

o

TYMSHARE MANUALS

REFERENCE SERIES

SUPER BASIC

September 1968

Tymshare, Inc.
745 Distel Drive

Los Altos, California 94022

334 East Kelso Street
Inglewood, California
90301

464 Hudson Terrace
Englewood Cliffs, New Jersey

07632

Please send all comments about this manual to:
Library & Documentation Department, Tymshare, Inc.
925 East Meadow Drive, Palo Alto, California 94303

f

CONTENTS.

INTRODUCTION. •• xiii

SECTION 1 A SUPER BASIC PRIMER............................. 1

A. An Example .

Assignment Statement .•••••••••

..

Statements.

1

1

1

2

2

2

2

2

3

3

4

......................
number.

..............................

................................

................................

line

list ••••..•..•.

list.

.......................................

THEN

.......................................

Statements •••••••••••••••••••••••••••••

variable

variable

.. text II ••••••••

Numbers.

Length.

Indirect

Direct

conditionIF

PRINT

PRINT

INPUT

Statements •.•

Line

Line..

GO TO line n wnber. • • • • • • . . . • • . • • • • • . • • • • • • • • • • • . • • •• 4

Running The Example Program••••••• 4

B. Fundamental Concepts Of SUPER BASIC •••••••.••••••••••• 6

...Nwnbers.

How To Type Nwnbers Into SUPER BASIC.

6

6

How SUPER BASIC Prints Numbers ••••••••••••.••••• 6

VAR=UNDEF Command.

Expressions ..•

.......................................

VAR=ZERO

7

7

8

9

9

10

..........................

..........................

...........................

...........................
Command.

Expressions.

Names •••••••Variable

The

The

Mathematical

Arithmetic

Variables ••.•

iii

Relational Expressions.

CONTENTS (Continued)

........................... 11

C. Using Loops In A Program: The FOR And NEXT State-
mEants • . • • . • . • • • • •• 12

SiJ;lgle Loops...................................... 12

FOR And NEXT.

The STEP Or BY Clause.

................................
.......................

13

14

In FOR Loops.

FOR value

Errors

list ••.••• ·........................
·........................

14

14

•

Nested Loops •••••••• ·........................ 15

The Multiple NEXT Statement. 15

D. Supplying Data Within The Program:
Data Statements ••••••••••••••••••••

The READ And
16

READ. ...
DATA.

RESTORE.

16

17

17

E. Entering And Using A SUPER BASIC Program•••••••••••. 18

Typing A Program Into SUPER BASIC••••••••••••••••• 18

Reading A Program From Paper Tape. . •.••••••••• 18

How To Punch Paper Tape Off Line.

The TAPE Command.

18

19

Running A Program.................................. 19

Saving A Program.................................. 20 •
An Example Of TAPE, RUN, And SAVE. 21

Reusing A Saved Program•..••.••••••••••••••••..••• 21

Looking At A Program.... • . • • • •• 22

Comments In A Program•••••.••••••••••••••••••••••• 22

Self-Starting Programs............................ 22

iv

"(.

CONTENTS (Continued)

F. Simple Editing in SUPER BASIC ••••••••••••••••••••••• 23

.............................Inserting Statements.

Deleting Statements ••••••.•••••
23

23

The DELETE Command ••••••• 23

............................
Changing Statements •.••••••••••••••••••••••••••

ft..

..

Control Q.•.•••.•

Control A•••••••••••••••••••••

...
...............

23

23

24

G. Review of Commands in Section 1 ••••••••••••••••••••• 24

H. Sample Programs..................................... 25

Product Of A Set Of Numbers ••••••••••••

Double Declining Balance Depreciation ••

...........

...........
25

26

SECTION 2 - SUPER BASIC ADVANCED FEATURES ••••• 28

"\.
A. The Multiple Assignment Statement ••••••••••••••••••• 28

B. Additional Printing Features ••.••••••••••••••••••••• 28

................Printing Blank Lines ••••••••••••••

The PRINT Zones •••••••••.••••••••••••
28

28

Normal PRINT Z·ones ••••••••• 29

Packed PRINT Zones ••••••••••••••••••••••••••• 30

Concatenated PRINT Zones ••••••••••••••••••••• 30

Concatenation Of PRINT And INPUT •••••••••••••••••• 31

The TAB Function•••••••••••••••••••••••• 32

C. Additional IF Statement Features •••••.•••••••••••••• 32

If condition THEN statement••••••••••••••••••••••• 32

The IF-THEN-ELSE Sequence ••••••••••••••• 32

Combining IF Statements ••••••••••••••••••••••••••• 33

v

CONTENTS (Continued)

Input From A File.

Functions.

·..'

·.........................'

,

33

34

34

35

35

36

36

36

37

37

37

38

38

39

.................

.................

.........................

...............................

...............................

·...............................

·...............................
·...............................

·..........

and Output.

IP (X) ••••••••••••••

·...............................

Defined Functions ••••••

or

SUPER BASIC Functions.

·.......................................

and pas (X)

Input

To A File.

RND (X)

SGN (X)

pas

FIX (X)

Output

Opening A File ••••

Additional

INT(X)

FP(X) •

Closing A File.

Progranuner

Additional

Data File

E.

D.

F. Subscripting And Array Manipulation •••••••••••••••.• 41

Subscripted Variable

Subscripts •••••

Names. 41

41

Si ze 0 f Arrays. • . • • • • • • • • • • • • •• 4 2

Conunand.

The

The

DIM Conunand ••

BASE

·................................
·................................

42

43

Matrix Operations...................... • • • • • • • • • •• 44 ..
1. Input Of Matrix Data ••••••••••••••••••••••• 44

.MA.TRE.AD............................... 4 4

MA.T INPUT.............................. 45

2. Output Of Matrix Data•••••••••••••••••••••• 46

~~ l?~:r~~ •••.••••••.••••••.••...••••••. 46

vi

CONTENTS (Continued)

Mathematical Operations With Matrices .•••.•

Scalar Multiplication.

.......................

Matrix Initialization.

46

47

47

47

47

48

48

48

....................

....................

.....................

.....................
Matrix Inversion .•.•.

Matrix Transposition.

Matrix Multiplication.

Matrix Subtraction.

Matrix Addition ••••

4.

3.

I)

Setti~g All Elements To Zero. ·............ 48

Setting All Elements To One. ·............. 49

Setti~g An Identity Matrix ••• ·............ 49

5. Example Of Matrix Operations •• ·............ 49

G. 'Subroutines •.•.•.•.

GOSUB And RETURN.

..................................
.............................

50

50

Isolati~g Subroutines ••••••••••.•••••••••.•••••.••• 52

.........

Computed GO TO And GOSUB Statements ••

Logical Variables And Expressions.

...............................

53

53

53

54

54

54

55

56

58

·.............
·.............

.................
And Operators.

.......................

...............

...............................

.................................

Expressions,

STOP or END •.•.•.

Logical Operators.

Declaring Logical Variables.

Statement Modifiers.

ON •.• GO TO.

ON ••. GOSUB.

Logical Variables,

I.

H.

IF And UNLESS .•.•.•.•.•.•.•.•.•.•.•.•.•.•.•••.•.•.. 58

F()~. • • • . • • • . • . • . • • • • • • • . • • • • • . • . • • • . • . • • • • • . • . • . • •• 59

WHILE And UNTIL. 59

vii

CONTENTS (Continued)

J. Strings •••••••••••••••••••••••••.•.••••••••••••••••• 62

String Variables •••••••••••••••••••••••••••••••••• 62

Assigning And Printing String Values •••.••••• 62

...............
....................

Declaring String Variables ••••••••••

Assigning Declared String Variables.

INPUT And READ Statements.

Assignment Statement.

.........

.........
63

64

64

65

The Null String••.••••••••••••••••••••••••••• 66

String Concatenation...................... 66

A String Expression In The OPEN Statement. 66

String Functions .•••••••.•••••••••••••••••••• 67

Comparing Strings • . • . •• 69

K. Complex Arithmetic ••.••••••••••••••••••••••••••••••• 70

Complex Variables................................. 70

Complex Functions................................. 71

L. Picture Formatting ••••••••••••••••.•.••••••••••••••• 72

PRINT IN IMAGE Statements •••• 73

Integer Field•••••••••••••••••••••••••••••••• 73

Decimal Field•••••••••••••••••••••••••••••••• 74

Field Of Strings.

E Format Field •••
............................

75

76
•

Descriptive Text In A Format ••••••••••••••.•. 76

Floating $ Field••••••.•••••••••••••••••.•.•. 76

The * Field ••••••• 77

Image Repetition •.•••.•••.••••••••••••••••••• 78

viii

"\
CONTENTS (Continued)

PRINT IN FORM Statements •••••••••••••••••••••••••• 78

Numeric, String, And Blank Fields•••••••••••• 79

Character And Field Replication •••••••••••••• 79

Field For Descriptive Text •••••••••••••••••.• 80

Carriage Return In A Format •••.•••••••••••••• 80

.41
M•

The Single #•••••••••••••••••••••••••••••••••

Advanced Editing Features •••••••••••••••••••••••••••

81

82

Editing The Line Being Typed •••.•••••••.•••••••••• 82

The TABS Conunand............................. 82

File Name Editing •••••••••••••••••••••.•••••• 85

Data Input Editing •••••••.••••••••••••••••••• 85

Editi~g A Line Already Typed •••••••••••••••••••••• 86

EDIT And MODIFy.............................. 86

Editing The Previous Line •.•••••••••••••••••• 87

The RENUMBER Command.............................. 88

Renumberi~g To The End Of The Program•••••••• 88

Renumbering A Range Of Lines ••.•••••••••••••• 89

Omitti~g Parts Of The RENUMBER Command .•••••. 89

RENUMBER With ADD............................ 90

11

N. Control Of Running Programs •••.•••••••••••••.•••••••

Control Conunands ••••••••••••••••••••••••••••••••••

90

90

SECTION 3 - SUMMARY OF SUPER BASIC •••••••••••••••••••••••••• 96

1. VARIABLES AND ARRAyS................................ 96

Variable Names.................................... 96

Subscripted Variable (Array) Names .••••••••••••••• 96

Variable Initialization••••••••••••••••••••.•••••• 96

Value Types •••••••••••••.•••••••••••.••••••••••••• 96

DIM And Declaration Statements •••••••••.•••••••••• 97

ix

2. OPERATORS.

CONTENTS (Continued)

.. 97

3. FUNCTIONS •••••••••••• 98

Standard Functions •••••••••••

Programmer Defined Functions.

..................... 98

99

4. INPUT/OUTPUT STATEMENTS •••••••••••••••• 100

Fundamental Input/Output Statements •• 100

Data File Input/Output Statements. 101

Picture Formatted Output .•••••.••• 102

5.

6.

MAT STATEMENTS ••••••

CONTROL STATEMENTS ••

FOR and NEXT ••••••

...............................

...............................
104

105

106

7.

8.

9.

STATEMENT MODIFIERS.

LOADING AND SAVING THE PROGRAM.

EDITING AND UTILITY COMMANDS ••••

107

107

108

SECTION 4 - SAMPLE SUPER BASIC PROGRAMS. 109

Listing Stocks •••••••

Percentage Bar Chart.

Directory of Addresses ••

Cube Root ••••...••••••

Fundamental Frequency.

109

III

113

115

117

Gross Pay... 119

APPENDIX A - ALPHABETIC LIST OF ALL SUPER BASIC STATEMENTS
AND CHARACTERISTICS •••••••••.•.•••••.•••••••.•••••••.•

APPENDIX B - DECLARATION STATEMENT STORAGE ALLOCATION.

x

122

124

CONTENTS (Continued)

APPENDIX C THE EXECUTIVE SySTEM••....•. 125

Entering The System••••••••••••••••••••••••••.••••••• 125

Calling SUPER BASIC .•.•••.....••..•.•••••••••••••.•.• 125

How To Punch Paper Tape Off Line.

THE TERMINAL.

ON/OFF Controls.

SUPER BASIC. 126

126

127

127

128

128

129

129

130

.............................

................................
.................................

......................................

Controls.

System•••

Keyboard •.••••••

Paper Tape

Returning To

The

The

The

Deleting Files.

Listing Files •.

Leaving The

APPENDIX D

Q

xi

.~

Q

INTRODUCTION

Tymshare SUPER BASIC represents for the first time a truly
conversational language incorporating features for both business
and scientific applications.

It provides a powerful, yet simple set of commands and
diagnostics that allow the new user to learn the language in a
few hours and yet gives the experienced programmer the most
extensive list of features ever included in a single language.

A few of the outstanding features of SUPER BASIC are:

••••••

String manupulation
Complex and logical variables
Picture formats
Conditional modifiers
Direct commands
Complete built-in editing

This manual contains a complete description of all the
features of SUPER BASIC. Section I describes a subset of com
mands which, once learned by the beginning user, would enable
him to write complete SUPER BASIC programs and run them on the
Tymshare system.

Though written in a tutorial manner, Section I is well
suited for reference. The rest of the commands are included
in Section 2, which, while written more as reference material
than as a tutorial guide, explains each feature in such a way
that the user will· be able to learn easily any new and un
familiar material.

Section 3 contains a summary of the entire SUPER BASIC
la~guage.

Section 4 gives some sample programs written in SUPER BASIC
and executed on the Tymshare system.

The appendices provide an alphabetic list of all SUPER
BASIC commands and characteristics, and some information about
storage allocation, the EXECUTIVE, and the terminal.

xiii

SECTION 1

A SUPER BASIC PRIMER

A. An Example

o

Suppose you want to write a SUPER BASIC program that will:

1. Request that you type in five numbers,
2. Add the numbers (if the result is zero, print the

message SUM IS ZERO and stop),
3. Find' the average (or mean) of the numbers,
4. Print out the sum and the mean, .
5. Ask for five new numbers and repeat the cycle.

The simple program that solves this problem illustrates
several elementary features and commands of SUPER BASIC which
will be explained below. This is the program:

10 PRINT "TYPE FIVE NUMBERS"
20 INPUT A,B,C,D,E
27 S=A+B+C+D+E
32 IF S=O THEN 70
45 M=S/5
50 PRINT S,M
60 GO TO 10
70 PRINT "SUM IS ZERO"

Before explaining this program step by step, we should first
note some, general SUPER BASIC conventions:

Line Numbers

All lines in the program begin with a number. These numbers
identify the lines in the program, which are called statements,
and specify the order in which the statements are to be executed.
You can therefore type the program in any order provided that the
statements are numbered in the order in which they are to be exe
cuted. Before the program is run SUPER BASIC sorts the statements
into the order specified by their line numbers. NOTE: Line num
bers must be integers between 0 and 999999.

Line Length

All statements in the sample program contain fewer than
72 characters (the maximum number of characters that may be
typed across the page). Pressing the Line Feed key while a
statement is being typed will continue the statement on the next
line. A statement may be continued for several lines provided
that the maximum limit of 256 characters is not exceeded. At
the end of each entire statement, a Carriage Return must be
typed. For example, the last statement in the program could
have been typed as:

70 PRINT "SUM IS Lf
ZERO"

1

NOTE: Spaces have no significance in SUPER BASIC except
when they are included in messages to be printed (as in the
above statement). Thus, spaces may be eliminated from all but
these messages if you are not concerned with the readability of
the printed copy.

Statements

Indirect Statements:

All the statements in the program above are called indirect
statements. Any statement that begins with a line number is in
direct; that is, the instruction or command in such a statement
is not executed when it is typed, but is executed when the run
ning- program reaches the statement in normal sequence.

Direct Statments:

Direct statements.do not begin with line numbers and are
executed as soon as they are typed in. Direct statements cannot
be saved as part of a program, as indirect ,statements can.

Some commands can be executed indirectly only, some directly
only, and others may be used either way. For example, if GO TO
10 had been typed in our sample program without the line number
60, SUPER BASIC would have executed the command immediately by
transferring to statement 10 and continuing execution from there.
All this would have happened before you could have typed in any
more statements. To find out if a command can be executed in
directly, directly, or both, see Appendix A.

PRINT "Text"

When SUPER BASIC encounters the first statement,
10 PRINT "TYPE FIVE NUMBERS"
the text included within the double quote marks is printed on the
terminal. In this case the text is an instruction to the person
who is running the program: he is instructed to type five numbers.
The text also could have been enclosed in single quote marks.

INPUT Variable List

The INPUT command in the second statement,
20 INPUT A,B,C,D,E
will, when executed, cause SUPER BASIC to print a question mark
followed by a space and wait for five numbers to be typed in. l
The letters A through E in this statement are called variables.

lIf you type in fewer numbers than required, SUPER BASIC will
wait for the rest of the input.

2

o

•

Their purpose is to store values that will be used later in a
computation. The first number typed will be stored in A, the
second in B, and so on. Just as the comma is used to separate
variables in the INPUT statement, it is used also to separate
the values when they are typed in. 2 This will be shown later
in an illustration of the actual run of the sample program.

Assignment Statement

statement 27,
27 S=A+B+C+D+E
is called an assignment statement. This statement is similar
to the others in' the program which begin with a command word,
except that in this case the word need not be typed. The
optional word which may be included in an assignment statement
is LET. For example, statement 27 could have been typed as:
27 LET S=A+B+C+D+E

The function of the assignment statement is to compute the
value of the expression on the right of the = and assign that
value to the variable on the left. NOTE: An express~on may not
be typed to the left of the =; for example, A+B=C is not a
valid ass~gnment statement.

Since the = means "is assigned the value of" rather than
"is equivalent to", the following is a valid assignment state
ment:
15 X=X+I
If the value of X were 5 before this statement was executed,
the statement would set X to 6.

The rules which govern naming variables and typing ex
pressions correctly are included in Section I(B).

IF Condition THEN Line Number

In statement 32,
32 IF S=O THEN 70
we test to see if the value of S is zero. If it is, ~hen, when
this statement is executed, SUPER BASIC will go to line 70 where
it prints the message SUM IS ZERO and stops since there are no
more statements to execute. If S is not zero, SUPER BASIC
will continue to the next statement in sequence,
45 M=S/5
This assignment statement calculates the mean and assigns the
result to M. Note that since the sum of the five numbers has
been calculated previously and assigned to the variable S, we
do not need to repeat the computation of S in this statement.

2Spaces also may be used to separate the values when typed in.

3

PRINT Variable List

When SUPER BASIC encounters the next statement,
50 PRINT S,M
the values which were computed ~nd assigned to 5 and Mare
printed. A comma is used to separate the variable names.

Since any number or expression also may follow the PRINT
command, we could have omitted assignment statement 45 and
typed the PRINT statement 50 as:
50 PRINT s, S/S

If SUPER BASIC were to encounter this statement, it would
print S, compute 5/5 and then print that result.

GO TO Line Number

The IF statement causes a conditional transfer; that is,
SUPER BASIC will transfer to another part of the program pro
vided that a certain condition is true. The GO TO command how
ever, transfers to another statement unconditionally. Thus,
when
60 GO TO 10
is executed, SUPER BASIC goes to line 10 and requests new values
for A,B,C,D, and E.

Note the importance of certain statements in the program.

• What would happen if we were to omit statement 50? SUPER
BASIC would solve for 5 and M but would never print the results;
the solution would remain the secret of the computer.

• Suppose we omitted statement 32. Then, if S were zero,
SUPER BASIC would not print SUM IS ZERO and stop as we had
specified. Instead, the mean would be calculated (also as zero),
the sum and mean would be printed, and five more numbers would
be requested.

• If we were to omit statement 60 (the unconditional trans
fer), SUPER BASIC would, after printing the values of Sand M,
print the message SUM IS ZERO and stop.

Running The Example Program

The entire procedure for entering the Tymshare system,
running the example program, and leaving the system is illustrated
and explained below:

4

Q

PLEASE LOG IN: Cr•••••••••••••••• The system types this request
-- as soon as the connection to the

Tymshare computer is made. Type
a Carriage Return.

ACCOUNT: Q5 Cr••••••••••••••••••• Type your account number followed
by a Carriage Return.

PASSWORD: Cr••••••••••••••••••••• Type your password followed by
-- a Carriage Return. The password

does not print.

USER NAME: JONES Cr•••••••••••••• The system next asks for the
-- user name, which is typed and

followed by a Carriage Return.

PROJ CODE: K123 Cr•••••••••••••••A response to this last request
-- is optional. If desired, type

a project code followed by a
Carriage Return~ otherwise type
only a Carriage Return.

PRINT "TYPE FIVE NUMBERS~

INPUT A,B,C,D,~

S=A+B+C+D+~

IF S=O THEN 7~

M=S/~

PRINT S,M~

GO TO 10..?
PRINT "SUM IS ZERO~

READY 4/27
-SBASIC';

> 10
> 20
> 27
> 32
> 45
> 50
>60
> 70

11:17 •••••••••••••••• The system is ready. The dash
indicates that you in the
EXECUTIVE and can call SUPER
BASIC by typing SBASIC Cr. The
> indicates that SUPER BASIC is
ready and you may begin to type
in the program statements.

>RUN Cr•••••••••••••••••••••••••• The direct command RUN Cr causes
SUPER BASIC to execute the pro
gram.

TYPE FIVE NUMBERS •••••••••••••••• Five numbers are typed in,
separated by commas. A Carriage

? 10,20,30,40,50Cr Return is typed after the last
number.

150 30 ••••••••••••••••• The sum is 150, the mean is 30.

TYPE FIVE NUMBERS •••••••••••••••• SUPER BASIC again requests five
? 13,-7,-23,19,8Cr numbers.

10 2 ••••••••••••••••• This time the results are 10 and 2.

TYPE FIVE NUMBERS •••••••••••••••• The, sum of the next five numbers is
? 40,25,-SO,lS,-30Cr zero. SUPER BASIC prints the
SUM IS ZERO -- specified message and stops.

5

PLEASE LOG IN:

>QUIT Cr ••••••••••••••••••••••••• The QUIT command (which may be ~
abbreviated as Q) returns you to
the EXECUTIVE where you can leave

-LOGOUT Cr the system by typing LOGOUT Cr.

TIME USED 0:3:16

After this message prints, hang
up. The PLEASE LOG IN: request
prints in case another user is
waiting to use the system.

NOTE: We could have interrupted the execution of the program at
any time by pressing the ALT MODE or ESC key twice in reply to
the INPUT question mark.

B. Fundamental Concepts Of SUPER BASIC

Numbers

How To Type Numbers Into SUPER BASIC:

Numbers may be typed into SUPER BASIC in three ways:

• Integer format (whole numbers without a decimal point).

• Decimal format (numbers containing a decimal point).

• E format. The letter E means "times ten to the power
of". For example, -53xl0 9 can be typed as -53E9, and
the number .00000000000063 (in which twelve zeroes
follow the decimal point) can be typed as .63E-12.
The E notation cannot stand alone; thus, 1000 may be
typed as 10E2 or lE3 but not as E3.

SUPER BASIC will accept up to eleven significant digits;
any number containing more significant digits will be rounded
to eleven.

The largest number that SUPER BASIC will accept is
.578960446l8E77. NOTE: This number will result if the user
divides any number by zero.

Note that the following are not numbers in SUPER BASIC:
1/2, V4, (5/6)17. They are expressions which SUPER BASIC must
compute into a number of acceptable form. Such expressions may
not be used as data input to a program.

How SUPER BASIC Prints Numbers:

SUPER BASIC ordinarily will print numbers as follows: 3

-3-Y-o-u--c--a-n--control the format in which SUPER BASIC will print numbers. ~
For more information, see Section 2(L).

6

• Numbers are stored internally in SUPER BASIC with eleven
significant digits but are rounded to eight digits when
printed.

