

29

SECTION 10

LOGICAL OPERATIONS

In addition to the arithmetic operations already
covered, CAL also is equipped to handle logical
operations. Although logical operations appear to be
similar to arithmetic operations, logical operations
differ in that they recognize only two conditions;
namely, true (not zero) and false (zero).

Logical Variables And Expressions

All arithmetic variables and expressions have a
logical as well as an arithmetic value. Any arithmetic
variable or expression whose numeric value is not
zero is said to have a logical value of 1 (True). Any
arithmetic variable or expression with a zero value is
said to have a logical value of 0 (False).

Logical Comparisons

Logical comparisons are made using logical expres
sions or variables together with relational operators.
Whenever two defined values are compared by means
of relational operators, a logical operation is per
formed. A logical value of 1 is assigned if the relation
ship specified is true, and a logical value of 0 is
assigned if the relationship is not true.

>TYPE 3=3 ()
3=3 = 1

>A = �3�~�

> TYPE A>3+1 �~�

A>3+1 = 0

Logical Operators

CAL has three logical operators (AND, OR, NOT)
which work exclusively with logical values. CAL's

logical operators may be used alone; for example,
TYPE A AND 8, or, as introduced earlier in this
manual, in conjunction with the arithmetic and rela

tional operators; for example,

TYPE A, At2 IF At2<33 AND B>A-5

AND

The logical operator AND evaluates the expres
sions immediately preceding and following it. If both
of these expressions are true, a logical value of 1 (not
zero) will be returned. If either one or both of the
expressions is false, a logical value of false (0) is re
turned. AND works as a multiplication operator on
the logical values, hence only the condition TRUE*
TRUE (for example, 1*1) will produce a TRUE
(not zero) value.

OR

The logical operator OR also evaluates the expres
sions immediately preceding and following it. OR,
however, requires that only one of the logical expres
sions be true to return a true value. 0 R works as an
addition operator on the logical value; thus a false
value (0) will be returned only when both of the
expressions are false (0). If either of the expressions
connected by an OR is true, the result of the logical
addition can never be 0 and hence will be TRUE
(not zero).

NOT

The logical operator NOT changes the logical
value of the expression immediately following it.
Thus, if A is equal to 1 (TRUE), then NOT A is equal
to 0 (FALSE). If 8=0 (FALSE), then NOT 8=1

(TRUE).

Example: Logical Operators

> LOAD �~�

FROM /LOGIC/ ;>

>TYPE ALL �~�

1.00 AO=NOT A

1.10 BO=NOT B

1.20 A 1=A AND B

1.21 A2=A AND NOT B

30

1.22 A3=NOT A AND B

1.23 A4=NOT A AND NOT B

1.30 01=A OR B

1.31 02=A OR NOT B

1.32 03=NOT A OR B

1.33 04=NOT A 0 R NOT B

1.40 TYPE IN FORM 1: A,A 1,01,B,A2,02,AO,A3,03,BO,A4,04

1.50 LINE

FORM 1:

A = %

B = %
NOT A = %

NOT B = %

A AND B = %

A AND NOT B = %

NOT A AND B = %

NOT A AND NOT B = %

> DO PART 1 FOR A=0,1 FOR B=0,1 ()

A = 0 A AND B = 0

B = 0 A AND NOT B = 0

NOTA NOT A AND B = 0

NOT B NOT A AN D NOT B = 1

A = 1 A AND B = 0

B = 0 A AND NOT B = 1

NOTA =0 NOT A AND B = 0

NOT B = 1 NOT A AND NOT B = 0

A = 0 A AND B = 0

B = 1 A AND NOT B = 0

NOTA = 1 NOT A AND B = 1

NOTB = 0 NOT A AND NOT B = 0

A = 1 A AND B = 1

B = 1 A AND NOT B = 0

NOTA = 0 NOT A AND B = 0

NOT B = 0 NOT A AND NOT B = 0

>

A OR B = %

A OR NOT B = %

NOT A OR B = %

NOT A OR NOT B = %

A OR B = 0

A OR NOT B = 1

NOT A OR B = 1

NOT A 0 R NOT B = 2

A OR B = 1

A OR NOT B = 2

NOT A OR B = 0

NOT A 0 R NOT B = 1

A OR B = 1

A OR NOT B = 0

NOT A OR B = 2

NOT A OR NOT B = 1

A OR B = 2

A OR NOT B = 1

NOT A OR B = 1

NOT A OR NOT B = 0

SECTION 11

OVERLAY

Any CAL program which can be divided into se

quentially executed parts or segments can be over

layed. The overlay feature of CAL is the ability to

write a program larger than the computer memory

available to the user by bringing parts of the program

into memory from the disk at different times. Al

though the user can do this manually at his terminal,

the overlay technique described here causes the com

puter to load and execute a number of separate files

automatically until the entire program is run. Thus

the user has at his disposal a computer whose memory

capacity is infinite (at least theoretically), since the

only limit to the number of files a user may create is

the size and number of files in his file directory.

To use the overlay feature of CAL, first write the

program in CAL and then use the EDITOR commands

READ, WR ITE, and APPEND. Proceed as follows:

>
>

CAL ;J

> DUMP .f)

TO/FI RST/ f)

NEW FILE ~

> QUIT ~

Call CA L and write the

first segment or overlay of

the program.

Write this section on a file
with the CAL command

DUMP.

Use any file name which

has not been used before.

RUN ~

DELETE ALL STEPS f)

DELETE FORM 1 ~

LOAD ~

/SECOND/ ~

DC

*WRITE/FIRST/ ~

OLD FILE ~

*QUIT ()

31

The RUN command will

start execution of the pro

gram automatically.

DELETE any steps, forms,

functions, and values that

will not be needed in later

segments of the program.

NO TE: Be sure to delete

each part separately. DO

NO Tuse the DELETE ALL

or CLEA R commands be

cause these commands will

interrupt the overlay pro

cedure by returning con

trol to the user.

Load the next file in the

program.

Type a Control D to ter

minate the APPEND com

mand.

Use the WRITE command

to place the edited version

of the original file back on

the disk.

- EDITOR ~

Remember that directcom

mands will not be saved.

Call EDITOR and read the

file with the READ com

mand.

Repeat the above procedure for each overlayed

program segment required.

* READ/FIRST/ ()

* APPEND ~ Use the APPEND com

mand to add the direct

commands needed.

- CAL f)

LOAD~

FROM/FIRST/ ~

Overlay Example

Now call CAL and begin

the entire program by cal

ling the first section of the

overlay.

Shown below is an example of an overlayed program. Note that the second file calls

the first file which puts the program into a loop. Get out of the loop in the usual manner

by hitting the AL T MODE/ESC key.

