Ultimate;

Assembly
Reference Guide

The Ultimate Corp.

Version 1

Ultimate Assembly Language Reference Guide
Version 1

© 1989, 1990 The Ultimate Corp., East Hanover, NJ

All Rights Reserved.
Printed in the United States of America.

How to order this guide:

The Ultimate Assembly Reference Guide is a restricted document. For
information on ordering, call the Ultimate Administration Department.

Publication Information

This work is the property of and embodies trade secrets and confidential
information proprietary to Ultimate, and may not be reproduced, copied,
used, disclosed, transferred, adapted, or modified without the express
written approval of Ultimate.

Operating System Release 10, Revision 210
© 1989, 1990 The Ultimate Corp., East Hanover, NJ ¢

Document No. 6973

Contents

6973-1

How to Use this Manual ..., Xvii
How the Manual is Organized...........cccccveevirrcrrrcrnecnnicecnnnce. xviii
CONVENLIONS......eoiieeerieeectercee e see sttt seessae e seesseennas XX
Overview of Assembly Language............c.ceeunees 1-1
The Ultimate Virtual System Architecture................cccc....... 1-3
User Processes in a Multi-User System...........cccocceevueuenene. 1-5

Process WOrKSPaCES.........ccouiereeeeieeeeeiireeeneneneeesseennns 1-6
The Kernel SOftwareovivvrinveennencerece e 1-8
Process Scheduling.......ccoooeeeevenenenncnneneeececeene 1-10
Frame Faults.......ocoririeereeseeeceeereee e 1-11
Automatic Disk WHteSsccceeevrnieneceeeeecereeee, 1-13
Calls (MCALS) from ProCesses.......ccecceeeveerrerecereneennne 1-13
Main Memory Management..........c.cccccevennnnnennnencnenne 1-13
The Assembler.......... e 2-1
The Components of an Assembly Program............c.cc....... 2-2
Displaying the Program........cccccevrnrvmnncnnnicnincnenene 2-3
Creating an Assembly Language Program..........cccccceuuen. 2-4
Assembly StrUCIUreScccvueeirercceectrceecr et 2-5
Mode STIUCIUTE.........cciieceireecee e 2-5
Mode-ids - External Program References..................... 2-7
Program Line Structureoeeveveeeeeceeeecieececeeeee 2-9
Displaying Assembly Programs in the Editor............... 2-12
The Assembler Program.......cc.oeeeieeceeeieeeceeeceeceeeeeeeeee e, 2-15
Executing Assembled Programs.........cccceeeceeeceeceveeeceeeennenn. 2-17
The AS Command - Firmware Assemblies.............cceecueennn. 2-18
The OPT Command - S/370 Assemblies...........ccccceeeenneeee. 2-21
The ASM Command - 1400 Assemblies...........cccceceverunens 2-23
The OptimMizZer......co et 2-26
Assembler Error Messages......ccocueeeeeereeceeeeveeceeceeceeeeeveene 2-27
OSYM EITOIS...oouieeeeeeeeesteeeeee ettt e e 2-28
Generating Object Code.......ocoumereeeueeeeeeeeeeceeeeeeeeeeen 2-29
Directives and Object Code.......cccevvvereeveerieieeeerenn. 2-29
Instructions and Object Codecccveveereeverecveciereneeee. 2-29
Generating Object Code.......cccevmeeeeeeereereeeeeee e 2-30
SYMDOI FileS ...t e 2-31
- The PSYM File Layout......cccooeveeeeeeereeeeeeeeeeeeeceeeevevee 2-32
The TSYM File Layoutccoeeveeeereeeeeeceeeeeeeeeveeeveveean, 2-34

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

iii

Contents

iv

The OSYM File Layout........ccccceeeeeeerceeeieeneereeeeece e, 2-35
Symbols and Literalsccceoeeeeeerrrnerccerersrececieeseseeesnsnnns 2-44
Locally Defined SymbolIsccooeveveeererenerenenseneeesennene 2-44
LItEralS ettt e 2-45
Shared Symbols (INCLUDE Directive)cceeeurune.... 2-48
Immediate Symbols.........ccocvevevireniiiiiiircc e 2-48
Assembler System Commands..........cccceerveervereieeneenienneenne. 2-50
CROSS-INDEX ...ttt eses e eneeeanes 2-51
MLIST ..ttt es e s saa e 2-53
MLOAD ...ttt ettt s e 2-55
MVERIFY ..ttt sre et 2-56
XoREF .ttt e 2-59
XBEF ...ttt ettt et 2-61
Addressing and Representing Data...................... 3-1
Frame FOrmMatScccovieiiviiineeserrtcee et 3-2
Frame SizZ€.......cooieivivinieceeesterteee ettt eneea 3-2
LiNK FIieldS....cceoveveereeeeeceseeeesrce et 3-5
ABS Frames.......cccceeeveerenienerenrineeeensessseseseeseesesnessnessennns 3-7
Data Formats in @ Frame.........cccccocveveveeceneceecvenreeceeeceenee 3-8
Virtual Addresses - Addressing Data in a Frame............... 3-10
Understanding Address Registers.......c.cccceeevevernvnireecneeenn, 3-13
Attaching an Address Register........ccoceevvveeeeeecveeeeinnne. 3-15
Loading an Address Register.......cccvvvvvvieveecrenrecenene. 3-16
Conventional Usage of Address Registers................... 3-16
Understanding Storage Registers......ccoeevvecevvecveveceenn. 3-19
Addressing Modes in an Instruction.........cceceevenveeeeeennene. 3-21
Immediate AdAressing......ccoceevveeeeeeeeeecrecreceeeecereeeeeeene 3-21
Relative ADAressSingccccceeveveeeenreceeieeveee e 3-21
Indirect Addressing......cccoceveeeeeneesersiereeeeeeeeee e 3-22
Direct Register AAdressingc.cococeeeeveeevereeeseseenerenenes 3-23
SYMDOI TYPES....cuervereririreciieretreneee ettt 3-24
Computing Relative Addresses by Symbol Type........ 3-26
Limits in OffSetS ...c.coevievirceriecteeeeeeeeeeee e 3-27
Addressing the PCB Fields........cccoovnivrinennineseceeere, 3-29
The AcCCUMUIALON.......coieeieeeeeeeteeeee e 3-29
Scan Characters.......coccveecreceneeeeeeeeeeeee e 3-33
File Control Block Pointers..........ccceeuveeveveeceecceeeeeeeeene 3-35
Subroutine Return Stack Fields..........ccccvvvevvueeeenrnnnnee. 3-36
XMODE Field.....covceeiriireeeeneeie ettt 3-37
RMODE Field.......ccoeverevereeieeieeeceeee e 3-37
WMODE Field.....coceeverrieeierenreeeeeeee et 3-37
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

Contents

OVRFLCTR Field.......cccooirireeerereecreneeeetecnnene e 3-37
INHIBIT and INHIBITH Fields.......ccocenmninniniinniiiiceeenne 3-38
Addressing the SCB Fields.........cccoocoeiinvenenniciiiceen. 3-39
Addressing Conventional Buffer Workspaces.................... 3-39
Programming Conventions........cccceevenncnnenenenneneisnnscsanne 3-44
Global Symbolic Elements - PSYM File........................ 3-45
Sharing Object Code Among Processes..................... 3-46
Defining Additional Workspace........c..cccveeveeveieieecrnennn. 3-48
Ensuring Compatibility..........ccoceeeeriimneeicninciinieieene 3-48
4 Assembler Instruction Set and Directives.............. 4-1
Summary of the Instructions and Directives...........c....c..... 4-2
Operand TYPES......cceeruererierieniririeereeieteses e steeestestese e seeeens 4-5
Virtual AQAresses........cocceuivieneeeeeneeeeseeeeeeese e 4-6
System Delimiters........coovrireneneeteeeeece e 4-6
ADD ...ttt st e 4-7
ADDX ...ttt ettt ettt e s e 4-7
ADDR ...ttt e et 4-9
ALIGN. ...ttt ettt 4-11
AND ..ttt 4-12
B et enn 4-13
BB S et e e naaee 4-14
BBZ ... e 4-14
B A et s et 4-15
BONA ettt et s 4-15
BE e e s 4-16
BCU ettt 4-16
BOH ..t 4-18
BOHE ..ttt e 4-18
BOL.e ettt enenan 4-18
BN s e 4-21
BONN et s v e enas 4-21
BONA ettt e 4-22
BONN ettt ss s 4-22
BONX st 4-22
BCOU ettt e 4-22
B X ettt e 4-23
BONX ettt a st 4-23
BDHZ.......ee ettt e s 4-24
BDHEZ.......e ettt sesses st es s 4-24
BDLZ ...ttt 4-24
BDLEZ.......ooeeeeeeertee sttt en e 4-24
6973-1 Assembly Manual v

Confidential and Proprietary to The Ultimate Corp.

Contents

BDZ......e ettt et a et e st st e e seean et st saeaa e 4-26
BDINZ......oo oottt st st et s sre e saesseee e se st et aneese et saesesnns 4-26
BE ettt sttt st e st e n s et enas 4-28
BU oottt ere st en st s e st s s s e s e snanen 4-28
BH ettt ettt e s 4-31
BHE ..ottt e sa s st e st e annen 4-31
Bl ettt et s sa e sa e e ee st 4-31
BLE ettt ettt sttt st eenn 4-31
BHZ......eeeeeeeee ettt sa e e snas e e as e e saese st eae s se st e st s eneaen 4-34
BHEZ......ooeeeeee ettt st se st saesase e st st se st se e seseenas 4-34
BLZ ..ttt s e st st 4-34
BLEZ.....o ettt st eana e e st eaes 4-34
B ettt ettt et r e e e sttt et ee s 4-36
BLE ... ettt st st en e 4-36
BLZ ettt 4-36
BLEZ.....oeeeee ettt st sttt ean 4-36
BNZ....ooeeeetee ettt sttt st ettt a et st enenanen 4-36
BOL. ettt et anen 4-37
B S e pereeteteaae et e et ene et aens 4-40
B L.t ettt 4-41
B TE .. ettt st sn e 4-42
BU ottt e e ena 4-44
Bttt st anen 4-45
BNZ.....eeee ettt er e 4-45
CHR ettt e st st 4-46
CMNT .ttt ettt 4-47
DEC (DALQ).....c.coveeeremieeemerereeieieteieeseeeeseesessesessessenessassenenens 4-48
INC (DALa) ...ccoeeveeeueerieeeneeieretee st sessesease st e seseeneeeeenens 4-48
DEC (REQISLEI) ..ottt er e en e e 4-50
INC (REGISIEI) ..ttt erene 4-50
DEFX....uiietereeiineeeeeiresneeseeseseasesssssesssssestesessasssesaesessessseneses 4-52
DEFM ...ttt ettt sae s sae s e st e sn s e 4-60
DEFN....c ettt et easte s et sesrese e ena e ene 4-61
DEFNEP ...ttt sae st n e 4-63
DEFNEPA.......oo ettt sttt seseanes 4-63
DIV ettt ettt sttt s e e s st s es bbb s erena 4-68
DIVX ettt ettt et se vt 4-68
DTLY ettt se st et st e s e e e s b e et e e et ssensanens 4-70
FTLY ettt ettt es et e s s s e 4-70
HTLY ettt et sessea e sn et sn s a s e s enes 4-70
LY ettt 4-70
BUE T ettt ettt 4-72
vi Assembly Manual 6973-

Confidential and Proprietary to The Ultimate Corp.

Contents

END ottt st e 4-73
ENT ettt sttt et st e sr et s 4-74
BN T ettt et enen 4-75
ENTL.ccee ettt st s 4-76
P ettt sra et 4-77
EP.ADDR ...ttt ettt 4-78
EQU ..ttt ettt st 4-80
FAR ..ottt sttt sttt et st e e st e e e st et seennene 4-82
FRAME ...ttt ettt er et st enes 4-87
FTLY ettt ettt 4-88
HALT <ttt et sttt e s e e 4-89
HTLY ottt et et 4-90
ID.B e et ettt 4-91
ID.RSA et s enee 4-92
INC ettt ettt st et sttt s 4-93
INCLUDKE. ...ttt st et see e e eneen 4-94
INP B ettt se e e e e e e e s e saae e s e e e e eean 4-95
INPABX ottt et sa e e s enes 4-95
LAD. ..ttt ettt st e se s 4-97
LOAD. .ttt s en e 4-99
LOADX ..ottt tes et se s e seas e e s snsnnene 4-99
MBD.....ceeee ettt en e 4-101
MBX ettt s e e 4-105
MBXN ..ttt e e e s 4-105
MO C et st s e e e 4-108
MO ettt e r e asa st eees 4-109
MDB...... ettt et r e e eneene 4-111
MXB .ttt 4-111
MDD ettt e e 4-113
MEE et 4-113
MEX ettt r et ens 4-113
MIC ettt b e s e 4-118
MUttt s e en s 4-119
MIID ettt et e 4-121
MIIDC ...ttt er et e sa e 4-121
MIR ettt r e s a e e anes 4-124
MU e e b s er e 4-126
MITTD ottt eae s s s s 4-126
MOV (Operand).......ccoeeceverernrsnrereeceereeeesreseeeeresssessennenennn4=129
MOV (REGISIEN) ..ottt eee e 4-131
MSDB......o ottt ettt et 4-133
MSXBi ..ttt s 4-133
6973-1 Assembly Manual vii

Confidential and Proprietary to The Ultimate Corp.

