TA8512AF

TOSHIBA BIPOLAR INTEGRATED CIRCUIT

SILICON MONOLITHIC

READ/WRITE IC (For Floppy Disk Drive)

TA8512AF is a bipolar monolithic developed for R/W IC for 3~8 inch floppy disk drive.

The read circuit and write circuit and various control circuits for the floppy disk drive are integrated on one chip to realize small size and low power dissipation.

- . To decrease the power dissipation when it is not operated the system has a power save function (The state where read, write, and erase are not performed), and the power dissipation under power save state is 9mW(Typ.)(at 5V single power supply use).
- . The system operates by dual power supples of $V_{CC}=12V\pm10\%$ and $V_{DD}=5V\pm10\%$ or single power supply of $V_{CC}=V_{DD}=5V\pm10\%$.
- . As a read/write change-over diode switch is built in, the read amplifier differential voltage gain can be set either 100 times or 200 times by the gain select terminals.

- . As the write current change-over circuit is built in, the current value can be changed-over either internal or external circumference of the disk.
- . The read circuit, write circuit, and erase circuit are incorporated in a chip and control can be make in independent timing by \overline{WG} and \overline{EG} .
- . The power supply monitoring circuit is incorporated to inhibit abnormal writing at the rise of power supply and occurrence of abnormal power.
- . A capacitor for time domain filter's time constant is incorporated and the time constant can be set by an external resistance.
- . As the time domain filter's time c-nstant changed-over circuit is built in, the period (t1) of the first one shot can be change-over either internal or circumfrence of the disk.
- . As the differentiator component change-over circuit is incorporated, the frequency characteristic of the differentiator can be changed-over.

• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or others.

TOSHIBA CORPORATION

TA8512AF-1

1989-11-28

Unit in mm

Weight: 1.2g

• The products described in this document are strategic products subject to COCOM regulations. GT1A12(1)-A They should not be exported without authorization from the appropriate governmental authorities (as of NOV. 1989)

TA8512AF

TECHNICAL DATA

Please not that 9, 11, 12, 13, 15 pin is not endurable enough against ESD. ($\sim \pm 100V$)

TA8512AF-2
1989-11-28
TOSHIBA CORPORATION

TYPICAL APPLICATION

TA8512AF-3
1989-11-28
TOSHIBA CORPORATION

TA8512AF

PIN DESCRIPTION TABLE

PIN No.	NAME	DESCRIPTION
1	DIFF DAMPING	Active Differentiator Components Select:
	CONTROL INPUT	When logical voltage "L" is input, component between 3 and
		4 terminal and at logical voltage "H", between 2 and 4
		terminal is selected.
2	DIFF CONSTANT C	Active Differentiator Components:
3	DIFF CONSTANT B	Active differentiator components are connected between 4 and
4	DIFF CONSTANT A	2 terminal or between 4 and 3.
5	DIFF IN A	Active Differentiator Inputs:
6	DIFF IN B	From the two preamplifier output terminals, the read signal
		is differentially input through the filter circuit.
7	PRE OUT B	Preamplifier Outputs:
8	PRE OUT A	From the tow terminals, the read signal is differentially
		input to the differentiator input terminals through the
		filter circuit.
9	GAIN SEL	Preamplifier Gain Selects:
10	GAIN SEL B	By AC coupling short between terminal 9 and 11, preamplifier
11	GAIN SEL A	gain of 200 times, and by AC coupling short between terminals
		10 and 11, preamplifier gain of 100 times can be selected.
12	HEAD O A	Head O Connects:
13	HEAD O B	A magnetic head for record/regeneration having a center tap
		and a head damping resistance at the read mode is connected.
14	HEAD 1 A	Head 1 Connects:
15	HEAD 1 B	These are another input/output terminals of one more
		magnetic head the similar as above.
16	12V/5V SELECT	V _{CC} Power Supply Select:
		When logical "L" is input, the mode of VCC=5V use is
		selected.
17	A•GND	Analog Ground
18	WRITE DUMP A	Write Damping Resistance Connects:
19	WRITE DUMP B	Between these terminals a head damping resistance is
		connected at the write mode.

