
SPECIAL REPORT ON MICROPROCESSORS/MICROCOMPUTERS PART II

BUS STRUCTURE EASES
MUL TIPROCESSOR
INTEGRATION
Use of a 32-bit NuBus in memory-mapped 1/ 0 and interrupt
operations aids system configuration.

by George P. White
Where system integrators once needed to carefully
account for processor cycles, the availability of low
cost, high performance microprocessors is fostering
a new approach to system design. Now, auxiliary
processors handle cycle-hungry support functions
such as graphics or numerical processing, thus free­
ing the CPU to direct its power directly to the user's
application. Yet, because conventional architectures
wrap system resources such as memory and I/O
hardware tightly around a CPU core, traditional
architectures still do not provide a sufficiently flex­
ible framework for exploiting the cost and perfor­
mance advantages of multiprocessor designs.

Originally developed at the Massachusetts Insti­
tute of Technology specifically for multiprocessor
architectures, Texas Instruments' 32-bit NuBus pro­
vides system integrators with system architecture
independence, high bandwidth, easy system configu­
ration, a simple protocol, and small pin count. In
fact, because the NuBus maintains a simple protocol
for all bus operations, 49 signal lines are sufficient
to handle all transactions for up to 16 different
devices in the 4-Gbyte address space of the buses.

George P. White is manager of Nu Machine
development at Texas Instruments, 17881 Cartwright
Rd, Irvine, CA 92714. He holds a BS in electrical
engineering from the Massachusetts Institute of
Technology.

The NuBus accomplishes this feat by supporting
only read/ write transactions. Unlike conventional
bus structures, which require separate signals for
memory access, interrupts, and I/O operations, the
NuBus includes all these operations under its um­
brella of read/ write transactions. I/O and interrupt
operations are mapped into the address space and
handled just as accesses to system memory.

Furthermore, by laying system resources within
this 4-Gbyte memory address space, the NuBus de­
couples the logical function of system resources from
the physical implementation of system hardware. In­
stead of altering hardware switches and jumpers, en­
gineers can reconfigure systems simply by changing
variables in the NuBus address space. Consequently,
without disturbing the logical architecture, system
integrators are free to modify a system's physical
framework to achieve the required balance between
system cost and performance.

COMPUTER DESIGN/June 15, 1984 1 29

MASTER SLAVE MASTER SLAVE
1------- - -11---- --1 1- - - - - ---I 1- -- - - --,

II I MOOULE I I I MODULE J I I l MOOULE I I l MODULE J I
SPECifiC I I SPECifiC I I SPECifiC I I SPECIFIC I

1 I II r II I II 1 II
I . I I ;:. I I t I
I ~I 8US I I I -I 8US I I I --I 8US J I I -t 8US J I n ARBITRATION CONTROL I I CONTROL I I ; - I ARBITRATION CONTROL I I CONTROL I

: + ~ I I < I I ~ ~< :I .. :
I L--- I: - :: L-- 1- 11 r- I
L _ ___ ___ _ -.J L~ _ __ __ ...JL ___ _ ____ JL r--- __ _ J

.----.,
I CLOCK I

ORIGINATION I

I SLOT 10 I I SLOT 10 I I SLOT 10 I l SLOT 10 J

(\r------i
NU8US

t----'-----' CLOCK

DATA. CO NTROL
ANO PARITY

<\r-------- --- - ------- - ------- - - --,;) ARBITRATION

Fig 1 Identified by a unique value wired into the backplane, each module capable of participating in the
arbitration mechanism is free to serve as either bus master or slave in the NuBus. A lO-MHz system clock
synchronizes this 32-bit multiplexed bus to provide up to a 37.5-Mbyte/ s transfer rate in block mode.

Accommodating 110 and interrupt operations
within this framework provides good mapping be­
tween bus operations and the structures in memory,
which can be manipulated by high level programming
languages. By uniformly dealing with all resources
in the address space, even a high level language such
as Fortran can affect 110 and interrupt operations
just by transferring a 32-bit number to some speci­
fied memory location.