- CAL~

STATEMENTS = ~

> 1.0 TYPE "THIS IS THE FIRST FILE OF THE PROGRAM." ~

> 2.0 DEMAND A ;>
> 3.0 X=At2 ~

> 4.0 TYPE IN FORM 1: A,X ~

32

> FORM 1: ~

> DUMP ~
TO /FIRST/ .;>

NEW FILE;>

> QUIT .;>

- EDITOR ~

THE SQUARE OF %%%%%%.%%% IS ############### ~

* READ /FIRST/ i>

* APPEND ~

RUN~

DELETE STEP 2.0 ~

DELETE FORM 1 t=>

LOAD i>
/SECOND/ ~

* WRITE /FIRST/ ~

OLD FILE iJ
76 WORDS.

* QUIT ~

- CAL~

STATEMENTS = ~

> 1.0 TYPE "THIS IS THE SECOND FILE OF THE PROGRAM." ~

> 3.0 X=At3.;>

> FORM 1: +

> DUMP.;>

TO /SECOND/ ~

NEW FILE ~

> QUIT ~
- EDITOR iJ

THE CUBE OF %%%%%%.%%% IS ############### ~

* READ /SECOND/ ~

* APPEND ~

RUN~

DELETE STEP 1.0 ~

DELETE FORM 1 ~

DELETE A.;>

LOAD iJ
/FIRST/;>

* WRITE /SECOND/ i>
OLD FILE 4)

65 WORDS.

* QUIT ~
- CAL iJ
STATEMENTS = ~

33

> LOAD ~
FROM /FIRST/ ~

THIS IS THE FIRST FILE OF THE PROGRAM.

A = 5.0 ~
THE SQUARE OF 5.000 IS 2.5000000E 01

FROM

THIS IS THE SECOND FILE OF THE PROGRAM.

A = 5 i>
THE CUBE OF 5.000 IS 1.2500000E 02

FROM

THIS IS THE FIRST FILE OF THE PROGRAM.

A = 32.5 f:>
THE SQUARE OF 32.500 is 1.0562500E 03

FROM $

34

SECTION 12
COMMAND FILES

Issuing Commands From A File

The EXEC command

- COMM /file name/:;>

instructs the system to take its commands from a file

instead of from the terminal. The user simply creates

a file containing all the commands which he wants ex

ecuted. The commands may be from any language, in

cluding EXEC, and are typed into the file exactly as

they would normally be given from the terminal.

Creating A Command File

A command file may be created in the EXEC (with

the COpy TEL TO /file name/~ command) as follows.

This command file is created to call CAL, indicate 97
statements, no heading, and then load and run a CAL

program.

- COpy TEL TO

NEW FI LE;?

CAL ~

97 ~

E!
LOAD ~

/FACTORI ;>
RUN ~

QUIT ~

COMM TEL;>
DC

IC41 ~
Equivalent Terminal Commands:

- CAL :i!
STA TEMENTS=97 ~

HEADING= .(!

> LOAD ~

FROM /FACTOR/;)

>RUN~

> QUIT ~

- COMM TEL ~

Leaving A Command File

The system will take its commands from the file

specified in the COMM command until one of the

following is reached:

1) The end of the command file, which causes the

system to return to taking commands from the

terminal.

2) A COMM TEL~ command, which has the same
effect as 1.

3) Another COMM command that enables the user

to nest command files as deeply as he wishes.

NOTE: Command files can be recursive; that is,
the last command in the file can be a command
to take commands from itself.

The CAL program loaded in the preceding exam
ple is on a file called /FACTOR/ which was created
as follows:

-CAL~

STATEMENTS = ~

> 1 F=1 ~

> 1.1 DEMAND A;)

> 2 F=F*N FOR N=1 TO A;>

>3 TYPE F;>

>DUMP ~

TO /FACTOR/.;>

NEW FILE~

>
To tell EXEC to start taking commands from /C4/,

type the EXEC command:

- COMM /C4/;>

The output on the terminal which results from an

actual run of this example is:

-COMM /C4/ ~

STATEMENTS

HEADING

> FROM

> A = 11~

F = 39916800

I nstead of having two files as shown above to exe

cute the program, a single file can be used both as a

source of commands and for the program itself as
shown below.

- COpy TE L TO ICC I ~ The command file CC is

NEW FILE:;> created.

CAL~

97 ~

~
1 F=1:;>

1.1 DEMAND A ~

2 F=F*N FOR N=1 TO A ~

3 TYPE F ~

RUN ~

QUIT~

COMM TEL ~
DC

- COMM ICC/ ~ Now, /CC/ is executed.

STATEMENTS =

HEADING =

> A=9~

F = 362880

SECTION 13

SAMPLE PROGRAMS

This section contains sample programs and executions designed to demonstrate the

features of CAL. Each program is in the following format:

1. Define The Problem

The problem is explained and written in simple steps which are set in the
following form:

A. Input. All data which must be supplied by the user.

B. Compute. All computations done by the computer.

C. Output. All data which will be returned to the user.

2. Flowchart

3. CAL Code and Sample Execution

The problem is coded in CAL and then run on the computer. Many of the

examples in this section were reproduced from terminal hard copy.

The sample programs are given in order of difficulty. The first programs are simple,

using only the basic CAL commands. The programs become progressively longer and

more complex. Each program demonstrates a different set of CA L commands.

MONTHLY PAYMENT PROGRAM

1. Define The Problem

The problem is to compute the monthly payment on a debt.

A. Input:

1. Description - YES or NO.

2. Original debt (P)

3. Annual interest (I)

4. Number of monthly payments to be made (N)

B. Compute:

Monthly payment (M)

M=

C. Output:

p o l(I+1)N

(1+1)N_ 1

Month Iy payment, M.

35

36

2. Flowchart

START

OUTPUT:
DO YOU
NEED A

DESCRIPTION
OF THE PROGRAM?

INPUT:
1 (YES)
o (NO)

OUTPUT:
DESCRIPTION

INPUT: ORIG.
DEBT (P)

ANNUAL INTEREST (I)
NO. OF MONTHS (N)

COMPUTE:
MONTHLY
INTEREST

I = 1/12

COMPUTE:
0=1 + 1

= P*I*((OtN)/((OtN)-1)

OUTPUT:
MONTHLY

PAYMENT M

37

3. CAL Code And Sample Execution

>LOAD
FROM IMOPAYI This program was loaded from the file /MOPA Y /

which had been created earlier.

