
SPECIAL REPORT ON MICROPROCESSORS/MICROCOMPUTERS PART II 

BUS STRUCTURE EASES 
MUL TIPROCESSOR 
INTEGRATION 
Use of a 32-bit NuBus in memory-mapped 1/ 0 and interrupt 
operations aids system configuration. 

by George P. White 
Where system integrators once needed to carefully 
account for processor cycles, the availability of low 
cost, high performance microprocessors is fostering 
a new approach to system design. Now, auxiliary 
processors handle cycle-hungry support functions 
such as graphics or numerical processing, thus free­
ing the CPU to direct its power directly to the user's 
application. Yet, because conventional architectures 
wrap system resources such as memory and I/O 
hardware tightly around a CPU core, traditional 
architectures still do not provide a sufficiently flex­
ible framework for exploiting the cost and perfor­
mance advantages of multiprocessor designs. 

Originally developed at the Massachusetts Insti­
tute of Technology specifically for multiprocessor 
architectures, Texas Instruments' 32-bit NuBus pro­
vides system integrators with system architecture 
independence, high bandwidth, easy system configu­
ration, a simple protocol, and small pin count. In 
fact, because the NuBus maintains a simple protocol 
for all bus operations, 49 signal lines are sufficient 
to handle all transactions for up to 16 different 
devices in the 4-Gbyte address space of the buses. 

George P. White is manager of Nu Machine 
development at Texas Instruments, 17881 Cartwright 
Rd, Irvine, CA 92714. He holds a BS in electrical 
engineering from the Massachusetts Institute of 
Technology. 

The NuBus accomplishes this feat by supporting 
only read/ write transactions. Unlike conventional 
bus structures, which require separate signals for 
memory access, interrupts, and I/O operations, the 
NuBus includes all these operations under its um­
brella of read/ write transactions. I/O and interrupt 
operations are mapped into the address space and 
handled just as accesses to system memory. 

Furthermore, by laying system resources within 
this 4-Gbyte memory address space, the NuBus de­
couples the logical function of system resources from 
the physical implementation of system hardware. In­
stead of altering hardware switches and jumpers, en­
gineers can reconfigure systems simply by changing 
variables in the NuBus address space. Consequently, 
without disturbing the logical architecture, system 
integrators are free to modify a system's physical 
framework to achieve the required balance between 
system cost and performance. 

COMPUTER DESIGN/June 15, 1984 1 29 



MASTER SLAVE MASTER SLAVE 
1------- - -11---- --1 1- - - - - ---I 1- -- - - --, 

II I MOOULE I I I MODULE J I I l MOOULE I I l MODULE J I 
SPECifiC I I SPECifiC I I SPECifiC I I SPECIFIC I 

1 I II r II I II 1 II 
I . I I ;:. I I t I 
I ~I 8US I I I -I 8US I I I --I 8US J I I -t 8US J I n ARBITRATION CONTROL I I CONTROL I I ; - I ARBITRATION CONTROL I I CONTROL I 

: + ~ I I < I I ~ ~< :I .. : 
I L--- I: - :: L-- 1- 11 r- I 
L _ ___ ___ _ -.J L~ _ __ __ ...JL ___ _ ____ JL r--- __ _ J 

.----., 
I CLOCK I 

ORIGINATION I 

I SLOT 10 I I SLOT 10 I I SLOT 10 I l SLOT 10 J 

(\r------i 
NU8US 

t----'-----' CLOCK 

DATA. CO NTROL 
ANO PARITY 

<\r-------- --- - ------- - ------- - - --,;) ARBITRATION 

Fig 1 Identified by a unique value wired into the backplane, each module capable of participating in the 
arbitration mechanism is free to serve as either bus master or slave in the NuBus. A lO-MHz system clock 
synchronizes this 32-bit multiplexed bus to provide up to a 37.5-Mbyte/ s transfer rate in block mode. 

Accommodating 110 and interrupt operations 
within this framework provides good mapping be­
tween bus operations and the structures in memory, 
which can be manipulated by high level programming 
languages. By uniformly dealing with all resources 
in the address space, even a high level language such 
as Fortran can affect 110 and interrupt operations 
just by transferring a 32-bit number to some speci­
fied memory location. 

