
OPERATION AND MAINTENANCE
INSTRUCTIONS:

ASC-lX CENTRAL PROCESSOR (CP)

TEXAS INSTRUMENTS
INCORPORATED

Equipment Group
P.O. Box 2909
Austin, Texas 78767

930020-2
July 1973

I
OPERATION AND MAINTENANCE

INSTRUCT! ONS :
ASC-lX CENTRAL PROCESSOR (CP)

--· ____ , __ ,,,, __ .,..,,
=====-·=-==--··--·--------

TEXAS INSTRUMENTS
INCORPORATED

<O Texas Instruments Incorporated 1973
All Rights Reserved

The information and/or drawings set forth in this document and
all rights in and to inventions disclosed herein and patents
which might be granted thereon disclosing or employing the ma­
terials, methods, techniques or apparatus described herein are
the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to
any other person or organization without the prior consent of
Texas Instruments Incorporated.

TABLE OF CONTENTS

Paragraph Title Page

SECTION I. GENERAL DESCRIPTION

1 - 1 Genera 1 . 1-1
1-2 Purpose ... 1-1
1-3 ASC Sys tern Overview . • 1-1
1-4 Functional Description 1-3
1-5 Address Registers and Control 1-3
1-6 Register File ... 1-3
1-7 Instruction Files 1-3
1-8 Instruction Register 1-5
1-9 Address Modification 1-5
1-10 Address and Operand Registers 1-5
1-11 IMM/REG Registers 1-5
1-12 Memory Address Control 1-5
l - l 3 Memory Buffer Fi 1 e . 1 -6
1-14 MAB/MCD Operand Registers•................... 1-6
1-15 AU Contra 1 Decode . 1-6
1-16 Buffer Update and Store 1-6
1-17 AB/CD Operand Registers 1-6
1-18 Pipeline Path Control 1-6
1-19 Arithmetic Pipeline 1-6
1-20 EF Output Register 1-7
1-21 General Characteristics 1-7
1-22 CP Instruction Set .. 1-7
1-23 Instruction Format .. 1-30
1-24 Data Formats . 1-31
1-25 Physical Description .. 1-33
1-26 Cooling System .. 1-34
1-27 Logic Circuits .. 1-34

SECTION II. INSTALLATION

2-1 General ... 2-1

SECTION III. OPERATING INSTRUCTIONS

3-1 General ... 3-1

4-1
4-2
4-3
4-4
4-5
4-6

SECTION IV. PRINCIPLES OF OPERATION

General ...
IPU Level 0 .. .

Look-Ahead Register (LA)
Cycle Interruptions
Output Compare••.....•.....•......

Load Look-Ahead Counter

4-1
4-1
4-1
4-2
4-2
4-2

iii Advanced Scientific Computer

~------

Paragraph

4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54

TABLE OF CONTENTS (Continued}

Title

Branch Address Register (BA} ..••.•••••••••.•.....••..•••
Present Address Register (PA}

PA Inputs · .. · · · · · · · · ·
Output Address Register (OA}

P3 Register Output
LA Register Output•.•...•...•......•••......•
AR Register Output ...•.•...•..••...•.•.•..••..•••..•
Load/Store Details

KCM Memory Interface Fi 1 e .••.•...•.•...•.•••..•..•.•.•..
Instruction Processing .•.....•.•.•...•...•••.•.•..••
Load/Store Details
S to-re Fi 1 e

KA/KB Current Instruction Files
File Select .. .
Word Select .. .
Level 0 Controller•.•.•.•.•...•.•.••...•••.••.••.

!PU Level 1 ...
Pl Register .. .
Instruction Register (IR} •••.•.•••••...•.•.•••••.••..•.•
Level l Centro 11 er•........

Register File ..•...•.......•.•..•..•.•••.....•••••.•...•.•••
Base Address File, A and B
Genera 1 Storage Fi 1 e, C and D •...•...•.•.•..••••.•••.•..
Index File, I ...
Vector Parameter File, V•.•.....•.....•••...•

!PU Level 2 ...
Level 2 Controller ...•........••.•.•.•.•....••...•.••..•
Level 2 ROM •••
R2 Register .. .
Indexing Register (XR)
Displacement Register (NR) .•.•..••.......•••.•••...••...
P2 Register .. .
Base Address· Register (BR) ...•.....•.....•.•...•...•.•.•

IPU Level 3•..•......•.•...•...•...•
Modification Adder•.•.•.•.....•.•.••••.•••••••..•
Adder Resultant (AR} Register ..•.....••..•.•.•...•.•.•••
P3 Register .. .
Level 3 ROM .. .
ROM Supplement Register (C3) ..•..•...•.•••...•••.•.•.•.•
R3 Register .. .
Level 3 Controller
Branch, Indirect, Execute Comparisons•.....•......••

IPU Level 4•.....•....•...••.•.•.•.••..•.•.•.•....
Leve 1 4 Contra 11 er•
Register Stack ...•...................•...•.....•.......•
Register Hazard Comparison •..•.•.......•.....•••.•..••.•
AO Register .. .
Z Model Stack•.•....••........................

iv

Page

4-2
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-14
4-14
4-14
4-14
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-16
4-17
4-17
4-17
4-18
4-19
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-21
4~21
4-21
4-21
4-21
4-22
4-22
4-22
4-24
4-24
4-26

Advanced Scientific Computer

~------
Paragraph

4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70 .
4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78
4-79
4-80
4-81
4-82
4-83
4-84
4-85
4-86
4-87
4-88
4-89
4-90
4-91
4-92
4-93
4-94
4-95
4-96
4-97
4-98
4-99
4•100
4-101
4-102

TABLE OF CONTENTS {Continued)

Title Page

a Operand Hazard Comparison •••...........••••••....••... 4-26
Near Range Instruction Hazard Comparison••.••••. 4-26
Far Range Instruction Hazard Comparison .••..•.••...••.•• 4-28
RO Register . • • . • 4-29

Memory Buffer Unit {MBU)••..•....•..•.•....••... 4-29
Memory Interface File {SC)••.•.....•....•.•..••... 4-29
Vector Buffer Files {XB, XH, YB, YH) 4-30
Operand Buffer Files (X, Y) .•.................•......... 4-30
X and Y Word Select•...... 4-30
MAB/MCD Output Registers• 4-31

Scalar Data Paths ..•........•..........•...•....•... 4-31
Vector Data Paths•.................•......•.•. 4-31

REG Register•.•.....••.••.. 4-31
IMM Register .. 4-31
Z Register Select 4-31
Z Resultant Storage File•.•.•••..•.•.•.•.••••• 4-31
ZH Half Phase Holding File•...•••.. 4-32
ZB Memory Storage Fi 1 e • . • • • • . . 4-32
ROM Address Register 4-33
ROM Address Select•.....•......•...•............ 4-33
MBU ROM • . . . • • • • . • • • • • • . • . • • • • • • • . • . . • . • • • • • • • • 4-33
ROM Output Register•...•........•..•. 4-33
Select Next Controller 4-34
AU Contra 1 . • • • . . . 4-34
AU Mode 1 . • • • . . 4-34
Z Data and Address Control 4-34
Level 5 Controller•..... 4-35
Level 6 Controller•..•..•..•......... 4-35
Inner Loop Storage Register {NIS) ..•.............•..•... 4-35
Self Loop Count Register {LPS) 4-35
Vector Initialization Control 4-35
Vector Loop Control 4-36
Self Loop Counter (FLP)•....................... 4-36
Inner Loop Counter {FNI)•....................... 4-36
Outer Loop Counter {FNO)•••. 4-36

Vector Controller .•................................. 4-36
MBU Unit Hard Core•....•........ 4-37
Vector Address Generation {A/B Vectors)•......•...... 4-37

Vector Address Register {NAA/NBA)•....•........ 4-38
Address Adder • • • 4-38
Octet Request Register {XBA/YBA)•.•... 4-38
Circular Address File (CAF) ..•........•....•........ 4-38

Buffer Operand Address Register (XA/YA)•. 4-39
C Vector and Storage Address Generation•... 4-39

C Vector Address Register {NCA)•.......••.... 4-40
Address Adder•..•......•... 4-40
Scalar Storage Address Register (NSA)•...• 4-40
Resultant Storage Address Register {ZA)•..•... 4-40

v Advanced Scientific Computer

Paragraph

4-103
4-104
4-105
4-106
4-107
4-108
4-109
4-110
4-111
4-112
4-113
4-114
4-115
4-116
4-117
4-118
4-119
4-120
4-121
4-122
4-123
4-124
4-125
4-126
4-127
4-128
4-129
4-130
4-131
4-132
4-133
4-134
4-135
4-136
4-137
4-138
4-139
4-140
4-141
4-142
4-143
4-144
4-145
4-146
4-147
4-148
4-149
4-150

TABLE OF CONTENTS (Continued)

Title Page

Half Phase Holding Register (ZAH)•.. 4-40
Memory Storage Address Register (ZBA) .•...•....•...• 4-40
Halfword Modified Indicator Register (ZM)•..• 4-41
Half Phase Holding Register (ZMH) .••.•••••••••••.••. 4-41
Memory Storage Modified Halfwords Register (ZBM) 4-41
Storage Word Address Register (ZEA) ..•...•.•.....•.. 4-41

Centra 1 Memory Reques tor (CMR) . . . • . . • . . • • . . • • . • • • . . . 4-41
CMR Priority Gate . 4-41
Memory Octet Address Register (OA) ..••.............• 4-42
Asynchronous Address Register (AA)•...••...... 4-42
Halfword Bits ~heck ~nd Merge•.............. 4-42
Zone Control Bit Registers {ZCB/AZC)•.•..••.... 4-42
CMR Control•........ 4-42
Cue Fi 1 e . • • . • . • • . • • . • . 4-43

Master Hard Core (MHC)•.•.....•....... 4-43
Capture Common Command Register (Capture CCR) ...•.•...•. 4-43
MCW, MCP and Error Monitor•.....•....• 4-44

CP Control Register•..•...•.•...••... 4-44
CP Switches • . • . . • . • . . . • . • . . 4-44
Monitor Response•..•..........•.......... 4-44

Sequence Control•..............••.•..•.•.•.•. 4-46
CCR Output Register•...........................•.. 4-46
Unit Register Read•.... 4-49

AU Input . 4-49
Exponent Subtract•............................ 4-49

Input Select .. 4-49
Subtract Exponents and Compare Magnitude•...•..... 4-49
LOR Register .. 4-51
SOR Register . . . • . 4-51
ED Register•.•............................. 4-51
Compare Code•...•...•........•••...•...• ; 4-51

Align and Right Shift•...•.•.........•...•.......• 4-51
Select • . 4-52
Hex Shift Decode•.............................• 4-52
Bit Shift Decode•........ 4-52
Shift Sequence•...•...................... 4-52
Not Shifted Register (NS)•...................... 4-54

Adder Section•...•.................................... 4-54
Input Select .. 4-54
Adder . 4-54
Adder Output Register (ADD)••...... 4-54

Accumu 1 a tor . 4-55
Operand Select .. 4-55
Adder • • • . 4-55
Accumulator Output Register (ACC) •................•.••.. 4-55

Output . . . • • • • . . . • . 4-55
Logical Operations .•.........•...................•..•.•• 4-55
Output Se 1 ect . 4-56

vi Advanced Scientific Computer

Paragraph

4-151
4-152
4-153
4-154
4-155
4-156
4-157
4-158
4-159
4-160
4-161
4-162
4-163
4-164
4-165
4-166
4-167
4-168
4-169
4-170
4-171
4-172
4-173
4-174
4-175
4-176
4-177
4-178
4-179
4-180
4-181
4-182
4-183
4-184
4-185
4-186
4-187
4-188
4-189
4-190
4-191
4-192
4-193
4-194
4-195
4-196
4-197
4-198

TABLE OF CONTENTS {Continued)

Title Page

EF Register . 4-56
Campa re Code • . • • . . • • • • • • • • • • . • • . . • • . . . • • • • • . • • • • 4-56
Res u 1 t Code . . • • • • • . • • . • • • . . • • • • • • • • • • • . . • . • • • • • • • • • • 4-56
Arithmetic Exception Cells {AE) .•.•••••••••••••••••••••. 4-56

Norma 1 i ze Sec ti on•....... 4-56
Input Select .. 4-57
Most Significant 1 Search .•••...••••...••••••••.•••••••. 4-57
Left Shift Code Register ..•....••.•••..•••••••.•.•.•••.. 4-57
Exponent Adder . 4-58
Left Shift Hex Decode ..•.•••••..•.•....••••••..•••...••• 4-58
Hex Shift Network/Bit Shift Network .•••.•.•••.•.•••...•. 4-58
Norma 1 i zed Output Register {NORM) . . . • • • . . • • . • . • . • . • • • • • . 4-58
Left Shift Bit Decode•.•.•.•..••••.••.••••.••...•• 4-60
Bit Shi ft Magnitude Determination ...• , ••.••• , .•.. , ••.•.. 4-60
Bit Shift Encode and Register•..•.......•••••.•... 4-60
Overflow Check•...•..••......•.........••.••.•.•• 4-60

Multiplier Section•.••...••.....••.•.•.•••••..•...•• 4-61
Dividend Register•.•...•.••..•...••..•....••.••.•..• 4-61
Divisor Register .. 4-61
P-Term Logic .. 4-61
Modifier Register••....•..•..••••...•• 4-61
Multiplicand/Multiplier Select•..•...•..••........•. 4-62
Recode . 4-62
Fanout•.....•.......... 4-62
Form Summands ... 4-63

Overflow Salvage•.......•..•••.••..•.•.•....•• 4-63
Sign Extension Summand••..•..•...•.•••.. 4-63
Division Summand 4-65
Two 1 s Complement 4-65

Adder Tree • • • . . • • . . . • .. . • • • • • 4-65
Pseudo-Sum (PS) Register•.•..••..... : .•••.. 4-65
Pseudo-Carry {PC) Register••.....•......•.. 4-67

Multiplication Theory 4-67
Algorithm Derivation•.•......••.•...•.•••.•..•.. 4-67

AU Division Theory .. 4-69
Sign Extension Algorithm•................•.•.....•. 4-72

Two's Complement Formation .••.......•••....•..•••.•...•. 4-72
Algorithm Derivation•.....••••••••••.•.•• 4-72

AU Unit Hard Core••••....••.•.•••. , ••••.... 4-74
Controller Descriptions and Flowcharts .•...•..•••....•.....• 4-74

Instruction Flow .. 4-75
Indirect Addressing••...•...••••••....•.•..•••.. 4-77
Execute Instruction•...•.....•...••••.•....••. 4-77
Skips ... 4-77
Branches•.•...•..••••••.••••.•...•... 4._77
Store File and Load File Instructions .•..•....•••••• 4-77
Push, Pull Instructions ..••••..•.•••.••.•.•.•.•••.•• 4-78

Load Look Ahead Controller••••.••.••••••••..•••••.•.... 4-78

vii Advanced Scientific Computer

Paragraph

4-199
4-200
4-201
4-202
4-203
4-204
4-205
4-206
4-207
4-208
4-209
4-210
4-211
4-212
4-213
4-214
4-215
4-216
4-217
4-218
4-219
4-220
4-221
4-222
4-223
4-224
4-225
4-226
4-227
4-228
4-229
4-230
4-231
4-232
4-233
4-234
4-235
4-236
4-237
4-238
4-239
4-240
4-241
4-242
4-243
4-244
4-245
4-246

TABLE OF CONTENTS (Continued)

Title

Controller Timing
Sta.rt .. .
LLA at Leve 1 3 ••••••.•••••••.••••••••.•....•••....••••••
Branch Taken at Level
Target Branch Failed

3
Target in Pipe
Target Entering Pipe
Normal Look Ahead Cycles
Target in Look Ahead Buffer .•..•.••.••.....••••.•••••...
Contents of Pipe Not Useful

Branch to OA••.......
Branch to LA
Branch to PA•......•............•
Instruction Hazard Recovery ..••••...•••••.••••..••••
Target Fail
Load or Store File .••.•.••••...•••••••...••.•.•••••.

Leve 1 0 Contra 11 er
Indirect or Execute at Level 3 ...•.....•.•.....•..••.•..
Fi le S.elect .. .
Level
Level

l Not Active
l Active

Level l Controller
Level l (Big State)

Instruction Path Change ...•.•.•.•.••.•••.•••.•••••..
skip
Branch to Level l
Recover Level 2 Hazard ...••••••••••....•....•••••••.
None

Skip State
Indirect or Execute at Level 2 State ·············~······
Indirect at Level 3 State
Load File State•.....•...••......•...•....••.••.
Execute at L~vel 3 State•........••••••••••••..•.
Store Fi l e St ate .
DAV State .. .
Push-Pul 1 State .. .
Vector State
Hazard State

Leve 1 2 Contra 11 er
Select Adder Input
Contents of Level l Not Useful
Increment AR .••••••...•.•••••.•••••••••••.••••••••••••••
Vector Parameter File .•.•.••.•••.•...•.•.•.•.•••••.••...
Push-Pull ...
None .. .

Leve 1 3 Contra 11 er
Idle State

In i ti a 1 State

Page

4-78
4-78
4-84
4-84
4-84
4-84
4-85
4-86
4-86
4-87
4-87
4-87
4-87
4-87
4-88
4-88
4-88
4-89
4-89
4-89
4-93
4-93
4-94
4-94
4-94
4-94
4-107
4-107
4-107
4-107
4-108
4-108
4-109
4-109
4-109
4-110
4-110
4-110
4-111
4-111
4-111
4-111
4-115
4-115
4-115
4-116
4-116
4-116

viii Advanced Scientific Computer

~------
Paragraph

4-247
4-248
4-249
4-250
4-251
4-252
4-253
4-254
4-255
4-256
4-257
4-258
4-259
4-260
4-261
4-262
4-263
4-264
4-265
4-266
4-267
4-268
4-269
4-270
4-271
4-272
4-273
4-274
4-275
4-276
4-277
4-278
4-279
4-280
4-281
4-282
4-283
4-284
4-285
4-286
4-287
4-288
4-289
4-290
4-291
4-292
4-293
4-294

TABLE OF CONTENTS (Continued}

No Op
Brown

Title

... ...
Instruction Error•....•••••...•.....•..
Yellow
Pink
Gray ·
Orange•..........
Green•............
Bl ue•...........•.
Decide
Lavender•.....

Vector Forced Write State (State 0)•.........
First Vector Initiation (State l}•......
Vector Burst (State 2)•.........................
Level 2 Wait (State 3)
Vector Go (State 4)
Vector + 1 (State 5)•.•..
Load File Request Wait (State 6}
Prime Second Vector (State 7)•......•.........
First Vector Wait (State 8)•...................
Hazard (State 14)•....•....•...................
Indirect Request (State 15}
Orange Wait (State 12)•...........•.................
Orange Request (State 13) .•.............................

Load File Multiple•.........•....••........
Store File Multiple•...•.....•....•..••

Push-Pul 1 (State 9)
Push-Pull 1 (State 10)•........................
Push-Pul 1 2 (State 11)•...•...........
Monitor Calls (State 16} ..•....•..•..............•......
Level 3 Controller Common Sequences'

Sequence BA•....•.........
Sequence BBBA ..••..••.........•••••..••••••••.••.•..
Continue BA•..••.•.•••...•••••..••.•••••..••.•
End BA•.........•.•..
Sequence BLBI•.•••.••.••.••.•.••.••••...•..
Sequence BI •••
Sequence BBBI••.••...•••••...•...•••.••••...•
Sequence A•..•.•.••..••••.•.......••••.••••..•.
Continue BI •••

Forced Write Controller•....•......•...........
Level 4 Controller

Update Enable .. .
Mode Zero•..........
Mode One ..•.......•..••.••.•••••...•.••..•.•••••••••••••
Mode Two•.......•••...
Mode Three••.•.......
Mode Four•••.•.........•...••.•........

Page

4-119
4-119
4-119
4-119
4-124
4-127
4-131
4-136
4-140
4-145
4-147
4-150
4-153
4-153
4-156
4-156
4-158
4-160
4-160
4-163
4-163
4-166
4-166
4-166
4-167
4-169
4-169
4-169
4-172
4-174
4-174
4-174
4-181
4-181
4-184
4-184
4-185
4-185
4-186
4-186
4-186
4-188
4-188
4-188
4-192
4-192
4-192
4-193

ix Advanced Scientific Computer

Paragraph

4-295
4-296
4-297
4-298
4-299
4-300
4-301
4-302
4-303
4-304
4-305
4-306
4-307
4-308
4-309
4-310
4-311
4-312
4-313
4-314
4-315
4-316
4-317
4-318
4-319
4-320
4-321
4-322
4-323
4-324

6-1
6-2

Appendix

A
B
c

TABLE OF CONTENTS {Continued)

Title Page

Conclusion•........•.....•..•....•. 4-193
Level 5 Scalar Input Controller 4-193

Input Stage Not Active {Not MBIAC) ..••........•......... 4-193
Load Immediate Operand ..•..•..••........•••..•.•.•.. 4-199
Load From X Buffer {LDXA) ..•.•..••••••••.••.•••••.•• 4-199
Load From Y Buffer {LOYA) 4-200

Input Stage Active {MBIAC) 4-200
Trans fer OK . 4-200
Transfer Not OK 4-201

Level 6 Controller - Scalar Mode••..........•.. 4-202
Level 6 Controller - Vector Mode 4-204
Select Next Controller•.........•.......•... 4-204
Centra 1 Memory Requester {CMR)•........... 4-208
PP Response Polling of the CP•............•. 4-225

System Error .. 4-225
Abnormal Termination 4-225
Normal Termination 4-225

Capture CCR . 4-230
Error Mani tor ... 4-230
Sequence Control ..•.•. 4-233

State 0 ... 4-233
State 1 . 4-236
State 2 ... 4-237
State 3 ... 4-237
State 4 ... 4-237
State 5 .••.•.••..•.•.........•.•••••.•.•••....••••••••.• 4-237
State 6 ... 4-238
State 7 ... 4-238
State 8 ... 4-238

Other Control Circuits ·······························~······ 4-238

Introduction
Logic Cards

SECTION V. MAINTENANCE

SECTION VI. PARTS LISTING

.. ...
SECTION VII. DIAGRAMS

Title

LEVEL 2 ROM CONTENTS
LEVEL 3 ROM CONTENTS

..
AU DETAILS MAP ...•... •· ...•...•..•..••.•..•.•••.••••.•••••.•

6-1
6-1

Page

A-1
B-1
C-1

x Advanced Scientific Computer

Figure

1-0
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

LIST OF ILLUSTRATIONS

Title

ASC Central Processor ..
ASC Simplified Block Diagram•..••.......••
Central Processor Block Diagram••..•..............•....•
Scalar Op Code Map•..•.•......•.•..•...
Vector Op Code Map•.....••..••
ASC Instruction Word Format•..••..........•.•••••.•
T-Field Subdivision
32-bit, Fixed Point Data Word Format•••..••
16-bit, Fixed Point Data Word Format•.•.•.••.........•
32-bit, Floating Point Data Word Format•....•....•
64-bit, Floating Point Data Word Format .•.••...••...•.•.••••...
Typical ASC Central Processor One-Pipe Configuration•••..•
Schematic Representation of CP Cooling System .•••...••...•....•

· ECL Circuits .. .

Central Processor Block Diagram•...•.........•....•...••
Vector Parameter File Format .•.•..•.•••.•••.•.••..•.•........••
Branch, Indirect, Execute Comparisons••...........•.......
Register Hazard Comparisons•..........•...
Operand Hazard Comparisons•....•....•....•.•..•
Near Range Instruction Hazard Comparisons .•..•........•.....•..
Far-Range Instruction Hazard Comparisons .••........•........•..
Typi ca 1 CAF Word••••..•.....••.•.•.•..•••.•••••.•.••••
Common Command Register and Transfer Bit•.........•....•
CP Contra 1 Register
CP Response Byte .. .
CP Condition Byte
Exponent Subtract and Compare Logic Flowchart•...••.....
Simplified Right Shift Network (Bit 16 of Operand)
Simplified Left Shift (Normalize) Network (Bit 16 of Operand) ..
Multiplier Word Recode Bit Assignments
Summand Array
Simplified Adder Tree Block Diagram•................•...
CP Hardware Utilization-Division Process .•.....•..............•
IPU Control
Load Look-Ahead Contra 11 er Flowcharts•....................
Level 0 Controller Flowchart•...•••.•••.......•.....
Level 1 Controller Flowchart••....•....•....•...••
Level 2 Controller Flowchart••........•....•
Level 3 Controller State Diagram•....•.••......•....•
Initial Subcycle of Level 3 Idle State•....•...•...........
No Op Subcycl e of Level 3 Idle State
Brown Subcycl e of Level 3 Idle State•.........•.•......•.
Instruction Error Subcycle of Level 3 Idle State•..........
Yellow Subcycle of Level 3 Idle State ..•..................... ~.
Pink Subcycle of Level 3 Idle State

Page

1-0
1 :..2
1-4
1-23
1-29
1-30
1-31
1-31
1-32
1-32
1-33
1-34
1-35
1-36
4-3
4-17
4-23
4-25
4-27
4-28
4-29
4-39
4-44
4-45
4-46
4-48
4-50
4-53
4-59
4-62
4-64
4-66
4-71
4-76
4-79
4-90
4-95
4-112
4-117
4-118
4-120
4-120
4-121
4-122
4-125

xi Advanced Scientific Computer

Figure

4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
6-1

LIST OF ILLUSTRATIONS (Continued)

Title Page

Gray Subcycle of Level 3 Idle State ...••••.••••••••••••••••••.• 4-128
Orange Subcycle of Level 3 Idle State 4-132
Green Subcycle of Level 3 Idle State .•••••••••••••••••••••••••• 4-137
Blue Subcycle of Level 3 Idle State 4-141
Decide Subcycle of Level 3 Idle State .••••••••••••••••••••••••• 4-146
Lavender Subcycle of Level 3 Idle State •••••••••••••••••••••••• 4-148
Vector Forced Write State of Level 3 Controller ••••••••••.••••• 4-151
First Vector Initiation State of Level 3 Controller •••••••••••• 4-154
Vector Burst State of Level 3 Controller ••••••••••••••••••••••• 4-155
Level 2 Wait State of Level 3 Controller •••••.••••••••••.•••..• 4-156
Vector Go State of Level 3 Controller .•••••••••.••••••••••••••• 4-157
Vector+ 1 State of Level 3 Controller •••.••••••••••••••••••••• 4-159
Load File Request Wait State of Level 3 Controller •••.••••••••• 4-161
Prime Second Vector State of Level 3 Controller ...•.••••••••••• 4-162
First Vector Wait State of Level 3 Controller .•....••..••.••••• 4-164
Haza rd State of Leve 1 3 Con tro 11 er • • • 4-165
Indirect Request State of Level 3 Controller .••••.••••••••.•••• 4-166
Orange Wait State of Level 3 Controller ..•••••..•••••••••.••••. 4-167
Orange Request State of Level 3 Controller .•••••••••••••••••••• 4-168
Push-Pull State of Level 3 Cont roll er 4-170
Push-Pull 1 State of Level 3 Controller 4-171
Push-Pul 1 2 State of Level 3 Contrell er ••••.•.••••••••••••.•••. 4-173
Monitor Calls State of Level 3 Controller •.••..•••••••••••••••• 4-175
Level 3 Contra 11 er Common Sequences • . • • • • • • • 4-176
Level 3 Forced Write Controller .••.••••.....•••.•••••••••.•.••• 4-187
Level 4 Controller Flowcharts ...••••••••••.••.•••••••••••.••••• 4-189
Level 5 Scalar Input Controller Flowchart .•••••..••••••••••••.. 4-194
Level 6 Controller Flowchart - Scalar Mode•••••••.••••••... 4-203
Level 6 Controller Flowchart - Vector Mode ...••••••.••••...•••• 4-205
Select Next Flowchart••••........•••••.•••••••.•.•.••..•••• 4-206
CM Requester Flowchart•.•.•....•...•.•.••.•••.••••.• : •.•.•. 4-209
PP Automatic Interrupt or Polling Loop of CP Status .••.•••••••• 4-226
Capture CCR Logic Flowchart•.....••.••...•...••••••.•••... 4-231
Monitor Flowchart .•..•••.••...•.••••.•....•..•••.••••.••.•••••. 4-232
Sequence Control Flowchart ••.•..••..•••..••••••••.•••••••.••••• 4-239
MBU Unit Hard Core Flowchart •••••.••••••••••••.•••••••••••.•••• 4-246
MBU Unit Hard Core De-escalate Controller Flowchart •••••••••••• 4-249
AU Unit Hard Core Flowchart•••.••••••••••• ~ •••••••••.•••••• 4-252
GAF Output Control Flowchart .••..••...••••••••••••••••••..••.•• 4-259
Vector Initialization Control Flowchart ••••••••••.•••.•••.••.•• 4-260
A/B Vector Address Generation Flowchart ••....••.••••••••••••••• 4-264
C Vector Address Generation Flowchart •.•••••••.••••••.••.••.•.• 4-281
AU Control ... 4-287
Z Address Flow .· .•...................•..........•.....•......... 4-292

Card Location Information· ...••.•••••..•••••.••••••••••••••••••• 6-1

xii Advanced Scientific Computer

~------

Table

1-1
1-2
1-3
1-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
6-1

LIST OF TABLES

Title

Central Processor General Characteristics
Scalar Instruction Set ••••.•.••••••••••••••••••••.•••••••••••••
Vector Instruction Set ..•.•..••..•••.•.••••••.••••••••.•••••.••
ECL Circuit Types•..........

V-File Field Descriptions .•.••..••.••••••••••••••••••••••••••••
CP Control Byte Bit Definitions
CP Response Byte Bit Definitions
CP Condition Byte Bit Definitions •••••••.••••••••••••.•.•••••.•
Recode Output Control Signal Definitions •.•..••••••••••••••.•••
Recode Circuit Data Analysis ..••••••••.•••••••••.•••.••••••••••
Continue BA Decode Results .•.•••.••••••••••.••••••••.••••••••••
Continue BA Acronyms•.........•.............•.•••...

.Sequence Control Acronyms ..•••••.••••••••••.•.•••••••••••••••.•
Central Processor Logic Cards ..•.••••••••••••••••••••••••••••••

Page

1-8
1-9
1-24
1-37
4-18
4-45
4-47
4-48
4-63
4-69
4-182
4-183
4-234
6-2

xiii Advanced Scientific Computer

~

I
0

Figure 1-0. ASC Central Processor

~------

1-1 GENERAL

SECTION I
GENERAL DESCRIPTION

This section describes the operation of the Central Processor (CP) of the
Texas Instruments Advanced Scientific Computer (ASC). It includes a brief
system overview of the ASC, a general functional block diagram description of
the CP, a physical description of the CP, plus information about the instruc­
tion set and words used in the CP. Section 4 of this manual provides a de­
tailed discussion of the CP theory of operation. Other useful charts and
data are contained in the appendices to this manual. This manual applies to
one-pipe CP configurations only.

1-2 PURPOSE

The ASC CP accesses program instructions from Central Memory, executes those
instructions, and stores the results either within the CP or back into Central
Memory. In performing this function, it also monitors program status to detect
errors, branches and conflicts, and informs the Peripheral Processor if it is
unable to continue a particular operation. The Peripheral Processor controls
the selection of programs executed by the CP.

1-3 ASC SYSTEM OVERVIEW

Besides the CP, the ASC includes the following major units:

• Peripheral Processor (PP)

• Central Memory System (CM)

• System Clock

• Disc Storage System

• Magnetic Tape System

• Data Communications Channel

• Paper Peripheral Channels

• Operators Console

• Display Console

• Power System

• Maintenance System .

The relationship of these components is shown in figure 1-1. The CP interfaces
directly with Central Memory for instruction and operand fetching, as well as
for maintenance purposes. Initial programming sequences are determined by the
PP, which also controls CP reaction to certain status conditions and calls.
The CP, however, executes programs under its own control.

1-1 Advanced Scientific Computer

_,
I

N

OPERATORS
CONSOLE

CARD
PUNCHES

LINE PRINTERS

(A) 114358

SYSTEM
CLOCK

PERIPHERAL
PROCESSOR
(PP)

CENTRAL
PROCESSOR
(CP)

DISC
STORAGE
SYSTEM

CARD
READERS

CENTRAL
MEMORY
(CM)

Figure 1-1. ASC Simplified Block Diagram

TO PP

DATA
COMMUNI­
CATIONS
CHANNEL

TO PP

TO DATA
!-~~CON­

CENTRATOR

TO FIELD
TAPE ..., __ INTERFACE

TERMINAL

1-4 FUNCTIONAL DESCRIPTION

Three functional units comprise the Central Processor of the ASC: Instruction
Processing Unit (IPU), Memory Buffer Unit (MBU), and Arithmetic Unit {AU).
Each unit is a layered pipeline processor utilizing small, decentralized con­
trollers. The IPU obtains instructions from Central Memory and develops oper­
and addresses. The MBU performs memory fetch and data buffering functions for
acquisition of operands. Three buffer levels in the MBU ensure a continuous
data stream for vector operations. The MBU may also receive operands directly
from the IPU. In either case, the MBU transfers the proper operands to the AU
concurrently with control instructions for processing the operands. The AU
performs the designated partial steps to satisfy the requested operation for
the two operands. The result returns to the Register File in the IPU, or to
the MBU for storage into Central Memory or for reprocessing as a new operand.
The layered pipeline construction of the CP allows an instruction or group of
two operands to be processed concurrently at each level of the pipeline, unless
the layer is reserved by a previous operand or instruction. Figure 1-2 pro­
vides a block diagram of the CP. The following paragraphs briefly describe the
function of each component in the diagram. Refer to section 4 of this manual
for a more detailed discussion of CP operation.

1-5 ADDRESS REGISTERS AND CONTROL

Four address registers control the acquisition of instruction word octets (8-
word groups) from Central Memory. These registers select the proper instruc­
tion word for processing, call up a new octet while the current one is being
processed, and provide for branch address acquisition. During indirect address­
ing, the output of the Address Modification network updates the Output Address
Register in this circuit for each new address developed by the network until
the terminal effective address is reached. The other registers maintain the
program address so that the program resumes when the effective address is
reached.

1-6 REGISTER FILE

The Register File is a memory source contained within the IPU. These registers
are loaded by program instructions with data from either memory or the AU out­
put. The file consists of six sets of eight 32-bit registers (six octets).
Each area in the file has a primary function, such as base addresses for devel­
oping effective addresses (15 words), general arithmetic use (16 words), seven
index registers, and eight vector parameter registers to define the scope of a
specific vector instruction. They may, however, be used for other processes.

1-7 INSTRUCTION FILES

Two instruction files, each containing one octet (eight words), supply a con­
tinuous source of instructions to the Instruction Register. The Address Regis­
ters and Control block controls loading and selection from these registers. It
first loads one file and begins drawing instructions from the octet in that
file. Address Control then loads the second file while the first one empties.
Consecutive addresses supply a smooth transition from one file to the next.
During indirect addressing, the effective address of an instruction from the

1-3 Advanced Scientific Computer

I
~

(BJ 114734

I I
B LE\/l~L O LEVE.LS 2/3

······~.. ~ y :
--------·-:====-··~:;-------i=-t RE(;6:X~:T)R I- LJ ._,.,,..._'11~-------------'-----1 R_C:,TR OPERAND,

c• r INDEX: BASE ~'OPEFlAND ADDRESS

AU DATA

------------·
LEVEL 4

OPER/\Nn

I
LEVEL 5 I

• I

LEVEL G

Dl\1"A
n10M
MEMORY

t1
Mf_MIJRV t:zEFFECT1VE ADDRESS OF INST·--1--L I

I I ·1--·__M,q"lh t• UPDATE'

OCTET
ADDRESS

~ 10
MEMORY

ADDRESS

REGISTERS

ANO

CONTROL

t---"D-"IR.;.;E:..C:;_T;__~..c::: --:..;IN:..:D:..:l.;.;Rc:;Ec:C:..:T-+I .L ADORESS OPERAND DR I_
....... ADDA I MODIFICA- ADDRESS --ADDR

I SEL.ECT
AOOR.
GATE

1.:
/'

I
~

TION I

I

-~- I

I INDIRECT I
IAODR. FIELOS

ADDRESS

AND

OPERAND

REGISTERS

~

tll
0
z

Co{
ZQ'.
<'.LJ
Q'.Q.

~!~
"'>-5,ct

Jll
~:8

:;;
~

IMM

AND

REG

OPCRANO

RLGISTERS

BUf"FER

F'ILE

MCD

AND

MAB

OPERAND

REGISTER;

INSTRUCTION INSTRUC-

o;;;J~ TION

t--7 I INST. INSTr<UC- l 1 OP CODE I HL....fL__..__ __ __:c.... __,.("'l ________ ..,._ T ION R Fl ELD

WORD I'
OP CODE

OF.: CODE
(ROM) MC: MORY FILES

LEVEL 7

A

AB/CO

OPERAND

REGISTERS
Ci:':.

LEVEL 0

T
I
I
I
I
I
l
I

PIPELINE] PATH
CONTROL

1 '-R•E•G•1•s•T•E•R-o1 1

I I
I LEVEL 1 I

J
f--~TORE_._

AU MBU l
TO MEMORY

ARITHMETIC PlrELINE OUTPUT It---,..---~----------
RESULH ,Ef'" l

.------~---------~-----~---------~ REGISTER ~ T
D

EXpONENT FRACTION

SUBTRACT ALIGN ADO MULT

1 l
1 1

ACCUMU- NORMAL-
LATE ILE

J l
L

LEVE_L.12 I

I
I
I

I
,j

*ROUTING OF OPERANDS IN
All CONTROLLED BY ROM
IH MBU.

MAINTENANCE BUS ..__ _____. I LEVEt..s n - 12 (VARIES WITH OPERATION) PATHWAY SELECT• TO/FROM MEMORY

Figure 1-2. Central Processor Block Diagram

~------
Address Modification block selects the output from the instruction files if the
address is currently in the files.

1-8 INSTRUCTION REGISTER

The Instruction Register receives the selected word from the instruction file
and holds it for processing. Depending on the instruction format, the register
may contain address bits, address modifiers, and operand and/or an operation
code. The register output drives instruction decode and address generation
networks.

1-9 ADDRESS MODIFICATION

When the Instruction Register specifies either direct or indexed addressing,
the Address Modification block performs the operations required to generate a
new address. This block provides for base address (from Register File) plus
displacement modification and/or addition of the contents of one of the seven
index registers in the Register File. The circuit permits direct or indirect
addressing with or without modification, or the development of an immediate
operand. Operands, direct operand addresses, and terminal operand addresses
transfer to the MBU to provide operands for the AU. If an indirect address
develops, it returns to the Output Address Register to retrieve a new instruc­
tion word for further address generation. The modification hardware includes
input registers for indexing, base address and displacement, an adder, plus a
result holding and output register.

1-10 ADDRESS AND OPERAND REGISTERS

These two registers are the IPU output registers. They provide the MBU with
either two operands, one operand and an operand address, or just one address.

1-11 IMM/REG REGISTERS

The Immediate (IMM) and Register (REG) Operand Registers receive operands from
the IPU. During vector initialization, the IMM Register also transmits the
vector parameters to the MBU Registers to set up the beginning vector condi­
tions. Once a vector operation begins, neither of these registers is used un­
til the next operation begins. Control signals generated within the MBU trans­
fer data that is in these registers to the output registers of the MBU during
scalar operations.

1-12 MEMORY ADDRESS CONTROL

This circuit supplies addresses to memory for storing results from the AU vec­
tor and store operations and for accessing new operand octets from memory for
input to the AU. During scalar operations, operand addresses are supplied from
the IPU. If the desired operand is already in the Memory Buffer File, the IPU
sends only a 4-bit address to select the output from one of the file registers.
If the operand is not in the buffer file, the IPU sends a full 21-bit address
to fetch the octet containing the operand from Central Memory and load it into
the buffer file before transferring the operand to the output register. Dur­
ing vector operations, Memory Address Control generates the address of each
octet in the vector after the address is initially loaded by the IPU.

1-5 Advanced Scientific Computer

~------
1-13 MEMORY BUFFER FILE

The Memory Buffer File consists of six octet buffers plus an octet receiver/
synchronizer register. The buffers are arranged in two three-stage buffers
with the output of the final stage available to the output registers. Inputs
to the buffers may enter the final file to bypass the delay in the buffering
sequence. During scalar operations, Memory Address Control can select the out­
put from either buffer and transfer it to the MCD Operand Register. During
vector operations each buffer set supplies a stream of operands to one of the
MAB/MCD Operand Registers. Either buffer set may be modified by the result out­
put from the Arithmetic Pipeline (update) during scalars.

1-14 MAB/MCD OPERAND REGISTERS

These registers supply two operands simultaneously to the AU for processing.
The MAB Register receives register operands from the REG Register during scalar
operations, and vector operands from the buffer file during vector operations.
The MCD Register receives either immediate operands from the IMM Register or
operands from either set of the buffer file during scalar operations. During
vector operations the buffer file supplies a stream of operands to the MCD Reg­
ister.

1-15 AU CONTROL DECODE

The AU Control Decode is a Read Only Memory (ROM) that designates to the AU
which processes must be performed to accomplish the function specified by the
Op Code. The decode circuit also supplies control signals to aid in selection
of operands for the MAB/MCD registers.

1-16 BUFFER UPDATE AND STORE

The buffer update provides temporary retention of an octet of AU output. This
octet may change the contents of the buffer file, or may be stored into Central
Memory when the AU begins to produce results for a new octet.

1-17 AB/CD OPERAND REGISTERS

These registers are the input phase to the arithmetic pipeline. They receive
two operands from the MBU and transfer them to the pipeline when the pipeline
segment that performs the first operational step becomes available. Other in­
puts to these registers come from within the AU to provide a feedback path.

1-18 PIPELINE PATH CONTROL

This circuit follows the directions of the AU Control ROM in the MBU to perform
the gating and sequencing functions required to develop a complete process in
the pipeline.

1-19 ARITHMETIC PIPELINE

The Arithmetic Pipeline is a segmented arithmetic processor whose sequence is
determined by the MBU ROM signals. Six segments of the pipe perform indepen­
dent operations on up to six different sets of operands simultaneously. Each

1-6 Advanced Scientific Computer

segment is a basic function that, combined in a specific order with other seg­
ments, performs arithmetic operations from scalar addition to complex vector
operations on both fixed and floating point operands.

1-20 EF OUTPUT REGISTER

The EF Output Register receives a result from any segment of the pipeline, ex­
cept the multiplication segment (output of multiplier is two partial products
that must be added to produce a result). The output of this register may re­
turn to the Register File in the IPU (scalar operations), may update the data
in the Memory Buffer File, or may be stored in memory (vectors and store opera­
tions).

1-21 GENERAL CHARACTERISTICS

Table 1-1 lists some of the general characteristics of the ASC Central Proces­
sor.

1-22 CP INSTRUCTION SET

The ASC Central Processor performs scalar and vector operations through a pow­
erful array of instructions. The instruction set includes Load and Store func­
tions, arithmetic scalar operations, scalar logical instructions, and branching
capabilities. Two special instructions, VECT and VECTL, expand the ASC in­
structions into the vector mode by loading a new set of parameters into the !PU
from the Vector Parameter File. The set of vector parameters includes a vector
operation code. The function of the vector operation is defined by an addi­
tional set of vector instructions that can be loaded only through this vector
mode. Table 1-2 lists the instructions in the normal ASC instruction set with
their mnemonic code and operation code; figure 1-3 supplies a mapping of scalar
Op Codes. Table 1-3 and figure 1-4 contain similar information for the vector
mode instructions. Refer to the ASC programming manuals for a more detailed
explanation of the uses of each instruction.

1-7 Advanced Scientific Computer

Tablel-1. Central Processor General Characteristics

Item

Construction

Word Size

Instruction word size

Memory address size:
Octet
Word

Memory transfer size

Number of memory paths

Operation Modes

Control:
Initiate/Terminate
Operating

CP Clock Period

Processing Rate

Characteristic

Layered pipeline

16 bits (halfword) -fixed point only
32 bits (single word)-fixed or floating point
64 bits (doubleword) -floating point only

32 bits (8 Op Code, 4 R-field, 4 T-field,
4 M-field, 12 N-field)

21 bits (sent to CM)
24 bits (internal to CP)

1 octet (256 bits)

3: IPU (instruction fetch), MBU (operand
fetch/store) AU (maintenance - Load/Store
Details)

2: Scalar and Vector

Through CR File in the Peripheral Processor
Individual pipe level controllers in CP

65 nanoseconds

1 result per clock as an upper limit

1-8 Advanced Scientific Computer

~------

Mnemonic
Code

ST

ST

ST

STLL

STRL

STRR

STLR

SPS

STD

STZ

STZH

STZD

STN

STNH

STNF

STND

STO

STOH

STF

STF

Table 1-2. Scalar Instruction Set

Instruction

Store arithmetic register, single length

Store base register, single length

Store index register or vector parameter
register, single length

Store arithmetic left halfword into memory
left halfword, indexed

Store arithmetic register right half into
memory left half, indexed

Store arithmetic register right half into
memory right half, indexed

Store arithmetic register left half into
memory right half, indexed

Store program status word

Store arithmetic register, double length

Store zero, single length

Store zero, half length

Store zero, double length

Store negative, single length

Store negative, half length

Store negative, floating point

Store negative, double length

Store ones complement

Store ones complement, half length

Store base register file, registers 1-716 ,
M=O

Store base register file, registers 8-F16 ,
M=l

1-9

Operation
Code

24

28

2C

25

26

20

29

22

27

20

21

23

34

35

36

37

2E

2A

2B

2B

Operand
Format

R,@N,X

R,@N,X

R,@N,X

R,@N,X

R,@N,X

R,@N,X

R,@N,X

@N,X

R,@N,X

@N,X

@N,X

@N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

M,@N,X

M,@N,X

Advanced Scientific Computer

~_____,,__ ____ _

Mnemonic
Code

STF

STF

STF

STF

STFM

L

L

L

LLL

LRL

LRR

LLR

LO

LI

LI

LIH

LM

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Store arithmetic register file, registers
10-1716 , M=2

Store arithmetic register file, registers
18-1F16 , M=3

Store index register file, registers
20-2716 , M=4

Store vector parameter register file, reg­
isters 28-2F16 , M=S

Store all register files, registers l-2F16

Load arithmetic register single length
word

Load base register single length

Load index register or vector parameter
register single length

Load arithmetic register left halfword from
memory left halfword, indexed

Load memory left halfword, indexed, into
arithmetic register right halfword

Load memory right halfword, indexed, into
arithmetic register right halfword

Load memory right halfword, indexed, into
arithmetic register left halfword

Load arithmetic register double length
word

Load immediate into arithmetic register
single length

Load immediate into index register, or
vector parameter register single length

Load immediate into adthmetic register
half length

Load magnitude fixed point single length -
arithmetic register

1-10

Operation
Code

28

28

28

28

2F

14

18

lC

15

10

10

19

17

54

SC

55

3C

Operand
Format

M,@N,X

M,@N,X

M,@N,X

M,@N,X

@N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,I,X

R,I ,X

R,@=N,X

Advanced Scientific Computer

~------

Mnemonic
Code

LMH

LMF

LMD

LN

LNH

LNF

LND

LNM

LNMH

LNMF

LNMD

LF

LF

LF

LF

LF

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Load magnitude fixed point half length -
arithmetic register

Load magnitude floating point single
length - arithmetic register

Load magnitude floating point double
length - arithmetic register

Load negative fixed point single length
(load twos complement) arithmetic reg­
ister

Load negative fixed point half length -
arithmetic register

Load negative floating point single
length - arithmetic register

Load negative floating point double
length - arithmetic register

Load negative magnitude fixed point sin­
gle length - arithmetic register

Load negative magnitude fixed point half
length - arithmetic register

Load negative magnitude floating point
single length - arithmetic register

Load negative magnitude floating point
double length - arithmetic register

Load base register file, registers 1-716 ,
M=O

Load base register file, registers 8-F16 ,
M=l

Load arithmetic register file, registers
10-1716 , M=2

Load arithmetic register file, registers
18-1F16 , M=3

Load index register file, registers
20-2716 , M=4

1-11

Operation Operand
Code Format

30 R,@=N,X

3E R,@=N,X

3F R,@=N,X

30 R,@=N,X

31 R,@=N,X

32 R,@=N,X

33 R,@=N,X

38 R,@=N,X

39 R,@=N,X

3A R,@=N,X

3B R,@=N,X

lB M,@N,X

lB M,@N,X

lB M,@N,X

lB M,@N,X

lB M,@N,X

Advanced Scientific Computer

~------

Mnemonic
Code

LF

LFM

XCH

LAM

LAC

LLA

LO

A

A

A

AI

AI

AI

AH

AIH

AF

AFD

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Load vector parameter register file, reg­
isters 28-2F16 , M=5

Load all register files

Exchange - arithmetic register

Load arithmetic mask

Load arithmetic exception condition

Load look ahead

Load arithmetic register with ones com­
plement, single length

Add to arithmetic register, fixed point,
single length

Add to base register, fixed point, sin­
gle length

Add to index or vector parameter regis­
ter, fixed point, single length

Add immediate to arithmetic register,
fixed point, single length

Add immediate to base register, fixed
point, single length

Add immediate to ·index or vector param­
eter register, fixed point, single length

Add fixed point, half length - arithmetic
register

Add immediate fixed point, half length -
arithmetic register

Add floating point, single length -
arithmetic register

Add floating point, double length -
arithmetic register

1-12

Operation
Code

18

lF

lA

12

13

16

lE

40

60

62

50

70

72

41

51

42

43

Operand
Format

M,@N,X

@N,X

R,@N,X

@=N,X

@=N,X

I

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,I,X

R, I ,X

R,@=N,X

R,I,X

R,@=N,X

R,@=N,X

Advanced Scientific Computer

Mnemonic
Code

AM

AMH

AMF

AMFD

s

SI

SH

SIH

SF

SFD

SM

SMH

SMF

SMFD

M

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Add magnitude fixed point, single length -
arithmetic register

Add magnitude fixed point, half length -
arithmetic register

Add magnitude floating point, single
length - arithmetic register

Add magnitude floating point, double
length - arithmetic register

Subtract fixed point, single length -
arithmetic register

Subtract immediate fixed point, single
length - arithmetic register

Subtract fixed point, half length -
arithmetic register

Subtract immediate fixed point, half
length - arithmetic register

Subtract floating point, single length -
arithmetic register

Subtract floating point, double length -
arithmetic register

Subtract magnitude fixed point, single
length - arithmetic register

Subtract magnitude fixed point, half
length - arithmetic register

Subtract magnitude fixed point, half
length - arithmetic register

Subtract magnitude floating point, dou­
ble length - arithmetic register

Multiply fixed point, single length -
arithmetic register

1-13

Operation Operand
Code Format

44 R,@=N,X

45 R.@=N,X

46 R,@=N,X

47 R,@=N,X

48 R,@=N,X

58 R,I,X

49 R,@=N,X

59 R,I,X

4A R,@=N,X

48 R,@=N,X

4C R,@=N,X

40 R,@=N,X

4E R,@=N,X

4F R,@=N,X

6C R,@=N,X

Advanced Scientific Computer

Mnemonic
Code

M

M

MI

MI

MI

MH

MIH

MF

MFD

D

DI

DH

DIH

DF

DFD

AND

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Multiply base register

Multiply index or vector parameter reg­
ister

Multiply immediate fixed point, single
length - arithmetic register

Multiply immediate to base register

Multiply immediate to index or vector
parameter register

Multiply fixed point, half length -
arithmetic register

Multiply immediate fixed point, half
length - arithmetic register

Multiply floating point, single length -
arithmetic register

Multiply floating point, double length -
arithmetic register

Divide fixed point, single length -
arithmetic register

Divide immediate fixed point, single
length - arithmetic register

Divide fixed point, half length - arith­
metic register

Divide immediate fixed point, half
length - arithmetic register

Divide floating point, single length -
arithmetic register

Divide floating point, double length -
arithmetic register

AND - arithmetic register

1-14

Operation
Code

68

6A

7C

78

7A

6D

7D

6E

6F

64

74

65

75

66

67

EO

Operand
Format

R,@=N,X

R,@=N,X

R,I,X

R, I, X

R,I,X

R,@=N,X

R,I,X

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,@=N,X

R,I,X

R,@=N,X

R,@=N,X

R,@=N,X

Advanced Scientific Computer

~------

Mnemonic
Code

ANDI

OR

ORI

XOR

XOR!

EQC

EQCI

ANDO

ORD

XORD

EQCD

SA

SAH

SAD

SL

SLH

SLD

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Immediate AND - arithmetic register

OR - arithmetic register

Immediate OR - arithmetic register

Exclusive OR - arithmetic register

Immediate Exclusive OR - arithmetic reg­
ister

Equivalence - arithmetic register

Immediate equivalence - arithmetic reg­
ister

AND - arithmetic register (double
length)

OR - arithmetic register (double length)

Exclusive OR - arithmetic register (dou­
ble length)

Equivalence - arithmetic register (dou­
ble length)

Arithmetic shift, fixed point, single
length - arithmetic register

Arithmetic shift, fixed point, half
length - arithmetic register

Arithmetic shift, fixed point, double
length - arithmetic register

Logical shift, single length - arith­
metic register

Logical shift, half length - arithmetic
register

Logical shift, double length - arith­
metic register

1-15

Operation
Code

FO

E4

F4

EB

F8

EC

FC

El

E5

E9

ED

co

Cl

C3

C4

C5

C7

Operand
Format

R,I,X

R,@=N,X

R,I,X

R,@=N,X

R,I,X

R,@=N,X

R,I,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,I,X

R, I ,X

R,I ,X

R, I ,X

R,I,X

Advanced Scientific Computer

Mnemonic
Code

SC

SCH

SCD

RVS

c

c

CI

CI

CH

CIH

CF

CFO

CANO

CANDI

COR

CORI

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Circular shift, single length - arith­
metic register

Circular shift, half length - arithmetic
register

Circular shift, double length - arith­
metic register

Bit reversal, single length - arithmetic
register

Compare fixed point, single length -
arithmetic register

Compare index register, single length

Compare immediate, fixed point, single
length - arithmetic register

Compare immediate, index register, sin­
gle length

Compare fixed point, half length -
arithmetic register

Compare immediate, fixed point, half
length - arithmetic register

Compare floating point, single length -
arithmetic register

Compare floating point, double length -
arithmetic register

Compare logical AND - arithmetic register
(single length)

Compare immediate logical AND - arith­
metic register (single length)

Compare logical OR, single length -
arithmetic register

Compare immediate logical OR, single
length - arithmetic register

Operation
Code

cc

CD

CF

C6

CB

CE

DB

DE

C9

D9

CA

CB

E2

F2

E6

F6

Operand
Format

R ,I ,X

R,I,X

R,I,X

R,I,X

R,@=N,X

R,@=N,X

R,I,X

R,I,X

R,@=N,X

R,I,X

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,@=N,X

R,I,X

1-16 Advanced Scientific Computer

~------
Table 1-2. Scalar Instruction Set (Continued)

Mnemonic Instruction Operation Operand
Code Code Format

CAN DD Compare logical AND, double length - E3 R,@=N,X
arithmetic register

CORD Compare logical OR, double length - E7 R,@=N,X
arithmetic register

IBZ Increment, test, and branch on zero - 88 R,@=N,X
arithmetic register

IBZ Increment, test index, and branch on BC R,@=N,X
zero

IBNZ Increment, test and branch on non-zero - 89 R,@=N,X
arithmetic register

IBNZ Increment, test index, and branch on BD R,@=N,X
non-zero

DBZ Decrement, test, and branch on zero - BA R,@=N,X
arithmetic register

DBZ Decrement, test index, and branch on 8E R,@=N,X
zero

DBNZ Decrement, test, and branch on non- 88 R,@=N,X
zero - arithmetic register

DBNZ Decrement, test index, and branch on 8F R,@=N,X
non-zero

ISE Increment, test, and skip on equal - 80 R,@=N,X
arithmetic register

ISNE Increment, test, and skip on not equal - 81 R,@=N,X
arithmetic register

DSE Decrement, test, and skip on equal - 82 R,@=N,X
arithmetic register

DSNE Decrement, test, and skip on not equal - 83 R,@=N,X
arithmetic register

BCLE Branch on arithmetic register less than 84 R,R,N
or equal to

1-17 Advanced Scientific Computer

Mnemonic
Code

BCLE

BCG

BCG

PSH

PUL

MOD

BLB

BLX

LEA

LEA

INT

XEC

FLFX

FLFH

FDFX

FXFL

FXFD

FHFL

Table 1-2. Scalar Instruction Set (Continued)

Instruction

Branch on index less than or equal to

Branch on arithmetic register greater
than

Branch on index greater than

Push word - arithmetic register

Pull word - arithmetic register

Modify - arithmetic register

Branch and load register with PC

Branch and load index register or vec­
tor parameter register

Load effective address - index register

Load effective address into base regis­
ter

Interpret - arithmetic register

Execute

Convert floating point single length to
fixed point single length - arithmetic
register

Convert floating point single length to
fixed point half length - arithmetic
register

Convert floating point double length
fixed point single length

Convert fixed point single length to
floating point single length

Convert fixed point single length to
floating point double length

Convert fixed point half length to
floating point single length

1-18

Operation
Code

86

85

87

93

97

9F

98

99

56

52

92

96

AO

Al

A2

A8

AA

A9

Operand
Format

R,R,N

R,R,N

R,R,N

R,@N,X

R,@N,X

R,@N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

@=N,X

R,@N,X

R,@N,X

R,@N,X

R,@N,X

R,@N,X

R,@N,X

Advanced Scientific Computer

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic
Code

FHFD

NFX

NFH

Mnemonic
Code

MCP

MCW

VECT

VECTL

Instruction

Convert fixed point half length to
floating point double length

Normalize fixed point single length -
arithmetic register

Normalize fixed point half length -
arithmetic register

Instruction

Monitor call and proceed

Monitor call and wait

Vector

Vector after loading vector
fi 1 e

Operation
Code

90

94

BO

BO

Compare Code Branch Operation Code = 91

BCC

NOP

Branch on compare code

Take next instruction

91

91

Operation
Code

AB

AC

AD

Assembler
Supplies
R Field

R = 1

R = 0

R = 0

Operand
Format

R,@N,X

R,@N,X

R,@N,X

Operand
Format

I,X

I,X

@N,X

@N,X

M,@=N,X

@=N,X

Comment: Execution of data values or indirect address constants will have the
effect of a no-operation if the first four bits of the word (operation code)
are zeros.

BE

BG

BGE

BL

BLE

BNE

B

(R) = (a)

(R) (a)

(R) (a)

(R) (a)

(R) (a)

(R) 1 (a)

Unconditional branch

1-19

91

91

91

91

91

91

R = 1

R = 2

R = 3

R = 4

R = 5

R = 6

R = 7

@=N,X

@=N,X

@=N,X

@=N,X

@=N,X

@=N,X

@=N,X

Advanced Scientific Computer

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic Operation Assembler Operand Instruction Supplies Code Code R Field Format

Logical Branch Operation Code = 91

BCZ All bits are zero 91 R = 1 @=N,X

BCO All bits are one 91 R = 2 @=N,X

BCNM Not mixed 91 R = 3 @=N,X

BCM Mixed zeros and ones 91 R = 4 @=N,X

BCNO Not all ones 91 R = 5 @=N,X

BCNZ Not all zeros 91 R = 6 @=N,X

Result Code Branch Operation Code = 95

BRC Branch on result code 95 M,@=N,X

BZ (R) = 0 95 R = 1 @=N,X

BPL (R) > 0 95 R = 2 @=N,X

BZP (R) 2 0 95 R = 3 @=N,X

BMI (R) < 0 95 R = 4 @=N,X

BZM (R) 5 0 95 R = 5 @=N,X

BNZ (R) :f 0 95 R = 6 @=N,X

Logical Result Branch Operation Code = 95

BRZ All bi ts are zero 95 R = 1 @=N,X

BRO All bits are one 95 R = 2 @=N,X

BRNM Not mixed 95 R = 3 @=N,X

BRM Mixed zeros and ones 95 R = 4 @=N,X

BRNO Not all ones 95 R = 5 @=N,X

BRNZ Not all zeros 95 R = 6 @=N,X

1-20 Advanced Scientific Computer

~------
Table 1-2. Scalar Instruction Set (Continued)

Mnemonic Operation Assembler Operand Instruction Supplies Code Code R Field Format

Arithmetic ExceEtion Branch 0Eeration Code = 9~

BAE Branch on arithmetic exception 90 M,@=N,X

BU Floating point EXP underflow 90 R = 1 @=N,X

BO Floating point EXP overflow 90 R = 2 @=N,X

BUO Floating point EXP underflow 90 R = 3 @=N,X
or overflow

BX Fixed point overflow 90 R = 4 @=N,X

BXU Fixed point overflow or float- 90 R = 5 @=N,X
ing EXP underflow

BXO Fixed point overflow or float- 90 R = 6 @=N,X
i ng EXP overflow

BXUO Fixed point overflow or float- 90 R = 7 @=N,X
ing EXP overflow or underflow

BD Divide check 90 R = 8 @=N,X

BOU Divide check or floating point 90 R = 9 @=N,X
EXP underflow

BOO Divide check or floating point 90 R = A @=N,X
EXP overflow

BDUO Divide check or floating point 90 R = B @=N,X
EXP underflow or overflow

BDX Divide check or fixed point 90 R = C @=N,X
overflow

BDXU Divide check or fixed point 90 R = D @=N,X
overflow or floating point EXP
underflow

BDXO Divide check or fixed point 90 R = E @=N,X
overflow or floating point EXP
overflow

BDXUO Divide check or fixed point 90 R = F @=N,X
overflow or floating point EXP
overflow or underflow

1-21 Advanced Scientific Computer

Table 1-2. Scalar Instruction Set (Continued)

Mnemonic Operation Instruction Code Code

Branch on Execute Condition Operation Code = 9C

BXEC Branch on Execute branch con­
dition true

1-22

9C

Assembler
Supplies
R Field

R = 1
or odd

Operand
Format

@N,X

Advanced Scientific Computer

_.
I

N
w

r-
1

'<t

(/)

I-

m
a.
0

0
~

1 ..___..,
2

t--

3
t--

4
1--

5
1--

6
1--

7
1--

8
I---

9
1--

A
1--

B
I--

c
1--

D
1--

E
1--

F

0 1

•11 LRL

LAM

LAC

L

LLL

LLA
N

0 LD

p
L

LLR

XCH

LF

L

LRR

LO ,.
LFM

2 3 4

STZ LN A

STZH LNH AH

SPS LNF AF

STZD LND AFD

ST STN AM

STLL STNH AMH

STRL STNF AMF

STD STND AMFD

ST LNM s

STLR LNMH SH

STOH LNMF SF

STF LNMD SFD

ST LM SM

STRR LMH SMH

STO LMF SMF

STFM LMD SMFD

OP BITS 0-3

5 6 7 6 9 A B c D E F

Al A Al ISE MCP FLFX VECT SA AND ANDI

AIH ISNE BCC FLFH SAH ANDO

LEA A Al DSE INT FDFX CANO CANDI

DSNE PSH SAD CAN DD

LI D DI BCLE MCW SL OR ORI

LIH DH DIH BCG BRC SLH ORD

LEA DF BCLE XEC RVS COR CORI

DFD BCG PUL SLD CORD

SI M Ml IBZ BLB FXFL c Cl XOR XORI

SIH IBNZ BLX FHFL CH CIH XORD

M Ml DBZ FXFD CF

DBNZ FHFD CFO

LI M Ml IBZ BXEC NFX SC EQC EQCI

MH MIH IBNZ BAE NFH SCH EQCD

MF DBZ c Cl

MFD DBNZ MOD SCD

Figure 1-3. Scalar Op Code Map

~------

Mnemonic
Code

VA

VAH

VAF

VAFO

VAM

VAMH

VAMF

VAMFO

vs

VSH

VSF

VSFO

VSM

VSMH

VSMF

VSMFO

VM

VMH

VMF

VMFO

VOP

VOPH

Table 1-3. Vector Instruction Set

Function

Vector Add, fixed point, single length

Vector Add, fixed point, half length

Vector Add, floating point, single length

Vector Add, floating point, double length

Vector Add magnitude, fixed point, single length

Vector Add magnitude, fixed point, half length

Vector Add magnitude, floating point, single length

Vector Add magnitude, floating point, double length

Vector Subtract, fixed point, single length

Vector Subtract, fixed point, half length

Vector Subtract, floating point, single length

Vector Subtract, floating point, double length

Vector Subtract magnitude, fixed point, single length

Vector Subtract magnitude, fixed point, half length

Vector Subtract magnitude, floating point, single
length

Vector Subtract magnitude, floating point, double
length

Vector Multiply, fixed point, single length

Vector Multiply, fixed point, half length

Vector Multiply, floating point, single length

Vector Multiply, floating point, double length

Vector dot product, fixed point, single length

Vector dot product, fixed point, half length

Operation
Code

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

40

4E

4F

6C

60

6E

6F

68

69

1-24 Advanced Scientific Computer

Mnemonic
Code

VDPF

VDPFD

VD

VDH

VDF

VDFD

VSA

VSAH

VSAD

VSL

VSLH

VSLD

vsc

VSCH

VSCD

VAND

VAN DD

VOR

VORD

VXOR

VXORD

VEQC

VEQCD

Table 1-3. Vector Instruction Set (Continued)

Function

Vector dot product, floating point, single length

Vector dot product, floating point, double length

Vector Divide, fixed point, single length

Vector Divide, fixed point, half length

Vector Divide, floating point, single length

Vector Divide, floating point, double length

Vector Shift arithmetic, fixed point, single length

Vector Shift arithmetic, fixed point, half length

Vector Shift arithmetic, fixed point, double length

Vector Shift logical, single length

Vector Shift arithmetic, half length

Vector Shift arithmetic, double length

Vector Shift circular, single length

Vector Shift circular, half length

Vector Shift circular, double length

Vector logical AND, single length

Vector logical AND, double length

Vector logical OR, single length

Vector logical OR, double 1 ength

Vector logical Exclusive OR, single length

Vector logical Exclusive OR, double length

Vector logical Equivalence, single length

Vector logical Equivalence, double length

Operation
Code

6A

6B

64

6S

66

67

co
Cl

C3

C4

cs

C7

cc
CD

CF

EO

El

E4

ES

EB

E9

EC

ED

1-25 Advanced Scientific Computer

Mnemonic
Code

VL

VLH

VLF

VLFD

VLM

VLMH

VLMF

VLMFD

vss

VSSH

VSSF

VSSFD

VSSM

VSSMH

VSSMF

VSSMFD

Table 1-3. Vector Instruction Set (Continued)

Function

Vector search for largest arithmetic element, fixed
point, single length

Vector search for largest arithmetic element, fixed
point, half length

Vector search for largest arithmetic element, float­
ing point, single length

Vector search for largest arithmetic element, float­
ing point, double length

Vector search for largest magnitude, fixed point, sin­
gle length

Vector search for largest magnitude, fixed point, half
length

Vector search for largest magnitude, floating point,
single length

Vector search for largest magnitude, floating point,
double length

Vector search for smallest arithmetic element, fixed
point, single length

Vector search for smallest arithmetic element, fixed
point, half length

Vector search for smallest arithmetic element, float­
ing point, single length

Vector search for smallest arithmetic element, float­
ing point, double length

Vector search for smallest magnitude, fixed point,
single length

Vector search for smallest magnitude, fixed point,
half length

Vector search for smallest magnitude, floating point,
single length

Vector search for smallest magnitude, floating point,
double length

Operation
Code

so

Sl

S2

S3

S4

SS

S6

S7

SB

S9

SA

SB

SC

SD

SE

SF

1-26 Advanced Scientific Computer

~------

Mnemonic
Code

vc

VCH

VCF

VCFD

VCAND

VCANDD

VCOR

VCORD

VMG

VMGH

VMGD

VO

VOH

VOF

VOFD

VPP

VPPH

VPPF

VPPFD

VFLFX

VFDFX

Table 1-3. Vector Instruction Set {Continued)

Function

Vector arithmetic comparison, fixed point, single
length

Vector arithmetic comparison, fixed point, half
length

Vector arithmetic comparison, floating point, half
length

Vector arithmetic comparison, floating point, dou­
ble length

Vector Logical Comparison using AND, single length

Vector Logical Comparison using AND, double length

Vector Logical Comparison using OR, single length

Vector Logical Comparison using OR, double length

Vector Merge, single words

Vector Merge, halfwords

Vector Merge, doublewords

Vector order single words, fixed point

Vector order halfwords, fixed point

Vector order single words, floating point

Vector order doublewords, floating point

Vector peak, fixed point, single length

Vector peak, fixed point, halflength

Vector peak, floating point, single length

Vector peak, floating point, double length

Vector floating to fixed point conversion, single
length

Vector floating to fixed point conversion, double to
single lengths

Operation
Code

DO

01

02

03

E2

E3

E6

E7

08

09

DB

04

05

06

07

DC

DD

DE

OF

AO

A2

1-27 Advanced Scientific Computer

Mnemonic
Code

VFLFH

VFXFL

VFHFL

VFXFD

VFHFD

VNFX

VNFH

VSEL

VSELH

VS ELD

VREP

VREPH

VREPD

Table 1-3. Vector Instruction Set (tontinued)

Function

Vector floating to fixed point comparison, single to
half lengths

Vector fixed to floating point conversion, single
lengths

Vector fixed to floating point conversion, half to
single lengths

Vector fixed to floating point conversion, single to
double lengths

Vector fixed to floating point conversion, half to
double lengths

Vector normalize, fixed point, single length

Vector normalize, fixed point, half length

-Select single words from vector A

Select halfwords from Vector A
Select doublewords from Vector 1:

-Replace single words in Vector C

Replace halfwords in Vector 'C"

Replace doublewords in Vector "C'

Operation
Code

Al

AB

A9

AA

AB

AC

AD

BO

Bl

B3

BB

B9

BB

1-28 Advanced Scientific Computer

I
N
l.O

" I .,
lfl
I-
m
n.
0

0

1

2

·1

4

(,

7

8

1-- -

q

A

B

c

D

E

F

Note:

OP BITS 0-3

4 6 7 8 9

VA VL

VAH VLH

VAF VLF

VAFD VLFD

VAM VLM VD

VAMH VLMH VDH

VAMF VLMF VDF

VAMFD VLMFD VDFD

VS vss VDP

VSH VSSH VDPH

VSF VSSF VDPF

VSFD VSSD VDPFD

VSM VSSM VM

VSMH VSSMH VMH

VSMF VSSMF VMF

VSMFD VSSMFq VMFD

Blank Boxes represent illegal Op Codes.

Figure 1-4. Vector Op Code Map

A B c D E F

VFLFX VSEL VSA VC VAND

VFLFH VSELH VSAH VCH VAN OD

VFDFX VCF VCAND

VSELD VSAD VCFD VCANDD

VSL VO VOR

VSLH VOH VORD

VOF VCOR

I VSLD VOFD VCORD

VFXFL VREP VMG VXOR

VFHFL VREPH VMGH VXORD

VFXFD

VFHFD VREPD VMG

VNFX vcs VPP VEQC

VNFH VCSH VPPH VEQCD

VPPF

VCSD VPPFD

~------

'

1-23 INSTRUCTION FORMAT

The instruction word of the Central Processor contains 32 bits and is divided
into five fields (see figure 1-5}:

Field Name . Bit Field Function Positions Size
OP 0-7 8 Operation Code
R 8-11 4 Register address
T 12-15 4 Address modifier tag
M 16-19 4 Base address designator
N 20-31 12 Displacement address

0 4 8 12 16 20 24 28 31

OP R T M N

I

Ho H1 Hz H> H4 Hs H6 H7~
HEXADECIMAL CHARACTER

Figure 1-5. ASC Instruction Word Format

t Op-Field. The Op-Field specifies the machine instruction to be
executed.

t R-Field. The R-Field addresses one of 16 registers from the arith­
metic, base, or index register group.

t T-Field. The T-Field is an address modifier tag that has the fol­
lowing interpretation:

T

0
1-7
8

9-F

Addressing Type

Direct address
Indexed address
Indirect
Indexed indirect

address

Virtual Address, a,
of Memory Operand

N + (M}
N + (M} + (T}
(N + (M}}
(N + (M) + (T - 8))

A symbol or expression enclosed by parentheses () represents "the
contents of . 11

The T-field (figure 1-6) may be decomposed into an I-bit and an
X-field where the most significant I-bit designates indirect ad­
dressing and the 3-bit X-field specifies one of seven index reg­
isters used in the indexing operation. The index registers are
physically assi~ned to register file address locations 21 through
27 (hexadecimal). A special set of index instructions are used to
load, store, modify, and test the index registers.