> TYPE ALL

0.0 TYPE "TYPE '1' TO GET DESCRI PTION."
o. 1 TYPE "TYPE '0' TO SKI P DESCRI PTION. "
0.2 DEMAND IN FORM 1: D
0.3 10 PART 1 IF D#l
0.4 TYPE "TH! S PROGRAM REQUESTS THE USEk TO SUPPLY THE FaLLO Y.:ING"
0.5 TYPE "INFORMATION ON A LOAN - ORI GINAL DEBT(P), ANNUAL INTE.RE.STC 1)"
0.6 TYPE "AND NUMBER OF MONTHSCt'J). IT COMPUTES THE MJ~THLY PAYME."'JTCM)"
o. 7 TYPE "TYPES OUT THE MONTHLY PAYMEi.-JT A.1\JD ASKS FUR NEw LOAN DATA."

1.0 DEMAND IN FORM 2. P,I,N
1.1 1=1/12
1.3 M=P*I*(I+l)tN/(CI+l)tN-l)
1 .4 TYPE I N FORM 3: M
1 .5 TO PART 1

FORM 1:

FORM 2:
PRINCIPAL = I INTEREST =, NO. OF MONTHS = #
FORM 3:
MONTHLY PAYMENT = $%%%%%%.%%

>RlN
TYPE '1' TO GET DESCRIPTION.
TYPE '0' TO SKIP DESCRIPTION.
o

PRINCIPAL = 1000
INTEREST = .06
NO. OF MONTHS = 24

MONTHLY PAYMENT = $

PRINCIPAL = 21100

MONTHLY PAYMENT = $

PRINCIPAL =
>

44.32

IN T ER E S l' = • 0 55

519.97

NO. OF MONTHS = 45

38

> 1 .0
> 1 • 1
> 1 .2
> 1 .4
> 1 .5
> 1 • 6
>
> 3.0
> 3. 1
> 3.2
>
> 4.0

> RUN

PAUSE
>

ARITHMETIC MEAN OF A SERIES OF NUMBERS

1. Define The Problem

The problem here is to determine the mean of any series of numbers.

A. Input:

A series of numbers terminated by 1 x 1070

B. Compute:

The mean (average) of the numbers

MEAN =

C. Output:

The Mean, M.

sum of the numbers
number of numbers

3. CAL Code And Sample Execution

S-N-O
DEMAND Y
TO PART 3 IF Y=lE70
S=S+Y
N=N+l
TO STEP 1. 1

M=S/N
TYPE M
PAUSE

TO PART 1

Y = 24.3 y = 66.7
y = 33.8 y = 55
y = 65.4 y = 1 E70
M = 83.01111100

IN STEP 3.2:

Y = 109.6
Y = 44.3

Y = 3.0
Y = 345

2. Flowchart

START

INITIALIZE:
S=O
N=O

INPUT:
ANUMBER

Y

COMPUTE:
S=S+Y
N=N+1

COMPUTE:
M=S/N

OUTPUT:
MEAN,

M

39

40

AUTOMOBILE GAS MILEAGE

1. Define The Problem

The problem below computes the total mileage, the gas mileage, and the
cost per mile for any given number of miles, given the initial odometer reading,
the number of gallons used and the cost for each tankful, and the final
odometer reading.

A. Input:

1. Initial odometer reading (I).

2. Number of gallons of gas per tankful (G) terminated by O.

3. Cost per tankful (C) terminated by O.
4. Final odometer reading (F).

B. Compute:

1. Total miles travelled.

2. The number of miles/gallon for the trip.

3. The cost/mile for the trip.

C. Output:

1.
2.
3.

Total miles travelled.

Miles/gallon.
Cost/mile.

(M)

(M2)

(C2)

2. Flowchart

PART 1

PART 2

INITIALIZE
Gl=O
Cl=O

INPUT
I

INPUT
G,C

COMPUTE
Gl=Gl+G
Cl=Cl+C

INPUT
F

COMPUTE
M=F-I

M2=M/Gl
C2=Cl/M

OUTPUT
M,M2,C2

41

PART 3

42

3. CAL Code And Sample Execution

-CAL
STATEMENTS =

>LOAD
FROM /MILE/

This program was loaded from
the file /MILE/ which had been
crea ted earlier.

>TYPE ALL

1 .0 TYPE "THIS PROGRAM. COMPUTES THE GAS MILEAGE" THE COST/GAL,,"
1 • 1 TYPE "AND THE TOTAL NUMBER OF MILES TRAVELED FOR ANY GIVEN"
1 .2 TYPE "NUMBER OF MILES AND NUMBER OF FILLUPS ."
1.5 Gl=O
1.6 Cl=O
1.8 DEMAND IN FORM 1: I
1.9 TYPE" NUMBER OF GAL. PER FILLUP COST PER FILLUP

GAL = COST = ..
2.0 DEMAND IN FORM 2: G,C
2.1 TO PART 3 IF G=O AND C=O
2.2 G1=Gl+G
2.3 Cl=Cl+C
2.4 TO PART 2

3.0 DEMAND IN FORM 3: F
3.1 M=F-I
3.2 M2=M/Gl
3.3 C2=Cl/M
3.4 TYPE IN FORM 4: M,M2,C2
3.5 PAUSE
3.6 TO PART 1.5

FORM 1 :
INITIAL ODOMETER RE.4DING = I

FORM 2:
I GAL $ I

FORM 3:
FINAL ODOMETER READING = fi

FORM 4:
%%%%%%%%%%.% MILES TOTAL

%%%.%% MILES/GAL $ %%%.%% COST/MILE

>TO PART 1
THIS PROGRAM COMPUTES THE GAS MILEAGE~ THE COST/GAL~
AND THE TOTAL NUMBER OF MILES TRAVELED FOR ANY GIVEN
NUMBER OF MILES AND NUMBER OF FILLUPS.

INITIAL ODOMETER READING = 539

NUMBER OF GAL. PER FILLUP COST PER FILLUP
GAL = COST =
8.5 GAL $ 3.21

24.0 GAL $ 8.60

10.6 GAL $ 4.01

18.0 GAL $ 6.10

22.4 GAL $ 8.50

0 GAL $ 0

FINAL ODOMETER READING = 1494

955.0 MILES TOTAL
11.44 MILES/GAL $ 0.03 COST/MILE

PAUSE IN STEP 3.5:
>

43

44

DOUBLE DECLINING BALANCE DEPRECIATION

1. Define The Problem

The problem is to compute the double declining balance depreciation on
any given asset over any specified number of years.

A. Input:

1. Cost of the asset (C).
2. Estimated useful lifetime (L).

B. Compute:

1.

2.

Depreciation

Book values

C. Output:

For the entire range of years.

