
BASIC Language
Reference Guide

o

£'1t\
V

o

Ultimate
THE UL TlMATE CORP.

BASIC Language
Reference Guide

The Ultimate Corp.
East Hanover, NJ

Version 3

Ultimate BASIC Language Reference Guide
Version 3.0

© 1989, 1990 The Ultimate Corp., East Hanover, NJ
All Rights Reserved.
Printed in the United States of America.

How to order this guide:

The Ultimate BASIC Reference Guide is included with the system
documentation set.

To obtain additional copies, please call your dealer.

Publication Information

This work is the property of and embodies trade secrets and confidential
information proprietary to Ultimate, and may not be reproduced, copied,
used, disclosed, transferred, adapted, or modified without the express
written approval of Ultimate.

Operating System Release 10, Revision 210
© 1989, 1990 The Ultimate Corp., East Hanover, NJ

Document No. 6929-3

f·
I"

~

Contents

How to Use this Manual ... xv

1 Introduction ... 1-1
The File Structure of BASIC Source Programs 1-2
The Components of a BASIC Program '" 1 -3
Creating BASIC Programs ... 1 -6
Compiling BASIC Programs .. 1-7
Cataloging BASIC Programs ... 1 -11
Decataloging BASIC Programs .. 1-12
Executing BASIC Programs ... 1 -14

2 Working With Data ... 2-1
Reserved Words ... 2-2
Numbers and Numeric Data .. 2-4

Fixed Point Numbers ... 2-4
Floating Point Numbers .. 2-5
String Numbers .. 2-6

String Data .. 2-7
Constants and Variables .. 2-8 c

Predefined Symbols .. 2-9
System Variables ... 2-1 0
File Variables .. 2-11

Arrays ... 2-12
Dimensioned Arrays .. 2-1 3
Dynamic Arrays .. 2-14

Arithmetic Expressions ... 2-16
Order of Operations ... 2-16
Processing Numeric and String Data 2-18
Arithmetic Operators and Dynamic Arrays 2-19
Rules for Standard Arithmetic .. 2-20
Extended Arithmetic Functions .. 2-21
Arithmetic Values and Comparison Statements 2-23
Numeric vs String Comparisons 2-24

String Expressions .. 2-26
Substrings ... 2-26

Concatenation .. 2-27
Format Strings .. 2-29

o Relational Expressions ... 2-33
Pattern Matching .. 2-35

6929-3 Ultimate BASIC v
Confidential and Proprietary to The Ultimate Corp.

Contents

tf- ",

Logical Expressions .. 2-37 \.~

Summary of Expression Evaluation 2-39
Limited Expressions•.. 2-42
Variable Data Area .. 2-43
Variable Allocation .. 2-45

Program Descriptors ; 2-45
CHAIN and ENTER. ... 2-46

3 BASIC Statements and Functions 3-1
A Summary of the Statements and Functions 3-3
I and * Statements ... 3-5
$* Directive .. 3-7
$CHAIN Directive ... 3-8
$COMPATIBILITY Directive ... 3-9
$INCLUDE Directive ... 3-11
$NODEBUG Directive ... 3-12
= (ASSignment) Statement.. .. 3-1 3

Overlaying a Substring ... 3-16
Replacing Delimited Substrings 3-17

@ Function .. 3-21
ABORT Statement. ... 3-32
ABS Function .. 3-33
ALPHA Function ... 3-34
ASCII Function ... 3-35
BEGIN CASE Statement .. 3-36
BREAK Statement. ... 3-37
CALL Statement. .. 3-39

Passing Arrays ~ ... 3-41
CASE Statement. ... 3-43
CHAIN Statement .. 3-44
CHAR Function ... 3-46
CLEAR Statement. ... 3-47
CLEARDATA Statement ... 3-48
CLEARFILE Statement ... 3-49
CLEARS ELECT Statement.. .. 3-51
CLOSE Statement ... 3-52
COL 1 and COL2 Functions .. 3-55
COMMON Statement .. 3-56
CONVERT Statement.. .. 3-60
COS Function ... 3-61
COUNT Function .. 3-62
CRT Statement ... 3-63

vi Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

--------- ------ ~---

Contents

DATA Statement .. 3-64
DATE Function ... 3-66
DCOUNT Function ... 3-67
DEL Statement ... 3-69
DELETE Function .. 3-70
DELETE Statement ... 3-71
DIM Statement. ... 3-73
DISPLAY Statement. ... 3-75
EBCDIC Function ... 3-76
ECHO Statement ... 3-77
END Statement .. 3-78
END CASE Statement.. .. 3-79
ENTER Statement. ... 3-80
EOF Function .. 3-81
EQUATE Statement.. ... 3-82
ERRTEXT Function .. 3-84
EXECUTE Statement .. 3-85

Select Lists .. 3-87
EXIT Statement .. 3-90
EXP Function .. 3-91
EXTRACT Function .. 3-92 c
FADD Function ... 3-93
FCMP Function ... 3-94
FDIV Function ... 3-95
FFIX Function .. 3-96
FFL T Function ... 3-97
FIELD Function ... 3-98
FMT Function .. 3-100
FMUL Function ... 3-101
FOOTING Statement ... 3-1 02
FOR/NEXT Statement ... 3-1 04
FSUB Function ... 3-1 06
GET Statement ... 3-1 07
GOSUB Statement .. 3-1 09
GOTO Statement. ... 3-11 0
HEADING Statement. .. 3-111
ICONV Function ... 3-113
IF Statement .. 3-115
INDEX Function .. 3-117
INMATO Function ... 3-118

() INPUT Statement ... 3-120

6929-3 Ultimate BASIC vii
Confidential and Proprietary to The Ultimate Corp.

Contents

Input Verification .. 3-123
Stacked Input. ... 3-1 24

INPUTCLEAR Statement. ... 3-1 26
INPUTCONTROL Statement. ... 3-127
INS Statement .. 3-130
INSERT Function ... 3-131
INT Function .. 3-133
LEN Function .. 3-134
LET Statement. ... 3-135
LN Function ... 3-136
LOCATE Statement ... 3-137
LOCK Statement .. 3-140
LOOP Statement .. 3-142
MAT = Statement .. 3-144
MATCHFIELD Function .. 3-146
MATPARSE Statement ... 3-148
MATREAD{U} Statement .. 3-149

UltiNet Considerations .. 3-151
Item Locks ... 3-1 51

MATWRITE{U} Statement.. ... 3-153
MOD Function ... 3-156
NEXT Statement .. 3-157
NOT Function .. 3-158
NULL Statement .. 3-159
NUM Function ... 3-160
OCONV Function ... 3-161
ON GOSUB Statement ... 3-163
ON GOTO Statement.. ... 3-164
OPEN Statement. ... 3-1 65

Opening Files ... 3-165
Opening Subroutines .. 3-167

PAGE Statement .. 3-168
PAGING Statement.. .. 3-169
PRECISION Statement ... 3-170
PRINT Statement ... 3-171
PRINTER Statement .. 3-174
PRINTERR Statement ... 3-176
PROCREAD Statement. .. 3-1 77
PROCWRITE Statement ... 3-1 79
PROGRAM Statement ... 3-180
PROMPT Statement .. 3-181

viii Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Contents

PUT Statement ... 3-182
PWR Function ... 3-183
READ{U} Statement .. 3-185

UltiNet Considerations .. 3-186
Item Locks ... 3-186

READNEXT Statement ... 3-189
READT{X} Statement .. 3-192
READV{U} Statement.. .. 3-194

Item Locks ... 3-195
RELEASE Statement .. 3-198

UltiNet Considerations .. 3-199
REM Function ... 3-200
REM Statement .. 3-20 1
REMOVE Statement .. 3-203
REPEAT Statement ... 3-205
REPLACE Function ... 3-206
RETURN (TO) Statement. ... 3-208
REUSE Function .. 3-209
REWIND Statement ... 3-211
RND Function ... 3-212
ROM Statement .. 3-213
SADD Function .. 3-214
SCMP Function .. 3-215
SDIV Function .. 3-216
SEEK Statement .. 3-218
SELECT Statement ... 3-220

UltiNet Considerations .. 3-221
SE~ Function ... 3-223
SIN Function ... 3-224
SLEEP Statement.. .. 3-225
SMUL Function .. 3-226
SORT Function ... 3-227
SOUNDEX Function .. 3-228
SPACE Function .. 3-230
SORT Function ... 3-231
SSUB Function .. 3-232
STOP Statement .. 3-233
STORAGE Statement. ... 3-234
STR Function .. 3-235
SUBROUTINE Statement. .. 3-236
SUM Function ... 3-239

6929-3 Ultimate BASIC ix
Confidential and Proprietary to The Ultimate Corp.

Contents

SYSTEM Function ... 3-240
TAN Function ... 3-245
TIME Function ... 3-246
TIMEDATE Function .. 3-247
TRAP ON THEN CAll Statement .. 3-248
TRIM Function ... 3-253
UNLOCK Statement .. 3-254
UNTil Statement ... 3-255
USERTEXT Function ... 3-256
WEOF Statement ... 3-257
WHilE Statement .. 3-259
WRITE{U} Statement ... 3-260

UltiNet Considerations .. 3-261
WRITET{X} Statement ... 3-263
WRITEV{U} Statement .. 3-266

UltiNet Considerations .. 3-267

4 BASIC Debugger .. 4-1
Entering the Debugger .. .4-2

Compiler Restrictions4-3
Summary of Debugger Commands4-3
B Command - Set BreakpOints .. 4-6
BYE Command - Return to TCl .. 4-9
C Command - Toggle CAlURETURN Breakpoint 4-1 0
D Command - Display Tables .. .4-11
DE{BUG} command - Enter System Debugger 4-11
E Command- Set Lines to Execute 4-12
END Command - Return to TCL. ... 4-1 3
G Command- Resume Execution of Program 4-14
H Command - Help .. 4-15
HX - Display in Hexadecimal Format..4-16
K Command - Breakpoint Table4-17
l Command - Displaying Source Code4-18
lP Command - Printer Output ... 4-18
N Command - Bypass BreakpOints 4-19
o Command - Display Options .. 4-20
OFF Command - Log Off ... 4-21
P Command - Suppress Program Output4-21
PC Command - Close Printer4-21
R Command - Display GOSUB Return Stack4-22
S Command - Display Source Code Lines4-23
STOP Command - Exit Debugger .. 4-24 ()

x Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Contents

T Command - Set Trace Table4-25
U Command - Delete Traces .. .4-27
V Command - Verify Object Code .. .4-28
Z Command - Displaying Source Code4-29
/ Command - Displaying and Changing Variables4-30
?, * and $ Command - Verify Object Code4-32
[] Command- Specify Substring to Display4-33
Example of Using the BASIC Debugger4-34

5 Programmer's Reference .. 5-1
Understanding the Ultimate System File Structure 5-2

System Delimiters .. 5-3
Segment Marks .. 5-5

Programming Techniques for Handling I/O 5-6
OPEN ... 5-7
I/O Considerations for Network Users 5-7

Accessing Items ... 5-9
Read Locks ... 5-11
Accessing Data in Items ... 5-13

Dynamic Array Format .. 5-13
Dimensioned Arrays .. 5-15
Determining the Number of Values 5-15
Choosing Between Dynamic and

Dimensioned Arrays .. 5-16
Clearing Variables ... 5-16

Guidelines for Cursor Positioning '" 5-17
Programming for Maximum System Performance 5-18

Minimizing Program Size ... 5-18
Variable Allocation .. 5-18
Repetitive Operations .. 5-18

Programming Examples ... 5-20
PRIME.NUMBER .. 5-20
POOOO (File Update) .. 5-21
ITEMS.BY.CODE (Use of Job Control) 5-24
SUMMARY.REPORT (Menu/Report Generator} 5-27
aOH (Use of LOCATE with Dynamic Arrays) 5-33

()
6929-3 Ultimate BASIC xi

Confidential and Proprietary to The Ultimate Corp.

Contents

Appendices

A. BASIC Compiler Messages ... A-1

B. BASIC Run-Time Messages .. B-1

C. BASIC Debugger Messages ... C-1

D. List of ASCII Codes ... 0-1

E. User Exits .. E-1

F. USERMSG File ... F-1
USERMSG Item Format.. .. F-1

G Revision 200 New Features ... G-1
Statements and Functions .. G-2
Compiler Changes ... G-4
BASIC Debugger .. G-5

Index ... index-1

c
Figures

Figure 1-1. Sample BASIC Prog ram 1 -5
Figure 1-2. BASIC Program With Remark Statements 1 -5
Figure 1-3. Creating BASIC Program 1 -6

Figure 2-1. BASIC Reserved Words 2-2
Figure 2-2. BASIC Functions ... 2-3
Figure 2-3. Precedence .. 2-41

Figure 3-1. BASIC Statements .. 3-3
Figure 3-2. BASIC Functions ... 3-4
Figure 3~3. BASIC Compiler Directives 3-4
Figure 3-4. Subroutines for Extended Arithmetic Power

Function ... 3-184

C 1

xii Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Contents

Tables
Table 2-1. BASIC Operators ... 2-40

Table 3-1. Cursor Control Values 3-23
Table 3-2. Letter-Quality Printer Control Values 3-31
Table 3-3. FUNCKEYS Values .. 3-129
Table 3-4. Soundex Codes ... 3-229
Table 3-5. SYSTEM Values .. 3-241
Table 3-6. SYSTEM(16) Values .. 3-250

Table 4-1. BASIC Debugger Commands4-4

Table 5-1. System Delimiters ... 5-3

()
6929-3 Ultimate BASIC xiii

Confidential and Proprietary to The Ultimate Corp.

Contents

Notes

c
xiv Ultimate BASIC 6929-3

Confidential and Proprietary to The Ufrimate Corp.

(,

How to Use This Manual
This manual is intended as a reference for programmers using the
Ultimate BASIC programming language. It covers all aspects of Ultimate
BASIC through revision 210 of the Ultimate operating system.

BASIC is a simple yet versatile programming language that was flrst
developed at Dartmouth College in 1963 and is suitable for expressing a
wide range of problems. The Ultimate version has been extensively
modified to support the unique features of the Ultimate data base
structure and operating system.

How the Manual is Organized

6929-3

Chapter 1 gives an overview of programming with Ultimate BASIC. It
covers the program file structure, components of a program, compiler
options, and methods of executing programs.

Chapter 2 discusses how data can be represented in a BASIC program:
as constants (literals), variables, or arrays. It also covers the use of
expressions (arithmetic, logical, string, and relational), and the standard
vs. extended arithmetic (floating point and string) operations.

Chapter 3 lists all statements and functions in alphabetical order. Each
statement and function is detailed in a single-topic unit.

Chapter 4 explains each command in the BASIC debugger and gives an
example of the use of the debugger.

Chapter 5 reviews the Ultimate data file structure and gives some
recommended coding techniques. The chapter also contains several
sample programs for reference.; these programs illustrate the use of
Ultimate BASIC for file updating, job control, and other applications.

The appendices list compiler and runtime messages, debugger
messages, ASCII codes, standard user exits from BASIC, the USERMSG

file, and features introduced in revision 200.

Ultimate BASIC xv
Confidential and Proprietary to The Ultimate Corp.

Preface

Conventions

xvi

This manual presents the general syntax for each BASIC statement and
function. In presenting and explaining the syntax, the following
conventions apply:

Convention Description

UPPER CASE Characters printed in upper case are required and
must appear exactly as shown.

lower case Characters or words printed in lower case are
parameters to be supplied by the user (for
example, line number, data, etc.).

{} Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user's option.

bold Boldface type is used for section and unit
headings. It is also used in examples to indicate
user input as opposed to system displayed data.

RETURN The RETURN symbol i9dicates a physical carriage
return pressed at the keyboard. A RETURN is
required to complete a command line, and signals
the system to begin processing the command.

<key> Angle brackets are used to indicate a key other
than letters or numbers; for example <ESC>.

enter The word enter is used to mean "type in the
required text, then press RETURN."

X'nn' This form is used to define a hexadecimal
number where 'nn' is the hex value; for example,
X'OB', X'41', X'FF'.

.RND(expr) All functions require a set of parentheses, which
usually enclose a parameter. No space is allowed
between the function name and the left
parenthesis.

Enter option This typeface is used for messages and prompts
displayed by the system.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

0

0

c 1

(-"
j

()
6929-3

Introduction

This manual describes the Ultimate BASIC programming language,
which is an extended version of Dartmouth BASIC.

Ultimate BASIC includes the following features:

• Compiled object code

• Optional alphanumeric or numeric statement labels of any length

• Multiple statements on one line

• Single statements on multiple lines

• String handling with variable length strings

• String and numeric format masking

• Shared source code between programs

• Linked programs

• Computed GOTO and GOSUB statements

• Complex and multi-line IF statements

• CASE statement selection

• External subroutine calls

• Magnetic tape input and output

• Fixed point, floating point, and string arithmetic

• Data conversion capabilities

• Ultimate file access and update capabilities

• File level or group level lock capabilities

• Pattern matching

• Dynamic arrays

• Job control capabilities

• Debugging language

• Variably dimensioned arrays

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

1-1

----------- ---------------- --- - -- ------------ -------------~-

Introduction

The File Structure of BASIC Programs

1-2

A BASIC source program is stored as an item in the data section of a file.
The program name is its itemjd. Each individual line within the BASIC
program is stored as an attribute in the item.

When a program is successfully compiled, the compiler generates a
pointer to the object code and stores this pointer in the dictionary section
of the file, using the program name as the pointer name. Thus, in order
to compile programs, the data and dictionary sections must be distinct
files.

Object pointer items have a fonnat similar to that of POINTER-FILE save
list items:

Attribute Description

itemjd
01
02
03
04

program name
CC
starting frame number of object code
number of frames of object code
null

05 time and date of compilation

Attributes 0 through 4 are protected by the system against alterations by
the Editor or any other file-updating program.

N ole: Frame number is also referred to as the frame identifier or AD.

Stored along with the object code of each program (unless suppressed at
compile time) is a symbol table for use with the BASIC debugger. The
symbol table contains all variable names defined in the program. (For
details on the BASIC debugger, refer to Chapter 4, BASIC Debugger.)

When object pointer items are saved on tape as part of a FILE-SA YE or
ACCOUNT-SA YE, the associated object code is also saved. Individual
object programs may also be saved on tape by T-DUMPing specified
pointers in a file dictionary. Programs may be restored from FILE-SA YE
and ACCOUNT-SAVE tapes using ACCOUNT-RESTORE or SEL-RESTORE
(specifying a file dictionary). Object programs may be T-LOADed into
file dictionaries from T-DUMP tapes.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

o

o

Components of BASIC Programs

C' The Components of a BASIC Program

()

c

Multi
Statement
Lines

Multi-Line
Statements

Labels

6929-3

A BASIC program consists of a sequence of BASIC statements. Each
BASIC statement tells the system to perform a specific program
operation. A statement may include one or more data values,
expressions, and/or intrinsic functions. (Please refer to Chapter 2 for
details on representing data and expressions. Refer to Chapter 3 for an
alphabetical listing and discussion of each BASIC statement and intrinsic
function.)

More than one statement may appear on the same program line,
separated by semicolons. For example:

x = 0; y = 0; GOTO 50

Certain statements which take an indefinite number of arguments may be
continued on several lines; each line except the last must end with a
comma. For example:

CALL A.BIG.SUBROUTINE(LONGPARAMETERNAME1,

LONGPARAMETERNAME2,

EVEN. LONGER. PARAMETERNAME3)

The continued lines may be indented to improve program clarity, but
this is not required by the BASIC Compiler. Statements with the multi
line option are noted in their individual discussions.

Any BASIC statement may begin with an optional statement label that can
be either numeric or alphanumeric.

Numeric statement labels may be any constant number. The following
INPUT statement, for example, has a statement label of 100:

100 INPUT X

Alphanumeric statement labels may contain letters, numbers, dollar
signs, and periods, but the first character must be a letter. An
alphanumeric label, when it is defined, must be followed by a colon.

Ultimate BASIC
Confidential and Proprietary to The Unimate Corp.

1-3

Introduction

Compiler
Directives

_ When an alphanumeric label is referenced, the colon is not used. The
colon is optional in defining numeric labels.,

The following routine defines the statement label INPUTLOOP and
references itself and two other labels:

INPUTLOOP: GOSUB GETINPUT

GOSUB DOlT

GOTO INPUT LOOP

A label can be the only text on a line, in which case it labels the next
non-blank non-null line. For example:

DOlT:

GOSUB DOITAGAIN

A BASIC program can also include compiler directives. Directives look
similar to BASIC statements, but they affect the way a program is
compiled, not the way it runs. The following compiler directives are
available:

$*

$CHAIN

inserts comments into object code

links program file items

$COMPATIBILITY compiles according to alternative standards

$INCLUDE

$INSERT

$NODEBUG

INCLUDE

shares source code between programs

equivalent to $INCLUDE

omits source line references and symbol table,
which limits debugging capabilities

equivalent to $INCLUDE

The compiler directives are described in Chapter 3, BASIC Statements
and Functions.

Use of Blanks Except for situations explicitly called out in the following sections,
blank spaces appearing in the program line and that are not part of a
string are ignored. All-blank lines and null lines (containing no text and
no blanks) are also ignored. Thus, blanks and null lines may be used
freely within the program for purposes of clarity and readibility.

1-4 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp .

. _-_ .. _ .. __ .. _-------------------------------

o

o

Remarks

End of
Program

6929-3

Components of BASIC Programs

A helpful feature to use when writing a BASIC program is the REMark

statement. A REMark statement is used to explain or document the
program. It allows the programmer to place comments anywhere in the
program without affecting program execution. (The REMark statement,
which can be written as REM, !, or *, is described in Chapter 3.)

Figure 1-1 uses a simple BASIC program to show overall program
fonnat. Figure 1-2 illustrates the same program with a number of
REMark statements and a null line added for clarity.

An Ultimate BASIC program does not require any special end of program
command; however, an END or STOP statement can be used if desired.
The compiler always places a STOP command after the last line in the
program.

5

REM

*

*

5

END

I = 1

PRINT I

IF I = 10 THEN STOP

I = I + 1

GO TO 5

END

Figure 1-1. Sample BASIC Program

PROGRAM TO PRINT THE

NUMBERS FROM ONE TO TEN

I = 1 · * start with one ,

PRINT I · * print the value ,
IF I = 10 THEN STOP · * stop if done ,

I = I + 1 ;* increment I

GOTO 5 · * continue ,

Figure 1-2. BASIC Program With Remark Statements

Ultimate BASIC 1-5
Confidential and Proprietary to The Ultimate Corp.

Introduction

Creating BASIC Programs

1-6

BASIC programs are created and edited using one of the system editors.
To invoke an editor, issue one of the following commands at TCL:

ED{IT} me.name program. name
SE me.name program. name
EEDIT me.name program. name

The EDIT verb calls the line editor. The SE verb calls the full screen
editor. The EEDIT verb performs the same function as EDIT, but
compresses the storage space used by eliminating all spaces when the
item is med.

Program listings are easier to follow when you indent statements within
a loop or routine. You may set tab stops at TCL or within either editor.
Figure 1-3 shows the commands in the line editor. (For details about
using either editor, see the Editor/Runoff User Guide.)

The program is stored in the file specified by filename using the
program name as the item.id.

:TABS I 4,8,12 <CR> User sets input tabs at TCL

:ED BP COUNT <CR>

New Item

User edits item 'COUNT' in file
'BP' (Basic Programs)

Top

I <CR> User enters input mode
001+* PROGRAM COUNTS FROM 1-10 <CR>

002+ FOR I = 1 TO 10 <CR> tab once
003+ PRINT I <CR>

004+ NEXT I <CR>

005+END <CR>

006<CR>

Top

.FI <CR>

'COUNT' filed.

tab twice
tab once

User mes item

Figure 1-3. Creating BASIC Program

Ultimate BASIC
ConfidentiafandProprietary to The Ultimate Corp.

6929-3

o

Compiling BASIC Programs

C Compiling BASIC Programs

Syntax

6929-3

After the BASIC program has been filed, it can be compiled. Compiling
a program creates object code, which can then be executed using the
RUN verb, or the program can be cataloged, then executed directly from
TCL. The symbol table is also included with the object code (unless
suppressed by the S option or $NODEBUG directive).

If either EDIT or SE was used to create the program, two TCL verbs are
available to compile programs and create the object code: COMPILE and
BASIC. Either may be used since they perform the same operation. If
the EEDIT verb was used to create the program, the EBASIC form of
BASIC must be used to compile the program. EBASIC expands the item
to include any spaces that were compressed by EEDIT.

BASIC file. name item.list { (options) }
COMPILE file.name item.list {(options)}
EBASIC file.name item.list {(options)}

item.list may contain one or more explicit item.ids (program names)
separated by one or more blanks, or may be an asterisk (*) to
indicate all programs in the fIle.

options if used, options must be enclosed in parentheses; multiple
options used in a single command should be separated by
commas. The valid options are

C suppress end-of-line (EOL) opcodes from object code.
This eliminates one byte of run-time object code for every
line of source code. The EOL opcodes are used to count
lines for error messages. This option is designed to be
used with debugged cataloged programs; any run time
error message that occurs in a program compiled with this
option specify a line number of 1.

F used with the M option to list internal variables and labels,
including those created by IF/TIIEN and FORI NEXT loops;
internal variables and labels are displayed preceded by an
asterisk.

Ultimate BASIC 1-7
Confidential and Proprietary to The Ultimate Corp.

Introduction

1-8

I if L option is specified, also list lines from $INCLUDEd
programs.

L list BASIC program; generates a line by line listing of the
program during compilation. Error lines with associated
error messages are indicated.

M list map of BASIC program; generates a variable map and a
statement map that show where the program data will be
stored in the user's workspace. The variable map lists the
offset from the beginning of the descriptor table of every
BASIC variable in the program. The display is similar to

the following:

Symbol table is 2% full

Last variable is at 210

----------- V A R I A B L E S -----------

30 REPLY 40 FEXISTS 50 FTYPE 60 TIME

70 HH 80 MM 100 N 150 MODE

-------------- LAB E L S -------------~
55 PRINTID 59 ERRORPR

------------- E QUA T E S ------------

BELL=CHAR(7) CR=CHAR(13) ESC=CHAR(27)

The variable locations are given as offsets from the
beginning of the descriptor table. The gaps in the table are
either because a variable is a dimensioned array or because
there are CALLs to subroutines between two definitions.
The location of the last variable shown above the variables
may be greater than the last location shown in the table for
the same reasons. In addition, offsets 10 and 20 are never
displayed; offset 10 is used for the internal default file
variable and offset 20 is used for the internal default select
variable. (The descriptors used for subroutines and for
internal variables will be displayed if the F option is also
specified.) Descriptors are ten bytes in length.

The number preceding each label is the line number where
the label is defined. If the program is compiled with the C
option, the line number is always 1; if there is a

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

c

(/

Description

6929-3

Compiling BASIC Programs

$NODEBUG directive in the program itself, the line number
is always the line number of the $NODEBUG statement.

N no page; inhibits automatic paging on terminal when using
the Land M options.

P print compilation output on line printer

S suppress generation of symbol table; suppresses saving the
symbol table generated during compilation. The symbol
table is used exclusively by the BASIC debugger for
reference; therefore it must be kept only if the user wishes
to use the debugger to display or manipulate variables.

x cross-reference all labels and variables used in a BASIC
program and stores this information in the BSYM file.
(N ole: A BSYM file must be created prior to using this

option.)

The X option first clears the information in the BSYM file,
then creates an item for every variable and label used in the
program. The variable or label name is used as the
item.id. Each line number where the variable or label is
referenced is placed as a value in attribute 1. An asterisk
precedes the line number where a label is defined or where
the value of a variable is changed.

The output is not displayed by this option; use RECALL to
sort the file. To format the listing, create an attribute
definition item in the dictionary of the BSYM file for
attribute 1, called something such as line-number, then use
a SORT command to create a cross reference listing of the
program to be generated:

;SORT BSYM BY LINE-NUMBER LINE-NUMBER

The BASIC compiler displays a message when an error is encountered;
the compiler also indicates where on the line it was scanning when it
noted the error. For example, if the THENjELSE clause is missing in an
OPEN statement, the compiler displays an error message similar to the
following:

Ultimate BASIC 1-9
Confidential and Proprietary to The Ultimate Corp.

Introduction

1-10

,._- -- -_._. .- -.------

004 OPEN 'BP' TO BP

*** A THEN or ELSE clause missing

After the program is compiled, the system no longer needs the source
program, which can then be deleted, if desired.

Note: The compile process does not create an item in the Master
Dictionary (MD); to create an item in MD from the compiled
program, use the CATALOO command. The compile-and-go
format can be used to place a BASIC source program in the MD

(for information on compile-and-go, see the section Executing
BASIC Source Programs.)

The BASIC compiler stores a compiler version number in each program's
object code. At run-time, before running a program, the system checks
the program's compiler version number to see if it is compatible with the
current compiler version. If it is not, the program is not allowed to run
and the system issues an error message, which indicates that the
program must be recompiled before it can be run.

The maximum BASIC object code size is 57,534 bytes.

The BASIC, COMPILE, and EBASIC commands are also discussed in the
Ultimate System Commands Reference Guide.

Example Description

: COMPILE SP COUNT <CR> compile command

[B241] Line 5, 'COUNT' successfully compiled; 1 frames

used.

Ultimate BASIC 6929-3
Confidential and Proprietary to The'Ultimate Corp.

---_._-_._-_._-_.

C-,I , ,

Cataloging BASIC Programs

Cataloging BASIC Programs

Syntax

Description

6929-3

The CATALOG verb is used to catalog compiled BASIC programs into the
user's master dictionary; after the program is cataloged, its program
name can be used as a command at TCL.

CATALOG file.name item-list {(LO} }

file.name file containing programs to be cataloged

item-list one or more program names (item.ids), or "*" to indicate all
programs in the file

L indicates that the program is not to be automatically executed
at logon time, if the name of the program is the same as the
name of the account in which the program is cataloged. If the
L option is not present, a cataloged program with the same
name as the current account is automatically executed
whenever a user logs on to the account. (For details about
executing programs at log on, please refer to the section,
Executing BASIC Programs.)

A program must be compiled before it can be cataloged.

For each program successfully cataloged, the system responds with

[244] 'item.id' cataloged.

The CATALOG verb adds the program to the MD as an item with the
following form:

Attribute

item.id
001
002
003
004

Descri ption

program name
PC
E6

005 file. name item.id

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

1-11

Introduction

1-12

If the program was cataloged using the L option, attribute one of the
verb definition is P rather than PC.

After a program has been cataloged, it can be executed by entering its
name at the TCL prompt, using the following general format:

:programname {argument list}

The programname must be entered exactly as the program name is
st9red in the user's Master Dictionary. The optional argument list
contains any parameters that need to be passed to the program.

The external subroutines used with the BASIC CALL statement may also
be cataloged, although it is unnecessary if both the subroutine and the
calling routine are in the same program file. The CALL statement first
searches the Master Dictionary for a cataloged verb; if no verb is found,
CALL then looks in the dictionary of the program file for the calling
routine.

The program to be cataloged cannot have the same name as an existing
item in the user's Master Dictionary unless that item is also a cataloged
program. If a conflicting item exists in the user's Master Dictionary, a
message similar to the following is displayed and the program is not
cataloged:

[415] 'item.id' exists on file

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

---- ---- ----------

,f",,,

',,-- ,/

()

(~

-- -~---------~~- ~

Decataloging BASIC Programs

Decataloging BASIC Programs

Syntax

Description

6929-3

The DECATALOO verb deletes the Master Dictionary reference to the
program and removes the object code from the system.

DECATALOO ftle.name item-list

file.name file containing programs to be decataloged

item-list one or more program names (item.ids), or "*" to indicate all
programs in the file

DECATALOO removes the object programs by deleting the appropriate
pointer items from the dicti~nary of the ftle; the associated frames
containing the object code are returned to the system's pool of available
frames (overflow). DECATALOO also deletes the verbs for cataloged
programs from the Master Dictionary, but a program does not have to be
cataloged before it is decataloged.

The CATALOG and DECATALOO commands are also discussed in the
Ultimate System Commands Reference Guide.

Ultimate BASIC 1-13
Confidential and Proprietary to The Ultimate Corp.

Introduction

Executing BASIC Programs

RUN Command

Syntax

BASIC programs can be executed in the following ways:

• a cataloged BASIC program can be executed by issuing the program
name atTCL

• the RUN verb issued at TCL can be used to execute a compiled BASIC
program

• a cataloged BASIC program with the same name as an account name
can be automatically executed at logon time

• a source program that is stored in the master dictionary and that has a
PR<XiRAM statement as the first line can be compiled and executed by
issuing only the program name at TCL

• programs can be executed as part of another BASIC program or as part
ofaPROC

The RUN verb is used to execute programs that have already been
compiled.

RUN filename item.id {argument list} { (options) }

filename file containing program to be executed

item.id program to be executed

argument list parameters that must be passed to the program

options if used, the options must be enclosed in parentheses;
multiple options may be separated by commas. Valid
options are as follows:

A abort option; inhibits entry to the BASIC debugger
under all error conditions; instead, if an error occurs,
the program prints the error message and terminates
execution

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

(-~
" "".,

(

C ... '.)
/

Executing
Programs at
Logon Time

6929-3

Executing BASIC Programs

D run-time debug option; causes the BASIC debugger to
be entered before the start of program execution.
Note that the BASIC debugger may also be called at
any time while the program is executing, by pressing
the BREAK key on the terminal

E errors option; forces the program to enter the BASIC

debugger whenever an error condition occurs. The
use of this option forces the operator either to accept
the error by using the debugger, or to exit to TCL

inhibit initialization of data area (refer to the
description of the BASIC CHAIN statement)

N nopage option; cancels the default wait at the end of
each page of output when that output has been routed
to the terminal by a program using the HEADING,

FOOTING, and/or PAGE statements

P printer on (has same effect as issuing a BASIC

PRINTER ON statement). Directs all program output to
the Spooler

S suppress run-time warning messages.

When a user logs on, the system attempts to execute an item in the
user's Master Dictionary with the same name as the logon account
name. This item can be a cataloged BASIC program, a compile and-go
BASIC program, or a PROC. This feature is useful to run a standard job
control sequence or present a custom-tailored menu of choices to the
user.

However, you may need to catalog a BASIC program with the same
name as the name of the account, but you do not want it to run
automatically at logon time. To avoid automatic execution, the program
should be cataloged with the L option.

For details on cataloging programs, refer to the section, "Cataloging
BASIC Programs".

Ultimate BASIC 1-15
Confidential and Proprietary to The Ultimate Corp.

Introduction

Executing
BASIC Source
Programs
(Compile and
Go)

Using BASIC
for Job
Control Tasks

1-16

BASIC source programs can be stored as items in Master Dictionaries
and can be executed from TCL without previous compilation. This
option, called "compile-and-go", requires only that the source program
have a PROGRAM statement beginning at the fIrst character (no leading
blanks) of line one. The PROGRAM statement can be abbreviated as
PROG. For example:

HELLO

001 PROG

002 PRINT "HELLO"

003 END

The general format for running the program is:

program. name {argument list}

The effect of compile-and-go is similar to that of writing a PROC, but
with BASIC's more powerful run-time and debugging features.
Compile-and-go programs can be executed at logon time if the program
name is the same as an account name.

N ole: When a compile-and-go program has been established in a
user's Master Dictionary, that name cannot be used as the
name of another program when it is cataloged.

BASIC programs can be used for job control tasks by executing BASIC
programs, PROCs, and TCL verbs within a controlling BASIC program.
The controlling program can use EXECUTE statements, as well as other
supporting statements (PUT, GET, SEEK) and functions (EOF) to
implement the job control tasks.

The BASIC program can control error processing by using TRAP ON
THEN CALL statement. This statement can trap program terminations,
error conditions, pressing of the BREAK key, and commands entered
from the BASIC and system debuggers.

For details on using these statements, please refer to the appropriate
statement name, listed alphabetically in Chapter 3 of this manual.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

('" , I ,
,/ .

o

2

(.
.. ' ••.. ,

6929-3

Working with Data

This section describes the features of BASIC that are available for
working with data. It also describes the way in which the system
allocates variables. The following features are discussed:

• reserved words

• numbers and numeric data

• string data

• arrays

• arithmetic expressions

• string expressions

• concatenation

• format strings: numeric mask and format mask codes

• relational expressions

• logical expressions

• summary of expression evaluation

• limited expressions

• variable data area

• variable allocation

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

2-1

Working with Data

Reserved Words

2-2

Figure 2-1 is a list of BASIC reserved words. These words cannot be
used as simple variable names, array variable names, or labels.

AND GOTO OUT.

ARG. GO PASSLIST

CAPTURING GT REPEAT

CASE IN. RETURNING

CAT LE RTNLIST

DO LOCKED SELECT.

ELSE LT STACKING

END MATCH STEP

EQ MATCHES THEN

FROM NE TO

GE NEXT UNTIL

GLE ON WHILE

GOSUB OR

Figure 2-1. BASIC Reserved Words

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

,~''lt;c,

o

(~

c
6929-3

Reserved Words

Figure 2-2 is a list of BASIC functions; the names of these functions
cannot be used as array or matrix variable names. Ultimate strongly
advises against using these names as simple variables and labels,
although the compiler allows such use.

@ FIELD RND

ABS FMT SADD

ALPHA FMUL SCMP

ASCII FSUB SDIV

CHAR ICONV SEQ

COLl INDEX SIN

COL2 INDEXINFO* SMUL

COS INMAT SORT

COUNT INSERT SOUNDEX

DATE !NT SPACE

DCOUNT LEN SQRT

DELETE LN SSUB

EBCDIC MATCHFIELD STR

EOF MAXIMUM* SUM

ERROR MINIMUM* SYSTEM

EXP MOD TAN

EXTRACT NOT TIME

ERRTEXT NUM TIMEDATE

FADD OCONV TRIM

FCMP PWR TRIMB

FDIV REM TRIMF

FFIX REPLACE USERTEXT

FFLT REUSE

*Reserved for future use

Figure 2-2. BASIC Functions

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

2-3

Working with Data

Numbers and Numeric Data

Fixed Point
Numbers

2-4

Numbers may be represented in Ultimate BASIC in three formats:

• fIxed

• floating point

• string

Each format has its own arithmetic operators. For both floating point
arithmetic and string arithmetic, the standard operations of add, subtract,
multiply, divide, and compare have been implemented as functions
within BASIC.

A fIxed point number may contain any number of digits to the left of the
decimal point and can have a maximum of nine digits to the right of the
decimal point. The actual number of digits is determined by the
PRECISION statement; the default number is four. (For details, see the
description of the PRECISION statement in Chapter 3.)

The unary minus sign is used to specify negative numbers. For
example:

-17000000
-14.3375

The fIxed point arithmetic operators are

1\ exponentiation
* multiplication
/ division
+ addition
- subtraction

Ultimate BASIC
Confidentiq/ and Proprietary to The' Ultimate Corp.

6929-3

-------~ ------------ --

o

o

(:

('

c

Floating Point
Numbers

6929-3

Numbers and Numeric Data

Floating point numbers have a different format from fixed point
numbers. A floating point number consists of a mantissa and an
exponent. Ultimate BASIC floating point uses an integer mantissa and a
base-l0 exponent. The mantissa may contain from 1 to 13 digits and
may be either positive or negative. A negative mantissa uses a minus
sign in front of it; a positive mantissa is unsigned. The exponent may
be in a range of -255 to 255. Like the mantissa, a negative exponent
uses a minus sign; a positive exponent is unsigned. An E is used to
separate the mantissa from the exponent.

Values to be used as floating point numbers must be specially formatted
strings. Functions are provided that convert fixed point numeric or
string numeric values to floating point format. Another set of functions
may be used after floating point operations to convert the results back to
fixed point numeric or string values.

The following examples show the floating point representation of
various numbers:

Floating Point
Representation Expanded Number

o
1

1000

OEO

lEO

1E3

1E-20

-1234567890123E-5

9876543210987E-13

-28855E-2

.00000000000000000001

-12345678.90123

.9876543210987

-288.55

The following functions are available for arithmetic operations on
floating point numbers:

Operation

Addition
Subtraction
Multiplication
Division
Comparison
Convert to floating

Ultimate BASIC

Floating Point Function

FADD
FSUB

FMUL

FDIV

FCMP
FFLT

Confidential and Proprietary to The Ultimate Corp.
2-5

Working with Data

String
Numbers

2-6

Convert to fixed FFIX

For details, see the description of each function in Chapter 3.

A string number, that is, a number that is enclosed in string delimiters,
can have any magnitude and any precision.

The following examples show various string numbers:

"I"
"-300.23"
"5000000000000000000000000"
II .000000000000000000000000023 II

String numbers can use any of the numeric operators shown with the
fixed point numbers. However, these operators restrict the number of
decimal places in the result of the arithmetic operation to the current
precIsIon.

The following set of functions have been defined for string arithmetic
and, except for SDIV, do not restrict the number of decimal places. The
divisor in SDIV is restricted to 13 significant digits and the quotient is
restricted to 14 significant digits.

Operation String Function

Addition SADD

Subtraction SSUB

Multiplication SMUL

Division SDIV

Comparison SCMP

For details, see the description of each function in Chapter 3.

Ultimate BASIC 6929-3
COnfidential and Proprietary to The Ultimate COrp.

(. -.. -'.-
, ,

~>

C' .. /
String Data

()

6929-3

String Data

A string may contain any number of characters. A string is defined by a
set of characters enclosed in single quotes('), double quotes ("), or
backslashes (\); these characters are described as string delimiters.

The following are examples of strings:

"THIS IS A STRING"

'ABCDI234#*'
\3A\

If a string value contains a character that can also be a used as a string
delimiter, then another delimiter must be used to delimit that string.

"THIS IS A 'STRING' EXAMPLE"

'THIS IS A "STRING" EXAMPLE'

Internally, a string is delimited by a segment mark (SM), which is a
character having a decimal value of 255. A string may not include a
segment mark.

A string may include data delimited by system delimiters (attribute
marks, value marks, and subvalue marks). Such strings are called
"dynamic arrays" and are described in the section "Arrays", starting on
page 2-12.

Ultimate BASIC 2-7
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Constants and Variables

Constants

Variables

Variable
Names

2-8

Numeric and string data values may be represented as either constants or
variables.

A constant, as its name implies, has the same value throughout the
execution of a program. A constant may be a literal value such as the
number 2 or string "HELLO", or it may be a named value. In this case, a
symbolic name is equated with a constant value; for example, the name
"AM" could be equated to CHAR(254); and the name can be used instead
of the value in BASIC statements.

A variable has both a name and a value. The value of a variable may be
either numeric or string, and may change dynamically during the
execution of the program.

Storage space for variables is allocated in the order that the variables
appear in a program. No special statements are needed to allocate space
for simple variables (except COMMON variables), but the size of each
dimensioned array must be specified in a DIM or COMMON statement to
allocate its space.

The maximum number of variables in a program is 3223. If an array is
dimensioned to a literal number of elements, each element counts as one
variable. An array that is dimensioned to a variable number of elements
counts as only one variable, regardless of the value of the variable. For
more information, see the section Arrays, which starts on page 2-12.

Variables are identified by a variable name; the name remains the same
throughout program execution. Variable names consist of an alphabetic
character followed by zero or more letters, numerals, periods, or dollar
signs. Variable names may be of any length.

The following terms are valid variable names:

X

QUANTITY

DATA. LENGTH

B$.. $

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

6929-3

c

c

Values of
Variables

Predefined
Symbols

6929-3

Constants and Variables

BASIC reserved words may not be used as variable names (the BASIC

reserved words are listed at the beginning of this chapter).

Although a BASIC variable name may end with a period (.), it is
recommended that programmers not use names in this format for their
own variables in order to distinguish the variables predefined by the
Ultimate operating system. Since variable names in this format mayor
may not be treated as names of predefmed variables in all cases,
depending on the operating system release, The Ultimate Corp. strongly
suggests programmers rewrite their software, if necessary, to avoid
possible conflict.

The value of a variable may change during the execution of the program.
The variable x, for example, may be assigned the value 100 at the start
of a program, and may later be assigned the value "THIS IS A STRING".

A program can retrieve the value of a variable by specifying the variable
name. For example, the following program lines assign the value 12 to
A, then print the value of A:

A = "12"

PRINT A

The following symbols have been preassigned values and can be used in
place of variables:

@FM field mark; this has the value CHAR(254)

@VM value mark; this has the value CHAR(253)

@SM sub-value mark; this is has the value CHAR(252)

Ultimate BASIC 2-9
Confidential and Proprietary to The Ultimate Corp.

-.--~-.. _-- -_. ------------

Working with Data

System The following symbols return information based on the current status of
0

Variables the system:

@EXECLEVEL returns current EXECU1E level; equivalent to
SYSTEM(21)

@HOLDFILE number of last hold file created by PRINT statement in
current BASIC program; if no hold file has been
assigned, returns zero; equivalent to SYSTEM(22)

@LANGUAGE returns two-digit language code of the language
assigned to current port; equivalent to SYSTEM(27)

@PRIVILEGE returns 0, I, or 2 to indicate system privilege level of
current user; equivalent to SYSTEM(23)

@SELECT returns 1 if external select list is active, else returns 0;
equivalent to SYSTEM(25)

@SENTENCE returns TCL statement that invoked current program; ,~

statement is formatted as dynamic array; equivalent to 0
SYSTEM(18). Elements in the statement are
separated by attribute marks. If an element is
enclosed in delimiters, the delimiters are removed.
For example, if a program is invoked using the
following command:

RUN BP PGMl A 'B, C' (D)

the following is returned in@SENTENCE within
PGMI:

RUNABpAPGM1AAAB,CA(D)

@SPOOLOPTS returns current spooler assignment status; equivalent
to SYSTEM(24)

@USERNO returns current port number; equivalent to
SYSTEM(19)

0
2-10 Ultimate BASIC 6929-3

Confidential andProprietary to The Ultimate Corp.

c

c

@WHO

Constants and Variables

name of current user; does not return name of any
CHARGE-TO account; equivalent to SYSTEM(26)

File Variables A fIle variable is the variable to which a file is opened and contains
information the system needs to locate the fIle. The fIle variable can be
used in a BASIC PRINT statement or BASIC debugger / (list) instruction to
display the base frame number (FID) of the fIle.

6929-3

In addition, the file variable can be tested to see if any fIle has been
opened to it. A non-zero value indicates the fIle is opened.

If the file variable is included in a COMMON statement, the file
information assigned to it can be passed to subsequent programs.

If the file variable is changed in any way by the BASIC program, it is no
longer considered a file variable.

OPEN 'TEST.FILE' TO TF ELSE STOP

PRINT 'Base frame ID: ':TF

Prints base frame ID as given in the file
identification item in the fIle dictionary.

OPEN 'TEST.FILE' TO TF ELSE TF = 0

IF TF THEN

READ ITEM FROM TF,'Tl' ELSE ITEM =
END ELSE

ITEM = 'No test file available'

END

PRINT ITEM<l>

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

, ,

2-11

Working with Data

Arrays

2-12

Arrays are variables with multiple elements. Ultimate BASIC supports
two types of arrays: dimensioned and dynamic.

A dimensioned array is defined by a DIM or COMMON statement. The
exact number of elements can be fixed in the defming statement, or the
number can be specified in a variable and determined at run time. A
dynamic array is a string that contains elements delimited by attribute
marks, value marks, and subvalue marks.

An array is associated with multiple storage locations, each of which has
a separate value and which can function as a simple variable. A
particular location (or element) within an array is specified by following
the array name with subscripts (numbers or other arithmetic
expressions).

Elements in dimensioned arrays are referred to with subscripts in
parentheses. For example, if A defines a dimensioned array, A(lO)

refers to the tenth element of the array. Elements in dynamic arrays are
referred to with subscripts in angle brackets. The first subscript
specifies the attribute, the second subscript specifies the value, and the
third subscript specifies the subvalue. For example, if X is a dynamic
array, x<3> refers to the third attribute of the dynamic array; x<3,1,2>
refers to the second subvalue in the first value in the third attribute of the
dynamic array.

A dynamic array can be an element of a dimensioned array. An element
within the dynamic array is referred to by placing the dynamic array
subscript after the dimensioned array subscript. For example, if A

defines a dimensioned array, A(1O)<3> refers to the third attribute of the
dynamic array in the tenth element of the dimensioned array.

Dynamic arrays, which are strings, should not be confused with
dimensioned arrays, which are sets of storage locations. Unlike
dimensioned array elements, the individual attributes, values, and
subvalues of a dynamic array are not directly addressable, and are
searched for on each reference since they may move as the dynamic
array changes.

These two array types are described in detail in the following two
sections.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

--- .- ------~--- ---

6929-3

o

'. c.···

Dimensioned
Arrays

6929-3

Arrays

A BASIC program can address any element of a dimensioned array as a
separate variable and can assign values to the individual elements or to
the entire array.

A dimensioned array contains one value per element. Any array element
may be accessed by specifying its position in the array as a subscript
following the array name. For example, if array A has been
dimensioned as A(4) and assigned values, it might look similar to the
following:

3 A(l) has value 3

8 A(2) has value 8

-20.3 A(3) has value -20.3

ABC A(4) has string value "ABC"

The above example illustrates a one-dimensional array. A two
dimensional array is characterized by having rows and columns. For
example, if array Z has been dimensioned as z(3,4) and assigned
values, it might look similar to the following:

3 XYZ A -8.2 Z(1,2) has string value 'XYZ'

8 ABC 500 .333 Z(2,2) has value 'ABC'

2 XYZ Q12 84 z(3,2) has value 'XYZ'

The MA1READ{U} statement can be used to assign each attribute of an
item to an individual array element. Conversely, the MATWRI1E{U}

statement can be used to write an item from an array. The MATPARSE

statement can be used to assign values in a dynamic array to
corresponding elements in a dimensioned array. (For details, see the
appropriate statement listed alphabetically in Chapter 3.)

Ultimate BASIC 2-13
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Dynamic
Arrays

2-14

-- .. _-----._- ---._-- ----- --- ------ ---- ------_ .. _-._------

The maximum number of elements to which an array can be
dimensioned is 3223. An array can be dimensioned with a literal or
with a variable. An array that is dimensioned with a literal can be
accessed more quickly than an array that is dimensioned with a variable.
However, each element in an array with a literal dimension counts
toward the total number of variables in a program. An array
dimensioned with a variable counts as only a single variable.

A string that has elements delimited by system delimiters is called a
dynamic array. A dynamic array does not have a fIxed number of
elements nor is it dimensioned. It is an array in that its component data
elements can be referenced using subscripts. It is dynamic in that
individual elements may be added, changed, or deleted within the string,
causing the relative positions of the elements to be subject to change.

A dynamic array consists of one or more attributes; multiple attributes
are delimited by attribute marks. An attribute mark has an ASCII

equivalent of 254, shown as 1\ by the editor and - by BASIC.

An attribute, in tum, may consist of one or more values; multiple values
in an attribute are delimited by value marks. A value mark has an ASCII

equivalent of 253, shown as] by the editor and } by BASIC.

Finally, a value may consist of one or more subvalues; multiple
subvalues in a value are delimited by subvalue marks. A subvalue mark
has an ASCII equivalent of 252, shown as \ by the editor and I by BASIC.

Note: This manual displays the delimiters as shown by the editor.

An example of a dynamic array is as follows:

Jones, Alice, 244, and temporary are attributes .

. The following illustrates a more complex dynamic array:

Jones A Alice A 2364 E. Main]Apt 206 A English\s\r\w]

Spanish\s

Ultimate BASIC
Confidential and Proprietary to The Ultimate CorP-

B929-3

c

6929-3

Arrays

Jones, Alice, 2364 E. Main]Apt 206, and English\s\r\w]Spanish\S are
attributes. 2364 E. Main, Apt 206, English\s\r\w, and Spanish\S are
values. English, s, r, w, Spanish, and s are subvalues.

Each element of the dynamic array can be addressed by specifying its
position within angle brackets « »; the first subscript specifies the
attribute, the second subscript, if present, specifies the value within the
selected attribute, and the third subscript, if present, specifies the
subvalue within the selected value.

For example, if X represents the first example dynamic array above,
then X <2> denotes attribute two of the string, which is "Alice". If Y
represents the second dynamic array above, then Y<3,2> = "Apt 206"
and Y<4,2,1> = "Spanish".

If the specified element is not in the array, a null value is returned; a
missing dynamic array element is not considered an error. For example,
if Y represents the second dynamic array, Y <2,2> = "".

Dynamic arrays are significant in Ultimate BASIC because items in files
are in dynamic array format; thus, dynamic arrays may be used to
represent data in disk files. Special constructs are available for
manipulating dynamic arrays, thus making it easier to access and update
files.

The maximum number of attributes in a dynamic array is 32,767.

The following BASIC functions and statements are used to reference
dynamic arrays:

• EXTRACT

• DELETE

• INSERT

• LOCATE

• REMOVE

• REPLACE

• REUSE

For details, please refer to the appropriate function or statement, listed
alphabetically in Chapter 3.

Ultimate BASIC 2-15
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Arithmetic Expressions

Order of
Operations

2-16

Expressions are formed by combining operators with variables,
constants, or BASIC functions. Arithmetic expressions are formed by
using arithmetic operators.

When an expression is encountered as part of a BASIC program
statement, it is evaluated by performing the operations specified by each
of the operators on the adjacent operands.

The simplest arithmetic expression is a single unsigned numeric
constant, variable, or intrinsic function. A simple arithmetic expression
may combine two operands using an arithmetic operator. More
complicated arithmetic expressions are formed by combining simple
expressions using arithmetic operators.

When more than one operator appears in an expression, certain rules are
followed to determine which operation is to be performed first. Each
operator has a precedence rating. In any given expression the highest
precedence operation is performed first.

The arithmetic operators have the following precedence:

Operator

1\

*
/
+

Operation Precedence

exponentiation I
multiplication 2
division 2
addition or identity 3
subtraction or negation 3

If there are two or more operators with the same precedence, or an
operator appears more than once, the leftmost operation is performed
first.

For example, consider this expression: -50/5+3*2. The division and
multiplication operators have the same precedence and it is higher than
the precedence of the other operators. Since the division operator is
leftmost, it is evaluated first: 50/5 = 10. The expression then becomes
-(10)+3*2. The multiplication operation is performed next: 3*2 = 6.
The expression then becomes: -(10)+(6). The negation is the leftmost

Ultimate BASIC 6929·3
Confidential and Proprietary to The Ultimate Corp.

o

C:

(."", ..

'':'''/

c'
6929-3

Arithmetic Expressions

operator, so it is applied to the 10. The addition is then perfonned,
yielding the final result, -4.

Any sub-expression may be enclosed in parentheses. The parenthesized
SUb-expression as a whole has highest precedence and is evaluated first.
However, within the parentheses, the rules of precedence apply. For
example, the following expression is evaluated as follows:

10+2*3-1 = 15

However, parentheses can change the order of operation:

(10+2)*(3-1) = 12*2 = 24

Parentheses may be used anywhere to clarify the order of evaluation,
even if they do not change the order. For example,

10+(2*3)-1 = 15

Arithmetic operators may not be adjacent to each other. For example,
2*-3 is not a valid expression, although 2*(-3) is.

Example Description

2+6+8/2+6 evaluates to 18

12/2*3 evaluates to 18

12/ (2*3) evaluates to 2

-5"2 evaluates to -25

(-5)"2 evaluates to 25

8*(-2) evaluates to -16

5 * "3" evaluates to 15

Ultimate BASIC 2-17
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Processing
Numeric and
String Data

2-18

In BASIC, data may be stored as a numeric value or a string value (which
mayor may not consist entirely of numbers). Arithmetic operations
process these data types differently.

Internally in the Ultimate operating system, a numeric value is stored as
a six-byte binary number,· which is expressed in hexadecimal or
converted to decimal. The maximum value possible is:

140737488355327 = X'7FFFFFFFFFFF'

Thus, when the PRECISION is set to 4 (the default), the maximum
decimal value is 14,073,748,835.5327.

The PRECISION statement allows a program to preset the number of
decimal places returned by standard arithmetic performed in that
program; the range is 0 (only integer values returned) to 9 (returned
values may have up to nine decimal places). Thus, a program's
PRECISION affects the range of numeric values that are valid in that
program. However, a PRECISION statement is ignored by explicitly
coded string and floating point arithmetic operations, since these
functions are designed to deal with larger (string) numbers, and by the
functions EXP, LN, and PWR.

A string value is stored as a series of ASCII characters. String numbers
may be of any length; hence, there is no limit on the magnitude or
precision.

In BASIC, arithmetic may be performed via expressions that contain
arithmetic operators and via certain functions, such as PWR. The
arithmetic operators performs binary arithmetic, if possible, on numeric
or string values by converting them to binary for the operation.

If the values exceed the range that binary arithmetic can handle within its
six-byte maximum, string arithmetic is automatically invoked by the
system, without programmer or user intervention. Both operations are
considered "standard arithmetic". Again, if the result of an arithmetic
operation is too large to be stored in a six-byte binary number, string
arithmetic is automatically used by the system. In this case, the
program's PRECISION is in effect.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

,-(

\~.f

Arithmetic
Operators and
Dynamic
Arrays

6929-3

Arithmetic Expressions

If a string value containing only numeric characters is used in an
arithmetic expression, it is considered as a decimal number. For
example, 123 + "456" evaluates to 579.

If a string value containing non-numeric characters is used in an
arithmetic expression, a warning message is printed when the program
is executed and zero is assumed for the string value. For more
information, see Appendix B, BASIC Run-Time Error Messages.

The following expression, for example, when executed, generates a
warning message and evaluates to 123:

123 + "ABC"

The variables used in arithmetic expressions can contain dynamic
arrays. The specified operation is automatically performed on
corresponding array elements. If the arrays do not have the same
number of elements, the system assumes a value of zero (0) for the
missing elements for addition, subtraction, multiplication, and dividends
in division. It assumes a value of one (1) for missing divisors in
division.

Note: The function REUSE allows you to use the previous value
instead of zero when the number of elements differ. For more
information on REUSE, see Chapter 3.

ARRAY 1 l:AM: 2:VM: 2:VM: 2:AM: 3

ARRAY 2 10:AM:20:VM:20:VM:20:AM:30

ARRAY 3 ARRAY1 + ARRAY2

result:

ARRAY3 = 11:AM:22:VM:22:VM:22:AM:33

The elements of ARRAY3 are composed of the sums of the five
elements in ARRAYl and ARRA Y2.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

2-19

~-----~~----- ---

Working with Data

Rules for
Standard
Arithmetic

2-20

ARRAY1 = 1:VM:1:AM:2:VM:2:AM:3

ARRAY2 = 1: AM:2 AM:3

ARRAY3 = ARRAY1 + ARRAY2

result:

ARRAY3 = 2:VM:1:AM:4:VM:2:AM:6

ARRAY3 is built as follows:

1. The first two values in attribute 1 are added.

2. ARRAY2 does not have a second value in attribute 1, so 0 is added
to the second value in ARRA Yl.

3. The first value in attribute 1 of ARRA Yl is added to the first value
in attribute 2 of ARRA Y2.

4. ARRA Y2 does not have a second value in attribute 2, so 0 is added
to the second value in ARRAYl.

5. The values in attribute 3 are added.

For each arithmetic operation, the system perfonns as follows:

1 . The system first attempts to convert all values to binary numbers (if
they are not already).

2. If all values can be converted to binary, binary arithmetic is
perfonned. If the resulting binary number can be stored in six
bytes, it is stored, using the program's PRECISION to truncate to the
proper number of decimal places if needed. The operation is then
considered complete.

If the result would overflow a 6-byte binary storage area, the
system automatically cancels the operation and prepares for
automatic string math (see 3, below).

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

------------ ----------~---

6929-3

o

o

Extended
Arithmetic
Functions

6929-3

~~----

Arithmetic Expressions

3. If all values cannot be converted to binary or the result would
overflow, then the system attempts to convert the original values to
string numbers.

4. If all values can be converted to strings, string arithmetic is
performed. The resulting value is stored as a string, using the
program's PRECISION to truncate to the proper number of decimal
places if needed. The operation is then considered complete.

5. If the values cannot be converted to either binary or string numbers,
then an error message is generated, and the operation is performed,
with zero being used for the unconverted values. The result is
stored as a string, and the PRECISION is applied.

In addition to standard arithmetic, functions are available that can be
used in expressions to perform mathematical operations. These
functions allow the programmer to explicitly code string arithmetic or
floating point arithmetic operations into a program. These functions are
considered "extended arithmetic".

When a program requires calculations beyond the precision or
magnitude of the standard arithmetic, either the string or floating point
arithmetic may be used. It is usually best to select one of the two types
and do all calculations in that mode. This minimizes confusion and also
reduces the number of conversions which must be performed.

String arithmetic can handle virtually any operation and it requires the
least conversion since all standard numbers are automatically string
numbers as well. One might deCide to always use string arithmetic
except for speed considerations.

The speed of floating point operations and string operations are
essentially the same except in multiplication. Floating point
multiplication is considerably faster, depending on the number of digits
involved. For example, it is four times faster to multiply
12345678909.87 by 1.00327 in floating point than in string and it is
seven times faster to multiply two 13-digit numbers together in floating
point.

Ultimate BASIC 2-21
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-22

For each string arithmetic operation:

1. A specific intrinsic function is used in an expression (SADD, SSUB,

SMUL, SDIV).

2. The system attempts to convert all original values to string numbers
(if they are not already).

3. If all values can be converted to strings, string arithmetic is
performed. The resulting value is stored as a string. The
program's PRECISION is ignored and the full resulting value is
always stored. The operation is then considered complete.

4. If the values cannot be converted to string numbers, an error
message is generated, and the operation is performed with zero
being used for the unconverted values. The result is stored as a
string.

For each floating point arithmetic operation:

1 . The original values must have been converted to floating point
values via the FFL T function.

2. A specific intrinsic function is used in an expression (FADD, FSUB,

FMUL, FDIV).

3. Floating point arithmetic is performed. The resulting value is
stored as a floating point number.

4. The resulting value may be used in other floating point functions or
converted back to a string number by the FFIX function.

After any arithmetic operation, the resulting value has the same data type
as the values used; that is, binary arithmetic produces numeric values,
string arithmetic produces string values, and floating point arithmetic
produces floating point string values.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

L~"'\

i~f

c···.···.·!

