds

Output:

none

Data Structure:

modifies clock request block and links

A timer is initialized and staned. This may later be used by the WAIT

and QUERY MeALs.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

(-' ClEAR.lNP - MCAl 33

The CLEAR.INP monitor call resets (clears) tenninal input buffer.

Input:

none

Output:

none

Data Structure:

modifies terminal input buffer pointers.

Description None needed.

6973-1 Assembly Language
Confidential and Proprietary to The Ultimate Corp.

9-7

MeALs

ClOCK.CANCEl - MCAl 10

The CLOCK.CANCEL monitor call resets an alarm clock request.

Input:

none

Output:

none

Data Structure:

modifies clock request block and links.

Description A previously set timer, if present, is cleared.

9-8 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

C-'\
, ;'

ClR.OUT - MCAl 36

The CLR.OUT monitor call clears tenninal output.

Input:

Tl

Output:

none

PIB number (negative means self)

Data Structure:

modifies the tenninal output buffer.

MeALs

Description This cancels any terminal output and clears the output roadblock.

6973·1 Assembly Language 9-9
Confidential and Proprietary to The Ultimate Corp.

MeALs

DB.ENT - MeAL 10

Description

9-10

The DB.ENT monitor call enters the software debugger.

Input:

none

Output:

debug bit (x'0080') in PIB word zero set

debug bit (x'0080') in PCB ACF field set

Data Structure:

no data structures modified

The two debug bits are set and the process is detached. When the
process is next activated, the fmnware will use the DCB instead of the
PCB. (only for finnware??)

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

DB.lV - MeAL 11

Description

6973-1

The DBL V monitor call exits software debugger.

Input:

Rr

Output:

debug bit (x'0080') in PIB word zero

debug bit (X'0080') in PCB ACF field

Data Structure:

BT entry for Rr (PCB)

byte zero of the PCB

cleared

cleared

set write-required

The two debug bits are cleared and the process is detached. When the
process is next activated, the firmware will use the PCB instead of the
DCB. (only for fmnware??)

Assembly Language 9-11
Confidential and Proprietary to The Ultimate Corp.

MeALs

DISK. ERR - MeAL 24

Description

9-12

The DISK.ERR monitor call reports disk error from 'stack' to virtual
process.

Input:

Rr address where disk error information should be put;
this must be at least 32 bytes before the end of a frame.

Output:

Rr 32 bytes of disk error infonnation are copied

Data Structure:

modifies the buffer table (write-required bit set).

This copies the kernel's disk error table to a virtual frame and clears the
table. If the table was empty, zeroes are copied to the virtual frame.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

DISK.STAT - MeAL 38

The DISK.ST AT monitor call repons disk I/o statistics.

Input:

Rr address of buffer to copy statistics to

Output:

none

Data Structure:

no data structures modified

Description Copies disk statistical counts to Rr.

**More to be supplied??

6973-1 Assembly Language 9-13
Confidential and Proprietary to The Ultimate Corp.

MeALs

DSABl.DSK - MeAL 2C

Description

9-14

The DSABL.DSK monitor call disables the disk set.

Input:

none

Output: :

none

Data Structure:

no data suuctures are modified

This is only used by the Ultimate 6000nOOO offline monitor. It
switches the interrupt level of each disk from the disk level to the virtual
device level.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
MeALs

FAKE.RD - MeAL 14

Description

6973-1

The F AKE.RD monitor call does a fake disk read (as if R 15 has been
frame faulted); that is, it assigns the buffer, but does not do the read.

Input:

R15FID

Output:

none

frame number to be fake-read.

Data Structure - the following are modified:

buffer table

age links

disk I/O queues (on some systems)

The memory map is modified so that the FID of an available buffer in
main memory is changed to the FID to be fake-read; but the frame is not
read from disk. This may be used when the virtual process knows the
frame number of a needed frame, but the contents of the frame are
irrelevant. For example, the overflow space manager may get an
available frame number from a table of FIDs. Since the frame will be
initialized after this, the data in the disk frame will not be used.

If the frame is already in main memory, there is no operation. If there
are no available buffers in main memory (an unlikely occurrence), the
frame may actually be read in from disk as usual, at the discretion of the
kernel programmer.

Assembly Language 9-15
Confidential and Proprietary to The Ultimate Corp.

MeALs

9-16

Caution: The FAKE.RD monitor call is obsolete. In most cases, the
FAKE.READ monitor call (MeAL 49) should be used instead.
In order for the FAKE.RD MeAL to actually save any
processing time, R15 must be set up in such a fashion that it
does not attach (which would cause an automatic frame fault
and would read the diskframe into main memory). One way
this can be done is by setting up an SR with the required FlD

and a displacement of 1, then moving the SR to R15 just
before the FAKE.RD. Also, some software systems force all
registers to be always attached. Therefore, R15 would be
attached, and the frame would be automatically read before
the MeAL is executed by the kernel.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

(~ FAKE.READ - MeAL 49

Description

6973-1

The FAKE.READ monitor call does a fake read. The FlD is in DO.

Input:

DO frame to fake read

Output:

none

Data Structure - the following are modified:

buffer table

age links

disk I/O queues (on some systems)

The memory map is modified so that the referenced frame is in memory,
but it is not read from disk. It is assumed that the frame will be
initialized after this.

Assembly Language 9-17
Confidential and Proprietary to The Ultimate Corp.

MeALs

FAKE.WT - MeAL 15

Description

9-18

The FAKE.WT monitor call does a fake write by zeroing the buffer table
write-required bit of the buffer pointed to by R15, thus making the
buffer available.

Input:

R15FID

Output:

none

he frame number to be fake-written.

Data Structure - the following are modified:

buffer table

age links

NOm1ally, when data in a frame stored on disk has been modified, the
write-required flag in the status byte of the buffer is set to indicate that
the frame needs to be written back to disk at some time. If the virtual
process knows that the frame does not need to be written to disk, a
FAKE.WT can be used to clear the write-required flag. For example, a
frame returned to the overflow pool does not need to be saved.

If the frame is not in main memory, no operation is performed.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

(- FORCE.WRITE - MCAl 25

Description

6973-1

The FORCE.WRITE monitor call forces write of designated frame by
enqueueing.

Input:

Rr address of frame to write (should r be 15??)

Output:

none

Data Structure:

modifies disk queues.

The purpose of this MCAL is to checkpoint a particular frame, and
schedule it to be written to disk. Nonnally, when data in a frame has
been modified, the write-required flag in the status byte of the buffer is
set to indicate that the frame needs to be written to disk at some time
(that is, when the buffer has aged or the system is quiescent). But, if
the frame is used frequently, it may tend to stay at the top of the Buffer
Age Queue, which may delay writing it to disk.

When data in a frame is particularly sensitive, the FORCE.WRITE ensures
that the frame whose FID is in R15 will be written as soon as possible.

If the frame is not write-required, this is a NOP.

If the frame is being written, the program counter is backed up to the
beginning of the MCAL and an RQM is executed. This makes the MCAL
wait for previously started writes to complete.

Caution: Not all kernels support multiple force-writes being active
concurrently, due to a limited number of disk queue
entries.

Assembly Language 9-19
Confidential and Proprietary to The Ultimate Corp.

MeALs

FRM.lOCK - MCAl 21

Description

9-20

The FRMLOCK monitor call locks designated frame in memory.

Input:

Rr address of any byte within the frame

Output:

H4 high byte of 24-bit byte address of byte 0 of the frame

H5 middle byte of 24-bit byte address of byte 0 of the
frame

Data Structure:

modifies the buffer table.

This locks the frame in main memory whose FlO is in R15, and returns
the memory address in an encoded fonnat where the frame was locked.

While locked, the frame is not considered for replacement. This may
later be used by an VM or MY instruction. The frame will stay in that
memory location until one of the following:

• the FRM.UNLOCK MCAL is used

• the system is restarted

If the frame is modified by virtual software, the modification will be
reflected on disk.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

/~"\
f'.~. \
I ,

"L/

MeALs

FRM.UNlOCK - MCAl 20

The FRM.UNLOCK monitor call unlocks designated. frame.

Input:

Rr address of any byte within the frame

Output:

none

Data Structure:

modifies buffer table - the corelock bit is cleared

Description None needed.

6973-1 Assembly Language 9-21
Confidential and Proprietary to The Ultimate Corp.

MeALs

GET.lD - MeAL 9

Description

9-22

The GET.ID monitor call gets device-id for device number in TO.

Input:

TO

Output:

virtual device number (used as index into Virtual
Device Table)

TO o if no device is configured on that channel; otherwise,
the device ID number is returned.

Tl channel address

Data Structure:

no data snuctures are modified

If no device exists for that vinual device number, TO is zeroed.

The vinual device number is assumed to be in Ultimate 6000nOOO
format; that is, there is one number for the input function of a device and
another number for the output function. On 6000nOOo systems, one of
the channel address bits shows whether the channel is for reception or
transmission. Vinual code uses this bit to select only one of the pair of
entries associated with a given device.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

INT.CANCEl - MCAl 1 E

Description

6973-1

The INT.CANCEL monitor call resets vinual interrupt request.

Input:

TO vinual device number, if x'FFFF', all vinual devices
for the process.

Output:

none

Data Structure:

modifies the vinual device table.

The imenupts from any I/O operations that the process had started (on
the specified device or on any device) are cancelled. Imenupts from the
devices may still come to the kernel, but the vinual device table is
marked in a way that causes the interrupts to be ignored.

The virtual device number is assumed to be in Ultimate 6000nOOO
format; that is, there is one number for the input function of a device and
another number for the output function. On 6000nOOo systems, one of
the channel address bits shows whether the channel is for reception or
transmission. Virtual ccxie uses this bit to select only one of the pair of
entries associated with a given device.

Assembly Language 9-23
Confidential and Proprietary to The Ultimate Corp.

MeALs

lINK.CNT MCAl 3

Description

9-24

The LINK.CNTO monitor call counts forward and backward age links.

Input:

none

Output:

TO number of buffers in age links, counting in the forward
direction.

Tl number of buffers in age links, counting in the
backward direction.

Data Structure:

no data structures are modified

This may be used by virtual programs to test the integrity of the age
links. The count should be the same from each direction. The count is
the number of buffers available for paging.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

MeALs

lOCK - MCAl 29

Description

6973-1

The LOCK monitor call locks a system resource with an ELSE clause.

Input:

Rr address of a tally to be used as a lock.

Output:

tally at Rr may contain PIB number + 1, with the bytes in
swapped order

INHIBITlI incremented if the resource is obtained or already
owned by the process.

Data Structure (the following are modified):

clock request block and links

SNU links

buffer table write-required flag is set

This is used to try to lock a system resource. If the resource is already
locked by another process, a branch instruction that is assembled
immediately following the MeAL is taken.

In assembly language, this is coded as follows:

LOCK REGISTER, LABEL

The assembler uses the label to construct the branch instruction.

The tally pointed to by the register is used as a lock. Zero is the
unlocked condition. When the tally is locked, it contains the PIB number
plus one of the process that set the lock (owns the resource).

The PIB number + I is stored with the high and low order bytes reversed
as follows, so that the LSI systems run more efficiently:

Rr low order byte of
PIB number + 1

Assembly Language

high order byte of
PIB number + 1

Confidential and Proprietary to The Ultimate Corp.
9-25

MeALs

9-26

The fmnware in the LSI systems enables the kernel to efficiently process
the fU'St byte pointed to by Rr, but not the second byte. On the LSI

systems, or any systems that cannot support more than 254 processes,
the high order byte is always zero, and the lock may be treated as a byte
by the kernel. Virtual software should always consider the lock to be a
tally whenever it reads it or initializes it.

If the tally contains a zero, the pm number + 1 is put into the tally in
byte-swapped order and execution resumes after the branch instruction
that follows the MeAL.

If the tally is not zero, the lock is owned by the PIB represented by the
tally. The execution path depends on the following:

• If the current process al~eady owns the lock, execution is the same as
if the tally were zero.

• If the PIB that owns the lock is roadblocked by disk, terminal I/O, or a
trap, or it is active in the other processor of a dual processor system,
the LOCK MCAL is treated as if it were an RQM. In this case, the
vinual program counter is left pointing to the branch instruction, so
the ELSE clause will be taken after the RQM.

• If the PIB that owns the lock is able to be activated, an attempt is made
to activate it by doing what the PIB.A 11. MCAL does. The vinual
program counter is left pointing at the branch instruction that follows
the MCAL.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
MeALs

lOCK - MCAl 2A

Description

6973-1

The LOCK monitor call locks a system resource.

Input:

Rr address of tally to be used as a lock

Output:

tally at Rr contains process number + 1, with the bytes in
swapped order

INHIBm-I incremented if the resource is obtained or already
owned by the process.

Data Structure (the following are modified):

clock request block and links

SNU links

buffer table write-required flag is set

This is used to try to lock a system resource. If the resource is already
locked by another process, a branch instruction that is assembled
immediately following the MeAL is taken.

In assembly language, this is coded as follows:

LOCK REGISTER

The tally pointed to by the register is used as a lock. Zero is the
unlocked condition. When the tally is locked, it contains the PIB number
plus one of the process that set the lock (owns the resource).