1-30 Advanced Scientific.Computer

~------
H3

I ~IT I ~-FIEL1D
T-FIE[D

Figure 1-6. T-Field Subdivision

Displacement indexing is provided such that the indexing operation
is compatible with word size; i.e., the index registers are auto­
matically aligned according to word size. If an index register
contains the value K, the Kth element of an array is accessed,
whether it is a halfword, singleword, or doubleword.

• M-Field. The M-field is a base register designator. It is used
to extend the addressing range capability of the ASC to a potential
16.7 million words. The M-field selects one of fifteen 24-bit base
registers to be added to the N-field displacement before indexing
or indirect addressing. No base addressing is used when M equals O.

• N-Field. The N-field is the address displacement relative to the
base address contained in M.

The M- and N-fields also may be interpreted as immediate operands when immed­
iate instructions are specified by the operation code.

1-24 DATA FORMATS

Four data format representations may be used in the ASC:

• Fixed point, single length, 32-bit word (see figure 1-7).

SIGN~~!'~~MS~~~~~~~ ~· L FIXED POINT SIGNED INTEGER J
6 1 2 • • • 11

Figure 1-7. 32-bit, Fixed Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Negative numbers are represented in twos complement notation. The
binary point is to the right of the least significant bit (LSB),
particularly for multiplication or division. The result after ad­
dition is the same as though two binary fractions were added.

1-31 Advanced Scientific Computer

~-------
t Fixed point, half length, 16-bit word {two half length words are

shown in figure l-8).

SIGN

SIGN

MSB LSB MSB LSB

SIGNED INTEGER SIGNED INTEGER

31

Figure 1-8. 16-bit, Fixed Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Negative numbers are represented in twos complement notation. The
binary point is to the right of the LSB. Numbers are in fixed
point signed integer notation.

t Floating point, single length, 32-bit word (see figure 1-9).

""" ~ c "'" ~ "'"
I! I BIASED EXPONENT I FRACTION J
L..J.~~~~_J~~~~~~~~~~~~~~~~--::~::-',

O I , , , 7 B 9 , , •

Figure 1-9. 32-bit, Floating Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Sign and magnitude representation is used for the fractional por­
tion, bits 0, 8 through 31. The binary point is to the left of
the MSB of the fraction (between bits 7 and 8).

The biased hexadecimal exponent has the range 0016 to 7F16 , which
covers the base 16 exponent range 16-64 to 16+63

If the value 40 hex is subtracted from the biased exponent, a num­
ber is obtained which in signed integer twos complement notation
{sign in bit position 1) can be converted to its equivalent deci­
mal value. Sixteen raised to this decimal power gives a number
which when multiplied by the fraction produces the number that was
represented in floating point notation.

Examples:
Floating point Decimal value
4110 0000 (l/16) x 161 = 1
4210 0000 (1/16) x 162 = 16
CllO 0000 -(1/16) x 161 = -1

1-32 Advanced Scientific Computer

Floating point
7FFO 0000
0010 0000

By definition:
0000 0000
7FFF FFFF
FFFF FFFF
7FOO 0000
xxoo 0000

Decimal value
(15/16) x 16+63
(1/16) x 16-64 = 16-65

zero
+ CXl

- CXl

Indefinite (machine generated)
Indefinite (dirty zero)

t Floating point, double length, 64-bit word (see figure 1-10).

""' r, r-""
~I BIASED EXPONENT I FR ACT ION

0 1 2 • • • • 7 B 'l • •

..______ ___ _____,r-""
- FRACTION J

f> l

Figure 1-10. 64-bit, Floating Point Data Word Format

The sign bit is zero for positive numbers and one for negative.
Sign and magnitude representation is used for the fractional por­
tion, bits 0, 8 through 63. The binary point is to the left of
the MSB of the fraction (between bits 7 and 8).

The biased hexadecimal exponent has the range 0016 to 7F16 , which
covers the base sixteen exponent range 16-64 to 16+63 .

Subtracting the value 40 from the biased exponent yields a num­
ber which, in signed int~8er twos complement notation (sign in bit
position 1), can be converted to its equivalent decimal value.
Sixteen raised to this power gives a number which when multiplied
by the fraction produces the number that was represented in float­
ing point notation.

1-25 PHYSICAL DESCRIPTION

The ASC Central Processor in a one-pipe configuration is housed in a series of
eight vertical logic and service columns. Figure 1-11 illustrates a typical
layout for these columns; their actual arrangement may be changed to meet the
physical requirements of the particular site. Each vertical logic column (IPU,
MBU or AU) contains a three motherboard chassis capable of accepting up to 66
logic cards. Three other vertical columns containing mounting space for power

1-33 Advanced Scientific Computer

~------

IPU CENTRAL AU AU AU
LOGIC SERVICE LOGIC POWER SERVICE
COLUMN COLUMN COLUMN SUPPLIES COLUMN

MBU
LOGIC

COLUMN

IPU
POWER

SUPPLIES

MBU
POWER

SUPPLIES

(A) 115135

Figure 1-11. Typical ASC Central Processor One-Pipe Configuration

supplies provide the de power requirements for their respective CP unit. Be­
tween the three main logic columns is a service column that contains the con­
nector panels for the cable connections between the logic columns. In addition
to this central service column, other non-logic service columns provide elec­
trical output busses and water input plumbing for the CP cooling system.

1-26 COOLING SYSTEM

The Central Processor cooling system consists of a combination of forced air
and circulated, cooled water to dissipate heat generated by the logic circuits.
This cooling system is represented schematically in figure 1-12. The cold
plate between each set of logic cards is a copper plate with small tubes run­
ning through it. Cooled water pumped through these tubes absorbs heat from the
air surrounding the cold plate and carries the heat away from the logic card
area to a heat exchanger. The heat exchanger releases the heat to the surround­
ing air and returns the cooled water to the logic chassis to complete the cycle.
A blower assembly in each logic column aids cooling by circulating room temper­
ature air past the logic cards.

1-27 LOGIC CIRCUITS

Central Processor logic is implemented on 9-1/2 inch by 7-1/2 inch printed cir­
cuit boards using Emitter Coupled Logic (ECL) integrated circuit packages. A
272-pin connector on one end of th~ circuit board mates with a corresponding

1-34 Advanced Scientific Computer

LOGIC
CARD

CIRCULATED
AIR

(A) 1 1 51 36

COLD /n PLATE

/

•
HEAT

EXCHANGER

r-

• i..o -- LOGIC
CARD '-....

JPUMPl

FAN

Figure 1-12. Schematic Representation of CP Cooling System

WARM
WATER
RETURN

COOLED
WATER

TO LOGIC
CHASSIS

receptacle in one of three motherboards in a vertical logic column. The mother­
board supplies inter-chassis wiring connections plus a bus of common signals,
bias voltages and ground. Figure 1-13 illustrates the different logic circuits
in the ECL logic set. Table 1-4 defines the function of each of these logic
circuits. Refer to section VI, Parts Listing, of this manual for a listing of
the logic cards by chassis location.

1-35 Advanced Scientific Computer

~------
ASC LOGIC SET

2

TR 16

EL PIN EL PIN

' 5 7 12

2 6 8 4

Vee - PIN 3 ANO 6 } "cm'"' 9e,•O,Q3,H2, 1'
4

Vee - PIN 15 FF I OF I TR I SR I

WHICH HAVE
14 VEE - Pl.N 10 Vee - PIN 3 ONLY

1 8 9 2 11 5

4 9 10 1 1 2

5 7 11 16
8 7

6 11 12 14
9

1 3 1 3

2N

9 7 8 5 14 9
11 4 16 z

8 8 N 9 11 5

9 11 7
7 12 5 I 2 8

1 2 11 1 2
5 1.1 4

12 1 1

1 3 z 9
2 1 3 8 14 1

I 1 14 4 11 7 z
4 14

16
I 6 4

16 A z
16 28

14 1M

0 5
6 5

13 9B 41 A 7
7
8 z 8 4

7 5 9 8 I 2 e

8 7 8 7 9
9

9 9 11 5 11 c 4 16 11

11 1 2 5

5 11 4 12 1 4 EN
I 2 12 6 2

1' 11 4
7

4 I 4
1 3 4 z 16 OE

14 2 14
1 4 16

16 16

2
~

4B 3N 'I SQ

8 4 If 16 A !' 7
6 5 6

9 5 11 151 1 9
A 5 5

11 7 7 QI 6
9 G11 14 B c 2

14 8

4 8
8 !5"21 12 e "?: 4 16

9 9
7 Gz1 1' c

5
11 I 2 c

11 c
12 11 I 1 '51 2

AC
1 2 14 G12

12
13 16 tizz

1 1
14 Gzz

1. Oz 2
16 5 ~

1' 16
11

ti' Q1 z

12 G1 Q1 4

2
OF c a1 9 8

2 4 z 16 "
4 ~ Oz 5

1 ' '15z Oz 6

H2 14 Gz az 7

GC Q1
FF

(8) 109045

Figure 1-13. ECL Circuits

1-36 Advanced Scientific Computer

~------
Table 1-4. ECL Circuit Types

~ Title

18 Four single to double ended converters

2N Four 2-input inverting gates

28 Three 2-input complementary gates

3N Three 3-input inverting gates

48 Two 4-input complementary gates

98 9-input complementary gate

31 Two 3-input, 3-output inverting gates

3M Two 3-input, 3-ouput non-inverting gates

41 Two 4-input, 2-output inverting gates

SQ Three 3-input, One 2-input gates with dotted complementary out-
puts

GC Four bit group carry gate structure

Q3 Four 3-input with dotted inverted output

DE Three bit decoder with enable

AC Full sum-carry with complementary outputs

H2 Six 2-input with dotted inverted outputs

FF Two single-input gated clocked latches

OF Two 2-input gated clocked latches

TR Termination resistors (40n)

SR Termination resistors (80n)

TE TTL/ECL level converters W/ECL enable

ET ECL/TTL level converters

OD TTL output drivers

RS Termination resistors (400n pulldown)

RD Termination resistors (80n TTL)

1-37 Advanced Scientific Computer

~------
Table 1-4. ECL Circuit Types (Continued)

~ Title

AD Two 2-input ECL/MOS level converters

DD Four single-input TTL/MOS level converters

MA MOS 256 X 8 memory array

2S Two 2-input line receivers

1-38 Advanced Scientific Computer

2-1 GENERAL

SECTION II
INSTALLATION

Installation information is not provided in this publication. Refer to the
ASC System Installation manual, Texas Instruments part number 929980-1.

2-1/2-2 Advanced Scientific Computer

~__;___ ____ _

3-1 GENERAL

SECTIOM III
OPERATING INSTRUCTIONS

Operating instructions are not included in this publication. Refer to the
ASC Operator's Manual, Texas Instruments part number 931433-1.

3-1/3-2 Advanced Scientific Computer

4-1 GENERAL

SECTION IV
PRINCIPLES OF OPERATION

The ASC Central Processor is a layered pipeline processor. As such, the CP
contains distinct levels, or stages, in the development of an instruction in
the IPU, of operands in the MBU, and of results in the AU. Each of these
levels can hold and simultaneously operate on a separate instruction or set
of operands, unless the level has been reserved by a previous instruction.
The IPU contains five levels for instruction development (levels 0-4), the
MBU has an input and an output level for operand selection (levels 5 and 6),
and the AU has a minimum of two levels (input and output). The number of ef­
fective levels in the AU varies with the operations being performed. Figure
4-1 illustrates the basic components of the Central Processor, their inter­
connections, and their relation to the levels of the CP pipe. The following
theory discussion centers around this block diagram and explains the major
functions of each block in the Central Processor. Additional maintenance
data is included in the appendices to this manual. Detailed controller flow­
charts and discussion follows the block diagram description.

4-2 IPU LEVEL 0

Level 0 of the IPU generates addresses to central memory to request instruc­
tion octets (eight word groups), receives the octets from memory, and selects
one word instructions from the octets for transfer to the Instruction Register
(IR) in level 1. The addressing portion consists of the Look-Ahead (LA) Reg­
ister, the Present Address (PA) Register, the Output Address (OA) Register
and the Branch Address (BA) Register. These registers ensure that the correct
address will be in OA to access the next octet of instructions for the IPU.
The Memory Interface File (KCM) and the two Current Instruction Files (KA and
KB) receive and hold instruction octets from memory so that the selection
circuits may access words from the octets. The File and Word select circuits
use the address in PA to select an instruction from either KA or KB. While
instructions are being dra1'/n from either KA or KB, the other unused file can
receive a new octet from memory. This latter file can then supply the next
series of instructions without delay to the IPU. The following paragraphs
describe the function of each of these level 0 components.

4-3 LOOK-AHEAD REGISTER (LA)

LA is a 24-bit register that normally holds the address of the octet that is
currently being requested from memory. When central memory accepts that re­
quest, the output from LA is fed through an adder to increase the address by
eight to form the address of next octet in sequence. This new octet address
enters the OA register for transfer to central memory, and also the LA reg­
ister for the next look ahead cycle. At the start of an instruction sequence,
the first address to be fetched from memory is in the P3 register (P3 receives
this address during initial CP loading, since the addressing registers at
level 0 are used to load the CP with the new program). To initiate the new

4-1 Advanced Scientific Computer

~~-----
program the address in P3 transfers into OA, LA and PA. The IPU issues a mem­
ory request for the octet indicated by the address in OA, and transfers the
address in LA through the adder to OA and LA. The address in PA selects an
instruction from the octet when it returns from memory. LA continues to sup­
ply addresses through the adder to OA until the end of the program sequence
if no cycle interruptions occur.

4-4 CYCLE INTERRUPTIONS. The normal processing cycle for the LA register may
be broken by either a branch instruction, a Load Look-Ahead (LLA) instruction,
or an instruction hazard at level 3 of the IPU. When a branch instruction
reaches level 3 of the IPU and the address of the branch target is not already
in the pipe, the address of the new instruction transfers from the AR register
in level 3 to LA, OA and PA so that instructions from the branch path may be
accessed from memory and loaded into the IPU.

An LLA instruction prepares the IPU for a branch back to a point in the pro­
gram sequence occupied by the LLA. When the LLA reaches level 3 of the IPU,
the address of the LLA in the P3 register is stored into the BA register.
When the indicated branch instruction enters the pipe, the address in BA
transfers to LA and OA to fetch the octet containing the LLA from memory and
continue to access instructions from that instruction path.

If an instruction reaches level 3 of the IPU and a hazard has occurred that
makes the instruction invalid, the address of that instruction is transferred
from P3 to LA and OA to re-fetch that instruction octet from memory to obtain
valid information for that instruction. When memory returns the valid instruc­
tion, the look ahead cycle continues in the normal manner.

4-5 OUTPUT COMPARE. The output of the LA Register feeds two compare circuits.
One network uses the output to determine if a far range instruction hazard ex­
ists in the LA octet. The other network determines if the LA octet contains
the object address of a branch or execute instruction or an indirect address.
Refer to the discussion of these networks for further explanation of the com­
parisons.

4-6 LOAD LOOK-AHEAD COUNTER

The Load Look-Ahead Counter is a 12-bit, decrementing counter used only during
a Load Look-Ahead instruction. When the LLA instruction reaches Level 3 of the
IPU, the N field of that instruction enters the LLA Counter. The N field spec­
ifies the number of instructions to be executed before the required branch oc­
curs. The counter then decrements by one for each instruction that reaches
Level 1 of the pipe. When the LLA count minus the number of active IPU levels
(at the time of the LLA) is equal to zero, the counter transfers the address in
the Branch Address Register to the Look-Ahead Register (LA) request to
memory. Refer to the Load Look-Ahead controller discussion for a flow chart
and theory of the look-ahead process.

4-7 BRANCH ADDRESS REGISTER (BA)

BA is a 24-bit register that is used only during a Load Look-Ahead operation.
When the LLA instruction reaches Level 3 of the IPU, the instruction address
at that level transfers from the P3 Register to BA. BA then holds that address
until the LLA Counter transfers the address to the LA register.

4-2 Advanced Scientific Computer

LOOK AHEAO ADOR

INSTRUCTION HAZARD

LOAD ADOR -------..

BIDIRECTIONAL (STORE FILE)

BUS TO

CENTRAL
MEMORY

CM (STC'RE DETAILS)

STORE'"
DETAILS

'"EVERY FF IN IPU CONNECTS TO A

RGTR IN KCM FOR LOAD OR STORE

DETAILS

IFJAI

RGTR 7
6

4

"
KC"

MEMORY

INTERFACE

Fl LE

2

RGTR
6

5
4

3

0 RGTR IJo'--.....--.""'

"LOAD
DETAILS

CURRENT

NSTRUCTION

RGTR 7
6

4
3

2

5

LEVEL3

3LSB

LEVEL

0

CONTROLLER

LEVEL

EF RESULTANT

NSTRUCTION

RGTR
(IR)

(32 BITS·,

INSTRUCTION

WORD

LEVEL 1 STATUS

LONG RANGE HAZARD (LRHI

· SET ACTIVE 2

XFR LVL1-LVL2

LOAD DATA FROM

CENTRAL MEMORY

ADDR 07
06

05
04

03
02

REGISTER FILE

ADDRESS

AODR OF
OE

00
oc

OB
OA

"'
ADDR

BASE

ADDRESS

ADDR1 ~7'...c====i

~·"~ 13

" 11-----~
10 AODR

19

21

GENERAL

STORAGE

FILE

c

IF
IE

ID
IC

10
IA

24
23

"

AOD~l::.F c::===::i
20

2C
28

28 ADDR

PARAMETER

FILE

v

7

7

7

PROGRA

ADDRESS

(Pl RGTR)

ADDRESSES
(VI ,V2,V3)

RE:GISTER

24 BITS

BASE

ADDRESS
REGISTER

(BR)

DISLA.CE-

REGISTER

(NR)

REGISTER

IXR)

LEVEL 2

ROM

R2

REGISTER

SET ACTIVE 2 LRH

OOUllLE,

SINt IE

SIGN

EXTENSION

IBIT

SHIFT

LEVEL

3

ROM

B,1, ORE

1....VL 3

ROM

OR HAt f WORD

LEVEL 2

C3ROM
SUPPLEMENT

SUPPLEMENT 1-----..i
RGTR

ON TROLLER

!.--------+'-"-"--~

LEVEL 3 STATUS

Figure 4-1.

4-3/4-4

Central
Diagram

Processor Block
(Sheet 1 of 5)

Advanced Scientific Computer

(PA RGTR)

(P2 RGTR\

AR RGTR

T 1--+-(o..:;~;,;~,;i~p"'R~;,;~,.,S~l
I

R FIELD

LVL 3 ROM

SUPPLEMENT

(Cl 124534

SELECT

ZB
ZA

Z MODEL

STACK

EXTENSION

MBU

ADDR

RGTRS

LVL

PAC 4

P3 RGTR

SCALAR

ACOR (MBU)

AO RGTR OUTPUT

TO MBU

IMM RGTR

RGTR HAZARD

RO RGTR OUTPUT
TO MBU

FROM
MBU

REG RGTR

HAZARD HAZARD

CONTROL

IPU MBU

OPERAND OCTETS

FROM

CENTRAL MEMORY'll

0
03

" o•
05

02

OO XFR

CONTROL

VECTOR

. BUFFER

0

0
0

ve
VECTOR

07

INTERFACE

FILE

,O,'i.r:===:;i
"

XH

VECTOR

BUFFER

o.°l-'C:===:;i
os ---~

04~ ---~

of~' c==:::;1
o• ---~

00

HOLDING

FILE

AO RGTR OUTPUT

FROM IPU

FROM tl'lJ

OPERANO

REGISTER

(64 BITS•

REGISTER

(64 BITSl

(XA)

(YA)

REGISTER

(64 BITS)

!MM TO ACOR GEN

AND LOOP CONTROL

OUTPUT

REGISTER

164 BlTSl TO AU

•NOTE OPERANDS FROM AND DATA

Figure 4-1.

4-5/4-6

TO CENTRAL MEMORY TRAVEL

OVER SAME RI-DIRECTIONAL

STORAGE DATA

TO CENTRAL MEMORY•

Central
Diagram

Processor Block
(Sheet 2 of 5)

Advanced Scientific Computer

(D) 12453-:0

IMM
2

SELF LOOP

STORAGE

RGTR

CONTROL TO AU

DAS

XFRc}NIRC' ·~
TO Z ADDRESSING 2

AND Z DATA RGTRS

A VECTOR FETCH
ADDRESS GENERATION

6S! LECT A

B VECTOR FETCH
ADDRESS GENERATION

DBS

OBJ

(S

SCALAR STORAGE
ADDR

l\PU'

C VECTOR STORAGE
ADDRESS GENERATION

FROM-'TO
CENTRAL

MEMORY

TO/FROM PP

I
I

L
REASON CODE

A VECTOR

CIRCULAR ADDRESS FILE

(CAF'

16 7 BIT RGTRS

REOUEST

X BUFFER

r----------
'" BITS• ~--~,..--i

-l '------"
I~-_,

I

(2\ BITS\

L _"_,_ -1

I

I
I
I
I
I

_J

MBU
CENTRAL MEMORY

REQUESTOR
(CMRl

OCTET ADDRESS

TO CENTRAL

MEMORY (8 CLOCKS)

~
CIRCUUl.R ADDR Fl' F:

ICAF

SEOUENCY

CONTROL

MCW, MCP

CONTROL TO

AND STATUS­

qESPONSE FROM

UNIT HARD CORf"c,

GENERATED LSBS

AND ERROR STATUS

MONITOR

I
I
I
I

_ _l __ _

REGISTER

(16 BITS)

4 COMMAND LSB'S

OUTPUT

REGISTER

!0/FROM

>IN!!' HARD CORES

UR SELECT TO____..,

MHC CIRCUITS

Figure 4-1.

4-7/4-8

--,
I
I
I
I
I
I
I
I
I
I
L

CAPTURE

UNIT

READ,

Central
Diagram

- MASTER HARO -
CORE (MHC) I

I
I

COMMON COMMAND I
.___ ____ REGISTER (FROM PP-CR

FILE\

Processor Block
(Sheet 3 of 5)

Advanced Scientific Computer

r-
1 FROM

MBU

I
~~:UT SECTION {--'--\------,c=-==--l
FROM ALIGN­

RIGHT SHIFT

FROM EXPONENT

SUBTRACT SECTION-I-....... ---------<

FROM OUTPUT OF

INPUT SECTION

r
I

FROM NORMALIZE NORMALIZED
SECTION -1-------D-A_T_A ____

FROM INPUT AB OPERAND

SECTION

FROM EXPONENT

SUBTRACT SECTION I

FROM INPUT

SECTION

FROM
NORMALIZE

SECTION

FROM INPUT

SECTION

FROM ALIGN

SECTION
FR<»-t INPUT

SECTION

FROM INPUT

SECTION

FROM INPUT

SECTION

{

I
I
L

COR

ZEROS

CD OPERAND

1?4537

L ______ _

IN PUT SECTION
--,

AB OPERAND

CO OPERAND

(=.>' J

'TO lNPUT, EXPONENT SUBTRACT,

MULTIPLIER, ALIGN, ADDER,

ACCUMULATOR, NORMALIZE AND

OUTPUT SECTIONS

TO ADDER. NORMALIZE

ANO OUTPUT SECT! ONS

TO EXPONENT SUBTRACT, MULTIPLIER,
ADDER, ALIC.N, NORMALIZE AND

OUTPUT SECTIONS

TO ADDER, ACCUMULATOR.

NORMAL17E AND OUTPUT

SECTIONS

TO INPUT SECTION

TO EXPONENT SUBTRACT

AND ALIGN SECTIONS

TO ALIGN ANO

OUTPUT SECTIONS

~ TO ALIGN SECTION

TO OUTPUT

SECTION

-,
ADDER SECTION I

ADDER

REGIS~

I
I
I
I
I
I
I
I
i--
1

_ ____ _J

AnnER OUTPUT

iO NORMALIZE AND

OUTPUT SECTIONS

!'ROM INPUT

"iECTION

r
I
I
I
I
Fo oPERANC

I BITS 25- 31

FROM ACCUMULATOR -.-------j
SECTION

FROM EXPONENT

SUBTRACT SECTION

FROM INPUT

SECTION

FROM EXPONENT

SUBTr~ACT SECTION

FIH)M

BITS 25-31

I
L __

NOJ~MALlZE -----'=-T---4
SEC: TlON

ACCUMllLATOR

SECTJClN

FROM

ACC

ACCUMllLATOR -1-----===-,1
SECTION

I
L

ALIGN AND RIGHT SHIFT SECTION

FROM EXPONENT

SUBTRACT SECTION

I
I
L

--,
I

SHIFTED

OPERAND

REGISTER

NS

SHIFTED

OPERAND

REGISTER

I
I
I
I
I
I
I

SHIFTED OPERAND

HEX
RIGHT SHIFTED

NOT SHIFTED OPERAND

--------,

TO ADDER AND OUTPUT

SECTIONS

TO ADIJER SECTION

TO INPUT SECTION

TO ADDER SECTION

MULllPLIER SECTION

PC
PSEUDO

TER

_________ _J

Figure 4-1. Central
Diagram

TO ACCUMULATOR

SECTION

PSEUDO CARRY
TO ACCUMULATOR

SECTION

Processor Block
(Sheet 4 of 5)