•

•

If the absolute value of the number4 is less than .1 and
greater than or equal to 100,000,000, the number will be
printed in E format. Otherwise, it will be printed as
an integer or decimal number.

Trailing zeroes after a decimal point are not printed.

a

•

To illustrate these rules, we will use the PRINT Command
directly; that is, without a line number so that SUPER
BASIC will execute the command immediately.

>PRINT .076, -568905117
.76E-Ol -.568905l2E+09

>PRINT -.600174172, 63.810
-.60017417 63.81

>PRINT 6E7, 6E8
60000000 .6E+09

>

Variables

The purpose of a variable is to be assigned or to store a
single value that will be used in some computation or will be
printed as a solution. A variable is so called because its
value may be changed.

Variable Names

A variable can be named in one of three ways:5

• Any letter from A to z.

• Any letter followed by any digit from 0 to 9.

• Any letter followed by the dollar sign, $.

Thus, some acceptable variable names are:

Z BO M4 I$

and some unacceptable names are:

4 Absolute value simply means: For positive numbers, the number
itself; for negative numbers, the number without its minus sign.

5 Subscripted variables are discussed in Section 2(F).

7

lC PC A27 INT

The VAR=ZERO Command

A variable ordinarily must be defined (previously assigned
a value either by appearing on the left hand side of an assign
ment statement or in an INPUTl statement) before it can be re
ferred to in a SUPER BASIC statement. Referring to an unde
fined variable will cause an error message to be printed unless
the VAR=ZERO command has been executed previously. This command
automatically assigns the initial value of zero to all variables
yet to be typed which would otherwise be considered as unde
fined. For example:

> 10 VAR=ZERO
> 20 PRINT "TYPE AM
>30 INPUT A
>.110 PRINT A. B
>RtN
TYPE A
? 6

6 0

The user typed in the value of 6 for the variable A. B was
never defined, but because of the VAR=ZERO command in line 10,
B' s initial value was set to zero. If line 10 had been omitted,
the PRINT A,B statement would have caused SUPER BASIC to print
A and then an error message indicating that B was never defined.

The VAR=ZERO command also can be executed directly. Note
that the RUN command ordinarily ignores any direct commands that
might have been given previously and 'executes only those state
ments preceded by line numbers. The direct VAR=ZERO command is
an exception; it will not be ignored when the RUN command is
given. For example:

> 10 X=15
> 20 PRINT X. Y
>VAR=ZERO

>RtN
15

>

o

lOr READ statement (Section l(D».

8

o

•

Only the value of X was assigned in line 10. The direct
VAR=ZERO command, since it was given before the RUN, caused the
value of Y to be set to O.

The VAR=UNDEF Command

This command nullifies the VAR=ZERO command. It affects
only those variables which would be undefined if the VAR=ZERO
command had never been given by once again declaring those
variables to be undefined. For example:

> 10 U\R=ZERO
> 20 Cm12
> 30 PRINT C. D
> 110 PRINT "NO W. • VAR=tNDEF In

> 50 VAR=WDEF
> 60 PRINT C.D
>RtN

12 0
NOW. • VAR= UN DEY •

12
ERROR IN STEP 601
VARIABLE HAS NO VALUE
>

After the VAR=UNDEF command, C is still 12 but D is unde
fined, as though the VAR=ZERO command had never been given.

If we had assigned any value to D before giving the VAR=UNDEF
command, D would not have been undefined by this command. Thus,
if we were to insert 35 D=5 into the above program, VAR=UNDEF
would have no effect and 5 would print as the value of D.
Similarly, 35 D=O would cause 0 to print as the value of D (since
VAR=UNDEF undefines only those variables that are zero because
of the VAR=ZERO command).

Arithmetic Expressions

Arithmetic expressions are formed by combining numbers and/
or variables with arithmetic operators as in ordinary mathematical
formulas.

There are seven arithmetic operators in SUPER BASIC:

SYMBOL MEANING EXAMPLE

t Exponentiation Xt3 (=x3)
- Unary minus -2t2 (=- (22) =- 4)
MOD Modulo 6 9 MOD 7 (=2)

6This standard mathematical operator is defined as follows:
Y MOD Z =Y-Z*FIX(Y/Z). FIX is explained on page 37.

9

SYMBOL MEANING EXAMPLE

* Multiplication 3*B (=3xB)
/ Division 1/4 (=1~4)

+ Addition 8+Fl- Subtraction C$-5

Parentheses often are required in SUPER BASIC arithmetic
expressions where they might not be needed in ordinary math
ematical notation. For example, if you type ~ as A+B/C in
SUPER BASIC, the expression will be interpretea as A~. This
is because SUPER BASIC performs division before addit~on, unless
parentheses are used to denote otherwise. Thus, ~ must be
typed as (A+B)/C.

The order in which SUPER BASIC will perform arithmetic
operations is as follows:

1. Whatever is enclosed in parentheses will be computed
first. When sets of parentheses appear within other
sets of parentheses, the innermost set is evaluated
first, then the next set, and so on.

2. Exponentiation.

3. Unary minus. Thus, if the expression is -2+2, 2+2 is
computed first, and the value of the expression is -4.

4. Modulo operator. Thus, 15 MOD -6/2 is interpreted as
(15 MOD -6>/2 and not 15 MOD -3.

5. Multiplication and division. If * and / appear in the
same expression, SUPER BASIC calculates from left to
right; that is, 3/B+2*C is equivalent to (~2)XC.

6. Addition and subtraction. Similarly as above, if these
two operators appear in the same expression, SUPER
BASIC calculates from left to right.

Mathematical Functions

A number of standard mathematical functions are available
in SUPER BASIC. Each one has the same form: The name of the
function followed by the argument (a number or an arithmetic
expression) enclosed in parentheses~

10

o

Some of these functions are listed in the chart below. 7

Function Meani!lg

SIN (X) Sine of X(X in radians)

COS (X) Cosine of X(X in radians)

TAN (X) Tangent of X(X in radians)

ATN (X) or Arcta!lgent (in radians, over

ATAN (X) the range -rr/2 to +1T/2) of X

ATN (Y',X) or Arctangent (in radians, over

ATAN (Y,X) the range -1T to +1T) of Y/X.

EXP (X) Natural exponential of X,
eX.

ABS (X) Absolute value of X

LGT (X) or Logarithm of X (base 10)

LOG 10 (X)

LOG (X) Natural logarithm of X

SQR (X) or Square root of X

SQRT (X)

PI is a function with no argument. It is equal to the
mathematical constant 1T, 3.1415926535.

These functions may be included in any expression; for
example, all of the following are acceptable in SUPER BASIC:

Z$-EXP(Xl+LOG(5/Xl»
SQR(SIN(R)t2+COS(Q)t2)
LOG(N*X-SIN(PI/N»

Relational Expressions

A relational expression is one which compares one value
to another (where the values may be represented by variables or
arithmetic expressions) using the following relational operators:

7
Additional mathematical functions of SUPER BASIC are described
in Section 2(E).

11

SYMBOL MEANING

< less than

<= less than or equal to

= equal to

>= greater than or equal to

> greater than

<>or # not equal to

Relational expressions commonly occur in an IF statement
(where the THEN part of the statement will be executed only if

the specified relation is true).
For example,
32 IF S=O THEN 70
causes a transfer to statement 70 only if the value of S is
zero; that is, if the expression S=O is true. If S=O is false,
SUPER BASIC will continue to the next statement.

The followi~g are acceptable relational expressions:

X>S
A<>B
Z$<=YtK+EXP(Z)
ABS (C3') =1

c. Us'in'gLoops In A Program: The FOR And NEXT Statements

Single Loops

Perhaps the single most important programming idea is the
loop. While we can write useful programs in which each state
ment is performed only once, such programs place an unnecessary
and substantial restriction on the power of the computer. There
fore, we prepare programs having parts which a~e performeq not
once but many times, perhaps with slight change"s each time.

For example, suppose we want to write a program which will
print out a table of the first 100 positive integers and their
square roots. Without a loop, our program would be 100 lines
long and would read as follows:
10 PRINT 1,SQR(1)
20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)

990 PRINT 99,SQR(99)
1000 PRINT 100,SQR(100)

12

Notice that the instruction is the same in every statement;
only the number to which the instruction refers has cha~ged from
one line to the next.

Here is the same pr~gram written with a loop which uses the
IF statement:
10 N=O
20 N=N+l
30 PRINT N, SQR(N)
40 IF N<lOO THEN 20

Each statement in this program represents one of the four
characteristics of every loop:'

• Initialization (Statement 10 above) - The variable N is
assigned the initial value of zero. S If this step were omitted,
SUPER BASIC would not be able to compute the N+l in the next
statement, since N would be undefined.

• Modification each time through the loop (Statement 20)
The value of N is increased by 1. Without this statement, SUPER
BASIC would execute the following instruction continually for
zero and no other value. -

• Body of the loop (Statement 30) - This is the actual
instruction which we want to be executed repeatedly. The body
of the loop may consist of any number of statements.

• Exit from the loa! (Statement 40) - As long as N is less
than 100, SUPER BASIC wil go to statement 20 and once again
pass through the modification and body of the loop. The last
pass will' be made when N is equal to 99; statement 20 will then
set the value of N to 100, and statement 30 will print 100 fol
lowed by 10 (the square root of 100). Then the exit is made.
N is not less than 100, so SUPER BASIC stops. If there were
more statements in this program, the next statement in sequence
then would· be executed.

FOR And NEXT

Since loops are so important and are used so often in
programming, SUPER BASIC provides the two indirect commands
FOR and NEXT to simplify loop specification. The program above
can be written as follows with these two commands:
10 FOR N=l TO 100
20 PRINT N,SQR(N)
30 NEXT N

aN could have been replaced by any other acceptable variable
name, but could not have been subscripted. Subscripted vari
ables are discussed in Section 2(F).

13

Statement 10 specifies that N is initialized at the value
1 and that the final value of N is 100. N will not be set to a
value greater than 100. The modification, an increase of 1 each
time through the loop, is implied in this statement. The body
of the loop is statement 20. The NEXT command in statement
30 instructs SUPER BASIC to return to the FOR statement for the
next value of N. When the body of the loop has been executed
for every specified value of N, SUPER BASIC will go to the
statement following the NEXT. NOTE: The value of N after exit
from the loop is the final value, 100.

The STEP Or BY Clause

N could have been increased to 100 in steps of any size
other than the implied 1. To do this, we must specify the step
size in a STEP or BY clause. For example, suppose we want to
print the square roots of the first 50 even integers. The
program would be written as the one above with statement 10 re
placed by:
10 FOR N=2 TO 100 STEP 2,

Note the following three equivalent forms of this statement:

10 FOR N=2 TO 100 BY 2
10 FOR N=2 STEP 2 TO 100
10 FOR N=2 BY 2 TO 100

The specified step size may be negative. For example, if
we want to print the square roots of the first 100 integers in
descending order, statement 10 would be:
10 FOR N=lOO TO 1 STEP -1

FOR Value List

The FOR command also can be followed by a list of values
for which the body of the loop is to be executed. For ex
ample, the following program prints the square roots of 2,
3, 8, 10, 12, 14 and 50:
10 FOR N=2,3,8 TO 14 STEP 2,50
20 PRINT N,SQR(N)
30 NEXT N

Errors In FOR Loops

If the FOR statement specifies an impossible range; that
is, if the initial value is greater than the final value (less
than the final value, for negative steps), the body of the loop
will not be executed. SUPER BASIC will go to the statement
following the corresponding NEXT.

Once a loop is entered, if the NEXT statement has been
omitted, SUPER BASIC will execute the body of the loop once
(for the initial value) and then execute the rest of the program .~

which follows the loop. }

14

More complicated FOR statements are allowed. The initial
value, the final value, and the step size may be expressions of
any complexity. For example, if Nand Z have been assigned
values earlier in the program, we could write:
55 FOR X=N+7*Z TO (Z-N)/3 STEP N

Note however, that a change in the values of Nand Z within
the loop will change neither the final value of X nor the step
size. variables and expressions in a FOR statement are evaluated
only once; namely, the first time the statement is encountered.
The final value and step size will not change once the loop has
been entered. 9

If the value of X in line 55 above were changed within the
loop, this change would be accepted. For example, the following
statements could be typed after line 55 to change the value of
X to the value of N if X equals zero.
60 IF X=O THEN 70
65 GO TO 75
70 X=N
75 (body of loop)

Nested Loops

It is often useful to have loops within loops. These nested
loops are illustrated in the following skeleton examples:

Allowed

~
FOR X
FOR Y

[NEXT Y
NEXT X

Not Allowed

~
FOR X
FOR Y
NEXT X
NEXT Y

Allowed

FOR X

U
FOR Y
FOR Z

[NEXT Z

[FOR W
. NEXT W
NEXT Y

[FOR Z
NEXT Z
NEXT X

Nested FOR loops of any complexity are allowed, but crossed
FOR loops are not allowed.

The Multiple NEXT Statement

If the inclusion of nested FOR loops in a program results
in two or more sequential NEXT statements, the NEXT statements
may be combined and typed on one line as follows:

9Except when the WHILE or UNTIL modifier is used in the FOR
statement (see page 59).

15

NEXT X}
NEXT X, Y .

NEXT Y

D. Supplying Data Within The Program: The READ And DATA State
ments

We have already seen that assignment statements or INPUT
statements may be used to assign values to variables. Another
method involves the combined use of the READ and DATA statements.

Consider the following program:

10 READ N
20 5-0
30 FOR 1=1 m N
40 READ X
SO S=S+X
60 NEXT 1
70 M=S/N
80 PRINT·M
90 DATA 5.60.-10
100 DATA 40.-2.11

READ

The READ command always is followed by a variable name or
a list of variable names separated by commas. When SUPER BASIC
executes a READ statement, the first variable listed in the
statement is assigned the first value in the collection of DATA
statements (the IIdata block"), the next variable is assigned
the next value, and so on.

Thus, when SUPER BASIC executes statement 10 of our sample
program, N is assigned the value of 5. The next READ statement
in· the program is inside a FOR loop and is executed N (that is,
5) times. This statement causes X to be assigned the next
available value in the data block at each pass through the loop.
Therefore, when 1=1 (the first pass through the loop), X is set
to 60 and, in statement 50, added to S (Which is initially zero).
During each of the five times through the loop, a new value is
assigned to X and added to S. The result is that when the exit
from the FOR loop is made, S will be equal to the sum of the X's.

The program finally calculates M, the mean of the number's,
in statement 70.

16

DATA

The numeric values which are listed in DATA statements must
be numbers, not expressions, and must be separated by commas.

The location of DATA statements in a program is arbitrary,
although the usual procedure is to place them in a group at the
end of the program. The only requirement is that the statements
be numbered in the order in which the data is to be read.

The distribution of the elements of data among DATA state
ments also is arbitrary. For example, we could have typed, in
place of statements 90 and 100 in our sample program, either
90 DATA 5,60,-10,40,-2,11

or
90 DATA 5
100 DATA 60,-10
110 DATA 40,-2,11

RESTORE

Once all the data has been read from a data block, another
READ request will cause an error message telling you that you
are out of data. However, if you wish at any time during the
program to reread all or part of the data block, you can do
this with a RESTORE command. When this command is executed, the
next READ command will start reading data from the beginning of
the data block; that is, from the first value in the first DATA
statement. RESTORE can be executed either directly or indirect
ly.

For example, if now we wanted to use the formula

D=v' 10
N(X_M)2
I i

N

to calculate the standard deviation of the X's, ·we could add the
following statements to our sample pr9gram:

110 RESTORE
120 READ N
1 30 A=O
1 JAO FOR 1=1 TO N
1 SO READ X
160 A=A+CX-M)t2
1 70 NEXT I
180 D=SQRCWN)
190 PRINT D

10
The numerator of this fraction uses the mathimatical symbol £

meaning lithe sum of". We want to find (X-M) for every X and
sum the results.

17

Statement 120 is necessary even though N already has the
value of 5 at this point in the program.' If this statement were
omitted, the first X read by statement 150 would be 5, which is
incorrect.

NOTE: If a program containing DATA statements is run more
than once, the data'block will be'restored automatically.

'E.' , Erit'e'r'i'n'g' And' Us'iIl'g' A' SUPER 'BASTCProgram

Before you can call SUPER BASIC and run any of the sample
programs or your own programs, you must enter the Tymshare
system. The proper procedure is illustrated on page 5 and in
Appendix C.

To call SUPER BASIC, type SBASIC followed by a Carriage
Return. SUPER BASIC will reply with a > when ready to receive
a conunand.

Typing A Program Into SUPER BASIC

Once SUPER BASIC is ready, start typing your program. Each
statement must be terminated by a Carriage Return. Only after
the Carriage Return is typed does SUPER BASIC analyze the state
ment and print an error message if the syntax 'is incorrect; that
is, if the statement does not conform to the rules of SUPER
BASIC's Ugrammaru. After an error message prints, retype the
line correctly.ll

Remember that an indirect statement (one with a line number)
is executed only when the running program reaches the statement
in normal sequence; while a direct statement (without a line
number) is executed immediately after you type the terminating
Carriage Return.

Reading A Program From Paper Tape

Another way in which you may enter a program into SUPER
BASIC is by reading the statements from paper tape which you
previously punched "off line"; that is, while you were not con
nected to the computer.

How To Punch Paper Tape Off Line

To punch paper tape off line, turn the dial on the front of
the terminal to LOCAL and depress the ON button on the paper
tape punch controls. Then type the program exactly as you would

llSUPERBASIC's extensive editing features, which allow you to
correct errors either before or after you type the Carriage
Return at the end of an incorrect statement, will be described
later in this manual.

18

if you were typing directly into SUPER BASIC, with the following
exceptions:

• Always follow a Carriage Return with a Line Feed.

• Always follow a Line Feed with a Carriage Return.

If you make an error while punching a SUPER BASIC program
onto paper tape, delete the incorrect character by typing a back
arrow (+). Type the+ as many times as necessary. In addition,
an upward arrow (t) immediately followed by a Carriage Return
will delete an entire line.

After you have finished typing the program, punch a Con
trol D and press the OFF button on the punch controls.

The TAPE Command

To read a program.from paper tape into SUPER BASIC, type:
>TAPE Cr .

and turn-the paper tape reader control to START. NOTE: If you
did not punch a Control D at the end of the tape, you may type
the Control D from the keyboard after the tape is read.

Whatever you punched on the tape will print on the terminal
when the tape is read. Any statements with syntax errors will
be reprinted at the end of the entire program along with the·
appropriate error messages. Then the incorrect statements must
be retyped. .

Any part of a program may be punched on paper tape and
entered with the TAPE' command. For example, DATA statements
alone can be saved on paper tape. If the rest of the program
were saved on a file, you could enter the program first (with
LOAD), and then append the DATA statements (with TAPE).

Running A Program

A SUPER BASIC program is executed with either of the direct
commands RUN or GO TO.

• RUN begins execution at the lowest numbered statement of
the program. Any direct or indirect statements executed
previously are ignored. 12

12With the exception of VAR=ZERO, VAR=UNDEF, and the BASE command,
which is explained in Section 2(F).

19

• GO TO followed b~ a line number begins execution at the
statement specif~ed. Any direct or indirect statements
executed ~2e~iously are not ignored; all information is
retained. •

If the program can be executed, the results will be given
quickly. This does not necessarily mean that the program is
free from error and the answers are correct. There might be a
logical error that SUPER BASIC cannot find. Or, there might be
an error (other than a syntax error) which prevents execution.
If this is so, SUPER BASIC will print a message indicating why
it cannot execute the program. Correct your error and try
again.

Saving A Program

Once you have a program that is running correctly, you may
want to save it on a file (a storage area set aside for you in
the Tymshare computer). To do this, type the direct command
SAVE followed by the name of the file and a Carriage Return.
NOTE: The file name must be surrounded by slashes and may con
tain any characters except the slash.

SUPER BASIC replies with NEW FILE if you do not already
have a file with that name, and OLD FILE if you do have a file
with that name.

In reply to NEW FILE or OLD FILE, you either:

• Confirm the command by typing a Carriage Return.
NOTE: A carriage return after OLD FILE causes the contents of
the old file to be replaced. Or,

• Abort the command by pressing the ALT MODE/ESC key.
Example:
>SAVE /KL22/ Cr
NEW FILE Cr
>

NOTE: Only indirect statements (those with line numbers)
will be saved on the file.

To save part of your program, type SAVE followed by the
file name and a comma. Then type the line numbers of the state
ments you wish to save. Separate the numbers with commas and
use the dash (-) to indicate a range. Thus,
>SAVE /INT/,I-IS,30,70-100 Cr
OLD FILE Cr --

12.Swhen a program containing the READ command is executed more
than once~ the data is reread from the beginning of the data
block even if a direct GO TO was given to execute the pro
gram.

20

replaces the former contents of the file /INT/ with statements
1 to 15,30, and 70 through 100.

An Example Of TAPE, RUN And SAVE

In ,the following example, a short program is' read from paper
tape, corrected, executed, and saved on a file. The example also
illustrates logging in and logging out.

PLEASE LOG IN:~

ACCOUNT: A3 ~
PASSWORD: 12
USER NAME: SMIT~

PROJ CODE:~

READY 7/1 J. 6 : 1 7
-SBASICIl

>TAPE-,
10 PRINT IITYPE THE BASE AND THE
.HEIGHT"

20 IMPUT B,H
30 A=1/2*B*H
40 PRINT IITHIS IS THE AREA: II
50 PRINT A
DC
20 IMPUT B,H
SYNTAX ERROR
>20INPUT B,~

>RUN..2
TYPE THE BASE AND THE HEIGHT
? 10,6M?
THIS rs THE AREA:

30
>SAVE /AREA~

NEW FILE.?
>QUI~

-LOGOUT.?
TIME USED 0:2:58
PLEASE LOG IN:

DC ends the TAPE command.
This line contains a syntax error.

The error is corrected.

The program is saved on a new
file named /AREA/.

Reusing A Saved Program

To reenter a program saved on a file, type LOAD followed by
the file name and a Carriage Return.

Example:

>LOAD /KL22/ Cr
>

21

Looking At A Program

At any time you may have part or all of your program printed
by typi~g the direct command LIST.

Typed alone, LIST causes the entire program to be listed.
When LIST is followed by a line number or nUmbers, only the state
ments specified are listed. For example,
>LIST 4,10,20-30,65 Cr
will print lines 4,10;20 through 30, and 65~

You can stop the printi~g at any time by pressi~g the
ALT MODE/ESC key.

Comments In A Program

Either an exclamation point (1) or the word REM is used to
insert remarks or comments as direct or indirect statements.
For example:
~REM NOW WE WILL TY~E "RUN;;'

Since this remark is a direct statement, it will not be saved
with the program. The following remarks
>10 1 THIS PROGRAM CALCULATES TH~
>20 1 AREA OF A TRIANGL~ .

will be saved because they are indirect statements. They will
be listed along with the rest of the program, but will not be
printed out when the program is run. Any characters can be
typed after ! or REM. .

In addition, ! can be used to insert comments at the end
of direct or indirect statements. For example,
>45 M=S/5 lCALCULATES THE ME~
>GO TO 20 !OBSERVE THE RESULT~
>

Self-Starting Programs

A program which has been saved on a file may begin to exe
cute automatically as soon as it is loaded.

To accomplish this, you must store a RUN or direct GO TO
command on the file immediately following the program. You
cannot do this in SUPER BASIC because direct commands execute
as soon as they are typed and cannot be saved with the program
when the SAVE command is given. However, the Tymshare editing
language, EDITOR, allows you to read in the SUPER BASIC program
from a file, append a RUN or direct GO TO command and then write
the program back on the file. 13 When the program is loaded
into SUPER BASIC, it will begin to execute immediately.