The PIE number + 1 is stored with the high and low order bytes reversed
as follows, so that the LSI systems run more efficiently:

Rr low order byte of
PIE number + 1

high order byte of
PIE number + 1

The firmware in the LSI systems enables the kernel to efficiently process
the first byte pointed to by Rr, but not the second byte. On the LSI

Assembly Language 9-27
Confidential and Proprietary to The Ultimate Corp.

MeALs

9-28

systems, or any systems that cannot support more than 254 processes,
the high order byte is always zero, and the lock may be treated as a byte
by the kernel. Virtual software should always consider the lock to be a
tally whenever it reads it or initializes it.

If the tally contains a zero, the pm number + 1 is put into the tally in
byte-swapped order and execution resumes after the branch instruction
that follows the MCAL.

If the tally is not zero, the lock is owned by the PIB represented by the
tally. The execution path depends on the following:

• If the current process already owned the lock, execution is the same
as if the tally were zero.

• If the PIB that owns the lock is roadblocked by disk, terminal I/O, or a
trap, or it is active in the other processor of a dual processor system,
the LOCK MCAL is treated as if it were an RQM and the virtual
program counter is backed up to the beginning of the MeAL.

• If the PIB that owns the lock is able to be activated, an attempt is made
to activate it by doing what the PIB.An. MeAL does. The vinual
program counter is backed up to the beginning of the MeAL

instruction.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
MeALs

MTB - MeAL 4

Description

6973-1

The MTB monitor call moves a frame (FID) to bottom of age links.

Input:

Rr points to the buffer to move

Output:

none

Data Structure:

modifies age links

This MeAL makes the specified buffer the first one to be used to satisfy
frame faults or fake reads.

Assembly Language 9-29
Confidential and Proprietary to The Ultimate Corp.

MeALs

MTBF - MeAL 2

Description

9-30

The MTBF monitor call moves a buffer to the bottom of the age links.

Inputs (user specified):

TO

Output:

none

T

Data Structure:

modifies age links

buffer number

This MeAL makes the specified buffer the first one to be used to satisfy
frame faults or fake reads.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

N.GET.ID - MeAL 1 A

Description

6973-1

The N.GET.ID monitor call gets the device 10.

Input:

13

Output:

TO

T1

T2

virtual device number

device ID or zero if device number is too big

channel address

buffer number, in a format appropriate for VIOLD

instructions

Data Structure:

no data structures are modified.

The vinual device number is assumed to be in Ultimate 6000nOOO
format; that is, there is one number for the input function of a device and
another number for the output function. On 6000nOOo systems, one of
the channel address bits shows whether the channel is for reception or
transmission. Virtual code uses this bit to select only one of the pair of
entries associated with a given device.

Assembly Language 9-31
Confidential and Proprietary to The Ultimate Corp.

MeALs

PANEL - MeAL 0

Description

9-32

The PANEL monitor call invokes the remote panel processor Ultimate
6000nOOO systems.

Input:

TO

Output:

none

port number to use

Data Structure:

no data structures are modified

On Ultimate 6000nOOO systems, this starts the PANEL debugger
program running on the pon specified by TO.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

(.

c·

MeALs

PC.MSG - MCAl 48

Description

6973-1

On PC implementations, the PC.MSG monitor call performs a file
transfer.

Input:

read or write flag, drive number, filename, directory

Output:

none

Data Structure:

no data structures are modified

On a PC, the PC.MSG monitor call performs a read or write (as specified
by the flag). On all systems other than a PC, this is an illegal opcode.

On PC implementations, the disk space is partitioned for DOS and
Ultimate operating systems. This MeAL calls a DOS routine to cross the
partition and move the file data in or out of vinual memory. One item at
a time is transferred, in 1024-byte increments.

Assembly Language 9-33
Confidential and Proprietary to The Ultimate Corp.

MeALs

PERIPH.RD - MeAL 40

Description

9-34

The PERIPH.RD monitor call performs a multi-byte peripheral read.

Input:

TO

H2

H3

Rr

Output:

Tl

PIB number

count

flags

address to start copying bytes to

number of bytes copied

Data Structure:

modifies the tenninal input buffer.

This copies multiple bytes from the designated PIB's terminal input
buffer to the location pointed to by the register.

If TO refers to a PIB other than the one making the monitor call, the TRAP
roadblock is set.

If the input buffer is empty, zero is put in Tl and execution resumes at
the instruction after the MCAL.

Characters are removed from the tenninal input buffer to the locations
pointed to by Rr until one of the following occurs:

• the input buffer is emptied

• the end of the frame that Rr points to is reached

• the number of characters specified by the count in H2 have been
moved

• if vinual B24 (the low bit of H3) is set, a control character is moved
(control characters have an ASCII value less than x'20')

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

MeALs

PERIPH.RD.ONE - MeAL 35

Description

6973-1

The PERIPH.RD.ON monitor call reads data byte from another line's pon.

Input:

TO PIB number

Rr address to copy byte to

Output:

byte at Rr copied from designated input buffer

Data Structure (the following are modified):

tenninal input buffer

clock request block and links

This removes one byte from the designated PIB's terminal input buffer
and copies it to vinual space. If TO refers to a PIE other than the one
making the monitor call, the TRAP roadblock is set.

If the PIE's terminal input buffer is not empty, the first byte in it is
removed and copied to where Rr points.

If the input buffer is empty, the program counter is set back to the MCAL
instruction and an RQM is done; this causes the process to wait for about
100 ms. before re-executing the MCAL.

Assembly Language 9-35
Confidential and Proprietary to The Ultimate Corp.

MeALs

PERIPH.WRT - MeAL 41

Description

9-36

The PERIPH.WRT monitor call performs a multi-byte peripheral write.

Input:

TO

Tl

Rr

Output:

Tl

PIB number

input flags

address of string to write

number of characters actually written

Data Structure:

modifies the terminal output buffer

If TO refers to a PIB other than the one making the monitor call, Tl is
checked. If bit x'OlOO' is not set, the TRAP roadblock is set; it the bit is
set, the process is not trapped.

The string of bytes pointed to by Rr is output (or buffered for output) on
the pon specified by TO, as if the WRITE instruction had been executed
for each byte. The end of the string is marked by the first of the
following conditions that is encountered:

• no more characters can be buffered by the terminal I/O interface;
typically, this occurs because the output buffer is full

• a segment mark is found (the segment mark is not transmitted)

• the string reaches the end of its frame

The number of characters sent is stored in Tl. If this is not the entire
string, it is the responsibility of the vinual code to send more later.

Execution resumes with the next instruction.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

~~ ~--~~ -~------

" "'\

MeALs

PERIPH.WRT.ONE - MeAL 34

Description

6973-1

The PERIPH.WRT.ONE monitor call writes data byte to another line's
port.

Input:

TO

Tl

Rr

Output:

none

PIB number

input flags

address of byte to write

Data Structure (the following are modified):

tenninal output buffer

clock request block and links

If TO refers to a PIB other than the one making the monitor call, Tl is
checked. If bit x'OlOO' is not set, the TRAP roadblock is set; it the bit is
set, the process is not trapped.

The specified byte is output as if the specified process had executed a
WRITE instruction. Control returns immediately (that is, there is no wait
for the output to complete). If the byte could not be written, the
program counter is backed up to the MCAL instruction and an RQM is
done; this causes the process to wait about 100 ms. before re-executing
the MCAL.

Assembly Language 9-37
Confidential and Proprietary to The Ultimate Corp.

MeALs

PIB.AND - MeAL 12

Description

9-38

The PIB.AND monitor call is used to AND bits in PIB word zero.

Input:

TO tally with mask containing bits to be ANDed with word
zero of the pm

Tl PIB line number; if negative, specifies caller's own PIB

Output:

TO contains resulting PIB word zero

Data Structure:

no data structures are modified

This is typically used to clear roadblocks.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

MeALs

PIB.ATl - MeAL 2B

Description

6973-1

The PIB.AlL monitor call activates a process by adding it to the top of
PIB links.

Input:

TO

Output:

none

PIB number to be activated

Data Structure (the following are modified):

clock request block and links

SNU links.

The SLEEP roadblock is cleared. If the CRB was in the links (meaning
an alann clock or sleep or RQM had not yet expired), the CRB is
removed from the links and the semaphore flag is set (this causes a -3 to
be returned by WAIT or QUERY). The PIB is moved to the top of the SNU

links. The current process is detached and the target PIB is activated is
there are no roadblocks.

The RO,OO,15 form is an obsolete synonym. Support for it will be
withdrawn in the future. (Has it??)

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

9-39

MeALs

PIB.OR - MeAL 13

Description

9-40

The pm.OR monitor call is used to OR bits in the PIB word zero.

Input:

TO tally with mask containing bits to be ORed with word
zero of the pm

Tl PIB line number, if negative, specifies caller's own PIB

Output:

TO Contains resulting PIB word zero

Data Structure:

no data structures are modified

The PIB.OR monitor call is typically used to set roadblocks.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~ ..•

MeALs

PIS.PEEK - MeAL 18

Description

6973-1

The PIB.PEEK monitor call returns the value of a specified word in a pm.

Input:

Tl PIB line number, if negative, specifies caller's own pm

H4

Output:

PIB word number

TO value of the specified word

Data Structure:

no data structures are modified

Note: Be aware that the kernel or firmware may change the values of
certain PIB words at any time.

Assembly Language 9-41
Confidential and Proprietary to The Ultimate Corp.

MeALs

PIS.POKE - MeAL 19

Descri ption

9-42

The PIB.POKE monitor call replaces a specified word in a PIB.

Input:

Tl PIB line number, if negative, specifies caller's own PIB

H4

TO

Output:

none

PIB word number

value to poke into the pm

Data Structure:

depends on which word is modified

Not e : Be aware that the kernel or firmware may change the values of
certain PIS words at any time. Care must be taken to not
damage the state of the operating system by inappropriate use
of PIS.POKE.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

PIB.XPCB - MCAl 37

The PIB.xPCB monitor call changes the PCB FID in PIB.

Input:

H2:Hl:HO the new PCB FID

H3 flags

Rr some address in the new PCB

Output:

none

Data Structure:

no data structures are mcxiified

Description The PIBJepCB monitor call does the following:

• sets bit in position x'20' of ACF of current PCB

• moves B30 of old PCB (bit position x'40' of H3) to PIB debug bit

• moves new PCB FID from the accumulator to the PIB

• zeros bit in position x'20' of ACF of new PCB (for warmstan)

• deactivates the process

The next time the process is activated, the new PCB is used.

6973-1 Assembly Language 9-43
Confidential and Proprietary to The Ultimate Corp.

MeALs

QUERY - MeAL 17

Description

9-44

The QUERY monitor call processes a Query or Query vinual interrupt.

Input:

none

Output:

TO o or greater
-1
-2
-3

device number
no entry for this device
clock timeout)
semaphore timeout

-4 no clock timeout and outstanding I/o

Tl if a virtual device interrupted, this is the number of
interrupts received; otherwise, zero (0).

Data Structure (the following are modified):

SNU links

virtual device table

clock request block and links

The QUERY monitor call is the same as WAIT (MeAL 16) except that
QUERY never suspends the process.

If any interrupts have been received from any device that had an I/o
operation staned by this process, the following occurs:

• the virtual device number of the interrupting device is placed in TO

• the number of interrupts received in placed in Tl

• if the device has any I/Os still outstanding, the count of outstanding
I/Os is reduced by the number received; otherwise, the device is
marked inactive.

• the virtual process is resumed.

Note: If the process has interrupts outstanding for multiple devices,
only the interrupts for one device will be returned and there is
no priority ordering of devices.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(. . '\

. ;
/

6973-1

MeALs

If no device interrupts have been received, the following occurs:

• if an alarm clock that the process had armed has expired,
-2 is returned in ro
the clock request block is marked inactive
the process is resumed

• if an alarm clock that the process had armed was cancelled because
another process attempted to activate this process

-3 is returned in ro
the clock request block is marked inactive
the process is resumed

• if no alarm clock has expired or was cancelled and there was at least
one outstanding I/O operation

-4 is returned in TO
the process is detached

• if no alarm clock had expired or was cancelled. and there were no
outstanding I/o operations

-1 is returned in TO
the process is detached

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

9-45

MeALs

QUEUE.READ - MeAL 20

Description

9-46

The QUEUE.READ monitor call queues a read (frame fault).

Input:

DO

Output:

none

frame to read

Data Structure:

modifies disk queues.

If the frame is in memory, this is a NOP; otherwise, a disk read is
started, but the PIB is not marked disk roadblocked.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

c

MeALs

RCV.lEN - MCAl 3A

Description

6973-1

The ReV.LEN monitor call gets residual UltiNet range.

Input:

none

Output:

IO.BIT

TO

set to indicate success; zero to indicate failure

if successful, contains length
if unsuccessful, specifies which I/O code to the
controller (1-6) failed

Data Structure:

no data structures are modified

This is used on Ultimate 6000nOOO systems to get the residual range
from the UItiNet controller. It is equivalent to a series of six VIO

instructions, but faster.

Assembly Language 9-47
Confidential and Proprietary to The Ultimate Corp.

MeALs

RFLAGS.CLR - MCAl 4A

Description

9-48

The RFLAGS.CLR monitor call clears bits in RFLAGS.

Input:

mask containing bits to clear TO

Tl

Output:

ro

PIB line number; if negative, specifies caller's own PIB

new value of RFLAGS

Data Structure:

no data structures are modified

This is the method of enabling and disabling XON/XOFF, typeahead, etc.
Each bit that is set in the mask is cleared in RFLAGS.

