TI-MIX 1983
International Symposium

April 5-8, 1983
New Orleans Hilton Hotel

Session
Proceedings

Operating Systems

OPERATING SYSTEMS

TABLE OF CONTENTS

CULP, KEN, Texas Instruments, Austin, TX
Uses of DNOS Segmentation

GILLEN, DANIEL, Texas Instruments, Austin, TX
Operating System Support for Asynchronous Terminals

SIMPSON, MICHAEL, P., Texas Instruments, Austin, TX
DNOS File Security

STUART, LORI MOHR, Texas Instruments, Austin, TX
Interprocess Commumication in DNOS

WILENSKY, HAROLD, Texas Instruments, Austin, TX
New Utilities for Data Backup

PAPERS NOT AVAILABLE BY PUBLICATION DEADLINE:

EDGARD, GLENN, Texas Iunstruments, Austin, TX
Tips and Techniques on Converting DX10 Applications to DXM

JOHNS, RICHARD, Texas Instruments, Austian, TX
Asynchronous Communications Under DX10 Micro

POWELL, FRED, Powell & Associates, Staunton, VA
Systeam Job Quene for DX10

SIMPSON, MICHAEL, Texas Instruments, Austin, TX
Disk Surface Analysis

TI-MIX (Texas Instruments Mini/Microcomputer Information Exchange) is an
organization for users of TI computers and related equipment, The purpose of
TI-MIX is to promote the exchange of information between users and TI.
Membership in TI-MIX is open to any person with an interest in TI computers or
peripheral equipment. The international symposium provides a vehicle for direct
interaction and information exchange with other users and with TI personnel.
Acceptance of TI-MIX member papers for presentation at TI-MIX 1983 does not
constitute an endorsement by TI-MIX or Texas Instruments Incorporated.

TI-MIX
M/S 2200
P.0. Box 2909
Austin, Texas 78769
(512) 250-7151

DNOS SEGMENTATION

USES OF DNOS SEGMENTATION

by

S. Ken Culp

Texas Instruments
Austin, Texas

Operating Systems Session

TEXAS INSTRUMENTS INC -0 -

06 April 1983

TIMIX 1983

DNOS SEGMENTATION 06 April 1983

1. SEGMENTATION FUNCTIONALITY

1.1 CURRENT OVERLAY ARCHITECTURE

On 990/10 and 990/12 mini-computers, the mapping hardware allows a user
program to be divided into three separate pieces of physical memory. These
three pieces of physical memory are combined into one contiguous logical
address space of up to 65,536 bytes of memory. For many applications, this
logical address space is insufficient which led to the concept of overlays
being developed.

By operating system definition, one of the three segments is designated
as the task segment, a unique one of which is required for every task. In
addition to the task segment, one or two procedure segments can be added to
the address space. Under DX10, these procedure segments must precede the task
segment but may be shared by other tasks running concurrently. Figure Figure
1-1 below illustrates the task structure under DX10.

. — N — + + _—
1 | 1 1 1 |
9 TASK 1 9 PROCEDURE 9 Y PROCEDURE 9
et ; — —
1 1 1 1
1 TASK 1 1 PROCEDURE 4
| 1 | 2 1
R — + ———t

1
|l TASK 1
1 1
+ ————+

Figure 1-1 TASK STRUCTURE OPTIONS —— NO SEGMENTATION

Under DX10, the only escape from the address space restriction is an
overlay. Overlays are a plece of code read from disk normally into the task
segment and require a minimum of two disk accesses each time a new overlay is
loaded. Since the loading of an overlay is simply the reading of a piece of a
disk file over a portion of the task address space, the information previously
stored at the overlay addresses 1s destroyed. Therefore, read/write data
(DSEG's) must be saved external to the overlay area even if the data is only

TEXAS INSTRUMENTS INC -1- TIMIX 1983

DNOS SEGMENTATION 06 April 1983

required locally to the code in the overlay.

Overlays include the facility for automatic overlay loading by linking in
the Overlay Manager and modifying the routine entry points to point to the
Overlay Manager. Also, a hierarchical structure (Phases) is permitted.

1.2 GENERAL CAPABILITIES OF PROGRAM SEGMENTS

Under DNOS, procedure segments may precede the task segment as on DX10.
Additionally, new segments may be mapped after the task segment and theseare
called program segments. Furthermore, these segments may be changed for other
segments at the option of the running task by simply issuing Change Segment
Supervisor Calls (SVC's). Although the Change Segment SVC allows changing
procedure segments preceding thetask, most segmentation changing is done after
the task segment so the segments can be of variable length. (Swapping in
variable length segments before the task segment would result in the
relocation of the task segment with unworkable problems resulting). These
segments need not necessarily be loaded from disk. In one case, the segments
may be made memory resident at boot time and never loaded from disk. Also,
the segments may remain cached in memory when not in use and then mapped in
with zero disk accesses. In another case, an unmapped segment may not be in
memory due to high memory requirements but can be remapped by the task in only
one disk access. It is this characteristic of segmentation which allows the
greatest amount of performance improvement through reduced disk activity.

Another feature of segments not available with overlays is the ability to
modify DSEG's in segments, map the segment out, then map the segment in again
without loss of the data in the DSEG. In this fashion, large blocks of data
can be accessed by a task without using a disk file to buffer and stage the
data.

The DNOS Link Editor does support linking multiple program segments in a
single execution of the linker (one link control file), but does not support
automatic segment loading or a hierarchical structure for those segments.
Multiple segments are linked by providing multiple segment commands in the
1ink control file (see the DNOS Link Editor Reference Manual, P/N 2270522-9701
%1), Figure Figure 1-2 below illustrates the task structure under DNOCS.

TEXAS INSTRUMENTS INC -2 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

Fo— et B —— + Feee et
)| |l 1 1 1 1
1 TASK ¢ 1 PROCEDURE 9 i TASK 1
1 1 1 1 | 1
i —————_. S Fme et
|l 1 1 1 1)|
1 SEGMENT 9 1 TASK 1 1 SEGMENT ¢
1 1 1 1 1 1 1
e —— + e ———— Fo—— —+
1 1 1 1
1 SEGMENT ¢ 1 SEGMENT ¢
1 1 1 2 1
o + R +

Figure 1-2 TASK STRUCTURE OPTIONS —— SEGMENTATION

1.3 SEGMENTATION: CAPABILITIES AND LIMITATIONS

DNOS program segments are normally loaded by specific request from the
task. Program segments mapped after the task segment are not automatically
loaded at task bid time but must be loaded by specific request (SVC) of the
task. The map SVC does, however, allow all segments to be exchanged at
runtime except the task segment (or a segment containing the Map SVC itself).

The DNOS linker supports linking multiple procedure segments in one 1link
step but only at one map position in the address space That means that the
task structure must be TASK/SEGMENT or PROCEDURE/TASK/SEGMENT. In terms of
linker control commands, there cannot be both a SEGMENT 2 and SEGMENT 3
command in the same link control file.

Under DX10 or DNOS, the DSEG's and CSEG's contained in procedures linked
before the task segment are migrated to the task segment to help in
constructing reentrant procedure segments. In a similar fashion, the CSEG's
referenced within multiple program segments linked following the task segment
are promoted up to the task segment. DSEG's referenced in program segment
links are, however, not promoted to the task segment nor reordered within the
program segment. Therefore, if the DSEG must be in the task, it should be
assembled separately, REF'd, and included in the task segment with an explicit
include command. Alternately, the DSEG can be made into a CSEG which is
promoted to the task segment (if referenced by multiple segments). 'The
advantage of using a CSEG is that every label in the DSEG would have to be
externally DEF'd and REF'd (if not included in the assembly step of the
procedure referencing it).

TEXAS INSTRUMENTS INC -3- TIMIX 1983

DNOS SEGMENTATION 06 April 1983

If a program must be structured as TASK/SEGMENT/SEGMENT, multiple links
will have to be used. Under these conditions, the actual load addresses of
the segments would have to be specified in the link control stream on the
SEGMENT command. Under these conditions, routines at the SEGMENT 2 level
cannot reference labels defined at the SEGMENT 3 level and vice versa (and

have those references resolved by the linker). If references are desired
across the map locations, then a table of routine addresses could be placed in

the task segment and subroutine calls be made indirect through that table.

The linker does not directly support linking multiple procedure segments
preceding the task at the same map position (ie, 1linking multiple procedure
1's of Figure 1-2). Similar to linking segments at both map positions 2 and
3, these multiple segments can be linked with multiple 1link steps but
references from the task to the procedure segments (and subsequent program
segments) cannot be resolved by the linker.

Overlays can be linked and loaded into program segments but automatic
overlay loading is supported only into the task.

1.4 CHARACTERISTICS OF SEGMENTS

Most of the following characteristics of segments are set via the Install
Procedure Segment (IPS) SCI command or via the Modify Segment Entry (MSE)
command. If a format image link is used, then the MSE approach is required.

1.4.1 Executable or Execute Protect.

This hardware option is definable on any DNOS but functions only on the
990/12 CPU., If execute protect is set and the Program Counter (PC) is
transferred to the segment, a task error >A (execute protect violation)
occurs. If the flag is not set, the segment may be executed.

1.4,2 Read Only or Read/Write.

This hardware option is definable on any DNOS system but functions only
on the 990/12 CPU. If the segment is flagged as read only (as would be set
for code or non-modifiable data) and an attempt is made to write to the
segment, then a task error >B (write protect violation) occurs. All segments
containing writable DSEG's should be flagged as Read/Write.

1.4.3 Sharable or Non-Sharable.
This software flag indicates to the 0/S whether multiple tasks can

simultaneously have the segment mapped into their respective address spaces.
Most pure code segments that can be mapped by multiple tasks (at the same

TEXAS INSTRUMENTS INC -4 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

logical address) would be flagged as sharable. Also, segments that contain
data that 1is simultaneously needed by multiple tasks would be flagged as
sharable. Private data for a task would not be flagged as sharable.

1.4.4 Replicatable.

This software flag indicates to the 0/S whether multiple copies of a
segment can exist at one time. Note that this flag interacts with the
Sharable flag as follows: 1) if a segment is sharable, there would be no need
for multiple coples; 2) if a segment is non-sharable, each task is allowed to
use his own copy (as for routines with both code and local data) if the
segment is replicatable; or may be excluded from having his own copy and be
forced to walt for the one copy to become available if the segment is non
replicatable.

1.4.5 Reusable or Non-Reusable.

This software flag indicates whether a segment that is mapped out and no
longer needed by a task (see Reserve and Exclusive below) can be used by
another task upon a map request. If the reusable flag is set, the segment may
be cached when not in use. If reusable is not set, the segment is discarded
when no longer in use.

1.4.6 Updatable.
The updatable option is set during IPS or MSE and indicates that the 0/S

PPN R gy

may use the home program file as the location to swap a segment when that
segment must be rolled out. This flag must be set if the Forced Write Segment
SVC is used. This option is normally only needed for data segments whose
contents must exist beyond the life of one task or system boot. Writing a
segment to the home file is equivalent to writing a large record to a Relative
Record file (where segment installed Id corresponds to the record number).
Note that the DNOS Supervisor Call Reference Manual describes a method for
using Segmentation SVC's for mapping records of an unblocked relative record
file which accomplished the same function as updatable segments.

1.4.7 Memory Resident.
This software flag indicates that a segment is to be loaded into memory

when the 0/S is booted. These segments always remain in memory and their

memory can never be used by other programs. This option should be used
sparingly with performance being optained through segment caching.

1.4.8 Memory Based Segments.

TEXAS INSTRUMENTS INC -5 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

The above flags are defined for disk based segments. DNOS supports the
creation of segments at task runtime via the "create empty segment" SVC call.
These segments are normally used for storage of data blocks. For these
segments, there is no corresponding disk image.

1.4.9 Modified.

The modified option is a software flag set during mapping operations and
indicates to the 0/S whether the outgoing segment has been modified since it
wasmapped in. If the segment is not flagged as modified, the 0/S may discard
the segment when it is mapped out since a correct copy can be loaded from the
disk in one disk access. Pure code (Write Protect) segments should not be
flagged as modified while data segments whose data is still required should be
flagged modified. Modified segments not mapped in are saved to the roll file
or the home file (see Updatable below).

1.4.10 Reserved.

The reserve option is a software flag set via a specific mapping call and
indicates that the segment should not be discarded regardless of the setting
of the modified flag. Segments so marked are saved to the roll file or home
file when not mapped in and their physical memory is required. This flag 1is
similar to the Exclusive flag except when a reserved segment is notmapped in
to any task, any task can map the reserved segment back in.

1.4.11 Exclusive Use.

Exclusive use option is a software flag set via a specific mapping call
or via aflag when a segment is mapped out (like the Modified flag). This flag
indicates that the segment should not be discarded regardless of the setting
of the modified flag. Segments flagged Exclusive and not mapped in can be
mapped only by the task that marked the segment exclusive. Note that a
segment can be flagged exclusive only once even by the same task without first
resetting exclusive. A second exclusive map call (or mapping an excluslve
segment out with the exclusive flag set) will result in an map SVC error >F9
(not currently documented).

1.5 USES OF SEGMENTS: PURE SHARED CODE

Solving the address space restriction for procedural code can be
accomplished by linking pure code segments (normally sharable) to be loaded in
the second or third map position. These segments can then be shared by
multiple copies of the same task (or by different tasks if the segment is
loaded at the same address). To reduce segment swapping and thereby improve
performance, collect in one segment the routines that are normally accessed

TEXAS INSTRUMENTS INC -6 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

together in a set.

To access segments so linked from a high level language (COBOL, Pascal),
include a routine that maps the desired segment then call the subroutine in
the segment normally. The example programs illustrate this method. Note that
for pascal, pure code is linked into the segments and the exclusive bit need
not be set. In the COBOL example, there is a DSEG associated with each
subroutine so the segments cannot be sharable (but can be replicatable).
However, since there is no local data (only LINKAGE references), the segments
donot need to be reserved and can be Reusable. Pl USES OF SEGMENTS: DIRTY
PROCEDURES) The most common usage for dirty procedures is for a set of
subroutines that contain both code and data where the data stored must be
preserved across multiple calls to the subroutines (not shown in the
examples). This would occur in COBOL when the called subroutines contain
WORKING-STORAGE data areas that must be maintained between calls. Since
Pascal generates pure code subroutines, the only time this method would be
needed for Pascal would be when assembly language DSEG's or any CSEG's were
included 1in the segments. To reduce segment swapping and thereby improve
performance, collect in one segment the routines that are normally accessed
together in a set.

To access the segments, write a routine (see example 3) to load the
segments and set exclusive access (first time only). The mapping routine uses
segment installed id's to map the segment. These installed Id's can be hard
coded into the source program (see example 1),or can be obtained via a CSEG
from a FORMAT IMAGE link (see example 2). Once the segment is mapped in, call
the subroutine normaelly (see example programs). Once the program is finished
with the segments, a subroutine should be called to reset the Exclusive flag

so another task could use the segments (if they are reusable). Note that if
the task terminates, 2all exclusive access flags set by that task will be reset

LT, i L CALVLLSL

by DNOS making the segments available to other tasks.

1.6 USES OF SEGMENTS: PRIVATE DATA

The primary usage here 1s for data storage in excess of task
addressability. For this purpose, break up the data storage into logically
related pieces of information which will be accessed as a set. In the case of
Pascal, a Record structure could be defined for the various segments,
providing an alternative to the "NEW" function.

1.6.1 Access to Pre-Initialized Data Segments.

To access pre-initialized data segments, link and install the various
segments and Install on a disk file as execute protected, non-sharable,
read/write (and replicatable as appropriate). Note that if pre-initialized
data 1s stored 1in disk based segments and 1s modified by the task, these

segments will not be in-memory reusable. For non-initialized segments (or

TEXAS INSTRUMENTS INC -7=- TIMIX 1983

DNOS SEGMENTATION 06 April 1983

where the initialized data is not modified), the segments can be installed as
reusable. To map the segments, save installed Id's in the same methods as
noted above for code segments. Set exclusive use on each segment once before
mapping the segment out. Reset exclusive when finished with the segment.

1.6.2 Access to Memory Based Data Segments.

To access memory based segments, provide a subroutine to create empty
segments and save the runtime Id's (see example 3) in the task area. These
runtime Id's are returned upon creating the segment. When creating the
segment, set the Segment Attributes (see map SVC) for Read/Write, Execute
Protect, and Share Protect. Also, before mapping out the segment, set
exclusive access once. ,

1.7 USES OF SEGMENTS: SHARED DATA

Sharing data segments provides a method to pass a large block of data
from one task to another without having to copy the data (via IPC). Access is
via a map call using either installed Id's (disk based segments) or runtime
Id's (memory based segments). For disk based segments, each task can store
the installed Id's as noted above. For memory based segments, the runtime
Id's mst be passed from one task to another (via IPC or a dirty shared
procedure segment). To prevent loss of segment data, one task should issue
the reserve segment call once for all tasks using the segment. Exclusive
should not be set because only the reserving task would then be able to access
the segment.

If it is desired to prevent multiple tasks accessing a shared segment
simultaneously, then set the non-sharable flag. Then when a task maps the

segment and gets error >FA, the task can wait for the segment via wait on a
semaphore (or could always wait on semaphore first then map the segment).
When the task that is using the segment is finished with it, it will: 1) set
the modified flag in the SVC block; 2) map out the segment; 3) post the
semaphore, waking up the next task waiting on the segment.

1.8 NOTES ON USAGE OF SEGMENTS

1.8.1 Relocatable Segments.

If the segment contains no absolute address references, different tasks

can map the same segment at different locations. Note that this would
normally be used only for data storage and all data items would have to be
accessed by pointer (Pascal) or base register (Assembly). It is, however,

TEXAS INSTRUMENTS INC -8 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

possible to write assembly language pure procedural code that is position

independent. This code could be linked into a segment that is mapped into
multiple tasks at different addresses (output segment on only one task 1link,
DUMMY on all rest). Note that the address of the segment within each task
address space 1s returned in the map SVC block when the segment is mapped in.

Characteristics of position independent code include: 1) a base register
set to point to the top of the subroutine; 2) no absolute branch instructions
(use Jumps or branch relative to subroutine base register [B (LABEL~
START) (Rx)]; 3) all data references relative to registers.

1.8.2 Use of IPC Within Segments.

If the task is installed as software privileged, an IPC read or write can
be initiated (via initiate event or setting initiate flag in I/0 call block)
and then the segment containing the buffer pointed to by the I/0 call block
mapped out. Note that neither the I/0 call block nor the map SVC block can be
in the segmentthat is to be mapped out (the map SVC and I/0 SVC blocks would
normally reside in the task segment).

Thus a server task can operate on multiple IPC channels with each channel
or requestor using a unique segment per chamnel. This task need only wait for
any I/0O completion, then scan all the I/O SVC blocks to see which 1/0
completed. Then that segment can be mapped in and the request processed. The
segment assoclated with the IPC channel could contain local data particular to
the requestor that is to be saved across multiple requests.

1 2
1Lells) v

There are three options for making installed segment Ids availlable to the
source program: 1) define segment Id in link control source and use FORMAT
IMAGE 1ink; 2) let linker assign segment Id's with FORMAT IMAGE link; and 3)
define segment Id's at IPS time with FORMAT ASCII links.

Case 1: When the segment Id's are defined within the link stream, these
same Id's can be hard coded into the source program (example 1). However, the
Id's can also be obtained by REF'ing the segment name in a common area (see
below).

Case 2: When the linker assigns the segment Id's, the source program

needs to access the installed Id's via REF'ing the segment name of the link as
shown below (example 2).

TEXAS INSTRUMENTS INC -9 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

SEGMENT 2, SEGL
INCLUDE . . .

SEGMENT 2, SEG2

CSEG *SEGTBL'
DEF SEGTBL

REF SEG1,SEG2,SEG3,SEGY,SEGS
SEGTBL DATA SEGL,SEG2,SEG3,SEGL,SEGS
CEND

Case 3: When segment Id's are set during IPS, the source program mst

have the installed segment Id's hard coded (into a table or within Iload
subroutine call).

1.9 THE SEGMENT MANAGEMENT SVC

+ + +
00 1 >40 1 <Return Code> |
+ + +
02 ¢ Sub Opcode 9 Seg Grp LUNO ¢
+ + +
ouh 91 Flags 9 Pos § Bits 0-13: Flags
+ + + Bits 14-15: Map Position
06 1 Segment Id One |
+- —+
08 ¢ (Installed or Runtime ID) 9
+ + +
OA ¥ Segment Id Two (Runtime) ¥
+ + +
0C ¥ Segment Address in Task 1
+ + +
OE 9 Segment Length (bytes) 1
+ + +
10 1 Segment Attributes 1
+ + +
12 1 Reserved b
+ —t— +

TEXAS INSTRUMENTS INC -10 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

1.10 NOTES ON USING THE SEGMENT MANAGEMENT SVC

* Segment address 1is set after most segmentation SVC'S. This address
can be used for accessing data segments as a base register of Pascal
pointer. Thus the program need not have defined this load address
within the code.

¥ Map installed segments by setting the position flag and setting the
map location (1, 2 or 3) in the position bits.

*¥ Segments can be replaced either by specifying the outgoing segment's
position or runtime Id. The O/S sets the runtime id of the segment
when 1t 1s map in so this runtime segment can be used to reference
segments if desired., If both disk and memory based segments were
belng mapped by the same SVC block, it might be easier to use runtime
Id rather than installed id.

¥ Tasks should release all segments no longer in use (reset exclusive
or unreserve). The O/S will reset exclusive on all segments reserved
by a task when that task terminates.

WARNING

IF A SEGMENT IS CACHABLE (LUNO ASSIGNED TO PROGRAM FILE
AND "IN MEMORY REUSABLE" SET) AND A NEW COPY IS LINKED, AN
EXECUTING PROGRAM MAY GET THE OLD COPY. ONLY BY IPL CAN
THE NEW COPY BE GUARANTEED TO BE LOADED.

TEXAS INSTRUMENTS INC -11 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

2. SAMPLE PROGRAMS

Four sample programs have been included ¢to illustrate most of the
principles discussed above. Three of these programs are Pascal as Pascal is
the most difficult to use with segmentation. Some assembly language routines
are included which are used to access the segment Id's or to map the segments.