Contents

MTLY ettt st st se s st se e 4-134
MTLY U oottt ettt esese s sesa st st ssn st s 4-134
MUL ettt et st saes et ses e saanassssasans 4-135
MULX <ttt ev st sn et se e se s 4-135
MXBi....oeieeertetete ettt ettt et en e e st 4-137
NEG ...ttt ettt es e e e st et 4-138
INEP ettt ettt e sb e st et e 4-139
NOP ..ottt ettt ae e st sae e st sse s s aens 4-140
ONE ... ettt sttt st sr et e e s se et sae s e stenenes 4-141
OR ettt sttt ettt s st ee et et ee e enan 4-142
ORG ...ttt ettt ettt et st re e e s st s s ae e 4-143
OUTTB ettt sttt es s e st sese e s saee 4-146
OUTTIBX ettt ettt st st sseseeneeees 4-146
RQM. ettt st e e snae s te s ae s aneseane s 4-147
BTN ettt ettt et st st en e s en s 4-148
S B et et st 4-149
SET.TIME ...ttt s 4-150
SETDSP ettt e 4-151
SETR ettt e 4-153
SHIFT et st sr e 4-155
SICD... ettt ettt b e st er et ae s 4-156
SID ettt ea e a et e er e naeneas 4-161
SIDC ...ttt ettt enes 4-161
ST e st r et e st er et s 4-164
SITD ettt bt ettt 4-164
SLEEP ..t 4-167
S R et e s 4-168
SRA et e ans 4-170
STORE ...ttt 4-172
SUB ettt 4-173
SUBX ettt ettt e et s es et s st 4-173
T ettt sttt a s se st enas 4-174
TIME .ottt et sa s s s s e st enas 4-175
TLY ettt sttt s eae e n e e en et anas 4-176
KOOttt sttt ettt 4-177
KOR ettt sa et et es e e n et st s st 4-178
KRRttt 4-179
ZBh..oe ettt et 4-180
ZERO ...ttt 4-181
System Subroutines.................ccoooviiiiieeee 5-1

Summary of the System Subroutines..........cc.cceueveererenennees 5-2

viii Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

Contents

6973-1

Conventions Used to Describe System Subroutines....... 5-6
File Control Block Symbols.......c.ccccevereieerirccsneenienneeenenns 5-7
ACONV ..ttt se e st esteest e s e st e e e snanas 5-9
ANDIOFLGS ...ttt et sres e st sesneaens 5-10
ATTOVF ..ttt et et s et e st e saes 5-11
CONV .ttt st srae e s st e sa e s st e e naannans 5-12
CRLFPRINT ...t ssete et enas 5-12
CVD ettt sttt et st st sa e na e 5-13
CV X ettt e sttt s st s r e snnnn 5-13
DATE ... ettt ete ettt et se e s sr e enan 5-15
DECINHIB ...ttt 5-16
ECONV ...ttt sttt sttt e enan 5-18
GETACBMS ...ttt e seeaane 5-19
GETBUF ...ttt ettt 5-20
GETFILE ...ttt st snaane 5-21
GETIOFLGS ...ttt ve e 5-23
GETITM . ettt et st ans e st eaane 5-24
GETOVF ...ttt se e st e e srae e e st s e st naans 5-27
GETBLK ...ttt ettt e s se et 5-27
GLOCK. ...ttt sttt et st e st e e e s sa et ens 5-28
GUNLOCK ...ttt sttt sae e se e seennees 5-28
GUNLOCKL.LINE......coiieeeeeeeterreseeecte e e se e 5-28
HASH .. e e 5-29
HSISOS.....cc ettt st s naa e 5-30
INFTRTN <ttt enaees 5-31
LINESUB ...t 5-32
LINK et st 5-33
MARKRTN ..ottt 5-34
MBDSUB ...t 5-35
MBDNSUB ...ttt 5-35
MBDSUBX ...ttt ea e e en e 5-35
MBDNSUBX ...ttt en e e ee s 5-35
NEWPAGE ...t e 5-37
NEXTIR ettt ts et er e e ea e s 5-39
NEXTOVF ...t be s e e enan 5-39
OPENDD ...ttt st ese e s 5-41
ORIOFLGS ...ttt eve e ere e e en s 5-44
PCRLEF ...ttt et ee et e 5-45
PERIPHREAD ...t 5-46
PERIPHREADZ........coooiveecrerereree e seseanen e aesaes 5-46
PERIPHWRITE.......coieeee et 5-48
POPRTN ...ttt seses e snenes 5-49

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

ix

Contents

PRINT ettt st s s saes et s e s e e s sene s sne e 5-50
CRLFPRINT ...ttt et ctneee s cvee s e eesnnesesanaesansasssnssnnns 5-50
PRNTHDR ...ttt ee e snen e san e sene s 5-52
RDLINK . ettt et cmae s snns s ste s sne e s e sssnnesnes 5-54
WITLINK ..ottt eesees s e e s s snae e s snaesanaesnns 5-54
RDREC ... ittt cestaessesssate st eesan s e s e s s ananas 5-55
READ@IB...........eeeeeereeeeetecete et seescsessenesase e e s ssaessneenaennaens 5-56
READX®@IB ...ttt e seeeste st e s e s 5-56
READLIN ...ttt ssaaesres e e s s e snnessae e s 5-57
READLINX. ...ttt e streessane s ssteesssnaesseneeessnaenns 5-57
READIB ...ttt cene et aessnee s n e s e s e snae s 5-57
RELBLK ...ttt e sa e 5-60
RELCHN ...ttt se s s 5-60
RELOVF ...ttt st s ae et saae s e enne e 5-60
RESETTERM ...ttt st ene e 5-61
RETIX ottt ae s e e s e e s s ae s srae e eree s beeans 5-63
RETIXU ..ottt ettt s saa e s rae s 5-63
RTNMARK ...ttt s sr e sn e sa e sn e 5-65
SETLPTR. ..ttt cree s e s ae e s e s 5-66
SETTERM. ...t 5-66
SLEEP et s s e 5-68
SLEEPSUB.......eeerttr sttt 5-68
SORT ..ttt et s e e et e e ne e aeenne s 5-69
SYSTEM-CURSOR..... ettt et 5-72
TERM-INFO ...ttt et sttt en e e 5-85
TIME oottt sttt 5-87
DATE ... oottt sttt st s sas e sa e sa e ene e en 5-87
TIMDATE ...ttt ettt ere e 5-87
TPBCK ..ttt e e et ra e sne s ennens 5-88
TPREAD. ...ttt ettt e eneernens 5-89
TPWRITE ...ttt e s eeereesraesn s 5-89
TPRDBLEK ...ttt sttt s eae e 5-89
TPREW.....o ettt 5-92
TPWEOF ...ttt e e saae bt eneens 5-93
UPDITM ettt sttt esn e saeess e enee e 5-94
WRITE@OB.........cooieeieereeernteesee et eate et easesssesae e erens 5-96
WRITEX@OB ...ttt s eanns 5-96
WRTLIN. .ottt ea e erre s reernens 5-97
WRITOB ...ttt ear e 5-97
WSINIT ..ottt sttt sttt sbe e e et se s e srenesbens 5-100
WITLINK ottt et s 5-102
X Assembly Manual 6973-

Confidential and Proprietary to The Ultimate Corp.

N //

Contents

6 System Software Interfaces.........cccocovevirvrrcecnnene. 6-1
Interfaces Between TCL and User Programs..................... 6-3
The Initial Conditions of a Process at TCL.................... 6-3
CONV INErfaCeccoeeueeeeeieerricireeeesesrereeeecee e e s seeneans 6-5
Calling Conversion Program as a Subroutine............. 6-5
Calling a User-Written Subroutinecccceceevevueeevennnenee. 6-8
PROC Interface......c.cooeevevieieieiereeeece e ceeereseeeseee e eeceesrneenens 6-10
RECALL INterfacecoovreeeeeceeeceee et eeneene 6-13
Gaining Control After Selectionccceceeeveeevecenrenennnns 6-14
Gaining Control After Processing Codes....................... 6-15
Element Usage.........cccviiirieceieeceeseeeeeeeeee e 6-18
TCL-1 and TCL-1l Interfaces.........ccceceeereenevrercenieeceeeeenene 6-24
TCL-I Interface Requirements..........ccocceeevveerniienceeninnnns 6-27
TCL-Il Interface Requirements...........ccceeevieeeieeccereenennne. 6-30
WRAPUP Interface........cccooeeeieeeeeeeeeeeeeceeeeeeeeeeee e 6-33
WRAPUP Entry Points........cccocoeeeneeceeeieeeeeeeee e 6-34
XMODE INterfacec.cccvueievimeeecececeeceeeece et 6-36
7 Programmer's Reference............cooevvinivnnncnnnnne. 7-1
HINES <ot et er e sae e 7-2
Guidelines for Data Moves and String Conversions......... 7-4
Guidelines for Defining Symbols.........ccccceereererecireveerernee. 7-7
Two's Complement Arithmetic Concepts........cccceveveuennnnene 7-8
EXaMPIES....eoeiceeeeeeeteee e 7-10
TCL-1 Verb and BASIC Program.......cccceeeeeeueeeeeenvevennne. 7-11
TCL-1l Verb and BASIC Program........ccccceueeeereeeveeneennnes 7-13
Conversion Subroutingcccceeveeeeeeeeeecveeeeeererene, 7-15
Setting Up Heading and Footing Area............cccou...... 7-17
PROC User EXit.....ccccocvevemirenininecieeeeeceeeee e 7-18
Cursor and Printer Control.........cccceeueeveeereeceeeeeeeceenee 7-19
Returning a Port's Logon PCB Frame..............ccoocuu....... 7-22
Returning Time in Milliseconds.........ccceoveeeemereieeennnnes 7-23
Handling BREAK Key Activityc.ccccceeeruveeeerceeieeeenee. 7-24
Changing Width on Wyse Terminals............cc.cccev.n...... 7-25
8 The System (Assembly Language) Debugger...... 8-1
Entering the Debugger.......coieeeeeeececeeceee e 8-2
System Privileges ..., 8-3
Inhibiting the BREAK Key.......ccoeueeeeeeeeceeeececeeeeee 8-3
Program ADOMScccovvmimreceeeeree v 8-3
Summary of Debugger Commandsccoeeeeueeeereeeeeeeennenee. 8-7
Address Specification and Representation........................ 8-10
6973-1 Assembly Manual Xi

Confidential and Proprietary to The Ultimate Corp.