If the PIB number is negative. the currently executing PIB is used.

(where are the RFLAGS bits documented??)

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

RFlAGS.SET - MeAL 48

Description

6973-1

The RFLAGS.SET monitor call sets bits in RFLAGS.

Input:

TO mask containing bits to set

Tl PIB line number, if negative, specifies caller's own PIB

Output:

TO new value of RFLAGS

Data Structure:

no data structures are modified

This is the method of enabling and disabling XON/XOFF, typeahead, etc.
Each bit that is set in the mask is set in RH.AGS.

If the PIB number is negative, the currently executing PIB is used.

Assembly Language 9-49
Confidential and Proprietary to The Ultimate Corp.

MeALs

RQM - MeAL 28

Description

9-50

TIle RQM monitor call releases time quantum.

Input:

none

Output:

none

Data Structure:

modifies clock request block and links.

This deactivates a process for approximately 100 milliseconds. Any
alarm clock that was set is not disturbed.

??Opcode 4000A9 is an obsolete synonym. Support for this opcode
will be withdrawn in the future.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

(~" RTe.CAlIS - MCAl 2F

Description

C\
. c

6973-1

The RTC.CALIB monitor call changes the RTC (real-time clock) tick count
from 6 to 5 to accommodate systems that operate on 50 hertz power.

Input:

none

Output:

none

Data Structure:

no data structures are modified

The RTC.CALIB monitor call is used only on LSI-based systems. It
changes the RTC refresh value in the kernel to 5. (Five ticks equal 100
ms.)

Assembly Language 9-51
Confidential and Proprietary to The Ultimate Corp.

MeALs

SET.BATCH.TM - MCAl 3F·

Description

9-52

The SET.BATCH.TM monitor call sets the batch time limit.

Input:

TO if non-zero, new time limit
if zero, current value is not changed

Output:

TO current time limit

Data Structure:

no data structures are modified

This sets or returns the maximum number of seconds that must pass
with no interactive jobs running before batch jobs are allowed to use all
of memory.

IfTO is non-zero, it contains the new value, in seconds. IfTO is zero,
the current value is not changed. In either case, the (new) current value
is returned in TO.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
MeALs

SET.Fl.DEN - MeAL 3D

Description

6973-1

The SET.FL.DEN monitor call sets the density of floppy disk; this is
available on PC implementations only.

Input:

none

Output:

none

Data Structure:

no data structures are modified

On a PC, the SET.FL.DEN monitor call causes floppy diskette parameters
to be set properly for the type of diskette insened into the drive.

The SET.FL..DEN monitor call is a NOP on any system other than a PC.

Assembly Language 9-53
Confidential and Proprietary to The Ultimate Corp.

MeALs

SET.TIME - MeAL 26

Description

9-54

The SET.TIME monitor call sets the system time and date.

Input:

DO

12

Output:

none

new system time, in milliseconds since midnight

new system date

Data Structure:

no data structures are modified

Note: This is a NOP on the VAX because the timekeeping is done by
VMS.

??Opcode 40FFAA is an obsolete synonym. Support for this opcode
will be withdrawn in the future.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

MeALs

SLEEP - MeAL 22

Description

6973-1

The SLEEP monitor call puts process to sleep for specified time.

Input:

DO

Rr

Output:

Rr

time to wake up (in milliseconds after midnight)

address of byte to clear

tally pointed to by the register is zeroed

Data Structure:

modifies the clock request block and links

The tally pointed to by Rr is zeroed. This is in case the spooler, which
must clear a lock in synchronization with being deactivated, is executing
the sleep. Ordinarily, the register is set to a scratch tally.

If the SLEEP opcode is used, the register defaults to RO (the first tally of
the PCB is scratch). To specify another register, use the SLEEP: opcode.
'n

The process is deactivated until one of these occurs:

• the wakeup time is reached.

• the break key is pressed.

• another process wakes it up, either by the PIB.A 1L or PIB.AND (not
recommended) MeAL, or by trying to set a lock that the process has
set.

Assembly Language 9-55
Confidential and Proprietary to The Ultimate Corp.

MeALs

START.lO.PIB - MeAL E

Description

9-56

The START.IO.PIB monitor call starts MLCP I/O on the line (PIB port).

Input:

TO line number of PIB port to stan I/O on.

Output:

none

Data Structure:

tenninal input buffer initialized

This initializes and starts input on the terminal attached to the specified
PIB.

Assembly Language . 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

(~' TEST.lNP - MeAL 30

Description

c

C:
6973-1

The TEST.INP monitor call tests for characters in tenninal input buffer.

Input:

Tl PIB number

Output:

TO number of characters in input buffer

Data Structure:

no data structures are modified

This may send an XON if the buffer is empty and typeahead is enabled.
(when and why would it??)

Assembly Language 9-57
Confidential and Proprietary to The Ultimate Corp.

MeALs

TIME - MeAL 27

Description

9-58

The TIME monitor call gets the system time and date.

Input:

none

Output:

T2 system date

DO system time in milliseconds since midnight

Data Structure:

no data structures are modified

??Opcode 4000AA is an obsolete synonym. Support for this opcode
will be withdrawn in the future.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

c

MeALs

Tl.READ - MCAl C

Description

6973-1

The TI..READ monitor call is used by the transaction logger for special
READs.

Input:

Rr specifies the address of the byte (tally) to clear.

Output:

Rr byte pointed to by the register is zeroed

Data Structure:

pm may be removed from SNU links

BT enrry for frame pointed to by RA is marked write-required

The Transaction logger uses this. If there are any characters in the
tenninal input buffer (typeahead buffer), the virtual process is allowed
to resume. Otherwise, the process is detached and removed from the
SNU links.

does the register point to a byte or a tally?? does it matter??

Assembly Language 9-59
Confidential and Proprietary to The Ultimate Corp.

MeALs

VMCAl - MCAl 1 F

Description

9-60

The VMCAL monitor call executes kernel code.

Input:

Rr address of kernel code

Output:

none

Data Structure:

modification depends on the kernel code.

This is used to execute kernel code (native CPU instructions) that resides
in a virtual frame. This is presently only supponed on Ultimate
6000nOOO systems and is intended to be used for special purpose
patches.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

(

MeALs

VMS.MSG - MeAL 47

Description

6973-1

The VMS.MSG monitor call performs a flle transfer.

Input:

Rr

Output:

TO

address of byte zero of the frame to be copied

zero (0) to indicate success

Data Structure:

no data structures are modified

On a V AX, this copies data between Ultimate memory and v AX memory.
On all systems other than a VAX, this is an illegal opcode.

To use this MCAL, the virtual process fills a frame with the following
information:

Bytes Use

0-1 number of bytes of meaningful data in frame

2 function code

3 zero (0); this is a first-time flag that is altered by the
monitor

4-511 data to transfer

If byte 3 of the frame contains a zero (0), the following occurs:

• as many words as indicated by bytes 0-1 are copied from the frame to
a corresponding I/O buffer in VMS memory

• the SLEEP roadbloack for the Ultimate process is set

• the program counter is backed up to the MCAL instruction

• the process is detached

• event flag 2 (file transfer attention) is set for the corresponding VMS

process

• if byte 2 contains a 4 or 5, the VMS process is awakened

Assembly Language 9-61
Confidential and Proprietary to The Ultimate Corp.

MeALs

9-62

• a one (1) is written into byte 3 of the frame and the frame's write
required flag is set

If byte 3 of the frame does not contain a zero and the function code is
negative, the VMS process has finished and the following occurs:

• As many words as indicated by the byte count in bytes 0-1 of the
corresponding VMS I/O buffer are copied into the frame.

• The frame's write-required flag is set.

• TO in the accumulator is zeroed to indicate success.

• The Ultimate process is resumed.

If byte 3 of the frame does not contain a zero and the function code is
not negative, this means the operator pressed the BREAK key, etc., and
the following occurs: (what else besides break: key??)

• The PC is backed up and the process is put to sleep again
(what is the PC?? what does backed up mean??)

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

MeALs

VMS.OFF - MeAL 46

Description

6973-1

The VMS.OFF monitor call is a VMS Logoff.

Input:

none

Output:

none

Data Structure (the following are modified):

terminal I/O table

SNU links

clock request block and links

On a V AX. this returns to VMS the control of the terminal attached to the
PIB making the MeAL. On all systems other than V AX. this is a NOP.

Assembly Language 9-63
Confidential and Proprietary to The Ultimate Corp.

MeALs

VMS.SPOOl - MeAL· 44

The VMS.SPOOL monitor call passes a spool file to VMS for printing.

Input:

Rr fJISt FlD of spool me

Output:

none

Data Structure:

no data structures are modified

Description On a V AX, the VMS.SPOOL monitor call does the following:

• causes the VMS detached process to create a VMS file

• moves Ultimate spool file data into the VMS file

• then sends it to the VMS job controller for printing

This call is a NOP on all systems other than V AX.

9-64 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
MeALs

VMS.TAPE - MeAL 45

Description

6973-1

The VMS.TAPE monitor call issues tape commands to various tape
drivers in the VAX.

Input:
For label I/O:

Rr points to label buffer in tape control block

For non-label I/O:

Rr RO

Output:

none

Data Structure:

no data structures are modified

On a V AX, the VMS.TAPE monitor call gives information on the type of
I/O, size of the transfer, which device to use, etc. This information is
used to build I/O packets to issue to VMS tape drivers.

This call is a NOP on all systems other than V AX.

Assembly Language 9-65
Confidential and Proprietary to The Ultimate Corp.

MeALs

VOPT.AND - MeAL 32

Description

9-66

The VOPT.AND monitor call is used to AND the vinual option flag.

Input:

TO mask containing bits to be ANDed with virtual option
flag

Output:

TO new options value

Data Structure:

no data structures are modified

This is used to change certain global system parameters.

what are the virtual option flags?? where are they documented??

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

I

i

(
MeALs

VOPT.OR - MeAL 31

Description

6973-1

The VOPT.OR monitor call is used to OR the virtual option flag.

Input:

TO

Output:

TO

mask containing bits to be ORed with virtual option
flag

new options value

Data Structure:

no data structures are modified

This is used to change certain global system parameters.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

9-67

MeALs

WAIT - MeAL 16

Description

9-68

The WAIT monitor call suspends the process until a virtual interrupt
occurs.

Input:

none

Output:

TO o or greater
-1
-2
-3

device number
no entry for this device
clock timeout)
semaphore timeout

Tl if a virtual device interrupted, this is the number of
interrupts received; otherwise, zero (0).

Data Structure (the following are modified):

SNU links

virtual device table

clock request block and links

If any interrupts have been received from any device that had an I/O
operation started by this process, the following occurs:

• the virtual device number of the interrupting device is placed in TO

• the number of interrupts received in placed in T1

• if the device has any I/Os still outstanding, the count of outstanding
[lOs is reduced by the number received; otherwise, the device is
marked inactive

• the virtual process is resumed

Note: If the process has interrupts outstanding for multiple devices,
only the interrupts for one device will be returned and there is
no priority ordering of devices.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(\
/

6973-1

If no device interrupts have been received, the following occurs:

• if an alarm clock that the process had armed has expired.
-2 is returned in TO
the clock request block is marked inactive
the process is· resumed

MeALs

• if an alarm clock that the process had armed was cancelled because
another process attempted to activate this process,

-3 is returned in TO
the clock request block is marked inactive
the process is resumed

• if no alarm clock had expired or was cancelled, and there were no
outstanding I/O operations,

-1 is returned in TO
the process is detached

• if no alarm clock had expired or was cancelled and there is at least
one outstanding I/O operation, and no interrupts have been received (a
-4 condition in MCAL QUERY),

the process is removed from the SNU links.
the program counter is backed up to the WAIT MCAL

the process is detached

This prevents activation of the process until an interrupt occurs.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

9-69

MeALs

WARM.DUMP - MeAL F

Description

9-70

The W ARM.DUMP monitor call can both wannstart the system and dump
memory to tape ..

Input:

TO code for desired action; valid codes are:

X'F511' flush memory to tape and warmstart system

X'DEAD' flush memory to disk and halt system

X'DC 1 0' flush memory to disk and halt system

Output:

none

Data Structure:
As pan of flushing memory to disk, the following occurs:

buffer table is rebuilt

age links are initialized and rebuilt

all disk I/O data structures ??

x'F51 1 ' is used by the system command :W ARMST ART.

X'DEAD' is used by the system command :MDUMP.

x'DclO', is used by the system command :WARMSTOP.

If the system is restarted, all data structures are reinitialized, including
those mentioned above.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

MeALs

(,~: WRITE.WAIT - MeAL 39

Description

6973-1

The WRITE.W AIT monitor call waits for a frame to be written to disk.

Input:

R15FID

Output:

none

frame being written

Data Structure:

modifies clock request block and links

This is used to synchronize writes to disk.

If the frame has been written to disk since the last FORCE.WRITE MCAL

for the frame, this is a NOP. (The frame not being in memory or not
being write-required satisfies this condition.) Otherwise, the program
counter is backed up to the beginning of the MCAL and an RQM is
performed.

Assembly Language 9-71
Confidential and Proprietary to The Ultimate Corp.