TA8512AF-4

1989-11-28

PIN DESCRIPTION TABLE

PIN No.	NAME	DESCRIPTION								
20	COMMON 1	Cneter Tap 1:								
		This terminal is connected to the center tap of the magnetic								
		head 1 and sets the read/write voltage of the head 1.								
21	V _{CC}	+12V or +5V Power Supply								
22	COMMON 0	Center Tap 0:								
		This terminal is connected to the center tap of the								
		magnetic head 0 and sets the read/write voltage of the								
		nead 0.								
23	E•GND	Erase Ground								
24	ERASE OUTPUT	Erase Current Output:								
		case Current Output: his is the open collector terminal for performing sink of								
		earsing current.								
25	W/C COMP	RW COMP Connect:								
		Between this terminal and 26 terminal, the RW COMP is								
		connected and sets the increasing write current value.								
		(Form:1a) $I_{WC} = \frac{1.3 - V_{WC}}{RW COMP (\Omega)} \times 10 (ADC)$								
26	W/C SET	RW Connect:								
		Between this terminal and 35 terminal, the RW is connected								
		Connect: ween this terminal and 35 terminal, the RW is connected sets the write current value.								
		(Formula) $I_W = \frac{1.3}{R_W (\Omega)} \times 10 (ADC)$								
27	WRITE CURRENT	WRITE CURRENT Input:								
		At the time of the logical voltage "L" inputs, the write								
		current is determined by the sum of IW and IWC, and at								
		logical voltage "H", the write current is IW only.								
28	WRITE DATA	WRITE DATA Input:								
		This is the $\overline{\text{WRITE DATA}}$ input terminal, and triggered at								
		digital input $H \rightarrow L$.								
29	WRITE GATE	WRITE GATE Input:								
		This is a pull up terminal which becomes the write system								
		active by the input of the logical voltage "L".								

TA8512AF-5

1989-11-28

TA8512AF

PIN DESCRIPTION TABLE

PIN No.	NAME	DESCRIPTION								
30	ERASE GATE	ERASE GATE Input:								
		This is a pull up terminal which becomes the erase system								
		active by the input of the logical voltage "L".								
31	SIDE 1	SIDE 1 Input:								
		This is a pull up terminal, and at the input of the logical								
		voltage "L" the Head 1 system becomes active, and at the								
		input of the logical voltage "H", the Head O system becomes								
		active.								
32	POWER ON	Power On Output:								
		This is the open collector terminal which outputs "L" when								
		least either one of power supply VDD and VCC is less an the specified value.								
	-	than the specified value.								
33	READ DATA	Read Data Output:								
		From this terminal digital signal (Read Data) outputs.								
34	MMVA CONTROL	MMVA CONTROL Input:								
		en logical voltage "L" inputs, the period (t1) of the								
		-shot time becomes narrow.								
35	V _{DD}	+5V Power Supply								
36	MMVB	RMMVB Connect:								
		This terminal is connected with the period (t2) of the								
		one-shot time setting resistance R _{MMVB} .								
		The period of the second one-shot time is determined by								
		$t^{2}=27 \times (R_{MMVB} (\Omega) + 100) \times 10^{-12} (ns)$								
37	MMVA	R _{MMVA} Connect:								
		This terminal is connected with the period (tl) of the								
		one-shot time setting resistance RMMVA.								
		The period of the first one-shot time is determined by $t1=53.5 \times (R_{MMVA} (\Omega) + 100) \times 10^{-12}$ (ns)								
		Note: Setting of RA=RMMVA when logical voltage								
		"H" inputs to MMVA CONTROL. When logical voltage "L"								
		inputs to MMVA CONTROL, RA=RMMVA// RMMVA COMP and								
		the period tl becomes narrow.								

TA8512AF-6

1989-11-28

TECHNICAL DATA

TA8512AF

PIN DESCRIPTION TABLE

PIN No.	NAME	DESCRIPTION								
38	D•GND	Digital Ground								
39	POWER SAVE	POWER SAVE Input:								
		When logical voltage "L" inputs to POWER SAVE, reduces the								
		wer dissipation of R/W IC (at the power save mode).								
		ing the power save mode, read, write, and erase are not								
		carried out.								
		(Power supply monitor circuit is operating.)								
40	MMVA COMP	R _{MMVA} COMP Connect:								
		is is an open collector terminal for connecting the								
		rrected period (tl) of one-shot time setting resistance								
		IMVA COMP to the terminal 37.								
41	COMP IN B	Comparator Inputs:								
42	COMP IN A	From active differentiator output terminals, the read								
		signals are differentially input to these terminals through								
		AC coupling capacitor.								
43	DIFF OUT A	Active Differentiator Output:								
44	DIFF OUT B	From these terminal, the read signals are differentially								
		input to the comparator input terminals thorugh the AC								
		coupling capacitor.								