Contents

Xii

Displaying Data in the Debuggerccccooeveeiniiicinncnnnne. 8-11
Changing Data in the Debugger........cc.ccoovniiiinninriinnennnen. 8-14
A Command - Display Address........ccceceveeereenrcrereencneecrnenenn. 8-16
Arithmetic ComMmMaNGS........cocceueverreniereenereeneneeeree e 8-17
B Command - Breakpoint Specification.........ccecceererueueneee. 8-18
Bye Command - Exiting the Debugger..........ccoccvecrrennucn.n. 8-19
D Command - Display Tables.......c.cceevevenerenrcnrncnncnenen 8-20
DI Command - Disabling the Debugger.........cccecevvcceunnene. 8-21
E Command - Execution Step.......c.cccceerveeerrerenenccnerennenes 8-22
END Command - Exiting the Debugger........cccoceceveveeunneee. 8-23
F Command - Changing Frame Assignments.................... 8-24
G Command - Resume Executioncc.ccceeeeeerereccneneennnee 8-25
K Command - Clear Breakpoints........cccceeeeeicneeeencneeccnnnne 8-26
L Command - Display Link Fields.........ccccccevevveervniieneennen, 8-27
M Command - Modal Execution Trace.cccccovveeeeeennenene. 8-28
N Command - Delay Entry to Debugger..........ccceceevvereeennen. 8-29
P Command - Toggle Terminal Displaycccocevererueuenee 8-30
T Command - Trace Data.......cccccoeevieevenenieveneneceienesesenens 8-31
U Command - Delete Traces......cccvveeeeeeceenereenenecnecnnnns 8-32
Y Command - Data Breakpoint..........cccocoeveveereeceececrerenene. 8-33
>>, <<, >, < Commands - Changing TCL Leveis................ 8-34
Monitor Calls (MCALS)............coooiiieeeeecee e, 9-1
How to Use MCAL Information.........cccceeeueeerenenenrccesenene 9-4
ALARM.CLOCK - MCAL 1C....coeeerererreeereseene e 9-6
CLEAR.INP - MCAL 33......oeeeeetee e 9-7
CLOCK.CANCEL - MCAL 1D ..ottt 9-8
CLR.OUT - MCAL 36....ceuieeieeieeeeeeeereteeeneee et es e seenenes 9-9
DB.ENT - MCAL 0.ttt 9-10
DB.LV - MCAL 17ttt et 9-11
DISKEERR-MCAL 24.........ooeeeeeeeeeeeeeeee st 9-12
DISK.STAT - MCAL 38....ccooeeieieeeeeeetere e crenereassnens 9-13
DSABL.DSK - MCAL 2C ...ttt 9-14
FAKE.RD - MCAL 14 ...ttt 9-15
FAKE.READ - MCAL 49.....c.coieiteeeeereeeee e 9-17
FAKEWT - MCAL 15, 9-18
FORCE.WRITE - MCAL 25 ...t 9-19
FRM.LOCK - MCAL 21 ...ttt 9-20
FRM.UNLOCK - MCAL 20.....cccueieereeeerercrererereee e s 9-21
GET.ID - MCAL Q... 9-22
INT.CANCEL - MCAL 1E e 9-23
LINK.CNT - MCAL 3 ...ttt 9-24
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

\'ﬁ\V //

Contents

LOCK - MCAL 29......eeeeeeetretesees et e seee s e aesaaeenaeenaeas 9-25
LOCK - MCAL 2A...... ettt reeeesee s s e e sreesnae e nnae s 9-27
MTB - MCAL 4 ...ttt ca e s e e ennns 9-29
MTBF - MCAL 2.ttt sne e snae e 9-30
N.GET.ID - MCAL 1A ..ttt e eve e ene 9-31
PANEL - MCALD...... et creeee e e 9-32
PC.MSG - MCAL 48.......eeeeetrte et 9-33
PERIPH.RD - MCAL 40.......eeeeeeceeecte et cree e 9-34
PERIPH.RD.ONE - MCAL 35.......ccoieeeeeeeeecee et 9-35
PERIPHWRT - MCAL 41........eeeeeereeee et 9-36
PERIPHWRT.ONE - MCAL 34 ...t 9-37
PIB.AND - MCAL 12 ...ttt 9-38
PIB.ATL - MCAL 2B ...ttt e 9-39
PIB.OR - MCAL 13t 9-40
PIB.PEEK - MCAL 18 ... 9-41
PIB.POKE - MCAL 19ttt 9-42
PIB.XPCB - MCAL 37 ..ttt nans 9-43
QUERY = MCAL 17 et 9-44
QUEUE.READ - MCAL 2D ...ttt 9-46
RCV.LEN -MCAL A 9-47
RFLAGS.CLR-MCAL4A. ... e 9-48
RFLAGS.SET - MCAL 4B..........oeeeeeeeeceeecee e 9-49
RQM - MCAL 28......eeeeeeeee ettt 9-50
RTC.CALIB - MCAL 2F ...ttt et 9-51
SET.BATCH.TM - MCAL 3F ...t 9-52
SET.FL.DEN - MCAL 3D .t 9-53
SET.TIME - MCAL 26.....ueeeeeeeeeeeeeeece e 9-54
SLEEP - MCAL 22.....oeeeeecteete et 9-55
START.IO.PIB - MCALE. ... 9-56
TEST.NP - MCAL 30 ..o 9-57
TIME - MCAL 27 ...ttt eees e as v eanens 9-58
TL.READ - MCAL C ...ttt eanns 9-59
VMCAL - MCAL 1F et 9-60
VMS.MSG - MCAL 47 ...ttt 9-61
VMS.OFF - MCAL 46......ooeeeeeeeeeeeeceeeeeeeeeee e 9-63
VMS.SPOOL - MCAL 44 ...t 9-64
VMS.TAPE - MCAL 45.....neeeceeeece e, 9-65
VOPT.AND - MCAL 32.....ceeeeeeteeceeee e 9-66
VOPT.OR - MCAL 31 .ot 9-67
WAIT = MCAL 6.ttt se e eve e 9-68
WARM.DUMP - MCALF ..., 9-70
WRITE.WAIT - MCAL 39 ...t 9-71
6973-1 Assembly Manual Xiii

Confidential and Proprietary to The Ultimate Corp.

Contents

Xiv

10

XFER.CLOCK - MCAL 3E......cceerererereerennenerenssessesneessaesenens 9-72
Instruction Set for Internal Use............cc.......... 10-1
Summary of the Instructions and Directives..................... 10-2
D et ene 10-4
et et 10-4
Qs e e s e e e 10-4
T ettt e s st see e st sr e e s ee e st an e ae s 10-4
INTT sttt et s see e e sesmeanes 10-5
BISYNC.IO ...ttt se et e sraneaens 10-6
Sequence for Data Transmission......cccccceceeeeerevnenenee. 10-9
Processing INterruptsc.ccoevevvcenceneneenrieneeeeneenean 10-10
BNREADN ...ttt ettt et r e e 10-11
READN.......ceiteeeeererterest ettt se st et es st e see e et e sasanenens 10-11
READT ...ttt ettt sttt sses e e et e an s 10-11
CRC ettt st st st e e 10-14
MaSK BYTe....c.couimieeeeeccee ettt 10-15
DICD.. ettt et et et 10-17
FRM ettt sttt s e 10-19
LT et ettt e en s 10-20
IBM.DB.TRAP.....ci ittt sttt sn e nens 10-21
LOCK ettt st et se st sesre s sn s s en e ss et eaens 10-22
MOAL .ttt e st s st e enns 10-23
MCODE........oo ittt sttt en e sasn e aeneas 10-23
MODEM ..ttt see st en s e 10-24
MP ettt ettt e 10-25
MSG ...t 10-26
MTEXT ..ottt sttt ettt s 10-26
MV ettt et sae e et a s s e enetnaea 10-32
MVER.OFF ...ttt sttt 10-33
MVER.ON ...ttt st 10-33
POPN .ttt sttt s s 10-36
POPS ..ottt ettt 10-36
PUSHX ..ottt en e snssssesens 10-39
RIEQU.....oe ettt vsas e s 10-42
REV ettt 10-45
RPLDCD ...ttt 10-46
RTNX ettt s e e e 10-47
SCHR ettt e 10-48
SETAR ..ottt st 10-49
SETDD......o ottt et ettt 10-50
SETDO.... ottt er e s 10-50
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

Contents

6973-1

SHTLY ettt ettt et e sn e st enans 10-52
SLEEPX ..ttt ettt sttt ettt st nea 10-53
SMOD et sttt s enans 10-54
THDC ettt et st b e ea s 10-55
MaSK BYLe......ceiieiici ettt eaens 10-56
VIO ettt st ettt sttt e en e e ans 10-58
VIOLD....e ettt ettt et e et s e e st seer e nan 10-58
VML ettt ettt sttt st e e sn e e e 10-61
XBCA ...ttt ettt st es e ettt se e se e anans 10-62
XBONA ...ttt st st s st e st s sranaans 10-62
Figures
1-1. Virtual Memory Systemcccvvvininincneiencieenene 1-4
12, PrOCESSES ..ottt ettt s 1-5
1-3. Process WOork Spaceccccceveeeeeveeceeeeceece e 1-7
1-4. Main Memory Layoutcccocevereniencnenenceeneceeee 1-9
1-5. Frame Fault.......ccc oo 1-12
3-1. Frame FOrmats....ccocovvvenireiencreeece e 3-4
3-2. Data Formats and Bit Numberings........cccccceeeuuennen..e. 3-9
3-3. Register Displacement Involving Linked Set of 3-13
3-4. Address Register Format.........c.ccocerereienienicinenceennenne. 3-14
3-5. Relative Addressing of Symbols.........ccccccvervrrnnnnnn.e. 3-26
3-6 Primary Accumulator Area........cccocceveeveeveeeeieeneeienns 3-30
3-7. Mask Byte Format..........ccooevevnninncieencececenenas 3-34
4-1. SICD Mask Byte Format......ccoecveveecieveceeceeeeee 4-157
6-1. Processing Codes......ccovmrnnrrerieneeneeneeeeee e 6-7
6-2. TCL-I Verb Definition Item Format..........c.ccccocvevneneee 6-24
6-3. TCL-ll Verb Definition ltem Format............c..coeen.e.e. 6-25
Tables
2-1. Symbol FileS.....cmieirrieeeecree e 2-31
2-2. Symbol Type Codes and Storage Allocation......... 2-32
2-3. Format of Symbol File temccccevevcecviirereeeee. 2-33
2-4. Expressions to Generate Object Code.................... 2-38
3-1. Resolution Table of Displacements and Addresses
(for a 512-Byte Frame).....ccccocoeeveieeeececcieeceeeeee 3-12
3-2. PSYM Symbol Type Codes.......cooevevveeveeeercrerennnne. 3-25
3-3. Registers and Pointerscccoceveeeeeeee e 3-41
4-1. Operand and Symbol TYpes.....cccccceeeeeveeeiereneenee. 4-5
4-2. Bitsin H7 used by MFD, MFE, and MFX.................. 4-114

Assembly Manual

Xv

Confidential and Proprietary to The Ultimate Corp.

Contents

Xxvi

5-1. Cursor Control ValUESueueeeeeeeeeeeineeeeeeeeeeeeeeeennes
5-2. Letter-Quality Printer Control Values

7-1. Data Conversion Instructions

10-1. CHAR.TABLE

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

....................................

7-2. Data Move InStrucCtions.........ccoceeeveeeieveseeeeeeeeeeeeeeenes

8-1. Traps (ADOMS) ..ot
8-2. Kernel Traps.....ciccreneinicecicincsicecceeeese e

...

6973-1

How to Use this Manual

6973-1

This manual is intended as a reference for programmers using the
Ultimate Assembly language. Although not a tutorial, it covers all
aspects of using Assembly language with the Ultimate system file
structure and operating system. The material is presented in a structured
format, with text and figures integrated into single-topic units.

The Ultimate operating system is written mainly in the Ultimate
assembly language. Users may also write their own programs in this
language. This manual assumes that the reader has some familiarity
with the Ultimate computer system and with programming concepts in
general. For an overview of the system hardware and software
components, see the Ultimate System Overview manual. For a
description of the various programming languages and Ultimate-
supplied system and application programs, see the appropriate user
reference manuals.

Assembly Manual Xvii
Confidential and Proprietary to The Ultimate Corp.

Preface

How the Manual is Organized s

This manual contains nine chapters, five appendices, a glossary, and an
~ index. The following describes each of these components.

Chapter 1, Introduction to the Assembler, gives an overview of
programming with Ultimate Assembly language. It covers the virtual
system architecture, kernel software, and management of virtual
memory.

Chapter 2, The Assembler, explains how the assemblers operate,
including use of the symbol files, the format and editing of instructions
in source items, assembler options and directives, and the assembly
process itself. It also summarizes programming conventions

Chapter 3, Addressing and Representing Data, describes how data can
be represented, addressed, and manipulated in an assembly language
program. It covers the topics needed to write an assembly language »
program for the Ultimate operating system. This includes the formats of
linked and unlinked frames, data formats and the use of registers to
address data. It also discusses the Ultimate system conventions for
writing assembly language programs, such use of global variables,
control blocks, and workspace buffers, re-entrancy, PCB fields, and

SCB fields.

Chapter 4, The Instruction Set and Directives, details each instruction
and assembler directive in the assembly language set in alphabetical
order.

Chapter 5, System Subroutines, lists, in alphabetical order, the system
subroutines that users may call, with one listing for each root routine.
The root entry contains its associated routine names (different suffixes).
These subroutines perform specific functions such as reading command
lines or taking care of file management tasks. The standard system
elements used as inputs and outputs are listed, and subroutine
operations are explained.