MeALs

XFER.CLOCK - MeAL 3E

Description

9-72

On PC implementations, the XFER.CLOCK monitor call sets time and date
from the internal clock.

Input:

none

Output:

none

Data Structure:

no data structures are modified

On a PC, this is called at system initialization time on processors having
a hardware time of day clock.

The XFER.CLOCK monitor call is a NOP on all systems other than a PC.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

10 Instruction Set for Internal Use

This chapter is intended as a reference for Ultimate system
programmers, for internal use only. It details each ins01lction in
alphabetical order.

The internal ins01lction set contains descriptions of OSYM ennies not
documented in Chapter 4.

Assembly Manual 10-1
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

Summary of the Instructions and Directives

:D,:F,:Q,:T generates literal values

:INIT enforces standard TSYM modulo

BISYNC.lO handles bisynchronous data communications

BNREADN branches around READN code if necessary

CRC computes the erc for data integrity checks

DCD interprets BASIC object code

FRM: detennines the assembled item's frame number

HLT DELE1E?

IBM.DB.TRAP enters the debugger and passes error info.

LOCK perfonns a lock at the vinuallevel

MCAL calls an MCAL in the kernel as a subroutine

MCODE DELE1E?

MODEM defines a mode-id for BASIC opcode table

MP moves a soing which may be write-protected

MSG references a system message in another frame

MTEXT inserts the text of a system message

MV moves data referenced at a memory address

MVER.OFF turns verifying off

MVER.ON turns verifying on

POPN pops an integer from the BASIC stack

POPS pops a soing from the BASIC stack

PUSHD pushes a descriptor onto the BASIC stack

PUSHN pushes an integer onto the BASIC stack

PUSHS pushes a soing onto the BASIC stack

10-2 Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

./'\

', .. ./

Instruction Set for Internal Use

(
pushes a zero (0) onto the BASIC stack PUSHO

PUSHI pushes a scaled one (1) onto the BASIC stack

RIEQU equates a symbol

REV returns the current fmnware revision level

READN/READT reads multiple-character input from terminal

RPLDCD same as DCD, but RPL source code used

RTNX returns from a subroutine (in Debugger code)

SCHR defmes a character symbol

SETAR DELETE?

SETDO sets register to address BASIC descriptor via R6

SETDD sets register to address BASIC descriptor via R3

SHTLY defines a half tally symbol

(~' SLEEPX puts a process to sleep and unlocks a tally

SMOD identifies system module items

TIIDC moves a string with incrementing and count

VIO transfers word from external device to CPU

VIO* transfers word as VIO and sets interrupt

VIOLD transfers data from external device to CPU

VIOLD* transfers data as VIOLD and sets interrupt

VM moves data to a specified memory address

XBCA translates and tests for alpha character

XBCNA translates and tests for non-alpha character

6973-1 Assembly Manual 10-3
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

:0
:F
:Q
:T

Synfax

Description

10-4

The :D, :F, :Q, and :T instructions are used by the assembler for
generating literals.

:Dn :Fn :Qm :Tn

m mode-id

n constant or literal values

The :D, :F, :Q, and :T instructions should not be used by programmers.
Instead. use DTLY, FTLY, MTLY, and TLY if constants must be explicitly
defined (such as in a table).

The assembler generates these instructions in statements at the end of
Pass 1 to put literals at the end of object code. The correspondence is as
follows:

:0 generates double tally, symbol type 0

:F generates triple tally, symbol type triple tally F

:Q generates mode-id, symbol type M

:T generates tally, symbol type T

Each reference to a new literal value (n) causes one of these statements
to be generated at the end of the program.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(-
:INIT

Syntax

Description

(~

6973-1

Instruction Set for Internal Use

The :INIT instruction is used by the internal fmnware assembler OSYM to
enforce a standard TSYM modulo so that literals always appear in the
same order at the end of the object code. :INIT applies only to
implementations that generate literals, such as fmnware machines.

:INIT

The :IN1T instruction should not be used by programmers.

When the AS command is executed, the first thing the assembler
attempts to do, prior to assembling any statements in the user's
programs, is to assemble a statement of the form:

:INIT

If there is no :INIT opcode defined in the OSYM file (normally the case),
this is not considered an error, and assembly proceeds with the first line
of user code.

If :rNIT exists, however, the :IN1T instruction is assembled. The
standard internal fmnware OSYM contains an :il';TI item which is a
primitive (that is, it has a "P" on line 1). This primitive specifies (via an
E line) a subroutine and a decimal parameter. When the subroutine is
called, it ensures that the modulo of the TSYM file has the value of the
decimal parameter, otherwise, it aborts the assembly with an error
message [225]. indicating that the TSYM modulo must be changed.

Assembly Manual 10-5
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

BISYNC.IO

Syntax

Description

10-6

The BISYNC.IO instruction is a monitor call that perfonns bisync-related
tasks on LSI-based systems with DPv11 bisync boards or Ultimate 1400
systems with !..PO controllers.

BISYNC.lO r

r address register, points to the transmit or receive data buffer address
for codes 3 and 7, respectively. The data buffer address must be
word-aligned and must point to the location of the first byte to be
sent or stored. For the other codes, RO should be specified.

The BISYNC.IO monitor call is used in data communications and is
applicable only to LSI-based systems with DPVII bisync boards or
Ultimate 1400 systems with LPO controllers.

The LSI and 1400 kernels contain special monitor call codes to handle
driving these boards. The call codes were initially designed to suppon
the bisync 2780 and 3780 data communications protocols. However,
since the actual protocol handling is done in vinual programs, these I/O
commands have been generalized so that a number of functions are
available, which can be used with various protocols (see codes below).

Bisync, which is a half-duplex protocol, requires an inteI1Upt from the
kernel indicating that the function has been completed before the vinual
program can proceed. To accomplish this, when using codes 1-4, the
program must execute a WAIT instruction until the inteI1Upt occurs.

BISYNC.lO expects that the low-order byte of the accumulator, HO, has
been set up to contain a command code number which indicates which
function is to be perfonned. Depending on the function, other
parameters may be passed from other parts of the accumulator.

BISYNC.IO calls the kernel to process the function identified by the
command code in HO. The valid codes are as follows:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(\

6973-1

Instruction Set for Internal Use

Code Requested Action

1 SET DTR; initializes the controller and brings up DSR. The
kernel interrupts when ready (WAIT instruction required).

Tl must contain the virtual device number of the bisync
controller.

2 SEND CONTROL CHARACTERS; sends one or two control
characters (depending on the control word) and brings up crS.
The kernel interrupts when ready (WAIT instruction required).

Tl may contain one of the following control words when using
the standard 2780/3780 protocol. Note that 'FF' is used as a pad
character. The two bytes are reversed because LSI machines
process the low-order byte of a word before the high-order.
When using other protocols, TI may contain any valid control
word for that protocol.

2780-3780 protocol control characters

X'FF20' ENQ

X'FF37' EOT

X'7010' ACKO

X'3710' EOT-OLE

X'FF30' NAK

X'6110' ACKl

3 TRANSMIT BUFFER; transmits a buffer of data. The kernel
interrupts when transmission is completed (WAIT instruction
required).

TI must contain the number of bytes to transmit, and the register
operand points to the first byte of data.

4 ENABLE RECEIVER; initializes the internal receive buffer and
enables the DPV 11 or LPO receiver. The kernel interrupts when
something is received (WAIT instruction required).

5

6

DISCONNECT; disconnects and resets the DPV II or 1400 board.

READ STATUS WORD; returns into TO the current status word
indicated by the value in HI. HI must contain one of the
following subcodes (the applicable status bits are shown for
each type):

Assembly Manual 10-7
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

Sub Request Type
Code

I requests transmit status word:

I xOOO 0000 0000 0000 I

applicable status word bit:

x'8000' illegal character in xmit buffer

2 requests receive status word:

I xxx x xxxx xxxx xxxx I

applicable status word bits:
x'8000' ACKO bit set
x'4000' ACKI bit set
x'2000' NAK (no acknowledge)
x'IOOO' WACK
x'0800' reverse interrupt
X'0400' end of transmission
x'0200' xmit abon condition
x'OIOO' ENQ
x'OO80' good data
X'OO40' bad data
x'OO20' buffer overflow
x'OOIO' transmitaboned
x'OOO8' emporary text delay
X'OOO4' end of text
x'OOO2' bad buffer
X'OOOI' bad crc

3 requests DSR status word:

I xOoo 0000 0000 0000 I

applicable status word bits:

x'8000' data set change bit

4 requests bisync revision level

10-8 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Sequence for
Data
Transmission

(~

{'
6973-1

Instruction Set for Internal Use

Code Requested Action

7 ACK & SET UP RECEIVE BUFFER; sets up the next receive buffer
and acknowledges receipt of the previously sent data block. The
kernel interrupts when the operation is completed (WAIT
instruction required).

Tl must contain the value of ACKO or ACKI (see code 2, above).
The register operand points to the fIrst byte of the buffer storage
area.

A complete I/O data transmission normally involves a sequence of
operation similar to the following:

I. Before any bisync I/O can take place, the program must execute
BISYNC.IO instructions with the following instructions:

· code I (initializes controller)

· code 4 (enables receiver).

2. To send data, the program uses instructions with:

· code 2 (to send a protocol-dependent control character
sequence)

• code 3 (to send a block of data).

3. To receive data, the program uses instructions with:

• code 7 (to acknowledge and set up for the next)

4. At any time, transmission problems may be detected and dealt with
in the program via instructions with:

• code 6 (and the subcode for the status request)

• code 2 (if NACK or another character should be sent)
5. When all data communication is fInished, the program uses

instructions with:

• code 2 (if the protocol requires an EOT character)

• code 5 (to disconnect from the controller)

Assembly Manual 10-9
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

Processing
Interrupts

10-10

When the kernel processes a BISYNC.IO instruction with a code that
requires an interrupt, the kernel puts an entry in the Virtual Devices table
for that process. Then the kernel perfonns the specified function,
returning to the program.

Meanwhile, the program must execute aWAIT instruction (subsequent to
the BISYNC.lO). WAIT is a monitor call (MCAL 16) that causes the kernel
to scan the Virtual Devices table for that process. If there is an
outstanding interrupt, the kernel deactivates the process and sets the
program counter back to the WAIT instruction.

The process remains deactivated until the operation is completed. Then,
the intemIpt handler sets the interrupt flag in the VirtUal Devices table
and reactivates the process. The program re-executes the WAlT; the
kernel checks for the interrupt flag and exits back to the program, which
can then proceed in sequence. When the process is interrupted from a
WAlT, the device (a positive number) or status of the interrupt (a
negative number) is returned in TO:

-1 indicates that no interrupts.are queued for this pon

-2 indicates that the timer (ALARM.CLOCK) has expired.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(BNREADN
READN
READT

Syntax

Description

6973-1

Instruction Set for Internal Use

The BNREADN instruction executes a branch if the READN instruction is
not supported on the system for which the code is being assembled.

The READN and READT instructions read several characters of input
from the terminal.

BNREADN 1 READN r READTr

label to branch to

r address register which points to the area where the input characters
are to be placed; RO may not be used for READN

BNREADN is typically used to branch conditionally around code
containing a READN instruction.

READN is used to read multiple-character groups of input from the
asynchronous channel input buffer (terminal) into virtual memory, using
a control character or count runout as the terminator of the read
operation. READT is identical to READN except that READT terminates
only on count runout.

The READN instruction expects that TO has been initially set to zero and
that TI has been set to the size of the virtual memory buffer (for
example, IBSIZE) where the input will be stored.

The READT instruction expects that TO has been initially set to zero and
that Tl has been set to the desired input size.

BNREADN is used to detect whether the READN instruction is supported
on the current system. It assembles as a macro composed of a special
FAR instruction and a B (branch) instruction.

FAR RO,X'13'

B label

Assembly Manual 10-11
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-12

If the special fonn of the FAR instruction is executed on a system that
supports READN, the branch instruction is skipped and execution
continues with the instruction after the branch instruction. However, if
the special FAR instruction is executed on a system that does Me support
READN, that special fonn of FAR is essentially a NOP. Therefore, the
branch is executed, allowing the program to branch around a subsequent
READN (which would cause an illegal Opcode abort).

The READN instruction inputs data from an asynchronous channel in
multiple-character groups and stores the characters in a virtual memory
buffer, starting at the byte address of the register.

If no characters are waiting to be input, the process is suspended until a
group of characters is received from the asynchronous channel.

The READN terminates input when a control character is encountered
(X'QO'-x' 1 F', x'7F', x'80'-X'9F', and X'FF') or count runout. READT

tenninates input only on count runout.

The control characters typically input from a terminal are:

Hex Character Terminal Keys

08 BS BACKSPACE or <CTRL-H>

09 HT TAB or <CTRL-I>

OA LF LINEFEED or <CTRL-J>

OD CR RETURN

12 oc2 <CI'RL-R> (to retype entire line)
17 ETB <CTRL-W> (to delete a word)
18 CAN <CTRL-X> (to cancel line on terminal)
IB ESC ESCAPE

7F DEL DEL

If a control character terminates input, the multi-character group includes
the control character, if a count runout occurs, the group contains only
the non-control input characters. (even on READT??)

A count runout occurs when the virtual memory buffer does not have
enough storage available to handle any more input characters in the
group. (even on READT??)