Classification 

Utility 

Control 

Addressdata 

Arbitration 

Parity 

Slot ID 

Powerground 

Reserved 

TABLE 1 

NuBus Bus Definitions 

Signal 

RESrr 
CD< 
START 
ACK 
TMO 
TM1 

AD < 31 .. 0 > 

ARB < 3 .. 0 > 
I1ITST 

SP 
SPV 

ID < 3 .. 0> 
Total signals 

+ 5 
- 5 
+ 12 
- 12 
GND 

RSVTI 

Total pin count 
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No . of Pins 

32 

4 
1 

1 
1 

4 

= 49 

11 
8 
2 
2 

23 

1 

=96 

Furthermore, uniform memory of the NuBus 
model aids device access to memory at a lower level. 
The small address space supported in earlier bus 
structures (eg, Multibus) could force programmers 
to deal differently with memory, depending on the 
source of the memory reference. For example, a 
CPU would access its onboard local memory with 
one set of addresses, while references to the same 
memory originating from other boards would need 
to incorporate an offset into that set of memory. 
With its single memory map, the NuBus permits any 
device to access any memory-even that local to a 
particular board-with a consistent set of addresses . 

Simple structure 
Driven by a central system clock, the NuBus is 

a synchronized bus that provides designers with a 
framework free from the specific control structure 
of a particular microprocessor. In fact, the NuBus 
specification imposes few constraints on system 
design-any module that can arbitrate for the Nu­
Bus can potentially serve as bus master (Fig 1). 

No particular slot position is defined as the bus 
master. Instead, each slot has an identification hard­
wired into the backplane. Consequently, boards can 
be differentiated without the need for jumpers or 
switches. Besides the signals shown in Fig I , the only 
other signals required by the NuBus are reset and 
power (Table 1). Although adopting a triple-height 
Eurocard form, the NuBus specifies use of only a 
single 96-pin connector and uses only 49 of those 
for signals-relegating the rest as extra power and 
ground lines. 



To the system integrator, this low pin count 
benefits both present and future designs. Having 
fewer interconnection pins in current designs trans­
lates into more mechanically reliable systems. On 
the other hand, future systems can easily migrate to 
designs using VLSI bus interface chips, which de­
mand low pin count for low cost designs. 

With its lO-MHz cycle, the NuBus supports a 
37.5-Mbyte/ s block transfer rate across 32 mul­
tiplexed address and data lines. Although optimized 
for 32-bit transfers, the NuBus also supports unjusti­
fied 8-bit byte and 16-bit half-word transactions . In 
contrast, a justified bus like Multibus II always 
places 16-bit data in the least significant 16 lines, 
even if the address specifies data in a more signifi­
cant position in a word. 

A justified bus structure permits designers to 
attach 8- or 16-bit interfaces to a common set of 
lines, but at the cost of a more complex bus struc­
ture. Moreover, the NuBus's unjustified structure 
results in a simpler organization at the small cost 
of a few more transceivers. 

Bus transactions 
Each lOO-ns NuBus cycle ensures that signals settle 

along the NuBus before receivers latch in the values 
(Fig 2). With the rising edge of the cycle, drivers as­
sert (low) or deassert (high) signals on NuBus lines. 
After signals settle during the 75-ns (unasserted) por­
tion of the bus cycle, receivers sample the signals 
on the falling edge of the clock signal. The 25-ns 
(asserted) portion of the signal helps avoid skew in 
bus signals. 

All basic NuBus signals require a clock cycle. In 
addition, various NuBus signals combine to form 
higher level transactions, like those for read/ write 
operations. In fact, the NuBus permits these trans­
actions to be a variable number of clock cycles long. 
Consequently, although it is a synchronous bus con­
trolled by a central system clock, the NuBus provides 
the adaptability of an asynchronous bus without 
losing the design simplicity of a synchronous bus. 

All NuBus transactions involve a dialogue between 
a d~vice requesting service (master) and a device 
providing service (slave). Unlike traditional systems 
where a bus slave is a device incapable of indepen­
dent action, the NuBus master/ slave concept simply 
describes the temporary relationship between two 
NuBus modules during a particular bus transaction. 
In fact, provided that it can arbitrate for the NuBus, 
any module can serve equally well as slave or master 
in the NuBus protocol. 