Classification

Utility

Control

Addressdata

Arbitration

Parity

Slot ID

Powerground

Reserved

TABLE 1

NuBus Bus Definitions

Signal

RESrr
CD<
START
ACK
TMO
TM1

AD < 31 .. 0 >

ARB < 3 .. 0 >
I1ITST

SP
SPV

ID < 3 .. 0>
Total signals

+ 5
- 5
+ 12
- 12
GND

RSVTI

Total pin count

1 30 COMPUTER DESIGN/June 15, 1984

No . of Pins

32

4
1

1
1

4

= 49

11
8
2
2

23

1

=96

Furthermore, uniform memory of the NuBus
model aids device access to memory at a lower level.
The small address space supported in earlier bus
structures (eg, Multibus) could force programmers
to deal differently with memory, depending on the
source of the memory reference. For example, a
CPU would access its onboard local memory with
one set of addresses, while references to the same
memory originating from other boards would need
to incorporate an offset into that set of memory.
With its single memory map, the NuBus permits any
device to access any memory-even that local to a
particular board-with a consistent set of addresses .

Simple structure
Driven by a central system clock, the NuBus is

a synchronized bus that provides designers with a
framework free from the specific control structure
of a particular microprocessor. In fact, the NuBus
specification imposes few constraints on system
design-any module that can arbitrate for the Nu­
Bus can potentially serve as bus master (Fig 1).

No particular slot position is defined as the bus
master. Instead, each slot has an identification hard­
wired into the backplane. Consequently, boards can
be differentiated without the need for jumpers or
switches. Besides the signals shown in Fig I , the only
other signals required by the NuBus are reset and
power (Table 1). Although adopting a triple-height
Eurocard form, the NuBus specifies use of only a
single 96-pin connector and uses only 49 of those
for signals-relegating the rest as extra power and
ground lines.

To the system integrator, this low pin count
benefits both present and future designs. Having
fewer interconnection pins in current designs trans­
lates into more mechanically reliable systems. On
the other hand, future systems can easily migrate to
designs using VLSI bus interface chips, which de­
mand low pin count for low cost designs.

With its lO-MHz cycle, the NuBus supports a
37.5-Mbyte/ s block transfer rate across 32 mul­
tiplexed address and data lines. Although optimized
for 32-bit transfers, the NuBus also supports unjusti­
fied 8-bit byte and 16-bit half-word transactions . In
contrast, a justified bus like Multibus II always
places 16-bit data in the least significant 16 lines,
even if the address specifies data in a more signifi­
cant position in a word.

A justified bus structure permits designers to
attach 8- or 16-bit interfaces to a common set of
lines, but at the cost of a more complex bus struc­
ture. Moreover, the NuBus's unjustified structure
results in a simpler organization at the small cost
of a few more transceivers.

Bus transactions
Each lOO-ns NuBus cycle ensures that signals settle

along the NuBus before receivers latch in the values
(Fig 2). With the rising edge of the cycle, drivers as­
sert (low) or deassert (high) signals on NuBus lines.
After signals settle during the 75-ns (unasserted) por­
tion of the bus cycle, receivers sample the signals
on the falling edge of the clock signal. The 25-ns
(asserted) portion of the signal helps avoid skew in
bus signals.

All basic NuBus signals require a clock cycle. In
addition, various NuBus signals combine to form
higher level transactions, like those for read/ write
operations. In fact, the NuBus permits these trans­
actions to be a variable number of clock cycles long.
Consequently, although it is a synchronous bus con­
trolled by a central system clock, the NuBus provides
the adaptability of an asynchronous bus without
losing the design simplicity of a synchronous bus.

All NuBus transactions involve a dialogue between
a d~vice requesting service (master) and a device
providing service (slave). Unlike traditional systems
where a bus slave is a device incapable of indepen­
dent action, the NuBus master/ slave concept simply
describes the temporary relationship between two
NuBus modules during a particular bus transaction.
In fact, provided that it can arbitrate for the NuBus,
any module can serve equally well as slave or master
in the NuBus protocol.