,.

c

f:

Arithmetic
Values and
Comparison
Statements

6929-3

Arithmetic Expressions

The results of an arithmetic operation may be used in a comparison
statement in the BASIC program. Each comparison statement (IF, FCMP,

and ~CMP) follows certain processing rules in making the comparison.

Rules for IF Comparisons

1.

2.

3.

4.

5.

The system fIrst attempts to convert all values to binary numbers.

If all values can be converted to binary numbers, the binary values
are compared as numeric entities, using the program's PRECISION

to determine the proper number of decimal places. The result of
comparison is either "true" (1) or "false" (0).

If all values cannot be converted to binary, the system attempts to
convert the original values to string numbers.

If all values can be converted to numeric strings, a numeric
comparison is made using string arithmetic. The program's
PRECISION is not considered. The result of the comparison is either
"true" or "false" and depends on the specifIc operators used in the
expression.

If either operand is not numeric, then a pure string comparison is

done (see Numeric vs. String Comparisons below).

Rules for SCMP (String) Comparisons

1. The system attempts to convert all values to string numbers. If they
cannot be converted successfully, an error message is generated,
and zero (0) is used for the value of each unconverted value.

2. The converted values are compared as ASCII numeric strings and
the result specifIes if they are equal in value or if the first is less
than or greater than the second. The resulting value (0, -1, or 1) is
returned.

Ultimate BASIC 2-23
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Numeric vs
String
Comparisons

2-24

Rules for FCMP (Floating Point) Comparisons:

1 . The system attempts to compare both values as floating point string
numbers. The result specifies if they are equal in value or if the
first is less than or greater than the second. The resulting value (0,
-1, or 1) is returned.

The type of comparison used depends on whether the values are being
compared as numbers (if binary or numeric strings) or ASCII characters
(if any string operand is non-numeric).

The two methods are summarized as follows:

1. Numeric comparison - A numeric comparison is attempted first,
and is made whenever both values can be converted to binary or
numeric strings. If both values have an equivalent numeric value,
then they are considered to be 'equal'. If they are unequal in value,
the value with the larger numeric value is considered 'greater than'
the other. If either or both values contains any non-numeric
characters, the character pair comparison is made on the non
numeric character pairs (as in 2 below). For example:

100 is equal to 0100
Al is greater than 99
1 A is less than 99

2. String (ASCII) comparison - Character pairs are compared one
at a time from left to right. If no unequal character pairs are found,
then the strings are considered to be 'equal'. If an unequal pair of
characters is found, the characters are ranked according to their
ASCII code numeric equivalent. The character with the higher
numeric ASCII equivalent is considered to be greater than the other.
If the two strings are not the same length, and the shorter string is
otherwise identical to the beginning of the longer string, the longer
string is considered greater than the shorter string. For example:

WORDS is less than Words
xxx is greater than xx

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp;

6929-3

o

o

c
6929-3

Arithmetic Expressions

If the string has only numbers and includes a decimal point, the
decimal point is used to detennine the magnitude of the number.

For example:

'12345.1 ' is less than '123451'
'12345.1' is equal to '12345.10'

For a list of ASCII code equivalents, see Appendix D.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

2-25

Working with Data

String Expressions

Substrings

2-26

A string is a set of characters enclosed in single or double quotes or
backslashes. A string expression may be any of the following:

• string constant

• variable with a string value

• a substring

• concatenation of string expressions

String expressions may be combined with arithmetic expressions. If
numeric values are used in a string expression, the system converts
them into equivalent string values before performing the operation.

A substring is a set of characters that makes up part of a whole string.
For example, "SO.", "123", and "ST." are substrings of the string" 1234
SO. MAIN ST."

Substrings are defined by specifying the starting character position and
the number of characters, separated by a comma and enclosed in
brackets:

string[start.pos{ ,no. char }]

If the starting position specification is past the end of the string, an
empty substring value is returned; for example, if A has a value of
'XYZ', A[4,1] has a value of "". If the starting position specification is
less than one, one is used; for example, if X has a value of 'JOHN', X[-

5,1] has a value of ']'.

If the number of characters specification exceeds the remaining number
of characters in the string, the remaining string is selected; for example,
if B has a value of '123ABC', B[5,1O] has a value of 'BC'. If the number
of characters specification is less than one, an empty substring is
returned; for example, B[I,-2] has a value of "". If number of
characters is not specified, 1 is assumed.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

o

(

c

.... -~.~----

String Expressions

Concatenation Two strings are concatenated by appending the characters ofthe second
string onto the end of the fIrst. Concatenation is specifIed by a colon (:)
or CAT operator. A space must precede and follow the CAT operator.
Spaces are not required for the colon.

Precedence

6929-3

The following examples both return the same value:

'Good ' CAT 'Morning'

'Good ':'Morning'

The result is

'Good Morning'

The precedence of the concatenation operator is lower than any of the
arithmetic operators. So, if the concatenation operator appears in an
expression with an arithmetic operator, the concatenation operation is
performed last. Multiple concatenation operations are performed from
left to right. Parenthesized SUb-expressions are evaluated first.

The precedence of the substring operator is higher than that of the
arithmetic operators. So in an expression such as A+B[7,3], the
substring of B is extracted, converted to a numeric value, then added to
the value of A.

Ultimate BASIC 2-27
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-28

In the following examples, assume

A = ABCl23

Z = EXAMPLE

Expression

Z[l,4}

A : Z[l,l}

Z[l,l] CAT A[4,3]

3*3:3

A[6,l] +5

Z CAT A : Z

Z CAT .. ONE"

Ultimate BASIC

Description

Evaluates to "EXAM"

Evaluates to "ABC123E"

Evaluates to "E123"

3*3 is evaluated fIrst and results in the
number 9. 9:3 is then evaluated and
results in the string value 93.

Evaluates to 8.

Evaluates to
"EXAMPLEABC123EXAMPLE"

Evaluates to "EXAMPLE ONE"

6929-3
Confidential and Proprietary to The Ultimate Corp.

o

(-

C/

Format Strings

Format Strings: Numeric Mask and Format Mask Codes

Syntax

6929-3

Both numeric and non-numeric values may be fonnatted by the use of
fonnat strings. A fonnat string immediately following a variable name
or expression specifies that the value is to be fonnatted as specified by
the characters within the fonnat string. (You can also use the FMT

function to fonnat values; see the description of FMT listed
alphabetically in Chapter 3.)

A fonnat string may contain a numeric mask and/or a fonnat mask.

" {just} {num.mask} { (fonnat.mask) } "
"D{d}"

just justification; may be R for right justification or L for left
justification; for input, may be v, which specifies exact
match. Default justification is left.

num.mask numeric mask, in the following fonnat:
{n{m}} {$} {,} {N} {z} {c}

n single numeric digit that specifies the number of digits
to display following the decimal point; the displayed
value is rounded, if necessary (the actual value is not
altered). If n = 0, the decimal point is not output
following the value.

m single numeric digit that specifies scaling factor;
causes the converted number to be descaled (divided)
by a factor equal to 10 raised to the power (m minus
PRECISION value). For example, to descale a number
by 10 if PRECISION is 4, m should be set to 5; to
descale a number by 100 if PRECISION is 0, m should
be set to 2. If m is used, n must precede it.

$ places a dollar sign immediately to the left of the value

inserts commas between every thousands position of
value

N causes the minus sign of negative values to be
suppressed

Z specifies suppression of leading zeros; if value is
zero, null is displayed

Ultimate BASIC 2-29
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-30

c credit indicators; may be anyone of the following:

c causes the letters 'CR' to follow negative values
and causes two blanks to follow positive or zero
values

D causes the letters 'DB' to follow positive values;
two blanks to follow negative or zero values

M causes a minus sign to follow negative values; a
blank follows positive or zero values

E causes negative values to be enclosed in angle
brackets « ... »; a blank precedes and follows
positive or zero value

(format.mask) can be any of the following:

#n specifies that the data is to be placed in a field of n
blanks

*n specifies that the data is to be placed in a field of n
asterisks

%n specifies that the data is to be placed in a field of n
zeros

x any other characters, including parentheses and dollar
signs, are displayed exactly as specified. Each
character adds one to the number of characters
displayed in the result. See the examples.

D{d} format as date; d may be anyone of the following:

n {s} number of digits to display for year; may be any
value between 0 and 4; s is separator, may be any
character to use as separator. If s is used, date is
displayed in dd/mm/yy format; if s not used, date is
displayed in dd mon yy format

D day of the month

J julian date

M month as numeric value

Q quarter

y year

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

rI"
~)

(~ ..
.•. Description

Precedence

6929-3

Format Strings

The format string may be a literal or it may be assigned to a variable and
immediately follows the expression it is to format. The entire format
string is enclosed in single or double quotes or backslashes when it is
used as a literal. If the format mask is used, it should be enclosed in
parentheses. (Some format masks, such as #, function correctly
without the parentheses, but it is recommended that all format masks be
enclosed in parentheses.)

If a dollar sign is specified in a numeric mask, it is output just preceding
the value. If a dollar sign is used within the format mask, it is output in
the position indicated in the mask. See the mask examples.

The resulting formatted value may be used anywhere an expression is
permitted, including in an assignment statement, which stores the
formatted value, and in PRINT statements of the following form:

PRINT X "format string".

A format string can be used in an INPUT statement, in which case the
input is verified according to the format specifications and redisplayed in
formatted form. For information on INPUT verification, see the
description of the INPUT statement in chapter 3.

Characters are placed in the format mask starting with the rightmost
character if right justification is specified and starting with the left in all
other cases. If the number of characters in the value is greater than the
number of characters in the format mask, the extra characters are
truncated.

Formatting has higher precedence than concatenation, but lower than
substring and arithmetic operations.

The following examples assume the PRECISION is 4.

Ultimate BASIC 2-31
Confidential and Proprietary to The Ultimate Corp.

Working with Data

I" 1\ ..•.
~)I

Unconverted Format String Result
String

x 1000 V x "R26" 10.00

x 38.16 v X "1" 38.2

x 1234588 v x "R27," 1,234.59

X -12345888 v x "R27,E$" $<1234.59>

x -1234 V x "R25$,M(*10)" **$123.40-

x -1234 V x "R25,M($*10) " $***123.40-

x 072458699 v x "L(4fH-H-4fH4f) " 072-45-8699

x 072458699 v x "L(4f3-4f2-4f4)" 072-45-8699

X Smith, John V X "L«H2))" (Smith, John) ,.~

X 12.25 y = 111n; PRINT X Y 12.3

X 12345 PRINT X "R2," 12,345.00

X 345 PRINT 12:X "R2," 12345.00

X 1 INPUT @(2,4):X "R(%%)" 01

X Smith PRINT X ' (NAME: HO) , NAME: Smith

A "" INPUT @(3,5):A "V (%%%)" 000 (will only

accept three numeric

digits as input)

A= 8100 PRINT A "D" 05 MAR 1990

2-32 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

----~"---~

Relational Expressions

Relational Expressions

(

Precedence

6929-3

Relational expressions are the result of applying a relational operator to a
pair of arithmetic or string expressions.

The following relational operators are available:

Operator Symbol

<
LT

>
GT

<=

=<

LE

>=

=>

GE

<>

><

NE

MATCH

MATCHES

Operation

Equal to

} Less than

} Greater than

} Less than or equal to

} Greater than or equal to

} Not equal to

} Pattern matching

Relational operators have lower precedence than all arithmetic and string
operators; therefore, relational operators are only evaluated after all
arithmetic and string operations have been evaluated.

Ultimate BASIC 2-33
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Evaluation

2-34

A relational operation evaluates to 1 if the relation is true, and evaluates
to 0 if the relation is false.

For purposes of evaluation, relational expressions are divided into
arithmetic and string relations. An arithmetic relation is a pair of
arithmetic expressions separated by anyone of the relational operators.
A string relation is a pair of string expressions separated by anyone of
the relational operators. A string relation may also be a string
expression and an arithmetic expression separated by a relational
operator; if a relational operator encounters one numeric operand and
one string operand, it treats both operands as strings.

If the two strings are not the same length, and the shorter string is
otherwise identical to the beginning of the longer string, the longer
string is considered "greater" than the shorter string.

Example

4 < 5

"D" EQ "A"

11D" > "An

"Q" LT 5

6+5 = 11

Q EQ 5

"ABC" GE "ABB"

"XXX" LE "XX"

Ultimate BASIC

Description

Evaluates to 1 (true).

Evaluates to 0 (false).

ASCII equivalent of D (x'44') is
greater than ASCII equivalent of A

(x'41'); expression evaluates to 1.

ASCII equivalent of Q (X'51') is not
less than ASCII equivalent of 5
(x'35'); expression evaluates to O.

Evaluates to 1.

Evaluates to 1, if current value of
variable Q is 5; otherwise, evaluates
to O.

Evaluates to I since C is greater than B

Evaluates to O.

6929-3
Confidential and Proprietary to The Ultimate Corp.

(

(:

Pattern Matching

Pattern Matching

Syntax

Description

6929-3

BASIC pattern matching allows the comparison of a string value to a
predefined pattern. Pattern matching is specified by the MATCH or
MATCHES relational operator, which compares the string value of the
expression to the predefined pattern (which is also a string value) and
causes the relation to evaluate to 1 (true) or 0 (false).

expression MATCH {ES} {-} pattern

expression

pattern

any valid string expression

indicates negation of pattern that follows; valid for nN

and nA patterns only

may consist of any combination of the following:

nN tests for n numeric characters

nA tests for n alphabetic characters

nX tests for n characters of any type

'string' tests for specified literal string of characters; if
the literal pattern contains numeric characters,
they must be enclosed within delimiters other
than the delimiters enclosing the string

The number of characters specified by n must match the number of
characters in the string to be compared.

The - (tilde) negates the pattern match. The negation is true only if no
characters in the expression match the type (N or A).

If the integer number used in the pattern is 0, the relation evaluates to 1
if all the characters in the string match the type, regardless of the number
of characters in the string.

Ultimate BASIC 2-35
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-36

Example

A = 'ABC123'

A MATCHES '3A3N'

A MATCHES '-3N-3A'

A MATCHES 'ABC"123",

A MATCHES '-6N'

Q MATCHES "ON"

B MATCH '3N"-"2N"-"4N'

A MATCHES "ON'. 'ON"

X MATCHES ""

Ultimate BASIC

Description

Evaluates to 1.

Evaluates to 1.

Evaluates to 1.

Evaluates to 0 because there are not 6
non-numeric characters.

Evaluates to 1 if current value of Q is
any unsigned integer; otherwise,
evaluates to O.

Evaluates to 1 if current value of B is,
for example, any social security
number; otherwise, evaluates to O.

Evaluates to 1 if current value of A is
any number containing a decimal
point; otherwise, evaluates to O.

Evaluates to 1 if current value of X is
the empty string; otherwise, evaluates
to O.

6929-3
Confidential and Proprietary to The Ultimate Corp.

i(.·-' , ,
y',,'"

Logical Expressions

Logical Expressions

Precedence

Evaluation

6929-3

Logical expressions (also called Boolean expressions) are the result of
applying logical (Boolean) operators to relational or arithmetic
expressions.

The following logical operators are available:

Operator Symbol

AND

&

OR

}

}

Operation

Logical AND operation

Logical OR operation

Logical operators operate on the true or false results of relational or
arithmetic expressions. Logical operators have the lowest precedence
and are only evaluated after all other operations have been evaluated. If
two or more logical operators appear in an expression, the leftmost is
performed first.

A OR B is true (evaluates to 1) if A is true or B is true; it is false
(evaluates to 0) only when A and B are both false.

A AND B is true (evaluates to 1) only if both A and B are true; it is false
(evaluates to 0) if A is false or B is false or both are false.

Ultimate BASIC 2-37
Confidential and Proprietary to The Ultimate Corp.

Working with Data

0
Example Description

1 AND A Evaluates to I if current value of
variable A is non-zero; evaluates
to 0 if current value of A is O.

8-2*4 OR Q5-3 Evaluates to I if current value of Q5-3
is non-zero; evaluates to 0 if current
value of Q5-3 is O.

A>5 OR A<O Evaluates to I if the current value of
variable A is greater than 5 or is
negative; otherwise, to O.

1 AND (0 OR 1) Evaluates to 1.

J EQ 7 AND I EQ 5*2 Evaluates to I if the current value of
variable J is 7 and the current value of
variable I is 10; otherwise, evaluates

C to O.

Xl AND X2 AND X3 Evaluates to I if the current value of
each variable (Xl, x2, and x3) is
non-zero; evaluates to 0 if the current
value of any or all variables is O.

c
2-38 Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

(""
" ".,-

c·\

Summary of Expression Evaluation

Summary of Expression Evaluation

6929-3

Expressions may consist of constants, variables, function references,
and operators. Each operator has a precedence which determines the
order in which operations within an expression are performed.

The operands of an expression may be constants, variables, function
references, and other expressions enclosed in parentheses. All
expressions, whether in parentheses or not, are evaluated according to
the same rules of operator precedence:

• expressions in parentheses are evaluated before the results are used as
operands in other expressions

• operators with higher precedence are processed first

• a series of operators with equal precedence is processed left to right.

Operators and their precedence are given in Table 2-1.

Ultimate BASIC 2-39
Confidential and Proprietary to The Ultimate Corp.

------ ------------~--------------------... ~- .. _-

Workif)g with Data

Table 2 .. 1. BASIC Operators c
Operator Operation Precedence
Symbol

< ... > Dynamic array extraction 1 (high)

[...] Substring specification 1 (high)

II Exponentiation 2

* Multiplication 3

/ Division 3

+ Addition or Identity 4

- Subtraction or Negation 4

expression Fonnatting 5

: or CAT Concatenation 6

<orLT Less than 7

>orGT Greater than 7

<= or =< orLE Less than or equal to 7

=orEQ Equal to 7

#or <> or ><

orNE Not equal to 7

>= or => orGE Greater than or equal to 7

MATCH or Pattern Matching 7

MATCHES

ANDor& Logical AND 8 (low)

ORor! Logical OR 8 (low)

c
2-40 Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

6929-3

Summary of Expression Evaluation

Figure 2-3 illustrates the wayan expression with several levels of
precedence is evaluated.

Expression to be evaluated:

A + B : C[D, (E"F*G)] H MATCH I AND J

Evaluation: (rl...r8 are results of prior operations):

l. A + B C[D, (E"F*G)] H MATCH I AND J

2. A + B C[D, «rl) *G)] H MATCH I AND J

3. A + B C[D,(r2)] H MATCH I AND J

4. A + B (r3) H MATCH I AND J

5. (r4) : (r3) H MATCH I AND J

6. (r4) : (rS) MATCH I AND J

7. (r6) MATCH I AND J

8. (r7) AND J

9. (r8)

Figure 2-3. Precedence

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

2-41

----------- ---~-------------~------

Working with Data

Limited Expressions

2-42

Certain instructions cannot use expressions that contain operators with a
precedence level 5 or above. Expressions of this type are considered to
be "limited expressions" since they may specify only the following
operations:

< ... >
[...]
1\

*
/
+

Dynamic array extraction
Substring specification
Exponentiation
Multiplication
Division
Addition
Subtraction

For identification in the documentation, limited expressions are referred
to as X4-expr in the statements that use them. The following statements
contain one or more parameters which may be of the x4-expr type only:

Assignment (=) statement
DELE1E statement
EXlRACT statement
INPUT statement
INS statement
INSERT statement
LOCA1E statement
MA1READ{U} statement
MATWRITE statement
PRINT ON statement
REPLACE statement
REUSE statement

For details, please see the appropriate function or statement, listed
alphabetically in Chapter 3.

Note: Whenever an expression with a level 5-8 operator is needed
for an X4-expr parameter, the complex expression may be
enclosed in parentheses and is then considered valid. For
example,

INS (A:B) BEFORE ...

Ultimate BASIC 6929-3
Confidential arid Proprietary to The Ultimate Corp.

------------~----------

o

Variable Data Area

Variable Data Area

Descriptor
Table
Structure

Free Storage
Area

6929-3

The variable data area used by a BASIC program is composed of a
descriptor table, free storage area, and a buffer size table.

The type of information in each variable in a program is kept in the
descriptor table. The descriptor table contains one lO-byte entry for
each variable (including array elements) in the program. The number of
descriptors, and hence, the number of variables in a program, is limited
to 3223.

A descriptor contains a code byte which identifies the type of the
descriptor as one of the following:

Content of Descriptor Usage

6-byte binary number for numeric values

8-byte string plus a terminating for string values of eight
segment mark characters or less

6-byte pointer to a string in the for string values with more than
free storage area eight characters

8-byte reference to file access for file variables
information (base, modulo,
separation)

6-byte pointer to external for external subroutines
subroutine code

2-byte mode-id for assembly code routines

The free storage area is made up of buffers of various sizes. One of
these buffers is assigned to a variable if the string to be stored in the
variable cannot fit in its descriptor (more than eight characters). A
pointer to this area is stored in the descriptor.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Buffer Table

2-44

Strings longer than eight bytes are placed in storage buffers located in
the free storage space. These buffers are by default 50 bytes, 150
bytes, or multiples of 250 bytes in length. There is overhead involved;
the BASIC run-time package reserves 7 bytes per buffer for internal
usage. The maximum length for strings in 50-byte buffers, then, is 43
bytes.

A program can change the default buffer sizes of 50 bytes, 150 bytes,
and multiples of 250 bytes, by executing a STORAGE statement. (Please
refer to the STORAGE statement, listed alphabetically in Chapter 3.)

When a string requires a new buffer, the system looks in the table of
abandoned buffers for a buffer of the appropriate size. If one cannot be
found, a buffer that is somewhat larger than the string it will contain is
allocated from free storage. This allows the string to grow.

Initially, free storage is one contiguous block of space. Buffers are
allocated from the beginning of the free storage area. When a string is
assigned to a variable which exceeds the variable~s current buffer size,
the buffer is abandoned and a new buffer is allocated from the remaining
contiguous portion of free storage. If there is not enough contiguous
space for the new buffer, a procedure called 'garbage collection' takes
place. Garbage collection collects the abandoned buffer space and
forms a single block of contiguous space. If, after garbage collection
takes place, there is still not enough contiguous space (which should
happen very rarely), the program is aborted with the message:

NOT ENOUGH WORK SPACE

At this point, the programmer can attempt to reduce the number of
characters in variables, and set to null all variables that are no longer
needed. For example, if a very large item has been retrieved and only
one attribute from it is required, the attribute can be extracted and the
variable for the item set to null.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

(-" , ,

.;i/

(

Variable Data Area

Variable Allocation

Program
Descri ptors

6929-3

Variables are allocated descriptors in the order in which they are
declared in a program. For this reason, it is important that COMMON
variables be declared before any other processing takes place. To
ensure that variables in the main program and its subroutines match, it is
recommended that the COMMON statements be placed in a separate
program that is $INCLUDEd by all programs using that COMMON.

Note: For details on COMMON and $INCLUDE, refer to Chapter 3,
Statements and Functions.

The arrangement of descriptors for a main program and an external
subroutine is illustrated as follows:

COMMON

1
Used by both
mainline
program and
subroutine

Variables

i
Used by
mainline
program
only

Variables

i
Used by

Values passed
through argument
list

subroutine
only

The programs should be written so that variables declared as COMMON
in both the main program and the subroutine are fIrst. The COMMON
variables then refer to the same locations and there is a one-to-one
correspondence between the variables in both COMMON statements.
However, when values are passed through the argument list on the
CALL and SUBROUTINE statements, the values are copied back and forth
between the two local areas as indicated above.

Ultimate BASIC 2-45
Confidential and Proprietary to The Ultimate Corp.

Working with Data

CHAIN and
ENTER

2-46

If subroutine calls are nested, the arrangement of descriptors is:

COMMON

Used by Lline
program and
subroutines

n
Variables

t
Used by
mainline
program
only

n
Variables

t
Used by
subroutine!
only

Variables

t
Used by
subroutine2
only

Values passed through the argument list are copied as indicated above.

Each of these statements are described in detail in Chapter 3, Statements

and Functions.

The ENlER statement may be used to transfer control to a new BASIC

program which inherits the values of variaQles from the old program.
The CHAIN statement may be used in a similar way when invoking the
RUN verb with the I option to run a new program without initializing
variables. (For details, please refer to the CHAIN and ENlER statements,

listed alphabetically in Chapter 3.)

It is permissible to CHAIN or ENlER a program that calls a subroutine,
but it is illegal to CHAIN or ENlER from a subroutine.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

(.

3

Organization
of Chapter

6929-3

BASIC Statements and
Functions

A BASIC statement performs a complete operation. Statements may
appear anywhere in a program. All statements must be formatted with a
space separating the statement name from any parameters that follow;
for example:

GOTO 10

A BASIC function performs a function within a statement operation.
Functions may appear anywhere that expressions can be used in a
statement. All functions must be formatted with a left parenthesis
following the function name, any parameters, and a right parenthesis;
for example:

ALPHA(N)

CaLl ()

Each statement and function is described in detail in its own separate
topic. The topics are presented in alphabetical order by the statement or
function name.

Each topic about a statement or function begins on a new page. Topics
may be presented on one or more pages, as necessary. The statements
and functions identified by symbols, such as the = (assignment)
statement and the @ (cursor control) function, are listed before the
statements and functions with alphabetical names:

! and * statement
$compiler directives
= (assignment) statement
@ function
ABORT statement
ABS function

WRITEV statement

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-1

Statements and Functions

3-2

For a description of the structure and components of a BASIC program,
see Chapter 1. Chapter 1 also describes how programs are written,
compiled, and executed.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

--~---------~--~~~-~-- ----------- ---- ---

o

c

---~-~--- --~-------- ~-----.--. ------

Introduction

('.~: A Summary of the Statements and Functions

(.

6929-3

Figure 3-1 lists the BASIC statements. Figure 3-2 lists the BASIC

intrinsic functions. Figure 3-3 lists the BASIC compiler directives.

GOSUB PROMPT

* GOTO(GOTO) PUT

= HEADING READ

ABORT IF READNEXT

BEGIN CASE INPUT READT

BREAK KEY INPUTCLEAR READU

CALL INPUTCONTROL READV

CASE INS READVU

CHAIN LET RELEASE

CLEAR LOCATE REM

CLEARDATA LOCK REMOVE

CLEARFILE LOOP REPEAT

CLEARS ELECT MAT = RETURN (TO)

CLOSE MATPARSE REWIND

COMMON MATREAD RQM

CONVERT MATREADU SEEK

CRT MATWRITE SELECT

DATA MATWRITEU SLEEP

DEL NEXT STOP

DELETE NULL STORAGE

DIM OFF SUBROUTINE

DISPLAY ON GOSUB TRAP ON THEN

ECHO ON GOTO CALL

END OPEN UNLOCK

END CASE PAGE UNTIL

ENTER PRECISION WEOF

EQUATE PRINT WHILE

EXECUTE PRINTER WRITE

EXIT PRINTERR WRITET

FOOTING PROCREAD WRITEU

FOR PROCWRITE WRITEV

GET PROGRAM WRITEVU

Figure 3-1. BASIC Statements

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-3

Statements and Functions

3-4

@ FFLT SADD

ABS FIELD SCMP

ALPHA FMT SDIV

ASCn FMUL SEQ

CHAR FSUB SIN

COLl ICONV SMUL

COL2 INDEX SORT

COS INMAT SOUNDEX

COUNT INSERT SPACE

DATE !NT SQRT

DCOUNT LEN SSUB

DELETE LN STR

EBCDIC MATCHFIELD SUM

EOF MOD SYSTEM

ERROR NOT TAN

EXP NUM TIME

EXTRACT OCONV TIMEDATE

ERRTEXT PWR TRIM

FADD REM TRIMB
FCMP REPLACE TRIMF

FDIV REUSE USERTEXT

FFIX RND

Figure 3-2. BASIC Functions

$*
$CHAIN

$COMPATIBILITY

$INCLUDE

$INSERT
$NODEBUG

INCLUDE

Figure 3-3. BASIC Complier Directives

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

~\
U

~
(
"~

6929-3

! and .. Statements

and * Statements

Syntax

Description

6929-3

The "!" and "*" statements are alternativeforms>ofthe REM (remark)
statement. Remarks can identify a function or section of program code,
as well as explain its purpose and method.

! text .. .
* text .. .

text any arbitrary characters, up to the end of the line.

A remark statement can be specified in one of three ways: by the REM

statement, by an asterisk (*), or by an exclamation point (!).

REM, !, or * must be placed at the beginning of the statement, but may
appear after another statement on the same line; a semicolon must be
used to separate a remark statement from yny other BASIC statement on
the same line. A remark statement does not affect program execution.

Comments can be included in lines that end in a comma and continue on
to the next line in the following statements:

CALL

---COMMON

DIM {ENSION}

EQUATE

A semicolon must follow the comma and the comments must start with
an asterisk (*):

010 COMMON FIRST,

011

012

CTR,

LAST

*This is the first comment

*This is another comment

*This is the last comment

Remarks are useful to summarize, introduce, explain, or document the
program instructions and routines.

Ultimate BASIC 3-5
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

REM PROGRAM TO PRINT THE

* NUMBERS FROM ONE TO TEN

I = 1 · * START WITH ONE ,

BEG: PRINT I · * , PRINT THE VALUE

IF I = 10 THEN STOP · * STOP IF DONE ,
I = I + 1 · * , INCREMENT I

GOTO BEG · * BEGIN LOOP AGAIN ,
END

3-6 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

$* Directive

Syntax

Description

c
6929-3

$* Directive

The $* directive is used to embed comments (such as a copyright notice)
in a program's object code.

$* text

text comments to be included with the object code

Any text that is specified after the asterisk (*) is assumed to be
comments. The text appears in the object code in a code sequence not
generated by any BASIC statement.

*Program copyrighted

$*Program copyrighted

Ultimate BASIC

Comments in source code
Comments in object code

Confidential and Proprietary to The Ultimate Corp.
3-7

Statements and Functions

$CHAIN Directive

Syntax

Description

3-8

The $CHAIN directive can be used toJink program items together at
compilation.

$CHAIN {file.name} prog.name

file.name name of file that contains program; if omitted, the file is
assumed to be the one containing the program currently
being compiled

prog.name name of program to link together with current program

The $CHAIN directive continues compilation with the specified program.
Any source code in the current program appearing after the $CHAIN

directive is ignored; therefore, the directive should be the last line in the
source code.

If the final object code size cannot exceed 57,534 bytes.

001 * Long Program

999 $CHAIN MOD2

Ultimate BASIC

Continue compilation with next
program module

6929·3
Confidentii!fl and PfQprietary to The Ultimate Corp.

(-

c

$COMPA TlBIL/TY Directive

$COMPATIBILITV Directive

Syntax

Description

6929-3

The $COMPATIBILITY directive is used to specify the compiler
implementation to be used when compiling a BASIC program. This
directive alters certain instructions to work according to a standard other
than the Ultimate standard if there is a conflict.

$COMPATIBILITY imp

Imp implementation standards to use when compiling the program;
currently, only R83PC, which generates instructions according to
PICK R83 PC standards, can be specified

The $COMPA TIBILITY R83PC directive can be used in cases where an
Ultimate release is not compatible with the PICK R83 PC standard.
Currently, $COMPATIBILITY R83PC affects the use of data stacks and
select lists used by EXECUTE statement.

If $COMPA TIBILITY R83PC is in effect and there is an active data stack,
the data stack is passed to the next EXECUlE statement with no IN. or
STACKING clause. The data stack is also cleared on return from the
EXECUlE statement. If$COMPATIBILlTY R83PC is not in effect, the data

stack is not passed, nor is it cleared.

Also, if $COMPATIBILITY R83PC is in effect and there is an active select
list, the select list is passed to the next EXECUTE statement. If
$COMPATIBILITY R83PC is in not effect, a select list is not passed unless
the SELECT. < or RTNLIST parameter is specified.

Program with $COMPATIBILITY

$COMPATIBILITY R83PC

DATA 1 2 3

EXECUTE 'RUN BP NEXT'

INPUT A

Result:
The data stack is passed to the program NEXT and is cleared when
control returns to this program. The INPUT statement requires an
operator response.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-9

Statements and Functions

3-10

Program without $COMP A TIBILITY

DATA 1 2 3

EXECUTE 'RUN BP NEXT'

INPUT A

Result:
The data stack is not passed to the program NEXT. The INPUT

statement takes the first value from the data stack.

Program with $COMPATIBILITY

$COMPATIBILITY R83pc

EXECUTE 'SSELECT MD = "UPDj'"

EXECUTE 'LIST ONLY MD'

Result:

MD

UPD-DEF

UPD-VALIDATE

UPD.LANGUAGES

7 items listed.

Program without $COMPATIBILITY

EXECUTE 'SSELECT MD = "UPDj'"

EXECUTE 'LIST ONLY MD'

Result:

MD

U/MAX

T-STATUS

U/HIGHAMC

355 items listed.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

C·,'"h
, ,/

6929-3

$INCLUDE Directive

(~ $INCLUDE Directive

Syntax

(.~.
Description

c
6929-3

The $INCLUDE directive may be used to include source code stored in
one program item as part of another. $INSERT and INCLUDE may be
used in place of $INCLUDE.

$INCLUDE {file.name} prog.name
$INSERT {file. name} prog.name
INCLUDE {file.name} prog.name

file. name name of file that contains program; if omitted, the file is
assumed to be the one containing the program currently
being compiled

prog.name name of program to include in compilation of current
program

$INCLUDE directives may be nested up to three levels deep. Users
should note that the object code of any BASIC program or external
subroutine, whether or not it contains $INCLUDE directives, cannot
exceed 57,534 bytes in size.

A typical use for the $INCLUDE directive is with a set of related BASIC

programs using variables in COMMON. The COMMON statements can be
placed in a single item which is included in each program by the
$INCLUDE directive. This has the advantages of saving space, making
changes easier, and reducing the chance of declarations in one program
mismatching those in another.

** Start program

$INCLUDE COM. CODES

Ultimate BASIC

Include program that defines
COMMON variables

Confidential and Proprietary to The Ultimate Corp.
3-11

----~----.. ----

Statements and Functions

$NODEBUG Directive

Syntax

Description

3-12

The $NODEBUG directive causes the compiler to not save the end-of-line
(EOL) opcodes and the symbol table as part of the object code.

$NODEBUG

The $NODEBUG directive has the same effect as specifying the C

(suppress EOL opcodes) and S (suppress generation of symbol table)
options with the COMPILE or BASIC verb.

The $NODEBUG directive should be used only after a program has been
debugged, because when it is specified, all runtime errors are reported
as occurring on line 1 and the BASIC debugger cannot display variables
and other symbols.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

c

--""-""--"-----"~--- --"--~~-"----- ---- --~~-~- -"---~

= (Assignment) Statement

- (Assignment) Statement

Syntax

6929-3

The = (assignment) statement is used to assign a value to a simple
variable, a dimensioned array element, an element of a dynamic array,
or a substring. In addition, the assignment statement may be used to
add, subtract, or concatenate an expression to a simple variable.

variable = expression
variable += expression
variable -= expression
variable := expression
variable(row (,col}) = expression
variable <attrib.no { ,vaLno { ,subvaLno} } > = expression
variable[start.char,no.char] = expression
variable[delimiter,start.sub,no.subs] = expression

(overlay)
(replace)

variable name of element to receive assignment

expression any valid BASIC expression

+= plus-equals; adds an expression to a variable and returns
the results to the variable; this is equivalent to

var = var + expression

-- minus-equals; subtracts an expression from a variable and
returns the results to the variable; this is equivalent to

.-

row

col

attrib.no

var = var - expression

concatenate-equals; concatenates an expression with a
variable and returns the results to the variable; this is
equivalent to

var = var : expreSSIOn

row parameter for dimensioned array element

column parameter for dimensioned array element

attribute number of dynamic array element; if attrib.no has
a value of -1, the expression is inserted after the last
attribute, or if last attribute is null, replaces last attribute

Ultimate BASIC 3-13
Confidential and Proprietary to The Ultimate Corp.

-----_._- __ ._.- _ ... _--- -----~-- _ .. ---.

Statemer1ts ·and Functions

3:'14

val. no value number of dynamic array element;' if val. no has a
value of -1, the expression is inserted after the last value in
the attribute specified by attrib;no, or if last value is null,
replaces last value

subval.no subvalue number of dynamic array element; if subval.no
has a value of -1, the expression is inserted after the last
subvalue in the value specified by val.no, or if last
subvalue is null, replaces last subvalue

start. char starting character position in the variable; if start. char
evaluates to 0 or less, 1 is used as the value. If start.char
evaluates to greater than the number of characters in the
string, no characters are overlaid. (For a complete
description of overlaying substrings, see the section
Overlaying a Substring, which starts on page 3-16.)

no.chars number of characters to be overlaid; if no. chars evaluates
to 0 or less, no characters are overlaid

delimiter substring delimiting character; if the delimiter evaluates to
more than one character, only the first character is used as
the delimiter; if the delimiter evaluates to a null, no
characters are replaced

start~sub first substring to be changed; if start. sub is 0 or less, 1 is
used as the value. If start. sub is greater than the number
of delimited substrings in the original string, the required
number of null delimited substrings are appended to the
string. (For a complete description of changing
substrings,see the section Replacing Delimited
Substrings, which starts on page 3-17.)

no. subs 'number of substrings to be changed; the actual change is
determined as follows:

• if no.subs is greater than 0, this number of delimited
substrings is replaced

• ,ifno.subs is O,expression is inserted at the location
,specified by·start.sub

Ultimate BASIC
ConfidentiiJ 'and Proprietary to TheVltlmate CorP. "

, , C""

Description

6929-3

= (Assignment) Statement

• if no. subs is less than 0, then starting at the substring
specified by start. sub, the absolute value of no.subs
substrings are deleted from the existing string, then
expression is inserted

All parameters can be literals or expressions.

The value of the expression becomes the current value of the variable on
the left side of the equality sign. The expression may be any legal
BASIC expression.

The value of the variable does not change until the entire right side of the
statement has been evaluated.

The LET statement may optionally be prefixed to an assignment
statement, as in LET X = 12.

An equated symbol may not be used in place of a variable in an
assignment statement if the symbol has already been assigned a constant
(literal) value in the program. For more information, please see the
EQUATE statement listed alphabetically in this chapter.

The elements in a dimensioned array can be assigned values by the MAT

= assignment statement. For more information, please see the MAT =
statement listed alphabetically in this chapter.

Ultimate BASIC 3-15
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Overlaying a
Substring

3-16

x +=1

ST="STRING"

ST1=ST(3,1]

TABLE(I,J)=A(3)

A "" (B = 0)

A<2>=0

Assigns 5 to x.

Increments X by 1.

Assigns the character string to ST.

If ST = "STRING", assigns substring
"R" to ST1.

Assigns element from array TABLE to
element.in array A.

Assigns I to A if "B=O" is true,
assigns 0 to A if "B=O" is false.

Assigns 0 to attribute 2 of dynamic
array A

EXECUTE 'SELECT F1', RTNLIST A
B=A Copies select-list from A to B.

A substring can be overlaid by a string by using an assignment
statement:

variable[start.char,no.chars] = expression

This form of the assignment statement does not change the length of the
string variable.

If the number of characters in the replacement expression is less than the
number of characters specified in no.char, blanks are added to the end
of expression. If the number of characters in the replacement
expression is greater than no.char, the excess characters in expression
are not assigned.

Ultimate BASIC _
ConfidentiaIMdPrb~riet~;Y to The Ultirhate- CorP.' .

'. "
6929-3

c

(...

,.

Replacing
Delimited
Substrings

6929-3

= (Assignment) Statement

If no.chars is greater than the number of characters remaining in the
original string, only the number of characters remaining are overlaid.
Any extra characters are ignored.

A = 'ABCDEFGHI'

A[4,31 = '***'

result:

A = 'ABC***GHI'

The substring starting at the fourth character position and containing
three characters (DEF) is replaced by the specified three characters
(***).

M = 'ABCDEFGHI'

M[2,lOl = 'xxxxX'

result:

M = 'AXXXXX

The substring 'BCDEFGHI', which starts at the second character and
extends to the end of the string (since there are fewer than ten
characters left in the string), is replaced by the specified 5-character
substring plus 3 spaces.

One or more delimited substrings can be added, deleted, or replaced in a
string. This form of the assignment statement can change the length of
the string.

variable[delimiter,start.sub,no.subs] = expression

The expression to be inserted in place of the delimited substrings is
assumed to contain substrings delimited by the same value as the
original string. The first substring has no initial delimiter; the last
substring has no final delimiter.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-17

Statements and Functions

3-18

If the delimiter is a system delimiter (attribute mark, value mark, or sub
value mark), .thesubstring is terminated by a second delimiter of the
same level and ignores any higher level delimiter. For example, if sub
value mark is the delimiter, the substring does not stop at a value mark
or attribute mark, only at the next sub-value.mark.

If the specified delimiter is null, no characters are replaced.

If no. subs is greater than the number of substrings in expression, the
required number of delimited null substrings are added to expression.

If no. subs is non-zero and is less than the number of substrings in
expression, the extra substrings in expression are ignored. If no.subs is
zero, the entire expression is inserted as a delimited substring preceding
the substring specified by start. sub.

If no.subs is greater than the number of substrings remaining in the
original string, the required number of delimited null substrings are
appended to the original string.

If no.subs is less than 0, then starting at the substring specified by
start.char, no. subs substrings are deleted from the existing string, then
the expression is inserted at that location.

A = '1*2*3*4*5'

A['*',2,3] = 'A*B*C*D'

result:

A = '1*A*B*C*5'

The substring delimiter is an asterisk (*); the substring to replace starts
at the second delimited substring and contains three substrings (2*3*4);
it is replaced by the specified number of substrings and their delimiters
(A*B*C).

Ultimate BASIC 6929-3
ConfidentiaJ arid ProprietarY to The Ultima.teCorp.

C"\
• J

6929-3

= (Assignment) Statement

A = 'l':VM:'2':AM:'3':VM:'4':VM:'5'

A[VM,2,2] = 'A':VM:'B'

result:
A = 'l':VM:'A':VM:'B':VM:'5'

The substring delimiter is a value mark; the substring to replace starts at
the second delimited substring and contains two substrings
('2':AM:'3':VM:'4':); it is replaced by the specified two substrings and
their delimiter CA':VM:'B'). The attribute mark that separates the value
marks is ignored by this form of the assignment statement.

A = '1*2*3*4'

A['*',-3,5] = 'A*B'

result:

A = 'A*B***'

The assignment starts at the first substring (-3 defaults to 1). String A
contains fewer than five substrings, the number of substrings
specified, so one null substring is appended to A. The replacement
expression also contains fewer than five substrings, so three substrings
are appended to it. Finally, the expression overlays the specified
substrings in A.

A = '1*2*3*4'

A['*',6,2] = 'A*B'

result:

A = 'l*2*3*4**A*B'

The assignment starts at the sixth substring. However, string A

contains only four substrings, so two null substrings are appended to
it. The expression is then appended to A, starting at the sixth substring.

Ultimate BASIC 3-19
Confidential and Proprietary to The Uftimate Corp.

Statements and Functions

3-20

A = '1*2*3*4'

A['*',3,OJ = 'A*B'

result:

A = '1*2*A*B*3*4'

Since the number ·of substrings is zero; the two substrings in
expression are inserted at the third substring position and no substrings
are deleted.

A = '1*2*3*4'.

A['*',3,-2} 'z'

result:

A = 'l*2*Z'

Two delimited substrings are deleted starting at the third delimited
substring and the new substring is inserted.

Ultimate BASIC 6929-3
ConfidentiaJ and Proprietary to The Ultimate Corp.

(" @ Function

Syntax

Description

6929-3

@ Function

The @ ("at" sign) function generates a string of control characters used
for cursor positioning or other tenninal or printer control features. The
tenninal or printer is affected when the string is later output to it with a
CRT, DISPLAY, or PRINT statement.

@(col { ,row})

col column to which the cursor is to be positioned; if it is negative,
the @ function returns a terminal control string as described in
Table 3-1; if the value of the @ function is less than -100, it
affects Ultimate-supported letter-quality printers as shown in
Table 3-2.

row row to which cursor is to be positioned; if not specified, and col
is positive, the cursor is assumed to remain on the current line.
However, if the tenninal on which the statement is executed
does not support column-only cursor positioning, the results
are unpredictable.

In general, the@ function, other than@(-I00) and lower, is not meant
for statements that are to be directed to the printer and may cause
unexpected results.

Columns and rows are numbered starting with zero (0), left to right and
top to bottom on the screen. When positioning the cursor, the values of
expressions used in the @ function should be within the column and
row limits of the screen; otherwise, the results are unpredictable.

The @ function generates values based on the current tenninal or printer
type for the port (line) on which the BASIC program is run. The tenninal
type is detennined by the most recent TERM comma.nd executed for the
port, or by a tenninal type logon parameter set up with the TERMINAL

command, or by the system's default tenninal type, which may be
changed with the SET-TERM command. These commands set up the
tenninal using parameters in the TERMDEF item for the specified
terminal type. The printer type is shown and changed with the PRINTER

Ultimate BASIC 3-21
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

command. For more information on these commands, please refer'to
the Ultimate System Commands Reference Guide.

Not all terminals or printers attached to terminal auxiliary ports respond
to all control codes listed here. The documentation for each terminal or
printer must be consulted for information about which features are
supported. IT a non-supported feature is used, a null string is returned.
IT a non-supported terminal is used, all cursor control characters return a
CR/LF.

x = 7

Y = 3

PRINT @(X,Y): Z

Q = @(3): "HI"

PRINT Q

A = 5

PRINT @(A,A+5):A

PRINT @(-1)

F = @ (-46)

Prints the current value of variable z
at column position 7 of row 3.

Prints "HI" at column position 3 of
current row.

Prints the value 5 at column position
5 of row 10.

Clears the screen and positions the
cursor at 'home' position.

Returns default values of function
keys.

CONVERT CHAR(251) :CHAR(250) TO CHAR(254) :CHAR(253) IN F
Puts values into dynamic array format

PRINT F<1>:F<2>:F<3,13>:'OFF':CHAR(13) :F<5>
Sets function key 13 to log user off
when pressed.

NW.CORNER =@(-49) [1,1]

NE.CORNER= @(-49) [3,1]

Upper left corner is fIrst position in
string; upper right corner is third.

HORIZONTAL = STR(@(-49) [2,1],10)

TOP = @(-50) :NW.CORNER:HORIZONTAL:NE.CORNER:@(-51)
PRINT @ (3, 3) : TOP Prints the top of a box with a comer

at each end.

Ultimate BASIC . 6929-3
ConfidentiaJand Proprietary to TheUitimaie Corp.

o

~ ..
'0

@ Function

Table 3-1. Cursor Control Values (1 of 8)

Code Description

@(-1) Clear the screen and positions the cursor at 'home'
(upper left corner of the screen).

@(-2) Position the cursor at 'home' (upper left comer).

@(-3) Clear from cursor position to the end of the screen.

@(-4) Clear from cursor position to the end of the line.

@(-5) Start blink.

@(-6) Stop blink.

@(-7) Start protected field.

@(-8) Stop protected field.

@(-9) Backspace the cursor one character.

(@(-1O) Move the cursor up one line.

@(-ll) Move the cursor down one line.

@(-12) Move the cursor right one column.

@(-13) Enable auxiliary (slave) port.

@(-14) Disable auxiliary (slave) port.

@(-15) Enable auxiliary (slave) port in transparent mode.

@(-16) Initiate slave local print.

@(-17) Start underline.

@(-18) Stop underline.

@(-19) Start reverse video.

@(-20) Stop reverse video.

@(-21) Delete line.

c @(-22) Insert line.

6929-3 Ultimate BASIC 3-23
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Table 3-1. Cursor Control Values (2 of 8) o
Code Description

@(-23) Scroll screen display up one line.

@(-24) Start boldface type.

@(-25) Stop boldface type.

@(-26) Delete one character.

@(-27) Insert one blank: character.

@(-28) Start insert character mode.

@(-29) Stop insert character mode.

@(-30,c) Set foreground and background color:

c background foreground
1 black cyan
2 black red
3 black blue
4 black green
5 black magenta
6 black yellow
7 black white
8 blue red
9 blue green

10 blue white
11 blue yellow
12 blue red
13 blue cyan
14 blue magenta
15 white red
16 white green
17 white blue
18 white cyan
19 white magenta
20 white black
21 red white
22 red green

3-24 Ultimate BASIC
Confidential and Proprietary to The U/ti';'ate Corp.

6929-3

--------------------- ... -.. --------~---------

@ Function

Table 3-1. Cursor Control Values (3 of 8)

Code Description

@(-31,f) Set foreground color:

f foreground
1 brown (may vary on some

tenninals)
2 white
3 red
4 magenta
5 yellow
6 green
7 cyan
8 blue

@(-32,b) Set background color:

b background
1 brown
2 white
3 black
4 red
5 blue
6 cyan
7 magenta

@(-33) Set 80 columns.

@(-34) Set 132 columns.

@(-35) Set 24 rows.

@(-36) Set 44 rows.

@(-37)- Reserved
@(-45)

6929-3 Ultimate BASIC 3-25
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-26

Table 3-1. Cursor Control Values (4 of 8)

Code Description

@(-46) Returns function key default values as a string in the
following fonnat:

sFBf'FBxlFA ... XnFBylFA ... ynFBeFB

s character sequence needed to set the overall
characteristics of the function line; typically,
this is null

FB CHAR(252)1
f lead-in sequence used to load function keys
xn value for function key n
FA CHAR(251)
yn value for shifted function key n
e tenninator for key text

@(-47) Returns character sequence needed to set the overall
characteristics for the label line (bottom line of
tenninal). The following infonnation is returned:

sFBf'FBxFByFBeFBr

s character sequence needed to set the overall
characteristics of the label line

FB CHAR(252)
f lead-in sequence used for label line
x lead-in sequence for unshifted label line
y lead-in sequence for shifted label line
e tenninator for text
r reset label line (turn off)

1 After the string is returned, the CONVERT function can be used to change the
delimiters to attribute marks (CHAR 254) and value marks (CHAR 253) if desired.
(Doing this converts the string to a dynamic array.)

Ultimate BASIC 6929-3
Confidential andProprietary to The Ultimate Corp.

o

o

@ Function

Table 3-1. Cursor Control Values (5 of 8)

Code Description

@(-48) Returns character sequence needed to set the overall
characteristics for the status line (top line of
terminal). The following infonnation is returned:

SFBfFBxFByFBeFBr

s character sequence needed to set the overall
characteristics of the status line

FB CHAR(252)
f lead-in sequence used for status line
x lead-in sequence for unshifted status line
y lead-in sequence for shifted status line
e terminator for text
r reset status line (turn off)

@(-49) Returns string that defines the graphics characters
codes for the current terminal; the exact characters
that will be displayed depend on the tenninal type.
Before the code is printed, the tenninal's graphic
capability must be turned on by an @(-50)
statement. After the graphics have been printed, the
graphic capability must be turned off by an@(-51)
statement.

The codes in @(-49) are single digits whose
meanings are determined by the position of the code
in the string. The first eleven positions in the string
define the following single line graphics characters:

6929-3 Ultimate BASIC 3-27
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Table 3-1. Cursor Control Values (6 of 8)

Code Description

1 r 7 T
2 - 8 1
3 I 9 .1
4 I 10 r
5 .J 11 +
6 L

The second set of eleven positions define the
following double line graphics characters:

12 F 18 lr

13 - 19 ~I -

14 11 20 JL

15 II 21 IF
16 :::!J 22 ..JL ,r
17 lb

The.23rd through 26th positions define other
graphic characters, depending on the tenninal type.

@(-50) Start graphics.

@(-51) Stop graphics.

@(-52) Start blink.

@(-53) Stop blink.

@(-54) Start reverse video.

3-28 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

@ Function

Table 3-1. Cursor Control Values (7 of 8)

Code Description

@(-55) Stop reverse video.

@(-56) Start reverse video and blink.

@(-57) Stop reverse video and blink.

@(-58) Start underline.

@(-59) Stop underline.

@(-60) Start underline and blink.

@(-61) Stop underline and blink.

@(-62) Start underline and reverse video.

@(-63) Stop underline and reverse video.

@(-64) Start underline, reverse video, and blink.

@(-65) Stop underline, reverse video, and blink.

@(-66) Start dim.

@(-67) Stop dim.

@(-68) Start dim and blink.

@(-69) Stop dim and blink.

@(-70) Start dim and reverse video.

@(-71) Stop dim and reverse video.

@(-72) Start dim, reverse video, and blink.

@(-73) Stop dim, reverse video, and blink.

@(-74) Start dim and underline.

@(-75) Stop dim and underline.

@(-76) Start dim, underline, and blink.

6929-3 Ultimate BASIC 3-29
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Table 3-1. Cursor Control Values (S of S)

Code Description

@(-77) Stop dim, underline, and blink:.

@(-7S) Start dim, reverse video, and underline.

@(-79) Stop dim, reverse video, and underline.

@(-SO) Set SO columns

@(-SI) Reserved

@(-S2) Set 132 columns

3-30 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

@ Function

Table 3-2. Letter-Quality Printer Control Values

Code Description

@(-101,p) Set VMI (Vertical Motion Index) to p.

@(-102,h) Set HMI (Horizontal Motion Index) to h.

@(-lO3) Set alternate font.

@(-104) Set standard font.

@(-lOS) Generate a half line-feed.

@(-106) Generate a negative half line-feed.

@(-lO7) Generate a negative line-feed.

@(-108) Print black ink.

@(-109) Print red ink.

(
@(-11O) Load cut sheet feeder.

@(-111) Select feederl.

@(-112) Select feeder2.

@(-113) Select standard thimble.

@(-lI4) Select proportional space thimble.

@(-l1S) Start automatic boldfacing.

@(-116) Stop automatic boldfacing.

@(-117) Start automatic underlining.

@(-118) Stop automatic underlining.

(.. '\
. /

6929-3 Ultimate BASIC 3-31
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

ABORT Statement

Syntax

Description

3-32

The ABORT statement tenninates program execution. If the program
was run from a PROC, the PROC is terminated as well.

ABORT {errnum{,param, param, ... }}

errnum error message number (item.id) in the ERRMSG file

param parameters to be used within the error message format; must
be separated by commas; may be variables or literals

An ABORT statement may be placed anywhere within the BASIC

program.

The ABORT statement displays the following message before tenninating
the program:

[B1] Run-time abort at line n

Line n is the program line number that contains the ABORT statement.

The STOP statement can also be used for program termination; STOP

does not terminate a PROC. (Refer to the STOP statement, listed
alphabetically in this chapter.)

PRINT 'PLEASE ENTER FILE NAME':

INPUT FN

OPEN FN TO FFN ELSE ABORT 201,FN

This program requests a file name from the user and attempts to open
the file. If an incorrect file name is entered, the standard system error
message "[201] 'xxx' IS NOT A FILE" is printed, followed by the BASIC

run-time message "[Bl] Run-time abort at line nil. The program is then
tenninated.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

(... "' . . y

ABS Function

Syntax

6929-3

ABS Function

The ABS function returns an absolute value.

ABS(expr)

expr any numeric expression; if expression is non-numeric or null,
zero is assumed

A = 100

B = 25

C = ABS(B-A)

Z n"

A ABS (Z)

Ultimate BASIC

The value 75 is assigned to C.

The value 0 is assigned to A.

Confidential and Proprietary to The Ultimate Corp.
3-33

Statements and Functions

ALPHA Function

Syntax

Description

3-34

The ALPHA function evaluates a specified expression for alphabetic
characters.

ALPHA(expr)

expr contains characters to test

Alphabetic characters are the 26 letters of the alphabet, in upper or lower
case. The null string ("11) is not considered to be an alphabetic string.

The ALPHA function returns a value of true (1) if all characters in the
given expression evaluate are alphabetic; if not, it returns a value of false
(0).

IF ALPHA(I CAT J) THEN GOTO 5

PRINT ALPHA(N) OR ALPHA(M)

Ultimate BASIC

Transfers control to statement label 5
if .current value of both variables I and
J are alphabetic strings.

Prints a value of 1 if the current value
of either M or N is an alphabetic
string.

6929-3
Confidential and Proprietary to The Ultimate Corp:

o

c

ASCII Function

(" ASCII Function

Syntax

Description

6929-3

The ASCII function returns the ASCII value of an EBCDIC string.

ASCII(expression)

expression string value to be converted from EBCDIC to ASCII

The inverse function, EBCDIC, is discussed as a separate function.
(Please refer to the EBCDIC function, listed alphabetically in this
chapter.)

For a list of ASCII values, refer to Appendix D.

READT X ELSE STOP

Y = ASCII (X)

Reads a record from tape and assigns
value to variable X. Assigns ASCII

value of record to variable Y.

Ultimate BASIC 3-35
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

BEGIN CASE Statement

3-36

The BEGIN CASE statement is the ftrst statement in the CASE statement
sequence.

Please refer to the CASE statement for information about the entire CASE

statement sequence.

Ultimate BASIC 6929-3
Confidential and Proprietary io The Ultimate Corp.

o

o

(

BREAK Statement

BREAK Statement

Syntax

Description

6929-3

The BREAK statement controls the BREAK key on the terminal through a
BASIC program.

BREAK {KEY} OFF
BREAK {KEY} ON
BREAK {KEY} expr

expr determines setting; must evaluate to a numeric value; a value of
zero (0) is equivalent to OFF, and all other values are equivalent
to ON.

The BREAK OFF statement disables the BREAK key on the terminal.
When disabled, the BREAK key cannot be used to stop a program from
executing. This is useful when the BREAK key must not be operative
during critical processes such as file updates.

The BREAK ON statement enables the BREAK key on the terminal. When
enabled, the BREAK key is set to its normal state.

Setting the BREAK key is cumulative. That is, each time a BREAK

statement is encountered, the system increments or decrements by one,
as appropriate, a counter called the BREAK inhibit counter. For
example, if three BREAK OFF statements are encountered, three BREAK

ON statements must be encountered before the BREAK key is enabled.
Therefore, an equal number of BREAK ONs and BREAK OFFs must be
executed to restore a breakable status.

The expression form of BREAK KEY increments or decrements the
BREAK inhibit counter by one, as appropriate.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-37

--- --- -------- .. __ . __ .. ---_ .. - ._-_ .. --_ .. _-

Statements and Functions

3-38

BREAK OFF

GOSUB UPD.FILES

BREAK ON

F = 0

BREAK F

F = 1
BREAK KEY F

Ultimate BASIC

Disable BREAK key

Enable key after fIle update

Disable BREAK key

Enable BREAK key

Confidential and Proprietary to The Ultimate Corp.

o

6929-3

CALL Statement

(:', CALL Statement

Syntax

Description

6929-3

The CALL statement provides external subroutine capabilities for a
BASIC program. An external subroutine can be called directly or

indirectly.

CALL {@}subr.name {(argument list) }

@ specifies an indirect call; subroutine name has been
assigned to a variable

subr.name item name of a program; if @ is not used, the name
cannot have any characters other than letters, numbers,

and periods in it. If the @ is present, subr.name is a
variable containing the name of the external subroutine to
be called

argument list one or more expressions, including literal values,
separated by commas, that represent actual values passed
to the subroutine. The argument list can pass an array to
a subroutine by preceding the array argument with the
word MAT. An argument list may continue on multiple
lines; each line except the last must conclude with a
comma and comments that start with an asterisk (*) may
be included on each continuation line. The comments
must be separated from argument list by a semicolon (;).

An external subroutine is a subroutine that is compiled separately from

the program or programs that call it.

The CALL statement fIrst looks for the subroutine as a cataloged entry in
the account's master dictionary; if the subroutine is not there, the CALL

statement then looks for a compiled program in the file that contains the
mainline program that is being executed.

Subroutines may be opened to a variable by the OPEN statement, then
used in an indirect call. This greatly enhances the performance of
indirect subroutine calls. For details, refer to the OPEN statement listed
alphabetically in this chapter.

Ultimate BASIC 3-39
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-40

The CALL statement with no @ is a direct call, and transfers control to
the external subroutine.

There is no correspondence between variable names in the calling
program and variable names in the subroutine. The only information
passed between the calling program and the subroutine are the values of
the arguments; the values correspond in order of the variables in the
argument list.

Variables may also be declared in COMMON and named COMMON areas
and passed between the main program and its subroutines. For details,
refer to the COMMON statement listed alphabetically in this chapter.

External subroutines may call other external subroutines, including
themselves.

The SUBROUTINE statementmustbe used in conjunction with CALL.
The called external subroutine must begin with a SUBROUTINE statement
and must contain a RETURN statement. For details, refer to the
SUBROUTINE statement listed alphabetically in this chapter.

The CALL statement checks to see that the appropriate number of
arguments has been passed to the subroutine by the calling program. If
not, CALL prints an error message and aborts to the BASIC Debugger.

If the correct number of arguments has been passed, the CALL statement
evaluates the arguments and assigns their values to the corresponding
variables named in the subroutine's SUBROUTINE statement. These
variables may subsequently be assigned new values by the subroutine.

When the RETURN statement in the subroutine is executed, control is
returned to the CALLing program and variables used as subroutine
arguments are updated to reflect the most recent values of the
corresponding variables in the subroutine. Constants and literals used
as subroutine arguments are not affected.

Care should be taken not to update the same variable referenced by more
than one name in an external subroutine. This can occur, for example,
if a variable in COMMON is also passed as a subroutine argument.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

o

c

(

Passing
Arrays

6929-3

CALL Statement

If the execution of the subroutine is tenninated before the RETURN is
executed (such as by executing a STOP statement), control never returns
to the calling program.

CALL REVERSE (A,B)

CALL REPORT

Subroutine REVERSE has two
arguments.

Subroutine REPORT has no
arguments.

* Comments CALL VENDOR (NAME,

ADDRESS, NUMBER) The arguments for VENDOR are
continued on to the next line;
comments can be included on multiple
lines

CALL DISPLAY (A,B,C) Subroutine DISPLAY has three
argument.

Dimensioned arrays can be passed as parameters to the external
subroutines by preceding the array name with MAT:

CALL subr.name (MAT array. name)

The array must be dimensioned in both the calling program and the
subroutine. Array dimensions may be different, as long as the total
number of elements matches.

Arrays are copied in row major order; that is, all columns in row 1 are
copied before the first column in row 2.

N ole: An element in an array can be passed or the entire array can be
passed; however, they s/wuld not be passed in the same CALL

statement. If both an element from an array and the array itself
are passed, the results are unpredictable.

Ultimate BASIC 3-41
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Calling Program
DIM A(4,10),B(10,5)

CALL REV (MAT A,MAT B)

----- --------

Subroutine
SUBROUTINE REV (MAT C,MAT B)

DIM C(4,-10), B(50)

Subroutine REV accepts two input array variables, one of size 40 and
one of size 50 elements.