For Pascal, there is a particular problem with using segments. That is
the usage by the runtime of Get Memory SVC calls when the program issues NEW
calls. As the size of the task segment cannot change (so segments will always
map at the same location), the Get Memory SVC calls must be bypassed. As all
the Get Memory calls are issued by a library routine called GET$ME, a special
version of this routine is provided that allocates memory from a fixed common
area (called STKHEP). When this fixed space 1s exhausted the standard
overflow messages will be issued. GET$ME is the first module in the listings.
Note also for Pascal that a common runtime was linked and used.

2.10.1 Example 1l: Pascal, Pure Code Segments, Hard Coded Segment Id's.

Included in the listings is the Pascal source program, the link control
file, and the output results. The source program illustrates the Map SVC
record definitions and the mapping of the segments by installed Id's. Pay
careful attention to the flag settings used by the routine. The CHANGESEG and
INITSVC routines are used in conjunction with each other. That is, INITSVC is
designed to use with mapping segments by installed Id. In the 1link control,
segment Id's 2 and 3 are used for the segments and these Id's are set up in
the first two lines of the main program.

2.10.2 FExample 2: Pascal, Pure Code Segments, Segment Id's from Link.

The first listing for example 2 is an assembly language common called
MSEGTBL" that will pick up the segment Id's from the link step. This common
is designed to be used in conjunction with the CHANGESEG routine used in
example 2 in that the procedure name 1s passed to CHANGESEG and CHANGESEG
accesses SEGTBL to obtain an associated segment Id. Note that CHANGESEG does
not issue the map SVC if the segment is already mapped in. In this fashion,
the location of subroutines within the segments need not be known within the
Pascal source. The 1link control and results are almost exactly the same as
for example 1.

2,10.3 Example 3: Pascal, Private Data Segments, Runtime Segment Id's.

This example illustrates use of segments for stored private data. The
method is to create an empty segment, move 100 integers into the segment, then

TEXAS INSTRUMENTS INC - 12 - TIMIX 1983

DNOS SEGMENTATION 06 April 1983

repeat this process three more times. Then each of the segments is mapped
back in and the contents of the segments verified. Here the INITSVC routine
1s tallored for mapping segments by runtime Id and the map routine is called
SWITCHSEG since it is radically different from elther of the CHANGESEG
routines of examples 1 and 2. Again note the use of the map SVC flags. The
link control does not include any segments since these all segments referenced
are created at runtime. The listings include the Pascal source, the 1link

control, and the results of the program run.

2.10.4 Example 4: COBOL, Dirty Code Segments, Segment Id's from Link.

This 1is an example of a COBOL program that will map in pieces of dirty
code (dirty since COBOL subroutine contains 48 byte DSEG used for workspace
and temporary data). The assembly language common "SEGTBL" is used to access
the installed segment Id's and a COBOL callable assembly language map
subroutine "MAPSEG" accesses SEGTBL, maps the segments, and sets exclusive
use. The MAPSEG subroutine is the first listing of example followed by the
COBOL main followed by the called COBOL subroutines. The link control is
similar to examples 1 and 2 except a COBOL runtime is used.

TEXAS INSTRUMENTS INC - 13 - TIMIX 1983

GET$ME

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027

0028
0029
0030

0031
0032

0033
0034

0035

0036
0037

0038
0039

0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
NO FRR

0000

0000
0008
000A

000C
000E
0010
0012
0014
0016
0018
001A
001C
001E
0020
0022
0024
0026
0028
002A
002C
002E
0030
0032
0034
0036
0038
003A
0000
0000
0002

3002
NRQ

SDSMAC 3.4.0 81.117

0024
0028
002A

b7
0038
0000"

02A9
O4E9
0024
o4cs
C069
0028
0581
0241
FFFE
A060
0000+
1807
0281
3002+
1BO4
c220
0000+
c801
0000+
COA9
002A
c488
0380

0002+

3002+

IDT
PSEG

o ok

PURPOSE:

INPUTS:

OUTPUTS:

HISTORY:
NOTE:

MO K R K K ko K K K M oK K oK

o8

¥

RTNADR EQU

ARG1 EQU

ARG?2 EQU

¥ PROCEDURE

PROLOG TEXT
DATA

DEF
STWP
CLR

GET$ME

CLR
MOV

INC
ANDI

EXIT MOV
MOV
RTWP
PEND
CSEG
DATA
BSS
EQU
CEND

EPILOG

B$NEXT

B$END

NO WARNINGS

'GET$ME'

NONE.

15:22:46 MONDAY, FEB 07, 1983.

PAGE 0002

PROCEDURE GET$MEM(SZ:INTEGER; VAR PTR:MEMPTR)

o e o - — S o " A > D W D D D D T S e M M T S = SR SR == =S

SIMULATES GET MEMORY SERVICE CALL TO GET ADDITIONAL
MEMORY BY ALLOCATING A FIXED STATIC BLOCK.
IS NOT CLEARED BY THE CODE.

THE REGION

S7: SIZE (IN BYTES) OF THE REGION DESIRED.
PROCEDURES CALLED:

PTR: POINTER TO A NEW MEMORY REGION OF SIZE 'SZ' ROUNDED
UP TO AN EVEN NUMBER.

EXCEPTIONS:
IF THE REGION COULD NOT BE OBTAINED, PTR=NIL IS RETURNED

01/10/83: ORIGINAL.

36
4o
42

LINK WITH INCLUDE FOR P$MAIN VICE MAIN FOR FIRST
MODULE IN LINK AS GET$MEM IS IN MAIN PARTTIAL LINK.

. e e o o e o P D S L A A A o T — = . S8 " T T T D P S SO S S G S S e e D S5 S S

GET$MEM(SZ: INTEGER; VAR PTR:MEMPTR);

'GET$MEM '

EPILOG,PROLOG

GET$ME
R9
@RTNADR(R9)

R8
@ARG1(R9),R1

R1
R1,>FFFE

@B$NEXT,R1

EXIT
R1,B$END

A b avrarm

@B$NEXT, RS
R1,@B$NEXT
@ARG2(R9),R2
R8, ¥R2
'STKHEP'

$+2

>3000
$

GET ADDRESS CURRENT WORKSPACE
FLAG SHORT LINKAGE TO DEBUGGER

SET NIL RETURN IN CASE ERROR
GET DESIRED SIZE

ROUND UP TO EVEN

GET ADDRESS LAST REQ BYTE

PUNT ON ADDRESS WRAP
PAST END OF BLOCK?

YES, PUNT

NGO, SET ADDRESS

UPDATE NEXT FREE AREA

GET ADDRESS OF RETURNED PTR
RETURN ADDRESS OF BLOCK

TO CALLER

ADDRESS NEXT FREE WORD
FIXED MEMORY AVAILABLE BLOCK
END OF THE MEMORY BLOCK

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:35:48
MAIN1 | | PAGE 1

%ROGRAM MAIN1;

(% THIS PROGRAM ILLUSTRATES THE USE OF DNOS SEGMENTATION TO ®)
(% MAP IN PIECES OF PURE PASCAL CODE AND THEN EXECUTING THEM. *%)
(% NOTE THAT IF MULTIPLE COPIES OF THIS PROGRAM WERE BEING %)
(% EXECUTED, THEN THE SEGMENTS COULD BE INSTALLED AS SHARABLE. %)
(* ALSO, SINCE THERE IS NO WRITABLE DATA IN THE SEGMENTS, ®)
(* THERE IS NO NEED TO SET RESERVE OR SET EXCLUSIVE ACCESS. *)
(¥ THE LOAD ADDRESS OF THE SEGMENTS IS DETERMINED BY THE LINK #)
(% EDITOR AS IS THE ADDRESS OF PROC1l, PROC2, PROC3, AND PROCL. *)
(% THE ID'S OF THE SEGMENTS IS FIXED IN THE LINK CONTROL FILE ¥)
E: AND SET WITHIN THE PROCEDURE SECTION OF THE MAIN ROUTINE. :g
(% THE MAP SVC BLOCK AND THE CONSTANTS WERE SET UP AS COPY %)
(* FILES SO THEY COULD BE USED FOR OTHER EXAMPLES. ®)
CONST
O e e e %)
E* COMMONLY USED CONSTANT DEFINITIONS %)
e e e %)
MAP SVC CODE = #40; (# SVC CODE FOR MAP #%)
CODE SEG POS = 3; (* MAP POSITION FOR NEW SEGMENTS ¥)
MAP_FLAGS POSIT = #CO; (* MAP FLAGS: MAP BY POSIT / LUNO %)
MAP FLAGS RESREL = #40; (* MAP FLAGS FOR RESERVE/RELEASE #)
OWN_TASK_TUNO = #FF; (¥ LUNO FOR OWN PROGRAM FILE %)

" MAP SVC SUB OP-CODES:

CHANGE SEG = #00; (* CHANGE SEGMENT #%)
CREATE SEG = #01; (* CREATE SEGMENT #*)
RESERVE SEG = #02; (* RESERVE SEGMENT #)
RELEASE SEG = #03; (* RELEASE SEGMENT #%)
GET_SEG_STATUS = #0L; (* GET SEGMENT STATUS %)
FORCE WRITE = #05; (* FORCE WRITE SEG. ¥)
LOAD SEG = #09; (* MAKE SEG. MEMORY RESIDENT *)
UNLOAD_ SEG = #0A; (* RELEASE MEMORY RESIDENT SEG. #)
SET EXCLUSIVE = #0B; (¥ SET EXCLUSIVE USE OF SEG. ¥)
RESET EXCLUSIVE = #0C; (¥ RESET EXCLUSIVE USE %)
TYPE
(O e e e e e *)
(* COMMONLY USED TYPE DEFINITIONS %)
(B e e e e e ®)
BYTE = 0..255;
NAME = PACKED ARRAY [1..6] OF CHAR;
SEGTBL_ENTRY = PACKED RECORD;
PROC_NAME : NAME;
SEG ID : INTEGER;

END;

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:35:48
MAIN1 PAGE 2
(#$ PAGE %)
(® e e %)
E* DNOS 990 SEGMENTATION SVC FIELD DEFINITIONS %)
B o o e e o e e e %)
T MAPSVC = PACKED RECORD;
SVC_CODE : BYTE; % SVC CODE = >40 *%)
ERR_CODE : BYTE; RETURNED ERROR CODE ¥)
OP CODE : BYTE; MAP OP CODE ¥)
MAP LUNO : BYTE; LUNO OF PROG FILE #)
MAP_FLAG : BYTE; FLAGS ®)
MAP POS : BYTE; MAP POSITION (0,1,2) *)
FILL1 : INTEGER; FIRST WORD NEW SEG ID %)
NEW _SEGID : INTEGER; NEW SECMENT ¥)
OLD_SEGID : INTEGER; OLD SEGMENT #)
SEG_ADDR : INTEGER; RETURNED ADDR OF SEG %)
SEG_SIZE : INTEGER; SIZE OF SEGMENT (I/0) ¥)
SEG ATTRIB : INTEGER; SEGMENT ATTRIBUTES ¥)
FILT2 : INTEGER; RESERVED #¥)

END; "™ T MAPSVC "

VAR
SEG1_ID : INTEGER;
SEG2_ID : INTEGER;
COMMON
MAPSVC : RECORD
MAP_SVCB : T MAPSVC;
END3 "

¥ SEGMENT ID OF SEGMENT 1 ¥)

SEGMENT ID OF SEGMENT 2 ¥)

PROCEDURE SVC$(SVC_BLOCK : INTEGER); EXTERNAL;

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:35:48

INITSVC PAGE
(*$ PAGE *)
PROCEDURE INITSVC;
(e e e e e *)
(* THIS ROUTINE INITIALIZED THE MAP SVC BLOCK AS INDICATED ®)
(% IN THE COMMENTS BELOW. *)
(e e e e e *)
ACCESS MAPSVC;
BEGIN " PROCEDURE INITSVC
WITH MAPSVC, MAP_SVCB DO
BEGIN " INITIALIZE MAP SVC BLOCK
SVC_CODE := MAP SVC CODE; (¥ SET SVC CODE #)
MAP_LUNO := OWN_TASK LUNO; (* SEGMENTS FROM OWN PROG FILE *)
MAP_FLAG := MAP_FLAGS_POSIT; (¥ MAP BY POSITION AND LUNO *)
MAP_POS := CODE_SEG POS; (¥ LOCATION TO MAP SEGMENTS ¥)
FILL1 := 0; (* FIRST WORD NEW SEG TO ZERO %)
OLD SEGID := 0; (* INITIAL OUTGOING SEG TO ZERO #)
END; ~" INITIALIZE MAP SVC BLOCK
END; " PROCEDURE INITSVC
PROCEDURE CHANGESEG(VAR SEG _ID : INTEGER);
(e e e %)
(* THIS ROUTINE ISSUES THE MAP SVC SUPERVISOR CALL AFTER %)
(* SETTING THE NEW SEGMENT ID AND TYPE OF MAP SVC (OP CODE). ¥)
(* SOME ERROR PROCESSING IS ILLUSTRATED BUT WOULD MOST LIKELY #)
§* BE INSUFFICIENT FOR MOST PROGRAMS. ¥)
e e e ¥)

ACCESS MAPSVC;

BEGIN " PROCEDURE CHANGESEG
WITH MAPSVC, MAP_SVCB DO
BEGIN " INITIALIZE MAP SVC BLOCK

OP_CODE := CHANGE_SEG; (* SET FOR CHANGE SEG ¥)
NEW SEGID := SEG ID; (* SET INSTALLED ID ¥)
SVC$(LOCATION(MAP SVCB)); (¥ MAP IN SEGMENT #)

IF (ERR_CODE <> 0) THEN
BEGIN " PUNT ON SVC ERROR
WRITELN(' ERROR IN MAPPING SEGMENT; SEG ID = ',SEG ID:2,
' ERROR CODE = ' ,ERR CODE:4);
ESCAPE MAINI;
END; " PUNT ON SVC ERROR

END; "™ INITIALIZE MAP SVC BLOCK
END; " PROCEDURE CHANGESEG

3

DXPSCL 1.7.0 81,212 TI 990 PASCAL COMPILER 02/11/83 10:35:48

MAIN1 PAGE
(*$ PAGE *¥)

. %)
(% THESE PROCEDURES WILL BE CALLED ONE AT A TIME FROM THE %)
(# MATN ROUTINE. FEACH WILL PRINT ONE LINE TO STANDARD OUTPUT. ¥)
SN)

PROCEDURE PROC1;
BEGIN " PROCEDURE PROC1
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 1');
END; " PROCEDURE PROC1

PROCEDURE PROC2;
BEGIN " PROCEDURE PROC2
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 2');
END; " PROCEDURE PROC2

PROCEDURE PROC3;
BEGIN " PROCEDURE PROC3
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 3');
END; " PROCEDURE PROC3

PROCEDURE PROCY;
BEGIN " PROCEDURE PROCA4
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 4');
END; " PROCEDURE PROCY

(® e o e e e *)
(MAIN ROUTINE. SETS SEGMENT ID VARIABLES THEN CALLS OTHER ¥)
(* SUBROUTINES. *)
(® e e *)
BEGIN
SEGl_ID := 2; (¥ ID'S OF SEGMENTS SET WITHIN ¥)
SEG2 ID := 3; (¥ CODE HERE AND ON LINK FILE. ¥)
INITSVC; (# INITIALIZE MAP SVC ¥%)
REWRITE(OUTPUT) ; (* OPEN OUTPUT, WRITE FIRST MSG ¥)
WRITELN(' THIS LINE WRITTEN FROM MAIN');
CHANGESEG(SEG1 ID); (*# MAP IN PROC1 AND PROC2 ¥)
PROC1; - (* CALL PROC1 ¥)
PROC2; (*# CALL PROC2 #)
CHANGESEG(SEG2 ID); (# MAP IN PROC3 AND PROCL #)
PROC3; - (# CALL PROC3 ¥)
PROCY ; (# CALL PROCL #)

END.

4

<LLKLLKKK
LIBRARY K.TIMIX.O
LIBRARY .TIP.OBJ
PARTIAL
PHASE 0, RUNTIME

COMMON TIP RUNTIME PROCEDURES LINK CONTROL

INCLUDE (DSTR$$) INCLUDE (ENT$)
INCLUDE (GO$) INCLUDE (MESAG$)
INCLUDE (MM$DIR) INCLUDE (P$TERM)
INCLUDE (TERM$) INCLUDE (MOV$N)
INCLUDE (FL$INI) INCLUDE (REWRT$)
INCLUDE (WRS$T) INCLUDE (WRLN$)
INCLUDE (CLS$) INCLUDE (ABEND$)
INCLUDE (DSTRY$) INCLUDE (ENT$MD)
INCLUDE (INIT$) INCLUDE (RESUMS$)
INCLUDE (RSUMR$) INCLUDE (SCIRTNS)
INCLUDE (MSG$) INCLUDE (ENX$T)
INCLUDE (ENS$T) INCLUDE (DUMP$P)
INCLUDE (DMPP$H) INCLUDE (PB$INI)
INCLUDE (CLOSE$) INCLUDE (ENI$T)
INCLUDE (CUR$) INCLUDE (P$$TRM)
INCLUDE (SCB$IN) INCLUDE (OPEN$)
INCLUDE (REWND$) INCLUDE (WREOF$)
INCLUDE (IO$ERR) INCLUDE (TX$ERR)
INCLUDE (PUT$RC) INCLUDE (SCB$FR)
INCLUDE (FREE$) INCLUDE (TIP$TC)
INCLUDE (GET$PA) INCLUDE (SVC$)
INCLUDE (HEAPS$T) INCLUDE (NEW$)
INCLUDE (CREAT$) INCLUDE (INIT$1)
INCLUDE (P$INIT) INCLUDE (STACK$)
INCLUDE (WRX$T) INCLUDE (PRT$ME)
INCLUDE (DUMP$S) INCLUDE (CLS$FI)
INCLUDE (DIV$) INCLUDE (SET$NA)
INCLUDE (OPN$FI) INCLUDE (PM$IO)
INCLUDE (PM$TIO) INCLUDE (GET$ME)
INCLUDE (STK$MA) INCLUDE (EOLN$)
INCLUDE (PUTCH$) INCLUDE (WRCS$T)
INCLUDE (CMP$ST) INCLUDE (WRI$T)
INCLUDE (S$NAME) INCLUDE (MAP$)

END
<<< MAIN 1 LINK CONTROL >>>

FORMAT IMAGE,REPLACE

DEX5555>

LIBRARY K.TIMIX.O <K< RESULTS OF MAIN1 RUN >>>
LIBRARY .TIP.OBJ
PROCEDURE RUNTIM THIS LINE WRITEN FROM MAIN

THIS LINE WRITEN FROM PROCEDURE 1
THIS LINE WRITEN FROM PROCEDURE 2
THIS LINE WRITEN FROM PROCEDURE 3
THIS LINE WRITEN FROM PROCEDURE i

INCLUDE (RUNTIM)
PHASEO, MAIN1
INCLUDE (P$MAIN)
ALLOCATE

INCLUDE (MAIN1)
SEGMENT 3,SEG1,ID 2
INCLUDE (PROC1)
INCLUDE (PROC2)
SEGMENT 3,SEG2
INCLUDE (PROC3)
INCLUDE (PROCL)
END

ID 3

=) =) = =))))))))) o A) .

SEGTBL SDSMAC 3.4.0 81.117 10:55:39 MONDAY, FEB 07, 1983.

PAGE 0002
0001 IDT ‘'SEGTBL'

0002 0000 CSEG 'SEGTBL'

0003 *

0004 ® THIS MODULE CONTAINS A TABLE OF SUBROUTINE NAMES AND
0005 * THEIR ASSOCIATED SEGMENT ID'S. THE SEGMENT ID'S ARE
0006 ¥ OBTAINED FROM THE FORMAT IMAGE LINK BY SPECIFYING
0007 * THE SEGMENT NAME ON THE DATA STATEMENT. NOTE THAT
0008 . ® THIS TABLE AND THE LINK CONTROL STREAM MUST BE KEPT
0009 * IN SYNC MANUALLY BY EDITING BOTH FILES AS MODULES
0010 ¥ ARE ADDED TO A PARTICULAR SEGMENT CR AS SEGMENTS ARE
0011 ¥ ADDED,

0012 ¥

0013 ¥ EACH TABLE ENTRY IS THE SIX CHARACTER TEXT NAME OF
0014 ¥ THE MODULE FOLLOWED BY A ONE WORD INTEGER SEGMENT
0015 ¥ ID. THE FIRST WORD IN THE TABLE IS THE NUMBER OF
0016 ¥ ENTRIES IN THE TABLE.