13For more information, see the Tymshare EDITOR Manual, Instant
Series.

22

.f

.. J.:'
~'

. .r..- ".•_

F .' , S-impl'e Edit'in-g' Tn SUPER BASIC

This section describes only the simplest editing features
of SUPER BASIC. The advanced editing features - those which
SUPER BASIC shares with EDITOR - are explained in Section 2(M).

Inserting Statements

To insert one of more lines between two existing statements
in your program, simply type the new statements with line numbers
that lie between the numbers of the existing statements. For
example, if you have left out a statement between statements 40
and 50, type the additional statement with any number from 41
to 49. SUPER BASIC will list and execute your program in
numerical sequence.

Deleting Statements

The DELETE Command

To delete a statement from your program, either type the
line number of the statement followed by a Carriage Return or
use the direct command DELETE (may be shortened to DEL). DELETE
followed by a line number or numbers will delete the specified
statements. For example, either DELETE 10 Cr or 10 Cr will
delete statement 10. The command
>DEL 5,10-35,70 Cr
will delete lineS-5, 10 through 35, and 70.

To delete the entire program, type DELETE ALL Cr. This
command also deletes the values of all variables. Remember to
give this command whenever you are finished with one program and
wish to load another; SAVE will not remove a program from SUPER
BASIC. ---

Control Q

In addition to deleting existing lines in your program,
you may delete an incorrect statement (direct or indirect) at
any time before typing the terminating Carriage Return. To do
this, type a Control Q (QC). An t will print on the terminal
and the line will be deleted. Then retype the entire statement.

In the example below, the user deletes 40 FOR I=l TO with
a QC and retypes the statement correctly:
>40 FOR I=l TOQc t
40 FOR J=l TO 3 Cr
>

Changing Statements

To change any statement in your program, simply retype it
with the same line number. Whenever you enter a new statement
with the same number as a line already in the program, the old

23

statement is replaced by the new one.

Control A

If you make an error while typing a statement, you may de
lete the incorrect character before you type the terminating
Carriage Return. To do this, type a AC after the incorrect
character (a +,will print' on the terminal). Use AC repeatedly
to delete as many characters as necessary.

Example:

>10 PRIMAC4lT "TYPE X" Cr
>20 X=Ac+Ac+INPUT 'X Cr --
>LIST Cr
10 PRINT "TYPE X"
20 INPUT X '
>

NOTE: The back arrow (shift 0) has the same effect as A C •

G. Review Of Commands In Section 1

The following commands have been discussed thus far in
this manual: '

Command Example Purpose

Ass~gnment 45 M=S/5 Assigns values to
statement variables

DATA 90 DATA 5,60,-10 Stores data in a
program

DELETE or DEL 5,10-35,70 Deletes all or part
DEL of a program

FOR and NEXT 10 FOR N=l TO 100 Repeats execution
20 PRINT N, SQR(N) of a line or lines
30 NEXT N for specified values

GO TO ••• 60 GO TO 10 Unconditional trans-
GO TO 10 fer

IF ••• THEN ••• 32 IF S=O THEN 70 Conditional transfer

INPUT 20 INPUT A,B,C,D,E Accepts data input
from the keyboard

(Continued)

24

LIST LIST 4,10,20-30 Lists all or part
of a program

LOAD LOAD /KL22/ Enters program state-
ments from a file

PRINT 70 PRINT "SUM IS Prints text and values
ZERO" of variables

PRINT X,Y

QUIT or Q QUIT Returns to the EXECUTIVE

READ 10 READ N Accepts input from
DATA statements

REM and ! REM PRINT A For conunents or
55 A=A+l !ADD 1 remarks

RESTORE 110 RESTORE Rereads DATA statements
from the beginning

RUN RUN Starts execution at the
lowest numbered state-
ment

SAVE SAVE /KL22/ Saves all or part of a
program

TAPE TAPE Enters program state-
ments from paper tape

VAR=UNDEF 70 VAR=UNDEF Nullifies the effect
of VAR=ZERO

VAR=ZERO 10 VAR=ZERO Initializes variables
to zero

Many useful SUPER BASIC programs can be written and used
with these few conunands. We conclude Section I with two more
examples. Try these on the terminal, together with some pro
grams of your own. The fa3test and easlest way to learn the
Tymshare system is to use itr

H. Sample Programs

Product Of A Set Of Numbers

This program will read up to 1000 numbers from DATA state
ments and print the product of the numbers. The last number
typed in the data block is to be 5E55. This makes it unnecessary
for the user to count how many data items he types, as will be
explained below.

25

10 P=l
20 FOR 1=1 TO 1000
30 READ X
40 IF X=5E55 THEN 80
50 p=p*x
60 IF P=O THIN 80
70 NEXT I
80 PRINT P
90 DATA 15.-9.1.5.33.6.-4.22.9.5E55

Each number that is read is compared to what we know is the
last data item, SESS. If the number read is not equal to SES5
(that is, we have not yet reached the end of the data block),
the number will be accepted as one which should be multiplied.
The product is stored in the variable P. P is initialized to 1
in line 10 so that the first time through the FOR loop, the
first data item (l*X) will be stored in P. Each subsequent
time through the loop, the product calculated thus far will be
multiplied by the number just read. When 5E55 is read, SUPER
BASIC will go immediately to line 80 and print the product, P.

Line 60 states another condition under which SUPER BASIC
should print the product calculated thus far; that is, if this
product is O. In this case there is no reason to continue
multiplying, since the result will be 0 regardless of what num
bers follow. NOTE: This statement is optional; it merely saves
calculation time if one of the data items is O.

Try this sample program with any set of numbers. If you
use the data provided in the above example,. the answer should be
31755240. You can substitute any number in place of 5E55 in
this program, as long as the number you choose appears bnly at
the end of the data block.

Double Declining Balance Depreciation

This program calculates and lists the depreciation and
book value of an asset at the end of every year ~f its useful
life.

The or~ginal cost (C) and the estimated useful life (L) of

26

the asset are used to calculate the depreciation (D). At the
end of the first year,

D= 2xC
r:-

The book value at the end of the first year is C-D (original
cost less depreciation). For each subsequent year, the depre
ciation and book value are calculated by the same formulas as
above, substituting for C the book value at the end of the
previous year.

The user is asked to type in the original cost and the
estimated useful life. Following the listing of the program
is a sample run for an asset which costs $7,000 and is depreci
ated over 15 years.

BOOK VALUE
6066.6667
5257.7778
4556.7407
3949.1 753
3422. 6186
2966.2695
2570.7669
2227.9979
1930.9316
1673.474
1450.3441
1256.9649
1089.3696
944.12032
818.23761

DEP.
933.33333
808.88889
701.03704
607.56543
526.55671
456.34915
395.50259
3112.76891
297.06639
257.45754
223. 12987
193.37922
167.59532
145.24928
12S.88271

>LIST
o I DOUBLE DECLING BALANCE DEP.
10 PRINT "TYPE COST OF ASSET AND"
20 PRINT "ESTIMATED USEFUL LIFE"
30 INPUT elL
40 PRINT "YEAR"I"DEP."I"BOOK VALUE"
SO FOR X=I TO L
60 D=2*C/L
70 C=C-D
80 PRINT X.DIC
90 NEXT X
> RUN .
TYPE COST OF ASSET AND
ESTIMATED USEFUL LIFE
? 7000.15
YEAR

1
2
3
1&
5
6
7
8
9
10
11
12
13
14
15

~.

>

The commas in statement 40 caused spaces to be printed be
tween the column headings. All of the PRINT statement forms and
rules are discussed in detail in Section 2(B).

27

SECTION 2

SUPER BASIC ADVANCED FEATURES

A. The Multiple Assignment Statement

More than one variable can be assigned the same value in
one statement. The variables to be ass~gned must be separated
by commas. For example,
10 X,Y=5
70 LET 'A,B,C (2) ,D (1, l) =0
X(l) , Y',Z=15*S/R

More than one assignment can be made in a single statement,
as follows: '
15 LET Q=4,S=16
30 A=3,M,N=5,W=COS(15}
100 J=SQR(X} ,K=J+3,H,G(1}=0

The assignments are made from left to right; thus, in
statement lob above, the value of K is set to SQR(X}+3.

As shown above, use of the word LET is optional.

Be careful to note that each of the examples above is a
single statement. Two separate statements cannot be typed on
one line and separated by commas. For example, PRINT A,PRINT B
is not acceptable, nor is B=C*EXP(C) ,PRINT A+B.

B. Additional Printing Features

Printing Blank Lines

The PRINT command typed alone causes a Carriage Return to
be printed. This form of the command is useful in making
terminal output more readable by inserting blank lines.

For example,

30 PRINT "LINE 1"
40 FOR 1=1 TO 4
50 PRINT
60 NEXT I
70 PRINT "LINE 2"

will cause four blank lines to be printed between LINE 1 and
LINE 2.

The PRINT Zones

Separate PRINT commands cause the specified printout to be
on separate lines. Thus,

28

100 PRINT "BOOK VAL"
110 PRINT X

prints BOOK VAL at the beginning of one line and the value of
X at the beginning of the next line. The following program:

15 FOR 1=1 TO 12
20 PRINT I
25 NEXT I

will print the first twelve integers, each at the beginning of
a line.

SUPER BASIC does, however, provide ways to print more than
one number and/or string of text on one line. The characters
to be printed fall int6 "zones", the length of which depend on
whether the comma, semicolon, or colon is used in the PRINT
statement.

Normal PRINT Zones

The width of the terminal paper normally is divided into
five zones of fifteen spaces each. A comma is used in the
PRINT statement to instruct SUPER BASIC to go to the beginning
of the next zone. Thus, PRINT A,B,C,D,E will print the values
of those five variables across the page. Each number will be
left justified in a field of fifteen' spaces. Any positive
number will be preceded by a space due to the omission of the
plus sign.

If there are more commas in a PRINT statement after the
fifth zone is printed, printing will continue from the first
zone on the next line. Thus,
10 FOR 1=1 TO 12
20 PRINT I,
30 NEXT I
will print the first five integers on one line, the second
five on the next line, and 11 and 12 on a third line.

5
10

3
8

XXX

2
7
12

If another PRINT statement were added to this example,
the first value or text listed in the additional statement would
be printed in the zone immediately following the 12 (the third
zone on the line).
Thus,
>10 FOR 1=1 TO 12
>20 PRINT 1_
>30 NEXT I
> 40 PRINT ..xxx..
>RtN

1
6
11

>

29

Inserti~g the statement 35 PRINT in the above example would .~

have caused the XXX to print at the beginni~g of the next (fourth))
line.

If text to be printed contains more than fifteen characters,
it will extend into the next zone, and the next value or text to
be printed will occupy the following zone. For example,
>PRINT "CURB W~GHT (LBS) =" ,A I .
CURB WEIGHT (L~)= , III
:t" J \ . J\ J

~ T t ~

Zone 1 Zone 2 Zone 3

"The first string of text contains 18 characters. The value
of A is printed in the third zone.

Packed PRINT Zones

A packed form of terminal output is available by using the
semicolon in the PRINT statement. The semicolon instructs SUPER
BASIC to skip from two to five spaces before printing the next
number or text. The exact number of spaces depends on the last
position in which SUPER BASIC printed before it encountered the
semicolon. 14

For example,

>PRINT "CURB WEIGHT (LBS)="iA
CURB WEIGHT (LBS)= 111
>PRINT "THIS IS"il;"EXAMPLE"
THIS IS 1 EXAMPLE
>

Concatenated PRINT Zones

To print numbers and/or text with no separating spaces, use
the colon in the PRINT statement. Remember that positive numbers
will be preceded by one space because of the missing plus sign.
Thus,

>PRINT "CURB WEI GKT (LBS) ="tA
CURB WEIGHT (LBS) = 111

>PRINT "S IS NEGATI VE"tBtA
B IS NEGATI VE-76. 3 111

>PRINT "CONCAT"I"ENAT"tItEDIt
CONCATENATED

>

14The paper is divided into zones of three spaces each. SUPER
BASIC first skips two spaces and then, if not positioned at
the beginning of a zone, will move to the beginning of the
next zone.

30

The following is not permitted in SUPER BASIC:

>PRINT "CURB WEIGHT (LBS) = "A

A comma, semicolon or colon must be typed after the text.

Concatenation Of PRINT And INPUT

When text is printed immediately before an INPUT command,
the INPUT question mark need not appear on a separate line. A
comma, semicolon, or colon at the end of the preceding PRINT
statement will move the question mark to the end of that line.
SUPER BASIC will wait there for the input. For example,

>10 PRINT "WHAT IS XII:
>20 INPUT X
>30 PRINT "X SQUARED =":Xt2
>RUN
WHAT IS X? l~

X SQUARED = 225
>

SUPER BASIC provides another control to concatenate input
with printed text. Instead of a Carriage Return, a DC may be
typed" after the last item of data typed in reply to an INPUT
command. The input will be accepted as usual, but the carriage
will not be returned. Thus, any more text to be printed will
appear on that same line rather than on the next line.

Example 1

>10 PRINT "B = ":
>20 INPUT B
>30 PRINT" (THIS IS THE BASE)"
>RUN
B = ? l3Dc (THIS IS THE BASE)
>

In this example, the user typed a DC instead of a Carriage
Return after the requested input. SUPER BASIC then printed the
text (THIS IS THE BASE) on the same line.

Example 2

>10 PRINT "WHAT IS R":
>20 INPUT R
>30 PRINT II SIt:
>40 INPUT S
>50 PRINT " Tn:
>60 INPUT T
>RUN
WHAT IS R? -6Dc S? 4D

c
T? ~

~
>

31

The TAB Function

The function TAB (X) is used in the PRINT statement to move
the print head to the Xth print position on the line. The
function is used with a colon if the number or text which follows
it is to be printed at the specified position. For example,

>PRINT TAB (20) :B
-456
t

20th position
>PRINT A:TAB(12):B

12 -456
t

12th position
>

If a semicolon is used after the TAB function, the print
head will move beyond the specified print position; a comma
causes it to move to the next PRINT zone of 15 spaces.

If the semicolon or comma which precedes the TAB function
causes the print head to move beyond the position specified by
the TAB, the TAB. will be ignored. For example,
>PRINT A,TAB(12):B
12 -456

t
16th position

>
The comma caused the print head to move past the first field of
15, so TAB (12) was ignored.

C. Additional IF Statement Features

IF Condition THEN Statement

In addition to line numbers, SUPER BASIC statements may be
typed after the word THEN in an IF-THEN statement. If the IF
condition is false, the THEN statement will not be executed.

Examples

IF X>4 THEN A=B If X is greater than 4, A,will be set to the
value of B.

IF A=B THEN PRINT "A EQUALS B"
The message A EQUALS B will be printed only
if A and B are equal.

The IF-THEN-ELSE Sequence

The word ELSE followed by a statement can be added to the
IF-THEN sequence. This form allows the THEN statement to be
executed if the condition is true, but executes the ELSE state-

32

ment if the condition is false. The program continues to the
next statement in order unless the THEN' or ELSE clause it exe
cutes is one which transfers to another line.

Examples

IF X=.5 THEN 200 ELSE 300
If X is .5, the program will go to
line 200; otherwise, it will go to
line 300.

IF N=O THEN 50 ELSE C=T,D=T/N
If N is 0, the program will go to
line 50; otherwise, the assignment
statement in the ELSE clause will
be executed, setting C to T and D
to T/N.

IF A=B THEN PRINT "A EQUALS B" ELSE PRINT "A AND B NOT EQUAL"
If A and B are equal A EQUALS B
will print; if not, A AND B NOT EQUAL
will print.

Any indirect statement (except DATA, REM or 1) can be in
cluded in a THEN or an ELSE clause.

Combining IF Statements

Any number of IF-THEN and/or IF-THEN-ELSE sequences may be
used together, such as:
IF X=4' THEN IF P=L THEN R=80 ELSE 300 ELSE X=X*Y

In this example, if X is not 4 (a false condition), the
ELSE clause will set X to X*Y and the program will continue
with the next statement in order. If X is 4 (a true condition),
the THEN clause will be executed to check to see if P is equal
to L. If so, the value of R will be set to 80 and the program
will continue; otherwise, the program will transfer to line 300.

If the statement does not contain the same number of ELSE
and THEN clauses, the last ELSE is matched with the closest THEN.
FOR example, in the statement
IF A>O THEN IF B>lO THEN C=l ELSE C=2
if A is not positive, the program will go to the next statement
since there is no ELSE clause accompanying the first THEN. If
A is positive and B is greater than 10, C will be given the
value of 1. If A is positive but B is less than or equal to 10,
C will be, given the value of 2.

D. Data File Input And Output

Files are a convenient method of supplying a program with
large amounts of data or saving the results of the execution of
a program. Up to three 90,000 character files can be used
concurrently for input to or output from a program. The commands
which will accomplish this are explained below.

33

Opening A File

Before a data file can be read or written, it must be open
ed (and at the same time given a number) with the command:
OPEN /file name/ FORrSYM~~LIC}fI~~UT } AS FILE n

l BINARY louTPUT
or the short form: .
OPEN /file name/, (SYM~~LIC}rIN~~T},n

BINARY lOUTPUT

The file number n, which can be any positive numeric ex
pression, is necessary in every OPEN statement to specify which
file the user is working with, since he may have up to three
files open at one time. A file number that is not an integer
will be truncated.

Input or output files may be symbolic or binary. Since
data written on a binary file is not in the usual decimal form
but in binary form, the file cannot be printed on the terminal
(and be meaningful). Binary form however, requires less
storage space and is especially useful if a program creates a
large number of results that are to be used as input to another
SUPER BASIC program.

When a file is opened for input, it need not be specified
in the OPEN statement as symbolic or binary. If the word
SYMBOLIC or BINARY is omitted, SUPER BASIC will check to see what
type of file it is and will read it as such. If the file type
is specified but does not match the file, an error message will
be printed.

When a file is opened for output, the user must specify
if the file is to be binary; otherwise, a symbolic output file
will be written. Thus,
OPEN /BDATA/, BINARY OUTPUT, M*N
will open for binary output the file /BDATA/, the file number
of which equals the value of M*N. The following
OPEN /SDATA/, OUTPUT, 4
will open for symbolic output the file /SDATA/.

A file need not exist in the user's directory to be opened
for output; the OPEN command will create a file of the specified
name and type automatically.

NOTE: Opening a file initializes input or output at the
beginning of the file.

Input From A File

The command used to read data from a file takes the form:

34

.~

INPUT FROM n:variable list
where n is the input file number. For example,
10 OPEN /AFI~E/,INPUT,2

20 INPUT FROM 2:X,Y,Z
reads three values from /AFILE/ and assigns them to the variables
X,Y and Z respectively.

The entries in a data file may be separated by commas or
spaces, with a Carriage Return at the end of each line of data.
The entries can be numbers but not expressions.

Output To A File

To write on a file, use either of the equivalent forms:
WRITE ON n: or PRINT ON n: ,
followed by a list of numbers, variables, or expressions whose
values are to be written on the file, where n is the output file
number. For example,
80 OPEN /DATA1/,OUTPUT,3
85 OPEN /DATA2/,BINARY OUTPUT,N ~

90 WRITE ON 3:P,Q,R,W
95 WRITE ON N:P-Q,NtW,A

Line 90 writes the values of the variables P,Q,R and W on
the symbolic file /DATAl/ (file 3). Line 95 writes the values
~f the expressions P-Q and NtW and the variable A on the binary
file /DATA2/ (file number equal to the value of N).

Closing A File

After the last input or output operation is performed on
a data file, the CLOSE command should be used to close the file.
NOTE: An input or output file is closed automatically after a
RUN, a DELETE ALL, or a return to the EXECUTIVE.

Files to be closed are specified by their file numbers in
the CLOSE command. For example,
120 CLOSE l,B-2 closes files 1 and B-2
200 CLOSE 3 closes file 3.

Once a file has been read or written, it can be reread or
rewritten only by closing the file and opening it again.

/

If three files are open concurrently, any of them may be
closed with a CLOSE command so that other files can be opened. 14 • 5

14.5 "TELETYPE It (or ItTEL n) may be used in the OPEN statement to
refer to the terminal without being considered an open file.
Three files can be open concurrently with the terminal.

35

Example

Twelve numbers are read from a file named /XDATA/. The
positive numbers are written on /POSX/, the negative are written
on /NEGX/.

-COpy IXDATAI TO TEL

- SBASIC

> 10 OPEN IXDATAI. INPUT. 1
>20 OPEN IPOSX/. OUTPUT. 2
>30 OPEN /NEGX/. OUTPUT. 3
>40 FOR 1=1 TO 12
> 50 INPUT FROM 11 X
>60 IF X>O THEN WRITE ON 21 XJ

ELSE WRITE ON 31 XJ
> 70 NEXT I
>80 CLOSE 1.213
> RUN

>QUIT

- COpy IPOSXI TO TEL '~

1 16 6 30 6 8 13
-COpy INE6XI TO TEL

-4 -11 -2 -4 -7

E. Additional Functions

Additional SUPER BASIC Functions

INT(X) or IP(X)

The integer function is INT(X) or IP(X) where, as with
other functions, X can be any expression. This function yields
the greatest integer not exceeded by X. Thus,
INT(7.8)=7
INT(-2.4)=-3

INT(X+.5) may be used for rounding any expression X to the
nearest integer, such as

36

•

INT(7.8+.5)=8
INT(-2.4+.5)=-2

The following use of the INT function will round an expres
sion X to N decimal places:
INT(lOtN*X+.5}/lOtN

For example,
INT(lO*X+.5}/lO will round to 1 decimal place.
INT(lOO*X+.5}/lOO will round to 2 decimal places.
FP(X)

The fractional part of X is defined as follows:
FP(X}=X-INT(X}
Thus,
FP(8)=O
FP(123.456}=.456
FP(-1.8}=.2 [-1.8-(-2}]
FIX (X)

The function FIX(X) is defined as SGN(X)*INT(ABS(X».
It truncates the value of the expression X as follows:
FIX(7.8}=7
FIX(-2.4}=-2

Whatever follows the decimal point is dropped. Note that
FIX (X) is equivalent to INT(X) for positive numbers, but not for
negative numbers; for example, FIX(-2.4)=-2, but INT (-2.4)=-3.
RND(X)

The RND function is a pseudo random number generator and
requires a single argument that may be zero, positive, or nega
tive. The random nUmber will be between 0 and 1 exclusive.

If the argument is zero, the first use of the function in
a program always will produce the same number. When RND(O) is
used again in the same program, the next random number in
sequence is given. NOTE: Another form of RND(O) is simply RND.

If the argument is positive, a random number is generated
from this number. Thus, RND(l6) always will produce the same
number, which will be different from the number RND(30). A
sequence of random numbers can be initiated by RND with a posi
tive argument and then RND(O) (or RND) can be used repeatedly
to generate the next random numbers in the sequence.

If the argument is negative, a random number is generated
from a random number (set by reading the internal clock of the
computer in milliseconds). The value of the negative argument
has no bearing on the random number it generates; for example,
RND(-l) used twice in a program will yield different random
numbers which depend only on the reading of the internal clock.
Thus, using RND with a negative argument to initiate a sequence
of random numbers will produce a different sequence of numbers
each time the program is run.

37

Example

10 PRINT RND(-l);
20 FOR I=l TO 9
30 PRINT RND;
40 NEXT I

If this program is run twice, two different sequences of
random numbers will be printed. However, if the argument of the
RND function in line 10 were changed to 0 (or no argument) or to
a positive number, running the program twice would yield the
same sequence of random numbers.
SGN(X)

The sign function SGN(X) yields 1 if the value of the
argument X' is positive, 0 if X is equal to 0, and -1 if X is
negative. Thus,
SGN(3l)=1
SGN (0) =0 '
SGN (-.23'87) =-1
POS and POS (X)

The function POS can have either no argument or one argument.