DIM X(4,5)

CALL COPY (MAT X)

END

SUBROUTINE COpy (MAT A)

DIM A(10,2)

PRINT A (8, 1)

RETURN

END

In this subroutine the parameter passing facility is used to copy array X

specified in the CAll statement of the calling program into array Aof
the subroutine. Printing A(8,1) in the subroutine is equivalent to
printing X(3,5) in the calling program.

Ultimate BASIC 6929-3
Confidential and Proprietary to the Ultimate Corp.

(

(-

CASE Statement

CASE Statement

Syntax

Description

6929-3

The CASE statement provides conditional selection of a sequence of
BASIC statements.

BEGIN CASE

CASE expression
statements

CASE expression
statements

END CASE

The indentations are for clarity and are not required.

If the logical value of the expression is true (non-zero), the statements
that immediately follow, up to the next CASE or END CASE, are
executed, then control passes to the statement following END CASE. If
the expression is false (zero), control passes to the next CASE

expreSSIOn.

The expression CASE 1 is always true and can be used to force control
to a series of statements.

BEGIN CASE

CASE Y=B

Y=Y+1

END CASE

BEGIN CASE

CASE A=O; GOTO 10

CASE A<O; GOTO 20

CASE 1; GOTO 30

END CASE

Ultimate BASIC

Increment y if y is equal to B.

This is equivalent to the statement
IF Y=B THEN Y=Y+1.

Program control branches to the
statement with label 10 if the
value of A is zero; to 20 if A

is negative; or to 30 in all other
cases (CASE 1 is always true).

3-43
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

CHAIN Statement

Syntax

Description

3-44

The CHAIN statement terminates program execution and passes control
to a specified TCL command. Control is not returned to the BASIC
program that invokes the CHAIN statement.

CHAIN "TCL.command"

TCL.command any valid verb orPROC name in the user's Master
Dictionary

The TCL command may be used to initiate another BASIC program using
values from the first program. The variables in one program that are to
be passed to another program must be in the same location. (Variables
are allocated in the order in which they first appear in a program, except
that arrays are allocated in the order of their DIM statements after all
other variables are allocated.) The variable names do not need to
correspond; only the order is significant.

In order to use the variables from the first program in the CHAINed-to
program, the program must be executed with the RUN verb with the I
option. (The I option specifies that the variables are not to be initialized.)
This causes the variables to take on values from variables in the first
program, since variable data is always stored beginning at the same
location in a user's workspace.

Caution! The workspace areas usedfor variable storage are also used
by other system software. Their contents cannot be
guaranteed when CHAINing from one BASIC program to
another if there is any intermediate processing. For
example, CHAINing to a PROC that performs a Recall
SELECT statement before it invokes a BASIC program with
the I option, causes the contents of the BASIC program's
variables to be unpredictable.

It is illegal to CHAIN from an external subroutine, but legal to CHAIN to a
program that calls a subroutine.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

c······.1t'·· ',"" .)

(

(

6929-3

CHAIN "RUN FNl LAX (I)"

CHAIN Statement

Executes program LAX in file FNl. I
option specifies that data area is not to
be initialized; the program invoking the
CHAIN statement passes values to
program LAX.

CHAIN "RUN BP ABC" Invokes the program ABC in file BP.

Because the I option is not used, values
are not passed to program ABC.

Program ABC Executes program XYZ. The I option
A=500 specifies that the variable data area is
B=l; C=2 not to be initialized; thus, program ABC

CHAIN "RUN BP XYZ (I" passes the values "500", "1", and "2"
END to program XYZ.

Program XYZ: Program XYZ, in tum, prints the values
PRINT X

PRINT Y

PRINT Z

END

CHAIN "LISTU"

"500", "1", and "2" since they were
allocated and passed in that order.

Invokes the LlSTU PROC.

CHAIN "LIST CUSTOMERS" Invokes the LIST Recall Verb.

Ultimate BASIC 3-45
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

CHAR Function

Syntax

Description

3-46

The CHAR function converts a numeric value to its corresponding ASCII

character value.

CHAR (expression)

expression numeric value to be converted to ASCII character string
value; if the value of expression is greater than 255, then
CHAR(expression) = CHAR(expression MOD 256).

CHAR always returns one character:

The inverse function, SEQ, is discussed as a separate function. For
details, please refer to the SEQ function, listed alphabetically in this
chapter.

For a complete list of ASCII codes, refer to Appendix D of this manual.

VM = CHAR(253)

x = 252

SVM = CHAR(X)

FOR I = 65 TO 90

PRINT CHAR(I)

NEXT I

Ultimate BASIC

Assigns.the string value for a value
mark to variable VM.

Assigns the string value for a
subvalue mark to variable SVM.

Prints upper case letters of the
alphabet.

6929-3
Confidential and Proprietary to The Ultimate Corp.

o

C;
"

CLEAR Statement

CLEAR Statement

Syntax

Description

6929-3

The CLEAR statement is used to initialize variables to a value of zero.

CLEAR

The CLEAR statement assigns the value 0 to all simple variables and
array variables. The CLEAR statement does not initialize COMMON or
named COMMON variables.

The CLEAR statement may appear anywhere in a program.

X 7

CLEAR Assigns zero to all variables.

Ultimate BASIC 3-47
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

CLEARDATA Statement o

Syntax

Description

3-48

The CLEARDATA statement removes all data that has been pushed on to
the stack with the DATA statement.

CLEARDATA

The CLEARDATA statement is useful to ensure that the stack is empty so
that terminal input can be requested.

All data previously placed on the stack and not yet used is removed,
even when that data stack has been established by a PROC.

After CLEARDATA has been executed, subsequent INPUT statements will
request terminal input unless another DATA statement is executed
between the CLEARDATA and the INPUT statements.

For information on clearing the type-ahead buffer, see the INPUTCLEAR !~

statement, listed alphabetically in this chapter. \'v

DATA '123'

DATA '456'

DATA '789'

INPUT A;PRINT

INPUT B;PRINT

CLEARDATA

INPUT C;PRINT

result:
A = 123

B = 456

'A = , :A

'B = , :B

'C = , :C

The fIrst two stacked DATA elements
are used to satisfy the fIrst two INPUT

statements. The third stacked DATA

element ('789') is removed from the
stack, allowing input to be requested
from the terminal to use as the value
of variable C.

? (waiting for input from the terminal)

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp ..

CLEARFILE Statement

C: CLEARFILE Statement

o

Syntax

Description

UltiNet
Considerations

6929-3

The CLEARFILE statement clears all data from a specified file.

CLEARFILE {file.var} {ON ERROR statements}

file.var

statements

the variable to which the file which was previously
assigned via the OPEN statement; if the file.var is omitted,
the internal default file variable is used (thus specifying the
file most recently opened without a file variable)

statements to be executed if the file is a remote file, that is
accessed via UltiNet, and it cannot be cleared due to a
network error condition. In this case, the value of
SYSTEM(O) indicates the UltiNet error number. (Refer to
the SYSTEM function, listed alphabetically in this chapter;
for more information about remote files, refer to the
UltiNet User's Guide.) The ON ERROR clause has no
effect when clearing local files.

The statements may be on a single line or on multiple lines.
If multiple lines are used, the clause must be terminated by
an END statement as in the multi-line IF statement.

CLEARFILE deletes the data in the file, but not the file itself.

The BASIC program aborts with the appropriate error message if the
specified file has not been opened prior to the execution of the
CLEARFILE statement. (For a description of run-time messages, see
Appendix B.)

The ON ERROR clause allows the program to retrieve the UltiNet error
number and take appropriate action. Such action could, for instance,
include printing the associated message text via a PUT statement or STOP

statement, and resuming or terminating program execution.

If a remote file cannot be cleared due to network errors and no ON

ERROR clause is present, the program terminates with an error message.

Ultimate BASIC 3-49
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-50

OPEN 'FILEA' TO A ELSE STOP

OPEN 'DICT FILEB' TO D.B ELSE STOP

CLEARF I LE A Clears the data section of file FILEA

CLEARFILE D.B and the dictionary section of FILEB.

OPEN 'ABC' ELSE STOP 201, 'ABC'

READ Q FROM 'IB3' ELSE STOP 780, , IB3 '

IF Q<5>='TEST' THEN CLEARFILE

Ultimate BASIC

Clears the data section of file ABC if
the fifth attribute of the item IB3 has a
string value of 'TEST'.

6929-3
Confidential and Proprietary to The Ultimate Corp.

,('''' '", .;i

c

('

CLEARSELECT Statement

CLEARSELECT Statement

Syntax

Description

6929-3

The CLEARSELECT statement cancels a specified select list.

CLEARSELECT {select. variable}

select.variable select list to clear; if omitted, the program's internal
default select variable is used

Once the list is cleared, any subsequent READNEXT using the cleared
select variable executes its ELSE statements (if any).

For more information on select lists, see the READNEXT and SELECT

statements, list alphabetically in this chapter.

SELECT MASTER. FILE TO MASTER. LIST

100 READNEXT CUST FROM MASTER. LIST ELSE GOTO 999

CLEARSELECT MASTER. LIST

GOTO 100

A select list is created in the variable MASTER.LIST. The list is later
cleared. If the READNEXT statement is executed after the
CLEARSELECT statement, the program transfers to the routine at 999.

Ultimate BASIC 3-51
Confidential and Proprietary to The Ultimate Corp.

------_._------_._. ---- ._----- ------ --_. -------------

Statements and Functions

CLOSE Statement o

Syntax

Description

3-52

The CLOSE statement closes a file by breaking the connection between
that file and a file variable. The file must have been previously
connected to the file variable via an OPEN statement.

CLOSE {file. var} {ON ERROR stmts}

file.var file variable to use in closing the file; if file. var is
omitted, the internal default file variable is assumed

ON ERROR stmts statements to be executed if the file is a remote file
accessed via UltiNet and it cannot be closed due to a
network error condition. In this case, the value of
SYSTEM(O) indicates the UltiNet error number.
(Refer to the SYSTEM function, listed alphabetically
in this chapter; for more information about remote
files, refer to the UltiNet User's Guide.) The ON

ERROR clause has no effect when local files are being i~

closed. \0

The statements may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF

statement.

When an Ultimate data file is opened, file items are always read into and
written from a file variable. The OPEN statement establishes a
connection between the file and the BASIC file variable. The file variable
may be explicitly named in the OPEN statement. If no file variable is
named, the internal default file variable is used.

The CLOSE statement closes the file indicated by the file variable, or by
the internal default file variable if no file variable is specified. In the
latter case, it would close the file most recently opened by an OPEN

statement without a file variable. If the file is not currently connected to
the file variable, an error message is generated and the program aborts to

the BASIC debugger. For more information about opening files, refer to C .. ,!
the OPEN statement, listed alphabetically in this chapter. .

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

("'
, .,./.

('

UltiNet
Considerations

6929-3

CLOSE Statement

Closing a file breaks the connection between a file and the specified file
variable. In order to use the specified closed file variable again in
statements such as READ or WRITE, the variable must be reconnected to
a file by another OPEN statement.

If the file is opened to more than one file variable, only the file variable
explicitly stated in the CWSE statement is disconnected; the file remains
connected to all other file variables.

Local files do not need to be closed with a CLOSE statement. A file is
implicitly closed whenever a file variable (including the internal default
file variable) is assigned a new value, such as in an OPEN statement or
Assignment statement. That is, if a file has been opened to a file
variable, it is not necessary to CWSE the file variable before assigning it
a different value. Also, all open files are automatically closed when a
program terminates execution.

When working with remote files, however, the advantage of closing a
file when it is no longer needed in a program is that the corresponding
remote open-file table entry is freed. Since the number of entries in this
table is limited, freeing unused connections could allow greater use of
the network. On the other hand, excessive opening and closing of
remote files would merely increase network traffic and decrease
program efficiency.

The purpose of the ON ERROR clause is to allow the program to retrieve
the UltiNet error number and take appropriate action. Such action
could, for instance, include printing the associated message text via a
PUT statement or STOP statement, and resuming or terminating program
execution. For more information, see the PUT and STOP statements,
listed alphabetically in this chapter.

If a remote file cannot be closed due to network errors and no ON

ERROR clause is present, the program terminates with an error message.

Ultimate BASIC 3-53
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-54

CLOSE

CLOSE F

CLOSE F ON ERROR

ERRNUM=SYSTEM(O)

GOSUB PROCESSERR

GOTO TOP

END

Ultimate BASIC

Closes file most recently opened
without a file variable.

Closesftle OPENed to file variable F.

Closes file opened to F, or retrieves
error number and performs local
subroutine on UltiNet error number.

6929-3
Confidential and Proprietary to The Ultimate Corp.

----"----- --- -

o

o

C:

COL 1 and COL2 Functions

COL 1 and COL2 Functions

Syntax

Description

6929-3

The COLi 0 and COL20 functions return the numeric values of the
column positions immediately preceding and immediately following the
substring selected by the most recent FIELD function.

COLi 0
COL20

The COL functions are used in conjunction with the FIELD function.
COLi 0 returns the numeric value of the column position immediately
preceding the substring selected by the most recent FIELD function.
COLi 0 returns zero if the substring is not found.

COL20 returns the numeric value of the column position immediately
following the substring selected by the most recent FIELD function.
COL20 returns zero if the substring is not found.

B = FIELD("XXX.YYY.ZZZ.555",".",2)

BEFORE = COLl () Assigns the numeric value 4 to variable
BEFORE; the value "yyy", which is
returned by the FIELD function, is
preceded in the original string by
column position 4.

B = FIELD("XXX.YYY.ZZZ.555",".",2)

AFTER = COL2 () Assigns the numeric value 8 to the
variable AFTER; the value "yyy",

which is returned by the FIELD
function, is followed in the original
string by column position 8.

Q FIELD ("ABCBA", "B", 2) Assigns the string value "c" to variable
R COLl () Q, the numeric value 2 to variable R,

S COL2 () and the numeric value 4 to variable s.

Ultimate BASIC 3-55
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

COMMON Statement

Syntax

Description

3-56

The COMMON statement is used to pass values between programs.

COM{MON} {/name/} varl,var2, ...

name name to be given to common area; must be enclosed
within slashes (J)

varl,var2,... names of variables to be included in COMMON area

The COMMON statement allows one or more variables to be shared by a
main program and its external subroutines without having to pass the
variables as parameters on each subroutine call. The list of variables
may be continued on several lines; each line except the last must end
with a comma.

File variables may be declared in COMMON; files that are opened in one
program or subroutine are shared by all.

Fixed dimensioned arrays that are to be used in common must have their
dimensions specified in a COMMON statement rather than in a DIM
statement. This is accomplished by specifying the dimensions in
parentheses after the array name, as in the DIM statement; for example:

COMMON A (10)

A variably dimensioned array may be specified in a COMMON statement
by using 0 (zero) as the size of the array. However, the array must
then also be specified in a DIM statement. Variably dimensioned arrays
cannot be specified in named COMMON statements.

The values in the COMMON areas can be examined and modified within
a program as necessary.

All variables, including COMMON variables, are allocated space in the
order in which they appear. Therefore, to ensure that they have the
expected values, COMMON variables should be declared before any

. Ultimate BASIC . 6929-3
Confidential and Proprietary to The Ultimate Corp.

c

(.... '
.,}v

6929-3

COMMON Statement

other variables. For more information, see the section Variable
Allocation in Chapter 2.

COMMON variables differ from subroutine arguments used with the
CALL statement in that the actual storage locations of COMMON variables
are shared, whereas subroutine arguments are copied to local variables
on entry to a subroutine and copied back to the calling program on exit.
COMMON variables, then, may be used to increase program efficiency.

COMMON variables (including arrays and file variables) may be referred
to by different names in different routines since they are accessed by
their relative position in the COMMON area, rather than by name.
However, it is not recommended to use different names.

MAINPROG SUBR

COMMON X, Y, Z(5) COMMON Q, R, S(5)

Variable X in MAINPROG above refers to the same location as variable Q
in SUBR; yin MAINPROG refers to the same location as R in SUBR; and
array Z in MAINPROG refers to the same set of locations as array S in
SUBR.

Ultimate BASIC 3-57
Confidential and Proprietary to The Ultimate Corp.

- .. __ ._----

Statements and Functions

Named
COMMON
Areas

3-58

In MAINPROG:

COMMON A,B,C(10)

A = "NUMBER"

B = "SQUARE ROOT"

FOR I = 1 TO 10

C(I) = SQRT(I)

NEXT I

CALL SUBPROG

PRINT "DONE"

In SUBPROG:

COMMON X(2),Y(10)

PRINT X(l), X(2)

FOR J = 1 TO 10

PRINT J, Y(J)

NEXT J

RETURN

COMMON X(O)

DIM X (0)

Variables A, B, and array C are
allocated space before any other
variables.

Subroutine call to program SUBPROG.

The 2 elements of array x contain
respectively, the values of A and B

from the main-line program. The
array Y contains the values of C from
the main-line program.
Returns to main-line program

VariabIe dimensioned array in
COMMON must also be defined in a
DIM statement.

Variables within named COMMON areas are associated with the named
area; the order in which the COMMON areas are defined is not
important. However, within each named COMMON area, the order in
which the COMMON variables are defined is important as the variables
are allocated space in the order in which they appear.

Variables in named COMMON areas are initialized to nulls.

The named COMMON statements must be executed; the areas are
assigned at runtime and if the statements are branched around or in any
other way not executed, the named COMMON areas are not assigned.

Named COMMON areas are associated with a port; each port on the
system has its own set of named COMMON areas. The TCL command
LIST-NAMED-COMMON can be used to list the set of named COMMON

areas for the current port.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

c

(

6929-3

COMMON Statement

Named COMMON areas remain until the pon is logged off or until the
area is canceled by the RELEASE /name/ statement. Values of variables
in a named COMMON area retain their value as long as the COMMON area
remains.

Variables in named COMMON areas are available to all programs that are
executed, not just subroutines that are CALLed. Two different programs
can be executed with the same named COMMON area; the value of the
variables are passed from one program to the other. If you nest
EXECUTE statements within programs, a named COMMON established at
one level is available to all other levels.

Each named common area counts as one variable, regardless of the
number of variables in the area. The maximum number of variables in a
named COMMON area is 3223. More than one named COMMON area can
be used in a program.

In program I:

COMMON /PEOPLE/ NAME,ADDRESS,STATE,TOTAL

Named common areas with four
elements

IF STATE = 'CAl THEN EXECUTE 'CA. CALC' CAPTURING TAX

In program CA.CALC

COMMON /PEOPLE/ NAME,ADDRESS,STATE,TOTAL

TAX = TOTAL... Uses named common areas defined in
PRINT TAX program that executed this program

END

Ultimate BASIC 3-59
Confidential and Proprietary to The Ultimate Corp.

._-_. ---_ __ .- ----- ---------- ---- -------

Statements and Functions

CONVERT Statement

Syntax

Description

3-60

The CONVERT statement converts all occurrences of a character in a
string to another character.

CONVERT search.expr TOlreplace.expr IN var

search.expr expression evaluating to a list of one or more characters
to be converted

replace.expr expression evaluating to a corresponding list of
replacement characters

var string variable in which characters are to be converted

The search expression and replace expression correspond on a 1-for-l
basis. If the search expression contains more characters than the replace
expression, any of the excess search characters found in var are deleted.

If the replace expression contains more characters than the search
expression, the excess replacement characters are ignored.

UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

LOWER = 'abcdefghijklmnopqrstuvwxyz'

STRING = 'the quick brown fox'

CONVERT LOWER TO UPPER IN STRING

result:
STRING = 'THE QUICK BROWN FOX'

All lower case letters were converted to their upper case form. This
example is equivalent to using the output conversion function
OCONV(STRING,'MCU') (mask characters upper case).

A = "John Smith, 12 Main Street, Costa Mesa, CA"

CONVERT "," TO @FM IN A

result:

A = "John Smith" 12 Main Street" Costa Mesa" CA"

The comma was converted to an attribute mark in A.

Ultimate BASIC _
Confidential and Proprietary to rhe Ultimate Corp.

6929-3

o

COS Function

c- COS Function

Syntax

Description

(~

6929-3

The cos trigonometric function returns the cosine of an angle expressed
in degrees.

COS(expression)

expression specifies the number of degrees in the angle

Values that are less than 0 or greater than 360 are adjusted to that range
by modulo 360.

A = 60

PRINT cos (A)

A = 420

PRINT cos (A)

Ultimate BASIC

Prints 0.5

Adjusts to 60, then prints 0.5.

Confidential aQd Proprietary to The Ultimate Corp.
3-61

--- ---------

Statements and Functions

COUNT Function

Syntax

Description

3-62

The COUNT function counts the number of occurrences of a substring
within a string.

COUNT(string,substring)

string characters to search; may be any valid expression and may
contain any number of characters

substring characters to search for; may be any valid expression and
may contain any number of characters

If the substring is not found, COUNT returns a value of zero.

If the substring specification is null, COUNT function returns the number
of characters in the string (that is, a null matches on any character.)

A variation of the COUNT function is DCOUNT, which is particularly
useful for counting elements in dynamic arrays. (See DCOUNT, listed
alphabetically in this chapter.)

If the substring contains a repeating sequence, the count overlaps the
sequences. For example, if the string contains the sequence ABABABAB

and you wish to count the occurrences of ABAB, 3 is returned as the
count.

A = "1234ABC5723" Value returned in X is 2 since there
x = COUNT (A, , 23') are two occurrences of '23' in the

string A.

A = "12" :AM: "ABC" :AM: "57" Value returned in X is 2 since there
x = COUNT (A, AM) are two occurrences of an attribute

mark (AM) in the string A.

x = COUNT (, ABCDEFG I , "") Value returned in X is 7 since a null
substring matches any character.

Ultimate BASIC 6929-3
Confidentialand Proprietary to The Ultimate CorP.

o

c

("

CRT Statement

CRT Statement

Syntax

Description

6929-3

The CRT statement displays specified output at the tenninal and is a
synonym for the DISPLA Y statement.

CRT expression

expression may contain any valid BASIC expression, fonnatting
operators, and @ functions; if the print-list is absent, only
a carriage return and line feed are output

The CRT statement can be used interchangeably with DISPLAY to print
data at the terminal. The CRT statement is similar to the PRINT

statement, except for the following:

• output from the CRT statement is always directed to the terminal,
regardless of PRINTER ON statements or the P option on the RUN verb

• output of the CRT statement cannot be captured using the OUT. or
CAP'IURING clause in an EXECUTE statement; any output specified by
CRT continues to be directed to the terminal

• output is not counted for purposes of detennining line spacing for
HEADING, FOOTING, or PAGE statements

PRINTER ON

LOOP

CRT "ALIGNED?":

INPUT ANS

UNTIL ANS="Y" DO

PRINT FIRSTLINE

PAGE

REPEAT

Ultimate BASIC

Causes PRINT statements to print
on printer.
Displays message on tenninal.
Requests operator input.

Prints on printer.
Eject page.
Repeat until "Y" entered at tenninal.

3-63
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

DATA Statement

Syntax

Description

3-64

The DATA statement is used to store data for stacked input.

DATA expression {,expression ... }

expression may be any valid expression, and any number of
expressions may be included in one DATA statement; each
expression becomes one line of stacked input data. The
list of expressions may continue on several lines; each line
except the last must end with a comma.

Each expression in a DATA statement generates one line of stacked
input. Normally, an input request such as from an INPUT statement
prints a prompt character on the terminal and waits for the user to enter
data. When stacked input is present, however, each input request
causes a line of data to be taken from the input stack, until the stack is
empty or the program terminates and returns to TCL, at which time the
input stack is unconditionally cleared.

DATA statements can be used to prestore input for other BASIC programs
invoked by either the EXECUTE or CHAIN statement. One BASIC

program can set up parameters using DATA statements and then invoke
the next program, which retrieves the parameters with INPUT statements.
For more information, see the EXECUTE and CHAIN statements listed
alphabetically in this chapter.

Stacked input may also be generated by the EXECUTE statement and by a
PROC. For more information, see the EXECUTE statement listed
alphabetically in this chapter. For more information on PROCs, see the
Ultimate FROC Reference Guide.

Note: The first DATA statement in a program overwrites any
unprocessed stacked input from a FROC.

Stacked input is removed in the same order that it is added via DATA

statements.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

1(.. -"
~/

(

6929-3

DATA Statement

For infonnation on clearing the data stack, see the CLEARDATA

statement listed alphabetically in this chapter.

DATA A

DATA B

DATA C

CHAIN 'RUN BP TEST'

Ultimate BASIC

Stacks the values of A, B, and C for
subsequent input requests. The first
three input requests in program 'TEST'

are satisfied by the stacked input.

3-65
Confidential and Proprietary to The Ultimate Corp.

-- - ------

Statements and Functions

DATE Function

Syntax

Description

3-66

The DATE function returns the current internal date.

DATEO

The internal date is the number of days since December 31, 1967.

The internal format is useful for sorting and comparisons, since the
information is in numeric format.

For information on converting the internal date to external format, see
the OCONV statement listed alphabetically in this chapter.

Q DATE () Assigns string value of current
internal date to variable Q; for
example, 7800

PRINT OCONV (DATE () , 'D') Converts the internal date to dd mon
yyyy format, then prints it; for
example, if internal date is 7800,
prints 09 MAY 1989

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

-----------~- .. _--

o

c

DCOUNT Function

(~~ DCOUNT Function

Syntax

Description

(-

6929-3

The OCOUNT function counts the number of substrings in a string that
are separated by a specified delimiter. It returns the number of
substrings counted.

DCOUNT(string,delimiter)

string specifies the string to examine.

delimiter delimiter to use; may be string of more than one character.

The function returns the number of substrings within the string that are
separated by the delimiter. If the string is null, a value of zero is
returned. If the delimiter is null, the value returned by OCOUNT is the
number of characters in the string plus one.

Note that OCOUNT is similar to the COUNT function. However, the
DCOUNT function differs from the COUNT function in that OCOUNT

returns a count of substrings separated by the specified delimiter, rather
than the number of occurrences of the delimiter within the string and,
unless the string is null, is equivalent to COUNT + 1. (Please refer to the
COUNT function, listed alphabetically in this chapter.)

The OCOUNT function is useful in manipulating Ultimate data files. It
may be used to count the number of attributes in an item, or the number
of values (or subvalues) within an attribute.

Note: In theiollowing examples, "represents an attribute mark,]
represents a value mark.

Ultimate BASIC 3-67
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-68

Value returned in X is 3.

x = DCOUNT(A,@FM)

A = "123] 456"ABC]DEF] HIJ" Value returned in X is 2 as there
x = DCOUNT(A<l>,@VM)

A = It"

x = DCOUNT(A,@FM)

A = ABC"DEF"GHI"JKL

X = COUNT(A,@FM)

x = DCOUNT(A,@FM»

Ultimate BASIC

are two values in the first attribute.

Value returned in X is 0 since the
string is nulL

COUNT (number of delimiters) is 3
DCOUNT (number of substrings) is 4

6929-3
Confidentilv andPtoprieta,y to The Ultimate Corp.

c

c

(

('

DEL Statement

DEL Statement

Syntax

Description

6929-3

The DEL statement deletes the specified attribute, value, or subvalue
from a dynamic array.

DEL variable <attrib.no {, val. no {, subval.no} } >

variable name of dynamic array

attrib.no position of the attribute to be deleted

val.no position of value to be deleted

subval.no position of subvalue to be deleted

The numbers must be enclosed in angle brackets. For example,
<3,5,1> denotes attribute 3, value 5, subvalue 1.

This statement performs the same operation as the DELETE function, but
in addition, the DEL statement stores the result back into the source
variable. For more information see the DELETE function listed
alphabetically in this chapter.

DEL NAMELIST<5>

DEL PAYHIST<2,4,6>

Ultimate BASIC

Deletes attribute 5 from variable
NAMELIST.

Deletes subvalue 6 from value 4 in
attribute 2 of variable PAYHIST.

3-69
Confidential and Proprietary to The Ultimate Corp_

Statements and Functions

DELETE Function

Syntax

Description

3-70

The DELETE function returns a dynamic array with a specified attribute,
value, or subvalue deleted.

DELETE(var,attrib.no{,val.no{, subval.no}})

var dynamic array to be used in the function

attrib.no position of the attribute to be deleted

val. no position of value to be deleted

subval.no position of subvalue to be deleted

If val.no and subval.no have a value of 0 or are absent, the attribute
specified by attrib.no is deleted. If val.no is present and subval.no is
absent or has a value of 0, the value specified by val.no is deleted. If
attrib.no, val.no, and subval.no are all non-zero, the subvalue specified
by subval.no is deleted. The associated delimiter is also deleted.

The specified element is deleted in the returned array, not in the original
array.

For a related statement, see the DEL statement listed alphabetically in this
chapter.

Y = DELETE (X, 3)

A=1;B=2

DA = DELETE(DA,A,B)

PRINT DELETE{X,7,1)

Ultimate BASIC

Assigns to Y the dynamic array
obtained by deleting attribute 3 and its
delimiter from dynamic array X.

Deletes value 2 and its delimiter from
attribute I of dynamic array DA.

Prints the dynamic array that results
when value I of attribute 7 of dynamic
array X is deleted.

6929-3
Confidential and Proprietary to The Uhimate Corp.

()

c

(

DELETE Statement

DELETE Statement

Syntax

Description

UltiNet
Considerations

6929-3

The DELETE statement deletes an item from a file.

DELETE {file.var,} item.id {ON ERROR stmts}

file.var

item.id

variable to which file was OPENed; if omitted,
internal default file variable is used; the default is the
file most recently opened without a file variable

name of item to delete

ON ERROR stmts statements to be executed if the file is a remote file,
that is accessed via UltiNet, and it cannot be accessed
due to a network error condition. In this case, the
value of SYSTEM(O) indicates the UltiNet error
number. (For information on SYSTEM refer to the
SYSTEM function listed alphabetically in this chapter;
for more information about remote files, refer to the
UltiNet User's Guide.) The ON ERROR clause has
no effect when accessing local files.

The statements may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

No action is taken if a non-existent item is specified in the DELETE
statement.

The BASIC program aborts with the appropriate error message if the
specified file has not been opened prior to the execution of the DELETE
statement. (Refer to Appendix B describing run-time error messages.)

The ON ERROR clause allows the program to retrieve the UltiNet error
number and take appropriate action. Such action could, for instance,
include printing the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution.

Ultimate BASIC 3-71
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-72

If a remote file cannot be accessed due to network errors and no ON

ERROR clause is present, the program will terminate with an error
message.

DELETE X, "XYZ"

Q="JOB"

DELETE Q

Deletes item XYZ in the file opened
and assigned to variable X.

Deletes item JOB in the file
opened without a file variable.

DELETE X, "XYZ" ON ERROR Deletes item XYZ, or retrieves
ERRNUM=SYSTEM(O)

GOSUB PROCESSERR

GOTO TOP

END

Ultimate BASIC

error number and performs local
subroutine on UltiNet error
number.

6929-3
Confidential and Proprietary to The Ultimate Corp.

c'

----------- -~~~~~~~-~~~~~~~--~~~~

DIM Statement

DIM Statement

Syntax

Description

6929-3

A DIM statement declares the dimensions of an array.

DIM arrayl.name(rowsl {, colsl}) {,array2.name(rows2{ ,cols2}) ... }

array.name variable to be used as name of array

rows number of rows in the array; if the array is one
dimensional, rows is the number of elements in the array

cols number of columns in array; if rows is zero, cols, if
present, must be set to zero

The DIM statement must precede any references to the array, and is
therefore usually placed at the beginning of the program.

Any number of arrays may be dimensioned in one DIM statement. The
list of arrays may continue on several lines; each line except the last
must end with a comma.

Arrays can be redimensioned as necessary throughout the execution of
the program.

The dimension parameters (rows,cols) may be literals (including 0) or
variables. If variables are used, the size of the array is resolved at run
time and the DIM statement must be executed. If the variable has not
been assigned a value before the DIM statement is executed, the array is
dimensioned to zero.

The maximum size to which an array can be dimensioned is 3223,
which is the maximum number of variables in a program. If the array is
dimensioned with a literal, each element in the array counts toward the
total number of variables in the program. However, if the array is
dimensioned to 0 or with a variable, the entire array counts as just one
variable. Thus, you can have up to 3223 separate arrays (assuming you
have no other variables) if the arrays are all dimensioned with 0 or
variables. Each array dimensioned with 0 or a variable can later be
redimensioned with up to 3223 elements.

Ultimate BASIC 3-73
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-74

If an array is dimensioned with a variable or to the value zero, and is
subsequently used as the destination for MATPARSE or MATREAD, the
array is automatically redimensioned using the number of attributes in
the item as the new dimension for the array. This automatic
redimensioning occurs each time a new item is read into the array.
Immediately after the MATPARSE or MATREAD statement, the INMATO
function can be used to determine the current size of the array. (Note:
Two-dimensional arrays that are dimensioned to zero should not be used
with MATPARSE and MATREAD.)

If the array is redimensioned to a size with fewer elements than
previously, the elements beyond the new size are cleared.

SZ = 0

DIM A (SZ)

OPEN 'TEST' TO TEST ELSE ABORT '201', 'TEST'

MAT READ A FROM TEST,'ITEM.1'

SZ = INMAT() Array is initially dimensioned to 0;
MATREAD redimensions it to size of
ITEM. I.

DIM MATRIX(10,12)

DIM Q(10),R(10),

S (10)

DIM Ml(50,10),X(2)

Ultimate BASIC

Specifies 10 by 12 matrix named ,
MATRIX.

Specifies three arrays named Q, R,

and S, each to contain 10 elements.

Specifies 50 by 10 array named MI,

and two-element array named X.

6929-3
Confidential and Proprietary to The Ultimate Corp.

o

o

DISPLA Y Statement

(~, DISPLAY Statement

Syntax

Description

(-

6929-3

The DISPLAY statement outputs data to the terminal and is a synonym
for the CRT statement.

DISPLAY {print.1ist}

print.1ist may contain any valid BASIC expression, formatting
operators, and @ functions; if the print-list is absent, only a
carriage return and line feed are output

The DISPLAY statement can be used interchangeably with CRT to print
data at the terminal. The DISPLAY statement is similar to the PRINT

statement in that both statements may be used to print data at the
terminal, but DISPLAY differs in the following respects:

• output from the DISPLAY statement is always directed to the terminal,
regardless of PRINTER ON statements or the P option on the RUN verb

• output of the DISPLAY statement cannot be captured using the OUT. or
CAPTURING clause in an EXECU1E statement; any output specified by
DISPLAY continues to be directed to the terminal

• output is not counted for purposes of determining line spacing for
HEADING, FOOTING, or PAGE statements

PRINTER ON

LOOP

DISPLAY "ALIGNED?":

INPUT ANS

UNTIL ANS="Y" DO

PRINT FIRSTLINE

PAGE

REPEAl'

Ultimate BASIC

Causes PRINT statements to print
on printer.
Displays message on terminal.
Requests operator input.

Prints on printer.
Eject page.
Repeat until "Y" entered at terminal.

3-75
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

EBCDIC·. Function

Syntax

Description

3-76

The EBCDIC function returns the EBCDIC value of an ASCII string.

EBCDIC(expression)

expression string value to be converted from ASCII, the normal
Ultimate string representation, to EBCDIC.

The inverse of this function is the ASCII function. (Please refer to the
ASCII function, listed alphabetically in this chapter.)

B = EBCDIC(A)

Ultimate BASIC

Assigns the EBCDIC value of
variable A to variable B.

Confidential and Proprietary to The Ultimate Corp.
6929-3

c

c

("""

. "",1"

ECHO Statement

ECHO Statement

Syntax

6929-3

The ECHO statement enables or disables the echoing of characters at the
user's terminal.

ECHO OFF

ECHO ON

ECHO expression

OFF disables the echo on the terminal; characters typed on the
keyboard are not displayed on the screen

ON enables the echo on the terminal; characters typed on the
keyboard are displayed on the screen

expressIOn determines setting; must evaluate to a numeric value; a
value of zero (0) is equivalent to OFF, and all other values
are equivalent to ON

PRINT 'Enter password:

ECHO OFF

INPUT PW

ECHO ON

DISPL = 0

ECHO DISP

DISP = 1

ECHO DISP

Ultimate BASIC

, .

The value input for PW is not
displayed.
Subsequent input will be displayed.

Input will not be displayed.

Input will be displayed.

3-77
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

END Statement

Syntax

Description

3-78

The END statement is used to designate the physical end of a program or
the physical end of conditional statements.

END

Any statements appearing after an end-of-program END statement are
ignored.

The END statement is not required at the end of a program.

The END statement is also used to designate the physical end of
alternative sequences of statements within the IF statement and within
statements ending with THEN, ELSE, LOCKED, or ON ERROR clauses.
(Please refer to the description of the IF statement for de~ails on using
the END statement with alternative sequences of statements.)

*
A 500

B 750

C 235

D 1300

REM COMPUTE PROFIT:

REVENUE = A+B

COST = C+D

PROFIT = REVENUE - COST

REM PRINT RESULTS

IF PROFIT > 1 THEN GOTO 10

PRINT "ZERO PROFIT OR LOSS"

STOP If this path taken,program teiminates
10 PRINT "POSITIVE PROFIT"

END Physical program end

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

END CASE Statement

(0,: END CASE Statement

6929-3

The END CASE statement is the last statement in the CASE statement
sequence.

Please refer to the CASE statement for information about the entire CASE

statement sequence.

Ultimate BASIC 3-79
Confidential and Proprietary to The Ultimate Corp.

Statements·. and Functions

ENTER Statement

Syntax

Description

3-80

The ENTER statement transfers control to a cataloged BASIC program and
retains variable values from the first program.

ENTER prog.name
ENTER @variable

prog.name item.id of the program to be ENTERed

variable contains name of program to be ENTERed

The ENTER statement suppresses initialization of variables in the
program being ENTERed in the ~ame way the I option on the RUN v~rb
suppresses initialization. This allows several programs which ENTER
each other to be viewed as components of one large program, provided
the variables in each individual program correspond correctly to their
counterparts in the other programs.

Variables correspond based on the order in which they are declared or
otherwise introduced in each program. COMMON statements may be
used to ensure that the same variables are allocated in the same order
(even if with different names) in all component programs.

It is permissible to ENTER a program that calls a subroutine, but it is not
recommended that you ENTER a program from a subroutine. This is
primarily because the way in which variables are assigned and the
symbol table created for the BASIC debugger means that the values of
defined variables are unpredictable.

Control is not returned to the BASIC program that executes the ENTER
statement.

ENTER PROGRAM.l

N=2

I?ROG = "PROGRAM.":N

ENTER @PROG

Ultimate BASIC

Causes execution of the cataloged
program "PROGRAM. 1 " .

Causes execution of the cataloged
program "PROGRAM.2".

.6929-3
Confidential and, Proprietary to The Ultimate Corp.

c

EOF Function

Syntax

Description

(

6929-3

EOF Function

The EOF function tests either the argument list or the system message
buffer for an end-of-file condition and returns the current status.

EOF(ARG.)

EOF(MSG.)

ARG. the function examines the program's argument list; arguments
are specified following the program name in the statement that
invokes the program

MSG. the function examines the system message buffer, which
contains the list of message numbers and associated parameters
generated by the most recent EXECUTE statement

The EOF function examines the specified list and returns a value of 1 if
the end-of-file has been reached; otherwise, it returns a value of O.

The values stored in ARG. or MSG. can be retrieved by the GET

statement, which maintains a pointer into the list to determine the value
to return. If the last GET statement attempted to read past the end of the
specified list, the EOF function returns a "true" value 0); if not, it
returns a "false" value (0). Thus, the EOF function allows a program to
check for the end of the specified list .

N ole: The ELSE clause of the GET statement can also be used to
determine the end of the list.

LOOP

GET (ARG.) x
UNTIL EOF(ARG.) DO

PRINT X

REPEAT

Ultimate BASIC

Prints arguments stored in the ARG.

list until the EOF function is true;
then exits the loop.

3-81
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

EQUATE Statement

Syntax

Description

3-82

The EQUA 1E statement allows a symbol to be defined as the equivalent
of a literal number, string constant, a variable, or CHARO value.

EQU{A1E} symbol TO equate.val {, symbol TO equate.vaL.}

symbol name to assign to value; must be a previously undefmed
name. A symbol name has the same criteria as a variable
name in that it starts with an alphabetic character followed
by letters, numerals, periods, or dollar signs

equate.val value to be assigned; may be a literal number or string, a
variable, or an array element. The equate. val may also be a
CHAR function; the CHAR function, however, is the only
function allowed in an EQUA1E statement

The EQUA1E statement must appear before the first reference to the
symbol.

Any number of equated symbols can be defined in one EQUA1E

statement. The symbol list may be continued on several lines; each line
except the last must end with a comma.

The EQUA1E statement differs from an assignment statement where a
variable is assigned a value via an = sign, in that there is no storage
location generated for the symbol. Instead, the symbol becomes just
another name for the equate.val. The advantage this offers is that the
value is compiled directly into the object code and does not need to be
re-assigned every time the program is executed.

The EQUA1E statement is therefore particularly useful under the
following two conditions:

• Where a constant is used frequently within a program, and therefore
the program would read more clearly if the constant were given a
symbolic name. For example, "AM" is the commonly used symbol
for "attribute mark", one of the standard data delimiters.

• Where a MATREAD statement is used to read in an entire item from a
file and disperse it into a dimensioned array. In this case, the

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

c

(

c
6929-3

EQUA TE Statement

EQUATE statement may be used to give symbolic names to the
individual array elements, which makes the program more
meaningful. For example:

DIM ITEM(20)

EQUATE BIRTHDATE TO ITEM(l),

SOC.SEC.NO. TO ITEM(2),

SALARY TO ITEM(3)

In this case, the variables BIRTHDATE, SOC.SEC.NO. and SALARY are
equivalent to the fIrst three elements of the array ITEM. These
meaningful names are then used in the remainder of the program.

EQUATE X TO Y

EQUATE PI TO 3.1416

EQUATE MINUS1 TO -1

EQUATE AM TO CHAR(254)

EQUATE PART TO ITEM(3),

NAME TO ITEM(4)

Ultimate BASIC

Symbol X and variable Y may be
used interchangeably within the
program.

Symbol PI is compiled as the value
3.1416.

Symbol MINUSl is compiled as the
value -1.

Symbol AM is equivalent to the
ASCII character generated by the
CHAR function.

Symbol PART is equivalent to
element 3 of array ITEM, and NAME

to element 4 of the same array.

3-83
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

ERRTEXT Function

Syntax

Description

The ERR1EXT function returns the text associated with a specified
ERRMSG file item.

ERRTEXT(errmsg.id{,emnsg.param{, ... }) }

errmsg.id item.id of item in ERRMSG file item to be displayed;
can be expression

errmsg.param parameters used by ERRMSG item; can be expressions

The ERRMSG file can contain multi-level data files, where each data file
is in a different language. The system command SET-LANGUAGE is used
to specify the particular data level that is used. The ERRTEXT function
formats the message appropriately for each language. (For information
on the SET-LANGUAGE command, see the System Commands Guide,
Version 2.)

PRINTERR ERRTEXT (' 202' , CUSTID)

result:

'custid' not on file.

This inserts the value of the variable CUSTID into error message 202,
then prints the message on the last line of the terminal.

IF X "" "" THEN

END

result:

y ~ ERRTEXT(204,FILE.NAME)

GOSUB PRINT. SUB

If X is null, the text of ERRMSG 204, with file.name inserted, is
assigned to the variable Y, and the program calls PRINT.sUB; the
value of Y is [204] File definition 'file.name' is missing.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

EXECUTE Statement

('~ EXECUTE Statement

Syntax

(

6929-3

The EXECU1E statement allows a BASIC program to execute any valid
TCL command and use the results of the command in later processing.

EXECUTE expression { {, {II} } redir.clause { {, {II} } redir.clause} ... }

expression contains string in the format of a TCL command just as it
would be entered at the terminal; it may be a verb, PROC,

or cataloged BASIC program, followed by any parameters
and options.

II provided for compatibility with earlier revisions of the
Ultimate operating system; double slashes (II) cause a
compilation error if they precede any parameter that does
not end in a period (for example, IN.). In general,
Ultimate advises using only a space or a comma as a
separator between clauses.

redir.clause specifies source or destination for data in executed
statement; may be any of the following:

CAPTURING var output to terminal from executed statement is
redirected to var; if the statement being execu ted
produces more than one line of data, each line in
var is delimited by attribute marks; the last line of
data is always terminated by an attribute mark;
equivalent to OUT. > or OUT. = clause

IN. < expr
IN. = expr

Ultimate BASIC

data in expr is stacked as input for the executed
statement; if the statement to be executed accepts
more than one line of data, each line of data in expr
must be delimited by attribute marks; equivalent to
STACKING clause

3-85
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-86

OUT. >var
OUT. =var

PASSLIST expr

REWRNING var

RTNLIST var

SELECT. < expr

SELECT. > var

STACKING expr

Ultimate BASIC

output to terminal from executed statement is
redirected to var; if the statement being executed
produces more than one line of data, each line in
var is delimited by attribute marks; the last line of
data is always terminated by an attribute mark;
equivalent to CAPTURING clause

expr contains select list to be redirected to statement
being executed; the elements of the list, typically
item.ids, must be delimited by attribute marks;
there is an attribute mark after the last element;
equivalent to SELECT. < clause

returns all ERRMSG message numbers and
parameters generated by executed statement;
ERRMSG numbers are separated by attribute marks;
parameters within a message are separated by value
marks

select list generated by executed command is
redirected to var; elements in the list, typically
item.ids, are delimited by attribute marks; there is
an attribute mark after the last element; equivalent
to SELECT. > clause

expr contains select list is to be redirected to
statement being executed; the elements of the list,
typically item.ids, must be delimited by attribute
marks; there is an attribute mark after the last
element; equivalent to PASSLIST clause

select list generated by executed command is
redirected to var; elements in the list, typic all y
item.ids, are delimited by attribute marks; there is
an attribute mark after the last element; equivalent
to RTNLIST

data in expr is stacked as input for the executed
statement; if the statement to be executed accepts
more than one line of data, each line of data in expr

6929-3
Confidential and Proprietary to The Ultimate Corp.

C

Description

(

Select Lists

6929-3

EXECUTE Statement

must be delimited by attribute marks; equivalent to
IN. < or IN. =

Data stacked by the STACKING and IN. parameters can be used by other
BASIC programs and by TCL-II verbs such as COpy and ED. Data cannot
be stacked for use in PROC statements.

After the statement is executed, program control returns to the statement
following the EXECUTE statement. If the EXECUTE statement changed
the operating environment of the system in any way, the environment is
not restored. Commands that may change the operating environment
include the following:

• BREAK-KEY -OFF/BREAK-KEY-ON

• OFF (the system logs off and command is not returned to the BASIC
program)

• spooler verbs such as SP-ASSIGN

• tape verbs such as T-ATT

• TABS

• terminal verbs, such as TERM

The following commands have no effect when EXECUTEd:

• CHARGE-TO

• LOGTO

The GET(MSG.) form of the GET statement may be used to obtain, one at
a time, the messages generated by the statement that was executed.

When formatting the EXECUTE statement in your BASIC program, you

may begin a new line after any comma.

A select list produced by an EXECUTE statement cannot be automatic all y
carried over to the next EXECUTE statement. It can be redirected or used
in a READNEXT statement in the same program. Thus, the following
lists all items in MD:

EXECUTE "SELECT MD 'ED'"

EXECUTE "LIST MO"

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-87

Statements and Functions

3-88

A select list can be used as follows to list the selected items:

EXECUTE "SELECT MD 'ED''', RTNLIST X

EXECUTE "LIST MD", PASSLIST X

A select list can be used as follows to read the next item:

EXECUTE "SELECT MD 'ED'"

10 READNEXT ID ELSE STOP

PRINT ID

GOTO 10

When the select list is stored in a variable, the variable may be used in
the FROM parameter in a READNEXT statement.

EXECUTE "SELECT MD 'ED'" RTNLIST X

10 READNEXT ID FROM X ELSE STOP

PRINT ID

GOTO 10

The select list may be used as a dynamic array in that elements may be
retrieved directly from X without affecting its function as a list. For
example, A = x<17> will put the 17th item.id into A and X can still be
used in a READNEXT statement. However, the list is not a dynamic
array. If an element is changed in the list, the list is then converted to a
dynamic array and can no longer be used as a select list. In that case, to
use READNEXT with the data, the program can SELECT the dynamic
array to a list.

Note : Unlike a dynamic array, a select list can contain more than
32,767 items; however, you cannot extract past the 32, 767th
element in the list.

If a program uses DCOUNT to count the number of item.ids in the select
list, the number returned is one higher than the actual number of
elements in the list.

The RETURNING and CAPTURING clauses have no effect when a SELECT

verb is executed.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

(

C· .. --
~/

6929-3

EXECUTE Statement

N ole: The $COMPATIBILITY compiler directive affects the way
EXECUTEfunctions with select lists and data stacks; for
information, see the $COMPATIBILITY directive.

EXECUTE "WHO" The command WHO is executed; the
output is displayed on user's
screen; program control continues
in sequence.

EXECUTE "WHO", OUT. > X The command WHO is executed; the
IF X<l> # "0 SYSPROG" THEN output is redirected to variable X.

PRINT "MUST BE ON LINE 0" X is tested for access to program,
STOP resulting in either a message and

END halt or program execution.

EXECUTE "COPY BP PROG1" ,

STACKING "COPY. PROG1" ,

RETURNING MSGS

EXECUTE "ED BP X",

IN. < "L22":@FM:"EX",

OUT. > X

The command COpy is executed,
using the string "COPY.PROG I" as
stacked input for COPY. The
ERRMSG number and any
parameters produced for it are
returned in MSGS.

The EXECUTE statement allows
multiple redirection variables. Two
lines of data, "L22" and "EX" are
redirected to the command ED. The
output is redirectea to variable X.

EXECUTE 'SELECT EMPFILE WITH SAL >= "10000"' RTNLIST X

EXECUTE 'LIST EMP.ADDR.FILE' PASSLIST X

Ultimate BASIC

In the first EXECUTE statement, the
select list is redirected to variable x,
with the item.ids separated by
attribute marks. The select list is
then redirected to the LIST command
in the second EXECUTE statement.

3-89
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

EXIT Statement

Syntax

Description

3-90

The EXIT statement transfers control out of a program loop initiated by a
LOOP statement.

EXIT

When executed, EXIT transfers control to the next statement after the
REPEAT statement of a loop. When loops are embedded within other
loops, each EXIT transfers control to the statement after the next
REPEAT. The EXIT statement must be used within a LOOP ... REPEAT
program loop.

LOOP Subroutine PROCESSIT is called
READNEXT ID ELSE EXIT after each value from a preselected
GOSUB PROCESSIT list is read by READNEXT. When the

REPEAT list is exhausted, the program loop is
PRINT "DONE" exited, causing the message"DONE"

to be printed.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

--- ----------

(~~ EXP Function

Syntax

Description

6929-3

EXP Function

The EXP function returns the value of the natural logarithm base e
(2.7183) raised to a specified power.

EXP(expression)

expression power to which e is raised; may be any numeric expression

The EXP (exponential) function raises the number e to the value of the
expression. The EXP function is the inverse of the LN (natural
logarithm) function.

N ole: The value returned by the EXP function is not affected by the
PRECISION statement.

PRINT EXP(l)

A = EXP(lO)

PRINT A

Ultimate BASIC

Prints 2.718281828459

Prints 22026.46579474

Confidential and Proprietary to The Ultimate Corp.
3-91

---~---~---~ ---~~----~---~~ ~--~------~------ -------------~--

Statements -- and Functions

EXTRACT Function

Syntax

Description

3-92

The EX1RACT function returns an attribute, a value, or a subvalue from
a dynamic array.

EX1RACT(expr,attrib.no {, val.no {,subval.no } })

expr dynamic array to extract data from

attrib.no position of the attribute to be extracted

val.no position of the value to be extracted

subval.no position of the subvalue to be extracted

If val. no and subval.no are absent or have a value of 0, the attribute
specified by attrib.no is extracted. If val.no is present and subval.no is
absent or has a value of 0, the value specified by vaLno is extracted. If
attrib.no, val.no, and subval.no are all non-zero, the subvalue specified
by subval.no is extracted.

The EXTRACT function has the same effect as following a dynamic array
reference by attribute, value, and subvalue numbers in angle brackets.
That is, EXTRACT(X,4,l) is equivalent to x<4,1>.

Y=EXTRACT(X,2)

A=3

B=2

Ql=EXTRACT(ARR,A,B,A+l)

IF EXTRACT(B,3,2»5 THEN

PRINT MSG

GOSUB 100

END

Ultimate BASIC

Assigns attribute 2 of dynamic
array X to variable Y.

Assigns subvalue 4 of value 2
of attribute 3 of dynamic array
ARR to variable Q1.

If value 2 of attribute 3 of dynamic
array B is greater than 5, the value of
MSG is printed and a subroutine call is
made to statement 100.

6929-3
Confidential and Proprietary to The Ultimate Corp.

FADD Function

FADD Function

Syntax

Description

6929-3

The FADD (floating point addition) function adds two floating point
numbers and returns the result as a floating point number.

FADD(fx, fy)

fx valid floating point number to be added

fy valid floating point number to be added

A standard or string number must be converted to floating point before it
is used in the FADD function. The FFLT function is provided to convert
a number to floating point format. The FFIX function is provided to
convert a floating point number to a string number. (Please refer to the
FFLT and FFIX functions listed alphabetically in this chapter.)

If either fx or fy contains a non-floating point value, an error message is
generated.

The result of the FADD function is a floating point number. Thus, the
function can be used in any expression where a floating point number
would be valid.

TOTAL=FADD(SUB1,SUB2)

A=FFLT (I 1 . 0304 ')

B=FADD(A,A)

X=FADD(A, FADD(B,C»

< Ultimate BASIC

Assigns sum of variables SUB 1 and
SUB2 to variable TOTAL.

Assigns to variable A the floating
point value of 1.0304 (10304E-4),
then assigns the value of adding A to
itself to variable B.

Uses floating point sum of variables
Band C in floating point addition with
variable A; assigns sum to variable X.

3-93
Confidential and Proprietary to The Ultimate Corp.

------------_._._------

Statements and Functions

FCMP Function

Syntax

Description

3-94

The FCMP (floating point compare) function compares two floating
point numbers.

FCMP(fx,fy)

fx valid floating poiQ.t number to be compared

fy valid floating point number to be compared

A standard or string number must be converted to floating point before it
is used in the FCMP function. The FFL T function is provided to convert
a number to floating point format. The FFIX function is provided to
convert a floating point number to a string number. (Please refer to the
FFLT and FFIX functions listed alphabetically in this chapter.)

If either fx or fy contains a non-floating point value, an error message is
generated.

The result of the FCMP function is a number. If fx is less than fy, the
result is -1. If fx and fy are equal, the result is O. If fx is greater than
fy, the result is 1.

The function can be used in any expression where a number or string
would be valid.

IF FCMP(FX,FY) o THEN GOTO 100

The result of the comparison
determines whether program
execution branches to statement 100
or continues in sequence.

ON 2+FCMP(VAL1,VAL2) GOTO 10,110,120

Ultimate BASIC

The result of the comparison creates
an index of 1,2, Or 3 for the ON GOTO

statement.

6929-3
Confidential and Proprietary tt:> The Ultimate Corp.

o

o

(

FDIV Function

FDIV Function

Syntax

Description

6929-3

The FDIV (floating point division) function divides the first floating
point number by the second and returns the result as a floating point
number.

FDIV(fx,fy)

fx valid floating point number to be divided

fy valid floating point number to be used as divisor

A standard or string number must be converted to floating point before it
is used in the FDIV function. The FFL T function is provided to convert a
number to floating point format. The FFIX function is provided to
convert a floating point number to a string number. (Please refer to the
FFLT and FFIX functions listed alphabetically in this chapter.)

If either fx or fy contains a non-floating point value, an error message is
generated.

The result of the FDIV function is a floating point number. Thus, the
function can be used in any expression where a floating point number
would be valid.

V FDIV (D, T) Assigns result of variable D divided
by T to variable V.

A FDIV ("103047 6E-6" , B) Assigns to variable A the result of
dividing floating point value of
constant 1.030476 (1030476E-6) by
variable B.

X FDIV (A, FDIV (B, C)) Uses floating point result of variable
B divided by variable C in floating
point division with variable A; assigns
result to variable X.

Ultimate BASIC 3-95
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

FFIX Function

Syntax

Description

3-96

The FFIX (fix a floating point number) function returns the value of a
floating point number as a string number.

FFIX(fx {,n})

fx any valid floating point number

n any valid integer number; n is used to specify the maximum number
of digits to the right of the decimal point to be returned in the result.
If n is omitted or is negative, the result contains all digits to the
right of the decimal point that are in fx. If n is less than the number
of digits to the right of the decimal in fx, the unused digits are
truncated. The result is not rounded.

This function is intended to be used after floating point arithmetic
functions: FADD, FSUB, FMUL, FDIV. (Please refer to these functions
listed alphabetically in this chapter.)

The result of the FFIX function is a string number. The function can be
used in any expression where a string or string number would be valid.

PRINT FFIX(FADD(FX,FY)) The result of the floating point
addition is converted to a string
number and printed.

A=FFIX(FMUL("4E-6",FFLT(B)),4)

Ultimate BASIC

The variable B is converted into a
floating point number for the floating
point multiplication operation; the
result is converted to a string number
with a maximum of 4 decimal places
and assigned to variable A.

6929-3
Confidential and Proprietary to The Ultimate Corp.

C'
\) I

I

"- .---~---- ~--~-----

FFL T Function

FFLT Function

Syntax

Description

6929-3

The FFLT (float a number or string number) function converts a number
or string number into a floating point number.

FFLT(x)

x any number or string number; if the number contains more than 13
significant digits, it is truncated to 13 significant digits

This function is intended to be used before floating point arithmetic
functions: FADD, FSUB, FMUL, FDIV. (Please refer to these functions
listed alphabetically in this chapter.)

The result of the FFLT function is a floating point number. Thus, it can
be used in any expression where a floating point number or a string
would be valid.

This function must precede floating point arithmetic performed on a
standard number or string number.

X=FFLT(Y)

A=FMUL(FFLT(X),FFLT(Y))

The floating point value of the
number Y is assigned to x.

The variables X and Y are converted
to floating point, then used in a
floating point multiplication function;
the result is assigned to variable A.

FLOAT. PI =FFLT (II 3 . 14159 ") The constant value is converted to
floating point and assigned to
FLOAT.PI.

Ultimate BASIC 3-97
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

FIELD Function

Syntax

Description

The FIELD function returns one or more substrings from a string
delimited by a specified character.

FIELD(string.expr,delimiter,start.field {,no.fields})

string.expr

delimiter

start. field

no. fields

string to be used

delimiting character of a field; if delimiter evaluates to
more than one character, only the first character is used

starting occurrence of field to return; if start. field is 1 and
the delimiter is null ("") or is not in the string, the entire
string is returned. If start. field is greater than 1 and the
delimiter is null ("") or if start. field is greater than the
number of fields left in the string, a null value is
returned.

If start. field is less than 1, 1 is used as the value.

number of fields to return; if omitted or less than 1, 1 is
assumed. If no.fields is greater than the number of
fields remaining in the string, the remainder of the string
is returned.

All parameters can be literals or expressions.

The boundary delimiter characters of the returned substring are not
returned.

The first delimited substring has only an end delimiter character. For
example, if the string is A *B *C and the delimiter is *, the first field is A;
if the string is *A*B*C and the delimiter is *, the first field is null ("").

The last delimited substring has only a beginning delimiter character.
For example, if the string is A *B *c and the delimiter is *, the last field is
C; if the string is A*B*C* and the delimiter is *, the last field is null ("").

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

o

c

('''',
"

(/

6929-3

FIELD Function

The multiple extract form of the FIELD function is equivalent to using a
G processing code in the ICONV or OCONV functions, where start. field is
one greater than the field to skip used in the G processing code.

The COLlO and COL20 functions can be used in conjunction with the
FIELD function.

X 'A*B*C*D*E*F' The multiple fields parameter causes
y FIELD (X, '*',2,3) three fields to be extracted from X

starting with the second field and
returns the result, 'B*C*D', to Y; the
field delimiter is an asterisk (*). This
is equivalent to the OCONV function:
Z = OCONV(X,'GI *3')

T "l234A6789A9876A" Assigns the string value "1234" to
G FIELD(T,"A",l) variable G.

T "l234A6789A9876A" Assigns the string value "9876" to
G FIELD(T,"A",3) variable G.

Q = FIELD ("ABCBA", "B", 2) Assigns the string value "c" to
R = CaLl () variable Q, the numeric value 2 to
s = COL2 () variable R, and the numeric value 4 to

variable S.

Ultimate BASIC 3-99
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

FMT Function

Syntax

3-100

The FMT function formats a string to a pattern; it can be used as an
alternative to a format mask in an assignment statement. (Format masks
are described in Chapter 2, Working with Data.)

FMT(expression,format.mask)

expression variable to be formatted

format.mask format mask; may contain any valid set for mask codes

Y = 12000

X = FMT(Y,'R2(#10) ')

result:
x = 12000.00

This function yields the same results as the following assignment
statement using a format operator:

x = Y 'R2(#10),

Ultimate BASIC 6929-3
ConfidentiSl and Proprietary to The U/timat9 Corp.

o

(

FMUL Function

FMUL Function

Syntax

Description

6929-3

The FMUL (floating point multiplication) function multiplies two floating
point numbers and returns the result as a floating point number.

FMUL(fx,fy)

fx valid floating point number to be multiplied

fy valid floating point number to be used as multiplier

A standard or string number must be converted to floating point before it
is used in the FMUL function. The FFL T function is provided to convert
a number to floating point format. The FFIX function is provided to
convert a floating point number to a string number. (Please refer to the
FFLT and FFIX functions listed alphabetically in this chapter.)

If either fx or fy contains a non-floating point value, an error message is
generated.

The result of the FMUL function is a floating point number. Thus, the
function can be used in any expression where a floating point number or
a string would be valid.

PAY=FMUL(HOURS,RATE)

A=FMUL("1030476E-6",B)

X=FMUL(A, FMUL(B,C»

Ultimate BASIC

The variable PAY is assigned the
product of HOURS times RATE.