In the NuBus, a transaction commences with a 
START signal from a bus master and terminates with 
an acknowledge (ACK) signal from a slave. In 
parallel with toggling the START signal, the master 
notifies the slave of the type of transaction by manip­
ulating transfer mode (TM) and the lower 2 bits of 
the AD lines. Thus, with these four control signals, 
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Fig 2 Each NuBus clock cycle lasts 100 ns. During the 
rising edge, devices place signals on the NuBus. After 
allowing 75 ns for these signals to settle, receivers latch in 
data during the falling edge of the clock signal. A 25-ns 
sample period helps avoid bus skew problems. 

the master can initiate read/ write transactions in­
volving bytes, half-words, or words (Table 2). 

Transactions across the multiplexed NuBus in­
clude separate phases for address and data. For ex­
ample, in the initial phase of a read transaction, a 
bus master such as a CPU sets the address lines, 
asserts the TM control signals to indicate the type 
of transaction, and toggles the START line (Fig 3). 
When it has prepared its response, the slave replies 
in the latter phase of the transaction by placing the 
data on the AD lines, indicting the status of its 
response on the TM lines, and asserting ACK. 

On the other hand, in a write operation, the bus 
master first places the address on the AD lines and 
toggles the TM and START control lines. In the next 
cycle, the bus master places the data to be written 
on the AD lines and waits. After it has latched the 
data, the addressed slave acknowledges and indicates 
the status of the completed transaction by setting 
the TM lines. 

TABLE 2 

Read/Write Transactions 

TM 1 TMO AD1 ADO T~~e of Cycle 

low low low low write byte 3 

low low low high write byte 2 

low low high low write byte 1 

low low high high write byte a 
low high low low write half-word 1 

low high low high write, block 

low high high low write half-word a 
low high high high write word 

high low low low read byte 3 

high low low high read byte 2 

high low high low read byte 1 

high low high high read byte a 
high high low low read half-word 1 

high high low high read , block 

high high high low read half-word a 
high high high high read word 
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Fig 3 During a NuBus read transaction, a bus master 
places the address of the desired data on the bus, identifies 
the transfer mode (TM), and toggles the START line. When 
the addressed slave is ready to respond, it places the data 
on the address/ data lines, indicates the status, and toggles 
the acknowledge (ACK) line. 

Just as the AD lines double for address and data, 
the TM lines indicate transaction type during the ad­
dress phase and the status of the result during the 
data phase. Of the four possible result codes, two 
results-bus transfer complete and error-correspond 
to positive and negative ACK codes commonly 
found in bus architectures. 

Similarly, the third result code-bus timeout 
errors-is a signal used to guard against transactions 
targeted for nonexistent memory locations. For ex­
ample, a NuBus master might initiate a transaction 
into the area of memory occupied by a certain mod­
ule and receive a bus timeout code (from a separate 
logic). This indicates that the required module has 
been functionally removed from the NuBus. 

The fourth result code-try-again-Iater-is a 
unique signal that should find a major role in multi­
processor systems. Logically indicating a result fall­
ing between error and success, the try-again-Iater 
code indicates that the master should simply defer 
the transaction to a later time, rather than jump into 
extensive exception-handling routines. This signal 
can find extensive applications in situations where 
a device serves more than one master. In dual-ported 
memory, for example, when a master finds an ac­
cess blocked because of contention with another 
device using the memory, the master can sit on the 
bus-preventing its use by other potential bus 
masters-or release the bus and try again later. The 
NuBus try-again-Iater signal provides a mechanism 
to implement the latter, more efficient method. 

Besides potentially improving bus throughput in 
multiprocessor systems, the try-again-Iater signal fills 
a critical need in avoiding deadlock in these systems. 
For example, in the Nu Machine, a separate 
8088-based module acts as a converter between the 
NuBus and the Multibus (see Panel, "The key role 
of the diagnostic unit"). But, the use of such a con­
verter can easily result in deadlock if the converter 
tries to access the NuBus at the same time that a 
NuBus module tries to access the converter. When 

1 32 CO MPUTER DESIGN/June 15, 19B4 

this happens, both the converter and the NuBus 
master may find themselves deadlocked waiting for 
access to the other. The converter, however, relieves 
the potential deadlock by simply transmitting a try­
again-later signal to the NuBus master and complet­
ing its own operation. 