4-9/4-10 Advanced Scientific Computer

FROM MULTI- -.,l..::;===:::....ii641-•r
PL.IER SECTION

:~OMS:~~--.;___,..,,.,,_--!,

FROM INPUT

SECTION L
FROM MUL Tl- -;t:ilalllll.J;6111Uf
PLtER SECTION

FROM INPUT

SECTION

FLOATING­

-FIXED CONSTAN

I
I
I
~-

FROM INPUT{
SECTION

-""':.==>"""'"-IMI~~

~~~l.ATOR --""""'"---~' 
F.ROM INPUT 

SECTION 

FROM ADDER 
SECTION 

FROM INPUT 

SECTION 

(O) 124538 

BIT SHIFT 

MAGNITUDE 

DETER MINA-
... TION 

GUARD 

DIGIT 

ACCUMULATOR SECTION 

ACC ~TOMULTIPLIER 
64 ACC I s;~::oNENT 

IALIGN: M:~:.::~::.T~UTPUT. 
rND NORMALIZE SECTIONS 

I 
I 
I 

-------1 
L_ 

NORMAUZE SECTION 

EXPONENT 

EXPONENT 

I 
-1 

I 
I 
I 
I 
L 
I 
I 
I 
I 

TO ACCUMULATOR, OUTPUT, MULTIPLIER, 

ADDER, AND EXPONENT SUBTRACT SEC­

TIONS 
NORMALIZED DATA 

NORMALIZED DATA 
TO ADDER SECTION 

l---+---t---------t-·~-----11 .. TO OUTPUT SECTION 

NORMALIZE 

SECTION 

OVERFLOW FL.AG 

OUTPUT SECT ION 

OVERFLOW FL.AG 

SECTION 

REGIS-

I 
I 

RESUL.T I 
CODE 

I 
I 

Z FILE 
(MBU) 

TO 
RGTR 

FILE 

TO INPUT SECTION 

(SHORT CIRCUIT 

PATH) 

FROM ACCUMULATORACC LSn S• ~EFIMSB's 32 

ROM EXPONENT 
SUBTRACT 
SECTION COMPAR 1 

CODE t SECTION 

MISC. 

Figure 4-1. 

4-11/4-12 

I 
__ J 

Central 
Diagram 

Processor Block 
(Sheet 5 of 5) 

Advanced Scientific Computer 



4-8 PRESENT ADDRESS REGISTER {PA) 

The PA Register is a 24-bit address register that holds the address of the next 
word to be transferred from the instruction file to the Instruction Register {IR). 
The address in PA increments by one word address each time a word enters the 
Instruction Register. The three least significant bits of the PA Register se­
lect the word from the Instruction File during normal instruction processing. 
These bits also determine when the last bit in an octet has been accessed and 
are, therefore, used to gate input to the PA Register and to toggle the File 
Select network from one instruction file to the other. As a new instruction 
enters IR, the word address in PA transfers to Pl Register to accompany the in­
struction through the IPU. 

4-9 PA INPUTS. The PA Register is normally loaded from the LA Register when 
the three LSB 1 s of PA are all 1 1 s. However, the output from P3 can enter PA at 
the start of an instruction sequence of if an instruction hazard is detected at 
Level 3 of the !PU. The output from the AR register can also load PA during a 
branch instruction, an execute instruction, or for indirect addressing, provid­
ing that the object address of the operation is contained in the current octet 
as determined by the Branch, Execute, Indirect comparison network at Level 3. 

4-10 OUTPUT ADDRESS REGISTER {OA) 

The Output Address Register is a 24-bit register that relays 21-bit octet ad­
dresses to Central Memory for data transfer to/from KCM. All memory accesses 
from the IPU must transmit an address to memory through the QA register. Three 
input paths to the OA register provide addressing capability for all !PU com­
munication to Central Memory. 

4-11 P3 REGISTER OUTPUT. During an instruction sequence start-up, or if an in­
struction hazard is detected at Level 3 of the pipe, the contents of the P3 
Register {Level 3 Program Address Register) transfer into the QA Register. P3 
holds either the first address of the instruction sequence in the case of a 
start-up operation, or the address of the instruction that must be re-fetched 
due to an instruction hazard. In either case, the OA Register transmits that 
address to Central Memory to begin the instruction sequence. 

4-12 LA REGISTER OUTPUT. During normal instruction processing, new instruction 
addresses enter the OA Register through the octet adder circuit (+8) from the 
Look-Ahead Register. The LA register provides a continuous source of instruc­
tion addresses to be fetched from memory. 

4-13 AR REGISTER OUTPUT. For indirect addresses or for branch or execute in­
structions, the output of the AR Register may transfer to the OA Register if 
the required address is not already in the pipe. Comparison circuits at Level 
3 determine if it is necessary to access memory for the desired word. 

4-14 LOAD/STORE DETAILS. The QA Register transmits sequential addresses to 
memory to Load or Store the contents of the IPU from or into memory. The de­
tails instruction from the peripheral processor loads the OA Register with a 
pointer address that points to indicate the address of the first octet of the 
details map in memory. A partial adder then increments the address by one oc­
tet (addition of 8) to provide sequential octet addresses to memory. 

4-13 Advanced Scientific Computer 



4-15 KCM MEMORY INTERFACE FILE 

KCM is an octet register file containing eight 32-bit registers. This file 
performs a buffer function between ASC Central Memory and the IPU registers and 
flip-flops. All IPU data transfer operations to and from Central Memory must 
pass through KCM. KCM holds the data until it can be synchronized with clock 
pulses for orderly transfer through the IPU, or until memory accepts the data 
to be stored. 

4-16 INSTRUCTION PROCESSING. During instruction processing, the KCM file re­
ceives instruction octets from Central Memory and transfers the octets to one 
of the two current instruction files: KA or KB. The KCM file is transferred 
to whichever current instruction file is not being accessed by the current 
instruction address. For indirect addressing, a direct path from KCM to the 
instruction word select circuit by-passes the current instruction files to 
avoid alteration of the files. This path allows an instruction from Central 
Memory to be loaded directly into the Instruction Register. 

4-17 LOAD/STORE DETAILS. Each bit in the KCM file connects directly to numer­
ous bits throughout the IPU for use in a Load or Store Details operation. Each 
octet of the details map in Central Memory transfers sequentially to the KCM 
file (Load Details). The position of the octet in the details map determines 
which of the KCM output paths will be enabled for each bit of the octet until 
all flip-flops and registers in the IPU reflect the condition specified in the 
details map. The transfer path is similar, but in the opposite direction for 
a Store Details operation. Certain Details paths are also used in Load/Store 
Status or Intermediate commands. The process is the same for these operations 
as for the Details operation, but limited in scope. 

4-18 STORE FILE. The Store File operation passes through KCM for transfer to 
Central Memory. The output from the Register File fills KCM and the octet 
transfers to memory. Load File enters data into KCM and then to the Register 
Fi 1 e. 

4-19 KA/KB CURRENT INSTRUCTION FILES 

The Current Instruction Files are two octet files containing eight 32-bit reg­
isters each. During normal operation they receive alternate, synchronized 
octets from KCM that contain instruction words to be accessed by the IPU. The 
first octet enters the KA instruction file. While addresses are selecting 
words from the KA file, KCM loads the next octet into the KB file. This alter­
nate loading process allows the IPU to proceed uninterrupted through an instruc­
tion sequence without the delay required to access a new octet from Central 
Memory. This time advantage is lost, however, when a Branch instruction jumps 
to an instruction that is not resident in either the KA or the KB file. 

4-20 FILE SELECT 

The File Select circuit controls the sequencing of the Current Instruction Files 
and relays the file status to the L~vel 0 Controller. When the first instruc­
tion octet from memory enters KA, the File Select circuit gates the output from 
the KA registers to the Word Select network. File Select then monitors the 
three least significant bits (LSB) from the Present Address Register and enables 

4-14 Advanced Scientific Computer 



the KB registers to the Word Select network on the clock after the three LSB 1 s 
of PA are all ones (hexadecimal 7). File selection alternates in a like man­
ner until the instruction set is complete or a Branch instruction alters the 
order of instruction processing. File Select also notifies the Level O Con­
troller when either instruction file is full and which file is selected. This 
enables the controller to determine if valid data is available for transfer 
to Level l. 

4-21 WORD SELECT 

The Word Select circuit enables the proper instruction word from either KA or 
KB to be transfered to the Instruction Register. The Look-Ahead Controller 
determines when the transfer will take place. Only one octet is active to the 
input of the word select circuits at any one time. During sequential instruc­
tion fetching, the file select circuit supplies one octet to the word select 
network. When the object address of an indirect address or an Execute instruc­
tion is not resident in the KA or KB files, either the KCM octet or an octet 
from the Register File supplies inputs to the word select network, depending 
upon the origin of the instruction octet. The select circuit then monitors the 
three LSB's from either the PA register (sequential instruction acquisition) 
or the AR register (indirect addressing or Execute instruction). These bits 
designate a particular word within the active octet. 

4-22 LEVEL 0 CONTROLLER 

The Level 0 Controller monitors the status of the instruction files to determine 
if valid data is present in Level 0, checks the status of the Level 1 Controller 
to determine if that level can accept a new instruction, and receives instruc­
tion status from Level 3 to determine if an instruction in Level 3 affects the 
actions required by Level O. Level 0 Controller then issues a transfer signal 
to gate the Level 0 instruction and program address into the Level 1 registers. 
Refer to the Level 0 Controller flowchart and description later in this sec­
tion for a detailed representation of controller functions. 

4-23 IPU LEVEL l 

Level 1 of the IPU pipe is a passive level. It receives an instruction word 
from the Level 0 selection network and holds it until Level 2 is ready to ac­
cept the new instruction. While in Level l, the instruction is checked for an 
indirect address or an Execute instruction, either of which disables instruc­
tion reception for Level l until the object of those functions passes through 
Level 1. The following paragraphs describe the major components of Level 1. 

4-24 Pl REGISTER 

The Pl Register is a 24-bit register that holds the address of the instruction 
currently in the Instruction Register of Level l of the !PU. The address trans­
fers into Pl from the PA register when the instruction enters the Instruction 
Register and leaves Pl when the Level 1 Controller gates the instruction to 
Level 2. 

4-15 Advanced Scientific Computer 



4-25 INSTRUCTION REGISTER (IR) 

The Instruction Register is a 32-bit register that receives an instruction 
word that has been selected from the instruction file, from Central Memory di­
rectly through KCM, or from the output of the Register File. IR holds the in­
struction until Level l Controller transfers it to Level 2. If IR contains an 
Execute instruction, or one containing an indirect address, Level l Controller 
prevents further instructions from entering the Instruction Register until the 
object of that instruction is retrieved from memory and passes into the In­
struction Register. 

4-26 LEVEL l CONTROLLER 

The Level l Controller monitors the hazard detection circuit to detect a far 
range hazard, checks the status of Level 2 Controller to determine if that 
level can accept a transfer, and samples the instruction in Level 3 to deter­
mine its effect on Level 1. The controller then gates the contents of Level l 
into Level 2 and sets the active bit in the Level 2 Controller. Refer to the 
Level 1 Controller flowchart and description later in this section for a com­
plete representation of the controller's functions. 

4-27 REGISTER FILE 

The Register File is a storage area in the IPU that is loaded by either a direct 
memory transfer or from the output of the Arithmetic Unit of the Central Proces­
sor. The file consists of forty-eight 32-bit registers grouped into six octets. 
The octets are designated by the letters A, B, C, D, I and V, and respond to the 
hexadecimal addresses 01 through 2F if the 11 M" field of the addressing instruc­
tion is equal to zero. The output of the Register File is available to three 
levels of the IPU pipe: Level 0 for indirect addressing and Execute instruc­
tions, Level 2 for base addresses and indexing, and Level 4 for operands and 
vector parameters except X, Y, and Z addresses. The following paragraphs pro­
vide an outline of the contents and function of the octets in the Register File. 

4-28 BASE ADDRESS FILE, A AND B 

Octets A and B of the Register File (addresses 01 through OF) are used for base 
addressing. Their output is selected by the 4-bit 11 M11 field in the instruction 
containing base addressing. Since an 11 M11 field of zero indicates no base ad­
dressing is to be done, Register File address 00 is inaccessible by this net­
work. No register resides in location 00 of the Register File. 

4-29 GENERAL STORAGE FILE, C AND D 

Octets C and D of the Register File (addresses 10 through lF) provide general 
storage for arithmetic operations or for quick access by instructions. These 
files can be loaded directly from memory to provide a source of instructions 
or operands to the !PU. 

4-16 Advanced Scientific Computer 



~------
4-30 INDEX FILE, I 

Octet I of the Register File {addresses 20 through 27) holds the index regis­
ters for indexing an address of an instruction. The T field of that instruc­
tion selects the proper register from the Index File to be used in the index­
ing process. Since a T field of zero indicates that no indexing will be per­
formed, address 20 of the I File is inaccessible to the indexing network. Ad­
dress 20 provides an additional general storage register. 

4-31 VECTOR PARAMETER FILE, V 

Octet V of the Register File {addresses 28 through 2F) supplies eight words that 
define the parameters used in a vector operation. A vector instruction results 
in reading the entire contents of the file. The words of the file are assigned 
as shown in figure 4-2. Table 4-1 defines the word fields. Words 29, 2A, 2B 
of the file, the starting addresses of the vectors, enter Level 2 of the IPU 
pipe for possible address modification. The remaining five words enter di­
rectly into Level 4 for transfer to the MBU. 

4-32 IPU LEVEL 2 

Level 2 of the IPU pipe is a selection and holding level in preparation for ad­
dress modification. If index or base plus displacement addressing is indicated 
by the incoming instruction, this level channels the proper index and base ad­
dress values into their respective holding registers, modifies the register 

REGISTER 

28 

29 

2A 

28 

2C 

2D 

2E 

2F 

11431 4 

HO 

-
HS 

VI 

OPR ALCT sv L 

XA SAA 

XB SAB 

xc SAC 

DAI DBI 

DCI NI 

DAO DBO 

DCO NO 

Figure 4-2. Vector Parameter File Format 

4-17 Advanced Scientific Computer 



~ 
Table 4-1. V-File Field Descriptions 

Hex 
BM Character Field Description 

28 Ho,H1 fi)PR Operation code 
28 H2 ALCT Arith. & Log. Comparison Term 
28 H3 sv Single-valued vector 
28 H4-H7 L Vector dimension 

29 Hi XA Initial index A 
2A H1 XB Initial index B 
2B Hl xc Initial index C 

29 H2-H7 SAA Starting address A 
2A H2-H7 SAB Starting address B 
2B H2-H7 SAC Starting address C 

29 Ho-H7 (29) Immediate operand A 
2A Ho-H7 (2A) Immediate operand B 
2A Ho HS Halfword starting address 
28 Ho VI Vector increment direction 

2C Ho-H3 DAI ± 6Ai , inner loop 
2C H4-H7 DBI ±AB;, inner loop 
2D Ho-H3 DCI ±6Ci, inner loop 

20 H4-H7 NI Inner loop count 

2E Ho-H3 DAfi) ± AA!IJ, outer loop 
2E H4-H7 DBfi) ± 6Bf1J, outer loop 
2F Ho-H3 DC0 ± 6C~,. outer loop 

2F H4-H7 N9' Outer loop count 

outputs as required by the operation to be performed, and places the resulting 
24-bit words for input to the Level 3 Modification Adder. The following para­
graphs describe functions of the major components of Level 2 of the IPU pipe. 

4-33 LEVEL 2 CONTROLLER 

The Level 2 Controller monitors the hazard detection circuit to detect a far 
range hazard, checks the status of Level 3 Controller to determine if that lev­
el can accept a transfer, and samples the instruction in Level 3 to determine 
its effect on Level 2. The controller then gates the contents of Level 2 into 
Level 3 after any necessary address modification has been performed and sets 
the active bit in the Level 3 Controller. Other control functions performed by 
this circuit are determined by the specific operation being processed by the 
pipe. Refer to the Level 2 Controller flowcharts and description later in this 
section for a complete representation of controller functions. 

4-18 Advanced Scientific Computer 



~------
4-34 LEVEL 2 ROM 

The Level 2 ROM receives the 8-bit operation code of the instruction word as it 
enters Level 2. Depending upon the Op Code, the ROM generates 32 control bits 
that are used in Level 2 to control instruction processing or that transfer to 
the C3 ROM Supplement Register in Level 3. Refer to appendix A of this manual 
for a listing of the ROM output bits. 

4-35 R2 REGISTER 

The R2 Register is a 4-bit register that receives the R field bits of the in­
coming instruction word and transfers them to Level 3 when the instruction 
enters Level 3. The output of this register is also used in Level 4 hazard 
detection logic to find a register hazard. 

4-36 INDEXING REGISTER (XR) 

The Indexing Register is a 32-bit register that receives input from one of the 
seven index registers in the Register File. If the instruction entering Level 
2 from Level 1 indicates that indexing will be required, the 4-bit T field of 
that instruction selects one register in the I File for transfer to the Index­
ing Register. The output from XR enters a shift network. Control bits from 
the Level 2 ROM indicate whether the index word will be left-shifted one bit 
(doubleword addresses), right-shifted one bit (half-word addresses), or remain 
unaltered (single word addresses). The output from the shift network enters 
the modification adder. 

4-37 DISPLACEMENT REGISTER (NR) 

The Displacement Register is a 32-bit register that receives the instruction 
word from the Level 1 Instruction Register. Only part of the instruction is 
used by the displacement circuit, however. The instruction word from the Dis­
placement Register enters a sign extension circuit. Control bits from the Lev­
el 2 ROM then determine one of two possible places for sign extension to occur. 
The LSB's of the resulting 24-bit word that enters the modification adder con­
tain either the N field (bits 20 to 31) of the instruction word, or both the M 
and the N field (bits 16 to 31) of the instruction word. ·The remaining bits 
to the left of these fields are the result of sign extension. 

4-38 P2 REGISTER 

The P2 Register is a 24-bit register that holds the address of the instruction 
that currently resides in IPU Level 2. The address enters the P2 Register when 
the Level 1 Controller transfers the instruction into Level 2 and leaves the P2 
Register when the Level 2 Controller transfers the instruction into Level 3. 
The output of the P2 Register may also transfer to the AR Register in Level 3 
throuqh the address modification network. The two comparison networks, hazard 
and branch, examine the contents of P2. 

4-39 BASE ADDRESS REGISTER (BR) 

The Base Address Register is a 32-bit register that receives the base address 
word from file A or B of the Register File. If the instruction word that enters 

4-19 Advanced Scientific Computer 



~------
Level 2 contains an M field that is not zero, the M field bits select the out­
put from one of the Register File registers and transfer that 32-bit word to 
the Base Address Register. When selected for base addressing, the Base Address 
Register inputs to the address modification adder. The Base Address Register 
is also used to transfer the first three words of the Vector Parameter File 
through the address modification network, and into the MBU. A select network 
at the output of this register allows control signals from the Level 2 ROM to 
select either the Base Address Register output or the output from the P2 regis­
ter as the base address used in the modification addition. 

4-40 IPU LEVEL 3 

IPU Level 3 develops the effective address of the operand to be sent to the MBU. 
It receives input from the Level 2 instruction registers, adds the applicable 
base, displacement, and/or index, and holds the resultant address for use in 
Level 4. Level 3 also checks for hazards and reprocesses an instruction if a 
hazard exists concerning that instruction. The following paragraphs describe 
the function of the major blocks in Level 3. 

4-41 MO.DIFICATION ADDER 

The Modification Adder is a 32-bit (24 effective bits) parallel adder circuit 
with a double-level look-ahead, carry determination circuit. The adder receives 
inputs from the Base Address, Displacement, and Indexing Registers and adds them 
to form one 24-bit resultant that transfers to the Adder Resultant (AR) register 
when the Level 2 Controller enables the transfer. A feedback path from the AR 
register to the adder allows for incrementing the AR register to provide con­
tinuous octet addresses to Central Memory for Load File Multiple or Store File 
Multiple instructions. 

4-42 ADDER RESULTANT (AR) REGISTER 

The AR Register is a 32-bit (24 effective bits) register that receives the mod­
ified operand address from the Modification Adder. The output from this regis­
ter may load the Level O addressing registers during a branch operation, indi­
rect addressing, or an execute instruction. A feedback path to the Modification 
Adder provides for incrementing the address in the AR register for loading or 
storing multiple Register Files. If the address that enters the AR Register 
is an effective address of an operand ( address) or an immediate operand, the 
contents of AR transfer to the AO Register in Level 4 under control of the 
Level 3 Controller. The address from AR also enters the Z model Stack 
(Store operation) or the Register Stack and is available to the hazard detec­
tion circuits in Level 4. 

4-43 P3 REGISTER 

The P3 Register is a 24-bit register that contains the address of the instruc­
tion that is currently in Level 3 of the IPU pipe. It receives the address 
from the P2 Register when the instruction enters the AR Register after under­
going any indicated modifications. The output of this register can be used to 
load the BA Register in Level O, or can be transferred to the RO Register in 
Level 4 as a direct operand. In all cases, the output from this register is 
available to the hazard detection circuits in Level 4. 

4-20 Advanced Scientific Computer 



~------
4-44 LEVEL 3 ROM 

The Level 3 ROM receives the Operation Code portion of the instruction word from 
Level 2 as that instruction word enters Level 3 through the Modification Adder. 
The 8-bit Op Code produces a 32-bit output from the Level 3 ROM. This output, 
in conjunction with the C3 Register output, provides control bits for coordina­
tion of Level 3 processes and supplies bits to complete the address stored in 
the Register Stack in Level 4. If the Op Code indicates a branch, indirect or 
execute instruction, the Level 3 ROM triggers a comparison circuit for those 
operations. Refer to appendix B in this manual for a map of the contents of 
the Level 3 ROM. 

4-45 ROM SUPPLEMENT REGISTER (C3) 

The C3 Register is a 24-bit register that stores control bits from the Level 2 
ROM to be used as control bits in supplement to those produced by the Level 3 
ROM. The control bits enter the C3 Register when the Level 2 Controller trans­
fers the particular instruction into Level 3. The output is immediately avail­
able to the Level 3 circuits for gating and control purposes. C3 output bits 
also transfer to the Register Stack in Level 4 to complete the address stored 
in that stack. 

4-46 R3 REGISTER 

The R3 Register is a 4-bit register that receives the R field bits of the in­
coming instruction word and transfers them to the Register Stack in Level 4 
when the operand or operand address from the AR Register transfers to Level 4. 
The output of this register also·selects a word from the Register File to enter 
into the RO Register in Level 4 as one of the operands needed by the MBU for 
transmission to the AU. 

4-47 LEVEL 3 CONTROLLER 

The Level 3 Controller monitors the hazard detection circuits to determine if 
a hazard exists for the instruction that is now in Level 3. If the hazard bit 
sets, the operand or address in the AR Register may not be valid. This condi­
tion causes the instruction to be re-addressed by transferring the contents of 
the P3 Register to the Level O Addressing Registers to begin processing that 
instruction again. The instructions currently in Levels 1 and 2 will also be 
re-addressed by the addressing registers following fetching of the Level 3 in­
struction from its memory location. 

In addition, the Level 3 Controller monitors the status of the Level 4 Control­
ler to determine if Level 4 can accept a transfer and then gates the contents 
of Level 3 to Level 4. Refer to the Level 3 Controller flowcharts and descrip­
tion later in this section for a detailed representation of the controller's 
functions. 

4-48 BRANCH, INDIRECT, EXECUTE COMPARISONS 

Whenever a Branch or Execute instruction or an address requiring indirect pro­
cessing reaches Level 3 of the IPU pipe, the IPU must examine the addresses of 

4-21 Advanced Scientific Computer 



the instructions currently in the pipe registers to determine if a new memory 
fetch will be necessary to obtain the desired word. The Branch, Indirect, Exe­
cute Comparison circuit performs this function in the following sequence (refer 
to figure 4-3): 

1 Compare AR with P2 (24 bits). If AR= P2, transfer Level 2 to 
Level 3. 

1 Compare AR with Pl (24 bits). If AR= Pl, sequence Level 1 to 
Level 3. 

• Compare AR octet with PA octet (21 bits). If equal, force AR to 
PA and LA to access new word (Branch), or use AR to select from 
Current Instruction File (Indirect or Execute). 

1 Compare AR octet with LA octet (21 bits). If equal, force AR to 
PA and LA to begin new sequence (Branch), or use AR to select from 
waiting Current Instruction File (Indirect or Execute). 

1 If all comparisons fail, transfer AR to OA, LA and PA to access new 
octet (Branch), or transfer AR to OA and use AR to select word from 
KCM (Indirect or Execute). 

4-49 IPU LEVEL 4 

IPU Level 4 is the IPU output level to the MBU. It includes an address and an 
operand output register, word selection logic, and a controller. Also includ­
ed within the Level 4 circuits, but not solely operational within Level 4, are 
the hazard detection circuits. These circuits protect the IPU from processing 
potentially faulty instructions or operands. The following paragraphs briefly 
describe the major components included in Level 4 of the IPU. 

4-50 LEVEL 4 CONTROLLER 

The Level 4 Controller monitors the status of MBU Level 5 to determine if the 
MBU is ready to accept new data from the IPU. If the MBU can accept a trans­
fer and the active bit in Level 4 Controller is set, the Level 4 Controller 
enables the output from the RO and AO Registers, along with control signals, to 
the MBU. Refer to the Level .4 Controller flowcharts and description later in 
this section for a complete representation of the Level 4 Controller functions. 

4-51 REGISTER STACK 

The Register Stack stores the resultant storage addresses of the operands in 
each level of the CP from IPU Level 4 through AU Level 12 (nine levels maximum). 
The stack is used for any instruction that passes through the AU and has a stor­
age destination in the Register File. The Register Stack registers contain the 
storage address of the result as well as control bits. The destination address 
is normally developed from the output of the R3 Register and specific control 
bits from the Level 3 ROM and ROM Supplement Register (C3). However, during a 
Store (R) into a when a is less than or equal to 2F (in the Register File), the 
output from the AR Register in Level 3 supplies the destination address to the 

4-22 Advanced Scientific Computer 



~------

AR 
RGTR 

P2 
RGTR 

P1 
RGTR 

PA 
RGTR 

114346 

LA 
RGTR 

24 BITS 

24 BITS 

21 BITS 

21 BITS 

AR COMPARISON RESULT 

24 BITS 

YES 

NO 

24 BITS 

LVL1-LVL3 
YES 

NO 

21 BITS (MSB) 

YES 

AR-PA, LA (BRANCH) 
AR SELECT WORD (INDIRECT /,EXECUTE) 

NO 

21 MSB 

AR-PA, LA (BRANCH) >------· AR SELECT WORD (INDIRECT/EXECUTE) 
YES 

AR-OA 
L---------t~ A~LA, PA (BRANCH) 

AR SELECT WORD (INDIRECT /EXECUTE) 

Figure 4-3. Branch, Indirect, Execute Comparisons 

4-23 Advanced Scientific Computer 



Register Stack. The output from the Register Stack is used for hazard detec­
tion. The Register Hazard Comparison circuit compares the contents of the Reg­
ister Stack with various addresses in the IPU pipe to determine whether an in­
struction in the pipe will draw from a location that is to be modified by the 
operands preceding it in the pipe. Refer to the Register Hazard Comparison de­
scription for a more detailed discussion of the comparison circuitry. 

4-52 REGISTER HAZARD COMPARISON 

A register hazard exists when an instruction in the IPU accesses a register in 
the Register File and that register will be modified by an operation being pro­
cessed elsewhere in the CP pipe. The contents of that register will not be 
valid data until the modification operation in the pipe is complete and the re­
sult has been stored in the Register File. The Register Hazard Comparison cir­
cuit prevents access to a register in the Register File until any instruction 
that modifies that register has cleared the CP pipe. The comparison circuit 
performs this safeguard function through the series of register comparisons il­
lustrated in figure 4-4. 

As an instruction enters Level 1 of the IPU pipe, the compare circuit monitors 
both the T field (index register select) and the M field (base register select) 
and compares these fields with the contents of the Register Stack registers to 
determine if the T or M field registers will be modified by an instruction in 
Levels 4 through 12 of the IPU. Registers R2 and R3 are also compared with the 
two fields to determine if the instruction in Level 2 or 3 will modify the Reg­
ister File register. The AR Register in Level 3 is also compared with the T 
and M fields of Level 1 to detect a hazard during a Load Register File opera­
tion, where the AR Register holds the address of the register in the Register 
File to be loaded. If the instruction passes these tests, it moves to Level 2. 
If not, the instruction must wait until the hazard condition drops before it 
can transfer to Level 2 to select the registers from the Register File. 

At Level 2 the comparison circuit checks only the AR Register in Level 3 for a 
hazard against the T and M fields of the instruction at Level 2. This compari­
son checks an address that was not generated when the instruction was in Level 
1. If the instruction passes this test, it may move to Level 3. 

Since the output of the R3 Register may select a Register File register for in­
put to the RO Register in Level 4, and the AR Register may select a Register 
File register during indirect addressing, these two registers are checked for 
a hazard conflict at Level 3 before being allowed to access the Register File. 
The addresses specified by these two registers are compared with the addresses 
stored in the Register Stack to detect a hazard condition. 

4-53 AO REGISTER 

The AO Register is a 64-bit register that receives the output from the AR Reg­
ister in Level 3. This output may be either the memory address of an operand 
for use by the MBU or a direct operand (either immediate or from Register File) 
for transfer to the AU. Before entering the AO Register, the AR Register out­
put (24 bits) undergoes a sign extension process to create a 64-bit input to 
the AO Register. The AO Register transfers its 64-bit word to the MBU when di­
rected by the Level 4 Controller. 

4-24 Advanced Scientific Computer 



~--~-_.....----

INSTRUCTION 
LEVEL T AND M 

1 FIELDS 

INSTRUCTION 
LEVEL T AND M 

2 FIELDS 

LEVEL 
3 

L 
1, 4349 

R3 
RGTR 

AR 
RGTR 

R2 
RGTR 

R3 
RGTR 

AR 
RGTR 

0 =COMPARE 

R4 
THRU 
R12 

RGTR 
STACK 

I--

Figure 4-4. Register Hazard Comparisons 

4-25 Advanced Scientific Computer 



4-54 Z MODEL STACK 

The Z Model is a 5-register stack that contains the destination address of all 
Store operations to Central Memory in the CP pipe. The address input is from 
the AR Register in Level 3 and enters the Z Model only if the Op Code of the 
instruction specifies a Store operation. The address then moves through the 
stack registers as the operand moves through the CP pipe. The registers in the 
Z Model correspond to positions within the pipe as follows: 

1 ZP Register. Contains the destination address of a Store operation 
that is currently in pipe levels 4 through 12. 

1 ZA Register. Contains the destination address of a Store operation 
that is in the MBU Z Register, having been processed by the CP pipe. 

• 

• 

ZB Re~ister. Contains the destination address of a Store operation 
that as transferred from the Z File to the ZB File in the MBU, and 
is no longer available for X and Y update. 
ZO Register. Contains the destination address of a Store operation 
that is being sent to Central Memory. 

• MA Register. Contains the destination address of a Store operation 
that is in the Memory Control Unit, but has not been written into 
its addressed location of the Memory Module. 

The output from the Z Model is used to determine if a requested operand from 
memory is to be changed by a Store operation currently in the pipe (operand 
hazard). The Instruction and Operand Hazard Comparison circuits determine if 
any hazards exist with respect to the contents of the Z Model. 

4-55 a OPERAND HAZARD COMPARISON 

An Operand hazard exists when the operand addressed by the AR Register is about 
to be altered by a Store instruction that is farther along in the CP pipe. The 
hazard indicates that if the operand is acquired at the present moment, before 
the Store instruction is complete, a faulty operand may be obtained from memory. 
To avoid accessing a faulty operand, the Operand Hazard Comparison monitors the 
Z Model and compares its contents with the address indicated by the AR Regis­
ter. This comparison is illustrated in figure 4-5. 

An additional comparison is performed by this circuit to indicate whether a Z 
to X or Y update is necessary. The address in the ZA Register is compared with 
the addresses of the octets in the X and Y Buffers of the MBU. If the address 
in the ZA Register is within the octet in either the Y or the X Buffer, the !PU 
may choose to update the information in the buffers with the resultant data found 
in the MBU Z Register. 

4-56 NEAR RANGE INSTRUCTION HAZARD COMPARISON 

An Instruction hazard exists when an instruction that has been accessed by the 
!PU is to be altered by a Store instruction that is already in the pipe. The 
Near Range Instruction Hazard Comparison circuit detects an imminent instruc­
tion hazard by comparing the store operation address record in the Z Model with 
the address of the instruction that is about to be executed in Level 3 of the 

4-26 Advanced Scientific Computer 



~------
AR 

RGTR 

ADDRESS 
TO 

MBU 

STORE 

•• u •f ADDR 

COMPARE 
XA YA ZP .. --

RGTR RGTR RGTR - -
(MBU) (MBU) 

., ., 
0 > 
4 ·~ ZA .. -RGTR ---

,, 
ZB ... ·--RGTR - -

-*-
... .-.-- -zo 

RGTR 

MA 
.-. 

RGTR 

11 4350 

Figure 4-5. Operand Hazard Comparisons 

4-27 Advanced Scientific Computer 



~-----'-------
IPU pipe. This address is contained in the P3 Register. If a near range haz­
ard is detected by this comparison, the hazard flag is set. When the offending 
store instruction is finished, P3 transfers its contents to LA, OA, and PA to 
begin another pass at the instruction in memory. The near range comparison is 
illustrated in figure 4-6. 

4-57 FAR RANGE INSTRUCTION HAZARD COMPARISON 

A far range instruction hazard indicates that an instruction in the IPU pipe 
before Level 3 has been. fetched from a memory location that is being changed 
by a previous store instruction that is writing into memory. This condition 
means that the instruction in the pipe is not valid. To detect a far range 
hazard, the comparison circuit monitors the address in the MA Register of the 
Z Model and compares that address with the addresses of the instructions in the 
Pl and P2 Registers and the octet address contained in PA and the LA Registers 
(refer to figure 4-7). Detection of a far range instruction hazard has no 
immediate effect on the IPU, as the invalid instruction may be disregarded by 
a branch, skip, or other diversion before it reaches Level 3. Instead of an 
immediate reaction, a far range hazard flag sets in the controller corre­
sponding to the i nva 1 id instruction. This flag passes from contra 11 er to con­
tro 11 er as the instruction moves through the IPU levels. When the instruction 
reaches Level 3, the Level 3 Controller checks the far range hazard flag. If 
that flag is set, the controller loads the P3 Register into PA, LA, and OA 
Registers to restart the instruction sequence. 

Z MODEL 

COMPARE 

LEVEL 3 

pt3 -------
t-----~o...t--------tza 

1-----~0....1----------lzo 

i-----~t>4t--------tMA 

1 1 4351 

Figure 4-6 .. Near Range Instru.ction Hazard Comparisons 

. 4-28 Advanced Scientific Computer 



~------

COMPARE 

Z MODEL 

MAi---------1 

(21-BIT) 

11 4352 

Figure 4-7. Far-Range Instruction Hazard Comparisons 

4-58 RO REGISTER 

The RO Register is a 64-bit register that holds an operand for transmission to 
the MBU. The 4-bit R field from the R3 Register selects one word from the Reg­
ister File for entry into the RO Register when the Level 3 Controller transfers 
information from Level 3 into Level 4. The RO Register may also be loaded from 
the P3 program address register for operations using a direct operand contained 
in the address registers. The output from the RO Register transfers to the MBU 
for input to the AU after the MBU fetches the second operand from memory. 

4-59 MEMORY BUFFER UNIT {MBU) 

The Memory Buffer Unit (MBU) receives addresses or immediate operands from the 
IPU. If the word is an address, the MBU requests the octet containing that ad­
dress from central memory, and extracts the proper operand from that octet. 
In either case the MBU forwards the operand, immediate or addressed, to the 
AU for processing. The two operands within the MBU can be up to 64 bits long. 
During vector operations, the MBU buffers up to three octets from memory for 
each of two input buffers so that a steady input of data to the AU is ensured. 
The components of the MBU are illustrated in the detailed block diagram of the 
central processor in figure 4-1. The following paragraphs describe the func­
tion of each of those components within the MBU. 

4-60 MEMORY INTERFACE FILE (SC) 

The MBU Memory Interface File (SC) receives all operands from Central Memory 
that the MBU transfers to the AU. The file is an eight-register (octet) group 

4-29 Advanced Scientific Computer 



with 32 bits to each register. It receives data directly from the memory data 
lines and holds that data until it is synchronized with the CP clock pulses. 
The clock pulses then transfer the data through the remainder of the MBU, 
subject to gating signals from the MBU controllers. The output from the SC 
File may enter one of many places in the MBU. During scalar operations and 
during vector operations when the Vector Buffer Files are empty, the SC 
output transfers directly into either the X or Y operand buffer. When a vector 
operation is in progress and the X or Y operand buffers are full, the SC output 
enters either the YB or the XB Vector Buffer File. Two paths supply data to 
the Z Storage Files also. One path provides fill-in for partially filled words 
for storage into memory (ZB), while the other path is used exclusively during a 
Load Details operation (Z). 

4-61 VECTOR BUFFER FILES (XB, XH, YB, YH) 

Each Vector Buffer File consists of eight 32-bit operand registers. During 
vector operations, the files provide continuous operands to the X and Y Operand 
Files for operand streaming into the AU. Two Vector Buffer Files supply two 
stages of octet buffering for each of the two Operand Files. Cue and control 
bits from the Central Memory Requester control entry into the Vector Buffer 
Files. The individual vector controllers (figure 4-1) gate the data between 
the files. When an octet arrives in the SC File, CMR determines which vector 
stream addressed that particular octet and gates the octet into either the X 
or Y data stream. The octet may enter either the B level or directly into the 
operand file, depending on the status of the operand file. If the octet enters 
the B level and the next buffer is cl~ar (XH or YH) on the next clock pulse, a 
gate from the vector controller transfer the new octet into the H buffer. 
When the corresponding Operand Buffer File empties, another gate and a clock 
pulse transfer the octet from the H level to the Operand File. 

4-62 OPERAND BUFFER FILES (X, Y) 

Both Operand Buffer Files consist of eight 32-bit registers. These files sup­
ply operands to the MBU output registers during both scalar and vector opera­
tions. The files receive their input octet from three sources: the SC Inter­
face File, the XH or YH Vector Buffer Files during vector operations, and the 
ZH Holding File. This last source of operands is used when the Z pipe contains 
modified entries for storage in the octet that is resident in either of the 
Operand Buffer Fil es. Flag bi ts record the ha 1 fwords that have changed in the 
octet so that only the changed portions of the octet transfer to the Operand 
Buffer Files during this update procedure. The output from these files is 
available to the MAB and MCD output registers through a selection network for 
input to the AU. 

4-63 X AND Y WORD SELECT 

The word select circuits receive inputs from their respective Operand Buffer 
File and use a 4-bit word address {figure 4-1), Address Generation Circuit to 
select a half, single or doubleword entry from the oi:erand octet. During vec­
tor operations, the output from the X select circuit is sent only to the MAB 
register and the output from the Y select circuits drives only the MCD reg­
ister. No crossover of operands is possible. In scalar mode, both select 
circuits supply operands exclusively to the MCD register. 

4-30 Advanced Scientific Computer 



4-64 MAB/MCD OUTPUT REGISTERS 

The MAB and MCD registers are two 64-bit registers that supply operands to the 
AU for processing. All operands, whether scalar or vector must pass through 
these registers for transmission to the AU. 

4-65 SCALAR DATA PATHS. During scalar processing, the MAB Register receives 
operands exclusively from the REG Register. This register supplies operands 
from the IPU Register File if a register operand is required. The MAB register 
may not be used during a scalar operation if no register operands are needed. 
The MCD Register, however, has three sources of operands during a scalar opera­
tion. It may receive operands from Central Memory through either the X or the 
Y Operand Buffers, or an immediate operand from the IMM Register. 

4-66 VECTOR DATA PATHS. In vector mode each output register has one main op­
erand source: the X Operand File for the MAB Register and the Y Operand File 
for the MCD Register. Either output register, however, may receive an immedi­
ate vector through the IMM Register. 

4-67 REG REGISTER 

The REG Register is a 64-bit register that receives operands directly from the 
IPU during scalar mode operation. REG then holds the operand until a corre­
sponding operand from Central Memory, or an immediate operand is available, 
and the Level 5 Controller enables a transfer from Level 5 to Level 6 of the 
CP pipe. The contents of the REG register then transfer to the MAB Register 
at Level 6 of the MBU. 

4-68 IMM REGISTER 

The IMM Register is a 64-bit register that receives immediate operands from the 
IPU and transfers them to the Level 6 output registers at the direction of the 
Level 5 Controller. The IMM Register output may transfer only to the MCD Reg­
ister during a scalar operation. However, during a vector operation, the IMM 
Register loads the vector parameters into the MBU vector processor circuits, 
and may also be used to load an immediate, one-value vector into either the MAB 
or the MCD output register. 

4-69 Z REGISTER SELECT 

The Z Register Select circuit receives the resultant data from the AU and 
routes it to a particular register in the Z Resultant Storage File. A 4-bit 
element address from the Z address generation circuit (figure 4-1) designates 
the particular register for storing the resultant data. This circuit and the 
Z File pipe are used for scalar store operations and all vector operations 
only. All other scalar operations store results in the IPU Register File. 

4-70 Z RESULTANT STORAGE FILE 

The Z File consists of eight 32-bit registers that receive input data from the 
AU for storage in Central Memory. The Z File represents one contiguous octet 
of Central Memory, the actual address of which is controlled by the Z Address 

4-31 Advanced Scientific Computer 



Generation circuit {figure 4-1). The entire octet, therefore, may not be 
filled in. any one operation if storage addresses do n?t indi~ate.continuous 
memory locations. Whenever the storage addresses begin storing into a ne~ 
octet, the Z Address Generation circuit transfers the cont~nts of th~ Z File. 
to the ZB File for storage and begins storing a new octet in the Z File. This 
transfer takes place regardless of the full status of the Z Fi~e. The i~put 
line to the z File from the SC File is used during a Load Details operation 
only. 

4-71 ZH HALF PHASE HOLDING FILE 

The ZH File is an eight-register file used exclusively for a transfer delay be­
tween the Z File and the ZB File to avoid a premature transfer of contents from 
Z to ZB. Two clock pulses control the timing of transfers between the files, 
Phase O and Phase 1 clocks. Phase 0 enables input to the Z and the ZB files 
{along with other gating pulses from the control logic). The Phase l clock oc­
curs at equal intervals to the Phase 0 clock, but the pulses are 180 degrees 
out of phase with the Phase O clock. Phase 1, therefore, represents a 11 half­
phase11 pulse with respect to the Phase O clock. This half-phase clock trans­
fers the contents of the Z File into the ZH File, exclusive of all other con­
trol signals. ZH, therefore, always reflects the contents of the Z File after 
a half-clock delay. Because of this delay, ZH provides a stabilized output to 
the ZB File. At the end of an octet in the z File, Phase O clock can simulta­
neously transfer the octet in the Z File, as reflected in ZH into the ZB File, 
and begin storing data for a new octet in the Z File. One half-clock later, 
Phase 1 clock changes the ZH File to reflect the new octet in the Z File. 

If the octet in ZH is to be stored and the X or Y Operand File is currently 
using that octet, the changed words in the ZH octet transfer to the X or Y File 
to update that information before the store gate transfers the octet to the ZB 
File. This update path is also available if the operand address indicates an 
access to a word that is in the Z File. CMR will transfer the changed words 
from ZH to the requesting file, X or Y, to update the new octet as it enters X 
or Y from SC. 

4-72 ZB MEMORY STORAGE FILE 

The ZB File consists of eight 32-bit registers. The output from these regis­
ters supplies data to Central Memory for storage in octet transfers. Central 
Memory cannot store halfwords without destroying the second half of the word 
stored in that memory location. The ZB File receives either full or partially 
full octets from the Z File through the ZH File when address control begins 
storing AU results into a new octet. If the transfer contains a modified half­
word that does not have a corresponding halfword to form a single word store, 
the Central Memory Requester circuit addresses memory to read the contents of 
the octet from its memory location into the SC Memory Interface File. Cue bits 
in CMR transfer the unmodified halfwords in the octet from the SC File to the 
ZB File to complete the storage octet. CMR then transfers the changed words 
into memory to replace the information stored at that location. If the ZB File 
receives only single words from the· Z File, CMR stores the words of that octet 
without the fill-in process. 

4-32 Advanced Scientific Computer 



4-73 ROM ADDRESS REGISTER 

The ROM Address Register is a 9-bit register that holds control bits from the 
IPU to designate the starting address of the next ROM sequence for AU gating 
control. During scalar operations, the nine bits have the following sources: 

• Bit O - Designates one of two halves of the ROM. May be set to al­
low a new sequence without modifying the remaining address bits. 

• Bits 1-4 - The four most significant bits of the current instruc­
tion Op Code. 

• Bits 5-8 - A recoding of the four least significant bits of the 
current instruction Op Code. 

The ROM Address Register receives this input during the Level 4 to Level 5 ad­
dress transfer and holds the address bits until the Select Next Controller 
gates the output into the ROM circuits. 

During vector operations, the ROM Address Register is loaded from the Vector 
Parameter File in the IPU. At the start of a vector operation, the operation 
code in the first word of the Vector Parameter File enters the ROM Address Reg­
ister from the IMM Register. Since the operation code is only eight bits, the 
ninth bit is held at a constant 11 111 level. 

4-74 ROM ADDRESS SELECT 

Control bits from the Select Next Controller monitor the progress of the ROM 
sequence and designate to the Select circuit which address source to gate into 
the ROM circuit. The address may be derived either from the ROM Address 
Register or from the output of the ROM itself. The first source is used to 
initiate a ROM sequence; the second source continues the ROM sequence by sup­
plying succeeding addresses from the ROM output to access the next ROM word. 
The ROM supplies two 9-bit addresses during sequencing (~1 and ~2). The Select 
circuit may choose either of these addresses, depending upon conditions monitored 
by the Select Next Controller. 

4-75 MBU ROM 

The output from the MBU ROM controls the gating of operations through the AU 
pipe. The ROM supplies a 256-bit output from a 9-bit address input. In addi­
tion to AU Control bits, the ROM produces two 9-bit addresses that feed back to 
the Select circuit to address the next output from the ROM during sequences of 
more than one ROM instruction. An output map of the function codes is provided 
on site in computer printout form. 

4-76 ROM OUTPUT REGISTER 

The ROM Output Register is a 256-bit register that receives the code from the 
ROM and holds it for relay to the AU gating circuits. The contents of this 
register change each clock time to follow the output of the MBU ROM. 

4-33 Advanced Scientific Computer 



4-77 SELECT NEXT CONTROLLER 

Select Next monitors the status of the MBU ROM sequence and determines when a 
new sequence may be started for the next instruction to enter the AU pipe. In 
streams of similar operations, a new operand may be entered into the AU before 
the previous operand has completed processing. The precise point of entry is 
determined by the nature of the operation in the pipe. When a new operation 
can begin in the pipe without disturbing the one in the pipe, Select Next en­
ters the new Op Code into the ROM. The ROM then produces gate signals for both 
instructions concurrently. Refer to the flowchart and description of the 
Select Next Controller that appears later in this section. 

4-78 AU CONTROL 

The AU control circuit produces timing signals to the AU pipe that coordinate 
the gating signals produced by the MBU ROM. It receives control signals from 
the ROM, status from the Level 6 Controller, and a reflection of the contents 
of the AU pipe from the AU Model. AU control then generates the proper enable 
pulses to the AU to route data to the proper pipe segment at the proper time in 
the ROM sequence. AU control also supplies the Level 6 Controller with a Path 
Ahead Clear (PAC) indication so that the controller can gate data from Level 6 
into the AU pipe. Refer to the AU Control flowchart and description that ap­
pears later in this section. 

4-79 AU MODEL 

The AU Model consists of a series of AU status flip-flops that mirror the cur­
rent condition of each level of the AU pipe. Timing and control signals from 
the AU Controller set and clear the respective level busy bits in the model to 
assure a current status picture in the model at all times. The output from the 
model supplies status signals to the AU Controller and to the Select Next Con­
troller to aid in coordination of AU operations and instructions. 

4-80 Z DATA AND ADDRESS CONTROL 

This circuit controls the transfer of data between the Z, ZH, and ZB Files and 
the corresponding transfer of addresses from the NSA to the ZBA Registers 
through the ZA Register. To determine the timing of these transfers, the cir­
cuit monitors the status of data in the AU pipe to discover when a new octet of 
addresses will be started in the Z File. This circuit also controls the in­
troduction of a new storage address into the NSA Register by monitoring status 
commands from the IPU and gating the new address from the Z Stack in the IPU 
when the operand and instruction reaches Level 7 of the CP pipe. To provide 
immediate destination selection for resultant AU data, the addresses in the ad­
dress registers precede their respective data by one clock time period as they 
pass through the files of the Z pipe. Flowcharts for the address and data 
flow through the Z pipe appear later in this section along with description 
of the major decision paths. 

4-34 Advanced Scientific Computer 



4-81 LEVEL 5 CONTROLLER 

The Level 5 Controller receives status and transfer bits from the Level 4 Con­
troller in the !PU, gates the !PU addresses into the Level 5 Registers, returns 
status bits to Level 4 and provides Level 6 with information for transfer coor­
dination into Level 6. The Select Next Controller also provides a gating input 
to the Level 5 Controller to enable the controller to transfer new data into 
the next level of the pipe. A flowchart and description of the scalar input 
cycle appears later in this section. Vector inputs are under control of the 
separate vector controllers. 

4-82 LEVEL 6 CONTROLLER 

The Level 6 Controller receives transfer control signals from the Level 5 Con­
troller, path status signals from the AU Controller, and a transfer enable sig­
nal from the Select Next Controller. By combining these signals, the Level 6 
Controller determines when to transfer operands and ROM addresses such that no 
data or ROM control bits are lost. The Level 6 Controller also returns data 
present indications to the AU Controller to indicate an active level state. 
The logic flow of the Level 6 Controller in the scalar mode and vector mode is 
discussed later in this section. 

4-83 INNER LOOP STORAGE REGISTER (NIS) 

NIS is a 16-bit storage register that receives the inner loop count portion of 
the Vector Parameter File at the beginning of a vector operation. NIS then 
holds this count for restoration to the inner loop counters when a new inner 
loop is begun. The count held in NIS is used by the inner loop counters for 
all three vectors. 

4-84 SELF LOOP COUNT REGISTER (LPS) 

LPS is a 16-bit storage register that receives the Length portion of the Vector 
Parameter File at the beginning of a vector operation. LPS then holds this 
count for restoration to the self-loop counters when a new self-loop is begun. 
The count held in LPS is used by the self-loop counters for all three vectors. 

4-85 VECTOR INITIALIZATION CONTROL 

Vector Initialization Control performs the gating functions required to begin 
vector processing in the MBU/AU and also clears out the units at the completion 
of a vector to prepare the pipe for the next operation. At the start of a vec­
tor operation, this circuit distributes the sections of the Vector Parameter 
File from the IMM Register to their proper destinations within the vector con­
trol and generation circuits, starts the address generators, performs the first 
operand fetch of the vector, and aligns the first operands for processing. At 
that point vector control and generation circuits take control of the operation 
and run until completion. 

When the vector is complete, the Initialization Control circuit again assumes 
control to store the last results of the vector into Central Memory. Initial­
ization Control also cycles the MBU ROM to a NOP (no operation) condition and 

4-35 Advanced Scientific Computer 



sequences the AU pipe to clear the gate and control flip-flops. This clean­
up operation prevents alteration of the next operation that will be processed 
by the pipe .• Refer to the flowchart and discussion of the Vector Initializa­
tion Controller that appears later in this section. 

4-86 VECTOR LOOP CONTROL 

Vector Loop Control consists of a 16-bit decrementing counter for each of the 
three address 1 OOJllS pl us a vector contra 11 er. The con.tro 11 er monitors counter 
status and the status of the address generation network corresponding to that 
vector. It then controls counter decrementing and input gating to the address 
generator. Each of the three possible vectors, A, B, and C, have a separate 
and independent loop control circuit. 

4-87 SELF LOOP COUNTER {FLP). FLP receives the 16-bit length field of the 
Vector Parameter File from LPS at the beginning of a vector operation. 
Control pulses from the vector controller then decrement the count in the 
counter each time an address is generated by the address generation circuits. 
If the FLP received a count of zero (NOP), or all loop counters receive a count 
of one (unit vector) to start the vector, the vector requires no address gener­
ation. When the counter reaches a count of one, it signals the vector control­
ler that the FLP is 11 111 • If additional self loops are to be executed, the vec­
tor controller loads the FLP with the original self-loop count from the LPS 
holding' register. 

4-88. INNER LOOP COUNTER (FNI). FNI receives the 16-bit inner loop count field 
of the Vector Parameter File from the NIS register at the beginning of a vector 
operation. If the inner loop count is equal to zero or one, the inner loop 
will not be executed; the self loop will be executed once. If the inner count 
is greater than one, control pulses from the vector controller decrement the 
count in the counter each time a new self-loop of addresses begins. When the 
count in the counter reaches a one, the counter signals the vector controller 
that the FNI is equal to 11 111 • If additional inner loops are to be executed, 
the vector controller loads the FNI with the original inner loop count from the 
NIS holding register. 

4-89 OUTER LOOP COUNTER (FNO). FNO receives the 16-bit outer loop count field 
of the Vector Parameter File directly from the IMM Register at the beginning of 
a vector operation. If the outer loop count is equal to one or zero, the outer 
loop will not be executed; only the self-loop and inner loops will run to com­
pletion. If the outer loop count is greater than one, control pulses from the 
vector controller decrement the count in the counter each time a new inner loop 
of addresses begins. When the count in the counter reaches a one, the counter 
signals the vector controller that FNO is equal to 11 111 • Another cycle of inner 
and self-loops is performed to complete the vector. A new outer loop count en­
tered into the FNO counter indicates the beginning of a new vector. 

4-90 VECTOR CONTROLLER. The Vector Controller supplies increment pulses to 
the loop counters and gating signals to the address generation circuit to se­
lect increment values between addresses. At the beginning of a vector opera­
tion, the controller checks the value in the FLP counter. If this value is a 

4-36 AdvanctJd Scientific ComputtJr 



zero (NOP) or a one (unit vector), the incoming vector requires no address gen­
eration. If the self-loop count is greater than one, the controller enables 
the address generation adder to increment the address. Each new address pro­
duced by the generation circuit causes the controller to decrement the FLP 
counter. When FLP reaches a 11 111 count, the controller disables the increment 
input to the address adder and inspects the FNI counter. 

If the inner loop count in the FNI counter is equal to zero or one, vector pro­
cessing is finished. If the inner loop count is greater than one, the control­
ler enables the inner loop displacement input to the address adder to produce 
the starting address of the next self-loop and decrements FNI. The controller 
then loads the self-loop count into FLP and enables the address adder to incre­
ment through the self-loop again. This process continues until both FLP and 
FNI contain a count of one. At that point the controller disables the address 
adder and inspects the FNO counter. 

If the outer loop count in FNO is equal to zero or one, the vector operation is 
complete. If the outer loop count is greater than one, the controller enables 
the address adder to add the outer loop displacement to the last address and 
decrements the outer loop counter. Both the inner loop count and the self-loop 
count restore to FNI and FLP, respectively, and the self- and inner loop se­
quence repeats. When the outer loop counter reaches a count of one, a final 
repetition of the self- and inner loop sequence completes the vector. 

When the controller determines that the vector is finished, it disables the ad­
dress generation circuit and informs the Vector Initialization Controller of 
the status. Vector Initialization Control then stores the remaining results in 
memory and clears the pipe for the next instruction. 

4-91 MBU UNIT HARD CORE 

MBU Unit Hard Core is the maintenance function and context switching controller 
for the MBU. It receives maintenance and switching commands from the PP 
through Master Hard Core. It then performs the specific operation independent 
from the other two unit hard cores in the CP. When the operation is complete, 
MBU UHC reports the completed status to MHC. Among the functions performed by 
Unit Hard Core are Load and Store Details or Intermediate operations, and Unit 
Register Read when the register to be transferred to the PP is in the MBU Unit 
Hard Core. Refer to the discussion of maintenance commands for flowcharts and 
explanation of the hard core operations. 

4-92 VECTOR ADDRESS GENERATION (A/B VECTORS) 

The address generation circuits for the A and B vectors are functionally iden­
tical. Each circuit produces addresses to access vector components from memory 
for their respective vectors. At the start of a vector operation, Vector Ini­
tialization Control loads the vector starting address field into the Vector Ad­
dress Registe~ (NAA/NBA). The octet address of this word transfers to the Oc­
tet Request Register (XBA/YBA). If it is a new octet, the vector controller 
generates a request to the Central Memory Requester (CMR). The 4-bit word ad­
dress within an octet is stored into the vector Circular Address File (CAF). 

4-37 Advanced Scientific Computer 



The word addresses are then retrieved sequentially (first in - first out) to 
select from their corresponding octet for input to the MAB/MCD Registers. As 
each word address enters CAF, the entire address feeds back through the ad­
dress adder to create the next address in the vector. The following paragraphs 
describe each major component of the address generation circuit. Refer to the 
Address Generation Controllers discussion later in this section for description 
and flowcharts of the process. 

4-9~ VECTOR ADDRESS REGISTER (NAA/NBA). This register receives the 25-bit vec­
tor starting address field from the Vector Parameter File at the start of a vec­
tor operation. This field enters from the IMM Register under control of the 
Vector Initialization Controller. The Vector Address Register then holds that 
address until modified by input from the Address Adder or a new starting address 
field. The 21 most significant bits of this register (octet address) transfer 
to the Octet Request Register for transmission to memory. The four least sig­
nificant bits are stored in the CAF for use in routing the proper operand to the 
data stream. The output from the register is then applied to the input of the 
Address Adder for possible modification. 

4-94 ADDRESS ADDER. The Address Adder performs address modification on the ad­
dress from the Vector Address Register to form a stream of addresses to access 
the component operands of a vector. Any one of three modification inputs may 
be added to the contents of the Vector Address Register to produce the next ad­
dress to be accessed. Selection of the particular input is under control of the 
Vector Controller in the Vector Loop Control circuit. If the loop counters in­
dicate a self-loop is to be performed, the controller enables the DAS input. 
This input is a fixed 11 111 , so that it produces an increment or decrement of one, 
depending upon the sign. Similarly, for changing the address to begin a new 
self-loop sequence (inner loop) the DAI input is added to the address; for be­
ginning a new inner loop sequence (outer loop) the DAO input is added to the 
address. The output from the adder transfers to the Vector Address Register to 
supply the next address in the stream. 

4-95 OCTET REQUEST REGISTER (XBA/YBA). The Octet Request Register receives 
the 21-bit octet address from the Vector Address Register and makes it avail­
able to the Central Memory Requester for transmission to Central Memory. The 
individual vector controller.monitors the contents of this register and pro­
duces a request to CMR when a new octet address enters the register. When CMR 
accepts this request and transfers the octet address to the OA Register, the 
Octet Request Register is free to accept a new address. During scalar opera­
tions, a direct path from the !PU AO Register loads the Octet Request Register. 

4-96 CIRCULAR ADDRESS FILE (CAF). CAF is a file of 16, 7-bit registers. To­
gether with its input and output controllers, it keeps track of all vector com­
ponents whose addresses have been requested from memory but have not been used 
by the operand selection circuit that loads the MAB and/or MCD Registers. The 
file has a capacity of 16 unused operands, so that when this limit is reached, 
the address generation circuit is disabled until one of the operands is used, 
creating a vacancy in the file. The seven bits of the file words are divided 
as illustrated in figure 4-8. The.four most significant bits in the word are 
the element address bits from the Vector Address Register. Each time a new ad­
dress enters the Vector Address Register, the four least significant bits of 
the address transfer to the CAF and fill the four MSB's of the next vacant file 
word. When the bits enter the file, the input controller sets bit 4 of the 

4-38 Advanced Scientific Computer 



~--------·-
0 2 3 4 5 6 

BIT 29 BIT 30 BIT 31 BIT 32 ACTIVE END OF NEW OCTET SEL.F L.OOP 

L.SB'S OF WORD ADDRESS 

(A)115817 

Figure 4-8. Typical. Word 

file word to indicate that the element address is active. When the word is 
used, the output controller clears bit 4 to indicate that that word is now va­
cant. Bit 5 is a control bit that indicates that the word is the end of a 
self-loop. This bit is set every time that the Vector Controller enables the 
DAI or DAO input to the Address Adder. Bit 6 is set by the input controller to 
indicate the first word of a new octet. When the octet address in the Octet 
Request Register differs from the octet address in the Vector Address Register, 
the controller sets bit 6. The words remain stored in sequence in the file un­
til an operand request removes the address from the file. 

Each time the MBU needs a new operand to send to the AU, the output controller 
transfers one of the file words to the Buffer Operand Address Register (XA/YA) 
and clears the active bit in the file corresponding to the word that was re­
moved. The output controller assures that the file words are removed in exact­
ly the same order that they were put into the file so that they remain matched 
with their proper octets that arrive from memory. Refer to the controller 
discussion later in this section for a flowchart and description of the ad­
dress output cycle. 

4-97 BUFFER OPERAND ADDRESS REGISTER (XA/YA) 

The Buffer Operand Address Register is a 4-bit register whose output selects 
the proper word from an octet in the X or Y Operand Buffer for transfer into 
the MAB or MCD output registers. This register receives its element address 
from either the CAF in the case of vector streams, or directly from the IPU 
AO Register during scalar operations. 

4-98 C VECTOR AND STORAGE ADDRESS GENERATION 

This network generates memory addresses for storing the resultant vector (C) 
from a vector operation and processes the storage address of a scalar Store op­
eration. For either operation, the addresses are coordinated with their proper 
data octets in the Z Pipe so that the address is sent to memory when the cor­
responding data octet is in the ZB File. In addition, this network records 
the modification status of each halfword in the Z pipe files for use in an 
update of the X or Y Buffer Files. The following paragraphs describe the major 
component circuits of this network. Refer to the detailed theory discussion 
later in this section for a flowchart of the address generation circuit. 

4-39 Advanced Scientific Computer 



4-99 C VECTOR ADDRESS REGISTER (NCA). NCA receives the 25-bit C Vector start­
ing address field from the Vector Parameter File at the beginning of a vector 
operation. The Vector Initialization Controller enables this input through the 
IMM Register during vector start-up. The output of NCA is used to generate 
further addresses for storing the vector and also transfers the address to the 
CMR through the ZA/ZBA registers for use in storing the resultant vector in 
Central Memory. 

4-100 ADDRESS ADDER. The Address Adder modifies the address in the Vector Ad­
dress Register, NCA, to form a stream of addresses for storing the resultants of 
a vector operation. Any one of three modification inputs may be added to the 
contents of NCA to produce the next address for resultant storage. Selection 
of the particular input is ~nder control of the C Vector Controller in the C 
Vector Loop Control circuitf•'"ff the loop counters indicate a self-loop is to 
be performed, the controller enables the DCS input. This input is a fixed 11 111 

that produces an increment or decrement of one to the address in the register. 
Similarly, for changing the address to begin a new self-loop sequence (inner 
loop) the output from the DCI Register is added to the address; to begin a new 
inner loop sequence (outer loop), the DCO Register output is added to the 
address. The output from the adder transfers to the C Vector Address Register 
to supply the next address in the stream to the CMR. 

4-101 SCALAR STORAGE ADDRESS REGISTER (NSA). NSA is a 25-bit register that 
contains the storage address of a scalar operation resultant that is currently 
in the AU pipe. A 21-bit input from the IPU ZP Register forms the octet address 
portion (most significant bits) of the storage address. Four bits from the IPU 
Register Stack (level R6) become the element address that is used to store the 
word within the octet contained in the Z File. The address enters NSA when 
the respective operands enter the AU pipe and leaves NSA to transfer to ZA and 
ZEA one clock before the resultant of the operation leaves the AU EF Register. 

4-102 RESULTANT STORAGE ADDRESS REGISTER (ZA). ZA is a 21-bit octet address 
register. The contents of this register indicate the destination storage ad­
dress of the octet that is currently in the Z File. The address enters ZA from 
NSA (scalar) or NCA (vector) one clock before the resultant begins storing into 
that octet in the Z File. The output of the register then transfers to the ZAH 
Register on the following Phase l clock pulse. 

4-103 HALF PHASE HOLDING REGISTER (ZAH). ZAH is a 21-bit octet address regis­
ter that reflects the address in ZA after a one-half clock delay. Refer 
to the discussion of the ZH Holding File for a description of the half phase 
relationship of the two registers. The output of ZAH transfers to the ZBA Reg­
ister when a new octet address enters the ZA Register. 

4-104 MEMORY STORAGE ADDRESS REGISTER (ZBA). ZBA is a 21-bit octet address 
register that contains the address of the octet that is currently in the ZB 
File awaiting transfer to Central Memory. The address transfers to ZBA from 
ZAH one clock before the corresponding octet transfers from the ZH File to the 
ZB File. An address that enters ZBA immediately results in a memory request to 
the CMR. Since store requests have priority over all other memory requests, 
CMR immediately begins a memory cycle to store the contents of the ZB File into 
the memory location contained in the ZBA Register. 

4-40 Advanced Scientific Computer 



4-105 HALFWORD MODIFIED INDICATOR REGISTER (ZM). ZM is a 16-bit register that 
is used to keep a record of those halfwords jn the Z File that have been modi­
fied by resultants from the AU. Each bit in ZM corresponds to one-half word 
in the Z File. When an entry is made into a particular halfword in the Z File, 
the corresponding indicator bit in the ZM Register is set. The Modified Half­
word Detect circuit monitors each element address sent to the Z File and gen­
erates the signal that sets the control bit in ZM. 

4-106 HALF PHASE HOLDING REGISTER (ZMH). ZMH is a 16-bit register that re­
flects the contents of the ZM Register after a one-half clock delay. The out­
put bits gate the changed halfwords into the X or Y File during a Z to X (Y) 
update. 

4-107 MEMORY STORAGE MODIFIED HALFWORDS REGISTER (ZBM). ZBM is a 16-bit reg­
ister that stores the modification indicator bits for the octet of data in the 
ZB File. It receives its input from the ZMH Register one clock before the data 
file transfers from ZH to ZB. If an update of X or Y is needed during the time 
that its corresponding octet is still in ZH, the output of ZBM may be used to 
gate the modified words of that file to the corresponding words in the X or Y 
Files. Since memory can only consider whole word storage, the output of this 
register is merged into eight whole-word-modified indicator bits before being 
transferred to CMR as zone control bits. 

4-108 STORAGE WORD ADDRESS REGISTER (ZEA). ZEA is a 4-bit register that re­
ceives the element address from either NCA (vector) or NSA (scalar). The out­
put of this register directs the output from the AU EF Register into the proper 
word of the octet currently residing in the Z File. ZEA receives a new input 
address as soon as the old address has performed its gating function. 

4-109 CENTRAL MEMORY REQUESTER (CMR) 

CMR performs the coordination, bookkeep)ng and transfer functions required to 
store or fetch octets in Central Memory. It assures that octets read from mem­
ory are routed to the data file that requested that particular octet. For 
store functions it also assures that only valid full words of data are stored 
into memory to avoid destroying information in Central Memory. Three address­
ing circuits provide requests for memory access to CMR. If conflicts occur be­
tween these requests, CMR resolves the conflict. Refer to the controller dis­
cussion that appears later in this section for flowcharts of CMR cycles. 

4-110 CMR PRIORITY GATE. This circuit monitors memory requests generated by 
the vector controllers during vector operation, or from the IPU during scalar 
operation, and resolves any conflicts that may occur over simultaneous memory 
requests. Since storage requests have no address buffer, storage requests in­
volving the ZBA Register address always receive the highest priority for memory 
requests. Conflicts involving the addresses from XBA and YBA are resolved al­
ternately; that is, a request for access to the location in XBA receives access 
to memory for the first conflict with a request from the Y pipe, but the second 
conflict is resolved in favor of the Y pipe request. The Priority Gate then 
transfers the address from the highest priority channel to the OA Address Reg­
ister. 

4-41 Advanced Scientific Computer 



~------
4-111 MEMORY OCTET ADDRESS REGISTER (OA). OA is a 21-bit register that re­
ceives memory addresses from one of three input registers and holds that address 
until CMR Control completes processing the request. Once the address enters OA, 
the output is immediately available to the AA Register. 

4-112 ASYNCHRONOUS ADDRESS REGISTER (AA). AA is a 21-bit address register that 
provides request addresses to Central Memory. Transfer of an address from OA 
into AA depends only upon Central Memory's acceptance of the address previously 
held in AA. AA is not dependent upon clock pulses. 

4-113 HALFWORD BITS CHECK AND MERGE. This circuit receives the 16 "halfword 
modified" flags from the ZBM Register and processes them for two purposes. 
First, the circuit checks each pair of bits that represents the two halves of 
a whole word. If only one of the pair of bits is set, it indicates that only 
half of that word contains valid data in the ZB File. The other half, being 
unwritten into, contains unknown and undesirable data. The circuit, therefore, 
signals the CMR Controller that a Z Fill-in process is required (refer to CMR 
Controller description). The circuit then examines the bit pairs again and in­
puts a 11 111 bit to the ZCB Register for each pair of bits having at least one 
bit set. This produces a set of flags in ZCB that indicates which whole words 
in the ZB File have been changed. 

4-114 ZONE CONTROL BIT REGISTERS (ZCB/AZC). ZCB and AZC are 8-bit registers 
that hold the zone control bits corresponding to the octet residing in the ZB 
File. Each zone control bit corresponds to one word in that octet. A set bit 
indicates that its word in ZB contains data that resulted from the AU pipe op­
erations. A cleared bit indicates that no data is stored in that word. These 
bits enter ZCB when the address of the storage data enters the OA Register. 
AZC is an asynchronous register so that the control bits transfer to AZC as 
soon as Central Memory accepts the last group of control bits. Central Memory 
stores only those words in the ZB File whose corresponding zone control bit is 
set in the AZC Register. Valid data stored in memory is thereby not destroyed 
by writing unmodified (blank) words from ZB over the valid data. 

4-115 CMR CONTROL. CMR Control coordinates all memory requests, routes the 
resulting octets to the requesting file, and assures that only valid data is 
stored into Central Memory. During a fetch from memory, CMR gates the request 
address to memory and sends a· 2-bit code to the Cue File that indicates the 
destination for the octet when it returns from memory (X, Y or Z pipes). When 
an octet enters the SC File from memory, CMR gates the octet to the proper file 
by accessing the cue bits in the Cue File. 

At the start of a memory store operation in CMR, the controller inspects the 
halfword bits check circuit to determine if the octet to be stored contains 
any half complete words. If all the words in the octet are complete, the octet 
is written into memory using the zone control bits from the AZC Register to de­
termine which words in the octet are to be written. If, however, one or more 
of the words in the octet are only partially filled with new data, CMR Control 
initiates a Z Fill-in operation. 

4-42 Advanced Scientific Computer 



Z Fill-in results in supplying complete words to memory. CMR Control issues a 
fetch request to Central Memory for the octet in the location corresponding to 
the address of the octet to be stored. When the octet enters the SC File, CMR 
Control transfers it to the ZB File using the cue bits from the Cue File. The 
11 halfword modified 11 control bits from the ZBM Register prevent the incoming oc­
tet from replacing those halfwords that are already in the ZB File. The incom­
ing octet, therefore, only stores into the vacant halfwords of the ZB File. 
When the ZB File is complete, CMR Control issues a request to memory to store 
the octet in ZB. The zone control bits sent with it to Central Memory, however, 
allow only the modified words to be stored, preventing alteration of valid data 
that is already stored in memory. 

4-116 CUE FILE. The Cue File is a 2-bit circular file with an eight-entry 
capacity. Each time the CMR Controller sends a memory request for a read from 
memory, it also generates a 2-bit code, designating the destination of the re­
quested octet, and enters that code in the Cue File. The cue codes are as fol­
lows: 

00 = octet to X Buffer Files 
01 = octet to Y Buffer Files 
10 = octet to ZB File (Z Fill-in). 

Since memory requests are processed by Central Memory on a first-in, first-out 
basis, no tag bits are required to identify the cue entries with their octet. 
As octets return from memory, the cue entries are accessed from the Cue File 
in the order that they were stored. They are then used to gate the incoming 
octet to the proper file. 

4-117 MASTER HARD CORE (MHC) 

Master Hard Core (MHC) is the communications port and control channel between 
the Peripheral Processor (PP) and the Central Processor (CP). MHC contains 
connections to the Unit Hard Core (UHC) for each of the three units of the CP, 
the IPU, the MBU and the AU. These connections carry maintenance commands and 
switch commands to the UHC's and status, response and data feedback lines from 
the UHC's. Figure 4-1, the CP Block Diagram, illustrates the major circuits 
involved in Master Hard Core. The following paragraphs describe the functions 
of each of these components. Refer to the discussion of maintenance commands 
for further detail regarding MHC. 

4-118 CAPTURE COMMON COMMAND REGISTER (CAPTURE CCR) 

Capture CCR monitors the Common Command Register in the PP Communication Regis­
ter File (CR File) in an asynchronous mode. The CCR (figure 4-9) is a 16-bit 
portion of the CR File Register C16· It contains a 4-bit unit identifier, a 4-
bit Op Code, and 8 bits of address that further define the function to be per­
formed. In order for this register to be active, the Transfer Bit (bit 16 of 
CR File Register C) must be set. 

Capture CCR first monitors the Transfer Bit for an active PP command. When 
the Transfer Bit sets, Capture CCR examines CCR bits 0-7 to determine if the 
active command is intended for the CP. If these bits represent a hexadecimal 

4-43 Advanced Scientific Computer 



0 2 3 .. !S 6 7 8 g 10 11 12 13 14 1!5 

UNIT ID 01' CODE ADDllUESS (FUNCTION) 

14--------- COMMON COMMAND RECllSTIER---------.i 

,r I . 

CR 'FIU 
REGU>TER C 

TRANSFD 81T 

(A}115836 

Figure 4-9. Common Command Register and Transfer Bit 

41, Capture CCR transfers the eight least significant bits of CCR to a holding 
register and clears the Transfer Bit in the PP. The function code transfers 
to Sequence Control, Sequence Control decides whether to gate the four least 
significant bits to the CCR Output Register, or if it must generate a new code 
to the UHC's. 

4-119 MCW, MCP AND ERROR MONITOR 

This circuit receives error indications from all three units of the CP, exam­
ines the !PU for a Monitor Call and Wait (MCW) or a Monitor Call and Proceed 
(MCP) instruction, and checks the 8-bit CP Control Register in the CR File. 
From these inputs, the circuit determines when switching of CP contents should 
be performed. If the switch is not possible, it generates a three bit reason 
code to the PP. Sequence Control enables the reason code to the PP, or per­
forms the actual switching operation when the Monitor indicates that the switch 
is necessary. 

4-120 CP CONTROL REGISTER. The CP Control Register consists of eight flag 
bits residing in bits 24-31 of the CR File Register A (see figure 4-10). Table 
4-2 lists each of these bits and their definitions. These bits are used by the 
PP to condition the responses of the CP Master Hard Core to status conditions. 

4-121 CP SWITCHES. Besides the switch initiated by an MCW instruction, the 
Monitor circuit checks the three CP units for the following error conditions 
and performs a switch when it detects an error if permitted by the PP: 

1 System Error (SYSERR). Terminate (TR) or Parity (PE) Errors 

• Error Condition (ERR). Protect Violation (PV), or Illegal Opera-
tion (IL) or Arithmetic Exception (AE). 

4-122 MONITOR RESPONSE. When the Monitor detects an error or call, it re­
sponds to the PP by setting bits in the CP Response Register (see figure 14-11), 
and initiates an operation in the Sequence Control circuit if the operation is 
enabled. If the context switch cannot be performed, it sets a reason code in 

4-44 Advanced Scientific Computer 



24 

CA 

115839 

Bit 

CA 

CT 

SA 

SP 

SR 

TR 

AC 

AS 

25 26 27 28 29 30 31 

I CT SA SP SR TR AC AS 

SOFTWARE CONTROL BITS MONITORED BY MHC 

Figure 4-10. CP Control Register 

Table 4-2. CP Control Byte Bit Definitions 

Name 

CP Available 

CP Test 

Step Active 

Step Primed 

System Reset 

Terminate Request 

Allow Call 

Allow Switch 

Function 

Set by Master Controller when no CP step is 
primed. Indicates the need to poll for ac­
tivity on the CP execution queue. Reset 
when a CP step is primed. 

Set by Master Controller to indicate CP 
control is being relinquished to MCD. When 
set, the Master Controller will not respond 
to any other activity in the CP Response or 
Condition bytes. 

Set by Master Controller when a CP step is 
initiated. Reset when a step terminates 
and no step is primed for execution. 

Set by Master Controller to switch a CP 
step into execution. Reset when CP begins 
executing step and no other step is ready 
for priming. 

Set by Master Controller to initiate a CP 
reset. Must be reset before any other CP 
action is taken. 

Set by the Master Controller to terminate 
outstanding CCR or Automatic Switches in 
the CP. Reset by the MC. 

Set by the Master Controller to permit Au­
tomatic MCP and MCW calls. Reset to inhib­
it these calls. Should be reset anytime a 
CCR command is used that invalidates the 
next job step status defined by pointers 
16, 17, and 28. 

Set by the Master Controller to permit au­
tomatic MCW and Error context switching. 
Reset to inhibit these switches. 

4-45 Advanced Scientific Computer 



2 3 ' s 6 7 

cR il:-11;..E I I l _,. I .~:!.. t 0 Re:lAsoH1 .. codE ... I RtGl5TllR·, 2~- SE AT MC ....... ....... • ., I I '"' 
,~ ~.----_,.j_L,.;.. ____ ..._ ____ _._ _____ __........, ____ ,.._ ____________ .__ __ __ 

0 

115841 

Figure 4-11. CP Response Byte 

the CP Response Registe~ to tell the PP why the switch is not performed. Table 
4-3 defines the bits of the CP Response Byte, including a decoding of the Rea­
son Code bits. Refer to the controller descriptions later in this section for 
a flowchart of the PP status checking cycle of the response bits. 

4-123 SEQUENCE CONTROL 

Sequence Control monitors error and call status from the Monitor circuit, stat­
us and response bits from the three CP units, and eight control bits from the 
CR File CP Control Register. It also receives the 8-bit function code from the 
Capture CCR circuit. From these inputs, Sequence Control determines the re­
quired steps to carry out the function prescribed by the PP. In performing 
this function, Sequence Control generates condition and response bits to inform 
the PP of current conditions. Four response bits transfer to the CR File CP 
Response Register. These bits are described under the Monitor circuit descrip­
tion. Eight condition bits, generated by Sequence Control transfer to the CP 
Condition Register in the CR File, Register 121 6 . Table 4-4 lists and defines 
these condition bits; figure 4-12 illustrates tne CP Condition Byte. 

In addition to status reports, Sequence Control generates control signals to 
the CP Unit Hard Cores to coordinate performance of the PP Functions. If the 
hard core function originates from a CP error, Sequence Control produces a 4-
bit code that transfers to the CCR Output Register in lieu of a PP produced 
command. Sequence Control flowcharts are included in the controller discussion 
later in this section. 

4-124 CCR OUTPUT REGISTER 

CCR Output is a 4-bit register that holds the operation code required by the 
CP Unit Hard Cores to perform any maintenance or switch function. The input 
may be directly from the Capture CCR circuit. However, when an error produces a 
switch condition, Sequence Control generates the 4-bit input to the CCR Output 
Register. Input from Capture CCR is a transfer of the four least significant 
bits of the CCR command. 

4-46 Advanced Scientific Computer 



Bit 

SE 

AT 

MC 

SC 

RZ(0-2) 

Table 4-3. CP Response Byte Bit Definitions 

Name 

System Error 

Attention 

Message Complete 

Switch Complete 

Reason Codes 

CODE 

000 

001 

010 

011 

100 

101 

110 

111 

Function 

Set by CP to indicate a Parity Error 
during normal CP operation. Reset by 
Master Controller. 

Set by the CP to indicate an abnormal 
termination (as defined by the Condition 
Byte) of an automatic call or switch (as 
defined by the MC and SC bits). Reset by 
the Master Controller. 

Set by the CP to indicate the completion 
of an MCP or MCW. Reset by the Master 
Controller after operation on the mes­
sage. 

Set by the CP to indicate the completion 
of an MCW or Error switch. Reset by the 
Master Controller after priming the next 
switch. 

Set by the CP to inform the Master Con­
troller of the following context switch 
conditions: 

INTERPRETATION 

NOOP 

MCP inhibited by MC or SC bits 
being set. 

MCW inhibited by MC or SC bits 
being set. 

Error switch inhibited by MC or 
SC bits being set. 

MCW inhibited by AC = 0. 

MCP inhibited by AC = 0. 

MCW inhibited as AS = O. 

Error switch inhibited by AS = 0. 

The Master Controller resets these bits and sets the CP Run Bit 
via a CCR command after preparing for the indicated condition. 

4-47 Advanced Scientific Computer 



Bit 

cc 

AB 

PE 

IL 

AE 

PV 

RB 

REGISTER 12 

Table 4-4. CP Condition Byte Bit Definitions 

Name 

Command Complete 

Abnormal 

Parity Error 

Illegal Operation 

Arithmetic Excep­
tion 

Protect Violation 

Run Bit 

16 1 7 1 8 

cc AB NOT 
USED 

Function 

Set by the CP to indicate the completion of 
the last requested CP CCR command. Reset 
by the Master Controller. 

Set by the CP to indicate the last request­
ed CP CCR command terminated abnormally 
Reset by the Master Controller. 

Set by the CP to inform the Master Control­
ler of a CM Parity Error. Reset by the 
Master Controller. 

Set by the CP to inform the Master Control­
ler that an illegal operation code forced 
or attempted to force an Error context 
switch. Reset by the Master Controller. 

Set by the CP to indicate that an arith­
metic exception forced or attempted to 
force an Error context switch. Reset by 
the Master Controller. 

Set by the CP to indicate that a CM protect 
violation forced or attempted to force an 
Error context switch. Reset by the Master 
Contrell er. 

Continuously gated CR bit reflecting the 
state of the CP's internal run bit. 

19 20 21 22 

PE IL AE PV 

23 

RB CR FILE I 
16--~--~ ....... -------i'--------'------....1..~--~-'-~----.&-~--.....Jl-..----...J 

(A) 115846 

Figure 4-12. CP Condition Byte 

4-48 Advanced Scientific Computer 



4-125 UNIT REGISTER READ 

Unit Register Read performs the maintenance function of addressing a hard core 
(unit or master)register or series of flip-flops, so that the contents of the 
selected register are transferred to the CR File for inspection by the PP. All 
bits selected in this manner transfer to the CP Unit Register in the CR File, 
Register A (bits 8-15). The selected byte transfers directly from its respec­
tive Unit Hard Core to the Unit Register. 

4-126 AU INPUT 

The Input section of the AU is pipe level 7 of the Central Processor. It re­
ceives the original operand inputs from the MBU, plus numerous other inputs that 
are developed within the AU and fed back for further processing. Of significant 
interest is the additional input from the EF Output Register. This input sup­
plies the 'short-circuit' feedback that is used for performing consecutive in­
structions on the same set of operands. It allows the result of one operation 
to be used as the input for the next operation without the delay that would be 
required if the first result were stored and then re-accessed. Control signals 
from the AU Control ROM in the MBU select the proper input and transfer it to 
the AB or CD Operand Registers. These 64-bit registers hold the operands until 
further control signals route the output to the AU level corresponding to the 
first operation to be performed. 

4-127 EXPONENT SUBTRACT 

The Exponent Subtract section determines which of the two input operands is 
larger and, in the process, performs a 7-bit subtraction of the operand expo­
nent bits. The circuit is used to input properly ordered data and a right shift 
count to the Aligner and Right Shift section for aligning the smaller operand to 
the larger. It may also be used in simple arithmetic compare operations to des­
ignate the larger operand. The following paragraphs summarize the functional 
blocks of the Exponent Subtract section. Figure 4-13 provides a flowchart of the 
compa~ison logic. 

4-128 INPUT SELECT 

Control bits from the AU Control ROM in the MBU select the proper pair of inputs 
for a designated operation. Each input is 64-bits; however, during half or 
single word operation, only 16 or 32 bits may be active, leaving the remaining 
bits ineffective. 

4-129 SUBTRACT EXPONENTS AND COMPARE MAGNITUDE 

This circuit performs a comparison of the magnitude of the input operands by 
subtracting the exponent portion of the data word. If the result of the sub­
traction (X - Y) is positive, then operand X is greater than operand Y .. Operand 
Xis then gated to the LOR Register; operand Y, to the SOR Register; and the 
"greater than" compare code bit is set. If the result of the subtraction is 
zero, the circuit compares the magnitude of the two mantissas to determine which 
operand is larger. If the two mantissas are equal, the "equal to 11 compare code 

4-49 Advanced Scientific Computer 



OPERAND FOR­
MAT X ,".' 

FIXED 

START 

FLOATING 

x-+ SOR 
>--•14 y -+LOR 

X-LOR 
y.-. SOR 
SET r:>rr 
COMPARE BIT 

*NOTE: FOR FLOATING 
POINT, NUMBEPll MAY 
BE COMP'LEMENTED 
BEFORE ENTERING 
SOR IF1 

1 • SIGNS OF X AND 
Y DIFP'ER DUR­
ING AN ADD 

2. SIGNS OF X AND 
Y ARE THE 
SAME DUPlllNG 
A SUBTRACT 

(A) 11 7983 

CLR COMP CdDE 

X-LOR 
v-soR 
SET "=' r 
COMPARE BIT 

(a-b) TO ED 
f(t sax)!.+soR 
1 sbv-+LOR 
CLR COMP CODE 

f(t sax).!.soR 
, sbv-+LOR 
CLR COMP CODE 

NO 

NO 

OPEltAND FOR­
MAT 
, &ax. 
, 5by' 

f(tb6aX)'-+ LOR 
1 • v--..soR t..-------------1 SET 11 = 11 COMP 
BIT 

(a...;b) TO Et> 
16aX-+LOR 

>---i.,. t(t ebv)~SOR 
SET 11 >H COMP' 
BIT 

,,ax-- LOR 
f <1 sbv\ .!.soR 
StTll>fl COMP' 
BIT 

Figure 4-13. Exponent Subtract and Compare Logic Flowchart 

4-50 Advanced Scientific Computer 



~------
bit sets, the X operand transfers to the LOR Register, and the Y operand 
transfers to the SOR Register. If they are unequal, either no bits or the 
"greater than" compare code bit sets; the incoming operands are routed to the 
proper output registers. If the result of the subtraction is negative, operand 
Y is greater than operand X. Operand X transfers to the SOR Register and Y 
enters the LOR Register. No compare bit sets, indicating that operand X is 
neither greater than nor equal to operand Y. The result of the exponent sub­
traction always enters the ED Register for output to the next stage of the AU 
pipe. 

This circuit also complements floating point numbers in preparation for effective 
subtraction. That is, if the signs of X and Y are different during a Floating 
Point Add, the operand will be complemented (one's complement) before entering 
the SOR Register. Similarly, if these signs of X and Y are the same during a 
Floating Point Subtract, the operand will also be complemented before entering 
the SOR Register. The carry-in bit to complete the two's complement is added 
in the Adder section of the pipe. 

4-130 LOR REGISTER 

The LOR Register is a 64-bit register that holds the larger of the two input 
operands for output to the alignment section of the pipe. Control signals from 
the Subtract and Compare circuit select which operand to transfer into the LOR 
Register. 

4-131 SOR REGISTER 

The SOR Register is a 64-bit register that holds the smaller of the two input 
operands for output to the alignment section of the pipe. Control signals from 
the Subtract and Compare circuit select which operand to transfer into the SOR 
Register. The contents of SOR are right shifted in the Align circuit to make 
the exponent portion of the two operands (SOR and LOR) equal. 

4-132 ED REGISTER 

The ED Register is a 7-bit register that receives the result of the exponent sub­
traction process. The output of this register indicates the magnitude of the 
difference between the SOR and LOR operands and, therefore, indicates how many 
bits the SOR operand must be right shifted to align with the LOR operand. 

4-133 COMPARE CODE 

The Compare Code consists of two flag bits. One bit is set to indicate that the 
X operand is larger than the Y operand; the other bit sets to indicate that 
the two operands are equal. If neither bit is set, the X operand is neither 
larger than nor equal to the Y operand and must, therefore, be smaller than the 
Y operand. 

4-134 ALIGN AND RIGHT SHIFT 

This section is used for all floating point add instructions or for any right 
shift instruction. It performs floating point alignment in one pass through its 
circuitry and processes fixed point right shifts in two passes. A not-shifted 

4-51 Advanced Scientific Computer 



holding stage is also supplied to maintain coordination of two corresponding 
operands as they pass through the section. The following paragraphs describe 
the major functional divisions of the Align andcRight Shift circuit. 

4-135 SELECT 

The Align and Right Shift circuit has two select circuits. One select circuit 
supplies a 64-bit operand to the Hex Shift circuit for processing. The other 
select circuit provides a parameter input that indicates the magnitude of the 
required shift. This parameter may be specified by bits 25-31 of the CD Operand 
Register for a fixed point right shift, by bits 25-31 of the Accumulator Output 
Register for a fixed-floating or a floating-fixed conversion, or by the 7-bit 
output of the ED Register for a floating point add operation. The ED Register 
input is a base 16 number. It specifies only a shift of 4-bit multiples, or hex 
shift. The other inputs are base 2 numbers and specify both a hex shift and a 
bit shift.· For this reason, floating point add alignment requires only one pass 
through the circuit for hex shifting, whereas the other shift operations re­
quire both a hex shift and a bit shift to complete the operation. 

4-136 HEX SHIFT DECODE 

This circuit receives the shift select bits from the select circuit and generates 
the required gating signals to perform the specified hex .shift. Since there 
are 16 possible hexadecimal shifts for a 64-bit word, 16 separate gate signals 
are required to allow for any specified right shift. These 16 gates specify hex 
shifts from zero to 15 hexadecimal characters to the right. ' 

4-137 BIT SHIFT DECODE 

This circuit monitors the two least significant bits of the shift select net­
work. Duri~g operations requiring a bit shift in addition to a h~x shift, this 
circuit produces one of four possible gate signals to shift the hex shifted 
operand between qne and four bits to the right. 

. } ; \ 
4-138 SHIFT SEQUENCE 

The Shift Sequence involves the bit shift network, the hex shift network, and 
the SH Shifted Operand Register. The incoming data word is first hex shifted, 
and the hex shifted result is stored in the SH Register. This output is available 
to the adder circuit for a floating point add at this time. If, however, a bit 
shift is required, the hex shifted operand in SH is fed back into the shift 
circuit gates. The bit shifted result then appears in SH. 

Depending upon which hex shift gate bit is active, any one of 16 inputs to the 
ARSH16 FF {figure 4-14) may be enabled. The next clock pulse will transfer that 
enabled input to the ff and provide a hex shifted output. If a bit shifted re­
sult is required, one of the bit shift gate bits will enable the output from one 
of four of the SH Register ff 1 s to be fed back as an input to the SH Register. 
The second clock period transfers that bit into the SH Register to complete the 
shift operation. 

4-52 Advanced Scientific Computer 



SHIFT 0 HEX 

SHIFT 1 HEX 

SHIFT 2 HEX 

SHIFT 3 HEX 

SHIFT 4 HEX 

HIFT 5 HE 

SHIFT6 HEX 

SHIFT 7 HEX 

SHIFT B HEX 

SHIFT 9 HEX 

SHIFT 10 HEX 

SHIFT 1 1 HEX 

SHIFT 12 HEX 

SHIFT 13 HEX 

SHIFT 14 HEX 

SHIFT15BIT 

SHIFT 1 BIT 

SHIFT 2 BIT 

SHIFT 3 BIT 

SHIFT 4 BIT 

(A) 1179B4 

BIT 16 

BIT 12 

BIT B 

BIT 4 

BIT 0 

BIT 60 

BIT 56 

BIT 52 

4B 

BIT 44 

BIT 40 

BIT 36 

BIT 32 

BIT 28 

BIT 20 

HEX SHIFTED 1 5 

HEX SHIFTED 14 

HEX SHIFTED 1 3 

HEX SHIFTED 1 2 

SH 
REGISTER 
BIT 16 

-1 
I 
I 
I 
I 
I 

_J 

ARSH 
16 

BIT SHIFT 
NETWORK 

BIT 16 

SHIFTED OPERAND 
(HEX OR HEX AND 
BIT SHIFTED) 

HEX SHIFTED 
TO BITS 1 7-20 
FOR BIT SHIFT 

Figure 4-14. Simplified Right Shift Network (Bit 16 of Operand) 

4-53 Advanced Scientific Computer 



4-139 NOT SHIFTED REGISTER (NS) 

The pipeline structure of the AU requires that both operands of an operation be 
at the same level of the pipe at all times to avoid confusion or loss of data. 
Therefore, even though the larger operand of a floating point add requires no 
action of the Align and Right Shift section, a holding stage must be provided 
for that operand while the smaller operand is being hex shifted. For this pur­
pose, NS receives the output from the LOR Register and holds that operand until 
the hex shift of the smaller operand is complete. Both operands then transfer 
to the Add section of the pipe for the addition portion of the floating point 
add instruction. 

4-140 ADDER SECTION 

The Adder section performs both addition and subtraction operations on either 
fixed or floating point operands. It is capable of processing two 64-bit 
operands during one clock period. The following paragraphs describe the func­
tions of the major components of the AU Adder Section. 

4-141 INPUT SELECT 

Two select gates provide the pair of operands to the adder circuit. Control 
signals from the AU Control ROM in the MBU designate the proper gate signals to 
the Select circuits. For floating point adds and subtracts, the input from the 
Align and Right Shift section is selected. The Input section of the AU supplies 
operands for fixed point operations. If the adder is to perform a subtraction, 
control signals select the input corresponding to tha complement of the subtra­
hend. This number will be a simple one's complement; an additional carry input 
to the adder creates the two's complement input required for a subtract opera­
tion. 

4-142 ADDER 

The adder performs 64-bit addition on two operands in a parallel mode. Two­
level, look-ahead logic determines the carry of the total operation and adds it 
to the partial sum to form the sum that is transferred to the ADD Register. 
For subtraction operations, one of the input operands is in one's complement 
form. An extra bit is added to the least significant bit position of the ad­
dition to develop an equivalent to a two's complement for performing the sub­
traction . 

. 4-143 ADDER OUTPUT REGISTER (ADD) 

The Adder Output Register is a 64-bit register that receives the resultant sum 
or difference of an adder operation and forwards that answer to the next level 
of the AU pipe as determined by control signals from the AU Control ROM in the 
MBU. The result from floating point operations is sent to the Normalize section 
before being placed into the EF Output Register. Fixed point results transfer 
directly to the EF Register. 

4-54 Advanced Scientific Computer 



4-144 ACCUMULATOR 

The Accumulator is a special purpose adder section used to total the output 
of the Multiplier section for vector dot products and for other functions that 
require a running total. The following paragraphs describe the basic functions 
performed by the accumulator. 

4-145 OPERAND SELECT 

The Accumulator has three operand select circuits that provide inputs to the 
adder portion of the circuit. Two or three of the select circuits may be en­
abled at one time. Control signals from the AU Control ROM in the MBU enable 
the select circuits to select the proper operands. One of the select gates pro­
vides a wrap-around path from the result sum in the ACC Register so that new 
incoming data may be added to the contents of ACC to form an accumulated total 
in ACC. 

4-146 ADDER 

The Accumulator adder is a 64-bit parallel adder with double level look-ahead 
logic for determining the carry of the addition operation. The adder has three 
inputs, all of which may be active at one time. Refer to the Multiplier section 
description for information regarding a similar 3-input adder tree used in that 
section. The output of the adder is stored in the ACC Register for output to 
the next level in the AU. 

4-147 ACCUMULATOR OUTPUT REGISTER (ACC) 

ACC is a 64-bit register that receives the output from the accumulator adder and 
holds that output until a new result is entered from the adder. The output from 
this register is available to other stages of the AU as directed by the AU Con­
trol bits from the ROM in the MBU. A feedback path from this register to the 
input select circuit allows the contents of ACC to be added to incoming data to 
form an accumulated total. 

4-148 OUTPUT 

The AU output section gates all AU results to either the MBU for vectors and 
store operations or to the IPU Register File. It receives the output signals 
from all AU sections except the Multiplier section. Control signals from the 
AU Control ROM in the MBU select the input to this section and determine the 
destination of its output. This section also performs basic Boolean logical 
functions and reports status conditions to the IPU. The following paragraphs 
describe the major components of the AU Output section. 

4-149 LOGICAL OPERATIONS 

The Output section receives operands directly from the Input section to per­
form four Boolean logical operations on them. These operations are always per­
formed on all operands that pass through the Input section. The output cor­
responding to the particular function need only be selected to place the logi­
cal result into the EF Output Register. The logical operations performed by 
this circuit are Logical AND, Logical OR, Exclusive OR, and Equivalence. 

4-55 Advanced Scientific Computer 



4-150 OUTPUT SELECT 

The Output Select circuit uses control signals from the MBU ROM to select the 
proper resultant to place into the EF Output Register. The circuit may select 
the output from any AU section, except the Multiplier whose output is a partial 
result that must be added by the Accumulator to be meaningful. Three miscella­
neous word inputs provide for transferring status bits or other messages to the 
IPU or to the MBU for storage into Central Memory. Other inputs provide a word 
of all zeroes, two 11-bit entries of ones, and 32 least significant bits of the 
ACC Register for input to the 32 most significant bits of EF. 

4-151 EF REGISTER 

The AU Output Register (EF) is a 64-bit register that holds the resultant output 
of the AU process until it is either transferred to the Register File in the 
!PU (scalar operations) or to the MBU for storage into memory (vectors and 
store operations). The output of this register is also fed back to the AU in­
put section for use by the next following instruction if that instruction ad­
dresses the register address of the result in the EF Register. This "short 
circuit" path saves the time required to fetch the result from its register 
storage location if the instruction immediately following it will require that 
same result as an operand. 

4-152 COMPARE CODE 

The Compare Code performs two functions of comparison. In both cases it provides 
three mutually exculsive flags to the !PU for determining whether two operands 
are equal or if one is larger than the other. The first usage receives the com­
parison flag bits from the Exponent Subtract section and uses those bits to 
set the X greater than Y, less than Y, or equal to Y flag. Only one flag can be 
set at one time. The second function monitors the logical compare circuit and 
sets the compare code to indicate if the result of that comparison is mixed ones 
and zeroes, all ones, or all zeroes. 

4-153 RESULT CODE 

The Result Code is a 3-bit, mutually exclusive flag set that indicates whether 
the result contained in the EF Register after an arithmetic operation is posi­
tive, negative, or equal to zero. During logical operations, these flags indi­
cate if the result is all ones, all zeroes, or mixed ones and zeroes. 

4-154 ARITHMETIC EXCEPTION CELLS (AE) 

This series of flags monitors various error bits in the AU and sets a flag if an 
arithmetic exception occurs. Types of arithmetic exceptions include: fixed 
point overflow, floating point overflow, floating point underflow, and divide 
check (attempt to divide by zero). 

4-155 NORMALIZE SECTION 

The Normalize section is employed for both floating point add instructions and 
fixed point left shift instructions. Divisors are routed through this section 
to assure bit normalized inputs for divide instructions. The section performs 

4-56 Advanced Scientific Computer 



essentially the same as the Align and Right Shift section, except that this 
section must also determine the length of a hexadecimal floating point shift 
during normalization. During left shifts, however, the instruction word speci­
fies the length of shift, so that the operation of this circuit is then analogous 
to the Align and Right Shift section. This circuit also employs a 7-bit adder 
to update the exponent for normalizing processes. The following paragraphs de­
scribe the major functional blocks of the Normalize section. 

4-156 INPUT SELECT 

The Normalize section has two input select circuits. The first circuit deter­
mines which input will be entered into the normalize logic to designate the 
length of shift required to normalize the input. Control bits from the MBU ROM 
control the selection of the input word. The output of this select circuit is 
divided into two parts: the exponent and the mantissa. 

The second select circuit determines the input to the shifter. The input may be 
the mantissa output from the first select circuit during a normalize operation. 
In this case a 4-bit guard digit is also added to the mantissa to avoid loss of 
data. During a fixed point left shift, the output from the input section is 
selected to the shifter. For these instructions, the AB operand is the number 
to be shifted and the CD operand contains the shift parameters. 

The guard digit added in the second select circuit consists of the four least 
significant bits and is used to avoid the loss of one hexadecimal digit of 
accuracy resulting from truncation prior to double length addition or subtrac­
tion. Four bits are sufficient, since the only times normalization may produce 
a loss of accuracy, it requires a shift of only one hexadecimal digit. Normal­
ized operands are required for the guard digit to be of maximum use. For ex­
ample, when multiplying two normalized operands, the fractions will be between 
2-4 and 2-l. The result will be between ?.-8 and 2-2. Therefore, the result 
will always require no more than one 4-bit shift to normalize the fraction 
to between 2-4 and 2-l. During an addition, if the exponents are equal, no 
alignment is required. Therefore, the guard digit is not necessary. If the ex­
ponents differ by one, the guard digit will retain significant information. 
Finally, if the exponents differ by more than one. it can be shown that the re­
sult to be normalized will require no more than one hexadecimal shift. Thus, 
the guard digit contains information that can be retrieved. 

4-157 MOST SIGNIFICANT 1 SEARCH 

This logic searches the incoming 56-bit mantissa, beginning with the most 
significant hexadecimal digit, for the first 1 bit in the number. While search­
ing, it totals the number of hex digits that have been checked until the 1 bit 
is found. This total defines the number of left hex shifts required to normal­
ize the number. From this total the circuit enables one of 16 hex shift gates 
in the Hex Shift Network to perform the hex shift for normalization. In order 
to adjust the exponent to fit the normalized mantissa, the shift count is fed 
to the Left Shift Code Register, where the count is added to the exponent. 

4-158 LEFT SHIFT CODE REGISTER 

This register is 5-bit holding register that stabilizes the shift code deter­
mined by the Significant l Search circuit and inputs that code into the ex-

4-57 Advanced Scientific Computer 



~------
ponent adder. The five bits in this register correspond to the five most 
significant bits of the exponent. The output from this register is also used 
during shift instructions to determine if the requested shift produces an over­
flow. 

4-159 EXPONENT ADDER 

The Exponent Adder is a 7-bit adder that receives the exponent portion of the 
data to be normalized and adds the hex shift count to it. The result repre­
sents the adjusted exponent that corresponds to the shifted mantissa. An ad­
ditional flip-flop parallel to the adder holds the sign bit during the addition, 
so that the sign bit remains unmodified. 

4-160 LEFT SHIFT HEX DECODE 

During a Left Shift instruction, the CD operand from the AU Input section speci­
fies the parameters of the left shift. This circuit receives the 7-bit shift 
count from that operand and enables one of 16 possible hex shift gates to the 
Hex Shift Network after decoding the incoming shift count to determine which 
shift gate to activate. The shift count parameter input to this circuit is also 
used to detect a possible overflow in the shift network. 

4-161 HEX SHIFT NETWORK/BIT SHIFT NETWORK 

Both shift networks are electrically integrated, but functionally separate. 
That is, although both shift networks employ the same type of circuitry and 
funnel through the same gates into the NORM Register, the hex shift must be per­
formed before the bit shift. Refer to figure 4-15 for a simplified representa­
tion of the shift circuitry for one bit of the operand. 

An incoming operand to be left shifted, whether for normalization or for bit 
shifting, must first pass through the hex shift network. One of 16 hex shift 
gates, turned on by the Significant 1 Search or the Left Shift Hex Decode cir­
cuit, enables an input gate to each bit of the NORM Register corresponding to 
the number of hexadecimal digits involved in the shift. For normalization, 
processes, except bit normalization, the process is then complete. The output 
of the NORM Register is available to the circuit requiring normalized data. 

During a left shift or bit normalization, the output of the NORM Register is fed 
back through a four-gate input to the NORM Register. One of four select signals 
enables one of the four input gates for each bit of the operand, resulting in 
a shift of zero to three bits to the left. The bit shifted operand is then 
available to other AU levels from the output of the NORM Register. 

4-162 NORMALIZED OUTPUT REGISTER (NORM) 

NORM is a 64-bit register that receives the results of the normalizer shift 
networks and holds them for output to the other levels of the AU, or to the 
bit shift network in the Normalize section. Inputs enter directly from the 
shift gates without enabling pulses·, so that when an operand passes through the 
shift gates, it immediately enters the NORM Register. During floating point 
normalize operations, eight input bits (one sign bit plus seven exponent bits) 
from the Exponent Adder fill-in the exponent portion of the floating point data 
word in the NORM Register. The mantissa portion of the data word (56-bits) 

4-58 Advanced Scientific Computer 



SELECT HEX SHIFT 1 

BIT 20 

SELECT HEX SHIFT 2 

BIT 24 

SELECT HEX SHIFT 3 

BIT 28 

SELECT HEX SHIFT 4 

BIT 32 

SELECT HEX SHIFT 5 

BIT 36 

SELECT HEX SHIFT 6 

BIT 40 

SELECT HEX SHIFT 7 

BIT 44 

SELECT HEX SHIFT 8 

BIT 48 

SELECT HEX SHIFT 9 

BIT 52 

SELECT HEX SHIFT 1 0 

BIT 56 

SELECT HEX SHIFT 1 1 

BIT 60 

SELECT HEX SHIFT I 2 

BIT 0 

SELECT HEX SHIFT 13 

BIT 4 

SELECT HEX SHIFT 14 

BIT 8 

SELECT HEX SHIFT 15 

BIT 12 

SELECT HEX SHIFT 16 

BIT 16 

SELECT BIT SHIFT 0 

HEX SHIFTED BIT 16 

SELECT BIT SHIFT I 

HEX SHIFTED BIT 17 

SE ECT BIT SHIFT 2 

HEX SHIFTED BIT I 8 

SELECT BIT SHIFT 3 

HEX SHIFTED BIT 19 

117985 

-1 

I 
I 
I 
I 
I 

_J 

NORM 
REGISTER 

BIT 16 

I---.-- SHI FTli:D OUTPUT 

BIT SHIFT 
NETWORK 

Hli:X SHIFTED 
BIT 16 
TO BIT SHIFTS 
12-15 

Figure 4-15. Simplified Left Shift (Normalize) Network (Bit 16 of Operand) 

4-59 Advanced Scientific Computer 



passes through the Hex Shift Network before entering the NORM Register. During 
left shift operations, the entire 64-bit word for the NORM Register enters 
from the Hex Shift Network, or from the Bit Shift Network following the second 
pass. 

4~163 LEFT SHIFT BIT DECODE 

Bit Decode receives the two least significant bits of the CD Operand Register 
and generates one of four input gating signals to the bit shift network. The 
input gating signals result in enabling a left shift of between zero and three 
bits. By combining the 4-bit shift with a hex shift from zero to 16 hexadeci­
mal digits, any magnitude of left shift may be performed from zero to 63 bits. 

4-164 BIT SHIFT MAGNITUDE DETERMINATION 

During bit normalization, the Normalize section must determine the magnitude of 
the bit shift. To accomplish this function, a magnitude determination inspects 
the most significant hexadecimal digit of the hex shifted operand to locate the 
most significant 1 bit in that hex digit. By counting the number of zeroes pre­
ceding that 1 bit, this circuit determines the magnitude of left shift required 
to bit normalize the number. This circuit then generates one of four input gate 
signals to the Bit Shift Network to produce the required bit shift. 

4-165 BIT SHIFT ENCODE AND REGISTER 

This circuit monitors the most significant hexadecimal digit of the NORM Register 
during a left shift operation and produces a 2-bit code that indicates the number 
of bit shifts that can be performed on that number before an overflow will occur. 
The 2-bit code indicates a shift from O to 3 digits to the left, depending upon 
the position of the most significant one bit in the hexadecimal digit. A 2-bit 
register in this circuit holds the shift code for input to the Overflow Check 
circuit. 

4-166 OVERFLOW CHECK 

This circuit determines if an overflow of significant data occurs during a left 
shift instruction. By the nature of a normalize operation, no overflow can oc­
cur during that process. The seven bits of the CD operand that indicate the 
magnitude of the left shift enter this circuit at the beginning of the operation. 
Control signals then route the AB Operand through the Significant 1 Search net­
work in addition to transferring it to the Hex Shift Network. The Search circuit 
creates a 5-bit code that indicates the maximum possible hex shift before data · 
will be lost due to an overflow. This function is identical to determining the 
hex shift required for normalization. Overflow Check compares this code with 
the requested hex shift in the CD Operand. If the requested shift is greater 
than the maximum shift, the Overflow Flag sets. If a bit shift is to be performed, 
the Bit Shift Encode and Register circuit supplies a 2-bit code that specifies 
the maximum bit shift allowable before an overflow will occur. Overflow Check 
compares this code against the requested bit shift and sets the Overflow Flag 
if the requested shift is greater t~an the allowable shift. In any case, perfor­
mance of the shift is not interrupted. An Arithmetic Exception cell in the Out­
put section of the AU informs the IPU of the error. 

4-60 Advanced Scientific Computer 



~------
4-167 MULTIPLIER SECTION 

The Multiplier section of the AU performs both multiplication and division on 
32-bit operands for the ASC Central Processor. Doubleword operands are pro­
cessed as two single words; the results are then combined to form the double­
word result. Division is performed as a series of reciprocal multiplications. 
The following paragraphs describe the functional blocks that perform the multi­
plication. Following the block diagram descripton are two sections that discuss 
the theory of the multiplication and division processes in this section. 

4-168 DIVIDEND REGISTER 

The Dividend Register is a 64-bit register that holds the number to be divided 
during division. One of two inputs may supply the dividend to this register. 
The Normalizer section output supplies initial input for all division operations. 
The Accumulator input allows for loading the result of one multiply or divide 
immediately into the dividend register to start a new iteration. 

4-169 DIVISOR REGISTER 

The Divisor Register is a 64-bit register that holds the number to divide into 
the dividend. One of two inputs supply operands to this register: the normal­
izer section of the AU supplies normalized floating point inputs, while the 
Accumulator section supplies results from a previous multiplication or divide 
for starting a new iteration of the division process. 

4-170 P-TERM LOGIC 

The P-Term Logic uses the seven most significant bits of the divisor as an ad­
dress to access a table location within the logic. The table contains 5-bit num­
bers that are approximations of the reciprocal of the input address. Therefore, 
each input of seven bits from the Divisor Register results in placing five bits 
into the Modifier Register that are an approximation of the reciprocal of the 
divisor. This reciprocal is accurate to five bits so that the maximum estima­
tion error is less than or equal to 0.000012. The estimation error is eliminated 
in significance through several iterations in the division operation. The 5-bit 
P-term enters the five most significant bits of the Modifier Register; the re­
maining bits of the register are zeroes. 

4-171 MODIFIER REGISTER 

The Modifier Register is a 64-bit holding register for input to the Recode cir­
cuit during a division. At the start of a divide, the 5-bit approximate re­
ciprocal of the divisor enters the Modifier Register in the five most signifi­
cant bits. The multiplier multiplies the divisor and then the dividend by the 
fraction in the Modifier Register as the first steps in the production of a 
quotient. The Modifier Register also stores intermediate multiplication terms 
throughout the division process. , 

4-61 Advanced Scientific Computer 



~------
4-172 MULTIPLICAND/MULTIPLIER SELECT 

The Multiplicand/Multiplier Select circuits provide 32-bit inputs to the Fan­
out and Recode circuits, respectively, during both multiply and divide opera­
tions. During multiplication, the AB operand input to the Multiplier Select 
and the CD Operand input to the Multiplicand Select circuits are enabled. These 
are, however, 64-bit inputs. Control signals from the AU Control ROM direct 
these circuits to enable either the most or the least significant half of the 
64-bit input for output.to their respective circuits. 

During division, th~ee inputs are available to the fanout circuit, depending 
upon the stage of the division process that has been reached. Refer to the dis­
cussion of the division process in the Multiplier circuit for the particular gating 
sequence. Three inputs are also available to the Recode circuit during a divide: 
two through the Modifier Register and one directly from the complemented output 
of the Accumulator Register. The gating of these signals is also discussed in 
the division process explanation. 

4-173 RECODE 

The Recode circuits inspect the incoming 32-bit multiplier word in three bit 
segments, as illustrated in figure 4-16. Sixteen separate recode circuits 
(&J - R15) are required for a single word multiply; an additional circuit 
(Rav) is used to generate a fraction summand during a division. Rav checks 
the most significant bit of the multiplier. If it is a one it copies the 
multiplicand into the DV summand; if it is a zero, it complements the multi­
plicand and enters it into the DV summand. Each of the other recode circuits 
operates on its respective bits identically to the other decode circuits to 
activate one or none of four control lines to the Form Summand circuit. In 
general form, Recode circuit RN monitors the 3-bit segment XYZ of the incoming 
multiplier word (Y is an even power of 2). The equivalent equations in table 
4-5 define the states of X, Y and Z that produce each of four output control 
signals and the void state of no output control signals. 

4-174 FANOUT 

The Fanout circuit receives the 32-bit Multiplicand word from the Multiplicand 
Select circuit and duplicates it 16 times. The output from this circuit sup­
plies 16 identical 32-bit words to the Summand Formation circuit to be used in 

O I 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 

Rz 

RN - RECODE CIRCUIT N 

INSERT 
ZERO 

Figure 4-16. Multiplier Word Recode Bit Assignments 

4-62 Advanced Scientific Computer 



~------
Table 4-5. Recode Output Control Signal Definitions 

Signal Equation I Control Function 

Void 

{all signals 
are zero) 

= 
= 

= 

= 

= 

X {Y (f) Z) 

Copy Multiplicand into Summand N 

Left shift Multiplicand by one 
bit and enter shifted word into 
Summand N 

Enter the two's complement of 
the Multiplicand into Summand N 

Form the two's complement of 
the Multiplier, left shift the 
complement by one bit, and enter 
the result into Summand N.* 

Load zeroes into Summand N. 

*Refer to Summand circuit description for a refinement of the complement pro­
cess. 

creating the first 16 summands for input to the Adder Tree. Each of these words 
is a copy of the Multiplicand. During division, a 17th fanout is produced to 
generate the division summand in the Form Summands circuit. 

4-175 FORM SUMMANDS 

This circuit receives the Multiplicand words from the fanout circuit and manip­
ulates each word, as directed by the recode bits before placing the words into 
their respective adder tree inputs. Figure 4-17 illustrates the arrangement of 
the 18 possible summands in a figurative addition array. The summand circuits 
are gating devices and contain no registers for the individual summands. 

4-176 OVERFLOW SALVAGE. During a left shift, a one bit from the data word may 
be shifted out of the summand. To avoid losing this bit, an extra bit position 
preceding each data word catches the shifted bit. This bit is not, however, 
added in the Adder Tree. It is significant only in its use to fill the Sign 
Extension summand, so that a shift will not change the effective sign of any 
summand. 

4-177 SIGN EXTENSION SUMMAND. To avoid the requirement of extensive hardware 
to add sign extension bits of the summands, a single Sign Extension Sunrnand rep­
resents the sum of all sign extension bits. Certain bits in the Summand are 

4-63 Advanced Scientific Computer 



SUMMAND 

SUMMAND 14 

SUMMAND 13 

SUMMAND 1 2 

SUMMAND 11 
r 

SUMMAND I 0 I ,.. 
I 

SUMMAND 9 ' r 

SUMMAND B : ,.. 
' 

SUMMAND 7 I 
r 
I 

SU MMANO 6 I 
r 

' 

I 5 

r 
I 
I 

r 
' ' r 

I 
I 

OVERFLOW SALVAGE BITS (DOTTED BOXES) 

~ADD' on •D• >OG" <XO<->OD" 

:1 
' 
I 

I 
_I 

I 
J 

I 
J 

I 
I 

J 
I 
I 

SUMM AND 5 ' J 
r I 

4 ' I 
J SUMMAND 

r 
' I 

SUMMAND 3 I J 
r 

SUMMAND 2 : I _, 
r ' I I 

SUMMAND 

SUMMAND 0 

I J :- I 
I J 

DIVISION (DV) SUMMAND [ I 
J 

SIGN EXTENSION (SE) SUMMAND 
I I 1 1 I I 1 I I 1 I 1 I I I 

t t t t t t t t t t t t t t t t 
0 2 3 4 5 6 71 B 9 I 0 11 1 2 13 14 I 5 

ENTER COMPLEMENT OF MSB 
(INCLUDING AN OVERFLOW BIT IF GENERATED) 
FROM SUMMAND INTO SE SUMMAND BLANK BITS 

(A) I I 7986 

Figure 4-17. Summand Array 

111 
]~ 

I 

J 
I 
I 

J 
I 
I 

·' I 
I , 

~RRY IN BITS 
OTTEO BOXES) 



~------
fixed at a one value; the remaining bits are governed by the complement of the 
most significant bit of the modified multiplicand in each preceding Summand. 
The sign bit will be in the overflow salvage bit if a shift occurred. Other­
wise, it will be the MSB of each summand. An additional one bit, added to the 
least significant bit of the SE Summand, completes the sign extension total. 
This bit occupies the overflow salvage bit of summand 15. Refer to paragraphs 
4-185 through 4-187 for further explanation of the sign extension algorithm. 

4-178 DIVISION SUMMAND. During a divide operation a 17th multiplicand enters 
from the fanout circuit and is acted upon by the Division Recode bits (RDv) to 
form the Division Summand. RDV can specify only a load multiplicand (RDvPl) or 
a load complemented multiplicand (RDvMl). Addition of the Division Summand to 
the summand addition produces a multiplication by an unsigned fraction rather 
than a signed whole number. 

4-179 TWO'S COMPLEMENT. To perform a two's complement, the Summand circuit 
forms the one's complement (invert each bit) of the word and adds one to the 
least significant bit. The mechanics of the operation are slightly different 
for each of the two complementing operations. The RNMl recode bit (enter two:•s 
complement) enters the one's complement of the 31 most significant bits and the 
true value of bit 31 into the proper Summand. If bit 31 is a zero, a carry would 
have been generated by the addition of one to bit 31. The circuit then enters a 
11 carry-in 11 one bit into the bit 32 position of the next Summand. This results 
in adding that bit to bit 30 of the first summand when the Adder Tree forms the 
Pseudo-Sum and Pseudo-Carry. 

The RNM2 recode bit (enter two's complement and left shift) actually loads the 
one's complement into the proper Summand and shifts it left one bit. To com­
plete the two's complement, it loads a one bit into the 11 carry-in 11 bit of the 
next Summand so that when the Adder Tree adds that column, the carry-in bit will 
be added to the shifted LSB of the multiplicand. 

4-180 ADDER TREE 

The Multiplier Adder Tree is an 18-input adder circuit that receives the 32-bit 
Summand words from the Form Summands circuit and produces two 64-bit results: 
a pseudo-sum and a pseudo-carry. Figure 4-18 provides a simplified circuit dia­
gram of the Adder Tree for one bit of the addition process. The inputs rep­
resent a 1-bit vertical slice from the Summand array. There will be a similar 
circuit for each vertical column in the array, except that most will not be as 
extensive as the sample circuit due to a fewer number of elements in the column. 
The output from this adder in the form of two 64-bit words is not in itself mean­
ingful. These two data words must be totaled in the Accumulator section of the 
AU to form the final product or quotient. 

4-181 PSEUDO-SUM (PS} REGISTER 

PS is a 64-bit register that receives one of the resultant words from the Adder 
Tree during any operation that passes through the Multiplier section. The out­
put from this register always goes to the Accumulator section of the AU to be 
added to the output from the PC Register. 

4-65 Advanced Scientific Computer 



1A 18 

C01A C018 
Cl1A 

1C 

C01C Cl 18 Cl1C 

1 D 

Cl1 D 

C01D 

C04A 

NOTE: 

1 • CO - CARRY OUT TO NEXT 
HIGHER BIT 

2. Cl - CARRY IN FROM NEXT 
LOWER BIT 

118046 

Figure 4-18. 

SUMMAND INPUTS 

2A 28 3A 3C 

Cl3A 

C02A C12A 
C028 C03A C038 

S3A 538 

2C 3C 

Cl38 

C02C Cl28 Cl2C C03C Cl3C 

S1C S3C 

20 30 

Cl 30 
S1D Cl2D SZD C03D 530 

48 

S4A Cl4A S4B 

C048 

4C 

Cl4C 

S4C 

40 

PC PS 

Simplified Adder Tree Block Diagram 

4-66 Advanced Scientific Computer 



4-182 PSEUDO-CARRY (PC) REGISTER 

PC is a 64-bit register that receives one of the resultant words from the Adder 
Tree during a multiply or divide operation. The output from this register al­
ways goes to the Accumulator section of the AU to be added to the output from the 
PS Register. 

4-183 MULTIPLICATION THEORY 

The AU Multiplier section multiplies two 32-bit operands to form two 64-bit 
partial results that are added to provide a final 64-bit product in the 
Accumulator section. Each 32-bit operand may be represented in the form: 

2nan + 2n-lan-l + 2n-2an-2 + ... + 22a2 + 2al + ao 

or in summation notation (for a 32-bit operand): 

31 

L 
n=O 

Where a can be either a one or a zero bit coefficient, and n indicates the 
power of 2 position of that bit. The product of this operand and another 32-bit 
operand, B, is represented as: 

31 

L 
n=O 

One classical computer multiplication process performs this operation through 
a series of additions and register shifts. This process, for 32-bit operands, 
would require 32 add/shift cycles, or 32 partial Summands, depending on the 
desirability of execution time versus hardware bulk. The AU improves these ex­
tremes through the use of a recoding algorithm that reduces the number of Sum­
mands required for a high-speed multiply. 

4-184 ALGORITHM DERIVATION 

An equivalent binary expansion form of the multiplier is: 

22n+la + 22na + 22n-la + ... + 22a + 2 + 
2n+l 2n 2n-l 2 al ao 

This representation is equivalent to the first notation, but has the advantage 
of differentiating between odd and even terms. The summation can, therefore, 
be written defining half as many index values for n: 

15 
"'""' 2n+l 2n 
L..J 2 a2n+l + 2 a2n 
n=O 

4-67 Advanced Scientific Computer 



By multiplying each odd term of the expansion by an equivalent of one, (2 - 1), 
a more useful expression evolves: 

( 2 1 ) 2n+ 1 2n 2n 1 
- 2 a2n+l + 2 a2n + (2 - 1) 2 - a2n-1 + ... 

2 + 2 a2 + (2 - 1) 2a1 + a0 

or, through simplification and replacement of each 2(22n+l) with 22n+2, 

22n+2 22n+l 22n( ) 22n-l 
a2n+l - a2n+l + a2n + a2n-1 - a2n-1 + ··· 

which can be written in sumnation form as (for a 32-bit operand): 

15 
232 + """"" 22n+l + 22n + 22n 

a31 L..J - a2n+l a2n a2n-l n=O 

The term 232a31 preceding the summation is actually a repetition of the sign bit, 
a31• or a sign extension term that overflows the modulus of the multiplier. 
This term is, therefore, discarded to produce the expression 

15 
""""" 22n+l 2n 2n 
L..J - a2n+l + 2 a2n + 2 a2n-1 
n=O 

that is the equivalent of the binary expansion for the 32-bit operand. Multipli­
cation of the multiplicand by this representation of the multiplier requires only 
16 summands (terms) instead of 32 for the normal expansion. An inspection of the 
multiplication using this term demonstrates the algorithm used in the AU multi­
plier. 

To multiply multiplicand B by the multiplier A in the new format, each bit posi­
tion of B is multiplied by the term 

22n+l 22n 2n 
- a2n+l + a2n + 2 a2n-l 

to form the 16 Summands, one for each value of n,needed to form the product. If 
B is represented by the expression 

4-68 Advanced Scientific Computer 



4P------
then each bit of the nth Summand will be determined as follows: 

or, 

Bit k of B = 2kb 
k 

times nth tenn of A = -22n+ 1 a 2n+l + 22na 
2n 

2n 
+ 2 a2n-l 

th 
22n+k bit = -a2n+lbk22n+k+l + a b 22n+k + a b 22n+k 

2n k - 2n-l k 

) 2n+k Which can be simplified to: (-2a2n+l + a2n + a2n-l bk2 

This expression indicates that the Nth Summand can be determined by multiplying 
each bk (k from 0-31) bv the constant inside parentheses and placing the re­
sulting bits in the 22nTk bit position. The constant is determined by inspecting 
the even term (a20 ) and its neighboring odd terms (a2n-l' a2n+l) of the multiplier 
with respect to the relation: constant= -2a2 +l +a2 +a2n-l· The Recode circuit 
of the AU Multiplier performs this inspection ~o yieT9 the results outlined in 
table 4-6. 

Table 4-6. Recode Circuit Data Analysis 

Incoming Bits Resulting Required Action to perform 
a2n+l' a2n' a2n-l Constant ( C) multiplication (C)*(bk) 

000, or 111 0 Fill Summand with zeroes. 

110, or 101 -1 Perform two's complement of B 
and enter into Summand. 

010, or 001 +l Copy each bk into corresponding 
bit positions of Summand. 

011 +2 Left shift the B operand one bit 
and enter into Summand. 

100 -2 Complement B, left shift it one 
bit, and enter result into Sum-
mand. 

4-185 AU DIVISION THEORY 

The Multiplier section performs division by multiplying the dividend by the re­
ciprocal of the divisor. That is, the division Y + X is performed as the 
equivalent multiplication: 

1 /X • Y. 

4-69 Advanced Scientific Computer 



Both X and Y are the mantissa portion of normalized floating point numbers .. 
The Exponent Subtract section processes the exponent portion of the data. This 
division process, however, requires finding the reciprocal of X. 

The AU approximates this reciprocal by providing a table of reciprocals (P-Term 
Logic) that is accurate to four binary places. This table, therefore, yields a 
reciprocal that is accurate within ±0.000012. For discussion, the Greek letter 
(A) represents the absolute value of this error. The reciprocal table provides 
a first approximation of the reciprocal of: 

l/X ±A 
to provide an approximation of the quotient (Q), through multiplication, of: 

Y/X = Q ~ Y(l/X ±A) 
Q~Q(l±XA). 

Since X is normalized, it is of the form: 
0.1---
0.01--
0.001-

or 
0.0001 

Therefore, the product (X A) can be no greater than A. For this worst case, 
as the error approaches A, the value of X in the product XA can be disregarded 
to yield an approximation of Q: 

Q~Q(l ±A). 
To reach a more acceptable value of Q, further refinement is necessary. By mul­
tiplying the approximate quotient by an approximation of one, this refinement 
is achieved. This operation produces: 

Q ~ Q ( 1 ± A) ( 1 =F A) = Q ( 1 - A2 ) . 
The error is reduced from ±A (4-bit accuracy) to -A2 (B-bit accuracy). 
Extending this process develops the following approximations: 

Q ~ Q ( l -J ) ( 1 + A2) = Q ( 1 - A 4) 

and 
Q ~ Q(l -~4 ) (1 +A 4) = Q(l - AB). 

This last step reduces the error to AB, (32-bit accuracy), which is not signi­
ficant for single word (32 bit) operands. Double length operands require an 
additional step: 

Q ~ Q(l -AB) (1 +AB) = Q(l - A16) 
to provide a value of Q that is accurate to 64 bits, or. 2-65 . 

Figure 4-19 illustrates the paths utilized by the AU to accomplish the division 
process. The vertical sequence on the left of the figure derives the multipliers 
for each step of the refinement process; the right column produces the approxima­
tions of Q. Notice that both the Accumulator and the Multiplier sections of the 
AU are in continuous use until a solution produced, each one being used alter­
nately by one of the two derivation cycles. 

4-70 Advanced Scientific Computer 



·~------
DIVISOR (X) ( I±~) P-TERM :-"X 

(PSEUDO 
SUM) 

Q(l-~16) 
DOUBLE LENG™ -

QUOTIENT 

117987 

(MODIFIER 
REGISTER) 

(PSEUl)O 
CARRY) 

DIVIDEND (Y) 

(DIVIDEND . 
REGISTER) 

- Q(l:t:CI.) 

0 =-MULTIPLICATION 

r:-, _ ADDITION IN 
L.:...J - ACCUMULATOR 

Q =- Y/X 

~ =11x- p 

MAGNITUDE OF 
DEVIATION 

- 011~8) 
S NGLE LENGTH 
QUOTIENT 

Figure 4-19. CP Hardware Utilization-Division Process 

4-71 Advanced Scientific Computer 



~------
4-186 SIGN EXTENSION ALGORITHM 

The sign extension algorithm allows the replacement of 272 Summands and their 
associated adder tree logic with a single 32-bit Summand that uses existing in­
puts to the adder tree. The algorithm determines the sum of all sign extension 
bits by inspecting the most significant bit (or overflow bit if the summand was 
shifted) of each summand. The resulting sum of the sign extension bits is de­
termined by complementing the most significant bit, including overflow, of Sum­
mand 15 and placing the result in the least significant bit of the SE Summand. 
The complemented MSB's of the remaining summands enter every other bit of the 
SE Summand in sequence, while one bits fill the intervening bit positions of the 
SE Summand. Finally, an additional one bit is added to the LSB of the SE Sum­
mand to complete the process (this bit actually occupies the "overflow salvage" 
bit position of Summand 15). 

4-187 TWO'S COMPLEMENT FORMATION 

Before discussing the derivation of the sign extension algorithm, two methods 
of forming the two's complement of a binary number must be reviewed. The first 
method forms the two's complement of a number by starting with the LSB of the 
number and copying all bits of the number up to and including the first one 
bit. After that point, all bits of the number are inverted. That is, copy the 
LSB. If that bit is a one, complement the remaining bits of the number. If it 
is a zero, copy the next bit, inspecting it in a like manner. 

The second method of two's complementing forms the two's complement by creating 
the one's complement of each bit of the number and then adding one to the LSB 
of the complemented number and performing any carry addition that may be re­
quired. 

4-188 ALGORITHM DERIVATION 

NOTE 
The following derivation considers only a three-entry 
sign extension. Expansion of this explanation to a 
16-entry extension as employed in the AU is valid, but 
for simplicity of presentation is not covered in this 
discussion. · 

Consider the sign extension bits from Summands 0, 1 and 2. Using letters to rep­
resent these bits, they would appear in the Summand array as: 

CCCCCC---­
BBBB------
AA--------

Total = abcdef 

By inspection of the addition and application of Boolean logical functions, the 
sum of the sign extension bits (abcdef) can be expressed in terms of the sign 
extension bits A, B, and C: 

4-72 Advanced Scientific Computer 



f = c 
e = C 
d=BE9C* 
c = B + C 
b = A (f) (B + C) 
a = A + B + C 

( (f) is the symbol for exclusive OR). 
This expression does not define a process for directly_determining the sum. To 
further simplify this expression, the relation, A= (A), will be used. That is, 
a number is always equal to the complement of the complement of that number. 

Forming the two's complement of abcdef, using the first method outlined above, 
produces a new number, UVWXYZ, whose individual bits are defined as follows: 

z = f 

y = ef + ef 
= e EE> f 

X = d(e + f) + d(e + f) 
= d EE> (e + f) 

w = c(e + f + d) + c(d + e + f) 
= c (f) ( d + e + f) 

V = b e (c + d + e + f) 

U = a (f) (b + c + d + e + f) 

(copy first bit) 

(if f = l, complement e, if not, then 
copy e) 

(complement d if any preceding bit is a 
one; otherwise, copy d) 

(similar to d) 

(similar to d) 

(similar to d) 

*d = l if B or C is a one, but not if both are ones. If B and C are ones, d = O 
and a ~arry is generated to the next bit, c. 

Similarly, 
c = l if B or C is a one, or if both are a one. If both are ones, however, 

the sum includes a carry from bit d, and in turn generates a carry to 
bit b. 

4-73 Advanced Scientific Computer 



Substituting the equivalent forms of abcdef into the definitions for UVWXYZ 
yields the following relationships: 

z = c 
Y=C © C=O 

x = (B e C) E9 (C + C) = {B e C) e C = B 

w = (B + C) (f) [(B e C) + CJ = (B + C) © (B + C) = 0 

v = [A e (B + C)] e [(B + C) + (B + C)] 
= [A E9 (B + C)] E9 (B + C) = A 

U = (A + B + C) E0 {[A e (B + C)] + (B + C)i 
= (A + B + C) E9 (A + B + C) = 0 

These expressions indicate that the two's complement of the sum of the sign 
extension bits may be represented as: 

OAOBOC 

Forming the two's complement of this representation (using the second method 
explained above) returns to an equivalent expression of the sum of the sign 
extension bits: 

lAlBlC 
+ 1 

This expression defines the algorithm used to fill the Sign Extension Summand 
in the Summand array. Extending the SE Summand expression to 32-bits expands 
it to the right by adding bits of alternate ones and complemented sign exten­
sion bits. The additional one bit is always added to the least significant bit 
of the sum. 

4-189 AU UNIT HARD CORE 

Unit Hard Core performs context switches, power down sequences, and other main­
tenance functions, as instructed by the CP Master Hard Core. Refer to the 
maintenance command discussion for further information about AU hard core. 
Refer to Appendix C of this manual for map diagrams of the AU details words. 

4-190 CONTROLLER DESCRIPTIONS AND FLOWCHARTS 

The following pages contain information concerning the control circuits within 
the ASC Central Processor. Each control circuit is represented by a flowchart 
that outlines the decision paths within the controller. Text accompanying the 
flowcharts explains these paths in relation to the functions performed and 
signals generated by the controller. 

4-74 Advanced Scientific Computer 



~------
IPU control can be viewed as shown in figure 4-20. The control of each level 
of the pipeline through the IPU is treated independently in the flowcharts 
that accompany each control circuit description. Each level controller serves 
three primary functions: data selection, register gating, and generation of 
the 11 path ahead clear 11 (PAC) function for that level. The data selection and 
manipulation required between one level and the next does not affect the pro­
gress of an instruction from one level to the next. The control circuits de­
termine when data is gated into the next level. 

In general, the flowcharts for level 0 control through level 4 control indi­
cate the following actions: 

l. The gating of data into the succeeding level is usually indicated 
by the statement 11 LVLn -LVLn+ 111 , and is accompanied by setting 
the activity bit at level n+l, 11 1--An+l 11. In general, this action 
occurs if the path ahead is clear into level n+l, level n is ac­
tive, and hazards do not exist. 

2. The progression of inactivity to a succeeding level is usually in­
dicated by resetting the activity bit at level n+l 11 0-An+l 11 • 

In general, this action occurs if the path ahead is clear into 
level n+l, but level n is inactive or a hazard exists. 

3. The communication between a given controller and other controllers 
is indicated by output statements; for example, "PACn"· This 
statement normally occurs if level n is inactive or if level n is 
active and is passing its data to level n+l. 

4. Changing the primary control cells at a given level constitutes a 
state change at that level. Each state is enclosed with a dotted 
line on the flowcharts. State changes, then, are indicated by the 
progression through the flowchart from one enclosed area to an­
other. These state changes normally occur when the subsequent ac­
tions at a given level are dependent on current conditions at that 
1 evel. 

5. State changes at a given level are sometimes accomplished by manip­
ulation of secondary control cells. These cells are referred to as 
flags or counters. Changes in these flags are indicated by state­
ments such as 11 1--:;;. HOLD FLAG", or "DEC COMP CTR.• 

4-191 INSTRUCTION FLOW 

The data residing at a given level of the IPU is usually an instruction in a 
partially decoded and developed condition. This data usually passes from one 
level to the next, never occupying more than one level at any given time. For 
such cases, the flowchart for each pipe level can easily be studied indepen­
dently. There are, however, several situations for which the levels in the 
IPU do not operate independently. The following paragraphs supply an overview 
of the IPU objectives in order to more easily understand the flowcharts for 
these situations. 

4-75 Advanced Scientific Computer 



FROM 
CM 

~ 
.. 

• MEMORY 
REQUESTOR --

INST 
BUFFERS 

DATA ADDRESS - LVLO REGISTERS - SELECTION CONTROL AND ADDRESS 
CONTROL 

" 
LVL1 

GATES J ~ II -INST REGISTERS - PAC! 

I 

DATA LVLt - CONT.ROL HARDCORE 

SELECTION CONTROL 

•t 

.. GATES J II PAC2 4~ 
PRE INDEX REGISTER -LVL2 

- DATA LVL2 - CONTROL 
SELECTION ,, 
- GATES J ·~ PAC3 EXECUTION REGISTER -LVL3 

-- DATA LVL3 

- SELECTION 
CONTROL 

' 
GATES J ~ PAC4 OUTPUT REGISTER --LVL4 

LVL4 
'CONTROL 

I 

TO MBU 

I 

{A)f 24698 

Figure 4-20. IPU Control 

4-76 Advanced Scientific Computer 



~------
4-192 INDIRECT ADDRESSING. As an indirect instruction proceeds through the 
IPU, it reserves the level 1 through level 3. Thus, when an indirect instruc­
tion reaches level 3, levels l and 2 are inactive. Level 3 control makes a 
request for the indirect cell via the IPU memory bus and then becomes inactive. 
When the indirect cell is available, it enters level 1, proceeds through 
level 2, and finally replaces the address associated with the original in­
struction which still resides at level 3. When the indirect cell enters 
level 3, the activity bit at level 3 is set again, and the level 3 controller 
is again aware of the instruction. If the address is still indirect, then 
levels 1 and 2 were again reserved as the indirect cell passed·through. As 
the terminal indirect cell progresses through levels l and 2, these levels re­
vert to their usual condition, and take no further part in indirect cycling. 
Indirect addresses never advance down the pipe beyond level 3. 

4-193 EXECUTE INSTRUCTION. As an execute instruction (XEC) passes through 
the IPU to level 3 it reserves levels l and 2 of the pipe in a manner similar 
to an indirect instruction. Level 3 control makes a request for the object of 
the XEC, sets the XEC flag, and becomes inactive. When the object of the XEC 
instruction reaches level 3, all trace of the original instruction is gone ex­
cept that the XEC flag is set and the address register at level 3 contains the 
address of the XEC. The object instruction is performed as if it had been in 
the program string in the position of the XEC. The XEC flag alters skips, 
branches, and calls such that the program string is not altered. At the con­
clusion of the instruction the XEC flag is reset. 

4-194 SKIPS. Skips produce a SKIP signal from level 3. Each upstream level 
control observes pipe activity in the upper levels and the instruction to be 
skipped is inactivated if it is in the pipe. If it is not yet in the pipe, 
then this fact is recorded by the level 1 control. When the instruction does 
appear in level 1, it is discarded by the level 1 controller. 

4-195 BRANCHES. A branch instruction produces commands from level 3 to the 
upstream levels. Each upstream level inactivates those instructions which 
are in the pipe but which are not desired because of the branch. If the in­
struction to which the branch is taken is not in the pipe upstream from level 
3, then the branch address in level 3 is accepted by address control, and the 
pipe remains inactive through level 3 until the new instruction stream can be 
fetched and started down the pipe. 

Indirect branches reserve levels 1 and 2 of the pipe as do all indirect in­
structions. However, indirect cycling does not begin until and unless the 
branch test is satisfied. 

4-196 STORE FILE AND LOAD FILE INSTRUCTIONS. Store File and Load File in­
structions reserve level 2 as they pass down the pipe to level 3. This block 
at level 2 eliminates special and extensive hazard detection logic which would 
be required if an instruction were at level 2 during execution of file in­
structions at level 3. 

Memory requests required for execution of the file instructions are initiated 
by level 3 control via the IPU memory bus. Normal instruction flow resumes 
through level 2 after the file instruction. 

4-77 Advanced Scientific Computer 



4-197 PUSH, PULL INSTRUCTIONS. Push and Pull instructions reserve level 2 as 
they pass down the pipe to level 3. The Push or Pull instruction occupies 
level 3 while the address of the stack parameters advances to the MBU. The 
MBU fetches/and transfers them to the AU for modification and testing. When 
available from the AU, the stack pointer is accepted into level 2, advances to 
level 3, and proceeds down the pipe, appearing to be a load (Pull) or a store 
(Push). As the pointer moves into level 3, normal instruction flow into level 
2 resumes. 

If the AU test indicates termination should result, level 3 control terminates 
the operation and resumes normal instruction flow. If termination is not nec­
essary, then the address of the stack parameters advances to the MBU and the 
MBU stores the modified values. 

4-198 LOAD LOOK AHEAD CONTROLLER 

The Load Look Ahead controller produces gating and control signals required to 
load each address register in level 0 of the IPU, and the IR register in level 
1. The controller monitors the status of instructions octets in the IPU, and 
by loading the address registers at the proper time, ensures that instructions 
will be available to IR with the minimum possible delay. During normal in­
struction sequencing, the controller loads the address of the look ahead octet 
(the next sequential octet after the current octet) into OA, so that the IPU 
may fetch that octet from memory and place it into the look ahead buffer (KA 
or KB). If a branch enters the pipe that has been preceded by an LLA instruc­
tion, the controller fills the pipe following the branch instruction with in­
structions from the branch path. When the branch occurs, the instructions in 
the branch path will be immediately available. A branch that is not preceded 
by an LLA creates a delay by requiring a new memory fetch. The following 
paragraphs describe the operation of the Load Look Ahead controller with ref­
erence to the flowchart in figure 4-21. The paragraphs follow the same order 
as the logic flow through the chart, and explain the major decision paths that 
are possible within the controller. 

4-199 CONTROLLER TIMING 

The LLA controller is composed of combinational logic, and as such, has no tim­
ing chain, sequence of events, or formal states. All of the question blocks 
illustrated in the flowchart are examined simultaneously during each control 
cycle to enable only one path through the controller. When the control clock 
pulse occurs, all of the action blocks on the indicated path are executed si­
multaneously. This type of timing means that actions upstream from other de­
cision blocks in the flowchart do not affect the decision block. Also, since 
all actions occur simultaneously, all action statements refer to conditions at 
the start of the control cycle. 

4-200 START 

Before the LLA controller can check any of the status conditions, it ensures 
that the CP is not performing a maintenance command (hard core) and that the 
CP is not disabled (PC LOCK). If both of these conditions are satisfied, the 
controller is enabled to perform the remaining inspections. 

4-78 Advanced Scientific Computer 



START 

NO 

I 14299 A 

Figure 4-21. 

P3-BA 
AR-LC 
IC--LLAIC 
1-LLA 
O-FLAG4 
O-FLAG12 
o-FLGFUL 

BA-OA 
BA-LA 
BA-PA 
O-LAORD 
INSTR 

TOGGL 

ND 

YES 

AR-OA 

O-LAORD 

AR-LA 

AR-PA 

Load Look-Ahead Controller Flowcharts (Sheet 1 of 5) 

4-79 Advanced Scientific Computer 



~------

11 4300 

P3-0A 
P3-LA 
P3-PA 

1-NBRLLA 

0-LLA 
0-FLAG 12 
O+FLAG 4 
o-FLGFUL 

Figure 4-21. Load Look-Ahead Controller Flowcharts (Sheet 2 of 5) 

4-80 Advanced Scientific Computer 



TARGET 
IN PIPE 
NORMAL 
LOOK 
AHEAD 

LA+8-0A 
LA+8-LA 
INSTR 

I-MARK 7 
LOAD IR 

114301 A 

Figure 4-21. 

NO NO 

LA-PA 
LA+8-0A 
LA+8-LA 
TOGGL 
INSTR 

i.---f LOAD IR 

Load Look-Ahead Controller Flowcharts (Sheet 3 of 5) 

4-81 Advanced Scientific Computer 



~------
TARGET I LVLO 

YES 

TOGGL 

LAC 10 

NO 

LAC 8 

1I948!? ,A 

BA-.OA 
BA-.LA 
0-+LAORD 
INSTR 
ICTOGL2 

LAC 7 

BA-.PA 
PA+1-BA 
1-FLAG4 
LC-1-LC 
LOAD IR 
1-TARGT 
(AT LEVEL 1) 

NO 

Figure 4-21. Load Look-Ahead Controller Flowcharts (Sheet 4 of 5) 

4-82 Advanced Scientific Computer 



~------

TARGET 
IN IPU 

YES 

1-FLGFUL 

1 t9490A 

NO 

LA+B-OA 
LA+B-LA 
1-LAORD 
INSTR 

LA+B-OA 
LA+B-LA 
INSTR 

1----------.....11--------~ ~~"t~~RD 
t-FLAG t2 

LA-PA 
LC-1-LC 
TOGGL 
LOAD IR 

YES:OAiiSv 

NO 

LA+B-LA 
LA+B-OA 
1-LAORD 
INSTR 

Figure 4-21. Load Look~Ahead Controller Flowcharts (Sheet 5 of 5) 

4-83 Advanced Scientific Computer 



~------
4-201 LLA AT LEVEL 3 

If an LLA instruction is at level 3 (LLATBA}, the controller checks the count 
in the AR register. If the count is not less than or equal to 4, the indi­
cated branch instruction is not in the pipe. Therefore, the controller trans­
fers the LLA address from P3 to BA and the number of instructions between the 
LLA and the branch from AR to LC. It then sets the LLA in progress flag, 
clears the branch progress flags and loads the number of active levels into the 
the active level count register (LLAIC}. The control path returns to the main 
path whether or not. the counter is equal to 4. 

4-202 BRANCH TAKEN AT LEVEL 3 

If a branch has been taken at level 3, then any flags relative to branch posi­
tion are no longer valid. The controller clears these flags so that they will 
not create false indications during the control cycle. 

4-203 TARGET BRANCH FAILED 

If a targeted branch is skipped over or fails to branch when it reaches level 
3 (due to conditional requirements of the branch}, the controller must recover 
the original instruction stream since it has prepared the IPU for the branch 
path. To recover, the controller ensures that the Central Memory Requester 
(CMR} is ready to perform a memory fetch (RDACK}. If this condition is met, 
the controller transfers the recovery address from BA to OA, LA and PA, clears 
the LA ordered flag (LAORD} and initiates a memory request cycle (INSTR}. The 
recovery address is one greater than the address of the branch instruction. 
This address was transferred into BA when the branch instruction entered 
level 1 of the IPU. 

4-204 TARGET IN PIPE 

If no condition is present that will cause the contents of the pipe to be ne­
gated (branch to OA, LA or PA, instruction hazard, target branch fail, store 
file or load file} and the last instruction used was not the last instruction 
of an octet (not MARK 7}, the controller checks the condition of Flag 4 to de­
termine if a targeted branch .has entered the pipe (sheet 3}. If flag 4 is 
set, the look ahead octet has not been requested from memory (LAORD}, and CMR 
is ready to issue a read request to memory, the controller adds eight to the 
address in LA and transfers that new address to OA and LA. The controller 
then initiates a memory request cycle (INSTR} for the new octet and checks 
whether IR can accept a new instruction (PAENAB}. If IR is not ready, the 
controller sets the LA Ordered flag to indicate that the look ahead octet has 
been requested and returns to the beginning of the control cycle for the next 
clock pulse. If IR is ready and the next instruction from the current octet 
will be the last instruction in that octet, (PAEQ7), the controller sets 
MARK 7 to indicate that the current buffer has been used, and transfers the 
last instruction from the current buffer into IR before returning to the start 
of the control cycle. 

If IR is ready but the next instruction will not be the last in the current 
octet, the controller sets the LA Ordered flag, increments the address in PA 

4-84 Advanced Scientific Computer 



~------
and loads a new instruction into IR. If the LA Ordered flag was set when the 
controller entered this segment of the control cycle, the controller checks to 
see if the IR register can accept a new instruction. If IR is ready, the con­
troller increments the address in PA and loads IR if the last word transferred 
into IR was not the last word of an octet (not PAEQ7). If the last instruc­
tion is being taken from the octet, the controller adds eight to the address 
in LA and transfers that new address to the QA and LA registers. It then 
toggles the KA/KB output pointer to select the next octet, initiates a new 
memory request for the look ahead octet (INSTR), and moves the address previ­
ously in LA to PA in preparation for .the next instruction transfer to IR. 

4-205 TARGET ENTERING PIPE 

If Flag 4 is not set (the targeted branch is not in the pipe), the controller 
checks the look ahead counter together with the number of active levels at the 
start of the LLA to determine if the target is about to enter level l of the 
pipe (sheet 3). If the target branch is entering level l with the next con­
trol clock, and the IR register is ready to accept a new instruction (PAENAB), 
the controller checks the status of LLA addresses and flags (sheet 4). If the 
address of the current octet contained in PA is equal to the address of the 
branch path contained in BA, then the controller does not need to order a new 
octet to prepare for the branch. The controller determines if the look ahead 
octet has been ordered (LAORD) from memory. If LAORD is not set, the control­
ler transfers the address in BA to LA to ensure that the next octet ordered 
from memory will be the correct octet to continue the branch path. 

If PA is not equal to BA, the controller checks the state of Flag 12 to de­
termine if the octet for the branch path is contained in the IPU look ahead 
buffer, or has been ordered from memory and will be loaded into the look ahead 
buffer. If Flag 12 is set, the controller toggles the output pointer that 
selects the output from KA or KB so that the look ahead buffer wi 11 supply in­
structions to IR for subsequent control cycles. In addition, if Flgful is set, 
indicating that the branch path is in the previously used octet, the control­
ler loads the address of the next octet into LA (LA + 8) and sets the LA or­
dered flag to indicate that the look ahead octet is resident in the IPU. 

If PA is not equal to BA and Flag 12 is not set, the controller must fetch a 
new octet from memory to provide instructions from the branch path. If CMR is 
ready to perform a read request to memory (RDACK), the controller transfers 
the address of the branch path from BA into OA and LA, clears the LA Ordered 
flag to indicate that a new memory request is required to access the look 
ahead octet for the branch path, initiates a request to memory for the look 
ahead octet (INSTR), and sets ICTOGL2 to select the new buffer to supply in­
structions to IR 

Regardless of which of the above paths the controller follows through the Tar­
get at Level 0 branch of the logic (if RDACK = 1), the controller transfers 
the address in BA into PA to load instructions from the branch path into the 
pipe following the branch instruction, and transfers an address that is one 
greater than the current address (PA+ 1) into BA so that the controller may 
recover the current instruction path if the branch is not taken. The control­
ler then sets flag 4 to indicate that the branch is in the pipe, decrements 

4-85 Advanced Scientific Computer 



~------
the look ahead counter, transfers the branch instruction from the current buf­
fer into IR, and sets the target at level one flag (TARGT) to indicate the 
position of the branch instruction. 

4-206 NORMAL LOOK AHEAD CYCLES 

If a target is not in the pipe or in level 0, and the current octet is not ex­
hausted (PAEQ7 is false}, the controller determines that a target is not in 
the IPU (Flag 12), the look ahead octet has not been requested from memory 
(LAORD} and that CMR is ready to perform a read request. If all of these con­
ditions are met, the controller adds eight to the address in LA and loads that 
value into LA and OA, sets the LA Ordered flag, and initiates a memory request 
cycle. Regardless of the result of the above inspection, the controller in­
crements the address in PA to select the next instruction from the current 
octet, decrements the count in the look ahead counter (if there is a count}, 
and transfers the currently addressed instruction from the current buffer to 
the IR register if IR can accept a new instruction. 

When the current instruction will be the last instruction in the current buf­
fer (PA= 7), the controller ensures that the look ahead octet has been re­
quested from memory. If LAORD is not set, the controller cannot supply fur­
ther instructions to IR until the look ahead octet has been requested. The 
controller therefore, loads LA + 8 into LA and OA, initiates a memory fetch 
cycle, and sets the LA Ordered flag so that during the next control cycle the 
controller will be able to load a new instruction into IR. 

If the LA Ordered flag has been set, the controller determines if a targeted 
branch is in the look ahead octet (LCEQ12}. If no target is in the look ahead 
octet, CMR is ready for a read request, and IR can accept a new instruction, 
the controller adds eight to the address in LA, enters that address into OA 
and LA and initiates a memory fetch cycle for that octet. The controller also 
transfers the previous address in LA into PA to designate the first instruc­
tion from the next octet, toggles the output pointer to select the buffer con­
taining that octet, decrements any count in the look ahead counter, and trans­
fers the last instruction in the old buffer into IR. 

4-207 TARGET IN LOOK AHEAD BUFFER 

If the targeted branch instruction is not in the pipe or in level 0, the next 
instruction drawn from the current instruction octet will be the last instruc­
tion in that octet (PAEQ7), and the look ahead octet has been ordered from 
memory, the controller determines if the targeted branch is in that look ahead 
octet. To locate the branch, the controller examines the look ahead counter 
together with the number of active levels at the start of the LLA operation. 
If the LC count plus the number of active levels is less than or equal to 12, 
then the branch is in the look ahead buffer. If this examination determines 
that the target is in the look ahead buffer (LCEQ12), and IR can accept a new 
instruction (PAENAB), the controller compares the address in the BA register 
(starting address of the branch path) with the current address in PA. If the 
two octet address portions compare; the branch path initiates in the current 
octet. The controller therefore, sets the FLGFUL flag to prevent the octet 
from being destroyed by new memory fetches. If PA is not equal to BA, the 

4-86 Advanced Scientific Computer 



~------
controller transfers the address in BA into OA and initiates a memory request 
for that octet so that the controller can supply instructions from the branch 
path to follow the branch instruction into the pipe. For either condition of 
the PA - BA comparison, the controller transfers the address in BA into LA for 
generation of the look ahead octet for the branch path, clears the LA Ordered 
flag so that the look ahead octet will be requested after flag and sets, and 
sets FLAG12 to indicate that the target branch instruction is in the IPU. The 
controller also transfers the address in LA into PA to select instructions 
from the next octet, toggles the output pointer to select the buffer contain­
ing the next octet, decrements the count in the look ahead counter, and trans­
fers the last instruction from the current octet into IR. 

4-208 CONTENTS OF PIPE NOT USEFUL 

Seven conditions, each of which causes the contents of the IPU pipe to become 
u~eless for further processing and requires that the IPU ignore these instruc­
tions a~e: Branch t~ PA, LA or OA, instruction hazard at level 3, target fail, 
store file or load file. The following paragraphs explain the controllers re­
action to each of these conditions. 

4-209 BRANCH TO OA. If a branch instruction reaches level 3 and the octet 
containing the branch path is not within the IPU, the controller must fetch 
that octet from memory before it can continue processing instructions. Since 
the instruction currently in the pipe are from the old instruction path, those 
instructions are disabled. If CMR can accept a read request, the controller 
clears the LA ordered flag to indicate that previous preparations for a look 
ahead octet are no longer valid and transfers the branch address from AR into 
OA to be sent to memory to fetch the branch octet, into LA to generate the 
next look ahead address, and into PA so that instructions from the branch path 
will be loaded into the pipe when the new octet returns from memory. 

4-210 BRANCH TO LA. If a branch at level 3 references an address equal to 
the LA address, the branch path will be in the look ahead buffer, KA or KB. 
Since the level 3 controller checks the resident address registers in reverse 
order, i.e., P2, Pl, PA and then LA, LA must be different from PA in order to 
produce a branch to LA. Therefore, LA has been ordered from memory. To 
access the word from LA, the target address in AR is transferred to PA and the 
KA/KB output selection pointer is toggled to choose the unused buffer. To en­
sure that LA contains the correct address and has not been altered since the 
branch determination, the address in AR is transferred to LA to be incremented 
for the next look ahead octet. The LA Ordered flag clears to ensure that the 
look ahead octet will be requested during the next control cycle. 

4-211 BRANCH TO PA. If a branch at level 3 references an address equal to the 
the PA address, the branch path is in the current buffer. To access the first 
instruction in that path from the current buffer, the branch address in AR 
transfers to PA. In addition if the LA Ordered flag is not set, the controller 
transfers the address in AR to LA to ensure that the next octet fetched from 
memory will be the next sequential octet following the branch octet. 

4-212 INSTRUCTION HAZARD RECOVERY. If an instruction hazard has occurred at 
level 3, the controller must re-access the octet from which the current 

4-87 Advanced Scientific Computer 



~------
instruction was drawn to obtain the new information. The address of the haz­
arded instruction is in the P3 register. To prepare for a memory fetch to 
access the octet, the address in P3 transfers into OA. In addition, the con­
troller loads the address into PA to select the instruction from the octet 
when it returns from memory, and into LA to form the next look ahead address. 
At this point the address in PA is the same as the address in LA, indicating 
that the next octet has not yet been requested. Therefore, the LA Ordered 
flag clears. The controller also clears all of the branch status flags 
(FLAG4, FLAG12 and FLGFUL) since the change in instruction sequence negates 
the effect of these flags. The next control cycle initiates the request to 
memory for the octet containing the hazarded instruction. 

4-213 TARGET FAIL. If a branch instruction failed to branch when it reached 
level 3, or was skipped over in the program sequence, a target fail condition 
exists. The look ahead controller must then revert to the program sequence 
that was abandoned when the branch instruction entered the pipe. At that time 
the address of the instruction following the branch instruction was stored 
into the BA register (PA+ 1 to BA), and the controller began loading instruc­
tions from the branch path. Since the branch will not be taken, the control­
ler must use the addres's in BA to fetch an instruction octet to continue the 
program. If the address in BA is in the PA octet, an immediate recovery is 
possible without the delay of a memory fetch. The contents of BA are trans­
ferred to PA to select the proper word from the buffer to be loaded into the 
pipe. If the LA octet has not been ordered from memory, BA also transfers to 
LA to ensure that the proper octet will be ordered for the next look ahead 
octet. If the BA address is not equal to PA, a memory request cycle is re­
quired to recover from the target fail. The controller sets the NBRLLA flag 
on this clock, so that the following clock will initiate a memory fetch for 
the correct octet. For either course of action, the controller clears all 
branch status flags since the target failure negates the progress of the LLA 
instruction. 

4-214 LOAD OR STORE FILE. If the contents of the pipe have been negated by 
an operation that is not a branch to OA, LA or PA, is not an instruction haz­
ard and is not a target fail, then the condition is a load or store file in­
struction. Either of these instructions require no further action of the look 
ahead controller. The controller ensures that the current octet has not been 
exhausted (MARK 7). If MARK 7 is set, the controller transfers the address in 
LA into PA and toggles the KA/KB output pointer to select the other buffer to 
supply instructions to IR. 

4-215 LEVEL 0 CONTROLLER 

The level 0 controller selects a word from one of the instruction buffer files, 
and transfers that word into the IR register at level 1 if level 1 is not ac­
tive. If level 1 is active, the level 0 controller examines the state of the 
level 2 controller and either waits or clears the activity bit for level 1 de­
pending upon the results of that examination. Included in the controller 
logic are allowances for branch, target fail and hazard conditions that abort 
the instruction sequence currently ·in the pipe. Since the controller clears 
the level 1 activity bit during one clock there is a minimum delay (or 11 bubble 11 ) 

of o~e clock time between instruction transfers to IR. The following para-

Advanced Scientific Computer 



graphs describe the major control paths depicted in the level 0 controller 
flowchart (see figure 4-22). 

4-216 INDIRECT OR EXECUTE AT LEVEL 3 

If the control circuit is enabled, the controller determines if there is an 
indirect or execute instruction currently at level 3. If either of these con­
ditions exists, the controller must select the word designated by the alpha 
address at level 3 to be passed through the pipe to level 3. The controller 
therefore checks the level 1 activity bit to determine if a new instruction 
can be transferred into level 1. If the activity bit is set and level 1 is 
not busy due to an M or T hazard, the controller clears the level 1 activity 
bit since level 2 should have been reserved by the indirect or execute at 
level 3. That is, level 1 will move into level 2 without delay. 

If the level l activity bit is not set, the controller checks the alpha ad­
dress at level 3 to determine if the address is in the register file (alpha 
less than or equal to 2F). If the address is in the register file, the in­
struction at level 3 is not a branch (a branch cannot reference the register 
file), and the register inhibit flag is not set, the controller uses the alpha 
address to select a word from the register file as the object of the indirect 
or execute at level 3. If the reference is outside the register file, the 
controller determines if the object of the indirect or execute is in either of 
the two buffer files. If the alpha address is in the current buffer 
(alpha= PA), the controller enables the buffer indicated by KRTAG (KRTAG = KB; 
-KRTAG = KA) and uses the alpha address to select the object word from the 
buffer. If the alpha address is in the look ahead buffer (alpha = LA) the 
controller enables the buffer that is not indicated by KRTAG and uses the 
alpha address to select the object word from the buffer. If any of these 
local branch paths are taken, the controller completes the cycle by setting 
the level 1 activity bit, thereby transferring the selected word into IR. If 
the object of the indirect or execute is not within the !PU, the controller 
uses the alpha address to select a word from KCM, waits for Central Memory 
Requester (CMR) to place the required octet into KCM, and then sets the level 
1 activity bit to transfer the selected word into IR. 

4-217 FILE SELECT 

If an indirect or execute is not currently at level 3, the controller inspects 
the state of the buffer output pointer, KRTAG. If this bit is clear (zero), 
the controller selects the KA buffer file to supply instructions to level l; 
if this bit is set, the controller selects KB to supply instructions to 
level 1. 

4-218 LEVEL 1 NOT ACTIVE 

If level 1 is not active, then the controller can provide a new instruction to 
the IR register. The controller first inspects the state of the level 1 con­
troller. If the level l controller is performing in the indirect at level 2, 
hazard, store file or the load file state, the level 0 controller returns to 
the start of the control sequence, since it cannot transfer a new instruction 
to IR if the level 1 controller is in any of these states. If after inspect­
ing the state of the level 1 controller, the level 0 controller determines 

4-89 Advanced Scientific Computer 



"'' 114302 AL 

• 

LVLO 

SEL.ECT 
KB INST 

o-At 

-------1 

1. IND@~ 
2. LVLI (THE BIG STATE AT LVI) 
3. HAZ 
4. NONE OF THE ABOVE 
5. IND@. 21'. HAZt ST .. QRE FILE, LOAD FILE STATE 

~: \-;YL\,~-I<; SNO~;~J 
A. ~i-:t"~o ~~RGET FAIL, BR TO PA, BR TO LA, 

B. BR TO LVLI 
Cl SKIP 
D. NONE OF THE ABOVE 
E. IHAZ 
F, LOCAL IND TO IR 
G, IND REQ 
H. OTHER 

NEW 
INST 

o-AI 

NEW 
IND 

LVLI 
COMMAND 

A 

0--+AI 

'"INCLUDES SELECTION FOR HAZ AND PV FLAGS 

Figure 4-22. Level 0 Controller Flowchart (Sheet 1 of 3) 

4-90 Advanced Scientific Computer 



SEL.ECT 
Fll..E WORD 

t___ 
~) 114303A 

Figure 4-22. 

NO 

~---------1 

• 
SEL.ECT 
KA WORD 

NO 

INSERTS 
BUBBL.E 
AT L.VI 

.------....... 
SEL.ECT 
KB WORD 

- -' 
Level 0 Controller Flowchart (Sheet 2 of 3) 

4-91 Advanced Scientific Computer 



,----------

L __ 
11 9488 A 

NEW INST 

SAME AS 
LOAD IR 

FROM 
LOOKAHEAD 

CONTROL 

7 

LVLI STATE 

PAE NAB. 

LVLI STATE 

!-+Al 
PA-+PI 

H 

5 

F 

I -+Al 

LVLO 

I 
I.­
I 

G 

_J 

---, 
SELECT 
KCM WORD 

1-+AI 

TL (0) 
E -

I 
I 
I 
I 
I 
I 

_J 
LVLO 

Figure 4-22. Level 0 Controller Flowchart (Sheet 3 of 3) 

4-92 Advanced Scientific Computer 



that it can transfer a new instruction into IR, the controller ensures that 
the chosen buffer file contains a valid octet to provide instructions to IR. 
If the respective buffer full signal is active, the controller issues PAENAB 
to the look ahead controller indicating that the IR register can accept a new 
instruction and the selected buffer can supply a valid instruction word. The 
look ahead controller then generates a Load IR signal that appears as PAACK 
to the level 0 controller. When the level 0 controller detects this signal, 
and if the level 1 controller is in the Big State, the level 0 controller ex­
amines the command at level 3 to determine if that command will negate the in­
struction that was just transferred into IR. If that is the case, the con­
troller returns to the beginning of the control cycle without setting the 
level 1 activity bit. If the instruction transferred into IR will not be ne­
gated, or if the level 1 controller was not in the Big State, level 0 control­
ler sets the level 1 activity bit and transfers the address in PA into the Pl 
register. This sequence loads a new valid instruction into IR and its cor­
responding word address into Pl. 

4-219 LEVEL 1 ACTIVE 

If level 1 is active, the controller cannot transfer a new instruction into 
IR. The controller then inspects the state of the level 1 controller to de­
termine if the level 1 activity bit can be cleared during the next control 
clock pulse. If the level 1 controller is in the Indirect at level 2 state, 
or if it is in the hazard state and the instruction at level 3 negates the in­
struction in level l, the level o controller clears the level 1 activity bit. 
Clearing the activity bit occurs on the control clock pulse as the instruction 
in level 1 passes to level 2. If the level 1 controller is in the hazard 
state, but the level 3 command does not negate the pipe contents, or if the 
level 1 controller is otherwise not in the Big State, the level 0 controller 
takes no further action and returns to the start of the control cycle. If the 
level 1 controller is in the Big State, the level 0 controller inspects the 
level 3 command to determine its course of action. 

If the instruction at level 3 negates the contents of the pipe, the level 0 
controller clears the level 1 activity bit on the next control clock. If the 
instruction at level 3 is a branch to level 1 and there is no M or T hazard 
wait at level 1, the controller clears the level 1 activity bit on the next 
control clock. An M or T hazard wait at level 1 returns the level 0 control­
ler to the start of the cycle to await the next control cycle. If the Skip 
bit is active for the level 3 command, the controller checks to see if level 2 
is active. If there is no instruction at level 2, the controller clears the 
level 1 activity bit. Similarly, if level 2 is active and there is no M or T 
hazard wait at level 1, the controller clears the level 1 activity bit. The 
answer to the 11 PPl 11 question block on the flowchart will always be 11 N0 11 , since 
if the level 1 controller is in the PPl state, there will be a Push instruc­
tion pointer word at level 2 and the pointer word always clears the level 2 
activity bit when it enters level 2. Therefore, PPl could not occur if level 
2 is active. 

4-220 LEVEL 1 CONTROLLER 

The level 1 controller is an eleven state controller that determines when to 
transfer the level 1 register contents to the level 2 registers in the !PU, 

4-93 Advanced Scientific Computer 



~------
and indicates to the level 0 controller when a new instruction may be loaded 
into level 1 by transmitting "Path Ahead Clear" (PACl). The initial state of 
the controller is the Big State. All other states, except DAV state, may be 
entered from the Big State; all other states may exit to the Big State. Fig­
ure 4-23 illustrates the interrelationship of the controller states and pro­
vides a flowchart of the logical progression through the control circuits. 
The following paragraphs describe the major decision paths within the control­
ler as portrayed in the flowchart. 

4-221 LEVEL 1 (BIG STATE) 

The Big State of the level 1 controller monitors the instruction at level 3 
and the conditions in the pipe to determine which of the ten other controller 
states, if any, must be entered to perform instruction transfer through the 
level 1 components of the !PU. Upon entering the Big State, the controller 
enables the outputs of the level 1 components to their respective destinations 
in level 2 of the !PU. When the level 1 to level 2 transfer occurs, these 
gates route the data to the correct level 2 components. The controller then 
examines the command at level 3 if no hazard or hold condition prohibits fur­
ther action. 

4-222 INSTRUCTION PATH CHANGE. If the level 3 command is an instruction or 
condition that negates the contents of the !PU pipe in favor of new instruc­
tions from memory or any portion of the !PU before level 1, (Target fail, haz­
ard recovery, or branch to PA, LA or OA) the controller clears the level 2 
activity bit at returns to the entry point of the state. This places a no-op 
at level 2, since the instruction that would have been transferred to level 2 
is no longer useful. 

4-223 SKIP. If the skip bit is set at level 3, the controller checks the 
level 2 activity bit. If the bit is not set (no instruction at level 2), the 
controller clears the level 2 activity bit again during the next transfer 
pulse. This results in transferring a no-op to level 2 in place of the in­
struction to be skipped. The controller also signals "Path Ahead Clear" (PAC) 
to the level 0 controller. If there is an instruction in level 1, the con­
troller returns to the start of the Big State; if there is no instruction in 
level 1, the controller exits to the Skip state. If level 2 is active, but 
level 1 is not active, the controller transfers the activity of level 1 to 
level 2 during the next transfer cycle, signals PAC to level 0, and returns to 
the start of the control cycle. The answer to the PPl question block will al­
ways be 11 N0 11 since if a push or pull instruction is at level 3., the pointer 
will be at level 2; the pointer always carries an inactive indication through 
the pipe. If both level 2 and level 1 are active, the skip command behaves 
identically to a branch to level l instruction. 

4-224 BRANCH TO LEVEL 1. If the instruction at level 3 specifies a branch to 
level 1 or a skip with both levels 1 and 2 active, the level 1 controller ex­
amines the level 1 instruction for hazards before forwarding it to level 2. 
The level 1 instruction must have no T or M hazard. If a hazard does exist, 
either the respective T or M field must be equal to zero, or the instruction 
must be in a format that does not use either the T or M hazard determination 
(Tor M hazard free). If the instruction does not pass this inspection, the 

4-94 Advanced Scientific Computer 



IPQCTL (0-9) 

(A) 114304 A 

Figure 4-23. Level 1 Controller Flowchart (Sheet 1 of 12) 

4-95 Advanced Scientific Computer 



~------
LVLI 

--L-VL_I __ -, 

(BIG STATE) I 
.._~...ii.--~~~~~~, 

O• A2 

!.---. 
I 
I 
I 
I 
I 
I 
I 

PACI 

SK~P STATE 
04 

I I 
__ L __ L-=--~ 

YES 

PACI 

PACI 

I, TARGET FAIL' IHAZH BRANCH PA, 
Z, =~~g~ ~.:_I RANC CM REQ, 
3, SKIP 
4, NONIE OF THE ABOVE 

YES I 
I 
I 
I 
I 

L __ __J 

(it.) I 1430SA 

Figure 4-23. Level l Controller Flowchart (Sheet 2 of 12) 

4- 96 Advanced Scientific Computer 



~ 
r - - -

--=vL ,I 
(BIG STATE -

CONTINUED) 

I I 
I I 
I I 
I I 
I I 
I o-A2 I 
I 1-A2 I 

I I 
I 

LVL1 - LVL2 I 
I LVL1 I 

PAC1 I NO 

2 

L - - - - J 

(A) 114306A 

Figure 4-23. Level l Controller Flowchart (Sheet 3 of 12) 

4-97 Advanced Scientific Computer 



~------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0--AZ 

L 

1~)114307A 

NONE 

NO 

PACI 

LVL I ---1 (BIG STATE CONTINUED) 

ftACI 

STORE 
fl'ILE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_J 

Figure 4-23. Level l Controller Flowchart (Sheet 4 of 12} 

4-98 Advanced Scientific Computer 



~------

I 
I 
I 
I 
I O--A2 

I 
I 
I YES 

L__ 

IND 
@3 

NO 

NO 

o-A2 

XEC 
@ L.VL.3 

e 

3 L.VL.3 
COMMAND 

2 

O-A2 

PAC1 

1. TARGET FAIL., IHAZ, BRANCH PA, BRANCHL.A, BRANCH CM REQ, 
2, SKIP 
3. NONE OF THE ABOVE 

(A) 11430BA 

IND INST OR XEC@ L.VL.2 

IND.L.V~ 
STATE o-o· I 

O-A2 

I 
I 
I 
I 
I 
I 
I 

_J 

L.VL.1 

Figure 4-23. Level l Controller Flowchart (Sheet 5 of 12) 

4-99 Advanced Scientific Computer 



L.VL. 1 

IND INST@L.VL.3 

r:-=- ==--: --
1 ~T~TE 01 

----------~ 

SEL.ECT: 
(T IND)-XR 
AOR-NR 
TIND-T2 
Q-M2 
·(OP)- C2 

IND r,o 3 
(TO L.VL.OJ 

L.VL.3 COMMAND 

YES 

1 -A2 

L.VL. 1 - L.VL.2 

NO 

O-A2 

NO 

1. IHAZ 
2. BRANCH NOT TAKEN 
3. NONE OF THE AltOli'I: 

(lt.)114309L _______ _ -- --- --- --- --- -- - - - _J 
Figure 4-23. Level 1 Controller Flowchart (Sheet 6 of 12) 

4-100 Advanced Scientific Computer 



~------
1.---­

INDILVL3 I STATE 01 
(CONTINUED) 

I 
I 
I 
I 
L 

PACI 

LVLI 

(.ll.)114310A 

PACI 

INST 
@ LVL3 

XEC 

PACI 

PACI 

PP 

DIRECT LOAD FILE 
r.> LVL3 

YES 

I 
I 

J 

--, 

PACI 

O-A2 

NO 

I• PREVDCTll STATS CHANGI: WHl:N A Tl:RMINAL 
. INDllll:CT Cl:LL IS AT LVLZ AND 1,.VL3 IS NOT 

ACTIYEo 

L ____ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
J 

STORE 
FILE 

9 

Figure 4-23. Level 1 Controller Flowchart (Sheet 7 of 12) 

4-101 Advanced Scientific Computer 



LVL1 

r::.::-1 silTE 02 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
L 

(II.) 11431 IA 

XEC@ 3 
(TO LVLO) 

XIECt> 
LVL3 

YES 

I. IHAZ (CAN ONLY OCCUit FOR )(EC, 
t!2'.!' l"OR OILllECT) 

2, NONE OF THE ABOVE 

-

o-A2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_J 

Figure 4-23. Level 1 Controller Flowchart (Sheet 8 of 12) 

4-102 Advanced Scientific Computer 



~----·-
Dl't~~ STORE FILE@. 

1-A2 
YES 

LVLl-LVL2 

PACI 

NO 

0 -A2 YES 

PACI 

LVLI 

2 

----, 
v 

NO 

E 09 I 
(J) INDICATES LAST DATA .... KCM I 
(2) INDICATES LAST DATA-MCU I 
(3) INDICATES LAST DATA-CM J NO 

STORAGE 

--------- I L PQCTL(9) 
*PREVENTS STATE CHANGE: WHEN A TERMINAL L_ _ - -

INDIRECT CELL IS AT LVL2 AND LVL3 IS NOT 
ACTIVE 

(!.) I I 4 3 I 2 A 

Figure 4-23. Level l Controller Flowchart (Sheet 9 of 12) 

_ _J 

IND 
c.i 2 

LVLI 

4-103 Advanced Scientific Computer 



~------

1.14313A 

r=-:-VL. 3 
I~~!~~ 03 

I 
I 
I 
I 
I 
I 
I 
I 
I 

PAC1 

o-A2 

L -

pp 

SELECT 
PTR-BR 

2 

GATBR, 

- -

o-A2 

1. IHAZ 
2. PPO 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3. NONE :_n!E ABOVE I 

Figure 4-23. Level 1 Controller Flowchart (Sheet 10 of 12) 

4-104 Advanced Scientific Computer 



~------

LVLt 

I 
I 
I 
I 
I 
I 
I 
I 

PACI 

..---:-
1
--t 0 -A2 

1 t9492A 

I 
I 
I 
I 
L 

VECT 

--------1 

·NO 

SELECT: 
WPn,-BR 
1 (£n~XR 

LVL3 
COMMAND 

t-A2 

LVL1 -LVL2 

YES 

O-A2 

t. VIO,Vlt,Vl2 

2. IHAZ ,Vl3 

~o:_:_ T:_:o:__ J 

Figure 4-23. Level l Controller Flowchart {Sheet 11 of 12) 

4-105 Advanced Scientific Computer 



~-------

rZAR=EVE::-1 HAZ STATE 06 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

o-A2 

LVLI 

119493A 

~ELECT: T2)--XR 
M2}-BR 

HAZ 

YES 

LVLI -LVL2 

1. TARGET l"AIL..,.tUIZ~BR TO l"At 
~~~O itiPBR 0 C RIEQ, BR 0 