The floating point constant
1030476E-6 (1.030476) is multiplied
by variable B and the result is
assigned to variable A

The product of variables Band C is
multiplied with variable A; the result
is assigned to x.

3-101
Confidential and Proprietary to The Ultimate Corp.

--- ._-._-_._--- -_.-

Statements and Functions

FOOTING Statement

Syntax

Description

3-102

The FOOTING statement causes the specified text string to be printed at
the bottom of each page of output.

FOOTING "{text} {'options'} {text} {'options'} ... "

text text to printed as part of footing

options special instructions to print processor; must be enclosed in
single quotes (multiple options may be enclosed in one set of
quotes). The following options are available:

C Centers the line

Cn Centers with specified line length

D Inserts current date in dd mon yyyy format

L Inserts carriage return/line feed; prints blank line

P Inserts current page number, right-justified in a field of 4
blanks

PN Inserts current page number, left-justified with no blanks

Pn Inserts current page number, left-justified in a field of n
blanks

T Inserts current time and date

The FOOTING statement is printed only if there is also a HEADING
statement. The specified footing is automatically printed at the bottom
of each page.

The footing may be changed at any time in the BASIC program by
another FOOTING statement; this change takes effect on the current page,
unless the last line on the page has already been printed. Footings and
headings can be turned off by the PAGING OFF statement, which is
described alphabetically in this chapter.

The first FOOTING or HEADING statement executed in a program
initializes the page parameters. Page numbers are assigned in ascending
order starting with page 1.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

o

C}
"

6929-3

FOOTING Statement

The FOOTING statement affects only print file zero, the default output
device.

FOOTING n'L'TIME & DATE: 'T,n

FOOTING n'LC60'PAGE 'p,n

FOOTING n'LTPL,n

Ultimate BASIC

A blank line is printed, followed
by the text "TIME & DATE:" and the
current time and date.

A blank line is printed, then on the
next line, the text "PAGE" and the
current page number are centered
within a page width of 60.

A blank line is printed, followed
by the current time, date, and
page number on the next line,
followed by another blank line.

3-103
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

FOR/NEXT Statement

Syntax

Description

A FOR/NEXT loop causes execution of a set of statements for successive
values of a specified variable until a specified limit is reached. The FOR

statement is used to specify the beginning point of a program loop; the
NEXT statement specifies the ending point of the loop.

FOR variable = exprl TO expr2 {STEP expr3} {WHILE expr4}
FOR variable = expr 1 TO expr2 {STEP expr3} {UNTIL expr5 }

NEXT {variable}

variable contains value to control looping

exprl initial value for variable

expr2 limit value; when the limit value is exceeded, program control
proceeds to the statement after the NEXT statement; expr2 is
evaluated on each iteration of the loop

expr3 increment value to be added to the value of the variable at the
end of each pass through the loop; if the STEP phrase is
absent, the increment value is assumed to be + 1

expr4 test for end of loop; if it evaluates to false (zero), program
control passes to the statement immediately following the
accompanying NEXT statement; if it evaluates to true (non
zero) the loop repeats; expr4 is evaluated for each iteration of
the loop

expr5 test for end of loop; if it evaluates to true (non-zero), program
control passes to the statement immediately following the
accompanying NEXT statement; if it evaluates to false (zero) the
loop repeats; expr5 is evaluated for each iteration of the loop

Only one of the optional condition clauses, WHILE or UNTIL, may be
used in a FOR statement.

A loop is a portion of a program written in such a way that it executes
repeatedly until some test condition is met. FOR/NEXT loops may be

Ultimate BASIC 6929-3
Confidential and Proprietary to TheU/timate COIp.

o

o

(

0'0

'",---

(

6929-3

FOR/NEXT Statement

"nested"; a nested loop is a loop which is wholly contained within
another loop. For example, the following statements illustrate a two
level nested loop:

FOR I = 1 TO 10

FOR J = 1 TO 10

PRINT B(I,J)

NEXT J

NEXT I

The inner loop is executed ten times for each of ten passes through the
outer loop; that is, the statement PRINT B(I,J) is executed 100 times,
causing matrix B to be printed in the following order: B(l, 1), B(1,2),
B(1,3) , ... , B(l,1O), B(2,1), B(2,2) , ... , B(10,1O).

Loops may be nested up to 44 levels. However, a nested loop must be
completely contained within the range of the outer loop; that is, the
ranges of the loops may not cross.

FOR A=1 TO X

NEXT

FOR K=10 TO 1 STEP -1

NEXT K

ST="X"

Limiting value is current value of
expression X; increment value is + 1.

Increment value is -1; variable K

decrements by -1 for each of 10
passes through the loop.

Loop execute four times:

FOR 8=1 TO 10 UNTIL ST="XXXXX"

ST .- "X"

NEXT 8

an "X" is concatenated to the string

value of variable ST until the string
equals "XXXXx".

A=O Loop executes ten times:
FOR J=1 TO 10 WHILE A<25 variable J reaches 10 before

A=A+l variable A reaches 25.

NEXT J

Ultimate BASIC 3-105
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

FSUB Function

Syntax

Description

3-106

The FSUB (floating point subtraction) function subtracts the second
floating point number from the ftrst floating point number and returns
the result as a floating point number.

FSUB(fx,fy)

fx valid floating point number

fy valid floating point number to subtract from fx

A standard or string number must be converted to floating point before it
is used in the FSUB function. The FFL T function is provided to convert
a number to floating point format. The FFIX function is provided to
convert a floating point number to a string number. (Please refer to the
FFLT and FFIX functions listed alphabetically in this chapter.)

If either fx or fy contains a non-floating point value, an error message is
generated.

The result of the FSUB function is a floating point number. Thus, the
function can be used in any expression w~ere a floating point number
would be valid.

TOTAL=F SUB (SUBTOT 1, SUBTOT2) Assigns difference of variables
SUBTOTI and SUBTOT2 to variable
TOTAL.

A=FSUB("1030476E-6",B)

X=FSUB(A, FSUB(B,C))

Ultimate BASIC

Assigns to variable A the difference
of floating point constant
1030476E-6 (1.030476) and
variable B.

Uses the difference of variable B
and C in floating point subtraction
with variable A; the result is
assigned to x.

6929-3
Confidential and Proprietary to The Ultimat~ Corp.

c

c

GET Statement

C GET Statement

Syntax

Description

6929-3

The GET statement retrieves data from either the program argument list
or the system message buffer.

GET(ARG.{, arg.no}) var {THEN stmts} {ELSE stmts}
GET(MSG. {, arg.no}) var {THEN stnus} {ELSE stmts}

ARG.

MSG.

arg.no

var

retrieves one argument, if any, from list of arguments
specified after the program name in the TCL command that
invoked the program; any string preceded by a space is
considered an argument

returns next message identifier and related parameters, if
any, placed in message buffer by the last EXECUTE
statement or by a PUT statement in an EXECUTEd program

integer that specifies the position of the element in the list
to retrieve. If arg.no is zero or is not present, the next
element on the list is returned; if this is the first GET
statement executed, the first element on the list is returned.

variable in which returned element is placed

THEN stmts statements to execute if element is returned to var

ELSE stmts statements to execute if no element is present in specified
position

One or more GET(MSG.) statements can be used to retrieve the system
messages generated by a program invoked via an EXECUTE statement.
Only the ERRMSG item.ids and parameters are copied to MSG.

The message is returned in the following format:

msg.id]parm 1]parm2] ...]parmn

where
msg.id
]

message identifier (ERRMSG item.id)
value mark

parml. .. parmn values associated with the message

Ultimate BASIC 3-107
Confidential and Proprietary to The Ultimate Corp.

-- ... - -------- ---~---~--.-.~ ... ~-~--.- ...•... ~-.-. '~-' -' -'-'-'-~

Statements and Functions

3-108

The list of system messages is reset to null just prior to the execution of
an EXECUTE statement.

Note: The redirection clause RETURNING used with EXECUTE returns
all ERRMSG item.ids and parameters in one variable and has no
effect on the values returned by MSG.

The EOF function is available to test for end-of-argument or end-of
messagelist. (Refer to the EOF function listed alphabetically in this
chapter.)

The GET(ARG.) statement retrieves characters specified after the program
name in the TCL command that invoked the program. The command
that invoked the program could be a RUN statement, or if the program is
cataloged, just the program name.

Note: ARG. and MSG. are predefined keywords with special meaning
in the GET statement and should not be used as ordinary
variables in other statements.

EXECUTE 'PROG1 ':A

GET(ARG.) Pl ELSE P1

GET (ARG.) P2 ELSE p2

o The first GET statement retrieves
o the first argument on the list; the

second retrieves the next argument.

GET(MSG.,l) ERR1 ELSE GOTO START

PRINT ERR1; STOP The GET statement retrieves the first
message; if found, it is printed and
the program terminates. If there are
no system messages, the program
branches to START.

GET (MSG.) MSG

IF MSG <1,1>

GOTO UD

END

Ultimate BASIC

The GET statement retrieves the first
"B10" THEN message; the IF statement tests the

first value and branches to UD if the
message-id is "B10".

6929-3
Confidential and Proprietary te> The Ultimate COip.

o

o

GOSUB Statement

("" GOSUB Statement

Syntax

Description

c
6929-3

The GOSUB statement transfers control to a local subroutine.

GOSUB label

label label of statement to which control is transferred; execution
proceeds from that statement until a RETURN or RETURN TO

statement is encountered, which returns control to the statement
following the GOSUB statement or specified line number

A local subroutine is a subroutine that is contained within the program
that calls it. The GOSUB statement is always used with a RETURN {TO}

statement.

If a statement does not exist with the specified statement-label, an error
message is printed at compile time.

For information on a related statement, see the ON GOSUB statement
listed alphabetically in this chapter.

GOSUB FIRST

STOP

FIRST:

RETURN

Ultimate BASIC

Transfers control to subroutine
FIRST. After the subroutine's
RETURN statement is encountered,
control returns to the statement after
the GOSUB statement.

3-109
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

GOTO Statement

Syntax

Description

3-110

The G01'O statement unconditionally transfers program control to a
specified statement-label within the BASIC program.

GO {TO } label

label label of statement to which control is transferred

Control may be transferred to statements following the G01'O statement,
as well as to statements preceding the G01'O statement.

If a statement does not exist with the specified statement-label, an error
message is printed at compile time.

For information on a related statement, see the ON GOTO statement listed
alphabetically in this chapter.

100 A=O

200 GOTO 500

500 B=A+C

D=100

GOTO 100

Ultimate BASIC

Label 100

Branch to statement-label 500

Label 500

Repeat program

Confidential and Proprietary to The Ultimate Corp.
6929-3

c

o

HEADING Statement

(: HEADING Statement

Syntax

(-

Description

6929-3

The HEADING statement causes the specified text string to be printed as
the next page heading. If the output is directed to the tenninal, it also
causes the display to pause at the end of each page.

HEADING "{text} {'options'} {text} {'options'} ... "

text text to printed as part of the heading

options special instructions to print processor; must be enclosed in
single quotes (multiple options may be enclosed in one set of
quotes). The following options are available:

C

Cn

D

L

P

PN

Pn

Centers the line

Centers with specified line length

Inserts current date

Inserts carriage return/line feed; prints blank line

Inserts current page number, right-justified in a field of 4
blanks

Inserts current page number, left-justified with no blanks

Inserts current page number, left-justified in a field of n
blanks

T Inserts current time and date

The first FOOTING or HEADING statement executed in a program
initializes the page parameters. The specified head is automatically
printed at the top of each page.

The heading may be changed at any time in the BASIC program by
another HEADING statement; this change takes effect when the end of the
current page is reached. Footings and headings can be turned off by the
PAGING OFF statement, which is described alphabetically in this chapter.

Page numbers are assigned in ascending order starting with page 1.

The HEADING statement affects only print file zero, the default output
device.

Ultimate BASIC 3-111
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-112

HEADING "TIME & DATE: 'TL'" The text "TIME & DAlE:" and the
current time and da:te are printed,
followed by a blank line.

HEADING "'C60'PAGE 'PLItt

HEADING "'TPL''':A

Ultimate BASIC

The text "PAGE" followed by the
current page number is centered
within a page width of 60; a blank
line is then printed.

The current time, date, and page
number followed by the value of
variable A are printed as the
heading.

6929~3
Confidential and Proprietary to The Ultimate Corp.

o

("

c'

ICONV Function

ICONV Function

Syntax

6929-3

The ICONV function converts a string according to a specified type of
input conversion.

ICONV(string,code)

string string value to convert

code input conversion code; the following codes are available for
input conversions:

D convert date to internal format

G extract group of characters

L return string length

MCx mask characters by numeric, alpha, or upper!lower case;
or convert hexadecimal to decimal, or decimal to
hexadecimal

ML

MP

MR

MT

MX

P

R

T

u

mask left-justified decimal data

convert integer to packed decimal

mask right-justified decimal data

convert time to internal format

convert hexadecimal to ASCII

test pattern match

test numeric range

convert by table translation. The table file and translation
criteria must be given. (Please refer to the section
"Defining File Translation" in the Ultimate Recall and
Update User Guide for details.)

Note: This type of conversion is inefficient if several
items or attributes will be accessed.

convert by subroutine call to standard user exit (see
Appendix E) or user-defined assembly routine. The
absolute address of the routine must be given. The value
of the string may be a parameter to be passed to the
subroutine, or a null string if none is needed. If two or
more parameters are to be passed, they must be

Ultimate BASIC 3-113
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Description

3-114

compressed into a single string in string and parsed by
the called routine. (For details, refer to the Ultimate
Assembly Language Reference Manual.)

These conversion codes are the same as those used for Recall
Conversions and Correlatives. For a detailed treatment of these
capabilities, refer to the Ultimate Recall and Update User Guide.

Values that cannot be successfully converted cause a null string to be
returned as a result. For example, a string that is not a valid date causes
ICONV to return a null string when used with the "D" conversion code.

Note: "MR" and "ML" conversions may also be done withformat
strings. (For details onformat strings, refer to the chapter
"Working with Data" in this manual.)

The following conversion codes used in Recall cannot be used with the
ICONY function:

A arithmetic
B BASIC subroutine call
C concatenate
F function
S substitution

IDATE ICONV('07-01-89', 'D')

Assigns the string value '7853' (the
internal date) to the variable IDATE.

CHR=ICONV ("41", "MX") Assigns the string "A"
(corresponding to hexadecimal
value "41") to variable CHR.

IF ICONV(T,"Dn)=nn THEN GOTO 10

If the "D" conversion returns a null,
that is, the value of T is not a valid
date, branch to 10.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

(C

---- -.--.-------~ .-

IF Statement

Syntax

6929-3

IF Statement

The IF statement provides the conditional execution of a sequence of
BASIC statements, or the conditional execution of one of two sequences
of statements. The IF statement can be written on a single line, or on
multiple lines, as shown in the syntax section. These forms are
functionally identical.

IF expression {THEN stmtsl} {ELSE stmts2}

IF expression THEN

stmtsl
multi-line

END ELSE THEN/ELSE

stmts2 statements

END

IF expression THEN

} multi-line
stmtsl

THEN

statements
END

IF expression ELSE

} multi-line
stmts2

ELSE

statements
END

expression any legal BASIC expression

THEN stmtsl statement or sequence of statements to be executed if the
result of the test condition is true (non-zero)

ELSE stmts2 statement or sequence of statements to be executed if the
result of the expression is false (zero)

Either the THEN clause or the ELSE clause may be omitted, but not both.

Ultimate BASIC 3-115
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

Description

3-116

The sequence of statements in the THEN and ELSE clauses may consist
of one or more statements on the same line. If more than one statement
is contained on one line, they must be separated by semicolons.
Any statements may appear in the THEN and ELSE clauses, including
additional IF statements.

If the statement sequences in the THEN and ELSE clauses are placed on
multiple program lines, each sequence is terminated by an END.

IF A "STRING" THEN PRINT "MATCH"

Prints "MATCH" if value of A is the
string "SIRING".

IF X>5 THEN IF X<9 THEN GOTO 10

Transfers control to statement 10 if X

is greater than 5 but less than 9.

IF Q THEN PRINT A ELSE PRINT B; STOP

IF ABC=ITEM+5 THEN

PRINT ABC

STOP

END ELSE

PRINT ITEM

GOTO 10

END

IF VAL # 0 THEN

PRINT MESSAGE

VAL=100

END

Ultimate BASIC

The value of A is printed if Q is
numeric and non-zero. If Q=O, the
value of B is printed and the program
is terminated. If Q is non-numeric, a
message is displayed and zero is used
as its value.

The value of ABC is printed and the
program terminates if ABC=ITEM+5;

otherwise, the value of ITEM is
printed and control passes to
statement 10.

If the value of VALis non-zero,
the value of MESSAGE is printed, and
V AL is assigned a value of 100;
otherwise, control passes to the next
statement following END.

6929-3
Confidential and Proprietary to The Ultimate Corp.

~ .. 't

(~;oli!

c

INDEX Function

(~ INDEX Function

Syntax

Description

6929-3

The INDEX function searches a string for the occurrence of a substring
and returns the starting column position of that substring.

INDEX(string,substring,occurrence)

string string to be examined

substring substring to search for

occurrence occurrence of substring within string

The function returns a numeric value which is the starting column
position of the substring within the string. If the substring is not found,
a value of 0 is returned.

The INDEX function parameters may be any valid expressions.

A INDEX ("ABCAB", "A", 2) Second occurrence of "A" is at column
position 4 of "ABCAB", so value of 4 is
assigned to variable A.

x = "1234ABC"

Y = "ABC"

IF INDEX(X,Y,1)=5 THEN

GOTO 3

END

"ABC" starts at column position 5 of
"1234ABC", so the IF statement
transfers control to statement 3.

Q INDEX ("PROGRAM", "S",5)

Ultimate BASIC

"s" does not occur in the string
"PROGRAM", so value of 0 is assigned
to variable Q.

3-117
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

INMATO Function

Syntax

Description

3~118

The INMATO function is used to return infonnation about elements in
dimensioned arrays and modulos of files that were opened.

INMATO

INMATO can be used to return values generated by the following
statements:

DIM
MATPARSE
MATREAD{U}

OPEN

INMATO returns the actual number of elements in a dimensioned array
after a MATREAD{U} or MATPARSE in the following cases:

• when the array is initially dimensioned as zero

• when the array is dimensioned with a variable

• when the array is dimensioned with a literal that is greater than the
actual number of attributes read or parsed into it

INMATO returns zero as the number of elements in a dimensioned array
after a MATREAD{U} or MATPARSE statement in the following case:

• when the array is dimensioned with a non-zero literal and the number
of elements being read or parsed is greater than the dimensioned size
of the array

INMATO also returns zero after a DIM statement is executed.

INMATO returns the modulo of the file after an OPEN statement.

Caution! The value of INMAT() is volatile; if the value is needed, it
should be retrieved immediately after the statement that
generates it has completed.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

c('. '"
\~

C-' -\
- /

6929-3

INMA TO Function

DIM A(O)

MATREAD A FROM TESTFILE, 'ITEM.I' ELSE STOP

SZ = INMAT () The number of elements in the array
A is returned in SZ.

Ultimate BASIC 3-119
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

INPUT Statement

Syntax

3-120

The INPUT statement is used to request data. The cursor position and
data format can also be specified.

INPUT {@(x,y){:}} var {,len}{:}{format}L}{THEN/ELSE stmts}
INPUT var,O

@(x,y) specified cursor position; column x, row y

used immediately after@(x,y), displays existing value as the
default before updating; if no existing value, null is assigned

var variable to which the response is assigned

len maximum length of input; default length is 140 characters

used after var or len, does not execute carriage return and line
feed at end of input

format format string for input validation and output formatting; may
contain any Ultimate format string Gharacters; alternatively, it
may contain any valid Recall date conversion code. (Input
verification is described in this topic. For details on using
format strings for output formatting, refer to the chapter
"Working with Data" in this manual; for information on Recall
date conversion codes, refer to the Ultimate Recall and Update
User Guide.)

if user attempts to enter more than the maximum number of
characters, bell is sounded each time a character is entered until
RETURN or LINEFEED is pressed

THEN statements to execute after RETURN or LINEFEED is pressed
when at least one character has been input by the user

ELSE statements to execute when only RETURN or LINEFEED is
pressed by the user

o o (zero) accepts single character and no editing is performed;
this allows non-printable characters such as <ESC> to be input;

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

' .. C·~.""·

('

Description

(

6929-3

INPUT Statement

the character is not echoed. This form must be specified with
no other parameters. If other parameters are used, 0 is
assumed to specify length and not single character input. A
variable with value zero is also assumed to specify length and
not single character input. (A length of zero does not provide
meaningful input and is not recommended.)

N ole: The unprintable characters represented by <CIRL-Q>

and <CTRL-S> cannot be accepted ijx-ONIX-OFF

protocol is enabled. These characters are used to set
X-ON and X-OFF for the terminal.

All options must be in the order shown above.

An INPUT statement causes a prompt character to be printed at the user's
terminal. The prompt character can be changed by the PROMPT

statement. (For more information about prompt characters, please refer
to the PROMPT statement listed alphabetically in this chapter.)

The @(x,y) option allows the input to be placed at a specified cursor
position; x and y may be any BASIC expressions. The prompt character
is displayed one character prior to the x coordinate. It is recommended
that x not be zero.

If@(x,y) is followed by a colon (:), the existing value of var, if any, is
displayed, formatted according to format, if present. If there is no
existing value, null is assumed. If @(x,y) is followed by a colon (:),
and if format is specified as numerics (%), the field is zero-filled before
displaying the value of var; if format is specified as blanks (#), the field
is dot-filled before displaying the value of var.

If @(x,y) is omitted, the prompt character is displayed at the current
cursor position, which may vary, depending on the results of any
previous INPUT statement. For accurate cursor positioning, it is
recommended that the @(x,y) function be used.

Maximum input is 140 characters unless len specifies a different value.
If the user enters the specified number of characters, an automatic
RETURN is executed unless the underscore (_) option is present. If the
optional _ is used, the operator must physically press RETURN or
LINEFEED to indicate end of input. If the optional _ is used and the

Ultimate BASIC 3-121
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-122

operator attempts to enter more than the specified number of characters
before pressing RETURN, the bell is sounded and the extra characters are
not accepted.

If len is an expression, the expression can use operators with
precedence levels 1-4 only, that is, dynamic array extraction, substring,
exponentiation, multiplication, division, addition, and subtraction.

If the colon (:) is used after the var or len, the RETURN is inhibited on
the screen; the cursor remains positioned after the input data. However,
if an error message is printed, either because of PRINTERR or because of
input verification, the cursor is moved to the line following the line on
which the error message is displayed.

When using a format mask, data is converted on output and input.
Thus, if a date is to be input, the default, if any, should be stored in
internal format; it is displayed in external format. Input values are
converted from external format and stored in var in internal format; they
are redisplayed in the external form specified by format.

The THEN and ELSE clauses are both optional; one, both, or none may
be used. These clauses may be on a single line or multiple lines. If
multiple lines are used, the clause must be terminated by an END

statement as in the multi-line IF statement.

If either THEN or ELSE is used, a null input (only RETURN) causes var to
retain its old value. If no THEN or ELSE is present, null input stores a
null string ("") in var.

The following statements and functions may have an effect on INPUT, or
may be affected by INPUT:

INPUTCLEAR

INPUTCONTROL

PRINTERR

PROMPT

SYSTEM(11)

SYSTEM(12)

For more information on these features, refer to the description of each
listed alphabetically in this chapter.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

(

(

.. 0 ••.

/

Input
Verification

6929-3

INPUT Statement

When there is a format mask in the INPUT statement, input verification is
performed on new, non-null input. If there is a value in var that is
displayed, no input verification is performed before displaying it.

If format contains a numeric mask or a format mask with percent signs
(%), numeric checking is performed. If format contains a length
specification (for example, #10), length checking is performed. If
format is 'D' or any other valid date format, a date verification is
performed. If a numeric mask contains an N (suppress minus signs),
negative values are rejected.

Only one type of verification is performed and numeric masks take
precedence over format masks. For example, if the statement contains
both a decimal digit specification and a length specification (such as
R2(#4», only numeric checking is performed. Other than causing a
numeric check, the decimal digit specification has no meaning for input
verification.

If numeric checking is specified, the system deletes a leading $ (dollar
sign) or - (minus sign), if present. If it then encounters any non
numeric character, other than a thousands separator or decimal point, the
input is rejected.

If there is a format mask and no numeric mask, the length of the input is
checked. If justification is specified and is a Y, the exact number of
characters specified in the mask must be entered. If justification is not
specified or is an R or L, not more than the specified number of
characters can be entered. In addition, if the mask contains a % sign,
only a numeric character is accepted in that position. If the mask
contains an & (ampersand), only an alphabetic character is accepted in
that position. If any other character is specified in the mask, the entered
character in that position is checked against the character in the mask. If
it does not match, the mask character is ignored and does not count in
determining the total length of input.

If format is empty (""), consists of only justification (L, R, or Y), or
justification and an empty format mask (L()), INPUT expects only a
RETURN or LINEFEED; any other entry is rejected and a message, "Entry
is too long", is displayed.

Ultimate BASIC 3-123
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

If the input data does not confonn, a warning message is printed at the
bottom of the screen, and the user is reprompted for input. Also, if
typeahead is in effect, the typeahead buffer is cleared. Warning
messages are automatically cleared when a correctly fonnatted value is
input. When a warning message is printed or cleared, the cursor
remains on the line following the error message unless the cursor is
repositioned using @(x,y).

The possible warning messages are:
Entry must be a NUMBER

Entry must be a DATE

Entry is too long

Entry must be greater than or equal to ZERO

Entry does not match its pattern: pattern

Stacked Input If stacked input is present, the next line of stacked input is used instead
of requesting data from the terminal (see DATA statement).

If both INPUT and DATA statements are used in a program, any INPUT

statements intended to process input from an external source (such as a
PROC or user input) should appear in the program prior to any DATA

statements. If a PROC passes data to the program as an argument via the
PROC stack, the input is stacked at the program outset and should be
used as soon as possible since the first DATA statement overwrites any
unprocessed stacked input.

The following example uses the "This is user input" text string
immediately. If the DATA statement had been before the INPUT

statement, the values 1 and 2 would overwrite the text string.

MYPROC(proc) INPUTTER (BASIC

001 PQ 001 INPUT STREAM

002 HRUN BP INPUTTER 002 PRINT STREAM

003 STON 003 DATA ' l' , '2'

004 H"This is user input" 004

005 P 005 END

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

prog)

6929~3

,c:
6929-3

INPUT VAR

INPUT X,3

INPUT X,3_

INPUT Statement

Requests a value for variable V AR.

Requests input for variable x.
When three characters have been
entered, an automatic carnage
return is executed.

Same as above but waits and beeps
for RETURN if more than three
characters are entered.

INPUT @(20,10) :SOC.SEC 'V(%%%-%%-%%%%)'

Requests input formatted as for
social security numbers; verifies that
only numbers are entered; value is
stored without dashes. For example,
if 423-15-6897 is entered, the
variable SOC.SEC contains the value
423156897.

INPUT @(25,2):INV.OATE '0' Expectsinputindateformat.

INPUT ZIP,S:

INPUT X THEN GOSUB 20

Requests a value for ZIP; no
carnage return/line feed is printed
after a value is entered. Program
continues if five characters are
entered.

Executes subroutine unless only a
RETURN pressed.

INPUT @ (35,7) :AMOUNT 'R2,' Expects input with two values to the
right of the decimal point.

PRINT 'Press <ESC> to return to main menu, any other key

to continue: ' . If <ESC> (ASCII code 27) is pressed,
INPUT A,O program goes to routine at MAIN.

IF SEQ(A)=27 THEN GOTO MAIN

Ultimate BASIC 3-125
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

INPUTCLEAR Statement

Syntax

Description

The INPUTCLEAR statement allows users to clear the typeahead buffer
for the port on which the BASIC program is running.

INPUTCLEAR

When typeahead is enabled (the default case on most systems), users
may enter data in anticipation of input requests, before the system has
even printed a prompt character. Data typed in ahead is not echoed on
the screen until the input request (a BASIC INPUT statement, for example)
is executed.

The INPUTCLEAR statement clears any data in the typeahead buffer,
forcing new input to be entered for the next input request. This may be
useful when errors are discovered and the typeahead data must not be
used under the error conditions.

Note: The typeahead buffer is also cleared by the INPUT statement
when it detects an error in the input and by the PRINTERR

statement. (Please refer to the INPUT and PRINTERR

statements listed alphabetically in this chapter.)

Ultimate BASIC 6929-3
Confidentitil and Proprietary tCi the Ultimate C<Jrp;

c

(J

INPUTCONTROL Statement

INPUTCONTROL Statement

Syntax

6929-3

The INPUTCON1ROL statement is used to control data input for
subsequent INPUT statements.

INPUTCONTROL {option '" }

option any combination of the following:

CCD{ELETE}

EDIT

FUNC{KEYS}

REV {VIDEO}

Ultimate BASIC

Control characters are ignored in subsequent INPUT

statements; if FUNC is specified, ignores all control
characters except those defined in Table 3-3; if FUNC

is not specified, ignores all control characters except
<CTRL-X>, BACKSPACE, LINEFEED, RETURN, and
TAB. (Control characters have ASCII values less than
32; see Appendix D for a list.)

Enters word-processing mode to edit an input field if
the <Fl> key (EDIT) is pressed when input is
subsequently requested using an INPUT statement of
the form:

INPUT @(x,y) :var {,length} mask

Mask must be left -justified. This option is
operational only when FUNC is also specified. When
this option is used, the <Fl> key cannot be
recognized at the BASIC program leveL

Enables keys, such as function keys, to be
recognized as input terminators; value of terminator
key is returned as an ASCII value in SYSTEM(l2);

Table 3-3 lists the keys and corresponding values
returned in SYSTEM(l2).

Displays the data entry field in reverse video for
subsequent INPUT statements that are of the form:

INPUT @(x,y) :var {,length} {mask} ...

The field is displayed in reverse video unless var has
not been assigned a value and no mask is specified.