When no argument is given, the function specifies the
position on the terminal' at which the print head is located.

Example

>10 FOR 1=1 TO 10
>ao RFAD X
>30 PRINT XI 'CONCATENATED ZONES
>40 IF POS>15 THEN PRINT
>50 NEXT I
>60 DATA 10~20~30~40~SO~60~70~80~90,100

>RUN
10 20 30 40 50
60 70 80 90 100

>

As specified in line 40, a Carriage Return is printed after
the print head passes position 15.

The POS function is used with an argument only when writing
on files. 1S The argument is the file number of the output file.

l5when POS(X) is used in writing on binary files, it specifies
the word position (where a word is considered to be three
characters).

38

to

Example

> 10 OPEN /XX/~ OUTPUT~ 2
> 20 FOR 1=1 TO 10
>30 READ X
>40 PRINT ON 21 XI
>50 IF POS(2»15 THIN PRINT ON 2.
> 60 NEXT I
> 10 DATA 1O~ 20~ 30~ 40.. 50 .. 60.. 10.. 80.. 90.. 100
>RtN

>QUIT

- COpy IXV TO TEL

10 20 30 40 50
£0 10 80 90 100

Programmer Defined Functions

In addition to the standard SUPER BASIC functions, the user
may define any other function which he expects to use a number
of times in a program. The indirect command DEF is used for
this purpose. The names of programmer defined functions must
contain three letters, the first two of which must be FN. The
form of the DEF statement is shown below; the programmer defines
a function which will calculate the sine of an angle in degrees.
10 DEF FNS(X)=SIN(X*PI/180)

NOTE: The same name cannot be given to more than one pro
grammer defined function in a single program. If two DEF state

'ments are used with the same function name, the second statement,
when executed, will redefine the function.

An argument used in defining a function (X in the above
example) is called a parameter. A programmer defined function
can have either no parameters or any number of parameters
(separated by commas and enclosed in parentheses). Parameters
are "dummy" arguments; that is, when a defined function is used,
certain specified values will replace temporarily the parameters
where they appear in the function definition. For example,
>10 DEF FND(A,B)=4*A*B+At2
>20 Y=FND(2,l)
>30 PRINT Y
>RUN

12
>

When the defined function was used in line 20, 2 and 1 re
placed A and B respectively in the function definition in line
10. Thus, Y,was set to (4x2xl)+2 2 , or 12.

39

Parameters can have any variable name, including the names
of variables used in the same program; in other words, the para
meters are local to 'the function definition. Continuing from
the above example, if the lines
>5, A=6,B=4
>3,5 PRINT A,B
are written into the program, the A and B,parameters still will
be replaced by 2 and 1 '(as specified in line 20). Once the
function has been evaluated however, A and B are restored to
their former values as assigned in line 5. Therefore, line 35
will print 6 and 4 as the values of A and B.

Any variables in a function definition which are not para
meters of that function simply take the values assigned to them
in some previous part of the program; that is, these variables
are, global. For example, consider the following defined func
tion: '
35 DEF FNK=6.21083*Rt2+W
When the function FNK is used, the variables Rand W must have
been assigned values previously; these values will be used in
evaluating FNK.

When a defined function with parameters is used in a pro
gram, any argument (number, variable, or expression) can replace
the parameters in the definition. For example, the following
is permitted:
60 DEF FNP{X,Y,Z)=X/2-4*Y*Z+Z+2
65 B=FNP{3,Q,Rt3) .
When line 65 is executed, the parameters X,Y, and Z are set
temporarily to the values of 3,Q, and R3

The defining expression in a DEF statement may include
other programmer defined functions as well as parameters, pro
gram variables, and standard functions. For example,

. 40 DEF FNR{A)=TAN(B)+At2/W
50 DEF FNF(X,Y,Z,K)=2*Y*Z+LOG(X)-FNR(K)
60 G=FNF(M,N,P,Q)
In this example, the DEF statement on line 50 calls for another
function previously defined by the programmer; namely, FNR on
line 40. When line 60 is executed, the current values of M,N,P,
and Q will be transferred directly to the defining expression
of line 50. The value of G will be set to
2*N*P+LOG(M)-TAN(B)-Qt2/W

Note that when a DEF statement uses one or more previously
defined functions, it is possible that parameters will be listed
which do not appear directly in the defining expression. For
example,
100 DEF FNY(Q)=A+6*EXP(Q)
105 DEF FNZ(A)=FNY(2)tB
110 M=FNZ(5)
The parameter A of the function FNZ does not appear in the de
fining expression, but it specifies that when FNY(2) is

40

•

evaluated as a part of that function, A will be replaced tempo
rarily by the argument of FNZ (5 in line 110). Thus A is local
to FNZ even though it is global (assigned the value of the pro
gram variable A) in the function FNY.

Using DEF is limited to those cases in which the value of
the function can be computed within a single statement. Often
more complicated functions, or even pieces of a program, must
be calculated at several points within the program. In this
case, the user would more likely use a subroutine (see Section
2(G».

F. Subscripting And Array Manipulation

So far, variables have been described as being able to
store one value. There are times however, when the user will
want to store a set of values in a list or table which he can
refer to by a single name. This is done by using subscripted
variables to designate elements of such lists or tables, which
are called arrays. A variable may have any number of subscripts;
in other words, SUPER BASIC allows arrays of any dimension
(each subscript representing a dimension).

Subscripts are typed in parentheses after the variable name.
For example, A(7) refers to the seventh item in a list (a one
dimensional array, or vector) named A, and B(3,7) denotes the
element in the third row and seventh column of a table (a two
dimensional array, or matrix) named B.

Subscripted Variable Names

The name of a subscripted variable must be a single letter
or a single letter followed by a $ (dollar sign). The variable
name used for a subscripted variable also may be used to denote
a simple variable in the same program. FOR example, A and A(l)
are considered to be separate variables. However, the same
p~~e cannot be given to arrays of different dimensions in the
same program; for example, A(l) and A(3,7) are not allowed in
the same program.

Subscripts

Subscripts may be variables (including other subscripted
variables) or expressions of any complexity. The following sub
scripts are acceptable:

A(S) C(l+K) F(5,30) R(B(3,J),C-D) X(A*B,20)

Subscripts may have any value, including negative and
non-integer. If the value of a subscript is non-integer, SUPER
BASIC will truncate the value.

41

Size Of Arrays

SUPER BASIC automatically supplies space for sUbscripts 1
to 10 for arrays of one or two dimensions. Therefore, a vector
named A containing 10 elements could be entered simply with the
statements .

10 FOR 1=1 TO 10
20 READ A(I)
30 NEXT I
40 DATA 2,3,-5,7,2.2,4,-9,123,4,-4

The DIM Command

If an array is to have a subscript greater than 10 or have
more than two dimensions, the size of the array must be specified
by the DIM command which can be executed directly or indirectly.
This command instructs SUPER BASIC to reserve a specified amount
of space for array elements. For example,

10 DIM A(15)

will reserve 15 spaces for elements A(l) to A(l5). The DIM
statement does not define any array elements; it simply allows
a certain number of values to be accepted as input to the array.

Any number of arrays can be dimensioned in a single DIM
statement as follows:

60 DIM K(20),L(3,3,1) ,M(A*B),N(X,3,3,2)

The user may save storage space by dimensioning arrays with
subscripts less than 10, even though such dimensioning is not
required. For example, DIM E(3,S) will reserve space for exactly
15 elements, whereas without the DIM statement, 100 (lOxlO)
spaces would be reserved for the array E. NOTE: Whatever the
maximum subscript value, arrays of three or more dimensions re
quire a DIM statement.

Subscripts start from 1 unless otherwise specified. One way
to specify a different subscript base is with the following form
of the DIM command: 16

10 DIM A(0:15)

This statement will reserve space for elements A(O) to A(l5).
The user may specify that a subscript start from any number. For
example,

o

DIM B(5:l0) reserves space for A(5) to A(lO).

l6A second method of specifying a base other than 1 uses the
BASE command, described below.

42

DIM B(-6:10,-2:4) starts subscripts at negative values; the
Oth elements are included.

The user may redimension an array at any time by using
another DIM statement. Note however, that redimensioning (or
executing the same DIM statement a second time) causes any
existing elements in an array to be cleared (that is, be unde
fined)~ For example,

X(l) and X(2) have
been undefined.

The array X is dimensioned.
Two elements are defined.
X is redimensioned to include the
Oth element.
The above statements are executed.

>

>10 DIM X(20)
>20 X(l)=3,X(2)=7
>30 DIM X(0:20)

>RUN
>PRINT X(l),X(2)
SUBSCRIPTED VARIABLE HAS NO VALUE

•

The BASE Command

Another method of specifying that subscripts start with
some number other than 1 is by using the BASE command which can
be executed directly or indirectly. The form of this command is

BASE n

where n can be any numeric expression. BASE applies only to
arrays which have not yet been dimensioned, and will cause the
subscripts of those arrays to begin from n unless:

• The lower limit of a subscript is specified in a DIM
statement, such as DIM A(-2:5), or

• Another BASE comnland is given which specifies a dif
ferent base.

For example,

5 BASE 0
10 DIM A(lS),B(-2:2,10)

will cause the A subscript and the second B subscript to start
at O. Suppose that the following statements were added to the
above:

15 BASE 1
20 DIM C(3)

The dimensions of arrays A and B would not be affected; the sub
script of array C would begin at 1 and not O.

NOTE: A BASE command executed previous to a RUN will not
be ignored when the RUN command is given.

43

Matrix Operations

Although the user may write his own routines for matrix
operations, SUPER BASIC contains a set of commands which make
calculations involving matrices or vectors considerably easier.
All of these commands begin with the word MAT, and many of them
are similar in form to the ordinary SUPER BASIC instructions.
NOTE: The MAT commands apply only to arrays of one or two
dimensions. Any attempt to use them with multi-dimensional arrays
will cause an error message to be printed.

1. Input Of Matrix Data

The following input commands do not require that the
specified matrices or vectors be dimensioned before the commands
are given. A matrix or vector that has not been dimensioned
previously however, must be dimensioned in the MAT command itself
(see details below). NOTE: This rule applies in all cases, even if
the subscript value will not exceed 10. SUPER BASIC must know
when to stop accepti~g data for input.

MAT READ

MAT READ A,B,C

will read values into the previously dimensioned matrices (or
vectors) A,B and C from the data block defined in the DATA state
ments of a program. Any number of matrices can be read with a
si~gle MAT READ instruction.

It is possible to use the MAT READ statement itself to
dimension a matrix or vector which has not been dimensioned
previously (or to redimension one which already has). In this
case, simply type the dimensions of the arrays just as they
would be typed in a DIM statement. For example,

65 MAT READ K(15),L(-l:1,3),M

will read values into a 15 element vector K, a 3 by 3 matrix L
(with the first subscript ranging from -1 to 1), and a previous
ly dimensioned matrix M. l 7 This statement is exactly equivalent
to

65 DIM K(15),L(-I:I,3)
70 MAT READ K,L,M

Matrices are read in row order; that is, the second sub
script varies more rapidly. For example,

10 MAT READ A(4,3)

17 It is assumed here, and in the rema1n~ng examples in this
section, that no BASE command has been given previously, so
that subscripts start from 1 unless otherwise specified.

44

is equivalent to

10 FOR 1=1 TO 4
20 FOR J=l TO 3
30 READ A(I,J)
40 NEXT J, I

In both cases, values will be read from the DATA statements in
the following order: A(1,1),A(1,2),A(1,3),N2,1), ••• ,A(4,2),
A(4,3). .

MAT INPUT

The MAT INPUT command performs the same function for
matrices and vectors as the INPUT command does for variables;
SUPER BASIC prints a question mark and waits for the data to be
typed from the keyboard. Matrix values should be typed in the
same order that they would be read by a MAT READ statement; that
is, in ~ow order (with the second subscript varying more rapidly).

The form of the MAT INPUT command is similar to MAT READ
in that the matrices or vectors may.be dimensioned'
either previously or in the MAT statement itself.

Also included in SUPER BASIC is a MAT INPUT FROM command cor
responding to the INPUT FROM command for reading data from a file.

Example 1

MAT INPUT A(2,3)

will cause SUPER BASIC to wait for six values to be typed, in
the order: A(l,l) ,A(l,2) ,A(l,3) ,A(2,l) ,A(2,2) ,A(2,3).

Example 2

10 OPEN /MATDATA/,INPUT,l
20 MAT INPUT FROM 1: A(2,3)

accepts six values from /MATDATA/ as input to the matrix A.

Example 3

10 DIM F(5),G(4,4)
•••95 MAT INPUT F,G(4,X),H(7,7)

Vector F and matrix G are dimensioned in line 10. State
ment 95 redimensions matrix G, dimensions a new matrix H, and
requests data for F,G and H.

45

2. Output Of' Ma'trix Data

MAT PRINT

A corcunand of the form

MAT PRINT A,B,C

can be executed directly or indirectly to print the matrices (or
vectors) A,B', and C. Every element of A,B, and C must have a
value.

Matrices are printed row by row. The elements of each row
are printed in normal (15 space) print zones unless the matrix
name is followed by a semicolon or a colon in the PRINT state
ment. A semicolon after a matrix name will cause the elements
of each row to be printed in packed zones; a colon will cause
concatenated print zones. Each row is separated from the next
by a blank line.

Example 1

>10 MAT INPUT F(2.3)
>20 PRINT
> 30 MAT PRINT FJ
>RUN
? 1.2.3.4.5.6

1 2

5

3

6

Example 2

MAT PRINT R;S,T;

will print Rand T in packed zones and S in normal zones. NOTE:
If the semicolon after T were omitted, a comma would be understood
and T would be printed in normal zones also.

SUPER BASIC one-dimensional arrays are column vectors and
therefore will be printed vertically. A row vector (consisting
of one row instead of one column) can be dimensioned as, for
example, V(l,N), which would set up a 1 row, N column array and
therefore print the N elements of the array horizontally.

The MAT PRINT ON (or MAT WRITE ON) command corresponds to
the PRINT ON (or WRITE ON) command for writing data on a file.

3. Mathematical Operations' With Matrices

All of the following operations require that the solution
matrix or vector be dimensioned properly before the operation
is performed. For example, the statement MAT C=A+B will add the

46

matrices A and B and store the result in matrix C; C must be
dimensioned properly before this statement is executed (even if
neither subscript exceeds 10).

Only one mathematical operation with matrices may be per
formed per statement. Thus, MAT X=R+S+T is not allowed, but can
be achieved by two MAT instructions.

Each of the following statements can be executed directly
or indirectly.

Matrix Addition

MAT C=A+B

A statement of this form adds the matrices (or vectors) A
and B and stores the result in C. A,B and C all must be of the
same dimensions for this statement to be executed.

Matrix Subtraction

MAT C=A-B

This statement subtracts the matrix (or vector) B from the
matrix (or vector) A and stores the result in C. A,B and C
must have the same dimensions.

Matrix Multiplication

MAT C=A*B

In order for this statement to be executable, A and B must
be "conformable"; that is, they must be of such dimensions that
their product is defined. In addition, C must be dimensioned
properly to contain the result. NOTE: This instruction applies
to matrices only. Multiplying vectors is not permitted in
SUPER BASIC at this time.

Scalar Multiplication

MAT C=(n)*A

This statement performs scalar multiplication; that is, each
element of the matrix (or vector) A is multiplied by the number
(or numeric expression) n (which must be enclosed in parentheses)
and stores the result in C. C must be the same dimension as A.
NOTE: The instruction MAT C=(l)*A may be typed simply as MAT C=A.

47

Matrix Transposition

MAT C=TRN (A)

This statement transposes the rows and columns af A and
places the result in C; it is equivalent to letting C(I,J)=A(J,I)
for all values of I and J. C and A need not be square; an M by
N matrix will be transposed into an N by M matrix. NOTE: This
instruction applies to matrices only. Vector transposition
presently is not permitted in SUPER BASIC.

Matrix Inversion

MAT C=INV (A)

This statement inverts the square matrix A (using the Gauss
Jordan method with complete matrix pivoting) and stores the
result in C. SUPER BASIC will print an error message if the
matrix to be inverted is singular or nearly so (that is, tlill
conditioned", so that it is difficult to invert accurately).
The determinant of the matrix is inspected internally; an
inverse will be given only if the value of the determinant is
large enough to produce a meaningful inverse.

NOTE: The same matrix may appear on both sides of a MAT
statement for addition, subtraction, scalar multiplication, or
inversion, but not in any of the other instructions. Thus,

MAT A=A+B
MAT A=(2.5)*A
MAT A=A-B
MAT A=INV(A)

are all legal, while use of

MAT A=B*A
MAT A=TRN(A)

will result in nonsense.

4. Matrix Initialization

Setting All Elements To Zero

MAT C=ZER

This instruction sets all elements of the previously
dimensioned matrix (or vector) C to zero. It can be used also
to dimension (or redimension) a matrix or vector and initialize
all elements to zero. Thus, the statement

MAT C=ZER(M,N)

sets up an M by N matrix C, where C need not be dimensioned pre-

48

viously, and fills the matrix with zeroes. An instruction of
the form

MAT C=ZER(M)

performs a similar function for an M element vector.

Setting All Elements To One

MAT C=CON

This instruction is similar in form and function to MAT
C=ZER, except that the matrix (or vector) is filled with ones
instead of zeroes. It can be used also to dimension (or re
dimension) a matrix or vector, in the form

MAT C=CON(M,N) or

MAT C=CON{M)

Setting An Identity Matrix

MAT C=IDN

This statement sets the previously dimensioned square matrix
C equal to an identity matrix; that is, a matrix with ones on the
main diagonal and all other elements equal to zero. It can be
used also to dimension (or redimension) a matrix, in the form

MAT C=IDN(M,M)

5. Example Of Matrix Operations

This program reads the dimensions and values of matrices
A and B from'DATA statements. A,B, and A*B are printed, then
A*B with one element changed.

>LIST
10 READ M"N
20 MAT READ ACM;N)"BCN"N)
30 MAT PRINT AIBJ 'NOTE THE FORMATS
40 DIM CCM"N)
SO MAT C:IlA*B
60 MAT PRINT CJ
70 CC1.3)=99 lONE ELEMENT CHANGED
80 MAT PRINT C
90 DATA 2,3
1 00 DATA 1.2. 3, 4. 5, 6
110 DATA 1,0,1,-2,1,-1,0,2,3
> RUN
123

456

49

1 0 1

7-2 1 -1

0 a 3

-3 8 8

-6 17 17

-3 8 99

-6 11 17

>

G. Subroutines

When a part of a program is repeated several times in dif
ferent places, it can be' programmed more efficiently as a sub
routine. Subroutine statements are written only once but can
be used many times from any place in the main program.

GOSUB And RETURN

The command used to transfer to a subroutine may be exe
cuted directly or indirectly. Its form is GOSUB followed by
the line number of the first statement of the subroutine. The
GOSUB command is similar to GO TO followed by a line number in
that it transfers unconditionally to another part of the program.
GOSUB differs in that it will not go beyond the end of the sub
routine, which must be indicated by a RETURN command. If the
GOSUB command was executed indirectly, the return will be to
the statement following the one in which the GOSUB command was
given. If GOSUB was executed directly, SUPER BASIC will simply
stop when it reaches the end of the subroutine.

The following example of a small subroutine shows two
sections of the main program in which the GOSUB command is used.

10 S=3
20 GOSUB 400
30 PRINT H,P,X
•••100 S=7
110 GOSUB 400
120 Z=3*H+P!X

50

o

•••400 H=S*SQR(2),P=2*S+H
410 IF P<=lO THEN X=l ELSE X=2
420 RETURN
•••

When this program is run, line 20 instructs SUPER BASIC
to transfer to the subroutine beginning at line 400. When the
RETURN command at the end of the subroutine is reached, a return
is made to line 30 (the line following the GOSUB command).
Similarly, when the subroutine is called later from line 110,
the return will be to line 120.

As an example of the GOSUB command used directly, suppose
that the above program- has been loaded into SUPER BASIC. A direct
GOSUB can be used to execute only the subroutine for a particular
value of S as shown below.

>S=4
>GOSUB 400
>

A GO TO or an IF statement within a subroutine can cause
transfer out of the subroutine before the RETURN command is
reached. In addition, a subroutine can contain a GOSUB state
ment which calls either another subroutine or itself.

Example 1

•••40 X=SIN{Y+Z)
50 GOSUB 200
60 PRINT X
•••200 Q=X+R/S
210 IF Q<.5 THEN RETURN
220 PRINT "Q=";Q
230 GOSUB 500
240 RETURN
•••

51

500. V=Q+R/S,
510 PRINT ltV =It,i V
520 RETURN'

•••
The subroutine beginning at line 200 contains both an IF •••

THEN ••• statement and' a GOSUB command which calls another sub
routine. As specified in line 210, if 0<.5, a return will be
made (to line 60). If Q>=.5, the program will continue with the
next statements in order until it reaches the GOSUB 500 command.
A transfer is then made to the subroutine beginning at line 500.
Note the effect of the RETURN commands in this program: Line
520 causes a return to line 240, which in turn causes a return
to line 60 (the statement following the GOSUB 200 command).

Example 2

10 INPUT A
20 IF A<>O THEN GOSUB 1000
30 B=l/COS(A)

•••1000 A=1/SIN(A/3)
1010 IF A>O THEN RETURN
1020 GOSUB 1000
1030 RETURN
•••

Line 20 instructs SUPER BASIC to execute the subroutine be
ginning at line 1000 if A is not zero. The specified subroutine
assigns a new value to A (on line 1000), and a return is made
to line 30 if A is positive. If A is not positive, the GOSUB
1000 command in line 1020 is executed. The subroutine will
continue to call itself in this way until A is positive. Then
a return will be made to line 1030, which in turn causes a re
turn to line 30.

Note that a SUbroutine which calls itself must contain at
least one condition on which a transfer out of the subroutine can
be made (such as line 1010 above); otherwise, an infinite loop
will result.

Isolating Subroutines

Subroutines must be isolated from the main program; this
is not done automatically by SUPER BASIC. The sequence of
steps in the program should be designed so that the statements
of the subroutine are executed only after a GOSUB command.

52

•

".,.''''.(

o

STOP or END

Either of the indirect commands STOP or END may be used to
isolate subroutines. These commands cause execution of the pro
gram to terminate. All sUbroutines can be placed at the end of
the main program and separated from the main program by a STOP
or END statement as illustrated below:

101 MAIN PROGRAM BEGINS

•••100 GOSUB 700

•••690 STOP lMAIN PROGRAM ENDS
700.. !SUBROUTINE BEGINS

•••790 RETURN !SUBROUTINE ENDS

NOTE: A STOP or END statement may be used anywhere in a
program to terminate execution. Remeber that no such command
·is· required at the end of an entire program, since SUPER BASIC
stops automatically as soon as there are no more statements
to be executed.

Computed GO TO And GOSUB Statements

The computed GO TO and computed GOSUB statements, which may
be executed directly or indirectly, cause transfer to one of
several different parts of a program depending on the value of
a specified expression.

ON ••• GO TO •••

The form of the computed GO TO statement is
ON expression GO TO linel, 1ine2' •.••
where linel, line2 ••• is a sequence of line numbers to which
the program will transfer depending on the value of the expres
sion•. If the value of the expression is 1, the program will
transfer to linel; if the value of the expression is 2, the
program will transfer to line2, and so on. For example,

ON I*J GO TO 60,70,85

will transfer to lines 60,70 or 85 depending on whether the value
of the expression I*J is 1,2, or 3 respectively.