Chapter 6, System Software Interfaces, discusses the Ultimate system
flow of control, and conventions for interfacing between the system and
a user-written assembly program. When a program is ready to run, it
must be integrated to work within the system control flow. This chapter

Xxviii Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Preface

— —

6973-1

discusses the various ways a program can be executed; for example, as
AY . .

a type of system command or as a subroutine called from an appropriate

system indicator or flag.

Chapter 7, References for Programmers, gives some guidelines on
recommended methods for using the instruction set. It also contains
examples of programs and their interfaces with the system. This chapter
is intended as a transition for programmers who are new to the Ultimate
system.

Chapter 8, The Assembly Language (System) Debugger, explains the
tools available for program testing and debugging in the Assembly
(System) Debugger. The Debugger messages are also included.

Chapter 9, MCAL:s contains a list of the system monitor calls.

Chapter 10 contains details about internal instructions. This chapter will
eventually be merged into chapter 4.

Assembly Manual Xix
Confidential and Proprietary to The Ultimate Corp.

Preface

Conventions

XX

This manual presents the general syntax for each BASIC statement and
function. In presenting and explaining the syntax, the following

conventions apply:

Convention

UPPER CASE

lower case

bold

RETURN

<key>

enter

X'nn

Enter option

Assembly Manual

Description

Characters printed in upper case are required and
must appear exactly as shown.

Characters or words printed in lower case are
parameters to be supplied by the user (for
example, line number, data, etc.).

Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user's option.

Boldface type is used for section and unit
headings. It is also used in examples to indicate
user input as opposed to system displayed data.

The RETURN symbol indicates a physical carriage
return pressed at the keyboard. A RETURN is
required to complete a command line, and signals
the system to begin processing the command.

Angle brackets are used to indicate a key other
than letters or numbers; for example <ESC>.

The word enter is used to mean "type in the
required text, then press RETURN."

This form is used to define a hexadecimal
number where 'nn'’ is the hex value; for example,
X'OB', X'41', X'FF'.

This typeface is used for messages and prompts
displayed by the system.

6973-1

Confidential and Proprietary to The Ultimate Corp.

L

Overview of Assembly Language

6973-1

Uldmate assembly language is a generalized language that is not tied to
any specific CPU type. The assembly language program source code is
the same on any Ultimate system, regardless of the underlying
hardware. After the source program is written, an assembler process,
provided by Ultimate, compiles it into object code for specific hardware.
A different assembler process is needed for each type of hardware.

Assembly language programming on any computer requires greater
attention to detail than programming in higher-level languages, but it
also provides more control over the machine. Also, assembly programs
tend to be much longer in source form than equivalent programs written
in a high-level language such as BASIC, but the generated object code is
often shorter and more efficient.

The Ultimate operating system is written mainly in assembly language.

The main features of the assembly language are

+ symbolic addressing, which allows locations to be addressed by a
symbolic name as well as by an absolute number

* bit, byte, word, double-word, and triple-word operations

* memory to memory operation using relative addressing on bytes,
words, double-words, and triple-words

* bit operations permitting the setting, resetting, and branching on
condition of a specific bit

+ branch instructions which permit the comparison of two relative
memory operands and branching as a result of the comparison

+ addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers

* byte string operations for the moving of arbitrarily long byte strings
from one place to another

* byte string search instructions

+ buffered terminal Input/Output instructions, with selectable type-
ahead

Assembly Language 1-1
Confidential and Proprietary to The Ultimate Corp.

Overview

1-2

+ all data and program address references handled by virtual memory

« operations for the conversion of binary numbers to printable ASCII

characters and vice versa

+ arithmetic instructions for loading, storing, adding, subtracting,

multiplying, and dividing the extended accumulator and a memory
operand

« control instructions for branching, subroutine calls, and program

linkage

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

o

«

Overview

The Ultimate Virtual System Architecture

The concept of virtual memory used by Ultimate is that all data on disk,
including files, is addressable by any assembly program. Any process
on the system can address the entire disk in exactly the same manner.
Software conventions are used to control and limit a particular process
from using space that belongs to some other process, but there is no
hardware enforced "memory exception” type of error.

This concept of virtual memory differs from that used by other systems
where each process has its own process area and cannot address any
other area and where files are not part of the addressable area.

Figure 1-1 shows a typical layout of an Ultimate virtual memory
system.

Virtual memory is organized into blocks called frames . A frame is a
fixed block of data resident on the disk, which can be transferred
between disk and main memory. The size of a frame may vary from
one hardware implementation to another; on firmware machines it is 512
bytes.

All frames are uniquely identified by a frame number, or frame-identifier
(called the FID). Frame numbers start at one and continue to the last
available frame in the disk set. The physical limit on the frame number
is (2**24)-1, or 16,777,215. The frame numbers map directly into disk
addresses.

For additional information on the Ultimate virtual memory system, see
Chapter 3.

Caution! This ability to address any data in virtual memory, which
gives assembly programming its power, can also be
dangerous. Unlike BASIC, which tends 1o affect only the
account or terminal on which it is run, assembly programs
can affect several terminals or even destroy data
throughout the system (including most of the operating
system itself).

Assembly Language 1-3
Confidential and Proprietary to The Ultimate Corp.

Overview

1-4

ABS SPACE
Executable Code
Frames 1to 2047

INITIAL PROCESS
- WORKSPACES

Frames 2048
to SYSBASE

AVAILABLE SPACE,
INCLUDING FILE
SPACE

Frames SYSBASE
to MAXFID

Figure 1-1. Virtual Memory System

Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

Overview

User Processes in a Multi-User System

A process is an operating entity within the system that has its own
functional elements and workspace. A virtual process is typically
attached to a line on one of the asynchronous communication channels
available on the system, and is therefore often called a channel or, more
commonly in Ultimate, a port or line.

Each user interacts with the system via an assigned process line. A
peripheral device connected to the line, usually a terminal, is the user's
means for interaction with the system. All Ultimate systems can support
one or more users at a time; the maximum number of users and/or
processes that can be running at one time is a function of the system's
configuration.

Note: Inaddition to processes that are assigned to physical lines, the
print spooler and nerwork processes are always assigned to

"phantom lines".

Figure 1-2 illustrates an Ultimate system with many processes.

Spooler Process
Work Space

Warmstart Process

Process 0 Process 1 Work Space
Work Space Work Space
Line 0 Line 1 Ultinet Work
Space (2
:WHO processes)
1USERI
Figure 1-2. Processes
6973-1 Assembly Language 1-5

Confidential and Proprietary to The Ultimate Corp.

Overview

Process
Workspaces

1-6

Each process has a dedicated area of virtual memory called the process
workspace (see Figure 1-3). Approximately 256K bytes of workspace
are reserved for each process.

The first frame of each process work space is called the Primary Control
Block (PCB). The PCB is used for assembly program "housekeeping"
requirements such as registers for manipulating data, stacks for program
loops, and an accumulator for arithmetic functions. When a process
executes an assembly instruction that references an element in this
housekeeping area, the reference is always relative to the beginning of
the workspace assigned to that process. This allows several processes
to execute the same program simultaneously.

The format of a PCB is shown in Appendix B.

In addition to the workspace in virtual memory,each process has a
dedicated block of space in main memory called the Process
Identification Block (PIB). The PIB is a fixed block of main memory that
serves to define the status of a virtual process. It is used by the Kernel
for process scheduling and input/output operations associated with a
process, and contains all information necessary for process activation.

The PIB and its extensions constitute the only elements of a process that
are always in main memory. All other information associated with a
process is in virtual memory, and can remain on disk if the process is
not active.

For more information about PIBs, see Appendix C.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

AN,

\N,«

Overview

PCB
SCB
DCB
QCB
BMS,IB,OB, etc.
TS
4 linked frames

of PROC
work space

S

6 linked frames
of OS

4 unlinked
frames

32 frames
(Reserved)

PCB+1

PCB+2
PCB+3

PCB+4
PCB+5
PCB+6

PCB+10

PCB+16

PCB+22

PCB+28

PCB+32

64 primary frames

L
3 x
64K
64K bytes of bytes
o additional
, el o linked frames
5‘:*°”S‘“w°'k§paca of OS workspace
Figure 1-3. Process Work Space
1-7

6973-1 Assembly Language

Confidential and Proprietary to The Ultimate Corp.

Overview

The Kernel Software

The Kemnel is the executive program of an Ultimate system. Itis
responsible for virtual process scheduling, all I/O, monitor calls, and
management of memory tables.

The Kemnel software differs from other assembly language software in
the following respects:

* it is resident in main memory

+ itis usually written in the "native" language of the machine
(Honeywell Level 6, DEC LSI-11, Motorola 68000, etc.), unlike
virtual software which is written in Ultimate assembly language

* it can address any location in memory directly

All input and output (I/O) from an Ultimate system to the disk is under

control of the Kemel. No other process can explicitly perform any I/O

to the disk. For example, when a user process issues a write command,

a flag is set in main memory to indicate that a disk write is required.

The actual writing of data to disk happens at some time later as

determined by the state of the memory buffer and the Kernel (and is .
transparent to both user and process).

At system startup, the Kernel process is used to coldstart the system.
This involves loading all system software and starting up the processes
that make up a multi-user computer system.

When the system is running, the Kemel is called whenever the
following tasks are needed:

» process scheduling

+ frame faults

+ automatc disk writes

+ special functions that are requested by a user process via an assembly
language Monitor Call (MCAL) instruction

 terminal input/output

Figure 1-4 shows the main memory portion of an Ultimate computer

system. Note that the fixed portion contains the Kernel software and a £
few other control tables (which are discussed later in this section). The L
Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

Overview

virtual portion is simply storage space to be used as needed by user

processes.
Kernel
PIBS
Fixed Buffer
Portion Table
Terminal
I/O Buffers
Buffers Buffer
(frame-size)
Virtual é
Portion —p
divided
into
buffers
Figure 1-4. Main Memory Layout
6973-1 Assembly Language 1-9

Confidential and Proprietary to The Ultimate Corp.

Overview

Process. A process may be active or inactive . The Kernel maintains a schedule
Scheduling of available processes, their current statuses (active or inactive), and
their relative priority to be activated.

When the Kernel turns over control by selecting the virtual process that
is next in line, with no roadblocks to prevent activation, that process is
said to be active .

A process is inactive, but eligible to be activated, if it has returned
control to the Kernel due to one of the following events:

» The process has executed a Monitor Call instruction. Normally,
when the Kernel has completed the function that it was called upon to
perform, it reactivates the virtual process immediately.

» The process was terminated by some external interrupt such as a
timeslice runout.

A process is inactive and roadblocked if it has returned control to the
Kernel due to one of the following events; the process will not be
eligible to be activated untl the roadblock is resolved:

» The process has made reference to data which is not in main memory.
This causes a frame fault trap to the Kernel.

» The process has executed a READ (asynchronous channel byte)
instruction when the terminal input buffer is empty.

» The process has executed a WRITE (asynchronous channel byte)
instruction when the terminal output buffer is full.

+ The process has executed a SLEEP and the time has not elapsed.

1-10 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Overview

Frame Faults

6973-1

The Kemel handles disk scheduling, which involves bringing data from
the disk into main memory for processing. This mechanism is called a
"frame fault".

Data is transferred between disk and the main memory, frame by frame
(one frame at a time). Each frame is stored in memory in a block of the
same size; the memory block is called a "buffer".

The FID of each frame that has been brought into memory from the disk
is kept in the buffer table. Each time a frame is referenced, the system
checks for its FID in the buffer table; if the FID is not there, the frame
must be retrieved from disk (a "frame fault” occurs). After the frame is
brought into memory, its FID is put into the buffer table.

Before the system brings the frame into memory, it checks to see if the
buffer table is full. If it is full, the least recently used frame is written to
disk if necessary, its FID removed from the table, and the new FID is
added.

Figure 1-5 illustrates the retrieval of frames. The first figure shows the
case of a frame already in memory. The second figure shows the case
of a frame fault.

Assembly Language 1-11
Confidential and Proprietary to The Ultimate Corp.

Overview

1-12

Request for

Main Memory

Frame 1000

Request for
Frame 1212

:122? 20000 2122

Buffer Table

FID in buffer table - no frame fault

Main Memory Main Memory
1000 2000 212 |_ Buffer Table 1000 2000 2122
4444 4444 12]2

E FID
1000 1000 1212
=3 |
Frame
_l Image
p sk
1212

FID not in buffer table - frame fault

Figure 1-5.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

Frame Fault

6973-1

N

Overview

Automatic
Disk Writes

Calls (MCALs)
from
Processes

Main Memory
Management

6973-1

Periodically, such as whenever the system is idle, the Kernel attempts to
"flush" memory by writing buffers to disk which have their write-
required flags set. This ensures that updated data is safely on disk in
case of a power failure, which could destroy the contents of main
memory.