3-127
Confidential and Proprietary to The Ultimate Corp.


~~~----------- ~~ - ------- --- -- -~~~~------------------~-"~- --~-----~----~ 

Statements and Functions 

Description 

3-128 

Any options not explicitly specified in the INPUTCONlROL statement are 
turned off. 

This statement supersedes the U option on the RUN verb used in releases 
prior to Release 190. 

If word-processing mode is entered, the following commands are 
available during input: 

<f--> 

<~> 

(cursor left) moves cursor left; cannot move past first 
character 

(cursor right) moves cursor right; cannot move past 
position following last character that was entered 

<Backspace> deletes character to left of cursor, moves cursor to left 

<CTRL-X> 

<Delete> 

<Fl> 

<Horne> 

<RETURN> 

<Tab> 

and shifts remaining characters to left; cannot 
backspace past first character 

redisplays default input, terminates input mode; moves 
cursor to first position in field 

deletes character under cursor, shifts remaining 
characters to left 

enters word processing mode in replace mode, moves 
cursor to first position of field; subsequent use of 
<pI> toggles between replace and insert mode, cursor 
remains at current location 

moves cursor to first position of field 

terminates input 

moves cursor right to next word; if at the last word, 
moves to position following last character 

When FUNCKEYS is on, the affected keys are encoded to give BASIC 

programs a standard view of terminal input, regardless <;>f the specific 
terminal is being used. The value of the key that was used to tenninate 
input can be retrieved by using SYSTEM(12). In order for FUNCKEYS to 
encode the value, the affected keys must return the values as defined in 
the TERMDEF item for the current TERM type. 

Table 3-3 lists the terminal keys that are affected by FUNCKEYS and the 
ASCII value each returns. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

o 



6929-3 

INPUTCONTROL Statement 

Table 3-3 FUNCKEYS Values 

ASCII value returned 

Input Key in SYSTEM(l2) 

<Backspace> 81 

<Tab> 9 

<Linefeed> 102 

<Return> l3 

<CTRL-X> 243 

<Del> 127 

<F1> - <F16> 209-224 

Shifted <F1> - <FI6> 225-240 

<Home> 241 

<~> (cursor left) 242 

<i> (cursor up) 243 

< .. b (cursor down) 244 

<~> (cursor right) 245 

Unrecognizable key sequence with "lead- 246 

in" characters appearing to be Function or 

Cursor keys. 

IBackspacing at the beginning of a field terminates INPUT. If the terminal's 
<~> (cursor left) key is the same as the <Backspace> key, the code returned is 
242, not 8. 

zIf the terminal's < .. 1-> (cursor down) key is the same as the <Linefeed> key. the 
code returned is 244, not to. 

3Entering <crRL-X> at the beginning of a field terminates INPUT. At other 
points it has its standard meaning of clearing input and returning to beginning 
offield. 

Ultimate BASIC 3-129 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

I NS Statement 

Syntax 

Description 

3-130 

The INS statement is used to insert data into a dynamic array. 

INS expression BEFORE var <attrib.no {,val.no {,subval.no} }> 

expression value to be inserted into the dynamic array; can be an 
expression using operators with precedence levels 1-4 only 
(dynamic array extraction, substring, exponentiation, 
multiplication, division, addition, and subtraction). 

var dynamic array in which to insert expression 

attrib.no position of the attribute to be inserted; if -1, expression is 
inserted after last attribute, or if last attribute is null, 
replaces last attribute 

val. no position of the value to be inserted; if -1, expression is 
inserted after last value in specified attribute, or if last 
value is null, replaces last value 

subval.no position of the subvalue to be ~nserted; if -1, expression is 
inserted after last subvalue in specified attribute and value, 
or if last subvalue is null, replaces last subvalue 

If val.no and subval.no are absent or have a value of 0, the expression 
is inserted preceding the attribute specified by attrib.no. If val.no is 
present and subval.no is absent or has a value of 0, the expression is 
inserted preceding the value specified by val.no. If attrib.no, val.no, 
and subval.no are all non-zero, the expression is inserted preceding the 
subvalue specified by subval.no. 

This statement performs the same operation as the INSERT function, but 
in addition, it stores the result back into the source variable. (Refer to 
the INSERT function listed alphabetically in this chapter.) 

INS "JOHN" BEFORE NAME < 3 , 1> Inserts the string "JOHN" before the 
first value of the third attribute of 
dynamic array NAME. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

o 

o 



INSERT Function 

INSERT Function 

Syntax 

Description 

6929-3 

The INSERT function returns a dynamic array with a specified attribute, 
value, or subvalue inserted. 

INSERT(var,attrib.no {,val.no {,subval.no } };expr) 
INSERT(var,attrib.no,val.no,subval.no,expr) 

var 

attrib.no 

val. no 

dynamic array in which to insert expression 

position of the attribute to be inserted; if -1, expression is 
inserted after last attribute, or if last attribute is null, 
replaces last attribute 

position of the value to be inserted; if -1, expression is 
inserted after last value in specified attribute, or if last 
value is null, replaces last value 

subval.no position of the subvalue to be inserted; if -1, expression is 
inserted after last subvalue in specified attribute and value, 
or if last subvalue is null, replaces last subvalue 

expr value to be inserted into the dynamic array; can be an 
expression using operators with precedence levels 1-4 only 
(dynamic array extraction, substring, exponentiation, 
multiplication, division, addition, and subtraction). 

In the first form, a semicolon separates the attribute, value, and 
subvalue numbers from the new data expression (expr); trailing zero 
value and subvalue numbers and commas are not required. 

If val.no and subval.no are absent or have a value of 0, the expression 
is inserted preceding the attribute specified by attrib.no. If val.no is 
present and subval.no is absent or has a value of 0, the expression is 
inserted preceding the value specified by val.no. If attrib.no, val.no, 
and subval.no are all non-zero, the expression is inserted preceding the 
subvalue specified by subval.no. 

The following example shows two ways to use the INSERT function: 

Ultimate BASIC 3-131 
Confidential and Proprietary to The Ultimate Corp. 



Statements· and Functions 

3-132 

First form: x INSERT(X,10;'XXXXX') 

Second form: x INSERT(X,10,O,0, 'XXXXX') 

In both forms, the value "xxxxx" is inserted as an attribute before 
attribute 10, creating a new attribute. 

Note: The INS statement may be used to insert an attribute, value, or 
subvalue into a dynamic array and store the result back into the 
variable containing the original dynamic array. For more 
information, please refer to the INS statement, listed 
alphabetically in this chapter. 

Y = INSERT (X, 3, 2; "XYZ") Inserts string value "XYZ" before 
or value 2 of attribute 3 of dynamic array 

Y = INSERT (X, 3,2,0, "XYZ") X, creating a new value; assigns the 
resulting dynamic array to variable Y. 

NEW = "VALUE" 

T = INSERT(T,9;NEW) 

or 

T INSERT(T,9,O,O,NEW) 

A = "123456789" 

B = INSERT(B,3,-1;A) 

or 

B = INSERT(B,3,-1,0,A) 

Z INSERT(W,5,2,1;"B") 

or 
Z = INSERT(W,5,2,1,"B") 

Ultimate BASIC 

Inserts string value "VALUE" before 
attribute 9 of dynamic array T, 

creating. a new attribute. 

Inserts the value "123456789" after 
the last value of attribute 3 of dynamic . 
array B. 

Inserts the string value "B" before 
subvalue I of value 2 of attribute 5 in 
dynamic array w, thus creating a new 
subvalue, and assigns the resulting 
dynamic array to variable z. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



c INT Function 

Syntax 

(~ 

o 
6929-3 

INT Function 

The !NT function returns the integer portion of a value; any fractional 
portion is truncated. 

INT(expr) 

expr value from which to extract the integer portion 

A 3.55 

B 3.6 

C INT(A) Assigns the value 3 to variable c. 
D INT(B) Assigns the value 3, to variable D. 

E INT(A+B) Assigns the value 7 to variable E. 

J INT(5/3) Assigns the value 1 to variable]. 

Ultimate BASIC 3-133 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

LEN Function 

Syntax 

Description 

3-134 

The LEN function returns the length of a string. 

LEN(expr) 

expr value whose length is to be determined 

The LEN function returns the length of the string specified by the 
expression in number of characters. 

Q = LEN ( "123" ) Assigns the value 3 to variable Q. 

x = "123" 

Y = "ABC" 

Z = LEN(X CAT Y) Assigns the value 6 to variable z. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

o 



c 

LET Statement 

LET Statement 

Syntax 

Description 

6929-3 

The LET statement is an optional part of the = (assignment) statement. 

{LET) variable = expression 

variable variable to be assigned a value 

expression value to assign; may be a literal or variable 

For more information on assigning values, please see the = 
(Assignment) statement, listed at the beginning of this chapter. 

LET A = 'HELLO' These two statements are equivalent. 

A = 'HELLO' 

Ultimate BASIC 3-135 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

LN Function 

Syntax 

Description 

3 .. 136 

The LN function returns the natural logarithm of a number. 

LN( expression) 

expression any numeric expression; if less than or equal to zero, the 
LN function returns a value of zero 

The LN (natural logarithm) function generates the natural (base e) 
logarithm of the expression. The LN function is the inverse of the EXP 

(exponent) function. 

PRINT LN(lO) 

A = LN(22026.5) 

PRINT A 

Ultimate BASIC 

Prints 2.30258509299 

Prints 10.00000155291 

ConfidentIal and Proprietary to The Ultimate Corp. 
6929-3 

c) 



( 

C 

LOCA TE Statement 

LOCATE Statement 

Syntax 

6929-3 

The LOCA 1E statement is used to find the position of an atnibute, a 
value, or a subvalue within a dynamic array. 

LOCA1E(expr, item {,atnib.no {,val.no} }; var {; seq}){THEN StInts} 
{ELSE stmts} 

LOCATE exprIN item{ <attrib.no{,val.no}>}{, start}{BY seq} SETTING 
var {THEN stmts} {ELSE stmts} 

expr element to be located in dynamic array 

item dynamic array 

var variable into which the position of exprl is to be stored; if 
exprl is not located, var contains the position in the array 
where the element could be inserted 

attrib.no limits search to specified atnibute for location of value; 
location in var is location of value 

val.no limits search to specified value within specified atnibute 
for location of subvalue; location in var is location of 
subvalue 

seq specifies order in which item is sorted; can be "A", 
ascending sequence, or "D", descending sequence; any 
other values are ignored. The second character of seq, if 
present, determines the justification; "R" indicates right 
justification; any other value, including null, indicates left 
justification. 

start starting position for the search; may be attribute, value, or 
subvalue number; if start is not present, the default of 1 is 
assumed 

THEN stmts statements to execute if the element is located 

ELSE stmts statement to execute if the element is not located 

Ultimate BASIC 3-137 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Description 

3-138 

Note: Thefirstform starts the search at the beginning of the dynamic 
array, while the secondform starts the search at a specified 
attribute, value, or subvalue. 

If neither attrib.no nor vaL no is specified, LOCA 1E searches for an 
entire attribute and the position returned in var is the location of the 
attribute. 

If seq is specified and the expression is not found, the number returned 
in var is the position where the expression would be had it been found. 
If seq is not specified and the expression is not found, the number 
returned in var is the position following the last element searched. 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

LOCA1E eliminates the need for a loop that specifically extracts and tests 
the attribute, then takes one of two alternative paths before the next item 
can be searched. 

The position returned in var may be used in an INSERT function or INS 

statement to place the sought element into its proper location. For 
example, if a program needs to locate or insert data in an item, one 
statement can perform both the LOCA 1E and INSERT operations: 

LOCATE('D',ITEM,4;VAR) ELSE 

ITEM = INSERT(ITEM,4,VAR,O, 'D') 

END 

LOCATE 'D' IN ITEM<4> SETTING VAR ELSE 

INS 'D' BEFORE ITEM<4,VAR> 

END 

If the string 'D' is not found in attribute 4 of I1EM, it is inserted as a 
value at the end of the attribute. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to TheUltirriate Corp. 

c 

c 

o 



( 

6929-3 

----....... ---~.---

LOCA TE Statement 

LOCATE('55',ITEM,3,1;VAR; 'AR') ELSE 

ITEM INSERT(ITEM,3,1,VAR, '55') 

END All subvalues in third attribute, fIrst 
value, of dynamic array 'ITEM' are 
searched for the numeric literal '55'; 
if the numeric is found, its position is 
returned in V AR; if it is not found, the 
position in which it would have been 
found, using an ascending, right
justifIed sort, is returned in V AR. 

LOCATE (STR,REC;VAR) THEN 

NAME=REC<VAR> 

END ELSE 

NAME='INVALID' 

END 

The element SIR is sought in item 
REC; the resulting index is in V AR. 

Depending on the result, the variable 
NAME is assigned and printed. 

PRINT NAME 

LOCATE "JOHN" IN NLIST<3> SETTING x ELSE 

INS "JOHN" BEFORE NLIST<3,X> 

END If "JOHN" is not found, it is inserted 
at the position returned in X. 

LOCATE PRODGRP IN RES<l>,l BY 'AL' SETTING POS ELSE 

INS PRODGRP BEFORE RES<l,POS> ;* product group 

INS" BEFORE RES<2,POS> ;* total value 

INS 0 

END 

Ultimate BASIC 

BEFORE RES<3,POS> ;* total quantity 

Confidential and Proprietary to The Ultimate Corp. 
3-139 



-------- -------------.---------------------- --

Statements and Functions 

LOCK Statement 

Syntax 

Description 

3-140 

The WCK statement provides a file and execution lock capability for 
BASIC programs. 

LOCK expression {ELSE stmts} 

expression specifies the execution lock to be set (0-47); if the 
execution lock is currently unlocked, the statement sets the 
lock. If a number greater than 47 is specified, it is 
adjusted by mod 48 to a number less than 47 

ELSE stmts statements to be executed if the specified execution lock is 
already set by another process; may be placed on the same 
line separated by semicolons, or may be placed on multiple 
lines terminated by an END, as in the IF statement 

If the specified lock is already set by the current program, the LOCK 

statement has no effect. 

The LOCK statement sets an execution lock.that "locks out" other BASIC 

programs while the lock remains set. When any other BASIC program 
attempts to set the same lock, that program either executes an alternative 
set of statements or pauses until the lock is released via an UNLOCK 

statement by the program which set the lock. 

If the specified execution lock has already been set by another program 
and the ELSE clause is not included in the statement, program execution 
pauses until the lock is released by the other program. If the specified 
execution lock has been set and the ELSE clause is included, the 
statements following the ELSE are executed. 

The Ultimate system provides 48 execution locks, numbered from 0 
through 47. Execution locks are used as program control devices; they 
may also be used as file locks to prevent multiple BASIC programs from 
updating the same files simultaneously. 

The following is an example of an execution lock sequence: 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. . 

----- ._-------

c 

C> 



( 

c 
6929-3 

LOCK Statement 

Process A sets execution lock 42 before executing code that should not 
be executed by more than one process at a time. Process B, executing 
the same program, reaches the "LOCK 42" instruction. If Process A 

has not yet unlocked 42, Process B cannot proceed to execute that 
section of code. Process B must wait until Process A has unlocked 
42. The code is protected from more than one process executing it at 
the same time. 

When a program terminates execution for any reason, including the 
BASIC debugger END command, any execution locks still locked for that 
line are unlocked. 

For information on the UNLOCK statement, please refer to the UNLOCK 

statement listed alphabetically in this chapter. 

LOCK 15 ELSE STOP 

LOCK 2 

LOCK 10 ELSE 

PRINT X 

GOTO 5 

END 

Ultimate BASIC 

Sets execution lock 15; if lock 15 is 
already set, program terminates. 

Sets execution lock 2; if lock 2 is 
already set program halts temporarily 
until lock 2 is released. 

Sets execution lock 10; if lock 10 is 
already set, the value of X is printed 
and the program branches to 
statement 5. 

3-141 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

LOOP Statement 

Syntax 

Description 

3-142 

The LOOP statement constructs a program loop. 

LOOP {stmtsl} {WHILE expression DO {stmts2}} REPEAT 

LOOP {stmts I} {UNTIL expression DO {stmts3} } REPEAT 

stmtsl statements to be executed before testing for an end of loop 
condition 

expressIOn expression that evaluates to true (non-zero value) or false 
(zero) 

stmts2 statements to be executed as long as expression is true 

stmts3 statements to be executed as long as expression is false 

Both the WHILE clause and UNTIL clause are optional. If neither clause 
is used, an endless loop can be constructed that repeatedly executes all 
statements (if any) between LOOP and REPEAT unless control is 
transferred outside the loop by a statement such as EXIT or GOTO. 

(Please refer to the EXIT and GOTO statements, listed alphabetically in 
this chapter.) 

Loops may be nested 50 levels deep. 

Execution of a LOOP statement with a WHILE or UNTIL clause proceeds 
as follows. First, the statements (if any) following LOOP are executed. 
Then, the WHILE or UNTIL expression is evaluated. One of the 
following is then performed, depending on the form used: 

• If the WHILE form is used, and if the expression evaluates to true 
(non-zero), the statements following 00 (if any) are executed and 
program control returns to the beginning' of the loop. If the 
expression evaluates to false (zero), program control passes out of 
the loop and proceeds with the statement that follows REPEAT. 

• If the UNTIL form is used, and if the expression evaluates to false 
(zero), then the statements following 00 (if any) are executed and 
program control loops back to the beginning of the loop. If the 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

(j 



( 

6929-3 

LOOP Statement 

expression evaluates to true (non-zero), program control passes out 
of the loop and proceeds with the statement following REPEAT. 

Statements used within the LOOP statement may be placed on one line 
separated by semicolons, or may be placed on multiple lines. 

J=O 

LOOP 

PRINT J 

J=J+1 

WHILE J<4 DO REPEAT 

Q=6 

LOOP Q=Q-1 WHILE Q DO 

PRINT Q 

REPEAT 

Q=6 

LOOP PRINT Q WHILE Q DO 

Q=Q-1 REPEAT 

8=1 

LOOP UNTIL 8=6 DO 

8=8+1 

PRINT 8 

REPEAT 

Ultimate BASIC 

Loop executes four times; sequential 
values of variable J from 0 through 3 
are printed. 

Loop executes five times; values of 
variable Q are printed in decreasing 
order from 5 to 1. 

Loop executes seven times; values of 
variable Q are printed in decreasing 
order from 6 to O. 

Loop executes five times; sequential 
values of variable B from 2 through 6 
are printed. 

3-143 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

MAT = Statement 

Syntax 

Description 

3-144 

The MAT = statement is used to assign a constant value to each element 
in an array, or to copy one array to another. 

MAT var 1 = expression 
MAT varl = MAT var2 

varl array to which values are to be assigned or copied; must 
have been previously dimensioned via a COMMON or DIM 

statement 

expression value to assign to each element of the array; may be any 
legal expression 

var2 array from which values are to be copied; must have been 
previously dimensioned via a COMMON or DIM statement; 
the number of elements in varl and var2 must be the same 

Arrays are copied in row major order, with the second subscript 
(column) varying first. The first element of the array var2 becomes the 
first element of the array varl, the second element of var2 becomes the 
second element of var I, and so forth. Consider the following example: 

Program Code 

DIM X(5,2), Y(10) 

FOR 1=1 TO 10 

Y(I)=I 

NEXT I 

MAT X = MAT Y 

Resulting Array Values 

X(l,l) 

X(1,2) 

X(2,1) 

Y (1) 

Y(2) 

Y (3) 

1 

2 

3 

X(5,2) = Y(10) = 10 

The above program dimensions two arrays with ten elements, assigns 
the numbers I through 10 to array Y elements, then copies array Y to 
array x, giving the array elements the indicated values. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



6929-3 

MAT TABLE=l 

MAT XYZ=A+B/C 

DIM A(20), B(20) 

MAT A = MAT B 

MA T = Statement 

Assigns a value of 1 to each element 
of array TABLE. 

Assigns the expression value to 
each element of array XYZ. 

Dimensions two arrays of equal 
length, and copies to elements of A 

the values of corresponding 
elements of B. 

DIM TABl (10,10), TAB2 (50,2) Dimensions two arrays of the same 
number of elements (100), and 
copies TAB2 values to TABl in row 

MAT TABl MAT TAB2 major order. 

Ultimate BASIC 3-145 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

MATCHFIELD Function 

Syntax 

Description 

3-146 

The MATCHFIELD function perfonns a MATCH operation, and if the 
string matches the specified pattern, MATCHFIELD returns a portion of 
the string. 

MATCHFIELD(string.expr,pattern,return.field) 

string.expr string to be used 

pattern valid pattern match (each element in the pattern defines a 
field in the string); the valid match patterns (where 'n' is an 
integer) are: 

Ox 
nX 
(~}OA 

(~}nA 

(~}ON 

(~}nN 

zero or more characters of any type 
exactly n characters of any type 
zero or more alphabetic characters 
exactly n alphabetic characters 
zero or more numeric characters 
exactly n numeric characters 

"text" literal string enclosed in single or double quotes 

return.field number of the field in the string to return 

All parameters can be literals or expressions. 

The MATCHFIELD function returns the portion (field) in the string that 
matches the pattern element number specified in the return. field 
parameter. 

The tilde (-) negates the pattern match. For example, 3N matches a 
pattern of exactly three numeric characters and ~ 3N matches a string of 
exactly three non-numeric characters. ~3N does not match a string of 
three characters containing any numeric character. 

A null string matches the following patterns: 

OA, ON, ox, ", and "" 

If either the OA or ON pattern is specified, matching continues until a 
character is encountered that does not match the pattern (either alphabetic C 

Ultimate BASIC 6929-3 
Confidential and Proprietary to· The Ultimate Corp. 



( 

6929-3 

MA TCHFIELD Function 

or numeric). If another pattern follows a OA or ON pattern, that pattern 
is used in the match as soon as a character is encountered that does not 
match OA or ON pattern. 

The Ox pattern matches the entire string; if a pattern match is appended 
to Ox, the match returns false. Also, if the Ox pattern is specified and 
the return. field is anything other than 1, null is returned. 

Alternative patterns may be specified within a single match expression 
by concatenating the alternatives, separated by a value mark. For 
example, "3N:VM:"" can be used to match a field that contains either 
three numbers or a null string. 

To result in a match, the value of the string expression must match the 
entire value of the pattern expression. If the string does not match the 
pattern or pattern alternatives, then MATCHFIELD returns a null value. 

The return.field expression specifies an element in the match pattern and 
the string.expr. Because the match pattern may be made up of several 
distinct pattern elements, the return.field is used to return only the part 
of the string that matches the return.field pattern element. 

S 'ABC-123-XYZ' 

A MATCHFIELD(S, '3A-3N-3A',2) 

A 'ABCDEFGHIJKLMNOP123, 

M MATCHFIELD(A, 'OA3N',2) 

Ultimate BASIC 

The specified five-field pattern is 
matched and the second field of the 
matched string (' -') is returned in A. 

The string is compared to the pattern 
OA until a non-alphabetic character is 
encountered; the 3N pattern is then 
used. The second field of the 
matched string (' 123') is returned. 

3-147 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

MATPARSE Statement 

Syntax 

Description 

3-148 

The MA1PARSE statement is used to copy a dynamic array or other 
delimited string into a dimensioned array. 

MA1PARSE dim. array FROM string,delimiter 

dim. array previously defined dimensioned array 

string string whose elements are to be copied 

delimiter character that delimits elements in string 

If the dimensioned array is defined with a fixed size, MA1PARSE places 
each delimited value in the string into successive elements of the 
dimensioned array, up to the size of the array. If there are more 
delimited values in the string than there are elements in the dimensioned 
array, the extra delimited values are all placed in the last element of the 
dimensioned array. If there are fewer delimited values in the string than 
there are elements in the array, the remaining elements are set to nulL 

If the dimensioned array is defined with a size of zero or with a variable 
size, MA1PARSE places each delimited value in the string into successive 
elements of the array and redimensions the array to the number of 
elements in the string. The INMATO function can be used to determine 
the size of the dimensioned array. If the number of delimited values in 
the string is greater than the maximum size of a dimensioned array 
(currently 3223), the remaining values are placed in the last element in 
the array. In this case, INMATO returns a value of zero. 

SZ = 0 

DIM A (SZ) 

MATPARSE A FROM DY.ARRAY,@FM 

SZ = INMAT () Array is initially dimensioned to 0; 
MA 1P ARSE redimensions it to 
size of DY.ARRAY. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

le··.\, L" .' 



(-

(: 

MA TREAO{U} Statement 

MATREAD{U} Statement 

Syntax 

6929-3 

The MATREAD{U} statement reads a file item and assigns the value of 
each attribute to consecutive dimensioned array elements. 

MATREAD{U} var FROM {file.var,} item.id {ON ERROR stmts} 
{LOCKED stmts} THEN/ELSE stmts 

U locks the item lock associated with the item to be 
accessed. If the item is currently locked by another 
BASIC program, the read operation cannot be 
performed until the item is released, written, or 
deleted by the user that locked it. The item does not 
have to exist in order for MATREADU to lock it; in this 
case, MA TREADU executes the ELSE statements, but 
still locks the associated item lock. (The letter U is 
appended to the statement name to imply update, not 
unlock.) 

var dimensioned array into which the item is read 

file.var variable to which file was previously OPENed; if the 
file. var is omitted, the internal default file variable is 
used (that is, the file most recently opened without a 
file variable); if the specified file has not been opened 
prior to the execution of the MA TREAD statement, the 
program aborts 

item.id name of item to be accessed 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be read due 
to a network error condition. In this case, the value of 
SYSTEM(O) indicates the UltiNet error number. 
(Refer to the SYSTEM function, listed alphabetically in 
this chapter; for more information about remote files, 
refer to the UltiNet User's Guide.) The ON ERROR 
clause has no effect when reading local files. 

Ultimate BASIC 3-149 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Description 

3-150 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 
terminated by an END statement as in the multi-line IF 

statement. 

LOCKED stmts statements to execute if the MAlREAD statement is 
unable to lock the item because another program has 
already locked it; statements may be on a single line 
separated by semicolons or on multiple lines 
terminated by END, as in the multi-line IF statement 

THEN stmts statements to be executed after item is successfully 
read into array; the THEN statements may appear on 
one line separated by semicolons, or on multiple lines 
terminated by an END, as in the multiple line IF 

statement 

ELSE stmts statements to be executed if the specified item does not 
exist; in this case, the contents of the array remain 
unchanged; the ELSE statements may appear on one 
line separated by semicolons or on multiple lines 
terminated by an END, as in the multiple line IF 

statement. 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

The MAlREAD statement reads the file item specified by the item.id 
expression and assigns the value of each attribute to consecutive 
elements of the dimensioned array specified by variable var. 

If the dimensioned array is defined with a size of zero or with a variable 
size, MAlREAD reads each attribute from the item into one element of 
the array, redimensioning the array if the number of attributes is 
different from the dimensioned size of the array. INMATO returns the 
number of elements in the array. If the number of attributes in the item 
is greater than the maximum size of a dimensioned array (currently 
3223), the remaining attributes are placed in the last element in the array. 
In this case, INMATO returns a value of zero. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

:C·"··~~·\ \. " 



( 

UltiNet 
Considerations 

Item Locks 

6929-3 

MA TREAO{U} Statement 

If the dimensioned array is defined with a fixed size, and if the number 
of attributes in the item is less than the DIMensioned size of the array, 
the trailing elements are assigned a null string. If the number of 
attributes in the item exceeds the DIMensioned size of the array, the 
remaining attributes, separated by attribute marks, are assigned to the 
last element of the array. 

The ON ERROR clause allows the program to retrieve the UltiNet error 
number and take appropriate action. Such action could, for instance, 
include printing the associated message text via a PUT statement or STOP 
statement, and resuming or terminating program execution. 

If a remote file cannot be read due to network errors and no ON ERROR 
clause is present, the program terminates with an error message. 

Item locks can be used to prevent updating an item by two or more 
programs simultaneously while still allowing multiple programs to 
access the file. 

Item locks are assigned based on the group of the file which contains (or 
would contain) the item and a hash value derived from the item.id. 
Items in different groups (in the same file or in different files) are never 
assigned the same item lock, but it is possible for more than one item in 
the same group to hash to, and be assigned, the same item lock. 

If an item is currently unlocked, setting a corresponding item lock 
prevents access to the item, and any other items in the same group with 
the same item lock hash value, by other BASIC programs using the 
MATREADU, READU, or READVU statements. The program setting the 
lock, however, is allowed to lock other items in the same group with the 
same hash value using these statements. 

An item is unlocked when it, or any other item sharing the same item 
lock, is updated by a WRITE, WRITEV, MATWRITE, or DELETE 
statement, or when it is unlocked by a RELEASE statement, or when the 
BASIC program is terminated. An item can be updated without 
unlocking it by using the WRITEU, WRITEVU, or the MATWRITEU 
statement. 

There is a maximum number of item locks that may be locked at anyone 
time. This number may vary from release to release. If a program 

Ultimate BASIC 3-151 
Confidential and Proprietary to The Ultimate Corp. 



._-------

Statements and Functions 

3-152 

attempts to lock an item when all item locks are already set, it is 
suspended until a lock is unlocked. 

No Ie: Locked items can still be retrieved by the READ. READV. and 
MATREAD statements and by other system software, such as 
Recall, that do not pay attention to item locks. 

For information on read locks set by the system, see the section in 
Chapter 5 called "Read Locks. " 

DIM ITEM(20) 

OPEN 'LOG' TO FI ELSE STOP 

MATREAD ITEM FROM FI, 'TEST' ELSE STOP 

Reads the item named TEST from the 
data file named LOO and assigns the 
string value of each attribute to 
consecutive elements of array ITEM, 

starting with the first element. 

MAT READ ITEM FROM FI, 'TEST' ON ERROR 

ERRNUM=SYSTEM (0) Reads as above; if a network error 
GOSUB PROCESSERR 

GOTO TOP 

END ELSE STOP 

occurs, retrieves error number and 
performs local subroutine on UltiNet 
error number. 

MATREADU T FROM XM, "N4" ELSE NULL 

The item is locked regardless of 
whether it exists or not. 

MATREADU ITEM FROM ID LOCKED GOTO 900 ELSE NULL 

If the item is currently locked, the 
program branches to label 900. 

MATREADU ITEM FROM ID ON ERROR GOTO PROCERR ELSE NULL 

If the item cannot be read due to a 
network error, the program branches 
to local subroutine PROCERR for 
processing the UltiNet error number. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

o 

o 



( 

c 

MA TWRITE{U} Statement 

MATWRITE{U} Statement 

Syntax 

6929-3 

The MATWRlTE{U} statement writes an item from a dimensioned array, 
and assigns the value of each element to consecutive attributes. 

MA TWRlTE {U} var ON {file. var,} item.id {ON ERROR stmts} 

U 

var 

file.var 

item.id 

specifies update mode; does not unlock an item after 
completing the write operation; if the item is not 
locked before the MATWRITEU statement is executed, 
it is locked afterwards. (The letter U is appended to 
the statement name to imply update, not unlock.) 

dimensioned array that contains information to be 
written 

variable to which file was previously OPENed; if the 
file.var is omitted, the internal default file variable is 
used (that is, the file most recently opened without a 
file variable). 

item to be written; any attributes currently in item are 
replaced with the string value of the consecutive 
elements of var. If the item does not exist, a new item 
is created. 

ON ERROR stmts statements to be executed if the fIle is a remote file, 
that is accessed via UltiNet, and it cannot be cleared 
due to a network error condition. In this case, the 
value of SYSTEM(O) indicates the UltiNet error 
number. (Refer to the SYSTEM function, listed 
alphabetically in this chapter; for more information 
about remote files, refer to the UltiNet User's Guide.) 
The ON ERROR clause has no effect when writing 
local files. 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 
terminated by an END statement as in the multi-line IF 

statement. 

Ultimate BASIC 3-153 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Description 

3-154 

When the specified name of the item to be written is the same as the 
name of an existing item on the file, the existing item is overwritten. 

Each element in the array becomes an attribute in the item being written, 
except that null attributes at the end of the item are deleted. If an element 
of the array contains strings delimited by attribute marks, each delimited 
string becomes an attribute in the item. 

MATWRllE assigns a value of 0 to all attributes whose corresponding 
array elements have not been assigned a value. A message is displayed 
if zero is assigned. 

If the U option is not specified, the MA TWRllE statement clears any item 
lock associated with the item being written. Item locks may be set with 
the MATREADU, READU, and READVU statements to prevent 
simultaneous updates of the same item by more than one program. (For 
more information on item locks, please refer to the MATREADU, READU, 

and READVU statements, listed alphabetically in this chapter.) 

The U option of the MATWRllE statement is intended primarily for 
master file updates when several transactions, are being processed and an 
update of the master item is made following each transaction update. 

Note: The RELEASE statement can be also used to unlock an item. 
(Please refer to the RELEASE statement, listed alphabetically in 
this chapter.) 

The ON ERROR clause allows the program to retrieve the UltiNet error 
number and take appropriate action. Such action could, for instance, 
include printing the associated message text via a PUT statement or STOP 

statement, and resuming or terminating program execution. 

If a remote file cannot be written due to network errors and no ON 

ERROR clause is present, the program terminates with an error message. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

'C·-""·'·', , ' , , 

c: 



( 

( 

6929-3 

MA TWRITE{U} Statement 

DIM ITEM(10) Writes an item named JUNK 

OPEN 'TEST' TO F1 ELSE STOP in the file named TEST. 

FOR 1=1 TO 10 

ITEM(I)=I 

NEXT I 

MATWRITE ITEM ON F1,"JUNK" 

MATWRITE ITEM ON F1,"JUNK" 

ERRNUM=SYSTEM(O) 

GOSUB PROCESSERR 

GOTO TOP 

END 

The item written will contain 
ten attributes whose string 
values are 1 through 10. 

ON ERROR 

Writes as above, or retrieves 
error number and performs 
local subroutine on UltiNet 
error number. 

MATWRITEU ARRAY ON FILE.NAME,ID 

Replaces the attributes of the item 
specified by ID (in the file opened 
and assigned to variable 
FILE.NAME) with the consecutive 
elements of ARRAY. Does not 
unlock the group. 

MATWRITEU A ON ID ON ERROR GOTO PROCESSERR 

Ultimate BASIC 

Writes elements of A to item 
specified by ID, or branches to 
process UltiNet error number. 

3-155 
Confidential and Proprietary to The Ultimate Corp. 



------_ ..... __ ._ ...... __ ._--" -~.-. ,.~ ... ' .,."~~.~--' -' .~--.,-."-

Statements and Functions 

MOD Function 

Syntax 

Description 

3-156 

The MOD function generates the remainder of one number divided by 
another. 

MOD( dividend,divisor) 

dividend expression to be divided 

divisor expression to divide by 

The MOD function is the same as the REM function, listed alphabetically 
in this chapter. 

Q = MOD ( 11 , 3) Assigns the value 2 to variable Q. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

o 



NEXT Statement 

(~' NEXT Statement 

Syntax 

Description 

( 

6929-3 

The NEXT statement is used to specify the ending point of a FOR/NEXT 

program loop. A NEXT statement is always used in conjunction with a 
FOR statement. 

NEXT {variable} 

variable if used, should be the same as corresponding variable in the 
FOR statement; however, variable is ignored by compiler 

The NEXT statement returns program control to the beginning of the loop 
after a new value of the variable has been computed. 

If variable is not specified, the variable assigned to the last FOR 

statement without a corresponding NEXT is used. 

For more information, see the description of FOR, listed alphabetically 
in this chapter. 

FOR A=l TO 20 

NEXT A 

FOR K = 1 TO 10 

FOR L = 1 TO 5 

NEXT 

NEXT 

Ultimate BASIC 

Loop is executed until value of A is 
20. 

Nested loops; the first NEXT uses the 
variable of the last FOR (that is, L) as 
its control. The second NEXT uses K 

as its control. 

3,.157 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

NOT Function 

Syntax 

Description 

3-158 

The NOT function returns a value of true (1) if the given expression 
evaluates to 0 and a value of false (0) if the expression evaluates to a 

non-zero quantity. 

NOT(expr) 

expr expression to be evaluated; must be numeric 

The NOT function returns the logical inverse of the specified expression; 
it returns a value of true if the expression evaluates to 0, and returns a 
value of false if the expression evaluates to a non-zero quantity. 

x = A AND NOT (B) 

IF NOT (X) THEN STOP 

Assigns the value I to variable X if 
current value of variable A is not 0 
and current value of variable B is 0; 
otherwise assigns a value of 0 to X. 

Program terminates if current value of 
variable X is O. 

PRINT NOT(M) OR NOT(NUM(N)) 

Ultimate BASIC 

Prints a value of I if current value of 
variable M is 0 or current value of 
variable N is a non-numeric string; 
otherwise prints a zero. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

c 



(-

NULL Statement 

NULL Statement 

Syntax 

Description 

6929-3 

The NULL statement specifies a non-operation. It may be used 
anywhere in the program where a BASIC statement is required. 

NULL 

The NULL statement is used in situations where a BASIC statement is 
required, but no operation or action is desired. 

INPUT X ELSE NULL 

10 NULL 

Assigns an input value to variable X if 
the value is non-null (that is, if the 
operator enters more than just a 
carriage return in response to the 
INPUT prompt character). If the input 
value is null, X will retain its old 
value. Without the ELSE NULL 

clause, the INPUT statement would 
assign X a null value if no value (just 
a <CR» were entered. 

This statement does not result in any 
operation or action; however, since is 
is preceded by a statement label (10) it 
may be used as a program entry point 
for GOTO or GOSUB statements 
elsewhere in the program. 

READ A FROM "ABC" ELSE NULL 

Ultimate BASIC 

File item ABC is read and assigned to 
variable A. If ABC does not exist, no 
action is taken. 

3-159 
Confidential and Proprietary to The Ultimate Corp. 



--_._-- -----_._-_ .. _-

Statements and Functions 

NUM Function 

Syntax 

Description 

3-160 

The NUM function returns a value of true (1) if the given expression 
evaluates to a number or a numeric string; otherwise it returns a value of 
false (0). 

NUM(expr) 

expr expression to be evaluated 

The NUM function tests the given expression for a numeric value. It 
returns a value of true if the expression evaluates to a number or 
numeric string, and returns a value of false if the expression evaluates to 
an alphabetic or other non-numeric string. 

The NUM function considers a numeric string to be one of the following: 

• a sequence of decimal digits, optionally preceded by a plus or minus 
sign, and optionally containing a decimal point 

• a null string ("") 

A1=NUM (123) Assigns a value of I to variable AI. 

A2=NUM ("123") Assigns a value of I to variable A2. 

A3=NUM (" 12C") Assigns a value of 0 to variable A3. 

A4=NUM("") Assigns a value of 1 to variable A4. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

o 



(~ 

c 

OCONV Function 

OCONV Function 

Syntax 

6929-3 

The OCONV function converts a string according to a specified type of 
output conversion. 

OCONV(string,code) 

string string to be converted 

code output conversion code; the following codes are available for 
output conversions: 

D convert date to external fonnat 

G extract group of characters 

L return string length 

MCx mask characters by numeric, alpha, or upper!lower case; or 
convert hexadecimal to decimal or decimal to hexadecimal 

ML mask left-justified decimal data 

MP convert packed decimal to integer 

MR mask right-justified decimal data 

MT convert time to external fonnat 

MX convert ASCII to hexadecimal 

P test pattern match 

R test numeric range 

T convert by table translation. The table file and translation 
criteria must be given. (Please refer to the section 
"Defining File Translation" in the Ultimate Recall and 
Update User Guide for details.) 

u 

Note: This type of conversion is inefficient if several 
items or attributes will be accessed. 

convert by subroutine call to standard user exit (see 
Appendix E) or user-defined assembly routine. The 
absolute address of the routine must be given. The value 
of the string may be a parameter to be passed to the 
subroutine, or a null string if none is needed. If two or 
more parameters are to be passed, they must be 

Ultimate BASIC 3-161 
Confidential and Proprietary to The Ultimate Corp. 



.. _-. __ . -------------~ 

Statements and Functions 

Description 

3-162 

compressed into a single string in string and parsed by 
the called routine. (For details, refer to the Ultimate 
Assembly Language Reference Manual.) 

These conversion codes are the same as those used for Recall 
Conversions and Correlatives. For a detailed treatment of these 
capabilities, refer to the Ultimate Recall and Update User Guide. 

The resulting value is always a string value. 

Note: "MR" and "ML" conversions may also be done withformat 
strings. (For details onformat strings, refer to the chapter 
"Working with Data" in this manual.) 

The following conversion codes used in Recall cannot be used with the 
OCONY function: 

A arithmetic 

B BASIC subroutine call 

C concatenate 

F function 

S substitution 

COLOR=OCONV ("RED"BLUE"WHITE", "Gl "1") 

A="7853" 

B="D" 

XDATE = OCONV(A,B) 

Extracts "BLUE" from the string and 
assigns it to the variable COLOR. 

Assigns the string value 
"01 JUL 1989" (the external date) to 
the variable XDA TE. 

TEAMS=OCONV("TEAMS","TGAMESiXilil") 

Ultimate BASIC 

Reads the first attribute of item 
"TEAMS" in the file "GAMES". 

Confidential and Proprietary to The Ultimate Corp. 
6929-3 

c 

'",,---,,' 

o 



ON GOSUB Statement 

ON GOSUB Statement 

Syntax 

Description 

6929-3 

The ON GOSUB statement transfers program control to a local 
subroutine, based on an index and list of subroutine labels. 

ON expr GOSUB label.1, label.2, ... 

expr value to use as index into the list of labels; expr is evaluated 
and truncated to an integer value, if necessary. If the 
expression evaluates to less than 1 or greater than the number 
of labels, no action is taken and the statement immediately 
following the ON GOSUB is executed. 

label.n label of local subroutine 

The subroutines specified by the labels in the label list may precede or 
follow the ON GOSUB statement. 

When a RETURN statement is encountered in the subroutine, control 
returns to the statement following the ON GOSUB. 

The ON GOSUB statement may continue on multiple lines; each line 
except the last must conclude with a comma. 

ON I GOSUB 100,150,200 

ON CHECK GOSUB ONE, 

TWO, THREE 

Ultimate BASIC 

Branches to subroutine (SUBROUTINE 

statement) located at 100, 150, or 
200, depending on value of I being 1, 
2, or 3, respectively. 

Branches to subroutine located at 
ONE, TWO, or THREE, depending on 
value of variable CHECK. 

3-163 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

ON GOTO Statement 

Syntax 

Description 

3-164 

The ON GOTO statement transfers program control to a statement label 
within the current program, based on an index and list of statement 
labels. The program continues from that point. 

ON expr GOTO labe1.l, labe1.2, ... 

expr value to use as index into the list of labels; expr is evaluated 
and truncated to an integer value, if necessary. If the 
expression evaluates to less than 1 or greater than the number 
of labels, no action is taken and the statement immediately 
following the ON GOTO is executed. 

labe1.n label of statement to which control is transferred 

The routines specified by the labels in the label list may precede or 
follow the ON GOTO statement. 

The ON GOTO statement may continue on multiple lines; each line except 
the last must conclude with a comma. 

ON M GOTO 40, 61, 5, 7 

ON C GOTO ELEMENTARY, 

ELEMENTARY, 

ADVANCED 

Transfers control to statement 40,61, 
5, or 7, depending on the value of M 

being 1,2, 3, or 4 respectively. 

Transfers control to label 
ELEMENTARY if C = 1 or 2, or to 
label ADVANCED if C = 3. 

IF A GE 1 AND A LE 3 THEN The IF statement assures that A is in 
ON A GOTO 110, 120, 130 range for the computed GOTO 

END statement. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

C· '.' .. I , 

(: 



OPEN Statement 

(~' OPEN Statement 

Opening Files 

Syntax 

( 

C 
6929-3 

The OPEN statement is used to select an Ultimate file for subsequent 
input, output, or update. It can also be used to open a subroutine for 
subsequent use with the @ form of the CALL statement. 

OPEN file. name {TO file. var} {ON ERROR stmts} {THEN /ELSE stmts} 

file.name Ultimate file name; must be specified in one of the 
following formats: 

"filename" 
"dictname,filename" 
"DICT filename" 
"DATA filename" 
"DATA dictname,filename" 

Unless DICT is specified, the data section of the file 
is opened; the DATA specification is provided for 
compatibility with previous revisions, but is not 
required 

file.var variable to which the file is assigned for subsequent 
reference; if file.var is omitted, the file is opened to 
the internal default file and subsequent I/O 

statements not specifying a file variable default to 
this file 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UitiNet, and it cannot be opened 
due to a network error condition. In this case, the 
value of SYSTEM(O) indicates the UltiNet error 
number. (Refer to the SYSTEM function, listed 
alphabetically in this chapter; for more information 
about remote files, refer to the UltiNet User's 
Guide.) The ON ERROR clause has no effect when 
opening local files. 

Ultimate BASIC 3-165 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Description 

3-166 

The statements may be on a single line or on 
multiple lines. If multiple lines are used, the clause 
must be terminated by an END statement as in the 
multi-line IF statement. 

THEN /ELSE stmts The THEN statements, if any, are executed if the file 
is opened successfully; if file does not exist, the 
ELSE statements, if any, are executed. The 
statements in the THEN/ELSE clause may be placed 
on the same line, or may be placed on multiple lines 
terminated by an END, as in the multi-line IF 

statement. 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

There is no limit to the number of files that may be open at one time. 

OPEN 'ABC,X' TO 05 ELSE STOP 

Opens data section X of file ABC and 
assigns it to variable D5. If ABC,X 

does not exist, program terminates. 

OPEN 'TEST' ELSE 

PRINT ERRTEXT('201', 'TEST') 

GOTO 60 Assigns file to internal default file 
END variable. If file does not exist, 

message 201 from the ERRMSG file is 
printed and control passes to label 60 

OPEN 'DICT TRANS' TO DTRANS ELSE STOP 

Opens DICT of file TRANS and assigns 
it to variable DTRANS. 

OPEN 'EMPLOY' TO EMP ON ERROR 

ERRNUM=SYSTEM(O) Opens DATA section of the file EMPLOY 

GOSUB PROCESSERR and assigns it to variable EMP or 
GOTO TOP retrieves error number and performs 

END ELSE STOP local subroutine on UltiNet error. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



c 

OPEN Statement 

Opening Subroutines 

Syntax 

Description 

6929-3 

OPEN 'SUB (ROUTINE)', '(file.name }sub.name' TO var THEN/ELSE 

statements 

file.name file that contains the subroutine; if file.name is not specified, 
the system looks for a cataloged subroutine in the master 
dictionary of the current user 

sub. name subroutine name 

var variable to be used in CALL @ statement 

This statement increases the speed of using indirect calls. The opening 
of the variable increases the speed of the CALL @ by approximately six 
times because the system saves the location of the subroutine and does 
not have to recalculate it each time. 

The variable can be declared in a COMMON statement and, if a 
subroutine is opened to it in one program, the information can be passed 
to subsequent programs. 

OPEN 'SUB', 'SUBR.ADD' TO S ELSE STOP 'B25', 

.... , 'SUBR.ADD' 

CALL @S(X,Y,Z) 

DIM TAX(5) 

OPEN 'SUB',' TAX. NJ' TO TAX (1) ELSE .. . 

OPEN 'SUB', 'TAX.CA' TO TAX(2) ELSE .. . 

SUB = TAX (STATE) 

CALL @SUB(AMT,RESULT) 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

3-167 



---------------------------

. Statements and Functions 

PAGE Statement 

Syntax 

Description 

3-168 

The PAGE statement causes the current output device to start a new page. 
The page number may optionally be reset. 

PAGE {expr} 

expr page number to be used on the new page being started. If a 
FOOTING that includes page numbering is in effect at the time the 
page number is changed, the footing is printed on the current 
page with a page number one less than expr. 

The PAGE statement is used to end a page before the maximum number 
of lines has been reached and automatic paging occurs. (The maximum 
number of print lines per page is controlled by the current TERM 

command specifications; for more information, see the TERM command 
in the Ultimate System Commands Reference Guide.) 

The most recent FOOTING statement, if any, is used to output a footing 
on the completed page. The heading specified by the most recent 
HEADING statement, if any, is printed as a page heading on the new 
page. 

The PAGE statement causes a new page to be started even if no heading 
or footing has been assigned. 

HEADING "ANNUAL REPORT" The PAGE statement causes both 
FOOTING "XYZ CORPORATION" the specified heading and footing 
PAGE to be printed when the paging is 

executed. 

PAGE 1 The current footing, if any, is 

Ultimate BASIC 

printed on the current page with a 
page number of O. A new page is 
started and the current heading, if 
any, is printed on the new page with a 
page number of 1. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

C: 
_f 



(' 

PRECISION Statement 

PAGING Statement 

Syntax 

Description 

6929-3 

The PAGING statement turns off heading and footing statements. The 
output is then produced as one continuous page and there is no longer a 
pause at the end of a page if the output is to the terminal. 

PAGING OFF 

The PAGING OFF statement affects both HEADING and FOOTING 

statements. A new HEADING statement or FOOTING statement must be 
executed in order for the program to resume automatic paging. 

The PAGING OFF statement resets the page counter to zero. 

HEADING "Delivery Summary 'CDLPL'" 

PAGING OFF 

HEADING "Scheduling Summary 'CDLPL'" 

Ultimate BASIC 3-169 
Confidential and Proprietary to The Ultimate Corp. 



---~-------------------.--... -------

Statements and Functions 

PRECISION Statement 

Syntax 

Description 

The PRECISION statement allows the user to select the degree of 
precision to which all numeric values are calculated within a given 
program. 

PRECISIONn 

n number of digits in the decimal place; must be in the range {}-9 

The default precision value is 4; that is, unless otherwise specified, all 
numeric values are stored in an internal form with 4 decimal places, and 
all computations are performed to this degree of precision. 

Only one PRECISION statement is allowed in a program. If more than 
one is encountered, a warning message is printed and the declaration is 
ignored. 

Where external subroutines are used, the mainline program and all 
external subroutines must have the same PRECISION. If the precision is 

I.f~. different between the calling program and the subroutine, a warning 0 

3'"170 

message is printed. 

Setting a precision of zero implies that all values are treated as integers. 

Note: When a program uses floating point or string arithmetic, the 
program's PRECISION is ignored by the routines that perform 
those arithmetic calculations. PRECISION is also ignored by 
the EXP, LN, and PWR!unctions. (See Section 2 jQr an 
overview offloating point and string arithmetic.) 

PRECISION 0 

A = 3 

B = A/2 

PRECISION 1 

Ultimate BASIC 

All numeric values in the program are 
treated as integers. The value 
returned for B is 1, not 1.5. 

All numeric values in the program 
are calculated to one fractional digit. 

£;929-3 
Confidential and Proprietary to The Ultimate Corp. 



(' 

c 

----------~---------------- .. -.- .. ----------.----------------~ 

PRINT Statement 

PRINT Statement 

Syntax 

Description 

6929-3 

The PRINT statement outputs data to the current output device. The 
PRINT ON option allows output to multiple print files. 

PRINT {ON exp} {print.list} 

ON expr specifies print file number to which the print.iist is directed; 
has effect only when PRIN1ER ON is specified. The print list 
number may be from 0 to 255, selected arbitrarily by the 
programmer. The expression may use operators with 
precedence levels 1-4 only (dynamic array extraction, 
substring, exponentiation, multiplication, division, addition, 
and subtraction). 

print.list list of information to display; may consist of a single 
expression or a series of expressions separated by commas, 
format strings, and @ functions for cursor control. The 
print-list may end with a colon; this inhibits the end-of-line 
carriage return and line feed and keeps the cursor at the 
current location. The expressions may be any legal BASIC 

expressions. If the print.list is absent, only a carriage 
return/line feed is output. 

The PRINT statement without the ON option is used to output variable or 
literal values to the terminal or other output destination. 

By default, the output of the PRINT statement is to the terminal. The 
PRIN1ER statement may be used to route output from PRINT statements 
to the printer or other spooled output destination. (Refer to the PRIN1ER 

statement, listed alphabetically in this chapter.) The P option on the RUN 

verb also routes output to the printer or other spooled output destination. 
The CAPTIJRING and OUT. clauses of the EXECU1E statement may also 
redirect print output. To force output to the terminal, use the CRT or 
DISPLAY statements, which are listed alphabetically in this chapter. 

PRINT ON can be used to build several reports at the same time, each 
having a different number. The contents of all print files used by the 
program, including print file zero, are output to the printer in sequence. 

Ultimate BASIC 3-171 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-172 

When the ON expression is omitted, print file Zero is used; 

Caution! The HEADING and FOOTING statements affect only print/ile 
zero. Pagination must be handled by the program/or print 
files other than zero. Lack o/pagination will result in 
continuous printing across page boundaries. 

If PRImER ON is not in effect, PRINT ON has no effect and all output is 
to the terminal as a single report. 

Output values may be aligned at tab positions across the output page by 
using commas to separate the print.list expressions. Tab positions are 
preset at every 18 character positions. If printing continues to multiple 
lines, tab positioning with the comma (,) is handled as if the printing is 
on one line. The fIrst print element always starts logically at column 1, 
the next tab is 18 characters from that print position, and so on. If the 
line length does not divide evenly by 18, the columns in the second line 
do not line up under columns in the first line. 

After the print.list has been printed, a carriage retum/line feed is 
automatically executed. The carriage return/line feed can be suppressed 
by using the: (concatenation) operator at the end of the PRINT statement, 
in the form: 

. .. expression: 

If the print.list ends with a colon (:), the next value in the next PRINT 

statement is printed on the same line at the next character position. 

The @ function may be used to position the characters at any point on 
the terminal. In general, the @ function, other than @(-100) and lower, 
is not meant for statements that are to be directed to the printer and may 
cause unexpected results. 

Ultimate BASIC 6929-3 
Confidentialand Proprietary to The Ultimate Corp. 

c 



Ie 
I 

c 
6929-3 

PRINT X 

PRINTER ON 

PRINT X 

PRINTER ON 

PRINT ON 24 X 

PRINT ON 10 F1,F2,F3 

PRINT ON 20 M,N,P 

PRINT A:B: 

PRINT C:D 

PRINT A*100,Z 

PRINT 

PRINT @(-l) :"INPUT": 

PRINT Statement 

Outputs the value of X to the terminal 
(if no PRINTER ON in effect). 

Outputs the value of X to printer 
assigned to print file O. 

Outputs the value of X to print file 24, 
values of Fl through F3 to print file 
10, and M,N,P to print file 20 

Prints the current values of A, B, C, D 

contiguously across the page 

Prints the value of A*I00 starting at 
column position 1; prints the value of 
z on the same line starting at column 
18 (that is, the next tab position). 

Prints an empty (blank) line. 

Clears the screen, then prints the text 
"INPUT"; does not execute a carriage 
return or line feed. 

PRINT @(20,3):DESC "L(#20) ":OCONV(TOT,"MR2") "R(#12)" 

On the terminal, prints the value of 
DESC left-justified in a field of 20 
blanks, starting at column 20, row 3, 
followed by the converted value of 
TOT right-justified in a field of 12 
blanks 

Ultimate BASIC 3-173 
Confidential and Proprietary to The Ultimate Corp. 



--~--- - ~~~-----------~------ ----------------

Statements and Functions 

PRINTER Statement 

Syntax 

Description 

The PRIN1ER statement selects either the user's terminal or the printer 
for subsequent program output. 

PRINTER ON 

PRINTER OFF 

PRINTER CLOSE 

ON directs program output data specified by subsequent PRINT, 

HEADING, FOOTING, or PAGE statements to be output to the 
printer, or other destination as specified by the system 
command SP-ASSIGN 

OFF directs subsequent program output to the user's terminal 

CLOSE causes all data currently stored in the intermediate buffer area to 
be immediately sent to the spooler; has no effect on PRINTER 

ON or PRINTER OFF status. 

Once executed, a PRINTER ON or PRINTER OFF statement remains in 
effect until a new PRINTER ON or PRINTER OFF statement is executed. 
If a PRINTER ON statement has not been executed, all output is to the 
user's terminal, unless the program was initiated by a RUN command 
with the P option. 

When a PRINTER ON statement has been issued, subsequent output data 
(specified by PRINT, HEADING, FOOTING, or PAGE statements) is not 
immediately printed on the printer, unless immediate printing is 
specified in the system command SP-ASSIGN (for more information, see 
the Ultimate System Commands Reference Guide.). Rather, the data is 
stored in an intermediate buffer area and is automatically printed when 
the program terminates execution. 

A PRINTER CLOSE statement may be used when the user's application 
requires that the data be printed on the printer prior to program 
temrination. The PRINTER CLOSE statement applies only to output data 
directed to the printer; output to the terminal is always printed 

Ultimate BASIC 
Confidentia/andProprietary to The Ultimate Corp. 

c 

c 



(-\ 

6929-3 

PRINTER Statement 

immediately upon execution of the PRINT, HEADING, FOOTING, or PAGE 

statements. 

PRINTER ON 

PRINT A 

PRINTER OFF 

PRINT B 

PRINTER ON 

PRINT A 

PRINTER CLOSE 

PRINT B 

Ultimate BASIC 

Causes the value of variable A to be 
be printed on the printer when the 
program is finished executing, and 
the value of variable B to be printed 
on the tenninal. 

Causes the value of variable A to be 
immediately printed on the printer, 
and prints the value of variable B on 
the printer. 

3-175 
Confidential and Proprietary to The Ultimate Corp. 



----------------_._--- ----- - -----------_._-_ .. 

Statements and Functions 

PRINTERR Statement 

Syntax 

Description 

3-176 

The PRINTERR statement prints a specified message on the bottom line 
of the terminal screen. 

PRINTERR msg 

msg text to be displayed; may be any valid expression, including a 
literal string enclosed in quotation marks 

The PRINTERR statement is designed as a support function for the INPUT 

statement. It allows a program to signal an operator with a message 
relating to the operator's input. 

The PRINTERR statement sets a flag so that the next time an INPUT 

statement is executed the bottom line is cleared. The PRINTERR 

statement also clears the typeahead buffer on systems with the typeahead 
feature. 

10 INPUT @(15,5) A,3 

IF A > 500 THEN 

PRINTERR "Value too 

GOTO 10 

END 

Ultimate BASIC 

large" 

Prints message "Value too large" on the 
bottom of the screen and sets the flag to 
clear that line (the message line) on next 
INPUT statement. 

6929-3 
ConfidentiaJand Proprietary tofhe Ultimate Corp .. 

c 



(-

( 

---------~--- - ----------- ---- -----------------~~- -~------- --- ------- --- --

PROCREAD Statement 

PROCREAD Statement 

Syntax 

Description 

6929-3 

The PROCREAD statement allows programs executed from PROC to read 
values in the primary input buffer and store them in a variable. 

PROCREAD var {THEN/ELSE statements} 

var receives the PROC primary input buffer in form of a dynamic array 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

If the program was invoked from a PROC, the PROCREAD statement 
creates a dynamic array from the PROC primary input buffer and assigns 
it to var; each attribute in the dynamic array contains one primary input 
buffer parameter. The statements after THEN, if any, are then executed. 

If the program was not invoked from a PROC, the statements after ELSE, 
if any, are executed, and var retains its original value. 

For more information on PROCs, refer to the Ultimate PROC Reference 
Guide. 

The THEN clause and ELSE clause may continue on several lines. When 
multiple lines are used, the clause must end with an END statement, as in 
the multiple-line IF statement. 

Ultimate BASIC 3-177 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

C \', ./ 

PROCREAD ITEM ELSE PROC primary input buffer is 
PRINT 'Not from PROC' assigned to variable lIEM. If the 
GO 100 program was not executed from 

END PROC, the message is printed and 
PRINT ITEM control transfers to label 100. If the 

program is executed from PROC, then 
variable lIEM is printed. 

PROCREAD BUFF ELSE BUFF is set to null if program is not 
BUFF="" executed from PROC. The contents of 

END BUFF are always printed. 
PRINT BUFF 

PROCREAD BUFF ELSE If the program was executed from 
PRINT 'ITEM not found' PROC, BUFF is assigned a multiple 
STOP parameter primary input buffer and is 

END displayed as an array. If the program 
FOR X=l TO 10 was not executed from PROC, the 

PRINT BUFF<X> message is printed and the program 
is terminated. 

/-

NEXT X 

3-178 Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



PROCWRITE Statement 

C PROCWRITE Statement 

Syntax 

Description 

6929-3 

The PROCWRITE statement allows programs executed from PROC to 
write to the primary input buffer. 

PROCWRITE expr 

expr dynamic array; each attribute becomes one parameter in the 
primary input buffer 

The PROCWRITE command writes the string value of the expression to 
the PROC primary input buffer. The attribute marks are converted to 
spaces, the delimiter for parameters in a PROC buffer. (Spaces in any of 
the elements of the dynamic array are passed to the PROC buffer and are 
treated as delimiters by PROC.) 

This statement is ignored if the program was not executed from a PROC. 

PROCWRITE ITEM PROC primary input buffer is 
assigned the value of ITEM. If the 
program was not executed from 
PROC, the statement is ignored. 

PROCWRITE x+y If the program was executed from 
PROCREAD ITEM ELSE STOP PROC, the primary input buffer is 

assigned the sum value of X and y. 

The sum is stored in variable ITEM. If 
the program was not executed from 
PROC, the program is terminated. 

Ultimate BASIC 3-179 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Funqtions 

PROGRAM Statement 

Syntax 

Description 

3~180 

The PROGRAM statemem may be used to indicate the name of a 
program. 

PROG {RAM } {name} 

name indicates the name of a program as a comment; this is ignored by 
the compiler, which uses the item.id of the program as the 
program name 

The PROGRAM statement is required in compile-and-go programs in an 
account's Master Dictionary and must be the first statement in such a 
program. The PROGRAM statement is not required in other programs 
and is ignored if used. 

For information on using this feature, see the section in Chapter 1 called 
"Executing BASIC Source Programs (Compile and Go)." 

I PROGRAM Indicates start of program. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

o 

o 



PROMPT Statement 

(~~ PROMPT Statement 

Syntax 

Description 

6929-3 

The PROMPT statement is used to select the character that is displayed by 
the INPUT statement to prompt the user. Any character may be selected. 

PROMPTexpr 

expr prompt character; if expr consists of more than one character, the 
first (leftmost) character is used; if expr is the null string (""), no 
prompt character is used 

The default prompt character is the question mark (?); it is used if a 
PROMPT statement is not specified. 

When a PROMPT statement has been executed, it remains in effect until 
another PROMPT statement is executed or the program is terminated. 

PROMPT'" " 

PROMPT A 

Ultimate BASIC 

Specifies that the character: is used as 
a prompt character for subsequent 
INPUT statements. 

Specifies that the current value of A 
is to be used as a prompt character. 

3-181 
Confidential and Proprietary to. The Ultimate Corp. 



---- --- ------------

Statements and Functions 

PUT Statement 

Syntax 

Description 

3-182 

The PUT statement places a system message into the output of a 
program. The message is also placed in the system message buffer and 
may be passed back to a calling program. 

PUT(MSG.) exprl, {expr2, ... } 

exprl specifies the system message identifier (ERRMSG item.id) 

expm parameters associated with the message, if any 

The PUT statement allows a program to output messages and continue 
program execution. Messages can also be generated with the ABORT 

and STOP statements, but these statements terminate program execution 
after outputting a message. 

MSG. is a predefined keyword with special meaning in the PUT statement 
and should not be used as an ordinary variable in other statements. As 
used in the PUT statement, MSG. refers to the list of messages generated 
during execution of the program. Each message consists of a message C; 
identifier and zero or more parameter values. (The message identifier is 
the item.id of an item in the system ERRMSG file.) 

System messages are nonnally formatted and displayed on the user's 
terminal, or on the printer if a PRINTER ON statement has been executed. 
Messages are also copied to a buffer area; if the program is invoked by 
another program (the "calling" program) using the EXECUTE statement 
or by a PROC, the buffer can be later inspected by the calling program 
using GET or by the PROC using IF E. The messages placed in the MSG. 

buffer by PUT are not available to the program that placed them there. 

PUT (MSG.) 201, FILENAME Displays message 201 with one 
parameter, the string value of variable 
FILENAME; also copies message 20 I 
and FILENAME value to MSG. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The· Ultimate Corp. 



(-

PWR Function 

PWR Function 

Syntax 

Description 

6929-3 

The PWR function raises a number to a specified power. 

PWR(base,exponent) 

base value to be raised to a power 

exponent value of the power; if zero, the function returns the value of 
one (1) 

If the base is zero and exponent is any number other than zero, the 
function returns a value of zero (0). If the values of base and exponent 
are such that the result would be greater than the largest allowable 
number, the function returns unpredictable numbers. 

Note: Another way to express the PWRfunction is XAy, where X is 
raised to the y power. 

The PWR function applies only to standard arithmetic, not the extended 
arithmetic package (string and floating point arithmetic). To raise a base 
resulting from an extended arithmetic function to a power requires 
including a special subroutine in the program. Figure 3-4 contains two 
subroutines recommended for this task. 

A 2 

B 3 

C PWR (A, B) 

\ 

Ultimate BASIC 

The value 8 is returned in c. 

Confidential and Proprietary to The Ultimate Corp. 
3-183 



Statements and Functions 

3~184 

For use with string arithmetic: * 
SUBROUTINE (BASE, POWER, ANSWER) 

ANSWER=' 1 , 

IF POWER ELSE RETURN 

I=BASE 

J=POWER 

100 K=REM (J, 2) 

J=NT(J/2) 

IF K THEN 

ANSWER=SMUL(ANSWER,I) 

END 

IF J ELSE RETURN 

END 

I:;;SMUL(I,I) 

GOTO 100 

For use with floating point arithmetic * 
SUBROUTINE (BASE, POWER, ANSWER) 

ANSWER=' lEO , 

IF POWER ELSE RETURN 

I;;:BASE iBASE is· floating point 

J=POWER iPOWER is numeric 
100 K=REM (J, 2) 

J=INT(J/2) 

IF K THEN 

ANSWER=FMUL(ANSWER,I) 

END 

IF J ELSE RETURN 

END 

I=FMUL(I,I) 

GOTO 100 

*These routines are based on an algorithm from Knuth's The Art of 
Computer Programming, Volume 2, Section 4.6.3, Page 399.) 

Figure 3 .. 4. Subroutines for Extended Arithmetic Power 
Function 

Ultimate BASIC 6929-3 
Confidential a.nd PfQprietary to T~ U/fimate Gorp: 

c 



(' 

( 

REAO{U} Statement 

REAO{U} Statement 

Syntax 

6929-3 

The READ{U} statement reads a file item and assigns its value in 
dynamic array format to a variable. 

READ{U} varFROM {file.var,} item.id {ON ERROR stmts} {LOCKED 
stmt} {THEN/ELSE stmt} 

u 

var 

file.var 

item.id 

locks the item lock associated with the item to be 
accessed; if the item is currently locked by another 
BASIC program, the statement does not perform the 
read operation. The item does not have to exist in 
order for READU to lock it; in this case, READU 
executes the ELSE statements, but still locks the 
associated item lock. (The letter U is appended to the 
statement name to imply update, not unlock.) 

variable into which the item is read; item is read in 
dynamic array format. 

variable to which file was previously OPENed; if the 
file.var is omitted, the internal default file variable is 
used (that is, the file most recently opened without a 
file variable); if the specified file has not been opened 
prior to the execution of the READ statement, the 
program aborts. 

name of item to be accessed. 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be read due 
to a network error condition. In this case, the value of 
SYSTEM(O) indicates the UltiNet error number. 
(Refer to the SYSTEM function, listed alphabetically in 
this chapter; for more information about remote files, 
refer to the UltiNet User's Guide.) The ON ERROR 
clause has no effect when reading local files. 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 

Ultimate BASIC 3-185 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Description 

tenninated by an END statement as in the multi-line IF 

statement. 
LOCKED stmts statements to execute if the READ statement is unable 

to lock the item because another program has already 
locked it; statements may appear on one line separated 
by semicolons, or on multiple lines terminated by an 
END, as in the multiple line IF statement. 

THEN stmts statements to be executed after item is successfully 
read into var; statements may appear on one line 
separated by semicolons, or on multiple lines 
terminated by an END, as in the multiple line IF 

statement. 

ELSE stmts statements to be executed if the specified item does not 
exist; in this case, the contents of var remain 
unchanged; statements may appear on one line 
separated by semicolons or on multiple lines 
terminated by an END, as in the multiple line IF 

statement. 

Either the THEN clause or the ELSE clause may ·be omitted, but not both; 
at least one of them must be present. 

The READU statement locks an item and then reads it. This can be used 
to prevent simultaneously updating an item by two or more users while 
still allowing multiple programs to access the file. 

Ulti Net The ON ERROR clause allows the program to retrieve the UltiNet error 
Considerations number and take appropriate action. Such action could, for instance, 

include printing the associated message text via a PUT statement or STOP 

statement, and resuming or terminating program execution. 

Item Locks 

3-186 

If a remote file cannot be read due to network errors and no ON ERROR 

clause is present, the program terminates with an error message. 

Item locks are assigned based on the group of the disk file which 
contains (or would contain) an item and a hash value derived from the 
item.id. Items in different groups in the same file or in different files are 
never assigned the same item lock, but it is possible for more than one 
item in the same group to hash to, and be assigned, the same lock. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



( 

6929-3 

READ{U} Statement 

If an item is currently unlocked, setting an item lock prevents access to 
the item, and to any other items in the same group with the same item 
lock hash value, by other programs using the MATREADU, READU, or 
READVU statements. The program setting the lock, however, is allowed 
to lock other items in the same group with the same hash value using 
these statements. 

An item will become unlocked when it, or any other item sharing the 
same item lock hash value, is updated by a WRITE, WRITEV, 

MA TWRlTE, or DELETE statement, or when it is unlocked by a RELEASE 

statement, or when the BASIC program is terminated. An item can be 
updated without unlocking it by using the WRITEU, WRITEVU, or the 
MATWRITEU statement. 

There is a maximum number of item locks that can be locked at anyone 
time. This number may vary from release to release. If a program 
attempts to lock an item when all item locks are already set, the program 
is suspended until a lock is unlocked. 

Note: Locked items can still be retrieved by the READ, READV, and 
MATREAD statements and by other system software, such as 
Recall, that do not pay attention to item locks. 

For information on read locks set by the system, see the section in 
Chapter 5 called "Read Locks. " 

Ultimate BASIC 3-187 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-188 

READ Al FROM X, "ABC" ELSE Reads item ABC from the file opened 
PRINT "NOT ABC" and assigned to file variable X and 
GOTO 70 assigns its value to variable AI. If 
END ABC does not exist, the text "NOT 

ABC" is printed and control passes to 
statement 70. 

A="Tl" Reads item TI from the file opened 
READ x FROM C, A ELSE S TOP and assigned to file variable C, and 

assigns its value to variable X. If 
TESTI does not exist, program 
terminates. 

READ Z FROM "Q" ELSE 

PRINT x; STOP 

END 

Reads item Q from the file opened 
without a file variable and assigns 
its value to variable Z. If Q does not 
exist, prints value of X and terminates 
program. 

READ Z FROM "Q" ON ERROR Reads as above, or retrieves 
ERRNUM=SYSTEM (0) error number and performs local 
GOSUB PROCESSERR subroutine on UltiNet error 
GOTO TOP number. 

END ELSE PRINT x; STOP 

READU ITEM FROM INV, "30" LOCKED GOTO 500 ELSE STOP 

Locks item "30". If the item is 
already locked, goes to label 500. If 
the item is not locked, the program 
continues; if the item does not exist, 
the program stops. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



c 

READNEXT Statement 

READNEXT Statement 

Syntax 

6929-3 

The READNEXT statement reads the next element (typically, an item.id) 
from a select list. If multiple select lists are present, a select variable 
specifies the list to use. 

READNEXT var{ ,var2} {FROM select. var} {ON ERROR stmts} 
THEN/ELSE stmts 

var 

var2 

select.var 

variable into which string value of the next select list 
element (typically an item.id) is returned 

variable into which value number associated with this 
element is returned; if no value number is present, 
zero is returned 

specifies a particular select list; if absent, the internal 
default select variable is used 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be read due 
to a network error condition. In this case, the value of 
SYSTEM(O) indicates the UltiNet error number. 

THEN stmts 

(Refer to the SYSTEM function, listed alphabetically in 
this chapter; for more information about remote files, 
refer to the UltiNet User's GUide.) The ON ERROR 

clause has no effect when reading local files. 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 
terminated by an END statement as in the multi-line IF 

statement. 

statements to be executed after select list element is 
successfully read into var; the THEN statements may 
appear on one line separated by semicolons, or on 
multiple lines terminated by an END, as in the multiple 
line IF statement 

Ultimate BASIC 3-189 
Confidential and Proprietary to The. Ultimate Corp. 



Statements and Functions 

Description 

3-190 

ELSE stmts statements to be executed if select list has been 
exhausted or if the select list does not exist; in this 
case, the contents of var remain unchanged; the ELSE 

statements may appear on one line separated by 
semicolons or on multiple lines terminated by an END, 

as in the multiple line IF statement 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

A select list is a list of data generated by a BASIC SELECT statement, or 
by one of the system select commands: SELECT, SSELECT, QSELECT, 

or GET-LIST. 

READNEXT can be used with select lists in one of the following ways: 

• When one of the system select commands is executed immediately 
before running a BASIC program, the list generated is assigned to the 
BASIC program's internal default select variable. READNEXT 

statements (without specifying a select.var) can then be used to 
retrieve each list element in sequence. 

• A select list may be generated by a command specified in an 
EXECUTE statement. If not redirected, the list is assigned to the 
internal default select variable of the program performing the 
EXECUTE. Alternatively, the select list may be redirected by the 
SELECT. or RTNLIST clause, setting up a variable as a select variable 
for use by READNEXT. 

• The BASIC SELECT statement may be used to generate a select list, 
either to an explicit select variable or to the internal default select 
variable. However, if one of the system select commands was 
executed immediately before running the BASIC program, that list is 
assigned to the BASIC program's internal default select variable and 
the results of the first occurrence of a BASIC SELECT are not 
assigned to the internal default select variable. 

For more information on SELECT and EXECUTE, please refer to these 
statements, listed alphabetically in this chapter. 

The value number associated with a select list element is generated by 
the SSELECT command when performing an "exploding" sort. For 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

r" 
~/ 



(: 

c 
6929-3 

READNEXT Statement 

more information on exploding sorts, and on all the select verbs 
(SELECT, SSELECT, QSELECT, GET-LIST), see the Ultimate System 
Commands Reference Guide. 

EXECUTE "SSELECT NAMEFILE BY LASTNAME",RTNLIST LIST 

LOOP 

READNEXT ID FROM LIST ELSE STOP 

READ ITEM FROM NM,ID ELSE GOTO ERR 

PRINT ITEM<3> 

REPEAT The Recall SSELECT command is 
used to generate a select list of 
item.ids, corresponding to items in 
file NAMEFILE and sorted by attribute 
LAS1NAME. The select list is saved 
in the variable LIST; the READNEXT 

statement then retrieves these item.ids 
from LIST in order. The correspond
ing item is read from the file opened 
to the variable NM. 

EXECUTE "SSELECT AFILE BY-EXP INV#" 

READNEXT ID, VN ELSE STOP Uses default select list to read next 
item.id and assigns value number to 
variable VN. 

SELECT FV 

READNEXT A ELSE STOP 

READ NEXT A ON ERROR 

ERRNUM=SYSTEM(O) 

GOSUB PROCESSERR 

GOTO TOP 

END ELSE STOP 

Ultimate BASIC 

Selects item.ids from file opened to 
file variable FV and assigns them to 
default select variable; assigns the 
next element in the default list to 
variable A. If select list is exhausted, 
program terminates. 

Reads as example above, or retrieves 
error number and performs local 
subroutine on UltiNet error number. 

3-191 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

READT{X} Statement 

Syntax 

Description 

3-192 

The READT{X} statement reads a tape record from magnetic tape. The 
tape unit and record length (block size) on the tape is as specified by the 
most recent T-ATI command. 

READT {x} var THEN/ELSE struts 

X converts data to hexadecimal format; this feature allows 
binary data to be read by BASIC programs. 

var variable into which the string value of the next record 
from the current magnetic tape unit is returned. 

THEN stmts statements to be executed after record is successfully 
read into var; the THEN statements may appear on one 
line separated by semicolons, or on multiple lines 
terminated by an END, as in the multiple line IF 

statement. 

ELSE stmts statements to be executed if record does not exist; in this 
case, the contents of var remain unchanged; the ELSE 

statements may appear on one line separated by 
semicolons or on multiple lines terminated by an END, as 
in the multiple line IF statement. 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

For information on converting hexadecimal data to binary, then writing 
it, see the description of WRITET. 

The tape unit must have previously been attached before issuing this 
command. If the tape unit has not been attached, or if an End-of-File 
(EOF) mark is read, the ELSE statements, if any, are executed, and the 
system function SYSTEM(O) returns a value of 5 (tape off line) or 6 
(cartridge not formatted correctly for this operating system revision). 
(Please refer to the SYSTEM function, listed alphabetically in this 
chapter.) 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

( .. ". .. i , 
.J 



C··: 
.. 

6929-3 

READT{X} Statement 

If, however, the tape drive is inadvertently set to off line after the first 
tape instruction, the system allows the user to correct the condition. 
When a subsequent tape instruction is processed, the system displays: 

Tape drive off line (C)ontinue/(Q)uit: 

If C is entered, the system returns to the BASIC program and the tape 
instruction is re-executed. If Q is entered, the BASIC program is aborted 
and control returns to TCL. In either case, the ELSE statements are not 
executed and the BASIC program has no way to detect such adverse 
action. 

Caution! The tape drive should never be put off line while it is 
running under the control of any tape operation (BASIC, 

T-LOAD, T-DUMP, etc.). If it is inadvertently set to off line, 
the tape drive may lose its momentum and the tape read/write 
head may not be aligned with the current data block on tape. 
Even though the system allows the user to (C}ontinue, it is 
not guaranteed that valid data is then read or written. 

READT B ELSE 

PRINT "NO" 

GOTO 5 

END 

READTX A 

V = A[35, 6] 

PAY = OCONV(V, 'MCX') 

Ultimate BASIC 

The next tape record is read and its 
value assigned to variable B. If EOF 

is read or tape unit is not attached, 
"NO" is printed and control passes to 
statement 5. 

Reads data as hexadecimal characters, 
extracts characters from a fixed 
position, and converts them to an 
ASCII string 

3-193 
Confidential and Proprietary to The Ultimate Corp. 



-----~~-------

Statements and Functions 

READV{U} Statement 

Syntax 

3-194 

The READV{U} statement is used to read a single attribute value from an 
item in a file. 

READV {U} var FROM {file. var,} item.id, attrib.no {ON ERROR stmts} 
{LOCKED struts} THEN/ELSE stmts 

u 

var 

file.var 

item.id 

attrib.no 

locks the item lock associated with the item to be 
accessed; if the item is currently locked by another 
BASIC program, the statement does not perform the 
read operation. The item does not have to exist in 
order for READVU to lock it; in this case, READVU 
executes the ELSE statements, but still locks the 
associated item lock. (The letter U is appended to the 
statement name to imply update, not unlock.) 

variable into which the attribute is read 

variable to which file was previously OPENed; if the 
file.var is omitted, the internal default file variable is 
used (that is, the file most r~cently opened without a 
file variable); if the specified file has not been opened 
prior to the execution of the READ statement, the 
program aborts 

name of item to be accessed 

attribute number to be accessed; if attribute does not 
exist, a null is assigned to var 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be read due 
to a network error condition. In this case, the value of 
SYSTEM(O) indicates the UltiNet error number. 
(Refer to the SYSTEM function, listed alphabetically in 
this chapter; for more information about remote files, 
refer to the UltiNet User's Guide.) The ON ERROR 
clause has no effect when reading local files. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

r~'" 
VLcf· 



(' 

Description 

Item Locks 

( 

6929-3 

READV{U} Statement 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 
terminated by an END statement as in the multi-line IF 

statement. 

LOCKED stmts statements to execute if the READV statement is unable 
to lock the item because another program has already 
locked it; statements may appear on one line separated 
by semicolons, or on multiple lines terminated by an 
END, as in the multiple line IF statement 

THEN stmts statements to be executed after item is successfully 
read into var; statements may appear on one line 
separated by semicolons, or on multiple lines 
terminated by an END, as in the multiple line IF 

statement 

ELSE stmts statements to be executed if the specified item (not 
attribute) does not exist; in this case, the contents of 
var remain unchanged; statements may appear on one 
line separated by semicolons or on multiple lines 
terminated by an END, as in the multiple line IF 

statement. 

The READV statement makes efficient use of system resources when a 
single attribute needs to be accessed from an item. However, when it is 
used repeatedly to access several attributes, this efficiency is lost. When 
several attributes need to be accessed, either the READ or MATREAD 

statement should be used to read an item into a BASIC variable. Then 
dynamic array subscripts (for READ) or dimensioned array subscripts 
(for MATREAD) should be used with the variable to reference individual 
attributes. 

Item locks are assigned based on the group of the disk file which 
contains (or would contain) an item and a hash value derived from the 
item.id. Items in different groups in the same file or in different files are 
never assigned the same item lock, but it is possible for more than one 
item in the same group to hash to, and be assigned, the same lock. 

Ultimate BASIC 3-195 
Confidential andProprietary to The Ultimate Corp. 



Statements and Functions 

3-196 

If an item is currently unlocked, setting an item lock prevents access to 
the item, and to any other items in the same group with the same item 
lock hash value, by other programs using the MATREADU, READU, or 
READVU statements. The program setting the lock, however, is allowed 
to lock other items in the same group with the same hash value using 
these statements. 

An item will become unlocked when it, or any other item sharing the 
same item lock hash value, is updated by a WRITE, WRITEV, 

MATWRITE, or DELETE statement, or when it is unlocked by a RELEASE 

statement, or when the BASIC program is terminated. An item can be 
updated without unlocking it by using the WRITEU, WRITEVU, or the 
MATWRITEU statement. 

There is a maximum number of item locks which may be locked at any 
one time. This number may vary from release to release. If a program 
attempts to lock an item when all item locks are already set, the program 
is suspended until a lock is unlocked. 

Note: Locked items can still be retrieved by the READ, READV, and 
MATREAD statements and by other system software, such as 
Recall, that do not pay attention to item locks. 

For information on read locks set by the system, see the section in 
Chapter 5 called "Read Locks. " 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



READV{U} Statement 

READV X FROM A, 

PRINT ERR 

GOTO 70 

"TEST", 5 ELSE 

END 

READ V X FROM A, "TEST",5 

ERRNUM=SYSTEM(O) 

GOSUB PROCESSERR 

GOTO TOP 

Reads fifth attribute of item TEST (in 
the file opened and assigned to 
variable A) and assigns value to 
variable X. If item TEST is non
existent, then value of ERR is printed 
and control passes to statement 70. 

ON ERROR 

Reads as above, or retrieves error 
number and performs local subroutine 
on UltiNet error number. 

END ELSE PRINT ERR; GOTO 70 

READVU ATT FROM B, "REC",6 ELSE STOP 

Lock item REC. Read attribute 6 to 
variable ATT or, if REC is non
existent, execute the ELSE clause. 
The item remains locked in either 

(- case. 

c 
6929-3 

READVU NAME FROM B, "REC",6 LOCKED GOTO BUSY ELSE STOP 

As above, except that if REC is 
already locked, branch to statement 
label BUSY. 

READVU NAME FROM B, "REC",6 ON ERROR GOTO PROCESSERR 

ELSE STOP As first READVU example above, or 
branch to local subroutine to process 
UltiNet error number. 

Ultimate BASIC 3-197 
Confidential and Proprietary to The Ultimate Corp. 



-- - -------------- -- --- -------- -------- ----------------

Statements and Functions 

RELEASE Statement 

Syntax 

Description 

3-198 

The RELEASE statement unlocks specified items or all items locked by 
the program. It can also be used to release named COMMON areas. 

RELEASE {{file.var,} item.id} {ON ERROR stmts} 

RELEASE !name! 

file.var 

item.id 

variable to which file was previously OPENed; if the 

file.var is omitted, the internal-default file variable is 
used (that is, the file most recently opened without a 
file variable) 

name of item to be released 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be released 
due to a network error condition. In this case, the 
value of SYSlEM(O) indicates the UltiNet error 
number. (Refer to the SYSlEM function, listed 
alphabetically in this chapter; for more information 
about remote files, refer to the UltiNet User's Guide.) 
The ON ERROR clause has no effect when releasing 
local fIles. 

!name! 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 

terminated by an END statement as in the multi-line IF 
statement. 

name of COMMON area to be released; the slashes (f) 
are required 

If the RELEASE statement is used without a file. var and without an 
item.id, all items that have been locked by the program are unlocked. 

The RELEASE statement is useful when an abnormal condition is 
encountered during mUltiple fIle updates. A typical sequence is to mark 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



( 

RELEASE Statement 

the item with an abnormal status, write it to the file and then RELEASE 
all other locked items. 

When a named COMMON block is released, its name is removed from 
the list of named COMMON blocks and all space used by the variables is 
released to free (overflow) space. However, the variable names cannot 
be reused unless the named COMMON statement is re-executed. 

A named COMMON block can be released by any program that uses it. 

U Iti Net The ON ERROR clause allows the program to retrieve the UltiNet error 
Considerations number and take appropriate action. Such action could, for instance, 

include printing the associated message text via a PUT statement or STOP 