If the value of the expression is less than one or greater
than the number of line numbers, an error message will be

53

printed. If the value of the expression is not an integer, the
value will be truncated.

ON ••• GOSUB •••

The form of the computed GOSUB statement is
ON expression GOSUB linel, line2, •••
If the value of the expression is 1, the program will transfer
to the subroutine starting on linel; if the value is 2, the
transfer will be to the subroutine starting on line2' and so
on. After the subroutine is executed, the program returns to
the next statement in order after the computed GOSUB statement.

Example

> 10 FOR A=1,,2,,3
>20 ON A GQSUB 100,,200,,300
> 30 PRINT "NEXT"
>40 NEXT A
> 50 STOP
> 100 PRINT "SUBROUTINE AT 100" A =":A
> 110 RETURN
> 200 PRINT "SUBROUTINE AT 200" A ="tA
>210 RETURN
> 300 PRINT "SUBROUTINE AT 300" A ="IA
> 310 RETURN
> RUN
SUBROUTINE AT 100" A = 1
NEXT
SUBROUTINE AT 200" A = 2
NEXT
SUBROUTINE AT 300" A = 3
NEXT

>

H. Logical Variables, Expressions And Operators

Logical Variables And Expressions

Every variable in SUPER BASIC is considered to have, in ad
dition to a numeric value, a logical value which is either TRUE
or FALSE.18 The logical value of a variable is defined as TRUE
if the numeric value is not zero, and FALSE if the numeric value
is zero.l8.S For example,

l~Since they do not have numeric values, string variables (which
are discussed in section 2(J» do not have logical values.

IS.SIf the variable is complex, its logical value is set to the
l~gical valu~ of it~ real ~art.

54

•

~. Numeric Value Logical Value

A=O A is FALSE
B=18 B is TRUE
C=-7 C is TRUE

Thus, a single variable can be used as the condition in an
IF statement as follows:

10 IF X THEN 200

This statement specifies that if X is TRUE (not zero) the program
will transfer to line 200. If X is FALSE (zero), the program
will continue with the next statement in order.

More commonly used in the IF ••• THEN ••• statement to specify
a condition is an expression containing one of the relational
operators «,<=I=,>=,>,<>or i). Note that a relational expres
sion must have one of the logical values TRUE or FALSE and can,
therefore, be considered as a logical expression. For example,

30 IF 8=0 THEN 70

causes a transfer to line 70 if the expression 8=0 is TRUE, and
no transfer if S=O is FALSE.

SUPER BASIC stores the logical value of an expression as
either 1 or O. A TRUE expression is set to 1 and a FALSE ex
pression is set to O. For example,

o

Thus

PRINT A=B

Z=C<Dt2

X=Y=5

Expression

A=B

C<Dt2

prints 1 if A=B,
prints 0 if A<>B
sets Z=l if C<Dt2,
sets z=o if C>=Dt2
sets X=l if Y=5,
sets x=o if Y<>5

Logical Value

1 (for TRUE) if A=B,
o (for FALSE) if A<>B
1 if C<Dt2,
o if C>=Dt2

Declaring Logical Variables

If a variable is declared to be a logical variable, it will
be set to its logical value (1 for TRUE or 0 for FALSE) and not
to its numeric value. To set a variable to its logical value;
simply type the variable name (or names, separated by commas) in
a LOGICAL statement which can be executed either directly or in
directly. For example,

55

> 10 LOGICAL A.S
>20 A=18.B.C=6
>30 PRINT "A =n.AI" AND B ="IB
> laD PRINT "BUT C ='·,C
>RtN
A = t AND B = 1
BUT C :: 6

>

Since A and B were declared logical, their logical values
were printed. Because 18 and 6 are non-zero (that is, TRUE),
the logical value of both A and B was printed as 1.

The LOGICAL statement also can be used to declare that an
array will store logical values. As it is declared, the array
is dimensioned exactly as it would be, in a DIM statement. No
previous dimensioning is necessary. For example,

10 LOGICAL X (10) ,Y <,4 ,N)

reserves space for a 10 element logical array X, and a 4 by N
l~gical array Y.

Logical Operators

In SUPER BASIC there are five logical operators which oper
ate on logical variables and expressions. The result of a
logical 6peration is a logical expression which is either TURE
(1) or FALSE (0).

The results of using logical operators where A and Bare
logical variables or expressions are shown in the following
table:

T =True F =False

A T T F F
Operator B T F T F

AND AAND B T F F F

OR AOR B T T T F

EQUIVALENCE A EQV B T F F T

IMPLICA TION A IMPB T F T T

NOT NOTA: If A is True, then
NOT A is False

If A is False, then
NOT A is True.

56

.....:,

Some examples of logical expressions containing logical
operators are:

A AND NOT B
X=3 OR X=5
E*5>A-B OR E<=lOO
A<>2*EXP(5) AND I=J

Note that a logical operator works only with the logical
value of what is on either side of it. Thus, X=3 OR X=5 may
not be typed as X=3 OR 5. The 5 will be considered to be true,
SInce it is a non-zero value. Therefore, whatever the value
of X, the expression X=3 OR 5 always will be true. The correct
form of the expression will operate as follows:

75 IF X=3 OR X=5 THEN NEXT X

If the value of X is 3 or 5, the expression is true and
the THEN statement will be executed. If the value of X is
neither 3 nor 5, the expression is false and the program will
go on to the next line.

The order of priority among the"different types of operators
in SUPER BASIC is as follows', in descending order:

Expressions in parentheses
Evaluation of functions
Exponentiation (t)
Unary minus (-)
MOD
Multiplication and division (* and /)
Addition and subtraction (+ and -)
Relational operators «,<=,=,>,>=,<>or #)
NOT
AND
OR
IMP
EQV

For example, the following logical expressions are evalua
ted in the indicated order.

Example 1

A>B AND NOT R OR S
~ '-....,--I
1. 2.
~

\ 3. /
----~-----

4.

57

A AND

1. Relational operator>
2. Logical operator NOT
3. Logical operator AND
4. Logical operator OR

Example 2

C<Dt3=B
'-v-'
1.

"----'

~
3.

\---..........--_.....1

4.

1. Exponentiationt
2. First relational operator<
3. Second relatiohal operator =
4. Logical operator AND

I. Statement Modifiers

The number' of statements in a program can be reduced, great
ly by using statment modifiers. One or more modifiers may be
appended to most direct statements and to all indirect state
ments except DATA. The statement modifiers are IF, UNLESS, FOR,
WHILE, and UNTIL.

IF And UNLESS

The IE modifier followed by a logical expression causes the
command to which the IF clause is appended to be executed if
the logical expression is true. The command is not executed if
the logical expression is false. For example,

•

'~

PRINT X IF X>O

GO TO 100 IF B

The value of X will be printed only if
X is positive.
If B is not equal to zero; that is, true,
the program will transfer to line 100.
If B is zero; that is, false, no transfer
will be made.

Q

Other examples using the IF modifier are:

30 INPUT N IF M<=SQR(7)
55 BASE I IF 1<>1
lOO NEXT X IF G2=0
R=S IF Q>lOO

58

The UNLESS modifier followed by a logical expression causes
the command to which the UNLESS clause is appended to be executed
if the logical expression is false. The command is not executed
if the logical expression is true. For example,

PRINT X UNLESS X>O The value of X will be printed only if
X is not positive.

Other examples using the UNLESS modifier are:

15 GOSUB 100 UNLESS X=O
130 A=Bt2 UNLESS A=C
200 PRINT ON 2:Z UNLESS I<J
GO TO 55 UNLESS V*W=l

FOR

FOR causes the command to which it is appended to execute
repeatedly over a range of values. The FOR clause takes the
same form as the FOR statement used in defining loops. For
example,

>INPUT A(I) FOR 1=1 TO 4
? 6,-4,3,2

>

>PRINT X-2 FOR X=5,15,-9
3
13

-11
>PRINT X FOR X=l TO 6 STEP 2

1
3
5

>

The command INPUT A(I) is
executed repeatedly from the
initial value of I to the final
value of I (in steps of I, since
there is no STEP or BY clause).
The command PRINT X-2 is execut
ed for each value of X listed.

The command PRINT X is executed
repeatedly from the initial
value of X to the final value
of X, in steps of 2.

WHILE And UNTIL

WHILE followed by a logical expression causes the command
to which the WHILE clause is appended to be executed repeatedly
as long as the logical expression is true. WHILE often is used
with the FOR modifier (or the FOR statement) in place of the TO
clause as a means of specifying the final value. For example,

>PRINT At2 FOR A=l WHILE A<4
1
4
9

The command PRINT At2 is execut
ed repeatedly from the initial
value of A (in steps of 1) as
long as the WHILE condition (A<4)
is true.

59

>X=.2*X WHILE X<y x is reset to the value of 2*X
repeatedly as lo~g as X is
less than Y. For example, if X
were 1 initially and Y were 17,
X would be reset to 32, since the
last value of X to be multiplied
by 2 would be 16.

UNTIL followed by a logical expression causes the command
to which the UNTIL clause 1s appended to be executed repeatedly
as long as the logical expression is false. UNTIL may be used
with FOR in a similar manner as WHILE. For example,

..

>PRINT At2 FOR A=l STEP 2 UNTIL A>5
1
9
25

>X=2*X UNTIL X>=Y

The command PRINT At2 is
executed repeatedly from
the initial value of A (in
steps of 2) as long as the
UNTIL condition (A>5) is
false. NOTE: the STEP
clause could not have been
typed at the end of this
statement.
X is reset to the value of
2*X repeatedly until X is
greater than or equal to
Y. This statement is
equivalent to the WHILE
modifier above.

An example of using WHILE or UNTIL in a FOR statement is

50 FOR X=l WHILE X<=Y

which is equivalent to

50 FOR X=l UNTIL X>Y

The subsequent FOR loop will be executed from the initial
value of X in steps of 1 as long as X is less than or equal to
Y. Note that X always will be compared to the current value of
Y, even if the value of Y should change within the loop; this
is not true when the more common form of the FOR statement is
use~ For example, when

50 FOR X=l TO Y

is encountered for the first time, the final value of X is set
permanently to the value of Y at that time. Any changes of Y
within the loop will not change this final value.

A modified indirect statement can be included in a THEN or
an ELSE clause as any other indirect statement. For example,

60

IF Z THEN A(I)=B(I) FOR 1=1 TO 10 ELSE J=Jt3 WHILE J<N

FOR modifies only the statement A(I)=B(I) in the THEN clause;
WHILE modifies only the statement J=Jt3 in the ELSE clause.

More than one modifier can be used to modify a single state
ment. The last modifier will be considered first, the next to
the last modifier will be considered next, and so on.

Example 1

85 GO TO 105 IF A=B UNLESS N=O

When this statement is executed, the condition N=O is
checked first. If N is zero, the command GO TO 105 will not be
executed. If N is not zero, the condition A=B is considered.
If A and B are equal, the program will transfer to line 105.

Example 2

PRINT Y(I) FOR 1=1 TO 10 IF C(I)=P
PRINT Y(I) IF C(I)=P FOR 1=1 TO 10

These two statements are not equivalent. The first state
ment first checks to see if C(I)=P with I previously defined.
If this is true, the values of yell to Y(lO) will be printed.
The second statement checks for each value of I whether C(I) is
equal to P. Those values of Y(I) for which C(I)=P will be
printed.

Example 3

50 READ A(I,J) FOR 1=1 TO 3 FOR J=l TO 5

This statement is equivalent to

>50 FOR J=l TO 5
>60 FOR 1=1 TO 3
>70 READ A(I,J)
>80 NEXT I,J

First,J is set to 1 and values are read for ~(l,l), A(2,l)
and A(3,1)j that is, for the first column of the array. Then
J is set to 2 and so on, until finally, the last column is read
in when J=5. If the values were to be read in row order instead
of column order, the statement would be typed as

>50 READ A(I,J) FOR J=l TO 5 FOR 1=1 TO 3

61

J. Strings

String Variables

Instead of assigning a numeric value to a variable, the
SUPER BASIC user may set a variable equal to a string of
characters. String variables make it possible to accept names,
addresses, mixed alphabetic and numeric identification, and
similar data as input from files or from the terminal. SUPER
BASIC accepts strings of any length.

A variable that is to be assigned a string value can be
named in the same three ways as nUmeric variables: a single
letter, a letter followed by a single digit, or a letter follow
ed by $. Variable names for string arrays and arrays storing
both strings and numbers can be, as for numeric arrays, a
single letter or a letter followed by a $.

Assigning And Printing String Values

A string value, like a numeric value, can be assigned to
a variable with either an assignment statement, an INPUT state
ment or a READ statement (including INPUT FROM a file, and matrix
input instructions)! Each string is enclosed in single or
double quote marks. 9 Everything inside the quote marks is
accepted except a Line Feed. A' Line Feed indicates that the data
is continued on the next line.

All forms of the PRINT command can be used to print strings.
The effect of the comma, semicolon, and colon are the same for
printing string variables as for printing any text enclosed in
quote marks (explained in section 2(B».

Example 1: Ass~gnment, INPUT and PRINT

>10 A="STRING"
>20 INPUT B,C
>RUN
? "1234567 I1 ,IILA,999"
>PRINT AlBiC
STRING 1234567 LA,999
>

Although the string value of the variable B looks like a
number, SUPER BASIC will not consider it as such. B will be
treated as a group of characters having no numeric value.

19With exceptions when the variable is declared to be a string
variable (explained below).

62

~..... "\'.::'

.

Example 2: READ, PRINT

>10 READ X~Y~Z

>20 PRINT X
> 30 PRINT YIZ
> 40 DATA "FIRST STRINGt'"nSECOND"~"THIRD"

>RtN
FIRST STRING
SECONDTHIRD

>

Note that the colon in the second PRINT statement caused
the values of Y and Z to be printed with no spaces between them.

Declaring S·tring Variables

Variables or arrays can be assigned string values. This is
accomplished by means of a STRING or TEXT statement, which may
be executed either directly or indirectly. Although declaring
string variables and arrays is not necessary, doing so will
provide more efficient memory utilization and facilitate input
of string values (as will be shown below).

Both arrays and non-subscripted variables can be declared
in a STRING statement. As they are declared, the arrays are
dimensioned exactly as they would be in a DIM statement. No
previous dimensioning is necessary. For example,

10 STRING X,Y,A(S)

reserves space for array elements A(l) to A(S) and declares
that the values assigned to X,Y and the array A will be strings.

A TEXT statement is used to declare string arrays only.
For each array declared in a TEXT statement, the maximum number
of characters of an element is specified for all elements. This
maximum number may be a variable or an expression. For example,

20 TEXT A(l2):lO,B(3,S):M*N

reserves space for a 12 element string array A, each element of
which can contain up to 10 characters, and a 15 element array B
with maximum string length equal to the value of M*N.

Since dimensioning arrays declared in the STRING or TEXT
statement is the same as dimensioning in a DIM statement, the
following is permitted:

• Dimensions may be variables or expressions

50 TEXT J(Z):lS,K(N+l,M+l):lO

63

• The. subscript base may be specified

70 STRING C(-I:I),D(0:5,20)

An array can contain both ~umbers and strings. In this case
the array would be dimensioned ~n a DIM and not in a STRING or
a TEXT statement since the latter declare that all data will be
string values.

Assigning Declared String Variables

INPUT And READ Statements

When string variables or arrays are declared, data assigned
to them by means of an INPUT or READ statement need not be sur
rounded by quote marks.

There are three exceptions; the following strings always
must be surrounded by quote marks, even if the variable has been
declared:

• A string containing a comma, such as "HART,S."
• A string containing leading spaces, such as" YES".
• In a DATA statement, a numeric string, such as "123"

or "6E-3"

Example 1

>10 STRING Q,R,S,T
>20 READ Q,R,S,T
>30 PRINT QIRaS,T
>40 ~TA STRING,A23.... SPACES ","MAY 3,1966·'
>RlN
STRINGA23 SPACES MAY 3,1966

>

Quote marks were typed around the string II SPACES II so that
its leading space would be accepted. Without the quote marks,
the space would have been ignored. "MAY 3,1966" was enclosed
in quotes so that embedded comma would be accepted as part of
the string. Without the quote marks, SUPER BASIC would have
stopped reading the value of T when it reached the comma; T
would thus have been assigned the value MAY 3.

NOTE: Only commas and Carriage Returns (and not spaces)
may be used to separate string values that are not surrounded
by quote marks.

64

.~

Example 2

>10 TEXT A(3)115
>20 INPUT ACI) FOR 1=1 TO 3
> 30 PRINT
> 40 PRINT AC 1) FOR 1=1 TO 3
> RUN
? SMYTHE,ACCT. NO. 63794,"51,630.75"

SMYTHE
ACCT. NO. 63191&
$1~ 630.75

>

In the above example, array A is declared in a TEXT state
ment. The data need not be enclosed in quote marks. Quote
marks were typed around the string "$1,630.75" to accept the
embedded comma.

Since an array used to store both numeric and string data
cannot be declared in a STRING or TEXT statement, input for
string elements in such an array must be enclosed in quote marks.
In the followi~g:

>INPUT 5(I) FOR I=l TO 5
? 250,"A STRING",3.75,"XXX II ,1I13.69"
>

5(1) and 5(3) are numeric variables; 5(2),S(4) and S(5) are
string variables.

Assignment Statement

Strings in an assignment statement must be surrounded by
quote marks whether or" not the string variables have been de
clared. For example,

> 10 STRING A,B
>20 A="ONE"
>30 B="TWO"
> 40 C="THREE"
> 50 D=A
> 60 PRINT AJBJCJ D
> RUN
ONE TtD THREE

>

ONE

65

The Null String

While manipulating strings, a null string can be formed.
This is the string II" , which contains no characters.

The VAR=ZERO command, which causes numeric variables to be
initialized to zero, initializes string variables to the null
string.

String Concatenation

Strings can be concatenated (joined together to form a new
string) with a + sign, as illustrated below.

>10 X="XXX"
> 20 y="yyyy"
>30 A=X+Y
> 40 B=X+"DEF"+Y
> 50 PRINT AJB
> RUN
XXXyyyy XXXDEFYYYY

>

Strings cannot be concatenated with numeric expressions;
an error message will result.

A String Expression In The OPEN otatement

One particularly useful feature of the OPEN statement in-
volves string variables or expressions. The name of the data
file to be opened for input or output may be typed as a string
variable or expression in the OPEN statement. In this way the
file name can be assigned at the time the program is executed.
For example, if the beginning statements of a program are

10 STRING A
20 PRINT IITYPE THE INPUT FILE NAME II

30 INPUT A
40 OPEN A,INPUT,l

the following will occur:

TYPE THE INPUT FILE NAME

? /XDATA/

and the file /XDATA/ will be opened for input as file 1 accord
ing to line 40.

String concatenation could be used to eliminate the need to
type slashes around the file name; that is, line 40 could be

66

•

~
I

changed to

40 OPEN "/"+A+"/",INPUT,l

Then the file name could be typed simply as XDATA, and the
slashes would be concatenated to this name in the OPEN statement
itself.

String Functions

To aid the user in manipulating strings, SUPER BASIC has
included a number of standard functions that operate on strings.
These functions are explained below.

LENGTH (string)

This function returns· a number equal to the number of
characters in the specified string. For example,

>A="JONES"
>PRINT LENGTH(A)

5
>

VAL (string)

This function takes a string of numeric information and
returns a numeric value. For example,

>J="1234"
>K=VAL(J)

would set K to the numeric value 1234. The string 'used as an
argument of this function can contain numeric information only.
X=VAL("6E2") sets X to the value of 600, but X=VAL(IAl23") would
cause an error message to be printed. In addition, spaces with
in the argument string are ignored; thus, Y=VAL("l.O 4") would
set Y to the value of 1.04.

STR (numeric expression)

This function takes a numeric value and returns a string of
numeric characters. For example, T=STR(99.6) sets T equal to
a string variable with a string value of II 99.6". This string
contains a leading space because of the omission of the + sign.

LEFT (string, numeric expression)

This function takes the number of characters specified by
the second argument starting from the left side of the given
string to form another string. For example,

67

>T="ABCDE"
>N=LEFT(T,2)

would give N the value of AB.

RIGHT (string, numeric expression)

This function takes the number of characters specified by
the second argument starting from the right side of the given
string to form another string. For example,

>PRINT RIGHT (IIABCDE II , 3)
CDE
>

•

SUBSTR (string, numeric
:SUBSTR strJ.ng, numerJ.c

numeric ex ression) OR

This function extracts a substring from the string given
as the first argument. The function can have either two or
three arguments. The number given as the second argument speci
fies which character of the string is the first character to be
extracted. The number given as the third argument specifies
how many characters of the string are to be extracted. If the
third argument is omitted, the substring starts with the
character specified by the second argument and continues to
the end of the s tr i!lg • For example"

10 X="ABCDE II

20 Y=SUBSTR{X,2,3)
30 Z~SUBSTR{X,3)

will ass~gn BCD to Y and CDE to Z.

INDEX (string, string)

If the second argument is a substring of the first argument,
this function returns the character position of the second argu
ment within the first; otherwise, it returns O. For example,

10 X="ABCDE"
20 Y=INDEX{X,"BCD II)
30 Z~INDEX (X, liE")
40 W=INDEX (X, IIF")

will set Y to 2, Z to 5 and W to O.

SPACE (numeric expression)

This function returns a string consisting of as many spaces
as specified by the argument. For example,

68

>10 X="XX"~Y="YYY"

>20 AgX+SPACE(3)+Y
>30 PRINT A
> 40 M=2.. N=4
> SO B=SPACE(M*N)+X
> 60 PRINT B
>RtN
XX YYY

XX

>

Comparing Strings

Any of the relational operators «,<=,=,>=,>,<>,#) can be
used to compare strings. String characters are compared accord
ing to the following collating sequence which represents each
character by a numeric code.

Code Character Code Character

0 SPACE 40 @
1 ! 41 A
2 " 42 B
3 # 43 C
4 $ 44 D
5 % 45 E
6 & 46 F
7 I 47 G

10 (50 H
11) 51 I
12 * 52 J
13 + 53 K
14 , 54 L
15 55 M
16 . 56 N
17 I 57 0
20 0 60 P
21 1 61 Q
22 2 62 R
23 3 63 S
24 4 64 T
25 5 65 U
26 6 66 V
27 7 67 W
30 8 70 X
31 9 71 y
32 72 Z
33 73 [
34 < 74 \
35 = 75]
36 > 76 t
37 ? 77 +

69

Example

>A="JlNE"#S="JULY"

> IF A>B THEN PRINT AI" > ".S
JlNE > JULY

>

The first two characters of the string values of A and B
match, but since the letter N has a greater numeric code than
the letter L, the string "JUNE" is greater than "JULY".

If the strings are of different lengths, the shorter string
and the same number of characters from the longer string will
be compared. If they match, the shorter string is taken to be
the lesser of the two.

Example

>10 A="SUN"
>20 PRINT "VERIFIED II IF A<"SUNDAY"
>RUN
VERIFIED
>

Some other examples of statements using string comparison are:

15 IF A<>"PAID" THEN NEXT I
70 IF Z>="SMITH" THEN PRINT TAB(lS):Z
130 PRINT "XXXII IF A+B<"MR. JONES"
GO TO 95 UNLESS RIGHT(X,2)="NG"

NOTE: St~ings cannot be compared to numbers.

K. Complex Arithmetic

Complex Variables

Complex arithmetic can be performed easily in SUPER BASIC
by using complex variables. A variable that is to be assigned
a complex value must first be declared complex. To do this,
type the variable name (or names, separated by commas) in a
COMPLEX statement which can be executed directly or indirectly.