0017 ¥

0018 ¥ ALL SEGMENT NAMES MUST BE EXTERNALLY REFERENCED:
0019 %

0020 REF SEG1,SEG2

0021 0000

0022 0000 0004 DATA (TBLEND-$-2)/8 NUMBER OF TABLE ENTRIES

0023 *

0024 ® PROCEDURES IN SEGMENT 1

0025 0002 50 TEXT 'PROC1 ROUTINE NAME

0026 0008 0000 DATA SEG1 PHASE NAME FOR SEGMENT

0027 000A 50 TEXT 'PROC2 ! ROUTINE NAME

0028 0010 0008+ DATA SEG1 PHASE NAME FOR SEGMENT

0029 *

0030 ¥ PROCEDURES IN SEGMENT 2

0031 0012 50 TEXT 'PROC3 ! ROUTINE NAME

0032 0018 0000 DATA SEG2 PHASE NAME FOR SEGMENT

0033 001A 50 TEXT 'PROCY ! ROUTINE NAME

0034 0020 0018+ DATA SEG2 PHASE NAME FOR SEGMENT

0035 0022

0036 0022+ TBLEND EQU $ END OF TABLE

0037 0022 CEND

NO ERRORS, NO WARNINGS

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:43:01
MAIN2 PAGE
PROGRAM MAIN2;

(e e e e e e *)
(* THIS PROGRAM ILLUSTRATES THE USE OF DNOS SEGMENTATION TO *)
(* MAP IN PIECES OF PURE PASCAL CODE AND THEN EXECUTING THEM. #)
(% NOTE THAT IF MULTIPLE COPIES OF THIS PROGRAM WERE BEING ®)
(% EXECUTED, THEN THE SEGMENTS COULD BE INSTALLED AS SHARABLE. ¥)
(% ALSO, SINCE THERE IS NO WRITABLE DATA IN THE SEGMENTS, *)
(¥ THERE IS NO NEED TO SET RESERVE OR SET EXCLUSIVE ACCESS *)
(* THE LOAD ADDRESS OF THE SEGMENTS IS DETERMINED BY THE LINK #)
(% EDITOR AS IS THE ADDRESS OF PROCl, PROC2, PROC3, AND PROCH., #)
(% THE ID'S OF THE SEGMENTS IS FIXED IN THE LINK CONTROL FILE #)
g: AND DETERMINED FROM THE LINK STREAM DYNAMICALLY. :g
(* THE MAP SVC BLOCK AND THE CONSTANTS WERE SET UP AS COPY ®)
(* FILES SO THEY COULD BE USED FOR OTHER EXAMPLES. *)
CONST

(e e e e e e e e *)
(* COMMONLY USED CONSTANT DEFINITIONS ®)

MAP_SVC_CODE = #40; (¥ SVC CODE FOR MAP ¥)
CODE SEG POS = 3; (¥ MAP POSITION FOR NEW SEGMENTS %)
MAP_FLAGS_POSIT = #CO0; (* MAP FLAGS: MAP BY POSIT / LUNO #)
MAP FLAGS RESREL = #MO' (* MAP FLAGS FOR RESERVE/RELEASE #%)
OWN_TASK_LUNO = #FF; (* LUNO FOR OWN PROGRAM FILE #)
" MAP SVC SUB OP-CODES:
CHANGE SEG = #00; (* CHANGE SEGMENT ¥)
CREATE SEG = #01; (¥ CREATE SEGMENT #*)
RESERVE SEG = #02; (¥ RESERVE SEGMENT ¥)
RELEASE SEG = #03; (* RELEASE SEGMENT %)
GET_SEG_STATUS = #0U4; (¥ GET SEGMENT STATUS #)
FORCE_WRITE = #05, (* FORCE WRITE SEG. #)
LOAD_SEG = #09; (* MAKE SEG. MEMORY RESIDENT #%)
UNLOAD_SEG = #0A; (¥ RELEASE MEMORY RESIDENT SEG. #)
SET EXCLUSIVE = #0B; (* SET EXCLUSIVE USE OF SEG. #)
RESET EXCLUSIVE = #0C; (¥ RESET EXCLUSIVE USE #%)
TYPE
(e e e e e e ¥)
(% COMMONLY USED TYPE DEFINITIONS ®)
(e e e ¥)
BYTE = 0..255;
NAME = PACKED ARRAY [1..6]1 OF CHAR;

SEGTBL_ENTRY =
PROC_NAME
SEG_TD
END}

PACKED RECORD;
: NAME;

INTEGER;

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:43:01
MAIN2 PAGE 2
(¥$ PAGE %)
(F e e o e e %)
(* DNOS 990 SEGMENTATION SVC FIELD DEFINITIONS %)
(* __ *)
T MAPSVC = PACKED RECORD;
SVC CODE : BYTE; (¥ SVC CODE = >U40 *#)
ERR_CODE : BYTE; (* RETURNED ERROR CODE #)
OP CODE : BY‘“, (* MAP OP CODE ¥)
MAP LUNO : BYTE; (# LUNO OF PROG FILE ¥)
MAP_FLAG : BYTE; (¥ FLAGS %)
MAP POS : BYTE; (*# MAP POSITION (0,1,2) ¥)
FILT1 : INTEGER; (# PIRST WORD NEW SEG ID ¥)
NEW_SEGID : INTEGER; (* NEW SEGMENT #)
OLD SEGID INTEGER; (* OLD SEGMENT #)
SEG_ADDR INTEGER; (* RETURNED ADDR OF SEG ¥)
SEG_SIZE INTEGER; (# SIZE OF SEGMENT (I/0) #)
SEG ATTRIB INTEGER; (* SEGMENT ATTRIBUTES ¥)
FILT?2 INTEGER; (*# RESERVED ¥)
END; " T MAPSVC "
VAR
SEG1_ID INTEGER; (* SEGMENT ID OF SEGMENT 1 #)
SEG2_ID : INTEGER; (* SEGMENT ID OF SEGMENT 2 %)
ROUTINE NAME : NAME;
COMMON
MAPSVC : RECORD
MAP_SVCB : T MAPSVC;
END;
SEGTBL : RECORD
NUM_ENTRIES INTEGER;
SEGLIST : ARRAY [1..10] OF SEGTBL_ENTRY;
END;
PROCEDURE SVC$(SVC_BLOCK : INTEGER); EXTERNAL;
PROCEDURE INITSVC;
(2 e ettt ®)
(* THIS ROUTINE INITIALIZED THE MAP SVC BLOCK AS INDICATED %)
(: IN THE COMMENTS BELOW. *g
__ *

ACCESS MAPSVC;

BEGIN " PROCEDURE INITSVC
WITH MAPSVC, MAP_SVCB DO
BEGIN " INITIALIZE MAP SVC BLOCK

SVC CODE := MAP SVC CODE; (* SET SVC CODE ¥)

MAP_LUNO := OWN_TASK_LUNO (¥ SEGMENTS FROM OWN PROG FILE ¥)

MAP_FLAG := MAP_FLAGS_POSIT; (* MAP BY POSITION AND LUNO ¥)

MAP POS = CODE_SEG POS; (* LOCATION TO MAP SEGMENTS #)

FILL1 := 0; - (*#* FIRST WORD NEW SEG TO ZERO ¥)

OLD_SEGID := 03 (*# INITIAL OUTGOING SEG TO ZERO %)
END; ~ " INITIALIZE MAP SVC BLOCK

END; " PROCEDURE INITSVC

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:43:01

CHANGESEG - PAGE 3
(*$ PAGE ¥*)
PROCEDURE CHANGESEG(VAR ROUTINE NAME : NAME);

(3 e e e e e e e e e e e e o e e e e e e mm *)
(* THIS ROUTINE TAKES THE ROUTINE NAME AND MAPS IT TO A ®)
(# ID THROUGH THE COMMON SEGTBL. THEN IF THAT SEGMENT IS NOT #¥)
(* MAPPED IN, IT IS MAPPED IN VIA A MAP SVC SUPERVISOR CALL. ¥)
(* THE NEW SEGMENT ID AND TYPE OF MAP SVC (OP_CODE) ARE SET. *)
(* SOME ERROR PROCESSING IS ILLUSTRATED BUT WOULD MOST LIKELY #)
g* BE INSUFFICIENT FOR MOST PROGRAMS. %)

¥ e ———————— e %)
VAR

PROC_SEGID : INTEGER;

ACCESS MAPSVC, SEGTBL;

BEGIN " PROCEDURE CHANGESEG
WITH MAPSVC, MAP SVCB, SEGTBL DO
BEGIN " MAP SEGMENT IF REQUIRED
PROC_SEGID := 0; (* ASSUME SEGMENT NOT FOUND #)
FOR T := 1 TO NUM ENTRIES DO
IF SEGLIST[I].PROC_NAME = ROUTINE NAME THEN
PROC_SEGID := SEGLIST[I].SEG_ID;
IF PROC SEGID = O THEN
BEGIN " PUNT ON BAD PROC NAME
WRITELN(' INVALID PROCEDURE NAME; NAME = ',ROUTINE_NAME);
ESCAPE MAIN2;
END; " PUNT ON BAD PROC NAME

IF NEW_SEGID = PROC_SEGID THEN
ESCAPE CHANGESEG;

OP_CODE := CHANGE_ SEG; (* SET FOR CHANGE SEG *%)
NEW_SEGID := PROC_SEGID; (¥ SET INSTALLED ID ¥)
SVC$ (LOCATION(MAP SVCB)); (¥ MAP IN SEGMENT #)

IF (ERR_CODE <> 0) THEN
BEGIN " PUNT ON SVC ERROR
WRITELN(' ERROR IN MAPPING SEGMENT; SEG ID = ',
NEW_SEGID:2, ' ERROR CODE = ',ERR_CODE:4);
ESCAPE MAIN2;
END; " PUNT ON SVC ERROR

END; " MAP SEGMENT IF REQUIRED
END; " PROCEDURE CHANGESEG

DXPSCL 1.7.0 81l.212 TI 990 PASCAL COMPILER 02/11/83 10:43:01

MAIN? PAGE
(¥$ PAGE %)

(F o e e %)
(# THESE PROCEDURES WILL BE CALLED ONE AT A TIME FROM THE *)
(#* MAIN ROUTINE. EACH WILL PRINT ONE LINE TO STANDARD OUTPUT. ¥)

PROCEDURE PROC1;
BEGIN " PROCEDURE PROC1
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 1');
END; " PROCEDURE PROC1

PROCEDURE PROCZ2;
BEGIN " PROCEDURE PROC2
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 2');
END; " PROCEDURE PROC2

PROCEDURE PROC3;
BEGIN " PROCEDURE PROC3
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 3');
END; " PROCEDURE PROC3

PROCEDURE PROCY;
BEGIN " PROCEDURE PROCA
WRITELN(' THIS LINE WRITTEN FROM PROCEDURE 4');
END; " PROCEDURE PROCH

B e e e e e e e e e e e e e o o 2 e o o e 2 o o o e o o o o T S o o o o o o o e e o S o *)
(% MAIN ROUTINE. SETS SEGMENT ID VARIABLES THEN CALLS OTHER %)
(% SUBROUTINES. *)

B e e e e e e o o e ot oo e e o e e o o o e e o o o e o o o o o o A 2t 2 S S o o o o *)
BEGIN

INITSVC; (# INITIALIZE MAP SVC ¥)
REWRITE(OUTPUT) (* OPEN OUTPUT, WRITE FIRST MSG *#)
WRITELN(' THIS LINE WRITTEN FROM MAIN');

ROUTINE NAME := 'PROCl '; (¥ MAP IN PROC1 ¥)
CHANGESEG (ROUTINE_NAME) ;

PROC1; (* CALL PROC1 #)

ROUTINE NAME := 'PROC2 '; (¥ MAP IN PROC2 ¥)
CHANGESEG (ROUTINE NAME);

PROC2; (¥ CALL PROC2 #)

ROUTINE NAME := 'PROC3 '; (¥ MAP IN PROC3 %)
CHANGESEG (ROUTINE NAME);

PROC3; - (¥ CALL PROC3 #)

ROUTINE NAME := 'PROCY4 '; (* MAP IN PROCY4 ¥)
CHANGESEG(ROUTINE NAME);

PROCU; (* CALL PROCL #)

END.

4

<<< MAIN2 LINK CONTROL >>>

FORMAT IMAGE,REPLACE
LIBRARY K.TIMIX.O
LIBRARY .TIP.OBJ
PROCEDURE RUNTIM
INCLUDE (RUNTIM)

3

PHASEO, MAIN2
INCLUDE (P$MAIN)
INCLUDE (MAIN2)
INCLUDE (SEGTBL)

SEGMENT 3,SEG1,ID 5
INCLUDE (PROC1)
INCLUDE (PROC2)

SEGMENT 3,SEG2,ID 6
INCLUDE (PROC3)
INCLUDE (PROCL)

END

A A)))))))))) o)) o A e) A g

<<< RESULTS OF MAIN2 RUN >>>

THIS LINE WRITEN
THIS LINE WRITEN
THIS LINE WRITEN
THIS LINE WRITEN
THIS LINE WRITEN

FROM MAIN

FROM PROCEDURE 1
FROM PROCEDURE 2
FROM PROCEDURE 3
FROM PROCEDURE 4

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:45:43

MAIN3 PAG
PROGRAM MAIN3;

(* __
(% THIS PROGRAM ILLUSTRATES THE USE OF DNOS SEGMENTATION TO

(* MAP IN DIFFERENT DATA BLOCKS AND CONSERVE THOSE DATA

(% BLOCKS BY ISSUING THE "SET EXCLUSIVE ACCESS" MAP CALL.

(* NOTE THAT A NEW CHANGE SEGMENT ROUTINE IS PROVIDED THAT

(* WILL SWITCH SEGMENTS BASED UPON THEIR RUNTIME ID'S. THIS

(* IS DUE TO THE FACT THAT MEMORY BASED SEGMENTS DO NOT HAVE

(* AN INSTALLED ID.

(*

(* THE PROGRAM ITSELF WILL MOVE A SERIES OF CONSTANTS TO THE

(* DIFFERENT SEGMENTS AND THEN MAP THOSE SEGMENTS BACK IN AND
(% PRINT THE DATA OBTAINED. THIS WILL ILLUSTRATE THAT THE

(% CONTENTS OF THE SEGMENTS ARE PRESERVED WHILE THEY ARE NOT

(* MAPPED IN TO THE TASK. ALSO NOTE THAT THE DATA SEGMENTS

(% WILL ALL MAP AT THE SAME LOCATION SO THE POINTER TO THE

(* SEGMENTS WILL BE SET ONLY ONCE DURING INITIALIZATION.

CONST

(B e e e e e e o e
(* COMMONLY USED CONSTANT DEFINITIONS

MAP_SVC_CODE = #40; (# SVC CODE FOR MAP *)
CODE_SEG_POS = 3; (* MAP POSITION FOR NEW SEGMENTS ¥)
MAP _FLAGS POSIT = #CO; (*# MAP FLAGS: MAP BY POSIT / LUNO ¥)
MAP_FLAGS RESREL = #40; (*# MAP FLAGS FOR RESERVE/RELEASE ¥)
OWN_TASK_LUNO = #FF; (# LUNO FOR OWN PROGRAM FILE ¥)
" MAP SVC SUB OP-CODES:
CHANGE_SEG = #00; (* CHANGE SEGMENT ¥)
CREATE_SEG = #01; (* CREATE SEGMENT *¥)
RESERVE_SEG = #02; (* RESERVE SEGMENT ¥)
RELEASE_SEG = #03; (* RELEASE SEGMENT #)
GET SEG_STATUS = #0A4; (* GET SEGMENT STATUS *¥)
FORCE_WRITE = #05; (* FORCE WRITE SEG. *)
LOAD_SEG = #09; (* MAKE SEG. MEMORY RESIDENT ¥)
UNLOAD_SEG = #0A; (* RELEASE MEMORY RESIDENT SEG. *)
SET EXCLUSIVE = #0B; (* SET EXCLUSIVE USE OF SEG. ¥)
RESET EXCLUSIVE = #0C; (*# RESET EXCLUSIVE USE ¥)
TYPE
(B e e e e e e e e e e e o o e e e o
E* COMMONLY USED TYPE DEFINITIONS
B e e e e e e e e o e 2 o o o o e e e e e v o T o
BYTE = 0..255;
NAME = PACKED ARRAY [1..6] OF CHAR;
SEGTBL_ENTRY = PACKED RECORD;
PROC_NAME : NAME;
SEG_ID : INTEGER;

END;

E

1

DXPSCL 1.7.0 81,212

'MAIN3 PAGE
(*#$ PAGE *)
(e e e e e e e e et e e e e e e e m e e e o
E* DNOS 990 SEGMENTATION SVC FIELD DEFINITIONS
B e e e e e e e o e e o o e o e e o ot 2 1 i 2 2ot e 8 e o ot 2 ot e e e o 2 e e e et e o
T MAPSVC = PACKED RECORD;
“SVC CODE : BYTE; (¥ SVC CODE = >40 *)
ERR_CODE : BYTE; (* RETURNED ERROR CODE ¥)
OP CODE : BYTE; (¥ MAP OP CODE #)
MAP_LUNO : BYTE; (* LUNO OF PROG FILE ¥)
MAP_FLAG : BYTE; (¥ FLAGS %)
MAP POS : BYTE; (# MAP POSITION (0,1,2) ¥)
FILT1 : INTEGER; (* FIRST WORD NEW SEG ID ¥)
NEW_SEGID : INTEGER; (* NEW SEGMENT ¥)
OLD SEGID : INTEGER; (¥ OLD SEGMENT %)
SEG_ADDR : INTEGER; (* RETURNED ADDR OF SEG %)
SEG_SIZE : INTEGER; (* SIZE OF SEGMENT (I/0) ¥)
SEG ATTRIB : INTEGER; (* SEGMENT ATTRIBUTES %)
FILL?2 : INTEGER; (* RESERVED ¥)
END; " T MAPSVC "
SEG_REC = RECORD
SEG_DATA : ARRAY [1..100] OF INTEGER;
END}
VAR
SEG PTR : @SEG REC; (¥ POINTER TO SEGMENT DATA ¥)
SEG TABLE : ARRAY [1..4] OF INTEGER; (*# RUNTIME SEG ID ¥)
STATUS : INTEGER;
COMMON
MAPSVC : RECORD
MAP_SVCB : T _MAPSVC;
END3 ™

PROCEDURE SVC$(SVC_BLOCK

TI 990 PASCAL COMPILER

INTEGER); EXTERNAL;

02/11/83 10:45:43

2

DXPSCL 1.7.0 81l.212 TI 990 PASCAL COMPILER 02/11/83 10:45:43

INITSVC PAGE
(*$ PAGE *¥)
PROCEDURE INITSVC;

(B o e A m %)
(% THIS ROUTINE INITIALIZED THE MAP SVC BLOCK FOR GET EMPTY %)
(* SEGMENT AND CHANGE SEGMENT CALLS BY RUNTIME ID. *)

ACCESS MAPSVC;

BEGIN " PROCEDURE INITSVC
WITH MAPSVC, MAP_SVCB DO
BEGIN " INITIALIZE MAP SVC BLOCK

SVC_CODE := MAP_SVC_CODE; (# SET SVC CODE ¥)

MAP_LUNO := 0; (* RUNTIME SEGMENTS ONLY ¥)
MAP_POS = CODE_SEG_POS; (# MAP IN THIRD SEGMENT ¥)

FILL1 := O0; (* FIRST WORD NEW SEG TO ZERO ¥)
LD SEGID := #FFFF; (¥ INITIAL OUTGOING SEG TO -1 *¥)

END; " INITIALIZE MAP SVC BLOCK
END; " PROCEDURE INITSVC

PROCEDURE SWITCHSEG(VAR SEG_ID : INTEGER
VAR STATUS : INTEGER);

(* THIS ROUTINE ISSUES THE MAP SVC SUPERVISOR CALL AFTER ®)
(* SETTING THE NEW SEGMENT ID AND TYPE OF MAP SVC (OP_CODE). *)
(% SOME ERROR PROCESSING IS ILLUSTRATED BUT WOULD MOST LIKELY #¥)
(* BE INSUFFICIENT FOR MOST PROGRAMS. *)

ACCESS MAPSVC;

BEGIN " PROCEDURE SWITCHSEG
WITH MAPSVC, MAP_SVCB DO
BEGIN " INITIALIZE MAP SVC BLOCK

OP_CODE := CHANGE_ SEG; (* SET FOR CHANGE SEG ¥)

NEW_SEGID := SEG_ID; (# SET INSTALLED ID ¥)

MAP FLAG := #18; (# MEMORY BASED SEGMENT, #)
(* EXCLUSIVE ON OUTGOING #*)

SVC$(LOCATION(MAP SVCB)); (* MAP IN SEGMENT ¥)

STATUS := ERR_CODE;

END: " INITIALIZE MAP SVC BLOCK

miiNas g AivaAa L L Ll AL 2

END; " PROCEDURE SWITCHSEG

3

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER
CREATESEG PAGE
(¥$ PAGE *¥)
PROCEDURE CREATESEG(VAR SEG_ID : INTEGER;
VAR SEGADR : INTEGER;
VAR STATUS : INTEGER;
SIZE : INTEGER);
(e e e e e e —————————— e %)
(* THIS ROUTINE ISSUES THE MAP SVC SUPERVISOR TO CREATE A ®)
(¥ MEMORY BASED SEGMENT. INPUT TO THE ROUTINE IS THE SIZE ¥)
(* OF THE SEGMENT DESIRED. OUTPUTS ARE THE ADDRESS OF THAT %)
(* SEGMENT AND THE RUN-TIME ID OF THE SEGMENTS. ¥)
(% NOTE THAT THE SET EXCLUSIVE OPERATION IS ALSO ISSUED IN ¥)
E* THIS ROUTINE TO INSURE SEGMENT IS NOT TRASHED BY 0/S. *)
L O %)

ACCESS MAPSVC;

BEGIN " PROCEDURE CREATESEG

WITH MAPSVC, MAP _SVCB DO
BEGIN " CREATE SEGMENT

OP_CODE := CREATE SEG;
NEW SEGID := SEG_ID;
MAP_FLAG := #18;
SEG_SIZE := SIZE;
SEG_ATTRIB := #8420,

SVC$ (LOCATION(MAP_SVCB));
IF (ERR _CODE = 0) THEN

¥ SET FOR CHANGE SEG #)
¥ SET INSTALLED ID ¥)

* MEMORY BASED SEGMENT, #)
¥ EXCLUSIVE ON OUTGOING *)
¥ SET DESIRED SIZE #)

% READABLE, NON SYSTEM, *%)
¥ SHARE PROT, EXEC PROT ¥)
¥ MAP IN SEGMENT %)

BEGIN " RESERVE & RETURN SEG INFO

OP_CODE := SET E)
NEW SEGID :=

SET_EXCLUSIVE;
OLD_SEGID;

(¥ SET EXCLUSIVE USE ¥)
(¥ MOVE SEG ID TO SEG 1 %)

SVC$ (LOCATION(MAP SVCB));

IF (ERR CODE =

BEGIN " RETURN SEG

SEG_ID :=

SEGADR :=

END; " RETURN SEG

END;
STATUS := ERR CODE;

END; " CREATE SEGMENT

END; " PROCEDURE CREATESEG

OLD_SEGID;
SEG_ADDR;

0) THEN

INFO
(* RETURN SEGID TO CALLER #%)

INFO

" RESERVE & RETURN SEG INFO

02/11/83 10:45:43

4

DXPSCL 1.7.0 81.212 TI 990 PASCAL COMPILER 02/11/83 10:45:43

MAIN3 PAGE 5

(*$ PAGE #)

BEGIN

(e e e *)

(% MAIN ROUTINE. MAPS FOUR EMPTY SEGMENTS, MOVES 100 *)

(* INTEGERS IN TO THE SEGMENTS, MAPS EACH SEGMENT BACK IN, *)

(# THEN VERIFIES THE DATA IN THE SEGMENTS. *)

(® e e e ———————————— e %)
INITSVC; (* INITIALIZE MAP SVC *¥)
REWRITE (OUTPUT) ; (* OPEN OUTPUT, WRITE FIRST MSG %)

FOR I := 1 TO 4 DO
BEGIN " CREATE AND FILL EMPTY SEGMENTS
CREATESEG(SEG_TABLE[I], SEG_PTR::INTEGER, STATUS, 200);
IF STATUS = 0 THEN
FOR J := 1 TO 100 DO
SEG PTR@.SEG DATA[J] := I
=LSE -
WRITELN(' ERROR IN MAPPING SEGMENT; ERROR CODE = ‘',

STATUS:4);
END; " CREATE AND FILL EMPTY SEGMENTS

IF STATUS <> 0 THEN ESCAPE MAIN3;

FOR I := 1 TO 4 DO
BEGIN " REMAP SEGMENTS AND VERIFY SEGMENT CONTENTS
SWITCHSEG(SEG TABLE[I], STATUS);
IF STATUS = O THEN
VS: BEGIN " VERIFY SEGMENTS
FOR J := 1 TO 100 DO
IF SEG_PTR@.SEG DATA[J] <> I THEN
BEGIN " WRITE MESSAGE
WRITELN(' SEGMENTS DO NOT VERIFY ');
ESCAPE VS;
END; " WRITE MESSAGE
WRITELN(' SEGMENT NUMBER ',I:1,' VERIFIED');
END " VERIFY SEGMENTS
ELSE
WRITELN(' ERROR IN MAPPING SEGMENT NUMBER ',I:1,
's ERROR CODE = ', STATUS:4);
END; " REMAP SEGMENTS AND VERIFY SEGMENT CONTENTS

END.