In addition to its role in boosting bus efficiency 
and mediating deadlock possibilities, the try-again­
later signal can be used as a prefetch signal to slow 
devices. Moreover, in a bus converter to some slow 
bus, (rather than holding up a high speed bus like 
the NuBus), a converter can transmit a try-again­
later signal to free the high speed bus and simultane­
ously access the information from the slower bus. In 
this way, the converter has the desired data available 
immediately upon the original requester's return. 

Block transfers 
Besides simple read / write transactions, the NuBus 

also supports block-mode transfers. Although some 
bus protocols such as Multibus II permit block­
mode transfers of any length, the NuBus supports 
transfers only of smaller blocks-2, 4, 8, and 16 
words. More compact block transfers of this sort 

The key role of the diagnostic unit 

Designed specifically for multiprocessor architectures, 
the NuBus already stars as central performer in Texas 
Instruments ' Nu Machine . Equipped with a 6BOOO­
based CPU , the Nu Machine is designed to be indepen­
dent of any particular CPU. Although such a processor­
independent architecture provides system integrators 
with a flexible framework for crafting their own sys­
tems, it also demands an alternate approach for ensur­
ing basic system operation in the absence of any 
particular CPU. 

Filling this maintenance role as well as illustrating 
the use of the NuBus in a simple multi -cpu design, is 
the Nu Machine's system diagnostic unit (sou) . This 
unit is a separate BOBB-based module with onboard 
memory , serial I/O for console communications , and 
maintenance and diagnostic test stored in onboard 
ROM . When the system is powered up , the sou tests 
the NuBus through a series of bus transfers , identi ­
fies all boards in the system , initiates self-test routines 
associated with each board in the system, and sig­
nals the operator . 

In addition to this maintenance work , the SOU be­
comes another potential master on the NuBus, act­
ing as a converter between the NuBus and Multibus , 
once the system's integrity is ensured. In normal oper­
ation , the NuBus and Multibus system can operate 
independently . The Multibus appears as a l -Mbyte 
window within the sou ' s address space. 

When a NuBus master addresses a memory location 
falling in this Multibus window , hardware-mapping logic 
converts the NuBus access into a Multibus reference 
without intervention of the BOBB CPU at bus speeds . 
On the other side of the window, the converter moni ­
tors each Multibus cycle for references to addresses 
which are mapped to NuBus . When a conversion is 
required, the SOU uses a Multi-to-NuBus page map to 
construct references to the NuBus address space. 



TABLE 3 

Block length and Destination Address 

AD5 

don't care 

don't care 

don't care 

high 

AD4 

don ' t care 

don ' t care 

high 

low 

AD3 

don't care 

high 

low 

low 

AD2 

high 

low 

low 

low 

conform more closely to the fundamental concept 
that a bus is a data-transfer highway freely available 
to any potential bus master . Furthermore, transfer­
ring arbitrarily long blocks requires a mechanism to 
suspend, or preempt, the transfer. This results in a 
more complex structure. 

In addition, unlike other protocols, the master 
warns the slave that it is going to transfer a block 
and supplies the transfer length at the beginning of 
the operation. Supplying this information at the 
beginning opens the possibility for higher perfor­
mance response. For example, if it is supplied with 
the size of the transfer beforehand, a slave has the 
opportunity to speed the transfer by prefetching the 
requested data from its storage. 

By setting address bits AD2 to AD5, the bus master 
indicates the length of the block in the first phase 
of the transaction, as well as the destination address 
of the block (Table 3). In subsequent phases of the 
transaction, the bus master transmits (in block write) 
or receives (in block read) successive words from 
memory until the requested amount of words has 
been transmitted or an error occurs. 

As each word within a block transfer is read or 
written, the slave uses TMO as an intermediate ACK. 
The slave sends the A CK only after the final word 
in the block transfer has been transmitted . 

One for all 
Unlike other bus architectures, read and write 

serves for all operations on the NuBus, including 
I/O and interrupts, because I/O and interrupts are 
mapped into the NuBus's 4-Gbyte address space. In 
fact, all devices occupy a reserved portion of the 
NuBus address space specified by each slot 's ID 
(Fig 4). Thus, the device that occupies slot 0 may 
occupy addresses between FOOOOOOO to FOFFFFFF. 