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

Instruction Set for Internal Use

Before starting to read in the character group, the READN or READT

instruction detennines the maximum number of remaining characters to
input by subtracting the value in TO from the value in Tl. The Tl field
contains the maximum size of the vinual memory buffer and the TO field
contains the number of characters already read in. If the result of the
subtraction is 0 (no remaining characters), the instruction terminates,
and execution continues at the next instruction. If the result of the
subtraction is negative, an illegal Opccx:ie abon occurs.

If there are characters remaining, the READN or READT instruction then
begins to read in characters, and increments TO for each non-control
character (READN) or each character (READT) that it processes (inputs).
READN handles all echoing of non-control characters, READT of all
characters. At termination, the READN/READT instruction stops with the
register pointing to the last character processed and TO contains the
number of characters read in.

The program using the READN is responsible for handling the control
characters themselves. If the current control character is a valid signal
of the end of input (for example, RETURN), the program would not need
to loop back to the READN. But if the control character is, for example,
BACKSPACE, the program could continue the READN. If the program
adjusts the TO field in its control character handling (for example,
BACKSPACE would subtract 1 from TO), the TO field can be used to
determine the current position in the vinual memory buffer (for
example, the point in the buffer when the BACKSPACE occurred). The
program can also test whether the value in TO is currently 0 (for
example, the user has backspaced to the start-of-buffer), which would
indicate that any more control characters (such as BACKSPACE) should
be ignored.

If count runout has occurred (TO = Tl, and for READN, the last character
is a non-control character), the program can either accept it as a
completed input group or take corrective action, such as increasing the
buffer size.

Note: If the virtual memory buffer is a linked set offrames, the
READN and READT instructions handles the crossing of frame
boundaries without error or loss of data.

Assembly Manual 10-13
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

CRC

Syntax

Description

10-14

The CRC (cyclic redundancy check) instruction is used to check the
integrity of data by scanning a string and perfonning a checksum
calculation on it. The check is tenninated after a specified delimiter has
been reached.

CRC r,n

r address register that points one byte before the string to be checked

n constant or literal that specifies the mask of delimiter criteria to use
for the string being scanned.

CRe is not available in firmware on all machines (that is, some systems
must compute a eRC via software).

The CRC instruction can be used to provide a more reliable data check
than a parity bit or LRC. For example, the CRC could be used in data
transmission or validation, or other operations where data integrity must
be maintained.

The instruction scans the string, building a CRC value in DO, based on
the ASCII value of each character encountered. The instruction stops
with the register pointing to the delimiter, and the CRC in DO. The CRC

instruction expects that DO, the low-order double tally of the
accumulator, has been set to zero; then, on termination, DO will contain
the eRC value for the string.

The CRC calculation is a binary division operation, using the following
polynomial as the divisor and the string as the dividend:

x**32 + x**26 + x**23 + x**22 + x**16 + x**12 + x**ll

+ x**lO + x**8 + x**7 + x**5 + x**4 + x**2 + x + 1

This polynomial is used to build an XOR mask (the divisor). The 1
value is assigned to bit ° (high order), causing the x**32 bit (bit 33) to
be dropped at the low order end. The resulting 32-bit XOR mask has the
following hex value:

X'ED888320'

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

Mask Byte

6973-1

Instruction Set for Internal Use

After the binary division, the remainder is the CRC value in DO. The
CRC can then be stored in a checksum or history ftle or used in data
transmission, as needed.

Multiple strings can be used to build one combined CRC until DO is
cleared. Several strings can be checked by using a coding sequence
such as the following:

ZERO DO

SRA RlS,STRINGl

CRC RlS,x'CO'

SRA RlS,STRING2

CRe RlS,x'CO'

In this example, R ISis initially set to point to STRING 1, which is the
byte before the ftrst string. It is then set to point to STRING2, which is
the byte before the second string. At the end of the routine, DO will
contain the combined CRC for both strings.

For the register operand, the incrementing process could generate an
address that crosses a frame boundary. If the register is in the linked
mode, it is normalized and attached to the next frame in the linked chain.
If the end of the linked set is reached during the normalization process,
the following action is taken:

• if the exception mode identifter XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this condition

• if XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

If the register is in the unlinked mode, and the frame boundary is
reached, the debugger is entered with a trap condition indicating
Crossing Frame Limit.

The mask byte indicates the terminating condition for the string scan.
Each byte is tested after it has been scanned to see if it satisfies the
terminating condition. The delimiter itself is not used in the CRC

calculation.

Note: Because the delimiter test is done after the byte scan, the byte
address of the register is always incremented by at least one.

Assembly Manual 10-15
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-16

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark

attribute mark

value mark

sub-value mark

SM X'FF'

AM X'FE'

VM X'FD'

SVM X'FC'

The other three characters are taken from the scan character symbols
seO, se 1, and sC2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set 0), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
suing terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the suing terminates
on the first non-occu"ence of a delimiter as specified by the setting of
bits 1·7.

For more information on the use of the mask byte, see the description of
seO, SC 1, and se2 in Chapter 3.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(- DeD

Syntax

Description

(~
._--

6973-1

Instruction Set for Internal Use

The DCD (Decode) instruction is used to interpret BASIC object code, or
to enter an appropriate routine based on the value of an opcode byte.

DCD r,r

r address registers; the fIrst is R6, BASIC instruction register, the
second is R3, the BASIC stack register

DCD uses a table of 256 mode-ids. This table is coded as an assembly
language program which simply consists of 256 MODEM directives.
Depending on the implementation, MODEM may generate something
other than a standard mode-id (a 4-bit entry point and a 12-bit FID).
The value generated, however, will be compatible with the DCD

insouction for the particular implementation.

The mode-id table must be locked in main memory before the fIrst DCD

is executed. The following sequence of instructions must be used to
lock in the table (R15 must be pointing to the frame with the table):

FRM.LOCK R1S Lock frame in memory; get

CMNT * encoded memory address in

CMNT * T2 via monitor call

MOV T2,BOPS Store memory address for DCD

This sequence is performed by the BASIC initialization software, as well
as by Ultimate RECALL (the F-correlatives and A-correlatives use some
BASIC instructions).

Each entry in the mode-id table corresponds to a B-primitive:

Entry Byte Location (on fIrmware machines) and B-primitive

o bytes 0 and l; unused
1 bytes 2 and 3; mode-id for B-primitive x'Ol'
2 bytes 4 and 5; mode-id for B-primitive x'02'

255 bytes X'IFE' & X'IFF'; mode-id for B-primitive X'FF'

(The MODEM opcode may generate more than two bytes when
assembled for a software machine.)

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

10-17

Instruction Set for Internal Use

10-18

The BASIC compiler generates a pseudo-object code that contains BASIC
primitive opcodes called B-primitives and references to variables in the
BASIC variable storage area or the BASIC stack. The OCD instruction is
used to execute the B-primitives in BASIC compiled code.

The DCD instruction performs the following functions:

• increments the instruction register (R6 for BASIC)

• if the byte addressed by the instruction register is within a
configuration-dependent range, usually 0-11 (X'O'-X'B'), the B
primitive is executed directly by the CPU. If the byte is higher than
11, it is usually used as an index into the mode-id table to determine
the address of the software that is to be entered (not a subroutine
call).

These two steps execute one B-code primitive. If the B-primitive is
executed directly by the CPU, it continues at the next primitive after
completion of processing. If a software routine is entered, then after it
has completed its processing, the routine must tenninate with another
OCD instruction to continue to the next B-primitive.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

FRM:

Syntax

Description

c

c;
6973-1

Instruction Set for Internal Use

The FRM: instruction is used in the FRAME macro to set the frame
number.

FRM: m
FRM: n

m mode-id

n literal value

The FRM: instruction is used only in the FRAME macro, and should
never appear in a virtual program.

The FRM: instruction generates the object code that MLOAD looks for to
detennine where to load the rest of the code for the assembled item.
However, the object code from FRM: is never loaded.

Assembly Manual 10-19
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

HLT

10-20

One byte HALT on fmnware systems. Should probably be deleted to
encourage compatibility (Scott).

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

IBM.DB.TRAP

Syntax

Description

6973-1

The IBM.DB.TRAP instruction is used on IBM systems to trap to the
debugger and inform the kernel of the error type.

IBM.DB.TRAP n

n literal value that specifies the error number

IBM.DB.TRAP is an IBM-only command. It is currently used when
entering the vinual (system) debugger to pass the error type to the
kernel.

The error information passed to the kernel allows the kernel to store the
information and optimally halt the system for debugging purposes.

Assembly Manual 10-21
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

LOCK

Syntax

Description

10-22

The LOCK instruction may be perfonned at the virtual code level on
Ultimate 7000 systems, and possibly on other systems as well. In all
cases where the LOCK instruction cannot be perfonned by fInnware, it
automatically invokes the LOCK monitor call.

LOCKr

LOCK r,l

r address register that points to a lock tally

local label to branch to if the tally is already locked by another
process.

LOCK is used at the beginning of a section of code which inspects or
manipulates data global to the process (such as files, tables, etc.).
Locking the data ensures that other processes do not change the data
while it is being used by the original process.

The LOCK instruction checks the tally pointed to by the register. If the
tally is currently unlocked, it contains a zero (0); if it is currently locked,
it contains a process number (pon number + 1). If the tally is unlocked,
the LOCK instruction sets the lock, increments INHIBITH, and continues.
If the lock has already been set by this process, the LOCK instruction
simply increments INHIBITH and continues. If the tally has been locked
by another process, the LOCK instruction waits until the tally is
unlocked. If the tally is currently locked and the label fonn is used, the
program branches to the specified label instead of waiting.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(MCAl

Syntax

Description

MCODE

6973-1

Instruction Set for Internal Use

The MeAL instruction executes a subroutine call to a specified monitor
call routine residing in the kernel.

Probably should be deleted (Scott)

MeAL r,n,ii

r address register, must be specified even if it is not actually used by
the MeAL

n literal value that specifies the sequential number of this MeAL within
its class

11 literal value that specifies the class; this value must be 11 (X'B')

Probably should be deleted (Scott)

Assembly Manual 10-23
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

MODEM

Syntax

Description

10-24

The MODEM directive defmes a mode-id. It is similar to the MIL Y
directive, but is used for the BASIC OPCODES frame for the
implementation-dependent format of the object code.

MODEMm
MODEM n,m
MODEM n,n

m mode-id

n constant or literal value; as fIrst operand, n specifIes the entry point
number and must be in the range 0-15 (X'O' -'F')

~ODEM may be used whenever coding a table of entry points for use
with the DCD instruction.

Each MODEM directive defines a mode-id value in the OPCODES frame.
This frame contains only the mode-id table used by DCD to interpret
BASIC instructions, not executable instructions. Unlike mode-ids
generated by M11.. Y, these mode- ids are never referenced in an
instruction in a program.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MP

Syntax

Description

6973-1

Instruction Set for Internal Use

The MP instruction is used on mM systems to move a string into
memory which may be write-protected.

MP r,r

r address register; the fIrst points to the fIrst byte of the source string;
the second points to the fIrst byte of the destination area

The MP instruction expects that TO contains the number of bytes to
move. If TO is zero, no action takes place. If TO is negative, an error
occurs.

The MP instruction uses the SYSTEM MeAL (4E) with a system type of
IBM (0) and subcommand 2.

The instruction can handle cases where the source register points to a
string that crosses a frame boundary, but the destination area referenced
by the second register is assumed to be in one frame.

Assembly Manual 10-25
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

MSG
MTEXT

Syntax

Description

10-26

MSG and MTEXT are used to retrieve system messages. The MSG
directive generates a reference to a system message previously loaded in
another frame. The MTEXT directive generates the object code form of a
system message.

MSGe
MlEXTe

e system message stored in PSYM; by convention, messages are
named MSG.nnnn where 'nnnn' is a decimal number.

Certain virtual processes such as the debugger and file-restore are not
able to retrieve and display messages from the ERRMSG file. These
routines must either have the text of their messages in-line in the ABS
frame. or use the system message (SYSMSG) facilities. which are more
convenient for foreign language translations. The actual message text is
stored in special E-type items in the PSYM file, and is retrieved via MSG
or MTEXT.

Operating system routines that generate messages to the user nearly
always refer to the messages symbolically. By defining messages in the
PSYM file, the assembly code may be changed more easily, such as
when making non-English language versions of the system.

System messages in PSYM have the following format:

MSG.nnnn item-ID
001 E PSYM type-code
002 msg.no within the frame referred to by block. no
003 block.no within the message module
004 text-l text element 1

nnn text-n text element n

The msg.no and block.no are hexadecimal numbers, starting from 0,
that indicate where the message is located in the SMODULE; these values
are used to produce object code for the MSG instruction.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

('~ .. ' .. '. ,

6973-1

Instruction Set for Internal Use

The text element is in the fonn C'xxxxx' or X'xxxx' as used in the TEXT
directive. Each element must be on a separate line; no commas or
comments are allowed.

The last (text-n) entry for message items that are to referenced by
MfEXT must end with one of the following tenninators expected by the
PRINT or CRLFPRINT subroutines:

SM (X'FF') AM (X'FE') SVM (X'FC') SB (X'FB')

However, a message referenced by MSG must end with a segment mark
(X'FF'); that is, the last (text-n) element in the PSYM item must end with
a SM and it must be the only SM in the entire body.