If uninterrupted, the Kernel writes one or more write-required buffers at
a time to disk and resets the write-required flags, until memory is
flushed. Various types of interrupts, however, such as frame faults
from virtual processes, can suspend the automatic-write mechanism.
During this time, the disk is kept busy reading in requested frames, and
writing other frames out as needed on a least-recently-used basis. When
the system again becomes idle, the automatic-write mechanism is
restarted.

The precise criteria for determining when the system is idle is subject to
variation according to configuration and operating system release.

User processes communicate with the Kernel via assembly language
instructions called Monitor Calls (MCALs). Each Ultimate
implementation has its own set of MCALs that allow assembly language
programmers to call the Kernel whenever any I/O functions are needed.

All I/O operations initiated at the virtual level, except those to or from

the asynchronous communication channel, are accomplished through the
MCALs.

The format and meaning of these Monitor calls depend on the particular
Ultimate implementation being used; no details are given here.
However, standard system subroutines are provided in Section 6 for
programmers to use with common devices such as tape drives and line
printers (e.g., TPREAD, SETLPTR, WRTLIN, etc.).

In main memory, several kilobytes are reserved for use by the Kernel
for its resident software, tables, etc. Other areas of memory contain the
variable-size memory mapping table, the extent of which is dependent
on the size of main memory. All remaining main memory is available as
buffers for disk frames.

Assembly Language : 1-13
Confidential and Proprietary to The Ultimate Corp.

Overview

In order to manage the main memory, the Kernel uses several tables that
contain information regarding the buffers. These tables may be
accessed by memory management firmware as well as by the Kernel
software. They are not accessible to the virtual processes.

The protection afforded to the tables is set up by the initial condition of
the tables themselves. Since the memory map indicates the relationship
between a disk address and a main memory location, the protected areas
of memory do not have corresponding disk addresses, and therefore
cannot be addressed by a virtual process.

1-14 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Ultimate operating system is configured on a wide variety of
computers. On some computers, such as the Honeywell Bull DPS-6 and
various Digital Equipment Corporation (DEC) models, a firmware
implementation is used. On others, such as the IBM 4300 or 9370, a
software implementation is used. The assembly language program
source code is the same for all implementations.

A firmware implementation is one in which the virtual machine language
is directly executed by underlying firmware. In addition to instruction
decoding, the firmware also aids in virtual memory management.

A software implementation is one in which the virtual machine language
is translated to the native machine language of the computer by the
assembly process.

The assembly language program is assembled at the TCL level using the
process referred to as the assembler. The assembler generates the
machine-specific object code that is needed to execute the program on a
given implementation. There is one assembler for firmware
implementations and a different assembler for each software
implementation.

At this time, there is no assembler for Ultimate PLUS implementations.

Assembly Language 2-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Components of an Assembly Program

Assembly language programs are stored as items in disk files. A
program is made up of assembly language instructions, as well as
directives that are interpreted and used by the assembler.

An assembly instruction tells the system to perform a specific program
operation, for example, move an element. An assembly directive tells
the assembler to perform a specific function about the way the program
is assembled (for example,.define and reserve space for symbols).

An instruction or directive must contain an operation code mnemonic
(opcode), and may also contain a label, operands, and comments. Only
one instruction or directive can appear on a program line. The general
format is:

{label} opcode {operand{,operand...} {comments}}

Only the opcode is required; operands may be required, depending on
the instruction. Labels and comment fields are optional. One or more
blanks are needed to separate label from opcode, opcode from first
operand, and last operand from comments.

If a program line has a label, the label must start at the first character
position in the line. If a line does not have a label, there must be at least
one blank space before the opcode. A label may be composed of either
alphabetic or numeric characters.

The comment field can be used to explain or document the program
operation. It allows the programmer to keep a running commentary on
the meaning or purpose of each line of code.

In a program item, extra blank spaces surrounding the opcode or
operands in a line are ignored; however, all-blank lines or null lines are
illegal.

Assembly Language ' 6973-1
Confidential and Proprietary to The Ultimate Corp.

\\‘{\’W,/»'

The Assembler

(, Displaying the The MLIST command and the line editor AS command can be used to
Program produce a formatted listing of the program. Figure 2-1 shows a sample
excerpt from an assembly program's source code, formatted using
MLIST. (For more information on MLIST, see the section, Assembler
System Commands.)

!START EQU *
BSL LOGHDR

BBZ RMBIT, RTN rtn if error
MCI SM,R15 mark header end in CS
BSL INITTAPE
BZ TCTLBSRF, RTN tape problem
(" BNZ REJCTR, RTN tape problem

INC INHIBITH

MOV OSBEG, 0S

INC 0S,1+ID.PWS.SZ and stay here until wrapup
FAR 0S,4

MOV XPFID,D8 save until wrapup
MOV OSFID,RECORD

INC RECORD, -1+ID.WS.FRAMES [abt0387]
MOV RECORD, XPFID link first to last
BSL RDLINK

MOV OSFID,XNFID link last to first
MOV SHED, MAP

LOAD PRECL

STORE BLOCKSIZE

LOAD PROCESS# get my PIB#

STORE CAMP#

MOV 0S, DECKBEG

Figure 2-1. Sample Assembly Program
(Source Code Lines

6973-1 Assembly Language 2-3
Confidential and Proprietary to The Ultimate Corp.

The Assembler

A

Creating an Assembly Language Program «k

An assembly language program, also called a mode, is created using
either the line editor or the screen editor. However, only the line editor
provides assembly formatting.

The line editor can be set to display the lines of code in assembly listing
format, using the following commands:

AS assembly listing format on/off switch; default OFF.
M macro expansion display on/off switch; default OFF.
S suppress object code on/off switch; default OFF.

In addition, the following command can be used to locate a line of object
code in a previously assembled mode:

Q/loc#/ locates the line that contains object code location 'loc#', which
is specified as a hexadecimal byte offset in the current mode
(for example: 005D). Differs from L/string/ in that only object
code is searched, and the match is on a location, not a string
value.

For more information on the editors, see the Guide to the Ultimate
Editors.

2-4 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Assembly Structures

Mode
Structure

6973-1

An assembler mode item has a specific overall structure and each
program line within the mode has a specific structure. The assembler
program checks for this structure. In addition, the line editor uses this
structure to display assembly source code lines in a standard assembly
listing format, including object code, if any is present.

The assembler expects an assembly source mode to begin with comment
lines. The comments may use as many lines as needed. Following the
initial comments, the assembler looks for the beginning of the Entry
Point Branch Table, followed by the directives that are used to define
symbols and registers in the program. This section of the program is
then followed by the main program instruction routines. This structure
is similar to the following:

001 FRAME directive.

002 * Comment line. By convention, program type/purpose.
003 * Comment line. assembler places current system date
004 * Comment line. By convention, these lines contain

005 * Comment line. revision level, author, and other

006 * Comment line. explanatory comments.

Onn entry point 1

nnn final entry point
xxx symbol definitions

yyy main program

zzz END
Each of these elements is discussed on the following pages.

The end of the program can be indicated by an END directive, but this is
not actually required by the assembler.

Assembly Language 2-5
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-6

FRAME Directive

The FRAME directive specifies the frame in which this program mode is
to be loaded. FRAME also sets the assembler's location counter to 1 or

2, depending on the implementation. You may use an ORG directive to

reset the location to ORG O if you wish to use the first 1 or 2 bytes.

The frame number must be within the limits for ABS frames. For release
200, the limits are frame O to frame 2047. In general, user-written code
should be loaded into frames 400-599; Ultimate reserves these frames
for user modes. It is possible that other user modes and applications
already have used some of these frames, so be sure to check that the
frame is free before using it.

Note: The USER-MODES file in the SYSPROG account contains user
modes that are loaded by the COLD-START PROC. This is a
good starting point in detecting used program frames.

Comment Lines

A comment line is defined by an asterisk (*) in column 1 or by the
CMNT directive. The * comment line has no tabbing performed; it is one
long line of text comments. The CMNT directive must be in column 2 or
beyond; everything else on that line is considered to be comments. A
CMNT directive may be preceded by a label.

Note: The assembler puts the system date in line 3 only if it is a
comment line that begins with an *.

Entry Point Branch Table

This is a sequence of up to 16 Entry Point (EP) instructions that defines
the entry points (numbered 0-15) into the mode. The entry points may
be given sequential labels such as 0, 1, 2, etc., or alpha labels. (For
information on using the entry points to execute the program, see
Chapter 6.)

The entry points must be the first instructions that generate object code.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

By setting the entry points up as a series of branches, you can later
change the program and reassemble it without affecting the entry points.

Note: Although no entry points are required to be defined after the
last used entry point, it is usually safer to put NEP instructions
in place of all unused entry points.

Mode-ids - All assembly language programs to be executed must be identified by a
External mode-id in order for the system to access the correct frame (FID) and
Program entry point in memory where the program is located.

References

A mode-id is a 16-bit field (that is, it fits in a tally), and is composed of
one hex digit for the entry point and three hex digits for the frame
number (FID). Together these make up an address to which execution
control can be transferred in a program.

Every program needs to have a defined mode-id; however, the mode-id
is actually stored in different places, depending on the system interface
being used to initiate the program:

« If the program is to be executed as a verb (system command) from
TCL, the mode-id is stored (in ASCII character format) in the verb
definition item in the Master Dictionary (MD) of each account that
runs the program.

+ If the program is to be executed via the CONV (Conversion) interface,
the mode-id 1s given as part of the 'Unxxx' conversion code in the
BASIC ICONV or OCONYV function that calls it. If the program is
associated with Recall attributes, the mode-id is given in the 'Unxxx'
(User Exit) Correlative or Conversion code (line 7 or 8) in a
dictionary attribute definition item.

+ If the program is to be executed from PROC, the mode-id is given as
part of the 'Unxxx' or 'Pnxxx' PROC command that calls it.

In all 'Unxxx' specifications, the 'nxxx' is four hexadecimal digits of
mode-id, which immediately follow the 'U' conversion code letter.
‘Unxxx' means entry point 'n' (0-F) of frame 'xxx' (1-FFF, which
is 1-4095 in decimal). For more information on BASIC, Recall, and
PROC, please see the appropriate reference manual.

Due to the mode-id format, assembly programs must be loaded into
frames 1-4095, with up to 16 entry points. The actual number of
frames may be less, depending on the operating system release. Frames

6973-1 Assembly Language 2-7
Confidential and Proprietary to The Ultimate Corp.

The Assembler

above 1023, especially, are typically used for purposes other than
assembly programming.

In assembly language programming, when a program needs to branch to
an entry point in another frame, a symbol should be predefined as a
mode-id that points to the desired entry point in the desired frame. If a
symbol already exists in the PSYM file which defines this mode-id, then
that symbol may be used. Otherwise, both the entry point and FID of
the mode-id should be explicitly specified in the calling program.

A mode-id may be defined in two ways:

» DEFM directive (defines a symbol; no object code)

¢ MTLY or MTLYU directive (defines a symbol and reserves storage,
word-aligned only if MTLY)

The DEFM method may be used to simply define a synonym for a
location already allocated storage (or that will be allocated storage before
the program calls it). For example, the following defines the symbol
EXT.SUB as a mode-id whose value is entry point 4 in frame 500:

EXT.SUB DEFM 4,500

EXT.SUB may then be used as an operand in instructions such as the
following:

BSL EXT.SUB Call external subroutine
ENT EXT.SUB Branch with no return

The MTLY directive should be used when storage needs to be reserved.
MTLY and MTLYU are less frequently used, except when constructing
tables of mode-ids. For example:

EXT.SUB MTLY 4,500

LOAD EXT.SUB Get mode-id in accumulator
BSLI * Call subroutine referenced
CMNT * by accumulator

Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

The Assembler

Program Line
Structure

6973-1

A source line may contain up to five fields of information:
* label field

« source code operation field (opcode mnemonic)

* source code operand field

« comment field

+ object code generated by assembler

Label field

The optional label, if present, must begin in column 1 of an input line
and must begin with an alphanumeric character. Labels may be up to 50
characters in length, although only 10 columns are reserved for the
format on an assembly listing.