In the NuBus, a transaction commences with a
START signal from a bus master and terminates with
an acknowledge (ACK) signal from a slave. In
parallel with toggling the START signal, the master
notifies the slave of the type of transaction by manip­
ulating transfer mode (TM) and the lower 2 bits of
the AD lines. Thus, with these four control signals,

I_ PERIOO - I
CLOCK I I

I ,
I

I I
SIGNAL

~ P
I I
I

SAMPLE EDGE ~ I
I I

ASSERTION EDGES --.J t

Fig 2 Each NuBus clock cycle lasts 100 ns. During the
rising edge, devices place signals on the NuBus. After
allowing 75 ns for these signals to settle, receivers latch in
data during the falling edge of the clock signal. A 25-ns
sample period helps avoid bus skew problems.

the master can initiate read/ write transactions in­
volving bytes, half-words, or words (Table 2).

Transactions across the multiplexed NuBus in­
clude separate phases for address and data. For ex­
ample, in the initial phase of a read transaction, a
bus master such as a CPU sets the address lines,
asserts the TM control signals to indicate the type
of transaction, and toggles the START line (Fig 3).
When it has prepared its response, the slave replies
in the latter phase of the transaction by placing the
data on the AD lines, indicting the status of its
response on the TM lines, and asserting ACK.

On the other hand, in a write operation, the bus
master first places the address on the AD lines and
toggles the TM and START control lines. In the next
cycle, the bus master places the data to be written
on the AD lines and waits. After it has latched the
data, the addressed slave acknowledges and indicates
the status of the completed transaction by setting
the TM lines.

TABLE 2

Read/Write Transactions

TM 1 TMO AD1 ADO T~~e of Cycle

low low low low write byte 3

low low low high write byte 2

low low high low write byte 1

low low high high write byte a
low high low low write half-word 1

low high low high write, block

low high high low write half-word a
low high high high write word

high low low low read byte 3

high low low high read byte 2

high low high low read byte 1

high low high high read byte a
high high low low read half-word 1

high high low high read , block

high high high low read half-word a
high high high high read word

COMPUTER DESIGN/June 15, 1984 1 31

r---1 ~ ~~-l)~) ~
ITR -' '-1 L......f."I 'I
AD, k ADDRESS H H~D-AT-A----\~

I I I I

TM , ------1C~ MODE ~ ~STATUS CODE:>--

START ------.,~ ~ ~ ! :
I I /~I
I I \ I
I I I

Fig 3 During a NuBus read transaction, a bus master
places the address of the desired data on the bus, identifies
the transfer mode (TM), and toggles the START line. When
the addressed slave is ready to respond, it places the data
on the address/ data lines, indicates the status, and toggles
the acknowledge (ACK) line.

Just as the AD lines double for address and data,
the TM lines indicate transaction type during the ad­
dress phase and the status of the result during the
data phase. Of the four possible result codes, two
results-bus transfer complete and error-correspond
to positive and negative ACK codes commonly
found in bus architectures.

Similarly, the third result code-bus timeout
errors-is a signal used to guard against transactions
targeted for nonexistent memory locations. For ex­
ample, a NuBus master might initiate a transaction
into the area of memory occupied by a certain mod­
ule and receive a bus timeout code (from a separate
logic). This indicates that the required module has
been functionally removed from the NuBus.

The fourth result code-try-again-Iater-is a
unique signal that should find a major role in multi­
processor systems. Logically indicating a result fall­
ing between error and success, the try-again-Iater
code indicates that the master should simply defer
the transaction to a later time, rather than jump into
extensive exception-handling routines. This signal
can find extensive applications in situations where
a device serves more than one master. In dual-ported
memory, for example, when a master finds an ac­
cess blocked because of contention with another
device using the memory, the master can sit on the
bus-preventing its use by other potential bus
masters-or release the bus and try again later. The
NuBus try-again-Iater signal provides a mechanism
to implement the latter, more efficient method.

Besides potentially improving bus throughput in
multiprocessor systems, the try-again-Iater signal fills
a critical need in avoiding deadlock in these systems.
For example, in the Nu Machine, a separate
8088-based module acts as a converter between the
NuBus and the Multibus (see Panel, "The key role
of the diagnostic unit"). But, the use of such a con­
verter can easily result in deadlock if the converter
tries to access the NuBus at the same time that a
NuBus module tries to access the converter. When

1 32 CO MPUTER DESIGN/June 15, 19B4

this happens, both the converter and the NuBus
master may find themselves deadlocked waiting for
access to the other. The converter, however, relieves
the potential deadlock by simply transmitting a try­
again-later signal to the NuBus master and complet­
ing its own operation.