For any symbolic message, then, attribute 3 of the PSYM item should
indicate the SYSMSG item that contains the message; attribute 2 of the
PSYM item should give the relative position of the message within the
item.

The following is sample PSYM system message:

MSG.OI09

001 E

002 10

003 3

004 C'Linking workspace--wait'

005 X' FF'

The MSG or MTEXT directive can be used immediately after a call (BSL)
to PRINT, CRLFPRINT, or other routines which expect message text (or
an indirect message from MSG) after the BSL. GET-MSG expects an MSG
instruction to follow the BSL.

Message names can be used with both the MfEXT and the MSG
directive. If a message name is used as the operand of an MTEXT
directive, the assembler copies the text of the message from the PSYM
item into the ABS frame as object code, just as it does for TEXT. If a
message name is used as the operand of an MSG directive, the assembler
generates an indirect reference (message-id) into the assembled object,
using the values from lines 2 and 3 of the PSYM item defining the
message. The message-id has the following format:

Assembly Manual 10-27
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-28

cxxje block.no message. no

11 1110 I 1 1 1 1 I 1 I 1 I 1 I I
Bits 0 1 2 3 4 5 6 7 8 9 ABC 0 E F

The message-id code causes the message text to be retrieved from the
SYSMSG facility at run time.

The system message module is SMOD 125, also known as RMOD 125.
This is a block of linked frames pointed to by entry 125 in frame 223
(SYS-T ABLES4). The 125th word (bytes 500-503) consists of the frame
count (first half tally) and the FID (second three bytes). These frames
are always copied to tape as part of a SYS-GEN, and are loaded during a
coldstan or a file-restore.

The SYSMSG file on the RIO account contains the source for the system
message module. Each item in the file contains the MTEXT instructions
for one block of messages (the block. no on line 3 of the PSYM item).
The order of the messages within each item is the msg.no on line 2 of
the PSYM item.

Item-IDs in the SYSMSG have the fonnat MSGnn; nn corresponds to
message blocks. For example, MSGOO corresponds to block 0 (zero).

The first line of each of these items contains an SMOD directive instead
of a FRAME directive. The object code for the message is not loaded
into an ABS frame, but into the module specified by the SMOD directive,
using the SLOAD command}.

After the SMOD directive on line 1, each SYSMSG item contains an ORG
directive to the first byte of the block that the subsequent messages
belong in. This ensures that the object code for that item will begin at
the proper number of bytes from the beginning of the module. That is,
the item for message block zero contains an ORG 0 directive, the item for
message block 1 contains an ORG 500 directive, and so on.

The remainder of each item consists of MTEXT directives, one for each
message in that block, in the proper order.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal Use

An ORG to the last byte of the block immediately precedes the item's
END instruction.

These items are assembled just like an ordinary assembly language
program. Module 125 consists simply of the object code of all the
assembled items in the SYSMSG file.

If a symbolic message is always used with MTEXT, the values of
attributes 2 and 3 of the PSYM item can be left as zero (0), since they are
not used. But if a message is to be referenced indirectly, it must be
assigned a location in the system message module and loaded (via the
SLOAD command), and the location must be indicated on lines 2 and 3
of the PSYM item.

When changes are necessary, they are made to the appropriate items in
the SYSMSG file, which are then assembled and loaded using the SLOAD

command.

Note: Although each block can contain 500 bytes a/message text,
Ultimate recommends leaving space between messages to as a
pad/or translation inca non-English language versions.

It is the system programmer's responsibility to see that this is so. It is
also the system programmer's responsibility to see that the total object
code for any SYSMSG item does not exceed 500 bytes.

The following is a sample listing of an item in the SYSMSG file:

Assembly Manual 10-29
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-30

SMOD 12S

* SYSTEM *MSGS

.. SYSTEM MESSAGE FRAME

..

.. SYSTEM MESSAGES IN PSYM HAVE THE FOLLOWING FORMAT:

..

.. 001 E

002 MSG' WITHIN SOO-BYTE BLOCK

.. 003 BLOCK' WITHIN MODULE

.. 004 TEXT ELEMENT 1

NNN TEXT ELEMENT N

:)RG 5800 FRAME X'A'

• WASTE ONE BYTE TO AVOID ATTACHING REGISTERS TO THE LAST

• gYTE OF THE PREVIOUS FRAME BEFORE MIl-TYPE :~STRUCT=ONS.

X to'

X' 1 '

ORG -'1

CMNT

CMNT X' 27'

CMNT C's Mult-'

CMNT X'FD'

CMNT C'Attr~ Attr.name

CMNT X' fO'

CMNT C'----- --------
CMNT X'FF'

CMNT C'Attr# Index-L

CMNT X'FD'

CMNT c 1 ----- -------

CMNT X'FF'

MTEXT MSG.OO14

Correlative

Write Read-cr. r . '

---______ 1

X'2' CMNT C' This hold file has not been printed. OK

CMNT X'FCFF'

MTEXT MSG.OS26

.. fOLLOWING IS THE LOCATION OF THE LAST BYTE IN THIS

.. FRAME OF THE MESSAGE MODULE; TEXT IN THIS FRAME MUST

.. NOT EXCEED THIS LOCATION.

ORG 5499

END

*

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

6973-1

Instruction Set for Internal Use

What is significance of the following??

PRINT and CRLFPRINT inspect the first byte of object code after the BSL

instruction. If the two high order bits are on and the next bit is off
(B'l10'), it is assumed to be the first byte of an indirect reference.
Otherwise, it is treated as the actual first byte of the message.

With the addition of the MTEXT and MSG instructions and the SB (X'FB')

terminator, the PRINT and CRLFPRINT subroutines operate normally (as
documented in the external version of the Assembly Language Manual).
The SB terminator causes the subroutines to discard the top entry on the
stack after using it to display the message, and then return to the next
address on the stack. GET-MESSAGE returns with the address of the
message text in R14 and R15.

Assembly Manual 10-31
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

MV

Syntax

Description

10-32

The MY instruction transfers a specified number of words (tallies) from
an absolute memory address to a virtual memory location.

MYr

r address register operand that points to the first byte of the storage
area (if word-aligned), or one byte before the first byte (if an odd
byte).

MY expects that T2 and TO have been set up to contain the memory
address (word address) where the first word (tally) of data is to be
found. T2 holds the high-order 2 bytes of the memory address, and TO

holds the low-order 2 bytes.

MY also expects that Tl has been set up to contain the number of words
(tallies) to move.

The MY instruction can be used to move strings that cross frame
boundaries, since it will follow the links.

Both source and destination addresses must be word-aligned since the
move is one tally at a time. The kernel ensures that the byte address of
the destination location is word-aligned. If the register initially points to
an odd byte, the kernel automatically increment sthe register by 1 byte
and zeros the low address bit (thus convening the byte address in the
register to a word address).

Then the number of words indicated by T 1 are moved. (The memory
address is not pre-incremented for the first word move.) The instruction
terminates with the register pointing to the high-order byte of the last
word moved.

If no frame boundary is crossed in the move, the contents of the
symbols (Tl, T2, and TO) are not touched; otherwise, they are all
altered.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

(

(--

MVER.OFF
MVER.ON

Syntax

Description

6973-1

Instruction Set for Internal Use

The MVER.OFF directive is used to exclude certain code from being
verified; this applies to the definition of variables that are initialized by
the ABS mode. The MVER.ON directive is used to tum verifying back on
after it has been turned off via MVER.OFF and the variables have been
declared.

MVER.OFF

MVER.ON

The MVER.OFF and MVER.ON directives are designed to ensure that
variable data will not be included in the verification by either the
MVERIFY or VERIFY -SYSTEM commands. MVER.OFF generates special
object code that turns off verifying for the code that follows this
directive. MVER.ON turns on verifying, which is the normal condition
for program code. (MLOAD recognizes and ignores the special object
code.)

These directives should be used in any mode that has variables (flags,
tables, lock-tallies, etc.) that initialize a part of the ABS frame that will be
modified at execution time. MVER.OFF should be used before
declaration of the variables and MVER.oN afterward to resume
verification.

The BUILD.CHECK-SUM program, which is used to create a CHECK-SUM

type item from the object code of assembled modes in a file (for
example, SM or SYSTEM-OBJECT), uses the special object code to create
a CHECK-SUM item for the proper ranges of program lines, excluding
lines with MVER.OFF. The locations skipped by ORG statements are not
included in the checksum and do nor require MVER.OFF.

The following example shows how MVER.OFF and MVER.ON are used
in the LOCKS mode (frame 170).

Assembly Manual 10-33
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-34

FRAME 170

MVER.OFF

0 ORG *+ID.EP.SIZE

MVER.ON

1 EP

2 EP

END.ENTRIES EQU *
ORG 0

MVER.OFF

QLOK TLY o
MVER.ON

!QUNLOCK

! START

ORG END.ENTRIES

*

*Don't verify NEP

Leave room for one EP

* Turn verify back on.

* Don't verify lock

* Turn verify back on.

ALIGN * THIS TABLE IS REFERENCED ...

MVER.OFF * * Don't verify table

PEQLOK TLY 0

IQLOK TLY 0

FQLOK TLY 0

SPLRLINE DEFT Rl,*16

ORG *+2

MVER.ON * * Turn verify back on.

The following discussion is based on an older version of
the LOCK mode example. The sense of it is probably OK,
but references to the NEP and to the specific locations are
not accurate.

One objective of the above is to allow Rl to address a system lock (now
a tally, which means that the fIrst entry point cannot be used since it
would be ovenvritten by the lock). So, we use MVER.OFF before the
NEP and MVER.ON after it.

Second, after ORGing back to zero to name and initialize the lock tally,
we MVER.OFF, declare the QLOK tally, and MVER.ON again.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal Use

Since the MYERs are directives, their order in the source is significant,
while the actual location counter at the time the MVER is encountered is
not. Thus, the MVER.OFF may either precede or follow the ORG to
location zero (0), and the MYER.ON may precede or follow the ORG to
END.ENTRIES (because there is no other object code generated
between the ORGs).

The same is true later with the MVER.ON at location 0028; it may either
precede or follow the ORG to *+2 (or the DEm. Actually, if the
MVER.ON at 0002 and the MVER.OFF at 0020 were simply omitted,
the only consequence would be that the ALIGN byte at oolF would not
be verified.

The result of the MVER directives in the source shown above yields a
CHECK-SUM entry with ranges 3-1F, 28-1F5 (lF5 is the last byte of
generated object), and MVERIFY will only verify the same ranges.
(Also, the second HALT of the NEP--the 01 at location 0002--is not
part of the lock and won't be verified either.)

Assembly Manual 10-35
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

POPN
POPS

Syntax

Description

10-36

The POPN and POPS instructions are BASIC instructions. The POPN

instruction pops a direct integer off the BASIC stack. The POPS

instruction pops a string (either direct or indirect) off the BASIC stack.

POPN r3 POPS r3,r

r address registers

The register for POPN should normally be R3 (HS) since that is the
BASIC stack register, which points to the next stack entry on the BASIC

stack of descriptors. The first register should always be R3 for POPS.

The second register will be set to point to the string referenced by the
descriptor popped off the stack.

The POPN and POPS instructions are used whenever a BASIC program
needs to retrieve data from the stack. The stack consists of descriptors;
in the case of long strings. the actual data is not on the stack. POPN is
used to retrieve the numeric value of the data referenced by the top-of
stack descriptor, POPS is used to retrieve a string value.

The BASIC stack is referenced by the HS buffer beginning pointer
HSBEG. HSBEG always points to the beginning of the stack. The stack
itself, however, is built in frames obtained from overflow, which are
released when the program exits. Since the address register R3 (HS)

points within the stack to the next stack entry, the actual top-of-stack is
ten bytes before the current location of R3.

Popping an entry off the stack consists of decrementing R3 by ten bytes,
and retrieving the data via the descriptor then addressed by R3.

If the descriptor code after the stack is popped does not match the
requirement of the instruction (that is, a direct integer for POPN or a
direct or indirect string for POPS), or if the stack register crosses a frame
boundary (on most implementations), an appropriate subroutine is called
to perform the conversion or exception processing.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal Use

The subroutine's address is obtained from the mode-id table entry 2 for
POPN, or entry 4 for POPS. If a subroutine is called, the stack register is
left unchanged before the routine is entered .

POPN or POPS should never be used with operands that could produce
different results when the subroutine is invoked. In particular, POPS

should always be used with R3 and RIO in BASIC run-time code since
that is what is used by the software routines referenced by the BASIC

OPCODES (mode-id) table.

For example, the following sets RIO to point to the top-of-stack string
data:

POPS R3,RIO

The functions of each POP instruction is best described by showing their
software equivalents (for illustration only; the code may not do these
exact steps to get the correct value):

POPN (Value will be returned in FPO)

DEC R3,lO

BCE R3,X'Ol',IN

INC R3,lO

[Enter software routine]

IN INC R3,2

LOAD R3;FO

DEC R3,2

RTN

Assembly Manual

Pop the stack

OK if value is integer

Reset stack pointer

Set stack pointer to value

Load value from descriptor

Reset stack pointer

10-37
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-38

POPS (Pointer will be returned in 'r' below)

DEC R3,lO

BCE R3,X'02',SS

BCE R3, X ' 82 ' , LS

INC R3,lO

[Enter software routine]

SS MOV R3,r

RTN

LS INC R3,2

CMNT *
MOV R3;SO,r

CMNT *

DEC R3,2

RTN

Assembly Manual

Pop the stack

Test for Short String code*

Test for Long String code*

Reset stack pointer

Pointer to short string

Set stack pointer to

storage register

Long string pointer from

descriptor.