TOSHIBA CORPORATION	
1989-11-28	
TA8512AF-7	

INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

TOSHIBA

CHARACTERISTIC		SYMBOL	RATING	UNIT
Power Supply Voltage (Pin 21)		VCC	17	v
Power Supply Voltage (Pin 35)		v _{DD}	7	V
Digital Input Voltage	(Note 1)	-	-0.5~5.5	V
Power On Detector Applied Voltage	(Note 2)	-	17	V
Erase Output Applied Voltage	(Note 3)	-	17	V
Head O/1 Applied Voltage	(Note 4)	-	17	V
Common Output Source Current		ICOM	75	mA
Erase Sink Current		Ι _Ε	50	mA
Write Current		IW	25	mADC
Power On Sink Current	(Note 2)	-	7	mA
Operating Ambient Temperature Range		Та	-20~75	°C
Operating Junction Temperature		Tj	150	°C
Storage Temperature		Tstg	- 65~150	°C
Power Dissipation (Ta=25°C)	(Note 5)	РD	0.96	W

(Note 1) These ratings apply to WRITE CURRENT, WRITE DATA, WRITE DATE, ERASE GATE SIDE 1, MMVA CONTROL, POWER SAVE, DDC1, 12V/5V SELECT.

(Note 2) This rating applies to POWER ON (pin 32).

(Note 3) This rating applies to ERASE OUTPUT (pin 24).

(Note 4) These rating apply to (Pin 12)(Pin 13)(Pin 14)(Pin 15).

(Note 5) In the actual operation refer to Fig.1.

1989-11-28	
TA8512AF-8	

INTEGRATED CIRCUIT

TA8512AF

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

TOSHIBA

(1) SUPPLY CURRENT I (Ta=25°C, $V_{CC}=12V$, $V_{DD}=5V$)

CHA	ARACTERISTIC	SYMBOL	FIGURE	MEASURE CONDITION	MIN.	TYP.	MAX.	UNIT
Read Mode	V _{DD} Supply Current	I _{DDR}	-		-	17.6	27.5	mA
Read Hote	V _{CC} Supply Current	ICCR	-		-	7.2	8.6	mA
Write Mode	VDD Supply Current	IDDW	_	IW=0	-	8.8	12.6	mA
wille node	V _{CC} Supply Current	ICCW	-		-	3.4	5.1	mA
Erase Mode	V _{DD} Supply Current	IDDE	-		-	8.8	12.4	mA
liuse node	V _{CC} Supply Current	ICCE	_		-	3.6	5.6	mA
Write +	V _{DD} Supply Current	IDDW+E	-	IW=0	-	11.5	21.7	mA
Erase Mode	V _{CC} Supply Current	ICCW+E	-		-	3.3	5.3	mA
	V _{CC} Supply Current	IDDPS	-		-	1.3	2.7	mA
Power Save Mode	V _{CC} Supply Current	ICCPS	-		-	0.35	0.5	mA
	Total Power Dissipation	P _{DPS}	-		-	10.7	19.5	mW

SUPPLY CURRENT II (Ta=25°C, $V_{CC}=5V$, $V_{DD}=5V$)

					the second s			
CHARACTERISTIC		SYMBOL	FIGURE	MEASURE CONDITION	MIN.	TYP.	MAX.	UNIT
Read Mode	V _{DD} Supply Current	I _{DDR}	-		-	17.7	23.4	mA
Read Houe	VCC Supply Current	ICCR	-		-	7.5	8.6	mA
Write Mode	VDD Supply Current	IDDW	-	IW=0	-	9.5	15.4	mA
	V _{CC} Supply Current	ICCW	-		-	12.3	18.8	mA
Erase Mode	V _{DD} Supply Current	IDDE	-		-	9.4	13.9	mA
LTase noue	V _{CC} Supply Current	ICCE	_		-	12.6	19.2	mA
Write +	V _{DD} Supply Current	IDDW+E	-	IW=0	-	12.3	19.4	mA
Erase Mode	V _{CC} Supply Current	ICCW+E	-		-	12.3	18.8	mA
	V _{DD} Supply Current	IDDPS	-		-	1.35	2.7	mA
Power Save Mode	V _{CC} Supply Current	ICCPS	_		_	0.27	0.4	mA
	Total Power Dissipation	P _{DPS}	-		-	8.1	15.5	mW

1989-11-28	
1989-11-28	
TA8512AF-9	

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

(2) POWER SUPPLY MONITOR (Ta=25°C, $V_{CC}=0\sim16V$, $V_{DD}=0\sim7V$)