In the following example A and B are declared complex,
assigned values by means of the INPUT command, and printed on
the terminal.

70

> 10 COMPLEX A.B
> 20 INPUT A. B
> 30 PRINT "A="IA. "B="'B
> RUN
? 5.6.-1.78.-300.15
Ii= 5.6.-1.78 B=-300.. 15

>

Two numbers are required as input for each complex variable;
namely, the real part and the imaginary part of the variable.
When the value of a complex variable is printed, the real and
imaginary parts are separated by a comma. The above example set
A to S.6-l.78i and B to -300+lSi.

The COMPLEX statement also can be used to declare that an
array will store complex values. For example,

10 COMPLEX R(0:20),S(M,N)

reserves space for a 21 element complex array R and an M by N
complex array S. Each element of a complex array consists of
two numbers, the real and the imaginary parts of the complex
number.

The form of a complex number in a DATA statement is (A,B)
where A and B are the real and imaginary parts of the complex
number respectively. If B is zero, A may be typed alone in the
DATA statement without parentheses. For example,

> to COMPLEX XC 3)
>20 READ XCI) ~OR 1=1 TO 3
> 30 PRI N I' "X C1) =" I XCI) ;"X (2) =": X(2) J "X (3) =" sX(3)
> 40 DATA (5, 4) , 3, (- 4, 1• 7)
>RtN
XCI)= 5, 4 X(2)= 3, 0 X(3)=-4, 1.7

>

Complex Functions

CMPLX(A,B)

CMPLX(A,B) creates a complex value whose real part is
equal to A and whose imaginary part is equal to B, where A and
B can be any numeric expression. This function must be used to
include a complex number in an assignment statement.
For example,

71

> to COMPLEX R, S
> 20 R=CMPLX(1,5)
> 30 N=4
>40 S=h+CMPLX(~+1,2)

> 50 PRI~T "R="sR, "S=", S
>RU~

R= t, 5 S= 6. 7

>

If Rand S had not been declared in the above example, only
the real parts of their values would have been stored; the result
would have been R=l and S=6.

REAL (X)

This function returns the real part of the complex variable
or expression.

>10 COMPLEX X.V
>20 X-CMPLXC6.-1.1'
>30 Y=CMPLX(2.3.S)
>40 PRI~T REALCX),REALCX+Y)
> RU{\J

6 8.3

>

IMAG(X)

This function returns the imaginary part of a complex vari
able or expression.

>10 COMPLEX X,Y
>20 X=CMPLX(6,-1.1)
>30 M=IMAG(X)
>40 PRINT "M=":M
> RUN
M=-l.l
>

L. Picture Formatting

The user can specify his own format for output in addition
to using the conventional SUPER BASIC forms of output. This
feature, known as picture formatting, is useful in presenting
calculated results in the form of tables and reports.

72

•

o

PRINT IN IMAGE Statements

The user may specify the exact format of his output by
typing special characters in a string and using a PRINT IN IMAGE
statement, as illustrated in the following example:

>10 li~PUT A.a
> 20 S:s"E P'ORMAT """,. ILi'fEGER I"
>30 PRI~T I~ IMAGE StA.B
>RlN
? 200.5.67
E P~RMAT .2£+03. l~TEGER 6

>

In this example, S is a string variable which specifies the
picture format to be used. The # signs in the string caused A
to be printed in E format; the % signs caused the value of B to
be rounded and printed as an integer. All other characters in
the string (including spaces) were printed as specified. The
format symbols # and %, which are explained below, cannot be
printed as part of the picture format because of their special
significance.

A picture format also may be used to write on a data file.
For example,

PRINT ON 3 IN IMAGE S:X*Y,Z,W or
WRITE ON 3 IN IMAGE S:X*Y,Z,W

will print the values of X*Y,Z and W on file 3 in the format
specified by the string variable S.

The picture format string can include any of the specifica
tions listed below. The numeric fields will allow up to eleven
significant digits of a number to be printed, depending on the
number of symbols used in the format string. If the specified
format cannot be used for the number to be printed (for example,
if an insufficient number of places is specified), the message
CANNOT FIT THIS FORM will be printed.

Integer Field

One or more % signs denote an integer field. One % sign
must be typed for each digit of the number to be printed.
Negative numbers require an additional % sign because of the
preceding minus sign. A non-integer value will be rounded if
an integer field is specified for it. For example,

>A=24,B=174.78
>PRINT IN IMAGE n%% %%% %%%n:A,-A,B
24 -24 175
>

73

Note the alternate form of the PRINT IN IMAGE statement
illustrated above. Instead of a string variable whose value
specifies the format, the picture format string itself is typed
after IN IMAGE.

Integer fields are right justified; that is, if more % signs
are specified than are necessary, leading spaces will be printed
before the number. For example, the format n%%%n would cause
24 to be printed with one space before it, and 4 to be printed
with two spaces before it.

Decimal Field

One or more % signs with an embedded decimal point denote
a decimal field. The number to be printed will be rounded to
the specified number of decimal places. If the number is an
integer or has fewer decimal places than the format specifies,
trailing zeroes will be printed. Negative numbers require an
additional % sign because of the preceding minus sign. For
example,

>10 X=175.65,Y=11
>20 D="%%%.%% %%%%.%% %%.%"
>30 PRINT IN IMAGE D:X,-X,Y
>RUN
175.65 -175.65 11.0

A number that begins with a decimal point always will be
preceded by a leading zero if a decimal field is specified. To
allow for this leading zero, a % sign is needed before the
decimal point in the format specification. For example,

>10 COMPLEX B
>20 B=CMPLX(.2l6,-.43)
>30 PRINT IN IMAGE "%.%%% %%.%%":B
>RUN
0.216 -0.43

As shown above, a complex number requires two fields for
output. Notice the two %% signs preceding the decimal point in
the specified format for Bls imaginary part. One % is for the
minus sign, the other is for the leading zero.

Decimal fields are right justified; that is, if more %
signs before the decimal point are specified than are necessary,
leading spaces will be printed before the number.

NOTE: Whatever type of field is specified in SUPER BASIC
picture formatting, no more than eleven significant digits of
a number can be printed. If a number containing more than
eleven significant digits is printed with a field of more than
eleven symbols, the following will occur:

74

• Integer places past the eleventh significant digit will
be filled with zeroes. For example, fourteen %'s will print the
number 12345678901234 as 12345678901000.

• Decimal places past the eleventh significant digit will
be replaced by blanks; for example, the field "%%%%%%%%.%%%%%"
(in which eight %'s precede the decimal point and five follow
it) will print the number 12345678.90123 as 12345678.901 fol
lowed by three blanks.

E Format Field

There are two forms for a field of E format:

1.
2.

A series of seven or more # signs.
One or more # signs, followed by a decimal point and a
series of five or more # signs.

If the first form is used, the number printed begins with
a decimal point. The second form allows the user to specify the
number of digits before the decimal point. This is shown as
follows:

>10 C=500
>20 PRINT IN IMAGE "#######":C
>30 PRINT IN IMAGE "##.#####II:C
> RUN

.5E+03
50.E+Ol

>

In the first form of the E format field, a minimum of seven
signs is needed.

a) The first # is for the leading space or minus sign of the
mantissa (the number to the left of E).

b) The second # is for the decimal point of the mantissa.

c) The third # is for the minimum of one digit for the mantissa.

d) The fourth # is for the character E.

e) The fifth # is for the plus or minus sign of the exponent.

f) The sixth and seventh #'s are for the two digit integer ex
ponent.

In the second form of the E format field, the # signs are
used as follows:

a) A minimum of one # before the decimal point is for the
mantissa.

75

b) Four #'s after the decimal point are for the exponential
part.

c) The last # is for the leading space or minus sign of the
, ma'ntis'sa.

Notice that in the case of a positive number in E format,
the leading space must be accounted for and always will be
printed, while the int~ger and decimal fields allow this space
to be suppressed.

Field Of Strings

One or more % signs or # signs may be used to denote a
string field. The nUmber of symbols specified in the format
determines how many characters of the string will be printed.
For example, if A=nSTRING", the format n%%%%%%" or "######"
may be used to print A. In the following example

>10 T="CODE XY"
>20 PRINT IN IMAGE n%%%%%%%n:T
>30 PRINT IN IMAGE n%%%%n:T
>RUN
CODE XY
CODE

the entire string is printed first; then only four characters
of the stri~g are printed.

A string field is left justified; that is, if more % or
signs are' specified than the number of characters in the string,
traili~g spaces will be printed.

Descriptive Text In A Format

Any literal text may be included in the picture format
string. Every character is printed exactly as it appears in the
format, except for %,#, more than three $ or * symbols,20 and
decimal points. For example, the results of a program calculating
the perimeter ,p and the area A of a triangle may be printed as
follows:

110 S="PERIMETER IS %%.%, AREA IS %%%.%"
120 PRINT IN IMAGE S:P,A

Floating $ Field

This field is used to specify that a $ is to be printed im
mediately preceding an integer or decimal value (or a string).
For example, ,

20The meaning of these symbols is explained below.

76

>R="$$$.$$ $$$.$$ $$$$"
>PRINT IN IMAGE R:2.045,.7,300

$2.05 $0.70 $300
>

These formats printed the specified values as the % formats
would have, except that the last of the preceding spaces is re
placed by a $. The $ always floats to the position before the
first digit. If the $ field is specified so that there are no
preceding spaces (that is, no room for the $), SUPER BASIC
prints an error message. For example, 23.06 cannot be printed
with the format "$$.$$".

The $ field must consist of four or more $ signs. For
example, 11$$$11 is not a legal field, nor is 11$$.$", since each
of these contains only three $ signs. If these illegal fields
were included in a format string, the characters would be taken
as literal text; that is, printed as specified. For example,

>PRINT IN IMAGE 11$%.%%11:2.33
$2.33
>

The * Field

The * field is used to specify that * symbols are to appear
before the number (or string) in place of the usual preceding
spaces. For example,

>8=11**** **.** ***.**11
>PRINT IN IMAGE 8:23,8.625,3.2
**23 *8.63 **3.20
>

These formats printed the specified values as the % formats
would have, except that each preceding space is replaced by a *.
If the * field is specified so that there are no preceding
spaces .. ·(no room for a· *), SUPER BASIC prints an error message.
For example, 19.72 cannot be printed with the format 11**.**11.

The * field has the same restriction as the $ field. A
minimum of four symbols is necessary. In the following example,
"***11 is interpreted as literal text rather than a field specifi
cation and is printed as specified:

>PRINT IN IMAGE II***##":"NOTE"
***NO
>

The * field is useful for check protection; that is, pre
ceding *I S instead of spaces will prevent anyone from adding
to the beginning of the dollar amount on a check.

77

'I~a'g'e' Rep'e'ti'tion

Since the "picture" specified in an IMAGE format is the
image of a line, a Carriage Return is supplied when the format
is' exhausted. Thus, if more values are to be printed than the
number of fields specified, more than one line of the same image
will result.

'Examp'le' 1

>PRINT IN IMAGE 11%%11:16.3,19
16
19
>

Example 2

> 10 P"S S x. XX"
>20 PRI~T IN IMAGE WI 1 "OR 1=1 TO 8
>RtN
1 2 3.00
4 5 6.00
7 8
>

NOTE: In addition to the types of examples illustrated
thus far, a picture format can be specified by a string formed
by concatenation, that is,

>G=II%%%II
>F=II%%.%II
>PRINT IN IMAGE F+G:16.3295
16.3295
>

PRINT IN FORM Statements

In addition to the line image type of picture format des
cribed above, SUPER BASIC provides a second type of format that
uses IN FORM instead of IN IMAGE. The form of the output state
ments is similar, that is,

PRINT IN FORM S:A,B
PRINT ON 3 IN FORM S:X*Y,Z,W or
WRITE ON 3 IN FORM S: x*y ',Z, W

However, ,the format is field-oriented rather than line
oriented. The picture format string will not be an image of the
printed line, but will specify fields for whatever will be
printed, whether numbers, strings, descriptive text, or blanks.

78

, Nurne'r'ic',, St'ring, ,And Blank Fields

The symbols used to specify numeric and string fields are
identical for IN FORM and IN IMAGE statements. One of the
major differences between the two types of format statements is
that when IN FORM is used, blanks typed between fields in the
format string will not be printed as specified. For example,
if M=12 and' N=56.88, the statement

PRINT IN FORM "%% %%.%%":M,N

will print the values of M and N with no spaces between them.
The blank in the above format serves only to separate the field
for M from the field for N. To print blanks between numbers,
use one or more Bl s to denote a field of blanks. Thus,

PRINT IN FORM "%% BBB %%.%%":M,N

will print the values of M and N with three spaces between them.

Character And Field Replication

When IN FORM is used, the picture format can be written in
a "shorthand" notation; that is, replication of characters and
fields is permitted by using a multiplier. The following chart

, gives several examples of IN FORM character replication:

The Format: May Be Typed As:

%%%" "3%11
%%%%.%%%" "4%.3%"
#######" "7#"
##.#####" "2#.5#"
%% BBBB %%.%11 112% 4B 2%.%"
********** **" 1110*.2*"•

The user also may specify the number of times a format
field is to be used. The form of this field replication is

N (format field)

where N is the number of times the format field is to be used.

Example 1

The format

"2(3%.2% B) II

is equivalent to

"%%%.%% B %%%.%% B"

79

80

Example 2

>10 A=543.66.B=18. 143.C=345. 788
>20 (;;1"2(31.31 48) III"
> 30 PRI~T IL\J Ji'ORM GIA.B.C
>RtN
'S 43. 660 78. 7.113 346
>

In this example, the field 3%.3% 4B is used twice (to
print A and B); then the field %%% is used to print C.

Example 3

The format

"20(4%.2% B 4(3% B)/)"

illustrating two levels of field replication, may be used to
print twenty lines, each with a decimal number and four integer
numbers. A I generates a Carriage Return (see below). NOTE:
Up to four levels of field replication are allowed in a format.

Field For Descriptive Text

When IN FORM is used, any literal text that is to be printed
must be enclosed in single quote marks to denote a text field. 2l
For example,

> to Dm"'X EQUALS' 8 1.6S"
>20 X=P1/180
> 30 PRI~T I~ FORM DIX
>RtN
X EQUALS 0.011453,
>

Carriage Return In A Format

Unlike a format used in an IN IMAGE statement, no Carriage
Return is given when the IN FORM format is exhausted. Thus if
fewer" fields are specified than the number of values to be
printed, the format simply will be repeated on the same line
as shown below.

>10 T="% 2B %.% 2B"
>20 PRINT IN FORM T:I FOR I=l TO 5
>RUN
1 2.0 3 4.0 5
>
2lIf the format string is enclosed in single rather than double

quote marks, the literal text to be printed is enclosed in double
quotes.

~~""

A slash (/) can be used in a format to generate a Carriage
Return. Consecutive slashes may be used to generate blank lines.
Note the results when the format above is modified to end with
a / instead of 2B:

>10 T="% 2B %.%/"
>20 PRINT IN FORM T:I FOR 1=1 TO 5
>RUN
1 2.0
3 4.0
5
>

When printing a matrix IN FORM, use the / to generate a
Carriage Return at the end of each row. For example,

>MAT INPUT A(3.3)
1 1.3.-6.8.11.9• .1&.2.1

>MAT PRINT I~ FORM "3(11 2B)/",A
1 3-6
8 11 9
421

IN FORM and IN IMAGE differ in another way concerning the
Carriage Return in a format. Because the IMAGE format is the
image of a line, the information printed always will be pre
ceded and followed by a Carriage Return; that is, always will be
a separate line. The IN FORM statement however, can cause its
printout to be appended to printout from a previous line, as
follows:

>10 PRINT "LINE 10 ":
>20 PRINT IN FORM "7%,,:nLINE 20"
>RUN
LINE 10 LINE 20
>

This cannot be done with PRINT IN IMAGE.

The Single #

A single # may be used with PRINT IN FORM to specify what
is known as IIfree field" format. Any number or string may be
printed with this field. Up to eleven significant digits of a
number will be printed. If the free field format is used to
print a string, the entire string will be printed. For example,

81

> 10 Aa"STRI~G"

>20 8a68.9
> 30 C=666
> 40 PRINT IN FORM "''',A.B.C.PI
>Rtl~

STRING 68.9 666. 3.1~lS926S35

> PRI~T IN FORM "''', 123456189012345
• 12345678901 E+l 5

M. Advanced Editing Features

The editing commands and characters described in section
l(F) are only a small part of the extensive editing features
available in SUPER BASIC. Instead of retyping an entire line
that needs changing, the user may let certain control characters
do the editing for him. These control characters, which are the
same as those available in the Tymshare EDITOR language, are
summarized in the table on the adjacent page.

The first set of characters listed can be used at any time
while typing direct and indirect statements, file names, and
even data input from the keyboard. The second set of characters
is used to edit lines already typed, even if a syntax error was
made in the line. The EDIT and MODIFY commands allow editing
of any existing line in a program. Further explanation and
examples ·of these editing features are given below.

Editing The Line Being Typed

In the following example, Control Q (Qc) is used to delete
the line being typed. While retyping the line, two incorrect
characters are deleted with ACts.

>40 FOR 1=1 TOQc t
40 PRINT It3 FOR 1=1 TO 25Ac+Ac+50 Cr
>LIST 40 Cr
40 PRINT It3 FOR 1=1 TO 50
>

The TABS Command

The tab stops which determine how many spaces I C will type
are initialized at 7, 15, and at every fifth position from 15 on.
The direct command TABS allows the user to set any other tabs
that he wishes. For example,

>TABS 10,20,30 Cr

sets the tab stops at the specified positions. A control I
subsequently typed at the beginning of a line will space to
position 10. NOTE: A maximum of ten tabs may be set with the
TABS command.

82

EDITING CONTROL CHARACTERS

Control Symbol
Character Printed Function

Used at any time:

FOR DELETING

AC or+- +- Deletes the preceding character typed.

WC \ Deletes the preceding word typed.

QC t Deletes the entire line being typed.

OTHER

I C Types spaces up to the next tab stop.

VC and a Indicates that the control character
character that follows is to be accepted as any

other character (it will not perform
its editing function).

Used only during EDIT, MODIFY and edit of previous line:

FOR DELETING

SC % Deletes the next character in the line
being edited (the nold linen).

KC Deletes the next character in the old
line; prints the character it deletes.

pc and a % Deletes up to but not including the
character character typed after it.

XC and a % Deletes up to and including the char-
character acter typed after it.

Carriage Deletes the rest of the old line and
Return ends the edit.

FOR COPYING

CC Copies the next character in the old
line.

OC and a Copies up to but not including the
character character typed after it.

ZC and a Copies up to and including the char-
character acter typed after it.

83

EDITING CONTROL CHARACTERS (Continued)

Control Symbol
Character Printed Function

DC Copies the rest of the old line
(printing it out) and ends the edit.

FC Copies the rest of the old line with-
out printing it out and ends the edit.

HC Copies the rest of the old line (print-
ing it out) and continues the edit at
the end of the line.

yC Copies the rest of the old line with-
out printing it out and continues the
edit at the beginning of the new line
(same as FC followed by MODIFY of the
line as edited).

RC Copies and prints the rest of the old
line plus the new line7 continues the
edit from where RC was typed.

TC Same as RC except that it aligns the
rest of the old line and the new line.

UC Copies from the old line up to the
next tab stop in the new line.

FOR INSERTING

EC text EC < Inserts text into the old line7 first
> EC prints <, second EC prints > •

OTHER

NC Backspaces in the old and in the new
line.

84

~
~t

File Name Editing

File names typed during the LOAD or SAVE command can be
edited also. For example,

>SAVE /XYAc+Z/ Cr

will save the program on a file named /XZ/.

To include a control character in a file name, precede the
character by VC so that no editing will occur. For example,

>LOAD /PVcWcR/ Cr

must be typed to load from a file named /PWcR/.

Data Input Editing

The control characters AC , WC and QC have special properties
when used to edit data typed in response to the INPUT command.

Control A will delete the preceding character unless that
character is:

1) A comma (or space) used to separate data items.
Once such a character is typed, the preceding value is
stored in a variable and is not available for edit.

2) Either of the quote marks used to enclose a string
data item. Once the first quote mark is typed, the user
cannot delete it and type in a number instead of a string.
As soon as the second quote mark is typed, the string is
stored in a variable and is not available for edit.

For example,

>10 INPUT A,B,C Cr
>20 PRINT A;B;C Cr
>RUN Cr
? 123;5"6Ac+5,uERAc +Ac +STRING" Cr

123 55 STRING
>

Once the comma was typed after 123, no editing could be
done to that value. The first AC deleted 6. The second and
third AC's deleted ER; any more AC's typed there would not
have been able to delete the leading quote mark.

Control W, which deletes the preceding data item, also has
no effect on the characters which AC cannot delete. For
example,

85

>INPUT X,Y,Z Cr
1 "SMYTWC\SMITH",64,92WC\93.8 Cr
>PRINT X:Y:Z Cr
SMITH 64 93.8-
>

The first WC deleted SMYT but not the leading quote mark.
The second WC deleted 92: another control WC typed there would
have done nothing, since 64 was already stored in the variable
Y.

Control Q restarts the entire statement containing the
INPUT command, causing SUPER BASIC to print another 1. Since
direct statements are not saved and therefore cannot be re
started, QC applies only when the INPUT command was executed
indirectly. For example,

>10 INPUT A(I) FOR I=l TO 8 Cr
>RUN Cr
1 11.17,33.9,46.1,39,21.8,5.62 Cr
l3.7Qc+ -
1 11.7,85,33.9,46.1,39,21.86 Cr
13.7,10.8 Cr --
>

Note that the values for A(l) to A(6) were actually stored
before the QC was typed, then the user typed in new input values.
Thus, if the INPUT command were in a statement such as

>55 IF A=O THEN INPUT A,B

ELSE PRINT IINO II

the following might occur:

1 5,7.5Qc+
>

Statement 55 was restarted, but since A was actually assigned
the value of 5 before QC was typed, A was no longer equal to zero
and INPUT A,B was not executed.

Editing A Line Already Typed

EDIT And MODIFY

The direct commands EDIT and MODIFY allow the user to edit
any statement in his program by using an extensive set of control
characters. EDIT followed by a line number causes SUPER BASIC
to print the specified line and wait for the user to edit.
MODIFY (or MOD) is the same as EDIT except that the specified
line is not printed.

86

Example 1

>EDIT 20 Cr
20 A=SQR(PI*Mt2)
ZC*20 A=SQR(PI*NDCt2)

This is line 20.
ZC* copies up to and including the
* The user typed N to replace
the incorrect M, and DC to copy
the rest of the line.

>LIST 20 CR
20 A=SQR(PI*Nt2) This is the new line 20.

Example 2

Line 10 does not print.
3 replaces 1 so that the edited
line will be line 30. OCA copies
up to but not including A. The
user types B to replace the A,
and FC which copies but does not
print the rest of the line.

>10 INPUT A(I) FOR I=l TO 10 Cr
>20 GOSUB 100 Cr
>MODIFY 10 Cr
30cAIO INPU~BFc

>LISTCr

~
10 INPUT A(I) FOR 1=1 TO 10
20 GOSUB 100
30 INPUT B{I) FOR 1=1 TO 10
>

Editing The Previous Line

After the user types any indirect statement, that statement
is immediately available for edit as though the EDIT or MODIFY
command had been given. For example,

>45 IF Y=20 THEN NEXT I Cr
>Z c 245 IF Y=25Dc THEN NEXT I
>LIST 45 Cr
45 IF Y=2S-THEN NEXT I
>

ZC and DC are used to edit the
line just typed. The 20 is
changed to 25.