Originally popularized by Digital Equipment 
Corp's PDP-II, memory-mapped I/O operations 
write to memory addresses instead of using special 
I/O instructions or wires. Instead of a memory cell, 
the specified location contains a universal asynchro­
nous receiver/ transmitter command register. As a 
result, high level languages gain the ability to deal 
with I/O directly. Furthermore, the same memory 
management schemes that translate memory refer­
ences and isolate system memory from application 
programs, now apply to I/O. Consequently, appli­
cation programs can safely draw on a subset of sys-

Block Size Words Block Starting Address 

2 (AD31 to AD 3) 000 
4 (AD31 to AD 4) 0000 
8 (AD31 to A D5 ) 00000 

16 (AD31 to A D6 ) 000000 

tem resources directly without concern that users 
might intrude on sensitive areas. 

In the NuBus, a similar situation applies to inter­
rupts. To initiate an interrupt in conventional sys­
tems, a device asserts a special line that runs to the 
CPU . When the CPU acknowledges the interrupt, the 
device replies with some identifying code that the 
CPU uses to enter an interrupt software routine. 
These conventional systems need only deal with the 
problem of detecting the source of an interrupt. 

On the other hand, a multi-cpu system not only 
needs to specify the source of an interrupt, but must 
also be able to post an interrupt to a specific device. 
Thus, the NuBus maps interrupts into its address 
space so that devices can direct interrupt requests 
to specific devices. 

Memory-mapped interrupts become particularly 
important in systems that can support multiple bus 
masters. Where a conventional approach would re­
quire a separate wire for each potential bus master, 
the NuBus approach provides a more flexible, less 
hardware-dependent approach. 

NUBUS 
ADDRESS 

FFFFFFFF 

FOOOOOOO 

00000000 

::~ 

SLOT 15 

· · · · · · · · · · SLOT 0 

] 
J 

1 -

SLOT SPACE 
(1 116 OF TOTAL PH YSICAL 

ADDRE SS SPACE) 

UNCOMMITTED 15/ 16 
OF TOTAL PH YSICAL 

ADDRESS SPACE 

EACH SLOT HAS 16 MBYTES OF MEMORY SPACE FROM 
F(I D)OOOOOO- F(I D)FFFFFF 

Fig 4 The NuDus associates each of its 16 slots with a 
reserved portion of its 4-Gbyte address space. Each slot 
spans an address range from F(ID) 000000 to F(lO) FFFFFF. 

Thus, slot 0 fills addresses from FOOOOOOO to FOFFFFFF. 
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Fig 5 Simple combinatorial logic is sufficient to implement the NuBus arbitration (ARB) logic. The ARBx lines are 
common to all modules, while the lOx inputs are unique to each card. The ARB signal is asserted if the module is 
requesting the bus, while the grant signal indicates whether the ARBx lines match the slot's lOx lines. 

Furthermore, as separate system resources evolve In the Nu Machine, each hardware module uses a 
into more powerfuldevices, memory-mapped inter- special set of memory locations within its reserved 
rupts provide a graceful migration path. For exam- memory to specify configuration information. Thus, 
pIe, devices such as disk controllers are gaining more during a software configuration phase, an operat­
independence from the CPU. After transferring a ing system can simply access these locations to ob­
block of data between memory and disk, a smart tain necessary system information. If a module is 
controller on the NuBus can write its status word not present, the bus timeout that results during the 
to a special location, interrupting the CPU for fur- NuBus transaction tells the operating system that the 
ther action. The NuBus offers system integrators a corresponding device is unavailable and should not 
simple mechanism to take advantage of such power- be included in the system definition. 
ful techniques. 

Using the NuBus's interrupt structures, program­
mers can easily implement advanced features like co­
routines, in which a high level language issues an 
interrupt to another process. Similarly, software­
configured interrupts like this aid design of systems 
requiring rapid response, such as in realtime environ­
ments. Here, a system can use two levels of inter­
rupts to handle external events. When an external 
event causes an interrupt, the CPU can quickly per­
form some critical task (eg, removing a value from 
an input hardware register), and dispatch a lower 
priority interrupt to itself to handle any subsequent 
processing associated with the external event. 

