OPERATION AND MAINTENANCE
INSTRUCTIONS:
ASC-1X CENTRAL PROCESSOR (CP)

TEXAS INSTRUMENTS

INCORPORATED

Equipment Group
P.0. Box 2909
Austin, Texas

930020-2
July 1973

78767

OPERATION AND MAINTENANCE
INSTRUCTIONS :
ASC-1X CENTRAL PROCESSOR (CP)

TEXAS INSTRUMENTS

INCORPORATED

© Texas Instruments Incorporated 1973
A1l Rights Reserved

The information and/or drawings set forth in this document and
all rights in and to inventions disclosed herein and patents
which might be granted thereon disclosing or employing the ma-
terials, methods, techniques or apparatus described herein are
the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to
any other person or organization without the prior consent of
Texas Instruments Incorporated.

a2

TABLE OF CONTENTS

Paragraph Title Page
SECTION I. GENERAL DESCRIPTION

1-1 €T 1= o T P 1-1
1-2 PUPPOSE it itiiiiiiiitietientessatesosansssssssnsssssssnsnsons 1-1
1-3 ASC System OVervVieweceeeeceeeeeecesescesensssossscscnssnns 1-1
1-4 Functional Description ...ueeieiiiieeneneeeenenencacecncncnns 1-3
1-5 Address Registers and Controlceeieiienenrennesnnans 1-3
1-6 Register File iiiiiiiiiiiiniieieneeenencnsesesnsnsnnnnns 1-3
1-7 Instruction FIiles tvuiiiiiieeeneieneeeeseeseennsonsennsnans 1-3
1-8 Instruction Registerciiiiiiiiiieerieeeeenennnnsensanans 1-5
1-9 Address Modification ...ieiiiiiiieinieneeneeeenoncnscnnnns 1-5
1-10 Address and Operand Registersc.ceeeereneescescncnnns 1-5
1-11 IMM/REG Registers ...iviiiiiieieenrneerneensnencosnsnsonnns 1-5
1-12 Memory Address Controliiiiiiineieennncnnnocnsonnns 1-5
1-13 Memory Buffer File ..iiiieiiieiiiiiineieeerenoncencennenncnns 1-6
1-14 MAB/MCD Operand Registers Ceteietreaceseneeans 1-6
1-15 AU Control Decodeovvieeerneneennennncensnsensoscnnns 1-6
1-16 Buffer Update and Storecciiiiitiiiiineennecensenncnns 1-6
1-17 AB/CD Operand Registerscieeiiieeneenronnnscnsnnnnns 1-6
1-18 Pipeline Path Controliiiiiiiiiiiiinerenrensnnasnnnns 1-6
1-19 Arithmetic Pipelineiviiiiiiiiiniineennosensnensnnnns 1-6
1-20 EF Output Register ..iiiiieiiieiinieieerennseenscnnnennnnns 1-7
1-21 General CharacteristiCs .viviiiieeeeeeieennnosecenssssnnsnnes 1-7
1-22 CP Instruction Set ..iiiiiiiiiiiiieieeeenrenncennnennsansennns 1-7
1-23 Instruction Formatciiiiiiieieereenneeenceenocnnncnnsnans 1-30
1-24 Data Formatsoiiiiiiiiininneeeernecsesenososscsnssnnsennss 1-31
1-25 Physical Description ...iieiiiiiiiiiiiennenneenoncnsscnnssnnss 1-33
1-26 CooTing System uiiiiiiiiineieiieneeenrenossnssonsssnssnns 1-34
1-27 Logic CirCUTLS tiviuiiieenrnrenenreosesensoncescnsnnsannns 1-34
SECTION II. INSTALLATION
2-1 CT=Y 1 T=1 - 1 2-1
SECTION III. OPERATING INSTRUCTIONS
3-1 CT=T 4 T=3 - N P 3-1
SECTION IV. PRINCIPLES OF OPERATION
4-1 €T 1= - 1 4-1
4-2 IPU LeVel 0 vivenirnienneneesoeasocacsoseneacssosssssosssnnsns 4-1
4-3 Look-Ahead Register (LA) tiiuiveeiireieenennnoneennonnnnnes 4-1
4-4 Cycle Interruptions ...ieiiiiiininecnoencnscncnncnnes 4-2
4-5 Output CompPareevieeeenenensnsnsossnsssssnsncnns 4-2
4-6 Load Look-Ahead Counterciiiiieieerneneensenssennanns 4-2
iii

Advanced Scientific Computer

R

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-7 Branch Address Register (BA)cceevens R £ 4
4-8 Present Address Register (PA) Ceeeteentereaeens e, 4-13
4-9 PA Inputs ...covevevnnns ceeeaceee Ceceierteans ceresens 4-13
4-10 Output Address Register (0A) ...vveverevennnnnnn N 4-13
4-1 P3 Register Output Ceeeseeteseasanaans Cereseaaes 4-13
4-12 LA Register Output ceeeeann Ceeesiscesenaenes 4-13
4-13 AR Register Output ...cevieiiiiiernrenansennenenes e.. 4-13
4-14 Load/Store Details Ceesstennnan Ceestresencennn 4-13
4-15 KCM Memory Interface File ...ieeeirenrnnncencnnsons ceeene 4-14
4-16 Instruction Processingceeeeninencennnnns cereeens 4-14
4-17 Load/Store Details ...cevvvvernnennns cecenen ceerenans 4-14
4-18 Store File civiiiiiiiiiiniereneessococaronsnss ceeess. 4-14
4-19 KA/KB Current Instruction Files Ceceasnes ceeesess 4-14
4-20 File SeleCt .vviiieiiiinnnnrenncanas Ceeteetrecssesteenanns 4-14
4-21 Word Select ..iveveieinininnenannnncns ceeveresecesscasese 4-15
4-22 Level 0 Controller uveeeereereeeceosescesssssssasnsasnnns 4-15
4-23 IPU Level T iniiiiiiiiiiietietencnnnncnnes ceereenn Ceececeaans 4-15
4-24 PT Register ...iiieierererieeenecennsennnns Ceesseens ceeees 4-15
4-25 Instruction Register (IR) .uvveieeeveneneneeocennns Ceeeen 4-16
4-26 Level T Controller ..i.eiiieiererenenenssnconcsssssssanes . 4-16
4-27 Register File ..uiiiiiiiiieieieieinoesesssncosesssssssnsannns 4-16
4-28 Base Address File, Aand B Cecteretensaans eeess 4-16
4-29 General Storage File, Cand D ...ovviiiinienrininnnnnnnns 4-16
4-30 Index File, I ciivirieieinnnnnnenns ceeeecaee ceeeees ceeeane 4-17
4-31 Vector Parameter File, Vcvvvee. e eecetstetensaaanns 4-17
4-32 IPU Level 2 iiiiiiiiiiiiiireneneeseacosassscnnnnns Cerenanens 4-17
4-33 Level 2 Controller ...civiiierenencnnnnnnns e serenas ... 4-18
4-34 Level 2 ROM L iiiiiiiiiiiirnnnnnncnss Ceererscestantenans 4-19
4-35 R2 Register ...viivieieieeeeencennenens Cetececesetetesaseanns 4-19
4-36 Indexing Register (XR) ..veieveneevenneens Crecesscisessas 4-19
4-37 Displacement Register (NR) ...civiivernnennns Ceteeeeeenee 4-19
4-38 P2 REegiSter tivieiiiiiiieieeeeeessotonscnscsnsonssnnsnnas 4-19
4-39 Base Address Register (BR) ...uveeeiererenennnencennennns 4-19
4-40 IPU LeveTl 3 iiiiiiiiiiiititeeeneesencosesssasssscssasansnnes 4-20
4-41 Modification Adder Cebtecsctesceettaterecnns 4-20
4-42 Adder Resultant (AR) RegiSter ...eeveeeeeeeeneecenoennnns 4-20
4-43 P3 REGIStEr tiiiiiiiiiiiiieetnecesssensoncnnnnns Cereasaan 4-20
4-44 Level 3 ROM L iiiiiiiiiiineeeereceeosononscsosssssosenonns 4-21
4-45 ROM Supplement Register (C3) ...vevveieennenns R 74
4-46 R3 Register ..iciiiiieeinirnenenncnnns Ceeessesesactnanans 4-21
4-47 Level 3 Controller ...civeeieveneeenns Ceeterscesetssannae 4-21
4-48 Branch, Indirect, Execute Comparisons Cesseseenes 4-21
4-49 IPU Level 4 . iiitiiiiiiiiierenseesesacssssassonsonss cereeanes 4-22
4-50 Level 4 Controllerceeeeeenns Ceeereens Ceeteceescenans 4-22
4-51 Register Stackcviviviererennneeecanannns cerereeeea.. 4-22
4-52 Register Hazard Comparisonc.ceeeeeeceeccecconssnscnns 4-24
4-53 AO Register ...iiieiereceneeneacans et eteeetescetenannns 4-24
4-54 Z Model Stack ..vvvierecerencncennnnannns Ceeeeceesateanns 4-26

iv

Advanced Scientific Computer

&

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-55 o Operand Hazard Comparisoneeeeeene Ceetieseeans 4-26
4-56 Near Range Instruction Hazard Comparison ceees 4-26
4-57 Far Range Instruction Hazard Comparison eeee. 4-28
4-58 RO Register ...coevviiienennnnns Ceteeeienanan Y £ Y/4°)
4-59 Memory Buffer Unit (MBU) ...veuriverrieeenneronnesnnnosnneesns 4-29
4-60 Memory Interface File (SC) ..vviirerrrinnrrnnnnns Cereeeen 4-29
4-61 Vector Buffer Files (XB, XH, YB, YH) ...vvirrrreeernnnnns 4-30
4-62 Operand Buffer Files (X, ¥Y) tivriierineiernerneronnnnennns 4-30
4-63 Xand Y Word Select tiiiiiiiiiiiiiieienenenenensnennnnnns 4-30
4-64 MAB/MCD Output Registersiieeeieeeeeenneeecnnncnnnnns 4-3]
4-65 Scalar Data Paths ...iviiiiiiienrieenenenneenenoananes 4-31
4-66 Vector Data Pathsiuiiiiiiiiiiiiniiierenennenenns 4-31
4-67 REG RegiSter tiitiiiiiiitieeenoeeoeenoenssenssnnnnnnonnes 4-31
4-68 IMM Registerc.cevvnnen Ceereeeaen e teererereseeereaes 4-31
4-69 Z Register SelecCt ...iviiiienennnnnnnnnns Ceetreenans veeeses 4-31
4-70 Z Resultant Storage Filecvuven. Cerrerateesenaens ... 4-31
4-71 ZH Half Phase Holding File ..vuiviitrinrenernnnenannnns ee. 4-32
4-72 ZB Memory Storage File ..ciiievivnnennrnnnnens Cereeeieaas 4-32
4-73 ROM Address Register ..iiiiiieieneeeeeeeteenoseasensnanas 4-33
4-74 ROM Address SeTeCt ivviiiiiieineneeneeoeeeenseonnsannnns 4-33
4-75 MBU ROM itiiiiiiiiiiieneernsocacesssnsncnsosonssasasnnns 4-33
4-76 ROM Output Registeriiiiieenienencnoceasenconcnns ceess 4-33
4-77 Select Next Controller ...oieiiiiiiinieneenerornocsannnns 4-34
4-78 AU Control .i.iiiiiitiiieereeeeeneeseasensescosansnsnnnes 4-34
4-79 AU Model o iiiiiiiiiiiiiientneeeenoenconsnsensosenansannas 4-34
4-80 Z Data and Address Controlcivivenne Cererrceaaeas 4-34
4-81 Level 5 Controller ...vveiiiiiieeinnnonnocossncnssosonsans 4-35
4-82 Level 6 Controller ..vieiiiiieeeeneeeneenncennns Cerieraens 4-35
4-83 Inner Loop Storage Register (NIS) ..uuiiiiiiiienernnnnnnn 4-35
4-84 Self Loop Count Register (LPS) Cereeeereereaaeaes 4-35
4-85 Vector Initialization Controlcviiiiiiiiiiiinnnnnnnns 4-35
4-86 Vector Loop Control ...iiiiiiiiiiiiiiinntensennssnsannns 4-36
4-87 Self Loop Counter (FLP) .iuuiiiiiieiiiniiineenneennnennnns 4-36
4-88 Inner Loop Counter (FNI) ...iiiiiiiiiniiiiiinneennnneanns 4-36
4-89 Outer Loop Counter (FNO) ..uvuvivererenneeennnneeennnnann 4-36
4-90 Vector Controller ..iiiieiiiiiieenneerenronnnsnsnncns 4-36
4-91 MBU Unit Hard Coreviiriiineneeennssceonscenossonnnss 4-37
4-92 Vector Address Generation (A/B Vectors)eeeeeeeeeeens 4-37
4-93 Vector Address Register (NAA/NBA) ...vvviivennnnnennn 4-38
4-94 Address Adderc.cceveceeinnesncencncennnas N 4-38
4-95 Octet Request Register (XBA/YBA) ...vvvvrrrnnnrennnns 4-38
4-96 Circular Address File (CAF) ..iuivivirirerereenanennns 4-38
4-97 Buffer Operand Address Register (XA/YA) ...viivienieeennnn 4-39
4-98 C Vector and Storage Address Generationceeeeveenns 4-39
4-99 C Vector Address Register (NCA)ccevvenn. ceee.. 4-40
4-100 Address Addereieiieirenreceoroscasessscnsoncns 4-40
4-101 Scalar Storage Address Register (NSA)cceeeenn. 4-40
4-102 Resultant Storage Address Register (ZA) Ceeeees 4-40

v

Advanced Scientific Computer

O

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-103 Half Phase Holding Register (ZAH)cevvveeennnnn 4-40
4-104 Memory Storage Address Register (ZBA) Cereiereeeeaaas 4-40
4-105 Halfword Modified Indicator Register (ZM) 4-41
4-106 Half Phase Holding Register (ZMH)eevveevevensoss 4-41
4-107 Memory Storage Modified Halfwords Register (ZBM) ceel 4-40
4-108 Storage Word Address Register (ZEA)civvvvvennn 4-41
4-109 Central Memory Requestor (CMR) Ceteeerenaaes ceeeeess 4-47
4-110 CMR Priority Gate ...eiviivenennensnnennnnnn Cereeeaes 4-41
4-111 Memory Octet Address Register (OA) ettt eneae 4-42
4-112 Asynchronous Address Register (AA) Cereeeaaeas 4-42
4-113 Halfword Bits Check and Merge Ceeesenenan 4-42
4-114 Zone Control Bit Registers ?ZCB/AZC) 4-42
4-115 CMR Control viviievinrenronsnsonennsnanns Ceeeeeaaeaen 4-42
4-116 Cue File N PP 4-43
4-117 Master Hard Core (MHC) ...vviviirineneenrnnennnnes RN veo. 4-43
4-118 Capture Common Command Register (Capture CCR) ee.. 4-43
4-119 MCW, MCP and Error Monitorceeeeeerecencennnes veeees. 4-44
4-120 CP Control Register ...iiieieeieerenrenstnnsnscnnsons . 4-44
4-121 CP Switches ...vvviiiiiienrencnannns ceretenseranaeess 4-44
4-122 Monitor ReSponseceeeecerencncnns Cetisercesenas 4-44
4-123 Sequence Control ..i.iiiiieiininerntenenennes Ceerereaeaas 4-46
4-124 CCR Qutput Registeriieiieererenenrnsoncnsnscnsoncnns 4-46
4-125 Unit Register Readciiiiiiiiiieennrnorencenncnnnes 4-49
4-126 AU INpUt v ittt ittt eieenensesenesssncnsnsonnnnns RN 4-49
4-127 Exponent Subtractiiiiiiiiiiiiiiiiiii ittt it 4-49
4-128 Input Select tiviuiiiierineninininrecnsnsssnsnssonsnennnes 4-49
4-129 Subtract Exponents and Compare Magnitudeccvuven 4-49
4-130 LOR Register ..iiieiiieineneeererencscnsossncnsnnenss ... 4-51
4-131 SOR Register .ivieiiiiiiiieieeresonentosonssssssnssnsnas 4-51
4-132 ED Register ..iiiiiiiiinieienrsnonennsncnns Cerseaeen e 4-51
4-133 Compare Code ..ivvvueneveencnronencssnnsasosencnsensnsees 4=-51
4-134 Align and Right Shift ...iiiiiiiiiiiiiiiieiirenoneenrncnnnnns 4-51
4-135 SeleCt tiviiiiviininiiierencnnas Cheereaas Chertraceicenenas 4-52
4-136 Hex Shift DECOde ...viiiiiieneeneneenreeenesososennnnnnns 4-52
4-137 Bit Shift Decodeiiiieiiverereoenensescnsosessosonss 4-52
4-138 Shift SEqUENCE . iiiiiiiiiiiiieiieetenrensensenssencanses 4-52
4-139 Not Shifted Register (NS) .uveeveiieiinennennennnenneanns 4-54
4-140 Adder SECtioN .iviiiiiiierinteierneneesestososessssosossnsenses 4-54
4-141 Input Select ittt it ittt itintieerenenesessannnsnns 4-54
4-142 T o 1= AP 4-54
4-143 Adder Output Register (ADD) ...vevivinineneenennonenannenn 4-54
4-144 ACCUMUTAEOr ittt ieiiiiiiiiiitettteacetosoncntasenenscnsonens 4-55
4-145 Operand SETECt . ..iiiieiiininreneneoneeesnsansocansananas 4-55
4-146 e o 1= O AU 4-55
4-147 Accumulator Output Register (ACC) v.vvnnnn Ceetereaeenaae 4-55
4-148 OUEPUL tiiiiiiiiiiiteienentnososesenenonssscnssssnsones eeeess 4-55
4-149 Logical Operationseeeivevicncnnnnns Ceteresceeerenae 4-55
4-150 Output SelecCt t.iviiiiiiiiiiieienenorencensonssnscnnsanses 4-56

vi Advanced Scientific Computer

R

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-151 EF Register ...iviiiiiiiiiiiinnnnnnnnnnnns Cereeicereaeane 4-56
4-152 Compare Codeivvvvrereronescnssnsennnsnnns Cereas ceee. 4-56
4-153 Result Code ..vvvveriiinnrinnencnnnnnns Ceeenan veceenseess 84-56
4-154 Arithmetic Exception Cells (AE) v.ivivvierneeeerennnnnenns 4-56
4-155 Normalize SeCtion ..vveeiieineiieenrereoeoesoenronsnsencncnsnas 4-56
4-156 Input Select t.iiiiiiiiiiiiiiiitiensnsnnensoncnsonsnsnnnns 4-57
4-157 Most Significant 1 Searchiiviiiiiiiieiniineninnennnns 4-57
4-158 Left Shift Code Registerceveueeeens Cereeeesseenans 4-57
4-159 Exponent Adderiiiiiiiiiiiiiiiiiitintirtntiriisnnnnns 4-58
4-160 Left Shift Hex Decodeivviiiiiennnennnnnnnnnnnnnnnss 4-58
4-161 Hex Shift Network/Bit Shift Networkcceeeieeiennnnns 4-58
4-162 Normalized Output Register (NORM) Cerereteeaes 4-58
4-163 Left Shift Bit Decodeccvv.n.. P 4-60
4-164 Bit Shift Magnitude Determinationcieeveinnnnnnnnns 4-60
4-165 Bit Shift Encode and Registerciivievnriennnnns eee.. 4-60
4-166 Overflow Check ..vviiiiiiiineeneiinneensenronnronsenneanes 4-60
4-167 Multiplier SeCtion ittt iiiiinreneeenronesansnsnnnses 4-61
4-168 Dividend Register ...iviiiiiiiiinrneenrerenseonnnnsennnns 4-61
4-169 Divisor Register ...ivieiieiiireneeenenneconnses N 4-A1
4-170 P=Term LogiC viviiiiiiiiiieneeeenioseocnsonensnasasosenns 4-61
4-171 Modifier Register ..iiuiiiiiieiiiinereerenssnocnnnennennns 4-61
4-172 Multiplicand/Multiplier Select ...cvvviiiiiniirnenenennns 4-62
4-173 RECOAE v iviiiiiiiiinernteennensenensnsnnnnnnns Cerereeraes 4-62
4-174 4o 1V PP 4-62
4-175 Form SUMmMandsviieiiinnieeonesenenssessssonassensonsons 4-63
4-176 Overflow Salvage ...viiierinrersninsonssnsntnssnsnses 4-63
4-177 Sign Extension Summandiiiiiiiiiiiiniineienn 4-63
4-178 Division Summandceviitiniennnnnnonas Cereeeeaas 4-65
4-179 Two's Complement ...iviiiiiiiiinnrnrnnrnrsncnsononnns 4-65
4-180 Adder TrEe tivvieiiiiinienreneenseeseensonnsennnnss e 4-65
4-181 Pseudo-Sum (PS) Register ...vieeveeeriiinerennnnnnns e 4-65
4-182 Pseudo-Carry (PC) REGISLEr .vvevieieereeneennseneennenns 4-67
4-183 Multiplication TheOry ..veiiiiiieinernereneensesnsenscasennns 4-67
4-184 Algorithm Derivationcoviiiiineenerennenns Cereerieaaes 4-67
4-185 AU Division Theor Y ..ueiiiieiieeeerooreeesscsonssssnsosonsons 4-69
4-186 Sign Extension ATgorithmiuiiiiiiiiniiiiniinenronensennns 4-72
4-187 Two's Complement Formationccoveivvinvenenns Ceeeean 4-72
4-188 Algorithm Derivation ...vuiieiiiiiiiiniiiiinenrncnsnsennns 4-72
4-189 AU Unit Hard Core .iuiieiiineeneinnenosnnrenssnnsonsonnsnnsons 4-74
4-190 Controller Descriptions and Flowchartsceeeevnvincennns 4-74
4-191 Instruction FIoW .vuiieiiniinieiernnrennenscenesensnnnens 4-75
4-192 Indirect Addressingcveveunn. Creeetetteeeasens 4-77
4-193 Execute Instructionciiiiiiiiiniinnrenecencnnnnans 4-77
4-194 R 4 ¢ 1P 4-77
4-195 Branches ... iiiiiiiiiiiieiennteienneeenenscesnsannnnns 4-77
4-196 Store File and Load File Instructionsccvvveen 4-77
4-197 Push, Pull Instructionsciciieeieiieneenncnncnnnes 4-78
4-198 Load Look Ahead Controllercievieeveneesccnnens N 4-78