In addition to its role in boosting bus efficiency
and mediating deadlock possibilities, the try-again­
later signal can be used as a prefetch signal to slow
devices. Moreover, in a bus converter to some slow
bus, (rather than holding up a high speed bus like
the NuBus), a converter can transmit a try-again­
later signal to free the high speed bus and simultane­
ously access the information from the slower bus. In
this way, the converter has the desired data available
immediately upon the original requester's return.

Block transfers
Besides simple read / write transactions, the NuBus

also supports block-mode transfers. Although some
bus protocols such as Multibus II permit block­
mode transfers of any length, the NuBus supports
transfers only of smaller blocks-2, 4, 8, and 16
words. More compact block transfers of this sort

The key role of the diagnostic unit

Designed specifically for multiprocessor architectures,
the NuBus already stars as central performer in Texas
Instruments ' Nu Machine . Equipped with a 6BOOO­
based CPU , the Nu Machine is designed to be indepen­
dent of any particular CPU. Although such a processor­
independent architecture provides system integrators
with a flexible framework for crafting their own sys­
tems, it also demands an alternate approach for ensur­
ing basic system operation in the absence of any
particular CPU.

Filling this maintenance role as well as illustrating
the use of the NuBus in a simple multi -cpu design, is
the Nu Machine's system diagnostic unit (sou) . This
unit is a separate BOBB-based module with onboard
memory , serial I/O for console communications , and
maintenance and diagnostic test stored in onboard
ROM . When the system is powered up , the sou tests
the NuBus through a series of bus transfers , identi ­
fies all boards in the system , initiates self-test routines
associated with each board in the system, and sig­
nals the operator .

In addition to this maintenance work , the SOU be­
comes another potential master on the NuBus, act­
ing as a converter between the NuBus and Multibus ,
once the system's integrity is ensured. In normal oper­
ation , the NuBus and Multibus system can operate
independently . The Multibus appears as a l -Mbyte
window within the sou ' s address space.

When a NuBus master addresses a memory location
falling in this Multibus window , hardware-mapping logic
converts the NuBus access into a Multibus reference
without intervention of the BOBB CPU at bus speeds .
On the other side of the window, the converter moni ­
tors each Multibus cycle for references to addresses
which are mapped to NuBus . When a conversion is
required, the SOU uses a Multi-to-NuBus page map to
construct references to the NuBus address space.

TABLE 3

Block length and Destination Address

AD5

don't care

don't care

don't care

high

AD4

don ' t care

don ' t care

high

low

AD3

don't care

high

low

low

AD2

high

low

low

low

conform more closely to the fundamental concept
that a bus is a data-transfer highway freely available
to any potential bus master . Furthermore, transfer­
ring arbitrarily long blocks requires a mechanism to
suspend, or preempt, the transfer. This results in a
more complex structure.

In addition, unlike other protocols, the master
warns the slave that it is going to transfer a block
and supplies the transfer length at the beginning of
the operation. Supplying this information at the
beginning opens the possibility for higher perfor­
mance response. For example, if it is supplied with
the size of the transfer beforehand, a slave has the
opportunity to speed the transfer by prefetching the
requested data from its storage.

By setting address bits AD2 to AD5, the bus master
indicates the length of the block in the first phase
of the transaction, as well as the destination address
of the block (Table 3). In subsequent phases of the
transaction, the bus master transmits (in block write)
or receives (in block read) successive words from
memory until the requested amount of words has
been transmitted or an error occurs.

As each word within a block transfer is read or
written, the slave uses TMO as an intermediate ACK.
The slave sends the A CK only after the final word
in the block transfer has been transmitted .

One for all
Unlike other bus architectures, read and write

serves for all operations on the NuBus, including
I/O and interrupts, because I/O and interrupts are
mapped into the NuBus's 4-Gbyte address space. In
fact, all devices occupy a reserved portion of the
NuBus address space specified by each slot 's ID
(Fig 4). Thus, the device that occupies slot 0 may
occupy addresses between FOOOOOOO to FOFFFFFF.