1. Year (X)
2. Amount of depreciation (D)
3. Book value (C)

2. Flowchart

PART 2

PART 3

INPUT
C,l

TYPE THE
HEADING

DO PART 4
FORX= 1 TO l

0=2 ~
l

C = C-D

COMPUTE
0= 2*C/l
c= CoD

OUTPUT
X,D,C

PART4

3. CAL Code And Sample Execution

> LOAD
FROM IDEPR/

NOTE: Direct RUN stored on
program using EDITOR.

PROGRAM TO CALCULATE DOUBLE DECLINING BALANCE DEPRECIATION

COST 0 F ASSET IS $100000
ESTIMATED USEFUL LIFECIN YEARS) IS 20

YEAR DEPRECIATION

1 $ 10000.00
2 $ 9000.00
3 $ 8100.00
4 $ 7290.00
5 $ 6561.00
6 $ 5904.90
7 $ 5314.41
8 $ 4782.97
9 $ 4304.67

10 $ 3874.20
1 1 $ 3486.78
12 $ 3138.11
13 $ 2824.30
14 $ 2541.87
15 $ 2287. 68
1 6 $ 2058.91
1 7 $ 1853.02
18 $ 1667. 72
19 $ 1500.95
20 $ 1350.85

COST OF ASSET IS $
> TYPE ALL

BOOK VALUE

$ 90000.00
$ 81000.00
$ 72900.00
$ 65610.00
$ 59049.00
$ 53144. 10
$ 47829. 69
$ 43046. 72
$ 38742.05
$ 34867.84
$ 31381.06
$ 28242.95
$ 25418.66
$ 22876. 79
$ 20589. 11
$ 18530.20
$ 16677.18
$ 15009.46
$ 13508.52
$ 12157.67

45

46

o • 0 LI N E Fa R I = 1 TO 5
0.1 TYPE "PROGRAM TO CALCULATE DOUBLE DECLINING BALANCE DEPRECIATION"
0.2 LINE FOR I = 1 TO 3
0.3 DEMAND IN FORM 1: C#L
0.4 LINE
0.5 TYPE"
YEAR DEPRECIATION BOOK VALUE"
0.6 LINE
o • 7 00 PART 1 Fa R X = 1 TO L
0.8 LINE FOR I = 1 TO 10
o • 9 TO STEP o. 3

1.0 D = 2*C/L
1 .1 C = C- D
1 • 3 TYP E INFO RM 2: X # D # C

FORM I:
COST OF ASSET IS $IESTIMATED USEFUL LIFE(IN YEARS) IS #
FORM 2:

lSI $1%%1%%%.%1 5%%%%%%S.%%

C = 12157. 66500000
D :: 1350.85170000
I = 1 1
L = 20
X :: 21

>

MEAN AND STANDARD DEVIATION

1. Define The Problem

The problem here is to compute the mean and standard deviation of a group

of data. The mean is computed using the following formula:

M

N
L
i=l

x· I

N

The standard deviation is computed using the following formula:

a=

A. Input:

N
L
i=l

N-1

1. The total number of data items (N).

2. The data (placed in the array A(I)).

B. Compute:

1. Mean

2. Standard deviation

c. Output:

1. Mean (M)

2. Standard deviation (Sl)

47

48

METHOD 1

2. Flowchart

START

~

INITIALIZE
PARTO T=Q

R=Q

~
INPUT

PART 1
N

A(I) FOR
1=1 TO N

l
~ 1

PART 2
DO PART 3 COMPUTE

FOR 1= 1 TO N T = T+A(I) PART 3

~

COMPUTE
PART4 MEAN

M

L
~ 1

PART 5
DO PART 6 COMPUTE

FOR 1=1 TO N X(I) = (A(I)·M)t2
R = R+X(I)

PART6

J
COMPUTE

PART 7
STANDARD
DEVIATION

S1

•
PART8 OUTPUT

M,S1

!
STOP

3. CAL Code And Sample Execution

> 0.1 R"T"O
> 1 • 0 DEMAND N
>1.1 DEMAND ACI) FOR 1=1 TO N
> 2. 0 00 PART 3 FOR I = 1 TO N
> 2. 1 TO PART 4
> 3. 0 T= T +A (I)
> 4.0 M=T/N
> 5.0 00 PART 6 FOR 1 = 1 TO N
> 5. 1 TO STEP 7. 0
>6.0 XCI)=CACI)-M)t2
>6.1 R=R+XCI)
>7.0 Sl=SQRTCR/CN-l»

> 8. 0 TYP EM" S 1
> RUN

N = 5
AC 1) = 2 A(2) = 3

M = 2.40000000
51 = 1.14017540

>

49

A(3) = 1 A(4) = 4 A(5) = 2

50

METHOD 2

2. Flowchart

START

DEMAND
N

A(I) FOR
1= 1 TO N

M = (I = 1 TO N:A(I))/N
COMPUTE
MEAN (M)

STD. DEV. (S) S = SQRT (SUM(I = 1 TO N:(A(I) - M)t2)/(N - 1))

OUTPUT
M, S

STOP

3. CAL Code And Sample Execution

> 1 • 0 DEMAND N
>1.1 DEMAND ACI) FOR 1=1 TO N
>2.0 M=SUM(I=1 TO NsA(I»/N
>3.0 S=SQRT(SUMCI=1 TO N:(ACI)-M)t2)/(N-l»
> 4. 0 TYPE M, S
> RUN

N = 5
A(1) = 2 A(2) = 3 A(3) = 1

M = 2.40000000
5 = 1. 1401 7540

>

A(4) = 4 A(5) = 2

HISTOGRAM

A histogram or bar chart is a pictorial graph. The following example demonstrates
how a histogram may be generated in CAL. The data is supplied from a data file.

DATA FILE FORMAT

The data ranges in value from 1 to 9. A programmer defined end-of-data signal
(1 E40) is used. The data file was created in the EXEC with the command COpy TE L
TO /file name/.

1. Define The Problem

A. Input:

1. The scaling factor (S)

2. READ the data from the fi Ie one piece at a ti me and store
it in the array (N).

B. Compute:

1. Increment the data counter (M)
2. Check to see if all of the data has been input (compare N

with end-of-data signal 1 E40)
3. Scale the data N=N/S
4. Increment the proper value of K(N)

5. The maximum value of N for which K(N) #0

C. Output:

2. Flowchart

The histogram of the data. The histogram is output using

nested DO PART's. Study the example.

This problem can be coded directly without using a flowchart.