vii

Advanced Scientific Computer

O

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-199 Controller Timing ...oiieieneinrennnnnnns Chrerieeneas cees. 4-78
4-200] - L PP 4-78
4-201 LLA at Level 3 tiiiiiiiiiinnnnrennnnnns Ceeeecaecaneseanas 4-84
4-202 Branch Taken at Level 3 et ereresetenenanaaans 4-84
4-203 Target Branch Failedcccvviiiivneninnnns Certereeeaaens 4-84
4-204 Target in Pipe ..iviiiiiiiiiiniiienenroncnenssnsnsascnses 4-84
4-205 Target Entering Pipe ..viviviieenen Chesisasasaettiaeaanas 4-85
4-206 Normal Look Ahead CycClesuiveiiirernrnsneensnsnnnnnnns 4-86
4-207 Target in Look Ahead Bufferciiiiiiiiinieneennnnncnns 4-86
4-208 Contents of Pipe Not Usefulciiiiiiinniincnncnnncnns 4-87
4-209 Branch to DA i iitiiiiitinieenneeennsesnssensssnnnnas 4-87
4-210 Branch to LA «.iiiiiiiiiiiiiinnennnans Cerereearenennan 4-87
4-211 Branch to PA ... iiiiiiiiiiiiiinnrnnnnnes N ve.. 4-87
4-212 Instruction Hazard Recovery Cheteeeraes veee. 4-87
4-213 Target Fail .iiiuiiiiiinenineencnrernnnnnns Cereseanes 4-88
4-214 Load or Store File ..iviiiiiiinienreetenncensnncennnns 4-88
4-215 Level 0 Controller tiueiiieiiiiieeeoeeeneenesonnosennseennnns 4-88
4-216 Indirect or Execute at Level 3 ...iiiiiiiiiiirenennnnnnns 4-89
4-217 e I T Y 1T o 4-89
4-218 Level T Not ACtiVE tiviieriineienienenenocnonnnannonnnnes 4-89
4-219 Level T ACtIVE tiiiiiiitiiiennieneneenensnssonesennncnnnas 4-93
4-220 Level 1 Controllercvvvvvnnn. et ereeeseeeasenanes Cerenees 4-93
4-221 Level T (Big State) vuveviiiniieeieneeeeneenennenanenennns 4-94
4-222 Instruction Path Changeciiiviiiiniiinencncnnnns 4-94
4-223 SKIP ettt ittt Ceeeetetreerenannses e 4-94
4-224 Branch to Level T .iiiiiiiiiieriinereenesennssnnnnens 4-94
4-225 Recover Level 2 Hazard et reeeeeen e seeann s 4-107
4-226 1 o) = 4-107
4-227 SKIP State i iiiiiiiii ittt ittt eensensensnasannnonns 4-107
4-228 Indirect or Execute at Level 2 Statecovvvvnn N 4-107
4-229 Indirect at Level 3 State ..vvtiiiiiiiiiiiienennnrennnnns 4-108
4-230 Load File State ..vviiiiiiiiiirneieneeennononnensennnnnas 4-108
4-231 Execute at Level 3 State ...iviiiiiiiriiiennorennnnnnnnns 4-109
4-232 Store File State ..vviviiiiiiiiiiieenreneeoeenenonennenns 4-109
4-233 DAV State tuviiiiiiiiiiiitinneneneenenennennnanans ceeeesss 4-109
4-234 PUSh-PUTT State ..iviiiriiiiiieiineinneernnenenennnannsnnns 4-110
4-235 {8 o) N - o 4-110
4-236 Hazard State ...viiiiiiiiinieinieeneeneeesensensennnnnenns 4-110
4-237 Level 2 Controller iveieiiiniiieneeeneenneeeosnsnenonannnnos 4-111
4-238 Select Adder Input ..iviiiiiiniiineenrnenonncncennnnnnnns 4-111
4-239 Contents of Level 1 Not Useful ...vvtriirienierenennnnnns 4-111
4-240 InCrement AR ittt iiiiereneeeecsnosansnannnsnsnnns 4-111
4-241 Vector Parameter File ...viiiiiiireneenrencnnnennennnnnns 4-115
4-242 PUSH=PUT T ittt ittt iiieeneeeoeesenosnsenssnnsnnnes 4-115
4-243 None v.vvevenennnns et et s eeeaeceeatectasteratenasennaenen 4-115
4-244 Level 3 Controller tuiviiiieieieeneeeeeeeseoesosonsnncannnnnss 4-116
4-245 Idle State vuiiviiiiiiienteeeeneeetonsensensenssnsnnnnnans 4-116
4-246 InTtial State .vviiiiiiiiieneineenreenennenonoonennnns 4-116

) viii

Advanced Scientific Computer

a2

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-247 NO OP tiiiiiiiienteeeecenenensescasnsonsns Ceraes ceees 4-119
4-248 BroWN tiiitiiiii ittt ittt ttentaanns Ceesaeenaas 4-119
4-249 Instruction Error ..ciieieiiienrecnennens Cererenaes .. 4-119
4-250 YeTTOoW vvitiiinneereeeneennosnnennnans Ceetecerteearans 4-119
4-251 e 1 S 4-124
4-252 BraY teveeeieneestensenscessoscsstonssosssnsanatonnas 4-127
4-253 0range t.viivieneeeeeernonsncnsncnsnnnnns Cheeresaeans 4-131
4-254 Green viveeeeeceonronsconcns Ceeeeteearetenateens ceeee. 4-136
4-255 BlUE v ititiiiiiieenteeraeneeocasencnssnsoncnanncnsans 4-140
4-256 Yol I [P 4-145
4-257 I 87721 1 1o (= 4-147
4-258 Vector Forced Write State (State 0) ...ovvvvvriennnnnnenns 4-150
4-259 First Vector Initiation (State 1) .vvevivrnvrennerennnnns 4-153
4-260 Vector Burst (State 2) vuveieeeeereennesonennnennnnennnns 4-153
4-261 Level 2 Wait (State 3) vvvriviiivnnnnnennns Ceeertecaeeaees 4-156
4-262. Vector GO (State 4) ..veeiirieennennnnneononns Ceeeaersens 4-156
4-263 Vector + 1 (State 5) vvveivrrinrnnenneeneeneenns Cereeeeen 4-158
4-264 Load File Request Wait (State 6) ...evvverierennnennerenns 4-160
4-265 Prime Second Vector (State 7) ..viveeeeerenereenesnenenns 4-160
4-266 First Vector Wait (State 8) ..uvvveiireiirernnennenennnens 4-163
4-267 Hazard (State 14) ..uuviiiieneieeeeeeeoenennnonsosnsnnnnns 4-163
4-268 Indirect Request (State 15) .vvuviirinennnennneennennnnns 4-166
4-269 Orange Wait (State 12) ..vvvivirinnnnnnnnnns Ceteeaeeaae 4-166
4-270 Orange Request (State 13) ..ivvriirriinrrnnennnnennennnnns 4-166
4-271 Load File Multiple ...cvvviivennnnnnns PN 4-167
4-272 Store File Multiple ..iiviiiiiiiiinneennninonecnnnnnes 4-169
4-273 PUSh=PUTT (State 9) tiviriiirrrrrnineeennnneennnnnnsonnnns 4-169
4-274 Push=PUull T (State 10) vvvvveivennennennreneonennennennns 4-169
4-275 PUSh-=PUTT 2 (State T1) tuivriirininrrnnnensnennrnnnaennnnas 4-172
4-276 Monitor Calls (State 16)cvvvvuvnvinnnns Ceriieeaaaes 4-174
4-277 Level 3 Controller Common SEQUENCESvieeernerasencens 4-174
4-278 Sequence BA ...t ittt ittt it e 4-174
4-279 Sequence BBBA ...ttt ittt ii ittt 4-181
4-280 ContinUe BA L .iiiiiiiiiiiieterateneeenennanennannnens 4-181
4-281 ENd BA ittt ittt ittt eeeeneecnasasonasnscnsennnns 4-184
4-282 Sequence BLBIiuiiiiiiiiioeeteeenosoncanenensenss 4-184
4-283 Sequence Bl ..i.iiiiiiiiiiiiiiiiii ittt 4-185
4-284 Sequence BBBI ...i.iiiiiiiiiiiiiiiiiiiitteiieteatenans 4-185
4-285 Y=L [V =] ol AN 4-186
4-286 Continue Bl .iiiiiiiiiiiieereeereneeeosasennconsennnes 4-186
4-287 Forced Write Controller ..viiieiiieeeienernneeennnnnssnocnnnns 4-186
4-288 Level 4 Controller vuiieiiieeeeeeeeeeneeooeonssensonnsensnaans 4-188
4-289 Update Enableiiiitiiiiniiiiiiieeneeerenenecnnnnnnnns 4-188
4-290 MOdE ZBIrO tuiveiineenereoreeocsseensenncennsenssnnsennses 4-188
4-291 MOdE ONE . iiiiiiiieiieeoeeeeeosesonssoenssacssnsanoeonnses 4-192
4-292 MOdE TWO tiiiiiiinettieneseesoocesonsoesnssosenssosonssons 4-192
4-293 MOde THrEE tiiviveiiereneeoeeeotoneeenoenocsnsenscassonss 4-192
4-294 Mode FOUr t.iiviiiiiiiinenreeensenenneennnns et eeenaan 4-193

ix

Advanced Scientific Computer

O

Paragraph

4-295
4-296
4-297
4-298
4-299
4-300
4-301
4-302
4-303
4-304
4-305
4-306
4-307
4-308
4-309
4-310
4-311
4-312
4-313
4-314
4-315
4-316
4-317
4-318
4-319
4-320
4-321
4-322
4-323
4-324

Appendix

TABLE OF CONTENTS (Continued)

Title Page

CONCTUSTON v ittt iineteenosseeeseceosssnssesanssnnnans vee. 4-193
Level 5 Scalar Input Controllerceveveevnnns Cererearenen 4-193
Input Stage Not Active (Not MBIAC) cerenneenes. 4193
Load Immediate Operand 4-199

Load From X Buffer (LDXA) ..uvvverivernnnecnnneneness 4-199

Load From Y Buffer (LDYA) ..veiviiireneennennnnnnenns 4-200

Input Stage Active (MBIAC) t.vvviirrninieenneeeenneennnnns 4-200
Transfer OK ... iieeiiiiieeneeeeeeoeeesenssesoonnsnnsss 4-200
Transfer Not OK ..iiiitiiiiiieinereeneseeensonnnnanns 4-201

Level 6 Controller - Scalar Mode Ceceenn Ceereeneneeses 4-202
Level 6 Controller - Vector Modecovvevennns Creieenaaas 4-204
Select Next Controller ...iiiiiereienereeonsosensonsenssnnnns 4-204
Central Memory Requester (CMR)iveeiieernneennneennnennns 4-208
PP Response Polling of the CPiiviiiiiiinenenninnnneness 4-225
System Error . iiiiiiiiiiiiiinennenenrensennns Cetreenaanas 4-225
Abnormal Terminationeieviieieeenrenrensennennns cees. 4-225
Normal Terminationcceviiiiinnnnnnnns Ceectresasenaaan 4-225
Capture CCR . iiiiiiiiiiennreereneenoneoonnnnnss Ceriiresacnans 4-230
Error MONitor tiiiiiiiiiiiiiieiiteeereneenseesonsennsnnsensons 4-230
Sequence Control ...iiiiiiiiiiiiiieieneenresnnnecnnes Cereeaas 4-233
R0} - B o =T P e.. 4-233

A0} 1 B = 4-236

R0} 7 o 4-237

) o7 T Ceeereetaas 4-237

) 1 o - S 4-237
o =T 4-237

) 1 B = 4-238

R0} - T e 4-238
State 8 ittt it i ittt Ceerereeteneaaan 4-238
Other Control Circuits ..vvvviererenenrennnns et iceenvenanan 4-238

SECTION V. MAINTENANCE
SECTION VI. PARTS LISTING

|48 el o [o o o ¢ 6-1
Logic Cards ...vevvvvnnnnnnns et eiesesre e Ceeesennene .. 6-1
SECTION VII. DIAGRAMS
Title Page
LEVEL 2 ROM CONTENTS titittitieenrnnnneonsnsesenononnnnnes eoo A-1
LEVEL 3 ROM CONTENTS ittt tiiitennenesennsensonnsnssnsnnnnnnns B-1
AU DETAILS MAP S e eesesesesseectstetesetatesen st e nses Cc-1

Advanced Scientific Computer

LIST OF ILLUSTRATIONS

Title Page
ASC Central ProCesSOr .iiviiieiieterneeesssscsessonssssasssosnsons 1-0
ASC Simplified Block Diagramceeeeevernnnsnncnnnens Cereeeneas 1-2
Central Processor Block Diagrameeeeeeesseosescnssnsossnsns 1-4
Scalar Op Code Map ...v.oviiiinerenrnnnonncnnscnsnsnncns Ceeeeaens 1-23
Vector Op €Code Map v..uiieieeinenrereencncncosncosssssasssosssnnas 1-29
ASC Instruction Word Formatcoeiiiiinnennnnsnnnnans ceseses 1-30
T-Field Subdivisionieiiiiiiiiiiiieiieenreneensesonsossnnnns . 1-31
32-bit, Fixed Point Data Word Formatcevvvvuvnnns cerenen 1-31
16-bit, Fixed Point Data Word Formatcciviiiiinnrcnnnnnnes 1-32
32-bit, Floating Point Data Word Formatccviiiviiniennnns 1-32
0 64-bit, Floating Point Data Word Formatccciiiiiiiinnnnnns 1-33
1 Typical ASC Central Processor One-Pipe Configuration ceee. 1-34
2 Schematic Representation of CP Cooling System ceteesanens 1-35
3 ECL CirCUTES tuvieevneneneoenenenesssssssssonsscssnenansssosaas . 1-36
Central Processor Block Diagramcceeveneeenccnnscsnsonnnnns 4-3
Vector Parameter File Formatviviveninenencnenrnrnsssnnonnss 4-17
Branch, Indirect, Execute Comparisonscceeeenanens Cereeean 4-23
Register Hazard Comparisonsiieeeceeessescnscnssnsnsonsones 4-25
Operand Hazard CompariSONSeeieseeeesonssssnssasnnsasnns voo. 4-27
Near Range Instruction Hazard Comparisonso... Ceeesaans 4-28
Far-Range Instruction Hazard Comparisonsccecevececececncs 4-29
Typical CAF Word ...viiiiniieenennoesenesrosensosssnsonsnsonanans 4-39
Common Command Register and Transfer Bitciiiiiivvnnnnns 4-44
0 CP Control RegisSterciieiiieiiereoreeeconeconscnssssnsannnns 4-45
1 CP Response Byte ...viviiriiinninionsersneessnsonssnsansnssnanns 4-46
2 CP Condition Byte ..eviiiiierneneeneerencsosescossnsonenssncnss 4-48
-13 Exponent Subtract and Compare Logic Flowchartcovute. 4-50
4 Simplified Right Shift Network (Bit 16 of Operand) 4-53
-15 Simplified Left Shift (Normalize) Network (Bit 16 of Operand) . 4-59
6 Multiplier Word Recode Bit Assignmentscocevvieennnnenenns 4-62
-17 SUMMANA AV Y ¢ tttiieieeneeeeeeeseosessasesssasescssescssnnnons 4-64
8 Simplified Adder Tree Block Diagramciciieennrencrenncnnnes 4-66
-19 CP Hardware Utilization-Division Processvvevevernrecnennns 4-71
0 IPU Control tiiuiiiinineeneneonioosnsssenssssossnscnssonsossansons 4-76
1 Load Look-Ahead Controller Flowchartsceveevinienenennenns 4-79
2 Level 0 Controller Flowchartccvvuenn Cerectiaeiiereraeas 4-90
3 Level 1 Controller Flowchartcceveeieienenreneenroncnncnnens 4-95
4 Level 2 Controller Flowchartiuiiiiiiiiiiienrneneeeennnencnns 4-112
-25 Level 3 Controller State Diagramceeeeeeeeeeeenonsenonnsens 4-117
6 Initial Subcycle of Level 3 Idle Statecvvieeinenenennnnnnns 4-118
=27 No Op Subcycle of Level 3 Idle State ...cvviiiiiiiniennnenenenns 4-120
-28 Brown Subcycle of Level 3 Idle State ...vvviiiiiiiiiiienennnnnns 4-120
9 Instruction Error Subcycle of Level 3 Idle Statecevvnn. 4-121
-30 Yellow Subcycle of Level 3 Idle Statevvvvieninennnenene.. 4-122
-31 Pink Subcycle of Level 3 Idle State ...ivvieiiineiiirinnneennnnns 4-125
Xi