Labels should not contain an asterisk (*), a slash (/), or a plus sign (+).
A label is separated from the opcode mnemonic by a space.

Labels are locally defined symbols used to address locations in the
program, or to define other symbol types. A label must be used as the
target of all branch instructions (conditional or unconditional).
Examples are:

LOOP

! STARTIT
TOTAL-X
TEST123

Opcode field

The opcode is separated from the label and the operands by at least one
space. If there is no label, at least one space must precede the opcode.

Opcodes may be primitive or macro instructions, or directives. They
consist of the opcode mnemonic and usually one or more operands.

Examples of mnemonics are:

MOV

Assembly Language 2-9
Confidential and Proprietary to The Ultimate Corp.

The Assembler

7
INC s
BSL

The valid opcodes are described in Chapter 4.

Operand field

The operands are separated from the opcode by at least one space.
Multiple operands are separated by commas, and no spaces are allowed
within the field (except in quoted character literals). Operands may be

literals, symbols, or the current location counter, using the forms shown
below:

O

2-10 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Form Description

C'xxxx' Text string; example:

C'NOT AGAIN'
If a single quote (') is needed as a literal, two
adjacent single quotes must be used; example:
for JOE'S, use the operand

C'JOE''S"'
For just a single quote, use

crine

n Decimal integer; examples: 120 or -42

X'XXXX' Hexadecimal constant; example: x'FE' or
X'8100FF"'

If an odd number of hex characters is used, a
leading zero is assumed to fill the leftmost
nibble

symbol Symbol name predefined in the PSYM file or
defined in the label field of the source program

Current byte location in frame; uses the
assembler program location counter to return
the first byte of the current location or address
being assembled

*n Current location in units of 'n' bits; examples:
*]1 =loc. in bits; *8 = *; *16 = loc. in words
This location counter advances as instructions
are assembled; the counter can be altered only
via an Origin (ORG) directive.

literals +/- loc Literals or * locations combined with a plus (+)
or minus (-). Symbols cannot be used here;
examples:

*+2

*-1

-1+ID.ABSFRM.SIZE

6973-1 Assembly Language 2-11
Confidential and Proprietary to The Ultimate Corp.

The Assembler

—

Displaying
Assembly
Programs in
the Editor

2-12

Comments field

The optional comments field follows the last operand, separated by at
least one space, and may be of any length.

Object Code field

The first four columns of the object code field contain the byte offset
(displacement) in the frame, followed by a space, followed by the actual
object code. The object code is separated from the source code by a
subvalue mark, placed there by the assembler.

The line editor has three commands that can be used to display assembly
language programs:

AS displays source code in pre-sized fields

M displays macro expansions

S suppresses object code (if any) in object field

Source code lines may be displayed on the screen with all fields shown
when the Editor is used with the assembly listing switches AS and M
turned on and S turned off.

If both the AS switch and the S switch are off, each line is displayed as
entered. Macro expansions and error messages, if any, follow the
source code and are separated from it by value marks. Object code, if
any, follows the source code and any macro expansion code; it is
separated by sub-value marks. For example,

013 SAVE MCC R4,R5 MOVE THE TERMINATOR\0056 645D
014 MCC R4,R16 SAVE IT ALSO]*ERR: REF:UDEF, REF:UDEF
015 B OK] B: OK\0058 1E45

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

6973-1

When AS is on, the assembly listing format is as follows:

Col Field description
1-15 object code
16 blank

17-25 label field; contains one of the following:
label
* (comment line)
(null) neither label nor comment

26 blank

27-31 opcode field
32 blank

33-49 operand field
50 blank

51-75 comment field

The following example shows a program in the editor with AS on, but
with S and M off (the editor item line numbers are shown to the left of
the program line itself).

column: 1 2 3 4 5 .
1234567890123456789012345678901234567890123456789012...

001 0001 7FF001D7 FRAME 471

002 *SAVE/RESTORE

003 *24 APR 1990

013 0000 ORG 0

014 0000 FE CHR AM

015 AM EQU R1

016 *

017 0001 1E27 0 EP ' LOG

018 0003 1E38 1 EP ! CMDLOOP
073 0028 'LOG EQU *

074 0028 A00200 ZERO PRMPCH
085 0049 1172B2 B CMD200
243 01CC 0309 END

Assembly Language 2-13

Confidential and Proprietary to The Ultimate Corp.

The Assembler

If S is on (suppress object code), lines 13-18 would list as:

1 2 3 4 5 .
1234567890123456789012345678901234567890123456789012...
013 ORG 0
014 CHR AM
015 aM EQU R1
016 *

017 0 EP 'LOG
018 1 EP !'CMDLOOP

If M is also on (display macro expansions), line 85 would list as:

085 B CMD200
+B: CMD200
2-14 Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Assembler Program

6973-1

The assembler translates source code statements into object code. The
source mode may be stored as an item in any file. In firmware
implementions, the object code is assembled in place; that is, at the
conclusion of the assembly process, the item contains both the original
source code and the generated object code. In software implementations
the destination of the object code must be specified; it can be a separate
file or it can be in the current file.

The assembled object code must be less than or equal to one ABS frame
in size. On all machines the operative frame size is stored in the PSYM
file as the symbol ID.ABSFRM.SIZE; on firmware machines, this is 512

bytes.

Each implementation has its own version of the assembler and is
invoked as follows:

firmware systems use the AS verb
$/370 systems use the OPT verb.

1400 systems use the ASM verb

When a program is assembled, the generated object code is stored along
with the source statement and system delimiters are used to separate the
components on each line. On firmware machines, the object code is
stored back into the source file. On 1400 and S/370 systems, it is stored
a separate file. On a firmware system, while you are editing an already
assembled program, you can ignore any data beyond the source
statement, because the assembler examines only the source data on each
line as it performs the assembly; any existing object code and other
characters are discarded.

Object code and associated addresses are stored as hexadecimal digits in
ASCI character format. These are converted to binary values when the
program is loaded.

Assembly Language 2-15
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Listing
Assembled
Programs

2-16

The following system commands can be used to generate listings using
an assembled program item:

MLIST generates a formatted listing

MLOAD loads the program for execution
MVERIFY verifies the loaded code
CROSS-INDEX generates concordance listings
X-REF generates a cross reference by symbol name

XREF enhanced version of X-REF

These system commands are described in in this chapter in the section,
Assembly Program Listings.

Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

= ‘\”%«,

A

The Assembler

Executing Assembled Programs

6973-1

An assembled program is not automatically ready to execute. In order to
run an assembled program, you must create a verb definition item in the
account's Master Dictionary (MD), or call the program from BASIC,
PROC, Recall, or another assembly language program.

The following interfaces can be used between user-written programs
and the Ultimate operating system. Each interface is designed for a
particular function or type of program.

Interface

CONV

PROC

RECALL

TCL-1
TCL-II

WRAPUP

XMODE

_———

Function

For subroutine calls from BASIC or Recall. Used
when a conversion needs to be performed.

For routines called from PROC.

For verbs that use Recall's data base reporting
capabilities.

For verbs that use the TCL-I form (no filename)
For verbs that use TCL-II form (filename).

For exiting verbs, or anywhere if a program may
exit on an error condition.

For handling Forward Link Zero register
conditions (that is, to add frames to a linked set
during program operation).

When an assembled program is ready for production, the appropriate
interface must be selected and programmed. Most user-written |
programs use the TCL-I, TCL-II, or the CONV interfaces. The TCL
interfaces involve defining the program as a verb in the MD. Once the
verb definition is stored, the program can be executed by entering the
verb name at the TCLor specifying the name anywhere a system

command is valid.

All interfaces are described in Chapter 6, System Software Interfaces.

Assembly Language 2-17
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The AS Command - Firmware Assemblies

Syntax

Description

2-18

The AS command is used to assemble programs for a firmware machine.

AS filename {itemlist} {(options)}
filename name of file that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

(options the following options are available:

E when used in conjunction with the L option, lists only
errors

L generates a listing equivalent to the MLIST command during
assembly

N inhibits waiting at end-of-page during listing to terminal;

useful in conjunction with Z option
routes output to print spooler

Q specifies that messages are not to be displayed nor the editor
entered if assembly errors are found; normally, this is used
when multiple items are being assembled

z specifies that, if assembly errors are found, the editor is not
to be entered; normally, this is used when multiple items are
being assembled

The AS command requires three files to be defined on the user's
account:

OSYM opcode symbol file; contains all the opcodes and valid symbol
types for each opcode

PSYM permanent symbol file; contains the global symbols available to
all assembly language programs

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled

OSYM and PSYM are typically Q-pointers to the Ultimate-supplied OSYM
and PSYM files, but TSYM must be created for each account. For more
information on the symbol files, see the section, Symbol Files.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

L

The Assembler

6973-1

Only one user at a time in an account can use the AS command.

The AS command is table driven and performs two passes over the
source code. During the first pass, all instructions that have undefined
and forward references are flagged as requiring re-assembly. Local
labels are stored in the temporary symbol file (TSYM) during this first
pass, along with the literal definitions that need to be created.

As the assembler processes items, it outputs an asterisk (*) after every
ten source statements are assembled. At the end of the first pass, the
literals are generated and added to the end of the current object code.

On pass two, a new line is started and an asterisk is printed for each ten
statements reassembled.

If there are any assembly errors, the assembler enters the editor so that
the program may be conveniently corrected for reassembly (unless
suppressed by the Q or Z option).

If there are no errors, the following message is displayed (unless the Q
or Z option is used):

[236] No errors

The AS command is table driven and performs two source code passes:

1. In the first pass, all instructions haveing undefined and forward
references are flagged as requiring re-assembly. Local labels are
stored in the temporary symbol file (TSYM), along with the literal
definitions that need to be created. At the end of the first pass, the
literals are generated and added to the end of the current object
code. As the Assembler processes items, it outputs an asterisk (*)
after every 10 source statements assembled.

2. Inpasstwo, a new line is started and an asterisk is printed for each
10 statements reassembled.

Assembly errors cause the Editor to be entered for program correcttion

for reassembly (unless suppressed by the Q or Z option). If no errors,

the following message displays (unless the Q or Z option is used):

[236] No errors

Assembly Language 2-19
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Assembler error messages are stored as part of the source line in error.
Undefined symbols are stored as a message list in the last line of
source. Assembler error messages are explained below.

Message
OPCD?
OPRND REQD

ILGL OPCD: xxxx

LBL REQD

MUL-DEF

OPRND DEF

OPRND RNGE

REF: UDEF

TRUNC

UNDEEF: xxx {xxx..}

Description
opcode mnemonic is missing
instruction is missing at least one operand

either the opcode mnemonic, or operands
specified are not valid for this opcode

an Equate (EQU) directive does not contain a
symbol in the label field, so there is nothing to
equate the value to

label is defined more than once

either the operand is defined improperly or is
not valid for this instruction

operand’s numeric value is not within the valid
range for this instruction

instruction references an undefined symbol

an operand is out of range. Typically this error
occurs when a program exceeds the size of a
frame and an instruction tries to reference an
Assembler-generated literal beyond the last
location of an ABS frame

list of undefined symbols found

:AS SM PROG1

% % %k %k %k %k %k Kk k Kk k %k Kk k k %k k %k

* % %

[236] No errors

(pass 1 output from assembler)
(pass 2 output from assembler)

2-20 Assembly Language

6973-1

Confidential and Proprietary to The Ultimate Corp.

N

The Assembler

(| The OPT Command - S/370 Assemblies

Syntax

Description

6973-1

The OPT command is used to be assemble a program for S/370
implementations of the Ultimate Operating System. The command itself
is a cataloged BASIC program and is included in the SYSPROG account.
OPT filename {itemlist} {(L}

filename name of file that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

(L generates an instruction that allows a BREAK at each label.

Note: Once aprogram has been debugged, it should be assembled
without the L option in order to run more efficiently.

OPT requires the following symbol files to be defined on the account
doing the assembly:

I1.PSYM permanent symbol file used in pass 1 of the assembly
11.0SYM opcode symbol file used in pass 1 of the assembly
IPSYM permanent symbol file used in pass 2 of the assembly
I0SYM opcode symbol file used in pass 2 of the assembly

ISM file used by the assembler to store assembled object code;
must be created by user

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled. This
file must be created with a data section modulo of 31.

The 11.PSYM, 11.0SYM, IPSYM and I0SYM files are delivered on the
SYSPROG account. To assemble from another account, Q-pointers
should be set to the file in the SYSPROG account.