51

52

3. CAL Code And Sample Execution

-COpy TEL TO IDATAI
NEW FILE

1,2, 3,4,3,2, 1,3, 3,4,4,5" 6, 7,6" 5" 4" 3,4" 5" 6, 7~ 8,9,9,8,7" 6,5" 5. 4. 3,2
1 ,2. 3,2, , 1. 2, 3,4. 5, (,. 7. 8,9. 8, 7. 6, 5. 4. 3 .. 4. 5, 6. 7.8, , 1, 2,2. 1,2, 2, 1
1 , P" 3, 3, 2, 3,3,4,5,4, 3,4" 5, 5, 6, 7,6,5,4,3,2,3,4,5,6,7,8,9,8,9,8,7,6
IE60

-CAL

STATEMENTS = 20
HEADING = HISTOGRAM

PAGE 1

HISTOGRAM

>1.5 DEMAND IN FORM 1:5
>1.7 OPEN IDATAI FOR INPUT AS FILE 1
>1.8 K(N)aO FOR N=O TO 500
>1.9 M=O
>2.5 READ FROM tIN
> 2.53 M=M+l
>2.54 TO PART 10 IF N>=lE40
>2.55 N=N/S
>2.6 KCN)=KCN)+t
>2.7 TO STEP 2.5
>10.4 N=500
>10.5 N=N-l UNTIL KCN)IO
>10.6 DO PART 50 FOR R=1 TO N
>10.8 LINE
>10.81 LINE
>10.9 TO PART 999999
>50.5 TYPE IN FORM saRIS
>50.6 DO PART 60 FOR A=l TO KCR)
>50.7 LINE
>60.5 TYPE IN FORM 7:
>999999 LINE
>
>FORM 1 I
SCALE FACTOR =#
>FORM 51
%%%%.~~~ II
>FORM 71
XI

>TO PART 1
SCALE FACTOR -I

NOTE: The extra field specified in
the form statements (#) is used to
suppress the Carriage Return. Thus
an X is typed on the same line each
time the loop is repeated. FOR A =

1 TO K(R).

1.000 tXXXXXXXX
2. 000 t XXXXXXXXXXXXX
3.000 :XXXXXXXXXXXXXXXX
4.000 :XXXXXXXXXXXXXX
5.000 :XXXXXXXXXXXXX
6.000 :XXXXXXXXXXX
7. 000 : XXXXXXXXX
S.OOO :XXXXXXXX
9.000 :XXXXX

>TYPE M
M = 98

>QUIT

53

54

STANDARD MORTGAGE

1. Define The Problem

The problem is to compute the down payment, monthly payment, interest

paid, equity accumulated, and the new balance for a standard mortgage. Three
different types of mortgages may be requested; namely, F.H.A., commercial,
and conventional.

A. Input:

1. Answers to Program Requests:

a. Do you need instructions? YES or NO.
b. Number of months remaining in first year =
c. Original debt =
d. Interest rate
e. Type of mortgage: 1 = FHA; 2 = Conventional S & L;

3 = Commercial.
f. The year in which mortgage payments begin
g. "00 you want to run another set of data?"

B. Compute:

1. Minimum down payment
2. Monthly interest rate
3. New principal
4. Initial equity
5. Monthly payment
6. Number of months (based on mortgage type)

7. Initialize counters
8. Interest, equity, title interest, title equity, and principal

for each month.

9. Interest, equity, title interest, title equity, and principal
for each year.

C. Output:

1. Requests for data.
a. Instructions
b. Number of months remaining in year
c. Original debt
d. Interest rate
e. Mortgage type
f. Year mortgage payments begin

2. Minimum down payment
3. Monthly payment
4. Interest, equity, title interest, title equity, principal,

for each month

5. Interest, equity, title interest, title equity, principal,
for each year

6. The month final payment is made

7. Request to compute more data sets

2. Flowchart
START

OUTPUT:
"DO YOU

NEED
INSTRUCTIONS"?

INPUT:
"YES"

OR
"NO"

OUTPUT:
I NSTRUCTI ONS

OUTPUT:
DATA

REQUESTS

INPUT: NO. MOS.
1ST YR. DEBT

INT. RATE
MORT. TYPE

1ST YR.

OUTPUT:
REQUEST

FOR NO. OF
MOS. 1ST YR.

INPUT:
NO. MOS.
1ST YR.

55

56

COMPUTE:
DOWN PAYT.
(.20*PRIN.)

,r
COMPUTE:
MONTHLY

PAYMENT 2

Savings &
Loan

S

"
COMPUTE:
MONTHLY
INTEREST

RATE I = 1/12

LOAN
TYPE?

Commercial ,.
COMPUTE:

DOWN PAYT.
(.25*PRIN.)

"
COMPUTE:
MONTHLY

PAYMENT 3

" - --
OUTPUT:

NEW
PRINCIPAL

&
MON. PAYT.

COMPUTE:
NEW PRIN.

= PRIN-DN. PAYT.

COMPUTE:
EQUITY

F.H.A.

COMPUTE: DN.PAY~=
(.I 3* 15K)+(.10*5K)+(.20 S,p. L)

"
COMPUTE:
MONTHLY

PAYMENT 1

OUTPUT:
HEADINGS

FOR MONTHLY
COLUMNS

COMPUTE:
MONTH'S INTEREST
MONTH'S EQUITY

COMPUTE:
TOTAL INTEREST

TOTAL EQUITY

COMPUTE:
CURRENT
BALANCE

OUTPUT:
DATA

COMPUTED
ABOVE

OUTPUT:
HOGS.

FOR YEARLY
COLUMNS

COMPUTE:
YEARS INTEREST

YEARS EQUITY

COMPUTE:
TOTAL INTEREST

TOTAL EQUITY

COMPUTE:
CURRENT
BALANCE

OUTPUT:
DATA

COMPUTED
ABOVE

57

58

OUTPUT:
FINAL

MONTHLY
PAYMENT

OUTPUT:
"REQUEST

FOR
ANOTHER"

INPUT:
ANSWER

YES
OR
NO

PAUSE

59

3. CAL Code And Sample Execution

-CAL
STATEMENTS = 300

HEADING ::

>LOAD
FROM IMORTGAGEI

>T¥PE ALL

1.0 TYPE" THIS IS A PROGRAM TO COMPUTE STANDARD MORTGAGE DATA."
1.1 DEMAND IN FORM 1: A
1.2 TO PART 2 IF All
1.3 TYPE "THIS PROGRAM COMPUTES THE DOWN PAYMENT, MONTHLY PAYMENT,"
1.4 TYPE "INTEREST PAID, EQUITY ACCUMULATED, AND THE NEW BALANCE FOR"
1.5 TYPE "A STANDARD MORTGAGE. COMPUTATION WILL FIRST BE PRINTED"
1.6 TYPE "FOR THE MONTHS REMAINING IN THE FIRST YEAR, THEN FOR EACHn