Advanced Scientific Computer

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
4-32 Gray Subcycle of Level 3 Idle State ...cvvvviiineirnnennnnnnnnns 4-128
4-33 Orange Subcycle of Level 3 Idle Statecccvvivivinnnnnennennns 4-132
4-34 Green Subcycle of Level 3 Idle State Ceteescercasanas 4-137
4-35 Blue Subcycle of Level 3 Idle State ...vveivereeeecnenncncennnns 4-141
4-36 Decide Subcycle of Level 3 Idle Stateccvvvuenen Ceterscestenn 4-146
4-37 Lavender Subcycle of Level 3 Idle State ..ceveveverevcrnnoesaoss 4-148
4-38 Vector Forced Write State of Level 3 Controllerccevveeeneees 4-151
4-39 First Vector Initiation State of Level 3 Controllerccvn. 4-154
4-40 Vector Burst State of Level 3 Controller ceeeeeens ceesane . 4-155
4-41 Level 2 Wait State of Level 3 Controllercieveveennes Ceeteees 4-156
4-42 Vector Go State of Level 3 Controller ...ceeieeevencencnnes eeo. 4-157
4-43 Vector + 1 State of Level 3 Controllercieeeevenenens Cereeens 4-159
4-44 Load File Request Wait State of Level 3 Controllereovue. 4-161
4-45 Prime Second Vector State of Level 3 Controllercevevenn. . 4-162
4-46 First Vector Wait State of Level 3 Controllerccievienenens 4-164
4-47 Hazard State of Level 3 Controller O 3 1))
4-48 Indirect Request State of Level 3 Contro]]er 4-166
4-49 Orange Wait State of Level 3 Controller ...vieeevienincennnnnnns 4-167
4-50 Orange Request State of Level 3 Controllerccvveveivenenenns 4-168
4-51 Push-Pull State of Level 3 Controllercveeeveenns Cerecenaas 4-170
4-52 Push-Pull 1 State of Level 3 Controllerceeveeeen Ceereeeaas 4-171
4-53 Push-Pull 2 State of Level 3 Controllereeveeeenencenns cees. 4-173
4-54 Monitor Calls State of Level 3 Controller ..voieieeeeeeenrenennes 4-175
4-55 Level 3 Controller Common SEQUENCESveveverroncnsansananonnns 4-176
4-56 Level 3 Forced Write Controller ..viiiiiieireeneceeennecennannns 4-187
4-57 Level 4 Controller Flowchartscevevenn. Ceeeeresesnsesaseses 4-189
4-58 Level 5 Scalar Input Controller F1owchart Cetreceen 4-194
4-59 Level 6 Controller Flowchart - Scalar Modecovivivivecnenns 4-203
4-60 Level 6 Controller Flowchart - Vector Modecivivvevenennnnn 4-205
4-61 Select Next Flowchartc.uiiiiiiiiiiierinnernnnoennsecannens 4-206
4-62 CM Requester Flowchartcoiiiiiiieenneenennenncennsnnennnss 4-209
4-63 PP Automatic Interrupt or Polling Loop of CP Status 4-226
4-64 Capture CCR Logic Flowchartceiviieienneneenenenecnceennnas 4-231
4-65 Monitor FIowChart ...ieiiiiiiiiiinieieneeneeeeneennnsnsencencnss 4-232
4-66 Sequence Control Flowchartcevieivinnneennnnes Cereiieeenaas 4-239
4-67 MBU Unit Hard Core Flowchartvviveviennnennens ceesesesesss 4-246
4-68 MBU Unit Hard Core De-escalate Controller Flowchart vee. 4-249
4-69 AU Unit Hard Core FIOWChArt ...uvevieereeennosenesenensnesennnns 4-252
4-70 CAF Output Control Flowchartcciiveirieerenesesnsnsasnnnnns 4-259
4-71 Vector Initialization Control Flowchartc.eeieeiieeennenenens 4-260
4-72 A/B Vector Address Generation FlowCharteeeeeeeeeeeneenns 4-264
4-73 C Vector Address Generation FIowcharteeeeieeenecennnennns 4-281
4-74 AU Control e e seesesasoasesatestensesssessestesscnssananns 4-287
4-75 Z AAAress FloW tivieiunenereneneseeseeeessensassessosssnenonnnns 4-292
6-1 Card Location Information v ...veiiieieiiineneneneneneoneenonnnnns 6-1

Xii

Advanced Scientific Computer

L

LIST OF TABLES

Table Title Page
1-1 Central Processor General Characteristicsceveenrennnnncnns 1-8
1-2 Scalar Instruction Setcivvvvvennns Ceteceertiesenenaas ceeees 1-9
1-3 Vector Instruction Setcciiiiiiiiiiiiiiiiiiiiiiiinee, 1-24
1-4 ECL Circuit TypeS .veveeevencnnosnnns P 1-37
4-1 V-File Field Descriptionscceveveeencnnes Chreeaeen ceeeseases 4-18
4-2 CP Control Byte Bit Definitionsccvvveuenns Ceeceetessenaans 4-45
4-3 CP Response Byte Bit Definitionscvvvevunnn Cereeceaanns ... 4-47
4-4 CP Condition Byte Bit Definitionscvveuns Ceterscesennaens 4-48
4-5 Recode Output Control Signal Definitionscovieivincinnnnns 4-63
4-6 Recode Circuit Data Analysiseeveenens Ceecereeanes Ceteesenan 4-69
4-7 Continue BA Decode Resultscuunn Ceteeteeterteracntenneeas 4-182
4-8 Continue BA ACronymSceveeeerecescnsoscncnsnse Cecrcrataee .. 4-183
4-9 Sequence Control ACronymseceveeececsecnnns N 4-234
6-1 Central Processor Logic €Cardscieveeeniencerencnsesonceasannns 6-2

xiii

Advanced Scientific Computer

0-1

181ndwo) 31413U319S PAIUBAPY

124641 (686~1072~7~1)

Figure 1-0.

ASC Central Processor

&

1-1 GENERAL

SECTION I
GENERAL DESCRIPTION

This section describes the operation of the Central Processor (CP) of the
Texas Instruments Advanced Scientific Computer (ASC). It includes a brief
system overview of the ASC, a general functional block diagram description of
the CP, a physical description of the CP, plus information about the instruc-
tion set and words used in the CP. Section 4 of this manual provides a de-
tailed discussion of the CP theory of operation. Other useful charts and
data are contained in the appendices to this manual. This manual applies to
one-pipe CP configurations only.

1-2 PURPOSE

The ASC CP accesses program instructions from Central Memory, executes those
instructions, and stores the results either within the CP or back into Central
Memory. In performing this function, it also monitors program status to detect
errors, branches and conflicts, and informs the Peripheral Processor if it is
unable to continue a particular operation. The Peripheral Processor controls
the selection of programs executed by the CP.

1-3 ASC SYSTEM OVERVIEW

Besides the CP, the ASC includes the following major units:

Peripheral Processor (PP)
Central Memory System (CM)
System Clock

Disc Storage System
Magnetic Tape System

Data Communications Channel
Paper Peripheral Channels
Operators Console

Display Console

Power System

Maintenance System.

The relationship of these components is shown in figure 1-1. The CP interfaces
directly with Central Memory for instruction and operand fetching, as well as
for maintenance purposes. Initial programming sequences are determined by the
PP, which also controls CP reaction to certain status conditions and calls.

The CP, however, executes programs under its own control.

1-1 Advanced Scientific Computer

¢-1

191ndwo?) 31413UdIIS PIIUEAPY

SYSTEM
CLOCK

OPERATORS
CONSOLE

s

CARD
PUNCHES

LINE PRINTERS

TAPE
VOLUME
CATALOG
SYSTEMS

PERIPHERAL
PROCESSOR
(PP)

CENTRAL
l@——a PROCESSOR
(cP)

DISC
STORAGE
SYSTEM

DISPLAY
CONSOLE

CARD
READERS

(A) 114358

Figure 1-1.

CENTRAL
MEMORY
(CM)

ASC Simplified Block Diagram

DATA
COMMUNI- Lo IoRATA
gﬁzuﬂgi CENTRATOR
TOo PP
TO FIELD
TAPE
INTERF A
SYSTEM TERMINAL

TO PP

¢

1-4 FUNCTIONAL DESCRIPTION

Three functional units comprise the Central Processor of the ASC: Instruction
Processing Unit (IPU), Memory Buffer Unit (MBU), and Arithmetic Unit (AU).

Each unit is a layered pipeline processor utilizing small, decentralized con-
trollers. The IPU obtains instructions from Central Memory and develops oper-
and addresses. The MBU performs memory fetch and data buffering functions for
acquisition of operands. Three buffer levels in the MBU ensure a continuous
data stream for vector operations. The MBU may also receive operands directly
from the IPU. In either case, the MBU transfers the proper operands to the AU
concurrently with control instructions for processing the operands. The AU
performs the designated partial steps to satisfy the requested operation for
the two operands. The result returns to the Register File in the IPU, or to
the MBU for storage into Central Memory or for reprocessing as a new operand.
The layered pipeline construction of the CP allows an instruction or group of
two operands to be processed concurrently at each level of the pipeline, unless
the layer is reserved by a previous operand or instruction. Figure 1-2 pro-
vides a block diagram of the CP. The following paragraphs briefly describe the
function of each component in the diagram. Refer to section 4 of this manual
for a more detailed discussion of CP operation.

1-5 ADDRESS REGISTERS AND CONTROL

Four address registers control the acquisition of instruction word octets (8-
word groups) from Central Memory. These registers select the proper instruc-
tion word for processing, call up a new octet while the current one is being
processed, and provide for branch address acquisition. During indirect address-
ing, the output of the Address Modification network updates the Output Address
Register in this circuit for each new address developed by the network until

the terminal effective address is reached. The other registers maintain the
program address so that the program resumes when the effective address is
reached.

1-6 REGISTER FILE

The Register File is a memory source contained within the IPU. These registers
are loaded by program instructions with data from either memory or the AU out-
put. The file consists of six sets of eight 32-bit registers (six octets).
Each area in the file has a primary function, such as base addresses for devel-
oping effective addresses (15 words), general arithmetic use (16 words), seven
index registers, and eight vector parameter registers to define the scope of a
specific vector instruction. They may, however, be used for other processes.

1-7 INSTRUCTION FILES

Two instruction files, each containing one octet (eight words), supply a con-
tinuous source of instructions to the Instruction Register. The Address Regis-
ters and Control block controls loading and selection from these registers. It
first loads one file and begins drawing instructions from the octet in that
file. Address Control then loads the second file while the first one empties.
Consecutive addresses supply a smooth transition from one file to the next.
During indirect addressing, the effective address of an instruction from the

1-3 Advanced Scientific Computer

v-1

431ndwoy 31413Ud1S PadueApy

AU DATA | |
LEVEL o l LEVELS 2/3 LEVEL 4 LEVEL 5 | LEVEL 6
»
l DATA
I FROM
MEMORY DATA | MEMORY
REGISTIR f ADDR
FILE RGTR OPERAND , o |
- l INDEX® BASE OPERAND ADDRESS MEMORY
(6x8) * 1
l_"‘":"___,: < L I l p ' =
EF IVE A - INST. OPERAND MFMORY MEMORY =
| FECTIVE ADDRESS OF INST ERAN . A eoate
I 1 ADDRESS BUFFER
ADDRESS » CONTROL I FILE
[a}
REGISTERS z
OCTET I : o< (OPERAND
ADORESS AND DIRECT INDIRECT ADDRESS oPERAND OR ! | ADDRESS ze
—————N et~ L Ll
10 MODIF ICA— AND o y
MEMORY | CONTROL ADDR ADDR MODIFIC ADDRESS &5
l I OPERAND =N £
o
REGISTERS, gs
I s «d I mMco
a g MM
-
™ i b3 AND | AND s
I \ l REG MAB -Z-@
l | | RGTR OPCRAND OPERAND
I sTAck[® REGISTERS | REGISTERS
- INDIRECT
IADDR. FIELDS I
] '
INSTRUCT ION INSTRUC- INSTRUC— | 3PF¢|:SE;: I OP CODE 2 |
~QCTETS g1 TiON ! DECODE MODEL]
FROM FILES WORD L) (ROM)
MEZMORY REGISTER
l I I REGISTER AND
IMMEDIATE
OPERANDS
l l STORE BUFFER
OP CODE
ey o u'eRTE
LEVEL 0 LEVEL 1 l 1Py vy Fresuur b STORE
(ROM) Iir—™ sicRE ———
LEVEL 7 l . TO MEMORY
l Aau fmeu l
A
PIPELINE RESULT EF
PATH ARITHMETIC PIPELINE OUTPUT 8
CONTROL REGISTER r
4 I LEVEL 12 |
o *ROUTING OF OPERANDS IN
I l EXPONENT | FRACTION | AU CONTROLLED BY ROM
SUBTRACT ALIGN ADD MULT Accumu-| NOrRMAL- IN MBL,
LATE 1ZE |
AB/CD A |
OPERAND V4 l - > o > |
REGISTERS \ A \ | *
L . ! MAINTENANCE BUS
_—— — e — - ————

(®) 114734

I LEVELS N — 12 (VARIES WITH OPERATION)

Figure 1-2.

PATHWAY SELECT"®

TO/FROM MEMORY

Central Processor Block Diagram

~&

Address Modification block selects the output from the instruction files if the
address is currently in the files.

1-8 INSTRUCTION REGISTER

The Instruction Register receives the selected word from the instruction file
and holds it for processing. Depending on the instruction format, the register
may contain address bits, address modifiers, and operand and/or an operation
code. The register output drives instruction decode and address generation
networks.

1-9 ADDRESS MODIFICATION

When the Instruction Register specifies either direct or indexed addressing,
the Address Modification block performs the operations required to generate a
new address. This block provides for base address (from Register File) plus
displacement modification and/or addition of the contents of one of the seven
index registers in the Register File. The circuit permits direct or indirect
addressing with or without modification, or the development of an immediate
operand. Operands, direct operand addresses, and terminal operand addresses
transfer to the MBU to provide operands for the AU. If an indirect address
develops, it returns to the Output Address Register to retrieve a new instruc-
tion word for further address generation. The modification hardware includes
input registers for indexing, base address and displacement, an adder, plus a
result holding and output register.

1-10 ADDRESS AND OPERAND REGISTERS

These two registers are the IPU output registers. They provide the MBU with
either two operands, one operand and an operand address, or just one address.

1-11 IMM/REG REGISTERS

The Immediate (IMM) and Register (REG) Operand Registers receive operands from
the IPU. During vector initialization, the IMM Register also transmits the
vector parameters to the MBU Registers to set up the beginning vector condi-
tions. Once a vector operation begins, neither of these registers is used un-
til the next operation begins. Control signals generated within the MBU trans-
fer data that is in these registers to the output registers of the MBU during
scalar operations.

1-12 MEMORY ADDRESS CONTROL

This circuit supplies addresses to memory for storing results from the AU vec-
tor and store operations and for accessing new operand octets from memory for
input to the AU. During scalar operations, operand addresses are supplied from
the IPU. If the desired operand is already in the Memory Buffer File, the IPU
sends only a 4-bit address to select the output from one of the file registers.
If the operand is not in the buffer file, the IPU sends a full 21-bit address
to fetch the octet containing the operand from Central Memory and load it into
the buffer file before transferring the operand to the output register. Dur-
ing vector operations, Memory Address Control generates the address of each
octet in the vector after the address is initially loaded by the IPU.

1-5 Advanced Scientific Computer

1-13 MEMORY BUFFER FILE

‘The Memory Buffer File consists of six octet buffers plus an octet receiver/
synchronizer register. The buffers are arranged in two three-stage buffers

with the output of the final stage available to the output registers. Inputs

to the buffers may enter the final file to bypass the delay in the buffering
sequence. During scalar operations, Memory Address Control can select the out-
put from either buffer and transfer it to the MCD Operand Register. During
vector operations each buffer set supplies a stream of operands to one of the
MAB/MCD Operand Registers. Either buffer set may be modified by the result out-
put from the Arithmetic Pipeline (update) during scalars.

1-14 MAB/MCD OPERAND REGISTERS

These registers supply two operands simultaneously to the AU for processing.
The MAB Register receives register operands from the REG Register during scalar
operations, and vector operands from the buffer file during vector operations.
The MCD Register receives either immediate operands from the IMM Register or
operands from either set of the buffer file during scalar operations. During
vector operations the buffer file supplies a stream of operands to the MCD Reg-
ister.

1-15 AU CONTROL DECODE

The AU Control Decode is a Read Only Memory (ROM) that designates to the AU
which processes must be performed to accomplish the function specified by the
Op Code. The decode circuit also supplies control signals to aid in selection
of operands for the MAB/MCD registers.

1-16 BUFFER UPDATE AND STORE

The buffer update provides temporary retention of an octet of AU output. This
octet may change the contents of the buffer file, or may be stored into Central
Memory when the AU begins to produce results for a new octet.

1-17 AB/CD OPERAND REGISTERS

These registers are the input phase to the arithmetic pipeline. They receive
two operands from the MBU and transfer them to the pipeline when the pipeline
segment that performs the first operational step becomes available. Other in-
puts to these registers come from within the AU to provide a feedback path.

1-18 PIPELINE PATH CONTROL

This circuit follows the directions of the AU Control ROM in the MBU to perform
the gating and sequencing functions required to develop a complete process in
the pipeline.

1-19 ARITHMETIC PIPELINE

The Arithmetic Pipeline is a segmented arithmetic processor whose sequence is
determined by the MBU ROM signals. Six segments of the pipe perform indepen-
dent operations on up to six different sets of operands simultaneously. Each

1-6 Advanced Scientific Computer

i%
segment is a basic function that, combined in a specific order with other seg-

ments, performs arithmetic operations from scalar addition to complex vector
operations on both fixed and floating point operands.

1-20 EF OUTPUT REGISTER

The EF Output Register receives a result from any segment of the pipeline, ex-
cept the multiplication segment (output of multiplier is two partial products
that must be added to produce a result). The output of this register may re-
turn to the Register File in the IPU (scalar operations), may update the data
in th§ Memory Buffer File, or may be stored in memory (vectors and store opera-
tions).

1-21 GENERAL CHARACTERISTICS

Table 1-1 Tlists some of the general characteristics of the ASC Central Proces-
sor.

1-22 CP_INSTRUCTION SET

The ASC Central Processor performs scalar and vector operations through a pow-
erful array of instructions. The instruction set includes Load and Store func-
tions, arithmetic scalar operations, scalar logical instructions, and branching
capabilities. Two special instructions, VECT and VECTL, expand the ASC in-
structions into the vector mode by loading a new set of parameters into the IPU
from the Vector Parameter File. The set of vector parameters includes a vector
operation code. The function of the vector operation is defined by an addi-
tional set of vector instructions that can be loaded only through this vector
mode. Table 1-2 lists the instructions in the normal ASC instruction set with
their mnemonic code and operation code; figure 1-3 supplies a mapping of scalar
Op Codes. Table 1-3 and figure 1-4 contain similar information for the vector
mode instructions. Refer to the ASC programming manuals for a more detailed
explanation of the uses of each instruction.

1-7 Advanced Scientific Computer

Table 1-1.