2. NONE 0 0F THE ABOVE

IND
@2

PACI

LVLI

I
I
I
I
I
I
I
I
I
I
I
I
I

_J

Figure 4-23. Level l Controller Flowchart (Sheet 12 of 12}

4-106 Advanced Scientific Computer

controller forwards a zero to the level 2 activity bit, holding the level l
instruction at level 1 until the hazard clears. If the instruction is without
conflict, the controller sets the level 2 activity bit and enables the trans­
fer of the level 1 instruction to level 2 during the next transfer cycle. If
the instruction to be transferred from level 1 to level 2 is either an indirect
or an execute instruction, the controller enters the Indirect at level 2 state
for the next control cycle. If the instruction is neither of these two types,
the controller returns to the start of the Big State for the next control
cycle.

4-225 RECOVER LEVEL 2 HAZARD. If a hazard occurs to the level 2 instruction
such that the level 2 instruction must be refetched, the level 1 controller
clears the level 2 activity bit, and if level 1 is not active, transmits PAC
to the level 0 controller. The controller then enters the hazard state on the
next control cycle.

4-226 NONE. When the controller has determined that no recoverable hazard
exists at level 2, it checks the instruction type, activity bit at level 2
and the PAC signal from level 2 controller. If PAC is not present, the level
1 controller cannot perform any further functions. The controller returns to
the start of the Big State, sending PACl to the level 0 controller if level 1
is not active. If level 2 is not active or if level 2 is active and the in­
struction is not a vector, push, pull, store file or load file, the controller
checks the activity bit for level 1. If this bit is not set, the controller
clears the level 2 activity bit during the next transfer cycle and generates
PACl to the level 0 controller. If there is an instruction at level 1, the
controller performs the inspection sequence previously described for the
Branch to level l instruction before returning to the start of the Big State.

A vector, push, pull, store file or load file instruction at level 2 requires
special action from the level 1 controller. If one of this type of instruc­
tion is present, the controller clears the level 2 activity bit during the
next transfer cycle (transferring a no-op into level 2 while the instruction
moves to level 3). If level 1 is not currently active, the controller also
sends PAC to the level 0 controller. In either case the controller exits to
either the Vector, Push-Pull, Load File or Store File state for the next con­
trol cycle.

4-227 SKIP STATE

The level 1 controller enters the skip state from the Big State and returns to
that state when the requirements of the skip state have been satisfied. In
this state, the controller transmits a no-op to level 2 and signals PACl to
the level 0 controller. When an instruction enters level 1, setting the level
1 activity bit, the controller exits to the Big State.

4-228 INDIRECT OR EXECUTE AT LEVEL 2 STATE

The level 1 controller enters the indirect or execute at level 2 state from the
Big State, the hazard state, or the Execute at level 3 state. It can return
to any of these states plus the Indirect at level 3 state, or loop within it­
self waiting for PAC2. Upon entering this state the controller examines the

4-107 Advanced Scientific Computer

~------
command in level 3. If the instruction will negate the contents of the pipe
(target fail, hazard, branch to PA, LA or OA), the controller transfers a zero
to the level 2 activity bit and exits to the Big State. If the instruction is
a skip, the controller clears the level 2 activity bit, generates a PACl sig­
nal to the level 0 controller so that a new instruction can be transferred in­
to level 1 and exits to the Big State. If the level 3 command does not fall
into either of these categories, the controller determines if there is a re­
coverable hazard at level 2. If a hazard does exist at level 2, the control­
ler transfers a zero into the activity bit for level 2 and exits to the hazard
state. If no hazard is at level 2, the controller transfers a zero to the
activity bit for level 2 to clear the pipe for the impending instruction from
the indirect or execute. The controller then exits to the Indirect at level 3
state or to the Execute at level 3 state, depending upon the type of instruc­
tion that has been transferred to level 3.

4-229 INDIRECT AT LEVEL 3 STATE

The level 1 controller enters this state from the Indirect at Level 2 state
when the CP clock transfers the contents of level 2 to level 3. When the
controller enters this state it enables the inputs to the level 2 registers
that will be used to develop the required address from the indirect address.
Then, if no status freeze condition exists, the controller transmits an in­
direct at level 3 indication to the level 0 controller and examines the com­
mand at level 3. If the instruction at level 3 is a hazard recovery or a
branch {preceded by an LLA) that is not taken, the controller clears the
level 2 activity bit during the next clock pulse and exits to the Big State.
If neither of these conditions is present at level 3, the controller checks
the level 1 activity bit. If this bit is not set, the controller clears the
level 2 activity bit on the next clock pulse and loops within the Indirect at
Level 3 State for the next control cycle. If level 1 contains an active in­
struction, and there is no hazard condition in the pipe that affects the reg­
ister containing the index modifier for the indirect address, the controller
sets the level 2 activity bit and enables the transfer of level 1 to level 2
during the next clock pulse. If the instruction at level 1 is not the last
step in the indirect process, the controller loops within the Indirect at
level 3 state until the terminal indirect is reached. At that point the con­
troller again examines the instruction at level 3 to determine the exit des­
tination for the next control cycle. If the instruction is an execute, the
controller reserves level 1 for the upcoming instruction and exits to the Exe­
cute at Level 3 state. All other commands produce a PAC indication to the
level 0 controller. The level 1 controller then exits to the Vector, PP, Load
File, Store File or Big State depending upon the instruction type at level 3.

4-230 LOAD FILE STATE

The controller enters the Load File state from either the Indirect at Level 3
state or the Big State. When in the Load File state, the controller waits for
the Load File instruction at level 3 to complete execution. If level 1 is not
active, the controller generates a PAC indication to the level 0 controller so
that a new instruction may transfer to level 1. If an instruction is at level
2, the controller loops within the Load File state and clears the level 2 ac­
tivity bit during the next transfer pulse. This loop ensures that the control­
ler will remain in the Load File state if level 3 is inactive due to waiting
for development of the indirect address.

4-108 Advanced Scientific Computer

4-231 EXECUTE AT LEVEL 3 STATE

The level l controller enters this state from either the Indirect at Level 2
state or the Indirect at Level 3 state. When the controller enters this state
it enables the inputs to the level 2 registers that will develop the instruc­
tion to be executed. Then, if no status freeze condition exists, the control­
ler transmits an execute at level 3 indication to the level 0 controller and
examines the command at level 3. If the execute instruction references an ad­
dress whose contents will be changed by an instruction already in the pipe,
the controller clears the level 2 activity bit during the next transfer pulse
and returns to the Big State for the hazard condition to clear. If no hazard
condition occurs, but level l is inactive, the controller clears the level 2
activity bit on the next clock pulse and loops within this state. If there is
an active instruction in level 1, the controller ensures that the instruction
(object of Execute) either has no T or M hazards, or if a hazard exists the
hazard is ignored due to the corresponding field being zero or the instruction
being in the format where a T or M field is not used. If these conditions are
not met, the controller clears the level 2 activity bit and returns to the
start of Execute at Level 3 state. If the level 1 instruction passes the haz­
ard inspection, the controller sets the level 2 activity bit and enables the
transfer of the level 1 instruction to level 2 during the next clock pulse.
If that instruction is either an indirect or execute instruction, the control­
ler exits to the Indirect at Level 2 state. If the instruction is neither an
indirect nor an execute, the controller signals PACl to the level 0 controller
and exits to the Big State.

4-232 STORE FILE STATE

The level l controller enters the store file state from either the Big State
or from the Indirect at Level 3 state. This state is essentially a wait state
that the controller enters while a Store File operation is being performed at
level 3. If there is no instruction in level 1, the controller issues PACl
to the level 0 controller to enable transfer of a new instruction into level 1.
If level 2 is active, the controller clears the level 2 activity bit on the
next transfer pulse and loops within the Store File state. This loop allows
the controller to remain in the Store File state even though level 3 may be
inactive while waiting for resolution of an indirect address. If the Store
file operation is a transfer from one register file octet in the IPU to an­
other register file octet, the controller immediately exits to the Big State
since no wait will be required because a memory access is not involved. If the
operation is not a file to file transfer, the controller waits until the level
3 activity bit clears and the Central Memory Requester (CMR) signals that it is
ready for another write request (WACK), signifying that the last octet of the
store file operation has been accepted by the MCU. When both of these condi­
tions are satisfied, the controller exits to the Big State if the -.DAV signal
from the MCU has dropped, or to the DAV state if the -iDAV signal has not
dropped.

4-233 DAV STATE

The controller enters the DAV state from the Store File state. In this state
the controller waits until the DAV signal from the MCU drops. DAV from the

4-109 Advanced Scientific Computer

MCU indicates that the write data from the IPU has been accepted but has not
yet been stored. When the signal drops, the data has been stored into memory.
The controller then returns to the Big State for the next control cycle.

4-234 PUSH - PULL STATE

The controller enters the PP state from either the Big State or the Indirect
at Level 3 state. As the controller enters this state it enables the input to
BR at level 2 so that when the transfer pulse occurs, the selected pointer
associated with the Push or Pull at level 3 will be transferred into the BR
register. If no status freeze conditions have oc~urred and level 1 is not ac­
tive, the controller issues PACl to the level 0 controller. In either activity
state at level 1, the controller inspects the state of the level 3 command.
If an instruction hazard recovery is required, the controller clears the level
2 activity bit on the next clock pulse and returns to the Big State. If the
level 3 command is a valid push or pull, the controller transfers the pointer
into BR {GATBR) on the next clock pulse and returns to the Big state. If nei­
ther of these situations occur, the controller clears the level 2 activity bit
and returns to the start of the PP state.

4-235 VECTOR STATE

The level l controller enters the Vect state from the Indirect at Level 3
state or from the Big State during Vector initialization. When the controller
enters the Vect state it enables the first word from the vector parameter file
into the BR register {VPn, where n = O), and the corresponding index value in­
to the XR register for formation of the initial vector values sent to the MBU.
If no freeze conditions exist, the controller generates PACl to the level 0
controller if no instruction is currently in level 1 and then examines the
command in level 3. If the command is one of the first three words in the
vector parameter field, the controller transfers a l to the level 2 activity
bit and produces the gating signals during the next clock pulse to transfer
the next parameter into level 2 of the IPU. The controller returns to the
start of the Vect state to repeat until vector file word three is in level 3.
Whe.n word three of the vector parameter file reaches level 3, the controller
clears the level 2 activity bit and exits to the Big State since all remaining
vector parameter file words transfer directly to level 3 without passing
through the modification network.

4-236 HAZARD STATE

The level 1 controller enters the Hazard state when an instruction at level 3
of the pipe modifies the register file location that is used to modify the in­
struction at level 2 of the pipe. Since the modification parameters for that
instruction specified by its T and M fields have already been loaded into level
2 registers (BR and XR), the level l controller must replace these faulty
values with the updated values when the hazard is resolved. Therefore, when
the controller enters the hazard state, it enables the selection of the reg­
ister specified by the T2 register to XR and the register specified by the M2
register into BR. If there is no status freeze condition, the controller then
examines the instruction at level 3. If that instruction will abort the in­
struction stream that is in level 2 of the pipe (target fail, hazard recovery,
Branch to PA, LA, OA or level 1, or a Skip instruction), then the level 1

4-110 Advanced Scientific Computer

~------
controller does not need to update that instruction. The controller there­
fore, clears the level 2 activity bit and exits to the Big state. If the
level 3 instruction is not in the above group, the controller inspects the
level 1 activity bit. If that bit is not set and there is not an indirect or
execute instruction at level 2, the controller generates PAC l to the level 0
controller. The controller then waits for the pipe to clear of all instruc­
tions and for level 3 to become inactive to ensure that the hazard has cleared.
When the hazard condition no longer exists, the controller sets the level 2
activity bit and transfers the base and indexing parameters into XR and BR
without changing the contents of any of the other level 2 registers. If the
new instruction in level 2 is an indirect or execute, the controller exits to
the Indirect at Level 2 state; if not, the controller returns to the Big State
for the next control cycle.

4-237 LEVEL 2 CONTROLLER

The level 2 controller monitors status conditions from the level 3 controller
and determines when the contents of level 2 will be transferred to level 3.
When a status freeze condition occurs and a new instruction is being passed
through level 2, the new instruction flag, NI, sets. The level 2 controller
also communicates with the level l controller by indicating that the Path
Ahead is Clear to level 2 (PAC2). The following paragraphs describe the major
logic paths followed by the level 2 controller with reference to the flowcharts
of the controller logic illustrated in figure 4-24.

4-238 SELECT ADDER INPUT

At the start of each control cycle, the level 2 controller examines the C2
output and the AR Increment flag to determine what inputs to the modification
adder are required for development of the next instruction. AR increment is
used during load file multiple and store file multiple instructions. The con­
troller keeps NI set if a NI Freeze condition is at level 3. If NIFRZ is not
present, the controller allows NI to clear and examines the command at level 3.

4-239 CONTENTS OF LEVEL 2 NOT USEFUL

If the instruction at level 3 either bypasses the instruction at level 2 (skip
or branch) or indicates that the instruction at level 2 is not valid (Hazard
recovery or indirect request complete), the controller clears the activity bit
in level 3 during the next transfer cycle and returns to the start of the
state. For branch instructions, clearing the level 3 activity bit is depen­
dent upon PAC3 from the level 3 controller {path 3 on the flowchart). The re­
maining conditions do not require the PAC indication to clear the activity bit
(path 1).

4-240 INCREMENT AR

If a load file multiple or store file multiple instruction at level 3 has gen­
erated Increment AR, the controller returns to the start of the control cycle
if valid data is in level 2. If level 2 is not active, the controller gen­
erates PAC2 to indicate its availability before returning to the start of the
control cycle.

4-111 Advanced Scientific Computer

~------
L.VLZ ,-

1

I
I
I
I

PACZ

YES

O-+A3

SEL.ECT ADDER
INPUTS PER
CZ AND AR
INC FL.AG

I-NI

I, TARGIET P'AIL., SKU••l'JIT IHAZ IND REQ COMPL.ETE
Z, INC AR (GIETS SET ON L.P'M OR STFM IN REQUEST OR WAIT STATE · .
3, BRANCH TO L.VL I , BRANCH TO PA, BRANCH TO L.A, BRANCH TO CM RIEQ
4, VII, VIZ, \ll3
!5, PPI (STACK) STORING PARAMETER
8, NONIE OP' THIE A80VIE

L_

--,

O-+A3

PACZ

L.VLZ +L.VL.3

__ J
Figure 4-24. Level 2 Controller Flowchart (Sheet l of 3)

4-112 Advanced Scientific Computer

~------
I --------------1

L-, ______ _

(A)ll.Ul7A

RECOVER
LVL2 HAZ

RECOVER
LVL2 HAZ

,....__,.......... __ - _,__J

Figure 4-24. Level 2 Controller Flowchart (Sheet 2 of 3)

4-113 Advanced Scientific Computer

119487A

~---------

' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t -NI

1-1LOP
FLAG

NO

O-NI

1-A3

PAC2
IUNEW

L.VL2-LVL3

L ______ _
Figure 4-24. Level 2 Controller Flowchart (Sheet 3 of 3)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J

4-114 Advanced Scientific Computer

4-241 VECTOR PARAMETER FILE

If any of the three words from the vector parameter file that define the three
vector starting points is at level 3 (Vl, V2 or V3 of the file), the control­
ler enables transfer of the level 2 contents to level 3 on the next clock
pulse. If the word at level 3 is the V3 word, however, the level 3 controller
generates a level 3 to level 4 enable signal that transfers the next word of
the vector parameter file (V4) directly to level 4, since the remaining words
in the file cannot be modified by the !PU address modification network.