<<< MAIN3 LINK CONTROL >>>
FORMAT IMAGE,REPLACE
LIBRARY K.TIMIX.O

LIBRARY .TIP.OBJ
PROCEDURE RUNTIM

INCLUDE (RUNTIM)

>

PHASEO, MAIN3
INCLUDE (P$MAIN)
ALLOCATE
INCLUDE (MAIN3)
END

= = = = A A) e g

<<< RESULTS OF MAIN3 RUN >>>

SEGMENT NUMBER 1 VERIFIED
SEGMENT NUMBER 2 VERIFIED
SEGMENT NUMBER 3 VERIFIED
SEGMENT NUMBER 4 VERIFIED

MAPSEG SDSMAC 3.4,0 81.117 10:50:08 FRIDAY, FEB 11, 1983.

MAPSEG — COBOL SEGMENTATION MAPPING SUBROUTINE PAGE 0002
0002 IDT 'MAPSEG'
0003 0000 CSEG 'SEGTBL'
0004 0000 SEGTBL BSS 2+(10%8)
0005 0052 CEND
0006 *
0007 * THIS ROUTINE TAKES A SIX-CHARACTER SUBROUTINE NAME
0008 * PASSED AS AN ARGUMENT AND LOADS THE ASSOCIATED SEGMENT
0009 * IF THAT SEGMENT IS NOT ALREADY IN MEMORY. THIS
0010 * ROUTINE REFERENCES THE COMMON "SEGTBL" FOR THE NAMES
0011 % AND SEGMENT ID'S OF THE SEGMENTS.
0012 %
0013 % CALLING SYNTAX:
0014 *
0015 * WORKING-STORAGE SECTION.
0016 % 01 SEG-NAME-1 PIC X(6) VALUE "PROCl "
0017 * 01 STATUS PIC 9(4) COMP-1.
0018 # .
0019 % .
0020 * CALL "MAPSEG" USING SEG-NAME-1, STATUS.
0021 *
0022 % RETURN STATUS:
0023 % >FFFF: SUBROUTINE NAME NOT FOUND IN LIST
0024 * ALL OTHERS: MAP SVC ERROR CODE (AS INTEGER)
0025 #
0026 % REGISTER USAGE:
0027 * RO - SCRATCH
0028 * R1 - WORKING COPY OF DESIRED ROUTINE NAME
0029 * R2 - COUNT ENTRIES IN SEGTBL COMMON
0030 * R3 - ADDRESS OF DESIRED ROUTINE NAME
0031 * RLY — ADDRESS OF RETURN STATUS CODE
0032 * R5 - INDEX INTO SEGTBL COMMON
0033 *
0034 DXOP SVC,15
0035 0000 MAPSEG EVEN
0036 DEF MAPSEG
0037 0000 0000" DATA WS,MAP0OO
0002 0004"
0038 0004 MAP0OOO EVEN
0039 0004 CO9D MOV ¥R13,R2 GET ADDRESS ARGUMENT LIST
0040 0006 C032 MOV #R2+,RO GET BYTE LENGTH OF ARGS
0041 0008 0280 CI RO, IF NOT TWO, JUST RETURN
000A 0004
0042 000C 1622 JNE MAPXIT
0043 000E COF2 MOV *R2+,R3 GET ADDRESS OF SEGMENT NAME
0044 0010 C112 MOV *R2,Rl GET ADDRESS OF STATUS FIELD
0045 0012 0UDA CLR ¥Rl ASSUME NO ERRORS NOW
0046 0014 0205 LI R5,SEGTBL GET ADDRESS OF SEGMENT TABLE
0016 0000+
0047 0018 COB5 MOV ¥R5+,R2 GET NUMBER ENTRIES IN SEGTBL
0048 001A MAPO10 EVEN
0049 001A 0200 LI RO,6 SET BYTE LENGTH OF NAME
001C 0006
0050 001E COA43 MOV R3,R1 WORKING COPY ROUTINE NAME
0051 0020 MAP020 EVEN
0052 0020 8CT5 c ¥R5+, ¥R1+ SAME NAME
0053 0022 1611 JNE MAP060 NO, TO NEXT ENTRY
0054 0024 0640 DECT RO REDUCE BYTE COUNT

0055 0026 16FC JNE MAPO20

MAPSEG

0057
0058
0059
0060

0061
0062

0063
0064
0065

0066
0067

0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
NO ERR

0028
0028
002A
002C
002E
0030
0032
0034
0036
0038
003A
003C
003E
0040
0042
0044
0046
0046

0046
0048
004A

004cC
OO4E
0050
0050
0052
0052
0054
0054
0000
0000
0020
0020
0020
0022
0023
0024

0026
0028
0024
002C
002E
0030
0032
ORS,

SDSMAC 3.4.0 81.117
MAPSEG - COBOL SEGMENTATION MAPPING SUBROUTINE

8815
0028"
1312
€815
0028"
2FEO
ooz20"
€C020
0020"
0240
OOFF
1309
O04EQ
0028"
1005

Alko0
0602
16E7

0200
FFFF

€500
0380

4000
00
FF

C003

0000
0000
0000
0000
0000
0000

*
*

MAPO60
*

*
*
*

MAPERR
MAPXIT
WS

MAPSVC

NEWSEG

C

JEQ
MOV

SVC
MOV
ANDIT

JEQ
CLR

JMP

EVEN

DEC
JNE

LI

EVEN
MOV

EVEN
RTWP
PEND

DSEG
BSS

EVEN
DATA
BYTE
BYTE
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DEND

NO WARNINGS

<KL

*¥R5, @NEWSEG

MAPXIT
*R5 , @NEWSEG

@MAPSVC
@MAPSVC,RO
RO,>00FF

MAPXIT
@NEWSEG

MAPERR

10:50:08 FRIDAY, FEB 11, 1983.

PAGE 0003

HAVE MATCHING NAME IF HERE
R5 POINTS TO SEG ID

IS THIS SEGMENT ALREADY IN

YES: DONE NOW
NO: SET SEGMENT ID

ISSUE MAP SVC

TEST ERROR CODE

NO ERROR: NORMAL EXIT
ERROR: SET NO SEG IN

RETURN SETTING ERROR CODE

IF HERE, RO IS 2 MORE THAN REMAINING LENGTH OF
NAME. BY ADDING RO, WILL SKIP OVER REST OF NAME
AND SEGMENT ID FIELD.

RO,R5
R2
MAPO10
<<
RO, >FFFF

RO, *RU

32

>4000
>00
>FF
>C003

SELECT NEXT ENTRY
LOOP FOR NEXT NAME

NO MATCH IF HERE
SET ERROR CODE

RETURN ERROR CODE

RETURN TO CALLER

MAP SVC BLOCK
SVC CODE
OP-CODE = CHANGE SEG
LUNO = OWN PROGRAM FILE
FLAGS: MAP BY LUNO,
INSTALLED ID,
MAP POSITION 3
NEW SEGMENT ID (WD 1)
(WD 1)
RETURNED SEG ADDRESS
RETURNED SEG LENGTH
RETURNED SEG ATTRIBUTES
RESERVED

DNCBL

LINE

'.

N SN O O T O S I N I N e e e e el i L
WO 00— ANUT =W N P O\ 00-1 W W N - O\ 00— W =W v+

wWwwwww
UlEswmn—= O

w
(@)

W w
O~

e EEEEEEW
O O~ AAVJT =W - ONO

ARG RGIRE) |
wmMn = O

3.3.3 81.280 COMPILED:02/11/83 10:47:28 OPT=

DEBUG PG/LN Ao..Bo-ooo.ooooaobt‘-u-.o.oclotool-i.o

>0000
>0000
>0006

>0016
>0018

>0030
>0032

>004A
>004C

>0064
>0066

>007E

IDENTIFICATION DIVISION.
PROGRAM-ID. COBMAN.
AUTHOR. S. KEN CULP.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER, TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LIST-FILE ASSIGN TO PRINT,
DATA DIVISION.
FILE SECTION.
FD LIST-FILE LABEL RECORDS OMITTED.
01 DATA-RECORD PIC X(34).
WORKING-STORAGE SECTION.
01 SEQ-RECORD.

02 HEADER PIC X(28) VALUE

® 6 e 688 00

"OUTPUT".

" PROCEDURE NAME ENTERED IS: ".

02 PROC-NAME PIC X(6).
01 SNL PIC X(6).
01 MAP-STATUS PIC 9(5) COMP-1.
01 PROC1-NAME PIC X(6) VALUE "PROC1 ",
01 PROC2-NAME PIC X(6) VALUE "PROC2 ",
01 PROC3-NAME PIC X(6) VALUE "PROC3 ".
01 PROCU4-NAME PIC X(6) VALUE "PROC4 ",
PROCEDURE DIVISION.
MAIN-01.

OPEN OUTPUT LIST-FILE.
MOVE "MAIN " TO PROC-NAME,
WRITE DATA-RECORD FROM SEQ-RECORD.

CALL "MAPSEG" USING PROC1-NAME, MAP-STATUS.

IF MAP-STATUS = ZERO
CALL "PROC1" USING SNL,
MOVE SNL TO PROC-NAME,

WRITE DATA-RECORD FROM SEQ-RECORD.
CALL "MAPSEG" USING PROC2-NAME, MAP-STATUS.

IF MAP-STATUS = ZERO
CALL "PROC2" USING SNL,
MOVE SNL TO PROC-NAME,

WRITE DATA-RECORD FROM SEQ-RECORD.
CALL "MAPSEG" USING PROC3-NAME, MAP-STATUS.

IF MAP-STATUS = ZERO
CALL "PROC3" USING SNL,
MOVE SNL TO PROC-NAME,

WRITE DATA-RECORD FROM SEQ-RECORD.
CALL "MAPSEG" USING PROC4-NAME, MAP-STATUS.

IF MAP-STATUS = ZERO
CALL "PROC4" USING SNL,
MOVE SNL TO PROC-NAME,

WRITE DATA-RECORD FROM SEQ-RECORD.

CLOSE LIST-FILE.
27272777 END PROGRAM.

¥%¥ END OF

PAGE

2

FILE

DNCBL 3.3.

LINE DEBUG PG/LN

1

2

3

y

5

6

7

8

9

10

11

12 >0000
13 >0000
14 >0006
15 >0006
16 272277

NOTE:

EXCEPT FOR RETURNED STRING IN SNL AND NAME

<<< MAIN LINK CONTROL >>>
FORMAT IMAGE,REPLACE

NOAUTO

LIBRARY K.TIMIX.O
LIBRARY .S$SYSLIB
PROCEDURE CRUNTM

INCLUDE (RCBPRC)

CMAIN1
(RCBTSKD)
(RCBMPD)
(COBMAN)
(MAPSEG)
(SEGTBL)

3
PHASEQ,
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

SEGMENT
INCLUDE
INCLUDE

3,SEG1,ID 7
(CPROC1)
(CPROC2)

3
SEGMENT
INCLUDE
INCLUDE
END

3,SEG2,ID 8
(CPROC3)
(CPROCY)

3 81.280 COMPILED:02/08/83

A..OBOOiot..i.tco..tcto.ototu

IDENTIFICATION DIVISION.
PROGRAM~ID. PROCL1.
AUTHOR. S. KEN CULP.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
DATA DIVISION.
LINKAGE SECTION.
01 SNL PIC X(6).
PROCEDURE DIVISION USING SNL.
MAIN-O1.
MOVE
MAIN-0O2.
EXIT PROGRAM.
END PROGRAM.

"PROC1 "™ TO SNL.

=) o))) =)))))) A) e)))))) =

13:37:40 OPT=

<<< RESULTS OF

PROCEDURE NAME
PROCEDURE NAME
PROCEDURE NAME
PROCEDURE NAME
PROCEDURE NAME

PAGE

¥%¥% END OF FILE

PROCEDURES CPROC2, CPROC3, AND CPROCY4 ARE THE SAME AS THIS PROC

OF ROUTINE.

MAIN RUN >>>

I8
IS:
IS:
IS:
IS:

ENTERED
ENTERED
ENTERED
ENTERED
ENTERED

MAIN

PROC1
PROC2
PROC3
PROCY

OPERATING SYSTEM SUPPORT
FOR ASYNCHRONOUS TERMINALS

OPERATING SYSTEMS

Daniel Gillen

Texas Instruments
Austin, Texas

INTRODUCTION

A Device Service Routine (DSR) must provide support for
two hardware units, the peripheral device and the 990 chassis
resident controller. A DSR structure will be discussed which
separates the software support for these units into two major
DSR code elements. The first is a Peripheral Service Routine
(PSR) module providing support for the peripheral device
independent of the controller. The second is a Hardware
Service Routine (HSR) providing controller support.

The goals leading to the DSR design and the problems
addressed by the design are presented. The DSR structure will
be discussed in terms of functionality, logic and data flow
and module interfaces. A specific implementation will be
presented as an example of the design philosophy.

TERMINOLOGY

At Texas Instruments the peripheral device support
software is 1linked with the operating system and is called a
Device Service Routine (DSR). The DSR provides a software
interface Dbetween the application software and the peripheral
hardware. Two terms key to this discussion are controller and
peripheral device. These terms will be defined in a somewhat

restricted way for purposes of this paper. The definitions
are oriented around Texas Instruments Business System
products.

Peripheral Device
Peripheral device 1is the term used to refer to input and/or

output hardware capable of being counnected to a computer. My
use of this term assumes a separate hardware unit, a
controller, is required to interface this peripheral device to
the computer. The terms peripheral device, device and

peripheral will be used interchangeably in this paper.

Controller

A controller is a hardware unit which interfaces directly to a
CpruU, Typically the <controller 1is a printed circuit board
which resides in the computer <chassis. Two types of
controllers will be considered for Texas Instruments Business
Systems, CRU controllers interfacing to the Communications
Register Unit (CRU) and TILINE controllers interfacing to the
TILINE data bus. This paper will consistently wuse the term
controller for this hardware wunit though historically many
other terms have been used. Some of these other terms include
interface, interface module, board and card.

A few examples are listed here for purposes of clarification.
Texas Instruments Business Systems peripheral devices:

1. Omni 800 Model 810 printer

2. Opti 900 Model 940 Video Display Terminal

3. WD800 Winchester Disk Drive

Texas Instruments Business Systems controllers:
l. CI421 - S300 Two Channel Communications Option Board
2. CI401 - S600/S800 Communications Interface Module
3. TPBI - S600/S800 TILINE Peripheral Bus Interface

4, TMS9902 UART on the 990/10A and S300 processor

boards
DSR STRUCTURE
Three ma jor functional levels exist between an
application and an I/0 peripheral device. The application

interfaces to an Input/Output subsystem which, 1in turn,
interfaces to I/0 device hardware.

APPLICATION <---> I/0 SUBSYSTEM <---> I/0 DEVICE

Looking one level lower at the I/0 subsystem structure we see
essentially three separate functions being performed. The
operating system pre-processes the application request before
passing the request to a DSR. The DSR executes the I/0
request then passes it to the operating system post processing
element which reports completion to the application. This
process is illustrated as follows.

]

0S PRE-PRGCESSING ---> DSR ---> 0S POST-PROCESSING

G

Looking still one level lower at the DSR we have three more
interfaces. There is an interface to the operating system, an
interface to the I/0 device and an interface to the controller
illustrated as follows.

0S I/F <---> DEVICE I/F <{---> CONTROLLER I/F

This paper analyzes the DSR structure. The three
functions of the DSR will be given names. The operating
system interface will be denoted 0SI. The peripheral device
interface will be <called a Peripheral Service Routine (PSR)
and the controller 1interface will be called a Hardware
(Controller) Service Routine (HSR). Figure 1 pictures the
levels of a Device Service Routine (DSR).

OPERATING SYSTEM

R e + - +
0SI ‘ l
PSR --- DSR
HSR
T + ———ee- +
HARDWARE

Figure 1 DSR STRUCTURE

Table 1 1lists examples of software elements at the
various levels., Each column of the table identifies a class
of software. The column entries indicate specific examples
within the <class. The key point to consider in the table is
that a unique path from application to I/0 device 1is defined
by choosing one entry from each column. The table has only a
few entries for each column but it should be apparent that
there are a large number of paths when all possible
combinations are considered. Several issues deserve mention
relative to the table.

The OSI 1level does not appear explicitly as a separate
column in Table 1. The OS 1interface to the two operating
systems 1is very similar and our implementation did not include
a separate module for the O0S interface. The the 0S interface
logic is embedded in the PSR for this implementation. Assunme,
for purposes of this discussion, the two operating systems are
identical. This is an over simplification but will allow wus
to concentrate on other DSR interfaces.

e ————
USER !
APPL,]

o +

foemm _———
TEXT

EDITOR

P +

fom—————— +

! TIFORM

U +

frm e +
TIPE l

T —— +

. +
SC1

e +

N R — +

ONLINE
DIAG
. +
APPLICATION

Table 1

T |

DNOS l

tmmmm - +

fomm +
DX10

Fomm————— +
0s

SOFTWARE ELEMENTS

tom - +
| SERIAL |
l PRINTER \
Fommmmm— +
Fomm e +
ASYNC
VDT
e ettt +
fmmm e +
ASYNC
SD
e et +
>l e
PSR

do - +
| |
] CI421)
i i
Fom e +
B +

CI402
tomm e +
fomm - +

CI401
tomm - +

HSR

Advantages of 1isolating <controller support to the HSR
module and device support to the PSR should be obvious. Only
one software module 1is required for each device and one for
each controller. This pays dividends in development as well
as in sustaining during the life of the product. Similarly,
applications have an 1identical, 1ignoring the 08, device
interface across all controllers. When a group of peripheral
devices are supported by DSR’s using this design, the device
support may easily be moved to a new controller. Only one HSR

module must be developed to support all current peripheral
devices on a new controller.

The key to the design is the definition of the interface
to the HSR. The first step taken was to bound the problem.
The goal was to develop an interface scheme for asynchronous

peripheral devices. Thus, the set of controllers was limited
to asynchronous controllers. Next, a set of functions

supported by asynchronous controllers was compiled. Finally,
a generic interface was specified to provide access to these .
controller functions.

The specification of the generic 1interface was an
iterative process and had to satisfy several parameters. Some
key parameters included:

l. Controller independence
2. Access to full controller functionality

3. Emulation eof buffered controller for output

4., Provide PSR required services

The decision to emulate a buffered controller was based
partially on experience gained supporting mnon buffered
controllers. The buffering referred to here is not the one or
two character buffering typically done by UART chips but
buffers in the 32-128 character range. The purpose was to
allow better separation between PSR and HSR output processing.
One benefit of this approach was minimizing the amount of
output processing with interrupts masked. This is a critical
issue for VDT’s where the ratio of output data to imput data
at the CPU is heavily weighted in the output direction.

The functions supported by the HSR are numerous. They
can be grouped into the following classes.

1. Controller inmnitialization.

2. Read/write operational parameters.

3. Set/reset output signals or functions.
4., Read input signals or functions.

5. Status change notification.

6. Read/write data characters.

7. Timer services.

8. Controller interrupt processing.

AN IMPLEMENTATION

Now an implementation of a set of Device Service Routines
(DSR’s) will be discussed. The DSR’s fit the basic structure
introduced 1in the previous portion of the paper. They
supported asynchronous devices attached to asynchronous
controllers. The emphasis will be on logic flow and software
interfaces. Figure 2 illustrates the DSR structure, logic and
data flow. This implementation separated the PSR level into
two modules. One will be referred to as the TSR and the other
as the Interrupt Service Routine (ISR). Table 2 indicates
functions performed by the DSR modules for this
implementation.