Central Processor General Characteristics

Item

Characteristic

Construction

Word Size

Instruction word size

Memory address size:

Octet
Word

Memory transfer size

Number of memory paths

Operation Modes

Control:

Initiate/Terminate
Operating

CP Clock Period

Processing Rate

Layered pipeline

16 bits (halfword) -fixed point only

32 bits (single word)-fixed or floating point
64 bits (doubleword) -floating point only

32 bits (8 Op Code, 4 R-field, 4 T-field,
4 M-field, 12 N-field)

21 bits (sent to CM)
24 bits (internal to CP)

1 octet (256 bits)

3: IPU (instruction fetch), MBU (operand
fetch/store) AU (maintenance - Load/Store
Details)

2: Scalar and Vector

Through CR File in the Peripheral Processor
Individual pipe level controllers in CP

65 nanoseconds

1 result per clock as an upper limit

1-8

Advanced Scientific Computer

a2

Table 1-2. Scalar Instruction Set

hrenonic instruction Opegation | grerane
ST Store arithmetic register, single length 24 R,@BN,X
ST Store base register, single length 28 R,@N,X
ST Store index register or vector parameter 2C R,@N,X
register, single length
STLL Store arithmetic left halfword into memory 25 R,@N,X
left halfword, indexed
STRL Store arithmetic register right half into 26 R,@N,X
memory left half, indexed
STRR Store arithmetic register right half into 2D R,@N,X
memory right half, indexed
STLR Store arithmetic register left half into 29 R,6BN,X
memory right half, indexed
SPS Store program status word 22 @GN, X
STD Store arithmetic register, double length 27 R,@N,X
STZ Store zero, single length 20 @N,X
STZH Store zero, half length 21 @N,X
STZD Store zero, double length 23 @N,X
STN Store negative, single length 34 R,@=N,X
STNH Store negative, half length 35 R,@=N,X
STNF Store negative, floating point 36 R,@=N,X
STND Store negative, double length 37 R,0=N,X
STO Store ones complement 2E R,@=N,X
STOH Store ones complement, half length 2A R,@=N,X
STF ;Egre base register file, registers 1-7]6, 2B M,@N,X
STF af?re base register file, registers 8-F]6, 2B M,@N,X

1-9 Advanced Scientific Computer

O

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
STF Store arithmetic register file, registers 2B M,@N,X
10—1716, M=2

STF Store arithmetic register file, registers 2B M,@N,X
18-1F, ., M=3

16

STF Store index register file, registers 2B M,@N,X

20-27,., M=4
16

STF Store vector parameter register file, reg- 2B M,@N,X

isters 28-2F,., M=5
16

STFM Store all register files, registers]'2F16 2F @N,X

L Load arithmetic register single length 14 R,8=N,X
word

L Load base register single length 18 R,@=N,X

L Load index register or vector parameter 1C R,@=N,X
register single length

LLL Load arithmetic register left halfword from 15 R,0=N,X
memory left halfword, indexed

LRL Load memory left halfword, indexed, into 10 R,8=N,X
arithmetic register right halfword

LRR Load memory right halfword, indexed, into 1D R,@=N,X
arithmetic register right halfword

LLR Load memory right halfword, indexed, into 19 R,@=N,X
arithmetic register left halfword

LD Load arithmetic register double length 17 R,0=N,X
word

LI Load immediate into arithmetic register 54 R,I.X
single length

LI Load immediate into index register, or 5C R,I,X
vector parameter register single length

LIH Load immediate into arithmetic register 55 R,I,X
half length

LM Load magnitude fixed point single length - 3C R,@=N,X

arithmetic register

1-10 Advanced Scientific Computer

&

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
LMH Load magnitude fixed point half length - 3D R,@=N,X
arithmetic register

LMF Load magnitude floating point single 3E R,@=N,X
length - arithmetic register

LMD Load magnitude floating point double 3F R,0=N,X
length - arithmetic register

LN Load negative fixed point single length 30 R,@=N,X
(load twos complement) arithmetic reg-
ister

LNH - Load negative fixed point half length - 31 R,@=N,X
arithmetic register

LNF Load negative floating point single 32 R,0@=N,X
length - arithmetic register

LND Load negative floating point double 33 R,@=N,X
length - arithmetic register

LNM Load negative magnitude fixed point sin- 38 R,@=N,X
gle length - arithmetic register

LNMH Load negative magnitude fixed point half 39 R,@=N,X
length - arithmetic register

LNMF Load negative magnitude floating point 3A R,0=N,X
single length - arithmetic register

LNMD Load negative magnitude floating point 3B R,0=N,X
double length - arithmetic register

LF Load base register file, registers]'716’ 1B M,@N,X
M=0

LF Load base register file, registers 8-F]6, 1B M,GN,X
M=1

LF Load arithmetic register file, registers 1B M,6N,X
10-17, ., M=2

16 ,

LF Load arithmetic register file, registers 1B M,BN,X

18-1F, ., M=3
16

LF Load index register file, registers 1B M,@N,X

20"27] 6) M=4

1-11 Advanced Scientific Computer

a2

Table 1-2. Scalar Instruction Set (Continued)
Mnemonic . Operation Operand
Code Instruction Code Format
LF Load vector parameter register file, reg- 1B M,@N,X
isters 28-2F]6, M=5

LFM Load all register files 1F @N,X

XCH Exchange - arithmetic register 1A R,@N,X

LAM Load arithmetic mask 12 @=N,X

LAC Load arithmetic exception condition 13 @=N,X

LLA Load look ahead 16 I

Lo Load arithmetic register with ones com- 1E R,8=N,X
plement, single length

A Add to arithmetic register, fixed point, 40 R,8=N,X
single length

A Add to base register, fixed point, sin- 60 R,0=N,X
gle length

A Add to index or vector parameter regis- 62 R,0@=N,X
ter, fixed point, single length

Al Add immediate to arithmetic register, 50 R,I,X
fixed point, single length

Al Add immediate to base register, fixed 70 R,I,X
point, single length

Al Add immediate to index or vector param- 72 R,I,X
eter register, fixed point, single length

AH Add fixed point, half Tength - arithmetic 41 R,8=N,X
register

AIH Add immediate fixed point, half length - 51 R,I,X
arithmetic register

AF Add floating point, single length - 42 R,0=N,X
arithmetic register

AFD Add floating point, double length - 43 R,@=N,X

arithmetic register

Advanced Scientific Computer

&

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . | Operation Operand
Code Instruction Code Format
AM Add magnitude fixed point, single length - 44 R,0=N,X
arithmetic register

AMH Add magnitude fixed point, half length - 45 R.@=N,X
arithmetic register

AMF Add magnitude floating point, single 46 R,0=N,X
length - arithmetic register

AMFD Add magnitude floating point, double 47 R,0=N,X
length - arithmetic register

S Subtract fixed point, single length - 48 R,0=N,X
arithmetic register

SI Subtract immediate fixed point, single 58 R,I,X
length - arithmetic register

SH Subtract fixed point, half length - 49 R,@=N,X
arithmetic register

SIH Subtract immediate fixed point, half 59 R,I,X
length - arithmetic register

SF Subtract floating point, single length - 4A R,0@=N,X
arithmetic register

SFD Subtract floating point, double length - 4B R,0=N,X
arithmetic register

SM Subtract magnitude fixed point, single 4C R,@=N,X
length - arithmetic register

SMH Subtract magnitude fixed point, half 4D R,@=N,X
length - arithmetic register

SMF Subtract magnitude fixed point, half 4E R,8=N,X
length - arithmetic register

SMFD Subtract magnitude floating point, dou- 4F R,@=N,X
ble length - arithmetic register

M Multiply fixed point, single length - 6C R,@=N,X

arithmetic register

1-13 Advanced Scientific Computer

O

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
M Multiply base register 68 R,@=N,X
M Multiply index or vector parameter reg- 6A R,@=N,X
ister

MI Multiply immediate fixed point, single 7C R,I,X
length - arithmetic register

MI Multiply immediate to base register 78 R,I,X

MI Multiply immediate to index or vector 7A R,I,X
parameter register

MH Multiply fixed point, half length - 6D R,@=N,X
arithmetic register

MIH Multiply immediate fixed point, half 7D R,I,X
length - arithmetic register

MF Multiply floating point, single length - 6E R,8=N,X
arithmetic register

MFD Multiply floating point, double length - 6F R,@=N,X
arithmetic register

D Divide fixed point, single length - 64 R,0=N,X
arithmetic register

DI Divide immediate fixed point, single 74 R,I,X
length - arithmetic register

DH Divide fixed point, half length - arith- 65 R,0=N,X
metic register

DIH Divide immediate fixed point, half 75 R,I,X
length - arithmetic register

DF Divide floating point, single length - 66 R,@=N,X
arithmetic register

DFD Divide floating point, double length - 67 R,0=N,X
arithmetic register

AND AND - arithmetic register EO R,@=N,X

1-14 Advanced Scientific Computer

&

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
ANDI Immediate AND - arithmetic register FO R,I,X
OR OR - arithmetic register E4 R,@=N,X
ORI Immediate OR - arithmetic register F4 R,I,X
XOR Exclusive OR - arithmetic register E8 R,0=N,X
XORI Immediate Exclusive OR - arithmetic reg- F8 R,I,X
ister

EQC Equivalence - arithmetic register EC R,@=N,X

EQCI Immediate equivalence - arithmetic reg- FC R,I,X
ister

ANDD AND - arithmetic register (double E1 R,@=N,X
length)

ORD OR - arithmetic register (double length) ES R,08=N,X

XORD Exclusive OR - arithmetic register (dou- E9 R,@=N,X
ble length)

EQCD Equivalence - arithmetic register (dou- ED R,0=N,X
ble length)

SA Arithmetic shift, fixed point, single co R,I,X
length - arithmetic register

SAH Arithmetic shift, fixed point, half C1 R,I,X
length - arithmetic register

SAD Arithmetic shift, fixed point, double C3 R,I,X
length - arithmetic register

SL Logical shift, single length - arith- C4 R,I,X
metic register

SLH Logical shift, half length - arithmetic C5 R,I,X
register

SLD Logical shift, double length - arith- c7 R,I,X

metic register

1-15 Advanced Scientific Computer

&

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
SC Circular shift, single length - arith- cC R,I,X
metic register

SCH Circular shift, half length - arithmetic cD R,I,X
register

SCD Circular shift, double length - arith- CF R,I,X
metic register

RVS Bit reversal, single length - arithmetic Cé6 R,I,X
register

C Compare fixed point, single length - c8 R,8=N,X
arithmetic register

c Compare index register, single length CE R,@=N,X

CI Compare immediate, fixed point, single D8 R,I,X
length - arithmetic register

CI Compare immediate, index register, sin- DE R,I,X
gle length

CH Compare fixed point, half length - C9 R,@=N,X
arithmetic register

CIH Compare immediate, fixed point, half D9 R,I,X
length - arithmetic register

CF Compare floating point, single length - CA R,@=N,X
arithmetic register

CFD Compare floating point, double length - CB R,@=N,X
arithmetic register

CAND Compare logical AND - arithmetic register E2 R,8=N,X
(single length)

CANDI Compare immediate logical AND - arith- F2 R,I,X
metic register (single length)

COR Compare logical OR, single length - E6 R,@=N,X
arithmetic register

CORI Compare immediate logical OR, single F6 R,I.X

length - arithmetic register

1-16 Advanced Scientific Computer

O

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
CANDD Compare logical AND, double length - E3 R,@=N,X
arithmetic register

CORD Compare logical OR, double length - E7 R,8=N,X
arithmetic register

1BZ Increment, test, and branch on zero - 88 R,8=N,X
arithmetic register

IBZ Increment, test index, and branch on 8C R,@=N,X
zero

IBNZ Increment, test and branch on non-zero - 89 R,0=N,X
arithmetic register

IBNZ Increment, test index, and branch on 8D R,@=N,X
non-zero

DBZ Decrement, test, and branch on zero - 8A R,08=N,X
arithmetic register

DBZ Decrement, test index, and branch on 8E R,@=N,X
zero

DBNZ Decrement, test, and branch on non- 8B R,@=N,X
zero - arithmetic register

DBNZ Decrement, test index, and branch on 8F R,@=N,X
non-zero

ISE Increment, test, and skip on equal - 80 R,@=N,X
arithmetic register

ISNE Increment, test, and skip on not equal - 81 R,8=N,X
arithmetic register

DSE Decrement, test, and skip on equal - 82 R,@=N,X
arithmetic register

DSNE Decrement, test, and skip on not equal - 83 R,@=N,X
arithmetic register

BCLE Branch on arithmetic register less than 84 R,R,N

or equal to

1-17 Advanced Scientific Computer

O

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
BCLE Branch on index less than or equal to 86 R,R,N
BCG Branch on arithmetic register greater 85 R,R,N

“ than
BCG Branch on index greater than 87 R,R,N
PSH Push word - arithmetic register 93 R,@N,X
PUL Pull word - arithmetic register 97 R,BN,X
MOD Modify - arithmetic register 9F R,@N,X
BLB Branch and load register with PC 98 R,8=N,X
BLX Branch and load index register or vec- 99 R,8=N,X
tor parameter register
LEA Load effective address - index register 56 R,@=N,X
LEA Load effective address into base regis- 52 R,@=N,X
ter
INT Interpret - arithmetic register 92 R,8=N,X
XEC Execute 96 @=N,X
FLFX Convert floating point single length to AO R,BN,X
fixed point single length - arithmetic
register
FLFH Convert floating point single length to Al R,@N,X
fixed point half length - arithmetic
register
FDFX Convert floating point double length A2 R,@N,X
fixed point single length
FXFL Convert fixed point single length to A8 R,GN,X
floating point single length
FXFD Convert fixed point single length to AA R,@N,X
floating point double length
FHFL Convert fixed point half length to A9 R,@N,X

floating point single length

Advanced Scientific Computer

O

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic . Operation Operand
Code Instruction Code Format
FHFD Convert fixed point half length to AB R,@N,X

floating point double Tength
NFX Normalize fixed point single length - AC R,GN,X
arithmetic register
NFH Normalize fixed point half length - AD R,@N,X
arithmetic register
. . Assembler
Mnemonic . Operation . Operand
Code Instruction Code Supp!1es Format
R Field
MCP Monitor call and proceed 90 I,X
MCW Monitor call and wait 94 I,X
VECT Vector BO R =1 @N, X
VECTL Vector after loading vector BO R=0 @N,X
file

Compare Code Branch Operation Code = 91
BCC Branch on compare code 91 M,0=N,X
NOP Take next instruction 91 R=20 @=N,X

Comment: Execution of data values or indirect address constants will have the
effect of a no-operation if the first four bits of the word (operation code)

are zeros.
BE (R) = (o) 91 R=1 @=N,X
BG (R) (e) 91 R=2 @=N,X
BGE (R) («) 91 R=3 @=N,X
BL (R) (a) 91 R=4 @=N,X
BLE (R) (o) 91 R=5 @=N,X
BNE (R) # (@) 91 R=26 @=N,X
B Unconditional branch R=17 @=N,X

1-19 Advanced Scientific Computer

R

Table 1-2. Scalar Instruction Set (Continued)

e opepstion | Sippties | Gperand
Logical Branch Operation Code = 91
BCZ A11 bits are zero 91 R=1 @=N,X
BCO A11 bits are one 91 R=2 @=N,X
BCNM Not mixed 91 R=3 @=N,X
BCM Mixed zeros and ones 91 R=4 @=N,X
BCNO Not all ones 91 R=25 @=N,X
BCNZ Not all zeros 91 R=6 @=N,X
Result Code Branch Operation Code = 95
BRC Branch on result code 95 M,0=N,X
BZ (R)y =0 95 R=1 8=N,X
BPL (R) >0 95 R=2 @=N,X
BZP (Ry20 95 R=3 @=N,X
BMI (R)< 0 95 R=4 @=N,X
BZM (Ry <0 95 R=5 @=N,X
BNZ (R)y # 0 95 R=6 @=N,X
Logical Result Branch Operation Code = 95
BRZ A11 bits are zero 95 R=1 @=N,X
BRO A11 bits are one 95 R=2 @=N,X
BRNM Not mixed 95 R=3 @=N,X
BRM Mixed zeros and ones 95 R=14 @=N,X
BRNO Not all ones 95 R=5 @=N,X
R=26 @=N,X

BRNZ Not all zeros 95

1-20 Advanced Scientific Computer

&

Table 1-2. Scalar Instruction Set (Continued)

. . Assembler
Mnemonic . Operation - Operand
Code Instruction Code Sgpg};$z Format

Arithmetic Exception Branch Operation Code = 9D

BAE Branch on arithmetic exception 9D M,0=N,X

BU Floating point EXP underflow 9D R=1 @=N,X

BO Floating point EXP overflow 9D R=2 @=N,X

BUO Floating point EXP underflow 9D R=3 @=N,X
or overflow

BX Fixed point overflow 9D R=24 @=N,X

BXU Fixed point overflow or float- 9D R=25 @=N,X
ing EXP underflow

BXO Fixed point overflow or float- 9D R=6 @=N,X
ing EXP overflow

BXUO Fixed point overflow or float- 9D R =7 @=N,X
ing EXP overflow or underflow

BD Divide check 9D R=28 @=N,X

BDU Divide check or floating point 9D R=29 @=N,X
EXP underflow

BDO Divide check or floating point 9D R=A @=N,X
EXP overflow

BDUO Divide check or floating point 9D R=8B @=N,X
EXP underflow or overflow

BDX Divide check or fixed point 9D R=2C @=N,X
overflow

BDXU Divide check or fixed point 9D R=D @=N,X
overflow or floating point EXP
underflow

BDXO Divide check or fixed point 9D R=E @=N,X
ocverflow or floating point EXP
overflow

BDXUO Divide check or fixed point 9D R=F @=N,X

overflow or floating point EXP
overflow or underflow

1-21 Advanced Scientific Computer

O

Table 1-2. Scalar Instruction Set (Continued)

. . Assembler
Mnemonic . Operation : Operand
Code Instruction Code Sgpg};$§ Format

Branch on Execute Condition Operation Code = 9C

L]
—

BXEC Branch on Execute branch con- 9C R
dition true or odd

@N,X

1-22 Advanced Scientific Computer

€e-1

491ndwo? a1413Ua19S PaIUEAPY

OP BITS 4-7

OP BITS 0-3

1 2 3 4 S © 7 8 9 A B C D E F

LRL STz LN A Al A Al ISE MCP FLFX | VECT SA AND ANDI
STZH | LNH AH AlH ISNE BCC FLLFH SAH ANDD

LAM SPS LNF AF LEA A Al DSE INT FDFX CAND | CANDI
LAC STZD | LND AFD DSNE | PSH SAD CANDD
L ST STN AM L D DI BCLE | MCW SL OR ORI
LLL STLL | STNH | AMH LIH DH DIH BCG BRC SLH ORD
LLA STRL | STNF | AMF LEA DF BCLE | XEC RVS COR CORI
LD STD STND | AMFD DFD BCG PUL SLD CORD
L ST LNM S St M Ml 1BZ BLB FXFL C Cl XOR XORI1
LLR STLR | LNMH | SH SIH IBNZ BLX FHFL CH CIH XORD
XCH STOH | LNMF | SF M MI DBZ FXFD CF
LF STF LNMD | SFD DBNZ FHFD CFD
L ST LM SM L M MI 1BZ BXEC | NFX sC EQC EQCI
LRR STRR LMH SMH MH MIH IBNZ BAE NFH SCH EQCD
Lo STO LMF SMF MF DBZ C Cl
LFM STFM | LMD SMFD MFD DBNZ MOD SCD

Figure 1-3.

Scalar Op Code Map

R

Table 1-3. Vector Instruction Set

Mnggggic Function Opeggg;on
VA Vector Add, fixed point, single length 40
VAH Vector Add, fixed point, half length ' 41
VAF Vector Add, floating point, single length 42
VAFD Vector Add, floating point, double length 43
VAM Vector Add magnitude, fixed point, single length 44
VAMH Vector Add magnitude, fixed point, half length 45
VAMF | Vector Add magnitude, floating point, single length 46
VAMFD Vector Add magnitude, floating point, double length 47
N Vector Subtract, fixed point, single length 48
VSH Vector Subtract, fixed point, half length 49
VSF Vector Subtract, floating point, single length 4A
VSFD Vector Subtract, floating point, double length 4B
VSM Vector Subtract magnitude, fixed point, single length 4C
VSMH Vector Subtract magnitude, fixed point, half length 4D
VSMF Vector Subtract magnitude, floating point, single 4E

length
VSMFD Vector Subtract magnitude, floating point, double 4F
length
VM Vector Multiply, fixed point, single length 6C
VMH Vector Multiply, fixed point, half length 6D
VMF Vector Multiply, floating point, single length 6E
VMFD Vector Multiply, floating point, double length 6F
VDP Vector dot product, fixed point, single length 68
VDPH Vector dot product, fixed point, half length 69

1-24 Advanced Scientific Computer

a2

Table 1-3. Vector Instruction Set (Continued)

Mnggggic Function Opeggglon
VDPF Vector dot product, floating point, single length 6A
VDPFD Vector dot product, floating point, double length 6B
VD Vector Divide, fixed point, single length 64
VDH Vector Divide, fixed point, half length 65
VDF Vector Divide, floating point, single length 66
VDFD Vector Divide, floating point, double length 67
VSA Vector Shift arithmetic, fixed point, single length co
VSAH Vector Shift arithmetic, fixed point, half Tength C1
VSAD Vector Shift arithmetic, fixed point, double length C3
VSL Vector Shift logical, single length C4
VSLH Vector Shift arithmetic, half length C5
VSLD Vector Shift arithmetic, double length C7
VsSC Vector Shift circular, single length cC
VSCH Vector Shift circular, half length CD
VSCD Vector Shift circular, double Tength CF
VAND Vector logical AND, single length EO
VANDD Vector logical AND, double Tength El
VOR Vector logical OR, single length E4
VORD Vector logical OR, double length E5
VXOR Vector logical Exclusive OR, single length ES
VXORD Vector logical Exclusive OR, double length E9
VEQC Vector logical Equivalence, single length EC
VEQCD Vector logical Equivalence, double length ED

1-25

Advanced Scientific Computer

R

Table 1-3. Vector Instruction Set (Continued)

Mnemonic . Operation
Code Function Code
VL Vector search for largest arithmetic element, fixed 50
point, single length

VLH Vector search for largest arithmetic element, fixed 51
point, half length

VLF Vector search for largest arithmetic element, float- 52
ing point, single length

VLFD Vector search for largest arithmetic element, float- 53
ing point, double length