4-243 PUSH - PULL

If the instruction is a push or pull instruction, then level 2 contains the
pointer for that instruction and the level 2 activity bit is clear. The con­
troller enables the transfer of the pointer to level 3 on the next control
clock and signals PAC2 to the level 1 controller before returning to the start
of the control cycle for the next clock period.

4-243 NONE

If none of the preceding conditions exist at level 3, the controller checks
the activity at both levels 2 and 3. If level 2 is not active, the controller
issues PAC2 to the level 1 controller, and clears the level 3 activity bit on
the next clock pulse if the level 3 controller has issued PAC3. If level 2 is
active, the controller examines the contents of level 2 to determine if a Tor
M hazard exists for an instruction that is not hazard free (instruction for­
mat does not use Tor M fields). If a hazard does exist that is valid for the
instruction, the controller indicates to the level 1 controller that a level 2
hazard recovery must be performed. If PAC3 was active, the controller also
clears level 3 activity upon detection of a level 2 hazard, since the instruc­
tion passed from level 2 to level 3 is not a valid instruction.

When the controller determines that no valid hazards are present, that level 2
is active, and level 3 can accept a new instruction (PAC3), the controller ex­
amines the level 2 instruction for an illegal operation code. If the instruc­
tion is an indirect cell that has a one bit in any of bits 0-3, is an illegal
op code, or contains a specification error, the controller sets the Illegal
Operation (!LOP) flag to cause an interrupt in program sequencing. Regardless
of the outcome of the inspection for illegal op code, the controller sets the
level 3 activity bit, enables the transfer of level 2 to level 3 and transmits
PAC2 to the level 1 controller. If the instruction at level 2 was not an in­
direct cell that contained the correct leading zeroes in bits 0-3, the con­
troller sets the New Instruction flag (NI) to the level 3 controller. The in­
direct cell does not set this flag since it is not a new instruction.

4~115 Advanced Scientific Computer

4-244 LEVEL 3 CONTROLLER

The level 3 controller decodes the instruction at level 3 of the IPU, deter­
mines the transfers necessary to perform the designated function, enables
those transfers and establishes conditions in the MBU such that the operation
will enter the pipe and be executed. In addition, the controller checks for
hazards and short circuit paths available to ensure that the instruction is
accurately and rapidly processed. The controller is an 18 state device. Fig­
ure 4-25 illustrates the relationship of these states and the 12 subcycles of
the Idle state to each other. Each state represents logic that executes dur­
ing one clock pulse. The flowcharts and description that follow explain the
action and decisions in each statP.. Because the flowcharts represent actions
that occur during the clock pulse, they are not in sequential order as ar­
ranged in the flowchart. Instead the controller examines the conditions that
exist before the clock pulse, and enables execution of the action blocks de­
termined by those conditions when the clock pulse occurs. In this description,
the term 11 control cycle" applies to that period before the clock pulse during
which the controller examines all decision blocks.

4-245 IDLE STATE

The Idle state of the level 3 controller consists of one initial cycle that
examines conditions in level 3, determines the required responses to those
conditions and chooses one of eleven subcycles of the Idle state or another
state to provide that reaction. When the controller completes processing the
instruction in one of the subcycles or states, the controller returns to the
beginning of the Idle state for inspection of the next new instruction that
enters level 3, or for re-examination of the previous instruction during con­
trol loops. The following paragraphs describe the major logic paths and
decisions followed by the level 3 controller in the Idle state.

4-246 INITIAL STATE. The initial Idle state checks for hazard conditions,
instruction violations, status freeze, and an instruction type to deter-
mine the proper path required by the level 3 controller to perform .all inspec­
tions and transfers for each set of conditions. The logic flow of the initial
state is illustrated in figure 4-26. If level 3 activity bit is not-set at
the start of the control cycle, the controller sets the PAC3 indication to the
level 2 controller and loops for each clock until the activity bit sets (Se­
quence A is a rio operation sequence). If level 3 activity is set, and the
instruction in level 3 is a new instruction (NI flag set), the controller
checks for a status freeze condition. If a freeze condition exists, the con­
troller issues a new instruction freeze indication to the level 2 controller
after data in the Z- buffer is stored into memory. If the storage octet is
still in the ZA file in the MBU (ZA full) the controller initiates a forced
write cycle to store that octet so that the hazard may be recovered. In either
case the controller loops on each control cycle in which the status freeze
condition is still present.

Once the status freeze condition clears, the controller checks for an instruc­
tion error. An instruction error indicates that the IPU encountered a protect
violation when it tried to access the instruction in memory, that the instruc­
tion is an illegal oo code, or that there is some type of specification error
in the format of the instruction. If the controller detects any of these con­
ditions, it exits to the Instruction Error subcycle.

4-116 Advanced Scientific Computer

+:>
I __,

__,
........

(B) 124857

\\

' ' ' '

figure 4-25.

CONTROLLER

Level 3 Controller State Di~gr~m

r
I
I
I
I

YH

L---
(•) tU319A

Figure 4-26.

--------1

•EGIN
SEQUENCE
A

aUIN
Heu&NCE
A

EXIT TO
YELLOW SUBCYCLE

Nll'RZ

INSTRUCT-
TION

CONTROL
TYPE

EXIT TO
HA ZARO
STATE

L 1
EXIT TO SUBCYCLE I

NOOP I NOOP

SKIP
PINK I
GRAY

I BLUE

I GREEN
FILE

ORANGE

LAVENDER I
MCW + MCP 1-----------1•• BROWN

EXECUTE

t--XEC
FLAG

YELLOWt

_ _.

Initial Subcycle of Level 3 Idle State

4':" 118 Advanced Scientific Computer

If no instruction error occurs, the controller checks for a condition that re­
quires the IPU to recover a previous instruction stream and abort the instruc­
tions that are currently in the pipe. These conditions are an LLA has prepared
the pipe for a branch, but the target instruction does not branch when it
reaches level 3 (Target and Not Branch Instruction), a far range instruction
hazard, or a near range hazard when the Z buffers in the MBU contain infor­
mation to be stored into memory. Any of these conditions causes the controller
to exit to the Hazard state to produce the required signals for recovery from
the fault condition.

Having determined that no fault conditions exist at level 3, the controller
inspects the instruction at level 3 and exits to the subcycle required to pro­
cess that type of instruction. In performing this inspection the controller
clears the Register Inhibit flag if the instruction is not an indirect instruc­
tion, and sets the Scalar flag if the instruction is not a vector. Clearing
the Register Inhibit flag allows the next indirect instruction that enters
level 3 to access the Register file for one level of indirect addressing. The
controller then exits to the required subcycle.

4~247 NO OP. The controller enters the No Oo subcycle when the instruction
at level 3 is a no operation instruction. In this subcycle the controller
clears the Execute flag and the Register Inhibit flag, and issues PAC3 to the
level 2 controller before returning to the Initial Idle state for the next
control cycle. Figure 4-27 illustrates the logic path that the controller
follows through the No Oo subcycle of the Idle state.

4-248 BROWN. The controller enters the Brown subcycle when the IPU executes
a monitor call instruction. Either a monitor call and wait (MCW) or a monitor
call and proceed (MCP) instruction causes the controller to enter the Brown
subcycle. Brown is a transient subcycle in which the controller checks for
PAC4 from level 4 controller before exiting to the Monitor Calls state (state
10). Figure 4-28 illustrates this decision path for the Brown subcycle.
Sequence A is a no operation sequence.

4-249 INSTRUCTION ERROR. The cont roll er enters the Instruction Efror sub­
cycl e when the Initial Idle state detects that a memory protect violation oc­
curred when the instruction at 1eve1 3 was fetched from memory. In addition,
if the instruction at level 3 is an illegal operation code, or contains format
errors that wili not allow the CP to execute the instruction properly, the con­
troller enters the Instruction Error subcycle. In this cycle, the controller
waits until the pipe empties into the Z buffer in the MBU. It then initiates·
a forced write operation to store those results into memory and signals the PP
with either the PV or !LOP reason code bit to explain why the instruction is
not executed. This empties the pipe of all successfully completed store in­
structions and terminates the program sequence until the PP or the user can
rectify the error and restart the ~rogram. Figure 4-29 illustrates the de­
cision paths contained in the Instruction Error subcycle.

4-250 YELLOW. The Yellow subcycle (figure 4-30) inspects conditions in the
IPU to determine what transfers and gating signals should be enabled during
indirect and execute instructions. The controller enters the Yellow subcycle
from the Initial Idle state if it determines that the instruction is either an

4-119 Advanced Scientific Computer

~-----"-------

(A) 124858

BEGIN
SEQUENCE

A

NO OP

o-XEC
FLAG
o-Rl;:GISTER
INHIBIT
FLAG

PAC3

EXIT TO INITIAL
IDLE STATE

Figure 4-27. No Op Subcycle of Level 3 Idle State

BROWN

BEGIN
SEQUENCE

A

(A) 124859 EXIT TO MONITOR CALLS STATE

Figure 4-28. Brown Subcycle of Level 3 Idle State

4-120 Advanced Scientific Computer

(A) 124860

INSTRUCTION
ERROR

START
FORCED
WRITE

EXIT TO
INITIAL IDLE

STATE

PV
(IRSETPRV)

NO

ILOP

Figure 4-29. Instruction Error Subcvcle of Level 3 Idle State

indirect instruction that is not a branch, or an execute instruction. The
controller a 1 so enters the Yell 0\\1 subcycl e from the Blue subcycl e if that sub­
cycle detects an indirect instruction. In this subcycle the controller de­
termines if the instruction references an address in the register file (as2F,
M=O). If it does, the controller ensures that the instruction is not a branch
and that the Register Inhibit flag is not set. If both of these conditions
are met and there is no alpha register hazard, the controller initiates a
transfer from the register file to IR, signals that the indirect request is
comolete (for either an indirect or execute) and sets or clears the Register
Inhibit flag depending upon the type of instruction. The Register Inhibit
flag prevents accesses to the register file for more than one level of indirect
addressing. The controller then exits to the Initial Idle state. If an alpha

4-121 Advanced Scientific Computer


~~~~~~~~~~ 

I YELLOW 

REGISTER 
INHIBIT 
P'LAG -o 

REGISTER 
INHIBIT 
FLAG -1 

YELLOW 
CONTINUED L_ -----

(B) 114321A 

-------

S'rART 
FORCED 
WRITE 

YES 

EXIT TO 
INITIAL IDLE 

STATE 

REGISTER 
INHIBIT 
l"LAG-1 

LOCAL 
INDIRECT 
TO IR 

IBLINDIR 

INDIRECT 
REQUEST 
COMPLETE 

IBQRINDF REGISTER 

EXIT TO 
INITIAL IDLE 

STATE 

INHIBIT 
FLAG-o 

I 
I 
I 
I 
I 

_______ _J 

f'i gure 4-30. Yellow Subcycle of Level 3 Idle State (Sheet 1 of 2) 

4-122 Advanced Scientific Computer 



INDIRECT 
REQUEST 

YELLOW 
CONTINUED 

YES 

LOCAL 
INDIRECT 
TO IR 

-----------. 

INDIRECT 
REQUEST 
COMPLETE 

EXIT TO 
INITIAL IDLE 

';TATE 

EXIT TO 
INITIAL 
IDLE STATE 

LOCAL 
INDIRECT 
TO IR 

---------- I INDIRECT 
REQUEST 
COMPLETE 

EXIT TO 
INDIRECT REQUEST 

(STATE 15) 

(B) 124861 

Ftgure 4 ... 30. 

I 
L __ J 

EXIT TO 
INITIAL IDLE 

STATE 

Yellow Subcycle of Level 3 Idle State (Sheet 2 of 2) 

4-123 Advanced Scientific Computer 



hazard was detected, the controller exits at that point to the Initial Idle 
state to wait for the hazard to clear before permitting access to the register 
file. 

If the address referenced by the instruction is not in the register file, the 
controller checks for an alpha octet hazard. If a hazard exists and one 
or more instructions are still in the pipe that will be stored into memory, 
the controller exits to the Initial Idle state to wait for the hazard to clear. 
If no writes are in the pipe and a forced write is not in progress, the con­
troller checks the contents of the ZA register. If the address in the !PU ZA 
register is an active address (indicating a valid octet of data in the MBU Z 
buffer), the controller initiates a forced write operation to transfer that 
oct~t to memory (refer to Forced Write controller)~ and returns to the Initial 
Idle state. If ZA is not full, the controller continues with the Yellow sub­
cycle inspections. 

If alpha is not in the register file and there is no aloha register hazard, 
the controller either sets or clears the Register Inhibit flag depending upon 
whether the instruction is an indirect or an execute, respectively. If the 
alpha octet address is equal to the address of the current octet and the cur­
rent octet is valid, the controller oerforms a transfer from the current buf­
fer (indicated by KRTAG) into IR as long as that buffer is full and no hazard 
exists for that buffer. If the buffer does not contain a valid octet, the 
controller returns to the Initial Idle state. 

If alpha is not in the current octet but is in the look ahead octet, the con­
troller ensures that the look-ahead octet is present in the !PU and then trans­
fers the required instruction from that octet (indicated by KRTAG) to IR if no 
instruction hazard exists for the referenced buffer. 

The controller initiates an indirect request to memory for the octet contain­
ing the required instruction if alpha is not in the register file, the current 
octet or in the look-ahead octet. If Central Memory Requester (CMR) is pre­
pared to make the read request to memory, the control cycle is complete. The 
controller indicates that the indirect request is complete and retu~ns to the 
Initial Idle state. If, however, CMR is not orepared to make the read request, 
the controller exits to the Indirect Request state to wait for CMR to issue 
the request for the required octet to memory. 

4-251 PINK. The controller enters the Pink subcycle (figure 4-31) when it 
detects a skip condition at level 3 of the IPU. The controller performs two 
passes through the Pink subcycle to effect a skip of the next instruction. 
When the controller enters the Pink subcycle, the Hold flag is clear. The 
controller then checks for an R Hazard condition. If a hazard exists but the 
R-field of the instruction references register 00 of the register file and the 
object word is not a doubleword, the controller continues with the normal 
examination cycle. Register 00 of the register file is fixed at all zeroes 
and can therefore produce no hazards as long as the requested word is entirely 
within word 00. If the hazard is not for word 00, the controller determines 
if it can recover from the hazard by using the short circuit path in the AU 
so that a delay while waiting for the hazard to clear can be avoided. If the 
short circuit path can be used, the controller sets the Short Circuit at Level 

4-124 Advanced Scientific Computer 



~~~~~~~~~~ 
I

L_
(B) 114326A

------------,
PINK (SKIP) I

START
SEQUENCE
BA

PINK
CONTINUED

START
141------4 SEQUENCE

Bl

1-HOLD
FLAG

BEGIN
SEQUENCE
A

_______ _._~ EXIT TO
INITIAL
IDLE STATE

_J

Ftgure 4-31. Pink Subcycle of Level 3 Idle State (Sheet l of 2)

4-125 Advanced Scientific Computer

I
I

-------------1
A

BEGIN
SEQUENCE
A

o.-xEc
FLAG

0-+REGISTER
INHIBIT
FLAG

o.-HOLD
FLAG

PAC3

L __
(B) I I 4327A

Figure 4-31 .

PINK
CONTINUED

YES

EXIT TO
INITIAL IDLE
STATE

BRANCH 0

0 SKIP CON-
-olTION

BIT (BSC)
SKIP

EXIT TO
INITIAL IDLE

STATE

PAC3

NO

______ J

Pink Subcycle of Level 3 Idle State (Sheet 2 of 2)

4-126 Advanced Scientific Computer

4 flag and continues with the normal examination cycle. If the short circuit
path cannot be used, the controller returns to the Initial Idle state for the
next clock cycle.

If no R hazard exists and the Register Inhibit flag is not set, the controller
determines if the skip instruction references a value in the register file for
skip determination comparison. If the value is in the register file and a
hazard exists for the alpha operand, the controller determines if the hazard
can be ignored due to a reference to register file word 00. If not, the con­
troller returns to the Initial Idle state to wait for the hazard to clear. If
no hazard exists or if that hazard can be ignored, the controller initiates
sequence BI and enables the level 3 to level 4 transfer to load the test value
into the pipe for processing, and sets the Hold flag before returning to the
Initial Idle state. If the skiry did not reference a register file address,
the controller initiates sequence BA and enables a level 3 to level 4 transfer
to load the test value into the pipe, and sets the Hold flag before returning
to the Initial Idle state.

During the second pass through the Pink subcycle, the Hold flag is set. The
controller then waits for the test to be comoleted to determine if the skip is
to be executed. When the test is complete, the controller clears the Execute
flag, the Register Inhibit flag and the Hold flag, and examines the indication
from the AU to determine if the skip will be performed. If the AU indicates
that the skip will be performed and the skip instruction was not the object
instruction of an execute, the controller issues a SKIP signal to the other
controllers so that the next instruction is bypassed. If the skip was part
of an execute instruction, the controller does not perform the skip, but
signals PAC3 to the level 2 controller and sets the Branch or Skip Condition
bit (BSC) to indicate that the instruction referenced by the execute instruc­
tion was a branch or skip instruction (these instructions will not be per­
formed when referenced by an execute instruction). If the AU indicates that
the skip will not be taken, the controller issues PAC3 to the level 2 con­
troller, and clears the BSC bit if the instruction was 'part of an execute
operation. Regardless of the outcome of the AU test, the controller returns
to the Initial Idle state after performing the specified operations.

4-252 GRAY. The controller enters the Gray subcycle (figure 4-32) from the
initial idle state when it ascertains that the instruction at level 3 is an
immediate operand, a store operation, a conditional branch, an execute, a load
operation, or an addition or subtraction command. In this subcycle the con­
troller performs the inspections and transfers necessary to complete each of
these operations at level 3. All ooerations within this subcycle are depen­
dent upon the receipt of PAC4 from the level 4 controller. Until this indica­
tion is received, the controller loops between the Initial Idle state and the
Gray subcycle.

If the instruction at level 3 is a load immediate instruction, the controller
loads the immediate value into the pipe, (sequence BI and LVL3 ~LVL4),
clears the Execute flag and the Registe Inhibit flag, and signals PAC3 to the
level 2 controller before returning t9 the Initial Idle state.

4-127 Advanced Scientific Computer

LOAD
IMMEDIATE

START
SEQUENCE
Bl

L--
(BJ 114323A

GRAY

START
SEQUENCE
BA

0-+XEC
FLAG

(OTHERS)

EXIT TO
INITIAL IDLE
STATE

1-15QSCR4
~~~~~~~--~~~~-t (REG STACK 

START 
SEQUENCE 
Bl 

0-+REGISTER 
INHIBIT 
FLAG 

SCR) 

LVL3-+LVL4 

BEGIN 
SEQUENCE A 

PAC3 

---, 
I 
I 

EXIT TO 
INITIAL 
IDLE 
STATE 

EXIT TO 
INITIAL 
IDLE 
STATE 

r-- ~ 

figure 4-32. Gray Subcycle of Level 3 Idle State (Sheet 1 of 2) 

4-128 Advanced Scientific Computer 



~~~~~~~~~~ 
r-------------,

BEGIN
SEQUENCE
A

EXIT TO
INITIAL

IDLE STATE

YES

NO

START
SEQUENCE
BBBI

0-+XEC
FLAG

0-+REGISTER
INHIBIT
FLAG

LVL3-+LVL4

PAC3

START
SEQUENCE
BLBI

EXIT TO
INITIAL IDLE
STATE

l_.ISQSCR4
(REG STACK
SCR)

BEGIN
SEQUENCE
A

EXIT TO
INITIAL

IDLE STATE

L_ ------------- J
(B) 114324A

figure 4 .. 32. Gray Subcycle of Level 3 Idle State (Sheet 2 of 2)

4-129 Advanced Scientific Computer

If the instruction at level 3 is a load operation and the Register Inhibit
flag is not set, the controller determines if the load operation references a
location in the register file to supply the quantity to be loaded. An access
outside the register file causes the controller to initiate sequence BA to
retrieve the object octet from memory and load it into the pipe through the
MBU memory interface. If the quantity is in the register file, the controller
determines if there is an instruction in the pipe that will change that quan­
tity (alpha register hazard). If a hazard exists and the instruction does not
reference word 00 of the register file, the controller checks to see if it can
avoid a hazard delay by using the short circuit path in the AU to recover from
the hazard. If not, the controller exits to the Initial Idle state to wait
for the hazard to clear. If a short circuit path is.available, the controller
signals that the short circuit path should be· used. The controller then ini­
tiates sequence BI to transfer the desired quantity into the pipe.

Regardless of the path taken during the load cycle inspection (unless an alpha
register hazard created a controller loop cycle), the controller concludes the
examination cycle by clearing the Execute flag and Register Inhibit flag, en­
abling the transfer of level 3 to level 4, and transmitting PAC3 to the level
2 controller before returning to the Initial Idle state.

If the instruction at level 3 is an arithmetic instruction or an arithmetic
immediate instruction, the controller examines the hazard detection circuits
for an R-field hazard. If a hazard is indicated, but the R-field references
word 00 of the register file and the addressed word is not a doubleword, the
controller ignores the hazard (Word 00 is fixed zeroes and cannot have a half­
word or singleword hazard associated with it). If the hazard cannot be ig­
nored, the controller determines if it can use the short circuit path in the
AU to recpver from the hazard and avoid the hazard delay time. If the short
circuit path is available, the controller sets the Short Circuit at Level 4
flag. If not, the controller loops between the Initial Idle state and the
Gray subcycle until the hazard clears. After the R-field hazard determination
has been performed, the controller separates the immediate instructions from
the arithmetic instructions. The arithmetic i nstructi ans foll ow the control
path described for load operations above; the immediate operand follows the
load immediate cycle described above.

For store operations at level 3 the controller checks for R-field hazards us­
ing a control cycle similar to addition, subtraction, or immediates unless
the store operation is a store program status instruction. In that case the
controller determines if any instruction is already in the pipe that will pro­
duce a change in the comoare code, arithmetic exception, or result code bits,
or if a Load Arithmetic Mask instruction is in the pipe. These conditions will
change a portion of the program status doubleword and are termed 11 hex register
hazard" conditions. If a hex register hazard exists, the controller loons
between the Initial Idle state and the Gray subcycle until the hazard clears
the pipe and has modified the cell in the status doubleword. If no hex reg­
ister hazard exists, the controller continues with the store inspection cycle.

Having determined that no hex regis'ter hazards affect the store operation, the
controller determines whether the store is intended for the register file. Two
conditions must be satisfied to make this determination: the Register Inhibit

4-130 Advanced Scientific Computer

flag must be clear, and the alpha address and M-field must indicate that the
store is intended for the register fiel. If these conditions are true, the
controller initiates sequence BLBI to store the specified material into the
register file. If the store operation is not for the register file, the con­
troller initiates sequence BBBI to store the specified material into central
memory. Regardless of the storage destination of the material, the controller
completes the control cycle by clearing the Execute and Register Inhibit flags,
enabling the transfer of level 3 to level 4, and transmitting PAC3 to level 2
controller before exiting to the Initial Idle state.

4-253 ORANGE. The controller enters the Orange subcycle (figure 4-33) when
it determines that a load or store file operation is in level 3 of the IPU.
This determination is performed only in the Initial Idle state of the control­
ler. The Orange subcycle divides the file instructions into multiple (those
operations involving more than one register file octet), and single (those
operations that load or store only one octet in the register file).

If the instruction is a load or store multiple, the controller ensures that
all operations that store results into the register file (or the memory loca­
tion used to load the file) have cleared the pipe. If the pipe is active or a
forced write operation is in progress, the controller loops to the Initial
Idle state to wait for the pipe to clear. If neither of these conditions exist
but a valid octet of data is in the Z buffer in the MBU (ZA Full), the control­
ler initiates a forced write operation to store that octet into memory before
con ti nui ng with the contra 1 cycle. When the contra 11 er determines that the
pipe is clear of all operations, it loads a value of 11 511 into the completion
counter. During load file multiple operations in the Orange Request state,
the controller checks the completion counter after a request has been made for
an octet from memory. If the counter is not equal to zero, the controller
decrements the counter and continues to make requests for the remaining octets.
This procedure results in six octet requests to memory before the operation
terminates .

For a store operation, the controller determines if the store will affect the
octet contained in the f·1BU X or Y buffers by comparing the a 1 pha address of
the store instruction with the address in the XA and YA registers in the IPU.
If either of the comparisons is true, the controller clears the activity bit
associated with that address register so that succeeding instructions in the
IPU will not draw operands from the unchanged values in the X or Y buffers.
The controller then issues a store file request to CMR, and loads the request
counter with a value of 11 411 • In the Orange Request state the controller
checks the contents of the request counter after each store file request is
made to terminate the operation after six file octets have been stored into
memor¥. If CMR is prepared to perform a write into memory on the next clock
(WACK), the controller sets the AR Increment flag so that the next clock pulse
will add eight to the address in the AR registe~ (alpha addre~s). The controller
then exits to the Orange Wait state for one clock cycle and then to the Orange
Request state. If CMR was not ready to perform a write request due to out­
standing read requests to central memory, the controller loops between the
Initial Idle state and the Orange subcycle until all requests have been honored.

4-131 Advanced Scientific Computer

-~------... --------- - -,
ORANGE

YES

(FILE INSTRUCTIONS)

EXIT TO
'---------~· INITIAL

IDLE STATE

NO

START
FOltCED
WltlTE

L _______________ J

EXIT TO
INITIAL IDLE

(8) 114334A. STATE

Figure 4-33. Orange Subcycle of Level 3 Idle State {Sheet 1 of 3)

4-132 Advanced Scientific Computer


~~~~~~~~~~ 
I ------------, NOTE: 

0--- REQUEST 
CTR 

C>-COMPLETION 
CTR 

0 -VA 
ACT 

O-LOACT 

o-xA 
ACT 

STORE FIL.E 
REQUEST 

*STF HAZ IF OI= XA, VA 
AND XA, VA ACTIVE 
BUT NOT FUL.L. 

* * AVAIL.ABIL.ITY OF KCM MUST BE GUARANTEED EVEN THOUGH 
MEMORY WIL.L. NOT BE ACCESSED SINCE STORE ZEROS CASE 
USES BUS WHICH AL.WAYS HAS SOMETHING ENABL.ED. THERE­
FORE KCM IS ENABL.ED TO FURNISH ZEROS 

L.OAO FIL.E 
REQUEST 

EXIT TO 
INITIAL. 

101...E STATE 

FIL.E -FIL.E 

EXIT TO 
ORANGE 
WAIT 
STATE 12 

YES 

EXIT TO 
INITIAL. 
101...E STATE 

0-L.OACT 

O- XEC 
FLAG 

O-REG 
INHIBIT 
FL.AG 

PAC3 

NO 

EXIT TO 
INITIAL. 

101...E STATE 

L--------------~ 
(B) 11433SA 

Figure 4-33. Orange Subcycle of Level 3 Idle State (Sheet 2 of 3) 

4-133 Advanced Scientific Computer 



(ORANGE 
MULTIPLE) 

(B) 1 24862 

Figure 4-33. 

s-COMPLETION 

COUNTER 

YES 

o-Lo 
ACT 

LOAD FILE 
REQUEST 
TO CMR 

s-REQUEST 
COUNTER 

EXIT TO 
INITIAL IDLE 

STATE 

s 

I-AR INC 
l"L.AG 

EXIT TO 
ORANGE WAIT 

STATE 12 

NO 

STORE FILE 
REQUEST 
TO CMR 

4-REQUEST 
COUNTER 

IOXIT TO 
INITIAL IDLE 

STATE 

0-XA 
ACT 

o-vA 
ACT 

Orange Subcycle of Level 3 Idle State (Sheet 3 of 3) 

4-134 Advanced Scientific Computer 



During Load File Multiple instructions, the controller clears the LO register 
activity bit. The LO (Last Destination) register contains the register file 
destination address of the last instruction sent down the pipe. Since the 
contents of the register file are being changed by the load file multiple 
instruction, this address is no longer useful. Clearing the LO activity bit, 
therefore, indicates that the address in LO is not a valid last destination 
address. The controller then issues a load file request to CMR, sets the re­
quest counter to a value of 11 511 , and if CMR is prepared to process a read 
memory request (RDACK), sets the AR Increment flag. Setting this flag results 
in adding eight to the address in the AR register during the next clock cycle 
so that the address of the next file octet will be in the AR register. The 
request counter tracks the number of requests yet to be made to memory in the 
Orange Request state of the controller. 

For single file instructions the controller determines if the instruction ref­
erences an address in the register file. If alpha is in the register file, 
the controller checks to see that no operation in the pipe will change the 
values of the alpha address octet (alpha register octet hazard), and also that 
the octet in the register file specified by the R-field will not be changed by 
an operation in the pipe (R Octet hazard). The controller then enables a 
11 file to file 11 transfer, clears the LD register activity bit, clears the Ex­
ecute and Register Inhibit flags, and issues PAC3 to the level 2 controller 
before exiting to the Initial Idle state for the next control clock. If the 
operation is a store zeroes, the memory bus must be clear of all data (WACK) 
so that KCM can supply an input of all zeroes to the register file octet in­
dicated by the alpha address. 

If a single file instruction references an address outside of the register 
file, or the register inhibit flag is set, the controller determines if any 
operation in the pipe will affect the memory location designated by the alpha 
address (alpha hazard). If such a hazard exists, the controller loops between 
the initial idle state and the Orange subcycle until a forced write operation 
has emptied the pipe and stored the results in memory (ZA not full). Once the 
controller has determined that either no alpha hazard exists or that the 
hazard has cl eared, it ensures that no hazard exists to the memory ·1 ocati on 
specified by the R-field. The controller then loads a value of zero into the 
request counter and into the completion counter to prevent more than one octet 
from being affected by the operation. If the operation is a load, the control­
ler clears the LD register activity bit, issues a load file request to CMR, 
and if CMR can process that request the controller exits to the Orange Wait 
state and then to the Orange Request state. 

If the operation is a store file, the controller checks for a store file 
hazard. A store file hazard exists if a previous instruction caused the MBU 
to order an octet from memory (XA or YA active), that octet has not yet 
entered the MBU from memory (XA or YA not full), and the alpha address of 
the store file instruction references that octet for the store file destina­
tion. Under this condition the store file operation will write on top of the 
desired information in memory before it can be fetched for the previous instruc­
tion. To avoid destruction of the needed information, the controller loops 
between the Initial Idle state and the Orange subcycle until the hazard clears. 
When the hazard clears, the controller issues a store file request to CMR. If 

4-135 Advanced Scientific Computer 



~______,....------
alpha references the address in either XA or YA, the controller also clears 
the respective register activity bit to indicate that the address no longer 
represents the memory location of the octet in the MBU. If CMR is not pre­
pared to perform the write operation to memory {not WACK), the controller 
loops between the Initial Idle state and the Orange subcycle until WACK be­
comes active. At that time the controller clears the Execute and Register 
Inhibit flags and issues PAC3 to the level 2 controller before returning to 
the Initial Idle state for the next control cycle. 

4-254 GREEN. The Green subcycle processes exchange instructions and condi­
tional branches that use the IPU hardware to determine the branch condition 
{BCLE and BCG). The controller enters this subcycle from the Initial Idle 
state when the instruction at level 3 is determined to be within the described 
categories. Figure 4-34 illustrates the decision paths available within the 
Green subcycle. The controller may take one of two paths through the subcycle 
depending upon the type of instruction at level 3 of the IPU. 

The two conditional branch instructions pass through the Green subcycle three 
times to complete the test and branch operation. During the first control 
cycle, the controller enters Green and the Hold flag is not set. This flag is 
set in the Green subcycle to track the number of times that the controller has 
passed through the subcycle. Since Hold is clear, the controller checks for 
hazards to the registers specified by both the R and T fields of the instruc­
tion. If any instruction in the pipe will alter the contents of the register 
specified by either of these quantities, the controller loops between the Ini­
tial Idle state and Green until all hazards have cleared. The controller then 
initiates sequence BI to transfer the test parameters from the areas specified 
in the instruction fields into the level 4 registers {RO and AO) for the branch 
determination. The controller enables the level 3 to level 4 transfer and sets 
the Hold flag before returning to the Initial Idle state for the start of the 
second control cycle. 

The second control cycle during BCG or BCLE instructions allows the IPU time 
to add the test parameters to decide whether to branch. The count value is 
contained in the RO register, the index value is in the most significant half 
{32 bits) of AO, and the comparison value is in the least significant half of 
AO. The IPU adds RO to the most significant half of AO and the one's comple­
ment of the least significant half of AO. The carry out bit of this operation 
determines if the branch is to be taken. The second cycle allows time for this 
operation by checking the Branch Done flag. This flag is not set, so the con­
troller sets that flag and returns to the Initial Idle state for the start of 
the next control cycle. , 

During the third control cycle, both the Hold flag a~d· the Branch Done flag 
are set. The controller exits to the Decide {Green) subcycle to determine the 
results of the branch comparison, and either take or disregard the branch. 

4-136 Advanced Scientific Computer 



L_ 
(ti) 1I4332A 

GREEN 

START 
SEQUENCE ... , 

LVL3-LVL4 

O•HOLD 
FLAG 

O•XIEC 
FLAG 

0 -RIEGISTER 
INHIBIT 
FLAG 

-----------1 
(BCL.E ,BCG, 
EXCHANGE OR LL.A) 

(STORE) 

"AC3 

EXIT TO 
DECIDE 

(GREEN) 
SUBCYCL.E 

EXIT TO 
INITIAL. IDl..E 

l•BRANCH 
DONE 
FLAG 

EXIT TO 
INITIAL. 101..E 

STATE 

STATE J 
--------~---

Figure 4-34. Green Subcycle of Level 3 Idle State (Sheet 1 of 2) 

4-137 Advanced Scientific Computer 



STAJtT 
SEQUENCE 
llA 

LVLS•LVL4 

I-HOLD 
l'LAG 

-------------

START 
SEQUENCE 
•• 

START 
SEQUENCE 
•• 

EXIT TO 
INITIAL IDLE 
STATE 

NO 

•t£GIN 
SEQUENCE 
A 

EXIT TO 
INITIAL 

IDLE STATE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L-­<•> It 4333A ------------_ ___. 

Figure 4-34. Green Subcycle of Level 3 Idle State (Sheet 2 of 2) 

4-138 Advanced Scientific Computer 



An exchange instruction interchanges the contents of a register file location 
{specified by the R-field) with the contents of a memory or register file loca­
tion specified by the effective address, alpha. The controller passes through 
Green twice when processing an exchange instruction. The first pass accesses 
a memory location and sends the contents into the pipe for storage in the reg­
ister file location designated by the R-field. The second pass, one clock 
later, draws the present contents from the register file location and sends 
them down the pipe for storage in the memory location vacated by the original 
value. Although having a store destined for the register file in the pipe at 
the same time that the register file location is stored into memory constitutes 
a hazard, the Green subcycle ignores that hazard condition so that the exchange 
may be accomplished in two clock cycles. 

During the first pass through the Green subcycle, the Hold flag is not set. 
The controller then checks for a hazard to the register file location specified 
in the R-field. If a previous instruction in the pipe will change the contents 
of that location, the controller loops between the Initial Idle state and the 
Green subcycle until that instruction clears the pipe and the result is stored 
into the register file. When the hazard has cleared, the controller checks 
the Register Inhibit flag. If this flag is not set, the location specified 
by the alpha address may also be in the register file. If alpha is less than 
or equal to 2F and the M-field is zero, the alpha address specifies a register 
file location. In that case the controller determines if a previous instruc­
tion in the pipe will alter the contents of the referenced register. If no 
hazard exists, or if the alpha address references address 00 in a singleword 
or halfword transfer, the controller initiates sequence BI to load the value 
from the register file into the pipe to be stored in the designated register 
file location. If a hazard does exist, however, the controller determines if 
a short circuit path is available for recovery from the hazard. For a short 
circuit the controller sets the "short circuit at level 411 flag (ISQSCA4) and 
initiates sequence BI. The unchanged value will be transferred from the reg­
ister file and started down the pipe. However, when the value reaches level 7 
(input to the AU), the AU short circuit path will change the data to the cor­
rect value before it is stored into the register file. If no recovery is pos­
sible from the hazard, the controller loops between the Initial Idle state and 
the Green subcycle until the hazard clears the pipe and has been stored into 
the register file. If the alpha address is not in the register file, the 
controller instead initiates sequence BA to fetch the required data from a 
memory location and start it down the pipe to be stored into the register file. 
Regardless of the source of the data to be stored into the register file, the 
controller completes the control cycle by enabling the level 3 to level 4 
transfer and setting the hold flag to designate that the first cycle has been 
completed. The controller returns to the Initial Idle state for the start of 
the next control cycle. 

During the second pass through the Green subcycle, the Hold flag is set. If 
the alpha address (destination of the store portion of the exchange) is in the 
register file, the controller initiates sequence BLBI to fetch the word from 
the location in the register file· specified by the R-field and transfer it into 
the pipe for storage into the register file location designated by alpha. If 
alpha designates a memory location, the controller initiates sequence BBB! to 
start the register file data into the pipe for storage into memory. In either 

4-139 Advanced Scientific Computer 



case the controller enables the level 3 to level 4 transfer, initializes the 
controller by clearing the Hold, Execute and Register Inhibit flags, and trans­
mits PAC3 to the level 2 controller before returning to the Initial Idle state 
for the next control cycle. · 

4-255 BLUE. The level 3 controller enters the Blue subcycle from the Initial 
Idle state when it determines that the instruction at level 3 is either a 
load look ahead (LLA) or a branch other than a conditional branch that can be 
decided in the IPU (BCLE or BCG - see Green). The Blue subcycle generates re­
quired gating and flag signals. The controller may then exit to either the 
Initial Idle state, to the Decide subcycle for conditional branches, or to the 
Yellow subcycle for indirect branches. Figure 4-35 illustrates the decision 
paths available within the Blue subcycle. The paths may be divided into three 
categories depending upon the instruction type: an LLA, a branch and store 
P3 in the register file (BLB or BLX), or some other type of branch instruction. 

If the instruction at level 3 is an LLA, the controller determines if the 
branch instruction referenced by the LLA (target) is in level 1 or level 2 
of the IPU. This determination is made by comparing the instruction count 
(difference of instruction sequence numbers between LLA and branch) portion of 
the LLA instruction with the number of active levels in the IPU. If the in­
struction count is 11 211 , for example and both level 1 and level· 2 are active, 
then the instruction in level 1 is the target. If the target is in the pipe, 
the level 3 controller does not issue an LLA Transfer signal to enable the 
look ahead controller. If the target is not in the pipe, the level 3 con­
troller enables the load look ahead controller to transfer the address in P3 
into BA for reference when the target does enter the pipe. In either case, 
the controller issues PAC3 to the level 2 controller to indicate that it is 
ready for the next instruction, and clears the Execute and Register Inhibit 
flags. The controller returns to the Initial Idle state for the start of the 
next control cycle. 

If the instruction at level 3 is an unconditional branch (either a BLB or a 
BLX), the controller determines if the instruction is an indirect instruction. 
If it is an indirect instruction and not a part of an Execute instiuction, the 
indirect portion of the instruction must be satisfied before further processing 
of the branch can be performed. The controller therefore exits to the Yellow 
subcycle to process the indirect addressing involved in the instruction. If 
indirect addressing is not involved in the instruction, the controller con­
tinues with the BLB, BLX instruction path. 

Two flags control the completion of the BLB, BLX decision path. The Operand 
Done flag indicates that the P3 address is being modified in the AU to a value 
of P3+1 and will be stored into the base or index register specified by the 
R-field. This value is used for return address at the end of the subroutine. 
The process also stores the AE mask and condition bits in the same register 
file location to reinstate these status conditions when the program returns 
from the subroutine. The Branch Done flag indicates that the source of the b 
branch path has been isolated, but either the lack of PAC4 from the level 4 
controller or a hazard to one of the status word bits prevents the branch 
from executing. If either flag sets, the controller loops between the Initial 
Idle state and the BLB, BLX path until the circumstances that causes the flag 
clear. 

4-140 Advanced Scientific Computer 



.---_-___ -__ ~- - - - - - - - - - - -
BLUE 

BRANCH 
NOT 
TAKEN 

O+XEC 
l"LAG 

NO 

L __ 
(B) 11432BA 

BRANCHES• 
LLA 

EXIT TO 
DECIDE 
(BLUE) SUBCVCLE 

TARGET 
FAIL 

O+REGISTER 
INHIBIT 
FLAG 

PAC3 

PAC 3 

EXIT TO 
YELLOW 
SUBCVCLE 

BEGIN 
SEQUENCE 
A 

O-+REGISTER 
INHIBIT 
FLAG 

EXIT TO 
INITIAL 

IDLE STATE 

BRANCH OR 
o-+sKIP CON­

DITION BIT 

EXIT TO 
INITIAL 
IDLE STATE I 

------.............----- -~_J 
Figure 4-35. Blue Subcycle of Level 3 Idle State (Sheet 1 of 3) 

4-141 Advanced Scientific Computer 



r--

1 

I 

START 
SEQUENCE 
Bl 

LVL3+LVL4 

-..-.-----

BEGIN 
SEQUENCE 
A 

EXIT TO 
INITIAL 

IDLE 
STATE 

BRANCH 
TO CM 
REQ 

EXIT TO 
INITIAL 

IDLE STATE 

YES 

CANCEL 
LLA 

EXIT TO 
INITIAL 

IDLE 
STATE 

BRANCH 
TO LVL.2 

BRANCH 
TO LVLI 

BRANCH 
TO l'A 

BRANCH 
TO LA 

-----·--------J 
(B) 114329A 

Figure 4-35. Blue Subcycle of Level 3 Idle State (Sheet 2 of 3) 

4-142 Advanced Scientific Computer 



,-------------1 

L_ 
(B) 11 4330A 

CANCEL LL.A 

BRANCH TO 
CM REQ 

BRANCH 
TO LVL2 

BRANCH TO 
LVL 1 

BRANCH 
TO PA 

BRANCH 
TO L.A 

!-+OPERAND 
DONE FL.AG 

EXIT TO 
INITIAL IDLE 
STATE 

O•REGISTER 
INHIBIT 
FL.AG 

PAC3 

O•OPli:RAND 
DONIE 
0-+l!IRANCH 
DONE 

EXIT TO 
INITIAL 

IDLE 
STATE 

_. ________ J 

Figure 4-35. Blue Subcycle of Level 3 Idle State (Sheet 3 of 3) 

4-143 Advanced Scientific Computer 



When the controller enters the BLB, BLX path the Operand Done flag will not 
be set. If PAC4 is present from the level 4 controller, the pipe is examined 
for an instruction that wil1 change the Arithmetic Exception or Mask condition 
bits. These bits are part of the program status word and are stored along 
with P3 into the designated register file doubleword when the BLB or BLX is 
performed. If these bits will be changed, the controller must wait until the 
hazard clears the pipe before storing status information. Under this circum­
stance, the controller checks the Branch Done flag to determine if this con­
trol path has previously been taken for this instruction. If the flag is set, 
the controller loops to the Initial Idle state. If it is not set, the con­
troller examines the Execute flag. If the instruction is part of an execute 
operation, the actual branch will not be performed. Instead the controller 
sets the Branch or Skip Condition bit to indicate that a branch instruction 
was detected. This completes the execute operation and the controller returns 
to the Initial Idle state for the next control cycle. If the instruction is 
not an execute, the branch path wi 11 be taken. The contra 11 er cance 1 s any LLA 
that may be in progress, since the branch will divert the instruction path 
from the path containing the target. The controller then determines if the 
branch address is in the IPU. For branches within the IPU the controller 
issues signals that inactivate all instructions between level 3 and the branch 
path so that the next active instruction that reaches level 3 will be the first 
instruction in the branch path. If the branch path is in central memory, the 
controller indicates to CMR that a memory request is required. When CMR is 
able to make the request, or if the branch was within the IPU, the controller 
sets the Branch Done flag to indicate that the branch path is ready to execute 
when the status word hazard clears or when level 4 can accept the branch path. 

In the absence of any status word hazards the controller initiates sequence BI, 
and enables the level 3 to level 4 transfer to start the program status data 
down the pipe to be stored into the register file. The controller then examines 
the Branch Done flag to determine if a previous control cycle has prepared the 
branch path for execution. If this flag is not set, and the branch is not 
part of an execute instruction, the controller cancels any LLA in progress and 
determines if the branch is local (within the IPU) or in central memory. Local 
branches result in inactivating the intervening instructions so th~t the next 
instruction to reach level 3 will be the first instruction in the branch path. 
For a branch to a central memory location, the controller indicates to CMR 
that a memory request is required. If CMR is not ready to perform the fetch, 
the controller sets the Operand Done flag and loops between the Initial Idle 
state and the BLB, BLX path until CMR requests the new octet. When the con­
troller is sure that the branch path is in the IPU and will supply the next 
active instruction to level 3, the controller clears the Execute, Register 
Inhibit, Branch Done and Operand Done flags, issues PAC3 to the level 2 con­
troller, and returns to the Initial Idle state for the next control cycle. 

If the instruction at level 3 is not an LLA, a BLB or BLX, the controller ex­
amines the R field of the instruction. If the R field is zero, the instruction 
specifies a no operation condition. If the R field is not zero, the instruc­
tion specifies a branch condition that must be resolved by exiting to the De­
cide (Blue) subcycle. A no operation condition results in issuing a Branch 
not Taken indication to the look ahead controller. If the branch instruction 
was a targeted branch of an LLA instruction, the no operation creates a target 

4-144 Advanced Scientific Computer 



fail condition that requires the load look ahead controller to recover the 
previous instruction stream to replace the branch path that had been loaded 
into the pipe. The controller then clears the Execute and Register Inhibit 
flags, issues PAC3 to level 2 controller, and if the instruction was an ex­
ecute, clears the Branch or Skip Condition bit in the program status word. 
This bit indicates that the branch was not taken when encountered by an exe­
cute instruction. The controller then returns to the Initial Idle state for 
the start of the next control cycle. 

4-256 DECIDE. The controller enters the Decide subcycle from either the 
Green or the Blue subcycle to determine if a branch path will be taken. In­
structions examined at the Green entry point to the Decide subcycle (see fig­
ure 4-36) are always conditional branches. The branch instructions examined 
from the Blue subcycle entry point, however, may be either conditional or un­
conditional. The instructions from the Green subcycle are not relative to 
the condition codes in the AU, since the branch decision comparison is per­
formed in the IPU. For these reasons, two entries are possible into the De­
cide subcycle depending upon the original subcycle. Entry from the Blue sub­
cycle involves additional determinations for a conditional branch, and if 
conditional, whether an instruction in the pipe may change the condition codes 
in the AU and thus affect the branch decision (hex register hazard). If such 
a hazard exists, the controller loops to the Initial Idle state until the 
hazard clears and the resulting condition codes are reflected in the AU bits. 
After these points have been cleared, the decision paths are identical for 
either a Green or a Blue instruction. 

If the AU or IPU examination of the condition bits indicates that the branch 
should be taken, or if the branch is an unconditional branch (R-field = 7), 
the controller determines if the instruction is part of an execute instruc­
tion. If the execute flag is set, the controller indicates that the branch 
will not be taken, and if the instruction is not a BXEC (which is not rec­
ognized as a branch during execute instructions), the controller sets the 
Branch or Skip Condition bit to indicate that the branch was detected. If 
the Execute flag was not set, and the instruction does not require ~recessing 
for an indirect address (Yellow subcycle), the controller inactivates any LLA 
instruction in progress since the branch will divert the instruction path 
from the target. The controller then determines if the branch is to any of 
the local IPU registers. 

For a local branch, the controller issues a control signal that inactivates 
all instructions in the pipe between the branch path instruction and level 3 
so that the next active instruction that reaches level 3 will be the first 
instruction in the branch path. If the branch is not local, the controller 
indicates to CMR that a memory request will be required, and loops to the 
Initial Idle state until CMR is able to make the request for the new octet. 
Once the branch path is in the IPU, the controller clears the control flags, 
issues PAC3 to level 2 controller, and exits to the Initial Idle state for the 
next control cycle. 

If the branch will not be taken, the controller generates a signal that indi­
cates to the other controllers that the branch is not taken. If the instruc­
tion is part of an execute sequence and is not a BXEC instruction, the con­
troller clears the Branch or Skip Condition btt in the status doubleword to 

4-145 Advanced Scientific Computer 



~--------..----------..----------..-----
,----

DECIDE 
(GREEN) 

BRANCH 
NOT 
TAKEN. 

O•Xll:C 
l"LAG 

------------· 

YES 

BRANCH OR 

o • ~~ifo~o;;;. 
(BSC) 

DECIDE 
(BLUE) 

BRANCH 
NOT 
TAKEN 

BRANCH OR 
:>KIP CON­

I • l)ITION BIT 
(BSC) 

NOTE: 

•COMBINATIONAL LOGIC SIGNALS 

. 
BRANCH 
TO 
LVL2 

MA NCH 
TO 
LVLI 

BRANCH 
TO PA 

. 
BRANCH 
TO LA 

EXIT TO 
INITIAL 

IDLE STATE 

O•BRANCH 

EXIT TO 
YELLOW SUBCYCLE 

CANCEL 
LLA 

BRANCH 
TO CM 
REQ 

~~ PAC3 
EXIT J 
INITIA1 IDLE 
STATE 

L.: _________ _ 
(B) I I 4331A 

I ---
Figure 4-36. Decide Subcycle of Level 3 Idle State 

4-146 Advanced Scientific Computer 



indicate that the branch instruction was examined but not taken. If the in­
struction was not part of an execute sequence, the controller determines if 
the branch was targeted by a previous LLA instruction. If the instruction 
was a target, then the look ahead controller will have to recover the old in­
struction sequence to replace the branch sequence that it has loaded into the 
pipe following the targeted branch. The level 3 controller issues 11 Target 
Fail 11 to the look ahead controller to indicate that condition. 

Regardless of the control path taken through the Decide subcycle, when the 
branch determination has been made and satisfied, the controller exits by 
reinitializing the flags and cells used during the determination. It resets 
the condition bits used for determination during BAE and BXEC instructions, 
clears the Execute, Register Inhibit, Hold and Branch Done flags, issues PAC3 
to the level 2 controller, and exits to the Initial Idle state for the next 
control cycle. 

4-257 LAVENDER. The controller enters the Lavender subcycle (figure 4-37) 
from the Initial Idle state when the instruction at level 3 is either a vector 
initiate instruction (VECT or VECTL), or a stack instruction (PSH, PUL or MOD). 
The subcycle determines the type of instruction that is at level 3, performs 
the steps required to ensure that the pipe is prepared to process that instruc­
tion type, and exits to one of three operational states or returns to the Ini­
tial Idle state if the IPU cannot yet process the instruction. The Lavender 
subcycle is divided into two sections. One section ensures that the pipe is 
prepared to process vector initiation instructions; the other section is used 
for stack instructions. · 

If the instruction at level 3 is a vector initiation instruction, the control­
ler loads a value of 11 711 into the completion counter. The counter decrements 
for each word pulled from the vector parameter file during the vector loading 
process so that the controller knows which word it is pulling (see Vector 
Burst state), and when the file is exhausted. If a scalar instruction is in 
the pipe, the controller ensures that the results will be stored by a forced 
write operation. The controller then examines the hazard detection circ uit 
to determine if an instruction in the pipe will change a value in the vector 
parameter file. If such a hazard exists, the controller loops to the Initial 
Idle state until the hazard clears. The controller next checks the R-field 
of the vector initiation instruction. If the R-field is not equal to zero, it 
must be equal to one if the instruction is a valid vector instruction. This 
value indicates that the instruction is VECT and that the desired initiation 
sequence is already in the vector parameter file. The controller exits to 
the First VIl state to begin pulling the initiation parameters from the reg­
ister file. If the R-field is equal to zero, the instruction is VECTL indi­
cating that the vector parameter file must be loaded with a new octet before 
using the file to supply the vector initiation parameters. The controller 
then examines the Register Inhibit flag, the M-field of the instruction and 
the alpha address to determine if the location to supply information for the 
vector parameter file is within the register file. If the address is within 
the register file, the controller ensures that no instruction in the pipe will 
alter the contents of that location before enabling the transfer of the desig­
nated file to the vector parameter file. 

4-147 Advanced Scientific Computer 



-----

START 
l"ORCIED WIUTIE 

EXIT"TO 
INITIAL . 

---
LAVENDER STACK OR 

VECTOR 

-----, 

7-+COMPLE­
TION 
COUNTER 

PUSH,PULL, 
MODIFY 

EXIT TO 
~---.i INITIAL 

IDLE STATE 

EXIT TO 
FIRST VI I 
STATE 1 

L.QAI) l'IL.E 
REQUEST 

l"IU-l"IUE 

START l"ORCED 
WRITE 

EXIT TO 
Fl~T 
VI I 
STATE I 

EXIT TO 
INITIAL. 
IOLE 
STATE 

EXIT TO 

~~~i~ 
WRITS
STATE 0

I IDLE STAT:...._ --- -----.....-.....- ---'
(B) 11A338A /

Figure 4-37. Lavender Subcycle of Level 3 Idle State (Sheet 1 of 2)

4-148 Advanced Scientific Computer

--------------1

STAltT
SEQUENCE
a A

EXIT TO
INITIAL
IDLE STATE

START
i.-..--~~:~QUENCE

FETCH AND TEST
PARAMETERS
LVL3-LVL•

EXIT TO
PUSH-PULL
STATE 9

NO

1-ISQSCA•
(REG STACK
seen

BEGIN
SEQUENCE
A

EXIT TO
INITIAL

IDLE
STATE

J

L _______________ J
(B) 114344A

Figure 4-37. Lavender Subcycle of Level 3 Idle State (Sheet 2 of 2)

4-149 Advanced Scientific Computer

~-------
Since the desired octet will be in the vector parameter file for the next con­
trol cycle, the controller exits to the First VIl state as if the instruction
were a VECT instruction. If the alpha address is not in the register file,
the controller also checks for alpha hazards. If an instruction in the pipe
will be stored into the octet indicated by the alpha address, the controller
ensures that the value will be written into memory by a forced write, and exits
to the Initial Idle state until the hazard clears. When the hazard clears,
the controller issues a load file request to CMR for the octet indicated by
the alpha address. If CMR is prepared to make that memory request (RDACK),
the controller exits to the Vector Forced Write state to await the arrival of
the octet from memory.

If the instruction at level 3 is a stack instruction (push, pull or modify),
the controller examines the P indicator. This signal originates in the MBU
ROM and will never be present0at the start of a stack instruction sequence.
If two stack instructions are adjacent, it is possible for the second stack
instruction to see the P indicator from the first stack instruction. There­
fore, a true P indicato~ during the first Lavender subcycle must be due to a
preceeding staBk instruction. The controller then determines if the instruc­
tion is a modify instruction and is therefore susceptible to R-field hazards.
Since the R-field of a modify instruction selects a register file location
whose contents will be used to modify a stack parameter, an instruction in the
pipe that alters the selected register file location constitutes a hazard. If
the selected register file location is not location 11 00 11 (all zeroes), the
controller loops to the Initial Idle state until the hazard clears.

The controller then determines if the alpha address selects a register file
location by examining the Register Inhibit flag, the M-field and the alpha
address. If the address is not in the register file, the controller initiates
sequence BA and enables the transfer of level 3 to level 4 to load the stack
parameter into the pipe from central memory. If the alpha address is within
the register file, the controller checks for a hazard condition. If an in­
struction in the pipe alters the register file location selected by the alpha
address, the alpha address is not location 00, and no short circuit path is
available to recover from the hazard, the controller loops to the Initial Idle
state until the hazard exits from the pipe and is stored into the register
file. However, if a short circuit path is available in the AU that will enable
the CP to feed back the modifying instruction result to the input of the AU
for replacement of the previous value, the controller need not wait for the
hazard to clear the pipe. Instead, it sets the "short circuit at level 411

flag to indicate the condition. When the faulty value reaches the AU input
level, it will be replaced by the updated value from the output of the AU. If
no alpha hazard exists or it can be ignored or circumvented, the controller
initiates sequence BI and enables the level 3 to level 4 transfer to load the
stack parameters from the register file into the pipe. After the controller
has started the parameters down the pipe, the controller exits to the Push­
Pull state to continue the operation.

4-258 VECTOR FORCED WRITE STATE (~TATE 0)

The level 3 controller enters state 0 (figure 4-38) from the Lavender subcycle
of the Idle state when a VECTL instruction at level 3 required a memory request
to load the vector parameter file before the parameter file could be used. The

4-150 Advanced Scientific Computer

(B) 124863

VECTOR
MODE

STAftT
l"OltC ED Wit I TS

---,

STATE 0

l!:XIT TO
l"lftST VI 1
5TAT£ (STATE 1.)) I
__ _J

Figure 4-38. Vector Forced Write State of Level 3 Controller

4-151 Advanced Scientific Computer

controller remains in state 0 until the requested octet returns from memory
and can be loaded directly into the vector parameter file. While in state 0,
the controller ensures that the pipe is free of all scalar instructions by
initiating a forced write operation to store the contents of the Z file in
the MBU if valid data is in the Z file. The controller detects the presence
of data in the Z file by examining the ZA Full bit in the Z Model of the IPU.
When the required octet is stored into the vector parameter file, the control­
ler exits to the First Vll state to begin unpacking the vector parameter file.

4-152 Advanced Scientific Computer

4-259 FIRST VECTOR INITIATION (STATE 1)

The controller enters state l (figure 4-39) from either the Lavender subcycle
of the Idle state, or from the Vector Forced Write state. When the controller
enters state l, the vector parameter file in the register file contains the
set of specifications that will initiate the first vector operation. While in
this state, the controller ensures that no scalar operation is still in the
pipe and that the MBU Z file is free of valid data. During the first cycle
through the state, the completion counter (set to 11 711 in the Lavender subcycle)
is at a value of seven. The controller then ensures that the pipe is empty,
decrements the count in the completion counter, and transfers word l of the
vector parameter file into level 2 for input to the address modification cir­
cuits (words 1, 2 and 3 contain starting addresses of the three vectors that
can be changed through address development).

During the second cycle through state 1, the completion counter is no longer
at a value of seven. The controller then ensures that level 4 of the IPU and
levels 5 and 6 in the MBU are not active and can therefore receive the param­
eters. The controller transfers word 0 from the vector parameter file to
level 4 of the IPU (bypassing the address modification circuit), transfers
level 2 to level 3 through the address modification circuits, and loads word 2
from the vector parameter file into level 2. Having initially loaded the IPU
with the first three words of the vector parameter file, the controller exits
to the Vector Burst state to continue unpacking the vector parameter file.

4-260 VECTOR BURST (STATE 2)

The controller enters state 2 from state l after the !PU levels have been
loaded with the first three words in the vector parameter file. The contents
of the IPU, therefore, is: word Oat level 4 (to the MBU), word 1 at level 3
(having been modified as required), word 2 at level 2, and a value of six in
the completion counter. The controller recycles through state 2 seven times
while the vector parameter file is unpacked, word by word, and sent to the
MBU. During each cycle the controller defines the Vector Mode of the IPU,
clears the VI Start flag, decrements the completion counter, and h6lds the MBU
from action by issuing Vector Wait. The LO Active flag is not needed during
vector processing since all operations are stored into memory upon completion.
XA and YA Active are also not needed during vector processing since the IPU
cannot force another instruction into the MBU while it is processing a vector.
During each cycle through the state, the controller samples the count in the
completion counter to determine what action to perform during that control
cycle. The flowchart for the Vector Burst state (figure 4-40) defines the
transfers that are enabled for each of the decremented counts of the comple­
tion counter. When all of the vector parameter file has been transferred to
the MBU, the controller examines the level 2 activity bit to determine if the
next instruction in the program has reached level 2. If level 2 is active,
the controller exits to the Vector Go state; if level 2 is not active, the
controller exits to the Level 2 Wait state until a new instruction enters
level 2.

4-153 Advanced Scientific Computer

FIRST VI
1

VECT MODE

STA"T
l"O"CltD W"ITI:

•EGIN
SltQUltNClt A

~-(B) t 24864

-------..,

DECREMENT
COMPLETION

'--~~~~... COUNTER

VI 0
v .. 1-LVL.2

STATE 1

YES

t-VI START

VII
VPo-LVL.4
LVL2--LVL3
VPz --LVL2

EXIT TO
VECTOR
BURST
STATE 2

_____ _J

Figure 4-39. First Vector Initiation State of Level 3 Controller

4-154 Advanced Scientific Computer

VECTOR
BURST

-...--. -- ------ -------1

Vlr:CT MODIE

••KALAN iru.• .

••Ut ACT

O•XA ACT

O•YA ACT

Vlr:CT WAIT

DIEC ceMP CTN

STATE 2

(TO MBU)

VI 2
VPS--LVL2
LVL2-LVL3
LVL3-LVL4

VI 3
LVL2--LVL3
LVL3--LVL4

L ______ _

(8) I 24865

VI 4

LVL3-LVL4

VI e
VP5-LVL4

EXIT TO
LVL2 WAIT,

STATE 3

VIES

I
I
I
I
I
I
I
I
I
I
I
I

_J
EXIT TO
VECTOR

GO, STATE 4

Figure 4-40. Vector Burst State of Level 3 Controller

4-155 Advanced Scientific Computer

4-261 LEVEL 2 WAIT (STATE 3)

The controller enters state 3 from state 2 after the vector parameter file has
been loaded into the MBU to,start a vector operation, but no new instruction
is at level 2 of the IPU. Since the IPU can only detect an instruction hazard
caused by storing vector results through comparison of the storage addresses
with the address in P3 (near range hazard), the next instruction in the pro­
gram sequence must be in level 3 before any of the vector results are stored.
This will enable the IPU to compare the address of the instruction (P3)
against ~ach octet address that is stored during the vector operation. If the
vector stores into the octet containing the new level 3 instruction, the in­
struction will have to be refetched to provide the correct information. For
this reason, state 3 issues a Vector Wait signal to the,MBU that inhibits the
MBU from storing any vector results until the next instruction enters level 2.
When level 2 becomes active, the controller exits to the Vector Go state.
Figure 4-41 illustrates the Level 2 Wait cycle.

4-262 VECTOR GO (STATE 4)

The controller enters state 4 (figure 4-42) from either state 2 or state 3
when level 2 becomes active. As the controller enters this state, the Vector
Wait signal that had been preventing the MBU from storing vector results drops.
If the vector instruction being executed is not an order instruction and is
not part of an Execute instruction, the controller sends PAC3 to the level 2
controller and exits to the Vector + 1 state. If, however, the instruction is
a vector order (generating Vector Bad Guy to the hard core controller) or part
of an execute, the controller waits in state 4 until the vector has completed
or until the controller receives a Get Out signal from the hard core control­
ler. If the MBU sets the Vector Complete indicator, the controller clears
that indicator to acknowledge its receipt, clears the Execute and Register
Inhibit flags and issues PAC3 to the level 2 controller before exiting to the
Initial Idle state. The hard core controller generates Get Out when it re­
ceives a command from the CR file (in the PP) that requires a context switch.
Get Out forces the MBU to wind down the vector currently in progre~s without
evacuating the X or Y buffer files. The level 3 controller then sets the
Level 3 Far Range Hazard flag so that the instruction that was executing will
be started over when the instruction sequence begins again. The controller
then exits to the Initial Idle state for the next control cycle.

LEVEL 2
WAIT

,------------1
I STATE 3 I
I

VECT MODI: Vl:CT WAIT
Yl:S

L_ ______ , ----~-_J

(A) 124866

Figure 4-41. Level 2 Wait State of Level 3 Controller

EXIT TO
VECTOR

~~ATE 4

4-156 Advanced Scientific Computer

~----.-------

(B) 1 24867

,--
1 STATE 4

I
I
I
I
I
I
I
I
I
I

l"AC3

L --1
EXIT TO
VECTOR I

+1 STATE

__ J

NO

VECTOR
GO

VECT MODE

Vl!:CT BAD GUY
(TO HARD CORE

0 --VECTOR
COMPLETE
INDICATOR

O•XEC l"LAG

0• REGISTER
INHIBIT FLAG

.. AC3

1• LVL3 FAR
RANGIE HAZARD

_J
EXIT TO
INITIAL

IDLE STATE

Figure 4-42. Vector Go State of Level 3 Controller

4-157 Advanced Scientific Computer

4-263 VECTOR + 1 (STATE 5)

The level 3 controller enters state 5 (figure 4-43) from either the Vector Go
state (state 4) or the Load ·File Request Wait state (state 6). In either case
a valid instruction has been transferred into level 3 and the controller ex­
amines that instruction in state 5 for fault indications involved with that
instruction. When it enters from state 6, the controller has already been
through state 5 once. The second entry causes the controller to loop within
state 5 until the vector being run in the MBU is complete.

In state 5 the controller enables the next control clock to load a value of
seven into the completion counter for use in loading the next vector instruc­
tion parameter set. The controller also checks for a memory protect violation,
a near range or far range hazard, an alpha address hazard, an indirect in­
struction, a targeted branch, or an instruction that is not another vector or
a load file. Any of these conditions prevents the controller from further
processing of the instruction until the currently processing vector clears the
pipe. The controller, therefore, waits for the MBU to set the Vector Complete
indicator. It then clears that indicator to indicate recognition of the com­
pletion. The controller also clears the alpha address hazard flag since if
the vector has completed storing into memory, the hazard has cleared and the
IPU can use the alpha address to fetch a word from memory. The controller
then returns to the Initial Idle state for the next control cycle. Notice
that if a near range hazard was detected for the instruction at level 3, the
controller set the Level 3 Far Range Instruction Hazard flag. Setting this
flag causes the controller to refetch the level 3 instruction from memory when
the executing vector clears the pipe.

If none of the discussed conditions prevent the controller from further pro­
cessing the instruction at level 3, the controller determines if the instruc­
tion is another vector or a load file instruction. If it is a vector instruc­
tion, the controller examines the R-field of the instruction to determine if
the instruction is a VECT (R=l) or a VECTL (R=O) instruction. If it is a VECT
instruction, the controller exits to the Prime Second Vector state since the
correct parameters are currently in the Vector Parameter file of the IPU. For
a VECTL instruction the controller determines if the octet to be loaded into
the Vector Parameter file is in the register file or in central memory. If it
is in the register file, the controller enables the next clock pulse to trans­
fer that file into the Vector Parameter file and exits to the Prime Second
Vector state where it checks for alpha hazards. If the parameter file is to
be loaded from central memory, the controller checks for alpha hazards, setting
the alpha hazard flag if one exists, and issues a load file request to CMR.
When CMR is able to process the memory request for the octet, it transmits
RDACK to the controller, and the controller exits to the Load File Request
Wait state.

If the instruction at level 3 is a load file instruction, the controller de­
termines if it is a file to file load or a load from central memory. If it is
a file to file load {a one clock operation), the controller waits for the vec­
tor to terminate before performing the transfer. This delay avoids the possi­
bility that the vector operation might change the instruction at level 3 by
producing an instruction hazard {storing into the P3 address in memory).

4-158 Advanced Scientific Computer

VECTOR

+1

COMPLE-

STATE 5

7• t~i~TER

(II) 114343A

VECTOR
MODI!:

1 + LVL-3
FAR RANGE
INST HAZ

0 +VECTOR
COMl"l...IETIE
INDICATOR

O+OHAZ l'"L.AG

I
-HO=_J

EXIT TO
INITIAL

IDLE STATE

-------1
1 + OHAZ FL.AG

HO
FILE +FILE

O+VECTOR
COMPL.ETE
INDICATOR

0 +HOLD FL.AG

O+O'HAZ FL.AG

PAC3

1 +0'HAZ FL.AG

LOAD-fi'ILE
l'tEQUEST

EXIT TO
LOAD FILE

REQUEST WAIT
(STATE 6)

EXIT TO
PRIME

SECOND VECTOR
(STATE 7)

EXIT TO
INITIAL
IDLE

STATE

J

Figure 4-43. Vector +l State of Level 3 Controller

4-159 Advanced Scientific Computer

Since the chance of this hazard developing is small. the controller initiates
the load file operation if the instruction is a memory to file load. Choosing
this alternative saves processor time by performing the memory fetch wnile
still running the vector. Before issuing the memory request. the controller
checks for alpha hazards, setting the Alpha Hazard flag if a hazard exits.
If the Hold flag is. not set, the controller issues the Load File Request to
CMR and exits to the Load File Request Wait state when CMR accepts the re­
quest.

The Hold flag sets in the Load File Request Wait state when the controller
exits that state to return to state 5. Therefore, if the Hold flag is set the
load file instruction at level 3 has already been executed. The controller
therefore loops within state 5 and continues to monitor the executing vector
in the MBU for instruction hazards to the instruction that has been performed.
When the vector terminates, the controller clears the Vector Complete indica­
tor to recognize the termination, clears the Hold and Alpha Hazard flags,
issues PAC3 to the level 2 controller and exits to the Initial Idle state for
the next control cycle.

4-264 LOAD FILE REQUEST WAIT {STATE 6)

The controller enters the Load File Request Wait state {figure 4-44) from
state 5 after it has initiated a load file request to CMR and CMR has trans­
ferred that request to central memory. The load file request may be part of a
load file instruction or a vector operation requiring new parameters in the
vector parameter file {VECTL). While in state 6 the controller monitors the
storage addresses generated by the vector that is executing in the MBU to de­
termine if a near range instruction hazard {current instruction is invalid) or
an alpha address hazard {origin of load file is invalid) develops. If either
hazard occurs, the controller sets the Level 3 Far Range Instruction Hazard
flag or the Alpha Hazard flag, respectively. so that the controller will re­
place the invalid parameter when the vector terminates. When the memory re­
quest is complete, the controller determines which of the two instruction
types produced the load file operation. If it was a Load File instruction,
the controller sets the Hold flag to prevent the controller from returning to
state 6. and exits to state 5 {Vector+ 1). If a VECTL instruction initiated
the load file operation, the controller exits to the Prime Second Vector state
to load word 1 of the vector parameter file into the pipe in preparation for
the next operation.

4-265 PRIME SECOND VECTOR {STATE 7)

The controller enters state 7 {figure 4-45) from either the Vector + 1 state
{state 5) or the Load File Request Wait state {state 6) when the controller is
sure that the proper set of parameters is in the vector parameter file. The
controller remains in state 7 for one clock and then exits to the First Vector
Wait state {state 8). While in state 7, the controller monitors the storage
addresses generated by the vector running in the MBU. If a near range hazard
occurs. invalidating the current instruction at level 3, the controller sets
the Level 3 Far Range Instruction Hazard flag so that the instruction will be
refetched from memory when the vector terminates. If the instruction at level
3 is a VECTL instruction, the controller also checks for an alpha hazard to

4-160 Advanced Scientific Computer

(A) 1 24868

LOAD FILE
REQUEST

WAIT

VECTOR
MODE

1-HOLO FL.AG

L __
EXIT TO

VECTOR +1 ,
STATE 5

STATE 6

1• L.VL,.3
f'Afll AANGE
IHaT HAX

1 - a HAZ
FLAe

__J

EXIT TO
PRIME SECOND

VECTOR, STATE 7

Figure 4~44. Load File Request Wait State of Level 3 Controller

4-161 Advanced Scientific Computer

(B) 124869

I
L:

PRIME SECOND
VECTOR

____ __ _
VECTOR

MODE

VI 0
vP,-LvL2

DECREMENT
COMPLETION

COUNTER

---1
STATE 7

1+LVU
l'A" l'IANGIE
INST HAZ

1•0IHAZ
l'LAG

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

___ _J

EXIT TO
FIRST VECTO"
WAtT·, S'l"ATE 8

Figure 4-45. Prime Second Vector State of Level 3 Controller

4-162 Advanced Scientific Computer

ensure that the vector parameters loaded during the VECTL preparation are
still valid values. If an alpha hazard occurs, the controller sets the Alpha
Hazard flag so that the parameters will be reloaded when the vector terminates.
The first time through state 7, the completion counter is at a value of seven
because it has not changed since set to 7 in the Vector + 1 state. The con­
troller, therefore, transfers word 1 of the vector parameter file into level 2
and decrements the completion counter. During the next control cycle, the con­
troller will repeat the instruction and alpha hazard inspections, and exit to
the First Vector Wait state, since the completion counter will no longer be at
a value of seven.