1 .62 TYPE "YEAR, AND FINALLY THE PROGRAM WILL PRINT THE MONTH IN WHIC~'
1 .64 TYPE '9THE FINAL MONTHLY PAYMENT WAS MADE."
1.66 LINE
1.68 TYPE "THE USER MUST INPUT CERTAIN PERTINENT DATA WHEN REQUESTED"
1 .70 TYPE "BY THE PROGRAM. WHEN THE MORTGAGE TYPE IS REQUESTED"
1 .72 TYPE "IT IS ASSUMED BY THE PROGRAM THAT AN F.H.A. MORTGAGE"
1.74 TYPE "IS AMORTIZED OVER A 30 YEAR PERIOD, A CONVENTIONAL MORTGAGE"
1.76 TYPE "IS AMORTIZED OVER A 25 YEAR PERIOD WITH A MINIMUM DOWN PAYMET
1.78 TYPE "OF 20%, AND THAT A COMMERCIAL MORTGAGE IS AMORTIZED OVER"
1.80 TYPE itA 20 YEAR PERIOD WITH A MINIMUM DOWN PAYMENT OF 25%."
1.82 LINE

2.0 DE~4ND IN FORM 2: R,P,I
2.1 DEMAND IN FORM 3: L,Y
2.2 TO PART 10 IF R>12
2.3 Rl=12-R
2.4 1=1/1200
2.5 N=IF L=1 THEN 360 ELSE IF L=2 THEN 300 ELSE IF L=3 THEN 240
2.6 DO PART CL*20)
2.7 P=P-D
2.8 El=D
2.9 M=CP*I*CI+l)fN)/(CI+l)fN-l)

3.0 N=N-13
3.1 TYPE IN FORM 4: D,M
3.2 TYPE"

TOTAL TOTAL
MONTH INTEREST EQUITY
IF RIO
3.3 Il~I2-I3-E2-E3-0
3.4 DO PART 4 FOR K=R BY -1 TO 1
3.5 TYPE"

MONTH'S
INTEREST

MONTH'S
EQUITY

CURRENT
DEBT II

60

TOTAL TOTAL
YEAR INTEREST EQUITY
3.6 DO PART 5 FOR K=N BY -1 TO 0
3.7 DO PART 6 FOR K=Rl BY -1 TO 1
3.8 TO PART 7

4.0 I2=P*1
4.1 E2=M-I2
4.2 11=11+12
4.3 E1=El+E2
4.4 P=P-E2

YEAR'S
INTEREST

4.5 TYPE IN FORM C200+K): Il,El,I2,E2,P

5.0 I2=P*I
5.1 E2=M-I2
5.2 11=11+12
5.3 El=El+E2
5.4 P=P-E2
5.5 13=13+12
5.6 E3=E3+E2
5.7 DO PART 9 IF K MOD 12 = 0

6.0 I2=P*I
6.1 E2=M-I2
6.2 11=11+12
6.3 El=El+E2
6.4 P=P-E2
6.5 13=13+12
6.6 E3=E3+E2

7.0 Y=Y+l
7.1 TYPE IN FORM 5: Y,Il,El,I3,E3,P
7.2 TYPE IN FORM 9:
7.3 TYPE IN FORM 100+Rl:
7.4 LINE FOR K= 1 TO 6
7.5 DEMAND IN FORM 6: A
7.6 TO PART 2 IF AID
7.7 LINE FOR K= 1 TO 6
7.8 PAUSE
7.9 TO PART 1

9.0 Y=Y+l
9.1 TYPE IN FORM 5: Y,Il,El,I3,E3,P
9.2 13"E3"0

10.0 TYPE"

YEAR'S
EQUITY

THE NUMBER OF MONTHS REMAINING IN ONE YEAR CANNOT
EXCEED TWELVE."

10.1 DEMAND IN FORM 7: A
10.2 TO STEP 2.2

20.0 D=IF P>2E4 THEN CCP-2E4>*.20+950) ELSE IF P>15E3 THEN
«P-15E3>*.10+450) ELSE C.03*P)

CURRENT
DEBT "

61

FORM 1:
DO YOU NEED INSTRUCTIONS ? (TYPE 1 FOR YES, OR 0 FOR NO) ,

FORM 2:

FORM 3:

FORM 4:

FORM 5:
19%%
FORM 6:

FORM 7:

FORM 9:

FORM 101:
JANUARY
FORM 102:
FEBRUARY
FORM 103:
MARCH
FORM 104:
APRIL
FORM 105:
MAY
FORM 106:
JUNE
FORM 101:
JULY
FORM 108:
AUGUST
FORM 109:
SEPTEMBER
FORM 110:
OCTOBER
FORM 111:
NOVEMBER
FORM 112:
DECEMBER

THE NUMBER OF MONTHS IN THE FIRST YEAR = #
THE ORIGINAL DEBT = $#
INTEREST RATE = I
TYPE OF MORTGAGE (l=FHA, 2=CONVENTIONAL, 3=COMMERCIAL) I
MORTGAGE PAYMENTS BEGIN IN 19#

MINIMUM DOWN PAYMENT = $%%%%%.%%
MONTHLY PAYMENT = $%%%%.%%

$%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

DO YOU WISH TO COMPUTE DATA FOR ANOTHER MORTGAGE ?
(TYPE 1 FOR YES, OR 0 FOR NO) #

THE NUMBER OF MONTHS IN THE FIRST YEAR = #

THE FINAL MONTHLY PAYMENT IS IN %

$%%%%%.%%

62

FORM 201:
DEC. $%%%%%.%% $%%%%%.%%

FORM 202:
NOV. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 203:
OCT. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 204:
SEP. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 205:
AUG. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 206:
JUL. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 207:
JUN. $%%%%%.%% $%%%%%.%%

FORM 208:
MAY $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 209:
APR. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 210:
MAR. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 211:
FEB. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 212:
JAN. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

>TO PART 1
THIS IS A PROGRAM TO COMPUTE STANDARD MORTGAGE DATA.
DO YOU NEED INSTRUCTIONS ? (TYPE 1 FOR YES, OR 0 FOR NO) 1

THIS PROGRAM COMPUTES THE DOWN PAYMENT, MONTHLY PAYMENT,
INTEREST PAID, EQUITY ACCUMULATED, AND THE NEW BALANCE FOR
A STANDARD MORTGAGE. COMPUTATION WILL FIRST BE PRINTED
FOR THE MONTHS REMAINING IN THE FIRST YEAR, THEN FOR EACH
YEAR, AND FINALLY THE PROGRAM WILL PRINT THE MONTH IN WHICH
THE FINAL MONTHLY PAYMENT WAS MADE.