VLM Vector search for largest magnitude, fixed point, sin- 54
gle length

VLMH Vector search for largest magnitude, fixed point, half 55
length

VLMF Vector search for largest magnitude, floating point, 56
single length

VLMFD Vector search for largest magnitude, floating point, 57
double length

VSS Vector search for smallest arithmetic element, fixed 58
point, single length

VSSH Vector search for smallest arithmetic element, fixed 59
point, half length

VSSF Vector search for smallest arithmetic element, float- 5A
ing point, single length

VSSFD Vector search for smallest arithmetic element, float- 5B
ing point, double length

VSSM Vector search for smallest magnitude, fixed point, 5C
single length

VSSMH Vector search for smallest magnitude, fixed point, 5D
half length

VSSMF Vector search for smallest magnitude, floating point, 5E
single length

VSSMFD Vector search for smallest magnitude, floating point, 5F

double length

1-26 Advanced Scientific Computer

~&

Table 1-3. Vector Instruction Set (Continued)

Mngggzic Function Opegzglon
VC Vector arithmetic comparison, fixed point, single DO
length
VCH Vector arithmetic comparison, fixed point, half D1
length
VCF Vector arithmetic comparison, floating point, half D2
length
VCFD Vector arithmetic comparison, floating point, dou- D3
ble length
VCAND Vector Logical Comparison using AND, single length E2
VCANDD Vector Logical Comparison using AND, double Tength E3
VCOR Vector Logical Comparison using OR, single length E6
VCORD Vector Logical Comparison using OR, double length E7
VMG Vector Merge, single words D8
VMGH Vector Merge, halfwords D9
VMGD Vector Merge, doublewords DB
Vo Vector order single words, fixed point D4
VOH Vector order halfwords, fixed point D5
VOF Vector order single words, floating point D6
VOFD Vector order doublewords, floating point D7
VPP Vector peak, fixed point, single length DC
VPPH Vector peak, fixed point, halflength DD
VPPF Vector peak, floating point, single length DE
VPPFD Vector peak, floating point, double length DF
VFLFX Vector floating to fixed point conversion, single A0
length '
VFDFX Vector floating to fixed point conversion, double to A2

single lengths

1-27 Advanced Scientific Computer

a2

Table 1-3. Vector Instruction Set (Continued)

Mnemonic . Operation
Code Function Code
VFLFH Vector floating to fixed point comparison, single to Al

half lengths
VFXFL Vector fixed to floating point conversion, single A8
lengths
VFHFL Vector fixed to floating point conversion, half to A9
single lengths
VFXFD Vector fixed to floating point conversion, single to AA
double lengths
VFHFD | Vector fixed to floating point conversion, half to AB
double lengths
VNFX Vector normalize, fixed point, single length AC
VNFH Vector normalize, fixed point, half length AD
VSEL Select single words from vector A BO
VSELH Select halfwords from Vector A B1
VSELD Select doublewords from Vector A B3
VREP Replace single words in Vector c B8
VREPH Replace halfwords in Vector [B9
VREPD Replace doublewords in Vector T BB

1-28 Advanced Scientific Computer

62-1

133ndWoY 31413Ud19S PIJUEAPY

OP BITS 4-7

OP BITS 0-3

a4) 6 7 A B8 C D E
o VA viL VFLFX VSEL VSA vC VAND

' VAH VLH VFLFH VSELH VSAH VCH VANDD
2 VAF VLF VFDF X VCF VCAND
3 VAFD VLFD VSELD VSAD VCFD VCANDD
4 VAM vLM vD vsL \"J¢] VOR

Y VAMH VLMH VDH VSLH VOH VORD
6 VAMF VLMF VDF VOF VCOR
7 VAMFD| VLMFD VDFD vsSLD VOFD VCORD
8 VS VvSS VDP VFXFL VREP VMG VXOR
9 VSH VSSH VDPH VFHFL VREPH VMGH VXORD
A VSF VSSF VDPF VFXFD

8 VSFD VSSD VDPFD VFHFD VREPD VMG

[VSM VSSM vM VNFX vCcs vPP VEQC
[o) VSMH VSSMH VMH VNFH VCSH VPPH VEQCD
E VSMF VSSMF VMF VPPF

F VSMFD| VSSMFD| VMFD VvCsD VPPFD

Note: Blank Boxes represent illegal Op Codes.

Figure 1-4.

Vector Op Code Map

a2

1-23 INSTRUCTION FORMAT

The instruction word of the Central Processor contains 32 bits and is divided
into five fields (see figure 1-5):

. Bit Field .
Field Name . Positions Size Function
oP 0-7 8 Operation Code
R 8-11 4 Register address
T 12-15 4 Address modifier tag
M 16-19 4 Base address designator
N 20-31 12 Displacement address
A}
o 4 8 12 16 20 24 28 31
Ho Hy Hp Hay Hy, Hg Heg Hy

HEXADECIMAL CHARACTER

Figure 1-5. ASC Instruction Word Format
o Op-Field. The Op-Field specifies the machine instruction to be
executed.

¢ R-Field. The R-Field addresses one of 16 registers from the arith-
metic, base, or index register group.

e T-Field. The T-Field is an address modifier tag that has the fol-
Towing interpretation:

. Virtual Address, o,
T Addressing Type of Memory Operand
0 Direct address N + (M)
1-7 Indexed address N+ (M) + (T)
8 Indirect (N + (M)
9-F Indexed indirect (N+ (M) + (T -8))
address

A symbol or expression enclosed by parentheses () represents "the
contents of."

The T-field (figure 1-6) may be decomposed into an I-bit and an
X-field where the most significant I-bit designates indirect ad-
dressing and the 3-bit X-field specifies one of seven index reg-
jsters used in the indexing operation. The index registers are
physically assigned to register file address locations 21 through
27 (hexadecimal%. A special set of index instructions are used to
load, store, modify, and test the index registers.

1-30 Advanced Scientific Computer

H3

1—
BIT X—-FIELD

T-FIELD

Figure 1-6. T-Field Subdivision

Displacement indexing is provided such that the indexing operation
is compatible with word size; i.e., the index registers are auto-
matically aligned according to word size. If an index register
contains the value K, the Kth element of an array is accessed,
whether it is a halfword, singleword, or doubleword.

M-Field. The M-field is a base register designator. It is used

to extend the addressing range capability of the ASC to a potential
16.7 million words. The M-field selects one of fifteen 24-bit base
registers to be added to the N-field displacement before indexing
or indirect addressing. No base addressing is used when M equals O.

N-Field. The N-field is the address displacement relative to the
base address contained in M.

The M- and N-fields also may be interpreted as immediate operands when immed-
jate instructions are specified by the operation code.

1-24 DATA FORMATS

Four data format representations may be used in the ASC:

SIGN

Fixed point, single length, 32-bit word (see figure 1-7).

MsB

FIXED POINT SIGNED INTEGER

of 1+

Figure 1-7. 32-bit, Fixed Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Negative numbers are represented in twos complement notation. The
binary point is to the right of the least significant bit (LSB),
particularly for multiplication or division. The result after ad-
dition is the same as though two binary fractions were added.

1-31 Advanced Scientific Computer

o Fixed point, half length, 16-bit word (two half length words are
shown in figure 1-8).

SIGN

SIGN _\ Ms8 Ls8 ’4——_»153 '/—— Ls8

b4 SIGNED INTEGER * SIGNED INTEGER

o 1 2 . . . 16 17 18 31

Figure 1-8. 16-bit, Fixed Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Negative numbers are represented in twos complement notation. The
binary point is to the right of the LSB. Numbers are in fixed
point signed integer notation.

0 Floating point, single length, 32-bit word (see figure 1-9).

Ls8

SIGN —\‘ /-—— MsB

BIASED EXPONENT FRACTION

1 . . . 7 8 9 . . . 31

Figure 1-9. 32-bit, Floating Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Sign and magnitude representation is used for the fractional por-
tion, bits 0, 8 through 31. The binary point is to the left of
the MSB of the fraction (between bits 7 and 8).

The biased hexadecimal exponent has the range 00]6 to 7F16’ which

covers the base 16 exponent range 16'64 to 16+63.

If the value 40 hex is subtracted from the biased exponent, a num-
ber is obtained which in signed integer twos complement notation
(sign in bit position 1) can be converted to its equivalent deci-
mal value. Sixteen raised to this decimal power gives a number
which when multiplied by the fraction produces the number that was
represented in floating point notation.

Examples:
Floating point Decimal value
4110 0000 ~(1716) x 161 =1
4210 0000 (1/16) X 162 =16
C110 0000 -(1/716) X 161 = -

1-32 Advanced Scientific Computer

&

Floating point Decimal value

7FFO 0000 (15/16) X 1663

0010 0000 (1/16) X 16-64 = 16-65

By definition:

0000 0000 zZero

7FFF FFFF +

FFFF FFFF - @

7F00 0000 Indefinite (machine generated)
XX00 0000 Indefinite (dirty zero)

e Floating point, double length, 64-bit word (see figure 1-10).

SIGN MsB

+ | BIASED EXPONENT FRACTION

°c 12 7809 . .. A

LS8

FRACTION

Figure 1-10. 64-bit, Floating Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Sign and magnitude representation is used for the fractional por-
tion, bits 0, 8 through 63. The binary point is to the left of
the MSB of the fraction (between bits 7 and 8).

The biased hexadecimal exponent has the range 0016 to 7F16’ which

covers the base sixteen exponent range 16'64 to 16+63.

Subtracting the value 40,,. from the biased exponent yields a num-
ber which, in signed intéger twos complement notation (sign in bit
position 1), can be converted to its equivalent decimal value.
Sixteen raised to this power gives a number which when multiplied
by the fraction produces the number that was represented in float-
ing point notation.

1-25 PHYSICAL DESCRIPTION

The ASC Central Processor in a one-pipe configuration is housed in a series of
eight vertical logic and service columns. Figure 1-11 illustrates a typical
layout for these columns; their actual arrangement may be changed to meet the
physical requirements of the particular site. Each vertical logic column (IPU,
MBU or AU) contains a three motherboard chassis capable of accepting up to 66
logic cards. Three other vertical columns containing mounting space for power

1-33 Advanced Scientific Computer

1PU CENTRAL AU AU AU
LOGIC SERVICE LOGIC POWER SERVICE
COLUMN COLUMN COLUMN SUPPLIES COLUMN

MBU
LOGIC
COLUMN

1PU
POWER
SUPPLIES

MBU
POWER
SUPPLIES

(A) 115135

Figure 1-11. Typical ASC Central Processor One-Pipe Configuration

supplies provide the dc power requirements for their respective CP unit. Be-
tween the three main logic columns is a service column that contains the con-
nector panels for the cable connections between the logic columns. In addition
to this central service column, other non-logic service columns provide elec-
trical output busses and water input plumbing for the CP cooling system.

1-26 COOLING SYSTEM

The Central Processor cooling system consists of a combination of forced air

and circulated, cooled water to dissipate heat generated by the logic circuits.
This cooling system is represented schematically in figure 1-12. The cold

plate between each set of logic cards is a copper plate with small tubes run-
ning through it. Cooled water pumped through these tubes absorbs heat from the
air surrounding the cold plate and carries the heat away from the logic card
area to a heat exchanger. The heat exchanger releases the heat to the surround-
ing air and returns the cooled water to the logic chassis to complete the cycle.
A blower assembly in each logic column aids cooling by circulating room temper-
ature air past the logic cards.

1-27 LOGIC CIRCUITS
Central Processor logic is implemented on 9-1/2 inch by 7-1/2 inch printed cir-

cuit boards using Emitter Coupled Logic (ECL) integrated circuit packages. A
272-pin connector on one end of the circuit board mates with a corresponding

1-34 Advanced Scientific Computer

— —
coLD
PLATE
] ?] WARM
WATER
RETURN
- l
HEAT
EXCHANGER
| |] LOGIC
CARD \\\\ COOLED
WATER
TO LOGIC
CHASSIS
LOGIC _ 7\
CARD - [PUMP]

CIRCULATED §§$
AIR
(A) 115136 @

FAN

Figure 1-12. Schematic Representation of CP Cooling System

receptacle in one of three motherboards in a vertical logic column. The mother-
board supplies inter-chassis wiring connections plus a bus of common signals,
bias voltages and ground. Figure 1-13 illustrates the different logic circuits
in the ECL logic set. Table 1-4 defines the function of each of these logic
circuits. Refer to section VI, Parts Listing, of this manual for a listing of

the logic cards by chassis location.

Advanced Scientific Computer

[

TR
EL PIN EL PIN
1 5 12
2 6 a
A 8 9 2
4 9 10 1
5 7 1" 16
€ 1 12 14
13 13
]
A 8"{ N 4
9 4
7
12 11 —{
5 7
12 4
— 13 —4—di
13
4 14 44
16 4+a 42
N — 16
14 4 1 -4
A 1 heed
8 98
] 7 - s
8 —4+— N 7 8 —
9 ——vp 9 —
11—
- - 4
12~4— A s IS8
13
13 4 N] a
14 — 2
Ll 16 —
1 6 ~4—1 Y —
1 L__LA_ 2
48 3N
e 6 N
° N 5
1" 7
16 A0 ¢ —
9 N
NH 1"
-
12
= -
'z - 13 N’—'
14
tod N -
16 e ed
11 A
1 N
- i
1 —
GC Q3
(8) 109045

Figure 1-13.

ASC LOGIC SET

Vcc — PIN 3 AND 6

VBB-PINIS
Vgg — PIN 10
8 — N 5
o H H--
11—
12 —
13 Ny—J—2
14 . "
16
I
a1
9"“_"“'_'"8
=
11— »—-r—s
12 4
-
Y oy W B
1,
14 +4
16 4
-
&1
6 —
7 —
a~
9 - H— S
1
12 7
13—
14
16 —
.
2
4 -

H2

EXCEPT FOR

9B,5Q,Q3,H2,
FF,DF ,TR,SR,

WHICH HAVE
- PIN 3

ONLY

16—

ST

— 2

9 |- &
11— - 7
28
6 N 5
7 1+
8 A O—4— 4
—
9 N H
1"
12 AF
-
13 - N H
14 —
16 4+ Al
1 NI
2
A
sQ
4 4R
11 B
"Q|r-—6
9 —Gn
5—62‘
7 621
12 ~4C
13 —46,,
14 46,2
16 '-'522
1 46
2202_2
S A=
OF

ECL Circuits

12

16

13
14

_j: B
_.:l L4 4
—:[——5
_‘
_:E.__v
2N
——
—4— b~ S
-T—A — 8
—4
ﬂ_. -
L. 2
~+a L
M
0 5
-2 V7
2P 8
-8
il o9
¢ 16
s
—EN
6 2
7L,
DE
H2 s} 7
_: - S
—48 C}-2
JE TH 4
Hc
—c
AC
-8, 9, 2
-G, O,La
—Hc &, }e
IR
-3 02_5
0, QL 6
ds2 T,
FF

1-36

Advanced Scientific Computer

&

Table 1-4. ECL Circuit Types

Type Title
1B Four single to double ended converters
2N Four 2-input inverting gates
2B Three 2-input complementary gates
3N Three 3-input inverting gates
4B Two 4-input complementary gates
9B 9-input complementary gate

31 Two 3-input, 3-output inverting gates
3M Two 3-input, 3-ouput non-inverting gates
41 Two 4-input, 2-output inverting gates

SQ Three 3-input, One 2-input gates with dotted complementary out-
puts

GC Four bit group carry gate structure

Q3 Four 3-input with dotted inverted output
DE Three bit decoder with enable

AC Full sum-carry with complementary outputs
H2 Six 2-input with dotted inverted outputs
FF Two single-input gated clocked latches
DF Two 2-input gated clocked Tatches

TR Termination resistors (40Q)

SR Termination resistors (80%)

TE TTL/ECL level converters W/ECL enable

ET ECL/TTL level converters

oD TTL output drivers

RS Termination resistors (400Q pulldown)

RD Termination resistors (800 TTL)

1-37 Advanced Scientific Computer

Table 1-4. ECL Circuit Types (Continued)
Type Title
AD Two 2-input ECL/MOS level converters
DD Four single-input TTL/MOS Tlevel converters

MA MOS 256 X 8 memory array

2S Two 2-input line receivers

1-38 Advanced Scientific Computer

R

SECTION II
INSTALLATION

2-1 GENERAL

Installation information is not provided in this publication. Refer to the
ASC System Installation manual, Texas Instruments part number 929980-1.

2-1/2-2 Advanced Scientific Computer

O

SECTION III
OPERATING INSTRUCTIONS

3-1 GENERAL

Operating instructions are not included in this publication. Refer to the
ASC Operator's Manual, Texas Instruments part number 931433-1,

3-1/3-2 Advanced Scientific Computer

&

SECTION 1V
PRINCIPLES OF OPERATION

4-1 GENERAL

The ASC Central Processor is a layered pipeline processor. As such, the CP
contains distinct levels, or stages, in the development of an instruction in
the IPU, of operands in the MBU, and of results in the AU. Each of these
levels can hold and simultaneously operate on a separate instruction or set
of operands, unless the level has been reserved by a previous instruction.
The IPU contains five levels for instruction development (levels 0-4), the
MBU has an input and an output level for operand selection (levels 5 and 6),
and the AU has a minimum of two levels (input and output). The number of ef-
fective Tevels in the AU varies with the operations being performed. Figure
4-1 illustrates the basic components of the Central Processor, their inter-
connections, and their relation to the levels of the CP pipe. The following
theory discussion centers around this block diagram and explains the major
functions of each block in the Central Processor. Additional maintenance
data is included in the appendices to this manual. Detailed controller flow-
charts and discussion follows the block diagram description.

4-2 IPU LEVEL O

Level 0 of the IPU generates addresses to central memory to request instruc-
tion octets (eight word groups), receives the octets from memory, and selects
one word instructions from the octets for transfer to the Instruction Register
(IR) in level 1. The addressing portion consists of the Look-Ahead (LA) Reg-
ister, the Present Address (PA) Register, the Output Address (OA) Register

and the Branch Address (BA) Register. These registers ensure that the correct
address will be in OA to access the next octet of instructions for the IPU.
The Memory Interface File (KCM) and the two Current Instruction Files (KA and
KB) receive and hold instruction octets from memory so that the selection
circuits may access words from the octets. The File and Word select circuits
use the address in PA to select an instruction from either KA or KB. While
instructions are being drawn from either KA or KB, the other unused file can
receive a new octet from memory. This latter file can then supply the next
series of instructions without delay to the IPU. The following paragraphs
describe the function of each of these level 0 components.

4-3 LOOK-AHEAD REGISTER (LA)

LA is a 24-bit register that normally holds the address of the octet that is
currently being requested from memory. When central memory accepts that re-
quest, the output from LA is fed through an adder to increase the address by
eight to form the address of next octet in sequence. This new octet address
enters the OA register for transfer to central memory, and also the LA reg-
ister for the next look ahead cycle. At the start of an instruction sequence,
the first address to be fetched from memory is in the P3 register (P3 receives
this address during initial CP loading, since the addressing registers at
level 0 are used to load the CP with the new program). To initiate the new

4-1 Advanced Scientific Computer

a2

program the address in P3 transfers into OA, LA and PA. The IPU issues a mem-
ory request for the octet indicated by the address in 0A, and transfers the
address in LA through the adder to OA and LA. The address in PA selects an
instruction from the octet when it returns from memory. LA continues to sup-
ply addresses through the adder to OA until the end of the program sequence

if no cycle interruptions occur.

4-4 CYCLE INTERRUPTIONS. The normal processing cycle for the LA register may
be broken by either a branch instruction, a Load Look-Ahead (LLA) instruction,
or an instruction hazard at level 3 of the IPU. When a branch instruction
reaches level 3 of the IPU and the address of the branch target is not already
in the pipe, the address of the new instruction transfers from the AR register
in level 3 to LA, OA and PA so that instructions from the branch path may be
accessed from memory and loaded into the IPU.

An LLA instruction prepares the IPU for a branch back to a point in the pro-
gram sequence occupied by the LLA. When the LLA reaches level 3 of the IPU,
the address of the LLA in the P3 register is stored into the BA register.
When the indicated branch instruction enters the pipe, the address in BA
transfers to LA and OA to fetch the octet containing the LLA from memory and
continue to access instructions from that instruction path.