TSR - TERMINAL
SERVICE ROUTINE

ISR - INTERRUPT
SERVICE ROUTINE

HSR - CONTROLLER
SERVICE ROUTINE

Table 2 DSR FUNCTIONS

All DSR entry points except interrupt entry
(Request/Initial, Power up,Abort,Timeout,and
Delayed Reentry)

Request and completion reporting I/F to O0S
Runs in PDT workspace

Provides software interface to terminal
Terminal dependent logic

Contains interrupt entry of the DSR

I/F to HSR for interrupt processing

High priority receive character processing
Runs in DSR interrupt workspace

Generic (subroutine) software interface
to the controller hardware
Contains all controller dependent logic
Contains all direct access to controller
Emulation of buffered controller

* Software FIFO’s

Maintains controller status and statistics

OPERATING SYSTEM

v
o +
ITSR tommm———- +
Terminal | Receive |
Service {mmmmmmm = Char
Routine Queue
pommm o +
i + -
BL Delayed ~
Reentry RCV
o Data
Data o + o
& ISR
Control Interrupt
Service W W |=m=m=——-- +
\Y Routine
Fomm +
BLi1Data &
Status
o
Xmit \ A
Data Frm e - +
——————— + {=====-=--0 HSR
SW {mmmm e~ >| Controller Controller
XMIT O——————= > Service Interrupt
FIFO Xmit Routine
——————— + Data
frmmm e +
ol~
Data & Data &
Control Status
Vio
v
e —————————— e +
| CONTROLLER
TP +

Figure 2 DSR LOGIC FLOW

The TSR module contains all DSR entry points except the
interrupt entry. It accepts requests from the 0S and reports
completions to I/0 subsystem of the 0S. The primary function
of the TSR 1is to provide a software interface to the
peripheral device. The actual functions wvary considerably
based on the type of device. The primary device types
supported 1in this implementation were VDT’s, and serial
printers. The TSR combined with the ISR to support the
peripheral device.

The TSR performs initial processing for all requests.
The TSR calls the HSR for the output of data. The HSR stores
output data in a transmit FIFO wuntil the controller is
prepared to accept the data. The HSR can not accept data when
the transmit FIFO fills with data waiting to be transmitted.

In this event the TSR requests notification when the HSR can
accept data. The HSR will notify the ISR when it can accept

more traunsmit data and the ISR will "schedule" the TSR wusing
the DSR reentry support of the O0S. Typically the TSR
considers the output request complete before all the data has
actually been traunsmitted.

Read requests are processed, by the TSR, entirely from a
receive character queue. The receive data characters are
stored 1in this character queue by the ISR routine. Other
requests are processed primarily by the TSR with the aid of
the ISR if required.

The ISR module contains some functions which might be
considered device support and some that might be considered
controller support. The ISR module was developed based on
several decisions during the design phase. The ISR module
contains the interrupt entry to the DSR and uses an interrupt
workspace different than the Physical Device Table (PDT)
workspace. This routine runs with controller interrupts
masked. If the controller interrupts the CPU at interrupt
level 8, the ISR has interrupt mask set at 7. The ISR calls
the HSR to actually service the controller interrupt.

For the most part, ISR processing is independent of
request processing of the DSR. Receive data is stored in the
receive character queue even when no read request is active at
the DSR. Error recovery action must be taken when the receive
character queue Dbecomes full. The ISR processes events
requiring immediate attention. Some examples of ISR
processing for keyboard devices are biding an application
task, halting output, aborting I/0 and aborting tasks. It
also schedules TSR 1level elements to start or resume
processing.

The HSR 1level does not support the concept of a read
request. The HSR will decode the <controller interrupt and
report the cause for the interrupt to the ISR, If the cause
of the interrupt was a received data character, the data
character is also passed back to the ISR. There is no storage
of receive data at the HSR level.

The generic interface to the HSR consists primarily of
two mechanisms. The HSR is a set of subroutines with a branch
and link (BL) call interface. A subroutine implements one or
more generic functions for the specific controller in use. A
"set DTR" subroutine call is made by the TSR. The HSR for a
CRU controller might implement this as a '"SBO DTR" CRU
instruction but the HSR for a TILINE controller might
implement the same subroutine using a "SOC @DTR,@OUTSIG(RL12)"
instruction to access the TILINE Peripheral Control Space
(TPCS) for the controller. Identical requests from the
TSR/ISR will invoke identical functions for all controllers.
Provision is made for controller hardware differemces. A "not
supported”" return is provided for each HSR routine. This
return 1is taken when the requested function is not supported
by the controller hardware.

A new requirement exists when one peripheral device type
is supported by different controller types. The second part
of the generic interface mechanism addresses linking one TSR
with multiple HSR’s. The HSR’s would each contain subroutines
with identical names. OQur solution to this problem was to
provide a subroutine branch table in each HSR. The address of
each generic subroutine was located at the same position,
relative to the beginning of the branch table, in each HSR.
The TSR maintains a pointer to the HSR branch table. This
pointer is in the table (PDT or PDT extension) associated with
a specific peripheral device. The reentrant TSR software
accesses the proper HSR based on the contents of the tables
for the peripheral device. Figure 3 illustrates the linkage.
If SETDTR is an index to the "set DTR" subroutine entry in the
HSR branch table then the instruction sequence

MOV @PDTHSR(R4),R5
MOV @SETDTR(R5),R6

places the "set DTR" subroutine address 1in R6. When R4
contains the address of the PDT and PDTHSR is the index of the
HSR branch table pointer from the start of the PDT.

Fomm e +
{---+
R& | —eee- -t
---------- Fommm et
PDTHSR | = ~==--- Fo—m————- > HSR
—————————— BRANCH
TABLE
Fommm—————— +
HSR
CODE
Fommm - +

Figure 3 TSR/HSR LINKAGE

SUMMARY
The philosophy of separating controller and device
support at the DSR level is not a new concept. It has been
implemented in many DSR‘’s in many different ways. The

specific implementation discussed in this paper fit our
purposes but may not fit another set of objectives., The
specific implementation shows significant benefits when only
one interface (controller/device) is isolated. Expanding this
concept should prove even more beneficial. One goal of the
implementation described was to define a HSR generic interface
supporting all asynchronous controllers (TI Business Systems).
New controllers may require extensions of the generic
interface definition to satisfy this goal, but the benefits
seem to make it worth the effort.

DNOS FILE SECURITY

DNOS FILE SECURITY

A Presentation for TI-MIX 1983
Operating Systems Session

by

Michael P. Simpson
Texas Instruments
Austin, Texas

DNOS FILE SECURITY

1 INTRODUCTION

File security will be available as a SYSGEN option with
DNOS 1.2, It will complement existing DNOS security features
such as logon passcodes, user IDs and SCI privilege 1levels.
The system 1is designed to be effective 1in a cooperative
environment and easy to use. It will have little or no effect
on users who choose not to include it in their system. Using a
set of new SCI commands, a user will be able to define groups
of users and specify which groups of wusers may access his
files, as well as how the files may be accessed. The ability
to secure program files, batch streams, SCI command procedures
(procs), and data files provides a system manager with a high
level of control over access to sensitive system components.

This paper introduces the scope, concepts, and
functionality of DNOS file security from the point of view of
the user. An illustration is provided as an example to clarify
several important new concepts. These concepts are

interrelated and must be understood before one can establish a
secure environment.

2 SCOPE AND PURPOSE

DNOS file security provides a means to prevent access oOr
destruction of secured files by unauthorized individuals. The
extent to which this is successful depends on at least three

factors: the skill and determination of the individual, the
software tools available to him, and physical security
measures. It would be difficult, if not impossible, to design

a security system that would protect against a determined
attempt by a skilled individual with access to powerful tools
such as the SCI debugger. Physical security measures appear to
be much more effective against this type of security threat.
On the other hand, a reasonably effective level of security
protection can be achieved by controlling access to the system,
controlling access to powerful tools, and placing control of
this access in the hands of responsible individuals.

DNOS FILE SECURITY

3 CONCEPTS

There are several aspects of DNOS file security that must
be understood separately. The two most important are the
concepts of access groups and access rights. Access to a file
is granted or denied based on the relationship between the
access groups associated with a wuser and the access rights
associated with a file. Access groups and access rights are
defined and discussed below.

3.1 Access Groups.

An access group 1is simply a group of users. Users
associated with an access group are called members of that
access group. Any user can create an access group and specify
which users are members of that group. When a file is secured,
one specifies which type of access will be granted to which
access groupse.

3.2 Access Rights.

There are five access rights: read, write, delete,
execute, and control. An access group may be given any
combination of these access rights. A new SCI command will be
available to assign and modify access rights to individual
files.

Read access is more than just the right to read data from
a file. If the file is an SCI batch stream or procedure, read
access 1is the right to execute the batch stream or the
procedure. Read access on a program file allows a wuser to
issue the Map Program File (MPF) SCI command.

Write access 1is the right to write data to a file. It
includes the ability to write over the existing data as well as
write new data. Write access to a program file represents the
right to install or delete tasks, segments, procedures, and
overlays. Write access to a key indexed file includes the
right to delete records from that file.

Execute access only has meaning when it is associated with
a program file. It represents the right to execute tasks,
segments, procedures, and overlays within the program file.
Powerful tasks can be protected by installing them in secured
program files.

DNOS FILE SECURITY

Delete access 1s the right to delete a file. Delete
access 1is also required 1in addition to write access to text
edit a file.

Control access 1is the right to change the security
associated with a file. This includes the right to change the
set of access groups associated with a file, as well as change
the access rights associated with each access group. Each

secured file has one and only one access group with control
access.

3.3 Access to a Secured File.

Each secured file <can have access rights for as many as
nine access groups. A different set of access rights can be
defined for each access group. The access rights associated
with an access group determine how the members of that access
group can access the file. For example, assume a secured file
has the read access right for the access group named MANAGER.
Any wuser who is a member of the access group named MANAGER is
granted read access to the file. Establishing access group
membership and access rights for a file will be discussed in
detail later.

A user’s access groups are established at the time he logs
on. Any changes to his access group membership are recorded on
disk and do not take effect until the next time he logs on.

Access rights to a file are established when a LUNO is
assigned. Any changes to the access rights associated with a
file will not affect access rights through LUNOs currently
assigned. Access rights are checked for each individual file
operation and are enforced only for files. They have no
meaning for directories. Any attempt to secure a directory
will result in an error.

3.4 The Access Group Leader.

When an access group is created, the creator becomes the
leader of the access group. The leader of an access group has
the right to add users to the access group, delete wusers fronm
the access group, assign 1leadership of the access group to
another user, or delete the access group. Only one leader is
allowed for each access group. If leadership is assigned to
another user, that user becomes the only leader.

DNOS FILE SECURITY

3.5 Predefined Access Groups.

There are two predefined access groups that exist on all
secured systems. They are named PUBLIC and SYSMGR.

PUBLIC is an access group which has all users as members.
It has no leader, it cannot be deleted, and its membership
changes automatically as user IDs are added or deleted from the

system. A secured file is unsecured by specifying all access
rights for the access group named PUBLIC

SYSMGR is an access group which is «c¢reated automatically
and can never be deleted. Any user who is a member of SYSMGR
has full access to any file and leadership capabilities for any
access group. Due to the nature of this access group, members
of SYSMGR cannot be a member of any other access group.

3.6 File Creation Access Group.

Every wuser has an associated file creation access group.
If one has not been specified, PUBLIC is assumed. When a file
is <created, all access rights are assigned for the file
creation access group of the creator. If a wuser’s file
creation access group is PUBLIC, all files he creates will be
unsecured. There is an SCI command which allows a new file
creation access group to be defined.

4 OVERVIEW OF A SECURED SYSTEM

A simplified representation of a secured system 1is
illustrated on the following page. The system has only two
access groups and three files. The example depicts the

relationship between membership in an access group and access
rights to a secured file. The paragraphs following the
illustration describe the details of this relationship.

DNOS FILE SECURITY

S IMPLE S ECURETPD S YSTEM

A CCES S G ROUPS

R et e e L +
ACCESS GROUP NAME | MANAGERS |
Fre e +
MEMBERS FRED
MARY
et L +
R ittt +
ACCESS GROUP NAME | CLERKS |
e it L +
MEMBERS BETTY
FRED
BILL
R ittt +
SECURED FILES
e e, —— - ——————————
FILENAME l SALES
ACCESS GROUPS | MANAGERS READ, CONTROL, DELETE
| CLERKS READ, WRITE
o e e = e e e
e, r—r e, ———————
FILENAME | PAYROLL
ACCESS GROUPS MANAGERS READ, WRITE, CONTROL
CLERKS READ
B T T TP
e e e e e e o e
FILENAME ’ INV PROC
ACCESS GROUPS | MANAGER READ, WRITE,CONTROL
A o e e e e e e e

DNOS FILE SECURITY

The access group named MANAGERS has members Fred and Mary.
The access group named CLERKS has members Betty, Fred, and
Bill. The files named SALES and PAYROLL have access rights
defined for MANAGERS and CLERKS. The file which contains the
INV proc has access rights defined only for MANAGERS.

Mary can write to the file named PAYROLL because she is a
member of the access group named MANAGERS and write access is
defined for that access group. However, if Mary attempts to
write to the file named SALES, she will get an error because
she 1is not a member of any access group with write access to
the file. It is important to note that if Mary really needed
to write to the file named SALES, she could issue the command
to change her access rights. She can 1issue that command
because she is a member of the access group named MANAGERS and
control access is defined for that access group. Similarly,
Bill can write to the file named SALES because he is a member
of the access group named CLERKS and write ,access 1is defined
for that access group. However, if Bill tried to write to the
file named PAYROLL he would get an error because he 1is not a
member of an access group with write access to that file. 1If
he really needed to write to the file named PAYROLL, there are
two things he «can do. He could ask the leader of the access
group named MANAGERS to make him a member of that access group
or he «could ask any member of the access group named MANAGERS
to change the security on the file to give write access to an
access group of which Bill is a member. Bill is a new employee
and likes to try new commands. Luckily, when he tries the INV
command he will get an error because he is not a member of an
access group with read access to the INV proc.

5 USER INTERFACE

A set of new SCI commands is provided for file security.
Most require the user to verify his identity by entering his
logon passcode. SCI will not echo the password either
interactively or in the batch stream listing. Passwords
imbedded in batch streams may be represented by a synonym and
must be protected by file security on the batch stream and
listing.

5.1 Access Group Commands.

DNOS FILE SECURITY

Several SCI commands are provided for creating, deleting,
listing, and changing the membership of access groups. Most
can only be 1issued by the leader of the access group. An
attempt to issue a command which requires leadership by anyone
other than the leader will result in an error.

Access groups are created by issuing the Create Access
Group (CAG) command. Any user who has access to the proc can
issue the CAG command. The access group will be created and
the user issuing the command will become the leader.

Only the leader of an access group can issue the Modify
Access Group (MAG) command. The command is used to add users
to the access group, delete users from the access group, oOr
assign a mnew leader of the access group. Each user ID to be
added and the new leader’s user ID must be valid.

Only the leader of an access group can issue the List
Access Group Members (LAGM) command. It lists user IDs of all
users which are members of the access group.

Only the leader of an access group can issue the Delete
Access Group (DAG) command. It is the responsibility of the
user issuing the command to insure that no files exist which
permit access only to this access group. If such a file is

accidentally overlooked, it Dbecomes accessable only to the
SYSMGR access group.

Any user may issue the List Access Group(LAG) command. It
lists all access groups of which the user is a member. The
output will indicate which access group is the wuser’s file
creation access group and those groups for which the user is
the leader.

Any user may issue the Set Creation Access Group (SCAG)
command. It allows a user to specify which access group will
automatically have full access to files he may create. The
user must be a member of any access group he specifies as a
file creation access group. To prevent conflict between batch
or background and foreground SCI file creation, this command
updates the creation access group recorded on disk. The new
file creation access group is not effective until the next time
a user logs on under that user ID.

5.2 Access Rights Commands.

There are two commands provided to manipulate access
rights. They list or modify the access groups and their
corresponding access rights for an individual file. To issue

DNOS FILE SECURITY

these commands, one must be a member of an access group with
the control access right to the file.

The List Security Access Rights (LSAR) command lists the
access groups and access rights associated with a particular
file. The user must enter his logon passcode to verify his
identity. The user specifies the file pathname and the output
displays all access groups with access rights to the file. It
also indicates which access rights are associated with each
access group.

The Modify Security Access Rights (MSAR) command modifies
the security on an individual file. It prompts the wuser for
his logon passcode to verify his identity. The user specifies
the file pathname, access group name, and which access rights
are to be given to the access group. If the access group named
PUBLIC is entered and all access rights are specified, the file
becomes unsecured.

6 IMPACT TO EXISTING APPLICATIONS

Existing applications and utilities can be adapted to run
in a secure environment with mno <code changes. There are
different approaches to establishing a secure environment for
an application. One can secure the application program, secure
the files it accesses, or both. Which approach one chooses
will depend on the nature of the application or utility.
Utilities such as Initialize New Volume (INV) are 1inherently
powerful and should be secured. Utilities such as Show File
(SF) can probably be unsecured but protection on individual
files will limit what files can be shown.

6.1 Securing An Application.

To control access to a powerful application or utility one
can secure the program file, command procedure, batch streams,

or any combination of these. This may be accomplished by
creating an access group and adding as members, each user ID
which can access the application. Execute access mwmust be

specified for this access group on the program file. Read

PN .
access must be specified for this

the batch streame.

for this access group on the proc or

DNOS FILE SECURITY

6.1.1 Securing Sensitive Files.

There are two things that must be considered when securing
sensitive files. One must 1insure that unauthorized users
cannot access the file. One must also insure that applications
or utilities that must access the file have the necessary
access rights to do so.

There are two categories of applications from the point of
view of file security: applications that run in their own job,
and applications that run in the wuser’s job. The steps
involved in establishing a secure environment depend on the
category of the application.

Applications or utilities that run in their own job will
automatically inherit the access rights of the user ID of the
job. One must create an access group with that user ID as a
member. One must also insure that all files the application
must access are permitted to that access group with the
appropriate access rights.,

Applications or utilities that rum in the user’s job will
inherit the access groups of the user. Any attempt by the
application or utility to access a file in a way not allowed
for the user will result in an error.

6.2 Security Bypass.

In certain circumstances it may be desirable for an
application or utility to have access to a file but undesirable
to give that access to a user. For example, a data base may be
maintained by an application. The application needs write
access to the data base files; However, it may be undesirable
to give write access to users because that allows them to write
to the file with programs other than the application which
manages the data base. A new task attribute called security
bypass is provided for circumstances such as this. A task that
is installed with security bypass will be granted all access to
any file. It is the responsibility of the task to enforce
security and the responsibility of the system manager to insure
the integrity of such tasks. A separate utility is provided to
assign the security bypass attribute to a task. Access to this
utility can be controlled by securing the proc and the program
file in which it is installed.

DNOS FILE SECURITY

7 DOCUMENTATION

The use of file security will be carefully documented in a
new manual entitled DNOS Security Manager’s Guide . It will
include a thorough description of the role and responsibilities
of the security manager. The DNOS System Command Interpreter
Reference Manual will describe the security implications if
any, in the descriptions of the individual commands.

NOTES

INTERPROCESS COMMUNICATION IN DNOS
A Presentation for TI-MIX 1983
Operating Systems Session

by

Lori Mohr Stuart
Texas Instruments
Austin, Texas

l. Interprocess Communication Mechanisms

There are many programming applications that require the wuse of
synchronization or communication between processes. The Texas Instruments
990 operating systems provide several mechanisms by which processes can
exchange signals or messages. These mechanisms are:

* Shared procedures (DNOS and DX10)

* Intertask message queues (DNOS and DX10)

* Semaphores (DNOS)

* Shared segments (DNOS)

* Event Synchronization (DNOS)

* Interprocess communication channels (DNOS)

Shared procedures and segments suffer from the limitation that the
communicating tasks themselves must coordinate their wuse of the shared
data. Message queues have only a rudimentary synchronization capability
and no access control other than a usage convention which is not enforced
by the operating system. DNOS semaphores are used for synchronization, but
only between tasks in the same job. Event synchronization is a global
mechanism by which one task can signal another, provided the signalling
task knows the run-time ID and the job ID of the task to be signalled. A
message passing facility may be necessary for the signalling task to obtain
the job and run-time identifiers.

The interprocess communication (IPC) channel facility of DNOS is the
most versatile of all of these mechanisms. It 1is a means of global
communication between any two or more tasks in the system. Tasks exchange
messages by reading and writing over IPC channels that are created by the
system at the request of the user and exist independently of the tasks
using them. The IPC facility can be used for both message exchange and
synchronization, and it provides access control by which channel creators
and users can limit the availability of a channel.

Every IPC channel has an owner task which is specified at the time the
channel 1is created. Every message exchange is between the channel owner
and some other task. Tasks communicate over an IPC channel by assigning
logical wunit numbers (LUNOs) to the channel and then using ordinary I/0
supervisor calls to read and write the messages. As with other 1I/0
supervisor calls, if a read or write to a channel cannot be processed
immediately, i.e., if there is no matching channel request from another

-2 -

task, the task issuing the read or write is optionally suspended until a
matching channel request is issued. This allows synchronization between
cooperating tasks. Furthermore, the use of I/0O SVCs as the means of
communication to channels means that the access control imposed on opens to

files and devices is also imposed on open operations to channels. A task
which successfully issues an open operation with exclusive write access to

a channel is guaranteed to be the only requester task writing to the
channel.

2. Uses of IPC

IPC channels can be used to implement several programming functions:

* Task synchronization
* Queue service

* Intermediate processing of data
* Sending and receiving messages

When IPC is used for task synchronization, the existence of a message
may be more important than the message contents. Tasks may require
synchronization in order to regulate access to shared resources or to
guarantee that a series of operations are performed in a certain order.
Like other I/0 operations, IPC operations can suspend the issuer until the
request completes. If the initiated I/0 bit is set in the I/0 call block
or 1if the request is initiated by the Initiate Event SVC, the issuing task
will continue to execute and can determine whether the request has
completed by using a Wait for any I/0 SVC, a Wait on Event SVC, or simply
checking the busy bit in the request block. Either way, the tasks have a
way of determining whether a message has been exchanged and can synchronize
their actions accordingly.

IPC channels can also be used to implement queue servers. An IPC
channel and a server task would be created for each provided service.
Tasks would submit requests for service by writing to the IPC channel. The
server task would read the requests from the channel and then process the
requests.