Originally popularized by Digital Equipment
Corp's PDP-II, memory-mapped I/O operations
write to memory addresses instead of using special
I/O instructions or wires. Instead of a memory cell,
the specified location contains a universal asynchro­
nous receiver/ transmitter command register. As a
result, high level languages gain the ability to deal
with I/O directly. Furthermore, the same memory
management schemes that translate memory refer­
ences and isolate system memory from application
programs, now apply to I/O. Consequently, appli­
cation programs can safely draw on a subset of sys-

Block Size Words Block Starting Address

2 (AD31 to AD 3) 000
4 (AD31 to AD 4) 0000
8 (AD31 to A D5) 00000

16 (AD31 to A D6) 000000

tem resources directly without concern that users
might intrude on sensitive areas.

In the NuBus, a similar situation applies to inter­
rupts. To initiate an interrupt in conventional sys­
tems, a device asserts a special line that runs to the
CPU . When the CPU acknowledges the interrupt, the
device replies with some identifying code that the
CPU uses to enter an interrupt software routine.
These conventional systems need only deal with the
problem of detecting the source of an interrupt.

On the other hand, a multi-cpu system not only
needs to specify the source of an interrupt, but must
also be able to post an interrupt to a specific device.
Thus, the NuBus maps interrupts into its address
space so that devices can direct interrupt requests
to specific devices.

Memory-mapped interrupts become particularly
important in systems that can support multiple bus
masters. Where a conventional approach would re­
quire a separate wire for each potential bus master,
the NuBus approach provides a more flexible, less
hardware-dependent approach.

NUBUS
ADDRESS

FFFFFFFF

FOOOOOOO

00000000

::~

SLOT 15

· · · · · · · · · · SLOT 0

]
J

1 -

SLOT SPACE
(1 116 OF TOTAL PH YSICAL

ADDRE SS SPACE)

UNCOMMITTED 15/ 16
OF TOTAL PH YSICAL

ADDRESS SPACE

EACH SLOT HAS 16 MBYTES OF MEMORY SPACE FROM
F(I D)OOOOOO- F(I D)FFFFFF

Fig 4 The NuDus associates each of its 16 slots with a
reserved portion of its 4-Gbyte address space. Each slot
spans an address range from F(ID) 000000 to F(lO) FFFFFF.

Thus, slot 0 fills addresses from FOOOOOOO to FOFFFFFF.

COMPUTER DESIGN/June 15 , 1984 133

ARB

G RA~T

Fig 5 Simple combinatorial logic is sufficient to implement the NuBus arbitration (ARB) logic. The ARBx lines are
common to all modules, while the lOx inputs are unique to each card. The ARB signal is asserted if the module is
requesting the bus, while the grant signal indicates whether the ARBx lines match the slot's lOx lines.

Furthermore, as separate system resources evolve In the Nu Machine, each hardware module uses a
into more powerfuldevices, memory-mapped inter- special set of memory locations within its reserved
rupts provide a graceful migration path. For exam- memory to specify configuration information. Thus,
pIe, devices such as disk controllers are gaining more during a software configuration phase, an operat­
independence from the CPU. After transferring a ing system can simply access these locations to ob­
block of data between memory and disk, a smart tain necessary system information. If a module is
controller on the NuBus can write its status word not present, the bus timeout that results during the
to a special location, interrupting the CPU for fur- NuBus transaction tells the operating system that the
ther action. The NuBus offers system integrators a corresponding device is unavailable and should not
simple mechanism to take advantage of such power- be included in the system definition.
ful techniques.

Using the NuBus's interrupt structures, program­
mers can easily implement advanced features like co­
routines, in which a high level language issues an
interrupt to another process. Similarly, software­
configured interrupts like this aid design of systems
requiring rapid response, such as in realtime environ­
ments. Here, a system can use two levels of inter­
rupts to handle external events. When an external
event causes an interrupt, the CPU can quickly per­
form some critical task (eg, removing a value from
an input hardware register), and dispatch a lower
priority interrupt to itself to handle any subsequent
processing associated with the external event.