4-266 FIRST VECTOR WAIT (STATE 8)

The controller enters the First Vector Wait state (figure 4-46) from the Prime
Second Vector state after having loaded the vector parameter if required and
transferring word 1 of the vector parameter file into level 2 of the IPU. In
state 8 the IPU remains ready while the controller monitors the storage ad­
dresses generated by the MBU to detect hazards. If a near range hazard oc­
curs, the controller sets the Level 3 Far Range Instruction Hazard flag. If
the instruction waiting at level 3 is a VECTL instruction (R=O) the control­
ler checks for alpha address hazards to ensure that the vector parameter file
was loaded with valid data. If an alpha hazard occurs, the controller sets
the alpha hazard flag. When the MBU sets the Vector Complete Indicator, the
controller enables the next clock pulse to clear both the Vector Complete In­
dicator (in response to the MBU) and the alpha hazard flag. It then makes a
final examination to determine if the instruction at level 3 has incurred a
hazard during the vector storage operation. If this far range hazard exists
or the alpha hazard flag is set, the controller exits to the Initial Idle
state to refetch the correct parameters from memory. If no hazards have oc­
curred, the controller sets VI Start, transfers word 0 of the vector parameter
file to level 4, enables word 1 from level 2 through the address modification
circuits to level 3, and loads word 2 into level 2. The IPU is then prepared
to begin processing the second vector parameter set. The controller exits to
the Vector Burst state to unpack the vector parameter file and transfer it to
the MBU.

4-267 HAZARD (STATE 14)

The controller enters the Hazard state (figure 4-47) from the Initial Idle
state when it detects a far range hazard (a store in the pipe that alters an
instruction that is in pipe levels 0, 1 or 2), a near range hazard (a store
in the pipe that alters the instruction in level 3), or a target of an LLA
reached level 3 but the branch was not taken. Any of these cases require the
IPU to perform a memory request to recover valid data for continuation of the
instruction sequence. When the controller enters this state it generates IHAZ
to indicate the presence of a hazard condition. If the hazard is a near range
instruction hazard, the controller waits until all store operations are clear
from the CP. Then, if the Z buffer in the MBU contains valid data (ZA Full),
it initiates a forced write operation to write that data into memory and waits
until the operation is complete (not Forced Write Wait). When the controller
is sure that a memory request will produce valid data, it generates an instruc­
hazard recovery request (INHAZ) to CMR and waits until CMR can perform the

4-163 Advanced Scientific Computer

~--------.----

(B) 124870

F'RST VECTOR
WAIT

I I
I NO I
I I
I O•VECTOR I

COMPL.ETE I INDICATOR I
I 0 .. O'HAZ FL.AG , .. VI START I
I I
I VI I I I VPo- L.VL.4

L.VL2 --LVL.3 I
VPz-LVL2 L _________ .

EXIT TO
INITIAL IDLE
STATE

EXIT TO
VECTOR BURST,
STATE 2

Figure 4-46. First Vector Wait State of Level 3 Controller

4-164 Advanced Scientific Computer

~___.;,...____ ____ _

(B) 1 24871

HAZARD

r
I
I IHAZ

BEGIN
SEQUENCE
A

INSTRUCTION
HAZARD
RECOVERY
REQUEST
(INHAZ)

L YES

EXIT TO
INITIAL IDLE

STATE

NO

NO

STATE 14

START
FORCED
WRITE

__ J
NOTE:

INHAZ• NRIH • ZMT
•CTL14 • NRIH

Figure 4-47. Hazard State of Level 3 Controller

4-165 Advanced Scientific Computer

~------
request to memory {RDACK}. If RDACK is true, the request has been sent to
memory. The controller exits to the Initial Idle state for the start of the
next control cycle.

4-268 INDIRECT REQUEST {STATE 15}

The controller enters the Indirect Request state {figure 4-48} from the Yellow
subcycle of the Idle state when it determines that an indirect address cannot
be satisfied within the lPU instruction registers, the controller had issued
an Indirect Request to CMR, and CMR was not prepared to process the request
when it was made. The controller remains in the Indirect Request state until
RDACK becomes active, indicating that CMR has accepted the memory request and
has forwarded it to central memory. Until that time, the controller main­
tains the Indirect Request signal to CMR at a high level. When CMR accepts
the request, the controller signals Indirect Request Complete and exits to the
Initial Idle state for the next control cycle.

4-269 ORANGE WAIT {STATE 12}

The controller enters the Orange Wait state {figure 4-49} from the Orange sub­
cycle of the Idle state after the controller has issued a load file request or
the store file request of a store file multiple to CMR, and CMR has forwarded
that request to memory. In state 12 the controller increments the address in
AR so that if another file operation is performed, the memory address used to
fetch or store that file will be the next sequential octet to the one cur­
rently in use. If a load file memory request returns during the one clock
cycle that the controller is in the Orange Wait state, the controller sets the
Hold flag to mark that event for use in the Orange Request state. Since the
request complete indication is dependent on a KCM to file transfer signal
{KCMTFILE), the Hold flag is not set during store file operations. Store file
multiple does not need a memory response to continue (except WACK from CMR}.
At the end of one clock cycle the controller exits to the Orange Request state.

4-270 ORANGE REQUEST {STATE 13}

The controller enters the Orange Request state from the Orange Wait state. In
the Orange Request state the controller generates load or store file requests

(A) IZ4872

INDIRECT
REQUEST

~------------,

I NO INDlltECT I I INDlltECT EXIT TO I >-.-.t ltEQUEST RDACK YES ~~~~t~. ~I-- l~L1'~1;-... TE

I •DIN I
SEQUIENCIE I
A STATE 15 L! ____________ _.

Figure 4-48. Indirect Request State of Level 3 Controller

4-166 Advanced Scientific Computer

~------

'STATE t2

I
I
I
I
I

BEGIN
SEQUENCE
A

.i..: __

(B) 124873

ORANGE
WAIT

- -
IBQCTL (12)

-------,

1_.HOLD
FLAG

I
I
I

EXIT TO I >--.&-m• ORANGE
REQUEST
STATE J

Figure 4-49. Orange Wait State of Level 3 Controller

to complete both load and store file multiple operations, and also performs
the terminating steps in a single load file operation after the octet has been
loaded from memory into the designated register file location. The controller
logic flow, illustrated in figure 4-50, is divided into two sequences; load
file multiple and store file multiple. Single load file operations follow the
load file multiple path. Single store file operations are completed entirely
within the Orange subcycle of the Idle state.

4-271 LOAD FILE MULTIPLE. The Completion and Request Counters track the sta­
tus of a load file multiple operation in the Orange Request state. The Re­
quest counter is initially loaded with a count of five in the Orange subcycle
of the Idle state, and decrements once for each request that is sent to memory
while the controller is in the Orange Request state. When the Request counter
reaches a count of zero, six requests have been sent to memory (one in Orange,
five in Orange Request) for octets to load the six register file octets. The
Completion counter is initially loaded with a value of five in the Orange sub­
cycle and decrements each time an octet returns from memory and is loaded in­
to the register file. The fifth octet from memory decrements the counter
from 1 to 0. After the sixth octet returns from memory, the controller checks
the counter, determines that it is zero, and performs the exit steps to ter­
minate the operation. Single file operations will have an initial count of
zero in the Completion counter so that when the first octet returns from mem­
ory, the controller terminates the operation. Notice that if the Hold flag
was set in the Orange Wait state, the controller clears that flag on the next
clock (after having used it to indicate Request Complete). Therefore, the
Hold flag will affect the logic flow only during the first cycle through the
Orange Request state. During the load file operation when the Request counter

4-167 Advanced Scientific Computer

~------
r-.--------~-- - - - - - - -----~

ORANGE
REQUEST

LOAD FILE
REQUEST

L_
(B) I I 4337A

lllQCTL (13)

NO

DECREMENT
REQUEST
COUNTER

O•XEC
FLAG

0-REGISTER
INHIBIT
l"LAG

PAC3

INCREMENT
AR

STATE 13

EXIT TO
INITIAL
IDLE STATE

NO

DECREMENT
REQUEST
COUNTER

INCREMENT
AR

Figure 4-50. Orange Request State of Level 3 Controller

4-168
Advanced Scientific Computer

reaches a count of one, the controller clears the AR Increment flag to prevent
the last request cycle from incrementing the address in AR. When the control­
ler terminates the operation it clears the Execute and Register Inhibit flags,
issues PAC3 to the level 2 controller, and exits to the Initial Idle state.

4-272 STORE FILE MULTIPLE. The Request counter is the only counter used to
track the progress of a store file multiple since the IPU does not have to
wait for returning data from memory for a store operation as it does during
load operations. This counter is loaded with a value of 4 in the Orange
subcycle and is decremented for each store file request generated in the
Orange Request state. The fifth request to memory (one in Orange, four in
Orange Request) decrements the counter from l to 0. During the following con­
trol cycle, the controller issues a request to store the sixth octet, deter­
mines that the counter is zero, and terminates the operation. Before exiting
to the Initial Idle state, the controller clears the Execute and Register In­
hibit flags and issues PAC3 to the level 2 controller. During each succes­
sive cycle through the Orange Request state, the controller compares the stor­
age destination address (alpha) with the address of the octets in the X and Y
buffers in the MBU (XA or YA). If one of the octets is stored into the loca­
tion that the MBU octets were drawn from, the controller clears the associated
activity bit to prevent succeeding instructions in the IPU from using the data
in the changed buffer without refetching that data from memory.

'4-273 PUSH-PULL (STATE 9)

The controller enters state 9 (figure 4-51) from the Lavender subcycle of the
Idle state. In Lavender the controller loaded the stack parameters into the
MBU and started them down the pipe for testing to see if the desired stack in­
struction will overflow the prescribed boundaries of the stack area in memory.
The AU performs this comparison. In state 9 the controller waits for levels
4, 5 and 6 to become inactive, indicating that the stack parameters have en­
tered the AU for testing (the entire parameter doubleword is processed at one
time). The controller then loops within state 9 until two AU control ROM sig­
nals appear. The first signal, P0 , indicates that the comparison in the AU is
complete. If the test of the parameters with respect to the stack instruction
caused the result to overflow the boundaries of the stack (word count or space
count went negative), the.AU transmits a termination bit indicating that the
instruction should be terminated and not executed. When Po appears, the con­
troller enables the termination bit to set the Terminate Indicator in the IPU.
The second AU signal is Po Indicator. This signal designates that the pointer
for the stack has been modified, decremented or untouched, and is ready in the
output stage of the AU. For push and pull instructions, the controller then
enables the transfer of that pointer from the EF register to the BR register
in level 2 of the IPU. Regardless of the instruction type, the Po Indicator
moves the controller into the Push-Pull l state.

4-274 PUSH-PULL 1 (STATE l 0)

The controller enters state 10 (figure 4-52) from state 9 after testing the
parameters of a stack instruction to determine if the desired operation will
produce an overflow of the designated memory area for the stack. If an over­
flow condition was detected, the Terminate Indicator will be set when the con­
troller enters state 10. The controller then clears the Terminate Indicator,

4-169 Advanced Scientific Computer

~------

YES

PUSH-PULL

pp 0
(EF--BR)

L_, _____ _

(B) 114345A

EXIT TO
PUSH-PULLI,

STATE 10

Po SIGNAL _Jl_

TERMINATE SIGNAL _Jl_

PolND._n_

TERMINATE INDICATOR ---..i

Figure 4-51. Push-Pull State of Level 3 Controller

4-170 Advanced Scientific Computer

~------
PUSH-PULL I

STATE 10

..---------- - - -_-____ -___ - - - - 1

START
SEQUENCE
BB BA

o-xEC FLAG

START
SEQUENCE
BL Bl

BRANCH OR
SKIP

'>--... o-cONDITION
Bl1'" (BSC) I

I
YES

o-REGISTER PAc3 I
INHIBIT

FLAG J IL-________ ... - - - -

I
I

EXIT TO
INITIAL
IDLE STATE

STORE PARAMETERS

I

YES

SKIP

BRANCH OR

,_ ~l§ifc,ITION
BIT (BSC)

'-- -
(B) I 24B74

I
I

__ _J

PPI
(PTR-LVL 3)

EXIT TO
PIJSH-PULL2,

STATE 1 I

Figure 4-52.

o-xEc FLAG

REGISTER
O•INHIBIT

FLAG

BRA.NCH OR
1-+SKIP

CONDITION
BIT (BSC)

PAC3

EXIT TO
INITIAL IDLE

STATE

I
I
I
I
I
I
I
I

:J

0 TERMINATE INDICATOR SET
BY AU

Push-Pull l State of Level 3 Controller

4-171 Advanced Scientific Computer

clears the Execute and Register Inhibit flags, and issues PAC3 to the level 2
controller. If the instruction was part of an execute operation, the control­
ler also clears the Branch of Skip Condition bit to indicate that no valid
branch or skip was encountered in processing the instruction.

If the Terminate Indicator was not set, the controller initiates a sequence
(BBBA or BLBI), to load the parameters into the MBU a second time, pass them
through the AU for the required modification, and store them into central mem­
ory. Enabling transfer of level 3 to level 4 during the next clock pulse
starts the parameters down the pipe for storage in memory. If the instruction
is a modification, this step is all that is required. The AU will modify the
parameters and store them into memory using the contents of RO at level 4 to
modify the parameters. The controller then determines if the instruction is
part of an execute sequence. If it is, the controller clears the Execute flag
and Register Inhibit flag, sets the Branch or Skip Condition bit to indicate
to the PP that a skip condition was encountered but not taken due to the ex­
ecute, and issues PAC3 to the level 2 controller. If the Execute flag was not
set, the controller issues a Skip signal so that the next instruction in the
sequence will be skipped. The next instruction is typically an instruction
that enables the program to recover if the parameter test produces an overflow
condition. This instruction is therefore not needed if the Terminate Indica­
tor was not set. The controller exits to the Initial Idle state for the next
control cycle.

If the instruction was not a modify instruction, a further transfer through
the pipe is required to store into or read from the stack. The controller in­
spects the Execute flag. If this flag is set, the controller sets the Branch
or Skip Condition bit; if it is not set, the controller issues the Skip sig­
nal. In either case, the controller enables the next clock pulse to transfer
the pointer from level 2 to level 3 to supply the storage address for the
Push or Pull operation. The controller then exits to the Push-Pull 2 state to
complete the process.

4-275 PUSH-PULL 2 (STATE 11)

State 11 (figure 4-53) completes the level 3 controller's responsibilities for
Push or Pull instructions by initiating a store into the stack area of central
memory (Push) or a load from the stack area of central memory (Pull). When
the controller enters state 11, it waits for PAC4 from the level 4 controller
so that level 4 will be vacant to receive the operation. If the instruction
is a Pull, the controller initiates a sequence (BA) to load that value from
the stack location indicated by the pointer into the MBU. If the instruction
is a Push, the controller waits for any hazards to the register file location
indicated by the R-field to clear before initiating a sequence (BBBI) to store
that value into the stack location indicated by the pointer. The controller
then enables the next clock pulse to transfer the instruction at level 3 to
level 4, and clear the Execute and Register Inhibit flags. The controller
issues PAC3 to the level 2 controller before exiting to the Initial Idle state
for the start of the next control cycle.

4-172 Advanced Scientific Computer

~------

(B) 124875

PUSH-PULL 2

r
I
I
I
I
I
I
I START I SEQUENCE

BA

I
I
I

I
STATE 11 L

START
SEQUENCE
BBBI

BEGIN
SEQUENCE
A

LVL3-LVL4 I (PTR -LVL4)
1-----i~ o-xEC FLAG

I
I PAC3

.... 1---f 0-+REGISTER
INHIBIT
FLAG

~ ----
EXIT TO INllTIAL

IDLE STATE

--,
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 4-53. Push-Pull 2 State of Level 3 Controller

4-173 Advanced Scientific Computer

4-276 MONITOR CALLS (STATE 16)

The controller enters state 16 (figure 4-54) from the Brown subcycle of the
Idle state when it determines that the instruction at level 3 of the IPU is
either a Monitor Call and Proceed (MCP) or a Monitor Call and Wait (MCW).
Either of these instructions require the CP to issue a call for further infor­
mation to the PP, store a pointer in a predetermined location in memory, and
either proceed with the program sequence (MCP) or stop the sequence, perform­
ing a context switch, until the information returns from the PP (MCW). The
level 3 controller makes two cycles through the Monitor Calls state. The Hold
flag keeps track of which cycle is being done.

When the controller enters state 16, it ensures that the level 4 controller
can accept a new instruction, that the pipe is empty, no forced write opera­
tion is in progress, and that no valid data is left in the Z buffer of the
MBU for storage into memory (ZA not full). The first time through state 16,
the Hold flag is not set. If the monitor call is part of an execute sequence,
the call will not be performed. Instead the controller indicates that the
call instruction was encountered by setting the monitor call condition (MCC)
bit in the program status doubleword, clears the Execute and Register Inhibit
flags, issues PAC3 and returns to the Initial Idle state. If the Execute flag
is not set, the controller issues either a MCP or a MCW request to Master Hard
Core and inspects the Call Permission indicator. If this bit is not set, the
controller loops within state 16 until it sets. When Call Permission is on,
the controller inhibits the map and protect parameters of the CP in the MCU
by setting the CP Protect and Map Off flag. The controller also sets the
Hold flag, initiates a sequence to store the pointer into memory, and enables
a level 3 to level 4 transfer to start the store into the pipe. The control­
ler then returns to the start of Monitor Calls for the next control cycle.

During the second pass through state 16, the controller waits until the point­
er has cleared the pipe and has been stored into memory. Since the Hold flag
is now set, the controller issues Call Complete to Master Hard Core, clears
the CP Protect and Map Off flag, clears the Hold flag and issues PAC3 to the
level 2 controller. If the instruction is a MCW, the controller must wait
until the Status Freeze indicator sets, indicating the start of the context
switch, before clearing the Hold flag, producing PAC3, and exiting to the Ini­
tial Idle state.

4-277 LEVEL 3 CONTROLLER COMMON SEQUENCES

To avoid extensive duplication in the level 3 controller flowcharts, several
common logic sequences are merely referenced by an action block, i.e., 11 Start
Sequence BA 11 , etc. These sequences perform the steps within the controller to
prepare the IPU to either load the MBU with a value, or store a value into
memory or the register file by sending it down the pipe. Figure 4-55 illus­
trates the logic flow within the controller for each of these sequences. The
following paragraphs describe the function performed by each sequence as well
as some of the flags and control signals that appear in the flowchart.

4-278 SEQUENCE BA. BA sets IPU conditions so that a value from central mem­
ory can be loaded into the MBU through the MBU's interface with memory (SC
file to X or Y buffers). When the controller starts BA, it determines if the

4-174 Advanced Scientific Computer

~------
r=------

*CALL PERMISSION INDICATOR SET BY I MASTER HC

STATE 16

MONITOR I
CALLS J ,-----

MCP REQUEST
TO MASTER
HC

(B) 124876

BEGIN
SEQUENCE A

START FORCED
WRITE

CALL
COMPLETE TO
MASTER HC

I-MONITOR
CALL
CONDITION
(MCC)

MCW
REQUEST TO
MASTER HC

NO

0-+CP PROTECT
AND MAP OFF
FLAG

I
J

START
SEQUENCE BBB I

o- REGISTER
INHIBIT FLAG

PAC3

1-r.P PROTECT
AND MAP OFF
FLAG

LVL3-LVL4

1-HOLD FLAG

0-+HOLD FLAG

PAC3

_ _J

EXIT TO
INITIAL IDLE

STATE

Figure 4-54. Monitor Calls State of Level 3 Controller

4-175 Advanced Scientific Computer

~------

(C)119479A

(
X-RGDST)

R3TR4

'<-LDACT

(RJTLD)

(ARTLOl

A~TR4)

1 l'MFG

X-FWR4

(
><-ZST4)

ARTZP

X-REGDF"

x-IMM

(X-A4)

I --

Figure 4-55.

LEVEL 3 CONTROLLER COMMON SEQUENCES

BA BBBA Bl BLBI BBBI A

NOP

RGDST

0 - LDACT

0 - --

---------- 0

--- - --------- 0

Bl

Level 3 Controller Common Sequences (Sheet l of 5)

4-176 Advanced Scientific Computer

~------

NUMBER

(SEE DE­
CRIPTION)

l

ZMALO 1Nb =ZONE MOO SITS ALLt 'S

• f• <iMAC0iNi5 + Z-9TOREf12

O•LVL4MD
1-XRP'

1-LDXA

1-LDXeA

O•LDYA

0.LDY•A

+ Z-STOREf't 2 ON PREV CLK INDICATOR)

(C)t-

Figure 4-55. Level 3 Controller Common Sequences (Sheet 2 of 5)

4-177 Advanced Scientific Computer

(B) 119482A

AR IN XA OR YA

XAACT--XAACT
YAACT-+YAACT
YNEXT--YNEXT

XAFUL-+XAFUL

YAFUL-YAFUL

YES

1-XAFUL

YES

1-YAFUL

END OF SE­
QUENCE BA,

LBA AND BBBA

Figure 4-55. Level 3 Controller Common Sequences (Sheet 3 of 5)

4-178 Advanced Scientific Computer

~------
YNEXT

YES

XAFUL- XAFUL 1-+XAFUL

AltTYA

(8) I 19484A

YAACT-YAACT
1-XAACT
o-+XAFUL

YAFUL-YAFUL

1-YNEXT

ARTXA

YES

1-YAFUL

Figure 4-55. Level 3 Controller Common Sequences (Sheet 4 of 5)

4-179 Advanced Scientific Computer

~-------

(B) 11948 IA

0-L.VL.4MD
o-xRF
0-L.DXA
0-L.DXBA
0-L.DYA
o-L.DYBA
o-ZTXU
o-zTYu
o-xuP
0-+YUP

XAACT-+XAACT
YAACT-+YAACT
YNEXT-+YNEXT

CONT
Bl

XAFUL.-+XAFUL.

YAFUL.-+ YAFUL.

1-XAFUL.

1-+YAFUL.

END OF SE­
UENCE Bl ,BLBI

BBBI AND A

Figure 4-55. Level 3 Controller Common Sequences (Sheet 5 of 5)

4-180 Advanced Scientific Computer

~------
instruction at level 3 specifies a storage area in the register file for the
resultant of the operation. If it indicates a register file destination, the
IPU must track that operation through the pipe to detect register hazard con­
ditions. Therefore, the controller sets the Register Destination flag
(IRQRGDST), enables the next clock to transfer the storage address from R3 to
R4 to pass through the register stack and to LD to indicate the last destina­
tion address that was sent down the pipe. To indicate that the LD address is
valid, the controller also sets LD Active. If the storage address is in cen­
tral memory, the controller ignores the previous steps, clearing all flags
and gates described above to zero. In either case, the controller sets Reg­
ister Data Present if the data to be loaded is from the register file, sets
level 4 activity bit (A4), and proceeds to the Continue BA flowchart. Since
that portion of the sequence is shared with the BBBA sequence, Continue BA is
described separately.

4-279 SEQUENCE BBBA. The controller uses sequence BBBA during the second
pass of a stack instruction to load stack parameters into the MBU, start them
down the pipe and store them back into memory with the same instruction. The
first portion of BBBA prepares the pipe for the store portion of the operation.
The sequence then joins sequence BA (refer to Continue BA) to establish con­
ditions for the load operation.

When the controller begins BBBA it loads the destination address for the store
portion of the operation into the register stack (ARTR4) so that the IPU can
track the progress of the store operation as it proceeds down the pipe. The
controller also sets a bit that indicates the store is part of a stack in­
struction, so that the parameters will be altered to reflect the new status
of the stack as they pass through the AU (PPMFG). The controller then deter­
mines if the parameters will be stored into an octet currently in the MBU
storage buffers or the pipe (ZA or ZP). If the parameters are to be stored
into a new octet, the controller sets First Word in R4 (FWR4) to indicate the
start of a new octet. This bit is part of the register stack and is passed
down through the register stack as the store proceeds through the pipe. The
controller also enables transfer of the storage address from AR to the ZP reg­
ister, and sets ZPFUL to indicate a valid storage address. in the ZP register.
The Z Store at level 4 bit is also set to tag the operation as a memory store
as it progresses through the pipe. The controller then sets level 4 activity
~it and joins sequence BA to prepare for the load portion of the operation.

4-280 CONTINUE BA. This portion of the sequence examines the address con­
tained the AR register, compares it with the octet addresses of files within
the MBU and AU, and generates the signals that load the octet specified by AR
into the selected buffer (X or Y) in the MBU and select the word from that
octet for loading into the pipe. Continue BA recognizes sixteen possible re­
lationships between the address in AR, the other addresses in the CP, and the
selection of X or Y buffer. These sixteen combinations are illustrated in the
common sequences flowchart. Table 4-7 summarizes the decisions performed in
this segment of logic. It includes a reference number that corresponds to a
number along the output of each of the sixteen action blocks in the flowchart.
For each reference number the table lists the relationship of the AR address
to the CP addresses, other conditions pertinent to the routing decision, the
level 4 mode code sent to the level 4 controller, and those actions that must

4-181 Advanced Scientific Computer

.;:.
I

(X)
N

Flowchart
Reference Number

2

3

4

5

6

7

8
9 .

10

11

12

13

14

15

16

AR Address
Contained IN

XA and ZA
XA and ZP or ZA
XA
YA and ZA
YA and ZP or ZA
YA
ZA
ZA
ZP or ZA

ZP or ZA

ZA
ZA
ZB or ZO

ZB or ZO

CM
CM

Table 4-7. Continue BA Decode Results

Other Conditions

New Octet in Pipe
Only one Active Octet in Pipe

New Octet in Pipe
Only one Active Octet in Pipe

New Octet in Pipe, Y Buffer Next
New Octet in Pipe, X Buffer Next
ZA is not a complete octet; X
Buffer Next
ZA not complete, Y Buffer Next

ZA complete, Y Buffer Next
ZA complete, X Buffer Next
X Buffer Next

Y Buffer Next

Y Buffer Next
X Buffer Next

Level 4 Mode
(LUL4MO) . Required Action 3

4 Wait for ZA-CM, fetch (AR) to X, Load (AR) from X
2 Fetch (AR), update buffer (Z-X)
O Load (AR) from X buffer
4 Wait for ZA-CM, fetch (AR) to Y, Load (AR) from Y
2 Fetch (AR) to Y, update buffer (Z-Y)
0 Load (AR) from Y buffer
4 Wait for ZA~CM, fetch (AR) to Y, Load (AR) from Y
4

0

0

3

3

0

0

Wait for ZA-CM, fetch (AR) to X, Load (AR) from X
Fetch (AR) to X, update buffer (Z-X), Load (AR)
from X
Fetch (AR) to Y, update buffer (Z-Y), Load (AR)
from Y
Update Buffer (Z~Y), Load (AR) from Y
Update Buffer (Z-X), Load (AR) from X
Wait for data in memory, fetch (AR) to X, Load
(AR) from X
Wait for data in memory, fetch (AR) to Y, Load
(AR) from Y
Fetch (AR) to Y, Load (AR) from Y
Fetch (AR) to X, Load (AR) from X

NOTES: l. AR is an address in the AR Register
2. (AR) is the contents of location AR
3. Some action items performed by Level 4 controller.

~------
be performed to load the desired values into the pipe. To help understand the
signals generated within this control segment, table 4-8 lists the acronyms
used in the flowchart and their significance in the CP.

Acron.Yfil

f

LDXA

LDXBA

LOYA

LDYBA

LVL4MD

XRF

XUP

YNEXT

YUP

ZTXU

ZTYU

Table 4-8. Continue BA Acronyms

Function

When f is not true, the contents of the Z buffer can be trans­
ferred in total for an update; i.e., the Z buffer octet con­
tains eight complete words.

Load XA - loads an operand from the current octet in the X
buffer (MBU) into the pipe.

Load XBA - loads an operand from memory into the X buffer.

Load YA - loads an operand from the current octet in the Y
buffer (MBU) into the pipe.

Load YBA - loads an operand from memory into the Y buffer.

Level 4 Mode - a two bit code sent to the level 4 controller
that enables portions of the level 4 control logic relative to
the conditions in the level 3 controller during the previous
control cycle.

XR Flag - When set, indicates that the next octet from memory
will be loaded into the X buffer; when clear, indicates that
the next octet will be loaded into the Y buffer. Complement
of YNEXT.

X Update required - Set to prevent the MBU from using an octet
from memory until that octet has been updated by ZTXU.

Y buffer next - When set, indicates that the next octet from
memory will be loaded into the Y buffer; when clear, indicates
that the next octet will be loaded into the X buffer. Com­
plement of XRF.

Y Update required - Set to prevent the MBU from using an octet
from memory when it arrives in the Y buffer until that octet
has been updated by a ZTYU.

Z to X Update - Set to enable the next clock to transfer the
half words in the Z buffer whose zone modification bits are
set into the corresponding half word locations in the X buffer.

Z to Y Update - Set to enable the next clock to transfer the
half words in the Z buffer whose zone modification bits are
set into the corresponding half word locations in the Y buffer.

4-183 Advanced Scientific Computer

~------
4-281 END BA. Sequence BA has three possible termination paths depending up­
on the outcome of the decoding circuit in the Continue BA portion of BA.
These termination paths are illustrated on sheets 3 and 4 of figure 4-55, the
common sequences flowchart. If Continue BA discovered that the address in AR
was contained in either XA or YA (reference numbers 1 through 6 on the Con­
tinue BA flowchart), the controller terminates the sequence with the series of
events on sheet 3. Since no new octets are to be introduced into the MBU, the
controller ensures that the activity bits for the XA and YA registers remain
the same as they were before the sequence began. Similarly, YNEXT remains the
same. The controller then determines if either X or Y will receive a new oc­
tet during the next clock (XFSET or YFSET). If either octet wi 11 receive new
data, the controller enables the next clock to set the corresponding address
full flip-flop (XAFUL or YAFUL) to indicate that the address in XA or YA ref­
erences an octet that is now in the MBU. The controller then returns to the
original control cycle.

If YNEXT was set when examined during Continue BA (reference numbers 7, 10,
11, 14 and 15), the controller terminates the sequence by setting YA activity
and clearing YA full. These bits then indicate that an octet has been ordered
from memory for the Y buffer but is not yet in the MBU. If the next clock
will transfer a new octet into the X buffer, the controller enables the next
clock to also set XAFUL to indicate that a valid octet corresponding to the
address in XA is in the MBU. The controller then clears YNEXT so that the
next octet ordered from memory will be routed to the X buffer, and transfers
the address of the desired word from the AR register to the YA register
(ARTYA).

If YNEXT was not set when examined during Continue BA {reference numbers 8, 9,
12, 13 and 16), the controller terminates the sequence by setting XA activity
and clearing XA full. These bits then indicate that an octet has been ordered
from memory for the X buffer, but is not yet in the MBU. If the next clock
will. transfer a new octet into the Y buffer, the controller sets YAFUL to in­
dicate that a valid octet corresponding to the address in YA is in the MBU.
The controller then sets YNEXT so that the next octet ordered from memory will
be routed to the Y buffer, and transfers the address of the desired word from
the AR register to the XA register (ARTXA).

4-282 SEQUENCE BLBI. BLBI establishes conditions in the !PU so that a value
from the register file can be stored into another register file location.
When the controller enters this sequence it sets RGDST to indicate that the
store has a register file destination. The controller then sets LDACT, and
depending upon the type of store operation, enables the next clock to transfer
the contents of either R3 or AR into the LD register. LD is used to determine
short circuit paths for the next instruction that enters level 3. If the
store operation is a simple store that does not change the contents of the
register being stored, then the register address contained in R3 is the ad­
dress of that value when it reaches the AU Output stage where it can be se­
lected for a short circuit path. The controller therefore enables that ad­
dress to LD (R3TLD). If, however, the store operation will also modify the
storage quantity {Store Negative, Store Ones Complement, etc.), the register
address in R3 does not define the address of the value when it reaches the AU
Output stage. Instead, the destination address of the store, contained in AR,

4-184 Advanced Scientific Computer

~------
must be used as the address of that value when it reaches the AU Output stage.
Therefore, the controller enables ARTLD. In either case, the destination ad­
dress in AR is loaded into R4 to be passed through the register stack for reg­
ister hazard comparisons with subsequent instructions. The controller then
sets Register Data Present since the value to be stored originated in the reg­
ister file, sets IMM to indicate that an immediate operand value is to be
transferred, and sets level 4 activity bit on the next clock. The controller
then completes the sequence through the Continue BI portion. This flowchart
portion is described separately since it is common to four sequences.

4-283 SEQUENCE BI. BI sets IPU conditions so that a value from the register
file or an immediate operand can be loaded into the MBU through level 4 of the
IPU. When the controller starts BI, it determines if the instruction at level
3 specifies a storage area in the register file for the resultant of the op­
eration. If it does indicate a register file destination, the IPU must track
that operation through the pipe to detect register hazard conditions. There­
fore, the controller sets the Register Destination flag (IRQRGDST), enables
the next clock to transfer the storage address from R3 to R4 for passing
through the register stack and to LD to indicate the last destination address
that was sent down the pipe for the register file. To indicate that this is
a valid address, the controller also sets LD Active. If the storage address
is in central memory, the controller ignores the previous steps, clearing all
flags and gates described. In either case, the controller sets Register Data
Present if data is taken from the register file for the MBU. The controller
also sets IMM to indicate that an immediate operand value is to be transferred,
and sets level 4 activity bit on the next clock. The controller then com­
pletes the sequence through the Continue BI portion. This flowchart portion
is described separately since it is common to four sequences.

4-284 SEQUENCE BBB!. BBBI establishes conditions in the IPU so that a value
from the register file can be stored into a location in central memory. When
the controller enters this sequence, it clears the RGDST bit to indicate that
the opera ti on is intended for centra 1 memory. If the store opera ti on is a
simple store that does not modify the contents of the register being stored,
the controller sets LDACT and enables the address of the register being stored
to be transferred from R3 to LD for use in short circuit determination. If,
however, the store operati'on will also modify the contents of the register
being stored, the address in R3 will no longer represent the data that will
eventually appear at the AU Output stage as a result of the store instruction.
Consequently, the R3 address cannot be used for short circuit determination.
In addition, since the address in AR is a central memory address, it is too
large to fit into the 7 bit address space in LD. It too cannot be used to
represent the address of the P .. U Output stage value. To perform a short cir­
cuit function for central memory stores, therefore, the level 3 controller
must perform an X or Y update instead of a direct short circuit. In either
case the controller enables the next clock to transfer the cestination ad­
dress from the AR register to R4 for transfer do~n the register stack. The
controller then examines the addresses in ZA and ZP to determine if the store
operation will be into an octet that is already present in the CP due to a
previous instruction. If the store operation is for a new octet, the control­
ler sets the First Word at R4 (FWR4) flag to indicate that the operation will
be for the first word of a new octet. The controller also transfers the

4-185 Advanced Scientific Computer

storage address from AR to the ZP register and sets ZPFUL to indicate a valid
storage address in the ZP register. The Z Store at level 4 bit (ZST4) is also
set to tag the operation as a memory store as it progresses through the pipe.
Since the store operand originates in the register file, Register Data Present
(REGDP) sets to indicate that the store involves data from the register file.
The con troll er then sets IMM to indicate an immediate operand at level 3, and
sets level 4 activity. The control cycle concludes with the Continue BI por­
tion of the sequence. This portion is described separately since it is shared
by four sequences.

4-285 SEQUENCE A. The controller enters sequence A when it returns to the
idle state. This sequence performs no data transfers, but ensures that no
transfers associated with the sequence charts will occur during that clock
time. It is a No Operation sequence that sets all gating signals to zero,
and maintains the existing flags in their present state. Sequence A joins BI
in Continue BI to re-initialize the load gates.

4-286 CONTINUE BI. Contin~e BI provides the concluding portion of sequences
BI, BLBI: BBB! and A. Since these sequences do not involve a load operation,
Continue BI clears all load operation gates and enabling signals. The store
operation of these sequences will not change the resident octets in the MBU,
so the controller ensures that the buffer active and selection bits (XA Active,
YA Active and YNEXT) do not change. The controller then determines if the
next clock wi 11 1 oad a new octet from memory into either the X or the Y buffer
of the MBU (XFSET or YFSET). If either of these signals is true, the control­
ler enables the next clock to set the XAFUL or YAFUL bit, indicating that the
corresponding buffer contains a valid octet of data. The controller then re­
turns to the control path that originated the sequence.

4-287 FORCED WRITE CONTROLLER

The .forced write controller (figure 4-56), under direction of the level 3
controller, initiates an operation that stores the contents of the Z buffer
in the MBU into memory. The forced write operation, therefore, effectively
empties the pipe of currently executing octets. The forced write controller
constantly waits in the Idle state until the level 3 controller issues a
forced write command. The controller then waits until any MBU memory stores
in progress have beErn sent to memory (ZB and ZO not full) before signaling
level 3 controller to wait for the forced write to complete (Forced Write
Wait) and sending a Forced Write command to the MBU. The controller then con­
tinues to hold Forced Write Wait high until the indicated store operation has
been sent to central memory (ZB and ZO empty and MBU Data Available to MCU).
The controller then returns to the Idle state to wait for another Forced Write
command from level 3 controller.

4-186 Advanced Scientific Computer

~------

FORCED
WRITE

(B) 119485A

FORCED WRITE CONTROL

START CONTINUE

r.~---------1
....... ~ '--~~---.,.--~~~~~~~---.,.--~~~~~~~----.

L--------

I
I

NO _J

I ST:;:;-
1

I
I
I

FORCED
WRITE
WAIT

FORCED
WRITE
COMMAND
TO MBU

L __

I
I
I
I

_J
-~ ---------I

I
I

YES

FORCED
WRITE
WAIT 1

I
I
I

L ____ J

Figure 4-56. Level 3 Forced Write Controller

4-187 Advanced Scientific Computer

~------
4-288 LEVEL 4 CONTROLLER

The level 4 controller (figure 4-57) generates interface signals to the MBU to
transfer the required -Operands into the MBU registers. The· interface signals
produced by the level 4 controller are the same as those controlled by the
level 3 controller through the Continue BA common sequence. For a particular
operation only one bf the control circuits generates the required interface
signals, depending upon the activity at level 4. Level 4 takes control if it
contains an active instruction to be passed to the MBU and level 3 cannot pro­
ceed until level 4 completes its assignment (not PAC4). The signals generated
by the level 4: controller are, however, dependent upon conditions in the IPU
that were identified by the Continue BA sequence in the level 3 controller.
These conditions are indicated by the level 4 mode (LVL4MD) bits from the level
3 controller. ·

4-289 UPDATE ENABLE

At the start of the control cycle, the level 4 controller determines if a z to
X or a Z to Y update can be performed. If a valid octet i~ in the Z buffer
(ZAFUL), the controller inspects the XA and YA registers. If either of these
registers is both full and active, and contains the octet address of the octet
in the Z buffer (ZA), then the controller sets the Z equal X (1 to ZEX) or the
Z equal Y (1 to ZEY) indicators. These cells enable a Z to X update or a Z to
Y update whenever the forced write controller forces the Z buffer to memory.
An update operation transfers those halfwords that have been changed by an AU
operation from the Z buffer to the selected operand buffer in the MBU. If
neither condition is satisfied, the controller clears the two update enable
bits. In either case, the controller inspects the level 4 mode bits from the
level 3 controller to determine its next course of action.

4-290 MODE ZERO

Mode zero indicates to the level 4 controller that the level 3 controller has
established conditions on the MBU interface such that the level 4 controller
need perform no changes in the MBU interface bits. The level 4 controller
need only transfer the instruction at level 4 to the MBU when conditions
permit. In mode zero, the contra ll er determines if the MBU wi 11 accept input
from the IPU (PACMBI). If the MBU is not ready, and no active instruction is
in level 4, the controller issues PAC4 to the level 3 controller to enable a
new instruction into level 4, and returns to the start of the level 4 control
cycle. If level 4 does ~ontain an active instruction, the controller loops
within the level 4 control cycle while maintaining the MBU interface bits in
their preset condition until the MBU is ready to accept new input.

When the controller receives PACMBI, it ex~mines conditions in the IPU to
determine if the instruction can be transferred to the MBU. If the alpha
operand is in the register file, the transfer will involve immediate operands
only and the MBU interface with memory will not be required. the controller
can, therefore, issue PAC4 and enable the transfer of level 4 to level 5 on
the next clock. If the alpha operand is from memory, the controller deter­
mines if the level 4 instruction is a store by examining ZPFUL. A store from
level 3 sets ZPFUL and places the store address in the ZP register when it
transfers from level 3. to level 4. The controller determines if the storage

4-188 Advanced Scientific Computer

LVL4

r- - I
I
I

O•ZEX

I
I

NO

I
NO

I
I 1-zEX

I o-ZEX

I
I

NO

I·
NO

• I IF PAC.ol, THEN LVL3 CONTROLLER TO MBU
CONTROLSt LVL.o&MD, LDXA , iJ5XA""""""
~8~8¢u~':"'.~· ~A ·lJ:~ L~l~. LDXBA

LOYA
CONfROLLER CONTROLS THESE

I
LDVBA

CELLS. DUAL INPUT CELLS ARE ZTXU

~~J=1':.~N1~~:~i.:-'o'i:~~A~~~~h1':.~o- 1-zEv ZTVU
~XUP

EQUATIONS ~YUP
IMM

I
REG DP
ZEX
ZEV

o-zEv o-zEv

I LVL4MD

(B) 114347

Figure 4:-57. Level 4 Controller Flowcharts (Sheet l of 3)

4-189 Advanced Scientific Computer

~------
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
(B) 114348

NO

Figure 4-57.

LVL4MD
2 OR 4

0

L4-L5

Level 4 Controller Flowcharts (Sheet 2 of 3)

LVL4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

_J

4-190 Advanced Scientific Computer

~------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1
1
0 0
0 0
------t1 x

0 1 0
0 1-------1 x 0

1-------10 0 0
0 0 1-------t 0 0

LVL.-LVLS

0 -----10 0 0
0 1-------1 O I 0• LVL4MD
------t1 0 0

O 1-------t 0 o-LDXA
1-------1 0 o-LDXBA

1-------t 1-LDYA
t-------1 1 o-LDYBA

0
1-------t o-zTXU

1-zTYU

NOTE: X DENOTES CELL REMAINS UNCHANGED

(B) 119491

Figure 4-57. Level 4 Controller Flowcharts (Sheet 3 of 3)

LVL4

l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4-191 Advanced Scientific Computer

~------
address of the level 4 instruction is different from the storage address of
the level 3 instruction. If a current address in the ZP register (ZPFUL) is
different from the storage address of the new level 3 instruction (AR; ZP),
the controller must wait until the operation in the pipe is completely stored
into the Z buffer before allowing the new instruction into the pipe, that is,
before issuing PKU to the level 3 controller. Similarly, all write operations
must be clear of the pipe and into the Z buffer before the new instruction can
be entered into the MBU. The controller then examines the instruction at level
3 to ensure that it is not a store into memory. A store into memory (Z store)
occurs if the instruction at level 3 is not a skip, not a compare instruction,
and does not have a register file destination. In addition, a store into
memory occurs if the level 3 controller is in state 11 and the instruction is
a push, or if the instruction is an exchange and the Hold flag is not set.
For all of these cases, the controller maintains the MBU interface control bits
at their original states and loops within the level 4 mode zero until the pipe
clears. When PACMBI is received, the contents of level 4 are transferred to
the MBU, but an inactive PAC4 holds the level 3 instruction at level 3 until
one of the above conditions clears. PAC4 is issued when the pipe clears of
write operations. Notice that the store parameter portion of stack instruc­
tions does not affect the controller as the pipe is always clear of other op­
erations at that time.

4-291 MODE ONE

Mode one indicates that the level 4 controller must perform a Z update to
transfer current values from Z into the input buffer level of the MBU. The
controller first waits for all operations to clear the pipe and be stored into
the Z buffer (ZPFUL) not). Then, if Z contains a valid octet (ZAFUL), the
controller examines XRFLG to determine which buffer, X or Y, will receive the
update. If that buffer contains valid data (XFUL or YFUL), the controller sets
the interface bit that produces the update transfer (ZTXU or ZTYU). If the
buffer is not full, the controller loops until the X or Y octet returns from
memory and is loaded into the buffer. Notice that if the Z buffer did not
contain valid data (not ZAFUL), the controller jumps to the control path asso­
ciated with modes 3 and 4 to fetch the desired octet from memory and load it
into one of the operand buffers.

4-292 MODE TWO

Mode two indicates that the level 4 controller must first update an octet in
the MBU operand buffers using data in the Z buffer, and then load a value
from that operand buffer into the pipe. If the instruction at level 4 does
not have the Push, Pull or Modify gate bit set (PPMFG) or is not a z store
portion of the stack instruction, the controller ensures that all data has
been transferred from the pipe (not ZPFUL), that the value in the output of
the AU is not being stored into the Z buffer, and that the MBU is ready to
accept data from the IPU (PACMBI) before it enables the update to the selected
operand buffer (ZTXU or ZTYU) and selects a value from that buffer for the
pipe operand (LDXA or LOYA).

4-293 MODE THREE

Mode three indicates that the level 4 controller has missed a chance to use
the Z to X or Z to Y update path because the Z buffer data has moved out to
ZB; the update must come through the memory path. The level 4 controller

4-192 Advanced Scientific Computer

must load an octet from memory into one of the operand buffers in the MBU, and
then select a word from that octet to be loaded into the pipe. Before the
controller can initiate the request to memory, it must be sure that the needed
data must be stored into memory from the MBU. Therefore, the controller waits
until ZBFUL (indicating an octet in the MBU output to memory), ZOFUL (indicat­
ing an octet that has been sent to memory) and MAFUL (indicating an octet that
has been accepted by memory, but not stored) are all clear before initiating
the memory request to load the needed octet of data into the operand buffer
selected by the XRFLG flag.

4-294 MODE FOUR

In mode four, the level 4 controller must wait for the Z buffer octet to be
stored into memory, initiate a request for that octet from memory to be
loaded into one of the operand buffers, and select a value from that buffer
to be loaded into the pipe. At the start of the mode four control cycle,
the controller waits for the ZPFUL indication to drop, indicating that a new
octet in the pipe has been transferred into the Z buffer, forcing the previous
contents of the Z buffer into memory. When the MBU indicates it can receive
new instructions (PACMBI), the controller can then continue with the control
cycle. Because the desired octet is the one that has just been sent to
memory, the controller must wait until that octet is stored into memory before
performing the fetch for that octet. Therefore, the controller waits until
ZPFUL, ZOFUL, and MAFUL become inactive before enabling a memory request for
the octet, loading that octet into the buffer indicated by XRFLG, and select­
ing a value from that octet to be loaded into the pipe.

4-295 CONCLUSION

Regardless of the mode of operation in the level 4 controller, after success­
ful completion of the cycle, the controller enables transfer of the instruc­
tion in level 4 to level 5 (MBU interface). All modes terminate the sequence
by clearing the mode level to zero, so that on the succeeding clock pulse,
the controller will enter mode zero operation and send PAC4 to the level 3
controller.

4-296 LEVEL 5 SCALAR INPUT CONTROLLER

The level 5 scalar input controller monitors the interface control bits from
the IPU levels 3 and 4 and enables data transfers to perform the specified
loading operations. The operations performed are further qualified by status
inputs from level 5 and level 6 of the MBU. Figure 4-58 illustrates the
control paths involved in the level 5 input controller. Since vector loading
operations are handled by a different controller that is not dependent on the
IPU-MBU interface control bits, this controller is responsible only for scalar
loading of the MBU.

4-297 INPUT STAGE NOT ACTIVE (NOT MBIAC)

If level 5 (Memory Buffer Input, MBI) is not busy with an input operation,
the controller can accept data and address inputs from the IPU. The IPU
inputs can specify any one of three types of operations for the controller to
perform: load an immediate operand from the IPU, load an operand from the X
buffer, or load an operand from the Y buffer.

4-193
Advanced Scientific Computer

~------

IMM-AO
IMFUL-1

DPMBl-1

XA-Ao
XAFUL-1
VFRST-O

XBA-AO
XBREQ-1
XFUL-O

ALL IPU SIGNALS ARF HELD AT
LEVEL 4 IF UPDATE IS REQUIRED
TIL XFUL BECOMES TRUE,EVEN
THOUGH LV4 -LVS TOOK PLACE

YES

(A) I 15787

REG-RO
RGFUL-1

DPMBl-1

MBIAC-1
RMADR-OP
WDSIZE

VFUL-1

PACMBI

YA-AO
VAFUL-1
VFRST-1

VBA-AO
VBREQ-1
VFUL-O

Figure 4-58. Level 5 Scalar Input Controller Flowchart (Sheet 1 of 5}

4-194 Advanced Scientific Computer

Figure 4-58.

DPMBl-1

(a) t I 5788

XA-AO
XAFUL-t
YFRST-0

DPMBl-1

XFUL-1

Level 5 Scalar Input Controller Flowchart (Sheet 2 of 5)

4-195 Advanced Scientific Computer

(B) 125111

Figure 4-58.

DPMBl-1
YFUL-•

REG-RO
RGFUL-1

YA-AO
YAFUL-1
YFRST-1

OPMBl-1

NO

MSIAC-1
ROMAOR -OPCD
WORD SIZE

YFUL-1

PACMBI

VBA-AO
YBREQ-1
YFUL-o

Level 5 Scalar Input Controller Flowchart (Sheet 3 of 5)

4-196 Advanced Scientific Computer

~------

YFRST-O

(BJ 115789

Figure 4-58.

YES

NO

NO

YES

XA-AO
XAFUL-1

XBA-AO
XBREQ-1
XFUL-O

Y"--AO
YAFUL-1

YBA-AO
YBREQ-1
VFUL- 0

NO

Level 5 Scalar Input Controller Flowchart (Sheet 4 of 5)

4-197 Advanced Scientific Computer

~------

•

CSCFUL•Q=-X1FROM CMR

XFUL-1

YES

YFUL-1

DPMBl-1

Figure 4-58. Level 5 Scalar Input Controller Flowchart (Sheet 5 of 5)

4-198 Advanced Scientific Computer

~-------
4-298 LOAD IMMEDIATE OPERAND. If the IMMED interface control bit is set
from the IPU, then the AO register in level 4 of the IPU contains data to be
loaded into th~ pipe. The controller enables the transfer of the data in AO
directly into the IMM register in the MBU input stage, sets IMFUL to indicate
that IMM contains valid data, and sets DPMBI to indicate the presence of data
in the input stage to the MBU. The controller next examines the Register Data
Present (REGDP) interface control bit to determine if the RO register in the
IPU also contains data to be placed into the pipe. If REGDP is set, the con­
troller enables transfer of the data in RO into the REG register in the input
stage of the MBU, and sets RGFUL to indicate the presence of valid data in the
REG register.

Regardless of the state of the REGDP bit, the controller sets MBIAC to indi­
cate that the input stage contains valid operands to be transferred to level
6, enables the Op Code from the RX or RY register at IPU level 4 to be
transferred to the ROM Address Register, allows the word size indicator from
the IPU to select the operand word size to be used during the operation in the
AU, and issues PACMBI to the IPU indicating that the MBU is ready to examine
the next instruction.

4-299 LOAD FROM X BUFFER (LDXA). If the LDXA interface control bit is set,
the level 5 controller must select a word from the X buffer and load it into
the MAB output register at level 6. To prepare for this transfer, the con­
troller transfers the address of the word from the AO register into the XA
register in the MBU. XA output will then be able to select the correct
operand from the X buffer when level 5 to level 6 occurs. The controller then
sets XAFUL to indicate that a valid address is in XA, and clears YFRST. YFRST
is a pointer that indicates which buffer will receive the next input octet
from memory during scalar operations. When set, YFRST indicates that the Y
buffer will receive the input; when clear, YFRST indicates that the X buffer
will receive the input. The controller must then determine if the X buffer
contains the correct octet. If LDXBA is set, a memory octet must first be
transferred into the X buffer before the word can be selected. The control­
ler, therefore, transfers the address of the octet from the AO register to
XBA for input to the Central Memory Requester, sets XBREQ to indicate that
CMR will have to perform a fetch for the octet, and clears XFUL to indicate
that the octet currently in the X buffer is not the desired octet. The
controller sets MBIAC as it leaves this control loop so that it waits for the
octet to return from memory before performing any further operations with the
level 5 data.

If LDXBA was not set, then no memory fetch will be required to load the X
buffer. The controller then checks that the X buffer contains valid data
(XFUL). If XFUL is set, or if it is clear and a Z to X update is required
(ZTXU), thereby setting XFUL, the controller checks the XUP interface control
bit. If this bit is set, the update operation has not yet completed. The
controller will wait for XUP to clear before performing any additional
operations with level 5 operands. If XUP is not set, then the data in X will
not be changed by an update in progress or is being changed by ZTXU update
and will, therefore, represent a valid octet. The controller sets DPMBI to
1ndicate the presence of valid data in the input stage. Regardless of the
path taken through the load from X sequence, the controller completes the cycle
by loading REG with data from RO and setting RGFUL (if the REGDP interface
control bit is set), setting MBIAC to indicate activity at level 5, transfer-

4-199 Advanced Scientific Computer

ring the Op Code from RX to the ROM Address register, selecting the word size
to be used for the operands from the word size indicator in the MBU, and gen­
erating PACMBI to indicate to the IPU that the controller can examine a new
instruction.

4-300 LOAD FROM Y BUFFER (LOYA). The LOYA control paths are identical to the
LDXA control paths, except that the action and decision blocks involve the
status and registers associated with the Y buffer instead of the X buffer.
Refer to the description of the Load From X Buffer (LDXA) control sequence
for an understanding of the LOYA sequence.

4-301 INPUT STAGE ACTIVE (MBIAC)

If MBIAC is set when the controller begins the control cycle, then level 5
contains a valid operation to be performed. The controller can then enter
one of two routines depending upon whether the operation at level 5 will be
passed to level 6 during the next clock pulse. To determine this condition,
the controller examines DPMBI (Data Present MBI), SLNXT (Select Next instruc­
tion) and PACMBO (PAC from level 6). If all of these signals are true, then
the operation at level 5 will pass to level 6 during the next clock. If any
one of these conditions is not met, the operation at level 5 will not pass to
level 6.

4-302 TRANSFER OK. If the next clock pulse will transfer the operation in
level 5 into level 6, then the controller can examine the incoming instruc­
tion and prepare to route it into level 6. The controller, therefore, deter­
mines if the instruction in the output of the IPU is an immediate operand,
requires a load from the X buffer, or requires a load from the Y buffer.

For immediate operands, the controller enables the next clock pulse to trans­
fer the contents of AO in the output stage of the IPU into the IMM register
in level 5 of the MBU, and sets IMFUL to indicate the presence of valid data
in the IMM register. The controller also sets DPMBI to indicate the presence
of valid data in level 5, before proceeding to examine the REGDP control bit.
If there is an operand in the RO register (REGDP set) the controller enables
that operand into the REG register in the MBU and sets RGFUL to indicate the
presence of data in that register. Regardless of the state of REGDP, the
controller sets MBIAC to indicate the new operation in level 5, enables the
op code portion of the instruction from RX or RY in level 4 to the ROM Address
register in the MBU, and uses the word size indication from the IPU to select
the operand size to be sent to the AU. The controller issues PACMBI to the
IPU before returning to the start of the control cycle.

If the new instruction from the IPU requires a load into level 6 from either
the X or the Y buffer (LDXA or LOYA), the controller transfers the address of
the operand from the AO register in the IPU to the respective operand address
register (XA or YA) to select the correct word from the output of the Buffer.
The controller also sets the full flag (YAFUL or XAFUL) associated with that
address register to indicate the presence of a valid address in that register
and either sets or clears the YFRST .pointer, depending upon whether the Y or
the X buffer will receive the next operand from memory. If a memory request
is required to load an octet into the selected buffer (LDYBA or LDXBA), YAFUL
will not be set during the first control cycle for the instruction. The

4-200 Advanced Scientific Computer

controller then indicates to CMR that a memory request is required (YBREQ
or XBREQ), transfers the address from AO into the operand address register
(YBA or XBA) and clears YFUL to indicate that the octet in the Y buffer is
not valid. If YAFUL is set when the controller takes the LDYBA path, then the
instruction in level 5 is using the YA register or the controller has already
made the memory request for the level 4 instruction. If YAFUL is set, the
controller makes three other inspections to determine if it can request a new
octet from memory to satisfy the LDYBA bit. If YAFUL and IMFUL are both true,
then the instruction in level 5 is an immediate and the controller has already
requested the octet for the instruction at level 4. Therefore, the controller
checks the YFUL flag and sets DPMBI if the octet for the level 4 instruction
has returned from memory. If YAFUL is set, but the instruction at level 5 is
not an immediate operand, the controller checks the XAFUL flag. If XAFUL is
not set, then the level 5 to level 6 transfer that will occur on the next
clock pulse will select a word from the Y buffer, clearing YAFUL. The control­
ler can therefore issue a memory request for an octet to be loaded into the
Y buffer. If both YAFUL and XAFUL are set and level 5 is not immediate data,
the controller checks the YFRST flag. If YFRST is not set, then the octet to
be loaded into the Y buffer for this instruction has already been requested
from memory (since the X buffer is first and XA corresponds to the operands in
level 5, therefore YA corresponds to the instruction at level 4 and YAFUL
indicates that the octet has been ordered). The controller then checks to
see if the octet for the Y buffer has returned from memory (SCTY), and if so,
it sets YFUL and DPMBI. The controller then sets MBIAC, transfers the op
code from RY in the IPU to the ROM Address register and selects the word size
of the operand to be used for the operation at level 4. If the REGDP (Regis­
ter Data Present) flag is set, the controller enables the transfer of the
register operand from RO to the REG register and sets RGFUL. Regardless, the
controller sends PACMBI to the level 4 controller so that not only will the
next clock pulse transfer the operands of the level 5 operation into level 6,
but it will also transfer the instruction at level 4 into level 5.

If a memory fetch is not required to furnish the operand for the instruction
at level 4, (not LDYBA), the controller checks the YUP control bit from the
level 4 controller. If this bit is set, the controller waits until YUP
clears indicating that the Z-to-Y update has been performed and the Y buffer
contains the correct data; When YUP clears during a Z-to-Y update (ZTYU),
the controller sets DPMBI and YFUL to indicate that the correct data is ready
in the Y buffer. If there is no Z-to-Y update and YUP is clear, the control­
ler waits for data to return from memory, sets YFUL, and also sets DPMBI (if
data has already returned from memory or was resident in the current buffer,
YFUL will already be set). The controller then enables the next clock pulse
to transfer level 4 into level 5 along with any register operand that may be
in the RO register, sets MBIAC and selects the operand word size.

4-303 TRANSFER NOT OK. If MBIAC is set at the start of a control cycle, but
either DPMBI, SLNXT (select next), or PACMBO is not active, then the instruc­
tion at level 5 will not transfer to level 6 during the next clock. Therefore,
the level 5 controller will not be able to accept a new instruction from level
4. It can, however, request the octet containing the operand from memory if
a request is required. If the instruction at level 4 is an immediate operand,
then no memory fetch will be needed. The controller, therefore, waits until
the instruction at level 5 moves to level 6 before processing an immediate
operand.

4-201 Advanced Scientific Computer

~---
If the instruction at level 4 requires an operand from either the X or Y
buffer (LOXA or LOYA), the controller can prepare the registers for that
operation. The requirements of either an LOXA or an LOYA are identical; only
one cycle will be described. For an LDXA, the controller first inspects the
XAFUL flag to determine if the instruction at level 5 is using the XA regis­
ter to select its operand from the X buffer. If that is the case, the
controller may not load a new address into XA until the level 5 to level 6
transfer occurs. If XA is not full, the controller inspects YAFUL. If YAFUL
is not set, the controller clears YFRST to indicate that, since the instruc­
tion at level 4 is the only instruction in levels 4 and 5, the X buffer will
be the next buffer to receive a memory transfer. If YAFUL is set, the Y
buffer will be used first so the controller leaves YFRST set to select that
buffer. Regardless of the state of YAFUL, as long as XAFUL is not set, the
controller enables the next clock to transfer the word address of the operand
from AO into the XA register and sets XAFUL to indicate the presence of a
valid address in XA. If a memory request is required to fill the X buffer
(LOXBA), the controller also enables the octet address in AO to the XBA
register, clears XFUL to indicate that the X buffer does not contain the
desired octet, and issues XBREQ to CMR to indicate the need for a memory
request. The controller then examines the X buffer flags to determine if the
buffer contains valid data for the instruction to be executed. If the XUP
bit is still set, the buffer requires a Z-to-X update and the present data
is not correct. The controller then waits for XUP to clear. When XUP has
cleared, the controller determines if an octet has returned from memory (SCTX)
into the X buffer. If SCTX is true, the controller sets XFUL to indicate the
presence of data in the X buffer. Also, if new data did not arrive, but a
Z-to-X update was performed (ZTXU), the controller also sets XFUL. If YFRST
is not set, indicating that the X buffer will be the next source of operands
for the MBU, the controller also sets DPMBI to indicate that the input stage
is prepared to transfer data to level 6.

4-304 LEVEL 6 CONTROLLER - SCALAR MODE

The level 6 controller (figure 4-59) operating in the scalar mode monitors
signals from the level 5 and Select Next controllers to gate data from level
5 into level 6 for output to the AU. For a tran,fer to occur, the following
signals must be present:

• OPMBI - Data Present in Memory Buffer Interface

• SLNXT - Select Next; indicates that the next instruction can be
input to the AU

• DPMBO Data Present in Memory Buffer Output stage
or

• PACAUR - Path Ahead Clear in the AU Receiver section .

If these signals are present, the controller checks the level 5 register
status flags. If an immediate operand is in level 5, the controller enables
the contents of IMM into the MCD register, clears IMFUL and sets DPMBO. If a
register operand is in level 5, the controller enables the contents of the

4-202 Advanced Scientific Computer

~------

(,t.) 1IS790

YTMCD
YAFUL--CLR
YFRST --CLR

IMTMCD
IMFUL•CLR
BCROMTOT
1 • DPMBO
INTAOR

RGTMAB
RGFUL• CLR

XTMCO
XAFUL • CLR

RGTMAB
RC1FUL • CLH

PACMHO

BCROMTOT
I-• OPMBO
INTAOR

Figure 4-59. Level 6 Controller Flowchart - Scalar Mode

4-203 Advanced Scientific Computer

~------
REG register into the MAB register. For X or Y operands, the controller
checks the YFRST flag. If it is set, the controller examines the Y buffer
flags first. In either case, if the first inspection does not result in a
transfer into MCD, the controller will check the flags associated with the
other buffer and transfer data from that buffer into MCD if valid data is
present. When all required transfers are complete during a control cycle,
the controller issues PACMBO to the level 5 controller.

4-305 LEVEL 6 CONTROLLER - VECTOR MODE

Level 6 vector mode-control is illustrated in figure 4-60. Description of
this circuit will be supplied at a later date.

4-306 SELECT NEXT CONTROLLER

The Select Next controller {figure 4-61) enables transfer of instructions
into the AU, operation codes into the AU control ROM, and operands from level
5 to level 6 by setting the SLNXT control bit. Except for vector initiation,
the controller is used for scalar operations only. Select Next {SLNXT) is
set under the following conditions:

1. VECTOR INITIATION loads first vector address into the AU control ROM.

2. MBI INACTIVE

1 MBI Inactive and AU empty - enables level 5 to level 6.

1 MBI Inactive and AU active with a one clock operation - enables
level 5 to level 6 since AU will be empty on next clock.

1 MBI Inactive, PACMBO and AU active during last clock of operation -
enables level 5 to level 6 since AU will be empty on next clock.

1 Next ROM Code NO OP - No Op will have no effect on operation in
AU; therefore level 5 to level 6 is enabled.

3. MBI ACTIVE and PACMBI

1 One clock operation at level 5 - enables level 5 to level 6 to
prepare to insert one clock operation into pipe at completion of
current operation.

1 Same group at level 4, first clock of same group and no short
circuit {wait) at level 4 - allows transfer of instruction to
prepare for interleave of operation in same group time.

4. MBI ACTIVE AND NOT PACMBI

1 AU Inactive - enter next operation into pipe for processing.

1 One clock at level 5 and in AU - Enter next operation since AU
will be vacant after next clock.

4-204 Advanced Scientific Computer

LEVEL 6
VECTOR

XTMAB
XAFUL-CLR
OPMBO-· SET

PACMBO

XTMAB
YTMCD
XAFUL -<:LR
YAFUL -<:LR
OPMBO-SET

XTMAB
XAFUL-CLR
OPMBO-SET

YALE BU
YALSE -<:LR

YALE BU
YALSE+-CLR

YTMCO
YAFUL. CLR
OPMBO- SET

NO

NO

YTMCO
YAFUL--CLR
OPMBO- SET

YALE BU
YALSE-CLR

XALEBU
XALSE•- CLR

Figure 4-60. Level 6 Contrell er Flowchart - Vector Mode

4-205 Advanced Scientific Computer

~------
SELECT NEXT

YES

SLNXT-1

SLNXT-1

SLNXT-1

(B} 120017

Figure 4-61. Select Next Flowchart (Sheet l of 2)

4-206 Advanced Scientific Computer

~------
MBIAC·~

SLNXT-1 YES NO NO

SLNXT-1

SLNXT:....-1

SLNXT-1

SLNXT-1

SLNXT-1

(8)120018

Figure 4-61. Select Next Flowchart (Sheet 2 of 2)

4-207 Advanced Scientific Co.mputer

~------
t AU active, PACMBO, Next ROM Code No Op - No Op will not affect AU,

load MBO in preparation for next operation.

• AU active, PACMBO, Next clock last clock of current ROM instruc­
tion - AU operation is completing, load MBO in preparation for
next operation.

1 Same group, Same group time, and if single-length multiply, the
result in the AU will be the same as the result of the new
instruction at level 5 (see explanation below).

RODD indicates that the result of a single-length multiply at level 5 will be
stored into an odd memory location, and therefore cannot be a doubleword
result. R OPTION FALSE and R OPTION TRUE are AU ROM signals that indicate
the word length of the result of a single-length multiply currently in the
pipe. R OPTION FALSE indicates that the result will be single-length; R
OPTION TRUE indicates that the result will be double-length. The Select Next
controller; however, examines the complement of these two ROM signals so that
non-multiply instructions need not be coded with ones. Therefore, if RODD is
false (indicating an even storage address) and R OPTION FALSE is also false
(indicating a double-length result), both operations specify the same length
result. Similarly, if RODD is true and R OPTION TRUE is false (indicating a
single-length result), both operations specify the same length result. The
controller can then enable SLNXT so that the operands in level 5 can be in­
serted into the AU at the same group time to be overlapped with the current
instruction in the AU. One of these two paths will always be true for same
group operations other than single-length multiply.

4-307 CENTRAL MEMORY REQUESTER (CMR)

The Central Memory Requester (CMR) in the MBU (figure 4-62) receives requests
for octets from either the level 5 controller or from the Z storage control
circuit. CMR then decides priority for the requests, issues the requests to
memory, and routes the returning octets from memory, through the SC Memory
Interface File, into the buffer file (X, Y or Z) that requested the data.
Data requested for the Z buffer is for a Z Fill-in (ZFILN) operation. That
is, the data in the Z buffer contains some incomplete halfwords and cannot
be stored into memory without filling the empty halfword positions with
valid data from memory. The halfword modified flags in the ZBM register
designate which halfwords in the Z buffer contain valid data, and prevent the
incoming memory words from changing those halfword positions in ZB. CMR also
issues storage requests to memory to write the contents of the ZB file into
memory after a fill-in operation, or when the next word to be stored into the
Z buffer will be in a new octet. The control circuits contain an examination
state for each number of allowable outstanding requests to memory. Each cycle
performs the same basic functions.