If an instruction reaches level 3 of the IPU and a hazard has occurred that
makes the instruction invalid, the address of that instruction is transferred
from P3 to LA and OA to re-fetch that instruction octet from memory to obtain
valid information for that instruction. When memory returns the valid instruc-
tion, the look ahead cycle continues in the normal manner.

4-5 OQUTPUT COMPARE. The output of the LA Register feeds two compare circuits.
One network uses the output to determine if a far range instruction hazard ex-
ists in the LA octet. The other network determines if the LA octet contains
the object address of a branch or execute instruction or an indirect address.
Refer to the discussion of these networks for further explanation of the com-
parisons.

4-6 LOAD LOOK-AHEAD COUNTER

The Load Look-Ahead Counter is a 12-bit, decrementing counter used only during
a Load Look-Ahead instruction. When the LLA instruction reaches Level 3 of the
IPU, the N field of that instruction enters the LLA Counter. The N field spec-
ifies the number of instructions to be executed before the required branch oc-
curs. The counter then decrements by one for each instruction that reaches
Level 1 of the pipe. When the LLA count minus the number of active IPU levels
(at the time of the LLA) is equal to zero, the counter transfers the address in
the Branch Address Register to the Look-Ahead Register (LA) request to

memory. Refer to the Load Look-Ahead controller discussion for a flow chart
and theory of the look-ahead process.

4-7 BRANCH ADDRESS REGISTER (BA)

BA is a 24-bit register that is used only during a Load Look-Ahead operation.
When the LLA instruction reaches Level 3 of the IPU, the instruction address

at that level transfers from the P3 Register to BA. BA then holds that address
until the LLA Counter transfers the address to the LA register.

4-2 Advanced Scientific Computer

LOAD DATA FROM
CENTRAL MEMORY

8 X 32

REGISTER FILE

ADDR 17
16

15
14

12

1" 7
10 [ABOR

GENERAL
STORAGE
FILE

15| ADDR

GENERAL
STORACE
FILE

P3
REGISTER

P3 RGTR OUTPUT

(LA RGTR)

X0)

VECTOR j
PARAMETER
FILE
v

2

PROGRAM T
ADDRESS L= P2
(P1 RGTR) REGISTER
24 BITS
o 6 X 32
RGTR —
SELECT J BASE
-—{-”—32}-—— ADDRESS
vecToR REGISTER
ADDRESSES (8R)
(v1,v2,v3)
4
v
FIELD
32|
DISLACE-
INSTRUCTION MENT
REGISTER
WORD
(NR)
.t
FIELD
INDEXING
REGISTER
(XR)
R
SELECT
H— @)
RGTR FILE
ouTPUT
g
2 LEVEL 2
ROM
1
XFR
LVL 1 —
Lve 2 R2
REGISTER

FIELD

SET ACTIVE 2 LRH

LEVEL 2
STATUS

BRANCH
ADDR
P ” LOOK AHEAD ADDR_| RGTR
iAAY
INSTRUCTION HAZARD
LOAD ADDR \ “
64
LOOK
EF RESULTANT
LOAD AHEAD po
REGISTER
LOOK AHEAY | oap Look]anEAD
CONMNTER (LAY
AND GON ARTLA
TROL
T . °
e | 2
@
ADDRESS ouTRUT {21]
TO CENTRAL 1 ADDRESS 2 24
MEMORY REGISTE!
10A
AR RGTR
B 2
OUTPUT 1
O ? ARTOA PRESENT
3 ADDRESS
TRANSFER
RTPA | REGISTER 4{24}_.. o
(PAY
=T
{24} FeTR
g s §
— NSTRUCTION
RGTR FILE 7l ook WORD RGTR
SOTROT 1 il sececT [T (R)
(& X 37 32 BITS
INSTRUCTION
am) | e 2
RGTR 7| -
LSB
6 i 8
BIDIRECTIONAL _ (STORE FILE) 3
8US To CM (STCORE DETAILS) Y
CENTRAL 8 X 32 ! !
MEMORY OfRGTR o
FILE
8 X 32 cen KA sELECT
MEMORY r— CURRENT
INTERFACE NSTRUCTION
FILE FILE
STORE * *LOAD
GETAILS DETAILS]
3
! LEVEL
of RGTR o
LEVEL 1 STATU:
NOTE [CONTROLLER
KB
*EVERY FF IN IPU CONNECTS TO A CURRENT
RGTR IN KCM FOR LOAD OR STORE INSTRUCTION
DETAILS FILE
LEVEL3
STATUS
LONG RANGE HAZARD (LRH
- SET ACTIVE 2
LEVEL
1
HAZARD
@—chmousw LEVEL 2 STATUS
D) 124533 XFR LVL1 —LvVL2

24
(PA RGTR)
[Zal BRANCH
-
SELECT | (NDEX XFR
RGTR 72} el
= OMPARISONS
L) ' o
MODIFICATION m
ADDER
@'_- SIGN —
A ADDER AR RGTR OUTPUT
EXTENSION S RESULTANT
(aR)
SULECT
REGISTER A
EXTENSION
(@)
POINT
oP
CODE
B,i, OR E
LEVEL
G 4 :
81T ROM VL3
— w
SHIFT ROM
NETWORIC 2
SELtCT
DOUIILE,
SINGIE
OR HALT WORD
CONTROL
BITS
c3 C3 ROM
24 RoM SUPPLEMENT
SUPPLEMENT ——"®
RGTR £
. D._. R3 R FIELD
- rEciSTER)
ouThu T (4 BITS)
XFR LVL 2
v o LVL3
2 HAZARD
PAC 4
88
B____. LEVEL CONTROL
LEVEL 2
SETACTIVE 3 3 n
lconTROLLER LRH CONTROLLER
- PUSSISEE 2

LEVEL 3 STATUS

Figure 4-1.

Central Processor Block

Diagram (Sheet 1 of 5)

4-3/4-4

Advanced Scientific Computer

MBU

IPU
CONTROL [—_CONTROI o7
AA iy EE 06
' XFR LEVEL 4 5 05,
LvL ' CON- 03
PAC 4 3-4 TROLLER — PAC 5 - 02 REG
RGTR FILE B8 -2 L REGISTER
op SOTROT 24%04 d OPERAND OCTETS 5 00 RO RC ' OPERAND
1 WORD £3 RGTR FROM s ouTPUT REGISTER
SELECT OUTPUT CENTRAL MEMORY#% sc FROM 10 (64 BITS)
S 24 MEMORY
‘Z] 1 RO RGTR OUTPUT INTERFACE
RO N TO MBU FILE
32 — Jea
REGISTER | el REG RGTR
(PA RGTR)
(XA)
G 21 FAR RANGE | FRIHAZARD WORD ADDR
! INSTRUCTION AO RGTR OUTPUT
(LA RGTR) HAZARD TO MBU @
G—E}_. COMPARISON 24 IMM RGTR 4
AOQ
1 REGISTER ﬂ 0 II SCALAR
A
m OPERAN
64
« MAB
) / weo “A" VECTOR J@_’ ouTPUT 2
REGISTER
24 NEAR RANGE e, SELECT (64 BITS) OPERAND 4
INSTRUCTION | NRI HAZARD HAZARD | HAZARD X8 J\Q_- TO AU
HAZARD CONTROL vECTOR coaTe
(P2 RGTR) 1 - = IMMEDIA'
A 5X24 COMPARISON BUFFER BUFFER VECTOR
i] BA RGTR OUTPUT FILE FILE
LA FROM
zp MBU
Z YBA RGTR OUTPUT
Z MODEL)
_{: l > sTACK) SCALAR u a
DI
STORE ADDR (2] MM IMM TO ADDR GEN
E,_.@ IMMEDIATE AND LOOP CONTROL
5x24
3 ¢ OPERAND O ~ |- OPERAND 7S
OP HAZARD REGISTER
HAZARD AO RGTR OUTPUT (64 B1TS . WORD ADDR A
B—. COMPARISON FROM IPU b
Y]
AR RGTR s
OUTPUT
@ ADDRESS)
SIGN n IMMEDIATE
EXTENSION OPERAND
64
v MCD
"B" VECTOR
, WORD @_.. OUTPUT
SeLECT OR SCALAR REGISTER
o ex32 OPERAND (64 BITS)
[7] & =
SCALAR
VECTOR VECTOR OPERAN()
— OPERAND
BUFFER BUFFER — BUFFER
FILE FltE FIiLE
e 8
Lex7 P REGISTER
REGISTER RGTR HAZARD
————{ : }-u STACK HAZARD
R FIELD COMPARISON .
LEVELS R 2] YHTY scTv NOTE OPERANDS FROM AND DATA
4-12 TO CENTRAL MEMORY TRAVEL
LVL 3 RoM (16 BITS) OVER SAME BI-DIRECTIONAL
scTzezrTZe DATA BUS.
8 .—_.—.
! v INPUT GATES 2
LVL2TM
[
[.] SUPCSI_REOB:AENT ! Feees sere
R2 RGTR MM 'ZEA) 2
4 OuTPUT 3 WORD 2 = o o STORAGE DATA
ADDRESS REGISTER ._ B L8x32 | TO CENTRAL MEMORY *
RY CONTROL TO MBU T ——
L —-@ u RESULTANT o] SELEC RESULTANT HALF-PHASE 8x32
- N
3 - FRON: EF, STORAGE HO;[:_'EG STORAGH
MBU RGTR (AU FILE FILE
ROM 2 "
ADDR SCALAR ROM 3
RGTRS ADDR (MBU) 3
) E e
(C) 124534 00 |XFR
CONTROL

Figure 4-1. Ceniral Processor Block
Diagram (Sheet 2 of 5)

4-5/4-6

Advanced Scientific Computer

CONTROL TO AU

CONTROL

SCALARS aom MBU ROM CONTROL TO IPU CAF CONTRO A VECTOR CAF

FROM tPU LVL4 : = roor n n ROM OUT::T % 32}—— INPUT CIRCULAR ADDR‘ESS FILE OUTPUT

 RX RY RGTRS RoTR RG A VECTOR FETCH conTROL (CAF) CONTROL]
256 BITS ADDRESS GENERATION . -1 16 - 7 BIT RGTRS _—.“-

(9 BITS, ADDR ADDR

s |vecTors CONTROL " conTROL
GATE TIMING BITS BITS
FROM 1P sELecT

|

|

CONTROL TO AU |

| A ! RGTR STACK D,_. NEXT M;;JEL c:):— m |

EonTRO NAA

2 TROL ["PACZA A VECTOR __E__. X B::FER
T ADDR WORD ADDR
RGTR OPERAND o
125 BITS) ADDRESS oA

—-{Z}—— RGTR

4 BITS) l
XBA
EE 7 ;E}—J OCTET l

LEVEL S s LEVEL 6 OSHLECT A
2 CONTROLLER CONTROLLER L_xFRr con REQUEST r—-——————-————-—
TO Z ADDRESSING o AO RGTR FROM IPU 21 REGISTER
:z

Z DATA
DATA PAC CLR |apDRESS
PRESENT CONTROL

CONTROL

MBU
CENTRAL MEMORY
REQUESTOR
(CMR)

To FROM .
LvL 4 PAC CLR 2 AND Z DATA RGTRS (21 BITSS]
PAC CiR 2
ONTROLLER *
L) _.__._____._.______.________...__{ 21
MR OA JAA ASYN-
— I PRIORITY ._@._. MEMORY lc HRONOU!
OCTET : - ADDRESS
INIAL- B VECTOR FETCH YBA I .@.— CATE ADDRESS] REGISTER)] (a0
VECTOR COMPLETE
1ZATION ADDRESS GENERATION ——@——q octer | RGTR (21 BITS) OCTET ADDRESS
CONTROL REQUEST l 4 (21 BITS) TO CENTRAL
REGISTER _——] - MEMORY (8 CLOCKS)
ADDRESS ADDER J[zx l— _]
[C VECTOR LOOP CONTROL ™ 21 arrsy
LOAD AND XFR Al B VECTOR LOOP CONTROL FTYY A ' Zce AzZC
COMMAN DS <l A VECTOR LOOP CONTROL 8 VECTOR —— E’—. ¥ HUF- | WORD ADDR ZONE n
] ADDR § E£R O) w ’-—.—u CONTROY
LPS FLP (2 REG‘YRS‘ ERAND | m;rpi‘r ZONE CONTROL.
SELF LOOP SELF S8IT ST TO CENTRAL
T — 16 [® STORAGE Loop ASELECT B | MEMORY
1!
% RGTR 16 OUNTER £ DDR CONTROL
cou ADDR CONTROL | INPUT GATES
cAF 8 VECTOR . CAF HALF WORD CENTRAL n
‘ n INPUT CIRCULAR ADDR FIl E ouTPUT | BITS MEMORY
CONTRO! (CAF CONTROL | .- CHECK & ZFILN ~ | REQUESTER 2
1 16 -~ 7 BIT RGTRS
Fr 3 CONTROL. CONTRO! _L MERGE CONTROL ﬁ
INNER INNER E_-VECTOR A —_—e e e e | ———— - —_—_—_— - e e e — e - —_——— ___.I REQUESTS
‘S-Sg:AGE e CON’E TO CENTRAL
OUNTER TROLLER 25
RGTR cov . 25 NCA ZA ZAH /DA | cue MEMORY
. DCl 25 + 25 C VECTOR 2! stuumm'—.- HALF- —@'— MI MORY FILE
m DCO__ 15 ADDR STORAGE PHASE S1ORAGE |— I -
N
U DDRESS > RGTR JADDR RGTR HOLDING hobR RGTR
ADDER (25 BITS) (21 BITS) REGISTER 21 HETS) l
FNO n (21 BITS) ZEA
OUTER OSELECT C STORAGE |
LOOP + —E—. WORD -—E}—‘@ |
COUNTER
- - ADDR RGTR] N
Cotomen [4] @eirs) | ZEA 2
St - WORD |
AA) ADDR
A LA T RACE NSA ZM HALF M Zem |
sca AR MODIFIED WORD MODI- WAL PHASH MEMORY E
STORAGE HALF 16-# FIED INDICA-] m 101 DING r—'—- STORAGE [~ l
N FROM R STACK " ADDR RGTR D"‘;’;’:’ TOR REGIS - W CISTER MODIFIED
; PuY (25 sirS) DE TER (16 BITS LwiTs) HALFWORDS |
DAS _— — —_—— = — ——7 REGISTER
! | CONTROL TO (16 BITS) |
- AND —
C VECTOR STORAGE <esronse From L —— L _
ADDRESS GENERATION - MASTER HARD
UNIT HARD CORE™“ CORE (MHC)
FROM,TO CSR-CSW -
CENTRAL . RESPONSE BITS :
MEMORY SEQUENCY COMMAND LSBS CAPTURE
et CONDITION BITS CONTROL ccr
| cp EonTrROL 5] GENERATED LSB'S
REGISTER . =
l ccr UR SELEGT TO COMMON COMMAND
4 oUTPUT MHC CIRCUITS ‘—l REGISTER (FROM PP-CR|
REGISTER FILE)
| . MCW, MCP UNIT l
A;gNE]:zgR STATUS UR SELECT REGISTER
COMMAND
TO/FROM PP REASON CODE READ.
CR FILE
.
10/FROM

(D) 124535 UNILT HARD CORES

Figure 4-1. Central Processor Block
Diagram (Sheet 3 of 5)

4-7/4-8

Advanced Scientific Computer

F——————— — — — =

INPUT SECTION

TO ADDER AND OUTPUT

SECTIONS

TO ADDER SECTION

TO INPUT SECTION

TO ADDER SECTION

PSEUDO SUM
TO ACCUMULATOR
SECTION

PSEUDO CARRY
TO ACCUMULATOR
SECTION

l FM:%M w z MAD _ Je4] “TO INPUT, EXPONENT SUBTRACT,
ER
PUSH CONSTAN: AB | MULTIPLIER, ALIGN, ADDER, .
{64} [ACCUMULATOR, NORMALIZE AND
64
. ND T SECTIONS
PULL CONSTANT, — OPERAI I Kl ey OUTPUT S
EF RESULTANT TO ADDER, NORMALIZE I‘ =
FROM —t—'———.'-ﬁg FESELT, REGISTER| m AB OPERAND AND OUTPUT SECTIONS FT SECTION !
OUTPUT SECTION HA 7 | | ALIGN AND RIGHT SHI
HEX RIGHT
FROM ALIGN- 1 SHIFTED D“ I I
RIGHT
SHIFT T ROM l BiT |
MBU | SHIFT - BIT
| a 2 MCD H I | DECODE GATES I
INCREMENT CONSTANT 6] ROM NPT ko oreranc |
‘ DECREMENT CONSTANT | PECTION | BiTs 2531 BIT
—-—.‘- o FROM ACCUMULATOR (0d |.. SHIFT I
FROM EXPONENT I AELGOR SELECT = I TO EXPONENT SUBTRACT, MULTIPLIER, SECTION BiTs 25-31 = WNOER‘I;(
SUBTRACT SECTION —- {:}-— % OPERAND fea}— ADDER, ALIGN, NORMALIZE AND FROM EXP I
EF RESULTANT | CD OPERAND ouTpuUT SECTIONS ONENT
D—ﬂ REGISTER| L SUBTRACT SECTION ED I
AB OPERAND 147 —_—_—_——® TOADDER,ACCUMULATOR HEX SHIFTED
FROM OUTPUT OF E}" | 5 OFERAND .
INPUT SECTION NORMALIZE AND OUTPUT | OPERAND l
SECTIONS
- J rex [
—_—— e ———— — I shieT e
DECODE GATES l
FROM INPUT 1 l
SE .
——————— — — —— — — — — — crion | HEX] SH
FROM EXPONENT SHIFT SHIF
AEL GOR [j_. SHIFTED vl TED OPERAND
EXPONENT SUBTRACT [ia) TioN SUBTRACT SECTION NET - OPERAND il
E TO INPUT SECTIO! WORK l
L | - REGISTER [SHIFTED GPERAND
FROM NORMALIZE | NORMALIZED
SECTION T SATA LOR l — o ———— . i — — — — — — | =
FROM INPUT AB OPERAND OPERAND X LARGE ‘—'_{’ﬂ_—" TO EXPONENT SUBTRACT l I st
g g
SECTION T OPERAND | TOR AND ALIGN SECTIONS RIGHT SHIFTED
FROM EXPONENT LOR REGISTER ' |
SUBTRACT SECTION '
NS
| SUBTRACT i FROM EX"C’N:(':;ON LOR {64} NOT NOT SHIFTED OPERAND
s SUBTRACT S I
X NG SOR SHIF TED __._—.
I COMPARE B———- SMALL - TO ALIGN AND OPERAND | |
MAGNITUDE OPERAND | OUTPUT SECTIONS REGISTER | |
I REGISTER I
| — L -
I T
ED
FROM INPUT I CD OPERAND OPERAND Y . EXPONENT l
SECTION v . DIFFER ’-}_’ TO ALIGN SECTION
FROM ACCUMULATOR, Acc ENCE |
SECTION I REGISTER
ZEROS '
I COMPARE ' - FROM INPUT CD OPERAND
2 _“,____{ - TOOUTPUT SECTION
CODE | —-CC SECTION
e e e ———— — — — —_—_——— e — — — — — — - — —
(=.>) J FRON NORMQ%IZED
D,
| NoRMALIZE & MULTIPLIER SECTION |
- — — - _— —— — —— — — SEC T1ON ce DIVIDEND
FROM A 64 REGISTER |
ACCUMULATOR | MULTIPLI '
CAND
SECTION el Joano '—‘—{E_’ oa o o
—_— e, — o —— — — — — — — — L (MOST) LEAST| FANOUT pseuoo | |
-/ SIGNIFICAN sum |
‘ ADDER SECTION | REGIS
J— VT [54] |
I NORMALIZED DATA ADDER TREE TER
FROM ._—_.{m}_. REGISTER |
NORMALIZE NORMALIZED DATA |) !
SECTION | | Ms8's AB OPERAND
T A
FROM iNPUT AB OPERAND FROM INPUT I FORM |
SECTION 64 |
FROM ALIGN I NOT SHIFTED | SECTION Tomen's SUMM DIVIDE R
ANDS
SECTION OPERAND I T Pc |
FROM INPUT — | TP TERM MODIFIER _ PSEUDO| |
SECTION I AB OPERAND FROM l LoGic 32 64 " CARRY [
I AcCUMULATOR —} E” REGISTER] REGIS— [
SECTION TER |
FROM INPUT | CD OPERAND | |
SECTION | RECODE I
| eerosgro ApDER — | [
SHIETED OPERAND (B1TS 5-63) AoER S |
| ERAND (81 fo4] ADDE ADDER OUTPUT
FROM ALIGN SHFTED OPERA 64 ouUTPUT 64
SECTION REGIS: TO NORMA
CD OPERAND e} TER l © L1ZE AND
FROM INPUT ‘.r OUTPUT SECTIONS
T
SECTION CARRY TO |
l LsB
124537 —_—— e e ————

Figure 4-1.