This can be done even if a syntax error is made in the
statement just typed.

Direct statements can be edited after they are typed on~y

if a syntax error is made. Once the statement executes, it ~s

no longer available for edit. For example,

87

>PRINT "AREA IS:A Cr
MISSING " This is a syntax error.
>ZcSPRINT "AREA ISEc<"Ec>Dc:A The statement is edited.
AREA IS 35 DC copies the rest of the line and

causes the statement to be executed.

>PRINT "VOLUME IS":X Cr
VOLUME IS
VARIABLE HAS NO VALUE

>

This statement contained no syntax
errors, so SUPER BASIC began to
execute it. The variable X was
not defined (a program error).
Control characters will have no
effect here.

The RENUMBER Command

Renumbering To The End Of The Program

Allor some of the statements in a program may be renumber
ed with a direct command which takes the form:

RENUMBER NI,N2,N3 or
REN NI,N2,N3

where NI will be the first new line number, N2 is the number of
the line in the program where renumbering will begin, and N3 is
the increment to be used in assigning the new line numbers.

Example

> 1 I THIS IS A TEST PROGRAM
> 10 I~PUT P.I.N
> II M=P*< 1+1) t~
> IS PRINT M
>20 G) TO 10
> RL~lI4BER 20. 10.2
>LIST
1 I THIS IS A TEST PROGRAM
20 INPUT P. I.l\I
22M=P* <I + I) t N
211 PRINT M
26 GO TO 20
>

In this example, the program is renumbered from line 10 to
the end of the program, in steps of 2, with 20 as the first
new line number. Line 1 remains unchanged. Notice that the
line number referred to in the GO TO statement also has been
changed correctly.

88

Certain words may be included in the RENUMBER command to
help the user remember the order and meaning of the three argu
ments. For example,

RENUMBER 20,10,2

can be typed as

RENUMBER AS 20 FROM 10 BY 2 or
RENUMBER AS 20 FROM 10 INC 2

Any of these prompting words may be used or not as desired.
AS is optional, .and either FROM, BY, or INC may be replaced by
a comma.

Renumbering A Range Of Lines

A range of lines may be specified for renumbering.
For example,

RENUMBER 200,90-205,10

will renumber lines 90 to 205 as 200, 210, 220 and so on.

An additional prompting word may be included in this form
of the RENUMBER command; namely, the dash used in indicating
the line range may be replaced by the word TO.

When the RENUMBER command is given, SUPER BASIC first checks
to see that after the requested renumbering is done, the renumber
ed line range will still have line numbers that are different
from the rest of the program. If this is not the case, an error
message will be printed, since it is impossible for two program
lines to begin with the same number.

Omitting Parts Of The RENUMBER Command

One or more parts of the RENUMBER command may be omitted,
with the following results:

Omitted Result

Nl First new line number is assumed to
be 100.

N2 Program is renumbered from the begin-
ning (the lowest numbered statement).

N3 Increment is assumed to be 10.

89

Examples

RENUMBER All three parts are omitted. RENUMBER
100,0,10 is assumed. (The °will cause
renumbering to begin from the lowest
numbered statement.)

RENUMBER, , 5 First two parts are omitted. RENUMBER
or RENUMBER BY 5 100,0,5 is assumed.

RENUMBER 10 Last two parts are omitted. RENUMBER
or RENUMBER AS 10 10,0,10 is assumed.

RENUMBER 10,,5 Second part is omitted. RENUMBER
or RENUMBER AS 10 10,0,5 is assumed

BY 5

RENUMBER 150, Third part is omitted. RENUMBER
115-210 105,115-210,10 is assumed.

or RENUMBER AS 150
FROM 115 TO 210

RENUMBER With ADD

There is another form of the RENUMBER command in which the
numbers of the specified lines are increased by a certain amount.
For example,

RENUMBER 150 ADD 10 or
RENUMBER FROM 150 ADD 10

will renumber from line 150 to the end of the program by adding
10 to every line number.

A range of lines may be specified, such as

RENUMBER 210-340 ADD 20 or
RENUMBER FROM 210 TO 340 ADD 20

which will add 20 to the line numbers 210-340 inclusive.

N. Control Of Running Programs

Control Commands

SUPER BASIC gives the user complete control of his running
program. An indirect PAUSE or STOP statement causes program
execution to be interrupted, as does pressing the ALT MODE/ESC
key. The user then can enter direct statements which will, for
example, assign or change variable values, print out values, or
list parts of the program. He then may resume execution at the
point of interruption or anywhere else in his program.

90

t

COMMAND

100 PAUSE

PROGRAM CONTROLS

EFFECT

Interrupts the pro
gram at statement
100. The message
PAUSE IN STEP 100 is
printed. Direct
statements can be
entered.

TO CONTINUE

a) Type GO to continue
execution at the point
of interruption. All
information in the pro
gram before interrup
tion is retained.
NOTE: After interrup
tion, if the user types
an indirect statement
or deletes a statement,
GO will not continue
execution. Any infor
mation about FOR loops
or GOSUB commands is
lost.
b) Type GO TO line num
ber to continue execu
tion anywhere in the
program. All informa
tion in the program is
retained.
c) Type RUN to re
initialize execution
from the beginning of
the program. No infor
mation is retained;
that is, all values are
reinitialized and all
files are closed. 22

ALT MODE/ESC Finishes execution Same as PAUSE
of the statement
that was being exe-
cuted when ALT MODE
was pressed and
prints the message
INTERRUPTED BEFORE
STEP ,the step
being the next
statement. (Note
exception below.)

22Except the commands file.

91

ALT MODE/ESC
(Twice)

To interrupt execu- Same as PAUSE except
tion of an INPUT that GO will not resume
statement or a execution reliably.
statement with an
infinite loop
(such as PRINT A

WHILE A>l), press
ALT MODE twice.
The message INTER
RUPTED IN STEP is
printed.

Terminates program
execution.

Terminates program
execution and
prints the message
ERROR IN STEP :
followed by an
error diagnostic.

Termination program
execution at state
ment 35.