Reset stack pointer

6973-1
Confidential and Proprietary to The Ultimate Corp.

PUSHx

Syntax

Descri ption

6973-1

Instruction Set for Internal Use

The PUSH instructions are BASIC instructions that are used to push data
onto the BASIC stack.

PUSHO r3
PUSHN r3

PUSH1 r3
PUSHS r,r3 PUSHD r,r3

r3 The PUSHO, PUSH1, and PUSHN fonns have one address register (r)
operand, which should normally be R3 (HS) since that is the BASIC
stack register (points to the next stack enoy on the BASIC stack of
descriptors).

r In the PUSHS and PUSHD commands, the flrst register points to
the location of the string or descriptor, the second register should
always be the BASIC stack register (R3).

The instructions push values onto the BASIC stack as follows:

PUSHO pushes a zero

PUSH 1 pushes a (scaled) one

PUSHN pushes an integer

PUSHS pushes an indirect string

PUSHD duplicates a descriptor, or enters a software routine, depending
on ??

The BASIC stack is referenced by the HS buffer beginning pointer,
HSBEG. HSBEG always points to the beginning of the stack. The stack
itself, however, is built in frames obtained from overflow, which are
released when the program exits. Since the address register R3 (HS)
points within the stack to the next stack enoy, the actual top-of-stack is
ten bytes before the current location of R3.

Pushing an enoy onto the stack consists of storing a ten-byte descriptor
starting at the current location addressed by R3 (not at the location + 1).
R3 is then incremented ten bytes.

The only exception to the above is in the case of PUSHD when the
descriptor being copied has a type code of X'OO' in byte 0 of the
descriptor. When this happens, the copy is not made, and the routine
referenced by enoy 3 (PUSH ADDRESS) in the mode-id table is entered.

Assembly Manual 10-39
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

10-40

(The routine is entered as if an ENT instruction had been executed, not a
BSL as is the case for POPN and POPS software routine entries.)

The reason for this is that a descriptor of type x'OO' (Undefined
variable) does not reference data, and it is assumed that the PUSHD
instruction is being used to push data (or a pointer to data) onto the
stack. Entry 3 of the mode-id table is used to reference an error routine,
which traditionally prints the message:

Variable has not been assigned a value--zero used.

If a software routine is called, the stack register is left unchanged before
the routine is entered.

The functions of each PUSH instruction is best described by showing
their software equivalents:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(

6973-1

Instruction Set for Internal Use

PUSHO

MCC X, 01' , R3 Direct Integer

INC R3,2 On byte 2

ZERO R3;FO Store zero

INC R3,8 Complete push

PUSH1

MCC X' 01' , R3 Direct Integer

INC R3,2 On byte 2

MOV SCALE,R3;FO Store scaled 1

INC R3,8 Complete push

PUSHN (value is in FPO)

MCC X' 01' , R3 Direct integer
INC R3,2 On byte 2

STORE R3;FO Store value

INC R3,8 Complete push

PUSHS (Register addressing string is r below)

PUSHD

MOV X'8200',R3;TO Indirect string

INC

MOV

INC

R3,2

r,R3;SO

R3,8

(Descriptor to be

On byte 2

Store pointer

Complete push

copied is addressed by r below)
BZ r;HO,ENT Branch if descriptor 0
MOV r;FO,R3;FO Copy next 6 bytes
MOV r;T3,R3;T3 Copy next 2 bytes
MOV r;T4,R3;T4 Copy next 2 bytes
INC R3,10 Complete push

* Done

ENT ENT 2,MODEID BOPS

Assembly Manual 10-41
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

R1EQU

Syntax

Description

10-42

The R lEQU directive is used to improve efficiency on software
implementations and is an alternative to the EQU directive, for internal
use only.

RIEQU symbol,n

symbol name of the symbol

n constant or literal value to assign to the symbol.

The R 1 EQU directive may be used once in any frame in place of the
following sequence. where the symbol is not used in any instruction that
requires the address of the symbol:

FRAME nnn

ORG a
CHR xxx

symbol EQU Rl

In fact, this is exactly the macro sequence generated on firmware
implementations.

Use of RIEQU improves efficiency on software implementations
because immediate values within instructions execute faster than
references to locations within vinual memory.

On software implementations, RIEQU equates a symbol to a value. On
fmnware implementations, RIEQU places a value at location x'OOO' in a
frame and EQUATEs Rl to a symbol that refers to it.

In the following example, the equated symbol COLON can be used in
any instruction that refers to the symbol's value. However, it would not
be valid in an instruction that uses the address of the symbol, such as a
WRITE.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal Use

FRAME 511

RIEQU COLON,C' : '

BCE R5,COLON,Ll

The R lEQU shown in the example is expanded to the following code on
fmnware implementations:

ORG 0

CHR C':'

COLON EQU Rl

On software implementations, it will be expanded as follows:

COLON EQU C' : '

Assembly Manual 10-43
Confidential and Proprietary to The Ultimate Corp.

Instruction Set tor Internal Use

READN

READT

10-44

The READN instruction is used to read a group of characters of teoninal
input.

For details, see the BNREADN/READN/READT instruction.

The READT instruction is used to read a group of characters of teoninal
input.

For details, see the BNREADN/READN/READT instruction.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Syntax

Description

6973-1

Instruction Set for Internal Use

The REV instruction returns the revision number of the current fmnware
revision level. Its use is dependent on the panicular implementation.

REV r

r address register

REV returns a I-byte number that identifies the current firmware revision
level. The number is stored at the byte address of the specified register.

Assembly Manual 10-45
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

RPLDCD

Syntax

Description

10-46

The RPLDCD instruction is used on some implementations instead of the
DCD instruction. It uses the source code for RPL as a replacement for
the DCD code.

RPLDCD r,r

r address register, the ftrst is the RPL instruction register (typically
R5); the second is the RPL stack register (typically R2)

On some implementations, the location of the opcodes table is derived
from the BOPS tally in the PCB. When BASIC is running, BOPS contains
the FRM.LOCK-provided memory location for the BASIC opcodes frame.
When RPL is running, BOPS contains .the FRM.LOCK-provided memory
location for the RPL opcodes frame. For perfonnance reasons, some
implementations do not decode BOPS to get the memory address, but
already know where the BASIC and RPL opcodes tables are. For these
implementations, different decode instructions are needed for RPL and
BASIC so that the appropriate table can be accessed.

RPLDCD functions identically to the DCD instruction except that it uses
the RPL opcodes table instead of the BASIC opcodes table.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(RTNX

Syntax

Description

6973-1

Instruction Set for Internal Use

The RTNX instruction is a form of RTN for internal use only. This form
of RTN is not noticed by the assembly debugger when tracing modal
entries (M command). It is used only in debugger system code.

RTNX

The RTNX instruction should be used only after the DB.ENT monitor call
in System Mode DBO!.

The assembly debugger is entered as if a BSL instruction to one of the
entry points in frame 1 (DBOl) were executed. The ccxie in frame 1
executes a DB.ENT monitor call to begin executing debugger code using
[he DeB (debug control block) in place of the PCB. When the debugger
is through executing, a DB.LV monitor call returns control to the
instruction after the DB.ENT in DBOl; this instruction is a RTNX. If an
ordinary RTN were executed here, and if modal tracing were enabled,
[he RTN would immediately cause another entry to DBO I, producing an
endless loop.

Assembly Manual 10-47
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

SCHR

Syntax

Description

10-48

The SCHR directive is used to improve efficiency on software
implementations and is an alternative to the CHR directive, for internal
use only.

(symbol} SCHR n

symbol symbol name of the character

n constant or literal value to be assigned to the character symbol.

SCHR can be used when only the value of a symbol is desired. It cannot
be used where the CHR values must be in virtual memory.

Use of SCHR improves efficiency on software implementations because
immediate values within instructions execute faster than references to
locations within virtual memory.

On software implementations, SCHR equates a symbol to a value. On
fmnware implementations, SCHR reserves one byte of storage and
defines the symbol in the label field to be of type C (character).

In the following example, the character symbol PERIOD can be used in
any instruction that refers to the symbol's value. However, it would not
be valid in an instruction that expects to find the value in virtual
memory, such as SRA or LOAD.

FRAME 511

PERIOD SCHR C' . I

BCE R12,PERIOD,L1

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(SETAR

6973-1

Instruction Set for Internal Use

?? Fate unknown since not currently used. It changes the number of the
base register of literals (which is always Rl as far as virtual
programmers are concerned). (Scott)

Assembly Manual 10-49
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

SETDD
SETDO

Syntax

Description

10-50

The SETDD and SETDO instructions are BASIC instructions used to set up
a register to address a specific descriptor in the BASIC variable space.
The variable's descriptor location is encoded as an offset into the
variable space.

SETDD r,r SETDO r,r

r address register operands; the flrst register points to the register to
set up to address the descriptor. For SETDD, the second register is
the BASIC stack register (R3). For SETDO, the second register is the
BASIC instruction register (R6).

SETDD is used when the offset to the descriptor is to be obtained from
the BASIC stack. SETDO is used when the offset is to be obtained from
the next two bytes of the BASIC object code in the current program.

For SETDD instructions, the offset to the descriptor is obtained from the
BASIC stack, via the stack register. The PUSH ADDRESS B primitive
creates a stack entry with the offset stored in bytes 2 and 3. This value
is picked up by SETDD and used to reference the variable.

For SETDO instructions, the offset to the descriptor is obtained from the
object code, via the instruction register. The offset is the next two bytes
of BASIC object code.

SETDD does not alter its second (stack) register; however, SETDO

increments the second (instruction) register.

The functions of the SETDD and SETDO instructions are best described
by showing their software equivalents:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal Use

SETDD (Pointer returned is I r' below)

LOAD R3;Tl pick up offset*

MOV ISBEG,r Set to beginning of

CMNT * variable space

BHEZ TO,NC Not in COMMON area if

CMNT * high-order bit 0

ADD COMDSP Adjust for COMMON

NC INC r,TO

RTN

The accumulator is used here only for illustration;

SETDD does not destroy it.

SETDO (Pointer returned is 'r' below)

INC R6

LOAD R6; TO

MOV ISBEG,r

CMNT *
BBZ R6;Ba,NC

CMNT *
ADD COMDSP

NC INC r,Ta

INC R6

RTN

To next byte in object code

Pick up offset*

Set to beginning of

variable space

Not in COMMON area if

high order bit a

Adjust for COMMON

Update instruction register

* The accumulator is used here only for illustration;

SETDO does not destroy it.

Assembly Manual 10-51
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

SHTLY

Syntax

Description

10-52

The SHlL Y directive is used to improve efficiency on software
implementations and is an alternative to the HlL Y directive, for internal
use only.

symbol SHTL Y n

symbol specifies the symbol name of the character

n specifies the value of the half tally symbol as an alphabetic,
numeric, or alphanumeric value

SHTL Y can be used when only the value of a symbol is desired. It
cannot be used where the SHTI.. Y values must be in virtual memory.

Use of SHTI.. Y improves efficiency on software implementations becuase
immediate values within insrructions execute faster than references to
locations within virtual memory.

On software implementations, SHTI.. Y equates a symbol to a value. On
firmware implementations, SHTI.. Y reserves one byte of storage and
defines the symbol in the label field to be of type H (Half tally).

In the following example, the half tally symbol FIVE can be used in any
insrruction that refers to the symbol's value. However, it would not be
valid in an insrruction that expects to find the value in virtual memory,
such as SRA or LOAD.

FRAME 511

FIVE SHTLY 5

BU ACFH,FIVE,Ll

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SLEEPX

Syntax

Description

6973-1

Instruction Set for Internal Use

The SLEEPX instruction performs the same function as SLEEP, except
that the lock tally addressed by the address register is zeroed. SLEEPX

causes the process to be deactivated and put in a wait state until a
specified time of day.

SLEEPX r

r address register, points to a lock tally on an even-byte boundary
(word-aligned).

The SLEEPX instruction is used when a process is to be put to sleep and
a lock which the process has is to be unlocked (zeroed).

SLEEPX is used to avoid the following problem:

Suppose that a LOCK monitor call instruction has been used to gain
exclusive access to a table or other data. The code to manipulate the
table has been executed. The process now wants to unlock the table and
go to sleep until another process wakes it up with a PIB.A TL monitor
call.

If the first process were to use two separate instructions to unlock and
go to sleep, there is a chance that it would be deactivated after the first
instruction, the other process would execute the PIB.A TL, the first
process would re-activate and execute the SLEEP, and the signal from
the second process to wake up from the SLEEP would be completely
missed.

The solution is for the first process to point an address register at the
lock tally and execute a SLEEPX. Then the second process will not run
until the first is asleep, since unlocking and going to sleep are done by
the kernel in effectively one step.

Assembly Manual 10-53
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

SMOD

Syntax

Description

10-54

The SMOD directive is used instead of a FRAME directive to identify
system module items.

SMOD n

n system module number

The SMOD directive is used instead of a FRAME directive when
assembling system module items, such as SYSMSG messages and
keywords. System module items provide a convenient method of
storing text data together for foreign language translation, and also allow
the system to store certain data structures in binary format that do not
conform to the standard Ultimate file structure.