The OPT command uses the following two verbs, which must be
defined on the account doing the assembly:

AS.IBM
XP

Assembly Language 2-21
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-22

The OPT version of the assembler makes two passes. Pass 1 converts
the Ultimate source code to S/370 source code. Pass 2 assembles the
S$/370 source code into S/370 object code.

When the assembly is complete, the following message is displayed:
[206] 'itemname' assembled

The object code is stored in the ISM file under the item name used in the

assembly. If there were errors or undefined references, these are also

stored in the item in the ISM file.

Each assembled item should be edited to determine if errors exist. The
following shows an assembled item with errors:

*ERR MOV BMS, 15
*ERR: ILGL OPCD: MOV:RN

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

B

#

N

The Assembler

The ASM Command - 1400 Assemblies

Syntax

6973-1

ASM is used to assemble a program for 1400 implementations of the
Ultimate Operating System. The command itself is a cataloged BASIC

program.

ASM filename {item-ist} {(options)}

filename name of file that contains items to be assembled

itemlist

(options

C

names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

the following options are available:

retains comment lines from the source code instead of
suppressing them from the assembled program. By default,
ASM deletes comment lines in the source, and converts
source code into comment lines; the assembled code is
indented beneath the source code that generated it. With the
C option, a comment line is converted as a comment with a
greater-than sign (that is, "*> comment-text").

when used in conjunction with the L option, lists only
erTors

generates a listing equivalent to the MLIST command during
assembly.

inhibits waiting at end-of-page during listing to terminal;
useful in conjunction with Z option.

routes output to print spooler.

specifies that messages are not to be displayed nor the editor
entered if assembly errors are found; normally, this is used
when multiple items are being assembled

inserts a V.TRAP instruction into the native code before each
source instruction instead of just at labels. By default, ASM
inserts a V.TRAP only at a label, to enable single-step
debugging with the debugger E1 command. With the Vv
option, the single-step is from the source's instruction to
instruction instead of label to label.

Assembly Language 2-23
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Description

2-24

Note: Once aprogram has been debugged, it should be assembled
without the V option in order to run efficiently.

y4 specifies that the editor is not to be entered if assembly
errors are found; normally, this is used when multiple items
are being assembled

ASM requires the following symbol files to be defined on the user's
account:

M1.0SYM opcode symbol file; used by pass 1 of the assembler
program to convert Ultimate assembler code to 1400
assembler code

M1PSYM permanent symbol file; contains all predefined symbols
available to the assembly language programmer

M2.0SYM opcode symbol file; used by pass 3 of the assembler
program to convert 1400 assembler code to object code

M2 PSYM permanent symbol file; used by the assembler program

OPT.ERRORS optimizer errors; used by optimizer to store errors
encountered during pass 2

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled

The symbol files are described in the section, Symbol Files.

The OPT command uses the following two verbs, which must be
defined on the account doing the assembly:

ASM1
ASM2

When ASM is invoked, it first prompts for a destination file name:

To: {(filename} {item-list}
The response to the To: prompt may be a filename or item-IDs or both;
pressing RETURN with no response cancels the ASM command. All

destination file/item name forms that are valid for a COPY command may
be used. For example:

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Optimizer

6973-1

ASM BP *
To: (BD

assembles all items in the BP source file to the BD file using the same
item-IDs as in BP. Another example:

ASM SSM T
To:T.OBJ

assembles one item in SSM to the same file as item 'T.OBJ'.

After a valid destination file has been specified, the ASM command starts
the assembly.

ASM uses three passes:

1. Executes the ASM1 verb, which assembles virtual code into native
machine source code, using M1.0OSYM and M1.PSYM.

2. Executes a BASIC program in the SYSPROG-PL file called OPT. The

symbol files are used to construct the destination file items. Any
errors encountered are logged in the OPT.ERRORS file, described

below. The optimized items are output to the specified destination
file.

3. Executes the ASM2 verb, which assembles the object code, using

the output of the optimizer and the M2.PSYM and M2.0SYM symbol
files. The items are updated in the destination file.

This sequence is looped through for all items in the list.

Object code for an assembled item must fit into one ABS frame. If the
object code generated by the optimizer in pass 2 does not fit in an ABS
frame in the first try, the optimizer reassembles the code using a
compression algorithm. Level 0 is "no compression"; level 9 is
"maximum compression”. The higher the compression level, the
smaller but less efficient the resultant code. The optimizer tries up to ten
levels of compression; if it reaches level 10 without fitting the object
code into a frame, it gives up and goes on to pass 3.

Assembly Language 2-25
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-26

Each level of compression specifies which instructions are to be
compressed by the optimizer. An instruction is compressed by moving
most of its code to the Kernel, leaving only code to set up a call to the
Kernel in the assembled object code.

The level of compression for a program is stored in attribute 2.of the
destination item in the following format:

002 * compression level = n

n number of iterations used by the Optimizer to get the object code to
fit into an ABS frame

If the destination item already exists, the value in attribute 2 is used as
the compression level for the program being assembled. The Optimizer
does not reduce the compression level value previously stored. This
means that even if code has been removed to make the program smaller,
the optimizer starts the assembly at the previous level of compression.
To overcome this restriction, you should either delete the old destination
item, or edit the old item and set the compression level back to O before
reassembling the program.

The OPT.ERRORS File

This file contains an item for each source file item that has been
assembled. OPT.ERRORS stores the time and date of the assembly in the
item, as well as any errors that the optimizer found while processing the
source file item.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

s

The Assembler

Assembler Error Messages

Assembly error messages are stored as part of the source line in error.
If undefined symbols exist, a list of these symbols is stored as a
message in the last line of source. If any assembly errors are found, the
Editor is called as a convenient way to edit the source item, unless the Q
or Z option was specified with the assembler command.

Message Description

OPCD? The opcode mnemonic is missing.

OPRND REQD The instruction is missing at least one
operand.

[LGL OPCD: XXXX Either the opcode mnemonic is not valid, or
the operands specified are not valid for this
opcode.

LBL REQD An Equate (EQU) directive does not contain a

symbol in the label field, so there is nothing
to equate the value to.

MUL-DEF The label is defined more than once.

OPRND DEF Either the operand is defined improperly or
is of an invalid type for this instruction.

OPRND RNGE The operand's numeric value is not within
the valid range for this instruction.

REF: UDEF The instruction references an undefined
symbol.
TRUNC An operand is out of range; typically this

occurs when a program exceeds the size of a
frame and an instruction tries to reference an
assembler-generated literal beyond the last
location of an abs frame.

UNDEF: XXX List of undefined symbols found.
{,xxx..}

6973-1 Assembly Language 2-27
Confidential and Proprietary to The Ultimate Corp.

The Assembler

I ———— S —— S— eea——

AN
OSYM Errors The following error messages are issued when the assembler detects d
errors in the OSYM file definitions:
FRMT. A-FIELD
FRMT. B-FIELD
OPCD TYP
MACRO DEF
MOD WORDSIZE > 32 BITS
EXIT DEFN
To correct the OSYM file, perform a selective restore (SEL-RESTORE
command) of the OSYM file using the latest SYSGEN tape.
A
%\,,w P

2-28 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Generating Object Code

Directives and
Object Code

Instructions
and Object
Code

6973-1

The output of the assembly procedure is object code that the Ultimate
machine can directly execute. The actual object code on Ultimate
software implementations depends on the native code of the system;
however, all firmware machines generate the same object code.

The assembly procedure performs two distinct tasks on source code,
determined by the type of operation:

+ directives are processed to set up the program structure and
generate object code where needed

* instructions are assembled into object code

Directives do not generate executable code. They may, however,
generate object code in the sense that symbol definitions may reserve
space in the program frame and may also assign a value which is in
"object” format.

The following directives do generate object in that sense:

ADDR generates a 6-byte storage register”
ALIGN may generate 1 byte (0)

DTLY generates a 4-byte double tally*
FTLY generates a 6-byte full tally*

HTLY generates a 1-byte half tally

MTLY generates a 2-byte tally with even-byte alignment*
MTLYU generates a 2-byte tally without alignment

SR generates a 6-byte storage register*
TEXT generates the number of bytes in specified string
TLY generates a 2-byte tally*

Instructions normally generate executable code. Each source code
instruction is assembled into 1-6 bytes of object code that can be directly
executed by the operating system.

* may first generate a byte of 0 to align the operand on a word (tally) boundary

Assembly Language 2-29
Confidential and Proprietary to The Ultimate Cormp.

The Assembler

Generating
Object Code

2-30

The first byte of the object code for all instructions is the primary
opcode (1 byte). In addition, depending on whatever is necessary to
access the specified data and perform the specified operation, the object
code may have up to 5 more bytes for secondary opcodes, address
registers, byte addresses of relative operands, a code for the type of
symbol used as an operand, immediate data, and/or the offset of a local
label.

The primary opcode is the only byte that is generated for all instructions.
The other parameters may or may not be applicable to a particular
instruction. Chapter 4 discusses each instruction in alphabetical order.

In order to generate directive object where needed, the assembler
interprets the directive and converts the value to hexadecimal for storage
in the frame. The object is stored at the current program counter
location. If a symbol is locally defined (that is, it is not in the PSYM
file), it is added to the TSYM file during the assembly procedure.

To generate instruction object, the assembler searches the OSYM file for
the particular instruction form and uses the primitive layout(s) to convert
the source to object code in the frame. The object is stored at the current
program counter location in the frame.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp

The Assembler

S— — — S —— ——— ——————————————— S— ——

Symbol Files

The Ultimate system assemblers use several symbol files in assembling
a source program. The file types and names for each of the
implementations are given in Table 2-1.

Each file performs a different function during program assembly.

The permanent and opcode symbol files must be defined in the master
dictionary (MD) of the user account. These may be actual files in the
account, but usually they are Q-pointers to the files supplied in the
SYSPROG account. TSYM, however, must be an actual file defined in
the MD of any user account that uses the assembler.

Table 2-1. Symbol Files

File Type Firmware | 1400 S/370
P e —
permanent symbols | PSYM M1.PSYM I1.PSYM

M2.PSYM IPSYM

temporary symbols | TSYM TSYM TSYM

opcode symbols OSYM M1.0SYM 11.0SYM
M2.0SYM IOSYM

6973-1 Assembly Language 2-31
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The PSYM
File Layout

2-32

The permanent symbol files contain the set of permanent or global ~
symbols available to all assembly programs. While symbols in these
files may be redefined locally in a program, it is best to treat them all as
reserved.

The item-ID of a permanent symbol file entry is the symbol name.
Attribute 1 of each symbol item has a symbol type code, which the
assembler uses to determine the amount of space to assign for the
symbol. Table 2-2 lists the symbol type codes and storage allocation.
The specific format of each symbol type is shown in the Table 2-3.
Values are in hexadecimal.

Table 2-2. Symbol Type Codes and
Storage Allocation

Symbol Type Name Storage Allocation

B bit 1 bit

C character 1 byte
D double tally 4 bytes
F triple tally 6 bytes
H half tally 1 byte
L label (none)
M mode entry point (none)
N literal number variable
R address register (none)
S storage register 6 bytes
T tally 2 bytes
X external address 8 bytes

register

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

6973-1

Table 2-3. Format of Symbol File Item

Attribute Description
item-ID | symbol name | symbol name | symbol name | symbol name
001 M N R all other
(symbol) symbols

002 entry point | literal value | register offset
number number

003 frame not used not used base register
number

Assembly Language

Confidential and Proprietary to The Ultimate Corp.

2-33

The Assembler

The TSYM
File Layout

2-34

The TSYM file is used by the assembler to hold the set of symbols in the
program currently being assembled. It is always cleared by the
assembler before the start of each assembly.

As the assembler finds labels and symbols in the source program, it
stores the label in the TSYM file for future use. If a reference is made to
an undefined symbol, it is also stored in the TSYM file. Undefined
symbols are converted to defined symbols if they are later found in the
label field of a source statement. If not used, an undefined symbol is
reported as an assembly error.

The format of the entries in the TSYM file is identical to that of entries in
the PSYM file.

A symbol in the TSYM file overrides a corresponding symbol in the
PSYM file; that is, local definitions override global ones.

The TSYM file cannot be shared. Therefore, only one user at a time can
use the assembler on an account. Each account should have its own
TSYM file, and not a Q-pointer to another account's TSYM.

The modulo of the data section of the TSYM file must be 31, due to the
method the assembler uses in generating literals. If a program is loaded
and then reassembled with a different TSYM modulo it will not
MVERIFY, even though the source statements are identical.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The OSYM
File Layout

6973-1

The opcode files contain the set of Ultimate opcode mnemonics.