Because the principal means of channel communication 1is resource-
independent 1/0 SVCs, tasks that perform resource-independent I/0 to files
or devices require little or no change to use channels as sources of input
or destinations of output. It is possible to use IPC to implement
filters--tasks that perform intermediate processing of data. A task that
writes its output to a VDT or file could just as easily write the data to a
channel. The task that reads the data from the channel could perform some
additional processing on the data and then output the data to a VDT or a

-3 -

file or even to another channel for further processing. Because channel

I/0 usually requires no disk access, using channels to pipeline data can
speed processing time.

There are two types of channels--symmetric and master-slave.
Symmetric channels permit the use of resource—-independent I/0 SVCs to send
messages between tasks. The channel interface of a symmetric channel owner
is much the same as that of any other task, hence the name "symmetric".
Symmetric channels are particularly useful for implementing filters.

Master-slave channels provide a mechanism for simulating I/0. A non-
owner task (a slave) performs resource-specific I/0 to the channel. The
owner task (master) receives the full supervisor call block of the SVC
issued by the slave, including any data that is being written. The master
processes the slave’s I/0 request much like a Device Service Routine or
file server processes requests. The master then returns the call block to
the system, including any data being returned to the task. The master’s
interface to the channel is very different from that of a slave. The slave
task may not even need to know that the resource to which it is sending
requests is actually a channel. The master uses a special set of channel
interface commands to obtain the requester’s call block and return it to
the system. A more detailed description of symmetric and master-slave
channels follows below.

3. Accessing Symmetric Channels from Pascal

There are two ways to perform I/0 to channels from tasks written in TI
Pascal. The task can either use the standard Pascal 1/0 functions or can

issue the supervisor call directly using the SVC$ routine. Resource-
independent 1I/0 to symmetric channels from either an owner task or a non-

owner task can be done with standard Pascal text file I/0 functions.

To use standard Pascal I/0 to access a channel, a file variable of
type TEXT should be defined. The file variable is then associated with the
channel. This can be done with the SET$ACNM function, which associates a
file variable with a pathname, or the SETLUNO function, which associates a
file variable with a LUNO. Either of the pre-defined text files, INPUT or
OUTPUT, may be used to access a channel. The synonym INPUT or OUTPUT must
have been externally defined as the channel name.

The following Pascal functions can be used to access the channel:
* RESET(F) -- Open text file (channel) F for input.
* REWRITE(F) -- Open text file (channel) F for output.

* READLN(F) -- Read the next record from file F. This operation
performs a read to the channel.

-4 =

* WRITELN(F) -- Write the current contents of the line buffer to
file F. This operation writes the buffer to the channel.

* EOF(F) -- Result is TRUE if the last READLN matched to a Write EOF
operation.

Other Pascal functions that can be issued to a text file are listed in the
TI Pascal Programmer’s Guide. The READ and WRITE functions to a symmetric
channel will not cause a read or write SVC to be issued to the channel.
READ and WRITE only read from and write to a local line buffer. For the

read or write to actually go to the channel, a READLN or WRITELN must be
issued. Task termination causes the LUNO to the channel to be closed.

Before issuing the close, the Pascal task will issue a Write EOF. This
will match a read operation to the channel performed by another task and
cause an EOF function performed by the other task to return the value TRUE.

An example program that implements a filter is shown in Figure 1. The
program accepts 1input from a resource-independent source, processes the
input, and then outputs the data to a resourc -independent destination. 1In
this case, the default text files INPUT and OUTPUT are used. Either of the
two files or both of them could be channels. This task could either be a
channel owner or a non-owner. Instead of using the default input and
output files, the task could have obtained the filenames from a synonym,
which could either be already known to the task or could have been passed
in as a parameter. -

4, Accessing Master-Slave Channels from Pascal

1/0 operations from slave tasks can either be issued by standard
Pascal I/0 routines or by the SVC$ routine. Since master-slave channels
are intended to simulate I/0, a slave task may perform any kind of 1/0
operation to the channel, provided that the type of I/0 is compatible with
the resource type of the channel and that the channel master is written to
handle that type of I/0. The channel interface of a master of a master-
slave channel must be written using direct supervisor calls with SVCS. The
special I/0 operations used by the channel master to obtain and return call
blocks are not supported by intrinsic Pascal I/0 functions. The master’s
channel interface is explained below.

5. Creating and Using IPC Channels

5.1 Creating and Deleting Channels

When a channel 1is created, a disk-resident channel descriptor is
built. The channel has a pathname and is located in a directory 1like a
file. Rebooting the system does not delete the channel. The channel has
no memory resident representation until a task assigns a LUNO to it. A
channel can either be created by a task by issuing the Create Channel SVC
(I/0 subopcode >9D) or from SCI by issuing the Create IPC Channel (CIC)
command. In either case, the following information must be provided:

* Channel name, which must be a valid pathname.

* Program file which contains the owner task. The program file must
be in the same directory as the channel. If the channel name is
".A.B.C", the program file must be in the directory ".A.B".

* Installed ID or name of the owner task in the program file.
* Channel type -~ symmetric or master-slave.
* Channel scope -- global, job-local, or task-local.

* Channel message length -- the maximum number of bytes that can be
transferred in one message.

* Channel type -- shared or non-shared.
* Default resource type (master-slave only)

Channels can be deleted from a task by the Delete Channel SVC (I/0
subopcode >9E) or from SCI by the Delete IPC Channel (DIC) command.

IPC provides several options by which users can tailor a channel to
meet their particular needs. A channel can either be symmetric or master-
slave, can be available at a systemwide (global) level, a job-local level,
or a task-local level, and can either be shared or non-shared. Each of
these options is explained in the following sections and guidelines for
choosing the type of channel are presented.

5.2 Symmetric Channels

Symmetric channels are suitable for applications that require only a
simple exchange of data buffers or messages. If the application requires
more complex I/0 operations, as is frequently the case when I/0 to a device
or file is being simulated by I/0 to a channel, the channel will have to be
master-slave. If the application requires that the channel be multiplexed
(used simultaneously by more than one task) and that the data exchange
between the owner and requester be bi-directiomnal, master-slave channels
will be necessarye. The reason for this will become clearer in the
following discussion of shared and non-shared channels.

Every message transfer on a symmetric channel is either to or from the
owner task. Each task opens the channel, performs read or write operations
to the channel to accomplish the exchange of data, and then closes the
channel. Each read operation to the channel must be matched by a write
operation from another task. The actual data which is exchanged 1is the
contents of the write buffer which is transferred to the read buffer of the
task performing the read operation. In Figure 2, the supervisor call
blocks for channel operations from two tasks are shown. The message
written to the channel by task B is read by task A.

The operations allowed to symmetric channels are the same for both
owners and requesters. The allowed operations are:

00 Open

01 Close

05 Read device status
09 Symmetric read

0B Symmetric write
0D Write EOF

The following sub-opcodes are allowed and perform operations identical to
those shown:

Sub-opcode Operation Identical to

0A Read direct Symmetric read

0cC Write direct Symmetric write

02 Close, write EOF Close

03 Open Rewind Open

04 Close and unload Close
Open operations issued from requester tasks are queued until the owner task
has opened the channel. Once the channel has been opened by the owner and

one or more requesters, message transfer can take place. Symmetric reads
and writes that cannot be processed immediately because there is no
matching operation are queued. The channel requests are processed in a
first come-first served manner. The next owner request is matched to the
next requester request. If the operations are of different type (read-

-7 -

write), the message transfer is performed. If the operations are of like
type (read-read or write-write), both the owner and requester operations
are returned with an error. A write EOF request matches a read, setting
the EOF flag in the read call block and zeroing the actual read count.

One important difference between the owner’s channel interface and
that of the requester is that an owner may only have one operation
outstanding to a particular channel at a time. If the owner initiates a
request to the channel, the owner will have to wait until the first request
completes before issuing another request. If the owner issues a second

request before the first completes, the second request will receive an
error.

5.3 Master-Slave Channels

Resource-specific channel 1/0 is performed by master-slave channels.
In symmetric channel I/0, the actual data transferred between communicating
tasks is the contents of the data “buffer of the symmetric write. In
master-slave channel I/0, the actual data transferred is the entire
requester call block. Unlike symmetric channel 1I/0, where each owner
operation matches one requester operation, master-slave channel I/0
requires two owner operations to match each slave operation. One owner
operation reads in the requester call block; the second owner operation
writes the call block back to the requester. The returned call block will
contain any returned data or error codes. All requester 1/0 operations to
the channel, including opens and closes, are passed to the channel master.
I/0 utility operations, such as Assign and Release LUNO, and Abort I/0 SVCs
can optionally be passed to the master as well. The option can be

specified when the channel is created.

In symmetric channel communication, owners aand requesters are allowed
the same set of limited operations. In master-slave communication, slave
tasks can issue any I/0 command to the channel. IPC supports the full set
of resource-specific I/O to master-slave channels. When a master-slave
channel is created, a channel resource type is specified. If the resource
type 1is a file type, file I/O operations to the channel are allowed. If
the resource type is a device type, device-specific operations to the
channel are allowed. If the resource type is channel, only resource-
independent I/0 to the channel is allowed.

The operation used by a channel master to read a requester call block
is the Master Read. The data buffer of the master read operation will
contain five words of header information followed by the full requester
call block after the master read operation completes. The call block is
written back to the channel with a Master Write operation. The data buffer
of the master write operation contains the header information (unchanged),
the requester call block, and any data being returned to the slave task.
The master may only have one master read operation outstanding at any ome

- 8 -

time. However, the master may do any number of master write operations
while a master read is pending.

Figure 3 shows a requester read operation before the supervisor call
is 1issued. After the requester has issued the request and the master has
issued the master read, the master read call block and its data buffer will
appear as shown on the left side of Figure 3. Figure 4 shows the call
block of the subsequent master write. The channel master has updated the
actual character count in the requester call block and is returning data.
The left side of Figure 4 shows the requester call block and data buffer
after the master write completes.

It was stated in the previous section that a symmetric channel cannot
be simultaneously multiplexed and bi-directional. It may not be apparent
how a master-slave channel can serve this function either, since a master
cannot independently send a message to a slave task. A master can only
process and return slave operations. One way to achieve this message
exchange is by using a write with reply operation. The resource type of
the channel would have to be VDT, since the write with reply operation is
only meaningful for terminals. The requester does a write with reply to
the channel and the master returns a message to the requester in the reply
block. The program in Figure 5 implements a channel master which serves a
queue of requests from various slave tasks and returns information to each
slave task that issues a request.

5.4 Channel Scope

IPC channels are either global, job-local or task-local. The scope of
a channel determines whether a channel and channel owner are replicatable

and whether an assign to the channel results in the channel owner being bid
automatically. The characteristics of each of these types is as follows:

* Global -- There is only one instance of a global channel at a time
and it can be accessed by any task in the system. The channel
owner must be the first task to assign a LUNO to a global channel.

* Job-Local =-- A job-local channel may be replicated--one instance
per job. The channel is accessible to any task in the job.
Either the owner task or another task may be the first to assign a

LUNO to the channel. If a task other than the owner is the first
task to assign a LUNO to the channel, the owner task will be
automatically bid.

* Task-Local -- A task-local channel and its owner task are
replicated for each task that assigns a LUNO to the channel. Each
non-owner task that assigns a LUNO to the channel gets its own
instance of the channel. The owner task is automatically bid by
the Assign LUNO. A task-local channel owner may not be bid

-9 -

directly.

If the two tasks that need to communicate can be anywhere in the
system, or if the channel owner is not replicatable, the channel will have
to be global. If the communicating tasks will always be in the same job or
if they can be replicated in many jobs, the channel should be job-local or
task-local. A task-local channel is appropriate if the Ffunction performed
by the channel owner can safely be performed simultaneously by more than
one instance of the channel owner. Task local channel owners are
replicated for every LUNO assigned to thenm. If the channel owner is
controlling a resource that is available to the entire job, the channel
should be job-local so that only one task is accessing the resource at a
time,

5.5 Channel Type -- Shared or Non-Shared

Before discussing the difference between shared and non-shared
channels, a discussion of channel states is in order. A channel is always
in one of three states relative to a task which has assigned a LUNO to it.

* Closed -- The task must open the channel before performing reads
or writes to the channel.

* Open -~ The task may issue reads or writes to the channel.

* Dormant -- The task must issue a close, and then may reopen the
channel. If there are any outstanding operations to the channel
at the time the channel hecomes dormant, the operationg will be
returned with an error. Any subsequent operations (except a
close) will be returned with an error. The dormant state only
applies to symmetric channels.

For all types of channels, open operations performed by non-owners are
queued until the channel owner’s open has completed. An owner close always
puts the channel into the dormant state relative to all requesters. The
requesters must close the channel and then may reopen the channel.

Shared and non-shared channels have the following characteristics:

* Shared -- A shared channel may be accessed simultaneously by any
number of requesters. A close issued by a requester does not
change the state of the channel relative to the owner.

* Non-Shared -- A non-shared channel may only be opened by one non-
owner task at a time. This is true regardless of the access
privileges requested by the requester open. If a second requester
issues an open to a non-shared channel before the first requester
closes its LUNO, the second open request will receive an error.

- 10 -

After a requester task has closed its LUNO to the channel, that
task or any other requester task may open a LUNO to the channel.
A requester close operation causes a symmetric channel owner to
become dormant relative to the channel owner, i.e., any
outstanding or subsequent operations (except a close) will be
returned with an error. The owner should close the channel and
reopen it. Another data exchange may now take place.

The wunlimited accessibility of shared channels is usually acceptable
for master~slave channels because the output of a master write always
returns to the slave task that originally performed the request to the
channel. The header information provided to the master in the data buffer
of the master read allows the master to differentiate between requesting
tasks. Furthermore, since master-slave channels are usually used for the
purpose of simulating I/0, the standard access control imposed by the
operating system on LUNO opens is the most useful means of limiting access
to a particular channel.

Shared channels are not sufficient for many symmetric channel
applications. An owner of a shared symmetric channel has no way to direct
a message to a particular task. The owner operation to the channel will be
matched to whatever requester request happens to be next on the queue.
Non-shared symmetric channels are intended for applications requiring an
extended message exchange between two tasks. Once a requester has
successfully opened the channel, the owner is guaranteed that there is only
one requester sending and receiving data. The owner will also know when a
session with a particular requester has ended because of the error code
received on an owner operation after the requester has closed its LUNO to
the channel.

An example of a bi-directional message exchange using a non-shared
symmetric channel is shown in Figure 6.

The non-shared attribute is much less useful for master-slave
channels, but it can be used to limit access to the channel to one slave
task at a time. A master-slave channel does not become dormant to the
master in the case of a requester close. The master knows that a session
has ended when a requester close is master read.

6. Executing and Debugging Tasks That Use IPC Channels

Most Pascal tasks that use channels can be bid from SCI by the Execute
Pascal Task (XPT) command or by the SCI primitives, BID, DBID and QBID.
Synonyms which specify the input and output of the task can be defined.
Task-local channels owners must be handled differently. Task-local channel
owners will never be bid by SCI, but will instead be bid by the system as a
result of an Assign LUNO to the channel. Therefore, the input and output
access names cannot be obtained from synonyms. The access names could be

- 11 -

specified directly in the task code. This may be acceptable in the case of
the channel name, since it won’t change for the channel owner. Logical
names could also be used to specify the input or output. The value of the
logical name can be obtained from a Map Name SVC. The input and output
access names could also be read from a known file.

Debugging programs that use IPC channels presents some special
problems. If there is more than one terminal available for debugging and
if the scope of the channel allows both tasks to be bid from SCI, debugging
programs that use IPC should not be different than debugging any other
program. The owner task is bid in debug mode from one terminal and a non-
owner task is bid in debug mode from another terminal. Both tasks can be
controlled by the debugger. If the channel is job-local, the owner task
should be bid first and both stations should be connected into the same
job, through the reconnect capability.

If the channel is task-local, the owner task cannot be bid from SCI.
Even for global and job-local channels, only one of the communicating tasks
can be bid in debug mode if there is only one terminal. Tasks bid in debug
mode from SCI are background tasks, and there can only be one background
task per station. If the channel is task or job-local, the owner task can
be bid by assigning a LUNO to the channel. If the channel is global, one
of the communicating tasks must be bid with a Bid Task SVC.

There are several ways to get a task which was not bid in debug mode
into a state where it can be controlled and debugged. First, the task must
be put into an unconditionally suspended state (state 6). This can be done
by issuing a Suspend Task SVC (SVC 6) from the task which is to be debugged

or by wusing the Modify Program Image (MPI) SCI command to temporarily
change an instruction in the task to the agsemblv language instruction XOP

BIL T UL 10132 SQSSCHL Ly <=5 LS i LA

15,15 (>2FCF) before bidding the task. Once the task is in state 6, the
Pascal debug commands can be used to set breakpoints in the task, resume
execution of the task, and inspect the stack and memory. Two or more tasks
can be controlled from the same station. Each of the debug commands
requests a run ID of the particular task to be inspected. The run ID for
each task can be obtained by a Show Task Status (STS) command. The Execute
Debugger (XD) command and all of the other debug commands that XD enables
(Set Simulated Breakpoint, for example) will only work for one task at a
station. Some commands that can be wused for more than one task at a
station are: Show Panel (SP), Show Pascal Stack (SPS), List Pascal Stack
(LPS), Assign Breakpoint (AB), Assign Breakpoint - Pascal (ABP), Proceed
from Breakpoint (PB), Proceed from Breakpoint — Pascal (PBP), Modify Memory
(MM), and Modify Internal Registers (MIR).

One very useful technique to debug tasks that use channel 1I/0 is to
set a breakpoint before and after the SVC$ routine. The only parameter to
the SVC$ routine is a pointer to the supervisor call block about to be
issued. By examining the call block before and after the SVC$ routine,
problems related to the channel interface can be found.

-12 -

One problem commonly encountered while debugging tasks that use IPC
channels is finding a task hanging in state 9 (waiting on I/0). When the
task is in this state, Show Pascal Stack and Show Panel will not work.
This makes it difficult for the programmer to determine what caused the
hang. The problem of tasks hanging in state 9 is wusually caused by an
error in synchronization between two tasks. One task is expecting a
message and the other task is no longer communicating to the channel. One
way to debug this situation is to print a copy of the SVC block to a
terminal or file before the SVC is issued. If a hang occurs, the last SVC
block will then be available.

7. Summary

IPC channels can be used in most applications requiring communication
between tasks. More detailed information regarding the use of Pascal 1I/0
and IPC channels can be found in the Model 990 Computer DNOS TI Pascal
Programmer’s Guide and the DNOS Supervisor Call Reference Manual.

- 13 -

'PROGRAM FILTER;
(* READ DATA FROM STANDARD INPUT, PROCESS DATA, AND WRITE
TO STANDARD OUTPUT *)
VAR PHRASE:PACKED ARRAY[1..50] OF CHAR;
BEGIN
RESET(INPUT) ;
WHILE NOT EOF(INPUT) DO
BEGIN
READ(INPUT, PHRASE:50) ;
READLN(INPUT) ;
(* PERFORM INTERMEDIATE PROCESSING HERE *)
WRITELN(OUTPUT,PHRASE:50)
END
END.

FIGURE 1 -- SAMPLE PASCAL SYMMETRIC CHANNEL TASK PROGRAM

- 14 -

OPCODE ,ERROR
SUBOPCODE,LUNO
FLAGS

DATA BUFFER ADDR
INPUT CHAR COUNT

ACTUAL CHAR COUNT

OPCODE, ERROR
SUBOPCODE , LUNO
FLAGS

DATA BUFFER ADDR
INPUT CHAR COUNT

ACTUAL CHAR COUNT

TASK A

|0 0
09 50
00

10

|

|

BEFORE SUPERVISER CALL IS ISSUED

TASK A

|~ 0

09 50

0 0
10
6

-> I
ABCDEF

|

|
|

TASK B
— 0 —
0B 60
0 0
3 —
_>l
| ABCDEF |
| l
TASK B
S R
OB 60
0 0
6
-> l

|
| ABCDEF 1
I

AFTER SUPERVISER CALL IS ISSUED

FIGURE 2 -- SYMMETRIC CHANNEL MESSAGE EXCHANGE

- 15 -

OPCODE, ERROR
SUBOPCODE,LUNO
FLAGS

DATA BUFFER ADDR
INPUT CHAR COUNT

ACTUAL CHAR COUNT

SLAVE TASK

00 00

09 40

0 0
6

MASTER TASK

00 00

19 45

0 0

>50

>16

5 WORDS OF
HEADER

00 00

09 40

SLAVE’S CALL BLOCK BEFORE SUPERVISOR CALL

MASTER’S CALL BLOCK AFTER MASTER READ

FIGURE 3 -- MASTER-SLAVE DATA EXCHANGE

- 16 -

OPCODE , ERROR
SUBOPCODE , LUNO
FLAGS

DATA BUFFER ADDR
INPUT CHAR COUNT

ACTUAL CHAR COUNT

MASTER TASK SLAVE TASK

00 00 00 00
1B 45 09 40
0 0 o 0
50 10
6
]
- ‘
5 WORDS OF ABCDEF |
HEADER | 1
00 00
09 40
80 0
10
6
A B
c D
E F

SLAVE’S CALL BLOCK AFTER MASTER WRITE

MASTER’S CALL BLOCK AFTER MASTER WRITE

FIGURE 4 -- MASTER-SLAVE DATA EXCHANGE

- 17 -

PROGRAM MASTER;

(* MASTER READ A REQUEST. IF IT IS A WRITE WITH REPLY, READ THE
INCOMING DATA AND RETURN A REPLY. THIS PROGRAM ASSUMES THAT
A SHARED JOB-LOCAL OR GLOBAL MASTER-SLAVE CHANNEL WITH THE

PATHNAME “.CHAN’ HAS BEEN CREATED. THE CHANNEL MUST HAVE A
DEFAULT RESOURCE TYPE OF VDT,

*)
CONST P_OPEN = 0; P CLOSE = 1; (* DEFINE OPERATION CODES *)
P_ALUNO = #915 P WRITE = #0B;
MASTER READ = #19; MASTER WRITE = #1B;
INVALID CALL ERR = 1; (* DEFINE ERROR CODES *)
TYPE BYTE = O..#FF;
BUFFER = PACKED ARRAY[1..50] OF CHAR; (* BUFFER DEFINITION*)

BUFPTR = @BUFFER;
RPY = PACKED RECORD (*# REPLY BLOCK DEFINITION #*)
RPYBUF: BUFPTR;
RPYICC: INTEGER;
RPYOCC: INTEGER
END;
RPYPTR = @RPY;
ACNM = PACKED RECORD (* PATHNAME DEFINITION #*)
CH: PACKED ARRAY [0..5] OF CHAR
END;
PNAPTR = @ACNM;
SVCBLK = PACKED RECORD (* SVC BLOCK DEFINITION #*)
SOC,ERR: BYTE;
0C,LUN: BYTE;
SFLAG: INTEGER;
DBA: BUFPTR;
ICC: INTEGER;
OCcC: INTEGER;
RPY: RPYPTR;
RES1: INTEGER;
FLG: INTEGER;
RES2,RES3: INTEGER;
PNA: PNAPTR;
REST: PACKED ARRAY[1..6) OF INTEGER
END;
SVCPTR = @SVCBLK; (* MASTER READ BUFFER DEFINITION %)
MRB = PACKED RECORD
HEADER: PACKED ARRAY[1..5] OF INTEGER;
REQUEST: SVCBLK;
DATABUF: PACKED ARRAY[1..70] OF BYTE
END;
MRBPTR = @MRB;

FIGURE 5 -- MASTER-SLAVE OWNER EXAMPLE PROGRAM

- 18 -

VAR

CALLBLK : SVCPTR;

PATH : PNAPTR;
MRBP : MRBPTR;
NAME : PACKED ARRAY[1..5] OF CHAR;
I : INTEGER;
MSGLEN : INTEGER;
MSGPTR : BUFPTR;
RPYP : RPYPTR;

PROCEDURE SVC$(P:SVCPTR); EXTERNAL;
PROCEDURE ERROR PROC;

BEGIN

(* ERROR PROCESSING *)

END;
(* SET UP AND ISSUE MASTER WRITE *)
PROCEDURE MWRITE(P:SVCPTR);

BEGIN

pa.
P@'
pa.