THE USER MUST INPUT CERTAIN PERTINENT DATA WHEN REQUESTED
BY THE PROGRAM. WHEN THE MORTGAGE TYPE IS REQUESTED
IT IS ASSUMED BY THE PROGRAM THAT AN F.H.A. MORTGAGE
IS AMORTIZED OVER A 30 YEAR PERIOD, A CONVENTIONAL MORTGAGE
IS AMORTIZED OVER A 25 YEAR PERIOD WITH A MINIMUM DOWN PAYMENT
OF 20%, AND THAT A COMMERCIAL MORTGAGE IS AMORTIZED OVER
A 20 YEAR PERIOD WITH A MINIMUM DOWN PAYMENT OF 25%.

THE NUMBER OF MONTHS IN THE FIRST YEAR = 10

THE ORIGINAL DEBT = $32500.00

INTEREST RATE = 6.5

TYPE OF MORTGAGE Cl=FHA, 2=CONVENTIONAL, 3=COMMERCIAL) 2

63

MORTGAGE PAYMENTS BEGIN IN 1968

MINIMUM DOWN PAYMENT = $ 6500.00
MONTHLY PAYMENT = $ 175.55

TOTAL TOTAL MONTH'S MONTH'S CURRENT
MONTH INTEREST EQUITY INTEREST EQUITY DEBT

MAR. $ 140.83 $ 6534.72 $ 140.83 $ 34.72 $25965.28
APR. $ 281.48 $ 6569.63 $ 140.65 $ 34.91 $25930.37
MAY $ 421 .93 $ 6604.73 $ 140.46 $ 35.10 $25895.27
JUN. $ 562.20 $ 6640.01 $ 140.27 $ 35.29 $25859.99
JUL. $ 702.28 $ 6675.49 $ 140.07 $ 35.48 $25824.51
AUG. $ 842.16 $ 6711.16 $ 139.88 $ 35.67 $25788.84
SEP. $ 981.85 $ 6747.03 $ 139.69 $ 35.86 $25752.97
OCT. $ 1121.34 $ 6783.09 $ 139.50 $ 36.06 $25716.91
NOV. $ 1260.64 $ 6819.34 $ 139.30 $ 36.25 $25680.66
DEC. $ 1399.75 $ 6855.79 $ 139.10 $ 36.45 $25644.21

TOTAL TOTAL YEAR'S YEAR 'S CURRENT
YEAR INTEREST EQUITY INTEREST EQUITY DEBT
1969 $ 3053.28 $ 7308.91 $ 1653.53 $ 453.11 $25191 .09
1970 $ 4676.47 $ 7792.37 $ 1623.19 $ 483.46 $24707.63
1971 $ 6267.27 $ 8308.20 $ 1590.81 $ 515.84 $24191 .80
1972 $ 7823.54 $ 8858.59 $ 1556.26 $ 550.38 $23641 .41
1973 $ 9342.94 $ 9445.83 $ 1519.40 $ 587.24 $23054.1 7
1974 $10823.01 $10072.41 $ 1480.07 $ 626.57 $22427.59
1975 $12261.12 $10740.94 $ 1438.11 $ 668.54 $21759.06
1976 $13654.46 $11454.25 $ 1393.34 $ 713.31 $21045.75
1977 $15000.02 $12215.33 $ 1345.57 $ 761.08 $20284.67
1978 $16294.62 $13027.39 $ 1294.59 $ 812.05 $19472.61
1979 $17534.83 $13693.82 $ 1240.21 $ 866.44 $18606.18
1980 $18717.01 $14818.29 $ 1182 .18 $ 924.46 $17681.71
1981 $19837.28 $15804.66 $ 1120.27 $ 986.38 $16695.34
1982 $20891.49 $16857.10 $ 1054.21 $ 1052.44 $15642.90
1983 $21875.21 $17980.02 $ 983.73 $ 1122.92 $14519.98
1984 $22783.74 $19178.14 $ 908.52 $ 1198.12 $13321.86
1985 $23612.02 $20456.51 $ 828.28 $ 1278.36 $12043.49
1986 $24354.69 $21820.49 $ 742.67 $ 1363.98 $10679.51
1987 $25006.00 $23275.81 $ 651.32 $ 1455.33 $ 9224.19
1988" $25559.86 $24828.61 $ 553.85 $ 1552.79 $ 7671.39
1989 $26009.72 $26485.39 $ 449.86 $ 1656.79 $ 6014.61
1990 $26348.62 $28253.14 $ 338.90 $ 1767.74 $ 4246.86
1991 $26569.13 $30139.27 $ 220.51 $ 1886.13 $ 2360.73
1992 $26663.33 $32151.72 $ 94.19 $ 2012.45 $ 348.28
1993 $26666.16 $32500.00 $ 2.83 $ 348.28 $ 0.00

THE FINAL MONTHLY PAYMENT IS IN FEBRUARY

DO YOU WISH TO COMPUTE DATA FOR ANOTHER MORTGAGE ?
(TYPE 1 FOR YES# OR 0 FOR NO) 0

PAUSE IN STEP 7.8:
>

64

APPENDIX 1

PRECEDENCE LIST

This appendix gives the complete precedence list for the CAL operators and functions.
Operators with the same precedence are performed from left to right. Parentheses may
be used to alter precedence.

Precedence

1
2

3
4

5

Operator

(unary minus, the negative sign)

t
/ * MOD

The CAL functions

+ -
6 = # < <= > >= relational operators

7 NOT

8 AND OR

9 +- (replacement)

10 = replacement operation

APPENDIX 2

CAL SUMMARY

NUMBERS

I nteger (without decimal point)

Decimal (with decimal point)

Scientific Notation

For example; 357940

For example; 35.7940

For example; 3.57E23 (where E23 means 1023
)

VARIABLES

Legal Variables A - Z and AO - Z9

Subscripted Variables A(l), B(I-3*S), A6(N, M, ... R)

ARITHMETIC OPERATORS

I n order of priority

t
*, /, MOD
+,
+-

Equal

Not equal

Unary Minus (Negation)

Exponentiation
Multipl ication, Division, Modulo

Addition, Subtraction
Replacement

RELATIONAL OPERATORS

> Greater than

>= Greater than or equal to

< Less than

< = Less th an or equ al to

LOGICAL OPERATORS

AND Logical Multiplication

OR Logical Addition

NOT Reverses Logical Value

ABS (A)

SIN (A)

COS (A)

TAN (A)

ATAN (X,Y)
EXP (A)

LOG (A)

LOG10 (A)
SQRT (A)

IP (A)

FP (A)

MATHEMATICAL FUNCTIONS
(STANDARD)

Absolute value of A

Sine of A

Cosine of A

Tangent of A
Arctangent in radians, over the range -1T to +1T of X/Yo
e to the power A

Natural logarithm of A
Base 10 I ogarith m of A

Positive square root of A
I nteger part of A

Fractional part of A

65

66

ITERATIVE FUNCTIONS

~:~ol (Any form of FOR clause without the word FOR:expression)

MIN J
Example

U
TO limit:

SUM (variable = limit BY interval UNTI L condition:expression)
WH I LE condition:

PROGRAMMER DEFINED FUNCTIONS

DEFINE fU~a~i~n [parameter list] = expression

f .
DEFINE unction [parameter list] 'TO STEP step name . number

n~~ber RETURN expression

FORM STATEMENTS

FORM form number: ~

INPUT SPECIFICATION
For any number type #

OUTPUT SPECIFICATION
Integer
Decimal

%%%%%%
%%%%%%.%%

Exponential ###### (Minimum 6)

Any other characters (blanks included) printed as shown.