The item-ID of an entry in one of these files has one of two forms:
+ the opcode mnemonic itself; for example, B for branch.

* the opcode mnemonic concatenated with the symbol type of each
operand. For example, MOV:RR (move register to register) and
MOV:SR (move storage register to register)

The second form is used to distinguish different opcode-operand
combinations, which may generate completely different machine
instructions, as well as to validate the operands used in the instruction.
For example, the MOV opcode with operands of types B and H would
result in an OSYM file lookup of MOV:BH, which is nonexistent and
therefore invalid.

An item in the opcode files has two or more attributes:

Attribute Description
001 type of instruction; valid codes are
P primitive; the following lines in the item

are used to generate object code or
perform other symbol manipulation
functions.

M macro; each succeeding line in the item is
used to generate a new source line that is
in turn assembled just as any source line.

Q synonym; the following line in the item is
used as an item-ID to continue processing.
This is used to "link" from one item to
another to save duplicate definitions.

002 and on assembly operation appropriate for type; may be
* primitive instruction layout (attribute 1 = P)

* list of component instructions (attribute 1 = M)

* synonym item-ID (attribute 1 = Q)

Assembly Language 2-35
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-36

Primitive Instructions

Each primitive entry in an opcode file contains a definition for
generating object code from the source statement. The definition is
divided into argument fields, where each argument defines the object
code for that particular component of the instruction.

The term "argument field" (AF) refers to the fields in the original source
statement being assembled as follows:

label AF(0)
opcode AF(1)
operands AF(2) through AF(9), if they exist.

For example, in the following source statement:

LoeCPp BCE R11,C'A',STOPIT

the AF values are:

AF(0) LOOP
AF(1) BCE
AF(2) RII
AF(3) C'A’

AF(4) STOPIT

Each line in a primitive OSYM definition has one of the following
formats:

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

Entry

G,al,a2,... bl,b2,..

R,al bl,b2...

E:XXXx

Q opcode

O text

*comment

Description

_

generates object code. There is a one-to-one
correspondence between the al, a2, etc.,
and the bl, b2, etc. There is one blank
space between the 'a’ and 'b' fields. The
'a's are bit counts, and refer to the size in
bits of the object code to be generated by the
corresponding 'b' expressions. The sum of
the 'a’ fields must be a multiple of 8, and
must be in the range 8-32. Valid b field
expressions are given in Table 2-4.

redefines a TSYM file entry. The TSYM file
item 1s referenced using AF(al) (normally,
al is zero, to reference the label field of the
source statement). Successive lines in the
TSYM file entry are replaced with the data
generated by the expressions bl, b2, ...

specifies an exit to an assembly subroutine
whose mode-id is xxxx.

transfers control to OSYM entry specified by
opcode. There is one blank space between
the Q and the opcode name.

generates the specified text as source code,
in the macro expansion portion of the
statement. This is used in assembling
programs on 1400 systems (ASM
command).

used to include comments in OSYM entries.

Assembly Language

2-37

Confidential and Proprietary to The Ultimate Corp.

The Assembler

Table 2-4.

Expressions to Generate Object Code
('b' Field Expressions)

Code

Description

E:xxXxx

Jn

decimal constant.
hexadecimal constant.
single byte character constant.

current location counter, where the optional n is 1
for location in bits, 8 in bytes, 16 in words

references AF(n); if a symbol, returns the value
from the 'm'th line of the PSYM/TSYM file
definition; if a literal constant, returns the value of
the literal.

Current base register (see literals below).

Exit to assembly subroutine whose mode-id is
XXXX.

Returns branch (or jump) address of local label
referenced by AF(n).

The 'b' field expressions may be composed of sub-expressions joined
with the following operators:

+ addition

- subtraction

* multiplication

/ division (integer)
& logical AND

! logical OR

Rn-n lower-upper range limit on previous expression

Uxxxx assembly subroutine call (mode-id: xxxx) after evaluating
previous expression

2-38 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

P ,;,\(

The Assembler

— —— —

(...) enclose expression in parentheses to alter expression
evaluation

The precedence of the operators is as follows:
expressions within parentheses are evaluated
R and U operators

& and ! operators

* and / operators

[0 T S N R O

+ and - operators.

Operators with the same precedence in an expression are applied left to
right; for example:

A2;2-%* difference between value of AF(2) and current
location

A4;2R0-3 value of AF(4) or assembly error if this is not 0,
1,2,0r3

(A2;2+1)/2 half of one more than the value of AF(2);
remainder from division is discarded

6973-1 Assembly Language 2-39
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Macro Definitions N

A macro definition has the code M in attribute 1 of the OSYM file item.
Each succeeding line generates a new line of source. All text in the
macro definition is literal and copied without change, except for the

following:

Text Description

(n) references AF(n), which is copied to the source line.

(*) references all AF entries, starting with AF(2); this may be
used to copy all references to the macro-generated source
line.

L), If present in the label field of the macro-generated

(L+n) or | statement, this creates a unique label by incrementing the

(L-n) macro's internal label count, and storing that as the
generated label. The +n and -n forms are not allowed
here. ’
If not in the label field, the current internal label count,
modified by the +n or -n, is used to generate a label.

The following example explains how a macro is created. Suppose a
new instruction which tests a signed integer to see if it is in a specified
range is to be created, using the following syntax:

RANGE x,low,high, label

X signed integer

low minimum value

high maximum value

label label to branch to if x is in range

An example of this instruction, its OSYM macro definition, and the
generated code would be:

RANGE CTRO,CTR1,CTR2, INRANGE

L

2-40 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

OSYM file format

RANGE: TTTL

001 M

002 BL (2),(3), (L+1)
003 BLE (2),(4),(5)
004 (L) EQU *

Generated source code (assume
macro label count = 14 at start)

BL CTRO,CTR1,=L15
BLE CTRO,CTR2, INRANGE
=L15 EQU *

Note that (L) is in the label field because no space precedes the "(".

MCI SCO,R11
sco R11
001 C 001 R
002 3 002 00B
003 0 003 B
‘ MCICR
T 001 M
002 INC (3)

003 MCC (2),(3)

+INCR R11
+MCCCR SCO,R11

Original source line

PSYM file entries

OSYM file entry

Resulting macro source statements

6973-1 Assembly Language
Confidential and Proprietary to The Ultimate Corp.

2-41

The Assembler

2-42

MCC sSCO,R11

SCO

001 C
002 3
003 0

MCCCR
001 P

R11

001 R
002 00B
003 B

Source line

PSYM file entries

OSYM file entry

002 G,4,4,8,4,4 13,A2;3,A2;2,1,A3;2

Object code generation:

a-field
4

4
8
4
4

D0031B

b-field expression
13

A2;3

A2;2

1

A3;2

symbol ref

SCO
SCO

R11

Final result

result
D

0

03

1

B

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

[

The Assembler

6973-1

NEW DEFH R1S5,5

R15

001 R
002 OOF
003 F

DEFHRN

001 P

002 R,0 =H,A3;2,A2;2
003 E:5019

NEW

001 L

002 XXXXXXXX
003 1

NEW

001 H
002 5
003 4

Source line

PSYM file entries

OSYM file entry

TSYM file entry after Pass 1
symbol NEW is stored as type L
offset equal to the current location
base register of 1

TSYM file entry after Pass 2

Assembly Language

2-43

Confidential and Proprietary to The Ultimate Corp.

The Assembler

Symbols and Literals

Locally
Defined
Symbols

2-44

A symbol is a named reference to one of the fields that can be addressed
by the system. Symbols can be defined in the following ways:

* a globally defined symbol, stored in PSYM

* alocally defined symbol; one that appears in the label field of the
current program

* ashared symbol; one that appears in the label field of a program that
is named in an INCLUDE assembler directive in the current program.

+ an immediate symbol; one that is explicitly stated in the instruction.

The symbol name is of the same format and has the same restrictions as
a label field.

A symbol name should not begin with one of the following characters:

$ dollar sign
pound or number sign
' double exclamation mark

Certain symbols that start with these characters are used by the kernel on
some systems. To avoid possible conflict, select symbol names that do
not begin with these characters.

If you attempt to assemble a program whose code includes a definition
of a symbol used by the kernel on 1400 systems, the ASM command
displays the following message as a warning to change the specified
symbol name to a different "safe" name:

Redefinition of symbol used by kernel: symbol

To define a symbol in the program for local usage, use one of the DEF
directives. To reserve storage in the object code, use one of the TLY
type directives.

For example, the following instruction defines CNTER as a symbol of
type T, with a specific base register of 4 and an offset of 5:

CNTER DEFT R4,5

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

AN

Ao
L

The Assembler

Literals

6973-1

However, the following instruction defines it implicitly at the current
location in the object code, and stores a value of 1234 at that location in
the object code:

CNTER TLY 1234

This symbol is now a literal or constant in the program.

The assembler automatically assembles certain types of literals. Such
literals are fields that can be addressed using a base register and an
offset displacement. When a program is executing, address register 1
(R1) points to byte zero (0) of the frame. Therefore, this may be used
by the assembler as the default base register to address literal fields that
it creates and stores in the frame.

Symbols of types T and D can be automatically generated as part of an
instruction, but types H and F cannot. This is because half tallies (H)
can only be offset up to 255 bytes from the base register's address, and
literals are only generated at the end of the object code. If the object
code is greater than 255 bytes, half tally literals would cause a truncation
error. F-type (triple) tallies cannot be generated automatically due to an
assembler limitation. If a program needs to use half or F-type tally
literals, they must be defined explicitly with the HTLY or FTLY
instructions.

In addition, in order for the assembler to generate a literal, the
instruction must be a macro. The instruction itself should simply
specify the literal value (for example., ADD 3); the macro uses the
following form to generate the symbol:

=x (AFn)

where
X DorT

AFn number of argument field in the instruction that contains
the literal value

For example, to generate a tally of the value in argument field 2, the
assemble sets up the following:
=T (2)

Assembly Language 2-45
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The assembler stores this symbol (if not already present) as an -
undefined type in the TSYM file. At the end of pass one, the TSYM is

searched sequentially for undefined symbols that match the above

pattern, and the literals are assembled. This is done by internally

generating source statements using special opcodes of the form ":x" (:D,

:T, etc.), which actually generate the literal and redefine the symbol to

the correct type and location.

The literal thus generated at the end of the program has the following
form:

=xvalue :x value
For example, the following generates a tally with the literal value 3:
=T3 :T 3

The following is step-by-step example of literal generation on a
firmware implementation:

Step 1
MOV 100,COUNTER Source line

PSYM file entry:
item-ID COUNTER
001 D
002 1IF
003 0

OSYM file entry
item-ID MOVND
001 M
002 MOV =D(2),(3)

Step 2
MOV =D100,COUNTER Resulting macro source statements

TSYM file entry
item-ID =D100
001 U
002 0
003 1 ¢

2-46 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

6973-1

OSYM file entry
item-ID MOVDD
001 P
002 G,4,4,8,4,4,8 15,A3;3,A3;2,8,A2;3,A2;2

Step 3

At the end of pass one, an internal source statement is assembled:

=D100 :D 100 Source line
OSYM file entry
item-D :D
001 E:101B
002 1F Forces word alignment in object
code
003 R,0 =D,*16,B
004 G,32 A2;2 Generates double tally object code
00000064 Resulting object code
TSYM file entry:
Before instruction After instruction
item-D =D100 item-D =D100
001 U 001 D
002 O 002 xxx
003 1 003 1

xxx offset appropriate to the current location.

Step 4

The MOV 100,COUNTER instruction is reassembled on pass two.

Assembly Language 2-47
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Shared
Symbols
(INCLUDE
Directive)

Immediate
Symbols

2-48

The main reason for the INCLUDE directive is to be able to place a set of
shared definitions in one item and then use the definitions in any other
program. Typically, variables and mode-ids that are local to a set of
programs are placed in a single program for inclusion during assembly.
The advantage of this method is that the definitions are not duplicated in
every program that uses them. Such duplicate definitions can lead to
errors and are in general more difficult to maintain than if they were all

in one program.

The format of the INCLUDEd program is identical to that of any other
program, though typically it consists of only DEFx (definition)
assembler directives.

Normally, a symbol must be in PSYM or must appear as an entry in the
label field of the program or in an included program.

In some instructions, however, an immediate symbol may be defined as
an operand. This may be useful when a symbol is only used once; it
may be simpler than having to define the symbol in a separate line.
However, because these symbols have a quirk in their syntax that makes
them different from the PSYM/TSYM equivalents, they are not
recommended except to reference bits. They are documented here for
compatibility only.

The gene<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>