Central Processor Block

Diagram (Sheet 4 of 5)

4-9/4-10

Advanced Scientific Computer

AB OPERAND

AB OPERAND
FROM INPUT

OUTPUT SECTION

FROM MULTI— | PSEUDO SUM
PLIER SECTION) o0 126D
FROM NORMAL—-

ONE

%

— e} ATOR SECTION I
I1ZE SECTION | ACCUMUL SECTION CD OPERAND OVERFLOW FLAG o AE
FROM INPUT AB OPERAND I —‘__E}—-_____ FROM NORM CELLS TO
SECTION CD OPERAND ALIZE SECTION Z FILE
L I 2 (MBU)
FROM MULTH _EQ.I.MBBXE-]——(acc Jer}—ACE TO MULTIPLIER FROM ADDER ADDER OUTPUT
PLIER SECTION OPERAN = Accumu- Aal I SECTION SECTION l:] - TO
FROM INPUT CD OPERAND E},_. 8 64 + e “ATOR feal_AcC . TO EXPONENT FROM NORMALIZE NORMALILED DATA . > RGTR
OouUTPUT —J BSTRACT, SECTION FILE
pine LOAT- I seresl Al § REGISTE lALIGN MUS:TIFLIER ouTPUT FROM AcC - !
FIXED-F E > . . . ACCUMULATOR E AU m
ING CONSTANT AND NORMALIZE SECTIONS SECTION AND 1 m ouTPUT
REGIS- -
FLOATING- (4] TER El
FIXED CONSTANT CD OPERAND. OR ESULTANT
v opERAN | FROM CooieaL [64]
" a TO INPUT SECTION
SELECT | (SHORT CIRCUIT
I l.—@- I EQC m PATH)

b —————]

ZERO

|

FROM EXPONENT

SOR (SM,
SUBTRA,
UBTRACT SECTION SEeo=uty

INPUT OPERA- EXOR SELECT
SECTION, A_.___._.-.E QEERAND 54 TIONS

|
I

|

|

|

L

|

I
——= e | |
|

|

!

!

|

!

| FROM ALIGN gH R QPERAND (=]
— e —— —— — . —— SECTION
R T | Lo operano NORMALIZE SECTION SUaTRACT oL
SECTION I MisC. SUBTRAGT
— . SECTION
CD OPERAND | FROM ACCUMULATOR ACC(LSH $' -EF(MSB'S ! COMPARH]
L | SECTION . - cobe
FROM cc
E_.. Misc
ACCUMLATOR INPUT EXPONENT I m __—_._B_—
FROM INPUT ‘m = SELECT I Misc {64 /
SECTION EXPONENT
DDER OUTPU. ADDER ’
FROM ADDER .—__—TE—- LEFT I
SECTION SHIFT — e —— e — . —— — . —— - — — — — e — — — — — — — — — —
B QPERAND
FROM INPUT ___M.__E_. copE I
SECTION l REGISTE ‘
' TO ACCUMULATOR, OUTPUT, MULTIPLIER,
\ | ADDER, AND EXPONENT SUBTRACT SEC-
NORM —4:}———. TIONS
MANTISSA ml SHIFT HEX NOorMmALY | NORMALIZED DATA
&) - SHIFT {2}
DATA 184F 14 1ZED ﬂ py Al § TO ADDER SECTION
l AB OPERAND SELECT NET- OUTPU l NORMALIZED DATA
e} HORK. RGTR e
GUARD HEX I
| N DIGIT [} SHIFT
MOST SIGNIFICANT EIT 16| GATES
HEX SHIFT OVER- (LEFT l
m lencooe SHIFT)
l s g:g:b(! #= TO OUTPUT SECTION
l REGISTER] l OVERFLOW FLAG
LEFT I
l CD OPERAND SHIFT
HEX l
RECODE .
I £} [
il HEX SHIF TED
BIT DATA I
I LEFT | swiFT BIT
E o] SHIFT SHIFT |
| eIt NET-
DECODE WORK |
BIT SHIFT TLEFT SHIFTY |
| MAGNITUDE
\—E}—— DETERMINA- 4] BIT SHIFT NorRMALIZE |
(D) 124538 MOST SIGNI- < TION GATES (FL. DIVIDE) SECTION)
FICANT HEX

Figure 4-1. Central Processor Block
Diagram (Sheet 5 of 5)

4-11/4-12 Advanced Scientific Computer

O

4-8 PRESENT ADDRESS REGISTER (PA)

The PA Register is a 24-bit address register that holds the address of the next
word to be transferred from the instruction file to the Instruction Register (IR).
The address in PA increments by one word address each time a word enters the
Instruction Register. The three least significant bits of the PA Register se-
lect the word from the Instruction File during normal instruction processing.
These bits also determine when the last bit in an octet has been accessed and

are, therefore, used to gate input to the PA Register and to toggle the File
Select network from one instruction file to the other. As a new instruction
enters IR, the word address in PA transfers to P1 Register to accompany the in-
struction through the IPU.

4-9 PA INPUTS. The PA Register is normally loaded from the LA Register when
the three LSB's of PA are all 1's. However, the output from P3 can enter PA at
the start of an instruction sequence of if an instruction hazard is detected at
Level 3 of the IPU. The output from the AR register can also load PA during a
branch instruction, an execute instruction, or for indirect addressing, provid-
ing that the object address of the operation is contained in the current octet
as determined by the Branch, Execute, Indirect comparison network at Level 3.

4-10 OUTPUT ADDRESS REGISTER (O0A)

The Output Address Register is a 24-bit register that relays 21-bit octet ad-
dresses to Central Memory for data transfer to/from KCM. A1l memory accesses
from the IPU must transmit an address to memory through the OA register. Three
input paths to the OA register provide addressing capability for all IPU com-
munication to Central Memory.

4-11 P3 REGISTER OUTPUT. During an instruction sequence start-up, or if an in-
struction hazard is detected at Level 3 of the pipe, the contents of the P3
Register (Level 3 Program Address Register) transfer into the OA Register. P3
holds either the first address of the instruction sequence in the case of a
start-up operation, or the address of the instruction that must be re-fetched
due to an instruction hazard. In either case, the OA Register transmits that
address to Central Memory to begin the instruction sequence.

4-12 LA REGISTER OUTPUT. During normal instruction processing, new instruction
addresses enter the OA Register through the octet adder circuit (+8) from the
Look-Ahead Register. The LA register provides a continuous source of instruc-
tion addresses to be fetched from memory.

4-13 AR REGISTER OUTPUT. For indirect addresses or for branch or execute in-
structions, the output of the AR Register may transfer to the OA Register if
the required address is not already in the pipe. Comparison circuits at Level
3 determine if it is necessary to access memory for the desired word.

4-14 LOAD/STORE DETAILS. The OA Register transmits sequential addresses to
memory to Load or Store the contents of the IPU from or into memory. The de-
tails instruction from the peripheral processor loads the OA Register with a
pointer address that points to indicate the address of the first octet of the
details map in memory. A partial adder then increments the address by one oc-
tet (addition of 8) to provide sequential octet addresses to memory.

4-13 Advanced Scientific Computer

Ug
~ 4-15 KCM MEMORY INTERFACE FILE

KCM is an octet register file containing eight 32-bit registers. This file
performs a buffer function between ASC Central Memory and the IPU registers and
flip-flops. A1l IPU data transfer operations to and from Central Memory must
pass through KCM. KCM holds the data until it can be synchronized with clock
pulses for orderly transfer through the IPU, or until memory accepts the data
to be stored.

4-16 INSTRUCTION PROCESSING. During instruction processing, the KCM file re-
ceives instruction octets from Central Memory and transfers the octets to one
of the two current instruction files: KA or KB. The KCM file is transferred
to whichever current instruction file is not being accessed by the current
instruction address. For indirect addressing, a direct path from KCM to the
instruction word select circuit by-passes the current instruction files to
avoid alteration of the files. This path allows an instruction from Central
Memory to be loaded directly into the Instruction Register.

4-17 LOAD/STORE DETAILS. Each bit in the KCM file connects directly to numer-
ous bits throughout the IPU for use in a Load or Store Details operation. Each
octet of the details map in Central Memory transfers sequentially to the KCM
file (Load Details). The position of the octet in the details map determines
which of the KCM output paths will be enabled for each bit of the octet until
all flip-flops and registers in the IPU reflect the condition specified in the
details map. The transfer path is similar, but in the opposite direction for

a Store Details operation. Certain Details paths are also used in Load/Store
Status or Intermediate commands. The process is the same for these operations
as for the Details operation, but Timited in scope.

4-18 STORE FILE. The Store File operation passes through KCM for transfer to
Central Memory. The output from the Register File fills KCM and the octet
transfers to memory. Load File enters data into KCM and then to the Register
File.

4-19 KA/KB CURRENT INSTRUCTION FILES

The Current Instruction Files are two octet files containing eight 32-bit reg-
isters each. During normal operation they receive alternate, synchronized
octets from KCM that contain instruction words to be accessed by the IPU. The
first octet enters the KA instruction file. While addresses are selecting

words from the KA file, KCM loads the next octet into the KB file. This alter-
nate loading process allows the IPU to proceed uninterrupted through an instruc-
tion sequence without the delay required to access a new octet from Central
Memory. This time advantage is lost, however, when a Branch instruction jumps
to an instruction that is not resident in either the KA or the KB file.

4-20 FILE SELECT

The File Select circuit controls the sequencing of the Current Instruction Files
and relays the file status to the Level 0 Controller. When the first instruc-
tion octet from memory enters KA, the File Select circuit gates the output from
the KA registers to the Word Select network. File Select then monitors the
three least significant bits (LSB) from the Present Address Register and enables

4-14 Advanced Scientific Computer

&

the KB registers to the Word Select network on the clock after the three LSB's
of PA are all ones (hexadecimal 7). File selection alternates in a 1ike man-
ner until the instruction set is complete or a Branch instruction alters the
order of instruction processing. File Select also notifies the Level 0 Con-
troller when either instruction file is full and which file is selected. This
inaE]es]t?e controller to determine if valid data is available for transfer

o Level 1.

4-21 WORD SELECT

The Word Select circuit enables the proper instruction word from either KA or
KB to be transfered to the Instruction Register. The Look-Ahead Controller
determines when the transfer will take place. Only one octet is active to the
input of the word select circuits at any one time. During sequential instruc-
tion fetching, the file select circuit supplies one octet to the word select
network. When the object address of an indirect address or an Execute instruc-
tion is not resident in the KA or KB files, either the KCM octet or an octet
from the Register File supplies inputs to the word select network, depending
upon the origin of the instruction octet. The select circuit then monitors the
three LSB's from either the PA register (sequential instruction acquisition)

or the AR register (indirect addressing or Execute instruction). These bits
designate a particular word within the active octet.

4-22 LEVEL O CONTROLLER

The Level 0 Controller monitors the status of the instruction files to determine
if valid data is present in Level 0, checks the status of the Level 1 Controller
to determine if that level can accept a new instruction, and receives instruc-
tion status from Level 3 to determine if an instruction in Level 3 affects the
actions required by Level 0. Level 0 Controller then issues a transfer signal
to gate the Level 0 instruction and program address into the Level 1 registers.
Refer to the Level 0 Controller flowchart and description later in this sec-
tion for a detailed representation of controller functions.

4-23 IPU LEVEL 1

Level 1 of the IPU pipe is a passive level. It receives an instruction word
from the Level O selection network and holds it until Level 2 is ready to ac-
cept the new instruction. While in Level 1, the instruction is checked for an
indirect address or an Execute instruction, either of which disables instruc-
tion reception for Level 1 until the object of those functions passes through
Level 1. The following paragraphs describe the major components of Level 1.

4-24 P1 REGISTER

The P1 Register is a 24-bit register that holds the address of the instruction
currently in the Instruction Register of Level 1 of the IPU. The address trans-
fers into P1 from the PA register when the instruction enters the Instruction
Register and Teaves P1 when the Level 1 Controller gates the instruction to

Level 2.

4-15 Advanced Scientific Computer

sz:
4-25 INSTRUCTION REGISTER (IR)

The Instruction Register is a 32-bit register that receives an instruction
word that has been selected from the instruction file, from Central Memory di-
rectly through KCM, or from the output of the Register File. IR holds the in-
struction until Level 1 Controller transfers it to Level 2. If IR contains an
Execute instruction, or one containing an indirect address, Level 1 Controller
prevents further instructions from entering the Instruction Register until the
object of that instruction is retrieved from memory and passes into the In-
struction Register.

4-26 LEVEL 1 CONTROLLER

The Level 1 Controller monitors the hazard detection circuit to detect a far
range hazard, checks the status of Level 2 Controller to determine if that
level can accept a transfer, and samples the instruction in Level 3 to deter-
mine its effect on Level 1. The controller then gates the contents of Level 1
into Level 2 and sets the active bit in the Level 2 Controller. Refer to the
Level 1 Controller flowchart and description later in this section for a com-
plete representation of the controller's functions.

4-27 REGISTER FILE

The Register File is a storage area in the IPU that is loaded by either a direct
memory transfer or from the output of the Arithmetic Unit of the Central Proces-
sor. The file consists of forty-eight 32-bit registers grouped into six octets.
The octets are designated by the letters A, B, C, D, I and V, and respond to the
hexadecimal addresses 01 through 2F if the "M" field of the addressing instruc-
tion is equal to zero. The output of the Register File is available to three
levels of the IPU pipe: Level 0 for indirect addressing and Execute instruc-
tions, Level 2 for base addresses and indexing, and Level 4 for operands and
vector parameters except X, Y, and Z addresses. The following paragraphs pro-
vide an outline of the contents and function of the octets in the Register File.

4-28 BASE ADDRESS FILE, A AND B

Octets A and B of the Register File (addresses 01 through OF) are used for base
addressing. Their output is selected by the 4-bit "M" field in the instruction
containing base addressing. Since an "M" field of zero indicates no base ad-
dressing is to be done, Register File address 00 is inaccessible by this net-
work. No register resides in location 00 of the Register File.

4-29 GENERAL STORAGE FILE, C AND D

Octets C and D of the Register File (addresses 10 through 1F) provide general
storage for arithmetic operations or for quick access by instructions. These
files can be loaded directly from memory to provide a source of instructions

or operands to the IPU.

4-16 Advanced Scientific Computer

ﬁ'ﬁ‘
4-30 INDEX FILE, I

Octet I of the Register File (addresses 20 through 27) holds the index regis-

ters for indexing an address of an instruction. The T field of that instruc-

tion selects the proper register from the Index File to be used in the index-

ing process. Since a T field of zero indicates that no indexing will be per-

formed, address 20 of the I File is inaccessible to the indexing network. Ad-
dress 20 provides an additional general storage register.

4-31 VECTOR PARAMETER FILE, V

Octet V of the Register File (addresses 28 through 2F) supplies eight words that
define the parameters used in a vector operation. A vector instruction results
in reading the entire contents of the file. The words of the file are assigned
as shown in figure 4-2. Table 4-1 defines the word fields. Words 29, 2A, 2B

of the file, the starting addresses of the vectors, enter Level 2 of the IPU
pipe for possible address modification. The remaining five words enter di-
rectly into Level 4 for transfer to the MBU.

4-32 IPU LEVEL 2

Level 2 of the IPU pipe is a selection and holding level in preparation for ad-
dress modification. If index or base plus displacement addressing is indicated
by the incoming instruction, this level channels the proper index and base ad-

dress values into their respective holding registers, modifies the register

Ho Hy Ho H3 Hy Hg Hg Hy
REGISTER

28 OPR ALCT SV L
29 - XA SAA

2A HS XB SAB

2B Vi XC SAC

2c DAl DB1
2D DCI NI
2E DAO DBO
2F Dco NO

114314

Figure 4-2. Vector Parameter File Format

4-17 Advanced Scientific Computer

O

Table 4-1. V-File Field Descriptions

Hex
Reg Character Field Description
28 Ho,sHj PPR Operation code
28 H2 ' ALCT Arith. & Log. Comparison Term
28 H3 SV Single-valued vector
28 Hg-H7 L Vector dimension
29 H1 ~ XA Initial index A
2A Hy XB Initial index B
2B Hy XC Initial index C
29 H2-H7 SAA Starting address A
2A H2-H7 SAB Starting address B
2B Ho-Hy SAC Starting address C
29 Ho-H7 (29) Immediate operand A
2A Ho-H7 (2A) Immediate operand B
2A Ho HS Halfword starting address
2B Ho VI Vector increment direction
2C Ho-H3 DAI +AAj, inner loop
2C Hg-H7 DBI +ABj, inner loop
2D Ho-H3 DCI +ACy, inner Toop
2D Hg-H7 NI Inner loop count
2E Ho-H3 DAQ +AAg, outer Toop
2E Ha-H7 DBY +ABp, outer Toop
2F Ho-H3 DCP +ACp, outer Toop
2F Hg-H7 N@ Outer loop count

outputs as required by the operation to be performed, and places the resulting
24-bit words for input to the Level 3 Modification Adder. The following para-
graphs describe functions of the major components of Level 2 of the IPU pipe.

4-33 LEVEL 2 CONTROLLER

The Level 2 Controller monitors the hazard detection circuit to detect a far
range hazard, checks the status of Level 3 Controller to determine if that lev-
el can accept a transfer, and samples the instruction in Level 3 to determine
its effect on Level 2. The controller then gates the contents of Level 2 into
Level 3 after any necessary address modification has been performed and sets
the active bit in the Level 3 Controller. Other control functions performed by
this circuit are determined by the specific operation being processed by the
pipe. Refer to the Level 2 Controller flowcharts and description later in this
section for a complete representation of controller functions.

4-18 Advanced Scientific Computer

Hg
4-34 LEVEL 2 ROM

The Level 2 ROM receives the 8-bit operation code of the instruction word as it
enters Level 2. Depending upon the Op Code, the ROM generates 32 control bits

that are used in Level 2 to control instruction processing or that transfer to

the C3 ROM Supplement Register in Level 3. Refer to appendix A of this manual

for a 1isting of the ROM output bits.

4-35 R2 REGISTER

The R2 Register is a 4-bit register that receives the R field bits of the in-
coming instruction word and transfers them to Level 3 when the instruction
enters Level 3. The output of this register is also used in Level 4 hazard
detection logic to find a register hazard.

4-36 INDEXING REGISTER (XR)

The Indexing Register is a 32-bit register that receives input from one of the
seven index registers in the Register File. If the instruction entering Level
2 from Level 1 indicates that indexing will be required, the 4-bit T field of
that instruction selects one register in the I File for transfer to the Index-
ing Register. The output from XR enters a shift network. Control bits from
the Level 2 ROM indicate whether the index word will be left-shifted one bit
(doubleword addresses), right-shifted one bit (half-word addresses), or remain
unaltered (single word addresses). The output from the shift network enters
the modification adder.

4-37 DISPLACEMENT REGISTER (NR)

The Displacement Register is a 32-bit register that receives the instruction
word from the Level 1 Instruction Register. Only part of the instruction is
used by the displacement circuit, however. The instruction word from the Dis-
placement Register enters a sign extension circuit. Control bits from the Lev-
el 2 ROM then determine one of two possible places for sign extension to occur.
The LSB's of the resulting 24-bit word that enters the modification adder con-
tain either the N field (bits 20 to 31) of the instruction word, or both the M
and the N field (bits 16 to 31) of the instruction word. The remaining bits

to the left of these fields are the result of sign extension.

4-38 P2 REGISTER

The P2 Register is a 24-bit register that holds the address of the instruction
that currently resides in IPU Level 2. The address enters the P2 Register when
the Level 1 Controller transfers the instruction into Level 2 and leaves the P2
Register when the Level 2 Controller transfers the instruction into Level 3.
The output of the P2 Register may also transfer to the AR Register in Level 3
through the address modification network. The two comparison networks, hazard
and branch, examine the contents of P2.