If a hardcore operation must be performed, the controller checks to see if an
outstanding request has returned from memory. If SCFUL is set {new octet in
SC) and the queue indicates that the octet is for a Z buffer fill-in opera­
tion {CUE= 10), the controller allows the next clock to transfer the contents
of SC into the ZB file, clears the ZFILN flag, and enables the halfword

4-208 Advanced Scientific Computer

~------

0 PENDING STATE

SCTZB
ZBM -SET
ZFIL.N ,._ CL.R

TO HARD CORE

NO

REQUEST-CONFIGURATION (XBREQ, YBREQ, ZBREQ)

Z8ATOA
ZWAIT-CL.R
z•RIEQ-CLR
PM+01

(B) 115821

REQUEST-CONFIGURATION
(XBREQ. YBREQ, ZBREQ)

011

zca-zaM
OAFUL.-SET

NO

ZBATOA
ZWAIT-SET
CUE-10
PM-01

010

YBATOA
YBREQ ,._ CL.R
YNEXT ,._ CL.R
CUE - 01
PM -10

110

Kt

F1gure 4-62. CM Requester Flowchart (Sheet 1 of 15)

100

XBATOA
XBREQ -- CL.R
YNEXT- SET
CUE -- 00
PM -10

zc•-cL.R
OAl"UL.- SET
C:llEIP...­
(CUEIP) + 1

4-209 Advanced Scientific Computer

(B) 11 SB22

I REQUEST PENDi NG

SCTZB
ZFILN- CLR
ZBM ... SET

REQUEST-CONFIGURATION (XBREQ. YBREQ. ZBREQ)

~EQUEST-CONFIGURATIQN
(XBREQ, YBREQ. ZBREQ}

011

010

NO

110

SCTZB
ZBM- SET
ZFILN - CLR

100

XBATOA
YBREQ-CLR
YNEXT-SET
CUE-00
PM-10

ZCB ... CLR
OAFUL- SET
(:UEIP"t­
(CUEIP) + I

Figure 4-62. CM Requester Flowchart {Sheet 2 of 15)

4-210 Advanced Scientific Computer

~------

(SCFUL, WRACC)

10

CUEOP -
(CUEOP) + 1

(A) 11 5823

01

ZBBSY+-CLR

00 1 1

CUEOP­
(CUEOP) + 1
ZBBSY-CLR

>-1 1

(SCFUL, WRACC)

10

CUEOP­
(CUEOP) + 1

01

ZBBSY+CLR

00

Figure 4-62. CM Requester Flowchart (Sheet 3 of 15)

4-211 Advanced Scientific Computer

4P·----------

ZBATOA
ZWAIT-CLR
ZBREQ+-CLR
.. M-01

ca> 11 se24

2 REQUESTS PENDING

SCTZB
ZBM-SET
ZFILN-CLR

REQUEST-CONFIGURATION (XBREQ, YBREQ, ZBREQ)

RJ:QUEST-CONFIGURATIQN
(XBREQ ,YllREQ ,ZBREQ)

011 I 01

NO

zca-zaM
OAFU SET

NO

YES

ZBATOA
ZWAIT+-SET
CUIE+-10
PM-Ot

010 110

YES

SCTZB
ZBM-SET
ZFILN+-CLR

>-21

1 :JO

XBATOA
XBRIEQ-CLR
YNEXT-SET
CUE+-00
PM-10

ZCB +-CLR
OAFUL+-SET
c;:UEIP+­
(CUEI,.) + I

>-20

Figure 4-62. CM Requester Flowchart {Sheet 4 of 15)

4-212 Advanced Scientific Computer

~---------"---"
>-20

(SCFUL, WRACC)

1 1

CUEOP­
(CUEOP) + 1
ZBBSY-CLR

10

CUEOP­
(CUEOP) + 1

(A) 11 5825

01 00 1 1

CUEOP4-
(CUEOP) + 1
ZBBSY4-CLR

(SCFUL, WRACC)

10

CUEOP­
(CUEOP) + 1

01

ZBBSY+-CLR

K2

00

K
3

Figure 4-62. CM Requester Flowchart (Sheet 5 of 15)

4-213 Advanced Scientific Computer

7

ZBATOA
ZWAIT--CLR
ZBRl:Q-CLR
PM+-01

(B) 11582"

). 30

:3 REQUESTS PENDING

SCTZB
ZBM--SET
ZFILN+-CLR

Rl;:QUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

011 101

NO

zca--zaM
OAF UL-SET

REQUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

NO

ZBATOA
ZWAIT-SET
cuE-10
PM-01

010

YBATOA
YBREQ--CLR
YNEXT-CLR
cuE-01
PM-10

SCTZB
ZBM--SET
ZFILN-CLR

110 100

XBATOA
XBREQ+-CLR
YNEXT+-SET
CUE+-00
PM-10

ZCB+-CLR
OAFUL +-SET
~UEIP­
(CUEIP) + 1

Figure 4-62. CM Requester Flowchart (Sheet 6 of 15)

4-214 Advanced Scientific Computer

~------

1 1

CUEOP+­
lCUEOP) + 1
ZBBSY+-CLR

(A) 11 5827

(SCFUL, WRACC)

10

CUEOP._.
(CUEOP) + 1

01

ZBBSY-CLR

00

(SCFUL, WRACC)

1 1

CUEOP+­
(CUEOP) + 1
ZBBSY+-CLR

10

CUEOP+- ,
(CUEOP) + 1

01

ZBBSY-CLR

00

Figure 4-62. CM Requester Flowchart (Sheet 7 of 15)

4-215 Advanced Scientific Computer

(B) 115828

4 REQUESTS PENDING

Rl,i:QUEST-CONF IGURATIQN
(XBREQ,YBREQ,ZBREQ)

011

>..40

ZCB+-ZBM
OAl"UL+-SIET

REQUEST-CONFIGURATl9N
(XBREQ,YBREQ,ZBREQ)

NO

ZBATOA
ZWAIT+-SET
CUE+-10
l"M+-01

010

YES

YBATOA
YBREQ+-CLR
YNEXT+-CLR
CUIE+-01
PM-10

110 100

ZCB+-CLR
Ol#UL -SIET
C:UIEll"­
(CUIEIP) + 1

X...o

Figure 4-62. CM Requester Flowchart (Sheet 8 of 15)

4-216 Advanced Scientific Computer

~------

1 1

CUEOP­
(CUEOP) + 1
ZBBSY-CLR

(A) 11 5829

)..40

(SCFUL, WRACC)

10

CUEOP­
(CUEOP) + 1

01

ZBBSY-CLR

00 1 1

CUEOP­
(CUEOP) + 1
ZBBSY-CLR

(SCFUL, WRACC)

10

CUEOP­
(CUEOP) + 1

01

ZBBSY-CLR

00

Figure 4-62. CM Requester Flowchart (Sheet 9 of 15)

4-217 Advanced Scientific Computer

ZBATOA
ZWAIT+-CLR
ZBREQ+-CLR
PM+-01

(B) 11 5830

5 REQUESTS PENDING

SCTZB
ZBM+-SET
ZFILN+-CLR

REQUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

ZCB+-ZBM
OAFUL+-SET

REQUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

ZBATOA
ZWAIT+-SET
cuE-10
PM+-01

010

YES

YBATOA
YBREQ+-CLR
YNEXT+-CLR
CUE+-01
PM-10

SCTZB
ZBM-SET
ZFILN+-CLR

I I 0 100

XBATOA
XBREQ+-CLR
YNEXT+-SET
CUE+-00
PM-10

ZCB+-CLR
OAFUL+-SET
CUEIP­
(CUEIP) + I

A. so

Figure 4-62. CM Requester Flowchart (Sheet 10 of 15)

4-218 Advanced Scientific Computer

~------

(SCFUL, WRACC)

1 1

CUEOP­
(CUEOP) + 1
ZBBSY - CLR

10

CUEOP­
(CUEOP) + 1

(A) 11 5831

01 00

x. 51

(SCFUL, WRACC)

1 1

CUEOP­
(CUEOP) + 1
ZBBSY-CLR

10

CUEOP­
(CUEOP) + 1

01

zeesv-cLR

00

Figure 4-62. CM Requester Flowchart (Sheet 11 of 15)

4-219 Advanced Scientific Computer

Z•ATOA
ZWAIT-CLR
Z•IUEQ - CLR
PM,._ 01

(e) 115832

6 REQUESTS PENDING

SCTZB
ZBM SET
Zl"ILN+-CLR

REQUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

011 101

NO

zca - zeM
OAl"UL ,._SET

YES

REQUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

ZBATOA
ZWAIT+-SET
CUE-10
PM+-01

NO

010

YES

YBATOA
YBREQ+-CLR
YNEXT+-CLR
CUE-01
PM-10

SCTZB
ZBM - SET
ZFILN-CLR

110 100

XISATOA
XBREQ,..CLR
YNIEXT+-SET
CUIE+-00
PM-10

Figure 4-62. CM Requester Flowchart (Sheet 12 of 15)

4-220 Advanced Scientific Computer

(SCFUL, WRACC)

1 1

CUEOP­
(CUEOP) + 1
ZBBSY+- CLR

1 0

CUEOP­
(CUEOP) + 1

(A) 11 5833

01

ZBBSY+-CLR

00 1 1

(SCFUL, WRACC)

1 0

CUEOP­
(CUEOP) + 1

01

ZBBSV4-CLR

00

Figure 4-62. CM Requester Flowchart (Sheet 13 of 15)

4-221 Advanced Scientific Computer

ZBATOA
ZWAIT-CLR
Z81tllQ - CU
l'M-01

(B) 115834

NO

7 REQUESTS PENDING
(QUEUE FULL WITH

NEXT REQUEST)

SCTZB
ZBM+-SET
ZFILN+-CLR

001
011
101
111

REQUEST-CONFIGURATION
(XBREQ,YBREQ,ZBREQ)

ZBATOA
ZWAIT+-SET
CUE+-10
PM+-01

ZCB+-CLR
OAFUL-SET

f~Ji!f~+ 1

SCTZB
Z8M+-SET
ZFLIN+-CLR

>..70

Figure 4-62. CM Requester Flowchart (Sheet 14 of 15)

4-222 Advanced Scientific Computer

~------

(A) I I 5835

(SCFUL, WRACC)

I I

CUEOP+­
(CUEOP) + I
ZBBSY +- CLR

10

CUEOP­
(CUEOP) + I

01

ZBBSY+-CLR

00

Figure 4-62. CM Requester Flowchart (Sheet 15 of 15)

4-223 Advanced Scientific Computer

~------
modified flags to transfer the changed halfwords from the Z buffer into ZB to
update the octet for storage into memory. The controller relinquishes control
to MBU Unit Hard Core for the next clock cycle.

If the QA register is available to transfer another address to central memory,
the controller also checks for a Z Fill-in operation and performs the trans­
fers described above~ The controller then checks for a request that
originates in the Z buffer stream since Z requests must be made immediately
due to lack of a buffer stage for the Z data. If there is no ZFILN opera­
tion, the controller transfers the address in ZBA to QA to designate the
storage area in memory to be used, clears ZWAIT and ZBREQ, and sets the
protect mode bits to a 11 Ql", indicating that the request is to be governed
by the write protection parameters in the MCU. The controller then sets the
zone control bits in ZCB that correspond to any of the halfword-modified flags
in ZBM, and sets QAFUL to indicate that a request is being made to memory.

If ZBREQ is set and a ZFILN operation is required, the controller examines
ZWAIT to determine if the Z buffer data will be stored or held. If ZWAIT is
set, the controller continues examining the requests from the X and Y buffers.
If ZWAIT is not set, the controller sets ZWAIT to indicate that a ZFILN fetch
is in progress, enables the next clock to transfer the address in ZBA to the
QA register for transfer to memory, sets the queue code to 11 lQ 11 , indicating a
destination of the Z buffer for the returning octet, and sets the protect mode
bits to 11 Ql 11 to indicate to the MCU that this particular read operation is to
be governed by the write protect bits (since the final result will be a write
into that location). The controller then clears ZCB indicating a read opera­
tion to the MCU, sets QAFUL to indicate that a memory request is in progress,
and increments the queue input pointer for the next operation.

If no Z buffer operation is to be performed during this clock period, the
controller examines the XBREQ, YBREQ and YNEXT signals. YNEXT resolves
conflicts between X and Y data streams when simultaneous requests appear from
both (YNEXT selects YBREQ; not YNEXT selects XBREQ). For either request, the
controller transfers the memory address from the corresponding address regis­
ter (XBA or YBA) into the QA register for transfer to memory, clears the
request flag (XBREQ or YBREQ), toggles the YNEXT indicator so that the other
buffer request will be selected during the next conflict, sets the protect
mode bits to 11 lQ 11 to designate the read protect parameters to the MCU, and
loads the corresponding code into the queue to indicate the origin of the
request and ultimate destination of the octet from memory (X buffer = QQ, Y
buffer= 01). CMR then clears the zone control bits for the read operation,
sets QAFUL to indicate that a memory operation is in progress, and increments
the queue input pointer (CUEIP) to select the queue position for the next
operation.

Regardless of the path through the decode cycle, the controller completes
the control cycle by inspecting the SCFUL and WRACC flags. If SCFUL is set,
the controller increments the queue output pointer (CUEOP) since the code has
been used to select the destination of the new octet. If WRACC is present
(write acknowledgement from the MCU), the last write operation is complete.
The controller, therefore, clears ZBBSY indicating that the ZB buffer no
longer contains needed data and that a new octet may be transferred into ZB
for storage into memory.

4-224 Advanced Scientific Computer

4-308 PP RESPONSE POLLING OF THE CP

The Peripheral Processor (PP) monitors the CP response bits in its CR File,
Register 12 (hexadecimal). These response bits are System Error (SE),
Abnormal Termination (AT), Message Complete (MC) and Switch Complete (SC).
If the CP sets one of these bits, the PP performs a set of actions to recover
from the condition that produced the response bit. Figure 4-63 illustrates
the polling loop that the PP follows. The following paragraphs describe the
PP response to each of the conditions.

4-309 SYSTEM ERROR

If the CP detects a parity error during normal operation, it sets the SE
response bit. The PP then checks the PE bit in the condition byte to deter­
mine if the parity error occurred during a memory fetch. If PE is set, the
PP indicates a parity error termination, issues a reset command to the CP,
loads a new job into the CP via an exchange intermediate CCR command, and sets
the CP run bit to start the new job into operation. If PE is not set, the PP
resets the terminate request bit in the control byte, loads a new job into the
CP and sets the Run bit to start the new job into operation.

4-310 ABNORMAL TERMINATION

If a maintenance command executing in the CP encountered an error condition
and terminated abnormally, the CP will set the AT bit in the CP response byte
of the PP CP File. If this bit sets, the PP inspects the SC and MC bits to
determine the condition prior to termination.

If SC and MC are both clear, the CP is inactive between jobs and is ready to
receive new commands. If MC is clear but SC is set, and error switch was in
progress when the CP terminated the sequence. If MC is set, a monitor call
resulted in program termination. The condition of the SC bit indicates which
call was present: SC = 1 indicates a MCW operation; SC = 0 indicates a MCP
operation. The PP then determines what conditions caused the termination by
inspecting the PE and PV condition byte bits. If PE is set, then a memory
parity error or other system error caused the termination. The condition in
memory must be corrected Qefore the job can run in that area of memory. The
PP loads a new job into the CP and sets the Run bit to start the CP on the
new job. If the PV bit is set, then a memory operation encountered a memory
protect violation causing the CP program to terminate. The memory protect
parameters in the MCU must be adjusted to allow the program to access the
required area in memory. The PP loads a new job into the CP and sets the
Run bit to start the operation in the CP. If neither of the two condition
byte bits are set, the termination resulted from a termination request
issued by the PP. The PP resets the Termination Request bit (TR). loads a
new job into the PP and sets the Run bit to start the new job into the CP.

4-311 NORMAL TERMINATION

If no system error or abnormal termination occurs, the PP inspects the SC and
MC response bits to determine if a switch operation or call instruction
executed properly. If neither of these two bits is set, some condition has

4-225 Advanced Scientific Computer

ENTER

NO

TERMINATE
REQUEST
HONORED

RESET TR

LOAD NEW JOB

SET RUN BIT

*FIX MEMORY-IF PARITY OCCURS,
IT IS ASSUMED THAT MEMORY IS
BROKEN AND REQUIRES REPAIR AND
THEREFORE NO ATTEMPT TO SWITCH
IS MADE.

(A) 115842

PARITY ERROR
TERMINATION
OF NORMAL CP
OPERATION

SYSTEM RESET
OR ERROR RESET
(4106)

FIX MEMORY*
LOAD NEW JOB
SET RUN BIT

RETURN

Figure 4-63. PP Automatic Interrupt or Polling Loop
of CP Status (Sheet 1 of 4)

4-226 Advanced Scientific Computer

(A) I I S843

ABNORMAL
TERMINATION
OF AUTOMATIC
CALL OR
SWITCH

MCW
TERMINATED

NO

*AT ABNORMAL TERMINATION OF AN
AUTOMATIC CALL OR SWITCH
EX! FETCHING POINTER AND
GETTING PROTECT OR PARll'Y.

••_SC/MC

ERROR SWITCH
TERMINATED

TERMINATED BY
A PROTECT VIO­
LATION, SYSTEM
ERROR, OR ERROR
RESET; FIX PRO-

liii6 lik~1 15~ \
SET RUN BIT

RETURN

00 READY
01 SWITCH DUE TO ERROR
10 MCP CALL
t 1 MCW CALL AND SWITCH

NO

YES

MCP
TERMINATED

TERMINATE
REQUEST
HONORED
RESET TR,
LOAD NEW JOB,
SET RUN BIT

NO

Figure 4-63. PP Automatic Interrupt or Polling Loop
of CP Status {Sheet 2 of 4)

4-227 Advanced Scientific Computer

(A)115844

MCW
COMPLETE
OPERATE ON
07, PREPARE
NEW EXC'"IANGE,
RESET SC, MC

ERROR SWITCH
COMPLETE,
DETERMINE
ERROR VIA
CONDITION
BYTE, PREPARE
NEW EXCHANGE,
RESET SC

RETURN

YES

MCP COMPLETE
OPERATE ON 07,
RESET MC

Figure 4-63. PP Automatic Interrupt or Polling Loop
of CP Status (Sheet 3 of 4)

4-228 Advanced Scientific Computer

(A)115845

MCP INHIBITED
BY SC OR MCs 1
PREPARE FOR
MCP RESET SC,

~iT :JJOii"1~

Figure 4-63.

MCW INHIBITED
BY SC OR MC 1
PREPARE FOR
MCW RESET SC.
MC, RZ (0-2)
SET RUN BIT

ERROR SWITCH
INHIBITED BY
AS O,
PREPARE
SWITCH SET
AS, RUN
BIT

NO

RETURN

ERROR
INHIBITED BY
SC OR MC- 1
PREPARE FOR
ERROR SWITCH,
RESET SC. MC.
RZ (0-2), SET
RUN BIT

"1CW INHIBITED
BY AS 0,
PREPARE FOR
MCW SET AS.
RUN BIT

MCW INHIBITED
BY Ac~o.
PREPARE FOR
MCW, SET AC,
RUN BIT

MCP INHIBITED
BY AC c O,
PREPARE FOR
MCP SET AC,

_RUN BIT

PP Automatic Interrupt or Polling Loop
of CP Status (Sheet 4 of 4)

4-229 Advanced Scientific Computer

prevented completion of the operation. The PP inspects the reason code bits
to determine the cause. If SC is set, but MC is not, then the CP has com­
pleted an error switch operation. The PP must examine the condition byte to
determine the nature of the error, prepare a new job for exchange operations
in case the current job in the CP requires PP intervention, and reset the SC
bit. If MC is set, then a monitor call operation has successfully completed.
The condition of the SC bit indicates which of the two monitor calls was
completed. In either case, the PP pulls the call pointer from memory loca­
tion 07 and performs the required operation to fulfill the CP's requirements.
The PP also resets the MC bit, and, if the operation was an MCW, prepares a
new exchange to be ~eady in case the current program in the CP completes or
requests context switching via another MCW operation.

4-312 CAPTURE CCR

The capture CCR logic is part of the master hard core circuitry that monitors
the transfer bit (TB) and unit code of the Common Command Register (CCR) in
the Peripheral Processor Communications Register File. The flowchart in
figure 4-64 illustrates the control cycle. If TB sets, the PP is issuing a
command to one of the system devices. The controller then inspects the unit
code of the command to determine if the command is intended for the CP. A
code of 41 (in hexadecimal) specifies a CP command. The controller then
inspects the Request Present flag (QRPF) to determine if another request is
currently being processed by the hard core logic. If this flag is set, the
controller must wait until it clears before proceeding. When the flag clears,
the controller activates the Reset TB (RSTB) and Gate CCR (GCCR) lines to the
CR File to transfer the new command into the CP. When the PP returns a recog­
nition of the transfer (TBRL), the controller deactivates the two signals
and activates the Request Present indicator (RP) to indicate to the hard core
logic that a new command is resident. The controller then ensures that the
TB has not yet reset.

NOTE

Due to the long clock period of the CR File with respect
to the CP, the CP has several clock periods before TB
resets. Therefore, if TB is reset at this point, it
should not have been set. This feature also provides a
time-out that negates the CCR command if QRPF does not
set within a reasonable time.

If TB is still set, the controller waits for the hard core logic to set QRPF
as a result of RP being active. QRPF indicates an active command in the hard
core logic. When QRPF sets, the controller drops RP and waits for TB to
clear. When TB clears, the cycle is complete and the controller is ready to
begin the cycle again.

4-313 ERROR MONITOR

The error monitor logic, illustrateq in figure 4-65, determines the conditions
in the CP hard core interface and sets the reason code bits to the PP to
indicate the status of a context switch in the CP. If an error occurs in the

4-230
Advanced Scientific Computer

r--------------,
I
I

I s 0

I
I
I
I
I
I
I

CAPnJRE
CCR

RESET TB
(RSTB-1)
GATE CCR
(GCCR-1)

RP-O

I

I
r;;------

I
I
I
I
I

1

I
I
I
~
I
I

RP-O

(~i ~~~~:~r:.PF

NO

RSTB-0
GCCR-O
(REQUEST
PRESENT)

NOOP

L __ _ L

I
I

_J

(A)l 1!5837

NOTE: THIS IS AL.I.. ASYNCHRONOUS L.OGIC. (1- XXX REQUIRES NO CL.OCK)

• TSRL. -L.ATCH OUTPUT ON CCR COOKIE SHEET THAT L.OOKS AT AL.I.. TB RESET L.INES AND WHEN TBR
CL.IC OCCURS IT GETS SET SO THAT THE MHC KNOWS HOW L.ONG TO HOL.D RSTB • I DUE TO
CCR soo· N9 CL.OCK

• • QRPF - GETS RESET VIA COMMAND COMPL.ETE IN SYNCHRONOUS L.OGIC STATE 7.

Figure 4-64. Capture CCR Logic Flowchart

4-231 Advanced Scientific Computer

~------

AUTO-I
RZERR-1
RZ-001

11!5838

AUTO- I
RZERR- I
RZ-100

AUTO-!
RZERR-O
Rz-ooo

AUTO-I
RZERR-1
RZ-101

NO

AUTO-I
RZERR- I
RZ-110

AUTO-I
RZERR-O
RZ-000

Figure 4-65.

ENTER

AUTO-I
RZERR-1
RZ- 010

AUTO- I
RZERR-1
RZ-011

AUTO-o
RZERR-U
RZ-000

AUTO-. 1
RZERR-1
RZ-111

Monitor Flowchart

AUTO-.!
RZERR-o
Rz-ooo

4-232 Advanced Scientific Computer

program currently executing in the CP, the program sho~ld be switched out of
the CP and a new program loaded into the CP to conserve processor time. The
monitor, therefore, checks the SC and MC bits from the PP. If either of these
bits is set, then the PP has not as yet recovered from the last program switch
to ready a new program for the current switch. The controller sets the
reason code bits to 11 011 11 to indicate this condition. If however, the PP has
prepared a new program, the controller examines the AS control bit from the
PP. If Allow Switch is a zero, the PP is prohibiting a context switch. The
controller sets the reason code bits to 11 111 11 to indicate that an error has
occurred, but has not been switched out of the CP. If AS is not zero, the
controller clears the reason code bits and allows hard core logic to initiate
the context switch.

The decision paths are similar for MCW or MCP instructions in the program
sequence. These instructions are also dependent upon Allow Call (AC) being
set, so an inspection of that bit is also made. Since an MCP does not
initiate an immediate switch of programs, the AS bit does not have to be
active for successful completion of the instruction. If no error, MCW or
MCP is encountered during the control cycle, the controller clears the reason
code bits and returns to the start of the control cycle for the next clock.

4-314 SEQUENCE CONTROL

Sequence control monitors the program progress in the CP, initiates context
switches when errors occur, decodes CCR commands from the CR file and issues
commands to the unit hard core controllers to execute the commands. Before
initiating any operation, sequence control examines the control byte from the
CR file to determine if that operation is permitted. The sequence control
flowchart appears in figure 4-66 and table 4-9 defines the acronyms used in
the flowchart.

4-315 STATE 0

State 0 of sequence control monitors the conditions in the CP during normal
processing and waits for a CCR command from the PP. If a program error, MCW,
MCP or system error occurs during normal processing, the controller exits to
the state that performs the required steps for that condition. If a CCR
command enters from the PP, the controller decodes the command and exits to
the state required to initiate that command. During normal operation, the
controller monitors the Run Bit to ensure that normal operation is in progress.
It then checks the System Error indication and exits to state 1 if a system
error has occurred. If no system error occurs, the controller checks AUTO
from the Error Monitor circuit. If this signal is active, the controller
determines which condition caused AUTO (by examining the other indicator bits
from the Error Monitor) and exits to the proper state. If AUTO is not set,
the controller examines QRPF. If this flag is set, then the Capture CCR logic
has detected and captured a CCR command from the PP. The controller determines
that the PP has not terminated the request, and then decodes the command. If
the command is a simple one-step command (lock or unlock PC, set or reset all
registers, or reset error cellsr, the controller exits to state 2 to enable
the unit hard core controllers to perform their functions. If the command is
an intermediate or status command, the controller ensures that the CP has not

4-233 Advanced Scientific Computer

Table 4-9. Sequence Control Acronyms

Term Function

AB

ABORT

ABTERM

AS

AT

AUTO

cc

CCRO

CHKCMO

CLRINP

CLRREQ

CSR

csw

ERRF

EXCHCMO

EXCHF

Abnormal - Condition byte bit to PP that indicates that the last
CCR command terminated abnormally.

Signal to unit hard core controllers that prevents them from
further processing of any CCR command.

Signal from the unit hard core controllers that indicates an
abnormal termination of a unit command.

Allow Switch - CP Control Byte bit from PP that enables automatic
switching for MCW and errors.

Abnormal Termination - Response Byte bit that indicates to the PP
that a switch or call terminated abnormally.

Signal from Error Monitor that indicates an MCW, MCP or an error
condition in the CP.

Command Complete - Condition Byte bit that indicates the completion
of the last CCR command.

CCR Output Register - Register in master hard core that supplies
instruction codes to unit hard core controllers.

Check Command - Internal signal indicating that the CCR command is
either a status or intermediate maintenance transfer (CCR codes
4108 through 4100).

Signal that clears the Hard Core In Progress flag in the unit hard
core controllers.

Clears the unit hard cores Hard Core Requirement flag.

Context Switch Response - signal from PP indicating that map and
protect parameters are set up in MCU for a switch.

Context Switch - signal to PP indicating a requirement for new map
and protect parameters in the MCU for a context switch.

Internal flag that indicates a program error switch is being
performed.

Exchange Command - internal signal that indicates that the CCR
command involves both a load and a store (exchange) - CCR codes
410A and 4100.

Internal flag that indicates that the hard core logic is process­
ing an exchange command from the PP.

4-234 Advanced Scientific Computer

Term

HCCALL

HCINIT

MC

MCWF

MEMCMD

QRPF

RB

RIPF

RZF

SC

SE

SETREQ

SIMCMD

STRB

SYS ERR

TR

Table 4-9. Sequence Control Acronyms {Continued)

Function

Call permission indicator to level 3 controller to enable IPU to
write the call pointer.

Hard Core Initiate - Starts hard core operation in the unit hard
core controllers.

Message Complete - Response Byte bit that indicates that the CP
has completed an MCW or MCP.

Internal flag indicating that the controller is performing an
MCW operation.

Internal signal that indicates that the CCR command is either a
load or store operation - CCR codes 4100, 4101, 410E and 410F.

Request in Progress flag - Set by the Capture CCR logic indi­
cating that a CCR command is active in the CP. Cleared at the
completion of command by Sequence control.

Run Bit - When set, enables CP processing.

Internal flag indicating that the command in progress will reset
the run bit.

Internal flag indicating that an error reason code will be sent
to the PP.

Switch Complete - Response Byte bit indicating that the CP has
completed an MCW or error switch.

System Error - Response Byte bit indicating that a parity error
occurred during normal processing.

Set Hard Core Requirement - Sets the Hard Core Requirement flags
in the unit hard core controllers so that the units will wind
down operations in preparation for a maintenance command.

Simple Command - Internal signal indicating that the CCR command
is a basic command requiring no complex operations - CCR codes 4102
through 4107.

Set Run Bit - Internal signal indicating a Set Run Bit CCR command.

System Error - Internal signal indicating that a parity error has
occurred during CP processing or the PP has set TR.

Terminate Request - Control Byte bit that instructs the CP to
cease processing the current CCR command.

4-235 Advanced Scientific Computer

Table 4-9. Sequence Control Acronyms (Continued)

Term Function

UNCMP

WAIT

ZROPND

Unit Complete - Internal signal that indicates that all CP unit
hard core controllers have completed their operations for the
current CCR command.

Prevents memory requests to keep the CP in a zero request pending
state.

Zero Pending - Indicates that all memory requests have been
satisfied by returning data from memory (no outstanding requests).

recently completed a context switch that the PP has not recognized (SC or MC
set). If this is the case, the program that the PP requested status or inter­
mediate information for is no longer in the CP. The controller, therefore,
sets command complete, abnormal termination, clears the request present flag
and transfers the condition byte to the PP. If the CCR command is a load or
store operation, the controller exits to state 4 to process the request. If
the command is a Set Run Bit, the controller sets the Run Bit and command
complete, and clears the Request Present flag. If none of the above commands
are present, the controller defaults to a clear run bit command which is
performed in state 1.

4-316 STATE l

Four conditions cause the controller to enter state l. These conditions are:

l. System error during normal operation.
2. Error reason code to be sent to PP.
3. Reset Run Bit command from PP.
4. System error during a call operation.

For each of the above causes, the controller sets the Hard Core Requirement
flag in each of the unit hard core controllers so that they will conclude the
operations that are currently being processed. If a reason code is to be sent
to the PP, the controller also updates the reason code in the reason buffer
so that the correct information will be sent to the PP, and sets the RZF flag
to indicate that the code will be sent. The RIPF flag is set if the Run Bit
will be cleared by the command in progress. The controller then waits for
ZROPND to indicate that all outstanding memory requests have returned from
memory. During the waiting period, the controller monitors the system error
indicator and disables the unit hard core controllers if a system error occurs.
The controller then decodes the states of the three indicators; SYSERR, RZF
and RIPF, to determine what actions to perform. RZF and RIPF are mutually
exclusive flags, whereas, SYSERR could have occurred while waiting for ZROPND.
The decode and the resulting actions are listed in the flowchart (figure 4-66).
The actions are enabled for the next clock following the decode (state 7) .

. 4-236 Advanced Scientific Computer

4-317 STATE 2

The controller enters State 2 when it decodes the CCR command from the PP to
be a simple operation requiring no complex transfers in the CP. The control­
ler then issues HCINIT to the unit hard core controllers to start each of the
units into their respective sequences, and gates the CCR code into the master
hard core's CCR Output register. The controller then waits until each unit
hard core controller returns an operation complete indication before it exits
to state 7 to issue Command Complete to the PP and clear the Request Present
flag (QRPF).

4-318 STATE 3

The controller enters state 3 during call commands. In this state the control­
ler waits while the level 3 controller writes the call message into the
designated location (location 07) in memory. When the controller enters state
3, it sets HCCALL to the level 3 controller to enable it to write the message
into memory. If the command is an MCW, the controller also sets the MCWF flag.
The controller then waits for Call Complete indicating that the message has
been written. During the waiting period, the controller monitors the error
indicators to ensure that no system or program errors occur. A system error
causes the controller to exit to state 1 to terminate the operation. If a
program error occurs, the controller may terminate the operation in state 1
if the Allow Switch bit is not set. If AS is set, the controller exits to
state 4 to begin a context switch that loads a new program into the CP. If
the message is written into memory without error, the controller examines the
MCWF flag to determine if it should perform a context switch (MCW), or if it
should continue to process the same program (MCP). For an MCP, the controller
exits to state 7 to set Message Complete to the PP. For an MCW the controller
exits to state 4 to begin the context switch.

4-319 STATE 4

The controller enters state four under four conditions, each of which requires
some type of memory transfer (load, store or exchange). When the controller
enters state 4, it sets HCINIT prepare the unit hard core-controller for the
transfer operation, sets WAIT to prevent them from initiating any memory
requests, and transfers a code into the CCR Output register for transfer to
the UHC's (11 011 for context switches, or CCR code for the direct CCR commands).
The Exchange flag sets if the operation is an exchange. The controller then
waits for all outstanding memory requests to return from memory. During the
waiting period, if a system error condition occurs, the controller sends Abort
to the unit hard core controllers to halt performance of the CCR command.
When ZROPND becomes active, the controller ensures that no system errors have
occurred, that a program error has not occurred, or if ERR is set, that the
operation is a context switch (ERRF or MCWF). The controller then exits to
state 5 for context switch or exchange operations and to state 6 for load or
store operations.

4-320 STATE 5

The controller enters state 5 to perform an exchange of CP contents. In this
state, the controller sends CSW to the PP to ensure that the map and protect

4-237 Advanced Scientific Computer

parameters have been established in the MCU. When the PP responds with CSR,
indicating that the parameters for the new program are ready, the controller
exits to state 6. When the controller enters state 5, it also clears the WAIT
flag so that the unit hard core controllers can begin the store portion of
the exchange while the sequence controller is waiting for CSR.

4-321 STATE 6

When the controller enters state 6, it clears the WAIT flag and CSW to the PP
if CSW was enabled in state 5. Clearing WAIT allows the unit hard core con­
trollers to perform-the designated memory transfer operation. For context
switches, the new program is loaded while the controller is in state 6; for
loads or stores, that operation is performed in state 6. When each of the
unit hard core controllers has completed its transfer operation, the control­
ler determines if any of the units terminated abnormally and issues the status
and transfer commands required for each of the conditions. These commands are
illustrated in the flowchart for sequence control (figure 4-66).

4-322 STATE 7

State 7 enables the status and transfer commands that the controller has
determined are required (through examination of the operations in the other
states of the controller). These transfer commands and status reports are
illustrated in the sequence control flowchart. After enabling these commands,
the controller determines if the operation completed by hard core was an error
context switch (ERRF). If not, the controller clears all control flags and
returns to the initial monitor cycle in state 0. If ERRF is set, the control­
ler exits to state 8 to reinitialize the CP hardware flags.

4-323 STATE 8

The controller enters state 8 from state 7 after completion of an error switch
operation. Since an error produced the switch operation and a new program has
entered the CP, the system error cells in each of the CP units must be cleared
so that they will not affect the operation of the new program. To :produce
this effect, the controller loads a code of 11 06 11 (Reset system error cells)
into the CCR Output register, and enables the unit hard cores by setting Hard
Core Initiate (HCINIT). The controller remains in state 8 until the unit hard
core controllers have completed the operation (UNCMP). The controller then
returns to the initial monitor cycle in state 0.

4-324 OTHER CONTROL CIRCUITS

Figures 4-67 through 4-75 illustrate the control cycles for other controllers
within the CP. Description of these circuits will be added at a later date.

4-238 Advanced Scientific Computer

4P~~~~~~~~~
1r--------------,
I
I
I
I
I
I
I
I
I
I
L_

r
I 4110

I
I
I
L

RESET
RUN
BIT

11 5847

Figure 4-66. Sequence Control Flowchart (Sheet 1 of 7)

4-239 Advanced Scientific Computer

~-----­
~

1

SETREQ+-1
RIPF ._ 1

115848

-----~-----.

SETREQ-1
RZF-1
UPDATE RZ
BUFFER

ABORT+-1

SETREQ-1

J

Figure 4-66. Sequence Control Flowchart (Sheet 2 of 7)

4-240 Advanced Scientific Computer

F--------1
I
I

t----'.,_ HCI NIT+-1
CCRf/l+-CCR

L ___ _ ---·r-
1

--------------,

I
I
I
I
I
I
I
I
I

YES

HCCALL+-1
CALL
PERMISSION
INDICATOR

L----i--- YES

-

11 5849

HCCALL+-1
MCWF+-1

I
I
I
I
I
I
I
I
I
I

_J

Figure 4-66. Sequence Control Flowchart (Sheet 3 of 7)

4-241 Advanced Scientific Computer

HCINIT+-1
CCRo-o
ERRF-1
WAIT-1

L__.,._

115850

HCINIT-1
CCR0+-.0
WAIT+-1

YES

-

HCINIT-1
CCRO+-CCR
WAIT+-1

ABORT+-1

HCINIT+-1
CC RO.-CCR
EXCHF-1
WAIT-1

__J

Figure 4-66. Sequence Control Flowchart (Sheet 4 of 7)

4-242 Advanced Scientific Computer

~------
r---------, 1 S5

I
I
I
I

WAIT+-0
~---M CSW+-1 TO MCUt---.--m~

t---i-. WAIT-0
CSW+-1
ERRF.-1

NO

YES I

L __
I
I

______ _J
r;:-- - --------- ---,
1

I
I
I
I
I
I
I
I
I

115851

csw-o
t----i WAIT+-0 I

I
I
I
I
I
I
I
I

YES I

J

Figure 4-66. Sequence Control Flowchart (Sheet 5 of 7)

4-243 Advanced Scientific Computer


~~~~~~~~~~-
F --~-

cc-1 AB+1 
RPF•O 
COND-PPU 

11 SB52 

NO 

CC+-1 AB+-1 
RPF4Q 
COND-PPU 
R·e·o 
CLRREQ+-1 

cc+-1 
RPF+-0 
RB+-1 

AT+-1 SC+-1 
COND-+PPU 
RB+-0 
ABORT+- I 
WAIT+-0 

SC+-1 

ALL FLAGS+O 

CC+-1 AB+-1 
RPF+-0 
COND-PPU 
RB+-0 
ABORT+-! 
WAIT+O 

CC+-1 
RPF+-0 
RB+-0 
CLRREQ+-1 

AT+-1 SC+-1 
MC+-1 
COND-+PPU 
RB+-0 
ABORT+- I 
WAIT+-0 

SC+-1 
MC+-1 
CLRINP+-1 

--, 

CC+-1 AB+-1 
RPF+-0 
COND-+PPU 
ABORT+-! 
WAIT+-0 

AT+-1 SC+-1 
COND-+PPU 
RB+-0 

MC+-1 

SE+-! 
RZB-PPU 
COND+PPU 
RB+-0 
CLRREQ+-1 

cc+-1 AB+-1 
RPF+-0 
COND-+PPU 
RB+-0 
CLRINP+-1 

CC+-1 
RPF+-0 
CLRINP+-1 

AT+-1 sc ... 1 
MC+-1 
COND-+PPU 
RB+-0 
CLRINP+-1 

RZB-PPU 
RB+-O 
CLRREQ+-1 

SE+-1 
COND-+PPU 
RB+-0 
CLRREQ+-1 

I LJ: _______ _J 
Figure 4-66. Sequence Control Flowchart (Sheet 6 of 7) 

4-244 Advanced Scientific Computer 



115871 

.-
1 •• 

I 
I 
I 
I 
I 
L 

ERRF-0 
MCWF-0 
ABORT+-0 
CLRINP+-1 
HCINIT+-1 
CCRQ+-06 

YES -- -

---, 

I 
I 
I 
I 
I 
I 

_J 

Figure 4-66. Sequence Control Flowchart {Sheet 7 of 7) 

4-245 Advanced Scientific Computer 



Ho BHQSTATE (0-3) 

BHSTATO 

RES 

CAPTURE 
CCR-LSD 

DECODE OUTPUT LEGEND 

I. 
2. 
3. 
4. 
5. 
6. 
7. 
e. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

STORE SECTION CONTROL 
LOAD SECTION CONTROL 
UNLOCK PC (NOP) 
LOCK ·PC (NOP) 
RESET 
LOAD STATUS 
RESET SYSTEM ERROR CELLS 
LOAD INTERMEDIATE 

~~6RE STATUS (NOP) 
EXCHANGE STATUS 
NO COMMAND 
STORE INTERMEDIATE 
EXCHANGE INTERMEDIATE 
STORE DETAILS 
LOAD DETAILS 
SECTION ENABLE CONTROLLED 

,-----------------.--, 
BHLSDDE (0-15) CCR-LSD DECODE 

UNIT 
COMPLETE 

0 1 2 3 4 9 6 C 5 8 A 7 B DEF 

HCA+-2 
(ADDRESS OF 
SECONp CM 
OCTET) 

2 4 

BHRE 

6 7 

BHSE 

ABPAE4-CLR 
ABBKP4-CLR 
ABPRV4-CLR 
11..LOP--CLR 

9 10 11 

HCREQ4-SET 

(~~QUIREMENT) 

I 2 13 14 16 

HCA+-3 
(ADDRESS OF 
THIRD CM 
OCTET) 

c~&aiU~s oF 
SECONp CM 
OCTET) 

STINTR 

(~.:~:::MEDIATE) 

L------------ h 1 

h2 

__ _J 

(A)l 1!5795 

Figure 4-67. MBU Unit Hard Core Flowchart (Sheet 1 of 3) 

4-24£. Advanced Scientific Computer 



IO FETCHED POINTER OCTET 
11 

SC REG 

*SAME AS WAIT FOR 
MASTER HARD CORE 

--
ER FETCH IWAIT STATE) NO 

h3 

0 

• BHPAS+-0 
LOC NO. 10 

• 
BHPAS+-1 
LOC NO. 11 

HCA 

11 

• BHPAS+-2 
CNT- 3 
LOC NO. 16 

Ir _t---_---flll_f--__ -_-_-_-------.---, 

I l 
RUN I SUPPRESS I 

I I 
OTHER I CCR-LSD DECODE I 

ASTE RM 
UNITCMPLT 
HCREQ+-CLR 

CCR-LSD DECODE 
12 

• BHPAS+-3 
CNT+-3 
LOC NO. 17 

13 

L_'. ____ I 

14 

• 
BHPAS+-0 
LOC NO. 8 

15 

• BHPAS+-1 
LOC NO. 19 

I 
I 
I 
I 
I 
I 

HCA- I ... 1--..:....~-1 SELECTED 
POINTER __ Jj 

Figure 4-67. MBU Unit Hard Core Flowchart (Sheet 2 of 3) 

4-247 Advanced Scientific Computer 



(A)I 15797 

Figure 4-67. MBU Unit Hard Core Flowchart (Sheet 3 of 3) 

4-248 Advanced Scientific Computer 



~------
I-;;:;:; -;;;P~O~:;;; - - -- - -

I A AND B MUSJ: BE EQUAL I EXCEPT FOR )ORDER, SRCH, RES 

r+>~·spri:L1:~:L FOR AGP 
TO EQUAL AUP OR BGP TO i..---------f I EQUAL BUP. 

I 
I 
I 
I L ______ _ 
I 
I 
I 
I 
I 
I r------------

NO 

NO 

------::---, 
I 
I 
I 
I 
I 
I 

------~ 
d1 

YES 

I 
I 
I 
I 

(NONRECOVERABLE I 
INSTRUCTION TYPES) J 
-------

c12 

YES 

BVDES-SET AVDES -SET 

---------~---_J 
(A)! I !5798 

Figure 4-68. MBU Unit Hard Core De-escalate Controller Flowchart (Sheet l of 3) 

4-249 Advanced Scientific Computer 



~ 
I --- -- --, 

d3 

I I 
I I 
I NO I 
I I 
I 

YES YES I 
I AVOES --<:LR I BVOES --CLR 

NO 

I I 
I I 

BVOES -SET AVOES-SET 

I I 
r ---- -

d4 I 
I I 
I I 
I I 
I 

NO 

I 
I I 
I I 
L --- -- J 

(A)! 15799 

Figure 4-68. MBU Unit Hard Core De-escalate Controller Flowchart (Sheet 2 of 3) 

4-250 Advanced Scientific Computer 



~~~~~~~~~~ 
lds-
1

I
I
I
I
I
I d6

I
I
I
I
I
I
I
j.;7--

1

I
119496

SET­
DE-ESCAL.ATE
COMPLETE
FREEZI

-- I
I
I
I
I
I
I

-- I
I
I
I
I

*DE-ESCALATE FORCED
WRITE

I
I

ZBA --ZA
ZBM-ZM

I ZFILN...,.
ZFL~RQ

NO ZBREQ-SET
ZAFuL-CLR

I
I
I ___.

Figure 4-68. MBU Unit Hard Core De-escalate Controller Flowchart (Sheet 3 of 3)

4-251 Advanced Scientific Computer

~------

STATE 0

STATE 1

STORE LOAD
SECTION SECTION

MASTER CLEAR

1-+AHRES
1-+AHPINOP

1-+AHRESMEM

1-+AHRESHC

4

RESET

I -+AHRES

NO

MINOP ABORT

1-+AHPINOP

1 -.AHGATCCR

CCR-LSD DECODE

5

SET

1-+AHSET

6

RESET
MEMORY

1-+AHRESMEM
1-+AHPINOP

E F

STORE LOAD

ALL
OTHERS

DETAILS DETAILS
NO-OP

l AHUNITCP

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 1 of 7)

4-252 Advanced Scientific Computer

~------

11 7989

0

STORE
SECTION

1 -AHSLHCAD

CCR-LSD DECODE

LOAD
SECTION

o-cNT
{00000000) 2

-QZCB
(10) 2 -QPM
o-QMBFUL
0-+QWRCMP

TOGGLE QAR

E

STORE
DETAILS

F

LOAD
DETAILS

1 -AHSLHCAD
1-AHTHREE

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 2 of 7)

4-253 Advanced Scientific Computer

~------

0

PR+ PP

ROA SETS
QMBFUL

1-AHSLADER

CCR-LSD DECODE
E

AHST3DE(O) AHST3DE (1) AHST3DE (14)

STORE
SECTION

l -AHSELWDO
IOOOOOOO)z

-azca
(01) 2 -QPM

1-AHSTSCEN
o-QMBFUL
o-awRCMP

TOGGLE QAR

, 17990

LOAD
SECTION

l -AHSELWD1
00000000> 2 -azce

(10)2- QPM
o-QMBFUL
o-QWRCMP

TOGGLE QAR

STORE
DETAILS

1 -AHSELWDO
I -AHDELTAI (1)
(11111111) 2 -azce
(Ol)z-QPM
1-STDTLOCT(CNT)
o-QMBFUL
0 -+QWRCMP

TOGGLE QAR

1 -AHABTERM
1-AHUNITCP

F

AHST3DE(15)

LOAD
DETAILS

1 -AHSELWD1
1-AHDELTAl(1)
coooooooo) 2 -azca
(1 o> 2 -aPM

o-QMBFUL
o-QWRCMP

TOGGLE QAR

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 3 of 7)

4-254 Advanced Scientific Computer

(STORE SECTION)

1 -+AHSTSCEN
YES

1-+AHABTERM -AHCMCMP4 t -+AHABTERM

t -+AHUNITCP

1 1 7991

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 4 of 7)

4-255 Advanced Scientific Computer

(LOAD SECTION)

NO

YES

1-AHABTERM 1-AHLDSCEN 1-AHABTERM

1-AHUNITCP

11 7992

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 5 of 7)

4-256 Advanced Scientific Computer

~------

TOGGLE QAR

(1111 1 1 11)..2-QZCB
(01)~l[;'QPM""
1 - TLOCT (CNT)
1-AHINCI (1)
1-AHSLADER
1-AHSELADR
t-AHADVCNT
O-QMBFUL
o-QWRCMP

AHST6ST6 NO

1, 7993

(STORE DETAILS)

1-AHSDTEN

1-AHABTERM

t-AHUNITCP

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 6 of 7)

4-257 Advanced Scientific Computer

TOGGLE QAR

(00000000) 2-QZCB
(10)2-+ QPM
1 -+AHINCI (1)
1-AHSLADER
1-AHSELADR
1-+AHADVCNT
o-QMBFUL
0-+QWRCMP

AHST7ST7 NO

11 7994

(LOAD DETAILS)

YES

AHCMCMP7

1-LDDTLOCT
(CNT)

NO

YES

1-AHABTERM

1-AHUNITCP

Figure 4-69. AU Unit Hardcore Flowchart (Sheet 7 of 7)

4-258 Advanced Scientific Computer

START

(A)l15818

NO

NO

ACTV+-Cl..R
CAFTXA
AUP+-AUP + I
XAFUl..+-SET

AAUAC+- CLR

NO

XALSE+-SET

XAENI..+- SET

Figure 4-70. CAF Output Control Fl 0\'1chart

4-259 Advanced Scientific Computer

START

YES

STATE 0 -------

STATE I

110

(IMM)- MA

STATE 2 -----
NORMALIZE

111

(IMM) -Mc

(VO)-IMM
(Vl)-VIS

CLEAR XFUL, YFUL
GATE WORD SIZE

REG.
(IMM(0-7))-ROM IN
(IMM (8- I I l-ALCT
(IMM(l 2-15))-SV
(IMM(l 6-31 ll-LPS

(Vl)-tMM

(IMM(a-32))
- NAA

SET AVCAC
SET AAVAC
SET AVCSV

(LPS1-FLP
(LPS -GLP
(LPS -SLP
GAT ROM
(VL)-IMM

oxx
IXI

____ _.

(IMM(S-32))
- NAA

SET AVCAC
SET AAVAC

(IMM(S-32))
- NBA

SET BVCAC
SET BAVAC
SET BVCSV

ILLEGAL

oxx
IXO

STOP

(IMM(S-32))
- NBA

SET SVCAC
SET BAVAC

Figure 4-71. Vector Initialization Control Flowchart (Sheet l of 4)

4-260 Advanced Scientific Computer

~------

GATE AU
WORD SIZE

CLEAR TOGLE
(V3)-IMM

STATE 3 ----

STATE 4

(IMM(S-32))
-NCA

(V4)-IMM

(IMM(S-32))
-YBA

YES

SET YBREQ YES

NO
(NAA)-XBA
SET XBREQ

NO

SET CVCAC SET VCNOP

--------- -------

STATE 5

STATE 6

(A) 120020

Figure 4-71.

••
~~:811~1;:8

(IMMOL)-DCI
(IMM(16-31))

- NIS
NO

••
~o~81i~£8

(IMMOL)-OAI
(IMMOR)-OBI

(VS)-IMM

V6-IMM

3

Vector Initialization Control Flowchart (Sheet 2 of 4)

4-261 Advanced Scientific Computer

~------
STATE 6 -------

STATE 7 ------

STATE 8 ------
STATE 9

(9) 120021

•• SELECT A, B
WORD SIZE

(IMMOL>-DAO
(IMMOR)-DBO

~NIS~-FNI NIS -GNI
NIS -SNI
V7)-IMM

s~'o~'i,T s12Ee
(IMMOL)-oco
(IMM(16-31))

-FNO
(IMM(16-31))

-GNC\
(IMM(16-31))--SNO

CLEAR AVCAC
CLEAR BVCAC
CLEAR AAVAC
CLEAR BAVAC

4

Figure 4-71. Vector Initialization Control Flowchart (Sheet 3 of 4)

4-262 Advanced Scientific Computer

STATE 9

STATE 10

STATE 11 ----
STATE 0

(A) 1 20022

CLEAR LOOP
COUNTERS

CLEAR XAFUL
CLEAR XBFUL

GATE ROM

1--ecvECEND

0-SCVECEND

-
NO

Figure 4-71. Vector Initialization Control Flowchart {Sheet 4 of 4)

4-263 Advanced Scientific Computer

~------

(A) 11 5800

NO

(BFCAFFUL)

(NAA@XBA)

*-WAIT FOR STATE 9 IN ORDER
TO HAVE A's LOADED PRIOR
TO USE.

<>'o

YES

YES

NO

000

*

YES

NO

STATE 0

-+
BCQFSTAO (O-t) = A

BCQFSTA1 (0-1) =-;

NO

001

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 1 of 17)

4-264 Advanced Scientific Computer

~------

c 600

AFUL: OC:BFUL. XttFUL. XFUL) -A DATA STATUS:

!SCFUL* QUE = XI ,·XBFULI !XHFUL! l~t~b£.~ I ,,
(

0000

·~

{.A)115801

0001

NO UPDATE

0010

.,
XHTX

AFUL-001

-A DATA STATUS

0011 0100

NO UPDATE

••

•

••
XBTXH

AFUL-010

••

F {30

5

0101

STATE 0

0110

XHTX
AFUL-101

.,

0111

•I

NO UPDATE

, .

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 2 of 17)

4-265 Advanced Scientific Computer

~------
0 601

AFUL.: (XBFUL., XHFUL., XFUL) -A DATA STATUS:

!SCFUL.tQUE=X! l)(BFUL.! IXHFULI

!XFUL•LAST ELEMENT!

0000

,,
AFUL- 000

(A)tt5802

0001

NO UPDATE

0010

XHTX
AFUL.4-001

-A DATA STATUS

0011 0100

NO UPDATE

XBTXH
AFUL+-010

XBA-(NAA)
XBREQ,....SET

"
G

'0

f' I

STATE 0

0101

XBTXH
AFUL-011

0110

XHTX
AFUL.4-101

)
01,'

NO UPDATE

(Q

B

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 3 of 17)

4-266 Advanced Scientific Computer

AFUL: (XBFUL, XHFUL, XFUL) -A DATA STATUS:

ISCFUL*QUE!IXBFULI IXHFUL!
I XFUL• LAST ELEMENT!

0000 0001 0010

E

., -A DATA STATUS

0011 0100 0101

XBTXH
NO UPDATE NO UPDATE AFUL-0 I I

,,

AFUL-000
XHTX XBTXH

AFUL -oo 1 AFUL- 0 I 0

,, • ,, .,
••

.,

••
B t 0

{A) 1 I 3803

STATE 0

0 I 10

,.
XHTX

AFUL+-10 I

1r

0111

,,
NO UPDATE

,,

Figure 4-72. A/B Vector Address Generation Flowchart {Sheet 4 of 17)

4-267 Advanced Scientific Computer

AVCAC-CLR
AVCSV-CLR

(A) 1 1 S804

YES

CAF-
(NAA Z9-32)
AGP-
(AGP) + 1

F"LP-(LPS)

FNl+-(NIS)

i3o

NO

FLP- (FLP)-1
NAA - (NAA) + 0

FNl-(FNl)-1
NAA- (NAA)
+DAI

FNO -}FNO)- 1
NAA -~NAA)
+DAO

NO

STATE 0

FLP-(FLP) -1
NAA-
(NAA) + OAS

Figure 4-72. A/B Vector Address Generat;on Flowchart (Sheet 5 of 17)

4-268 Advanced Scientific Computer

~------

NO

(BFCAFFUL)

(NAA(t)XBA)

*-WAIT FOR STATE 9 IN ORDER
TO HAVE i!i1s LOADED PRIOR
TO USE.

(A) 11 5805

YES

NO

STATE 1

*

YES

YES

612 .

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 6 of 17)

4-269 Advanced Scientific Computer

- AFUL: (XBFUL, XHFUL., XFUL)
A DATA STATUS; ------

1 SCFUL* QUE=XI !XBFUL! !XHFUL! IXFUL* LAST ELEMENT!

K

,,
-(A DATA STATUS

0000 0001

NO UPDATE

(A)l 1!5806

0010

XHTX
AFUL+-001

0011

NO UPDATE

G

10

0100

XBTXH
AFUL +-010

0101

,,

•

STATE 1

1000T

.,
SCTX

AFUL 001

1001

,,
SCTXB

AFUL 101

1010

Ir

sc·rxa
XHTX

AFUL 101

••
F

0o

5

1011

,,
SCTXB

AFUL-111

•

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 7 of 17)

4-270 Advanced Scientific Computer

STATE 1

- AFUL: (XBFUL, XHFUL, XFUL..J
A DATA STATUS:

(SCFUL* QUE•XI I XBFULI IXHFULI IXFUL* LAST ELEMENT!

L 611

(- ' A DATA STATUS

0000 0001 0010 0011 0100 0101 1000 1001 1010 1011

•• ,, ••
NO UPDATE NO UPDATE XBTXH SCTXB SCTXB

AFUL+01 f AFUL+-101 AFUL+-f 11

, i ,, ,,
AFUL-000 XHTX XBTXH SCTX SCTXB

AFUL-001 AFUL-010 AFUL-001 XHTX
AFUL+-101

,,
1

• ti , ,, _j
(0

o-.. B

1 1

XBA- (NAA)
E 1

XBA+- (NAA)
XBREQ-SET J XBREQ-SET

6

6:, cb.~' 10

CA> 1 15807

Figure 4-72. A/B Vector Address Generation Flowchart {Sheet 8 of 17)

4-271 Advanced Scientific Computer

~-------
.. AFUL.: (Xe~·ui.., XHFUL.. XFUL.) M /,12
A DATA STATUS:
!SCFUL.• QUE•X! !XBFUL.! !XHFUL.! !XFUL.* L.AST EL.EMENT!

c
0000 0001 0010

,,
NO UPDATE

AFUL.- 000

,, ••

(A) 11 !5808

0011

NO UPDATE

6

,,
-A DATA STATUS

0100

XBTXH
AFUL.-010

0101

••

1000

••
SCT>t

AFUL.-001

STATE 1

1001

SCTXB
AFUL.-101

1010

SCT>tB
XHTX

AFUL.+-101

'
B

1011

SCTXB
AFUL.-111

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 9 of 17)

4-272 Advanced Scientific Computer

~------

AVCAC .. CLR
AVCSV-CLR

(A)tl5809

YES

CAF .. (NAA
29-32)
AGP-(AGP) + 1

FLP-(LPS)

FNI .. (NIS)

STATE I

FLP- (FLP)- 1
NAA .. (NAA)

NO +DAS

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 10 of 17)

4-273 Advanced Scientific Computer

NO

(BFCAFFUL)

(NAAG)xeA)

* - WAIT FOR STATE 9 IN ORDER

TO HAVE ~·s LOADED PRIOR

TO USE.

(A) 115810

2 STATE 2

NO

021 022

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 11 of 17)

' 4-274 Advanced Scientific Computer

~------

AFUL: (XBFUL, XHFUL, XFUL)

...
A DATA STATUS~

!SCFUL*QUE =XI IXBFULI IXHFUL I
I XFUL. * LAST EL.EM ENT I

0000 0001 0010

NO UPDATE

, It .,

6 20

, It

-A DATA STATUS

0100T

u

XBTXH
AFUL+-010

1000

.,
AFUL+OOO XHTX

AFUL+-001
SCTX

AFUL+OO 1

,,

(A). 1 158 1 1

,,

..
(32~

V.s

,, ,.

STATE 2

100 1 1010

SCTXB
AFUL+-101

,,

,,
I ~l '3'
~

SCTXR
XHTX

AFUL+-101

,,

)

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 12 of 17)

4-275 Advanced Scientific Computer

AFUL: (XBFUL, XHFUL, XFUL) ..
A DATA STATUS:

!SCFUL.* QUE=X! 1XBFUL! !XHFUL!

I XFUL * LAST ELE~ENT!
6 21

-A DATA S:TATUS

0000

AFUL+-000

XBA+-(NAA)
XBREQ-SET

(A) 115812

ooot

NO UPDATE

ooto

XHTX
AFUL-OOt

o too

XBTXH
AFUL-010

toOO

SCTX
AFUL4-00 I

toot

STATE 2

to to

SCTXB
XHTX

AFUL+-101

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 13 of 17)

4-276 Advanced Scientific Computer

~------
AFUL: (XBFUL, XHFUL , XFUL) .. .

A DATA STATUS:
!SCFUL *QUE= XI !XBFUL! !XHFUL!

!XFUL *LAST ELEMENT I

c
0000 0001 0010

NO UPDATE

, It

n

,,
c:J ,,

(A) 115813

CJ b••

...
A DATA STATUS

0100

'
XBTXH

AFUL+-010

"

1000

SCTX
AFUL.,..001

,,

STATE 2

1001

SCTXB
AFUL+-101

,,

1010

SCTXB
XHTX

AFUL4-101

v·· 6

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 14 of 17)

4-277 Advanced Scientific Computer

~------

(A)l 15814

CAF-(NAA

~~p~)(AGP)+1

YES

FNl-(NIS)

FLP- (FLP)-1
NAA-(NAA)+O

FNI- (FNl)-1
NAA- (NAA)
+DAI

FNO- fFNOi-1
>-------------ti~ ~:~ NAA

f3o

STATE 2

FLP-(FLP)-1
NAA-(NAA)

NO +DAS

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 15 of 17)

4-278 Advanced Scientific Computer

~------

I 1!581 !5

NO

(BFCAFFUL.)

(NAA@XBA)

-

STATE 3

•WAIT FOR STATE i IN ORDER TO
HAVE.AS L.OADED PRIOR TO USE

YES

-A DATA STATUS A DATA STATUS

0000

AFUL.-000

1000

SCTX
AFUL.-001

AFUL.-000

0000

AFUL.-000

A DATA STATUS

1000

SCTX
AFUL.-001

Ez

100

SCTX
AFUL.-001

Ez

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 16 of 17}

4-279 Advanced Scientific Computer

AVCAC-CLR
AVCSV-CLR

(A) 115816

YES

~3

CAF- (NAA
29-3 2)
AGP- (AGP)+1

FLP- (LPS)

FNI- (NIS)

FLP+ (FLP)-1
NAA- (NAA)+O

FNI- (FNl)-1
NAA- (NAA)
+DAI

FNO- (FN0)-1
NAA- (NAA)
+DAO

FLP- (FLP)-1
NAA- (NAA)

NO +DAS

Figure 4-72. A/B Vector Address Generation Flowchart (Sheet 17 of 17)

4-280 Advanced Scientific Computer

~------

(B) 119911

Figure 4-73.

QCVEND-1

AU11 H1,-1 ACT 7-l 1 -o
ESL 1-10 -o

NO

C Vector Address Generation Flowchart (Sheet 1 of 6)

4-281 Advanced Scientific Computer

(A) 119912

NCTZA.

(=NSTZA)

NO

ZEA-{NCA)
ZA-(NCA)

ENZMDE
ENZAGT

QZFUL-o
QPKVAO-O

SMTNCA

YES

ZBA-(ZA)
ZBM-(ZM)
ZBREQ-1

QZFUL-1

NO

YES

QPKVA0-1

Figure 4-73. C Vector Address Generation Flowchart (Sheet 2 of 6)

4-282 Advanced Scientific Computer

~------

<•> 119913

Figure 4-73.

CVCAC-CLR

NCA-(NCA)
+DCS

TOGLE-1

SLP-(SLP)-1
NCA-(NCA)

+DCS
TOGLE-o

C Vector Address Generation Flowchart (Sheet 3 of 6)

4-283 Advanced Scientific Computer

~------

(A) 1 199 1 4

SNl-(SNl)-1
SLP-(LPS)

SNO-{SN0)-1
SNl-(NIS)
SLP-(LPS)

Figure 4-73. C Vector Address Generation Flowchart (Sheet 4 of 6)

4-284 Advanced Scientific Computer

YES

(B) I 19915

Figure 4-73.

QLSENC-1

NSTZA

CORNCA
SMTNCA
DCSTSM

ENZMDE
ZEA-(NS")
7M-(NSA)
ZA-{NSA)
QZFUL-o

YES

ZBREQ-1
ZBA-{ZA)
ZBM-(ZM)

NO

NO

QZFUL+-t
QESLl\0-1
QLSENc-1

• CLEARED BY BCAUTZ

C Vector Address Generation Flowchart (Sheet 5 of 6)

4-285 Advanced Scientific Computer

NO

(A) 119916

YES

NSA-(NCA)
SMTNCA
DCSTSM

QLSENC-o

CLCVAC
QCVEND-O

NO

Figure 4-73. C Vector Address Generation Flowchart (Sheet 6 of 6)

4-286 Advanced Scientific Computer

BLCKAR

117977

Figure 4-74. AU Control (Sheet l of 5)

4-287 Advanced Scientific Computer

QPCAUR .. 1

QGATAR+-1

Figure 4-74. AU Control (Sheet 2 of 5)

4-288 Advanced Scientific Computer

~------

YES

NO

YES

BLCKAI

(A) 117979

Figure 4-74. AU Control (S"heet 3 of 5)

4-289 Advanced Scientific Computer

NO

YES

GATAl+-1

(A) 117980

Figure 4-74. AU Control (Sheet 4 of 5)

4-290 Advanced Scientific Computer

~------

(A) 117981

PACOOA
QPCAU0+-1

Figure 4-74.

YES

YES

NO

QGATA0+-1

AU Control (Sheet 5 of 5)

4-291 Advanced Scientific Computer

~------
Z ADDRESS

NO

NO

NO

1I578S

O•ZAFUL
1+ZBREQ
ZFINRQ •ZFILN
ZA•ZBA
ZM•ZBM

PAC llSA
(PCNSSB (O l)

YES

z-za
1-zaasY

Figure 4-75. Z Address Flow

4-292

NSA+ZA
1 +ZAFUL
O+NSFUL
O+ZFUL

YES

Advanced Scientific Computer

SECTION V
MAINTENANCE

Maintenance data consists of a series of diagnostic tests for isolating
faulty areas in the !PU, plus use of block diagrams and flowcharts to further
isolate malfunctions. Refer to the ASC Mainframe Diagnostics Manual, part
number 930064-1, for description of the diagnostic procedures.

5-1/5-2 Advanced Scientific Computer

~------

6-1 INTRODUCTION

SECTION VI
PARTS LISTING

This section provides a listing of replaceable parts for the ASC Central Pro­
cessor and the part numbers associated with each part. These lists are intend­
ed as a guide for ordering new replacement parts and installing them in the CP.
Minor items, such as screws, washers etc., are not included.

6-2 LOGIC CARDS

Logic cards for the Central Processor are contained in three chassis: the IPU,
the MBU and the AU. Each chassis contains three motherboards that hold the
logic cards. These motherboards are designated with the letters A, B, and C
from top to bottom, respectively. Each card slot in a motherboard is desig­
nated with a two letter label, lettered from LA to LV. These designators are
used to identify the particular card location in the CP. Figure 6-1 illus­
trates the information contained in a card location designator. The first two
letters refer to the chassis. The next character is always a one in the CP.
The fourth character designates the motherboard within that chassis, and the
last two letters identify the card slot on that motherboard. Table 6-1 lists
all logic circuits used in the CP arranged by card location.

(A) 11 5137

IP 1 A LA

SUBUNIT _J 11 L CARD CDHHECTOR

SUBUNIT COLUMN __J L_ MOTHERBOARD DESIGNATOR
NUMBER

Figure 6-1. Card Location Information

6-1 Advanced Scientific Computer

Table 6-1. Central Processor Logic Cards

Card Function Part Number Card Function Part Number Location Location

!Pl A LA DUMMY 695011-1 !Pl C LB DUMMY 695011-1
!Pl A LB DLOGCLK (0) 650356-1 !Pl C LC DUMMY 695011-1
!Pl A LC DUMMY 695011-1 !Pl C LD TERMCRD 650296-1
!Pl A LD IUADDR (0) 686517-1 !Pl C LE DUMMY 695011-1
!Pl A LE IUADDR (1) 686517-1 !Pl C LF IUPIPEA (0) 911793-1
!Pl A LF IUFILE (0) 686484-1 !Pl C LG IUPIPEA (1) 911793-1
!Pl A LG IUFILE (1) 686484-1 I Pl C LH IUPIPEA (2) 911793-1
!Pl A LH IUFILE (2) 686484-1 !Pl C LI IUPIPEA (3) 911793-1
!Pl A LI IUFILE (3) 686484-1 !Pl C LJ DROMCRDA (0) 650299-37
!Pl A LJ IUFILE (4) 686484-1 !Pl C LK BUHOOA 710297-1
!Pl A LK IUFILE (5) 686484-1 !Pl C LL DROMCRDB (0) 650299-38
!Pl A LL IUFILE (6) 686484-1 !Pl C LM IUPIPEA (4) 911793-1
!Pl A LM IUFILE (7) 686484-1 I Pl C LN IUPIPEA (5) 911793-1
!Pl A LN IUFILE (8) 686484-1 !Pl C LO IUPIPEA (6) 911793-1
!Pl A LO IUFILE (9) 686484-1 I Pl C LP IUPIPEA (7) 911793-1
!Pl A LP IUFILE (10) 686484-1 !Pl C LQ DUMMY 695011-1
!Pl A LQ IUFILE (11) 686484-1 !Pl C LR TERMCRD 650296-1
!Pl A LR IUFILE (12) 686484-1 !Pl C LS DUMMY 695011-1
!Pl A LS IUFILE (13) 686484-1 !Pl C LT DUMMY 695011-1
!Pl A LT IUFILE (14) 686484-1 !Pl C LU DUMMY 695011-1
!Pl A LU IUFILE (15) 686484-1 !Pl C LV DUMMY 695011-1
!Pl A LV TERMCRD 650296-1 MBl A LA DROMCRDA (0) 650299-17
!Pl B LA DUMMY 695011-1 MBl A LB DROMCRDB (0) 650299-18
!Pl B LB DUMMY 695011-1 MBl A LC BUROM (0) 686490-1
!Pl B LC TERMCRD 650296-1 MBl A LD DROMCRDB (1) 650299-19
!Pl B LD IUCONTA (0) 911835-1 MBl A LE DROMCRDA (1) 650299-20
!Pl B LE DUMMY 695011-1 MBl A LF DROMCRDA (2) 650299-21
!Pl B LF IUHAZ (3) 686514-1 MBl A LG DROMCRDB (2) 650299-22
!Pl B LG IUHAZ (2) 686514-1 MBl A LH BUROM (l) 686490-1
!Pl B LH IUHAZ (1) 686514-1 MBl A LI DROMCRDB (3) 650299-23
!Pl B LI IUHAZ (0) 686514-1 MBl A LJ DROMCRDA (3) 650299-24
!Pl B LJ DUMMY 695011-1 MBl A LK BUHOOA 710297-1
!Pl B LK BUHOOA 710297-1 MBl A LL DROMCRDA (4) 650299-25
I Pl B LL IUCTLA (0) 911832-1 MBl A LM DROMCRDB (4) 650299-26
!Pl B LM IUNEWA (0) 911820-1 MBl A LN BUROM (2) 686490-1
!Pl B LN DUMMY 695011-1 MBl A LO DROMCRDB (5) 650299-27
!Pl B LO IUPACB (O) 911829-1 MBl A LP DROMCRDA (5) 650299-28
!Pl B LP IUINFACA (O) 911826-1 MBl A LQ DROMCRDA (6) 650299-29
!Pl B LQ DUMMY 695011-1 MBl A LR DROMCRDB (6) 650299-30
!Pl B LR IULASTA (0) 911787-1 MBl A LS BUROM (3) 686490-1
!Pl B LS IUMISCA (0) 911814-1 MBl A LT DROMCRDB (7) 650299-31
IPl B LT TERMCRD 650296-1 MBl A LU DROMCRDA (7) 65029 F-32
IPl B LU DUMMY 695011-1 MBl A LV TERMCRD 650296-1
IPl B LV DUMMY 695011-1 MBl B LA DUMMY 695011-1
!Pl C LA DUMMY 695011-1 MBl B LB DUMMY 695011-1

6-2 Advanced Scientific Computer

Table 6-1. Central Processor Logic Cards (Continued)

Card Function Part Number Card Function Part Number Location Location

MBl B LC DUMMY 695011-1 AUl A LO AUADD (0) 650368-1
MBl B LO BUZAG {O) 650362-1 AUl A LE AUADD (1) 650368-1
MBl B LE BUDATA {O) 650365-1 AUl A LF AUADD (2) 650368-1
MBl B LF BUDATA { 1) 650365-1 AUl A LG AUADD (3) 650368-1
MBl B LG BUDATA (2) 650365-1 AUl A LH AUADD (4) 650368-1
MBl B LH BUDATA (3) 650365-1 AUl A LI AUADD (5) 650368-1
MBl B LI BUDATA (4) 650365-1 AUl A LJ AUADD (6) 650368-1
MBl B LJ BUDATA (5) 650365-1 AUl A LK AUADD (7) 650368-1
MBl B LK BUDATA (6) 650365-1 AUl A LL AUCTLI (0) 650371-1
MBl B LL BUDATA (7) 650365-1 AUl A LM AUADD (8) 650368-1
MBl B. LM BUDATA (8) 650365-1 AUl A LN AUADD (9) 650368-1
MBl B LN BUDATA (9) 650365-1 AUl A LO AUADD {10) 650368-1
MBl B LO BUDATA (10) 650365-1 AUl A LP AUADD (11) 650368-1
MBl B LP BUDATA (11) 650365-1 AUl A LQ AUADD (12) 650368-1
MBl B LQ BUDATA (12) 650365-1 AUl A LR AUADD (13) 650368-1
MBl B LR BUDATA (13) 650365-1 AUl A LS AUADD (14) 650368-1
MBl B LS BUDATA (14) 650365-1 AUl A LT AUADD (15) 650368-1
MBl B LT BUDATA (15) 650365-1 AUl A LU DLOGCLK 650356-1
MBl B LU TERMCRD 650296-1 AUl A LV TERMCRD 650296-1
MBl B LV DUMMY 695011 -1 AUl B LA TERMCRD 650296-1
MBl C LA TERMCARD 650296-1 AUl B LB AUOUTA (0) 911805-1
MBl C LB BUHOOA 710297-1 AUl B LC AUOUTA (1) 911805-1
MBl C LC BUCAF (O) 686511-1 AUl B LO AUOUTA (2) 911805-1
MBl C LO BUCAF (1) 686511-1 AUl B LE AUOUTA (3) 911805-1
MBl C LE BU CT LB 911838-1 AUl B LF AUOUTA (4) 911805-1
MBl C LF BUACTLB 911817-1 AUl B LG AUOUTA (5) 911805-1
MBl C LG BULOOP (0) 686478-1 AUl B LH AUOUTA (6) 911805-1
MBl C LH BULOOP (1) 686478-1 AUl B LI AUOUTA (7) 911805-1
MBl C LI BULOOP (2) 686478-1 AUl B LJ AUCTL3A 911808-1
MBl C LJ BULOOP (3) 686478-1 AUl B LK AUROMFFA 911811-1
MBl C LK BUADDR (0) 686475-1 AUl B LL AUCTL2A 911823-1
MBl C LL BUADDR (1) 686475-1 AUl B LM AUCTL4 686508-1
MBl C LM BUADDR (2) 686475-1 AUl B LN AUNORM (0) 686493-1
MBl C LN BUADDR (3) 686475-1 AUl B LO AUNORM (1) 686493-1
MBl C LO BUADDR (4) 686475-1 AUl B LP AUNORM (2) 686493-1
MBl C LP LOGCLK 650356-1 AUl B LQ AUNORM (3) 686493-1
MBl C LQ LOGCLK 650356-1 AUl B LR AUNORM (4) 686493-1
MBl C LR DUMMY 695011-1 AUl B LS AUNORM (5) 686493-1
MBl C LS TERMCRD 650296-1 AUl B LT AUNORM (6) 686493-1
MBl C LT BUMHCI 710258-1 AUl B LU AUNORM (7) 686493-1
MBl C LU DUMMY 695011-1 AUl B LV TERMCRD 650296-1
MBl C LV DUMMY 695011-1 AUl C LA TERMCRD 650296-1
AUl A LA AUXSEL (O) 911802-1 AUl C LB AUMULT (0) 686520-1
AUl A LB AUXSEL (1) 911802-1 AUl C LC AUSUMD (10) 686487-1
AUl A LC TERMCARD 650926-1 AUl C LD AUMULT (1) 686520-1

6-3 Advanced Scientific Computer

Table 6-1. Central Processor Logic Cards (Continued)

Card Function Part Number Card Function Part Number Location Location

AUl C LE AUSUMD (8) 686487-1 AUl C LN AUSUMD (1) 686487-1
AUl C LF AUSUMD (4) 686487-1 AUl C LO AUMULT (5) 686520-1
AUl C LG AUMULT (2) 686520-1 AUl C LP AUSUMD (9) 686487-1
AUl C LH AUSUMD (2) 686487-1 AUl C LQ AUSUMD (3) 686487-1
AUl C LI AUSUMD (7) 686487-1 AUl C LR AUMULT (6) 686520-1
AUl C LJ AUMULT (3) 686520-1 AUl C LS AUSUMD (0) 686487-1
AUl C LK AUSUMD (6) 686487-1 AUl C LT AUMULT (7) 686520-1
AUl C LL AUSUMD (5) 686487-1 AUl C LU AUCTL5A (0) 911799-1
AUl C LM AUMULT (4) 686520-1 AUl C LV TERMCRD 650296-1

6-4 Advanced Scientific Computer

SECTION VII

DIAGRAMS

(To be supplied on site.)