statement, and resuming or terminating program execution. 

6929-3 

If items in a remote file cannot be released due to network errors and no 
ON ERROR clause is present, the program terminates with an error 
message. 

RELEASE 

RELEASE CUST.FILE, PART.NO 

RELEASE AFILE, "ITEM3" 

RELEASE AFILE, "ITEM3" ON 

ERRNUM=SYSTEM(O) 

GOSUB PROCESSERR 

GOTO TOP 

END 

RELEASE /PEOPLE/ 

Ultimate BASIC 

Releases all items locked by the 
program. 

Releases item lock corresponding to 
PART.NO in the file opened and 
assigned to variable CUST.FILE. 

Releases ITEM3's item lock. 

ERROR 

Releases as above, or retrieves 
error number and performs local 
subroutine on UltiNet error number. 

Releases named common area; 
information in the variables is no 
longer accessible. 

3-199 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

REM Function 

Syntax 

Description 

3-200 

The REM function returns the remainder of one number divided by 
another. 

REM( dividend,divisor) 

dividend numeric expression 

divisor numeric expression 

The REM function is equivalent to the MOD (modulo) function. (Please 
refer to the MOD function, listed alphabetically in this chapter.) 

Q = REM(1l,3) Assigns the value 2 to variable Q. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

(I' 
"-\./ 



(' 

( 

REM Statement 

REM Statement 

Syntax 

Description 

6929-3 

The REMark statement, which can be specified as REM, !, or *, is used 
to write non-executable comments about a program. Remarks can 
identify a function or section of program code, as well as explain its 
purpose and method. 

REM text ... 
! text .. . 
* text .. . 

REM, ! , or * must be placed at the beginning of the statement, but may 
appear anywhere on a line (for example, after another statement on the 
same line). A semicolon must be used to separate a remark statement 
from any other statement on the same line. The text may be any 
arbitrary characters, up to the end of the line of code. 

Remark statements do not affect program execution. 

When writing comments on a line whose elements are separated by 
commas and that continues on to the next line, a semicolon must follow 
the comma and the comments must start with an asterisk (*). The 
following statements are included: 

CALL sub(a,b, ... , ; *comments 
... ,x) 

COM{MON} a,b, ... , ; *comments 
... ,x 

DIM{ENSION} a(n),b(m), ... , ; *comments 
... ,x(z) 

EQU{ATE} a TO b, c TO d, ... , ; *comments 
... ,x TO y 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

3-201 



Statements and Functions 

3-202 

REM Program to print the numbers from 1 to 10 

I = Ii 

BEG: PRINT Ii 

IF I = 10 THEN STOP; 

I += Ii 

GOTO BEGi 

END 

010 COMMON FIRST, 

011 

012 

CTR, 

LAST 

Ultimate BASIC 

* Start with 1 

* print the value 

* stop if done 

* increment I by 1 

* begin loop again 

*This is the first comment 

*This is another comment 

*This is the last comment 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



REMOVE Statement 

REMOVE Statement 

Syntax 

Description 

6929-3 

The REMOVE statement places the next element of a dynamic array into a 
specified variable and returns a value that corresponds to the delimiter 
encountered following the element. The REMOVE statement does not 
change the dynamic array. 

REMOVE var FROM array.var SETIING delimiter.var 

var variable to which the substring is assigned 

array.var dynamic array being used 

delimiter. var variable whose value indicates the delimiter character 
for the substring last assigned 

The REMOVE statement is useful for extracting successive elements of a 
dynamic array because it avoids repeated scanning. 

Each time REMOVE is executed, the next element in the dynamic array is 
assigned to the specified variable. An internal pointer is left pointing to 
the delimiter following the element just assigned and a value is assigned 
to the delimiter.var that indicates the type of delimiter. 

The REMOVE statement can be executed repeatedly until all substrings 
have been processed. 

The pointer is reset to the beginning of the array if the array.var is used 
in an assignment statement. For example, you can reset the pointer in 
the current array by assigning the array to itself. The pointer is also 
reset if you attempt to REMOVE past the end of the array. 

The possible values returned in the delimiter.var are: 

o segment mark (SM) for end-of-string 
2 attribute mark (AM) 

3 value mark (VM) 

4 subvalue mark (SVM) 

5 ASCII value 250 or 251 
6 ASCII value 249 

Ultimate BASIC 3-203 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-204 

A = I ABC I : AM: I 123 I : VM: I 456 I : AM: I XY Z I 

FOR I =1 TO 4 

REMOVE STRING FROM A SETTING DELIMITER 

PRINT "STRING = ":STRING,"DELIMITER = ":DELIMITER 

NEXT 

result: 
STRING = ABC 

STRING = 123 
STRING = 456 
STRING = XYZ 

DELIMITER = 2 
DELIMITER = 3 
DELIMITER = 2 
DELIMITER = 0 

The first pass extracts an attribute ('ABC'). The second pass extracts a 
value ('123'). The third pass extracts an attribute ('456'). The fourth 
pass extracts the last attribute (,XYZ'), which 
is delimited by a segment mark. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



-~~---------------- ----- -~~ 

REPEA T Statement 

(' REPEAT Statement 

6929-3 

The REPEAT statement is the last statement in a LOOP statement 
sequence. Please refer to the LOOP statement for information about the 
entire LOOP statement sequence. 

Ultimate BASIC 3-205 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

REPLACE Function 

Syntax 

Description 

3-206 

The REPLACE function returns a dynamic array with a specified 
attribute, value, or subvalue replaced. 

REPLACE(var,attrib.no {,val.no {,subval.no } } ;expr) 
REPLACE( var ,attrib.no, val.no,subval.no,expr) 

var dynamic array in which to replace expression 

attrib.no position of the attribute to be replaced; if -1, expression is 
inserted after last attribute 

val.no position of the value to be replaced; if -1, expression is 
inserted after last value in specified attribute 

subval.no position of the subvalue to be replaced; if -1, expression is 
inserted after last subvalue in specified attribute and value 

expr value to use for replacement; can be an expression using 
operators with precedence levels 1-4 only (dynamic array 
extraction, substring, exponentiation, multiplication, 
division, addition, and subtraction). 

In the first form, a semicolon separates the attribute, value, and 
subvalue numbers from the new data expression (expr); trailing zero 
value and subvalue numbers are not required. 

If val.no and subval.no are absent or have a value of 0, the entire 
attribute specified by attrib.no is replaced. If val. no is present and 
subval.no is absent or has a value of 0, the entire value specified by 
val.no is replaced. If attrib.no, val.no, and subval.no are all non-zero, 
the subvalue specified by subval.no is replaced. 

The following example shows two ways to code a function: 

First Form: Second Form: 
X=REPLACE(X,lOi'XXXXX') X=REPLACE(X,lO,O,O, 'XXXXX') 

The value "xxxxx" replaces the existing data in attribute 10. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



---------------

( 

6929-3 

REPLACE Function 

Note: An assignment statement can also be used to replace an 
attribute, value, or subvalue in a dynamic array and store the 
result back into the variable containing the original dynamic 
array. For example, X <2 >=6 is equivalent to 
X=REPLACE(X,2;6). For more information, please see the = 

(Assignment) statement, listed alphabetically in this chapter. 

X=REPLACE(X,4;"") 

Y=REPLACE (X, 4,0,0, '''') 

VAL="TEST STRING" 

D=REPLACE(D,4,3,2,VAL) 

X="ABC123" 

Y=REPLACE(Y,l,l,-l,X) 

A=REPLACE(B,2,3;"XXX") 

Ultimate BASIC 

Replaces attribute 4 of dynamic array 
X with the empty (null) string. 

Replaces attribute 4 of dynamic array 
X with the empty (null) string, and 
assigns resulting dynamic array to Y. 

Replaces subvalue 2 of value 3 
of attribute 4 in dynamic array D with 
the string value "TEST S1RING". 

Inserts the value "ABeI23" after the 
last subvalue of value I of attribute 1 in 
dynamic array Y. 

Replaces value 3 of attribute 2 of 
dynamic array B with the value 
"xxx", and assigns resulting dynamic 
array to A. 

3-207 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

RETURN (TO) Statement 

Syntax 

Description 

The RETURN {TO} statement returns from a subroutine. 

RETURN {TO label} 

label label of statement within the local BASIC program to which the 
subroutine is to return 

The RETURN statement, without the TO clause, transfers control from a 
subroutine back to the statement immediately following the statement 
that invoked the subroutine. The subroutine can be either a local or an 
external subroutine. 

To insure proper flow of control, each local subroutine must be exited 
by using a RETURN {TO} statement, not a GOTO statement. 

N ole: Local subroutines are invoked by the GOSUB statement; 
external subroutines are invoked by the CAU statement. 
Further discussion of local subroutines may be found under 
the GOSUB statement, and of external subroutines under the 
CAU and SUBROUTINE statements. Please refer to these 
statements, listed alphab~tically in this chapter. 

A=A+l 

MSG =A:' orders processed' 

GOSUB 100 

STOP 

100 * Common print routine 

PRINT @(-l) 

PRINT @(20,2) :MSG 

RETURN 

Ultimate BASIC 
Contidentfal and Proprietary to The Ulrimate CO'fp. 

6929-3 

C, 'i , 

c 



REUSE Function 

REUSE Function 

Syntax 

Description 

6929-3 

The REUSE function can be used when perfonning arithmetic operations 
on two dynamic arrays that may have unequal numbers of attributes, 
values, or subvalues. In these cases, REUSE reuses the value of the last 
attribute, value, or subvalue within the same level until the next higher 
delimiter is encountered. 

REUSE(array.expr) 

array.expr expression that evaluates to the dynamic array to be used; it 
may also be a single value 

With REUSE, the value of the last attribute, value, or subvalue in the 
same level is reused until the next higher delimiter is encountered. 

Without REUSE, a zero is used as the value when a corresponding 
attribute, value, or subvalue is not available (if the operation is division, 
a one is used if the divisor is missing). The substitution stops when the 
next higher delimiter is encountered. 

If the array.expr evaluates to a single value, the REUSE function 
repetitively processes that value against each element in the dynamic 
array. 

REUSE can be used only as part of an expression; it cannot be assigned 
to a variable. 

Ultimate BASIC 3-209 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-210 

ARRAY1 = l:AM: 2:VM: 2:VM: 2:AM: 3:VM:10 

ARRAY2 = 10:AM:20:VM:20:VM:20:AM:30 

ARRAY3 = ARRAY1 + REUSE(ARRAY2) 

result: 

ARRAY3 = 11:AM:22:VM:22:VM:22:AM:33:VM:40 

The elements of ARRA Y3 are composed of the sums of 6 elements in 
ARRAY! and 5 elements in ARRAY2, with the last ARRAY2 element 
(30) being used twice. 

ARRAY1 = 110:VM:100:AM:120:AM:140 

ARRAY2 = ARRAY1 * REUSE(O) 

result: 

ARRAY2 = O:VM:O:AM:O:AM:O 

Each element of ARRAY! is multiplied by zero (0), which assigns the 
value 0 to each element in ARRA Y2. 

ARRAY 1 = l:AM: 2 :VM: 4 :AM: 6:VM: 7:AM: 8 

ARRAY 2 = 5 :AM: 10 :AM: 20 :VM: 30 

ARRAY 3 = ARRAY 1 + ARRAY2 

ARRAY 4 = ARRAY 1 + REUSE (ARRAY2) 

result: 

ARRAY 3 = 6 :AM: 12 :VM: 4:AM:26:VM:37:AM: 8 

ARRAY 4 = 6:AM:12:VM:14:AM:26:VM:37:AM:38 

ARRAY3 has four attributes; the second and third attributes are multi
valued, and 0 was used twice because of missing elements in ARRA Y2. 

For ARRAY4, elements in the second and fourth attributes in ARRAY2 

were each REUSEd to account for the missing elements. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



_ .. _ .•.... -~-.- .................. --_._ ....... _---

REWIND Statement 

C REWIND Statement 

Syntax 

(-

Description 

C·'· 
/ 

6929-3 

The REWIND statement rewinds the tape on the unit specified by the 
most recent T-ATI command. 

REWIND {THEN stmts} {ELSE stmts} 

THEN stmts statements to be executed after tape is successfully 
rewound; the THEN statements may appear on one line 
separated by semicolons, or on multiple lines terminated 
by an END, as in the multiple line IF statement 

ELSE stmts statements to be executed if tape is not attached; the ELSE 

statements may appear on one line separated by 
semicolons or on multiple lines terminated by an END, as 
in the multiple line IF statement 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

The tape unit must have previously been attached before issuing this 
command. If the tape unit has not been attached, the ELSE statements, if 
any, are executed, and the system function SYSTEM(O) returns a value 
of 5 (tape off line) or 6 (cartridge not formatted correctly for this 
operating system revision). (Please refer to the SYSTEM function, listed 
alphabetically in this chapter.) 

REWIND ELSE STOP Tape is rewound to BOT. 

Ultimate BASIC 3-211 
Confidential and Proprietary to The Ultimate Corp. 



---------- --------- ----------------- ---------------

Statements and Functions 

RND Function 

Syntax 

Description 

3-212 

The RND function returns a random number. 

RND(expr) 

expr number on which to base random number; if necessary, expr is 
truncated (not rounded) to nearest integer 

The seed used in the random number generation is reloaded each time 
the system is coldstarted. 

If expr is between 0 and 32767, the RND function generates an integer 
between 0 and one less than the number specified in expr. 

If expr is 0 or 65536, the RND function generates an integer that is 
machine-dependent and is not reliable as a random number. 

If expr is between 32768 and 65535, the RND function generates an 
integer between 0 and (65536-expr). 

If expr is greater than 65536, it is adjusted to a number less than 65,356 
by modulo 65536. 

If expr is less than zero, the absolute value of the number is used. 

Z RND(10) + 1 

R = 100 

Q = 50 

B = RND(R+Q+1) 

Y = RND (51) 

Ultimate BASIC 

Assigns a random number between 1 
and 10 (inclusive) to variable z. 

Assigns a random number between 0 
and 150 (inclusive) to the variable B. 

Assigns a random number between 0 
and 50 (inclusive) to the variable Y. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

o 

c 

C: 



( 

ROM Statement 

RQM Statement 

Syntax 

Description 

6929-3 

The RQM (release quantum) statement suspends program execution for a 
specified time. 

RQM {expr} 

expr if expr is a numeric value, defines number of seconds RQM is to 
pause program; if expression is a string value in the form 
hh:mm, defines time of day program is to end pause 

If no expression is used, RQM pauses for one second. 

If the value of expression is less than or equal to zero, a command is 
sent to the kernel to perform a kernel RQM, which deactivates the 
process until its next timeslice. 

The time-shared environment of the Ultimate system allows concurrent 
execution of several programs, with each program executing for a 
specific time period (called a time-slice or quantum) and then pausing 
while other programs continue execution. The RQM statement 
relinquishes the program's current time-slice and causes it to "sleep" for 
one second. 

The RQM statement is equivalent to the SLEEP statement, which is listed 
alphabetically in this chapter. 

RQM 5 

A = '13:05' 

RQM A 

Pauses program for five seconds. 

Pauses program until 1 :05 p.m. 

* PROGRAM SEGMENT TO SOUND TERMINAL BELL FIVE TIMES. 

BELL=CHAR(7) 

FOR 1=1 TO 5 

PRINT BELL: 

RQM 

NEXT 

Ultimate BASIC 

RQM statement causes the terminal to 
beep at one-second intervals. 

3-213 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SADD Function 

Syntax 

Description 

3-214 

The SADD (string addition) function adds two string numbers and 
returns the result as a string number. 

SADD(x,y) 

x any valid number or string number of any magnitude and precision 

y any valid number or string number of any magnitude and precision 

The result of the SADD function is a string number. Thus, the function 
can be used in any expression where a string or string number would be 
valid, but not necessarily where a standard number would be valid. 
This is because string numbers may exceed the range of numbers which 
can be accommodated with standard arithmetic operators. 

If either x or y contains non-numeric data, an error message is generated 
and the result of the addition is zero. 

T=SADD(Sl,S2) 

PRINT SADD(X,".004") 

A=SADD("1.03047",B) 

X=SADD(A,SADD(B,C)) 

Ultimate BASIC 

Assigns sum of variables S 1 and S2 
to variable T. 

Prints sum of variable x and string 
constant .004. 

Assigns the sum of string constant 
1.03047 and variable B to variable A. 

Uses string sum of variables Band C 
in string addition with variable A; 
assigns sum to variable x. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

;~-\ 

~-



SCMP Function 

(: SCMP Function 

Syntax 

Description 

6929-3 

The SCMP (string compare) function compares two string numbers. 

SCMP(x,y) 

x any valid number or string number of any magnitude and precision 

y any valid number or string number of any magnitude and precision 

The result of the SCMP function is a number: -1, 0, or 1. If x is less 
than y, the result is -1. If x and y are equal, the result is O. If x is 
greater than y, the result is 1. 

If either x or y contains non-numeric data, an error message is generated 
and the result of the comparison is zero (0). 

The function can be used in any expression where a number or string 
would be valid. 

IF SCMP(X,Y) o THEN GOTO 100 

The result of the comparison 
determines whether program 
execution branches to statement 
100 or continues in sequence. 

IF SCMP (X, Y) < 0 THEN The PRINT operation is executed 
PRINT X: I IS LESS THAN ': Y only if the result of the IF statement 

END is true (-1 was the result of the 
SCMP function). 

ON 2+SCMP(VAL1,VAL2) GOTO 10, 110,120 

Ultimate BASIC 

The result of the comparison is 
used to create an index of 1,2, or 3 
for the ON GOTO statement. 

3-215 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SDIV Function 

Syntax 

Description 

3-216 

The SDIV (string division) function divides the first string number by the 
second and returns the result as a string number. 

SDIV(x,y) 

x dividend; any valid number or string number of any magnitude and 
precision 

Y divisor; any valid number or string number with up to 13 significant 
digits and any precision 

The result of the SDIV function is a string number. Thus, the function 
can be used in any expression where a string or string number would be 
valid, but not necessarily where a standard number would be valid. 
This is because string numbers may exceed the range of numbers which 
can be accommodated with standard arithmetic operators. 

The divisor in SDN is restricted to 13 significant digits and the quotient 
is restricted to 14 significant digits. 

If either x or y contains non-numeric data, an error message is generated 
and the result of the division is zero. If y is zero, an error message is 
displayed that states division by zero is illegal; the result is zero. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The·Ultimate Corp. 

c 

C: 
j 



c 

~-----------

6929-3 

SDIV Function 

VELOCITY=SDIV(DISTANCE,TIME) 

PRINT SDIV(X,".004") 

A=SDIV("1.030476",B) 

X=SDIV(A, SDIV(B,C)) 

Y=SDIV("lO","3") 

Ultimate BASIC 

Assigns result of variables DISTANCE 

divided by TIME to variable VELOCITY 

Prints quotient of variable X divided by 
string constant .004. 

Assigns to variable A the result of 
dividing string constant 1.030476 by 
variable B. 

Uses string result of variable B divided by 
variable C in string division with variable 
A; assigns sum to variable X. 

Result is 3.3333333333333. 

3-217 
Confidential and Proprietary to The Ultimate Corp. 



-- -- -----"--------- -- "~-"----------

Statements and Functions 

SEEK Statement 

Syntax 

Description 

3-218 

The SEEK statement positions the buffer pointer in either the program 
argument list or the system message buffer. 

SEEK(ARG.{, arg.no}) {THEN stmts} {ELSE stmts} 
SEEK(MSG. (, arg.no}) {THEN stmts} {ELSE stmts} 

ARG. uses list of arguments, if any, following the program name 
in the TCL command that invoked the program; any string 
preceded by a space is considered an argument 

MSG. uses list of message identifiers and parameters, if any, 
resulting from the last EXECUTE statement or by a PUT 

statement in an EXECUTEd program 

arg.no integer that specifies the position of the element in the list 
to move the pointer to; if arg.no is not present, the next 
pointer is positioned to the next element on the list; if this 
is the first SEEK statement to be ~xecuted, the pointer is 
moved to the first element on the list 

THEN stmts statements to execute if pointer is positioned to element 

ELSE stmts statements to execute if no element is present in specified 
position 

One or more SEEK(MSG.) statements can be used to locate the system 
messages generated by a program invoked via an EXECUTE statement. 
Only the ERRMSG item.ids and parameters are copied to MSG. (MSG. is 
reset to null just prior to the execution of an EXECU1E statement.) 

The EOF function is available to test for end-of-argument or end-of
message list. (Please refer to the EOF function listed alphabetically in 
this chapter.) 

N ole: ARG. and MSG. are predefined keywords with special meaning 
and should not be used as ordinary variables in other 
statements. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The UltiiTIateCorp. -



6929-3 

SEEK Statement 

The SEEK statement is similar to the GET statement except that no data 
transfer takes place. Also, the SEEK statement can be used in 
conjunction with the GET statement. Once the internal pointer position 
has been set by a SEEK statement, a subsequent GET statement will 
return the argument set up by the SEEK statement. For further 
information on GET, as well as the ARG. and MSG. keywords, please 
refer to the GET statement, listed alphabetically in this chapter. 

SEEK (ARG., 3) THEN GOSUB 10000 ELSE 

PRINT "NOT ENOUGH ARGUMENTS" 

STOP 

END 

Ultimate BASIC 

If the argument is found, the 
subroutine is executed; otherwise, the 
message is printed and program 
execution terminates. 

3-219 
Confidential and Proprietary to The Ultimate Corp. 



~. ----~-

Statements and Functions 

SELECT Statement 

Syntax 

3-220 

The SELECT statement builds a select list from a fIle or a dynamic array 
for use with the READNEXT statement. 

SELECT {var} {TO select. var} {ON ERROR stmts} 

var either a file variable previously initialized in an OPEN 

statement, or a variable whose current value is a 
dynamic array 

select.var variable to which the select list is to be assigned; if 
omitted, the list is assigned to the program's internal 
default select variable. 

If the BASIC SELECT statement is used to generate a 
select list to the internal default select variable, and if 
one of the system select commands was executed 
immediately before running the BASIC program, that 
list is assigned to the BASIC program's internal 
default select variable and the results of the first 
occurrence of a BASIC SELECT are not assigned to 
the internal default select variable. 

Note: A select variable has meaning only in SELECT and 
READNEXT statements; its value outside these 
statements is undefined. 

ON ERROR stmts statements to be e~ecuted if the file is a remote file, 
that is accessed via UltiNet, and it cannot be selected 
due to a network error condition. In this case, the 
value of SYSTEM(O) indicates the UltiNet error 
number. (Refer to the SYSTEM function, listed 
alphabetically in this chapter; for more information 
about remote files, refer to the UltiNet User's 
Guide.) The ON ERROR clause has no effect when 
opening local files. 

Ultimate BASIC 

The statements may be on a single line or on 
multiple lines. If multiple lines are used, the clause 

6929~3 

Confidential and Proprietary to The Ultimate Corp. 

c 

c 



( 

Description 

SELECT Statement 

must be terminated by an END statement as in the 
multi-line IF statement. 

If a file variable is used, SELECT builds a list of item.ids corresponding 
to all items in the file. If a dynamic array is used, SELECT builds a list 
whose elements are copies of the attributes in the dynamic array. Only 
the first values of multi-valued attributes are selected. 

When selecting file items, the SELECT statement builds the same list of 
item.ids as would be built by the Recall SELECT command without any 
selection criteria. But unlike the Recall SELECT command, which reads 
the entire file at one time, the BASIC SELECT statement reads one group 
of items at a time. This means that if items are being created in the 
selected file, the BASIC SELECT list may include the new items 
(depending on their groups and how far the SELECT has progressed) 
whereas the Recall SELECT list will not. 

Select lists are discussed in more detail under the READNEXT statement, 
listed alphabetically in this chapter. 

UltiNet The purpose of the ON ERROR clause is to allow the program to retrieve 
Considerations the UltiNet error number and take appropriate action. Such action 

could, for instance, include printing the associated message 

6929-3 

text via a PUT statement or STOP statement, and resuming or terminating 
program execution. 

If a remote file cannot be accessed due to network errors and no ON 

ERROR clause is present, the program terminates with an error message. 

Ultimate BASIC 3-221 
Confidential and Proprietary to The Ultimate Corp. 



-"-""-"""-" -"------"----- -"- "------- --------

Statements and Functions 

SELECT 

SELECT BP TO BLIST 

Builds a list of item.ids using the 
default variable of the last file opened 
without a file variable. 

Builds a list of item.ids for the file 
opened and assigned to file variable 
BP. Assigns the list to select-variable 
BLIST. 

READ A FROM FILEX,'ALIST' ELSE STOP 

SELECT A Creates a select list of the attributes in 
item ALIST. 

SELECT A ON ERROR 

ERRNUM=SYSTEM(O) 

GOSUB PROCESSERR 

GOTO TOP 

END 

Ultimate BASIC 

Creates select list as above, or 
retrieves error number and 
performs local subroutine on 
UltiNet error number. 

Confidential and Proprietary to The Ultimate Corp. 
6929-3 

C": "" 



· SEQ Function 

('~' SEQ Function 

Syntax 

Description 

6929-3 

The SEQ function converts an ASCII character to its corresponding 
decimal value. 

SEQ(expr) 

expr ASCII character string to be converted; the first character of the 
string is converted to its corresponding decimal value 

For a complete list of ASCII codes, refer to Appendix D of this manual. 

The SEQ function is the inverse of the CHAR function. (Please refer to 
the CHAR function, listed alphabetically in this chapter.) 

S = 'No errors' 

L = LEN (STRING) 

DIM C (L) 

FOR 1=1 TO L 

C(I) = SEQ(S[I,l]) 

NEXT 

Ultimate BASIC 

Puts the decimal equivalents of 
individual characters of string S into 
elements of dimensioned array C. 

3-223 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SIN Function 

Syntax 

Description 

3-224 

The SIN function returns the sine of an angle expressed in degrees. 

SIN(expr) 

expr number of degrees in the angle 

The function generates the sine of the angle. 

A = 32 

PRINT SIN(A) 

Returns 0.5299, the sine of 32°. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



( 

SLEEP Statement 

SLEEP Statement 

Syntax 

Description 

6929-3 

The SLEEP statement pauses a program for a specified amount of time, 
which can be expressed either as number of seconds or a specific time 
of day. 

SLEEP {expr} 

expr if expr is a numeric value, defines number of seconds SLEEP is 
to pause program; if expr is a string value in the form hh:mm, 
defines time of day program is to end pause 

If the value of expression is less than or equal to zero, a command is 
sent to the kernel to perform a kernel RQM, which deactivates the 
process until its next timeslice. 

If no expression is used, SLEEP pauses for one second. 

The SLEEP statement is equivalent to the RQM statement, which is listed 
alphabetically in this chapter. 

SLEEP 5 

A = '13:05' 

SLEEP A 

Ultimate BASIC 

Pauses program for five seconds. 

Pauses program until 1 :05 p.m. 

3-225 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SMUL Function 

Syntax 

Description 

3-226 

The SMUL (string multiplication) function multiplies two string numbers 
and returns the result as a string number. 

SMUL(x,y) 

x any valid number or string number of any magnitude and precision 

y any valid number or string number of any magnitude and precision 

The result of the SMUL function is a string number. This function can 
be used in any expression where a string or string number would be 
valid, but not necessarily where a standard number would be valid. 
This is because string numbers may exceed the range of numbers which 
can be accommodated with standard arithmetic operators. 

PAY=SMUL(HOURS,RATE) 

PRINT SMUL(X,"1.0015") 

A=SMUL("1.030476",B) 

X=SMUL(A, SMUL(B,C)) 

Ultimate BASIC 

The variable PAY is assigned the 
product of HOURS times RATE. 

The variable X is multiplied by 
constant 1.0015 and the result is 
printed. 

The constant 1.030476 is multiplied 
by variable B and the result is 
assigned to variable A. 

The product of variables Band C is 
multiplied by variable A; the result is 
assigned to x. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

,~, 

'-j 

c 



SORT Function 

SORT Function 

Syntax 

Description 

6929-3 

The SORT function sorts elements in a dynamic array. The sort is in 
ASCII sequence. 

SORT(var) 

var evaluates to dynamic array 

The elements are sorted in ascending order, left justified. 

The dynamic array is sorted by the highest system delimiter in the array. 
That is, if the dynamic array contains any attribute marks, the sort is by 
attributes; values and subvalues are unaffected and remain with the 
original attribute. If the dynamic array contains value marks and no 
attribute marks, the sort is by value; subvalues are unaffected and 
remain with the original value. If the dynamic array contains subvalue 
marks and neither attribute nor value marks, the sort is by subvalue. 

A 'Hello':AM: 'Goodbye:VM:'See you later' 
S SORT (A) There is an attribute mark in the 

string, so the sort is according to 
attributes; the first value of each 
attribute determines the order. 

result: 

S 'Goodbye:VM:'See you later':AM:'Hello' 

A 'Hello' :VM:'Goodbye:VM:'See you later' 

S SORT (A) There are no attribute marks in the 
string, but there are value marks, so 
the sort is by values. 

result: 
S = 'Goodbye:VM:'Hello':VM:'See you later' 

Ultimate BASIC 3-227 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SOUNDEX Function 

Syntax 

Description 

3-228 

The SOUNDEX function returns the soundex code for a specified string. 
The code consists of the first letter of the word, plus values for the next 
three consonants or combinations of consonants. 

SOUNDEx(expr) 

expr string to be used 

These codes can be useful for cross references based on words or 
names that sound alike. Soundex codes also overcome problems with 
upper case and lower case, typographical errors, and misspellings in a 
database. 

The first value in the soundex code is the first alphabetic character in the 
string. Subsequent values in the soundex codes are numeric values 
given to consonants. If two or more characters with the same numeric 
value are adjacent, only one value is returned. ~haracters that are not 
consonants, other than the first character, are ignored. 

Words with a similar arrangement of consonants have similar soundex 
codes, regardless of the actual spelling; similar sounding consonants 
may have the same soundex code. If two adjacent consonants have the 
same soundex code, only one instance of the code is returned. For 
example, the following words all have the same soundex code (L6): 

Laura 
Lorrie 

Lora 
Lori 

Laurie 
LARRY 

lorry 

Table 3-4 lists the soundex codes returned by the function. 

A = SOUNDEX ( " SMI TH" ) A "S53" 

B = SOUNDEX (n SMITHS") B "S532" 

c = SOUNDEX("SMITHSON") C "S532" 

D= SOUNDEX("123") D "" 

Ultimate BASIC . 
Confidential and Proprietary to The Ultimate CorP-

6929-3 

o 



SOUNDEX Function 

Table 3-4. Soundex Codes 

Letters Code 

a,e,i,o,u,h, W ,y null 

b,f,p,v 1 

c,g,j,k,q,s,x,z 2 

d,t 3 

1 4 

m,n 5 

r 6 

( 

6929-3 Ultimate BASIC 3-229 
Confidential and Proprietary to The Ultimate Corp. 



-- -- .. _- _.- --~-~---- -.--.----~~ ... __ ._._- ---- --- .... -----~~~----------.~.--------~.----

Statements and Functions 

SPACE Function 

Syntax 

The SPACE function generates a string value containing a specified 
number of blank spaces. 

SPACE(expr) 

expr number of blank spaces to be generated 

B = 14 

C = SPACE(B) 

DIM M(10) 

~T M = SPACE(20) 

Assigns to variable C a string of 14 
blank spaces. 

Assigns a string consisting of 20 
blanks to each of the 10 elements of 
array M. 

PRINT SPACE (10) :" name: "Prints 10 spaces followed by the 
characters name: 

Ultimate. ~ASIC . _ 
ConfidentiSl arid'Proprietary to The Ultimate Corp. 

,f~ 
,-",,-



SQRT Function 

(: SQRT Function 

Syntax 

6929-3 

The SQRT function returns the positive square root of a positive number. 

SQRT(expr) 

expr positive number for which to generate the square root; if expr 
evaluates to less than or equal to zero, the function returns a 
value of zero 

Y SQRT(36) Assigns the value 6 to variable Y. 

Ultimate BASIC 3-231 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SSUB Function 

Syntax 

Description 

The SSUB (string subtraction) function subtracts the second string 
number from the first string number and returns the result as a string 
number. 

SSUB(x,y) 

x any valid number or string number of any magnitude and precision 

y any valid number or string number of any magnitude and precision 

The result of the SSUB function is a string number. Thus, the function 
can be used in any expression where a string or string number would be 
valid, but not necessarily where a standard number would be valid. 
This is because string numbers may exceed the range of numbers which 
can be accommodated with standard arithmetic operators. 

T=SSUB(Sl,S2) 

PRINT SSUB(X,".004") 

A=SSUB("1.03047",B) 

X=SSUB(A, SSUB(B,C)) 

Ultimate BASIC 

Assigns difference of variables S 1 
and S2 to variable T. 

Prints difference of variable X and 
string constant .004. 

Assigns the difference of string 
constant l.03047 and variable B to 
variable A. 

Uses the difference of variable Band 
C in string subtraction with variable 
A; the result is assigned to x. 

Confidentia:l and PropritJtary to The Ultimate Corp. 

( -" 
[, """ 

(,-,-

" 



(' 

( 

STORAGE Statement 

STOP Statement 

Syntax 

Description 

6929-3 

The STOP statement tenninates program execution. 

STOP {errnum{,param, param, ... }} 

errnum error message number (item.id) in the ERRMSG file 

param parameters to be used within the error message format; must 
be separated by commas; may be variables or literals 

A STOP statement may be placed anywhere within the BASIC program. 

STOP tenninates a BASIC program but, if a PROC is used to invoke the 
program, STOP does not tenninate the PROC. 

The ABORT statement can also be used for program termination. 
However, unlike STOP, ABORT also terminates PROC execution if the 
program was invoked from a PROC. (Refer to the ABORT statement, 
listed alphabetically in this chapter.) 

PRINT 'PLEASE ENTER FILE NAME': 

INPUT FN 

OPEN FN TO FFN ELSE STOP 201, FN 

This program requests a file name from the user and attempts to open 
the file. If an incorrect file name is entered, the standard system error 
message "[201] 'xxx' IS NOT A FILE" is printed and the program is 
terminated. 

Ultimate BASIC 3-233 
Confidential and Proprietary to The Ultimate Corp. 



------_ ... _- ... _. __ ._---_._- .. _-- _._-_ .. _._----------- --- ----- .. _ .. _-._--_ .. ~ 

Statements and Functions 

STORAGE Statement 

Syntax 

Description 

The STORAGE statement allows a program to change the three buffer 
sizes used for storing string data in variables. 

STORAGE small-buffer, med-buffer, large-buffer 

small-buffer size of small buffer; must be multiple of 10 and must be 
less than med-buffer and large-buffer. The default small 
buffer size is 50 bytes. 

med-buffer size of medium buffer; must be multiple of 10 and must 
be greater than small-buffer and less than large-buffer. 
The default medium buffer size is 150 bytes. 

large-buffer size of large buffer; must be multiple of 10 and must be 
greater than med-buffer and small-buffer. The default 
large buffer unit size is 250 bytes. 

When a variable takes on a string value, the stripg is stored directly in 
the variable's descriptor area if it is less than nine characters long. If it 
is nine or more characters long, the string is stored in a buffer to which 
the descriptor then points. 

The buffers used to hold these strings are built in certain sizes specified 
by three numeric parameters: the size of a small buffer, the size of a 
medium buffer, and the size of a large buffer unit. The size of a large 
buffer is one or more large buffer units. 

STORAGE 40, 100, 180 

STORAGE 100, 200, 300 

Ultimate BASIC 

.. ' .. ' 

Dennes bufferslzes at 40 (small), 
100 (medium), and 180 (large). 

Defines buffer sizes at 100 (small), 
200 (medium), and 300 (large). 

. ,.'<" 
'1;:'" ': 6929-3 

Confident/til andProprietaiy to ThlJ' Ultimate Corp;' 

e' 
II "._' 

c 



(~' STR Function 

Syntax 

6929-3 

.~--~-.-.----------

SUBROUTINE Statement 

The STR function generates a string value containing a specified number 
of occurrences of a specified string. 

STR(string,count) 

string the string to be replicated 

count number of occurrences to be generated. 

VAR = S TR ( "A" , 5) 

VAR = 'A':CHAR(254) 

N = STR(VAR,4) 

Assigns to variable V AR a string 
containing five A's. 

Assigns to variable N the string value 
containing four substrings consisting 
of the letter A followed by an attribute 
mark. 

PRINT STR('0123456789',SYSTEM(2)/lO) 

Ultimate BASIC 

Prints the numbers 0 thru 9 across the 
page (SYSTEM(2) contains the current 
terminal page width). 

3-235 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

SUBROUTINE Statement 

Syntax 

Description 

The SUBROUTINE statement provides external subroutine capabilities for 
a BASIC program. 

SUBROUTINE {name} {(argument list)} 

name may be used to indicate the name of the subroutine, but 
this is ignored by the compiler, which uses the item.id of 
the subroutine as the subroutine name 

argument list one or more variables, separated by commas, that take 
on the actual values passed to the subroutine; list may be 
continued on multiple lines; each line except the last must 
end with a comma. If the argument is the name of an 
array given in a DIM statement, the word MAT must 
precede the array name; arrays passed through an 
argument list must be dimensioned in both the calling 
program and the subroutine. Multiple arrays may be 
passed, as needed. 

An external subroutine is a subroutine that is compiled separately from 
the program or programs that call it. 

The SUBROUTINE statement is used to identify the program as a 
subroutine and must be the fIrst statement in the program. A program 
that begins with the SUBROUTINE statement cannot be run except by a 
CALL statement from another program. 

The SUBROUTINE statement is used in conjunction with the CALL 

statement. The CALL statement transfers control to the external 
subroutine, which may then return control using the RETURN statement. 
(Please refer to the CALL and RETURN statements, listed alphabetically 
in this chapter.) 

There is no correspondence between variable names or labels in the 
calling program and the subroutine. The only information passed 
between the calling program and the subroutine is the values of the 
arguments. In addition, each subroutine has its own internal select 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

(~" 
I(.j 



C·'· 
.;. 

6929-3 

---_ ................................... . 

SUBROUTINE Statement 

variable and file variable. A list selected to the internal select variable of 
one program is not passed to the internal select variable of another 
program. Similarly, the name of a file opened to the internal file 
variable of one program is not passed to internal file variable of another 
program. 

When the CALL statement is executed, subroutine arguments are first 
evaluated and their values assigned to the corresponding variables 
named in the subroutine's SUBROUTINE statement. These variables may 
then be assigned new values by the subroutine. When control returns to 
the calling program, any variables used as subroutine arguments are 
updated to reflect the most recent values of the corresponding variables 
in the subroutine. Constants and other expressions used as subroutine 
arguments are not changed. 

Care should be taken not to update the same variable referenced by more 
than one name in an external subroutine. This can occur if a variable in 
COMMON is also passed as a subroutine parameter. 

External subroutines may call other external subroutines, including 
themselves. 

An external subroutine must begin with a SUBROUTINE statement and 
should contain a RETURN statement. GOSUB and RETURN statements 
may be used within the subroutine, but when a RETURN is executed 
with no corresponding GOSUB, control passes to the statement following 
the corresponding CALL statement in the calling program. If the 
subroutine terminates execution without executing a RETURN (such as 
by executing a STOP statement, or by "running out" of statements at the 
end of the subroutine), control never returns to the calling program. 

The CHAIN statement should not be used to chain from an external 
subroutine to another BASIC program. 

Dimensioned arrays may be passed to external subroutines. Array 
dimensions may be different between CALLing program and subroutine, 
as long as the total number of elements matches. 

Arrays are copied in row major order; that is, all columns in row 1 are 
copied before the first column in row 2, and so on. 

Ultimate BASIC 3-237 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-238 

SUBROUTINE REVERSE(I,X) 

SUBROUTINE REPORT 

Subroutine REVERSE has two 
arguments. 

Subroutine REPORT has no 
arguments. 

SUBROUTINE VENDOR (NAME, ADDRESS, NUMBER) 

DIM A(4,lO),B(lO,5) 

CALL REV (MAT A, MAT B) 

Subroutine VENDOR uses three 
values that are passed from the main 
program. 

Subroutine REV accepts two input 
array variables, one of size 40 and 
one of size 50 elements. 

SUBROUTINE REV (MAT C, MAT B) 

DIM C(4,lO),B(50) 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp.· 

c 



SUM Function 

SUM Function 

Syntax 

Description 

6929-3 

The SUM function sums the lowest level elements in a dynamic array. 

SUM(expr) 

expr evaluates to dynamic array to be summed 

The elements at the lowest level are summed until the next higher level is 
encountered. For example, if the lowest delimited level is a subvalue, 
then all subvalues are summed within each value~ when the value mark 
is encountered, the result is stored in that value. 

The SUM function is useful to eliminate the lowest level of element 
present in a numeric dynamic array by combining at the next highest 
level. For example, if a dynamic array containing subvalues is 
summed, the lowest level in the returned array is value. 

The SUM function can be used repeatedly until only one element 
remains. 

A = 1:AM:21:VM:22:AM:311:SVM:312:VM:321:SVM:322 

FOR I = 1 TO 3 The first loop sums the subvalues to 
A=SUM (A) the next value delimiter (or end-of-

NEXT string). The second loop sums the 
values to the next attribute delimiter 
(or end-of-string). The third loop 
sums the attributes. 

result: 

A 1:AM:21:VM:22:AM:623:VM:643 

A 1:AM:43:AM:1266 

A 1310 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

3-239 



""""""""""-"""""-~""--"""""""--"-"""-""""-"-""""""-""""""" """""---

Statements and Functions 

SYSTEM Function 

Syntax 

Description 

3 .. 240 

The SYSTEM function returns system information such as error status 
codes (generated as a result of a previous SASIC statement) or 
parameters such as the page-number or page-width. 

SYSTEM(expr) 

expr number that indicates value to return; the values are shown in 
Table 3-5; the value must be in the range 0 through the 
maximum value as defined in the table. If it is outside the 
allowable range, SYSTEM returns a value as if the expression 
evaluated to zero (the error function). 

If the expression used in SYSTEM is zero, the function returns a value 
determined by the last executed SASIC statement that set an error 
condition. Examples of such SASIC statements are the tape commands 
such as READT and WRlTET if the ELSE branch executes. SYSTEM(O), 
therefore, allows one to determine exactly what error has occurred when 
the program follows the ELSE branch of these statements. If the ELSE 
branch was not fOllowed, the value returned by SYSTEM(O) is zero. 

The SYSTEM function, with non-zero values of the expression, returns 
parameters that have been set external to the BASIC program. Table 3-5 
lists the function expressions. 

Ultimate BASIC" " 6929-3 
Confidential and Proprl~tary to The Ultimate Corp. 

c 

c 



SYSTEM Function 

Table 3-5. SYSTEM Values (1 of 4) 

Value Information Returned 

0 Error function value: 

1 Tape unit is not attached 

2 EOF read from tape unit 

3 Attempted to write null string 

4 Attempted to write variable longer than 
tape record length 

5 Tape unit is off-line 

6 Cartridge is not formatted correctly 

2001-2339 UltiNet error code; see UltiNet User 
Guide for specifics 

1 1 PRINTER ON or (p) option used in RUN 

0 data is being printed to the terminal. 

I (~ 2 Current page-size (page-width in columns) 

3 Current page-depth (number of lines in page) 

4 Number of lines remaining in current page 

5 Current page-number 

6 Current line-counter (number of lines printed) 

7 One-character terminal-type code 

8 Current tape record length 

9 System serial number 

6929-3 Ultimate BASIC 3-241 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Table 3-5. SYSTEM Values (2 of 4) 

Value Information Returned 

10 Code for machine BASIC program is running on: 

DO LSI11 ~based systems without 

typeahead 

Dl LSI11-based systems with typeahead 
and regular memory 

D2 LSI11-based systems with typeahead 
and dual-ported memory 

D3 LSI11 3030 systems 

D4 LSI11 3040/3050 systems 

HO Ultimate WCS-based system 

HI Ultimate HPP-based system 

H2 Ultimate 7000 system 

H3 Ultimate 8Mb 6000 system 

I IBM system 

M 1400-based system 

vO v AX 3x system 

V4 V AX ECP-based system 

11 number of characters in typeahead buffer 

12 ASCII value of terminating character of last INPUT 

statement; if INPUi'CONTROL FUNCKEYS not set, 
could either be ASCII value 10 (UNEFEED) or 13 
(RETURN). For a list of values returned when 
INPUTCONTROL FUNCKEYS is set, see Table 3-3 
included with the description of INPUTCONTROL. 

13 reserved 

14 returns item in ERRMSG file called INPUT@; item 
contains messages used by system command UPDATE 

15 reserved 

3-242 Ultimate BASIC 6929-3 
Confidential aM Proprietary to The Ultimate Corp. 



SYSTEM Function 

Table 3-5. SYSTEM Values (3 of 4) 

Value Information Returned 

16 cause of abort; valid only in subroutine called by 
TRAP ON THEN CALL statement; may be the following 

0 program termination - ABORT, END, or 
STOP statement in program 

1 BREAK key pressed 

2 END command entered in BASIC or system 
debugger 

3 OFF command entered in BASIC or system 
debugger 

4 SET-LOGOFF has been invoked and DSR 
has dropped, or the process has been 
logged off by another process 

5 CHAIN 'OFF' or EXECUTE 'OFF' statement 

( 
in program 

Bnnn BASIC ERRMSG item.id of error that 

caused trap 

17 file name and name of program currently being 
executed; if in subroutine called by TRAP ON THEN 
CALL, contains name of program that called 

subroutine 

18 returns TCL statement that invoked current program; 
statement is formatted as dynamic array. Elements in 
the statement are separated by attribute marks. If an 
element is enclosed in delimiters, the delimiters are 
removed. This function is equivalent to @SENTENCE 

19 port number of current process; equivalent to 
@USERNO 

20 date format: 

0 USA (mm/ddlyy) 

1 European (ddlmm/yy) 

2 Swedish (yy/mm/dd) 

6929-3 Ultimate BASIC 3-243 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

,~-., . 
Table 3-5. SYSTEM Values (4 of 4) 

. ,"-./ 

Value Information Returned 

21 level of nested execute; the highest level is 0; 
equivalent to @EXECLEVEL 

22 last hold file number; equivalent to@HOLDFILE 

23 privilege level of current process; equivalent to 
@PRIVILEGE 

24 spooler assignments; equivalent to@SPOOLOPTS 

25 returns 1 if external select list is active, else returns 0; 
equivalent to@SELECT 

26 current account name; equivalent to @WHO 

27 two-digit language code of the language assigned to 
current port; equivalent to @LANGUAGE 

(~ 

3-244 Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



("' TAN Function 

Syntax 

Description 

6929-3 

TIME Function 

The TAN function returns the tangent of an angle expressed in degrees. 

TAN(expr) 

expr number of degrees in the angle 

The function generates the tangent of the angle. 

A = 32 

PRINT TAN (A) 

Returns 0.6248, the tangent of 32°. 

Ultimate BASIC 3-245 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

TIME Function 

Syntax 

Description 

The TIME function returns the internal time of day. 

TIMEO 

This function returns the internal time of day, which is the number of 
seconds past midnight. 

A = TIME () Assigns current internal time to 
variable A. 

PRINT OCONV (TIME () , "MT") Prints current time in hh:mm format; for 
example, 

09:16 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



TlMEDA TE Function 

( TIMEDATE Function 

Syntax 

Description 

( 

6929-3 

The TIMEDATE function returns the current time and date in external 
format. 

TIMEDATEO 

The TIMEDATE function returns the current time and date in external 
format, which is 

hh:mm:ss dd mon yyyy 

hh=hours 
mm=minutes 
ss=seconds 
dd=day 
rnon=month of year 
yyyy=year 

B = TIMEDATE () 

PRINT B 

Ultimate BASIC 

assigns to B the current time and date 
in external format, then prints the 
string; for example, 

08:30:23 06 MAY 1990 

3-247 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

TRAP ON THEN CALL Statement 

Syntax 

Description 

3-248 

The 1RAP ON THEN CALL statement provides program control for 
certain unusual conditions. 

1RAP ON THEN CALL trap.subr 

trap.subr name of external subroutine to be called if unusual condition 
occurs; no parameters can be passed 

The 1RAP ON THEN CALL statement specifies the name of an external 
subroutine to be called if one of the following conditions occurs: 

• execution of ABORT, END, STOP, CHAIN 'OFF', or EXECUTE 'OFF' 
statement 

• BREAK key pressed; trapped only if BREAK OFF is active 

• execution of END or OFF command in BASIC or system debugger 

• DSR drops or line is logged off by another process 

• any runtime error that would normally cause the program to enter the 
BASIC debugger 

The trap subroutine is not called when the 1RAP ON statement is 
encountered; it is called only if one of the above unusual conditions 
occurs. 

Although no parameters can be passed between the trap subroutine and 
the program in which the trap occurred, values can be passed through 
COMMON variables. The subroutine called by the trap may decide on 
further action; this could be, for example, terminating, logging off, or 
capturing the reason for the trap in a COMMON variable and RETURNing 
to the main program. Within the subroutine, SYSTEM(l6) can be used 
to determine the reason for the trap and SYSTEM(17) used to determine 
the name of the program that called the subroutine. 

If the trap subroutine executes its RETURN statement, the path the 
system follows depends on the reason for the trap. Table 3-6 lists the 
possible values for SYSTEM(l6) and where the subroutine returns. 

Ultimate BASIC 6929-3 
ConfidenUal and Proprietary to The Ultimate Corp. 



(' 

( 

6929-3 

TRAP ON THEN CALL Statement 

SYSTEM(17) returns the file and program name of the program that was 
executing at the time of the trap; the information is in the following 
format: 

file.name prog.name 

Once a trap is set up in a program, it remains set unless a subsequent 
TRAP ON is encountered. The last trap that was encountered at the 
current EXECUTE level is the active trap. A trap is passed to any 
subroutine that is called after the trap is set up; a trap that is set up in a 
subroutine is passed back to the calling program. For example, if one 
trap is set up in the main program, and a second is set up in a 
subroutine, the trap set up in the main program is in effect until the 
TRAP ON statement in the subroutine is encountered. The trap set up by 
the subroutine remains in effect, even after the subroutine returns to the 
main program. 

BASIC programs that are CHAINed to after a trap is set up inherit the trap 
if the CHAIN statement includes the I option with the verb. PROCs and 
system commands that are chained to do not inherit traps. 

Programs that are EXECUTEd do not inherit traps. However, if a TRAP 
ON is set up at one level and a condition that would produce a 
SYSTEM(16) value of 2, 3,4, or 5 occurs in a lower EXECUTE level 
where no TRAP ON is set, the system passes control back to the trap 
subroutine in the EXECUTE level with the TRAP ON. The SYSTEM(16) 
value is preserved if it is 2, 3, or 4. If the condition would produce a 
value of 5 if the TRAP ON were in the same level, SYSTEM(16) returns a 
value of 3. (For an explanation of SYSTEM(16) values, see Table 3-6.) 

During the execution of the trap subroutine, the trapping mechanism is 
disabled; this is to prevent an error within the subroutine from causing 
the system to get into an unbreakable loop. However, if DSR drops or 
the process is logged off by another process while the trap subroutine is 
executing, the condition is saved and the trap subroutine is reentered 
with the saved condition as soon as the trap subroutine RETURNs out of 
the current condition. 

Ultimate BASIC 3-249 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-250 

Table 3-6. SVSTEM{16} Values 

Value Description Path After RETURN 

0 Program tennination - returns to program in which 
ABORT,END,orSTOP trap occurred and follows 
statement in program through on statement. 

1 BREAK key pressed when returns to program in which 
BREAK OFF is in effect trap occurred 

2 END command entered in returns to program in which 
BASIC or system debugger trap occurred 

3 OFF command entered in returns to program in which 
BASIC or system debugger trap occurred 

4 SET-LOGOFF has been returns to program in which 
invoked and DSR has trap occurred 
dropped, or the process has 
been logged off by another 
process 

5 CHAIN 'OFF' or EXECUTE logs user off unless 
'OFF' statement in program statement causing trap is in 

an EXECUTEd program and a 
TRAP ON has been set in a 
previous level. In this case, 
the RETURN enters the trap 
subroutine at that level and 
reports SYSTEM(16) = 3 

Bnn ERRMSG item.id of error returns to TCL or, if in an 
that caused trap EXECUTEd program, to 

previous level 

The system detennines the statement to return to as follows: 

• to beginning of statement that caused trap if statement not completely 
executed 

• to statement following the location of trap if trap occurred after 
statement was executed 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929-3 

c 



( 

6929-3 

TRAP ON THEN CALL Statement 

• to INPUT prompt if trap occurred while waiting for input; if it is 
desired to force the program to return to the statement following the 
INPUT, the DATA statement can be used in the trap subroutine to stack 
data for the INPUT statement 

TRAP ON THEN CALL TRAP.SUBR 

* Debugger entered 
*OFF OFF typed in BASIC debugger 

result: 
TRAP.SUBR is called when OFF is typed with SYSTEM(16) = 3. If 
RETURN statement in TRAP.SUBR is executed, program returns to 
statement that was being executed when debugger entered. 

TRAP ON THEN CALL TRAP.SUBR 

CHAIN 'OFF' OFF is encountered in program. 

result: 
Trap subroutine is entered with SYSTEM(16) = 5. If RETURN 

statement in TRAP.SUBR is executed, user is logged off. 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

3-251 



Statements and Functions 

3-252 

PROG1: 

TRAP ON THEN CALL TRAP.SUBR 

EXECUTE "RUN BP PROG2" 

PROG2 : No trap is specified in program 
EXECUTE "RUN BP PROG3" 

PROG3: No trap is specified in program 

* Debugger entered 
*OFF OFF typed in BASIC debugger 

result: 
System returns to last level in which trap has been set and calls the 
trap subroutine. In this example, this is the subroutine TRAP.SUBR 

specified in PROG 1; SYSlEM(16) = 3. If the RETURN statement in 
TRAP.SUBR is executed, program returns to statement following 
EXECUlE statement in PROG 1. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

.~. 

c' 



( 

TRIM Function 

TRIM Function 

Syntax 

Description 

6929-3 

The 1RIM function removes extraneous blank spaces from a specified 
string. 

TRIM {BIF}(string.expr) 

B remove only the trailing (back) spaces from a string 

F remove only leading (front) spaces from a string 

string.expr string being trimmed 

The TRIM function, without the B or F suffix, deletes leading and trailing 
blanks, as well as any multiple blanks within the expression. 

The Band F suffixes cannot both be specified at the same time. 

A=" GOOD MORNING, 

A=TRIM(A) 

PRINT A 

A ABC 

A TRIMB(A) 

A ABC 

A TRIMF(A) 

Ultimate BASIC 

MR. BRIGGS" 

Deletes extra spaces before and within 
expression with the result: 

GOOD MORNING, MR. BRIGGS 

The back spaces are trimmed, with 
the result: 
A = , ABC' 

The front spaces are trimmed, with 
the result: 

A = 'A B C 

3-253 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

UNLOCK Statement 

Syntax 

Description 

3-254 

The UNLOCK statement releases the specified execution locks set by the 
LOCK statement. 

UNLOCK {expr} 

expr integer between 0 and 47 that specifies lock to be released 
(cleared); if expr is omitted, all execution locks that were 
previously set by the program are released. If a number greater 
than 47 is specified, it is adjusted by mod 48 to a number less 
than 47 

The UNLOCK statement operates in conjunction with the LOCK 

statement, which sets an execution lock, to provide a file and execution 
lock capability for BASIC programs. (Please refer to the LOCK 

statement, listed alphabetically in this chapter.) 

Execution locks may be used as file locks to prevent multiple BASIC 

programs from updating the same files simultaneously. The Ultimate 
system provides 48 execution locks numbered from 0 through 47. 

An execution lock can be unlocked only by the program that locked it. 
An attempt to unlock an execution lock that the program did not lock has 
no effect. 

All execution locks set by a program are automatically released upon 
termination of the program, even if it the program is terminated by the 
END command from the BASIC debugger. 

UNLOCK 47 

UNLOCK 

Ultimate BASIC 

Resets execution lock 47. 

Resets all execution locks previously 
set by the program. 

6929-3 
Confidentitl/ and Proprietary to The Ultimate Corp. 

,r",. 
:'J 



(' 

( " 

,~ 

UNTIL Statement 

UNTIL Statement 

6929-3 

The UNTIL statement is an optional statement within the FOR/NEXT or 
LOOP statement sequences. 

Please refer to the FOR statement or the LOOP statement for information 
about the entire statement sequence. 

Ultimate BASIC 3-255 
Confidential and Proprietary to The Ultimate Corp. 



----------- ,-----

Statements and Functions 

USERTEXT Function 

Syntax 

Description 

3-256 

The USERTEXT function returns the text of a specified USERMSG file 
item. 

USERTEXT(item.id{,param1 {, ... } }) 

item.id the item.id of the USERMSG file item to be returned. 

param parameters to be passed to the USERMSG item. 

The USERMSG file follows the same the format as the ERRMSG file, but 
the items are created and maintained by the users. The USERMSG file is 
described in Appendix F, USERMSG file. 

The USERMSG file can contain multi-level data files, where each data file 
is in a different language. The system command SET-LANGUAGE is used 
to specify the particular data level that is used. The system variable 
@LANGUAGE or system function SYSTEM(27) can be used to determine 
the current language settings. @LANGUAGE is described in the section 
System Variables in Chapter 2; SYSTEM(27) is described with the 
SYSTEM function listed alphabetically in this chapter. 

The USERTEXT function formats the message appropriately for each 
language. 

For information on printing messages from the ERRMSG file, see the 
ERRTEXT function, listed alphabetically in this chapter. 

x = USERTEXT('cmsgl',CUSTID,CUSTNAME) 

Ultimate BASIC 

This returns the text of "cmsgl" after 
inserting the values from CUSTID and 
CUSTNAME into the message. 

Confidential and Proprietary to The Ultimate Corp. 

C",-' ", " 



WEOF Statement 

(~~ WEOF Statement 

Syntax 

(" 

Description 

6929-3 

The WEOF statement writes an end-of-file (EOF) mark on the tape unit 
specified by the most recent T-ATI command. 

WEOF {THEN stmts} {ELSE stmts} 

THEN stmts statements to be executed after EOF marks are 
successfully written; the THEN statements may appear on 
one line separated by semicolons, or on multiple lines 
terminated by an END, as in the multiple line IF statement 

ELSE stmts statements to be executed if EOF marks cannot be written; 
the reason for the problem is returned in SYSTEM(O). 

The ELSE statements may appear on one line separated 
by semicolons or on multiple lines terminated by an END, 

as in the multiple line IF statement. 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

The WEOF statement writes two EOF marks on the magnetic tape on the 
current unit, then backspaces over the second one. This correctly 
positions the tape for subsequent WRITET operations. The THEN 

statements, if any, are then executed. 

The tape unit must have previously been attached before issuing this 
command. If the tape unit has not been attached, the ELSE statements, if 
any, are executed, and the system function SYSTEM(O) returns a value 
of 5 (tape off line) or 6 (cartridge not formatted correctly for this 
operating system revision). (Please refer to the SYSTEM function, listed 
alphabetically in this chapter.) 

If the tape unit is inadvertently set off line, the system detects the 
condition and allows the user to correct it and proceed. When a 
subsequent tape instruction is processed, the system displays: 

Tape drive off line (C)ontinue/(Q)uit: 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

3-257 



Statements and Functions 

3-258 

If C is entered, the system returns to the BASIC program and the tape 
instruction is re-executed. If Q is entered, the BASIC program is aborted 
and control returns to TCL. Thus, the ELSE statements are not executed 
in either case, and the BASIC program has no way to detect such adverse 
action. 

Caution! The tape drive should never be put off line while it is 
running under the control of any tape operation. By doing 
so, the tape drive may lose its momentum and the tape 
read/write head may not be aligned with the current data 
block on tape. Even though the system allows you to 
(C)ontinue, it is not guaranteed that valid data is then read 
or written. 

WE OF ELSE 

GOTO TPERR 

END 

Ultimate BASIC 

Writes two EOF marks, then 
backspaces over the second one; if 
EOF marks cannot be written, control 
is transferred to TPERR routine. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

,,~, 

o 

,,f" 

",,- / 



(: 

WHILE Statement 

WHILE Statement 

6929-3 

The WHILE statement is an optional statement within a FOR/NEXT or 
LOOP statement sequence. 

Please refer to the FOR statement or LOOP statement for information 
about the entire statement sequence. 

Ultimate BASIC 3-259 
Confidential and Proprietary to The Ultimate Corp. 



... ~--.- _ .... __ ._--- - ~ --_._ .. _-._- ---- .. - ---... -- ----

Statements and Functions 

WRITE{U} Statement 

Syntax 

3-260 

The WRITE{U} statement is used to update a file item. 

WRITE {U} expr ONITO {file. var, item.id {ON ERROR stmts} 

U 

expr 

ONtra 

file.var 

item.id 

if specified, locks item; after completing the write 
operation, WRITEU does not unlock the item lock; if 
not specified, WRITE unlocks the item if it was initially 
locked. (The letter u is appended to the statement 
name to imply update, not unlock.) 

information to be written 

ON and TO are equivalent; either may be specified 

variable to which file in which item is to be written 
was previously OPENed; if omitted, the internal default 
file variable is used (that is, the file most recently 
opened without a file variable) 

name of item to be written; if it currently exists, its 
contents are replaced by expr; if the item does not 
exist, a new item is created 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be written to 
due to a network error condition. In this case, the 
value of SYSTEM(O) indicates the UltiNet error 
number. (Refer to the SYSTEM function, listed 
alphabetically in this chapter; for more information 
about remote files, refer to the UltiNet User's Guide.) 
The ON ERROR clause has no effect when releasing 
local files. 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 
terminated by an END statement as in the multi-line IF 

statement. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to· The Uhimate Corp. 

I 

"'-

-~-

c 



( 

(' 

Description 

WRITE{U} Statement 

Item locks are intended to be used to prevent simultaneous updates of 
the same item by more than one program. 

If the item is not locked before the WRITEU statement is executed, it is 
locked afterwards. For more information on item locks, please see the 
READ, READY, and MATREAD statements, listed alphabetically in this 
chapter. 

Note: The RELEASE statement can also be used to unlock the item. 
The DELETE statement also unlocks the item. (Please refer to 
the DELETE and RELEASE statements, listed alphabetically in 
this chapter.) 

The user should note that the BASIC program will abort with an 
appropriate error message if the specified file has not been opened prior 
to the execution of the WRITE statement. (Refer to run-time error 
messages in Appendix B.) 

UltiNet The ON ERROR clause allows the pro!:,Tfam to retrieve the UltiNet error 
Considerations number and take appropriate action. Such action could, for instance, 

include printing the associated message text via a PUT statement or STOP 

statement, and resuming or terminating program execution. 

6929-3 

If items in a remote file cannot be written due to network errors and no 
ON ERROR clause is present, the program terminates with an error 
message. 

Ultimate BASIC 3-261 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

3-262 

A="123456789" 

B="X55" 

WRITE A ON FN1,B 

A="123456789" 

B="X55" 

WRITE A TO FN1,B 

WRITE 100*5 ON "EXP" 

Replaces the current contents of item 
x55 in the file opened and assigned 
to variable FNl with string value 
"123456789" . 

Equivalent to example above; uses 
TO instead of ON. 

Replaces the current contents of item 
EXP in the file opened without a file 
variable with string value "500". 

WRITEU CUST.NAME ON CUST.FILE,ID 

Replaces the current contents of the 
item specified by variable ID (in the 
file opened and assigned to variable 
CUST.FILE) with the contents of 
CUST.NAME. Does not unlock the 
item. 

WRITEU CUST.NAME ON CUST.FILE,ID ON ERROR 

ERRNUM = SYSTEM (0) Writes as above, or branches to 
GOTO PROCESSERR 

END 

Ultimate BASIC 

local routine to process UltiNet error 
number. 

6929~3 
Confidential and Proprietary to The Ultimate Corp. 



( 

WRITET{X} Statement 

WRITET{X} Statement 

Syntax 

6929-3 

The WRITET{X} statement writes a record to tape. The tape unit and 
record length (block size) on the tape is as specified by the most recent 
T-ATT command. 

WRITET {x} expr THEN/ELSE stmts 

x 

expr 

THEN stmts 

ELSE stmts 

indicates to convert data from hexadecimal to binary 
format; this feature is intended to allow characters such 
as segment marks to be written by BASIC programs. 

information to be written to the next record of the current 
tape unit; if the length of the string is less than the current 
tape block size, the tape block is padded with trailing 
blanks; if the length of the string is greater than the 
current block size, the string is truncated to the current 
block size and trailing characters in the string are not 
written; in this case a warning message is printed on the 
terminal, and SYSTEM(O) returns a value of 4. 

statements to be executed after record is successfully 
written; the THEN statements may appear on one line 
separated by semicolons, or on multiple lines terminated 
by an END, as in the multiple line IF statement. 

statements to be executed if expr is null or tape is not 
attached; the ELSE statements may appear on one line 
separated by semicolons or on multiple lines terminated 
by an END, as in the multiple line IF statement. If the 
value to be written is null (""), SYSTEM(O) returns a 
value of 3. If the tape has not been attached, SYSTEM(O) 

returns a value of 5. 

Either the THEN clause or the ELSE clause may be omitted, but not both; 
at least one of them must be present. 

Ultimate BASIC 3-263 
Confidential and Proprietary to The Ultimate Corp. 



Statements and Functions 

Description 

3-264 

The WRI1ETX form assumes all characters in the variable are 
hexadecimal. If any non-hexadecimal characters are encountered, they 
are ignored. Data integrity is the responsibility of the programmer. 

For information on reading binary data from tape and converting it to 
hexadecimal, see the description of READT. 

The tape unit must have been attached before this command is issued. If 
the tape unit has not been attached, the ELSE statements, if any, are 
executed, and the system function SYS1EM(O) returns a value of 5 (tape 
off line) or 6 (cartridge not formatted correctly for this operating system 
revision). (Please refer to the SYSTEM function, listed alphabetically in 
this chapter.) 

If the tape unit is inadvertently set off line after the first tape instruction, 
the system detects the condition and allows the user to correct it and 
proceed. When a subsequent tape instruction is processed, the system 
displays: 

Tape drive off line (C)ontinue/(Q)uit: 

If C is entered, the system returns to the BASIC program and the tape 
instruction is re-executed. If Q is entered, the BASIC program is aborted 
and control returns to TCL. Thus, the ELSE statements are not executed 
in either case, and the BASIC program has no way to detect such adverse 
action. 

Caution! The tape drive should never be put off line while it is 
running under the control of any tape operation. By doing 
so, the tape drive may lose its momentum and the tape 
read/write head may not be aligned with the current data 
block on tape. Even though the system allows you to 

(C)ontinue, it is not guaranteed that valid data is then read 
or written. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

;f'~)", 

~) 



( '" 

... 

6929-3 

FOR 1=1 TO 5 

WRlTET A(I) ELSE STOP 

NEXT 1 

WRITET{X} Statement 

The values of array elements A(l) 

through A(5) are written onto five 
tape records. If one of the array 
elements is null or if the tape unit is not 
attached, the program terminates. 

WRITETX '31323334FF414243' ELSE STOP 

Ultimate BASIC 

The following string, where _ 
represents a segment mark, is 
written to tape: 

Confidential and Proprietary to The Ultimate Corp. 
3-265 



--_._ .... - .. --... -.-.~ ...... _ .. -.---... - .... - .. ----~--.. -- ------

Statements and Functions 

WRITEV{U} Statement 

Syntax 

3-266 

The WRITEV {u} statement is used to write a single attribute value to an 
item in a file. 

WRITEV{U} expr ON {file.var,}item.id,attrib.no{ON ERROR stmts} 

U 

expr 

file.var 

item.id 

attrib.no 

if specified, locks item; after completing the write 
operation, WRITEVU does not unlock the item lock; if 
not specified, WRITEV unlocks the item if it was 
initially locked. (The letter U is appended to the 
statement name to imply update, not unlock.) 

information to be written 

variable to which file in which item is to be written 
was previously OPENed; if omitted, the internal default 
file variable is used (that is, the file most recently 
opened wi thout a file variable) 

name of item to be written; if it currently exists, its 
contents are replaced by expr; if the item does not 
exist, a new item is created 

attribute number to write; if attrib.no is 0, the attribute 
is inserted at the beginning of the item as attribute 1 
and all existing attributes in the item are shifted by 
one; ifattrib.no·is -1, the attribute is appended to the 
end of the item and all existing attributes are 
undisturbed; if attrib.no is greater than the existing 
number of attributes, a new attribute is created and all 
attributes between it and the former last attribute will 
be null 

ON ERROR stmts statements to be executed if the file is a remote file, 
that is accessed via UltiNet, and it cannot be written to 
due to a network error condition. In this case, the 
value of SYSTEM(O) indicates the UltiNet error 
number. (Refer to the SYSTEM function, listed 
alphabetically in this chapter; for more information 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The' Ultimate Corp. 

o 

o 



c: 

Description 

UltiNet 
Considerations 

6929-3 

--------------~ ----------

WRITEV{U} Statement 

about remote files, refer to the UltiNet User's Guide.) 
The ON ERROR clause has no effect when releasing 
local files. 

The statements may be on a single line or on multiple 
lines. If multiple lines are used, the clause must be 
terminated by an END statement as in the multi-line IF 

statement. 

Item locks are intended to be used to prevent simultaneous updates of 
the same item by more than one program. 

The letter U is appended to the statement name to imply update, not 
unlock. It is intended for master file updates when several transactions 
are being processed and an update of the master file item is made 
following each transaction update. 

If the item is not locked before the WRlTEYU statement is executed, it is 
locked afterwards. For more information on item locks, please see the 
READ, READY, and MA TREAD statements, listed alphabetically in this 
chapter. 

N ole: The RELEASE statement can also be used to unlock the item. 
(Please refer to the RELEASE statement, listed alphabetically in 
this chapter.) 

The BASIC program aborts with an appropriate error message if the 
specified file has not been opened prior to the execution of the WRlTEY 

statement. 

The ON ERROR clause allows the program to retrieve the UltiNet error 
number and take appropriate action. Such action could, for instance, 
include printing the associated message text via a PUT statement or STOP 

statement, and resuming or terminating program execution. 

If items in a remote file cannot be written due to network errors and no 
ON ERROR clause is present, the program terminates with an error 
message. 

Ultimate BASIC 3-267 
Confidential and Proprietary to The Ultimate Corp. 



---------------_. __ ._--_._-----_.". --_._-_. - ... - ..... ~.-~- -.".,- -_. • ••• -< ••• _.-_._---_._-_._-.",-_ •• __ ••• -

Statements and Functions 

3-268 

Y="THIS IS A TEST" 

WRITEV Y ON X, "PROG", 0, 

WRITEV "XYZ" ON "A7",4 

The string value "THIS IS A TEST" 

is inserted prior to the fIrst attribute of 
item PROG in the file opened and 
assigned to variable X. 

Attribute 4 of item A7 in the file 
opened without a file variable is 
replaced by string value "XYZ". 

WRITEV "XYZ" ON "A7",4 ON ERROR 

END 

ERRNUM=SYSTEM(O) 

GOSUB PROCESSERR 

GOTO TOP 

Writes as above, or retrieves error 
number and performs local subroutine 
on UltiNet error number. 

WRITEVU CUST.NAME ON CUST.FILE,ID,3 

Ultimate BASIC 

Replaces the third attribute of item ID 

in the file opened and assigned to 
variable CUST.Fll..E with the contents 
of variable CUST.NAME. Does not 
unlock the item. 

Confidential and Proprietary to The Ultimate Corp. 

o 

-- --------------------------------------



4 

( 

('.~ . 
. ' 

6929-3 

BASIC Debugger 

The BASIC debugger facilitates the debugging of new BASIC programs 
and the maintenance of existing BASIC programs. 

The BASIC debugger has the following general capabilities: 

• controlled stepping through execution of program by way of single or 
multiple steps 

• transferring control to a specified step (line number) 

• breaking (temporary halting) of execution on specified line numbers, 
on the satisfaction of specified logical conditions, on entering or 
returning from external subroutines 

• displaying and/or changing any variables, including dimensioned and 
dynamic array variables and named COMMON variables 

• displaying values of variables in hexadecimal 

• tracing variables 

• conditional entry to the system debugger 

• directing output (terminaVprinter) 

• displaying of specified (or all) source code lines 

• help facility, which lists all BASIC debugger commands 

• paging, which stops display at end of each screen page 

The BASIC debugger prompt is an asterisk (*). 

Ultimate BASIC 4-1 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

Entering the Debugger 

4-2 

The BASIC debugger may be entered at execution time as follows: 

• pressing the BREAK key from within a program 

• using the 'D' (debug) option with the RUN verb 

• automatically under some error conditions 

The BASIC debugger may be re-entered at execution time as follows: 

• satisfying breakpoint conditions 

• executing specified number of lines 

• entering or returning from external subroutine when specifIed 

When the BASIC debugger is entered, it displays a code that gives the 
reason for the entry into the debugger, the program name, and the 
source code line number about to be executed. The following codes 
may be displayed: 

A run time abort 
B breakpoint encountered 
C CALL statement breakpoint executed 
E execution breakpoint 
I interrupt (BREAK key) detected 
R RETURN statement breakpoint executed 

If the S debugger command (display source code) is off when the 
debugger is entered, the debugger displays the code, the program name, 
and the source code line number about to be executed. If the S 

command is on, the debugger displays the current source code line. For 
example, if the debugger is entered and the S command is off, a line 
similar to the following is displayed: 

*1 BP PGRM, Line # 23 

If the debugger is entered and the S command is on, a line similar to the 
following is displayed: 

023 INPUT ANS 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



( 

Compiler 
Restrictions 

Entering the Debugger 

The reason the debugger was entered can be displayed by the 0 

command, which is listed alphabetically in this section. 

Two options available with the BASIC and CO:MPILE verbs should not be 
used if the debugger is to be used subsequently with the program. 
These options are C and S. 

Line numbers cannot be referenced in programs compiled with the C 

option, which inhibits saving end-of-line markers in object code; in this 
case, the BASIC debugger views the program as one single line. 

V ariables cannot be referenced in programs compiled with the S option, 
which inhibits saving the symbol table. The symbol table contains all 
variable names defined in a program and is used to reference variables. 
It is automatically stored with the object code when the program is 
compiled (unless suppressed by the'S' option). The BASIC debugger 
can retrieve the value of a variable from the symbol table by use of the / 
(list) command. (For details, refer to the / Command). 

Neither variables nor line numbers can be referenced in a program that 
has a $NODEBUG directive, which has the same effect as the C and S 

options together. 

Summary of Debugger Commands 

6929-3 

Table 4-1 is a summary of the BASIC debugger commands:summary. 
When specifying a debugger command, there must not be any spaces 
between any elements. The following sections describe in detail the 
commands and their use. 

SYS2 privileges are required for all commands other than G, END, OFF, 

and P. This prevents users from making unauthorized changes to data 
during reporting and data entry. 

Ultimate BASIC 4-3 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

Table 4-1. BASIC Debugger Commands (1 of 2) c 
Command Description 

BvOC{&vOC} Set breakpoint on logical condition where 
B$on v is variable 

J o is logical operator <,>,=,# 
c is condition to meet 
n is line number when preceded by B$o 

BYE End program execution and return to TCL 

C Toggle CALL/RETIJRN breakpoint mode 

D Display breakpoint table 

DE{BUG} Escape to system debugger 

E{n} Single/multiple step execution 

END End program execution and return to TCL 

G{n} Continue program execution at specified line 

H Display list of debugger commands (help) 

HX Display variable values in hexadecimal 

K{n} Remove breakpoints 
K{ {/}var} 

L{ {m- In} Display specified source code current lines 

L* Display all source code lines 

LP Toggle output between terminal and printer 

N Clear debug entry delay counter 

Nn Bypass 'n' breakpoints/steps before 
reentering debugger 

0 Display current debugger options 

OFF Logoff 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate COrp. 



----------

Summary of Debugger Commands 

Table 4-1. BASIC Debugger Commands (2 of 2) 

Command Description 

P Inhibit/enable output 

PC Printer-close output to spooler 

R Display GOSUB return stack 

S Toggle display of source code lines and line 
numbers 

STOP End program execution; if executed from 
PROC, returns to PROC 

T Tum trace table on/off 

T{/}V Trace specified variable 'v' 

Urn} Remove traces 
u{ {f}v} 

( 
V Display current program name and line 

number; verify object code 

z Request source (if not in same file/same 
name) 

$,*, or ? Display current program name and line 
number; verify object code 

/m Display value of variable or if dimensioned 
array, entire array 

/m(x{,y} ) Display value of element in array 

/m<a{,v{,s} }> Display value of element in dynamic array 

/* Display entire symbol table 

[x,y] Display specified substring 

[ Display entire string 

6929-3 Ultimate BASIC 4-5 
Confidential and Proprietary to The Ultimate Corp. 



----------- ------------ -- ~~- - --- ----- -------

BASIC Debugger 

B Command - Set Breakpoints 

Syntax 

Description 

4-6 

The B command sets breakpoints, where breakpoints are conditions that 
cause a break in program execution. Breakpoints are kept in a 
breakpoint table. 

Bvoc{&voc} 
B$ operator line.no {&voc} 

var variable or array element to be tested 

operator may be one of the following: 
< less than 
> greater than 
= equal to 
# not equal to 

condition constant, variable, or array element to test for; string 
constants must be enclosed in quotes using the same rules 
that apply to BASIC literals; only individual array elements 
may be specified. 

& logical connector between expressions (AND) 

$ the breakpoint is to be line number condition 

line.no source program line number to be tested 

Each program or external subroutine may set upto eight breakpoint 
conditions, anyone of which will, when satisfied, cause a break in 
execution. Breakpoints 1 through 4 are reserved for specifying 
conditions for non-COMMON variables, named COMMON variables, and 
line numbers. Breakpoints 5 through 8 are reserved for specifying 
conditions for COMMON variables. The debugger assigns the entry 
numbers. 

Breakpoints 5 through 8 are passed between subroutines and calling 
programs. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Uhimate Corp. 



6929-3 

B Command 

Breakpoints set for named COMMON variables are not placed in the 
table for COMMON variables; they are placed in the table along with local 
variables and are treated as local variables by the debugger. 

If the breakpoint has been accepted, the debugger displays a plus sign 
and the breakpoint number: 

*BA>O +1 

*BTAX<2 +5 

If the breakpoint condition is met during program execution, an 
execution break occurs. The debugger halts the program and, if the S 
command is off, displays a message similar to the following: 

*Bn file. name prog.name, Line # m 

where 
n 

file. name 

number of the breakpoint table entry that caused the 
break 

file that contains program 

prog.name name of program in which break occurred 

m program line number that caused the break 

If the s command is on, the debugger displays the source code line, 
similar to the following: 

003 TAX = 10 

For more information on the s command, see the description of the 
command listed alphabetically in this section. 

The current breakpoints can be viewed by using the D command. 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

4-7 



BASIC Debugger 

4-8 

*BTAX=500 

*B$>15&X=3 

*BPRICE(3)=24.98 

Ultimate BASIC 

Indicates that an execution break 
should occur when the value of TAX 

is equal to 500. 

Causes program to break when the 
line number is greater than 15 and X 

is equal to 3. 

Sets a break condition to halt 
execution when the third element of 
the array PRICE is equal to 24.98. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 



BYE Command 

("\ BYE Command - Return to TCl 

Syntax 

Description 

( 

6929-3 

The BYE command terminates program execution and returns the user to 
TCL, even if the program was executed from a PROC. 

BYE 

The END and STOP commands can also be used to exit the debugger. If 
the program was executed by a PROC, the STOP command returns to the 
PROC, rather than TCL. For more information, see the STOP command, 
listed alphabetically in this chapter. 

Ultimate BASIC 4-9 
Confidential and Proprietary to The Ultimate Corp. 



-------------- ----- ---- ----- -----------

BASIC Debugger 

C Command - Toggle CALL/RETURNBreakpoint 

Syntax 

Description 

4 .. 10 

The C command is used to set and clear breakpoints for CALL and 
RETURN statements. 

C 

When the C command is set, an- execution break occurs if a subroutine is 
called or if the subroutine RETURN statement is executed. When the 
program is called, the debugger is entered at the SUBROUTINE statement. 
When the subroutine RETURN statement is executed, the debugger is 
entered at the statement following the CALL statement. 

If the C command is already set, entering C again causes it to be cleared. 
After the command is entered, the debugger displays 'on' or 'off to 
indicate the new setting. 

The current setting of the the C command can be viewed by the 0 

command, which is listed alphabetically in this section. 

*C on System responds 'on' 

*C off System responds 'off 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929-3 

o 

c 



( 

0, DEBUG Commands 

D Command - Display Tables 

Syntax 

Description 

The D command is used to display the trace and breakpoint tables. 

D 

The D command displays all trace and breakpoint tables for the currently 
executing program or external subroutine. 

If there are no entries in the table, the following message is displayed: 

[B505] Trace and Breakpoint tables are empty. 

Sample output from a D command: 

*0 

Trace Variable 

1 NAME 

2 LINE 

3 ADDR 

Break Condition 

1 $ = 356 

2 ADDR > 100 

DE{BUG} command - Enter System Debugger 

6929-3 

The DEBUG command passes control to the system debugger. To return 
to the BASIC debugger, use the system debugger END, G, or linefeed 
commands. (For more information about the system debugger, please 
refer to the Ultimate Assembly Language Reference Guide.) 

Ultimate BASIC 4-11 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

E Command .. Set Lines to Execute 

Syntax 

Description 

4-12 

The E command specifies the number of program lines to be executed 
when the program is resumed. After the specified number of lines is 
executed, an execution break occurs. 

E{n} 

n number of lines to execute 

The form E with no parameters turns off the E function so that when the 
program resumes, it continues until interrupted by the user or another 
breakpoint, or until the program ends. 

When an execution break occurs, the debugger displays a program name 
and line number, similar to the following: 

E file.name prog.name, line # n 

The E command is overridden if any entry in the breakpoint table is 
satisfied; for example, if E specifies to execute six lines, but a 
breakpoint is encountered after three lines, the program breaks at the 
breakpoint. 

The current value of E can be displayed by using the 0 command. 

*E off 

*El 

*E4 

Ultimate BASIC 

Turns the E function off 

Only one line of the program is 
executed at a time. 

Four lines of the program are 
executed before an execution break: 
returns control to the user. 

Conlidenti81 and Proprietaiy to The ' Ultimate Corp. 

c 



END Command 

(' END Command - Return to TCl 

Syntax 

Description 

6929-3 

The END command terminates program execution and returns the user to 
TCL, even if the program was executed from a PROC. 

END 

The BYE command and the STOP command can also be used to exit the 
debugger. If the program was executed by a PROC, the STOP command 
returns to the PROC, rather than TCL. For more information, see the 
STOP command, listed alphabetically in this chapter. 

Ultimate BASIC 4-13 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

G Command- Resume Execution of Program 

Syntax 

Description 

The G command is used to resume execution of the program. 

G{n} 

n line number of source program at which to resume execution (go to 
line n) 

The form G with no parameters specifies that execution is to resume 
with the very next line in the program. 

N ole: To resume execution at the next program line, you can press 
LINEFEED or the down arrow key instead of entering G. 

If the line number specified is greater than the number of lines within the 
program, the following message is displayed. 

[B507) Invalid line number. 

If the program entered the debugger because of a fatal runtime error, the 
program cannot be resumed if G with no line number is entered. If G is 
specified, the following message is displayed: 

[B506) You cannot continue execution of a program 

after a fatal abort ! 

The program may resume execution if G with a line number is entered; 
however, the results are not dependable. 

*G 

*G37 

Ultimate BASIC 

Program execution is resumed at the 
very next line in the program. 

Execution is resumed at line 37 of the 
program. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

(~! 



H Command 

(:- H Command - Help 

(' 

6929-3 

The H command displays a list and short description of all the BASIC 
debugger commands, similar to the following: 

?,$,*, V - show filename, program name, line#, verify object. 

/var{ (r,c)} {<a, v,s>} - display (and alter) var; var = * displays all. 

[ {m,n} - set/reset substring range 

Bvoc { &voc } - B {reakpoint set}. 

C - C{ALL/RETIJRN breakpoint on/off}. 

D - D{isplay trace and breakpoint table}. 

DE - DE{bug enter}. 

E{n} - E{xecution step set/reset}. 

G {n} - G { oto line# or resume processing}. 

H - H { elp }. (This message). 

HX - H { e } X {display on/off}. 

K {n} { var} - K {ill breakpoint entry or var} . 

L{{m-}n}{*} -L{istsource}. 

LP 

N{n} 

o 
P 

PC 

R 

S 

T{var} 

U{n}{var} 

Z 

- L{ine }P{rinter on/off}. 

- N {umber of breakpoints to step through set/reset}. 

- O{ptions display}. 

- p{rint output display on/off}. 

- p{rinter }C{lose}. 

- R {etum stack display} . 

- S {ource code display on/off}. 

- T {race var} or T {race on/off}. 

- U {ntrace entry or var} . 

- {Set up source code pointers} . 

END, BYE, STOP - Terminate program (STOP resumes PROC processing 

OFF - Terminate program and log off. 

Ultimate BASIC 4-15 
Confidential and Proprietary to The Ultimate Corp. 



.. _ ..... __ ._- ------ ---,-------- --- -------~. -----_. '--.,_ .... 

BASIC Debugger 

HX - Display in Hexadecimal Format 

Syntax 

Description 

4d6 

The HX command toggles the display of values between hexadecimal 
and Ascn character fonnat. 

HX 

When the hexadecimal display is on, values of variables are displayed as 
hexadecimal characters. All other displays continue to be in ASCII 

character fonnat. 

After the command is entered, the debugger displays 'on' or 'off to 
indicate the new setting. 

The current setting of the the HX command can be viewed by the a 
command, which is listed alphabetically in this section. 

*HX on 

*/A->4649525354 

*HX off 

*/A->FIRST 

Ultimate BASIC 

Turns on 'hexadecimal mode 
Displays value of A in hex 

Turns off hexadecimal mode 
Displays value of A as ASCII 

characters 

Confidential ahdProprietary to The Ultimate Corp. ' 
6929-3 

o 

c 



C', 
" 

KCommand 

K Command - Breakpoint Table 

Syntax 

Description 

6929-3 

The K command removes (kills) breakpoints. 

K{n} 

K{/}var 

n number of entry in breakpoint table to delete; n must be in the 
range 1-8; all other breakpoints remain the same 

var variable that has breakpoint set; if more than one breakpoint is set 
for the variable, the first one in the table is removed 

The form K with no parameters deletes all breakpoint conditions in both 
the local and the COMMON breakpoint tables. 

A minus sign and the breakpoint number are printed next to the 
command to indicate that the entry has been removed. 

The current breakpoints can be viewed by using the D command. 

*K2 -2 

*KA -1 

*K 

Breakpoint table cleared. 

Ultimate BASIC 

Removes the second breakpoint 
condition. 

Removes the breakpoint set for 
variable A. 

Removes all breakpoint conditions. 

Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

L Command - Displaying Source Code 

Syntax 

The L command displays one or more lines of source code from the 
same file as the object code program. 

L{ {m- }n}} {*} 

m- display line number range specified by m-n 

n display line number specified by n 

* display all lines in the source program 

If the form L is used, only the current line is displayed. 

*L Displays current line of source program. 

*Ll-10 Displays first ten lines of source program. 

*L* Displays entire program 

LP Command - Printer Output 

4-18 

The LP command, which is similar to a PRINTER ON command in 
BASIC, sends all output to the printer. Subsequent LP commands toggle 
this function and the words 'Off or 'On' are printed next to the 
command. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

'.' C···~·)·' 



( 

(' 

N Command 

N Command - Bypass Breakpoints 

Syntax 

Description 

6929-3 

The N command causes the BASIC debugger to proceed through a 
specified number of execution breaks before remrning control to the 
user. 

N{n} 

n number of execution breaks to bypass 

The form N resets this function so that control is passed to the user on 
every execution break. 

Variables that are being traced are still printed at each breakpoint. 

The current value of N can be displayed by using the 0 command. 

*N off Returns debugger to the single 
execution break mode (normal mode). 

*N2 

Ultimate BASIC 

Bypasses two execution breaks 
before returning to the debugger. 

Confidential and Proprietary to The Ultimate Corp. 
4-19 



BASIC Debugger 

o Command - Display Options 

Syntax 

Description 

4-20 

The 0 command displays the current settings for debugger options. 

o 

The option settings are displayed for the following debugger commands: 

E number of lines to execute 
N number of breaks to skip 
[] subtstring display 
HX hexadecimal display on/off 
S source code display on/off 
C CALL/RETURN breakpoint on/off 
code reason for entry into debugger 

*0 

E Count ............ 1 

N Count ............ a 
[] Start,Len ....... 0,0 

Hex Display ........ off 

Source Display ..... off 

CALL/RETURN Trap... on 

Reason Code. . . . . . .. E 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929-3 



-------- -------.-------- ----- -----._-_._-----

OFF, P, PC Commands 

OFF Command - Log Off 

Syntax 

The OFF command terminates program execution and logs the user off 
the system. 

OFF 

P Command - Suppress Program Output 

Syntax 

The P command suppresses all output from the program to the terminal 
so that the user may look at only the debugger output. Subsequent P 

commands toggle this function and the word 'Off or 'On' is printed 
next to the command. 

P 

PC Command - Close Printer 

Syntax 

6929-3 

The PC command is the same as the PRINTER CLOSE command in 
BASIC. Normal printer output is held until the program finishes 
execution, but by using the 'PC' command, the user forces printing of 
data that is waiting to be output. 

PC 

Ultimate BASIC 4-21 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

R Command - Display GOSUB Return Stack 

Syntax 

Description 

4-22 

The R command displays the GOSUB return stack, which contains the 
source code line numbers for the GOSUB statements that are currently 
active. 

R 

If the S command (display source code) has been specified, the source 
code line, as well as line number, is displayed. (For more information 
on the S command, see the description of the command listed 
alphabetically in this section.) 

If no GOSUBs are currently active, the debugger displays the following 
message: 

[541] There are no GOSUBs in the return stack. 

The current setting of the the S command can be viewed by the 0 
command, which is listed alphabetically in this section. 

*R 

Return Stack 

14 

11 

7 

*S on 

*R 

Return Stack 

Display when S command is off 

Display when S command is on 

014 GOSUB 30 ;*General open 

011 GOSUB 20 ;*Open files 

007 GOSUB 10 ;*Initialization 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

i(:,,) 
, '" 

c 



( 

( 

S Command 

S Command - Display Source Code Lines 

Syntax 

Description 

6929-3 

The S command toggles the display of the source code program name 
and line numbers, and the source code lines. 

S 

The S command affects the display of the R command and the display 
when the debugger is re-entered. 

After the command is entered, the debugger displays 'on' or 'off to 
indicate the new setting. 

The current setting of S can be displayed by using the 0 command. 

*S off 

*G 

*D BP PROG, Line # 23 

*S on 

*G 

023 A(l) sz 

Ultimate BASIC 

Turns off source line display 

Display when S command is off 

Turns on source line display 

Display when S command is on 

Confidential and Proprietary to The Ultimate Corp. 
4-23 



BASIC Debugger 

STOP Command - Exit Debugger 

Syntax 

Description 

4-24 

The STOP command exits the debugger and terminates program 
execution. 

STOP 

If the program was executed by a PROC, the STOP command returns to 
the PROC, rather than TCL. 

To terminate PROCs as well as the BASIC program and return to TCL, see 
the BYE and END commands, listed alphabetically in this chapter. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



(' 

( 

TCommand 

T Command - Set Trace Table 

Syntax 

Description 

6929-3 

The T command specifies a variable for the trace table. 

T{ {/} }var 

/ not required, provided for compatibility with system debugger 

var variable whose value is to be printed out at each execution break; 
if var is dimensioned, all elements of array are displayed 

The trace table is used for the automatic printout of a specified variable 
or variables after a break has occurred. Each program and external 
subroutine has its own trace and breakpoint tables. This allows the 
programmer to set up different break points and/or variable traces for 
different subroutines. 

The values of the variables are printed whenever one of the following 
conditions exists: 

• the BREAK key is pressed 

• a breakpoint set by the B command is encountered 

• n statements as specified by the E command have been executed 

The form T with no parameters turns display of trace off if it was on, or 
turns display of trace on if it was off. The word 'ON' or 'OFF' is 
displayed to indicate the current status of the trace display. 

If a valid T command is specified, the debugger displays a plus sign and 
the trace table entry number next to the command. If the variable does 
not exist or the wrong symbol table is assigned, the following message 
is displayed: 

[B510] Symbol not in SYMBOL TABLE. 

Up to six variables may be entered in the trace table associated with each 
program or external subroutine. 

The current trace table entries can be viewed by using the D command. 

Ultimate BASIC 4-25 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

*TNAME +1 

*TDA (2) +2 

*T off 

*T on 

Ultimate BASIC 

Sets a trace for variable 'NAME'. 

Sets a trace for the second element of 
the array DA. 

If on, turns trace off. 

If off, turns trace on. 

6929-3 
Confidential and Proprietary to The Ultimate Corp. 

( ."'. 
, ' 

'j 



( 

U Command 

U Command - Delete Traces 

Syntax 

Description 

6929-3 

The u command is used to delete variables from the trace table. 

u{ {/}var} 
u{n} 

/ not required, provided for compatibility with system debugger 

var variable to be deleted from the trace table 

n trace table entry number 

The form U with no parameters deletes the entire trace table. 

A minus sign is printed next to the command to indicate that an entry has 
been removed. 

The current trace table entries can be viewed by using the D command. 

*UNAME -1 

*U3 -3 

*U 

Trace table cleared. 

Ultimate BASIC 

Deletes the variable NAME from the 
trace table. 

Deletes the third entry from the trace 
table. 

Deletes all variables from the trace 
table. 

4-27 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

V Command - Verify Object Code 

Syntax 

Description 

4-28 

The V command perfonns a checksum calculation to verify the integrity 
of the object code for the current source program line. 

V 

This command is similar to the?, *, and the $ commands, which are 
described in this chapter following the alphabetical listings. $ 

The V commands displays infonnation similar to the following: 

*V file.name prog.name, Line # m, Object verifies 

where 
file.name file that contains program 

prog.name name of program currently being executed 

m program line number that is being verified 

*v BP PROG, Line # 3, Object verifies 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

() 



ZCommand 

('" Z Command - Displaying Source Code 

Syntax 

Description 

( 

6929-3 

The z command allows the user to display the source code to the BASIC 

program when the source is located outside the object code program file 
or is stored under a different program name. 

z {file.name prog.name} 

file. name file that contains program with source program 

prog.name name of program 

If the file name and program name are not specified with the z 
command, the BASIC debugger displays the following message: 

File/prog name? 

Enter the file name and program name (item.id), separated by a blank. 
If the file and program are found, the BASIC debugger returns with a 
prompt (*). 

If the file is not found, the following message is displayed: 

[503] Not a valid file name. 

If the program is not found, the following message is displayed: 

[504] Not a valid program name. 

If either the file name or program name is not specified, or the filename 
is invalid, the "File/prog name?" prompt is repeated until a valid file 
name and program name are entered, or RETURN is pressed, aborting 
the z command. 

Ultimate BASIC 4-29 
Confidential and Proprietary to The Ultimate Corp. 



-~~~~--~--.-- ~-- ~-~-~ ---- - -- -- -----

BASIC Debugger 

I Command - Displaying and Changing Variables 

Syntax 

Description 

4-30 

The / (list) command can be used to display or change variables and 
arrays during program execution. 

/var 
/* 

var 

* 

name of variable to display or change 

display all variables; no changing of the values is pennitted 

The list command can be used as follows: 

• display or change a simple variable, dimensioned or dynamic array, 
explicitly stated array element, or a COMMON variable 

• if a single element of a dimensioned array is listed, subsequent 
elements can be displayed by pressing the line-feed key (down arrow 
key on some terminals) 

• change an element to a null value by pressing <CTRL-_> 

• list named COMMON and variable dimensioned array elements; 
however, they must be initialized by the runtime processor before 
they can be listed in the debugger 

• display unprintable characters (that is, characters with ASCII values 
less than 32) as a dot (.) 

If the variable is found, the value is displayed and the user is prompted 
with an equals (=) sign. A new value may then be entered. Values are 
entered as strings, but without surrounding quotes. A carriage return 
with no input causes the variable to retain its current value. To change 
an element to a null value, press <ClRL-_>. 

If an array is specified, each element is displayed until all elements are 
exhausted or until the BREAK key is pressed. 

If the specified variable is unassigned, the message 'var unassigned' is 
displayed immediately following the command. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to· The Ultimate Corp. 

c 



C'· 
.' 

(~ 

6929-3 

/Command 

If the variable does not exist, the following message is displayed: 

[510] Symbol not in SYMBOL TABLE. 

The listing stops at the end of each screen page. To continue, press any 
key. To return to the debugger prompt, press <CTRL-x>. 

*/NAME->Jones= 

*/Y(3)->7879= 

*/X<2,3>->16= 

*/Z(2)->27= 

Displays the value of the variable 
NAME. 

Displays the value of the third element 
of the array Y. 

Displays the contents of the second 
attribute, third value of the dynamic 
array X. 

Displays third element of array z; to 
display the value of each subsequent 
element of the array z, press the LINE

FEED or down arrow key. 

* /De (var unassigned) ->0= Value has not been assigned; zero is 
assumed. 

*/* 

Ultimate BASIC 

Displays the values of all variables in 
the program. No changing of these 
values is permitted. The display 
pauses at the bottom of each screen; 
press any key to continue. 

4-31 
Confidential and Proprietary to The Ultimate Corp. 



-------------------.~-

BASIC Debugger 

?, *, and $ Command - Verify Object Code 

Syntax 

Description 

4-32 

- ----------

The ?, *, and the $ commands all display the current program or 
external subroutine name and current line number, and perform a 
checksum calculation to verify the integrity of the object code. 

? 

* 
$ 

These commands are equivalent to the V command, which is listed 
alphabetically in this chapter. 

*? BP COUNT, Line * 7, Object verifies 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

C: 

c 



c 

( 

[] Command 

[] Command- Specify Substring to Display 

Syntax 

Description 

6929-3 

The [] (substring) command specifies the substring to which all 
variables printed by the BASIC debugger are limited. 

[ { start, len ] } 

start starting character position 

len number of characters. 

The [ (left bracket only) command resets the effect of a previous [] 
command, causing values of variables to be printed in their entirety. 

Setting len to 0 has the same effect as entering a [ (left bracket). 

The current values of [] can be displayed by using the 0 command. 

*[1,5] Displays first five characters of all strings. 

* [ off Turns off string window. 

Ultimate BASIC 4-33 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

Example of Using the BASIC Debugger 

4-34 

This section shows a sample of using the BASIC debugger. 

The following sample program called 1EsT3 is used: 

001 A=123.7891 

002 B='THIS IS A STRING' 

003 DIM x (3) 

004 X(1)=123456 

005 X(2)='HELLO THERE' 

006 X(3)=0 

007 PRINT A,B 

008 PRINT X(1),X(2),X(3) 

009 END 

In the following dialogue, the text in boldface is entered by the user; 
<CR> is indicated only when it is the only entry; however, <CR> must 
be pressed after every entry. 

Ultimate BASIC 6929-3 
Confidential and Proprietaty to The Ultimate Corp. 

..... -. __ ._. __ .. _ ... ------_ .. - ---- ----- ... -.--.-----~------

o 

C, 
,.J 



6929-3 

Dialogue 

: RUN BP TEST3 (D) 

D BP TEST3, line # 1 

Example 

Explanation 

Run program with 'D' option to 
break before first line is executed. 

Indicates execution halted before 
line 1. 

* Debugger prompt 

* / x Display array X 

x (1) (var unassigned) ->0= Values are unassigned because no 
<CR> lines have been executed; the = 
x (2) (var unassigned) ->0= indicates value can be changed; 
<CR> press <CR> to leave as is. After all 
x (3) (var unassigned) ->0= array elements have been 
<CR> displayed, returns to prompt. 

* 

*B$=5 +1 

*G 

B1 BP TEST3, Line # 5 

*/X(1)123456=<CR> 

*TX (2) +1 

*El 

*G 

E BP TEST3, Line # 6 

X(2)->HELLO THERE 

*G 

Ultimate BASIC 

Breakpoint 1 set, break if line 
number is 5. 

Go 

Break condition 1 satisfied; about 
to execute line 5. 

Display xCI). Leave unchanged. 

Trace X(2). Print at each break. 

Set single step. Break at each 
statement. 

Go 

Execution break caused by E; about 
to execute line 6. 

x(2) displayed by trace. 

Go 

4-35 
Confidential and Proprietary to The Ultimate Corp. 



BASIC Debugger 

4-36 

Dialogue, cont. 

E BP TEST3, Line * 7 

X(2)->HELLO THERE 

*E off 

*$ BP TEST3 Line * 7 

Object verifies 

*/A->123.7891=<CR> 

*p on 

*B$=10 + 

*D 

Trace Variable 

1 X(2) 

Break Condition 

1 $ = 5 

2 $ = 10 

*K1 -1 

*/A 123.7891=356.71 

* /A 356. 71=<CR> 

*END 

Ultimate BASIC 

.. --.-.... _-- ...... _---

Explanation 

Execution break caused by El; 
about to execute. line 7. 

x(2) displayed by trace. 

Set execution to nonnal mode. E 

off. 

Displays file and program name, 
verifies object, about to execute line 
7 

Display variable A. Leave 
unchanged. 

Tum tenninal print on. 

Break when line number is 10. 

Display trace and break tables 

Kill first break condition ($=5). 

Display variable A; change to 
345.71. 

Display variable A. Leave 
unchanged. 

End execution of program and 
return to TeL. 

6929-3 

\~ •• 7-

Confidential andProptietary to The Ultimate Corp. 



5 

( 

6929-3 

Programmer's Reference 

This chapter contains hints and recommendations for programmers 
using the Ultimate BASIC language. The information includes 

• Understanding the Ultimate System File Structure 

• Programming Techniques for Handling I/o 

• Programming Considerations about I/o for Network Users 

• Programming Techniques for Handling File Items 

• Techniques for Cursor Positioning 

• Programming for Maximum System Performance 

• Programming Examples 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-1 



Programmer's Reference 

Understanding the Ultimate System File Structure 

5-2 

The Ultimate system's file structure is unlike that of conventional 
indexed or sequential files. An Ultimate file is divided into two main 
parts: the dictionary and the data portion, both of which can be accessed 
by a BASIC program. The dictionary section defines the attributes 
(fields) of the file. The data section contains one item (record) for each 
instance of data (for example, each customer in a Customer file). In 
both portions, individual records (items) are retrieved directly by record 
key (item identifier, or "item.id"). 

Many BASIC programs work with Ultimate data files to access and 
retrieve, or maintain and update, information. 

A typical data file contains items having a common format. In a 
Customer File, for example, each item may contain a customer name in 
the first attribute, a corresponding customer address in the second 
attribute, one or more invoice numbers in the third attribute, and so on. 
This file structure may be explicitly defined by a set of items (attribute 
definition items) in the dictionary of the Customer File, but this 
defmition is not required. 

The dictionary is a reference tool and does not need to be read by a 
BASIC program unless needed. If the relative position of the data within 
items (the structure of the file) is already known, the program can 
directly access data (such as customer names) by attribute number. If 
only the attribute name is known, the attribute definition item in the 
dictionary corresponding to that attribute name can be retrieved and the 
associated number can be extracted for use in the program. 

Attribute definition items in dictionaries are almost always created in a 
standard format for use with system software such as Recall and 
Update. For more information on the use of dictionaries, please refer to 
the Ultimate Recall and Update User Guide. 

Each item in a file is identified by its item.id, which is the name of the 
item as well as the value of its key field. Within an item, information is 
stored in fields (attributes). The attributes can contain subfields called 
values; multiple values can be stored in an attribute. The values can 
themselves contain multiple subvalues. A program can access and 
update any level of data: items, attributes, values, and subvalues. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

<-~ 
'~e7 

o 



(. 

System 
Delimiters 

6929-3 

Ultimate System File Structure 

The fonnat of data stored in an item is referred to as a "dynamic array". 
Dynamic arrays are described in Chapter 2, Data Representation. 

All data in an item, including the item.id, is in character (string) fonnat; 
each attribute, value, and subvalue is variable in length and is delimited 
by special characters known as system delimiters. The fonnat of an 
item is also called a dynamic array. 

The Ultimat~ system uses characters called attribute marksl, value 
marks, and subvalue marks to delimit data. The delimiter mark is 
inserted in the file at the end of the data it marks. For the user's ease of 
reading, these special characters are usually shown as special symbols. 
The symbols displayed by BASIC are different from the symbols 
displayed by other system functions, such as the editor. Table 5-1 lists 
the delimiters and the characters used to display them. 

Table 5-1. System Delimiters 

Editor BASIC 
Delimiter Symbol Symbol Example 

attribute mark A - NAMEAADDRESS 

value mark ] } 100]200 

subvalue mark \ I 1\2 

N ole: Throughout this manual, system delimiters are shown using 
the characters as displayed in the editor. 

For efficiency and minimization of errors, the system delimiters should 
be defined once in the initialization portion of a program with = 
(assignment) or EQUATE statements, then referenced by variable name. 
(EQUATE statements are more efficient then assignment statements.) 

Imay also be called field marks in some versions 

Ultimate BASIC 5-3 
Confidential and Proprietary to The Ultimate Corp. 



Programmer's Reference 

5-4 

The delimiters have also been preassigned to standard names that can be 
used whenever a system delimiter is needed. 

attribute mark 
assignment statement: AM = CHAR(254) 

EQUATE statement: EQUATE AM TO CHAR(254) 

predefined variable: @FM (field mark) 

value mark 
assignment statement: VM = CHAR(253) 

EQUATE statement: EQUATE VM TO CHAR(253) 

predefined variable: @VM 

subvalue mark 
assignment statement: SVM = CHAR(252) 

EQUATE statement: EQUATE SVM TO CHAR(252) 

predefined variable: @SM 

The following example shows a sample item with five attributes: 

attribute marks 

value marks 

, 1 n, 
MARCHASTAFFACOUNSEL A500\300]400\200]5ANew 

aunt t LJ 
attribute marks 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



( 

Segment 
Marks 

6929-3 

Ultimate System File Structure 

In addition to the system delimiters, a fourth delimiter, called a segment 
mark and abbreviated SM, is used internally by the system to mark the 
end of every string referenced by a BASIC program. Consequently, 
BASIC programs should not refer to segment marks or use segment mark 
characters within strings. 

The value of a segment mark is CHAR(255); it is sometimes shown as an 
underscore (_) as in XYZ_. However, when data that is understood to 
be delimited by a segment mark is discussed, the SM is not usually 
shown. 

Ultimate BASIC 5-5 
Confidential and Proprietary to The Ultimate Corp. 



Programmer's Reference 

Programming Techniques for Handling I/O 

5-6 

The Ultimate BASIC statements for flle access and update (I/O) reflect 
and accommodate the Ultimate file structure. 

The following BASIC statements are used for I/O: 

Statement Description 

CLEARFILE deletes all data items in a flle 

CLOSE closes a file; recommended for UltiNet users 

DELETE deletes an item with a specified item.id 

MATREAD(U) reads an item specified by an item.id (key) into a 
dimensioned array 

MATWRITE(U) writes an item with a specified item.id from a 
dimensioned array 

OPEN 

READ(U) 

READNEXT 

READT 

READV(U) 

RELEASE 

opens a file; required for any I/o functions 

reads an item specified by an item.id (key) into a 
variable 

sequentially retrieves item.ids from a select list so that 
the actual item can be read from flle 

reads the next record on magnetic tape; note that tape 
can only be read sequentially, record by record. 

reads a specified attribute from an item specified by an 
item.id (key) into a variable; this statement should only 
be used when a single attribute is to be accessed from an 
item. 

unlocks item locks set by the program 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

o 

c 



( 

OPEN 

1/0 
Considerations 
for Network 
Users 

6929-3 

Statement 

SELECT 

WRITE(U) 

WRITET 

WRITEV(U) 

Techniques for Handling liD 

Description 

creates a select list containing the item.ids of all records 
in a specified file or the attributes of a specified dynamic 
array 

writes an item specified by an item.id (key) from a 
variable 

writes the next record to tape 

writes an attribute from a variable to a specified attribute 
in an item specified by an item.id (key); this statement 
should only be used when a single attribute is to be 
written to an item. 

The OPEN statement is very time consuming and should be executed as 
few times as possible. All files should be opened to file variables at the 
beginning of the program; access to the files can then be performed by 
referencing the file variables. 

If the program executes other programs that use the same files, the file 
variables can be specified in a named COMMON area and passed to the 
executed programs. If the program CALLs other programs that use the 
same files, the files can be specified in either COMMON or named 
COMMON areas and passed to the CALLed programs. 

Network users should consider the UltiNet system properties when 
creating programs that may involve remote file access. 

For single Ultimate systems, all file access and other I/o tasks involve 
only "local" files that are directly connected to the system. For network 
users, however, files may be shared between Ultimate systems via the 
UltiNet network equipment. This means that files are passed across 
physical cables andlor modems and telephone lines, with the attendant 
possibility of errors in the file transfer process. 

Please note that the performance of I/o functions over the network is 
slower than comparable functions from the disk. Network I/O is 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-7 



Programmer's Reference 

5-8 

measured in hundreds of bytes per second; disk I/o is measured in 
millions of bytes per second. 

When working with remote files, the files should be closed when it is 
no longer needed in a program; this frees the corresponding remote 
open-file table entry. Since the number of entries in this table is limited, 
freeing unused connections could allow greater use of the network. It is 
also possible to reduce the telephone line charges by closing files, 
because if all DltiNet files are closed, the link is disconnected. On the 
other hand, excessive opening and closing of remote files would merely 
increase network traffic and decrease program efficiency. 

The UltiNet equipment can identify a wide variety of error conditions, 
and is set up to notify the system that requests a file whenever a network 
error prevents a successful file transfer operation. However, it is the 
responsibility of the application (that is, the BASIC program) to retrieve 
the specific error information and act upon it. If no provision is made 
for processing network errors, the program may abort to the debugger 
after displaying the error message. 

Ultimate BASIC allows programs to identify network errors and specify 
the actions to be taken. The BASIC statements that involve disk I/O 

functions all have an optional clause called ON ERROR that allows the 
program to specify what actions should be taken in case of a network 
error. The BASIC SYSTEM(O) function has been set up to return the 
error number generated by the UltiNet equipment as soon as the ON 

ERROR routine is entered. The ABORT, PUT, and STOP statements allow 
a program to print a message associated with a specified error number, 
assuming the error number has been retrieved. 

Network users, then, have a number of options when programming 
applications that may involve remote file access. The following are 
recommendations: 

• Close files when they are no longer needed 

• Include an ON ERROR clause in all I/o statements 

• Use the SYSTEM(O) function to retrieve the current error number in 
the ON ERROR statements 

• Use statements such as PUT or STOP to display the error number and 
associated text before either resuming the program or terminating its 
execution. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

('-" 
'-..' 



( 

Accessing Items 

Accessing Items 

6929-3 

To access an item (record) in a file, a BASIC program must specify the 
item.id (key). A program cannot sequentially read through items in a 
file without specifying the item.ids. However, the program can create a 
list of item.ids, then use READNEXT statements together with READ 

statements to access items sequentially in the order specified by the list. 
The item.id list is called a select list, and may be either generated within 
a program or set up ahead of time before the program is run. 

Select lists can be created by a SELECT statement in BASIC or a SELECT 

or SSELECT command in Recall. The BASIC SELECT statement does not 
use any selection criteria; all items/elements are included on the list. The 
Recall commands SELECT and SSELECT, however, are very flexible; 
they can select and sort, if desired, items according to a conditions that a 
specified attribute must meet. The list usually contains only item.ids, 
but it can contain attributes and values as welL 

Items can be selected and sorted according to user specifications before 
running the program, creating a select list of just the item.ids needed for 
processing. The Recall SELECT commands can also be used in an 
EXECUTE statement to generate a select list from within the program, 
instead of prior to running the program. 

The Recall SELECT and SSELECT commands allow sophisticated 
preprocessing of a file using selection criteria in order to retrieve only 
those items meeting certain conditions. The SSELECT command, 
moreover, allows access to items in a sorted sequence. For example, 
the following Recall statement selects items in the CUST file representing 
customers in Los Angeles, then sorts them into date sequence 
(ascending order); items that have the same date are sorted into amount 
sequence (ascending order): 

SSELECT CUST BY DATE BY AMOUNT WITH CITY="LOS ANGELES" 

If the SELECT command is outside the program, the same program could 
be used to produce different results, depending on the selection criteria 
and, consequently, the items selected. The program itself would not 
need to be modified. 

Ultimate BASIC 5-9 
Confidential and Proprietary to The Ultimate Corp. 



---------

Programmer's Reference 

5-10 

A simple example of this versatility would be a program to calculate and 
report information based on dates, company departments, months, 
quarters, product lines, etc. Only the relevant data for each report 
would be handed to the program for processing. 

More than one select list can be created within a BASIC program. For 
example: 

SELECT CUST TO NAMES 

SELECT INV TO ORDERS 

Both statements could be in one program. The CUST select list is 
assigned to variable NAMES, the INV list to ORDERS. The select lists can 
be accessed by using these READNEXT statements: 

READNEXT CUST FROM NAMES ELSE GOTO 100 

READNEXT INV FROM ORDERS ELSE GOTO 200 

The following example opens a file to the default file variable, creates a 
select list from its item ids, then reads each item in turn. When all items 
have been read, the program stops. 

OPEN 'INV' TO INV ELSE STOP 201,'INV' 

SELECT 

10 READNEXT REC ELSE STOP 

READ A FROM INV,REC ELSE STOP 202,REC 

WRITE A ON INV,REC 

GOTO 10 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929-3 

c 



C· 
/ Read Locks 

Recall 

6929-3 

Read Locks 

Read locks are used by the system to maintain the integrity of data if 
several processes attempt to update the same item at the same time. A 
read lock set by one process inhibits another process from updating an 
item in the locked group, but it does not inhibit other processes from 
reading an item in that group. 

The BASIC statements used to access items set read locks; however, 
these locks have no impact on user programs. 

All statements that read items from a file read-lock the group the item is 
in. The item is then copied to workspace and the read lock is released. 
If item locking is specified by the statement, the item lock is set after the 
read lock is released. 

Read locks allow other processes to read items in the group with the 
read lock, but not to update them. This means, for example, that if a 
statement with a LOCKED clause tries to access an item in a group with a 
read lock, the item can still be read and the LOCKED clause is not 
executed. 

All statements that write or delete items set write locks for the group as 
before. A write or delete statement of an item in a group that has a read 
lock set does not finish until the read lock is released and until the write 
or delete is completed, no additional read locks can be set. 

The Recall commands SELECT and SSELECT set a read lock for the 
group from which the item ids are currently being retrieved. All other 
Recall commands set read locks only if the output is directed to the 
spooler or if there is a Tfile conversion. In all cases, if the WITHIN 

connective is used, read locks are not set. 

If there is a Tfile conversion in any Recall statement, a read lock is set 
for the item being retrieved, the item is copied to workspace, and the 
read lock is released. 

While a read lock is set in RECALL, the BREAK key is inhibited. 

Ultimate BASIC 5-11 
Confidential and Proprietary to The Ultimate Corp. 



Programmer's Reference 

5-12 

Caution! If Recall sets a read lock and there is a call to a BASIC 
subroutine, the read lock may cause some problems while 
the BASIC subroutine is executing. For example, if an INPUT 
statement in the subroutine expects input from the terminal 
and no operator responds to the input request, other 
processes that need to write to that group may appear to 
hang. Another problem could occur if two Recall processes 
use the Woption to write to files and each process needs to 
write to the file that the otherprocess has read locked; this 
would cause a deadly embrace. A RELEASE statement in the 
subroutine would clear the read locks, but this could mean, 
possibly, a loss of data integrity and possibly, the 
occurrence of soft GFEs. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



( 

(-

( 

Accessing Data in Items 

Accessing Data in Items 

Dynamic 
Array Format 

6929-3 

When an item has been read into a variable or array, any level of data 
can be retrieved, changed, and updated in the file. An item may contain 
up to three levels of data: attributes, values, and subvalues. 

The method of accessing specific values in an item depends on how the 
item has been stored. For example, assume that the file called CUST has 
one item called 1234 with these attributes: 

Attribute Attribute 
Number Name Data 

00 (item.id) NUMBER 1234 

01 LAST-NAME STERN 

02 FIRST-NAME JEFF 

03 ADDRESS 125 MORNINGSIDE 

04 CITY ORANGE 

05 ZIP 92667 

06 ORDERS 10)12 

Assume further that the following BASIC statements have been executed: 

OPEN 'CUST' TO FVAR ELSE STOP 201, 'CUST' 

SELECT FVAR 

READNEXT REC ELSE PRINT 'DONE';STOP 

At this point, REC = 1234. The item can be read into the program in 
either dynamic array format or dimensioned array format, as explained 
below. 

The READ statement is used to read the item in dynamic array format: 

READ A FROM FVAR,REC ELSE GOTO 9999 

After the READ, the item is stored in variable A in dynamic array format: 

Ultimate BASIC 5-13 
Confidential and Proprietary to The Ultimate Corp. 



Programmer's Reference 

5-14 

Several methods are available to access the attributes in this variable. 
Angle brackets to specify the desired attribute and an assignment 
statement could be used: 

LAST.NAME = A<l> 

If a valueis to be assigned, the angle brackets would enclose the 
attribute number and value number; for example, the following 
statement assigns the second value of the sixth attribute to the variable 
VAL: 

VAL = A<6,2> 

The assignment statement could use an intrinsic function to do the same 
operation: 

LAST.NAME = EXTRACT(A,l) 

A number of functions are available for dynamic array processing. 
These functions include 

DELE1E 

EXTRACT 

INSERT 

REMOVE 

REPLACE 

REUSE 

A string can be built from two or more attributes: 

NAME = A<2>:' ':A<l> 

To write an updated item from a dynamic array, the WRI1E statement is 
used: 

WRITE A ON FVAR,REC 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



( 

Dimensioned 
Arrays 

Determining 
the Number of 
Values 

6929-3 

Accessing Data in Items 

Another way of handling a file item is to read it into a dimensioned 
array. This allows the system to assign each attribute into its own 
addressable variable for updating. 

A DIM or COMMON statement is used to dimension an array; it must 
precede the associated I/o statements MATREAD and MATWRlTE. 

Assume again that REC = 1234. The following statements dimension an 
array A to the number of attributes in the item that is read: 

DIM A(O) 

MAT READ A FROM FVAR,REC ELSE GOTO 9999 

The INMAT function can be used to determine the number of elements: 

ARRAY.SIZE = INMAT() 

In the example, array A has the following six elements: 

A(l) STERN 

A(2) JEFF 

A(3) 125 MORNINGSIDE 

A(4) ORANGE 

A(5) 92667 

A(6) 10)12 

Each attribute can be accessed by its corresponding array element: 

LAST.NAME = A(l) 

To write an updated item from a dimensioned array, the MATWRITE 

statement is used: 

MATWRITE A ON FVAR,REC 

The DCOUNT function may be used to determine the number of values 
(including null values) in an attribute. For example, the following lines 
of a program can be used to determine the number of orders in attribute 
6 of the previous example: 

Ultimate BASIC 5-15 
Confidential and Proprietary to The Uftimate Corp. 



Programmer's Reference 

Choosing 
Between 
Dynamic and 
Dimensioned 
Arrays 

Clearing 
Variables 

5-16 

EQUATE VM TO CHAR(253) i *or VM=CHAR(253) 

ORDCOUNT=DCOUNT(A(6),VM) 

FOR I=l TO ORDCOUNT 

PRINT A(6)<1,I> 

NEXT 

If the item is in dynamic array format, the print statement would look 
similar to the following: 

PRINT A<6,I> 

There are several things to consider in choosing between dynamic and 
dimensioned arrays: 

An element in a dimensioned array can be accessed more quickly than 
can an element in a similar size dynamic array. 

All the elements in a dimensioned array defined with a literal count 
towards the total number of variables allowed in a program (currently 
3223). If the array is defined with a variable, only one element is 
counted towards the total number of variables'. 

Accessing elements in a dimensioned array that is defined with a size of 
o then redimensioned by MATREADing an item into it is slower than 
accessing elements in an array defined by a literal or a variable, but it is 
still faster than accessing that element from a dynamic array. 

The CLEAR statement assigns all variables the value of zero. When not 
used, all variables initially have an unassigned value. During 
debugging, this message can be useful in determining potential 
problems; therefore, it is recommended that CLEAR not be used while 
debugging is in progress. 

Ultimate BASIC 6929-3 
Confidential arid Proprietary to The Ultimate Corp. 

o 

c 



(~ 

( 

Cursor Positioning 

Guidelines for Cursor Positioning 

6929-3 

Cursor positioning should be controlled by the following PRINT 
statements using the @ functions. This ensures that the correct control 
characteristics are sent to the terminal regardless of terminal type 
(terminal type is specified by the system command TERM). 

The @ function is described in Chapter 3. 

Code Descri ption 

PRINT@(-I) Clear screen and position cursor at 'home' 
PRINT@(-2) Position cursor at 'home' (upper left corner). 
PRINT@(-3) Clear from cursor to end of screen 
PRINT@(-4) Clear from cursor to the of line 
PRINT@(-5) Start blink 
PRINT@(-6) Stop blink 
PRINT@(-7) Initiate 'protect' field 
PRINT@(-8) Stop protect field 
PRINT@(-9) Backspace one character 
PRINT@(-lO) Move cursor up one line 
PRINT@(-ll) Move cursor down one line 
PRINT @(-12) Move cursor right one character 
PRINT@(-13) Enable auxiliary (slave) port 
PRINT@(-14) Disable auxiliary (slave) port 
PRINT@(-15) Enable auxiliary (slave) port in transparent mode 
PRINT@(-16) Initiate slave local print 
PRINT @(-17) Start underline 
PRINT@(-18) Stop underline 
PRINT@(-19) Start inverse video 
PRINT @(-20) Stop inverse video 
PRINT@(-21) Delete line 
PRINT@(-22) Insert line 
PRINT@(-23) Scroll screen display up one line 
PRINT@(-24) Start boldface type 
PRINT @(-25) Stop boldface type 
PRINT@(-26) Delete one character 
PRINT@(-27) Insert one blank character 
PRINT@(-28) Start insert character mode 
PRINT@(-29) Stop insert character mode 

Ultimate BASIC 5-17 
Confidential and Proprietary to The Ultimate Corp. 



~-- ._ .. _--_ .. _----_.- --------

Programmer's. Reference 

Programming for Maximum System Perfo.rmance 

The size of programs can be reduced, with a corresponding 
increase in overall system perfonnance, by reducing the 
amount of literal storage. The allocation of variables can 
also affect system performance. Operations should be 
predefmed rather than repetitively performed. 

Minimizing An example of inefficient literal storage is the following: 
Program Size 

Variable 
Allocation 

Repetitive 
Operations 

5-18 

200 PRINT 'RESULT IS ':A+B 

210 PRINT 'RESULT IS ':A-B 

220 PRINT 'RESULT IS ':A*B 

230 PRINT 'RESULT IS ':A/B 

A more efficient way to write these statements is as follows: 

190 MSG = 'RESULT IS ' 

200 PRINT MSG:A+B 

210 PRINT MSG:A-B 

220 PRINT MSG:A*B 

230 PRINT MSG:A/B 

Variables are allocated space in the descriptor table as they are defined in 
a program. The most frequently used variables and COMMON variables 
should be defined at the beginning of a program. To prevent needless 
wasted storage space, it is recommended that standard variable names be 
agreed upon within your user group. 

The following statement is an example of an inefficient, repetitive 
operation: 

X=SPACE (9-LEN(OCONV (COST, 'MCA' ) ) ) : OCONV (COST, 'MCA' ) 

It could have been written more efficiently as follows: 

E=OCONV (COST, 'MCA ~ ) 

X=SPACE(9-LEN(E)) :E 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929~3 

o 

c 



(: 

6929-3 

System Performance 

The following statements are another example of a repetitive operation: 

FOR I=l TO X*Y+Z(20) 

NEXT I 

They could have been written as follows: 

TEMP=X*Y+Z(20) 

FOR I=l TO TEMP 

NEXT I 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-19 



Programmer's Reference 

Programming Examples 

5-20 

PRIME.NUMBER 

This program finds prime numbers. 

* 
* 
* 
* 
* 

TEST A NUMBER TO SEE IF IT IS PRIME. 

IF IT IS NOT, FIND THE SMALLEST PRIME NUMBER 

GREATER THAN THE ORIGINAL NUMBER. 

PRINT 

PRINT 'Enter number to test ,. 

INPUT NUM 

PRINT 

10 NULL 

IF REM(NUM,2) 0 THEN 

PRINT NUM: ' is even!' 

NUM=NUM+1 

END 

20 NULL 

TEST.NUM = SQRT(NUM) 

FOR N=3 TO TEST.NUM STEP 2 

IF REM(NUM,N) = 0 THEN 

END 

NEXT N 

PRINT NUM: ' is divisible by ':N 

NUM = NUM+2 

GOTO 20 

PRINT NUM: ' is prime!' 

STOP 

END 

Sample Run: 

Enter number to test ?44 

44 is even! 

4S is divisible by 3 

47 is prime! 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

'·c·.·.'.···· 
I. 

",,-.... 

6929-3 



6929-3 

--------- . --------

Programming Examples 

POOOO (File Update) 

This program uses tenninal input to update a master file. 

* 
* UPDATE PROM MASTER FILE 

* 
DIM P(5) 

EQU BELL TO CHAR(7), FPMSK TO '4N' 

CLRL=@(-4) 

CLR=@ (-1) 

L15=' L (US) , 

TL=CLR:@(12,1): '** CCARM Corp Master Update **' 

TL = TL:@ (70,1) : 'POOOO' 

TL = TL:@(4,4):'Enter Prom Part Number: ' 

PROMPT "" 

PS=@(0,12) :CLRL:BELL 

PRMPT=@(0,12) :CLRL:"Enter Line # to change/'D' to 

delete" 

SCR = 'COMPANY: 'L15: 'PROM WIDTH: 'L15 

SCR .= 'PROM DEPTH:'L15:'F/P CODE:'L15 

SCR .= 'FILL CHAR:'L15 

* 
OPEN 'PROMMASTER' TO PM ELSE 

STOP 201, 'PROMMASTER' 

END 

10 FLG1=0 

PRINT TL: 

INPUT PID 

IF PID = "END" OR PID='''' THEN STOP 

MATREAD P FROM PM,PID ELSE MAT P=""i FLG1=1 

* FLG1 = ITEM NOT ON FILE 

FOR W=l TO 5 

PRINT @(0,W+5) :W'R(##. )' :SCR[(W-1)*15+1,15] :P(W) 

NEXT W 

IF FLG1 THEN GO 30 

20 PRINT PRMPT:i INPUT ANS 

IF ANS='''' THEN MATWRITE P ON PM, PIDi GO 10 

IF ANS='D' THEN DELETE PM,PIDi GO 10 

IF ANS>O AND ANS<6 THEN W=ANSi GO 40 

GO 20 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-21 



Programmer's Reference 

5·22 

* 
30 * ADD NEW ITEM * 

FOR W=l TO 4 

40 PRINT @(19,W+5) :CLRL:; INPUT P(W) 

BEGIN CASE 

CASE P(W)='B' 

W=W-l; IF W=O THEN GO 10 ELSE GO 40 

CASE W=2 

IF P(2)#4 & P(2)#8 THEN 

PRINT PS: 'Must be a 4 or 8 in this field' 

GO 40 

END 

CASE w=3 

IF NOT(NUM(P(3))) THEN 

50 PRINT PS:'Invalid response, must be decimal/K 

units' 

GO 40 

END 

IF REM(P(3),32)#0 THEN GO 50 

CASE W=4 

IF NOT(P(4) MATCH FPMSK) THEN 

PRINT PS:'Must be 4 decimal digits'; GO 40 

END 

CASE W=5 

IF P(5)#0 & P(S)#"F" THEN 

PRINT PS:'Must be "0" or "F" '; GO 40 

END 

END CASE 

IF NOT(FLG1) THEN Go 20 

NEXT W 

FLG1=0 ; * !TEM NOW EXISTS 

GO 20 

Ultimate BASIC 
Confidentia/and Proprietsl)I to The Ultimate Gorp; 

r 
i 
\~-

c 



( 

6929-3 

Programming Examples 

Sample Tenninal Output 

***CCARM Corp Master Update*** POOOO 

Enter Prom Part Number: 222 

1. Company: SMITH 

2. Prom width: 4 

3. Prom Depth: 256 

4. Flp Code: 1112 

5. Fill Char: 

Enter Line # to change/'D' to delete item/-NL- to 

update 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-23 



""---"-""-----

Programmer's Reference 

5-24 

ITEMS.BY.CODE (Use of Job Control) 

This program illustrates the use of the EXECUTE statement to create a job 
control application. The operator enters a dictionary code for searching 
the current account's master dictionary. The application displays a 
sorted and numbered list of master dictionary items that have the 
specified dictionary code. The application can then be re-run or ended. 

*** PROGRAM USING THE EXECUTE STATEMENT*** 

* 
OPEN "DICT","MD" TO MD ELSE STOP 201, 'MD' 

CLEAR: @(-1) 

CES = @(-3) 

CEL = @(-4) 

PRINT CLEAR:@(0,22): 

10 PRINT "Enter the dictionary code for the search or 

'END ''':CEL: 

INPUT CODE 

IF CODE = "" OR CODE 'END' THEN STOP 

XXX = "" 
ID = "" 

* SELECT THE FILE 

* PUT SELECT LIST IN VARIABLE ID 

* ERROR MSG IN VARIABLE XXX 

* 
EXECUTE 'SSELECT MD WITH.D/CODE 

RTNLIST ID, RETURNING XXX 

'" :CODE: '''', 

IF XXX<l,l> = "401" THEN 

PRINTERR "No dictionary items for code 

PRINT @(0,22): 

GOTO 10 

END 

PRINT CLEAR: 

":CODE 

PRINT "Master Dictionary items with a dictionary 

code of It: 

PRINT CODE 

1=1 

X = ° i Y = 2 
LONGEST = 0 

* PRINT THE ITEM ID'S WITH SEQUENCE NUMBERS 

Ultimate BASIC 
Confidential BrldProprietiAry to The Ultima.teCorp. 

o 

c 



6929-3 

Programming Examples 

LOOP WHILE ID<I> # .... DO 

IF Y = 21 THEN 

X X + 5 + LONGEST 

Y = 2 

LONGEST 0 

END 

IF X + LEN(ID<I» + 3 > 79 THEN 

PRINT @(0,22) :"1 need to clear the screen ":CES: 

PRINT "to display the remaining items, .. 

PRINT "Press <RETURN> to continue or (C)ancel ... 

INPUT ANS: 

IF ANS[l,l] = "C" THEN PRINT @(0,22): 

PRINT @(0,2) :CES: 

X 0 

Y 2 

LONGEST 0 

END 

PRINT @(X,Y):I 'R(###)':" ":ID<I> 

IF LEN(ID<I» > LONGEST THEN 

LONGEST = LEN(IO<I» 

END 

I 1+1 

Y Y + 1 

REPEAT 

PRINT @ (0,22) : 

GOTO 10 

STOP 

END 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

GO TO 10 

5-25 



Programmer's Reference 

Sample Tenninal Output: c 
Enter the dictionary code for the search or 'END'?Q 

Master Dictionary items with a dictionary code of Q 

1 ACC 20 QFILE 
2 ALPHA 21 SYSLIB 
3 AREA 22 WORDS 
4 BARB 23 ZIP 
5 BBP 
6 BLOCK 
7 CHANNEL 
8 COMMS 
9 ERRMSG 

10 INV.A 
11 INV.B 
12 INVENTORY 
13 INV-PROSPECT 
14 LEADS 
15 MAIL. FILE 
16 NEXT 
17 PROCLIB 
18 PROSP 
19 PUB 

Enter the dictionary code for the search or 'END'? 

c 
5-26 Ultimate BASIC 6929-3 

Confidential andProprietary to ThtlUltimate eo",. 



( 

(/ 

6929-3 

Programming Examples 

SUMMARY.REPORT (Menu/Report Generator) 

The BASIC program listing below contains the coding for a "Summary 
Prospect Report". An abbreviated listing of a subroutine called 
GET.CRITERIA, which is called by SUMMARY.REPORT, is included 
following the main program. 

This program illustrates sample coding from a menu-driven set of report 
generation programs. The actual process, which is not included, is set 
up so that the operator can select the desired report option from a "D&B 
Prospect Selector" menu produced by a PROC. The PROC calls the 
appropriate BASIC program to print the selected report. The program 
prints the report and returns to the PROC, which redisplays the menu. 

*** 

*** 

*** 

*** 

*** 

*** 

PROGRAM TO PROMPT OPERATOR FOR STATE CODES, 

COUNTY CODES,SIC CODES, AND SALES VOLUME. 

PROGRAM WILL ALLOW UP TO TEN DIFFERENT 

REPORT CRITERIA TO BE SET UP BEFORE THE 

REPORTS ARE GENERATED 

COMMON STATES,COUNTIES,SALES,SICCODES,SIC.SELECT, 

SORT.BY, TITLE, NAME, FLAG 

*** 

PROMPT "" 

DIM RPTS(ll) 

MAT RPTS " 

RPT 1 

10 PRINT @(-1) :@(10,0) : "Selective Prospect Summary 

Report ": 

PRINT " Report #":RPT: 

* Call Subroutine to prompt for selection criteria 

CALL GET.CRITERIA 

IF FLAG 'X' THEN GO 10 

IF FLAG = '_I THEN GO 90 

*** 

80 * BUILD RPT RECALL STATEMENT 

RPTS (RPT) 

RPTS(RPT) 

IF STATES 

X = 1 

Ultimate BASIC 

"SORT USC. PROSPECT " 

RPTS (RPT): " WITH STATE " 

"ALL" THEN GO 81 

Confidential and Proprietary to The Ultimate Corp. 
5-27 



Programmer's Reference 

5-28 

LOOP 

STATE = STATES<X> 

UNTIL STATE = , , DO 

RPTS(RPT) =RPTS (R.PT) : ' 

X = X + 1 

REPEAT 

, : STATE 

81 RPTS(RPT) =RPTS(RPT):" AND WITH COUNTY-CODE" 

IF COUNTIES = "ALL" THEN GO 82 

x = 1 

LOOP 

COUNTY = COUNTIES<X> 

UNTIL COUNTY = "" DO 

RPTS (RPT)=RPTS (RPT) :' 

X = X + 1 

REPEAT 

, : COUNTY 

82 RPTS(RPT) =RPTS(RPT):' AND WITH SALES >= '" 

RPTS(RPT) =RPTS(RPT) :SALES: '''' 

83 RPTS (RPT) =RPTS (RPT) :" AND WITH " 

IF SIC. SELECT = "P" THEN 

RPTS(RPT) =RPTS(RPT):" PRIMARY-SIC" 

END ELSE 

RPTS (RPT)=RPTS (RPT) :" SIC-CODES" 

END 

IF SIC. CODES 

X = 1 

LOOP 

'ALL' THEN GO 84 

FROMSIC = SIC.CODES<X,l> 

TOSIC = SIC.CODES<X,2> 

UNTIL FROMSIC = "" DO 

IF X > 1 THEN RPTS(RPT) = RPTS(RPT):" OR " 

RPTS (RPT) =RPTS (RPT) :' >="': FROMSIC: ' '" 

RPTS (RPT) =RPTS (RPT) :' AND <= "': TOSIC: ,,,' 

x = x + 1 

REPEAT 

84 *** 
BEGIN CASE 

CASE SORT.BY = 1 

RPTS(RPT) =RPTS(RPT):" BY ZIP BY COMPANY" 

CASE SORT.BY = 2 

RPTS (RPT) =RPTS (RPT) :" BY COMPANY " 

CASE SORT.BY = 3 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

£'" (,,",-;7 



6929-3 

Programming Examples 

RPTS(RPT) =RPTS(RPT):" BY PRIMARY-SIC BY" 

RPTS(RPT) =RPTS(RPT):" COMPANY" 

END CASE 

RPTS(RPT) =RPTS(RPT):" COMPANY OFFICER" 

RPTS(RPT) =RPTS(RPT) : "TELEPHONE DMI-LINE SALES" 
, .11 'T' n RPTS (RPT) =RPTS (RPT) :' HEADING " 

RPTS(RPT) =RPTS(RPT) D&B " 

RPTS(RPT) =RPTS(RPT) : "Prospect Report for - ":NAME 

RPTS (RPT) =RPTS (RPT) :" Page 'PC' 'L'" 

RPTS (RPT) =RPTS (RPT) : '" L' ": TITLE:" 'C' 'LL' ". I'" 

RPTS (RPT) =RPTS (RPT) : "DBL-SPC ID-SUPP LPTR " 

*** 

90 *** BUILD ANOTHER RPT? 

RPT = RPT + 1 

IF RPT > 10 THEN GO 1000 

91 PRINT @(5,23) :"Do you wish to generate another 

report" : 

PRINT "(YIN)? # ":@(51,23):; INPUT RSP,l: 

PRINT @(51,23) :SPACE(2): 

PRINT @ (51, 23) : RSP : 

IF RSP = 'X, THEN 

RPT = RPT - 1 

IF RPT < 1 THEN RPT 1 

GO 10 

END 

IF RSP 'Y' THEN GO 10 

IF RSP # 'N' THEN GO 91 

*** 

1000 *** EXECUTE RPTS 

PRINT @(-1) :@(10,0) : "Now processing reports ..... " 

RPT = 1 

END 

LOOP 

STATEMENT = RPTS(RPT) 

UNTIL STATEMENT = , , DO 

PRINT; PRINT 

PRINT STATEMENT 

EXECUTE STATEMENT 

RPT = RPT + 1 

REPEAT 

STOP 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-29 



Programmer's Reference 

5;'30 

The following is the subroutine called by SUMMARY.REPORT: 

SUBROUTINE GET.CRITERIA 

*** 

COMMON STATES, COUNTIES, SALES, SIC.CODES, 

SIC. SELECT, SORT. BY, TITLE, NAME, FLAG 

FLAG = 1 1 

20 *** GET STATES 

X = 1 

STATES = 1 , 

PRINT @(5,2) :"Enter State code - ": 

22 PRINT @(21+(X*3),2):"U ":@(21+(X*3),2): 

*** 

INPUT STATE, 3: 

PRINT @(21+(X*3),2) :SPACE(3): 

IF STATE = 'X, OR STATE = 'END' THEN 

IF X = 1 THEN STOP 

FLAG = '-' 
GO 99 

END 

IF STATE = , , THEN GO 30 

IF STATE = '-' AND X > 1 THEN 

PRINT @(21+(X*3),2):SPACE(3): 

STATES = DELETE (STATES,X, 0, 0) 

STATES = DELETE (STATES,X-1, 0, 0) 

X = X - 1 

GO 22 

END 

PRINT @(21+(X*3),2):STATE 'L(#3) ': 

IF STATE = 'ALL' THEN STATES = 'ALL'; GO 30 

IF NOT (STATE MATCHES '2A') THEN GO 22 

STATES = REPLACE(STATES,X,O, 0, STATE) 

X = X + 1 

IF X > 12 THEN GO 30 

GO 22 

30 *** GET COUNTY CODE 

40 *** GET MINIMUM SALES VOLUME 

Ultimate BASIC 
ConfidentiaJ'andProprietary to TheUftimate corp. 

((,", 
./ 

6929-3 



c 
6929-3 

Programming Examples 

50 *** GET SIC CODE RANGES 

60 *** SELECT ON PRIMARY OR ALL SIC CODES 

70 *** GET FREE FORM HEADING 

73 *** GET OPERATORS NAME 

75 *** GET SORT CRITERIA 

PRINT @(5,21): 

PRINT "Sort by 1)Zip 2)Company name 3)SIC code # II. 

PRINT @(51,21): 

INPUT SORT.BY,1: 

PRINT @(51,21) : SPACE (1) : 

IF SORT.BY = 'X, OR SORT.BY 

FLAG = 'X' 

GO 99 

END 

IF SORT.BY , , THEN GO 75 

IF SORT.BY '-' THEN GO 73 

'END' THEN 

IF SORT.BY < 1 OR SORT.BY > 3 THEN GO 75 

PRINT @(51,21):SORT.BY 'R(#) ': 

*** 

99 *** RETURN 

RETURN 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

5-31 



Programmer's Reference 

Sample menu produced by PROC 

D&B Prospect Selector 
********************* 

1) Detailed Prospect Report 

2) Summary Prospect Report 

3) Prospect Label Print 

4) Detailed, Summary, and Label Print 

5) User instructions 

88) Exit to 'TeL' 

99) Logoff 

Enter option -

Ultimate BASIC 
Confidential and Propfietary 10 The -Ultimate CorP.' 

( '" J 
.. 7 

6929-3 



( 

6929-3 

Programming Examples 

QOH (Use of LOCATE with Dynamic Arrays) 

This program prints a report showing total cost * quantity on hand by 
product group. 

**Print cost * quantity on hand by product group. 

* 
DIM STOCKITEM(20) 

EQU COST TO STOCKITEM(3) 

;* ID = Part No 

;* Cost 

EQU QOH TO STOCKITEM(8) 

EQU PRODGRP TO STOCKITEM(9) 

;* Quantity on Hand 

;* Product Group 

* 

* 

EQU AM TO CHAR(254) 

EQU VM TO CHAR(253) 

RESULTS=' , 

OPEN' " 'STOCK' TO STOCK ELSE STOP 201, 'STOCK' 

SELECT STOCK 

1 * 
READNEXT ID ELSE 

HEADING "Product Total Value Average'L' Group" 

:SPACE(22) :"Value'L'" 

VMC=DCOUNT(RESULTS<l>,VM) 

FOR I=l TO VMC 

PRINT RESULTS<l,I> "L(#7 )": 

PRINT OCONV(RESULTS<2,I>, 'MR2,$') "R(#12)": 

IF RESULTS<3,I>=0 THEN 

AVE=O 

END ELSE 

AVE=RESULTS<2,I>/RESULTS<3,I> 

END 

PRINT OCONV(AVE, 'MR2,$') "R(#12)" 

NEXT I 

STOP 

END 

MATREAD STOCKITEM FROM STOCK,ID ELSE GOTO 1 

LOCATE PRODGRP IN RESULTS<l>,l BY 'AL' SETTING POS 

ELSE 

INS PRODGRP BEFORE RESULTS<l,POS> ;* product group 

INS " BEFORE RESULTS<2,POS> ;* total value 

INS 0 BEFORE RESULTS<3,POS> ;* total quantity 

Ultimate BASIC 5-33 
Confidential and Proprietary to The Ultimate Corp. 



--------------

Programmer's Reference 

5-34 

END 

RESULTS<2,POS>=RESULTS<2,POS> + (COST*QOH) 

RESULTS<3,POS>=RESULTS<3,POS> + QOH 

GOTO 1 

END 

Sample report: 

Product Total Value Average 

Group Value 

A $36.00 $3.00 

B $52.00 $4.00 

C $70.00 $5.00 

D $90.00 $6.00 

Ultimate BASIC ' . 
Confidential and Proprietary to The Ultimate Corp; ',' 

6929-3 

c 

c 



A 

( 

6929-3 

BASIC Compiler Messages 

This appendix presents a list of messages that may occur as a result of 
compiling a BASIC program. The messages are stored in the ERRMSG 

file. In the following descriptions, the error number and message are 
printed in boldfaced type. The cause and explanation are in normal 
type. 

[B100] Line A, 'B' Compilation aborted; no object 
code produced 

Compilation errors present. 

[B101] Warning - end of compilation before end 
of item, at line number below: 

An END statement, unassociated with a multi-line THEN or ELSE 

clause, has been encountered before the physical end of the item 

[B102] Line A Object code exceeds 57,534 bytes. 

[B103] Line A Label 'B' is missing 

Label indicated by GOTO or GOSUB was not found or MA1READ 

statement uses simple variable instead of dimensioned array. 

[B104] Line A Label 'B' is doubly defined 

[B105] Line A 'B' has not been dimensioned 

[B10 6] Line A 'B ' has been dimensioned and used 
without subscripts 

[B107] Line A 

[B108] Line A 

[B109] Line A 
statement 

LOOP statements nested too deep 

NEXT statement missing 

Variable missing in NEXT 

Bll 0 Symbol table is A% full 

B111 Last variable is at A 
--------- V A R I A B L E S ---------

B1l2 ------------ LAB E L S ------------

Ultimate BASIC A-1 
Confidential and Proprietary to The Ultimate Corp. 



Appendix A 

A-2 

B113 ----------- E QUA T E S -----------

[Bl14] Line A Maximum number of variables 
exceeded 

More than 3223 variables (including array elements) used. 

[Bl15J Line A Label' B' is used before the 
EQUATE stmt. 

The symbol is referenced before it has been defined. 

[Bl16] LineA Label' B' is used before the 
COMMON stmt. 

A COMMON variable is referenced before it is declared as COMMON. 

[Bl17] Line A 
list. 

Label 'B ' is missing a subscript 

[B1l8] Line A Label I B' is the object of an 
EQUATE statement and is missing. 

Variable after TO clause in EQUATE statement has not been defined. 

[B119] Line A Warning - precision value out of 
range ignored 

A precision not in the range of 0-9 was specified. 

[B120] Line A Warning - multiple precision 
statements ignored 

Only the first precision statement is applied. 

[B121] Line A Label 'B' is a constant and 
cannot be written into. 

An EQUATEd symbol has been specified in an assignment statement. 

[B122] Line A The label 'B' is used incorrectly. 

Expression after TO in EQUATE is illegal. 

[B123] Line A Label B has been dimensioned with 
non-zero subscript in COMMON and cannot be re
dimensioned 

[B124] tine A Label 'B ' has literal subscripts 
out of range. 

Array subscript less than 1 or greater than value in DIM statement. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



( 

6929-3 

BASIC Compiler Messages 

[B125] No source statements found; no object 
code produced 

[B126] Line A ELSE clause missing 

[B127] Line A NEXT missing 

[B128] Line A Item 'B' not found 
Object of $INCLUDE or $CHAIN directive is missing. 

[B129] Illegal: program name same as dictionary 
item name 

Compiler cannot write object code in dictionary because non-object 
code dictionary item already exists with the same name as the source 
program. 

[B130] Line A Symbol Table overflow -
compilation aborted 

B 131 Symbol table is A% full 

B 13 2 Last variable is at A 
--------- V A R I A B L E S ---------

8133 ------------ LAB E L S ------------

B134 ----------- E QUA T E S -----------

Note: In the/ollowing messages, the B represents a caret (") that the 
compiler uses to point to the word that is causing the problem. 
For example, error message B135 is used as/ollows: 

004 OPEN 'LEDGER' TO GLE ELSE STOP 201, 'LEDGER' 

*** " Reserved word used 

B135 ***B Reserved word used 

B136 ***B Illegal assignment statement 

B137 ***B END CASE statement missing 

B138 ***B Variable name expected 

B139 ***B Keyword 'C' expected 

Ultimate BASIC A-3 
Confidential and Proprietary to The Ultimate Corp. 



Appendix A 

A-4 

B140 ***B Illegal expression 

B14l ***B END statement missing 

B142 ***B Illegal syntax 

B143 ***B Illegal library function name 

B144 ***B End of statement expected 

B145 ***B THEN or ELSE clause missing 

B146 ***B EXIT used outside LOOP-REPEAT construct 

B147 ***B REPEAT missing .in LOOP construct 

B148 ***B Ambiguous ELSE clause 

[B150] Warning 
of item 

end of compilation before end 

[B151] Line A 
exceeds 28,767 

Scope of RETURN TO/FOR 
bytes of object. 

statement 

B152 ***B Illegal System variable @var 

[B153] Line 
exceeds 128 
recompile. 

A Object size plus 
frames Try using 

symbol table size 
(S) option and 

B155 *** Reserved word used B 

B156 *** Illegal assignment statement B 

B157 *** END CASE statement missing B 

B158 *** Variable name expected B 

B159 *** Keyword 'C' expected B 

B160 *** Illegal expression B 

B161 *** END statement missing B 

B162 *** Illegal syntax B 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

,£", 

'Lf 

C 



( 

(/ 

6929-3 

BASIC Compiler Messages 

8163 *** Illegal library function name B 

8164 *** End of statement expected B 

8165 *** THEN or ELSE clause missing B 

8166*** EXIT used outside LOOP-REPEAT constr B 

8167 *** REPEAT missing in LOOP construct B 

8168 *** Ambiguous ELSE clause B 

8172 *** Illegal System variable @var ) B 

[B173] Line A IN. Variable exceeds 1600 bytes. 

[B180] Line A The 
Multiple includes 

item 'B' was 
of the same 

included before. 
item are i1l.egal.. 

8199 Source fil.e must have separate DICT and DATA 
sections 

[B241] Line A, 'B' successful.ly compiled; C 
frames used. 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

A-5 



Appendix A 

Notes c 

c 
A-6 Ultimate BASIC 6929-3 

Confidentia/.and Proprietary to The Ultimate Corp; 

--.. _------ ._------ - ---



B 

c 
6929-3 

BASIC Run-Time Messages 

This appendix presents a list of the error messages that may occur as a 
result of executing a BASIC program. The messages are stored in the 
ERRMSG file. 

Warning messages indicate that illegal conditions have been smoothed 
over (by making an appropriate assumption), and do not result in 
program termination. Fatal error messages result in program 
termination. 

In the following descriptions, the error number and message are printed 
in boldfaced type. The cause and explanation are in normal type. 

[B1] Run-time abort at line A 

Caused by BASIC statement ABORT. 

[B2] Line A Illegal file specification 

[B5] Line A Incorrect number of subroutine 
parameters 

Number of parameters in CALL statement is greater than number of 
parameters in SUBROUTINE statement 

[B6] Line A 
characters 

PROCWRITE string length exceeds 350 

[B10] Line A Variable has not been assigned a 
value; zero used 

An unassigned variable was referenced; a value of 0 is assumed. 

[B11] Line A Tape record truncated to tape 
record length 

An attempt was made to write a tape record greater than the tape 
record length. (The record is truncated to tape record length.) 

[B12] Line A File has not been opened 

File indicated in I/O statement has not been opened via an OPEN 

statement or file variable has been modified since the file was 
opened 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

B-1 



Appendix B 

B-2 

[B13] Line A Null conversion code is ill.egal; 
no conversion done 

[B14] Line A Bad stack descriptor: B 

Number of parameters in CALL statement less than number of 
parameters in SUBROUTINE statement 

[B1S] Line A Il.legal opcode: B 

The program object code has been corrupted; recompile program 

[B16] Line A Non-numeric data when numeric 
required; zero used 

B17] Line A Array subscript out of range: B 

[B18] Line A Attribute number less than -1 is 
illegal. 

Attribute less than 1 is specified in READV or an attribute number 
less than -1 is specified in WRI1EV statement. 

[B19] Line A Illegal pattern 

lllegal pattern used with MATCHES operator or in MATCHFIELD 

function. 

[B20] Line A COLl or COL2 used prior to 
executing a FIELD stmt; zero used 

[B22] Line A Illegal value for STORAGE 
statement 

STORAGE parameter less than 10 or not a multiple of 10. 

[B23] Program 'B' must be recompiled. 

Object code not compatible with current operating system. 

[B24] Line A Divide by zero illegal; zero used 

[B2S] Program' B' has not been cataloged. 

A subroutine specified in a CALL statement was not found in the 
program file and was not cataloged or if cataloged, not found in the 
file specified in the MD. 

[B26] . Line A 'UNLOCK C' attempted before LOCK 

[B27] Line A RETURN executed with no GOSUB 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp;. 

C' 
~I 



( 

6929-3 

BASIC Run-Time Messages 

[B28] Line A Not enough work space on Reg B 

Not enough user work space to hold all variables. 

[B29] Line A USERMSG file has not been opened by 
the SET-LANGUAGE verb 

[B30] Line A Array size mismatch 

Array sizes do not match in MAT Copy statement, or in CALL and 
SUBROUTINE statements. 

[B31] Line A Workspace underflow, register B 

The program has attempted to CALL too many nested subroutines; 
the number of subroutines that can be nested depends on the number 
of variables used as well as the number of CALLs 

[B32] 
1400 

Line A Page 
characters 

heading exceeds maximum of 

[B33] Line A Precision declared in subprogram 
'C' is different from that declared in the 
mainline program. 

[B35] Line A BASIC operation not allowed when 
called via RECALL dictionary 

A subroutine called by the B processing code contains one of the 
disallowed BASIC statements; see the Ultimate Recall and Update 
User Guide for a list of operations that are not allowed. 

[B36] Line A Arrays in calling program and 
subroutine must both be either fixed dimensions, 
or both variable dimensions 

[B37] Line A Variable dimensioned array element 
referenced before array was initialized by a DIM 
statement 

[B38] Line A Subroutine argument was incorrectly 
passed twice 

[B39] Line A Incorrect PRECISION in /B/ COMMON 
block. 

PRECISION has been changed after named COMMON area has been 
defined 

Ultimate BASIC B-3 
Confidential and Proprietary to The Ultimate Corp. 



Appendix B 

B-4 

[B40] Line A Incorrect number of variables in 
/BI COMMON block. 

Number of variables in current named COMMON statement is 
different from number in named COMMON statement that fIrst 
defIned the area 

[B41] Line A Lock number is greater than 47. 

[B42] Line A COMMON block /B/ has not been 
initialized or has been already released. 

[B43] Line A attempt to create more than 50 
named COMMON blocks. 

[B44] Line A named COMMON block table Full. 

[B45] Program' B' is not a subroutine! 

Program named in CALL statement is not a subroutine. 

[BI07] Line A LOOP statements nested too deep 

LOOP statements can be nested to 50 levels. 

[B209] Line A File is update protected. 

An attempt was made to update a fIle that has an update lock. 

[B210] Line A File is access protected. 

An attempt was made to read a file that has a retrieval lock 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

c 



c: C 

6929-3 

BASIC Debugger Messages 

The following is a list of messages that can be displayed by the BASIC 

debugger. In the following descriptions, the message that is displayed 
is printed in boldfaced type. The cause and explanation are in 
normal type. 

[B501] Invalid BASIC DEBUGGER command. 
This message is displayed when the user enters a command that 
cannot be understood by the BASIC debugger. 

[B503] Not a valid file name. 

This message is displayed when the BASIC Debugger is unable to open 
a filename containing source code. This may be because the file does 
not exist in this account or retrieval/update codes prevent access. 

[B504] Not a valid program name. 
This message is displayed when the BASIC debugger cannot locate a 
source item. On an 'L' command or display of source code after a 
breakpoint, the BASIC debugger attempts to locate the source code in 
the file that contains the mainline program. For example, if the 
debugger is entered in a subroutine that is not in the same file as the 
mainline program, this message is displayed. 

After displaying this message, the debugger prompts for the 
FilelProgram Name: 

File/prg name? 

Enter the filename and the program name. 

[B505] Trace and Breakpoint tables are empty. 

This message is displayed in response to a 'D' command when both 
the Breakpoint and Trace tables are empty. 

[B50 6] You cannot continue execution of a 
program after a fatal abort 

This message is displayed when a user types 'G<CR>' or '<LF>' in 
BASIC debugger after BASIC runtime detected a fatal error. Execution 

Ultimate BASIC C-1 
Confidential and Proprietary to The Ultimate Corp. 



Appendix C 

cannot continue because the state of the BASIC runtime stack is in an 
indeterminable state at entry to BASIC debugger. The user is not 
restrained from entering 'Gline#' in this situation, but it cannot be 
assumed that execution will continue in this situation either. 

[B507] Invalid line number. 
This message is displayed when a user attempts to 'G' to a line# past 
the end of executable code. 

[B508] Zero is not an acceptable value. 
This message is displayed when the user attempts to supply a zero as a 
numeric value when zero is unacceptable; for example, display 
dimensioned element zero./ARRAY(O). 

[B510] Symbol not in SYMBOL TABLE. 
The symbol entered by the user cannot be located in the symbol table. 

[B511] Non-numeric data. 
The user has typed non-numeric data as a command parameter; for 
example, GTOP. 

[B514] Variables must start with an alphabetic 
character. 

The user has entered a variable name that does not start with an 
alphabetic character; for example, /123. 

[B515] Subscript out of range. 
The user entered subscripts for a dimensioned array that are greater 
than the maximum defined in the DIM statement. 

[B516] Dimensions illegal for a simple variable. 
The user entered subscripts for a non-dimensioned variable. 

[B517] NAMED COMMON/VARIABLE dimensioned array 
has not been initialized. 

The user can only display, trace and set breakpoints for named 
COMMON and variable dimensioned arrays after they have been 
initialized by the BASIC Runtime package. 

[B518] The SYMBOL TABLE is not in the correct 
format or does not exist. This program must be 
recompiled if BASIC DEBUGGER is to be used on it. 

Either the program was not compiled under the latest version of the 
BASIC Compiler, or the symbol table was not generated because the 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 

-------- --- ----------- ------------



( 

6929-3 

BASIC Debugger Messages 

program was compiled with the S option or it contains a $NODEBUG 
statement. 

B520 (not displayed) 
E Count 
N Count 

A 
B 

Window Start, Len 
Hex Display 
Source Display 
CALL/RETURN Trap 

E 
F 

Reason Code H 

C,D 

G 

This is the display is generated by the O{ptions} command. 

[B521] Trace table Full. 
This message is displayed when the user attempts to T{race} a 
variable and the trace table is full. 

[B522] Trace entry not found. 
This message is displayed when the user attempts to U {ntrace) a 
variable and the entry cannot be found. This may be because the 
entry# entered does not contain an entry or if a variable name is 
entered, the is no entry for that variable in the trace table. 

B524 Trace table cleared. 

This message is generated if the user types U {ntrace }] with no entry 
or variable name and the whole table is cleared. 

B529 Trace Variable 

This is the 'heading' for the D {isplay} command and Trace table 
entries exist. 

[B531] Breakpoint table full. 

This message is displayed when a user attempts to create a Breakpoint 
condition and there are no free entries in the Breakpoint Table to hold 
the condition. 

[B532] Breakpoint entry not found. 
This message is displayed when the user attempts to K{ill} a 
Breakpoint entry and the entry # supplied does not contain a 
Breakpoint condition or if a variable name is supplied, no Breakpoint 
condition can be found for that variable. 

Ultimate BASIC C-3 
Confidential and Proprietary to The Ultimate Corp. 



Appendix C 

C-4 

[B533] No logical operator found in B{reakpoint} 
command. 

The BASIC debugger could not locate a '=, #, < or >' symbol in the 
Breakpoint condition entered by the user. 

B534 Breakpoint table cleared. 

This message is generated when a user enters a K {ill} command with 
no parameters and the BASIC debugger clears all Breakpoint 
conditions. 

[B535] Non numeric line number. 

The user entered B$ and the constant after the operator was not 
numeric; for example, B$=ABC. 

[B536] Only one '&' allowed in a B{reakpoint} 
command. 

The Breakpoint condition entered by the user contains more than one 
& operator. 

[B537] Breakpoints can only be set on single 
array elements. 

The use has attempted to set a Breakpoint condition using a 
dimensioned array with no dimensions. 

B539 Break Condition 

This message is a 'heading' for the D{isplay} command when 
Breakpoint Tables entries exists. 

8540 Return Stack 

This message is a 'heading' for the R {eturn Stack Display} command 
when return entries are found in the BASIC Runtime stack. 

[B541] There are no GOSUBs in the return stack. 

This message is displayed when the R {eturn Stack Display} command 
is entered an there are no return entries found in the stack. 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



6929-3 

BASIC Debugger Messages 

B555 Help Message (not displayed) 
The following message is generated in response to the H { elp } 
command :-

?, $, *, V - show file, progname, line# and verify 
object 

/var{ (r,c) }{<a,v,s>} - display (and alter) a variable. 
var = * displays all 

[ {m, n} 

Bvoc{&voc} 

C 

D 

DE 

E{n} 

G{n} 

H 

HX 

K{n} {var} 

L{n,{m}}{*} 

LP 

- set/reset display window 

- B{reakpoint set} 

- C(ALL/RETURN breakpoint on/off} 

- D(isplay trace and breakpoint tables} 

- DE(bug enter} 

- E(xecution step set/reset} 

- G(oto line# or resume processing} 

- H(elp} 

- H{e}X(display on/off} 

- K(ill breakpoint entry or var} 

- L{ist source} 

- L{ine} P{rinter on/off} 

N{n} 

o 
- N{umber of breakpoints to step through 

P 

PC 

R 

S 

T{var} 

U(n} (var) 

Z 

END,BYE,STOP 

OFF 

Ultimate BASIC 

- O{ptions Display} 

- P{rinted output on/off} 

- P{rinter} C{lose} 

- R{eturn stack display} 

- S{ource code display on breakpoint 
on/ off} 

- T(race var} or T(race on/off} 

- U{ntrace entry or var} 

- (set up source code pointers) 

- Terminate program (STOP resumes PROC 
processing 

- Terminate program and log off. 

Confidential and Proprietary to The Ultimate Corp. 
C-5 



Appendix C 

Notes 

c 
C-6 Ultimate BASIC 6929-3 

Confidentialand Proprietary to The UftimateCorp. 

"-- --"-"~"--- ---



o 

(-

6929-3 

List of ASCII Codes 

This appendix presents a list of ASCII codes for decimal number values 
from 0 through 255. The hexadecimal equivalent value and ASCII 

character generated are also given. 

Decimal values 0-31 are assigned as non-printable functions; these 
codes may be specified by control key sequences as input to a BASIC 

program. In the listing, the control key is indicated by a caret (A) in the 
first position in the Key column. 

Decimal values greater than 127 (x'7F) are not defined in the ASCII 

character set. The functions or characters assigned to these values are 
dependent on the terminal being used. However, special file structure 
functions and control key sequences have been assigned to decimal 
values 251 through 255 (x'FB' through x'FF). 

Ultimate BASIC D-1 
Confidential and Proprietary to The Ultimate Corp. 



Appendix 0 

Decimal Key Hexadecimal Name 

0 A@ 00 NUL 
1 AA 01 SOH 
2 AB 02 STX 
3 AC 03 ETX 
4 AD 04 EOT 
5 AE 05 ENQ 
6 AF 06 ACK 
7 AG 07 BEL 
8 AH 08 BS 
9 AI 09 HT 

10 AJ OA LF 
11 AK OB vr 
12 AL OC FF 
13 AM OD CR 
14 AN OE SO 
15 "0 OF SI 
16 Ap 10 DLE 
17 AQ 11 DC1 
18 AR 12 DC2 
19 AS 13 DC3 
20 AT 14 DC4 
21 AU 15 NAK 
22 AV 16 SYN 
23 AW 17 ETB 
24 AX 18 CAN 
25 Ay 19 EM 
26 AZ 1A SUB 
27 A[ IB ESC 
28 A\ 1C FS 
29 A] 1D GS 
30 AA IE RS 
31 A IF US -

0-2 Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

--------



ASCII Codes 

c 
Decimal Key Hex Decimal Key Hex 

32 20 80 P 50 
33 ! 21 81 Q 51 
34 " 22 82 R 52 
35 # 23 83 S 53 
36 $ 24 84 T 54 
37 % 25 85 U 55 
38 & 26 86 V 56 
39 I 27 87 W 57 
40 ( 28 88 X 58 
41 ) 29 89 y 59 
42 * 2A 90 Z 5A 
43 + 2B 91 [ 5B 
44 , 2C 92 \ 5C 
45 - 2D 93 ] 5D 
46 2E 94 1\ 5E 
47 / 2F 95 5F -
48 0 30 96 , 

60 
49 1 31 97 a 61 
50 2 32 98 b 62 
51 3 33 99 c 63 
52 4 34 100 d 64 
53 5 35 101 e 65 
54 6 36 102 f 66 
55 7 37 103 g 67 

( 
56 8 38 104 h 68 
57 9 39 105 1 69 
58 3A 106 J 6A 
59 , 38 107 k 6B 
60 < 3C 108 1 6C 
61 = 3D 109 m 6D 
62 > 3E 110 n 6E 
63 ? 3F 111 0 6F 
64 @ 40 112 P 70 
65 A 41 113 q 71 
66 B 42 114 r 72 
67 C 43 115 s 73 
68 D 44 116 t 74 
69 E 45 117 u 75 
70 F 46 118 v 76 
71 G 47 119 w 77 
72 H 48 120 x 78 
73 I 49 121 Y 79 
74 J 4A 122 z 7A 
75 K 4B 123 { 7B 
76 L 4C 124 I 7C 
77 M 4D 125 } 7D 
78 N 4E 126 - 7E 
79 0 4F 127 DEL 7F 

6929-3 Ultimate BASIC D-3 
Confidential and Proprietary to The Ultimate Corp. 



Appendix 0 

,F ,- . 

Decimal Hexadecimal Symbol Name 

128 (x'80') thru 250 (x'FA') not used 

251 FB SB Start buffer 
252 Fe SVM Subvalue Mark 
253 FD VM Value Mark 
254 FE AM Attribute Mark 
255 FF SM Segment Mark 

D-4 Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



E 

6929-3 

User Exits 

The following user routines supplied with an Ultimate system may be 

used as user exits from BASIC in the ICONV and OCONV functions. 

User Exit 

U307A 

U407A 

U50BB 

U90ED 

U0159 

U018D 

Ul18D 

Description 

Puts tenninal to sleep until a specified time; equivalent to 
RQM and SLEEP statements 

Puts tenninal to sleep for a specified period of time; 
equivalent to RQM and SLEEP statements 

Returns current user's line number and account; line 
number can also be returned by @USERNO or 
SYSTEM(19); account can also be returned by @WHO or 
SYSTEM(26) 

Initializes tape reel number to 1 

Extended math functions in decimal floating point; 
equivalent to string number functions SADD, SDIV, 
SMUL, and SSUB 

Inhibits BREAK key; equivalent to BREAK OFF or 
BREAK 0 

Enables BREAK key; equivalent to BREAK ON or BREAK 1 

Ultimate BASIC E-1 
Confidential and Proprietary to The Ultimate Corp. 



Appendix E 

Notes 

('." 
/ 

E-2 Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 



F 

USERMSG 
Item Format 

6929-3 

USERMSG File 

The USERMSG file is designed as a multiple data level file with a level 
for each language translation on the system. The USERMSG file enables 
system users to create custom messages for their applications, which 
can then be translated by the UltiKit multi-lingual process. 

The USERMSG file can be used with the BASIC USERTEXT function, 
which is described in Chapter 3, BASIC Statements and Functions. 
Items can also be printed using the system command PRINT-ERR. 

The format of item.ids in the USERMSG file is up to the user. 

Each line in a USERMSG item must conform to a general format: 

code { text} 

The valid codes are as follows: 

Code Meaning 

A inserts the next parameter from the list of parameters passed 
by USERTEXT 

A(n) inserts the next parameter as above, but left justified in a 
field of 'n' blanks 

AM inserts attribute mark 

D inserts the current date 

E inserts the item.id enclosed in brackets 

H inserts the text following the H; does not include a <CR> or 
line feed 

H+ used at the end of the USERMSG item only to suppress final 
<CR> and line feed that is normally output. 

Ultimate BASIC F-1 
Confidential and Proprietary to The Ultimate Corp. 



Appendix F 

F-2 

L inserts <CR> and line feed. 

L(n) inserts n-1 blank lines. 

R(n) inserts the next parameter as A (above), but right justified in 
a field of 'n' blanks 

S(n) Sets the output buffer pointer to location In'. 

T inserts the current time 

X Skips a parameter in the list of parameters passed by 

USERTEXT 

Sample USERMSG item 

item.id Welcome 
001 E 
002 H, 
003 A 
004 L 
005 HIt is 
006 D 

x = USERTExT('Welcome' ,CUSTNAME) 

result: 
This returns the text of "Welcome" after inserting the value of 
CUSTNAME into the message: 

[Welcome], custname 
It is 21 Jun 1989 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929-3 

./f".' 

'-.> 



G 

c) 
6929-3 

Revision 200 New Features 

Revision 200 of the Ultimate Operating System, Release 10, includes 
the following new and enhanced features for the Ultimate BASIC 

language: 

• new reserved words 

• addition of predefined variables and system variables 

• change to file variables 

• extension of arithmetic operators to dynamic arrays 

• extension of comments to CALL, COMMON, DIM, and EQUA1E 

statements 

• new compiler directives: 
$COMPA TIBILITY 

INCLUDE 

$INSERT 

• new and enhanced BASIC statements and functions 

• BASIC compiler changes 

• new BASIC debugger 

For more information, see the 0/5 Revision 200 New Features guide. 

Because of these changes, all BASIC programs from previous 
revisions of the operating system must be recompiled after 
upgrading to Revision 200 or later. When recompiling BASIC 

programs, be sure to compile using the same options, such as S 

(suppress symbol table), that were used in the original compilation. For 
information on upgrading, see the Ultimate Upgrade Document for your 
system and revision. 

Ultimate BASIC G-1 
Confidential and Proprietary to The Ultimate Corp. 



Appendix G 

Statements and Functions 

G-2 

The following statements and functions were added or revised for 
Revision 200 of the Ultimate Operating System. If you are using a 
revision prior to 200, the commands that are marked New are not 
available at all. The commands that are marked enhanced are available 
in prior revisions, but not all features are available. 

assignment statement Enhanced 
BREAK { KEY} statement Enhanced 
CLEARDATA statement New 
CLEARS ELECT statement New 
COMMON statement Enhanced 
CONVERT statement New 
CRT statement New 
DIM statement Enhanced 
ECHO statement Enhanced 
EQU{ATE} statement Enhanced 
ERRTEXT function New 
EXECUTE statement Enhanced 
FIELD function Enhanced 
FMT function New 
FOR/NEXT statement Enhanced 
INMAT function New 
INPUT statement Enhanced 
MATCH{ES} operator Enhanced 
MATCHFIELD function New 
MA1PARSE statement New 
MA TREAD statement Enhanced 
OPEN statement Enhanced 
PAGING statement New 
READT statement Enhanced 
RELEASE statement Enhanced 
REMOVE statement New 
REUSE function New 
RQM statement Enhanced 
SELECT statement Enhanced 
SLEEP statement New 
SORT function New 
SOUNDEX function New 
SUBROUTINE statement New 

Ultimate BASIC 6929-3 
Confidential and Proprietary to The Ultimate Corp. 

c 



(~ 

(' 

6929-3 

SUM function 
SYSTEM function 
IRAP ON THEN CALL statement 
IRIM function 
USERTEXT function 
WRITE statement 
WRITET statement 

Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

Revision 200 Features 

New 
Enhanced 
New 
Enhanced 
New 
Enhanced 
Enhanced 

G-3 



Appendix G 

Compiler Changes 

G-4 

The following changes have been made to the BASIC compiler: 

• Compilation is faster and more efficient; for example, large programs 
generally compile at least twice as fast as previously 

• Error messages produced by the BASIC compiler have been changed 
and now give more information when an error is encountered; the 
compiler also indicates where on the line it was scanning when it 
noted the error. 

• BASIC object code size has been increased to 57,534 bytes. 

• The BASIC and COMPILE verbs, which are used to compile BASIC 
programs, have been changed as follows: 

- The A option, which provided a listing of assembled code, is no 
longer available 

- The E option, which provided an errors only listing, has been 
removed; the errors only listing is the default 

- The F option can be used with the M option to list internal variables 
and labels, including those created by IF/THEN and FORI NEXT 

loops; internal variables and labels are displayed preceded by an 
asterisk. 

- An I option has been added, which, if the L option is also specified, 
displays lines from $INCLUDEd programs as part of the listing 

- The format and information displayed by the M option has changed 

Ultimate BASIC 6929·3 
Confidential and Proprietary to The Ultimate Corp; 

c 

c 



Revision 200 Features 

BASIC Debugger 

The following lists the new and enhanced BASIC debugger commands. 

BVOC{&voC} enhanced 

BYE new 

C new 

D enhanced 

G{n} enhanced 

H new 

HX new 

K{ {/}var} enhanced 

0 new 

R new 

S new 

(- u{n} new 

V enhanced 

* new 

/m<a{,v{,s} }> new 

c 
6929-3 Ultimate BASIC G-5 

Confidential and Proprietary to The Ultimate Corp. 



Appendix G 

Notes 

G-6 Ultimate BASIC 
Confidential and Proprietary to The Ultimate Corp. 

6929-3 

c 

",. 
i 

'''-.., 



! statement 3-5 

$* directive 3-7 

$CHAIN directive 3-8 

Index 

$COMPATIBILITY directive 3-9,3-88, G-l 

$INCLUDE directive 3-11 

$INSERT directive 3-11, G-l 

$NODEBUG directive 3-12,4-3 

* command (debugger) 4-28 

* statement 3-5 

= (assignment) statement 3-13 thru 3-20, 3-135 

@ function 3-21 thru 3-31,5-17 

@ symbols 2-9 thru 2-11, 3-244, 5-4 

- A -
ABORT statement 3-32, 3-248 

ABS function 3-33 

ALPHA function 3-34 

ARG. 3-81,3-107 

arithmetic expressions 2-16 thru 2-25 

arithmetic operations 

performance 2-21 

rules 2-20 

arithmetic operators 

and dynamic arrays 2-19 

fixed point 2-4 

floating point 2-5 

list 2-16 

order of operation 2-16 

string numbers 2-6 

arrays 2-12 thru 2-15 

ASCII character conversion 

from EBCDIC 3-35 

from numeric 3-46 

to numeric value 3-223 

ASCII codes (see Appendix D) 

ASCII function 3-35 

6929-3 Ultimate BASIC 

assignment statement 3-13 thru 3-20, 3-135, G-2 

attribute mark 2-14, 5-3, 5-4 

- B -
BASIC debugger (see Chapter 4) 

BASIC verb 1-7,4-3 

BEGIN CASE statement 3-36, (also see CASE 

statement) 

blank spaces 

in functions 3-1 

using in programs 1-4 

Boolean expressions 2-37 

BREAK key 3-37,3-248,5-11 

breakpoints 

displaying 4-11 

removing 4-17 

setting 4-6 

BREAK{KEY} statement 3-37, G-2 

BSYM file 1-9 

buffer table 2-44 

- c -
CALL statement 3-39 thru 3-42 

comments 3-5 

external subroutines 1-12 

file variables 5-7 

indirect calls 3-167 
~ 

passing arguments 2-45 

passing variables 3-57 

revision 200 features G-l 

using SUBROUTINE 3-236 

CASE statement 3-43 

CAT operator 2-27 

CATALOG verb 1-11 

CCDELETE 3-127 

CHAIN statement 3-44 

index-1 
Confidential and Proprietary to The Ultimate Corp. 



Index 

DATA statement 3-64 

RUN verb 1-15,2-46 

subroutines 3-237 

trapping OFF 3-248 

CHAR function 3-46, 3-223 

CLEAR statement 3-47,5-16 

CLEARDATA statement 3-48, G-2 

CLEARFILE statement 3-49 

CLEARS ELECT statement 3-51, G-2 

CLOSE statement 3-52 

COLO function 3-55, 3-99 

comments 1-5,3-5,3-7,3-201 

COMMON statement 3-53 thru 3-56, G-2 

allocating 2-45 

comments 3-5,3-201 

defining arrays 2-12 

dimensioned arrays 3-56,3-144 

external subroutines 3-167 

file variables 2-11 

in subroutines 3-237 

named COMMON 3-58,3-59 

releasing named COMMON 3-199 

revision 200 features G-1 

with $INCLUDE 3-11 

with CALL 3-40 

with ENTER 3-80 

comparisons 

arithmetic values 2-23 

floating point 2-24, 3-94 

string values 2-24 

compileandgo 1-16,3-180 

COMPILE verb 1-7, 4-3 

compiler directives 

$* 3-7 

$CHAIN 3-8 

$COMPATIBILITY 3-9 

$INCLUDE 3-11 

$NODEBUG 3-12 

summary 1-4,3-4 

compiler messages (see Appendix A) 

compiler version number 1-10 

index-2 Ultimate BASIC 

concatenation 2-27 

constants 2-8 

control characters 

input 3-121 

conversion codes 

input 3-113 thru 3-114 

output 3-161 thru 3-162 

CONVERT statement 3-60, G-2 

COS function 3-61 

COUNT function 3-62, 3-67 

CRT statement 3-21,3-63,3-75, G-2 

cursor positioning 3-21,3-120 

• 0 • 

data stack 3-48, 3-64, 3-124 

DATA statement 3-64 thru 3-65 

clearing data 3-48 

with INPUT 3-124 

data types 2-18 

date 

external date 3~247 

internal date 3-66 

DATE function 3-66 

DCOUNT function 3-67,3-88,5-15 

debugger 

$ command 4-28,4-32 

* command 4-28,4-32 

/ (list) command 4-3,4-30 

? command 4-28,4-32 

[] (substring) command 4-33 

B command 4-6 

breakpoints 4-6, 4-17 

BYE command 4-9 

compiler restrictions 4-3 

D command 4-11 

DEBUG command 4-11 

E command 4-12 

END command 3-141,4-13 

entering 1-15 

G command 4-14 

hints 5-16 

Confidential and Proprietary to The Ultimate Corp. 
6929-3 

[ 

'- /' 



( 

inhibiting entry 1-14 

K command 4-17 

L command 4-18 

list (f) instruction 2-11 

LP command 4-18 

N command 4-19 

o command 4-20 

OFF command 4-21 

P command 4-21 

PC command 4-21 

privilege level 4-3 

STOP command 4-24 

symbol table 1-9 

T command 4-25 

trace table 4-25 

trapping OFF 3-250 

U command 4-27 

V command 4-28 

Z command 4-29 

debugger commands 

summary 4-3 thru 4-5 

debugger messages (see Appendix C) 

debugger prompt 4-1 

DECATALOG verb 1-13 

DEL statement 3-69 

DELETE function 3-69,3-70 

DELETE statement 3-71,3-261 

descriptor table 2-43, 3-234 

DIM statement (see DIM{ENSION) statement) 

dimensioned arrays 

accessing 5-15 

assigning values 3-15,3-144,3-148 

copying 3-144 

derming 2-12, 3-73 

format 2-12 

in COMMON 3-56 

passing to subroutines 3-237 

reading into 3-149 

size 3-118 

writing from 3-153 

DIM{ENSION} statement 3-73 thru 3-74, G-2 

6929-3 Ultimate BASIC 

comments 3-5, 3-201 

defining 2-12 

INMAT value 3-118 

MAT = statement 3-144 

revision 200 features G-l 

with COMMON 3-56 

DISPLAY statement 3-21,3-63,3-75 

dynamic arrays 

accessing 5-13 

arithmetic opemtions 3-209 

copying into dimensioned array 3-148 

deleting elements 3-69,3-70 

description 2-14 

extracting elements 3-92 

format 2-12 

inserting data 3-130, 3-131 

locating elements 3-137 

reading 3-185 

reading single attribute 3-194 

replacing elements 3-206 thru 3-207 

sorting 3-227 

summing 3-239 

- E -
EBASICverb 1-7 

EBCDIC function 3-35, 3-76 

ECHO statement 3-77, G-2 

EDIT Verb 1-6, 1-7 

EEDIT verb 1-6, 1-7 

Index 

END CASE statement 3-79 (also see CASE 

statement) 

END statement 3-78,3-116,3-177,3-248 

ENTER statement 2-46, 3-80 

entering the debugger 4-2 

EOF function 3-81,3-108,3-218 

EQU{ATE} statement 3-82 thru 3-83 

assignment 3-15 

comments 3-5, 3-201 

revision 200 features G-l, G-2 

ERRMSG file 3-84,3-86,3-107,3-182,3-218, 

3-250 

index-3 
Confidential and Proprietary to The Ultimate Corp. 



Index 

ERRTEXT function 3-84, 0-2 

EXECUTE statement 3-85 thru 3-89, G-2 

CRT statement 3-63 

DISPLAY statement 3-75 

message buffer 3-218 

messages 3-86, 3-87, 3-182 

named COMMON 3-59 

stacked input 3-64 

trapping OFF 3-250 

execution locks 3-140,3-254 

EXIT statement 3-90 

EXP function 3-91 

extended arithmetic 2-21 

external subroutines 

cataloging 1-12 

defining 3-236 thru 3-237 

exiting 3-208 

opening 3-167 

PRECISION statement 3-170 

with CALL 3-39 tbru 3-42 

with CHAIN 3-44 

with COMMON 3-56 

EXTRACT function 3-92 

- F -
FADD function 3-93 

FCMP function 3-94 

FDIV function 3-95 

features 1-1 

FFIX function 3-96 

FFL T function 3-97 

FIELD function 3-55, 3-98, 0-2 

file variables 

closing 3-52 

description 2-11 

internal 3-237 

passing 5-7 

files 

clearing 3-49 

closing 3-52 

deleting items 3-71 

index-4 Ultimate BASIC 

opening 3-165 

reading attributes 3-194 

reading from tape 3-192 

reading items 3-149,3-185 

reading sequentially 3-189 

releasing 3-198 

selecting 3-220 

structure 5-2 

summary of statements 5-6 

writing attributes 3-266 

writing items 3-153,3-260 

writing to tape 3-263 

fixed point numbers 2-4 

floating point numbers 2-5 thru 2-6 

adding 3-93 

comparing 3-94 

convert to fixed 3-96 

creating 3-97 

dividing 3-95 

multiplying 3-101 

power function 3-184 

subtracting 3-106 

FMT function 2-29,3-100, G-2 

FMUL function 3-101 

FOOTING statement 3-102 thru 3-103 

CRT statement 3-63 

DISPLAY statement 3-75 

HEADING statement 3-111 

PAGE statement 3-168 

PAGING statement 3-169 

FOR/NEXT statement 3-104,3-157, G-2 

format masks 2-29,3-100 

format strings 2-29 tbm 2-32 

free storage area 2-43 

FSUB function 3-106 

FUNCKEYS 3-128 

functions 

floating point 2-6 

string numbers 2-6 

summary 2-3, 3-4 

Confidential and Proprietary to The Ultimate Corp. 

'~~~~~"---~-- --- ~~~~~--~~~- -~-.-~-------

c' 



-- - ---------------- -_. __ ._---------.- -. - .. -------.-.- ... ---.----------~ 

(,: 

(-

-G/H-
GET statement 3-87,3-107,3-182,3-219 

GOSUB statement 3-109 

GOTO statement 3-110 

HEADING statement 3~111 thru 3-112 

CRT statement 3-63 

DISPLAY statement 3-75 

FOOTING statement 3-101 

PAGE statement 3-168 

PAGING statement 3-169 

hexadecimal characters 

converting 3-113,3-161 

reading from tape 3-192 

writing to tape 3-264 

- I -
I/O statements (summary) 5-6 thru 5-8 

ICONV function 3-113 

IF statement 3-115 

INCLUDE directive 3-11, G-l 

INDEX function 3-117 

INMATO function 3-118 thru 3-119, G-2 

DIM statement 3-74 

MATPARSE statement 3-148 

MATREAD statement 3-150 

INPUT prompt character 3-121,3-181 

INPUT statement 3-120 thru 3-125, G-2 

editing commands 3-128 

INPUTCLEAR statement 3-126 

INPUTCONTROL 3-127 thru 3-1.29 

NULL statement 3-159 

PRINTERR statement 3-176 

PROMPT statement 3-181 

stacked input 3-64 

TRAP statement 3-251 

input verification 3-123 

INPUTCLEAR statement 3-122,3-126 

INPUTCONTROL statement 3-127 thru.3-129 . 

INS statement 3-130 

INSERT function 3-131,3-'138 

INTfunction 3-133, 

6929-3. Ultimate BASIC 

Index 

internal file variable 3-237 

internal select variable 3-220,2-237 

item locks 3-149 thru 3-152,3-154,3-186,3-195 

- L -
labels 1-3 

LEN function 3-134 

LET statement 3-15,3-135 

limited expressions 2-42 

lines per page 3-168 

LN function 3-136 

local subroutine 3-109,3-208 

LOCATE statement 3-137 thru 3-139 

LOCK statement 3-140 

locks 

execution 3-140,3-254 

item 3-149 thru 3-152, 3-154, 3-186, 3-195 

read 5-11 thru 5-12 

logical expressions 2-37 

LOOP statement 3-90,3-142 

- M -
main program descriptors 2-45 

master dictionary items 2-10 

MAT';' statement 3-15,3-144 

MATCHFIELD function 3-146, G-2 

MATCH{ES) operator 2-35,3-146, G-2 

MATPARSE statement 2-13,3-74,3-118,3-148, 

G-2 

MATREAD{U} statement 2-13,3-74,3-82, 

3-118,3-149 thru 3-152, G-2 

MATWRITE{U} statement 2-13,3-153 thru 3-155 

MOD function 3-156,3-200 

MSG. 3-81,3-87,3-107,3-182 

multi-line statements 1-3,3-115 

multi-statement lines 1-3 

- N -
named COMMON areas 3-58,3,198,5-7 

network considerations 5-7 

NEXT statement 3-101,3-157 

index-5, 
Confidential and Propri(!tary to The :UltimateCorp.· , 



Index 

NOT function 3-158 

NULL statement 3-159 

NUM function 3-160 

numeric data 

comparison 2-24 

fixed point 2-4 

floating point 2-5 

internal representation 2-18 

masks 2-29 

maximum value 2-18 

precision 3-170 

string numbers 2-6, 2-18 

- 0 -
. object code 

comments 3-7 

compiling source 1-7 

pointers 1-2 

verifying 4-28,4-32 

object code size 1-10, G-4 

OCONV function 3-161 

ON GOSUB statement 3-109,3-163 

ON GOTO statement 3-110,3-164 

OPEN statement 3-165 thru 3-167, G-2 

files 3-165 

INMAT 3-118 

subroutines 3-39,3-167 

order of operations 2-16 

- p -
PAGE statement 3-63,3-75,3-168 

PAGING statement 3-169, G-2 

PAGING OFF 3-102; 3-111 

pattern matching 2-35,3-146 

performance 5-18 

pointeritems 1-2 

precedence 
arithmetic operators 2-16 

concatenation 2-27 

format masks 2-31 

logical operators 2-37 

index-6 Ultimate BASIC 

parentheses 2-17 

relational operators 2-33 

substrings 2-27 

summary 2-39 

PRECISION statement 2-4,2-18,2-22,3-170 

predefined symbols 2-9 

PRINT ON option 3-171 

PRINT statement 3-21,3-171 thru3-173 

PRINTER command 3-21 

printer selection 3-174 

PRINTER statement 3-171,3-174 thru 3-175 

PRINTER ON option 1-15,3-63,3-75,3-171, 

3-174 

PRINTERR statement 3-122, 3-126, 3-176 

PROCREAD statement 3-177 

PROCWRITE statement 3-179 

program name 1-2 

PROGRAM statement 3-180 

programs 

cataloging 1-11 

comments 1-5 

compile and go 1-16,3-180 

compiling 1-7 thru 1-10 

components 1-3 

compressing 1-6, 1-7 

creating 1-6 

cross-reference 1-9 

decataloging 1-13 

executing 1-12, 1-14 

executing automatically 1-11, 1-15 

executing source programs 1-16 

file structure 1-2 

including 3-11 

linking 3-8 

listing 1-8 

pausing 3-225 

resume execution 4-14 

terminating 3-29,3-44 . 

using blanks 1-4, 3-1 

prompt characters 3-181 

PROMPT statement 3-121,3-181 

6929-3 
Confidential and Proprietary to· The Ultimate Corp. 