CHARACTERIS	CHARACTERISTIC		FIGURE	MEASURE CONDITION	MIN.	TYP.	MAX.	UNIT
5V Power Supply	Positive	V _T +	_		-	4.0	4.2	TT
Threshold Voltage	Negative	V _T -	-		3.6	4.0	_	v
12V Power Supply	Positive	v _T +	-	V _{DD} =5V	-	9.0	10.0	v
Threshold Voltage	Negative	v _T -	-		8.2	9.0	-	
5V Power Supply Hysteresis		V _T +-V _T -	-		-	150	-	mV
12V Power Supply Hysteresis		v _T +-v _T -	-		300	-	-	mV
Power On Output (P Saturated Voltage	in 32)		-	V _{DD} =3.6V ISINK=5mA	-	-	0.4	V
Power On Output (Pin 32) Leakage Current			-	V _{DD} >4.5V	-	-	10	μA

TA8512AF-10	
1989-11-28	-

INTEGRATED CIRCUIT TOSHIBA

TA8512F

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

(3) PRE AMPLIFIER.ACTIVE DIFFERENTIATOR.COMPARATOR (Ta=25°C, $V_{CC}=12V-5V$, $V_{DD}=5V$)

	CHARACTERISTIC SYMBOL FIGURE MEASURE CONDITION		MIN.	TYP.	MAX.	UNIT		
น	Differential Voltage	Gvl	2	f=1MHz	170	200	230	v/v
ifie	Gain	Gv2	2	f=1MHz	85	100	115	•,•
Amp 1	Bandwidth (-3dB)	BW	2		_	5	-	MHz
۲/Pre	Common Mode Rejection Ratio	CMRR	-	Input Sine Wave f=1MHz, 200mVrms	50	-	_	dB
atriy	Power Supply Rejection Ratio	PSRR	-	Supperposed Sine Wave f=10MHz, 1Vp-p	70	-	-	dB
ead M	Differential Input Resistance	RIN	-	f=62. <u></u> 5~500kHz	-	10	-	k
Η€	Differential Input Capacitance	CIN	-	f=125kHz		_	1	pF
	Differential Input Voltage Linear Operation	VIN	-	Gain×100 times	0.8	_	15	mVp-p
er	Differential Output Voltage Linear Operation	V _{OUT}	2		2.0	3.0	-	Vp-p
lifi	Differential Output Sink Current	I _{OUT}	-		3.0	4.0	5.0	mAp-p
e Amp	Differential Output Off Set	VOFS	-		-		0.5	v
Pr(Noise Voltage Refered to Input	EN	2	Head Connected Terminals Short BW=400Hz~1MHz	-	4.0	6.0	µV _{rms}
cor	Band Width (-3dB)	F _{CD}	_		10	15	_	MHz
ntiat	Differential Output Voltage Linear Operation	V _{OUT D}	-		-	2	_	Vp-p
ffere	Differential Output Off Set	V _{OF D}	-			20	-	mV
e Dif	Differential Input Resistance	RIN D	-		12	-	_	kΩ
Activ	Differential Output Resistance	ROUT D	_		-	200	-	Ω
1	Sink Current (Pin 2,3,4)	ISINK D	-		1.4	2.0	_	mA
rator	Differential Input Voltage Linear Operation	V _{IN C}	-		-	2	-	Vp-p
Compa	Differential Input Resistance	RIN C	_		12	_	_	kΩ

TA8	35	12	AF	-1

1

1989-11-28

TA8512AF

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

(4) TIME DOMAIN FILTER \cdot DIGITAL OUTPUT (Ta=25°C, V_{CC}=12V~5V, V_{DD}=5V)

СН	ARACTERISTIC	SYMBOL	FIGURE	MEASURE CONDITION	MIN	TYP.	MAX	UNIT
Timing Ra One-shot	nge of First	t1	3		200	_	3000	ns
Timing Ra One-shot	nge of Second	t2	3		100	_	1200	ns
R _{MMVA} Com Saturated	p Connect (Pin 40) Voltage	VMMC	-	I _{SINK} =10µA	-		50	mV
Timing Ac One-shot	curacy of First	E _{TM1}	3		-18	-	+18	%
Timing Ac One-shot	curacy of Second	E _{TM2}	3		-20	_	+20	%
Corrected of First	Corrected Timing Accuracy of First One-shot		3		-15	-	+15	%
Peak Shift		ΡS	3	Comparator Input Wave f=250kHz, Differential Input Level 200mVp-p	-	_	1	%
	Output Voltage Low Level	VL OUT	-	$I_{OL}=2mA$	-	-	0.5	V
	Output Voltage High Level	V _H OUT	_	$I_{OH} = -10\mu A$ $I_{OH} = -0.4mA$	3.5 2.8	-	-	V
Digital	Sink Current	I _{SIRD}	-	V _{OUT} =0.8V	2	4	-	mA
(Pin 33)	Soure Current	ISORD	-	V _{OUT} =2.8V	0.4	1	-	mA
	Output Rise Time	tr	2	From 0.5~2.2V	_	_	25	
	Output Fall Time	tf	٤	at 20pr Capacitance Load	-	-	25	ns