35 STOP or
35 END

Normal end of
program

Program exe
cution error

a) Type GO TO line num
ber to continue execu
tion anywhere in the
program except inside
a FOR loop or a sub
routine. All informa

~~~~~~~~~~~~~~~~~~~~~~tionin the program is
retained.
b) Type RUN to rein
itialize execution from
the beginning of the
program. No informa
tion is retained; that
is, all values are re-
initialized and all
files are closed. 23

>QUIT or >Q
or 100 QUIT

Returns to the
EXECUTIVE. Closes
all files. 23

a) Type -CONTINUE (or
-CON) to return to
SUPER BASIC and con
tinue.
b) Type -SBASIC to re
initialize SUPER BASIC.

NOTE: Although RUN normally retains no information, a
VAR=ZERO, VAR=UNDEF, or BASE command will be retained when the
RUN command is given.

23Except the commands file.

92



Commands ,Files: New version being implemented.

. 93-95



SECTION 3

SUMMARY OF SUPER BASIC

All commands can be executed both directly and indirectly
unles's specified otherwise.

1. VARIABLES AND ARRAYS

Variable Names

single letter
single letter followed by single digit
single letter followed by $

Subscripted Variable (Array) Names

single letter
single letter followed by $

Variable Initialization

Variables ordinarily are not initialized.
VAR=ZERO initializes variables to o.
VAR=UNDEF nullifies VAR=ZERO.

Value Types

Type May Be Declared As

Real Number REAL
Integer; e.g.,lS,7 INTEGER
Decimal; e.g.,13.G, -.03
E Notation; e.g.,GE2 (E2

meaning times 102)

Logical Value LOGICAL
All variables with a numeric If declared, value
value have a logical value returned is:
as well. 1 for TRUE
TRUE if the numeric value~O. o for FALSE
FALSE if the numeric value=O.

Complex Number COMPLEX
Declaration is required.
NOTE: The logical value of a
complex variable is set to the
logical value of its real part.

String Value STRING
Any comEination of characters. TEXT (arrays only)

96



DIM And Declaration statements

DIM reserves space for array elements which may be integer, real,
or string. Defines no elements. Arrays with a subscript
greater than 10 or with more than two dimensions (subscripts)
require DIM.

D1M A (20) , B (6 )
DIM A(0:20), B(-6:6)

Subscript base 1 is implied.
Base other than 1 is specified.

BASE n specifies subscript base n; for example,

BASE 0
DIM C(2,4)

reserves space for a 3xS matrix C.

Delcaration statements dimension arrays that are declared, using
the same form as DIM; for example,

INTEGER A(20), B(-6:6)

2. OPERATORS

Type Operators Operate On

String vari
ables and
expressions.

Numeric vari
ables and
expressions.

Logical values
of numeric
variables and
expressions.

String or nu
meric vari
ables and ex

or equal to pressions.

concatenation

less than
less than or equal to
equal to
greater than
greater than
not equal to

implication
equivalence

exponentiation
unary minus
modulo
multiplication, division
addition, subtraction

t
-
MOD

* ,I
+,-

<
<=
=
>=
>
<> or #

NOT
AND
OR
IMP
EQV

+

Relational

Logical

String

Arithmetic

97



3. FUNCTIONS

Standard Functions

Function

ABS(X)
ATN(X) or ATAN(X)

ATN(Y,X) or
A TAN (Y,X)
COS (X)
EXP(X)
INT(X) or IP(X)
FIX (X)
FP(X)

LOG (X)
LOGT(X) or
LOGlO(X)
PI
RND(X)

SGN(X)

SIN (X)
SQR(X) or SQRT(X)
TAN (X)

POS
POS(X)

TAB (X)

Brief Description

Mathematical Functions

Absolute value of X.
Arctangent (in radians, over the range
-n/2 to +n/2) of X.
Arctangent (in radians, over the range
-nto+n) of Y/X.
Cosine of X (X in radians).
Natural exponential of X, eX.
Greatest integer not exceeded by X.
X truncated: equal to X-IP(X).
Fractional part of X: equal to
SGN{X)*INT{ABS(X».
Natural logarithm of X.
Logarithm of X (base 10).

Mathematical constant ll.
Random number generator. NOTE: RND(O)
may be typed as RND.
Sign function (1 for positive X, 0 for
X=Q and -1 for negative X).
Sine of X.
Square root of X.
Tangent of X (X in radians).

Print Functions

Position of print head (terminal output).
Position of print head (output on file X).
NOTE: For binary files, POS(X) is word
position.
Tab to print positon X (used with PRINT).

String Functions

(5 denotes string argument: N denotes numeric argument)

/
I

./

INDEX(S1,S2)

LEFT (S,N)

LENGTH(S)
RIGHT (S,N)

SPACE(N)
STR(N)

Position of S2 within Sl (e.g., INDEX
("ABC I ,"B")=2).
Substring of S: N characters, starting
from left.
Length of string S.
Substring of S: N characters, starting
from the right.
String of N spaces.
String of the characters comprising N,
(e •g ., STR (3)= II 3").

98



•

Function Brief Description

SUBSTR(S,Nl) Substring of S, from N th character to
end of S. 1

SUBSTR(S,Nl,N2) Substring of S; N2 characters, starting
from Nlth character.

VAL(S) Numeric value of 5, where S must be a
numeric string (e.g. , VAL{n-6 n)=-6).

Complex Functions

CMPLX{X,Y) Complex number with real part X and
imaginary part Y.

IMAG{C) Imaginary part of the complex argument C.
REAL (C) Real part of the complex argument C.

Programmer Defined Functions

DEF (indirect only) defines a function with name FN followed
by a single letter; for example,

80 DEF FNS{X,Y)=2*SIN{X)-FNA{2)
100 DEF FNK=2.l65*Rt2

99

/



4. INPUT/OUTPUT STATEMENTS

'Fundame'nt'aT 'Input/Output Sta't'emen'ts

Method of Input
or Output

Real

Example
Complex

(must be declared) Undeclared String Declared String

~

o
o

Assignment statement
assigns values to
variables (LET is
optional).

INPUT prints ?, ac
cepts input typed in
reply.

LET A=6
X,Y,Z=O
B=3,K=C*N+2

INPUT A,B
? 4.5,6

A=CMPLX(6,X)

INPUT A
? 11,-4.1

X= "DOUBLE "
Y='SINGLE'

INPUT A
? "STRING"

or
'STRING'

Same as unde
clared string.

INPUT A
? STRING
(but quotes must
enclose strings
with leading
spaces or com
mas)

READ reads data from
DATA statements.
~TA is indirect

only)
RESTORE causes re
reading from beginning
of DATA statements.

10 READ A,B 10 READ A
50 DATA 4.5,6 50 DATA (11,-4.1)

10 READ A
50 DATA

"STRING"
or

50 DATA
'STRING'

10 READ A
50 DATA STRING
(but quotes must
enclose strings
with leading
spaces or commas,
and numeric
strings).

PRINT prints numbers,
text, values of var
iables and expres
sions.
PRINT zones:
, normal (15 spaces)
; packed
: concatenated

J

A=6
PRINT A;A/2

6 3

A=CMPLX(2,3)
PRINT "A=":A
A= 2, 3

..J

X="XX",Y='YY'
PRINT X, Y "
XX YY

o J



•

Data File Input/Output statements

Statement Model Remarks

tYMBOLIjbINPU~ Three files may be
OPEN/file name/FOR or or AS FILE n open concurrently.*

BINARY OUTPUT File number n may
be any positive
numeric expression.

Short form: File name may be

tYMBOLI~bINPUJ a string variable.
OPEN /file name/, or or , n Output data file

BINARY OUTPUT need not exist
previously.

INPUT FROM n: variable list n is file number
of data input file.

~RIN~ n is file number of
or ON n: list of variables or expressions data output file;

~ITE usual PRINT func-
'-- tions and zones

apply.

CLOSE n Closes data file n
(automatic after

RUN, DEL ALL and
return to EXEC)
Also: CLOSE nl,n2' ••

* Also "TELETYPE II (or "TEL") to denote the terminal.

Examples

30 OPEN /DATA/,INPUT, 1
65 INPUT FROM l:X,Y,Z
85 WRITE ON M*N:R,S,Tt2
210 CLOSE 3,B-2

101



PRINT IN IMAGE string:
PRINT IN FORM string:

Format string contains

Picture Formatted Output

(
list of values,
variables or expressions.

field specification symbols:

FIELD SPECIFICATION EFFECT
TYPE OF FIELD IN IMAGE or IN FORM IN FORM PRINTS AS REMARKS

INTEGER U%%%U "3%" 432 432 Leading space can be
DECIMAL 11%%%.%" --.r3%. %" -16.39 -16.4 suppressed.

E NOTATION 11#######" 117#11 400 .4E+03 Leading space cannot
11#.#####" "#.5#" 4.E+02 be suppressed..

STRING II%%%%%%U 116%" STRING STRING
"###" 113#11 STR

FLOATING $ "$$$.$$11 "3$.2$" 9.4 $9.40 IN IMAGE: less than
* FIELD 11*** **" 113*.2*" **9.40 4 $'s or *'swill not•

be interpreted as a
field specification.

DESCRIPTIVE IN IMAGE: Characters other Note IMAGE exception
TEXT and than above symbols will be above. (Less than 4 $'s
SPACES printed as specified (includ- or *'s will be printed

ing spaces): e. g. , "X IS %%" as specified. )

IN FORM: Spaces are used to 12 X IS 12 IN FORM descriptive
separate field specifications. text will be enclosed
Text to be printed is enclos- in double quotes if
ed in single quotes. Spaces format string is in
are denoted by B's; e.g. , single quotes.
'! I X IS' B %%11

CARRIAGE IN IMAGE: Supplied at end of 1
RETURN i "%" 2~magei e.g. , 1,2,3IN FORM: Denoted by Ii e. g. , 3

n%/i1

..J • .J .J



o

IN FORM:

Field replication (FORM "3(2% B)" is equivalent to
"%% B %% B %% B")

Free field format (a single #, prints any string or number,
up to 11 'significant ,d~gits).

Example of picture formatted output to a data file:

PRINT ON 3 IN IMAGE S:A,B,C

103



S. MAT STATEMENTS

NAME EXAMPLE REMARKS

, "INPUT ;

MAT READ MAT READ A,B,C, Matrices are read in
MAT READ K(lS),L(-1:1,3} row order (i.e.,

second subscript
varies more rapidly).

MAT INPUT MAT INPUT A,B,C
MAT INPUT R(2,3) ,S(O:M)
MAT INPUT FROM l:A(N+l)

OUTPUT
MAT PRINT MAT PRINT A,B;C May be picture for-

MAT PRINT ON 2:R;S; matted. Matrices are
MAT WRITE ON 2:R;S; printed in row order.

MATHEMATICAL OPERATIONS
Addition MAT C='A+B

Subtraction MAT C=A-B

Multiplication MAT C=A*B Matrices only.
MAT A=A*B is illegal.

Scalar Mul- MAT C=(X-S)*A
tiplication MAT C=A

Transpose MAT C=TRN(A} Matrices only.
MAT A=TRN(A} is il-
legal.

Inverse MAT C=INV (A) Square matrices only.
Uses Gauss-Jordan
method.

MATRIX INITIALIZATION
ZER MAT C=ZER Sets all elements to

MAT C=ZER(M) zero.
MAT C=ZER(lS,N)

CON MAT C=CON Sets all elements to
MAT C=CON(M) one.
MAT C=CON(IS,N)

IDN MAT C=IDN Square matrices only.
MAT C=IDN(M,M) Sets identity matrix.

104



6. CONTROL STATEMENTS

See chart below for FOR and NEXT.

Statement Model Remarks

END Not needed at end of pro-
gram.

GO Direct only.

GO TO line number When used directly, re-
tains all previous in-
formation.

GOSUB line number Be sure to isolate sub-
routine from main program.

IF logical expression THEN statement The statement after the
THEN or ELSE clause can

IF logical expression THEN statement be any indirect statement
ELSE statement except DATA, REM or 1

ON numeric expression GO TO linel, Value of numeric expres-
1ine2'··· sion will be truncated if

not an integer.
ON numeric expression GOSUB linel'

line2, •••

PAUSE Indirect only.

QUIT (or Q Cr when used directly) Also can be used indirect-- ly.

RETURN
_.

RUN Direct only.

STOP Equivalent to END.

105



FOR and NEXT

These commands are indirect only:

\ Example of FOR Remarks

30 FOR X=l TO 10 Implied step of 1.

30 FOR X=l TO 10 STEP 2 Step' specified as 2.

30 FOR X=IO TO I STEP -2 N~gative step specified.

30 FOR X=lO TO I BY -2 Alternate forms of above
30 FOR X=lO STEP -2 "TO 1 example.
30 FOR X=lO BY -2 TO 1

30 FOR X=I,2,7,8 Values listed.

30 FOR X=I,2,6 TO 18 STEP 3,50 Values and range listed.

30 FOR X=N*Q TO Q/3 STEP N Variables used in defining
range.

30 FOR X=l WHILE X<=Y WHILE and UNTIL used to
30 FOR X~l UNTIL X>Y specify final value.
30 FOR A=IOSTEP 2 wHILE A<Y Change in Y within loop

will alter final value.

30 FOR X=l TO Y Change in Y within loop,.
will not alter final
value.

FOR statement is accompanied by NEXT.

80 NEXT X
80 NEXT I,J (equivalent to{~~ ::~~ ~)

106



7. STATEMENT MODIFIERS

Most direct statements and all indirect statements except
DATA can be modified.

Modifier Example Effect of Modifier

IF INPUT N IF M=SQR(7) INPUT N executed only if
M equals SQR(7).

UNLESS INPUT N UNLESS M=SQR(7) INPUT N executed only if
M does not equal SQR (7) •

FOR PRINT Xt2 FOR X=l TO 10 Equivalent to:
10 FOR X=l TO 10
20 PRINT Xt2
30 NEXT X
FOR modifier takes the
same forms as the FOR
statement.

WHILE X=2*X WHILE X<Y X=2*X executed repeatedly
as long as X is less than
Y.

UNTIL X=2*X UNTIL X<Y X=2*X executed repeatedly
as long as X is greater
than or equal to Y.

WHILE and UNTIL also may be used with FOR to specify the final
value.

8. LOADING AND SAVING THE PROGRAM

These commands are direct only.

Command Example Purpose

LOAD >LOAD /A/ To load program statements
>LOAD (A3JIM)/@PAUL/ saved on a file.
>LOAD "SIMEQN"

SAVE >SAVE /FILE/ To save all or part of a
>SAVE /XY/,1-lS,30,70-100 program.

TAPE >TAPE To load program statements
(If DC was not punched at from paper tape.
end of tape, type DC
after tape is read.)

107



9. EDITING AND UTILITY COMMANDS

All of these commands are direct only except REM and 1

Command Example

DELETE or >DELETE 10
DEL >DEL 8-10,70

>DELETE ALL

EDIT >EDIT 25

~IST >LIST 25
>LIST 10,65-90
>LIST

MODIFY or >MOD 10
MOD

REM and 1 >10 REM PRINT A
>1 SUBROUTINE
>55 A=A+l 1 ADD 1

Remarks

DELETE ALL has the same
effect as returning to
EXEC and recalling SBASIC.

The line to be edited will
be printed out.

LIST alone lists the
entire program.

The line to be edited will
not be printed out.

Only 1 can append comments
to statements (see the
last example).

RENUMBER
or REN

TABS

>RENUMBER 20,10,5
>REN AS 20 FROM 10 BY 5
>REN 20, 10 -95 , 5
>REN AS 20 FROM 10

TO 95 INC 5
>RENUMBER BY 5
>REN
>REN 30 ADD 10
>REN FROM 30 TO 65

ADD 10

>TABS 5,10,15,20

108

When omitted, first new
line number is assumed to
be 100, first old to be 0
(program is renumbered
from the beginning), and
increment to be 10.

Tabs are initialized at
7,15 and steps of 5 from
15 on. IC spaces to next
tab stop.



SECTION 4

SAMPLE SUPER BASIC PROGRAMS

Listing Stocks

This program reads up to 100 items of string and numeric
data from a file in which the last item is known to be the
string "END". The data is printed on the terminal with a picture
format, followed b~ the sum of the numeric information. Note
that the left just1fication of strings and the right justificaticn
of numbers is an extremely useful feature of picture formatting.

109



-COpy /BSTOCKSI TO TEL

ABBOT LABS.,lOO,AMPEX,IOO,BECKMAN INSTRUMENT,lOO,BRISTOL MYERS,20
COLGATE PALMOLIVE,100,CONTINENTAL BAKING,IOO I FOREMOST MCKESSON,200
"GRANT" W.T.",IOO"HALLIBURTON"100 ..HOWMET ..200,,INT. TEL. & TEL... 12
LITTON IND... 11"MC CALL,100 .. NATIONAL CAN,100"NORWICH PHARMACAL.. 64
OLIN MATHIESON CHEM.,,100,SQUIBB BEECH NUT.. 66,UNITED FRUIT,IOO
END

-SBASIC

>LOAD ISTOCKSI
>LIST
10 S=O
20 STRING eCIOO)
30 DIM HC 100)
40 OPEN IBSTOCKS/IINPUT,l
50 FOR 1=1 TO lQO
60 INPUT FROM 11 CCI)
70 IF CCI)<>nE~' THEN INPUT FROM II NC!) ELSE 100
80 S=S+NCI)
90 NEXT I
100 PRINT
110 PRINT IN FORM "a11 31/"1 CCJ) .. NCJ) FOR J=1 TO 1-1
120 PRINT
130 PRINT "TOTAL NO. OF SHARES IS",S
140 CLOSE 1
>RUN

ABBOT LABS. 100
AMPEX 100
BECKMAN INSTRUMENT 100
BRISTOL MYERS 20
COLGATE PALMOLIVE 100
CONTINENTAL BAKING 100
FOREMOST MCKESSON 200
GRANT, W.T. 100
HALLIBURTON 100
HOWMET 200
INT. TEL. & TEL. 12
LITTON IND. 11
MC CALL 100
NATIONAL CAN 100
NORWICH PHARMACAL 64
OLIN MATHIESON CHEM. 100
SQUIBB BEECH NUT 66
UNITED FRUIT 100

TOTAL NO. OF SHARES IS 1679

>

110



Percentage Bar Chart

The DATA statement in the following program lists the
frequency counts for ten class intervals denoted by the numbers
1-10. The program calculates the percentage frequency of each
class interval (expressed as a percent of total). Each per
centage frequency is rounded to the nearest integer and plotted
on a bar chart.

This program demonstrates the usefulness of the statement
modifiers (FOR and IF), print functions (TAB), and logical
operators (OR).

III



-SBASIC

>LOAD ICHARTI
>LIST
10 READ YCI) FOR 1=1 TO 10
20 HaO
30 N=N+YCI) FOR lei TO 10
40 PCI)=100*YCI)/N,SCI)=INTCPCI)+.S) FOR Iml TO 10
50 PRINT
60 PRINT TABCS) '''PERCENTAGE BAR CHART"
70 FOR Y~25 TO 1 STEP -1
80 PRINT y, IF Y=$ OR Y=10 OR YalS OR Y=20
90 PRINT TABC3*I) t"XXfW.IF SCI »=Y FOR 1=1 TO 10
100 PRINT
110 NEXT Y
laO PRINT
130 PRINT IN FORM "9(31) 41".1 FOR 1=1 TO 10
140 DATA 1,5,17,19,30,40,25,21,7,2
>RUN

PERCENTAGE BAR CHART

xx
xx
xx
xx

20 XX
xx

xx xx
xx ;xx
xx xx

15 xx xx xx
xx xx xx
xx xx xx xx
xx xx xx xx

xx xx xx xx xx
10 XX XX xx xx xx xx

xx xx xx xx xx xx
xx xx xx xx xx xx
xx xx xx xx xx xx
xx xx xx xx xx xx

5 XX XX XX XX XX XX
XX xx xx xx xx xx xx

xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx

xx xx xx xx xx xx xx xx xx xx

1 2 3 4 5 6 7 S 9 10
>

112

II



/

~. Directory Of Addresses

The file /DIR/ contains the names and addresses of a number
of California residents. This program asks the user whose
address he wants. The user may type in any part of the person's
name (for example, DALE, DALE MOSS or MOSS) and that person's
full name and address will be printed. If the name typed is
not found, the program will print the last string in the data
file which tells the user that the address is not listed there.

Note the value of using the unique string function INDEX
in this example (line 110). Since INDEX searches each name in
tpe directory for whatever is typed by the user, any part of
a name is acceptable for input. INDEX conveniently returns 0
if it does not find the string for which it has searched.

-COpy IDIRI TO TEL

MR. JOHN B. CAREY.. 285 COTTLE AVENUE..CAMPBELL
MRS. LESLIE FISHER.. 1964 HAMPTON DRIVE.. DANVILLE
MR. CARL LARSON.. 985 SOUTH 9 STREET.. SAN JOSE
MR. DALE MOSS,1650 SARATOGA AVENUE.. SARATOGA
MR. JOHN REY,106 FORMAN STREET.. CAMPBELL
MR. DANIEL TORRES .. 24 SCHARF AVENUE.. LOS GATOS
MISS DONNA WILKES .. 315 SOUTH 3 STREET.. SAN JOSE
MR. MICHAEL YOUNG.60 WILSON ROAD.. CHESTER
"R. HENRY C. ZIMMER.15 ~CKSON STREET..PALO ALTO
THE ADDRESS IS NOT LISTED HERE.

-SBASIC

>LOAD IADDR/
>LIST
10 STRING Nl .. N.A.. C
20 OPEN IDIR/ .. INPUT .. 2
30 PRINT
40 PRINT "ADDRESS OF'"
SO INPUT Nl
60 PRINT
70 INPUT FROM 21N
80 IF LEFT(N.3)=·'THE" THEN PRINT N ELSE 100
90 GO TO 140
100 INPUT FROM 2,A.. C
110 IF INDEX(N.. Nl)=O THEN 70 ELSE PRINT N
120 PRINT A
130 PRINT CI.... CALIFORNIA"
11&0 CLOSE 2
150 GO TO 20
>RUN

(Continued)

113



ADDRESS OF? JOHN REY

MR. JOHN REY
106 FORMAN STREET
CAMPBELL, CALIFORNIA

ADDRESS OF? ZIMMER

MR. HENRY C. ZIMMER
15 JACKSON STREET
PALO ALTO, CALIFORNIA

ADDRESS OF? PEARSON

THE ADDRESS IS NOT LISTED HERE.

ADDRESS OF? DONNA

MISS DONNA WILKES
315 SOUTH 3 STREET
SAN JOSE, CALIFORNIA

ADDRESS OF?
INTERRUPTED IN STEP 50
>

114



Cube Root

This program uses the approximation method to compute the
cube root of any number typed by the user. The first approxima
tion is A = N/3, which is c~mpared to the next (closer) ap
proximation Al = (2A3+N)/3A. Each time through the loop
(line 40), A stores the ~ast value of Al and a new approximation
is calculated, with the last value of Al replacing A in the
formula. As soon as Al is equal to A when rounded to eight
significant digits (i.e., ABS(AI-A) <IE-9) , the program prints
the cube root (AI) and the number of passes through the ap
proximately loop (I-I).

Two important characteristics of FOR when used with UNTIL
(or WHILE) are illustrated here:

1. A and Al must be initialized (line 30) because
the terminating condition is checked before the
loop is entered. Thus, if A had not been initialized,
SUPER BASIC would not have been able to define
ABS(AI-A) upon first encountering the loop.

2. The value of I upon exit from the loop is that value
which caused the exit to occur (i.e., 1 more than
the value of I the last time through the loop). For
this reason, the number of iterations is I-I and not I.

115



-SBASIC

>LOAD /ROOT/
>LIST
10 PRINT "TYPE THE NUMBER"
20 INPUT N
30 A=O#Al=N/3
40 A=Al#Al=(2*At3+N)/(3*At2) FOR 1=1 UNTIL ABSCAI-A)<IE-9
50 PRINT "CUBE ROOTt"tAI
60 PRINT ttNUMBER OF ITERATIONSI",I-l
70 PRINT
80 GO TO 10
>RUN
TYPE THE NUMBER
? 7777
CUBE ROOT: 19.812413
NUMBER OF ITERATIONS. 17

TYPE THE NUMBER
'1 0
CUBE ROOT: 0
NUMBER OF ITERATIONS. 0

TYPE THE NUMBER
"I -45.9
CUBE ROOTI-3.5804496
NUMBER OF ITERATIONS: 9

TYPE THE NUMBER
"I
INTERRUPTED IN STEP 20
>

116

,"



Fundamental Frequency

This program uses the formula

•

F =
.467T

2
R

Y

to find F, the fundamental frequency of a circular clamped plate.
D,Y, and P (the density, Young's modulus, and Poisson's ratio)
are 'read from a DATA statement, and the value of T (the thick
ness) is requested. Using this data, the program caluclates F
for a range of radii (R) from .1 to 1 in steps of .1, from 1
to 10 in'steps of 1, and from 10 to 100 in steps of 10. Picture
formatti~g is used to print the results on a file.

Line 90 in this example illustrates the number of instruc
tions that may be given in one statement. A number and the
value of a programmer defined function are printed with picture
formatting on a file for three distinct range of values.

117



-SBASIC

>LOAD IFREQI
>LIST
10 READ D"P"Y
20 PRINT "WHAT IS THE THICKNESS OF THE DRUM MATERIAL" I
30 INPUT T
40 DEF FNF(X)=(.467*T/Xt2).SQRCY/D*CI-Pt2»)
50 OPEN IX/"OUTPUT,,1
60 PRINT ON 1 ."RADI US" ,,·-FUND. FREQ .'.
70 PRINT ON 1
80 A="XXI.X %IIS~ZI%.XXI"

90 PRINT ON 1 IN IMAGE At R"FNFCR)
FOR R=.1 TO .9 BY .1,,1 TO 9 BY 1,,10 TO 100 BY 10

100 DATA 7.8".3,,20El1
>RUN
WHAT IS THE THICKNESS OF THE DRUM MATERIAL? .672

>Q

-COpy IXI TO TEL

RADIUS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
S.O
6.0
7.0
8.0
9.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

FUND. FREQ.

15159139.386
3789784.841
1684348.821
947446.212
606365.575
421087.205
309370.192
236861.553
187149.869
151591.394

37897.848
16843.488
9474.462
6063.656
4210.872
3093.702
2368.616
1871.499
1515.914
378.978
168.435
94.745
60.637
42.109
30.937
23.686
18.715
15.159

118

~.



•

~.. "

~l

•

Gross Pay

This program reads from a file up to 100 items of string
data, each string consisting of an employee's name and hourly
rate. The user'is asked to type after each employee's name the
number of hours worked by that employee. After extracting
numeric information (the hourly rate) from the strings in the
data file, the program calculates each employee's gross pay and
charts the results •

Note the varied purposes served by the strings read from
the file. They are used to request for input (line 90), to
compute the gross pay (line 110) and to print the output (line
180). Using the string functions LEFT,. VAL, and SUBSTR makes
this possible.

119



-COpy IRATESI TO TEL

ADAMS
BENTLEY
BROWN
DEARBORN
FIELD
GREER
LAMONT
MEADOWS
MITTY
RUFOLO
SMITH
SOUTHERN
SWAN
UNDERWOOD
END

-SBASIC

SI.SO/HR
52.7S/HR
S3.00/HR
SI.7S/HR
51.S0/fIR
54.75/HR
51.2S/HR
S3.S0/HR
5S.S0/HR
S3.25/HR
51.S0/HR
$2.50/HR
S2.00/HR
53.00/HR

>LOAD IGROSPAYI
>LIST
10 TEXT ACIOO):25
20 DIM HCI00),GCIOO)
30 OPEN IRATES/,INPUT,l
40 FOR 1=1 TO 100
SO INPUT FROM I:ACI)
60 IF ACI)="END" THEN PRINT "TYPE NUMBER OF HOURS WORKED BY'"

ELSE NEXT I
70 CLOSE 1
80 FOR J=1 TO I-I
90 PRINT LEFTCACJ),lS):
100 INPUT HCJ)
110 GCJ)=HCJ)*VALCSUBSTRCACJ) .. 17.. 4»
120 NEXT J
130 PRINT
140 PRINT "EMPLOYEEt" ....HOURLy RATE: ......HOURS WORKEDt .... ··GROSS PAY'"
150 PRINT
160 F="2X.2Z • MRS' 6B 45.25/"
170 FOR J=1 TO 1-1
180 PRINT ACJ):TABC31'1
190 PRINT IN FORM F:HCJ) .. GCJ)
200 NEXT J
>RUN

(Continued)

120



TYPE NUMBER OF HOURS WORKED BY:

~
ADAMS ? 35.5
BENTLEY ? 40
BROWN 1 40
DEARBORN ? 38.25
FIELD 1 40
GREER ? 35
LAMONT ? 37.5
MEADOWS ? 40
MITTY ? 40

4 RUFOLO ? 40
SMITH ? 37
SOUTHERN ? 32
SWAN ? 35.25
UNDERWOOD ? 40

EMPLOYEE: HOURLY RATE. HOURS WORKED: GROSS PAY'

ADAMS $1.50/HR 35.50 HRS 553.25
BENTLEY $2.75/HR 40.00 HRS $110.00
BROWN 53.00/HR 40.00 MRS 5120.00
DEARBORN $1.75/HR 38.25 fIRS 566.94
FIELD 51.50/HR 40.00 MRS $60.00
GREER 54.75/HR 35.00 HRS 5166.25
LAMONT $1.2S/HR 37.50 MRS 546.88
MEADOWS 53.50/HR 40.00 !iRS $140.00

~
HITTY $S.50/HR laO.OO HRS $220.00
RUFOLO 53.25/HR 40.00 HRS $130.00

"- SMITH SI.50/HR 37.00 HRS $55.50
SOUTHERN $2.50/HR 32.00 HRS $80.00
SWAN $2.00/HR. 35.25 HRS $70.50
UNDERWOOD 53.00/HR 40.00 HRS S120.00

>

121



APPENDIX A

ALPHABETIC LIST OF ALL SUPER BASIC STATEMENTS
AND CHARACTERISTICS

The following is an alphabetic list of all SUPER BASIC statements.

D - A direct statement
I - An indirect statement
B - Either a direct or an indirect statement
Y - Statement may be modified by statement modifiers
N - Statement may not be modified by statement modifiers

Statement

BASE
CLOSE
COMMANDS
COMPLEX
DATA
PEF
bELETE
p'IM
EpIT
END or STOP
rO:R
(;0'
GOSUB
GO TO
IF
INPUT
INTEGER
LET (Assignment)
LIST
LOAD
~OGICAL

MAT
MODIFY
NEXT
ON
OPEN
l?AUSE
PRINT
QUIT
~EAD

REAL
~EM or
RENUMBER
RESTORE
RETURN
RUN
SAVE

Statement
~

B
B
B
B
I
I
D
B
D
B
I
D
B
B
B
B
B
B
D
D
B
B
D
I
B
B
I
B
B
B
B
B
D
B
B
D
D

122

Modification
possible

Y
Y
Y
Y
N
Y
N
Y
N
Yl
Y
N
Y
Y

2
Y
Y
Y
N
N
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
N
N



Statement

STRING
TABS
TAPE
TEXT
VAR=UNDEF
VAR=ZERO
WRITE

1 - But not by FOR
2 - Not applicable.

Statement
~

B
D
D
B
B
.B
B

:~23

Modification
Possible

y
N
N
.y
Y
.Y
y



APPENDIX B

DECLARATION STATEMENT STORAGE
ALLOCATION

Words Of Storage Per
Declaration Variable Or Per

statement Declares Element Of An Array

INTEGER A, B(O:lOO} Integer variable or 1*
arrays

REAL X,Y(lO}, Z (N) Real variables or 2
arrays

DIM Z(5}, A(2,3} Integer, real, and 2
string arrays

COMPLEX A, B, C(12} Complex variables 4
or arrays

LOGICAL D, G, F (50) Logical variables 1/24
or arrays

STRING M, N, A(2,3} String variables 1/3 word per
or arrays character with

a minimum of 2
words.**

TEXT A(20}:15, String arrays; 1/3 per
B (3,2) : 12 specifies maximum character.**

element length

* The maximum number of words (elements) for an integer array
is about 8000 in a program.

** If the number of characters of a STRING or TEXT element is
not evenly divisible by 3, the remaining characters of the
string occupy one full word.

124



o

APPENDIX C

THE EXECUTIVE SYSTEM

Entering The System

To gain access to the Tymshare time sharing system, you
must first log in. As soon as the connection to the Tymshare
computer is made, the system will type:

PLEASE LOG IN:

Type a Carriage Return. The system replies with:

ACCOUNT:A3 Cr

Type your account number (A3 in this case) followed by a
Carriage Return. The system then types:

PASSWORD: Cr

Type your password followed by a Carriage Return. NOTE:
The password does not print. The system next types:

USER NAME: JONES Cr

Type your user name followed by a Carriage Return. The
system next asks for a project code.

PROJECT CODE: K-123-X Cr

Type your project code followed by a Carriage Return. NOTE:
Project codes are optional. If no project code is wanted, simply
type a Carriage Return in response to the system's request.

After you have entered the requested information correctly,
the system will type:

READY 12/8 11:20

The dash in the left hand margin indicates that you are now
in the EXECUTIVE. You can call SUPER BASIC or give any EXECUTIVE
command.

Calling SUPER BASIC

To call SUPER BASIC, type the EXECUTIVE command

-SBASIC Cr

SUPER BASIC will reply with a > when it is ready to accept a com
mand.

125



Returning To SUPER BASIC

If for some reason you return to and work in the EXECUTIVE
and then wish to continue from where you left off in SUPER BASIC,
you can use the CONTINUE command. The program and data that you
worked with in SUPER BASIC were not destroyed by the return in
the EXECUTIVE.

Example

-SBASIC Cr
>

•••
>QUIT Cr

•••
-CONTINUE Cr
SBASIC
>

The user types part of a SUPER
BASIC program.

He does some work in the EXECUTIVE.

He continues to type the program.

If the user had typed SBASIC Cr or called any other
language instead of giving the CONTINUE command, all of his
previous work would have been destroyed.

Listing Files

When the EXECUTIVE command

-FILES Cr

is given, a complete listing of all your files will be printed,
and the type of file will be indicated (SYM for symbolic, BIN
for binary).

126



•

Q

Example:

-FILES Cr

SYM /MORTGAGE/
SYM /JUNK/
SYM /DATA
BIN /BDATA/
SYM /VEN/
SYM /ABC/

Deleting Files

If there is no further use for a particular file, delete it
by typing:

-DELETE /file name/ Cr

Example

-DELETE /ABC/ Cr

A single DELETE command may be used to delete more than one
file. The file names must be separated by commas as follows:

- DELETE /PGM/,/JUNK/,/VEN/ Cr

Leaving The System

To exit from the Tymshare system, you first must be in
EXECUTIVE. To return to the EXECUTIVE from SUPER BASIC, type:

>QUIT Cr

The EXECUTIVE dash will appear in the left margin. Now type

-LOGOUT Cr

followed by a Carri~ge Return. The system then will type

TIME USED 0:37:12

PLEASE LOG IN:

You now may disconnect the line or let another user log in.

127



APPENDIX D

THE TERMINAL

The Keyboard 1

CD r:\CDCDCDCDOCDCDf\O(:\~_1_ '..V_2
_ __3_ __4_ __6_ __6_ __7_ __8_ __9_ \.V _:_ \.:.J_-_ \.V

•'\

SHIFT
Only those keys which are underlined in the keyboard
diagram have a shift position. The SHIFT key oper
ates in the manner of an ordinary typewriter. The
SH IFT characters are printed as they appear on the
upper half of these keys, with the following excep
tions:

SHIFT K = [
SHIFT L = \
SHIFT M = ]

- CTRL (Control)
Any alphabetic key may be pressed in conjunction
with this key. The resulting character, called a con
trol character, does not always print on the terminal.
Control characters serve a variety of purposes depend
ing on when they are typed. Some languages, for ex
ample, use control characters as editing instructions
to the computer. In the Tymshare manuals, a super
script c is used to designate control characters; for
example, Control 0 is shown as DC. Note the follow
ing special control characters:

JC = Line Feed
MC = Carriage Return

ALT MODE or ESCAPE.
This key is used to abort a command, interrupt the
execution of a program, andlor return to the EXECU
TIVE. NOTE: On machines not having either the
ALT MODE or the ESCAPE key, use SHIFT KC.

HERE IS
Not used in the Tymshare system.

LINE FEED
Advances the paper one line each time it is pressed.
When the user is connected to the computer, the sys
tem automatically supplies a Carriage Return after
every Line Feed.

RETURN (Carriage Return)
Returns the print head to the beginning of a line. The
print head goes to the beginning of the next line only
when the user is connected to the computer; that is,
the system automatically supplies a Line Feed after
every Carriage Return.

RUB OUT
Used in conjunction with the B.SP. button on the
paper tape punch to delete characters punched in
error.

REPT (Repeat)
Repeats any character on the keyboard (including a
space) when pressed in conjunction with the desired
character.

BREAK
DO NOT press this key; it causes a transmission inter
rupt and possible loss of program and data.

NOTE: Maximum line width is 72 characters.

1 - This is the standard terminal keyboard. On Individual machines, some keys may not exist or may be located differently than
shown in this diagram.

128



The ON/O FF Controls

The standard ON/OF F control is a three-position
dial located on the front of the terminal and to the
right of the keyboard.

B.SP.
Back spaces the paper tape one frame each time the
button is depressed. Used in conjunction with the
RUB OUT key on the keyboard to delete erroneous
characters.

START

STOP

Reader Controls

Punch Controls

ONB.SP.

REL. OFF

00
00

OFF

LINE0 LOCAL

Standard ON/OFF Control

LINE
The terminal is ON and ready to be connected to the
computer via the phone line. When the connection is
made, the terminal is said to be "on line".

OFF
The terminal is OFF.

LOCAL
The terminal is ready for local ("off line") opercr
tions; that is, operations to be performed when the
terminal is not connected to the computer. Paper tape
may be punched off line.

o

The Paper Tape Controls

When the terminal is equipped with a paper tape
punch and reader, the controls are on the left side of
the terminal.

FREE

REL.
Releases the paper tape so that the user can pull it
through manually.

OFF
Turns the punch OFF.

ON
Turns the punch ON to punch the paper tape.

START
Starts and continues paper tape reading.

STOP
Stops paper tape reading.

FREE
Frees the tape reader mechanism so the user can pull
the tape through manually.

129



How To Punch Paper Tape Off Line

The user can punch a paper tape while not connected to the
computer. Later the program can be read into SUPER BASIC by
means of the TAPE command. The contents of a data file can be
punched on tape and read into EDITOR or the EXECUTIVE.

To punch paper tape off line, turn the dial on the front
of the terminal to LOCAL and depress the ON button on the paper
tape punch controls. Then punch the tape from the keyboard.
Note the following special rules:

• Always follow

• Always follow

Example

On line, type:

20 IF A THEN 100' 'Lf

ELSE 200 Cr

a Line Feed with a Carriage Return •

a Carriage Return with a Line Feed.

Off line, type:

20 IF A THEN 100 Lf Cr

ELSE 200 Cr Lf

\),

In case of a typing error in a SUPER BASIC statement,
delete the incorrect character by typing a + immediately. Re
peat the + to delete as many characters as required. In ad
dition, an t followed by a Carriage Return deletes an entire
line typed in error.

The above editing characters are accepted only in SUPER
BASIC. If the tape contains data to be read in EDITOR or the
EXECUTIVE, delete an incorrect character by depressing the
B.SP. button on the punch controls and then the RUB OUT key
on the keyboard. To delete several incorrect characters,
press B.SP. as many times as necessary and then RUB OUT the
same number of times.

130



\.--



I~



TYMSHARE, INC.

DALLAS SEATTLE
2355 Stemmons Bldg., Suite 1010 2200 6th Avenue, Suite 810
Dallas, Texas 75207 Seattle, Washington 98121
Telephone: 214/638-5680 Telephone: 206/MA 3-8321

~ IYMSHARE
TM SAN FRANCISCO

745 Distel Drive
Los AlIos, California 94022
Teiephone: 415/961-0545

NEW YORK
464 Hudson Terrace
Englewood Cliffs, New Jersey 07632
Telephone: 201/567-9110

LOS ANGELES
334 East Kelso Street
Inglewood, California 90301
Telephone: 213/677-9142

SAN DIEGO/ORANGE COUNry
4630 Campus Drive, Suite 209
Newport Beach, California 92660
Telephone: 714/~~40-5940


	Contents
	Introduction
	Section 1 - A SUPER BASIC Primer
	Section 2 - SUPER BASIC Advanced Features
	Section 3 - Summary of SUPER BASIC
	Section 4 - Sample SUPER BASIC Programs
	Appendix A - Alphabetic List of all SUPER BASIC Statements and Characteristics
	Appendix B - Declaration Statement Storage Allocation
	Appendix C - The Executive System
	Appendix D - The Terminal