In the Nu Machine's 68000-based CPU board, a
256-word memory block serves as the interrupt area.
Although the lower 32 words are not used because
the 68000 uses only seven hardware interrupts, each
priority level falls into a corresponding 32-word area.
Special hardware logic on the CPU board monitors
these words, and when it detects a write operation
into any of these 32 words, the logic initiates the ap­
propriate hardware interrupt procedure supported
by the 68000. Software-interrupt routines can then
use normal procedures to detect the source of the
interrupt, including using the stored value as a vec­
tor to a particular device handler, or using the stored
value as input to a particular service routine.

In addition to providing a consistent approach for
handling 110 and interrupts, the memory-mapped
approach adopted by the NuBus permits system in­
tegrators to rely on software to configure systems.

1 34 COMPUTER DESIGN/June 15, 1984

Critical arbitration
In any bus-oriented system with more than one

potential master, the concept of arbitration is cru­
cial. Multiprocessor systems such as the Nu Machine
rely on bus arbitration mechanisms ensuring that
each processor is allowed access to the bus regard­
less of its defined priority. The NuBus, optimized
for multiprocessor architectures, provides a fair arbi­
ration mechanism that guarantees access to any mod­
ule requesting bus access.

The NuBus traces its arbitration lineage through
a long history of bus protocols extending back to
the S-IOO bus. In the daisy chain arbitration tech­
nique, a signal propagates serially through all boards
in the backplane. If it decides that it wants to assume
control of the bus, a board simply does not propa­
gate the signal.

Unfortunately, this approach does not provide a
fair distribution of bus cycles. Boards closer to the
daisy chain origin stand a better chance of acquir­
ing the signal and of starving lower priority boards
of bus access. Furthermore, this approach requires
that all slots on the backplane be filled or bypassed
with jumper cables. This is often at the cost of
mechanical difficulties as jumpers fall off or users
connect incorrect pins.

In the analogous software situation, scheduling
algorithms can avoid starvation of lower priority
tasks caught in a mix of higher priority processes.
However, arbitration demands strict mechanisms in­
tegrated into the basic structure of the bus itself. The

mechanism cannot provide exceptions. During multi­
processor system design, an engineer cannot pre­
judice the architecture with the idea that a certain
potential master should be allowed more bus cycles
than others.

For example, when compared with a disk con­
troller, an Ethernet communication module might
be considered a lower priority device and assigned
a correspondingly lower hardware priority.
However, the data transmitted through this commu­
nication module may assume major importance in
the system. Consequently, a system integrator must
be certain to disassociate hardware priority on the
bus from importance. Conventional daisy chained
systems force designers to associate hardware pri­
ority with importance. The NuBus, however, main­
tains a strict approach to fairness in arbitration. No
single module can be weighted to enjoy more bus
activity at the expense of others.

To do this, the NuBus adopts a parallel scheme.
Bus arbitration begins when one or more potential
bus masters assert the bus request (RQST) line, and
each attempts to place its unique ID on four open­
collector lines on the bus-the arbitration (ARB)
lines. Each slot is given a unique identification by
a 4-bit ID code hardwired into the etch of the
backplane.

In placing ID codes on the ARB bus, the boards
use a strategy common to other bus architectures that
ensures that only the highest ID stays on the bus.
If a board sees a bit that is of a higher order than
its own bits as it puts its code on the bus, the board
lifts its signal. For example, if the board with ID4
attempts to place its ID on the ARB lines (assert
ARB2) and finds that ARB3 is already asserted­
indicating that a higher ID is already on the ARB
lines-it simply removes its signal.

Implemented with simple combinational logic
(Fig 5), this technique dictates that only the highest
ID remains on the ARB lines at the end of the two
bus cycle arbitration contests . Because this arbitra­
tion contest occurs over separate lines in parallel with
read/write transactions, this mechanism does not cut
into bus throughput. In fact, because typical NuBus
transactions require at least two bus cycle, a new bus
master will be ready to initiate its own transactions
when the previous bus master has completed its turn
on the NuBus.

Determining fair arbitration
Although this arbitration scheme does seem to in­

volve a priority aspect, fairness counteracts it. If
three boards request the NuBus simultaneously, the
highest numbered board wins. However, fairness en­
sures that the lower numbered pair of boards will
gain access before that particular higher numbered
winner gains the bus again.