TA8512AF-12	
1989-11-28	_

TA8512AF

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

(5) WRITE DRIVER \cdot ERASE DRIVER (Ta=25°C, V_{CC}=12V~5V, V_{DD}=5V)

CHARACTERISTIC		SYMBOL	FIGURE	MEASURE CONDITION	MIN	TYP.	MAX	UNIT	
	Out Hig Mod	put Voltage h Level at Write e l	VWCMH12	-	V _{CC} =12V, I _W =25mADC	10.8	_	_	v
)river	Output Voltage High Level at Write Mode 2		VWCMH5		V _{CC} =5V, I _W =25mADC	4.4	-	-	v
mon D	Out Low	put Voltage Level at Write Mode	VWCML	-		-	-	0.2	v
Сош	Out Hig	put Voltage h Level at Read Mode	V _{RCMH}	-		2.3	2.6	2.9	V
	Out Low	put Voltage Level at Read Mode	V _{RCML}	-		-	-	0.2	v
	Out	put Current Range	ICOM	-		-	-	75	mA
ver	Era (Pi Sat	se Current Output n 24) urated Voltage	VER	I	I _E =50mA	-	0.2	0.5	v
ase Dri	Era (Pi Lea	se Current Output n 24) kage Current	I _{LKER}	_		-	-	15	μΑ
Er	Erase Current Range		ΙE	-		-	_	50	mA
	Write Current Range (Single)		IW	-		-	-	20	mADC
ч	Cor Ran	rected Write Current ge (Single)	IWC	-		-	-	5	mADC
rive	Wri	te Current Setting	EW	-		-8	-	+8	a /
ite D	Accuracy		E _{WC}	_		-10	_	+10	/0
Wr:	Wri	te Current Unbalance	DW	-		-	-	1	%
	R _W Sat	Comp Connect (Pin 25) urated Voltage	Vwc	-	I _{SOURCE} =0.5mA	-	50	300	mV
		Leakage Current	I _{LKW}	-		-	-	10	μA
nect:	in15,	Saturated Voltage	VSAT	_		-	2	-	V
Con	14, P.	Differential Output Capacitance	C _{OUT}	_			23	-	pF
Head	Pin	Differential Output Resistance	ROUT	-	f=1MHz	-	280	-	kΩ

TA8512AF-13

1989-11-28

INTEGRATED CIRCUIT

TA8512AF

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

TOSHIBA

(6) CONTROL LOGIC (Ta=25°C, $V_{CC}=12V$, $V_{DD}=5V$)

	CHARACTERISTIC		SYMBOL	FIGURE	MEASURE CONDITION	MIN.	TYP.	MAX.	UNIT
	Input Volt. Low Level	age	V _{LIN}	_		-	_	0.8	V
evel	Input Voltage High Level		VHIN	-		2.0	-	-	V
ut Le	Input Power SAVE Current Input (Pin 39)		T	-	V _{IN} =0.4V	_	-	50	uЛ
l Inp	Low Level	Other Pins	¹ LIN	-	V _{IN} =0.4V	-	-	250	μА
gita.	Input Current High Level (Pin 28,29,30,31)		I _{HIN1}	-	V _{IN} =2.4V	-	-	10	μA
Di	Input Current High Level (Pin 27)		I _{HIN2}	-	V _{IN} =2.4V	-	-	130	μA
	Input Current High Level (Pin 34)		I _{HIN3}	-	V _{IN} =2.4V	-	-	80	μA
ta	Negative Threshold Voltage		VLINS	_		0.8	1.0	_	v
e Dat	Positive Threshold Voltage		VHINS			-	1.6	2.0	V
Writ	Hysteresis		V _{HINS} - VLINS	-		0.3	0.6	-	V