In the Nu Machine's 68000-based CPU board, a 
256-word memory block serves as the interrupt area. 
Although the lower 32 words are not used because 
the 68000 uses only seven hardware interrupts, each 
priority level falls into a corresponding 32-word area. 
Special hardware logic on the CPU board monitors 
these words, and when it detects a write operation 
into any of these 32 words, the logic initiates the ap­
propriate hardware interrupt procedure supported 
by the 68000. Software-interrupt routines can then 
use normal procedures to detect the source of the 
interrupt, including using the stored value as a vec­
tor to a particular device handler, or using the stored 
value as input to a particular service routine. 

In addition to providing a consistent approach for 
handling 110 and interrupts, the memory-mapped 
approach adopted by the NuBus permits system in­
tegrators to rely on software to configure systems. 
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Critical arbitration 
In any bus-oriented system with more than one 

potential master, the concept of arbitration is cru­
cial. Multiprocessor systems such as the Nu Machine 
rely on bus arbitration mechanisms ensuring that 
each processor is allowed access to the bus regard­
less of its defined priority. The NuBus, optimized 
for multiprocessor architectures, provides a fair arbi­
ration mechanism that guarantees access to any mod­
ule requesting bus access. 

The NuBus traces its arbitration lineage through 
a long history of bus protocols extending back to 
the S-IOO bus. In the daisy chain arbitration tech­
nique, a signal propagates serially through all boards 
in the backplane. If it decides that it wants to assume 
control of the bus, a board simply does not propa­
gate the signal. 

Unfortunately, this approach does not provide a 
fair distribution of bus cycles. Boards closer to the 
daisy chain origin stand a better chance of acquir­
ing the signal and of starving lower priority boards 
of bus access. Furthermore, this approach requires 
that all slots on the backplane be filled or bypassed 
with jumper cables. This is often at the cost of 
mechanical difficulties as jumpers fall off or users 
connect incorrect pins. 

In the analogous software situation, scheduling 
algorithms can avoid starvation of lower priority 
tasks caught in a mix of higher priority processes. 
However, arbitration demands strict mechanisms in­
tegrated into the basic structure of the bus itself. The 



mechanism cannot provide exceptions. During multi­
processor system design, an engineer cannot pre­
judice the architecture with the idea that a certain 
potential master should be allowed more bus cycles 
than others. 

For example, when compared with a disk con­
troller, an Ethernet communication module might 
be considered a lower priority device and assigned 
a correspondingly lower hardware priority. 
However, the data transmitted through this commu­
nication module may assume major importance in 
the system. Consequently, a system integrator must 
be certain to disassociate hardware priority on the 
bus from importance. Conventional daisy chained 
systems force designers to associate hardware pri­
ority with importance. The NuBus, however, main­
tains a strict approach to fairness in arbitration. No 
single module can be weighted to enjoy more bus 
activity at the expense of others. 

To do this, the NuBus adopts a parallel scheme. 
Bus arbitration begins when one or more potential 
bus masters assert the bus request (RQST) line, and 
each attempts to place its unique ID on four open­
collector lines on the bus-the arbitration (ARB) 
lines. Each slot is given a unique identification by 
a 4-bit ID code hardwired into the etch of the 
backplane. 

In placing ID codes on the ARB bus, the boards 
use a strategy common to other bus architectures that 
ensures that only the highest ID stays on the bus. 
If a board sees a bit that is of a higher order than 
its own bits as it puts its code on the bus, the board 
lifts its signal. For example, if the board with ID4 
attempts to place its ID on the ARB lines (assert 
ARB2) and finds that ARB3 is already asserted­
indicating that a higher ID is already on the ARB 
lines-it simply removes its signal. 

Implemented with simple combinational logic 
(Fig 5), this technique dictates that only the highest 
ID remains on the ARB lines at the end of the two 
bus cycle arbitration contests . Because this arbitra­
tion contest occurs over separate lines in parallel with 
read/write transactions, this mechanism does not cut 
into bus throughput. In fact, because typical NuBus 
transactions require at least two bus cycle, a new bus 
master will be ready to initiate its own transactions 
when the previous bus master has completed its turn 
on the NuBus. 

Determining fair arbitration 
Although this arbitration scheme does seem to in­

volve a priority aspect, fairness counteracts it. If 
three boards request the NuBus simultaneously, the 
highest numbered board wins. However, fairness en­
sures that the lower numbered pair of boards will 
gain access before that particular higher numbered 
winner gains the bus again. 