O0C := MASTER WRITE;
0CC := 100;
SFLAG := 03

SVC$(P);

IF

P@.ERR <> O THEN ERROR PROC;

END;
(* BEGIN MAIN PROGRAM *)

BEGIN

NEW(CALLBLK); (* GET SVC BLOCK *)
NEW(PATH) ;
NEW(MRBP) ;
NAME:=’.CHAN’;
PATH@.CH[O]:= "#0A";
FOR I:=1 TO 5 DO

PATH@.CH[I]:=NAME[1];
WITH CALLBLK@ DO (* BUILD ASSIGN LUNO *)

BEGIN

S0C:=03

ERR:=03;

0C:= P ALUNO;

FLG:=#0400; (* AUTOGENERATE LUNO *)

PNA:=PATH

END;

SVCS(CALLBLK) ;
IF CALLBLK@.ERR <> O THEN ERROR PROC;
CALLBLK@.OC:= P OPEN; (* OPEN LUNO *)
CALLBLK@.SFLAG := 0;
SVCS$(CALLBLK) ;)
IF CALLBLK@.ERR <> O THEN ERROR PROC;

FIGURE 5 -- CONTINUED

- 19 -

WHILE (TRUE) DO (* DO FOREVER *)

BEGIN

WITH CALLBLK@ DO BEGIN

OC := MASTER READ; (* SET AND EXECUTE MASTER READ *)
ICC := 100;
SFLAG := 0
DBA := MRBP :: BUFPTR
END;

SVC$(CALLBLK) ;

IF CALLBLK@.ERR <> O THEN ERROR PROC;

(* PROCESS REQUESTER CALL BLOCK. MASTER WRITE OPENS AND
IMMEDIATELY. PROCESS WRITE BUFFER OF WRITE WITH REPLY
AND PROVIDE A REPLY. IF THE REQUEST IS NOT AN OPEN,
CLOSE OR WRITE, RETURN IT WITH AN ERROR. #*)

CASE. MRBP@.REQUEST.OC OF

P _OPEN: MWRITE(CALLBLK);
P CLOSE: MWRITE(CALLBLK);
P_WRITE: BEGIN
MSGLEN := MRBP@.REQUEST.OCC;
(* MRB ADDRESSES ARE BYTE OFFSETS FROM BEGINNING OF MRB*)
MSGPTR: : INTEGER : =MRBP@. REQUEST. DBA: : INTEGER
+ MRBP::INTEGER;

(* *%%**x REQUESTER MESSAGE CAN BE PROCESSED HERE. MSGPTR
IS A POINTER TO THE INPUT BUFFER. MSGLEN IS THE
LENGTH OF THE MESSAGE. *)

RPYP: : INTEGER : =MRBP@.REQUEST.RPY: : INTEGER
+ MRBP::INTEGER;

(% %kk%% RETURN REPLY HERE. RPYP IS THE POINTER TO THE REPLY
BLOCK IN THE MRB. THE REPLY BLOCK CONTAINS A BUFFER
POINTER (WHICH WILL HAVE TO BE ASSIGNED HERE, A
MAXIMUM INPUT COUNT AND AN ACTUAL READ COUNT (WHICH
WILL ALSO HAVE TO ASSIGNED HERE). FOR CONVENIENCE,
USE THE SAME BUFFER THAT WAS USED FOR THE INPUT
MESSAGE TO STORE THE REPLY. THERE MSGPTR POINTS TO
THE OUTPUT MESSAGE BUFFER., *)

RPYP@.RPYBUF:= MRBP@.REQUEST.DBA;
RPYP@.RPYOCC:= 10; (* OR WHATEVER THE LENGTH IS *)
MWRITE(CALLBLK)
END

OTHERWISE BEGIN
CALLBLK@.ERR := INVALID CALL;
MWRITE(CALLBLK) -
END

END

END
END.

FIGURE 5 -- CONTINUED

- 20 -

TIME OWNER TASK ACTIONS REQUESTER TASK ACTIONS

l OPEN CHANNEL (task waits)

OPEN CHANNEL (open completes)

READ (task waits)
WRITE = MSG: A —=m=—e—m———om-o— (Read completes, msg: A)
READ (task waits)
(read completes,msg: B) ——=—-—--- WRITE - MSG: B
WRITE - MSG: C (task waits)
(write completes) ====—==—===———-= READ (completes, msg: C)
READ (task waits)

(read completes with error) CLOSE
(channel is dormant to owner)

CLOSE
(channel is closed to owner)

OPEN
(channel is open to owner)

FIGURE 6 -- NON-SHARED SYMMETRIC CHANNEL MESSAGE EXCHANGE

-21 -

NOTES

TI-MIX 1983

Operating Systems Session

NEW UTILITIES FOR DATA BACKUP

by

Harold Wileunsky

Texas Instruments Incororated

Austin, Texas

TWO NEW UTILITIES FOR DATA BACKUP

by

Harold Wilensky

1 TIntroduction - The Tortoise and the Hare

I am sure that you remember the story of the Tortoise and
the Hare. One of the lessons that can be learned from that story
is that faster is not necessarily better. On that particular day
and in those particular circumstances the faster animal did not
win the race. I would like for you to keep that lesson in mind
as I talk about some new data backup utilities currently in
development. They are faster than the others that we support and
for many installations that is the overriding concern. However,
because some limitations have been placed on these utilities to
achieve greater speed, they will probably not be perfect for
everyone.

2 Definitions

Before we get into the details of these utilities I would
like to define four terms that will be used quite often and
sometimes cause confusion.

1. Backup - A sequential representation of a directory
structure, e.g. the output of Backup Directory

2. Copy - A duplicate of a directory structure, e.g. the
output of CVD or CD.

3. Disk Compression - Avoidance of secondary allocations
and a contiguous packing of data

4. File Compression - Making allocated but unused space
available

3 Our goals and how we achieve them

For some time now we have been receiving input from our
customers concerning the functionality of the data backup
After consulting with some of our
customers, the Customer Support Line, our marketing personnel,
and the TIMIX Systems Committee we developed some goals that

utilities currently supported.

should be met by any new data backup utilities:

i.

2.

Speed - This was the overwhelming concern. As larger
disks became available speed became an overriding
concern. It is unreasonable to expect someone to spend
a half day to copy a disk. The way to increase speed
is to maximize parallelism between CPU activity and I/0
and overlap I/0 as much as possible. To achieve much
greater speed, some trade—offs have to be made with
regard to flexibility. These trade-offs exact a
certain price. That price is to disallow any
selectivity options such as backup by date or '"copy
this directory but exclude file X." This is the sort
of trade-off I had in mind when I mentioued the story
of the Tortoise and the Hare.

The utility must do its own verification if requested.
This is very highly recommended. When copying between
disks or backing up to disks, the verification is
performed in parallel with data transfer. This is
faster than making a separate pass.

All media supported by the DS990 and Business System
Series products must be supported. This includes non-
error free media, error correcting and bad track
avoidance disks. Many of the newer disk types use
technologies that are very sensitive to disk surface
abnormalities. These disks cannot be guaranteed to be
error-free; therefore, a physical, track-by-track copy
such as DCOPY (which is quite fast) won’t work.

User friendliness - Keep the user informed about what
is Thappening and give informative error messages. As
much as possible the user interface should be through
SCI. If a series of copies or backups (analogous to
multiple runs of DCOPY or CVD) is needed, all
information about the copy or backup should be

+ { x
requested through SCI. This would provide an interface

compatable with the rest of the DX10 or DNOS system.
The wuser should be kept informed of the progress while
the utility is active and receive informative messages
when error conditions are encountered.

5. Single fixed/removable drive systems - The utility must
be wuseable on systems in which there is a single disk
drive, one of whose platters is fixed, e.g. the
CD1400. This implies that the utility must be able to
run without a system disk.

6. System disks created by a copy must be immediately
bootable.

7. One should be able to copy between different kinds of
disks regardless of sector size, ADU size or physical
record length.

8. Disk and file compression should be performed. 1In the
copy process files should be compressed to the end of
used space when possible, secondary allocations should
be minimized, and program files should be compressed.

How are we meeting these goals? We are developing two new
utilities that will compare to the directory utilities(BD, CD,
etc.) in much the same way that the Hare compared to the
Tortoise: They will be much faster and in many ways more
attractive; but keep in mind that they may not be perfect for
every environment. These two new utilities will be released with
the next releases of DX10 and DNOS. They are Copy Volume(CV) and
Backup Directory to Device(BDD). The information I will present
about these two utilities is subject to change because they are
still under development.

4 CV - Copy Volume

Copy Volume copies an entire disk volume to another disk
volume regardless of sector size, physical record size, or any
other disk characteristic. If the source disk has more data on
it than the destination disk is capable of containing, then CV
will copy as much as possible. CV performs optional data
verification in parallel with its other activities. We highly
recommend that you request verification. When copying to a disk
with a different physical record length than the source, you may
request that physical record length conversion take place for
sequential and/or relative record files. This makes much more
efficient use of the destination disk. An optimal physical
record length 1is calculated by CV. CV performs both disk and
file compression on most files. The exceptions are any file that
is created non-expandable, Key Indexed Files, and Program Files.
KIFs are munot compressed at all. Program files are always
compressed to the extent that unused space at the end of the file
is released. '"Holes" created in a program file by previously

-3 -

deleted tasks are recovered in many instances. CV has the
ability to perform a series of copies in much the same way as
DCOPY and CVD. CV, however, requests all of the information
about the copy (or copies) to be performed through SCI. Once the
copy is under way the user with a VDT is kept informed about the
progress of the copy. CV also has the ability to run without a
system disk so that systems with a single fixed/removable drive
can copy data volumes. CV does not support any selectivity
options such as copy by date.

5 BDD - Backup Directory to Device

Backup Directory to Device backs up any one directory and
all of its files and sub-directories to disk or tape. Data
backed up with BDD is restorable with the Resore Directory
ccommand. BDD performs optional verification. When backing up to
a disk(or multiple disks) the verification is performed in
parallel with other activity. When backing up to a tape(or
multiple tapes) the verification takes place on a second pass of
the data. BDD performs the same kind of file compression as CV.
BDD has the same user interface as CV. Like CV it keeps you
informed of its progress. It also has the ability to run without
a system disk. BDD does not support any selectivity options.

6 Technical Overview

In the preceding discussion of CV and BDD much was made of
their speed and lack of flexibility. This technical discussion
of their implementations should give you some insight concerning
those 1issues. Before going into that discussion a little
background is necessary.

Background. As you know the DX10 and DNOS file structure
consists of disk volumes which contain one or more directories.
Each directory may contain zero or more files and zero or more
directories. A directory is really a special case of a relative
record file. Each record is one sector in length and contains a
File Descriptor Record(FDR), Alias Descriptor Record(ADR) or Key
Indexed File Descriptor Record(KDR). For DNOS a Channel
Descriptor Record(CDR) is also possible. The records in a
directory must be contiguous. An FDR contains information about
a particular file or directory. That information includes the
starting disk address of the file or directory, its size and disk
allocation information. For the purpose of this discussion we
will ignore ADRs, KDRs and CDRs since they have little impact on
the algorithm. The following diagram should help to explain this

-4 -

file structure.

Consider the following directory structure:

D1
[
/\
/A
D2 Fl
|
/\
/A
F2 F3

Its directories would look like this:

Dl(directory)

| |

+———t

| FDR|

|for| D2(directory)

|F1 | .

At .

| I | |

| I =t

I | IFDR|

==t |for|

| FDR} |F2 |

|for| e

|D2 |} |FDR|

F———t |for|

| | IF3 |
. +———t

I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
|
| .
I
I
I
!
I
I
I
I
I
!
!
|
|
I
I
I
I
I
I
I

Figure 1 Sample Directory and File Structure

Copy Volume. The implementation of CV is based on the idea that
minimizing the number of FDR accesses can buy a great deal of
speed. Specifically, the CV algorithm reads and writes several
FDRs at one time. This minimizes I/0 operations because FDRs
within a given directory exist contiguously on the disk. cv
keeps the FDRs in an internal buffer and uses the information
contained in the FDR to determine the absolute disk address of
each allocation of a source file. CV then reads the source data
into one of its data buffers. If the entire file will not fit,
it reads as much as possible. If more than one file will fit
then as many files as will fit are read into the buffer. It is
also possible for the last part of one file and the first part of
another file to be in the buffer at any give time. The data is
then written to the destination disk. When all of the FDRs in
the TFDR buffer have been processed, the FDR buffer is written to
the destination disk in an area previously allocated for the
directory that these FDRs belong to. CV uses an internal stack
of directory information to keep its place in the directory
hierarchy.

CV uses five buffers for I/0: Two input, two output and one
verify buffer. Whenever possible, the reading of source data is
done in parallel with the writing to the destination disk of
previoulsy read data. Verification, which consists of a read
from the destination disk into the verify buffer and a comparison
of that data with data in the read buffer takes place in parallel
with other activity.

A1l T1/0 is done using direct disk I/0 which bypasses the
File Manager. This allows the CV program to calculate its own
absolute disk addresses and thereby minimize disk head movement.

It is the heavy parallelism and the ability to copy data
from more than one file at a time that imposes the restrictions
that have been mentioned.

Backup Directory to Device. BDD creates as output sequential
data that can be restored by Restore Directory(RD). In other
words BDD creates the same output that Backup Directory(BD)
creates. ‘

Like CV, BDD copies many FDRs at a time in order to minimze
1/0. Unfortunately, BDD cannot gain as much I/0 parallelism as
CV because its output is sequential in nature. It does, however,
overlap its CPU activity with its I/0 quite heavily.

BDD maintains its place in the source directory hierarchy by
the way it keeps FDRs in the FDR buffer. BDD’s FDR buffer is a
one to 23 level stack (because the longest pathname allowed by
the system 1is 48 characters or 23 nodes) of queues. Each queue

-6 -

entry is an FDR of a given directory. The length of the queues
varies depending on the number of files in a given directory.

BDD builds buffers that contain data formatted for the
output media. Essentialy this is a sequential representation of
the source directory hierarchy and consists of a file’s FDR
followed by the file. Like CV, data from more than one file may
be in the output buffer at any given time.

BDD uses direct disk I/O to read from the source disk. If

the destination device is a disk then direct I/0 is used to write
the output data.

7 Differences between old and new

The following tables describe the

currently supported copy utilities and CV.

differences

between the

Table 1 Speed and Flexibility Comparison of Copy Utilities

slow -- CD ——-- CVD —--- CV ——-- DCOPY -— fast

cv

()

flexible

I
I
I
| inflexible —-- DCOPY-- CVD
!

Table 2 Functional Compariscn of Copy Utilities

CD
Keeps user informed Yes
of progress
Copy sub-directory Yes
or file
Copy to tape No
Copy between different Yes
disk types
Self-Verification No
Requires that system Yes
disk remain installed
Tolerates media errors Yes
Select particular files Yes
to be copied
Performs disk and Yes

file compression

CvD

No

No

No

No

Yes

No

Yes

No

Yes

cv

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

No

No

No

o ————

The following tables

currently supported backup utilities and BDD.

describe

the differences between the

Table 3 Speed and Flexibility Comparison of Backup Utilities

o ———

slow -- BD -

inflexible -- DCOPY ~- BDD

BDD ---- DCOPY — fast

BD

flexible

Table 4 Comparison of Backup Utilities

Keeps user informed
of progress

Backup sub-directory
or file

Backup to multiple disk
or tape volumes

Backup to sequential file

estore to disk with
a sector size
different from
original source

Restore to disk with
same sector size as
original source but
different ADU and
physical record size

Self-verification

Requires that system
disk remain installed

Tolerates media errors

Select particular files
to be backed up

BD

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

BDD

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

Yes

b4
[+)

No

Yes

No

No

No

Performs disk and
file compression

Yes

- 10 -

Yes

No

8 Examples

NOTE

At this point some examples of CV and BDD
will be presented.

- 11 -

NOTES

TI-MIX 1983: OPERATING SYSTEMS PANEL Q&A

The following questions were submitted to TI-MIX 1983 registration forms prior
to March 15. TI has addressed these questions in writing beiow. Additional
questions will be fielded during each panel discussion at TI-MIX 1983.

Submitted by Scott H. Jaffe, Sedata Systems, Inc., Seville, OH:

Would you consider adopting a standard DSR to support TI Personal and/or Home
Computers as local/remote terminals under DX10?

TI Answer: There is an effort under way to support the TI Professional Computer
as a VDT under DX10 via an emulation package written for the Professional
Computer. The home computer should be able to function as a KSR into the TPD
DSR under DX10, but this has not been verified. There are no activities now
under way for Home Computer access to DX10 as a VDT. '

Submitted by David Machanick, Consultant, Dallas TX:

I suggest adding memory file capability to DX10. Fix the "offline" printer
problem so that DX10 does not have to be re-~IPLed to bring the printer back in
service.

TI Answer: It is unclear what you mean by "memory file." Both DX10 and DNOS
provide a mechanism for sending data between tasks (ITC on DX10 and IPC or ITC
on DNOS). On DNOS this mechanism is supported via standard 1/0 calls through
the IPC channel, and in both systems the data is buffered into memory. No
provision is made for creating an entire "file" in memory.

We have fixed all known printer restart problems in both DX10 3.5 and DNOS
1.1. 1If for some reason the printer "hangs" in an unknown hardware state
(perhaps caused by static discharge) it can sometimes be cleared by doing direct
CRU writes to re-enable it. Do an HO on the output device and turn the printer
power off, Wait approximately 30 seconds to allow the capacitors in the printer
to discharge. For serial printers write a hexadecimal value of 4600 to the CRU
address associated with that device and for parallel printers write a
hexadecimal FFFF to the CRU address. Turn the
printer power on, put it online and do an RO command. If this does not work the
interface will probably require an "I/0 reset" which will require an IPL. See a
member of the 0S pamel at TI-MIX to discuss your specific problems.,

[2 e > |

ey Woasmlece s Woawmleeonde Down L cnmomenoe nd wad T Ao
JUWY) LLTU

by M. D. Korkut, Rorkut Bogioeers, Inc., Metairie, LA:
Is there a systems package that will allow a 990 to address more than 64K at one
time?

T1 Answer: The DNOS segmentation support allows memory resident segments to be
exchanged under user control., Large applications have been developed using this
feature. There are no other plans to directly support applications larger than
64K on 990s.

OPERATING SYSTEMS Q&A - PG. 1

Submitted by Bruce E, Murtha, Shepard Steel Co., Hartford, CT:

Can we look forward to an enhancement which would limit the access of a user to
a particular disk drive or a particular directory?

TI Answer: DNOS 1.2 will provide a file access security subsystem. Individual
files may be secured and secure disks will not be accessible on non-secure
systems.

Submitted by Donald McMunn, Nova Systems, Nashville, TN:

When a task is suspended until the completion of I/0 and the device involved
(i.e. tape) encounters a device error (door not shut, etc.), how may the
suspended task be cancelled?

TI Answer: Device errors should be reported back to the task, If there are
specific instances where this is not true, let the Customer Support Line know
about it.

Submitted by Rick Nebel, Southwest Baptist University, Bolivar, MO:

Does TI have plans for new TI hardware and software products in the areas of
multichannel MUXs (7 or 15 channels), new releases in remote terminals for
multidropped and polling networks, and programming and operational aids such as
program and/or report generators, etc.?

TI Answer: There will be three new products announced at TI-MIX 1983 in this
area, The CI-403 four-channel RS-232C multiplexor and the CI-404 four-channel
fiber optic multiplexor join the CI-402 two channel interface to provide
chassis-based Business Systems cost-effective FCC-compliant RS-232C ports. No
effort is now under way for either 7 or 15 channel multiplexors. The 931
terminal will also be announced at this time, providing a remote terminal
capability via its RS-232C interface. This allows comnnection either via modems,
or via third party statistical multiplexor devices. No specific multidrop or
polling products are in our current plans.