7-1/7-2 Advanced Scientific Computer

~-----....,...-____,...-

APPENDIX A
LEVEL 2 ROM CONTENTS

Advanced Scientific Computer

~------

OUTPUT
BIT N UMBER

~
0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

LEVEL 2 ROM CONTENTS (Sheet l of 16)
OP CODE OX

X = Least Significant Hex of Op Code

F E D C B A 9 8

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
l l l l l l l l

0 0

7 6 5 4

0

0

0

0

0

0

0 0 0 0
0 0 0 0
0 0 0 0
l l l l

0

3 2 l

0

0

0

0

0

0

a..
0
;z:

0

0 0 0 0
0 0 0 0
0 0 0 0
l l l l

0

OUTPUT
SIGNATURE
I.QRM

RSO
RSl
RS6
BR

RS8
RS9
ROT
ow

CHZ
AEH
LAE
EXN

LAM
RHZ
CAR
HW

M
AU4
AUS
IOP

AU6
AU7
GPl
pp

GP2
GP3
GP4
SW

EXM
LF
ORG
VCT

A-1 Advanced Scientific Computer

~------

OUTPUT
BIT N UMBER

' 0
l
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

LEVEL 2 ROM CONTENTS (Sheet 2 of 16)
OP CODE l X

X = Least Significant Hex of Op Code

:E:
LL.. 0 0::
....IIII

F E D C

0 0 0 l
0 l l 0
0 0 l 0
l l l l

0 0 l 0
0 0 0 0
0 l 1 l
0 0 0 0

0

0 0 0 0
0 l l l
0 0 1 0
0 0 l 0

0 0 0 0
0 1 0 0
0 1 1 1
0 0 0 0

0 1 l 1
0 0 1 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1

0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0

:c
LL.. U....J
....JX.....1.....1

B A 9 8

0 0 0 0
0 l l 0
0 0 0 0
l 1 l 1

0 0 l 0
0 0 0 0
0 l 1 l
0 0 0 0

0

0 0 0 0
0 0 1 l
0 0 1 0
0 0 1 0

0 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

0 1 l l
0 0 1 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1

0 0 0 0
1 0 0.0
1 0 0 0
0 0 0 0

c;(
Cl_. :c
....IIII

7 6 5 4

0 0 0 0
l 0 1 1
0 0 0 0
1 0 1 1

0 0 1 0
l 0 0 0
1 0 l 1
1 0 0 0

0

0 0 0 0
1 0 1 l
0 0 0 0
0 0 1 0

0 0 0 0
0 0 0 0
1 0 l 1
0 0 0 0

1 0 1 1
1 0 l l
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0

3 2 l 0

1 1 0 0
l l 0 0
0 0 0 0
1 1 0 0

0

0 0 0 0
l 1 0 0
1 0 0 0
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 1 0 0
0 0 l l

l l 0 0
l l 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0

0

OUTPUT
SIGNATURE
IPQRM

~
RSO
RSl
RS6
BR

RS8
RS9
ROT
DW

CHZ
AEH
LAE
EXN

LAM
RHZ
CAR
HW

M
AU4
AUS
IOP

AU6
AU7
GPl
pp

GP2
GP3
GP4
SW

EXM
LF
ORG
VCT

A-2 Advanced Scientific Computer

~------

OUTPUT
BIT N UMBER

' 0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

LEVEL 2 ROM CONTENTS (Sheet 3 of 16)
OP CODE 2X

X = Least Significant Hex of Op Code

F E D C

0 0 0 1
0 1 1 0
0 0 1 0
1 1 1 1

0 0 l 0
0 0 0 0
0 0 0 0
0 0 0 0

0

0 0 0 0
0 1 l 1
0 0 1 0
0 0 l 0

0 0 0 0
0 1 0 0
0 1 1 1
0 0 0 0

0 l 1 1
0 0 l l
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 l

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

:c
LI.. 0 ...J
1-- 1-- 1-- 1-­
Vl Vl Vl Vl

B A 9 8

0 0 0 0
0 1 1 0
0 0 0 0
1 1 1 1

0 l l 0
0 0 0 0
0 0 0 0
0 0 0 0

0

0 0 0 0
0 1 1 1
0 0 l 0
0 l l 0

0 0 0 0
0 1 0 0
0 1 l 1
0 0 0 0

0 l l 1
0 0 1 l
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
l 0 0 l

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

Cl :c
1-- 1-- 1--
Vl VlVl

7 6 5 4

0 0 0 0
1 0 1 1
0 0 0 0
1 0 1 l

0 0 l 0
1 0 0 0
0 0 0 0
1 0 0 0

0

0 0 0 0
l 0 l l
0 0 0 0
0 0 1 0

0 0 0 0
0 0 0 0
1 0 l 1
0 1 0 0

1 0 l 1
l 0 1 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 l

0

A-3

Cl :c
~~~~ OUTPUT 
cncncncn SIGNATURE 

IPQRM 
3 2 1 0 

• 1 1 1 1 RSO 
1 1 1 1 RSl 
0 0 0 0 RS6 
l l l l BR 

0 0 1 0 RS8 
1 0 0 0 RS9 
0 0 0 0 ROT 
l 0 0 0 DW 

CHZ 

0 AEH 
LAE 
EXN 

0 0 0 0 LAM 
1 0 1 1 RHZ 
0 0 0 0 CAR 
0 0 1 0 HW 

0 0 0 0 M 
0 0 0 0 AU4 
0 1 0 0 AUS 
u o.o 0 IOP 

0 1 0 0 AU6 
0 1 0 0 AU7 
0 0 0 0 GPl 
0 0 0 0 pp 

0 0 0 0 GP2 
0 0 0 0 GP3 
0 0 0 0 GP4 
0 1 0 1 SW 

EXM 
0 LF 

ORG 
VCT 

Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 4 of 16) 
OP CODE 3X 

X = Least Significant Hex of Op Code 

F E D C B A 9 8 

0 0 0 0 0 0 0 0 
l l l l l l l l 
0 0 0 0 0 0 0 0 
l l l l l l l l 

0 0 l 0 0 0 l 0 
l 0 0 0 l 0 0 0 
l l l l l l l l 
l 0 0 0 l 0 0 0 

0 0 0 0 
0 0 l l 0 0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 0 0 
l l l l l l l l 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 l 0 

0 0 0 0 0 0 0 0 
l 1 l 1 1 1 l 1 
1 1 l 1 0 0 0 0 
0 0 0 0 0 0 0 0 

1 1 0 0 1 1 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 1 0 1 0 1 0 1 

0 0 

Cl LL. :c 
z:zzz 
l-l--1--1-­
(/) (/) (/) (/) 

7 6 5 4 

0 0 0 0 
l l l l 
0 0 0 0 
l l l l 

0 0 l 0 
l 0 0 0 
0 0 0 0 
l 0 0 0 

0 0 0 0 
0 0 l l 
0 0 0 0 
0 0 0 0 

0 0 0 0 
l l l l 
0 0 0 0 
0 0 1 0 

0 0 0 0 
0 0 0 0 
1 1 l 1 
0 0 0 0 

l 1 0 0 
l 1 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 0 0 
0 1 0 1 

0 

Cl LL. :c 
zz:zz 
_J_J_J_J 

3 2 l 0 

0 0 0 0 
l l l l 
0 0 0 0 
l l l l 

0 0 l 0 
l 0 0 0 
l l l l 
l 0 0 0 

0 0 0 0 
0 0 l l 
0 0 0 0 
0 0 0 0 

0 0 0 0 
l l l l 
0 0 0 0 
0 0 l 0 

0 

1 1 0 0 
l 1 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 0 0 
0 1 0 1 

0 

OUTPUT 
SIGNATURE 
IPQRM 
i 

RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
DW 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AU5 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-4 Advanced Scientific Computer 



~------

OUTPUT 
BIT N UMBER 

• 0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 5 of 16) 
OP CODE 4X 

X = Least Significant Hex of Op Code 

F E D C 

0 0 0 0 
1 1 1 1 
0 0 0 0 
l l 1 1 

0 0 1 0 
1 0 0 0 
l 1 1 1 
1 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

o o o a 
l 1 1 1 
a o o o 
a o 1 o 

a a o o 
1 1 l 1 
1 1 1 1 
0 0 0 0 

1 1 0 0 
1 1 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
1 l 0 0 
1 1 0 0 
0 1 0 1 

0 

c 
LL.. LL.. ::c 
V)V)V)V) 

B A 9 8 

0 0 0 0 
1 1 1 l 
0 0 0 0 
1 l , 1 

0 0 1 0 
1 0 0 0 
1 1 1 1 
1 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
l 1 1 1 
0 0 0 0 
0 0 1 0 

0 0 0 0 
1 l 1 1 
0 0 0 0 
0 0 0 0 

1 1 0 0 
l 1 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
l l 0 0 
1 1 0 0 
0 l 0 1 

0 

7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 
l 1 1 l , , 1 1 
0 0 0 0 0 0 0 0 
1 1 , 1 1 l 1 1 

0 0 1 0 0 0 1 0 
1 0 0 0 1 0 0 0 
1 1 l 1 1 1 1 1 
1 0 0 0 l 0 0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 l 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 o o a o 
1 1 1 1 1 , 1 1 
0 0 0 0 0 0 0 0 
0 0 l 0 o a l o 

o o a o 
0 0 0 0 0 1 1 1 1 
0 0 0 0 

1 l 0 0 l 1 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 1 l 0 0 1 1 
1 l 0 0 1 l 0 0 
l 1 0 0 l l 0 0 
0 1 0 1 0 1 0 1 

0 0 

OUTPUT 
SIGNATURE 
IPQRM 

• RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
!OP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-5 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 6 of 16) 
OP CODE 5X 

X = Least Significant Hex of Op Code 

...... 
-I 

F E D C 

0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

a 

0 0 0 0 
0 0 0 1 
o o a o 
0 0 0 0 

0 0 0 1 
0 0 0 0 
0 0 0 1 
1 1 1 0 

0 

o o o a 
a a a o 
0 0 0 0 
o a o 1 

a a a 1 
0 0 0 0 
0 0 0 0 
o a o a l 

...... ...... 
(/') (/') 

B A 9 8 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 1 1 
0 0 0 0 
1 1 0 0 

0 

a a 1 1 
o a o o 
0 0 0 0 
a a 1 1 

0 0 0 1 
0 0 0 0 
o o a a 
a a o a 

I 

l 

7 6 5 4 

0 1 0 0 
0 0 1 1 
0 0 0 0 
0 1 0 0 

0 0 1 0 
0 0 0 0 
0 1 1 1 
0 0 0 0 

.0 

0 0 0 0 
0 0 1 1 
o o a a 
a o o o 

0 0 1 1 
0 0 0 0 
0 1 1 1 
1 0 0 0 

' 0 

o o a a 
o a a a 
0 0 0 0 
0 1 1 1 

0 0 0 1 
a o o o 
a o o o 
a o o o 

<( :J: 
LL.I ............ 
-I<(<( 

3 2 1 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 1 0 0 

0 0 1 0 
0 0 0 0 
0 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 1 1 
o a o o 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 1 0 0 
1 0 0 0 

0 

0 0 1 1 
o a a a 
o a o o 
0 1 1 1 

o a o 1 
0 0 0 0 
o o a o 
o o o a 

OUTPUT 
SIGNATURE 
IPQRM 

~ 
RSO 
RSl 
RS6 

·BR 

RS8 
RS9 
ROT 

I ow 
I 
I 

~ AEH 
LAE 
EXN 

LAM 
jRHZ 
'CAR 

HW 

M 
AU4 

!OP (U5 
AU6 
AU7 
GPl 

·pp 

GP2 
GP3 
GP4 
SW 

• 
IEXM 
'LF 
!oRG 

VCT 

A-6 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 7 of 16) 
OP CODE 6X 

X = Least Significant Hex of Op Code 

F E D C B A 9 8 

0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 0 1 0 1 

0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 
1 1 1 1 0 1 0 1 
1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
1 1 0 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 0 1 0 1 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 1 0 

1 1 0 0 
1 0 1 0 0 0 0 0 1 
0 0 0 0 

1 1 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 
0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 

0 0 

c 
LL. LL. :c 
cc cc 

7 6 5 4 

0 0 0 0 
1 1 1 1 
0 0 0 0 
1 1 1 1 

0 0 1 0 
1 0 0 0 
1 1 1 1 
1 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 1 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

1 1 0 0 
1 0 1 0 
1 1 1 0 
0 0 0 0 

0 0 0 1 
1 0 0 1 
0 1 0 1 
0 1 0 1 

0 

c:( c:( 

3 2 1 0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 1 

0 0 0 0 
0 0 0 0 
0 1 0 1 
0 0 0 0 

0 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0.1 0 

0 

0 1 0 1 
0 0 0 0 
0 0 0 0 
0 1 0 1 

0 

OUTPUT 
SIGNATURE 
IPQRM 

~ 
RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
IOP 

AU6 
AU? 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-7 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

' 0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 8 of 16) 
OP CODE 7X 

X = Least Significant Bit of Hex Code 

:c 

F E D C B A 9 8 

0 0 0 0 0 1 0 0 
0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 1 1 0 1 0 1 
0 0 1 1 0 1 0 1 
0 0 1 1 0 0 0 0 
1 1 0 0 1 0 1 0 

0 0 0 0 
0 0 1 0 0 0 0 0 1 
0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 0 0 1 0 1 0 1 
0 0 1 1 0 1 0 1 

0 0 0 1 0 1 0 1 
0 0 0 0 0 0 00 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

:c .............. 
CIC\ 

7 6 5 4 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 1 1 
1 1 0 0 

0 0 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 0 

0 0 0 1 
0 0 0 1 
0 0 0 1 
0 0 1 1 

0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

3 2 1 0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 1 0 1 
0 0 0 0 

0 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 1 0 1 
0 0 0 0 
0 0 0 0 
1 0 1 0 

0 

0 1 0 1 
0 0 0 0 
0 0 0 0 
0 1 0 1 

0 1 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

OUTPUT 
SIGNATURE 
IPQRM 

~ 
RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-8 Advanced Scientific Computer 



4P------

OUTPUT 
BIT N UMBER 

' 0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 9 of 16) 
OP CODE ax 

X = Least Significant Hex of Op Code 
N N 
ZNZN 

.COCOCOCO 
cc--

F E D C 

1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 1 l 1 

0 0 0 0 
1 1 1 1 
o o o a 
a a o o 

a o o o 
l 1 1 1 
o a a a 
a a a o 

l i a a 
o o a o 
a a a a 
o a o o 

l l 1 1 
a a o a 
o o a o 
1 1 l 1 

0 

N N 
:Z:N:Z:N 
coco coco 
cc--

B A 9 8 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
l l 1 l 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 l l l 

0 0 0 0 
1 1 1 1 
a o o a 
o a a a 

0 0 0 0 
l l 1 l 
o a a o 
a a o o 

i i a a 
a o o a 
o o a a 
a a a a 

1 1 l l 
a o o o 
o o o a 
l 1 l 1 

0 

LLJ LLJ. 
C!J-' C!J-' 
(..)(..)(..)(..) 
coco coco 

7 6 5 4 

1 1 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
l 1 l l 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 l 1 l 

0 0 0 0 
1 l l 1 
0 0 0 0 
o a a a 

o a o o 
a a a o 
l l l 1 
a o o o 

a 

a o o a 
0 0 0 0 
o o o a 
l l 1 1 

a 

~UJ~LLJ 
. (/) (/) Vl (/) 
cc--

3 2 1 0 

0 0 0 0 
1 1 1 l 
0 0 0 0 
1 l l 1 

0 0 0 0 
0 0 0 0 
1 l 1 1 
0 0 0 0 

0 

0 0 0 0 
l l 1 1 
0 0 0 0 
a o o o 

a 

1 l a a 
a o o o 
a o o o 
o o a o 

a a a o 
0 0 0 0 
a o o a 
l l l l 

a 

OUTPUT 
SIGNATURE 
IPQRM 
~ 

RSO 
RSl 
RS6 
BR 

RS8 
RS9 
RDT 
DW 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
!OP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-9 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

I 

LEVEL 2 ROM CONTENTS (Sheet 10 of 16) 
OP CODE 9X 

X = Least Significant Hex of Op Code 

F E D C 

0 0 0 0 
1 0 0 0 
0 0 0 0 
1 0 0 0 

0 0 0 0 
1 0 0 0 
0 0 0 0 
1 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 1 

0 

0 0 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 

1 0 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 1 

0 

xco __.__. 
coco 

B A 9 8 

0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 1 

0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
1 1 0 0 

0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 1 

0 . 

.....IUU3: 
=:>LLJC::::U 
0... x co :a: 

7 6 5 4 

0 0 0 0 
l 0 0 0 
0 0 0 0 
1 1 0 0 

0 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 0 

0 

0 0 0 1 
0 0 0 0 
1 0 0 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
0 0 0 0 
1 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 1 1 

0 

3 2 l 0 

0 0 0 0 
1 1 0 0 
0 0 0 0 
1 1 0 0 

0 0 0 0 
1 1 0 0 
0 1 0 0 
1 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 0 

0 

0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 1 0 0 
1 0 0 0 
0 0 0 0 
1 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 1 1 

0 

OUTPUT 
SIGNATURE 
IPQRM 
i 

RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 

L 
1LAM 

RHZ 
CAR 
HW 

M 
AU4 
AU5 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-10 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 11 of 16) 
OP CODE AX 

X = Least Significant Hex of Op Code 

::c: >< 
LL. LL. 
zz 

F E 0 C 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 1 1 

0 0 0 0 
0 0 0 1 
0 0 1 1 
0 0 0 0 

0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 1 0 

0 0 0 0 
0 0 1 1 
0 0 1 1 
1 1 0 0 

0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 

0 

B A 9 8 

0 0 0 0 
1 1 1 1 
0 0 0 0 
1 1 1 1 

0 0 0 0 
1 1 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
1 1 1 1 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 

0 

0 

7 6 5 4 

0 

0 

0 

0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 1 1 1 

0 

0 

0 

>< ::c: >< 
LL. LL. LL. 
Cl ....J ....J 
LL. LL. LL. 

3 2 1 0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 1 1 1 

0 0 1 0 
0 0 0 0 
0 1 1 1 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 1 1 1 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 .0 0 

0 

0 

0 

OUTPUT 
SIGNATURE 
IPQRM 

~ 
RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
!OP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-11 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 12 of 16) 
OP CODE BX 

X = Least Significant Hex of Op Code 

t; OUTPUT 
~ SIGNATURE 

IPQRM 
F E D C B A 9 8 7 6 5 4 3 2 1 0 ~ 

1 0 1 0 0 0 0 0 RSO 

0 0 0 1 1 0 0 0 0 0 RSl 
1 0 1 0 0 0 0 0 RS6 
0 1 1 0 0 0 0 1 BR 

RS8 

0 0 0 0 RS9 
ROT 
ow 

CHZ 

0 0 .0 0 AEH 
LAE 
EXN 

LAM 
0 0 0 0 RHZ 

CAR 
HW 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AU4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AUS 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 !OP 

AU6 

0 0 0 0 AU7 
GPl 
pp 

0 0 0 0 GP2 

0 0 0 0 0 0 0 GP3 
0 0 0 0 GP4 
0 0 0 1 SW 

0 0 0 0 EXM 
0 0 . 0 0 0 0 0 LF 

0 0 0 0 ORG 
0 0 0 l VCT 

A-12 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 13 of 16) 
OP CODE ex 

X = Least Significant Hex of Op Code 
Cl :I: 
u uu 
V'l u V'l V'l 

F E D C 

0 1 0 0 
1 0 1 1 
0 0 0 0 
a 1 o o 

0 0 1 0 
1 o a o 
1 0 1 1 
0 0 0 0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
o o a o 

0 0 0 0 
1 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
1 a 1 1 
o a o o 

0 

o 1 a o 
0 0 0 0 
a o a o 
1 1 1 1 

a 

Cl 
LL. LL. :I: 
uuuu 

B A 9 8 

0 0 0 0 
1 1 1 1 
0 0 0 0 
1 1 1 1 

0 0 1 0 
1 o a a 
0 0 0 0 
1 0 0 0 

1 1 1 1 
0 0 0 0 
o o a o 
o o a o 

0 0 0 0 
0 0 0 0 
o o a o 
0 0 1 0 

o a o o 
1 1 1 1 
a o o o 
a o o o 

1 l 0 0 
1 l 0 0 
0 0 0 0 
a a a a 

1 1 1 1 
o o a a 
a a a a 
0 1 0 1 

0 

Cl :I: 
c:x:: c:x:: c:x:: 
V'l V'l V'l 

7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 
1 1 1 1 1 0 1 1 
o a a o a a a a 
a a o a o a a a 

0 0 1 0 0 0 1 0 
1 a o o 1 0 0 0 
1 1 1 1 1 0 1 1 
0 0 0 0 0 0 0 0 

0 0 0 0 
0 1 0 1 1 

a o a o 
o o a o 

0 0 0 0 a o o a 
1 1 1 1 1 0 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

o a a a a a o a 
a a o o a a a o 
1 1 1 1 0 0 0 0 
0 0 0 0 0 1 .0 0 

0 1 0 0 
0 0 0 0 a o a a o 
a a a a 

o a o o a o o o 
0 0 0 0 0 0 0 0 
o a a a a a a o 
1 1 1 1 1 0 1 1 

0 0 

OUTPUT 
SIGNATURE 
IPQRM 
i 

RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-13 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 14 of 16) 
OP CODE DX 

X = Least Significant Hex of Op Code 

....... 
u 

F E D C 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 1 0 0 
0 1 0 0 
0 0 0 0 
1 0 1 1 

0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

:c ....... ....... 
uu 

B A 9 8 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 1 1 
0 0 1 1 
0 0 0 0 
1 1 0 0 

0 

0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 1 1 

0 0 0 1 
0 0 0. 0 
0 0 0 0 
0 0 0 0 

7 6 5 4 3 2 1 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 

0 0 

0 0 

0 0 

OUTPUT 
SIGNATURE 
IPQRM 

~ 
RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AU5 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-14 Advanced Scientific Computer 



OUTPUT 
BIT N UMBER 

~ 
a 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 15 of 16) 
OP CODE EX 

X = Least Significant Hex of Op Code 
Cl 

Cl Cl Cl Cl Cl Cl 
UU ~~ ~~Cl ZZClCl 
00 00 00~~ <<ZZ ww xx uuoo uu<< 

F E D C B A 9 8 7 6 5 4 3 2 l a 
o o a o a o o o 0 0 0 0 0 0 0 0 
0 0 l l 0 0 l l l l l l l l l l 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 l l a o l l l l l l l l l l 

a o o o a a o o a o o a o o a o 
a o l a a a l o l 0 l 0 l 0 l 0 
0 0 l l 0 0 l l 0 0 l l 0 0 l l 
0 0 l 0 0 0 l 0 l 0 l 0 l 0 l 0 

l 1 0 0 l l 0 0 
0 0 0 0 0 0 a o o a 

0 0 0 0 o o o a 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 l 1 0 0 1 1 0 0 l 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 l 1 0 0 0 0 l 1 l l 
l 1 0 0 1 l 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 l 0 0 l l 0 0 
0 0 l 1 0 0 l 1 l l 1 l 1 l l 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 o a a o a o o o 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 l 0 1 0 l 0 l 0 l 

0 0 0 0 

OUTPUT 
SIGNATURE 
IPQRM 

• RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AU5 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-15 Advanced Scientific Computer 



~------

OUTPUT 
BIT N UMBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 2 ROM CONTENTS (Sheet 16 of 16) 
OP CODE FX 

X = Least Significant Hex of Op Code -L> 
O' 
LL.I 

F E D C 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

0 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 1 
0 0 0 1 
0 0 0 1 
1 1 1 0 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 

0 

-c:= 
0 
x 

B A 9 8 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

0 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 1 
0 0 0 1 
0 0 0 0 
1 1 1 0 

0 0 0 0 
0 0 0 l 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 

0 . 

-c:= -0 c:= 
L> 0 

7 6 5 4 

0 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 1 0 1 
0 0 0 0 
0 1 0 1 
1 0 1 0 

0 1 0 0 
0 l 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 l 

0 

-Q -z Q 
c:( z 
L> c:( 

3 2 1 0 

0 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 1 0 1 
0 0 0 0 
0 0 0 0 
1 0 1 0 

1 1 0 0 
l 1 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 l 0 l 

0 

OUTPUT 
SIGNATURE 
IPQRM 

~ 
RSO 
RSl 
RS6 
BR 

RS8 
RS9 
ROT 
ow 

CHZ 
AEH 
LAE 
EXN 

LAM 
RHZ 
CAR 
HW 

M 
AU4 
AUS 
IOP 

AU6 
AU7 
GPl 
pp 

GP2 
GP3 
GP4 
SW 

EXM 
LF 
ORG 
VCT 

A-16 Advanced Scientific Computer 



APPENDIX B 
LEVEL 3 ROM CONTENTS 

Advanced Scientific Computer 



~------

OUTPUT 
BIT NU MBER 

l 
0 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

I 

LEVEL 3 ROM CONTENTS {Sheet l of 16) 
OP CODE OX 

X = Least Significant Hex of Op Code 

o.. OUTPUT 
~ SIGNATURE 

IRQRM 
F E D C B A 9 8 7 6 5 4 3 2 l 0 t 

ADW 
0 0 0 0 AHW 

BAE 
BBX 

BCC 
0 0 0 0 BCG 

BCL 
BRC 

BRH 
0 0 0 0 DCO 

BXC 
ION 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IDZ 
1 1 1 1 l 1 l 1 1 l 1 1 1 1 1 1 DCl 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LLA 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MCP 

DC2 
0 0 0 0 NSP 

SHW 
PSH 

RSE 
0 0 0 0 sow 

SGT 
SKE 

1 l l 1 1 1 l 1 1 1 1 1 1 1 1 1 OCK 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RGS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MDV 

XCH 
0 0 0 0 STR 

CAR 
VST 

B-1 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 2 of 16) 
OP CODE lX 

X = Least Significant Hex of Op Code 

it 0 0::: 
--'--'--'--' 

F E D C 

0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 

0 

0 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 

:c 
LL. u--' 
....JX....J....J 

B A 9 8 

0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 

0 

0 1 1 1 
0 0 0 0 
0 1 0 0 
0 0 0 0 

0 1 0 0 
0 1 O·O 
0 0 1 0 
0 0 0 0 

c( 
Cl....J:C 
--' _. ..... --' 
7 6 5 4 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 1 0 0 
0 0 0 0 

0 

1 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

L.r.J :::=: 
c(c( 

--'--' 

3 2 1 0 

0 

0 

0 0 0 0 
1 1 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 0 0 
0 0 0 0 
0 0 0 0 

0 

0 

1 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 
IRQRM 

' ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
IDN 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
SDW 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-2 Advanced Scientific Computer 



~------

OUTPUT 
BIT NU MBER 

1 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 3 of 16} 
OP CODE 2X 

X = Least Significant Hex of Op Code 

;::;:: 
u. 0 c::: 
...... 1-1- 1-
V> V> V> U\ 

F E D C 

0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 0 1 0 
0 0 0 0 

0 

0 1 1 1 
0 0 0 0 
0 1 1 l 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 0 1 0 
0 0 1 1 

:c 
U.0--1 
1-1-1-1-
V>V>V>V> 

B A 9 8 

0 0 0 0 
0 1 1 0 
0 0 0 0 
0 0 0 0 

0 

0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 1 1 0 
0 0 0 0 

0 

0 1 1 1 
0 0 0 0 
0 l 1 l 
0 0 0 0 

0 0,0 0 
0 1 1 l 
0 0 1 0 
0 0 1 1 

Cl :c 
I- 1-1-
V> V>V> 

7 6 5 4 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 

0 0 0 0 
1 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 0 1 1 
0 0 1 0 
0 0 0 0 

1 0 0 0 
l 0 0 0 
0 0 0 0 
0 0 0 0 

1 0 1 1 
0 0 0 0 
1 0 l 1 
0 0 0 0 

0 0 0 0 
1 0 1 1 
0 0 0 0 
1 0 1 1 

Cl :c 
NV>NN 
I- 0.. 1-1-
V> V> V> (,/) 

3 2 1 0 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 0 1 1 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 1 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

OUTPUT 
SIGNATURE 

M IRQR 

~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-3 Advanced Scientific Computer 



~------

OUTPUT 
BIT NU MBER 

l 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS {Sheet 4 of 16) 
OP CODE 3X 

X = Least Significant Hex of Op Code 

F E D C B A 9 8 

1 0 0 0 1 0 0 0 
0 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 

1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 

0 0 

7 6 5 4 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
0 0 1 1 
0 0 0 0 

1 1 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

ClU.:C 
z:z:z:z: 
--'--'--'--' 

3 2 1 0 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

1 1 0 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 

M IRQR 

• ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-4 Advanced Scientific Computer 



~------

OUTPUT 
BIT NU MBER 

~ 
0 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 5 of 16) 
OP CODE 4X 

X = Least Significant Hex of Op Code 

F E D C 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 l 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 l 1 1 
0 0 0 0 

0 

Cl 
LLLL:C 
V>V>V>V> 

B A 9 8 

1 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 l 1 
0 0 0 0 
0 0 0 0 

1 1 1 l 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
l 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

7 6 5 4 

1 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 l 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 l 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

Cl 
LLLL:C 
cC cC c( c( 

3 2 l 0 

1 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 l 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
l 1 1 l 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 

M IRQR 

i -
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-5 Advanced Scientific Computer 



OUTPUT 
BIT NUMBER I 

0 
l 
2 
3 

4 
5 
6 
7 

LEVEL 3 ROM CONTENTS (Sheet 6 of 16) 
OP CODE 5X 

X = Least Significant Hex of Op Code 

...... _. 

F E D C 

0 

0 

:::c ............ 
(/) (/) 

B A 9 8 

0 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

7 6 5 4 

0 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

3 2 l 0 

0 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 

' IRQRM 
~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 

I BRC 
I 

8 o o o o o o o o o o o o o o o o I 
9 I o o o l o o l l o 1., , o , l , 1 

BRH 
DCO 
BXC 
IDN 

lo 1 o o o o o o o o o o o o o o o o I 

11 _l o o o o o o o o o o o o a o o o I 

~i----o----+----o---+----0-----r----o---,,rl-~-~l-

1~5 , MCP 

0 0 0 1 0 0 0 0 1 1 1 0 l 0 0 DC2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NSP 

18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 SHW 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSH 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

0 

0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 0 0 
0 0 1 l 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 

B-6 

0 

0 l l l 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 l 0 0 
0 0 0 0 
0 0 l l 
0 0 0 0 

0 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

Advanced Scientific Computer 



~------

OUTPUT 
BIT NU MBER 

l 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 7 of 16) 
OP CODE 6X 

X = Least Significant Hex of Op Code 

F E D C B A 9 8 

1 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 

0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

1 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 1 0 0 1 0 1 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 0 1 0 1 
0 0 0 1 o o o ·o 

,, 

0 0 

B-7 

7 6 5 4 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 0 0 0 
1 0 0 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 1 

0 

OUTPUT 
c c SIGNATURE 

IRQR 
3 2 1 0 

~ 
M 

ADW 
0 AHW 

BAE 
BBX 

BCC 
BCG 

0 BCL 
BRC 

0 0 0 0 BRH 
0 1 0 1 DCO 
0 0 0 0 BXC 
0 0 0 0 ION 

0 0 0 0 IDZ 
0 1 0 1 DCl 
0 0 0 0 LLA 
0 0 0 0 MCP 

0 1 0 1 DC2 
0 0 0 0 NSP 
0 0 0 0 SHW 
0 0 0 0 PSH 

0 0 0 0 RSE 
0 0 0 0 sow 
0 1 0 1 SGT 
0 0 0 0 SKE 

0 0 0 0 OCK 
0 0 0 0 SPS 
0 1 0 1 . RGS 
0 0 0 0 MDV 

XCH 
0 STR 

CAR 
VST 

Advanced Scientific Computer 



~-------

OUTPUT 
BIT NU MBER 

i· 
a 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 8 of 16} 
OP CODE 7X 

X = Least Significant Hex of Op Code 

OUTPUT ..... ..... 
:E: :E: 

::c .......... 
cc ~ ~ SIGNATURE 

IRQRM 
F E D C B A 9 8 7 6 5 4 3 2 l 0 

~ 
0 0 0 0 0 0 0 0 ADW 
0 0 l 0 0 0 0 l 0 0 AHW 
0 0 0 0 0 0 0 0 BAE 
0 0 0 0 0 0 0 0 BBX 

BCC 
0 0 0 0 BCG 

BCL 
BRC 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BRH 
0 0 l l 0 l 0 l 0 0, l l 0 l 0 l DCO 
0 0 0 0 a o o o 0 0 0 0 0 0 0 0 BXC 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ION 

IDZ 
0 0 0 0 DCl 

LLA 
MCP 

0 0 0 0 DC2 
0 0 0 0 0 0 0 NSP 
0 0 l 0 SHW 
0 0 0 0 PSH 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RSE 
0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 sow 
0 0 l 0 0 l 0 l 0 0 0 0 0 l 0 l SGT 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SKE 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OCK 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPS 
0 0 l l 0 l 0 l 0 0 l l 0 l 0 l RGS 
0 0 0 l 0 0 0 0 0 0 0 l 0 0 0 0 MDV 

XCH 
0 0 0 0 STR 

CAR 
VST 

B-8 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

i 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 9 of 16) 
OP CODE BX 

X = Least Significant Hex of Op Code 

N N 
ZNZ:N 

·co co co co 
CC1 .......... _, 

F E D C 

0 

0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
1 0 1 0 

0 1 0 1 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 0 0 
1 1 1 l 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

B A 9 8 

0 

0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
1 0 1 0 

0 1 0 1 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

7 6 5 4 3 2 1 0 

0 0 

0 0 0 0 
1 0 1 0 0 0 1 0 1 
0 0 0 0 

1 1 1 1 
0 0 0 0 0 0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 

0 0 0 0 
0 0 0 0 0 

0 0 0 0 
0 1 0 1 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 

0 0 

OUTPUT 
SIGNATURE 

M IRQR 

~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

8-9 Advanced Scientific Computer 



~ 
LEVEL 3 ROM CONTENTS (Sheet 1 0 of 16) 

OP CODE 9X 

X = Least Significant Hex of Op Code 

u OUTPUT Cl LLJ LLJ ><al _J<..J<..J::S: :::I:l-UO.. OUTPUT 0 <( >< _..._... ::::> LLJ c::: u V>Z:UU SIGNATURE :a: co al al co a..>< co :E a.. ....... co ::!:'.: BIT NU MBER I IRQRM 

' 
F E D C B A 9 8 7 6 5 4 3 2 1 0 I 

i 
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 ADW 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AHW 
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 BAE 
3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 BBX 

4 0 0 0 0 0 0 1 0 BCC 
5 0 0 0 0 0 0 0 0 0 0 BCG 
6 0 0 0 0 0 0 0 0 BCL 
7 0 0 1 0 0 0 0 0 BRC 

8 0 0 1 1 0 0 1 1 I 0 0 1 0 0 0 1 0 BRH 
9 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 DCO 

10 0 0 0 1 0 0 0 0 
I 0 0 0 0 0 0 0 0 

I 
BXC 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ION 
i 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I !DZ 
13 

I 
0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 DCl 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LLA 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l MCP 

! 

16 1 0 0 0 1 0 0 0 l 0 0 0 DC2 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 NSP 
18 0 0 0 0 0 0 0 0 0 0 0 0 SHW 
19 0 0 0 0 0 0 0 0 l 0 0 0 I PSH 

~ 20 0 1 0 0 
21 I 0 0 0 0 0 0 I 0 22 i 0 0 0 0 
23 I 0 0 0 0 SKE 

I 

24 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 OCK 
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPS 
26 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 RGS 
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MDV 

28 0 0 0 0 0 0 0 0 0 0 0 0 XCH 
29 l 0 0 0 0 l 0 0 0 1 0 0 0 STR 
30 0 0 0 0 0 0 0 0 0 0 0 0 CAR 
31 0 0 0 0 0 0 0 0 0 0 0 0 VST 

B-10 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 11 of 16) 
OP CODE AX 

X = Least Significant Hex of Op Code 

:ex 
LL. LL. 
zz 

F E D C 

0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 

0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 

B A 9 8 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
1 0 1 0 
0 0 0 0 

1 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

7 6 5 4 

0 

0 

0 

0 

0 

0 

0 

0 

><:C>< 
LL. LI... LI... 
C--1--1 
LI... LI... LI... 

3 2 1 0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 1 1 
0 0 0 0 
0 0 0 0 

0 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 1 0 0 
0 1 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 1 1 1 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 
IRQRM 

~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-11 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

~ 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 12 of 16) 
OP CODE BX 

X = Least Significant Hex of Op Code 

t; OUTPUT 
~ SIGNATURE 

I IRQRM 
F E D C B A 9 8 7 6 5 4 3 2 1 0 

~ 
1 0 1 0 ADW 

0 0 0 1 1 0 0 AHW 
1 0 1 0 BAE 
0 1 1 0 BBX 

BCC 
0 0 0 0 BCG 

BCL 
BRC 

BRH 
0 0 0 0 DCO 

BXC 
IDN 

IDZ 
0 0 0 0 DCl 

LLA 
MCP 

0 0 0 1 DC2 
0 0 0 0 0 0 0 NSP 

0 0 0 0 SHW 
0 0 0 0 PSH 

RSE 
0 0 0 0 SDW 

SGT 
SKE 

OCK 
0 0 0 0 SPS 

RGS 
MDV 

XCH 
0 0 0 0 STR 

CAR 
VST 

B-12 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

i 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet l? of 16) 
OP CODE ex 

X = Least Significant Hex of Op Code 

F E D C 

0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 1 0 0 
0 0 0 0 
0 0 0 0 

0 1 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

c 
LL. LL. :c 
uuuu 

B A 9 8 

1 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 l 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 0 0 0 
1 0 0 0 
1 1 1 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

Cl :i:: 
c::( c::( c::( 
(./') (./') (./') 

7 6 5 4 3 2 1 0 

0 0 

0 0 

0 0 0 0 0 0 0 0 
1 1 1 1 1 0 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 
1 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

'0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 1 0 1 1 
0 0 0 0 0 0 0 0 

0 0 

OUTPUT 
SIGNATURE 

M IRQR 

~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-13 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

l 
0 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 14 of 16) 
OP CODE DX 

X = Least Significant Hex of Op Code 

...... 
u 

F E D C 

0 

0 

0 0 0 0 
0 l 0 0 
0 0 0 0 
0 0 0 0 

0 

0 

0 0 0 0 
0 0 0 0 
0 l 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 l 0 0 
0 0 0 0 

0 

:i::: ............ 
uu 

B A 9 8 

0 0 0 0 
0 0 l 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 l l 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 0 0 
0 0 l 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 l l 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 l l 
0 0 0 0 

0 . 

7 6 5 4 3 2 l 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

OUTPUT 
SIGNATURE 
IRQRM 

~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-14 Advanced Scientific Computer 



~------

OUTPUT 
BIT NU MBER 

' 0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS (Sheet 15 of 16} 
OP CODE EX 

X = Least Significant Hex of Op Code 

Cl 
uu 
CYCY 
I.LI I.LI 

F E D C 

0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 

Cl 
c:::: c:::: 
00 
><>< 

B A 9 8 

0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 1 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 0 1 1 
0 0 0 0 
0 0 1 1 
0 0 0 0 

0 

Cl 
c:::: c:::: Cl 
ooc::::c:::: 
uuoo 

7 6 5 4 

1 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 0 1 0 
1 0 1 0 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
1 1 1 l 
0 0 0 0 

0 

Cl 
CICIO 
ZZCICI 
c:(c:(ZZ 
u u <( <J.: -
3 2 1 0 

1 0 l 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 0 1 0 
1 0 1 0 
0 0 0 0 
0 0 0 0 

1 1 1 1 
0 0 0 0 
1 1 1 1 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 

M IRQR 

' ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-15 Advanced Scientific Computer 



OUTPUT 
BIT NU MBER 

~ 
0 
l 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

LEVEL 3 ROM CONTENTS {Sheet 16 of 16) 
OP CODE FX 

X = Least Significant Hex of Op Code 

...... 
u 
CY 
L1J 

F E D C 

0 

0 

0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 

0 

0 

0 0 0 1 
0 0 0 0 
0 0 0 1 
0 0 0 0 

0 

...... 
0::: 
0 x 

B A 9 8 

0 

0 

0 0 0 0 
0 0 0 l 
0 0 0 0 
0 0 0 0 

0 

0 

0 

0 0 0 1 
0 0 0 0 
0 0 0 1 
0 0 0 0 

0 

...... 
0::: ...... 
0 0::: 
u 0 

7 6 5 4 

0 

0 

0 0 0 0 
0 1.0 l 
0 0 0 0 
0 0 0 0 

0 

0 

0 

0 1 0 1 
0 0 0 0 
0 1 0 1 
0 0 0 0 

0 

3 2 l 0 

0 

0 

0 0 0 0 
0 1 0 l 
0 0 0 0 
0 0 0 0 

0 

0 

0 

0 1 0 1 
0 0 0 0 
0 1 0 1 
0 0 0 0 

0 

OUTPUT 
SIGNATURE 
IRQRM 

~ 
ADW 
AHW 
BAE 
BBX 

BCC 
BCG 
BCL 
BRC 

BRH 
DCO 
BXC 
ION 

IDZ 
DCl 
LLA 
MCP 

DC2 
NSP 
SHW 
PSH 

RSE 
sow 
SGT 
SKE 

OCK 
SPS 
RGS 
MDV 

XCH 
STR 
CAR 
VST 

B-16 Advanced Scientific Computer 



APPENDIX C 
AU DETAILS MAP 

Advanced Scientific Computer 



INPUT 
'-DORE SS 
(9 BITS) 

1 17585 

MBU ROM CARDS 

MBU ...,BMROMDAA(0-31) 
00 

MBU 
02 

MBU 
08 

-,BMROMDAB 

(0-31) 

...,BMROMDAA(32-63) 

MBU 
09 

...,BMROMDAB 

(32-63) 

...,BMROMDAA(64-95) 

MBU 
10 

•BMROMDAB 

(64-95) 

MBU -ieMROMDAA 96-127 
03 

MBU 
04 

MBU 
05 

MBU 
06 

MBU 
07 

MBU 
11 

MBU 
12 

•BMROMDAB 

(96-12 7) 

•BMROMDAB 

(128-159) 

-iBMROMDAA( 160-191 

MBU 
13 

...,BMROMDAB 

( 160-191) 

BMROMDAA( 192-223) 

MBU 
14 

...,BMROMDAB 

( 192-223) 

BMROMDAA(2 24-25 3) 

MBU 
15 

(2 24-2 55) 

-

-

-

-

BUROM CARDS 

- - - - - - -

WORD 
0 TO AU 

(32 
BITS) 

BUROM 0 

WORD 
I 

TO AU (32 
BITS) 

- - - - - - - -

WORD 
2 TO AU (32 

BITS) 

BUROM I 

WORD 
3 

(3Z TO AU 
BITS) 

- - - - -

WORD 
4 

(32 TO AU 

BITS) 

BUROM 2 

WORD 
5 

~~fs) 
TO AU 

- - - - - -

WORD 
6 TO IPU 

elf~) 

BUROM 3 

WORD 
7 TO MBU 

(32 
BITS) 

- - -- - -

Figure C-1. MBU ROM Data Distrioution 

C-1/C-2 Advanced Scientific Computer 



MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

J 

-
-~ 

OCT--... 

00 
00 

.~ 1 

~~ 
2 

~ 3 

~ 4 

~ 
~ 6 

~ 7 

>< 
~ ·>-< 10 

~ 1 

~ 2 

~ 
~ 4 

>< 5 

0 1 2 

411 
ALQSHE!C( 3 - 4) ALQFLUFN 

5 5 5 

s:><: ALQSHENC(O - 2) 

5 I 

ALQADDCR(B) ALQFLOFN 
I 5 4 5 

I 
A~QPPOFX AOQSGNCV( 1 ) 

4 5 7 

lll 
AOQSGNCV(2) 

-1 5 7 

AOQCVSGN AOQGINF(O - 4) 

7 5 7 

ASQIDXCT(O - 3) AOQLSHOr 

7 5 7 

AOQFLFXOF 
~ It 7 5 

, 
7 

qa 

AXQEXP(O - 3) 

. 

' j. 

AXQEXPH(O - 3) 

• 
I 

3 4 5 6 

>< >< >< AXQUFFLT 

5 

:><: >< >< >< >< >< >< >< • 
ASQACCEX AOQOFFX AOQRG 

7 7 8 8 

AQQRCDT AOQOFFL AOQRE 
7 7 8 8 

AOQGIND(O - 4) ASQFXOF AOQUFFL AOQCL 

7 7 8 8 

AOQDVCHK AOQGZER' AOQGC 

7 8 8 8 

ASQITMCT AOQRL AOQCE 

' 7 8 8 8 

7 8 9 

:><: >< :>< 
:><: >< ><::: 
>< :><: >< >< >< AOQPPZER 

7 

ASQESL 7>< ::><:::: 
ASQRFODD 7>< >< 
AOQPPINL 7=>< >< 
AOQXOFSF 7><::: >< 

AU Details Map - Zone O, 
Left Half (Sheet 1 of 16) 

f 
N 
.J 
I-
(.) 

~ 

,, 
1....;~ 

• 

C'l 
.J 
I-
(.) 
:::> 
< 

r-

,, 
·-~ I 

....... 
0 
'-" 
Ill 
.J 
I-
(.) 
:::> 
< 

,, 

C-3/C-4 Advanced Scientific Computer 



OCT__. 0 2 3 4 s 6 7 8 9 

AXQCTL(O 2) 

AXQEXP(4 - 7) 

AMQDIV 

AXQCTL( 6 - B) 

L~;::::::::::::::::=...~1_Jl__ __ _JllR_M_
0

_A_

0

_

0

1._ __________ J_ __________ _l __________ _j ____________ L_ __________ _L __________ ...L __________ ....1.JA~UIDoe;ttca~ill~sl~~~a~p~-:z~o~n~e0i'o;,~--·J 
Right Half (Sheet 2 of 16} 

CT01 
1A 

C-5/C-6 Advanced Scientific Computer 



MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
--

OCT-. 

00 
32 

-~ 3 

~~ 
4 

/< s 

/< 6 

/< 7 

~ 
/< 9 

~ 
09 

41 

~ 2 

~ 3 

~ 4 

~ s 

~ 6 

~ 7 

CT02 

0 1 

- u 

NOT 

• 

AXQCTL{ 3 - 5) 

' 
AXQSGN(O) 

AHQSGNH{O) 

1A 

2 3 4 s 6 

N u 5 E D 

CONN EC TED ~ro ME ORY 

7 

-

C-7/C-8 

R704 R804 

8 9 

AU Details Map - Zone 1, 
Left Half (Sheet 3 of 16) 

·~· I 

0 
II.I 
U'l 
:J z 
:J 

,, 
·~ 

,,.... 
0 ....., 
in 
J 
I-u 
~ 

,, 
,_..._ 

Advanced Scientific Computer 



~-----
R705 R805 

2 3 4 s 6 7 8 9 

,,..... 
0 ....... 

L~::::::::~~-=:.~..J-~~~~~~~~~~~~-+-~~~~~~f--~~~~~.+-~~~~~-f~~~~~~t-~~~~~-f~~~~~~-t-~~~~~-t~~~~~~1~ 

1A AU Details Map - Zone 1, 
Right Half (Sheet 4 of 16) 

() 

~ 

C-9/C-10 Advanced Scientific Computer 



~-----
OCT-... 

MEMORY 
DATA BUS .. ,;._--1-_ OO 

BIT 

HALF WORD -
BIT 

09 

64 

73 

RNOO 

0 

AMQPKPK 
RM06(15) 

AMQORD 
RM09(00) 

AMQBITR 
RMOB(OO) 

AMQHL 
CD05(10) 

AMQDL 
COOS( 11) 

AMQFLSBM 

RM05(13) 

>< 
AMQFLFXC 
RMOS(IO) 

AMQKGBEN 
RMOB(07) 

AMQFLCTL 
RMOB(03) 

AMQSTNFX 
RM09( I 0) 

22 

ABOO 

A IQAB( 0 0 - I 5) 

" 
23 

CDOO 

2 

.. 

AIQCD(OO - 15) 

~ 1 

' 
IC 

5000 LOOO RSOO 

3 4 5 

I 

AEQSOR(OO - 15) AEQLOR(OO - 15) ARQSH(OO - 15) 

'/ 2 '-./ 2 '-./ 3 

' 
1D 

I 
IE ' 1F 

NSOO 

6 

ARQNS(OO - 15) 

'-./ 3 

" 
20 

AAOO 

7 

• 

,, 
21 

R706 RB06 

8 9 

><><r 
:><><~ 
><><~ ><><, ::><:::><: .. 
><><~ 
><::><:~ 
><>< .. 
:><::><~ 
.><><~ 

><>< .. 
><~b 

><><~ 
><J:><::~ 
><><l 

AU Details Map - Zone 2, 
Left Half (Sheet 5 of 16) 

~-11 /C-12 Advanced Scientific Computer 



J¥r\ ____ _ 
~ RN01 

MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
-

OCT__.. 

00 
80 

.~ 1 

~~ 
2 

~ 3 

~ 4 

~ 5 

06 
86 

~ 7 

~ 8 

~ 9 

~ 0 

~ 1 

5? 2 

~ 3 

~ 4 

~ 5 

0 

0 

AMQFXFLC 
RMOS( 15) 

0 

AMQFL 
RM05(03) 

0 

>< 
0 

AMQODINL 
RM08(15) 

0 

AMQFLSB 
RM08(04) 

0 

C>< 
AMQSRCH 
RM09(09) 

0 

AMQSRCK2 
RM07(06) 

_Q 

.AMQFLADM 
RMOS(OS) 

0 

>< 
AMQMYCK2 
RM08(13) 

0 

AMQMYCK4 
RMOB( 14) 

0 

>< 
22 

AB01 coot 

1 2 

~~ I 

A IQAB( 1 6 - 3 1 ) AIQCD(16 - 31) 

' •• 
23 1C 

5001 L001 RS01 NS01 

3 4 5 6 

•• ·~ I I 

AEQSOR ( 1 6 - 31 ) AEQLOR(16 - 31) ARQSH(16 - 31) ARQNS(16 - 31) 

,, 
I ' 

,, 
10 IE 1F 20 

AA01 

7 

A~ 

AAQADD( 16 - 31) 

,, 
21 

R707 R807 

8 9 

:><: >< r :s:<: >< ,.... <t ...... 
0 

C>< >< 0 
< 
~ 

>< >< I 11 

::>< ><II 
>< :>< ,.... Ul ...... 

0 

:s:<: >< 
0 
< 
~ 

~ >< 111 

>< :><: 11• 

>< >< ,.... U> ...... 
0 

>< >< 0 
< 
~ 

>< :><: lilt r-->< >< ~ >< >< ,.... .... ...... 
0 

><><~ 
><><L 

1A ~B 

AU Details Map - Zone 2, 
Right Half (Sheet 6 of 16) 

C-13/C-14 Advanced Scientific Computer 



~-----

MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
---

OCT__.. 

00 

96 

-~ 7 

">< 8 

/<. 9 

~ 0 

~ 1 

/<. 2 

/< 3 

/<. 
/< 5 

~ 6 

~ 7 

~ 08 

~ 9 

~ 0 

~ 1 

RN02 

0 

AMQSn.IF 
RM07 04) 

0 

AMQFIRS 
RM05(02) 

0 

AMQFLAD 
RM05(04) 

0 

>< 
AMQCIRC 
RM08(0 1) 

0 

AMQARSH 
RM04(10) 

0 

0 

>< 
AMQVDP 

RM03(03) 
0 

AMQPSOPL 
RM0(01) 

>< 
AMQLARFX 
RM08(09) 

AMQLARFL 
RM08(08) 

AMQSARFX 
RM09(05) 

>< 
22 

AB02 CD02 C002 

1 2 3 

• • j~ 

AIQAB(32 - 47) AIQCD(32 - 47) AEQSOR(32·- 47) 

1 1 2 

' ' ' 
23 1C 1D 

L002 RS02 NS02 

4 5 6 

~ • II 

AEQLOR(32 - 47) ARQSH(32 - 47) ARQNS(32 - 47) 
2 3 3 

' ' ' 1E 1F 20 

AA02 

7 

II 

AAQADD(32 ·- 47) 
4 

' 
21 

R708 R808 

8 9 

>< >< >< >< >=;: >< :><;:: >< >< >< >< >< >< >< >< >< >< >< >< >< 
C>< >< >< >< >< >< >< >< >< >< >< >< 

1A 1B 

AU Details Map - Zone 3, 
Left Half (Sheet 7 of 16) 

I 
,.-... 
<Xl 
'-' 
0 
0 
< 
~ 

' 1-i t-

• 

,-.. 
Ol 
'-' 
0 
0 
< 
:::> 
< 

' ' H !-
~ ~ 

,.-... 
0 -'-' 
0 
0 
< 
:::> 
< 

' ' -'. t-
~ 

,-.. --'-' 
0 
0 
< 
~ 

1 
C-15/C-16 Advanced Scientific Computer 



<~ 
RN03 AB03 CD03 5003 L003 RS03 NS03 AA03 R709 R809 

OCT-- 0 1 2 3 4 5 6 1 7 8 9 

MEMORY 
DATA BUS - I~ d ~~ ~~ 1 >< >< r BIT - 00 I j 4~ 

AMQSARFL 

HALF WORD - t 12 RM09(04) 
I 

BIT -
~~ AMQLMGFL 

I >< >< ,....., RM08(11) 
N 

0 
......, 
0 

~ >< >< 
0 

AMQLMGFL 
<( 
:i 

RM08(10) 0 

<( 

~ >< >< >< 11• 

~ >< >< 
I--

AMQSMGFX 
II~ 

RM09(08) 
0 

~ AMQSMGFL >< :>< ,....., RM09(07) 
C') 

0 -......, 

~ 
0 

>< ::><: 0 

AMQ1 
<( 

RM 09( 11) 
:i 

0 

<( 

/~ >< >< >< 11 

~ >< ::><: r-
AMQ2 

ATQAB(48 - 63) AIQCD(48 - 63) AEQSOR(48 ~ 63) AEQLOR(48 - 63) ARQSH(48 - 63) ARQNS(48 - 63) AAQADD(48 - 63) 1 ·~ 
RM09( 1 2) 

0 1 1 2 2 3 3 4 

~ AMQ3 >< >< ,....., RM09( 13) 
";f 

0 -......, 

~ 
0 

>< :><: 0 

AMQ4 
<( 

RM09(14) 
:i 

0 
<( 

~ :><: >< ::><: ,. 
/< 

F-
AMQSCHXM >< ~ lit RM09(06) 

0 

~ AMQFXAR >< >< ,....., RM08(05) 
[(') 

0 
-......, 

~ 
0 

>< ~ 
0 

AMQFLAR 
<( 

RM 05(06) ~ 
0 

i ~ C>< ilr 1i ,, ,, ,i. 1i I ~ ~ 
22 2 3 1C 1D 1 E 1F 20 21 1A 1B 

AU Details Map - Zone 3, 
Right Half (Sheet 8 of 16) 

C-17/C-18 Advanced Scientific Computer 



~-----
ACOO PSOO PCOO EFOO NROO 

OCT_.... 0 2 3 4 

ASQACC(OO - 15) AXQMPS(OO - 15) AXQMPC(OO - 15) AOQEF(OO - 15) ALQNORM(oo- 15) 

IA 18 1C 10 IE 

5 6 7 

R70A RBOA 

8 9 

AU Details Map - Zone 4, 
Left Half (Sheet 9 of 16) 

C-19/C-20 Advanced Scientific Computer 



~----, 
AC01 PS01 PC01 E001 NR01 

OCT_. 0 2 3 4 

17 

18 

19 

20 

21 

22 

23 

ASQACC(16 - 31) AXQMPS(16 - 31) AXQMPC(16 - 31) AOQEF(16 - 31) LQNORM(16- 31) 

24 

25 

26 

27 

28 

29 

30 

31 

1A 18 1C 10 1E 

5 6 7 

C-21/C-22 

R708 R708 

8 9 

AU Details Map - Zone 4, 
Right Half {Sheet 10 of 16) 

Advanced Scientific Computer 



J~\-----· ~ AC02 

MEMORY 
DATA BUS 

BIT 

OCT__. 0 

PS02 PL02 EF02 NR02 

2 3 4 

ASQACC(32 - 47) AXQMPS(32- 47) ;AXQMPC(32 - 47) AOQEF(32 - 47) ALQNORM(32- 47) 

lA 1B 1C to 

5 6 7 

R70 R80 

8 9 

AU Details Map - Zone 5, 
Left Half (Sheet 11 of 16) 

C-23/C-24 Advanced Scientific Computer 



<{p ____ _ 

MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
--

OCT ------ 0 1 

00 
176 

.~ 7 

~~ 
8 

~ -
~ 0 

~ 1 

~ 2 

~ 3 

~ ASQACC( 48 - 63) AXQMPS(48 - 63) 

~ 5 

~ 6 

~ 7 

~ 8 

~ 9 

~ 0 

~ 1 

AU OUT 

2 3 4 5 6 

j 
AMQLNTCK 

BLANK 
AT MB 

j~ 

AXQMPC(48 - 63) AOQEF(48 - 63) ALQNORM(48- 63) BLANK AT MB BLANK AT MB 
ANQOGT( 1 - 1 5) AMQNGT( 1 - 15) 

' " 

AUCTL4 

7 

4• 

ALQGDGT(O - 3) 

,. 
ia 

BLANK AT MB 
AQQAE(O - 8) 

1• 
AAQAPXOF 

AOQPPZER 

AOQPPINL 

8 9 

ia >< >< 
ALQCFXSF(O - 4) :><: 

:><: 
' :><: 

>< >< >< >< >< :>=<: 
>< :><: 
>< :>=<: 
>< :>=<: 
>< >< :><: :>=<: 
>< :><: 

[:><: >< >< ~ 
AU Details Map - Zone 5, 
Right Half (Sheet 12 of 16) 

ll 

,..... 
II) ....... 
I-

5 
~ 

' I- !--

• 

,..... 
r-.. ....... 
I-
::> 
0 
::> 
< 

•I 

C-25/C-26 Advanced Scientific Computer 



MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
--

OCT--. 

~ 2 

01 -~ 
~193 

"/<. 4 

/<. 5 

/<. 6 

~ 7 

~ 8 

/<. 9 

~ 0 

/<. 1 

·>< 202 

~ 3 

><-4 

~ 5 

14 
206 

~ 7 

0 

I 

AXQABM(OO -

,, 
1A 

XBOO xcoo XDOO 

1 2 3 

j~ ~ I 

15) AXQABL(32 - 47) AXQCDM(OO - 15) AXQCDL(32 - 47) 
1 1 1 1 

,, , ' 
1B 1C 10 

VMOO VLOO NMOO NLOO 

4 5 6 7 

11 ·~ ~ I 

AXQDVRM(00-15) AXQDVRL(32- 47) AXQDVNDM(oo-15~ AXQDVNDL( 3 2- 4 7) 
9 9 9 9 

' 
,, , ,, 

1E 1F 20 21 

C-27/C-28 

DMOO DLOO 

8 9 

~ ·~ 

jAXQMODFM(oo-15 AXQMODFL(32-47) 
9 

' ' 
22 23 

AU Details Map - Zone 6, 
Left Half (Sheet 13 of 16) 

9 

T ....._ 
0 ....... 
I-
.J 
:::> 
::E 
:::> 
<( 

' 
I 

....._ -....... 
I-
.J 
:::> 
::E 
:::> 
<( 

I ~ 1-i 

·~ 
,.... 
(\f 
....... 
I-
.J 
:::> 
::E 
:::i 
<( 

I 
I-! r-

~ 

....._ 
C') 
....... 
I-
.J 
:::> 
::E 
:::> 
<( 

1 
Advanced Scientific Computer 



~------

MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
--

OCT__.... 

00 
208 

.~ 9 

~~ 
0 

~ 1 

~ 2 

~ 3 

~ 4 

~ 5 

~ 6 

~ 7 

~ 8 

~ 9 

~ 0 

~ 1 

14 

222 

~ 3 

XA01 XB01 

0 1 

~ j 

AXQABM(16 - 31) AXQABL(48 -

I 

I ' 

XC01 XD01 

2 3 

j~ j~ 

63) AXQCDM(16 - 31) AXQCDL(48 - 63) 

1 1 I 

•• ' 

VM01 VL01 NM01 

4 5 6 

·~ I ·~ 

AXQDVRM( 16- 31) AXQDVRL( 48 - 6 3 jAXQDVNDM( 16-31) 

9 9 9 

•It , ' 

NLOt 

7 

I 

AXQDVNDL(4B-63) 

9 

' 

DMOt DL01 

8 9 

j j 

AXQMODFM(16-32). AXQMODFL(48 .- 63 

9 

• ' 
AU Details Map - Zone 6, 
Right Half (Sheet 14 of 16) 

9 

r 
r-.. 
'<l' 

'j:' 
.J 
:i 
~ 
:i 
<( 

I ,, 

1-'l-j. 

r-.. 
Ul ........ 
I-
.J 
:i 
~ 

~ 

d1 
1-1--

~ 

,,..... 
IO ........ 
I-
.J 
:i 
~ 

~ 

ti 

II 

,,..... 
I'-
........ 
I-
.J 
:i 
~ 
:i 
<( 

i 
C-29/C-30 Advanced Scientific Computer 



MEMORY 
DATA BUS 

BIT 

HALF WORD 
BIT 

-
--

OCT ... 
00 

224 

~ 225 

~~ 
6 

~ 7 

~ 8 

~ 9 

06 

230 

07 

___.,-· 231 

~ 2 

~ 3 

~ 4 

~ 5 

~ 6 

~ 7 

14 

238 

~ 9 

0 

AMQACC( 1) 
AMQROMFF(O) 

0 

AMQACC(6) 
AQROMFF( 1) 

0 

AMQACC(8) 
FF(2) 

0 

AMQACTPS 
FF(3) 

0 

·~ FF(4) 
0 

FF(5) 
0 

AMQAOFSL(O -
FF(6) 

3) 

0 

ti FF(7) 
0 

AMQARCP 
FF(8) 

AMQARSH 
FF(9) 

ANQOGT(O) 

ANQOGT( 11) 

ANQOGT(1 2) 

j 

AEQED( 1 - 3) 

•Ir 
1A 

R100 R 110 X002 R3 

1 2 3 

AMQBTNRC AMQFLDIV AMQXOFCD( 1) 
AMQROMFF( 10) AMQROMFF(20) , AMQROMFF(30) 

AMQXOFCD(2) AMQCRCSH AMQFLDNM 
FF( 11) FF(21) FF(31) 

AMQDIV AMQFLMDF AMQLGARS 
FF( 1 2) FF(22) FF(32) 

AMQDIVDP AMQFLMUL ~ 
FF( 1 3) FF(23) FF( 33) 

AMQDLMUL AMQFLSBM AMQLOGCD(O- 2) 
FF(14) FF(24) FF(34) 

AMQFIRS AMQFLSUB 
FF( 1 5) FF(25) It FF(35) 

AMQFLAD AMQFXNOR AMQLOGCP 
FF( 1 6) FF(26) FF(36) 

J~ 
AMQFLADM 

FF(17) AMQFXSH 
FF(27) FF(37) 

AMQFLAR AMQNORM(o- 2) AMQG2DIS 
FF(18) FF(28) FF(38) 

AMQFLDAB AMQG8DIS 
FF(19) ~· FF(39) FF(29) 

J • ANQOGT(14) 

ANQOGT( 15) ANQOGT( 19 - 21) ANQOGT(22- 24) 

ANQOGT( 18) 

1• ' ~ 
AEQED(7) AEQET 

AEQED(4 - 6) AMQINC AEQAGTC 

•Ir >< AEQEDARX 

1B 1C 10 

R400 

4 

AMQPKPK 
AMQROMFF(40) 

AMQPPCMP 
FF( 41 ) 

AMQPPCPS 
FF(42) 

AMQPPINL 
FF(43) 

AMQRCEN(5) 
FF(44) 

~ 

FF(45) 

AMQRCEN(7 -
FF(46) 

9) 

AMQRCEN ,, ( 2) 

I 

ANQRCENC 
( 1 ) 

AMQRCEN( 13- 14) 
iANQRCENC 

(0) 

• 
ANQOGT(26 - 27) 

_I 

AMQNGT(21) 

AEQFLCAR 

AEQEDEX 

-.AEQSCHIE 

1E 

R500 R600 R700 R800 R900 

5 6 7 8 9 

j 

AMQAOTYP--t=QNGT,9 - ·~ " I 
j 

10) 

+- I 

.:AQSOFr ~~· AMQDL ,, 
AMQRCEN( 15- 18) 

-- _L 
AMQFL AMQNGT( 13) ANQOGT(6 - 10) 

AMQSRCK2 ,, 
·~ >< I 

AIRCEN(20 - 21) ANQXOFCD( 0) ANQRCEN 
( 17) 

AMQRSACC AMQSCCD 

AMQSHIF AMQVDP 

AMQSLMUL AMQVECT 

ANQRCEN AMQXCT(O) ( 18) 

AMQNGT(2) AMQNGT(2) 

>< j 

AMQNGT( 1) AMQNG.(4 - 5) 

ARQNSEXT -iAAQFPS(O) 

AOQSGDEL -iAAQFPS(2) 

AAQADDEX -oARQDCD(6) 

IF 20 

i11 
AMQFLFXC 

AMQFXFLC AMQNGT( 16- 17) 

1 ,, 
AMQHL ANQXOFCD ANQOGT( 13) ( 1 ) 

·~ AMQHWQOT ANQXOFCD 
(2) 

·~ AMQDIVFX ANQOGT(16 - 17) 

_i_ 

AMQCONT( 1 1) ANQOGi.1 - 2) ANQOGT(25) 

ANQARCP AMQNGT(3) AMQNGT( 19) 

• • ANQRCEN 
(5) 

AMQNGT( 6 - 8) ANQOGT(3 - 5) ANQRCEN 
(7) 

ANQXOFCD 

•Ir 11r 
(0) 

>< >< >< 
~ >< >< ><><>< 

21 22 23 

AU Details Map - Zone 7, 
Left Half (Sheet 15 of 16) 

11. 
11. 
~ 
0 
0:: 
::i 
<( 

,, 
1-,f--

j 

I-
z 
0 
(.) 
::> 
<( 

L 
C-31/C-32 Advanced Scientific Computer 



~~~~~~~~~~~~~~~~~~~~~~~ 
R701 R801

MEMORY
DATA BUS

BIT

HALF WORD
BIT

-

--

OCT_,.. 0

00

240

.~
~~

2

~ 3

~ 4

~ 5

~ 6

~ 7

~ 8

·~
9

~ 0

~ 1

~ 2

~ 3

~ 4

~ 5

1 2 3 4 5

I

- u N u 5

NOT CON NE CTED T

6

E

0 ME

7

D

,ORY

8 9

-

AU Details Map - Zone 7,
Right Half (Sheet 16 of 16)

C-33/C-34 Advanced Scientific Computer

TEXAS INSTRUMENTS
INCORPORATED

EQUIPMENT GROUP
AUSTIN , TEXAS

PUBLICATION UPDATE

TYPE OF CHANGE

0 IMMEDIATE
(MAY CAUSE PERSONAL INJURY OR
EQUIPMENT DAMAGE/FAILURE)

0 ROUTINE
(BATCH PROCESSED)

PUBLICATION

PROGRAM ASC PUBLICATION NO. 930020-2

Central Processor OMI
TITLE~~~~~~~~~~~~~~~~~~~~~~

DATE July 1973 JOB NO.1 ... s s...,6 ... A...._ _____ _

SUBMITTED BY

NAME PHONE

MAIL STATION DATE

LIST PAGE AND PARAGRAPH OR FIGURE NUMBERS AND DESCRIBE RECOMMENDED CHANGES·

FORWARD CHANGES BY FOLDING THIS SHEET AND STAPLING. RETURN ADDRESS IS ON BACK OF SHEET.

TEXAS INSTRUMENTS INCORPORATED

EQUIPMENT GROUP

P.O. BOX 2909

AUSTIN, TEXAS 78767

ATTENTION: TECHNICAL DATA BRANCH

MAIL STATION 21 46

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	2-01
	2-02
	3-01
	3-02
	4-001
	4-002
	4-003
	4-005
	4-007
	4-009
	4-011
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-148
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	4-160
	4-161
	4-162
	4-163
	4-164
	4-165
	4-166
	4-167
	4-168
	4-169
	4-170
	4-171
	4-172
	4-173
	4-174
	4-175
	4-176
	4-177
	4-178
	4-179
	4-180
	4-181
	4-182
	4-183
	4-184
	4-185
	4-186
	4-187
	4-188
	4-189
	4-190
	4-191
	4-192
	4-193
	4-194
	4-195
	4-196
	4-197
	4-198
	4-199
	4-200
	4-201
	4-202
	4-203
	4-204
	4-205
	4-206
	4-207
	4-208
	4-209
	4-210
	4-211
	4-212
	4-213
	4-214
	4-215
	4-216
	4-217
	4-218
	4-219
	4-220
	4-221
	4-222
	4-223
	4-224
	4-225
	4-226
	4-227
	4-228
	4-229
	4-230
	4-231
	4-232
	4-233
	4-234
	4-235
	4-236
	4-237
	4-238
	4-239
	4-240
	4-241
	4-242
	4-243
	4-244
	4-245
	4-246
	4-247
	4-248
	4-249
	4-250
	4-251
	4-252
	4-253
	4-254
	4-255
	4-256
	4-257
	4-258
	4-259
	4-260
	4-261
	4-262
	4-263
	4-264
	4-265
	4-266
	4-267
	4-268
	4-269
	4-270
	4-271
	4-272
	4-273
	4-274
	4-275
	4-276
	4-277
	4-278
	4-279
	4-280
	4-281
	4-282
	4-283
	4-284
	4-285
	4-286
	4-287
	4-288
	4-289
	4-290
	4-291
	4-292
	5-01
	6-01
	6-02
	6-03
	6-04
	7-01
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-00
	C-01
	C-03
	C-05
	C-07
	C-09
	C-11
	C-13
	C-15
	C-17
	C-19
	C-21
	C-23
	C-25
	C-27
	C-29
	C-31
	C-33
	replyA
	replyB
	xBack