Fairness in the NuBus is a simple protocol-once 
the RQST line is asserted, no other boards are al-

lowed to request the bus. For example, if three 
boards want the bus at the same time, they will all 
assert the RQST line at the same time. The highest 
numbered board will win out, but the other two 
boards will still be asserting the RQST line. After the 
last board of the three uses the bus, the RQST line 
will become deasserted. This then starts another ar­
bitration contest. 

In addition to serving as the medium for bus re­
quest and achieving arbitration fairness, this single 
RQST line also mediates bus locking in the NuBus. 
Bus locking is typically used for indivisible test and 
set instructions used to implement semaphores for 
interprocess communication. In bus locking, once 
a device wins the bus, it simply continues to assert 
RQST and maintain its ID on the ARB lines. During 
the next arbitration, the same board will always win 
because, by the qefinition of fairness, its ID will 
always be the highest numbered in the current arbi­
tration round. The NuBus needs no extra wire, 
mechanism, or state to accommodate bus locking. 
This mechanism is enfolded within the larger con­
cept of fairness. 

Please rate the value of this article to you by 
circling the appropriate number in the "Editorial 
Score Box" on the Inquiry Card. 

High 716 Average 717 Low 718 

CIRCLE 71 COMPUTER OESIGN/June 15 , 1984 1 35 



Introducing Tfs 
Climb on the 32 .. 



NuMachine. 
bit NuBus now. 
The Nu Machine ™ Computer. 
The first system in the Texas 
Instruments Nu Generation Com­
puter family. The only system now 
available built on a modem 32-bit 
bus. The processor-independent 
NuBus ™ architecture helps meet 
your advanced-technology design 
requirements today. And 
tomorrow. 

First high .. performance 
32 .. bit bus 
The NuBus technology, designed 
at M.l.T., is optimized for 32-bit 
data and address transfers. Its 
37.5-Mbyte/sec bandwidth com­
bines with an elegant arbitration 
scheme to ensure fast and fair 
data flow. 

Innovative, flexible 
architecture 
The NuBus design was developed 
to support sophisticated system 
architectures and eliminates the 

built-in obsolescence of processor­
dependent systems. It lets you 
concentrate on developing 
applications, not architecture. 
Your significant investments are 
protected as new technologies 
develop. 

The Nu Machine's open archi­
tecture solves your make vs. buy 
dilemma. Multiple-processor con­
figuration support combines with 
the NuBus high bandwidth, high­
resolution graphic displays, 
cache memory, and high-speed 
disks to make the N u Machine 
system attractive to sophisticated 
end-users, systems integrators, and 
OEMs in the engineering and 
scientific marketplace. 

Anticipating industry trends, 
the power and expandability of 
Tl's Nu Machine allow it to 
accept 32-bit processors of 
the future. 

Open system supporting 
industry standards 

Tl's Nu Machine system is 
currently available with a 

Combining innovative NuBus architecture with advanced graphics. 
powerful peripherals. and UNIX-based software. TI's Nu Machine 
provides the outstanding perfonnance and flexibility required by 
scientific and engineering systems designers. 
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10-MHz 68010 processor support­
ing a UNIX ™ -based operating 
system with enhancements for 
windowing and high-resolution 
displays. 

Those who want to design their 
own system processors and con­
trollers can now license the 
NuBus design from Texas 
Instruments. 

Also, a NuBus-to-Multibus ™ 

converter allows the use of exist­
ing interface cards and peripherals 
from third parties. 

The system you can build on 
from now on 
Because its high performance and 
flexibility are designed for the 
long run, Tl's Nu Machine can be 
updated when other systems are 
outdated. 

And, Nu Machine computers 
are backed by Tl's service and 
customer-support network and by 
Tl's commitment to quality and 
reliability. 

To climb on the NuBus 
bandwagon, call toll-free: 
1-800-527-3500. Or write Texas 
Instruments Incorporated, P.o. 
Box 402430, Dept. DNA2030S, 
Dallas, Texas 75240. 
Nu Machine and NuBus are trademarks of Texas Instruments 
IncorJX>rated 
Multibus is a trademark of Intel Corporation 

System V/68 is a trademark of Motorola, Inc. 

UN IX is a trademark of Bell Laboratories 
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