~~~ ... -----_ .. 

()

c

("

"

PUT statement 3-182

PWR function 3-183

- R -
random numbers 3-212

read locks 5-11 thru 5-12

READNEXT statement 3-51,3-88,3-189 thru

3-191,3-220

READT(X} statement 3-192 thru 3-193, 0-2

READV(U} statement 3-194 thru 3-197

READ(U} statement 3-185 thru 3-188

relational expressions 2-33

RELEASE /name/ statement 3-59

RELEASE statement 3-154,3-198 thru 3-199,

3-261,0-2

REM function 3-156, 3-200

REMark statement 1-5,3-5,3-201

REMOVE statement 3-203, 0-2

REPEAT statement 3-205

REPLACE function 3-206

reserved words 2-2

RETURN (TO) statement 3-109,3-208,3-236

REUSE function 3-209,0-2

reverse video 3-127

revision 200 features (see Appendix G)

REWIND statement 3-211

RND function 3-212

RQM statement 3-213, G-2

rules for standard arithmetic 2-20

RUN verb 1-7,1-14,2-46,3-44,3-128,3-171

run-time messages (see Appendix B)

- S -
SADD function 3-214

SCMP function 3-215

SDIV function 3-216

SE verb 1-6, 1-7

SEEK statement 3-218

segment mark (SM) 2-7

SELECT command 3-221

select lists

6929-3 Ultimate BASIC

accessing items 5-9

clearing 3-51

creating 3-190,3-220

with EXECUTE 3-86 thru 3-88

SELECT statement 3-220 thru 3-222,0-2

SELECT verb 3-88

SEQ function 3-223

setting breakpoints 4-6

SET-LOGOFF command

trapping 3-250

SET-TERM command 3-21

SIN function 3-224

size

dimensioned arrays 2-14,3-74,3-118

number of variables 2-8

numeric data 2-18

objectcode 1-10,3-8,3-11

string numbers 2-18

strings 2-7

variable names 2-8

SLEEP statement 3-225, 0-2

SMUL function 3-226

SORT function 3-227, G-2

SOUNDEX function 3-228,0-2

SP-ASSIGN command 3-174

SPACE function 3-230

spaces

generating 3-230

removing 3-253

SQRT function 3-231

SSUB function 3-232

statement labels 1-3,3-159

statement map 1-8
~

statements

format 3-1

summary 3-3

STOP statement 3-32, 3-233, 3-248

STORAGE statement 2-44, 3-234

STR function 3-235

string data

ASCII comparison 2-24

Index

index-l
Confidential and Proprietary to The Ultimate Corp.

Index

concatenation 2-27

converting characters 3-60

delimiters 2-7

expressions 2-26

length 3-134

numbers 3-96, 3-97

pattern matching 3-146

string numbers 2-6

string length 3-234

string numbers

adding 3-214

comparing 3-215

dividing 3-216

multiplying 3-226

power function 3-184

subtracting 3-232

subroutine descriptors 2-45

SUBROUTINE statement 2-45,3-236 thru 3-238,

G-2

subroutines
external 3-40,3-1703-208,3-236

local 3-109,3-163,3-208

opening 3-167

returning from 3-208

subscripts 2-12

substrings

assigning 3-13 thru 3-20

counting 3-62, 3-67

defming 2-26

extracting 3-98

locating 3-117

overlaying 3-16

replacing 3-17

subvalue mark 2-14,5-3

SUM function 3-239, G-3

symbol table 1-2,1-7,1-9,3-12,4-3

system debugger 4-11

system delimiters 5-3 thru 5-5

SYSTEM function 3-122,3-128,3-192,3-240

thru 3-244, G-3

system variables 2-10

- T -
TAN function 3-245

tape statements
end of file 3-257

reading records 3-193

rewinding 3-211

writing records 3-263

TERM command 3-21,3-168

TERMINAL command 3-21

terminal display

@ functions 3-21 thru 3-30

INPUTCONTROL statement 3-128

selecting 3-174

terminal output 3-63, 3-75

terminal type 3-21

time

external 3-247

internal 3-246

TIME function 3-246

TIMEDATE function 3-247

trace table
deleting 4-27

setting up 4-20,4-25

TRAP ON THEN CALL statement 3-243, 3-248

thru 3-252, G-3

trigonometric functions
COS function 3-61

SIN function 3-224

TAN function 3-245

TRIM function 3-253, G-3

typeahead buffer 3-126,3-176

- u -
UltiNet considerations 5-7

UltiNet files (see files)

UNLOCK statement 3-141,3-254

UNTIL clause 3-104,3-142

UNTIL statement 3-255

system performance 5-18 user exits (see Appendix E)

index-8 Ultimate BASIC
Confidential and Ploprietary to The Ultimate Corp;

----------------- ---------- ------

, ' C-"

USERMSG file F-l

USERTEXT function 3-256, F-l, G-3

- V -
value marks 2-14,5-3,5-4

variable allocation 5-18

variable data area 2-43

variable map 1-8

variables

allocation 2-8, 3-44, 3-56 thru 3-59

arrays 2-13

assigning 3-13 thru 3-20

clearing 5-16

COMMON 3-57

file 2-11

initializing 3-44, 3-47, 3-80

maximum number 2-8

names 2-8

predefined 2-9

values of 2-9

- w
WEOF statement 3-257

WHILE clause 3-104,3-142,3-259

WRITE statement G-3

WRITET{X} statement 3-263, G-3

WRITEV{U} statement 3-266

WRITE{U} statement 3-260

6929-3 Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

Index

index-9

Index

Notes

it.-
~

index-10 Ultimate BASIC 6929-3
Confidential andProprietary to The Ultimate Corp.

C---
/

Reader Comment Form

Ultimate welcomes your comments. If you find a problem or error in this manual, or can suggest
an improvement, please complete this form. Please attach additional sheets, if necessary.

Name of Manual: Ultimate BASIC Language Reference Guide

Document No.: 6929-3 Dare: ____________________________________ _____

Comments

FROM:

Name: System Number: _______ _

Company~: __ ___

Address:

City: State:

Fold and tape. Please do not staple.

THE ULTIMATE CORP.
717 Ridgedale Avenue
East Hanover, NJ 07936
Attn: Documentation Manager

Fold and tape. Please do not staple.

Zip:

Place
Stamp
Here

('

c

Ultimate
THE UL TIMATE CORP

Problem Identification Form ac#
Name Date

System No. Phone # Release Affected

Area Affected (circle one): Async, BASIC, Bisync, Docu, Editor, OS, Passthru, Proc/PROVERB,

RecaII/RETRIEVE, RPL, Runoff, Security, Spooler, System, Tape, TCL, UltiCaIc, UltiKit, UltiLink,

UltiMation, UltiNet, UltiPlot, UltiProc, UltiWord, UltiWriter, Update/REVISE, Upgrade

Hardware Platform (circle one): 1400, Bull, Bull DPX/2, HP, IBM, LSI, RS/6000, RT, SEQ, VAX

Is problem reproducible? (YIN) __
Example supplied? (YIN) __
Tape supplied? (YIN) __

If problem is reproducible, please supply example,
T -Dump of program or proc, etc. to enable
immediate processing.

Detailed description and/or steps used to recreate problem. (please print clearly.)

System Model __ _ CRT Models _________________ _
Memory Size
of Ports

Printer Models
of Parallel Pri"-n-te-r-s ------#~o-=-f-=S"-en-:-· al--=-=Pri=--:-· n-t-'-ers-====--=--=--=-

KemelRev.

Date Verified _____ _
For Ultimate Use Only

Priority ____ _
Verified by ~-::-:::--:-::---::~ _____
Category: 1400, Bull, Comm, Doeu, IBM, LSI, as, SEQ, SIO, ULT/ix, Upgrade, Util, VAX

Response/Status

Confidential and Proprietary o/The Ultimllte Corp.

FROM:

COmp~y:--

Adrnress:,--

a~: -------------------------- State:

Fold and tape. Please do not staple.

THE ULTIMATE CORP.
717 Ridgedale Avenue
East Hanover, NJ 07936
Attn: Technical Support

Fold and tape. Please do not staple.

Zip:

~1ace
Stamp
Here

c

c

c·

Ultimate Technical Support Suggestion Form

Priority
Verified

By
Date
Received

For Ultimate Use Only

Category Mfected: Systems, Applications, Other

Release Affected

Contact Name

Your System No.

Detailed Description

Date Submitted

Telephone No.

QC
Number

System Configuration (memory size, number of ports, types of tenninals and printers, etc.)

Response/Status Date

FROM:

COmpMy:--

Address:---

City: State:

Fold and tape. Please do not staple.

THE ULTIMATE CORP.
717 Ridgedale Avenue
East Hanover, NJ 07936
Attn: Technical Support

Fold and tape. Please do not staple.

Zip:

Place
Stamp
Here

o

717 Ridgedale Avenue
East Hanover
New Jersey 07936
201/ 887 9222
FAX 201/8879546

o

C·i '
"

c