The SMOD items are loaded via the SLOAD command. Before a new
SMOD item can be loaded, it must be added as an entry to the SLOAD2
table (frame 155) so that it will be recognized and processed by SLOAD.

Frame 223 is a map called SYS-TABLES-IV that identifies the system code
stored as system module items; system module items are stored in
binary format rather than in standard Ultimate file structure. The kernels
for firmware implementations as well as cenain data structures used by
vinual code are stored in this way. The modules containing no
executable code can be referred to as either SMODs or RMODs.

One such module is the system message module, SMOD 125 (or RMOD
125). This is a block of linked frames pointed to by entry 125 in frame
223 (SYS-TABLES-IV). These SMOD frames are always copied to tape as
part of a SYS-GEN, and are loaded during a coldstart or file-restore.
They are initialized with the SLOAD command.

The source for SMOD 125 is in the SYSMSG file on the RIO account.
Each item in the file corresponds to one SOO-byte block of messages,
and is assembled just like an ordinary assembly language program.
However, the first line of each of these items consists of an SMOD
directive instead of a FRAME directive. This is because the object code
is not loaded into a specified ABS frame via the MLOAD command, but
into a specified module via the SLOAD command. Module 125 consists
simply of the object code of all the assembled items in the SYSMSG file.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

TilDe

Syntax

Description

6973-1

Instruction Set for Internal Use

The moe (translate incrementing string to incrementing string,
delimiter) insttuction is the same as the MIIDC insttuction except that
each byte is translated before it is moved. The number of characters
moved is counted.

TIIDC r,r,D

r address register in the range of R3-R14

n constant or literal value that specifies the mask of delimiters to use as
terminators for the string being moved.

The flrst address register's byte address + 1 references the starting
character of the string to be moved. The second address register's byte
address + 1 is the location at which the starting character of the string is
to be stored.

moe increments the register operands. The character addressed by the
first register is translated and stored at the location addressed by the
second. If the specified delimiter is not encountered, the operation is
repeated.

The moe insttuction expects that the accumulator TO has been set up
(usually to ZERO or ONE), so that on termination TO will indicate the
number of characters moved.

moe also expects that R15 has been set up to point to a 256-byte
translation table. Byte D of the table contains the value to be put in the
destination string whenever a x'OQ' appears in the source string. Byte 1
of the table contains the translated value of x'D 1', etc. The translation
table must be set up prior to executing the insttuction.

The moe insttuction can be used whenever a string needs to be
translated into another format (such as from European to English) before
it is moved to another location and the string delimiters can be specified
in a mask byte.

The third operand, called a mask byte indicates the terminating condition
for the string move. Each byte of the untranslated (source) string is

Assembly Manual 10-55
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

Mask Bytes

10-56

tested after it has been copied, to see if it satisfies the tenninating
condition.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered. with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

• If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

• If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark

attribute mark

value mark

sub-value mark

SM X'FF'

AM X'FE'

VM X'FD'

SVM X'FC'

The other three characters are taken from the scan character symbols
SCO, SC 1, and SC2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to detennine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates
on the first non-occu"ence of a delimiter as specified by the setting of
bits 1-7.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(~:'

6973-1

Instruction Set for Internal Use

For more information on the use of the mask byte, see the description of
seQ, seI, and Se2 in Chapter 3.

In the following example, note that X'FE' was simply translated to itself
because that is how the translation table is built.

Instruction: TIIDC R12,R13,X'AO' COPY UNTIL AM

Before
instruction: R15 mask byte: 101 0 o 0 0 0

translation table
t

4041424344 FDFEFF

R12 R13

t t
Data 01040000FE 41444040FE

After ~ ~
instruction:

Assembly Manual 10-57
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

VIO
VIOLD

Syntax

Description

10-58

The VIO and VIOLD (vinual input/output) insttuctions are used internally
to transfer data between external devices and the CPU. The VIO
insttuction transfers one word or tally (16 bits) to or from the specified
device. The VIOLD insttuction may transfer one word or a block of
words, and an address.

VIO t,t,t
VIOLD r,t,t,t

VIO* t,t,t
VIOLD* r,t,t,t

r

*

tally symbol or a literal (symbol type n)

address register

indicates that an interrupt request is to be set in the kernel's interrupt
table

For VIO (* J. the first operand is the transfer.loc; the second is the
device.addr ; the third is the func1.code.

For VI OLD (*}. the first operand is a register that references the first byte
of the transfer.loc; the second is the dev.addr; the third is the
funct.code. The fourth operand specifies a range.

transfer.loc transfer location: for VIO, this is where the word
transferred is stored (if input) or obtained (if output); for
VIOLD, this is the starting location of the transfer.

device.addr virtual device address; must be addressed by RO or R 1.
This identifies a peripheral device on the system that can be
accessed by virtual code. Virtual device numbers begin at
zero, and come in pairs. Even device numbers refer to the
input channel of a device, and odd numbers refer to the
output channel. Two channels are always reserved, even
for devices normally associated with output only (printers,
for example), or input only. Which channel to use in an
instruction depends on the function being performed.
Details must be obtained from the appropriate hardware
manual.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal Use

funct.code function code; contains the function to be perfonned. and
must be addressed by address registers RO or R 1. The
actual function code fonnat is dependent on the hardware.

range range; used only in YIOLD instructions to specify the
number of bytes to be transferred, and must be addressed
by address registers RO or R 1.

Note that, unlike all other instructions, VIO and VIOLD require operands
to be either in the PCB (addressed via RO) or in the current program
frame (addressed via Rl).

The usage of these instructions is completely dependent on the particular
hardware implementation of Ultimate. For example, on LSI-based
systems, all YIO/VIOLD instructions automatically set interrupts for the
appropriate function codes (and ignore an asterisk, if one is present).
The details about virtual device address and function code fonnats must
be obtained from the appropriate hardware manual or the source code.

Also associated with each virtual device is a device-id. This is obtained
by executing the GET.ID or N.GET.ID monitor call instruction with a
specified virtual device number as a parameter. If GET.lD or N.GET.ID
returns zero, there is no device with that virtual device number.
Otherwise, the device type can be determined from the device-id.

Device-ids are two-byte numbers. The following are some examples of
device- IDs.

Devlce-Id

x'2003'
x'2017'
x'204E'
x'207F'
x'2118'
x'2158'
x'2305'
x'2363'
x'2949'
x'3311'

Description

line printer with 96-character set and VFU
5 1/4" diskette
9-track 75 IPS 800/1600 BPI tape
1/4" QIC-02 Streamer tape drive
50baud-19.2kb async comm port

. 50baud-19.2kb sync comm pon
413mb FSD disk
256mb mass storage unit
HDLC broadband comm port
1/4" streamer tape drive on FSD controller

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

10-59

Instruction Set for Internal Use

10-60

When a system has several virtual devices of the same type (such as tape
drives), the devices of that type are always numbered in the order of
their virtual device numbers, usually corresponding to hardware channel
numbers or something similar.

Execution continues as usual after the VIO or VIOLD has initiated the
I/O request VIO* and VIOLD* initiate data transfer but allow the
program to continue.

If an interrupt has been requested (VIO* or VIOLD* forms), a WAIT
monitor call ins01lction should be used after the VIO* or VIOLD*
instruction. WAIT will suspend (deactivate) the process until the
completion interrupt occurs. If more than one interrupt can be
outstanding at a time (such as by issuing VIO* instructions to two
different devices), the accumulator should be inspected after execution
of the WAIT instruction to see if it matches the device number of the
desired device. The VIOLD* form also keeps the data buffer in main
memory until the interrupt is received.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

VM

Syntax

Description

6973-1

Instruction Set for Internal Use

The VM instruction transfers a specified number of words (tallies) from
a relatively addressed location to an absolute memory address.

VM r

r address register, points to the fIrst byte to be moved (if word
aligned), or one byte before the fIrst byte to be moved (if an odd
byte).

The VM instruction can be used to move strings that cross frame
boundaries, since it follows the links.

YM expects that 12 and TO have been set up to contain the memory
address (word address) where the first word (tally) of data is to be
stored. 12 contains the high-order 2 bytes of the memory address, and
TO contains the low-order 2 bytes.

YM also expects that Tl has been set up to contain the number of words
(tallies) to move.

Both source and destination addresses must be word-aligned since the
move is one tally at a time. The kernel ensures that the byte address of
the source data is word-aligned. If the register initially points to an odd
byte, the kernel automatically increments the register by 1 byte and zeros
the low address bit (thus converting the byte address in the register to a
word address).

Then the number of words indicated by Tl are moved. (The memory
address is not pre-incremented for the first word move.) The instruction
terminates with the register pointing to the high-order byte of the last
word moved.

If no frame boundary is crossed in the move, the contents of the
symbols (TI, 12, and TO) are not touched; otherwise, they are all
altered.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

10-61

Instruction Set for Internal Use

XBCA
XBCNA

Syntax

Description

10-62

The XBCA and XBCNA instructions are extended versions of BCA and
BCNA, and are available for internal use only.

XBCA r,1
XBCNA r,1

local label

r address register

XBCA r,l,l

These instructions are used instead of the BCA and BCNA instructions
when the French version of the operating system must test an extended
alpha character set. The extended set contains characters such as the
acute (!) and grave (\) accent marks used with vowels, which are not in
the normal U.S. English range.

The u.s. OSYM entries for XBCA and XBCNA are the same as the BCA
and BCNA versions. The French versions in OSYM are documented (??)

in the OSYM-FRENCH file on the RIO account.

Both of these instructions expect that a special subroutine has been
defined in the system mode ALPHA-EN1RY-DEFS O?); this item should

be INCLUDEd in any mode where the XBCA or XBCNA instruction is
used. The subroutine name must contain the address register (RO-R15)
used in the instruction; the valid names are ALPHA.Rx (for XBCA:RL and
XBCNA:RL) and XALPHA.Rx (for XBCA:RLL), where Rx is the name of
an address register.

The XBCA and XBCNA instructions are macros that generate calls to
character testing subroutines, followed by one or more branch

instructions. The subroutines test the indicated character, and then
adjust the return stack as necessary to cause the correct instruction to be
executed on return, based on the value of the character.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Instruction Set for Internal USH

XBCARL Usage

The macro expansion fonnat of the XBCA:RL fonn is:

BSL ALPHA. (2)

B (3)

This causes the program to do the following:

• branch if the character is alphabetic (C'A'-C'Z' or C'a'-C'i), or if the
character is in the table CHAR.TABLE below

• fall through the code in any other case

The following shows the results of compiling an XBCA instruction:

XBCA R13,MYLABEL

+BSL ALPHA.R13

+B MYLABEL

The subroutine ALPHA.R13 inspects the character pointed to by address
register R 13. If the character is in the extended alphabetic range (see
Table 10-1), execution continues with the Branch instruction after the
return from ALPHA.R 13. But if the character referenced by R 13 is not in
the extended alpha range, the return stack is adjusted so that the Branch
instruction is skipped, causing the program to fall through to the next
instruction after the XBCA instruction.

XBCARLL Usage

The macro expansion fonnat of the XBCA:RLL fonn is:

BSL XALPHA. (2)

B (3)

B (4)

This causes the program to do the following:

• branch to the fIrst label if the character is alphabetic C'A'-C'Z' or
C'a'-C'z'

• branch to the second label if the character is in the table CHAR.T ABLE
below

• fall through the code in any other case

Assembly Manual 10-63
Confidential and Proprietary to The Ultimate Corp.

~trUction Set forJnternal,Use
''It!.,·:' " " .

.;:.: ,",~ ... ~.. .

10-64

The following shows the results of compiling an XBCA instruction:
XBCA Rl3,LABELl,LABEL2

+BSL XALPHA.Rl3
+B LABELl

+B LABEL2

The subroutine XALPHA.R13 inspects the character referenced by R13,
and returns to the first Branch instruction if the character is in the normal
alpha range, or to the second Branch instruction if the character is in the
special range, or to the instruction after the XBeA if the character is not
in either pan of the extended alphabetic range.

XBCNARL Usage

The macro expansion format of the XBCNA:RL form is:
XBCA (2), (L+l)
B (3)

(L) EQU *

The meaning of this form is simply the opposite of XBCA:RL. There is
no XBCNA:RLL.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

(
6973-1

Instruction Set forlnt!1mE?J'l:!~~:

Table 10-1. CHAR.TABLE

X'AC' a accent grave

X'AD' 11 circonflexe

x'AF' li trema

X'B!' C; with cedilla

x'B2' e accent aigue

x'B3' e accent grave

X'B4' e circonflexe

X'BS' e trema

x'B8' 1 circonflexe

x'B9' i' trema

X'BE' 0 circonflexe

X'BF' a trema

x'C3' U accent grave

x'C4' G circonflexe

x'CS' ii trema

French tenninals do not actually generate the values shown for these
letters. Instead, a multi-byte sequence is generated for each special
character, which Ultimate system software translates into the
corresponding one-byte values in CHAR.T ABLE. These standard logical
values can then be operated on more easily by software such as that
found in word processing routines. In particular, these one-byte values
are easily tested by using the XBCA and XBCNA instructions.

Assembly Manual 10-65
Confidential and Proprietary to The Ultimate Corp.

Instruction Set for Internal Use

Notes

10-66 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