4-39 BASE ADDRESS REGISTER (BR)

The Base Address Register is a 32-bit register that receives the base address
word from file A or B of the Register File. If the instruction word that enters

Advanced Scientific Computer

O

Level 2 contains an M field that is not zero, the M field bits select the out-
put from one of the Register File registers and transfer that 32-bit word to
the Base Address Register. When selected for base addressing, the Base Address
Register inputs to the address modification adder. The Base Address Register
is also used to transfer the first three words of the Vector Parameter File
through the address modification network, and into the MBU. A select network
at the output of this register allows control signals from the Level 2 ROM to
select either the Base Address Register output or the output from the P2 regis-
ter as the base address used in the modification addition.

4-40 IPU LEVEL 3

IPU Level 3 develops the effective address of the operand to be sent to the MBU.
It receives input from the Level 2 instruction registers, adds the applicable
base, displacement, and/or index, and holds the resultant address for use in
Level 4. Level 3 also checks for hazards and reprocesses an instruction if a
hazard exists concerning that instruction. The following paragraphs describe
the function of the major blocks in Level 3.

4-41 MODIFICATION ADDER

The Modification Adder is a 32-bit (24 effective bits) parallel adder circuit
with a double-level look-ahead, carry determination circuit. The adder receives
inputs from the Base Address, Displacement, and Indexing Registers and adds them
to form one 24-bit resultant that transfers to the Adder Resultant (AR) register
when the Level 2 Controller enables the transfer. A feedback path from the AR
register to the adder allows for incrementing the AR register to provide con-
tinuous octet addresses to Central Memory for Load File Multiple or Store File
Multiple instructions.

4-42 ADDER RESULTANT (AR) REGISTER

The AR Register is a 32-bit (24 effective bits) register that receives the mod-
ified operand address from the Modification Adder. The output from this regis-
ter may load the Level O addressing registers during a branch operation, indi-
rect addressing, or an execute instruction. A feedback path to the Modification
Adder provides for incrementing the address in the AR register for loading or
storing multiple Register Files. If the address that enters the AR Register

is an effective address of an operand (address) or an immediate operand, the
contents of AR transfer to the AO Register in Level 4 under control of the
Level 3 Controller. The address from AR also enters the Z model Stack

(Store operation) or the Register Stack and is available to the hazard detec-
tion circuits in Level 4.

4-43 P3 REGISTER

The P3 Register is a 24-bit register that contains the address of the instruc-
tion that is currently in Level 3 of the IPU pipe. It receives the address
from the P2 Register when the instruction enters the AR Register after under-
going any indicated modifications. The output of this register can be used to
load the BA Register in Level 0, or can be transferred to the RO Register in
Level 4 as a direct operand. In all cases, the output from this register is
available to the hazard detection circuits in Level 4.

4-20 Advanced Scientific Computer

H"f;
4-44 LEVEL 3 ROM

The Level 3 ROM receives the Operation Code portion of the instruction word from
Level 2 as that instruction word enters Level 3 through the Modification Adder.
The 8-bit Op Code produces a 32-bit output from the Level 3 ROM. This output,
in conjunction with the C3 Register output, provides control bits for coordina-
tion of Level 3 processes and supplies bits to complete the address stored in
the Register Stack in Level 4. 1If the Op Code indicates a branch, indirect or
execute instruction, the Level 3 ROM triggers a comparison circuit for those
operations. Refer to appendix B in this manual for a map of the contents of

the Level 3 ROM.

4-45 ROM SUPPLEMENT REGISTER (C3)

The C3 Register is a 24-bit register that stores control bits from the Level 2
ROM to be used as control bits in supplement to those produced by the Level 3
ROM. The control bits enter the C3 Register when the Level 2 Controller trans-
fers the particular instruction into Level 3. The output is immediately avail-
able to the Level 3 circuits for gating and control purposes. C3 output bits
also transfer to the Register Stack in Level 4 to complete the address stored
in that stack.

4-46 R3 REGISTER

The R3 Register is a 4-bit register that receives the R field bits of the in-
coming instruction word and transfers them to the Register Stack in Level 4
when the operand or operand address from the AR Register transfers to Level 4.
The output of this register also selects a word from the Register File to enter
into the RO Register in Level 4 as one of the operands needed by the MBU for
transmission to the AU.

4-47 LEVEL 3 CONTROLLER

The Level 3 Controller monitors the hazard detection circuits to determine if
a hazard exists for the instruction that is now in Level 3. If the hazard bit
sets, the operand or address in the AR Register may not be valid. This condi-
tion causes the instruction to be re-addressed by transferring the contents of
the P3 Register to the Level 0 Addressing Registers to begin processing that
instruction again. The instructions currently in Levels 1 and 2 will also be
re-addressed by the addressing registers following fetching of the Level 3 in-
struction from its memory location.

In addition, the Level 3 Controller monitors the status of the Level 4 Control-
ler to determine if Level 4 can accept a transfer and then gates the contents

of Level 3 to Level 4. Refer to the Level 3 Controller flowcharts and descrip-

%ion later in this section for a detailed representation of the controller's
unctions.

4-48 BRANCH, INDIRECT, EXECUTE COMPARISONS

Whengver a Branch or Execute instruction or an address requiring indirect pro-
cessing reaches Level 3 of the IPU pipe, the IPU must examine the addresses of

4-21 Advanced Scientific Computer

&

the instructions currently in the pipe registers to determine if a new memory
fetch will be necessary to obtain the desired word. The Branch, Indirect, Exe-
cute Comparison circuit performs this function in the following sequence (refer
to figure 4-3):

o Compare AR with P2 (24 bits). If AR = P2, transfer Level 2 to

Level 3.

e Compare AR with P1 (24 bits). If AR
Level 3.

e Compare AR octet with PA octet (21 bits). If equal, force AR to
PA and LA to access new word (Branch), or use AR to select from
Current Instruction File (Indirect or Execute).

e Compare AR octet with LA octet (21 bits). If equal, force AR to
PA and LA to begin new sequence (Branch), or use AR to select from
waiting Current Instruction File (Indirect or Execute).

P1, sequence Level 1 to

o If all comparisons fail, transfer AR to OA, LA and PA to access new
octet (Branch), or transfer AR to OA and use AR to select word from
KCM (Indirect or Execute).

4-49 1IPU LEVEL 4

IPU Level 4 is the IPU output level to the MBU. It includes an address and an
operand output register, word selection logic, and a controller. Also_ includ-
ed within the Level 4 circuits, but not solely operational within Level 4, are
the hazard detection circuits. These circuits protect the IPU from processing
potentially faulty instructions or operands. The following paragraphs briefly
describe the major components included in Level 4 of the IPU.

4-50 LEVEL 4 CONTROLLER

The Level 4 Controller monitors the status of MBU Level 5 to determine if the
MBU is ready to accept new data from the IPU. If the MBU can accept a trans-
fer and the active bit in Level 4 Controller is set, the Level 4 Controller
enables the output from the RO and AO Registers, along with control signals, to
the MBU. Refer to the Level 4 Controller flowcharts and description later in
this section for a complete representation of the Level 4 Controller functions.

4-51 REGISTER STACK

The Register Stack stores the resultant storage addresses of the operands in
each level of the CP from IPU Level 4 through AU Level 12 (nine levels maximum) .
The stack is used for any instruction that passes through the AU and has a stor-
age destination in the Register File. The Register Stack registers contain the
storage address of the result as well as control bits. The destination address
is normally developed from the output of the R3 Register and specific control
bits from the Level 3 ROM and ROM Supplement Register (C3). However, during a
Store (R) into « when « is less than or equal to 2F (in the Register File), the
output from the AR Register in Level 3 supplies the destination address to the

4-22 Advanced Scientific Computer

AR COMPARISON . RESULT

AR
RGTR
24 BITS
24 BITS
REZR LVL2->LVL3
24 BITS
o1 24 BITS
RGTR LVLI-=LVL3
21 BITS (MSB)
21 BITS
PA AR->PA,LA (BRANCH)
RGTR AR SELECT WORD (INDIRECT/EXECUTE)
21 BITS
LA AR-ePA,LA (BRANCH)
RGTR AR SELECT WORD (INDIRECT/EXECUTE)

AR-»0A
$» AR-®»LA PA (BRANCH)
AR SELECT WORD (INDIRECT/EXECUTE)

114346

Figure 4-3. Branch, Indirect, Execute Comparisons

4-23 Advanced Scientific Computer

O

Register Stack. The output from the Register Stack is used for hazard detec-
tion. The Register Hazard Comparison circuit compares the contents of the Reg-
ister Stack with various addresses in the IPU pipe to determine whether an in-
struction in the pipe will draw from a location that is to be modified by the
operands preceding it in the pipe. Refer to the Register Hazard Comparison de-
scription for a more detailed discussion of the comparison circuitry.

4-52 REGISTER HAZARD COMPARISON

A register hazard exists when an instruction in the IPU accesses a register in
the Register File and that register will be modified by an operation being pro-
cessed elsewhere in the CP pipe. The contents of that register will not be
valid data until the modification operation in the pipe is complete and the re-
sult has been stored in the Register File. The Register Hazard Comparison cir-
cuit prevents access to a register in the Register File until any instruction
that modifies that register has cleared the CP pipe. The comparison circuit
performs this safeguard function through the series of register comparisons il-
lTustrated in figure 4-4.

As an instruction enters Level 1 of the IPU pipe, the compare circuit monitors
both the T field (index register select) and the M field (base register select)
and compares these fields with the contents of the Register Stack registers to
determine if the T or M field registers will be modified by an instruction in
Levels 4 through 12 of the IPU. Registers R2 and R3 are also compared with the
two fields to determine if the instruction in Level 2 or 3 will modify the Reg-
ister File register. The AR Register in Level 3 is also compared with the T
and M fields of Level 1 to detect a hazard during a Load Register File opera-
tion, where the AR Register holds the address of the register in the Register
File to be loaded. If the instruction passes these tests, it moves to Level 2.
If not, the instruction must wait until the hazard condition drops before it
can transfer to Level 2 to select the registers from the Register File.

At Level 2 the comparison circuit checks only the AR Register in Level 3 for a

hazard against the T and M fields of the instruction at Level 2. This compari-
son checks an address that was not generated when the instruction was in Level

1. If the instruction passes this test, it may move to Level 3.

Since the output of the R3 Register may select a Register File register for in-
put to the RO Register in Level 4, and the AR Register may select a Register
File register during indirect addressing, these two registers are checked for
a hazard conflict at Level 3 before being allowed to access the Register File.
The addresses specified by these two registers are compared with the addresses
stored in the Register Stack to detect a hazard condition.

4-53 AO REGISTER

The AO Register is a 64-bit register that receives the output from the AR Reg-
ister in Level 3. This output may be either the memory address of an operand
for use by the MBU or a direct operand (either immediate or from Register File)
for transfer to the AU. Before entering the A0 Register, the AR Register out-
put (24 bits) undergoes a sign extension process to create a 64-bit input to
the AO Register. The AO Register transfers its 64-bit word to the MBU when di-
rected by the Level 4 Controller.

4-24 Advanced Scientific Computer

R4
R2 R3 AR Tyﬁg
RGTR RGTR RGTR RGTR
STACK
J
;“"
INSTRUCTION —0
LEVEL T AND M
1 FIELDS o
-0
INSTRUCTION Y
LEVEL T AND M
2 FIELDS
R3 Te]
RGTR
LEVEL
3
AR o
RGTR ~
O = COMPARE
114349

Figure 4-4. Register Hazard Comparisons

4-25 Advanced Scientific Computer

52

4-54 7 MODEL STACK

The Z Model is a 5-register stack that contains the destination address of all
Store operations to Central Memory in the CP pipe. The address input is from
the AR Register in Level 3 and enters the Z Model only if the Op Code of the
instruction specifies a Store operation. The address then moves through the
stack registers as the operand moves through the CP pipe. The registers in the
Z Model correspond to positions within the pipe as follows:

o ZP Register. Contains the destination address of a Store operation
that is currently in pipe levels 4 through 12,

o ZA Register. Contains the destination address of a Store operation
that is in the MBU Z Register, having been processed by the CP pipe.

e 7B Register. Contains the destination address of a Store operation
that Eas transferred from the Z File to the ZB File in the MBU, and
is no longer available for X and Y update.

o Z0 Register. Contains the destination address of a Store operation
that is being sent to Central Memory.

® MA Register. Contains the destination address of a Store operation
that is in the Memory Control Unit, but has not been written into
its addressed location of the Memory Module.

The output from the Z Model is used to determine if a requested operand from
memory is to be changed by a Store operation currently in the pipe (operand
hazard). The Instruction and Operand Hazard Comparison circuits determine if
any hazards exist with respect to the contents of the Z Model.

4-55 o OPERAND HAZARD COMPARISON

An Operand hazard exists when the operand addressed by the AR Register is about
to be altered by a Store instruction that is farther along in the CP pipe. The
hazard indicates that if the operand is acquired at the present moment, before
the Store instruction is complete, a faulty operand may be obtained from memory.
To avoid accessing a faulty operand, the Operand Hazard Comparison monitors the
Z Model and compares its contents with the address indicated by the AR Regis-
ter. This comparison is illustrated in figure 4-5.

An additional comparison is performed by this circuit to indicate whether a Z

to X or Y update is necessary. The address in the ZA Register is compared with
the addresses of the octets in the X and Y Buffers of the MBU. If the address

in the ZA Register is within the octet in either the Y or the X Buffer, the IPU
may choose to update the information in the buffers with the resultant data found
in the MBU Z Register.

4-56 NEAR RANGE INSTRUCTION HAZARD COMPARISON

An Instruction hazard exists when an instruction that has been accessed by the
IPU is to be altered by a Store instruction that is already in the pipe. The
Near Range Instruction Hazard Comparison circuit detects an imminent instruc-
tion hazard by comparing the store operation address record in the Z Model with
the address of the instruction that is about to be executed in Level 3 of the

4-26 Advanced Scientific Computer

AR

RGTR
ADDRESS
TO
MBU
‘ STORE
* * ADDR
COMPARE

XA YA ZP —p»O

RGTR RGTR RGTR

(MBU) (MBU)
ZA

RGTR —O-
zB oW

RGTR
S

Z0

RGTR
MA PO

RGTR

114350
Figure 4-5. Operand Hazard Comparisons

4-27

Advanced Scientific Computer

P

IPU pipe. This address is contained in the P3 Register. If a near range haz-
ard is detected by this comparison, the hazard flag is set. When the offending
store instruction is finished, P3 transfers its contents to LA, OA, and PA to
begin another pass at the instruction in memory. The near range comparison is
i1lustrated in figure 4-6.

4-57 FAR RANGE INSTRUCTION HAZARD COMPARISON

A far range instruction hazard indicates that an instruction in the IPU pipe
before Level 3 has been fetched from a memory location that is being changed
by a previous store instruction that is writing into memory. This condition
means that the instruction in the pipe is not valid. To detect a far range
hazard, the comparison circuit monitors the address in the MA Register of the
Z Model and compares that address with the addresses of the instructions in the
P1 and P2 Registers and the octet address contained in PA and the LA Registers
(refer to figure 4-7). Detection of a far range instruction hazard has no
immediate effect on the IPU, as the invalid instruction may be disregarded by
a branch, skip, or other diversion before it reaches Level 3. Instead of an
immediate reaction, a far range hazard flag sets in the controller corre-
sponding to the invalid instruction. This flag passes from controller to con-
troller as the instruction moves through the IPU Tevels. When the instruction
reaches Level 3, the Level 3 Controller checks the far range hazard flag. If
that flag is set, the controller loads the P3 Register into PA, LA, and OA
Registers to restart the instruction sequence.

Z MODEL
COMPARE
O zp
o ZA
LEVEL 3
r3
ot zB
— O zZo
ot MA

114351

Figure 4-6. .Near Range Instruction Hazard Comparisons

4-28 Advanced Scientific Computer

COMPARE
o P2
(24-BIT):
P1
Z MODEL L 2% GaBID
MA
m PA
(21—-BIT)
o LA
(21-BIT)

114352

Figure 4-7. Far-Range Instruction Hazard Comparisons

4-58 RO REGISTER

The RO Register is a 64-bit register that holds an operand for transmission to

the MBU. The 4-bit R field from the R3 Register selects one word from the Reg-
jster File for entry into the RO Register when the Level 3 Controller transfers
information from Level 3 into Level 4. The RO Register may also be loaded from
the P3 program address register for operations using a direct operand contained
in the address registers. The output from the RO Register transfers to the MBU
for input to the AU after the MBU fetches the second operand from memory.

4-59 MEMORY BUFFER UNIT (MBU)

The Memory Buffer Unit (MBU) receives addresses or immediate operands from the
IPU. If the word is an address, the MBU requests the octet containing that ad-
dress from central memory, and extracts the proper operand from that octet.

In either case the MBU forwards the operand, immediate or addressed, to the

AU for processing. The two operands within the MBU can be up to 64 bits long.
During vector operations, the MBU buffers up to three octets from memory for
each of two input buffers so that a steady input of data to the AU is ensured.
The components of the MBU are illustrated in the detailed block diagram of the
central processor in figure 4-1. The following paragraphs describe the func-
tion of each of those components within the MBU.

4-60 MEMORY INTERFACE FILE (SC)

The MBU Memory Interface File (SC) receives all operands from Central Memory
that the MBU transfers to the AU. The file is an eight-register (octet) group

4-29 Advanced Scientific Computer

a2

with 32 bits to each register. It receives data directly from the memory data
Tines and holds that data until it is synchronized with the CP clock pulses.
The clock pulses then transfer the data through the remainder of the MBU,
subject to gating signals from the MBU controllers. The output from the SC
File may enter one of many places in the MBU. During scalar operations and
during vector operations when the Vector Buffer Files are empty, the SC

output transfers directly into either the X or Y operand buffer. When a vector
operation is in progress and the X or Y operand buffers are full, the SC output
enters either the YB or the XB Vector Buffer File. Two paths supply data to
the Z Storage Files also. One path provides fill-in for partially filled words
for storage into memory (ZB), while the other path is used exclusively during a
Load Details operation (Z).

4-61 VECTOR BUFFER FILES (XB, XH, YB, YH)

Each Vector Buffer File consists of eight 32-bit operand registers. During
vector operations, the files provide continuous operands to the X and Y Operand
Files for operand streaming into the AU. Two Vector Buffer Files supply two
stages of octet buffering for each of the two Operand Files. Cue and control
bits from the Central Memory Requester control entry into the Vector Buffer
Files. The individual vector controllers (figure 4-1) gate the data between
the files. When an octet arrives in the SC File, CMR determines which vector
stream addressed that particular octet and gates the octet into either the X

or Y data stream. The octet may enter either the B level or directly into the
operand file, depending on the status of the operand file. If the octet enters
the B level and the next buffer is clear (XH or YH) on the next clock pulse, a
gate from the vector controller transfer the new octet into the H buffer.

When the corresponding Operand Buffer File empties, another gate and a clock
pulse transfer the octet from the H level to the Operand File.

4-62 OPERAND BUFFER FILES (X, Y)

Both Operand Buffer Files consist of eight 32-bit registers. These files sup-
ply operands to the MBU output registers during both scalar and vector opera-
tions. The files receive their input octet from three sources: the SC Inter-
face File, the XH or YH Vector Buffer Files during vector operations, and the
ZH Holding File. This last source of operands is used when the Z pipe contains
modified entries for storage in the octet that is resident in either of the
Operand Buffer Files. Flag bits record the halfwords that have changed in the
octet so that only the changed portions of the octet transfer to the Operand
Buffer Files during this update procedure. The output from these files is
available to the MAB and MCD output registers through a selection network for

input to the AU,
4-63 X AND Y WORD SELECT

The word select circuits receive inputs from their respective Operand Buffer
File and use a 4-bit word address (figure 4-1), Address Generation Circuit to
select a half, single or doubleword entry from the o perand octet. During vec-
tor operations, the output from the X select circuit is sent only to the MAB
register and the output from the Y select circuits drives only the MCD reg-
ister. No crossover of operan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>