COMMANDS

INPUT/OUTPUT COMMANDS (DIRECT OR INDIRECT)

DEMAND variable list
DEMAND IN FORM form number:variable list

TYPE variable list
TYPE IN FORM form number:variable list
TYPE "text"

TYPE STEP step number
TYPE PART part number

TYPE FORM form number

TYPE function name
TYPE ALL STEPS
TYPE ALL FORMS
TYPE ALL FUNCTIONS
TYPE ALL VALUES
TYPE ALL

DATA FILES (DIRECT OR INDIRECT)
INPUT

OPEN /file name/ FOR or AS FI LE file
b OUTPUT num er

READ FROM file . .
INPUT number:vanable list

WR ITE ON nu~lber :variable list

WRITE ON file IN FORM form .variable
number number· list

OUTPUT ON file : non-s.ubscripted
number vanable list

CLOSE file number

REPLACEMENT COMMAND (DIRECT OR INDIRECT)

single variable = expression For example, A 1 = PI * R t2

CONTROL COMMANDS

Direct Or Indirect
TO PART step or part number
TO STEP step number
DO PART step or part number
DO STEP step number

Indirect Only
PAUSE
DONE

Direct Only
RUN
GO
QUIT
STEP

Miscellaneous

Direct Or Indirect
LINE
PAGE
$
! Comments

Direct Only
LINES

Program Files (Direct Only)

DUMP~
TO /file name/

LOAD ~
F ROM !file name/

DELETE COMMANDS (DIRECT ONLY)

DELETE STEP step number
DE LETE step number
DELETE PART step or part number
DELETE FORM form number
DELETE variable
DELETE function name
DE LETE ALL STEPS
DELETE ALL FORMS
DELETE ALL VALUES
DE LETE ALL FUNCTIONS
DELETE ALL or CLEAR

67

68

EDIT COMMANDS (DIRECT ONLY)

EDIT STEP step number
EDIT step number
EDIT FORM form number
EDIT function name
MOD STEP step number
MOD step number
MOD FORM form number
MOD function name

MODIFIERS

I F expression
UN LESS expression
UNTI L terminating condition
WH I LE terminating condition
FOR variable = list of values

FOR variable = limit BY interval UNTI L condition
[

TO limit

WH I LE condition
WH ERE expression & expression
I F condition TH EN expression ELSE expression

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed
item receives the most detailed discussion.

ABS, 19

Adding,a statement, 26

AL T MODE/ESC, 17

AND, 29

Append,31

Arithmetic expressions, 6

Arithmetic operators, 6

Arithmetic replacement, see Replacement

ATAN, 18

CLEAR,26

CLOSE,24

Command, see Statement

display, 11

files, 34

Comments, 11

Conditional modifiers, see Modifiers

Constants, 5

Control characters, 27

COS, 18

DEFINE,20

DELETE ALL STEPS, 26, 31

DELETE FORM, 26

DELETE PART, 26

DELETE STEP, 26

Deleting a file, see Removing a file

Deleting a statement, 26

DEMAND,9

DEMAND IN FORM, 10

DO PART, 12, 15

DO STEP, 16

Dollar sign, 22

DONE, 16

DUMP, 23, 31

EDIT, 26

EDIT FORM, 26

EDIT STEP, 26

Editor, 31

EXP, 18

Expressions, arithmetic, 6

logical,7

File number, 23, 24

Files, 23

command, 34

data, 23
dollar sign, 22

FOR, 19,23

FOR loop, 13

FORM, 9,10,26

FP,19

Function parameters, 20

Functions, 18, see also individual
function names

iterative, 19

programmer defined, 20

recursive, 21

GO,16

IF,12,22

I F THEN ELSE, 14

Input, 9, 24, Section 2

command,24

data files, 23

IP, 19

LINE, 22

LINES, 22

Literal text, 11

LOAD, 23

LOG,18

69

70

Log in procedure,' 3

LOG10,18

Logical expressions, 7, 29

operators, 7, 29

variables, 29

LOGOUT, 5

Loop, see FOR loop

MAX, 19

MIN,19

MOD,6

Modifiers, 12

MODIFY, 26

NOT, 29

Numbers, numeric, see Constants
PART, 8

STEP, 8

OPEN, 23

Operations, logical, 29

order of, 6

Operators, 6

logical, 7

relational, 7

OR,29

Output, decimal, 10

exponential, 10

integer, 10

OUTPUT ON, 24

Overlay, 31

PAGE, 22

Parentheses, see Operations, order of

PART Number, 8

PAUSE, 16

PI,18

Precedence, 6

PROD, 19

QUIT, 4,17

READ, 24

READ/file name/, 31

Relational operators, 7

Removing a file, 23

Replacement, 12

RETURN, 20

RUN,16

Scientific notation, see Output, exponential

SIN,18

Statement, command, 5

define, 5

direct, 7

FORM, 5, 9,10

indirect, 7

STEP, 16

STEP Number, 8

Subscripted variables, see Variables

SUM, 19

TAN, 18

Text, see Literal text

TO PART, 12, 17,21

TO STEP, 15

TYPE, 9,11,13

UNLESS, 12

UNTIL, 12

Variables, 5

local and global, see Function
parameters

WHERE, 13, 14

WHILE, 12

WRITE ON, 24

WRITE/file name/, 31

TYMSHARE MANUALS

Instant Series
CAL

SUPER BASIC
EDITOR

Reference Manuals
EXECUTIVE

CAL
SUPER BASIC

EASYPLOT
EDITOR

FORTRAN IV
FORTRAN II

LIBRARY
COGO
ECAP

ARPAS/DDT
BRS

8 TYMSHARE TYMSHARE, INC., 525 University Avenue, Suite 220, Palo Alto, California 94301