Fairness in the NuBus is a simple protocol-once
the RQST line is asserted, no other boards are al-

lowed to request the bus. For example, if three
boards want the bus at the same time, they will all
assert the RQST line at the same time. The highest
numbered board will win out, but the other two
boards will still be asserting the RQST line. After the
last board of the three uses the bus, the RQST line
will become deasserted. This then starts another ar­
bitration contest.

In addition to serving as the medium for bus re­
quest and achieving arbitration fairness, this single
RQST line also mediates bus locking in the NuBus.
Bus locking is typically used for indivisible test and
set instructions used to implement semaphores for
interprocess communication. In bus locking, once
a device wins the bus, it simply continues to assert
RQST and maintain its ID on the ARB lines. During
the next arbitration, the same board will always win
because, by the qefinition of fairness, its ID will
always be the highest numbered in the current arbi­
tration round. The NuBus needs no extra wire,
mechanism, or state to accommodate bus locking.
This mechanism is enfolded within the larger con­
cept of fairness.

Please rate the value of this article to you by
circling the appropriate number in the "Editorial
Score Box" on the Inquiry Card.

High 716 Average 717 Low 718

CIRCLE 71 COMPUTER OESIGN/June 15 , 1984 1 35

Introducing Tfs
Climb on the 32 ..

NuMachine.
bit NuBus now.
The Nu Machine ™ Computer.
The first system in the Texas
Instruments Nu Generation Com­
puter family. The only system now
available built on a modem 32-bit
bus. The processor-independent
NuBus ™ architecture helps meet
your advanced-technology design
requirements today. And
tomorrow.

First high .. performance
32 .. bit bus
The NuBus technology, designed
at M.l.T., is optimized for 32-bit
data and address transfers. Its
37.5-Mbyte/sec bandwidth com­
bines with an elegant arbitration
scheme to ensure fast and fair
data flow.

Innovative, flexible
architecture
The NuBus design was developed
to support sophisticated system
architectures and eliminates the

built-in obsolescence of processor­
dependent systems. It lets you
concentrate on developing
applications, not architecture.
Your significant investments are
protected as new technologies
develop.

The Nu Machine's open archi­
tecture solves your make vs. buy
dilemma. Multiple-processor con­
figuration support combines with
the NuBus high bandwidth, high­
resolution graphic displays,
cache memory, and high-speed
disks to make the N u Machine
system attractive to sophisticated
end-users, systems integrators, and
OEMs in the engineering and
scientific marketplace.

Anticipating industry trends,
the power and expandability of
Tl's Nu Machine allow it to
accept 32-bit processors of
the future.

Open system supporting
industry standards

Tl's Nu Machine system is
currently available with a

Combining innovative NuBus architecture with advanced graphics.
powerful peripherals. and UNIX-based software. TI's Nu Machine
provides the outstanding perfonnance and flexibility required by
scientific and engineering systems designers.
27-7379
© 1984 TI

10-MHz 68010 processor support­
ing a UNIX ™ -based operating
system with enhancements for
windowing and high-resolution
displays.

Those who want to design their
own system processors and con­
trollers can now license the
NuBus design from Texas
Instruments.

Also, a NuBus-to-Multibus ™

converter allows the use of exist­
ing interface cards and peripherals
from third parties.

The system you can build on
from now on
Because its high performance and
flexibility are designed for the
long run, Tl's Nu Machine can be
updated when other systems are
outdated.

And, Nu Machine computers
are backed by Tl's service and
customer-support network and by
Tl's commitment to quality and
reliability.

To climb on the NuBus
bandwagon, call toll-free:
1-800-527-3500. Or write Texas
Instruments Incorporated, P.o.
Box 402430, Dept. DNA2030S,
Dallas, Texas 75240.
Nu Machine and NuBus are trademarks of Texas Instruments
IncorJX>rated
Multibus is a trademark of Intel Corporation

System V/68 is a trademark of Motorola, Inc.

UN IX is a trademark of Bell Laboratories

TEXAS ."
INSTRUMENTS

Creating useful products
and services for you.

CIRCLE 72

	2023-09-28-0131
	2023-09-28-0132
	2023-09-28-0133
	2023-09-28-0134
	2023-09-28-0135
	2023-09-28-0136
	2023-09-28-0137
	2023-09-28-0144
	2023-09-28-0145