Submitted by David Teagarden, Moore Business Forms, Inc., Denton, TX:
When is Query, or will it, have substring manipulation capabilities?

TI Answer: Query already supports the ability to search character (CH) data for
specified substrings. Possible enhancements would be to extend this capability
to the character numeric (CN) and character numeric signed (CS) data types.
Alternatively, a capability to define "edit masks" to insert literal information
into subfields of character fields could be provided.

We have no plans to provide these enhancements at this time, although
sufficient user demand could generate some.

OPERATING SYSTEMS Q&A - PG, 2

Submitted by Alexander Gelbman, Coulter Electronics, Hialeah, FL:
How long will you continue to expand and enhance DX10?

TI Answer: We will continue to support DXI10 as long as customers continue to
enthusiastically purchase 990 systems. Since DX10 is a very mature product, it
is difficult to make major expansions or enhancements without changing the
internal design. The DNOS operating system was implemented to allow us to
redesign the internals of our 990 operating system and make major enhancements
without perturbing the extensive base of DX10 customers who like DX10 just the
way it is., Each system provides some unique attributes and the customer must
pick the one which best suits his needs.

Submitted by Robert J. Mateer, Los Angeles City Schools, lLos Angeles, CA:

Error messages are often misleading. Many hours spent chasing up wrong trees.
What is being done to improve messages?

TI Answer: You may write STRs against documentation as well as software.
Document specific error messages which are misleading and submit an STR against
that message. If you have suggestions as to how the message can be improved, be
sure to include them.

Submitted by Darris Chivers, Automated Services, Salt Lake City, DT:

Will we be able to, at sysgen, specify the size wanted for the synonym table
area and keyword area? Could we have "TAGS" or "LABELS" within a proc so we
could start at a certain place like on a restart,

TI Answer: DNOS supports a much larger synonym area than DX10. The fixed size
synonym space 1s an integral part of the design of DX10 SCI and would be very
difficult to change. A restart capability for batch streams has been considered
before, and this too, would be a very extensive change to SCI which we currently
do not plan to do.

TI Answer: The TPD DSR provides KSR support for a wide range of keyboard
devices (743/5, 78X, 820). We have not experienced any problems with accepting
data from the keyboard of such devices. The TPD DSR also provides ASR support
for the 763/5 family. As such, it takes the necessary steps to accept data from
the bubble memory. Without specific information about the system configuration
and devices, we cannot determine the problem stated here. By sysgening a large
enough character queue, we have been able to overcome any problems suppporting

OPERATING SYSTEMS Q&A - PG. 3

TI devices. We will investigate what would be necessary to add general purpose
X-on/X=off support.

Submitted by Vickie Staples, Prodata Computer Marketing, Seattle, WA:

What is the maximum baud rate at any given time for remote terminals on an 5372
(e.g., 110 has 9600 max and 112 has 1920 max)? How soon before S$300s are a 7
terminal system?

TI Answer: The intent of this question is not quite clear. The S300 using the
TI-provided DSRs can currently support three terminals, each of which is running
at 9600 baud. The CI-422 four channel option board will be available in late
2Q83 to provide an additional four ports, for a total of seven. The RS-232C
ports on the S300 should not be clocked in excess of 9600 baud each. We have
tested a seven terminal S300 configuration, and found no problems. We are
currently pursuing tests of six terminals (at 9600) with 3780, and with
3270/1ICS. Our intent is to identify and fix any problems which we may find in
DX10 3.6 User written DSRs may not follow the conventions as TI does, thus this
answer does not apply to such environments.

Submitted by L. Allan Butler, Associated Medical Devices, Inc., Denver, CO:
Will AMPL be supported under DNOS? If so, when?

TI Answer: AMPL will not be supported under DNOS.

Submitted by Gordon Alley, Antomatic Control Electromics Co., San Antonio, TX:

Are there any DNOS/M systems running? Will networking systems support DNOS/M
for booting, remote file access, etc.?

TI Answer: There are no DNOS/M systems running, and DNOS/M will not be
supported in the future,

Submitted by Stephen D. Jungersen, Data Concepts, Inc., Morton Grove, IL:
Are there any plans for a 32-bit and/or multiprocessing system in the works?

TI Answer: We are planning an advanced architecture product which will have
an addressing capability greater than 16 bits. We have no plans to develop
close-coupled multiprocessing but continue to see Local Area Networks as the key
to a distributed processing strategy.

OPERATING SYSTEMS Q&A - PG. 4

Submitted by Santiago Montejo, Hidroestudios, Bogota, Columbia, S.A.:

We have problems estimating CPU time.

this problem?

TI Answer:
during execution.

Is there any utility to help us solve

The DNOS accounting file records exact CPU times used by tasks

The SMM display on DX10 and the XPD display on DNOS give CPU

utilization figures which can be used in stand-alone environments to compute

actual CPU times.

Come and see an appropriate member of the 0S panel at TI-MIX

to discuss your specific situation to see if other tools may be available.

Submitted by William J. Callahan, Service Engineering, Inc., Dracut, MA:

Are there any plans to migrate UNIX to TI equipment?

TI Answer: We have no plans to migrate UNIX to 990-based systems.
aware of the pervasiveness of UNIX in the marketplace and will certainly

evaluate the possibility of offering it on future products.,

Submitted by Victor M. Louden, General Electric Supply Co., Bridgeport, CN:

When will TI allow two (or more) processors to work together?

TI Answer: See the above answer to Stephen Jungersen’s question,

Submitted by Fred W. Powell, Powell and Associates, Staunton, VA:

In the following list of questions and comments for the Operating Systems
Question and Answer session, any comment is to be taken to mean "can it be
done, and when will it be scheduled for implementation?" All questions and

comments pertain to DX10.

(* Questions are new ones; other questions are repeats, with possible
rewording from previous discussions. The repeats are included to indicate that
they are still applicable, and to get a status report on those which were to be
included in future releases.)

l. Positive Comments
*1. Many of the items discussed at TI-MIX 1982 and in this session in
particular, have found their way into future releases. This fact has
gone unnoticed and is certainly appreciated, "Keep up the good work."
(Maybe we can even do it faster).
*2, The revised manuals for 3.5 show a great improvement.
2. Regarding KIF files and record locking:

a. The delete operation should require that the record be locked by the
task performing the delete, just as in a write operation. This
would prevent two tasks from attempting to delete the same record.

OPERATING SYSTEMS Q&A - PG. 5

b. Problems arise when two tasks attempt to insert records with the
same key at the same time (after already determining that the record
was not there). This could be avoided if there existed an op code to
"read and insert if not found."

c. How do you protect the currency in one task when another task deletes
the record which is pointed to by the currency block of the first
task? This should not be left for the user to worry about.

d. How do you define keys which are made up of noncontiguous fields? It
is wasteful of storage and just plain annoying to have to create dupli-
cate fields just to construct the necessary keys.

*a, Why is it necessary that the primary key always be non-modifiable when
using sequential placement? Many times this is a real nuisance.

TI Answers:

2a., This request is currently in our backlog of design requests.
We can currently make no commitment as to when resources will be
available to implement the changes required.

2b. The desired result can be accomplished by defining the key
as "no duplicates allowed" and then just using INSERT. If this
is not a valid solution for your specific situation, see an
appropriate member of the 0S panel at TI-MIX in order to clarify
the exact problem.

2c. This is in our backlog of design requests, but it is a very
difficult problem to fix. The currency information would have to
be maintained in system space instead of task space, All tasks
which maintain their own currency would be adversely affected.

2d. Our original KIF requirements have their roots in support of
ANSI standard COBOL., COBOL only allows one data field for a key
definition which precludes accessing a key of non-contiguous
fields. We currently have no plans to modify KIF to add this
feature since it would be a major change to the KIF internal
logic.

2e. The COBOL ANSI standard asserts that the primary key on an
indexed file will be non-modifiable.

3. Regarding task edit keys and text editing:

a. It is often desirable to duplicate the following line as well as the
preceeding line (in a proc or in a text edit). Control 1 could be
used for this,

b. A Dup function which dups one character at a time would be very useful.
This could be used with the repeat key to dup only the desired part of
the line. (Control 2).

c. The other function which is needed is to position the cursor at the end

OPERATING SYSTEMS Q&A - PG. 6

*d.

*e,

*f,

of the current line (last nonblank plus 1). This could be done with
Control 4.

Find string, replace string, and delete string should (*optionally) use
line numbers (starting and ending), (*) in addition to the number of
occurences, to control its range of application. '

Replace string (* or maybe a new command called add string) should have
the ability to insert a string at a specified position in the line.

A new function is needed that can "grab" a part of a line, and put it
somewhere else.

TI Answers:

3a. This request is currently entered in our design backlog and
will be considered as funding and resources permit.,

3b. This request is currently entered in our design backlog and
will be considered as funding and resources permit.

3c. This request is currently entered in our design backlog and
will be considered as funding and resources permit.

3d. This request is currently entered in our design backlog. If
TAB settings are set appropriately the user should be able to tab
very close to the desired position with very few keystrokes.

3e. This is feature which is wusually found in block-oriented

editors as opposed to a line oriented editor such as the one we
support. It would require a significant amount of change to the
existing editor to provide this feature.

3f. See 3e.

4. Regarding the SCI:

ae.

b.

C.

The ability to access two proc libraries was an invaluable enhancement,
but two is not enough. We need at least three, and probably four.
(Three allows the following breakdown: application, installation,
system),

The protection of primitives (via .OPTION) was also a valuable enhance-
ment. This needs to be complemented by an option which restricts the
direct user execution of proes to the first proc library, thus preven-
ting direct use of those in the second {and third and fourth) liibra-
ries. Under this option, proc in the second {and greater) libraries
would be accessible only from procs in the first library.

In general, there are two attributes for any output file which should
be incorporated into all appropriate procs. These are '"file status"
and "open mode". "File status" has these values: BLANK = don’t care
or unknown, OLD = file must already exist, and NEW = file must not

already exist. Note that REPLACE = NO means NEW, but there is no way

OPERATING SYSTEMS Q&A - PG. 7

to specify OLD. "Open mode" has these values: OPEN, OPEN REWIND, AND
OPEN EXTEND. For consistency, all procs which generate output should
allow these options. This includes SVL, XB, LD, SVS, etc., just to
name a few,

*d, The proc language should allow "else if" as a control structure.

*e, The proc language should allow logical operators (and, or, not) in ex-
pressions on if (and else if) statements.

*f, A task should be able to send a message to a station, similar to the CM
command? (*)

*g, When an error occurs in a proc (while testing a new proc), it is diffi-
cult to know where you are, what parameter is missing, etc. Better
diagnostics are needed.

h. An HBT command to halt the background task would be useful.

*i, Keyword table overflow is a frequent problem. Can the table be made
any larger?

*j. A proc can cause an overflow of the TCA parameter table without genera-
ting an error. Can that be checked and an error produced?

*k., SVC service errors (that really are not errors, e.g. file not found by
delete operation) can be annoying to an end user. Could something be
done to optiomally turn off the display of such error messages.

*]. It is often the case that you wish to return to the proc library(s) and
menu from which you came (via .USE and .OPTION), but you have no way of
knowing that state in all cases. The best solution would be for
SCI to automatically stack (and allow the user to unstack) these
states. Alternately, (but not as desirable), would be a mechanism to
set a synonym with value equal to the current proc and menu state.

TI Answers:

4a. DX10 3.6 and DNOS 1.2 will both allow a maximum of 5 PROC
libraries.

4b. With DNOS File Security it will be possible to secure
certain procedures to specific access groups. We currently do
not have any plans to add the specific feature you request to
DX10 or DNOS SCI since it would require major intermal changes.

4c. The (EXTEND,ADD,REPLACE) options are a part of SVL. We will
evaluate other commands of this type as resources permit.

4d., We agree but currently do not have resources to implement
this feature. This is in our design backlog.

be, We agree but currently do not have resources to implement
this feature. This is in our design backlog.

OPERATING SYSTEMS Q&A - PG. 8

4f. In DNOS it is possible to send a message to the "operator"
from a task but we have no plans to implement a general message
capability from tasks.

4g. In DNOS SCI the 1line number in which an error occurs is
given as part of the error nessage,

4h. This can be accomplished with an STS command and the HT
command .

4i. In DX10 the synonym table cannot easily be made any larger
and we currently have no plans to make changes in this area. In
DNOS the table is 12288 bytes long compared to 864 for DX10.

4j. We need to know the specific instance of overflow you are
referring to. Either see a member of the 0S panel at TI-MIX
or submit an STR exactly describing the situation.

4k. This is not easily done on DX10 since each processor task
for the separate commands controls the displaying of the errors.
We will enter this as a design request and investigate a more
general solution to the problem.

41. This would be another ma jor change to SCI and we currently
have no plans to implement this feature. On DNOS 1.2 the current
set of PROC libraries is stored in a well known synonym ($$CL)
and thus the user can save and restore the procedure 1libraries
using the .SYN primitive.

5. Directory and Volume Utilities

a. Either LD or MD (short form) should include the record length as part
of the listing.

b. MD needs the following changes/additions: "Top Level Only" should be
"Number of Levels"; "Directory Nodes Only" should be "List Types'" with
values S,R,K,D,P,I,A. These are obviously file types, i.e. D = Direc-
tory nodes only, and A = All.)

c. The control files for CD, BD, etc. would be much more useful if the
names in an INCLUDE or EXCLUDE statement could be a pattern (as well as
a specific name). Thus EXCLUDE Ss would mean that all names
beginning with S$ were to be excluded, and INCLUDE TEST would mean
that all names ending with TEST were to be included. (*) Range values
would also be useful, i,e. INCLUDE A :M means all files with
names that begin with A through M. (How do you copy half of a direc-

d
tory to another directory? Alsc, it would be useful if DD and MD
allowed the use of control files.

*d, Why does CD not convert physical record lengths for KIF files?

*e. Is it intended that VC terminates on the first >0011 error rather than
indicating the error and continuing with the next file?

OPERATING SYSTEMS QA - PG. 9

*f, It is confusing as to how MVI uses a control file, and how the synonym
"$4DSCS" gets set. Also, it would be useful if another disk could be
specified within MVI without having to Quit and then invoke it again.

*g, Scan Disk (SD) will allow its output to be sent to a device, (only a
‘ file), and it opens the file with exclusive access making it impossible
to view while the task is executing. Also, what will auto-correct do
(and not do)?

T1I Answers:

SA. The MD command of a given file can be used to obtain the
logical record length of that file. OQur experience has shown
that if we change the output of a particular utility we break
utilities written to accept that file as input and are requested
to put it back the way it was. For instance, the May issue
of MIX-TIPS will contain a number of instances requiring MD
output to remain comnstant,

Sb. This 1is in our current design request backlog and will be
considered as time and resources permit,

5¢. We currently have no plans to implement this feature in our
backup utilities. The wutilities were not designed with these
features in mind and adding these features would force us to
essentially rewrite major portions of the logic.

5d. The internal structures of KIF files are based on physical
record length., The directory utilities do not understand the
internal structures of KIF files and make no attempt to do
physical record level conversion. The CKR utility may be used to
copy one KIF file into another pre-created KIF file with a
different physical record length.

Se. VC should continue after errors rather than stopping on the
first error. Have you submitted an STR on this problem? We will
investigate it.

5f, MVI uses a control file as if it is reading from a TIY
device interactively. Each input must be on a separate line of
the file. We do not understand the context of your question
concerning the synonym $$DSC$. Please see an appropriate member
of the 0S panel and ask your question to them. We will enter
your request to change the disk name dynamically into the design
data base and consider it for future releases.

5g. SD has been updated in DX10 3.6 and DNOS 1.2, It will run
in foreground and has the option of displaying its search
progression as it runs. The SD utility is written in FORTRAN
which opens input and output files with exclusive use which
precludes looking at a file from another station. The new code
will allow output to a device on both DX10 and DNOS.

OPERATING SYSTEMS Q&A - PG. 10

6.

Tasks and Lunos

aoe

b.

In CPI, it is desirable to replace a task by name without having to
know its installed 1ID.

If procedures could be made station local (optiomally), then a family
of cooperating tasks could share data through a dirty procedure. This
is impossible now since all procedures are global.

c. XT needs the option DISP = NO, as in AL and AGL.

*#d, The station number should be a parameter (with default "me") when
assigning a station local luno., This is needed when a task is initia-
ted at one station but is associated with another. The release opera-
tion should be handled similarly, including RAL,

*e, How can a task spawn another task and continue execution, and at some
point, suspend itself pending completion of the spawned task? What is
needed is a suspend SVC which is conditional on the completion of a
specified task, i.e. the parent task should be able to place itself in
a state >17 pending completion of the specified task.

*f, Why can’t a task or station local luno be associated with phantom sta-~
tion, i.e, a station which was not specified in the sysgen? Giving an
error for the sake of giving an error is not to be considered just
cause,

*g, 1t would be very useful to have a new "kill task" command {(or option on
the current one), that "kills" all tasks associated with the specified
station,

T1 Answers:

6a. We agree this 1is a desirable feature and will attempt to
implement it if funding and resources are available, This 1is
already in our design request backlog.

6b. This 1is 1in our design request backlog. It is possible to
communicate with all tasks associated with a particular station
if the station ID is stored as part of the message in the dirty
procedure.

6c. This problem will be fixed on DNOS 1.2 since it is merely a
change to the proc but will not be fixed in DX10 3.6 since
development is source frozen already.

A4 TF

a #aagl 1 a
Vi e e < Oal\

a
GC

CL

it +rh
I

- A ofoa
WLE-I. < 5& <

C)

o
D\.

)
2]

=]
D

(/7]
. rf
[+
5ot
pes
[

bid from a different cne) and issues a statio ocal Assign Luno
SVC, the luno will be associated with the station the task is
currently associated with, That is, if the "station local™ bits
are set in the SVC call block the feature should already exist as
you have requested, If this is not true see an appropriate
member of the OS panel at TI-MIX and let’s discuss the
exact situation,.

OPERATING SYSTEMS Q&A - PG. 11

6e. This feature as described would require some major changes
in the DX10 kernel, and we currently do not anticipate making
this change. The feature you desire can be accomplished by
recording the ID of the spawned task after doing a normal bid
task then periodically doing Poll Task Status calls on that task
until it is determined that the spawned task has terminated.
Incidentally, the DNOS semaphore mechanism provides this feature
if you are interested.

6f. Most users want to know if a LUNO has been assigned to a
non-existent device, Errors are given because it is assumed if
the user is assigning a LUNO to a device he expects the device to
be there not "just to give an error for the sake of giving an
error."” The system has no way of determining whether a
user expected that device to actually exist or not. The only
devices known to the system are those included during a SYSGEN.

6g. This is not a feature we have a great number of requests for
but will consider it. The DNOS job structure provides a Kill Job
command which kills all tasks under that job,

7. Print Utilities

*a, The "page eject" if PF and CC should be a parameter for both before
and after printing, so that each user can tailor it to suit his needs.

b. PF should also have parameter to allow a halt between pages, (*) as
well as a restart at specified line or page capability.

TI Answers:

7a. The current method we have chosen for page ejects
protects the unsophisticated user from printing on the last page
of a previously printed file as well as handling embedded ANSI
carriage control correctly. We will counsider this feature as
time and resources permit, and it 1is currently in our
design backlog.

7b. This capability exists in the DNOS spooler but we currently
have no plans to incorporate this feature into DX10 PF.

8. Link Editor

a. The link edit control file should allow a copy command to include fre-
quently used command sequences, or for example, the INCLUDEs for a
shared procedure., It should also allow a substitute command to sub-
stitute one external reference name for another.

TI Answer: A COPY command is an idea we have considered in the past, but have
not had the resources to do as of yet, We will continue to comnsider
this capability. We would like to know more about the SUBSTITUTE
command since we have not had many requests for such a feature.

OPERATING SYSTEMS Q&A - PG. 12

*#9, Communications

*a. The TPD DSR has capabilities that are not directly user accessible,
e.g. parity options, the end-of-record character, etc. These options
should be settable in the system, and modifiable by MHPC or equivalent.
Additionally, some option should be provided such that the DSR does not
attempt to interpret any characters received, such as a DC3 (>13).

This could be done using a special terminal type, or by specifying no
terminal type.

TI Answer: It appears that some people are trying to utilize the TPD DSR
(teleprinter DSR) for third-party devices and "home-brew"
protocols., While this is possible in many cases, the list
of exceptions would quickly get larger than the rules if we
tried to add every feature necessary for a completely general
purpose DSR. We are making some changes for DX10 3.6 in the
area of 8-bit data support that may address Fred’s desire for
not interpreting certain characters. We may be able to better
document some of the facilities that are present to make them
"user accessible”, and will investigate doing this.

*10. Sysgen

*a, Prior to release 3.5, sysgen showed the current values of device para-
meters when in change mode for that device, and used those values as
defaults, That was a useful feature which seems to have disappeared.

TI Answer: The XGEN utility was totally rewritten in Pascal between 3.4 and
3.5. Even though the default feature disappeared, the user was
given the ability to show, print, and text edit (with care) the
configuration file which we feel offsets the lack of displaying
defaults in "change" mode. We will investigate what it would
take to add that feature back,

*11. Miscellaneous

*a. We always seem to have a significant increase in system crashes (>20,
>27, >A0) following a new 0S release. This slowly returns to normal
after several patch updates., Why does this happen?

TI Answers: We spend a great deal of time testing our newly released
software, but the number of hardware configurations, software
packages, and timing problems to be handled by an operating
system are enormous. We cannot create every possible configur-
ation and test every software package against it, We do test
thoroughly against representative configurations, but many
times problems are not found until a particular situation is
created by a customer. As these problems are reported, they
are patched in a patch release, and the system becomes more
stable over time.

OPERATING SYSTEMS Q&A - PG. 13

¢
&

\NSTRU/;,

S%.

S COMPO

Iy
3

9 SY3sN

TI-MIX O*b
L @ »

	001
	002
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	Q&A_01
	Q&A_02
	Q&A_03
	Q&A_04
	Q&A_05
	Q&A_06
	Q&A_07
	Q&A_08
	Q&A_09
	Q&A_10
	Q&A_11
	Q&A_12
	Q&A_13
	xBack