(7) AC SWITCHING CHARACTERISTICS (Ta=25°C, $V_{CC}=12V\sim5V$, $V_{DD}=5V$)

CHARACTERISTIC	MEASURE CONDITION	MIN.	TYP.	MAX.	UNIT
Dealy from PS Going High Through 2V to Read Mode	PS OFF→DIFF Output 90~110%	-	1	2	ms
Head Selecting Time		_	-	4	μs
Delay from WG Going High Through 2V to Read Mode	$\overline{\text{WG}}$ OFF \rightarrow Select V _{COM} Voltage 90%	-	-	1	μs
WD-IW Delay		_	-	0.3	μs
Write Current Rise Time 1	Lh=OmH	-	_	0.1	μs
Write Current Rise Time 2	Lh=1mH, $R_D=8.2k\Omega$, h=30pF	-	0.2	-	μs
Delay from EG Going High Through 2V to Read Mode	EG OFF→DIFF Output 90~110%	-	-	20	μs
Read Recovery Time	\overline{WG} , \overline{EG} OFF \rightarrow DIFF Output 90%	-	30	40	μs
Power On Output Sink Current Rise or Fall Time (Pin 32)	Load V_{DD} (Pin 32) $I_{1}\mu F$	-	_	100	ms

TA8512AF-14

1989-11-28

TA8512AF

Fig. 1 Power Dissipation (Pd)-Operating Ambient Temperature (Ta)

The maximum of operating ambient temperature (Ta) of TA8512AF is 75°C, but the power dissipation (P_D) differs according to the ambient temperature, so that in the actual operation refer to the above graph.

TIMING CHART

TA8512AF-15	
1989-11-28	

INTEGRATED CIRCUIT

TA8512AF

TECHNICAL DATA

TEST CIRCUIT

2. G_V , F_C , V_{OUT} , E_N

- Note 1 : In the measurement of G_V , F_C and V_{OUT} , the input signal is applied to either selected one terminal of HEAD 0.1A or HEAD 0, 1B.
- Note 2 : In measuring E_N only, SW1 is closed.

TA8512AF-16
1989-11-28
TOSHIBA CORPORATION

TA8512AF

TECHNICAL DATA

3. t1, T2, EMT1, EMT2, EMTIC, PS, tr, tf

(1) Timing accuracy of frist and secound one-shot. RMMVA and RMMVB which set the period (t1) of first one-shot to 1µs, the period (t2) of secound to 0.5µs connect and measure the digital output as above. ETM1, ETM2 are difined as follows:

> ETM1 = $(1-t1/1) \times 100$ (%) $(t1[\mu s], t2[\mu s])$ ETM2 = $(0.5-t2/0.5) \times 100$ (%)

TA8512AF-17
1989-11-28
TOSHIBA CORPORATION

TECHNICAL DATA

(2) Corrected timing accuracy of first one-shot RMMVA and RMMVA comp which set difference tl-tl' to lµs connect. (tl is the period of first one-shot when applies 2V to MMVA CONTROL, tl' is that one when applies 0.8V to MMVA CONTROL.) EMTIC is difined as follow:

 $EMTIC = [1 - (t1-t1')] \times 100$ (%)

(3) PEAK SHIFT

P.S. Fig. 3-2

$$PS = \frac{1}{2} \times \frac{t1-t2}{t1+t2} \times 100 \quad (\%)$$

(4) Digital Output (Read Data) Rise Time, Fall Time

TA8512AF-18
1989-11-28
TOSHIBA CORPORATION

PREAMPLIFIER

ACTIVE DIFFERENTIATOR

TA8512AF-19
1989-11-28
TOSHIBA CORPORATION

COMPARATOR

TIME DOMAIN FILTER

TA8512AF-20
1989-11-28
TOSHIBA CORPORATION

W/C CONTROL

COMMON DRIVER OUTPUT

TA8512AF-21
1989–11–28
TOSHIBA CORPORATION

INTEGRATED CIRCUIT

WRITE GATE, ERASE GATE, SIDE 1 INTERFACE

TOSHIBA

WRITE DATA INTERFACE

TA8512AF-22
1989-11-28
TOSHIBA CORPORATION

ERASE OUTPUT

POWER SUPPLY VOLTAGE

TOSHIBA

INTEGRATED CIRCUIT

TECHNICAL DATA

DIGITAL OUTPUT

TA8512AF-23	
1989-11-28	

POWER SAVE INTERFACE

OPEN

Active

TA8512AF-24 *
1989-11-28
TOSHIBA CORPORATION